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Preface

Dear Reader,

in this book you will find the Proceedings of the Summer School Conference “Advanced Problems
in Mechanics (APM) 2009”. The conference had been started in 1971. The first Summer School
was organized by Prof. Ya.G. Panovko and his colleagues. In the early years the main focus of
the School was on nonlinear oscillations of mechanical systems with a finite number of degrees of
freedom. Since 1994 the Institute for Problems in Mechanical Engineering of the Russian Academy
of Sciences organizes the Summer School. The traditional name of “Summer School” has been kept,
but the topics covered by the School have been much widened, and the School has been transformed
into an international conference. Now it is held under the patronage of the Russian Academy of
Sciences. The topics of the conference cover now almost all fields of mechanics, being concentrated
around the following main scientific directions:

— aerospace mechanics;
— computational mechanics;
— dynamics of rigid bodies and multibody dynamics;
— fluid and gas;
— mechanical and civil engineering applications;
— mechanics of media with microstructure;
— mechanics of granular media;
— nanomechanics;
— nonlinear dynamics, chaos and vibration;
— molecular and particle dynamics;
— phase transitions;
— solids and structures;
— wave motion.

The Summer School – Conference has two main purposes: to gather specialists from different
branches of mechanics to provide a platform for cross-fertilization of ideas, and to give the young
scientists a possibility to learn from their colleagues and to present their work. Thus the Scientific
Committee encouraged the participation of young researchers, and did its best to gather at the
conference leading scientists belonging to various scientific schools of the world.

We believe that the significance of Mechanics as of fundamental and applied science should much
increase in the eyes of the world scientific community, and we hope that APM conference makes
its contribution into this process.

We are happy to express our sincere gratitude for a partial financial support to Russian Founda-
tion for Basic Research, Russian Academy of Sciences, and St. Petersburg Scientific Center. This
support has helped substantially to organize the conference and to increase the participation of
young researchers.

We hope that you will find the materials of the conference interesting, and we cordially invite you
to participate in the coming APM conferences. A part of the papers published in this Volume is
planed to be published in Materials Physics and Mechanics Journal by agreement between APM
2009 organizers and Editors of Materials Physics and Mechanics. You may find the information
on the future “Advanced Problems in Mechanics” Schools Conferences at our websites:

http://apm-conf.spb.ru

With kind regards,

Co-Chairmens of APM 2009

Dmitri A. Indeitsev, Anton M. Krivtsov
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Spherical and cylindrical charged dusty particle
system response on pulse loading

A. V. Abdrashitov K. P. Zolnikov S. G. Psakhie
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Abstract

Peculiarities of dust particle systems behavior at external confinement field
under different types of impulse loading are investigated. The interparticle
interaction is described by the Yukawa isotropic pair potential. Structure with
cylindrical and spherical symmetry are obtained to investigate wave propaga-
tion process. The characteristics of wave propagation generated by external
loading are calculated.

1 Introduction

Dusty (or complex) plasma has been the subject of intensive investigation for more
than ten years [1, 2]. Now it is well known that microparticles of matter in plasma of
different origin can acquire high electric charges and exhibit properties of gas, liquid
or a solid. Of particular interest was the discovery of so-called plasma crystals -
ordered structures of dust particles [3, 4, 5]. However, attempts to obtain homoge-
nous three-dimensional crystal modifications in gas-discharge devices usually used
in laboratories ran into serious difficulties such as chainlike ordering of dust particles
in the vertical direction and formation of a void in a dust cloud [6, 7, 8]. The dif-
ficulties were overcome in recent experiments [9, 10, 11], which allowed researchers
to produce so-called Coulomb balls (CB), i.e. almost spherical systems of dust par-
ticles of one size. The rf-discharge device employed in the experiment differed from
an ordinary one by the presence of a heated electrode with a glass box mounted on
it in which a CB was formed.

More often researchers consider models where particles interacting by one or another
law are confined in the harmonic potential Uex(r) ∼ r2 whose origin is independent of
direction. However, in experiments on the production of CB [9, 10, 11] the situation
is aggravated because the dust system is maintained by forces of different origin.

Main purpose of conducted research was investigation of structural response of CB
under mechanical loading of outer shell and under instant confinement field changing.
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Spherical and cylindrical charged dusty particle system response on pulse loading

Figure 1: CB with 5000 dust particles in cylindrical coordinates. Outer shell loading
scheme.

2 Model

We assume that in all considered cases the dust particle interaction has a purely
Debye character. Such interaction is chosen because of a good agreement of the
simulation results for the CB structure with experimental data [11]. With regard
to the close values of interparticle distance a and screening length λd, the choice
is well corroborated by the results of a direct experimental study of dust particle
interaction in similar cases [12]. Since the dust radius R and length λd meet the
condition R≪ λd, we represent the potential of any dust particle as

φ =
Q

4πε0r
e

(
−
r

λd

)

(1)

where Q is the particle charge.
The theoretical estimation of the dust particle charge as the particle size function
was carried out within an analytical approach [13, 14], which is a generalization of
the known charge theory in the orbit motion limited (OML) approximation in case
if ion scattering on neutral atoms is taken into account. Such process at buffer gas
pressure 20-120 Pa (Ar) [10] causes a significant dust charge reduction as compared
to the estimates obtained in the framework of the OML theory [14]. Besides, in the
first approximation we considered for a decrease in the concentration of electrons in
the plasma volume owing to their localization on the dust particle surface as well as
for the quasineutrality condition [2].
The forces acting on a dust particle under the experimental conditions have been

studied in detail in [9, 10, 11]. Confinement field have form
−−−→
Fconf = −αQ−→r . The

analysis based on the measurements and simulation of electrical properties of the
experimental setup shows that in the horizontal direction only the electrostatic force
acts on the CB, while in the vertical direction the gravitational, thermophoretic, and
electrostatic forces act together. The results of [10] have been approximated for the
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height dependencies of the temperature gradient and electrostatic force using a third-
order polynomial interpolation. The temperature of the dust systems is determined

by the below-given values of the coupling parameter Γ = Q2

4πε0akT

3 Method of analysis

It is well known fact that under the conditions of weightlessness for a parabolic con-
finement field a simulated system of dust particles (DPs) constitutes a sphere Fig. 1.
Under laboratory conditions, where the action of the gravitational component on
DPs is compensated for by the electrical and thermophoretic forces, a DP system
constitutes an ellipsoid of revolution (the axis of revolution is parallel to the gravi-
tational force). In this work, the external pulse loading was applied to crystallized
DP systems structured as shells.
An investigation of the DP system response to the external pulse loading relied
on the analysis of the outer shell position with respect to time. In the case of a
spherical configuration of a DP system, it is essential to know the time variation
of one parameter: distance from a shell to the center. While in the case where a
DP system was shaped as an ellipsoid of revolution, variation in two semi-axes of
an ellipse was needed in order to study its behavior. The volume of the ellipsoid of
revolution is determined by the expression: V0 = 4/3πrzrρ , where rz and rρ are its
semi-axes.
The external loading of a DP system under laboratory conditions was imitated by
varying the confinement field strength in the direction perpendicular to the axis of
revolution of the ellipsoid. The shape of the ellipsoid was changed and the behavior
of this DP system was described accordingly using two functions: variation of volume
of the ellipsoid (W(t)) and ellipticity variation without changing the volume (B(t)).
To do so, the dependence of rz and rρ on time could be given as follows:

rz(t) = rz(0) ∗W(t) ∗ B(t)−2 (2)

rρ(t) = rρ(0) ∗W(t) ∗ B(t) (3)

where W(t) is determined from the following expression: V(t) = V(0) ∗W(t)3 .

4 Simulation results

Two types of loading a Coloumb ball (CB) were addressed in this work: imparting
a center-oriented momentum to the particles on the outer shell and variation in
the confinement field strength. First CB mechanical loading scheme is presented
in Fig. 1. Loadings were performed by adding center oriented velocity to particles
on the outer shell. These velocities varied in the interval from 0.1 sm

s
till 10 sm

s
,

while CB contained from 500 till 5000 dust particles. Dust particles had charac-
teristics of melamine-formaldehyde balls with 4,8 µm diameter and ρ = 1514 kg

m3

mass density. Converging spherical waves occur in CB at impulse radial loading.
Simulations showed that outer shell oscillations have beat form. The main reason
of such response is close values of frequencies of outer shells. Beat amplitude al-
most decays after few dozen periods. That occurs since synchronization of outer

14



Spherical and cylindrical charged dusty particle system response on pulse loading

Figure 2: Time dependence of distance from centre of CB for dust particles on outer
shell(1) and shell after outer(2) under uniform loading.

shell oscillations Fig. 2. As can be seen from Fig. 2, oscillation amplitude increases
with loading intensity, while oscillation frequency remains the same. It should be
pointed out, that shell oscillation frequency depends substantially on CB size. This
dependence can be written as T ≈ 0.006 + 0.009e− N

1200 . As can be seen from this
formula, limiting period is equal to 0.006 s. According to intensity of radial loading
two regimes of structure response can be formulated. Shell structure saves under
small impulse loading (the first regime) Fig. 3a , while under some greater values
of loading the shell structure starts destroying and CB melts (the second regime)
Fig. 3b. Variation in the confinement field strength in the DP system results in
shell vibration followed by changes in the CB volume but without any changes in
its shape. It should be underlined that for this type of loading the shells undergo
synchronous oscillation. Also note that their oscillation frequency depends on the
finite value of the confinement field strength (Fig. 4). In contrast to the first method
of loading, even the external force tripling, connected with corresponding value of
the electric field jump, does not lead to the CB failure, since the oscillations of
all the CB layers are synchronized from the moment of the external force change.
Nevertheless, if the pumping energy leads to the sufficient kinetic energy, the shell
structure of CB fails.

Loading of the DP system under laboratory conditions was performed by varying
the confinement field strength in the horizontal plane. For the calculations, use
was made of a CB consisting of 180 DPs measuring 2.4 µm in diameter with the
charge 2013e. The confinement field strength was changed by 10%. The curve
describing the outer shell position in terms of time has a complicated shape Fig. 5.
Nonetheless, the time dependence of the functions W(t) and B(t) is of a marked
harmonic character.
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Figure 3: CB with 5000 dust particles in cylindrical coordinates a) before loading ,
b) after t = 2 s under impulse loading with V = 0.8 sm/s

Figure 4: Outer shell oscillation under different confinement field alteration (2000
DP).
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Figure 5: Time dependences of B(t), W(t) and rz(t)/rz(0) under anisotropic loading.

5 Conclusions

Outer shell oscillation amplitude increases with loading intensity, while oscillation
frequency remains the same. According to intensity of radial loading two regimes
of structure response can be formulated. Shell structure saves under small impulse
loading (the first regime), while under some greater values of loading the shell struc-
ture starts destroying and CB melts (the second regime).

CB shells oscillate after confinement field strength change. Oscillation frequency
depends on final confinement field strength while oscillation amplitude depends on
value of the confinement field change. In contrast to the first method of loading,
even the external force tripling, connected with corresponding value of the electric
field jump, does not lead to the CB failure. Nevertheless, if the pumping energy
leads to the sufficient kinetic energy, the shell structure of CB fails.

For a CB under laboratory conditions, variation in the confinement field strength
in the horizontal plane also gives rise to oscillation motions of its shells. Note again
that variation in the shape and volume of a CB in terms of time is harmonic.
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Some dynamical problems for generalized (3+1) sine-Gordon equation
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Abstract

The new exact solutions of the three-dimensional sine-Gordon (SG) equa-
tion are obtained. These solutions depend on arbitrary function F(α), which
argument is some function α(x, y, z, t). The ansatz α is found from the linear
equation with respect to x, y, z, t, which coefficients are arbitrary functions
depending on α. These coefficients must satisfy a system of algebraic equa-
tions. The classical and generalized SG-equations with first derivatives with
respect to x, y, z, t are solved by this method. The SG-equation with only first
time derivative is considered separately. The approaches for the solutions of
SG-equation with variable amplitude are proposed. These methods admit
natural generalization in case of integration of the abovementioned types of
equations in a space with any number of dimensions.

1 Introduction

A large number of works are devoted to investigating the sine-Gordon (SG) equa-
tion, because it appears in various branches of mechanics, mathematics, and the-
oretical physics. The SG equation describes dislocations in solids [1], deformation
of a nonlinear crystal lattice [2], [3], properties of Bloch’ walls in ferromagnets [4],
propagation of pulses in two levels resonance mediums [5], the orientation structure
of liquid crystals [6], commensurability-noncommensurability phase transitions [7],
etc. It also arises in simulations of wave processes in geological media [8], in molec-
ular biology [9], in field theory models [10], and in elementary particle physics [11].
Occurrence of soliton, one of the most beautiful and universal objects of modern
scientific researches, is connected with SG equation.
Currently, quite effective methods have been developed for solving nonlinear differ-
ential equations including the SG equation. These are the method proposed by Lamb
for solving the two-dimensional SG equation [12], the Bäcklund transformation [13],
the inverse scattering method [14], [15], the Hirota method [16] for finding multi-
soliton solutions in explicit form, perturbation theory, and others. But the needs
in developing of the theory of nonlinear equations and the problems of practical
simulation of various physical phenomena and technological processes stimulate the
search for new methods for solving nonlinear equations including the SG equation.
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2 The transformation and methods for solving

the SG equation

We seek solutions of the SG equation

∂2U

∂x2
+
∂2U

∂y2
+
∂2U

∂z2
−
1

v2
∂2U

∂t2
= sinU (1)

in the form Lamb [12] proposed for integrating the two-dimensional SG equation:

U = 4 arctanG(x, y, z, t) . (2)

Earlier such substitution has been used in [17].
Substituting (2) in (1) and using

sinU =
4G

1+G2
−

8G3

(1+G2)2
, (3)

we obtain a nonlinear differential equation for G:

4G

1+G2

[
∂2G

∂x2
+
∂2G

∂y2
+
∂2G

∂z2
−
1

v2
∂2G

∂t2
−G

]
−

−
8G

(1+G2)2

[(
∂G

∂x

)2
+

(
∂G

∂y

)2
+

(
∂G

∂z

)2
−
1

v2

(
∂G

∂t

)2
−G2

]
= 0 .

(4)

Eq. (4) can be easily solved if we assume that the function G simultaneously satisfies
the two equations

∂2G

∂x2
+
∂2G

∂y2
+
∂2G

∂z2
−
1

v2
∂2G

∂t2
−G = 0 , (5)

(
∂G

∂x

)2
+

(
∂G

∂y

)2
+

(
∂G

∂z

)2
−
1

v2

(
∂G

∂t

)2
−G2 = 0 . (6)

Let G have the form

G(x, y, z, t) = eϕV(x, y, z, t) , ϕ = a1x + a2y+ a3z− v2σt . (7)

Here a1, a2, a3, σ are arbitrary constants. Substituting (7) in Eqs. (5), (6), we verify
that they are satisfied if the constants (a1, a2, a3, σ) are related by the condition

a21+ a22+ a23 = 1+ v2σ2, (8)

and the function V(x, y, z, t) satisfies the linear equation

a1
∂V

∂x
+ a2

∂V

∂y
+ a3

∂V

∂z
+ σ

∂V

∂t
= 0 , (9)

the Hamilton-Jacobi equation

(
∂V

∂x

)2
+

(
∂V

∂y

)2
+

(
∂V

∂z

)2
−
1

v2

(
∂V

∂t

)2
= 0 (10)
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and the wave equation

∂2V

∂x2
+
∂2V

∂y2
+
∂2V

∂z2
−
1

v2
∂2V

∂t2
= 0 . (11)

Splitting one differential equation into several equations is justified if there is a
constructive method for solving the system of differential equations. Below it will be
shown, that the system (9)–(11) supposes functionally invariant solution [18]. There
is the next way of construction [19] the function V(x, y, z, t), satisfying system of
equations (9)–(11).
Let V(x, y, z, t) is an arbitrary function of ansatz α(x, y, z, t), i.e.

V(x, y, z, t) = F(α) . (12)

An arbitrary function F(α) satisfies Eqs. (9)–(11) if the ansatz α(x, y, z, t) is a
solution of the same equations,

a1
∂α

∂x
+ a2

∂α

∂y
+ a3

∂α

∂z
+ σ

∂α

∂t
= 0 , (13)

(
∂α

∂x

)2
+

(
∂α

∂y

)2
+

(
∂α

∂z

)2
−
1

v2

(
∂α

∂t

)2
= 0 , (14)

∂2α

∂x2
+
∂2α

∂y2
+
∂2α

∂z2
−
1

v2
∂2α

∂t2
= 0 . (15)

Let’s choose the ansatz α(x, y, z, t) from the relation

x l(α) + ym(α) + z n(α) − tv2p(α) + q(α) = 0 . (16)

Here l(α), m(α), n(α), p(α), q(α) are arbitrary functions. From (16) we obtain

∂α

∂x
= −

l

λ
,

∂α

∂y
= −

m

λ
,

∂α

∂z
= −

n

λ
,

∂α

∂t
= v2

p

λ
,

λ = x
dl

dα
+ y

dm

dα
+ z

dn

dα
− v2t

dp

dα
+
dq

dα
,

(17)

∂2α

dx2
=
1

λ2

(
2l
dl

dα
− l2

ν

λ

)
,

∂2α

dy2
=
1

λ2

(
2m

dm

dα
−m2

ν

λ

)
,

∂2α

dz2
=
1

λ2

(
2n
dn

dα
− n2

ν

λ

)
,

∂2α

dt2
=
v4

λ2

(
2p
dp

dα
− p2

ν

λ

)
,

(18)

ν = x
d2l

dα2
+ y

d2m

dα2
+ z

d2n

dα2
− v2t

d2p

dα2
+
d2q

dα2
. (19)
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Substituting (17) and (18) in Eqs. (13)–(15), we conclude that these equations are
satisfied if functions (l, m, n, p) are related by the conditions

a1l + a2m+ a3n = v2σp ,

l2+m2+ n2 = v2p2.

(20)

Here, we take into account that the relation l
dl

dα
+m

dm

dα
+n

dn

dα
= v2p

dp

dα
, implied

by (15) is a consequence of the second condition in (20).
It can be easily seen that F(α) can be written as a sum of arbitrary functions of the
ansatz α(x, y, z, t) :

tan
U

4
= eϕ [f1(α) + f2(α) + . . .+ fk(α) + . . .] , (21)

i.e., tan(U/4) satisfies the superposition principle.
To demonstrate such method of solving the SG equation, we consider the following
case. The solution of system of the equations (20) is expressed through two any
functions p(α) and f(α)

l = x1p(α) , m = x2p(α) , n = x3p(α) , (22)

x1 =
v√

1+ v2σ2
[ cos δ cosC cos f(α) + sin δ sin f(α) + vσ cosA ] ,

x2 =
v√

1+ v2σ2
[ sin δ cosC cos f(α) − cos δ sin f(α) + vσ cosB ] ,

x3 =
v√

1+ v2σ2
[− sinC cos f(α) + vσ cosC ] . (23)

Here

sin δ =
a2√
a21+ a22

, cos δ =
a1√
a21+ a22

,

cosA =
a1√

1+ v2σ2
, cosB =

a2√
1+ v2σ2

, cosC =
a3√

1+ v2σ2
. (24)

If we substitute (22) in (16), then one gets the equation for finding ansatz α

xx1+ yx2+ zx3− v2t+
q(α)

p(α)
= 0. (25)

Searching α from Eq. (25) for any functions f(α), p(α), q(α) is complicate problem.
The example for a simple case f(α) = const, q(α)/p(α) = −α is given in [20].
Let’s consider here a following variant f(α) = α, q(α) = 0. In this case α is a
root of the trigonometrical equation

η cosα+ ξ sinα+ vσζ = 0 , (26)
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η = (x − u1t) cos δ cosC+ (y− u2t) sin δ cosC− (z− u3t) sinC ,

ξ = (x − u1t) sin δ− (y− u2t) cos δ ,

ζ = (x − u1t) cosA+ (y − u2t) cosB + (z− u3t) cosC . (27)

From (26) one finds

α = (−1)n+1

[
arcsin

η√
ξ2+ η2

+ arcsin
vσζ√
ξ2+ η2

]
+ nπ , (28)

n = 0,±1, . . .
Ansatz α is defined, as it follows from (28), if

−1 ≤ vσζ√
ξ2+ η2

≤ 1. (29)

The domain (29) is outside of cones which axis is directed along the vector a =

a1i + a2j + a3k, and the top (at t = 0) coincides with the beginning of coordinates.
In the course of time cones move in a direction of the vector a with speed u =

u1i + u2j + u3k. The cone opening is defined by parameter vσ (see Fig. 1).
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Figure 1: Domains of definitions for solutions (28), if vσ =
√
11,

√
2, 0.2828 (on

the left, in the center, and on the right).

The graphic representation of the solution appears more evident, if system of coor-
dinates is chosen so that the axis Z coincides with vector a. Then

α = (−1)n

[
arcsin

y√
x2+ y2

+ arcsin
vσ(z− u3t)√
x2+ y2

]
+ nπ , (30)

In this case cones move along an axis Z with a speed u3. On Fig. 2 the solution
corresponding to ansatz (30), is represented at the different time moments: t = 0

(at the left), t = 0.75 (in the center) and t = 1.5 (on the right). At t = 0 the top
of cones coincides with the beginning of coordinates and the solution U(x, y, z, t)

exists in all plane (x, y). If t > 0, cones move along an axis Z and “move apart”
the solution corresponding to the time moment t = 0. In this case, as follows from
(29), U(x, y, z, t) is real only outside of cones.
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Figure 2: Solutions U(x, y, z, t) for vσ = 0.2828 and z = 0.

3 The transformation and methods for solving

the generalized SG equation

Generalized sine-Gordon equation

γ
∂U

∂t
+ λ1

∂U

∂x
+ λ2

∂U

∂y
+ λ3

∂U

∂z
+ ∆U−

1

v2
∂2U

∂t2
= sinU,

∆U =
∂2U

∂x2
+
∂2U

∂y2
+
∂2U

∂z2

(31)

reduces to the classical SG equation if

λ1 = λ2 = λ3 = γ = 0. (32)

Its solution can be received by the method stated above. Then (7) will satisfy the
generalized SG equation, if constants a1, a2, a3, σ are connected by a relation (8)
and in addition

a1λ1+ a2λ2+ a3λ3 = γσv2, (33)

and function V(x, y, z, t) satisfies to two differential equations of the first order

γ
∂V

∂t
+ λ1

∂V

∂x
+ λ2

∂V

∂y
+ λ3

∂V

∂z
= 0, (34)

σ
∂V

∂t
+ a1

∂V

∂x
+ a2

∂V

∂y
+ a3

∂V

∂z
= 0, (35)

and Hamilton-Jacobi equation (10) and the wave equation (11) also.
If we seek V(x, y, z, t) in form (12), then arbitrary function F(α) will be the solution
for the system of Eqs. (10), (11), (34), (35), if functions (l, m, n, p, q) are
connected by conditions (20) and in addition

λ1l+ λ2m+ λ3n = γv2p . (36)

It can be easily seen that superposition principle (21) for tan(U/4) also takes place.
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Example of construction of the solution of the generalized SG equation by such
method is given in [21] for a case

l(α) = x1p(α), m(α) = x2p(α), n(α) = x3p(α), q(α) = −αp(α) . (37)

In conclusion we shall note, that the presented method, as it can be seen from (33),
does not contain a variant (λ1 = λ2 = λ3 = 0, γ 6= 0). This case deserves special
consideration.

4 Solutions of sine-Gordon equation with the first

time derivative

Modelling of some physical phenomena and technological processes taking into ac-
count dissipation leads to the sine-Gordon with the first time derivative:

γ
∂U

∂t
+
∂2U

∂x2
+
∂2U

∂y2
+
∂2U

∂z2
−
1

v2
∂2U

∂t2
= sinU . (38)

In the literature there are no effective analytical methods of the Eq. (38) solution.
Let

U = 2 arctanG(x, y, z, t) . (39)

Then the equation (38) will be solved, if G satisfies to the Hamilton-Jacobi equa-
tion (6) and

γ
∂G

∂t
+
∂2G

∂x2
+
∂2G

∂y2
+
∂2G

∂z2
−
1

v2
∂2G

∂t2
= G . (40)

If one accepts, that G is any function depending from α: G = F(α), and ansatz α
is found from the Eq. (16), then function F should satisfy two equations:

Fαα
s2(α)

λ2
+ Fα

[
1

λ2
ds2(α)

dα
−
v

λ3
s2(α) + γv2

p(α)

λ

]
= F, (41)

F2α
s2(α)

λ2
= 0. (42)

Here s2(α) = l2 +m2 + n2 − v2p2, and the bottom index designates a derivative
with respect to argument.
The system (41), (42) admits a simple solution

F = A exp

(
t

γ
−
xx1+ yx2+ zx3

γv2x4

)
, (43)

which appears at the conditions:

l(α) = x1 , m(α) = x2 , n(α) = x3 , p(α) = x4 . (44)

In (43) A is an arbitrary constant, and constants x1, x2, x3, x4 satisfy to relation

x21+ x22+ x23 = v2x24 . (45)

Solution (43) is a kink, moving with speed v. A width of kink is determined by a
product γv. If γv → 0, then (43) tends to disconnected (0, π) solution. On Fig. 3
graphics of the solutions U(x, y, z, t) are represented for x1 = x2 = x3 = A = v = 1,
z = t = 0 and γ = 2, 1/4.
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Figure 3: Solutions SG equation with the first time derivative, γv = 2 (on the left)
and γv = 1/4 (on the right).

5 Solution of SG equation with variable ampli-

tude

Let’s name the equation

∂2U

∂x2
+
∂2U

∂y2
+
∂2U

∂z2
−
1

v2
∂2U

∂t2
= n0(x, y, z, t) sinU (46)

as a sine-Gordon equation with variable amplitude. It appears in different areas
of natural sciences. In geometry Eq. (46) describes a corner between the coordi-
nate lines forming a Chebyshev’s network on pseudo-spherical surfaces [22], in the
mechanic of nematic liquid crystals — propagation of waves [23], and also defor-
mation of the curvilinear closed areas which are in variable magnetic field [24]. In
the solid-state physics Eq. (46) appears at modelling non-uniform nonlinear crystal
lattices [2], [25].
The solution of Eq. (46) is being searched in the form (2). Then U(x, y, z, t) will be
solution of (46), if the function G simultaneously satisfies the two equations:

∂2G

∂x2
+
∂2G

∂y2
+
∂2G

∂z2
−
1

v2
∂2G

∂t2
= n0(x, y, z, t)G , (47)

(
∂G

∂x

)2
+

(
∂G

∂y

)2
+

(
∂G

∂z

)2
−
1

v2

(
∂G

∂t

)2
= n0(x, y, z, t)G

2. (48)

Let’s assume

G(x, y, z, t) = eϕ(x,y,z,t) . (49)

Then the system of Eqs. (47), (48) becomes equivalent to the wave equation

∂2ϕ

∂x2
+
∂2ϕ

∂y2
+
∂2ϕ

∂z2
−
1

v2
∂2ϕ

∂t2
= 0 (50)

and classical eikonal equation

(
∂ϕ

∂x

)2
+

(
∂ϕ

∂y

)2
+

(
∂ϕ

∂z

)2
−
1

v2

(
∂ϕ

∂t

)2
= n0(x, y, z, t) . (51)
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In optics [26] amplitude n0(x, y, z, t) is equal to a square of a refractions coefficient
of medium.
Solution of Eqs. (50), (51) we shall search in the form

ϕ = xa0(α) + yb0(α) + zc0(α) − tv2d0(α) + e0(α) . (52)

Here

a0(α) =

∫
l(α)dα , b0(α) =

∫
m(α)dα , c0(α) =

∫
n(α)dα ,

d0(α) =

∫
p(α)dα , e0(α) =

∫
g(α)dα , (53)

and an arbitrary functions (l,m, n, p, q) are connected by relation (16).
Function ϕ is remarkable due to the fact that its private derivatives of the first order
with respect to coordinates and time depend only on ansatz α. Really,

∂ϕ

∂x
= a0(α) ,

∂ϕ

∂y
= b0(α) ,

∂ϕ

∂z
= c0(α) ,

∂ϕ

∂t
= −v2d0(α) . (54)

That is why the eikonal equation transforms in an algebraic equation

a20+ b20+ c20− v2d20 = n0(x, y, z, t) . (55)

The second order private derivatives of the function ϕ depend on ansatz α and
actually on coordinates and time which are included in a function λ:

∂2ϕ

∂x2
= −

l2

λ
,

∂2ϕ

∂y2
= −

m2

λ
,

∂2ϕ

∂z2
= −

n2

λ
,

∂2ϕ

∂t2
= v2

p2

λ
,

λ = xl ′ + ym ′ + zn ′ − tv2p ′ + g ′. (56)

However, if one substitutes (56) in the wave equation (50), then it will be carried
out independently on λ, if

vp(α) =
√
l2(α) +m2(α) + n2(α) . (57)

Taking into account (57) we receive the solution of SG equation with variable am-
plitude

U = 4 arctan eϕ(x,y,z,t) , (58)

ϕ(x, y, z, t) = xa0(α)+yb0(α)+zc0(α)−tv

∫√
l2(α)+m2(α)+n2(α)dα+e0(α).

(59)

The arbitrary functions (l,m, n, p, q) are connected by relations

xl(α) + ym(α) + zn(α) − tv
√
l2(α) +m2(α) + n2(α) + g(α) = 0, (60)
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n0(x, y, z, t) = a20+ b20+ c20−

[∫√
l2(α) +m2(α) + n2(α) dα

]2
. (61)

Finding (l,m, n, p, q) from integro-functional Eqs. (60), (61) is an uneasy prob-
lem and demands special research. However, if (61) is considered as definition of
amplitude n0(x, y, z, t), then (l,m, n, p, q) should satisfy only to one algebraic equa-
tion (60). This problem is solved easily. Let’s give an example. Let

l = vp(α) cosΦ0 cos 2δ , m = vp(α) sinΦ0 cos 2δ , n = vp(α) sin 2δ ,

δ = vd0(α) , Φ0 = const . (62)

In addition, let’s accept, that g(α) = 0, then from (60) we find

2δ = (−1)k
[
arcsin

tv

R
− arcsin

x cosΦ0+ y sinΦ0
R

]
+kπ , k = 0,±1, . . . (63)

R =
√
z2+ (x cosΦ0+ y sinΦ0)2 .

Substituting (57) in (53), we find

a0(α) = cosΦ sin δ cos δ , b0(α) = sinΦ sin δ cos δ , c0(α) = sin2 δ , (64)

n0(x, y, z, t) = sin2δ− δ2. (65)

Therefore, solution of Eq. (46) with amplitude (65) will be (58) with

ϕ(x, y, z, t) = (x cosΦ0+ y sinΦ0) sin δ cos δ+ z sin2δ− tvδ . (66)

On Fig. 4 graphics of the amplitute n0 and solution U corresponding SG equation
with such variable amplitude are represented for Φ0 = y = 0, v = z = 1.
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Figure 4: The amplitude n0 (on the left) and solution of SG equation (on the right).

The equation (46) can be solved and in another way. Let’s accept, that

U = 2 arctanG(x, y, z, t) . (67)

The equation (46) will be solved, if G(x, y, z, t) is a solution of Eq. (47) and

(
∂G

∂x

)2
+

(
∂G

∂y

)2
+

(
∂G

∂z

)2
−
1

v2

(
∂G

∂t

)2
= 0 . (68)
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The system (47), (68) proves to be equivalent to the non-uniform wave equation

∂2ϕ

∂x2
+
∂2ϕ

∂y2
+
∂2ϕ

∂z2
−
1

v2
∂2ϕ

∂t2
= n0(x, y, z, t) (69)

and the Hamilton-Jacobi equation
(
∂ϕ

∂x

)2
+

(
∂ϕ

∂y

)2
+

(
∂ϕ

∂z

)2
−
1

v2

(
∂ϕ

∂t

)2
= 0 , (70)

if G is represented in form (49).
We shall search a solution of Eqs. (69), (70) by the method stated above. Then
(l,m, n, p, q) prove to be connected by relations

a20+ b20+ c20− v2d20 = 0 , (71)

l2+m2+ n2− v2p2 = −λn0(x, y, z, t). (72)

One can split Eq. (72) on two equations

l2+m2+ n2− v2p2 = r2(α) , (73)

n0(x, y, z, t) = −r2(α)/λ . (74)

Here r2(α) is an arbitrary function of ansatz α. Such transformation turns out to
be appropriate, since in this case the functions (l,m, n, p, q) are found from two
relations (71) and (73) which contain quantities depending on α only, and one can
consider the relation (74) as definition of the amplitude n0(x, y, z, t).
One more special case is considered in work [24], where the amplitude n0 is given
in the form n0 = grad2µ(x, y). Here µ(x, y) is arbitrary function.

6 Conclusion

The proposed approach transforms the problem of integration of classical SG equa-
tions and its generalizations to searching of unknown functions from the system of
algebraic equations.
Finding of ansatz α(x, y, z, t) from the corresponding equation and choice of arbi-
trary functions F(α) actually mean finding of particular solution satisfying to the
definite initial and boundary conditions. Such problems appear in modelling of spe-
cific physical phenomena or technological processes and they are worthy of special
research.
In conclusion we shall note, that the abovementioned approach supposes natural
generalization in case of integration of the considered equations in the space of
any number of dimensions, and this approach also allows to receive the solution of
sinh-Gordon equations if one accepts, that

U = 4 tanh−1G(x, y, z, t) . (75)
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Abstract

The equivalent stress concept is an engineering tool allowing the solution
of multiaxial problems in the mechanics of deformable bodies. The basic
idea is that the phenomenological constitutive equations can be formulated
for arbitrary stress states which are presented by one scalar variable. This
variable can be equated to the respective value of the uniaxial stress state and
named by equivalent stress.

Various suggestions for equivalent stress expressions are formulated and
applied with different success in the practice. The main disadvantage of the
equivalent stress concept is that it cannot be founded on some physical princi-
ples. Hence, for the formulation of models no sufficient conditions exist. This
results in a big number of models. These models do not take into account the
microstructure of the material.

In the present work the existing models are discussed from the point of view
of four basic forms of incompressible material behavior. After that a similar
form of compressible extension is presented. Some necessary conditions of a
successful modeling will be established and added by plausibility conditions.
As an application example a new model (the geomechanical model) satisfying
these demands is introduced.

For comparison and for the identification of the material parameters in
different models some significant ratios are introduced. The relevant range of
the model parameters can be limited by these rations. By this approach the
error in the material description can be minimized.

1 Introduction

With help of a strength criterion one compares the multiaxial material behavior with
a single property of the material, which is specific and significant in each application.
At the same time all other material properties are ignored. The comparison is
based on scalar variable - the equivalent stress σeq. This variable can be explicitly
estimated for any arbitrary stress state and compared with a uniaxial state, for
example tension state (material parameter σ+)

σeq = σ+. (1)

Three hypotheses (normal or shear stress, energy at the limit stress states) result
in formulation of three criteria: the hypothesis of the maximum of normal stress,
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the hypothesis of the maximum of shear stress and the maximum of the distorsion
energy. The development of strength criteria should be coincide with images about
the material behavior: it is impossible to make conclusions on the arbitrary stress
states, which are based on one test only.

The further development was characterized by the formulation of phenomenological
criteria including beside the reference property σeq additional parameter or param-
eters. By these parameter more information on the material behavior can be taken
into account. Some well-known criteria are maximum strain criterion suggested by
Mariotte, St.Venant among others (with the Poisson’s ratio as an additional
parameter), the Mohr-Coulomb and the Drucker-Prager criteria. These and
other criteria approximate the given experimental data and extrapolate the expe-
riences in the whole range of validity. An ”exact” solution cannot be presented in
general since one has a problem with insufficient input information.

Any strength criterion can be given as

Φ(σI, σII, σIII, σeq) = 0. (2)

Assuming isotropic material behavior this function depends on three independent
invariants of the stress tensor, e.g. on the first invariant I1 and the second and the
third invariant I ′2, I

′
3 of the stress deviator [1, 13, 21]

Φ(I1, I
′
2, I

′
3, σeq) = 0 (3)

with

I1 = III ······ σσσ, I ′2 =
1

2
sss ······ sss, I ′3 =

1

3
(sss ··· sss) ······ sss. (4)

Here III is the second rank unit tensor and sss = σσσ − 1
3
III ······ σσσIII is the stress deviator.

Instead of I ′3 the stress angle θ is frequently applied

Φ(I1, I
′
2, θ, σeq) = 0 (5)

with

cos 3θ =
3
√
3

2

I ′3
(I ′2)

3/2
. (6)

The two sets (3), (5) achieve acceptance in the theory of plasticity and in strength
of materials since the split into incompressible or compressible material behavior is
obvious. In addition, the invariants in Eq. (5) have a straightforward geometric
interpretation.

The phenomenological criteria result a simple and complete description of experi-
mental data. They can be improved or corrected by experiences. In the case of new
materials they have simple engineering applications. The aim of this paper is to
show that the number of admissible shapes of the surfaces Φ is limited. This allows
to simplify the choice of a suitable criterion.
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2 Extension to Compressible Material Behavior

The modeling of incompressible material behavior is based on neglecting of the first
invariant [17, 21]

Φ(I ′2, I
′
3, σeq) = 0 or Φ(I ′2, θ, σeq) = 0. (7)

Such an idealization cannot be accepted in many cases. The models (7) can be
extended by a linear transform [16]

σeq →
σeq − γ1I1

1− γ1
(8)

or in dependence of the available power of the equivalent stress σeq in the terms of
the criteria by a quadratic transform

σ2eq →
σeq − γ1I1

1− γ1

σeq − γ2I1

1− γ2
(9)

and a cubic transform

σ3eq →
σeq − γ1I1

1− γ1

σeq − γ2I1

1− γ2

σeq − γ3I1

1− γ3
(10)

to compressible behavior (3), (5). The parameters γi are related to the position of
the hydrostatic nodes (surface points on the hydrostatic axis) [8, 9].

3 Ratios of Material Parameters

For better comparison of the criteria and the material behavior the following ratios
are introduced, cf. [1]:

• the uniaxial compression - uniaxial tension ratio (σσσ = −dσ+pppppp = σ−pppppp, ppp is
the unit vector characterizing the loading direction at uniaxial tension) [20]

d = |σ−|/σ+. (11)

σ− is the limit value at compression.

• the torsion - uniaxial tension ratio (σσσ = kσ+(pppmmm+mmmppp) =
√
3τ∗(pppmmm +mmmppp),

mmm is a othogonal to ppp unit vector) [2]

k =
√
3τ∗/σ+. (12)

τ∗ is the limit value at torsion.

• biaxial compression - uniaxial tension ratio (σσσ = −bD σ+(pppppp + mmmmmm) =

σBD(pppppp+mmmmmm))

bD = |σBD|/σ+. (13)
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σBD is the limit value at biaxial compression. Applying the transforms (8),
(9) and (10) to Eqs (7) one obtains

bD =
1+ 2bDγ1

1− γ1
oder bD = 1/(1− 3γ1), (14)

b2D =
1+ 2bDγ1

1− γ1

1+ 2bDγ2

1− γ2
, (15)

b3D =
1+ 2bDγ1

1− γ1

1+ 2bDγ2

1− γ2

1+ 2bDγ3

1− γ3
, (16)

respectively. The smallest positive roots in (15) and (16) are physically rea-
sonable.

• hydrostatic tension - uniaxial tension ratio (σσσ = a
hyd
+ σ+III = σ

hyd
+ III) and the

hydrostatic compression - uniaxial tension ratio (σσσ = −a
hyd
− σ+III = σ

hyd
− III)

a
hyd
+ = σ

hyd
+ /σ+, a

hyd
− = |σ

hyd
− |/σ+. (17)

σ
hyd
+ and σhyd

− are the limit values at hydrostatic tension and hydrostatic com-
pression, respectively. Applying again the transforms (8), (9) and (10) to Eqs
(7) one obtains

1− 3γ1a
hyd = 0, (18)

(1− 3γ1a
hyd)(1− 3γ2a

hyd) = 0, (19)

(1− 3γ1a
hyd)(1− 3γ2a

hyd)(1− 3γ3a
hyd) = 0. (20)

The distinction ahyd
+ and ahyd

− depends on the the sign of the relevant param-
eters γi.

• The plastic Poisson’s ratio

νpl = −
∂Φ

∂σ22

/
∂Φ

∂σ11

(21)

can be estimated from the normality rule with σII = σIII = 0 [11, 21]. One
distinguishes the Poisson’s ratio at tension νpl

+ with σI = σeq and at compres-

sion νpl
− with σI = −dσeq [9]. For the strength criteria this ratio has a formal

meaning, but it allows to restrict the model parameters. Independently of the
model one gets with the help of the transforms (8), (9) and (10)

ν
pl
+ =

1

2
(1− 3γ1), (22)

ν
pl
+ =

−1 + 2(γ1+ γ2) − 3γ1γ2

−2+ γ1+ γ2
, (23)

ν
pl
+ =

3− 5(γ1+ γ2+ γ3) + 7(γ1γ2+ γ1γ3+ γ2γ3) − 9γ1γ2γ3

6− 4(γ1+ γ2+ γ3) + 2(γ1γ2+ γ1γ3+ γ2γ3)
, (24)

respectively. The expressions νpl
− are in the general case to large.
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• By analogy to the Poisson’s ratio the elongation/contraction ratio for a tor-
sion bar can be established

χ =
∂Φ

∂σ11

/
∂Φ

∂σ12

(25)

with σ12 = kσeq/
√
3 and σ11 = σ22 = σ33 = σ13 = σ23 = 0. With the help

of this ratio similar to the Poynting-effect, the Poynting-Swift-effect and
Kelvin-effect [1, 2] can be characterized by further properties.

The material behavior of the vonMises-type

σ2eq = 3I ′2. (26)

results in the following ratios d = k = bD = 1, a
hyd
+ , a

hyd
− → ∞, νpl

− = ν
pl
+ = 1/2

and χ = 0. In the case of the maximum normal stress hypothesis it follows k =
√
3,

d = ∞, ahyd
+ = 1, νpl

+ = 0 and χ = 1/2. Similar values are introduced in [1].

4 Requirements to the Models

The correctness of any hypothesis can be verified by experimental data [5]. On the
other hand, there are not enough and accurate data at combined stress states. For
example, the scattering of the data allows the fitment of different models by the
same experimental data. From this it follows that the uniqueness of the choice of a
criterion cannot be established. With other words, there are no sufficient conditions
for the choice. The necessary conditions can be formulated as it follows:

• convexity
This requirement is not necessary for all failure criteria.

• trigonal or hexagonal symmetrie of the surface in the π-plane
The rotational symmetry can be obtained for models with smooth surfaces as
an interim solution.

• bounds of the plastic Poisson’s ratio at tension νpl
+ ∈] − 1, 1/2]

• bounds of the plastic Poisson’s ratio at compression νpl
− ∈]−1, 1/2] for mate-

rials with restricted hydrostatic compression, otherwise if ahyd
− → ∞ it follows

ν
pl
− ≥ 1/2

• bounds of the hydrostatic tension (17) ahyd
+ ∈]1/3; 1/(1− 2ν

pl
+)]

The upper bound follow from the Drucker-Prager criterion. The lowest
bound ahyd

+ = 1/3 yields from the plane I1 = σeq.

The necessary conditions are not enough for the choice of a criterion. In this case
some plausibility conditions can be introduced allowing shortening the number of
models [4, 14, 20]:

• adequate description of the experimental data,

36



Fundamental Forms of Strength Hypotheses

• reliability and trustworthiness of the predictions,

• simple and confident application,

• understandability of the models,

• clear geometric background,

• physical basis, not only abstract mathematical formulation,

• account of the medial stress,

• minimal number of parameters,

• dimensionless parameters,

• continuous differentiability even for limit surfaces,

• continuous differentiability in the hydrostatic nodes (”rounded apex” after
Franklin), and

• the models should contain well-known hypotheses as spacial cases.

Additional requirements are [8, 9]:

• explicit resolution with respect of σeq,

• wide as possible range of convex shapes in the π-plane, which can result in
singular edges,

• no change of the shape in the π-plane for all intersections I1 = const,

• no formulation of model surfaces with partial surfaces, which result in singular
meridians (only models with planes or smooth surfaces can be used),

• dependence of the models for Φ of all three invariants,

• only rational functions of the invariants I1 and I ′3 should be introduced, and

• maximum of the stress power is in all known models not higher than 12 [8].

Considering the big number of models suggested [1, 2, 14, 18, 19, 21], up to now
there are no physical statements for the shape of the surface Φ [14]. From this it
follows that the models can be only formulated empirically [12].

In the next two sections five models are presented, which satisfy the necessary and
several plausibility conditions. With the help of these models one can describe
arbitrary behavior of isotropic materials. These models are simple, understandable
and they can be implemented in standard Finite-Element codes.
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5 Models of Incompressible Material Behavior

5.1 Cubic Model of Sayir I

The cubic model of Sayir I has a trigonal symmetry in the π-plane [3, 16]

3I ′2σeq + c3I
′
3

1+ 2c3/33
= σ3eq (27)

and can be resolved with respect to σeq. The admissible range of parameters follows
from the convexity condition

−32 ≤ c3 ≤ 32/2. (28)

The ratios k and d results in

k2 = 1+
2

33
c3, d =

33+ 2c3−
√
3(32− 2c3)(33+ 2c3)

22c3
. (29)

The bounds for the elongation/contraction ratio for torsion bars χ ∈ [−1
6
; 1
6
] one

gets from

χ =
c3

2 · 32
√
3

√
1+

2

33
c3 =

c3

2 · 32
√
3
k. (30)

5.2 Irregular Hexagonal Prism of Sayir II

This model has a trigonal symmetry in the π-plane [16]

α41σ
4
eqI

′
2+ α31σ

3
eqI

′
3+ α21σ

2
eqI

′2
2 + α11σeqI

′
2I

′
3+ β21I

′3
2 + β31I

′2
3 = σ6eq (31)

with

α41 =
2 · 3(1+ b1+ b21)

(1+ b1)2
, α31 =

33b1

(1+ b1)2
,

α21 = −32
(1+ b1+ b21)

2

(1+ b1)4
, α11 = −34b1

1+ b1+ b21
(1+ b1)4

,

β21 =
(−1+ b1)

2(2+ b1)
2(1+ 2b1)

2

(1+ b1)6
, β31 = −

33(1+ b1+ b21)
3

(1+ b1)6
. (32)

For b1 = 0 one gets the Tresca’s criterion. With b1 → −1/2 and b1 → 1 this model
degenerates to the limit cases of the model Sayir I, Eq. (27). The presentation in
the principal stresses results in six planes [20]

σI −
1

1+ b
(bσII + σIII) − σeq = 0. (33)

Additional equations follow by cyclic permutation of the indices. At the corners one
gets singularities. The ratios of k and d can be computed

k =
√
3
1+ b

2+ b
, d = 1+ b. (34)
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5.3 Irregular Hexagonal Prism after Haythornthwaite

This model with trigonal symmetry in the π-plane can be deduced with the help of
two conditions (27) with the bounds c3 = −32, c3 = 32/2 from Eq. (28) [7, 9]

(
3(2dσeq)I

′
2+ (−32)I ′3

1+ 2(−32)/33
− (2dσeq)

3

)(
σeq3I

′
2+ (32/2)I ′3

1+ 2(32/2)/33
− σ3eq

)
= 0. (35)

With d = 1/2 and d = 2 one gets triangles in the π-plane, with d = 1 one gets the
Schmidt-Ishlinsky-Hill criterion. The ratio k can be computed

Haythornthwaite I: k =
2√
3

für d ∈ [1, 2],

Haythornthwaite II: k =
2d√
3

für d ∈ [
1

2
, 1]. (36)

5.4 Bicubic Model

This model has a hexagonal symmetry (d = 1, χ = 0) in the π-plane [8, 9]

b6I
′
2
3
+ c6I

′
3
2
+ b4I

′
2
2
σ2eq + b2I

′
2σ
4
eq

b6/33+ 22c6/36+ b4/32+ b2/3
= σ6eq (37)

In addition, σeq can be explicitly calculated. The ratio k results from

1
3
b2k

2+ 1
32
b4k

4+ 1
33
b6k

6

b6/33+ 22c6/36+ b4/32+ b2/3
= 1. (38)

This model contains the model of Tresca [2, 15, 21] with

b2 = 3, b4 = −
32

2
, b6 = 2, c6 = −

33

2
. (39)

For the model of Schmidt-Ishlinsky-Hill [2, 6, 20] should be fulfilled

b2 = 3, b4 = −
33

23
, b6 = 0, c6 =

35

25
. (40)

As the special case the model (37) contains the model Drucker I [2] with

b2 = 0, b4 = 0, b6 = 33, −
35

22
≤ c6 ≤

36

23
. (41)

The general form (37) contains three parameters b4, b6, c6 (if b2 = 3). This is for
the application not acceptable. The model can be expressed as a function of one
parameter −1 ≤ ξ ≤ 1. Now one obtains a continuous transition from Tresca’s
model (ξ = 1) to the model of Schmidt-Ishlinsky-Hill (ξ = −1). With ξ = 0 it
follows the von Mises model.
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Figure 1: Convexity range c3−c6 for the geomechanical model (43) (the intersections
in the π-plane are presented for identical values σeq [9]

.

Taking into account the conditions of Edelman-Drucker [11] and Koval’chuk
[10] one can formulate

σ6eq =






3I ′2σ
4
eq + ξ(b6I

′
2
3
+ c6I

′
3
2
+ b4I

′
2
2
σ2eq)

1+ ξ(b6/33+ 22c6/36+ b4/32)
, ξ ∈ [0, 1];

3I ′2σ
4
eq − ξ(b6I

′
2
3
+ c6I

′
3
2
+ b4I

′
2
2
σ2eq)

1− ξ(b6/33+ 22c6/36+ b4/32)
, ξ ∈ [−1, 0[.

(42)

Now for the first equation the parameters (39) must be considered, for the sec-
ond equation - (40). The model Drucker I (41) can be obtained for k ∈
[(2/3)1/6, (3/2)1/6] with ξ ∈ [−0, 7533; 0, 9156].

6 “Geomechanical” Model

The geomechanical model [8, 9] is formulated on the basis of the stress angle (6)

(3I ′2)
n/21+ c3 cos 3θ+ c6 cos2 3θ

1+ c3+ c6
= σneq. (43)

The maximum field of convex solutions one gets if n = 6. Then three curves restrict
these solutions (Fig. 1)

c6 =
1

4
(2+ c3), c6 =

1

4
(2− c3), c6 =

1
3
√
13
c23−

1

3
. (44)

With the parabola (44) the numerical part of the solutions is approximated. With
c3 = 0 one gets the model of Drucker I (41). The ratios k, d and χ can be
computed as it follows

kn = 1+ c3+ c6, dn =
kn

1− c3+ c6
, χ =

√
3 c3

2n
. (45)
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With the transform (9) and (10) for n = 6 one gets

(3I ′2)
31+ c3 cos 3θ+ c6 cos23θ

1+ c3+ c6
=

[
σeq − γ1I1

1− γ1

σeq − γ2I1

1− γ2

]3
(46)

and

(3I ′2)
31+ c3 cos 3θ+ c6 cos23θ

1+ c3+ c6
=

[
σeq − γ1I1

1− γ1

σeq − γ2I1

1− γ2

σeq − γ3I1

1− γ3

]2
. (47)

The last one allows a more satisfying description of the material behavior. It holds
true

k6 =
1+ c3+ c6

(1− γ1)2(1− γ2)2(1− γ3)2
, χ =

3 c3+ 22k (γ1+ γ2+ γ3)

12
√
3

(48)

and

1− c3+ c6

(1+ dγ1)2(1+ dγ2)2(1+ dγ3)2
=
k6

d6
. (49)

7 Discussion of the Models

There exist a big number of models and it is not so easy to make a satisfying choice
in applications. The following discussion can be helpful. At first, let us focus our
attention on the intersections of the model surfaces in the π-plane: the convex
shape is restricted by the models (31) and (35). The bounds can be presented in
the diagram of the ratios d vs. k for incompressible material behavior (Fig. 2).
At second, two other models (27) and (37) show irreducible trigonal and hexagonal
symmetries, respectively.
Since one obtains several shapes in the π-plane which are convex for incompressible
material behavior, it is necessary to apply a criterion with a minimal number of
parameters. The geomechanical model (43) can be preferred, because there are only
two parameters c3 and c6 for a big amount of diagram d vs. k.
In [1] a systematization of the models by the number of parameters is suggested.
That means the maximum normal stress hypothesis, the vonMises, and the
Tresca criterion does not need additional parameters if the reference property
σeq is given. These models and the models with one parameter (e.g. the maximum
strain hypothesis, the Beltrami and the Mohr-Coulomb criterion) are mostly
used in practice if a first estimate is necessary.
For materials with ahyd

− → ∞ the models with trigonal symmetry and two param-
eters are optimal. The parameters control the behavior in the π-plane and the
influence of the compressibility. The criteria Sayir I, Sayir II and Haythorn-
thwaite with the help of the linear transform (8) belong, for example, to this
group.
Compressible models with hexagonal symmetry can be obtained from (37) and (42)
with the quadratic transform (9). For ξ = 0 one gets the rotational symmetric
model

3I ′2 =
σeq − γ1I1

1− γ1

σeq − γ2I1

1− γ2
(50)
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Figure 2: Ratios d − k for convex models in the case of incompressible material
behavior, for comparison purposes the von Mises hypothesis [9]

a. k = 1/
√
3, d = 1/2 b. k = 2/

√
3, d = 2

c. k = 3(2−
√
3), d = −

√
3/2 d. k = 1, d = (1+

√
3)/2

e. k =
√
3/2, d = 3/4 f. k = 2/

√
3, d = 4/3

g. k =
√
3/2, d = 1 h. k = 2/

√
3, d = 1

E. k = 1, d =
√
3/2 M. k = 1, d = 1 (von Mises)

with

• cone of Drucker-Prager (Mirolyubov) if γ1 = γ2 ∈]0; 1[,

• paraboloid of Balandin if γ1 ∈]0; 1[, γ2 = 0,

• ellipsoid of Beltrami if γ1 = −γ2 ∈]0; 1[ or νpl
− = ν

pl
+ ∈] − 1; 1/2],

• ellipsoid of Schleicher if νpl
− 6= ν

pl
+ ∈] − 1; 1/2] (other ellipsoids can be

presented if νpl
− > 1/2),

• hyperboloid of Burziński-Yagn if γ1 ∈]0; 1[, γ2 ∈]0;γ1[.

If γ1 = γ2 ∈]0, 1[ one obtains from (37)

• pyramid of Drucker II with the parameters (39) and

• pyramid after Schmidt-Ishlinsky-Hill with parameters (40).

It can be additionally obtained a paraboloid, an ellipsoid, and a hyperboloid for
ξ ∈ [−1; 1]. But there is a problem - models with hexagonal symmetry restrict the
possibilities to describe real material behavior.
For the application the geomechanical model (47) can be recommended. It allows the
best possibilities to present the material behavior. The following set of parameters
γi for materials with ahyd

− → ∞ must be used

• γ1 = γ2 = γ3,
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• γ1 with γ2 = γ3 = 0 or

• γ1 = γ2 with γ3 = 0.

For closed criteria, which restrict in addition to the hydrostatic tesion the hydrostatic
compression too, the following parameters γi should be considered

• γ1 ∈ [0, 1[, γ2 = γ3 < 0,

• γ1 = γ2 ∈ [0, 1[, γ3 < 0 oder

• γ1 ∈ [0, 1[, γ2 < 0, γ3 = 0.

The parameters must be restricted if the experimental data are fitted. For tension
of ductile materials the following restriction holds true

νel
+ < ν

pl
+ ≤ 1/2, (51)

This restriction follows only from the experience and allows an estimate of the fitting
quality. For a ”very” ductile material behavior [11] an additional requirement occurs

ν
pl
+ → 1/2. (52)

In the case of brittle materials one states formally

ν
pl
+ ∈] − 1, νel

+]. (53)

This restriction can be deduced from the normal stress hypothesis (νpl
+ = 0) and the

maximum strain hypothesis (νpl
+ = νel

+).
From the experience additional restrictions can follow. The convexity range (44) is
restricted by c3 ≥ 0 for several materials. During the fitting procedure based on Eq.
(44) it is helpful to control the function c6(c3).
In most of the cases the optimization yields solutions for (c3; c6) in the corners
(0; 1/2), (0; −1/3) and (1, 1364; 0, 2159). The last solution if

γ1 = γ2 = γ3 =
1

3
(54)

approximates with k = 1, 73, d = 21, 86, ahyd
+ = 1 and χ = 0.5 the maximum stress

hypothesis. Other values for (1, 1364; 0, 2159) with

• γ1 = γ2 =
3

7
, γ3 = 0 und

• γ1 =
3

5
, γ2 = γ3 = 0

describes a ”weak” brittleness at νpl
+ = 0 and results in k = 1, 67, d = 5, 94,

a
hyd
+ = 7/9, χ = 0.36 and k = 1, 57, d = 3, 47, ahyd

+ = 5/9, χ = 0, 25.
Ductile behavior at present is described by models with hexagonal symmetry. In
the case of (47) this yields c3 = 0. For ”weak compressibility” with νpl

+ = 0.48 it
follows d = 1, 03. This value should be preferred for several constructional steels
(instead of d = 1).
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8 Conclusion

During the last century various advanced equivalent stress expression were sug-
gested, but the implementation in the construction rules and norms mostly failed.
One of the reasons is the conservative design procedures and the incomplete didactic
concepts. These and other conclusion are underlined in [18] among others.
The number of criteria increases dramatically during the last century, but up to
now the maximum normal stress hypotheses, the von Mises and Tresca criteria
are mostly used by engineers. These hypotheses yield acceptable results at uniaxial
tension and compression superposed by torsion −dσeq ≤ I1 ≤ σeq. These results
can be applied to not very important structural elements. The models presented by
(50) are used in many practical cases since the identification of the parameters is
not too complicated and the criterion is verified by many tests.
The geomechanical model (47) allows a better prediction of the failure limits. It
is simple in application and several special criteria are included (for example, the
Drucker I model). In addition, a good agreement with experimental data can be
observed. The surface is presented in a unique manner by the hydrostatic nodes and
the shape in the π-plane. The hydrostatic nodes are restricted in dependence of the
material and the Poisson ratio νel

+.
Applying optimization procedures this model allows to account in a very simple
manner additional information and restrictions. By this model a unified solution
procedure for various materials can be suggested. The possibilities of incorrect
predictions can be minimized if the ratios d, k, νpl

+, ν
pl
− are controlled.

The presented in this paper fundamental forms can be helpful since they contains
clear an interpretation of the effects of material behavior under consideration. Fur-
ther developments of strength criteria should be based on some mathematical struc-
tures.
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Friction factor in smooth circular microchannels
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Abstract

The paper presents the results of the experimental determination of the
flow friction factor in circular-section microchannels. Demineralized degassed
water was used as a working liquid. Under study were the glass microchannels
with the inner diameter of 34.5, 33.6, 25.4, and 16.3 µm and length from 85
to 600 diameters. The experiments were carried out within the Reynolds
numbers range from 15 to 350. Experimentally obtained friction factor and
its theoretical value were compared.

1 Introduction

Recently, the microfluidics systems become more and more spread in many fields of
science. Among the applications of the microfluidics devices are biomedical processes
(chemical analysis, DNA analysis), micro-scale mixing and separation and also high-
effective systems of electron components cooling. To optimize the design of such
devices, it is necessary to study in details the behavior of the liquid at the micro-
level.
The liquid flow in a straight microchannel has a number of peculiarities which should
be taken into account. One important characteristic of the liquid flow at the micro-
level is the value of pressure drop in the microchannel. This value consists of the
pressure drop in the areas of microchannel enter and exit and also the pressure drops
in the areas of developing and developed liquid flow. But, because of the complicity
and sometimes impossibility to measure the pressure drop in the microchannel in
the developed-flow area, the method of two or more microchannels of the same inner
diameter but different length is applied [1], [2]. Two microchannels enable, with the
liquid flow rate being the same, to exclude the influence of the end effects and to
calculate the friction factor of the microchannel.
The purpose of this work was to define the friction factor of the microchannles with
the inner diameters of 34.5, 33.6, 25.4, and 16.3 µm by the above method.

2 Experiment

In the experiments, demineralized water was used as a process liquid. The water
was preliminary degassed by means of helium, a small but constant amount of which
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was passed through it during 30 minutes (the water volume was of 0.5 l). Schematic
of the experiment is shown in Fig.1. The liquid under the gas (helium) pressure
was pumped through the microchannel. The pressure at the microchannel entrance,
pressure drop in the microchannel, and also the temperature at the microchannel
entrance and exit were measured. The liquid flow rate was found from the liquid
level in the calibrated tank. The maximum entrance pressure for each microchannel
was 11 atm, which was determined by the strength of metal and polymer tubes
connection.

Figure 1: Schematic of the experiment

The temperature was measured with T-type thermocouples. The thermocouples
were made of copper and constantan wire of 20 - 30 µm in diameter and were set
directly ahead of the microchannel entrance and at the exit. Glass microcapillaries
with the inner diameter of 34.5, 33.6, 25.4, and 16.3 µm were used as objects un-
der study. To approve the above method of the -friction factor definition for each
diameter, we used 4 microchannels with the length from 85 to 600 diameters.

The studied microchannels were produced by gradual cutting from a microcapillary
billet of the proper diameter. Precise determination of the diameter is stupendous
because of its essential influence on the measurement results. To define precisely
the microchannel diameter, the entrance and exit planes of the microcapillary billets
were photographed. It turned out that for the diameter of 34.5 µm, the hydraulic
diameter changes for about 1.3 µm over the total length of the microcapillary billet
of 45.52 mm. Moreover, in the case of this diameter we observed the ellipticity of
the microchannel section, which was taken into account at its hydraulic diameter
definition. For the diameters of 33.6, 25.4, and 16,3 µm, no ellipticity was observed.
The diameter variation over the length of the microcapillary billets of 33.6 and
25.4 µm was 0.4 and 1.39 µm correspondingly. For the diameter of 16.3 µm, no
diameter change over the length took place. Fig.2 presents the average values for the
microchannels diameters and their lengths. The error of the microchannel diameters
definition is the sum of the error defined by the photos and the error related with
the diameter variation over the length.

The photos of the entrance cross-sections for 4 microchannels are given in Fig.3.

The roughness of the microchannel inner surface was defined by the help of a 3D
surface-structure analyzer ZYGO NewView 6300; it is 5 nm.
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Figure 2: Diameters and lengths of microchannels

Figure 3: Photos of the microchannels cross-section made by the electronic-scanning
microscope

3 Experimental results

The maximum value of the liquid temperature difference at the microchannel en-
trance and exit was 0.4 Celsius degree. This value was reached in the maximum
extension microchannel and with the maximum Reynolds number for this channel.
For the microchannels of small extension, we failed to register the liquid heating.
The phenomenon of the viscous heating of the liquid was ignored at the flow-friction
factor definition because of its negligible influence.

Fig. 4 shows the data obtained for the friction factor in the microchannels of various
lengths, each with the diameter of 33.6 µm. Evident that, as the length reduces, the
total drag of the microchannel increases, however, for two smallest microchannels,
the total drag turned out to be similar.

From the obtained data, using the method of two channels, the flow-friction factor
was calculated. With 4 microchannels of one diameter but various length, we can
use their different combinations. Having the following designations: 1-11.72 mm,
2-8.89 m, 3-5.88 mm and 4-2.87 mm, we can involve the following combinations of
the microchannels 1-2, 1-3, 1-4, 2-3, 2-4, and 3-4. Fig. 5 presents the data for the
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microchannels combinations 1-2, 1-3, and 1-4.

Figure 4: Total flow friction factors

Figure 5: Friction factors found by the two-channel method

The analysis of the obtained results has revealed that the good agreement between
the experimental friction factor and theoretical value 64/Re is observed in the case
when the difference of two channels lengths is above 100 - 150 diameter calibers.
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Abstract

The present article is dedicated to the creation of an array of microtubes
to control boundary flow. The method of micro- and nanotube production
is based on self-rolling of thin heterofilms detached from the substrate un-
der inner mechanical stress. The peculiarity of such micro- and nanotubes is
nanosized wall thickness. Each of the microtube of array is a current conduct-
ing microtube with diameter of 10 µm and wall thickness of less than 0.1 µm.
The work represents data of elaboration of the model surface with an array of
microtubes for boundary layer control. A flat plate model was used, in which
the surface of a chip of 3x4 mm with microtubes was fixed flush. Part of
the microtubes were probes, and the rest were actuators. The tube-actuators
could be heated impulsively with the frequency defined by supplying them
an electrical signal from a generator. It was shown, that impulsive thermal
influence affected the boundary layer with the frequency defined in the case
of subsonic velocities.

1 Introduction

Modern nanotechnology provides new opportunities for creating materials and equip-
ment. Nanosize allows for the considerable enhancement of performance character-
istics of probes and makes it possible to create conceptually new equipment.
One of such tehnology is the method of micro- and nanotube production based on
self-rolling of thin heterofilms detached from the substrate under inner mechanical
stress described [1],[2],[3],[4].
One useful application of micro- and nanotubes is when they are used as sensors of
thermo-anemometer probes [5] . The main advantage of the tube is that it weights
considerably less in comparison with a wire with an equal value of surface area.
This reduces heating and cooling inertia and, consequently, significantly increases
operating speed. Besides that the tubes can be used not only as flow pulsation probes
in the thermo-anemometer circuit, but as point heat-producing elements at impulse
electro-charge. Joined to the regular arrays on the surface with an appropriate
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supervision system, they can serve as a self-regulating surface that prevents the
appearance of instability in the boundary layer. Such controlled surfaces do not have
any moving parts, which has an advantage over mechanical systems of influence on
the flow.
The aim of the present work is designing and creating a model surface with an array
of microtubes for controlling the flow.

2 Fabrication of Arrays of Microtubes

For the first step we decided to limit the chip size to 3x4 mm.
The chip construction with microtube array is represented in Fig. 1(a). The chip
contains nine tubular sensors 1 fixed on low-resistance conducting paths 2 and on
substrate 3. Low-resistance conducting paths are set on each microtube to the edges
of the chip, which is needed for further insertion of the chip into the researched model
and for the switching to the measuring system. Every tubular element consists of
compressed layer 5, extended layer 6 and conducting layer 7. Layers 5 and 6 provide
rolling for conducting layer 7 that is coated on them with selective extraction of the
substrate under them or with extraction of sacrificial layer 4.
The length of the microtubes is 500 µm, the distances between the microtubes along
their axis is 600 µm, between the rows 900 µm.
To produce the chips with microtubes we used two different heterostructures:
GaAs/AlAs/InGaAs/GaAs and Si/SiO2/Si3N4.
In the heterostructure GaAs/AlAs/InGaAs/GaAs the layer AlAs is used as a sacri-
ficial layer, the heterolayer InGaAs/GaAs is used for forming the tube (Fig. 1(a),
layers 5 and 6). The structure that contains layers AlAs (10 nm), In0.2Ga0.8As (16
nm), GaAs (16 nm), was coated with a layer of gold (50 nm). Low-resistance paths
to the microtubes were formed with additional gold spraying (300 nm).

Figure 1: Main elements of the chip construction with array of microtubes (a) and
photograph of the chips manufactured with arrays of electroconducting microtubes
(b): left - arrays of microtubes rolled from the heterofilm SiO2/Si3N4/Au, with
the tubes suspended above the holes etched out in the substrate; right - arrays of
microtubes rolled from the heterofilm InGaAs/GaAs/Au without etched holes.

The thickness of the layers in the heterostructure Si/SiO2/Si3N4 was compressed
layer of SiO2 (20 nm), an extended layer of Si3N4 (20 nm) and conducting layerof
Au (50 nm).
The total volume of wall thickness InGaAs/GaAs/Au of the microtubes is 82 nm,
SiO2/Si3N4/Au of the microtubes is 90 nm. The diameters of produced microtubes
were 10 µm.
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A special feature of the chips manufactured upon silicon is the presence of holes
from etching the substrate under the tubes (Fig. 1(b)). In this case the microtube
is fixed only on the edges and is available for air blowing from all sides. When
the heterostructure GaAs/AlAs/InGaAs/GaAs/Au is used, the tubes are set up
above the substrate GaAs for the thickness of the sacrificial layer AlAs. It becomes
possible to set precisely the thickness of the sacrificial layer from several tens of
nanometers to micrometer units. In such a manner, the chips manufactured on
the GaAs substrates have a smoother surface, which is attractive for aerodynamic
research.
We should note that after forming the microtubes the semiconducting or dielectric
layers are located outside of the tube, and heat occurs when electric current is passed
through the gold film. This fact is very important for stability of the characteristics
during probe operation, because the pollution of the surface by the particles from
the flow results in change of the probe characteristics. In our case the problem of
protective coating is solved automatically.

3 Test of Model Surfaces with an Array of Micro-

tubes in Subsonic Flow

The tests were carried out in a small subsonic wind tunnel T-324M of ITAM of SB
RAS on the model of a plane plate 200x500 mm size. The velocity of selected air
flow was 10 m/s. Figure 2(a) shows the design of the wind tunnel’s operational part.
The chip with 9 probes (Fig. 1(b)) was flush-mounted on the model’s surface. The
chip was placed in such a manner, that the rows of microtubes were perpendicular
to the air flow (Fig. 2(b)).

Figure 2: The design of the wind tunnel’s operational part (a) and the design of the
microchip with the numeration of the tubes (b). 1 - the dynamic, which introduced
perturbations into the flow; 2 - the model of the plane plate; 3 - the array of the
microtubes; 4 - Pitot’s tube; 5 - hot-wire probe; 6 - coordinate spacer; 7 - wing flap.

The experiments were aimed at checking whether the microtube on the model’s
surface registers perturbations generated upstream.
Perturbations were introduced in the flow through a gap 0.5 mm wide and 50 mm
long by periodical blowing-exhaust, made by the dynamic at the frequency of 267
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Hz. The distance from the gap to the microchip that was fixed downstream was
123 mm. Perturbations generated by the dynamic were registered by a standard
hot-wire probe with an AN-1003 constant resistance thermo-anemometer. Signals
from hot-tubes were measured with a constant voltage thermo-anemometer.
For convenience, as a central point of coordinates we selected the first row of tubes
on the chip. The coordinate X is normalized for the distance between the first and
last rows of tubes.
The results of measurements of characteristics introduced by the perturbations dy-
namic and obtained by the hot-wire probe and hot-tubes on the surface, are rep-
resented below. The hot-wire probe was fixed above the surface at a height of 0.5
mm. The measurements by hot-wire probe were performed immediately behind the
array of microtubes at a distance range X from 1.5 to 4.5.
The spectra of perturbations generated and spectra measured by the hot-wire probe
and hot-tubes are represented in Fig. 3. It is possible to see that the array of micro-
tubes placed flush with the surface of the model tracks the perturbations introduced.

Figure 3: Pulsation spectra.

Fig. 4(a) shows the dependence of the phase of periodical perturbations generated
downstream. Line 1 shows the dependence of the phase obtained by the hot-wire
probe. Lines 2 and 3, consequently, show the phase obtained by the rows of hot-
tubes 1, 4, 7 and 2, 8 (Fig. 2(b)). The results show that the regularity of changing
signal phase with the distance passed is close to linear. The regularities obtained
by hot-wire and hot-tubes coincided. As a consequence, we can conclude that it is
possible to use arrays of hot-tubes for measuring flow velocity.
Fig. 4(b) shows the dependences of velocity pulsation amplitude of periodical per-
turbations generated by the dynamic. Line 1 shows the dependence of velocity
pulsation amplitude obtained by the hot-wire probe, and lines 2 and 3 show the
dependence of amplitude obtained by hot-tubes 1, 4, 7 and 2, 8 (Fig. 2(b)). Appar-
ently, the laws of changing perturbation amplitude coincide well with the distance
passed.
It was a very important requirement of the tests to find out whether the microtube
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Figure 4: Dependences of the perturbation phase (a) and of the velocity pulsation
amplitude (b).

generates perturbations in the case of periodic impulse heating.

For this, periodic rectangular impulse with an amplitude of 0.45 V was transmitted
in the flow from the controlling system to tube 1 at the frequency of 267 Hz. Per-
turbations introduced were registered by the hot-wire probe and by microtubes 4
and 7 (Fig. 2(b)).

Measurements with a hot-wire probe that was placed downstream, showed that the
microtube in fact introduces perturbations in the flow. Fig. 5(a) shows the spectrum
of the signal of the standard probe (blue line) where the peak at the frequency of
perturbation generation is clearly seen.

Fig. 5(b,c) shows the spectra of pulsations registered by microtubes 4 and 7. The
graphs correspond to various mutual placements of the tube-generator and tube-
probe: b) - the generator is placed directly in front of the probe (microtubes 1 and
4), c) - the generator is placed over one tube in front of the probe (microtubes 1
and 7) (Fig. 2(b)).

Figure 5: Spectrum of pulsations obtained by hot-wire (a) and hot-tube (b,c) probes.

It is clearly seen that in both cases the tube follows the perturbations introduced.

55



Proceedings of XXXVII International Summer School–Conference APM 2009

4 CONCLUSIONS

Aerodynamic experiments with microtubes fixed on the chip showed that it is possi-
ble to measure flow perturbation by hot-tubes directly on the surface of the model.
It is shown that it is possible to introduce disturbances in the flow with microtubes
by their impulse electro-charging. The frequency of the disturbances introduced to
the flow corresponds to the frequency of the impulse heating of the microtubes.
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Abstract

We consider an elastic body undergoing stress-induced phase transforma-
tions of martensite type. We examine an existence of cylindrical new phase
inclusions. We prove characteristic properties of the equilibrium cylindrical
inclusion and construct the existence surfaces in strain space. We relate the
surfaces with phase transition zones and new phase nucleation surfaces.

1 Introduction

Description of phase transitions in solids remains the open problem of mechanics.
Roughly speaking, there are two approaches. The first one introduces internal pa-
rameters, such as a new phase concentration, and describe new phase evolution
basing on formulated constitutive equations (see [1] and reference therein). This
gives proper tools for quantitative descriptions “on average”, but does not consider
an interface as it is and remains undetermined the local strains and stresses which
are important for example in related fracture problems. The second approach is
based on the consideration of the conditions on the interfaces and meet the problem
of finding unknown interfaces and stability analysis (see e.g. [9, 10, 11] and reference
therein).
The present work represents results obtained within the framework of the second
approach. Various two phase structures were described earlier. For example, ellip-
soidal new phase inclusions were considered in [2, 12, 14, 5, 7], spherically symmetric
two-phase deformations were studied (see [3] and reference therein), heterogeneous
deformation due to multiple appearance of new phase domains was presented for
laminates and ellipsoidal new pase inclusions [6, 7]. Irrespectively of new phase
domain examinations, the concept of phase transition zones (PTZ) formed by of all
strains which can coexist on the equilibrium two phase interface was developed (see,
e.g., [6, 8]and reference therein).
The PTZ boundary acts as a transformation surface if a new phase nucleates in a
form of layers (laminates). In this paper we supplement the PTZ with surfaces of
ellipsoidal and cylindrical new phase domains of existence. We use previous results
in the case of ellipsoids [14, 5] and we present new results for cylindrical domains,
briefly mentioned in [5]. As a result we construct a transformation surfaces and
demonstrate that the type of new phase domains on the direct and reverse phase
transformations depends on the strain state.
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Figure 1: One-dimensional two-well energy. a – the new phase is softer. b – the
parent phase is softer.

2 Cylindrical new phase inclusion

Suppose that a cylindrical inclusion with the ellipse in the base exists in an infinite
body made of a material capable of undergoing stress-induced phase transformations.
External strain ε0 (prescribed by conditions at infinity) is uniform. Describing phase
transformations, we deal with materials characterized by a multi-well free energy
density sketched for a two-well case in Fig. 1 and represented in a case of small
deformations by quadratic functions

f(ε, θ) = min
−,+

{f−(ε, θ), f+(ε, θ)} ,

f±(ε, θ) = f0±(θ) +
1

2
(ε − ε

p
±) : C± : (ε − ε

p
±),

(1)

where “–” and “+” denote the parent and new phases, C± is a tensor of the elastic
modules of the phases, ε is a strain tensor, ε

p
± are strains in stress-free states,

[εp] ≡ ε
p
+−ε

p
− is a transformation strain tensor, f± are strain energy densities of the

stress free phases, θ is the temperature. The problem of the two phase equilibrium of
the elastic body is reduced to the problem of equilibrium of the composite material
with the unknown interface and to the problem of finding the phase interface Γ and
the displacement fields u which are sufficiently smooth when x /∈ Γ and continuous
when x ∈ Γ :

x /∈ Γ : ∇ · σ = 0, θ = const, (2)

x ∈ Γ : [u] = 0, (3)

[σ] · n = 0, (4)

[f] − σ : [ε] = 0 (5)
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Traction and displacement continuity across the interface is reduced to [14, 5]

[ε] = K∓(n) : q±,q± = −C1 : ε± + [C : εp],

K±(n) = {n ⊗G± ⊗ n}s,G± = (n · C± · n)−1,C1 = C+ − C−

(6)

where the jump in trains is determined by the normal to the interface, the strains
on one side of the interface and the elastic modules on the other one.
In the case of isotropic phases

K± =
1

µ±

(
(nEn)s−

1

2(1+ ν±)
nnnn

)
, (7)

where ν± and µ± are Poisson’s coefficients and the shear modules of the phases.
Using (1) and (6) one can reduce the thermodynamic equilibrium equation (5) to
the equation

γ+
1

2
[εp : C : εp] +

1

2
ε± : C1 : ε± − ε± : [C : εp] ± 1

2
q± : K∓(n) : q± = 0, (8)

(see, e.g., [5]) that can be rewritten as

ϕ(ε±) = ∓1
2
q± : K∓(n) : q±, (9)

where

ϕ(ε±) = γ+
1

2
[εp : C : εp] +

1

2
ε± : C1 : ε± − ε± : [C : εp] (10)

Since external strains are uniform, strains inside the elliptical cylinder are also
uniform [4]. Then the function ϕ(ε±) is uniform inside the cylinder. Thus, the
thermodynamic condition (9) can be satisfied only if the strains ε+ are such that
q+ : K− : q+ does not depend on the normal n. This fact leads to the following
theorem.
Theorem. If an equilibrium new phase domain is an elliptical cylinder in an

isotropic homogeneous parent phase “–”, and the tensors ε
p
+ and C+ are constant

inside the cylindrical inclusion and the tensor C1 exists, and the strain ε+ is uniform

inside the inclusion, then the tensor q+ is axially-symmetric,

q+ = q1kk + q∗(E − kk), (11)

where k is the axe of the cylinder. The jump in strains on the phase interface is

[ε] =
1− 2ν−

2µ−(1− ν−)
q∗nn. (12)

In the case of isotropic parent phase “–” the thermodynamic equilibrium equation

(8) is reduced to

2γ∗ +
(q1+ 2q∗)

2

9k1
+

(q1− q∗)
2

3µ1
+

1− 2ν−

2µ−(1− ν−)
q2∗ = 0, (13)
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where γ∗ = γ +
1

2
[εp] : B−1

1 : [εp], B± = C
−1
± , B1 = B+ − B−, µ1 and k1 are the

differences between the share and volume elastic modules of the new phase and the

parent one.

Proof. By (7),

K(q,n) ≡ q : K(n) : q =
1

µ
(n · q2 · n − a(n · q · n)2) (14)

where a =
1

2(1− ν)
.

First, we prove that the quadratic form K(q,n) does not depend on the normal n
to cylindrical interface if and only if the tensor q is axially-symmetric,

q = q1kk + q∗(E − kk) (15)

where k is the cylinder axe.
To prove the sufficiency we substitute (15) into (14) and obtain the expression
independent on the normal to the interface,

q : K : q =
1

µ
q2∗(1− a). (16)

To prove the necessity we note that n = P ·n where P = E−kk is a projector onto
the plane of the base of the cylinder. Then

K(n)=n · q̃2 · n + (n · q · k)2−a(n · q̃ · n)2 (17)

where q̃2 = P · q · P. The necessity condition takes the form

dΦ(n)

dn
= 0 (18)

where the Lagrange function

Φ(n) = K(n) + A(n · n−1) + Bn · k, (19)

A and B are the Lagrange multipliers. By (18) and (19),

2q̃2 · n + 2(q · k)(n · q · k) − 4a(q̃ · n)(n · q̃ · n) + 2An + Bk = 0. (20)

Multiplying (20) by t = k × n we obtain

t · q̃2 · n + (t · q · k)(n · q · k) − 2a(t · q̃ · n)(n · q̃ · n) = 0. (21)

Since the ellipse is a closed figure, n is an arbitrary unit vector perpendicular to
the vector k, and vectors n, t represent an arbitrary pair of orthogonal unit vectors
lying in the plane of the cylinder base. Let i1, i2 in a pair of arbitrary orthogonal
unit vectors in the base plane. Let take n = i1, t = i2 and then take n = i2, t = −i1.
By (21), the following equalities must hold

i2 · q̃2 · i1+ (i2 · q · k)(i1 · q · k) − 4a(i2 · q̃ · i1)(i1 · q̃ · i1) = 0, (22)

i1 · q̃2 · i2+ (i1 · q · k)(i2 · q · k) − 4a(i1 · q̃ · i2)(i2 · q̃ · i2) = 0. (23)
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From (22) and (23) it follows that

i1 · q̃ · i1 = i2 · q̃ · i2 or/and i1 · q̃ · i2 = 0 ∀i1, i2 : i1 ⊥ i2, i1 ⊥ k, i2 ⊥ k.

Thus,

q̃ = q∗P. (24)

Then, by (22),

(i2 · q · k)(i1 · q · k) = 0 ∀i1, i2 : i1 ⊥ i2, i1 ⊥ k, i2 ⊥ k. (25)

Thus, the vector k is a eigenvector of the tensor q and the tensor q is axially-
symmetric.
Formula (12) for the jump in strain immediately follows from (15) and (6). Finally,
substituting (11) into (8) we obtain (13). �

Strain tensor ε+ inside the cylinder is related with the external strain ε0 as [4, 13]

ε+ = ε0+ A : q+, (26)

where A is the Eshelby tensor which characterizes the geometrical parameters of
the ellipsoidal inclusions. Its components are given by the integrals (see [13])

Apppp =
χ−

8πµ−

(3Jpp+ (1− 4ν−)Jp),

Appqq =
χ−

8πµ−

(Jqp− Jp),

Jp =
3

2
υa2p

∫∞

0

du

(a2p+ u)(a2q+ u)∆(u)
,

∆(u) =
√

(a21+ u)(a22+ u)(a23+ u),

υ =
4

3
πa1a2a3, χ− =

1

2(1− ν−)
, p, q = 1, 2, 3.

(27)

where a1, a2 and a3 are the semiaxises of the ellipsoid. In the case of a cylindrical
inclusion a1 → ∞ and we obtain

A1111 = A1122 = A1133 = A2211 = A3311 = 0,

A2222 =
χ−

2µ−(1+ ξ)2
(3ξ+ 2− 4ν−(1+ ξ)),

A2233 = A3322 = −
χ−ξ

2µ−(1+ ξ)2
,

A3333 =
χ−ξ

2µ−(1+ ξ)2
(3ξ+ 2− 4ν−(1+ ξ)),

(28)

61



Proceedings of XXXVII International Summer School–Conference APM 2009

where ξ =
a2

a3
is the ratio of the semiaxes of the elliptical base of the cylinder.

Substituting (28) into (26) and using the fact that ε+ = ε+
1 e1e1 + ε+

∗ (e2e2+ e3e3)
we obtain that

ε01 = ε+
1 ,

ε02 = ε+
∗ −

χ−

2µ−(1+ ξ)
(3k+εp− λ1(2ε

+
∗ + ε+

1 ) − µ1ε
+
∗ ),

ε03 = ε+
∗ −

χ−ξ

2µ−(1+ ξ)
(3k+εp− λ1(2ε

+
∗ + ε+

1 ) − µ1ε
+
∗ ).

(29)

The domains of existence of the cylindrical new phase inclusions can be constructed
in the external strains space if we substitute (29) into (13) taking into account that

q+ = −C1 : ε+ + [C : εp]. (30)

Substituting (15) into (26) we obtain

ε+ = ε0+ q∗ω, (31)

where ω = A : E. The eigenvectors of ω coincide with the cylinder axes and its
eigenvalues are positive. Then

1

q∗
(ε+

∗ − n · ε0 · n) > 0, (32)

where n is a arbitrary normal to the cylinder surface. The inequality (32) is a
restriction on the domain of existence of equilibrium new phase cylinders.
From (31) it also follows that, since tensors ω and ε+ are coaxial to the new phase
cylinder, the external strain tensor ε0 is coaxial to the cylinder too. It means that in
the media loaded by external strains coaxial to the external strains cylinder appears.
In Fig.2 axisymmetric sections of phase transition zones and domains of new phase
ellipsoids and cylinders existence are presented. Filled areas are the phase transition
zones (see, e.g., [8, 6]). PTZ boundaries correspond to the laminates of infinitesi-
mal concentration of the new phase. Dotted lines correspond to the appearance of
cylindrical inclusion, dashed lines a constructed according to [14] and correspond to
the appearance of ellipsoidal inclusions.
At the points where dashed lines touch the dotted lines one of the axes of the
ellipsoidal inclusion tend to infinity and the ellipsoid becomes the cylinder. At the
points where dashed and dotted lines touch the solid lines two axes of the ellipsoids
and one of the axes of the ellipse in the base of the cylinder tends to infinity and
both the ellipsoid and the cylinder become simple laminates. At the points where
dotted lines touch the solid lines one of the axes of the ellipse in the base of the
cylinder tends to infinity and the cylinder becomes the simple laminates.
The limit transformation surface is an envelope of all existence domains. Various
parts of the transformation surface on the one hand correspond to various two-phase
structures and on the other hand correspond to various strain states. Thus, on the
different straining paths one can expect the appearance of the different equilibrium
two phase structures.
Note that the PTZ boundaries are not convex everywhere. Cylinders and ellipsoids
allowed us to construct the convex envelope almost everywhere. We expect that the
remained nonconvex part will be covered after examinations of high-order laminates.
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Figure 2: Axisymmetric section of the external strain space, ε1=ε2=ε. a) is a case
when µ1 < 0, b) is a case when µ1 > 0.
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Abstract

The processes of drop and bubble deformation and instability resulting in
their breakup play an important role in hydro- and gas dynamics of two-phase
flows. These processes are of obvious practical importance in meteorology (the
formation of the size spectrum of atmospheric precipitations), in propulsion
engineering (the dispersibility of fuel drops in internal-combustion and rocket
engines), in ecological problems (the emission of toxic fluid-propellant com-
ponents at the stage separation of a launch vehicle) and in quite a number of
other branches of technics and technology.

It is known that there are two mechanisms of drop and bubble instability
in a flow: the Kelvin-Helmholtz instability and the Rayleigh-Teylor instabil-
ity [1]. The breakup occurs at sufficiently high Weber numbers We and Bond
numbers Bo, respectively. The results of the experimental investigation and
theoretical study of drop and bubble instability and breakup in the range of
Reynolds numbers Re ∼ 1 according to the Rayleigh-Teylor mechanism, at
the Bond numbers Bo close to the critical value Bo∗ = 40 ÷ 90 have been
presented in the paper [1, 2, 3]. The Bond number is defined as

Bo = ρlωD
2/σ.

Here ρl is the density of a fluid phase; σ is the surface tension coefficient; D
is the diameter of the equivalent spherical drop (bubble), which has the same
volume as the deformed drop (bubble); ω is the acceleration of mass forces.
The choice of such a regime of drops sedimentation (and bubbles rising) is
caused by the fact that flows at Re ≫ 1 were considered in the well-known
publications [1, 2, 3].

In the majority of works, the Weber number is considered as the principal
parameter determining the drop deformation and crash in a flow, i.e. the
breakdown occurs due to the Kelvin-Helmholtz instability. The Weber number
is defined as

We = ρUD/σ.

Here ρ is the density of a medium, in which the drop moves; U is the
relative velocity. The critical value We∗ may vary widely (1.2 < We∗ < 60 )
depending on the drop motion regime.
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1 Theoretical analysis

As it follows from the Hadamard’s solution for a drop falling down in a viscous liqiud
under gravity at low Reynolds numbers, the difference between normal stresses is
stable all over its spherical surface and does not tend to deform the drop. In view
of the above, the conclusion was made in Batchelor’s works [4] that if the viscosities
and densities of two liquids are such that at low Reynolds numbers it is possible to
neglect the inertial forces, there are no size limit of a spherical drop.

The possibility of solving this problem for axisymmetric perturbations of a spher-
ical drop or bubble restrained by surface tension forces in case of axisymmetric
perturbations in an external flow was theoretically studied

r[N ′′
ϕϕ+N ′

ϕ cosϕ/(sinϕ) + (r+ Bo cosϕ)N] − Cr = δF,

N ′
ϕ|ϕ=0 = 0, N ′

ϕ|ϕ=π = 0,

π∫

0

Nrdϕ = 0,

where N is the small perturbation of a drop shape in the direction normal to the
surface; ϕ is a latitudinal angle in the spherical coordinate system; r is the radius of
an undisturbed drop; δF is the axisymmetric perturbation of the forces (including
viscous) acting normal to the surface; C is constant.

For the operator in the left side of the differential equation the eigenvalue problem
was solved. It has been shown that for the least eigenvalue the problem is solvable
due to the equation of motion of the drop mass center. For other eigenvalues the
solvability condition follows from self-adjointness of the differential operator. It
consists in the orthogonality of eigenfunctions and an arbitrary function δF. As the
eigenfunctions are not connected with the functions of perturbation of an external
flow, for arbitrary perturbations the condition of orthogonality will not be satisfied
and, hence, the problem will not have the solution. The calculation of the least
nonzero eigenvalue allowed the critical value of the Bond number, Bo∗ = 90, to be
found.

2 Experimental investigation

Drop and bubble deformation and breakup are extremely complicated processes
and they are characterized by interaction of surface tension forces, viscosity and
inertia. The condition of the breakup initiation is to be obtained by analyzing the
liquid sphere stability in a flow of another liquid. The experimental investigation
of deformation of a single initially spherical drop moving in another liquid under
gravity at the Reynolds numbers Re ∼ 1 and the Bond numbers close to Bo∗ = 90

was conducted for a pair of modeling liquids (falling down of a mercury drop in
glycerin).

It has been ascertained that the mercury drop is stable and keeps the spherical form
while falling down if the diameter of the mercury drop moving in glycerin at low
Reynolds numbers is less than 8 mm. Corresponding Bo∗ equals 26. If the drop
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Table 1:
Solution 87% 100% 100%
T , 0C 21 22.5 10
µ, Pa · s 0.09÷ 0.01 1.09÷ 0.08 3.60÷ 0.25
ρ, kg/m3 1230 1260 1270
σ, N/m 65 · 10−3 63 · 10−3 64 · 10−3

diameter is about 10 mm, the drop is unstable and breaks into fragments when
moving. Corresponding Bo∗ is equal to 40.
Simultaneous fulfillment of the conditions Bo∗ ∼ 90 and Re ∼ 1 in the experiment
is difficult because of the production complexity of large mercury drops. To study
the drop motion at Bo ∼ 90, it is necessary to produce an initial spherical drop of
about 15 mm in diameter. No modifications of the capillary-based device for drop
production gave positive results. However, the results of the experiments conducted
confirm the existence of the range of the Bond numbers, Bo = 26 ÷ 40, where the
drop moving at low Reynolds numbers collapses and breaks into fragments. The
theoretically predicted Bo∗ = 90 qualitatively verifies the existence of the range.
The evaluations performed in the work revealed that the regime could be realized by
means of bubble rising. The results of the experimental investigation of stability of
a single initially spherical air bubble in water-glycerin solution were obtained. De-
pending on the temperature and percentage of water, characteristics of the solutions
investigated are shown in the table 1 [5].
The calculation of the Bond and Reynolds numbers was performed for each series
of experiments by formula:

Re = ρlUD/µ.

Here µ is the viscosity coefficient of a fluid phase. Corresponding similarity criteria
and other parameters being estimated for the experiments conducted vary in the
range of Re = 0.008÷ 34, Bo = 0.2÷ 448, D = 0.1÷ 4.8 sm, U = 0.6÷ 19 sm/s.
Depending on the similarity criteria being varied, the shape, size and rising velocity
were fixed by means of the video camera Panasonic NV-DA1. Quantitative charac-
teristics of the process (rising velocity, geometrical size of a bubble) were determined
by processing with Adobe After Affect. Taking into account the resolution of the
video camera, the geometrical size of a bubble was determined with the uncertainty
of 1% and the uncertainty of measurement of rising velocity was accounted for,
mainly, by the dispersion of the data of backup tests and did not exceed 10%.
The analysis of the experimental results showed that there were some steady bubble
shapes in the investigated range of the similarity criteria: sphere, ellipsoid, a segment
of sphere.

3 Conclusions

The drop and bubble instability at low Reynolds numbers in the range of the Bond
numbers larger than 40 has been experimentally verified. In the investigated range
of Re and Bo bubbles have not been found to break into fragments in contrast to
drops.
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Abstract

The modified elastic-viscous equations expressed in the scale of the effec-
tive time are considered to describe the deformation, climate and radiation
aging of polymer materials. The concrete differential relations for the param-
eter of effective time are suggested. Using the received constitutive equations
and the energy conservation law the creep fracture criterion is formulated.
The criterion can be applied to describe the time to fracture of polymer ma-
terials undergoing UV irradiation. It is known, that UV irradiation promotes
the degradation and fracture of polymer materials. In the thermodynamic
creep fracture criterion these effects are connected with the increase of inter-
nal and, consequently, with the increase of the stored energy. The received
results can be applied to predict the destruction of polymer materials and
structures, also to optimize the human skin sunburn process. In the last case
the effect of deformation aging (massage) will be very important and it was
not considered in the world medicine practice.

Financial support of the Russian Foundation for Basic Research (Grant
N 09-01-90900) is gratefully acknowledged.

Numerous publications [1-3] are devoted to the experimental investigations of ther-
mal and climatic aging of polymers. For example, in [1] the results of creep exper-
iments on quenched and aged during 4 years specimens made of different polymer
materials in amorphous state are presented. To describe the results of such exper-
iments generally the principle of time temperature superposition is applied. This
principle leads to the horizontal shifting of the compliance curves and describes the
behavior of rheologically simple materials. To model the behavior of complex mate-
rials and deformation and radiation aging materials it is necessary to operate with
the principles capable to consider both horizontal and vertical shifting. For this
purpose the parameter of effective time ω is introduced by the following relation

dω = f1(ω, ε, r, T, t)dt+ f2(ω, ε, r, T, t)dε, (1)

where ε is the value of deformation, r is radiation dose, t is the real time, T is
temperature.
As it follows from the definition, the parameter of effective time ω is defined so that
at ”instant”, active loading it corresponds to the ”deformation” time. In unloading
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condition this parameter is reduced to the real time and may describe the chemical
processes due to aging, so we may call it as the chemical time. Thus, in a scale of the
effective time the behavior of quenched, deformation and radiation aged materials
are described.

To describe the deformation behavior of polymer materials, elastic viscous models
(Maxwell, Voigt, Boltzmann-Volterra and others) are introduced. Rheological equa-
tion for aging medium based on Maxwell’s model is formulated. In the classical case
the model is linear and is not capable to describe the aging behavior of polymer
materials. To cover the aging effects the Maxwell’s equation is expressed through
the effective time ω.

To describe the process of deformation aging of polymer materials we will consider
the Maxwell’s elastic viscous model

Eσ + ησ̇ = Eηε̇. (2)

In the classical approach the viscous and elastic coefficients η, E in equation (2)
are considered as constants. Such assumptions are valid for the stable viscous-
elastic media. For the unstable, aging materials these coefficients are time dependent
functions and must be defined experimentally.

At first, let’s consider the case when viscous and elastic coefficients are functions of
real time. If we use the physical relation η ≈ Eτ where τ is the relaxation time, the
modified Maxwell equation (2) can be written in the form

dε

dt
=
d

dt

[
σ

E(t)

]
+

σ

E(t)τ
. (3)

The experimental relation for elasticity modulus are usually expressed through the
real time [4] as

E = E0(1+ (1− e−kt)), (4)

where E0, k are constants.

The solution of equation (3) is presented in [4] and the theoretical creep curves are
compared with the corresponding experimental creep and aging curves (compliance
D = ε/σ0) for different polymer materials. It is shown that the Maxwell equation
expressed through the real time can be used to describe the processes of aging of
polymers due to heat and weathering. However to describe the deformation aging
of polymers we will used the parameter ω given by the relation (1).

Let’s consider the simple relation for the parameter ω

dω = ktndt, (5)

where k, n are constants.

The equation (2), written through parameter ω , have the following form

dε

dω
=

d

dω

(
σ

E(ω)

)
+

σ

η(ω)
. (6)
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Introducing (5) into (6), assuming σ = const, E, η = const and taking the initial
conditions ω = 0, t = 0, ε = σ/E, the solutions of the received equations can be
written as

D =
ε

σ
=
1

E

(
1+

Ektn+1

η(n+ 1)

)
. (7)

To describe the effect of deformation aging of polymer materials we shall consider
the following kinetic equation of effective time

dω = aektdt+ bdε, (8)

where a, k, b are constants.
Writing down Maxwell equation (6) in view of the formula (8) and solving the
received equation at σ = const and initial conditions ω = 0, t = 0, ε = σ/E, we
have the following creep solution

ε =
σ

E

[
1+

a(ekt− 1)

kτ(1− σb
Eτ

)

]
. (9)

In order to evaluate the value of energy consumed for the creep fracture the energy
conservation law will be used to formulate the thermodynamic fracture criterion for
heterogeneous materials Applied to the problem of creep deformation and fracture
of a specimen, this law can be formulated in the following manner [5]. When an
element of a system (specimen) goes from the initial state (initial loading) to the
final state (fracture) a small increment of internal energy du is equal to the sum of
increments of strain energy dw, radiation energy δR and the heat δq removed from
the element of the system

du = δw− δq + δR, (10)

where δw = σijdεij (dεij = ε̇ijdt), σij are components of stress tensor, dεij are
components of strain increment tensor.
Integrating (10) from initial (marked 0) to the fractured state (marked *), we will
receive

∆u∗ = w∗ − ∆q∗ + ∆R∗, (11)

where

∆u∗ =

u∗∫

u0

du = u∗ − u0, w∗ =

w∗∫

0

δw,∆q∗ =

q∗∫

q0

δq, ∆R∗ =

R∗∫

R0

δR. (12)

Introducing notations ∆q∗ = w∗1, ∆u∗ = w∗2, ∆R∗ = w∗3 the energy conservation
law (11) can be rewritten as w∗ +w∗3 = w∗1+w∗2. So the summary of deformation
and radiation energy is the summary of the heat energy w∗1 and the energy w∗2
consumed for the fracture of a specimen. The energy w∗2 is the latent or stored
energy and it represents the change in internal energy of the material.
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For pure tension εij = ε, σij = σ, where σ = const , the deformation energy can be
calculated as w∗ = σε∗, from which follows

ε∗ =
w∗
σ

=
w∗1+w∗2−w∗3

σ
. (13)

If we compare the value of creep deformations ε = ε∗ in relations (7), (9) at the
fracture time t = tp with (13) we will receive the following creep fracture laws

tp =

[
η(m+ 1)

kE

(
E(w∗1+w∗2−w∗3)

σ2
− 1

)]1/n+1

, (14)

tp =
1

k
ln

[
1+

kτ

a

(
E(w∗1+w∗2−w∗3)

σ2
− 1

)(
1−

bσ

Eτ

)]
. (15)

The received thermodynamic creep fracture criterions (14), (15) will be applied
to describe the creep fracture curves for polymer materials subjected to heat and
ultraviolet radiation. In this case, in accordance with the experiments, the proposed
relations predict the intensification of creep rate and the significant decrease of
the time to fracture. These criterions contain the summary of heat, stored and
radiation energies. Assuming that the heat energy is given out so it has no effect
on the fracture process, the creep fracture criterion is simplified. So the latent and
radiation energies are responsible for the aging, degradation and fracture of polymer
materials. This version of the criterion will be applied to describe the experimental
creep fracture curves of different polymer materials undergoing UV irradiation. It
is known [6], that UV irradiation promotes the degradation and fracture of polymer
materials. As it was shown, these effects are connected with the increase of internal,
and consequently, with the increase of the stored energies. The received results can
be applied to predict the destruction of polymer materials and structures, also to
optimize the human skin sunburn process. In the last case the effect of deformation
(massage) and UV radiation aging will be very important and it was not considered
in the world medicine practice.
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Degradation of high elastic thin layer subjected to
cyclic compression
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Abstract

In engineering applications, for example, pressure cylinders employed in
paper industry, as a material of thin layer, polyurethane or natural and artifi-
cial rubbers in high elastic state is used. To define the stresses interval, where
the material behavior can be considered as uncompressible and to specify the
mechanical characteristics, the experiments on deep pressure and creep under
the specimens made of polyurethane were carried out. The problem of thin
layer made of incompressible viscous material subjected to compression by
two parallel plates is considered. The analytical expressions for current lines,
the rates of displacements, the deformations and stresses are derived and the
corresponding diagrams are constructed. The dimensions of thin stratum near
the contact planes are determined in which the stress condition can be con-
sidered as the state of hydrostatic pressure. This state may be responsible for
degradation of the structure and the failure of thin layer and the construction
as a whole. The results can be applied to estimate the fatigue life of differ-
ent elastic viscous materials and the items where these materials are used as
working elements.

Financial support of the Russian Foundation for Basic Research (Grant
N 08-08-00201) is gratefully acknowledged.

1 Definition of the mechanical properties of

polyurethane in the experiments on deep

pressure and creep

The purposes of these experiments are construction of deep pressure stress - strain
curves and the definition of the Young modulus of polyurethane. As it is known,
the Young modulus is a very important mechanical characteristic of material since it
defines the initial rigidity of a material. Moreover this characteristic plays important
role in the contact problem when calculating the contact stresses. So we will direct
our attention on the methods of calculating of this characteristic.

In the deep pressure experiments the specimens of square cross section made
of polyurethane were used. The specimens have the following dimensions:
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20x20x30 mm. Experiments were carried out on the Instron 1231U-10 test machine
with the loading velocity equals to 3, 5 mm/min.
At the first loading (on the 200 kg base of the force measurer) the value of force at
maximal pressure was equal to 190 kg. The deformation on this force level was equal
to 56,3%. Immediately following the unloading the specimen has the dimensions:
20,5x20,5x29,5 mm. The specimen recovered its original shape after three minutes
of ”rest”.
The second loading was carried out on the 1000 kg base of the force measurer. At the
maximal pressure value of force 850 kg the pressure deformation was 78,5%. At this
level of pressure the specimen has the following dimensions: 40x40x28 mm. Imme-
diately following the unloading the specimen has the dimensions: 21,7x21,7x28 mm
and after ten minutes of ”rest” - 20,7x20,7x28,5 mm. After the long period of ”rest”
the dimensions of the specimen were stabilized on the level: 20x20x29 mm.
In the experiment the current value of specimen length were measured. The current
value of the cross section area was calculated using the incompressibility condition:
l0F0 = lF (l0, F0 are the initial and l, F are the current length and cross section area
of the specimen).
The diagrams σ−ε (σ = P/F, ε = (l− l0)/l0), σ−λ (λ = l/l0, λ = 1+ε) are shown
in Figures 1, 2.

Figure 1: The diagrams σ− ε.

The ”conventional” elastic modulus E was defined on the deformation base about
20% according to the initial part of σ−ε diagram (Fig. 1). The value of the modulus
is equal to 0, 4 MPa. The real value of the elastic modulus E can be found on the
deformation base less than 1% of σ − ε diagram, marked OA in Fig. 1.
If λ is the relative deformation then, according to the statistical theory of high elastic
deformation, the relation between λ and stress has the form [1]

σ =
E

3
(λ2−

1

λ
). (1.1)

Introducing the relation λ = 1+ ε into (1.1), we will receive
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Figure 2: The diagrams σ− λ.

σ =
E

3

[
(1+ ε)2−

1

1+ ε

]
. (1.2)

The value of the elastic modulus follows from the condition

E = lim
ε→0

(
dσ

dε

)
. (1.3)

and in the case of relation (1.2) we have

E = lim
ε→0

(
dσ

dε

)
= lim
ε→0

E

3

[
2(1+ ε) +

1

(1+ ε)2

]
= E. (1.4)

If E = 0, 4MPa, ε = 23%, from (1.2) follows σ = 0, 1MPa. This value of stress is
equal to the experimental data according to the σ− ε diagram (Fig. 1).
To define the value of elastic modulus on the initial part of σ − ε diagram the
following relations can be also used

σ =
E

b
(ebε− 1). (1.5)

σ = Eε+ E01ε
2+ E02ε

3+ ... (1.6)

where b, E01, E
0
2, ... are constants.

For the functions (1.5), (1.6) the following condition E = lim
ε→0

(
dσ
dε

)
is valid.

In application to the problem of pressure cylinders one need to calculate the value
of contact stresses and the pressure strip. Using these values and the experimen-
tal pressure curve we can choose the rheological elastic viscous relation and the
calculation model of loading.
The Hertz’s solution [2] for the pressure of two steel cylinders, one of which is covered
by thin layer made of polyurethane will be applied for the calculation of the contact
stresses and the pressure strip.
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Let’s P is the force intensity on the unit length and E1, E2, υ1, υ2, R1, R2 are, corre-
spondingly, the elastic modulus, the Poisson ratios and the radii of cylinders. The
maximum value of pressure stress in the middle of contact layer σmax and the value
of pressure strip a are defined [2] as

σmax =

√√√√ P(R1+ R2)

πR1 R2

(
1−υ21
E1

+
1−υ22
E2

) , (1.7)

a =

√
4 P R1 R2

π(R1+ R2)

(
1− υ21
E1

+
1− υ22
E2

)
. (1.8)

If R1 = R2 = R, E2 → ∞, from (1.7), (1.8) follow

σmax =

√
2 P E1

π R (1− υ21)
, (1.9)

a =

√
4 P R

2 π

(
1− υ21
E1

)
. (1.10)

Using in (1.9), (1.10) the real values of the parameters of the considered problem:
P = 130 kg/sm, R = 39 sm, E1 = 0, 4 MPa, ν1 = 0, 5, we will receive σmax =

0, 336 MPa, a = 24, 6 sm.
In accordance with the σ − ε diagram of Fig. 1 for the value of stress 0, 336 MPa
the deformation is about 30%. On this level of stress the deformation is reversible
and the material of the tin layer can be considered as linear viscous. So it can be
also supposed that the layer under the pressure is in plane strain condition.

Figure 3: Creep curves for the stresses σx = 2 MPa and σx = 4 MPa.

To carry out the numerical calculation it is necessary to know the value of viscosity
coefficient. It was defined in the creep experiments at the two pressure stress levels
σ = 2 MPa and σ = 4 MPa. The received creep curves are shown in Fig. 3. As it
follows from the Fig. 3, at the initial parts of creep curves up to 30% of deformation
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the material behavior is linear viscous. So the viscosity coefficient will be calculated
from the following relations

ε̇ =
1

2η
(σx− σ), σy = 0, σz = 0, σ =

1

3
σx,

ε̇ =
1

3η
σx, η =

σx

3ε̇x
.

According to the creep curve for the stress σx = 2 MPa the creep rate ε̇x was defined
on the creep deformation base (0, 0− 0, 2943) in the time interval (0, 0− 1, 0) min.

as ε̇x = ε2−ε1
t2−t1

, ε̇x = 0, 2943 1
min.

. The corresponding value of viscosity coefficient is
η = 2, 265 MPa ·min.

2 Compression of thin layer made of high

elastic materials subjected to two long

parallel plates

We will consider the problem of cyclic compression of thin layer made of high elastic
materials subjected by two long parallel plates. It is assumed that the incompress-
ibility condition for elastic and viscous materials is conformed. So the mathematical
solutions, which satisfy the same boundary conditions, also must be identical, when
the viscous coefficient is equal to the elastic shearing modulus. If the width 2a of
the layer is much less then its length 2b, as shown in Fig. 4, the problem can be
considered as plane strain problem [2, 3].

Figure 4: Plane strain state.

As a material for the layer we will consider the high elastic materials, for example,
polyurethane in high elastic state. As it follows from the results of creep and com-
pression experiments in the required force and time intervals the material behavior
can be considered as linear viscous. The rate components u, v satisfy the inequal-
ities u 6= 0, v 6= 0, and the rate component in z direction is equal to zero w = 0.
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The following deformation rates and components of stresses also are equal to zero
ε̇z = 0, γ̇yz = 0, γ̇zx = 0, γ̇yz = 0, τxz = 0, τyz = 0.
In the case of plane strain the linear viscous equations [4] is written in the form

σx− σ = 2ηε̇x, τxy = ηγ̇xy, σy− σ = 2ηε̇y, (2.1)

σ = 1/2(σx+ σy) = σz. (2.2)

In equations (2.1), (2.2) the following notations are introduced: σx, σy, σz, τxy are
the components of stresses, σ = 1/3(σx+ σy + σz) is the mean stress, ε̇x, ε̇y, γ̇xy
are the components of rate deformations, η is the viscosity coefficient.
For the incompressible materials the equations (2.1) are similar in form to the rela-
tions for linear elastic incompressible material. If E = 3η (E is Young modulus), we
have identical equations for elastic and viscous media.
The following Cauchy relations are satisfied for the components of the rate displace-
ments u, v

ε̇x =
∂u

∂x
, ε̇y =

∂v

∂y
, γ̇xy =

∂u

∂y
+
∂v

∂x
. (2.3)

The system of equilibrium equations can be written through the rate components
u, v, w in the form of the Navier differential equations

η∆u+
∂σ

∂x
= 0, η∆v+

∂σ

∂y
= 0,

∆u =
∂2u

∂x2
+
∂2u

∂y2
, ∆v =

∂2v

∂x2
+
∂2v

∂y2
, (2.4)

∂2σ

∂x2
+
∂2σ

∂y2
= 0, (2.5)

where ∆ = ∂2

∂x2
+ ∂2

∂y2
is the Laplace operator.

The incompressibility equation will be written as

ε̇x+ ε̇y =
∂u

∂x
+
∂v

∂y
= 0. (2.6)

It is known that the system of equations (2.4)-(2.6) are solved by introducing the
current function ϕ, satisfying the following relations

u =
∂ϕ

∂y
, v = −

∂ϕ

∂x
. (2.7)

For the function ϕ we will have the linear differential equation of the fourth order,
so called bi-harmonic equation

∂4ϕ

∂x4
+ 2

∂4ϕ

∂x2∂y2
+
∂4ϕ

∂y4
= 0, ∆∆ϕ = 0. (2.8)

Considering the concrete problems, the solutions of equation (2.8) can be found for
the boundary conditions for the functions u, v.

79



Proceedings of XXXVII International Summer School–Conference APM 2009

Let’s consider the case when the viscous layer is compressed without slip by two
plane plates moving with the velocity v0. For these limitations the components u,
v on the planes y = ± h are equal

u = 0, v = −v0 = Const at y = h,

u = 0, v = v0 = Const at y = −h. (2.9)

According (2.7) for the current functionϕ we have the following boundary conditions

ϕ = v0x,
∂ϕ

∂y
= 0 at y = h,

ϕ = −v0x,
∂ϕ

∂y
= 0 at y = −h. (2.10)

For the long rectangular plate the solution of equation (2.8) is expressed in the
form of polynomial [3], particularly in the form of polynomial of fourth degree ϕ =

ax4 + bx3y + cxy + dxy3 + ey4. Taking into account the boundary conditions,
the coefficients of polynomial will be found as a = 0, b = 0, e = 0, c = 3v0/2h,
d = −v0/2h

3. So the equation (2.8) is satisfied by the current function of the form

ϕ =
v0x

2h3

(
3h2y− y3

)
. (2.11)

According to the relations (2.7) for the rates u, v the following expressions can be
found

u =
3v0x

2h3

(
h2− y2

)
, v = −

v0

2h3

(
3h2y− y3

)
. (2.12)

Current lines, defined according to the condition ϕ = Const, are shown in Fig. 5.

Figure 5: The current lines ϕ = Const.

At the first moment the current lines are perpendicular to the guiding plates then
they turn down very quickly into the direction of main motion, parallel to the plates.
If the compressed polymer layer posses the sufficiently high value of initial elastic and
viscous characteristics or if the surface residual stresses are favourable in sign with
the acting stresses, then in the initial moment it is possible that the over stresses
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will be develop, which are the cause of breaks and microcrack, providing the viscous
flow into the direction of x axis.
Let’s consider the distribution off the stress components. The mean stress σ or the
pressure P = −σ is calculated according to the formulae (2.4)

η∆u = −
∂σ

∂x
=
∂P

∂x
= −

3ηv0x

h3
,

η∆v = −
∂σ

∂y
=
∂P

∂y
=
3ηv0y

h3
. (2.13)

From the system (2.13) follows

P = P0+
3ηv0

2h3

(
y2− x2

)
, (2.14)

where P0 is the value of pressure at the point x = 0, y = 0. This value can be
approximated using the condition P ≈ 0 at x = ±a, y = 0. So from the relations
(2.14) follows

P0 =
3ην0a

2

2h3
. (2.15)

Introducing (2.15) into (2.14), we will receive

P =
P0

a2
(a2+ y2− x2). (2.16)

The maximum value of pressure P = P0 will be observed along the line x = 0, y = 0.
At a point x = a, y = 0 the pressure drops to the zero value.
According to Cauchy formulae the deformation rates are given by the relations

ε̇x =
∂u

∂x
=
3v0

2h3

(
h2− y2

)
,

ε̇y =
∂v

∂y
= −

3v0

2h3

(
h2− y2

)
,

γ̇xy =
∂u

∂y
+
∂v

∂x
= −

3v0xy

h3
. (2.17)

Taking into account (2.1) the stress components will be calculated as

σx = −P + 2ηε̇x =
P0

a2

(
x2− 3y2− a2+ 2h2

)
,

σy = −P + 2ηε̇y =
P0

a2

(
x2+ y2− a2− 2h2

)
,

τxy = −ηγ̇xy = −
3ηv0xy

h3
. (2.18)

In accordance with the relations (2.18), in arbitrary cross section plane x = Const

the normal stresses are distributed by parabolic law. Along the length and in the
cross section plane the shear stresses are distributed by linear law.
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3 The diagrams of the rates displacements

and the stresses.

The diagrams of the rates displacements u, v were built using the formulae (2.12)
where the following values of coefficients: v0 = 1 mm/min., 2h = 25 mm, 2a =

10, 8 mm are introduced. The diagrams for the rates u are shown in Fig. 6. In the
direction of the x axis the rates u are distributed as parabola with the maximum
at the points: y = 0. The value of particles rate are increased when moving off
from the zero coordinate point. If 2a = 10 mm, umax = 0, 12 mm/min., and for
2a = 30 mm, umax = 1, 8 mm/min. So with the increasing the with of the layer
the value u will increase.

Figure 6: The diagrams of the rate component u.

The diagrams of the rate v in direction of axis y are not dependent of coordinate
x and are distributed similarly on any cross section x = Const (Fig. 7). On the
planes y = ±h the rates v reach the maximum value vmax = 1 mm/min.

Figure 7: The diagrams of the rate component v.

The diagrams of the stresses were built using the formulae (2.18) where the following
values of coefficients v0 = 1 mm/min., 2h = 25 mm, 2a = 10, 8 mm, η =

2, 265 MPa ·min. are introduced. As follows from the formulae (2.18) the functions
for σx and σy have maximums at the point (0, 0).
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The diagrams of the stresses σx they are shown in Fig. 8 for the two cross sections
x = 0 and x = a. The maximum stresses are positive and at x = a they are
σx = 0, 54 MPa. With approaching to the planes y = ±h the stress σx changes the
sign into the negative and at y = ±h σx = −0, 27 MPa. As it follows, the negative
values of σx are observed in the thin stratum about 3 mm in thickness near the
contact planes.

Figure 8: The diagrams of stresses σx.

The values of the stress σy are negative with the maximum at the point (0, 0) equal
σy = −0, 93 MPa. With the moving off from the plates x = 0 the stresses σy will
be decreased and for the big values of a they will tend to zero. The diagrams of the
stresses σy for the two cross sections x = 0 and x = a are shown in Fig. 9.

Figure 9: The diagrams of stresses σy.

In accordance with the introduced suppositions σz = 1/2(σx + σy), so comparing
the values of three normal stresses, one can come to the following conclusion. On
the surface of pressed plane and in the inside points of the thin stratum about 3 mm
in thickness near the contact planes the stress condition approaches to the state of
hydrostatic pressure. So in these regions the brittle fracture will be appeared.

The diagrams of the stresses τxy are shown in Fig. 10. As it follows, on the central
cross section x = 0 τxy = 0. On an arbitrary cross section x 6= 0, x = Const the
shear stresses are distributed according to the linear law. Also the linear distribu-
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tions of the shear stresses are observed on the planes y = Const. At the points
x = a, y = ±h they reach the maximum values τxy = 0, 214 MPa.

Figure 10: The diagrams of stresses τxy.

The receive results we will use to estimate the cyclic strength of layer made of high
elastic materials, for example, polyurethane in high elastic state. This polymer is
used as a cover of pressure cylinders employed, for example, in paper industry. The
very thin paper layer is rolled between the two pressed to each other rotating steel
cylinders with the frequency about two revolution per minute. One of cylinders is
covered by thin polyurethane layer. In engineering practice three are many observa-
tions of cyclic failure of polyurethane layer so the estimation of the cyclic strength
of this layer will be very useful for the practical applications.
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Abstract

The results of investigations of materials elastic properties changes on
cyclic bending are presented using the method of optical-acoustic spec-
troscopy. It is shown that the optical-acoustic spectroscopy method allows
receiving information about the elastic modules changes defined by structure
rearrangements and information about the scale levels of such rearrangements.
It is known that essential changes on character of frequency dependent attenu-
ation of acoustic waves are defined by dispersion process on internal materials
structures. So analysis of the frequency dependent attenuation of acoustic
waves based on well known dispersion models, in particular the Rayleigh’s
model, allows restoring the function of structure elements distribution on
scales. The frequency dependent attenuation analysis during cyclic tests in
metals, polymers and composites allows estimating the character of evolution
of the scale levels of materials structure rearrangements on different stages
of experiment. For materials, which have pronounced structure, such as steel
and glass-fiber plastic, basic structure rearrangements are observed on scales
comparable with scales of character structure elements in these materials. In
metals it is the grain size and in composites materials it is the size of braid.
In PMMA there is no pronounced structure, so the changes are occurred in
all scales of the structure elements. The correlation of materials elastic prop-
erties changes and the function of structure elements distribution changes
during cyclic experiments is notice. On a damage accumulation stage when
the number of loading cycles is increased the number of structure elements in
greater scales is growing.

Financial support of the Russian Foundation for Basic Research (Grant
N 06-01-00202) is gratefully acknowledged.

During last 30 years the investigations of optical-acoustic (OA) effect [1-5], which
based on thermo elastic reaction of continuous medium were intensively carried out.
These investigations show the possibilities of using of the effect to solve some research
and technical problems, in particular the non breakable control of materials.
Application of laser methods of excitation of acoustic pulses has some advantages
compared with the traditional methods of acoustic defectoscopy and spectroscopy.
Permission of optical-acoustic defectoscopy is defined by a minimum duration of
excitation acoustic pulses, which is easy realized in the range ∼ (1 − 3) · 10−8s.
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This allows us to receive information about internal material structure in a wide
frequency range up to ∼ 100MHz. The possibility of easily rise of amplitude of
acoustic pulses makes this method very perspective for investigation of properties
and defectoscopy of high absorb materials.

In papers [6, 7] the optical-acoustic (OA) cell was proposed, which is a main ele-
ment of optical-acoustic defectoscop (OAD). OA cell allows overcoming a number
of technical limitations of optical-acoustic effect in defectoscopy of materials and
structural elements and combines the functions of optical and acoustic waveguides
and also the function of effective thermo acoustic transformer light-sound. It allows
to carry the measurements, when only one side access to the object is available or
in the case of simultaneous control of passed and reflected pulses.

In papers [8, 9] the investigations of acoustic properties of specimens (∼ 3 × 30 ×
150mm) made by tool steel, PMMA and glass-fiber plastic on cyclic bending with
frequencies 15Hz and 27Hz was carried out. The time of load influence was equal
to ∼ (10− 15)µs.

Acoustic properties evolution of specimens controls by OAD on a distance ∼ 10mm

from the doing up. Block scheme of OAD is shown on fig. 1. Laser with modulated
durability on neodymium glass with duration of radiation pulses 15 · 10−9s and
energy in one pulse ∼ 1mJoule is used.

Values of stresses for investigated specimens were in elastic region of materials re-
action. The number of cycles to fracture for the tool steel specimens is equal to
∼ (8− 9) · 105 and for PMMA is equal to ∼ (8− 9) · 106. For glass-fiber plastic spec-
imens the experiments were stopped at ∼ (12 − 13) · 106 cycles when the initiation
of layering is occurred.

Every ∼ 5 · 104 loading cycles the dependences of sound velocity and attenuation
of acoustic pulses in specimens was measured and the changes of there spectral
characteristics were analyzed.

Receiving and analyzing possibilities of dependences of attenuation of acoustic pulses
in a wide frequency range gives additional information about structure rearrange-
ments of materials during cyclic loadings. This allows estimating the character of
evolution of scale levels of structure rearrangements during loadings.

With a sufficient basis [10] we can suppose that observed essential evolution of
character of frequency dependent attenuation of acoustic pulses for different number
of loading cycles are defined significantly by dispersion process on internal material
structure. Using the Rayleigh’s model as a dispersion model the frequency dependent
attenuation can be connect with the scales of structure elements using the following
relation [11]

α(λ) =
n(D)D3

λ4
, (1)

where n(D) is structure elements distribution, D is their size, λ is wave length.

Analysis of spectrum of acoustic pulses on different loading stages was carried out.
Frequency dependent attenuation was defined using the following relation

α(f) = ln

(
P(f)

Pz(f)

)
, (2)
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Figure 1: Block-scheme of optical-acoustic defectoscop (OAD) (a) and optical-
acoustic (OA) cell (b): 1 - laser, 2 - optical fiber, 3 - optical-acoustic cell, 4 -
specimen, 5 - piezo sensing element, 6 - oscillograph, 7 - absorption layer, 8 - reflec-
tion layer.

Figure 2: Frequency dependent attenuation for different number of loading cycles
for tool steel specimens.

where P(f) and Pz(f) are the power spectrum of passed and probe acoustic pulses.
The received dependencies of α(f) for tool steel specimens are given on fig. 2.

Taking the size of structure elements for tool steel specimens in a range from 0 to
100µm, which is closed to a real values for steel [11] and using well known relation
λ = c/f (where c is sound velocity) the distribution function n(D) can be restored.
The received distributions of structure elements for different loading cycles for tool
steel specimens are shown on fig. 3.
These curves are well approximated by the function n(D) ∼ n0e

−D/D0 which is
usually used to describe the defect distribution in different materials [12].
More informative and obvious is the relative changes of function n(D) during cyclic
experiments: notn(D) = (n(D) − n0(D))/n0(D) · nmax(D), where n0(D) is defects
distribution in specimen without loadings, nmax(D) is maximum value of defects
distribution.

The relative changes of function of structure elements distribution for tool steel
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Figure 3: Distribution of structure elements from their size (a) and magnificated
fragment of picked out region (b) for different loading cycles for tool steel specimens.

Figure 4: Relative changes of structure elements distribution from their size for tool
steel specimens for different number of loading cycles.

specimens for different number of loading cycles are given on fig. 4.

It is seen that the fundamental processes of rearrangements for tool steel specimens
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Figure 5: Frequency dependent attenuation for different number of loading cycles
for PMMA specimens.

Figure 6: Relative changes of structure elements distribution from their size for
PMMA specimens for different number of loading cycles.

are observed on sizes which are compared with grain size ∼ 27µm. When the
number of cycles is increased, substantial changes become apparent in bigger scales
of structure elements.

The frequency dependent attenuation for different number of loading cycles for
PMMA specimens are shown on fig. 5.

The relative changes of structure elements distribution from their size for PMMA
specimens for different number of loading cycles are given on fig. 6.

In PMMA there is no pronounced structure, so the changes are occurred in all scales
of the structure elements.

For glass-fiber plastic specimens like a tool steel specimens essential changes of
distribution function are observed on scales of character structure elements - size of
glass fiber braid (∼ 180µm) [13].

The conducted investigations shown that the behavior of all investigate materials
during cyclic experiments are characterized by non monotonic evolution of function
of structure elements distribution, which correlate with non monotonic evolution
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Figure 7: Dependence of sound velocity from number of loading cycles for PMMA
specimens.

of such acoustic properties of materials as a sound velocity and attenuation. The
dependence of sound velocity from number of loading cycles for PMMA specimens
is shown on fig. 7 [8, 9].
Also the common for all investigate materials are essential evolution of distribution
function in bigger scales when the number of cycles is increased.
So, in spate of the range of sizes evolution of structure elements D was selected
arbitrary, the used approach allowed to reveal the evolution of scales of materials
structure rearrangements during cyclic experiments.

Conclusions

1. Optical-acoustic method using the attenuation dependencies in a wide frequency
range allows receiving the evolution of character scale levels of structure rearrange-
ments.
2. The non monotonic character of evolution of function of structure elements
distribution during cyclic experiments is observed, which correlate with the elastic
properties evolution of materials.
3. The basic evolution of structure for materials with pronounced structure elements
size (steel, glass-fiber plastic) is observed on sizes compared with the character size
of these materials.
4. On initial stages of loadings main evolution of structure occurred in small scales
of structure elements. When the number of cycles is increased the growth of big scale
structure elements is observed. This fact takes place for three types of investigated
materials: metals, polymers and composites.
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Abstract

In the paper the possibility of application of tribospectral analysis for diag-
nosis of nanosized heterogeneities and discontinuities on the interface between
nanosized coating and substrate is theoretically investigated. The main idea
of the suggested approach consists of measurement of sliding resistance force
of counterbody along the specimen surface and following Fourier analysis of
its frequency spectrum. This new approach was called nanotribospectroscopy.
Theoretical investigation of possibility of application of nanotribospectroscopy
was based on computer-aided simulation. Movable cellular automaton method
was used. Results of investigation showed the possibility of estimation of
some parameters of nanosized discontinuities in coatings and interfaces coat-
ing/substrate. For example, nanotribospectroscopy allows to estimate linear
dimension and period of distribution of such defects. In the paper realization
of experimental setup (nanotribospectrometer) is also described. Resolution
of suggested device is equal to 8 nm. Theoretical and experimental result
shows that nanotribospectroscopy could be a perspective method of nonde-
structive testing of imperfection of nanosized coatings and surface layers.

1 Introduction

A great number of new electron-ion plasma technologies of surface hardening are
widely developed during last years. This techiques allow to form nanostructured ce-
ramic coatings which have relatively high hardness (up to 70 GPa) [1, 2, 3]. Generally
these coatings are intended for strength details of mechanisms and machines. So they
have to possess high operational characteristics. First of all this refer to nanoporosity
and defects which are formed during formation coating and exploitation processes.
Nanoscale injuries on the coating/substrate interface are also hazardous. Thus, de-
velopment of new techniques for diagnosis quality of coatings is very actual problem.
It is necessary to mention that these techniques must have high resolution (up to
nanoscale level) and provide high production. One of perspective direction of inves-
tigation is analysis of dependence of friction force on structure features of coating.
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For example spectral analysis of results of high-precision measurement of friction
force of one of tribopartner allows to define features of microscopic interactions in
tribological contact [4].
This paper is devoted to investigation of possibility of application of tribospectral
analysis for diagnosis of quality of nanosized ceramic coatings. It is clear that for
defining of correlation of macroscopic friction force and such nanoscale parameters
as imperfection and defect structure of nanostructured coatings it is necessary to
use suitable multiscale methods of computer-aided simulation. It is necessary to
use multiscale approaches of investigation because typical scale of system (size of
damages, thickness of coating, and length of relative displacement of tribopartners)
could differ substantially. So, for computer-aided simulation of process of tribospec-
tral diagnosis of defect structure of coatings movable cellular automaton method
was used [5, 6, 7].

2 Procedure and parameters of computer-aided

simulation

In the paper movement of counterbody along steel specimen with ceramic coating
was simulated (fig. 1a). Thickness of coating was equal to 100 nm, diameter of
structural discrete element (movable cellular automaton) d was equal to 3 nm, and
length of specimen was equal to 1 mkm. Mechanical properties of substrate and
coating corresponded to rail steel and nonporous ceramic ZrO2 respectively. Cohe-
sion of coating and substrate was ideal or in other words strength of cohesion in the
interface between steel and ceramic was equal to strength of steel. In the framework
of movable cellular automaton method mechanical properties of simulated materials
are defining by so-called response function of automata [5, 6, 7]. For simplicity of
interpretation on figure 1 b response function are represented as loading diagrams
(σ − ε curves).

a) b)

Figure 1: fig. 1. a) Structure of simulated system (1 - counterbody, 2 - ceramic
coating, 3 - steel substrate); b) response functions of movable cellular automata of
ceramic coating (1) and steel substrate (2).

Counterbody had trapezoidal shape. Length of its smallest base was equal to 60
nm. Its movement was simulated by setting to upper automata of counter body
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of horizontal constant velocity which was equal to Vsl = 1,5 mps. Bottom surface
of specimen was immovable, and its lateral surfaces were free. During simulation
of counterbody movement calculation of resistance force to its sliding along the
specimen was carried out. Horizontal component of this force which act on counter-
body from the specimen corresponds to sliding friction force Ffr. Discrete Fourier
transform was used for spectral analysis of obtained time dependences Ffr(t) [8].
In connection with limitations which are constrained by discrete Fourier transform
following main requirements were took into account in computer model:

1. Time period of record of value Ffr should be relatively small to ensure that
Fourier estimation of its spectral density will contain all frequencies expecting in
the investigated system.

2. Length of counterbody displacement should be no less the two relevant distances
between defects in nanosized coating (in this paper it was up to 10 relevant dis-
tances).
It is necessary to mention that these requirements are valid for real experiments.
Defect structure/imperfection of coating was simulated by means of generation of
nanosized continuity violations. Stretched defects such as nanocracks at the coat-
ing/substrate interface were analyzed (fig. 2). Quasiperiodic distribution of nano-
sized cracks was investigated. Relevant distance between cracks (Picr) was equal to
90 nm, length of cracks varied from 12 to 36 nm. Width of cracks was equal to 2,5
nm.

Figure 2: Fragment of simulated system with defect structure at the interface coat-
ing/substrate (length of cracks is equal to 24 nm)

The possibility of determining of main features of defect structure of nanosized
coatings was analyzed. Among this features could be mentioned average size of
nanocracks an average distance between them.

3 Results of computer-aided simulation and expe-

rimental realization of nanotribospectroscopy

Specimen with ideal (undamaged) coating/substrate interface was used as base sam-
ple. Fourier-estimation Ffr(ν) of spectral density time dependence of sliding friction
force shown on figure 3. Main peak on the Ffr(ν) curve corresponds to periodical
component of artificial roughness of specimen surface (this artificial roughness as-
sociated with discreteness movable cellular automata). Frequency of this periodical
component is equal to νd = Vsl/d = 5 ∗ 108 Hz. Peaks with frequencies n d (here
n is integer number) are also attend on the curve Ffr(ν). Amplitude of this peaks
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decreases with increasing of n number. In the region ν < νd the curve Ffr(ν) is
smooth and there are no any other peaks (or periodical components).

Figure 3: Fourier-estimation of spectral density of time dependence of sliding friction
force for ideal sample (sample without defects at the coating/substrate interface).

Existence of quasiperiodically distributed nanocracks at the coating/substrate in-
terface leads to formation of new low-frequency peak on the Ffr(ν) curve (this peak
is marked by arrow on figure 4). Frequency of this peak is equal to νicr = 1, 8 ∗ 107
Hz and it corresponds to average interval of quasiperiodic spatial structure formed
by interfacial nanocracks (Vsl/Picr = 1, 7 ∗ 107 Hz). Thus, obtained results allowed
to estimate average distance between nanocracks.

Figure 4: Fourier-estimation of spectral density of time dependence of sliding friction
force for ideal sample (1) and for samples with interfacial nanockracks: . Length of
nanocracks (licr) is equal to 12 nm (2), 23 nm (3) and 36 nm (4).

Existence of nanocracks at the coating/substrate interface leads to changing of view
of Ffr(ν) curve in correspondent frequency interval. So we can diagnosis these
defects. For investigation of opportunity of defining of nanocracks sizes samples
with different length of cracks were examined. It is necessary to mention that
average distance between cracks in different sample was the same (Picr=90 nm).
Results of analysis of spectral density of sliding friction force counterbody showed
that increase of nanocracks length led to:
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1. increasing (up to 2 times) of absolute and relative amplitude of the peak
corresponding to quasiperiodic spatial structure formed by interfacial nanocracks
(νicr = 1, 83 ∗ 107 Hz);

2. increasing (up to 1,5 times) of average value of the Ffr(ν) curve in the vicinity
of νicr. In other word increasing of nanocracks length leads to increasing of energy
of the signal in the vicinity of νicr.

It is necessary to mention that value of νicr didn’t change for all samples with
nanocracks (fig. 4). So, on the base of analysis of spectral density of time dependence
of sliding friction force we could estimate length of nanocracks and average distance
between them.

Results of computer-aided simulation allow to suspect that heterogeneities with size
about 10-100 nm could be identified in real experiments on the base of analysis
of spectral density of sliding friction force. So, resolution of experimental equip-
ment should be more than 10 nm. Systems with this resolution we will call nan-
otribospectrometers. This equipment could based on experimental realization of
tribospectrometer suggested in [9]. In this paper we suggest following realization
of experimental setup. Counterbody moves along the specimen surface and special
sensors measure with high precision displacement of counterbody and sliding friction
force acting on it.

Figure 5: Scheme of nanotribospectrometer: 1 - specimen, 2 - coating, 3 - head of
tribospectrometer, 4 - integrated piezoelectric elements, 5 - laser vibrometer with
clock rate 1 MHz, 6 - high-speed information tank (intermediate memory), 7 - con-
troller of generator of alternating voltage, 8 - generator of alternating voltage, 9 -
force sensor for normal force, 10 - step motor for vertical displacement, 11 - controller
of step motor for vertical displacement, 12 - force sensor for tangential force, 13 -
controller of step motor for tangential displacements, 14 - step motor for tangential
displacements, 15 - computer.

Scheme of realized nanotribospectrometer is shown on figure 5. Main part of system
is tribological contact between coating (2) and detection head of tribometer (3).
The head could have one contact and two contacts with coating (fig. 5). Head
of tribometer is pressed to coating by engine (10) through force sensor (9). The
force keeps constant by means of feedback system (11). Head of tribometer moves
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horizontally along coating surface by means of engine (14). Force acting on head
measures by sensor (12) and all data transfer on computer (15).

Laser vibrometer (5) measures displacement of head of tribometer with clock rate
1 MHz. Displacements are controlled by means of feedback systems on the base of
chosen program. Special high-speed memory (6) used for recording of large volumes
of information. This data transfer to computer (15) for post processing.

4 Conclusions

Obtained results of investigations let us justify opportunities of nanotribospec-
troscopy as the method for diagnosis of defect structure of nanostructured coat-
ing/substrate interface. Keystone of this approach is measurement of sliding friction
force and analysis of its frequency spectrum. On the base of analysis of Fourier-
transform of time dependence of sliding friction force it is possible to estimate aver-
age spatial period between nanocracks and their linear dimensions. It is necessary
to mention that spectroscopic methods don’t allow us to define structure of defects
ant their spatial location. So, for obtaining of exhaustive information about defect
structure it is ought to use nanotribospectroscopy jointly with other methods. Thus,
nanotribospectroscopy could be suggested as perspective nondestructive method for
nanodiagnosis of defect structure of coatings and surface layers of materials. It is
possible to use this method for estimation of porosity of nanostructured coating, for
defining of typical scales of friction processes behavior, and so on.
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Abstract

The beginning of research of surface waves is connected with work
Reyleight [1]. In this work existence of the elastic waves propagating along free
surface of semi-space and with amplitude which exponentially attenuate along
depth of semi-space is established. The solution of a three-dimensional prob-
lem generalizing Reyleight problem, is received in [2], results of this article are
also brought in the monograph [3]. In [4] three-dimensional problems of prop-
agation of elastic surface waves in isotropic semi-space with two variants of
conditions on the surface of semi-space are considered: free from stresses sur-
face and when on the surface of semi-space the normal component of stresses,
one of tangential stresses and one of tangential displacements are equal to
zero. In the work [5] the problem of propagation of elastic surface waves in
a transversally isotropic semi - space with two variants of conditions on the
surface of semi - space is considered, here was assumed, that the surface of
semi-space is a plane of isotropy.

In [6] the plane problem of propagation of elastic surface waves in hexago-
nal piezoelectric semi-space is considered, generalization of this problem, from
the viewpoint of three-dimensional problem is brought in [7]. Herein it is also
supposed, that the plane of isotropy is parallel to a plane limiting semi-space.

The offered work is devoted to research of surface waves in transversally
isotropic semi-space when the plane of isotropy is perpendicular to a plane,
limiting semi-space. It is supposed that the plane limiting semi-space is free
from stresses. The new dispersion equation for surface wave finding is ob-
tained, which particularly in the case of isotropic medium is brought to the
equation of Reyleight. Conditions of surface waves damping are investigated,
parameters of phase speed of a surface wave for known transversally isotropic
materials are received.

1 Problem statement

The transversely isotropic semi-space is considered. It is supposed, that from each
point of medium the parallel planes of elastic symmetry pass, in which all directions
are elastic-equivalent (planes of isotropy). It is supposed, that the surface of semi-
space is perpendicular to a plane of isotropy. The direction of axis z is perpendicular
to plane of isotropy, axes x and y are situated in the planer of isotropy (−∞ < x <

+∞, 0 6 y < +∞,−∞ < z < ∞)
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The system of differential equations determining wave process in this medium has
the form:

c11
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∂x2
+
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2
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2
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+
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) = ρ

∂2w
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(1.1)

u, v,w - are components of displacement vector, cij- are five elastic characteristics
of the transversely isotropic medium, ∆2− is two-dimensional operator of Laplas.
To solve the problem of propagation of surface waves, we have to satisfy the condi-
tions of damping:

lim
y→∞

u = 0, lim
y→∞

v = 0, lim
y→∞

w = 0 (1.2)

It is supposed, that the surface of semi-space is free from stresses:

σyy = 0, σyz = 0, σyx = 0 when y = 0 (1.3)

It is necessary to note, that the surface wave is also exist, when on the surface
of semi-space the normal component of stresses, one of tangential stresses and one
of tangential displacements are equal to zero, this problem is solved for isotropic
semi-spaces in work [4], and for transversely isotropic semi-spaces, when the plane
of isotropy is parallel to the surface of semi-space [5].

2 Problem solution

Let’s assume that the surface wave extends in a direction of an axis z. Such wave
can arise, if perturbation causing of it does not depend on a variable x. Here we
deal with the plan deformation state. The system of differential equations (1.1) is
brought to the form:

c11
∂2v

∂y2
+ c44

∂2v

∂z2
+ (c13+ c44)

∂2w

∂y∂z
= ρ

∂2v

∂t2

c44
∂2w

∂y2
+ c33

∂2w

∂z2
+ (c13+ c44)

∂2v

∂y∂z
= ρ

∂2w

∂t2

(2.1)

The case, when the surface wave extends in a direction of an axis x is not considered,
because in this case the analogues problem for isotropic media is obtained.
The solutions of the system of differential equations (2.1) are represented in the
form:

v = Be−pky× exp i(ωt− kz)

w = Ce−pky× exp i(ωt− kz)
(2.2)
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Substituting (2.2) in (2.1), the system of homogeneous algebraic equations with
respect to arbitrary B, C is obtained:

[
p2− θ+ θη

]
B+ [C1+ θ] ipC = 0

[C1+ θ] ipB+
[
θp2− C2+ θη

]
C = 0

(2.3)

The following denotations are done:

η =
ρω2

c44k2
, θ =

c44

c11
, C1 =

c13

c11
, C1 =

c33

c11
(2.4)

Particularly, in the case of isotropic medium:

c11 = c33 = λ+ 2µ, c44 = µ, c12 = c13 = λ, C1 = 1− 2θ, C2 = 1.

It is supposed, that the determinant of the system (2.3) is equal to zero, and the
following equation is obtained:

p4+ [η+ θη + 2C1+ θ−1(C21− C2)]p
2+ (1− η)(C2− θη) = 0 (2.5)

Particularly in the case of isotropic medium the equation (2.5) to the analogues
equation for isotropic media is brought:

p4+ [η− 1+ θη− 1)]p2+ (1− η)(1− θη) = 0

Considering roots of the equation (2.5) it is possible to find conditions of damping
for surface waves. It is established, that conditions of damping for all considered
transversely isotropic materials is interval (0, 1). From the first equation of the
system (2.3) we shall obtain:

C = −
p2− θ+ θη

[C1+ θ] ip
B

From the equation (2.5) the roots p1, p2, p3, p4 are obtained. From these roots only
p1andp2 satisfy to the damping conditions, so the displacements have the form:

v = B1e
−p1ky× exp i(ωt− kz) + B2e

−p2ky× exp i(ωt− kz)

w = −
p21− θ+ θη

[C1+ θ] ip1
e−p1ky× exp i(ωt− kz)B1−

−
p22− θ + θη

[C1+ θ] ip2
e−p2ky× exp i(ωt− kz)B2

(2.6)

3 Dispersion equation and numerical results

The boundary conditions (1.3) in the term of displacements have the form:

c11
∂v

∂y
+ c13

∂w

∂z
= 0

∂v

∂z
+
∂w

∂y
= 0

(3.1)
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Substituting the expressions for v,w in (3.1) the system of homogeneous algebraic
equations with respect to arbitrary B1, B2 is obtained:

[[
p21− θ + θη

]
C1

(C1+ θ)p1
− p1

]
B1+

[[
p22− θ + θη

]
C1

(C1+ θ)p2
− p2

]
B2 = 0

[
p21− θ + θη

C1+ θ
+ 1

]
B1+

[
p22− θ+ θη

C1+ θ
+ 1

]
B2 = 0

(3.2)

It is supposed, that the determinant of the system (3.2) is equal to zero, and the
following equation is obtained:

θ(p1− p2)
{
C1(η− 1)(θη+ C1+ p21) + η(θ+ C1)p1p2+

[
(η− 1)C1− p21

]
p22

}

(θ+ C1)2p1p2
= 0

(3.3)

If p1− p2 = 0 then B1+ B2 = 0 (see (3.2)) and v = w = 0 (see (2.6)).
So to find the dimensionless parameter of speed of surface wave, we have to solve
the following equation:

R(η) = η(θ+ C1)
√
C2− θη+

+
√
1− η

[
θη − C2+ C1

[
θ−1(C21− C2) + η+ C1

]]
= 0

(3.4)

Particularly in the case of isotropic medium the equation (3.4) to Reyleight equation
is brought:

η−
4
√
1− η(1− θ)√

1− η+
√
1− θη

(3.5)

The significance of the function R(η) in the corners of interval [0, 1] have the form:

R(1) = (θ+ C1)

√
c33− c44

c11
(3.6)

The expression c33− c44 is positive for all materials, observed by us, so R(1) > 0.

R(0) =
(θ+ C1)

θ

c213− c33c11

c211
(3.7)

The expression c213−c33c11 is negative for all materials, observed by us, so R(0) < 0.

The value of dimensionless parameter for some transversally isotropic materials is
brought in the Tab.1. The characteristics of materials are taken from [8], [9].

Table1

material η θ η for isotropic materials
Be 0.7563 0.5559 0.7206

PZT-4 0.88011 0.1841 0.8843
ZnO 0.9132 0.2026 0.8805
CdS 0.9391 0.1739 0.8863
Ti 0.8804 0.2875 0.8595
Zn 0.6556 0.2370 0.8727
Y 0.8658 0.3225 0.8488
Cd 0.8078 0.1762 0.8858
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Tab.1 shows, that there are materials for which dimensionless parameter of speed
of surface wave increases in compare with isotropic case, and there are materials for
which it decreases.
Let’s considered the coefficient of anisotropy in the following way:

α =
vp max − vp min

vp min

× 100%

Where vp max is the maximal speed of longitudinal wave and vp min is the minimal.
The significance of α for some transversally isotropic materials is brought in the
Tab.2.

Table2

material α

Be 7.2787%
PZT-4 9.94069%
Zno 0.28571%
CdS 4.53801%
Ti 5.48387%
Zn 60.56004%
Y 2.03913%
Cd 50%

Tables 1 and 2 show, that for materials, which have small coefficient of anisotropy,
parameter of speed of surface wave increases in compare with isotropic case and
decreases for materials with big coefficients of anisotropy. Only Be is opposition.
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Abstract

The effect of vibrational displacement means the appearance of the “di-
rected on the average” change in the position (particularly of motion) of a
system under the influence of the undirected on the average (oscillatory) ex-
citation [1]. We consider here the specific class of such systems, in which the
vibrational displacement is produced due to deformability of their elements.
The paper [2] pioneered work in this direction. It is concerned with the prob-
lem of the motion of a solid body over a rough plane. A solid body contains
an additional mass attached to a spring mounted at some angle about the
plane. It was found that the body can move along the plane even in the
case of symmetrical vibration. The direction of the motion, in this case, is
controlled by the magnitude of the vibration frequency, whereas the velocity
increases near the resonance. In this presentation, several new problems are
considered:

1. The motion of a washer, planted on an elastic rod (Chelomei’s pendu-
lum). It is shown, that the washer can move along the rod even in the case
of its pure harmonic longitudinal oscillations. This effect occurs due to the
periodical changing of the diameter of the cross section of the rod caused by
its longitudinal deformation.

2. The motion of a deformable particle (for example, a gas bubble) in
an incompressible harmonically oscillating fluid. In this case, the vibrational
displacement of the particle can be caused by the periodical changing of its
size due to pressure pulsation in the fluid. In particular, the bubble can sink
in the fluid, rather than rise or float.

Analytical solutions are obtained by the method of direct separation of
motions. They are verified numerically and experimentally.

1 Introduction

The following phenomena are based on the effect of the vibrational displacement:
vibrational transportation of single bodies and granular materials in vibrating trays
and vessels; the work of the devices called vibrational transformers of motion and
vibrating motors, vibrational sinking of piles, sheet piles and shells; vibrational
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separation of particles of granular material according to their density, size and some
other parameters; the motion of vibrationalcoaches; the flight and swimming of
living organisms. A harmful effect of vibrational displacement can be exemplified
by the appearance under the action of vibration of the mobility of the normally
immobile parts of machines (such as self-unscrewing nuts).
From physical point of view the vibrational displacement is always the result of sys-
tem or excitation mode asymmetry. Six possible types of such a system are indicated
in reference [1]. We consider here the specific class of such system asymmetry, in
which the vibrational displacement is produced due to deformability of the elements.
The majority of problems on the theory of vibrational displacement are reduced to
the investigation of solutions of nonlinear differential equations with periodic over
the fast time τ = ωt right sides ( ω is the frequency of vibration), for which the
velocities of the change of the generalized coordinates have the form

ẋ = Ẋ(t) + ψ̇(t,ωt), (1)

where Ẋ(t) is a slowly changing component, and ψ̇ is a fast changing component,
with

〈ψ(t,ωt)〉 = 0, (2)

where brackets 〈〉 indicate averaging for period 2π for fast time ωt. The component
Ẋ(t) is called the velocity of vibro-displacement ; in most cases its determination in
the stable stationary motions (that is when Ẋ = const) is of utmost interest for
applications.

Figure 1: Solid body with inner degree of freedom.

2 Vibrational displacement of a body with inner

degree of freedom

The paper of K.S. Yakimova [2] was the first work in this direction. It is concerned
with the problem of the motion of a solid body of mass m1 over a rough plane (Fig.
1). The solid body contains an additional mass m2 attached to a spring c mounted
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at some angle β to the plane. It was found that the body can move along the plane
even in the case of symmetrical (horizontal or vertical harmonic) vibration. The
direction of the motion (sign of Ẋ ) in this case is controlled by the magnitude of
the vibration frequency, whereas the velocity increases near the resonance. These
analytical results were confirmed experimentally on the model, given in Fig. 2.

Figure 2: Experimental model.

An interesting system in which the deformability of the element also plays a signifi-
cant part in formation of vibrational displacement of the body along a rough surface
was investigated in paper [3].

3 Vibrational displacement of a washer placed

on an elastic rod (Chelomey’s pendulum)

A discussion has sprung up in connection with the publication of Chelomey’s paper
[4] whether purely lengthwise harmonic vibrations of a flexible rod (Fig. 3) can
induce a vibrational lengthwise displacement of a rigid washer in condition of a dry
or viscous friction between the rod and the washer. (see reviews in [1] and [5]).

Figure 3: Chelomey’s pendulum.

Most of the researchers were inclined to the opinion that such lengthwise displace-
ment of the washer can be achieved only on condition of transverse vibrations of
the rod. An idea has been proposed by K.S. Ivanov that vibrational displacement
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of the washer in this case may be induced by periodic expansion and constriction of
the rod cross-section in step with the compressing and tensile stress. The result of
such deformations is that during a certain part of the cycle the washer is in close
contact with the rod while during the other part of the cycle the contact is loosened
(the washer is supposed to be put on the rod with a drive fit). The result of this is
that the force of dry friction between the washer and the rod during one part of the
cycle is greater than that during the other part. This circumstance is the cause of
the asymmetry indispensable for obtaining the effect of vibrational displacement.
Let us consider a simplest model of the above described process.
Fig. 4 shows a flexible rod with its left end vibrating according to the law:

ξ = A sinωt, (3)

where A - is amplitude, ω - vibration frequency. To simplify the investigation let us
assume that the right end of the rod carries some mass m1. If we suppose that the
least eigenfrequency of the mass m1 on the rod is sufficiently higher that frequency
ω then the deformation of the rod may be considered as identical along the whole
rod length and caused by the action of force F = −m1ξ̈ = m1Aω

2 sinωt.

Figure 4: Simplest model of the system.

Washer movement in this assumption can be described by the following equation:

mẍ = −mξ̈ − f(N0+ ηm1ξ̈)signẋ, (4)

where m - is the mass of the washer, f - dry friction coefficient, N0 - normal reac-
tion between the washer and the rod in static state, and η - a positive coefficient
depending on washer and rod elasticities. Sign + standing before the second addend
within the brackets of equation (4) is of great significance: at a positive acceleration
ξ̈ the rod is compressed so that normal reaction is increased as compared to N0.
We suppose that magnitude of N0 is such that the sum N0+ ηm1ξ̈ will be always
positive.
A more complicated model is show in fig. 5. In this case the least frequency of free
rod vibrations is assumed to be not higher than excitation frequency and the washer
motion is represented by the following equation:

mẍ = −mξ̈0− f(N0− η1
∂ξ

∂x
)signẋ (5)

where ξ = ξ(x, t) - is bias of the rod point with coordinate x , corresponding to
standing wave excited in the rod, η1 > 0 - is a certain coefficient.
Equations (4) and (5) were solved by the method of direct separation of motions
[1]. In this case the fast motion equation was solved by a simplest assumption
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Figure 5: Model of the system taking into account arising the longitudal standing
wave.

that inertia forces by far exceed dry friction forces. With such an approximation
the method given failed to detect the effect of the washer vibrational displacement.
Quite a different result has been obtained with a numerical modelling of equations
(4) and (5) and in exact solution. Such an solution can be obtained if one observes
that equations (4) and (5) can be considered as a particular case of the equation
describing movement of a body along an harmonically vibrating flat surface which
is an equation describing behaviour of a quite different physical system [6]. This
latter system does not include any elastic elements though the normal reaction in it
changes in accordance with the harmonic law.
In more detail the problem is considered in K.Ivanov’s paper.

4 Vibrational displacement of a solid and de-

formable particle in compressible and noncom-

pressible media

The problems concerning vibrational displacement of particles in oscillating media
are apt to rouse significant applied and principal interest. In all cases deformability
of a particle or compressibility of medium play a definite role in arising of vibrational
displacement. In particular, particles of density less than that of the medium can
sink while the denser than the medium particles can float (see monograph [7] and
paper [4] containing also surveys of published papers).
Equation of particle motion in compressible medium in a system of coordinates
associated with a vibrating vessel with certain assumptions can be represented by
the following form (where axis x is directed vertically downward).

(m+ qm0)ẍ = −F(ẋ) +
[
g+ ξ̈(x,ωt)

]
(m−m0) (6)

Here m - is particle mass, m0 - medium mass in particle volume, q - coefficient
of attached mass, F(ẋ) - resistance force, ξ̈ absolute acceleration of medium in the
point of particle disposition.
Vibrational displacement in this case can be caused by the following:
1) Deformability (compressibility) of medium. Value ¨ξ(x,ωt)-in this case corre-
sponds to standing or running wave [7, 8].
2) Deformability of particle. Periodic excitation of medium under the action of
pulsing pressure can involve the change of particle size with consequent periodic
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change of the attached mass m0 and resistance force F(ẋ) .

In both cases after transition to the slow motion equation vibrational forces causing
vibrational displacement will arise due to non-linearity and parametricity.

It is worthwhile to mention the second case when the oscillating medium such as liq-
uid is practically nondeformable whereas vibrational displacement effects are caused
by deformability of the particle itself. This case is discussed in V. Sorokin’s paper
at this school.

5 On vibrational displacement of liquid layer

Possibility of directed shift of liquid along a horizontal plane vibrating at some
angle to it has been found by these authors’ experiments. There is reason to believe
that in this case vibrational displacement is caused by emergence of non-linearity
manifesting itself as certain cellular structures resembling known Benar’s cells (Fig.
6). This effect may be explained also as caused by “introduction” of additional
degree of freedom containing some elastic element.

Figure 6: Cells on the surface of vibrational water.

6 Conclusion

The examples cited give evidence that presence of deformable elements in a non-
linear system can cause or enhance vibrational displacement effects i.e. generation
of directed slow motions under the influence of fast vibrational action.
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On a Chelomey pendulum problem

I. I. Blekhman K. S. Ivanov
ivanoff.k.s@gmail.com

Abstract

Possibility of a vibrational translation washer along a rod influenced with
longitudial symmetric vibration and symmetric friction is widely discussed
in a current literature. The work provides a possibly case of such motion
caused by longitudial deformation of the rod. Problem is considered in terms
of motions separation method and numerically.

1 Introduction

A deep resonance was made in the early 80-s of the previous century by an article
by V.N. Chelomey describing a system consisting of hingedly mounted rod and
“washer” planted on it with lengthwise moving ability. Chelomey observed that
influenced by vertical vibration of joint while as the upper equilibrium position
becomes stable (Stephenson-Kapitsa pendulum), washer shifts from the base and
takes some fixed position. Practically right away were published articles by some
authors explaining the effect. Some review of this question is given at I.I. Blekhmans
book “Vibrational mechanics” [2]. One could distinguish major trends in research
of this problem right by that time (1994):
- rod was considered perfectly rigid (in this case vibrations were induced either
purely by vertical oscillations of joint [3] or by vertical and horizontal ones [4])
- rod was considered to be deformable, vacillating in lateral standing wave mode[5,6].

Figure 1: Variants of the task consideration.

Somehow or other all variants contained horizontal displacement of a washer, and
the problem of possibility of washer transition during purely longitudal vibration

112



On a Chelomey pendulum problem

subject to dry or viscous friction between washer and rod had became a subject
of argument. In this work is made a supposition of a washer movement possibility
emerging under the influence of purely longitudal rod oscillations. For this purpose
the deformation of cross-section of rod originating of stress-strain is taken into con-
sideration. Oscillations of the end of the rod are considered harmonic. Fixing is
assumed to not oppose stress-strain of the rod.

Figure 2: Model diagram.

2 Model of a system. Motion equations and their

solutions.

First consideration took place under the assumption that sonic speed inside the rod
is big enough to regard it as being statically deformed at each point of time during
the pinning point dislocation. Then an equation can be written down in a reference
frame attached to fixing, holding that washer is planted sufficiently tight,

mẍ = −mξ̈ − fN(t)sign(ẋ), (1)

were f - constant of dry friction,

N(t) =

{
(N0+ ηm1ξ̈), (N0+ ηm1ξ̈) ≥ 0
0, (N0+ ηm1ξ̈) < 0

, (2)

reacting force between washer and fixing and N0 its value when ξ̈ = 0 . If we keep
in mind that expression ξ̈ = −Aω2 sin(ωt) is negative when weight is on the top
and positive at the bottom. Let us think that initial tension is sufficient for contact
between washer and rod not to break when the rod is stretched i.e. inequality
N0 > fηm1Aω

2 always holds true. Thus

N(t) = (N0+ ηm1ξ̈), (3)

Let us solve the equation numerically: For the parameters N0 = 1N, f = 0.5, η =

1, m = 1kg, m1 = 1kg, A = 0.01m, ω = 30s−1 we got clearly observable result
One can approach a solution of the problem slightly different - with the help of
step-by-step integration method. When using this method the washer moving is
divided into stages concerning rest and sliding. First stage corresponds to “relative
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Figure 3: “Slow” coordinate time dependence for a particular trial.

rest” of the washer, on this stage the equation is integrated taking account of the
force of friction equal to and applied in the line of force of inertia. Second stage
- stage of “sliding” - force of friction is calculated by formula (2). Third stage -
similar to the first, and so on. The main difficulty of analytical examination by
such method is in determination of moments of stage interchange, however during
numerical examination at each step one can verify conditions of stage continuation
and find moments of stage interchange. Eventually phase-plane portrait would look
like Fig.4.

Figure 4: Phase-plane portrait of steady-state washer movement.

Remarkably, the use of traditional “movement separation” method will not allow to
locate any moving. In supposition that there exists an average uniform moving we
will apply “movement separation” method assuming that.
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x = X+ Ψ, (4)

Where X and Ψ is a “slow” and “fast” movement components correspondingly. Than
the equation of slow motion becomes:

mẌ = −f < (N0− ηm1Aω
2 sin(ωt))sign(Ẋ+ Ψ̇) >, (5)

Where angle brackets point at averaging over a period from 2π to ωt. Fast motion
is determined from approximate equation

mΨ̈ = −mξ̈, (6)

from which

Ψ̈ = Aω2 sin(ωt)

Ψ̇ = −Aω cos(ωt)
, (7)

Taking obtained Ψ̇ and the conditions of Ψ̇ + Ẋ sign change into consideration we
convert the right hand side component, being averaged

< (N0− ηm1Aω
2 sin(ωt))sign(Ẋ+ Ψ̇) >=

= N0− ηm1Aω
2

2π

(
−
ωt1∫

0

sin(ωt)dωt+
2π−ωt1∫

ωt1

sin(ωt)dωt−
2π∫

2π−ωt1

sin(ωt)dωt

)

The first and last integrals compensate each other and the middle one:

2π−ωt1∫

ωt1

sin(ωt)dωt = − cos(ωt)|2π−ωt1
ωt1

= − cos(ωt1) + cos(ωt1) = 0

Finally:

< (N0− ηm1Aω
2 sin(ωt))sign(Ẋ+ Ψ̇) >=

π− 2ωt1

π
N0, (8)

Using the condition of friction force’s direction change Ẋ−Aω cos(ωt1) = 0 we get

cos(ωt1) =

.

X

Aω
, sin(

π

2
−ωt1) =

.

X

Aω
, (9)

Taking Ẋ
Aω

minor as compared to one, one can write down an equation for slow
motion as:

mẌ =
2fN0

πAω
Ẋ, (10)

This implies that in steady state washer is in relatively indifferent equilibrium, which
contradicts the accurate development exact solution Equation (1) is absolutely sim-
ilar accurate to coefficients to motion equation of a body on a vibrating inclined
plane, vibrational translation for which is studied in [7].
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Figure 5: Model diagram for a standing wave case.

At the next stage of research were taken into consideration longitudal elastic oscil-
lations with the establishment of standing wave (Fig.5).
Assuming the least frequency of rods free oscillations greater than forcing frequency,
the motion equation can be written down as follow

mẍ = −mξ̈0− fN(x, t)sign(ẋ), (11)

where ξ0 = A sinωt and

N(t) = (N0+ η1
∂ξ

∂x
), (12)

ξ(x, t) offset of rods axis point with relative coordinate x, corresponding to the
standing wave. Let us write down the standing wave equation:

ρ∂
2ξ
∂t2

= E∂
2ξ
∂x2

− ρξ̈0
ξ|x=0 = 0
∂ξ
∂x

∣∣
x=l

= 0

, (13)

Let us find the solution in ξ(x, t) = B(x) sinωt+ C sinωt form, we will get:

ξ(x, t) =

(
cos ω

c
(l − x)

cos ω
c
l

− 1

)
A sinωt = Φ(x) sinωt, (14)

Where c =
√
E
ρ

sonic speed inside the rod. Let us substitute the acquired expression

into the slow motion equation and resolve by fast motion solution.

mẌ = −f < (N0+ η1Φ(X) sin(ωt) + η1ΨΦ
′(X) sin(ωt))sign(Ẋ+ Ψ̇) >, (15)

As in solution of problem with uniform deformation - the first component to be
averaged with Φ(X) becomes zero. However, by averaging the new component we

obtain 2
π
Ẋ
Aω

and the equation for slow movements becomes:

mẌ = CẊ, (16)

This again does not allow drawing a correct conclusion on vibrational translation
At a more accurate examination it is possible to find out that areas of indifferent
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equilibrium may appear around nodes of deformation wave. Outside those areas
vibrational translation will take place, which will move the washer towards certain
areas and away from other areas. This phenomenon is similar to stability and
instability of nodes and loops in certain other modifications of problem examination
based on other types of waves.
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Transient regimes in inertially excited
postresonance vibrational devices with several

degrees of freedom of the carrying system

I. I. Blekhman N. P. Yaroshevich

blekhman@vibro.ipme.ru, m yaroshevich@mail.ru

Abstract

Regimes of start and run - out of trans-resonant vibration devices with
inertial (rotational unbalance) excitation of oscillations are considered. The
problem of passage through the resonance zone arises in such devices. As a
result, increased power of the motor is required. Moreover, the near-resonant
locking effect (“Sommerfeld effect”) can occur. The intensive oscillations in
the start and run - out regimes are undesirable.

Blekhman I.I., Indeitsev D.A. and Fradkov A.L. [7] analyzed dynamics of
start process by means of an iterative method combined with the method of
direct separation of motions. An elementary model with one oscillatory degree
of freedom of the carrier system was considered. A review of the problem and
a list of references were also given in this reference.

This paper presentation extends the results of abovementioned article to
a system with three oscillatory degree of freedom of the carrier system. The
expression for the braking vibration moment and the equation for the semi -
slow oscillations of the internal pendulum are derived. These relations gen-
eralize previously obtained results. Some differences are also highlighted. In
particular, the complicated behavior of the system in the frequency range,
which contains natural frequencies of the carrier system, is possible.

1 Introduction

Inertial (unbalanced) drive is widely practiced in vibrational machines and devices
owing to its simplicity and possibility of obtaining considerable motive forces at
small overall dimensions and relatively small mass. Machines with inertial vibraex-
citers are mostly postresonance ones. Their operation is stable enough in stationary
regime. However in start and run-out periods a problem of passing through res-
onance frequencies zone arises. In particular, sticking of rotor rotating frequency
close by one of its own frequencies may occur at starting, that is Zommerfield’s effect
may develop. Passing through resonance zone in these cases involves considerable
oscillations in the system and, correspondingly, dynamic loads on the construction
elements. Besides, uprated engine power is needed.
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Figure 1: Scheme of oscillatory system with plane motion of the working head.

Zommerfield’s effect is considered with the application of various methods in a num-
ber of works (books [1-6], paper [7], see also works [8-10]). Rigorous investigation
of Zommerfield’s effect by Poincare’s method was carried out in work [1].Book [4]
shows that theoretical explanation and numerical description of the known appro-
priateness of Zommerfield’s effect may be easily obtained by means of the method
of direct separation of motions. In [7] The problem for the case of oscillating system
with one degree of freedom is solved by the method of successive approximation
coupled with the method of direct separation of motions. It is shown that such
approach, rougher than in known works, allows to comparatively easier describe the
system behavior in both pre-and post- resonance zones of rotor rotation frequencies.
Such approach is used in the offered work for systems whose oscillating part is a
rigid body with plane-parallel motion. Expression for retarding vibrational moment
and equation of internal pendulum semislow oscillation which generalizes previous
results are obtained.
Attention has been paid to a number of differences, in particular, to the possibility of
complicated behanour of the system in the range between the frequencies of carrying
system free oscillations.
Consideration of dynamics of passing though resonance in vibrational machines with
inertial excitation of oscillations is essensial at designing start control systems. Such
systems allow to considerably reduce the driving engine power necessary for passing
though resonance zone [11].

2 Scheme of the system and motion equations

A wide range of vibrational machines may be idealized in the form of a system
schematically presented in Fig. 1. Carrying body(vibrating member of machine) is
considered to be a rigid body capable to execute small plane-parallel oscillations,
that is, has, in general case, three degrees of freedom. It is linked with stationary
base by the system of elastic and damping elements. An umbalanced rotor, set to
rotation by asynchronous electric motor or by d.c. current motor, is mounted on
the carrying body.
The axis of the exciter rotor is perpendicular to the plane, parallely to which the
carrying body motion is executed.
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Let x and y be masses C centre coordinates in the rest system xOy and ϕ,ϕ1 be
correspondingly angles of rotation of carrying body and rotor exciter. Differential
equations of motion of the system under consideration are presented as.

Iϕ̈ = L(ϕ̇1) − R(ϕ̇1) +mε(ẍ sinϕ1+ ÿ cosϕ1− ϕ̈h sinϕ1), (1)

Mẍ+ βxẋ+ cxx = mε(ϕ̈1 sinϕ1+ ϕ̇21 cosϕ1),

Mÿ+ βyẋ + cxx = mε(ϕ̈1 cosϕ1− ϕ̇21 sinϕ1),

Jϕ̈+ βϕϕ̇+ cϕϕ = −mεh(ϕ̈1 sinϕ1+ ϕ̇21 cosϕ1), (2)

where M-is total mass of the system; J - is a moment of inertia in respect to the
axes passing through the masses centre; I - is a total moment of vibroexciter rotor
inertia in respect to its axis of rotation; m, ε - are, correspondingly, vibroexciter
mass and its eccentricity; βx, βy, βϕ - are coefficients of viscous resistance, cx, cy
-are longitudinal rigidities of vertical and horizontal springs; cϕ = cyl

2+ cxb
2; l, b

- parameters determining attaching point of the upper spring ends in respect to
exciter rotor axis; L(ϕ̇1), R(ϕ̇1) - are correspondingly, motor torque and a moment
of forces resistant to rotation.
Writing down equation (2) we assume, for simplification, that axes x and y are
“main” both in respect to rigidities and to the coefficient of viscous resistance, that
is, “cross” values of parameters cxy, ..., βxy, ... are equal to zero; it is also assumed
that lateral rigidity of elastic elements are negligible.
Consideration of more general case by means of the used below method does not
cause difficulties, but, however, its bound with more awkward computations.

3 The first approximation, peculiarities of Zom-

merfield’s effect manifestation in the system

To study motion of unbalanced excites rotor at passing through the resonance zone
the method of direct separation of motions is used [4], according to the main pre-
condition of the method let us assume that motions under consideration may be
presented in the form:

ϕ1 = ωt+ ψ(t,ωt), qi = qi(t,ωt) (3)

where ω = ω(t) is slow and ψ and q1 = x, y, ϕ are fast time functions, they are 2π
- periodical at τ = ωt and they value average equals zero;

〈ψ(t, τ)〉 = 0, 〈qi(t, τ)〉 = 0 (4)

It is also assumed that ψ̇ << ω. French quotes in formula (4) and further indicate
time averaging for the period T = 2π in fast time τ = ωt.
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Such presentation of equations (1),(2) at studying the vibroexciter rotor passing
through resonance zone, when Zommerfield’s effect is taking place and, correspond-
ingly, the frequency of rotor rotation ϕ̇1 changes slowly enough seems to be rightful.
It will be checked “a posteriory” below.
Let us substitute the first expression (3) into assumed differencial equation (1) and
average its left and right part in fast time τ. To continue, we subtract the obtained
relationship from the assumed one and come to the following system of integro -
differencial equations of slow and fast motion of vibroexciter rotor:

Iω̇ = L(ω) − R(ω) + 〈Φ(ẍ, ÿ, ϕ̈, ϕ1)〉 (5)

Iψ̈ + kψ̇ = Φ(ẍ, ÿ, ϕ̈, ϕ1) − 〈Φ(ẍ, ÿ, ϕ̈, ϕ1)〉 (6)

where

Φ〈(ẍ, ÿ, ϕ̈, ϕ1)〉 = mε[(ẍ − hϕ̈) sinϕ1+ ÿ cosϕ1]

At obtaining this system lineariration of expressions L(ϕ̇1), R(ϕ1), as in [1], close
by value ϕ̇1 = ω(where ω - is frequency of rotor “sticking”) is performed,k =

−
d(L−R)

dϕ̇1
|ϕ̇=ω> 0 being a total damping coefficient).

First, according to the method of direct separation of motions, approximate periodic
solution of fast motions (2), (6) equations at constant (“frozen”) ω(t), ω̇(t) are
found.
As in works [4, 7], we adopt ψ = ψ(1) = 0, ϕ1 = ϕ

(1)

1 = ωt as the first approximation
and corresponding periodic solution of equations (2)

x=x(1)=A(1)
x cos(ωt+γx), y=y(1) = A(1)

y cos(ωt+γy), ϕ=ϕ(1)=A(1)
ϕ cos(ωt+γϕ)

(7)

where

A(1)
x =

mε

MBx
, Bx=

√
(1−λ2x)

2+4n2x, λx=
px

ω
, px=

√
cx

M
,nx=

βx

2Mω
, sinγx=−

2nx

Bx
,

A(1)
y =−

mε

MBy
, By=

√
(1−λ2y)

2+4n2y, λy=
py

ω
, py=

√
cy

M
,ny=

βy

2Mω
, sinγy=−

2ny

By
,

A(1)
ϕ =−

mεh

JBϕ
, Bϕ=

√
(1−λ2ϕ)2+4n2ϕ, λϕ=

pϕ

ω
, pϕ=

√
cϕ

J
, nϕ=

βϕ

2Jω
, sinγϕ=−

2nϕ

Bϕ
.

(8)

Having substituted solutions (7) into the right part of slow motions equation (5)
and having performed averaging, we obtain approximated formula of, so called,
vibrational moment [1, 2, 4].

V(1)(ω) = −(mεω)2[
nx

MB2x
+

ny

MB2y
+
h2

J

nϕ

MB2ϕ
] (9)
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At λy = λϕ → ∞ that is, in the case of carrying body with one degree of freedom,
formula (9), as it should be, coincides with the corresponding formula of work [7]
(it should be taken into account that nx = n/ω, that , where n, according to work
[7], is written for the value β/2M).
All components in formula (9) are negative. Thus, as it is for the system with one
oscillatory degree of freedom, vibrational moment is always retarding, i.e., it is an
additional load upon the engine rotor, its dependency on frequency is of resonance
character, and, therefore, its retarding effect manifests itself in comparatively narrow
frequency range.
With account of uniformity of components in (9) and by analogy with [1, 4] expres-
sion (9) for the vibrational moment affecting vibroexciter rotor may be considered
as the sum

V(1)(ω) =
∑

q=x,y,ϕ

νq

summands of which

νq = −(mεω)2
nq

MqB2q
, (10)

are “particular” vibrational moments characterizing the effect of q-oscillatory mo-
tion (oscillatory coordinate) on the rotation of exciter rotor. (Here, if q = x, or

q = y, then Mq = M, if q = ϕ, then Mq = Mρ2

h2
).

If should, be noted that expression (10) for “particular” vibrational moment may
be presented in the form

νq =
1

2
Faq sinγq,

where F = mεω2-is an amplitude of driving force developed by exciter rotor at sta-
tionary carrying body, aq = mε

Mq

√
(1−λ2q)2+4n2q

-is an amplitude of platform oscillations,

corresponding to q-oscillatory coordinate.
Both particular and general vibrational moments characterize vibrational link be-
tween carrying body oscillatory motions and rotating motions of vibroexciter rotor.
According to formulas (9), (10) the retarding effect of vibration at starting is the
less, the stronger the resistance of the system in coordinates x, y, ϕ is (as it is for
the system with one degree of freedom).
Fig.2 shows the dependency of vibrational moment on viscous resistance coefficient β
(β = βx = βy/1, 1 = βϕ/0, 05) at passing through the resonance zone of frequencies
x, y, ϕ for the system with three oscillatory degrees of freedom.
The diagram shows that vibrational moment increases not so sufficiently in the
region of resonance frequencies (px = 30sec−1, py = 35sec−1, pϕ = 44sec−1) at
relatively great damping coefficients (β ≥ 300kg/sec) than it does at small ones
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Figure 2: Dependency of vibrational moment on frequency and resistance coefficient
β.

(β ≤ 100kg/sec); resonance maxima corresponding each coordinate are almost
imperceptible.
It should be emphasized that the value of maximal retarding vibrational moment
sufficiently depends, according to (8) and (9), on the frequencies of natural oscil-
lations of the system; decreasing natural frequency we may decrease the retarding
moment and, in consequence, decrease resonance amplitudes of oscillations as well
as the power of the engine necessary for passing through the resonance zone.
Taking into account dependency of vibrational moment on natural frequencies we
may assume that the most significant retarding effect is exerted by a particular
vibrational moment , whose frequency is , as a rule, the highest for the range of
machines under consideration (usually pϕ > px ≈ py;pϕ ≈ pyl/ρ, l > ρ).
Thus, for instance, in the case of damper application for decreasing the level of
oscillations at passing through the resonance the mounting of only one damper of
rotational oscillations will be enough.
Since the changing of vibrational moment components is of strongly resonant char-
acter, it is advisable to choose (9) frequencies px, py, pϕ different, to separate cor-
responding to horizontal, vertical and rotational carrying body oscillations maxima
of retarding vibrational moment in time.
Let us consider a particular case of the system when the axle of unbalanced rotor
passes through the centre of the working camera masses (Fig. 3). The exciter axle
and attaching chamber spring points are in the same plane (β ≈ 0). Thus, carrying
body performs only transitional motion in plane x0y.
In this case, according to (9), we have the following expression of vibrational mo-
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ment.

V(1)(ω) = −
(mεω)2

M
[
nx

B2x
+
ny

B2y
]. (11)

In particular, when cx ≈ cy, βx ≈ βy, we have.

V(1)(ω) = −2
(mεω)2

M

nx

(1− λ2x)
2+ 4n2x

. (12)

This formula differs from that presented in work (4) only by coefficient 2. Hence, the
value of vibrational moment in the case of plane oscillations of symmetric system is
two times as much as at rectilinear ones.

4 Second approximation. Semislow oscillations of

exciter rotor.

For further analysis of rotor motion at passing through the resonance zone we shall
use methods offered for investigation of the simplest system in work [7].

We assume ϕ1 = ϕ
(2)

1 = ωt + ψ, x = x(1) + x(2), y = y(1) + y(2), ϕ = ϕ(1) + ϕ(2).
Then we come to the following system of equations for ψ and x(2), y(2), ϕ(2):

Iψ̈+ kψ̇ = mε{[ẍ(1) + ẍ(2) − (ϕ̈(1) + ϕ̈(2))h] sin(ωt+ ψ)+

+ (ÿ(1) + ÿ(2)) cos(ωt+ψ)} −mε〈(ẍ(1) − ϕ̈(1)h) sinωt+ ÿ(1) cosωt〉,
Mẍ(2)+βxẋ

(2) + cxx
(2) =

= mε[(ω̇+ ψ̈) sin(ωt+ψ) + (ω+ ψ̇)2 cos(ωt+ ψ) −ω2 cosωt],

Mÿ(2)+βyẏ
(2) + cyy

(2) =

= mε[(ω̇+ ψ̈) cos(ωt+ψ) + (ω+ ψ̇)2 sin(ωt+ψ) +ω2 sinωt],

Jϕ̈(2)+βϕϕ̇
(2) + cϕϕ

(2) =

= mεh[(ω̇+ ψ̈) sin(ωt+ ψ) + (ω+ ψ̇)2 cos(ωt+ψ) −ω2 cosωt].

(13)

For the solution of system (13) we shall use the method of direct separation of
motions assuming that

ψ = Ψ+ γ, x(2) = X+ δx, y
(2) = Y + δy, ϕ

(2) = Φ+ δϕ, (14)

where Ψ, X, Y,Φ are slow and γ, δx, δy, δϕ -fast 2π-periodic in fast time τ = ωt

components with average zero values.
Now let us come to slow and fast motions equations. In the bounds of the applied
method fast motions equations may be solved approximately, without committing
a serious error in slow motions equations. It is enough to reduce the problem af-
ter having obtained slow motions equations for variable Ψ in assumption that fast
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variable γ is small in comparison with Ψ and values x(2), y(2), ϕ(2) -are small in com-
parison with x(1), y(1), ϕ(1) [7]. Having substituted the first expression (14) into the
first equation of system (13) we shall come to the following equation for the slow
(to be more exact, semislow) component Ψ:

IΨ̈ + kΨ̇ = mε〈(ẍ(1) − hϕ(1)) sin(ωt+ Ψ) + ÿ(1) cos(ωt+ Ψ)−

−〈(ẍ(1) − hϕ̈(1)) sinωt+ ÿ(1) cosωt〉〉.
(15)

Having performed averaging in the right part (15) with account of expression (7)
and (8) we present the equation in the form obtained in [7] for the system with
rectilinear oscillations of carrying body

Ψ̈+ 2n1Ψ̇+ B sinΨ− P sin2
Ψ

2
= 0, (16)

here

2n1 = k/I, B = bx+ by+ bϕ, P
2 = ρ2x+ ρ2y+ ρ2ϕ,

bx =
(mεω2)2

2MI

p2x−ω2

(p2x−ω2)2+ 4n2xω
4
,ρ2x =

(mεω2)2

2MI

2nxω
2

(p2x−ω2)2+ 4n2xω
4
,

by =
(mεω2)2

2MI

p2y−ω2

(p2y−ω2)2+ 4n2yω
4
,ρ2y =

(mεω2)2

2MI

2nyω
2

(p2y−ω2)2+ 4n2yω
4
,

bϕ =
(mεω2)2h2

2JI

p2ϕ−ω2

(p2ϕ−ω2)2+ 4n2ϕω
4
,ρ2ϕ =

(mεω2)2h2

2JI

2nϕω
2

(p2ϕ−ω2)2+ 4n2ϕω
4
.

(17)

It should be noted that equation (16), as in [7], is an equation of semislow (or semi-
fast) oscillations of exciter rotor angular velocity with respect to uniform rotation
(equation of “internal pendulum” oscillations); in the case of consideration of small
oscillations, having linearized equation (16) we may present it in classical form

Ψ̈+ 2n1Ψ̇+ BΨ = 0.

At satisfaction of condition ω̇ << ω2 frequency of rotor rotational speed ω changes
slowly and value q =

√
| B | is frequency of small free oscillations of the linearized

model of internal pendulum (without account of the force of resistance).
Let nx ≈ ny, px ≈ py; then the expression for coefficicul B may be presented in the
form

B = bx(2+ zb
h2

ρ2
) (18)

where

zb =
p2ϕ−ω2

p2x−ω2
(p2x−ω2)2+ β2xω

2/M2

(p2ϕ−ω2)2+ β2ϕω
2/J2

.
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It should be noted that if px-is the small of natural frequency, zb ≤ 1. It follows from
the analysis of formulas (17), (18), that frequency q of semislow free oscillations of
rotor speed in case of relative proximity of all natural frequencies for the system
with plane motion of the working head is, approximately,

√
3 times higher that the

frequency qx for the system with one oscillatory degree of freedom. It is easy to
establish that the higher any of natural frequency is, the less its contribution to value
q is; acquires its maximal frequency q value in the case of equality of all natural
frequencies. Fig. 4. presents plots of variations of frequency q in preresonance zone
(px = 30sec−1, py = 30sec−1, pϕ = 44sec−1) for the systems with one, two and
three oscillatory degrees of freedom.
Fig. 5. presents plots of variations of frequency q in preresonance zone for the
systems with three oscillatory degrees of freedom for different values of viscous
resistance coefficients β = βx = βy/1, 1 = βϕ/0, 05.
Conclusions, made in work [7], about the validity of equation (16) for the system
with one oscillatory degree of freedom apply to the cases with two or three degrees
of freedom as well.
So, according to [7], it is necessary for the validity of equation (16) that frequency
q should be considerably lower than ω, that is, assumption, of relative rates of
variables Ψ and x(2), y(2), ϕ(2), changing should be of satisfied. Practically, the sat-
isfaction of inequality q/ω < 1/3 will be enough. Then, for the considered system
with two oscillatory degree of freedom, for example, it will be easy to come to the
condition of validity of equation (16) for any λ = ω/p in the form

2

9
ν(1+ ν) > η2,

where

ν =
nx

px
, η =

mε√
2MI

.

The last inequality in dimential form looks as follows

m2ε2

2MI
<
2

9

βx

Mpx
, (19)

It should be noted that this inequality differs from that obtained in [7] only by
numerical coefficient.
Let us go on with the analysis of equation (16). At B > 0 the solution Ψ = Ψ1 = 0,
corresponding to “lower” position of internal pendulum, is stable and at B < 0 the
solution Ψ = Ψ2 = π corresponding to “upper” position is stable.
Therefore, solution Ψ1 = 0 is stable in preresonance zone of variations of frequency
ω < pmin where pmin-is the smallest of values px, py, pϕ-and in postresonance zone
solution Ψ2 = 0 is stable. Therefore, as in the case of oscillatory system with
one degree of freedom, we may say that the internal pendulum turns over in the
postresonance zone of frequencies ω > pmax.
Sufficient distinction of the system under consideration is the fact that in intermedi-
ate zone pmin < ω < pmax pendulum may have time to turn over several times. In
other words, complicated behavior of the system may be expected in the mentioned
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zone. It is natural, that such effect may tace place in the system with any number
of oscillatory degrees of freedom.
The obtained results are corroborated by numerical experiment. Fig. 6. shows the
effect of the origin of semislow oscillations of exciter rotor angular velocity close by
resonance zone in the case of the rotor “sticking” in resonance zone for the systems
with one and two oscillatory degrees of freedom with parameters M = 39kg,m =

3.2kg, ε = 0.037m, l = 0.23m, I = 0.006kg ·m2, cx = cy = 45000N/m,βx = βy =

135kg/sec

According to the presented plots, the ratio of frequencies of semislow free oscillations
of exciter rotor speed for such oscillatory systems is roughly, 1.4 as it should be,
according to formula (17)
In Fig. 7. plots of semislow free oscillations of rotor speed in preresonance zone
of at different values of coefficient of viscous resistance β. According to the plots,
a tenfold increase of resistance along the coordind q leads to 1.4 fold decrease of
frequency.
Along with it, more pronounced increase of oscillations damping rate is observed.
It should be noted that fast oscillations of angular velocity of rotor rotation with
frequency 2ω are absent in the considered symmetrical system with two degrees of
freedom while they are well visible for the system with one degree of freedom (Fig.
6). It is easy to establish that corresponding oscillations for the last system are

determined by expression ψ̇ = m2ε2ω

4IM
√

(1−λ2x)
2+β2x/M

2ω2
cos 2ωt; the system with two

degrees (case nx = ny, px = py)-ψ̇ = 0.

5 Findings

The work deals with the problem of passing the resonance frequency zone at start
and run-out of vibrational machine with inertial exciter of oscillations. The case have
been studied when oscillatory part of the system is linear and is a plane-parallely
oscillating rigid body. As in the simplest case of the system with one oscillatory
degree of freedom, the problem is comparatively, simply solved, by application of
the method of direct separation of motions coupled with the method of successive
approximations.
Expression for the retarding vibrational moment which must be overcome by the
engine at passing through the resonance zone consists in the considered case with
three components, corresponding to each of three frequencys of free oscillations of
the body.
These components are of pronouncedly manifested resonance character. Accord-
ingly, the obtained expression for the square of the frequency of semislow oscillations
of the internal pendulum (rotor “swinging”) also consists of tree components.
As in the simples system, this pendulum as if turns over at passing through reso-
nance frequency: its “lover” position is stable in postresonance zone. In the interval
between the smallest and the greatest resonance frequencies stable positions may
alternate. A complicated behavior of the system may be expected in this interval.
Absence of fast oscillations of rotor with doubled frequency of rotation in the case of
symmetry of the oscillatory part of the system is a peculiar feature of the considered
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system.
The carried out analytical investigation showed good conformity to the results of
numerical modeling.
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Abstract

In this work we are investigated numerically the model of TiN coating
modification during Al and B ion bombardment. The phase and chemical
composition of coating in the arbitrary moment of time and the end of treat-
ment is investigation results by the change of technology parameters. We
showed that the diffusion and thermal stresses are segregated obviously only
in the separated particular cases, based on idea of generalized plane stress. In
the simple case the task is reduced to that on the stress state of a plate with
properties varying with thickness. For the first approximation we used the
known problems of thermoelasticity, including the existing analytical solutions
for the estimation of thermal stresses in the material in different particular
cases. There is qualitative agreement for the numerical investigation results
of the model with experimental date.

1 Introduction

Coatings based on titanium nitride TiN have been widely used in practice for the
purpose of increasing the wear resistance of cutting tools. However, more detailed
investigations of the properties of these coatings have revealed a number of disad-
vantages that have limited the prospects of their use in industry. In particular,
TiN-based coatings exhibit a low oxidation resistance.

The use of high-energy ion beam bombardment makes it possible to synthesize
coatings with a structure and phase composition varying in depth, i.e. the so-called
gradient coatings [1-3].

Experimental investigations of the structure of the coating subjected to ion beam
treatment cannot provide detailed information that is necessary for revealing the
processes responsible for the formation of a particular structure. In this case, addi-
tional information can be obtained from the mathematical simulation. Furthermore,
the appropriate simulation of the technological process is necessary for the optimiza-
tion of the technological procedures and for the proper choice of their parameters.
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Figure 1: Conventional scheme of coating modification by a combined ion beam.

2 Mathematical formulation of the problem

Let us assume that a titanium nitride (TiN) coating is deposited in some way or
another on a sample of α iron (Fig. 1). Then, the sample is treated with a beam of
Al+ and B+ ions. The ion beam treatment leads to the implantation of ions into the
surface layer of the coating followed by its heating. The substrate is also heated as a
result of heat conduction. A more intensive heat removal can be achieved when the
substrate contacts a material with high thermal conductivity, which is not always
the case. Additional heat losses occur through radiation from the surface. The ion
beam treatment is accompanied by the redistribution of elements and the formation
of different compounds and phases in the surface layer of the coating.
If heating surface is homogeneous, lateral surfaces are heat-insulated and the sample
has sufficiently large thickness then the heat conduction and diffusion problems can
be considered as one-dimensional. Due to smallness of the coating and the substrate
(L1 and L2) in comparison with heat penetration width which can be formed in the
sample during the observation period the model is simplified and instead of the
heat conduction equation we get the heat-balance equation. Full mathematical
formulation of the problem is described in [4].

The problem is solved numerically with the use of the special algorithm described
in [5]. According to this algorithm, the heat conduction and the diffusion problems
are solved using different but matched difference schemes. Since the temperature
distribution over the coordinate is ignored in the model under consideration, the
algorithm is reduced to the matching of the time steps in the diffusion and heat sub-
problems according to the characteristic rates of the heat conduction and diffusion
processes. The system of kinetic equations is solved independently by the Runge-
Kutta method with the automatic choice of the step at each step of solving the heat
problem.

3 Analysis of numerical results

The time dependencies of the average temperature of the sample for varying irra-
diation modes are plotted in Fig.2. It is evident that the higher the irradiation
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Figure 2: Time dependencies of the sample temperature at different irradiation doses
1. −D = 1017 ions/cm2, 2.−D = 3.25 · 1017 ions/cm2, 3. −D = 4 · 1017 ions/cm2,
4.−D = 6 · 1017 ions/cm2.

dose, the higher the temperature. At the irradiation dose D = 1017 ions/cm2, the
temperature doesn’t exceed 30-40oC, which is in agreement with the experimental
data.

Each calculation provides complete information on the dynamics of the distribution
of the molar concentration of the ”unbound” elements and chemical compounds, as
well as the distribution of atomic concentrations of the Ti, Al, B, and N elements
at an arbitrary instant of time and toward the end of the treatment process.

Numerical results and the experimental data at irradiation dose D = 1017 ions/cm2

are presented in Table 1. It is seen, that agreement of the results is rather satisfac-
tory. Numerical concentration values do not agree with the experimental data as far
as parameters of the model have been assessed with a certain error. For instance,
the diffusion coefficients used in our calculations are most likely underestimated and
do not correspond to the diffusion coefficients Dk in the solid solution. In the real
experiment, the treatment depth increases with an increase in the irradiation dose.
This can be explained by acceleration of diffusion, for example, due to the activation
of the elements in the surface layer [6, 7], which is ignored in the model.

Table 1. Comparison of the calculation data of relative atomic concentrations of
pure elements Ti, N, Al, B with the experimental data [4] at irradiation dose

D = 1017 ions/cm2

elements Ti N Al B
Cat,%, experiment 50 38 9 5
Cat,%, theory 56 28 9.2 6.8

It should be noted that in the result of irradiation by an ion beam at D = 4 · 1017
ions/cm2 the content of the TiAlBN new phase amounts to 37% what also agrees
with the experimental data [4].
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4 Evaluation of stresses and deformations in the

diffusion zone

Assuming that deformations are small, we have used known models of thermo- and
masselasticity to evaluate stresses and deformations [8, 9].
In the general case a stress problem includes equilibrium equations, Duamel-
Neumann relations and compatibility equations incurring from Cauchy equations
[10, 11].
We will examine the particular case of a slab with thickness graded properties.
The slab is completely free from volume surface forces. The temperature and the
concentrations are varying with the thickness only, i.e. T = T(z).
Formulation of the problem is described in [12].
Finally, we have different relations for different layers.
Thus, stresses in the coating can be evaluated by the following formula:

σxx,1 = σyy,1 =
E1

1− ν1

[
−αT,1(T̃ − T0)−

−

n∑

k=1

αk(yk− yk0) + C1+ C2z
]
, 0 ≤ z ≤ L1.

(1)

The first term in (1) is a function of t only, the rest of the terms are functions of
t, z. This formula is for stresses in the diffusion zone.
In two other layers we have

σxx,2 = σyy,2 =
E2

1− ν2
(−αT,2(T̃ − T0) + C1+ C2z), L1 ≤ z ≤ L1+ L2, (2)

σxx,3 = σyy,3 =
E3

1− ν3
(−αT,3(T̃−T0)+C1+C2z), L1+L2 ≤ z ≤ L1+L2+L3. (3)

Taking into account the above we can write

σ̃xx,2 = σ̃yy,2 =
E2

1− ν2

[
−αT,2(T̃ − T0) +

1

L2

∫L1+L2

L1

(C1+ C2z)dz
]

=

=
E2

1− ν2

[
−αT,2(T̃ − T0) + C1+

C2

L2

((L1+ L2)
2

2
−
L21
2

)]
,

(4)

σ̃xx,3 = σ̃yy,3 =
E3

1− ν3
(−αT,3(T̃ − T0) +

1

L3

∫L1+L2+L3

L1+L2

(C1+ C2z)dz) =

=
E2

1− ν3

[
−αT,3(T̃ − T0) + C1+

C2

L3

((L1+ L2+ L3)
2

2
−

(L1+ L2)
2

2

)]
.

(5)

These expressions describe the macroscopic stresses which incorporate the contribu-
tion of the diffusion zone via C1 and C2.
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In a similar manner we proceed with evaluation of deformations in layers 1–3:

εxx,1 = εyy,1 = C1+ C2z, (6)

ε̃xx,2 = ε̃yy,2 = C1+
C2

L2

[(L1+ L2)
2

2
−
L21
2

]
,

ε̃xx,3 = ε̃yy,3 = C1+
C2

L3

[(L1+ L2+ L3)
2

2
−

(L1+ L2)
2

2

]
.

and

εzz,1 =
K1
(
3αT,1(T̃ − T0) −

∑n
k=1αk(yk− yk0)

)
− 2λ1εxx,1

2µ1+ λ1

ε̃zz,2 =
K2
(
3αT,2(T̃ − T0)

)
− 2λ2ε̃xx,2

2µ2+ λ2
ε̃zz,3 =

K3
(
3αT,3(T̃ − T0)

)
− 2λ3ε̃xx,3

2µ3+ λ3

For numerical evaluation of stresses in the diffusion zone and the macroscopic stresses
we need to know mechanical properties Ej, νj, j = 1.2.3 and coefficients αj,k and αT.
Obviously, E1, νj change with change in composition, but dependencies E1(yk), as
a rule, are undetermined. Hence, we will limit ourselves to certain effective values
(as it was taken into account in deriving of formulas). Let us assume

E1 = 65 · 103, E2 = 195 · 103, E3 = 205 · 103N/cm2;ν1 = 0.3, ν2 = 0.28, ν3 = 0.3

We will use the approximate approach described in [13, 14] for evaluation of αj,k.
According to this approach the most widely used evaluation of a solute lattice con-
traction coefficient has the next form

αk =
1

3

ω
∑

(i)ωi
(7)

Here ω is the atomic (molecular, molar) volume of the component with the number
k in its phase.
Evaluation of the coefficients αj,k by the formula (7) gives

αTi ≈ 0.083, αN≈ 0.136, αAl ≈ 0.078, αB ≈ 0.036.

For given experimental conditions the numerical stress analysis showed that an in-
crease in the irradiation dose leads to an increase in the stresses in the coating. The
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Figure 3: Spatial distributions of the stresses in the coating for a varying the irra-
diation dose for the initial temperature of the surface T0 = 300K at instants of time
t : 1.−0.25; 2.−1.25; 3.−6; 4.−10 s. a). qm3 = 2·10−10, qm4 = 1.5·10−10mol/(cm2s);
b). qm3 = 4 · 10−10, qm4 = 3 · 10−10 mol/(cm2s)); c). qm3 = 8 · 10−10, qm4 = 6 · 10−10

mol/(cm2s)

Figure 4: Spatial distribution of the stresses in the coating for a varying the irra-
diation dose for the initial temperature of the surface T0 = 773 K at instants of
time t : 1. − 0.25; 2.− 1.25; 3.− 6; 4. − 10 s. a). qm3 = 2 · 10−10, qm4 = 1.5 · 10−10

mol/(cm2s); b). qm3 = 4 · 10−10, qm4 = 3 · 10−10 mol/(cm2s).
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maxima in the stress distributions are observed in the region corresponding to the
maxima of implanted ions (fig. 3, a-c).

For high irradiation doses the maximum in the stress distribution diffuses (fig. 3,c).
This is connected with redistribution of the elements as a result of the diffusion.

For an increasing in the initial temperature up to T0 = 773 K and fixed flow qm3, qm4
a qualitative change in behavior of stresses connected with the preceding activation
of the diffusion and chemical transformations is observed (fig. 4).

Complete calculation corresponding to the real time of treatment (1 hour) shows
that the values of stresses in the diffusion zone are very high (about 6000 MPa) and
it correlates with the experimental data [15]. Numerical calculations of stresses can
disagree with stresses observed in reality as far as there is a number of effects (such
as change of thermophysical and mechanical properties) which have not been taken
into account in the model under consideration.

5 Conclusion

We have examined the problem of modification of nitride coating by a combined ion
beam accounting for formation of chemical compositions and phases with ions.

It was revealed that values of the diffusion coefficients corresponding to the reference
data which was taken in our calculations are understated and do not correspond to
values of these coefficients under conditions of high-energy treatment.

We have proposed a method of evaluation of stresses which appear in the diffusion
zone during the process of material treatment by ion beams. Our evaluations take
into account a contribution of not only diffusion but also chemical processes to
irreversible deformations.

Theoretical results agree sufficiently with the experimental data.
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Abstract

A specialised hybrid controller is applied for the control of motorised space
tether spin-up coupled with an axial oscillation phenomenon. A six degree of
freedom dynamic model of a motorised momentum exchange tether is used as
the basis for interplanetary payload exchange in the context of control. The
tether comprises a symmetrical double payload configuration, with an out-
rigger counter inertia and massive central facility. It is shown that including
axial elasticity permits an enhanced level of performance prediction accuracy
and a useful departure from the usual rigid body representations, particularly
for accurate payload positioning at strategic points. A simulation with a given
initial condition data has been devised in a connecting programme between
control code written in MATLAB and dynamics simulation code constructed
within MATHEMATICA. It is shown that there is an enhanced level of spin-
up control for the six degree of freedom motorised momentum exchange tether
system using the specialised hybrid controller.

1 Introduction

The concept of the motorised momentum exchange tether (MMET) was first pro-
posed by Cartmell [1], and its modelling and conceptual design were developed
further, in particular modelling of the MMET as a rigid body by Ziegler and Cart-
mell [2], and modelling of the MMET with axial elasticity by Chen and Cartmell
[3]. A conceptual schematic of the MMET system with axial elasticity included is
shown in Figure 1. The system is composed of the following parts: a pair of braided
propulsion tether tube sub-spans, a corresponding pair of braided outrigger tether
tube sub-spans, the launcher motor mass within the rotor, and the launcher motor
mass within stator, the outrigger masses, and the two payload masses. The MMET
is excited by means of a motor, and the model uses angular generalised co-ordinates
to represent spin and tilt, together with an angular co-ordinate for circular orbital
motion. Another angular co-ordinate defines backspin of the propulsion motor’s
stator components. The payload masses are fitted to each end of the tether sub-
spans, and the system orbits a source of gravity in space, in this case, the Earth.
The use of a tether means that all constituent parts of the system have the same
angular velocity as the overall centre of mass (COM). As implied in Figures 1 and
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2, the symmetrical double-ended motorised spinning tether can be applied as an
orbital transfer system, in order to exploit momentum exchange for propelling and
transferring payloads in space.

Figure 1: Conceptual Schematic of the Motorised Momentum Exchange Tether with
Axial Elasticity

It has been well recognized that fuzzy logic control (FLC) is an effective and po-
tentially robust control method for various diverse applications The FLC rule-base
is generally based on practical human experience, however, the intrinsic linguis-
tic format expression required to construct the FLC rule base makes it difficult to
guarantee the stability and robustness of the control system [4].
Variable structure control (VSC) with sliding mode control was introduced in the
early 1950s by Emelyanov and subsequently published in the 1960s [5], and then
further developed by several other researchers [6][7]. Sliding mode control (SMC)
is recognised as a robust and efficient control method for complex, high order, non-
linear dynamical systems. The major advantage of sliding mode control is its low
sensitivity to a system’s parameter changes under various uncertainty conditions.
Another advantage is that it can decouple system motion into independent partial
components of lower dimension, which reduces the complexity of the system control
and feedback design. However, a major drawback of traditional SMC is a propensity
for chattering, which is generally disadvantageous within control systems.
In recent years, a lot of literature has been generated in the area of fuzzy sliding
mode control (FSMC), and this has also covered the chattering phenomenon. The
involvement of FLC in the design of a FSMC based controller can be harnessed to
help to avoid the chattering problem. The smooth control feature of fuzzy logic
can be helpful in overcoming the disadvantages of chattering. This is why it can be
useful to merge FLC with SMC to create the FSMC hybrid [8][9][10][11][12], and the
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Figure 2: Modelling of the Motorised Momentum Exchange Tether with Axial Elas-
ticity

hybrid fuzzy sliding mode control is defined as FαSMC [13], with a skyhook surface
(SkyhookSMC) is applied here to control the tether sub-span length for spin-up
control of the MMET system.

2 Six degree of freedom MMET Model

A six degree of freedom non-planar tether model, which includes an axial elasticity
coordinate and a solid rolling coordinate, is proposed as an interim model of moder-
ate accuracy for the MMET 6-DOF system, as shown in Figure 2. This discretised
MMET system comprises a symmetrical and cylindrical double payload configura-
tion, a cylindrical motor facility, and two axially flexible and essentially tubular
tether sub-spans. In the discretised non-planar tether model, environmental effects
such as solar radiation, residual aerodynamic drag in low Earth orbit and electro-
dynamic forces, that may also influence the modelling, are reasonally assumed to be
negligible in this context. The motor consists of a central rotor, which is attached to
the propulsion tethers, and a stator which locates the rotor by means of a suitable
bearing. The power supplies, control systems, and communication equipment are
assumed to be fitted within the surrounding stator assembly in a practical installa-
tion. The stator also provides the necessary reaction that is required for the rotor
to spin-up in a friction free environment. The motor torque acts about the motor
drive axis, and it is assumed here that the motor drive axis will stay normal to the
spin plane of the propulsive tethers and payloads.

The elasticity of the tether system is considered to be distributed symmetrically
along each tether sub-span. The tether and the motor are connected by discrete
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Figure 3: Modelling of Axial Elasticity for Motorised Momentum Exchange Tether
[3]

spring-damper groups as shown in Figure 3. When the tether moves out of the
orbital plane, the motor drive axis remains orthogonal to the spin plane, meanwhile,
the motor torque will act about the principal axis through its centre of mass. The
length of the discretised MMET from payload to COM, where the time variant length
L (t) of the tether is the sum of L0 and Lx (t), the static length and the variable elastic
length of the discretised tether, respectively. There are six generalised coordinates
in this model, in the form of four rotational coordinates (ψ, θ, α, γ) and two
translational coordinates (Lx (t), R). Coordinate ψ defines the spin-up performance
of the MMET system and is the ‘in-plane pitch angle’. This denotes the angle from
the x0 axis in Figure 2 to the projection of the tether onto the orbit plane. θ is the
circular orbit angular position, effectively the true anomaly. α is an out-of-plane
angle, from the projection of the tether onto the orbit plane to the tether, and is
always within a plane normal to the orbit plane. γ defines rolling, and lies between
the torque-plane and the tether-spin-plane. R is the distance from the Earth to the
MMET COM, and Lx is the axial elastic length. Lagrange’s equations are used to
obtain the dynamical equations of motion based on the six generalised coordinates
[3].

3 Hybrid Control Strategy

To make the necessary enhancement required to obtain the FαSMC method, a hy-
brid control law is introduced. This combines the fuzzy logic control with sliding
mode control in which a sliding hyperplane surface is generated by use of a skyhook
damping law. Meanwhile, because the chattering phenomenon is an acknowledged
drawback of sliding mode control and is usually caused by unmodelled system dy-
namics, a special boundary layer is proposed around the sliding surface is also taken
to solve the chattering problem [14].

A flow diagram for the FαSMC, and applying the SkyhookSMC approach, is given in
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Figure 4: FαSMC flow diagram

Figure 4. The hybrid control effects of the FLC and the SkyhookSMC are combined
by equation (1). In equation (1), α is a switching factor which balances the weight of
the fuzzy logic control to that of the skyhook surface sliding mode control. Clearly,
α = 0 represents for SkyhookSMC, and α = 1 represents for FLC, α ∈ [0,1].

uFαSMC|skyhook = αuFLC+ (1− α)uSMC|skyhook (1)

3.1 Fuzzy Logic Controller Design

Fuzzy control is a practical alternative for a variety of challenging control applica-
tions since it provides a convenient method for constructing nonlinear controllers
via the use of heuristic information. This may come from an operator that acts as
a human-in-the-loop controller and from whom experiential data is obtained. The
structure of the FLC for the the MMET system is shown in Figure 5. An ‘If-Then’
rule-base is then applied to describe the expert knowledge. The FLC rule-base is
characterised by a set of linguistic description rules based on conceptual expertise
which arises from typical human situational experience. Table 2 is the 2-in-1-out
FLC rule-base table which can drive the FLC inference mechanism, and this came
from previous experience gained from examining dynamic simulations for tether
length changes during angular velocity control. Briefly, the main linguistic control
rules are: (1) when the angular velocity decreases, the length tether increases; Con-
versely, when the angular velocity increases, the tether length decreases. (2) When
the angular acceleration increases, the tether length increases can reduce the error
between the velocity and the reference velocity; otherwise, when the angular accel-
eration decreases, the tether length decreases as well. A membership function (MF)
is a curve that defines how each point in the input space is mapped to a member-
ship value between 0 and 1. The MF for the MMET 6-DOF system is a Gaussian
combination membership function. The inputs e and ec are interpreted from this
fuzzy set, and the appropriate degree of membership is obtained [13].
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Figure 5: FLC flow diagram

Table 2: 2-in-1-out FLC rule table for MMET 6-DOF

U EC

NB NM NS NZS ZE PZS PS PM PL
NB NB NM NS NZS PZS PZS PS PM PB
NM NM NM NZS NZS PZS PZS PZS PM PM
NS NS NS NZS NZS PZS PZS PZS PS PS
NZS NZS NZS NZS NZS ZE PZS PZS PZS PZS

E ZE PZS PZS PZS ZE ZE ZE PZS PZS PZS
PZS PZS PZS PZS PZS ZE NZS NZS NZS NZS
PS PS PS PZS PZS PZS NZS NZS NS NS
PM PM PM PS PZS PZS NZS NS NM NM
PB PB PM PS PZS PZS NZS NS NM NB

3.2 Sliding Mode Control with Skyhook Surface Design

The objective of the SkyhookSMC controller is to consider the nonlinear tether
system as the controlled plant, and therefore defined by the general state-space in
equation (2):

ẋ = f (x, u, t) (2)

where x ∈ Rn is the state vector, n is the order of the nonlinear system, and u ∈
Rm is the input vector, m is the number of inputs. s(e, t) is the sliding surface of
the hyperplane, which is given in equation (3) and shown in Figure 6, where λ is a
positive constant that defines the slope of the sliding surface.

s (e, t) =

(
d

dt
+ λ

)n−1

e (3)

where λ is a positive constant that defines the slope of the sliding surface. The
MMET system is a second-order system, so by letting n = 2, one obtains a second-
order system in which s defines the position error (e) and velocity error (ė) in
equation (4).
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Figure 6: Sliding surface

s = ė+ λe (4)

From equations (3) and (4), the second-order tracking problem is now replaced by a
first-order stabilization problem in which the scalar s is kept at zero by means of a
governing condition. This is obtained from use of the Lyapunov stability theorem,
given in equation (5), and it states that the origin is a globally asymptotically stable
equilibrium point for the control system. Equation (5) is positive definite and its
time derivative is given in inequality (6), to satisfy the negative definite condition,
that the system should satisfy the inequality in (6).

V (s) =
1

2
s2 (5)

V̇ (s) = sṡ < 0 (6)

Skyhook control strategy was introduced in 1974 by Karnopp et al [15]. In Figure
7 the basic idea is to link a vehicle body’s sprung mass to the the ‘stationary sky’
by a controllable ‘skyhook’ damper, which can then reduce vertical vibrations due
to all kinds of road disturbance. Skyhook control can reduce the resonant peak of
the sprung mass quite significantly and thus achieves a good ride quality in the car
problem. By borrowing this idea to reduce the sliding chattering phenomenon, in
Figure 8, a soft switching control law is introduced for the major sliding surface
switching activity in equation (7), in order to reduce the chattering and to achieve
good switch quality for the FαSMC combined with SkyhookSMC.

uSMC|skyhook =

{
−c0 tanh

(s
δ

)
sṡ > 0

0 sṡ ≤ 0
(7)
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Figure 7: Ideal skyhook damper

Figure 8: Sliding skyhook surface

where c0 is an assumed positive damping ratio for the switching control law. This
law needs to be chosen in such a way that the existence and the reachability of the
sliding-mode are both guaranteed. Noting that δ is an asssumed positive constant
which defines the thickness of the sliding mode boundary layer [14].

4 Simulation and Conclusion

Numerical results are obtained using a specially devised co-simulation toolkit of
MATLAB and MATHEMATICA functions in an integrated programme to provide
a new toolbox, known henceforth here as SMATLINK. This integrates the control
in MATLAB/SIMULINK and the MMET modelling in MATHEMATICA. The
velocity and acceleration of ψ are selected as error (e) and change-in-error (ec)
feedback signals for the the MMET system’s spin-up control. Unless stated otherwise
all the results are generated using the following parameters for the MMET 6-DOF
system and controller in Table 3.
It is easy to switch the controller between the SkyhookSMC and the FLC modes
when a proper value of α is selected (0 < α < 1), and the hybrid fuzzy sliding
mode controller is generated combining FLC with a soft continuous switching Sky-
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Table 3: MMET 6-DOF system parameters
N number of mass points 20

µ gravitational constant 3.9877848× 1014 m3s−2
MP propulsion tether payload mass 1000 Kg

MM mass of motor facility 5000 Kg

rTinner radius of tether inner tube 0.08 m

rTouter radius of tether outer tube 0.1 m

rM radius of motor facility 0.5 m

rP radius of payload 0.5 m

rper periapsis distance 6.890× 106 m
rapo apoapsis distance 1.0335× 107 m
L0 static length tether sub-span 50000 m

A undeformed tether tube cross-sectional area 1.13097× 10−2 m2

ρ tether density 970 kg/m3

e orbit eccentricity 0.2

ψ0 initial angular 0.0 rad

ψ̇0 initial angular velocity 0.0 rad/s

τ motor torque 2.5× 106 Nm
ci tether sub-span axial damping coefficient 2× 106 Ns/m
ki tether sub-span axial stiffness 2× 109 N/m
Ke FLC scaling gains for e 1

Kec FLC scaling gains for ec 1

Ku FLC scaling gains for u 21000

α FαSMC switching factor {0, 0.5, 1}

c0 SkyhookSMC damping coefficient −3000

δ thickness of the sliding mode boundary layer 0.8

λ slope of the sliding surface 0.0014

hookSMC law based on equation (7). All the control methods have an effect on the
spin-up of the MMET 6-DOF system from the given initial conditions. The FαSMC
hybrid fuzzy sliding mode control system parameters require a judicious choice of
the FLC scaling gains of {Ke, Kec} for fuzzification, Ku is the defuzzification gain
factor which is used to map the control force to the range that actuators can generate
practically. Similarly, the SkyhookSMC damping coefficient c0 is required to expand
the normalised controller output force into a practical range. The thickness of the
sliding mode boundary layer is given by δ, and the slope of the sliding surface λ.
Both data came from the previous MMET 6-DOF system spin-up simulation results
without control, which are given in Table 3. In this simulation the FαSMC is used,
with α = 0.5 to balance the control weight between the FLC and the SkyhookSMC
modes.

Different values of α = {0.0, 0.5, 1.0} can be used for {SkyhookSMC, FαSMC,
FLC} control, respectively, for the MMET 6-DOF system. Figure 9 gives the time
responses for the spin-up velocity ψ̇, with different values of α, for the spin-up.
These results show that all the control methods have an effect on the spin-up of the
MMET system from the given initial conditions.
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Figure 9: Spin-up velocity with different values of α
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Figure 10: MMET axial elastic behaviour

Figure 10 gives the axial elastic behaviour of the MMET in the simulation with the
appearance of stable axial oscillation.

The phase plane plots with different values of α are shown in Figure 11 as limit cycles
whose behaviour for the spin-up coordinate ψ clearly corroborates interpretations
of steady-state.
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Figure 11: MMET spin-up phase plane plots with different values of α
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Figure 12: MMET spin-up errors phase plane plots with different values of α
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Figure 13: Lyapunov function for spin-up control methods with different α
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Figure 14: Sliding surface switching plot
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In Figure 12, the MMET spin-up error phase plane plots with different α are given,
and these shows that all the control methods offer limit cycles. The FLC caused
generally faster response behaviour than the two other control methods for the spin-
up coordinate ψ.

Figures 13 and 14 show the plots for the Lyapunov function and its derivative and
this shows the effect of FαSMC control for different values of α. SkyhookSMC has
higher energy activities than the two other control methods, and FLC has the lower
associated energy around V ′ = 0, with the FαSMC’s energy in the middle of the
three. FαSMC can balance the control effects of FLC and SkyhookSMC for stable
MMET 6-DOF spin-up outputs and associated energy activities.

5 Future work

The work in this paper has shown that by including the switching factor α, the
FαSMC hybrid controller can switch and combine control from FLC to the Sky-
hookSMC rapidly, according to design requirements. This can balance the weight
of the FLC and SkyhookSMC to override spin-up enhancement for the MMET 6-
DOF system. The parameter settings for the FαSMC need further consideration
because the current simulation results come from manual parameter tests. In order
to enhance the parameter selection process and validation, some computational in-
telligence (CI) optimisation tools, such as Genetic Algorithms (GA) and Artificial
Neural Networks (ANN), could be applied for parameter selection for the FLC, SMC
and FαSMC. This would give some useful reference sets for parameter settings. A
GA has already been used as an optimisation tool for parameter selection of the
MMET system when applied to payload transfer from low Earth orbit (LEO) to
geostationary Earth orbit (GEO), and the GA’s optimisation ability has, in that
case, been reasonably demonstrated [16].
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Abstract

Present paper is devoted to the construction of the model of formation
and evolution of nanorolls from compositions with layered structures and to
experimental justification of the model. The dynamics of formation and diffu-
sion growth of nanorolls in hydro-thermal medium is considered. The source
of nanorolls is a system of nanoplates distributed in the fluid. Intercalation
lead to separation of the upper layer which transforms to nanoroll. This trans-
formation takes very small time in comparison with the time of the diffusion
growth.

1 Introduction

Nanorolls are a wide class of nanotubes of different morphology. Its form as a
nanoheterostructures [1, 2] or by rolling layers of nanocrystals [7]. Models of
nanorolls formation are suggested in [6, 7, 8]. Experimental justification is also
made. The models give values of rolling speed, but it is not unique parameter which
determines form and size of nanotube [10, 5, 3]. The structure and evolution of
nanoplates- the predecessors of nanorolls play an important role. There is also a
process of morphological transformation of nanotubes due to recrystallization [12].
For different applications it is important to know not only the the morphology and
composition of nanotubes, but also the distribution of nanoparticles in respect to
length and diameter. Up to now there is no investigation of influence of synthesis
parameters on this distribution.

2 Model description

Let fp (Lp, H, t) and fr (Lr, S, t) be the distribution density of plates and rolls, Lp, H
are the diameter and width of the plate, Lr, S are the length and the area of the
cross-section of the roll. The growth (solution) of the plates and rolls is determined
by the mass transport at the surface. The conservation of mass takes place for
densities: ρs(t) + ρp(t) + ρr(t) = ρs(0) + ρp(0). Here

ρp = ρm

∫
fp(Lp, H, t)L

2
pdLpHdH,
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ρr = ρm

∫
fr(Lr, S, t)LrdLpSdS,

ρm is the density of matter of plates and rolls, ρs -density of solute matter.The
initial condition is ρr(0) = 0.

The speed of variation of the length and width of the plate is determined by the
gradient of the density of the solute matter, which is related with the boundary
value of the normal derivative of the corresponding solution of external Dirichlet
problem around any nanoparticle

∆ρ = 0,

ρ|∂Ω = ρe,

ρ|r→∞ = ρs,

We obtain the numerical solution of this problem. Using determined boundary value
of the normal derivative of the density one can find the density of the mass flux:

j = −D
∂ρ

∂ν
∼ ρe− ρs,

where D is the diffusion coefficient for the solute matter, ρe is the equilibrium
concentration of the solute matter at the surface of the solid phase.
This question is analogous to the problem of construction of Dirichlet-to-Neuman
map. The normal velocity of particle surface growth V is proportional to the mass
flux:

V = −
1

ρm
j.

In this work we assume the nanoparticles can vary size but keep the shape. We
describe the rate of particles size changing using the average normal velocity over
the corresponding part of the surface. So VLp , VH, VLr , VS are the speeds of the
corresponding parameters variation due to the diffusion. For example, we use the
normal velocity averaged over the edge of the nanotube for calculation of the velocity
of nanotube length changing VLr . We use the normal velocity averaged over lateral
surface of the nanotube for calculation of the velocity of nanotube surface changing
VS = 2πRV (R is the external radius of the nanotube). We assume that ρe is a
function of the surface density of energy of the stressed layer:

ρe = ρ0e
(
1+ γe2

)
,

where ρ0e is the corresponding concentration for unstressed layer, γ is some constant.
Density of elastic energy for nanoplates ep is greater than the corresponding one for
nanotubes. Decreasing of mechanic stress and, correspondingly, the elastic energy is
the reason for rolling of flat layers and forming of nanorolls. Note that we use a basic
assumption that the mass transfer from liquid to solid state is due to the diffusion
only (we don’t take into account the kinetic effects of solution and crystallization at
the surface).
The energy density for preliminary stressed double layer of width δ′ and curvature
radius r can be written in the following form:

er =
Eδ′

3

24

(
1

r
−
1

R0

)2
(1)
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Figure 1: Distribution density for nanoplates (a)and nanorolls (b) at the moments
of the dimensionless time νt = 0.1, 1, 2

where R0 is the equilibrium curvature radius of the layer, E is the Young constant.
The energy density for nanoplate is obtained from (1) when r → ∞ :

ep =
Eδ′

3

24R20
. (2)

At the surface of the nanoroll (r = R ) the energy density is

eR =
Eδ′

3

24

(
1

R
−
1

R0

)2
≈ Eδ′

3

h2

192R40
. (3)

The mean value of the energy density for the cross section of the nanoroll is

e =
1

h

∫R

R−h

e(r)dr ≈ Eδ′
3

h2

288R40
. (4)

One can see by comparing of (2), (3) and (4) that

eR ∼ e≪ ep

The evolution of the distribution density for nanoplates (nanorolls) is determined
by the kinetic equations:

∂fp

∂t
+

∂

∂Lp

(
VLpfp

)
+
∂

∂H
(VHfp) = ν [fp (Lp, H+ a, t) − fp (Lp, H, t)] ,

∂fr

∂t
+

∂

∂Lr
(VLrfr) +

∂

∂S
(VSfr) = νδ (S− aLr)

∫∞

0

fp (Lr, H, t)dH,
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where δ(x) is the Dirac δ-function, a is the width of the double layer, ν is the
frequency of the separation of double layers from a plate.

The terms in the right hand sides of the equations describe the separation of the
external layers from plates and the appearance of new rolls (by rolling of these
separated double layers).

Computations show that after some moment the nanoplates disappear. As for rolls,
they transform to rolls of radius close to the equilibrium one (R0) [4]. On the Fig.1 we
can see the distribution density for nanoplates (a) and nanorolls (b) at the moments
of the dimensionless time νt = 0.1, 1, 2.
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Abstract

The lifetime of duplex stainless steel parts experiencing cyclic fatigue is
directly influenced by the residual stresses present in the ferrite and austenite
phases. The motivation for this work was to analyze the behaviour of the
residual stresses fields introduced by shot peening treatment in both phases,
in the sample surface as in the subsurface layers, in low fatigue cycles, using
the X-rays diffraction technique. The results shows that the compressive
residual stresses introduced by the shot peening treatment in both phases
improved fatigue life of the material. However, the cyclical loads produce
partial or total relief in these residual stresses fields. It was verified that the
shot peening process induced the formation of microcracks only in the ferrite
phase. The largest variations in the total compressive residual stresses fields
also occurred in this phase. The samples surfaces were analyzed by scanning
electron microscopy (SEM).
Key words: residual stresses, duplex steel, fatigue, X-ray diffraction technique.

1 Introduction

Duplex stainless steels present an austenite-ferrite biphasic microstructure, the exact
amount of each phase being a function of the chemical composition and the thermal
treatment employed. The main reason to use duplex stainless steels is their high
resistance to oxidation, corrosion and corrosion under stress, associated to good
mechanical properties. Due to this original combination of properties they have
been widely used in the chemical and petrochemical industries, paper industry and
power generation [1].

Many works have been published approaching duplex stainless steel mechanical and
physical properties, such as yield and tensile strength and corrosion resistance [2].
However, the behaviour of residual stresses present in the different phases of these
steels, under fatigue cycles, has not yet been well established.
Fatigue resistance of metallic alloys is highly dependant on the residual stress state
induced in the surface layers while compressive residual stresses have proved to be
beneficial to fatigue life and stress corrosion besides inhibiting crack nucleation and
propagation.
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An excellent method to introduce residual stresses aiming to improve the fatigue life
of materials is the shot peening process. However, the introduced residual stresses
may be reduced or wholly relieved applying mechanical or thermal loads, mostly
cyclic.

Residual stresses are self-balanced stresses present in materials or body at uniform
temperature conditions and in the absence of external load [3].

In multiphase and/or polycrystalline materials, residual stresses may be micro
stresses arisen due to elastic incompatibility among grains or phases and/or macro
stresses formed by differential plastic deformation, for example, surface and inside,
that suffer uneven deformation during cooling and are forced to adjust jointly [4,5].

It is well established that the presence of residual stresses may highly influence the
mechanical properties of the material and particularly, its properties under fatigue.
Therefore, evaluation of residual stresses is an important quality control method in
the manufacture of structures, pieces and components.

Several methods are available for residual stress measuring. Among them, X-ray
diffraction technique, a well established and reliable non-destructive method is one
of the most widely applied [1,6].

2 Materials and Experimental Techniques

In the present work, UNS S31803 duplex stainless steel manufactured according to
ASTM A240 standard was used. The microstructure of the plates, as show in figure
1, was composed of 49% austenite and 51% ferrite and the chemical composition
is shown in table 1. The shot peening treatment was performed at two Almen
intensities (A) of 0.25A and 0.39A, using metallic shot with diameter between 0.59
– 0.71 and 1.0 – 1.41mm respectively.

Figure 1: Biphasic microstructure of duplex stainless steel (magnified 500X with
attack).

Residual stresses were measured by X-ray diffraction technique by double exposure
method, using portable equipment.
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Table 4: Chemical composition of UNS S31803 stainless steel (weight %).
Fe C Ni Mo N Cr

Balance 0.020 5.44 2.49 0.16 22.30

Thin layers were removed by electrolytic polishing to study the residual stress state
variations through thickness, in order to evaluate the depth of the layer attained by
the shot peening treatment, and thickness of the removed layers was checked with
a digital comparator.

The influence of the shot peening treatment on the mechanical properties of duplex
stainless steel was verified through tensile tests conducted in an Instron machine with
10−3 s−1 deformation rate, in samples as received and after shot peening treatment
with Almen intensity of 0.39A. Test specimens were manufactured according ASTM
A370 standard, with 3.0mm thickness.

Fatigue tests were conducted in a PWO Carl Schenck AG alternate flexure testing
machine, with constant frequency cycles at 60Hz. The samples were analyzed after
polishing and at the two shot peening intensities (0.25A and 0.39A), based on S-N
curves, for each of these conditions, with load rate R = −1, at different stress levels
for low-cycle fatigue regime. The maximum load applied during fatigue tests was
supported by the middle of the sample.

Residual stresses were measured in low cycle fatigue, with 103 cycles, in the longi-
tudinal (L) and transversal (T) direction of the test specimen, as shown in figure
2. Residual stresses were measured on the surface and through the thickness. For
this end, several electrolytic polishing were carried on for each sample and the resid-
ual stresses were measured after each polishing on both steel phases (austenite and
ferrite) up to 0.45mm depth.

Figure 2: Test specimen used for fatigue tests.
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Scanning electron microscopy (SEM) was conducted on the transversal surfaces of
non-fractured samples at both shot peening intensities (0.39A and 0.25A) without
fatigue.

3 Results and Discussion

The results are presented in three steps. On the first step, the main objective was to
study the effect of the two different shot peening intensities on UNS S 31803 duplex
stainless steel mechanical properties, mainly fatigue resistance. On the second step,
the behaviour of compressive residual stresses was assessed after cyclic loading of 103

cycles in both steel phases, austenite and ferrite, in the longitudinal and transversal
directions. On the third step, the efficiency of shot peening process on the recovery
of fatigue life was assessed in correlation with crack initiation points, after shot
peening and after shot peening plus cyclic load up to 103 cycles.
Table 2 presents the values obtained for yield strength, tensile strength and percent-
age elongation in the samples as received and with 0.39A shot peening intensity.

Table 5: Mechanical properties of steel before and after shot peening.
Material condition σY

(MPa)
σT

(MPa)
ε

(%)
As received 565 757 35.3

Peened at 0.39A 650 784 21.3

Figure 3 shows that yield and tensile strength increase with shot peening treat-
ment while elongation decreases. This behaviour is due to sample surface hardening
caused by the treatment.

Figure 3: Stress vs deformation curve of samples as received and after 0.39 Almen
intensity shot peening.

Figure 4 presents the S x N curve obtained for the as received condition samples,
peened at 0.25A and 0.39A intensities samples.

The hot peening treatment increased fatigue life in low and middle cycle regime
in both shot peening conditions (0.39A and 0.25A). However, in high cycle regime,
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fatigue life of samples that received a lower shot peening intensity decreased in
relation to as received condition samples. This behaviour may be explained by the
fact that samples that received a lower shot peening intensity induced maximum
total compressive residual stresses mainly in the surface, on both phases, as shown
in figures 5 and 6.

Figure 4: Comparison of S-N curves of UNS S 31803 steel in the condition as received
and peened at 0.25A and 0.39A.

Figures 5 and 6 present a depth profile of total compressive residual stresses (TCRS)
for both used shot peening conditions, in the longitudinal and transversal directions
of the test specimen, in both phases, austenite and ferrite, before fatigue.

Figure 5: Total residual stresses for both
shot peening intensities, before fatigue,
in the transversal direction.

Figure 6: Total residual stresses for both
shot peening intensities, before fatigue,
in the longitudinal direction.

Another point that should be discussed, as a probable explanation to fatigue results
in figure 4, involves the greater hardening of the austenite phase when compared
to ferrite for monotonic and cyclical loading [7,8]. Indeed, the 758MPa endurance
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Figure 7: Total austenite residual
stresses, longitudinal direction before fa-
tigue and in low cycle conditions

Figure 8: Total austenite residual
stresses, transversal direction before fa-
tigue and in low cycle conditions.

limit value for samples peened at 0.39A and 505MPa for samples of the material as
received evidence such fact, particularly for monotonic loading, though also for all
samples.

This austenite hardening, occurring at low cycle fatigue, is supposed to contribute
and explain the better performance of the samples with high shot peening intensity,
because the load levels are high. For samples with peening of 0.25A, this monotonic
hardening would be less and, in fatigue, because of similar low load, the fatigue
life would be reduced, and those samples would not have the benefit of austenite
hardening shown by the samples with higher shot peening intensity (0.39A).

Figures 7 and 8 show that austenite total compressive residual stress fields (TCRSF)
of samples submitted to 0.25A intensity in low cycle (103) regime, presented greater
relaxation in the longitudinal direction. However, high stress relief was also observed
in the transversal direction. Nothing was observed on austenite TCRSF for 0.39A
intensity, where there was stress relaxation on the surface and near it, up to 0.08mm
depth, even when submitted to a greater cyclic loading when compared to samples
with lower shot peening intensity, both in the longitudinal and transversal direction.

Figures 9 and 10 shows that ferrite TCRSF in the samples with lower shot peen-
ing intensity (0.25A) in low cycle regime, suffered relaxation in both longitudinal
and transversal directions. However, in samples with higher shot peening intensity
(0.39A) TCRSF relaxation occurred only in the longitudinal direction, while in the
transversal direction there was only total compressive residual stress relief in the
surface and near it, up to 0.08mm depth.

The analysis of figures 7 to 10 shows that the TCRSF is more stable for a higher shot
peening intensity (0.39A). This behaviour may be explained because the induction
of TCRSF in this intensity demands a higher energy and then a higher energy will
also be needed to remove this stress field originally created by blasting.

In the same way, a lower energy is expected to be used to remove a TCRSF for a
lower (0.25A) shot peening intensity.

The austenite presented a more stable TCRSF: only relief of total compressive resid-
ual stresses (TCRS) was observed in the surface and below up to 0.08mm depth,
mainly in the longitudinal direction, coinciding with the direction of the cyclic load.
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Figure 9: Ferrite longitudinal total
residual stress field before fatigue and
in low cycle.

Figure 10: Ferrite transversal total
residual stress field before fatigue and
in low cycle.

Figure 11: SEM. Microcracks inside
the ferrite transversal surface after
0.39 A shot peening.

Figure 12: SEM. Microcracks inside
the ferrite transversal surface after
0.39 A shot peening.

Figure 13: SEM. Microcracks inside
the ferrite transversal surface after
0.25 A shot peening.

Figure 14: SEM. Microcracks inside
the ferrite transversal surface after
0.25 A shot peening.

This behaviour may be attributed to the easier hardening of the austenite phase
when compared to ferrite due to cyclic loading higher or equal to the material yield
limit.

Scanning electron microscopy (SEM) with attack was used to observe the samples
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peened in both conditions. These observations show that the shot peening process
introduce microcracks in the ferrite phase near the surface of the samples, effect that
is accentuated in the 0.39A shot peening (figure 7 and 8). However, microcracks were
also observed in some samples with lower shot peening intensity (0.25A), though in
a smaller scale (figures 9 and 10).
Figures 11 to 14 show the surfaces of the samples in the transversal direction, in the
middle of their length, after shot peening, in the same place where residual stresses
were measured and the higher cyclic load was applied.
Most of the microcracks found after shot peening are in the 0,5mm range. However,
1,5mm length microcracks were found in smaller amounts inside the ferrite phase.
None of the samples presented microcracks in the austenite phase.

4 Conclusions

The study of the variation of residual stresses induced by shot peening in duplex
stainless steel fatigue life showed that:

1. The higher intensity (0.39A) shot peening treatment used conducted to better
result under fatigue.

2. TCRSF relaxation occurred in both directions, longitudinal and transversal,
and in both phases present in duplex stainless steel for low cycle fatigue regime.
However, this TCRSF relief was more accentuated in the longitudinal direc-
tion, fact that may be related to cyclic load being applied in this direction.

3. The samples that showed better behavior under fatigue were those that had
maximum compressive residual stresses under the surface.

4. The highest variations in total compressive residual stress fields occurred in
the ferrite phase.

5. The shot peening process induced microcrack formation only in the ferrite
phase.
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Abstract

Initial-boundary problem for one-dimensional equations of elastic media
dynamic is studied for multi-layer region which is finite and is in the condi-
tions of one-axis deformation state. From physical point of view the solution
of this problem is interpreted as wave process initiated by initial (or bound-
ary) conditions and developed in time. The algorithm is sug-gested to find
exact solution of this problem. This algorithm is based on the idea of inverse
characteristic and com to following. Two characteris-tics are directed in the
opposite of time axis to internal or external boundary in the point of plane
where it is necessary to calculate the cur-rent parameters. From new occur-
ring points new characteristics are di-rected to neighboring boundaries etc.
Finally we fall to initial time, where the medium state is known from initial
conditions. Intervals of the characteristics form oriented graph - binary root
tree. Moving now into the time direction and using the relations on the char-
acteristics, one can to calculate the values of required functions for all vertexes
of graph, including its root, where it is necessary to obtain the solution. The
con-structed graph is the region of solution that corresponds to physical sense
of hyperbolic equations. Described algorithm is generalized simple for arbi-
trary hyperbolic equation system. Exact solution is god test for nu-merical
methods. The examples are presented in the paper for compari-son of exact
and numerical solutions obtained using explicit difference schemes of first and
second steeps of approximation.

1 Introduction

One-dimensional problem is studied in this paper on plane elastic waves propagation
in the finite sizes region made of some number of different materials. One can
construct easily the analytical solution of this problem when region is homogeneous
using known Dalamber formulae and superposition principle. However, this problem
becomes more complex for stratified medium because reflected and refracted waves
appear on each interface during process development. Any wave appearing once
begins ”exist his life”, tested multiple reflections and refractions generating new and
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Figure 1: Scheme of one dimensional problem on mechanical loading of multi-layer
specimen by acoustic pulse.

new waves that leads to extremely complex and tangled wave picture. Certainly, one
can investigate this problem using numerical methods. However, whatever numerical
method possessing certain internal dissipative and dispersion properties no inherent
to initial differential problem, distorts the solution by some way. That distortion
can be very appreciable for large times. This question is touched in p. 4.
One can to construct exact solution of problem under study no using analytical
recording. The original simply programmed algorithm is suggested in this paper.
The essence of this algorithm consist of employment of method of inverse character-
istics that is described in p.2.

2 Problem formulation

Scheme for studied problem is presented on Fig.1. Multilayer specimen containing
N plane layers of different materials is shown here. It is assumed that specimen sizes
in the axes x2, x3 directions are larger essential of its size in the axis x1 direction,
and external actions given in vertical planes traversing the points B0 and BN are
uniform that is do not depend on x2, x3 - coordinates. Besides, it is believed that
ideal mechanical contact conditions are correct in the interfaces (that is in the planes
traversing the points B1, B2, . . . , BN−1). It follows from above that one axis defor-
mation state will realize in this problem and all required functions would depend on
unique space variable - x1. We assume next designations:

x ≡ x1, σ ≡ σ11, ε ≡ ε11, ν ≡ ν1, u ≡ u1, ν =
∂u

∂t
, ε =

∂u

∂x
.

Here σ, ε, ν and u - are components of stress and strain tensors, velocity and dis-
placement vector correspondingly in the direction x - axis. It is convenient in this
problem to use stress σ(x, t) and ν(x, t) as studied functions. Denote the coordi-
nated of the points B1, B2, . . . , BN−1 on the Fig.1 as x1, x2, . . . , xN−1. Eventually we
come to the following initial – boundary problem for one-dimensional equations of
elastic media dynamics in multilayer region of finite size:

ρ
∂ν

∂t
=
∂σ

∂x
,

∂σ

∂t
= ρa2

∂ν

∂x
, (1)
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ν(x, 0) = ν0(x), σ(x, 0) = σ0(x), x0 ≤ x ≤ xN (2)

σ(x0, t) = σL(t), σ(xN, t) = σR(t), t ≥ 0 (3)

σ(x+
k , t) = σ(x−

k , t), ν(x+
k , t) = ν(x−

k , t), k = 1, 2, . . . , N− 1, t ≥ 0. (4)

Fist equation (1) is law of impulse conservation for element of elastic medium, second
results after Gook law differentiation

σij = λεkkδij+ 2µεij,

Which takes the form

σ = (λ+ 2µ)ε.

for studied one-dimensional case.

Appearing in (1) parameters - density ρ and sound rate a =
√

(λ+ 2µ)
/
ρ are

material parameters as it is assumed in linear elasticity theory.
Let reduce the equation system (1) to some canonical form. For this purpose, we
divide second equation on ρa. Then we add obtained equation to the first equation
(1) and then deduct from it. As a result, we obtain two equations:

∂

∂t

(
ν+

σ

ρa

)
− a

∂

∂x

(
ν+

σ

ρa

)
= 0,

∂

∂t

(
ν−

σ

ρa

)
+ a

∂

∂x

(
ν−

σ

ρa

)
= 0,

or after designations

R± = ν∓ σ

ρa
, (5)

- the equations

∂R+

∂t
+ a

∂R+

∂x
= 0,

∂R−

∂t
− a

∂R−

∂x
= 0. (6)

This system, in comparison with (1), contains the equations for new unknown quan-
tities independent from each other, that allows to write the general solution in the
form

R+ = f+(x− at), R− = f−(x+ at), (7)

where f+, f− are arbitrary functions the view of which depends on initial and bound-
ary conditions. The values R± are Ryman invariants and straight lines

C+ : x − at = const, C− : x + at = const (8)

are the characteristics of the equation system (1).
The solution (7) has clear physical and geometrical sense. It is follows from (6), (7),
R+ conserves a constant value along the line C+ : x−at = const, that is the plot of
the function R+(x) shifts in time to the right with the sound rate a, no changing their
form. Analogously R− conserves its value along the line C− : x + at = const and
shifts with the same rate a to the left. So, there are two plane waves propagating into
opposite directions. One wave transfers constant value of Ryman R+, and second -
constant value of Ryman R−.
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Figure 2: Scheme explaining the calculation algorithm of the current in the point
1 using reverse characteristic approach. The sense of the point B0, B1, B2, B3 is the
same that it was on the Fig.1.

3 Algorithm of exact solution construction

We describe algorithm of exact solution construction using three-layer specimen,
shown on the Fig.2, the stress σL(t) is given in the left boundary, and right boundary
is free σR(t) ≡ 0. Let suppose that it is necessary to calculate the solution in some
time moment t = t1. Take arbitrary point corresponding to given time moment; it
has the coordinates (x1, t1) and is designed by number 1 on the Fig.2. Our purpose
consists in the finding of the σ1 ≡ σ(x1, t1) and ν1 ≡ ν(x1, t1) in this point.

We divide the calculating algorithm in two independent steps.

The first step includes following geometrical structures. Let draw the characteristics
with positive and negative slopes through points 1 in reverse (relatively to time
axis) direction to their intersections with one of boundary of calculating region. It
can be external (free) or internal (contact) boundary. Design the corresponding
intersection points as 2 and 3, as it is shown on Fig.2. If rate and stress values
would be known in these points, using the relations in the characteristics, one could
be calculate the values σ1, ν1. But to calculate σ2, ν2 it is necessary to know the
values σ4, ν4 and σ5, ν5; here 4 and 5 are the intersections points with contact and
free boundary correspondingly for characteristic straight lines emerging from point
2. Then analogous reasoning repeat for the points 3, 4, 5, etc. Moving in the
reverse in t direction, we come sooner or later to time t = t0, where initial data are
given. Here straight-line course ends. It is shown, that it consists in the calculation
of the coordinates of the points (xi, ti), i = 1, 2, 3, . . . , and organization of certain
connection between them.
Notice, that different situations are possible on the finally stage of first step, that
is shown in the Fig.2. Really, we can reach to line t = t0 sinking from left external
boundary of calculation region (from point l to q), from right external boundary
(from point r to s) and from interface (from point k to m and n).
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Preparatory to go to second step, notice that using initial data and boundary con-
ditions, one can calculate the motion parameters in the points l, k, r. Present cor-
responding formulae.
Equaling the values of Ryman invariant R+ in the points n and k, and invariant R−

in the points m and k, we obtain the equation system

νk−
σk

ρnan
= νn−

σn

ρnan
, νk+

σk

ρmam
= νm+

σm

ρmam
,

whence we have

σk =
ρnanσm+ ρmamσn+ ρnanρmam(νm− νn)

ρnan+ ρmam
, (9)

νk =
ρnanνn+ ρmamνm+ σm− σn

ρnan+ ρmam
. (10)

To calculate the values σl, νl we use given boundary condition and the constancy
condition of invariant R− along the characteristic straight line ql:

σl = σL(tl), νl+
σl

ρlal
= νq+

σq

ρqaq
. (11)

Hereof the equalities

σl = σL(tl), νl = νq+
σq− σl

ρqaq
. (12)

follow taking into account the equality ρqaq = ρlal.
Analogously we obtain for right (free) boundary

σr = 0, νr = νs−
σs

ρsas
. (13)

Second step of calculating algorithm consist in that rising from time moment t = t0
to t = t1, we pass step-by-step all points which were fixed in the first step and
calculate there the values of the parameters σ, ν, using every time one of presented
formulae. For example, the formulae (13) are employed in the point 3 for r = 3,
s = 6, the formulae (9), (10) in the point 4 for k = 4, n = 7, m = 8 etc. Moving
by similar way, we come eventually to the point 1 and calculate σ1, ν1. Here second
step finishes.
When calculating process is organized and data structure (which are stored in the
computer) is chosen, the interpretation of presented algorithm with point of view
of graph theory. On the first step, moving from t1 to t0, we from graph: the points
1, 2, 3,. . . are graph tops, and the segments of the characteristic are ribs of graph.
According to terminology assumed in the graph theory the depicted on the Fig.2
graph is binary root tree or, in other words, oriented bound graph without cycles,
the degree of each top of which does not two. The top 1 is tree root, the tops 2,3
are successors of root (right and left correspondingly); analogously, the points 4 and
5 are left and right successors of tops 2 etc. The pops of root tree no possessing the
successors call leafs. As it is shown from Fig. 3, the tree leafs locate on the segment
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Figure 3: Stress state change in the interface of double specimens AB (solid line)
and BA (dotted line).

Figure 4: Stress distribution along the thickness 12-layer specimens ABAB. . . (solid
line) and BABA. . . (dotted line) for time moments t = 8 µs (on the left) and t = 40

µs (on the rigth).

Figure 5: The comparison of analytical (solid line) and numerical (circles) solution
obtained using difference scheme of second step of accuracy.
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t = t0 with initial data. Each top of graph settling in the interface has two successor
- left and right; the tops locating on the external boundaries have one successor -
right for left boundary and left for right boundary.
Using this terminology, one can say, that tree leafs possess full information (the
velocity, stress are known here from initial data), the tops with one successor possess
partly information (in the form of boundary condition), the tops with two successors
have not information. During reverse course of numerical algorithm, each top could
receive full information. When we calculate σ1, ν1, information flows from leafs to
tree root. In passing, cause-effect relation appears here in the development of studied
wave picture of the motion: each top of the graph is the point of origin of refracted
and/or reflected waves, and each rib of graph is trajectory of corresponding wave.
According to known interpretation of physical sense of linear hyperbolic equations,
only these waves effect on medium state in the point 1. So, depicted in the Figure
graph is dependence region for point 1.

4 Examples

We illustrate the practical employment of described algorithm with the help of
various specimens made from two materials (A and B) with the parameters:

ρA = 2.71g ·cm−3, aA = 6275m ·s−1, ρA = 7.85g ·cm−3, aA = 6022m ·s−1

Let consider two layer specimens AB and BA, consisting of plane layers of equal
thickness h1 = h2 = 3 cm. Mechanical exciting of model specimens was carried out
by acoustic pulse

σL(t) = σM

(
1+ cos

(
π
( t
tM

− 1
)))

, 0 < t < 2tM, (14)

acting on the left boundary. Here tM = 5 µs is maximum point, and σM = 1.0

MPa is half of amplitude in the point t = tM. Let assume that development of
oscillating process in the interface and the evaluation of maximal stresses acting
there are interested for us.
Exact analytical solution constructed on the base of described above algorithm is
shown in the Fig.3. Stress variation is demonstrated on the left to time moment
100 µs. It is obvious that compressing and tension stresses acting in the interface
of AB-specimen are two double the contact stresses in BA-specimen. Right graph
authenticates that this regularity remains in time.
Let examine, as second example, twenty-layer specimen made from interlaced layers
ABAB. . . with equal thickness h1 = h2 = · · · = h12 = 0.5 cm and analogous spec-
imen with other layer arrangement - BABA. . . The pulse (14) with the parameters
tM = 0.5 µs, σM = 1.0 MPa acts on the left boundary of these specimens. Fig. 4
illustrates essential difference in the stress distribution along the specimen thickness
for two time moments.
Suggested algorithm is rewarding for testing of finite-difference methods used when
wave processes in solids have been studied. Appropriate example is disclosed in
the Fig. 5. Stress impulse is demonstrated after single run along specimen and
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after reflection from right free boundary placed in the point x = 6. Coincidence
of exact and approximate exact solution (it was obtained using difference scheme
of second step of approximation) is very well. Numerical solution is distorted with
the time. The impulse after 74 running along specimen thickness is shown in the
right picture that allows to estimate the difference between exact and approximate
solutions accumulating to this time.

5 Conclusion

So, the algorithm of exact analytical solution construction is suggested for one-
dimensional initial - boundary dynamic problem of elasticity theory in multilayer
region of finite size. From Physical point of view, the solution of this problem is
interpreted as developed in time wave or oscillation process initiated by initial or
boundary conditions. The interpretation of this algorithm is given from point of view
of graph theory, which allows arranging corresponding computer program rationally.
Note that algorithm is efficient: it indicates exactly the region of solution dependency
and leads to minimum the calculating work. Algorithm could be generalized by
obviously way to arbitrary linear system of hyperbolic type.

Valery. N. Demidov, Academichesky Ave., 2/4, Tomsk, Russia
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Numerical modeling of dry friction sliding in
pad-disc interface at the nanoscale

Andrey I. Dmitriev Werner Oesterle
dmitr@ispms.tsc.ru

Abstract

The frictional behaviour at local contacts in an automotive brake system
was analysed on the basis of computer simulation with the aid of the method
of Movable Cellular Automata (MCA). The boundary conditions of the model
were adjusted to experimental observations obtained by Transmission Electron
Microscopy (TEM). The impacts of friction layer composition, pressure and
velocity changes on friction evolution, friction level and regime of sliding were
investigated. Thus it could be shown that only under certain conditions, when
a mechanically mixed layer had formed, the coefficient of friction (CoF) was
stabilized with a minimum of fluctuations. Obtained results are in agreement
with conventional friction theories and they characterize well the considered
types of contacts. This result suggests that the MCA-model can help a lot to
improve our basic understanding of the micro-processes taking place at the
pad-disc interface.

1 Introduction

Understanding the basic friction mechanisms occurring at the interface between the
fixed brake pad and rotating brake disc is still a challenging area of research. Theo-
retical considerations as well as experimental studies suggest the formation of surface
layers with properties distinctly different from the properties of basic materials [1, 2].
Composition, structure and thickness of the modified layers depend on properties
of initial material, loading conditions, temperature and the environment in which
the process of friction is taking place. Essential progress in our understanding of
dry friction was outlined by the work of M.Godet et al. [3] with the introduction
of the third body concept. In the framework of this concept it is supposed that
the modified surface layers which have formed during mutual sliding of bodies as
a result of mechanical, chemical, thermal and other processes have a determinative
influence on the friction and wear behaviour of the couple. Later this concept was
also predicted for brake materials by Jacko et al. in [4].
Despite of permanent development of new experimental methods in material science,
direct observation of friction layers during a brake application is not possible. We
only can investigate surfaces and cross-sections at the end of a braking cycle after
the pressure has been released and the pads have been removed from the disc. On
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the other hand, modeling on the nanometer scale can be effectively used for the de-
scription of friction and wear [5, 6] at single asperity contacts. The results received
during modeling, can provide a basis of forecasting the behavior of interacting ma-
terials and can also provide a measure for optimization of tribotechnical materials.
The aim of our investigations was to obtain a feeling of the frictional behavior at
the pad-disc interface and to find correlations between characteristics of friction and
properties of contacting materials and loading conditions.

2 Numerical model of a friction layer

The researches were done by modeling on the nanometer scale with the aid of the
method of Movable Cellular Automata (MCA) [7]. Previously the MCA method was
successfully used for the investigation of similar processes in contact areas [8, 9, 10].
The MCA method is a kind of discrete approach where all objects are represented as
an ensemble of interacting particles (movable automata). The principles of MCA-
modeling have been described in [7] and briefly formulated as follow: Velocity ac-
commodation between the stationary pad and the rotating disc can be accomplished
by assuming a flow of granular wear debris (third body) in the gap between the two
first bodies. Observation of the friction layer (Fig. 1,a) and its structure [10] imply
that the granular particles must be very small, i.e. of the order of 10 nm in diame-
ter. The friction layers on both first bodies might be interpreted as sintered layers
of wear debris, formed after milling and mechanical mixing of larger wear particles.
In the model the particles correspond to interacting elements of finite size (10 nm)
which are linked to each other within the friction layers. The bonding state can
be switched from linked to unlinked and vice versa depending on stress-intensity in
pair and contact stress, respectively. Thus it is possible to simulate not only asper-
ity deformation, wear mechanisms, mechanical mixing, detachment of particles and
granular flow, but also the recombination of particles, e.g. nano-welding or adhesive
bonding of metallic asperities.
The different materials involved in third body formation enter the model by at-
tributing their stress-strain characteristics to individual automata. Since in reality
the situation is very complex, some simplifications had to be introduced, as shown
schematically in Fig. 1,b.
According to chosen automaton diameter the cross-sectional area during simulation
was of the order of 1×1 µm2. Actually, we regard only one very small contact in two
dimensions defining a micron-sized cross-section similar to the one shown in Fig. 1,a,
but comprising both sides of the interface i.e. pad and disc. On the pad side we
assume a primary contact site according to Eriksson et al. [11] which is provided by
the section of one of the steel fibers used in low-met pads as reinforcing elements.
The supporting material on the disc side is pearlitic steel. The friction layer is
modeled with a random distribution of single graphite particles in a matrix of iron
oxide. Graphite was chosen as a representative of any other solid lubricant because
its mechanical properties are well known. The mechanical properties of the different
bulk materials (see Table 6) were allocated to each element (particle) in the model.
The following boundary conditions for modelling as depicted in Fig. 1,b were used.
A constant sliding velocity (V) equal to 10 m/s, corresponding to the rotational
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a) b)

Figure 1: a) Cross-section of friction layer on brake disc. b) The modelled scheme

Table 6: Parameters of the model material
Young Poisson Elastic Yield Ultimate ten- Strain Breaking

modulus ratio limit strength sile strength at σy2 strain
E, GPa ν σy1, MPa σy2, MPa σs, MPa ǫy2 ǫs

Ferritic
steel

206 0.28 450 500 550 0.04 0.106

Pearlitic
steel

206 0.28 520 800 920 0.04 0.106

Iron
oxide

380 0.3 290 305 340 0.008 0.009

Graphite 20 0.3 15 35 45 0.05 0.15

speed of the disk before braking was applied on all particles of the bottom layer of
disk. At the same time their position in vertical direction was fixed. A constant
normal force corresponding to the contact pressures (P) in the range between 5MPa
and 50 MPa for different calculations was acted upon all the elements of the upper
layer of the pad. For both types of loading a linear procedure of value increasing
was used. At the left and right side of the setup, periodic boundary conditions were
used, i.e. material ejected at one side was reintroduced on the other side. The
time step ∆t = 10−13 s for simulation is determined by automata size and elastic
modulus of interacting materials. A surface profile with roughness on the nanometer
scale was set deliberately prior to simulation. The model calculates position and
binding state of each automaton (particle) as well as resulting tangential forces at
the micro-contact for each time step.

3 Results of simulation

3.1 Observation of mechanically mixed layer formation

As it was shown in our previous papers [8, 10, 12] beginning of relative motion of the
interacting bodies is accompanied by formation of superficial layer which structure
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and properties are different from the structures of the bulk materials. The generation
of the layer where processes of deformation, fracture and intensive mass mixing are
taking place can be associated as a third-body formation which does not propagate
to bulk of the contacting bodies. Due to mixing of material from pad and disc within
this layer, it can be associated with formation of so called mechanically mixed layer
(MML). This layer is realized mostly in conditions of dry sliding friction and plays
an important role in determining the tribological behaviour of the material. Let
consider the particles behaviour in the layer in more detail.

3.2 The influence of solid lubricant

To analyze the macroscopical properties of modelling local contact the coefficient
of friction (CoF) for interacting bodies was used. For it evaluation the normal and
tangential forces were calculated during the simulation. The overall forces were de-
termined as the sum of all the tangential and normal forces, which act at the current
time step on the boundary layer of the disc. The quotient of both gives the friction
coefficient. Calculation of CoF for mating pair with concentration of graphite about
17.5 vol% and the value of external pressure about 30 MPa gives the value 0.35.
Expectedly, increasing of concentration of solid lubricant particles in the friction
layer reduces the coefficient of friction. The results of the modelling with various
graphite concentrations are shown in Fig. 2. For the layer with graphite concentra-
tion about 27.5 % (Fig. 2,a) the mean CoF feebly fluctuated at a value of 0.3 after
a short running-in period, whereas for the layer with only 5.5% graphite (Fig. 2,b)
the CoF increases gradually with time exceeding 0.5 at the end of the simulation. In
figures strong fluctuation of calculated momentary coefficient of friction is explained
by realization of various situations in local contact at each time step. In spire of
this the CoF-fluctuations between successive time steps are very different for the
two cases, implying different conditions at the sliding interface.

a) b)

Figure 2: Simulation of CoF evolution at P = 35 MPa for two graphite concentra-
tions: a) 27%; b) 5%

Fig. 3 depicts the results of a series of simulations with systematically changed

177



Proceedings of XXXVII International Summer School–Conference APM 2009

graphite concentrations. The steep increase of the CoF starting at approximately
10 % graphite corresponds to the situation without MML-formation. Between 13
and 27.5 % the CoF decreases moderately and an increase of MML-thickness was
observed. The graph also contains simulation results with 0 % and 100 % graphite.
The pure oxide showed cracks but no loose particles and very high fluctuations of
the CoF. The lowest CoF (0.2) was simulated assuming steel sliding against steel
covered by a graphite layer. In this case no MML had formed, but all bonds between
graphite particles had been broken thus imitating the real graphite’s behavior. This
situation led to the lowest CoF-fluctuations.

Figure 3: Impact of graphite concentration on CoF (35 MPa).

3.3 Impact of external pressure

As the next step of pad-disc interface investigation, we analyse the influence of
applied pressure on tribotechnical properties of mating pair. For this at given con-
centrations of graphite the MML-thickness and corresponding friction response were
calculated with varying of applied pressure (P). The structure analysis has shown
that at small P with growth of pressure the increase in MML thickness is com-
pensated by layer compression. What occurs thus with friction force? According
to results of simulation the CoF-value shows non-linear decreasing with pressure
and with the subsequent attainment of some constant value. This result is in good
correlation with experimental data obtained in [13], where CoF versus pressure
dependence divides on three parts. For other graphite concentration the same de-
pendencies of the MML-thickness and CoF on applied loading were obtained. In
Fig. 4 we try to represent all these results as three-dimensional histograms. The
height of each bar corresponds to the value of corresponding parameter. It is seen
that the increasing pressure and the concentration of graphite in a friction layer
leads to increase the thickness of mechanically mixed layer and reduce coefficient of
friction. The exception is the point of a high pressure with volume concentration of
graphite 5.5%. The applied normal pressure is sufficient to destroy the layer of iron
oxide and generate the mixed layer from oxide particles.
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a) b)

Figure 4: MML-thickness (a) and CoF (b) versus pressure and graphite concentra-
tion in friction layer

Thus, it is possible to say about the existence of a critical pressure needed to initi-
ate MML-formation and therefore responsible of friction forces stabilization at low
graphite concentrations.

3.4 Simulation of metal-on-metal contact

Since commercial brake pads contain a large number of ingredients a large variety of
different contact situations can occur. In papers [10, 12] we also considered metal-
on-metal contact which seems to be relevant, because uncovered metallic surfaces
were observed frequently for both: the steel fibres of the pads and the cast iron
discs. Since it is well known that metal particles will recombine by micro-welding
during a milling process the possibility of re-bonding of automata was accounted for
in the model. For such transition from unlinked to linked state a critical value of
normal stress in the contacting pair equal to (σs−σy2)/2 was selected (see Tab. 6).

a) b)

Figure 5: a) Final structure of friction layer. b) CoF evolution
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The resulting structure and CoF-evolution is shown in Figures 5,a and 5,b, respec-
tively. No MML was formed during this simulation. Accordingly, the calculated
momentary CoF shows very unstable behavior from step to step which is due to
velocity accommodation by breaking of inter-particle bonds, leading to a stick-slip
kind of sliding behavior. Furthermore, the mean CoF value is higher as desired for
brake applications. At the snapshot-structure presented in Figure 5,a it is visible
that many automata pairs at the interface of both interacting bodies have been able
to restore links with their nearest neighbors and form a modified surface structure
which is characterized by a large number of defects.

The goal of further investigation was to compare results of metal-on-metal contact
with assumptions suggested by Bowden and Tabor in [14]. As was mentioned above,
the actual area of contact (A) increases with nominal pressure and quotient of
applied loading (N) and yield stress (q). Taking into account that the real area of
contact is 1-2 orders smaller than the nominal contact area we also have to conclude
that the values of local pressure realized on A will be much higher than the nominal
applied normal pressure. Thus, nominal pressures of 10 or 100 times smaller than q
can lead to plastic deformation of materials in contact points (asperities) [15]. This
assumption is confirmed by results of MCA simulation. Fig. 6 shows the distribution
of irreversible deformation in modeled assembly at different moments of time. It is
well visible, that while initially only small fragments of material are involved in
plastic deformation near to local contact points, only few time steps later the field
of irreversible deformation extents to the whole modeled microcontact. Comparing
Fig. 5,a and 6 suggests that the formation of the modified layer corresponds to a
zone of irreversible deformation of particles in that area.

a) b)

Figure 6: Distribution of irreversible deformation in contact area: a) initially; b) at
running-in stage

Thus, as actual pressure on contact is approximately constant and equal to the
yield stress of the modeled material formation of the modified layer does not depend
on applied loading. Realization of various processes in contact zone is mostly not
defined by the value of nominal pressure, but rather by microgeometry of the surface
and mechanical properties of superficial layers present on the area of real contact.
With the increase of nominal pressure the area of real contact increases, basically
due to involving more and more asperities. Thus, the average area of contact of
individual roughness remains practically constant [15].
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So, it is possible to conclude that these results are in agreement with a formalism
of Bowden and Tabor and they are correct for various type contacts. For instance,
in case of oxide-on-oxide contact it is reaching of constant value of CoF after some
value of loading, in case of two metals contact - achievement of the local pressure
corresponding to yield stress at any nominal pressure. Certainly, both variants
suppose the sliding regime conservation. Obtained agreement suggests that the
MCA model can be considered as an effective tool for the qualitative study of the
influence of the surface layer structure and load conditions to change the friction
parameters, as well as more detailed understanding of the causes of some processes
in friction layer.

4 Conclusion

The results of direct simulation of various local contact situations at the surfaces
of pad and disc of the automotive brake revealed the complexity and diversity of
the processes taking place under contact interaction. Despite of the fairly simple
two-dimensional model, some very important features of braking, namely velocity
accommodation between fixed pad and rotating disc, constant friction level and re-
duction of CoF-fluctuations could readily be explained by mechanically mixed layer
formation at dry friction. The structure of the layer is determined by the intensity of
the processes occurring in the surface layers of interacting first bodies. The obtained
results help to obtain a better understanding of the processes and mechanisms oc-
curring in the surface layers. They especially can be used to predict tendencies of
CoF-changes induced by changes of the composition, structure of contact surfaces
and loading conditions. According to aforesaid MCA-modeling provide an oppor-
tunity to find new ways of improving the tribological properties of materials of a
friction pair.
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Abstract

A model of mechanical interaction in the sliding friction contact zone was
considered on the basis of discrete-continual approach. Frequency spectrum
of the elastic waves generated was studied. The frequencies depending on
roughness of the surface profiles were shown. Fourier and wavelet analysis of
the registered signals allowed revealing the complex structure of elastic waves
taking place in sliding friction. It is concluded, that mechanisms of wear could
be studied on the basis of corresponding acoustic spectra.

Introduction

Machine and device wear is the most nagging problem concerned with sliding friction.
Friction and wear are complex and essentially dynamic phenomena, this feature
makes their investigation very difficult. For example the continuous measurements
of coefficient of friction show that this characteristic is not constant value even in
steady-state regime. It alternates, varying from minimum to maximum and vice
versa [1, 2]. Producing of acoustic vibrations in sliding friction is also one more
evidence of dynamic character of this process. These vibrations play important role
in mechanical behavior of interacting bodies including its wearing. The life time of
a tribotechnical system could be significantly increased by means of only vibration
cancellation using absorbers, coating or certain fitting of geometry of parts to damp
rapidly oscillation of dangerous frequency [3].
In case of experimental investigation of friction and wear phenomenon, observations
and measurements of material directly in the contact patch are performed after
completion of the test. Therefore some results of this study could be the consequence
of completion of process, but not process itself. Using of computer simulation let us
to study dynamics of the process.
It was shown [4, 5] that using of discrete-continual approach is very effective in
modeling of sliding friction [6]. In this case a narrow contact zone of interacted
bodies is described by discrete approach of movable cellular automaton method and
the rest material, which is under elastic loading, is described by a numerical method
of continuum mechanics.
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The goal of this paper is investigation of time-frequency characteristics of elastic
waves, generated in the model friction pair, and to reveal dependency between the
frequencies of these waves and roughness of interacting surfaces.

1 Time-and-frequency analysis of elastic waves in

model friction pair

It is known, that real contacts take only a few percent of nominal surface of inter-
acting bodies [7]. A schematic drawing of contact region of two surfaces in friction is
presented in fig. 1,a. At this scheme the regions of real contact is marked by squares.
In this paper the simulation of a certain part of real contact was performed. The
mentioned part of the contact belongs to nano-scale level and is represented between
two vertical lines on the right side of fig. 1,a. Such choice of the region allows to
apply periodic boundary conditions in the displacement line of interacting bodies
and to simplify slightly the task of simulation.

a) b) c)

Figure 1: Contact zone in sliding-friction and the region under investigation (a),
general view of the model sliding friction pair (b) and scheme of its loading (c).

Simulation of sliding friction was performed according to the scheme proposed in [8]
(fig. 1,b). The friction zone was described on the basis of the movable cellular
automaton method (region I in fig. 1,b). The rest part of interacting bodies was
described by the approach of continuum mechanics (regions II in fig. 1,b), that
allowed to decrease computation time. Location of a sensor for registration of elastic
wave propagation is marked by the circle in the region I. The velocity V of the outside
surface of the blocks (the upper surface for the upper block and the bottom surface
for the bottom block) was increased step-by-step, according to time t, from 0 to
Vm = 10 m/s (fig. 1,c ). At the same time the upper surface was subjected by
pressure P, which was increased up to its maximum Pm = 127.5 MPa. The bottom
surface was fixed to exclude the displacement in the line of axis Y. In horizontal
direction the model blocks were under periodic boundary conditions. Automaton
size was 2.5 nm, step of the grid was 10 nm. A detail procedure of cooupling
discrete movable cellular automaton method with continuum mechanics approaches
is considered in detail in [6].
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A certain roughness was specified in the contact zone initially. The three typical
specimens of friction pairs studied are presented in fig. 2. Specimens (a) and (b) had
the same width (450 nm), but different initial surface profiles. The main difference
between these specimens was as follows. Surface irregularities of the specimen (a)
had two maxima and two minima. The specimen (b) had three mentioned surface
irregularities with lower height than one of the specimen (a). Width of the specimen
(c) was two times greater than one of the specimens (a) and (b). Surface profile of
this specimen corresponded to the surface profile of the specimen (b). The surface
profiles were specified by means of pseudorandom function.

a) b)

c)

Figure 2: The initial specimens of the model friction pair. Only the regions described
by the movable cellular automaton method are presented.

Elastic wave recording was performed by means of a sensor, which marked as the
black dot in fig. 1,b. The sensor consisted of two automata. The following charac-
teristics of this pair were recorded: the components of velocities VX and VY, stress
tensor intensity I and pressure P. The methods of recorded data processing and
analysis of the obtained results is described in detail in [8]. In particular, the factors
determining natural frequency of the mentioned system were indicated there. It
was noted, that peaks of Fourier-spectrum, corresponding to these frequencies, took
place for all recorded data. Additionally, it was shown that Fourier-spectra, plotted
for different time intervals, changed (the peaks changed its amplitude and location).
It is well known, that to analyze frequency variation in time they use the method
of signal processing like window Fourier method and wavelet transform [9].
In this paper we use wavelet transform of the signals studied, which performed by
means of shareware signal processing package “Last Wave” [10]. The most common
“Mexican hat” and Morlet functions were chosen as wavelets. To understand the
results obtained let’s analyze two simple signals, namely amplitude-modulated and
frequency-modulated harmonic signals, using the mentioned wavelets.
The ordinate axis in a wavelet image is represented by nondimensional scale a which
is in the inverse proportion with frequency f. That is why low frequencies are shown
at the top and high frequencies at the bottom of the plot. Abscissa corresponds to
time (record number of a discrete signal). It should be noted, that a wavelet image
explicitly shows time variation of the signals with the frequency and the amplitude
in case of frequency and amplitude modulation respectively. Fourier analysis does
not allow to reveal such peculiarity of the studied signals. Sometimes in the upper
corner of images, corresponding to the end and to the beginning of a signal, one can
see strips (fig. 3), which are artifacts (interference induction) induced by finiteness
of a signal likewise the lobes at the Fourier-spectrum for the finite length sine-wave
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Figure 3: Wavelet transform of signals with various modulating frequencies.

Figure 4: Wavelet transforms of the recorded data for the specimen (b) in fig. 2.

signal.
Mathematical notation of a frequency-modulated signal is sin[w ·x+d(x)], where w
is a carrier frequency, d is modulating function of a signal, x is time. In this paper
w = 64π, d(x) = 8sin(u · x), where u is modulating frequency. The wavelet trans-
form of frequency-modulated signals with different modulating frequencies u = 4kπ

by means of “Mexican hat” function are shown in fig. 3. It is seen that appearance
of the wavelet image significantly changes with increase of modulating frequency. It
should be noted that transform by means of Morlet function holds a zigzag that is
the characteristic feature of frequency-modulated signals.
Now, let’s consider wavelet transform of registration signals, obtained from simula-
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tion of sliding-friction (fig. 4). The comparison of fig. 3 and fig. 4, allows to reveal
that elastic waves, generated in friction, probably are frequency- and amplitude-
modulated.

In fact, as was shown in [8], natural frequencies of the studied system vary depend-
ing on the height of blocks. This height stochastically changes in sliding friction
(even under steady-state behavior) as a result of particles separation from inter-
acting surfaces (wear) and adhering of another particles from the friction zone on
these surfaces (micro-welding). The simulation data clearly show the changing of
corresponding frequencies due to small block sizes. Thus, little changing in height
of quasi-liquid layer (i.e. the region of material mixture, where movable cellular au-
tomata are generally unbonded [4]) essentially affects the natural frequencies. This
effect would be less noticeable in the case of greater block sizes.

The amplitude of the studied elastic waves depends on the force of interaction of
upper and bottom blocks. As was mentioned above, friction coefficient, which is a
ratio of resistant force of interacting bodies to the compressing force, permanently
varies even under steady-state regime. It is observed not only in practice [1, 2]
but in calculations also. Thus, alternating coefficient of friction leads to amplitude
modulation of the registered signals.

2 Influence of surface roughness on elastic waves

generated in friction pair

It was shown [8], that not only the natural frequencies of the system but also the
frequencies related to the model sizes (width of the area investigated and the au-
tomaton size) and to the velocity of relative motion of blocks are represented at
the spectra. It was noted the presence of unidentified peaks in the low-frequency
region of the spectra as well. Location and height of these peaks are changed in
time (fig. 5).

Additional analysis of the simulation results showed that surface profiles, separated
a pseudo-liquid layer and a rigid part of specimens changed in sliding-friction. It
allowed to assume that characteristic roughness of such surface profiles could corre-
spond to these peaks at the spectra.

The algorithm presented in [11] with some changes was used for build up a surface
profile, separating pseudo-liquid layer and rigid part of specimens. The changes
consisted in the cutting of high-frequency spectrum components due to discreteness
of the simulation model. The functions, describing profile of the bottom surface
of the model friction pair, plotted on the basis of different algorithms, are shown
in fig. 6. The function, plotted on the basis of the algorithm, described in [11], is
shown in fig. 6,a. The result of the algorithm, proposed in this paper, is shown in
fig. 6,b. The last function smooths away chains of inter automaton bonds protruded
from the rigid surface, because it considers they belong to quasi-liquid layer.

The scheme of discrete representation of sought function h(x) is shown in fig. 7.
A value of discretization step δ corresponds to the automaton radius (minimum
distance between vertical projections of automaton centers in close packing).

Surface profiles of friction pairs under consideration plotted at different times are
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Figure 5: Fourier-spectra of analyzed data in the different time periods of interaction
for the specimen in fig.2,b: I) 0.025..1.33; II) 1.33..2.64 III) 2.64..3.95 µs.

a) b)

Figure 6: Example of functions describing the bottom surface profile of the model
friction pair.

Figure 7: The scheme of discrete representation of function describing surface profile.

presented in fig. 8. The labels of the columns corresponds to the specimens shown
in fig. 2. One can see that the thickness of friction layer increases in time, and the
surface of blocks become smoother.

The periodicity of interacting surface profiles has to appear in corresponding fre-
quencies of elastic waves, generated under relative displacement of the surfaces. Ex-
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a) b) c)

Figure 8: The surface profiles of the upper and the bottom blocks for the specimens
(a-c) in fig. 2 in different times t.

a) b) c)

Figure 9: Spectra of the expected signals in different time moments t.

pected frequency of corresponding signal is calculated according to formula f = v/l,
where v is relative velocity of blocks, l is the distance between surface profile peaks.
Fourier-spectra of the expected signals were plotted on the basis of the obtained
surface profiles. These Fourier-spectra are shown in fig. 9. Whereas the fast Fourier
transform was used in this work, we would need data sample with the size as 2 in
some power to analyze the simulation results. The data describing the surface profile
had the size different from 2 in any power. Therefore, owing to periodic boundary
conditions of the model, the initial data sample was extended up to the needed size
using periodic repeating of the initial data.
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As one can see from the presented spectra, one or another frequency would be
stronger appeared in different time moments for these profiles. In addition, the
peaks that insignificantly change their location (frequency) and the peaks that in-
significantly change their amplitude were discovered.

The frequencies equal to 70, 90, 110 and 160 MHz are the most evident peaks in the
spectra of expected signals. These frequencies were revealed in data spectra of the
sensors of the model friction pairs shown in fig. 5. Moreover the accordance was more
clear for pressure and stress intensity registration. Owing to changeability of friction
coefficient during interaction, it should be expected that appearing oscillations would
be amplitude-modulated.

Conclusions

The analysis of simulation results shows that the frequencies depending on the rough-
ness of the surfaces separating quasi-liquid layer and interacting rigid bodies are
present in the spectra of elastic waves generated under sliding-friction. The other
peaks in these spectra are the natural frequencies of the specimen and the frequencies
determined by the geometric sizes of the model and the velocity of relative motion.
Furthermore, spectrum-and-frequency and time-and-frequency analyses, performed
on the basis of Fourier and wavelet transforms, allowed revealing the complex struc-
ture of oscillations taking place in sliding friction. So, it is shown, that the change of
friction surface profiles results in frequency modulation of generated elastic waves,
in spite of apparent random manner of elementary events of wear fragments separa-
tion and their following welding in the friction zone. Amplitude modulation of the
recorded signals may be explained by corresponding oscillations of the interaction
force of the upper and bottom blocks and, accordingly, friction coefficient. So, one
can conclude, that wear occurs according to certain laws, which may be studied on
the basis of the corresponding acoustic spectra analysis.
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Abstract

This paper presents analytical procedures for the synthesis of centric
crank-rocker and double-crank four-bar mechanisms. The procedures are
based on minimizing the longest-to-shortest link-length ratio and finding the
corresponding extreme transmission angle. The addressed problems include
designing the crank-rocker to convert a full-rotation input into a re-rocking
motion of a desired stroke angle, and designing the double-crank mechanism
to convert uniform rotation into a non-uniform, cyclically varying rotation
with a given non-uniformity characteristic. The proposed approach has led to
simple closed-form solutions for the two design problems.

1 Introduction

Crank-type inversions of a Grashofian four-bar chain include the simple crank-rocker
and the double-crank (drag-link) mechanisms. In their simplest use as function
generators, the crank-rocker converts full input rotation into a re-rocking output,
while the double-crank linkage converts uniform full-rotation input into a full, but
non-uniform, rotational output. According to Grashof’s criterion, a four-link chain
yields a linkage mechanism with at least one fully-rotatable link if the sum of the
shortest and the longest links of the chain is less than the sum of the remaining
two. Furthermore, if the shortest link is chosen as the ground link, the result is a
double-crank mechanism. A crank-rocker mechanism results, on the other hand, if
the shortest link is adjacent to the ground link.
Dimensional synthesis of linkage mechanisms usually involves two design criteria
that are used to assess the design performance. The first criterion pertains to the
quality of motion transmission in the mechanism and the other is related to the
requirement that mechanism links be of comparable lengths (see for instance, [1 -
5]).
Quality of motion transmission in a four-bar linkage is assessed using the transmis-
sion angle - the included angle between the coupler link and the output link. The
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closer the extreme value of this angle is to 90 deg, the better is the quality of motion
transmission in the mechanism. Linkages with extreme transmission angles less than
45 deg (or larger than 135 deg) are considered impractical, especially for high-speed
applications.
On the other hand, it is often desirable that the links of a linkage be of comparable
lengths to create conditions for better realization of the mechanism. In a crank-
rocker mechanism, too short a crank is undesirable due to many reasons, among
which is the increased sensitivity to length variation caused by manufacturing errors
and joint clearances. In a drag-link mechanism, on the other hand, too long a crank
leads to larger mechanism size and increased inertia effects.
Mechanism designers usually place limitations on minimum and maximum link
lengths. The limitations often take the form of inequalities that are fulfilled through
design iteration.
In this paper, design equations are developed for crank-rocker and double-crank
linkages based on analytically minimizing the longest-to-shortest link-length ratio
Developments are restricted to centric crank-type linkages, in which case the in-
put displacement between the two limiting positions of a mechanism is 180 degrees.
Hereafter, the term “drag-link” will be used instead of “double-crank,” for conve-
nience.

2 Crank-rocker mechanism

Figure 1 shows a crank-rocker 4-bar in its limit positions in which the crank and
the coupler links are inline. Angles ϕ and ψ denote input and output displacements
measured from position 1 of the linkage and ∆ϕ and ∆ψ denote total input and
output displacements between the two limit positions. If angle ∆ϕ is 180 degrees,
the crank-rocker is said to be centric.

Figure 1: Crank-Rocker Limit Positions
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Let it be desired to design a centric crank-rocker to generate a re-rocking motion
with a given re-rocking stroke ∆ψ. We need to specify a suitable set of link lengths
that correspond to the specified ∆ψ and, at the same time, fulfill other design
objectives. The two main design objectives addressed here are those of quality of
motion transmission and of the highest link-length ratio.
In Fig. 1, the link lengths are l1, l2, l3,and l4, which are lengths of the fixed
link, the input crank, the coupler link, and the output link, respectively. Following
the traditional course of action, we switch from these metric dimensions to non-
dimensional link-length ratios. This can be done by taking the fixed link length
l1 for the unit of length and relating the remaining lengths to it. This yields the
following link-length ratios.

a =
l2

l1
, b =

l3

l1
, c =

l4

l1
, and d = 1 (1)

Synthesis equations are developed from geometrical relations of Figs. 1 and 2. As
Figure 2 illustrates, the transmission angle reaches its extreme values when the
input crank becomes coincident with the fixed link. Since the input displacement
between the two limit positions (Fig. 1) is ∆ϕ = 180 deg., the extreme values of
the transmission angle, µmin and µmax, are deviated equally from 90 deg. [2 – 7].
With this fact in mind, it can be shown from the triangles B’C’D and B”C”D that
the link-length ratios fulfill the following two equations.

Figure 2: Extreme Transmission Angles of Crank-Rocker

a2+ 1 = b2+ c2 (2)

and

a = b c cosµmin (3)
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Based on Grashof’s criterion, the input link AB must be the shortest among the four
links. From Eq.(2), it then follows that the ground link AD, which is represented
by the unity, is the longest. Consequently, parameter ais the shortest-to-longest
link-length ratio in a centric crank-rocker mechanism. To ensure link lengths of
comparable magnitudes, this ratio should be maximized.

Equations (2) and (3) involve the sought-for link-length ratios and the extreme
transmission angle. Since there are four unknowns in two equations, any two of
the unknowns can be assigned arbitrarily. The usual approach is to assign a least-
acceptable transmission angle µmin and one of the link-length ratios and solve for
the remaining two ratios. The resulting from this approach solution might turn to be
unsatisfactory due to unacceptable link-length ratios. Usually, iteration is necessary
to find an acceptable solution.
To avoid iteration, the approach proposed here suggests looking for an analytical
solution to Eqs.(2) and (3) that maximizes link-length ratio a. We add the condition:

a → maximum (4)

Brodell and Soni [6] provided formulae for a, b, and c that fulfill Eqs.(2) and (3)
and the desired re-rocking stroke ∆ψ. The formulae are:

b =

√
1− cos∆ψ

2 cos2µmin

(5)

c =

√
1− b2

1− b2 cos2µmin

(6)

a =
√
b2+ c2− 1 (7)

It is seen from the above equations that for given ∆ψ and µmin, link-length ratio
a is a function of b (since c is given in terms of b). To maximize a, therefore, the
derivative of a with respect to b must be zero. That is:

∂a

∂b
= 0 (8)

One approach here is to substitute from Eqs.(5) and (6) into (7), carry out the
differentiation, and solve Eq.(8) for b. This procedure, however, may be skipped by
directly noticing from Eqs.(2) and (3) that the dependence of a on b is the same
as on c. Based on known concepts from differential calculus, function a will be
maximum or minimum if b and c are equal to each other. Equation (8) therefore
implies that:

b = c (9)

Substituting this result into Eq.(6) and rearranging terms gives:

b4 cos2µmin − 2b2+ 1 = 0 (10)

195



Proceedings of XXXVII International Summer School–Conference APM 2009

Equation (10) is a bi-quadratic in b leading to four possible solutions for b. However,
only two of the four solutions are positive and are:

b =
1√

1− sinµmin

(11)

and

b =
1√

1+ sinµmin

(12)

By recalling that link-length ratio b cannot be greater than unity, only solutions by
Eq.(12) apply here. Substitution from Eq.(12) into (5) and rearranging yields:

sinµmin = cos2
∆ψ

2
(13)

Equation (13) relates µmin to ∆ψ and involves no link-length ratios. Choosing µmin
in accordance with this equation ensures maximization of the link-length ratio a.

Back substitution from Eq.(9) and (12) into Eq.(7) gives the maximum link-length
ratio a as:

a =
cosµmin
1+ sinµmin

(14)

Substituting from Eq.(13) into (14) and (12) yields the link-length ratios in terms
of the desired stroke ∆ψ in the form:

a =
sin(∆ψ

2
)√

1+ cos2(∆ψ
2

)
(15)

b = c =
1√

1+ cos2(∆ψ
2

)
(16)

Equations (15) and (16) can be used instead of Eqs.(5), (6), and (7) whenever a
maximized shortest-to-longest link-length ratio is desired. The extreme transmission
angle in this case cannot be assigned arbitrarily and should be obtained from Eq.(13).

To illustrate the above results, Equations (5), (6), and (7) have been plotted in Fig.
3 against ∆ψ for a number of values of µmin. Note from this figure that in all cases,
the curve for link-length ratio a reaches its maximum point when the curves for b
and c intersect with each other, i. e., when b = c, as given in Eq.(9).

Figure 3 also illustrates that µmin and ∆ψ must fulfill the inequality:

∆ψ+ 2µmin ≤ 180o (17)

At strict equality in Eq.(17), link-length ratios a and c become zero and link-length
ratio b becomes unity.
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Figure 3: Link-Length Ratios of Crank-Rocker vs. Rocking Stroke

3 Drag-link mechanism

Figure 4 shows a drag-link mechanism in two finitely separated positions in which
coupler link BC is parallel to ground link AD. A velocity analysis of this mechanism
would show that in the two positions shown, the input and output links instanta-
neously rotate at the same speed and the velocity ratio, dψ/dϕ, hence is unity.

Drag-link motion may be described using the generated difference between angular
positions α and β of the input and the output links, respectively. Because the
coupler link BC must be longer than the ground link AD, angle α is always greater
than β and the output link CD hence always ”lags” behind the input link AB. A
lag angle, L, therefore is introduced as:

L = α− β (18)

Tsai [7] showed that the lag L reaches its minimum value, Lmin, in the position
AB1C1D where ϕ = 0 and reaches its maximum value, Lmax, in the position AB2C2D
where ϕ = ∆ϕ. A typical shape of the drag-link displacement function, ϕ = f(ψ),
is shown in Fig. 5.

The change in lag, dL, is the delay generated in the output displacement relative
to the input displacement. The delay generation can be viewed from Fig. 5 as the
deviation of the displacement curve from the diagonal line. The maximum delay,
∆L, therefore, is given by:

∆L = ∆φ− ∆ψ (19)

This work is limited to the case ∆ϕ =180 deg so that:

∆L = 180o− ∆ψ (20)

197



Proceedings of XXXVII International Summer School–Conference APM 2009

Figure 4: Drag-Link Mechanism in parallel and Anti-parallel Positions

One kind of drag-link synthesis problems is to design the mechanism to generate
a specified maximum delay ∆L. We seek a drag-link mechanism to generate the
desired ∆L while achieving a good quality of motion transmission and a minimum
longest-to-shortest link-length ratio. Al-Dwairi [3] showed that minimizing this ratio
means minimization of the space occupation of the drag-link.
To synthesize the drag-link, we begin by analyzing the drag-link positions to obtain
relationships among the mechanism parameters and characteristics. By referring
to Fig. 4, we use the same notation {a, b, c} for the drag-link ratios as given in
Eq.(1). With the preserved notations, it can be shown that Eqs.(2) and (3) hold for
the drag-link mechanism and can be derived from the triangles DB’C’ and DB”C”
of Fig. 6, which shows the drag-link in its extreme-transmission-angle positions. As
with the centric crank-rocker, angles µmax and µmin are deviated equally from 90
deg.
Design equations for synthesizing centric drag-link mechanisms to generate a speci-
fied maximum delay ∆L with an assigned µmin were derived by Tsai [7] who arrived
at the following results for the link-length ratios:

c =
1

sin(∆L
2

)
(21)

b =

√
c2− 1

c2 cos2µmin − 1
(22)

a = b c cosµmin (23)

In order to minimize the longest-to-shortest link ratio a, we notice that the depen-
dence of a on b is similar to the dependence of aon c in both Eq.(2) and (3) and
conclude directly that ratio a becomes extreme when b and c are equal to each
other. This fact is illustrated in Fig. 7 which depicts the link-length ratios from
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Figure 5: Typical Drag-Link Displacement Function

Eqs.(21), (22), and (23) versus the maximum delay ∆L for various values of µmin.
Note that for any given µmin, link-length ratio a reaches its minimum at the same
∆L at which the curves for b TRIAL RESTRICTION and c intersect with each
other.
Based on this result, we replace the left-hand side of Eq.(22) with c and rearrange
terms to obtain:

c4 cos2µmin − 2c2+ 1 = 0 (24)

Equation (24) is similar to Eq.(10) derived for the link-length ratio b of the crank-
rocker. Solution of this equation yields two possible solutions: either

c =
1√

1− sinµmin

(25)

or

c =
1√

1+ sinµmin

(26)

Solution by Eq.(26) yields values of c less than unity and is unacceptable here. The
only valid solution is by Eq.(25). Hence:

b = c =
1√

1− sinµmin

(27)

Substituting from Eq.(27) into Eq.(23) yields the minimum of the link-length ratio
a in the form:

a =
cosµmin

1− sinµmin

(28)
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Figure 6: Extreme Transmission Angles of Drag-Link

To express the drag-link ratios in terms of the desired maximum delay ∆L, equate
the left-hand side of Eq.(26) to that of Eq.(21) to arrive at:

sinµmin = cos2
∆L

2
(29)

Incorporating this result into Eqs.(27) and (28) yields:

b = c =
1

sin(∆L
2

)
(30)

and

a =

√
1+ cos2(∆L

2
)

sin(∆L
2

)
(31)

A drag-link mechanism designed using Eqs.(30) and (31) generates the specified
delay ∆L with a minimum transmission angle found from Eq.(29) and has the least
possible longest-to-shortest link-length ratio a.

4 Conclusions

An examination of the equations derived above for centric crank-rocker and drag-
link mechanisms shows a strong analogy between the two designs. This analogy is
due to the fact that both designs are inversions-on-the-input of each other. This
analogy was analyzed by Tsai [8] who expressed it as a one-to-one-correspondence
between the two mechanisms. Reflecting this correspondence onto the material of
this paper allows constructing the table shown below, which contains unified design
formulae that can be used for both inversions. In the table below, the variable x
denotes ∆ψ/2 for the crank-rocker and ∆L/2 for the drag-link. This implies that if
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Figure 7: Link-Length Ratios of Drag-Link vs. Maximum Delay

a crank-rocker that generates a given rocking stroke ∆ψ is inverted on its input, the
resulting drag-link will generate a maximum delay ∆L that is equal to the rocking
stroke ∆ψ of the original crank-rocker, and vise versa.

Another point worth of clarification here is the cost of optimizing the highest link-
length ratio in the two inversions. This cost can be recognized by comparing Eq.(17)
with Eq. ( 13). From Eq.(17), if we were not to optimize the link-length ratio a, we
could select any µmin up to (90 deg-∆ψ/2) or (90 deg - ∆L/2). A designer would
usually select µmin some 4-5 degrees below these limits. To optimize a, however,
angle µmin is now constrained to Eq.(13).

Crank-rocker Drag-Link Formula
input crank
ground link

ground link
input crank

sinx√
1+cos2 x

input crank

coupler link

input crank

rocker

ground link

coupler link

ground link

output crank
sin x

sinµmin sinµmin cos2x

To illustrate this point, Figure 8 is provided which is a plot of Eqs.(13) and (17).
As this figure shows, optimization is achieved at the expense of some decrease in
the quality of motion transmission.

5 Illustrative example

Let it be desired to design a centric crank-rocker to generate a re-rocking stroke of
∆ψ = 30 deg with a ground link length of l1 = 200 mm. The input-crank length is
desired to be the maximum possible.

Solution
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Figure 8: Optimizing the highest link-length ratio at the expense of some loss in the

quality of motion transmission

Using the formulae given in Table 1 with x = ∆ψ/2 = 15 deg and ground link =
200 mm, the required mechanism dimensions are found to be:

input crank = 200
sin 15o√
1+ cos215o

= 37.23mm

coupler link = output rocker = 37.23/sin15o = 143.85mm

Upon inverting this crank-rocker on its input, a drag-link mechanism results with
the following dimensions (see Table 1):
ground link = 37.23 mm;
input crank = 200 mm;
coupler link = output crank = 143.85 mm.
The drag-link generates a maximum delay of ∆L = ∆ψ = 30 deg.
The extreme transmission angle in both inversions is found to be:

µmin = sin−1(cos215o) = 68.91o.

Summary

The paper provided closed-form solutions to the position synthesis of centric crank-
rocker and drag-link mechanisms based on minimizing the longest-to-shortest link-
length ratio. By introducing this minimization constraint, no optimization search is
required and the extreme transmission angle is defined uniquely. The paper demon-
strated that this minimization is achievable at the expense of some decrease in the
achievable quality of motion transmission. Using kinematic inversion, a unified set of
design equations is developed that can be used for both crank-rocker and drag-link
mechanisms.
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Abstract

In present work the causes of heterogeneity of strain-stressed state of tex-
tile tape winded up on the solid are analyzed. Influence of geometric shapes
of objects which are reinforced by the tape on localization and character of
heterogeneity is considered. Methods of strains and stresses calculation in the
process of reinforcing of complex shape objects by elastic textile materials are
proposed. As example of the problem of reinforcing objects by materials with
hereditary properties, a problem of the tape winding on the cylindrical tube
and corresponding to constitutive equations of differential type is investigated.
The tape is supposed to have canvas structure.

1 Introduction

Tape winding is the widespread operation in manufacture and reinforcing of many
products. From the point of view of quality improving of a created product signif-
icant interest has development of calculation methods which allow to find way for
elimination of heterogeneities stress-strained state of the tapes. Therefore develop-
ment of the theory predicting deformations and the pressure arising during winding
in the tapes, possessing various rheological characteristics, is an actual problem.
Successes in solution of this problem can form a basis for development of recom-
mendations on selection of materials and textile structures of used tapes and on
designing technologies of winding [2], [3].

2 Various causes of the tapes heterogeneity

Studying the tape winding processes lead us to a lot of difficult problems of shell
mechanics. In particular, questions of deformation and laying the tapes quite often
can be considered within the limits of the theory of soft shells, i. e. the shells not
resisting to bending.
Thus it is easy to reveal some typical conditions of occurrence of heterogeneity of
deformations and tape pressure. These heterogeneities can be caused by geometrical
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properties of wind-up object. Lets point out some examples. It is possible to specify
the heterogeneity, arising at tape winding on bent parts of the tubes represented in
figures 1 and 2 [4].

Figure 1. Tube 1 Figure 2. Tube 2

As you can see at figure 1 with growing of tension of the tape its edges will draw
together, sliding on the surface of the tube. Thus the longitudinal folds on the tape
concentrating in a hollow (in the saddle or the hyperbolic part) of tubes are formed.

As to the tape represented on figure 2 the cross tucks near its edges (if edges do not
adjoin to the surface of the tube) can be formed. At winding on such edges of the
next coil of the tape formation of the specified cross tucks cannot be avoided. Such
mechanism of wrinkles formation can be excluded if to provide edges fitting to the
tube, using elastic tapes and pulling them with sufficient strain. But also in this
case heterogeneity of the stress-strain state of the tape takes place because its edges
are strained less than its middle part.

Calculation methods for investigation of axisymmetric problems about stress-
strained state of the elastic shells covering cylindrical solids are developed in [4],
[5], [6]. In these works the approached calculation methods of axisymmetric elastic
shells covering the cylindrical solids are given. Complexity of problems increases, at
deviations from axial symmetry as in this case fibres or the threads forming textile
structures of tapes, cannot be located all along geodetic lines of the reinforced solid,
and slide on its surface, being displaced to such lines. This phenomenon observed
already in such simple cases as tape winding on a circular cone, can lead to essential
heterogeneities of pressure and deformations fields of the tapes.

For elastic tapes small axial symmetry infringements of problems on the basis of
application asymptotic analysis methods can be considered.

Rather successful development of the nonlinear theory of elastic shells is caused by
that in this case the research problem and the equations of shells in displacements
can be replaced by an equivalent problem of minimization energy functional. For
such case effective numerical methods of research are developed.
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3 On the winding of the tapes with hereditary

properties

Research of inelastic shells cannot in any natural way be reduced to variational
problems as for such shells, unlike elastic shells, it is impossible to enter analogue of
strain energy of their deformation convenient enough for research [1], [6]. Because
of that mathematical research methods of products reinforcing problems by means
of inelastic tapes winding on their surface, even with simple hereditary properties,
till now have not received essential development.
Some promotion in research of these problems can be received with reference to
tubes reinforcing at some simplifying assumptions concerning textile structure of
the tape, it constitutive equations and its winding mode.
Let’s suppose that the thread has textile structure of the canvas, and warps are
directed along the tape and located, as well as cross-section wefts, so rarefied, that
in zero approximation, it is possible to neglect weft influence on the tension of warps.
Rheological properties of the warps are assumed to be defined by linear constitutive
equations of differential type

Pn

(
∂

∂t

)
T = Qm

(
∂

∂t

)
ε, (1)

where Pn
(
∂
∂t

)
and Qm

(
∂
∂t

)
are differential operators of the order n and m accord-

ingly, T is a tension of the thread, ε is its relative elongation.
Let’s consider that winding is realized under the scheme represented in figure 3. On
this scheme the tube 1 of radius R which rotates around the axis Z with angular
velocity Ω and, at the same time moves along this axis with velocity V. The tape
2 constituting the angle ϕ with a vertical is reeled up on the tube. The tape moves
on the tube with feeding package 3 which rotates with angular velocity ω around
of fixed axis and has radius r. Through L(h) the length free (being between the
package and the tube) parts of the warp located on distance h from the bottom
thread which length is equal L0 = L(0), ∆L(h) = L(h) − L0 is designated.
Relaxation processes most actively occur at part of the tape which is between the
feeding package and the tube. During movement in this area the basic and remaining
in the final product differences in the stress-strain states of the tape parts are formed.
These differences arise because of inequality of movement time of different tape parts
between the package and the tube.
That the tape did not slide on surfaces of the feeding package or tubes, warps should
leave from the package in a direction perpendicular to its axis, and on the tube these
treads should settle down on geodetic lines. These conditions will be executed, if
parameters of process will satisfy to equality:

V = RΩ cotϕ. (2)

The specified scheme of the tape winding leads to an inequality of warps tension.
This inequality is connected with distinction ∆L(h) of lengths of those (free) sites
of these threads which settle down between the package surfaces and tubes.
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Figure 3.

Studying of heterogeneity of the tension of the warps is reduced to the analysis of
the calculation of the equation (1) satisfying to boundary conditions of leaving of the
tape from the feeding package and its receipts on the reinforced tube. Such analysis
is fulfilled at a simplifying assumption, that inertness of the tape is negligibly small,
and the value T along each warp remains constant though varies at transition from
one yarn to another, being, thus, function of parameter h defining position of the
yarn in the tape. In this case the analysis of movement and deformations of the
tape can be absolutely completed by numerical methods on the basis of the common
solution of the equation (1).
The certain notion about obtained results give us the studying of the tape corre-
sponding constitutive Fohgt equation, i. e. to the equation

T(h) = Eε(l, h, t) + µ∂ε(l, h, t)/∂t, (3)

where E and µ are coefficients of elasticity and viscosity, l is Lagrange coordinate of
the thread particle, entered on uniformly stretched threads having relative elongation
ε0 by the formula

l = (1+ ε0)s. (4)
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Here s is Lagrange coordinate entered on non deformed threads as it is specified in
[1].

Positions of the thread particles in space are characterized by Euler coordinates x
which are counted along threads in direction of its movement from package. The
coordinate x of any section of some threads which are at distance h from the bottom
edge of the tape can be considered either as function from h, s, t or as function from
h, l, t.

In the latter case we receive

x(h,l, t) =
1

1+ ε0
× (5)

×
((
1+

T(h)

E

)
(l+ωrt) −

(
ε0−

T(h)

E

)
µωr

E

(
e− E

µωr
(l+ωrt) − 1

))
.

Velocities of movement of the tape particles are defined by the equation

V =
∂x(h, l, t)

∂t
=

ωr

1+ ε0

(
1+

T(h)

E
+

(
ε0−

T(h)

E

)
e− E

µωr
(l+ωrt)

)
. (6)

Distribution of relative elongations of warps in the tape can be calculated by the
formula

ε(l, h, t) =
T(h)

E
+

(
ε0−

T(h)

E

)
e− E

µωr
(l+ωrt) (7)

4 Stress distribution at the tape

The value T(h) defining the tension of the thread, at distance h from the bottom
edge of the tape, can be calculated on the basis of boundary conditions characterizing
the tape from package and its receipts on the tube at arbitrary fixed parameters of
process: R, r, Ω , ω, ϕ, ε0 and also material characteristics of warps µ and E. These
calculations are easily realized by means of rather simple program. Typical for any
values of parameters R, r, Ω , ω, ε0, µ and E the picture of dependence of value
T(h) from the angle ϕ and distances h from the considered point of the tape up to
its bottom edge is given on figure 4.

It is possible to note, that at an insignificant spinning degree of the tapes at winding
the approached formula is fair

T(h) = Eε0+ (1+ ε0)
µ

L+ h cotϕ

(
RΩ

sinϕ
−ωr

)
, (8)

Which together with formulas (5) – (7) allows to make full and elementary calcula-
tion water deformations, pressure and speeds of the tape movement.
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Figure 4. Tension dependence

5 Conclusion

The basic causes of irregularity the stress-strain state of the composites obtained
by tape winding are considered. The solution of a problem of definition of stress
and velocity distributions along the tape with linear hereditary properties during its
winding around a cylindrical tube at stable process is given. The obtained solution
can be used for asymptotical investigations of problems of reinforcing products by
inelastic tapes winding.

Acknowledgements

This work is financial supported by Ministry of Education of Russia.

References

[1] V. Chaikin Applied problems of threads theory - Saint-Petersburg: SPSUTD.
2001. P. 178

[2] Akasaka T. Structural mechanics of radial tires // Rubber Chemistry and Tech-
nolodgy. 1981. Vol. 54, N3. P.461-492.

[3] Ames W. F. Stresses in cylindrically symmetric membranes reinforced with ex-
tensible cords // Journal of the Franklin Institute. 1961. Vol. 272, N 3. P. 185-190.

209



Proceedings of XXXVII International Summer School–Conference APM 2009

[4] Dyatlova P. Numerical methods of investigation of interaction of tubular knit-
ted fabric shells with enveloped solids. // Proceedings of 44 Congress IFKT
”Knitting round the clock”, Saint-Petersburg, 2008. P. 1 - 8.

[5] Dyatlova P. Nonlinear problems of fibre reinforced soft shells. // Book of ab-
stracts of 11th EUROMECH-MECAMAT conference. Mechanics of microstruc-
tured solids: cellular materials, fibre reinforced solids and soft tissues. Torino,
2008. P. 29.

[6] E. Polyakova, P. Dyatlova, V. Chaikin On the finite elements method for in-
vestigation of the interaction of soft shells with solids’ surfaces. // Proceedings
of XXXV Summer School - Conference ”Advanced problems in Mechanics. St.
Petersburg, 2007. P. 85 - 92.

Polina Dyatlova, St. Petersburg State University of Technology and Design, Bolshaya

Morskaya St. 18, St.-Petersburg, 191186, Russia

210



Structural model of the time dependence of elastomeric nanocomposites

Structural model of the time dependence of
elastomeric nanocomposites

Svetlana E. Evlampieva Valery V. Moshev
evl@icmm.ru

Abstract

A mathematical model of elastomeric nanocomposites taking into account
the composite microstructure rearrangement and its influence on the macro-
scopic behavior of the composite is proposed. The structure of the model
includes an elastic spring simulating a macromolecule, two substrates simu-
lating the surface of adjacent filler particles, and a space between the particles
simulating particle concentration (the more the space, the less the concentra-
tion of particles). The elastic nonlinear resistance of the spring simulates the
properties of elastomeric molecules with freely jointed segments. It is assumed
that high attraction peculiar to small-size particles prevents normal disrup-
tion of the macromolecule from the particles, while the longitudinal slip of
macromolecules over the surface of particles is presumed possible. The resis-
tance to such an interaction is considered to be a kind of friction that depends
on the slip velocity. A closer examination of the properties of the proposed
mathematical model shows that it adequately simulates the behavior of real
materials examined experimentally. The physical essence of the relaxation
mechanism simulated by the model is as follows. The specimen is stretched
to a prescribed magnitude, which remains fixed hereafter. The spring begins
to slip from the substrates into the space between them, decreasing thus the
elastic resistance of the the model. The process comes to equilibrium between
the dragged and non-dragged parts of the spring. The decay of stress in time
simulates the relaxation process observed experimentally. The model operates
on elements having physical meaning and can be used by materials scientists
who design new composite materials.

1 Structure of the model

The mechanical behavior of disperse-filled elastomeric composites is known to be
time-dependent. This specific feature of composites is formed under the joint ac-
tion of such independent structural mechanisms as the intrinsic viscoelasticity of
the elastomer, filler-matrix debonding during deformation of the composite system,
plasticizer migration in micro-volumes subjected to nonuniform loading, and, prob-
ably, by some other mechanisms still to be discovered. In the construction of models
of the mechanical behavior of composites within the framework of continuum me-
chanics, the time sensitivity is generally considered as some integral effect.
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Figure 1: Geometry of the structural cell of the proposed model.

However, such an approach cannot satisfy the materials scientists who need the
understanding of peculiarities of the internal structure that predetermine the con-
tinuum behavior of composites.

Consideration of relaxation mechanisms, which is a topic of this communication, is
of great interest to materials scientists. It allows one to find optimal solutions in the
arrangement of composites with prescribed mechanical properties. The aforesaid is
fully applicable to elastomeric nanocomposites. It has been found experimentally
that the structural peculiarities of these composites notably affect the formation of
their continuum behavior.

In the present paper, a mathematical model that is able to take into account the
above mentioned peculiarities of elastomeric nanocomposites is considered. The
structure of composites is characterized by very small sizes of particles and their
high concentration. The spaces between the neighboring particles are less than the
length of a rubber macromolecule, and hence each macromolecule is adsorbed by
several filler particles from the nearest surrounding.

This circumstance is accounted for by the geometrical structure of the proposed
mathematical model (Fig.1). The model includes an elastic spring of length L0
simulating the macromolecule, two substrates of length D simulating the surface of
adjacent filler particles, and an interparticle space Lg simulating the concentration
of particles in the composite.

The elastic resistance of the spring is simulated as close as possible to the properties
of elastomeric molecules with freely jointed segments. Its elongation is represented
by expression [1]

λ =
√
L0(Cthf−

1

f
) + 1.0,

where L0 is the spring length expressed through the number of segmental units, and
f is the tensile force in arbitrary units. The formula takes into account two basic
features of elastomeric macromolecules: dependence of their elastic strength on the
length L0 and their nonlinear increasing resistance to deformation. It is essential
that the elastic resistance of the elastomeric macromolecules increases rapidly as
their length decreases.

It is suggested that the significant adhesive attraction peculiar to small-size particles
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Figure 2: Tensile curves for different extension rates W.

prevents normal separation of the macromolecule from the particles [2], but the
longitudinal slip of macromolecules (spring) over the surface of particles (substrates)
is retained. The resistance to such a longitudinal slip can be treated as adhesive
friction, and it can be represented as a binomial expression

T = T0+ qVm,

in which T is the frictional resistance per unit length of the substrate, is the frictional
force at zero sliding velocity (friction at rest), V is the rate of interfacial sliding, T0,
q and m are the empirical constants [3].

The analysis of the properties of the proposed mathematical model shows that it
can be successfully used for simulating the behavior of real materials observed in a
series of experiments. The proposed approach gives more reliable data concerning
the influence of testing regimes and separate material parameters on the mechanical
behavior of elastomeric composites.

Figure 2 presents the tensile curves obtained using the developed model at various
extension rates. It is seen that the resistance to extension increases with increasing
extension rate obtained experimentally.

The physical essence of the relaxation mechanism is simulated by the model as fol-
lows (Fig.3). The specimen is stretched to a prescribed magnitude, which remains
fixed. At the moment of stop, the spring in the space between the substrates experi-
ences the maximum load. This leads to the slipping of the spring from the substrates
into the gap between them, decreasing thus the elastic resistance of both the bridge
and the model. The process comes gradually until the equilibrium between the
dragged and non-dragged parts of the spring takes place. The decay of stress over
time simulates the relaxation process.
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Figure 3: Relaxation curve.

Figure 4: Nonlinearity dependence of relaxation curves on the prescribed deforma-
tion.

A complete form of the relaxation curve has the shape shown in the scheme (Fig.3g),
where the upper plateau represents short time intervals close to the initial state of
the system, the lower plateau - the state close to equilibrium, and the middle part
- transition from one state to another.

Figure 4 presents the dependence of the relative relaxation modulus on the pre-
scribed strains. Unlike the classical linear elasticity, the obtained relaxation curves
are different, which is attributed to the fact that the structural rearrangements in
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Figure 5: Influence of the parameter Tz on the shape of relaxation curves.

Figure 6: Influence of the parameter m on the shape of relaxation curves.

depth are different [4]. The form of relaxation curves also depends on the prior
extension rate. The equilibrium relaxation elasticity moduli decrease in the case
when the prior extensions are carried out at higher rate.

Figures 5 and 6 illustrates how the static friction and its rate sensitivity to extension
of specimens (preceded the relaxation tests) affect the properties of composites.
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Composite specimens do not recover their primary state after relaxation testing, and
repeated extensions show that their initial modulus increases significantly. However,
this result cannot be considered as an indication of irreversible changes in the behav-
ior of the material. Upon warming-up of the specimens, their initial properties are
recovered, and no structural changes caused by prior actions are observed [5]-[10].
Higher temperatures loosen adhesive bonds and let the thermal motion draw back
the structure to the original state.

2 Conclusions

The structural model of elastomeric composites has been developed which takes
into account structural rearrangements of the composite and their influence on its
macroscopic behavior of the composite.
The proposed relaxation mechanism may be thought of as reversible, since the struc-
tural rearrangements caused by deformation can be removed by simple heating of
the material, which results in restoring its initial properties.
The model operates on elements having physical meaning and, therefore, can be
used by materials scientists in the design of new composite materials.
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Propagation of solid-phase chemical reaction in a
plate under mechanical loading

N. K. Evstigneev A. G. Knyazeva
evstigneev.nk@rambler.ru anna@ispms.tsc.ru

Abstract

Mathematical model of solid-phase chemical reaction in a plate under me-
chanical loading was suggested. Numerical simulation demonstrated that cou-
pling effect influences process behavior essentially. Uniaxial mechanical load
less than one half of material ultimate strength does not make a material
effect on process propagation.

1 Physical problem definition

Figure 1: Problem definition illustration

Let us consider a rectangular plate made from reactive material. The width of the
plate is h, the length is L and the height is δ. The plate is subjected to mechanical
loading, the direction of which is perpendicular to the direction of chemical reac-
tion propagation. Axes of coordinates are placed as it is shown on fig.1. Chemical
reaction in the plate spreads in the direction of x axis. It is suggested that melting
temperature is not reached and the reaction is solid-phase. Heat exchange with the
environment takes place according to Newton law. Inertial forces are neglected con-
sidering that solid-phase reaction propagation velocity is much less than mechanical
disturbance propagation speed. It is required to determine the influence of external
load value and coupling effect on the process flow.
The problem consists of two parts which are solved partly independently if above
mentioned assumptions are taken into consideration. Really, supposing that temper-
ature and concentration distributions are known at every point of time, the problem
of mechanical equilibrium of a plate can be investigated separately [1]. In this prob-
lem time t is a parameter. From the other hand if relations between stress and
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strain tensor components and temperature and concentration are known, we can in-
vestigate the problem of solid-phase reaction propagation with a ”given” additional
heat source or heat sink [2]. Let’s study both problems separately.

2 The problem of mechanical equilibrium of a

plate

If temperature field in a plate is uniform, we may consider that stress tensor com-
ponent perpendicular to xy plane is σzz = 0, i.e. stress state is the state of plane
stress. Therefore all nonzero stress and strain tensors components depend on co-
ordinates x and y only. If nonuniform compound and T = T(x, y) are given, then
under fulfillment of conditions h << L, δ << L we may suppose that

1

h

h∫

0

σyy(x, y)dx = P,
1

h

h∫

0

σyy(x, y)dx = 0. (1)

It follows from generalized Hooke’s law that

σij = 2µεij+ δij(λεkk− Kw), (2)

where w = 3 [αT(T − T0) +
∑n

k=iαk(Ck− Ck0)], Ck - mass concentrations of com-
ponents, αT - thermal expansion coefficient, αk - coefficients of volume expansion,
index ”0” corresponds to unstrained state.
If we are interested only in stresses in reaction zone, which is far from load-bearing
faces, we may confine ourself to one-dimensional problem and suppose that all
quantities depend only on x coordinate. Then equilibrium equations are satis-
fied identically and we should use compatibility equations. Two of them are left:
∂2εyy

∂x2
= 0,

∂2εzz

∂x2
= 0.

So, εyy = Ax+ B, εzz = Cx+D. (3)

We suppose there is no shearing. It means that

1

h

h∫

0

σyy(x)xdx = 0,
1

h

h∫

0

σzz(x)xdx = 0. (4)

Substituting (3) into (2) and using (1) and (4) we get a set of equations to determine
constants A,B, C and D. As a result we have expressions for calculating all nonzero
stress and strain tensor components — σxx, σyy, εxx, εyy, εzz. Formulae are omitted
because of their unhandiness.

3 The problem of chemical reaction propagation

in a solid phase

In dimensionless variables
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θ =
T − T0

T∗ − T0
, τ =

t

t∗
, w =

w

w∗
, ekk =

εkk

ε∗
, skk =

σkk

σ∗
, ξ =

x

x∗
, P =

P

P∗
,

where T∗ = T0+
Q

cρ
, t∗ =

cρRT2∗
EQk0

exp

(
E

RT∗

)
, w∗ = 3αT (T∗ − T0) , x∗ =

√
λt∗
cρ
,

ε∗ =
3KαT (T∗ − T0)

λ + 2µ
, σ∗ = 3KαT (T∗ − T0) , P∗ = µαT (T∗ − T0) ,

the problem takes form

∂θ

∂τ
=
∂2θ

∂ξ2
+
∂y

∂τ
− δ(θ+ σT)

∂ekk

∂τ
, (5)

∂y

∂τ
=
1

θ0
(1− y)exp

(
θ − 1+ (1+ σT)AδΠ

β(θ+ σT)

)
. (6)

Initial conditions: τ = 0: θ = 0, y = 0.
Boundary conditions:

ξ = 0 :
∂θ

∂ξ
= Nu(θ− θe) − q,

ξ = L :
∂θ

∂ξ
= −Nu(θ− θe),

where
∂ekk

∂τ
=

1

1− h1

∂w

∂τ
+

6h1

(3− 2h1)(1− h1)

1

L

{(
ξ

L
−
2

3

)
∂I1

∂τ
−
2

L

(
ξ

L
−
1

2

)
∂I2

∂τ

}
,

Π = −(sxxexx+ syyeyy), I1 =
L∫

0

wdξ, I2 =
L∫

0

wξdξ,w = θ + g · y.

Dimensionless parameters are as follows: A =
kσQ

E
, δ =

(3KαT)
2(T∗ − T0)

cρ(λ+ 2µ)
, σT =

T0

T∗ − T0
, β =

RT∗
E

, θ0 =
E

RT2∗
(T∗ − T0), h1 =

2µ

λ+ 2µ
, g =

αp− αr

αT(T∗ − T0)
, θe =

Te− T0

T∗ − T0
,

q =
q0x∗

λT(T∗ − T0)
, Nu =

αx∗
λT

, L =
h

x∗
.

Here T is temperature, y — conversion degree, εkk — sum of nonzero strain tensor
components, σkk — sum of nonzero stress tensor components, ξ — coordinate, Q —
thermal effect of chemical reaction, c — heat capacity, ρ — density, E — activation
energy, R — universal gas constant, k0 — pre-exponential factor, λ and µ — Lame
coefficients, K — bulk modulus, kσ — coefficient of chemical reaction sensitivity to
the work of tensions, q0 — heat flow density, λT — thermal conductivity coefficient,
α — heat exchange coefficient.
Resulting parameters characterize: σT — ratio of initial temperature to the value
of heating, g — relative volume change (ratio of concentration deformation to the
thermal one), h1 — mechanical properties of substance, β — chemical reaction
activation energy, θ0 — temperature drop, P — external load value, δ — coupling
coefficient, A — sensitivity of chemical reaction to the work of stresses.

4 Computation results

The problem was solved by double-sweep method using implicit difference scheme
and linearization of kinetic term. Physical parameters ranges were chosen typical for
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intermetallic compounds and it was fixed in calculations that δ = 0.03, σT = 0.15,
β = 0.1, L = 50, Nu = 0, g = 0.5, P = 0.01. Plate length, L, was chosen to be 10
times larger than heat penetration zone width, which was estimated as 1/u, where
u is chemical reaction propagation velocity. External load value, P, was selected as
10−3− 10−2 of ultimate tensile strength of concerned material.

Program was tested to check its accuracy. Equation (5) can be solved analyti-
cally in the next extreme case: inert problem without mechanical loading and
without chemical reaction, L → ∞, Nu = 0. The solution takes form θ(ξ, τ) =

2q

√
τ

π
exp

(
−
ξ2

4τ

)
− qξerfc

(
ξ

2
√
τ

)
, which was replicated numerically accurate

within 1%.

Grid convergence was also investigated. Plate temperature at ξ = 0 at the point of
time τ = 30 was calculated using different values of time and coordinate steps. It
was found out that if ∆ξ ≤ 0.2 and ∆τ ≤ 0.005 the results differ less than by 1%.
So, time and coordinate steps were chosen to be ∆ξ = 0.2, ∆τ = 0.005.

In the process of numerical investigation of full model the distributions of temper-
ature, conversion degree, stress and strain tensor components, chemical reaction
propagation velocity at every point of time and surface temperature evolution were
determined and analyzed.
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Figure 2: 1— δ = 0.03, A = 0, 2— δ = 0.03, A = 0, 3— δ = 0, A = 20

Fig.2 describes stress and strain fields. It can be seen that taking into consideration
connectivity effect results in differencies of stress and strain fields in the area of
intensive chemical transformations.

Chemical reaction propagation velocity was determined as follows: after chemical
reaction initiation a point was searched where conversion degree amounted y1/2 =

0.5. Linear approximation of y function values was used. After 10-20 time steps a
new point corresponding to half reaction was detected. Flame propagation velocity

was calculated according to u =
ξ2− ξ1

N∆τ
, where N is the number of time steps

passed since the moment of last calculation. Dependencies of flame propagation
rate on sensitivity coefficient and on time are shown on fig.3. Increasing of values
after τ > 90 (curves 3 and 4) is caused by the fact that reaction front has spread
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Figure 3: Evolution of flame front speed. 1— A=0, 2— A=3, 3— A=6, 4— A=9

deep into the plate and reactant near the right border had enough time to warm up
by the heat emitted from reacting layers. Enlarging plate length it is possible to get
rid of border influence and to get a stationary reaction propagation.
Variation of external load value does not result in variation of flame propagation
velocity. Differencies in values are about calculation accuracy.

Let us consider average value of conversion degree: 〈y〉 =
1

L

L∫

0

ydξ. Its evolution

is shown on fig.4. Increasing of sensitivity coefficient results in slowing down the
reaction at the beginning of the process, but in the course of time this difference
disappears.
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Figure 4: Average conversion degree. 1— A=0, 2— A=5, 3— A=10, 4— A=15

Time of half reaction τ1/2, that is the moment of time when average value of con-
version degree 〈y〉 = 0.5 depends on sensitivity coefficient in a non-linear way. It
surges considerably with the increase of A. Increasing of external load value up to
one half of material ultimate strength leads to variation of τ1/2 within the scope of
only 10 %.
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Figure 5: Time of half reaction. 1— P = 0.01, 2— P = 0.5

In view of absence of typical temperature surge near the hot surface, ignition mo-
ment was fixed when conversion degree in a certain point reached the value y = 0.01.
It was determined that increasing of sensitivity coefficient slows down surface tem-
perature growth. It is caused by penetration of ignition point deep into the plate.
Thus, for example, for δ = 0.03, A = 20 coordinate of ignition point is ξign = 4.2.
If A = 0, then ignition always occurs on the plate surface.

5 Conclusion

The coupling model of reaction propagation under mechanical loading was suggested.
The algorithm of numerical investigation of non-linear model was developed; para-
metric investigation of the problem was carried out; the influence of coupling effect
on reaction propagation was shown. It was ascertained that uniaxial mechanical
load less than one half of material ultimate strength does not make a material effect
on reaction propagation.
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Application of method of special series for solution
of nonlinear problems of continuum mechanics

Mikhail Yu. Filimonov
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Abstract

Different constructions of special series with coefficients calculated recur-
rently are presented. This approach is used for the representation of solutions
of a wide class of nonlinear problems of continuum mechanics.

1 Introduction

One of the most perspective ways to construct solutions of nonlinear partial dif-
ferential equations is combination of numerical and analytical methods. I n this
presentation analytical method of special series is used. Essence of this method is in
expansion of solutions into a series by the powers of one or several special functions
provided the coefficients of the series to be computed recurrently.
In contrast to Fourier method, which also used for solving nonlinear partial differen-
tial equations, method of special series allows to obtain solutions with preliminary
assigned accuracy because the developed approach leads to a sequence of finite sys-
tems of ordinary differential equations. The obtained sequence turns out to be linear
even for nonlinear initial equation. This fact allows to obtain new results: in a num-
ber of cases it is possible to prove global convergence of constructed series including
for unbounded domains, where numerical methods occur principal difficulties. This
approach allows to obtain constructive solutions in the form of convergent series
also for boundary-initial problems for a certain class of nonlinear equations. Some
numerical results are presented for nonlinear equation.
The method of special series, whose development has been stimulated by the work of
A.F. Sidorov [1], is included into another group of analytical approaches. The main
idea is to expand a solution in a power series with respect to one or several functions
chosen in a special way [2, 3] (in the sequel, we call these functions basic). Such a
choice, in contrast to the methods of Galerkin type, allows one to find solutions with
a check accuracy because the used approaches leads to a chain of finite systems of
differential equations, which are, as a rule, linear even for nonlinear equations to be
solved, that allows one to obtain new results: in a number of cases it is possible to
prove the global convergence even in nonrestricted domains [4, 5], where numerical
methods meet essential difficulties. In constructing like this one only the first term of
the series may be found as a solution of a nonlinear differential equation. In contrast
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to Taylor power series, which locally converge for equations of Kovalevskaya type [6]
under assumption of analyticity of the problem initial conditions, the constructed
special series may converge for wider classes of equations and systems. This special
series may be also used for representation of solution of Kovalevskaya type equations
but with nonanalytical initial conditions [7].
Another field of application of special series is connected with the possibility of using
them to solve initial-boundary value problems. In case zero boundary conditions are
given, for a wide class of nonlinear equations it is possible to construct series con-
verging to a solution of the problem and exactly satisfying the boundary condition
[4] including two-dimensional complex domains [8].
Thus, the considered different constructions of special series turn out to be conve-
nient apparatus for constructive investigation of the structure of solutions of non-
linear partial differential equations and allow one to prove theorems of the existence
of solutions of initial-boundary value problems.

2 Statement of a problem and construction of the

solution

Let us describe certain possible approaches to construct special series on the example
of the following initial-boundary value problem:

utt = G(t, u, u2uxx, u
2u2x), (1)

ut(x, 0) = u1(x), u(x, 0) = u0(x), (2)

u(0, t) = u(π, t) = 0, t ≥ 0. (3)

Here G is an analytical function, besides, probably, the first one. Let G be repre-
sented for |u|, |u2x|, |uxx| ≤ D (D > 0) in the form of absolutely convergent series

G =

∞∑

q=1

∑

m+k+l=q

βmkl(t)u
m+k+lukxxu

2l
x .

Assume, that β100(t) ≡ 0, βmkl(t) ∈ C[0,∞) and the following conditions are
fulfilled:

∑

m+k+l=q

|βmkl(t)| ≤ bq,
∞∑

q=1

bq = B, bq, B = const.

The following theorem is valid:
Theorem 1. Let the initial conditions uν(x), ν = 0, 1 is represented in the form of
series

uν(x) =

∞∑

n=1

gνnS
n(x), gνn = const (4)

and function S(x) satisfies equation

(
dS

dx

)2
=

∞∑

k=0

αkS
k, αk = const, (5)
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where the series (4), (5) are assumed to be convergent for |S|≤A, A>0 and conditions
are fulfilled g01 = g11 = 0 and |g0n| + |g1n| + |αn| ≤ 0.5n−4Mn, 0 < M < A−1.
Then series

u(x, t) =

∞∑

n=1

un(t)S
n(x) (6)

is a solution of Cauchy problem (1), (2) for all 0 ≤ t ≤ T,
T = −b−1 ln(AM), b ≥ b0 > 1 and x, such that |S(x)| ≤ A.
P r o o f.
Let check probability of recurrence in calculating coefficients of series (6) un(t). At
the beginning we find u2uxx.

uxx =

∞∑

n=1

n(n− 1)un(t)S
n−2(x)S2x(x) +

∞∑

n=1

nun(t)S
n−1(x)Sxx(x) =

∞∑

n=1

n(n− 1)un(t)S
n−2(x)

∞∑

k=0

αkS
k(x)+

∞∑

n=1

nun(t)S
n−1(x)0.5

∞∑

k=1

kαkS
k−1(x).

Finally we have

u2uxx =
∑

n≥4

[ ∑

m1+m2+m3−2+k=n

um1(t)um2(t)m3(m3− 1)um3(t)αk+

0.5kum1(t)um2(t)m3um3(t)αk

]
S(x)n.

Similarly

u2u2x =
∑

n≥4

∑

m1+m2+m3+m4+k=n

um1(t)um2(t)m3um3(t)m4um4αkS
n(x).

Further, substituting the found expressions to function G and equating expressions
at the same powers of S(x), to calculate coefficients of series (6) un(t) we obtain a
sequence of ordinary second order differential equations

u ′′
n(t) = Gn(t, um(t)), m < n, (7)

with initial conditions

u ′
n(0) = g1n, un(0) = g0n, n > 1. (8)

For solutions of equations (7), (8) the following estimations are valid:

|un(t)| ≤ n−4Mn exp(btn), n ≥ 2, 0 ≤ t ≤ T. (9)

To prove estimations (9) method of induction is used. To estimate coefficients of
series (6) condition g01 = g11 = 0 is used. In this case u1(t) ≡ 0 and we have
sequence of equations (7) with m < n (in the opposite case we also have a sequence
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of linear equations with m ≤ n and the question of estimations of coefficients is still
open).
Now with using estimations (9) it is possible to prove convergence of series (6) to
solution of Cauchy problem (1), (2). Theorem 1 is proved.
R e m a r k 1.
If the consistent basic function S(x) satisfies an additional condition S(0) = S(π) = 0

then series (6) is a solution of initial–boundary value problem (1) – (3) also.
For example such a function is S(x) = S1(x) = sin x for which equation (5) has the
form (S ′

1)
2 = 1− S21. The corresponding series (6) has written in the form

u(x, t) =

∞∑

n=1

un(t) sinnx. (10)

If S(x) = S2(x) = x(x − π), then equation (5) has the form (S ′
2)
2 = π2+ 4S2. The

corresponding series (6) is written in the form

u(x, t) =

∞∑

n=1

un(t)x
n(x− π)n.

Let show application of special series (10) for the following model problem for which
numerical computations will be carred out

utt = u2uxx, (11)

ut(x, 0) = 0, u(x, 0) = u0(x), (12)

u(0, t) = u(π, t) = 0, t ≥ 0. (13)

After substitution of series (10) into equation (11) to find the coefficients we get a
sequence of equations

u ′′
n(t) = u1(t)

2n(n− 1)un(t)) +
∑

m+k+l−2=n

um(t)uk(t)l(l− 1)ul(t)

−
∑

m+k+l=n

um(t)uk(t)l
2ul(t),

(14)

Formulation of Theorem 1 is better to be defined concretely for this particular
problem.
The following theorem is valid.
Theorem 2. Let initial conditions (12) be represented in the form

u0(x) =

∞∑

n=2

g0n sinn(x), (15)

and |g0n| ≤Mnn−4 M = const, 0 < M < 1.
Then series (10) is a solution on initial–boundary problem (11) – (13) for all 0 ≤
t ≤ T, T = − b−1 lnM > 0, b ≥ b0 > 1 and 0 ≤ x ≤ π.
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Proof of Theorem 2 is similarly to the proof of Theorem 1. In this case we note
that boundary conditions (13) are automatically fulfilled by basic function choosing.
Coefficient of series (10) are found as follows from equations (14):

un(t)=

∫ t

0

∫τ

0

[
∑

m+k+l−2=n

umukl(l− 1)ul−

∑

m+k+l=n

umukl
2ul

]
dτdτ+g0n.

(16)

Here we used condition that g01 = 0 and, consequently, u1(t)≡0. Thus series (13) is
solution ob initial–boundary value problem in all of area on x and for all 0 ≤ t ≤ T.

3 Numerical results

Numerical results are presented for model problem (11) – (13) with initial conditions
u0(x) = 0.1 sin2x (fig. 1) and with u0(x)=1/15 sin2x−1/20 sin3x (f. 2). Computa-
tions have been carried out by using MAPLE. First 12 coefficients of series (10) is
found from equation (16) and an approximate solution was summarized

um(x, t) =

m∑

k=1

uk(t) sinkx, m ≤ 12.

Figure 1: (0) – initial condition u0(x) = 0.1 sin2x; (6) – approximate solution
u6(x, 3); (12) – approximate solution u12(x, 3).

Presented computations verify that series (10) converges rapidly. The differences
between |u12(x, t) − u6(x, t)| (fig. 1) and |u12(x, t) − u10(x, t)| (fig. 2) is about 1%
with respect to maxu12(x, t).
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Figure 2: (0) – initial condition u0(x) = 1
15

sin2x − 1
20

sin3x; (10) – approximate
solution u10(x, 1.5); (12) – approximate solution u12(x, 1.5).

Thus, presented constructions of special consistent series by the powers of new basic
functions may be used not only for solutions of Cauchy problems only, but also for
solutions of initial–boundary value problems for a wide class of nonlinear equations
and systems which occur in continua media mechanics.

Acknowledgements

This work was supported by Russian Foundation for Basic Research–URAL 08–01–
99028, by the Program of the Presidium of the Russian Academy of Sciences and
the Program of Integrative Projects between Ural Branch, Siberian Branch, and Far
Eastern Branch of Russian Academy of Sciences.

References

[1] A. F. Sidorov. On Some Representations of Solutions of Quasilinear Hyperbolic
Equations. Chislen. metody mekhan. sploshnoi sredy. Vychisl. Tsentr Inst. Teor.
Prikl. Mekh. Sibir. Otdel. Acad. Nauk SSSR, Novosibirsk, 6, 4, 1975.

[2] V. V. Vasin and A. F. Sidorov. On Some Methods of Approximate Solution of
Differential and Integral Equations. Izv. Vyssh. Uchebn. Zav. Mat., 7, 1983.

[3] M. Yu. Filimonov, L. G. Korzunin, and A. F. Sidorov. Russ. J. Num. Anal.
Math. Mod., 8, 2, 1993.

[4] M. Yu. Filimonov. Representation of Solutions of Mixed Problems for Nonlinear
Wave Equation by Special Double Series. Diff. Uravn., 27, 9, 1991.

229



Proceedings of XXXVII International Summer School–Conference APM 2009

[5] M. Yu. Filimonov. Application of Special Coordinated Series to the Solution
of Nonlinear Partial Equations in Unbounded Domains. Diff. Uravn., 36, 11,
2000.

[6] S. V. Kovalevskaya. Scientific Works. To the Theory of Partial Differential
Equation, Izd. AN SSSR, Moscow, 1948.

[7] M. Yu. Filimonov. On the Representation of Solutions of Nonlinear Equations
of Cauchy–Kovalevskaja Type with Nonanalytic Initial Data by Special Series.
Sib. Zh. Ind. Mat., 2, 2001.

[8] M. Yu. Filimonov. Application of Method of Special Series to Representation of
Solutions of Initial-Boundary Value Problems for Nonlinear Partial Differential
Equations. Diff. Uravn., 39, 8, 2003.

[9] M. Yu. Filimonov. Proc. of Steclov Inst. of Math. (Suppl. 1), 2004.

Mikhail Yu. Filimonov

Institute of Mathematics and Mechanics UrB RAS, S. Kovalevskaya str. 16, Ekaterinburg,

620219, Russia

230



On chemical reaction fronts in nonlinear elastic solids

On chemical reaction fronts in nonlinear elastic
solids

Alexander B. Freidin
alexander.freidin@gmail.com

Abstract

We consider a nonlinear elastic solid in which chemical reactions of oxi-
dizing type take place. We suppose that the chemical reaction is localized at
the chemical reaction front, and the reaction is sustained by the diffusion of
an oxidizing gas constituent through the solid oxide. Basing on introducing
an intermediate configuration reflected chemical transformations of solid con-
stituents we derive an expression of the potential energy release due to the
reaction front propagation. As a result we obtain the input of solid phases
into a chemical affinity tensor as a combination of Eshelby stress tensors de-
termined with respect to stress free configurations of the initial and chemically
produced solid constituents and multiplied by chemical reaction parameters.
Finally we consider an input of a gas constituent and formulate a simplest
kinetic relation for the front propagation.

1 Kinematics

Let vt = v− ∪ v+ is a current configuration of a body at time t, and volumes v−

and v+ are occupied by materials A− and A+, respectively, and A+ is produced as
a result of a chemical reaction

ν−A− + ν∗A∗ → ν+A+ (1)

where A−, A∗ and A+ are chemical formulae of reacting constituents, ν−, ν∗ and
ν+ are stoichiometric coefficients. We assume that A− and A+ are solids and A∗ is
a gas. An example of the reaction (1) is the oxidation of silicon

Si + O2 → SiO2 (ν− = ν∗ = ν+ = 1) (2)

We suppose that the chemical reaction is localized at the interface Γt between v−

and v+ (i.e. at the chemical reaction front), and the reaction is sustained by the
diffusion of A∗ to Γt through v+. We assume that the diffusion of A∗ occurs only in
v+ until the chemical reaction front is reached by molecules of A∗. For simplicity
sake we assume that diffusion of A∗ does not affect strains of the skeleton.
Let x− and x+ are positions of material points A− and A+ in a current configura-
tion vt, and let X− ∈ V− and X+

g ∈ V+
g are their positions in unloaded reference

configurations V0 and Vg, respectively (Fig. 1).
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Material segments dx− and dx+ from v− and v+ can be related with corresponding
segments dX− ⊂ V− and dX+

g ⊂ V+
g by transformations Fe− and Fe+,

dx− = Fe− · dX−, dx+ = Fe+ · dX+
g (3)

Let ρt− and ρ0 are densities of A− in the current configuration vt and the reference

G

Fe+

Fe−

dX

dXg

V+
g

V+ V−

v+ v−

Figure 1: Configurations resulting from chemical transformation and deformation

configuration V0, respectively. Let ρt+ and ρt∗ are the partial densities of A+ and A∗
in the current configuration vt, and let ρg and ρ∗ are the partial densities of A+ and
A∗ in the reference configuration Vg. Then

detFe− =
dv−

dV−

=
ρ0

ρt−
, det Fe+ =

dv+

dV+
g

=
ρg

ρt+
(4)

where the conservation of mass is taken into account for the transformations linking
the reference volume elements dV− ⊂ V− and dV+

g ⊂ V+
g with spatial volume

elements dv− ⊂ v− and dv+ ⊂ v+ respectively
Although material points in V+ and V+

g present different materials, they are re-
lated by the chemical reaction (1), and segments dX and dXg which consist of
corresponding points A− and A+ can be related by the transformation tensor G,

dXg = G · dX (5)

To construct G note that if M− and M+ are the molar masses of A− and A+

respectively then, due to the chemical reaction, the volume element dV0 = ν−M−/ρ0
transforms into the volume element dVg = ν+M+/ρg. Then

detG =
dVg

dV0
=
ν+M+ρ0

ν−M−ρg
≡ g3 (6)
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Note that detG 6= ρ0/ρg (cf. with (4)). Further we suppose that the transformation
tensor is isotropic. Then

G = gE, g =

(
ν+M+

ν−M−

ρ0

ρg

)1/3
(7)

where E is the unit tensor.
One may also consider a transformation

dx+ = F+ · dX+, F+ = Fe+ · G, dx+ ⊂ v+, dX+ ⊂ V+ (8)

where v+ is treated as a volume occupied by material points A+ which are produced
from corresponding points A− contained in V+.
Representation (8) is the Lee decomposition if G presents plastic strains [4], and
have been used in mechanins of biological growth with G as a growth (“transplant”)
tensor (see, e.g. [1, 5, 2] and reference therein). Our case is more simple in some
way. G is a constant tensor determined by the densities and molar masses of the
constituents A−, A+ and the stoichiometric coefficients, Fe− and Fe+ are deformation
gradients which correspond to deformations x− = x−(X−) and x+ = x+(X+

g) from
V− and V+

g to vt, and

F+ = gFe+ (9)

2 Stresses

Further we assume that Fe− and Fe+ correspond to the elastic deformations of A−

and A+. Then the Piola-Kirhgoff stress tensors S− and Sg+ referred to V0 and Vg
configurations are given by the constitutive equations

S− = ρ0
∂f−

∂Fe−
, Sg+ = ρg

∂f+

∂Fe+
(10)

where f− = f−(Fe−, T) and f+ = f+(Fe+, T) are free energies of A− and A+ per unit
mass, T is the temperature.
The mechanical equilibrium equation in regular points of the body takes the form:

∇ · ST− = 0 (x ∈ V−),
g

∇ ·(Sg+)T = 0 (xg ∈ V+
g ) (11)

where ∇ and
g

∇ are nabla-operators in V0 and Vg configurations.
Let Γ and Γg are the images of Γt in V0 and Vg configurations, N, Ng and n are the
normals to Γ , Γg and Γt respectively, directed from “+” to “−”. Since σ− · ndΓt =

S−·NdΓ, σ+·ndΓt = Sg+·NgdΓg, it follows from the traction continuity condition
written for the solid skeleton that

S− · NdΓ = Sg+ · NgdΓg (12)

Since by the Nanson’s formula

NgdΓg = (detG)G−1 · NdΓ = g2NdΓ (13)

the traction continuity condition takes the form:

S− · N = g2Sg+ · N (X ∈ Γ, Xg = Xg(X) ∈ Γg) (14)
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3 Energy release due to the chemical reaction

front propagation

The free energy of the body

F = Fs+ F∗

Fs =

∫

v−

ρ−f−dv+

∫

v+

ρt+f+dv =

∫

V−

ρ0f−dV0+

∫

V+
g

ρgf+dVg (15)

F∗ =

∫

v+

ρt∗f∗ dv =

∫

V+
g

ρ∗f∗ dVg

where f∗ is free energy of A∗ per unit mass By (10),

Ḟs =

∫

V−

S− : (Ḟe−)T dV0+

∫

V+
g

S+
g : (Ḟe+)T dVg− (16)

−

∫

Γ

ρ0f−vΓ · NdΓ +

∫

Γg

ρgf+vΓg · NgdΓg

where vΓ and vΓg are the reaction front velocities with respect to V0 and Vg config-
urations.
Let the displacement is given on Ω1 and the traction t0 is given on Ω2 where
Ω1 ∪Ω2 = Ω ≡ ∂V0, and points of Ω1 as well as points of Ωa2 where t0 6= 0 (the
“active” part of Ω2) do not undergo chemical transformations. Then

∫

V−

S− : (Ḟe−)T dV =

∫

Ωa2

t0 · v−dΩ−

∫

Γ

N · ST− · v−dΓ (17)

∫

V+
g

S+
g : (Ḟe+)T dV =

∫

Γg

Ng · (S+
g)T · vg+dΓ

where the velosities

v− =
∂x−(X, t)

∂t
, vg+ =

∂x+(Xg, t)

∂t

and the equilibrium equations (11) are taken into account.
We suppose that displacement is continuous across the reaction front, x−(Γ) =

x+(Γg). Then

vg+ − v− = −(vΓg · Fe+ − vΓ · Fe−) = −vΓ · (gFe+ − Fe−) (18)

By (12), (14) and (18):
∫

Γg

Ng · (Sg+)T · vg+dΓg−

∫

Γ

N · ST− · v−dΓ =

∫

Γ

N · ST− · (vg+ − v−)dΓ =

= −

∫

Γ

N · (g3(Sg+)T · Fe+ − ST− · Fe−) · vΓ dΓ
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where it is taken into account that the reaction front velocities vΓg and vΓ with
respect to Vg and V configurations, by (5) and (7), are related as vΓg = gvΓ.
From (3)–(3) it follows the the solid constituents potential energy release is given
by the expresion

Π̇ ≡ Ḟs−

∫

Ωa2

t0 · v−dΩ = −

∫

Γ

N · (g3M+ − M−) · vΓdΓ (19)

where

M− = ρ0f−E − ST− · Fe−, M+ = ρgf+E − (Sg+)T · Fe+
are the Eshelby tensors.
The expression (19) can be rewritten as

Π̇ = −
ρ0

ν−M−

∫

Γ

N · As · vΓ dΓ (20)

where

As = ν+M+M̃+ − ν−M−M̃− (21)

M̃+ = f+E −
1

ρg
(Sg+)T · Fe+, M̃− = f−E −

1

ρ0
ST− · Fe−

In classical chemistry A =
∑
νkMkµk is a chemical affinity, where νk are stoichio-

metric coefficients taken with the sign “+” if the k-th component is produced due to
the chemical reaction and taken with the sign “−” in other case, µk is the chemical
potential per unit mass of the k-th component [6]. The tensor As in (20) represents

the input of solid constituents into the chemical affinity tensor, and the tensors M̃
are the chemical potential tensors.
It can be shown that due to kinematic compatibility across the reaction front

N · As = AsNN, AsN = N · A · N
This gives one more representation of the potential energy release,

Π̇ = −
ρ0

ν−M−

∫

Γ

AsNv
Γ
NdΓ, vΓN = vΓ ·N

and AN can be called a solid constituents input into chemical affinity at the surface
element with a normal N. A scalar value in classical chemical affinity expression is
replaced by the normal component of the chemical affinity tensor.
The mass balance for A∗ takes the form

ρ̇∗ = ρ̂∗−
g

∇ ·(ρ∗v∗) (22)

where v∗ is a velocity of the component A∗ with respect to Vg due to the diffusion,
ρ̂∗ < 0 is a sink of the component A∗, mass loss due to the chemical reaction. Then,
assuming that f∗ = f−(ρ∗, T), we obtain that

Ḟ∗ =

∫

V+
g

(ρ̂∗µ∗ + ρ∗v∗·
g

∇ µ∗)dVg−

∫

Ωg

ρ∗µ∗v∗ · NgdΩ −

∫

Γg

p∗v∗ · NgdΓ
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where

µ∗ = f∗ +
p∗
ρ∗
, p∗ = ρ2∗

∂f∗
∂ρ∗

(23)

We assume that chemical reactions are localized at the reaction front. Then
∫

V+
g

ρ̂∗µ∗ dVg =

∫

Γg

ρ̂∗µ∗v
Γ
g ·NgdΓ

The reaction front velosity is determined by the A+ production rate. To produce
ν+M+ mass units of A+ one needs ν∗M∗ mass units of A∗ where M∗ is a molar
mass of A∗. Then to produce ρgv

Γ
g · NgdΓ mass units of A+ one needs

ρ̂∗v
Γ
g · NgdΓ =

ν∗M∗
ν+M+

ρgv
Γ
g · NgdΓ

mass units of A∗. Thus,

∫

V+
g

ρ̂∗µ∗ dVg = −
ν∗M∗
ν+M+

∫

Γg

ρgµ∗v
Γ
g · NgdΓg = −

ν∗M∗
ν−M−

∫

Γ

ρ0µ∗v
Γ · NdΓ (24)

where
M∗ = ρ∗µ∗ E

Finally we obtain the following expression of the dissipation due the chemical reac-
tion front propagation:

DΓ =

∫

Γ

N·(g3M+−M−−g3∗M∗)·vΓ dΓ =
ρ0

ν−M−

∫

Γ

N·A·vΓ dΓ =
ρ0

ν−M−

∫

Γ

ANv
Γ
NdΓ

where the chemical affinity tensor

A = ν+M+M̃+ − ν−M−M̃− − ν∗M∗M̃∗,

M̃∗ = µ∗ E, AN = N · A · N

The reaction front propagation velocity can be given by the kinetic constitutive
equation

vΓN = Φ (AN) (25)

such that ANΦ(AN) < 0 For example, in a linear thermodynamic approach

vΓN = −κAN, κ > 0 (26)

In a case of chemical equilibrium the rates of direct and reverse chemical reactions
are equal, the reaction front does not move,

AN = 0, Φ(0) = 0 (27)
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In a case of martensite phase transformation, due to mass balance g3 ≡ dVg/dV0 =

ρ0/ρg, g∗ = 0,
g3M+ = ρ0f+(F+)E − ST+ · F+

and (19) becomes a known formula [3] for energy release due to interface boundary
propagation.
We presented a simplest consideration of of the reaction front propagation. Intro-
ducing the intermediate reference configuration allowed us to express the chemical
potentials in terms of stresses related by the constitutive equations of solid con-
stituents of the reaction. Further progress is expected on the way of taking into
account cross effects related with interconnections between the solid skeleton and
diffusion of a gas constituent.
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De-spin of a motorised momentum exchange tether
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Abstract

This paper focuses on a conceptual de-spin proposal for a symmetrical
Motorised Momentum Exchange Tether (MMET). It starts with a study of
the spin motion of the system, both for the propulsion tether and the reaction-
providing outrigger tether, by summarising numerical computations of the
equations of motion implemented in MathematicaR© integrator. An operating
duty cycle is for the tether determined and a payload release occurs followed
by an inspection of the conservation of total momentum. The paper then
continues with a de-spin study of the remaining system by means of analysis
of a special de-spin release mechanism. A calculation of the conservation of
total momentum is performed for this case. The final work is focused on the
de-spin of the released payloads, a very important task from the perspective
of system re-utilisation.

1 Introduction

Space Tethers provide a mechanical connection between objects in space enabling
the transfer of energy and momentum from one object to the other, giving the
potential advantage of providing space propulsion without consuming propellant.
The motorised tethered system under investigation here was originally developed by
Ziegler and Cartmell[1]. Figure 1 shows a symmetric system concept and comprises
a dumb-bell tether attached to a central facility, at which point the centre of mass
(COM) of the whole system is assumed to be located, and which also carries a
drive motor. Two outrigger tethers are attached to the motor stator in order to
act as counter-inertias so that Newton’s 3rd law may be satisfied, as required, for
the propulsion side to spin up unidirectionally. De-spin features act as a possible
additional bonus. The system is assumed here to be operating on a circular orbit
around the Earth.

2 Spin dynamics of the symmetrical laden tether

Following the work done by Ziegler on the rigid body dynamics of tethers in space[2],
the equations of motion of the tethered satellite can be deduced based on a planar
model of analysis such as the one in Figure 2 representing the propulsion system.
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Figure 1: Schematic of symmetrical Motorised Tether concept, as proposed by
Ziegler and Cartmell, 1999

We can also use the same model to describe the outrigger system, as both systems
have similar physical configurations. The equations of motion can be deduced from
Figure 2, starting by describing the system components (two payloads, two tethers,
two release mechanisms and the central facility) in Cartesian coordinates and using
them to calculate the kinetic and potential energies of the system. The equations
of the dumb-bell tether are obtained via the Lagrangian formulation (Equations
(1-2)), where the centre of the Earth is set as an absolute origin, an initial torque
τ is applied by the motor and the propulsion system is assigned one generalised
coordinate ψ, while the outrigger system is also assigned one generalised coordinate
β.

d
dt

( ∂T
∂ψ̇

) - ∂T
∂ψ

+ ∂U
∂ψ

= τ (1)

d
dt

(∂T
∂β̇

) - ∂T
∂β

+ ∂U
∂β

= -τ (2)

Figure 2: Propulsion system schematic model
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3 Orbital performance

The tethered system is assumed to be performing an orbit around the Earth, spin-
ning around its COM and then the instant is taken when the propulsion tether is
aligned along the local gravity vector, so that the system velocity can be determined,

Vtotal = Vorbit + Vtether (3)

Providing the payload with a total escape velocity of 10.7 km/s the velocity of the
propulsion tether sub-span is given by:

Vtether = L ψ̇ (4)

Therefore, the angular velocity ψ̇ will increase until it reaches 0.06262 rad/s, in
order for the system, as designed, to achieve the required escape velocity Vtotal.
The orbital period can also be determined.

P = 2 π

√
r3c
µ

(5)

A spin study is carried out by running a specially written piece of code in
MathematicaR© which gives numerical results by integrating the system’s equations
of motion. The results are generated using the parameters from Table 1 and the fol-
lowing initial conditions: ψ = β = -0.9 rad and ψ̇ = β̇ = 0 rad/s. All the necessary
conditions are established and the initial spin-up study can now be performed[3].

Parameters Data Units
Mp 1000 kg
rp 0.5 m
L 50000 m
ρ 970 kg/m3

A 62.83x10−6 m2

M0 1000 kg
r0 0.5 m
L0 25000 m
ρ0 970 kg/m3

A0 62.83x10−6 m2

Mm 5000 kg
rm 0.5 m
rc 6870000 m
µ 3.9877848x1014 m3/s2

τ 3374838 Nm

Table 7: Data values of the dumb-bell tethered system for propulsion, outrigger and
main facility
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4 Damping the system

It is also desirable to take into account any dissipation in the system due to the
bearings in the motor and transmission. These bearings are responsible for the
mechanical configuration between the propulsion and outrigger systems. They also
dissipate energy into space due to frictional heat. If we take this dissipation into
account we will have a system of the type:

A ψ̈ + B ψ + C ψ̇ = τ (6)

A0 β̈ + B0 β + C β̇ = -τ (7)

Where, A and A0 represent the mass moments of inertia of the propulsion and
outrigger systems respectively, B and B0 represent the stiffness coefficients, and
the damping coefficients of the motor and the stator, C are assumed to be equal,
i.e., both generate the same amount of friction, and dissipate the same amount of
energy. The damping coefficients are assumed to have a magnitude of 1x107 Nms.
The numerical results take into account the tethered system’s orbital coupling, i.e.,
considering the tether orbiting the Earth with a constant orbital rate as given by:

θ̇ =

√
µ

r3c
(8)

Figure 3 shows the system in its pure spin condition with a minimum torque required
τ, so that the system can increase its angular velocity until it reaches the necessary
escape velocity. In this numerical example this corresponds to a time of 206639 sec,
i.e. approximately 36.47 orbits. The outrigger system is spinning in the opposite
direction to the payload, due to the opposite torque applied.

For a spinning tether, the optimum payload release point is when the tether is
aligned along the local gravity vector and when the motion is coplanar with the
orbital plane.

The initial spin-up condition provides the time when the payloads must be released.
For that time an evaluation of the system motion was made for pragmatic system
design data, where the accumulated propulsion spin angle ψ was found to be 6731.42
rad, while the outrigger system responses were found to be β = -23772.11 rad and β̇
= -0.214469 rad/s. These system responses, corresponding to the payload’s release
time, are then used as initial conditions for the next phase of the calculation. The
data adopted for this investigation is shown in Table 1.

5 Analysis of the system after payload release

The next step consists of evaluating the system after payload release. New studies
were carried out in order to analyse the remaining system response for its angular
velocities ψ̇ and β̇ and spin angles ψ and β for two cases: for the zero torque
condition and for reverse torque.
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Figure 3: System response for the initial spin-up condition of the damped system

Figure 4 represents the complete angular velocities profile of the damped system for
3 phases of study. The left part of the graph, going from zero until the release time
(vertical gridline), represents the first phase, that of initial spin. From the release
until a period of 400000 sec has elapsed the dynamics of the remaining system are
evaluated.

The second phase corresponds to the payload release and the zero torque condition.
This case was studied for a period of 60 sec but further simulations showed that over
a longer time of integration; the ripple effect is lessened in the damped system. Due
to the instantaneous reduction of the mass moment of inertia on the propulsion side,
this led to a change in the acceleration of the remaining system. The propulsion
side accelerated more and the outrigger accelerated less than it would have done if
the payloads had not been disconnected.

The third phase consists of applying a reverse torque. In the case of the applied
reverse torque the propulsion side decelerates until it achieves zero angular velocity
and then starts to spin in the opposite direction, the outrigger direction, and finally
the remaining system ends up rotating in opposite directions for a time of 293601
sec.

This analysis of the system after payload release has been carried out in order
to understand the dynamics of spinning tethered systems, to find a solution for de-
spinning of the remaining system after payload release, and a possible way to control
this by reducing its unstable behaviour.

From the beginning until it changes its direction of rotation at approximately 51.82
orbits, the outrigger shows a residual post-payload release counter-spin, while the
propulsion tether is near its zero angular velocity. This situation happens due to
the fact that the payloads themselves had not been de-spun, and so the remaining
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system can’t be completely stopped without involving the use of some sort of external
energy.

Figure 4: Angular velocities profile of the damped system (dashed plot - propulsion
angular velocity, ψ̇ , and thin plot - outrigger angular velocity, β̇)

6 Momentum conservation

The conservation of momentum was analysed with respect to the system’s COM.
When a rigid body rotates, its resistance to a change in its rotational motion is dic-
tated by its moment of inertia. The outrigger angular momentum will be conserved
since there are no physical modifications to the system throughout all phases of op-
eration. Hence as the payload release occurs from the propulsion system, the system
moment of inertia is given by the sum of the moments of inertia of its components;
payloads, tethers, release mechanisms and central facility, namely,

Ipayload = 1
2

Mp r
2
p + Mp (L+ d1)

2 (9)

Itethers = 1
12
ρ A 2 L (3 r2T + 4 L2) (10)

Imechanism = 1
4

mA d
2
1 + mA L

2 (11)

Im = 1
2

Mm r
2
m (12)

The total mass moment of inertia of the system before payload release is therefore:
IB = Im + Itethers + 2 Ipayload + 2 Imechanism (13)

The angular momentum before and after payload release is determined using the
numerical results for the angular velocities of the damped system before and after
payload release, ψ̇B = 0.062620 rad/s and ψ̇A = 0.062602 rad/s.

HB = IB ψ̇B (14)

HA = IA ψ̇A + 2 HR + 2 HT (15)
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Although the payloads are disconnected from the system and therefore have not
been de-spun, they have angular momentum due to post-release rotation, HR, and
angular momentum due to post-release translation, HT.

Therefore,
IA = Im + Itethers + 2 Imechanism (16)

HR = Ipayload ψ̇B (17)

HT = Mp L rp ψ̇B (18)

The system’s angular momentum is found to be conserved such that HB = HA at
an order of magnitude of 6.34x1011 Nms.

7 Analysis of the system de-spin

The work carried out by Cartmell et al .[4] was the precursor to the development
of a scale model of the motorised momentum exchange propulsion tether, and the
definition for a new idea for the study of the de-spin of payloads after release.
According to the experimental work carried out, it was confirmed that the payloads
would continue to spin as they translated away tangentially from their release points,
and work was initiated to investigate if it would be possible to mitigate this. From
this work, it was proposed that a staggered release of each payload, by means of a
specially designed double release point mechanism, could be capable of imparting
an opposing spin onto the payload as it is released. This device could be used to
neutralise the spin of the payload without major interference with the translational
velocity that the spin has given it.

Figure 5 represents the release mechanism and in, phase 1 the propulsion tether
is spinning attached to the mechanism and the payload D. Phase 2 represents de-
spinning when the mechanism is activated by the 3 hinges (A, B and C) in order to
release the payload providing the system with two counter motions.

The interest in payload de-spin is that the system could be used as part of a two-
way interplanetary payload exchange system. After the release the upper payload
could be injected into a rescue orbit, and therefore it is desirable for the payload to
have only a translational motion. Being in a rescue orbit allows the payload to be
captured next time it comes round to the same orbital position.

The mechanism can be modified into a 2D model such as the one shown in Figure
6, where d1 is the release mechanism radius, l2 is the payload radius and θ1 and
θ2 add to the system two degrees of freedom (DOF). This scheme only represents
the upper model. The complete model for de-spin defines a system with a total of
5 DOF: ψ, θ1u and θ1l for the upper and lower mechanisms and θ2u , θ2l for the
upper and lower payloads.
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Figure 5: De-spin mechanism [3]

Figure 6: Release mechanism 2D analytical model [3, 4]

8 Payload de-spin

After analysing the system’s equations of motion for the de-spin model, the nu-
merical results are then generated in MathematicaR© using mechanism parameters
obtained from those used by Cartmell et al .[4], switching off the torque and intro-
ducing new initial conditions: θ1u = θ1l = 0.3 rad, θ2u = θ2l = 0.6 rad with zero
initial angular velocities.

Performing the system de-spin evaluation, Figure 7 shows that the upper and lower
payloads display symmetrical dynamical behaviour and that they are de-spun 0.078
sec after their release. This means that after performing the initial spin and finding
the time when the payloads must be released (206639 sec), the torque is switched-off
and the release mechanisms are activated defining the system as having 5 DOF, and
then the de-spin analysis shows that the payloads are de-spun after 0.078 sec , i.e.,
the payloads will simply translate after that.
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Figure 7: Payload angular velocity evaluation

9 Damping in the release mechanisms

After payload release the remaining system will continue to spin without stopping,
the release mechanisms will also be oscillating about their equilibrium point (hinge
C), and this will potentially contribute to the system’s unstable behaviour. System
instability is not desirable; therefore, a suitable damping coefficient must be as-
signed to the mechanisms with a minimum value capable of damping the oscillatory
behaviour. In practice, the system would be damped by means of viscous dampers
fitted at the joints within the mechanism.

A new evaluation of the fully laden system was then performed to see how damping
the mechanisms would affect the payload de-spin. Results from Figure 8 show that
the de-spin time was delayed up to 0.21 sec after payload release, for the system
design data applied in this paper. Note that a full numerical investigation of the
whole design parameter space would inevitably alter this value, but the function-
ality of the damping is still convincingly demonstrated in this restricted numerical
example.

10 Momentum conservation

Momentum conservation is calculated by analysing the system’s numerical results
computed for the payload de-spin, with those computed after payload release for the
system with damped mechanisms[3]. Conservation is expected for the propulsion
system due to the transfer of momentum between the release mechanisms and the
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Figure 8: Payload angular velocity evaluation for the damped mechanism

payloads.
The angular momentum before payload release is given by the sums of the products
between the system’s mass moments of inertia components with their respective
angular rates using the numerical results for the angular velocities of the system
with damping: ψ̇B = 0.062620 rad/s, ψ̇A = 0.062619 rad/s, θ̇1B = 0.164614 rad/s,
θ̇1A = 0.062225 rad/s and θ̇2B = 0.101994 rad/s.

HB = (Itethers + Im) ψ̇B + 2 Imechanism (ψ̇B + θ̇1B)
+ 2 Ipayload (ψ̇B - θ̇1B + θ̇2B) (19)

Where ψ̇B - θ̇1B + θ̇2B is the payload angular rate. The angular momentum after
payload release will be given by the total mass moments of inertia of the remaining
system plus the payload translation component.

HA = (Itethers + Im) ψ̇A + 2 Imechanism (ψ̇A + θ̇1A) + 2 HT (20)

Comparing HB with HA, the propulsion system’s angular momentum is conserved
at an order of magnitude of 3.2x1011 Nms.

11 Conclusions

A dumb-bell tether composed of propulsion and outrigger systems, each one laden
with two end masses, such as shown in Figure 1; on an Earth-centred reference
frame, was investigated. All the work carried out took into account the mechanical
dynamics of the planar MMET system. The Lagrangian equations of motion for
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the system were derived integrated in order to obtain numerical results. All the
calculations were carried out for a damped system with a damping coefficient of
1x107 Nms; taking into account the dissipation due to the bearings in the motor.

From the two cases presented, for spin and de-spin; the spin study comprised three
phases: the initial spin-up, analysis of the system after payload release, switching-
off the torque and analysis applying a reverse torque. Regarding certain initial
conditions, and for the system parameters presented, it was found that the time
to release the payloads was 206639 sec, i.e., after performing 36.47 orbits. After
payload release the payloads will be spinning and translating as they move away
from the remaining system. Applying a reverse torque, in order to stop the system,
showed that the remaining system couldn’t be completely stopped without involving
the use of some sort of external energy. To allow system reutilisation the solution
to this problem seems to be to use the motor torque to slowly de-spin the system.
This method will not stop the system from spinning but can get near that as it can
be set to a desirable velocity in order to allow the attachment of other payloads,
by continuing to de-spin the propulsion tethers to absolute zero speed so that new
payloads can be attached, and then to lose some of the outrigger back-spin by ex-
changing momentum with the propulsion tethers. This will leave the whole system
spinning together, but more slowly, and this time with the propulsion system spin-
ning in reverse, in the outrigger direction. The system’s momentum conservation
for the spin case was checked before and after payload released and it was found to
be conserved, at an order of magnitude of 6.34x1011 Nms.

The investigation continued with a study of the de-spin motion provided by the
de-spin mechanism with three spherical hinges as originally developed by Cartmell
et al .[4], with the overall propulsion system comprising a 5 DOF model giving the
payloads two counter motions in order to de-spin as they are released. From the
payload rate graphs, Figure 7 shows that both payloads de-spin at a time of 0.078
sec after being released. In practice they will translate through space. To reduce
the remaining system’s unstable behaviour the de-spin mechanisms were damped. A
suitable damper was introduced with a suggested value of 1x103 Nms. The system
response was affected and payload’s de-spin time was delayed to 0.21 sec. Conserva-
tion of momentum was checked regarding the damped system with 5 DOF. Although
the analysis was more complex, the momentum conservation was found to be of the
order of 3.2x1011 Nms given the fact that the payloads were de-spun, and therefore
HR = 0.
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Abstract

The dynamic processes in a spherical elastic body composed of a material,
which is capable of undergoing phase transitions, are under consideration.
The radius of the sphere is supposed to be sufficiently large. We use a model
of an elastic body with non-convex strain energy potential [1–13]. It is sup-
posed that the unique phase boundary is spherical and separates two stable
phases. It’s position is an unknown quantity. Admissible motions of the phase
boundary are sought for. It is assumed that the phase boundary moves at a
variable speed. The motion is caused by a non-equilibrium initial condition
for the phase boundary position. As a result of the study we derive the set of
equations at the phase boundary. For a particular case (when the material in
the “inner” phase is incompressible) we obtain an analytical non-self-similar
solution of the problem and investigate its properties. The results obtained
in the framework of this full dynamic approach are compared with the re-
sults obtained in the framework of the kinetic (quasi-static) approach. It is
demonstrated that the quasi-static approach [12,13] correctly describes the
phase boundary motion only in the case of strong dissipation at the phase
boundary.

1 Introduction

In the paper we deal with dynamic processes in elastic bodies, capable of undergoing
phase transformations. We use a model of an elastic material with non-convex
strain energy potential [1-13]. It is known that the problem of elastostatics for a
material of such a kind can have solutions with discontinuous deformation gradients
[12]. In the framework of the model, the surfaces of the strain discontinuity are
considered as the phase boundaries, and the domains of continuity are considered as
zones, which are occupied by different phases of the material. The solution of both
statical and dynamical problems are generally non-unique, therefore an additional
thermodynamic boundary condition at the phase boundary is required [1-7].
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2 The governing equations

We considers dynamics of phase transformations in an elastic sphere of a suffi-
ciently large radius with the unique spherical phase boundary. This is is the three-
dimensional dynamical spherically symmetrical problem.
In linear elasticity according to the Hooke low the relationship between the stress
tensor σ and the strain tensor ε is

σ = λθI + 2µε = kθI + 2µe (1)

Here λ, µ are the Lame constants, k = λ+ 2
3
µ is the bulk modulus, I is the identity

tensor, θ = tr ε, e = Dev ε. Here symbols “tr” and “Dev” denote trace and deviator
for the tensor of the second rank, respectively. Represent the stress tensor σ as
follows:

σ = −pI + s, (2)

where s = Dev σ; −p is the pressure. In accordance with the Hooke low(1) one can
write

−p = kθ, (3)

s = 2µe (4)

Consider the hypothetical material with piecewise-linear pressure-strain dependency
with a “falling down” part of the graph (Fig. 1). We assume that deviatoric compo-

−p

−p1

−p3

θθ1 θ3

Figure 1: The pressure-strain curve for the hypothetical material, capable of under-
going phase transformations

nents of stress and strain tensors in the hypothetical material are still satisfy Eq. (4).
One can see that non-monotonicity in stress-strain relation implies non-convexity
of the elastic potential for the material. Thus, in our material discontinuous strain
fields can exist.
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3 Mathematical formulation

Since the problem is spherically symmetric, the displacement u(r) can be represented
in the form

u(r) = u(r) er, (5)

where er = r−1r. In what follows, we consider only motions of the sphere such that
for all t there exists a unique phase boundary at a position l(t) in the sphere, which
separates stable phases 1 and 3. Here l(t) is an unknown continuous and smooth
function.
Without loss of generality we assume that for r < l(t) the material is in the phase
state 3 (θ > θ3), and for r > l(t) the material is in the phase state 1 (θ < θ1). For the
material in the phase state 1 the governing equations (3)–(4) (where k = k1 ≡ k+)
should be used. For the material in the phase state 3 one should use Eq. (4) and
the relation

−p = −p3+ k3(θ− θ3), (6)

where k3 ≡ k−. Here and in what follows, we adopt the notation [µ] = µ+ − µ−,
µ = (µ+ + µ−)/2, µ± = µ|r→l(t)±0 , for any arbitrary function µ(r, t).
By the use of spherical coordinates (r, ϑ, ϕ) the Hooke low (1) can be rewritten in
the following form:

σr = λθ+ 2µ
∂u

∂r
, (7)

σϑ = σϕ = λθ+ 2µ
u

r
, (8)

where

θ =
∂u

∂r
+
2u

r
. (9)

The equation for the dynamics of an elastic body in case of spherically symmetric
problem is [14,15]

∂2u

∂r2
+
2

r

∂u

∂r
−
2u

r2
=
1

c2±

∂2u

∂t2
, (10)

where

c2± =
λ± + 2µ

ρ
, (11)

λ± = k± −
2

3
µ. (12)

Here ρ is the mass density for the material of the sphere, which is assumed to be the
same for all phase states. Equation (10) is valid both in the “outer” (r > l(t), c =

c+) and in the “inner” (r < l(t), c = c−) domains of strains continuity.

252



Dynamics of phase transformations in a spherical elastic body

At r = l the following boundary conditions should be fulfilled:

[u] = 0, (13)

[σr] = −ρl̇[u̇]. (14)

At r = 0 the boundedness condition

u
∣∣
r=0

= O(1) (15)

has to be satisfied. At r = R we formulate the following boundary conditions:

u
∣∣
r=R

= u0 = const or σr|r=R = σ0 = const. (16)

To find the unknown phase boundary position l(t) one needs to formulate an ad-
ditional constitutive equation (so-called thermodynamical boundary condition). It
can be shown (see e.g. [2, 7]), that the second law of thermodynamics localized to
the infinitesimal layer [l(t)− 0; l(t)+ 0] containing the phase boundary leads to the
following inequality

−Fl̇ ≥ 0. (17)

Here

F = −([W] − 〈σ〉 · · [ε]) (18)

is the configurational (material, thermodynamical) force on the phase boundary,

W =

∫
σ(ε)dε (19)

is the strain energy per unit length of the bar. Inequality (17) follows from full
dynamical consideration, which involves the inertia forces. The possible point of
view is that Eq. (17) is an important, and perhaps unique, restriction on the consti-
tutive equation structure. The following kinds of the additional thermodynamical
condition are most widespread in the literature:

F = 0; (20)

l̇ = −γ−1F. (21)

Here γ > 0 is a material constant associated with dissipation at the phase boundary.
We will call relations (20) and (21) the non-dissipative condition and the simplest
dissipative condition, respectively. In statics all used constitutive equations can be
reduced to condition (20). It may be noted that Eq. (20) is the limit case for Eq. (21)
as γ → +0.
Besides Eq. (21) one should also formulate the initial condition:

l(0) = l0. (22)

In what follows, we assume that l0 does not coincide with the equilibrium position
l = lst of the phase boundary.
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4 Strains at the phase boundary

Consider one-parameter family Al of static problems formulated for Eq. (10) with
boundary conditions (13)–(16). In the framework of a problem Al the phase bound-
ary is fixed (l̇ = 0) at a prescribed position l. For strain and stress for the problem
Al one has, respectively: u = ust, ε = εst, σ = σst. In dynamics for displacement
u(t), strain ε(t), and stress σ(t) we can put:

u = ust + ũ, (23)

ε = εst + ε̃, (24)

σ = σst + σ̃. (25)

Configurational force F can also be represented as a sum of static and dynamic
components:

F = F0+ F̃. (26)

Let us represent ũ in the following form [14,15]:

ũ =
∂φ

∂r
, (27)

where φ(r, t) is some potential function. Substituting representation (27) into
Eq. (10) yields

∂2

∂r2

(
∂

∂r
(rφ)

)
−
1

c2
∂2

∂t2

(
∂

∂r
(rφ)

)
= 0. (28)

Equation (28) is the wave equation, therefore it’s general solutions can be expressed
in the D’Alembert form. Hence the radiation conditions for Eq. (28) leads to the
following relations formulated at the phase boundary (r = l) (see [8, 10]):

∂

∂r

(
∂

∂r
(rφ−)

)
−
1

c−

∂

∂t

(
∂

∂r
(rφ−)

)
= 0, (29)

∂

∂r

(
∂

∂r
(rφ+)

)
+
1

c+

∂

∂t

(
∂

∂r
(rφ+)

)
= 0. (30)

Conditions (29), (30) are valid for times t < (R−l0/c+) ≡ t∗ (e.g., until the moment
of the time, when the wave reflected from the outer boundary of the sphere comes
back to the phase boundary). In what follows, we do not take into account the wave
reflections, so the results are valid for small enough times only.

Now we can formulate four boundary conditions at the phase boundary, namely,
Eqs. (13), (14), (29), (30). Taking into account Eq. (7) for σr, and relations (23)–
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(25), one can write the following set of boundary conditions at the phase boundary:
[
∂ũ

∂t

]
+ l̇

[
∂ũ

∂r

]
= −l̇

[
∂ust

∂r

]
, (31)

[
c2
∂ũ

∂r

]
− l̇2

[
∂ũ

∂r

]
+

[
2λ

ρ

ũ

l

]
= l̇2

[
∂ust

∂r

]
, (32)

2
ũ−

l
+
∂ũ−

∂r
−
1

c−

(
∂ũ−

∂t
+
1

l

∂φ−

∂t

)
= 0, (33)

2
ũ+

l
+
∂ũ+

∂r
+
1

c+

(
∂ũ+

∂t
+
1

l

∂φ+

∂t

)
= 0. (34)

It is important that in some particular cases this set of equations is resolvable with
respect to radial strains. In what follows, we consider one of such cases, namely the
case when the material in phase state 3 is assumed to be incompressible:

λ3 ≡ λ− → +∞. (35)

Hereby, the corresponding bulk modulus is also infinitely large:

k3 ≡ k− → +∞. (36)

For the spherically symmetrical problem the above assumption means that the ma-
terial in phase state 3 behaves as a rigid one. The strain tensor has the form

ε = ε0I, (37)

where ε0 = θ3/3 = const. In what follows, we use the notations: λ = λ+, k =

k+, c = c+.
The boundary conditions (31)–(34) at the phase boundary (r = l) for the particular
case under consideration are:

∂ũ+

∂t
+ l̇
∂ũ+

∂r
= −l̇

(
∂ust

+

∂r
− ε0

)
, (38)

∂ũ+

∂r
+
1

c

∂ũ+

∂t
= 0. (39)

(c2− l̇2)
∂ũ+

∂r
− l̇2

(
∂ust

∂r
− ε0

)
= ρ−1σ̃r−, (40)

Resolving the set of equations (38)–(40), we get

ε̃+(l) =
l̇

c− l̇

(
εstr+(l) − ε0

)
, (41)

σ̃r−(l) = ρcl̇
(
εstr+(l) − ε0

)
. (42)

5 Statics

Before we consider the dynamic formulation, let us treat the following static prob-
lems.
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5.1 The first static boundary value problem

Assume that for the sphere of radius R the following boundary conditions are pre-
scribed: at the phase boundary (r = l):

u(l) = ε0l, (43)

at the outer radius (r = R) of the sphere:

u(R) = u0 = 0. (44)

The strain energy W− for the material in the rigid phase state is constant:

W− = γ0, (45)

γ0 =
3

2
(3λ+ 2µ) ε20− α2, (46)

where α2 is a parameter, which depends on the parameters of the pressure-strain
curve (see Fig. 1):

α2 =
(kθ3+ p3)(kθ3+ p1)

2k
, α > 0. (47)

The equilibrium equation for the elastic sphere in terms of displacements is:

∂2u

∂r2
+
2

r

∂u

∂r
−
2u

r2
= 0. (48)

Hence, for the material in the elastic zone we have

u+ = C1r+
C2

r2
, (49)

where C1, C2 are arbitrary constants.
Satisfying boundary conditions (43), (44), we obtain:

u+ = −
ε0X

3

1− X3
r+

ε0

1− X3
l3

r2
. (50)

Here

X = l/R. (51)

Radial component εr+ of strain is given by:

εr+ = −
ε0X

3

1 − X3
− 2

ε0

1− X3
l3

r3
. (52)

Taking into account the Hooke low (7), we get the expression for the radial compo-
nent σr+ of stress in the elastic zone:

σr+ = −(3λ+ 2µ)
ε0X

3

1− X3
− 4µ

ε0

1− X3
l3

r3
. (53)
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The limit value for strain energy in the elastic phase at the phase boundary W+ is:

W+ =
λθ+(l)2

2
+ µ(εr+(l)2+ εφ+(l)2+ εθ+(l)2). (54)

Due to the requirement for the compatibility of deformations at the phase boundary
it is possible to find the components εϕ, εϑ of the strain tensor:

εϕ+ = εϑ+ = ε0. (55)

Hence, for the strain energy W+ we have

W+ =
1

2
λ(εr+(l) + 2ε0)

2+ µ(εr+(l)2+ 2ε20). (56)

The configurational force is given by Eq. (18). In the problem under consideration
[ε] = [εr]erer, therefore

F = F0 = − ([W] − σr(l) (εr+(l) − ε0)) . (57)

Taking into account Eqs. (45), (46), (50)–(53), (56), we obtain the expression for
the configurational force:

F0 = −
1

2(X3− 1)2
(2α2X6− 4α2X3− 18µε20− 9λε20+ 2α2). (58)

Resolving the equation

F0 = 0, (59)

we get the following possible equilibrium positions of the phase boundary:

l1 = R

(
1+

3
√
2

2

|ε0|

α

√
(λ+ 2µ)

)1/3
, (60)

l2 = R

(
1−

3
√
2

2

|ε0|

α

√
(λ+ 2µ)

)1/3
. (61)

It is clear that the restriction

0 < l < R (62)

should be fulfilled. One has:

l1 > R. (63)

At the same time we can always choose parameter α such that root l2 is satisfy the
restriction (62).
In the framework of the quasi-static approach [12–13] to the investigation of the
phase transformations the motion of the phase boundary is given by the following
low:

l̇ = −γ−1F0. (64)
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Linearization of Eq. (64) in a neighborhood of the equilibrium position l = lst = l2
leads to the relationship:

l̇ = −A0(l− l
st), (65)

where

A0 =
F0

′
l(l

st)

γ

∣∣∣∣∣
l=lst,l̇=0

> 0. (66)

It is easy to show that

dF0

dl

∣∣∣
l=l2

> 0. (67)

Hence, the equilibrium position l = l2 of the phase boundary is stable.

5.2 The second static boundary value problem

Now we formulate the following boundary conditions for the sphere of radius R: at
the phase boundary r = l:

u(l) = ε0l, (68)

at the outer radius r = R of the sphere:

σr(R) = σ0 = 0. (69)

For the strain tensor and strain energy in the rigid phase one should use Eqs. (37)
and (46), respectively. Solving the equilibrium equation (48) for the sphere we obtain
that displacement u+ in the elastic phase is given by Eq. (49). Taking into account
the Hooke low (7) we obtain the expression for radial stress σr+ in the elastic zone:

σr+ = (3λ+ 2µ)C1− 4µ
C2

r3
. (70)

Satisfying boundary conditions (68), (69), we get

u+ =
4µε0X

3

(3λ+ 2µ) + 4µX3
r+

(3λ+ 2µ)ε0X
3R3

(3λ+ 2µ) + 4µX3
1

r2
, (71)

εr+ =
4µε0X

3

(3λ+ 2µ) + 4µX3
−
2(3λ+ 2µ)ε0X

3R3

(3λ+ 2µ) + 4µX3
1

r3
, (72)

σr+ =
4(3λ+ 2µ)µε0X

3

(3λ+ 2µ) + 4µX3
−
4(3λ+ 2µ)µε0X

3R3

(3λ+ 2µ) + 4µX3
1

r3
, (73)

where

X = l/R. (74)

Taking into account Eqs. (54), (55), we find that the limit value for strain energy
in the elastic phase at the phase boundary (r = l) is given by Eq. (56). The
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configurational force is given by Eq. (57). Hence, by virtue of Eqs. (45), (46), (56),
(57),(71)–(73) we get the expression for the configurational force:

F0 = −
1

2(3λ+ 2µ+ 4µX3)2
(32µ2α2X6+ 16µα2(3λ+ 2µ)X3− 252λε20µ

2−

72ε20µ
3+ 8µ2α2− 270ε20λ

2µ + 18λ2α2+ 24µλα2− 81ε20λ
3). (75)

Solving the equation F0 = 0, we obtain the following equilibrium positions of the
phase boundary:

l1 = R

(
−
3λ + 2µ

4µ
+
3
√
2(3λ+ 2µ)|ε0|

8µα

√
(λ+ 2µ)

)1/3
, (76)

l2 = R

(
−
3λ + 2µ

4µ
−
3
√
2(3λ+ 2µ)|ε0|

8µα

√
(λ+ 2µ)

)1/3
. (77)

One can see that root l2 < 0, root l1 can be positive for some values of parameters,
but

dF0

dl

∣∣∣
l=l1

< 0. (78)

This means that the equilibrium position is unstable. It can be shown that for
non-trivial boundary condition at the outer boundary of the sphere (σ0 6= 0) stable
equilibrium positions of the phase boundary are also absent.

6 Dynamic addition to the configurational force

Consider the dynamic problem and obtain dynamic correction to the configurational
force. We begin from representation Eqs. (23)–(25) for displacements, strain and
stress tensors, respectively. For the rigid phase ε− = 0, εst

− is given by Eq. (37).
Since at the phase boundary (r = l):

[εϕ] = [εϑ] = 0, (79)

the dynamic addition is

ε̃+ = ε̃+erer. (80)

Let us find the dynamic addition for strain in the elastic zone. On the one hand,

θ+ =

(
dust

+

dr
+ 2

ust
+

r

)
+

(
dũ+

dr
+ 2

ũ+

r

)
= θst

+ + θ̃+. (81)

On the other hand,

θ+ = εstr+ + ε̃+ + 2ε0 = θst
+ + ε̃+. (82)

Hence, θ̃+ = ε̃+.
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The strain energy in the elastic zone at r = l+0 is given by Eq. (54). Let us rewrite
it in the form:

W+ = Wst
+ + W̃+, (83)

Wst
+ =

λ(θst
+)2

2
+ µ(εstr+)2+ 2ε20, (84)

W̃+ = λθst
+ε̃+ +

λε̃2+
2

+ 2µεstr+ε̃+ + µε̃2+. (85)

For the strain energy in the rigid zone at r = l− 0 one has:

W− = Wst
− , W̃− = 0, (86)

Hence, the jump of energy is

[W] = [Wst] + W̃+. (87)

The term 〈σ〉 · · [ε] in Eq. (18) for the configurational force F can be written in the
form:

〈σ〉 · · [ε] = 〈σst
r+

(
εstr+ + ε̃+

)
〉
(
εstr+(l) − ε0

)
+ 〈σst

r+

(
εstr+ + ε̃+

)
〉ε̃+. (88)

From the Hooke low (7) it follows that

σr+ = σst
r+ + (λ+ 2µ)ε̃+ = σst

r+ + σ̃r+. (89)

Thus, for the term 〈σ〉 · · [ε] we obtain:

〈σ〉 · · [ε] = σst
r (l)

(
εstr+(l) − ε0

)

+
1

2
((λ+ 2µ)ε̃+(l) + σ̃r−(l))

(
εstr+(l) − ε0+ ε̃+(l)

)
+ σst

r (l)ε̃+(l). (90)

Substitution of Eqs. (87), (90) into Eq. (18) for the configurational force leads to
the expression:

F = F0−

(
W̃+−

1

2

(
(λ+2µ)ε̃+(l)+σ̃r−(l)

) (
εstr+(l) − ε0+ ε̃+(l)

)
−σst

r (l)ε̃+(l)

)
, (91)

where

F0 = −
( [
Wst

]
− σst

r (l)
(
εstr+(l) − ε0

) )
(92)

is the static component of the configurational force.
Taking into account Eqs. (85), (92) and the expression:

θst
+(l) = εstr+(l) + 2ε0, (93)

we get for F̃:

F̃ =
1

2
(λ+ 2µ)εstr+(l)ε̃+(l) −

1

2
(3λ+ 2µ)ε̃+(l)ε0

+
1

2
σ̃r−(l)

(
εstr+(l) − ε0+ ε̃+(l)

)
+ σst

r (l)ε̃+(l). (94)
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Substituting Eqs. (41), (42) into Eq. (94), we obtain:

F̃ =
l̇

c− l̇

(
εstr+(l) − ε0

)(1
2
(λ+ 2µ)εstr+(l) −

1

2
(3λ+ 2µ)ε0

+
1

2
ρc2

(
εstr+(l) − ε0

)
+ σst

r (l)

)
. (95)

7 Solving of the dynamic problem

Let us treat the solution of the problem considered in section 5.1 as initial condition
for the dynamic problem. Hence, the static component of the configurational force F0
is given by Eq. (58). Taking into account Eqs. (52), (53), (95), we get the expression
for the dynamic component

F̃ =
6ε20l̇

(c− l̇)(1− X3)2
(2λ+ 5µ+ X3(λ+ µ)). (96)

Thus,

F = F0(l) + F̃(l, l̇) = −
1

2(X3− 1)2
(2α2X6− 4α2X3− 18µε20− 9λε20+ 2α2)

+
6ε20l̇

(c− l̇)(1− X3)2
(2λ + 5µ + X3(λ + µ)). (97)

Substituting the expression for the configurational force into the dissipative condi-
tion (21), we obtain the equation of motion for the phase boundary. If F̃′

l̇
6= 0 then

it follows from the implicit function theorem that Eq. (21) can be represented in the
form:

l̇ = −Φ(l), (98)

where

Φ′
l =

F′
l

F′
l̇
+ γ

. (99)

The stability of the phase boundary motion in a neighborhood of the equilibrium
position depends on a sign of function Φ′

l at l = lst = l2, where l2 is given by
Eq. (61). It is easy to show that:

Φ′
l =

F0
′
l

F̃′
l̇
+ γ

∣∣∣∣∣
l=lst,l̇=0

. (100)

Recall that F0
′
l

∣∣
l=lst

> 0 (see Eq. (67)). At the same time, for F̃ (See Eq.(96)) one
has:

F̃′
l̇

∣∣
l=lst,l̇=0

≡ g =
6ε20

c
(
1−

(
lst

R

)3)2

(
2λ+ 5µ+

(
lst

R

)3
(λ+ µ)

)
> 0. (101)
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Let us note that g is a material constant. Linearization of equation of motion (98)
for the phase boundary in a neighborhood of the equilibrium position l = lst leads
to the following equation:

l̇ = −A(l− lst), (102)

where

A =
F0

′
l(l

st)

g+ γ

∣∣∣∣∣
l=lst,l̇=0

> 0. (103)

Hence, in the framework of the dynamic approach as well as in the framework of
the quasi-static one the motion of the phase boundary in a neighborhood of the
equilibrium position is stable. Comparison of Eqs. (102), (103) with Eqs. (65), (66),
respectively, shows that the quasi-static approach correctly describes the motion of
the phase boundary in a neighborhood of the equilibrium position only in the case
of strong dissipation at the phase boundary (γ≫ g).

In the same way one can consider the dynamic formulation for the initial static
problem formulated in Section 5.2.

8 Conclusion

The dynamic processes in a spherical elastic body composed of a material, which is
capable of undergoing phase transitions, are investigated. The radius of the sphere is
assumed to be sufficiently large. We use a model of an elastic body with non-convex
strain energy potential [1–13]. It is supposed that the unique phase boundary is
spherical and separates two stable phases. We consider the particular case, when
the material in the “inner” phase is incompressible. In this case the strains at the
phase boundary are obtained and the stability of the phase boundary motion is
investigated. The motion is caused by a non-equilibrium initial condition for the
phase boundary position. The low of the phase boundary motion in a neighborhood
of the equilibrium position is found. It is demonstrated that both the dynamic and
the quasi-static approaches give us the same decisions concerning the character of
stability of the phase boundary equilibrium position. These conclusions are formu-
lated under the assumption that perturbations of the phase boundary position are
centrally symmetrical. The quasi-static approach correctly describes the transient
process of the relaxation of the phase boundary position to the equilibrium position
only in the case of strong dissipation at the phase boundary.
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Structural phase transitions imaging in shape
memory alloys by photoacoustic microscopy

Alexei L. Glazov Kyrill L. Muratikov Vladimir I. Nikolaev
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klm.holo@mail.ioffe.ru

Abstract

Near surface modifications of Cu-Al-Ni shape memory single crystal alloys
are investigated by photoacoustic microscopy methods. The feasibility of visu-
alization of the early stages of the loading-induced martensitic transformation
is demonstrated. The peculiarities of phase transitions near Vickers indented
areas detected in Cu-Al-Ni alloys by photoacoustic microscopy are investi-
gated. The advantages of the photoacoustic images over the corresponding
optical images are analyzed.

The main purpose of this article is to analyze in details the opportunities to use pho-
toacoustic (PA) microscopy for investigation of phase transitions in shape memory
alloys under different conditions. Shape memory alloys offer unique physical prop-
erties and may find wide applications in microelectromechanical systems and novel
medical devices. The unique properties of these materials are attributed mainly
to the effect of high reversible strain that arises at martensitic-austenitic phase
transitions. Their mechanical properties are strongly related to the distribution of
the martensitic and austenic phases, which may substantially vary with mechanical
stresses and temperature. Therefore, in order to optimally design microelectrome-
chanical systems and medical devices and to improve the performance of a small-
scale material system, it requires the knowledge of deformations in shape-memory
alloys at microscopic level.
At present the phase states in shape-memory materials are examined mainly with
optical microscopy methods [1]. However, the authors emphasized that a specimen
etching and digital processing of optical images are necessary often to increase the
efficiency of optical discrimination between the phases. Moreover, optimal visual-
ization of the phases requires the use of different etchants. It was also noted that
even digital processing cannot provide reliable discrimination of the phases if the
optical contrast is low.
In our previous study we have investigated the possibility of the PA microscopy ap-
plication for imaging martensitic transformations in single-crystal Cu-Al-Ni shape
memory alloys. We obtained PA and optical images of specimens in initial and
loaded states. It is important that we could obtain PA and optical images simul-
taneously and immediately with the application of a given load. It was shown [2]

264



Structural phase transitions imaging in shape memory alloys by photoacoustic
microscopy

Figure 1: (a) The PA piezoelectric image of a part of Cu-Al-Ni sample; (b) optical
image of the same area. The image area is 1× 1mm2.

that the PA microscopy can be applied for visualization and examining martensitic
transformations in Cu-Al-Ni shape-memory alloys. The obtained PA images had
high spatial resolution and high contrast which were sufficient for the direct obser-
vation of the appearance and development of the martensitic phase in specimens
under load without any pretreatment.

The main purpose of this work consists in application of the PA microscopy for
imaging phase transition peculiarities near Vickers indented areas in Cu-Al-Ni al-
loys. It is known that the indentation of materials creates high stress under indenters
that can cause stress-induced phase transformations. It is also important that some
inelastic strains and stress field arise near the indented area. Therefore, thePA imag-
ing of indented areas in Cu-Al-Ni alloys may provide important information about
phase transitions in these materials in stressed and strained states. Application of
external stresses and heating of samples may give us additional information about
phase transitions in Cu-Al-Ni alloys.

PA images were taken with a setup using a pumping argon laser with a maximum
output of 1 W. The radiation was modulated by an acoustooptic modulator and
focused into a spot of diameter 2µm on the specimen surface. The light power was
about 50mW at the surface. The modulation frequency was close to the ultimate
value (for the given setup) in order to raise the resolution. In our case it was about
140kHz which corresponded to thermal wavelength of no longer than 15µm. The
PA images were taken by scanning the specimen mounted on an automated x-y table
with a minimal step of 2.5µm. Thus, the resolution of the PA images dependent on
the thermal wavelength was no worse than 15µm.

Prior to the indentation the PA and optical images of the investigated region of
the sample were obtained. All optical images were obtained by using laser scanning
mode of operation of our setup. In experiments with loading the uniaxial compres-
sive stress was applied to the sample in the direction parallel to its surface. Specially
designed small-size strain gauge was used for measuring the applied load.
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Figure 2: The PA piezoelectric (a) and optical (b) images of the Cu-Al-Ni sample
with a Vickers indentation. The indentation load is 49N. The image area is 1 ×
1mm2.

The example of the PA and optical images of the sample in the initial state is shown
in Fig.1. One can see lamellar structure of the sample in the initial state. As it
was shown in our previous work [2] the bright regions in this PA image correspond
to martensitic domains in Cu-Al-Ni alloys. It is also seen that in the optical image
of this region (Fig.1b) different phases of Cu-Al-Ni alloy are not visible. However,
in contrast with the PA image the scratches from the surface polishing are better
seen in the optical image. In Fig.2 the PA and optical images of the same region
are represented after indentation. First of all the PA images in Figs.1a and 2a
demonstrate that indentation do not influence on the lamella’s direction. Some
domain splitting and modification of the domain contrast near Vickers indentation
are clearly seen in Fig.2a. They reflect the phase transformations in these regions.

The behavior of the PA and optical images during external uniaxial loading of the
samples were studied at various loads. In our experiments as a rule the contrast
of the PA signal from different phases of Cu-Al-Ni alloy increases with the load.
Simultaneously images of new phase domains appear already at small pressures.
But unlike the situation with other investigated materials [3], we did not observe
clear changes of stress distribution inside the indentation prints, for example along
diagonals. The structure of these regions in anisotropic material is more compli-
cated. The optical images begin to change only at relatively large pressures. In this
experiment we observed new stripes in optical images for pressures above 65MPa.
Fig.3 presents the PA and optical images of the chosen indented area under uniaxial
pressure 73MPa.

To understand these peculiarities of the obtained images the annealing of Cu-Al-Ni
sample was made. It was heated up to the temperature of about 200 degC and
slowly cooled. The PA and optical images of the indented area after annealing are
shown in Fig.4. One can see that PA image after annealing has more homogeneous
character than in initial and loaded states except of the region near the indentation.
The brightness of the available lamellar domains after annealing in Fig.4 is lower in
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Figure 3: The PA piezoelectric (a) and optical (b) images of the Cu-Al-Ni sample
with the Vickers indentation under the external loading of 73MPa applied in left-
right direction.

Figure 4: The PA piezoelectric (a) and optical (b) images of the Cu-Al-Ni sample
with the Vickers indentation after annealing.

comparison with the loaded state. It means that the austenite phase is predominant
in Cu-Al-Ni sample after annealing. Some domain structure which is still presented
in this image is due to the presence of the defect region produced by indentation.
One more reason of this situation may be related with the fact that PA images
reflect the near surface structure of a sample. It is known that near surface phase
transitions in Cu-Al-Ni alloys may differ from the volume phase transitions and have
incomplete character. Therefore, some residual phase structure may be presented
in the PA images of these alloys.

It is also interesting to note that the PA image of the indentation has sufficiently
blurry structure while the optical image is almost the same as in the initial state.
One may see additionally that polishing scratches almost disappear in the optical
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images after annealing. These peculiarities of the obtained images can be explained
using results of the paper [4]. In this paper the behavior of the indent recovery
in the depth δD and lateral δL directions in Cu-Al-Ni alloys was investigated with
a heating stage. It was demonstrated that for this alloy δD > δL. It means that
recovery of the material under heating is more effective in the depth direction.
This fact is demonstrated by our results in Fig.4 because the PA images more
sensitive to the depth modifications of the indented area while the optical images
are determined mainly by the lateral characteristics of the indentation. The optical
images demonstrate that the lateral recovery of the indent is almost negligible for
the used level of indentation loading. This recovery model also well explains the
disappearance of polishing scratches after annealing. Typical width and depth of
these scratches lie in the micrometer scale. At this scale recovery coefficient δD is
about 0.7− 0.8 [4].
The presented results demonstrate that PA microscopy is the effective tool for in-
vestigation of phase transitions in Cu-Al-Ni alloys with the shape memory effect.
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Abstract

Some problems on interaction of homogeneous or by power law non-
homogeneous semi-infinite strip with arbitrary opening angle wedge-shaped
plate when they are made of inherent ageing materials with different ages are
considered.

The solutions of all investigated problems are reduced at first to the solv-
ing of two-dimension singular integral equation with respect to tangential
contact stress, acting under strip and then to the solving of difference equa-
tion with respect to Mellin transformants of contact stress using Mellin in-
tegral transformation. Then the problem solving is reduced to the solution
of differential-difference equation with time-dependent coefficients under cer-
tain initial conditions, taking into account the solution of appropriate instant
elastic problems and N.Kh.Arutyunyan creep-kernel properties. The closed
solution of the latest equation is built by using of Laplace two-sided operator.

1 Statement of problem and governing equations

The generalized plane stress state of wedge-shaped plate, strengthened by the semi-
infinite thin inclusion, is investigated in three cases within the framework of creep
theory of non-homogeneously ageing materials.
In first case it is assumed that the wedge-shaped plate with arbitrary angle-opening
α , is strengthened in border φ = 0 by thin semi-infinite inclusion with h width
and plate is deformed under the action of horizontal concentrated load p0, applied
at the end-point of inclusion at the moment τ0. It is supposed that another border
of plate φ = α is free of stress.
In second and third cases it is supposed that wedge-shaped plate with arbitrary
angle-opening 2α is strengthened by semi-infinite thin inclusion with h width along
the midline φ = 0. This plate is deformed under action of horizontal concentrated
load p0 at the end of inclusion in second case and in point r = a of inclusion
in third case. In second case, it is assumed that the sides φ = ±α of wedge-
shaped plate are free of stresses and rigidly restrained in third case. In all cases
it is assumed that materials of inclusions and wedges possess of creeping property,
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which is characterized by non-homogeneous ageing [1]. Furthermore, the inclusions
are interpreted as one-dimension continuums and normal stresses are neglected in
contact zone.
It is required to determine the distribution law of contact stresses τ (x, t) acting
under inclusions and the coefficients of stress intensity at the end-points of inclusions.
Let C1 (t, τ) denotes creeping measure of inclusions, τ1 is the age, which is constant
by length and E1 = const. is the module of instant elastic deformation. C2 (t, τ), τ2
and E2 (t) = E2 = const. denote the corresponding characteristics for wedges. It is
also assumed that the coefficients of lateral contraction ν1 (t) and ν2 (t) for materials
of wedges are the same and constant for elastic deformation, i.e. ν2 (t, τ) = ν1 (t) =

ν = const.

In order to derive the governing equations of mentioned problems, the deformations
of inclusions in r-direction and points of midline φ = 0 of viscoelastic wedges are
expressed by the unknown τ (x, t) contact stresses.
Under these assumptions and using the expressions for deformations of correspond-
ing elastic problems [2], [3] and on the basis of [1] the following can be written:

ε
(1)

r,j (r, t) = −
1

E1As
(1− L1)


h

r∫

0

τ (r0, t)dr0−Ωj (r)p0


 (j = 1, 2, 3) ; (1.1)

Ωj (r) = 1 (j = 1, 2) ; Ω3 (r) = H (r− a) . (1.2)

ε
(2)

r,j (r, t) = −
1

E2
(1− L2)

d

dr

∞∫

0

Rj (r, r0) τ (r0, t)dr0 (j = 1, 2, 3) . (1.3)

Here,

Rj (r, r0) =
1

2πi

c+i∞∫

c−i∞

Lj (p, α)

p

(r0
r

)p
dp;

L2 (p, α) =
4

(1+ ε)2
ε sin2(pα) + p2 sin2(α) − (1+ ε)2/4

sin(2pα) + p sin(2α)
; (1.4)

L3 (p, α) =
8

(1+ ε)2
ε2 sin2(pα) − p2 sin2(α)

ε sin(2pα) − p sin(2α)
; L1 (p, α) =

sin(2pα) − p sin(2α)

sin2(pα) − p2 sin2(α)
.

Here, H (t) denotes well-known function of Heaviside, and index j=1,2,3 shows the
corresponding problem.Temporal operators Lk (k=1,2) acts on arbitrary function in
the following way:

(1− Lk)φ (t) = φ (t) −

t∫

τ0

Kk (t+ ρk, τ+ ρk)φ (τ)dτ;

Kk (t, τ) = Ek
∂Ck (t, τ)

∂τ
; Ck (t, τ) = φk (τ) [1− exp (−γ (t− τ))] ;

ρk = τk− τ0; k = 1, 2.
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Without loss of generality, it is assumed that ρ1 = 0 and ρ2 = ρ .
Then, using the contact-conditions of inclusions with wedge-type plate

ε
(1)

r,j (r, t) = ε
(2)

r,j (r, t) (0 6 r < ∞ j = 1, 2, 3) (1.5)

the two-dimensional integral equations are obtained:

1

E2
(1− L2)

d

dr

∞∫

0

Rj (r, r0) τ (r0, t)dr0 =
1

E1As
(1− L1)


h

r∫

0

τ (r0, t)dr0− P0Ωj (r)


;

(1.6)

For all the condition

h

∞∫

0

τ (r0, t)dr0 = P0 . (1.7)

for contact stresses should be satisfied. Let introduce the following dimensionless
values [4]:

r =
E1As

E2h
x; r0 =

E1As

E2h
s; τ

(
E1As

E2h
x, t

)
=
E2P0

E1As
τ0 (x, t) .

Then (1.6) and (1.7) rewrite in form:

(1− L2)
d

dx

∞∫

0

Rj (x, s) τ0 (s, t)ds− (1− L1)



x∫

0

τ0 (s, t)ds−Ωj (x)


 = 0 ; (1.8)

∞∫

0

τ0 (s, t)ds = 1. (1.9)

Thus, the solution of considered problem is reduced to the solving of two-dimensional
integro-differential equations (1.8) under condition (1.9).

2 Governing equations solving
In order to build the solutions of equations, the Mellin transforms of unknown
contact stresses are considered:

T0 (p, t) =

∞∫

0

τ0 (s, t) sp−1ds , (2.1)

They are regular functions of p-variable in strip 0 < b < Rep < 2 (b < 1) [4]. After
multiplication both sides of (1.8) by xp and integration in interval 0 < x < ∞, the
difference equations are obtained as a result

(1− L1) T0 (p+ 2, t) − (p+ 1) Lj (p, α) (1− L2) T0 (p+ 1, t) =

= (1− L1)ωj (p+ 2) (j = 1, 2, 3) ; (2.2)
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and condition (1.9) becomes

T0 (1, t) = 1 . (2.3)

Note, that equations (2.2) are true in strip of regularity −1 + b < Rep < 0 and
functions ωj (p) are the following:

ω1,2 (p) = 0; ω3 (p) = ap−1 . (2.4)

After substituting t = τ0 in (2.2) the equations, describing corresponding problems
of momentary-elastic deformation are obtained. Here, the solutions for homogeneous
equations in form [3] of corresponding momentary-elastic problems are used:

T ∗0

(
p+

3

2
, τ0

)
= Hj (p)Uj (p) (j = 1, 2, 3) ; (2.5)

Hj (p) = [Mj (0, α)]
p+1/2 π (p+ 1/2)

cos (πp)
; Mj (p, α) = pLj (p, α) ;

Uj (p) =

∞∏

k=1

Γ
(
p+ 1/2+ p

(j)

k

)
Γ
(
p− 1/2+ t

(j)

k

)

Γ
(
p− 1/2+ p

(j)

k

)
Γ
(
p+ 1/2+ t

(j)

k

)
(
t
(j)

k

p
(j)

k

)2p
×

×
∞∏

k=1

Γ
(
p+ 1/2+ p̄

(j)

k

)
Γ
(
p− 1/2+ t̄

(j)

k

)

Γ
(
p− 1/2+ p̄

(j)

k

)
Γ
(
p+ 1/2+ t̄

(j)

k

)
(
t̄
(j)

k

p̄
(j)

k

)2p
;

Here, p
(j)

k (j = 1, 2, 3) are zeros for functions sin (2pα) − p sin (2α), ε sin2 (pα) +

p2 sin2 (α) − (1+ ε)
2
/4 and ε2 sin2 (pα) − p2 sin2 (α) respectively, and are zeros of

functions t
(j)

k (j = 1, 2, 3) are zeros of functions sin2 (pα)−p2 sin2 (α) , sin (2pα)+

p sin (2α) and ε sin (2pα) − p sin (2α). It being known that

Re (pk, tk) > 0; Im (pk, tk) > 0; Re (pk) < Re (pk+1) ; Re (tk) < Re (tk+1) .

and each zero writes as much as its order.
Using (2.5) the following can be written:

(p+ 1) Lj (p, α) =
T ∗0 (p+ 2, τ0)

T ∗0 (p+ 1, τ0)
(j = 1, 2, 3) . (2.6)

The expression (p+ 1) Lj(p, α) from (2.6) is substituted in equation (2.2)

X (p+ 1, t) =
T0 (p+ 1, t)

T ∗0 (p+ 1, τ0)
(j = 1, 2, 3) ; (2.7)

Then, after replacement of (p+ 1) by p in equations the following is obtained:

(1− L1)X (p+ 1, t) − (1− L2)X (p, t) = (1− L1)
ωj (p+ 1)

T ∗o (p+ 1, τ0)
; (j = 1, 2, 3)

(2.8)
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These equations should be considered under condition

X (1, t) = 1 . (2.9)

It is obvious, that obtained equations (2.8) are difference equations with constant
coefficients and regularity strip (0 < b 6 Rep < 1) , the solutions of which are usu-
ally built by Laplace two-sided transformation. However, in this case the mentioned
method is not allowed for application, since X (p, t) does not converge to zero when
Imp → ∞. In order to eliminate this difficulty the function is considered

Y (p, t) = X (p, t) / cos (πp) . (2.10)

It is not difficult to show that this function converges to zero while Imp → ∞ .
Moreover, this function is regular in strip (1/2 < b 6 Rep < 2) , (b < 1), excepting
point p = 3/2, in which function has simple pole.The equations are obtained after
dividing both sides of equation (2.8) into cosπ (p+ 1)

(1− L1)Y (p+ 1, t) + (1− L2) Y (p, t) =

= (1− L1)
ωj (p+ 1)

T ∗o (p+ 1, τ0) cosπ (p+ 1)
(j = 1, 2, 3) ; (2.11)

and the condition (2.9) becomes

Y (1, t) = −1 (2.12)

Let multiply both sides of (2.11) by exp (pw) and integrate over line (c− i∞; c+ i∞) ; (b < c < 1

As a result the integral equations are obtained:

(1+ e−w) Ȳ (w, t) −

t∫

τ0

[e−wK1 (t, τ) + K2 (t+ ρ, τ+ ρ)] Ȳ (w, τ)dτ =

= (1− L1) F̄j (w) e−w− 2iew/2 (1− L1) [X (3/2, t) − qj (3/2)] ; (2.13)

Kn (t, τ) = En

[
φ̇n (τ) −

(
φ̇n (τ) − γφn (τ)

)
exp (−γ (t− τ))

]
.

Ȳ (w, t) =

c+i∞∫

c−i∞

Y (p, t) epwdp; F̄j (w) =

c+i∞∫

c−i∞

ωj (p) e
pwdp

cos (πp) T ∗0 (p, τ0)
;

qj (p) =
ωj (p)

T ∗0 (p, τ0)
(b < c < 1, j = 1, 2, 3) ;

It is not difficult to show that the integral equation (2.13) is equivalent to the
differential equation:

¨̄Y (w, t) + γ

[
1+

E1φ1 (t) e−w+ E2φ2 (t+ ρ)

1+ e−w

]
˙̄Y (w, t) = −2i

ew/2T (t)

1+ e−w
(2.14)

T (t) = Ṫ1 (t) = Ẍ (3/2, t) + γẊ (3/2, t) (1+ E1φ1 (t)) .
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This equation should be considered under the following certain initial conditions:

Y (w, t) = −
2ie3w/2

1+ ew


1+

1

2πi

∞∫

−∞

Fj (w) e−w

1+ ew
dw


+

Fj (w)

1+ ew
;

˙̄Y (w, τ0) = γ [E1φ1 (τ0) − E2φ2 (τ0+ ρ)]
Ȳ (w, τ0)

1+ e−w
−
2ie3w/2

1+ ew
Φ1 (1) (2.15)

After integration of the equation (2.14) and taking into account the initial conditions
(2.15) Mellin transforms for unknown functions are found. Then, using the inverse
transform in cases j = 1, 2 the following is obtained:

Y (p, t) = −
1

π

t∫

τ0

dt

t∫

τ0

Q1 (t, τ, p) Ṫ1 (τ)dτ+ 1/ cos (pπ) −

−
γ

2π
[E1φ1 (τ0) − E2φ2 (τ0+ ρ)]

t∫

τ0

Q2 (τ, p)dτ. (2.16)

In case j = 3 the inverse transform gives the result:

Y (p, t) = −
1

π

t∫

τ0

dt

t∫

τ0

Q1 (t, τ, p) Ṫ1 (τ)dτ+

t∫

τ0

Q3 (τ, p)dτ + Y (p, τ0) . (2.17)

Here aj (j = 1, 2, 3) are known regular functions, the values of which are not shown.
Pass on to find not for a while yet unknown function T1 (t) . In this order the
condition (2.12) is used. Satisfying to this condition in order to find the unknown
function T1 (t) the following integral equation Volterra of second kind is obtained,
towards to which the method of successive approximations is applied.

Tj (t) −

t∫

τ0

Rj (t, τ) T1 (τ)dτ = aj (t); (j = 1− 3) (2.18)

Here Rj (t, r) andQj (t) (j = 1− 3) are known regular functions, the values of which
are not shown.
Hence, the following expression is obtained for Mellin transform of unknown contact
stresses:

T0 (p, t) = T ∗0 (p, τ0) {1+

t∫

τ0

dt

t∫

τ0

exp


−γ (t− τ) − γE1

t∫

τ

φ1 (ξ)dξ



1F1 (3/2− p, 1, γφ (t, τ))dT1 (τ)+

+
γ

2
[E1φ1 (τ0) − E2φ2 (τ0+ ρ)]

t∫

τ0

exp


−γ (τ− τ0) − γE1

t∫

τ0

φ1 (ξ)dξ


× (2.19)
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× [1F1 (3/2− p, 1, γφ (τ, τ0)) − (2p− 1) 1F1 (3/2+ p, 2, γφ (τ, τ0))]dτ} ; (j = 1, 2)

T0 (p, t) = T ∗0 (p, τ0) cos (pπ)

{
1

cos (pπ)
−

−
1

π

t∫

τ0

dt

t∫

τ0

Q1 (t, τ, p)dT1 (τ)+

t∫

τ0

Q3 (τ, p)dτ





j = 3. (2.20)

After definition of functions in cases , it is not difficult to find the contact stresses
using the inverse Mellin transformation.
Note, that under assumption E1φ1 (t) = E2φ2 (t+ ρ), as it was done in [5], the in-
tegral equations Volterra (2.12) have the trivial solutions. It is essentially simplified
the expressions for Mellin transforms of contact stresses.

T0 (p, t) = T ∗0 (p, τ0) , j = 1, 2 ; T0 (p, t) = T0 (p, τ0) , j = 3.

Hence, the distribution of contact stresses in this case is time-independent. This
distribution is defined by solving the correspondent instant elastic problem.
From obtained solutions, in general case, it will be clear that they have the same
singularity in point x = 0 as the solutions of corresponding instant elastic problems,
which were investigated in works [2],[3] .
It allows to state that the factor of non-homogeneous ageing does not change the
behavior of contact stresses qualitatively. However, the viscoelastic characteristics
of contacted bodies have an influence upon contact stresses and their intensity coeffi-
cient at the end-point of inclusion. This influence is shown by numerical calculations
as stated below.

Numerical example

The numerical analysis is considered for case j=1, when α = π, i.e. the non-
homogeneous visco-elastic half-plane is strengthened by semi-infinite inclusion of
the other age. It is assumed that the ageing functions are the same for base and
inclusion and they are

φ1 (t) = φ2 (t) = C0+A0/t

Numerical values for the physical parameters are the following:
E1 = E2 = 2 · 10−4MPa; C0 = 9 · 10−5MPa−1; A0 = 48, 2 · 10−5MPa−1day; γ =

0, 026day−1

Table1 Values of function T ∗1(t) , τ
∗
0 = 0.5

ρ∗\ t∗ 0.5 0.7 0.9 1.1 1.3
0.5 3.175 3.295 3.295 3.295 3.295
1 3.133 3.292 3.291 3.291 3.291

1.5 3.112 3.290 3.289 3.289 3.289
2 3.10 3.899 3.288 3.288 3.288
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Table2 Values of function T ∗1(t) , τ
∗
0 = 0.2

ρ∗\ t∗ 0.2 0.4 0.6 0.8 1
0.5 3.603 4.012 4.012 4.012 4.012
1 3.529 4.000 3.999 3.999 3.999

1.5 3.498 3.999 3.992 3.992 3.992
2 3.482 3.987 3.987 3.987 3.987

The obtained numerical results are shown at Tables 1 and 2. The numerical values
of auxiliary function T ∗1 (t) = T1 (t) /γ for different moments of time t∗ = γt in two
cases, when the moment of horizontal force τ∗0 = γτ0 application has the values
0,2 and 0,5 under various values of half-plane relative age, are shown at Tables
1 and 2. From these tables it becomes clear that at start moments the function
T ∗1 (t) is increasing up to define value and then it becomes constant. It is another
matter the changing of function T ∗1 (t) depending on relative age of half-plane, i.e.
the values of function T ∗1 (t) are decreasing up to define value while age increases
and then they are asymptotically converges to the fixed constant. Here, K is the
intensity coefficient of contact stresses taking into consideration the factor of non-
homogeneous creep and K1 is the same coefficient in case of corresponding instant
elastic problem. These graphs shows that the value K∗ converges to fixed asymptotic
value, while it is increasing. This value is as great as relative age of half-plane.
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Abstract

Majority of the repair enterprises are small industrial collectives equipped
with inexpensive multiuse mission equipment. In technology of repair signif-
icant volume take mechanical and fit of work, and also washing and clearing
operations. In difference from the ”know-how” of new items, where on opera-
tions shaving and finishing processing the processing) is widely used vibration,
in technology of repair of items the application of the indicated method is only
in an initial stage. In offered work the outcomes of a research of a possibility
of application vibration in technology of repair of automobiles and tractors,
chisel equipment, ship mechanisms, medical and home appliances are repre-
sented. For want of research of process vibration on operations of clearing of
details from scales, gum, corrosion, scale, rigid and fashion gum of contami-
nations to processing the typical representatives (representative) of details of
auto tractor drives piston pin covered with a stratum gum, spherical support,
piston rod with oil contaminations were subjected. As a main criterion of effi-
ciency of process the time of full clearing of details on researched parameters
is accepted. As have shown outcomes of researches, the process vibration of
clearing grows out of joint effect on deleted contaminations of micro impacts
of particles of a medium (mechanical effect) and chemical proper-ties techni-
cal basic liquid. Among other types processing of large-sized details on which
the conditions of vibration clearing were investigated it is necessary to name
spider of a gimbals, valves of drives of various types, on which the process of
clearing of a surface from gum was treated.

1 Introduction

Constructional and antifrictional general purpose nibs from powders on the basis
of iron make the basic part of production of powder metallurgy. More than half of
such details falls at a share of motor industry, instrument making, transport and
agricultural mechanical engineering. Taking into account the big role of a superficial
layer at work of details in units of machines and mechanisms the further development
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of technology of reception of powder details probably both on the basis of change
of composite structure, and due to formation favorable structures of a material, for
example biporosity of the working and a preworking layer [1, 2].
One of effective opportunities of modifying of working surfaces of such details with
creation functional gradient layer from one or diverse materials is dosed out super-
ficial - plastic deformation [3]. Thus it is necessary to take into account, that the
factor limiting application of constructional powder details is their porosity reaching
18-20 %.
Conditions of operation of the products working in closed premises with adjustable
climatic characteristics, and also outside of premises show to details, besides other
increased requirements on stability corrosion. These requirements for details of
powder metallurgy are especially actual as their raised porosity increases the free
surface of metal adsorbing a moisture which undermines from within sheetings,
accelerates corrosion processes.
In clause results of researches on drawing on a surface of details from materials are
resulted on the basis of iron of powders of zinc and aluminum, and also compositions
on their basis, on technological maintenance of hardening, modifying (to curing and
superficial defects) by a method of vibrating processing.

2 Method

Process of vibrating processing will consist in consecutive drawing on a surface of
processable details of the big number of microimpacts by particles of a vibrating
working environment. A basis of process depending on properties of a working
environment is mechanical or mechanical operation the smallest particles of metal
from a processable surface, smoothing of its microroughnesses, plastic deformation
of a superficial layer of processable details. The priority in studying the basic laws
of this process belongs to A.P.Babichev [4].
Depending on purpose of technological operation as processing environments abra-
sive and other nonmetallic materials of various characteristics, metal working bodies
of the required form and the sizes can be applied. Processing can be made in the
liquid on structure liquid or gaseous environment. Intensity of processing depends
on modes of vibration, the characteristic of the processing and technological envi-
ronment, mechanical properties of a material of processable details, etc. The model
of process of vibrating processing represents system of particles of a working envi-
ronment of the spherical form in diameter D which centers of weights are packed on
a square D×D. With the purpose of formalization of process it is accepted, that:

• The system of particles goes along a vertical straight line in a homogeneous
gravitational field;

• During movement layers cooperate with each other by means of direct central
impacts;

• dissipativ properties of system are described by factor of restoration at impact;

• External influence is transferred the bottom layer from the bottom of the
working chamber varying under the harmonious law in a vertical direction;
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• Moving particles inside a layer is absent;

• The bottom of the working chamber has radius R −→ +∞.

Using the basic position of work [5] on dynamics of ”columns” we shall receive at
impact i and i+ 1 a layer of a parity:

(Ui,1− Vi+1,1).Ky = Vi+1,2−Ui,2

Vi,1 = Ui,2+ g.t
′′

i

Ui,1 = Vi,2− g.t
′

i

Where: t
′

i: time of unaccented movement i a layer after impact in i to pair layers;
t
′′

i : time of unaccented movement i a layer after impact in i+ 1 to pair layers.
As speeds of elements of layers are changeable, on intervals of unaccented movement
it is accepted, that: Ui,1 and Ui,2 speeds of elements i a layer directly before impact
in i+ 1 pair layers, Vi,1 and Vi,2 speeds of elements i a layer directly before impact
in i pair layers.
As shown in work [4], frequency of fluctuations of layers of particles can be accepted
to equal frequency of fluctuations of a bottom of the working chamber ω and con-
sequently the period of fluctuation of layers T , moving of layers Si and amplitude of
their fluctuations Ai, will be:

T =
2π

ω

t
′

i = t
′′

i = T

S
′

i + S
′′

i−1 = const

Ai =
1

2
.S

′

i =
1

2
.S

′′

i

The valid movement of layers will be as it was already marked to differ from sim-
ulated. First, as a result of slanting impacts displacement of layers will take place.
Second, each element of a layer tests action of forces of the dry or viscous friction
arising owing to different speeds of separate elements. It can lead to to infringement
of symmetry of kinematics of movement. For example, time of movement of ele-
ments of layers upwards t

′

i becomes less time of movement downwards t
′′

i however
as shown in work [4] it does not break stability of periodically oscillatory move-
ments of environmentWednesday which are the basic source of power influence on a
processable surface . . .
The equation of impact of the first layer with a bottom of the working chamber will
be expressed by a equation:

V1,2− Ky0.V1,1 = (1+ Ky0).A0.ω.cosωt

Where: Ky0 is the factor of restoration at impact of the first layer with facing a
bottom of the working chamber. Properties of a material facing are expedient for
choosing so that Ky0 came nearer to unit.
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Loss of energy in i a layer will be expressed by equation:

∆Ei =
m.(U2i,1−U2i,2)

2
=
m

3
.
(1− Ky)

(1+ Ky)
.(n− i).(n+

1

2
− i).(n+ 1− i) (1)

Where: m - weight of a particle of a layer, n - number of layers testing periodic
fluctuations.
Owing to “dynamic slackness”, caused by the big number of elements and them
dissipativ properties, the top part of layers includes the elements moving as one
element with weight to equal weight of all elements of its components. From a real
picture of behaviour such system is distinguished with neglect dissipative properties
of the top part and stochastic to fluctuations of speeds which arise in it and are
distributed on its elements from top to down, gradually fading [5].
The account of a ”languid” part of loading in weight of M under condition of
M > (m× n), using substantive provisions of work [5], result in values of factor of
loss of speed:

KVi =
Vi+ 1

Vi
=

(l− i)2+ 2.(l− n)2.(n− i− 1)
1−Ky
1+Ky

(l− i+ 1)2+ 2.(l− n)2.(n− i)
1−Ky
1+Ky

l − i+ 1

l− i
(2)

where: l = H
D

, H: height of loading of layers.
The maximal values of speed of first layer V1,2 depending on a phase of impact with
a bottom of the chamber, a material of particles and facings of the chamber are in
limits:

A.ω ≤ V1,2 < 3A.ω
Knowing laws of change of speed of particles of a working environment (2) and losses
of energy (1) on layers from bottom to top it is possible to estimate probability of
that each point of a surface of a detail will receive even one impact by a particle of
environment by energy Ed ≤ Ed0 sufficient for change of its porosity at equiprobable
hit of a detail in i a layer of particles of environment and the general number of
fluctuations of layers equal fτ, where τ duration of processing.

P(1 ≤ x < τ.f) = 0.5−Φ0(tk) (3)

where: Φ0(t) = 1√
2π
.
∫t
0
exp(−x2

2
)dx represent integral of probabilities

tk =
1− τ.f.pB3√

τ.f.pB3.(1− pB3)

pB3 = pB1.pB2

pB1: Geometrical probability of a covering of a square of packing D × D traces
of processing (prints in diameter d0) for one fluctuation of the working chamber

(pB1 ≈ 0.78 d
2
0

D2
).

pB2: Probability of impact about a surface of a detail a layer of particles of a work-
ing environment possessing energy E ≥ Ed0 , dependent basically from amplitude-
frequency modes of vibration and characteristics of particles of a working environ-
ment (pB2 = 1 − F(Ed0)), where F(Ed) is the function of distribution of energy on
layers, particles of environment.
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The submitted dependences allow to use them for an estimation of power oppor-
tunities. Generally details of powder metallurgy are exposed to same technological
operations as well as a detail from compact materials. Thus interaction of particles
of the processing environment with a surface of a detail influences and such impor-
tant parameter as porosity of a superficial layer. For revealing interrelation of a
degree of change of porosity of a surface at individual its contact to a particle of
the working environment having a level of kinetic energy Ed besides earlier made we
shall enter the following assumptions:

• Hardness of a particle is more than hardness of a material of a surface;

• The roughness of a particle is absent;

• Depth of introduction of a particle is much less than radius of curvature of a
surface in a point of contact, but more than height of its microroughnesses;

• Introduction of a particle occurs on a normal to a surface.

Picture of change of porosity on depth of deformation hnl of a superficial layer of a
detail it is possible to present in the following kind.
In an initial condition the structure of a material is submitted as particles close
to the spherical form, connected among themselves by the “bridges” of interpartial
contact formed as a result of sintering of a material. The relative density of such
material will be characterized by the attitude of volume of a firm part of system of
the caked particles to total amount of system.

v =
Vm,Φ

V0

Porosity of such system will be expressed as

θ = 1− v

Also will lay in limits
0 ≤ θ ≤ 1

At interaction of particles of the processing environment with a surface traces as
prints which, covering, all surface, create tensely - deformed a condition on thick-
ness are formed. At full shelter of a surface prints it is possible to assume, that
compression of all layers on thickness will correspond on the average to deforma-
tion of axial compression under one print. For dynamic methods the dependence
offered [4], connecting a zone of plastic deformation with the size of a plastic print
hnl = knl.d (for iron and his alloys knl = 1.5) is known.
However for vibrating processing details from powder materials this dependence
gives the overestimated values of depth of plastic deformation. Our researches show,
that depth of plastic deformation at grasps all some layers of particles a layer.
Change of microhardness testifies to this on thickness of samples from a powder of
iron fraction ≈ 100µm.
Without the big damage for accuracy depth of a zone of plastic deformation can be
accepted: hnl = knl.ap, where ap is the average size of particles of an initial powder
of sintered material knn = 1..3.
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It is obvious, that deformation of particles of a powder and filling pore will decrease
in process of removal from a surface in depth of a material, and the volume of a firm
part of system Vmφ does not vary, but only leaves volume of a restored print.
Proceeding from a full covering prints in diameter d all surface, the density of an
initial powder material in volume of a zone of plastic deformation will be expressed
by equation:

v0 =
Vm,φ

V0
≈ Vm,φ

π.d
2

4
.(h+ hnl)

Where h - depth of a restored print. Density of a superficial layer of a powder
material equation :

v =
Vm,φ

V
≈ Vm,φ

π.d
2

4
.hnl

Change of porosity of a superficial layer, proceeding from linearly decreasing con-
centration of a firm part of the system which have been squeezed out from volume
restored on depth will be:

∆θ = θ− θ0 =
2h

hnl(θ− 1)(1− x
hnl

)

Where x - distance of the deformed layer from a surface.
Thus, knowing a required level of kinetic energy of particles of processing rendering
essential influence on condensation of a superficial layer of details from powder ma-
terials (decreasereduction in porosity), it is possible, using dependences (1), (2), (3)
to define area amplitude-frequency (A0, f) and time τ modes of vibrating processing
with required probability of that the given power influence will be rendered on all
surface of a detail.
Calculations show, that at energy particles of working environment Ed0 ≈
10−3...10−2J appreciable change of porosity of a superficial layer occurs already after
15−20 minutes of vibrating processing. On rice 4 dependence of change of porosity
on depth of samples from material PK6, 3 with the size of particles of an initial pow-
der 100microns revealed metal graphic a method and a confirming opportunity
effective (up to 2 times) condensation of the superficial layer shown on depth up to
150microns is shown.

3 Experiments

During shock interaction of the firm granulated working environment, with a surface
of details at vibrating processing conditions for connection of particles disperse metal
included in the environment with a processable surface on the mechanism of ”cold”
welding by pressure are created. The analysis of modern representations about
mechanisms of connection of materials in a firm phase shows, that in dependence
of by nature connected materials and thermo deformation conditions of formation
of coverings from a powder on cintered metal substrate without fusion coupling
(adhesion) of the last can arise for the account particles of a powder owing to
allocation of heat at impact, mechanical fastening of particles and microroughnesses
of a surface in absence or presence of wetting on sites of contact, action molecular
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or nuclear, in particular metal communications. Topochimical reaction, connection
of materials without fusion goes in 3 stages [6]:

• Formation of physical contact;

• Activization of contact surfaces;

• Volumetric interaction;

According to these representations the nature of formation of connection between
materials in firm is uniform. Distinction consists only in kinetic courses of the
separate stages, determined by conditions of heating, character and a degree of
deformation influence and features of development relaxation processes. The big
influence on materials renders a degree of their plastic deformation which should be
more than some minimal size providing clearing of connected surfaces, formation of
units preservation of these units after removal of loading. According to academi-
cian A.P.Semenova aluminum is easily connected metal in a firm phase: among
themselves it incorporates at a degree of deformation of 53 − 58%, at a degree of
deformation of 60−62% while copper incorporates to copper among themselves at a
degree of deformation of 74− 76%, cadmium at 80% of deformation, tin more than
80% of deformation, connection of less plastic materials even more inconveniently.
Transition from the static appendix of power influence to dynamic and presence
in contact of tangential forces generally reduces a necessary degree of deformation
as in the first case heat removal from a zone of deformation decreases, and in the
second destruction is facilitated. The major factor influencing process of connection
of materials in a firm phase is the temperature as she influences and conditions of
formation of physical contact, and on conditions of clearing of a surface, and on con-
ditions of formation of the active centers, and, at last, on conditions of preservation
of connection at removal of loading. The role of temperature is not limited to only
mechanical decrease in resistance of a material to plastic deformation as mechanical
properties of metals and alloys are in more complex dependence on temperature and
can have zones of fragility at average and low temperatures. Film at low tempera-
tures practically do not influence process as connections of a pressure required for
formation considerably surpass pressure of their destruction. However formation of
the active centers is sharply accelerated with rise in temperature so even at homo-
geneous temperatures is appreciably lower 0, 4 (temperature) appreciably moving
of vacancies and deployed atoms. For realization of process of drawing of cover-
ings from powder materials the existing equipment - vibrating machine tools are
subject to modernization by equipment by their special working chambers, allow-
ing to heat up weight of loading (a working environment and details) to necessary
temperatures. With the purpose of experimental studying features of formation
of anticorrosive metal coverings on sintering powder materials on the basis of iron
(PK6,3) researches on studying influence of conditions on process of reception of
coverings of zinc, aluminum and compositions on their basis have been lead. As raw
material for reception of coverings powders of aluminum and zinc which rendered on
samples with use of laboratory vibrating installation in a working heat chamber to
the chamber in capacity of 25dm3 applying as the working shock environment steel
spheres in diameter of 1, 5 − 14mm and amplitude-frequency modes - amplitude
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1, 5 . . . 3mm, frequency 15 . . . 25Hz served. Aluminum covering. Process of forma-
tion of a covering begins at temperature above 100oC. Below this temperature is
not present conditions for burning out of organic substances and evaporation of the
moisture adsorbed by a surface of details and particles of a powder. The powder
does not occur to a surface, it is crushed, undergoes qualitative changes and turns to
a dark grey dust and organic connections of aluminum. Rise in temperature up to
120− 150oC results in reception on a surface of samples of a light aluminum cover-
ing which thickness depends on amplitude-frequency modes, durations of processing,
and also quantity and a way of submission of a powder in the working chamber. The
temperature 250oC essentially does not change conditions of formation of coverings,
however his surface has more dark color. Rise in temperature up to 300oC results
in reception of coverings of grey color which at storage on air strongly darken as
against received at lower temperatures. The aluminum covering well adjoins to the
basic metal, copying his roughnesses. Intermediate layers between it and a basis are
not present. It is necessary to note, that the big stability of a powder of aluminum
oxidation allows to carry out process of drawing of a covering without hermetic seal-
ing the working chamber and without application of the regenerative or inert gas
environment.

4 Conclusion

Vibrating processing in an interval 20− 200oC in open or in untight closed working
chamber does not allow to receive a qualitative zinc covering. Particles of a zinc
covering to a processable surface occurs in separate points between which there is
a uncovered metal. At temperature is higher 200oC there is the intensive oxidation
of a powder making impossible process of processing. Therefore the technology of
reception of a zinc covering provides processing in tightly closed chamber (without
access of air) with addition in structure of a zinc powder, substances at which decom-
position from heating the regenerative atmosphere, for example chloride ammonium
is formed. It complicates technology a little and makes coverings similar with diffu-
sion. In this connection the circumstance had been lead researches on revealing an
opportunity of reception of zinc - aluminum coverings by vibrating processing in a
temperature range of aluminizing. On the first way into structure of an aluminum
powder entered zinc powder (30% on volume). The mechanism of formation, struc-
ture of such covering and modes of processing do not differ from corresponding at
drawing aluminum, however particles of zinc powder reduce harmful influence of
porosity of only aluminum covering. On the second way received two-layer cover-
ings by introduction in the working chamber at first the zinc - aluminum powder
consisting of 80% of zinc and 20% of aluminum, and then after processing within 60
minutes of only aluminum powder. Such covering has a sublayer enriched with zinc,
preventing harmful contact of aluminum to iron on which there is the top layer of
aluminum proof in various environments. The thickness of coverings determined by
a weight method on increase of weight of samples after processing, or to reduction
of their weight after coverings, and also metal graphic on micropolishing changes
from 3− 5 till 20− 30 a micron. The suggested technology - the combined process
of vibrating processing with surfaces powders of zinc and aluminum allows to raise
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corrosion resistance of details of powder metallurgy and to condense their superficial
layer, having reduced his porosity and having increased strength properties. Process
is tested on powder products of instrument making, motor industry.
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Abstract

To avoid difficulties regarding the use of the Subway Environment Sim-
ulation (SES) code to properly size and locate ventilation shafts in subway
networks to answer to common fire safety engineering tasks, a specific tool
has been developed to assist the generation, visualization, manipulation and
diagnostic of simulations.

1 Introduction

In order to improve the planning, design and construction of subway ventilation
systems, with a focus on the fire safety engineering tasks, the Subway Environment
Simulation (SES) code is widely used to properly size and locate ventilation shafts,
evaluate tunnel geometries (different transversal and longitudinal lengths), fan sizes
and model the heat and smoke transport resulting from fires and other sources.
Performing such kind of numerical simulations, difficulties and criticalities have been
identified, many of them regarding the user interface with the code, that has then
been provided with a dedicated pre and post-processing tool, named proSES. The
paper will explain the rationale behind its development and its verification. It is
supported by a graphical interface which provides a unified environment for the
visualization, manipulation, generation and diagnostic of SES simulations.
It is possible to represent the network directly by a graph, significantly reducing
the time to prepare the input file and decreasing errors concerned with typing and
model description. Results are extracted from the output ascii files to generate
automated reports to easily compare great number of simulations, both with plots
or animations. The tool is written in Python, therefore it is platform independent,
and it makes an extensive use of external libraries.
SES and proSES respond to the needs of ventilation designers, but a general ap-
proach was used, in order to customize it for different kind of purposes, for example
to generate dynamic boundary conditions that can be applied for simulations with
other codes (2D or 3D lumped parameters or CFD ones) applied to a portion of the
entire network. This tool has been developed for Metropolitana Milanese S.p.A., a
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tunnel engineering company operating worldwide, which uses it to optimize ventila-
tion strategies in underground lines.

2 The SES code

The Subway Environment Simulation (SES)1 is a one-dimensional, incompressible,
turbulent, slug-flow model, developed with a designer-oriented approach, provid-
ing estimates of airflows, temperatures, and humidity, as well as air conditioning
requirements, for both operating and proposed multiple-track subway systems [1].
It provides a dynamic simulation of the bi-directional operation of multiple trains
throughout different arrangement of stations, tunnels, ventilation shafts, and fan
shafts.

The capabilities of the SES program are comprehensive, allowing the user to simulate
a variety of train propulsion and braking systems; various systems of environmental
control (including forced air ventilation, station air conditioning, and track-way ex-
haust); airflows in any given network of interconnected tunnels, stations and under-
ground walkways; any desired sequence of train operation (named routes), including
the mixing of trains with different operating characteristics and schedules; various
steady-state and non-steady-state heat sources including fire sources; emergency
situations with trains stopped in tunnels and air movement solely by mechanical
ventilation and buoyant forces [1].

It has been validated in model tests and in actual practice and it is applicable to a
variety of subway operating and design configurations and has been demonstrated to
be a cost-effective tool for evaluating the performance of most types of environmental
control strategies.

A part of computational issues, the main criticalities of the SES software are regard-
ing the user interface, which doesn’t give to to the user, during the input manage-
ment phase, a sufficiently clear representation of the network. This lead to errors
due to wrong typesetting and misunderstanding because of the complexity of the
model, and long time is required for the verification of the input.

Moreover, the input manager provided with the code has not any feature to simplify
parametric studies, that are very important to explore a huge amount of differ-
ent solutions, changing the great number of independent variables, like geometrical
properties, route and train characteristic, fire and fan sizes.

In fact, the SES code is usually very fast on common desktop computers and the
user is prone to increment the number of different cases in order to forecast the
better solution.

Another criticality is inherent the output file storing the results, that is not readable
with common text processing scripts because it is a printed oriented ascii file. The
values of variables are not saved in a proper manner (like comma separated values)
thus extracting output data would be a very tricky task.

This limits extremely slow down the time dedicated to the description of the network,
and the analysis of results, therefore a really long time is required to process any

1The SES code has been developed by the Department of Transportation of United States of
America and it has been released as executable for WindowsTMplatform.
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simulation.

3 The proSES tool main features

We have developed2 a complementary tool to the SES code in order to easy set-
up, modify and run multiple cases and to generate plots and animations to rapidly
compare and show results of simulations.

An interactive graph allows a visual representation of the network elements (tunnels,
stations, vent shafts..) and their relative connections through junctions. Nodes and
segments are then described using prototypes, so their properties values can be easily
modified in any time, simplifying the generation of different inputs for parametric
studies, as shown in figure 1.

Figure 1: A frame of the proSES tool showing the interactive graph and plots of
results.

It is possible to define routes independently from the actual train performance option
selected, and a plenty of features assist the user to cover every aspect of the pre-
processing phase.

It is possible to extract the output data to generate automated reports and also to
generate animations to easily compare different solutions as shown in figure 4

The tool uses Python as a glue programming language [2], [3], [4] and the wxPython
[5] graphic library as porting of the wxWidget cross-platform one. For the three di-
mensional animation the VTK library [6] was chosen, so the post-processor Paraview
[7] could be used to visualize the dataset and save animations.

2Programming: Luca Iannantuoni; Verification: Giovanni Manzini
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Figure 2: A frame of an animation showing the transient state of a ventilation
strategy applied to a subway network in a fire scenario.

4 Mentions about fire safety applications

4.1 Generalities

The SES fire model is intended for use in a trial-and-error fashion to select the
emergency ventilation system capacities. The interactions are between the tunnel
air velocity and a design air velocity criterion which precludes the backing of smoke
against the ventilating air stream (backlayering). The critical air velocity criterion
is a function of the fire heat release rate, the tunnel width, the average tunnel slope,
and the temperature of the hot gases leaving the fire.

A typical application of the fire model consists in iterating the simulation process
to predict the tunnel fresh air velocity and hot smoke temperatures to determine
whether the critical air velocity is less than the predicted one. Various tunnel
geometries, fire sizes, ventilation strategies and fans are usually taken into account,
leading to a huge number of different cases to be computed. With the proSES tool
this kind of study is much more faster and reliable, because it provides a unified
graphic environment covering every aspects of this kind of application.

A brief description of one study that was performed by SES and ProSES inside
a Fire Safety analysys carried out for Metropolitana Milanese is reported below.
The aim of the analysis was the effectiveness assessment of different fire protection
ventilation strategies applied to driverless metro lines [8]. Mainly, the attention was
focused on the smoke backlayering phenomena [9], [10]. Moreover, a fundamental
attention was dedicated to the presence of smoke and high air – smoke temperature
values inside the volumes of egress paths (platform, corridor, atrium, stairways).
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Figure 3: Example of subway line, with indication of fire positions (the fire starts
when the train is inside tunnel segment num. 32 and this train stops in station num.
34).

4.2 Case study

The analysis has been focused on the metro line, described in figure 3, that was
composed only by single track segments (group 1 cases) or by double track segments
(group 2 cases). The main data of such example metro lines are: L = 12.8km,
number of stations= 21, the area of tunnel in station is 12.70m2 for a single track
and 35.45m2 for a double track, the area of tunnel out of station is 14.25m2 for the
single track and 37.00m2 for the double track, the segment slope goes from −2.80%
to +2.33%.

In all cases the progressive stops of trains after the fire detection has been simulated.
The ventilation strategies simulated have been both of fire protection type and
normal (no fire type), with the aim to predict also the consequences of a failure in
the activation of the fire protection strategy.

Many fire protection ventilation strategies are push-pull type with num. 1 or num.
2 tunnel ventilation shaft active to supply fresh air (push mode) and num. 1 or num.
2 tunnel ventilation shaft active in exhaust mode (pull mode) to do a longitudinal
ventilation in the fire segment.. Alternatively, just the pull type fan is activated
(only num. 1 tunnel ventilation shaft active in exhaust smoke/ pull mode and num.
1 or num. 2 tunnel ventilation shaft are left open with the fan stopped).

In fact, such configurations guarantee a higher value of ventilation flow velocity
inside the tunnel segment interested by the fire. The fires considered have been
characterized by the following HRR maximum values: 1 (HRR= 5 MW), 2 (HRR=
10 MW), 5 (HRR= 25 MW). For example, figure 4 represent the air-smoke temper-
atures of different volumes of station when a push-pull strategy is applied along the
tunnels and a push or pull ventilation is applied nearby the station platform. The
most effectiveness of platform extraction strategy in pull mode is evidenced by the
confinement of high air/smoke temperatures close to station platform.
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Figure 4: Air/smoke temperature of segments, Single track line, peak hour headway,
1D (SES+proSES) simulation, Fire 5 ( HRRMAX = 25MW), tunnel ventilation
shafts volumetric flow= 300.000m3/h. Tunnel push-pull ventilation strategy and
platform push (left image) or pull (right image) of 100.000m3/h. Tunnel of station
and outside the station, platform, corridors, atrium and stairways are represented.

5 Conclusions

As shown, proSES tool and SES can be effectively used together in order to verify
and optimize fire ventilation strategies in subway networks.

Overall, the analysis carried out for Metropolitana Milanese has evidenced a good
usefulness of the proSES as complementary tool to SES, to determine or verify the
effectiveness of fire protection ventilation strategies. Mainly, the rapidity in pre
and post processing with such a tool and the improved control on errors associated
have been demonstrated crucial aspects for the correctness and completeness of
calculations. Obviously, because of the code which we have used (SES), it was not
possible to do calculations of ventilation effects on burning rate and on production
of contaminants like CO, HCN and soot.

6 Future developments

We are currently developing our own code for fluid dynamic simulation of under-
ground transportation networks (subway, rail and road tunnels) which will be in-
tegrated in a future release of the presented pre and post-processing tool named
proSES. Probably this next release (although minor release will go on to be devel-
oped for Windows TMplatform) should work also on Linux platforms; in fact we have
choose Python as programming language, guaranteeing cross-platform development
together with the graphical libraries used.
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Abstract

SPowder bands have great application when different abrasion-resistant
alloys are used and thus, in build-up fusion when powder bands the surfaced
layer is characterized by chemical heterogeneousness. The appearance of such
a chemical heterogeneousness on the surfaced layer in mechanized electric arc
welding with powder bands can be due to envelope construction, welding con-
dition or its formulation. Fusion of the shell cause buttons of melting metal,
which contact only partly the core, besides, considering short duration of the
processes. It is expect that low degree of alloying at button stage would re-
sult in chemical heterogeneousness of distribution in the surfaced layer. In this
work it was found that chemical homogeneity of surfaced metal coat depends
on electrode metal mass transfer in the process of powder strip welding. Metal
heterogeneousness applied by powder strip fusion is caused by some core com-
ponents, that occur in weldpool melt omitting button stage. Such particles
have considerably lower temperature, which changes the solidification rate in
the joints of weldpool. Attempt was made to find quantity expression of core
components appearing in weldpool in an unfused state.

1 Introduction

Powder bands have great application when different abrasion-resistant alloys are to
be used [1]. In build-up fusion with powder bands the surfaced layer is characterized
by chemical heterogeneousness. The appearance of such a chemical heterogeneous-
ness on the surfaced layer in mechanized electric arc welding with powder bands can
be due to envelope construction, welding condition or its formulation [2,3,4]. While
examining the nature of powder strip fusion in application of different abrasion-
resistant alloys, we should pay attention to the fact of separate shell and core fu-
sion, that is very important, if we deal with metallurgical processes at the button
stage. Fusion of the shell cause buttons of melting metal, which contact only partly
the core, besides, considering short duration of the processes, we can expect low
degree of alloying at button stage. This type of fusing processes and electrode metal
transfer would result in chemical heterogeneousness of distribution in the surfaced
layer [2]. In this work we came to the conclusion, that chemical homogeneity of sur-
faced metal coat depends on electrode metal mass transfer in the process of powder
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strip welding. Metal heterogeneousness applied by powder strip fusion is caused by
some core components, that occur in weldpool melt omitting button stage. Such
particles have considerably lower temperature, that change the solidification rate
in joints of weldpool. In [5, 6] we make an attempt to find quantity expression
of core components appearing in weldpool in an unfused state. Heterogeneousness
of chemical composition in surfaced metal is also due to fusing irregularity of the
shell and the core of a powder strip. Probability of such mass transfer of electrode
material depends on welding current distribution between the shell and the core of
the powder strip. It was registered, that welding current passing through the core of
powder strip is (1,11 - 2,5) 104 times less, than passing through the shell [2]. Which
obviously means, that welding current passes practically through the shell of the
powder strip, as shell - core boundary resistance is 4-9 ohm, and the resistance of
shell metal is ≈ 3, 6 · 104 ohm [2]. Such energy distribution in powder strip welding
causes the increase of current density. That, in its turn, is the causal factor of local
shell melting and hogging.

2 Thermal deformation in powder strip fusing

Thermal deformation in the metal shell in the process of powder strip fusion can be
explained by changing of its volume and linear parameters due to the temperature
increase. Under the fusion by powder strip, it is obvious to expect the extension of
the length and width of the sell perimeter at the throat of welder due to its heating
by passing welding current. The throat of powder strip in abrasion-resistant alloys
fusion is usually about 40 − 120mm. Under the fusion of powder strip, the shell
is being heated by passing current till the butt in temperature interval from the
temperature of the environment till the melting point, which is ensured by the heat
separated by the passing current at the throat. Knowing the temperature value
of a powder strip shell heating at the welding throat at the melting point, we can
calculate the length change and volume expansion of shell metal [7]. So, the length
extension of powder strip shell under its fusion with the heat of passing welding
current at the throat will be:

∆ℓT = αℓ0(T − T0) (1)

where ∆ℓT− the increase of the powder strip throat length due to welding current
heating, mm; ℓ0− the initial length of powder strip throat, mm; T0− the initial
temperature of metal shell, Co; T− the temperature of metal shell heating due to
the passing welding current at powder strip fusion, Co; α metal shell linear extension
coefficient, 1/Co.
The same conditions cause volume extension of the metal shell. Volume increase of
the powder strip metal shell at its throat due to the current heating is defined as
follows:

∆V = βℓ0V0(T − T0) (2)

where ∆V the increase of the powder strip throat volume, mm3; ∆V0 the powder
strip throat volume before its melting, mm3; β coefficient of volume extension,
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Metals α.10−6, 1/Co β.10−6, 1/Co

aluminum 23.9 71.7
copper 16.9 50.7
steel 11.0 33.0

Table 8: Linear and volume extension coefficients for metals.

1/Co. Total throat length of the powder strip taking into account the changes due
to the welding current heating can be found:

ℓ = ℓ0(1+ alpha(T − T0)) (3)

ℓ = ℓ0+ ∆ℓ (4)

The linear coefficient of extension β and volume expansion are known for different
metals and given in Table 1 [7]. Thus, the length change of the powder strip throat
due to its heating by the passing welding current in the process of fusion can be
calculated, if we know the real temperature of shell heating.

3 Experimental program

3.1 Materials and Sample Preparation

There have been held some research work in order to evaluate the temperature of
the heated powder strip shell. The research experimental program was accepted
analogical to works [7, 8] and is shown in Fig.1. The temperature was measured
in the middle part of the powder strip shell and, at the same level, in the locking
devise with the help of chromel-alumel thermocouple φ 0,15 mm. A part of powder
strip with the steel 08KP shell and copper 1000 mm was joint into welding circuit.
The welding current was regulated by ballast rheostats and was passing through the
researched electrode during some definite period of time, meanwhile the temperature
and current values were registered by the oscillograph K-I2-22.
We carried out experimental work for temperature measuring in the heated metal
of powder strip shell at the welding throat. The circuit for temperature evaluation
was the same, but thermocouples were posed in the middle part of the powder strip
shell The procedure of powder strip shell temperature measurement at the welding
throat in the process of fusion can be seen in Fig. 2. The welding throat length
is 60 mm. Welding current 550-600 A, voltage - 32 V. Chosen values are the most
characteristic average values for the named process, which are most commonly used
in welding with different powder strips.

4 Results and discussion

According to the results of research analysis, heating temperature around the shell
perimeter is irregular. In lock joints the heating is higher, than in the middle of
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Figure 1: Scheme of a circuit for powder strip temperature measurement, where R
ballast rheostats Pb-300, B1, B2, B3 oscillograph loops; A-Amperemeter; SH shunt;
PS powder strip; T1, T2 thermocouples.

Figure 2: Temperature change in the powder strip shell in the process of melting,
where K-finite switch; 1−charged rollers; 2−powder strip, 3− lead wire, 4−plate.

powder strip shell. The authors of the research under [8] explain the phenomenon
by the difference in current passing along the perimeter of the powder strip shell.
In lock joints welding current passes with 30% higher intense, than in the other
part of the perimeter. With the increase of current density there grows temperature
difference in the shell perimeter. Lock joint of the powder strip shell is formed
by several layers of the metal strip, so that makes influence on welding current
passage. With the current density lower 30A/mm2 , temperature difference of
heating between the lock joint and the middle of the shell is up to 100Co. At the
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current density up till 40A/mm2 the difference can be up to 250o. With the increase
of electrical resistivity of the shell metal the heating intense also grows. The results
of temperature dependence on current passage duration are in Fig. 3.
The results of temperature measurement at the welding throat heating by the weld-
ing current in fusion process are displayed in Fig. 4.

Figure 3: Temperatures of the powder strip shell, where 1−heating of the middle
part of the shell, 2−- heating of the lock joint of copper shell, 3−heating of the
middle part of steel shell, 4−heating of the lock joint of steel shell.

Figure 4: Temperature distribution at the throat of powder strip under fusion, where
1−temperature of the steel shell; 2−temperature of the copper shell.

The research analysis allows us to draw to the conclusion, that the temperature at
the throat of powder strip under the fusion for the steel shell can be estimated in
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the interval of 400 − 600Co and for copper shell 300 − 400Co. The received values
are supposed to be optimal and change with stuff composition, shell thickness, the
degree of shell and core squeezing. That is why it is necessary to estimate heating
temperature at the welding throat of each powder strip. On the grounds of our
experimental data of heating temperatures at the throat of powder strips shells at
fusing point we calculated its length alteration by the equation (1). The heating
temperature at the throat of the powder strip with the length equal to 60mm,
according to the experiments with the steel shell, was assumed as 500Co, and with
the copper shell 350Co. Length alteration of the throat length in the powder strip
with steel shell was ∆ℓstT which was calculated as:

∆ℓstT = 11× 10−6× 60(500− 20) = 0.32mm

Length alteration of the throat length in the powder strip with copper shell was
∆ℓcuT in calculation:

∆ℓcuT = 16.9× 10−6× 60(350− 20) = 0.33mm

Thus, total length of the throat of powder strip with lengthening for different metals
was as follows:

∆ℓst = 60+ 0.32 = 60.32mm

∆ℓcu = 60+ 0.33 = 60.33mm

Parameter alteration in the shell due to its heating by the passing welding current
at the welding throat of the powder strip in fusion can be estimated as follows

P = P0(1+ α(T − To)) (5)

where P - shell perimeter, mm; Po - shell perimeter before fusion, mm. For the
powder strip shell, exposed in Fig. 1 (see, [1]) the initial perimeter is equal to
Po = 46mm. Perimeter alteration of the shell due to the heating by passing welding
current in fusion can be estimated as:
For steel, P = 46(1+ 11× 10−6(500− 20)) = 46.24mm

For copper, P = 46(1+ 16.9× 106(350− 20)) = 46.26mm

As we can see from the calculation, the perimeter of the powder strip shell also
changes due to the heating by passing welding current in the process of fusion.
Volume alteration of the metal shell at the welding throat of powder strip can be
defined according to the formula (2). The initial volume of metal shell at the throat
at ℓ = 60mm and thickness of the shell δ = 0.4mm will be:

V0 = Pℓδ; (6)

V0 = 46× 60× 0.4 = 1104mm3

Alteration of the volume will be:
for steel ∆Vst = 1104.33× 10−6(500− 20) = 17.49mm3

for copper ∆Vcu = 1104.5067× 10−6(350− 20) = 18.47mm3.
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5 Conclusions

All the carried out estimations prove, that in fusing process at the throat of powder
strip there is certain thermal deformation, conditioned be welding current redistri-
bution between the shell and the core. Such alterations of welding throat length,
shell perimeter and volume mass of metal cause shell deformation, that leads to
breaking the contact between the core and the shell, which, in its turn, may cause
fusion irregularity of the shell and the core at the throat of powder strip. The
character of fusion and masstransfer of electrode metal in the process of powder
strip welding can be influenced by the degree of tightening under the compression
of the shell and the core while being produced. As it was displayed, duo rolling
mill may cause stresses that would lead to crushing of core components, their com-
paction, it is obviously change the contact surfaces [10]. Powder strip, as it was
noted earlier, is a composite material, where the shell is a solid body and the core is
particulate. The core has its mechanical characteristics, mainly that of compression
resistance, though partly of stretching stress resistance. Under rolling as the main
technological process of core compression in powder strip production, outer presser
is balanced by the equal and oppositely directed inner elastic forces. When the pres-
sure is removed, inner elastic forces eliminate, and the powder strip core converges
to expansion. This phenomenon, called elastic aftereffect, can be observed in pow-
der fragmentation compression, when the substance preserves its elastic properties.
Elastic aftereffect can cause the alteration of electric characteristics of the powder
strip. If we know the temperature of the powder strip shell at the throat at the
moment of fusion, we can estimate its length alteration and volume expansion of
the metal shell, which is the main cause of irregular melting of the shell and, its
turn, chemically heterogeneous surfaced layer.
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Abstract

A single cell of the gas-liquid slug flow was studied. The flow around
an stationary gas bubble in a downflow of liquid and under its bottom was
measured. The values of the wall shear stress and its pulsations were measured
by the electrodiffusion method depending on a distance from the bubble nose.
It is shown that in a liquid film around a bubble, turbulent pulsations are
damped in comparison with a single-phase liquid flow. In the bottom part of a
bubble, where vortices are detached, turbulent pulsations exceed significantly
the single-phase ones.

1 Introduction

The slug flow of gas-liquid mixture takes place in a wide range of liquid and gas
flow rates. It is characterized by the motion of liquid slugs separated by gas Taylor
bubbles. The investigation of slug flow is important for the development of modern
heat and mass exchange apparatus, power engineering and nuclear industry.
An intensive investigation of the slug flow structure in a scientific literature shows
the great interest for such type of flows [1-7]. The gas phase characteristics were
presented firstly: the Taylor bubble length distribution, it rise velocities and bubble
alternation. The bubble rise velocity in stagnant flow is presented in [1]. The inter-
action between two consecutative Taylor bubbles in a vertical pipe was investigated
in [2]. It is shown that the velocity of the trailing bubble is higher that the leading
bubble one. This effect is caused by the trailing bubble nose deformation and de-
creasing of this bubble hydraulic resistance in the leading bubble wake. Statistical
characteristics of the slug flow are presented in [3, 4].
The liquid phase characteristics are of a great interest for engineering purposes. The
modern experimental technique allows determination of the liquid velocity vectors,
the turbulence structure of the flow, the liquid layer thickness under the bubble
and wall shear stress. The structure of the liquid flow around single Taylor bubble
rising in the pipe is presented in [5] using PIV method. The experimental study of
the hydrodynamic characteristics of upward slug flow was conducted in [6, 7] using
electrodiffusional technique.
In the continuous slug flow these local averaged and pulsation characteristics of the
liquid phase can be obtained with ensemble averaging technique. Such approach
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allows to determine only average values of the flow parameters and does not allow
to obtain the dependency of fluctuational characteristics of the flow in relation to
the axial coordinate for an arbitrary slug.
The investigation of the characteristics of distribution of phases relative to the dis-
tance from the bubble nose is also of significant interest. To perform such studies
either the Taylor bubble or its simulator was maintained in the downward liquid
flow, the origin of the bubble was fixed by gas nozzle or the holder. Such studies
were performed by Delfos et. al. [8] to determine the gas entrainment from the
stationary slug in downward liquid flow and by Kockx et. al. [9] to investigate the
flow structure in the liquid film around the gas slug.
The flow structure near the pipe wall over a stationary Taylor bubble in the down-
ward liquid flow is presented in this paper. Investigation of this object allows to
determinate fluctuating characteristics of the flow and wall shear stress coefficients
when the distance from the bubble nose is precisely defined. The Taylor bubble with
surrounded liquid slugs is a ‘single cell’ of a downward slug flow. The stationary
Taylor bubbles appear in the regime of “gas hanging” in which the rise velocity of
the bubble is equal to the average velocity of liquid. The Taylor bubble rise velocity
was evaluated by formula:

U0 = 0.35
√
gD, (1)

were U0 is the Taylor bubble rise velocity, D is the diameter of the pipe and g is
the acceleration due to gravity.

2 Experimental Setup

The flow structure was studied using an electrodiffusonal technique [10]. Miniature
wall shear stress probes were used. Experiments were made in a vertical pipe 20
mm i.d. Experiments were performed when the liquid temperature was 250 C. The
temperature was maintained by the controlling system. The physical properties of
the test liquid in our experiments were similar to the distilled water. To produce the
Taylor bubble, the gas was supplied to the flow through a capillary tube centered
relatively channel axis. The bubble length was varied by changing the gas flow rate.
In order to measure the distribution of wall shear stress along the bubble the point of
gas injection was traversed along the tube. The Taylor bubble length was determined
by video processing. To avoid an optical distortions glass tube was mounted in the
square box filled with immersion liquid. The estimated error of measurements was
7 % for the wall shear stress and 3 % for the Taylor bubble lehgth.

3 Results and Discussion

A Taylor bubble length effect on the wall shear stress τ was investigated at first
(Figure 1). Here X is the distance from the bubble nose. The negative values of
X correspond to the single phase region up to the bubble nose. The bubble length
was varied in the range of 10÷120 millimeters. Single-phase wall shear stress values
were detected at 30 mm upward the bubble nose. The wall shear stress increases
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Figure 1: A Taylor bubble length effect on the wall shear stress: 1 – L=20 mm, 2 –
L=40 mm, 3 – L=60 mm; 4 – L=80 mm; 5 – L=120 mm.

while approaching the bubble nose. The streamlines modification and the liquid
velocity increase at this region were shown in previous experimental and theoretical
works of other authors [5, 11]. In the region of the slug nose a sharp increase of wall
shear stress takes place. It happens because the slug nose has a spherical shape and
the liquid film thickness decreases significantly while the flow rate remains constant.
Around the slug the liquid film thickness and the wall shear stress changes smoothly.
The study of wall shear stress distribution for long slugs was also performed in this
study. Fig. 2 shows the value of wall shear stress for a slug 500 mm long. The values
of wall shear stress increases up to the distance from the slug nose of about 200 mm.
At this distance from the bubble nose the flow around the bubble is stabilized and
does not depend on X. A good agreement is observed in this region with the wall
shear stress values calculated from the limiting film thickness given by the formula
[12]:

σ =

[
3νVL

2g

(
D

2
− σ

)]1/3
, (2)

were σ is the film thickness, ν is the kinematic viscosity of liquid, VL – is the velocity
of the liquid. The establishment of stabilized thickness of the liquid film around the
slug was shown also in [9]. The model accounting for the intensity of surface waves to
determine the thickness of the liquid layer flowing around the slug was also presented
in this paper. The model describes satisfactory the data presented.
Electrodiffusional technique allows investigating the turbulence structure of the flow
near the pipe wall. It was shown in our work that the structure of the probe signal
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Figure 2: The wall shear stress in the stabilized film zone: dots – experiment; dashed
line – eq. 2.

is strongly depending on the region of the flow (Figure 3). At the initial region
of the bubble, reduction of turbulence fluctuations of the flow is observed. The
liquid velocity acceleration in the liquid film around the bubble is the reason of this
trend. High wall shear stress values and low values of its fluctuations compared to
a single phase flow were recorded in the region behind the gas slug (Figure 3a). In
the stabilized liquid film an increasing of turbulence fluctuations is observed. The
bubble bottom oscillation result in a quasi periodical alternation of regions with
high and low levels of fluctuations detected in the liquid downstream the bubble
bottom in an annular vortex zone of the flow (Figure 3b). The disturbance of the
wall shear stress, the wall shear stress fluctuations produced by the Taylor bubble
in compare to the single phase values holds for the distance of more than 20 tube
diameters from the bubble bottom.

4 Conclusions

The investigation of the hydrodynamics of a single stationary gas slug in downward
liquid flow was performed along with the flow structure behind the slug bottom. The
information on the fluctuational structure of the flow around the slug was obtained.
This information can hardly be obtained in real slug flow. It was shown that the
flow disturbance starts at the distance of about 20 mm before the slug due to the
deformation of liquid flow by the slug. The shear stress at the tube wall increases
and its relative fluctuations decrease. In the liquid film around the slug the wall
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Figure 3: Wall shear stress probe signal: a− in the central part of bubble; b− in
the vortex zone behind the bubble bottom.

shear stress may be several tens of times higher than the single phase value, the flow
laminarization takes place due to the liquid acceleration. It was shown that the wall
shear stress around the bubble depends on the distance from the slug nose and is
independent of the slug length. A complex flow structure was observed behind the
slug bottom which is characterized by the alternation of regions with high wall shear
stress and its fluctuations and the regions with low values of these parameters. The
flow perturbation by the single gas slug propagates at the distance of more than 20
pipe diameters.
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Abstract

In the paper a flow of the power-law fluid along the regular cluster of fibres
is considered. The results were obtained by a fundamental solution method for
Newtonian fluid. The solution for velocities of non-Newtonian fluid flow was
achieved by the iteration process . In a consequence, permeability decreases
when the radius of fibres increases.

1 Introduction

The fluid flow in porous media is observed in many situations like geology, medicine,
industry and so on. Especially, fluid flow in fibrous media is very important. Exam-
ples of applications of fluid flow through porous fibrous media are given in papers
[2, 5, 6]. This paper deals with a non-Newtonian fluid flow in such media. The
power-law model for fluid is considered.
The governing equation of power-law fluid flow may be written in the form of a
nonlinear equation. The velocity profile of the fluid flow has been obtained by three
methods: the method of fundamental solution, the radial basis function and the
Picard iteration method. If the velocity profile is known, it is easy to find the
permeability of porous fibrous media for power-law fluid flow.

2 Newtonian fluid flow

Let us consider the regular cluster of infinite fibres of radius R and distance between
them 2a. Suppose that z axis is the parallel to axis of fibre. The problem has the
symmetry, hence we restrict to the area shown in Fig. (1).
The Navier-Stokes equations, that govern the Newtonian fluid flow of the viscous
fluid are as follows:

∂u
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∂x
+ v

∂u

∂y
+w

∂u

∂z
= −

1

ρ

∂p

∂x
+
µ0

ρ

(
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)
,

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+w

∂v

∂z
= −

1

ρ

∂p

∂y
+
µ0

ρ

(
∂2v

∂x2
+
∂2v

∂y2
+
∂2v

∂z2

)
, (1)

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+w

∂w

∂z
= −

1

ρ

∂p

∂x
+
µ0

ρ

(
∂2w

∂x2
+
∂2w

∂y2
+
∂2w

∂z2

)
,

307



Proceedings of XXXVII International Summer School–Conference APM 2009

Figure 1: Geometry of the problem.

where (u, v,w) is the velocity vector, p is the fluid pressure, ρ is the density and µ0
is the dynamic viscosity. Suppose, that fluid is noncompressible, so

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0. (2)

Our aim is now to find the flow along the fibres. Hence two elements of the velocity
vector are 0. Let us assume, that nonzero element is w. If the flow is steady, then
the equations (1-2) are as follows

0 = −
1

ρ

∂p

∂x
,

0 = −
1

ρ

∂p

∂y
, (3)

w
∂w

∂z
= −

1

ρ

∂p

∂x
+
µ0

ρ

(
∂2w

∂x2
+
∂2w

∂y2
+
∂2w

∂z2

)

and

∂w

∂z
= 0. (4)

From (3) and (4) we have

∂2w

∂x2
+
∂2w

∂y2
=
1

µ0

dp

dz
, (5)

where the right hand side is the ordinary derivative, because the pressure p does
not depend on x and y (see first two equations in (3)).
The boundary conditions for problem (5) result from Fig. (2) as follows:
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Figure 2: Boundary conditions.

1. w (x, y) = 0 for Γ : x2+ y2 = R2 (the boundary of the fibre),

2.
∂w (x, y)

∂x
= 0 for x = 0 and x = a (the left hand side and the right hand side

of the area),

3.
∂w (x, y)

∂y
= 0 for y = 0 and y = a (the bottom side and the top side of the

area).

Let us introduce the dimensionless variables:

X =
x

a
, Y =

y

a
, W (X, Y) = −

w (x, y)
a2

µ0

dp

dz

, (6)

so that, Eq. (5) can be rewritten to the form

∂2W

∂X2
+
∂2W

∂Y2
= −1. (7)

The dimensionless boundary conditions are as follows:

1. W (X, Y) = 0 for Γ̃ : X2+ Y2 =
R2

a2
(the boundary of the fibre),

2.
∂W (X, Y)

∂X
= 0 for X = 0 and X = 1 (the left hand side and the right hand

side of the area,
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Figure 3: Collocation, source and interpolation points.

3.
∂W (X, Y)

∂Y
= 0 for Y = 0 and Y = 1 (the bottom side and the top side of the

area).

The solution of (7) has been obtained by the method of fundamental solution (MFS)
and reads

W (X, Y) =

N∑

j=1

cj ln

√
(X− Xj)

2
+ (Y − Yj)

2
−
1

4

(
X2+ Y2

)
. (8)

cj coefficients are determined with the help of the boundary collocation method
with N collocation points. The collocation and source points are generated dur-
ing calculations. The source, collocation and interpolation points are presented in
Fig. (3).

3 Non-Newtonian fluid flow

In the case of the non-Newtonian fluid, the dynamic viscosity is not constant. In
this paper the power-law fluid model has been used with the viscosity in the form:

µ (γ) = βγn−1, (9)

where β is the consistency factor, n is the power-law index and

γ =

√(
∂w

∂x

)2
+

(
∂w

∂y

)2
. (10)

The equation of motion for the power-law fluid then reads

∂

∂x

[
µ (γ)

∂w

∂x

]
+
∂

∂y

[
µ (γ)

∂w

∂y

]
=
dp

dz
. (11)
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If we use dimensionless variables (6) and

E (χ) =
µ (γ)

µ0
, B =

β

µ0

(
a

µ0

dp

dz

)n−1

, (12)

Eq. (11) can be written in the dimensionless form as

∂

∂X

[
E (χ)

∂W

∂X

]
+
∂

∂Y

[
E (χ)

∂W

∂Y

]
= −1, (13)

where

χ =
γ
a
µ0

dp

dz

=

√(
∂W

∂X

)2
+

(
∂W

∂Y

)2
. (14)

Finally, from (13) it can be written as follows

∂2W

∂X2
+
∂2W

∂Y2
= −

1

B
χ1−n− (n− 1)ξ, (15)

where

ξ =

(
∂W
∂X

)2 ∂2W
∂X2

+ 2∂W
∂X

∂W
∂Y

∂2W
∂X∂Y

+
(
∂W
∂Y

)2 ∂2W
∂Y2(

∂W
∂X

)2
+
(
∂W
∂Y

)2 . (16)

The dimensionless boundary conditions are the same as for Newtonian fluid flow.
The solution of Eq. (15) has been obtained using radial basis function (RBF) and
MFS using the iteration process.

3.1 Algorithm steps

Step 1 Interpolation with multiquadrics
In the paper the multiquadrics function φ (ri) =

√
r2i + c2, with shape pa-

rameter c = 0.001 was chosen to interpolate the right hand side of Eq.(15).
Interpolation function has the form

f (X, Y) =

NI∑

i=1

aiφ (ri) , (17)

whereNI is the number of the interpolation points and ai are calculated during
interpolation. In the first iteration the solution for the Newtonian fluid flow is
used to interpolate the right hand side of Eq. (15). In other case the solution
from the previous iteration is used.

Step 2 Current solution
The solution in the current step reads

W (X, Y) =

NI∑

i=1

aiψ (ri) +

N∑

j=1

cj ln

√
(X− Xj)

2
+ (Y − Yj)

2
. (18)

cj coefficients have been obtained with the help of the boundary collocation
method.
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Step 3 Algorithm is finished, if the maximum difference between values of the velocity
in two sequence iterations is smaller than some value. In the other case,
algorithm goes to Step 1 or stops after some number of iterations.

4 Permeability of the fibre structure

The permeability of the porous medium is described by the Darcy law in the form:

Q

A
= −

κ

µ

Pb− Pa

L
, (19)

where Q is the total discharge, κ is the permeability, A is the cross-section area,
Pb − Pa is the pressure drop over the length L. In this paper the Darcy law we
assume as

qz = −
κ‖
µ

dp

dz
, (20)

where qz is the flux along z axis, κ‖ is the permeability along the regular cluster of
fibres.
The dimensionless average flow velocity has been obtained from the (18) by

WA =

∫∫

A

W (X, Y)dA

∫∫

A

dA

=
1

A

∫∫

A

W (X, Y)dA. (21)

According to Eq. (6) can be written

qz = wA = −WA

a2

µ

dp

dz
, (22)

where wA is the average flow velocity.
So that

−
κ‖
µ

dp

dz
= −WA

a2

µ

dp

dz
(23)

and in the consequence

κ‖ = WAa
2. (24)

Let’s take the dimensionless permeability κ̂‖ as

κ̂‖ =
κ‖
a2

= WA. (25)

Fig. (4) presents the behaviour of the dimensionless permeability for several values
of n and dimensionless radius r.
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Figure 4: The dimensionless permeability for several values of n and dimensionless
radius r.

The dimensionless permeability for several values of n along dimensionless radius r
of the fibre is shown below, in Table 1. err (n) is an error on the boundary.

Table 1. The dimensionless permeability.
n

r 1.0 err(n) 0.9 err(n) 0.8 err(n)

0.1 1.08771 5.583 · 10−12 − − − −

0.2 0.67206 9.014 · 10−11 0.68932 1.654 · 10−10 − −

0.3 0.44901 9.865 · 10−10 0.45028 1.470 · 10−9 0.46273 1.614 · 10−9

0.4 0.30494 2.964 · 10−14 0.30062 1.914 · 10−11 0.30702 2.244 · 10−11

0.5 0.20775 2.963 · 10−12 0.20016 1.535 · 10−14 0.19993 6.370 · 10−11

0.6 0.13841 1.224 · 10−12 0.12813 2.059 · 10−12 0.12780 1.531 · 10−10

0.7 0.08953 3.419 · 10−13 0.08048 1.159 · 10−11 0.07720 2.322 · 10−11

0.8 0.05597 5.535 · 10−13 0.04875 1.039 · 10−12 0.04470 2.378 · 10−12

0.9 0.03431 8.947 · 10−13 0.02921 4.821 · 10−11 0.02748 1.847 · 10−14

5 Concluding remarks

In this paper the new method of solution of the problem of power-law fluid flow
along the regular cluster of fibres has been presented. Firstly the velocity profile
was found for the Newtonian fluid flow. In the consequence the permeability of
porous fibrous media along the cluster of fibres has been obtained.

The iteration process called the Picard iteration method has been used. The con-
vergence was achieved for dimensionless radius r higher than 0.3. Some results have
been obtained for smaller radius, as well.
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Abstract

Large deformations in metal specimens under uniaxial tension in condi-
tions of high-temperature creep and especially of superplasticity are accom-
panied by the macroscopic second-order surface effects [1-4]. At the free sur-
face of a specimen under deformation one can observe multiple formations of
stationary and movable necks with small fixed amplitudes. To our knowledge,
no systematic study has been made to gain insight into this phenomenon al-
though the problem is of considerable practical importance. An important
point is that the specific nature of the free surface shape evolution, during
which the surface disturbances are “frozen”, provides stability of the speci-
men tension process up to abnormally high values. Investigation of conditions
responsible for initiation and sustaining of such regimes may lead to a new
method of classification and identification of viscoplastic constitutive rela-
tions, going beyond the limits of the specimen principle, and to formulation
of the superplasticity definition conceivable for mechanicians

This work is concerned with the problem of an infinite nonlinear-viscous
band with free lateral boundaries under quasi-static tension, i.e. “necking”
problem. The nonlinear rheological relations of Reiner-Rivlin fluid are taken
as the constitutive ones. Stability of the straight-line free boundaries of such
a band is studied in work [5]. In this work, equilibrium curvilinear free bound-
ary contours are found. Evolution of small axially symmetric disturbances of
straight-line free boundaries is investigated by the method of a small param-
eter. The first term in uniformly convergent asymptotic series satisfies the
non-autonomous linear equations of the parabolic type including an arbitrary
quantity m, which is a parameter of material sensitivity to the strain rate.
Using the equivalent (leaving the structure of the Lie algebra unchanged) time
inverting transformations, this equation, independently from the arbitrary el-
ement, can be reduced to a linear heat conduction equation, which has an
infinite dimensional algebra of point symmetries. The self-similar stationary
solutions of localized and distributed character found exist in some ranges of
the parameter m, which provide the balance between kinematic and physical
nonlinearities. The stability of these solutions has not been determined.

The equilibrium of nonlinear-viscous band under quasi-static uniaxial tension is
governed by the following equations:

σx,x+τxy,y= 0, τxy,x+σy,y= 0, (1)
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σx = −p+ τξ−1u,x , σy = −p− τξ−1u,x , τxy = τξ−1(u,y+v,x )/2, (2)

u,x+v,y= 0, (3)

where x, y are the Cartesian orthogonal coordinates (x-axis coincides with the band
axis), σx, σy, τxy are the components of the stress tensor, p is hydrostatic pressure,
u, v are the components of the displacement rate along the x and y coordinates,

τ =
√

(σx− σy)2+ 4τ2xy and ξ =

√
(u,x )2+ 1

4
(u,y+v,x )2 are the stress and the

strain rate intensities energetically conjugated in a two-dimensional case, the comma
denotes partial derivative. The material function τ(ξ) is supposed to be an arbitrary
element determining the form of a solution for the shape of the free boundary of the
band in tension.
At the current time, the basic motion, which is that of uniform tension of a band
along the generating line with the deformation rate ξ0, is given by

b,t= −ξ0b, (4)

where b is the current transverse dimension of the undisturbed band. Disturbances
of the rectilinear free boundaries are assumed to be symmetric with respect to the
axial line which allows us to consider only one boundary: y(x, t) = b(t) + η(x, t),
where η < 0 is the boundary disturbances. Using an implicit form of the equation
g = b + η − y ≡ 0 we can write the components of the external normal nx =

g,x/|∇g| = η,x/|∇g|, ny = g,y/|∇g| = −1/|∇g| to the free boundary and the
static boundary conditions

η,xσx− τxy = 0, η,xτxy− σy = 0. (5)

Using (4) and the definitions dx/dt ≡ u, dy/dt ≡ v (d/dt denotes time derivative
respectively a fixed material particle), the kinematic condition at the free boundary
dg/dt = 0, implying its materiality, is written as

η,t+uη,x−v− ξ0b = 0. (6)

This condition introduces a time derivative into the examined problem which means
that the band under quasistatic tension can be in equilibrium at certain evolution of
its free boundaries. Let us consider the disturbances vanishing at infinitely distant
band ends

η(x→ ±∞) → 0. (7)

Substitution of (2) and (3) into (1) leads to the equilibrium equations expressed in
terms of the displacement rates

τ−1ξp,x−(m − 1)ξ−1[ξ,xu,x+ξ,y (u,y+v,x )/2] − u,xx−(u,yy−u,xx )/2 = 0,

τ−1ξp,y−(m − 1)ξ−1[ξ,yu,x+ξ,x (u,y+v,x )/2] + u,xy−(u,xy+v,xx )/2 = 0,

ξ,x= ξ−1[u,xu,xx+(u,y+v,x )(u,xy+v,xx )/4],

ξ,y= ξ−1[u,xu,xy+(u,y+v,x )(u,yy−u,xy )/4],
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where τ ′ξ/τ = d ln τ/d ln ξ ≡ m is the sensitivity to the strain rate. This quantity
is constant for the power law τ(ξ). At small disturbances all coefficients at highest
derivatives in the equations above written are assumed to be constants corresponding
to the basic motion. So, in the expressions for these coefficients it is necessary that
u,y= v,x= 0, u,x= ξ0 so that the system reduces to

2τ−1ξp,x−(2m− 1)u,xx−u,yy= 0, 2τ−1ξp,y+(2m− 1)u,xy−v,xx= 0. (8)

Following the method commonly used for treatment of the layer or band problem
[6, 7], the unknown fields are represented in the form of power series in the transverse
coordinate

p =

∞∑

n=0

pn(x)y
n, u = ψ,y=

∞∑

n=1,3,

nψn(x)y
n−1, v = −ψ,x= −

∞∑

n=1,3,

ψ ′
n(x)y

n, (9)

which take into account the axial symmetry of the disturbed velocity field, and ψ
is the stream function. In the first terms of the series the basic motion and the
disturbance components are distinguished

p0 = −τ0+ π, ψ1 = ξ0x +φ (10)

where τ0 = τ(ξ0). System (8), using (9)-(10), imposes constraints on the functions
pn, ψn

y0 : κπ,x−(2m− 1)φ,xx−6ψ3, p1 = 0;

y1 : p1,x= 0 2κp2+ 6(2m− 1)ψ3,x+φ,xxx ;

y2 : κp2,x−3(2m− 1)ψ3,xx−60ψ5, p3 = 0;

y3 : p3,x= 0 4κp4+ 20(2m− 1)ψ5,x+ψ3,xxx

etc. (κ ≡ 2τ−1
0 ξ0), which allow these functions to be resolved in terms of π and φ

p = −τ0+ π+ τ0ξ
−1
0 (2m− 1)my2φ,xxx−(2m− 1)/2y2π,xx+O(y4),

u = ξ0x+ φ− (2m− 1)/2y2φ,xx+ξ0τ
−1
0 y

2π,x+O(y4), (11)

v = −ξ0y−φ,xy+ (2m− 1)/6y3φ,xxx+ξ0τ
−1
0 /3y

3π,xx+O(y5).

In the following, the terms, having higher order of smallness than the explicitly writ-
ten terms, are omitted. Their retention leads to appearance of additional dispersion
terms in the equation of free boundary evolution.
Expressions (11) are substituted into boundary conditions (5), (6) bearing in mind
that at the free surface y = b+ η. Non-dimensionalization of the variables

x = bx, η = bη, y = b(1+ η), t = ξ−1
0 t, φ = ξ0bφ, π = τ0π,

leads to a system of the boundary equations for three unknown functions
η(x, t), φ(x, t), π(x, t) (the overscribed bar is dropped):

η,x (2− π+φ,x ) +m(1+ η)φ,xx−(1+ η)π,x= 0,

mη,x (1+ η)(φ,xx+π,x ) − φ,x+π = 0, (12)

η,t+η,x [x+φ+ (2m− 1)/2(π,x−φ,xx )(1+ η)2] + η+

+(1+ η)φ,x+(1+ η)3(1/3π,xx−(2m− 1)/2φ,xxx ) = 0.
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At small disturbances this system reduces by the multiscale method to a weakly
nonlinear form [6,8], for which purpose the desired variables are represented in the
form of series expansion in terms of the small parameter ε

η = εsη0+ ε2sη1+ . . . , φ = εqφ0+ ε2qφ1+ . . . , π = εpπ0+ ε2pπ1+ . . . , (13)

where η0, φ0, π0, η1, φ1, π1 are the functions of independent variables x, t, χ ≡
εx, τ ≡ εt, having order of ε0. Taking s = q = p = 1 one obtains a meaning-
ful model

2η0,x+mφ0,xx−π0,x= 0, π0+ φ0,x= 0, (14)

η0,t+xη0,x+η0+ φ0,x−
2m − 1

6
φ0,xxx+

1

3
π0,xx= 0, (15)

2η1,x+mφ1,xx−π1,x=
2m

m+ 1
η0,χ+

2(m+ 3)

m+ 1
η0η0,x , (16)

π1+φ1,x= −φ0,χ−2(η0,x )2, (17)

η1,t+xη1,x+η1+ φ1,x−
2m − 1

6
φ1,xxx+

1

3
π1,xx= −η0,τ−xη0,χ− (18)

−φ0,χ−
6m+ 1

3(m+ 1)
η0,xχ−η0,xφ0+

2

m+ 1
η20−

2m+ 1

m+ 1
(η0η0,x ),x .

After using conditions (7), system (14)-(15) reduces to the following equations:

η0,t+κ1η0+ xη0,x+κ2η0,xx= 0, κ1 ≡
m− 1

m+ 1
, κ2 ≡

2m+ 1

3(m+ 1)
, (19)

π0 = −φ0,x=
2

m + 1
η0. (20)

Equation (19) admits a Lie point group with the infinitesimal operatorω exp(t)∂x+

∂t, where ω is an arbitrary constant. The invariant x − ω exp(t) of the operator
leads to exponentially self-similar substitution

η0 = f(ζ), ζ ≡ x −ω exp(t). (21)

In the basic motion, an arbitrary material point, having in the actual (disturbing)
band configuration at time t = 0 the space coordinate x∗, will have the space
coordinate x = x∗ exp(t) at any subsequent time t. By assuming in (21) thatω = x∗
one can readily show that the contour f(ζ) is stationary in the reference system ζ,
moving as a rigid body with a material point located at the origin of coordinates,
whereas with respect to the reference system ζ the material undergoes tension.

Substitution of (21) leads to the equation for f

κ2f,ζζ+ζf,ζ+κ1f = 0, (22)

which by applying the transformations f = exp(−1
4
ζ
2
)f, ζ = κ

1/2

2 ζ can be reduced

to a standard form of the parabolic cylinder equation f,ζζ−(1
4
ζ
2
+ 1
2

− κ1)f = 0 [9].
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A solution of this equation is conveniently expressed in terms of the confluent hyper-
geometric function Φ, after which the solution of equation (22) takes the following
form:

f(ζ) = a exp(−
ζ2

2κ2
)Φ(

1− κ1

2
,
1

2
,
ζ2

2κ2
) + bζ exp(−

ζ2

2κ2
)Φ(

2− κ1

2
,
3

2
,
ζ2

2κ2
), (23)

where a(χ, τ), b(χ, τ) ∼ ε0. This solution at ζ→ ±∞ has the asymptotic f(ζ) ∼ ζ−κ1

[9]. Hence, at m < −1 or m > 1, when κ1 > 0 and knowingly κ2 > 0, the above
solution meets the boundary conditions f(ζ → ±∞) → 0, viz. we have a localized
solution.

To ensure that the localized functions η0, φ0, π0 describe the disturbances η, φ, π to
an accuracy of orders ε1, series (13) should converge uniformly, viz., the decreasing
rate of the function η1 should not be lower than that of η0: η1 ∼ ζ−δat ζ → ±∞,
where δ ≥ κ1 > 0. To this end, from the right-hand side of the equation for
η1 entering in (16)-(18) one needs to eliminate η0,τ and xη0,χ, which leads to the
solution a(χ, τ) ≡ a, b(χ, τ) ≡ b. This solution leaves open the question on stability
of the localized solution (21),(23). To solve this problem it is necessary to consider
the other terms of the series (13) and their dependence on slower variables.

A localized contour of the function f(ζ) is formed by a linear combination of the
even (a 6= 0, b = 0) and the odd (a = 0, b 6= 0) components. Their asymptotic
character is similar, so the symmetric disturbance case (a = −1, b = 0) will be
considered further. On the interval m > 1 a localized solution is of unimodal
form (fig. 1, a) whereas in the limit m → ∞ there occurs the Gaussian function

f(ζ) = a exp(− ζ2

2κ2
). For the values of the parameter m < −1 in the vicinity of

the point m = −1 a localized solution exists in the form of group soliton (fig. 1,
b). As the parameter m recedes from this point the oscillations disappear gradually
(fig. 1, c) and in the limit m → −∞ there again occurs the Gaussian function.

At m = 1 (rheology of linear-viscous fluid) equation (22) loses the term κ1f.
Its solution is a kink (fig. 1, d), described by the probability integral f(ζ) =

b
√
πκ2
2
erf( 1√

2κ2
ζ) and does not satisfy the locality conditions (7). However, if in-

stead of (21) we use the ansatz η0 = f(x − x∗ exp(t)) − f(x + x∗ exp(t)) we obtain
a solution in the form of the distributed, uniformly stretched neck of fixed depth,
whose edges have invariable contour and are motionless with respect of the La-
grangian coordinates ±x∗.
The solution of equation (22), which is stationary and localized with respect to
self-similar variable, can be viewed as a result of the balance between the lead-
ing terms ζf,ζ and κ2f,ζζ. The former originates from the nonlinear term of the
kinematic boundary condition (6) and the latter results from retaining in the veloc-
ity component approximations (12), the terms of higher than the first order in the
transverse coordinate (note, that the author of [7] also arrived at the conclusion that
the hypothesis of plane sections provides no possibility for the existence of localized
solutions). The existence of the localized solution is determined by some interval
of m, which is a measure of physical non-linearity of the model. The leading terms
have the lowest order p = 2 of the expression, starting from which the solution is
represented in terms of series: f = exp(−ζp)

∑∞
n=0 fnζ

n.
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Figure 1: Forms of localized solutions.
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Figure 2: Forms of distributed solutions.
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From (12) and (20) it follows that the boundary disturbance is proportional to the
elongation rate disturbance of opposite sign, which is averaged over the cross-section
of the band. In particular, in the neck region η0 < 0 some increase in the extension
rate is observed.

Solution (23) allows us to estimate the shape of the neck at m > 1. Power series
expansion beginning from the terms f(ζ) = −1 + κ1

2κ2
ζ2 + O(ζ4) takes place in the

vicinity of the point ζ = 0. The neck width λ at half its height is derived from

the equation −1 + κ1
8κ2
λ2 ≈ −1

2
, from which λ = 2

√
κ2
κ1

. At the values of m slightly

higher than unity

λ ∼
2√
m − 1

+O(
√
m − 1), (24)

which corresponds to very flat necks. According to (24), the observed typical values
of λ ∼ 100 [4, fig. 6] correspond to (m− 1) ∼ 10−4. In stationary creep experiments
(including superplasticity regimes) the most commonly observed values are 0 <
m < 1. Therefore in order that could be identified by a current profile of the
lateral surface of the tensile specimen one needs to seek other weakly disturbed
equilibrium contours described by equation (19). A systematic search for partial
solutions of the differential equation can be realized through studying the structure
of its symmetries.

General results on group classification of the linear parabolic equations in partial
derivatives with two unknown variables have been obtained by L. V. Ovsiannikov
and presented in [10]. Equation (19) is closely related to the equation of heat
conduction

η,t−η,xx= 0, (25)

to which it is reduced by equivalence transformations

η = exp(κ1t)η0, x = κ
−1/2

2 exp(−t)x, t =
1

2
exp(−2t), (26)

preserving the algebraic structure of point symmetries of this equation [10], [11:
1.3.3.2]. An optimal system of the finite-dimensional subalgebras in the infinite-
dimensional Lie algebra assumed by equation (25) is constructed in [12]. Each
of these subalgebras corresponds to a partial solution of equation (25), related by
transformations (26) with some unnecessarily localized evolving equilibrium contour
of the free boundary. The structure of the Lie algebra in equation (25) does not
depend on the arbitrary element of this equation whose role is played by sensitivity
to the strain rate m. It means that the problem of group classification of equation
(25) with respect to the arbitrary element has a trivial solution. Furthermore,
classification and identification of nonlinear-viscous relations is impossible without
finding all localized limited solutions in an infinite set of solutions invariant in the
corresponding subalgebras of the optimal system and determining the their existence
conditions dependently from m. Equation (19) can be meet in quantum mechanics,
and some localized solutions of equation (19) and (25) are given in [11: 1.1, 1.3.1.2].
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Description of elastic properties of diamond using
angular atomic interaction

S. S. Khakalo A. M. Krivtsov O. S. Loboda
akrivtsov@bk.ru

Abstract

Model of diamond taking into account angular interaction between its
atoms is presented. Formulae representing the stiffness tensor in terms of the
parameters of angular atomic interaction are derived. Obtained results are
compared with the experimental data. Comparison with the model based on
the moment atomic interaction is made.

1 Description of the model. Derivation of the co-

efficients

Diamond is one of the allotrope forms of carbon, mineral with a complex crystal
structure. Diamond is orthotropic material so it has 3 mutual perpendicular planes
of symmetry. The scheme of the diamond crystal is shown in Fig. 1 where cube
faces act as planes of symmetry.

Figure 1: Fragment of the diamond crystal lattice.

Let us consider model of the diamond lattice, depicted in Fig. 2. It represents the
ideal biatomic crystal lattice, which atoms are located in the center and vertices of
a perfect tetrahedron.
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Figure 2: Model of the diamond lattice.

Interaction between atoms are described using longitudinal springs with stiffness c
and angular springs with stiffness γ. The elementary cell of such lattice contains
two atoms. These atoms are named as atoms of the first and second type. Atoms of
each type form a simple crystal lattice, and these lattices are congruent. We choose
one of the atoms of the first type as a reference atom. It is postulated that each
atom interacts only with the nearest ones. From fig. 2 it is seen that each atom is
surrounded by 4 nearest neighbours. Corresponding interactions are numbered from
1 to 4. Let us use an orthonormal basis with vectors perpendicular to the planes of
symmetry of the lattice. Then the unit vectors directed to the nearest atoms can
be represented as:

n1 =
1√
3
(i − j + k), n2 =

1√
3
(−i + j + k)

n3 =
1√
3
(i + j − k), n4 =

−1√
3
(i + j + k).

In the work [1] the following formulae for an orthotropic material were obtained:

4

C = κekekekek+ λJ1+ µJ23, (1)

where
J1

def
= ekekenen, J23

def
= ekenenek+ ekeneken.

Here 4C is macroscopic stiffness tensor; J1 and J23 are isotropic tensors of the 4th
rank; κ, λ and µ are the generalized Lame parameters; ek and en are unit vectors
of any arbitrary basis.
Macroscopic stiffness tensor is derived in [1] using the expression for the deformation
energy of the material

W =
1

2
ε · · 4C · ·ε, 4

C =
4

C
∗
−

3

C · 2C
−1

· 3C
T
, (2)
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where

4

C
∗

=
2

V0

(
H1

4∑

α=1

nαnαnαnα+H2

4∑ ′

α,β=1

nαnαnβnβ+

+H3

4∑ ′

α,β=1

(nαnβnβnα+ nαnβnαnβ)

)
,

3

C =
1

V0
H4

4∑

α=1

nαnαnα,
2

C =
2

V0
H5

4∑

α=1

nαnα, V0 =
16

√
3

9
a3.

Here W is energy of deformation of the material; ε is strain tensor; 4C
∗
, 3C and 2C

are intermediate stiffness tensors; V0 is volume of an elementary cell of the crystal;
a is length of the internuclear bond. The prime at a sum means that summation is
conducted on the adjacent bonds only.

Formulae for Hk from [1] in the case of diamond take form:

H1 =
1

2
ca2−

9

8
cγa

2, H2 =
1

8
cγa

2, H3 =
9

8
cγa

2,

H4 = ca2− 4cγa
2, H5 =

1

2
ca2+ 4cγa

2,

where cγ =
γ

a2
is the effective stiffness of the angular interaction.

We substitute obtained coefficients Hk and values of vectors nk from expression (1)
in formulae for intermediate stiffness tensors (4). With the help of the obtained for-
mulae the macroscopic stiffness tensor (3) for diamond can be found. Representing
this tensor in form (2) we obtain the following expressions for the generalized Lame
parameters:

κ =
3
√
3

16a
cγ
72cγ− 7c

c+ 8cγ
, λ =

√
3

12a
(c− 6cγ), µ =

3
√
3

32a
cγ
15c− 8cγ

c+ 8cγ
. (3)

The formulae for elastic constants [3] expressed through generalized Lame parame-
ters take the form:

C11 = κ + λ+ 2µ, C12 = λ, C44 = µ, K =
κ+ 3λ+ 2µ

3
,

E =
(κ + 2µ)(κ+ 3λ+ 2µ)

κ+ 2λ+ 2µ
, ν =

λ

κ+ 2λ+ 2µ
, η =

2µ

κ + 2µ
,

where C11, C12, C44 are stiffness tensor coefficients; K is the bulk modulus; E is Young
modulus; ν is Poisson ratio; η is the anisotropy parameter.
Then by substituting relations for the generalized Lame parameters (6) in the for-
mulae above we obtain:
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C11 =

√
3

12a
(c+12cγ), C12 =

√
3

12a
(c−6cγ), C44 =

3
√
3

32a
cγ
15c− 8cγ

c+ 8cγ

(4)

K =

√
3

12a
c, E =

9
√
3

4a

ccγ

c+ 3cγ
, ν =

1

2

c− 6cγ

c+ 3cγ
, η =

1

8

15c− 8cγ

c+ 8cγ
.

(5)

2 Comparison with experimental data

Experiment # 1 2 3 4 5
C11, GPa 1079 1076 1076 1100 950
C12, GPa 124 275 125 330 390
C44, GPa 578 519 576 440 430

C̃44, GPa 428 433 427 438 356
error, % 26 16.5 25.9 0.4 17.2
c, N/m 472 578 472 626 615
cγ, N/m 57 478 56 46 33
cγ/c, % 12 8.2 12 7.3 5.4

Tab. 1: Experimental and calculated data

In tab. 1 the experimental values for the stiffness tensor components [2] are pre-
sented. Such variability of data is caused by various experimental techniques. Co-
efficients c and cγ are calculated using the experimental values of C11, C12 and
formulae (8). Substituting the obtained values in the formula (8) for C44 we find
the calculated value C̃44. From Tab. 1 it is visible that the maximum divergence of
calculated value C̃44 from the experimental data is 26% and minimum is 0.4%.
Considering so essential differences in the experimental data the divergence in the
obtained values for C44 is acceptable. Thus, the given method of calculation gives
good coincidence with the experimental values of elastic constants.

3 Comparison with the model based on the mo-

ment interaction between atoms

3.1 Moment interaction

The following formulae [3] fulfill:
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C11 =

√
3

12a
(cA+ 2cD), C12 =

√
3

12a
(cA− cD), C44 =

3
√
3

8a

cAcD

cA+ 2cD
,

K =

√
3

12a
cA, G = C44 =

3
√
3

8a

cAcD

cA+ 2cD
, ν =

(cA− cD)(cA+ 2cD)

2c2A+ 2c2D+ 5cAcD
,

2

C =
4

3V0
(cA+ 2cD)E, (6)

where 2C is the intermediate stiffness tensor of 2nd rank; cA and cD are the longi-
tudinal and transversal stiffness of the bonds.

Condition for the macroscopic stability of a material is the positivity of the bulk
modulus K and the shear modulus G

K > 0, G > 0 ⇒ cA > 0,
cD > 0

cD < −
cA

2

(7)

This condition of stability admits negative values for transversal stiffness of the
bonds.

A condition for the microscopic stability is the positivity of the coefficient:

cA+ 2cD > 0 (8)

From (12) and (13) follows

cA > 0, cD > 0. (9)

Let us present Poisson ratio as a function of cD/cA

ν =
(cA− cD)(cA+ 2cD)

2c2A+ 2c2D+ 5cAcD
=

1+
cD

cA
− 2

c2D
c2A

2+ 5
cD

cA
+ 2

c2D
c2A

(10)

The bounding values for ν are

cA≪ cD ⇒ ν ≈ −1

cA = cD ⇒ ν = 0 ⇒ −1 < ν <
1

2

cA≫ cD ⇒ ν ≈ 1

2
From the obtained results it is clear that the model based on the moment atomic
interaction gives wide enough area of the admissible values for Poisson ratio, witch
include the experimental value [2] ν = 0.07 for diamond.
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3.2 Angular interaction

In the first part of this paper the following relations were obtained:

C11 =

√
3

12a
(c+ 12cγ), C12 =

√
3

12a
(c− 6cγ), C44 =

3
√
3

32a
cγ
15c− 8cγ

c+ 8cγ
,

K =

√
3

12a
c, G = C44 =

3
√
3

32a
cγ
15c− 8cγ

c+ 8cγ
, ν =

1

2

c− 6cγ

c+ 3cγ
,

where c is stiffness of the bond, cγ is the effective stiffness of the angular interaction.
If we accept cA = c, cD = 6cγ then the formulae (10) and (17) for moment and
angular interaction will coincide, but only for coefficients C11 and C12. However this
dose not fulfill for C44.
Using conditions of the macroscopic stability K > 0,G > 0 and conditions of the
microscopic stability H5 > 0 we obtain the following inequalities

c > 0, 0 < cγ <
15

8
c. (11)

Let us present Poisson ratio as a function of cγ/c

ν =
1

2

c− 6cγ

c+ 3cγ
=
1

2

1− 6
cγ

c

1+ 3
cγ

c

(12)

The bounding values for ν are

c ≈ 8

15
cγ ⇒ ν ≈ −

41

53

c = cγ ⇒ ν = −
5

8
⇒ −

41

53
< ν <

1

2

c≫ cγ ⇒ ν ≈ 1

2

Thus, it is visible that the model based on the angular atomic interaction also gives
the wide area of the admissible values of Poisson ratio, which covers experimental
value. However the lower boundary for Poisson ratio is different for these two models.

4 Conclusion

In the given work the model of diamond using angular atomic interaction was con-
sidered. Formulae for the macroscopic stiffness tensor coefficients C11, C12, C44, the
bulk modulus K, Young modulus E, Poisson ratio ν, and the anisotropy parameter
η in the terms of the stiffness of the bond c and the effective stiffness of angular in-
teraction cγ were derived. By using the experimental data and the derived formulae
the stiffness values of the interatomic bonds c and cγ were obtained. Comparison
with the model based on the moment interaction between atoms was made. It was
shown that the considered models give almost identical areas of values for Poisson
ratio, and these areas include the experimental value.
This work was supported by the FCNTP and RFBR grant, project 08-01-00865-a.
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One-dimensional models of filtration with regard to
thermal expansion and volume viscosity

Anna G. Knyazeva
anna@ispms.tsc.ru

Abstract

Modeling of the processes in two phase medium has numerous technical
applications and is possible on the base of averaged models and with the
help pf more complex models - tow temperature, two velocities etc. The
authors of most of known papers neglect the phenomenon of thermal expan-
sion and volume viscosity. Nevertheless, if the phases have different rheology
properties, taking into consideration these phenomena can lead to interesting
effects. For example, it is known that compressibility of the gases is principal
in comparison with incompressibility of solid skeleton. The thermal expansion
phenomena in this case appear by different ways for various phases, especially
if the current is accompanied by chemical conversion. Particularly it leads
to new conversion regimes in modern burners based on filtration combustion.
Now we stop on the simple models, following from general thermodynamical
conceptions, without their detailed investigation. Let us, that all particular
models contain physical parameters possessing clear physical sense and known
from experiment.

1 Introduction

Filtration theory studies the motion of gases and liquids into porous media and is
constructed on the base of the conception that porous medium and filling it fluid
is continuum. Let determine the basic parameters of porous media which will be
used further. The porosity m = Vp/V and gapness and a = Sp/S are equivalent
characteristics, if the medium is isotropic. Here Vp is pore volume, V is summary
volume including the pore volume and volume occupying by solid skeleton, Sp is
square in the section related to pores, and S is the section square.
We determine the authentic gas (liquid) velocity v = (Q/Sp)n and filtration rate
w = (Q/S)n, where Q is gas discharge (consumption), n is normal to the section.
Hence

w =
Sp

S
v = av (1)

Basic relation of filtration theory establishes the connection between filtration rate
vector and pressure field which causes the filtration motion. For many situations
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one can assume that filtration rate field is continuous, and physical parameters of
fluid and skeleton are constant. But it is not possible to neglect the pressure change
even for negligible small gradient because the motion absent when the pressure is
constant [1,2]. Against this affirmation, majority of filtration combustion theories
are developed without taking into consideration of pressure change.
The classical filtration law was ascertained experimentally by Anry Darcy for slow
motions and can be presented in the form

w = −
k

µ
∇p (2)

where k is the permeability, and µ is ”viscosity” - friction coefficient.
There are the generalizations of this law for complex media and quick currents.

2 Basic equations for one phase no isothermal fil-

tration

To construct the simplest model of no isothermal filtration, including chemically
reacting fluids, we should write the basic equations. These equations are known.
Firstly, the continuity equation contains the source for mass from skeleton

∂

∂t
mρ = −∇ · ρw + σ.

If the volume source for mass is absent and porosity is constant, this equation takes
usual form

∂

∂t
mρ = −∇ · ρav or

∂

∂t
ρ = −∇ · ρv. (3)

The motion equation can be presented like this

ρ
∂ws−1

∂t
+ ρ

w

a
∇
(w

a

)
= ∇p+ ρ(F1+ F2),

where F1 = −(1/ρ)∇(gz) is gravity force, F2 is internal friction force proportional
to filtration rate.
For slow current or for so called creeping current this equation id simplifies

ρ
∂wa−1

∂t
= ∇p+ ρ(F1+ F2),

and takes the form

∇p = −ρ(F1+ F2) or w = −
k

µ
[∇p+ ρF1] (4)

for stationary filtration regimes. The Darcy law (2) follows from (4).
Naturally, p is summary pressure including ”reverse” and ”viscous” parts [3]

p = pe+ pV.
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The energy equation for fluid with the reactions can be presented in the form

Tρ
(∂s
∂t

+
w

a
∇s
)

= −∇ ·
(

JT −

n∑

k=1

gkJk

)
− pV∇ · w

a
− B−

n∑

k=1

gkσk, (5)

that follows from usual balance equation for internal energy analogously [4,5]. Here
s is local entropy, JT is the heat flux due to thermal conduction, Jk are mass fluxes
due to diffusion processes, σk are sources for components in chemical reactions, gk
are their chemical potentials, B describes the heat exchange with solid skeleton. We
should write the balance equations for components

ρ
(∂Ck
∂t

+
w

a
∇Ck

)
= −∇ · Jk+ σk, (6)

where Ck are mass concentrations.
It is necessary now to determine the values JT,Jk, p

V, σk and s.
From chemistry we have

σk =

r∑

j=1

νkjMkϕj,

where ϕj are chemical reaction rates, Mk are molar masses, νkj stoichiometric coef-
ficients.
With the help of Gibbs equation, we find [4,6]

T
ds

dt
= Cγ

dT

dt
+ αTβ

−1
T T

dγ

dt
+

n∑

k=1

Tsk
dCk

dt
,

where Cγ is thermal capacity for constant volume, γ = ρ−1, βT is isothermal com-
pressibility coefficient, αT is thermal expansion coefficient, we com to the thermal
conductivity equation

Cγρ
(∂T
∂t

+
w

a
∇T
)

= −∇·
(

JT−
n∑

k=1

hkJk

)
−(pV+αTβ

−1
T T)∇·w

a
−

n∑

k=1

hkσk−B, (7)

when we take into consideration continuity equation.
The pressure pe follows from state equation.
To find the expressions for JT,Jk, p

V, ϕj, we could use the Onsager theory or exper-
imental laws. The first way was described in details in thermodynamical literature
[7-9]. For example, when the unique reaction goes in the fluids, ”the reagent converts
to the product”, and ϕ is the reaction rate, we have [4,5]

pV = −κV∇ · v + γVA, ϕ = −γV∇ · v + kchA, (8)

where κV - is coefficient of volume viscosity, kch - reaction rate constant, A is chem-
ical affinity; the coefficient γV describes the viscosity appearance due to chemical
reaction and the reaction rate dependence on medium mobility. Let us notice, that
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this physical phenomena are observed in the literature, but the attempts to deter-
mine this coefficient are absent.
But then, the investigations of interrelation between thermal conduction and diffu-
sion together with motion medium and chemical reactions are occurred often.
Now we take the approximation of independent diffusion and heat conduction, when
one can to write

J ′
T = −JT −

n∑

k=1

hkJk = −λ∇T, Jk = −ρDk(T)∇Ck. (9)

The papers absent where volume viscosity of fluids and thermal expansion are taken
into consideration when the filtration problems are studied. Though these phenom-
ena could be principal, for example, when the natural gas or gas mixture are burned
in the porous reactors, when fluids flow in the fractured ground etc., especially for
slow filtration rate. Let discuss what simples models follows from above.

3 Examples of the simplest models

Naturally, we can obtain from above the known filtration models, well investigated
in the literature [1,2,10]. First of all, there is the class of the isothermal one-phase
filtration models for one-component fluids. ”New” physical effects lead to new model
appearance.
1. Really, it is known very well, when the liquid is incompressible, medium is
isotropic, porosity is constant and temperature does not change, we have the equa-
tions

∇ · v = 0, v = −
k

µa
∇pe,

for stationary filtration regime. These equations give the Laplace equation for
pressure

△pe = 0. (10)

2. When the gas moves along the porous media, we can not neglect the compress-
ibility in comparison with the solid skeleton [1,10]. In this case, we come to the
equations

∇ · ρv = 0, v = −
k

µa
∇pe, pe = ρM−1RT,

if we take κV = 0. These three equations allow obtaining

∇ · pe∇pe = 0, or ∇ · ρ∇ρ = 0, (11)

and to construct some analytical solutions for one-axis currants.
3. We could write for no ideal gas [6]

dpe = −
ρ

βT
dγ ≡ 1

βTρ
dρ,
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if temperature is constant and the composition does not change, or

∇pe =
1

βTρ
∇ρ = 0. (12)

Instead (10) we shall find △ρ = 0 or ∇ ·∇pe+βT(∇pe)2 = 0 (for constant proper-
ties).
For ideal gas βT ∼ p−1

e . In this case we obtain known result (11).
If homogeneous gas strainers through plane layer, we come to the problem

d2pe

dx2
+ βT

(dpe
dx

)2
= 0,

x = 0 : pe = p1, x = L : pe = p2.

The solution of this problem has the form

pe = β−1
T

[
ln(x + C1)C2

]
,

where C1, C2 are integration constants, depending on p1, p2, L.
Hence,

V =
k

µa

1

βT

1

x+ C1
=
k

µa

1

βT

1− exp
[
−(p1− p2)βT

]

L+ x
(
1− exp

[
−(p1− p2)βT

])

filtration rate in the direction x.
It is not difficult to show that we obtain

V =
k

µa

1

βT

p1− p2

L1

if β → 0, that is the medium is incompressible.
4. Let κV 6= 0. In this case we use the continuity equation ∇ · ρv = 0, from which
the relation

∇ρ
ρ

= −
∇ · v

v
(13)

follows. Hence, from (12) we have

∇pe = −
1

βT

∇ · v
v
.

Because

pV = −κV∇ · v and v = −
k

µa

[
∇pe+ ∇pV

]
,

we come to the equation for velocity

βTκVv∇
(
∇ · v

)
+ ∇ · v − µaβTk

−1vv = 0. (14)
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For example, for plane porous layer, the problem on velocity distribution takes the
form

εV
d2V

dx2
+
dV

dx
− δV2 = 0, (15)

x = 0 : V = V1, x = L : V = V2, (16)

where ε, δ - parameters including fluid properties, ε = βTκV; δ = µaβTk
−1;

The equation (15) reminds of oscillation equation.
5. Let T = const, chemical reactions are absent, state equation has the form (12),
but gas mixture contains two components. When filtration rate is small, we can
not neglect the difference between individual rates of species. But two component
mixture motions can be described using one diffusion equation

ρ

(
∂C

∂t
+ v∇C

)
= ∇ ·

(
Dρ∇C

)
.

For stationary filtration regime, we come to stationary diffusion problem. For gas
phase ones assumed Dρ ≈ const. Then the concentration distribution can be found
independently after velocity field determination. One dimensional problem takes the
form

V(x, ε, δ)
dC

dx
= D

d2C

dx2
, (17)

x = 0 : C = C1, x = L : C = C2,

Generally speaking, when gas mixture is no ideal, instead (12) we should use the
state equation in the form

dpe =
1

βT

(dρ
ρ

+ △αdC
)
, (18)

where △α = α2− α1, αk = 1
γ

(
∂γ

∂C

)
T

is volume concentration expansion coefficient

(it is analogy for αT) for k - component. Then it is not succeeded to divide the
problem into two parts. In this case, for one dimensional plane filtration we obtain
two coupling nonlinear equations: (17) and

εV
d2V

dx2
+
dV

dx
− δV2− △α · VdC

dx
= 0. (19)

The boundary conditions stay the same, (16).
The more complex problem has appear when we take into consideration that dif-
fusion flux is proportional to gradient of chemical potential that in turn depends
on volume change or pressure change. This effect connects with pressure diffusion
phenomenon and is worthy of notice also.
6. The situation will more complex, when T 6= const. For stationary filtration
regime we obtain the equation system

∇ · (ρv) = 0,
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v = −
k

µa
∇p,

ρv∇C = ∇ · (Dρ∇C),

Cγρv∇T = ∇ · (λ∇T) −
(
pV + αTβ

−1
T T
)
∇ · v − B

from above. To describe the heat exchange with the solid skeleton, the thermal
conductivity equation for solid body is necessary. Because the velocity for solid
body equals to zero and it is incompressible, we write

∇ · (λs∇Ts) + Bs = 0,

where index ”s” relates to solid skeleton.
The items B and Bs in thermal conductivity equations can be presented in the form

B =
α

m
(T − Ts), Bs =

α

1−m
(T − Ts).

There are some particular cases in this case.
If fluid is incompressible, we have ∇ · v = 0. Than analogously to previous, the no
isothermal diffusion problem and motion problem are separated. We can determine
the temperature and concentration fields after velocity field. That way has been
used in the combustion filtration problems [11].
When pV = 0 (κV = 0) we have p = pe. Assume that gas mixture is uniform. Using
state equation following from Gibbs equation

dpe =
1

βT
(αTT − ρdγ) ≡ 1

βT

(
αTT +

dρ

ρ

)
,

we come to the system of one dimensional equations

d2ρ

dx2
+ αT

d

dx
ρ
dT

dx
= 0,

dV

dx
=
µaβT

k
V2+ αTV

dT

dx
,

CγρV
dT

dx
= λ

d2T

dx2
−
αT

βT
T
dV

dx
− B,

λs
d2Ts

dx2
+ Bs = 0.

(20)

The heat exchange conditions should be given on the surfaces of the layer through
the filtration goes.
Now we come to special class of the filtration models - filtration combustion.
When filtration rate is not too big, influence degree of called effect the same; it can
lead to new conversion regime appearance. Some results were discussed in [12]

4 Conclusion

All presented above and mentioned models were constructed on the base of the
conception of irreversible thermodynamics. On of basic principle of thermodynamics
consist of coupling effects taking into consideration. Now it was shown that any
coupling effect is able to result to new model which turns unexplored but possesses
large possibilities.
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Abstract

The paper deals with propagation of solitary waves in an auxetic material.
That unusual material characterizes with negative Poisson’s ratio. It means,
that it becomes thicker when stretched and thinner when compressed. The
double dispersive equation has been solved by the Crank-Nicolson method.
Numerical results concerning wave propagation in the cylindrical rod made of
the auxetic material have been presented for solutions resulting from different
initial conditions.

1 Introduction

Fast industrial development forces new solutions concerning constructions and ma-
terials. The latter ones have to satisfy not only strength of materials conditions,
but follow many other properties, which as a consequence lead to new materials and
smart structures that are proper for modern technologies. One of the results coming
from such an activity are investigation at materials of negative Poisson’s ratio com-
monly called auxetics [10]. They characterize peculiar feature: if they are extended
in one direction instead of becoming compressed along remaining ones, they are also
extended. Such unexpected property causes that they have been already used in
many new engineering constructions [11, 12].
Auxetic materials one can find in nature: α-crystobalit, for instance [16]. However,
fast development of materials science allows engineers to design and produce auxet-
ics from conventional materials (foams and polymers [14, 15] ). In 1987 Lakes [10],
as a first produced auxetic foam of Poisson’s ratio equal to −0, 7. Materials with
negative Poisson’s ratio have been widely used to create layered composites, because
of their resistance to shear [11, 13]. The car and aircraft industries are very much
interested to use auxetics in their produce [12].
Successful experiments on solitary waves propagating in solids causes their practical
use in nondestructive testing, since their profile becomes unchanged during propaga-
tion. An example of such testing is a test on the delamitation of layered composites
consisted of foams or polymers of negative Poisson’s ratio [9].
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2 Basing equations

From among several nonlinear equations which describe solitary waves propagation
the most popular are Korteweg-de Vries [4] and Boussinesq [5] equations. In the
present paper we consider an infinite, isotropic, elastic and circular rod. The double
dispersive equation (DDE) governing considered waves propagation reads[1]:

utt− auxx− c1(u
2)xx− b1uxxtt+ b2uxxxx = 0, (1)

where u(x, t) denotes the deformation and coefficients are equal to:

a =
E

ρ0
, c1 =

β

2ρ0
, b1 =

ν(ν− 1)R2

2
, b2 = −

νER2

2ρ0
, (2)

β = 3E+ l(1− 2ν)3+ 4m(1− 2ν)(1+ ν) + 6nν2, (3)

ρ is the density, E is Young’s modulus, l, m, n are Murnaghan’s constants, R
is the rod radius and β denotes the nonlinearity coefficient. Since coefficients in
DDE depend on Poisson’s ratio we could estimated its influence on solitary waves
propagation.

Difference method

To use the difference method for solving DDE, the space and time steps have been
denoted by ∆x and ∆t in space (x, t), respectively. The DDE solution was ap-
proximated in the nodes as Uni = U(∆xi, ∆tn) with 0 ≤ i ≤ (M = L/∆x) and
0 ≤ n ≤ (N = T/∆t), where M and N denote the number of space and time steps,
L is the rod length and T is the total calculation time. On using Crank-Nicolson
method [3, 6, 7, 8] to solve DDE we get:

δ2tU
n
i −

a

2

(
δ2xU

n+1
i + δ2xU

n−1
i

)
−
c1

2

(
δ2x
(
Un+1
i

)2
+ δ2x

(
Un−1
i

)2)
(4)

−b1δ
2
tU
n
i δ
2
xU
n
i +

b2

2

(
δ4xU

n+1
i + δ4xU

n−1
i

)
= 0.

After some algebraic manipulations we obtain the penta-diagonal system:

sUn+1
i−2 + dUn+1

i−1 + eUn+1
i + dUn+1

i+1 + sUn+1
i+2 = p (5)

with the coefficients:

s =
b2

2(∆x)4
,

d = −
2b2

(∆x)4
−

b1

(∆t)2(∆x)2
−

a

2(∆x)2
, (6)

e =
1

(∆t)2
+

a

(∆x)2
+

2b1

(∆t)2(∆x)2
+

3b2

(∆x)4
.

The right hand side of (5) equals to:
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Figure 1: Solitary wave in the rod of negative Poisson’s ratio ν = −0, 8 with initial
condition (11)

Figure 2: Solitary wave in the rod of positive Poisson’s ratio ν = 0, 4 with initial
condition (11)

p = −
1

∆t2
(Un−1
i − 2Uni ) +

a

2∆x2
(Un−1
i−1 − 2Un−1

i +Un−1
i+1 ) (7)

+
b1

∆t2∆x2
(Un−1
i−1 − 2Uni−1− 2Un−1

i + 4Uni +Un−1
i+1 − 2Uni+1)

−
b2

2∆x4
(Un−1
j−2 − 4Un−1

j−1 + 6Un−1
j − 4Un−1

j+1 +Un−1
j+2 )

+
c1

2∆x2
((Un+1

j−1 )2− (2Un+1
j )2+ (Un+1

j+1 )2)

+
c1

2∆x2
((Un−1

j−1 )2− (2Un−1
j )2+ (Un−1

j+1 )2).

The nonlinear terms of (7) where approximated by Picard’s iterations [3, 6, 7]. The
calculation have been stopped after achieving demanded accuracy on each time level:

∥∥Un+1
i −Uni

∥∥ ≤ 10−5. (8)

The set of equation (5) has been solved with the help of QR decomposition method
with the following initial conditions:

u(x, 0) = f(x), (9)

ut(x, 0) = g(x)
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Figure 3: Solitary wave in the rod of negative Poisson’s ratio ν = −0, 8 with initial
condition (12)

Figure 4: Solitary wave in the rod of positive Poisson’s ratio ν = 0, 4 with initial
condition (12)

for 0 ≤ x ≤ L and boundary conditions [2]:

u(0, t) = u(L, t) = 0, (10)

ux(0, t) = ux(L, t) = 0

for 0 ≤ t ≤ T .

Numerical results

Equation 1 has been solved with the help of difference method for the following
data:ρ = 1050[kg/m3], E = 35100000[Pa], l = −2000000[Pa], m = −3700000[Pa],
n = −3100000[Pa], R = 0, 1[m]. The values of the space and time steps have been
taken as: ∆x = 1, ∆t = 0.0015 and calculations were made for 200 space and time
steps.
The first simulation deals with a case where the initial rectangular sharp pulse has
been introduced as an initial condition in the form:

f(x) =

{
1 for L/2− 2 ≤ x ≤ L/2− 2

0 for x ∈ 〈0, L/2− 2〉 ∪ 〈L/2− 2, L〉 (11)
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Figure 5: Solitary waves in rod of negative Poisson’s ratio ν = −0, 8 with initial
condition (13)

Figure 6: Solitary waves in rod of positive Poisson’s ratio ν = 0, 4 with initial
condition (13)

with initial velocity equal to zero.
The initial deformation (11) being assumed in the center of the rod begins to run
splitting to two solitary waves propagating in two opposite directions [2]. For the
sake of simplicity in below figures only one half of the soliton profile is presented for
n = 200. The second one is symmetric to that.
In Fig. 1 the longitudinal mode of solitary waves is presented. It propagates with
the constant profile leaving behind an oscillating wave package. In the auxetic
materials that propagation is accompanied by a compression area close to the main
pulse. However if Poisson’s ratio increases, that area disappears.
Comparing results presented in Fig. 1 and 2 we conclude that in the auxetic material
the solitary wave has lower amplitude and velocity but its profile is more massive.
Moreover, in nonauxetic material there is no compression area.
The second simulation has been done for the initial rectangular massive pulse in the
following form:

f(x) =

{
1 for L/2− 6 ≤ x ≤ L/2+ 6

0 for x ∈ 〈0, L/2− 6〉 ∪ 〈L/2+ 6, L〉 (12)

The obtained results differ from those concerning the first simulation (Fig. 1). It is
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Figure 7: Solitary wave in the rod of negative Poisson’s ratio ν = −0, 8 with initial
condition (14)

Figure 8: Solitary wave in the rod of positive Poisson’s ratio ν = 0, 4 with initial
condition (14)

seen in Fig. 3 that this time the initial rectangular massive pulse is the reason of
a train of three solitary waves. Moreover those waves propagate faster with higher
amplitude.
Similar situation is observed in Fig. 4 comparing to Fig. 2. This time the train of
four solitary pulses propagates faster with more sharp profile of pulses than for the
auxetic material. The number of pulses in the train depends not only on width of
the initial pulse but also on the Poisson’s ratio. It is worth to be noted that the
greatest difference in amplitude has been observed for the third pulse in the train
of solitary waves comparing auxetic to conventional materials.
The third simulation has been done for the initial triangular sharp pulse in the form:

f(x) =






1
3
(x− L/2+ 3) for L/2− 3 ≤ x ≤ L/2

−1
3
(x − L/2) + 1 for L/2 < x ≤ L/2+ 3

0 for x ∈ (0, L/2− 3) ∪ (L/2+ 3, L)

(13)

Properties of the solitary waves propagating due to initial condition (13) are almost
the same as due to condition (11). The only difference is such that the triangular
profile of the initial pulse forces waves of lower amplitude of the main pulse. Also
compression area occurs for auxetic material (comparing to Fig. 1 and 2)
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The last simulation concerns the initial triangular massive pulse, i. e.:

f(x) =






1
6
(x− L/2+ 6) for L/2− 6 ≤ x ≤ L/2

−1
6
(x− L/2) + 1 for L/2 < x ≤ L/2+ 6

0 for x ∈ (0, L/2− 6) ∪ (L/2+ 6, L)

(14)

As well as in the case of the second simulation if the initial pulse profile is more
massive the train of solitary waves occurs. Then the number of pulses is bigger in
nonauxetic material than in the auxetic one (cf. Figs. 7 and 8 and Figs. 3 and 4)

Conclusions

All the results obtained in this paper confirm stronger damping properties of auxetics
than observed in classical materials.
If the profile shape of the initial pulse is more massive the number of train pulses
propagating in material with negative Poisson’s ratio decreases.
In auxetic material the compression area is observed behind the solitary waves from
sharp initial pulse.
The shape (rectangular and triangular) of the initial pulse influences only amplitudes
of the solitary waves.
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Imitation modelling of fase transition from axial
modes to tangential modes in cylindrical tank
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Abstract

Possibilities of application of methods of architectural acoustical diagnos-
tics for control of state of pouring heavy fuel oil (mazut) off from the railway
containers are considered. The relative noise levels corresponding of differ-
ent fuel oil volumes registered by the microphone fixed inside of air phase of
railway tank wagon are estimated. The noisemeter signals are analyzed and
distinctions of sound-absorbing coefficients of the steel and of the oil are taken
care of by a corresponding choice of acoustical diagrams for the empty tank
wagon and tank wagon with some fuel oil. Results are proved possibility of
method of acoustical diagnostics practical using.

1 Introduction

The volume of rail transportation of fuel oil on highways of the Russian Federation
recently has considerably increased, therefore a process of loading and the unloading
of railway tanks should be accelerated for exception of idle time. So the residue of
fuel oil into tank after unloading must be minimal. The main industrial problem
consists of that there is a hardening fuel oil residues in the solid form and has more
than half of tank weight. So the exact estimation of the residues should not exceed
more then 5. . . 10 percents from all substances. In this case the usual visual control it
leads to significant expenses of time and does not provide of the necessary accuracy.
The existing technological process of a warming up of substance provides washing
out of cold solid fuel oil by jets of the hot liquid black oil +90 deg C which move
through two atomizers.Some parts of the fuel oil cool down on the tank walls in
the different forms despite of external heating . There is an opportunity to use the
”own” source of noise unlike considered before acoustic methods with a ”reference”
external source of noise [1] and other methods of the remote control of fuel oil
volumes in some capacities. It is the noise of a pair of jets which inject some fuel
oil through two atomizers under stationary pressure on a surface of the hardening
substance.
The complication of ultrasonic field measuring finds out each encompass factor for
analysis: ultrasonic oscillation in a fluid, ultrasonic oscillation of air, oscillation of a
cylindrical metallic border witch is installed on a foundation with damping elements
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of construction and having an open sight hole.
Uniquely to solve the problem in view of these factors is impossible. There is a
problem to select of a physical analog to describe those regularities quantitatively.
The mane purpose of the work is to describe on the constructed physical model
using data witch was obtained experimentally.

2 Measuring spectrum of levels of sound pressure

2.1 The sound source is located in an aerial medium

The acoustic spectrums corresponding to different levels of the sound pressure are
registered in wide or narrow strips depending on the some quantity of the residue.
The level of pressure Po is measured in the empty tank and the level of pressure Pi
is measured in the tank filled partially.

∆N = 20 lg
Pi

Po
(1)

The attitude of levels of pressure Po and Pi calculate on the equation (1).
As the result of experimental researches of specific dependence N from the various
quantities of the oil rest is obtained. So the spectrums of the relative levels of noise
in the rang of 100. . . 10000 Hz account for maximum and minimum quantities of
the oil rest in tanks. The equation is noticeably carried out at measurements of
spectrums of levels of sound pressure in case of when a source of noise is jet of the
hydromonitor [1].

2.2 The statement of the problem

Thus there are some channels of scattering the sound energy: the damping properties
of the black oil surface, the exit of the energy through the open tank hole, the energy
of scattering through the metallic border and basic damping elements of construction
(sprocket, railway rails) etc.

3 Approximate model

3.1 The statement and the solution of the problem

At the first stage the model has the form witch is obviously simplified one when the
equation of Helmholtz is solved by a method of dividing of variables:

(∆+ κ2)P(x, y, z) = 0 (2)

If the eigen frequency of the system ”tank-oil” coincides with one of source har-
monic it is possible to expect magnification of amplitude in a spectrum which was
experimentally obtained.
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These splashes will be rounded owing to the absorption of the system. To calculate
fundamental frequencies the elementary model is selected.It has the absolutely rigid
walls.
In case of boundary

dP

dx

∣∣∣
x=0,2a

= 0,
dP

dy

∣∣∣
y=0,2b

= 0,
dP

dz

∣∣∣
z=0,2d

= 0 (3)

we obtain the dispersing equation

ω2n,m,p =
1

4
c2π2

[(n
a

)2
+
(m
b

)2
+
(p
d

)2]
(4)

3.2 Numerical calculations

For fixed m,n,p the eigen frequencies as function of level of fuel oil d are calculated

ωn,m,p =
√
G

√
1+

p

d2
(5)

where d is the oil product level in tanks and G,p are constants.
The solution of an inhomogeneous problem with a point source located in the point
xo, yo, zo can be obtained in the form :

(
∆+ κ2

)
P (x, y, z) = Fδ (x− x0) δ (y− y0) δ (z− z0) (6)

P (x, y, z) =
F2c
abd

∞∑

n,m,p=0

cos λnx0 cos λpz0 cos λmy0
ω2−ω2m,n,p

cos λnx cos λpz cos λmy (7)

At the second stage the simplified cylindrical model of the railway tank is estimated.
Let’s appreciate of Helmholtz equation (2) applying the method of dividing of vari-
ables in a cylindrical system of coordinates in case of rigid boundary conditions:

dpc (r, ϕ, z)

dr

∣∣∣
r=a

= 0,
dpc (r, ϕ, z)

dz

∣∣∣
z=H

= 0 (8)

The botton side has boundary conditions :

−
dpc

dz

∣∣∣
r=z

=
ρ

z

dpc

dt
(9)

Then we can be obtain
(
∆ −

1

c2
d2

dt2

)
P̃ (r, ϕ, z, t) = Fδ

(
X̄c− X̄ucm

)
f(t) (10)

Solving the problem it would be possible to find out eigen frequencies ϕm,j,k

ϕm,j,k (r, ϕ, z) = cosµkz · Jm (λm,j,kr) cosmϕ (11)

where Jm are Bessel functions.
General solution of the homogeneous problem in the empty tank

pn̄(t) =
Cδ
(
X̄c− X̄ucm

)

2πj

A+j∞∫

A−j∞

eptF̂(p)dp

p2+ω2n̄+ βi
(12)
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4 Conclusion

As the eigen frequencies depend on the various quantities of the solid oil residue, the
method of dividing of variables is inapplicable so problem could be solved numeri-
cally (for example, finite element method). The constructed analytical solution of
the problem is correct for the whole interval of frequencies. But the most interesting
experimental results in the area of medium frequencies acoustical waves were fixed.
The geometrical forms and boundary-contact conditions must be strongly pointed
and the next step will be to take account of the impedance of surface of solid residue.
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Changes in the orientation state of polymer
molecules in the space between filler particles
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Abstract

For the analysis of formation of polymeric layers with particular properties
that arise near filler particles in a filled elastomeric material, a mathematical
model has been developed. The model is based on the hypothesis that the
oriented regions of the polymer are able to influence the orientation state of
neighboring regions.

Modeling of the layer formation proceeds in time. The problem is solved
in two-dimensional statement. The model involves the parameter that takes
into account the layer extent and velocity. It is assumed that this parameter
depends on the number of topological nodes per volume unit.

The periodicity cell of the elastomeric material filled with rigid spherical
particles is examined. Formation of layers in the space between particles and
away from it is modeled. The results of numerical simulation have indicated
that in the material near filler particles there occur regions where polymeric
molecules are in uniaxial and biaxial states.

1 Continuum, probabilistic and discrete modeling

The layers of 2 to 10 nm (and more) thick that occur near the surface of filler
particles play a large part in the formation of the mechanical properties of polymer
nanocomposites. Despite the longstanding efforts of scientists to elucidate the cause
of formation of these layers and to understand the mechanism of their influence on
the mechanical properties of the material, the problem still remains to be solved.
There is no answer to the question as to why the thickness of the layers formed
near the surface of filler particles is so large that it achieves several nonometers. In
the current study an attempt has been made to construct a mathematical model
capable of providing the answer to this question.
For constructing the model, it is essential to determine mathematical parameters
best suited to our study. The establishment of these parameters requires information
about the preferential orientation of polymer links. To gain it, we use the notion
of the orientation tensor. However, before proceeding to the description of the
oriented state of the bulk medium, it is necessary to introduce the characteristic of
the oriented state of a single link of one of the polymeric chains. Let all links of
all polymer chains have a through enumeration: the first link of the first chain is
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designated as 1, and the last link of the last chain as N. The index j, running the
values from 1 to N, takes the numbers of all links of all polymer chains.
As a characteristic of orientation of the polymer chain link with number j, we offer to
use the tensor τj⊗τj, in which τj denotes a unit vector defining the space orientation
direction of the j-th link. Clearly, a change in the direction of the vector τj to the
opposite produces no effect on the values of the tensor τj⊗τj. The proposed tensor
is suitable for our purpose because its averaged value can be found for all possible
links of polymer chains and the result of such averaging will not be equal to a zero
tensor. It gives an estimate of the oriented state of the polymer. Its eigenvectors and
eigenvalues have a clear physical meaning. The eigenvectors of the averaged tensor
τj⊗ τj define the space directions along which the chain links are mainly oriented
and the directions along which the links are rarely oriented. The eigenvalues of this
tensor give a quantitative estimation of the orientation degree of polymer chains in
corresponding directions. We assume that the interaction energy of the i-th and
j-th links of polymer chains is represented as a potential:

uij = u0w1(rij)w2(τi · τj),
where u0 is a depth of energy well (or well depth), w1(rij) is a Lenard-Jones potential
energy function. Dependence of energy of interaction uij from a corner between
directions of links of polymeric chains we shall set as

w2(τi · τj) = (τi · τj)2−
1

3
= τi⊗ τi · τj⊗ τj−

1

3
.

The energy of interaction of the i-th link with the other links is defined as

N∑

j=1,j6=i
uij = u0

N∑

j=1,j6=i
w1(rij)w2(τi · τj) =

u0

CN

(
1

3
− τi⊗ τi ·

〈
τj⊗ τj

〉
V

)
,

where value of a constant CN is determined from a discrete normalization condition

CN

N∑

j=1,j6=i
ρ(rij) = 1,

where ρ(rij) = −w1(rij)H(rij− lef) is weight factor, H(·) is a function of Heaviside,
lef is effective value of link (lef = 0.58 nm).
We should use the space averaging

〈
τj⊗ τj

〉
V
, which in a discrete statement can be

obtained as
〈
τj⊗ τj

〉
V

= CN

N∑

j=1,j6=i
ρ(rij) τj⊗ τj,

and which in a continuum statement can be obtained as

〈
τj⊗ τj

〉
V

= CV

∫

V

ρ(r)O dV,

here value of a constant CV is determined from a continuum normalization condition

CV

∫

V

ρ(r) dV = 1.
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We assume that there is a continuous twice differentiated tensor function O(t,x),
which provides calculation of the energy of interaction of the i-th link with the
remaining material, as it is usually fulfilled in the context of probability and discrete
models.
It is easy to demonstrate that the requirement of equivalence of continuum averaging
and discrete averaging for an arbitrary bounded doubly differentiable tensor function
will be fulfilled under following conditions

CN

N∑

j=1,j6=i
ρ(rij) (x

j
k− xik)

2 = CV

∫

V

ρ(r)∆xk
2 dV.

For correct tetrahedron structure we can have

CV

∫

V

ρ(r)∆xi
2 dV ≈ 0.323, CV = 0.047.

2 Main causes of change in the orientation tensor

with time

The following assumption will be used for constructing the model to describe the
formation of layers near filler particles.
In a considered point of a material a speed of change of orientation tensor is defined
by two reasons: (a) the orienting effect of neighboring points of the medium on
the point in question and (b) the effect of thermal motion of polymer chains, which
tends to bring the material to the unoriented state. On the basis of these hypotheses
the evolution equation of the orientation tensor O will have view

1

b

DO

Dt
= a

(〈
τj⊗ τj

〉
V

− O

)
+

(
I

3
− O

)
,

where DO/Dt is the objective derivative with respect to time, I is the unit tensor,
b is speed orientation parameter, a is function from O · O, which will calculated
from the following schema of reasonings.
In an equilibrium condition is carried out

〈
τj⊗ τj

〉
V
·
〈
τi⊗ τi

〉
Γ

=
〈
τj⊗ τj

〉
V
· O.

With the use of the Gibbs distribution, it is possible to calculate the average of the
distribution for the tensor τi⊗ τi

〈
τi⊗ τi

〉
Γ

=

∫

Γ

τi⊗ τi C exp

{
−

u0

cBθCV

(
1

3
− τi⊗ τi ·

〈
τj⊗ τj

〉
V

)}
dΓ,

where uo is the material constant, cB is the Boltzmann constant, and θ is the
temperature.
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Evolution of the orientation tensor O is transformed into the following equation
under equilibrium condition

〈
τj⊗ τj

〉
V

= O +
1

a

(
O −

I

3

)
.

In this case value of function a(O · O) should be defined from a condition

[
O +

1

a

(
O −

I

3

)]
·O =

[
O +

1

a

(
O −

I

3

)]
·
〈
τi⊗ τi

〉
Γ
.

Solution of this equation is represented on Fig. 1.

a b

Figure 1: Dependence of parameter a from argument I for uniaxially (a) and biax-
ially (b) oriented states. Parameter I iqual to O · O

After decomposition of function O in a vicinity of a considered point we receive

〈
τj⊗ τj

〉
V

= O + C∆

3∑

i=1

∂2O

∂x2i
,

where

C∆ =
1

2
CV

∫

V

ρ(r)∆x2i dV.

For correct tetrahedron structure C∆ = 0, 161.

Ultimately, the evolution equation of the orientation tensor O takes the form

1

b

DO

Dt
= a C∆

3∑

i=1

∂2O

∂x2i
+

(
I

3
− O

)
.
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3 Features of modelling of polymer molecules ori-

entation on the surface of filler particle and in

the space between filler particles

In polymeric materials close to a surface of active filler particles and in spaces
between these particles the polymeric layers of various character can appear. For
example, on border of a polymeric layer a process of connection to it of new links
of polymeric chains occurs as a result of orientation of these links under influence
of already generated layer and can be taken into account in the evolution equation
of orientation tensor by introduction in it of a source of orientation. Changes in the
orientation state of polymer molecules in the space between filler particles too can
arise. Such changes have absolutely other character. For example, they can arise
under influence of any external loading. In this case an uniaxially oriented layer will
be formed.
Changes in the orientation state of polymer molecules can be described by the
following equation

1

b

DO

Dt
= a C∆

3∑

i=1

∂2O

∂x2i
+

(
I

3
− O

)
+ (fu+ fb)

(
O −

I

3

)
,

where functions fu and fb depend on parameter I. Functions fu and fb affect
formation of a layer in the field of polymer in which polymeric chains have uniaxially
and biaxially oriented direction accordingly. In addition this functions are distinct
from zero only in a nonequilibrium condition.
Let’s set functions fu and fb in the following kinds

fu = gu (Imaxu − I )(I − Iminu ), Iminu < I < Imaxu ,

fb = gb (Imaxb − I )(I − Iminb ), Iminb < I < Imaxb ,

where gu and gb are constants. Values Imaxu and Imaxb are equal to values of pa-
rameter I at which function a(I) has the maximal values at uniaxially and biaxially
oriented state accordingly (Fig. 1). On the other hand, values Iminu and Iminb are
equal to values of parameter I at which function a(I) has the minimal values at
uniaxially and biaxially oriented state accordingly.

4 Examples of formation of layers

Let’s come out with the assumption, that in a zone of formation of biaxially oriented
area (near to a source of orientation) there is a change of speed orientation parameter
b under the law

b = b1 exp(−b2t),

where b1 and b2 are constants.
Results of calculation of process of formation of a layer in time in one-dimensional
statement are shown in Fig. 2. Process formation of a layer has frontal character.
Lines of movement of front are represented in figure with equal step on time ∆t =
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Figure 2: Example of formation of a layer in time in one-dimensional statement in
the vicinity of filler surface

10 s. First line corresponds to time t1 = 10 s and extreme right line corresponds
to time t1 = 300 s. At such values of constants at the presence of a source of
orientation the maximal thickness of a layer is equal 8 nanometers approximately.
Thus the clear-cut border between strictly oriented area and area with strict chaos
is observed.

Figure 3: The fragment of the filled polymer containing a spherical filler particle

Let’s consider one more example. We apply the evolution equation for modelling
change of orientational state of polymer molecules under condition of presence of
two sources of orientation fu and fb. Under influence of the first source fu the
molecules are oriented in uniaxial direction, but under influence of the second source
fb the molecules are oriented in biaxial direction. The fragment of the filled polymer
containing a spherical filler particle is considered (Fig. 3). The radius of a particle
R is equal 10 nanometers. Thickness of a gap between particles is equal 0.2R. Let
the source fu operates along line BC and source fb operates along line AD.
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a b

c d

Figure 4: Formation of layer in space between of fillers particles. Time: 100 s (a);
400 s (b); 700 s (c); 1000 s (d)

Results of calculation of this process are shown in Fig. 4. Here we can see layers
with uniaxial and biaxial direction in time: 100 s (a); 400 s (b); 700 s (c); 1000 s (d).
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Abstract

An approach to multilevel description of deformation and fracture of brit-
tle porous media on the basis of movable cellular automaton method was
proposed. The media characterized by pore size distribution function having
one maximum were considered. The core of this approach consists in finding
the automaton effective response function by means of direct numerical sim-
ulation of representative volume of the porous medium. A hierarchical model
of mechanical behavior of ceramics under compression and shear loading was
developed. A method of taking into account heterogeneity in space distribu-
tion of strength properties of porous media was proposed. The main point of
this method consists in changing inter-automaton interaction parameters in
random directions. It was shown, that the proposed method of taking into
account heterogeneity in space distribution of strength properties opens up a
wide vistas in multilevel description of porous media with hierarchical porous
structure.

Introduction

Porous materials are characterized by hierarchical pore structure and complex me-
chanical behavior at fracture [1, 2]. To study and describe these materials the
information about their structure and mechanical properties on a few scale levels
is needed. One way of getting this information is a numerical simulation. In the
framework of one-level approach direct accounting for peculiarities of structure and
mechanical behavior of material on each scale level seems to be impossible. As
a result, the goal of this investigations is the development of multilevel approach
and corresponding hierarchical model for describing deformation and fracture of
nanostructure porous ceramics under compression and shear on the basis of mov-
able cellular automaton method (MCA) [3]. The calculations were performed for a
model material with mechanical properties of nanocrystalline ZrO2(Y2O3) (yttria-
stabilized zirconia) with the average pore size comparable with the grain size and
one maximum in its pore size distribution function [1]. Building up a hierarchical
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model was performed by several stages. At the first stage to find automaton ef-
fective response function on macroscopic scale level the calculation were performed
with explicit taking into account the structure of material on micro level (this is
the scale level where pores structure of model specimens with the size of 6÷120 µm
was defined explicitly). The representative volume of porous medium on this scale
level was found. At the second stage the calculations performed on the macro-
level for “continuous-solid” specimens. The porous structure data on lower scale
level was taked into account via the effective response function found at the first
stage. One way of taking into account heterogeneity, inherent to porous materials on
macroscopic level, is a scatter of mechanical parameters of automaton, for example
strength one. The main point of this method consists in changing inter-automaton
interaction parameters (the value of inter-automaton interaction criterion) in ran-
dom directions for randomly chosen automata. The third stage was a verification of
the developed model.

1 Finding the representative volume of porous

medium and corresponding effective response

functions on the macroscopic scale level

On “micro-scale” level the representative volume was determined by means of con-
vergence analysis of elastic and strength properties of the model porous specimens
with their size increase. Mechanical behavior of six groups of porous ceramics spec-
imens under uniaxial compression and simple shear was performed. All specimens
in each group had the same geometrical size, but different pore space distribution.
Each group consisted of five specimens. Square specimens under consideration had
dimension (square side) of 6, 12, 36, 60, 90 and 120 µm according to the groups.
It was supposed that all pores in ceramics under investigation, as well as the model
material, had spherical shape. The pore size of the model material, according to
maximum in ceramics pore size distribution function [1], was 1.8 µm. Diameter of
movable cellular automata, according to the average grain size [1], was 0.6 µm. Pore
structure of model specimens was made by moving away an automaton randomly
and its six nearest neighbors (fig. 1,a). The total porosity in all the samples was
15%. The simple-shear loading was simulated by setting equal velocities in horizon-
tal direction to all automata in the upper layer. The value of this velocity gradually
increased from 0 to 1 m/s in sinusoidal manner and then remained constant. The
automata in the bottom layer were fixed. This regime ensured a quasi-static char-
acter of loading and allowed dynamic effects to be avoided until the first damage
appears. All samples had periodic boundary conditions in the direction of loading.
The uniaxial compression loading was simulated by setting equal velocities in ver-
tical direction (up to 1 m/s) to all automata in the upper layer. The velocities of
automata in the bottom layer were set to zero. Displacement in horizontal direction
were allowed to automata in the bottom and upper layers. The lateral surfaces of
specimen were free. The problem was solved under plane strain conditions. The
response function of automata corresponded to the diagram of loading for nanocrys-
talline ZrO2(Y2O3) with total porosity of 2% and an average pore size comparable
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with the grain size [1]. Shear modulus of movable cellular automaton G = 30.8 GPa,
Poisson ratio ν = 0.3. Inter-automaton bond fracture criterion used for intensity
of shear stresses.

a) b) c)

Figure 1: Initial structure of a model specimen with 60 µm sides (a); relative shear
strength τc deviation (b) and shear modulus Geff deviation (c) of model specimens
from corresponding mean values < Geff > and < τc >

Convergence analysis of mechanical properties for model specimens with increase of
their size was performed in terms of estimated deviation of effective elastic modu-
lus of specimen Eeff and its strength σc (parameters of diagram of loading) from
corresponding mean values in the groups < Eeff >, < σc >. The specimen size, for
which deviation did not exceed 3% for Eeff and 20% for σc, was accepted as the
size of representative volume. Simulation results showed nonlinear convergence of
strength and elastic properties of model specimens. Simulation results for case of
shear loading is presented in fig. 1,b,c. Relative deviation of Eeff , Geff, σc and τc
of model specimens with 60 µm sides from corresponding group average was 1.85,
0.94, 13.7 and 9.3%. These values did not exceed of the desired limits. Thus, it was
shown, that porous specimens with 60 µm sides is the representative volume of the
model media under consideration. The values of < Eeff > and < σc > were taken
as characteristics of response function of automata on macroscopic level.

2 Numerical simulations on macrolevel with im-

plicit taking into account strength properties

heterogeneity

On macrolevel the calculations were performed for square “continuous-solid” speci-
mens with 6 mm side. Diameter of movable cellular automata was 6 mm. Informa-
tion about structure and strength properties of material from micro– to macrolevel
was transferred by means of response functions with corresponding characteristics
of loading diagrams for representative volumes of material on microlevel. Load-
ing conditions and assumption about stress state are similar with that at the first
stage. Heterogeneity of space distribution of strength properties of material on
macrolevel was taking into account at the model by means of changing two of six
inter-automaton interaction parameters (the value of inter-automaton interaction
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criterion) in random directions. The choice of automaton was performed in random
manner also. Parameters, characterizing the mentioned heterogeneity on macrolevel,
are 1) fraction of automata in the specimen ξ, for which threshold value of inter-
automaton bond strength σ is changed, 2) the relative quantity of its changing ϕ,
for randomly chosen bond of isolated automaton, as well as 3) the number of such
bonds N for this automaton.
Four groups of model specimens were simulated. Value of ξ was varied as 1, 5,
10 and 15%, correspondingly, and N = 2. The ϕ varied from −15% to +50%.
Each group of specimens contained three subgroups. Every subgroup includes five
specimens with equal combinations of σ varying. There were three combinations of
ϕ value under consideration: −10% and −10%, −10% and 10%, −15% and 50% for
the first and the second randomly chosen inter-automaton bonds correspondingly.

3 Model verification

We considered the model as successfully verified (i.e the model is valid for ceramics
under investigation) if the simulation results satisfied the following criteria: 1) Linear
diagram of loading for model specimens, that is typical for porous brittle materials.
2) Qualitative compatibility of the fracture patterns of equal-sized macro-specimens
with explicit and implicit description of porous structure. 3) Fit strength properties
of specimens a certain interval whose limits was found on the basis of approximate
estimator. Performed calculations and comparison of simulated diagrams of loading
of model specimens [2] with corresponding diagrams of brittle porous bodies un-
der shear and compression loading [1] revealed their good qualitative compatibility.
Thus, the first verification criterion of the model is satisfied. Direct verification of
the second criterion satisfaction is not available nowadays owing to vast compu-
tational resources needed. In this connection the simulation results of mechanical
behavior of brittle porous macroscopic specimens with lower size and explicit de-
scription of pores structure from [2] were taken for comparison with the simulation
results obtained in this study. Typical fracture pattern of model specimens, repre-
sented as inter-automaton bond net at the time of first macrocrack propagation, are
presented in fig. 2. Under uniaxial compression the specimens were broken-down
because of generating therein the asymmetrical system of inclined macrocracks in
conjugated directions (fig. 2,a,b). In case of shear loading the specimens were broken-
down because of generating therein both inclined and horizontal macrocrack system
(fig. 2,c,d).
One can see from the pattern of generated damages and macrocracks, that the model
material with implicit description of porosity equal to 15% and heterogeneously
distributed strength properties corresponds to both real [1] and model [2] porous
brittle media with small value of porosity (5–10%) and explicit descriprion of pores in
the model. It should be noted, that complete correspondence of fracture patterns of
the model specimens under consideration and that with explicit description of porous
structure is impossible. The reason of this is the fact, that difference in the inner
structure of specimens substantially determines the difference in processes, taking
place in specimens under mechanical loading. In accordance with these factors we
would consider the satisfaction of the second verification criterion of the proposed
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model.

a) b)

c) d)

Figure 2: Fracture pattern of model specimens with the same combination of ϕ
values (for specimen (a,b) and (c,d)) in the moment of the macrocrack system
nucleation under uniaxial compression (a,b) and shear (c,d). For specimens (a,c)
ξ = 15%, and (b, d) – ξ = 5%

To verify the satisfaction of the third verification criterion of model the variation
interval of σc for groups of specimens with equal value of parameters ξ, ϕ and
N is determined on the basis of the following considerations. The upper limit of
σc max variation interval corresponded to the strength of macro-specimen without
“changed” inter-automaton bonds σ0 and was equal 500 and 166 MPa in case of
uniaxial compression and simple-shear respectively. When deleting inter-automaton
bonds for ξ% of automata as well as taking into account possible change of strength
of representative volume (by θ%), low limit of σc min variation interval is described
by the expression σc min = σc max·(1- ξ

100
)(1- Θ

100
). Since inter-automaton bonds were

not broken at the model, but loosed at ϕ% in strength, then σc of model specimens
had to vary in the interval σc min ≤ σc ≤ σc max. Simulation results showed, that
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turndowns of strength of model specimens σc in the case of ξ = 5% and ξ = 15%
under uniaxial compression and simple-shear loading hit the variation intervals of
σc min and σc max. Thus, the third verification criterion of the proposed model was
satisfied.

Conclusions

Thus, on the basis of simulation results we may conclude, that a multy-level approach
proposed in this study on the basis of movable cellular automaton method and
corresponding hierarchical model developed allow describing of deformation and
fracture of brittle porous media under mechanical loading. It was shown, that
the proposed method of taking into account heterogeneity of space distribution of
strength properties opens up wide vistas in multilevel description of porous media
with the hierarchical porous structure. The proposed approach allow predicting the
properties of ceramics depending on peculiarities of its pores structure and could
serve for development of new brittle porous materials.
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Abstract

Molecular dynamics simulation of non-closed nanostructure behavior is
carried out. These structures are formed by self-rolling of nano-sized bilayer
Ni-Cu metallic films. Without external actions edges of nano-sized films make
weakly damped harmonic oscillations during formation process. Dependences
of amplitude and oscillation frequency of nanostructures from initial film sizes
are investigated. Optimal geometric parameters of initial films, at which they
oscillate with maximal amplitude, are determined. Peculiarities of film com-
position influence on non-closed nanostructure oscillation are revealed. It is
shown that layer composition changing and defect saturation of initial film
can purposefully have effect on amplitude, frequency of oscillation or on both
these parameters simultaneously. Obtained results are of interest from the
point view of nanodevice developing for different purposes.

1 Introduction

Considerable interest in nanostructure investigation is due to their new properties,
which significantly differ from macro-sized materials ones [1, 2]. In many respects
this is related with increasing of surface atom fraction. An investigation of behav-
ior peculiarity of nanostructures under external actions has both fundamental and
applied character. Specifically, nanostructures can be used as components of nano-
and micro-devices of different types and purposes.
At present there are two manners of nanostructure fabrication: regulated formation
of precise nanoobjects from atoms, and using already pre-composed building blocks
with larger sizes, for example, multilayered crystal films. Lack of reliable assembler
of nanoobjects from individual atoms makes the second manner more perspective
[3]. For nano-sized films creation the method of Molecular-Beam Epitaxy (MBE) is
used. MBE is based on epitaxialy growth atomic layers on a substrate surface with
precise up to one atomic monolayer. At that, formed film has ideal crystal structure
duplicating the substrate one. Under following chemical etching of ”sacrificial layer”
the film begins to detach from substrate and to roll by reason of appearing of force
moments in it. The shape of formed nanostructure depends on chemical and layer
composition as well as geometrical sizes of initial film. Fundamentally important
fact of nanostructure generation on the basis of above mentioned manner is high
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degree of multilayer film crystal order. At the same time the crystal order can be
broken by a number of reasons (due to some peculiarities of etching and drying at
formation of nanostructures, or at utilizing them, if they are used as components of
different nanodevices). Therefore the main goal of the present researches is influence
investigation of crystal order disruption of initial films on properties of non-closed
nanostructures, formed on their basis.

2 Computer-aided experiment statement

The calculations are carried out by means of molecular-dynamics method. The
system, under investigation, is Cu-Ni. In consequence of process transience and
small sizes of studied objects computer simulation, in particular, molecular-dynamics
method allows obtaining the information which is hard-hitting in experimental in-
vestigations. The necessity of explicit taking into account of atomic structure dis-
creteness of simulated objects makes molecular-dynamics method the efficient one
in investigation of nanostructure behavior and properties [4, 5]. Interatomic interac-
tions are described by the many-body potentials calculated by the embedded atom
method [6, 7, 8] which allows to characterize elastic and surface properties as well
as energy parameters of point defects of studied system.
The choice of Cu and Ni as a chemical elements used for bilayered film composition
is due to the fact, that they have the identical crystal structure and mismatch be-
tween lattice constants near 2.5%. In addition, the Cu-Ni phase diagram shows the
continuous number of solid solutions. Such characteristics of these metals and pecu-
liarities of their phase diagram allow in practice to put on a substrate large number
of Cu and Ni atomic layers and form on the base of generated films nanostructures
with different shapes and properties [3, 9].
For bilayered nanostructure formation the simulated film is conventionally divided
into two layers with the equal thickness. One layer is consisted of Ni atoms, and the
other one – of Cu atoms. Each layer contains 4 atomic planes. The lattice constant
either of the two layers is given by the average value of equilibrium lattice constants
of these metals. Thus, initial metallic film is strained (Ni layer is stretched and Cu
layer is compressed). It is noted, that chemical etching process is not taken into
account, because its real duration is too long for molecular-dynamics calculation.
The length of simulated film is equal to 100 lattice parameters. Along two axes free
surfaces are simulated and along the third direction periodic boundary conditions
are set. The simulated film contains 12000 atoms.

3 Simulation results

Without external actions simulated bilayered nanofilm begins rolling in Ni layer
side. This process is due to the initial assumed stretching of Ni layer and com-
pressing of Cu layer. After reaching of the position, shown in Fig. 1,a, when free
edges of the film are maximum brought together, the simulated nanostructure beings
unbending to the position close to initial one (Fig. 1,b). After that the ”bending-
unbending” film process with periodically reaching of the two extreme positions is
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occurred. Without external resisting forces the oscillations have weakly damped
character that is related with dissipative processes. Oscillations damping is due to
the internal friction effect, which gives rise to gradual transformation of mechanical
oscillation energy into thermal motion of atoms. The substance of this effect can
be explained by the fact, that in certain time moment the stretched film layer has
less temperature then the compressed one. The temperature gradient arises, which
leads to heat transfer and conversion of mechanical energy into thermal one, hence,
to the oscillation damping.

3.1 Influence of geometrical sizes of initial films on nanos-
tructure properties

Properties of nanostructures depend on not only from boundary and initial con-
ditions but also from their geometrical sizes. For the purpose of investigation of
geometrical factor influence on nanostructures behavior initial bilayered films with
different thickness are simulated. Either of the two layers (Cu and Ni) consists of
5, 10, 15, 20 and 25 atomic planes. For all investigated specimens these values of
film lengths are used that the normalized amplitude of non-closed nanostructure
oscillations (maximum distance changing between the oscillating film edges divided
by its initial length) is equal to 70%. The oscillations with amplitude more then this
one can lead to nonreversible structural reconfiguration and closing of free edges of
nanostructure during afore-said process. Results show that the normalized ampli-
tude of simulated nanostructures has linear dependence on the initial film length.

Calculation results show that oscillations amplitude (Am) of free edges of non-
closed nanostructure with constant film thickness depends on its initial length. The
simulated non-closed nanostructures, either of the two layers contains 15 atomic
planes (the first layer consists of Cu atoms and the second layer - Ni atoms), are
shown in Fig. 2. Length increasing of simulated nanostructure with constant film
thickness leads to increasing of the oscillation amplitude. The oscillation amplitude
dependences on the initial film length are depicted in Fig. 3,a. The oscillation
amplitude in the initial film length units is represented. In accordance with obtained
results the normalized oscillation amplitude of simulated nanostructures increases
nonlinearly with growth of their length.

a) b)

Figure 1: Extreme positions of simulated non-closed nanostructure. Free edges of
the film are: a) maximum brought together; b) maximum moved apart. Coordinate
axes are shown in accordance with crystallographic directions of initial film
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Figure 2: Non-closed nanostructures with different initial film length L: a) 35.7 nm,
b) 49.9 nm, c) 89.2 nm, d) 206.9 nm at the points, when their free edges are
maximum brought together. Layer of Ni are marked by light color and layer of Cu
– by dark color

Fig. 3,b demonstrates the dependences of oscillation frequency variation on initial
film lengths. The curve 1 corresponds to the film which layers (Cu and Ni) contain
15 atomic planes and the curve 2 – the film which layers (Cu and Ni) contain 10
atomic planes. It is seen that oscillation frequency decreases quickly enough with
initial film length increasing. Results analysis shows that for lengths more then
40 nm (curves in Fig. 3,b) are well described by relation ∼ 1/L2, that is in a good
agreement with investigation [9]. If the film length is less then the mentioned one
the studied dependence is disrupted by reason of increasing influence of structure
discontinuity.
Fig. 4 shows the oscillation amplitude and frequency dependence of bilayered film
on its thickness. Each point on the curves corresponds to the film, which oscillates
with normalized amplitude 70%. One can see that the oscillation frequency decreases
nonlinearly with increasing of film thickness h (Fig. 4,a). The oscillation amplitude
growths with increasing of h (Fig. 4,b) and can be described by linear function inside
investigated thickness region.

a) b)

Figure 3: The influence of length L of non-closed nanostructure on: a) oscillation
amplitude Am, which are normalized to initial film length L, b) oscillation frequency
ν. The results are presented for different film thickness (in atomic planes of Cu and
Ni layers): 1) 15, 2) 10

The behavior of non-closed nanostructures under heating is investigated. The initial
non-closed nanostructure is relaxed to 200K and then heated up to 300K or up to
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500K by means of atom velocities scaling in order to study the transformation of
supplied thermal energy into mechanical oscillation energy of its free edges. The
efficiency estimation of this transformation is carried out.
The simulation of heating process is carried out for films with following sizes: the
lengths are equal to 50, 100, 150 and 200 lattice spacing and the sicknesses are
equal to 4, 6, 8 and 10 monolayer for each kind of atoms. The efficiency of thermal
energy transformation (η) into mechanical oscillation energy of all simulated films is
calculated for different temperatures: 300K (Fig. 5,a), 500K (Fig. 5,b). This value is
estimated as the fraction of thermal energy transformed into mechanical oscillations.

a) b)

Figure 4: Oscillation frequency (a) and amplitude (b) dependences of bilayered film
on its thickness

As demonstrated in Fig. 5,a the transformation efficiency of thermal energy under
heating increases with growth of heating temperature. Thus the variation of geomet-
rical parameters of initial film allows purposefully having effect on transformation
efficiency of thermal energy into energy of mechanical oscillations.

3.2 Influence of structural defects and layers composition

on properties of non-closed nanostructures

Eigenfrequencies and amplitudes of harmonic oscillations of non-closed nanostruc-
tures, which are formed on the basis of bilayered crystal films, depend not only on
its length, sickness, chemical and layers compositions, but also on defects presence
in crystal layers. Two percent of vacancies were put into initial film in order to
investigate of defect influence on oscillation process (Fig. 6).The geometrical sizes of
initial film are chosen such way that the normalized oscillation amplitude is nearly
to 70%. Vacancies are located in random manner into central third part of the film.
Presence of a large number of vacancies leads to appearance of additional volume and
following stress relieving. Despite the geometrical sizes of the film are not changed,
its oscillation amplitude is significantly decreased. Bended and unbended positions
of simulated films with ideal crystal and defect structure are shown in Fig. 6.
Formation of different initial film layer configuration can be the efficient manner
to change kinematical characteristics of non-closed nanostructures. For that, the
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a) b)

Figure 5: The dependence of transformation efficiency of thermal energy into me-
chanical one for non-closed nanostructures on different lengths L and thicknesses d
of the initial film (d is expressed as atomic plane number, L – as lattice constant
number) under heating up to temperatures: a – T = 300K; b – T = 500K

behavior of non-closed nanostructures with following layer configuration is investi-
gated. One sort of atoms is changed by another one in the atomic plane near the
layer interface of the initial film. Thus, the atom sort is substituted ”artificially”
in the central third part of atomic plane. The dependence of distance changing
between non-closed nanostructure free edges on time is presented in Fig. 7.

Figure 6: Non-closed nanostructures with ideal crystal order (a, b) and with ∼ 2%
vacancy saturation (c, d) in extreme positions of free edges: a, c – maximum brought
together; b, d – maximum opened. Layers of Ni are marked by light color and layers
of Cu – by dark color. Hatched part of the film contains ∼ 2% of vacancies

It is seen, that vacancy insertion into initial crystal film leads to the amplitude
decreasing (Fig. 7). At that, nanostructure oscillation frequency doesn’t change
practically and curve describing distance between free edges has many ”breaks”,
which are smoothed with time. It is noted that ”breaks” are also observed on
the curve of non-closed nanostructure with ideal crystal structure at stage of the
oscillation formation.
Changing of layer composition of non-closed nanostructure leads not only to am-
plitude revising but also to variation of free edge oscillation frequency. Thus, sub-
stitution of Cu atoms of central third part of atomic plane from Cu layer, which
lies on layers interface, for Ni atoms results in oscillation changing of free edges
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of non-closed nanostructure (Fig. 7, III curve). For this layer composition the os-
cillation amplitude of free edges decreases approximately by 32% and oscillation
frequency diminishes roughly by 15%. Amplitude-frequency characteristics of non-
closed nanostructures with various layers configuration and crystal order disruption
are demonstrated in Fig. 8.

Figure 7: Dependence of distance changing between free edges of non-closed nanos-
tructures on time (I – ideal crystallite; II – ∼ 2% vacancy saturation; III – one Ni
atomic plane insertion)

4 Conclusions

So, performed calculations show that nano-sized structures formed on the basis of
bilayered crystal films without external actions make weakly damped harmonic os-
cillations. It is determined that amplitude and frequency of mechanical oscillations
depend on geometrical sizes (length and thickness of initial film). The increasing
of initial nano-film length provided that its thickness constancy results in the os-
cillation frequency decreasing. The simultaneous proportional increasing of length
and thickness of initial crystal film leads to the linear growth of the oscillation am-
plitude. Therefore, kinematical properties of non-closed nano-sized structures can
be changed purposefully by variation of their geometrical parameters. It is shown
that aforesaid parameter changing influences on transformation efficiency of thermal
energy supplied to the non-closed nanostructure into mechanical oscillation one.

It is shown that kinematical characteristics of simulated nanostructures can be varied
by the selection of layer composition of the intial bilayer film. In particular, the
thickness variation of initial film layers which are consisted of different sort atoms
can significantly influence on the amplitude and the oscillation frequency of free
edges. The substitution Cu atoms by Ni ones results in higher changing of amplitude
then frequency one in simulated nanostructures. Inverse atom substitution leads
to insignificant amplitude changing and great decreasing of frequency oscillation
(Fig. 8). Vacancy insertion in the initial film results in considerable amplitude
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changing, whereas oscillation frequency remains practically changeless in comparison
with nanostructure with ideal crystal lattice.

Figure 8: Amplitudes and frequencies of different non-closed nanostructure oscilla-
tions

The results of simulations are of interest of components developing with required
geometrical sizes and kinematical characteristics for nanodevices for different func-
tional purposes.
Calculation is done with use of supercomputer “SkifSyberia” located at Tomsk State
University.
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Abstract

A FEM-based procedure of fatigue crack growth simulation in the field of
progressive damage is developed. A specific finite element grid is suggested
which allows saving information on accumulated damage and “natural” trac-
ing of growing crack; otherwise it is timely and laborious using the standard
FEM-procedures. The basic principles of meshing are formulated and follow-
ing these principles a two-level finite element grid was designed. Further, fa-
tigue behavior of a notched plate with imbedded randomly distributed defects
is analyzed. The plate is assumed a composition of finite elements represent-
ing material elements with randomly distributed fatigue resistance parame-
ters. Defects in material structure are modeled by elements with negligibly
small stiffness. The fatigue properties of the material elements are described
by parameters of the Basquin (S-N) equation. The damage evolution and the
traces of growing cracks in the plate are assessed at different phases of fatigue
life.

The procedure developed is deemed an effective mechanism that allows
both to model the crack formation from a defect and its further propagation
accordingly the damage accumulation during all period of cyclic loading. It
provides also reducing substantially the influence of the mesh geometry on
the progressive crack extensions.

1 Introduction

Simulation of fatigue crack growth in conjunction with the damage accumulation,
based on coupled action of mechanisms of slip in material grains and stress field
has been attracting attention through the past decades, e.g., [1]. One of effective
ways of modeling the crack propagation is the use of finite-element method (FEM).
Application of FEM for the analysis of crack propagation when the crack path may
be affected by the inhomogeneous development of damage or by specifics of the
stress field immediately assumes an operative reorganization of a finite element grid
during the crack extensions. It allows avoiding the influence of the finite element grid
topology on the crack trajectory. This is because the initial grid can not adequately
describe the re-distribution the stress and strain field around the tip of the growing
crack.
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However, applicability of such approach is limited by a class of problems where there
is no correlation between the crack path and the previous history of damage accumu-
lation in material. When dependence of the crack extensions on the pre-history of
damage should be accounted for, the re-design of the FE mesh is unacceptable since
it leads to deleting the information on the developing degradation of the material.
This work is focused on the design of finite element grid which, on the one hand,
would allow naturally to save the information on the fatigue damage in material
(finite elements) prior to failure and to model by this the whole process of fatigue
crack development using the unique finite element mesh, and on the other hand,
would minimize the influence of the mesh topology on the traces of fatigue cracks.
Based on the formulated principles the original structure of FE grid is developed
and verification of its consistency is presented.

2 Basics of the approach and development of the

specific mesh type

The crack initiation and propagation is modeled based solely on assumption that
the damage accumulation in material elements controls the process. As an example,
the fatigue process is analyzed in a formally elastic plate with a central circular
hole under cyclic zero-to-tension loading. First, the analysis is addressed to the
homogeneous material modeled with the finite element mesh differing by topology.
Fatigue process is modeled by the sequence of damage accumulation in FE’s using
the Palmgren-Miner rule [2]:

D =
∑

i

ni

Ni
(1)

where D is the accumulated damage in an element, ni = n(Si) is the number of
load cycles with the stress range Si , Ni = N(Si) is the number of cycles prior to
failure of the "i" element with the stress range Si.
Values ofN(Si) are obtained from the S-N curve for the plate material approximated
by the Basquin equation [3]:

N(S) = C/Sm (2)

where and m – the material empirical “constants”, to be obtained from the exper-
imental data, S - the stress range.
By substitution (2) into (1) the damage accumulated in every of the elements:

D =
∑

i

ni

Ni
= (1/C)

∑

i

niS
m
i (3)

Successive failure of elements, i.e. when the damage in a sequential element becomes
D = 1, is defined by decreased stiffness of the element by several decimal orders (
“killing” of elements), and succession of failures indicates the crack extension. Rapid
acceleration of the progress of damage, characterized by the crack growth rate, was
regarded the indication of the plate failure. This scenario was realized in the case
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when the crack origination was assumed at the notch root, but at a certain distance
from the axis of symmetry.
First, a standard regular finite element mesh is used. Fig.1 shows the initial stage
of the crack extensions and the final state with well-developed crack under cyclic
loading (the cyclic load is applied far from the fragment shown, in “infinity”).

a b

Figure 1: Crack growth simulation by the mechanism of the damage accumulation.
Regular FE mesh

Fig.1, a, b show that crack follows strictly the mesh nodal line, inclined to the
direction of loading and direction of the maximum principal stress. Due analysis
(by using finer mesh at assumed crack tip) indicates that the most intensive damage
at every of the crack increments develops in successive element located directly ahead
the crack tip, i.e. along the grid nodal line. It may be explained by modeling the
crack extensions by successive “killing” of elements.
Keeping with the modeling of fatigue cracks by the damage accumulation principle,
the following requirements for the meshing can be formulated in order to minimize
the influence of the grid topology on the trajectory of growing crack:
1. The crack tip should be provided “freedom” to turn under the influence of the
local stress field, accompanied by the accumulated fatigue damage in successive
elements.
2. The isotropy of the grid is desired. Any specified nodal lines in the mesh would
control the crack extensions.
Respectively, a cell structure of the mesh was derived meeting the above require-
ments. A cell of the mesh structure is shown in Fig.2.
The cell consists of “blocks-circles”; in the center of “circles” there are triangular
elements which allow for deviation of the crack tip. By this in the center of every
of the “block-circles” the crack path would be corrected accordingly the local stress
field; further, the crack would extend towards the next “block-circle”. Thus, the
crack trace would be represented by a zigzag line. If the size of the grid cell is
small enough then the trajectory will be slightly differing from the “true” one.Also
this cell is consistent with the requirement to the mesh isotropy, since there is no
predominant direction, nodal point line, capable of controlling the crack path.
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Figure 2: A cell of the proposed isotropic mesh type

This mesh type was applied for the above crack growth analysis. Figs.3, 4 present
the results of simulation of fatigue crack extensions under uniaxial cyclic loading
for different directions of applied cyclic load. Fig.3, a shows that the simulated
crack propagation in general satisfactorily follows orientation of the planes normal
to the maximum principal stress flow, apart from the area where the mesh is ori-
ented. When the plate is loaded in horizontal direction (Fig.3, b) the initial “defect”
(black line) occurs inactive, and the crack is initiated by the damage accumulation
mechanism in the “proper” location.

a b

Figure 3: Fatigue crack simulated under uniaxial cyclic loading: (a) cyclic load is
applied in vertical direction; (b) - horizontal direction of cyclic loading

Another example of “calibration” of the suggested procedure is the simulation of
fatigue crack propagation under the in-phase biaxial loading. Fig.4 shows the results
of the crack modeling: it is seen again that in general the crack trajectory complies
with the Sih’s principle - it grows normally to direction of the maximum principal
stress.
However, the applied mesh type provides the wavy character of the crack path: the
mesh makes the damage accumulation preferred along the boundaries of the mesh
cells. To allow for the better crack trace simulation the proposed meshing would
need in further optimization so that the damage accumulation and respective crack
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Figure 4: Development of fatigue crack under biaxial cyclic loading (the in-phase
cyclic loads are applied both in horizontal and in vertical direction with equal am-
plitudes)

extensions would be less dependent on the properties of cells.
By applying the trial-and-error method an improved grid is developed which com-
bines the advantages of the previous one and allow eliminating the revealed short-
comings. A cell with improved FE sub-structure is presented in Fig.5. This cell

Figure 5: A cell of the improved finite element grid

type has a two-level structure. The first level consists of “large blocks-circles”; in
the center of these “circles” there are triangular elements which allow for trajec-
tories of growing crack to deviate under influence of stress flow and accumulated
damage in the part surrounding the crack tip. The second level consists of “small
blocks-circles”; in the center of “circlets” there are also located triangular elements.
The second level allows the crack to turn if it would extend along the edge of a
“large circle”.
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By this, the proposed topology of the modified finite-element grid for modeling
the crack propagation would allow a trajectory to turn accordingly the local stress
flow; the less wavy deviations are also expected. The two-level cell structure has
to be better suited for the modeling fatigue crack morphology when the damage
summation procedure is applied.
The modified mesh type was used to simulate behavior of initial micro-crack-like
defects in material structure under cyclic loading. The defects and “fatigue prop-
erties” (coefficient C in (2)) of “material elements” (finite elements) were randomly
distributed in a rectangular thin plate, as shown in Fig.6, a; cyclic load is applied
in vertical direction (at “infinity”). It is seen that a defect in the intensive damage

Figure 6: Development of defects in material structure into the propagating crack:
(a) initial defects; (b) evolution of defects under cyclic loading; right hand - the
damage intensity legend

area became an “active” one, which turned into the propagating crack; the other
defects remained “dormant”.
The trajectory of crack initiated at the “active” defect, shown in Fig.6, in general,
is controlled by the stress flow; its deviation from the straight line perpendicular
to the loading direction may be explained by the different (randomized) rate of
the damage in “material” elements and partly, by the sensitivity to the progress
of damages induced by the defect in the lower part of the plate. It is seen in this
example that the influence of grid topology on the crack trajectory can be essen-
tially reduced. Also, the modified meshing provides the better smoothness of the
crack morphological features and makes it possible to trace the step-by-step damage
accumulation, further formation of fracture nucleus near initial cracks/defects and
their propagation.

3 Verification of the developed grid consistency

The given in above examples may not be convincing in accuracy of the proposed
approach. To add, a standard problem is considered to make comparison of stress
intensity factors calculated in the cases:
–
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• when the crack is simulated using the proposed approach

• when the regular mesh with singular elements is applied and

• SIF’s obtained from the hand book sources, e.g., [4]

A rectangular plate with symmetrical edge cracks loaded in direction perpendicular
to the crack planes is assumed. Fig.7 shows the geometry; due to the symmetry,
a 1/4 of the plate with respective boundary conditions is considered. A crack is
located in the right bottom corner.

Figure 7: Edge crack propagation modeling

The plate dimensions are: 2 = 2b = 7 ∗ 2l = 28 mm, initial crack length is: 2l
= 4 mm, the size of grid cells is 2 mm; the plate is loaded by static stress σ = 1
MPa. According to the handbook data [4] stress intensities (KII ) for the plate with
symmetrical cracks at the edges are given by:

KII = σ
√
πl · FI(α), α = l/b, FI(α) =

√
sec(απ/2)

When the proposed modified meshing is applied, the stress intensities, , can be
estimated by using the extrapolation to the crack tip technique [5]:

K
grid
I = lim

r→0
σ
√
2πr

where r - the distance of the reference point from the crack tip, σ = σ(r) is the
(maximum principal) stress at the reference point range. In case the plate with
edge cracks is modeled by regular mesh with singular elements, stress intensities
(KsinI ) are calculated by means of a procedure built in a software based on the
method of nodal displacements. Respectively, the SIF values are as follows:
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• handbook data [4] : KII = 80.3kPa · √m

• regular mesh with singular elements: KsinI = 81.6kPa · √m

• proposed modified meshing technique: KgridI = 78.5kPa · √m

The example shows that relative difference of the results does not exceed 2.5% which
can be regarded favorable for the proposed approach together with the assumed
isotropic meshing.

4 Conclusion

A simple approach allowing for simulation of the fatigue crack initiation and growth
in a non-uniform field of progressing fatigue damages is developed based on ap-
plication of the principles of FE meshing which provide realistic crack extensions
independent of the mesh geometry.
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Abstract

This paper deal with laminated thin-walled structures. The laminated
structures considered herein consist of three layers. The following assumptions
are assumed. The thickness of inner layer is sufficient grater then others. The
kinematic relations for the inner layer are in the form of Mindlin-Reissner
shell theory, for the outer layers are in the form of membrane theory. The
deformations of the whole layered structure obey the polyline hypothesis. The
material of outer layers are suppose to be thermoelastic isotropic, whereas that
of inner one being isotropic thermoviscoelastic. A variational principle for 3-
layered thermoviscoelastic thin–walled structures is obtained. The variational
technique is utilized to derive the equations of motion and heat conduction as
well as appropriate boundary and initial conditions. The boundary conditions
are in the most general form, corresponding to elastic fixing of boundary edges.
A closed solution of the dynamic problem for finite 3-layered viscoelastic thin–
walled structures is obtained. The solution is of the form of spectral expansion
based on complete biorthogonal sets of eigenfunctions corresponding to mutual
adjoint pairs of operator pencils.

1 Variational principle

We construct the variational statement of the problems with the use of the following
well-known assertion [1]: if a linear operator A with domain D is self-adjoint with
respect to a symmetric bilinear form 〈., .〉 and if this bilinear form is nondegenerate,
i.e., satisfies the condition

(
∀u ∈ D 〈u, v〉 = 0

)
⇒ v = 0,

then the stationary points of the quadratic functional

I[u] =
1

2
〈u,A[u]〉

defined on the same domain D are exactly the solutions of the equation

A[u] = 0.
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That is, the extension of variational formalism to novel problems depends on an ap-
propriate definition of bilinear forms. Noticeable progress in this field was obtained
by Gurtin [2], Tonti [3], and Belli and Morosi [4]. They proposed the use of the con-
volution as a bilinear form. It can be proved that the equations of motion and heat
conduction generates the differential operators, which are self adjoint with respect to
the convolution bilinear form. This permits one to obtain a well-defined variational
statement for linear dynamic elasticity, thermoelasticity and viscoelasticity.
We recall that the convolution product of two functions u(t), v(t) is defined as

〈u(t), v(t)〉 =

T∫

0

u(T − t) v(t)dt. (1)

We note that hereafter variable T corresponds to the current time, whereas t and τ
denote preceding moments of time. It follows from the definition (1) and the rule
of integration by parts that

〈u, v〉 = 〈v, u〉 , 〈u̇, v〉 = 〈u, v̇〉 + u(T)v(0) − u(0)v(T), (2)

where the dot stands for differentiation with respect to t. For simplicity we use the
following notion for the convolution products of vector and tensorial fields

〈u(t)·v(t)〉 =

T∫

0

u(T − t)·v(t)dt, 〈A(t) :B(t)〉 =

T∫

0

A(T − t) :B(t)dt, ets.

In the following we shall use the velocity v and the temperature θ as basic functions.
According to [4] the variational formulation to the problem has the form

δF = 0,

F [v, θ] =

∫

V

(
Lmech + Ltherm + Linter −

ρ

2
v(T)·v0−

c

2
θ(T)θ0

)
dV. (3)

Here item Lmech characterize pure mechanical deformation

Lmech =
1

2
(ρ 〈v·v̇〉 − 2ρ 〈K·v〉 + 2µ 〈ε : ε̇〉 + λ 〈E :ε,E : ε̇〉) , (4)

item Ltherm characterize pure heat conduction

Ltherm =
1

2

(
2 〈̟, θ〉 − c

〈
θ, θ̇
〉

− k 〈∇θ·∇θ〉
)
, (5)

item Linter characterize the coupling effects

Linter = −β 〈θ,E : ε̇〉 , (6)

and v0, θ0 are initial values for velocity any temperature correspondingly. In the
Eq. (4)–(6) we use the following notation: ε is the strain tensor, which may be
expressed in the terms of velocities as follows:

ε =
1

2

t∫

0

(∇ ⊗ v(τ) + (∇ ⊗ v(τ))
∗
) dτ,
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K is an externally applied body forces per unit mass, ̟ is an external rate of supply
of heat per unit mass, ρ is a mass density, µ, λ are the Lamé elastic modulus, k is
a heat conductivity, c is a specific heat, β is a thermomechanical modulus.
Direct calculation shows that the Euler–Lagrange equations corresponding to the
functional (3) are equivalent to the equation of motion and heat conduction of
isotropic thermoelastic solid [4].
The generalization of the variational principle (3) to the thermoviscoelastic case is
based on the refinement of the item Lmech as follows:

Lmech =
1

2
(ρ 〈v·v̇〉 − 2ρ 〈K·v〉 + 2 〈M[ε] : ε̇〉 + 〈L[E :ε],E : ε̇〉) ,

where M, L — differential operators

M[ε] = µε +

N∑

k=1

µk
∂k

∂tk
ε, L[E :ε] = λE :ε +

N∑

k=1

λk
∂k

∂tk
E : ε̇.

A straightforward computation readily shows that the corresponding Euler–Lag-
range equations are equivalent to the equations of viscoelastic motion and heat
conduction of the thermoviscoelastic solid. This proves that the proposed variational
principle is well–posedness.

2 Thermoelastic thin–walled structures

Now we are in a position to construct a variational statement for thin–walled struc-
tures, taking into account the Mindlin-Reissner kinematic hypothesis [5]. Denote
by α, β, ζ the appropriate curvilinear coordinates, by eα,eβ,eζ corresponding lo-
cal basis and suppose that the thin–walled structure is the body bounded by two
coordinate surfaces ζ = C1, ζ = C2, C2 > C1. The distance between this surfaces
(thickness) h = C2−C1 is small with respect to general dimensions of the structure.
According to the accepted kinematic hypothesis the velocity v and the temperature
θ may be represent as expansions with respect to variable ζ:

v = u + ζv, v·eζ = 0; θ = a + ζb, (7)

where u = u(α, β) and v = v(α, β) are the translate displacements and twists of
shell normals. Taking into account this relations we get the expansion of the strain
tensor ε

ε =

t∫

0

defv(τ)dτ, defv = defu + ζdefv +
1

2

(
v ⊗ eζ+ eζ⊗ v

)
. (8)

According to the stress hypothesis of Mindlin-Reissner theory we put the density of
pure mechanical item Lmech (5) as follows:

Lmech =
1

2
(ρ 〈v·v̇〉 − 2ρ 〈K·v〉 + 2µ 〈ε :G : ε̇〉 + λ 〈E :ε,E : ε̇〉) , (9)
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where G is shear correction tensor [7] (κ is the coefficient of transversal shear [5])

G = 1 + (κ − 1)
(
G0+ G

(2143)

0

)
, G0 = eα⊗eζ⊗eα⊗eζ+ eβ⊗eζ⊗eβ⊗eζ.

Here 1 is the tensorial unit and G
(2143)

0 is the tensorial isomer with dyadic permu-
tation 2413. Substituting expressions (7) and (8) into Eq. (9) we get the Lmech in
expanded form. Here we write out the third and forth items:

ε :G : ε̇ =

t∫

0

defudτ :G :defu+

+
κ

2



t∫

0

defudτ :
(
v ⊗ eζ+eζ⊗ v

)
+

t∫

0

(
v ⊗ eζ+eζ⊗ v

)
dτ :defu+

t∫

0

vdτ·v


+

+ ζ



t∫

0

defvdτ :defu +

t∫

0

defudτ :defv


+ ζ2

t∫

0

defvdτ :defv,

E :εE : ε̇ =

=

t∫

0

∇·udτ∇·u + ζ



t∫

0

∇·vdτ∇·u +

t∫

0

∇·udτ∇·v


+ ζ2

t∫

0

∇·vdτ∇·v.

Evidently,

v·v̇ = u·u̇ + ζ (u·v̇ + u̇·v) + ζ2v·v̇,

K·v = K·u + ζK·v.

We get the densities of pure thermal (5) and coupling items (6) in the same way:

Ltherm = 〈̟, a〉 −
c

2
〈a, ȧ〉 −

k

2
〈∇a·∇a〉+

+ζ
{
〈̟, b〉 −

c

2

〈
a, ḃ
〉

−
c

2
〈ȧ, b〉 − k 〈∇a·∇b〉

}
−ζ2

{
c

2

〈
b, ḃ
〉

+
k

2
〈b, b〉

}
,

Linter = −β 〈a,∇·u〉 − ζβ (〈b,∇·u〉 + 〈a,∇·v〉) − ζ2β 〈b,∇·v〉 .

Consequently all items of functional (3) have the form of expansion with respect
to a small parameter ζ. Now we are in a position to reformulate the problem in
the terms of average stress and temperature fields by integrating the density of the
functional (3) with respect to variable ζ. If the mean surface is congruent with the
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middle surface of the structure, then we get the formula

Fred =

∫

Ω

{
hρ

2
〈u·u̇〉 − hρ 〈K·u〉 + hµ

〈 t∫

0

defudτ :G :defu

〉
+

+
µκ

2

〈 t∫

0

defudτ :
(
v ⊗ eζ+ eζ⊗ v

)
〉

+
µκ

2

〈 t∫

0

(
v ⊗ eζ+ eζ⊗ v

)
dτ :defu

〉
+

+ µ

〈 t∫

0

vdτ·v
〉

+
hλ

2

〈 t∫

0

∇·udτ,∇·u
〉

+ h 〈̟, a〉 −
hc

2
〈a, ȧ〉 −

hk

2
〈∇a·∇a〉−

−hβ 〈a,∇·u〉 +
h3ρ

24
〈v·v̇〉 +

h3µ

12

〈 t∫

0

defvdτ :defv

〉
+
h3λ

24

〈 t∫

0

∇·vdτ,∇·v
〉

−

−
h3c

24

〈
b, ḃ
〉

+
h3k

24
〈b, b〉 −

h3β

12
〈b,∇·v〉−

−
hρ

2
u(T)·u0−

h3ρ

24
v(T)·v0−

hc

2
a(T)a0−

h3c

24
b(T)b0

}

dA. (10)

Using the standard variational technique we obtain the variation of the functional
(10). Further the Gauss divergence theorem with respect to material variables and
the rule of integration by parts with respect to time t give the following:

δFred =

=

∮

Γ

N ·
{〈


t∫

0

h
[
2µdefu :G + µκ

(
v ⊗ eζ+ eζ⊗ v

)
+ λ∇·uE

]
dτ− hβaE


·δu

〉
+

+

〈

t∫

0

h3

12
[2µdefv + λ∇·vE ] dτ−

h3β

12
bE


·δv

〉
− 〈hk∇a, δa〉 − 〈hk∇b, δb〉

}

dΓ+

+

∫

Ω

{〈
h


ρ [u̇−K]−

t∫

0

[
2µ∇·defu :G+µκ∇·

(
v ⊗ eζ+eζ⊗ v

)
+λ∇∇·u

]
dτ+β∇a


·δu

〉
+

+

〈
h

3ρ

12
v̇+

t∫

0

[
2hµκdefu·eζ+2hµv−

h3µ

6
∇·defv−

h3λ

12
∇∇·v

]
dτ+

h3β

12
∇b


·δv

〉
+

+
〈(
h̟−hcȧ+hk∇2a−hβ∇·u

)
, δa
〉

+

〈(
−
h3c

12
ḃ+
h3k

12
∇2b−

h3β

12
∇·v

)
, δb

〉
−

−
hρ

2
δu(T)·(u0− u(0)) −

h3ρ

24
δv(T)·(v0− v(0))−

−
hc

2
δa(T)(a0− a(0)) −

h3c

24
δb(T)(b0− b(0))

}

dA.

By using the fundamental lemma of calculus of variations, we obtain the Euler–
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Lagrange equations

hρ [u̇−K]−

t∫

0

h
[
2µ∇·defu :G+µκ∇·

(
v ⊗ eζ+ eζ⊗ v

)
+λ∇∇·u

]
dτ+hβ∇a=0,

h3ρ

12
v̇ +

t∫

0

[
2hµκ

(
defu·eζ+ v

)
−
h3µ

6
∇·defv −

h3λ

12
∇∇·v

]
dτ+

h3β

12
∇b = 0,

h̟− hcȧ + hk∇2a − hβ∇·u = 0,

−
h3c

12
ḃ +

h3k

12
∇2b −

h3β

12
∇·v = 0,

the natural boundary conditions (E = eα⊗ eα+ eβ⊗ eβ):

N ·



t∫

0

h
[
2µdefu :G + µκ

(
v ⊗ eζ+ eζ⊗ v

)
+ λ∇·uE

]
dτ − hβaE



∣∣∣∣∣∣
Γ

= 0,

N ·



t∫

0

h3

12
[2µdefv + λ∇·vE] dτ −

h3β

12
bE



∣∣∣∣∣∣
Γ

= 0,

hkN ·∇a|Γ = 0,

hkN ·∇b|Γ = 0

and the natural initial conditions

u|t=0 = u0, v|t=0 = u0, a|t=0 = u0, b|t=0 = u0.

We stress that in the contrast with conventional variational principles (for example
Hamilton’s principle) the initial conditions yield from the variational statement in
the same way as boundary conditions.

3 Three–layered structures

To obtain an equations of motion and heat conduction of the 3-layered thin–walled
structures we assume the following. The thickness of inner layer h1 is sufficient
grater then others (h2, h3). The kinematic relations for the inner layer are in the
form of Mindlin-Reissner shell theory, for the outer layers are in the form of mem-
brane theory. The deformations of the whole layered structure obey the polyline
hypothesis.
Taking into account above mentioned assumptions we represent the velocities and
the temperature in inner (1) and outer (2,3) layers as follows

v1 = u + ζv, v2 = u − h−v, v3 = u + h+v, v·eζ = 0;

θ1 = a + ζb, θ2 = a − h−b, θ3 = a + h+b.

Here h+, h− are the distance from the average surface to the medium surfaces of
outer layers.
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The expansion of strain tensor with respect to small parameter ζ, corresponding to
inner or outer layers, are the following:

εk =

t∫

0

defvk(τ)dτ, defv1 = defu + ζdefv +
1

2

(
v ⊗ eζ+ eζ⊗ v

)
,

defv2,3 = defu ∓ h∓defv. (11)

.
Taking into account Eq. (11) we get the density of pure mechanical item Lmech

Lmech =
1

2

(
ρ1
〈
v1·v̇1

〉
− 2ρ1

〈
K·v1

〉
+ 2µ1

〈
ε1 :G : ε̇1

〉
+ λ1

〈
E :ε1,E : ε̇1

〉
+

+ ρ2
〈
v1·v̇2

〉
− 2ρ2

〈
K·v2

〉
+ 2µ2

〈
ε2 : ε̇2

〉
+ λ2

〈
E :ε2,E : ε̇2

〉
+

+ ρ3
〈
v3·v̇3

〉
− 2ρ3

〈
K·v3

〉
+ 2µ3

〈
ε3 : ε̇3

〉
+ λ3

〈
E :ε3,E : ε̇3

〉)
(12)

and the same way we get the expansions of Ltherm and Linter (the upper indexes
in material modulus denotes the number of the layer). The detailed expression of
functional (10), corresponding Euler–Lagrange equations and boundary conditions
are similar to the equations, obtained in section 3. The distinction in the formulas,
which determine the average coefficients in equations and boundary conditions, cause
by the special position of mean surface, see [7].

4 Thermoviscoelastic structures

In this section the material of outer layers are suppose to be thermoelastic isotropic,
whereas that of inner one being isotropic thermoviscoelastic. To obtain an equations
of motion and heat conduction of such thermoviscoelastic thin–walled structure we
define the pure mechanical item in the functional (3) as follows:

Lmech =
1

2

(
ρ1 〈v·v̇〉 − 2ρ1 〈K·v〉 + 2µ1 〈ε :G : ε̇〉 + λ1 〈E :ε,E : ε̇〉+

+

N∑

k=1

2µk

〈
∂k

∂tk
ε :G : ε̇

〉
+

N∑

k=1

λk

〈
E :
∂k

∂tk
ε,E : ε̇

〉
+ . . .

)
,

where the items corresponding to the outer layers are omitted (they are like that in
(12)). This brings about some obvious transformations of the functional (10) and
the Euler–Lagrange equations.

5 Representation of the solution

The initial boundary value problem generated by equations boundary and initial
conditions obtained in previous sections can be formulated in the form of Cauchy
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initial problem with operator coefficients in the following form:

χ̇ = (u,v) , L (χ, θ) = f, L (χ, θ) =

N∑

k=0

Ak
∂k

∂tk
(χ, θ) .

The formulated initial-boundary value problem is nonsymmetrical. It generates the
pair of mutual adjoint polynomial operator pencils, defined in the space of square
integrable complex value vector–functions with scalar product 〈., .〉µ

Lν =

N∑

k=0

νkAk, L∗
ν =

N∑

k=0

νkA∗
k.

The obtained solutions are of the form of expansions based on sets of eigenfunctions
ki, k∗

j , which may be found as the solutions of mutual conjugate boundary value
problems

Lνki = 0, L∗
νkj = 0, ki = (χi, θi) , k∗

j =
(
χ∗
j , θ

∗
j

)
.

The solution represents in the form [6]

y =

∞∑

i=1

[〈
N∑

n=1

N∑

m=n

ν
(m−n)

i A∗
mk∗

i ,y
(n−1)

0

〉

µ

exp(νit)−

−

t∫

0

〈f(τ),k∗
i〉µexp

(
νi(t − τ)

)
dτ

]
kiQ

−1
i ,

where

y = (χ, θ) , y00 = (χ0, θ0) , y10 =
(
χ̇0, θ̇0

)
, . . . Qi = 〈A1ki,k∗

i〉µ+2νi 〈A2ki,k∗
i〉µ .

We stress that the corresponding eigenvalues are complex numbers. In the common
case of elastic boundary fixing the eigenvalues may be computed numerically as the
roots of corresponding transcendental equation. The algorithmic procedure destined
to localize the roots is proposed. The special classes of boundary conditions are single
out. These conditions are generated by auxiliary canonical scalar operators with
boundary conditions of Dirichlet and Neumann types. The eigenvalue sequences of
auxiliary operators for canonical domains are well known and even tabulated. That
is the eigenvalues of the problem under consideration may be computed in exact
form as the roots of algebraic equation with coefficients, depended on eigenvalues of
auxiliary operators.
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Abstract

In the present work an influence of viscosity of the liquid on the “vibra-
tional hydrodynamic top” [1] is experimentally investigated. The question is
excitation of intensive motion of a light cylindrical body in a rotating cavity
with liquid at the vibration influence. Viscosity strengthens the interaction
between the solid and the cavity walls, but at the same time reduces the
average vibrational flows. In the absence of vibrations the viscosity increase
results in the reduction of intensity of the differential rotation of the solid, and
also in decrease of the thresholds of existence of the centrifuged state of the
system and its stabilization. Vibrations influence the behaviour of the system
in the resonant areas. In case of low-viscous liquids the resonant curve has a
strongly asymmetric shape with a large hysteresis area. The viscosity results
in decrease of the rotation speed of the solid, the resonant curve obtains more
symmetric shape, and the hysteresis is absent.

1 Introduction

In behaviour of rotating multiphase systems the forces of inertia play an important
role. Thus, at vibrations, perpendicular to the axis of rotation, in a centrifuged
liquid layer with a free surface an azimuthal inertial wave, which is giving rise to
an average current, is excited [2]. In case when the cavity is filled with liquid and
light granular matter, the differential rotation of the light phase is observed, as well
as, under certain conditions, transformation of the interface from the form of the
circular cylinder to a polygonal prism [3].
In [1] is found a differential motion of the light solid body in a rotating cavity with
liquid – the “vibrational hydrodynamic top”. It can be induced both by external
vibrational influence and by the gravity field. In the first and second cases the
effect differs in magnitude and conditions of existence. At rotation of the cavity in
the gravity field the centrifuged solid performs lagging rotation in relation to the
cavity. The intensity of the lagging increases with decrease of the speed of the cavity
rotation until the solid rises in a threshold way to the cylindrical wall of the cavity.
At influence on the rotating system with vibrations, normal to the cavity axis, more
intensive motion of the solid is revealed. It can be both outstripping and lagging.
Vibrational excitation of intensive motion of the solid in the cavity frame has a
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resonant character and is determined by the ratio of the vibration and rotation
frequencies n = f

v
/f

r
. There are two resonant areas: outstripping motion (n ≈ 2)

and lagging motion (n ≈ 0.5). They are mirror-symmetric and are determined by
the relative radius of the solid and its relative density [1].
In the present work the influence of viscosity of the liquid on the “vibrational hy-
drodynamic top” is experimentally investigated.

2 Experimental setup and techniques

The transparent cylindrical cavity 1 (Fig.1) with the light cylindrical solid body
2 inside is filled with liquid and is installed on the platform of the electrodynamic
vibrator 3. The rotation is imposed to the cavity from the stepper motor 4 by means
of the flexible transmission 5. The detailed description of the setup is presented in
the work [4].

1

2

3

5
4

g

r

b v

Figure 1: The schema of the experimental setup.

The cavity length L = 9.9 cm, diameter 2R2 = 5.0 cm; the body length l = 9.3

cm, diameter 2R1 = 3.0 cm. The density of the solid ρs = 0.54 g/cm3. The
cavity rotation speed varies from 0 to 20 rps. The frequency and the amplitude of
vibrations are constant, f

v
= 25.0 Hz, b = 0.3 mm.

The working liquids are water and water-glyceric solutions of various concentration.
The range of viscosity ν is from 1 to 50 cSt, the density of liquids ρL changes
from 1 up to 1.20 g/cm3. The viscosity of the liquid is measured with a capillary
viscosimeter; the ambient temperature is controlled during experiment.
The cavity is set at rotation, and at achievement of the threshold frequency of rota-
tion the body takes a steady position in the center of the cavity, i.e. is centrifuged.
The end-walls of the solid and the cavity do not adjoin. All observations are carried
out at a centrifuged state of the solid. The rotation speed of the cavity is changed
fluently first with increasing step, and then with decreasing one.
The rotation speed of the cavity is measured with an opto-relay registering the
rotation of the interrupter bolted on the cavity axis, and a tachometer. The rotation
speed of the solid is measured using the synchronization with the flicker frequency
of a stroboscopic lamp. At small speeds the stroboscope is synchronized on the
cavity rotation, and a stop watch is used to measure the average period of the
solid body revolution. The error of measurements does not exceed 0.1 rps. In case
of measurement of the speed by the average period the error does not exceed 5
percent.
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For the measurement of the vibration amplitude an accelerometer fixed on the plat-
form of the vibrator is used, the signal from which is processed on an oscilloscope.

3 Experimental results

After centrifugation the solid takes a steady position in the center of the cavity and
rotates slower (in the laboratory frame). In the cavity frame the rotation speed of
the solid is negative: ∆f = f

s
− f

r
, where f

s
is the rotation speed of the solid, f

r
– that

of the cavity. At the further increase of the rotation speed of the cavity the curve
∆f(f

r
) approaches zero from below. In the threshold a, the outstripping motion of

the solid is excited in a resonant way, and the sign of ∆f becomes positive. In case
of the low-viscous liquids a finite-amplitude transition to the intensive outstripping
motion is observed (Fig.2, curves 1, 2 ). At large values of viscosity the excitation
occurs in a soft way (curve 3 ).

5 10 15 20

-3

0

3

6

9

fr, rps

f, rps
1
2
3

a c

b

b

Figure 2: The speed of the average differential rotation of the solid in dependence
on the cavity rotation rate.

In the viscous liquid at the subsequent increase of f
r

the speed of the average out-
stripping rotation grows and reaches the maximal value. In the low-viscous liquid
the increase of the rotation speed of the solid occurs at downturn of the rotation
speed of the cavity, the maximum of intensity is reached in the threshold b where
then there is a collapse of the intensive motion and transition to the non-excited
state. The hysteresis area limited by transitions a and b, decreases with the increase
of viscosity in the certain range (curves 1, 2 ) and is not observed in cases concerning
the high viscosity (a curve 3 ). At the approach to the resonant area from above of
the rotation speed in the threshold c there is a soft excitation.
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Outside the resonant area the curve ∆f(fr) coincides with the case of the absence of
vibrations [1]. The gravity influence on the rotating cavity results in the excitation of
the average lagging rotation of the solid, which intensity decreases with the increase
of viscosity. Simultaneously, the area of existence of the centrifuged state of the
solid increases (Fig.2).

On Fig.2 the speed of the average differential rotation of the solid is presented in
dependence on the rotation speed of the cavity. The viscosity equals 1.1 (1 ), 5.8
(2 ), 27.7 (3 ) cSt.

At large viscosities, the resonant “bell” has the symmetric shape, the hysteresis area
is absent, and the point of the maximum of the speed is between the thresholds of
the resonant area. In the low-viscosity liquids the resonant area essentially increases
due to the hysteresis area and obtains a strictly asymmetric form with the maximum
in the threshold of the collapse of the average differential rotation.
The maximal speed of rotation of the solid monotonously decreases with the increase
of viscosity (Fig.3). The points are presented on the plane ν, ∆f

max
in the logarithmic

scale.

1 10 100

0.1

1

10

, cSt

f max, rps

Figure 3: The maximal rotation speed of the solid versus the liquid viscosity.

4 Analysis

The mechanism of excitation of intensive differential rotation of the light non-
deformable solid is due to generation of the average vibrational force in the viscous
boundary layers formed on cylindrical walls of the solid and the cavity. The influ-
ence of the external oscillating force field on the considered system results in circular
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oscillations of the light body in the cavity frame, which is the propagation of an az-
imuthal inertial wave in the coaxial liquid layer. Oscillations of the liquid caused by
it result in generation of the average vibrational force in the boundary layers, which
is directed tangentially and gives rise to the average stationary azimuthal flow in
the liquid layer. The light solid is free to the tangential displacement, therefore the
vibrational force applied to its surface produces the intensive differential rotation.
The force, formed on the wall of the cavity, has the same direction and is applied to
the surface of the cavity. Its contribution to the differential rotation of the light body
is small in comparison with the force formed on the surface of the solid [1]. However,
its action is noticeable in the laboratory frame by the change of the rotation speed
of the cavity. Thus, at vibrations in the resonant area after a disconnection of the
transmission of the motor from the cavity, the latter continues to rotate for a long
time, essentially greater than in the absence of vibrations.
In the linear theory of the hydrodynamic top submitted in [1], [5], expression of
the vibrational torque applied to the unit of length of the body is written in the
following way:

Mv = (1/2)πρLδR1((1+ R2)/(1− R2))2b2
s
Ω2

osc
(1)

Here δ =
√
2ν/Ωosc – the width of the Stokes boundary layer, R = R1/R2 – the

relative radius of the solid, bs – the amplitude of the body oscillations, Ωosc – the
radian frequency of the body oscillations in the cavity frame. Also, the vibrational
torque can be calculated using the average on the period rotation speed of the solid
in the cavity frame:

Mv = 4πνρL(2π∆fR21R
2
2)/(R

2
2− R21),

which corresponds to the approximation of a viscous laminar flow in case of rotation
of the internal one of two coaxial cylinders [6]. For this the condition is used, that
the average vibrational torque (1) is equilibrated by the moment of the viscous forces
in the liquid, since the motion is stationary.
On Fig.4 is shown the dependence of the dimensionless average vibrational torque
M = Mv/(ρLhR

2
1bΩ

2
v
) on the dimensionless frequency ω = Ωosch

2/ν. Here Ωv =

2πf
v
, Ωosc = Ωv −Ωr, h = R2− R1. The dashed lines stand for the finite-amplitude

transitions, as in the Fig.2. The viscosity equals 1.1 (1 ), 2.7 (2 ), 5.8 (3 ), 27.7 (4 ),
47.6 (5 ) cSt.
The curves obtained at different viscosities split on the chosen plane. It is quite nat-
ural, as the resonant frequencies of the body in the rotating cavity are determined
by the dimensionless frequency of vibrations n ≡ Ωv/Ωr or the dimensionless fre-
quency of the body oscillations in the cavity frame n − 1 = Ωosc/Ωr. The width of
the hysteresis area grows with increase of the dimensionless frequency, as well as the
width of the resonant area as a whole. At small values of ω the hysteresis is absent.
The maximal value of the vibrational torque changes nonmonotonely with dimen-
sionless frequency. In case of high ω the dependence Mmax(ω) is of the form of a
function with a negative degree (Fig.5), which is in qualitative agreement with the
expression (1) that can be written as

M = (π/
√
2)((1+ R2)/(1− R2))2(b2

s
/R1b)(Ωosc/Ωv)

2ω−1/2 (2)
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Figure 4: The dimensionless vibrational torque versus the dimensionless frequency.

Within the limits of small values of the dimensionless frequency the viscous inter-
action is amplified, preventing the excitation of the differential rotation. At ω → 0

the torque should also tend to zero, as it is observed on the graph. At very high
values of ω the liquid should behave as an ideal one, i.e. nonviscous, that excludes a
possibility of generation of the average flow induced by the oscillations of the liquid
in the viscous boundary layers. It agrees with the decrease of the torque on the
graph in the high-frequency limit.
The presence of the point of maximum on the plane ω,Mmax has the physical sense,
which consists in that the reduction of the dimensionless frequency in the certain
limits strengthens viscous interaction of the solid and the liquid, but then begins to
suppress the average vibrational effect.
The vibrational torque applied to the cavity wall

M
′

v
= (1/2)πρLδR2(4R

2/(1− R2))2b2
s
Ω2

osc
(3)

The ratio of (3) to (1) in the conditions of the present experiment gives M
′

v
/Mv ≈

0.79. Thus, the full torque applied to the cavity wall is equal 1.79 of the torque
measured on the speed of the differential rotation of the solid.

5 Conclusion

In this work the influence of viscosity of the liquid on the “vibrational hydrody-
namic top” is investigated. It is found, that the increase of viscosity stabilizes the
centrifuged state of the light solid body, increasing the area of its existence. At

394



Influence of viscosity of the liquid on the vibrational hydrodynamic top

0 5000 10000

0.01

0.02

0.03

Mmax

Figure 5: The maximal torque depending on the dimensionless frequency.

the same time the narrowing of the resonant area is observed, as well as the re-
duction and/or disappearance of the hysteresis area. Beyond, “the resonant bell”
changes its form, becoming more symmetric simultaneously with disappearance of
the hysteresis area. The increase of viscosity results in reduction of intensity of the
average differential rotation of the solid. The maximal speed of the body decreases
monotonously with the growth of viscosity.

However the change of the average vibrational torque occurs nonmonotonely. For
the peak value of the force momentum depending on the dimensionless frequency
there is the point of maximum that indicates the existence of a mode of vibrations
optimal for the management of the rotation speed of the cavity.

Vibrations allow to operate the motion of a light solid inclusion in the rotating
liquid, accelerating or decelerating its rotation. Vibrations also allow controlling
the rotation of the cavity containing a solid body and liquid.
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Abstract

Interaction of a light cylindrical solid body with an upper boundary of a
rectangular cavity filled with viscous liquid and subjected to high-frequency
horizontal vibration is experimentally investigated. It is found that at some
intensity (frequency) of vibration the cylindrical body is pushed away from
the cavity boundary and gets a stable position at a short distance from it.
With increase of the vibration frequency the average motion of the body along
the axis of vibration appears. The direct and reverse transitions (repulsion
of the body from the boundary and its return, and also the excitation of its
motion) with intensification and decreasing of the vibration frequency appear
in a threshold way, a hysteresis in these transitions is observed in experiments
with viscous fluids. The character of oscillation of the body with respect to
the cavity is investigated using the high speed video recording: before the
repulsion, after the repulsion and in the case of tangential motion of the solid.

1 Introduction

The repulsion of a spherical solid from a boundary of a cavity filled with viscous
liquid and subjected to vibration is found in [1]. The lift force has the opposite direc-
tion to the well-known Bjerknes force of vibrational attraction between a solid and
a boundary. The topic of the paper is the experimental research of the interaction
of a light cylindrical solid and a wall of a rectangular cross section cavity filled with
viscous liquid. It is found that cylindrical body orientates across the horizontal axis
of vibration and then repulses from the boundary by threshold and takes a steady
position at a definite distance from it. The increase of vibrational action results in
the threshold excitation of the tangential solid motion along the axis of vibration.
The tangential motion of the solid is caused by the asymmetry of its oscillation.
The interaction of a solid with a cavity wall and tangential motion are studied using
the high-speed camera.

2 Experimental setup

The rectangular cell 1 (fig.1, a) containing the cylindrical solid 2 and filled with
a water-glycerol mixture is fastened horizontally on the platform of the mechanical
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Fig. 1

vibrator (for detailed information [1]). The platform performs horizontal transla-
tional oscillation according the low xc = b cosΩt. Fig. 1, b (side view) shows the
schematic drawing of the experimental setup. The observation is made at strobo-
scopic light and/or steady illumination 3. The registration of the solid motion is
made by high-speed camera ”Basler A402k” 4 connected to the personal computer.
The image data are stored on the hard disc and analyzed by PC software.

The cell is a rectangular parallelepiped made of plexiglas with inside dimensions
12.00 × 5.50 × 9.50 cm3. The solid is an ebonite tube with an external diameter
d = 0.61, 1.23 or 2.00 cm and the length 8.00 cm. The end-walls of the tube
are covered by thin lavsan films with a reflective markers to observe the angular
oscillation of solid about its center of rotation. The density of the solid is ρS = 0.66

g/cm3. The ranges of the vibrational frequency f and the amplitude b are 0 − 25

Hz and 0.1− 5.0 cm.

The glycerol concentration in water-glycerol mixtures varies. It allows to change
the kinematic viscosity in the range ν = 0.1− 7.8 St, the fluid density varies in the
range ρL = 1.00− 1.26 g/cm3.

3 Experimental results

In the absence of vibration the light cylindrical body has a steady position near the
upper boundary of the cavity. The increase of vibrational frequency f at definite
amplitude b results in the threshold repulsion of the solid from the boundary in
viscous liquids (ν = 7.8−1.5 St). During the period the solid performs longitudinal
oscillation at definite distance from the wall. The further rise of f brings to the
growth of the gap width between the solid and the boundary to some definite value.
In low-viscous liquids (ν = 1.4−0.4 St) the solid repulses from the wall to the smaller
distance; and there is a threshold excitation of the mean tangential motion of the
body along the cavity wall. The direction of the motion changes to the opposite one
near the end-walls of the cavity. So, the solid performs periodical motion from left
side of the cavity to the right one and vice versa. At the same time the cylinder
rotates about its axis. While the body moves from the left to the right with respect
to the cavity it rotates counterclockwise and vice versa in case of opposite motion.
It is found that the gap width varies at different phases of oscillation. The decrease
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Fig. 2

of vibrational frequency results in the threshold disappearance of the solid motion.
The further reduction of f brings to the zero gap width between the solid and the
wall.

The task is to determine the threshold frequencies of the solid repulsion from the wall
and its return to it; and critical frequencies of the appearance and the disappearance
of the mean solid motion.

The gap width defines the radius of the repulsive force. In the limit of high vi-
brational frequency the solid dynamics is determined by vibrational parameter
Wd = (bΩ)2/(gd) and dimensionless frequency of vibration ω = Ωd2/ν, which
is proportional to the ratio of the cylinder diameter d and the thickness of viscous
boundary layer δ =

√
2ν/Ω [1].

Fig. 2, a shows the dependence of the dimensionless gap width on the parameter
Wd. One can see that the gap width does not exceed 2 (filled and empty circles
correspond to the increase and the reduction of Wd). The threshold of the body
repulsion and its return to the boundary is at ω = 351, Wd = 14; the thresholds
of appearance and disappearance of the motion are at ω = 425, Wd = 20 and
ω = 413, Wd = 19.

The mean motion excitation is attended by the loss of the symmetry of the solid
oscillation. The two branches at Wd > 20 (fig. 2, a) demonstrate the gap width in
the left and right positions of solid. At the beginning the dimensionless velocity of
tangential motion V/bΩ increases with Wd (fig. 2, b) and then it begins to decrease
(filled and empty squares correspond to the increase and decrease of Wd). The data
in fig. 2 correspond to the experiment with a solid of the diameter d = 2.00 cm.

The points of the critical transitions in experiments with liquids of different viscosity
(ν = 0.4− 5.8 St) and solids of different diameters (d = 2.00, 1.23, 0.61 cm) are in
good agreement on the plane ω,Wd (fig.3).

The curves of the oscillating solid transitions have two branches: the repulsion
(curve 1 ) at Wd growth and the return of the solid to the boundary (curve 2 ) at
Wd reduction; the motion excitation (curve 3 ) and the motion disappearance (curve
4 ). In the limit ω > 300 the hysteresis is absent and the threshold value of Wd is
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Fig. 3

Fig. 4

almost constant.

4 The motion of solid

We use a high-speed camera ”Basler A402k” to study the oscillations and the tan-
gential motion of the solid and its interaction with the boundary. The solid motion
is studied at different frequencies f and some amplitude b. The frame rate is 380
Hz. The image analysis makes possible to study the oscillation of the solid with re-
spect to the cavity. Fig. 4 shows the dependences of the cavity coordinate xc in the
laboratory frame (1 ) and the coordinate of the body center xb in the cavity frame
(2 ) on time (body diameter d = 1.23 cm, liquid viscosity ν = 0.65 St, f = 5.5 Hz,
b = 26.3 mm). If the solid is close to the boundary (in continuous touch with the
boundary) it performs the oscillation of relatively small amplitude and with some
phase-displacement between xb and xc.
Fig. 5 shows the dependence of the oscillation characteristics on time in the regime
when the body is repulsed from the wall and the tangential motion is absent (f = 9.4

Hz, b = 27.6 mm).
The cavity sinusoidal vibration xc (fig. 5, a) results in the solid oscillation xb along
the axis of vibration (fig. 5, b), the oscillations of the cavity and the solid are
practically in-phase. The gap width varies during the solid motion and reaches the
maximal value in the left and the right body positions (fig. 5, c).
The angular body oscillation (fig. 5, d) and the cavity vibration are not in-phase.
In a few experiments one could also observe the relatively slow mean rotation of the
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Fig. 7

Fig. 8

solid in the absence of the mean motion.

Fig. 5, e demonstrates the trajectory of the solid with respect to the cell. One can
see that the gap width is nearly constant during the period; it slightly increases in
the right and left positions. In general the trajectory is symmetric.

Fig. 6 demonstrates the images of the solid in different phases of the period. The
number of an image (1 - 5 ) in fig. 6 corresponds to the marks in fig. 5.

Discuss the regime of mean tangential motion of the solid along the axis of vibra-
tion. Consider the case of left-to-right motion. Fig. 7, a shows the dependence of
coordinate of the solid on time (f = 11.4 Hz, b = 28.4 mm). It is evident that the
body performs both the oscillation and the averaged motion. During the period the
solid drifts for a definite distance. Fig. 7, b shows the dependence of the oscillating
component of displacement of the cylinder on time.

The gap width as function of oscillational coordinate component is shows in Fig. 8
(f = 11.4 Hz, b = 28.4 mm). One can see that the trajectory of the oscillational
motion (in the cavity frame) is asymmetric.

During the period the gap width varies. If the body is in left position then the gap is
larger than the one is in the right position. The trajectory of the oscillating motion
looks like a loop. The body moves along the trajectory counterclockwise, and the
phase displacement between the oscillation of the solid and the cavity vibration is
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Fig. 9

nearly zero. The angular oscillation of the solid and the cavity vibration are not
in-phase. If the solid moves from left to right the rotation is counterclockwise. The
angular velocity is significantly larger than the one in the subcritical regime.
If the mean tangential motion goes from right-to-left then the trajectory has a
reflection symmetry to the one in fig. 8, and the body perform the mean clockwise
rotation.

5 Discussion

The body dynamics is determined by the interaction between the body, liquid and
the cavity walls. In the high-frequency limit ω≫ 1 the oscillation of light cylinder
and the cavity vibration ought to be in-phase. The data in fig. 5 correspond to
ω = 137, Wd = 22, the data in fig. 8 and 9 - ω = 166, Wd = 34. Relatively high
frequency brings to nearly synchronous oscillations of the solid and the cavity; the
phase displacement could be found only if the cylinder touches the boundary (fig.
4). If the solid - boundary interaction is nonviscous then the solid is attracted to the
boundary. The experimental results demonstrate the opposite effect - repulsion of
the solid, so it is determined by the viscous interaction. It is confirmed by the fact
that the order of magnitude of the gap width is comparable with the Stokes layer
thickness δ =

√
2ν/Ω. It makes possible to introduce the dimensionless units of

the gap width h/δ and the amplitude of body oscillation in the cavity frame xb/b.
Consider the regime when the solid is repulsed from the boundary and there is no
tangential motion of it. Fig. 9 shows the dependence of the dimensionless gap
width on the dimensionless cylinder coordinate (ω = 137, Wd = 22). So, the gap
width slightly varies in the course of a period. The trajectory demonstrates that
the magnitude of the dimensionless gap width is nearly 0.6, it becomes larger in left
and right positions (h/δ ≈ 0.7).
The trajectory of the upper solid edge in the regime of the tangential motion (ω =

166, Wd = 34) is shown in fig. 10.
The dimensionless gap width varies during the period. In the left position of the cell
the gap width (h/δ ≈ 1.5) is larger than in the right one (h/δ ≈ 0.7). At the same
time the magnitude of the amplitude of the solid horizontal oscillation is comparable
to the one in the previous regime. The trajectory looks like a loop. The direction
of the tangential motion changes near the end-walls of the cavity; in this case the
trajectory of the oscillational motion has the reflection symmetry, the intensity of
the tangential motion remains the same.
The comparison of the trajectories in different regimes confirms that the asymmetry
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Fig. 10

of the solid oscillation is the reason of its tangential motion. The motion is absent
while the oscillation is symmetric. The appearance of the asymmetry results in the
excitation of tangential motion of the solid. The loop shape determines the direction
of the cylinder motion. If the gap width in the left position is greater than in the
right one then the solid moves to the right, and vice versa.
Compare the dimensionless gap width in the subcritical and overcritical regimes.
The gap width is twice larger in the regime of the tangential motion; the amplitude
of the horizontal oscillation with respect to the cavity is nearly the same in both
cases.

6 Conclusion

The vibrational interaction between a light cylinder and a horizontal boundary of
a cavity filled with viscous liquid is experimentally investigated. The repulsion of
the solid and its tangential motion are found and analyzed. The thresholds of the
solid repulsion and the excitation of the mean motion are presented on the plane
ω, Wd. The results of the experiments with liquids of different viscosity correspond
to each other on the plane of these parameters. It is found that the excitation of
the tangential motion is determined by the asymmetry of the solid oscillation. The
radius of action of the repulsive force is comparable with the thickness of the viscous
Stokes layer.
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Abstract

In this work the numerical investigation of transformation regimes realized
in given technology condition was carried out. The system named “inert
wolfram particles in matrix and nickel-aluminium on base” was decided as a
model system. Coating was made on iron base. In calculations a thickness
base and coating, volume fraction of inert particles in previously made powder
layer and parameters of electron-beam influence are varied.

Parameters areas characterized for different synthesis regime was found
under detailed parametric model investigation.

1 Introduction

Methods of powder metallurgy have a peculiar possibilities to produce materials
and compositions with distinct properties in combination with application of con-
centrated energy fluxes. For example, electron-beam treatment allows to improve
exploitation properties of the details with traditional coatings essentially. As a result
of electron-beam heating the structure of coating and base is modificated. Hardness
and wearlessness of coating material is improved. If previously made coating con-
tains inert particles, then distinct of transformation regimes is realized. In this case,
as a result of heat treatment, accompanied by chemical transformations in coating
matrix, the composite is formed. Composite properties depend both on part of inert
filler and synthesis regime.

2 The mathematical formulation of the problem

Let us assume that on the surface of the parallelepiped-shaped sample the coating
containing chemically reacting components and inert inclusions with volume fraction
ηp is deposited. Sizes of the coating (1) and the sample (2) are specified (Fig. 1).
An effective energy source moves along the slab surface in the line of the OX-axis
at the rate of V, cm/s. Energy in the effective source is distributed under the law

qe(x, y, t) = q0 exp
(
−(x− Vt)2/a2t

)
, (1)
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Figure 1: Illustration on the problem definition.

where q0 – is a maximal power density of the source, Vt/cm2, at is effective radius
of the source, cm. The source is evenly distributed in the z-direction.
Thus the problem of electron-beam treatment includes the two-dimensional heat
conduction equations for the coating (2) and the substrate (3)

c1ρ1
∂T1

∂t
=
[ ∂
∂x

(
λ1
∂T1

∂x

)
+
∂

∂y

(
λ1
∂T1

∂y

)]
+ qch(a, T)(1− ηp), (2)

c2ρ2
∂T2

∂t
=
[ ∂
∂x

(
λ2
∂T2

∂x

)
+
∂

∂y

(
λ2
∂T2

∂y

)]
, (3)

where c1, ρ1, λ1 and c2, ρ2, λ2 – are thermophysical properties of the coating and
the substrate.
Let a chemical reaction in the reagent (with volume fraction 1−ηp) can be described
by the general scheme A → B. Then the change of the product fraction or conversion
degree a in the coating follows from the equation

∂a

∂t
= k0ϕ1(a)ϕ2(T), (4)

where ϕ1(a) is a kinetic function, ϕ2(T) = exp(−Ea/RT). Then qch =

Qch,0k0ϕ1(a)ϕ2(T), Qch,0 – is total heat emission of the reaction, J/mol.
Boundary and initial conditions enclose the set of equations (3), (4)

x = 0,Hx : −λi
∂Ti

∂x
= σε(T4i − T40); i = 1, 2, (5)

y = 0 : −λ1
∂T1

∂y
= qe− σε(T41 − T40), (6)

y = H1,y+H2,y : −λ2
∂T2

∂x
= σε(T42 − T40), (7)

y = H1,y : λ1
∂T1

∂y
= λ2

∂T2

∂y
; T1 = T2, (8)

where (8) is the condition of ideal contact on the back of the slab (y = H1,y).
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At zero time the temperature is specified

t = 0 : T1(x, y, 0) = T0, a = 0. (9)

As the coating is the composite which contains inert nonmelting inclusions (or par-
ticles with very high melting temperature) with volume fraction ηp and properties
cp, ρp, λp then the properties of the coating can be written as follows:

c1ρ1 = cpρpηp+ cmρm(1− ηp), λ1 = λpηp+ λm(1− ηp),

where cm, ρm, λm are heat capacity, density and heat conductivity of the matrix.
Heat capacities of the material of the matrix and the substrate experience consid-
erable change in the vicinity of the melting temperatures. It is reflected in the
following dependencies:

(cmρm) = (cmρm)eff+ Lph,mρs,mδ(T − Tph,m),

(c2ρ2) = (c2ρ2)eff+ Lph,2ρs,2δ(T − Tph,2),
(10)

where

(cmρm)eff =

{
cs,mρs,m, T < Tph,m,

cl,mρl,m, T ≥ Tph,m,
(c2ρ2)eff =

{
cs,2ρs,2, T < Tph,2,

cl,2ρl,2, T ≥ Tph,2,

δ is Dirac delta-function; Lph,m, Lph,2 – are melting (crystallization) heats of the
matrix and the substrate, J/mol; Tph,m, Tph,2 – are melting (crystallization) temper-
atures of the matrix and the substrate, K; index ”l” –corresponds to liquid phase;
”s” –to solid phase.

3 Problem definition in nondimensional variables

Let us change over to dimensionless variables

τ =
t

t∗
, ξ =

x

x∗
, η =

y

x∗
, θ =

T − T0

T∗ − T0
,

where x∗ = hS –is a spatial scale, t∗ = k−1
0 and a temperature scale, T∗ have been

defined as a temperature of ”solid-phase” reaction products

T∗ = T0+
Qch,0

cmρm
.

Then mathematical statement of the problem takes on form

f1
∂θ1

∂τ
=
1

δ
f2

(∂2θ1
∂ξ2

+
∂2θ1

∂η2

)
+ϕ(a, θ)(1− ηp); (11)

f5
∂θ2

∂τ
=
1

δ
Kλb

(∂2θ2
∂ξ2

+
∂2θ2

∂η2

)
; (12)
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∂a

∂t
= ϕ(a, θ); (13)

ξ → 0 :
∂θ1

∂ξ
= −Sk

f3

f2
; ξ → Xξ :

∂θ2

∂ξ
= −Sk

f3

Kλb
; (14)

η → 0 :
∂θ1

∂η
=
1

f2
(Skf3− Srf4); η → Y1,η+ Y2,η :

∂θ2

∂η
= −Sk

f3

Kλb
; (15)

η → Y1,η : f2
∂θ1

∂η
= Kλb

∂θ2

∂η
; θ1 = θ2; (16)

τ = 0 : θ = 0, a = 0, (17)

where

f1 =

{

1+
Qph,m

A
√
π

exp

[
−
(θ − θph,m

A
√
π

)2
]}

(1− ηp) + ηpKcp;

f2 = 1− ηp+ ηpKλp;

f3 =
(
θ+ γ

)4
− γ4;

f4 = exp
(
−(ξ− V̄τ)2

/
δ1
)
;

f5 =

{

1+
Qph,2

A1
√
π

exp

[
−
(θ − θph,2

A1
√
π

)2
]}
Kcb;

ϕ(a, θ) = ϕ1(a)ϕ2(θ);

ϕ1(a) = 1− a; ϕ2(θ) = exp

[
−

γ

β(γ+ θ)

]
;

δ =
h2S
κmt∗

; Sr =
hSq0

Qch,0κm
; Sk =

εσ(T∗ − T0)
3hS

λm
; β =

RT0

Ea
; γ =

T0

T∗ − T0
;

Qph,m =
Lph,mρm

cmρm(T∗ − T0)
; Qph,2 =

Lph,2ρ2

cmρm(T∗ − T0)
; δ1 =

(at
hS

)2
;

θph,m =
Tph,m− T0

T∗ − T0
; θph,2 =

Tph,2− T0

T∗ − T0
; V̄ =

hSV

t∗
; κm =

λm

cmρm
;

Kcb =
c2ρ2

cmρm
; Kcp =

cpρp

cmρm
; Kλb =

λ2

λm
; Kλp =

λp

λm
;

A =
σ0

T∗ − T0
; A1 =

σ0,1

T∗ − T0
; Xξ =

Hx

hS
; Y1,η =

H1,y

hS
; Y2,η =

H2,y

hS
.

It is obvious, that not all the parameters are required for qualitative investigation
of the model. Thus, without loss of generality we can take

Qph,m = Qph,2 = Qph; θph,m = θph,2 = θph;

Kcb = Kcp = Kc; Kλb = Kλp = Kλ; A = A1.

Transformation modes of intermetallic systems with inert particles will depend on
the parameters Qph which is the ratio of melting heat to heat storage in warm
layer; δ which is the ratio of substrate thickness to the typical heat scale; Sr which
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Figure 2: Dependencies of integrated conversion degree Ia and integrated heat re-
lease in chemical reaction IQch from time for different values of the parameters
Kc, Kλ, Sr).

is the ratio of heat accumulated in the substrate of thickness hS while heating by
the flux q0 to chemical heat emission; Sk which is dimensionless parameter of heat
loss; β which is the ratio of the temperature characterizing external heating to the
activation temperature Ea/R of the dilution process; θph; Kc and Kλ.
Using literary data on the properties of different substances (Ni, Al, W, Fe) and
varying source parameters (q0, V) we can define domains of variation of dimension-
less parameters:
Sk = 10−10 ÷ 10−5; ηp = 0.05 ÷ 0.8; Sr = 0 ÷ 500; β = 0.001 ÷ 1; γ =

0.01÷ 10; Qph = 0.01÷ 10; θph = 0.1÷ 10; Kc = 0.1÷ 10; Kλ = 0.1÷ 10;
δ = 0.05÷ 105; V̄ = 50÷ 105.

4 Analysis of the results of the numerical investi-

gation

For numerical problem solution (12) - (14) with conditions (15) - (20), an absolutely
stable implicit difference scheme and double-sweep method are used.
Coating formation regimes of basic material depend on energy parameters charac-
terizing external source and melt of substances.
The analysis of numerical calculation results show that in process of heat treatment
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Figure 3: The distribution of temperature and conversion degree (a, c) - along axis
Oξ, (b, d) - along axis Oη in serial time moments. Kc = 0.1, Kλ = 1, Sr = 200, Sk =

10−8, Qph = 0.1, θph = 2, γ = 2, δ = 5, β = 0.5.

of the plate in investigated field of the parameters a quasi stationary regime not
establishes. In the specimen by finite size coating synthesis flow in a nonsteady
regime. In order to judge on the quasistationarity or nonstationarity of the techno-
logical process it can be characterized additionally by integrated conversion degree

Ia =
1

Xξ

∫1

0

(∫Xξ

0

a(ξ, η)dξ

)
dη,

integrated heat release in chemical reaction

IQch =
1

Xξ

∫1

0

(∫Xξ

0

Qch(ξ, η)dξ

)
dη

in dependence on conditions of synthesis that is of interest for technology imme-
diately (fig.2). But even those values not allow talk about a presence of quasi
stationary stages, that distinguish this model from [1].
Integrated conversion degree and heat release in reactions most depend on ratio of
thermophysical properties of the coating and the base, that shown in fig. 2, a, b.
Examples of the temperature distributions along axis Oξ (on the surface) and the
temperature distributions along axis Oη (along specimen depth) for different time
moments in fig. 3 are demonstrated for illustration of process dynamics. Only
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Figure 4: Dependencies of conversion degree (a, b, c) a and heat release in chemical
reaction (d, e, f) Qch from time for different values of the parameters Kc, Kλ, Sk;
Qph = 0.1, θph = 2, γ = 2, δ = 5, β = 0.5.

weak change of maximal temperature with time θmax(τ) point to some approach to
quasistationary (fig. 3, a). As source moving along a plate, synthesis proceed in all
volume irregularly and not followed out (fig. 3, c, d). In this case we can talk about
value af towards the end treatment process and about value 〈af〉 depend on model
parameters.

Influence of some parameters on conversion degree at point ξ = ξmax versus τ and
on chemical thermal flax is illustrated in fig. 4.

With increase Kc more quantity of heat is required on heating therefore conversion
degree decrease (fig. 4, a). With increment of thermal conductivity of the base with
respect to coating heat faster leave outside coating. It reduces a conversion degree
(fig. 4, b). Obviously, with increase of heat loss completeness degree of reaction is
increased, also (fig. 4, c). In any case chemical thermal flax decrease versus time in
the investigated area of parameters (fig. 4, d, e, f) and is not great versus external
heating. It means that synthesis flow in controllable regime.

5 Conclusions

Thus, in this work the model of a controllable coating synthesis on the base is
formulated and is investigated. A parametric investigation was carried out.

The work was supported by Russian Science Foundation, grunt number is 08-08-
90008-Bel a.
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Abstract

Question about magnitude of viscous stresses in fluid phase in continual
description of filtration process is under consideration. This question directly
relates to applicability limits of the Darcy’s law, which uses scalar pressure
instead of full stress tensor to characterize fluid stress state. Manifestation
of viscous effects on macroscopic (averaged) velocity field is studied in the
case of flow through channel filled with a porous medium. This problem
was investigated by direct numerical modeling based on the Navier-Stokes
equation. We used regular arrays of spheres as model porous media. In
addition two configurations with porosity varying along the cross-section were
considered to reproduce near-wall perturbations in porous structure. Based
on microscopic fields found in the numerical experiments, viscous dissipations
and seepage velocity profiles were calculated. The results obtained prove
applicability of the Darcy’s law and validity for neglecting viscous part of
macroscopic stress tensor even for high porosities (upto 0.9). Also discussed
is nonmonotonic shape of seepage velocity profiles observed experimentally
and its connection to the question discussed.

1 Introduction

Flow through porous media could be described on macroscopic scale in the frame
of continuum mechanics by introducing multiple interacting continua characterized
by volume-averaged quantities [1]. Most of the models based on continual approach
employ Darcy’s law as momentum balance equation:

V = −
k

µ
∇P (1)

where V is seepage velocity (averaged over a unit cross-section), µ is viscosity, ∇P
is macroscopic pressure gradient applied to the saturating fluid, k is permeability of
the medium.
In this equation viscosity is present explicitly as a multiplier. However fluid stress
state is described only by scalar pressure field, viscous stresses represented by non-
diagonal terms of stress tensor being omitted. Such a contradictory role of viscosity
in the Darcy’s law was discussed by several authors (see for example [2]), starting
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from the classical works of N.E. Zhukovsky who derived equation (1) from the Eu-
ler’s equation for inviscid fluid but taking into account solid-fluid frictional force
proportional to the viscosity. A typical argumentation for this derivation is that
contact solid-fluid viscous interaction greatly exceeds internal viscous stresses inside
fluid, which could be neglected on macroscale.
However such reasoning becomes doubtful in many situations, particularly for high-
porosity media and high-viscosity liquids. Question about correctness of neglecting
deviator part of the fluid stress tensor is non-trivial in these cases. Remark that it is
not a purely academic question, it has a practical concern as well. Nowadays most
of the commercial hydrodynamic simulators in oil industry are based on the Darcy’s
law, so that their applicability to model heavy-oil transport is controversial.
In a general case it is difficult to evaluate macroscopic viscous effects analytically.
There are two different points of view on the subject. According to the first one [3],
buckling, convergence and divergence of steamlines in porous media (as compared
with void space) may lead to a more intensive liquid mixing, thus providing an
increased effective macroscopic viscosity. Following this approach porous medium
may be considered as a source of pulsation disturbances of velocity field that give
rise to additional vicsous stresses similar to Reynolds stresses in turbulent regime
of flow. According to the second position [4], the described analogy with Reynolds
stresses is not comletely correct because power of viscous dissipation on solid-liquid
interface prevails over power of the mixing produced. This implies that macroscopic
manifistation of viscous properties is limited to the friction (flow-resistance) force.
In the present work question about macroscopic viscous effects is addressed by means
of direct numerical simulation. In particular, we consider seepage velocity profiles
for flow through channel filled with high-porosity particulate media. Evolution of
the profile which characterizes magnitude of viscous effects is observed as porosity
increases.

2 Method of modeling

We consider stationary isothermal flow of a Newtonian fluid through spatially-
periodic arrays of spherical grains. Typically grains have equal radii and are arranged
in nodes of a simple cubic lattice thus constituting a uniform isotropic medium. The
medium is placed between two horizontal impermeable planes (Fig. 1). Addition-
ally, two cases with porosity variation in near-wall region are addressed. Porosity
variation is achieved by decreasing particles’ radii or increasing distances between
them.
Our approach is to determine pore-scale fluid velocity field by solving hydrodynamic
equations and then to find seepage velocity profile via direct averaging of the micro-
scopic field. Mass and momentum balance equations governing isothermal viscous
flow are as follows

∂ρ

∂t
+
∂ (ρvi)

∂xi
= 0 (2)

∂ (ρvi)

∂t
+
∂

∂xj
(ρvivj− pij) = −ρ

∂ϕ

∂xi
, pij = τij− pδij (3)
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Figure 1: Channel filled with idealized porous medium - cubic lattice of spheres of
radius r with lattice period a.

where ρ is mass density, vi is velocity component along axis i (i, j = 1 . . . 3), ϕ
is external bulk force potential, pij and τij are full stress tensor and viscous stress
tensor respectively, p is pressure, δij stands for unity tensor. Summation is assumed
for repeating indices.
For a Newtonian fluid viscous stress tensor has the following classical form

τij =

(
η−

2

3
µ

)
∂vk

∂xk
δij+ µ

(
∂vi

∂xj
+
∂vj

∂xi

)
(4)

here η and µ represent bulk and shear viscosities respectively. To close the model
we use equation of state for slightly compressible liquid:

p = E(ρ− ρ0)/ρ0 (5)

where E is inverse compressibility (measured in Pa), ρ0 is equilibrium mass density.
No-slip boundary condition is applied at grains’ surfaces and confining walls

vi|surface = 0, vi|z=0 = 0, vi|z=H = 0 (6)

According to the spatial periodicity of the porous structure, velocity and density
fields are presumed to be spatially-periodic as well, that is

vi|x=0 = vi|x=L, vi|y=0 = vi|y=L, ρ|x=0 = ρ|x=L, ρ|y=0 = ρ|y=L (7)

System of equations (2–7) presents a closed problem which was solved numerically
by means of a finite-volume method on a regular orthogonal grid. Explicit numerical
scheme which provided 2nd order approximation in space and 1st order approxima-
tion in time was employed. We used staggered grids for different variables (velocity
components and density) [5]. Adaptive time-step was applied to prevent possible in-
stability development. Stationary solutions were obtained by the relaxation method.
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I II III IV
a, mm 2.5 3.75 5.0 6.25
φ 0.73 0.92 0.97 0.98

δf, Pa/s 9.87×10−11 1.07×10−9 3.19×10−9 8.06×10−9

〈δv〉 , Pa/s 7.68×10−11 1.06×10−9 3.36×10−9 7.76×10−9

δf/ 〈δv〉 1.28 1.00 0.95 1.04

Table 9: Characteristics of the lattices: period a, porosity φ, filtration dissipation
δf, averaged viscous dissipation 〈δv〉.

In all the computations numerical viscosity was negligible in comparison with the
values of physical viscosities.
Correctness of the numerical procedure was verified in two test cases with known
analytical solutions: flow through a cylindrical pipe (Poiseuille’s flow) and flow over
a single spherical body. For the both problems numerical solution converged to the
analytical one as mesh was refined. Based on this preliminary study discretization of
a sphere by 4 computational cells per radius was selected as the minimal one giving
satisfactory accuracy. Further computations were performed using this particular
discretization.

3 Numerical experiments

Arrays of spheres addressed in the present work consisted of 100 particles in the
direction normal to the walls. In order to obtain each seepage velocity value, we ap-
plied averaging over a cross-section containing 10 particles, so that seepage velocity
profile had 10 points. Four different lattices of spheres were considered with porosity
varied from 0.73 to 0.98 (parameters of the lattices are presented in Table 9). Such
porosity range was chosen as it covered transition zone from a flat seepage velocity
profile to a quasi-parabolic one. Therefore lower porosity region seemed to be un-
promising to observe any macroscopic viscosity effect. All the computations were
carried out for ρ0 = 1000 kg/m3, µ = 0.1 Pa · s, η = 0.1 Pa · s, E = 104Pa. Radius
of spheres was equal to 1mm, macroscopic pressure gradient was 10−2Pa/m. Such
small magnitude of ∇P guarantied creeping regime of flow without any non-Darcy
effect.
The obtained pore-scale velocity distributions (Fig. 2) show that influence of the
external boundary is localized in its immediate vicinity even for porosity 0.98. Fig.
2 demonstrates that at a very short distance from the wall (2-3 pore channels) a
universal microscopic velocity field, independent from the external boundary and
the same in the whole inner region, is formed. On the macroscopic scale this leads
to a flat profile of the averaged velocity (see Fig. 3), wall effect being visible only
at points that are in direct contact with the boundary. Particular view of this wall
effect is strongly dependent on details of the averaging procedure. For example,
averaging over a smaller or larger cross-section area would give profiles that differ
in the near-wall region but coincide in the inner region.
Flat seepage velocity profiles indicate that at macroscopic scale viscosity does not
affect flow pattern, it just reduces flow rate. In order to better understand relations
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Figure 2: Minimal (dashed line) and maximal (solid line) values of vx in a vertical
section located in the middle between spheres. Near-wall region is shown for the
lattices with porosity 0.73 (a), 0.92 (b), 0.97 (c) and 0.98 (d).
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Figure 3: Seepage velocity profiles for the lattices with porosity 0.98 (line 1), 0.97
(line 2), 0.92 (line 3) and 0.73 (line4).
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between micro-scale viscous effects and macro-scale ones we calculated viscous dis-
sipation (loss of fluid energy in a unit volume per second) at the two scales. In the
framework of the continual approach dissipation of filtration is defined as [6]

δf = −V∇P (8)

which could be rewritten using the Darcy’s law as

δf =
k

µ
(∇P)2 (9)

On the other hand, at the micro-scale viscous dissipation is defined by the following
formula

δv =
µ

2

∫ (
∂vi

∂xj
+
∂vj

∂xi

)2
dV (10)

Based on the numerical results viscous dissipation (10) along with filtration dissipa-
tion (9) were calculated for the four porous structures considered. The corresponding
values are shown in Table 9. Note that from a computational point of view an ad-
ditional interpolation step was required to calculate expression (10) which probably
led to a decreased accuracy. Therefore one should consider the presented values of
〈δv〉 as evaluative ones.
The data obtained indicate no prominent trend for δf/ 〈δv〉 as a function of porosity.
However this ratio was close to unity in all the cases thus proving that filtration
dissipation is dominantly governed by viscous friction on pore walls rather than
inside pore space. Indeed, δf as it is defined by (8) characterizes power of the
flow-resisting force, while averaged δv directly quantifies all the viscous losses on
grains’ surfaces as well as in a bulk fluid. Consequently, approximate equality of δf
and 〈δv〉 implies that solid-fluid frictional dissipation is prevailing in flows through
porous media.

4 Discussion and conclusions

The performed numerical experiments on the idealized porous media have shown
that even for high porosity (greater than 0.9) averaged velocity field corresponds
to inviscid fluid flow, i.e. seepage velocity profiles are flat and insensitive to the
external boundaries. Let us highlight that at the same time the liquid passing
through the medium is essentially viscous and micro-scale velocity distribution in
each individual pore is close to Poiseuille’s parabolic profile (see Fig. 2).
In spite of high porous space connectivity in the cases considered, hydrodynamic
link between pores is insufficient to propagate disturbances (as those ones exerted
by external boundaries) at macroscopically visible distances. The main reason for
such a behavior is that viscous dissipation at solid-fluid contacts predominates over
viscous dissipation inside the fluid itself. Furthermore, even for high porosity media
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Figure 4: Pointwise velocity (dashed line), averaged over 1 lattice cell velocity
(square marker) and porosity (triangle marker) profiles for the lattice with the near-
wall perturbance (case a). Bottom half containing 16 spheres is shown.

specific surface area of pore walls is greater than that of external confining walls,
thus making dissipation at the internal interphase boundary determinative.

The point of view [3], according to which flow mixing in a porous sample gives rise
to some kind of macroscopic effective viscosity, was not validated by the numerical
experiments. According to our opinion, the proposed analogy between velocity
pulsations in porous media and those ones taking place in turbulent flows is not
quite adequate due to the presence of the solid phase. The directly calculated viscous
and filtration dissipations demonstrate that fluid momentum loss at contacts with
solids is superior than momentum exchange via mixing which is responsible for the
effective viscosity. Moreover, time averaging procedure employed by Reynolds when
introducing the turbulent stress tensor is not equivalent to the space averaging used
in the continual description of heterogenuous systems.

Work [3] was inspired partially by a set of publications on experimentally observed
effect of non-monotonic flow rate distribution in pipes filled with a granular material
(see for example [7]). It was found that flow rate (measured in the empty pipe
downstream from the granular pack) has a maximum at a short distance from the
tube wall, decreasing gradually toward the center, and sharply toward the wall. This
flow rate peak was attributed to porosity increase (and thus permeability increase) in
the boundary layer due to wall-induced perturbations of the granular pack structure.
However, flow rate drop in the very close vicinity of the wall was interpreted by some
researchers as a violation of the Darcy’s law.

To verify the numerical procedure against the experimental data, two cases with
the porosity increasing in the boundary layer were addressed. We have considered
lattice of 32 spheres per channel diameter (as it was in [7]) with a modified near-
wall region: slightly shrinking particles (a), or slightly growing inter-particle gaps
(b). For the both cases close results that are in a qualitative agreement with the
experimental profiles have been obtained (see Fig. 4). Reproduction of the flow rate
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peak phenomenon is an additional argument for the model correctness, however
it has no direct concern to the question considered in the present paper. Flow
rate profile (as it was understood in [7]) could not be regarded as the Darcy’s
seepage velocity profile, since the ratio of mean grain size to the pipe diameter
is not small enough. It contradicts the basic assumption of the continual approach,
which requires existence of the meso-scale λ such that l ≪ λ ≪ L where l is the
characteristic pore length, λ is the size of volume of averaging, L is the characteristic
length of flow. Therefore, the presented data on flow rate peak effect could not be
interpreted as the effective viscosity manifestation or Darcy’s law failure.
As a main conclusion of the work, applicability of the Darcy’s law, which neglects
the deviator part of the fluid stress tensor, was proven for high porosity (up to 0.9)
media. Furthermore, as the averaged velocity profile was found to be more or less
independent from the velocity profile in an individual pore, it seems warrantable to
use the Darcy’s law when filtrating liquid has a more complex rheology than the
newtonian one.
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Abstract

Derivation of equivalent thermo-mechanical parameters for perfect crys-
tals in the case of arbitrary interatomic potential is conducted. The approach
based on the averaging of equations of motion is considered. Long wave ap-
proximation is used to make link between the discrete system and equivalent
continuum. Macroscopic thermo-mechanical parameters such as Piola and
Cauchy stress tensors, heat flux are represented via microscopic parameters.

1 Introduction

Determination of the connection between parameters of discrete and continual sys-
tems is one of the challenging problems for modern physics. In spite of the intensity
and time period of investigations in this direction the problem is far from its fi-
nal solution. At the beginning the problem was only of a fundamental interest.
However, practical interest is increasing now. The increase is caused by fast de-
velopment of discrete [1, 2] and discrete-continual [3, 4] methods of simulation of
mechanical behavior of bodies under mechanical and thermal loadings. Various
methods of transition from discrete system to equivalent continual exist. Long wave
assumption is used in [5]. The concept of quasicontinuum is proposed in [6]. Lo-
calization functions are used in [7, 8, 9]. These approaches give the opportunity
to spread mechanical parameters determined in lattice nodes on all volume of the
body. Decomposition of motions on slow macroscopic and fast thermal is used for
description of thermal properties. There are different approaches for decomposition.
In papers [7, 8, 9] the decomposition of particles’ velocities is conducted by the use
of localization functions. As a result, the dependencies of stress tensor and heat
flux on parameters of the discrete system were obtained and analyzed. Another
approach was proposed in [10]. Fourier transformation was used for decomposition
of displacements and velocities of particles. Different methods of decompositions
were discussed. It was noted that the result of the decomposition is not unique. It
should depend on characteristic time and spatial scales of the problem.
The approach based on averaging of equations of motions and application of long
wave assumption [5] was proposed in papers [11, 12]. It was used for derivation of
expressions for stress tensors for ideal crystals in book [11]. Only pair potentials were
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considered. Thermal motion was neglected. The influence of thermal oscillations
on mechanical properties was considered in [11, 12] for one dimensional case. Pro-
posed approach gives opportunity to conduct analytical derivations. In particular,
equation of state in Mie-Gruneisen form was obtained in papers [11, 12, 13].
Different assumptions about interatomic potentials were used in all papers men-
tioned above. This fact decreases the range of applications of results of these papers.
In the present paper derivations are conducted for arbitrary many-body potential.
It is assumed that the energy per one particle depends on all vectors connecting
this particle with its neighbors. The approach proposed in works [11, 12] is used
for transition from discrete system to equivalent continual. Equations of motion of
particles are derived. The connection of Cauchy and Piola stress tensors and heat
flux with parameters of discrete systems is determined. The symmetry of obtained
Cauchy stress tensor is proved. Comparison with known expressions for Cauchy
stress tensor is discussed.

2 Hypotheses

Let us consider discrete system of interacting particles which form perfect simple
crystal lattice in d = 1, 2 or 3 dimensions. Two main principles are used for tran-
sition from discrete system to equivalent continual: decomposition of motions of
particles on slow macroscopic and fast thermal [10, 11], and long wave assump-
tion [5]. First let us focus on decomposition. In practice different types of averaging
such as time averaging, spatial averaging are used for decomposition. In paper [10] it
was noted that unique decomposition is impossible because there are no rules for the
choice of the period of averaging, size of representative volume, etc. These parame-
ters should depend somehow on time and spatial scales of the considered problem.
According to the opinion of the author of the present paper derivations should not
be based on the particular method of decomposition. In addition results should not
change qualitatively with replacement of the method of averaging. Therefore let us

consider average component
〈
f
〉

and thermal component f̃ of physical value f that

are connected by the following expression

f =
〈
f
〉

+ f̃, f̃
def
= f−

〈
f
〉
. (1)

Also long wave assumption will be used [5]. The idea of the assumption is as
follows: average component of any physical value is assumed to be slowly changing
in space on distances of order of interatomic distance. Then average component
can be considered as continual function of space variable and can be expanded into
power series with respect to interatomic distance. Resulting series should converge
rapidly. Exactly this assumption allows to make transition from discrete system to
continuum.

3 Kinematics

Let us use Lagrangian (material) description of equivalent continuum and consider
the reference and actual configurations of discrete and continual systems. Let us
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take an unstrained configuration of crystal lattice as the reference one for discrete
system. Let us denote radius-vectors of equivalent continuum in reference and actual
configurations as r and R respectively. Two ways for identification of the particles
will be used. On the one hand, the position of the particle is determined by its
radius-vector. On the other hand, let us use local numbering. Starting with one
reference particle let us mark all its neighbors by index α. Let us denote vector
connecting the reference particle with its neighbor number α as aα. The numbering
will be conducted in such a manner that aα has the following property

aα = −a−α. (2)

The same vectors in actual configuration Aα will be represented as a sum of averaged
component Aα and thermal component Ãα. The connection between vectors aα and
Aα in long wave approximation is as follows

Aα = R(r+ aα) − R(r) ≈ aα·
◦
∇ R, (3)

where
◦
∇ is nabla-operator in the reference configuration. Note that equation (3) is

similar to equation for connection between vectors dR and dr in continual mechan-
ics [18].
Let us consider properties of introduced numbering system. If f(r) is a physical
value which corresponds to the particle with radius-vector r in the reference config-
uration. Then fα(r) is the same physical value for particle α. Thus the following
two expressions are equivalent

fα(r) ≡ f(r+ aα). (4)

In the framework of this approach physical value in point r can be represented in
three different ways.

f(r) = fα(r− aα) = f−α(r+ aα) (5)

4 Balance of momentum

Let us assume that potential energy per one particle is represented by the following
expression

Π = Π({Aα}α∈Λ), (6)

Here {Aα}α∈Λ is the set of all vectors Aα for the given particle; Λ is the set of
all numbers of particles which interact with the given particle. Potential energy
per particle can be represented in the form (6) for the majority of commonly used
potentials. In particular, equation (6) is satisfied for pair potentials, embedded atom
potential [14], Stillinger-Weber potential [15], Tersoff potential [16].
Let us derive the equation of motion of the particle with radius-vector r in the
reference configuration. For the sake of simplicity let us consider the case when
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volumetrical forces are absent. Denote radius-vector of the particle in the current
moment of time by Rt. The following identity is satisfied for Rt

R(r) =
〈
Rt

〉
. (7)

Let us denote potential energy per particle α as Πα, where Πα = Π({Aβ(r+aα)}β∈Λ).
Using Lagrange approach one can obtain the equation of motion of the reference
particle

mR̈t = −
∂

∂Rt

(
Π+

∑

α

Πα

)
⇒ müt = −

∂Π

∂ut
−

∑

α

∂Πα

∂ut
, (8)

where ut is the current displacement of the particle, summation is conducted on the
set Λ. Calculating derivatives in equation (8) one can obtain

∂Π

∂ut
=

∑

α

∂Aα
∂ut

· ∂Π
∂Aα

= −
∑

α

∂Π

∂Aα
,

[
∂Πα

∂ut

]
(r) =

∑

β

∂Aβ(r+ aα)

∂ut(r)
·
[
∂Π

∂Aβ

]
(r+ aα) =

[
∂Π

∂A−α

]
(r+ aα).

(9)

Here relation Aα(r) = −A−α(r + aα) was used. Square brackets mean that all
expressions in brackets are calculated in one point. Substituting the result into
equation of motion (8) one obtains

müt =
∑

α

Fα, Fα
def
=
1

2
(Fα(r) − F−α(r+ aα)) , Fα

def
= 2

∂Π

∂Aα
. (10)

Here Fα is the force acting between the given particle and particle α. One can prove
that the third Newton’s law is satisfied for Fα, i.e. Fα(r) = −F−α(r + aα). In the
case of pair interactions one has

Fα(r) = −F−α(r+ aα) ⇒ Fα = Fα. (11)

Note that Fα can be considered as a force only in this particular case. One can
verify this statement on the example of embedded-atom potential [14].
Now let us obtain equation of balance of momentum for equivalent continuum. Let
us average (10) and apply long wave assumption. Then the right side of equation (10)
take form

1

2

∑

α

〈
Fα(r) − F−α(r+ aα)

〉
=
1

2

∑

α

〈
Fα
〉
(r) −

1

2

∑

α

〈
Fα
〉
(r− aα) ≈

≈ 1

2

∑

α

〈
Fα
〉
(r) −

1

2

∑

α

〈
Fα− aα·

◦
∇ Fα

〉
(r) =

1

2

◦
∇ ·
(

∑

α

aα

〈
Fα
〉)

,

(12)

Substituting the result into averaged equation (10) and dividing both parts by the
volume of elementary cell in the reference configuration one obtains

ρ0ü =
◦
∇ ·
(
1

2V0

∑

α

aα

〈
Fα
〉)

, ρ0
def
=
m

V0
. (13)
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Comparing equation (13) with equation of motion of continual media in Piola
form [18] one can conclude that ρ0 is a density of equivalent continuum in the
reference configuration, expression for Piola stress tensor has the following form

P =
1

2V0

∑

α

aα

〈
Fα
〉
. (14)

Let us derive the expression for Cauchy stress tensor. One can show that in actual
configuration formula (12) has the following form

1

2V

∑

α

〈
Fα(R) − F−α(R+Aα)

〉
=
1

2V

∑

α

Aα · ∇
〈
Fα
〉

=

= ∇ ·
(
1

2V

∑

α

Aα

〈
Fα
〉)

−
∑

α

∇ ·
(
1

2V
Aα

)〈
Fα
〉
.

(15)

Here ∇, V are nabla-operator and volume of elementary cell in actual configuration.
Using formula (3) and Piola’s identity [18] one can show that the second term in the
right side of equation (15) is equal to zero. Then substituting (15) into equation of
motion (10) one obtains

ρü = ∇ ·
(
1

2V

∑

α

Aα

〈
Fα
〉)

, ρ
def
=
m

V
. (16)

Comparing equation (16) with equation of motion of continuum in Cauchy form one
can obtain the following expression for Cauchy stress tensor τ:

τ =
1

2V

∑

α

Aα

〈
Fα
〉
. (17)

In the case of the absence of thermal motion in the crystal with pair potential the
result coincides with expressions proposed in papers [11, 17].

5 Balance of moment of momentum

One can see that tensor τ is not symmetrical in the general case. It is known from
continual mechanics [19] that the symmetry of Cauchy stress tensor follows from
equation of balance of moment of momentum for elementary volume. In discrete
case elementary cell plays the role of elementary volume. Let us write down averaged
equation of moment of momentum for elementary cell. Moments will be calculated
with respect to the center of the cell determined by vector R.

m
〈
ũ× ˙̃u

〉
˙=

1

2

〈
ũ×

∑

α

(Fα(r) − F−α(r+ aα))
〉
. (18)

Let us use the following relation
〈
ũ(r) ×F−α(r+ aα)

〉
=
〈
ũ−α×F−α

〉
(r+ aα). (19)
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Substituting formula (19) into equation (18) and using long wave assumption one
can obtain

m
〈
ũ× ˙̃u

〉
˙= −

1

2

∑

α

〈
Ãα× Fα

〉
+
1

2

◦
∇ ·

∑

α

aα

〈
ũα×Fα

〉
. (20)

where the relation Ãα = ũα− ũ was used. Let us represent the first expression in
the right side in the following form

−
1

2

∑

α

〈
Ãα×Fα

〉
= −

1

2

∑

α

〈
Aα× Fα

〉
+
1

2

∑

α

Aα×
〈
Fα
〉
. (21)

Dividing both parts of (21) by V and using the expression (17) for Cauchy stress
tensor one obtains

−
1

2V

∑

α

〈
Ãα× Fα

〉
= −

1

2V

∑

α

〈
Aα×Fα

〉
+ E · ×τ. (22)

Substituting the right side of equation (22) into equation (20) one has

E · ×τ =
1

2V

∑

α

〈
Aα× Fα

〉
+ ρ
〈
ũ× ˙̃u

〉
˙−

1

2V

∑

α

aα·
◦
∇
〈
ũα× Fα

〉
. (23)

Let us consider the right side of equation (23). The first term is equal to zero for
the majority of known potentials. This statement is proved in the appendix in the
case when potential energy per particle is represented in form

Π = Π({Aα}α∈Λ, {Aβ · Aγ}β,γ∈Λ). (24)

In other words, potential energy depends on the distances between particles and
angles between bonds of the particle with its neighbors. The second term in equa-
tion (23) is equal to zero only on the average over the space. In order to show this
let us conduct the following reasoning. Obviously, the following identity is satisfied

ρ
〈
ũ× ˙̃u

〉
˙= ρ

〈
(R+ ũ) × ˙̃u

〉
.̇ (25)

The right side of this equation is the derivative of the part of moment of momentum
which corresponds to thermal motion. Moment of momentum is calculated with
respect to the origin of coordinates. Let the averaging operator incudes spatial
averaging over significantly big volume and let us assume that thermal motion does
not lead to macroscopic rotation of the volume. Then expressions (25) are equal to
zero. As a result the following identity is satisfied on the average over space.

τA = −
1

2V

∑

α

aα·
◦
∇
〈
ũαFα

〉A
. (26)

Here index A means an antisymmetrical part of the tensor. One can see that the
antisymmetrical part of the stress tensor (17) has the same order as terms which are
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neglected in long wave approximation. Therefore τA is small in comparison with the
symmetrical part and stress tensor can be considered as approximately symmetrical.
Thus, averaging operator proposed above can not be arbitrary. It should include
spatial averaging. Otherwise tensor τ will not be symmetrical and the usage of
formula (17) in calculations can lead to incorrect results. Note that all reason-
ing mentioned above is satisfied only for the potentials that can be represented in
form (24). Evidently one cannot prove that the first term in equation (23) is equal
to zero in the case if arbitrary potential like (6). Therefore stress tensor (17) is not
symmetrical in the general case.

6 Comparison with known expressions for Cau-

chy stress tensor

Different expressions connecting Cauchy stress tensor with parameters of discrete
systems are proposed in literature. Relatively full reviews on this topic can be
found in papers [9], [17]. In paper [9] it was shown that the majority of known
expressions can be represented in the form proposed in paper [7]. Let us find the
relation between this expression and formula (17). Let us write down the equation
of thermal motion of the reference particle. It has the following form

m ¨̃u =
1

2

∑

α

(
F̃α(r) − F̃−α(r+ aα)

)
. (27)

Multiplying both part of the given equation by ũ and averaging it one obtains

m
〈
ũ ˙̃u
〉
˙−m

〈
˙̃u ˙̃u
〉

= −
1

2

∑

α

〈
ÃαF̃α

〉
+
1

2

∑

α

aα·
◦
∇
〈
ũαF̃α

〉
. (28)

The derivation of this formula is similar with the derivation of equation (20). Di-
viding both parts by volume V and using expressions (17), (21) one can obtain

ρ
〈
ũ ˙̃u
〉
˙− ρ

〈
˙̃u ˙̃u
〉

= τ −
1

2V

∑

α

〈
AαFα

〉
+
1

2V

∑

α

aα·
◦
∇
〈
ũra1F̃α

〉
. (29)

On the one hand this expression can be used for the proof of symmetry of Cauchy
stress. Thereto one can calculate vector invariant of both parts of equation (29).
On the other hand one can consider stationary state of the crystal6. In this case one
obtains

τ =
1

2V

∑

α

Aα

〈
Fα
〉

=
1

2V

∑

α

〈
AαFα

〉
− ρ
〈

˙̃u ˙̃u
〉
. (30)

Thus in the particular case formulae (17) is similar with the expression used in
papers [7, 9].

6In such state the average components of all physical values are constant in time and space
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7 Balance of energy

For the sake of simplicity let us consider the case when volumetrical forces and
volumetrical heat sources are equal to zero. Derivations will be conducted in the
reference configuration. In this case averaged specific total energy per volume V0
has the following form

ρ0E =
1

2
ρ0

〈
(u̇+ ˙̃u)2

〉
+
1

V0

〈
Π({Aα}α∈Λ)

〉
, (31)

Here E is mass density of the total energy. Let us represent E as sum of densities
of kinetic K and internal U energies. K is kinetic energy of average motions. U
is potential energy plus kinetic energy of thermal motion. Then K and U has the
following form

ρ0E = ρ0K+ρ0U , ρ0K =
1

2
ρ0u̇

2, ρ0U =
1

2
ρ0

〈
˙̃u
2
〉

+
1

V0

〈
Π({Aα}α∈Λ)

〉
. (32)

Differentiating K and U with respect to time one obtains

ρ0K̇ = ρ0ü · u̇ =
( ◦
∇ ·P

)
· u̇,

ρ0U̇ = ρ0

〈
˙̃u · ¨̃u

〉
+

1

2V0

∑

α

〈
Fα
〉
· Ȧα+

1

2V0

∑

α

〈
Fα · ˙̃

αA
〉
.

(33)

Where differentiation rule for multivariable function was used: Π̇ =
∑
α
∂Π
∂Aα

· Ȧα.
Let us consider terms in right side of (33) separately. The first term in the right
side of equation (33) can be transformed as follows

ρ0

〈
˙̃u · ¨̃u

〉
=
1

2V0

∑

α

〈
(Fα(r) − F−α(r+ aα)) · ˙̃u(r)

〉
=

=
1

2V0

∑

α

〈[
Fα · ˙̃u

]
(r) −

[
F−α · ˙̃u−α

]
(r+ aα)

〉
≈

≈ −
1

2V0

∑

α

〈
Fα · ˙̃

αA− aα·
◦
∇
(
Fα · ˙̃uα

)〉
.

(34)

The second term can be represented as follows

1

2V0

∑

α

〈
Fα
〉
· Ȧα =

1

2V0

∑

α

〈
Fα
〉
· (u̇(r+ aα) − u̇(r)) ≈ P · ·

(
u̇

◦
∇
)
. (35)

Substituting results of derivations (34), (35) into equation (33) one can obtain the
following expression for ρ0U̇ :

ρ0U̇ = P · ·
(
u̇

◦
∇
)

+
◦
∇ ·
(
1

2V0

∑

α

aα

〈
Fα · ˙̃uα

〉)
. (36)
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Let us compare equation (36) with equation of balance of energy for continuum [19].
Let us demand the equivalence of discrete system and continuum. Then heat flux
in the reference configuration h has the following form

h = −
1

2V0

∑

α

aα

〈
Fα · ˙̃uα

〉
. (37)

Using equation for connection between fluxes in different configurations [20]

H =
V0

V

(
R

◦
∇
)
· h,

one obtains the expression for heat flux in actual configuration H:

H = −
1

2V

∑

α

Aα

〈
Fα · ˙̃uα

〉
. (38)

8 Conclusion

Generalization of approach for transition from discrete system to equivalent con-
tinuum proposed in [11] was conducted. Two main principles were used for tran-
sition: decomposition of motions into continual and thermal parts, and long wave
assumption [5]. The decomposition was conducted by means of averaging operator
of general type. Kinematics of discrete system was considered. Connection between
vectors connecting neighboring atoms in two configurations was obtained. It was
shown that the connection is similar with equation for vectors dr and dR which is
used in continual mechanics. Potential of general type was used for description of
interactions. It was proposed to represent potential energy per particle as function
of all vectors connecting the given particle with its neighbors. Equation of motion
for some particle was obtained. Transition from this equation to equation of mo-
tion for continual system was conducted. Expressions connecting Cauchy and Piola
stress tensor with parameters of discrete system were obtained. It was shown that
in general case the discrete analog of Cauchy stress tensor can be unsymmetrical.
The symmetry was proven in the case when potential energy per particle depends on
distances between the particle and her neighbors and angles between bonds created
by the particle. Also it was shown that spatial averaging is required for symmetry
of the stress tensor. Thus it was proven that averaging operator can not be taken
arbitrary. It was shown that expression for Cauchy stress tensor is similar with
expression proposed in papers [7, 9]. Equation of balance of energy was considered.
The given equation was transformed to the form similar to equation of balance of
energy for continuum. As a result the expression for connection between heat flux
and parameters of discrete system was obtained.

9 Appendix

It was shown that the fulfilment of the following expression is necessary for the
symmetry of the discrete analog of Cauchy stress tensor

∑

α

Aα×Fα = 0. (39)
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For the sake of simplicity averaging operator will be omitted in this paragraph. In
the case of pair interactions Fα is force between the reference particle and particle
number α. Obviously Fα and Aα are collinear therefore identity (39) is satisfied.
Let us show that the identity (39) is satisfied in the case when potential energy per
particle has form (24). Substituting (24) into (39) one obtains

∑

α

Aα×Fα = 2
∑

α

Aα×
(

∑

ε

∂Π

∂Aε
dAε
dAα

+
∑

β,γ

∂Π

∂(Aβ · Aγ)
dAβ · Aγ
dAα

)
=

= 2
∑

α

Aα×
∑

β,γ

∂Π

∂(Aβ · Aγ)
(
δαβAγ+ δαγAβ

)
,

(40)

where δ is Kronecker’s symbol. Using the definition of Kronecker’s symbol one can
conduct the following transformations

∑

α

Aα× Fα = 2
∑

α,γ

∂Π

∂(Aα · Aγ)
Aα×Aγ+ 2

∑

α,β

∂Π

∂(Aα · Aβ)
Aα×Aβ =

= 2
∑

α,β

∂Π

∂(Aα · Aβ)
Aα×Aβ+ 2

∑

α,β

∂Π

∂(Aβ · Aα)
Aβ×Aα = 0,

(41)

where the the following relation was used ∂Π
∂(Aβ ·Aα)

= ∂Π
∂(Aα ·Aβ)

.

Thus in the case when potential energy per particle is given by the formula (24) the
identity (39) is satisfied.
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Investigation of thin wall sheet hydro-forming for
complicated shape part in aircraft industry

L. H. Lang B. S. Liu G. C. Gu J. N. Duan E. Lyamina
lang@buaa.edu.cn

Abstract

The thin wall sheet hydro-forming of oil tank upper shoe of aeroengine
was simulated in Eta.Dynaform and confirmed in experiment to optimize the
processing parameters. The generating causes of wrinkle and fracture were
investigated, in which the influences of chamber fluid pressure, blank holder
gap and blank size on the forming limit were involved. It is proved that the
simulated results give a reasonable agreement with the experiment.

Keywords: sheet hydro-forming; complicated shape part; parameters optimization

1 Introduction

As an innovative forming technology, sheet hydro-forming technology forms a part by
applying a certain pressure liquid instead of die to compel the blank coating punch
to get the desired shape part[1]. Due to many advantages of sheet hydro-forming,
such as high drawing ratio, high quality surface finish, high dimensional precision,
high forming limit etc. compared with conventional stamping, it has been widely
used in automotive, aerospace, aircraft industries in recent years, which caters for
the demand of less production cost, light weight and high quality [2]-[3]. Hein and
Vollertsen[4] investigated another class of hydro-forming process based on the use of
sheet metal pairs instead of tubes, in which simulation and experiments had concen-
trated on the feasibility of one particular process of the hydro-forming of unwelded
sheet metal pairs and the influence of various parameters on the forming procedure.
Kreis and Hein[5] developed a manufacturing system integrating the process steps of
hydro-forming, mechanical trimming, laser beam welding and hydrocalibrating for
sheet metal pairs. Shin and Kim et al[6] discussed the welded blank hydro-forming
(WBH) technology in the aspects of formability and the engine mount bracket and
the subframe were analyzed and manufactured for the application of the technology.
Lang[7] carried out the experimental program to study the effect of main process
parameters such as the initial pressure, sheet thickness, sheet material properties,
punch load, and drawing ratio on the drawing performance, and the results were dis-
cussed in detail. Palumbo et al [8] investigated the simulation and production of the
complex shape with cylinder and square compounded. The experiment of thin wall
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Figure 1: 550ton double action sheet
hydro-forming machine.

Figure 2: Molds assembly for experi-
ment.

oil tank shoe for aircraft was carried out on a 5500KN double-action sheet hydro-
forming machine developed in Beihang University, as shown in Fig. 1, in which
processing optimization parameters and quality evaluation method are investigated.

2 Tools and materials

The test facility for sheet metal forming in the study with master cylinder 3300KN
and blank holder force 2000KN can realize the control of variable blank holding
force, non-uniform cavity pressure, adjustable speed from 5 to 15mm/s, maximum
pressure 100.0MPa and 150MPa for pre-bulging and die cavity pressure respectively.
The SS304 sheet with 0.5mm thickness is selected as the material, corresponding
properties are shown in Tab. 1. The molds layout and structure can be found in
Fig. 2.

Mechanical properties for SS304 sheet

Material SS304
Yield stress, σ0.2(MPa) 357
Strength stress, σb(MPa) 652
Elongation, σb(%) 42
Strain harding value, n 0.347
Harding coefficient, K 134

3 Model

3.1 Part and 3D model

As shown in Fig. 3-4, the separation angles between side and bottom are 60o and
90o, the radius for flange face and underside face are 400mm and 370mm respectively,
the axial length is 450mm and longitude length is 500mm. The part is difficult to be
formed because of the complicated shape with the characteristics of different taper
side walls, different radii of curvature, un-symmetry structure, a sunk bulging and
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Figure 3: The part by conventional drop
stamping.

Figure 4: 3D model for oil tank thin wall
part.

Figure 5: FE model.

two heaves with small round end in the underside face. And the thickness is only
0.5mm, called the ultra-thin sheet, which makes the main defects more significantly
on the account of dimensional effect compared with thick ones, such as fracture
early occurring caused by inadequate blank feeding and wrinkle severely cased by
less holder force. Fig. 3 gives us a view of final part by conventional drop stamping,
in whose forming process a number of intermittent passes are needed to pre-press,
then beat for wrinkle-smoothing, continue forming, and calibrate ongoing until final
part finished, which causes a heave cost of equipments and manpower. We can see
the part in Fig. 3 is in a low quality for surface finish and mechanical properties
distribution. Actually, sheet hydro-forming can effectively enhance the formability
and control the thinning flooding of deformation region owing to friction maintaining
effect and oil flooding lubrication, which makes the part sheet forming in one pass
realize.

3.2 FE model

Successful simulation technologies for sheet forming make it the requisite tool in
the products manufacturing for panel beating. In this study, the commercial FEM
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Figure 6: Diagram for cavity pressure versus punch travel.

(a) Curve1 (b) Curve2

Figure 7: The FLD of curve1 and curve2 in the pre-bulging stage.

software eta.Dynaform with the key solver LS-Dyna is used to analyze sheet hydro-
forming process. The FE model can be found in Fig. 5, firstly, blank is pre-bended
in double curvature shape and can be approximately attached to the die surface;
then, blank holder goes down to fix the blank on the die with the force of 500KN;
continually, the punch goes down, oil is injected into die cavity and intensified to
finish pre-bulging; oil is intensified ongoing for shape calibration with the punch
further going down. The model is dispersed with rigid four nodes quadrilateral,
Belytschko-Lin-Tsay element with five integration points through the shell thickness.
The tools (namely punch, binder, die) are viewed as rigid body, meanwhile the blank
is deformable. Mises yield criterion is used here for the isotropic blank assumption.
Penalty contact interfaces were used to enforce the intermittent contact and sliding
boundary condition. A friction coefficient = 0.25 was used for the interface between
the blank and the punch, and = 0.15 for the blank and the other tools. The die and
the blank holder were constrained fully and the punch could move only along the
Z-direction, corresponding to the central axis of the punch.
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4 Results and discussion

4.1 Cavity liquid pressure and punch travel

The cavity liquid pressure is one of the key processing parameters in hydro-forming.
The following job is to analyze the influence of pressure load curve on formability and
quality evaluation. The punch travel and two pressure load curves are concerned.
Forming pressure versus punch travel is as following designed according to equipment
condition: punch moves down with a speed of 1000mm/s after binder holds the blank
firstly at the feeding distance of 25mm or 30mm, where the pressure generating time
is also different, curve1 begins at the time of punch travel in 75mm while curve2 in
93mm, and then punch goes down continually 3mm or 7mm against 2MPa counter
pressure at a velocity of 600mm/s, now liquid pressure is intensified to 14MPa and
16MPa respectively for the forming stage and last 40MPa is needed to calibrate the
small round corner of the two heaves.
In pre-bulging stage, the main difference between curve1 and curve2 is the position
of punch opposite blank, curve1 leaves the more distance than curve2, so mate-
rial storing is too much and finally causes severe wrinkling, which makes the bad
formability and large strain, see Fig. 6 (a). By contrast, curve2 perform a good
formability and uniform strain distribution, which can be found in Fig. 6(b). So
suitable pre-forming height is necessary and makes an important basis for the on-
going forming. Fig.7 represents the thickness variation trend with the relation to
what time enforcing pressure to blank. We can see earlier pre-bulging in curve1
indicative of severe thickness thickening tendency makes the worse influence on the
thickness homogenization control, while curve2 gasps more suitable pre-bulging time
than curve1, however point A in two curves behaves more or less the same. So what
time liquid pressure should be exerted is also an important factor to be concerned.
In the forming stage, lower cavity liquid pressure causes the blank muffling punch
inadequate, the friction maintaining effect take less influence, leaving a large relative
sliding between punch and blank. At last, the blank will become thinning even crack
with the punch deeply going down. In another aspect, the lower pressure will bring
about the free material in the non-contacting mold region of part wrinkle. The
phenomenon will eliminate as the pressure rises, however ultra-high pressure easily
makes the part early bursting with the lack of insufficient deformation time for metal.
We can observe the wrinkling and fracture results of simulation and experiment in
Fig.8.

4.2 Blank holder gap and Blank size

A number of simulation investigations find that blank holder gap and blank shape
size also sensitively affect the part quality. The following study is on the basis of
the gaps between blank holder and die of 0.53mm(1.06 times thickness) and 0.6mm
(1.2 times thickness), which is an indirect reflect of the influence of holder force
on formability. In Fig.9 (a), blank cracks at the end of forming with the 0.53 gab,
while in the case of 0.6mm, the corner fractures and the bottom wrinkles. So the
suitable blank holder gab is also needed. We can find the influence of gab on forming
limit in Fig.10. As the gab is 1.13-1.17 times of thickness, the forming is safe and
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Figure 8: The thickness tendency at wrinkling risk point.

Figure 9: Wrinkle and fracture.
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Figure 10: Forming defects cased by blank holder gab.

Figure 11: The influence of gab on formability.

Figure 12: The influence of blank size on formability.
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Figure 13: The final part.

can be formed in a good quality; while gab less than 1.13 times of blank thickness,
the thickened material at flange in the initiative forming get the difficulties to flow,
finally causes fracture; drawing limit of part increases as the gab enlarges, but
under the circumstance of more than 1.17 times of thickness, the blank holder force
is inadequate to restrain the flange wrinkle with the feeding of blank, for which
fracture and wrinkle probable occur, and finally causes the forming fail.
Suitable blank shape and size should be optimized for good formability under the
design requirement of 25mm margin left. The better blank shape is shown in Fig.12,
the margin should be left as small as possible in the range of greater than 25mm
at the venue with small corner, which makes material feeding easily. Too large and
too small blank are both inadvisable, Fig.11 show the simulation result for forming
with small blank, where fracture occurs and the part is unqualified for the wrong
dimension.

5 Conclusions

The oil tank upper shoe is investigated here in both simulation and experiment,
where simulation shows a reasonable agreement with experiment. Compared with
conventional sheet stamping, the advantages of sheet hydro-forming are obviously,
especially surface finish, we can find it in Fig. 3 and Fig. 12. Some influencing
factors on formability are studied, which can be concluded as follows.

1.The blank shape and size play an important role on forming limit, much bigger
size causes large tensile stress, easily bringing about fracture, while the part fails
in the forming process frequently at the case of blank with smaller size with the
failure style of wrinkle and insufficient flange. Blank shape and size adjustment is
an effective and convenient way to improve forming quality.

2.In forming, blank holder gab less than 0.56mm (1.12 times thickness) results in
part fracture because of material difficult to flow; in the context of greater than
0.59mm (1.18 times thickness), wrinkling tendency sharply increased, and severe
wrinkle makes the part flange storing too much material which also causes fracture
finally.
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3.Cavity liquid pressure influences the part forming quality significantly, the adjust-
ment of pressure and punch travel should be optimized, good coordination of which
can enhance the forming limit remarkable. Curve2 in Fig.7 is better than curve1 for
forming.
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Abstract

This paper presents a dynamic analysis of textile winders used to wind
different kinds of filament such as thread or yarn onto cylindrical bobbins.
The type of winder under study is currently in common use in the production
of threads from synthetic fibers.

The paper begins with a description of the winder to show its main compo-
nents and their functions. A dynamic model of the machine is then developed
based on certain simplifying assumptions. It is shown that the system can
be represented by a two-degree-of-freedom model. The paper studies natural
and forced vibrations of the model by first neglecting the effects of friction
to get a rough estimate of the system’s behavior. A more accurate model
is then developed by including the effects of viscous and dry friction in the
mechanism and the damping properties of some of the its components.

The analysis is conducted on quite real data from typical designs. Design
recommendations are given for selecting various design parameters of the sys-
tem to ensure its vibration stability. In particular, conditions for the winder
to operate in a self-centering mode and its design as a vibration absorber are
obtained.

1 Introduction

Winder machines are widely used in the textile industry to wind different kinds of
filament onto bobbins or spindles of cylindrical form. For the winding operation to
proceed successfully, it is often required to use a pressing cylinder (roller) that come
into contact with the bobbin and that is driven by the winding through friction
between their contacting surfaces. The function of the roller differs from one appli-
cation to another. While the roller is mainly used to ensure a compact and smooth
winding, it is also used as a sensor (feeler) of the current diameter and/or the rota-
tional speed of the bobbin with the filament. In any of the above applications, for
the roller to perform its function successfully, it must remain in a permanent and
reliable contact with the winding; the roller should not slip relative to the package
surface or loose contact with it.
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In practice, the main cause of contact loss between the winding and the pressing
roller is due to vibrations of the latter. It is therefore necessary to investigate
vibration behavior of the system so as to identify the key design variables that
govern these vibrations. The need for such studies becomes clear if one recalls that
winding speeds in today’s synthetic thread manufacturing reach 8000 m/min [1].
This paper presents an analytical study of the dynamic behavior of a typical winding
machine. The system is shown to be well represented by a two-degrees-of-freedom
system. Natural and forced vibrations are first investigated by neglecting friction
and damping effects to get an approximate view of the system’s behavior. The effect
of friction and damping properties of the system are then introduced to obtain a
more accurate model. The study reveals optimum motion parameters corresponding
to given conditions of operation. The operating conditions assumed here are those
typically met in the manufacture of synthetic fibers.

2 System Modeling

Fig. 1: Winder Machine. 1- filament package, 2- feeler roller, 3- rod, 4- spring, 5-
case, 6- lever,7- guide, 8- pivot

The winder machine under study is schematically shown in Fig. 1. Textile filament
is wound up onto package 1. Feeler roller 2 is driven by friction with the package
and hence works as a follower. The roller is mounted on rod 3 which in turn is
mounted in guides 7 of case 5. Case 5 is fixed on lever 6 pivoted to the ground by
pin 8.
For this stage of analysis, we shall first build a rough model of the system by making
the following simplifying assumptions:
1. Amplitudes of vibration of case 5 are small in comparison with the length of lever
6 and hence motion of case 5 can be considered rectilinear.
2. Friction in guides 7 is negligible.
3. All the components of the system, except for the spring and the package, are
solid.
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4. Motions of all the system’s elements occur in parallel planes.
5. The outer layer of the wound product is elastic, but with no damping properties.
6. The moment M, with which roller 2 is pressed to the package is constant. Con-
sequently, the pressing force Q is constant too.
Under the above assumptions, the system can be modeled as shown in Fig. 2.

Fig. 2. Simplified dynamic model of the winder

The following notations are used in the above model: K – stiffness of the outer layer
of the filament winding, k – stiffness of spring 4, m1- total mass of roller 2 with
rod 3, m2 – total mass of components 5,6 and 7; m3 - mass of rod 3, m4 – mass
of roller 2, ω – rotational speed of roller 2, x1 and x2 – coordinates of masses m1
and m2, respectively. In addition, eccentricity of the roller’s center of mass will be
designated by e.
Dynamic analysis of this model yields the following equations of motion [2, 3, 4]:

m1ẍ1+( k + K)x1− kx2 = m4eω
2 cosωt

m2ẍ2+ k(x2+ x1) = 0.
(1)

Equations (1) are second-order linear differential equations in x1 and x2. Integration
of this system yields x1 and x2 as functions of time.

3 Natural vibrations

To study the natural vibrations of the system, we set the right-hand sides of (1) to
zero. This leads to the following system of homogeneous equations:

m1ẍ1+( k+ K)x1− kx2 = 0

m2ẍ2+ k(x2+ x1) = 0
(2)

Equations (3) are known to have a general solution of the form [5, 6]:

x1 = A1 sin(ωt+ β)

x2 = A2 sin(ωt+ β)
(3)
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Double differentiation of (3) yields:

ẍ1 = −A1ω
2 sin(ωt+ β)

ẍ2 = −A2ω
2 sin(ωt+ β)

(4)

Substituting from (4) and (3) into (2) and dividing through by sin(ωt + ß) gives:

(k+ K−m1ω
2)A1− kA2 = 0

−kA1+ (k−m2ω
2)A2 = 0

(5)

Equating the determinant of the system of (4) to zero yields the following frequency
equation [2, 3, 4]:

ω4− (
k+ K

m1
+
k

m2
)ω2+

kK

m1m2
= 0 (6)

Equation (5) is quadratic in ω2. This leads to two real and positive values for ω2.
Calling them ω1

2 and ω2
2, the values of ω2 from Eq. (5) are:

ω21,2 =
1

2
(
k+ K

m1
+
k

m2
) ±

√
(
k+ K

2m1
+

k

2m2
)2−

kK

m1m2
(7)

Equation (6) yields four solutions which are ± ω1 and ± ω2. Since the solutions
in Eq. (3) are harmonic, the negative signs merely change the signs of the arbitrary
constants and would not lead to new solutions. Hence, the natural frequencies are
ω1 and ω2.
For the filament winder under study, typical values of the design variables in the
right-hand side of Eq. (6) are: m1 = 3 kg, m2 = 6 kg, k = 800 N/m, and K =
24000 N/m. For these values, the natural frequencies are ω1 = 91 s−1 and ω2 = 11
s−1. These are the natural frequencies of vibration of the system’s masses without
roller’s rotation. These frequencies hence are independent of the roller’s diameter.

4 Forced vibrations

Amplitudes of forced vibrations can be found based on Eqs. (1) which are known
to have a steady-state solution of the form:

x1 = A1 cosωt
x2 = A2 cosωt

(8)

Substituting from Eq. (7) into Eq. (1) and rearranging terms yields the steady-state
amplitudes of vibration of the two masses m1 and m2 as:

A1 =
m4eω

2(k−m2ω
2)

(K+k−m1ω2)(k−m2ω2)−k2

A2 = m4eω
2k

(K+k−m1ω2)(k−m2ω2)−k2

(9)
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Figure 3 is a plot of these amplitudes as functions of the roller’s rotational speed ω,
for a roller’s eccentricity of e = 0.5 mm. At a filament supply speed of 3000 m/min
and a roller’s diameter of 60 mm, the roller rotates at ω = 1670 rad/s. Under these
conditions the amplitudes are A1 = 0.333 mm and A2 = 0.017 mm.

Fig. 3: Amplitude-frequency characteristic of the model

Figures 3(a) and (b) pertain to mass m1 while Fig. 3(c) pertains to m2. As seen
from Fig. 3 (b) and (c), the first resonance takes place within the frequency range
from 10 to 20 s −1, while the second resonance occurs in the range 80 - 100 s −1,
i.e., in the vicinities of the system’s natural frequencies. At roller’s rotational speeds
exceeding 300 s −1, the roller rotates in a self-centering mode and the amplitudes of
vibration are independent of further increase of the roller’s speed.

5 The Effect of Friction

The dynamic model considered above was simplified to allow a rough estimate of
the vibration of case 5 and that of roller 2. In order to get a more accurate analysis,
we shall reestablish the effects of friction and damping in the system. We shall here
account for the effect of viscous and dry friction in guides 7 hinge 8 and for the
damping properties of the outer layer of the filament package.
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Fig.4. To the force analysis of the system

Figure 4 illustrates force elements acting on the system. The force Q with which
the roller is pressed to the package is given by:

Q =

∑
Mo

Lr cosα
=
MGr+Md+MGk+MF−Mcf

Lr cosα
(10)

where Mo is the resultant moment about axis O; MGd,MGr,MGc are moments of
counterweight Gd, roller’s weight Gr, and combined weight Gc of case 5 and lever 6
respectively; MF is the moment of friction forces between roller and package surfaces;
Mcf is the constant component of the moment of friction about axes O; also, see
the linear and the angular dimensions shown in Fig. 4. A static force analysis of
the mechanism would show that

MGd = GdLd cosα;

MGr = GrLr cosα;

MGk = −GcLc cosα;

MF = Qf cosα (R cosα+ L1).

(11)

Substituting from Eqs. (10) into (9) yields the pressing force Q as

Q =
GrLr cosα+GdLd cosα+GcLc cosα−Mcf

Lr cosα− f cosα(L1+ R cosα)
(12)

The referred mass m2of the parts moving as a whole is:

m2 = mc(
vc

vM
)2+md(

vGd

vM
)2 (13)

where vM is the referred linear speed of the parts moving together and vc and vGd
are linear speeds of case 5 together with lever 6 and load Gd.
Recall that

vc = vM = ωMLc; vd = ωMLd (14)
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Substituting this into Eq. (21) gives:

m2 =
1

L2r
(mcL

2
c+mdL

2
d) (15)

The expanded model of the system is shown in Fig. 5. For this model, differential
equations of steady-state motion in view of friction and damping effects are of the
following general form [3, 2, 4]:

m1ẍ1+ bn(ẋ1− ẋ2) + bmẋ1+ k(x1− x2) + kx1 = F(t)

m2ẍ2+ bn(ẋ2− ẋ1) + bmẋ1+ k(x2− x1) = Q
(16)

where F(t) is the periodic force exerted on the roller by the package due to the
rotation of the latter and bm,bn,bb are coefficients of viscous friction.
Since the spring elements in the model are assumed linear, we have:

x1 = 1
K
Q

x2 = (1
k

+ 1
K
)Q

(17)

Fig 5. Expanded dynamic model of the winder

Each of the coordinates x1 and x2 consists of a constant (static) and a variable
(dynamic) component. Considering the variable components, we conclude that in
order to suppress the roller’s vibration, the referred massm2 and the spring constant
k should be selected such that they work together as a dynamic vibration absorber.
Thus, the condition for vibration suppression is the equality:

k

b2n+ k2
=

m2

b2m+ω2m22
(18)

Suppression of vibrations is achieved more effectively if the coefficients bm and bn
are small. With bm ≈0and bn ≈ 0, Equation (17) reduces to:

k = ω2m2 (19)
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The spring constant k recommended in Eq. (18) is optimum for suppression of
vibrations only if the system does not involve resistance forces proportional to speed.
If such forces are present, then k must be found from Eq. (17) such that:

k =
1

2
(
b2m
m2

+ω2m2) ±
√
1

4
(
b2m
m2

+ω2m2)2− b2mω
2 (20)

Since rod 3 is a two-support cantilever loaded with the roller’s weight Gr at its end,
the support reactions N1 and N2 of guide 7 are found to be:

N1 = Gr cosα (1+ L3
L1+L2−L3

)

N2 = Gr cosαL3
L1+L2−L3

(21)

Denoting by fg the friction coefficient that accounts for both viscous and dry friction
in guide 7, the friction force F7 in the guide is given by:

F7 = fg(N1+N2) = m4gfg cosα
L1+ L2+ L3

L1+ L2− L3
(22)

Equation (21) involves six design variables of the winder that can be used to control
the friction forces.
For a 250-mm diameter package with a slightly elliptical cross-section, if the filament
winding speed is 3000 m/min, the rotational speed of the package will be 400 rad/s
and the corresponding excitation frequency ωexc thus is 800 rad/s.
For typical values of m1 = 5 kg and K = 24000 N/m we have:

ωexcm1−
K

ωexc
= 800× 5−

24000

800
= 3970 N · s/m (23)

Equation (22) shows that at typical values of m1, K, and ωexc,the force of inertia
of the roller is by two orders of magnitude higher than the restoring force of the
surface layer of the filament package. That is:

m1ẍ1 >> Kx1 (24)

The difference between the inertia and the restoring forces in the system will increase
with further increase of the filament supply speed and energy regeneration in the
system will be negligible.

6 Conclusion

The paper presents a typical winder machine modeled as a two-degrees-of-freedom
system. Vibration behavior of the model was studied at two levels of sophistication:
with and without friction and damping effects. For typical values of the design
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parameters of the system, the system’s stiffness is relatively low and resonant vi-
brations may arise at low speeds of filament supply not exceeding 400 m/min., i.e.,
at the starting phase. Beyond this range the system operates in a self-centering
mode. The external excitation frequency is shown to be much higher than any of
the system’s natural frequencies. Moreover, the restoring force due to the elasticity
of the package surface was shown to be negligible compared to the inertia forces
in the system. Finally, design conditions under which the feeler roller mechanism
operates as a vibration absorber are discussed.
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Abstract

Constructing of mathematical models and researches on new composite
materials production still remain to be actual tasks of continuum mechanics.
In this work we offer a new mathematical model of one of the steps in produc-
tion of a new composite material which has a cylindrical shape produced by
diffusion welding of glass and metal. Mr. Pikul V.V. has offered a new way
to make the glass layer stronger [1] . He has also invented a new composite
material - glass-metal-composite, which consists of the glass layer cased in-
side metal coat. The new way of producing this material offers a much better
connection between the glass layer and metal coat, which prevents the inside
layer from the environmental influence.

The glass-metal-coat production technology development consists of a number
of researches on continuum mechanics and mathematical modelling, which allows
counting residual stresses and deformations during the production of glass and metal,
based composite materials. Melted glass is pouring on the inside area of cylindrical
cover made of aluminum set in centrifuge machine using different kinds of special
accessories. The melted glass evenly divides through the area of the aluminum cover.
At this time the process of diffusion welding under high temperatures starts. The
material is being cooling till the glass base state Tg temperature after the melted
glass layer is divided, which is close to the temperature of aluminum melting. The
aluminum melt is sprayed to the inner surface at the temperature Ta with a
thickness less than the thickness of the aluminum exterior layer at the temperature
of glass transition. The isothermal soaking and stress relaxing are having place to
be held in order to normalize the glass properties after the process of aluminum
graining at the temperature of glass transition. The composite material is being
cooling till the environment temperature.
When describing the cooling process, we need to divide the task into two temperature
intervals: 1) [Tm, Tg], t ∈ [0, t1]; 2) [Tg, Te], t ∈ [t1, t2]. On each interval we face
thermal conductivity process, which has place in fixed number of layers, but the
equation of thermal conductivity has different coefficients in every layer (price wise-
impure environment). The function T(r, z, t) can be written the following way:

T(r, z, t)=






T1(r, z, t), r0 ≤ r < r1 − the inside aluminum temperature,

T2(r, z, t), r1 ≤ r < r2 − the glass temperature,

T3(r, z, t), r2 ≤ r < r3 − the exterior aluminum temperature,
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where t ≥ 0 , 0 ≤ z ≥ l.
The equation of thermal conductivity has a following view, according to the heat
production at the change of aluminum state:

∂Tk

∂t
=ak(

∂2Tk

∂r2
+
1

r

∂Tk

∂r
+
∂2Tk

∂z2
) +

Qk

ckρk
,

where k = 1, 2, 3 − is the number of the layer, ak, ρk, ck − coefficients of
thermal diffusivity, specific heat capacity and density of the concrete layer at the
[Tm, Tg], Q2(T, t) = 0 interval, the Q3(T, t) function, which is characterizing warm-
ing wasting at aluminum transition from hard to liquid. Aluminum starts melting,
when some temperature Ta is reached and its temperature becomes constant. All
the temperature, which is given to it later, goes for the aluminum melting process,
that’s why it becomes constant. At the second temperature interval Qk(T, t) .

At first time meaning some conditions are being performed for each interval:

T2|t=0 = Tm, T3|t=0 = Te, T1|t=t1 = Ta, T2|t=t1 = Tg, T3|t=t1 = Tg,

We suppose that at the first interval there is an unideal heat contact because of
infusible oxide film, that aluminum has:

λ2
∂T2

∂r
|r=r2 = −λ3

∂T3

∂r
|r=r2 , λ2

∂T2

∂r
|r=r2 =

1

R
(T3− T2)|r=r2 ,

where R − is the coefficient of contact resistance, which is counted experimentally,
λk − is the coefficient of thermal conductivity. We suppose that at the second
temperature interval the bias surfaces of glass layer have ideal heat contact. The
heat exchange between bias surfaces of the composite material is being held by the
Newton law, that’s why the boundary conditions have a view of the third degree.

The boundary condition can be written the following way because of the function
T(r, z, t) is symmetrical to the flatness of perpendicular axis of generatrix:

∂Tk

∂z
|z=0 = 0, λk

∂Tk

∂z
|z=l = θk(Tk− Te)|z=l,

where, θk − are the coefficients of the heat exchange of glass and aluminum.

The most interesting part are the residual stresses and strain in the ready composite
material, because of isothermal soaking the process of production.
Aluminum is going to have plastic properties at the [Tm, T∗] temperature interval
and glass is going to be visco-elastic. The T∗ temperature is the temperature,
which makes aluminum to become elastic. Then residual strain can be written the
following way:

εij = ε
p
ij+ ε

v
ij+ ε

E
ij,

where the upper indexes p, v, E, − are the signs of plastic, visco-elastic and elastic
strains, for the aluminum layer εvij = 0, for the glass layer εpij = 0.
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The tension, strains, their deviators, speed and etc. of the glass and metal based
composite material can be written the same way the temperature is, as the piecewise-
continuo functions. The tension increase must meet the equations of balance.

.
σ

(k)

ij,j+
.

F
(k)

i = 0.

The tensor of tension σ
(k)

ij and strain ε
(k)

ij are use to be the sum of its middle

meanings σ(k), ε(k) and deviators s
(k)

ij , e
(k)

ij which are counted by the following
formulas:

σ(k) =
1

3
σ

(k)

ii , ε
(k) =

1

3
ε

(k)

ii ,

s
(k)

ij = σ
(k)

ij − δijσ
(k), e

(k)

ij = ε
(k)

ij − δijε
(k),

where δij − is the symbol of Kroneker.

The speed of components of deviator of aluminum and glass consists of plastic,
elastic and visco-elastic components:

.
e

(k)

ij =






.
e

(1)

ij =
.
e

(1)p

ij +
.
e

(1)E

ij ,
.
e

(2)

ij =
.
e

(2) v

ij ,
.
e

(3)

ij =
.
e

(3)p

ij +
.
e

(3)E

ij .

The connection on the speed of the tensor of strain change and the tensor of tensions
is written the following way using the equations of visco-elastic environment of
Maxwell:

ε
(2)

ij =
s

(2)

ij

η(T)
,

where η(T) − is the coefficient of the dynamic glass viscosity, which can be written
through the Fulcher − Tamman equation:

lg η(T) = A+
B

T − T0
,

where A, B, T0 − are the experimental constants.

The connection on tensions and strains in the elastic are is held by the Duamel −

Neymann law:

σ
(k)

ij =
Ek

1+ νk
ε

(k)

ij + δij(
Ekνk

(1+ νk)(1− 2νk)
ε

(k)

ii −
Ek

1− 2νk

∫T

Tk0

αk(T)dT),

where αk − is the coefficient of the linear widening, k = 1 and k = 3 .

We can write the law of stream which is associated with the condition of stream
by Mizess [2], because the experiments show that this condition describe the plastic
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materials behavior pretty good:

.
e

(k)p

ij = 0, if
1

2
s

(k)

ij s
(k)

ij < K
2(T)

or, if
1

2
s

(k)

ij s
(k)

ij = K2(T) and
.
s

(k)

ij s
(k)

ij − 2KK ′ .T < 0;

.
e

(k)p

ij = γskij, if
1

2
s

(k)

ij s
(k)

ij = K2(T)

and
.
s

(k)

ij s
(k)

ij − 2KK ′ .T = 0, γ ≥ 0,
where K(T) is the limit of stream of aluminum in conditions of clear shift at the
temperature T,

K ′ =
dK

dT
, γ =

1

2K2
s

(k)

ij

.
e

(k)p

ij ,

so that the γ measure is proportional to power, which is used for plastic strain of
the element in the unit of volume.
As a result of the relaxing of tensions after the process of the glass transition we
can consider that all the tensions and displacements during the process of cooling
are equal to 0 .
The boundary conditions on the inside bound r = r0 :

σ
(1)

33 |r=r0 = 0, σ
(1)

13 |r=r0 = 0.

At the bound, where r = r3 we can see the following, because the aluminum coat
is fixed:

∂u
(3)

1

∂r
|r=r3 = 0,

∂u
(3)

3

∂r
|r=r3 = 0,

where u
(3)

1 = ur, u
(3)

3 = uz are the elements of the displacement tensor for the
exterior aluminum layer.
The boundary conditions on the surface of the inside glass layer are the geometrical
and power conditions of coupling with the exterior aluminum surfaces:

u
(1)

1 |r=r1 = u
(2)

1 |r=r1 , u
(2)

1 |r=r2 = u
(3)

1 |r=r2 ,

u
(1)

3 |r=r1 = u
(2)

3 |r=r1 , u
(2)

3 |r=r2 = u
(3)

3 |r=r2 ,

σ
(1)

13 |r=r1 = σ
(2)

13 |r=r1 = τ+
13, σ

(2)

13 |r=r2 = σ
(3)

13 |r=r2 = τ−
13,

σ
(1)

33 |r=r1 = σ
(2)

33 |r=r1 = τ+
33, σ

(2)

33 |r=r2 = σ
(3)

33 |r=r2 = τ−
33.

The boundary conditions on the end openings of the cylindrical cover we can write
considering that the is a hard fixing of the cover on the end openings:

∂u
(k)

1

∂z
|z=l = 0,

∂u
(k)

3

∂z
|z=l = 0.

The boundary conditions in the middle cross-section can be found through the sym-
metry of tangent displacements:

u
(k)

1 |z=0 = 0,
∂u

(k)

3

∂z
|z=0 = 0.
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Abstract

Influence of creep on cyclic loading behavior of thick spherical vessels is
studied in this article. Ratcheting or shakedown behaviors of the vessel un-
der load and deformation controlled conditions are compared for the cases
which creep is included and excluded. Kinematic hardening theory of plas-
ticity based on the multi-linear Prager and Armstrong-Frederick models is
assumed to evaluate multi-axial nonlinear strains in the plastic region. An
iterative incremental method is used to solve the governing equations due to
the nonlinearity and load history dependency of the problem. Based on the
obtained results an interaction diagram is proposed to predict ratcheting or
shakedown behavior of the thick spherical vessels.

1 Introduction

Cyclic loading of structures result into either structural shakedown or ratcheting.
Theoretical prediction of ratcheting and shakedown behavior depends on the hard-
ening model assumed to obtain the results. Two general hardening theories used
for plastic analysis of structures are the isotropic and kinematic hardening theories.
The isotropic hardening theory always predict shakedown behavior, if creep is not
considered (Mahbadi and Eslami [1]). The result of the kinematic hardening model,
on the other hand, is different. Bari [2] evaluated the performance of a number of
constitutive models to predict the ratcheting response of beams made of carbon steel
material for a set of uniaxial and biaxial loading histories. His investigations show
that for uniaxial stress-controlled history, the linear Prager kinematic hardening [3]
and multilinear models produce closed hysteresis loops and, hence, cannot simulate
the ratcheting response. The Prager model overpredicts ratcheting strains during
the initial cycles, which are followed by shakedown after a few more cycles for all
biaxial loading cases. The nonlinear kinematic hardening model (Armstrong and
Frederick [4]), overpredicts the ratcheting responses for both uniaxial and biaxial
loading histories considered in this study.
It is possible to relate the structural behavior to the stress category in cyclic load-
ing condition. According to the BS5500 unfired fusion welded pressure vessels code
[5], the sum of primary and secondary stresses are responsible for ratcheting or
shakedown behavior of structures. Based on this code, a primary stress is a stress
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produced by mechanical loadings only and so distributed in the structure that no
redistribution of load occurs as a result of yielding. It is a normal or a shear stress
developed by the imposed loading that is necessary to satisfy the simple laws of
equilibrium of external and internal forces and moments. The basic characteristic
of this stress is that it is not self limiting. Primary stresses that considerably exceed
the yield strength will result in failure, or at least in gross structural distortion. A
thermal stress is not classified as a primary stress. A secondary stress is a normal or
a shear stress developed by the constraint of the adjacent parts or by self-constraint
of a structure. The basic characteristic of a secondary stress is that it is self limiting.
Local yielding and minor distortions can satisfy the conditions that cause the stress
to occur and failure from one application of the stress is not to be expected. Es-
lami and Shariyat [6] proposed a technic to distinguish the primary and secondary
stresses. Eslami and Mahbadi [7] classified the loading of structures into the load
controlled and deformation controlled types. They showed that the load controlled
cyclic loading of structures results to ratcheting while the deformation controlled
cyclic loading of structures results into the shakedown behavior.
In this paper, the influence of creep on cyclic loading behavior of thick spherical
vessels under load and deformation controlled cyclic loadings is investigated. The
vessel’s material is assumed to be isotropic and homogeneous and obey nonlinear
strain hardening law in plastic range. Secondary creep law is considered to obtain the
creep strains in elevated temperature. The kinematic hardening theory based on the
Prager and Armstrong-Frederick models with von Mises associated flow rule are used
to predict ratcheting or shakedown behavior of thick spherical vessels. An effective
incremental iterative method is used to analyze structural behavior under cyclic
loading conditions. Using the Prager and Armstrong-Frederick kinematic hardening
models, cyclic loading results of vessel under various types of loads, including creep
at the end of each load cycle, is compared with those which creep is excluded.

2 Mathematical Formulation

Consider a thick sphere of inside radius a and outside radius b under internal pres-
sure Pi and external pressure Po. A radial temperature distribution T(r) is assumed
for the sphere resulting into a spherical symmetry condition. The dimensionless
quantities are:

Sr =
σr

σ0
Sθ =

σθ

σ0
Sφ =

σφ

σ0
er =

ǫr

ǫ0
eθ =

ǫθ

ǫ0
eφ =

ǫφ

ǫ0

epr =
ǫpr
ǫ0

e
p
θ =

ǫ
p
θ

ǫ0
e
p
φ =

ǫ
p
φ

ǫ0
ecr =

ǫcr
ǫ0

ecθ =
ǫcθ
ǫ0

ecφ =
ǫcφ

ǫ0

eResr =
ǫResr
ǫ0

eResθ =
ǫResθ
ǫ0

eResφ =
ǫResφ

ǫ0
pi =

Pi

σ0
po =

Po

σ0
τ =

EαT

(1− ν)σ0

ρ =
r

a
β =

b

a

(1)

where σr, σθ, and σφ are the radial, tangential, and meridian stresses, respec-
tively. Similarly, ǫr, ǫθ, ǫφ are the total strains, ǫpr , ǫ

p
θ, ǫ

p
φ are the plastic strains,

ǫcr, ǫ
c
θ, ǫ

c
φ are the creep strains, and ǫResr , ǫResθ , ǫResφ are the residual strains in the
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radial, tangential, and axial directions, respectively, σ0 is the yield stress and ǫ0 is
the yield strain. The Poisson’s ratio is denoted by ν. The inclusion of the residual
strains in the stress-strain relations is unique and important, as the relations are
capable to be used for the cyclic loading analysis. The governing equations are as
follow:
Compatibility and equilibrium equations are:

deθ

dρ
=
er− eθ

ρ
(2)

dSr

dρ
=
2(Sθ− Sr)

ρ
(3)

Stress-strain relationship:

er = Sr− ν(Sθ+ Sφ) + (1− ν)τ+ epr + ecr + eResr

eθ = Sθ− ν(Sr+ Sφ) + (1− ν)τ+ e
p
θ+ ecθ+ eResθ (4)

The boundary conditions are

Sr(1) = −pi

Sr(β) = −po (5)

From the spherical symmetry

Sθ = Sφ

eθ = eφ (6)

From the incompressibility condition

epr + e
p
θ+ e

p
φ = 0

ecr + ecθ+ ecφ = 0 (7)

or

epr = −2e
p
θ

ecr = −2ecθ (8)

The same relation exist between the residual strains, provided the previous load
cycles are spherically symmetric

eResr = −2eResθ (9)

Solving the governing equations, the radial and tangential stresses are

Sr =
1

1− ν

∫ρ

1

epr
ρ
dρ+

1

1− ν

∫ρ

1

ecr
ρ
dρ+

1

1− ν

∫ρ

1

eResr
ρ
dρ

−
2

ρ3

∫ρ

1

τρ2dρ+
C2

ρ3
+ C1 (10)

Sθ =
1

1− ν

∫ρ

1

epr
ρ
dρ+

epr
2(1− ν)

+
1

1− ν

∫ρ

1

ecr
ρ
dρ+

ecr
2(1− ν)

+
1

1 − ν

∫ρ

1

eResr
ρ
dρ+

eResr
2(1− ν)

+
1

ρ3

∫ρ

1

τρ2dρ− τ−
C2

2ρ3
+ C1 (11)
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where the constants of integration are given as

C1 = −pi− C2

C2 =
β3

β3− 1
(po− pi) −

1

1− ν

∫β

1

epr
ρ
dρ−

1

1− ν

∫β

1

ecr
ρ
dρ

−
1

1− ν

∫β

1

eResr
ρ
dρ−

2

ρ3

∫β

1

τρ2dρ (12)

3 Hardening Model

Different kinematic hardening models are available for the plastic analysis of struc-
tures. The Prager kinematic hardening model [3] is proposed for the linear strain
hardening materials. The Armstrong and Frederick [4] modified the Prager model
so that the transformation of yield surface in the stress space is different during
loading and unloading. This is done by assuming different hardening modulus in
loading and unloading conditions. Assuming the von Mises yield criterion, the flow
rule for kinematic hardening model may be written in the following form

dǫ
p
ij =

1

H
〈 ∂f
∂σij

· dσij〉
∂f

∂σij
(13)

where 〈f(x)〉 = f(x) when f(x) > 0, and 〈f(x)〉 = 0 when f(x) ≤ 0.

3.1 Prager Model

The back stress tensor for the Prager kinematic hardening model is defined as follow:

daij = Cdǫpij (14)

where H is the plastic modulus and C is a multiplier, both positive non-constant
values.

3.2 Armstrong-Frederick Model

In this model, daij is found from the following equation

daij =
2

3
Cdǫ

p
ij− γaij |dǫp| (15)

where C and γ are two material constants in the Armstrong-Frederick kinematic
hardening model and are found from the uniaxial strain controlled stable hysteresis
curve.

4 Creep Equations

The flow rules for creep is based on the Levy-Mises equations

dǫcij = sijdλ (16)
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It can be shown that the constant dλ in terms of the effective stress and increment
of effective creep strains becomes

dλ =
3

2

dǫc

σe
(17)

The effective creep strain, when von Mises yield criteria is used, is defined as

dǫc =

√
2

3
dǫcijdǫ

c
ij (18)

The creep strain is a function of stress, where the constitutive law of creep is used
to define the functional relationship.

5 Numerical Solution

The method of analysis used in this paper is based on an incremental iterative
method. Considering the complexities incurred by the assumed kinematic harden-
ing theories and loading history dependency of the problem, the proposed method
is quite capable and unique to handle the cyclic loading calculations. This method
may be used for the analysis of uniaxial as well as multiaxial states of loading. The
detailed description of the numerical method for uniaxial loading is given in Mahbadi
and Eslami [8]. The method described in [8] is extended to the case of mutiaxial
states of stress in [9]. To evaluate the creep strains in the vessel due to the cyclic
loading, the method presented by Eslami et al. [10] and [11] is used.
According to the equivalent stress and strain definitions, these values are always
positive and hence they cannot predict compressive behavior of equivalent stress
and strains. For this reason, equivalent stress versus equivalent strain curves pro-
duced by plastic analysis module of commercial FEM softwares may not be used for
cyclic loading analysis of structures. In the proposed incremental iterative method,
two different coordinate axes showing the loading and unloading behaviour of the
structure are defined. A coordinate system is initially fixed at the origin, showing
the loading curve. At the end of the loading curve, we may fix the second coordinate
system with opposite coordinate directions showing the unloading curve. In the sec-
ond coordinate system the equivalent stress, as the result of unloading, is always
positive and is increasing. The final residual stresses are obtained by adding up the
stresses in the second coordinate system to those in the first system, where proper
changes of sign are considered (Jiang [12]). This method may be used to assign the
correct sign to the equivalent stress and strain.

6 Results and Discussion

Two types of loads are checked to show their ratcheting or shakedown behavior as
the result of cyclic loading. These are namely the load controlled and deformation
controlled types. Load controlled cyclic loading is one which primary stresses are
dominant, while in the deformation controlled cyclic loading the secondary stresses
are dominant. Definitions of primary stresses and secondary stress are given in
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Table 10: Vessel properties
Properties Nomenclature Value Unit

Modules of elasticity E 173.2 GPa
Yield stress σ0 241 MPa
Poison ratio ν 0.3 -

Thermal expansion α 10.8E-6 1/oC

Creep law coefficient b1 7.28528E-10 1/s

Creep law power n1 3.5 -
Creep law power Q/R 29840 oK

Outside to inside ratio b/a 1.5 -
Prager model coefficient m 2631 MPa
Prager model coefficient n 0.35 -

Armstrong-Frederic model coefficient C 55.3 GPa
Armstrong-Frederic model coefficient γ 280 -

the introductory section. Their applications to the spherical vessel structures are
investigated and its behavior under these two types of loads is studied in this section.
For all examples in this article, the vessels properties are assumed to be as given
in Table (1). For this material, the stress-strain curve equation which is used to
evaluate the plastic strains is considered to be as follow:

σ = σ0+mǫnp (19)

It is assumed that creep strains follow the power law equation:

ǫ̇ = b1σ
n1e

−Q
RT (20)

To check the numerical algorithm, results obtained from the proposed method are
compared with those obtained form the commercial FEM software [13] and are
shown in Figs. (1) and (2) for loading up to the plastic region and creep relaxation,
respectively. In Fig. (1) the vessel is loaded with inside pressure up to 300 MPa.
The critical pressure to bring the inside surface of the vessel up to the plastic region
is 114 MPa. In figures (1-a) and (1-b) stress and strain distributions along the
radius of the sphere is compared with the results of commercial FEM software.
In Fig. (2) the inside pressure of the sphere is cycled between 0 to 280 MPa. Due to
cycling of the mechanical loads with nonzero mean value, the case is considered to
be load controlled cyclic loading. For this problem, the normalized equivalent stress
versus normalized equivalent strain at the inside surface of the vessel is plotted in
Fig. (2-a). The vessel is assumed to experience creep for 1000 hr at 200 oC uniform
temperature at the end of loading and unloading curves per each load cycle. The
normalized equivalent strain at the end of each load cycle versus the number of cycles
for the Prager and Armstrong-Fredereick kinematic hardening models are compared
in Fig. (2-b) for different cases, where creep is included and excluded. As seen
from the figure, when creep is not considered the Prager model (P-model) predicts
shakedown, while the Armstrong-Fredereick model (AF-model) predicts ratcheting
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Figure 1: Plastic analysis verification of the proposed method for a thick sphere with
the commercial FEM software. (a) stress components distribution along radius, (b)
strain components distribution along radius.

for the same problem. When creep is included, both models predict ratcheting, al-
though the rate of ratcheting is different. These results are well compared with the
analytical results of Mahbadi et al. given in referesnces [9] and [14] for a thick sphere
based on the AF-model exculding creep, and isotropic hardening theory including
creep, repectively. The experimental results of Hassan and Kyriakides show ratch-
eting for load controlled cyclic loading of beam structures [15]. Analytical results
based on the Chaboche and AF-models show the same behavior for load controlled
cyclic loading of beam structures for both cases where creep is included and excluded
[8, 16, 17].
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Figure 2: Inside pressure cyclic loading of a thick sphere

The next problem is a thick sphere with inside cycled temperatures between −70
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to 250oC, while the outside surface temperature is kept at 0. While the assumed
thermal boundary conditions may seem to be unrealistic, the reason for their choice
is to have reversed plasticity during unloading and at the mean time to be elevated
enough to excite creep. Due to the assumed boundary conditions, the resulting
stresses are pure deformation controlled thermal stresses. The critical temperature
difference which brings the thick sphere up to the yield point is 144oC and the mean
temperature on the inside surface is 160oC. A 1000 hr creep time is considered at the
end of both loading and unloading curves per each load cycle. Figure (3-a) shows
the normalized equivalent stress versus the normalized equivalent strain at inside
surface of the vessel up to 10 cycles of load, using the AF-model including creep.
In Fig. (3-b) the normalized equivalent strain based on the AF-model and P-model
versus the number of cycles, where creep deformation is included and excluded, is
plotted. The figure shows that when creep is not considered, the P-model predicts
shakedwon, while the AF-model predicts ratcheting to shakedown. When creep
is considered, both models predicts ratcheting to shakedown behavior. Analytical
results given in the references [9] and [14] show the same behavior for a thick sphere
under deformation controlled cyclic loading. Experimental results of reference [15]
and analytical results of [8, 16, 17] show the same behavior for a beam structure
under deformation controlled cyclic loading.
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Figure 3: Inside temperature cyclic loading of a thick sphere

Now consider the case where both inside and outside radii of the thick sphere ex-
perience cyclic surface pressure in turn, respectively. In this example, the inside
surface is cycled with the internal pressure from 0 to 200 MPa and after unloading
the internal pressure, the external surface is cycled from 0 to 100 MPa of external
pressure. At uniform temperature of 200oC, creep time is considered to extend to
1000 hr per half cycle of internal and external loads. Due to the cycled mechanical
loads, the case may be considered as load controlled cyclic loading. Also, it may be
classified as non-proportional cyclic loading, since the cyclic loads on the inside and
outside surfaces are not in the same phase. In Fig. (4-a) the normalized equiva-
lent stress versus the normalized equivalent strain based on the AF-model including
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creep is plotted. Ratcheting is achieved due to the cyclic pressure on inside and out-
side surfaces of the sphere. Comparison among the P and AF-models for the cases
where creep is included and excluded is shown in Fig. (4-b). As it may be seen from
the figure, ratcheting is obtained for all cases, where ratcheting rate for the P-model
excluding creep is low with respect to the other cases. The same results are found
in references [9] and [14] for a thick sphere under the same loading condition of this
problem.
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Figure 4: Inside/outside pressure cyclic loading of a thick sphere

The next example shows cyclic loading of a thick sphere, where in turn experiences
cyclic temperature of 0 to 220oC and 0 to 160oC on its inside and outside sur-
faces, respectively. Creep time is considered to be 1000 hr. Figure (5-a) shows
the normalized equivalent stress versus the normalized equivalent strain at inside
surface of the vessel and based on the AF-model with creep included. According to
the figure, ratcheting is obtained as the result of temperature cycling on the inside
and outside surfaces of the vessel. In Fig. (5-b) the normalized equivalent strain
is plotted versus the number of load cycles, using the AF and P models for cases
where creep is included and excluded. Again all cases show ratcheting, with lowest
ratcheting rate corresponds to the P-model excluding creep. References [9] and [14]
show ratcheting, when the same loading conditions of this problem are considered.
This is an example which shows thermal ratcheting of the vessel. The thermal loads
in this example may be classified as the load controlled type.
Problems (2) through (5) are repeated for various loading amplitude, vessel thick-
ness and creep conditions. The same ratcheting or shakedown behavior is obtained
for the repeated conditions. To summarize the results, an interaction diagram for a
thick vessel under combination of load and deformation controlled cyclic loading is
plotted in Fig. (6). Three regions are distinguished, the elastic, elastic shakedown,
and reversed plasticity-ratcheting regions. The vertical axis is the normalized defor-
mation controlled stress and the horizontal axes is the normalized load controlled
stress. When the sum of the load and deformation controlled cycled stresses are
less than the yield stress, the behaviour is elastic. When the sum of these stresses
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Figure 5: Inside/outside temperature cyclic loading of a thick sphere
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Figure 6: The interaction diagram for deformation controlled cyclic loading versus
load controlled cyclic loading

is larger than the yield stress, but lower than twice the yield stress, the behaviour
is in the elastic shakedown region. For the sum of the load and deformation con-
trolled stress larger than twice the yield stress, the situation is reverse plasticity for
deformation controlled stress, and ratcheting for the load controlled stress.

7 Conclusion

In this paper influence of creep on cyclic loading behavior of thick spherical vessels
is investigated. Armstrong-Frederick kinematic hardening model is used to perform
plastic analysis during the cyclic loading of the structure. Due to complexities
incurred by the nonlinearity of the problem, a numerical iterative method is proposed
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which is quite capable to obtain the multidimensional state of stresses caused by
cyclic thermal and mechanical loads in plastic region. Results obtained using the
Armstrong-Frederick kinematic hardening model is compared with those obtained
with the Prager model and are shown on an interaction diagram.
It is concluded that when creep is not considered, Prager kinematic hardening model
predicts revresed plasticity for all combination of loadings where stress range are
twice the yield stress. Solving the same problems with the Armstrong-Frederick
model shows that ratcheting is achieved for load controlled cyclic loading while
reversed plasticity is achieved for deformation controlled cyclic loading.
When creep is considered, both models predict the same ratcheting or shakedown
behavior. Both models predicts ratcheting for load controlled cyclic loading and
reversed plasticity for deformation controlled cyclic loading when the stress range is
larger than twice the yield stress. The ratcheging rate predicted by the Armstrong-
Frederick model is larger than those predicted with the Prager model.
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Limiting phase trajectories and superharmonic
resonance in Duffing oscillator
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lmanev96@yahoo.com

Abstract

We present an analytical study of non-stationary vibrations in the forced
oscillator with cubic nonlinearity. Special attention is paid to limiting phase
trajectories (LPT), introduced by the first of the authors, and corresponding
to the most intensive energy exchange between the oscillator and the source
of energy. It is shown that the dynamical transition in the undamped system
occurs at a certain value of the parameter, which characterizes nonlinearity.
This transition leads to a qualitative change of both phase plane structure and
temporal behavior of oscillator. The adequate description of non-stationary
vibrations of both undamped and damped oscillators in the conditions of 1:3
resonance is achieved using the non-smooth basic functions.

1 Introduction

Secondary resonances in Duffing oscillator as well as principal resonance were sub-
jects of numerous studies [1, 2]. However, these studies mainly dealt with the sta-
tionary vibrations, where a simple analytical consideration is possible. As for non-
stationary process, it was studied before only numerically because of the mathemat-
ical complications, especially for damped systems. However, an analytical study of
this fundamental problem is important in order to understand the regularities in the
behavior of nonlinear systems.
In this problem we deal with intensive energy exchange between the oscillator and the
source of energy. The adequate mathematical tool for description of such processes
was introduced in [3] in application to coupled oscillators and oscillatory chains.
This conception turned out to be efficient also for the case of 1:1 resonance in
Duffing oscillator [4]. We apply the proposed method to the study of superharmonic
resonance.

2 Model

The system under consideration is described by the following equation of motion:

m
d2U

dt2
+ 2n

dU

dt
+ c1u+ c3u

3 = f sinωt (1)
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In dimensionless form we have:

ü+ 2γ ε u̇+ u + 8β εu3 = 2F sin ω̄τ0 (2)

where ω0 =

√
c1

m
, 2εγ =

2n√
c1m

, 8βε =
c3r

2
0

c1
, u =

U

r0
, 2F =

f

cr0
, τ0 = tω0,

ω̄ =
ω

ω0
. Eq. (2) is equivalent to the following system of two first-order equations

dv

dτ0
+ 2γ ε v+ u+ 8β εu3 = 2F sin ω̄τ0

du

dτ0
= v.

(3)

Let us introduce the following conjugate functions [2, 8]:

ψ = v+ iu; ψ∗ = v− iu. (4)

Multiplying the second equation (3) by i and adding it to the first equation, we
obtain:

dψ

dτ0
− iψ+ γ ε (ψ+ψ∗) + iβ ε (ψ−ψ∗) 3 = 2F sin ω̄τ0. (5)

Let us introduce, alongside with the “fast” time τ0, the slow times τ1 = ετ0, τ2 =

ε2τ0, and so on. In accordance with the procedure of multiple scale expansions we
present a solution as a series

ψ1 = ψ0+ εψ1+ ε2ψ2+ . . . , (6)

where

d

dτ0
=

∂

∂τ0
+ ε

∂

∂τ1
+ ε2

∂

∂τ2
+ . . . (7)

Substitution of the expansion (6) into Eq. (5) and selection of the terms of the same
order of ǫ lead to the following relations:

ǫ0 :
∂ψ0

∂τ0
− iψ0 = −iF

(
eiω̄τ0 − e−iω̄τ0

)
(8)

ǫ1 :
∂ψ0

∂τ1
+
∂ψ1

∂τ0
− iψ + γ (ψ0+ ψ∗

0) + iβ (ψ0− ψ∗
0)
3

= 0 (9)

The solution of Eq. (8) can be presented in the form

ψ0 = ϕ (τ1, . . .) e
iτ0 +Λ

[
(1+ ω̄) eiω̄τ0 − (1− ω̄) e−iω̄τ0

]
(10)

where Λ =
F

1− ω̄2
. Then Eq. (9) takes the following form:

∂ψ1

∂τ0
− iψ1 = −

∂ϕ

∂τ1
eiτ0 − γ

(
ϕeiτ0 + 2ω̄Λeiω̄τ0

)
− iβ

[(
ϕ3 e3iτ0

− 3 |ϕ|
2
ϕeiτ0

)
+ 6Λ

(
ϕ2ei(2+ω̄)τ0 − 2 |ϕ|

2
eiω̄τ0 −ϕ2ei(2−ω̄)τ0

)
(11)

+ 12Λ2ϕ
(
ei(1+2ω̄)τ0 − 2eiτ0 + ei(1−2ω̄)τ0

)

+ 8Λ3
(
e3iω̄τ0 − 3eiω̄τ0

)]
+ c.c. = 0
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where c.c. denotes conjugate terms.
Let us now consider the case when

ω̄ =
1

3
+ sε (12)

Since secular terms in the fast time should be absent, function ϕ (τ1, τ2, . . .) can be
found as the solution of the following equation:

∂ϕ

∂τ1
+ γϕ− iβ

(
3 |ϕ|

2
ϕ+ 24Λ2ϕ− 8Λ3e3isτ1

)
= 0. (13)

The complex solution of this equation can be presented in the polar form:

ϕ = a eiδ. (14)

Substituting expression (14) into (13) and separating real and imaginary parts, after
simple transformation we get the system of two real equations

dξ

dτ1
= −γξ − 8e∗s sin∆

ξ
d∆

dτ1
= 3e∗sξ

(
ξ2+ 8

)
− 8e∗s cos∆− 3ξs

(15)

where ξ =
a

Λ
, e∗ =

Λ2β

s
, ∆ = δ− 3sτ1. Then if damping is absent this system is

integrable and its integral has the following form:

H = 3e∗
(
ξ4

4
+ 4ξ2

)
− 3

ξ2

2
− 8e∗ξ cos∆ = const. (16)

Let us consider first the equilibrium points of the system (15). These points cor-
respond to stationary superharmonic vibrations, therefore the following conditions

are satisfied:
dξ

dτ1
= 0,

d∆

dτ1
= 0. This means that ∆ = 0 or ∆ = π (we eliminate

an exact resonance when s=0), and the amplitude is determined by the following
algebraic equation:

ξ3+ µξ∓ ν = 0 (17)

where µ = 8 − 1/e∗, ν = 8/3. If we introduce parameter D = ν2/4 + µ3/27, then
the solution of Eq. (17) depends on the sign of D. If D < 0, the equation has 3 real
roots, and in the case of D > 0 there are 1 real and 2 conjugated roots. Transition
between these two cases appears when D = 0, and the corresponding relationship
between parameters is ν2 = −4µ3/27, or e∗s = 1/(8 + 2

3
√
6) ≈ 0.0859. Then the

stationary point’s amplitude is determined by the positive root of Eq. (17), namely:
ξ0 = 2 3

√
4/3 ≈ 2.2013 and ξπ = 3

√
4/3 ≈ 1.1006 for here ∆ = 0 and ∆ = π,

respectively.
We are focusing now on the determination of LPTs, where integral (16) must equal
zero because LPT passes through the point ξ = 0. Hence we have the following
equation:

ξ

(
e∗
(
ξ3

4
+ 4ξ

)
−
ξ

2
−
8

3
e∗ cos∆

)
= 0 (18)
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Figure 1: (a, left) e∗ < e∗LPT; (b, right) e∗ = e∗LPT. Coordinates (∆, ξ).

It is clear that Eq. (18) has two branches. One of them is ξ = 0, and the other
one corresponds to LPT and follows from the solutions of the cubic equation in (18)
with ∆ values corresponding to the maximum of the amplitude. To find these values

we have to satisfy the condition
dξ

d∆
= 0. From system (15) with γ = 0 we can find:

dξ

d∆
= −

8e∗ξ sin∆

3e∗ (ξ3+ 8ξ) − 3ξ− 8e∗ cos∆
(19)

It is now obvious that the amplitude has its maxima when ∆ = kπ(k = 0,±1, . . .),
and because of the periodicity it is again sufficient to study only cases ∆ = 0 and
∆ = π. Then from Eq. (18) we have the following conditions:

ξ3+ 2ξ

(
8−

1

e∗

)
∓ 32

3
= 0, (∆ = 0, π) (20)

In this case parameter e∗LPT, corresponding to the transition between different types

of roots, satisfies the condition D =
256

9
+
8

27

(
8− (e∗LPT)−1

)3
= 0. Hence we have

e∗LPT =
1

8+ 6 3
√
4/9

≈ 0.0795. Corresponding maximal amplitudes in the system

are:

ξLPT = 4
3

√
2

3
≈ 3.4943 for ∆ = 0

ξLPT = 2
3

√
2

3
≈ 1.7472 for ∆ = π

(21)

We now see that e∗LPT < e∗s, which means that the qualitative transition in the
system will occur when the system reaches the vicinity of e∗LPT. Stationary points
here can be found by substituting e∗ in (17) for e∗LPT. Then parameter D is negative
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Figure 2: (a, left) e∗LPT < e
∗ < e∗s; (b, right) e∗ > e∗s. Coordinates (∆, ξ).

and the positive roots are as follows:

ξ = 2
√
2
3

√
2

3
cos

π

12
≈ 2.3867 in the case ∆ = 0 (22)

ξ1 = 2
3

√
2

3
≈ 1.7472, ξ2 = 2

√
2
3

√
2

3
cos

5π

12
≈ 0.6395 in the case ∆ = π

It is clear from the comparison of formulas (21) and (22) that the stationary point
lies on the LPT when ∆ = π.
We now observe the transformation of LPT from encircling the “non-resonance”
center (Fig. 1a) to encircling the “resonance” center (Fig. 2a).
We also see the qualitative change in temporal behavior of both amplitude of vibra-
tion ξ and phase shift ∆ between the external force and oscillator (Figs. 3,4). The
transformation leads to the essential increasing of period and amplitude when the
process resembles vibro-impact oscillators (Fig. 5). The discussed transition occurs
at critical value of parameter e∗ = e∗LPT when the unstable stationary point turns
out to be located on LPT. This means that LPT coincides with the separatrix,
separating the stable stationary points.
When e∗ = e∗LPT, we observe the second topological transformation of the phase
plane (Fig. 1b) with further approach to the saw-tooth behavior (Fig. 5).
To clarify the reason of the described transformation of the solution corresponding
to LPT let us derive the equation of second order for ξ by excluding variable ∆.
After simple transformations, we obtain from Eqs. (18) and (15) for LPT:

d2ξ

dτ21
+ µ1ξ − µ2ξ

3+ µ3ξ
5 = 0 (23)

where µ1 = 9s2
(
16e∗2− 4e∗ +

1

4

)
, µ2 = 36e∗s2

(
1

8
− e∗

)
, µ3 =

27

16
(e∗s)2.

The stationary points of Eq. (23) satisfy the next algebraic equation:

ξ
(
µ3ξ

4− µ2ξ
2+ µ1

)
= 0 (24)
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Figure 3: The case e∗ < e∗LPT.

Its solutions are ξ1 = 0 and ξ22−4 =
µ2±

√
µ22− 4µ1µ3

2µ3
. Taking into account that

0 ≤ ξ ≤ ξmax, as follows from (21), we can construct the phase plane for Eq. (23)
(Fig. 6).

Dealing with LPTs we suppose that ξ = 0 when τ1 = 0. If the phase trajectory is
located inside the separatrix the case is non-resonant, because there is no essential
energy exchange between the oscillator and the source of energy. When we pass the
separatrix, the phase trajectories tend to become almost straight lines as the initial

value of
dξ

dτ1
increases.

Taking into account that ξ ≤ ξmax, we understand that the adequate description
of the process can be obtained after the change of temporal variable, because the
almost straight trajectory has to “turn” in the opposite direction when ξ = ξmax.
So, until the first topological transition we deal with energy localization near the
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Figure 4: The case e∗LPT < e
∗ < e∗s.
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Figure 5: The case e∗ > e∗s.
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non-resonant stationary state. After the transition we observe an intensive energy
exchange between the oscillator and the source of energy. This exchange is described
in the chosen coordinates similarly to the description of the vibro-impact process.
It is practical to consider here a special non-smooth basis τ (τ1) and e (τ1). This
basis was introduced in [5,6,7] for studying the vibrations close to vibro-impact ones,
and was used in [2] for the description of LPT in 2DoF system. According to the
procedure of this method, we introduce fast and slow times as follows:

t1 = ω(t0)τ1

t0 = γτ1

τ = τ(t1) =
2

π
arcsin

(
sin
πt1

2

)

Then amplitude and phase may be represented in the following form:

ξ(τ1) = X1(τ, t0) + e(t1)Y1(τ, t0)

∆(τ1) = X2(τ, t0) + e(t1)Y2(τ, t0)
(25)

where e(t1) =
dτ

dt1
. Then

dξ

dτ1
= e

∂X1

∂τ
ω+ γ

∂X1

∂t0
+
∂Y1

∂τ
ω+ eγ

∂Y1

∂t0
d∆

dτ1
= e

∂X2

∂τ
ω+ γ

∂X2

∂t0
+
∂Y2

∂τ
ω+ eγ

∂Y2

∂t0

(26)

providing that Y|τ=1 = 0.
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Substituting (25) and (26) into system (15) and grouping terms with and without
e, we obtain the following system:

ω
∂Y1

∂τ
+ F sinX2 cosY2 = −ε(γ

∂X1

∂t0
+ γX1)

ω
∂X1

∂τ
+ F sin Y2 cosX2 = −ε(γ

∂Y1

∂t0
+ γY1)

ωX1
∂Y2

∂τ
+ωY1

∂X2

∂τ
+ s1X1− αX31− 3αX1Y

2
1

+F cosY2 cosX2 = −ε(γX1
∂X2

∂t0
+ γY1

∂Y2

∂t0
)

ωX1
∂X2

∂τ
+ωY1

∂Y2

∂τ
+ s1Y1− αY31 − 3αY1X

2
1

−F sin Y2 sinX2 = −ε(γX1
∂Y2

∂t0
+ γY1

∂X2

∂t0
)

(27)

where F = 8e∗s, s1 = 3s−24e∗s, and α = 3e∗s. Parameter ε is introduced here only
for convenience of the main terms selection and has to be finally set equal to unity.
Now we seek the solution of system (27) in the form of the following series expansions:

Xn(τ, t
0) = Xn0+ εXn1+ ε2Xn2+ ...

Yn(τ, t
0) = Yn0+ εYn1+ ε2Yn2+ ...

ω(t0) = ω0+ εω1+ω2ε
2+ ...

(28)

where n = 1, 2. Then at ε0 we obtain the following system:

ω0
∂X10

∂τ
+ F sin Y20 = 0

ω0X10
∂Y20

∂τ
+ s1X10− αX310+ F cosY20 = 0

X20 = Y10 = 0

(29)

System (29) is integrable, being equivalent to system (15) without damping. Its inte-
gral is similar to (18). Using this integral we can derive the second-order differential
equation for X10(τ, t

0) similar to equation (23)

∂2X10

∂τ2
+
1

ω20
(µ1X10− µ2X

3
10+ µ3X

5
10) = 0 (30)

We now seek the solution of Eq. (30) in the form of the following series [5]:

X10 = X10,0+ X10,1+ ...

1/ω20 = λ0(1+ ρ1+ ...)
(31)

In the first approximation we obtain:

X10,0 = A0(t
0)τ

λ0 = (6µ1− 3µ2A
2
0+ 2µ3A

4
0)/12

(32)

where an arbitrary function A0 has to be determined from the initial conditions. In
the next approximation we obtain:

X10,1 = −
λ0

2
(
µ1τ

3

3
−
µ2τ

5

10
+
µ3τ

7

21
)

ρ1 = −

∫1
0
X1(τ)[µ1A0− 3µ2A

3
0τ
2+ 5µ3A

5
0τ
4]dτ

∫1
0
[µ1A0τ − µ2A

3
0τ
3+ µ3A

5
0τ
5]dτ

(33)
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Figure 7: Dashed line represents the numerical solution, dotted and dashed line
corresponds to the first approximation, and continuous line represents the second
approximation for LPT.

Y20 can be determined from (18) in the new variables, namely:

cosY20 =
αX310
4F

−
s1X10

2F
(34)

It is sufficient to retain only two terms in the approximation corresponding to LPT.
They are shown in Fig. 7. The next approximation for system (27) will allow us to
estimate the effect of damping, which provides the transition from LPT to stationary
state in the time τ1 or to steady-state oscillations in the time τ0.

3 Conclusions

1. The concept of a Limiting Phase Trajectory (LPT) turns out to be an ade-
quate tool for analytical treatment of intensive energy exchange between the
oscillator and the external force in the conditions of superharmonic resonance.

2. Despite more complicated nature of this resonance in comparison with 1:1
resonance, principal regularities are the same in both cases.

3. After corresponding change of variables non-smooth basic functions provide
an efficient description of nonstationary nonlinear oscillations.

4. Analytical results are confirmed by the numerical calculations.
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Abstract

Whilst periodic and random stationary vibrations of a strongly nonlinear
oscillator have been well-studied for centuries, the theoretical analysis of non-
stationary processes is still a daunting task. Recently it has been shown
[1], [2] that the difficulties of the theoretical analysis for deterministic non-
stationary vibrations may be obviated by using the concept of limiting phase
trajectories (LPTs). The LPT concept is of great help in the case of an
intensive energy exchange between the oscillator and a source of the periodic
excitation. This approach allows finding an analytical approximation for a
non-stationary response corresponding to the most intensive energy pumping
from the source of energy into the oscillator and calculating the required
statistical parameters of the response. The present paper extends the LPT
approach to a nonlinear oscillator subjected to a harmonic excitation with
random amplitude.

1 Introduction

The topic discussed in the paper is closely related to a well-known problem of vibra-
tion attenuation in structures. The task is to construct an effective absorber “tak-
ing” the energy from the structure and thus diminishing dangerous vibration. The
effectiveness of nonlinear absorbers in suppressing undesired vibration was proved
long ago, see, e.g. [3]. However, non-uniqueness of periodic solutions in a nonlinear
system is a serious shortcoming in the development of nonlinear vibration protec-
tion. This paper analyzes the energy pumping from a source of harmonic forcing
into an sdf Duffing oscillator under the condition of primary 1:1 resonance. It is well
known that a nearly-resonance excitation may induce 2 stable periodic solutions of
small and large amplitudes. The quasi-linear solution of small amplitude should
be avoided as it corresponds to intensive vibrations of the structure and small os-
cillations of the absorber. The nonlinear solution of large amplitude is associated
with the effective energy pumping from the source of energy into the oscillator; it is
considered as a required mode of operation. The purpose of the paper is to define a
parameter of nonlinearity and a critical amplitude of excitation ensuring intensive
vibration of the nonlinear system.
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The paper is organized as follows. In Section 2 we discuss the method of limiting
phase trajectories (LPTs), demonstrate typical LPTs, and calculate critical values of
the nonlinearity parameter guaranteeing the existence of large nonlinear oscillations.
In Section 3 we demonstrate that the envelope of large oscillations can be described
with help of a simple saw-tooth approximation. Section 4 extends this approach to
a system with a harmonic excitation of random amplitude.

2 Equations of motion

We investigate nearly-resonance dynamics of a nonlinear non-dissipated oscillator
subjected to a weak harmonic excitation. The dimensionless equation of motion is
reduced to the form

d2u

dt2
+ u+ 8εαu3 = 2εFsin[(1+ εs)t+ θ], (1)

where ε is a small parameter, 0 < ε ≪ 1; the detuning parameter s describes
deviations of the excitation frequency from the natural frequency of a generic linear
system (α = 0); F is the amplitude of the excitation, θ is a constant phase. In
this Section, we consider F and θ as pregiven deterministic parameters. We recall
that the maximum energy pumping from the source of excitation into the oscillator
corresponds to the initial conditions u(0) = (0) = 0; an orbit corresponding to these
initial conditions is said to be the limiting phase trajectory (LPT) [1].
Following the approach developed in [4], we introduce the change of variables

ϕ = e−it(
du

dt
+ iu), ϕ∗ = eit(

du

dt
− iu), (2)

where i =
√

−1; the asterisk denotes the complex conjugate variable. Note that rep-
resentation (2.2) is convenient for problems of the energy exchange, as the functions
ϕ and ϕ∗depend both on the displacement and the velocity of the system. Using
the two-scale expansion procedure [5], we seek an asymptotic expansion in the form

ϕ(t, ε) = ϕ0(τ0, τ1) + εϕ1(τ0, τ1) + . . . , (3)

where τ0 = t is the fast (natural) time and τ1 = εt is the slow time associated
with the rate of the response envelope; the functions ϕ1,2(τ0, τ1) are supposed to
be periodic in τ1. The derivatives with respect to time are expressed in term of the
new time scales as

d

dt
=

∂

∂τ0
+ ε

∂

∂τ1
,
d2

dt2
=
∂2

∂τ20
+ 2ε

∂2

∂τ0∂τ1
... (4)

Substituting (2) - (4) into (1) and equating coefficients of like powers of ε, we obtain
∂ϕ0/∂τ0.This implies that the function ϕ0 depends on the ‘slow’ times only. Then,
equating the coefficients of order ε,we obtain

∂ϕ0

∂τ1
+
∂ϕ1

∂τ0
+ iα(ϕ30e

−2iτ0 − 3|ϕ0|
2ϕ0+ (5)

3|ϕ0|
2ϕ∗
0e

−2iτ0 − (ϕ∗
0)
3e−4iτ0) = −iF[eis(τ1+θ) − e−i(2τ0+sτ1+θ)].
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The condition of periodicity requires eliminating secular terms from (5). This leads
to the equation for ϕ0(τ1)

∂ϕ0

∂τ1
− 3iα|ϕ0|

2ϕ0 = −iFe
is(τ1+θ)

. (6)

We can circumvent complex-valued functions ϕ0 and ϕ∗
0 by introducing the polar

variables. Denote ϕ0 = aeiδ, ϕ∗
0 = ae−iδ, where a > 0, δ = ∆ +sτ1 + θ − π/2.

Using the polar variables, we transform (6) into the system

da

dτ1
= F cos∆, a

d∆

dτ1
= −sa+ 3αa3− F sin∆. (7)

It is easy to prove that system (7) possesses the integral of motion

H = sa2−
3

2
αa4+ 2aF sin∆ = Const, (8)

which describes the phase trajectories in the plane (a, ∆). A constant in the right-
hand side of (6) depends on the initial conditions of motion. Recall that the LPT,
corresponding to the most intensive energy pumping from an external source into
the oscillator, satisfies the initial condition a = 0, or by (8), H = 0. Stationary
states associated with the steady-state vibration can be found from the equations

da

dτ1
= 0,

d∆

dτ1
= 0, (9)

or

∆ = ±π/2, f(a) = sa− 3αa3 = −Fsgn∆. (10)

Figure 1: Roots of Eqs (10): α < α∗ (f1), α = α∗ (f2) and α > α∗ (f3)

The discriminant D of Eq.(10) takes the form

D =
1

9α2
(
F2

4
−
s3

81α
). (11)

If D < 0, Eq. (10) has 3 different real roots (curve 1 in Fig. 1); if D > 0, Eq.
(10) has a single real and two complex conjugate roots (curve 3). In the intermediate
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case D = 0 two real roots merge together (curve 2). This yields the critical value of
the parameter α

D(α) = 0, α∗ =
4s3

81F2
. (12)

A straightforward investigation proves that, in case α < α∗ (weak nonlinearity)
there exist two stable centres: C− : (−π/2, a−), C+ : (π/2, a+), and an intermediate
unstable hyperbolic point O : (−π/2, a0), but in case α > α∗ (strong nonlinear-
ity) there exists only a unique stable centre C+ : (π/2, a+). Bounded oscillations
in the left half-plane are associated with the quasilinear dynamics of the system;
oscillations in the right half-plane correspond to the strongly nonlinear motion.

Now we define a LPT for system (7). The equation of the LPT

H = sa2−
3

2
αa4+ 2aF sin∆ = 0 (13)

has the solution a = 0 for an arbitrary ∆ and three non-degenerate solutions (a.∆).
Note that only an orbit starting at a = 0, ∆ = 0 can be considered as the LPT.
Phase portraits in Figs 2a, 3a demonstrate the transformation of the LPT from en-
circling the non-resonance “quasi-linear” center of relatively small oscillations (Fig.
2) to encircling the “resonance” center of large oscillations associated with the max-
imum energy absorption (Fig. 3). Fig. 2b and Fig. 3b show the shape of a(τ1)

corresponding to the LPTs of small and large oscillations, respectively. Note that
the variables a(τ1) and ∆(τ1) found by Eqs (7) and (13) can be interpreted as the
envelope and the phase of the LPT.

a) b)

Figure 2: Phase portrait (a) and plots of a(τ1) (b) for quasi-linear oscillations:
s = 0.4, F = 0.13, α = 0.093

We find a critical value αcr < α∗ ensuring the transition from small to large os-
cillations. In the critical case, stable orbits, encircling the centers and C+, and a
trajectory, passing through the unstable point, coalesce at a point M : (aM, ∆M)

corresponding to the maximum of an orbit encircling C−. The maximum condition
(9) gives ∆M = −π/2 for any aM. Recall that the point M lies on the LPTs and,
hence, condition (13) holds. In case ∆M = −π/2, the determinant of Eq. (13) is

D =
4

α2
(F2−

2s3

81α
). (14)
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a) b)

Figure 3: Phase portrait (a) and plots of a(τ1) (b) for strongly nonlinear oscillations:
s = 0.4, F = 0.13, α = 0.094

As above, we consider the condition D = 0. This yields the critical value of the
parameter α

αcr =
2s3

81F2
=
α∗

2
. (15)

The parameter αcr corresponds to boundary between small (α < αcr) and large
(α > αcr) oscillations. In particular, for s = 0.4, F = 0.13 we obtain αcr = 0.0935.
Note that Fig. 2 and Fig. 3 are plotted for α < αcr and α > αcr, respectively.
If α = 2αcr = α∗, the above-mentioned coincidence of the stable and unstable points
in the left half-plane results in the topological transformation of the phase portraits,
with evident saw-tooth form of a(τ1) (Fig. 4).

a) b)

Figure 4: Phase portrait (a) and plots of a(τ1) (b): s = 0.4, F = 0.13, α = 0.187

3 Vibro-impact approximations of motion

Numerical simulations (Figs 3, 4) demonstrate that the saw-tooth form of the enve-
lope a(τ1) for the LPT of large oscillations is similar to a vibro-impact process [2].
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a) b)

Figure 5: Potential U(a) (a) and phase trajectories (b): s = 0.4, α = 0.1, F =

0.18; F = 0.58; F = 0.75

Here we give only a brief insight into the strongly nonlinear dynamics; details and
a mathematically rigorous discussion can be found e.g. in [6], [7], and references
therein.
Using (13), we eliminate the phase ∆ from Eq. (7). This results in the second order
equation for a(τ1)

d2a

dτ21
+Q(a) = 0. (16)

with the initial conditions: τ1 = 0 : a = 0, da/dτ1 = F. In (16) we denote

Q(a) =
dU

da
=
a

4
(
3

2
a2− s)(

9

2
a2− s). (17)

Equation (16) can be interpreted as the equation of a conservative oscillator with
potential

U(a) =
9

32
(αa)2(a4−

16

9

s

α
a2+

4

9

s2

α2
) (18)

and total energy

E =
v2

2
+U(a) = F2; v =

da

dτ1
(19)

Potential U(a) has a maximum at a1 = (2s/9α)1/2and a minimum at a2 =

(2s/3α)1/2. The potential barrier corresponds to U∗ = U(a1) = U(a∗) (Fig. 5a
). As may be seen in Fig. 5b, trajectories of large oscillations are weakly sensitive
to the shape of the potential. A high energy orbit is close to the straight line until it
reaches the point a∗. If the time of motion along the remainder of the orbit is much
less than the time needed to reach a∗, the periodic function a(τ1) is approximated
by the periodic solution of the equation

d2alim

dτ21
= 0 (20)
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satdfying the impact conditions: τ1 = 0 : alim = 0, dalim/dτ1 = F; τ1 = T/2 − 0 :

alim = a∗, dalim/dτ1 = F; τ1 = T/2+0, alim = a∗, dalim/dτ1 = −F, with the periodic
extension to the intervals kT < τ1 < (2k + 1)T/2, (2k + 1)T/2 < τ1 < (k + 1)T,

k = 0, 1, ...;the period T = 2a∗/F. The periodic solution of Eq. (20) takes the form

alim(τ1) = Fτ1, 0 < τ1 < T/2, alim(τ1) = F(T − τ1), T/2 < τ1 < T, (21)

etc. It has been shown [8], [9] that solution (21) can be rewritten as

alim(τ1) = a∗| arcsin(sin
πτ1

T
)|. (22)

Formula (22) gives a unified representation of alim(τ1) and, therefore, of the function
a(τ1) ≈ alim(τ1) on the infinite time interval.
It remains to compare (21), (22) with the results of simulation (Fig. 5). The
direct calculation of the potential U(a) and the magnitude a∗ for α = 0.187 leads
to a∗ ≈ 1.44, T ≈ 23. This proves good agreement of the theory with numerical
simulation.
Note that the above derivation presents only rough ideas of the vibro-impact ap-
proximations; a rigorous mathematical consideration can be found in [6].

4 An oscillator subjected to a harmonic excita-

tion with random amplitude

In this section we assume that the parameters s and α are fixed but the amplitude
F and the phase θ are random parameters uniformly distributed within the inter-
vals Φ : [F−, F+] and Θ : [0, 2π], respectively. The task is to calculate statistical
parameters of the generated random process a(τ1).
Now we find an amplitude Fcr guaranteeing the maximum pumping of energy into
the oscillator with fixed parameters s and α. From (15) we obtain

Fcr =
1

9
(
2s3

α
)1/2. (23)

If F > Fcr, the LTP encircles the centre C+; if F < Fcr, the LTP encircles the
centre C−. This implies that, if Fcr is beyond the interval Φ, all samples of the
process exhibit similar behavior, and the probability of occurrence of large (small)
oscillations is equal either 1 or 0. If Fcr ∈ Φ, different samples of the process
may exhibit different behavior. The probability of occurrence of large and small
oscillations is obviously equal Pl = (F+ − Fcr)/(F+− Fcr) and Ps = (Fcr− Fc−)/(F+−

Fcr), respectively.
As an example, we investigate the oscillator with detuning s = 0.4 and α1 = 0.03

(weak nonlinearity), α2 = 0.095 (an intermediate case), α3 = 0.187 (strong non-
linearity). Critical amplitudes corresponding to the parameters α1, α2, α3 are, re-
spectively F1cr = 0.23, F2cr = 0.13, F3cr = 0.09. The amplitude F is supposed to be
uniformly distributed within the interval [0.1, 0.15]. Numerical simulation was per-
formed with a step δF = 0.1. The space average Ea(τ1) is calculated by averaging
over 15 samples,
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4.1 The regular behaviour

1. Consider the weakly nonlinear system with α = 0.03, Fcr = 0.23; in this case
F− < F < F+ < Fcr. Samples of the process a(τ1) and the space average Ea(τ1) are
presented in Figs 6a and 6b, respectively. As expected, shapes of all samples are
similar to the function a(τ1) corresponding to small oscillations (Fig. 2b).

a) b)

Figure 6: Plots of a(τ1) (a) and the mean value Ea(τ1) (b): s = 0.4, α = 0.03,

Fcr = 0.23, F ∈ [0.1, 0.15]

2. Consider the strongly nonlinear system with α = 0.187, Fcr = 0.09. In this case
Fcr < F− < F < F+. Samples of the process a(τ1) and the space average Ea(τ1) are
presented in Figs 7a and 7b. The saw-tooth shape of every sample is similar to the
shape of the function a(τ1) corresponding to large oscillations (Fig. 5).

a) b)

Figure 7: Plots of a(τ1) (a) and the mean value Ea(τ1) (b): s = 0.4, α = 0.187,

Fcr = 0.09, F ∈ [0.1, 0.15]

Variations in the amplitude F entail the change in the initial inclination da/dτ1 = F

and the period T = 2a∗/F. As seen in Figs 6, 7, samples of a(τ1) fill the plane
with some degree of symmetry with respect to the time average < a(τ1) >= ā.

This allows presuming the ergodic properties of the process a(τ1). We prove the
necessary condition of ergodicity, namely, the convergence Ea(τ1) → ā as τ1 → ∞
for the saw-tooth function a(τ1). We recall that (21), (22) can be represented as
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the Fourier series

a(τ1) = a0+

∞∑

n=1

ancos(nωτ1), ω = 2π/T = πF/a∗, (24)

where

a0 = 2
T

T/2∫

0

a(s)ds, an = 2
T

T/2∫

0

a(s) cos(nωs)ds. (25)

Substituting (21) into (25), we obtain after standard transformations

a0 =
a∗
2
, a2k+1 = −

8a∗
[(2k+ 1)π]2

, a2k = 0, (26)

and, therefore,

ā = a0 =
a∗
2

(27)

Note that the frequency ω = πF/a∗ is uniformly distributed within the interval
[Ω+, Ω−] of length ∆Ω = Ω+ −Ω−. where Ω± = πF±/a∗. This allows calculating
the mean value as

E[cos(nωτ1)] = 1
∆Ω

Ω+∫

Ω−

cos(nωτ1)dτ1 = 1
n(∆Ω)τ1

[sin(nΩ+τ1) − sin[(nΩ−τ1)]

and, therefore,

E{cos[(2k+ 1)ωτ1]} →
τ1→∞

0. (28)

It follows from (24), (27) that

Ea(τ1) →
τ1→∞

a0 = ā (29)

with rate of convergence of order 1/τ1.

4.2 The irregular behavior

We now consider an intermediate situation, α = 0.095, Fcr = 0.13, F− < Fcr < F+. A
typical behavior of the system is shown in Fig. 8.

Considering the distribution of the parameter F, we find a set of small amplitudes
with small periods and a few numbers of large amplitudes with large periods (Fig.
8a) with irregular average Ea(τ1) (Fig.8b). In this case a(τ1) cannot be considered
as an ergodic process.
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a) b)

Figure 8: Plots of a(τ1) (a) and the mean value Ea(τ1) (b): s = 0.4, α = 0.095,

Fcr = 0.13, F ∈ [0.1, 0.15]

5 Conclusion

This paper has demonstrated the effectiveness of the LPTs approach in the study of
strongly nonlinear dynamics for an sdf Duffing oscillator subject to a quasi-resonance
harmonic excitation. We have found the critical parameters of nonlinearity and
forcing ensuring the most intensive energy pumping from the source of energy to
the oscillator and demonstrated the validity of a simple non-smooth approximation
for the LPT. In addition, we have extended the LPTs approach to a system with
a harmonic excitation of random amplitude. The clearness and simplicity of this
approach may constitute a promising alternative to previously developed methods
of non-linear mechanics.
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Abstract

Nondestructive testing (NTD) of materials and structures by ultrasonics
has now become a classical test method for many important influencing fac-
tors. The essential tool in ultrasonic detection is the ultrasonic transducer,
which basically consists of a piezoelectric element housed in a special case,
which while excited by a very short electrical signal is transmitting an ultra-
sonic pulse. The same piezoelectric element can in turn generate an electrical
signal when it receives an ultrasonic signal. The efficiency of the NDT method
depends on the ultrasonic transducer which further depends on the piezoelec-
tric element used. Consequently, we developed a new piezoelectric material
by doping the basic PZT composition with Sr, Ba, Ni, Nb, Sb, and W ions
in small quantities, between 1 and 5 % at. The obtained materials have
rather high values for the piezoelectric parameters like kp, εr, d33 and Qm.
Therefore, they can be used for the construction of high performance piezo-
electric transducers designed for NDT of different materials and structures.
Difficulties arise at low frequencies since the transducers would require large
piezoceramic elements and consequently high voltage signals. To avoid these
difficulties we designed and constructed a rather simple piezoceramic active
element of sandwich type. This consists in a number of piezoceramic discs,
glued together, with the polarization in opposition and electrically connected
in parallel. This construction allows the transducer to be made at the desired
working frequency. In our case the sandwich piezoactive element was made
using eight discs of 25 mm diameter and 1.8 mm thickness, so that the whole
construction had the resonant frequency at 60 kHz. Transducers made with
such sandwich like elements for different low frequencies as well as their per-
formances for NDT are presented and discussed in the present work. They
can be successfully used for NDT, either in trough transmission or pulse-echo
arrangements.
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1 Introduction

Among the methods used for testing materials and different engineering structures
the nondestructive testing (NDT) methods are the most preferable ones because
they can evaluate the material and structures capabilities in situ during service and
even more can monitor them within longer periods of time. Ultrasonic testing (UT)
methods occupy an important place among the NDT methods as the problems of
testing the physical and mechanical properties of materials and structure can be
easily solved with their help. To be effective, the UT methods make use of high per-
formance ultrasonic transducers [1, 2]. Such transducers represent devices that may
convert one form of energy (in this case electrical) into another one (mechanical) or
vice versa by means of one or more piezoelectric active elements capable of under-
taking the converse piezoelectric effect [3, 4]. The performances of a piezoelectric
transducer essentially depend on both the quality of the piezoelectric material used
and the transducer design. High efficiency for emitter and sensitivity for receiver
are fundamental characteristics that need to be maximized in a high performance
transducer. Both are directly dependent on the electromechanical coupling factor in
such a way that a high k is always desirable. In addition, high values of permittivity
and elastic compliances can also be favorable in obtaining adequate practical values
for electrical impedance at resonance frequency of the piezoelectric active element.
On the other hand the mechanical quality factor Qm can be a determinant param-
eter for practical transducers. A low Qm can assure a good transfer of acoustic
energy into the load [1, 3, 5, 6]. The most used piezoelectric materials for ultrasonic
transducers are the PZT based piezoceramics made of doped solid solutions of lead
zirconate - lead titanate [7, 8, 9, 10, 11, 12]. The material properties can be tailored
as a function of the dopants used in order to have the optimum characteristics for
any specific application. The effect of different dopants on the material character-
istics is generally known [11, 12, 13, 13, 14, 15, 16]. Consequently, for the purpose
of this investigation we need to develop a new PZT type material with characteris-
tics required by a high performance transducer to be used for inspection and NDT
investigation of different structures.

2 Experimental

2.1 Material synthesis

The basic material we used in this experiment was the well known PZT, doped
with a number of elements that can enhance the material characteristics needed
for the transducer. Thus, we used Sr and Ba in small amounts to replace Pb in
order to increase the polarisability and the room temperature dielectric constant
[14]. Furthermore, Zr and Ti were partially replaced by Nb, Ni, Bi and Sb in order
to increase the electromechanical coupling factor k and the charge constant d33
[11, 15, 16, 17, 18]. We have also added a small amount of W in order to keep
the mechanical quality factor Qm at lower values. Finally, small excess of PbO was
used in order to both compensate for the PbO losses during sintering [19, 20] and
to enhance densification at lower sintering temperatures [21, 22, 23, 24].
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Consequently, the final chemical formula of the material investigated was the fol-
lowing: Pb0.90Sr0.05Ba0.05[Zr0.45Bi0.03Ni0.05Nb0.05Sb0.02W0.01Ti0.39]O3. The material
was prepared from high purity oxides (over 99.8 %) from Merck, Riedel de Haen
and Fluka by using the conventional mixed oxide route slightly modified at the
milling stage of the calcined product as should be shown further. The stoichiomet-
ric amounts of oxides were intimately mixed for 3 hours by means of a planetary
ball mill in methanol and after drying were double calcined for 2 hours at 850 and
900 oC respectively with an intermediate milling of half an hour. A small amount
of 2 wt % PbO was now added to the calcined product and this mixture was sub-
jected to a prolonged milling stage of 24 hours in a Retsch 400 PM planetary ball
mill in order to acquire a fine nanometric scale powder with a higher reactivity
during sintering. The milled powder was analyzed structurally by X-ray (Siemens
Kristalloflex diffractometer) and morphologically by SEM microscopy (Hitachi S-
2600 N model microscope). The powder thus obtained was uniaxially pressed into
disc shaped samples of different diameters and sintered in sealed alumina crucibles
at 1250 oC for 6 hours. The morphostructure of the sintered samples was also in-
vestigated by electron microscopy. Next, the sintered samples were mechanically
processed by abrasion, ultrasonically cleaned, dried and chemically electroded with
nickel electrodes. Next the samples were poled in a silicon oil bath at 220 oC un-
der an electric field of 3 kV/mm and cooled down to room temperature still being
under the influence of the electric field. Twenty four hours after poling the samples
were characterized from the dielectric and piezoelectric point of view by resonance
spectroscopy using an Agilent 4294A impedance analyzer.

2.2 Results
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Figure 1: The X-Ray patterns obtained of the calcined powder of the PZT material
used in the present investigation

Figure 1 shows the X-ray diffractogram of the calcined powder of the material in-
vestigated. Only the peaks corresponding to the well known perovskite phase are
present and no other foreign phase was detected. This means that the calcining
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temperature and time were enough to complete the solid state reaction between
the oxides involved and that all of them correspondingly reacted to form one single
phase.

 

Figure 2: SEM micrograph illustrating
the morphostructure of the calcined and
milled powder of the PZT material in-
vestigated

 

Figure 3: SEM micrograph showing the
structure of a sintered sample on a pol-
ished and thermally etched surface

The morphology of the calcined and milled powder is shown in the SEM micrograph
of figure 2. One can see the rather uniform shapes and sizes distribution of the
powder particles though some agglomerates are still visible. The particles are within
the nanoscale range with an average grain size of about 200 nm. The structure of
the pressed and sintered samples is illustrated in the micrograph shown in fig. 3
on a polished and thermally etched surface. One can see that the samples are well
enough densified and the crystallite grain size is just submicrometric though few
crystallites with greater sizes, up to around 1 µm can be distinguished. The main
characteristics of the material were determined on standard samples and the values
of the measured parameters are listed in table 1.
The values reported in the table represent the average values for ten measured
samples for which the differences were within ± 2 %. These values are typical
for a soft type piezoelectric material and they are better than those for the usual
commercial materials. Consequently, we have used this material for the construction
of a special piezoelectric transducer of high efficiency.

2.3 The transducer

A piezoelectric transducer, in its elementary form, consists of a piezoactive element,
generally a disc shaped element, incorporated in a way or another into a case that
serves as housing to protect it. This element vibrates, when excited with an electrical
signal, in the mode allowed by the direction of the polarization axis at a frequency
that depends on the physical dimensions of it. For low frequency working range the
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Table 11: Parameters
Parameter Symbol Units Measured value

Density ρ g/cm3 7.72
Relative dielectric constant εr - 1620

Dielectric losses tgδ - 0.014
Planar coupling factor kp - 0.65

Charge constant d33 pC/N 485
Charge constant d31 pC/N -180
Voltage constant g33 103 Vm/N 25.8
Voltage constant g31 103 Vm/N -11.8

Mechanical quality factor Qm - 63
Curie temperature TC

oC 355

thickness of the element must be very large and in this case the piezoactive element
becomes inconvenient. For many materials and structures the investigation must
be carried out at rather low frequency [25, 26], but because of the high wave atten-
uation the dimension of the piezoactive element should become very big and this
will imply a very high power generator to work at high voltages and this becomes
undesirable. To overcome these difficulties a solution is provided by using a ”sand-
wich” type piezoactive element made of a number of thinner discs glued together
and having the polarization direction in opposition. Such multielement sandwich
type transducer incorporates an even number of piezoceramic discs. The sandwich
type piezoactive element, glued on a steel cylinder acting as backing material has
two main advantages: 1) the electrical connection are disposed in derivation, thus
each disc receiving the whole emf of the driver, much smaller compared to the case
of single thick element and consequently a considerable simplification of the elec-
tronics can be achieved; 2) the working frequency of such a transducer can be simply

Figure 4: The schematic arrangement of
a piezoactive element made from a num-
ber of thin disks glued together on a back-
ing steel block
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Figure 6: The schematic view of the sandwich type transducer: 1-end cap; 2-
electrical connections; 3-outer case; 4-inner electrical isolation; 5-backing steel block;
6-piezoactive thin disc; 7-protection plate; 8-end cap.

chosen by taking the right number of thin piezoactive elements. Figure 4 show the
schematic of a sandwich type piezoactive elements and figure 5 illustrates the exper-
imental resonance frequency of such a sandwich element as a function of the number
of thin discs. The discs used in this experiment for the sandwich type piezoactive
element have a diameter of 25 mm a thickness of 1.8 mm. The resonance frequen-
cies were measured after gluing each pair of two discs to the previously stacked ones
which were already glued on a backing steel block with a diameter of 26 mm and a
thickness of 15 mm.
One can see from figure 5 that the frequency resonance decreases with increasing
number of disc pairs. The decreasing can be described by a law approximated by a
fifth order polynomial function of the form:

F = a+ b1x + b2x2+ b3x3+ b4x4+ b5x5, (1)

where the constants a and bn (n = 1, 2..5) have the following values:

a = 85.01; b1 = 301.25; b2 = −199.79; b3 = 84.54; b4 = −5.21 and b5 = 0.21. (2)

The curve described by the equation 1 is shown as a solid line in figure 5. For the
practical construction of the transducer we choose the sandwich structure with four
pairs of discs (eight thin piezoceramic discs) corresponding to a resonant frequency
of 60 kHz. The schematic view of the transducer is illustrated in figure 6.

2.3.1 The characteristics of the transducer

The electrical characteristics of this transducer were determined by means of an
impedance gain/phase analyzer type Agilent 4294A. The electrical spectra are shown
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in figure 7. The resonance frequency is situated around 60 kHz with a minimum
impedance of 22 Ω and the antiresonance frequency at 71 kHz with a maximum
impedance of 28 kΩ . The quality factor Q can be easily calculated by means of
the formula:

Q = fW/∆f, (3)

where fW is the working frequency which correspond to the resonance frequency,
∆f = fa − fr is the bandwidth of the oscillation spectrum and fr and fa are the
resonance and antiresonance frequencies. The estimated value of Q is 5.5. There is
another way to calculate Q by means of the formula:

Q = X/R, (4)

where X is the reactance and R the resistance of the electrical branch of the equivalent
circuit of the transducer. The reactance is given by:

X = 2πfWL−
1

2πfWCb
, (5)

where L and Cb are the inductance and capacitance of the electrical branch of the
equivalent circuit. The equivalent circuit with its characteristics, as determined by
the impedance analyzer gave the following values: R = 30.4 Ω, L = 9.94 mH and
Cb = 1.5 nF so that the estimated value of Q was 5.44 in good agreement with the
value estimated with 3.
As concerns the acoustical characteristics, they were determined by using a pair
of transducers, one emitter and one receiver, and measuring the ultrasonic output
by means of the gain phase analyzer. The transmitted ultrasonic wave within the
working range is shown in figure 8. The shape of the acoustical spectrum is that of
a product of two lorentzians, each corresponding to a single mode.
The data from this figure allow calculating the relative bandwidth at 1.5 dB under
the resonance peak and the corresponding Q number with the formula:

Q =
ω

∆ω1.5dB

(6)

Using the experimental values for w and ∆ω1.5dB we obtained for Q a value of
50 which seems a reasonable value for a pair of transducers working in tandem
conditions.

3 Conclusion

A new piezoceramic material based on doped PZT was prepared. The dopants used
were Sr, Ba, Ni, Nb, Sb, Bi and W, with doping levels ranging between 1 and 5 %
at. The piezoelectric parameters of the resulting material were high enough so as
to make it suitable for a high performance piezoelectric transducer to be used for
NDT of different materials and structures.
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cal spectra of the transducer showing the
phase and impedance versus frequency
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spectrum of a pair of transducer working
in the trough-transmission arrangement

A sandwich type piezoelectric transducer working at 60 kHz was designed and con-
structed for different materials inspections and NDT investigations. The transducer
is a composite structure made of eight piezoceramic discs of 25 mm diameter and
1.8 mm thickness glued together, with polarization in opposite directions and then
glued on a steel cylinder which plays the role of backing material. The transducer
can work either in the through transmission or pulse-echo arrangement.
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Abstract

Mechanical properties of elastomeric composites in particular carbon
blacks and silicas filled rubbers considerably depend on the uniformity of
filler distribution and sizes of its clusters in an end-product, i.e. on the qual-
ity of mixing of composite components. The more uniform distribution and
is smaller sizes of clusters, the larger area of a filler surface interacts with
the polymer chains. Insufficient mixing and crushing of filler granules leads
to strong filler-filler interactions. In this case the non-uniform distribution
of stress during deformation takes place. Breakage of large clusters is the
cause of strong change of dynamic module and hysteresis losses. All these
factors negatively affect the mechanical behavior of rubber compounds. A
technique for quantitative analysis of filled rubber microstructure by atomic
force microscopy (AFM) is presented.

1 Introduction

Carbon black (CB), one of the main components of rubber composites (tires, insula-
tors, conveyer belts, etc), is preferably delivered in the form of granules of diameter
1-2 mm. During mixing of the polymer and the fillers, the carbon granules are
broken down, and the CB structures (aggregates and agglomerates) are distributed
throughout the material. The more uniform the distribution of clusters is and the
smaller their sizes are, the larger is the filler surface area that interacts with the
binder.
Insufficient mixing and grinding of granules lead to strong filler-filler interactions.
In this case, stresses are distributed non-uniformly during deformation. Breakage
of large-size clusters results in an essential change in the dynamic modulus of the
material, which, in turn, causes high hysteresis losses. All these factors adversely
affect the mechanical properties of the end product. Hence, the deciding factor that
influences the quality of filled rubbers, all other factors being equal, is the degree
of filler dispersion. As the filler distribution in the material gets more uniform, the
scattering in particle sizes decreases, improving thus the mechanical characteristics
of the filled rubber.
Atomic force microscope provides a powerful, yet rather simple, way to study the
nanostructure of materials, in particular, filled elastomers [1]. This study presents
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methods for qualitative analysis of the structure of filled rubbers. The proposed
approach includes two stages: 1) Processing of AFM images for further statistic
analysis of the structure of clusters. 2) Analysis of quantitative estimates of the
filler distribution in the material, its sizes, areas, volume fraction and compactness.
The obtained characteristics give us insight into the microstructure of elastomeric
composites.

2 Experiment and image analysis

For AFM imaging, three industrial tire rubbers manufactured at the ”Scientific-
Research Institute of Tire Industry” (Moscow) were prepared with next CBs:
N220(1), N330(2), N339(3). In all cases filler volume fraction was 0.2 and the
binder was natural rubber.
The materials were imaged in a close contact mode using Nano-DST (nominal radius
of the tip <10nm). For statistics, from each rubber 10 images of 15x15 µm with
resolution 1024x1024 points in plane were obtained and analyzed by our procedures
written in Matlab.
The surface structure obtained by AFM is a complex three-dimensional relief. If we
observe only such part of the AFM-image that is higher as some height h above the
zero level, the relief will be separated into ’islands’. As we cannot define whether
this ’island’ is part of CB aggregate or agglomerate any structural feature of the
AFM image, whose cross-section A is larger than 0.01 µm2, is called a cluster.
The smaller objects of the surface relief are excluded from the analysis, since the
probes of the microscope are unable to provide the reliable images of small (<20
nm) features in the xy-plane. For obtained images the following height dependences
are constructed:
1. The average compactness [2] of the cluster cross-section c(h):

c(h) =
2
√
π

N(h)

N(h)∑

k=1

√
(Ak(h))

Pk(h)
(1)

where N(h) - number of clusters; Ak(h), Pk(h) are the area and perimeter of the
k-th cluster cross section. Equation (1) shows how much the shape of the circle and
some figure are different. For circle c ≡ 1, the smaller is c, the less compact is the
profile of the cluster cross-section.
2. The volume fraction of clusters φ(h):

φ(h) =
V |
h+20
h

20 ∗ 10000 (2)

By equation (2) we calculate the volume fraction of the material in the layer 20 nm
above h. To determine A and P we examine the clusters that do not intersect the
image edge. Figure 1 illustrates cross-sections of the specimen with contours of
separate clusters. Figure 2 presents the dependences of c and φ on the relative
height h/hmax, where hmax is the maximum height over the zero level. As one
can see (fig. 2) for h = h∗[0.45...0.52]hmax, the compactness is minimal and volume
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Figure 1: Upper part of one of the AFM images: h ≥ 0.5hmax.

Figure 2: Example of picture obtained after cutting off the lower part of the image
for h = 0.5hmax.

fraction of clusters close to the filler volume fraction 0.2. At small heights we observe
compact and dense clusters with high volume fraction. Such objects cannot truly
represent shape of CB clusters in rubber which are known for its branchy structure
[3]. Only from some height h = h∗ we can suggest that the relief structure is closest
to the filler geometry. Therefore, our further analysis of AFM images is concerned
with the study of the upper part of the relief: h ≥ h∗.

3 Results

For the analysis of cluster distribution in obtained images, we use Morishita’s index
[4]:

Iδ = q

q∑

i=1

ni(ni− 1)

N(N− 1)
(3)

The image is separated into q squares, the clusters are replaced by the points coin-
ciding with geometric center of the clusters; ni is the number of points in the i-th
square; N - total number of clusters. Reference dependencies Iδ(q) and obtained
curves are presented in Fig. 3. Figure 3 illustrates the following kinds of cluster
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Figure 3: Morishita’s index.

distribution: a) - uniform distribution; b) - random distribution) c-f) - different
cases of agglomeration. The obtained dependences Iδ(q) lead to a conclusion that
the largest non-uniformities in cluster distribution are observed in specimen 2, which
corresponds to the case e) of small cluster agglomerates inside which the clusters are
distributed uniformly [4]. For specimens 1, 3, the cluster distribution is considered
to be uniform, the case a), and with weakly pronounced non-uniformities - the case
c) or the case e).
Figure 4 gives distribution histograms for cluster cross sections at h = h∗. The

Figure 4: Cluster compactness versus their diameter.

histograms in Figure 4 show that more than 90% of clusters have an area < 1µm2.
However, there are also separate large-size objects of area 4...6.5 µm2, which is
compatible with the area of all small-size clusters. We suggest that the observed
large-size clusters are parts of CB granules that have not been broken completely.
Figure 4 also shows the contribution of cluster volumes, calculated using expres-
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sion (2), to their observed total volume depending on their cross-section area. It
follows from measurements that from 17 (material 1) to 23% (material 2) of the
total volume fractions of fillers are large-size objects (A > 2µm2). The sizes and
number of large-size clusters are important mixing-quality indices. The higher are
these characteristics, the smaller is the filler area wetted by the polymer, and the
stronger are the filler-filler interactions.
To define the cluster shapes, we construct the plots of their compactness c on the
diameter d (Fig. 5). The cluster diameter is calculated as a doubled mean length of
the radius-vector from the center of the cross-section up to the most distant point
when measuring the polar angle 0 to 2π with the step 2π/16. As one can see, the

Figure 5: Distribution of cluster cross sections and contribution of clusters with
respective areas to the filler volume.

compactness of small-size clusters is most pronounced. This fact is consistent with
the data confirming that the primary aggregates are dense formations consisting of
9 sintered particles [5]. Joining of several aggregates into one agglomerate leads to
formation of more branchy structures having less compactness.
It is also seen from Figure 5 that the largest clusters can be observed in specimen 2.
This indicates again that the mixing quality in specimen 2 differs poorly from the
remaining two specimens.
It is known that the CB generates fractal structures in the material [6]. The perime-
ter Pk and the cross-section area Ak of the k-th cluster are related by the fractal
relationship:

Pk = µp(
√
Ak)

Dp (4)

where µp is a constant, and Dp is the fractal dimension of the perimeter. The
volume Vk and diameter dk of the cluster are related as:

Vk = µm(dk)
Dm (5)

where µp is a constant, and Dm is the mass fractal dimension. The cluster volume
above h∗ is denoted by Vk. Figure 6 presents the obtained experimental values and
lines approximating these values in logarithmic coordinates. As shown in Figure
6, the dependences P(A) and d(V) within the entire size scale governed by fractal
relationships. For primary aggregates Dp and Dm, the values 1.28 and 2.43 (N220),
1.28 and 2.40 (N330), 1.30 and 2.40 (N339) [6] are valid. The corresponding values
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Figure 6: Fractal relationships.

are supposed to be equal with accuracy to decimals. The same values have been
obtained for specimens under study. Differences can be caused by many factors:
agglomeration, binder layer, manufacture peculiarities, etc.

4 Summary

A method for analyzing filled rubber structures by AFM has been developed. Statis-
tic treatments of AFM mages have been carried out for several filled rubbers. The
analysis of the cross-section of the relief has indicated that the compactness reaches
its minimum and volume fraction of clusters equal to the filler fraction at the height
h∗ = 0.45...0.5 of the maximum height above the zero level. In the further analysis
of the surface features, the value h∗ is taken to be a zero level. The uniformity of
cluster distribution in the material has been is evaluated using Morishita’s index.
It is shown that the cluster distribution in materials 1 and 3 is almost uniform,
while in 2 one can observe heterogeneities as agglomeration of small units. Exami-
nation of cross-sections reveals that more than 90% of clusters are relatively small
(less than 2 µm2), and the rest of clusters of area reaching 6.4 µm2 (material 2)
comprise 23% of the total filler volume fraction. Cluster distribution and sizes are
significant product-quality indices. The more non-uniform the cluster distribution is
and the larger are the clusters themselves, the stronger is the filler-filler interaction,
the more non-uniform is the stress field, and the greater is the amount of hysteresis
losses under cyclic loading conditions. Under these aspects, the 2nd material has
the worst mechanical characteristics.
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Abstract

The normal elastic contact problems are solved by the variational princi-
ples using total potential energy or Hellinger-Reissner functional with aug-
mented Lagrangian technique. For solution of contact problems the p-
extension of the finite element method is used. Discretization of the domain
with p-extension finite elements is advantageous, since it results in fast con-
vergence and the high order mapping assures accurate geometry for bodies.
When the p-extension is used the accuracy is typically high enough for the
singularities to induce oscillations in the numerical solutions. In this case
the mesh is adjusted during the iteration process in order to align the nodal
points in 2D or the sides of the elements in 3D to the border of the contact
domain, allowing the jumps in the derivatives to be represented in the dis-
cretized problem. The boundaries of the elements are positioned – using a
special algorithm – in such a way, that each element in the contact domain
will either be in contact, or separate along its full domain. In 3D the border
of contact zone is interpolated by B-splines. The last part of this paper a
problem is investigated, when the minimum of the wear dissipation power at
the contact surface gives the wear rate which characterize the steady wear
process.

1 Introduction

The rapid progress in the computer sciences and information technology, the in-
crease of computational speed, and improvements in graphical user-interface soft-
ware provide new opportunities for modeling physical phenomena with a high degree
of reliability and usefulness. The solution of contact problems is difficult because
the actual contact zone is unknown a priori and must be determined by iterative
procedure which seeks to satisfy not only equation of motion but also one or more
inequality conditions. Another source of difficulty is that the stress changes very
substantially over short distances at the boundaries of the contact zone. Therefore
the development of efficient and reliable procedures for the numerical treatment of
contact is an important and challenging problem.
Number of methods have been published on the field of the mechanical contact since
the appearance of the Hertzian contact theory. Applying the electronic computers,
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better and better numerical processes have been worked out after the late sixties.
The paper by Fridman and Chernina [2] was an important contribution to the nu-
merical treatment of contact. This work seems to be open of numerical contact
mechanics. Its further development could take into regard the relative rigid body
displacements of the contacting bodies [9]. One direction for solution of contact
problem is using the Mathematical programming method [1]. In the case of FEM
special iteration technique was used first in [19], Lagrangian multiplier technique
in [10], [4] and penalthy method in [6]. The combination of the two methods was
applied in [16]. A good review of the static mechanical contact problems is given
in [22] and detailed discussion of contact problems has been presented in books by
Laursen [7] and Wriggers [21].

The error of a finite element solution depends on the element size (h), and on
polynomial level (p) of the approximation. The majority of the finite element ap-
plications are using the h-extension of the FEM. The solution accuracy is improved
adaptively in [20]. Relatively few papers have been dealt with the application of
the p-extension method [17] for mechanical contact problems. The high-quality ap-
proximation properties of the p-extension make it possible to detect the presence of
singularity, even weak singularity, by numerical means. This is possible theoretically
but not feasible in practice with the h-version. The application of the augmented
Lagrangian technique was investigated first in [11] concerning the solution accu-
racy. The contact conditions of the p-extension elements are checked in the Gauss
or Lobatto integration points. As a result of adaptive remesh the whole sides of
the elements are either in the contacting region or in the separation region. This
preferable mesh performs no oscillation in the solution. In this paper it is assumed
that the displacements and deformations are small, as well as the adhesion, friction
and dynamic effects between the contacting bodies can be neglected.

2 Formulation of the contact problem

Let us consider the contact problem of two elastic bodies (e = 1, 2). The surfaces

of the bodies will be separated into three regions: S
(e)
u denotes that part of the

body where displacements uo are given, in S
(e)
t the traction to is applied, while S

(e)
c

represents that part of the bodies where contact is expected. The S
(e)
c part of the

body is called the proposed zone of the contact. The bodies are loaded with the
body force b(e) . We are interested in finding the displacement vector field u(e),
strain A(e) and stress T(e) tensor fields.

For the examination of the contact/separation conditions in the proposed zone of
contact we shall consider the projection of the displacement in a prescribed direction
only (e.g., normal to the surface nc = n(1)). The contact normal vector nc determines
the points Q1, Q2 on the corresponding surfaces S1c and S2c , where the two surfaces
may contact with each other. Therefore the contact surface will be denoted by Sc.
The elastic displacements in the normal direction is denoted by u

(e)
n = u(e) · nc,

the normal contact stress is σ
(e)
n = n(e) · T(e) · n(e) and the contact pressure is

pn = −σ
(1)
n = −σ

(2)
n > 0.

The initial gap between the contacting surfaces is denoted by h, and after deforma-
tion the gap is d = d (u) = u

(2)
n −u

(1)
n +h ≥ 0. In the normal direction the Signorini
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contact conditions are valid: d ≥ 0, pn ≥ 0, pn d = 0 for r ∈ Sc. From the condition
of frictionless contact we have zero tangential stress τ(e) = 0 r ∈ S(e)

c .

2.1 Principles based on the total potential energy and
Hellinger-Reissner functional

For investigation of normal contact problem we can use the principle of minimum
potential energy Π (u) subject to two types of kinematic conditions: u = uo on
r ∈ Su and d ≥ 0 on r ∈ Sc. If we use the Hellinger-Reissner functional [14] we have
only kinematical constraints for contact conditions: d ≥ 0 on r ∈ Sc. Formally

min {Π (u) | u = uo, r ∈ Su, d ≥ 0, r ∈ Sc} , (1)

min {ΠR (u,T) | d ≥ 0, r ∈ Sc} (2)

which must be solved satisfying the variational inequality δΠ ≥ 0 or δuΠR ≥ 0

and δTΠR = 0. The detailed mathematical discussion of this variational inequality
and other variational principles can be found in books [3], [8] and in the paper
[18]. Practically, instead of the problems (1) and 2 we can use another method.
Combining the Lagrangian method and penalty method we have the augmented
Lagrangian functional in the next form:

LAU = LAU (u) = Π (u) −

∫

C

pnd (u)dS+
1

2

∫

C

cn (d (u))
2
dS , (3)

LAUR = LAUR (u,T) = ΠR (u,T) −

∫

C

pnd (u)dS+
1

2

∫

C

cn (d (u))
2
dS, (4)

where cn means the penalty term and pn is the Lagrangian multiplier, which is kept
to be constant during an iteration loop, C ⊂ Sc is the real contact domain. From
the variational equation

δuLAU = 0 or δuLAUR = 0, (5)

and we have a formula for the normal contact stress

σ(1)
n

(
u(1)
)

= σ(2)
n

(
u(2)
)

= − (pn− cnd (u)) = σ(1)
n

(
T(1)

)
= σ(2)

n

(
T(2)

)
. (6)

During the iteration process, the contact pressure is updated using the formula

p[k]
n =

〈
p[k−1]
n − cnd

(
u[k]
)〉

(7)

where the operation < · > is defined by 〈pn〉 = 1
2
(pn+ |pn|) and x[k] means the

value of x in iteration step k. In the (k+ 1)th iteration loop the contact surface is

subjected by p
[k]
n as an external load in the variational formula:

δuLAU
(
u[k+1]

)
= δΠ

(
u[k+1]

)
−

∫

C

δd (u)
(
p[k]
n − cnd

(
u[k+1]

))
dS = 0, (8)
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δuLAUR
(
u[k+1],T[k+1]

(
u[k+1]

))
= (9)

δuΠR
(
u[k+1],T[k+1]

(
u[k+1]

))
−

∫

C

δd (u)
(
p[k]
n − cnd

(
u[k+1]

))
dS = 0

because from the next variational equation δTLAUR = 0 we have possibility to gain
the relation for T[k+1] = T[k+1]

(
u[k+1]

)
. Using p-extension finite elements [17], [11],

cn ∼ 100E− 1000E is recommended, where E is the Young modulus.

2.2 Discretized functionals

After the approximation by finite elements technique the discretized form of the
LAU ,

(
LAUR

)
functionals are written as:

LAU = LAU (q) =
∑

e

{
1

2
q(e),TK(e)q(e) − q(e),Tf (e)

}
+
1

2
qTC̃q+qT (fh− fp) . (10)

The algebraic system of equation associated with (10) can be written as follows:
[

K1+ C̃11 −C̃12

−C̃21 K2+ C̃22

] [
q(1)

q(2)

][k+1]

=

[
f (1)+f

(1)

h − f
(1),[k]
p

f (2)−f
(2)

h + f
(2),[k]
p

]
, (11)

in which the matrix K(i) is the stiffness matrix, C̃ij is modified to fulfill the con-
tact / separation conditions, the vectors f (i), f

(i)

h , f
(i),[k]
p are calculated from given

load, initial gap and contact pressure respectively, q(i) is the parameter vector for
displacement.
The iterational Kalker procedure [5], [11] with the control of the sign of pn can
be applied for solving (11). The contact conditions are checked in the Gauss or
Lobatto integration points of the contact elements during the solution of (11). In

the knowledge of the updated contact pressure p
[k+1]
n we have new penalty (contact)

matrix C̃, and new vectors fh and fp. The (k+1)th displacements are obtained from
the solution of (11). The procedure is terminated when the following condition is

fulfilled:
∫

Sc

∣∣∣p[k+1]
n − p

[k]
n

∣∣∣dS/
∫

Sc

p
[k+1]
n dS ≤ 10−4

Remarks :
1. Since d(u) is computed in local coordinate system, the elements, which have
boundaries on the contact surface, must be transformed from global coordinate
system to the local one. The transformation is performed by least squares fitting
[11].
2. One of the advantages of the p-version is that for smooth problems only coarse
meshes are needed, since the error in energy norm decreases exponentially when
the polynomial degree of elements is increased [17]. When the p-extension is used
then accuracy is typically high enough for singularities to induce oscillations in the
numerical solutions. The oscillations are minimized when nodes are located at the
boundary of the contact zone. In the contact problems when the ends of contact
zone are not situated in nodal points then the derivatives of the shape functions
cannot have the appropriate jumps there. By moving the nodal points to the ends
of the real contact zone C, the jump in the derivatives can be represented in the
discretized problem. First idea of the positioning technique can be found in [11].
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3 Positioning the nodal points

The positioning of the nodal points is performed in one or two phases, depending on
the predefined tolerance. The first phase is a rough positioning of contact point to
ensure that contact exists in each integration point of the contacting elements (see
Fig. 1).

Figure 1. The new positions of the nodal points (3’, 19’) of the contacting bodies
are found by a projection of the nodal points of the contacting elements in normal

direction.

In the second phase the border points are moved in order to increase the ac-
curacy. Search to find the end points of contact region with iteration process.
The next efficient indicator may be used to monitor the fine adjustment of the
nodal points: contact pressure at the contact border point (zero value is sought)
I1 = min |cn · d(rP)| ,where rP is the coordinate of the computed contact border
point.

Figure 2. Position of the new border point P along the line r
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In the three-dimensional problem it is supposed that contact domain is a single-
connected. The border of contact domain will be given by Non-Uniform Rational
B-spline curves or shortly by NURBS [13]. Along the border 8 interpolation points
are used for calculation of control points of NURBS. The spline is closed curve.
The interpolation points are chosen by the contact search algorithm was mentioned
before. In Fig. 2 the iteration is demonstrated for position of the contact border
points along the line r. Using the i -th iteration, the contact pressure is calculated
in the points P and G and the new position is defined from linearization between
the two states. Because p

(i)

n,G ≤ 0 this point is in the gap region.

4 Examples

4.1 Example 1

Let us consider the contact problem of cylindrical bodies with the following geomet-
rical data: inner radius r

(1)

i = r
(2)

i = 20mm, external radius r
(1)
e = r

(2)
e = 120mm,

height b = b(1) = b(2) = 100mm. We suppose that the surface of the lower
body is flat and the meridian curve of the upper body is parabolic. Kinematic
load is applied on the top of the upper body by prescribing the displacement to
w◦ = −0.15mm. The initial gap function is determined by the shape for the upper
body, h = 0.0004 · (r − 70)2 mm. The Young’s modulus E = 2 · 105N/mm2 and
Poisson’s ratio ν = 0.3 are used in the constitutive equations.

Using the p = 8 polynomial order approximation, the initial mesh (12∗5) is demon-
strated in the Fig. 3a. Using the positioning technique, the first modified and last
modified mesh is illustrated in Fig. 3b,d. Final mesh at the left side of contact end
zone is in Fig. 3c. The mesh is geometrically graded at the vicinity of the con-
tact/gap border points. The calculated normal stress is demonstrated in the Fig. 4.
At the end of contact zone we find a little oscillation. The oscillation of the contact
pressure is restricted to the first element in the gap region, whilst the values are
smaller than 1 on the rest of the elements.

Figure 3. Remeshing procedure
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Figure 4. Distribution of normal stress

Figure 5. Convergence of the radius of
contact border rp at the different npu

and nps
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Figure 6. Distribution of σz in the
upper body

4.2 Example 2

Let us consider the same cylindrical bodies with new initial gap h = 0.0004·(r−20)2.
For the Hellinger-Reissner variational principle, choosing different polynomial order
for approximation of u (npu) and for T (nps) the border point of contact zone has
a convergency according to Fig. 5. Here nps=npu-1 (+), nps=npu (-), nps=npu+1
(o) and npu≤ 8, nps≤ 8,NDOF= unknown for approximation of u. The dotted line
(...) illustrates the results of minimization of the total potential energy Π. Quickest
convergency is establised by nps=npu-1. The normal stress σz is demonstrated in
Fig. 6.
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4.3 Example 3

Consider the contact of rigid sphere with radius R = 800mm and elastic block with
the geometrical data: height is 5mm, and its size is 100 · 100mm. The material
parameters for block E(2) = 2.1 · 105MPa, υ(2) = 0.3. The upper body is loaded on
its top by a prescribed displacement w0 = −5 · 10−3mm.

The initial and final mesh in the plane xy is shown in Fig 7. In the z direction
only one element used. The polynomial order of the finite element is equal to
8. The results for straight bordered elements are demonstrated in Fig. 8a, 9a.
Results are not acceptable because the normal displacement and pressure has not
smooth distribution. If the spline bordered elements are applied (Fig. 7b), then
results have very good smooth distribution (Fig. 8b, 9b). The calculated radius is
rP = 2.168mm, and maxpn = 408MPa.

a) b)
Figure 7. Original and modified mesh

a) b)
Figure 8. Normal displacement at the original and modified mesh

a) b)
Figure 9. Normal stress at the original and modified mesh
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5 Investigation of the steady wear process

In the analysis of wear problem, usually the elastic portion of relative tangent veloc-
ity is much smaller than the rigid body motion induced velocity, thus the effect of
elastic component of tangent relative velocity can be neglected in the wear analysis.
Assume the isotropic normal wear rule in the form [12]

·
wn,i = βi p

bi
n v

ai
r , i = 1, 2 (12)

The material parameters βi, ai, bi specify the wear rates of two contacting bod-

ies and vr =
∥∥∥ ·
uτ

∥∥∥ is the relative velocity between two bodies. In general contact

conditions the vector of wear rate is not normal to the contact surface [12] and has
tangential components. This vector specifies the shape transformation and tangen-
tial motion of the worn material. To analyze this transformation, let us define first
the contact stress of interaction of bodies B1 and B2, thus

tc = tc1 = −tc2 = −pn(nc± µ eτ1) − µdpneτ2 = −pnρ
±
c (13)

where µ is the friction coefficient specifying the shear stress in sliding direction and
µd is the friction coefficient associated with transverse wear velocity. The unit
vectors eτ1, eτ2,nc constitute the local reference triad on Sc , Fig. 10. Here nc is the
unit normal to the contact surface of body B1, eτ1 is the tangent unit vector coaxial
with the sliding velocity vr and eτ2 is the transverse tangent unit vector.

Figure 10. Reference frame and wear rate vectors on the contact surface Sc :

coaxiality of
.
wR and eR.

In the paper [12] a Fundamental assumption was introduced: in the steady state the
wear rate vectors

.
wi i = 1, 2 are collinear with the rigid body wear velocity of B1,

thus

.
w =

.
w1+

.
w2 =

.
wR =

.
w1,R+

.
w2,R =

.
wReR, eR =

.

λF+
.

λM× ∆r∥∥∥
.

λF+
.

λM× ∆r
∥∥∥

(14)
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and
.

λF and
.

λM are the relative translation and rotation velocities induced by wear,
∆r is the position vector with respect to a reference point. The normal and tangential
wear rate components now are

.
wn =

.
wR cosχ,

.
wτ =

.
wR sin χ =

.
wn tanχ (15)

where χ is the angle between nc and eR . The wear rate components in the tangential
directions are

.
wτ1 =

.
wR cosχ1 sinχ,

.
wτ2 =

.
wR sinχ sinχ1 (16)

where the angle χ1 is shown in Fig. 10. The contact surface does not evolve in
time and is specified. The wear velocity associated with rigid body motion does not
vanish and is compatible with the specified boundary conditions. The steady state
is reached at which the contact stress is fixed with respect to the moving contact
domain. Assuming the body B1 to play the role of an indenter and the body B2
executing sliding motion, the contact surface will be fixed on B1 and translating on
B2. The stress state at a material point of B1 on Sc will be fixed and vary at a
contacting material point of B2 due to translation motion. It has been shown that
the steady state conditions can be obtained from minimization of the generalized
wear dissipation power for the case of wear of two bodies

D(q)
w =

2∑

i=1




∫

Sc

(tci �
.
wi)

q dS



1/q

=

2∑

i=1

C
1/q

i (17)

where q is the control parameter, usually > 0. Assume that the contact pressure pn
and the friction induced shear stress τn = µ pn satisfy the global equilibrium con-
ditions for the body B1, so we have for force f = 0 and moment m = 0. Introducing
the Lagrangian functional at b = b1 = b2 is

L
(q)

D = L
(q)

D (pn,
.

λF,
.

λM) = D(q)
w (pn) + (b+ 1)(

.

λF � f +
.

λM � m) (18)

and satisfying the stationary condition of (18), the contact pressure distribution has
the following form

pn =

.

λF · ρ±c + (
.

λM× ∆r) · ρ±c[
(β1var)

qC
1−q
q

1 + (β2var )
qC

1−q
q

2

](1∓µ tanχ cosχ1−µd tanχ sinχ1)
−q)

1
(b+1)q−1

(19)

Let us note that the orientation angle χ = χ(
.

λF,
.

λM) depends on Lagrangian vectors
and equilibrium equations f = 0 and m = 0 are highly nonlinear, that is the La-

grangian vectors
.

λF,
.

λM specifying the wear velocities can be calculated by applying
Newton-Raphson technique. It was shown in [12] that for q = 1 the optimal solu-
tion corresponds to the steady state condition for wear process of arbitrary shape of
contact surface. Thus, this condition can be directly specified from (19) instead of
integration of the normal wear rule (12) for the whole transient wear process until
the steady state is reached.
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5.1 Example: Drum braking system

Consider a drum braking system of Fig. 11a, when the shoe has the form of ring with
constant thickness t = 10mm and height h = 20mm and the uniform distributed
load is concentrated at the shoe centre. The uniform vertical traction equals p̃ =

49.5 MPa and the resultant force is F0 = 10 kN. The shoe is allowed to translate
along vertical end supports at x = ±100mm and interacts with the rotating drum
of radius R0 = 200mm with angular velocity ω = 1 rad/s. In our case the rigid
wear velocity of upper shoe equals λF = −λF ez and the wear rate vector is collinear
with ez The steady wear state is reached for q = 1 and following contact pressure
distribution has a simple form

pn = A (cosα)
1/b (20)

where A is calculated from equilibrium for body B1. The pressure distribution is
symmetric with respect to z-axis and does not depend on the friction coefficient.
Easy to derive the formulae for vertical wear rate

.
wR =

.

λF = Ab
2∑

i=1

βi (R0ω)
ai = const (21)

Fig. 11b present the optimal gap shape in vertical direction for different values of
the friction coefficient for the case when the thermal distortion is not accounted
for and the disk rotates in the anticlockwise direction. It is seen that the effect of
friction on the contact shape is very significant.

a) b)
Figure 11. Drum brake: a) geometry and load, b) vertical shape in the steady

state wear process for different values of friction coefficient µ
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Propagation peculiarities of spherically converging
waves in materials under uniform impact loading

N. A. Parfenov K. P. Zolnikov S. G. Psakhie
kiro@sibmail.com

Abstract

Molecular dynamics investigation of structural response peculiarities of
copper crystallite under high rate impact loading was carried out. It was
shown that structural rearrangements take place at the front of the converg-
ing wave. As well as the effect of the crystal structure on the character of
propagation of spherically converging waves was study.

1 Introduction

It is known that the high rate energy loading of material can change internal struc-
ture, physicochemical properties, as well as initiate chemical reactions, increase dif-
fusion processes and so on [1, 2, 3]. High rate energy loading is usually conducted
by nonlinear effects. One of these effects is generation of solitary waves in mate-
rial [4]. These waves propagate for a long distance without changes their shape
and amplitude in materials with ideal crystal structure. Also these waves can pass
through each other and then restore their initial characteristics. Solitary waves are
characterized by a microscopic wavelength that measures a few lattice parameters
and the velocity of these waves depends on their amplitude, in particular: the higher
the amplitude, the higher the velocity. In the region of the wave, the material is in
compressed state. Note that the higher the velocity of a solitary wave, the higher is
the degree of compression of the material i n the region of the wave. Depending on
time duration of loading, more than one solitary wave with different amplitude can
generate in a material. In this work the peculiarities of solitary wave’s generation,
propagation and stability are investigated. One of the purposes of this work is com-
puter simulation of nonlinear response of materials with perfect and disorder crystal
structure under uniform pulse compression. Peculiarities of generation, propagation
and stability of solitary waves in copper spherical specimens under uniform pulse
loading are investigated in this work.

2 Calculation formalism and loading scheme

The molecular dynamics method was used for solving problems formulated in this
work. In order to describe atomic interaction the embedded atom method was used
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[5, 6]. The specimens under study were spherical copper crystallites. The simulated
specimens contained from 20 000 to 2 000 000 atoms. The atoms of copper were
placed in points of perfect FCC lattice with the value of the lattice parameter
a=3.639A. Due to the smallness of simulated specimens, externally they were shaped
as regular polyhedrons. The external pulse loading was prescribed by displacing the
sub-surface layer towards the center of the crystallite. The displacement rate of the
sub-surface layer was varied from 250 m/s to 2 000 m/s. Depending on the rate, the
loading time was selected so that degree of straining was the same, in particular, it
war sufficient to cause atomic displacement in sub-surface layer equal to 1% of the
lattice parameter. All calculations were carried out at the temperature close to 0 K.

3 Calculation results and discussion

The calculations showed that under uniform pulse loading of the crystallites under
study spherical converging waves form in them. Fig. 1(a) and fig. 1(b) present the
atomic velocity distribution for the central part of loaded specimen (the thickness
of the central part is equal to several lattice parameters) at different points of time.

(a) (b)

Figure 1: Distribution of atomic velocities in the loaded crystallite containing
780 000 atoms at different points of time for a compression rate of 250 m/s

Along the vertical axis in fig. 1(a) and fig. 1(b) are depicted the atomic veloci-
ties and along two other axis – their coordinates. The initial point of time of the
atomic velocities distribution and the point of time when the spherically converg-
ing wave reaches the center of the specimen are shown in fig. 1(a) and fig. 1(b),
respectively. Note that the amplitude of the spherical converging wave in the center
of the specimen was increased by a factor of 7-8 compared to the initial rate of
loading. Propagation peculiarities of the spherically converging waves and the in-
crease in their amplitude in their focusing range depend on the rate of pulse loading.
Fig. 2(a) depicts the dependence of the amplitude of a wave reaching the center on
the rate of loading. The calculations demonstrate that with an increase in the rate of
pulse compression the increase in the wave amplitude in the center of the specimen
is slowed down (fig. 2(a)). For the same uniform pulse compression intensity, the
degree of focusing of spherical converging solitary waves in the dependent on the size
of the simulated crystallite. Fig. 2(b) shows the dependence of the amplitude of a
spherically converging wave that have reached the center on the simulated specimen
radius.
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(a) (b)

Figure 2: Dependence of the wave amplitude in the specimen center (V) on the pulse-
loading rate (V0) (a) and the crystallite radius r (b) (a0 - copper lattice parameter).
Curves 1, 2 and 3 correspond to the specimens containing 22 000, 37 000 and 55 000
atoms, respectively (a). Curves 1–5 correspond to pulse loading at a rate of 250 m/s,
500 m/s, 750 m/s, 1 000 m/s, and 2 000 m/s, respectively (b)

It follows from the calculations performed that the tilt of the curves in fig. 2(b) is
controlled by the loading intensity: the higher the rate of pulse loading of the crys-
tallite the lager the tilt. For the pulse loading rates up to 750m̃/s the dependence of
the amplitude of a spherically converging wave on the radius is linear (Curves 1–3
in fig. 2(b)). For higher loading intensities (Curves 4 and 5), starting from a cer-
tain distance from the crystallite surface, the distribution pattern of the spherically
converging wave is changed. Note that the growth in the wave amplitude in the
specimen center is decreased. It is very likely that for larger crystallites the curves
corresponding to lower rates of pulse loading would also deviated from a linear de-
pendence. An analysis of the calculation results demonstrated that this deviation
of the wave amplitude increase from linearity is associated with the structural re-
arrangements developing in the crystal specimen. These rearrangements start at
the front of the converging wave where the minimum distance between the atoms
reaches a certain threshold value. Fig. 3 depicts how the inter-atomic distance at
the front of a spherically converging wave varies as it propagates in the specimen.

(a) (b)

Figure 3: Dependence of the inter-atomic distance at the wave front on time for
crystallites containing 500 000 (a) and 780 000 (b) atoms, respectively, under uniform
pulse compression at 2 000 m/s (∆ - distance between the atoms at the wave front,
a1 - radius of the first coordination sphere)

The results of calculations show that the increase in the wave amplitude deviates
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from linearity or even slows down starting from the point where the atoms at the
wave front approach each other to a distance less than 0.6 radius of the first coordi-
nation sphere. The specimen structure at the point of time when the wave reaches
the center was investigated in this work. There are 3 regions can be distinguished
in the central part of the specimen fig. 4: the region recovered initial structure after
the wave had passed - 1; the region, where structure defects were generated after
the wave had passed - 2; the region with disordered structure - 3.

Figure 4: The central part of the specimen at the point of time when the wave
reached the center. Specimen containing 780 000 atoms for a compression rate of
2 000 m/s

It should be noted that the pressure, the temperature and the atomic density in the
region 3 were considerably increased after the wave had reached the center of the
simulated crystallite.
The wave reflected from the specimen center led to an appearance of greater straining
pressure and as a result the pore was formed in the specimen center fig. 5.

Figure 5: The pore formation in the specimen center at different points of time

In order to study the effect of the crystal structure on the character of propagation
of spherically converging waves, the initial specimen was melted and then cooled
close to 0 K. As a result of this treatment, the specimen with disordered structure is
formed. After that, the specimen was subjected to the same uniform compression as
in the case of a crystal specimen. The comparison was performed for the specimens
containing 500 000 atoms. The compression rate was as high as 2 000 m/s. Distri-
bution of atomic velocities in the loaded specimen with the disordered structure at
different points of time are illustrated in fig. 6(a) and fig. 6(b). Fig. 6(a) depicts the
initial point of time of the distribution of atomic velocities under uniform compres-
sion. The point of time where the spherically converging wave reaches the center of
the specimen is shown in fig. 6(b).
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(a) (b)

Figure 6: Distribution of atomic velocities in the loaded specimen with the disor-
dered structure containing 500 000 atoms at different points of time for a compression
rate of 2 000 m/s

After the spherically converging wave has reached the center, its amplitude increased
by a factor of 3.5–4.0 compared to that at the initial point of loading. The dynamics
of an increase in the spherically converging waves for the specimens of the same size
having crystal and disordered structure is given in fig. 7.

Figure 7: Dependence of the wave amplitude on time in the specimens with perfect
(curve 1) and disordered (curve 2) crystal structure

Fig. 7 shows that the increase of the wave amplitude in specimen with the perfect
crystallite structure is greater than the increase of the wave amplitude in specimen
with the disordered one. Largely such behavior is connected with intensive energy
dissipation due to disordered structure.

4 Summary

Based on the calculations performed, we can draw a conclusion that spherically
converging waves generated in the specimens could give rise to structural rearrange-
ments in the case of critical compressions at the wave front. As the intensity of pulse
compression is increased, an increase in the amplitude of a spherically converging
wave that reaches the center of the specimen is slowed down. The pattern of prop-
agation of the spherical solitary waves depends both on the pulse loading intensity
and on the size of the simulated crystallite. Probably specimens with a perfect crys-
tal structure are more appropriate for obtaining a high pressure and temperature
under uniform pulse compression as compared with disordered one.
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Viscoelastic model of rubber compound and
algorithm of definition of material constants using
experimental data under complex cyclic loadings,

including stress relaxation and creep

A. G. Pelevin A. L. Svistkov A. A. Adamov
pelevin@icmm.ru

Abstract

Rubbers are generally referred to as nanocomposites, which can be
stretched to five or more times their initial length and return after unloading
to nearly original state. The paper considers a structural phenomenological
model of rubber based on the results of experiments on complex cyclic loadings
of rubber specimens including relaxation and creep.

The material model is represented schematically in Fig. 1. Each element on this
scheme corresponds to a specific constitutive equation. The scheme demonstrates
the way in which these elements can be combined into a single system [1]. Separate
blocks of the elements are used to model the behavior of specific parts of the material
at the nanolevel .

The work introduces the algorithm for calculation of the model constants. A search
for the desired constants is realized in a step-wise manner and incorporates refine-
ment of the model at each step. The results obtained at the previous steps are
kept unchanged at the next step. The experiments proposed in the work (cyclic
loading with relaxation and creep) allow us to gain a deeper insight into viscoelastic
behavior of rubbers.

The peculiarities of the model behavior were determined based on the analysis of the
experimental data for two identical specimens. Each of the specimens was subjected
to seven cycles of deformation including extension, relaxation, unloading to a zero
stress and creep. At the first cycle of deformation the first specimen was stretched
to two times and the second specimen - to three times of its original length. At
next cycles the maximal elongations of the first specimen were 1.4, 1.5, 1.6, 1.7,
1.8, 1.9 and those of the second specimen were 1.5, 1.75, 2, 2.25, 2.5, 2.75. After
completion of all cycles the specimens were stretched up to rupture. The elongation

and unloading rate |
�

λ | was equal to 1/30 sec−1. Relaxation occurred during 30
minutes.
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relaxation and creep

Figure 1: The sheme of model used for calculation and the results of two experiments.
Solid line - experimental data, dashed line - theoretical predictions

Step 1

Find the constants, of the elastic element and the transmission ratio ν1 in the
transmission element numbered 1 for the second and next cycles of loading.
At this step we are dealing with the elastic properties of the model. For search of the
constants we use only lower points of relaxation with elongation less than 1.8. The
elastic properties of the specimen are defined by elastic and transmission elements of
the scheme (Fig. 1). At lower points of relaxation the viscous processes have already
completed which means that under these conditions the model under consideration
provides the same mathematical description of the material behavior as does the
model in Fig. 2. The transmission element in the model serves to increase the rate
of deformation tensor by νk times and to decrease simultaneously the Cachy stress
tensor by νk times Tleftk = νkT

right
k , Dleft

k = 1
νk

Dright
k where νk is the non-negative

function of the state parameters (the transmission ratio), and k is the number of
the transmission element [1]. The potential of second elastic element is represented
by the following formula

w = w2 = c
(2)

1

( 3∑

i=1

(λ
(2)

i )2− 3

)
+ c

(2)

2

( 3∑

i=1

(
1

λ
(2)

i

)2− 3

)
,

where λ
(2)

1 , λ
(2)

2 , λ
(2)

3 are values of stretch ratios for second elastic element, w is
potential of material under cosideration. For the j-th elastic element, the material

time derivative of the stretch tensor
�

Vj is calculated by equation:
2
νj

Y0.5
j DjY

0.5
j =

�

Yj −YjW
T
R− WRYj,

ν1

WR =
�

R RT, Yj = V
2
νk

j , νk > 0, where R is the rotation tensor in the polar
decomposition F = VR of the deformation gradient of the medium F into the
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Figure 2: The scheme of model and the obtained results. Solid line - experimental
data, dashed line - theoretical predictions, thick points - correspond to the state
after cessation of relaxation processes

left stretch tensor V and the rotation R; νk is the transmission ratio of the k-th
transmission element connected on the left with the considered elastic element.

Step 2

Find the constant κ3 and the relationship for ν1 under first loading.
At this step we consider elastic-plastic properties of the specimen during the first
cycle of loading. Plastic properties of the specimen are defined by the plastic ele-
ment. All plasticity processes of the material occur only during the first cycle of
loading. Variation of the elastic properties with the growth of the specimen damage
is taken into account by changing the transfer number ν1 of the transmission ele-
ment. Thus we obtain a mathematical description of the material behavior shown in
Fig. 3. Peculiarities of the plastic element behavior are defined by the proportional
relation

√
Dn · Dn = κn

√
D ·D, where n is the number of the plastic element. The

symbol κn designates the non-negative function of state parameters [1].
The difference between loading and unloading is due to the influence of the plastic
element and variation in the elastic properties during the first cycle of loading.
During next cycles the elastic properties remain intact and therefore loading and
unloading will fit the same curve and coincide with the unloading curve of the first
cycle.

Step 3

Find two constants - ν9, c9 and the relationship κ10 for determining the fiber prop-
erties.
At this step we enter into the model the specimen properties resulted from formation
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Figure 3: The scheme of model and the obtained results. Solid line - experimental
data, dashed line - theoretical predictions, thick points - correspond to the state
after cessation of relaxation processes

of high-strength fibers between the filler particle aggregates of the rubber. To find
constants we use the first cycle of loading and all lower points of relaxation. Taking
into account the fact of fiber formation we obtain good coincidence of the lower
points of relaxation for elongation longer than 1.8. Then three elements describing
this process are added to the model (Fig. 4).

w = w2+w9,

where w9 the potential of the elastic element describing formation of fibers is ex-
pressed as

w9 =

{
0, when ξ9 < 0,
c9ξ9, when ξ9 ≥ 0.

where ξ9 = (λ
(9)

1 − 1)(λ
(9)

2 − 1)(λ
(9)

3 − 1)

The term w9 has non-zero values only in the case when one of the stretch ratios of
the corresponding elastic element is larger than 1. With this technique, the model
can be used to take into account the fact that the generated fibers are only stretched,
while under compression they sag, exhibiting no resistance (Fig. 5)

Step 4

Find the constants of two Maxwell elements (four constants - c
(4)

1 , c
(4)

2 , c
(6)

1 , c
(6)

2 for
4 and 6 elastic elements and two relationships ηk for 5 and 7 viscous elements).
At this step we add viscoelastic properties to the material. The constants are defined
using the whole deformation history of the specimen until rupture occurs. The model
is rearranged as follows:
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Figure 4: The scheme of model and the obtained results. Solid line - experimental
data, dashed line - theoretical predictions, thick points - correspond to the state
after cessation of relaxation processes

The deviator of the Cauchy stress tensor of the k-th viscous element is calculated by
the formula from the theory of nonlinear viscous fluids dev Tk = 2ηkDk, where the
shear viscosity coefficient is the non-negative function of state parameters ηk ≥ 0.

w = w2+w4+w6+w9,

where w4, w6 the potential of the 4, 6-th elastic elements is defined by the following
formula:

wj = c
(j)

1

(
∑3

i=1(λ
(j)

i )2− 3

)
+ c

(j)

2

(
∑3

i=1(
1

λ
(j)

i

)2− 3

)
, j = 1, 2, 3

Step 5

Find constant c11 for 11 element and two relationships η12, κ13 determining viscous
properties of he fibers.
Here we add viscous properties to the fibers of the material. The model has taken
the final form (Fig. 1).

w = w2+w4+w6+w9+w11,

where w11 the potential of the 11 elatic element describing formation of fibers is
expressed as

w11 =

{
0, when ξ11 < 0,
c11ξ11, when ξ11 ≥ 0.

where ξ11 = (λ
(11)

1 − 1)(λ
(11)

2 − 1)(λ
(11)

3 − 1). The deviator of the Cauchy stress
tensor of the 12-th viscous element is calculated by the formula from the theory of
nonlinear viscous fluids dev T12 = 2η12D12, where the shear viscosity coefficient is
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Figure 5: Illustration of fiber formation from the layers near filler particles in mate-
rial stretching and fiber sag on external unloading

Figure 6: The scheme of model and the obtained results. Solid line - experimental
data, dashed line - theoretical predictions, thick points - correspond to the state
after cessation of relaxation processes
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the non-negative function of state parameters η12 ≥ 0. Peculiarities of 13-th plastic
element behavior are defined by the proportional relation

√
D13 · D13 = κ13

√
D · D,

Conclusion

A method based on a step-wise search for the model constants has been proposed
to describe viscoelastic properties of rubbers. The system of constitutive equations
takes into account the peculiarities of the material behavior at the structural level.
The obtained theoretical results describe with sufficient accuracy the behavior of
rubber.
The work was supported by Russian Foundation for Basic Research and the Ministry
of Industry, Innovation and Science of the Perm Region (Grant 07-08-96017, 09-
08-00530), RF President grant 3717.2008.1.
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rigid body enveloped by the shell
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Ekaterina Polyakova Vitaly Lutov Victor Chaikin
ekpol@mail.ru lutoww@mail.ru v chaikin@mail.ru

Abstract

This study is focused on the research of the deflected mode of a soft or-
thotropic elastic shell enveloping a solid of rotation. It is supposed that one
set of lines of orthotropy coincides with meridians of a body, and the another
one - with its parallels, and that the stress-strain state of the shell is axially
symmetric. The estimation of the deformed state of the shell is reduced to
the minimization problem of energy functional. The solution of the latter
problem is obtained by means of the projective method, being represented by
a linear combination of a set of coordinate functions with some coefficients,
subjected to definition. These coefficients are found from a system of non-
linear equations by the method of continuation by parameter. The technique
proposed is illustrated on a special case. The results of numeric calculations
are presented.

1 Introduction

The problems concerning the interaction between soft shells and rigid bodies arise
at designing of clothing, engineering of technical, household and medical goods [1],
[2]. The soft elastic shells are used for protection of mobile and immobile detached
connections of machines, devices, pipelines from external corrosiveness, toxic and
other aggressive environments. The extensive use of soft shells of medical purpose,
such as fixative elastic bands, bandages, compressing stockinet etc., is observed
nowadays.
A variety of conditions of exploitation and functional demands to soft shell products
cause the necessity of adequate design and proper choice of shell’s materials. The
last problem can be effectively solved on the basis of the results of stress-strain state
analysis of the soft shell enveloping a rigid body [1], [3], [4], [5].
This paper presents an analysis of the deflected mode of a soft orthotropic elastic
shell enveloping a solid of rotation. It is supposed that one set of lines of orthotropy
coincides with meridians of a body, and the another one - with its parallels, and that
the deflected mode of the shell is axially symmetric. The cylindrical coordinates of
any shell’s particle, corresponding to an undeformed state of the shell, are taken
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as the material (Lagrangian) coordinates. In view of mentioned suppositions the
definition of the strained state of the shell reduces to estimation of deformations of
its meridians.
The extensional strains of meridional and parallel shell’s elements are considered as
the measures of the shell deformation. Thus, the potential energy of deformation is
presented by the sum of deformation energies of the shell parallels and meridians,
and in general terms, meridians and parallels are endowed with elasticity coefficients,
depending on coordinates. The estimation of the deformed state of the shell is then
reduced to the minimization problem of energy functional. The solution of the latter
problem can be obtained by means of the projective method, being represented by a
linear combination of a set of coordinate functions with some coefficients, subjected
to definition. These coefficients are found from a system of nonlinear equations by
the method of prolongation by parameter [6]. The technique proposed is illustrated
on a special case. The results of numeric calculations are presented.

2 Basic assumptions. Potential energy of soft

shell deformation

Let us assume that the soft shell in its undeformed state is a part of the sphere of
radius ρ, symmetrical with respect to equatorial plane. The origin of rectangular
Cartesian coordinate system O1ξηζ coincide with the centre of the sphere; O1ξ-axis
and O1η-axis belong to equatorial plane specified above (figure 1, a). At such choice
of Cartesian system coordinates of the shell’s points, laying on the upper and lower
edges of the shell, are ζ = h and ζ = −h respectively. We assume that material
(Lagrangian) coordinates any shell’s particle coincide with its cylindrical coordinates
ϕ and ζ when the shell is in undeformed state.
In view of mentioned suppositions it is possible to indicate the location of any shell’s
particle corresponding to Lagrangian coordinates (ϕ, ζ) by its radius-vector r0 :

r0(ϕ, ζ) =
√
ρ2− ζ2 cosϕi +

√
ρ2− ζ2 sinϕj + ζk, (1)

where i, j, k are basis vectors of system O1ξηζ.
Calculation of the coefficients of the first quadratic form yields

g011 =

(
∂r0
∂ζ

)2
=

ρ2√
ρ2− ζ2

, g012 =
∂r0
∂ζ

· ∂r0
∂ϕ

= 0, g022 =

(
∂r0
∂ϕ

)2
= ρ2− ζ2. (2)

Suppose that the soft shell of the specified type is pulled on a spherical surface of
radius R, where R ≥ ρ, and that the origin of Cartesian coordinate system coincide
with the centre of the sphere (figure 1, b).
It the present study, it is accepted that meridians and parallels of the shell surface
in its undeformed state after deformation are disposed on meridians and parallels
of the sphere respectively. In this case the stress-strain state of the shell is axially
symmetric, and the definition of the displacements of the shell’s particles reduces to
determination of function z = z(ζ).
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Figure 1. The soft shell in undeformed (a) and deformed (b) states.

For the sake of simplicity let us consider the deformed state of the shell to be sym-
metric with respect to plane Oxy, so that z(±h) = ±H. Radius-vector r of arbitrary
shell’s particle, indicated by Lagrangian coordinates (ϕ, ζ), can be represented in
the form

r(ϕ, ζ) =
√
R2− (z(ζ))2 cosϕi +

√
R2− (z(ζ))2 sinϕj + z(ζ)k. (3)

The coefficients of the first quadratic form of the shell surface in the deformed state
will be

g11 =

(
∂r

∂ζ

)2
=

R2

R2− (z(ζ))2

(
dz

dζ

)2
, (4)

g12 =
∂r

∂ζ
· ∂r
∂ϕ

= 0,

g22 =

(
∂r

∂ϕ

)2
=
√
R2− (z(ζ))2.

The extension strains ε1 and ε2 of the elements lying on coordinate lines ϕ = const

and ζ = const are defined by expressions

ε1(ζ) =

√
g11

g011
− 1 =

R

ρ

∣∣∣∣
dz

dζ

∣∣∣∣

√
ρ2− ζ2

R2− (z(ζ))2
− 1, (5)

ε2(ζ) =

√
g22

g022
− 1 =

√
R2− (z(ζ))2

ρ2− ζ2
− 1.

It is reasonable to suppose that in the deformed state the meridional elements are
extended, therefore function z = z(ζ) is monotonically increasing. If the shell edges
are free, we have ε1(ζ)|ζ=±h = 0, whence
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(
R

ρ

dz

dζ
|ζ=±h

)2
ρ2− h2

R2− (z(±h))2
= 1. (6)

We assume that the required function z = z(ζ) can be represented in the form

z(ζ) = Aζ+ Bη(ζ), (7)

where η(ζ) is a given odd function, A, B are coefficients, which have to be defined.
From (6) we obtain

(
R

ρ

)2(
A+ B

dη

dζ
|ζ=±h

)2
ρ2− h2

R2− (Ah+ Bη(h))2
= 1. (8)

Let us introduce parameter µ = R−ρ

ρ
and assume that η(ζ) = ζ3. In this case

equation (8) yelds

(1+ µ)2(A+ 3Bh2)2(ρ2− h2) = (1+ µ)2ρ2− (Ah+ Bh3)2. (9)

It is assumed that in undeformed state the soft shell material has the structure
corresponding to orthogonal net with meshes, which sides lie on coordinate lines
of the surface. Elasticity coefficients k1(ζ) and k2(ζ) of the elements, lying on
coordinate lines ζ = const and ϕ = const respectively, are supposed to depend on
Lagrangian coordinate ζ.
The potential energy of deformation is given by

U = πρ

∫h

−h

(k1(ζ)ε
2
1(ζ,A(B, µ), B, µ) + k2(ζ)ε

2
2(ζ,A(B, µ), B, µ))dζ, (10)

where A(B, µ) is considered to be defined from boundary condition (9).

3 Energy functional minimization

As far as the potential energy of deformation achieves minimum value in the equi-
librium state of the shell on the sphere surface, one obtains the following equation
for definition of B(µ):

dU

dB
= 2πρ

2∑

i=1

∫h

−h

ki(ζ)εi(ζ,A(B, µ), B, µ)

(
∂εi

∂A

∂A(B, µ)

∂B
+
∂εi

∂B

)
dζ = 0. (11)

The latter equality is fulfilled under A = 1, B = 0, µ = 0, since in this case
ε1(ζ,A(B, µ), B, µ) = 0 and ε2(ζ,A(B, µ), B, µ) = 0 .
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In order to obtain a differential equation for B(µ), one should carry out the derivative
of (11) with respect to µ. Finally, we obtain the differential equation

dB(µ)

dµ
= F(µ) (12)

under initial condition B(0) = 0, where

F(µ) =
D(µ)

C(µ)
, (13)

D(µ) = −

2∑

i=1

∫h

−h

ki(ζ)P(ζ)

[(
∂εi

∂A

∂A

∂µ
+
∂εi

∂µ

)(
∂εi

∂A

∂A(B, µ)

∂B
+
∂εi

∂B

)
+

+ εi(ζ,A, B, µ)

((
∂2εi

∂A2
∂A

∂µ
+
∂2εi

∂A∂µ

)
∂A

∂B
+
∂εi

∂A

∂2A

∂B∂µ
+
∂2εi

∂A∂B

∂A

∂µ
+
∂2εi

∂B∂µ

)]
dζ,

(14)

C(µ) =

2∑

i=1

∫h

−h

ki(ζ)P(ζ)

[(
∂εi

∂A

∂A(B, µ)

∂B
+
∂εi

∂B

)2
+ εi(ζ,A, B, µ)×

×
((

∂2εi

∂A2
∂A

∂B
+
∂2εi

∂A∂B

)
∂A

∂B
+
∂εi

∂A

∂2A

∂B2
+
∂2εi

∂A∂B

∂A(B, µ)

∂B
+
∂2εi

∂B2

)]
dζ.

(15)

The differential equation (12) can be easily solved numerically by the method of
polygonal lines. Let µk = (k − 1)∆µ, where ∆µ is arbitrary small quantity, k =

1, 2, . . .. The value B(µk) is determined by recurrence formula

B(µk+1) = B(µk) + F(µk)∆µ (16)

under the assumption µ1 = 0, B(µ1) = 0.

4 Stress-strain state analysis

The next calculations consist in determination of A(B(µ), µ), ε1, ε2, σ11 = k1ε1 and
σ22 = k2ε2 on the base of equalities (9), (7), (5), that can be easily realized under
arbitrarily defined characteristics of the shells materials.
Analytical results can be obtained for shells with nonstretchable meridians. In this
case the solution of the problem is based on the analysis of the stress equilibrium
equations [1] that in tangential stresses absence take the following form:

d

dz

(
σ11
√
R2− z2

)
+ σ22

z√
R2− z2

= 0, σ11+ σ22 = Rp. (17)

Taking in consideration the latitude α on the sphere, one obtains
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z = R sinα,
d

dz
=
d

dα
/
dz

dα
=

1

R cosα

d

dα
. (18)

Then the first of equilibrium equations (17) is expressed as

d

dα
(σ11 cosα) + σ22 sinα = 0. (19)

Let us determine stresses σ22 under the assumption that the shell meridians are non-
stretchable. Let be the distance from the sphere equator to some parallel, counted
along the meridian. The latitude α depends on the sphere radius: α = s/ρ for
the parallel formed by some thread of the undeformed shell and α = s/R for the
parallel formed by the same thread after shell deformation. It’s quite evident that
the extension strain ε2 of the thread mentioned above and corresponding stress σ22
are given by

ε2 =
R cos(s/R)

ρ cos(s/ρ)
− 1 (20)

and

σ22 = k2ε2 = k2

(
R cos(s/R)

ρ cos(s/ρ)
− 1

)
= k2(α)

(
R

ρ

cosα

cos(αR/ρ)
− 1

)
. (21)

Substitution of (21) into (19) and the following integration yield the quadrature
expression for σ11:

σ11 =
1

cosα

∫L/R

α

k2(τ)

(
R

ρ

cos τ

cos(τR/ρ)
− 1

)
sin τdτ, (22)

where L is the half of meridian length.
The latter integral (22) can be easily calculated numerically if stiffness k2(α) is
preassigned. The typical estimated functions σ11(α) under k2(α) = a + bαn for
different n values are shown in Figure 2.
In order to define maximal value σmax11 of meridional stresses one should substitute
α = 0 into (22). Figure 3 shows graphs of σmax11 as a function of L/R under k2(α) =

a+ bαn for different n values.
For sufficiently narrow shells approximate analytical estimates can be obtained.
Particularly, if k2 = const, it can be shown that

σmax11 =
1

2
k2

(
R

ρ
− 1

)
L2

R2
, (23)

The second of equilibrium equations (17) under the defined σ11 and σ22 allows to
determine easily the shell pressure on the sphere.
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Figure 2. The relation σ11(α) graphs.

Figure 3. Graphs of maximal meridional stress σmax11 as a function of L/R.

5 Conclusion

In this paper an analysis of stress-strain state of a soft orthotropic elastic shell
enveloping a solid of rotation has been presented. The main results are the following.

1. The technique of calculation of axially symmetric stress-strain state of the shell
pulled on the defined surface of a rigid body has been proposed. The estimation of
the deformed shell state has been reduced to the minimization problem of energy
functional.

2. For the special case of the soft shell pulled on a spherical surface calculation
relations for stresses and the shell pressure on the sphere have been obtained. The
results of numeric calculations have been presented.

539



Proceedings of XXXVII International Summer School–Conference APM 2009

Acknowledgements

The authors gratefully acknowledge the support for this work provided by Ministry
of Education and Science of Russia.

References

[1] Polyakova E.V., Chaikin V.A. Applied problems of mechanics of soft shells and
fabrics. Monograph. St.-Petersburg, SPSUTD, 2006, 193 p. (Russian)

[2] Shirihin V.N., Ionova V.F., Shalnev O.V., Kotlyarenko V.I. Elastic mechanisms
and constructions. Monograph. Irkutsk, IrSTU, 2006, 286 p. (Russian)

[3] Wempner G., Demosthenes G. T. Mechanics of solids and shells: Theories and
approximations. CRC PRESS, 2003. 521 p.

[4] Steigmann D. J. Elements of the theory of elastic surfaces // Nonlinear Elasticity:
Theory and Applications / Ed. by I.B. Fu, R.W. Ogden. Cambridge: Cambridge
Univ. Press, 2001. P. 268– 304.

[5] Libai A., Simmonds J. G. The nonlinear theory of elastic shells. 2nd ed. Cam-
bridge: Cambridge Univ. Press. 1998. 560 p.

[6] Grigoluk E.I., Shalashilin V.I. Problems of nonlinear deformation. Method of
prolongation by parameter in nonlinear problems of mechanics of deformable
rigid body. Moscow, Nauka, 1988. 232 p. (Russian)

Ekaterina Polyakova, Vitaly Lutov, Victor Chaikin, St. Petersburg State University of

Technology and Design, Bolshaya Morskaya St. 18, St.-Petersburg, 191186, Russia

540



The self-synchronization of two coaxed unbalanced vibroexciters with inner degree
of freedom and the “asleep” gyroscope problem

The self-synchronization of two coaxed unbalanced
vibroexciters with inner degree of freedom and the
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Abstract

The question about possibility of provision of synphase rotation of two
unbalanced rotors of vibration plant in selfsynchronizing regime is discussed.
In this case under consideration only the antiphase rotating. This rotating is
a natural stable regime. The possibility of using for this aim the vibroexciters
with additional degree of freedom of rotors is studied. The simulation data
and the well-known problem of ”asleep” gyroscope is compared.

1 Description Of The Plant

We consider a free solid body fixed by means of springs with certain characteristics
and realizing plane oscillations. On the bearer two coaxed unbalanced masses with
one rotating degree of freedom are fixed. Within each of debalances a definite
additional mass which can oscillate along the debalance’s axis is fixed.Fig.1

Figure 1: A vibrostand with two debalances having mobile centers of mass

Thereby the vibrostand has two translational degrees of freedom, x and y, each
i - debalance having one rotational ϕi and one translational degree of freedom,
ρi defined by displacement of the additional mass from the axis of rotor. Let us
consider the equation of motion obtained in [1] for a plant with two vibroexciters,
each having two inner degrees of freedom:
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[I+m0ε
2+m(r + ρs)

2+mσ2s)]ϕ̈s+ Ks(ϕ̇s−ω) + 2m[(r+ ρs)ρ̇s+ σsσ̇s]ϕ̇s−

−[m0ε+m(r+ ρs)](ẍ sinϕs+ ÿ cosϕs) −mσs(ẍ cosϕs− ÿ sinϕs)+

+m[(r+ ρs)σ̈s− σsρ̈s] = 0 ( s = 1, 2 )

Mẍ =

2∑

i=1

[m0ε+m(r+ ρi)](ϕ̈i sinϕi+ ϕ̇
2
i cosϕi)−

−m

2∑

i=1

[ρ̈i− σiϕ̈i− 2σ̇iϕ̇i] cosϕi+

+m

2∑

i=1

[(ρ̇i− σiϕ̇i)ϕ̇i+ σ̈i+ ρ̇iϕ̇i] sinϕi− βxẋ − Cxx

Mÿ =

2∑

i=1

[m0ε+m(r+ ρi)](ϕ̈i cosϕi− ϕ̇
2
i sinϕi) +m

2∑

i=1

[ρ̈i− σiϕ̈i−

−2σ̇iϕ̇i] sinϕi+m

2∑

i=1

[(ρ̇i− σiϕ̇i)ϕ̇i+ σ̈i+ ρ̇iϕ̇i] cosϕi− βyẏ − Cyy

ρ̈s+ βρρ̇s+ω2ρρs = σsϕ̈s+ 2σ̇sϕ̇s+ (r+ ρs)ϕ̇
2
s − (ẍ cosϕs− ÿ sinϕs)

σ̈s+ βσρ̇s+ω2σσs = −(r+ ρs)ϕ̈s− 2ρ̇sϕ̇s+ σsϕ̇
2
s + (ẍ sinϕs+ ÿ cosϕs)

where βρ =
hρ
m

;βσ = hσ
m

; ω2ρ =
Cρ
m

; M = M0+ 2m0+ 2m, ω2σ = Cσ
m
.

Here mo is additional movable mass in the unbalanced mass; m is the mass of
the debalance; M is the mass of the whole plant; ε is the eccentricity or the value
of displacement of the center of masses of the unbalanced mass from its axis of
rotation; r is length of an unstressed spring inside the rotor; ρ is the displacement
of the movable mass from the rest or the movable mass radius in the stabilized
regime; I is the central moment of inertia of the whole system; x is the abscissa
of the bearer or the horizontal displacement; y is the ordinate of the bearer or
the vertical displacement; ωρ is angular velocity ( frequency of the mass’s intrinsic
oscillations) of mobile mass; ω is synchronizable (steady) angular velocity of the
rotor; ϕ is the angle of the rotation of rotor from the rest; βx, βy are coefficients
of the damping of oscillations of the bearer along corresponding axes; K is the
coefficient of electric damping of the motor; ωi is the intrinsic (angular) velocity of
the unbalanced mass; σs are numbers that equal 1 or -1; the first case corresponds
to the debalance’s rotation in positive direction and the second case corresponds to
the clockwise direction.
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2 The Stationary Regime of Motion of The Sys-

tem

Now, investigate the case when the rotor has only one inner degree of freedom,
related with the possibility of displacement of an additional mass radially and elastic
and demping forces of all springs of the system are taken into account.
For the stationary synpfase regime of motion of equal vibroexciters, i.e. ϕ1 = ϕ2 =

ωt; ρ1 = ρ2 = ρ = const, the system of equations assumed the form

[m0ε+m(r+ ρs)](ẍ sinωt+ ÿ cosωt) = K(ω−ωs)

Mẍ = 2[m0ε+m(r+ ρ)]ω2 cosωt− βxẋ− Cxx

Mÿ = 2[m0ε+m(r+ ρ)](−ω2 sinωt) − βyẏ − Cyy

ω2ρρ = (r+ ρ)ω2− (ẍ cosωt+ ÿ sinωt)

(1)

where ω2ρ =
Cρ
m

; M = M0+ 2m0+ 2m

For the stationary regime we receive from the second and third equations:

x =
2(m0ε+m(r + ρ))ω2(C−Mω2)

(Mω2− C)2+ β2ω2
cosωt+

2(m0ε+m(r+ ρ))ω3β

(Mω2− C)2+ β2ω2
sinωt

(2)

y =
2(m0ε+m(r+ ρ))ω3β

(Mω2− C)2+ β2ω2
cosωt+

2(m0ε+m(r+ ρ))ω2(Mω2− C)

(Mω2− C)2+ β2ω2
sinωt

After the differentiation and the substituting from the second equation for station-
ary regime we can express ρ :

ρ =
rω2[(Mω2− C)2+ β2ω2] − 2ω4(m0ε+mr))(Mω2− C)

(ω2ρ−ω2)[(Mω2− C)2+ β2ω2] + 2ω4m(Mω2− C)
(3)

This equation is an analytical expression for the coordinate ρ of the additional mass
in the steady-state regime.

3 The Expression for The Displacement of The

Movable Mass

Changing the nominator and the denominator of the fraction and taking into account
that m0

M
and m

M
are small, where as C

ω2
and β

ω2
tend to zero, we receive

ρ ≈ r 1
ω2ρ
ω2

− 1
, ωρ 6= ω (4)

From here one can see, that for ωρ < ω value of ρ is positive, i.e. the movable mass
move from the axe of rotation, but for ωρ > ω approach to it.
On the Fig. 2 the changing during the time difference of the phases of rotating and
displacement of center of the mass of bearer without additional masses in debalances
is shown. The curves correspond to these parameters: M0 = 2 kg, m0 = 1 kg,
r = 0.01m, ε = 0.035m, βx = 84, Cx = Cy = 12.6 H

m
, ωs = 300 rad

c
.
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Figure 2: The behaviour of the plant without the movable masses

4 The Conditions of Temporary Stability by

Blekchman-Sperling

Let us return to the first equation (1) and transform it identically using 1
1+x

≈ 1−x.
As a result we receive

ω ≈ ωs{1−
2β[m0ε+m(r+ ρ)]2

M2K
} (5)

Combining (3) and (5) express ω

ω2 ≈ ρ

r + ρ
ω2ρ{1−

2β[m0ε+m(r+ ρ)]2

M2K
}2 (6)

Check if the 3rd condition of temporary stability [1]

ω2 [1+
2(m0ε+m(r+ ρ))2− 4mM(r+ ρ)2

MIO
] < ω2ρ (7)

Then, after substitution and identical transformations [2]
we receive:

1−
4m(r+ ρ)2

IO
<
r+ ρ

ρ
(8)

which always fulfils, i.e. m, I0 > 0.

To satisfy the 1st and the 2nd conditions that

ω <
ωρ√
e
′∗

ω <
ωρ

√
M√

M− 2m
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choose an appropriate ωρ and other initial data.

It is always possible to meet 1st condition: ω > ωρ and 2nd condition of temporary
stability by choosing an appropriate ωρ and other initial data.

Figure 3: The behaviour of the plant with inner degrees of freedom in debalances

On the Fig. 3 the results of the modeling with same initial data as Fig.2 with ad-
ditional movable masses m = 0.1; ε = 0.035 in the debalances are presented.

5 An Analogy with the Problem of ”asleep” gy-

roscope

These results are resemble with the solution of the classical problem of ”asleep”
gyroscope or the rotating shell.

In these systems the stable is provided also by means of gyroscope members, without
it the gyroscope and shell are unstable.

In classical textbook [3] the necessary condition of stable of ”asleep” gyroscope is
reduced:

I23ω
2
z > 4lGI1 (9)

Here ωz is the projection of angle velocity to the axe z; I1, I3 are the main moments
of inertia; G is the force of gravity; l - the distance from the center of mass C to
point of rest.

Usually it’s assumed, that satisfaction of the condition (9) provide the stable of the
system. If the condition breaks then the shell is down as a result of decreasing of
velocity of rotating ωz for the forces of friction.
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Conclusion

The system of six non linear differential second order equations, describing the be-
haviuor of two coaxed undebalanced vibroexciters with inner degree of freedom, fixed
on softlyisolated rigid body is researched by numerical methods. It is shown that
the unstable synphase regime of selfsynchronizing with two debalances transforms
into temporary ( hyroscope) stability by means of the introduce the inner degree
of freedom in each of the debalances. The comparison with results of the classical
problem ”asleep” gyroscope is presented.
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Abstract

The stress in real metal structures can vary with time even under perma-
nent external load. It takes place due to dimensional changes of structure ele-
ments induced by surface corrosion. This paper is concerned with the uniform
mechanochemical corrosion of the linearly elastic cylindrical tube subjected
to external and internal pressure. Assuming that changes of inner and outer
radii of the tube are quasi-static, we base our investigation on G. Lame’s
solution. Corrosion rate depends on many factors. In neutral and alkales-
cent environments or when tension is less than certain threshold, mechanical
stress has no influence on corrosivity. In the circumstances, values of stress-
components at any instant are determined by G. Lame’s formulae with given
laws of corrosive wear in time. In other cases, according to most experimental
data, the rate of general corrosion is linear with stress (when stress increases
beyond a given threshold) and is inversely as exponent of time (if closed oxide
layer leads to the inhibition of corrosion). Then the problem is reduced to
the ordinary differential equation. Analytical solutions of the basic equation
in different cases are found.

Taking into account synergetic interaction of general corrosion with me-
chanical stresses, the life-time of a tube can be assessed. For the critertion of
the onset of breaking the approach of the chosen limiting stress in the pipe can
be used. However buckling or chance failure can occur before a fracture stress
is reached. To determine the reason and the instant of failure, estimating func-
tions are suggested. Various functions are introduced to assess the strength
margin, stability factor, damage accumulation, accident risk and so on. The
calculations performed in proposed manner have shown that increasing the
exponent b of inhibition of corrosion leads to considerable prolongation of the
service life of a tube.

1 Introduction

Most damage issues in machines and structures are due to material degradation
induced by an operating environment. It is well known that corrosion activity may
be intensified by mechanical stresses. Such corrosion is said to be a mechanochem-
ical one. The research in this area has been conducted by numerous authors. This
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paper is concerned with surface mechanochemical corrosion. A comprehensive re-
view of models and calculations of structures taking into account corrosive wear
was given e.g. in [1], [2]. One of the first in the field is the article [3] concerned
with mechanochemical corrosion of a thin-walled cylindrical shell under longitudi-
nal force. In the work [4] the lifetime of a loaded pipe has been assessed under the
assumption of the exponential dependence of corrosion rate on stress. According
to [2],[5] corrosion rate depends on stress linearly. Using this relation the corro-
sive wear of a nonlinearly elastic tube subjected to pressure and temperature has
been simulated in book [2]. In this paper the equal-rate mechanochemical corrosion
of a thick-walled tube subjected to internal and external pressure is discussed [6].
The analitical solution of the problem of a linearly elastic tube under pressure and
longitudinal force has been found in [7].

2 Problem statement

The surface corrosion of an elastic tube subjected to internal pr and external pR
pressure is investigated. Inner and outer tube radii at initial instant t = 0 are
denoted by r0 and R0 (r0 < R0). The action of the ends of the cylinder is not taken
into account. Changes of the tube radii are assumed to be quasi-static. Corrosion
rates at inner and outer boundaries are given by expressions [2],[5]:

vr =
dr

dt
=
d[r0+ δr]

dt
= [ar+mrσ1(r)] exp(−bt) when |σ1(r)| ≥ |σthr |, (1)

vR = −
dR

dt
= −

d[R0− δR]

dt
= [aR+mRσ1(R)] exp(−bt) when |σ1(R)| ≥ |σthR | (2)

correspondingly. Here b, ar, aR, mr, mR are observable quantities, and
ar = v0r −mrσ

th
r , aR = v0R−mRσ

th
R ; σthr , σ

th
R are threshold stresses (as a mat-

ter of fact, which are different for traction and compression); v0r, v
0
R are the initial

corrosion rates at |σ1(r)| < |σthr |, |σ1(R)| < |σthR |; σ1 is a maximum principal stress.

It is necessary to assess a life-time of tube concerned.

3 Basic equations

The problem of a tube under pressure has been disscused by numerous writers
including G. Lame. The stress-components are expressed, by reference to polar
coordinates ρ, θ, by the equations

σθθ(ρ) = −pr−
pR− pr

R2− r2

(
R2+

r2R2

ρ2

)
, (3)

σρρ(ρ) = −pr−
pR− pr

R2− r2

(
R2−

r2R2

ρ2

)
, (4)

r ≤ ρ ≤ R, 0 ≤ θ < 2π.
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The maximum principal stress is the circumferential one σ1 = σθθ. When r =

0, pr = 0, pR = p or pr = pR = p, there is a homogeneous stress σθθ ≡ σρρ ≡ −p

in a tube irrespective of corrosion.

In neutral and alkalescent environments or when load is less than threshold, stress
has no influence on corrosion rate. In that cases the stress-components at any instant
are determined by the above equations (3), (4) with given lows of r(t), R(t).

Now let the absolute values of stresses σ1(r), σ1(R) be greater than the thresholds
and σ1(r) 6= σ1(R). The greatest tension is the circumferential tension at the inner
surface ρ = r. So we are to observe its amount σθθ(r) = σ1(r). It will be convenient
to rewrite the formula (3) in the form

σ1(r) = σθθ(r) = pr
η2+ 1

η2− 1
− 2pR

η2

η2− 1
, (5)

σ1(R) = pr
2

η2− 1
− pR

η2+ 1

η2− 1
= σ1(r) − pr+ pR, (6)

where

η =
R

r
=
R0− δR

r0+ δr
. (7)

The formulae (1), (2) and (6) give

Rmr+rmR = mR

(
r0+

ar

−b
[exp(−bt) − 1]

)
+mr

(
R0−

AR

−b
[exp(−bt) − 1]

)

(8)

where

AR = aR−mR (pr− pR). (9)

On differentiating the expression (5) with respect to t, and using (1), (2), (7)–(9),
we can obtain the ordinary differential equation for σ1(r) [6]

dσ1(r)

dt
=

√
[σ1(r) + pr][σ1(r) − pr+ 2pR]

pr− pR
×

× [AR+mRσ1(r)]
√
σ1(r) − pr+ 2pR+ [ar+mrσ1(r)]

√
σ1(r) + pr[

mR

(
r0−

ar

−b

)
+mr

(
R0+

AR

−b

)]
exp(bt) +mR

ar

−b
−mr

AR

−b

×

×
[
mr
√
σ1(r) + pr+mR

√
σ1(r) − pr+ 2pR

]
. (10)

The initial conditions to be satisfied at t = 0 are

σ1(r)|t=0 = σ01(r) = pr
η20+ 1

η20− 1
− 2pR

η20
η20− 1

, η0 =
R0

r0
. (11)
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4 Solutions of the basic equations

The integral of the equation (10), satisfying the conditions (11), is

t = −
1

b
ln

{

1− b
mRr0+mrR0

mRar−mrAR

(
exp [(mRar−mrAR) F(σ1(r))] − 1

)}

,

(12)

where

F(σ1(r)) = (pr− pR)

σ(r)∫

σ0
1
(r)

1√
[σ1+ pr][σ1− pr+ 2pR]

×

× 1

[AR+mRσ1[
√
σ1− pr+ 2pR+ [ar+mrσ1]

√
σ1+ pr

×

× dσ1

mr
√
σ1+ pr+mR

√
σ1− pr+ 2pR

.

When corrosion is one-sided the solution can be simplified. For example, if
pR = p > 0, pr = 0, ar = mr = 0 (external corrosion) the result may be written in
the form

t = −
1

b
ln {1− bF(σ1(r))} when b 6= 0,

t = F(σ1(r)) when b = 0,

where
— if 2p > |AR/mR|

F(σ1(r)) = −
r0

mR (AR/mR− 2p)

(√
σ1(r)

σ1(r) + 2p
− η0+

p√
AR/mR (AR/mR− 2p)

×

×
[
ln

√
AR/mR (AR/mR− 2p)σ1[σ1+ 2p] + σ1 (p−AR/mR) − pAR/mR

σ1+AR/mR

]σ1(r)

σ0
1
(r)


 ,

— if 2p <

∣∣∣∣
AR

mR

∣∣∣∣

F(σ1(r))=−
r0

mR (AR/mR−2p)

(√
σ1(r)

σ1(r)+2p
−η0+

p√
AR/mR (AR/mR+2p)

×

×
[
ln

√
AR/mR (AR/mR+2p)σ1[σ1+2p]+σ1 (p−AR/mR)−pAR/mR

σ1+AR/mR

]σ1(r)

σ0
1
(r)


.

(13)

Here it is necessary to take the real branch of the function ln(x). It is to be noted
that in that case mR < 0 since σ1(r) < 0.
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5 Tube thickness determination

The solutions of the basic equations give us the time-to-stress relation. Using the
equation (7), (8) and reverse formula (5) we can derive the tube thickness dependence
on t and σ1(r):

h = R− r =

{
mrR0+mRr0−

1

b
[exp(−bt) − 1](mRar−mrAR)

}
×

×
√
σ1(r) + pr−

√
σ1(r) − pr+ 2pR

mr
√
σ1(r) + pr+mR

√
σ1(r) − pr+ 2pR

and the dependences of radii r and R on t and σ1(r).
When stress has no influence on corrosion rate:

vr = v0r exp(−brt), vR = v0R exp(−bRt),

the pipe wall thickness is determined by the expression

h = R0− r0−
v0r
br

[1− exp(−brt)] −
v0R
bR

[1− exp(−bRt)].

If the rates of external and internal corrosion are constant we obtain

h = R0− r0− (vR+ vr)t.

6 Lifetime assessment

Taking into account synergetic interaction of general corrosion with mechanical
stresses, lifetime of a tube may be assessed. Failure can be due to a variety of
reasons. To determine the reason and the instant of failure, estimating functions
are suggested. Following the L. Kachanov approach [8], different kinds of damage
are represented by scalar functions changing in the interval [0, 1] (or [−∞, 1]) and
mounting to 1 in the moments of fault related to concrete criteria. To assess the

strength margin, functions of the type Πs =
f(σ, ǫ)

σs
≤ 1 may be used. For the

maximum stress criterion we can write Πs =
σ1(t)

σs(t)
, where σs(t) is limiting stress

that may change in time. In that case if σs = const the time to rupture is evaluated
by the formulae (12)–(13) with the σs for σ1(r).

Functions to assess the stability factor are of the form Πcr =
σ1(t)

σcr(t)
≤ 1, where σcr is

buckling stress depending on the tube sizes and mechanical quantities. For example,
in the case of thin-wall medium-length cylindrical shell under external pressure,

the estimating functions can be given by expression Πcr =
σ1(r)L

Ch

√
R

h
, where L is

length, R is mean radius, h is thickness of the shell, C is constant depending on
grip conditions and mechanical properties [9]. The amounts of σ1(r), R and h at
any time t are given by the above equations. Stability of thin-walled shells under
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conditions of the corrosive action have been investigated by many scientists, e.g.
[10], [11].
Damage being due to different reasons, to assess damage accumulation numerous
functions can be proposed. For instance, according to Bailey’s principle, the time

to destruction t∗ is determined by the equation Πd =

t∗∫

0

dt

τ[σ(t)]
= 1, where τ[σ(t)]

is the working life of the material under stress σ.
Furthermore, failure may be determined apparently by accidental circumstances.
For such assessment we can introduce estimating function as being equal to proba-
bility i.e. accident risk. It is to be emphasized that unreliability function depends
on other estimating functions.
The graphs of all these functions are plotted and compared with each other. The
curve being the first to run up to 1 determines the most probable reason of break-
down and the durability of an item. Calculations performed in proposed manner
have shown that increasing the exponent b of inhibition of corrosion leads to consid-
erable prolongation of the service life of a tube. When b is relatively high corrosion
can practically stop before any critical state is reached.
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Two-liquid system in a rotating cylinder under
transversal vibrations

A. N. Salnikova N. Kozlov M. Stambouli
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Abstract

Mean dynamics of two immiscible liquids of different density in the rotating
horizontal cylinder performing oscillations perpendicular to the axis of rota-
tion is investigated. Experiments are carried out at frequency of vibrations
comparable with the rotation frequency when the influence of the Coriolis
force on liquid oscillations is essential. Outstripping and lagging azimuthal
motion of the interface in respect to the cavity is found. It is generated by
an inertial wave arising in a resonant way. The azimuthal motion leads to
excitation of an axial liquid current and to an axisymmetric change of the
cylindrical form of the light liquid column. In case of intensive vibrations the
relief in the form of hills directed along the rotation axis is formed on the
interface due to Kelvin–Helmholtz instability. Self-oscillations – periodical
formation and collapse of the relief – are investigated in the system under
certain conditions. It is shown, that the dynamics of two-liquid system is
substantially determined by the ratio of vibration and rotation frequencies.

1 Introduction

Vibrational dynamics of multiphase systems under rotation acquires peculiar prop-
erties due to the influence of inertia forces, especially Coriolis force. Study of cen-
trifuged liquid layer at simultaneous action of rotation and transversal vibrations [1]
finds out an intensive azimuthal motion of the liquid in the cavity frame. This mo-
tion is generated by inertial wave arising in the system in a resonant way. Analogical
effect exerts in a differential rotation of light solid in liquid [2] and light granular
matter in liquid [3] in rotating horizontal cylinder performing transversal vibrations.
In the latter work a transformation of the circular form to a poligonal one is also
observed. Study of rotating two-liquid system under the longitudinal vibrations [4]
shows that vibrations are capable to provide generation of intensive mean flows in a
liquid and, hence, they give possibility to manage mass transfer – process which is
crucial in many chemical technologies. In present work the dynamics of two immis-
cible liquids in a rotating horizontal cylinder subjected to vibration normal to the
rotation axis is studied experimentally.
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Figure 1: Experimental model

2 Experimental procedure

Experiments are carried out with plexiglass cylinders of radius R1 = 2.5 cm and
different lengths: L = 15.2, 7.4, 4.2 cm. Two pairs of immiscible liquids are investi-
gated: fluorinert (ρ1 = 1.85 g/cm3, ν1 = 0.02 St) and castor oil (ρ2 = 0.96 g/cm3,
ν2 = 17 St), water and transformer oil (ρ2 = 0.88 g/cm3, ν2 = 0.60 St). The
interfacial tension of the first pair of liquids σ = 6.0± 0.3 dyne/cm, the second pair
– σ = 38.0± 3.0 dyne/cm. Description of an experimental setup could be found in
[3].

A cavity filled with the immiscible liquids in the ratio 1:1 is fixed on a table of the
vibrator and is set in rotation. After transition of the liquids in centrifuged state
(Fig.1, R2 – radius of the interface) transversal vibrations are set. At definiteΩr and
constant amplitude b the vibration frequency Ωv is fluently increased (decreased) by
step of 0.7− 3.1s−1. For an establishment of a stationary mode of the liquid motion
a delay of few minutes is made before measurements for each step. Speed of rotation
and parameters of vibrations vary in intervals Ωr = 0 − 0.94 rad/s, Ωv = 0 − 188

s−1, b = 1.8− 5.5 mm.

Rate of the azimuthal motion of the phases interface in the cavity frame ∆Ω = 2π/T
is studied. Rubber particles of the size about 1 mm are situated on the interface to
visualize the streams. The period T of rotation of the markers in the cavity system
is measured by means of a stop-watch in stroboscopic light with frequency Ωr. The
error of measurement of T does not exceed 5 percent.

The form of the light liquid column is studied on photos, in particular the effective
diameter of the column D in the central part of the cavity and near to the end walls
is determined. The measurement error of D does not exceed 6 percent. Photos are
received for water and transformer oil in a cavity of length L = 4.2 cm. On the
pictures the cavity rotates counter-clockwise.
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Figure 2: Relative speed of the light liquid column versus the dimensionless fre-
quency

3 Experimental results

At rest the less dense liquid is in the upper part of the cavity. At rotation the heavy
liquid is distributed near the cylindrical cavity wall under the action of centrifugal
inertia force, and light liquid forms the coaxial cylinder of diameter D0 in the central
part of the cavity. The light liquid column makes the circular oscillations induced
by gravity in the cavity frame. At that time the interface moves slowly in the
direction of the oscillations, i.e. opposite to the cavity rotation. The dependence
of relative speed of the light liquid column ∆Ω/Ωr on dimensionless frequency of
vibrations Ωv/Ωr (fluorinert and castor oil, L = 15.2 cm, Ωr = 65.9 rad/s, b = 2.2

mm) is presented on Fig.2; negative values ∆Ω/Ωr on the graph correspond to the
lagging motion of the interface, ∆Ω/Ωr = 0 – to the solid-state rotation of the
liquid together with the cavity.

Under the action of transversal vibrations of small intensity the speed of the motion
and the cylindrical shape of the column remain. The amplitude of circular oscilla-
tions of the light liquid column increases with vibration frequency. At achievement
of critical frequency the intensity of the lagging motion of the interface sharply
grows (Fig.2 point a). The light liquid column gets a shape of a dumbbell: it is
narrowed in the middle part of the cavity and extends to the end-walls (Fig.3 a).
Reorganization takes several seconds. Markers form a ring in the bottleneck of the
light liquid column, usually in the middle of the cavity. The whole column performs
intensive circular oscillations with the largest amplitude in the middle part of the
cylinder. The area of contact of a column with an end face increases, on the Fig.3 c
(view from the end-wall side) one can see a translucent strip of a liquid – the thin
layer of light liquid existing just near to an end face.

In cavities of different lengths the liquid behaves in the similar way. However in
case of a short cavity all effects are more pronounced, in particular, narrowing of
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b d

Figure 3: Interface shape at different frequencies of vibration

the light liquid column in the middle part of the cavity.

On Fig.4 is shown the dependence of dimensionless effective diameter of the light
liquid column D/D0 in the central part of the cavity (points 1 ) and near the end-
walls (2 ) on relative frequency of vibrations Ωv/Ωr (water and transformer oil,
L = 4.2 cm, Ωr = 78.5 rad/s, b = 2.5 mm). Areas I, II, III differ both by the type
of motion and the interface shape. At lagging motion (area I ) the diameter of the
light liquid column in the middle part of the cavity is less than the diameter of a
column near the end-walls.

The amplitude of the column oscillations decreases with the vibration frequency,
the lagging motion is slowed down (Fig.2). The diameter of the light liquid column
in the central part of the cavity increases, and diminishes near to the end-walls.
At further increase of the frequency the intensity of lagging motion becomes the
same, as in the absence of vibrations (Fig.2 point b, Fig.4 II ). The weak lagging
motion induced by gravity (oscillating in the cavity frame) is observed in some range
of vibration frequencies close to the frequency of rotation. The interface takes the
cylindrical form: points 1 and 2 in the area II coincide.

Study of the thresholds of the appearance and disappearance of the vibrational
lagging motion versus the rotation rate finds out the growth of critical vibration
frequency with increase of Ωr.

At achievement of the critical vibration frequency the column of the light liquid
again starts to perform circular oscillations, this time – in the direction of the cavity
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Figure 4: Dimensionless effective diameter of the light liquid column in the central
part of the cavity (point 1 ) and near the end-walls (2 ) versus the relative frequency
of vibrations

rotation. On the interface of the liquids the outstripping motion is excited (Fig.2
c). The change of the shape of the light liquid column is observed which is opposite
to the case of the lagging rotation – narrowing towards the end-walls (Fig.3 b, and
Fig.4 III ). Narrowing occurs in a small area directly near the end-walls, so the small
mass of the light liquid withdrawn from the end-walls cannot change the diameter of
the rest of the column essentially. It explains the insignificant increase in diameter
of the light liquid column in the center while the diameter of the column at the
end-walls considerably diminishes (Fig.4 III ). Intensity of oscillations and speed of
the outstripping motion increase with vibration frequency. At fast rotation of the
liquid column the situation is possible when the light liquid does not adjoin to the
cavity end-walls.

A transition from 2D motion of the liquid to three-dimensional one is specific for
the resonance corresponding to the outstripping motion. The markers move on a
spiral trajectory that complicates the measurement of their speed. For this reason
on Fig.2 only the beginning of the outstripping motion is presented, when the speed
is low and markers move on a circular trajectory.

In resonant areas when the oscillations of the light liquid column reach the high
intensity, an azimuthal wave with a crest is formed on the interface. The slopes
of the crest have a different steepness. Depending on the direction of the wave
propagation in the cavity frame two shapes of the interface are observed. They
differ by a relative position of the crest slopes (Fig.3 c, d). With growth of the
relative rotation speed the height of the crest increases.

AtΩv ≈ 2Ωr the interface gets the shape close to cylindrical, and continues to rotate
intensively in the direction of the cavity rotation. However with a small increase
of frequency (Ωv > 2Ωr) a 2D relief appears on the interface in case of the large
amplitudes of vibration (Fig.5). The relief has a shape of hills extended along the

558



Two-liquid system in a rotating cylinder under transversal vibrations

rotation axis (Fig.5 a). At first the form of normal cross-section of the light liquid
column is approached to an oval that corresponds to relief with two hills. With Ωv

the number of hills increases. At large amplitude of vibrations the height of hills
reaches significant value (Fig.5 b) in this case the self-oscillations manifesting in
periodic relief formation and destruction are observed. Reaching the certain height,
the hills suddenly disappear, the interface becomes cylindrical. But in one or two
seconds a relief with the same quantity of hills appears again.

a b

Figure 5: Quasisteady relief on the interface

The curves of the threshold excitation (Fig.6 points 1 ) and disappearance (2 ) of
lagging flows for water and the transformer oil, presented on the plane of dimen-
sionless parametersΩrR

2
2/ν2, Ωv/Ωr, demonstrate the increase of relative frequency

of vibrations with the dimensionless speed of rotation. The hysteresis in transitions
is not found.
The intensive lagging and outstripping flow of liquid is characterized by nonlinear
transformation of the shape of the wave, manifesting itself in the formation of a
specific crest with the slopes of different steepness (Fig.3). The similar phenomenon
is revealed at studying the vibrational dynamics of a centrifuged liquid layer [1]
where the two-dimensional azimuthal wave extending on a free surface of a liquid is
observed as a hill on the liquid surface.
The comparison of azimuthal inertial waves with known gravitational ones [7]
demonstrates their analogy. In particular the crest is formed in the front part of the
wave if one consider its propagation concerning the cavity along the surface of the
heavy liquid. Thus the direction of mean flow of liquid coincides with the direction
of wave propagation.
The transport of the markers along the interface towards its central area in case
of lagging motion specifies the existence of axial streams of the liquid. Near the
interface the flows are directed from the end faces of the cavity towards the center.
In case of outstripping rotation of interface the axial flows have an opposite direction.
Axial flow is generated in the viscous Ekman layers arising near the end faces of the
cylinder at the presence of relative rotation [8]. The Coriolis force causing radial
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motion of the liquid in the Ekman layers also determines the shape of the interface.

8 14 20
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v/ r
1
2

rR2

2/

Figure 6: The area of resonant excitation of lagging streaming

The quasisteady relief existing at rather high frequencies of vibrations Ωv/Ωr > 2

is formed as a result of instability of tangential discontinueties of velocity on the
interface of immiscible liquids of different density (Kelvin–Helmholtz instability)
[9]. The relief excitation occurs in case of intensive oscillation of liquids near the
interface which are possible in resonant conditions.

The resonant frequency depends on the form of the interface, the eigenfrequencies
of oscillations of the layers of different geometry are various. The consequence of
this dependence are self-oscillations of the interface, occurring in the case when the
relief achieves the large height and the shape of the interface border strongly differs
from the initial, cylindrical one. The significant change of the interface shape results
in the displacement of resonant area, that is the reason of the relief disappearance.
However, as soon as the relief disappears and the column of a light liquid gets the
cylindrical shape the system comes back to the resonant area and the conditions for
existence of the relief appear again.

4 Conclusion

The dynamics of immiscible liquids of different density in the rotating horizontal
cylinder subjected to transversal vibrations is experimentally investigated. The
lagging and outstripping azimuthal flows of two liquids interface in the cavity frame,
which are generated by an inertial azimuthal wave, are revealed and arise in the
cavity in the resonant way. The direction of flow is determined by the relative
frequency of vibrations Ωv/Ωr. The lagging current exists at Ωv/Ωr < 1, the
outstripping one – at Ωv/Ωr > 1. The intensive azimuthal flow is accompanied
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with the axisymmetrical change of the shape of the light liquid column and with the
axial flows which are caused by action of viscous Ekman layers.
It is revealed that at intensive vibrations the relief with the shape of the hills ex-
tended along the axis of rotation is formed on the interface. The Kelvin–Helmholtz
instability lays in the basis of the relief formation. The spatial period of the relief
decreases with the increase of the vibration frequency. Under the certain conditions
the self-oscillations of the system manifesting itself in the periodic formation and
destruction of the relief are observed.
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Abstract

Mucociliary transport is an important way of clearance of respiratory pas-
sages from infectious agents and minor particles. Based on theoretical re-
searching, experiments, mathematical and computer models of ciliated cells’
motion behavior development of new methodologies for treating diseases of
respiratory passages are possible. Considering this, the development of math-
ematical and computer models, sufficiently describing the physical properties
and characteristics for this kind of structures, becomes relevant. In this case
object of modeling is single ciliated cell of human respiratory passages’ epithe-
lium. Now it is known that cilia’s motions are synchronized within ciliated
cell and moreover within group of cells. Motion of cilia provides mucocil-
iary transport. Changing in cilia’s motion parameters leads to problems in
transport’s working and in the following might lead to respiratory diseases.
Cilia are surrounded with inter-cilia fluid, produced by ciliated cells. On the
surface of this fluid there is layer of mucus, produced by beaker cells and
glands of mucous membrane. Type of cilia’s movement can be described as
paddle motion. This motion can be divided in two phases - effective stroke
and recovery stroke. During phase of effective movement cilia get straight
and their ends dive into mucus layer. And mucus and upper part of inter-cilia
fluid are moving at this moment. There are different theories concerning the
mechanism of cilia’s movement coordination. They can be divided in three
groups: neural-alike way of excitation wave transfer, process of cilia’s inter-
action viscous fluid and mechanism of wave transfer triggered by contact of
cilia.

This work represents and simulates mechanism of motion initiation and
synchronization due to performance of membrane transport systems and cal-
cium ion as coordinating agent of this process. Cilium is presented as math-
ematical model of system consisted of solid bodies, connected with flexible
linkages. Signal for conformation changing of specific protein (dynein) is in-
crease of calcium ion concentration at the bottom of the cilia (kinetosome).
Calcium concentration is regulated by calcium pumps (proteins) that are inte-
grated into the cells membrane. Signal for synchronization of cilia’s beatings
is supposed to be calcium concentration changing in the inter-cilia fluid (and
concerned with wave-alike movements of fluid). Apparently there are parts of
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ciliated cells that are responsible for direction and frequency of cilia’s beating
and that work according to signals of neural system. These signals can be
presented as local short-time changing of electric potential of cell’s membrane
at the cilia, defining the paddle motion.

1 Structure of cilium

Cilium is flexible membrane extensions of the cell. It is surrounded with inter-cilia
fluid, produced by ciliated cells. The thickness of its layer is about 7− 10µm.[2] On
the surface of this fluid there is layer of mucus (thickness is 0.5−2µm)[2], produced
by beaker cells and glands of mucous membrane.
Cilium consists of central bundle of microtubules, called the axoneme, in which nine
outer doublet microtubules surround a central pair of singlet microtubules. This
characteristic ”9 + 2” arrangement of microtubules is seen when the axoneme is
viewed in cross section with the electron microscope. Each doublet microtubule
consists of A and B tubules. The bundle of microtubules comprising the axoneme is
surrounded by the plasma membrane. Regardless of the organism or cell type, the
axoneme is about 0.25µm in diameter, but it varies greatly in length, from a few
microns to more than 2mm [4].
At its point of attachment to the cell, the axoneme connects with the basal body
(kinetosome). It’s cylindrical structure consisting nine triplet microtubules. Each
triplet contains one complete A tubule, fused to the incomplete B tubule, which in
turn is fused to the incomplete C tubule. Basal body of cilium plays an important
role in initiating the growth of the axoneme.
Within the axoneme, the two central singlet and nine outer doublet microtubules
are continuous for the entire length of the structure. Doublet microtubules, which
represent a specific protein - tubulin, are found only in the axoneme. Permanently
attached to the A tubule of each doublet microtubule is an inner and an outer row
of dynein arms.

Figure 1: Sturcture of cilium

Ciliary beating are produced by controlled sliding of outer doublet microtubules.
Dynein arms generate the sliding forces in axoneme upon condition of presence of
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sufficient amount of ATP molecules and calcium ions.

2 Movements of the cilia and its mechanism

Type of cilia’s movement can be described as bend (”paddle”) motion. This motion
can be divided in two phases - effective stroke and recovery stroke. During phase
of effective movement cilia get straight and their ends dive into mucus layer. And
mucus and upper part of inter-cilia fluid are moving at this moment [2]. Duration
of these two phases is different – effective stroke’s duration is 3-6 times shorter than
recovery’s [2].
Movement spreads from one cilium to another. Cilia movements are synchronized
in one cell and more over in the group of cells. It can be archived with the existence
of special regulation mechanisms coordinating dynein molecules activity. There are
different theories concerning the mechanism of cilia’s movement coordination. They
can be divided in three groups:

1. neural-alike way of excitation wave transfer;

2. process of cilia’s interaction viscous fluid;

3. mechanism of wave transfer triggered by contact of cilia [2].

In present work the calcium ion is considered to be coordinating agent. Signal for
dynein arms tension is increasing of calcium ion concentration in liquid around cilia.
Calcium concentration is regulated by calcium pumps (proteins that are integrated
into the cell’s membrane).
Let’s take more detailed look at cilium’s beating. Due the signal of nervous system
there is short-term increase of charge on the basal body’s membrane that leads to
opening on calcium channels. That is initiation of cilium’s beating.
More detailed than effective and recovery stroke, cilium’s beating can be divided in
four phases:

1. Phase ”Bend”. Calcium ions are going through channel in cell’s membrane
and moving up to the negative charged axoneme. At first axoneme charge
doesn’t change due to participation of ion in ATP hydrolyze (that is the rea-
son of conformation changes in dynein and tension of dynein arms). Then
negative charge of the axoneme is neutralized and there’s increase of calcium
concentration appears at the basal body. Then the channel closes.

2. Phase ”Relaxation”. Reduction of ATP molecules begins, followed by release of
calcium ions going into inter-cilia fluid though calcium channels in axoneme’s
membrane. With inter-cilia fluid calcium ions are transported to the next
cilium and initiate bend phase there, after crossing the threshold of the ions
concentration. Tension of dynein arms decrease and due to this rigidity of
cilium decreases too. Cilium starts to behave like string.

3. Phase ”Return”. Flow of calcium ions going out of cilium’s plasmolemma
generates opening of calcium pump (that is situated at the other side of cilia)
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Figure 2: Phases of cilium beating

Figure 3: Mechanism of cilium beating

4. Then goes another phase of relaxation and then new bend.

Flow of the ions through the channel in biological membrane can be also controlled
not only with changing of calcium ions’ concentration but with changing of its
thickness.
Signal for synchronization of cilia’s beatings is supposed to be calcium concentration
changing in the inter-cilia fluid (and concerned with wave-alike movements of fluid).

3 Information and computer model of cilium

Cilium is concidered as mathematical model of system consisted of solid bodies,
connected with flexible linkeges [1].
Scheme of synchronization shows the conception of cilia’s beating mechanism. Un-
derstanding of this process requires detailed analysis of contractile proteins’ behavior
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and performing complex experiment experiments to find waves of calcium ions in
ciliary liquid and comparing them with wave fluctuations in information-computer
model.
Model was realised using Mathlab Simulink. It consists of two impulse generating
blocks (triggering potential, two blocks “OR”(that choose type for control of open-
close state of right and left channels – by potential changing or changing of thickness
of the membrane), two logical blocks ”AND” that simulate left right channels, ten
logical blocks ”AND” simulating tense of dynein arms in the bend phase, two logic
blocks ”AND” simulating dynein arms tense in the return phase. Delay blocks:

• Delay of calcium ions in the channels controlled by triggering potential (τ1)

• Delay of calcium ions in the channels controlled by changing of the membrane
thickness (τ2)

• Delay of calcium ions due to diffusion up to the end of axoneme (between
axoneme elements) (τ3)

• Delay of calcium ions due to diffusion from right channel to the left (τ4)

• Delay of calcium ions due to diffusion from left channel to the right (τ5)

Next time characteristics are proposed in this model:

• Cycle of beating Tc = 1/fk = 0.2s;

• Duration of bend phase Tb = 9τ3;

• Duration of relaxing phase after bend: Trb = τ3

• Duration of relaxing phase after return: Trr = τ2+ τ5

Correlation of phases duration is known from experiments [5]:

Tb+ Trb+ Trr = (4− 6) · Tc
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Figure 4: Computer model of cilium

Figure 5: Subsystem

4 Conclusions

This work describes strucrure and mechanism of cilium beating motion concidering
membrane transport systems and calcium ion as coordinating agent of this process.
Its initiation and synchronization processes are modelled in Matlab Simulink. Hy-
dradinamics is no taken into consideration. Researching of these processes will be
continued in future and result will be published in next articles.
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Abstract

The article gives the analysis of the most general conformities to the law
at motion of locomotive facilities in a liquid. Basic attention is spared the
problems of drag reduction. For illustration of general conformities the ele-
mentary models of motion with developed cavitaion are used on the basis of
laws of conservation of energy and impulse.

1 Introduction

A process of motion of different locomotive facilities in a liquid is the complicated
enough mechanical system, different a considerable variety for the different types
of objects. That not, less this process in considerable part has a lot of general
conformities to the law of based on the fundamental laws of conservation of energy
and impulse. One of basic priorities at motion in a liquid there is a problem of
minimum expenses of energy providing motion related to the problems of diminishing
of resistance motion. The most general conception in this area was formulated an
academician L.I. Sedov in 1971 on the international IUTAM symposium in Leningrad
of “Unsteady flows in water with high speed”. This conception after was most full
developed in works of V.M. Ivchenko and his collaborators [5, 6]. Application of
developed cavitation presents one of the most interesting and effective facilities of
decline resistance at motion in water. The system of realization of this motion is one
of the most complicated systems, plugging in itself a row there are enough difficult
processes of formation of cavity, problems of gas injection and loss et al. However
the row of elementary models, evidently illustrating the basic physical features of
this process on the whole is here developed. It allows simply enough on the basis of
elementary models and also laws of conservation of energy and impulse to analyze
basic high-quality conformities to the law and ways of increase of efficiency of motion
of locomotive mean in general case, including also the case of motion with developed
cavitation.
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2 Simplest models of supercavitation

Supercavitation flow give the possibility isolated body against water avoids of high
viscose resistance and thank to it to reach very small drag as compared to continuous
flow. The process of creating of slender axisymmetric cavity can be explained with
help of simple model of radial flow [1, 10], Fig.1. In the case of prolate cavities
cavitator size is small and its drag is practically independent on cavity form and
cavity form is independent on cavitator form and is defined by cavitator drag only.
Moving cavitator push motionless fluid to asides and it’s work is transformed into
kinetic energy of mainly radial near cavity flow in the each motionless section which
cavitator passed. In doing so real zone of perturbations contained main part of
energy and impulse of flow is concentrated in the finite region limited with surface
r = ψ(x, t) with wide some more as compared to semi-length of the cavitator and
cavity surface. This fact make cavity as alike on wake of definite type. Further
the expansion of the cavity section together with radial flow near cavity is occurred
by inertia under action pressure difference in the undisturbed flow and in cavity.
In doing so the expansion process weakly enough depends on surface r = ψ(x, t)

form (x, t — prolong coordinate, time) and the less the more slender is surface of
cavitator and cavity. Cavity section reach maximal radius in the middle part and
further start to be decreased under outer pressure action. Decreasing of the cavity
section is finished in the back unstable zone of cavity with chaotic flow and all energy
of radial flow is transformed into energy of wake behind cavity.

Figure 1: Radial flow model.

The least cavitational drag coefficient per cavity middle section CD (the body close
enough inserted in cavity) are reached for maximally prolonged (slender) cavities and
possibility of it decreasing are limited by maximal aspect ratios of the bodies from
the point of view of it’s strength. Basic parameter of cavitation flow is cavitation

number σ =
2∆P

ρU2∞
, where ∆P — pressure difference between hydrostatic pressure

in flow and pressure in cavity what for vapor cavities is near zero, ρ — water mass
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density, U∞ — speed of undisturbed flow. Cavitation Number σ in the case of
disc type cavitators defines cavity aspect ratio λ, which quickly is increased along σ
decreasing. One of the basic mathematical statements of supercavitation is classical
problem on the base of ideal incompressible fluid for potential of speeds defining
by Laplace under boundary conditions not penetration and given pressure on the
unknown before solution cavity surface. The classic theory is presented by Number of
well known books [1, 3, 8], including development one of the most hopeful method
of nonlinear numerical computation [4]. The most important for application the
slender cavities are so they provide minimal drag. For this case theory can be
simplified on the base of known Slender Body Theory and the Linearized Theory
of Axisymmetric Supercavitation on this base have been developed [9]–[14]. This
theory at present really is as base of number practical methods and simplest heuristic
models for prediction of supercavitation.

3 Elementary equations of the axisymmetric cav-

ity

Elementary equations for axisymmetric cavity really express radial flow cavitation
model Fig.1 and are developed as first order equations of linearized theory on the
base of Slender Body Hydrodynamics. Simplest variant of the equations for slender
steady axisymmetric cavity r = R(x) in the case of small (disc type cavitators) [9]–
[14] is:

a)µ
d2R2

dx2
+ σ = 0,

dR2

dx
|x=0 = R2n

√
2cd

kµ
, R2|x=0 = 0

b)R2 = Rn

√
2cd

µk
x −

σ

2µ
x2

c)Rk = Rn

√
cd

kσ
, Lk = Rn

√
2µcd/k

σ
, λ =

√
2µ

σ
= 2

lnλ/
√
e

λ2
.

(1)

The solution of the system (1a) at the case of σ = const is presented by ellipsoidal
cavity form (1b) and defines known dependencies (1c) for cavity maximal radius
Rk cavity semi-length Lk and also cavity aspect ratio λ = Lk

Rk
. In the system (1a)

cavitator drag D is defined by known dependence D = cdπR
2
nρU

2
∞/2, Rn, cd —

radius, drag coefficient of cavitator. Cavitator sizes here are neglected. For defining
of first initial conditions the energy conversation laws is used instead of matching.
It is supposed that cavitator work is transformed in the energy of radial flow at the
moment when cavitator pass this motionless section of fluid. Equations (1) include 2
characteristic values µ and k having clear physics: µ characterize mass of expanding
cavity sections, k — prolong transmission of energy along the flow sections. Basic
idea of equations (1a) receiving is that we use simplest to the limit equation for
cavity form, but in doing so we use values of main coefficient here µ, k on the base
of more accurate second order approaches. Second order expressions for this values
are defined by slowly enough changing dependencies on λ and σ:
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Figure 2: Inertial coefficient µ(σ), µ(λ). Solid line — µ dependence (2); dashed line
10% difference with µ; dotted line µ = σλ2/2 — numerical calculations [4]

Figure 3: Values µ(σ), k(λ). Solid line — dependence (3); dotted line — experiment
H. Reichard; circles — numerical calculations [4].

µ = ln
λ√
e
≃ ln

√
ln2/σ

eσ
|λ≈8÷15 ≈ ln

√
1.5

σ
∼ 2, (2)

k = 1−
2ln2/

√
e

lnλ
≈ 1−

2ln2/
√
e

ln4/σ
|λ≈8÷15 ∼ 0.93− 0.94, (3)

and for characteristic range of changing of λ, σ can be used for estimations as definite
constants. Calculation µ, k as compared to nonlinear numerical prediction [4] are
illustrated by Fig. 2,3. Equations (1a) can be expressed in the form of energy
conversation for each motionless fluid section. Main energetic dependencies are
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Figure 4: Ellipsoidal cavity for accuracy σ = 0.04; dashed line — equations (3,5);
Circles — nonlinear numerical calculation [4]

done below:

a)Ek = π
µρ

4
U2∞

(
dR2

dx

)2
, b)Ek = π

µρ

4
U2∞

(
dR2

dx

)2
|x=0 =

D

k
,

c)kπ
µρ

4

d

dx
U2∞

(
dR2

dx

)2
+ π

dR2

dx
∆P(x) = 0,

d)Ekx+ Epx = π
µρ

4
U2∞

(
dR2

dx

)2
+ πR2∆P =

D

k
.

(4)

Dependence (4a) defines kinetic energy of fluid in the section of the flow near cavity
in particular in the steady case. Energy what is given by cavitator to the fluid section
for the initial moment is defined by expression (4b). Equation (1a) in general case
can be presented as energy conservation equation in each motionless fluid equation
(4c). In the case of constant pressure difference ∆P this is total kinetic Ekx and
potential energy Epx conservation equation in each motionless section (4d). More
accurate variant of these equations with rough estimation of the cavity near disc
type cavitator is:

µc
d2R2

dx2
+ σ = 0,

dR2

dx
|x=0 = Rn

√
2(cd− kσ)

kµc
, R2|x=0 = R2n, (5)

where µc = ηµ, η = cd/(cd − kσ). Accuracy of equations (1, 5) as compared to
nonlinear numerical prediction [4] is illustrated by Fig 4. Some violations in the for-
ward cavity part is due to that parabolic asymptotic for σ → 0 of the solutions on
the base of equations (1a) rough enough approximate more complicated real asymp-
totic [3, 7]. There are similar equations for prediction of unsteady supercavitation
too [9]–[14]. It is need to note that number of key results on the base of Linearized
Theory and in particular on the base of the simplest model Fig. 1 and equations
(1-5) are confirmed by numerous experiments and received earlier as separate results
in known researches by H. Rechardt, G. Birkhoff, P Garabedian, G. Logvinovich, L.
Epshtein and another ones.
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4 Cavitational drag

Drag of disc type cavitators is defined by known dependencies:

D = D(σ) = cd(σ)πR
2
n

ρU2∞
2
, cd = cd0(1+σ), disk : cd0 ∼ 0.82−0.83. (6)

where cd0 is cavitator drag coefficient for σ = 0. For slender cavitator drag coefficient
is defined by dependence:

a) cd =

(
cd0(1+ σ) −

σ

2µ

(
lnL̄+

2

3

)
+ σ

)
,

b) cd ∼ cd0(1+ σ), cd ∼ cd0+ σ,

(7)

which cover 2 known for more limited ranges dependencies 7b) and 7c). Here: L̄ =

L̄c + 1, L̄ = Lc/l, Lc, l — cavity and cavitator lengths. Asymptotic approximation
for slender cone drag coefficient cd0 until cone semi angle γ < 50o is:

cd0 ≈ 2tg2γln

(
3

2e

(1+ (4/3)tgγ)

tgγ

)
. (8)

More informative the drag coefficients per definite cavity section are. This is drag
coefficient for forward part of the cavity CD0 under σ = 0 for motion in the forward
part of the cavity and drag coefficient per middle cavity section CD:

CD0 =
1

8

ln(4λf/
√
e)

λ2f
, CD = kσ =

2

λ2
ln
λ

2
, (9)

More universal is dependence for CDF per interstitial forward part of cavity until
maximal body section touched by cavity CDF with aspect ratio of this part λf:

D = CDFπR
2
N

ρU2∞
2
, CDF = kµx

[1+ 2λ2fσ/ξµ]2

8λ2f
, ξ =

√
µx

µ
,

µx = 0.5ln

(
16

e
(λ2f + 1)

(
1−

2λ2fσ/µ

1+ 2λ2fσ/µ

)2)
.

(10)

Where RN— cavity radius in the touched by cavity body maximal section, λf aspect
ratio of this forward part of cavity, e ∼ 2.72... For µx = µ, ξ = 1 CDF expression [10]
is defined on the base of ellipsoidal cavity form. Values for CDF under given aspect
ratios λf = 8, λf = 16 are illustrated by Fig. 5.

5 Main ways for drag reduction

One of basic ways of diminishing of cavitation drag is a maximally possible increase of
body aspect ratio dense entered in a cavity or use of the mode of motion in the front
area of cavity at the considerably less coefficients of resistance. In both cases it can
be arrived at the considerable increase of gas injection and loss which very quickly
grows at the increase of the cavity aspect ratio and also by the increase of movement
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Figure 5: Values of CDf depend on given σ, λf. Solid line — dependencies (10);
dashed line — dependence (10) for µx = µ.

speeds to their optimum values. Physically energy of cavitation resistance is lost
in dulled end of cavity where a loss of stability of flow is with formation of chaotic
flow of liquid of transforming energy cavitation flow in energy of wake after a cavity.
One of basic ways of diminishing of resistance at motion of body densely entered in
a cavity there is the use of the proper closers in the back-end of body. In an ideal
model the law of Dalamber–Euler takes a place during complete indemnification
of resistance. However in reality even partial realization of a compensate force
is related to considerable difficulties in connection with instability of flow in the
blunted back-end of cavity. At the variable along length number of cavitation, in
particular in the case of vertical cavities, was found out possibility of existence of
cavities with sharpening in a back point [16]. From one side the blunt of back-
end of cavity is diminished by possibility of origin of instability in this area. From
other side accordance with dependence (4a) means possibility of shorting of cavity
without the losses of energy in wake. It was found out analogical possibility also in
the case of ordinary cavities with a partition, separating the back-end of cavity with
the more high pressure σ2 < 0 as compared to the forehand of cavity σ1 > 0 [13].
Solutions in both cases of vertical cavity and cavity of part by a partition with
different pressures in each of parts easily are defined on the basis of equations (1a).
Conditions of existence of points of sharpening in the back-ends of vertical cavity
and in the case of more high pressure in the back section of ordinary cavity got as
dependencies:

a)σFr2L =
4

3
, b)σ2 = −

σ1

2

(L̄1− 1)2

L̄1(1− L̄1/2)
, (11)

where: FrL = U∞/
√
gL, L̄1 = L1/Lk define distance until section where second

cavity part under σ2 < 0 is started, L = 2Lk — cavity length. Fig. 6 illustrates
vertical cavity form with sharpening at the cavity end as compared to form of
ordinary cavity Realization of pressure value in the back-end of cavity greater as
compared to hydrostatical pressure in a stream can be related to the considerable
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Figure 6: Vertical cavity with sharp end — dash as compared to ordinary cavity —
solid.

Figure 7: Cavity with account of gas layer. Dashed line — r = R(x) cavity form;
solid line — r = B(x) rigid surface form.

problems. One of possible ways for realization of flowing around of back-end of
cavity with sharpening and accordingly with indemnification of resistance there can
be application of back hard sharp cowling the surface of which is insulated from
water by flowing around of high speed flow of gas a thin layer. Simplest approximate
approach on the base of model of ideal transonic flow of gas can be defined by system
of equations:

a)

(
2k

k− 1

)(
Pc1

ρc1

)(
Pc

Pc1

)k−1
k

+U2c =

(
2k

k − 1

)(
Pc1

ρc1

)
+U2c1,

b)(R2− B2)ρc1Uc1 = (R21− B21)ρc1Uc1,

c)ρc = ρc1

(
Pc

Pc1

) 1
k

, d)Pc = P∞ + µ
ρU2∞
2

d2R2

dx2
.

(12)

Here: r = B(x) is the rigid surface in the cavity equation, k is the adiabatic co-
efficient, ρc, ρc1, Uc, Uc1, Pc, Pc1 are gas mass density, speed, pressure at arbitrary
and initial locations. System (12) for a given cavity form r = R(x) is transformed
to the equation defining the surfaces r = B(x). For a given r = B(x), the system
solution is transformed to the ODE for the cavity form. The system of equations
(12) approximately describe the gas layer flow where prolong speed and pressure
is as constant along radius and is defined by pressure on the cavity surface. For
very high initial speeds Pc1/ρc1U

2
c1 → 0 the nonlinear equation is simplified to the
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equation (σ1 correspond to the initial section):

d2R2

dx2
+
σ1

µ
−
2

µ

Pc1

ρU2∞

((
R21− B21
R2− B2

)k
− 1

)
= 0. (13)

It is need to note the qualitative nature of equations (12-13). Significant influ-
ence of viscosity and centrifugal forces on lateral pressure gradients is possible
here. Limited is adiabatic approximation. The ideal gas model has limited ap-
plicability for super overheated vapor only and heat and mass transfer and phase
changes can be significant here. Further perfection of the model is required.
Fig. 7 illustrates calculation results based on equation (13) in the case of air for:
k ∼ 1.4, σ1 ∼ 0.04, 2Pc1/ρU

2
∞ ∼ 0.02, R ′|x=0 = 0 , where µ ∼ 2 is used for a rough

estimation. As follow from calculation results for sufficiently high gas speeds: it is
possible to significantly control cavity form, however due to gas compressibility we
have an elastic system where high frequency oscillations and waves on the cavity
appearance are possible and can disturb flow at the cavity end with violation of flow
stability. Thus, oscillations can appear even in the case of cylindrical rigid surfaces,
but it can suppose that in the case of rigid surface form similar as cavity form under
constant pressure for σ < 0 ( 11b) this oscillations can be maximally increased. For
decreasing of energy expenses the way to utilize in mover mechanic energy of the
wake can be used too. Propulsion coefficient ηu here can be defined by dependence:

ηu = η/(1− kη)η→0 ∼ η(1+ κη) (14)

Here κ is part of energy of drag what can be extracted from the wake as mechanic
energy and utilized in mover. For small propulsion coefficients this way of drag
reduction can not be effective enough.

6 Ideal movers approximate dependencies

For very high speed over ∼ 50m/s even supercavitating propellers become not effec-
tive. Application of supercavitation regime give the possibility considerable decrease
drag in a lot of time but require especial hydro jet movers. It can be movers of dif-
ferent types used on the base of gas, vapor, vapor-water drops mix, multiphase fluid
and ie. Main information about very high speed movers is presented by number of
books and another sources: [2, 5, 6] and others. The hydro jet mover force F can be
defined in general case by known approximate B. Stechkin [15] dependence:

F = ṁiUn+ ṁe(Un−U∞) + (Pn− P∞)An. (15)

Here ṁi, ṁe - masses of flowing per second from nozzle which are contained in the
moving vehicle ṁi and got of outer water ṁe, Un, Pn , accordingly are: speed of jet,
pressure in the nozzle end section with square An. This equation is generalized also
for case of outer fluid inlet from wake behind body by V. Ivchenko [5, 6]. In the
case of calculated nozzle regime under essential pressure for motion in continuous
flow third term here is absent. One of the main efficiency criteria here is propulsion
coefficient:

η =

(
2

1+Uj/U∞

)(
Ii− im

Ii

)
, (16)
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where U∞ — motion speed, Uj — final jet speed, Ii — initial enthalpy per unite of
mass, im missed with jet enthalpy. This dependence is maximally general and valid
both for gas, vapor, mix water vapor hydro jet movers.
Optimization for the most effective mover work in general case defines next system
of dependencies for optimal values under given missed enthalpy im:

a) Ūj = 1+
√
2īm, b) Īiopt =

√
2īm(1+

√
2īm), c) ηopt =

1

1+
√
2īm

. (17)

where: Ūj = Uj/U∞ , Īiopt = Iopt/U
2
∞ , īm = im/U

2
∞ . In doing so optimal propulsion

coefficient is achieved in the case of optimal jet speed what is provided by optimal
initial value of enthalpy.

7 Main efficiency criteria - optimization

One of basic initial values is a drag coefficient per the most section of body touched
a cavity surface (10). This coefficient is universally suitable estimations of drag both
at the dense inscribing in a cavity and at motion in the front area of cavity. His
simplest variant is here defined on the basis of ellipsoid cavity form.

CDF =
kµ

8

[1+ 2λ2fσ/µ]2

λ2f
. (18)

Here λf is aspect ratio of part of body to his maximal section, rounded a cavity. For
rough understanding of sizes the values k ∼ 0.93− 0.95, µ ∼ ln0.7λ ∼ 0.5ln1/σ ∼ 2.2

are suitable. More general is presentation of body drag D and units of his volume
D/Vb in a kind:

D = CVFV
2/3

b

ρU2∞
2
,

D

Vb
=

CVF
3
√
Vb

ρU2∞
2
, CVF = 3

√
π

κ2p

kµ

8

[1+ 2λ2fσ/µ]2

(λ2f)
4/3

, (19)

where CVF — coefficient of volume, κ — relation volume of body to the volume
of the paraboloid entered in a cavity . Most characteristic values of coefficient of
volume at motion in the front area of cavity σ → 0 and at the dense writing into a
cavity:

CV0 = 3

√
π

κ2p

kµ

8

ln4λf/
√
e

λ2f
≈ 3

√
π

κ2p

k

8

µ

λ2f
, CV =

3

4
3

√
2π

3

kσ 3
√
σ

3
√
κ2cµ

, (20)

where: κc — relation of body volume per cavity volume. Optimization of expenses
of energy on unit of length of way EX conducted on the basis of dependence and
structure of its function for optimization to on σ:

a)EX =
D

η
=
k

4

[1+ 2λ2fσ/µ]2

2σλ2f/µ

(
1+

√
2ĩm

√
σ

)
∆PπR2N,

b)
(1+ bσ)2

bσ
(1+ c

√
σ), c)3bc

(√
σ
)3

+ 2b
(√
σ
)2

− c
√
σ − 2 = 0.

(21)
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Figure 8: Optimal cavitation numbers σ = σ(λf) for ĩm = 0 and ĩm≫ 0

Where ĩm = ρim/∆P. Here taken into account only cavitation drag and estima-
tions of losses of energy during realization of motion are based on the maximally
idealized model in supposition of the use of optimized movers. At the given ĩm, ∆P
there are two typical cases. At small ĩm → 0 motion providing the minimum ex-
penses of energy takes a place in the first half of cavity subject to the condition:
2σλ2f/µ = 1. At the considerable values of jet enthalpy ĩm → ∞ motion providing
the minimum expenses of energy takes a place at greater speed and in the front area
of considerably longer cavity subject to the condition 2σλ2f/µ = 1/3. Got on the
basis of maximal idealized models and laws of conservation of energy and impulse
have general character. Probably, these dependencies are reflected by high-quality
tendencies for the sufficient wide type of the movers systems and need clarification
and addition in every case.

8 Conclusions

The most characteristic possibilities of diminishing of resistance and expenses of
energy are probed at motion in water on the basis of maximal the idealized models
and laws of conservation of energy and impulse. The got dependencies of the most
general character can be utilized for a high-quality estimation at development of
methods of calculation of wide class of movers facilities and systems.
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Abstract

The paper deals with an experimental study of the dynamic properties
of filled and unfilled polyethylene. Two components of the complex modu-
lus, storage and loss moduli, have been investigated. Estimation of internal
heating of the specimen caused by harmonic vibrations has been done. The
experimental results agree well with the theoretical predictions obtained by
the phenomenological model describing the behavior of the material under
study.

One of the promising ways of improving the mechanical properties of polyethylene
is its reinforcement with nanoparticles of other materials. Addition of a rather small
amount of filling particles essentially increases the elasticity modulus and strength
of the obtained composite and improves its resistance to ignition.
In this work, the influence of filling clay nanoparticles on the elasticity modulus
of polyethylene under tension was studied experimentally. The experiments were
made using a highly sensitive measuring instrument for dynamic mechanical analy-
sis DMA/SDTA861e manufactured by Swiss company METTLER TOLEDO. The
dynamic mechanical analysis of the specimens was performed in the frequency range
from 0,1 to 100 Hz, and in the force range from 0,5 to 17,5 N at the room tempera-
ture of about 25◦C. The frequency and the amplitude of tensile dynamic load varying
under the sinusoidal law were the parameters, which were changed during the exper-
iments. The objective of experimental investigation was to define two components
of the complex modulus: the real part (storage modulus) and the imaginary part
(loss modulus)[1]. The obtained results were used to determine the dependence of
the Yung modulus of the examined material on the variable parameters.
The experiments were made for plane specimens of length 10,5 mm, width 4 mm and
thickness 2 mm. The polymer under investigation was a nanocomposite including
layer clay filler which was a mixture of a plenty of thin silica plates 1nm thick and
with transverse dimension varying from 30 nm to several microns. The filler fraction
of the total material mass was 3% .
Figures 1 and 2 show the dependence of the elasticity modulus for filled and unfilled
polyethylene on loading frequency. The test were performed for three levels of tensile
deformation: 0,35 µm, 3,5 µm and 35 µm, which correspond to 0,003%, 0,033% and
0,333% for deformation. Each loading was repeated 5 times. The experiment error
was 7%.
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The plots show that (fig. 1 and 2):

— frequency increase from 0,1 Hz to 100 Hz causes an increase in the storage
modulus and a decrease in the loss modulus by 30–40%;

— the storage modulus of the filled polyethylene is 40% higher than that of the
unfilled polyethylene over the whole frequency range;

— the loss modulus weakly depends on the content of the filler in polyethylene.

Figure 1: Storage modulus versus frequency of dynamic tensile load;
1,2,3 — filled polyethylene; 4,5,6 — unfilled polyethylene; 1,4 — tensile amplitude
of 0.35 µm; 2,5 — tensile amplitude of 3.5 µm; 3,6 — tensile amplitude of 35 µm.

a b

Figure 2: Loss modulus versus frequency of dynamic tensile load;
a — for filled polyethylene, b — for unfilled polyethylene;

1— at the amplitude 0,35 µm; 2— at the amplitude 3,5 µm; 3— at the amplitude
35 µm.

Figures 3 give the results of experimental investigation of the elasticity modulus
versus the amplitude of the tensile force for filled and unfilled polyethylene. The
frequency of loading was set at two levels. Each loading was repeated 5 times.
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a b

Figure 3: The storage modulus (a) and the loss modulus (b) versus amplitude of
dynamic load;

1 — at frequency of 100 Hz and 2 — at frequency of 1 Hz for filled polyethylene;
3 — at frequency of 100 Hz and 4 — at frequency of 1 Hz for unfilled polyethylene.

A repeated series of tensile tests were carried out first at the amplitude of 3,5 µm
followed by a series of tests at large deformation amplitude of 35 µm, after which the
tests were again realized at the deformation amplitude of 3,5 µm — in total there
were 15 cycles of tension — compression loads at deformation amplitudes of 3,5 and
35 µm. Figs. 4–5 show the curves of the first test of the original specimen during
the fist loading cycle consisting of 5 subsequent loading steps and the curves of the
last test. The curves were constructed by experimental points. As it is seen from
the plots, after long-run tests the values of E′, E′′ and loss factor, tan δ remained
practically unchanged, i.e. no softening of the material was observed (the Mullins
effect was lacking)(fig. 4 and 5).

a b

Figure 4: Variation of the storage modulus (a) and the loss modulus (b) of the
filled polyethylene under repeated tension; 1 — first test, 2 — repeated test.
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Figure 5: Variation of the loss factor, tan δ for filled polyethylene
under repeated tension; 1 — first test, 2 — repeated test.

The viscoelastic behavior of polyethylene under cyclic load is described with good
accuracy by the phenomenological model (Fig. 6) [2]. It consists of two elastic and
one viscous element. Each element corresponds to one or two tensor equations.
The system gives an idea of how they can be combined into a system of constitutive
equations determining the properties of the material. The model has been developed
for a medium with finite deformations. It has been used to simulate the dependence
of the heat generation rate on the amplitude and frequency of material deformation
under cyclic loading conditions.

Figure 6: The symbolic circuit of phenomenological
model of polymeric material.

The temperature variation strongly affects the polymer properties [3]. In the spec-
imen, heat transfer to the environment occurs through the specimen surface. At
large thickness of the specimen the temperature in its center might be essentially
higher than at the boundaries. Due to this temperature difference the mechanical
behavior of the material near the specimen boundary differs markedly from that at
the center. Therefore it appears rather important to determine the specimen thick-
ness, at which the temperature field of the specimen under cyclic deformation will
be uniform and equal to the ambient temperature

cρρ
∂θ

∂t
= k

∂2θ

∂x2
+ f,

where is a specific heat, is a material density and is a thermal conductivity, is
the amount of heat released per unit time and unit volume, is temperature. For
polyethylene we use the following values:

cρ = 2 · 103 J

kg · K, ρ = 0, 92
kg

m2
, k = 0, 33

J

s ·m · K.
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The results of the calculations are shown in Fig. 7. The calculations have been
made for the case, in which the deformation frequency is 100 Hz and the ampli-
tude of grip displacements is 35 µm. These are the limiting characteristics of the
DMA/SDTA861e device, which are most unfavorable for heating of the specimen
during the experiment.

Figure 7: Temperature difference ∆θ between the center of the polyethylene
specimen and the environment versus thickness of the specimen h under cyclic

deformation.

The data shown in the figure supports the view that investigation of the viscoelastic
behavior of the specimen under dynamic load should be made for a specimen whose
thickness is not higher than 2 mm. Only in this case the temperature difference
inside the specimen will not exceed 0,8 ◦C, so that when studying the polyethylene
properties nonuniformity of the temperature field can be neglected.
During the experiment, the specimen temperature measurements were made (Fig. 8).
In the present experiment, the temperature of the 2-mm-thick specimen increases
by 0,25 ◦C, which has no effect on the properties of the examined specimen. The
obtained results are therefore thought to indicate the properties of the material at
ambient temperature, i.e., at temperature measured at the beginning of the experi-
ment. The observed temperature variation can be attributed to the fact that during
the experiment the vibration modes are stopped and switched.

Figure 8: Temperature measurement during the experiment.

585



Proceedings of XXXVII International Summer School–Conference APM 2009

The analysis of the results described in this study led us to the following conclusions:

— at temperature 25 ◦C within the entire range of frequencies and amplitudes,
the storage modulus of the filled polyethylene is approximately 40% higher
than that of the unfilled polyethylene, whereas the loss modulus is almost the
same;

— with increase in frequency from 0,1 Hz to 100 Hz, the storage modulus in-
creases, and the loss modulus is 40% lower than its original value;

— with increase in frequency from 0,5 Hz to 17,5 Hz, the storage modulus de-
creases, and the loss modulus is of the order of magnitude of 10% greater than
its original value;

— in the region of small deformations there are no changes in the properties of
the polyethylene specimen subjected to multiple extension;

— in order to exclude the undesirable heating of the tested specimens, it is nec-
essary to control their temperature. For instance, the specimen thickness in
dynamic tests must not exceed 2 mm at deformation frequency of 100 Hz and
amplitude of 35 µm — if these conditions are satisfied, the specimen temper-
ature will be equal to 0,8 ◦C within the steady-state temperature regime.
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Abstract

The authors propose an approach to develop formalism of discrete element
method for simulation of isotropic elastoplastic media with use of uniform
packing of equal size elements (particles). It is based on building associ-
ations between the components of stress/strain tensor and the inter-element
forces/displacements. The proposed associating allows one to rewrite relations
of the corresponding plasticity model in terms of forces and displacements or
their increments. The developed approach to formulation of mechanical in-
teraction of elements seems to be general for all realizations of DE method
and provides potential possibility to realize various models of elastoplastic or
viscoelastoplastic media in the framework of this method.

1 Introduction

At the present time methods of discrete approach in mechanics are known to be re-
liable tools for simulation of deformation and fracture of condensed media of various
nature. Depending on the application field and the problem under consideration,
these methods could be divided into two main types: particle methods (PM) and
cellular automaton (CA) methods.
The latter are mainly used to study thermodynamic processes connected with change
of material phase state on cells fixed in space [1] while methods belonging to the first
group are applied mostly to investigate mechanical (or thermomechanical) aspects
of material behavior (including fracture) under complex external actions. Particle
methods are based on presentation of simulated material or media as an ensemble
of interacting bodies (particles) having final size and defined shape. Evolution of
ensemble is governed either by Newton’s equations of motion [2] or system of equa-
tions for potential energy minimization [3]. At present time “newtonian” approach
is known as a discrete element method (DEM) and successfully used for simula-
tion of deformation and fracture of materials and media in various fields of material
science, geomechanics and civil engineering [2, 4, 5]. An important fundamental
problem of DEM is development particle interaction force/potential, which provides
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element ensemble response conforming to simulated material or media. In spite of
considerable progress in DEM, up to now two-particle forces are mainly used for
description of particle interaction [4, 5, 6]. This leads to a series of problems, which
are solved via stochastic dense packing of nonuniform-sized elements [4], definition
of particle interaction constants using lattice approximation of continuum [6] etc.
Also note that application of pair interaction makes difficult correct simulation of
irreversible strain accumulation in ductile materials, whose plasticity is provided by
mechanisms of crystal lattice scale.
Most of listed (and other) problems are successfully solved within the framework of
continuum mechanics based numerical methods (FEM, FDM and so on). Isotropic
behavior and required characteristics of mechanical response of model medium there-
with are readily achieved even on uniform grids. Analysis of state of the art shows
that similar success can be achieved in the framework of DEM with use of many-
body interaction forces/potentials.
An approach to building the expressions for normal and tangential interaction of
discrete elements simulating isotropic elastoplastic medium is proposed in the paper.
The approach is realized within the framework of two-dimensional version of the
movable cellular automaton (MCA) method, which integrates possibilities of the
CA approach and the DEM. Capabilities of developed formalism are shown by the
example of deformation plasticity theory.

2 General formalism of the MCA method

Movable cellular automaton (MCA) method is based on conventional concept of
cellular automata [1]. It is a result of CA concept development by means of incor-
poration of some basic postulates and relations of DEM [7, 9]. The concept of the
MCA method is based on the introduction of new type of states, viz., the state of
a pair of automata (let us next call them also as elements), into that of classical
cellular automata. Overlap of automata hij is used as a simplest controlling param-
eter of the new type of states (Fig. 1). Note that the notion of element overlap was
adopted from DEM formalism [4, 5].

Figure 1: Parameters of spatial relation
of the pair of cellular automata i and
j: overlap hij (a) and distance between
automata mass centers rij (b). di is size
of the automaton i.

Figure 2: Schematic presentation of
switching between linked (at the left)
and unlinked (at the right) steady sta-
tionary states of the pair of movable cel-
lular automata i and j.

For the simplest case, interacting pair can be considered as a ”virtual” bistable
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cellular automaton [1]. Two steady stationary states, which characterize bistable
automaton, are associated with presence (linked state) and absence (unlinked state)
of chemical bond between elements of the pair (Fig. 2). The simplest criterion of
switching between steady states is connected with reaching specified threshold value
of pair overlap (threshold values for direct and reverse switching can be different).
Note that when simulating real materials, complex state controlling parameters,
which depend on a group of variables including hij, are used.
Set of ”virtual” bistable automata forms spatially distributed active medium. Au-
thors showed in some previous papers that description of spatial interaction of mov-
able cellular automata can be based both on bistable cellular automaton formalism
and excitable cellular automaton formalism. Famous Wiener-Rosenblueth model of
excitable active medium [10] was used by authors to describe propagation of me-
chanical perturbations in the medium consisting of pairs of interacting elements.
On basis of this model the following equation describing mechanical interaction of
movable cellular automata i and j was derived under the assumption that ensemble
of elements simulates Voight medium [9]:

d2hij

dt2
=
pij

mij
+

∑

k6=j
C(ij, ik)

pik

mik
+

∑

l6=i
C(ij, jl)

pjl

mjl
, (1)

where mij = (mimj/(mi + mj)), mi and mi are masses of cellular automata i and
j ; pij is two-particle normal interaction force depending only on hij; C(ij,ik) is the
coefficient associated with perturbation transfer from the pair i -k to the pair i -j.
It is seen in (1) that normal interaction of movable automata i and j has many-
body form and is defined by superposition of two-particle forces of interaction of
considered two automata with neighbors.
To take into account tangential interaction of finite size cellular automata the devel-
oped model was extended via introduction of the second state controlling parameter
lijshear (in addition to hij) connected with relative tangential displacements of inter-
acting automata (Fig. 3). Features of tangential (as well as of normal) interaction of
movable cellular automata in many respects depends on dimension of the problem.
The case of plane motion of three-dimensional objects (quasi-two-dimensional ap-
proximation) is considered in the paper. In the framework of this approximation the
following equation for lijshear was derived on the basis of analysis similar to carried
out for hij:

d2l
ij
shear

dt2
=
F
ij
tang

mij
=
sij

mij
, (2)

where sij is two-particle tangential interaction force depending only on lijshear. It is

seen in (2) that Fijtang is written in pair form unlike many-body form of Fijnorm.
Movable cellular automaton is a finite size object. Hence possibility of its rotation
under the action of moments of tangential forces is physically founded and taken
into account in described model [7, 9]. The method of calculation of normal and
tangential (shear) relative velocities of considered pair i -j is described in [4, 7].
As in DEM, dynamics of automaton mass centers is governed by Newton-Euler
motion equations.
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Figure 3: Components hij and lijshear
of relative displacement vector in the
instantaneous local coordinate system
concerned with current spatial position
of the pair i -j. Dashed line outlines pre-
vious relative position of automata.

Figure 4: Definition of angle αij,ik be-
tween line connecting mass centers of
automata in the pair i -k and x-axis of
instantaneous local coordinate system
of the pair i -j.

3 Description of isotropic elastoplastic medium

with MCA formalism

Stress-strain state of isotropic linearly elastic medium is described on the basis of
generalized Hooke’s law [11]:






σα = ϕεα+ (K−ϕ)εm = ϕεα+ (1−ϕ/K)σm

ταβ =
ϕ

2
γαβ

, (3)

here α, β = x, y, z; σα and εα are diagonal components of stress and strain tensors;
ταβ and γαβ are off-diagonal components; εm = (εx+ εy+ εz)/3 is mean strain; K
is bulk modulus; σm = Kεm ; ϕ = 2G (G is shear modulus).
The form and the matter of equations (3) are analogous to equations (1)-(2) de-
scribing normal and tangential interaction of cellular automata. What’s more, as is
shown in [8], when assigning pij = EiSijhij/di (here Ei is Young modulus of material
filling the cellular automaton i, Sij is area of contact between automata i and j )
and di → 0, equation (1) transforms to Hooke’s law for corresponding diagonal com-
ponent of stress tensor in local coordinate system of considered pair. This argues
for the possibility of correct simulation of mechanical response of isotropic linearly
elastic medium by ensemble of finite size elements. Using results of [8] as the base,
authors proposed more accurate model of interaction of movable cellular automata.
This improved model is based on the following four statements:
1. In the local coordinate system of considered pair i -j (Fig. 3) strain tensor
components εyy and εxy are associated with normal (εij) and shear (γij/2) relative
displacements normalized by automaton size. These are calculated in an incremental
fashion:






∆εij =
∆rij

(di+ dj)/2
=
∆qij

di/2
+
∆qji

dj/2
= ∆εi(j) + ∆εj(i)

∆γij =
V
ij
shear∆t

rij
= ∆γi(j) + ∆γj(i)

, (4)
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where symbol ∆ indicates increment of the value, qij and qji are distances from mass
centers of automata i and j to center of contact area (qij + qji = rij), εi(j) and εj(i)
are strains of automata i and j in i -j pair, ∆γi(j) and ∆γj(i) are contributions of
automata i and j to the total value ∆γij; ∆t is time step of numerical scheme of
integration of Newton-Euler motion equations.
2. In the local coordinate system of the pair i -j stress tensor components σyy and
σxy are associated with specific normal (σij) and shear (τij) forces, which are defined
as follows:

{
Fijnorm = σijSij

F
ij
tang = τijSij

(5)

3. Association for stress tensor component σxx cannot be found considering i -j
pair independently of surrounding automata. In the simplest case it can be defined
following the procedure in [8]. Nevertheless, more correct approximation is based
on definition of average stresses in the bulk of cellular automaton. If surface of the
automaton i can be presented as a sum of contact areas, then expression for average
σxx in the bulk of automaton i in local coordinate system concerned with i -j pair
can be written in the following form [4, 5]:

σi(j)xx =
1

Vi

Ni∑

k=1

qikSik cos(αij,ik)[cos(αij,ik)σik+ sin(αij,ik)τik], (6)

where Ni is number of neighbors of automaton i, Vi is the volume of automaton i,
cos(αij,ik) is defined as shown in the Fig. 4.
4. In the framework of quasi-two-dimensional realization of the MCA method stress
tensor component σzz could be found from (6) using plane stress state (σ

i(j)
zz = 0)

or plane strain state (∆σ
i(j)
zz = K−ϕ

2K−ϕ
(∆σij + ∆σ

i(j)
xx )) approximation. In both cases

σ
i(j)
xz = σ

i(j)
yz = 0.

Described statements give the possibility to calculate normal and shear forces of
interaction of cellular automata whose ensemble simulates isotropic linearly elastic
medium. Forces are calculated with use of combined force-displacement algorithm
(it is suggested that all pairs of interacting automata are linked):
1. Force of normal interaction of the automata i and j (Fijnorm = Fjinorm), as well as
strains εi(j) and εj(i), are calculated in an incremental fashion by solving the following
system of equations:






∆σij = ∆σji = ϕi∆εi(j) +

(
1−

ϕi

Ki

)
∆σi(j)m = ϕj∆εj(i) +

(
1−

ϕj

Kj

)
∆σj(i)m

∆εi(j)di/2+ ∆εj(i)dj/2 = ∆rij

, (7)

where symbol ∆ hereinafter indicates increment of corresponding parameter dur-
ing one time step ∆t, ϕi and Ki are constants of material filling the bulk of
the automaton i, values of ∆σ

i(j)
m and ∆σ

j(i)
m are taken from previous time step.

Note that mean stress for automaton i in i -j pair can be written as follows:
σ
i(j)
m = (σij+ σ

i(j)
xx + σ

i(j)
zz )/3. Value of σ

j(i)
m is calculated in the same way.
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2. Tangential (shear) interaction force in i -j pair (Fijtang = Fjitang) as well as strains
γi(j) and γj(i) are calculated in pair approximation according to (2) and (3):






∆τij = ∆τji =
ϕi

2
∆γi(j) =

ϕj

2
∆γj(i)

∆γi(j) + ∆γj(i) =
V
ij
shear∆t

rij

. (8)

Proposed association of force- and deformation-related characteristics of automaton
(discrete element) interaction with local values of stress and strain tensor compo-
nents (in the volume ”belonging” to interacting pair) seems to be general for all
realizations of DE methods and provides potential possibility to implement various
models of elastoplastic or viscoelastoplastic media. In particular, authors applied
proposed approach to realize two basic models: deformation plasticity theory with
elastic unloading (DPT) and incremental plasticity theory (IPT). Implementation
of the DPT is based formally on the same expressions (3)-(8) as were used for the
model of linear elasticity. The main difference is connected with variable value of
modulus within the framework of DPT [11]. In this situation ϕ characterizes not
the automaton as a whole, but automaton part ”belonging” to considering pair
(ϕi → ϕi(j)). If the DPT is realized in an incremental fashion, current value of ϕi(j)
is defined by the expression:

ϕni(j) =






2

3

∆(σ
i(j)

int(ε
i(j)

int))

∆ε
i(j)

int

,when following the loading surface

2G,when being inside the loading surface

(9)

where n is the number of current time step, σ
i(j)

int is stress intensity for automaton i
in i -j pair:

σ
i(j)

int = 1√
2

√
(σ
i(j)
xx − σij)2+ (σij− σ

i(j)
zz )2+ (σ

i(j)
zz − σ

i(j)
xx )2+ 6τ2ij.

Defining relationship σint = Φ(εint) for each considered material is assigned. Cur-

rent value of ε
i(j)

int could be calculated directly or using σint(εint) curve.
So, implementation of the DPT in the MCA method is based on modified version
of expressions (4)-(8). Modification includes use of ϕi(j) instead of ϕi and definition
of ϕi(j) on each time step according to (9). Implementation of IPT is carried out
similarly, however expressions (7)-(9) has to be replaced by other relations.
Testing of developed approach showed that ensemble of interacting movable cellular
automata demonstrates macroscopically isotropic mechanical response even in case
of uniform packing of equal-size elements. Comparison of results of a series of
tests (including uniaxial compression/tension, biaxial loading, shearing strain, local
impulsive loading of homogeneous elastic and elastoplastic samples) with results of
FDM simulation with use of the same plasticity models showed their close fit. This
argues for correctness of proposed approach and gives grounds for its application to
simulation of heterogeneous elastoplastic materials and media.
Note that expressions (3)-(9) hold true for linked pairs of cellular automata.
Linked → unlinked switching of the pair state (Fig. 2) corresponds to fracture
phenomenon. Criteria of fracture are quite different and depend on physical mech-
anisms of material deformation. Use of described above approach makes possible
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direct use of conventional multiparametric fracture criteria (Huber-Mises-Hencky,
Drucker-Prager, Mohr-Coulomb, Podgorski etc.), which are written in tensor form.
However, unlike deformation processes, fracture pattern of homogeneous isotropic
material simulated by ensemble of discrete automata depends to a great extent on
packing of automata. So, various methods of both direct and indirect taking into
account of heterogeneous internal structure of real materials have to be used for
correct simulation of material response and fracture [4].

Linked → unlinked transition of the pair state is accompanied by change of char-
acter of automaton interaction. Particularly, normal interaction of unlinked pair is
calculated in the same way as for linked state, however unlinked pair carries only
compressive load (σij < 0) and becomes noninteracting at σij = 0. Expression (8)
cannot be applied to unlinked (chemically unbonded) pairs and has to be replaced
by other relations, which take into account dry or viscous friction of surfaces of
interacting automata (at σij < 0) [4].

4 Future trends in development of the approach

An important problem of simulation of heterogeneous materials and media is as-
signment (definition) of interaction of different components (grains, phases, parts
of a structure and so on). Solution of this problem is based, among other factors,
on taking into account physical-mechanical properties of interfacial region (grain
boundary or bonding interfacial layer).

Two methods of taking into account interfaces are well known. First method is
connected with direct simulation of interfacial regions by ”layers” of automata with
specific mechanical properties [12]. Main shortcoming of this method is connected
with necessity of considerable decrease of automaton size, when simulating hetero-
geneous material containing thin interfaces. The second method was proposed by
P.A. Cundall [4] and consists in introduction of the ”third body” (bonding layer of
predefined thickness). Strains and force response of bonding layer are calculated in
parallel with interaction of particles themselves. These two interactions are inde-
pendent and function in parallel. Capabilities of described above approach make
possible formulation of more rigorous model of interaction of the pair of automata
with bonding interfacial layer. Improved model is based on modification of (4), (7)-
(9) or similar expressions corresponding to considered rheological model. Modified
version of these expressions contains three strain components which correspond to
strains of automata themselves and strain of interfacial layer. Moreover relations
(7)-(8) consist of three expressions instead of two: two expressions correspond to
Newton’s second law for the pairs ”automaton i - layer” and ”layer - automaton
j” while the third expression sums deformation contributions of all three bodies
to amount of change of hij or lijshear. At present time improved model is under
development and seems to be perspective evolution of formalism of the MCA/DE
method.
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Abstract

The paper presents the results of theoretical investigations of combustion
and detonation initiation in heterogeneous polydispersed mixtures. The prob-
lems of fuel droplets atomization, evaporation and combustion being the key
factors for ignition delays and shock waves attenuation evaluation in hetero-
geneous mixtures and the non-equilibrium effects in droplets atomization and
phase transitions were taken into account. The effects of droplets size non-
uniformity and spatial distribution non-uniformity on mixture ignition and
flame acceleration were investigated for mild initiation of detonation by spark
ignition followed by deflagration to detonation transition.

1 Introduction

Combustion processes in heterogeneous mixtures differ greatly from that in homo-
geneous mixtures, because they are governed not only by chemistry but also by
physical processes of combustible mixture formation, such as droplet atomization,
evaporation and diffusive mixing of fuel vapor with an oxidant [1].
The model applies both deterministic methods of continuous mechanics of multi-
phase flows to determine the mean values of parameters of the gaseous phase and
stochastic methods to describe the evolution of polydispersed particles in it and fluc-
tuations of parameters [2]. Thus the influence of chaotic pulsations on the rate of
energy release and mean values of flow parameters can be estimated. The transport
of kinetic energy of turbulent pulsations at the same time obeys the deterministic
laws being the macroscopic characteristic.
The motion of polydispersed droplets (particles) is modeled making use of a stochas-
tic approach. A group of representative model particles is distinguished each of them
representing a number of real particles. Motion of these particles is simulated di-
rectly taking into account the influence of the mean stream of gas and pulsations of
parameters in gas phase, as well as evaporation and atomization.
Investigating the behavior of individual droplets in a heated air flow allowed to dis-
tinguish two scenarios for droplet heating and evaporation. Small droplets undergo
successively heating, then cooling due to heat losses for evaporation, and then rapid
heating till the end of their life time. Larger droplets could directly be heated up to
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a critical temperature and then evaporate rapidly. Atomization of droplets interferes
the heating and evaporation scenario.

The onset of detonation in case of a mild ignition of dispersed mixtures at ambient
pressures and temperatures comes via galloping combustion mode with increasing
amplitude finally bringing to an overdriven regime, which then evolves into a self-
sustaining one [3]. Generally speaking, convective combustion in dispersed mixture
could lead either to a galloping mode, or to onset of detonation. For large droplets
and small ignition energy only galloping combustion modes could be attained.

Non-uniform spatial distribution of droplets has a strong influence on predetonation
time (in most cases time is increasing) and much smaller effect on predetonation
length. Different types of spatial non-uniformity inhibit deflagration to detonation
transition, or direct initiation of detonation, while in case of turbulent flame initia-
tion by spark ignition spatial non-uniformity could serve a promoting factor.

Most of rocket and aviation engines have pulverized in air fuels combustion serving
the base of their working cycle. Thus combustible mixtures formation and defla-
gration or detonation initiation in poly-dispersed fuel - air mixtures are the key
aspects providing different limitations for operation of those engines. Onset of deto-
nation being very dangerous for conventional engines could, however, serve the basis
for creating new generation of engines - pulse detonating engines (PDE). Dispersed
mixtures having been formed by different pulverizers could not be spatially uniform.
However, in most experimental and theoretical investigations the ignition character-
istics of uniformly distributed in space mixtures were studied. To achieve uniform
droplet distribution and to avoid gravitational separation of the mixture having been
formed investigations under microgravity conditions are performed [1]. The goal of
the present research was, however, to investigate sensitivity of detonation onset to
mixture parameters non-uniformity (spatial non-uniformity of dispersed phase, size
distribution function, etc.) for both strong and mild initiation. Special attention
was paid to peculiarities of droplet interaction with a high enthalpy flow.

2 Mathematical model for polydispersed mixture

combustion

The mathematical models for simulating turbulent chemically reacting flows in het-
erogeneous mixtures were described in details in [2 - 4]. Combustion processes
in heterogeneous mixtures differ greatly from that in homogeneous mixtures, be-
cause they are governed not only by chemistry but also by physical processes of
combustible mixture formation, such as droplet atomization [3, 4], evaporation and
diffusive mixing of fuel vapor with an oxidant. The model applies both deterministic
methods of continuous mechanics of multiphase flows to determine the mean values
of parameters of the gaseous phase and stochastic methods to describe the evolution
of polydispersed particles in it and fluctuations of parameters. Thus the influence of
chaotic pulsations on the rate of energy release and mean values of flow parameters
can be estimated. The transport of kinetic energy of turbulent pulsations at the
same time obeys the deterministic laws being the macroscopic characteristic. The
motion of polydispersed droplets (particles) is modeled making use of a stochastic
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approach. A group of representative model particles is distinguished each of them
representing a number of real particles. Motion of these particles is simulated di-
rectly taking into account the influence of the mean stream of gas and pulsations of
parameters in gas phase [2, 3], as well as evaporation and atomization. Thus a great
amount of real particles (liquid droplets) was modeled by an ensemble of model par-
ticles. Each model particle was characterized by a vector of values, representing its
location, velocity, mass, number of real particles represented by the given model one
and other properties. The number of model particles was 25000 each representing
up to hundred thousand real particles (depending on mass fraction of fuel). The
number of cells was of the order of thousand. Thus the minimal average number
of model particles per a grid node was provided guaranteeing sufficient accuracy
of fluxes between phases evaluation. The momentum equation for a single droplet
motion in the gas flow has the following form [2, 3]

m
d~u

dt
= m~g− φ∇p+ ~fd,

d~r

dt
= ~u, ~fd =

Cd

2
ρE
πd2

4
(~v− ~u)|~v− ~u|, (1)

the drag coefficient being the function of Reynolds number

Cd=

(
24

Re
+

4, 4√
Re+0, 42

)
βK, Re=

ρ|~v− ~u|d

µ
, β=

√
ρ

ρs

(
2−

ρ

ρs

)
, K=

(
T

Ts

) 4
5

,

ρs

ρ
=






(
1+

γ− 1

2
M2

)1/(γ−1)

, M < 1;

(γ+ 1)M2

(γ− 1)M2+ 2

(
1+

γ− 1

2
· (γ− 1)M2+ 2

2γM2− (γ− 1)

)1/(γ−1)

, M ≥ 1.
(2)

The energy equation for a droplet has the following form [2]

m
de

dt
= q+Qs, where e = cvsTs+ h0f. Qs =

dm

dt
hL (3)

where hL is the latent heat of evaporation, Qs - the energy of phase transitions.
Heat flux to a single droplet from the surrounding gas flow is determined as follows
[7]:

q =

{
πdλ · Nu · (T − Ts) , Re < 1000;

πd2ρ |~v− ~u| · St · (Hr−Hw) , Re ≥ 1000.

Nu = 2+ 0, 16Re2/3Pr1/3, St =
Cd

2
Pr−2/3,

(4)

The non-equilibrium evaporation model is used to determine the evaporation rate
[3]

ṁ=πd·ρD·Nu·log

(
1−Ye

1−Yw

)
, Yw=

WNP0

Wp
exp

[
Hb

R

(
1

Tb (P0)
−
1

Ts

)]
−ṁ

√
2πRTs

πδepd2
.

(5)
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The dynamic interaction of liquid droplets with the gaseous flow could bring to in-
stability of the interface in the shear flow and atomization of droplets. The criterion

for liquid droplets instability is that of the critical Weber number [5]: We =
ρv2reld

σ
, where σ is the surface tension at the interface, vrel is relative velocity of a droplet
versus gas. On exceeding the critical value of the Weber number droplets break
up due to vibrational instability takes place. On essentially surpassing the critical
Weber number other mechanisms start playing essential roles in the break up pro-
cess that brings to formation of fine mist [3, 5, 7]. These main characteristics of
the atomization process could be taken into account by the following approximate
formula [3] determining mean diameters of droplets da originating in atomization of
initial droplets (diameter d):

da =






d =

(
6α2

πn

)1/3
, We < We∗;

dWe∗
We

, We∗ ≤We ≤We∗∗;
d∗, We > We∗∗;
We∗ = 12(1+ Lp−0.8), We∗∗ = 350;

(6)

where n is the number of droplets per volume unit, α2 - volumetric fraction of the

droplet phase,We∗ - the critical Weber number, Lp =
dρcσ

µ2c
- the Laplace number,ρc

, µc - liquid density and viscosity.

To determine the mean diameter of droplets d∗ after the breakup of a type of an
explosion (We > We∗∗) one needs to evaluate the part of the accumulated by a
droplet energy spent for the breakup. The assumption, that the breakup energy
was spent for the formation of new free surface makes it possible to evaluate the
number N and the mean diameter d∗ of the formed droplets:

N =

(
1+

E∗
σπd2

)3
; d∗ =

d

1+
E∗
σπd2

E∗ = Adrag−

N∗∑

i=1

miv
2
i∗

2
(7)

Where the breakup energy is evaluated as the difference between the work of the
drag forces separating small droplets from the initial one, and the kinetic energy of
fragments’ scattering. Thus main assumption of the model is the following: work
of drag forces in separating pieces of droplets is spent for additional free surface
formation and relative kinetic energy of fragments.

Assuming that the initial droplet is split into N∗ equal droplets (N∗ =
d3

d3∗
) having

equal velocities of radial expansion of the cloud v∗ and the separation of droplets
takes place after the droplet is moved away at a distance d∗, one obtains the
following formulas:

Adrag =
1

8
N∗ρCdv

2
relπd

2
∗d∗; d∗ =

d

1+
1

4

(
1

2
Cdρv

2
rel−

1

3
ρcv2∗

)
d

σ

. (8)
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The mean velocity of the cloud expansion v∗ could be evaluated based on the con-
dition of matching the two formulas for da at We = We∗∗. The reason to perform
that matching is that both formulas for breakup regimes were obtained from ex-
periments, thus, indirectly the expansion of the cloud of droplets after the breakup
should have been taken into account. On the other hand, the dependence of charac-
teristic droplets diameters on the Weber number should be continuous. In modeling
droplets breakup in a gas flow the inertia of the process should be taken into account.
Fragmentation does not take place instantaneously: it needs time for small droplets
to separate from the initial one, i. e. it needs a definite time for the liquid bridges
between the droplets to be established, elongated and broken [3]. Then, finally the
first order estimates give the following formula:

d∗ =
dWe∗

1
8
Cd(We−We∗∗)We∗ +We∗∗

,

t∗ =
d

vrel

We∗
We

(
1+

3

8
Cd
ρ

ρc

(
1−

4

CdWe∗

))
.

(9)

Coalescence of droplets due to collisions is neglected. This assumption is valid
for rarefied mixtures. In present simulations we’ll study mixtures, wherein volume
fraction of fluid is 10−3, which provides the probability of collision 10−6.

3 Numerical investigation of gas-droplet interac-

tion in streaming flows

In order to evaluate the influence of different factors on the rate of droplet evap-
oration and mixture formation in heterogeneous detonation, let us investigate the
problem of droplet interaction with the streaming gas flow taking into account me-
chanical drag, atomization of droplets, non-equilibrium heat and mass transfer. A
series of model problems was regarded, in which gas flow and droplet initially had dif-
ferent relative velocities and temperatures, and then relaxation took place. Those
model problems are similar to that encountered in shock wave initiation of det-
onation in combustible dispersed fuel-air mixtures. The two-phase flow becomes
strongly non-equilibrium behind the shock wave, because due to mechanical inertia
droplets keep their speed practically constant and gas accelerates on passing the
shock wave. Besides, due to thermal inertia, temperature inside droplets practically
does not change, while gas temperature increases instantaneously behind the shock
wave. Due to that reason gas temperature in all the numerical experiments was
assumed to be higher than the boiling temperature for liquid droplets.
The thermophysical properties for gas and droplets were assumed similar for all
numerical experiments: ambient pressure p = 1, 013 bar, temperature T=1000 K,
gaseous phase - air, liquid - n-decane (C10H22). Initial droplet temperature was
assumed to be T=300 K.
The relaxation processes for droplets of different diameters were regarded. Num-
bered lines on the successive figures correspond to the following initial diameters of
droplets: 1 - 1 µm; 2 - 5 µm; 3 - 10 µm; 4 - 50 µm; 5 - 100 µm; 6 - 500 µm; 7 -
1000 µm.

599



Proceedings of XXXVII International Summer School–Conference APM 2009

Figure 1: Velocity relaxation versus time
for droplets of different diameters. V0 =

50m/s, taking into account atomization.

Figure 2: Droplet diameter variation ver-
sus time for droplets of different initial
diameters. V0 = 50m/s, taking into ac-
count atomization.

Figure 3: Relative surface area variation
versus time for droplets of different diam-
eters. V0 = 50m/s, taking into account
atomization.

Figure 4: Mean droplet temperature vari-
ation versus dimensional time in sec-
onds (a) and dimensionless time (b) for
droplets of different diameters. V0 =

50m/s, taking into account atomization.

Figs. 1-5 illustrate parameters of droplets variation in the process of mechanical and
thermal relaxation for the set of numerical experiments assuming initial velocity
difference to be equal to 50 m/s. Fig. 1 illustrates velocity relaxation. It is seen that
on decreasing initial droplet radius the relaxation process turns to be faster. The
decrease of the relaxation time is monotonic. Some curves begin lower than 50 m/s
because the relaxation process is too fast for small droplets, and the time scale on the
x-axis is logarithmic beginning from a definite small value. Large droplets undergo
atomization until their diameter gets smaller. That is the reason for the 6-th and
7-th curves in Figs. 1 and 2 to converge into one, because atomization terminates
on reaching by all droplets one and the same diameter.
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Figure 5: Mean droplet temperature variation versus dimensional time in seconds
(a) and dimensionless time (b) for droplets of different diameters. V0 = 50m/s,
taking into account atomization.

Fig. 2 illustrates droplet diameter variation due to evaporation. It is seen from the
figure that evaporation time increases with the increase of initial droplet diameter,
but the increase does not take place monotonically: the increase of life time (curves
1, 2, 3, 4) changes for a decrease (curves 4, 5) and then comes back to an increase
(curves 5, 6, 7). That testifies the effect of manifestation of different mechanisms
depending on the characteristic size of droplets.
One could distinguish the characteristic deceleration time τ (velocity decreases e
times) for each droplet. This time depends on droplet initial mass m0, relative gas
velocity v0 and drag fd.

τ =
v0

a0
, where a0 =

fd(t = 0)

m0
. (10)

The time being normalized to this value, and droplet diameter being normalized
to its initial value allow us to obtain the dependences for relative surface area of
a droplet versus normalized time, which is present in Fig. 3. It is seen that all
the curves could be split into two families: curves for droplets of small initial radii,
and curves for droplets of relatively large initial radii. The obtained result testifies
that droplet evaporation process in the stream of air, probably, follows two different
scenario. Curves 6 and 7 diverge in Figs. 3 and 4b because relative values versus
normalized time are shown there. Thus having one and the same physical diameter
droplets 6 and 7 have different relative values as they had different initial size.
Fig. 4 illustrates droplet temperature variation versus dimensional time in seconds.
The dynamics of droplet heating is the following. For small droplets (curves 1, 2,
3, 4) in the very beginning the temperature increases due to external heating. On
rapid decrease of droplet relative velocity (Fig. 1) evaporation in the stream of gas
brings to a decrease of temperature. Then on decreasing droplet radius heat fluxes
growth brings to an increase of temperature until the droplet disappears. The first
increase of temperature is higher for larger droplets, which relative velocity decreases
much slower than for small droplets. Very large droplets follow different scenario:
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Figure 6: Detonation velocities in n-decane (C10H22)-oxygen two-phase mixture
(a) and turbulent flame velocity in one-phase (b) mixture developed in numerical
simulations and in physical experiments.

The first increase of their temperature goes as high as up to the critical value. Then
evaporation takes place at a critical temperature very rapidly. Arrows with numbers
in Fig. 4 indicate the end of droplet life time. That is the reason for a larger droplet
(curves 5 in Figs. 2 and 4) to have a shorter life time.
Fig. 5 illustrates droplet temperature variation versus normalized time t/τ . As it
is seen from the figure all maxima and minima of temperature correspond to nearly
the same normalized time moments independently on initial droplet radius. The
difference between the two scenarios for droplet behavior in the stream of heated
air could be clearly distinguished from this figure: small droplets are first slightly
heated, then cooled down due to high evaporation rate, and then undergo sharp
temperature increase on increasing heat flux to small droplets; large droplets are
gradually heated up to the boiling temperature and then evaporate at this temper-
ature.

4 Non-uniform sprays combustion.

Numerical investigations of detonation initiation in dispersed hydrocarbon fuel - air
mixtures after mild ignition via DDT and by shock waves of different intensities
were performed in tubes of cylindrical geometry. The tube diameter was 20 mm,
the tube length was 2 m. The flow was assumed to have the following initial tur-
bulence characteristics: energy k = 0.1 J/kg, the mixing length l = 0.01 m, mean
velocity u = 0, initial temperature 300 K. The number of model particles used in
calculations was 25000. Validation of numerical scheme was performed based on
comparing the obtained results of numerical simulations for the detonation wave
velocities in dispersed mixtures with available experimental data [7]. Fig. 6a illus-
trates detonation velocities in hydrocarbon-oxygen two-phase mixtures developed in
numerical simulations and in experiments [8-10]. Liquid n-decane (C10H22) fuel was
used. Fig. 6b illustrates turbulent flame propagation velocities versus velocity pul-
sation in gaseous mixtures of CH3OH, O2 and N2. (Curves - experiments [11], dots
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Figure 7: The effect of spatial non-uniformity of mean droplet concentration distri-
bution (a – uniform, b – non-uniform, mean fuel concentration is decreasing along
x-axis) on the onset of detonation in polydispersed mixtures. Velocity versus axial
coordinate and versus time diagrams.

- numerical computations). Satisfactory coincidence of theoretical and experimental
data could serve a macroscopical validation for the developed model.
To simulate hydrocarbons the following parameters were taken: ρ = 850 kg/m3;
H = 43 MJ/kg; hL = 200 kJ/kg; W = 140 kg/kmol. The share of water in hy-
drocarbon decomposition was assumed to be ζ = 0.2. The mean droplets diameter
was assumed 50 µm, minimal diameter - 10 µm, maximal - 100 µm. The droplets
size distribution function was assumed to be a triangular one. The initial droplets
volume concentration α = 0.001.
Numerical modeling of two phase mixture ignition and combustion was carried out
to understand better the deflagration to detonation transition (DDT) processes.
Submicron particles did not play any role in the present study, as their lifetime
was negligibly small being below the limit of accuracy of numeric scheme. The size
of droplets accounted by the model is the one larger then minimal size evaporating
within one time step. Reaction rate of smaller (submicron) particles cannot influence
simulations, as the total energy release of their burning out is distributed within the
computational cell within one time step. The effect of droplet size distribution
function on the DDT process was investigated in [4]. Here we’ll study the effect of
droplet spatial distribution on the onset of detonation. As it was shown in [2] droplet
spatial non-uniformity promotes ignition and combustion onset. In particular, the
presence of concentration gradient in droplet spatial distribution lowers the minimal
ignition concentration in the zone of energy release. The successive results illustrate
the combustion zone averaged axial velocity variation versus time and tube length
for different spatial distributions of droplets.
For one and the same fuel content (ρ0 = 0.8 kg/m3) and similar droplet size dis-
tribution function the spatial non-uniformity along the longitudinal co-ordinate
was investigated. The values of other ignition characteristics were also similar:
T0 = 300K, p0 = 1bar, k0 = 0.1j/kg, Eign = 3.5j, tign = 100µs Figure 7 presents
the comparison of results obtained for homogeneous (a) and non-homogeneous (b)
spatial distribution of droplets. In case (b) mean fuel concentration is decreasing
along x-axis.
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Figure 8: The effect of increasing along the axis mean droplet concentration (a –
uniform, b – non-uniform) on the onset of detonation in polydispersed mixtures.
Velocity versus axial coordinate and versus time diagrams.

Figure 9: The effect of spatial non-uniformity of mean droplet concentration distri-
bution in radial direction (a – uniform, b – minimum on the axis) on the onset of
detonation in polydispersed mixtures. Velocity versus axial coordinate and versus
time diagrams.

For the case (a) the turbulent flame propagation in the mixture is very non-
monotonic. Velocity first stays at the level of 200 m/s, then it increases up to
700 m/s, again decreases to 600 m/s then increases to 1100 m/s and decreases to
500 m/s again, and then increases up to 1800 m/s and decreases to an average self-
sustaining velocity of 1600 m/s with periodical oscillations near that value. It is seen,
that in the beginning some galloping combustion mode is established, which turns
to be unstable with increasing amplitude of oscillations until finally an overdriven
regime is formed, after which mean velocity cannot go down below the self-sustaining
one. Detonation in poly-dispersed fuel-air mixture is named a self-sustaining propa-
gation of shock induced ignition. Comparison with cellular gaseous detonation does
not seem legible, because cellular structure is an attribute of gaseous detonation,
but by no means its definition.

Results of numerical simulations show that pre-detonation length remains practically
the same for different spatial distribution of condensed matter (Figure 7 c). It seems
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Figure 10: The effect of spatial non-uniformity of mean droplet concentration dis-
tribution in radial direction (a – uniform, b – maximum on the axis) on the onset of
detonation in polydispersed mixtures. Velocity versus axial coordinate and versus
time diagrams.

to be even a little shorter for the case of the increased fuel concentration in the
beginning of the tube. While velocity versus time diagrams show essential increase
of pre-detonation time. This effect is due to a serious decrease of flame propagation
velocity in the ignition section (50 - 100 m/s), which takes place because of the
increased heat losses to heat the increased mass of droplets.

Figs. 8-10 illustrate DDT process after ignition in the non-uniform mixture with in-
creasing along the axis mean fuel content (Fig. 8), decreasing in the radial direction
(minimal in the center - Fig. 9, maximal in the center - Fig. 10). Comparison of re-
sults shows, that for the increasing fuel concentration along the axis pre-detonation
length and time practically do not depend on such type of non-uniformity, while
for both cases of radial non-uniformity (minimal in the center, or maximal in the
center) pre-detonation times grow due to initial decrease of mean axial flame propa-
gation velocity. When fuel concentration is maximal in the ignition zone more time
is needed to heat all the droplets, which increases ignition delay, when fuel concen-
tration is minimal in the ignition zone at the axis, propagation velocity is limited
by lean conditions, which brings to ignition delay due to the increase of evaporation
time to guarantee the necessary vapor concentration.

The results of simulations based on the developed model show that the zone of
increased density of droplets behind shock waves appear, which was first discovered
numerically by Korobeinikov [6] and named the ρ-layer. Later, the formation of
ρ-layers in dusty gases was confirmed experimentally. The present results show that
for liquid droplets ρ-layers are formed as well behind shock waves despite droplets
atomization. After ignition of dispersed mixture either turbulent combustion wave
is formed lagging behind the attenuating shock wave, or a self-sustaining detonation
wave. The spatial non-uniformity of droplet distribution in the radial direction for
this type of initiation also inhibits the onset of detonation.

Figs. 11-12 and 13-14 illustrate successive stages for droplets concentration and
mixture temperature in the problem of spray ignition in shock wave. The mean
droplets diameter was assumed 100 µm, minimal diameter - 10 µm, maximal - 200
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Figure 11: Spray density evolution. Ini-
tial density was ρ0 = 5.0kg/m3

Figure 12: Mixture temperature evolu-
tion. Initial spray density was ρ0 =

5.0kg/m3

Figure 13: Spray density evolution. Ini-
tial density was ρ0 = 20.0kg/m3

Figure 14: Mixture temperature evolu-
tion. Initial spray density was ρ0 =

20.0kg/m3

µm. Spray density was errrorρ = 5.0 kg/m3 for the case illustrated in Figs. 11-12,
and errrorρ = 20.0 kg/m3 for the case illustrated in Figs. 13-14. The process was
initiated by the shock wave of one and the same intensity in both cases. Com-
parison of results shows, that for the lower spray density onset of detonation takes
place, while for higher density some kind of forced galloping combustion takes place,
wherein chemical reactions take place mostly not inside the spray layer, but rather
on the sides of it. That peculiarity is due to the lack of oxidant inside the dense
spray. The picture is similar to gas-film detonation, wherein fuel and oxidant were
spatially separated in the beginning [7].

5 Conclusions

Investigating the behavior of individual droplets in a heated air flow allowed to dis-
tinguish two scenarios for droplet heating and evaporation. Small droplets undergo
successively heating, then cooling due to heat losses for evaporation, and then rapid
heating till the end of their life time. Larger droplets could directly be heated up to
a critical temperature and then evaporate rapidly. Atomization of droplets interferes
the heating and evaporation scenario.
The onset of detonation in case of a mild ignition of dispersed mixtures at ambient
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pressures and temperatures comes via galloping combustion mode with increasing
amplitude finally bringing to an overdriven regime, which then evolves into a self-
sustaining one. Generally speaking, convective combustion in dispersed mixture
could lead either to a galloping mode, or to onset of detonation. For large droplets
and small ignition energy only galloping combustion modes could be attained.

Non-uniform spatial distribution of droplets has a strong influence on predetonation
time (in most cases time is increasing) and much smaller effect on predetonation
length. Different types of spatial non-uniformity inhibit deflagration to detonation
transition, or direct initiation of detonation, while in case of turbulent flame initia-
tion by spark ignition spatial non-uniformity could serve a promoting factor. Strong
spatial non-uniformity could bring to formation of different detonation modes, which
are typical for non-premixed systems.
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Abstract

The two-dimensional problem of thin body motion in compressible fluid
near free surface is regarded. The fluid is assumed occupying infinite semi-
space, gravity is neglected as compared with fluid inertia. The solution was
obtained for a problem of infinite span wing motion in compressible fluid at
a definite depth, constant velocity and inclination angle. The solution allows
determining drag and lift forces in the limiting cases. It was shown that on
Mach number tending to unity both forces infinitely increase. For relatively
thin fluid layer above the moving wing the resistance force depends on body
thickness , inclination and Mach number, while for relatively thick fluid layer
the force depends on wing length, inclination angle and Mach number as well.

1 Introduction

The problem is relevant to surface or underwater high velocity gliding of thin wing,
which is often used to reduce resistance of the glider. During the motion in water the
wing having a definite angle of attack produces a lift force, which leads to suspending
of a boat thus reducing the overall resistance to the resistance of the wing. The goal
of the overall solution was in developing analytical formulas for evaluating the lift
and drag forces. Another important application is determining resistance force being
the function of the depth in underwater motion of a bullet or shell.

Similar problems arise in cutting or slicing solid materials by a rigid cutter under
the condition inertia forces play dominating role. The possible application of the
problem of thin body motion near the free surface at a negative attack angle is
description of the motion of a rigid cut slicing plasticized medium. Knowing exact
solutions for the cut one could determine resistance forces being the function of its
velocity, cutting angle and depth thus developing optimal conditions for material
processing.

The problem of fluid streaming rigid bodies in the presence of free surface of water
of infinite and finite depth was regarded within the frames of linear [1-4] and non-
linear [5, 6] statements, and found its generalized classical solution in [7]. High speed
streaming flows accounting for fluid compressibility were investigated in [8-10].
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Figure 1: Thin body streaming by a compressible fluid at a depth h, constant
velocity V0 parallel to free surface and inclination angle θ. Flow separation from
the upper surface.

2 Mathematical statement of the problem

The two-dimensional problem of fluid streaming thin body motion of infinite span
with velocity parallel to the free surface is regarded under the assumption of flow
separation from the upper surface of the body (Fig. 1) or lower surface of the body
(Fig.2). Pressures on free surface and in the cavity are assumed equal to vapor
ambient pressure. Fluid is assumed to be ideal, depth – infinite, mass forces –
negligibly small, flow field – plane. Velocity field in fluid is assumed to be potential

~V = ~V0+ gradϕ, (1)

fluid will be regarded as linear compressible

P = P0+ a2(ρ− ρ0), a2 =

(
dP

dρ

)

ρ0

, (2)

P = P(ρ), ds = 0 → dP =

(
dP

dρ

)

ρ0

dρ

where ϕ(x, y, t)− disturbance velocity potential, P, ρ− fluid pressure and density,
P0, ρ0 pressure and density in quiescent fluid, a− sonic velocity.
Fluid flow satisfies continuity equation

dρ

dt
+ ρdiv~V = 0, (3)

pressure is determined by Cauchy-Lagrange integral

∂ϕ

∂t
+

(gradϕ)2

2
+

∫
dP

ρ
= c(t). (4)

Flow induced variations of density and velocity are considered small values.

ρ ′/ρ = (ρ− ρ0)/ρ≪ 1; ux/V0≪ 1; uy/V0≪ 1,
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where ux, uy− disturbance velocity components.
Then it follows from continuity equation (3), integral (4) and relationships (1), (2)
neglecting small values of the orders higher than one, flow potential ϕ under the
condition of steady-state flow satisfies the equation

V20
∂2ϕ

∂x2
= a2

(
∂2ϕ

∂x2
+
∂2ϕ

∂y2

)
, (5)

and fluid pressure is determined

P − P0 = ρ0V0
∂ϕ

∂x
. (6)

Boundary conditions should be satisfied on free surfaces and on the body surface
contacting fluid. On free surfaces constant pressure is assumed, on the fluid-body
contact streaming condition of the equality of normal velocity component.
The obstacle being thin and inclination angle being small all disturbances could be
considered small, and boundary conditions take the form

y = 0, P − P0 = 0;

y = h−, 0 < x P − P0 = 0;

y = h+, 0 < x < L uy =
∂ϕ

∂y
= V0 sin θ; (7)

y = h+, L < x P − P0 = 0.

Substituting in (7) dynamical equation (6) boundary conditions look as follows

y = 0,
∂ϕ

∂x
= 0; y = h−, 0 < x

∂ϕ

∂x
= 0;

y = h+, 0 < x < L
∂ϕ

∂y
= V0 sin θ; y = h+, L < x

∂ϕ

∂x
= 0. (8)

Thus equation (5) with boundary conditions (8) present a closed form statement of
the problem.

3 Problem solution

We assume the flow to be subsonic. Then on introducing dimensionless parameter
α =

√
1−M2, where M = V0/a− Mach number and dimensionless functions and

variables

ϕ∗ =
πϕ

ah
; p∗ =

P − P0

ρ0a2
; l =

Lπ

hα
; x∗ =

πx

αh
; y∗ =

πy

h
, (9)

equations and boundary conditions take the form

∂2ϕ∗

∂x∗2
+
∂2ϕ∗

∂y∗2
= 0, p∗ =

M

α

∂ϕ∗

∂x∗
,
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Figure 2: Thin body streaming by a compressible fluid at a depth h, constant
velocity V0 parallel to free surface and inclination angle θ. Flow separation from
the bottom surface.

y∗ = 0,
∂ϕ∗

∂x∗
= 0; y∗ = π−, 0 < x∗

∂ϕ∗

∂x∗
= 0;

y∗ = π+, 0 < x∗ < l
∂ϕ∗

∂y∗
= M · γ(x∗)

1

α
; (10)

y∗ = π+, l < x∗
∂ϕ∗

∂x∗
= 0.

sin θ ≈ tgθ =
dy

dx
; tgθ =

1

α

dy∗

dx∗
=
1

α
γ(x∗).

In successive derivations star in dimensionless value symbols will be omitted. The
problem is reduced to developing analytical function in the domain y > 0 with
a cut y = π, x > 0, satisfying boundary conditions (10). The solution will be
developed in the form of a real part for the analytical function of complex variable
ϕ(x, y) = ReΦ(z), z = x + iy.
Thus development of the analytical function is reduced to Riemann – Hilbert prob-
lem. The latter for a special function type is reduced to Dirichlet problem. The
solution for the Dirichlet problem is given by Schwarz integral. In case inclination
angle is constant this integral can be taken in elementary functions. The projections
of forces are given by the following formulas:

X =
ρa2hM2γ20(

√
u±
0 − 1)2

2α2
Y =

ρa2hM2γ0(
√
u±
0 − 1)2

2α

- flow separation singularity at the front edge of the plate,

X = −
ρa2hM2γ20(2

√
u±
0 − 3u±

0 + u±2
0 )

α2u±
0

Y = −
ρa2M2γ20(2

√
u±
0 − 3u±

0 + u±2
0 )

αu±
0
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Figure 3: Free surface shape for the case
of flow separation from the bottom sur-
face, singularity located at front edge.

Figure 4: Free surface shape for the case
of flow separation from the bottom sur-
face, singularity located at rear edge.

- flow separation singularity at the front edge of the plate. The projection X repre-
sents the drag force, and projection Y – lift force, where u±

0 are roots of algebraic
equation

l = u0− ln |u0| − 1.

Sign plus stands for case of flow separation from the upper side of the plate (Fig. 1),
while sign minus stands for the case of flow separation from the bottom side of the
plate (Fig. 2).

4 Results and discussion

Analysis of obtained results shows the following asymptotic behavior of the solution
depending on the ratio of body length and fluid layer thickness.
In case fluid separation takes place from the bottom of the body two flow scenarios
are possible having singularity on the front edge (fig. 3) and on the rear edge (Fig.
4).
The front edge separation case has the following asymptotic solutions:

1)
h

L
→ 0 : X =

ρa2hM2γ20
2α2

; Y =
ρa2hM2γ0

2α
,

2)
h

L
→ ∞ : X =

πρa2M2γ20L

4α3
; Y =

πρa2M2γ0L

4α2
.

The rear edge separation case has the following asymptotic solutions:

1)
h

L
→ 0 : X = −

ρa2hM2tg2θ

α2

(√
2πL

αh
− 3+

2αh

πL

)
→ 0;

Y = −
ρa2M2tgθ

α

(√
2πL

αh
− 3+

2αh

πL

)
→ ∞;
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Figure 5: Free surface shape for the case
of flow separation from the upper surface,
singularity located at the front edge.

Figure 6: Free surface shape for the case
of flow separation from the upper surface,
singularity located at the rear edge.

2) h/L → ∞ : X = ρa2M2γ20
3πL

2α3
; Y =

3ρa2M2γ0πL

2α2
.

In case fluid separation takes place from the upper side of the body two flow scenarios
are possible having singularity on the front edge (fig. 5) and on the rear edge (Fig.
6).
The front edge separation case has the following asymptotic solutions:

1)
h

L
→ 0 : X =

ρa2hM2γ20
2α2

(√
Lπ

hα
− 1

)2
; Y = −

ρa2M2γ0πL

2α2
; (11)

2) h/L → ∞ : X = ρa2M2γ
2
0πL

2α3
; Y = −

ρa2M2γ0πL

2α2
.

The rear edge separation case has the following asymptotic solutions:

1)
h

L
→ 0 : X = ρa2hM2γ20

(
2

√
hα

Lπ
− 3+

Lπ

hα

)
;

Y = −ρha2M2γ0

α

(
2

√
hα

Lπ
− 3+

Lπ

hα

)
;

2) h/L → ∞ : X = ρa2M2γ20
3πL

α
; Y = −

ρa2M2γ0

α2
3πL.

The two possible scenarios of the flow could be relevant to motion of plates, which
have different curvature. The linearized problem statement does not take into ac-
count curvature of the plate. However, analysis of results shows, that singularity at
the front or at the rear edge could occur due to additional effect of plate curvature
as shown in Figs. 3-4 and 5-6.
The solution (11) for the depth hbeing exactly equal to zero gives the following
formulas:

X =
ρV20γ

2
0Lπ

2(
√
1−M2)3

, Y = −
ρV20γ0πL

2 (1−M2)
,
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which for incompressible fluid (M → 0) provides exact matching with classical
solution for a gliding plate [7].

5 Conclusions

The solution was obtained for a problem of infinite span wing motion in compressible
fluid at a depth h, constant velocity V0 and inclination angle. Both cases of positive
and negative inclination were regarded, which means flow separation from the upper
side and bottom side of the wing. The solution allows determining drag and lift
forces in the limiting cases. It was shown that on Mach number tending to unity
both forces infinitely increase, for relatively thick fluid layer above the moving wing
the resistance force does not depend on the layer thickness, but depends on body
length and inclination angle, and for relatively thin fluid layer forces depend on layer
thickness.

Analysis of the obtained solution shows that it could describe the fluid flow induced
by wings of both positive and negative curvature, which could have singularity at
the rear or at the front edge.

Acknowledgements

The research was performed within the frame of RFFI project 09-08-92002.

References

[1] Gurevich M.I., Yanpolskii A.R. On motion of a gliding plate. Techniques of the
aviation fleet, 1933, 10.

[2] Haskind M.D. Plane problem on gliding over the surface of heavy fluid. Proc.
Acad. Sci. USSR, Tech.Sci. Ser., 1943, 1-2.

[3] Gurevich M.I. Gliding of a circle segment over the surface of heavy fluid. TsAGI
Tech. Papers, 1937, 153, 1 – 6.

[4] Chaplyguin Yu.S. Gliding on the surface of fluid of final depth. Journ. Applied
Math. and Mech., 1941, 5, 2.

[5] Chaplyguin Yu.S. Gliding of a flat plate of infinite span over the surface of heavy
fluid. TsAGI Tech. Papers, 1942, 508.

[6] Green A. E. The gliding of a plate on a stream of finite depth. Proc. Cambridge
Phil. Soc., 1935, 31, 4.

[7] Sedov L.I. Plane problems of hydrodynamics and aerodynamics. Moscow: Sci-
ence Publ., 1980.

615



Proceedings of XXXVII International Summer School–Conference APM 2009

[8] Smirnova M.N. , A.V. Zvyaguin. Motion of a rigid body in compressible fluid
with a free surface. Proc. 6-th IASME/WSEAS Conference, Rhodes, 2008, 1,
61-66.

[9] Zvyaguin A.V., Smirnova M.N. Motion of a slender body near the free surface
of compressible fluid. Moscow University Mechanics Bulletin, 2009, 64, 2, 5-15.

[10] Smirnova M.N., Zvyaguin A.V. Fluid flow interaction with an obstacle near free
surface. Acta Astronautica 64 (2009) 288–294.

M.N. Smirnova, Faculty of Mechanics and Mathematics, Moscow M.V. Lomonosov State

University, Moscow 119992, Leninskie Gory 1, RUSSIA

616



Description of rotation in the movable cellular automaton method

Description of rotation in the movable cellular
automaton method

Aleksey Yu. Smolin
asmolin@ispms.tsc.ru

Abstract

The problem of rotation description in particle method is discussed. It
is shown that taking into account rotation either as a degree of freedom or
via motion of neighboring particles allows describing classical continuum. To
describe more complex media it is required to realize the both ways and to
consider rotational degree of freedom as independent rotation.

Introduction

Rotation takes place in the nature at any scale level from elementary particles to
galaxies. In physical mesomechanics, which studies a solid under mechanical loading
as a multilevel self-organizing system, rotation of structure elements of the material
is considered as an important part of deformation mechanism [1, 2]. In the movable
cellular automaton (MCA) method, a discrete method for simulation material be-
havior at meso- and macroscale, rotation is taken into account as an independent
degree of freedom of an automaton in addition to translation motion of its centroid
[3]. This approach has been used from the very beginning of the method devel-
opment as a postulate [4]. When automaton size tends to zero, the MCA method
would describe some continuum. It was shown that using linear response function
for automata tends to the Hook’s law for the result continuum when automaton
size vanishes [5]. But rotation was not taken into account in that paper and there-
fore it has been still undetermined what a continuum the MCA method describes
when automaton size vanishes: a classical one, where an elementary point has no
rotational degree of freedom or a micropolar one, where an elementary volume has
nonzero inertia moment and is characterized by independent rotation [6, 7].
The results obtained by simulation using the MCA method showed that it allows
describing behavior of classical continuum. It gave a basis to couple the MCA
method with numerical methods of continuum mechanics naturally to study the
problem where local regions of severe deformation could be explicitly defined a priori
while the other regions are deformed slightly [8]. It should be noted that deformation
of continuum here was governed by hyper-elastic law and stress computation took
rotation of Lagrangian mesh cell into account [9]. Because the nodes of the mesh
only translated, to took rotation into account distortions of the corresponded cells
was considered.
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Thus, there are two approaches for taking into account rotation under deformation.
The first one describes it explicitly and leads to increase of the phase space dimen-
sion; the second one describes it implicitly as a result of collective behavior of the
elements of the model media.
Therefore it is an urgent problem to study peculiarities of the both approaches for
taking into account rotation and to reveal their advantages and disadvantages. In
this paper the both approaches are considered in the framework of the movable
cellular automaton method.

1 Taking into account rotation as independent

degree of freedom in the framework of MCA

method

Note, that description of rotation in the MCA method is adopted basically from
discrete element method [10] where an element rotation is described explicitly due
to its finite size. At that there is a moment of forces acting among automata
and applied in their contacts in the right side of the Euler equation (for rotational
velocity). But for correct describing of motion of the media, not an ensemble of
particles, it is required to add a moment which resists to relative rotation of the
elements to the moment of inter-element forces. Let us explain it in detail.
Let us consider calculation of the force resisting shear deformation in movable cellu-
lar automata in 3D. As is well known [11], any point of rotating rigid solid has the
same rotational velocity ~ω and its translational velocity is described by the formula

~vA = ~vO + ~ω×~rOA

where ~vA and ~vO are translational velocities of the points A and O in any inertial
coordinate system, ~rOA is the vector connecting points O and A. In case of rotation
of automaton pair as a rigid body (without deformation) this formula can be written
as follows (fig. 1):

~vj− ~vi = ~ωij×~rij,

where ~rij = (~rj −~ri), ~ωij is rotational velocity of the pair as a whole (rigid body).
If premultiply both sides of this equation by vector ~rij and neglect rotation about
pair axis (i.e. ~ωij ·~rij = 0), then one can obtain the following formula for ~ωij :

~ωij =
(~rj−~ri)×(~vj− ~vi)

r2ij
=

~nij×(~vj− ~vi)

rij
,

where ~nij is the unit vector directed from the center of automaton i to the center of
automaton j.
Instantaneous rate of shear strain of automaton i under its interaction with au-
tomaton j can be defined as a ratio of tangential velocity in the contact point to the
distance qij from the center of automaton i to its contact with automaton j:

~ωshij =
~Vτij

qij
=
qij(~ωij− ~ωi)×~nij

qij
= (~ωij− ~ωi)×~nij.
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i

j

Zij

Xj

Zi

Xi

Zj

Figure 1: Rotation of a pair of automata.

Angular value of shear strain of automaton i at time T is defined by the integral

~γij =

T∫

0

~ωshij (t)dt = ~θij− ~θi, (1)

where ~θij is vector of rotation of the pair axis relative to the initial position.

For small deformation we can use linear (Hook’s) law to compute the resistance
force:

~feij = −(Gi~γij+Gj~γji)×~nij, (2)

where Gi is the shear modulus of the material of automaton i. Equation (2) describes
the pair tangential force produced by shear strain of each automata of the pair.

From equations (1) and (2) one can see, that in case of rotation of automata with
velocities of the same value but in the opposite directions (θij = 0 and θi = −θj)),
the shear resisting force (2) does not prevent such motion. But the medium, de-
scribed by such automata is subjected to deformation and has to resist it. In case of
linear elastic media the resulting moment should be proportional to the difference
of rotation vectors in the pair ~θj − ~θi. The question is: what is the aspect ratio?
Which elastic modulus we can use for this moment? If consider a pair as a brick
of a medium, then such deformation may be considered as bending of a beam. In
strength of materials the resulting moment is defined by the Young’s modulus [12].
But if we consider a pair of automata as a couple of disks, then the aspect ratio
should be equal to the shear modulus. Test computations showed that in case of
uniaxial tension–compression and simple shearing strain the value of the aspect ratio
to calculate the moment resisting to relative rotation practically has no effect on
stress-strain diagrams. It could be explained by the fact that in such tests we regis-
ter only forces and the role of the moments defined by this modulus is to eliminate
a mismatch in automata rotation. Resulting moments on the surface where loading
is applied are not analyzed usually. But it should be noted that in case of simple
shear strain and using periodic boundary conditions in the direction of shear, the
moments resulting among the surface automata are mutually vanish.
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2 Taking into account rotation as cooperative mo-

tion of medium elements

Numerical methods of classical continuum mechanics give solution of motion equa-
tions as displacement or translation velocities of mesh nodes and do not consider
rotation of these nodes. Rotations in the medium can be computed from consid-
eration of strain of the mesh cells containing the node examined. Obviously, this
approach should allow computing rotation in the MCA method also. To do so, rota-
tion velocity of an element may be considered as an average rotation velocity of all
its neighbors interacting with it. It is very simple to do it in 2D because rotation is
described by a scalar here. An average rotational velocity is defined by the formula

ωi =

∑
jωij

N
,

where ωij is rotational velocity of the axis of pair i–j, N — number of automata
interacting with automaton i.
In 3D rotation is described by an orthogonal tensor or vector having three indepen-
dent components. The problem how to determine average rotation may be formu-
lated as follows. There are points j = 1..N, defined by vectors ~rij, starting at the
fixed point i. Each point j moves relative to point i with velocity ~vij. This motion
can be represented as rotation of a solid having j points about point i. Real motion
of each point j is a sum of such average rotation of a solid and deformation of this
solid. The problem: to determine rotational velocity ~ωi of this solid.
As is well known [11], angular momentum of a rigid body rotating about an axis
defined by the unit vector ~nω, is determined by the following expression

K =
∑

j

rj×mjvj =
∑

j

mjvjρj =
∑

j

mjωρ
2
j = Jω,

where ρj = |~nω×~rj| is a distance from the axis of rotation to point j, J is the moment
of inertia of the body with respect to axis ~nω. Then the requirement that motion
of the set of points j = 1..N corresponds to rotation of a solid on average can be
expressed as equality of the corresponding moments of inertia:

ω
∑

j

mjρ
2
j =

∑

j

rij×mjvij,

Taking into account that all automata has the same mass and ~rij × ~vij = r2ij~ωj we
can express the sought rotational velocity as follows

~ωj =

∑
j r
2
ij~ωj∑

j |~nω×~rij|2
.

Computations with rotation taken into account in such way showed that in this case
we have the same behavior as in case of taking into account rotation explicitly. At
least compression–tension tests, shear and the Lamb’s problem did not reveal any
significant dissimilarity.
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3 Advantages of taking into account rotation as

independent degree of freedom

In spite of similarity of the results in both approaches it should be noted that
taking into account rotation as independent degree of freedom allows modeling more
complicated medium with implicit describing its internal structure. For example, it
was shown that stress tensor for such medium in general is a nonsymmetrical one,
as it should be for a Cosserat medium with bending torsion [7]. More of that, it is
possible to get a constitutive equation for micropolar medium describing a granular
media based on computations by discrete element method (with explicit rotation)
[13].

a)

b)

Figure 2: Plane (a) and spherical (b) waves of longitudinal rotation as vector field
of rotational velocities of movable cellular automata (3D images are shown at the
left, cross section at the right).

Taking into account rotation by the both approaches simultaneously gives the possi-
bility to model a Cosserat medium by the MCA method if consider rotational degree
of freedom as independent rotation. Of course, this leads to necessity of introducing
additional elastic moduli, which are considered in the theory of micropolar media
and can be defined experimentally [7]. As is well known, a new type of elastic waves
are possible in such a medium, for example longitudinal rotation wave. Fig. 2 shows
development of plane and spherical waves of longitudinal rotation, computed by the
MCA method. The plane wave is initialized by setting all the automata at right face
of the prism the same rotational velocity, the spherical one — by setting rotational
velocity to the automaton in the center of the cubic body. In spite of bell-shaped
(positive) initial signal in both case the initial direction of rotation remains only
for the plane wave. In case of point source the resulting wave consists of two re-
gions of opposite rotation just as a spherical longitudinal elastic wave consists of a
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compression region followed by an expansion region [14].

For modeling classical medium, taking into account rotation as motion of surround-
ing neighbors would be more correct. But disadvantage of this approach is an
ambiguity in computation of rotation as an average motion in case of breaking one
ore more bonds with neighbors or in case of formation of a new bond that may
occur under severe deformation. But the MCA method is widely used for successful
modeling namely such processes.

4 Significance of taking into account rotation for

MCA method

Let us consider how significant is rotation for the MCA method. For this purpose
we analyzed the problem of elastic waves generation and propagation in a half-space
from the point source on the surface (the Lamb’s problem) solved by the MCA
method with taking into account rotation and without it (fig. 3). According to
symmetry of the problem we considered a quater of cubic steel sample with the size
of 0.25 × 0.25× 0.25 m (ρ = 7800 kg/m3, vP = 5.95 km/s, vS = 3.19 km/s). The
automaton size was 0.0025 m. Symmetric boundary conditions was applied on the
planes X = 0 and Y = 0, the other faces of the cube were free. Initial pulse of
velocity was applied in the origin of coordinates (shown in fig. 3 by the arrow) as
a “bell” of sine curve during 5 µs. All the results in fig. 3 shown at 40µs in Y = 0

plane.

As a result of such loading the longitudinal P and transverse (shear) S elastic waves
are formed at some distance from the source in the medium. These waves propagate
with different velocities. Free surface of the body cause generation of the conical
and surface waves. The conical wave C forms in the region of interaction of the
longitudinal wave with the free surface, it connects the longitudinal and transverse
wave fronts. Near the free surface a little behind the transverse wave a Rayleigh
wave R propagates, it has elliptical polarization and significantly decays by depth.

The computation show that the results obtained without rotation taken into account
depend on the packing of automata used. More of that, Rayleigh’s wave in that
case vanishes and the shear wave propagates immediately after the longitudinal
wave with the same velocity, that is a qualitatively wrong result (fig. 3,c–d). It has
to be noted that close packing in 2D has larger order of symmetry and provides
qualitatively correct results (fig 3,b), there is just a difference in wave velocities.
Taking into account rotation provides simulation result to be not depending on the
used packing of automata and physically correctness of elastic waves description for
continuum (fig 3,e–f).

The second example, demonstrating necessity of taking into account rotation in the
MCA method is a result of simulation of simple shear, shown in fig. 4. Here there
are only plots for FCC packing because the diagrams for cubic packing agree closely
with them. It is seen that without rotation taken into account the inclination of the
diagrams is two time grater than the shear modulus G = 79 GPa. This is because
the displacement ∆x in that case totally corresponds to shear strain γij = γ = ∆x/h,
while according to the formula of small strain tensor εij = 1/2(∂uy/∂x + ∂ux/∂y)
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a) b)

c) d)

e) f)

X

Z

Figure 3: Movable cellular automata velocity field for the Lamb’s problem and vari-
ous models and packings: a,f — cubic packing with rotation of automata, b — close
packing without rotation taken into account, c — FCC packing without rotation,
d — cubic packing without rotation, e — FCC packing with rotation.

under simple shear it is to be equal to εij = 0.5γ. I.e. a sample under simple shear
is deformed with the shear strain equal to 0.5γ and rotates as a whole on the same

623



Proceedings of XXXVII International Summer School–Conference APM 2009

angle. Indeed, the computation shows that in case of rotation is taken into account
all automata of the sample under simple shear are rotated on the angle equal to
0.5γ and shear strain in all pairs have the same value.

0

1

2

3

4

0.005 0.01 0.015 0.02 0.025

, GPa

a

b

x

y

x

h

ij

Figure 4: Scheme of sample loading and corresponding loading diagrams for simple
shear. The curve (a) corresponds to FCC packing with rotation taken into account,
(b) — FCC without rotation.

Conclusions

Thus, the study conducted shows that rotation of automata taken into account
as independed degree of freedom or via motion of neighboring automata allows
correct describing classical continuum by the movable cellular automata method.
To describe more complex media (for example Cosserat continuum) it is required to
realize the both ways and to consider rotational degree of freedom as independent
rotation.
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Dynamic properties of nonlinear system with
oscillating pendulum
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Abstract

Analysis of motion of nonlinear mechanical systems, containing pendulums
is the generic problem for studying the internal resonance effect. Furthermore,
investigations of this type are useful in search for systems with high efficiency
coefficient. Specifically, paradoxical high magnitudes of the efficiency coeffi-
cient of the considered system have been reported in different references.

In the present work, the motion of the system of two coupled mathematical
pendulums is examined. A harmonic load is applied to one of the pendulums.
The deflection of one pendulum and the angle of rotation of another one are
introduced as generalized coordinates. The motion of the system is examined
for excitation close to the eigenfrequency of one of the pendulums in the case
of internal parametric resonance (the eigenfrequency of one pendulum is twice
as large as the eigenfrequency of another). The iterative method is used to
solve this problem [1].

This work is initiated by the paradox results reported in [2-3]. It also be
pointed out that a similar mechanical system with two degrees of freedom has
been considered in [4] using the method of multiple scales.

1 Model system and equations of motion

The two degrees of freedom system consists of two coupled pendulums as shown in
Figure 1.

c,
2

b

m

j

1
y

l,
1

b

cosB tw

Figure 1: The model mechanical system
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A pendulum is suspended at the edge of another one. The opposite edge of the sec-
ond pendulum is supported by a spring element with the stiffness c and a dissipative
element with the coefficient of viscous damping β2.
The equations of motion of this system have the following form:

ml2ϕ̈+ β1ϕ̇ +ml(g− ÿ1)ϕ = B cosωt (1)

mÿ1+ β2ẏ1+ cy1−ml(ϕϕ̈ + ϕ̇2) = mg (2)

Here y1 is the deflection of the right edge of the first pendulum, ϕ is the angle
of rotation of the second pendulum, l is the length of the second pendulum, β1
is the coefficient of viscous damping of the dissipative element connected to the
second pendulum; B is the amplitude and ω is the frequency of excitation. Time
differentiation is denoted by dot.
It is expedient to introduce the scaled parameters: A = B

ml2
, 2n1 = β1

ml2
, λ2 = g

l
,

2n2 = β2
m

, q2 = c
m

. And the scaled variable: y = y1
l

− g

lq2
. Then equations (1-2)

acquire in the nondimensional form:

ϕ̈+ 2n1ϕ̇+ (λ2− ÿ)ϕ = A cosωt (3)

ÿ+ 2n2ẏ + q2y− (ϕϕ̈+ ϕ̇2) = 0 (4)

2 Solution of the problem

As already mentioned, the case of combined external ω ≈ λ and parametric reso-
nance q ≈ 2λ is considered. In solving equations (3-4), dissipation is not regarded
as small.
The governing equations are transformed as:

ϕ̈+ λ2ϕ = εÿϕ+A cosωt− 2n1ϕ̇ (5)

ÿ+ q2y = ϕϕ̈+ ϕ̇2− 2n2ẏ (6)

Here the bookkeeper ε is introduced to mark the weakly nonlinear term in equation
(5). The problem is solved by iterative method with regular expansion of solution
in powers of the parameter ε:

ϕ(t) = ϕ0+ εϕ1

y(t) = y0+ εy1

Accordingly to the method, ϕ0 and y0 are determined from equations:

ϕ̈0+ 2n1ϕ̇0+ λ2ϕ0 = A cosωt (7)

ÿ0+ 2n2ẏ0+ q2y0 = ϕ0ϕ̈0+ ϕ̇20 (8)

The functions ϕ1 and y1 are found from:

ϕ̈1+ 2n1ϕ̇1+ λ2ϕ1 = ÿ0ϕ0 (9)
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ÿ1+ 2n2ẏ1+ q2y1 = ϕ0ϕ̈1+ϕ1ϕ̈0+ 2ϕ̇0ϕ̇1 (10)

As follows from (7):
ϕ0 = A1 cos(ωt−ψ1) (11)

Here the amplitude A1 and the phase ψ1 are:

A1 =
A√

(λ2−ω2)2+ (2n1ω)2
tgψ1 =

2n1ω

λ2−ω2
(12)

Then equation (8) is transformed as:

ÿ0+ 2n2ẏ0+ q2y0 = −ω2A21 cos(2(ωt− ψ1)) (13)

Solution of equation (13) is:

y0 = A2 cos(2ωt− ψ2) (14)

Here the amplitude A2 and the phase ψ2 are:

A2 =
ω2A21√

(q2− 4ω2)2+ (4n2ω)2
tg(ψ2− 2ψ1) =

4n2ω

q2− 4ω2
(15)

Now equations (9-10) should be solved. Equation (9) is written in the following
form:

ϕ̈1+ 2n1ϕ̇1+ λ2ϕ1 = −2ω2A2A1(cos(3ωt− ψ1− ψ2) + cos(ωt−ψ2+ψ1))

(16)

Its solution is:
ϕ1 = B1 cos(3ωt−ψ3) + B2 cos(ωt− ψ4) (17)

Here the amplitudes B1 and B2 and the phases ψ3 and ψ4 are:

B1 =
2ω2A2A1√

(λ2− 9ω2)2+ (6n1ω)2
tg(ψ3− ψ1−ψ2) =

6n1ω

λ2− 9ω2
(18)

B2 =
2ω2A2A1√

(λ2−ω2)2+ (n1ω)2
tg(ψ4+ ψ1−ψ2) =

2n1ω

λ2−ω2
(19)

Equation (10) is written in the following form:

ÿ1+ 2n2ẏ1+ q2y1 = −ω2A1(8B1 cos(4ωt− ψ1−ψ3)+

+2B1 cos(2ωt− ψ3+ψ1) + 2B2 cos(2ωt− ψ1−ψ4))
(20)

The solution is:

y1 = C1 cos(4ωt− ψ5) + C2 cos(2ωt−ψ6) + C3 cos(2ωt−ψ7) (21)

Here:

C1 =
8ω2A1B1√

(q2− 16ω2)2+ (8n2ω)2
tg(ψ5−ψ1− ψ3) =

8n2ω

q2− 16ω2
(22)
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C2 =
2ω2A1B1√

(q2− 4ω2)2+ (4n2ω)2
tg(ψ6+ψ1−ψ3) =

4n2ω

q2− 4ω2
(23)

C3 =
2ω2A1B2√

(q2− 4ω2)2+ (4n2ω)2
tg(ψ7−ψ1−ψ4) =

4n2ω

q2− 4ω2
(24)

The final result is the following:

ϕ = A1 cos(ωt−ψ1) + ε(B1 cos(3ωt− ψ3) + B2 cos(ωt−ψ4)) (25)

y = A2 cos(2ωt− ψ2) + ε(C1 cos(4ωt−ψ5) + C2 cos(2ωt− ψ6)+

+C3 cos(2ωt− ψ7))
(26)

3 The energy conservation in this system

In the paper [3], it is suggested that the efficiency of this system may exceed unity,
i.e., some ’additional energy’ is produced. This statement can be easily disqualified
with the solution (25-26) presented in the previous section. So, the work of external
forces is written as:

Ain =

T∫

0

M · ϕ̇dt+

T∫

0

M1 · ẏ1dt (27)

Here M = B cosωt - is the moment of external forces applied to the inertial element
m, and M1 = −ml(ω2A21 cos(2(ωt−ψ1))) is the force acting at the pendulum with
a spring from the other pendulum,T = 2π

ω
is the period of oscillations.

The energy losses due to dissipation are defined as:

Aout =

T∫

0

β1ϕ̇ · ϕ̇dt+

T∫

0

β2ẏ1 · ẏ1dt (28)

Employing the formulas (25)-(26) we obtain the following expression for the work
of external forces:

Ain = πB(A1 sinψ1+ εB2 sinψ4) + 2πω2ml2A21(A2 sin(2ψ1− ψ2)+

+εC2 sin(2ψ1−ψ6) + εC3 sin(2ψ1−ψ7))

The energy losses are found to be:

Aout = πβ1ω(A21+ ε2(9B21+ B22) + 2εA1B2 cos(ψ1− ψ4))+

+4πl2β2ω(A22+ 2εA2(C2 cos(ψ2−ψ6) + C3 cos(ψ2−ψ7))

+ε2(4C21+ C22+ C23+ 2C2C3 cos(ψ6− ψ7)))

With the use of expression for B, we obtain the work of external forces in the form:

Ain = πml2ω(2n1A
2
1+ 8n2A

2
2+O(ε)) (29)

The energy dissipation is:

Aout = πml2ω(2n1A
2
1+ 8n2A

2
2+O(ε))
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Therefore:

Aout−Ain ∼ O(ε) (30)

Just as an illustrative example, the dependence of the external work per cycle upon
excitation frequency is shown in Figure 2 for l = 1 sm,m = 1 kg, λ = 1 1/s, q = 2

1/s, n1 = 0.2 1/s, n2 = 0.2 1/s, A = 0.1 1/s2. As is seen, maximum of the work is
attained at the excitation frequencies, which slightly differ from the eigenfrequency
of the pendulum.
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2 2,kg sm / s
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W ×

Figure 2: The dependence of the external work per cycle upon excitation frequency

4 Validation of the reported results

It should be noted that the obtained formulas are valid for relatively large viscous
damping coefficients (n1, n2 > 0.2ω), because in solving equations (5-6) these coef-
ficients have been assumed to be of the same order of magnitude as λ2.

The reported results have been verified in numerical experiment by means of Matem-
atica 5.2 [5].

For numerical experiment, the following parameters are used λ = 1.1 1/s, q = 2.1

1/s, n1 = 0.25 1/s, n2 = 0.25 1/s, ω = 1 1/s, A = 0.1 1/s2. Then formulas (12),
(15), (18), (19) and (22)-(24) give the following results: A1 = 0.1844, A2 = 0.0314,
ψ1 = 1.173, ψ2 = 0.39, B1 = 0.00146, B2 = 0.0214, C1 = 0.0002, C2 = 0.0005,
C3 = 0.0073.

In Figure 3 the time dependence of the displacement y is presented for the time
interval [100; 125] seconds with analytical solution plotted as a dashed line and the
numerical solution plotted as a solid line.

In Figure 4 the time dependence of the angle of rotation ϕ for the time interval
[100; 125] seconds is presented in the same way.
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Figure 4: The time dependence of the angle of rotation ϕ

Obviously, there is an excellent agreement between analytical and numerical results.

5 Conclusion

Relatively simple formulas are obtained to describe the harmonically excited motion
of a mechanical system, which consists of two coupled pendulums. These formulas
suggest that the system is involved in the motion with the frequencies twice and
three times larger than the excitation frequency. The presence of the third harmonic
may be particularly pronounced at the large amplitude excitation. Furthermore, the
expressions for external force work and for work of dissipation forces are obtained.
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Abstract

As has been shown in a number of publications [1-5] a solid and deformable
particle in a standing wave field in the fluid may either sink or rise in the
direction opposite to Archimedes force. The considered mechanism of ’reverse’
motion of a particle may be called gradient-induced, because it is produced
by the space- and time-variability of the vibration field in a fluid or elastic
continuum.

In references [6-7], it has been also shown that the velocity of motion of a
deformable particle in a uniformly vibrating fluid may significantly reduce due
to the nonlinearity in the fluid resistance force to the motion of the particle
at large Reynolds numbers.

In this paper, motion of a deformable body (an air bubble) in an incom-
pressible viscous fluid exposed to harmonic oscillations is studied. Isothermal
variation in the size of a body due to pressure pulsations in a fluid are taken
into account. As a result, fluid’s reaction varies with the same period. It
generates vibrational forces, which may act at the deformable body with a
mass density less than the mass density of the ambient fluid (for instance,
a gas bubble) so that the body sinks rather than rises up. The ranges of
parameters, at which this effect occurs, are determined.

Range of sizes of gas bubbles and range of excitation frequencies, when a
gas bubble should be modeled as a deformable body are given.

The effect considered in the present paper may be regarded as a special
case of the more general effect of vibrational locomotion or transposition [8],
generated by deformability of elements of the system.

The problem is solved within the concept of vibrational mechanics by
means of the method of direct separation of motions [8]. Explicit formula for
the mean velocity of a deformable body is derived. Reported results are vali-
dated by comparison with results of numerical integration of original equations
of motion of a body.

1 A model of a bubble

For analysis of motion of a gas bubble in a fluid, we adopt the model, which accounts
for vibration-induced variations in its volume. The model is a spherical shell of
variable radius as schematically shown in Figure 1.

633



Proceedings of XXXVII International Summer School–Conference APM 2009

Figure 1: The model of a gas bubble in a fluid

In the course of the motion of a bubble in a fluid, its volume pulsates due to the
pressure variation. In this paper, we assume that these pulsations are isothermal
and, therefore, they are governed by the formula:

PtVb = Const (1)

Here Pt is the total pressure exerted by a fluid at the bubble,Vb is the volume of the
bubble. The total pressure acting at the bubble is written as:

Pt = Pe+ ρh(g−Aω2 sinωt) (2)

Here Pe is some constant ’outside’ pressure, ρ is the density of the fluid, g is the
gravitational acceleration, h is the height of the fluid column from the point con-
sidered, A is the amplitude, and ω is the frequency of the oscillations of the vessel.
Then we obtain from equation (1) that:

Vb =
Const

Pe+ ρgh− ρhAω2 sinωt
(3)

As seen from equation (3) the volume of the bubble Vb is some periodic function
with a period of T = 2π

ω
. For Pe + ρgh ≫ ρhAω2 we can employ the following

approximation of this function:

Vb = Vb0(1+ BV sinωt) (4)

Here Vb0 is the quiescent bubble volume. BV is the amplitude of the relative volume
change of the bubble, determined from expression:
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BV =
ρhAω2

Pe+ ρgh
(5)

2 Governing equations

Equation of motion of a bubble has the following form:

(m+m0)ẍ = −F(ẋ) + (m− ρVb)(Aω
2 sinωt− g) (6)

Here x is the coordinate of the center of the bubble, m is the mass of the bubble,
m0 is the added mass of a fluid, defined by the formula m0 = χVbρ, with χ being
an added mass coefficient, with the magnitude of χ = 1/2.
The resistance force to gas bubble motion F(ẋ) is introduced in the general form. We
note that the sign of F(ẋ) coincide with the sign of velocity of a gas bubble ẋ. Thus,
for a rising bubble, we have F(ẋ) > 0, and for a sinking bubble we have F(ẋ) < 0.

3 Solution of the problem by the method of direct

separation of motions

To solve the problem, we use the concept of vibrational mechanics and the method
of direct separation of motions [8]. Solution of the equation of motion is sought in
the form:

x = X(t) +ψ(t, τ)

Where X is the slow component of the motion ψ is the fast component of the motion
with the period 2π on the non-dimensional fast time τ = ωt. It’s averaged over
period τ magnitude vanishes:

〈ψ(t, τ)〉 = 0

Here for any h = h(t, τ), T is the period of fast time τ, we define 〈h(t, τ)〉 = 1
T

T∫

0

hdτ,

with t taken as a constant.
Substitution to the governing equation (6), yields the following system of equation
for the variables X and ψ:

mẌ + 1
2
ρVb0(Ẍ+

〈
ψ̈BV sinωt

〉
) = −〈F(Ẋ+ ψ̇)〉−

−mg − 1
2
ρVb0BVAω

2+ ρVb0g
(7)

mψ̈ + 1
2
ρVb0(ψ̈+ ẌBV sinωt) = −F(Ẋ + ψ̇) + 〈F(Ẋ+ ψ̇)〉+

+mAω2 sinωt− ρVb0Aω
2 sinωt+ ρVb0gBV sinωt

(8)

We should solve equation of fast motion (8) first. The essential advantage of the
method of direct partition of motions is a possibility to solve the equations of fast
motions in an approximate manner, if, as is typical, the equation of slow motion
is the one of primary interest. In this case, in the course of solving equation (8),
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we assume that the resistance force F(Ẋ + ψ̇) is negligibly small in comparison to
the other forces, i.e. to inertia and external excitation. We also observe that the
product ẌBV is much smaller than ψ̈ and, therefore, it may be also neglected. Then
equation of fast motion is reduced to the following form:

mψ̈ +
1

2
ρVb0ψ̈ = mAω2 sinωt− ρVb0Aω

2 sinωt+ ρVb0gBV sinωt (9)

Steady-state solution of this equation is:

ψ = −B sinωt (10)

With B defined by the formula:

B =
(m − ρVb0)Aω

2+ ρVb0gBV

ω2(m+ 1/2ρVb0)
(11)

Now, to derive equation of slow motion, we employ the expression
〈
ψ̈BV sinωt

〉
=

Bω2

2
BV so that equation (7) acquires the form:

mẌ +
1

2
ρVb0(Ẍ+

Bω2

2
BV) = −〈F(Ẋ+ ψ̇)〉 −mg−

1

2
ρVb0BVAω

2+ ρVb0g (12)

4 The velocity of the steady state motion and the

parameters of the system, when a bubble sinks

rather than rises

In a stationary (steady-state) motion of a bubble, Ẋ = Ẋ∗ = const. Then the
velocity Ẋ∗ is found from equation:

1

4
ρVb0Bω

2BV = −〈F(Ẋ∗ + ψ̇)〉 −mg−
1

2
ρVb0BVAω

2+ ρVb0g (13)

It yields:

〈F(Ẋ∗ + ψ̇)〉 = −
1

4
ρVb0Bω

2BV −mg−
1

2
ρVb0BVAω

2+ ρVb0g (14)

Expression 〈F(Ẋ∗ + ψ̇)〉 gives the mean magnitude of the resistance force averaged
in the period T = 2π

ω
. Now we employ the assumption that the velocity of a bubble

ẋ = Ẋ+ ψ̇ in the motion considered preserves its sign, i.e.
∣∣∣Ẋ
∣∣∣ > |B|ω and sign(Ẋ+

ψ̇) = signẊ. Then the sign of 〈F(Ẋ∗ + ψ̇)〉 should coincide with the sign of the
velocity of steady-state motion of the bubble Ẋ∗. Therefore, if right hand side of
equation (14) is positive, then the bubble moves upwards along the x-axis and if it
is negative, the bubble moves downwards.
It yields the condition of bubble’s sinking in the following form:

1

4
ρVb0Bω

2BV +mg+
1

2
ρVb0BVAω

2 > ρVb0g (15)
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Now we determine the velocity of steady-state motion of the bubble Ẋ∗. Its magni-
tude is controlled by the adopted model of the fluid resistance. In the general case,
it may be formulated as [9-11]:

F(ẋ) = 4ρR2Ψ(Re)ẋ2sgnẋ (16)

Here R is the radius of the bubble, and Ψ(Re) is the resistance coefficient, dependent
on Reynolds number Re = 2ρRẋ/µsgnẋ (µ is the dynamic viscosity of the fluid).
This dependence is provided by classic Rayleigh diagram [3,9-10]. In our study, we
assume Reynolds numbers to be very small (Re < 1), and we set the resistance
coefficient to:

Ψ(Re) =
3π

Re
(17)

Then the formula for resistance force (16) reduces to the Stokes formula [3]:

F(ẋ) = 6πµRẋ (18)

The radius of the bubble depends on the fast time τ = ωt and it obeys the equation:

4

3
πR3 = Vb0(1+ BV sinωt) (19)

Inasmuch as BV is small, the variation in the radius may be given as:

R = R0(1+ BR sinωt) (20)

With R0 as a mean radius of the bubble in the period T = 2π
ω

, and BR is the amplitude
of its relative variation in time. Obviously, equation (19) yields:

R0 =
3

4π
3
√
Vb0; BR =

BV

3
(21)

So we obtain:

〈Rẋ〉 = R0(Ẋ +
〈
ψ̇BR sinωt

〉
) (22)

However,
〈
ψ̇ sinωt

〉
= 0, and, therefore, the period-averaged resistance force is:

〈
F(Ẋ∗ + ψ̇)

〉
= 6πµR0Ẋ∗ (23)

Finally, the steady-state velocity of the motion of the bubble is defined by the simple
formula

Ẋ∗ =
1

6πµR0
(−
1

4
ρVb0Bω

2BV −mg−
1

2
ρVb0BVAω

2+ ρVb0g) (24)
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5 Discussion of the obtained results

In the reported analysis, we have adopted the simplest model of pulsation of the
volume and the radius of a bubble exposed to oscillations of the external pressure.
As the result, these pulsations have appeared to be in phase with the pressure
pulsations and have not contributed to vibrational force via the force F(ẋ) of fluid
resistance to the motion of a bubble. Sinking of the bubble in this situation is
produced only due to pulsations of the added mass and Archimedes force.
However, if the approximation (4) of formula (3) is not employed and equation for
the dynamics of the radius of a bubble [4] is used, then the volume pulsations of a
gas bubble become shifted from the pressure pulsations. In turn, it should produce
a contribution to the vibrational force via the force F(ẋ) of fluid resistance to the
motion of a bubble.

Moreover, if a nonlinear dependence of the fluid resistance force F(ẋ) on velocity ẋ
is employed (i.e., if large Reynolds numbers (Re > 1000) are considered), see [9-11],
then the vibrational force is also amplified via the force F(ẋ) of fluid resistance to
the motion of a bubble.
For frequencies ω < 200 1/s, a bubble should be considered as compressible if its
radius exceeds 2 mm [5].
So, the condition of sinking of a bubble in the fluid is formulated by the inequality
(15). It may be re-formulated as follows:

(m+ ηm0)g+ δm0Aω
2 > m0g (25)

Where

m0 = ρVb0; δ =
1

2
BV +

m−m0

4m+ 2m0
BV; η =

m0

4m+ 2m0
B2V (26)

If we neglect the mass of the bubble, then, as follows from formulas (26): δ = 0,
η = 1

2
B2V. Respectively, the condition (25) reduced to:

1

2
B2V > 1 (27)

However, the amplitude of relative volume change of the bubble BV is defined by
the formula (5), under condition that Pe≫ ρhAω2, and, therefore, BV ≪ 1. Thus,
the condition (27) is not held.
Therefore, in the framework of the adopted assumptions, it is not possible to claim
that a bubble should sink. However, in the flotation theory the practically relevant
situation is when a solid particle is attached to the bubble, so that its mass is not
equal to zero. Then the condition (25) may hold true for some combinations of
parameters. For example, if m = 1

2
m0, then, taking into account that BV ≪ 1, the

condition (25) gives:

Aω2

g
>

4

3BV
(28)

So, the condition (28) holds true for Aω2≫ g.
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Figure 3: Velocity of steady state motion of the bubble versus excitation frequency

To summarize this discussion, we conclude that the effect of bubble sinking in a
fluid is feasible when a fluid-filled vessel is exposed to intensive vibrations.

Utilizing the introduced notations, formula (24) for the velocity of steady state
motion of a bubble may be transformed as:

Ẋ∗ = k((m+ (η− 1)m0)g+ δm0Aω
2) (29)

where k = − 1
6πµR0

.

Parametric studies of the dependence of the steady state velocity of a bubble are
illustrated in Figures 2-3. In Figure 2, the dependence of the velocity Ẋ∗ on the mass
of the bubble (or the mass of a particle attached to the bubble) m for the excitation
frequency ω = 30 1/s is shown. Other parameters of the system are: ρ = 1 g/sm3,
Vb0 = 0.1 sm3, A = 0.2 m, g = 10m/s2, h = 0.1 m, Pe = 150 · 103kg/(m · s2),
6πµR0 = 2 g/s. In Figure 3, the dependence of the velocity Ẋ∗ on the excitation
frequency ω is shown for the bubble with the mass m = 0.05 g.
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Figure 4: The time dependence of the velocity of the bubble (m = 0.05 g; ω =

30 1/s)

As seen from Figures 2-3, the magnitude of velocity of a bubble in its steady state
motion decreases, when its mass (or the mass of an attached particle) grows and
when excitation frequency grows. Thus, a bubble should sink rather than rise at
certain combinations of parameters.

6 Comparison with numerical experiments

The reported results have been validated in numerical experiments. Equation of mo-
tion (10) with conditions(8), (9), (22) taken into account has been numerically inte-
grated by means of Mathematica 5.2, and the results have been compared with the
analytical predictions. The parameters have been chosen as follows: ρ = 1 g/sm3,
Vb0 = 0.1 sm3, A = 0.2 m, g = 10m/s2, h = 0.1 m, Pe = 150 · 103kg/(m · s2),
6πµR0 = 2 g/s.
For m = 0.05 g and ω = 30 1/s, formula (33), predicts Ẋ∗ = −15.4 sm/s. The
straight dashed line in Figure 4 displays this analytical solution. The continuous
curve displays results of numerical integration. As is seen, there is a good agreement
between analytical and numerical results.
For m = 0.025 g and ω = 37 1/s, formula (33) predicts: Ẋ∗ = −25.1 sm/s. The
straight dashed line in Figure 5 displays this analytical solution. The continuous
curve displays results of numerical integration.
So, the results of numerical integration validate approximate analytical solution.

7 Conclusion

Simple formula is derived for the velocity of a gas bubble in its steady state motion
in an oscillating viscous incompressible fluid exposed to vibration. The variation in
the volume of the bubble induced by the pressure pulsations is accounted for. It is
assumed that volume pulsations of the bubble are harmonic and isothermal. It is
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demonstrated that in certain excitation conditions (for some excitation frequencies
and amplitudes of vibrations of the vessel) a gas bubble sinks, rather than rises.
The analytical results are validated in numerical experiments.
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solid phase
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Abstract

In this work the synthesis regimes in the solid phase are analyzed taking
into account the coupling of heat transfer and deformation processes. In
example investigated the models of the volumetric synthesis and the coating
formation in conditions of electron beam processing. The comparative analysis
of models was shows that the interrelation between thermal and mechanical
processes not results to new quantitative and to qualitative results.

1 Introduction

Solid phase synthesis provides wide possibilities for producing a variety of materials.
The mechanical stress unavoidable accompany of chemical reactions can influence on
conditions of synthesis in the solid phase as a result of high temperature gradients
and cause to change of properties during reactions that is actively investigated and
used in chemistry solid-phase materials [1].
In this work the influence of interaction of the internal mechanical processes and
heat-and-mass transfer on conditions of synthesis in the solid phase are investigated
an example of synthesis model in volume in conditions of controlled heating and
model of coating formation in conditions of electron-beam treatment. Influence of
connected of thermal and mechanical processes in various conditions of synthesis
appears various.

2 Sintering of powders in conditions of controlled

heating

2.1 Problem formulation

Application of sintering of pressing powders the Ti − TiAl3 allows obtaining ad-
missible properties of sintered specimen and decreasing of the cost price of their
manufacturing in conditions of industrial production [2]. For the purposeful choice
of technological regimes of sintering it is necessary theoretical and experimental re-
search of laws of structure formation, phase structure and physic mechanical prop-
erties of the material at sintering.
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Let’s consider the process of sintering of pressing powders the Ti−−TiAl3 in the form
of the parallelepiped with the sizes l1× l2× l3 in the vacuum furnace at regulated
heating. As layer heat thickness in scores of times the dimension of the sample we
can neglect distribution of temperature in the sample. Then the three-dimensional
heat conduction equation may be integrated by volume sample, taking into account
the heat-exchange condition on surface contacting to an environment. In this case
we come to ”zero-dimensional” of problem definition [3] which includes the heat
balance equation

V0cρ
dT

dt
= −εTσT

(
T4− T4e

)
Sn− 3KTαTV0

dεkk

dt
+ V0W1 (1)

where T is temperature; Te is temperature of walls of the vacuum chamber which
changes under the certain law; t is time; c,ρ are the effective heat capacity and
density respectively; W1 — is the heat release due to chemical reactions; εkk =

ε11+ ε22+ ε33 is the first invariant of strain tensor; K = λ+ 2
3
µ is the bulk modulus,

λ,µ are the Lame coefficients; εt is the emissity; Sn is the total surface area of
sample; V0 is its volume, αT — is thermal expansion coefficient.
We consider that components of stress and strain are connected with changes of
temperature and concentration the Djuamelya–Neyman generalized relationship [4]:

σij = 2µεij+ δij [λεkk− Kω] (2)

where δij – Kronecker delta, ω is the relative change of local volume owing to change
of temperature and concentration of the components participating in reactions [5]

ω = 3

[
αT(T − T0) +

n∑

l=1

αl(yl− yl,0)

]
, (3)

where αl = Mlᾱl/ρ, ᾱl is the concentration expansion coefficients[5]; the index
zero relates to the initial condition; Ml are the mass concentrations of components.
According to state diagram of the system Ti−Al [6], we can write the six chemical
reactions

TiAl3 → TiAl+ 2Al; Ti+Al → TiAl; 2Ti+ TiAl3 → 3TiAl;

2Ti+ TiAl → Ti3Al; 3Ti+Al → Ti3Al; Ti3Al → 2Ti+ TiAl.

in the area of atomic concentration which interesting from the practical point of
view. We determine the mass concentrations of reactants and reaction products as:

y1 = [TiAl3] , y2 = [Ti] , y3 = [Al] , y4 = [TiAl] , y5 = [Ti3Al] ,

Then, according [7] and on base of mass action law, we shall obtain

dy1

dt
= −y1ϕ1− y22y1ϕ3, (4)

dy2

dt
= −y2y3ϕ2− 2y1y

2
2ϕ3− 2y22y4ϕ4− 3y3y

3
2ϕ5+ 2y5ϕ6, (5)
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dy3

dt
= 2y1ϕ1− y2y3ϕ2− y22y3ϕ5, (6)

dy4

dt
= y1ϕ1+ y2y3ϕ2+ 3y1y

2
2ϕ3− y22y4ϕ4+ y5ϕ6, (7)

dy5

dt
= y22y1ϕ4+ y3y

3
2ϕ5− y5ϕ6 (8)

where we take into account that all chemical reactions are inhibited by the layer of
the product y = y4+ y5 [7]:

ϕi = ki exp

(
−
Eai

RT

)
exp(−my)y−n, i = 1, 2, 3,

m, n are the stagnation parameters; ki, Eai — pre-exponential factor and activation
energy.

As the sample is free from action of external forces we have σkk = 0. Therefore, the
bulk deformations are obtained from relation (2):

εkk = ω =
ρ−1− ρ−1

0

ρ−1
0

=
V−1− V−1

0

V−1
0

or
V

V0
=

1

1+ εkk
. (9)

Substituting (9) expression in the heat conduction equation (1) and considering (3)
and assembling similar composed, we obtain

ceff =
dT

dt
= −εTσT(T

4− T4e)Sn+Weff, (10)

where ceff = Vocρ + 3DαT; D = 3KTαTV0. The total heat source Weff due to
chemical reactions (including change of volume during reaction) subject to equations
(4) – (8) write down in form

Weff = V0ρ

5∑

i=1

hi

mi

dyi

dt
− 3D

5∑

i=1

αi
dyi

dt
=

n∑

j=1

ωj, j = 1− 6,

where

ω1 = Q ′
1y1ϕ1; ω2 = Q ′

2y2y3ϕ2; ω3 = Q ′
3y1y22ϕ3;

(11)

ω4 = Q ′
4y4y22ϕ4; ω5 = Q ′

5y3y23ϕ5; ω6 = Q ′
6y5ϕ6;

where Q ′ = VQj− 3D∆Qj; Qj =
ρ

m

n∑

k=1

hkνki; ∆Qj =
n∑

k=1

αkνki.

Initial conditions take the form

t = 0 : T = To, y1 = y10, y2 = y20, y3 = 0, y4 = 0, y5 = 0. (12)
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Figure 1: Temperature (a), volumetric deformations (b) and relative change of vol-
ume (c) during heating and sintering for connected (1) and unconnected (2) formu-
lations of a problem.

2.2 Numerical investigation

The problem (10), (4) – (8), (12) was solved numerically with use of Runge–Qutta
method for a thermal part of the problem and implicit Euler’s method for the
kinetic part of the problem. Simulation veracity is confirmed by comparison with
known analytical solutions for extreme particular cases, qualitative comparison with
experiment [2] on character of change locally volume and temperature of the sample.
Parameters of the model were determined by special methods [3, 7].
It has appeared that for the given system and for the chosen area of change tech-
nological parameters the account of the connected character of processes (when the
factor D in the equation of heat conductivity (11) is distinct from zero) leads to
downturn of temperature during synthesis (fig. 1, a). Additional expenses of en-
ergy for volumetric deformations in the sample lead to appearance of plateau on the
temperature curve, not connected with phase transition (compare curves 1 and 2 on
fig. 1, a). The local maximum on temperature curves (fig. 1, a) is connected with
allocation of heat in the first chemical reaction [5] for the connected model the local
maximum also appears on the kinetic curve for TiAl (fig. 2,a). In consideration of
decrease of temperature chemical reactions in volume occur more slowly (fig. 2).
Not looking at changes in kinetics process of sintering, the account of coherent
character of different physical processes in the chosen area of change of parameters
at calculations is not reflected in a final chemical compound of pressing and relative
change of final volume.

3 Formation of coating structure during electron-

beam treatment with use solid phase synthesis

3.1 Problem formulation

The joining formation or transient regions between the materials are rarely formed
during the synthesis of a coating on a substrate [8]. To form the transient region,
additional heat treatment is required. However, the substrate that removes heat
from the heating region may considerably affect the regimes of reaction initiation
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Figure 2: Change of phases concentration TiAl (a) and Ti3Al (b) in time during
heating and sintering for connected (1) and un connected (2) formulations.

and layer-by-layer propagation in the solid phase.
We shall assume that the surface of a thin plate has been covered with a single–layer
coating. To a first approximation the elements re-allocation on plate thickness with
coating can not considered. We can neglect elements redistribution along the plate
thickness assuming that this slow process happens after coating synthesis that is
during cooling stage. The plate is free from external forces action. According to [9],
one can believe, that the conditions correspond to plane stressed state. Let consider
that external source moving along the coating surface with the rate V, heats the
surface in the axis direction perpendicular to motion direction uniformly. Described
conditions realize when the scanning electron beam flared-out into line is used and
scanning thickness exceeds the specimen thickness. Under action of external energy
source, the chemical reactions initiate in the coating. The coating and substrate are
thermally thin, that allows integrating all equations along the specimen thickness.
As a result we come to one dimensional problem formulation which is analogous to
[8] and includes thermal conductivity equation coupling with the stresses

ceff
∂T

∂x1
=

(
λT,b(δ(kλ,T − 1) + 1)

∂T

∂x1

)
−D1(A− 3B)

∂σ22

∂t
− (13)

− σ0εeff
(T4− T40)

hc+ hb
+
qe(t, x1)

hc+ hb
+Weff,

the kinetic equation system for Ti − TiAl3 (4) – (8) and equations for determina-
tion of the stress and strain tensor components succeeding of problem solution on
mechanical equilibrium of the plate free from action of external forces [4]

σ22 = σ33 = (14)

=

[(
4

Lx
−
6x1

L2x

)
(I1+ I2) +

(
12x1

L3x
−
6

L2x

)
(I3+ I4) − ε̃T − ε̃L

]
(A− B)

−1
,

ε11 = ε33 = −Bσ22+ ε̃T + ε̃(l), ε22 = (A− B)σ22+ ε̃T + ε̃(l), (15)

647



Proceedings of XXXVII International Summer School–Conference APM 2009

where
δ = hc/(hc+ hb); 1− δ = hb/(hc+ hb);

ceff = cbρb (δ (kc− 1) + 1) + 3DαT,b [δ (kα− 1) + 1] ;

D1 = 3αT,bKb (δ (kVkα− 1) + 1) T ; ε̃T = αT,b (T − T0) [δ (kα− 1) + 1] ;

ε̃(l) = δ

5∑

l=1

αl (yl− yl,0); A =
1

2µb

(
δ

(
1

kµ
− 1

)
+ 1

)
;

B =
λb

6µbKb

(
δ

(
kλ

kµkV
− 1

)
+ 1

)
;

kλ,T = λT,c/λT,b; kc = ccρc/cbρb; kV = Kc/Kb; kα = αT,b/αT,c;

kλ = λc/λb; kµ = µc/µb; kρ = ρc/ρb;

subscripts "c" – correspond to the effective properties of the coating; subscripts "b" –
correspond to the effective properties of the base.
The total heat sourceWeff due to chemical reactions in the heat conduction equation
record to similarly previous case where ωi are determine under the formula (11) in
which it is accepted that Q ′

i = δQi − 3δD1∆Qi. At the initial time, we have the
conditions

t = 0 : T (x, 0) = T0, y1 = y10, y2 = y20, y3 = y4 = y5 = 0, σ22 = 0,

ε11 = ε22 = ε33 = 0.

3.2 Numerical investigation

The problem was solved numerically using an implicit difference scheme that is
second-order accurate in space and first-order accurate in time with linear sweep.
In each time step, the first stage is to solve the heat conduction equation (13). The
second stage is the solution of the kinetic problem (4) - (8). The third stage is to
describe the stress and strain components (14) - (15) where integrals were calculated
on method of trapezoids. The thermodynamic and physical properties are known
from the experimental date or are calculated of special shape [8, 10].
Figure 3 dependences on time of stress (a) and strain components (b)-(c) in section
x1 = 5 sm (i.e. in the center of plate) are shown calculated for two limiting cases:
factor D1 6= 0 (curve 1) and factor D1 = 0 (curve 2). Dependence of temperature on
time is not resulted, as the account of connected processes in model leads to its minor
change. The account of connected of heat-conduction process and deformations in
model is essentially influenced on value of the stress and strain components and also
on their qualitative behaviors. So from fig. 3, b, it is visible that in the connected
model stress component do not change the sign. In unconnected model change of
sign is observed.
From distributions on length of the plate of temperature and concentration of phases
Ti, TiAl3 and Ti3Al (fig. 4) it is visible that the account of coherence of mechanical
and thermal processes leads to decrease of temperature in the location of source
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x1 = Vt. It leads to decrease of temperature and in front of reaction. There are
the additional expenses of the energy connected with creation of is strain – stress
condition owing to what there is no full synthesis (compare continuous and dotted
curves). Essential heterogeneity of concentration in the beginning of the plate for
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the connected problem statement interpreted of low temperatures in the reaction
zone in initial stage of processing process and decelerating of reactions by product
layer [7]. Similar heterogeneity is observed and in distributions of stress and strain
components.

4 Conclusion

Within the limits of sintering model in the chosen area of change of physical param-
eters it is shown that the account of the connected character of physical processes
essentially influences dynamics of sintering process, but is not reflected in the final
chemical compound of pressing and relative change of its volume.
Within the limits of model of the covering synthesis on substrate the basic role of
the connected character of thermal, mechanical and chemical processes for structure
of the covering and for sizes of pressure and the deformations accompanying process
of synthesis is revealed, it speaks about the various roles of mechanical processes in
modes of transformation under various technological conditions.
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Abstract

This paper deals with experimental and analytical studies on buckling of
three dimensional spacer fabrics consisting of two outer layers combined by
spacer yarns. Depending on different structural parameters such as thickness
of the spacer fabrics, the amount of the spacer yarns per square cm, spacer
yarn properties and spacer yarn laying angle, different factors that affect the
buckling behavior of spacer fabrics are observed. The basic factors affected
the buckling behavior of spacer fabrics were determined. It is shown that
buckling of spacer yarns in fabric is a very complex phenomenon that involves
interactions between the two outer layers of spacer fabrics. Different mecha-
nisms can cause buckling the spacer yarns to fail in carrying a compression
load are discussed.

1 Introduction

The textile industry manufactures various types of fabrics. Among them, 3-D spacer
fabrics occupy an important position because of their unique properties. Spacer
fabrics are state of the art of structures and they are very unlike to the traditional
textile fabrics. They consist of two outer layers combined by spacer yarns (Figure
1). They have been already used in many areas and present different advantages
especially for the technical applications. The compression behavior of spacer fabrics
is one of their main characteristics and therefore it must be taking into account in
various tasks. The construction of spacer fabrics provides a textile which has spacers
in the middle of its structure [1].
The spacer fabrics can be produced by different textile technologies as weaving or
knitting. The most commonly technology used for manufacturing the spacer fabrics
is knitting. Both weft knitting and the warp knitting processes can be used for pro-
duction of spacer fabrics. Buckling behavior of spacer fabrics is especially important
for multi-layers textiles used in the field of composites reinforcements for lightweight
constructions and load-bearing building applications. Research to study of spacer
fabrics has been performed for many years. In work [2], the characteristics of differ-
ent spacer fabrics including low-stress mechanical properties, air permeability and
thermal conductivity were investigated. It was shown that low-stress mechanical
properties revealed that all tensile, bending and compression properties of spacer
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Figure 1: The elements of the spacer fabrics.

fabrics are greatly depending on the type of spacer fabric (warp knit or weft knit),
the type of spacer yarn used (monofilament or multifilament), the yarn count of the
spacer yarn, the stitch density and the spacer yarn configuration. Some authors [3]
investigated the possibility of using warp knitted spacer fabrics for cushion applica-
tion instead of common polyurethane foam that used in seats, sofas and mattresses,
etc. The results show that the warp knitted spacer fabrics have better pressure
relief properties, higher air permeability, and lower heat resistance than PU foam,
and thus could be used to substitute. In work [4] the transverse impact of 3D biaxial
spacer weft-knitted reinforced fabric was developed and investigated. Andreas Roye
and Thomas Gries [5] investigated the possibility to use completely new type of 3-
D-fabric – warp knitted spacer fabrics for concrete applications. The double needle
bar raschel technology has been improved by inserting straight reinforcement yarns
inserted bi-axially on both sides of the textile. In the paper [6] a model of trans-
verse deformation in a textile product consisting of two external layers combined
with spacer yarn in the middle layer are presented.

There are many studies of the properties of spacer fabrics, but there are no suffi-
ciently broad published studies on the buckling behavior. Understanding the buck-
ling behavior of spacer fabrics is important for the rational development of structural
elements reinforced with spacer fabrics.

2 Buckling

In engineering, buckling is a failure mode characterized by a sudden failure of a
structural member subjected to compressive stresses, where the actual compressive
stress at the point of failure is less than the ultimate compressive stresses that the
material is capable of withstanding. This mode of failure is also described as failure
due to elastic instability [7].

The critical force Pcr for prismatic bar in axial compression within elastic part is
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determined by the Euler equation:

Pcr =
π2EI

l2r
, (1)

where E is a modulus of elasticity of the bar material; I is a minimum moment of
inertia of the cross-sectional area F of the bar; lr = µl is reduced length of the bar
(the length at which a bar with hinged ends is equivalent in stability to the bar with
given end conditions); l is a true length of the bar; µ is a length reduction factor
depending on the end conditions and type of loading.
The moment inertia of an annular section of the spacer yarn is

I =
πD4

64
, (2)

where D is a diameter of spacer yarn, mm.
The cross sectional area of the bar is

F =
πD2

4
. (3)

The radius of inertia of the cross section is

i =

√
I

F
. (4)

Slenderness ratio of the bar λ is determined by the equation

λ =
µl

i
. (5)

The µ influences on the length at which a bar with hinged ends is equivalent in
stability to the bar with given end conditions. Figure 2 illustrates the case of
compression of spacer yarn at corresponding value of factor µ = 1.

Figure 2: The case of compression of spacer yarn at corresponding value of factor
µ = 1.
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3 Experimental

In this study, the spacer fabrics were produced on a double needle bar Rachel ma-
chine, on the basis of a Karl Mayer HDR 6-7 DPLM at the Institute fur Textilltech-
nik der RWTH Aachen (Germany). The four different types of spacer fabrics were
produced from PES and PP monofilament yarns. The characteristics and tensile
properties of spacer yarns are listed in the table 1 and the characteristics of spacer
fabrics are presented in table 2. The spacer fabrics investigated has different struc-
tural parameters such as thickness of the spacer fabrics, the amount of the spacer
yarns per square cm, spacer yarn properties and spacer yarn laying angle. The sam-
ples SF2 in comparing with SF3 has additional system of laying up glass yarns in
biaxial direction. Then the samples were cut into round shapes with diameter from
70 to 190 mm. The fabrics were conditioned and measured in the dry relaxed state.
Table 1. Tensile properties of the spacer yarns used in 3D - fabrics

N Spacer Diameter, Force at Elongation Tensile Tensile
yarn mm break, N at break,% stress, MPa modulus, MPa

1 PES 0.25 29.3 24.5 600 10000
2 PP 0.3 38.6 27.0 545 3800

Table 2. Characteristics of the spacer fabrics investigated

Name Type of spacer Thickness of the Amount of the spacer
yarn used spacer fabrics yarns per 100 cm2

SF1 PES 20 1760
SF2 PES 20 192
SF3 PES 20 192
SF4 PP 20 800

The compression test was performed on a Zwick/Roell 2.5 material testing machine.
The force-compression diagrams were obtained with a 20 - mm sample base and
clamp movement of 10 mm/min. No fever than three specimens were tested. It
should be noted that compression were calculated from crosshead displacement.
Typical force-compression diagrams are shown in figure 2. When the compression
load on a spacer fabric is applied, the spacer yarn loaded in the same manner until
will fail by buckling.

4 Results and discussion

The force-compression diagrams of spacer fabric are presented in figures 4 and 5.
All of them show the typical behaviour under axial compression as it was mentioned
above. In the first part, there is elastic part where the spacer yarns work within the
proportional limit. Then at some point the buckling of spacer fabric occur.
The values of moment inertia, the radius of inertia of the cross section, slenderness
ratio and critical force for all samples were calculated using equations (1)–(5). The
first three samples have the PES spacer yarn and the fourth sample has the PP yarn.
The points at which the spacer fabrics have failed by buckling or loss the stability
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Figure 3: Typical response curves of spacer fabrics in axial compression.

were determined from force-compression curve. The critical force that applies for
single spacer yarn was calculated taking into account the number of yarns in cross-
sectional area of spacer fabric.
Table 3. The properties of the spacer fabrics investigated

Name The moment The radius Slenderness Loss of stability Critical
inertia of an of inertia of ratio of the (from force - force

annular the cross bar λ compression Pcr , N
section, m4 section, mm curve), N

SF1 1.92 · 10−16 6.25 · 10−2 320 115.3 140.0
SF2 1.92 · 10−16 6.25 · 10−2 320 19.8 22.8
SF3 1.92 · 10−16 6.25 · 10−2 320 18.1 22.8
SF4 3.97 · 10−16 7.5 · 10−2 260 11.3 14.8

The difference between critical force obtained from force-compression curve and
calculated by equation (1) is within the range of 13 – 23%. Such big difference can
be explained by the nonlinear behavior of spacer fabric under axial compression.
Also, the slenderness ratio of spacer yarn is greater than 260. Usually short steel
columns have the slenderness ratio not more than 50 and an intermediate length
steel column has a slenderness ratio ranging from 50 to 200. The deviation from the
pure Euler behaviour can include the no straight spacer yarn geometry and nonlinear
stress-strain behavior of spacer yarn polymer materials. Another factor that may be
affected from this equation is the effect of length on critical load. Clearly, empirical
equation for buckling must been developed to agree with experimental data.

5 Conclusions

The experimental and analytical studies on buckling behaviour of spacer fabrics
under uniaxial loading condition are investigated by using analytical and experi-
mental approaches. The force-compression diagrams of spacer fabric are obtained.
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Figure 4: Force-compression curve of spacer fabric (SF1).

Figure 5: Force-compression curve of spacer fabrics (SF2, SF3, SF4).

Depending on different structural parameters such as thickness of the spacer fabrics,
the amount of the spacer yarns per square cm, spacer yarn properties and spacer
yarn laying angle, critical force that affect the buckling behavior of spacer fabrics
are observed. It is shown that buckling of spacer yarns in fabric is a very com-
plex phenomenon that involves interactions between the two outer layers of spacer
fabrics.
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Hybrid algorithms applied to inverse spectral
problems for hydromechanical systems

V. D. Sulimov P. M. Shkapov
spm@bmstu.ru

Abstract

Problems of nuclear reactor diagnostics are formulated as inverse spec-
tral problems. Incompleteness of registered spectral data and presence of
multiple frequencies result in the error function being non-convex and non-
differentiable. As the function has numerous local minima, it is necessary to
use global optimization methods. A novel global optimization algorithm com-
bining a Metropolis-based algorithm and deterministic gradient techniques is
introduced. Smoothing approximations are inserted during the local search
that makes it possible to expand the approach on the class of non-differentiable
problems. Implementations of the hybrid algorithm are discussed. Results of
computational experiments are presented to illustrate the efficiency of the
approach.

1 Introduction

It is the practice to distinguish two kinds of extremal problems for dynamic systems,
they are problems of optimization and diagnostics. Both of them are formulated as
inverse spectral problems [1]. Dynamic numerical investigation and analysis gener-
ally requires a mathematical model representing the physical behaviour of the object
under consideration. The model may be used to determine responses to service dy-
namic loads, assess object integrity including seismic analysis, and also to study the
impact of required design modifications or system fault diagnostics. Reliable com-
puter modeling in system dynamics is very important for studies related to the safety
of equipment components in the nuclear power industry. Computer dynamic model
updating is a powerful means to produce these reliable models [2]. The method uses
an initial computer model and measured spectral data of the equipment components
to modify physical parameters of the initial computer model. Vibration monitoring
methods are cost-effective and reliable tools for early failure detection and preven-
tive maintenance in the up-to-date nuclear power industry. One of the most severe
accidents in nuclear power generation is loss of coolant, where the re-circulating
coolant of the pressurized water reactor may flash into steam [3]. The standard
reactor instrumentation can register signals caused by pressure fluctuation of the
coolant. The program seeks interpretations of the registered spectra and useful data
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extraction for diagnostics. Computational models of a VVER-1000 reactor are ap-
plicable to analysis of various operational occurrences, abnormal events, and design
scenarios and provide a significant analytical capability for the specialists working
in the field nuclear power safety. In what follows, methods of solving diagnostics
problems for computational models of the reactor equipment components and of the
coolant flow in the primary circuit are under consideration.

Possible occurrence of anomalies in the phase constitution of the coolant can be de-
tected owing to changes in dynamical characteristics of the two-phase flow. Mathe-
matical models for numerical analysis of acoustical oscillations in two-phase coolant
have been developed [4]. As the normal state of the coolant and anomalous one
are characterized by different spectra, then it is necessary to minimize simultane-
ously individual differences between spectral components. These differences can be
described by an appropriate error function. The inverse spectral problem is formu-
lated using the vector of relative acoustic velocities in the coolant flowing throw the
specified zones. The goal is to find a set of controlling variables, which will minimize
the error function and determine current phase constitution of the coolant. In the
general case it is necessary to solve the inverse problem using inaccurate incomplete
experimental data. It is well known that the above problem is often ill posed, so
that small perturbations in the data can result in large changes of the solution.
Regularization technique is a standard method of transforming the initial problem
into well-posed form. Implementation of special procedures is required for finding
regularization parameters.

The inverse problems here are solved for perfect but incomplete spectral data. The
results of the direct problem solutions have been confirmed by using the finite-
element code ANSYS R©. Incompleteness of the measured spectral data results in
the error function being non-convex. As the error function has numerous local min-
ima, it is necessary to use global optimization methods. On account of possible
presence of multiple frequencies in registered spectra the error function may not be
differentiable everywhere. Up-to-date methods for solving global optimization prob-
lems are Metropolis-based algorithms: the stochastic Particle Collision Algorithm
PCA [5] and the hybrid algorithm NMPCA that combines stochastic and deter-
ministic optimization methods [6]. The hybrid algorithm performs as follows: first,
a wide search in the solution space is carried out using a stochastic optimization
algorithm (the PCA), and then scanning the promising areas is made with a deter-
ministic local search technique (Nelder-Mead Simplex). This searching is performed
iteratively until a certain number of fitness function evaluations is reached. However,
it is well-known that the convergence theory for Nelder-Mead simplex method is far
from completion; so the method can fail to converge or converge to non-stationary
points [7]. Another modern approach to search global solutions on base of diagonal
partitions and a set of Lipschitz constants is proposed in [8]. As an alternative to
the NMPCA a novel hybrid algorithm is introduced. This algorithm combines the
PCA and the deterministic gradient techniques with smoothing approximations for
fitness functions.

The plan of the remainder of this paper is as follows. The section following contains
statement of the diagnostics problem. Section 3 provides brief descriptions of the
hybrid global optimization algorithms. In section 4 successful computational exper-
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iments for identifying anomalies of the VVER-1000 equipment components and the
phase constitution of the coolant in the primary circuit are presented to illustrate
peculiarities of the approaches. Section 5 gives conclusions and discussion on further
work.

2 Formulation of the problem

It is supposed that a set of performance index values associated with computational
model of the VVER-1000 equipment components or of pressure fluctuations in the
primary circuit is defined by a set of controlling variables [4]. Experimental spec-
tral data registered by reactor instrumentation may be incomplete. So the goal is
to determine vectors of controlling variables using only restricted data on natural
frequencies of the coolant flow in the circuit. The standard approach is to set the
inverse spectral problem and then to solve the corresponding least squares problem

min
x∈X⊂Rn

f(x),

where f(x) =
N∑

i=1

αi(ζi(x) − ζ∗i)
2; x, X — the vector of controlling variables and its

feasible domain of the error function f(x) respectively; α is a vector of weighted
coefficients (the additional vector α is introduced in order to provide a match with
the computational model); N is the number of eigenvalues under consideration;
ζi(x) and ζ∗i denote the eigenvalues that correspond to computed (solutions of the
direct problem) and to measured natural frequencies of the coolant flow oscillation
respectively;

X =
{
xi | x

L
i ≤ xi ≤ xUi ; i = 1, n

}
;

here xLi , x
U
i — the lower and upper bounds on the ith controlling variable.

As practical observations show, the error function in the considered problem is often
multiextremal. Therefore, it is necessary to turn to methods of global optimization.
It is clear that if the measured spectral data exactly match to the computational
model then the solution of the minimization problem will cause error function to
take its global minimum value of zero. Let us suppose that there is a unique solu-
tion of the ill-posed inverse spectral problem and that this corresponds to the global
minimum of the error function. However, the fact is that the theoretical question
of the uniqueness of solutions of the problem may not be relevant to practical ap-
plications in which there is the additional complication of accuracy of experimental
measurements. Furthermore, some complications may arise due to incompleteness
of measured spectral data, influence of the two-phase interference on the flow dy-
namics, the presence of noise, etc. Within the scope of this work we take it as a
convenient and reasonable assumption that global minimization of the error function
in the above inverse problem will yield correct identification of the coolant phase
constitution anomalies from the flow spectral pattern.
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3 3. Stochastic global optimization algorithms

3.1 The Nelder-Mead Particle Collision Algorithm (NM-
PCA)

The modern Particle Collision Algorithm [5] has some essential advantages in re-
lation to well known stochastic global optimization algorithms such as the Genetic
Algorithms, Simulated Annealing, Fast Simulated Annealing, etc. Specifically, the
PCA does not require any additional parameters other than the number of itera-
tions; the algorithm is extremely easy to implement and can be applied to both
continuous and discrete optimization problems. The PCA performs using the anal-
ogy with nuclear particle collision reactions, in particular scattering and absorption.
So, a particle that hits a high-fitness “nucleus” would be “absorbed” and would
explore the boundaries. Otherwise, a particle that hits a low-fitness region would
be scattered to another region. This reasoning makes it possible to simulate the
exploration of the search space and the exploitation of the most promising areas
of the fitness landscape throw successive scattering and absorption collision events.
The original PCA works as follows. First an initial configuration is chosen, then a
modification of the old configuration into a new one is implemented. The qualities
of the two configurations are compared. A decision then is made on whether the
new configuration is acceptable. If it is, the current configuration acts as the old
configuration for the next step. If it is not acceptable, the algorithm proceeds with
a new change of the old configuration. It is pertinent to note that acceptance of
current trial solution with certain probability may avoid the convergence to local
optima.

However, the PCA is in its early stages. In spite of its advantages over Genetic
Algorithm and Simulated Annealing in solving test problems, practical application
of the PCA is restricted because of solutions remain too expensive. As possible
development, the local search procedure in the algorithm could be improved. It
seems promising to use gradient methods for local minimization of the error function.
But in so doing the problem of non-differentiability of the function should be taken
into account. A hybridization of the stochastic PCA and the Nelder-Mead Simplex
algorithm was introduced in [6]. The last method does not require any gradient
information. During processing two procedures are performing: a wide search in the
solution space using the stochastic PCA and a local search in the promising areas
with the deterministic simplex algorithm. The local search procedure is performed
iteratively until a certain number of fitness function evaluations being reached.

3.2 The smoothing technique for local optimization

Inverse problems are considered to be substantially difficult because of the kinks
connected with presence of the multiple frequencies in registered spectra of the di-
agnosing object or of acoustical oscillations in two-phase coolant. The difficulty
motivated the development of algorithms for the solution of the minimization prob-
lem via some smooth approximation, which could be minimized by using any of the
efficient classical approaches for smooth optimization. Several approximations to
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smooth out the kinks may be introduced. One of them results in a continuously
differentiable approximate fitness function, whereas another one leads to a twice
continuously differentiable approximate function. These approximations replace the
original function in some neighborhoods of directional differentiability points. More-
over, this approach preserves such important property of the original function as its
convexity. It is clear that the approach makes it possible to implement efficient gra-
dient techniques in the solution process. Two-parametric smoothing approximations
were successfully used to solve problems of multi-criterion optimization of mechani-
cal and hydro-mechanical systems with continuous but not everywhere differentiable
functions.
Suppose now that the problem only has constraints on the variations of the individ-
ual coordinates, i.e. the problem is of the form [9]

min
x

{f(x) : aj ≤ xj ≤ bj, j = 1, . . . , n} .

Real numbers aj, bj, ε, 0 < ε < 1, and parameters of the approximation [10] p < 0,
q > 0 are chosen.
For this problem, it is sensible to use all the constraints in the auxiliary problem.
Thus, for simple constraints, the algorithm has the following form:
0. A point x0 is chosen so that aj ≤ x0j ≤ bj, j = 1, . . . , n.

1. If the point xk has already been constructed, the vector hk = h(xk) is calculated
(solution of the quadratic subproblem).
2. Determine the first number r = 0, 1, . . . , in which for α = (1/2)r the inequality

f̃(p, q, xk+ αhk) ≤ f̃(p, q, xk) − εα‖hk‖2

is satisfied. If such r = r0 is determined, then set αk = 2−r0 , xk+1 = xk+αkh
k. The

algorithm returns to 1.
3. Stopping criterion: hk = 0.

3.3 The hybrid algorithm (PCAHS)

The proposed hybrid algorithm (named here PCAHS) combines the stochastic PCA
and deterministic gradient techniques. Smoothing approximations are introduced
during the local search that makes it possible to expand the approach on the class
of non-differentiable problems. In this new version of the global optimization algo-
rithm the local search mechanism is a standard deterministic linearization method.
In general case the error function is not differentiable everywhere, so the imple-
mentation of the smoothing technique may be quite pertinent. Solutions of some
benchmarks show the computational efficiency of the hybrid algorithm. The pseudo
code description of the operating version of the PCAHS under development is as
follows.

0. Generate an initial solution Old Config
Best Fitness = Fitness (Old Cofig)

1. Main loop
For n = 0 to # iterations

Perturbation ( )
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If Fitness (New Cofig) > Fitness (Old Cofig)
If Fitness (New Cofig) > Best Fitness

Best Fitness := Fitness (New Cofig)
End If
Old Config := New Config
Exploration ( )

Else
Scattering ( )

End If
End For

2. Exploration ( )
For n = 0 to # iterations

Small Perturbation ( )
Local search using smoothing approximation
Check stopping criterion:
Find global solution Best Fitness
Else continue
If Fitness (New Config) > Best Fitness

Old Config := New Config
End If

End For
Return

3. Scattering ( )
pscatt = 1−( Fitness (New Cofig)) / (Best Fitness)
If pscatt > random(0, 1)

Old Config := random solution
Else

Exploration ( )
End If
Return

4. Small Perturbation ( )
For i=0 to ## iterations

Upper = Random (1.0, 1.0 + δ)*Old Config [i]
If (Upper > Superior Limit [i])

Upper = Superior Limit [i])
End If
Lower = Random (1.0-δ, 1.0)*Old Config [i]
If (Lower < Interior Limit [i])

Lower = Interior Limit [i])
End If
Rnd = Random (0, 1)
New Config [i] = Old Config [i] * ((Upper – Old Cofig)*Rnd) –

((Old Cofig - Lower)*(1 - Rnd))
End

The approximate solution of the regularized inverse problem is connected with
searching some unknown variables x ∈ X ⊂ Rn determining the computational
model of the object and minimizing the error function f(x, ζδ) = µ2D (A(x), ζδ) +

αs(x). Here ζ — stands for measured data, ζ ∈ D is an element of the metrical
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data space D; δ is an error of measurements; ζδ = ζ+ δζ; µD is a distant function,
µD(ζδ, ζ) ≤ δ; A(·) is the direct modeling operator; s(x) is a stabilizing functional;
α is a parameter of regularization. The unknown real parameter α is defined from
the following condition: µD (A(xα), ζδ) = δ, where xα is the element at which the
functional f(x, ζδ) reached its minimum. The process is constructed iteratively as
follows: xn+1 = xn − kαnl

α(xn); here n is a current number of the current itera-
tion; real coefficient kαn is determined by minimization of the parametric functional
with respect to this coefficient; lα(xn) is the direction of the steepest ascent of the
parametric functional. Stopping criterion: δf(xN) ≤ ε0, where ε0 is a specified level.

4 Computational results

In this section two numerical examples of hybrid algorithm PCAHS applications to
inverse spectral problems for VVER-1000 equipment are presented. First example
is devoted to identification of anomalies in a state of steam pipe supporting units.
In the second example diagnostics of the coolant phase constitution in the primary
circuit is carried out.
The computations were performed for identification of anomalies in a state of steam
pipe diagnostics of the coolant phase constitution in the VVER-1000 primary circuit.
Appearance of the second phase is possible: in a coolant heating zone (pressure tank
of the pressurizer), in an exit volume of the reactor pressure vessel (RPV), in a core
barrel of the RPV, in exit volumes of main circulating pumps. In order to formulate
the inverse problems two vectors of relative acoustic velocities in a coolant flowing
throw the specified zones are introduced.
Example 1. The object under consideration is a steam pipe from the connection
with the second circulating loop steam collector to the support on the wall of the
airtight zone. Spacing supporting units bound the vertical displacements of the
pipe only. The stiffness of each spacing unit is c = 40.0 MN/m. Anomalous state of
the object is characterized by decrease of the stiffness characteristics. The spectra
corresponding to normal state and anomalous one of the object are given. It is
convenient to introduce the following controlling variables: xi = (ci/c) · 100%,
where ci ≤ c is the current stiffness of the ith supporting unit. First we consider
the problem for known spectral data presented in Table 1. Here we have: i —
mode number; ωi — natural ith frequency of the object oscillation under normal
conditions; ω∗

i — natural ith frequency of the object oscillation with abnormal state
of the supporting units.

Table 1: Given spectral data for Example 1
i 1 2 3 4 5
ωi, Hz 13.1 23.0 26.1 27.0 34.8
ω∗
i , Hz 8.42 21.8 24.6 26.9 33.3

Let the anomalous state of the supporting units be characterized be the following
vector of controlling variables: x∗i = 100%, i = 1, 3, x∗4 = 0; x∗5 = 100%. The
error function in this example is determined using five lower spectral components.
Controlling parameters dependence on the number of final iterations Niter of the
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Figure 1: Number of final iterations of the PCAHS vs. relative velocities (Exam-
ple 1)
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Figure 2: Number of final iterations of the PCAHS vs. error function and search
gradient norm (Example 1)

hybrid algorithm PCAHS is shown in Fig. 1; the analogous dependences for the
error function f(x) and the search gradient norm N(p) are presented too, see Fig. 2.
The results obtained by the hybrid algorithm after forty iterations are as follows:
x40i ≈ 100%, i = 1, 3; x404 ≈ 0.861 · 10−3%; x405 ≈ 100%; f(x40) ≈ 0.616 · 10−1.
It is clear, that the inaccuracy of the relative acoustical velocity is less than 1%.
Consequently, these results show that the coolant phase constitution anomaly is
conditioned by boiling process in the coolant heating zone.
Example 2. Let now the anomalous coolant state constitution be characterized by
second vector of controlling variables: x∗1 = x∗4 = 100%; x∗2 = 81%; x∗3 = 72.9%.
The error function is determined using ten lower spectral components. Table 2
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Figure 3: Number of final iterations of the PCAHS vs. relative velocities (Exam-
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Figure 4: Number of final iterations of the PCAHS vs. error function and search
gradient norm (Example 2)

displays the known spectral data for the second inverse problem. Here we have: i —
mode number; ωi — natural ith frequency of the coolant oscillation under normal
conditions (without appearance of the second phase in the coolant); ω∗

i — natural
ith frequency of the coolant oscillation with the availability of anomalies in coolant
phase constitution.

Table 2: Given spectral data for Example 2
i 1 2 3 4 5 6 7 8 9 10
ωi, Hz 0.89 6.77 9.82 15.44 15.96 18.94 24.55 26.69 27.07 30.52
ω∗
i , Hz 0.86 6.77 9.07 15.26 15.96 18.93 24.55 26.66 26.85 28.61
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The reached approximate solution is: x131 ≈ x134 ≈ 100%; x132 ≈ 79.87%; x133 ≈
73.74%. Fig. 3 and Fig. 4 illustrate the solution history (final iterations of the
hybrid algorithm). The inaccuracy of the relative acoustical velocity computing is
about 1%. As follows from the results obtained in this example the coolant phase
constitution anomaly is conditioned by boiling process in the exit volume of the
reactor pressure vessel and in the core barrel of the RPV.

5 Conclusions

A novel hybrid algorithm PCAHS combining the stochastic algorithm PCA and
determining gradient techniques is presented. Smoothing approximations are intro-
duced during the local search that makes it possible to expand the approach on the
class of non-differentiable problems. The PCAHS was used for solving inverse spec-
tral problems in connection with model determining anomalies of the VVER-1000
equipment components and coolant phase constitution diagnostics. Computational
experiments show the principal applicability of the proposed hybrid algorithm for
solving the above diagnostic problems. The future work will be devoted to increasing
the computational efficiency of tools for solution the inverse spectral problems.
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Abstract

The method of constructing the system of constitutive equations was ap-
plied to develop the model describing the behaviour of rubber compounds.
We simulated the effect of softening of the material after the first stretching
(Mullins effect), viscoelastic properties and recovery of mechanical behavior
after the long rest and thermostating.

Rubbers are elastomeric nanocomposites that have long been used in industry and
are of great practical importance. The incorporation of active fillers in rubber com-
pounds increases by an order of magnitude the strength of the material compared
to the unfilled elastomer and increases breaking deformations [1]. These materials
have a number of features essential for the understanding of their behavior. In par-
ticular, near filler particles there appear polymer layers with special characteristics.
During the failure of rubber compounds, at the tip of a macrorupture there occur
fibers joining the edges of this macrorupture [2], where the polymer chains are in
the oriented state [3]. The formation and disappearance of the oriented regions ex-
plain the hysteresis phenomena in the material subject to cyclic loading [4, 5]. On
this basis, we put forward the following hypothesis: during deformation, between
the aggregates of filler particles there appear uniaxially oriented fibers caused by
the slippage of polymers chains from the layers near the active filler into the gaps
between particles. In the present paper, we offer the structural-phenomenological
model able to accurately describe the mechanical behavior of the medium taking
into account the process of fiber formation at the nano-level of the material.
The mathematical model describing the mechanical behavior of the material is
schematically represented in Fig. 1. The system of constitutive equations is con-
structed in correspondence with following rules:
1. To each point of the scheme the rate of deformation tensor of this point is
assigned, which plays the role of a tensor parameter necessary for construction of
the mathematical model.
2. The Cauchy stress tensor and the rate of deformation tensors are assigned to the
elastic, viscous and plastic elements of the scheme.
3. For each transmission element the Cauchy stress tensor for the left and right
points are used.
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4. It is assumed that the rate of deformation tensor of the left point of the scheme
coincides with the rate of deformation tensor D of the medium, and the rate of
deformation tensor of the right point of the scheme is equal to zero.

5. The rate of deformation tensor of elastic, viscous and plastic elements is calculated
as the difference between the rate of deformation tensors of the left and right points
of these elements.

6. The material is assumed to be incompressible. The trace of any rate of deforma-
tion tensor in the model is equal to zero.

7. The Cauchy stress tensor T of the medium is equal to the sum of the Cauchy stress
tensors of elastic elements and the left points of transmission elements connected
with the left point of the scheme.

8. The sum of the Cauchy stress tensors of elastic, viscous and plastic elements and
the right points of transmission elements connected on the left with any inner point
of the scheme is equal to the sum of the Cauchy stress tensors of elastic, viscous and
plastic elements and the left points of transmission elements connected on the right
with this point of the scheme.

Figure 1: Scheme of mechanical behavior of rubber compound. Elements in dashed
box simulate mechanical properties of high-strength fibers

Our investigation focuses on the study of isothermal processes. To describe the
properties of elements shown in the scheme, the known formulas from continuum
mechanics are used. For calculation of the Cauchy stress tensors Ti of elastic ele-
ments, we take the mass density of free energy f, which is the function of stretch
ratios of all elastic elements

f = f(θ, ..., λ
(i)

1 , λ
(i)

2 , λ
(i)

3 , ...),

where λ
(i)

1 , λ
(i)

2 , λ
(i)

3 are the stretch ratios for the i-th elastic element. This means
that the deviator of the Cauchy stress tensor of the i-th elastic element should be
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calculated by the formula of the nonlinear elasticity theory

devTi = dev

(
ρ

3∑

k=1

λ
(i)

k

∂f

∂λ
(i)

k

n
(i)

k ⊗ n
(i)

k

)
,

dev(·) = (·) −
1

3
tr(·),

where ρ is the mass density of the material, and n
(i)

1 , n
(i)

2 , n
(i)

3 form an orthonormal

triple of eigenvectors of the stretch tensor Vi of the elastic element. Vi = λ
(i)

1 n
(i)

1 ⊗
n + λ

(i)

2 n
(i)

2 ⊗ n
(i)

2 + λ
(i)

3 n
(i)

3 ⊗ n
(i)

3 .

For the i-th elastic element, the material time derivative of the stretch tensor
�

Vi is
calculated by equation:

2

νm
Yi
0.5DiYi

0.5 =
�

Yi −YiW
T
R

− WR Yi, (1)

WR =
�

R RT,

where
Yi = Vi

2
νm , νm > 0,

R is the rotation tensor in the polar decomposition F = VR of the deformation
gradient of the medium F into the left stretch tensor V and the rotation R; νm is
the transmission ratio of the m-th transmission element connected on the left with
the considered elastic element. If the left point of the elastic element coincides with
the left point of the scheme then transmission ratio νm is equal to unity.
The known equations of the nonlinear elastic theory describing the time variation
of stretch ratios of the i-th elastic element

�

λ
(i)

k = λ
(i)

k n
(i)

k ⊗ n
(i)

k · Di, k = 1, 2, 3

and the rate of work in this element

Ti · Di = ρ

3∑

k=1

∂f

∂λ
(i)

k

�

λ
(i)

k

are the consequences of equation (1) in the case when the parameter νm is a constant

νm = const.

In the general case, parameters νk can be the time decreasing functions. They are
convenient to use for modeling the growth of damages in the medium.
The deviator of the Cauchy stress tensor of the j-th viscous element is calculated by
the formula from the theory of nonlinear viscous fluids

dev Tj = 2ηjDj,

where the shear viscosity coefficient is the non-negative function of state parameters
ηj ≥ 0.
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The deviator of the Cauchy stress tensor of the plastic element is calculated by the
formula of the plastic flow theory

Dn =

√
Dn · Dn

dev Tn · dev Tn
dev Tn, (2)

where n is the number of the plastic element. For modeling the plastic flow process,
it is necessary to exclude the ambiguity in expression (2). To this end, it is offered
to use the mathematical expression which links the rate of deformation tensor of the
plastic element with the rate of deformation tensor of the medium:

Figure 2: Difference in mechanical behavior of rubber compound in first experiment
after thermostating and in second experiment after long rest and new thermostating

The symbol κn designates the non-negative function of state parameters. When
calculating, we assume that plastic flow is possible under the following condition:

max inv(Tn) = inv(Tn), (3)

where

inv(Tn) =
√

dev Tn · dev Tn,

i.e., when the invariant of stresses in the appropriate plastic element is equal to the
maximum of this invariant in the considered element during the whole deformation
history of the medium.
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Figure 3: First cycles of deformation of samples in the first experiments after ther-
mostating (left plot) and in the second experiment after long rest and new thermo-
stating (right plot)

Figure 4: Relaxation curves of samples in the first experiments (continuous lines)
and in the second experiment (dashed lines)
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The transmission element in the model serves to increase the rate of deformation
tensor by νm times and to decrease simultaneously the Cachy stress tensor by νm
times

Tleft
m = νmTright

m , Dleft
m =

1

νm
Dright
m ,

where νm is the non-negative function of the state parameters (the transmission
ratio), and k is the number of the transmission element.

The necessity to introduce transmission elements into the model stems from the
following. In the initial state, the particle aggregates of carbon black in rubbers
touch each other, forming a filler network. We put forth a hypothesis that during
deformation the polymer chains slipped off from the polymer layers near the filler
particles into the gaps between aggregates, where high-strength fibers are formed
as a polymer in the uniaxially oriented state (Fig. 1). The strength of these fibers
is a thousandfold higher than the strength of the elastomeric material without a
filler (binder strength). This increases the macroscopic strength of rubbers (filled
elastomers) by an order of magnitude. For example, the strength of spider cobweb
is 2000-4000 MPa and the strength of non-crystallizing elastomeric materials is 4-10
MPa. We reason that such a relationship between strengths will also appear when
comparing the strengths of oriented fibers and the binder.

The fact that during deformation polymer chains slipped off into the gaps between
aggregates clarifies the deformation growth at the moment of rupture of filled elas-
tomers compared to the unfilled material. In the course of deformation, the neigh-
boring particle aggregates of carbon black move away at a large distance from each
other, and other aggregates come into the gaps between them. However, the material
is not destroyed in this case. After removing the external load, the material reverts
to its primary state. This may take place only in the case when fibers are able to
elongate by several tens of times. The macroscopic deformations of the material do
not exceed the stretch ratios of 4-7. This distinction between the macroscopic defor-
mations and the deformation of separate elements of the material on structural level
can be taken into account by the transmission elements introduced in the model.

We simulated the effect of softening of the material after the first stretching (Mullins
effect), viscoelastic properties and recovery of mechanical behavior after the long rest
and thermostating (Fig. 2 – Fig. 4). We found that all difference in mechanical be-
havior of rubber compound in first experiment after thermostating and in second
experiment after long rest and new termostating was produced by plastic element
with number six. It means from our viewpoint that only hight-strength fibers re-
member the long history of deformation of the material.

Acknowledgements

The research was supported by Russian Foundation for Basic Research and the Min-
istry of Industry, Innovation and Science of the Perm Region (Grant 07-08-96017,
09-08-00530), RF President grant 3717.2008.1.

674



Structural-phenomenological modelling of softening and recovery of mechanical
properties of elastomer nanocomposite

References

[1] Kraus, G., Reinforcement of elastomers by Carbon Black, Advance of Polymer
Science, 8, 155-237, 1971.

[2] Le Cam, J.-B. Huneau, B. Verron, E. Gornet L., Mechanism of Fatigue Crack
Growth in Carbon Black Filled Natural Rubber, Macromolecules, 37, 5011-5017,
2004.

[3] Trabelsi, S. Albouy, P.-A. Rault, J., Stress-Induced Crystallization around a
Crack Tip in Natural Rubber, Macromolecules, 36, 9093-9099, 2003.

[4] Toki, S. Sics, I. Ran, S. Liu, L. Hsiao, B.S., Molecular orientation and structural
development in vulcanized polyisoprene rubbers during uniaxial deformation by
in situ synchrotron X-ray diffraction, Polymer, 44, 6003-6011, 2003.

[5] Toki, S. Sics, I. Ran, S. Liu, L. Hsiao, B.S. Murakami, S. Tosaka, M. Kohjiya,
S. Poompradub, S. Ikeda, Y. Tsou, A.H., Strain induced molecular orientation
and crystallization in natural and synthetic rubbers under uniaxial deformation
by in-situ synchrotronv X-ray study, Rubber Chemistry and Technology, 77,
317-335, 2004.

Svistkov A. L., Institute of Continuous Media Mechanics, Russian Academy of Science,

Academika Koroleva Street, 1, 614013, Perm, Russian Federation

675



Proceedings of XXXVII International Summer School–Conference APM 2009

Numerical simulation of heat propagation from
deepen pipeline with accounting filtration

properties of soils

Natalia A. Vaganova
vna@imm.uran.ru

Abstract

Mathematical model of heat propagation from an underground source is
considered with accounting of physical factors such as filtration of water in
soil and a solar radiation. This problem leads to solution of heat diffusivity
equation and equation of water filtration in soil with nonlinear boundary
conditions. In the presentation the methods and algorithms of computation
of the problem is considered.

1 Introduction

One of methods of investigation of thermal fields in different media is direct numer-
ical simulation of thermal diffusivity processes. Soil is a complex structure which
includes solid particles, water and air with water vapour. We will consider two basic
ways of heat transfer: thermal conductivity in solids and groundwater flow which
filtrates through pores in soil. Purpose of this work is elaboration of models, com-
putational algorithms and codes to investigate temperature distribution with taking
into consideration humidity of soil, water flow trough soil and also solar radiation
and evaporation on earth surface.

2 Heat propagation with accounting water filtra-

tion in ground

In [1] thermal diffusivity processes was considered in 3D origin where the heat source
is a pipeline with a constant temperature. It is supposed that heat flow from the
earth (upper) surface is caused by solar energy and difference of temperatures be-
tween earth and air. There are considered two components of heat propagation
processes: thermal diffusivity and filtration of water in soil.
Let the pipeline be inside of a parallelepiped (Fig. 1). At the time moment t = 0 a
temperature T(t,x,y,z) is given, for example,

T(0, x, y, z) = T0(z) = Tair+ (Tbot− Tair)z, (1)
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where Tair is temperature of air, Tbot is temperature at the bottom of the par-
allelepiped. Assume that at the lateral area heat flow equals to zero and at the
bottom temperature is fixed.

Figure 1: Model of heat distribution.

For heat distribution in soil we have

∂T

∂t
+ div (

−→
V T) = λ△T. (2)

where λ = κ/ρcν — thermal conductivity coefficient, κ — heat conductivity, ρ —

density, cν — specific heat,
−→
V — vector of velocity of water filtration in soil.

Boundary condition at the pipeline has the form:

λ
∂T

∂n
= ε(x)

(
T
∣∣∣
pipe

− T
∣∣∣
media

)
n, (3)

where n is normal vector to the surface.

Boundary conditions at upper surface is

γsolqsolvsol+wtop (Tair− T |z=0) = σ(T |z=0)
4− kmρf(Q+ cvT)

∂h

∂z
+ κ

∂T

∂z

∣∣∣∣
z=0

, (4)

wherem is porosity of soil, ρf is density of flow, Q is thermal capacity of evaporation.

Let Darcy low be used for the considered soils (for example, sand, clay and others).
Let h = h(x, y, z) be a potential, then

Vx = −k
∂h

∂x
, Vy = −k

∂h

∂y
, Vz = −k

∂h

∂z
. (5)
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Let assume that the flow is incompressible [2] and the soil is uniform, then we obtain

∂2h

∂x2
+
∂2h

∂y2
+
∂2h

∂z2
= 0. (6)

Boundary condition for h(x, y, z) at upper and lower surfaces of the considered
parallelepiped include evaporation at the soil surface, are proportional to absorbed
solar radiation, and have the form

∂h

∂z
= −

γ

k
T(t, x, y, 0). (7)

At the lateral surfaces it is assumed that

∂h

∂x
=
∂h

∂y
= 0. (8)

Boundary condition at the pipeline has the form (
−→
V = 0):

∂h

∂x
=
∂h

∂y
=
∂h

∂z
= 0. (9)

3 Numerical results

To compute heat distribution (2) in a three-dimensional domain (fig. 1) the finite-
difference method with splitting by spatial dimensions is used. Computations are
carried out on orthogonal grid, uniform or adapted by layers. The pipeline posi-
tion is exactly defined and additional grid points are inserted. Basic equation is
approximated by an implicit finite-difference pattern in each of spatial dimensions.
System of linear difference equations has a three-diagonal form and may be solved
by a sweep method.

In the following table the parameters of computations are presented.

Parameter Units Value
Air temperature K 278.15
Soil temperature K 278.15
Pipeline temperature K 303.15
Soil density kg/m3 1800
Heat conductivity Wt/m K 0.7
Specific heat J/kg K 880
Water density kg/m3 1000
Specific heat of evaporation Wt/m K 2625.0
Specific heat of water J/kg K 4.12
Size of area m 1 × 10 × 4
Pipeline diameter m 0.5
Depth of pipeline m 0.9
Computational time 24 hours 20
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(a) (b)

Figure 2: Temperature distribution: (a) — without filtration, (b) — with filtration
of water in soil

(a)
(b)

Figure 3: Profiles of temperature on the ground across pipeline: (a) — without
filtration, (b) — with filtration of water in soil

In Figures 2 and 3 the computed temperature distribution is presented.

Thus problem of simulation of heat propagation in soil with taking into account flow
which filtrates through pores in soil amounts to numerical solution of the problem
(2), (5), (6) with initial conditions (1) and boundary conditions (3), (4) (7)–(9). A
number of numerical experiments will allow to verify the presented mathematical
model of heat propagation.
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Modelling a chemical reaction front propagation in
elastic solids: 1D case
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Abstract

We specify a 3D-model of a chemical reaction front in a nonlinear elastic
solids for 1D-case to clarify how material, chemical and loading parameters af-
fect chemical reactions and how chemical reactions affect stresses and strains.
We consider a bar where a chemical reaction of oxidation type takes place.
We suppose that the chemical reaction is localized at the reaction front and
is sustained by a diffusion of an oxidizing gas constitute through the solid
oxide. Stress controlled and displacement controlled bar undergoing chemi-
cal reactions is considered. We derive the dependence of chemical affinity on
the chemical reaction parameters, elasticity modules of reactive materials and
stress. We demonstrate that the stress action on the oxidation process de-
pends on a parameter that is a combination of chemical reaction parameters
and elastic modulus of solid constitutes.

1 Kinematics and stresses

Consider a bar where a chemical reaction of oxidation type takes place. Let l(t)
is a current bar length. We suppose that a chemical reaction is localized at the
transformation front

xΓ = xΓ(t), xΓ ∈ (0, l(t)).

The segment [0, xΓ) is occupied by a material produced by a chemical reaction

ν−A− + ν∗A∗ → ν+A+ (1)

where A−, A+ and A∗ are chemical formulae of reacting constituents, ν−, ν∗ and
ν+ are stoichiometric coefficients. We assume that A− and A+ are solids and A∗ is
a gas. An example of the reaction (1) is the oxidation of silicon

Si + O2 → SiO2 (ν− = ν∗ = ν+ = 1) (2)

The segment [0, xΓ) serves as a transport (diffusion) zone for oxidizing substance A∗.
We assume that the diffusion of A∗ occurs only in v+ until the chemical reaction
front is reached by molecules of A∗. That means that the segment (xΓ, l] is occupied
by an initial material A−. We consider v+ as a solid skeleton for diffusing A∗. For
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simplicity sake we assume that diffusion of A∗ does not affect strains in the skeleton.
We also neglect the influence of skeleton deformations on partial pressure of the gas
constituent A∗.
Two stress free configurations can be related with the bar (Fig. 1). The reference
configuration

X0 ∈ [0, XΓ0] ∪ [XΓ0, L0]

presents a stress free bar made from an initial material A−. The segment [XΓ0, L0] is
an image of [xΓ, l].
The intermediate configuration

Xg ∈ [0, XΓg] ∪ [XΓg, Lg]

is a stress free bar occupied by A+. The segment [0, XΓg) is a stress free image of
[0, xΓ), XΓg is the image of xΓ.
The segments (xΓ, l] and (XΓ0, L0] consist of the same material points A−. Although
material points of segments [0, XΓg) and [0, XΓ0) present different materials, A− andA+

respectively, the distances between corresponding points of the segments are related
by the chemical reaction (1). Indeed, the linear stress free element dX0 = ν−M−/ρ0
transforms into the linear stress free element dXg = ν+M+/ρg where ρ0 and ρg are
densities of A− and A+ per unit length in stress free states. Then

dXg = gdX0, g =
dXg

dX0
=
ν+M+

ν−M−

ρ0

ρg
(3)

and the parameter g depends on the molar masses, stoichiometric coefficients and
densities.
Thus, the current state of a bar is determined by two mapping onto two stress free
states:

x− = x(X0, t) X0 ∈ (XΓ0, L0] (4)

x+ = x(Xg, t) Xg ∈ [0, XΓg) (5)

where linear elements of the reference and intermediate configurations are related
by (3).

XΓ0

XΓg

xΓ

L0

Lg

l

dX0

dXg

dx

Figure 1: Current, intermediate and reference configurations
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Mappings (4), (5) correspond to strains

ε− ≡ 0
ε−=

∂x−

∂X0
, ε+ ≡ g

ε+=
∂x+

∂Xg
,

0
ε+=

∂x+

∂X0
= g

g
ε+ (6)

Decomposition (6)3 Lee decomposition if g presents plastic strains [1] or growth
(“transplant”) strain (see, e.g. [2, 3, 4] and reference therein).
Further assume that the process is isothermal, and materials A− and A+ are elastic.
Then ε− and ε+ are elastic strains and free energy densities per mass

f− = f−(ε−), f+ = f+(ε+)

Stresses acted on A− and A+ and calculated with respect to reference and interme-
diate configurations

S0− =
ρ0

Ω0

∂f−

∂ε−

, S
g
+ =

ρg

Ωg

∂f+

∂ε+

where Ω0 and Ωg the cross-section areas in the reference and intermediate configu-
rations. Further we use tractions

σ0− = Ω0S
0
−, σ

g
+ = ΩgS

g
+

Since the material transformation occurs only along the bar axe, Ω0 = Ωg. Then
the tractions calculated with respect to reference and intermediate configurations
are equal,

σ0− = σ
g
− ≡ σ− = ρ0

∂f−

∂ε−

, σ
g
+ = σ0+ ≡ σ+ = ρg

∂f+

∂ε+

(7)

Partial pressure pg∗ of A∗ referred to Vg configuration is determined by the consti-
tutive equation

pg∗ = ρ2∗
∂f∗
∂ρ∗g

(8)

where ρ∗g is partial density of A∗ per unit length in the intermediate configurations,
f∗ = f∗(ρ∗) is free energy density of A∗ per unit mass.

2 Dissipation inequality

The free energy of the bar

F =

∫xΓ

0

ρ+f+(ε+)dx+

∫ l

xΓ
ρ−f−(ε−)dx+

∫xΓ

0

ρ∗f∗(ρ
∗)dx =

∫XΓg

0

ρgf+(ε+)dXg+

∫L0

XΓ0

ρ0f−(ε−)dX0+

∫XΓg

0

ρ∗gf∗(ρ
∗
g)dXg =

∫XΓ0

0

gρgf+(ε+)dX0+

∫L0

XΓ
0

ρ0f−(ε−)dX0+

∫XΓg

0

ρ∗gf∗(ρ
∗
g)dXg
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where ρ− and ρ+ are densities of A− and A+ per unit length in the current config-
uration, ρ∗ and ρ∗g are partial densities of A∗ per unit length in the current and the
intermediate configurations.
The potential energy of the solid constituents

Π =

∫x∗

0

ρ+f+(ε+)dx+

∫ l

x∗
ρ−f−(ε−)dx− σ (l− L0)

By boundary conditions V+(0) = ∂x+(Xg, t)/∂t|Xg=0 = 0. Then, by (7),

Π̇ = σ
(
V+(XΓg) − V−(XΓ0)

)
+ (gρgf+ − ρ0f−)VΓ0

where

V− =
∂x−(X0, t)

∂t
, V+ =

∂x+(Xg, t)

∂t

are velocities of A− and A+ with respect to reference configurations.
By boundary conditions V+(0) = ∂x+(Xg, t)/∂t|Xg=0 = 0. Then

Π̇ = σ
(
V+(XΓg) − V−(XΓ0)

)
+ (gρgf+ − ρ0f−)VΓ0

To derive so called second order compatibility condition on the moving reaction
front we note that

x+(XΓg+ ∆XΓg, t+ ∆t) = x+(XΓg, t) +
∂x+(Xg, t)

∂Xg

∣∣∣∣
XΓg

∆XΓg+
∂x+(Xg, t)

∂t

∣∣∣∣
XΓg

∆t

x−(XΓ0 + ∆XΓ0, t+ ∆t) = x−(XΓ0, t) +
∂x−(X0, t)

∂X0

∣∣∣∣
XΓ0

∆XΓ0 +
∂x+(X0, t)

∂t

∣∣∣∣
XΓ0

∆t

By the continuity, x+(XΓg, t) = x−(XΓ0, t), x+(XΓg+∆XΓg, t+∆t) = x−(XΓ0+∆XΓ0, t+

∆t). Then

V+(XΓg) − V−(XΓ0) = −(ε+V
Γ
g − ε−V

Γ
0) = −(gε+ − ε−)VΓ0

and, finally, we have

Π̇ = (g(ρgf+ − σε+) − (ρ0f− − σε−))VΓ0 =
ρ0

ν−M−

(ν+M+µ+ − ν−M−µ−)VΓ0

where

µ+ = f+ −
1

ρg
σε+, µ− = f− −

1

ρ0
σε−.

In the case of the phase transformation g = ρ0/ρg and we would have

Π̇ = (ρ0[f] − σ[ε])V
Γ
0 .

The mass balance for A∗ takes the form

ρ̇∗g ≡
∂ρ∗g(Xg, t)

∂t
= ρ̂∗ −

∂ρ∗gV
∗
g

∂Xg
(9)
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where V∗
g is a diffusion velocity of the constituent A∗ in the intermediate configura-

tion, ρ̂∗ < 0 is a sink of the constituent A∗ due to the chemical reaction. Then

d

dt

∫XΓg

0

ρ∗gf∗(ρ
∗
g)dXg =

∫XΓg

0

ρ̇∗gµ∗ dXg+ ρ∗gf∗|XΓgV
Γ
g

where
µ∗ = f∗ +

p∗
ρ∗g
,

By (9),

∫X∗

g

0

ρ̇∗gµ∗ dXg =

∫X∗

g

0

(ρ̂∗µ∗ + ρ∗gV
∗
g

∂µ∗
∂Xg

)dXg− ρ∗gV
∗
gµ∗|

XΓg
0

Note that ρgẊ
∗
g is mass production of A+ per unit time. According to (1), to produce

such an amount of A+ one have to use

ν∗M∗
ν+M+

ρgẊ
∗
g

mass units of A∗ where M∗ is molar mass of A∗. Assuming that chemical reactions
are localized at the reaction front we get:

∫X∗

g

0

ρ̂∗µ∗ dXg = ρ̂∗µ∗|XΓg = −
ν∗M∗
ν+M+

ρgµ∗

∣∣∣∣
XΓg

ẊΓg =

−
ν∗M∗
ν+M+

gρgµ∗

∣∣∣∣
XΓg

VΓ0 = −
ν∗M∗
ν−M−

ρ0µ∗

∣∣∣∣
XΓg

VΓ0

Since we assume that the diffusion of A∗ takes place only in v−, the velocity of
the component A∗ at the chemical reactions front coincides with the velocity of the
reaction front. Then V∗

g = VΓg, and finally we have the expression of the dissipation
function

D =
ρ0

ν−M−

(ν+M+µ+ − ν−M−µ− − ν∗M∗µ∗)V
Γ
0 +

∫X∗

g

0

ρ∗gV
∗
g

∂µ∗
∂Xg

dXg

The derived value

A = ν+M+µ+ − ν−M−µ− − ν∗M∗µ∗ (10)

is chemical affinity.
If materials A− and A+ are linear-elastic then

f±(ε±) = γ± +
1

2
C±ε

2
± = γ± +

1

2
σ±ε±, σ± = C±ε±

where C− and C+ are elasticity modules of the bar made of A− and A+, respectively,
and γ± are free energies of stress free A− and A+. Then

ν−M−µ− =
ν−M−

ρ0

(
γ− −

1

2
σε−

)
, ν+M+µ+ =

ν+M+

ρg

(
γ+ −

1

2
σε+

)
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and

A = γ∗ +

(
ν−M−

ρ0
ε− −

ν+M+

ρg
ε+

)
σ

2
− ν∗M∗µ∗ = (11)

γ∗ + ν−M−G
σ2

2ρ0C−

− ν∗M∗µ∗

where

γ∗ =
ν+M+

ρg
γ+ −

ν−M−

ρ0
γ−, G = 1− g

C−

C+

(12)

By (11) and (12), the influence of stress on the chemical affinity depends on the
parameter G that in turn depends on the chemical reaction molar parameters and
elasticity modules of reacting materials.

3 Mechanochemical kinetics of the diffusion con-

trolled chemical reaction front propagation

The chemical reaction rate [5]

ω = ~ω

{
1− exp

(
A

RT

)}
(13)

where

~ω = k∗c, c = ρ∗/ρg (14)

is a rate of direct chemical reaction, k∗ is a reaction parameter. Not far from chemical
equilibrium |A/(RT)| ≪ 1 and

ω = −k∗c
A

RT
(15)

The equilibrium concentration ceq satisfies the condition A = 0 that, by (11), take
the form of the equation for ceq = ceq(σ),

γ∗ + ν−M−G
σ2

2ρ0C−

− ν∗M∗µ∗(ceq, p
∗) = 0 (16)

Further we assume that
M∗µ∗ = η(T) + RT ln(c)

Then, by (15) and (16) not far from the chemical equilibrium

A

RT
= ν∗

c− ceq

ceq
, ω = k∗ν∗(c− ceq) (17)

Now we can proceed to the diffusion and the reaction front coupled considerations.
In the steady-state approximation

D
∂2c

∂X2g
≡ D ∂

2c̃

∂X2g
= 0, Xg ∈ [0, XΓg] (18)
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where c̃ = c − ceq. We assume that the concentration of the oxidizing component
A∗ is given at the left end of the bar, c = c0 at Xg = X0 = 0 and, thus,

c̃ = c0− ceq at Xg = X0 = 0 (19)

The oxidizing component concentration at the reaction front XΓ(t) is controlled by
the balance of the oxidant influx due to the diffusion and the “deflux” due to the
reaction. By (15)2,

D
∂c̃

∂Xg
+ k∗ν∗c̃ = 0 at Xg = XΓg. (20)

If the problem (18)–(20) is solved then the position of the reaction front can be
found from the kinetic equation

VΓg = −D
∂c̃

∂Xg

∣∣∣∣
XΓg

=
ν+M+

ν∗M∗

1

ρg
=
k∗ν+M+

ρgM∗
(c∗ − ceq)

where c∗ is the concentration of the oxidant A∗ at the chemical reaction front, ceq is
the concentration of the oxidant A∗ that would be equilibrium at the acting stress.
The kinetic equation can be written as

VΓ0 =
k∗ν−M−

ρ0M∗
(c∗ − ceq) (21)

We emphasize that the condition (19) and the equation (21) include the concen-
tration ceq that depends on stress through (16). The stress in turn may depend
on the position of the reaction front. Thus the loading law is to be added to the
relationships (18)–(20). Further two cases will be considered:
(i) σ is given by the boundary condition,
(ii) the average strain ε0 = (x(L0) − L0)/L0 is given by the boundary condition.
The following notation is used

η∗ = γ∗ − ν∗η(T), w =
σ2

2C−

The oxidation is possible only if the initial concentration is greater than the equi-
librium concentration, c0 > ceq. Fig. 2 demonstrates the dependence of ceq on
w at various η∗ for the case G < 0, corresponding the oxidation of polysilicon.
(MSi = 28, MSiO2

= 60, CSi/CSiO2
≃ 1.3, ρSi/ρSiO2

≃ 1.1, then g ≃ 2.36) Given c0,
at η∗ < ηc(c0) there exists threshold value

w0 =
ρ0

ν−M−G
(η∗(T) + ν∗RT ln(c0))

such that the oxidation is blocked if w < w0. If η∗ > ηc(c0) then threshold effect
disappears.
If G > 0 (Fig. 3) then for every η and c0 there exists w0 (wa0, w

b
0, etc.) such that

the oxidation is blocked if w > w0.
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ηc(c0)
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Figure 2: Dependence of the equilibrium concentration on w at G < 0, ηa∗ < η
b
∗ < η

c
∗

wwa0 wb0
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ceq
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Figure 3: Dependence of the equilibrium concentration on w at G > 0, ηa∗ < η
b
∗ < η

c
∗
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t

w1 w2L0

XΓ0

Figure 4: Oxide zone growth at given external stress, w1 > w2 if G < 0, and
w1 < w2 if G > 0

Thus, the character of the stress influence on the oxidation process depends on
combination of material parameters and chemical reaction parameters.
Fig. 4 demonstrates the oxide zone growth at given external stress. If G < 0 then
stresses accelerate the chemical reaction front. On the contrary, if G > 0 then
stresses decelerate the chemical reaction front. If the average stain ε0 = (x(L0, t) −

L0)/L0 is given then strains ε−, ε+ and the relative position

ξΓ = XΓ0/L0 ∈ [0, 1]

of the reaction front are related as

(1− ξΓ)ε− + gξΓε+ + (g− 1)ξΓ = ε0 (22)

The stress depends on ε0 and the reaction front position as

σ = C−

ε0− (g− 1)ξΓ

1− ξΓG
(23)

Given ε0, (23) describes the stress evolution during the front propagation. Since
G < 1 by (12) and ξΓ ∈ [0, 1], the denominator in (23) is positive. If ε0/(g − 1) ∈
[0, 1] then the stress changes the sign due to the reaction front propagation at

ξΓ = ε0/(g− 1) ∈ [0, 1]

If ε0 ≥ εs0 = g− 1 then the stress does not change the sign. Note that value ε0 can
be large even if ε− and ε+ are small because of the input of the chemical reaction
represented by the term in (22) (recall that in a case of silicon oxidation g ≃ 2.4).
There is another characteristic strain

εc0 =
g− 1

G
:

∂σ

∂ξ∗
< 0 if ε0 < ε

c
0,

∂σ

∂ξ∗
> 0 if ε0 > ε

c
0.
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Figure 5: Dependencies of stress on the oxide zone size at various external strains
ε0: a – ε0 < ε

s
0, b – ε0 = εs0, c – εs0 < ε0 < ε

c
0, d – ε0 > ε

c
0

The stress dependencies on the reaction front position at various strains are shown
in Fig. 5. The evolution of stress due to oxide growth leads to changes of the
equilibrium oxidant concentration ceq and this in turn changes the solution of the
diffusion problem (18)–(21) and affect the front propagation. The reaction front
kinetics is shown in Fig. 6.

t

L0

XΓ0

Figure 6: Oxide growth kinetics at given strain.
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4 Conclusions

A deformable bar sustaining chemical transformations of oxidizing type is consid-
ered. An intermediate configuration reflected chemical transformations is intro-
duced. The expression of the dissipation due to the chemical reaction front prop-
agation is obtained. It is demonstrated that stresses affect the chemical affinity
through a parameter that depends on molar masses and the stoichiometric coeffi-
cients of the reaction and elastic modules of reacting substances. If we neglect the
interconnections between the diffusion of a gas component and deformations of a
solid component, then stresses affect the diffusion and chemical reaction front kinet-
ics through the equilibrium concentration of the gas component. Stress controlled
and displacement controlled chemical reactions are considered. It is shown that
stresses relax or grow due to the chemical reaction front propagation in a case of
the displacement control (the constraint effect), depending on external strain, and
chemical and elastic parameters.
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Thermal convection in a rotating horizontal
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Abstract

Thermal convection in a horizontal cylindrical layer of fluid rotating
around its own axis is experimentally investigated. Two cases are realized:
heating of external border of the layer and the case when the internal border
has the higher temperature. It is revealed that thermal convection of liquid
could be excited in both cases. It is shown that convection is determined
by the action of two different mechanisms: the first - well-known mechanism
of centrifugal thermal convection, the second - thermovibrational one, con-
nected to the oscillations of nonisothermal liquid concerning the cavity, which
are caused by the gravity field rotating in the cavity frame. The thermovi-
brational mechanism is responsible for the excitation of convection in a layer
which is heated from inside. The threshold of excitation and the structure of
convective currents depending on the frequency of rotation and difference of
temperatures of the layer borders as well as heat transfer in overcritical area
are investigated.

1 Introduction

In case of higher temperature of external border of quickly rotating cylindrical liquid
layer the occurrence of centrifugal convection [1] in the shape of rolls extended along
the axis which size is comparable with the thickness of the layer is observed. In [2]
it was found that in a rotating horizontal annulus with decrease of rotation velocity
there is a change of convective modes: the excitation of long-wave structures is ob-
served. Convective structures of the same type are also observed in the case to high
temperature of internal border of the layer when centrifugal force plays a stabilizing
role. In this case the convection arises in a threshold way at decrease of rotation
frequency and is accompanied with the critical increase of heat flux through the
layer. The thermovibrational mechanism of mean thermal convection in a cavity
rotating around the horizontal axis was earlier studied experimentally in a plane
layer [3]; the influence of rotation on the thermal vibrational convection was inves-
tigated theoretically in [4]. It was shown that mean thermal convection in a cavity
rotating around the horizontal axis besides the well known centrifugal Rayleigh
number Ra = Ω2RβΘh3/νχ is characterized by the modified vibrational parameter
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Fig. 1

Rv = (gβΘh)2/2νχΩ2. Here β, ν and χ - coefficients of volumetric expansion, kine-
matic viscosity and thermal conductivity of liquid, Θ - a characteristic temperature
difference, Ω ≡ 2πn - angular velocity of rotation (n - rotation frequency).

2 Experimental setup and technique

The layer is formed by the cylinders 1 and 2 (Fig. 1). The internal aluminium
cylinder has a diameter d = 60 mm, the external one is made of a plexiglass pipe
with a thickness of a wall 3 mm. The thickness of a layer h = 7mm, its length l = 230

mm. The temperature of the borders is set by a liquid (water) pumping through
the internal cavity heat-exchanger 1 (T1) and in a shirt between the cylinders 2
and 3 (T3). For the temperature measurement the device ”Thermodat” 4 with an
accuracy of measurement 0.1 K is used; the copper thermometers of resistance 5
measuring the temperature of the borders of a layer serve as gauges. The electric
collector 6 serves for electric feed of ”Thermodat” and reading its data. The data
are transferred to the computer and displayed in real time. The uniformity of
temperature of the borders of the layer is provided with a high charge of the water
transferred from jet thermostats to rotating cavity by means of a liquid collector
7. All the elements of the installation are rotating around the horizontal axis by
means of a step-by-step engine 8. The engine is connected to the sound generator.
Windings of the engine are switched in such a manner that the big momentum of
momentum is created on a shaft, thus the uniform rotation in all the frequency
range is provided (instability of speed of rotation does not exceed 0.001 rps). The
rotation frequency varies in an interval n = 0.1− 0.5 rps and is controlled by means
of the digital tachometer 9 counting the revolutions of a disk 10.

The distilled water serves as f working liquid. A technique of experiments is the
following. With the help of the thermostats the temperatures of internal border
of a layer T1 and of a liquid in a water shirt T3 are defined, the cavity is subject
to rotation with the definite high enough frequency. During the experiment the
rotation velocity n is decreases step by step. The temperature of external border
of the layer T2 is measured on each step after the coming to the stationary regime
of convection. The experiments are repeated at various values of temperature T1
and T3. The aluminium powder with a small amount of surface active surfactants
is added in a working liquid for visualization of convective structures.
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3 Results of experiment

The temperature of external border T2 of a layer as function of rotation frequency n
for the case when the internal border of the layer has higher temperature is shown in
Fig. 2. At rather large n the temperature does not change with reduction of rotation
velocity (area 2 ), the thermal flux is close to the molecular one. It happens due to
the stabilizing action of a centrifugal force. At some critical value n the increase
in a thermal flux through the layer is observed. It is connected to the threshold
excitation of convective rolls extended along the axis (Fig. 3a). The gauge located
on the external layer border registers the oscillations of the temperature (the shaded
area) caused by slow azimuth drift of convective rolls.

Fig. 2

The rolls drift in the direction opposite to the direction of rotation. At further
reduction of velocity n there is a change of convective modes - the vortical system
periodic along an axis appears (Fig. 3b). It is possible to determine the threshold
values of temperature T∗

2 and speed n∗ on the critical change of behavior of the
average value T2.
In a case when the external border of the layer has higher temperature at relatively
large speed of rotation the advanced centrifugal convection is observed (Fig. 2b, area
3 ). The intensity of convection reduces with decreasing the n. At some value n∗

1 the
convection disappears (area 2 ). The convective rolls appears again by a threshold
way below some critical value n∗

1. The mechanism of excitation of such convection is
the same as in the area 1 on Fig. 2a. It is connected to the gravity field rotating in
the cavity frame. The presence of interval of frequencies of rotation, where thermal
convection is absent (the area 2, Fig. 2b), is observed only at small values of a
difference of temperatures of borders of a layer Θ.
The Nusselt parameter Nu which is determined as the ratio of heat flux through the
layer and the molecular one (in the absence of convection) at the same Θ value is
chosen as the characteristic of heat transfer.
The heat transfer curves at heating the external border have a various kind: the
first (Fig. 4, points 1 ), with the absence of thermal convection in some range
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Fig. 3

of frequencies, is found at a small Θ; the second (points 1 -3 ) - with changing of
convective modes for which the parameter is always distinct from the unit. With
Θ increase the shape of the curves does not change significantly, the intensity of
heat transfer at large Ra aspires to approximately one value. At slow rotation the
sharp growth of heat flux through the layer is observed. Points 2 -4 correspond to
a difference of temperatures T3− T1 = 8.7, 12.9, 18.0 and 25.9 K. The threshold of
change of convective modes is determined on the minimal value on a curve Nu(Ra).

Fig. 4
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4 Discussion of results

The threshold curve of vibrational convection excitation 1 is shown on the plane
of dimensionless parameters Ra, Rv (Fig. 5). In the field of negative values Ra (at
heating the internal border of the layer) the centrifugal inertia force has a stabilizing
effect. The curve 1 corresponds to a threshold of excitation of thermovibrational
convection except the area of positive Ra near to the axis - in this case the cen-
trifugal convection manifests itself. The curve 2 shows the border of separation
of centrifugal and thermovibrational modes of convection. In the field of the large

Fig. 5

Ra the centrifugal force that results in development of a corresponding convection
plays the governing role. With decrease of rotation frequency (to the left of the
curve 2 ) the thermovibrational convection is in charge. The detailed description of
the threshold curve (points 1 ) and the character of change of the wave-length of
convective structures in the investigated range of Ra could be found in [2].

Fig. 6
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The isolines of constant value of parameter Nu are shown in the Fig. 6. Below the
threshold curve (a shaped line) Nu = 1, thermal convection is absent, above the line
the convective rolls arise (Fig. 3). The average value of temperature oscillations
grows with reduction of speed of rotation n (increase of Rv) - the heat flux through
the layer increases.

5 The conclusion

Thermal convection in the horizontal annulus of liquid performing steady rotation
around its own axis is experimentally investigated. The increase of heat transfer
is revealed in case of heating the internal border of the layer, connected with the
threshold excitation of thermovibrational convection. The centrifugal convection is
found out at heating the layer from external side and rather high speed of rotation
n. With decrease of the centrifugal convection is replaced by the thermovibrational
one. At a small difference of temperatures Θ the change of the convective modes
occurs through a phase of convection absence. With increasing Θ the range of
speed of rotation in which the convection is absent (heat transfer corresponds to the
molecular one), decreases, and disappears at some definite Θ.
The threshold of excitation of convective flows and the border of separation of dif-
ferent convective modes are investigated depending on the rotation velocity and the
temperature difference; the structure of convective flows is studied. The results of
research of the threshold of thermal convection excitation and the borders of change
of convictive modes and also the values of Nusselt number are submitted on the
plane of determining parameters Ra, Rv.
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Lev B. Zuev Boris S. Semukhin Alexey G. Lunev
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Abstract

A new method for non-destructive evaluation of the mechanical properties
of structural materials has been developed. This is based on measurements
of the ultrasound propagation velocity in deforming materials. Preliminarily
investigations were carried out in order to relate the ultrasound propaga-
tion velocity to the mechanical characteristics of the deforming material. A
detailed description of suitable devices intended for ultrasound propagation
velocity measurement to a high accuracy is presented. Using Zr base alloys as
an example, it is shown that the method can be used for monitoring zirconium
billets from which nuclear reactor fuel cladding is fabricated by cold rolling.

1 Experimental justification of the method

It was established previously [1, 2] that the ultrasound propagation rate measured
directly for tensile metal specimens would depend on total deformation (see Fig. 1
obtained for the tested brass specimen), flow stress and material structure. Similar
data were obtained also for small total strains by M. Kobayashi [3]. However, our
attention was focused in particular on the form of ultrasound rate dependence on
flow stress obtained (Fig. 2). This consists of three linear sections that can be
described [1] by the following equation

VS = V0+ ξσ (1)

were the empirical constants V0 and ξ have different values for the different stages
of the flow process. From Fig. 1 follows that x can be both positive and negative.
However, the proportionality VS ∼ σ is always fulfilled within a single stage with the
correlation coefficient being ∼ 0.9.
The goal of the present study is to verify that Eq. 1 can be used for the evaluation of
mechanical characteristics of materials, using the non-destructive method developed.
To elucidate the issue, the dependence VS(σ) was obtained for various kinds of alloys
(see Table). Using the method of sound pulses autocirculation, the propagation rate
of Rayleigh waves was measured directly for flat tensile specimens.
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Figure 1: The generalize dependence obtained for steels.

The dependencies VS(σ) obtained for all the test materials have a similar shape. One
can easily establish the general form of this dependence (Fig. 2), using the dimen-
sionless variables VS/V

∗
S and σ/σB, were V∗

S is the rate of ultrasound propagation in
the undeformed material and σB is the strength limit of the material.

Table. Chemical composition of the alloys investigated
N Material Symbol C N Si Mg Mn Li Cr Cu Ni Zn Pb Zr Ti SnNb

1 Steel ▽ 0.12 - 0.8 - 2.0 -
(17.0−
19.0

)
0.3

(9.0−
11.0

)
- - -

(0.5−
0.8

)
- -

2 Steel � <0.12 0.008
(0.5−
0.8

)
-

(1.3−
1.7

)
- <0.3 <0.3 <0.3 - - - - - -

3 Steel N <0.12 0.008
(0.8−
1.1

)
-

(0.5−
0.8

)
-

(0.6−
0.9

) (0.4−
0.6

)(0.5−
0.8

)
- - - - - -

4 Steel �
(0.14−
0.22

)
-
(0.12−
0.3

)
-

(0.4−
0.65

)
- <0.3 <0.3 <0.3 - - - - - -

5 Duralumin
⊗

- - <0.5 1.5 - - - 4.35 <0.1 <0.3 - - - - -
6 Al-Mg + - - 0.25

(5.8−
6.2

)(0.1−
0.25

)(1.8−
2.2

)
- - - - - 0.1 - - -

7 Al-Li × - - 0.15 - -
(1.8−
2.0

)
-

(2.8−
3.2

)
- - - 0.12 0.12 - -

8 Brass • - - <0.1 - - - - - -
(
38.0−
41.0

)(
0.8−
1.9

)
- - - -

9 Zr-Nb ⋆ - - - - - - - - - - - 99.0 - - 1.0

10 Zr-Nb H - - - - - - - - - - - 97.5 - 1.01.0

The above normalization permits pooling of the data obtained for all the materials
tested; stages 1 and 2 of the dependence VS(σ) are given by

VS/V
∗
S = κi+ αi · σ/σB (2)

Here i = 1, 2 is stage number; the empirical constants κi and αi are independent of
the kind of material. It is found that the respective values for stages 1 and 2 are as
follows: κ1 = 1.0± 2 · 10−4 and κ2 = 1.03± 10−3; α1 = 6.5 · 10−3± 4.7 · 10−4 and
α2 = 3.65 · 10−2± 3.2 · 10−3.
From Eq. (2) follows

σB =
αiσ

VS/V
∗
S − κi

. (3)
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Figure 2: The generalize dependence obtained for steels.

Figure 3: The generalize dependence obtained for steels.

This can be used for the estimation of strength limit at small total plastic strains
long before specimen failure. To do this, the ultrasound propagation rate, VS, is
measured for stresses in the range σ0.2 < σ < 0.6σB (here σ0.2 is proof stress), which
initiates small plastic deformation only.

The strength limit values obtained from Eq. 3 (σSB) are matched against those
derived conventionally from the curves σ − ε (σB) in Fig. 3. The rate, VS, was
measured at the deformation e ≈ 1% for the flow stress σ ≈ 0.1σB. The values σB
and σSB are practically equal, i.e. σB = 0.96σSB . The correlation coefficient is ∼ 0.96.

The above testifies the efficiency of the proposed method for strength limit evalua-
tion in structural materials, which deform at small total plastic strains long before
specimen failure. Thus, it is a promising method for structural integrity monitor-
ing of metalwork and machine parts. The nature of the above relation might be
addressed on the assumption that material hardening is determined by the internal
stress fields, which inhibit dislocation motion [4]. On other hand, with increasing
internal stresses, the ultrasound propagation rate would decrease [1, 2]. Thus, the
above two values are defined by the same factor; therefore, they are found to be
closely related.
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2 Equipment designed for ultrasound method ap-

plication

The units designed for ultrasound method implementation are Acoustic Strain Tester
Rapid (ASTR) and Acoustic Non-Destructive Analyzer (ANDA), which are meant
for structural integrity inspection of metals and alloys in metalwork and machine
parts during long-term service in both regular and severe conditions; the units are
made in small lots. The general principle of operation of the units is measurement
of Rayleigh wave pulse frequency, using an auto-circulation method [3]. They are
simple in operation; frequency measurement is performed to an accuracy of ∼ 3·10−5.
The technique of auto-circulation of pulses is based on the excitation of the ultrasonic
vibrator by a pulser, which is synchronized by pulses passing through the analyzed
medium. The pulse repetition frequency assumes a steady-state value, which is de-
termined by the running time of the pulse in the medium analyzed. Evidently, due
to a fixed distance between the piezo-transducers, the pulse repetition frequency
would be directly proportional to the ultrasound propagation rate. The pulse rep-
etition frequency is commonly called auto-circulation frequency. A device based
on the principle of auto-circulation makes use of longitudinal, transverse or surface
(Rayleigh) waves. In the present work Rayleigh surface waves having frequency of
2.5 MHz are used.
The excitation of surface waves in the specimen investigated is performed with the
aid of a piezoelectric transducer, which features a waveguide having the shape of
a truncated prism, a piezoelectric element and a damper. The piezoelectric trans-
ducers, both the excitation source and the receiving one, are installed on a common
base and thus form a gage head. The separation between the piezo-transducers is
fixed and is taken to be the gage length. To take measurements, the waveguides are
pressed firmly to the object tested so as to provide for good contact. Transformer oil
is used as contact medium for ultrasonic transmission. However, the space between
the transducers should remain free of the contact medium.

3 Use of the ultrasound method to evaluate resid-

ual internal stress level

The applications of the proposed method include the estimation of stressed state in
zirconium billets used for the manufacture of nuclear reactor fuel cladding. During
the cold rolling of Zr-Nb alloy tubes, an intricate distribution of residual internal
macro-stresses would form in the worked billet, which enhances the probability of
its failure at one of the process stages. When tackling the problems of process
optimization, one has to take into account the level and distribution of residual
internal macrostresses in worked billets. On account of their large size, however,
this is hardly feasible with the aid of conventional methods, e.g. X-ray techniques
[5], very much so under process conditions.
The present investigation was carried on using the ASTR unit to determine inter-
nal stress levels for worked billets. The measurements were made in a wide range
of internal stresses for the deforming specimens of Zr-Nb alloy 9 (see the Table)
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in order to relate the internal stresses to the propagation rate of acoustic waves.
The most significant results were obtained for the worked billets in which internal
stresses varied over a wide range. The present work is aimed at development of
non-destructive methods for the determination of residual stresses in thin-wall Zr
tubes manufactured by cold rolling [6]. This would help improve the technologies
currently employed for tube production. The investigation was carried on for a wide
range of specimens, i.e. tubes and round billets made from Zr based alloys 9 and
10.The lifetime of materials and constructions is in many ways affected by material
uniformity and by the stressed state of end products manufactured from the same
material.
Therefore, the investigation of residual macro-stresses was performed using the tra-
ditional X-ray technique as well the acoustic method developed; the two sets of data
obtained by the above two techniques were matched.
It has been found that the magnitude of macro-stresses σ1 + σ2 is linearly related
to the frequency of auto-circulation f in alloy 9, i.e.

σ1+ σ2 = σ0− βf, (4)

where σ0 = 420 MPa and β = 0.42 MPa·s are the constants. The correlation
coefficient is ∼ 0.7, which allows one to conclude that the above relationship is close
to a functional one. Therefore, auto-circulation frequency can be safely converted
to stresses using Eq. (4). On the base of the above results, a technique has been
developed which is intended for internal stress measurement in Zr alloy tubes.
The macro-stresses, i.e. residual stresses resulting from rolling, were measured with
the aid of X-ray technique for round zirconium billets ∅14.8×∅9.5 mm. The macro-
stresses in the specimens of alloy 10 (see the Table) are found to vary from 400 to
900 MPa (Fig. 4), especially so in the area between a small diameter and a larger
one. It should be noted that regions removed far enough from the above area reveal
sufficiently smooth and uniform distributions of macro-stresses. The level of stresses
in alloy 9 is found to be considerably lower relative to alloy 10. The low stress jumps
in Fig. 4 suggest that alloy 9 worked by rolling is in a more homogeneous state
relative to alloy 10, which might be due the former alloy having greater ductility.
The use of appropriate die profile enabled one to reduce considerably the stress jumps
in the worked material. To measure the stresses accurately, the test objects shall
conform to the following requirements: absence of surface defects, the occurrence
of equidistant points marked over the tube envelope and availability of reference
sample.
The stress distributions in tubes were determined using a specially designed attach-
ment. This features a stage with two guides, which allow the sample to be aligned
in both the beam plane and relative to the goniometer axis. The scanning was
performed manually every 20 mm, using the marks over the tube envelope. Figure
5 illustrates the variation in the macro-stresses σ1 over the tube made from alloy
9. It can be seen that homogeneous distributions are observed in the range of 200
MPa. To obtain more detailed distribution patterns, recording was performed for
four equidistant points marked over the tube envelope. The measurements were
made for the ends and middle lengths of the tubes. As is seen from Fig. 5, more
uniform distributions of stresses are observed for the middle lengths of the tubes rel-

703



Proceedings of XXXVII International Summer School–Conference APM 2009

Figure 4: The generalize dependence obtained for steels.

Figure 5: The generalize dependence obtained for steels.
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ative to the tube ends where stresses may be due partly to material non-uniformity
and partly to the tube deformation by cutting.

4 Conclusions

Thus, the method designed for estimation of mechanical characteristics facilitates
considerably residual stress measurement in real objects. This is based on the re-
lation between the ultrasound rate and the level of residual internal macro-stresses
in tubes and round billets. The modern applications of the ultrasound method also
include
- analysis of stress-strained state of heavily loaded large-sized metalwork;
- evaluation of the remaining lifetime of water-tube boiler parts and pipelines;
- estimation of residual stresses in steels and alloys by welding;
- monitoring of cumulative fatigue damages;
- analysis of chemical heat-treatment (carburizing, nitriding, hydrogen saturation);
- monitoring and evaluation of the remaining lifetime of railway transport parts.

References

[1] L.B. Zuev and B.S. Semukhin. Some acoustic properties of a deforming medium.
Phil. Mag. A42, pp.1183-1193, 2002.

[2] M. Kobayashi, ”Ultrasonic nondestructive evaluation of microstructural changes
of solid materials under plastic deformation” Int. J. Plasticity. 19, pp.511-522,
2003.

[3] R. Truel, C. Elbaum and B. Chick. Ultrasonic Methods in Solids State Physics,
Acad. Press, New York, 1969.

[4] R.W.K. Honeykombe, The Plastic Deformation of Metals, E. Arnold Publ. Ltd.,
New York, 1968.

[5] A. Taylor, X-Ray Metallography, J. Wiley and Sons, New York, 1961.

[6] L.B. Zuev, V.I. Danilov and S.A. Barannikova, Plastic Flow Macrolocalization
Physics. Nauka, Novosibirsk, 2008 (in Russuan)

Lev B. Zuev, Academichesky Ave., 2/4, Tomsk, Russia

Boris S. Semukhin, Academichesky Ave., 2/4, Tomsk, Russia

Alexey G. Lunev, Academichesky Ave., 2/4, Tomsk, Russia

705



Proceedings of XXXVII International Summer School–Conference APM 2009

Influence of defects distribution and specimen size
on fracture initiation

Anton M. Krivtsov
akrivtsov@bk.ru

Abstract

An analytical model for the scale dependence of the fracture initiation
is suggested. The model is based on the idea that fracture is a stochastic
process, for the bigger specimens probability of joint defects is higher, and this
stimulates the fracture. An analytical formula for the strength dependance
on the specimen size and defects density was obtained and compared with
the molecular dynamics simulation. The results show that generally there
is no similarity in fracture of the specimens of the different size and scale.
This also prevents from using representative volume for the material strength
properties.

1 Introduction

The defect structure of material has essential and sometimes unexpected influence
on the strength properties. One of such results [1] is shown in Fig. 1. The figure is
obtained by MD (molecular dynamics) simulation of cyclic loading of monocrystal
material with randomly distributed defects (vacancies). The density of defects for
the specimen in Fig. 1a is 10 times lower then for the specimen in Fig. 1b. The

Figure 1: Crack development in crystals: a) 0.1% defects; b) 1.0% defects.

unexpected result is that for the lower density of defects the number of cracks is
higher. The explanation of this fact is that for the higher density of defects the
crystal contains occasional zones where the defects are very close to each other —
these zones initiate the cracks — see Fig. 2. For the lower defects density all
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Figure 2: Crack development in crystal with 1% defects

vacancies are separated and all of them initiate cracks. Of course, the material
strength in the last case is much higher. However this result can be changed if
the bigger specimens would be observed, then even for the low defects density the
probability of two defects to appear closely to each other could be high enough,
and then they would produce the week zones in which crack would initiate. Thus,
the fracture scenario can differ for specimens of different sizes, even if the defects
density is equal. The current paper is mainly devoted to study of such phenomenon.
Below, an analytical model for the analysis of the scale dependence of the material
strength is suggested and compared with the results of MD simulation.

2 Analytical model

Let us consider an ideal crystal, containing randomly distributed defects — vacan-
cies. Each vacancy is formed by removing a single atom from the lattice. The
material is weaker in the places, where the vacancies are close to each other. The
most dangerous situation is when two vacancies are formed from the neighboring
atoms — this structure we will call double vacancy. Let us calculate the probability
of formation of the double vacancy.
Let the crystal contain N atoms, each atom has M neighbors. For closed packed
lattices M = 6 in 2D and M = 12 in 3D. Let us remove sequentially atoms from the
lattice to form vacancies. The probability that a double vacancy will appear after n
atoms are removed will be denoted as ξn. Then the following recurrent relation
fulfils

ξn+1 = ξn+ (1− ξn)
Mn

N
. (1)

Indeed, the first term ξn in the above relation gives the probability that the double
vacancy was formed at the step n, the probability of the otherwise is 1− ξn. Then,
the probability that in this situation the new vacancy number n+1 will appear near
one of the previous vacancies is proportional to the numberMn of atoms neighboring
to vacancies, divided by the total number of atoms N. To obtain relation (1) it was
assumed that the density of vacancies is low: n << N. This assumption allows us
to neglect the situation when one atom is a neighbor for two vacancies, and also we
neglect that the total number of atoms is decreasing. The mentioned approximations
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little bit increase both numerator and denominator in relation (1), therefore together
this effects should not give a considerable error. Relation (1) can be rewritten in
the form

ζn+1 = (1− εn) ζn ; ζn
def
= 1− ξn , ε

def
= M/N. (2)

Here ζn is the probability that a pair of double vacancies will NOT appear after n
atoms are removed; ε is a small parameter; for any n fulfills: εn < 1. Since ζ1 ≡ 1,
from the recurrent relation (2) it follows

ζn+1 =

n∏

k=1

(1− εk) ⇒ ln ζn+1 =

n∑

k=1

ln (1− εk) . (3)

Assuming that the number of vacancies is a big value: n≫ 1, the last sum can be
calculated as

ln ζn ≈ ln ζn+1 = n

n∑

k=1

ln

(
1− εn

k

n

)
1

n
≈ n

∫1

0

ln (1− εnx) dx. (4)

Calculation of the integral gives

ln ζn = −
1

ε
(1− εn) ln (1− εn) − n ⇒ ζn = e−n (1− εn)

−(1−εn)/ε
. (5)

Let us consider

εn =
Mn

N
= Mp , p

def
=
n

N
. (6)

Here p is porosity. It was already assumed that porosity is small: p = n/N ≪ 1.
For simplification of formula (5) let us assume that εn = Mp≪ 1. Please note that
this assumption gives more strict constriction for the smallness of p, since M is of
order of 10. Anyway, for εn ≪ 1 in the first nontrivial approximation from (5) we
obtain7

ln ζn = −
1

2
εn2 ⇒ ζn = e−1

2
εn2 . (7)

For the further consideration let us change parameters ε, n to parameters p, N
using formulae

n = Np , ε =
M

N
; εn = Mp , εn2 = MNp2. (8)

Parameters ε, n were more convenient for calculations, however parameters p, N
have more clear physical meaning — porosity and total number of particles. Then
probability ξn = 1− ζn of the double vacancies appearance can be represented as a
function of these quantities:

ξ(p,N) = 1− e−n (1−Mp)
−(1−Mp)N/M

, p≪ 1;

ξ(p,N) = 1− e−1
2
MNp2 , p≪ 1

M
;

ξ(p,N) =
1

2
MNp2 , p≪

√
2
MN
.

(9)

7For correct result the two-term expansion for ln(1− εn) is required.
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At the left side of each formula the corresponding restriction for the porosity is
given. For the first formula this restriction is the weakest. For the second formula
it is little bit stronger, however the formula is much simpler. Since the difference in
the restrictions is small, then for most cases the second formula can be used instead
of the first one; it will be shown later that the error in this case is even less then
can be expected. For the last formula in (9) the corresponding restriction is very
strong. Thus the last formula is valid only for very low porosity, moreover the bigger
is the specimen, the lower should be the porosity. However the last formula has the
simplest form and can be easily analyzed. From this formula it follows that the
probability for the double vacancy is proportional to the square of porosity and to
the total number of particles. The last fact is very important — it means, that
specimens of different size can have different mechanisms for fracture. Indeed, if
the specimen is small enough, then appearance of join vacancies is unlikely, and the
fracture will be initiated from single vacancies. The bigger specimens are likely to
have double vacancies — since the fracture will be initiated from them, and this
requires much lower stresses, then for the single vacancies in the small specimens.
Thus there will be no similarity in fracture of the specimens of the different size
and scale. This also means that the representative volume for the material strength
properties does not exist. These conclusions follows directly from the third formula
in (9), however the first or second formulae from (9) (more exact approximations)
lead to the same conclusions — the probability for the double vacancies essentially
depends on the total number of particles N.
Let us rewrite the third formula from (9):

ξ(p,N) =
1

2
MNp2 , p≪

√
2

MN
. (10)

This formula can be also used to estimate the density of the double vacancies in
material. If we consider that the material is combination of Ns≫ 1 specimens with
N particles each, then the number of double vacancies n2 in such material can be
calculated as

n2 = Nsξ(p,N) , p2
def
=

n2

NsN
. (11)

Here p2 — is the density of double vacancies in the material. Substituting the above
relations to the last formula in (9) we obtain

p2 =
1

2
Mp2 , p≪ 1

M
. (12)

Thus the density of the double vacancies is proportional to the square of porosity.
The restriction p ≪ 1/M was taken from the second formula in (9). Let us show
that if the material contains enough particles then it can be divided in specimens
with N particles each, so that restriction from (10) will be fulfilled. Using restriction
for formula (10) we can obtain inequality for the number of particles in the specimen

M≪ N≪ 2

Mp2
⇒ p≪

√
2

M
. (13)
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The obtained inequality for porosity guarantee that the material can be divided in
specimens containing enough particles to use formula (10). But this inequality is
weaker then p≪ 1/M, therefore it is already fulfilled.
Let us apply the obtained results for estimation of the strength properties of a
specimen with N particles and porosity p. Let ε1 and ε2 be the critical strains for
the fracture initiation from a single vacancy and a double vacancy. Then the critical
strain for the specimen can be estimated as

ε(p,N) = ε1ζ(p,N) + ε2ξ(p,N) = ε1+ (ε2− ε1)ξ(p,N). (14)

The same formula can be written for other critical parameters, e. g. ultimate
strength. Using formula (14) we consider fracture as a stochastic process, therefore
strength properties should be obtained as average over many tests. When deriving
equation (14) we have used the following rude assumptions:

1. Vacancies interact only when they are joined.

2. Junction of more then two vacancies does not exist.

Of course these assumptions are not completely true, especially the first one. How-
ever they allow to estimate the dependence of material properties on the porosity
and the specimen size, as it will be shown in the next section.

3 Computational model

The simulation procedure applied in this work is conventional MD technique, same
as in [2], in more details it is described in [3, 4]. The material is represented by a
set of particles interacting through a pair potential Π(r). The equations of particle
motion have the form

mr̈k =

N∑

n=1

f(|rk− rn|)

|rk− rn|
(rk− rn) , (15)

where rk is the radius vector of the k-th particle, m is the particle mass, N is the
total number of particles, and f (r) = −Π ′ (r) is the interparticle interaction force.
We use the following notation: a is the equilibrium distance between two particles
(f (a) = 0), D = |Π(a)| is binding energy, C is the stiffness of the interatomic bond
in equilibrium, and T0 is the period of vibrations of the mass m under the action of
a linear force with stiffness C

C = −Π ′′ (a) ≡ −f (a) , T0 = 2π
√
m/C. (16)

We will use the quantities a and T0 as microscopic distance and time scales. For
a particle of mass m that is in equilibrium in the potential field Π(r) its minimum
velocity to reach infinity is vd =

√
2D/m — so called dissociation velocity. We

will use this quantity as a velocity scale. To measure the level of thermal motion in
material the velocities deviation ∆v (mean-square value of random velocities) will be
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used. When ∆v approaches dissociation velocity vd then the thermal motion break
the internal bonds in the material resulting in its melting.
Let us consider the classical Lennard–Jones potential:

ΠLJ(r) = D

[(a
r

)12
− 2

(a
r

)6]
, (17)

where D and a are the binding energy and the equilibrium interatomic distances,
introduced earlier. The corresponding interaction force f (r) = −Π ′ (r) has the form

fLJ(r) =
12D

a

[(a
r

)13
−
(a
r

)7]
. (18)

In the case of the Lennard–Jones potential, the stiffness C and the binding energy
D obey the relation C = 72D/a2; the force (18) reaches its minimum value (the
bond strength) at r = b = 6

√
13/7, where b is the break distance. The correspond-

ing break deformation of the Lennard–Jones bond is ε∗ = b − a ≈ 0.109. The
Lennard–Jones potential is the simplest potential that allows one to take into ac-
count the general properties of interatomic interaction: repulsion of particles that
approach each other, attraction of particles moving away from each other, and the
absence of interaction at large distances between them. For calculations the short-
ened Lennard–Jones interaction will be used, given by formula

f(r) =

[
fLJ(r), 0 < r ≤ b,

k(r)fLJ(r), b < r ≤ acut;
(19)

where b is break distance for Lennard-Jones potential, acut is cut-off distance (for
r > acut the interaction vanishes). The coefficient k(r) is the shape function

k(r) =

[
1−

(
r2− b2

a2cut − b2

)2]2
. (20)

The cut-off distance will be set as acut = 1.4a, in this case only the first neighbors
are interacting for the close-packed structures. In the current paper we study the
fracture process in general, therefore, the proposed simplified potential is sufficient.
The obtained results can be easily extended to more complex potentials describing
the properties of materials more exactly.
In this work, a two-dimensional material will be used, where particles are packed
to form an ideal 2D close-packed (triangular) crystal lattice. This is simplified
lattice, however its symmetry is same as the symmetry of [111] cross-sections and
surfaces of such 3D crystal lattices as FCC and diamond (the last one is the lattice
of silicon crystals). For computations square specimens are used, periodic boundary
conditions are applied at all boundaries. All specimens are subjected to uniaxial
loading by applying a small uniform deformation to positions of all particles and to
the periodic boundaries, after each step of deformation a step of MD computation
is used. The deformation is changing according the formula

ε(t) = εmax

t

tmax

, (21)

where εmax is the maximum value of strain, tmax is the time of computation. The
strain is directed along one of the sides of triangles, forming the lattice. The com-
putation parameters are given in the Table 12.
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Parameter Symbol Value
Number of particles N 104÷ 105
Porosity p 10−4÷ 10−2

Cut-off radius acut 1.4 a0
Initial velocity deviation ∆v 0.005 vd
Integration step ∆t 0.02 T0
Calculation time tmax 50 T0
Maximum strain εmax 0.1

Table 12: Computation parameters.

4 Results of computations

Fig. 1a shows dependencies of the critical strain on porosity obtained from the
computer experiments. Two sizes of specimens are considered: N = 10 000 and
N = 100 000. The same graphs obtained analytically using estimation (14) are

Figure 3: Comparison of results for different sizes of specimens: a) MD computa-
tions, b) analytical model.

shown in Fig. 1b. To obtain these graphs first or second formula from (9) can be
used, the difference between them is negligible8. The values of the parameters used
for the analytical calculations are

ε1 = 0.067 , ε2 = 0.048 ; M = 6. (22)

Results of the both models, MD and analytical, show the same tendencies: the
strength of the bigger specimen is considerably lower, then for the smaller one;
the scale effect is smaller for high and low porosities, and it has maximum for the
intermediate porosities. The explanation for the last fact is that for low and high
porosities both specimens have the similar mechanism for the fracture initiation:

8The maximum difference between the first and the second formula from (9) while calculating
graphs Fig. 3a is lower then 1% for ξ(p,N) calculation and lower then 0.2% for the critical strain
calculation.
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single vacancies for low porosity and double vacancies for high porosity. In the
case of intermediate porosity the situation is scale-dependant, because the smaller
specimen is unlikely to have double vacancies in this case, but for the bigger specimen
the double vacancies are much more probable.
Thus, qualitatively computational and analytical graphs are similar, but quanti-
tatively they have differences: the computational graphs are more flat, and the
maximum scale effect appears at different porosities. Fig. 4a,b shows comparison of
computational and analytical models for the small and big specimen respectively. In

Figure 4: Comparison of results of MD computer experiments and predictions of
analytical model: a) N = 10 000, b) N = 100 000.

Fig. 4b together with the average computational result an error corridor obtained
for the series of 5 experiments is shown. The theoretical curve gets inside the error
corridor for the low and high porosities, but escapes from it for the intermediate
porosities. The main explanation for the differences between the computational and
analytical models is that the assumption that vacancies interact only when they are
joined is too rude. Of course two closely located vacancies interact and such place
is likely for fracture initiation. This effect can be also described analytically by the
similar method as it was used above for the double vacancies, but such description
requires additional calculations and also an estimation of the influence of the dis-
tance between the vacancies on the critical strain. For the bigger specimens also
appearance of more then two joint vacancies should be taken into account.

5 Conclusions

An analytical model for the scale dependence of the fracture initiation is suggested.
The model is based on the idea that fracture is a stochastic process, for the bigger
specimens probability of joint defects is higher, and this decreases the material
strength. Thus there is no similarity in fracture of the specimens of the different
size and scale. This also means that the representative volume for the material
strength properties does not exist. Indeed, the bigger is the specimen, the more
sophisticated joining of defects can appear in it, giving new mechanisms for the
fracture initiation.
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The probability for double vacancies was calculated, and the material strength prop-
erties as a function of defects density and specimen size were estimated. These
results where compared with MD simulations. Results of both models, MD and
analytical, show the same tendencies: the strength of the bigger specimen is con-
siderably lower then for the smaller one; the scale effect is smaller for high and low
porosities, and it has maximum for the intermediate porosities.
Qualitatively computational and analytical graphs are similar, but quantitatively
they have differences: the computational graphs are more flat, and the maximum
scale effect appears at different porosities. The explanation for the differences be-
tween the computational and analytical models is that the assumption that vacancies
interact only when they are joined is too rude, interaction of non-joined vacancies
should be taken into account. This effect can be also described analytically by the
similar method as it was used in the report for the double vacancies, but such de-
scription requires additional calculations and also an estimation of the influence of
the distance between the vacancies on the critical strain. For the bigger specimens
also appearance of more then two joint vacancies should be taken into account.
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Abstract

A molecular dynamics model for fracture accompanied by chemical reac-
tion is suggested. Crack initiation and development in specimens subjected
to an uniaxial loading is considered. The oxidation of the initial and new
specimen surfaces during the fracture process is taken into account. It is pos-
tulated that the material properties such as density, stiffness and strength are
changing due to the oxidation. Influence of the chemical reaction (oxidation)
on the fracture scenario is investigated. Fracture process for the specimens of
different shape, with and without predefined defects is studied.

1 Introduction

Molecular dynamics is a powerful tool for modelling of fracture in material with
various internal structure and defects distribution. In most of these models only
single-phase material is considered. However in the real applications the fracture
is closely connected with chemical reactions. In particular, for MEMS made from
silicon the oxidation process accompanying the fracture is essential, since the me-
chanical properties if the silicon dioxide differs essentially from those of the pure
silicon [1].

The following model is suggested. The properties of particles adjusting to the sur-
faces is changed mimicking the difference between the silicon and its dioxide: size
of the particles became slightly bigger, the elastic and strength properties became
substantially lower then for the initial particles. This change take place immedi-
ately and involves as the particles surrounding the original surfaces of the specimen,
as the particles laying near the new surfaces provided by the fracture and crack
development. Since the size of the particles increases, this can provide separation
of the pieces of material — the oxidization induced fracture. In this case fracture
and chemical reaction can stimulate each other resulting in a self-generating pro-
cess. Although mainly we will be studying situations when the fracture is induces
by an external load, the possibility and conditions of such self-generation will be
considered.
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2 Computational model

The simulation procedure applied in this work is similar to that used in [2, 3], in
more details it is described in [4, 5]. The material is represented by a set of particles
interacting through a pair potential Π(r). The equations of particle motion have
the form

mr̈k =

N∑

n=1

f(|rk− rn|)

|rk− rn|
(rk− rn) , (1)

where rk is the radius vector of the k-th particle, m is the particle mass, N is the
total number of particles, and f (r) = −Π ′ (r) is the interparticle interaction force.
We use the following notation: a is the equilibrium distance between two particles
(f (a) = 0), D = |Π(a)| is binding energy, C is the stiffness of the interatomic bond
in equilibrium, and T0 is the period of vibrations of the mass m under the action of
a linear force with stiffness C

C = −Π ′′ (a) ≡ −f (a) , T0 = 2π
√
m/C. (2)

We will use the quantities a and T0 as microscopic distance and time scales. For
a particle of mass m that is in equilibrium in the potential field Π(r) its minimum
velocity to reach infinity is vd =

√
2D/m — so called dissociation velocity. We

will use this quantity as a velocity scale. To measure the level of thermal motion in
material the velocities deviation ∆v (mean-square value of random velocities) will be
used. When ∆v approaches dissociation velocity vd then the thermal motion break
the internal bonds in the material resulting in its melting.
Let us consider the classical Lennard–Jones potential:

ΠLJ(r) = D

[(a
r

)12
− 2

(a
r

)6]
, (3)

where D and a are the binding energy and the equilibrium interatomic distances,
introduced earlier. The corresponding interaction force f (r) = −Π ′ (r) has the form

fLJ(r) = Q

[(a
r

)13
−
(a
r

)7]
, Q

def
=
12D

a
, (4)

where Q is the interparticle force magnitude. In the case of the Lennard–Jones
potential, the stiffness C and the binding energy D obey the relation C = 72D/a2;
the force (4) reaches its minimum value (the bond strength) at r = b = 6

√
13/7,

where b is the break distance. The corresponding break deformation of the Lennard–
Jones bond is ε∗ = b − a ≈ 0.109. The Lennard–Jones potential is the simplest
potential that allows one to take into account the general properties of interatomic
interaction: repulsion of particles that approach each other, attraction of particles
moving away from each other, and the absence of interaction at large distances
between them. For calculations the shortened Lennard–Jones interaction will be
used, given by formula

f(r) =

[
fLJ(r), 0 < r ≤ b,

k(r)fLJ(r), b < r ≤ acut;
(5)
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where b is break distance for Lennard-Jones potential, acut is cut-off distance (for
r > acut the interaction vanishes). The coefficient k(r) is the shape function

k(r) =

[
1−

(
r2− b2

a2cut − b2

)2]2
. (6)

The cut-off distance will be set as acut = 1.4a, in this case only the first neighbors
are interacting for the close-packed structures. For the general study of the fracture
process this simplified potential is sufficient. If necessary the obtained results can
be extended to more complex potentials describing the properties of materials more
exactly.
In case of oxidation it is postulated that the properties of the particle is changing.
The diameter and force magnitude for the oxidized particles will be denoted as ã
and Q̃. For the silicon dioxide it approximately fulfills

ã/a = 1.1 , Q̃/Q = 1/3. (7)

The vector of interaction force between two original particles can be represented as
following

f = Φ(r2)r , Φ(r2)
def
= f(r)/r. (8)

When one or both of the interacting particles are oxidized then the interaction law
takes the form

f = Φ
(
λ(r2− a2) + a2

)
r , λ

def
= a2/a2, (9)

where function Φ is calculated using average values for the particle diameter and
force magnitude:

a
def
= (a1+ a2)/2 , Q

def
= (Q1+Q2)/2; (10)

indexes 1 and 2 correspond to the first and the second interacting particle. The law
(10) independently of the particles sizes preserve the same width of the potential
well.
For simulation a two-dimensional material will be used, where particles are packed
to form an ideal 2D close-packed (triangular) crystal lattice. This is simplified lat-
tice, however its symmetry is same as the symmetry of [111] surfaces of 3D crystal
lattices, such as FCC and diamond (the last one is the lattice of silicon crystals).
For the computations periodic boundary conditions are applied at all boundaries.
All specimens are subjected to uniaxial loading by applying a small uniform defor-
mation to positions of all particles and to the periodic boundaries. After each step
of deformation a step of MD computation is used. The deformation is changing
according the formula

ε(t) = εmax

t

tmax

, (11)

where εmax is the maximum value of strain, tmax is the time of computation. The
strain is directed along one of the sides of triangles, forming the lattice. The com-
putation parameters are given in the Table 13.
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Parameter Symbol Value
Number of particles N 105

Cut-off radius acut 1.4 a

Initial velocity deviation ∆v 0.005 vd
Integration step ∆t 0.02 T0
Maximum strain εmax 0.15

Strain rate εmax/tmax 0.002 T0
−1

Chemical inflation ã/a 1.10÷ 1.15
Chemical strengthening Q̃/Q 1/3

Table 13: Computation parameters.

3 Results of computations

The results of the first computer experiment are presented in Fig. 1. A single vacancy
placed in the center of specimen is used to initiate a crack. In Fig. 1a no chemical
reaction is taken into account. In this case four straight cracks are propagating
in crystallographical directions. In Fig. 1b,c the particles adjusting to the crack
surfaces are subjected to oxidation that results in change of particle size (chemical
inflation) and bond strength. The bond strength for the oxidized material in all
experiments is taken three times lower then for the original material. The chemical
inflation is 10% for Fig. 1b and it is 15% for Fig. 1c, e.g. ã/a = 1.10 and ã/a = 1.15

respectively. In the figures the original material is shown by blue color, the oxide —
by cyan, the empty space is white. From Fig. 1b it follows that oxidation stimulates
the fracture: initial fracture zone appears in the vicinity of the initial vacancy, where
the oxidized material forms an elliptical area; the cracks are producing branches,
substantially complicating the crack shape. In Fig. 1c it is visible that when the
chemical inflation is increased from 10% to 15% then the amount of the oxidized
material is increased in many times. The explanation of this phenomenon is that
the break extension of the interatomic bond for the considered interaction potential
is 11%. If the chemical inflation rate is greater then this value, then the chemical
reactions produces fracture in material. The fracture creates new surfaces, where
oxidation takes place, again producing the fracture and so on. Thus we have self-
developing process, where the chemical reaction and fracture stimulate each other.
If the greater values of the chemical inflation are used then this process can take
place without external loading at all, resulting in very fast oxidation of the whole
specimen. Also the high chemical inflation can result in the crack closing, since
the oxidized material requires more space then the original one. If the oxide would
not be weaker then the original material then a self-healing of the material can be
realized.

Fig. 2 shows the sequential stages of the fracture process for the specimen with
circular hole. The chemical inflation is 10%. No predefined crack is used, the fracture
starts just from the inner boundaries of the specimen. From the very beginning
several cracks appear, then the branching process produces very complicated, fractal
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a) b) c)

Figure 1: Comparison of the computational results for different rate of chemical
inflation: a) no chemical reaction, b) 10% chemical inflation, c) 15% chemical infla-
tion.

structure of the cracks. Zoom-up of the specimen with the developed crack is shown
in Fig. 3.

a) b) c) d)

Figure 2: Sequential stages of extension for the specimen with circular hole:
a) ε = 7%, b) ε = 10%, c) ε = 13%, d) ε = 15%.

Comparison with extension of the specimen with a predefined crack is shown in
Fig. 4. Figure shows, that the predefined crack localizes the beginning of the fracture
in the specified area, however the developed crack due to its branching does not
depend much, whether the predefined crack was introduced or not.

Comparison of the results for the different rate of the chemical inflation is shown
in Fig. 5. The specimen with a circular hole and predefined crack is used. As for
the case of the fracture starting from a single vacancy, increasing the rate of the
chemical inflation over the critical value of 11% results in abrupt increase of the
oxidized area. The oxide is located not only in the vicinity of the crack, but also it
is forming a wide belt around the hole, forming zone of plastic deformation.
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Figure 3: Zoom-up of the specimen with the developed crack, ε = 15%.

4 Conclusions

A molecular dynamics model for the fracture accompanied by a chemical reaction
was suggested. A crack initiation and development in specimens subjected to an
uniaxial loading was considered. The oxidation of the initial and new specimen sur-
faces during the fracture process was taken into account. It was taken into account
that the material properties such as density, stiffness and strength are changing due
to the oxidation.
The results of the computer experiments show that oxidation stimulates the frac-
ture. The cracks are producing branches, substantially complicating the crack shape.
The branching of the cracks forms fractal-like structures: the longer is the fracture
process the greater is the number of branches and subbranches.
If the rate of the chemical inflation is over the break extension of the interatomic
bond then an abrupt increase of the oxidized area can be observed. The explanation
of this fact is that in this case the chemical reactions produces fracture in the
material. The fracture creates new surfaces, where oxidation takes place, again
producing the fracture and so on. Thus a self-generating process is realized, where
the chemical reaction and fracture stimulate each other. For the greater values of
the chemical inflation this process can take place without external loading at all,
resulting in a very fast oxidation of the whole specimen. Also the high chemical
inflation can result in the crack closing, since the oxidized material requires more
space then the original one. If the oxide would not be weaker then the original
material then the oxidation can result in a self-healing of the material.
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a) b)

Figure 4: Comparison of 10% extension for the specimen: a) without predefined
crack, b) with predefined crack.

a) b) c)

Figure 5: Comparison of results for different chemical inflation: a) 10%, b) 12%,
c) 15%.
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