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PREFACE

Dear Reader,

in this book you will find the Proceedings of the Summer School Conference “Advanced Problems in
Mechanics (APM) 2012”. The conference had been started in 1971. The first Summer School was organized
by Prof. Ya.G. Panovko and his colleagues. In the early years the main focus of the School was on nonlinear
oscillations of mechanical systems with a finite number of degrees of freedom. Since 1994 the Institute for
Problems in Mechanical Engineering of the Russian Academy of Sciences organizes the Summer School.
The traditional name of “Summer School” has been kept, but the topics covered by the School have been
much widened, and the School has been transformed into an international conference. Now it is held under
the patronage of the Russian Academy of Sciences. The topics of the conference cover now almost all fields
of mechanics, being concentrated around the following main scientific directions:

— aerospace mechanics;
— computational mechanics;
— dynamics of rigid bodies and multibody dynamics;
— fluid and gas;
— mechanical and civil engineering applications;
— mechanics of media with microstructure;
— mechanics of granular media;
— nanomechanics;
— nonlinear dynamics, chaos and vibration;
— molecular and particle dynamics;
— phase transitions;
— solids and structures;
— wave motion.

The Summer School – Conference has two main purposes: to gather specialists from different branches of
mechanics to provide a platform for cross-fertilization of ideas, and to give the young scientists a possibil-
ity to learn from their colleagues and to present their work. Thus the Scientific Committee encouraged the
participation of young researchers, and did its best to gather at the conference leading scientists belonging
to various scientific schools of the world.

We believe that the significance of Mechanics as of fundamental and applied science should much increase
in the eyes of the world scientific community, and we hope that APM conference makes its contribution
into this process.

We are happy to express our sincere gratitude for a partial financial support to Russian Foundation for Basic
Research, Russian Academy of Sciences, and St. Petersburg Scientific Center. This support has helped
substantially to organize the conference and to increase the participation of young researchers.

We hope that you will find the materials of the conference interesting, and we cordially invite you to partic-
ipate in the coming APM conferences. You may find the information on the future “Advanced Problems in
Mechanics” Schools Conferences at our website:

http://apm-conf.spb.ru

With kind regards,

Co-Chairmen of APM 2012

Dmitri A. Indeitsev, Anton M. Krivtsov
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Functionally invariant solutions of nonlinear Klein-Gordon equation

Functionally invariant solutions of nonlinear Klein-Gordon
equation

E. L.Aero A.N.Bulygin Yu.V.Pavlov
bulygin_an@mail.ru

Abstract

New approach to the integration of nonlinear Klein-Gordon equation is given. So-
lutions U(x, y, z, t) are searched in the form of a composite function U = f(W ). It is
assumed that W (x, y, z, t) simultaneously satisfies to two partial differential equations
and f(W ) to the self-similar nonlinear ordinary differential equation. Functionally in-
variant solutions are constructed forW which contain arbitrary function F (α). Ansatz
α(x, y, z, t) may be found as a root of linear algebraic equation of variables (x, y, z, t)
with coefficients in the form of arbitrary functions of α. Particular expressions of
ansatz α are found. Proposed approach is illustrated by the solution of sine-Gordon
equation.

1 Introduction

Nonlinear Klein-Gordon (NKG) equation

∂2U

∂x2
+
∂2U

∂y2
+
∂2U

∂z2
− 1

v2

∂2U

∂t2
= V ′(U) (1)

plays the fundamental role in the modern natural sciences. Here V ′(U) is a nonlinear func-
tion of U , prime denotes differentiation with respect to the argument. Equation (1) with
V ′(U) = expU pioneered in the theory of surfaces of constant curvature. It was solved by
Liouville [1]. To the present time are studied cases when V ′(U) has a form of truncated
exponential, Taylor, Fourier and sh nU, ch nU (n = 1, 2, . . .) series. Equation (1) with
V ′(U) in the form of sum of exponents describes the oscillations of the chain of nonlinear
pendulums [2] (Toda’s chain). NKG equation with cubic nonlinearity V ′(U) = U3 − U is
used in the field theory models [3]. Function V ′(U) = sinU defines sine-Gordon equation
(SG). It brings into existence one of the most beautiful and universal object of the modern
scientific studies — soliton. SG equation has extremely wide area of applications: modeling
of nonlinear lattice [4, 5], orientational structure of liquid crystals [6], orientation of spins
in ferromagnetic materials [7], propagation of fluxons in Josephson transitions [8], propa-
gation of perturbations in macromolecules [9], processes in the Earth’s crust [10], surface
metrics [11], and many others. A lot of studies in mathematics, applied and theoretical
physics have been devoted to the equations with V ′(U) = p1 sinU +p2 sin 2U (double sine-
Gordon (DSG)) and V ′(U) = p1 sinU + p2 sin 2U + p3 sin 3U (triple sine-Gordon (TSG)).
In the theory of nonlinear lattice dynamics DSG describes cardinal transformation of the
near atomic order, lattice fragmentation produced by large deformations, defect creation
and propagation of dislocations [12, 13]. In the nonlinear optics DSG equation is model-
ing propagation of short light impulses in the fivefold degenerated media [14, 15]. TSG
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equation is used in the studies of magnetoelastic waves in ferromagnets such as garnet
ferrites [16]. There are papers devoted to study of NKG equations with V ′(U) represented
by the sum of sh nU and ch nU [17]. A lot of studies have been devoted to the devel-
opment of mathematical methods for solving NKG equations. Fundamental results have
been obtained both in integration of NKG equation of special forms and general forms of
V ′(U). Robust methods of computational study of NKG equations are developed [7].

However new approach to the construction of NKG equations solutions is of great
interest because new solutions allow to understand more deeply the nature of nonlinear
equations’ solutions and could find application to the description of physical phenomena
and technological processes.

Method of functionally invariant NKG equations solutions construction is proposed
hereafter. Basic concepts of the method have been stated in the papers [18, 19]. Authors’
papers [20]–[25] are devoted to the construction of functionally invariant solutions of SG,
DSG and TSG equations.

2 New approach to the construction of exact solutions for
nonlinear Klein-Gordon equation

We seek the solution of NKG equation in the form of a composite function U =
f [W (x, y, z, t)]. Then equation (1) takes a form

f ′ ′

[(
∂W

∂x

)2

+

(
∂W

∂y

)2

+

(
∂W

∂z

)2

− 1

v2

(
∂W

∂t

)2
]

+

+ f ′

[
∂2W

∂x2
+
∂2W

∂y2
+
∂2W

∂z2
− 1

v2

∂2W

∂t2

]
= V ′(f). (2)

Assume that function W (x, y, z, t) simultaneously satisfies to two equations(
∂W

∂x

)2

+

(
∂W

∂y

)2

+

(
∂W

∂z

)2

− 1

v2

(
∂W

∂t

)2

= P (W ), (3)

∂2W

∂x2
+
∂2W

∂y2
+
∂2W

∂z2
− 1

v2

∂2W

∂t2
= Q(W ), (4)

and f(W ) is the solution of nonlinear ordinary differential equation

P (W ) f ′ ′ +Q(W ) f ′ = V ′(f). (5)

Here P (W ) and Q(W ) are arbitrary functions.
Integration of equations (3)–(5) in the general form is not easier than solving the original

equation (1). However for particular form of functions P (W ) and Q(W ) exact solutions of
the equations (3)–(5) could be found and therefore of the equation (1).

2.1. Assume that

P (W ) = W 2, Q(W ) = W. (6)

Then equations (3)–(5) take the form(
∂W

∂x

)2

+

(
∂W

∂y

)2

+

(
∂W

∂z

)2

− 1

v2

(
∂W

∂t

)2

= W 2, (7)

10



Functionally invariant solutions of nonlinear Klein-Gordon equation

∂2W

∂x2
+
∂2W

∂y2
+
∂2W

∂z2
− 1

v2

∂2W

∂t2
= W, (8)

W 2 f ′ ′ +W f ′ = V ′(f). (9)

Equation (9) after change of variable

ζ = lnW (10)

is reduced to the well known equation of nonlinear mathematical pendulum

d2f

dζ2
= V ′(f), (11)

which has first integral

df√
E + V (f)

= ±
√

2 dζ. (12)

Therefore for the case (6) equation (5) is integrated and function f(W ) is found at least
in the form of quadrature.

Function W (x, y, z, t) could be found using the method of construction of functionally
invariant solutions of wave equation [18, 19]. Assume that

W = eϕV (x, y, z, t), ϕ = a1x+ a2y + a3z − σv2t. (13)

Here (a1, a2, a3, σ) are arbitrary constants. Then if

a2
1 + a2

2 + a2
3 = 1 + σ2v2, (14)

function V (x, y, z, t) must simultaneously satisfy to three equations:

a1
∂V

∂x
+ a2

∂V

∂y
+ a3

∂V

∂z
+ σ

∂V

∂t
= 0, (15)

eikonal type equation(
∂V

∂x

)2

+

(
∂V

∂y

)2

+

(
∂V

∂z

)2

− 1

v2

(
∂V

∂t

)2

= 0 (16)

and wave equation

∂2V

∂x2
+
∂2V

∂y2
+
∂2V

∂z2
− 1

v2

∂2V

∂t2
= 0. (17)

We seek function V (x, y, z, t) in the form

V (x, y, z, t) = F (α). (18)

Here F (α) is an arbitrary function. Ansatz α(x, y, z, t) is the root of the equation

x l(α) + ym(α) + z n(α)− v2tp(α) + g(α) = 0, (19)

where (l(α), m(α), n(α), p(α), g(α)) are arbitrary functions of α.
Function V (x, y, z, t) in the form (18) will be a solution of the equation (15), provided

that algebraic equation

a1l + a2m+ a3n = v2σp, (20)
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is satisfied, and satisfy to equations (16), (17), if

l2 +m2 + n2 = v2p2. (21)

2.2. Solution of NKG equation could be obtained also by other methods. Assume
that

P (W ) = 1, Q(W ) = 0. (22)

Then f(W ) will coincide with f(ζ), if to change argument ζ to W , and

W (x, y, z, t) = ϕ+ F (α). (23)

Here ϕ(x, y, z, t) is given by (13), and F (α) is an arbitrary function of α. Ansatz α(x, y, z, t)
is still the root of equation (19).

Also

W (x, y, z, t) = x a0(α) + y b0(α) + z c0(α)− t v2d0(α) + e0(α), (24)

will be the solution of equations (3), (4), (22) with equation (19) for the ansatz if

a0(α) =

∫
l(α) dα, b0(α) =

∫
m(α) dα, c0(α) =

∫
n(α) dα,

d0(α) =

∫
p(α) dα, e0(α) =

∫
g(α) dα, (25)

and conditions

a2
0 + b20 + c2

0 = 1 + v2d2
0, (26)

(a′0)2 + (b′0)2 + (c′0)2 = v2(d′0)2 (27)

are fulfilled.

3 Finding of ansatz α(x, y, z, t)

For different solutions ansatz α(x, y, z, t) is found from the equation (19) which contains
more unknown coefficients than number of algebraic equations to be satisfied by them.
Therefore ansatz α is not defined uniquely. Not touching on the finding of general expres-
sion for α, we note some simple particular cases.

a) l = vpx1, m = vpx2, n = vpx3, g = −vpα, (28)

α = xx1 + yx2 + zx3 − v2t. (29)

Constants x1, x2, x3 depend on (v, σ, a1, a2, a3) and new constant f0 assuming that in gen-
eral expressions for (x1, x2, x3) cos f(α) = cos f0:

x1 =
v√

a2
1 + a2

2 + a2
3

[
cos δ cosC cos f0 + sin δ sin f0 + vσ cosA

]
,

x2 =
v√

a2
1 + a2

2 + a2
3

[
sin δ cosC cos f0 − cos δ sin f0 + vσ cosB

]
, (30)

x3 =
v√

a2
1 + a2

2 + a2
3

[
− sinC cos f0 + vσ cosC

]
.

12
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Here

cosA =
a1√

a2
1 + a2

2 + a2
3

, cosB =
a2√

a2
1 + a2

2 + a2
3

, cosC =
a3√

a2
1 + a2

2 + a2
3

, (31)

cos δ =
a1√
a2

1 + a2
2

, sin δ =
a2√
a2

1 + a2
2

. (32)

b) l = vpx1, m = vpx2, n = vpx3, f(α) = α, g = 0. (33)

In the second case α is the root of the trigonometrical equation

η cosα+ ξ sinα+ vσζ = 0 , (34)

η = (x− u1t) cos δ cosC + (y − u2t) sin δ cosC − (z − u3t) sinC ,

ξ = (x− u1t) sin δ − (y − u2t) cos δ ,

ζ = (x− u1t) cosA+ (y − u2t) cosB + (z − u3t) cosC, (35)

where

u1 =
1

σ

√
1 + v2σ2 cosA, u2 =

1

σ

√
1 + v2σ2 cosB, u3 =

1

σ

√
1 + v2σ2 cosC.

From (34) we find that

α = −(−1)n

[
arcsin

η√
ξ2 + η2

+ arcsin
vσζ√
ξ2 + η2

]
+ nπ , (36)

n = 0,±1, . . .
Ansatz α as it follows from (36) is defined if

−1 ≤ vσζ√
ξ2 + η2

≤ 1 . (37)

Domain (37) is the exterior of cones with axis directed along the vector a = a1i+a2j+a3k,
and vertex of cone (at t = 0) coincides with the origin of coordinates. With changing of
time cones move along the vector a with the speed u = u1i + u2j + u3k. Cone opening is
defined by the parameter vσ. Plane 1 is shown on the Fig. 1. It moves parallel to itself and
perpendicular to the vector a. It is described by the equation a1x+ a2y+ a3z − σv2t = 0.
Plane 2 touches cone side surface. Its equation is x1x+ x2y + x3z − v2t = 0.

c) l = vp cos θ cosφ, m = vp cos θ sinφ, n = vp sin θ, g = 0. (38)

Here (p, θ, φ) are arbitrary functions of α. Equation (21) is identically satisfied. Equa-
tion (20) relates θ(α) with φ(α). We seek function θ(α) from (19) which takes the form

N sin2 θ − 2Q sin θ +M = 0. (39)

From (39) one can find that

sin θ1(α) =
Q−

√
Q2 −MN

N
, sin θ2(α) =

Q+
√
Q2 −MN

N
, (40)

13
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Figure 1: Domain of ansatz definition (37).

Q2 −MN = (s2 − ϕ2)(xa2 − ya1)2, s2 = x2 + y2 + z2 − v2t2,

N = (a2
1 + a2

2 + a2
3)(x2 + y2 + z2)− (a1x+ a2y + a3z)

2, (41)

Q = v
[
a3σ(x2 + y2 + z2)− (a3t+ zσ)(a1x+ a2y + a3z) + (a2

1 + a2
2 + a2

3)zt
]

d) l = cosφ, m = sinφ, n = shψ, vp = chψ, g = 0, (42)

where φ(α), ψ(α) are arbitrary functions of α. Equation (21) is identically satisfied. Equa-
tion (20) relates φ(α) with ψ(α). Equation (19) takes the form

M cos2 γ + 2Q sin γ cos γ +N sin2 γ = 0, γ(α) = δ − φ(α). (43)

Here

Q2 −MN =

(
zσv − vta3

σ2v2 − a2
3

)2

(s2 − ϕ2),

N = (x sin δ − y cos δ)2 +
(zσv − vta3)2

σ2v2 − a2
3

(44)

Q =

(
x cos δ + y sin δ +

za3 − σv2t

σ2v2 − a2
3

√
a2

1 + a2
2

)
(x sin δ − y cos δ).

From (43) one can find that

tg γ1(α) =

√
Q2 −MN−Q

N
, tg γ2(α) = −

√
Q2 −MN + Q

N
. (45)

It should be kept in mind concerning the choice of given ansatzs α(x, y, z, t) that since
we seek the solution V (x, y, z, t) in the form of arbitrary function F (α) then V (x, y, z, t)
remains the solution if α is changed to the arbitrary function χ(α).

For cases (22), (24)

a) a0 = cosψ0, b0 = sinψ0, c0 = tgα, vd0 = tgα, ψ0 = const,

W = x cosψ0 + y sinψ0 + F (z − vt), (46)

14
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b) a0 =
chα

shα
cosψ0, b0 =

chα

shα
sinψ0, c0 = 1, vd0 =

chα

shα
,

W = z + F (x cosψ0 + y sinψ0 − vt), (47)

c) a0 = 1, b0 = tgα, c0 = tgα shψ0, vd0 = tgα chψ0,

W = x+ F (y + z shψ0 − vt chψ0). (48)

Here F (α) is arbitrary function of the given argument.

4 Solution of NKG equation for particular form of the func-
tion V ′(U)

We illustrate new approach to the solving of NKG equation on the example of the integra-
tion of SG equation. If V ′(U) = sinU then F (ζ) is given by the integral (12)∫

df√
E − cos f

= ±
√

2(ζ + ζ0). (49)

Certain form of the solution U = f(ζ) is defined by the value of integration constant E:

U = 4 arctg e±(ζ+ζ0), E = 1, (50)

U = ±2 arctg

√1− k2
sn
[

1
k (ζ + ζ0), k

]
cn
[

1
k (ζ + ζ0), k

]
 , E > 1, (51)

U = ±2 arctg
dn
[
(ζ + ζ0), k

]
k sn

[
(ζ + ζ0), k

] , 0 < E < 1. (52)

Solution (51) could be written in another form, namely

U = π − 2 am
[
K(k)− F (ψ, k), k

]
, ψ = ± am

[
1

k
(ζ + ζ0), k

]
. (53)

Here sn(ζ, k), cn(ζ, k), dn(ζ, k) are elliptic sine, cosine and Jacobi delta-function corre-
spondingly, F (ψ, k) and K(k) — incomplete and complete elliptic integrals, and am(ζ, k)
— Jacobi amplitude. Solution (53) is obtained from (51) using well known relation between
incomplete elliptic integrals of the first kind

F (φ, k) + F (ψ, k) = K(k), (54)

with arguments related by the condition√
1− k2 tg φ tgψ = 1. (55)

Solutions (51), (53) coincide in the period 0 < ζ < 2K(k) and are different in the extension
of the solution outside the period. Function (51) is extended periodically and (53) increases
monotonically in the form of the “ladder”. Functions (50)–(53) have different pattern of
change. Solution (50) asymptotically tends to limits (0, 2π). It is shown at the left of
Fig. 2 where is shown graph of U(x, z) for the solution (50) with

W = x cosψ0 + y sinψ0 + 2 sin(z − vt). (56)
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Figure 2: Graphs of solutions (50) at the left, and (53) at the right at y = 0, t = 0,
ψ0 = π/4, k = 0.99999, ζ0 = 0.

Figure 3: Graphs of solution (50) with ansatz (40) at z = 0 and t = 0 (at the left), t = 1
(at the centre), t = 2 (at the right); v = 1, σ = 0.5, ζ0 = 0.1, a1 = a2 = 0.56, a3 = 0.79.

Graph has a form of kink with transition domain modulated by the periodic function.
Function (53) as mentioned above increases monotonically and its graph with the same

functionW is shown at the right of Fig. 2. Solutions (51), (52) change periodically achieving
maximum value U = arccosE. On the Fig. 3 are shown graphs of solutions (50) with ansatz
sin θ1(α) (40). Note that for the given ansatz real solution exists not for all (x, y, z, t).
Domains where real solution does not exist correspond to the gaps on the graph. With
increase of time such domains increase for the given solution.

5 Conclusion

We note finally:
1) New approach to the integration of NKG equation is proposed relating to the (3+1)

equation. However it could be easily extended on the spaces of any dimension (n + 1).
Moreover it has been shown in [26] that with increase of n number of possible algebraic
equations having ansatz α(x, y, z, . . . , t) as root increases, also increase the number of
arbitrary functions in the anzatz equation. For the three dimensional space equation (19)
is unique [19].

2) New approach allows to find the solution at least in the form of quadrature for any
nonlinear integrable function V ′(U). For the particular form of functions V ′(U) represented
by the truncated exponential, ( sh nU, ch nU), Taylor, and Fourier series solution of NKG
equation is reduced to the calculation and inversion of algebraic, elliptic, ultraelliptic and
Abel integrals with genus defined by the number of summands.
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The influence of contact angle’s hysteresis on the cylindrical drop’s dynamics
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Figure 1: Geometry of a problem.

The influence of contact angle’s hysteresis on the cylindrical
drop’s dynamics

Aleksey Alabuzhev
alabuzhev@mail.ru

Abstract

The forced oscillations of a cylindrical drop are considered in the present work.
The drop is suspended in the different fluid and confined by two parallel rigid plates,
subjected to vibrations. The vibration axis is perpendicular to the symmetry axis. The
amplitude of vibrations is small in comparison with the drop radius. The equilibrium
contact angle is right. The specific boundary conditions, assumed by Hocking (1987),
is applied to take into account: the contact line starts to slide only when the deviation
of the contact angle exceeds a certain critical value. As a result, the stick-slip dynamics
can be observed.

1 Problem statement

This investigation assumes that a drop with a density ρ∗i is suspended in a fluid of different
density ρ∗e. In the absence of external forces the drop has cylindrical shape with radius
R∗. The system is confined between two parallel rigid plates, subjected to vibrations
perpendicular to the drop axis (fig.1). In the absence of vibrations a contact angle between
a lateral surface of a drop and bounding plate equals π/2. The thickness of the layer is h.
The equilibrium contact angle between the lateral surface of drop and the rigid plate is θ0.

The vessel is closed at the infinity and undergoes high-frequency oscillations according
to the law r=R+Ajcos(ωt) (r, R are the radius - vectors of an arbitrary point of a drop
surface in the plane parallel to the rigid plates (horizontal plane) in the presence and
absence of vibrations, respectively, A is the amplitude of vibrations, j is the unit vector in
a horizontal plane). The vibration amplitude A is small as compared to R. It is assumed,
that the lateral surface of the drop is r = R+ ζ(α, z, t) where α is the polar angle.

19



Proceedings of XL International Summer School–Conference APM 2012

Velocity of motion of a contact line is assumed to be proportional to a deviation of a
contact angle from equilibrium value [1]:

ζt =


Λ (γ − γ0) , γ > γ0

0, |γ| < γ0

Λ (γ + γ0) , γ < −γ0

(1)

The following quantities are chosen as the scales: time -
√

(ρ∗e + ρ∗i )h
2R/σ, length - R,

height - h, potential of velocity - A
√
σR/((ρ∗e + ρ∗i )h

2), density -ρ∗e +ρ∗i , pressure - Aσ/h
2,

deviations of the drop surface - A.

p = −ρ
(
ϕt +

1

2
ε(∇ϕ)2

)
,∆ϕ = 0, (2)

r = 1 + εζ [n · ∇ϕ] = 0, Ft + ε∇ϕ · ∇F = 0, [p] = −div n, (3)

z = ±1

2
: veck · ∇ϕ = 0 (4)

z = ±1

2
, r = 1 + εζ : ζt =


λ (γ − γ0) , γ > γ0

0, |γ| < γ0

λ (γ + γ0) , γ < −γ0

(5)

Here v = ∇ϕ - velocity potential, F = r − R − εζ(α, z, t) - drop surface, p - pressure,
n = ∇F

|∇F | - normal vector, k - unit vector of z-axis, γ (t) = ∓ζz|z=±1/2 - contact line’s de-
viation from equilibrium position, ζ - surface deviation of equilibrium shape. The effective
boundary condition (5) shows that the contact line is fixed, if the absolute value of the
deviation of the surface is less than some characteristic value of γ0. The square brackets de-
note the jump in value at the interface between the external fluid and the drop in the index
of the unknown functions are denoted derivatives with respect to relevant variables. The
boundary problem (2)-(5)contains the following dimensionless parameters: small vibration
amplitude - ε = A/R, capillary parameter λ=Λ

√
h2R(ρ∗e + ρ∗i )/σ, the ratio of radius to

height - b = R/h, density of internal fluid - ρ = ρ∗i /(ρ
∗
e + ρ∗i ), density of external fluid -

ρ = ρ∗e/(ρ
∗
e + ρ∗i ).

2 Method of solution

Despite the fact that the boundary condition (5) makes the problem (2)-(5) is nonlinear,
the solutions for the functions ϕ, ζ, p can be represented as a series (see [2]-[4]):

ϕi =

∞∑
k=0

ak (t) I0
(
(2k + 1)πbr

)
sin (2k + 1)πz, (6)

ϕe =
∞∑
k=0

bk (t)K0

(
(2k + 1)πbr

)
sin (2k + 1)πz, (7)

ζ =
∞∑
k=0

ck (t) sin (2k + 1)πz, (8)

pi = −ρi
(
ϕit + ω2z cosωt

)
, pe = −ρe

(
ϕet + ω2z cosωt

)
, (9)
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bk (t) = ak (t)
I’0
(
(2k + 1)πb

)
K’0

(
(2k + 1)πb

) , ak (t) =
ckt (t)

I0
(
(2k + 1)πb

) . (10)

On the other hand, using the normal stress balance condition (3) , the solution of the
surface deviation ζ can be written as:

ζ =
bγ

cos
(

1
2b

) sin

(
z

b

)
+
∞∑
k=0

(
cktt
Ω2
k

+
(ρi − ρe)ω2gk cosωt

1− (2k + 1)2π2b2
sin
(
(2k + 1)πz

))
(11)

Here gk =
(

2(−1)k
)/(

(2k + 1)2π2
)

is Furie expansion coefficient of function z on

basic functions sin
(
(2k + 1)πz

)
, Ωk - eigen frequencies of cylindrical drop with free contact

line:

Ω2
mk =

m2 − 1 + 4π2b2k2

Fmk
Rimk r (1) , (12)

whereLk =m = 0, 1, 2, ... - azimuthal number, k = 0, 1, 2, ... - wave number, Rim0(r) =
rm, Rem0(r) = r−m,

Rimk(r) = Im(2πbkr)

for k > 1, Remk(r) = Km(2πbkr) for k > 1, Im, Km - modified Bessel functions , Fmk =

ρRimk (1)−Rimk r (1)Remk (1)
/
Remk r (1), Ri,emk r (r) = dRi,emk (r)

/
dr - subscript r is derivative

on radius r. In our solution m = 0.
Comparing the solutions 8 and 11 for ζ, we obtain a system of ordinary differential

equations for unknown amplitudes ck (t):

cktt + Ω2
kck = Ω2

kSkγ − Ω2
kLk cosωt, (13)

where Sk = bfk ces
(

1
2b

)
, Lk = (ρi−ρe)ω2gk

(2k+1)2π2b2−1
, fk = 2b(−1)k

(2k+1)2π2b2−1
cos
(

1
2b

)
, fk - Furie ex-

pansion coefficient of function sin
(
z/b
)
.

Equation (13) must be solved together with 95). Note that the series for ζ converges
very slowly. However, the eigen frequencies Ωk are growing rapidly, therefore, from some
k, can neglect the first term on the left side of equation (5) as compared with the rest, ie
. ck ≈ Skγ − Lk cosωt. Thus, using a finite sum and the solution of (8), we obtain

ζt =

N∑
k=0

ckt sin
(
(2k + 1)πz

)
+

∞∑
k=N+1

(
Skγt + Lkω sin (ωt)

)
sin
(
(2k + 1)πz

)
=

=

N∑
k=0

Dkt sin
(
(2k + 1)πz

)
,

(14)

where Dk = ck + Skγ − Lk cos (ωt). Substituting (14) into (5), we obtain the equation for
λ:

γt =

− N∑
k=0

(−1)kckt +
N∑
k=0

(−1)kLkω sin (ωt)−


λ (γ − γ0) , γ > γ0

0, |γ| < γ0

λ (γ + γ0) , γ < −γ0


N∑
k=0

(−1)kSk

. (15)

The system of differential equations (13), (15) was solved using the method of Gear.
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3 Results

The boundary condition of Hocking (5) shows that the contact line is fixed, if the contact
angle does not exceed a certain critical value. Otherwise, the contact line moves. Figures
(2-3) shows the areas in which the contact line is moving or at rest.

0 20 40 60 80 100ω
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0.6

0.8
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γ0

 

Figure 2: The diagram of contact line mo-
tion on the plane (ω, γ0), ρi = 0.3, b = 1.
The solid lines are determined by the con-
dition and separate the domains of oscilla-
tions with the fixed contact line, in gray and
with the contact line moving in the stick-
slip regime

0 40 80

0

0.2

0.4

0.6

0.8

1

γ0

Figure 3: The diagram of contact line mo-
tion on the plane (ω, γ0), (ρi = 0.7). b = 1
- solid, b = 1.5 - dashed, b = 2 - dotted.

Figures (4-5) show the dependence of the oscillation amplitude of the frequency of the
external influence of the capillary for different values of the parameter and the critical
value of contact angle. Previously, it was found that in the absence of hysteresis are
forcing frequencies at which the contact line is not moving. In the presence of hysteresis,
the contact line is not moving in a certain range of frequencies. By increasing the contact
angle values characteristic time during which the contact line is not moving, growing, and
the frequency range in which it is in motion, is shrinking.

4 Conclusion

The effect of contact angle hysteresis on the dynamics of liquid drops in equilibrium has
the form of a cylinder and axially bounded by two parallel solid surfaces under the action
of axial vibration. The equilibrium contact angle between the side surface of the droplets
and solid surfaces is assumed to be straight. Considered their own and forced vibrations of
the drop. The influence of the dynamics of the contact line was taken into account by an
effective boundary condition, allowing the contact angle hysteresis. Due to the dissipative
nature of the effective boundary condition there is a stable regime of nonlinear oscillations.
There is evidence to reject the surface and the frequency characteristics depending on the
constant Hawking, and the characteristic value of the contact angle. Previously, it was
found that in the absence of hysteresis are forcing frequencies at which the contact line
is not moving. In the presence of hysteresis, the contact line is not moving in a certain
range of frequencies. By increasing the contact angle values characteristic time during
which the contact line is not moving, growing, and the frequency range in which it is in
motion, is shrinking. For large values of the constant Hawking, when the contact line is
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Figure 4: Amplitude-frequency response
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Figure 5: Amplitude-frequency response
(γ0 = 10).λ = 0 - dotted line, λ = 3 -
dashed, λ = 5 - dash-dotted, λ = 10 - dash-
2-dotted

weakly interacts with the substrate and the dissipation is small, the possible existence of
resonances.
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Cyclic strength of metallic materials and thin walled
structures under the attack of corrosive media

Alexander R. Arutyunyan Robert A. Arutyunyan
Robert.Arutyunyan@paloma.spbu.ru

Abstract

To describe the corrosion fatigue crack growth, the modified Paris-Erdogan equa-
tion is presented. When formulating this equation the following consideration was
taken into account. The involvement of an aggressive environment in fatigue crack
growth depends on a complex interaction between chemical, mechanical and metal-
lurgical factors. The total crack extension rate under corrosion fatigue conditions is
approximated by a simple superposition of the crack growth rate in an inert atmo-
sphere and the crack extension rate due to aggressive environment. The Paris-Erdogan
equation is applied to describe the crack growth rate in an inert atmosphere. To for-
mulate the crack extension rate due to aggressive environment it was assumed that
the corrosive degradation of material is described by the first order chemical equation,
where the stress intensity factor is considered to control the chemical reaction. The
modified Paris-Erdogan equation was solved for different values of material param-
eters. The received crack propagation relations were used to formulate the fatigue
strength criterions for metallic specimen with a crack and thin walled structures. Any
engineering structure contains a certain numbers of initial micro cracks. Under the
cyclic stress and corrosion environment they start to develop. Two periods of crack
propagation can be distinguished: the initial, prolonged period, when the size of a
crack reaches the critical value, and the period of rapid progressing. This is the way
how the dominating crack is formed. However, it is not possible to indicate the time
and place of its formation. So the strength of the structure can’t be estimated by
the traditional methods of design, so the probabilistic methods must be applied. In
this paper the probabilistic corrosive fatigue failure criterion, based on corresponding
crack growth rate, is developed. The crack growth and fatigue failure curves according
to the presented theoretical relations are constructed. They are in good agreement
with the basic experimental results of the response of metallic materials to the attack
of corrosive media.

Financial support of the Russian Foundation for Basic Research (Grant N 12-08-
00594) is gratefully acknowledged.

The fatigue crack propagation law in inert environments is defined by the Paris-Erdogan
equation [1]

dl

dN
= C (∆K)m , (1)

where ∆K is stress intensity factor range, C, m are material variables, l is current value
of the crack length, N - the loading cycles.

Equation (1) covers the linear (in log(dl/dN)−log(∆K) coordinates) part of full fatigue
crack propagation diagram (curve 1 in Fig. 1).

When formulating the kinetic equation for the fatigue corrosive crack growth, the fol-
lowing consideration was taken into account [2, 3]. The involvement of an aggressive
environment in fatigue crack growth depends on a complex interaction between chemical,
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Figure 1: Kinetic diagrams of fatigue failure: for inert media (curve 1), for corrosive media
(curve 2).

mechanical and metallurgical factors which leads to the intensification of the crack growth
rate as it is shown in Fig. 1 (curve 2). Compare the curves 1 and 2 in Fig. 1 we can see
that for the large values of ∆K the influence of corrosive media on the crack growth rate
is negligible. Opposite, for the small values of ∆K the influence of corrosive media on the
crack growth rate is significant. To describe these experimental effects the total crack ex-
tension rate under corrosion fatigue conditions is approximated by a simple superposition
[3, 4] of the crack growth rate in an inert atmosphere and the crack extension rate due to
aggressive environment

dl

dN
= C (∆K)m +

dγ

dN
, (2)

where γ is the current depth of crack due to corrosive material degradation at the tip of a
crack.

To formulate the crack extension rate due to aggressive environment it was assumed
that the corrosive degradation of material is described by the first order chemical equation,
where the stress intensity factor is considered to control the chemical reaction

dγ

dN
= F (∆K) Nβ, (3)

where F is a function of ∆K and β is a constant. Further we will consider the power
relation for the function F : F (∆K) = K1(∆K)α (K1 and α are constants).

Taking α = m and introducing (3) into (2), we will receive the following kinetic equation

dl

dN
= (∆K)m

(
C +K1N

β
)
. (4)

Further, we will consider the propagation of a small through thickness crack in a large
plane specimen, for which ∆K = ∆σ

√
π l (∆σ is stress range). Introducing this value of

stress intensity factor range into (4) we will have

dl

dN
= (∆σ)mπm/2lm/2

(
C +K1N

β
)
. (5)
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For ∆σ = Const, l = l0 at N = 0 the solution of equation (5) is

l =

2−m
2

(∆σ)mπm/2

(
CN +K1

Nβ+1

β + 1

)
+ l

2−m
2

0

 2
2−m

. (6)

If K1 = 0 from (6) follows the Paris-Erdogan relation for the propagation of fatigue
crack in inert environments

l =

[
2−m

2
(∆σ)mπm/2CN + l

2−m
2

0

] 2
2−m

. (7)

Compare the relations (6) and (7), one can see that the crack grows more intensive
in corrosive media than in inert media. In Fig. 2 the theoretical crack growth curves
according to the relations (7) (curve 1) and (6) (curve 2) are presented.

Let’s consider the fatigue strength criterions for a metallic specimen with a crack in
corrosive and inert media. Taking l = l∗ (l∗ is final crack size at failure) in (7) and (6) we
will receive the corresponding failure criterion for the inert media

(∆σ)mCN =

2

(
l
2−m

2
∗ − l

2−m
2

0

)
(2−m)πm/2

. (8)

and for the corrosive media

(∆σ)m
(
CN +K1

Nβ+1

β + 1

)
=

2

(
l
2−m

2
∗ − l

2−m
2

0

)
(2−m)πm/2

. (9)

In Fig. 3 in log(∆σ)− logN coordinates are presented the theoretical fatigue fracture
curves according to criterions (8) (curve 1) and (9) (curve 2). As it follows from this figure
for the relatively large values of ∆σ the influence of corrosive media on the fatigue failure is
negligible, while for the small values of ∆σ the influence of corrosive media on the fatigue
failure is significant.

Figure 2: The crack growth curves according to the relations (7) (curve 1) and (6) (curve
2), ∆σ = 150 MPa.
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Figure 3: The theoretical fatigue failure curves according to criterions (8) (curve 1) and
(9) (curve 2).

When formulating the probability fatigue fracture model we will take into account the
following assumptions [5, 6]. An engineering structure is considered as a statistical system
containing n initial micro cracks l0i (l0i ≤ li ≤ l∗, i = 1, n).

Let’s assume that the cracks size distribution is random and is defined by the Poisson’s
law

G(l) =
e−λ l0i − e−λ li(N)

e−λ l0i − e−λ l∗
, (10)

where λ is a constant.
We assume also that the number of cycles to failure N is random one and defined by the

Poisson’s law. It follows from (10) by introducing into it the value of crack length l defined
by the relation (6). Under the cyclic loading and corrosive media cracks are developed
and the failure of structure follows when the size of a crack reaches the critical value. The
corresponding number of cycles N = min (Ni) (where Ni is the number of cycles to failure
for the individual i-th crack). So we have the minimal value distribution problem for the
random variable Ni. Such distribution was considered by Gumbel [7]

H(N) = 1−
[
1−G(N)

]n
. (11)

For the great number of cracks instead of formula (11) the following asymptotic relation
can be used [7, 8]

H(N) ≈ 1− exp
[
−nG(N)

]
. (12)

Going to the reliability function R(N) we will have

R(N) = 1−H(N) = exp

{
−ne

−λ l0i − e−λ li(N)

e−λ l0i − e−λ l∗

}
. (13)

For the given reliability level R∗ the following failure criterion can be derived from
formula (8)

(∆σ)m
(
CN +K1

Nβ+1

β + 1

)
=

2

(2−m)πm/2

( 1

λ
ln

(
1

B

)) 2−m
2

− l
2−m

2
0i

 , (14)
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Figure 4: Theoretical fatigue failure curves according to the criterions (15) (curve 1) and
(14) (curve 2). By points are shown the experimental results [9].

where B = e−λl0i +
e−λl0i − e−λl∗

n
lnR∗.

Taking K1 = 0 in (14), we will have the failure criterion for the inert media

(∆σ)mCN =
2

(2−m)πm/2

( 1

λ
ln

(
1

B

)) 2−m
2

− l
2−m

2
0i

 , (15)

In Fig. 4 in σ − log(N) coordinates are presented the theoretical fatigue failure curves
according to criterions (15) (curve 1) and (14) (curve 2). The points correspond to the
experimental results [9].

To draw the theoretical curves in Fig. 2-4 the following values of parameters were used:
C = 7, 5 · 10−11[m · cycles]−1 · [MPa]−4, l∗ = 10−1m, l0i = 10−6m, m = 4, λ = 5[m]−1,
β = 1, K1 = 3 · 10−15[m]−1 · [cycles]−2 · [MPa]−4, n = 20, R∗ = 0, 8.
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Fracture energy consumption in speed loading experiments

Robert A. Arutyunyan Kira S. Yakimova
Robert.Arutyunyan@paloma.spbu.ru

Abstract

The nonlinear damage summation law expressed in terms of relative values of
energy consumption is proposed. For the verification of the damage summation law
the experiments on the plane specimens made of polymethylmetacrylate under the
several values of speed loading were carried out. As it follows from the experiments the
deviation from the linear damage law is essential and the value of the fracture energy
depends on the application sequence of speed loading. For example, for two levels
of speed loading (1mm/min and 8mm/min) the energy consumption at fracture is
minimal, when the speed of initial loading is equal to 1mm/min. So from the received
experimental results follow that the energy consumption at fracture is dependent on
the regimes of speed loading and they should be taken into account in design and
exploitation of different equipments for processing and milling the solid materials.

Financial support of the Russian Foundation for Basic Research (Grant
N 11-08-00763) is gratefully acknowledged.

In many practical applications such as building industry, mining and processing, food
industry, pulp and paper industry and others the most important problem is to define the
regimes of loading with the minimal fracture energy consumption. In many of mentioned
industries the energy consumptions for fracture are significant and not well grounded. To
solve the problem it is necessary to compare the different regimes of loading and find those
with the optimal value of energy consumption for fracture, so they can be recommended
in the designing and running of different processing and fracture equipments.

To estimate the optimal energy consumption for fracture, the energy consumptions
in different loading programs are compared. The energy consumptions are defined in
accordance with the damage summation law, expressed in terms of relative value of energy
consumption [1]. If the sum of the relative value of energy consumption is less one then the
energy consumption is optimal. So we can define the reliable boundary of optimal value
of the fracture energy.

The notion of damages and the linear laws of summation of damages [2-5] were consid-
ered in the beginning of the last century as applied to fatigue fracture by Palmgren (1924)
and fracture under creep condition by Robinson (1938) and Baily (1935). Miner (1945)
formulated a linear law of summation of damages for the case of alternation of cyclic and
prolonged static loadings. In the case of the multi stage fatigue loading a specimen is tested
by the stress σ1 during N1 cycles, after that it is tested by the stress σ2 during N2 cycles
up to fracture, etc. At stress level σk the specimen is tested up to fracture at the number
of cycles Nk. If NiR (i = 1, 2, ..., k) is the number of cycles to fracture under the action of
stress σi, then the relations N1/N1R, N2/N2R, ..., Ni/NiR, ..., Nk/NkR are the fractions of
damage during the first, second and k-th stages of loading cycles.

The same way can be introduced the damage concept for the case of speed loading
experiments. Let during the time t1 a specimen is tested under the speed level V1 after
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that it is tested during the time t2 under the speed level V2 up to fracture and so on. If tiR
(i = 1, 2, ..., n) are the time to fracture at the speed level Vi in sustained loading, so the
relations t1/t1R, t2/t2R, ..., ti/tiR, ..., tn/tnR are the fractions of damage in the processes of
the first, the second and the n stages of speed loadings.

The linear law of summation of damages during alternation of different speed loadings
can be expressed as

n∑
1

ti
tiR

= 1. (1)

If n = 2, then the linear damage summation law is

t1
t1R

+
t2
t2R

= 1. (2)

In our experiments, carried out under the action of different speed loading regimes,
the systematic deviations from the linear damage summation law (2) were established. In
this connection, the non linear modifications of the linear damage summation law will be
considered. In particular, (

t1
t1R

)m
+

(
t2
t2R

)m
= a, (3)

where m, a are constants.
As it was mentioned, in many applications the problem is to choose the regimes of

loading with the minimal consumptions of the fracture energy, so they can be recommended
in the designing and running of different processing and fracture equipments.

To find such loading regimes we will operate on the damage concept defined in terms
of relative value of energy consumption and the damage summation law will be formulated
using such definitions. In the case of relation (3) we have the following relation.(

W1

W1R

)m
+

(
W2

W2R

)m
= a, (4)

whereW1,W2 are the current values of energy, respectively, during the V1 and V2 speed
levels loadings, W1R, W2R are the values of energy consumption for fracture at speed levels
V1 and V2 sustained loading.

The experimental evaluation of hypotheses of summation of damages was investigated
in experiments for the specimen made of polymethylmetacrylate for two levels of speed
loading V1 = 1mm/min and V2 = 8mm/min. Experiments were carried out at room
temperature for plane specimens of the following sizes: the length of the working part
was 60 mm, the width was 10 mm, and the thickness was 5 mm. The speed loading were
performed on Lloyd 30k PLUS machine.

Six specimens were used to define the energy consumptions for fracture in tension
experiments at the speed levels V1 and V2 in sustained loading. The typical diagrams,
received in these experiments are shown in Fig. 1.

The results of calculation of damage defined in terms of the relative value of energy
consumption based on the experiments are shown in Fig. 2 and Tables 1, 2.

The solid circles in Fig. 2 correspond to the case when the initial loading is in V1

regime, the cross marked points go to the case when the initial loading is in V2 regime.
As it follows from Fig. 2 and Tables 1, 2, the energy consumption for fracture is

minimal, when the speed of initial loading is equal 1mm/min.
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Table 1: The energy consumption during the alternation of two levels of speed loading
(V1 = 1mm/min and V2 = 8mm/min). First loading is in V1 regime.

W1/W1R W2/W2R W1/W1R +W2/W2R

0,127 0,883 1,010
0,125 0,501 0,626
0,135 0,754 0,889
0,010 2,029 2,039
0,011 1,335 1,346
0,395 0,304 0,699
0,371 0,312 0,683
0,048 1,375 1,423
0,054 0,759 0,813
0,238 0,498 0,736
0,225 1,203 1,428

Table 2: The energy consumption during the alternation of two levels of speed loading
(V1 = 1mm/min and V2 = 8mm/min). First loading is in V2 regime.

W2/W2R W1/W1R W2/W2R +W1/W1R

1,461 0,078 1,539
2,133 0,080 2,213
1,222 0,127 1,349
0,019 1,083 1,102
0,020 0,715 0,735
0,620 0,349 0,969
0,592 0,634 1,226
0,080 0,733 0,813
0,166 0,634 0,800
0,199 0,688 0,887
0,251 0,651 0,902
0,366 0,532 0,898
0,368 0,472 0,840
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Figure 1: Tension stress-deformation diagrams: at the speed levels V1 (curve 1) and V2

(curve 2).

Figure 2: Accumulation damages by the energy consumption during the alternation of two
levels of speed loading (V1 = 1mm/min and V2 = 8mm/min). • - first loading is in V1

regime, + - first loading is V2 in regime.

Conclusions

The nonlinear damage summation law expressed in terms of relative values of energy
consumption in speed loading experiments is suggested.

To estimate the optimal energy consumption, energy consumptions for fracture for two
levels of speed loading (V1 = 1mm/min and V2 = 8mm/min) were defined. It is shown,
that the energy consumption at fracture is minimal, when the speed of initial loading is
equal to 1 mm/min.

The received results may be used in designing and running of different processing and
fracture equipments.
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Abstract

The study concerns the problems of optimal design of shields structures produced
from various given materials. The number of materials is supposed to be finite and
consequently the admissible design set consists of separate discrete values. The im-
pactor was modelled as a short axisymmetrical rigid body that strikes the compound
structure consisting of a system of solid plates. The ballistic limit velocity is taken as
a performance criterion of the designed layered structure that has to be maximized
under some constraints. Best distributions of given materials are found and presented.

1 Introduction

The problems of penetration of rigid projectiles (strikers) into deformable media at super-
sonic entry velocities and the problems of optimal design of layered shield structures are
of significant practical and theoretical importance.

Wide survey on the mechanics of penetration of projectiles into targets was presented
by Backman and Goldsmith [1] and Goldsmith [2] (taking into account complicated con-
ditions). Bivin et al. [3], [4] devoted their study to determination of the dynamic charac-
teristics of deformed media by the method of penetration. Cavitation and the influence of
head shape in attack of thick targets by non-deformable projectiles was investigated by Hill
[5]. Cavitation for vertical input of strikers into elastic-plastic media was also investigated
by Bivin [6]. Experimental aspects of considered problems are described in the book [7].
Laboratory scale penetration experiments into geological targets up to impact velocities of
2.1 km/sec were studied by Forrestal et al. [8]. Experimental and theoretical results on
the problem of penetration into layered materials are contained in the paper of Bivin [9].

Some shape optimization problems have been solved for rigid striker penetrating into
deformable media and published by Ben-Dor et al. [10] - [14] and Banichuk et al. [15] -
[17], Ostapenko et al. [18], [19]. Some problems of optimization for homogeneous shield
structures and for the structure of a layered slab with the penetration of a rigid striker
(in the case of normal impact) were studied by Aptukov [20], Aptukov and Pozdeev [21],
Aptukov et al. [22] - [24]. In [20], [22] Aptukov et al. considered cylindrical and cone-
nosed impactors and determined the optimal distribution of the mechanical characteristics
of a non-homogeneous plate using Pontryagin’s maximum principle. In [23] (Aptukov et
al.) solved the discrete problems of optimization of a layered plate when the shield was
consisted of several layers of different materials which were chosen from a given set. In the
monograph [24] these investigations were summarized by Aptukov et al. Note that in [21],
[22] the problem of optimization of layered structure was investigated using linear relation
between dynamical rigidity Hd and the material density ρ: Hd = c1ρ+ c2 (c1, c2 - material
constants). As a result piece-wise constant optimal design (layered structure) has been
found. Kanibolotsky and Urzhumtsev published a book [25], devoted to analysis and design
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of layered structures, where they included the results concerning the optimization of shield
structure under impact.Alyokhin and Urzhumtsev [26] devoted their studies to optimization
of layered mechanical systems including the problems of penetration of projectiles into
layered structures. In the book [27] Ben-Dor, Dubinsky and Elperin studied as the problems
of shape optimization of impactors penetrating into ductile, concrete and some composite
media as the problems of investigation of ballistic properties. The third part of the book
is devoted to optimization of multi-layered shields including spaced and two-component
ceramic shields. In the recent book [28] Bazhenov and Kotov presented important results
on dynamical contact interaction of rigid bodies and deformable solids.

All mentioned problems devoted to optimization of shield structures were investigated
using necessary extremum conditions and local search. In the given below investigation we
present global approach to finding non-local optimal layered shield structures. We consider
a multi-component armor consisting of a system of solid homogeneous plates. The impactor
is modelled as a short cylindrical rod that strikes the compound plate. It is suppose that
the compound plate breaks progressively into a cone of fractured materials. The goal of
this paper is to determine the layered structure that provide the maximum of the ballistic
limit velocity considered as optimized functional.

2 Basic relations

We consider a multi-layered structure that is consisted from n homogeneous layers (plates)
made of r different given materials (n, r - given numbers). Suppose that materials
of these plates occupy the intervals xi ≤ x ≤ xi+1 in the normal to the plate direc-
tion, such that xi+1 = xi + ∆i, x0 = 0, xn = L, i = 0, 1, ..., n − 1, n where ∆i -
thickness of the plate with number i and L =

∑
∆i - thickness of composed struc-

ture. Material properties of the layer with number i are characterized by two con-
stants: Ai0 (dynamical hardness)and Ai2 (density) which correspond to the material with
number s, i.e. Ai0, A

i
2 ∈ {A0s, A2s} , s = 1, 2, ..., r. Properties of the whole shield

structure will be described by piece-wise constant functions A0(x), A2(x) such that
A0 = Ai0, A2 = Ai2, x ∈ [xi, xi+1). For convenience the following piece-wise constant
function t = t(x), x ∈ [0, L] , t ∈ {ts = s} is introduced and natural parametrization of
structural properties is used: A0

(
t(x)

)
t=ts=s

= Ai0, A2

(
t(x)

)
t=ts=s

= Ai2. To evaluate the
"cost" of the material used in the considered multi-layered shield structure we take the
integral functional

K(t) =
∫L

0 k
(
t(x)

)
dx (1)

where k
(
t(x)

)
is the density of material (k(t(x)) ≡ ρ(x)) or the material cost per unit of

length.
Penetration of the rigid striker into multi-layered structure is described by the following

differential equation and boundary (initial) condition at x = 0:

Mv
dv

dx
= D, (v)x=0 = vimp , D = −πR2

(
A0 + κA2v

2
)

(2)

where R is the radius of cylindrical striker and κ - coefficient characterizing the flatness
of the striker nose ([26], [29]). If the initial penetration with v(0) = vimp is such that
v(x) > 0, 0 ≤ x < L, (v)x=L = 0 then the impact velocity is called "ballistic limit velocity"
v(0) = vimp = vBLV and is taken as a main characteristic of the layered structure. In what
follows it will be considered as an optimized functional

J(t) = vBLV (t) (3)
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To evaluate the ballistic limit velocity (impact velocity vimp = vBLV ) we introduce new
space variable ξ: ξ = L−x, (dξ = −dx) and transform the initial-value problem (2) to the
following form

dv
2

dξ
= β

(
α+ v2

)
,
(
v2
)
ξ=0

= 0, α = A0/(kA2), β = 2πr2A2/M (4)

Determination of the velocity distribution v(ξ) is performed for 0 ≤ x ≤ L using equal
spaced nodes ξi: ξi+1 = ξi + ∆, i = 0, 1, ..., n and the following notation α(t(ξ))t=ts =
αi, β(t(ξ))t=ts = βi, ξ ∈ [ξi, ξi+1), (v2)ξ=ξ0=0 = 0, (v2)ξ=ξN=L = v2

BLV . After integration
of ordinary differential equation (4) with respect to ξ for ξ ∈ [ξi, ξ1+1] we will have

ln
[
(αi + v2

i+1)/(αi + v2
i )
]

= µi (5)

Here µi = βi∆ξ, ∆ξ = ξi+1−ξi, i = 0, 1, ..., n; v0 = 0 , vN = vBLV . Performing elementary
algebraic transformations we obtain the following relation between v2

i and v2
i+1:

v2
i+1 = αi

((1 +
v2
i

αi

)
exp(µi)− 1

 (6)

3 Genetic algorithm for finding global optimal design of
shield structure

Considered problem consists in optimization of multi-layered space shield structure such
that the piece-wise constant function t(x) maximizes the ballistic limit velocity vBLV un-
der constraint imposed on the cost (mass or weight or other important characteristics)
functional K(t) i.e.

J∗ = J(t∗) = max
t
vBLV (t), K(t) ≤ K0 (7)

Here K0 is given problem parameter. To solve formulated problem of maximization of
vBLV (t) and finding of global optimal design (distribution of layers and materials) taking
into account presented isoperimetric inequality (7) we apply the penalty function approach
based on maximization of adjoint functional Ja:

Ja(t) = J(t)− λ(K(t)−K0), λ =

{
0, if K(t)−K0 ≤ 0,
λ0 > 0, if K(t)−K0 > 0

(8)

where λ0 - positive penalty multiplier.
Solution of the problem of the functional Ja(t) maximization for various given values

of the problem parameter K0 ("cost" of materials) is performed with the help of a genetic
algorithm (GAS [30]). We suppose that the interval [0, L] of variable ξ is divided by the
node points ξi, i = 0, 1, ..., n into N equal parts of the length ∆x = L/n. For each subin-
terval the parameters A0 and A2 take the values corresponding to the chosen materials.
Populations under consideration consist of N individuals represented admissible piece-wise
homogeneous shield structure. The number N is supposed to be even and is kept constant
in the population renewal process. Each j -individual of the population is described by the
set of values (elements) t(j, i) representing the design variable for corresponding subinter-
val xi ≤ x ≤ xi+1. The "best" individual, i.e. the set t(j, i) maximizing the augmented
functional Ja is sought by using the genetic algorithm.

37



Proceedings of XL International Summer School–Conference APM 2012

The first step of the algorithm consists in initialization of population that is assigned
random values taken from [1,...,r] to each element t(j, i). For created individuals (j=1,...,N)
of initial population we compute augmented functional Ja and find the individual having
the maximal value of the functional. Using initial data for the next steps of the algorithm
it is possible to determine new population consisting of N individuals and to perform in
what follows successive maximization of the functional Ja.

At the second step of the algorithm we perform successive selection of N/2 individual
pairs - "parents" to obtain N/2 pairs of individuals - "children", those constitute the new
population. Selection of the first parent ("a") is performed by the following manner. Some
natural number NT < N is chosen and then NT individuals are selected by the random
way. From this set of individuals we preserve and use only one individual having the
maximal value of augmented functional Ja. Similarly we find the second parent ("b") and
put together the first pair of individuals. All together we compose N/2 of such pairs.

The third step of the algorithm consists in obtaining of two children from each parent
pair of individuals. To this purpose we take some constant value from the interval [0,1],
that is called as crossover probability pCO. Then for each parent pair it is generated random
number pr from interval [0,1] and random number m from [0,...,n-1]. If it is appeared that
pr ≤ pCO then the values of design variables (elements) of children for i=0,...,m are copied
from their parents "a" and "b", but the meaning of these elements (for i=m+ 1,...,n− 1)
are obtained with the help of crossover. The latter means that for child "a" we copy the
values of the corresponding elements of the parent "b" and vice versa. Successive sorting of
all parent pairs and performing of described operations lead to obtaining of N individuals
- children, that compose new population.

The fourth step of the algorithm consists in mutation of obtained new population. This
step is necessary not to stick at the local maximum of the considered functional. To realize
the mutation procedure we take some small enough (∼ 0.01) parameter pm (probability
of mutation). Then for all elements of each individual of the population we generate the
random number pr from the interval [0,1]. If pr ≤ pm then the value of design variable for
considered element is replaced by the arbitrary value, satisfying given constraints (from 1
to r). For obtained new population we compute the functionals Ja for all numbers j and
select the best individual. Then we go to the second step of applied algorithm. Note that
if the best child from new population is appeared to be worse then the best parent from
previous population then we replace it by this parent. Thus the finding process of global
maximum will be monotonic.

4 Numerical results
Optimal distributions of materials t(x) have been determined for different values of the
problem parameters with the help of described genetic algorithm. The parameters of
computational process have been taken as n = 20, N = 10, NT = 4, pCO = 0.5, pm =
0.05. Calculations were complicated after generation of 10000 populations.Characteristics
of materials considered as admissible for optimal design of nonhomogeneous shield structure
are taken from [29], [31]. The following materials were considered:

s=1 - aluminun (A01 = 350 · 106 N/m2, A21 = 2765 kg/m3)
s=2 - soft steel (A02 = 1850 · 106 N/m2, A22 = 7830 kg/m3)
s=3 - copper (A03 = 910 · 106 N/m2, A23 = 8920 kg/m3)
s=4 - duraluminum (A04 = 1330 · 106 N/m2, A24 = 2765 kg/m3)
The results of numerical solution are presented in Fig.1 for the following problem pa-

rameters: L = 0.1m, R = 0.005m, M = 0.05kg, κ = 1, λ0 = 106 m3/kg · sec. The variant
(a) corresponds to the optimal structure when the constraint on the shield mass is not
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Figure 1: Optimal material distributions

taken into account. In this case the optimal structure is composed of two layers: the first
in the order of penetration - copper (s = 3), the second - steel (s = 2). The ballistic limit
velocity vBLV = 1630 m/sec, K = 816 kg/m2. The variants (b) and (c) correspond to the
values of mass constraint per unit of shield square K0 = 700 kg/m2 and K0 = 500 kg/m2,
respectively. The third layer - duraluminum (s = 4) is presented in the optimal structures
(b) and (c). The values of shield mass and the ballistic limit velocity are: K = 698 kg/m2,
vBLV = 1468 m/sec for the case (b) and K = 495 kg/m2, vBLV = 1133 m/sec for the
case (c). The optimal structure (d) for K0 = 300 kg/m2 has the only layer - duraluminum
(s = 4) with K = 276 kg/m2 and vBLV = 815 m/sec. From the obtained results it is
follows that the inertial properties of shield material (A2 - density) are more actual for
the high velocities of strikers and heavy materials must be presented in front layers of the
optimal structures. For low velocities the dynamical hardness of materials A0 will be more
actual.

5 Some notes and conclusions

In the paper we presented formulation and analysis of the problem of optimization of
multi-layered shield structures that dynamically interacted with rigid axisymmetric bodies
(strikers, impactors) and characterized by such functionals as ballistic limit velocity, mass
of the shield structure and its "cost" and other.

In the previous publications devoted multi-layered structures the finding of the best
solutions have been performed in frame of "local" search. It means that the mathematical
programming methods of local extremum finding or necessary optimality conditions of the
optimal control theory have been used in these studies to find optimal design. In contrast to
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them we developed the procedure of global optimal finding based on evolutionary stochastic
methods (genetic algorithm).

Note also that in proposed paper we developed the procedure of analytical integra-
tion of dynamic equation for each separate homogeneous plate that gave us possibility to
perform rigorous evaluation of ballistic limit velocity in effective manner (in the sense of
computational time consumption for integration that must be performed each considered
admissible variant of multi-layered shield structure).
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Abstract

Vibrational conditions are very common for many of natural and artificial material
processing devices such as grinding and rod mills, conical and jaw breakers, screening,
conveying and feeding devices and also hydropower, construction and other machines.
It is known, that vibration and percussive impact lead to increase of risk of facility
parts breakdown and even catastrophes. Decrease in material durability under such
impacts referred to as fatigue phenomenon is well investigated. However, wearing of
parts of nominally fixed joints referred to as fretting-wear is not intimately examined.
Wearing of this kind occurs in bolted-type connections, rotating bearings backs, rod-
sleeve joints, leaf springs, gears, sockets and other junctions. This article deals with
the fretting-wear effect on facility parts, and its origin consisting in relative micro-
and occasionally macro-movability of junctions. The effect is considered in terms of
simple physical models. Some recommendations on design and handling of relevant
machinery are presented.

1 Introduction

A great number of minerals and waste products processing machines such as ball and
rod mills, cone and jaw crushers, screens, conveyors and feeders, operate in presence of
vibration and impact stress. It does also hydropower, construction and many other ma-
chines. Both the vibration and the impact stress are known to cause a severe risk of parts
break-down or even industrial disasters. The phenomenon of material strength deteriora-
tion caused by fatigue is well studied. However, the same could not be said about another
effect of importance, which is the wear of nominally fixed joints and parts subjected to
aforementioned factors – the effect referred to as the fretting wear. Such a wear takes place
in bolt connections, flange joints, roller bearing fit surfaces, bushing-shaft connections, leaf
springs, gears, couplings and other devices. The byproducts of the wear remaining within
the contact clearance increase the wear intensity. In addition the intensity tends to be
increased due to water penetration in the contact area and electrochemical corrosion. The
aforesaid effect has recently come into the focus of many researchers (see e.g. [1 - 4]).
The aim of this paper is to emphasize the influence of the said effect, to study the physical
nature of the wear believed to be caused by relative micro- or macromobility of joints, to in-
vestigate this effect in terms of simple physical models and to state some recommendations
for the aforesaid devices design and exploitation.
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2 The effect of vibration and impacts on the effective dry
friction coefficients, microslip of adjacent parts

The effective coefficients of dry friction at rest f1, i.e. the friction coefficients effective in
presence of constant or slowly changing forces , tend to decrease under vibration reaching
in some cases zero, i.e. the system behaves as if the dry friction disappears.

Let’s consider a system consisting of a perfectly rigid body pressed against a rough
surface with the force N while a harmonic force Φ = Φ0 sinωt acting independently, the
latter being directed either lengthwise or perpendicular or transverse to the surface (Fig.1,
a).

Figure 1: Illustration to definition of effective friction coefficients: a) Disturbing force effect:
1 – lengthwise force, 2 – perpendicular force, 3 – transverse force; b) Surface vibration effect:
1 – lengthwise vibration, 2 – perpendicular vibration, 3 – transverse vibration

Hence the effective coefficients of dry friction in rest, i.e. the friction coefficients in
relation to body moving force S, will correspondingly have the following values [5, 6]:

f
(=)
1 = f1(1− w

f1
), f

(⊥)
1 = f1(1− w), f

(•)
1 = f1

√
1− (w/f1)2, (1)

where f1 – is “usual” coefficients of dry friction at rest , while

w = Φ0/N (2)

–is called “coefficient of overload”.
Formulas (1) remain valid for the case when force Φ is absent (Fig.1, b), but the surface

will perform harmonic oscillations in corresponding directions according to the law A sinωt
(A–amplitude, ω–oscillation frequency). The coefficient of overstress is to be calculated
using the formula :

w = mAω2/N, (3)

where m – is body mass.
Finally, if normal force N represents the weight of the body mg, then

w = Aω2/g. (4)

The formulas (1) are valid only when coefficients f (=)
1 , f

(⊥)
1 and f

(•)
1 are positive.

With greater values of the overstress coefficient w an apparent variation of friction mode
takes place; in this case one may consider the effective coefficients of dry friction to be
equal to zero.

The forecited formulas have been verified through experiments. They explain the effect
of microslip in nominally fixed parts contacting by means of dry friction. The effect will
be explained below in more details using three simple models.
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Regarding the impact stress influenced systems, it was shown by D.M. Tolstoy ex-
periments [7, 8], that even a comparatively slight action of impact stress may result in
considerable reduction of the effective coefficients of dry friction f

(⊥)
1 even though for

a very short time. During the experiments a ball of 0.45g mass when dropped from 4cm

height on a body of 1176g mass caused diminishing of coefficient f (⊥)
1 as compared to

coefficient f1 by 25 %. Theoretical explanation of this effect is given in papers [6, 9].

3 Model 1 – a solid body on a vibrating surface

Let us consider the simplest model representing vibration and impact action on contacting
parts interacting through dry friction forces (Fig. 2, a).

Figure 2: Solid body on a platform: a) – effect of vibrating platform , b) –effect of impact

A solid body 1 with mass m is placed on a rigid platform 2, performing lengthwise
oscillations according to the law:

ξ = A sinωt, (5)

where ξ – is absolute coordinate of the platform, A – amplitude, ω– vibration frequency.
A dry friction force F appears between the body and the platform; the body is pressed
against the platform by some constant force N , which may include the weight mg of the
body. The movement of the body in relation to the platform defined by coordinate x
associated with it can be described by the equation:

mẍ = mAω2 sinωt+ F (ẋ), (6)

where

F (ẋ) =

{
−fN for ẋ > 0
fN for ẋ < 0

−Nf1 < F (ẋ) < Nf1 for ẋ = 0,

(7)

where f and f1 are coefficients of sliding and static dry friction correspondingly.
The stable periodic behavior determined by equation (6), were considered in detail in

references [5, 6, 10]. Let us represent the results of this solution in a different form.
The mode of movements is assumed to depend on two nondimensional parameters:

w =
mAω2

Nf
, w1 =

mAω2

Nf1
. (8)
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Assuming f = 0.7f1, which approximately corresponds to the actual ratio between these
two coefficients for many materials, we obtain a single parameter w = mAω2/N. Fig. 3
illustrates the body relative oscillation semi-range dependence on this parameter. When
w <1/0.7=1.43 the body moves together with the platform – there is no sliding friction
between them (area I). When 1

0.7 = 1.43 < w < 1
0.472 = 2.12 the body slips alternatively

forward and backward, stopping its movement for finite time periods after each change in
the sliding direction (area II), while with w >1/0.472=2.12 (area III) it slips, changing
momentarily the direction of slippage.

Figure 3: Dependance of the body oscillation half-swing on the overstress parameter

Increase of w leads to increase of the half-swing B, which asymptotically approaches
the oscillation amplitude value A when w →∞.

The condition for no-slipping body behavior could be expressed by the following in-
equality:

f1N > mAω2 (9)

or alternatively, when f = 0.7f1, by the inequality:

fN > 0.7mAω2. (10)

When the body with a mass m is subjected to an impact with momentum I (Fig. 2, b) it
acquires velocity v = I/m. It results in a shift of the body to a distance B1, which may
be found from the equality 1

2mv
2 = fNB1, hence

B1 =
mv2

2fN
=

I2

2fNm
. (11)

It follows from the forecited expressions that whereas it is possible to avoid interfacial
slippage of machine parts in vibration conditions by applying stronger interference N , it
is not possible to avoid it in impact conditions even by a very tight interference.

4 Model 2 – a solid body with inner degree of freedom –
influence of resonance effects

Let us consider a system extending model 1 by including a second body with mass m2

placed inside the body with mass m1, (see Fig. 4,a). The second body is joined to the
first one using a flexible member and a damping member, c and β are a coefficient of
rigidity and a damping coefficient correspondingly. The body m1, as it is in the system
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considered above, is placed on a platform, oscillating according to the law (5), the force
F (ẋ) represents the dry friction arising between the body m1 and the platform. The body
m2 can move with relatively to the body m1 along the direction parallel to the plane of
contact.

Figure 4: A solid body with inner degree of freedom a) Effect of vibrating platform, b)
Effect of impact

The relative to the platform position of body m1 is described by coordinate x, while
the position of the body m2 relative to the body m1 is described by coordinate u; the latter
is calculated from the position corresponding to that of unstrained flexible member.

Equations describing the motions of the system under consideration could be written
in the following form:

m1ẍ = m1Aω
2 sinωt+ cu+ βu̇+ F (ẋ), (12)

m2ü = m2(Aω2 sinωt− ẍ)− cu− βu̇, (13)

where the friction force F (ẋ) is determined by expressions (7) as shown above.
It is of some difficulties to obtain the exact analytical solution of the non-linear system

(12), (13). An approximate solution of a more general system is described in [11], where
the object was to investigate vibrational displacement of bodies. In this paper we dwell
upon periodic oscillation modes of motion and suggest some solutions based on the other
assumptions. For that matter we take as a first approximation the assumption that the
motion of the main body m1 only slightly affects the motion of the body m2. Then the
value m2ẍ in equation (13) can be neglected in comparison with the other values so that
the equation takes the following form:

m2ü+ βu̇+ cu = m2Aω
2 sinωt. (14)

The solution of this equation corresponding to the forced steady-state oscillations could
be described the following way:

u = Ak sin(ωt+ α), (15)

where

k =
ω2√

(λ2 − ω2)2 + 4n2ω2
,

c

m2
= λ2,

β

m2
= 2n, sinα = −2

n

ω
k, cosα =

λ2 − ω2

ω2
k. (16)

Hence the equation (12) could be written in the form:

m1ẍ = m1Aω
2 sinωt+ cAk sin(ωt+ α) + βωAk cos(ωt+ α) + F (ẋ).
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This equation can be also reformulated in the following form:

m1ẍ = m1A1ω
2 sin(ωt+ ε) + F (ẋ), (17)

where

A1 = A

√
1 + 2k(

λ2
1

ω2
cosα− 2

n1

ω
sinα) + k2(

λ4
1

ω4
+ 4

n2
1

ω2
), (18)

λ2
1 = c

m1
, 2n1 = β

m1
, and ε – some inessential constant which may be always

reduced to zero by selecting the initial time point t. The equation (17) is congruent to the
equation (6), obtained for one-mass system, so that it is possible to use the solution of the
latter. Specifically, assuming f = 0.7f1 it is possible to determine half-swing of oscillations
B = B2 using the Fig. 3, it is to be taken into account that the amplitude A value should
be replaced with the amplitude A1 value, which is determined by formula (18).

The solution obtained may be used for calculating an approximate solution. However,
there is no special need for it because the solution accuracy can be checked using the
software designed for the system (12), (13) equations investigation. Calculations performed
using this software proved that the approximate solution provides quite a satisfactory
accuracy.

Figure 5: Graphs showing dependence of coordinatesx and u on time t (Parameter values:
A = 0.001 m; ω = 150 s−1; A = 9 · 104 N/m; β = 30 N · s/m; λ2 = 300 s−1; f = 0.5;
m1 = 3 kg; m2 = 1 kg; N = 100 N)

Fig.5 illustrates dependence of the coordinates x and u on time t and Fig. 6 shows
oscillation half-swing B1 versus oscillation frequency ω. One can see that inner freedom
degree can significantly enhance influence of vibration on the area of body m1 sliding along
the base plate when oscillation frequency ω approached the frequency of free oscillations
λ2 =

√
c/m2 performed by m2 body inside m1 body. The same inference will be obtained

when using formula (18) for calculations and Fig. 3 graph.
Formula (11) obtained for the Model 1, remains valid for the calculation of the body

m1 shift resulted from impact influence.
Similarly to the Model 1 case, it is possible to eliminate interfacial slippage of the

mass m1 by application of sufficiently high pressing force N . In impact condition such a
microslip cannot be excluded even with a very tight fit.
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Figure 6: Amplitude of body m1 oscillations versus induced oscillation frequency ω

5 Model 3 – an elastic rod and a washer planted on it with
initial strain

Compression fit is a widespread kind of machinery joints. The behavior of parts of such
joints consisting, for example, from a rod and a washer tightly planted on it can be con-
sidered on the basis of the model representing a particular case of a so-called Chelomei
pendulum. In work [15] it has been shown that in systems of this kind not only microslip
could be observed, but also even vibrational translation.

Figure 7: Model configuration

The system under consideration consists of elastic rod of length l and rigid washer of
mass m, planted on the rod with initial strain ε0. The base of the rod is being vibrated,
performing oscillations which could be written in fixed coordinates ξ:

ξ(t) = A sinωt. (19)

The equation of motion of the washer in the rod base bounded (moving) coordinate
system could be written in the following form:

mẍ = mAω2 sinωt+ Ff (t, x, ẋ)

Ff =


−fN(t, x), ẋ > 0
−mAω2 sinωt, ẋ ≡ 0
fN(t, x), ẋ < 0

(20)
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where x is coordinate of the bar cross-section in the moving frame of reference associated
with the oscillating base and at the same time coordinate of the washer near this section,
Ff - the friction force that occurs between the washer and the bar, m – the mass of the
washer, A – the amplitude of the bar base oscillations, ω - their frequency, f - the friction
coefficient, N(t) - the elastic interaction force between the washer and the bar, the change
of which is determined by its vibrational excitation. The frictional force is determined by
Coulomb’s law, not exceeding |fN(t)| in absolute value, and balancing other effects at rest
(in this case, the inertia force).

As it was shown in the publication [15], taking into account the initial strain or say the
fit, with which the washer is planted on the rod, it is possible to write the friction force in
the following form:

Ff =


−ηfScE

(
ε0
n −

ρAω2(l−x)
2E sinωt

)
, ẋ > 0

−mAω2 sinωt, ẋ ≡ 0

ηfScE
(
ε0
n −

ρAω2(l−x)
2E sinωt

)
, ẋ < 0

(21)

where Sc is the area of the rod-washer contact, and E is the rod’s Young’s modulus. It
should be required that the following condition for ε0 is met:

ε0 ≥ ρAω2l

2E
(22)

Otherwise the washer could lose its fit on the rod and the behavior of the washer
planted on the rod with a gap could be quite different from that under consideration.

Microslip and vibrational translation could be examined using methods presented in
the book [5] for investigation of the problem of motion of a body on a rough inclined
vibrating plane.

Considering the problem it is convenient to dissect the time axis into intervals so that
the washer planted on the rod relatively resting inside each one of these intervals begins to
slide in positive direction I+, remains in the relative rest I0, or begins to slide in negative
direction I−.

The motion in positive direction begins under the following conditions:

sinωt > z+

z+ = 2ηfScEε0n
Aω2(2m+ηfρSc(l−x))

. (23)

Interval of motion in negative direction:

sinωt < z−

z− = − 2ηfScEε0n
Aω2(2m−ηfρSc(l−x))

. (24)

Under the following conditions{
sinωt− z+ < 0
sinωt− z− > 0

(25)

the washer remains in relative rest.
The behavior of the washer is considered to consist of a set of intervals of sliding in

positive or negative direction and also relative rest intervals. It should be mentioned that

50



Wear and tear of nominally fixed joints affected by vibration and percussive impacts

these intervals do not correspond one to one to the aforesaid intervals I. The motion of
the washer could be described by the following expressions:

ẋ(t) = ∓fScEε
0
n

m

(
t− t∗

)
−Aω

(
1± fScρ(l − x)

2m

)(
cosωt− cosωt∗

)
+ ẋ∗ (26)

x(t) = ∓fScEε0n
2m (t− t∗)2 +Aω

(
1± fScρ(l−x)

2m

)
cosωt∗ (t− t∗)−

−A
(

1± fScρ(l−x)
2m

)
(sinωt− sinωt∗) + ẋ∗(t− t∗)

(27)

Top marks are for the positive, and bottom marks are for a negative initial velocities,
respectively, t∗ – is the interval beginning moment and ẋ∗ parameter is choosen to meet
the interval initial conditions. After the stop ẋ(t) = 0 the washer switches to the mode,
corresponding to the interval in which t lies: I± or I0.

The software developed using the algorithm described above could help also in calcu-
lation of the energy consumption or power of dissipative forces which could be useful in
estimation of the wear. As described below the wear would be considered to be propor-
tional to the power of dissipative forces. The diagram showing dependence of the power
on overload coefficient is presented on the Fig. 8.

Figure 8: Friction force power versus the amplitude of the exitation dependance, each
curve corresponds to fixed overload coefficient (from 10 - curve 1 to 12 - curve 10)

6 On some other Models

Among other models of no pertinence to the wear problem the flexible body models may
be referred to [6, 9, 12, and 13]. Flexibility of adjacent bodies was taken into account in the
theory of construction hysteresis [14]. If necessary such models can be used in evaluation
of the wear caused by vibration.

7 Wear of nominally fixed joints in vibration and impact con-
ditions

The energy consumed in interfacial slip of bodies during one vibration period T = 2π/ω,
amounts to E1 = 4fNB, while energy consumption per second (i.e. power expense) is:

P = E1/T =
2

π
fNBω. (28)
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Let us suppose that the energy consumed on overcoming friction in interfacial slip of
adjacent parts is spent on corruption of these parts materials. To put it otherwise, let
us assume that the rate of mass wear W (kg/s), i.e. wear of material mass per second is
proportional to the power P :

W = κP =
2κ

π
fNBω. (29)

Here the coefficientκ, having dimensionality
kg

s

s

Nm
=

kg

N

1

m
=

s2

m2
, represents a mass

wear corresponding to P = 1W energy consumption. This assumption is in agreement
with so called Energy Theory of Wear [16–18], as well as with solid materials comminution
practice (see below) and data on grinding media wear in a barrel mills ([19], p. 302).

Let us denote the area of contacting surface by F and the rate of linear wear by ∆.
Then the following could be expressed:

W = ρF∆, ∆ =
W

ρF
=

2κfσBω

πρ
(m/s), (30)

where σ = N/F – normal pressure between the adjacent parts. Knowing the rate of linear
wear ∆, the time T∗ required for the wear to reach a critical value δ could be readily
estimated:

T∗ = δ/∆ (c) = δ/3600 ·∆(h). (31)

The value κ in formulas (29), (30) can be treated as an empirically determined coeffi-
cient. Unfortunately, we failed to find the magnitude of this coefficient. So below we shall
make attempt to estimate this coefficient at least roughly.

The quantity for ϕ (D, d), representing the consumption of energy required for de-
struction of one kilogram of material from initial average size D to a final size d, is well
known in the theory of materials comminution [19, 20]. It is obvious that the quantity in
consideration is reciprocal to the coefficient κ, i.e.

ϕ (D, d) = 1/κ (W · s/kg = m2/s2) (32)

As reported in papers [21, 22] the wear products of mating materials had 40–
50 mcm sizes. Grinding ores in disk pulverizers to such size requires approximately about
2000 kWh/t = 7.2 106 W s/kg of energy ϕ. Taking into account the imperfect mecha-
nism of treatment taken for the study and allowing for inefficiency of the friction wear we
assume the actual consumption of energy to be much higher than it was observed and for
that matter take the coefficient ϕ by two orders higher, namely ϕ ≈ 109 W s/kg.

Supporting ρ = 7.8g/cm3 = 7.8 103kg/m3 , f = 0.3, σ = 10N/mm2 = 107N/m2 ,
ω =314 s−1, B = 1mcm = 10−6 m and taking into account the formulas (30) and (31) we

obtain ∆ =
2 · 0.3 · 107 · 10−6 · 314

3.14 · 109 · 7.8 · 103
= 0.769 · 10−10 m/s and at δ = 1 mm = 10−3 m. Then

we could evaluate T∗ = δ/∆ =
10−3

0.769 · 10−10
= 1.3 · 107 s=

1.3 · 106

3600 · 24
= 150 days. In the

case of the half-swing of sliding is taken as B = 0.1 mm = 10−4m, the time T∗ is reduced
by 100 , i.e. will last only 1.5 days.

It is to be noted that in some cases the slip of parts subjected to impacts and vi-
bration could be minimized or even eliminated through construction design or process
improvements. For examples, engineering solutions regarding lowering design hysteresis
are described in the books [14, 23], and RF Patent [24].
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8 Some recommendations concerning design and exploitation
of machines operating in vibration and impact conditions

1. It is essential that many of friction joints in mechanisms and structures designed for
severe operation in conditions of vibrations and impacts should not be considered as fixed.
It relates to bolt connections, flange joints and bushing-shaft connections of ball and rod
mills, crushers, screens and power engineering machines.

2. Microslip of adjacent machine parts subjected to impacts and vibration has the effect
of producing their wear; a unilateral displacement of parts is possible (for example self-
loosening of threaded joints). In inadequate maintenance conditions this may entail the
machine’s failures and even the plant’s shut downs.

3. In contrast to vibrational conditions where some interfacial slip of adjacent machine
parts can be excluded by application of press fit, it is not possible to avoid the interfacial
microslip in impact conditions even when using a very high pressure fit.

4. The slippage of machine parts caused by vibration and impacts in some cases can
be diminished or even eliminated by introducing special design and process innovations.

5. When planning the maintenance schedule for adjacent parts and connections one
should take into consideration that in line with the theory suggested here the wear rate of
such parts tends to be increased even higher than in proportion to amplitude rise and is
likely to be enhanced by higher oscillation frequency.

9 Conclusion

This paper deals with the effect of vibration and impacts on nominally fixed joints of
machine parts, such as bolt and flange connections. Under the action of impacts and
vibration (or oscillation) such components reveal so called micro mobility in relation to
each other and thus are subjected to wear. A number of formulas have been obtained
for two virtual models to describe the wear rate, the formulas contain a single empirical
coefficient. In its physical sense that coefficient denotes a wear rate per a unit of energy
spent on mutual slipping action. Based on the results obtained, some recommendations
have been suggested with regard to design engineering and maintenance schedule of the
machines in question.
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Is there a lower bound for solid volume fraction in random
loose packing of noncohesive rigid spheres?

Antonio Castellanos
castella@us.es

Abstract

The packing obtained by pouring bearing balls in a container, and then by shaking
it in order to get the maximal densification (once eliminated wall effects), has a solid
packing fraction of 0.6366 ± 0.0004 [1]. This state has been named random close
packing (RCP). Theoretical ideas as well as numerical simulations give a packing
fraction near the value of 0.64. Much less well defined is what is named as random
loose packing (RLP) that is obtained in experiments by gently pouring steel balls
in a container without trying to maximize density. In this way experimenters [1]
have found packing fractions as low as φRLP = 0.60. This was an accepted value
for RLP for noncohesive spheres until Onoga and Liniger [2] found a lower value by
sedimentation of spheres in liquids with almost matched densities. They attained a
lower limit given by φRLP = 0.55 ± 0.006. However, a criticism to this work is that
in the limit of zero buoyancy we can not avoid the effect of attractive interparticle
forces. Recently Farrel et al. [3] avoided the pitfall of the influence of interparticle
attractive forces by sedimentation of frictional balls, with finite buoyancy forces. They
adjusted the physical parameters of particles and liquids in order to ensure that the
colliding velocity at contact is almost zero. For a coefficient of friction µs = 0.96±0.03
they found a packing fraction below 0.54. Extrapolating their results they predict a
packing fraction of 0.53 for a coefficient of friction µs = 1.2. This value is below the
theoretical minimum for frictional spheres given by φRLP = 4/(4 + 2

√
3) = 0.536. We

show in this work that unless we include rolling friction this is not possible. A simple
estimation, based on isostaticity, show that for a disproportionate large value of rolling
friction we could achieve densities much lower than 0.536, with a lower bound quite
near to 0.15.

1 Introduction

A packing is a static set of particles in a containing space which do not overlap among
themselves or with the space boundary. The packing obtained by pouring bearing balls
in a container, and then by shaking it in order to get the maximal densification (once
eliminated wall effects), has a solid packing fraction of 0.6366± 0.0004 [1]. This state has
been named random close packing (RCP). Berryman [4] defined random close packing of
geometrically perfect spheres as the one which has minimum packing fraction for which
the median nearest-neighbor radius equals the diameter of the spheres, and he obtained
a value of φRCP = 0.64 ± 0.02. Numerous computational schemes of random packing of
frictionless spheres, though they do not give the same packing fractions, they all pack near
the value of 0.64. The word random, implying maximum disorder, is an elusive concept
difficult to define. Nevertheless, the random close packing of spheres in containers, when
taking precautions to avoid cristallization zones and wall effects, have astonishing robust
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properties. The discrepancy between the experiment and the theory and simulations is
ascribed to the non ideality (finite elasticity, friction, viscoplasticity, plasticity) of real
spheres in the experiments.

Much less well defined is the random loose packing (RLP) obtained in experiments
by gently pouring steel balls in a container without trying to maximize density. In this
way experimenters [1] have found packing fractions as low as φRLP = 0.60. This was an
accepted value for RLP until Onoga and Liniger [2] found a lower value by sedimentation
of spheres in liquids with almost matched densities. They attained a lower limit given
by φRLP = 0.55 ± 0.006. However, a criticism to this work, is that in the limit of zero
buoyancy we can not avoid the effect of attractive interparticle forces. In fact, the granular
cohesive Bond number, defined as the ratio of interpaticle force to particle weight, could be
greater than one (if exactly effective gravity equals zero, the Bond number will be infinite,
because Van der Waals forces are always present). Song et al. [5] gave a phase diagram for
jammed frictional spheres in the space of “coordination number-packing fraction". They
found the diagram based on a statistical formulation of granular materials due to Edward
and Oakeshot [6] and on detailed numerical simulations. In this diagram all disordered
packings lie within a triangle demarcated by the RCP line, RLP line and a line called as
granular line characterized by a coordination number of 4. In this work the theoretical
minimum packing fraction of RLP is given by φRLP = 4/(4 + 2

√
3) = 0.536.

Recently Farrel et al. [3] avoided the pitfall of the influence of interparticle attractive
forces by sedimentation of frictional balls, with finite buoyancy forces. They adjusted the
physical parameters of particles and liquids in order to ensure that the colliding velocity
at contact is zero. They argue that they have measured the real coefficient of friction
µs between two spheres in the liquid, and they attain a packing fraction slightly below
0.54, which is very close the theoretical minimum given by Song et al. From his work it
is implied that for a coefficient of friction of µs = 1.2 the extrapolated packing fraction
would be 0.53 below the theoretical limit.

We suggest that including rolling friction we could attain lower values of the packing
fraction. For the majority of the materials this effect would be negligible as the coefficient
of rolling friction is very small. Theoretically, however, it is easy to see that if both the
coefficient of rolling and dry friction approach infinity the falling particle will stick to the
touching particle in the sediment and the packing fraction should approach the packing
fraction of random ballistic deposition without restructuring which is quite near to 0.15,
[7], [8]. This value is impossible to achieve in real experiments as there are no particles
with neither an infinite value of dry friction, nor of the rolling coefficient. However, a
general conclusion is that loose random packing of real spheres can not be defined only in
terms of geometry because it is a dynamical problem dependent on the physical assembling
procedure of the packing. We can not exclude that the packing fraction of the random
loose packing in experiments will continue to decrease in the future, but we can not predict
a well defined experimental lower limit for these RLP packings.

2 Coordination number in packing of spheres

The network of contacts inside the packing determine their mechanical properties. It is
well known that the number of neighbours in contact with a given grain has a statistical
distribution. Its average, Z, is called the coordination number of the packing. This is
the simplest key parameter characterizing the network of contacts. Experimentally, Z for
spheres was determined by Bernal and Mason [9], by coating a system of ball bearings with
paint, draining the paint, letting it dry, and counting the number of paint spots per particle

57



Proceedings of XL International Summer School–Conference APM 2012

when the system was disassembled. They obtained a coordination number close to 8.5.
This technique was used by Donev et al [10] for measuring the contacts between candies
as model of ellipsoids claiming an excellent agreements between simulations and its unique
experimental point. However this technique is very time consuming and prone to errors
as it is very difficult to distinguish between true and close (but not touching) contacts.
Recently Brujić et al [11] used as a model of granular packing fluorescently labeled silicone
oil droplets with Nile red dye, suspended in a solution of 1:1:05 water to glycerol volume
ratio to ensure refractive index matching. By means of confocal microscopic they were
able to measure the contacts between droplets, and obtained a coordination number of
Z = 6.08 for the RCP of the droplets, despite the polydispersity of the packing.

Compared with the scarcity of experimental measurements there are a plethora of
numerical simulations of the packing of granular media in which we can found the statistics
of contacts between grains as a function of shape, hardness, friction, interparticle forces
and external load. There is an interesting work by Silbert et al [12] which simulates the
packing of frictionless and frictional spheres. In this work it is shown that the coordination
number decreases as we increase dry friction from Z = 6 for frictionless spheres to Z = 4
for spheres with an infinite coefficient of Coulmb friction. In the next section we discuss
the relevance of these numerical findings.

3 Isostatic packings

In the area of Structural Rigidity it is well known that in a system of rotatable rigid
rods in equilibrium the number of equations is exactly equal to the number of unknown
internal stresses. This property of the rigidity between rotatable rigid rods is exploited
by Moukarzel [13] to introduce the concept of isostaticity in granular media (a detailed
discussion of this concept may be seen in [14]). Consequently a packing is said to be
isostatic when the number of interparticle contacts is exactly the minimum needed for the
packing to be stable under small loads. If the particles are themselves rigid the number of
independent equations for the forces and torques must be equal to the number of contacts
in order to determine univocally the unknown interparticle forces at each contact. For a
packing ofN rigid smooth spheres we have 3N equations for each grain to be at equilibrium,
and an unknown normal interparticle force at each of the NZ/2 contacts. Therefore the
coordination number for the packing to be isostatic must be Z = 6. For fairly enough hard
particles we have the coordination number very close to 6 as have shown in the previous
section, both by experiments and numerical simulations. However, for real smooth particles
due to elastic deformation we may close contacts otherwise open, and the coordination
number can be larger than six.

In the case of infinite coefficient of dry friction, the spheres will never slip and at each
contact the friction force is unknown. Therefore the number of unknown forces would the
number of contacts multiplied by 3 (in components: one normal force, plus two tangential
forces in the plane perpendicular to the normal). The number of equations would be 3N for
the forces and 3N for the torques. Thus for isostaticity we must have 3×NZ/2 = 6N which
gives Z = 4 for the coordination number. For frictional spheres with a finite coefficient
of friction there will be a fraction of the set of contacts that have yielded under Coulomb
dry friction law (fully mobilized friction contacts). For these contacts the tangential forces
are known. Therefore the total number of unknown tangential forces will depend on the
coefficient of dry friction, and consequently the coordination number would vary from 6 to
4 as the coefficient of friction increases from zero to infinity. This is in agreement with the
simulations [12] (see also [15]).
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4 The role of rolling friction

If we include a finite coefficient of rolling friction, the packing density as well as the
coordination number should both decrease. However, as the rolling friction, is much smaller
than the coefficient of dry friction, the number of fully mobilized contacts under rolling
friction would be the majority of contacts. The number of unknown rolling torques would
therefore be small and as a consequence the coordination number would be quite near 4.

From a purely theoretical point of view we may introduce at hoc an infinite value for the
coefficient of rolling friction. Under this assumption the number of unknown components
of the rolling torque torque increases by two at each contact, since this torque lies in the
plane perpendicular to the normal force. Therefore we should have now

5× NZ

2
= 6N (1)

which gives for the coordination number Z = 2.4. Such a low value of the coordination
number is consistent with the coordination number of spheres deposited by ballistic ag-
gregation with no restructuring (hit and stick). This same packing is obtained under the
assumption of infinite attractive interparticle forces, since the spheres also hit and stick
at the point of contact. In both cases we obtain the theoretical minimum density slightly
below 0.15 as have been verified numerically [7] and experimentally [8].

5 Conclusion

The arguments presented in this paper are based on the isostaticity of packings. Real
packings are made of material particles, and the forces and torques are always well defined
when taking into account the deformations of the particles under the forces. Real packings
do not require isostaticity for being marginally rigid. The deformations and forces will
depend on the elastic constants, or viscoplasticity and/or plasticity at contacts. Assuming
that the deformations are negligibly small we may arrive at isostaticity by quite different
physical deformation processes. In particular for hard particles under elastic deformations
we will be nearer to the isostatic packing the harder is the particle. The arguments pre-
sented here, though theoretical in nature, opens the door to packings with density below
the theoretical limit of frictional particles.
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Abstract

We first recall some properties of classical and non classical vibrating problems in
continuous media. If the classical properties of compactness are not satisfied, we can
obtain an essential spectrum of the self-adjoint operator which defines the spectral
problem. In these cases, for very small data, we can obtain a large response and
so these sequences can be physically interpreted as some kind of resonance. This
local phenomena are quick oscillations in some directions which are called weakness
directions. We will see that the singularities will propagate along directions which are
orthogonal to these weakness ones.

An example is given by the spectral problem of thin elastic shells in membrane
approximation. We propose to determine this spectrum and the corresponding weak-
ness directions in every point of the shell. For an anisotropic shell, we obtain exactly
the relation between the elements of the essential spectrum and the components of
the weakness direction by using the second fundamental form and the compliance co-
efficients. Then we study the particular case of homogeneous and isotropic shells. We
obtain a new relation and it appears that the essential spectrum depends only on the
quotient of the fundamental forms and on the Young modulus, but is independent
of the Poisson coefficient. We note that a geometrical interpretation of the quotient
of the fundamental forms is the normal curvature of the surface in the directions of
propagation. Conversely,if a spectral value is given, then we can find the directions
of propagation of singularities. Their number can be zero, two or four. We illustrate
with some concrete examples. In the last part about shells, we study the problem
of propagation and reflection of singularities for an isotropic cylindrical shell and we
show that the equation of propagation does not depend on the Poisson coefficient.

Another example is given by the two dimensional models for thin plates with
sharp edges. The spectrum will contain a non empty essential part if the edge is
sharp enough. Let us consider some point P near the edge of the plate. We define
the thickness of the plate in this point, h(P ), and d(P ) the distance to the edge.
These functions are very small and the degree of sharpness is given by α so that
h(P ) = O(d(P )α). Let us consider the longitudinal oscillations of the plate ; It can be
shown that the spectrum is discrete. If α < 1 all eigenvalues are positive and if α?1
zero is a triple eigenvalue with rigid modes. For the transversal oscillations we have
the same results only if α < 2. But if α?2 the essential spectrum is not empty.

1 Introduction

1.1 Classical and non classical vibrating problems

The classical form of a vibrating problem of structures can be writen in the form

ρ
d2u

dt2
+Au = 0 (1)
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and a solution u(x)eiωt satisfies to a spectral problem

Au = ρω2u = λu (2)

or in the variational form,

∀v ∈ H, a(u, v) = λ(u, v) (3)

where H is a good Hilbert space and λ the spectral parameter. In the classical case, A is a
selfadjoint operator and with a compact resolvent and there exists a sequence of eigenvalues

O < λ0Iλ1I...IλkI −→ +∞ (4)

with orthogonal modes.

1.2 Essential spectrum

Let us recall that the resolvent set is defined by,

ρ(A) = { ζ / (A− ζId)−1 ∈ L(H) } (5)

Its complement, the spectrum Σ(A), is constituted of isolated eigenvalues of finite multi-
plicity - for these ζ, (A− ζId)−1 does not exist - and of other values for which (A− ζId)−1

exists but does not belong to L(H). They are eigenvalues of infinite multiplicity, accumu-
lation points of eigenvalues and continuous spectrum.

The set of these ζ which are not isolated eigenvalues of finite multiplicity is the essential
spectrum Σess(A). It can be characterized as the set of ζ for which there exists a sequence
(uk) called Weyl’s sequence so that,

|| uk || = 1
uk −→ 0 in H weakly

(A− ζId)(uk) −→ 0 in H strongly
(6)

For very small data, we can obtain a large response and so these sequences can be phys-
ically interpreted as some kind of resonance. This local phenomena are quick oscillations
in some directions which are called weakness directions. We will see that the singularities
will propagate along directions which are orthogonal to these weakness ones.

2 The case of shells in membrane approximation

2.1 Essential spectrum

We consider a thin shell with a middle surface S. This surface is described by the map,

y = (y1, y2) ∈ Ω→ r(y1, y2) ∈ R3 (7)

where Ω is a domain of the plane. Let u be the displacement vector of the surface. We
introduce the Hilbert space H = (L(Ω))3 and we denote by (u, v) the scalar product. The
displacement u belongs to the subset V1 = H1(Ω)×H1(Ω)×H2(Ω) which can be modified
to take boundary conditions in account. The variational form of the problem of vibrations
is,

We search for u ∈ V1 so that,

∀v ∈ V1, am(u, v) + ε2af (u, v) = λ(u, v) (8)
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The bilinear forms am and af correspond respectively to the membrane problem and the
flexion problem. They are continuous on V1. This problem is classical with a selfadjoint
operator and compact resolvent and so there exists a sequence of eigenvalues but if the
relative thickness of the shell, ε, is very small, then the membrane approximation is an
appropriate representation. The formulation of this problem is different. In this case, u
belongs to the space V = H1(Ω)×H1(Ω)× L2(Ω). The inclusion of V in H is dense and
continuous but is not compact.

The problem is written as,
We search for u ∈ V so that,

∀v ∈ V, am(u, v) = λ(u, v) (9)

This spectral problem is an elliptic system with mixed order. The classical properties of
compactness are not satisfied and the spectrum both contains a sequence of eigenvalues
depending on the domain, and an essential spectrum.

We define the fundamental forms of the shell, A(x1, x2) and B(x1, x2).
The equations of the vibrating shell in the membrane approximation give an explicit spec-
tral problem on the displacement u. There appears derivatives of second order in u1 and
u2 and of first order in u3. The classical properties of compactness are not satisfied and
there exists an essential spectrum. We have weakness directions noted by (ξ1, ξ2) and the
orthogonal ones (x1, x2) will be the directions of propagation of the singularities. The
values of λ and (ξ1, ξ2) correspond to the non-ellipticity of the system in the Douglis and
Nirenberg sense.

We can obtain the relation between λ and (ξ1, ξ2),

λ =
[B(x1, x2)]2

sαβλµxαxβxλxµ
(10)

where sαβλµ are the coefficients of the compliance coefficients. If a point is given on S,
then the spectral parameter λ belongs to a segment. In the case of an isotropic shell, we
obtain the following outstanding form,

λ = E
[ B(x1, x2)

A(x1, x2)

]2
(11)

and it appears that the essential spectrum depends only on the geometry and the Young
modulus but is independent of the Poisson coefficient. A geometrical interpretation of the
quotient of the fundamental forms is the normal curvature kx of the surface in direction
(x1, x2). The essential spectrum is then exactly the segment, Σess = [ E.Infk2

x, E.Supk
2
x ].

So, in an elliptic point of S we have two directions (x1, x2) but in a hyperbolic point several
cases are possible, four or two directions and sometimes double directions.
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2.2 Propagation of singularities in a cylindrical thin shell

We consider the cylindrical shell defined by the map,

(y1, y2) ∈ [0, 1]× [0, 2π[−→ (x1 = Ry1, x2 = Rcosy2, x3 = Rsiny2) (12)

The essential spectrum is the segment [0, E
R2 ]. Denoting by λ a value in the essential

spectrum and by θ the polar angle of the directions of propagation x, we obtain

λ =
E

R2

[ tan2θ

1 + tan2θ

]2
(13)

For the vibrating shell in the membrane approximation, we obtain the following homoge-
neous spectral problem,

u1,11 + 1−ν
2 u1,22 + 1+ν

2 u2,12 − νRu3,1 = − λ
KR2u1

1+ν
2 u1,12 + 1−ν

2 u2,11 + u2,22 −Ru3,2 = − λ
KR2u2

νu1,1 + u2,2 −Ru3 = − λ
KRu3

(14)

where u1, u2 and u3 are the contravariant components of the displacement and K =
Eh

(1−ν2)R4 .
To study the propagation of the singularities, we introduce the following right-hand side
which represents a point normal force

u1,11 + 1−ν
2 u1,22 + 1+ν

2 u2,12 − νRu3,1 + λ
KR2u1 = 0

1+ν
2 u1,12 + 1−ν

2 u2,11 + u2,22 −Ru3,2 + λ
KR2u2 = 0

νu1,1 + u2,2 −Ru3 + λ
KRu3 = 1

KRδ(y
1)δ(y2)

(15)

and we suppose that λ belongs to the essential spectrum but is not an eigenvalue. We
search for asymptotic expansions of the displacements on the form,{

uα(y1, y2) = U1
α(y1)δ(y2 −my1) + U2

α(y1)Y (y2 −my1) + ... α = 1, 2
u3(y1, y2) = U1

3 (y1)δ′(y2 −my1) + U2
3 (y1)δ(y2 −my1) + ...

(16)

where m = tanθ is the slope of the direction of propagation, and we substitute these
expressions in the problem. By identifications of the leading terms, we then still obtain
λ = KR2(1 − ν2) m4

(1+m2)2
= Ehm4

R2(1+m2)2
. We note that it does not depend on the Poisson

coefficient. It is easy to calculate U1
1 (y1) and U1

2 (y1) according to U1
3 (y1):

U1
1 (y1) = −Rm νm2 − 1

(1 +m2)2
U1

3 (y1) (17)

and

U1
2 (y1) = R

(ν + 2)m2 + 1

(1 +m2)2
U1

3 (y1) (18)

By writing the identifications of the next order terms, we obtain a nonhomogeneous system
and then we have to satisfy a compatibility condition. A straightforward computation gives
the following compatibility condition,

νmR(νm2 − 1)U1
3
′(y1) +

m

2

(
(ν2 + ν − 4)m2 + 3ν − 1

)
U1

2
′(y1) +
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(
νm4 − (1 + ν)(2− ν)

2
m2 +

1− ν
2

)
U1

1
′(y1) = −(m2 + 1)2 1

KR
δ(y1) (19)

By replacing U1
2 (y1) and U1

1 (y1) by their values, we finally obtain,

U1
3
′(y1) =

R3(1 +m2)3

4Ehm3
δ(y1) (20)

and we see that this equation does not depend on the Poisson coefficient.
The function U1

3 which defines the propagation of the singularity is

U1
3 (y1) =

R3(1 +m2)3

4Ehm3
(Y (y1) + C) (21)

where C is arbitrary. The propagation of singularities is characterized by U1
3 and is along

the characteristic straight line which cuts the edges of the domain in two points. So we
will have two conditions to determine only one constant C. It shows that the singularity
will not disappear by reaching a point P on ∂Ω. We will have a reflection on another
characteristic the slope of which is −tanθ.
The previous calculus are not valid if m = tanθ and then λ are equal to zero. In that case
which is the static case, the propagation of singularities is rather different and there is no
reflection.
That study of the propagation of singularities has been done in a particular case of isotropic
shell. The equations of vibration of a cylindrical shell have constant coefficients and then
the propagations are along straight lines. The general case is more complicated:
The segments which constitute the essential spectrum could be different in every point of
the surface S. The characteristic curves are some pieces of curves and the propagations
along them would depend on the reached point. For example, it is conceivable that the
value of the spectral parameter which is given, will be go out of the essential spectrum in
some point and that the propagation will stop.
Moreover, if some propagation reaches a hyperbolic point at the edge of a shell with four
directions of propagation, then we will have several possibilities for the reflection and we
do not know what will happen.

3 Spectra of two-dimensional models of thin plates with
sharp edges

Considering a plate clamped at the edge, the spectral problems of thin plates with uniform
thickness is a classical problem, but if the edge is sharp enough, we have special properties.
We only consider the case of homogeneous isotropic elastic material and we suppose that
we have a geometrical symmetry of the thickness. But we can also extend some results
with more general cases, where the interaction of deflection and longitudinal deformation
occurs.
Let ω ⊂ R2 be the longitudinal cross-section of a thin isotropic plate with variable thickness.
The thickness function h vanishes on the edge ∂ω while,

h(x) = nα(H(s) + h̃(x)), x ∈ ω ∩ V, (22)

where α > 0, (n, s) is the system of local curvilinear coordinates in a neighborhood of the
∂ω, n is the orientated distance to ∂ω, n > 0 inside ω and s is the arc length along ∂ω and
H is a smooth positive function on ∂ω and h̃ is a smooth function which vanishes on ∂ω.
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3.1 Longitudinal oscillations of the plate

We work in a weighted Lebesgue space with a norm which depends on α.
The spectral problem where µ is the spectral parameter can be reduced to the abstract
equation

T]v = τv in h] (23)

where τ is the new spectral parameter

τ = (1 + µ)−1 (24)

The Hilbert space h] has a specific scalar product and T] is a positive and continuous,
symmetric, therefore, self-adjoint operator, which inherits some properties of compactness.
We obtain the following results,
For any α, the spectrum of the problem is discrete and form the eigenvalue sequence

µ1Iµ2Iµ3...IµpI... −→ +∞ (25)

(multiplicity is taken into account). In the case α < 1 all eigenvalues are positive while,
for αi1, we have µ4 > 0 and µ1 = µ2 = µ3 = 0 with the eigenspace of rigid modes.

3.2 Transversal oscillations of the plate

In this case, we have a spectral problem where λ is the spectral parameter in some Hilbert
space h3.
We also reduce the problem to the abstract equation

T3v = τv in h3 (26)

where τ is the new spectral parameter

τ = (1 + µ)−1 (27)

and we have the following results,
The spectrum of the problem is discrete if and only if α < 2. The corresponding eigenvalue
sequence

λ1Iλ2Iλ3...IλpI... −→ +∞ (28)

is positive in the case α < 1 but, for α ∈ [1, 2[, we have λ4 > 0 and λ1 = λ2 = λ3 = 0 with
the eigenspace of rigid modes.
Moreover, if αi2, the essential spectrum of the problem is not empty and it is possible to
find a singular Weyl sequence for operator T3 at the point τ = 1.
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Abstract

Present paper is aimed at investigating 3D instability effects in displacement of
viscous fluid by a less viscous one from porous medium, and to determine charac-
teristics of displacement quality. Many experimental studies of these were performed
under microgravity conditions. The present paper summarizes results of 3-D numeri-
cal analysis. Fluids are assumed incompressible and miscible. Numerical simulations
are used to study the sensitivity of the displacement process to variation of values
of the main governing parameters. Comparison with results of two-dimensional sim-
ulations enabled us to investigate the effect of aspect ratio on instability growth in
viscous fluids displacement. A 1D model with 2 fitting parameters is created in order
to simulate behavior of the cross section averaged parameters of the flow.

Keywords: Displacement, porous, viscous, fluid, incompressible, miscible, instabil-
ity.

Introduction

The problem of frontal displacement of a more viscous fluid by a less viscous one is relevant
to hydrocarbon recovery, which is performed by the flow of water or solutions under a
pressure gradient displacing the high viscosity oil. Saffman – Taylor instability of the
interface could result in formation of “fingers” of displacing fluid penetrating the bulk
of the displaced one. The growth of fingers and their further coalescence could not be
described by a linear analysis. Growth of fingers causes irregularity of the mixing zone
thus affecting the displacement quality.

Similar models are applicable to description of liquid non-aqueous phase contaminants
underground migration, their entrapment in the zones of inhomogeneity, and forecasting
the results of remediation activities in the vicinity of waste storages and contaminated
sites.

The problems of seepage flows were studied by many authors [1-12]. Investigating
instability in miscible displacement differs greatly from that in immiscible fluids. The
presence of a small parameter incorporating surface tension for immiscible fluids allows to
determine theoretically the characteristic shape and width of viscous fingers [7, 8], while
in miscible fluids theoretical analysis allows to forecast the shape of the tips, but does not
allow to determine the width of fingers, which remains a free parameter [5, 6]. Numerical
simulations of viscous fingering in miscible and immiscible displacement were carried out
in [9, 10]. Those papers contain an extensive bibliography on the history of the research
as well. Numerical simulations [11] made it possible to explain new experimental results
on the pear-shape of fingers and periodical separation of their tip elements from the main
body of displacing fluid. Those separated blobs of less viscous fluid move much faster than
the mean flow of the displaced viscous fluid [12].
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The results of numerical simulations allowed to introduce dimensionless parameters
characterizing the quality of displacement and the mixing flux induced by instability [12].
In the paper [13] the asymptotic behavior of miscible displacements in porous media was
studied in the two limits, where a permeability-modified aspect ratio, became large or
small, respectively.

The influence of inhomogeneity of porous matrix on displacement instability was inves-
tigated [13-15]. The modified Hele-Shaw cell containing regular and randomized obstacles
was used to model and study the effect of inhomogeneity on displacement instability [12,
14]. Results of numerical simulations as well as physical experiment showed that the pres-
ence of inhomogeneity of a definite length scale could stabilize unstable displacement and
could destabilize a stable one [14].

Most of viscous fingering numerical simulations were performed for two-dimensional
problems; one of the first classical publications was by Homsy [9, 16]. This work used the
spectral methods approach. In reality displacement and induced instability have a three
dimensional nature. Papers [17 – 22] investigate 2D and 3D miscible displacement of fluids
with account for gravity using the spectral methods, as in earlier works by Homsy.

First attempts to perform comparative analysis for the instabilities arising in displace-
ment from 3D cells of different aspect ratios were performed in [23]. Theoretical and
experimental studies of entrapped closed domain of fluid were performed in [24].

The present paper is aimed at numerical investigation of incompressible miscible fluids
displacement in 3D geometry porous medium and studying the displacement scenarios
being functions of aspect ratios and other dimensionless governing parameters.

For practical applications, such as simulating hydrocarbons displacement from rock for-
mations, often it is not important to have a detailed picture of viscous fingers development,
rather then to have a quantitative estimate of the mixing flux induced due to displacement
instability. Thus it is necessary to elaborate methods making it possible to simulate in-
stability induced mixing within some integral approach, not sensitive to spatial resolution
[25, 26]. A 1D model describing dynamic behavior of cross section averaged parameters
is built with two fit parameters. Developing those model parameters for description of
displacement quality and the mixing flux due to instability is also one of the goals of the
present research.

Mathematical model

The volume controlled displacement problem was regarded. Detailed problem statement
is present in [25, 26]. The computational domain has dimensions L×H ×Z, displacement
is performed along L direction through cross-section H × Z.

To launch instability in theoretical investigations one should introduce it initially:

t = 0 : s =

{
0, x ≥ x0

sξ · ξ, x < x0

(1)

Here, ξ is a random field which magnitudes are distributed uniformly from 0 to 1, sξ is
the random field scaling factor and x0 should be as close to zero as possible. At x0 → 0 or
sξ → 0 we get close to the physical problem statement: all the domain is filled with fluid
to be displaced off.

The following set of dimensionless governing parameters which control the solution of
2D or 3D displacement problem is obtained: M = µ2/µ1 – viscosity ratio of the fluid being
displaced to that of displacing one; PeL = H

DL
, PeT = H

DT
– Peclet numbers; A = H/L,

a = Z/L – aspect ratios, sξ,x0 – destabilising factors.
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Validation of the numerical scheme

Validation of numerical scheme was performed by qualitative comparing the numerical
2D results with experiments performed in Hele-Shaw cells [12] and with results of numer-
ical calculations undertaken using different numerical schemes. The direct quantitative
comparison of results obtained using random initial conditions (1) is not a fair choice to
validate the results, because those conditions depend directly on the grid parameters in
our simulations. Therefore, in order to validate the scheme, we used initial conditions in-
dependent of the mesh size and of the random seed. However, the initial saturation should
be non-uniform in order to obtain the unstable displacement.

We used the following initial conditions instead of (1), in our verification study:

s =

{
1− 10x x < 0.1

0, otherwise

}
· cos2(10y) cos2(10z)

One should notice that these conditions introduce harmonic variations into the initial
saturation, which are expected to produce fingers.

The artificial diffusion used in TVD method in order to suppress non-physical oscilla-
tions of solutions in the regions of sharp gradients of parameters, depends directly on the
average size of the mesh, and its coefficient and artificial Peclet number could be estimated
as follows:

Pe−1
a |v| =

1

2
|v|∆x

One should notice that the artificial Peclet number is not equivalent to an ordinary Peclet
as if it is some effective value, because the dispersion with artificial Peclet is applied only in
the regions of sharp saturation gradients, and not elsewhere. Normally, it influences only
the slope inclination, but in case of unstable displacement, its presence could influence the
fingers growth as well. Note, that when the flux is promoted to the 2nd order of accuracy,
it does not allow jumps to dissolve above some level, unlike a linear diffusive flux. Thus,
the effect of artificial diffusion is limited and not equal to an effect of diffusion at some
Peclet number.

Two series of investigations were processed in order to investigate the influence of the
mesh size. First series used the grid 80×80×40 cells, second 100×100×50. All the other
parameters were the same. Calculations were processed for high viscosity ratio, medium
Peclet number and high secondary aspect ratio: M = 1000, Pe = 1000, a = 0.5. The
initial conditions were (17), other features of the problem statement, as above. Parameters
correspond to a highly unstable displacement case. The effective artificial Peclet was 160
and 200, respectively. Results on the fig. 1 show 3D patterns of displacement front obtained
by time t = 0.129 for both mesh cases (due to different calculation time interval, difference
in times exists and is lower than 0.001). The 3D displacement front is illustrated by a
surface s(x, y, z) = 0.25; the left picture corresponds to a fine mesh, the right to a coarse
one.
Results shown on the fig.1 illustrate qualitative similarity of the patterns; some details

are slightly different however. Yet many small features (e.g. secondary fingers) are nearly
the same. Symmetry is due to symmetry of the initial and boundary conditions. The main
difference is the advanced fingers length; it is a direct influence of artificial diffusion.

The distributions of cross section mean saturation corresponding to cases shown on the
fig. 1 is presented at the fig. 2. Left and right plots relate to coarse and fine meshes; time
moment is the same. The fingers are advanced more for the case of the fine grid (lower
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Figure 1: Unstable displacement front pattern shown by surface s(x, y, z) = 0.25 in space.
Left plot corresponds to the fine mesh 100× 100× 50, right to the coarse one 80× 80× 40.
Time moment is t = 0.129

Figure 2: Mean saturation average distribution along the domain. Left plot corresponds
to a coarse mesh 80× 80× 40, right to a fine mesh 100× 100× 50

artificial diffusion), but the overall difference of pictures is small: the error is within 3−5%
related to completely displaced state.

The results shown on the figs 1-2 show the expectable dependence of the flow patterns
on the mesh size due to artificial diffusion effect. One of the remedies is using spectral
methods instead of the TVD approach to the transport equation (2), which were applied
to 2D and 3D displacement problems in [9], [16-22].

Thorough investigation of the error behavior due to artificial diffusion level is a subject
of separate investigations; however, the error for Peclet numbers and viscosity ratios used
in the present investigation is not high. We could mention however that the higher Peclet
numbers bring to higher error for a fixed mesh. Probably, spectral methods with higher
number of harmonics[16, 19] would be more effective for high Peclet numbers.

Modeling integral parameters with 1D equation

The integral parameters of the flow can be estimated using a simple 1D one-equation
model. This model simulates the dynamics of cross-section averaged saturation s̄ (14).
Such modeling was processed in [11], [12]; it was also proposed in [31].

If we average the dynamics of saturation equation in each cross-section determined by
longitudinal coordinate x, we will obtain the following model for s̄:

∂s̄

∂t
+

∂

∂x
(ū · s̄) +

∂

∂x
(ú · ś) = APe−1

L

∂

∂x
ū
∂s̄

∂x
(2)

where ū is the mean velocity in the cross-section and ú, ś are deviations of the relative
parameters from the cross-section means. The third term in the equation (2) is a subject of
special modeling. Earlier [11], we have modeled it using convective (Buckley – Leverette)
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and diffusive terms multiplied by model coefficients. It was shown however that this
modeling cannot fit simultaneously both the long-run shape of the cumulative output
curve and the breakthrough time. Then, introducing modifications into the convective
term, modeling of the outflow for 2D case was processed [11] with much better fit.

We will model the additional convective term in (2) only with a convective component
depending on averaged saturation, but using two fitting parameters. One can notice also
that the dimensionless averaged velocity ū is unity due to the constant rate case under
investigation. We assume the following ad hoc dependence of the additional convective
term úś on the mode parameters:

úś = αū · s̄(1− s̄)
(

max{Mγ − 1, 0}
1 + s̄max{Mγ − 1, 0}

)
(3)

The dependence (3) assumes that the additional flux takes place only when both fluids are
present in the same cross section, that it cannot be opposite to average velocity, that its
maximum is regulated by constants α and γ, which are to be modeled using comparison
with multidimensional calculations.

Substituting (3) into (2) forM > 1, and taking into account that ū = 1, we will obtain:

∂s̄

∂t
+

∂

∂x

(
(1− α)s̄+ α

s̄Mγ

1 + s̄(Mγ − 1)

)
= APe−1

L

∂2s̄

∂x2
(4)

The initial and boundary conditions for (4) are obtained from (1) and look as follows:

s̄(0, x) =

{
st(1− x/x0), x < x0

0, otherwise
(5)

s̄(t, 0) = 1, ∂s̄/∂x|x=1 = 0 (6)

Note that there is no specific reason to introduce disturbance parameters into 1D modeling
but they are used in (5) in order to fit the initial conditions of multidimensional modeling.

The outflow obtained by 1D modeling is determined by the convective term at x = 1
due to its definition (3), (4) is calculated as follows:

q(t) =

(
(1− α)s̄+ α

s̄Mγ

1 + s̄(Mγ − 1)

)
x=1

(7)

The breakthrough time obtained by 1D modeling is determined:

tb = min
{
t : q(t) > 0

}
(8)

In order to calculate the fit parameters α and γ depending on the governing parameters of
the displacement process, we will use the following procedure.

• Fix the governing parameters.

• Process multidimensional modeling.

• Choose three time moments tk, and obtain three profiles of cross section mean satu-
ration ck(x) = c(tk, x), k = 1, 2, 3.

• Obtain the outflow temporal profile Q(t) and the breakthrough time Tb.
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Peclet number 100, 200 ,500

Peclet number 1000, 2000 ,10000

Figure 3: Flow patterns illustrated by displacing front surface s(x, y, z) = 0.25 for M =
100, a = 0.5 and various Peclet numbers

• For a given set of fitting parameters α, γ process 1D modeling.

• For the time moments tk, obtain 3 profiles of the average saturation s̄k = s̄(tk, x).

• Obtain the modeled outflow profile q(t) and the breakthrough time tb.

• Calculate the function to be minimized, which is chosen as follows:

Ψ =
1

3

3∑
k=1

[∫1

0
(s̄k(x)− ck(x))2dx

]1/2

+

[
1

T

∫T
0

(q(t)−Q(t))2dt

]1/2

+ [Tb − tb] (9)

Our goal is to find the parameters α and γ which minimize the function Ψ. This function
depends both on the governing parameters of the multidimensional model (parameters of
the process) and on the fitting parameters α, γ. Therefore, the fitting parameters mini-
mizing Ψ will depend on the governing parameters of the model.

Results and discussions

Results for 3-D unstable displacement of viscous fluid from porous medium by a less viscous
one are shown in Figs. 3-4. The Fig. 3 shows the influence of Peclet number. We fix the
medium viscosity ratio (M = 100) and compare patterns of the front for different Pe at
a = 0.5. The Peclet numbers increase from left to right in each row; a wide range of
Peclet numbers was investigated both lower and upper than the characteristic artificial
Peclet number. Each plot corresponds to some characteristic time moment. Numerical
investigations showed high irregularity of the displacing front; however, the fingers number
naturally grows with the growth of the cross section area. For high a, development and
splitting of the most advancing fingers looks similar; for low a, the front is bounded by
the walls, and the fingers split in lower number of daughter structures. Therefore, the
secondary aspect ratio is expected to influence the displacement features mostly when it
is low.

Fig. 4 summarizes the flow patterns for 2D displacement simulations illustrating the
saturation patterns for the displacing fluid. The flow patterns in each row are made for
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Pe = 200

Pe = 1000

Pe = 2000

Pe = 10000

Figure 4: Saturation of the displacing fluid for 2D displacement process. Flow patterns for
different Peclet numbers and viscosity

the same Peclet number and different viscosity ratioM = 10, 100, 1000 (from left to right).
Fig. 4 shows the same tendencies of M and Pe influence on the displacement process as
it was shown for 3D process on the figs. 2 and 4. However, two significant differences take
place. First, the total number of fingers is very small compared with 3D displacement at
high aspect ratio. Second, for high viscosity ratio and Peclet number, separation of tips
of the fingers takes place instead of their split. We can not observe this separation on the
displacement front patterns for 3D case because we monitor the surface of the displacement
front there for s = 0.25 only, but the separated fingers have much less saturation.

Results for the fitting parameters of 1D modeling

The fitting parameters of 1D modeling [12] α and γ were obtained minimizing the function
Ψ (9) for each set of parameters a,M,Pe for which multidimensional calculations were
processed. The optimized values of α and γ were obtained for each variant of the random
seed, and then the average values and deviations of fit parameters were obtained as follows:

α =
1

n

n∑
k=1

αk γ =

 n∏
k=1

γk

1/n

, dα = max
k
|αk − α|, dγ = max

k
|γk − γ| (10)
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Here, n is the number of variants, dα and dγ are deviations. One could notice that, we used
arithmetic averaging for α and geometry averaging for γ due to their specific position in
the formula (3) modeling the additional convective term. The results of fitting procedure
show that the quality of fit is better for 3D case than for 2D, and for lower viscosity
ratios rather than for higher ones. This phenomenon shows that our 1D modeling has its
borders of applicability; expanding those borders may result in introducing an additional
fit parameter, or some other features which are beyond the scope of the present study.

Results shows that change between the regular and irregular displacement modes does
not influence parameter γ so much as α. Analysing the dependence of γ on Pe for different
M , we noticed that it is good to assume independence of γ on M and linear dependence
on lnPe. The dependence on the secondary aspect ratio was assumed as dependence via
a complex β = 2/(a + 1/a) because of the symmetry of physical solution at a = 1. The
following interpolation was derived by least squares method:

γ = (0.0492 + 0.0348β) · lnPe− (0.117 + 0.173β), β = 2/(a+ 1/a) (11)

Fit parameters combination G = αγ dependence on Peclet number, viscosity ratio and sec-
ondary aspect ratio calculated by minimizing the function Ψ for both regular and irregular
displacement modes could be approximated by the following formula:

G(Pe,M, a) = max{0.070− 0.032 lnM + 0.004 ln2M,

0.278 · ln(lnPe− (0.356 + 0.251 lnM + 0.148β + 0.056β lnM))+

(−0.444 + 0.050 lnM − 0.047β + 0.019β lnM)}

Changing two alternatives of the maximum operator in the above formula corresponds to
change from regular to irregular mode of displacement.

Conclusions

Multi-dimensional (2D and 3D) calculations of the displacement process were performed
for a set of governing parameters (viscosity ratio, Peclet number and the secondary aspect
ratio). The outflow of the displacing fluid versus time was obtained, together with profiles
of the cross-section mean saturation of the displacing fluid.

Comparison of the integral parameters development showed that for the displacement
percentage, the results for a = 0.5 differ significantly from the results for a = 0.1 (both
cases) and the 2D case. The results for 2D modeling are close to the results of 3D at a = 0.1.
However, the results for cumulative outflow of the displacing fluid differ insignificantly for
all the cases investigated. The breakthrough of the displacing fluid takes place earlier for
higher values of the "second" aspect ratio a; for 2D case the breakthrough time is the
longest one. Thus flow instability and displacement front irregularity develop much faster
in a 3D case then in a 2D one.

The multi-dimensional irregular displacement was modeled by 1D equation for the
cross-section mean of the displacing fluid saturation. This model has 2 fitting parame-
ters: α and γ, which still depend on the governing problem parameters, which testifies
that the developed phenomenological model represents one possible approximation for the
mixing flux, probably not the best one. However, the fitting parameters were found min-
imizing a functional depending on difference between profiles, 1D modeled and obtained
from multi-dimensional calculations. The functional forms approximating dependence of
fitting parameters on Peclet number, aspect and viscosity ratios were developed, making
it possible to use the developed model for a rather wide range of governing parameters
variation, which are suitable for practical applications.
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It was obtained that 2D displacement integral parameters (such as the outflow of the
displacing fluid) have much higher deviation than those parameters obtained in 3D model-
ing. This can be explained by much higher number of fingers in 3D cases of displacement
reaching the outflow surface, and by the subsequent compensation of disturbances in the
overall outflow.

Analysis of the fitting parameters of 1D modeling show that the “degree” parameter γ
depends mainly on Peclet number and aspect ratio, and not on the viscosity ratio. The
dependence of a complex of those parameters: G = αγ on Pe and M is much clearer
than the corresponding dependence of α. This results in the development of rather simple
interpolation formulae for γ and G, which predict both dependence on Peclet number,
viscosity ratio and secondary aspect ratio, and the conditions of change between regular
and irregular modes of displacement.

Russian Foundation for Basic Research (12-08-00198) is acknowledged for financial
support.
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Abstract

Micropolar theory of elasticity is a structural phenomenological model of rigid de-
formable bodies with strongly expressed internal structure [1]. From this point of view
the construction of theories of micropolar anisotropic elastic multilayered thin bars,
plates and shells is actual. In paper [2] general applied theories of micropolar elastic
isotropic thin shells, plates and bars are constructed on the basis of mathematically
confirmed hypotheses method.

In this paper this approach is developed and on the basis of accepted hypothe-
ses for the whole package of multilayered plate general applied theory of micropolar
orthotropic elastic multilayered thin plates of symmetric structure is constructed for
plane stress state and bending.

1 Problem statement

A plate of constant thickness 2h composed of an odd number of homogeneous mic- ropolar
orthotropic layers is considered. Layers which are symmetrically located with respect to
the coordinate plane α3 = 0 have the same thickness and physical-mechanical properties.
The coordinate plane α3 = 0 is the middle plane of the middle layer and the whole package
of multilayered plate.

We start from the basic equations of the spatial static problem of linear micro- polar
theory of elasticity for orthotropic body with free fields of displacements and rotations:

Equilibrium equations [3]:

1
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1
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Here H1, H2 are Lame’s coefficients in the curvilinear orthogonal system of coordinates;
σ̂i, µ̂i are asymmetric tensors of force and moment stresses of the i - th layer. Number of
layers is equal to 2n+ 1.

Physical relations [3]:
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Here γ̂i, χ̂i are asymmetric tensors of deformations and bending-torsions, âi, b̂i are tensors
of elastic constants for micropolar orthotropic material of the i - th layer.

Geometric relations [3]:
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It is assumed that the layers of the plate are rigidly connected with each other and
work together without slide. Conditions of conjugation of layers for displacements and
rotations are written as follows:

V i
1 = V i+1

1 , V i
2 = V i+1

2 , V i
3 = V i+1

3 , ωi1 = ωi+1
1 , ωi2 = ωi+1

2 , ωi3 = ωi+1
3 . (4)

Conditions of the contact between the layers for force and moment stresses are written
as follows:

σi31 = σi+1
31 , σi32 = σi+1

32 , σi33 = σi+1
33 , µi31 = µi+1

31 , µi32 = µi+1
32 , µi33 = µi+1

33 . (5)
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It is assumed that the following conditions are satisfied on the planes α3 = ±hn of the
plate:

σn31|α3=hn
= q+

1 , σn32|α3=hn
= q+

2 , σn33|α3=hn
= q+

3 , µn31|α3=hn
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2 ,

µn33|α3=hn
= m+

3 , σ−n31

∣∣∣
α3=−hn
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α3=−hn

= −q−3 , (6)
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= −m−2 , µ−n33
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= −m+
3 .

Following three types of boundary conditions are considered on the surface
∑

of the
plate: 1) Force and moment stresses are given;2) points of the surface

∑
are fixed; 3)

three-dimensional mixed boundary conditions of hinged support are given.
It is assumed that the thickness 2h of the plate is small compared with typical radii of

curvature of the middle plane.

2 The construction of model of micropolar orthotropic elastic
multilayered plate of symmetric structure

Considering that the method of hypotheses, along with extremely visibility, very quickly
and relatively simply leads to final results for engineering practice, the model of micropolar
orthotropic elastic multilayered plates will be constructed on the basis of this method.
Following hypotheses are formulated for the construction of the mathematical model of
micropolar orthotropic elastic multilayered plates composed of an odd number of layers,
which are symmetrically located with respect to the middle plane (these are generalized
hypotheses of single layered micropolar isotropic plates [2]:
1. During the deformation initially straight and normal to the middle plane of the plate
fibers rotate freely at an angle as a whole rigid body, without changing their length and
without remaining perpendicular to the deformed middle plane.
The formulated hypothesis is mathematically written as follows:

V i
1 = u1(α1, α2) + α3Ψ1(α1, α2), V i

2 = u2(α1, α2) + α3Ψ2(α1, α2),

V i
3 = w(α1, α2). (7)

ωi1 = Ω1(α1, α2), ωi2 = Ω2(α1, α2), ωi3 = ω3(α1, α2) + α3ι(α1, α2). (8)

Thus, tangential displacements and normal rotation are changed by a linear law along the
plate thickness. Bending and tangential rotations do not depend on coordinate α3.It should
be noted that part (7) of the accepted hypothesis, in essence, is Timoshenko’s hypothesis
in the classical theory of shells and plates. Here, like in paper [2], hypothesis (9), (10) in
full we shall call Timoshenko’s generalized for micropolar case kinematic hypothesis.
2. In the generalized Hook’s law (2) force stress σi33 and moment stresses µi31, µi32 in each
layer can be neglected respectively in relation to the force stresses σi11, σi22 and moment
stresses µi13, µi23.
3. During the determination of the deformations, bending-torsions, force and moment
stresses in each layer, first for the force stresses σi31, σi22 and moment stress µi33 we’ll take:

σi31 =
oi
σ31(α1, α2), σi32 =

oi
σ32(α1, α2), µi33 =

oi
µ33(α1, α2). (9)

After determination of mentioned quantities, values of σi31, σi32 and µi33 in each layer will
be finally defined by the addition to the correspondent values (9) summed up, obtained
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by integration of the first, second and sixth equilibrium equations of (1), for which the
condition will be required, that quantities, averaged along the layer’s thickness, are equal
to zero.

With the help of the accepted hypotheses displacements, rotations, deformations,
bending-torsions, force and moment stresses will be determined and conditions (4), (5)
will be satisfied. In order to bring the three-dimensional problem of the mic- ropolar the-
ory of elasticity (1)-(6) to two-dimensional, instead of the components of the tensors of
force and moment stresses statically equivalent to them integral characteristics-forces T11,
T22, S12, S21, N13, N23, N31, N32, moments L13, L23, M11, M22, H12, H21, L11, L22, L33,
L12, L21 and hypermoments Λ13, Λ23 are introduced:

T11 = 2

h1∫
0

σ1
11dα3 +

n∑
i=1

hi+1∫
hi

σi+1
11 dα3

 , S12 = 2

h1∫
0

σ1
12dα3 +

n∑
i=1

hi∫
hi−1

σi12dα3

 ,

L11 = 2

h1∫
0

µ1
11dα3 +

n∑
i=1

hi∫
hi−1

µi11dα3

 , L12 = 2

h1∫
0

µ1
12dα3 +

n∑
i=1

hi∫
hi−1

µi12dα3

 , (10)

M11 =2

h1∫
0

α3σ
1
11dα3 +

n∑
i=1

hi∫
hi−1

α3σ
i
11dα3

 , H12 = 2

h1∫
0

α3σ
1
12dα3 +

n∑
i=1

hi∫
hi−1

α3σ
i
12dα3

 ,

N13 = 2

h1∫
0

σ1
13dα3 +

n∑
i=1

hi∫
hi−1

σi13dα3

 , Λ13 = 2

h1∫
0

α3µ
1
13dα3 +

n∑
i=1

hi∫
hi−1

α3µ
i
13dα3

 ,

L13 = 2

h1∫
0

µ1
13dα3+

n∑
i=1

hi∫
hi−1

µi13dα3

, L33 = 2

h1∫
0

µ1
23dα3+

n∑
i=1

hi∫
hi−1

µi33dα3

; (1↔ 2).

Here ∆hi+1 = hi+1 − hi is the thickness of the i-th layer; 2h1-of the middle plane.
On the basis of the accepted hypotheses the basic system of equations of mic- ropolar

orthotropic elastic multilayered thin plates with free fields of displacements and rotations
will be split into two independent systems of equations (the system of plane stress state
and the system of bending).

Equations of plane stress state of micropolar orthotropic elastic multilayered thin plates
with symmetric structure:

Equilibrium equations:

1

A1

∂T11

∂α1
+

1

A1A2

∂A2

∂α1
(T11 − T22) +

1

A2

∂S21

∂α2
+

1

A1A2

∂A1

∂α2
(S21 + S12) = −(q+

1 + q−1 ),

1

A2

∂T22

∂α2
+

1

A1A2

∂A1

∂α2
(T22 − T11)+

1

A1

∂S12

∂α1
+

1

A1A2

∂A2

∂α1
(S12 + S21) = −(q+

2 +q−2 ), (11)

1

A1

∂L13

∂α1
+

1

A1A2

∂A2

∂α1
L13 +

1

A2

∂L23

∂α2
+

1

A1A2

∂A1

∂α2
L23 + S12 − S21 = −(m+

3 +m−3 ).

Physical relations:

T11 = C11Γ11 + C12Γ22, T22 = C22Γ22 + C12Γ11, S12 = C88Γ12 + C78Γ21,
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S21 = C77Γ21 + C78Γ12, L13 = d66k13, L23 = d44k23, (12)

where

C11 = 2

∆h1
a1

22

a1
11a

1
22 −

(
a1

12

)2 +

n∑
i=1

∆hi+1
ai+1

22

ai+1
11 ai+1

22 −
(
ai+1

12

)2

 , · · ·

d66 = 2

∆h1
1

b166

+

n∑
i=1

∆hi+1
1

bi+1
66

 , · · ·. (13)

Geometric relations:

Γ11 =
1

A1

∂u1

∂α1
+

1

A1A2

∂A1

∂α2
u2, Γ22 =

1

A2

∂u2

∂α2
+

1

A1A2

∂A2

∂α1
u1,

Γ12 =
1

A1

∂u2

∂α1
− 1

A1A2

∂A1

∂α2
u1 − Ω3, Γ21 =

1

A2

∂u1

∂α2
− 1

A1A2

∂A2

∂α1
u2 + Ω3,

k13 =
1

A1

∂Ω3

∂α2
, k23 =

1

A1

∂Ω3

∂α2
, (14)

k11 =
1

A1

∂Ω1

∂α1
+

1

A1A2

∂A1

∂α2
Ω2, k22 =

1

A1

∂Ω2

∂α2
+

1

A1A2

∂A2

∂α2
Ω1, k33 = ι.

“Softened" boundary conditions on the boundary contour of the middle plane of the
plate are the followings:

T11 = T ∗11 or u1 = u∗1, S12 = S∗12 or u2 = u∗2, L13 = L∗13 or κ13 = κ∗13. (15)

Equations of bending of micropolar orthotropic elastic multilayered thin plates with
symmetric structure:

Equilibrium equations:

1

A1

∂N13

∂α1
+

1

A1A2

∂A21

∂α1
N13 +

1

A2

∂N23

∂α2
− T11

R1
− T22

R2
= q+

3 + q−3 ,

N31 −
1

A1

∂M11

∂α1
+

1

A1A2

∂A2

∂α1
(M22 −M11)− 1

A2

∂H21

∂α2
−

− 1

A1A2

∂A1

∂α2
(H21 +H12) = h(q+

1 − q
−
1 ),

N32 −
1

A2

∂M22

∂α2
+

1

A1A2

∂A1

∂α2
(M11 −M22)− 1

A1

∂H12

∂α1
−

− 1

A1A2

∂A2

∂α1
(H12 +H21) = h(q+

2 − q
−
2 ), (16)

1

A1

∂L11

∂α1
+

1

A1A2

∂A2

∂α1
(L11 − L22) +

1

A2

∂L21

∂α2
+

1

A1A2

∂H1

∂α2
(L21 + L12)+

+N23 −N32 = −(m+
1 +m−1 ),

1

A2

∂L22

∂α2
+

1

A1A2

∂A1

∂α2
(L22 − L11) +

1

A1

∂L12

∂α1
+

1

A1A2

∂A2

∂α1
(L12 + L21)+

+N31 −N13 = −(m+
2 +m−2 ),
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L33 −
1

A1

∂Λ13

∂α1
− 1

A1A2

∂A2

∂α1
Λ13 −

1

A2

∂Λ23

∂α2
− 1

A1A2

∂A1

∂α2
Λ23+

+H12 −H21 = h(m+
3 −m

−
3 ).

Physical relations:

M11 = D11K11 +D12K22, M22 = D22K22 +D12K11,

H12 = D88K12 +D78K21, H21 = D77K21 +D78K12, N13 =
∼
C55Γ13 + C56Γ31,

N31 = C66Γ31 + C56Γ13, N23 = C55Γ23 + C45Γ32, N32 = C44Γ32 + C45Γ23, (17)

L11 = d11k11 + d12k22 + d13k33, L22 = d22k22 + d21k11 + d23k33,

L33 = d33k33 + d31k11 + d32k22, L12 = d88k12 + d78k21, L21 = d77k21 + d78k12,

Λ13 = λ66l13, Λ23 = λ44l23,

where

D11 = 2

h3
i − h3

i−1

3

a1
22

a1
11a

1
22 −

(
a1

12

)2 +
n∑
i=1

h3
i − h3

i−1

3

ai+1
22

ai+1
11 ai+1

22 −
(
ai+1

12

)2

 , · · ·

C44 = 2

∆h1
a1

44

a1
44a

1
55 −

(
a1

45

)2 +
n∑
i=1

∆hi+1
ai+1

44

ai+1
44 ai+1

55 −
(
ai+1

45

)2

 , · · ·

d11 = 2

∆h1
b122b

1
33 −

(
b123

)2
∆i

+
n∑
i=1

∆hi+1

bi+1
22 bi+1

33 −
(
bi+1
23

)2

∆i+1

 , · · · (18)

λ66 = 2

h3
i − h3

i−1

3

1

b166

+

n∑
i=1

h3
i − h3

i−1

3

1

bi+1
66

 , · · ·.

Geometric relations:

K11 =
1

A1

∂Ψ1

∂α1
+

1

A1A2

∂A1

∂α2
Ψ2, K22 =

1

A2

∂Ψ2

∂α2
+

1

A1A2

∂A2

∂α1
Ψ1,

Γ23 = −ϑ2 − Ω1, Γ32 = Ψ2 + Ω1, Γ13 = −ϑ1 + Ω2, Γ31 = Ψ1 − Ω2,

ϑ2 = − 1

A2

∂w

∂α2
+
u2

R2
, ϑ1 = − 1

A1

∂w

∂α1
+
u1

R1
,

K12 =
1

A1

∂Ψ2

∂α1
− 1

A1A2

∂A1

∂α2
Ψ1 − ι, K21 =

1

A2

∂Ψ1

∂α1
− 1

A1A2

∂A1

∂α2
Ψ2 + ι, (19)

k12 =
1

A1

∂Ω2

∂α1
− 1

A1A2

∂A1

∂α2
Ω1, k21 =

1

A2

∂Ω1

∂α2
− 1

A1A2

∂A2

∂α1
Ω2,

l13 =
1

A1

∂ι

∂α1
, l23 =

1

A2

∂ι

∂α2
,

k11 =
1

A1

∂Ω1

∂α1
+

1

A1A2

∂A1

∂α2
Ω2, k22 =

1

A1

∂Ω2

∂α2
+

1

A1A2

∂A2

∂α2
Ω1, k33 = ι.
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“Softened" boundary conditions are the followings:

N13 = N∗13 or w = w∗, M11 = M∗11 or K11 = K∗11, H12 = H∗12 or K12 = K∗12,

L11 = L∗11 or κ11 = κ∗11, L12 = L∗12 or κ12 = κ∗12, Λ13 = Λ∗13 or l13 = l∗13. (20)

On the basis of the constructed models of plane stress state (11)-(15) and bending
(16)-(20) concrete problems of statics, free and forced vibrations of multilayered micropolar
orthotropic plates will be studied.
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Abstract

A fast and efficient numerical-analytical approach is proposed for description of
complex behaviour in non-equilibrium ensembles in the BBGKY framework. We con-
struct the multiscale representation for hierarchy of partition functions by means of the
variational approach and multiresolution decomposition. Numerical modeling shows
the creation of various internal structures from fundamental localized (eigen)modes.
These patterns determine the behaviour of plasma. The localized pattern (waveleton)
is a model for energy confinement state (fusion) in plasma.

“A magnetically confined plasma cannot
be in thermodinamical equilibrium”

Unknown author ... Folklore

1 Introduction.

It is well known that fusion problem in plasma physics could be solved neither experimen-
tally nor theoretically during last fifty years. At the same time, during this long period
other areas of physics and engineering demonstrated vast growth, on the level of both
theoretical understanding and practical smart realizability. Because financing contribu-
tions in this area definitely exceeds that of almost all other areas of Physics, it seems that
there are the serious obstacles which prevent real progress in the problem of real fusion
as the main subject in the area [1,2]. Of course, it may be a result of some unknown
no-go theorem(s) but it seems that the current theoretical level definitely demonstrates
that not all possibilities, at least on the level of theoretical and matematical modeling,
are exhausted. Surely, it is more than clear that perturbations, linearization, PIC or MC
do not exhaust all instruments which we have at our hands on the route to theoretical
understanding and predictions. Definitely, we need much more to have influence on almost
free-of-theoretical-background work of experimentalists and engineers who contribute to
ITER, NIF and other related top level projects. So, this paper and related one [3] can be
considered as a small contribution to an attempt to avoid the existing obstacles appeared
on the main roads of current plasma physics, especially along thorny path to solution of
fusion problem. Definitely, the first thing which we need to change is a framework of
generic mathematical methods which can help to improve the current state of the theory.
Our postulates (conjectures) are as follows [4], [7]–[23]:

A) The fusion problem (at least at the first step) must be considered as a problem
inside the (non) equilibrium ensemble in the full phase space. It means, at least, that:

A1) our dynamical variables are partitions (partition functions, hierarchy of N-points
partition functions),
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A2) it is impossible to fix a priori the concrete distribution function and postulate
it (e.g. Maxwell-like or other concrete (gaussian-like or even not) distributions) but, on
the contrary, the proper distrubution(s) must be the solutions of proper (stochastic) dy-
namical problem(s), e.g., it may be the well-known framework of BBGKY hierarchy of
kinetic equations or something similar. So, the full set of dynamical variables must include
partitions also.

B) Fusion state = (meta) stable state (with minimum entropy and zero measure) in
the space of partitions on the whole phase space in which most of energy of the system
is concentrated in the relatively small area (preferable with measure zero) of the whole
domain of definition in the phase space during the time period which is enough to take
reasonable part of it outside for possible usage. From the formal/mathematical point of
view it means that:

B1) fusion state must be localized (first of all, in the phase space),
B2) we need a set of building blocks, localized basic states or eigenmodes which can

provide
B3) the creation of localized pattern which can be considered as a possible model for

plasma in a fusion state. Such pattern must be:
B4) (meta) stable and controllable, because of obvious reasons. So, the main courses

are:
C1) to present smart localized building blocks which may be not only useful from point

of view of analytical statements, such as the best possible localization, fast convergence,
sparse operators representation, etc, but also exist as real physical fundamental modes,

C2) to construct various possible patterns with special attention to localized pattern
which can be considered as a needful thing in analysis of fusion;

C3) after points C1 and C2 in ensemble (BBGKY) framework to consider some stan-
dard reductions to Vlasov-like and RMS-like equations (following the set-up from well-
known results [2]) which may be useful also. These particular cases may be important as
from physical point of view as some illustration of general consideration [3].

The lines above are motivated by our attempts to analyze the hidden internal contents
of the phrase mentioned in the epigraph of this paper: “A magnetically confined plasma
cannot be in thermodinamical equilibrium.” Also, it should be noted that our results
below can be applied to any scenario (fusion, ignition, etc): we describe pattern formation
in arbitrary non-equilibrium ensembles.

2 Motivations

It is obvious that any reasonable set-up for analysis of fusion leads to very complex system
and one hardly believes that such system can be analyzed by means of almost exhausted
methods like perturbations, linearization, etc. At the same time, because such complex
chaotic/stochastic dynamics is overcompleted by short- and long-living fluctuations, insta-
bilities, etc one needs to find something more proper than usual plane waves or gaussians
for modeling a complicated complex behaviour. For reminiscences we may consider sim-
ple standard soliton equations like KdV, KP or sine-Gordon ones. It is well-known that
neither linearization, nor perturbations, nor plane-wave-like approximations are proper for
the reasonable analysis of such equations in contrary to wave or other simple linear equa-
tions: it is impossible to approximate the spectrum of such models (solitons, breathers
or finite-gap solutions) by means of linear Fourier harmonics because they are not proper
modes in complex situation. Moreover, such linear methods are not adequate in more com-
plicated situations which are very far even from the exactly integrable case (Liouvillean
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tori). It would appear that as a first step in this direction is to find a reasonable extension
of understanding of the non-equilibrium dynamics as a whole. One needs to sketch up
the underlying ingredients of the theory (spaces of states, observables, measures, classes of
smoothness, dynamical set-up, etc.) in an attempt to provide the maximally extendable
but at the same time really calculable and realizable description of the complex dynamics
inside hierarchies like BBKGY and their reductions. The general idea is rather simple: it
is well known that the idea of “symmetry” is the key ingredient of any reasonable physical
theory from classical (in)finite dimensional (integrable) Hamiltonian dynamics to different
sub-planckian models based on strings. A starting point for us is a possible model for
fundamental localized modes with the subsequent description of the whole zoo of possible
realizable (controllable) states/patterns which may be useful from the point of view of
experimentalists and engineers. The proper representation theory is well known as “lo-
cal nonlinear harmonic analysis”, in particular case of simple underlying symmetry-affine
group-aka wavelet analysis. From our point of view the advantages of such approach are
as follows:

i) natural realization of localized states in any proper functional realization of (functional)
space of states,

ii) hidden symmetry of chosen realization of proper functional model provides the (whole)
spectrum of possible states via the so-called multiresolution decomposition.

So, indeed, the hidden symmetry (non-abelian affine group in the simplest case) of the
space of states via proper representation theory generates the physical spectrum and this
procedure depends on the choice of the functional realization of the space of states. It ex-
plicitly demonstrates that the structure and properties of the functional realization of the
space of states are the natural properties of physical world at the same level of importance
as a particular choice of Hamiltonian, or the equation of motion, or the action principle
(variational method). It should be noted that in such picture we can naturally include the
effects of self-interaction on the way of construction and subsequent analysis of nonlinear
models. So, our consideration will be in the framework of (Nonlinear) Pseudodifferential
Dynamics (ΨDOD). Existence of such internal multiscales with different dynamics at
each scale and transitions, interactions, and intermittency between scales demonstrates
that statistical mechanics in BBGKY form, despite its linear structure, is really a compli-
cated problem from the mathematical point of view. It seems, that well-known underlying
“stochastic” complexity is a result of transition by means of (still rather unclear) procedure
of dynamical irreversible evolution or interscale redistribution from complexity related to
individual classical dynamics to the rich pseudodifferential (more exactly, microlocal) struc-
ture on the non-equilibrium ensemble side. Anyway, the whole zoo of solutions consists
of possible patterns, including very important ones from the point of view of underlying
physics:

iii) chaotic states (definitely, non proper for modeling of fusion state but proper for pre-
or post-fusion description) vs. localized modes (basis modes, eigenmodes) and fusion-like
localized patterns constructed from them by means of proper representation of underlying
hidden symmetry group. For practical reasons controllable patterns (with prescribed be-
haviour) are the most useful. We mention the so-called waveleton-like pattern which we
consider as the most important one. It means:

iv) waveleton ≈ (meta)stable localized (controllable) pattern.
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To summarize, the approach described below allows

v) to solve wide classes of general ΨDOD problems, including generic for us BBGKY
hierarchy and its reductions, and

vi) to present the analytical/numerical realization for physically interesting patterns, like
fusion states.

3 Set-up

Let us consider the following generic ΨDOD dynamical problem

Lj{Opi}Ψ = 0, (1)

described by a finite or infinite number of equations which include general classes of op-
erators Opi such as differential, integral, pseudodifferential etc. Surely, all hierarchies and
their reductions are inside this class. The main objects are:

i) (Hilbert) space of states, H = {Ψ}, with a proper functional realization, e.g.,: L2,
Sobolev, Schwartz, C0, Ck, ... C∞, ...; definitely, L2(R2), L2(S2), L2(S1 × S1), L2(S1 ×
S1 n Zn) are different objects proper for different physics inside. E.g., two last cases
describe tokamak and stellarator, correspondingly. Of course, they are different spaces
and generate different physics.

ii) Class of smoothness. The proper choice determines natural consideration of dynamics
with/without Chaos/Fractality properties.

iii) Decompositions

Ψ ≈
∑
i

aie
i (2)

via high-localized bases (wavelet families, generic wavelet packets etc), frames, atomic
decomposition (Fig. 1, 2) with the following main properties: (exp) control of convergence,
maximal rate of convergence for any Ψ in any H [5], [6].

iv) Observables/Operators (ODO, PDO, ΨDO , SIO,..., Microlocal analysis of Kashiwara-
Shapira (with change from functions to sheaves)) satisfy the main property - the matrix
representation in localized bases

< Ψ|Opi|Ψ > (3)

is maximum sparse.
D1 0 0 . . .
0 D2 0 . . .
0 0 D3 . . .
...

...
...

. . .

 , where Di =

(
Ai Bi
Ci 0

)
.

Such almost diagonal structure is provided by the so-called Fast Wavelet Transform [5].
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v) Measures: multifractal wavelet measures {µi} together with the class of smoothness are
very important for analysis of complicated analytical behaviour [5].

vi) Variational/Projection methods, from Galerkin to Rabinowitz minimax, Floer (in sym-
plectic case of Arnold-Weinstein curves with preservation of Poisson or symplectic struc-
tures). Main advantages are the reduction to algebraic systems, which provides a tool for
the smart subsequent control of behaviour and control of convergence.

vii) Multiresolution or multiscale decomposition, MRA (or wavelet microscope) consists
of the understanding and choosing of (internal) symmetry structure, e.g., affine group
= {translations, dilations} or many others; construction of representation/action of this
symmetry on H = {Ψ}. As a result of such hidden coherence together with using point
vi) we’ll have: a). Localized Bases, b). Exact Multiscale Decomposition with the best
convergence properties and real evaluation of the rate of convergence via proper “multi-
norms”.

Fig. 4 demonstrates MRA decomposition for the kick (Fig. 3).

viii) Effectiveness of proper numerics: CPU-time, HDD-space, minimal complexity of
algorithms, and (Shannon) entropy of calculations are provided by points i)-vii) above.

Finally, such Variational-Multiscale approach based on points i)-viii) provides us with
the full possible Zoo of Patterns: localized, chaotic, etc. In next Sections we will consider
details for important case of kinetic equations.

4 Description

So, we will consider the application of our numerical/analytical technique based on lo-
cal nonlinear harmonic analysis approach for the description of complex non-equilibrium
behaviour of statistical ensembles, considered in the framework of the general BBGKY
hierarchy of kinetic equations, including quantum counterpart, and their different trunca-
tions/reductions [7]–[23]. The main points of our ideology are described below. All these
facts are well-known or mentioned above but it is preferable to bring it together to present
our arguments in most clear form.
• Kinetic theory in nonequilibrium situation is an important part of general statistical
physics related to phenomena which cannot be understood on the thermodynamical or
fluid models level of description as well as on the level of numerical modeling based on
consideration of "collection of particles" instead of "complex non-equilibrium ensembles of
particles".
• We restrict ourselves to the rational/polynomial type of nonlinearities (with respect
to the set of all dynamical variables, including partitions) that allows to use our results,
based on the so called multiresolution framework and the variational formulation of initial
nonlinear (pseudodifferential) problems.
• Our approach is based on the set of mathematical methods which give a possibility to
work with well-localized bases in functional spaces and provide the maximum sparse forms
for the general type of operators (differential, integral, pseudodifferential) in such bases.
• It provides the best possible rates of convergence and minimal complexity of algorithms
inside and, as a result, saves CPU time and HDD space.
• In all cases below by the system under consideration we mean the full BBGKY hierarchy
or some its cut-off or its various reductions. Our scheme of cut-off for the infinite system of
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equations is based on some criterion of convergence of the full solution by means of some
norm introduced in the proper functional space constructed by us.
• This criterion is based on a natural norm in the proper functional space, which takes
into account (non-perturbatively) the underlying multiscale structure of complex statistical
dynamics. According to our approach the choice of the underlying functional space is
important to understand the corresponding complex dynamics.
• It is obvious that we need accurately to fix the space, where we construct the solu-
tions, evaluate convergence, etc. and where the very complicated infinite set of operators,
appeared in the BBGKY formulation, acts.
• We underline that many concrete features of the complex dynamics are related not only
to the concrete form/class of operators/equations but depend also on the proper choice
of function spaces, where operators act. It should be noted that the class of smoothness
(related at least to the appearance of chaotic/fractal-like type of behaviour) of the proper
functional space under consideration plays a key role in the following.
• At this stage our main goal is an attempt of classification and construction of a possible
zoo of nontrivial (meta) stable states/patterns: high-localized (nonlinear) eigenmodes,
complex (chaotic-like or entangled) patterns, localized (stable) patterns (waveletons). We
will use it later for fusion description, modeling and control.
• Localized (meta)stable pattern (waveleton) is a good image for fusion state in plasma
(energy confinement).

Our constructions can be applied to the following general individual (members of en-
semble under consideration) Hamiltonians:

HN =

N∑
i=1

( p2
i

2m
+ Ui(q)

)
+

∑
1≤i≤j≤N

Uij(qi, qj), (4)

where the potentials Ui(q) = Ui(q1, . . . , qN ) and Uij(qi, qj) are restricted to rational func-
tions on the coordinates. Let Ls and Lij be the Liouvillean operators and

FN (x1, . . . , xN ; t) (5)

be the hierarchy of N -particle distribution function, satisfying the standard BBGKY hier-
archy (υ is the volume):

∂Fs
∂t

+ LsFs =
1

υ

∫
dµs+1

s∑
i=1

Li,s+1Fs+1. (6)

Our key point is the proper nonperturbative generalization of the previous perturbative
multiscale approaches (like Bogolubov/virial expansions). The infinite hierarchy of distri-
bution functions is:

F = {F0, F1(x1; t), . . . , FN (x1, . . . , xN ; t), . . . },
Fp(x1, . . . , xp; t) ∈ Hp, H0 = R, Hp = L2(R6p),

F ∈ H∞ = H0 ⊕H1 ⊕ · · · ⊕Hp ⊕ . . . (7)

with the natural Fock space like norm (guaranteeing the positivity of the full measure):

(F, F ) = F 2
0 +

∑
i

∫
F 2
i (x1, . . . , xi; t)

i∏
`=1

µ`. (8)
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• Multiresolution decomposition (filtration) naturally and efficiently introduces the infinite
sequence (tower) of the underlying hidden scales, which is a sequence of increasing closed
subspaces Vj ∈ L2(R):

...V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ ... (9)

• Our variational approach reduces the initial problem to the problem of solution of
functional equations at the first stage and some algebraic problems at the second one.

Let L be an arbitrary (non)linear differential/integral operator with matrix dimen-
sion d (finite or infinite), which acts on some set of functions from L2(Ω⊗

n
): Ψ ≡

Ψ(t, x1, x2, . . . ) =
(

Ψ1(t, x1, x2, . . . ), . . . , Ψd(t, x1, x2, . . . )
)
, xi ∈ Ω ⊂ R6, n is the num-

ber of particles:

LΨ≡L(Q, t, xi)Ψ(t, xi) = 0,

Q≡Qd0,d1,d2,...(t, x1, x2, . . . , ∂/∂t, ∂/∂x1, ∂/∂x2, . . . ,

∫
µk)

=

d0,d1,d2,...∑
i0,i1,i2,···=1

qi0i1i2...(t, x1, x2, . . . )
( ∂
∂t

)i0( ∂

∂x1

)i1( ∂

∂x2

)i2
. . .

∫
µk. (10)

Let us consider now the N mode approximation for the solution as the following ansatz:

ΨN (t, x1, x2, . . . ) =
N∑

i0,i1,i2,···=1

ai0i1i2...Ai0 ⊗Bi1 ⊗ Ci2 . . . (t, x1, x2, . . . ). (11)

We shall determine the expansion coefficients from the following conditions:

`Nk0,k1,k2,... ≡
∫

(LΨN )Ak0(t)Bk1(x1)Ck2(x2)dtdx1dx2 · · · = 0. (12)

As a result the solution has the following multiscale/multiresolution decomposition via
nonlinear high-localized eigenmodes

F (t, x1, x2, . . . ) =
∑

(i,j)∈Z2

aijU
i ⊗ V j(t, x1, x2, . . . ),

V j(t) = V j,slow
N (t) +

∑
l≥N

V j
l (ωlt), ωl ∼ 2l, (13)

U i(xs) = U i,slowM (xs) +
∑
m≥M

U im(ksmxs), k
s
m ∼ 2m,

These formulas give the expansion into a slow and fast oscillating parts. So, we may move
from the coarse scales of resolution (coarse graining) to the finest ones for obtaining more
detailed information about the dynamical process.
• In this way one obtains contributions to the full solution from each scale of resolution
or each time/space scale or from each nonlinear eigenmode.
• It should be noted that such representations give the best possible localization properties
in the corresponding (phase) space/time coordinates.
• Numerical calculations are based on compactly supported wavelets and related wavelet
families and on evaluation of the accuracy on the level N of the corresponding cut-off of
the full system w.r.t. the norm (8):

‖FN+1 − FN‖ ≤ ε (14)
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• Numerical modeling shows the creation of various internal structures from localized
modes, which are related to (meta)stable or unstable type of behaviour and the corre-
sponding patterns (waveletons) formation. Reduced algebraic structure provides the pure
algebraic control of stability/unstability scenario.
• So, we considered the construction for controllable (meta) stable waveleton configuration
representing a reasonable approximation for the possible realizable confinement state.

5 Conclusions

Let us summarize our main results:

Physical Conjectures:

P1 State of fusion (confinement of energy) in plasma physics may and need be considered
from the point of view of non-equilibrium statistical physics. According to this BBGKY
framework looks naturally as first iteration. Main dynamical variables are partitions.

Figure 1: Localized Modes.

P2 High localized nonlinear eigenmodes (Figs. 1, 2) are real physical modes important
for fusion modeling. Intermode multiscale interactions create various patterns from these
fundamental building blocks, and determine the behaviour of plasma (Fig. 5). High local-
ized (meta) stable patterns (waveletons), considered as long-living fluctuations, are proper
images for plasma in fusion state (Fig. 6).
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Figure 2: Two-dimensional Localized Mode Contribution to Distribution Function.

Mathematical framework:

M1 The problems under consideration, like BBGKY hierarchies (6) or their reductions
from paper [3] are considered as ΨDO problems in the framework of proper family of
methods unified by effective multiresolution approach or local nonlinear harmonic anal-
ysis on the orbits of representations of hidden underlying symmetry of properly chosen
functional space.
M2 Formulae (13) based on generalized dispersion relations (GDR) (12) provide exact
multiscale representation for all dynamical variables (partitions, first of all) in the basis
of high-localized nonlinear (eigen)modes. Numerical realizations in this framework are
maximally effective from the point of view of complexity of all algorithms inside. GDR
provide the way for the state control on the algbraic level.
Realizability

According to this approach, it is possible on formal level, in principle, to control ensem-
ble behaviour and to realize the localization of energy (confinement state) inside the wavele-
ton configurations created from a few fundamentals modes only during self-organization
via possible (external) control (Fig. 7, 8).
Open Questions
Q1 Definitely, all above is only very naive ensemble approach. Current level of non-
equilibrium statistical physics provides us only by BBGKY generic framework. All related
internal unsolved problems are well-known but we still have nothing better. At the same
time possible Vlasov-like reductions or phenomenological models also look as very far from
reasonable from the point of view of the fusion problem set-up.
Q2 Considering for allusion successful areas of physics like superconductivity, for exam-
ple, we may conclude that only microscopic BCS formulation provides the full explanation
although Ginzburg-Landau (GL) phenomenological approach and even Froelich’s and Lon-
don’s ones contributed to the general picture. Whether Vlasov equations are the analogue
of GL ones and whether it is possible to construct microscopic model for plasma, these two
important questions remain unanswered at present time.
Q3 It may be natural also that approaches proposed in this paper and related ones are
wrong because the proper and adequate framework for solution of fusion problem is re-
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Figure 4: MRA for Kick.

lated to confinement of magnetic lines or loops (new physical dynamical variables instead
of partitions) or fluxes instead of confinement of localized point modes (attribute of any
local field theory) considered as new and really proper physical variables (magnetic recon-
nection problem can be considered in the same framework). Such an approach demands
the topological background related to proper mathematical constructions. As allusion it
is possible to consider, e.g., the description of (fractional) quantum Hall effect by means
of Chern-Simons/anyon models which allow to describe the dynamics on (of) knots and
braids analytically. Anyway, it is still possible to apply successfull methods from (M1) and
(M2) here too. Other open possibility is related to taking into account internal quantum
properties. From this point of view our approach is very useful because we unify quantum
description and its classical counterpart in the general ΨDO framework [4]. We believe
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Figure 5: Trash: Chaotic Partition.
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Figure 6: Goal: Localized Partition.

that the appearance of nontrivial localized (meta) stable patterns (Fig. 7, 8) observed by
these methods is a general effect which present in the full BBGKY-hierarchy, due to its
complicated intrinsic multiscale dynamics and it depends on neither the cut-off level nor the
phenomenological-like hypothesis on correlators. So, representations for solutions like (13)
and as a result the prediction of the existence of the (meta) stable localized patterns/states
(waveletons) which can realize energy confinement (fusion) states in BBGKY-like systems
are the main results of this approach. In addition, such an approach open the way to solve
the control problem by means of reduction from initial (pseudodifferential) formulation to
reduced set of algebraic one (12) and as a result to create and support the needed fusion
state(s) after solution of proper control problem.
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Abstract

We consider the applications of a numerical-analytical approach based on multi-
scale variational wavelet technique to the systems with collective type behaviour de-
scribed by some forms of Vlasov-Poisson/Maxwell equations. We calculate the exact
fast convergent representations for solutions in framework of multiresolution decom-
positions via high-localized nonlinear eigenmodes (wavelet-like base functions), which
correspond to internal hidden symmetry of underlying functional spaces. It allows to
control process of self-organization during evolution from chaos to localization on the
pure algebraical level of generalized dispersion relations.

1 Introduction

In this paper we consider the applications of numerical-analytical approach based on multi-
scale variational wavelet technique to the systems with collective type behaviour described
by some forms of Vlasov-Poisson/Maxwell equations [1], [2]. Such approach may be useful
in all models in which it is possible and reasonable to reduce all complicated problems
related with statistical distributions to the problems described by the systems of non-
linear ordinary/partial differential/integral equations with or without some (functional)
constraints. In periodic accelerators and transport systems at the high beam currents
and charge densities the effects of the intense self-fields, which are produced by the beam
space charge and currents, determinine (possible) equilibrium states, stability and trans-
port properties according to underlying nonlinear dynamics [2]. The dynamics of such
space-charge dominated high brightness beam systems can provide the understanding of
the instability phenomena such as emittance growth, mismatch, halo formation related to
the complicated behaviour of underlying hidden nonlinear modes outside of perturbative
tori-like KAM regions. Our analysis is based on the variational-wavelet approach [3], [4],
[7]–[23], which allows us to consider polynomial and rational type of nonlinearities. In
some sense our approach is direct generaliztion of traditional nonlinear δF approach in
which weighted Klimontovich representation

δfj = aj

Nj∑
i=1

wjiδ(x− xji)δ(p− pji) (1)

or self-similar decompostion [2] like

δnj = bj

Nj∑
i=1

wjis(x− xji), (2)

where s(x− xji) is a shape function of distributing particles on the grids in configuration
space, are replaced by powerful technique from local nonlinear harmonic analysis, based
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on underlying symmetries of functional space such as affine or more general. The solution
has the multiscale/multiresolution decomposition via nonlinear high-localized eigenmodes,
which corresponds to the full multiresolution expansion in all underlying time/phase space
scales. Starting from Vlasov-Poisson equations in part 2, we consider the approach based
on multiscale variational-wavelet formulation in part 3. We give the explicit representation
for all dynamical variables in the base of compactly supported wavelets or nonlinear eigen-
modes. Our solutions are parametrized by solutions of a number of reduced algebraical
problems one from which is nonlinear with the same degree of nonlinearity as initial prob-
lem and the others are the linear problems which correspond to the particular method of
calculations inside concrete wavelet scheme. Because our approach started from variational
formulation we can control evolution of instability on the pure algebraical level of reduced
algebraical system of equations by means of generalized dispersion relations. It allows to
control stability/unstability scenario of evolution in parameter space on pure algebraical
level. In all these models numerical modeling demonstrates the appearance of coherent
high-localized structures and as a result we may control process of localized pattern for-
mation or self- organization of the (meta)stable long-living fluctuations (waveletons) from
standard chaotic- like behaviour.

2 Vlasov-Poisson equations

Analysis based on the non-linear Vlasov equations leads to more clear understanding of
collective effects and nonlinear beam dynamics of high intensity beam propagation in pe-
riodic-focusing and uniform-focusing transport systems. We consider the following form of
equations (refs. [1], [2] for setup and designation):

{ ∂
∂s

+ px
∂

∂x
+ py

∂

∂y
−
[
kx(s)x+

∂ψ

∂x

] ∂

∂px
−[

ky(s)y +
∂ψ

∂y

] ∂

∂py

}
fb(x, y, px, py, s) = 0, (3)( ∂2

∂x2
+

∂2

∂y2

)
ψ = −2πKb

Nb

∫
dpxdpyfb, (4)∫

dxdydpxdpyfb = Nb (5)

The corresponding Hamiltonian for transverse single-particle motion is given by

H(x, y, px, py, s) =
1

2
(p2
x + p2

y) +
1

2
[kx(s)x2 (6)

+ky(s)y
2] +H1(x, y, px, py, s) + ψ(x, y, s),

where H1 is nonlinear (polynomial/rational) part of the full Hamiltonian and correspond-
ing characteristic equations are:

d2x

ds2
+ kx(s)x+

∂

∂x
ψ(x, y, s) = 0 (7)

d2y

ds2
+ ky(s)y +

∂

∂y
ψ(x, y, s) = 0 (8)
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3 Multiscale representations

We obtain our multiscale/multiresolution representations for solutions of equations (3)-(8)
via variational-wavelet approach. We decompose the solutions as

fb(s, x, y, px, py) =
∞∑
i=ic

⊕δif(s, x, y, px, py) (9)

ψ(s, x, y) =
∞∑
j=jc

⊕δjψ(s, x, y) (10)

x(s) =
∞∑
k=kc

⊕δkx(s), y(s) =
∞∑
`=`c

⊕δ`y(s) (11)

where set (ic, jc, kc, `c) corresponds to the coarsest level of resolution (coarse graining) c
in the full multiresolution decomposition [5], [6]:

Vc ⊂ Vc+1 ⊂ Vc+2 ⊂ . . . (12)

Introducing detail space Wj as the orthonormal complement of Vj with respect to Vj+1 :

Vj+1 = Vj
⊕
Wj , we have for f , ψ, x, y ⊂ L2(R) from decompositions (9)-(11) the full

fine-grained representation:

L2(R) = Vc

∞⊕
j=c

Wj , (13)

In some sense (9)-(11) can be considered as generalization of the old δF approach [1], [2].

Let L be an arbitrary (non) linear differential/integral operator with matrix dimension
d, which acts on some set of functions Ψ ≡ Ψ(s, x) =

(
Ψ1(s, x), . . . ,Ψd(s, x)

)
, s, x ∈ Ω ⊂

Rn+1 from L2(Ω):

LΨ ≡ L(R(s, x), s, x)Ψ(s, x) = 0, (14)

(x are the generalized space coordinates or phase space coordinates, s is “time” coordinate).
After some anzatzes [4] the main reduced problem may be formulated as the system of
ordinary differential equations

Qi(f)
dfi
ds

= Pi(f, s), f = (f1, ..., fn), (15)

i = 1, . . . , n, max
i
deg Pi = p, max

i
deg Qi = q

or a set of such systems corresponding to each independent coordinate in phase space.
They have the fixed initial (or boundary) conditions fi(0), where Pi, Qi are not more than
polynomial functions of dynamical variables fj and have arbitrary dependence on time.
As result we have the following reduced algebraical system of equations, the Generalized
Dispersion Relations (GDR), on the set of unknown coefficients λki of localized eigenmode
expansion (formula (17) below):

L(Qij , λ, αI) = M(Pij , λ, βJ), (16)

where operators L and M are algebraization of RHS and LHS of initial problem (15) and
λ are unknowns of reduced system of algebraical equations (RSAE) (16). After solution of
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Figure 1: New Localized Modes

GDR, RSAE (16), we determine the coefficients of wavelet expansion and therefore obtain
the solution of our initial problem. It should be noted that if we consider only truncated
expansion with N terms then we have from (16) the system of N ×n algebraical equations
with degree ` = max{p, q} and the degree of this algebraical system coincides with degree
of initial differential system. So, we have the solution of the initial nonlinear (rational)
problem in the form

fi(s) = fi(0) +
N∑
k=1

λki fk(s), (17)

where coefficients λki are the roots of the corresponding reduced algebraical (polynomial)
problem, GDR (16). Consequently, we have a parametrization of solution of initial problem
by the solution of reduced algebraical problem (16). The obtained solutions are given in the
form (17), where fk(t) are basis functions obtained via multiresolution expansions (9)-(11),
(13) and represented by some compactly supported wavelets. As a result, the solution of
equations (3)-(8) has the following multiscale/multiresolution decomposition via nonlinear
high-localized eigenmodes, which corresponds to the full multiresolution expansion in all
underlying scales (13) starting from coarsest one (polynomial tensor bases and proper
norms are considered in [4]; x = (x, y, px, py)):

Ψ(s,x) =
∑

(i,j)∈Z2

aijU
i ⊗ V j(s,x), (18)

V j(s) = V j,slow
N (s) +

∑
l≥N

V j
l (ωls), ωl ∼ 2l

Ui(x) = Ui,slow
M (x) +

∑
m≥M

Ui
m(kmx), km ∼ 2m,

Decomposition (18) gives us expansion into the slow part Ψslow
N,M and fast oscillating

parts for arbitrary N, M. So, we may move from coarse scales of resolution to the finest
one for obtaining more detailed information about our dynamical process. The first terms

103



Proceedings of XL International Summer School–Conference APM 2012

0

20

40

60

80

0

20

40

60

80

0

0.1

0.2

0.3

0.4

0.5

Figure 2: Chaotic-like Pattern
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Figure 3: On the Route to Self-organization: From Chaos to Localization
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Figure 4: Localized Pattern: Waveleton
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in the RHS of formulas (18) correspond on the global level of function space decompo-
sition to resolution space and the second ones to detail space. It should be noted that
such representations give the best possible localization properties in the corresponding
(phase)space/time coordinates. In contrast with different approaches formulas (18) do
not use perturbation technique or linearization procedures. So, by using wavelet bases
with their good (phase) space/time localization properties we can describe high-localized
(coherent) structures in spatially-extended stochastic systems with collective behaviour.
Modelling demonstrates the appearance of (meta)stable localized pattern formation from
high-localized coherent base structures or chaotic behaviour [3]. On Fig. 1 we present
contribution to the full expansion from the coarsest level of resolution (base fundamental
localized non-linear eigenmodes) of decomposition (18). Figs. 2-4 show the representation
for the controllable (via GDR (16)) process of self-organization during the evolution of
pattern formation: from chaotic-like pattern (Fig. 2) via partly localized pattern (Fig. 3)
to our main goal, localized pattern or waveleton (Fig. 4). It is a universal model for long-
living (meta)stable state/fluctuation useful in many applications, in both beam physics
and plasma physics. GDR (16) provide a way for state control on the algebraic level. Ac-
cording to this approach, it is possible on the formal level, in principle, to control ensemble
behaviour and to realize the localization of energy (confinement state) inside waveleton
configurations created from a few fundamental physical modes only. Definitely, it is a good
pre-image for fusion modeling in plasma.
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of seasonal cooling devices
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Abstract
A new mathematical model of heat distribution in permafrost soils is considered

taking into account different climatic and physical factors. The first group of factors
includes consideration of solar radiation, seasonal changes of air temperature, leading
to periodic thawing (freezing) of soil, and possible snow layers. The second group of
factors is the heterogeneity of the soil (not only in horizontal layers), the presence of a
number of piles, or foundation structures, seasonal cooling devices. Seasonal cooling
devices (SCDs) are vapor–fluid devices consisting of a hermetically sealed and sea-
soned with coolant, metal pipe with diameter 57 mm, length up to 10 meters or more,
consisting of aerial parts (condenser fins) up to 2.5 meters and the underground part.
These devices operate without external power sources only by the laws of physics.
Taking into account these factors leads to the solution of three-dimensional quasilin-
ear heat distribution equation (quasi-linear equation due to the dependence of the
thermophysical parameters on temperature) of the Stefan problem in a rectangular
parallelepiped, but also with a nonlinear boundary condition at the soil surface as-
sociated with solar radiation. It is assumed that the side faces of the computational
domain are insulated and are chosen sufficiently far from the location of engineering
structures, and a computational grid of large dimension to be used, with adaptation
to the heat(cold) sources. Computational codes is designed for numerical simulation
of thermal fields in permafrost and melted soil, taking into account thermal diffusion
properties of the soil and heat exchange between the soil and air, including also due
to heat loss by radiation. The presentation is devoted to the results of numerical sim-
ulations carried out for the project work in several oil and gas fields in Russia, located
in the permafrost zone.

Introduction
Permafrost takes place about 25 % of the total land area of the globe [1] (mainly in

Alaska, the northern territories of Canada, Russia, China, highland areas) and is closely
related with external influences. The main characteristics of permafrost, which are usually
taken into account are the type of distribution (continuous, intermittent, island), the type
of cryogenic structure (massive, layered, mesh) and the degree of iciness. Soils, which
compose permafrost, have different physical and chemical properties that are nonuniform
and nonisotropic. In summer, because of the positive air temperatures and solar radiation,
there is a seasonal thawing of the upper soil layer, and in winter, the reverse process
is observed. It was noted that in the northern high latitudes, the average temperature
has increased more rapidly than the global mean temperature [2], which could affect on
permafrost.

In developing the oil and gas fields in a permafrost zone an important objective is
to reduce the influence of different heat sources (construction and production wells, for
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example) on permafrost. The problem of reducing the intensity of the thermal interaction
on permafrost is of particular importance for solving problems energy saving, environmental
protection, safety, cost savings and improve operational reliability of wells. In the design
one should provide both insulation of production wells, and construction of platforms on
which these wells located. In Russia, permafrost occupies a total area of 10 million km2,
up to 65 % of the territory. Age of permafrost corresponds to Pliocene (1.8-2.4 Ma). These
areas are extremely important for Russian economy, as here there are produced about 93
% of Russian natural gas and 75 % of oil, which in monetary terms, provides up to 70 %
of exports. It had been thought that the average thickness of permafrost in these areas
ranges from 10 to 800 m, however, in the northwestern part of Yakutia it has been found
by drilling that a depth of permafrost is 1400 m. There are number of papers devoted to
the problem of permafrost thawing in Russia, for example, [3, 4].

Extraction and transportation of oil and gas also has a significant effect on permafrost,
as heat flux from the heated oil in wells and pipelines leading to permafrost thawing. Note
that more than 75 % of all Russian buildings and structures in the permafrost zone are
constructed and operated on the base of principle of conservation of frozen soil founda-
tion. Therefore the problem of reducing the intensity of thermal interaction in the “heat
source–permafrost” zones is of particular importance for solving problems of energy sav-
ing, environmental protection, safety, cost savings and improve the reliability of various
engineering structures.

In the papers [5, 6] we consider permafrost thawing in the system “well-permafrost”, in
[7] for an underground pipeline the thermal fields are calculated with taking into account
water filtration in the soil, but without taking into account the possible phase transition.

1 Mathematical model of heat distribution in a heat source–
permafrost system

First let consider heat exchange on a flat ground surface directly illuminated by the sun. Let
the initial time be t0 = 0, and the ground is a box Ω and has a temperature T0(x, y, z). The
computational domain is a three-dimensional box, where x and y axes are parallel to the
ground surface and the z axis is directed downward. We assume that the size of the region
Ω is defined by positive numbers Lx, Ly, Lz: −Lx ≤ x ≤ Lx, −Ly ≤ y ≤ Ly, −Lz ≤ z ≤ 0.
To simulate the propagation of heat in this volume the following mathematical model is
suggested. Let T = T (t, x, y, z) be soil temperature at the point (x, y, z) at the time
moment t. The main heat flow associated with climatic factors on the surface z = 0 is
shown in Figure 1.

Tair = Tair(t) denotes the temperature in the surface layer of air, which varies from time
to time in accordance with the annual cycle of temperature; σ = 5, 67 · 10−8 Wt/(m2K4)
is Stefan-Boltzmann constant; b = b(t, x, y) is heat transfer coefficient; ε = ε(t, x, y) is the
coefficient of emissivity. The coefficients of heat transfer and emissivity depend on the
type and condition of the soil surface. Total solar radiation q(t) is the sum of direct solar
radiation and diffuse radiation. Soil is absorbed only part of the total radiation which
equals to αq(t), where α = α(t, x, y) is the part of energy that is formed to heat the soil,
which in general depends on atmospheric conditions, angle of incidence of solar radiation,
i.e. latitude and time. Ω can include a number of engineering structures (e.g., layers of
riprap on the surface of the ground, piles). Suppose that in Ω there are n objects that are
heat sources (foundations, producing insulated wells, pipelines) and cold sources (SCDs).
We denote the surface of these objects by Ωi = Ωi(x, y, z), i = 1, ..., n (Fig.1). To account
the heat from each of the Ωi the equation of the contact (diffusion) heat conductivity with
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Figure 1: The main heat flows and boundary conditions.

inhomogeneous coefficients is used as a basic mathematical model with including localized
heat of phase transition — an approach to solve the problem of Stefan type, without the
explicit separation of the phase transition [8, 9]. The heat of phase transformation is
introduced with using Dirac δ-function as a concentrated heat of phase transition in the
specific heat ratio. The obtained discontinuous function then ”shared” with respect to
temperature, and does not depend on the number of measurements, phases, and fronts.
Thus, the modeling of thawing in the soil is reduced to the solution in Ω of the equation
following heat equation [8]:

ρ
(
cν(T ) + kδ(T − T ∗)

)∂T
∂t

= div (λ(T )gradT ), (1)

where ρ is density [kg/m3], T ∗ is temperature of phase transition [K],

cν(T ) =

{
c1(x, y, z), T < T ∗,
c2(x, y, z), T > T ∗,

is specific heat [J/kg K],

λ(T ) =

{
λ1(x, y, z), T < T ∗,
λ2(x, y, z), T > T ∗,

is thermal conductivity coefficient [Wt/m K ],

k = k(x, y, z) is specific heat of phase transition, δ is the Dirac delta function.
Thus, it is necessary to solve equation (1) in the area Ω with initial condition

T (0, x, y, z) = T0(x, y, z). (2)

and boundary conditions

αq + b(Tair − Tz=0) = εσ(T 4
z=0 − T 4

air) + λ
∂T

∂z
, (3)

T

∣∣∣∣
Ωi

= Ti(t), i = 1, . . . , n, (4)

∂T

∂x

∣∣∣∣
x=±Lx

=
∂T

∂y

∣∣∣∣
y=±Ly

=
∂T

∂z

∣∣∣∣
z=±Lz

= 0. (5)
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Condition (2) determines the initial distribution of soil temperature at the time moment
from which we plan to start the numerical calculation. Condition (3) is obtained from the
balance the heat fluxes at the ground surface z = 0. Conditions (4) appear in the case if in
the ground there are different objects, which temperature is different from the surrounding
soil. For SCDs the temperature Ti(t) is determined by the temperature of air Tair. It is
assumed that SCDs work effectively when Tair < −10◦C. Conditions (5) are necessary
to carry out numerical calculations in the given area. Note that the lower boundary
(z = −Lz) of the computational domain instead of the zero heat flux is more correct to
set the geothermal flux. However, due to the smallness of the geothermal flow in this area
for the proposed model we use (5).

Thus, the simulation of heat transfer in three-dimensional domain with the phase tran-
sition is reduced to solving the initial-boundary value problem (1)–(5). In contrast to the
known results on the calculations of permafrost defrosting, in this mathematical model in-
cludes not only geometric and thermal insulation characteristics of engineering structures
around the well but also various options for thermal insulating the outer surface of the
well.

It should be noted that the size of the computational domain Ω (Lx, Ly, Lz) is chosen
so that the effect of lateral boundaries in the numerical calculations has no significant effect
on the temperature distribution around the objects, bounded by surfaces Ωi.

To compute heat distribution by equations (1)–(5) in a three-dimensional domain a
finite-difference method with splitting by spatial variables is used. Computations are car-
ried out on orthogonal grid, uniform or adapted by layers and to the well. The basic
heat equation is approximated by an economical implicit finite-difference pattern in each
of spatial dimensions. System of linear difference equations has a three-diagonal form and
may be solved by a sweep method. On surface z = 0, there is an algebraic equation of
fourth degree, which is solved by Newton’s method. The solvability of implicit difference
equations that approximate the problem (1)-(5) is proved in [10].

2 Numerical results

Let consider seasonal thawing (freezing) of the upper layer of the soil. The mathematical
model takes into account two basic factors: monthly dependent changes of solar energy
reaching surface of the soil and changes of air temperature. Figure 2 shows the averages
of intensity of sunlight and air temperature for the considered region.

To prevent permafrost thawing and soil temperature stabilization SCDs are used. Let
consider the process of functioning of the SCD during one year. The computational domain
is a cube with sides equal to 50 meters. As a basic soil we will use a loam with parameters
shown in Table 1. The background temperature of permafrost is -1.5◦C, except for the
layer of seasonal thawing (freezing) of soil. Figure 3a shows the temperature profiles near
the surface in March, June, September, and December — the natural annual cycle of
temperature fluctuations in the uniform soil.

Further, we will consider two SCDs with diameter 5.7 cm, depth 12 m are in the center
of the computational domain at a distance of 1.2m. In Figure 3b the temperature profiles
are shown on March, June, September, and December, produced by two SCDs in uniform
soil. The profiles are shown for the line between of two SCDs at the distance of 60 cm.

In Figure 4 on the ground there are a layer of water with depth of 20 cm. Figure 4a
shows temperature without SCDs, Figure 4b — with two SCDs.

The structure of the ground in Figure 5 is more complex. There are 4 layers: peat is
from 0 to 0.5 m., clay is from 1 m. to 1.5 m. and loam is from 0.5 m. to 1 m. and from
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Table 1.

Parameter x y z
Size of area, m 50 50 50
Number of points 151 151 101
soil(loam) frozen melted
Heat conductivity Wt/mK 1.93 1.57

Volumetric heat J/(m3K) 2.15 · 106 3.49 · 106

Volumetric heat of phase transition J/m3 1.415 · 105

water/ice frozen melted
Heat conductivity Wt/mK 2.26 0.56

Volumetric heat J/(m3K) 1.99 · 106 4.2 · 106

Volumetric heat of phase transition J/m3 3.35 · 108

peat frozen melted
Heat conductivity Wt/mK 1.34 0.81

Volumetric heat J/(m3K) 2.31 · 106 4.00 · 106

Volumetric heat of phase transition J/m3 3.015 · 108

clay frozen melted
Heat conductivity Wt/mK 1.90 0.90

Volumetric heat J/(m3K) 1.70 · 106 2.30 · 106

Volumetric heat of phase transition J/m3 1.6 · 108
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Figure 2: Intensity of sunlight (a) and average month temperature (b).

1.5 m. and deeper. Also there is an ice lens of an elliptical shape with the values of the
semiaxes by x,y, and z are 2.5 m., 2.5 m., and 0.25 m. The center of the lens is in the
center of computational domain at the deph of 1.25 m.

The presented profiles show that the temperature field formed by SCDs depends on
the structure of the soil. In particular, better insulation of the upper surface in summer
offers the best safety of the “cold”, delivered to the lower layers of soil by SCDs in winter.
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Figure 3: Temperature in an uniform soil (a) and with 2 SCDs (b).
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Figure 4: Temperature in soil with a water layer without of SCDs (a) and with two
SCDs (b).
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Figure 5: Temperature in soil with an ice lens (a) and with two SCDs (b).

3 Thermal fields around an engeneering constructions
Consider the process of SCDs operation in the presence of a heat source. Let in the center
of the computational domain be located a cylindrical container with diameter of 10 meters,
a depth of 5 m, with 20 cm concrete walls. In the container 10◦C constant temperature
is kept. Further, the following figures show the temperature field near the considered area
after 3 years (in the ground there is a stabilization of the temperature field): Figure 6a
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Figure 6: Temperature near container a in an uniform soil in (x, z) (a) and at the depth
of z = 6m. (b), in September.

are shown in the plane (x,z) along the axis of symmetry, Figures 6b, 7, and 8 — in the
plane (x,y) at the depth of 6 m from the surface (1 m from the bottom of the container).
Comparison of Figures 6b, 7b, and 8b illustrates the efficiency of SCDs operating: the
radius of thawing is restrained, even under the floor of the container.
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Figure 7: Temperature at the depth of z = 6m. with 4 SCDs in March (a) and in Septem-
ber (b).
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Figure 8: Temperature at the depth of z = 6m. with 4 SCDs in March (a) and in Septem-
ber (b).
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Simulation of thermal fields in permafrost in presence of SCDs

Thus, the software product developed on the basis of the model (1)–(5) makes it pos-
sible to carry out a series of numerical experiments and make predictions about long-term
dynamics of permafrost thawing, including the presence of various engineering structures,
including the seasonal cooling devices. Monthly changes of air temperature and solar ra-
diation, soil heterogeneity in 3D areas are taken into account in mathematical model as
well as of geophysical features of the simulated region. The results of numerical simula-
tions allow to evaluate the effectiveness of SCDs work for thermal stabilization of soil, to
determine the required number and its optimal location on a given surface.

Acknowledgements

This work is partially supported by Russian Foundation for Basic Research – URAL 10–
08–96014 and Program of Presidium of RAS 12–P–1–1009.

References

[1] T. Zhang, R. G. Barry, K. Knowles, J. A. Heginbottom, J. Brown. Statistics and
characteristics of permafrost and ground ice distribution in the Northern Hemisphere.
Polar Geography. 23, 2, 1999.

[2] O. Anisimov, B. Fitzharris, J. O. Hagan, R. Jeffries, H. Marchant, F. E. Nelson,
T. Prowse, D. G. Vaughan. Polar regions (Arctic and Antarctic). Climate Change:
Impacts, Adaptation, and Vulnerability, The Contribution of Working Group II of the
Intergovernmental Panel on Climate Change, Third Assessment Review, Cambridge,
U.K., Cambridge University Press, 2001.

[3] A. V. Pavlov. Permafrost and climate change in the northem Russia: observations,
prognosis. Izvestiya RAN. Seriya geograficheskaya, 6, 2003.

[4] A .A. Vasiliev, D. S. Drozdov, N. G. Moskalenko. Permafrost temperature dynamics
of west siberia in context of climate changes. Earth cryosphere, 12, 2, 2008.

[5] M. Yu. Filimonov, A. G. Kravets, N. A. Vaganova. Simulation of thermal interaction
in a zone of extractive well in permafrost. Proc. of APM-2010, 2010.

[6] M. Yu. Filimonov, N. A. Vaganova. Permafrost defrosting as a result of extractive
wells operating. Proc. of APM-2011, 2011.

[7] V. V. Bashurov, N. A. Vaganova, M. Y. Filimonov. Numerical simulation of thermal
conductivity processes with fluid filtration in soil. Computational technologies, 16, 4,
2011.

[8] A. A. Samarsky, B .D. Moiseenko. ZhVMiMF, 5, 5 1965.

[9] A. A. Samarsky, P .N. Vabishchevich. Computational Heat Transfer. M.: Editorial
URSS, 2003.

[10] N. A. Vaganova. Existence of a solution of an initial-boundary value difference problem
for a linear heat equation with a nonlinear boundary condition. Proceedings of the
Steklov Institute of Mathematics, 261, 1, 2008.

115



Proceedings of XL International Summer School–Conference APM 2012

Mikhail Yu. Filimonov
Institute of Mathematics and Mechanics UrB RAS, S. Kovalevskaya str. 16, Ekaterinburg, 620990,
Russia

116



Modeling of contact interaction between atomic force microscope probe and an elastic
brittle damage material

Modeling of contact interaction between atomic force
microscope probe and an elastic brittle damage material

Oleg K. Garishin Sergey N. Lebedev
gar@icmm.ru

Abstract

Atomic force microscope (AFM) can be used to obtain information not only about
the topology of the internal structure of the material, but also on its local physical
properties. The corresponding theoretical models must be used for correct decoding
of the experimental results. Modeling the contact interaction of AFM probe with the
elastic brittle specimen is presented in this paper.

At this stage of the research it was considered that the mechanical behavior of
a model sample is described by Neo-Hookean elastic potential. Mechanical strength
of the reaction to the probe indentation was determined from the solution of the
corresponding contact boundary problem. The required solution sought numerically -
the finite element method (in nonlinear elastic axisymmetric formulation) was applied
used. As a result, we obtained dependencies of the mechanical response force on the
depth of indentation, specimen elastic modulus and geometric characteristics of the
probe: the radius of the top and cone angle.

Processes of AFM probe cyclic indentation into fragile medium damaged by de-
formation were numerically investigated using this approach. AFM probe pressed
repeatedly in the same place on the sample surface, that improves the accuracy of
measurements. Theoretical modeling is to aid in its adequate decryption.

As a result, the dependencies of reaction force on the probe depth of penetration
and the size of the hole formed after the previous contact. Probe indentation into
the surface with the existing microwells, which simulated caries damaged tooth is also
modeled.

Atomic force microscopy (AFM) is one of the most promising research tools for
nanoscale materials level. They can be used to obtain information not only about the
topology of the internal structure of the material, but also on its local physical properties
[1, 2, 3, 4]. You can get unique information about the mechanical properties of materials
at the nanoscopic level, exploring the process of introducing the probe into the specimen:
the emergence of dislocations, the occurrence of shear instability, phase transitions and
many other phenomena that are inaccessible to the previously known techniques [5]. The
corresponding theoretical models (which contain additional knowledge about the subject of
study) must be used for the correct interpretation of the experimental results [6, 7, 8]. One
such approach modeling the contact interaction between the AFM probe and the sample
surface is presented in this paper.

Design model scheme consists of a specimen with a flat surface (investigated material)
and an indenter (AFM probe) in the form of a cone with a rounded apex (Fig. 1). The
surface may contain different types of wells.

It is considered that the probe is absolutely rigid, and mechanical behavior of a model
sample can be described by the Neo-Hookean elastic potential. The mechanical force of
the reaction to the probe indentation is determined from the solution of the corresponding
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Figure 1: Design scheme of contact interaction of the AFM probe with the specimen

contact boundary-value problem. The required solution sought numerically - using the
finite element method (in the nonlinear elastic axisymmetric formulation). As a result,
we obtain the dependence of the elastic reaction force on mechanical properties of the
specimen material and geometric characteristics of a probe tip radius R and the cone angle
α.

Comparison of the nonlinear solution (in the case of finite nonlinear elastic deformation)
with the known problem of the Hertz contact of two linear-elastic spheres under small
deformations was carried out using this model [9]. At present this solution is widely used
in practice for the first assessment calculations. It is a standard set of software most of the
AFM. Hertz’s formula for the case when one of the spheres has an infinitely large radius
(i.e. contact with the half-plane) and the second is absolutely rigid has the following form

FHertz =
4EsR

1/2

3(1− ν2
s )
u3/2 (1)

where Es — the initial Young’s modulus of the specimen, νs — Poisson’s ratio (all here-
inafter: the index “s” means that the parameter refers to the sample). For the case of
nonlinear elastic contact problem similar dependence has the form

F = 8.6CsR
2

(
u

R

)1.3

(2)

where Cs — Neo-Hookean elastic constant. For an incompressible medium νs = 0.5, then
Cs corresponds to the initial Young’s modulus as Es = 6Cs. Fig. 2 shows the dependence
of reaction force F , acting on the tip on the depth of its penetration into the material u,
calculated from Hertz formula and numerically (Neo-Hooke). The graphs show that the
divergence of Hertz formula and non-linear elastic solution starts at u/R > 0.4 (and non-
linear elastic solution gives higher values of force). For smaller values it is quite possible
to use Hertz formula.

Different types of probes are used, depending on the mechanical properties of tested
on the ACM materials. In the study of elastomers and soft thermoplastics probes with
a smaller cone are usually used, for relatively hard samples, respectively, more “blunt”
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Figure 2: Dependences of reaction force F , acting on the tip, on the depth of its penetration
into the material u. 1 — Hertz formula, 2 — numerical nonlinear elastic solution (Neo-
Hooke)

Figure 3: Dependence of reaction force F on AFM probe penetration depth into the
specimen u and cone angle α

(and stronger) indenters are chosen. In determining the dependence of F on α values of
the arguments ranged from 0 (cylindrical probe with a rounded apex of radius R) to 90◦

(Fig. 3).
Calculations show that the angle of the probe cone begins to significantly affect the

reaction force when the depth of penetration of the probe into the specimen reaches values
of 3− 4R, that is, this factor should be necessarily taken into account in describing large
deformation in the contact zone. Thus, when the indentation of the probe to a depth of
4R, F (α = 90◦) more than twice the F (α = 0◦).

The problem of repeated indentation of a hard “blunt” AFM probe ((α = 90◦) in a
brittle breaking in the process of deformation elastic material has been solved using this
approach. The corresponding model studies carried out.

Repeated indentation of the AFM probe into the same place of damageable elastic
brittle surface was modeled, and after each contact in the sample had ever increasing hole
depth δ. Hole is a result of brittle fracture of the material during the probe indentation,
that is, changing the geometry the specimen surface happens but without residual plastic
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Figure 4: Dependence of reaction force F on AFM probe on the depth of its indentation
u into brittle sample and depth of the hole δ: 1 — δ/R = 0, 2 — 0.5, 3 — 1, 4 — 1.5, 5 —
2, 6 — 5, 7 — 10

stresses. Such processes are characteristic, for example, for AFM studies of tooth enamel.
The enamel can have different mechanical properties of its thickness(a variety of injuries
can be on the surface, the surface can be covered with a thin coating of another material,
etc.). Repeated indentation into the same place of tooth enamel can help to gather the
necessary information about its true mechanical properties, and mathematical simulation
of this process should help in deciphering the data adequately.

As a result, dependences of the reaction forces on depth of probe indentation and the
magnitude of the hole formed after the previous contacts were built (Fig. 4). The movement
of the probe into the material after the occurrence of contact between it and the bottom
of the hole was taken as u. It was established, the deeper the hole, the greater the effort
required for its further growth. At very large depths (curves 6 and 7) dependence of F on
u were practically linear, and they were lying significantly higher than the other curves.

The surface of a tooth can not always be regarded as flat and smooth. Therefore,
the task of impressing a hard indenter into conical and cylindrical holes in brittle elastic
surface has been solved (see Fig. 1). These grooves simulated caries microdamages in tooth
enamel. Dependences of the force pressing the AFM probe F on the depth of penetration of
u into a conical cavity with radius Rs, when the indenter has the form of a cone (α = 90◦)
with rounded apex radius R are shown in Fig. 5. Angle of the cone-shaped hole αs was
70◦ (solid lines) and 90◦90 (dashed lines). Variants when the probe tip radius was equal
to the radius of the hole, or exceeded it in 1.5, 2, 3 and 4 times were calculated. The
calculations show that the value of F is weakly dependent on the relation between R and
Rs. The graphs are the limiting curves for the cases of R/Rs = 4 and R/Rs = 1. Rest
dependencies lay between them. For wells with a gently sloping sides (α = 90◦) curves
were slightly higher (but insignificant).

Also, a similar problem on a conical indentation of the AFM probe in a cylindrical
cavity of radius Rs (the limiting case of “degeneracy” cone-shaped hole in the cylinder) for
different values of probe cone angle α has been solved. α was taken to be 40◦, 60◦, and
90◦. The results are shown in Fig. 6. The curves corresponding to α = 90◦, also lay close
to those shown in Fig. 5, so a form of wells not very effect on strength of the reaction (for
the considered range of αs values). A different situation is observed for the parameter α.
As can be seen from the graphs in Fig. 6 the reaction force of the probe indentation into
the cavity depends strongly on the “sharpness” of the cone. The larger α, the harder it is
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Figure 5: Indentation the conical probe (full cone angle α = 90◦) with rounded apex of
radius R in a conical cavity. Solid lines — αs = 70◦. Dashed lines — αs = 90◦. 1 —
R/Rs = 4, 2 — R/Rs = 1

Figure 6: The indentation of a conical probe in a cylindrical cavity of radius Rs. 1 —
α = 40◦, 2 — 60◦, 3 — 90◦

to enter the probe into the hole on the sample surface.
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Abstract

The object of this study are polyolefin polymers and nanocomposites with a group
of silicate filler on them. These materials have a complex hierarchical structure. First,
the polyolefins are themselves part of crystallizing materials. That is, they are struc-
turally heterogeneous at the nano and micro levels: lamellae (thickness of about 5-10
nm) and spherulitic formation (from 0.1 to 1000 microns)[1, 2]. The second type
of structural heterogeneity introduces a filler. In the investigated materials as used
in this layered clay minerals (smectite). Filler particles have the form of ultra-thin
flakes of thickness of several nanometers and a typical diameter of tens of nanome-
ters to 1 micron. Were carried out experimental investigations of the elastic, viscous
and plastic properties of nanocomposites with a polyethylene matrix and the filler of
layered silicate nanoparticles. For samples with varying degrees of filling of the de-
pendencies between the stresses and deformations under cyclic loading with increasing
amplitude and relaxation after a stop at the loading and unloading, as well as the cor-
responding relaxation curves. Tests were conducted on the waste before the procedure,
allowing for an experiment to obtain all necessary for further theoretical modeling of
the data on the elasto-visco-plastic behavior Using the experimental data has been
built structurally phenomenological elasto-visco-plastic finite-deformable model of a
heterogeneous environment. At the same time used the differential approach to the
construction of constitutive equations based on the interpretation of the mechanical
behavior of materials with the help of symbolic schemes.

Tested materials and experiments

In Fig. 1 shows the results of the cyclic deformation of polyethylene mark “PE-107-02K”
with increasing amplitude in the mode: stretching → stress relaxation for 10 minutes →
decrease in strain to zero tensile force → stress relaxation for 10 minutes → next cycle
of deformation. This mode allows you to separate viscoelastic and elastoplastic behavior
of the sample in one experiment and learn them yourself. The rate of deformation of in
tension and compression of the sample was 1 min−1. Extension was carried out before
such time as the sample does not begin to take shape “plastic collar”.

Model of the mechanical behavior of nanocomposites

The mechanical behavior of nanocomposites is described by the model schematically repre-
sented in Fig. 2, where each point corresponds to a particular set of constitutive equations.
The first branch (the elastic-plastic) models the behavior of the agglomerates of crystal-
lites are more stringent (and nanofiller particles), their displacement and destruction during
the deformation. The second (visco-elastic) describes the flow of the amorphous polymer
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Figure 1: The scheme of cyclic loading of the sample. Circles - the end of stress relaxation
at the maximum strain in this cycle, stars - the end of the relaxation after removal of the
load on a given cycle.

between the lamellae inside the crystallites and in the space around the crystallites and
particles. As shown by certain experiments, these processes are practically independent,
that was the rationale for the choice of the scheme. The scheme shows how the tensor
nonlinear equations are combined into the system of equations used to calculate the com-
plex viscoelastic behavior of the medium deformed in an arbitrary way. The algorithm
for constructing constitutive equations consisting of separate groups of equations (elastic,
viscous, plastic) is described in detail in work [3]. The model uses the approach that is
based on additive decomposition of the deformation-rate tensor of the medium into the
deformation-rate tensors of the scheme elements [4]. The internal scheme points are re-
quired to meet the condition of correlation of the Cauchy stress tensors [3]. The scheme
for the mechanical behavior of the material involves elastic, viscous and plastic elements
that correspond to the folowing equations.

Figure 2: Schematic of the model of the mechanical behavior of nanocomposites.

The material is assumed to be incompressible. The deviator of the Cauchy stress tensor
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of the elastic element is calculated from the equations of the theory of elasticity

dev Ti = dev

(
ρ

3∑
k=1

λ
(i)
k

∂f

∂λ
(i)
k

n
(i)
k ⊗ n

(i)
k

)
,

in which the mass density of the medium free energy f depends on the extension ratios of
elastic elements.

f = wn = Ci(λ
N
1 + λN2 + λN3 − 3) = Ci(tr(V

N )− 3)

where λ(i)
1 , λ(i)

2 , λ(i)
3 and n

(i)
1 , n

(i)
2 , n

(i)
3 — are the extension ratios and eigenvectors of

the stretch tensor Vi of the i-th elastic element . Time variations in the tensor Vi are
calculated by the evolution equation.

2

νi
Yi

0.5 DiYi
0.5 =

�
Yi −Yi W

T
R − WR Yi, WR =

�
R RT.

The formula uses the following notations:

Yi = Vi

2
νm , νm > 0,

where R — is the rotation tensor in the polar decomposition F = VR of the strain gradient
of the medium F into the left stretch tensor V and the rotation R; νm is the ratio of the
m-th transmission element, which is connected on the left to the elastic element under
consideration. The rate of work done in the i-th elastic element is determined by the
formula

Ti ·Di = ρ
3∑

k=1

∂f

∂λ
(i)
k

�
λ

(i)

k −
ρ
�
νm
νm

3∑
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(i)
k

λ
(i)
k ln(λ

(i)
k ).

The deviator of the Cauchy stress tensor Tj of the viscous element is calculated from
the equations of the theory of nonlinear viscous fluid using the appropriate strain rate
tensor Dj :

dev Tj = 2 ηj Dj ,

For the n-th plastic element, the Cauchy stress tensor deviator is determined by the
equations of the theory of plastic flow

Dn =

√
Dn ·Dn

devTn · devTn
devTn,

To complete the system of equations, the proportional relation between the strain rate
tensors of the plastic element Dn and that of the material is used D.√

Dn ·Dn = κn
√

D ·D,

where the term κn is the non-negative function obtained from the relation

κn =

{
0, when Φn(T, ...) < gn,
ζn(gn), when Φn(T, ...) = gn.

The flow function Φn that is used to formulate the criterion for the development of
plastic deformations in the medium is the function of the Cauchy stress tensor T of the

125



Proceedings of XL International Summer School–Conference APM 2012

medium. The plastic deformation of the medium takes place only in the case when the flow
function Φn reaches its maximum value over the entire history of the medium development.

gn = max Φn.

To describe the nonlinear visco-elastic-plastic behavior of the environment with the
help of this model, you need to know four of dependence, which can be obtained from
the experimental data for uniaxial cyclic loading with increasing sample at each cycle, the
maximum strain (Fig. 1). This C1(g), C2(g), κ(g) and η(g), where g = g3 = max Φ3(V).

Results
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Figure 3: Scheme of the equilibrium cycle loading (excluding the viscous properties of the
medium).

Calculating dependencies carried out in two stages. In the first phase were determined
C1(g) and κ(g). At the same time believed that the medium is elastic-plastic, ie, considered
the equilibrium loading of the material (so slow that the relaxation processes associated
with the viscous flow of the medium can be ignored) (Fig. 3). In this case the elastic
stiffness of the elastic element number 1 for the maximum in a given cycle of deformation
can be determined from the unloading curve through the points marked with ◦ (the end
of the relaxation after the load) and * (end of relaxation after unloading), as this process
was considered a purely elastic. Doing it this way: There are two points ◦ and *. Through
them it is necessary to carry out the purely elastic curve of uniaxial tension (compression):

σ(C1, λe) = σ0λe

where λe - the multiplicity of elastic elongation of the sample, λ - complete (ie, taking
into account the multiplicity of plastic elongation λp). You must solve a system of two
nonlinear equations with two unknowns: C1 and λp.

Contact the plastic and elastic deformation viewed as relations between λe λp, and
because of the multiplicative decomposition of the Lie:

λ = λe×λp
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Figure 4: The dependence of the elastic stiffness of the element number 1 on the parame-
ter g.

Substituting in the desired elastic equation (uniaxial loading) will have the form:

{
σ |0= NC1[(λo/λp)

N − (λo/λp)
−N/2]

σ |∗= NC1[(λ∗/λp)
N − (λ∗/λp)

−N/2]

write the functional Ψ(C1, λp) and minimize it:

Ψ(C1, λp) =

= {σ |0−NC1[(λo/λp)
N−(λo/λp)

−N/2]}2 +{σ |∗−NC1[(λ∗/λp)
N−(λ∗/λp)

−N/2]}2.

The values C1, λp, the corresponding Ψ(C1, λp) = 0, are the required quantities.
The dependence of the plastic parameter κ on q were selected from the incremental

elastic-plastic solutions of the model problem (excluding at this stage, the viscous compo-
nent of the model) so as to maximize overlap with the experiment. In this case it means
that the calculated curve corresponding to an increase in the load must pass through the
“circles” and the handling of dependence - through the “circles” and “stars” (see Fig. 3, 4).
Seeking κ dependence on g is shown in Fig. 5.

It was believed that the parameter C2 is responsible for the elastic properties of the
amorphous phase of the polymer, which does not undergo structural changes during de-
formation of the medium.

Therefore, the model C2 was considered constant.
By setting different values for the constants C2 and choosing the appropriate form of the

curve η(g) was found optimal in terms of coincidence of calculation and the experimental
value of C2 is approximately 10 MPa. For the Neo-Hooke, this corresponds to the initial
Young’s modulus E0 = 60 MPa, which agrees well with known data on polyethylene.

In Fig. 6 shows the final calculated curves and the experiment.
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Figure 6: Curves of cyclic elasto-visco-plastic loading of polyethylene. Dashed line - ex-
periment, solid - the calculation.

Conclusion

As can be seen from the last graph, the model allowed to describe accurately the actual
cyclic loading of polyethylene with an increasing strain on each cycle.
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Abstract

The influence of the purity degree of the commercial aluminium on the mechanical
properties: elastic stress, tensile strength, Brinell hardness, resilience and elongation
at break was investigated. It was found that the first three resistance characteristics
decrease with the growth of the purity of the material chosen to the detriment of two
ductility characteristics that rise to the three states considered: crude of casting noted:
F , Annealed noted: O, hardened noted : H1/4. Furthermore, it is important to note
that the hardened and the annealed lead respectively to a considerable hardening and
a considerable softening. This hardening and this softening of the material in question
can be respectively associated with the increase in dislocation density and immigration
impurity elements of dislocations.

Keywords: Purity, aluminum, properties, mechanical, hardness.
Themes: Mechanical and civil engineering applications.

1 Introduction

The natural aluminum does not exist. Indeed, although equal to 8% of elements on earth,
man invented by extracting it from bauxite. The discovery of aluminum material with
outstanding features: light weight, ductility, mechanical strength and weather, fastness,
good thermal and electrical conductivities. These properties have quickly made aluminum
one of the most magical materials used in the production of consumer goods of high
and very high series with a tendency to consolidate its position as second only to steel.
Extracted for the first time in the laboratory in 1825 and operated only industrially since
1880 after the discovery of electrolysis, aluminum has become in a century for its strength
and lightness in in a wide range of applications on land, sea and air. This material has no
harmful influence on environment both in production and in its recovery to its recyclability.

Aluminium and its alloys, and therefore will have a positive impact on quality of life
for all of us.

Historically, the study of physical, chemical and mechanical in general especially the
aluminum business and raises many questions of scientific interest and technological im-
portance which did not leave indifferent to many researchers, since the use of this material
is widely used in industry and in practice. It easily lends itself to shaping the cold plastic
deformation (drawing, spinning, bending, cutting and boiler). He demonstrated excellent
performance in a humid atmosphere and ocean.

Since the commercial aluminum enters the composition of many achievements and
industrial applications, which are subject to various mechanical stresses, and in order to
achieve a reliable product that must meet the proper functioning of the system to which
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it belongs, the properties this material mechanical saw multitudes of investigations and
attracted the attention of many researchers. It was shown that the purity of the commercial
aluminum significantly influences its mech anical properties.

In the literature, it was shown that the value of the yield strength of pure polycrystalline
aluminum is about 4 times lower than that of the commercial aluminum.

Many authors have studied the mechanical properties of commercial aluminum with a
purity of at least 99%. They lead to the following results: in the annealed condition, the
majority of the mechanical properties are low, but they can be improved by cold working:
for example, in the annealed condition hardened state, the yield increased from 28 to 125
MPa and the tensile strength varies from 70 to 130 MPa.

However, the results obtained by different authors are often conflicting and tight, if not
contradictory.

Our job is to contribute to the effect of purity on the mechanical strength, Brinell hard-
ness and resilience of the aluminum used in several commercial industrial achievements.

2 Material studied

The materials used are provided by the national ELECTRO - INDUSTRIES. There are
three types of aluminum commercial purity (Al-99, 0%, Al-99, 5% Al-99, 8%) who were
selected to carry out this study.

3 Elaboration of the alloy studied

3.1 Casting:

The melting of the metal is in a gas oven production will switch from front to back,
with a graphite crucible with a capacity 350Kg load is composed approximately ≈ 100%
of aluminum ingots new commercial dimensions standardized composition and specified
characteristics, delivered by the French company Pechiney. Once the mass has become
liquid full at about 700◦ C. The liquid mass is then subjected to degassing treatment and
coverage in the oven.

Then the metal is poured, or in a warm pocket of 50Kg prepared for this purpose
for sand casting and series, or in a holding furnace of 150kg set properly for the unit
shell mold preheated and that we proceed carefully prepared refining operations. Parts
can be cast into the shell, respectively single metal or sand molds prepared for it, so the
reference specimens are known as a crude of casting noting: F. To seek to increase over
the characteristics of resistance to the state F, the two materials different degrees of purity
will be subject to specific treatments of annealed and the hardened.

3.2 MOLDING:

METAL SHELL: In this mode of molding, the mold consists of two steel slabs (5%
chromium), which is responsible for maintaining the footprints. These steel slabs, separated
by a parting line, may be prepared and heated to a temperature (200 ÷ 300)◦ C. After
molding, the specimens cast metal shell by gravitation will be divided into three lots, each
consisting of five identical tensile specimens , five specimens of resilience and a sample
for the micrographic observation considering three states: a crude of casting notes: F,
annealing noted: O and hardened noted: H1/4.
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3.3 TREATMENTS OF:

- Annealing: heating and dissolved with homogenization at 540◦ C for 10 h followed by
cooling in the oven,

- Hardening: deformation of 25% in 3 passes with a six-cylinder mill.

Once processing is done, the material will be tested in quasi-static uniaxial tensile loads
and low speeds, Brinell hardness and quasi dynamic resilience to quantify the different
characteristics of resistance and ductility needed for different calculations which we need
the design engineer at the department. The microstructure complement the study to fully
identify the material.

4 EXPERIMENTAL PROCEDURE:

To determine the behavior of the material meet the different demands it may encounter
during use, these solicitations are reproduced using static or dynamic tests, usually per-
formed on standard specimens to determine the characteristics encrypted material. Four
techniques are used, namely: the pull to identify the various constraints, the Brinell hard-
ness HB for the stress field, Kcv resilience tells us about the mode of fracture, fragility and
the impact resistance and metallography to identify structures. We will describe in more
detail and present in the main mechanical characteristics of the material being obtained
in this study.

5 RESULTS OBTAINED AND DISCUSSION

The average values of mechanical strength, impact strength and hardness of the three
states of the aluminum commercial are those given by averaging five identical specimens
for each of the respective cases and are represented by the figures of 1 to 5 mentioned
below.

5.1 Influence of purity degree on the evolution the caracteristics of
resistance of the three states of the commercial aluminum

DISCUSSION: For the three states considered in choosing commercial aluminum, we
followed the evolution of variations of the three main features of resistance: average stress
of elasticity noted < σe >, maximum average stress noted < σm > and Brinell hardness
average noted < HB > depending in the purity of the material studied.

Figures 1, 2 and 3 show that the average curves of the three mechanical characteristics
of resistance of the three states considered to decrease with the growth of the purity at
the expense of ductility, however, the speed of decrease varies differently depending on the
mechanical characteristic and the state considered.

We also note that the average curves of the three characteristics of resistance of the
hardened state are located too far above those of the annealed condition, which are them-
selves just above those of the as-cast state.

5.2 Influence of purity degree on the evolution the caracteristics of duc-
tility of the three states of the commercial aluminum

DISCUSSION: The same for the three states considered in choosing commercial alu-
minum, we have also followed the evolution of variations of two main features of ductility:
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Figure 1: Group of graphs (average stress of elasticity – purity degree) of comparison in
averaging a series of five identical specimens of the aluminum commercial of the three
states: crude of casting noted: F, annealing noted: O and hardened noted: H1/4.

Figure 2: Group of graphs (maximum average stress – purity degree) of comparison in
averaging a series of five identical specimens of the aluminum commercial of the three
states: crude of casting noted: F, annealing noted: O and hardened noted: H1/4.
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Figure 3: Group of graphs (hardness Brinell HB average – purity degree) of comparison
in averaging a series of five identical specimens of the aluminum commercial of the three
states: crude of casting noted: F, annealing noted: O and hardened noted: H1/4.

Figure 4: Group of graphs (average elongation A% – purity degree) of comparison in
averaging a series of five identical specimens of the aluminum commercial of the three
states: crude of casting noted: F, annealing noted: O and hardened noted: H1/4.
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Figure 5: Group of graphs (average resilience Kcv – purity degree) of comparison in aver-
aging a series of five identical specimens of the aluminum commercial of the three states:
crude of casting noted: F, annealing noted: O and hardened noted: H1/4.

average resilience designated < Kcv > and average elongation designated < A% > de-
pending on the purity of the material studied.

Figures 4 and 5 show that the average curves of the two mechanical characteristics of
ductility of the three states considered to grow with the growth of the purity at the expense
of resistance characteristics , however, the growth speed varies differently depending on the
mechanical characteristic and the state considered.

We also note that the average curves of the two characteristics of ductility of the
annealed state are located too far above those of the as-cast state, which are themselves
just above those of the hardened state.

CONCLUSION: In this study the mechanical properties of tensile, Brinell hardness and
resilience of the aluminum commercial, we have shown that the strain hardening delays
the onset of the movement of dislocations, but accelerates the process of rupture and also
leads to a considerable hardening and a drop of plasticity simultaneously. In the annealed
condition, the material hardens, but the hardening is lower to that of the material in the
hardened state. In addition, during this annealing is a great plasticity of the material.
The poor mechanical properties of the material in the as-cast state be associated with the
presence of heterogeneities. The increase in purity leads to softening of the material.
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Ahmed HAKEM, Y.BOUAFIA, Laboratory LaMoMS, Mouloud MAMMERI university of Tizi-
Ouzou Hasnaoua II, 15000 Algeria

136



Linking microscopic reversibility to macroscopic irreversibility, emphasizing the role of
deterministic thermostats and simple examples, at and away from equilibrium

Linking microscopic reversibility to macroscopic
irreversibility, emphasizing the role of deterministic
thermostats and simple examples, at and away from

equilibrium

Wm. G. Hoover Carol G. Hoover
hooverwilliam@yahoo.com

Abstract

Molecular Dynamics and Statistical Mechanics make possible a particle-based
understanding of Thermodynamics and Hydrodynamics, including the fascinating
Loschmidt contradiction between time-reversible atomistic mechanics and the time-
irreversible thermodynamic dissipation incorporated into macroscopic fluid and solid
mechanics.

1 Introduction

Among the many problem areas in mechanics the study of instabilities and irreversible
processes seem particularly interesting. Engineering mechanics exists as a discipline be-
cause failures of structures cost so many lives. The analysis of local Lyapunov instability
gives a means for localizing and predicting catastrophic failures so that there is a decidedly
practical engineering aspect of this fascinating scientific research area.

The goal we pursue here is to develop models that help us to understand. It is pro-
foundly interesting that the small scale microscopic models of material behavior (ordinary
Newtonian mechanics) are time-reversible while the macroscopic models of the same thing
(finite-element and finite-difference fluid mechanics and solid mechanics) are irreversible.
The tools from nonlinear dynamics and chaos are useful in analyzing these two kinds of
description.

Here we describe the basic building blocks for particle simulation and point out the ways
that these time-reversible simulations already lead to time-irreversible behavior. Most of
the examples treated here are also described in our three books on computational statistical
mechanics, smooth-particle applied mechanics, and time reversibility, computer simulation,
algorithms, and chaos[1, 2, 3].

2 Algorithm for Conservative Particle Mechanics

No special tricks are necessary to get started with particle-based simulations. Microscopic
mechanics can provide us with accurate particle trajectories { q(t) } . All we need to do
is to integrate Newton’s ordinary differential equations of motion ,

{ mq̈ = F (q) = −∇Φ } .
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Here Φ is the potential energy, a function of the coordinates { q } . Alternatively, we
can obtain an equivalent coordinate-momentum description { q(t), p(t) } by integrating
Hamilton’s first-order ordinary differential equations:

{ q̇ = +(∂H/∂p) ; ṗ = −(∂H/∂q) } .

Both these approaches are time-reversible. That is, a movie of the motion, played back-
wards, satisfies exactly the same equations (with the values of q and p in reversed order and
with the sign of p changed also). A movie is an excellent analog of numerical simulation.
Both the simulation and the movie are sets of discrete records of coordinates at discrete
values of the time, separated by the “timestep” ∆t . In addition to the basic algorithm
keep in mind that three crucial questions remain to be answered: [1] what are the initial
conditions, [2] what are the boundary conditions, and (most important of all) [3] what is
the problem to be solved?

Macroscopic continuum mechanics is based on the three conservation laws for mass,
momentum, and energy:

ρ̇ = −ρ∇ · u ; ρu̇ = −∇ · P ; ρė = −∇u : P −∇ ·Q .

Here ρ is density, u is velocity, e is energy per unit mass, P is the pressure tensor (force
per unit area, necessarily a symmetric second-rank tensor), and Q is the heat flux vector
(energy flow per unit area). All these variables are continuous functions of space and
time. Both P and Q , as well as ρ̇ , u̇ , and ė , are defined in the comoving frame, a
coordinate frame moving with the local velocity u(r, t) . Finite-difference approximations
to the gradients on the righthand sides of the three continuum equations, evaluated at a
discrete set of spatial mesh points, reduce the partial differential equations to ordinary
ones, which can then be solved with Runge-Kutta integration. Again, the hard part of
the problem is the same: what to do and how to implement the initial and boundary
conditions.

Different materials can be described by different types of constitutive relations (elastic,
plastic, viscous, ...) giving P and Q in terms of the basic { ρ, u, e } set, together with
their time derivatives and spatial gradients. Time-reversed movies of solved macroscopic
problems look “funny” and make no sense. This is because the underlying phenomenological
constitutive relations are typically irreversible. The simplest most familiar irreversible
examples are Newtonian viscosity and Fourier heat conduction:

P = [ Peq − λ∇ · u ]I + η[ ∇u+∇ut ] ; Q = −κ∇T .

In the symmetrized velocity gradient ∇ut is the transpose of ∇u . I is the unit tensor.
A boxed conducting fluid, with that fluid initially in motion, (a Rayleigh-Bénard flow, for
instance, but with the box suddenly insulated and with the accelerating gravitational field
suddenly switched off) described with a shear viscosity η and a heat conductivity κ eventu-
ally comes to an isothermal state of rest. Evidently the reversed movie of this decay makes
no sense and would correspond to an illegal “something from nothing” contradicting the
Second Law of Thermodynamics. Of course, with the right initial conditions and the right
boundary conditions, one can indeed observe tornadoes! For an L × L (two-dimensional)
system, with kinematic viscosity and thermal diffusivity of order D the initial gradients de-
cay exponentially, ' e−Dt/L2 . The reversed movie, with its exponential growth, ' e+Dt/L2

, is simply wrong.
In applications of mechanics to simulation we strongly recommend the use of the fourth-

order Runge-Kutta integrator because it is easy to use and to modify for the treatment of
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Figure 1: The Beeman and Velocity-Verlet approximations to the harmonic oscillator mo-
mentum are compared with the more nearly accurate formula given in the text (at the
left). The corresponding total energies are shown at the right over two oscillations with
∆t = 1 . The approximation mentioned in the text is the best of the three and corresponds
to the smallest dots.

open systems interacting with their environments. If the focus is on the time-reversibility of
conservative Newtonian systems it is useful to consider a very simple, yet rigorously time-
reversible, integrator discovered by Levesque and Verlet[4]. In order better to understand
the coexistence of the reversible microscopic and irreversible macroscopic views we adopt
Levesque and Verlet’s “bit-reversible” algorithm. This approach generates a numerical
trajectory in an integer coordinate space, by rounding off the acceleration terms:

{ qn+1 − 2qn + qn−1 = [ (F (qn)(∆t)2 ]integer } .

The subscripts indicate the time, in units of the (integer) timestep ∆t . The initial condi-
tions to start this algorithm are the coordinates at two successive times.

A simple illustration of the algorithm follows a harmonic oscillator trajectory, using
unit mass, force constant, and timestep ∆t:

q+ − 2q0 + q− = −q0 −→ q+ ≡ q0 − q− .

The solution of repeating coordinates {+1,+1, 0,−1,−1, 0, . . . } , is typical, and illustrates
the fact that no matter what the initial conditions, the solution is both periodic (for chaotic
problems, the length of the period is of order the square root of the number of states) and
reversible. The algorithm is a faithful analog of classical deterministic time-reversible
mechanics. If momenta are desired they too can be approximated accurately from the
coordinate values:

p0 ≡
[

4

3

]
(q+ − q−)

2∆t
−
[

1

3

]
(q++ − q−−)

4∆t
.

Figure 1 compares the energy calculated with these momenta with calculations based on
the Beeman and velocity-Verlet algorithms. Our formulation (small dots in the Figure)
is clearly an improvement. It is evident that a promising research area lies in the de-
velopment of higher-order bit-reversible algorithms combining coordinates, velocities, and
accelerations from more than three successive times.

3 Irreversibility from Time-Reversible Motion Equations?

Is there any chance of detecting irreversibility with such a time-reversible algorithm? Oddly
enough, there is! It is based on the analysis of Lyapunov instability, looking in the neigh-
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Figure 2: Snapshots from the twofold compression of a 40 × 40 cold crystal with unit
density and with the pair potential φ = (1− r2)4 . Initially half the particles move to the
right and half to the left, at speed 0.875 . The second snapshot, time = 11.5, and located
at bottom right, corresponds to the maximum twofold compression. Such “irreversible”
motions can be reversed precisely, for as long as desired, with the Levesque-Verlet bit-
reversible integration algorithm.

borhood of the trajectory, not just at the trajectory itself. Such a nonlocal analysis nec-
essarily depends upon the imagination and the information contributed by an observer
of the motion. Let us take an example, a maximally irreversible situation described by
time-reversible, even bit-reversible, Newtonian mechanics. Consider the pair of shock-
waves launched by the collision of two mirror-image fluid samples. See Figure 2 for four
snapshots of such a problem. Initially the velocities are ±u . Eventually the periodic L×L
system shows no more systematic motion – the initial kinetic energy has been completely
converted to internal energy (heat):

(u2/2)→ e .

Just as before, any portion of the developing trajectory can be reversed precisely and
exactly despite the Lyapunov instability (exponential growth of perturbations) of the dy-
namics.

There is a vast literature[5, 6, 7, 8, 9] on the quantification of Lyapunov instability,
the exponentially sensitive deformation of comoving hypervolumes in q space, p space,
or { q, p, } phase space. For N particles in two dimensions the 4N -dimensional phase-
space motion defines 4N local Lyapunov exponents. The fact that these “local” exponents
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depend upon the chosen coordinate system can be viewed as a disadvantage or as an oppor-
tunity. Again, there are many promising research problems suggested by this observation.
Optimizing the analysis is certainly a useful and stimulating activity.

The largest Lyapunov exponent – we will call it λ1(t) – associated with the motion can
be found by following two nearby trajectories in time. The primary or “reference” trajectory
can be generated with bit-reversible dynamics, so that it is possible to extend it as far as
desired into the future or the past[7]. The dynamics of a nearby “satellite” trajectory is
restricted by constraining the satellite trajectory to stay within a fixed distance of the
reference trajectory. The satellite dynamics can readily be generated with Runge-Kutta
integration, rescaling the separation between the two trajectories at the end of each time
step. The local Lyapunov exponent is:

λ1(t) ≡
[

1

∆t

]
ln

[
(∆r)before

(∆r)after

]
; ∆r ≡ |rsatellite − rreference| .

Although the motion equations are perfectly reversible for both the reference and the
satellite, the reversed satellite trajectory turns out to be totally unlike the forward one, if
the system is a nonequilibrium system. Both the local Lyapunov exponent associated with
the instability and the identities of those particles making above-average contributions to
the offset vector separating the trajectories , ∆r ≡ rsatellite − rreference, are qualitatively
different. In a typical shockwave simulation of the type shown in Figure 2 the number of
these more-heavily-weighted particles is about twice as great in the reversed motion as in
the forward one.

This is an extremely interesting result. No doubt it suggests various “Arrows of Time”
which can be constructed based on the structure of nearby trajectories (which react to the
past, not the future). A study of irreversible flows from this standpoint should shed light
on the reversibility paradox for simple Newtonian and Hamiltonian systems.

4 Irreversibility for Time-Reversible “Open” Systems

In order to control nonequilibrium states, in particular nonequilibrium steady states, it
is necessary to do work and/or to exchange heat, with the system of interest. The dy-
namics becomes a little more complicated due to these interactions, but the interpretation
compensates by becoming simpler. Here we take up the description of “open systems”.

4.1 Microscopic Pressure, Heat Flux, and Temperature

“Open” systems have mechanical and/or thermal connections to their environment, opening
up the possibility of simulating processes including thermodynamic work and the flow of
heat. Analysis of these systems requires microscopic analogs for all the continuum variables.
Density, velocity, and energy are the simplest of these. We adopt the smooth-particle
averaging method discovered by Lucy and Monaghan in 1977[10, 11]:

ρ(r, t)≡
∑
i

miw(r−ri) ; ρ(r, t)u(r, t) ≡
∑
i

miviw(r−ri) ; ρ(r, t)e(r, t) ≡
∑
i

mieiw(r−ri) .

The particle energies { ei } are necessarily defined in the comoving frame, which moves
with velocity u(r, t) . A useful weight function, with a range h which can be optimized, is
Lucy’s, here normalized for two space dimensions:

w(r) = (5/πh2)(1 + 3z)(1− z)3 z ≡ |r|/h .
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This weight-function approach guarantees the continuity of the first and second spatial
derivatives of the field variables and lends itself to optimization studies.

In addition to the basic mass, momentum, and energy, several other variables need to
be considered in order to compare microscopic and macroscopic simulations. Unlike their
continuum cousins, the pressure tensor and the heat flux vector from molecular dynamics
are respectively even and odd functions of the time:

PV =
∑
pairs

(rF )ij +
∑
i

(pp/m)i ; QV =
∑
pairs

rij [ Fij · (pi + pj)/2 ] +
∑
i

(ep/m)i .

Here rij ≡ ri − rj and Fij is the force on Particle i due to its interaction with Particle j.
The individual particle energies { ei } include half of each particle’s pair interactions with
its neighbors.

Temperature needs a definition too. The usual equilibrium definition, based on entropy,
is useless away from equilibrium where entropy has no consistent definition[1, 2]. At equi-
librium Temperature can be defined in many ways, all based on Gibbs’ statistical mechanics
or Maxwell and Boltzmann’s kinetic theory. The even moments of the velocity distribu-
tion are examples. In addition to these there are also configurational definitions. The
simplest “configurational temperature” is based on an identity from Landau and Lifshitz’
text[12, 13]:

kT =
〈 (∇H)2 〉
〈 ∇2H 〉

.

This definition follows from an integration by parts in Gibbs’ canonical ensemble. If the
differentiation indicated by ∇ is carried out in momentum space the Landau-Lifshitz for-
mula gives the usual kinetic-theory definition of temperature , mkTxx = 〈 p2

x 〉 . If instead
the gradient is carried out in coordinate space the “configurational temperature” depends
on the first and second derivatives of the potential function governing the motion:

kTconfigurational ≡ 〈 F 2 〉/〈 ∇2Φ 〉 .

One-body or many-body configurational temperatures, either scalar or tensor, can be de-
fined in this way. But an evaluation of them for the shockwave problem reveals divergences.
Typically particle values of ∇2Φ frequently alternate between positive or negative values,
so that the corresponding configurational temperatures frequently diverge! Configurational
temperature also has unphysical undesirable contributions arising from rotation whenever
Coriolis’ or centrifugal forces are significant.

The simplest definition for temperature is the kinetic second-moment one. It is based
on a mechanical model of a working ideal-gas thermometer. In that instance a relatively
heavy mass-M “system atom” interacts with a collection of light-weight mass-m “ideal-gas
thermometer” particles characterized by an unchanging equilibrium Maxwell-Boltzmann
distribution with temperature T . Kinetic theory shows that the averaged effect of such
collisions causes the system-atom velocity to decay while its mean-squared velocity ap-
proaches the equilibrium value for the temperature T :

〈 v̇x 〉 ∝ −(vx/τ) ; 〈 v̇xvx 〉 ∝ [ (kTxx/m)− v2
x ]/τ ; [ for m << M ] .

Accordingly, we adopt the kinetic definition of temperature in what follows. With temper-
ature defined we can proceed to devise “thermostats” able to control it.
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4.2 Time-Reversible Deterministic Thermostats

The first of the deterministic mechanical thermostats wasWoodcock’s isokinetic thermostat[14],
implemented by rescaling the velocities at the end of each timestep. Much later it was
discovered[15, 16] that a continuous time-reversible version of this thermostat could be
implemented with a time-reversible friction coefficient ζ:

ṗ = F (q)− ζp ; ζ =
∑

(F · p)/
∑

(p2/m)→ (d/dt)
∑

(p2/m) ≡ 0 .

This “isokinetic” thermostat can be applied to one or many particles and to one or many
space directions.

An illustrative application is the “Galton Board”[1, 2, 15], in which a single particle
is accelerated through a lattice of scatterers but constrained to move at constant speed.
Overall, the potential energy drops. Because the mean value of the friction coefficient is nec-
essarily positive, the phase-space probability density collapses onto a multifractal strange
attractor, quantifying the rarity of nonequilibrium phase-space states. This approach to
temperature control is often termed the “Gaussian” thermostat because Gauss’ Principle
(of Least Constraint) gives this thermostat when applied to the problem of constraining
the kinetic energy[16]. Reference 15 is a detailed discussion of the model (summarized
in References 1 and 2). This work clearly shows the fractal nature of the phase space
(with vanishing phase volume) that results when the dynamics is thermostated. Fancier
thermostats, based on statistical mechanics, can be found.

In 1984 Shuichi Nosé discovered a precursor of the best of them, a thermostat[17] with
a more elaborate basis in Lagrangian and Hamiltonian mechanics, but somewhat disfig-
ured by a novel “time-scaling variable” s ≡ dtold/dtnew . His thermostat imposed Gibbs’
canonical phase space distribution at equilibrium rather than the less-usual isokinetic one.
A simplification of his equation of motion, without the useless time-scaling, likewise con-
tained a friction coefficient, which itself obeyed an evolution equation depending upon past
values of the kinetic energy:

{ ṗ = F (q)− ζp } ; ζ̇ = [ (T ({p})/T0)− 1 ]/τ2 [ Nosé−Hoover ] .

The relaxation time τ is a free parameter determining the time required for the ther-
mostat forces {−ζp} to bring the kinetic temperature T ({p}) to the desired thermostat
temperature T0 . Just as in the isokinetic case the nonequilibrium averaged friction coeffi-
cient for this “Nosé-Hoover” mechanics is positive, leading once again to multifractal phase
space distributions away from equilibrium. There is an extensive somewhat mathematical
literature having to do with picking the “right” relaxation time or the “right” thermostat.

The Gaussian and Nosé-Hoover thermostats are particularly useful for controlling
nonequilibrium problems, such as shear flows and heat flows, and the Rayleigh-Bénard
problem combining them. The definition of temperature depends upon the definition of
the local velocity u(r, t) . A straightforward definition of velocity, which nicely satisfies the
continuity equation exactly[3], can be based on smooth-particle weighting functions:

u(r, t) ≡
∑
i

viw(|r − ri|)/
∑
i

w(|r − ri|) .

The Gauss, Nosé, and Nosé-Hoover thermostats can all be related to Hamiltonian
mechanics. Dettmann, together with Morriss, carried out much of this work, with later
contributions by Bond, Laird, and Leimkuhler, and then by Campisi, Hänggi, Talkner,
and Zhan[18, 19, 20, 21]. All of them helped to clarify the connections of time-reversible
thermostats with standard Hamiltonian mechanics. This work leads to the conclusion
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that many different thermostats can be used at equilibrium but that some of them fail in
nonequilibrium situations, even in situations close to equilibrium. Just as in real life the
failures, rather than the successes, are the more newsworthy subjects. Let us turn to some
examples.

4.3 Thermostat Failures – Oscillators, Heat Conduction, and the φ4

Model

A very stimulating “log-thermostat” has just been described by Campisi, Hänggi, Talkner,
and Zhan[21]. They pointed out that the microcanonical (constant energy) ensemble dis-
tribution for a logarithmic potential generates (at least formally) the Maxwell-Boltzmann
velocity distribution:

φ ≡ kT ln q →
∫+∞

0
dqδ[ 2H0 − kT ln q2 − (p2/m) ] ∝ exp[ (H0/kT )− (p2/2mkT ) ]

Because the dynamics of this thermostat is unstable, there being nothing to keep q away
from the origin, in applications they recommend using kT ln(q2+δ2) , where δ is sufficiently
small.

Our effort to use this thermostat for a nonequilibrium heat flow problem failed. Con-
necting a cold and a hot log-thermostat to opposite ends of a two-particle φ4 chain gave
different temperatures at the two ends, but no heat flux at all. The problem is that the
Hamiltonian log-thermostat is unable to replicate the phase-space contraction associated
with dissipative systems. There are some other examples of such failures. Leete and
Hoover’s Hamiltonian[22, 23] ,

HHL =
√

4K(p)K0 + Φ(q)−K0 ,

keeps the kinetic energy,
∑

(mq̇2/2) constant, equal to K0 . The configurational tempera-
ture can alternatively be kept constant using a special Hamiltonian. In both these cases a
cold and a hot thermostated region, in contact with Newtonian regions, gives no heat flux
at all despite huge temperature differences. The lesson is that Hamiltonian mechanics is
not able to describe dissipation properly.

5 Thermostat Successes” Oscillators and Complex Systems

A “good” thermostat should, for instance, be able to provide good solutions of the Rayleigh-
Bénard problem, heat transfer through a compressible fluid in a gravitational field. It
should also be useful in treating small-scale “toy problems”. The simplest thermostat test
problems are [1] a harmonic oscillator[24] with a coordinate-dependent temperature:

T (q) = 1 + ε tanh(q) ;

and [2] the flow of heat through a φ4 chain of particles:

H ≡
∑
i

[ (p2
i /2m) + (δx4

i /4) ] +
∑
i<j

φij ,

where φ is a nearest-neighbor Hooke’s-Law potential and where the first few and last
few particles in the chain are thermostated with a Gaussian or Nosé-Hoover or another
thermostat. This model is a specially good one to study because it is known to satisfy
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Fourier’s law, even in one dimension. A comparison of seven different thermostat methods
showed that the φ4 problem is well-posed and relatively easy to solve[25].

Some Hamiltonian-based thermostats are ineffective for nonequilibrium problems[21,
22, 23] and it is useful to understand why. At equilibrium a given temperature and volume
imply corresponding values of the kinetic and potential energies. This is also true for partic-
ular states away from equilibrium, even where there is no longer a unique equation-of-state
relation. Using a Hamiltonian thermostat away from equilibrium one can independently
specify the kinetic energy and the potential energy or the temperature and the energy.
This additional freedom contradicts the notion of thermodynamic state and can lead to
very strange results[23]. Constraining the configurational temperature or using a version
of Hamiltonian mechanics to constrain the kinetic energy discovered by Hoover and Leete
provide temperature profiles that make no sense. The log-thermostat is another demon-
stration that Hamiltonian mechanics is a poor choice for thermostats. This paradoxical
situation is the symptom of two incompatible requirements on the dynamics: [1] Liouville’s
Theorem requires that the phase-space motion be incompressible; [2] Heat flow consistent
with the Second Law of Thermodynamics requires that the phase volume decrease to zero.

Several of the thermostats have no problem with generating heat flows and solve the
problem of decreasing phase volume by generating strange attractors in the phase space.
Let us consider what might appear to be the simplest of these problems, the Nosé-Hoover
oscillator[24] with a temperature gradient[1]:

q̇ = p ; ṗ = −q − ζp ; ζ̇ = p2 − T (q) ; T (q) = 1 + ε tanh(q) ; 0 < ε < 1 .

For ε > 0.4 the motion is a one-dimensional limit cycle with 〈 ζ 〉 positive. The mean
value of the friction coefficient ζ in the range (0.44 < ε < 1.0) increases from about 0.15 to
1.35 . Figure 3 shows the gradual expansion of the hysteretic limit cycle as the maximum
temperature gradient is increased from 0.44 to 1.00 .

Figures 4 and 5 show a bit of the complexity associated with smaller values of the
temperature gradient. Using an initial momentum of unity gives more regular attractors,
of the type shown to the left. On the other hand, much higher initial momenta give
chaotic distributions like those shown to the right. This complexity is no doubt related to
that seen without any temperature gradient at all[24]. In that latter case the phase-space
distribution is divided into an infinite number of coexisting distributions, whose union is
Gibbs’ canonical distribution ,

fGibbs = e−[ q2+p2+ζ2 ]/2 .

The Figures show projections of a strange attractor that forms with ε = 0.40 . The
Lyapunov spectrum in this case is nearly symmetric, so that it is difficult to compute an
accurate information dimension of the attractor.

Fortunately, the complex dynamics of the thermostated oscillator can be greatly simpli-
fied by adding another control variable, a friction coefficient controlling the fourth velocity
moment[26]:

{ q̇ = p ; ṗ = −q − ζp− ξp3 ; ζ̇ = p2 − T (q) ; ξ̇ = p4 − 3p2T (q) ; T (q) = 1 + ε tanh(q) } .

At equilibrium the extra control variable allows the oscillator to sample the complete canon-
ical distribution. This works at nonequilibrium too. Figure 6 compares the distributions
of the two friction coefficients (ζ, ξ) for ε equal to 0.5 and 1.0 . Even in the latter case
the chaos induced by the two coefficients is enough to prevent collapse of the dynamics
onto a limit cycle. Although counterintuitive, it appears to be true that a four-dimensional
attractor is actually much simpler than its three-dimensional counterpart.
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Figure 3: ζ(p) is plotted for fifteen equally-spaced values (ε = 0.44 to 1.00) of the maximum
temperature gradient for the (q, p, ζ) nonequilibrium Nosé-Hoover oscillator. All these data
correspond to fully-converged limit cycles.

Figure 4: ζ(p) for the nonequilibrium Nosé-Hoover oscillator (ε = 0.4) is plotted between
the limits ±4 for two different initial conditions. For p = 5 the Lyapunov exponents are
roughly ±0.0025 and 0. For p = 1 the exponents are much larger in magnitude, ±0.0085
and 0.

Figure 5: p(q) is plotted between the limits ±4 for the two different initial conditions of
Figure 4 . Note the preference of the oscillator for the lower-temperature states to the left
of the origin.
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Figure 6: Friction coefficient distribution ξ(ζ) for two values of the maximum temperature
gradient, 0.5 and 1.0 . This doubly-thermostated oscillator covers the complete canonical
distribution in the equilibrium case. Here there is no dependence of the attractor on the
initial value of the momentum. 100,000 points are printed taken from the last half of a 200
million timestep run. The timestep ∆t is 0.0002 .

5.1 Larger Systems and Thermodynamics

Larger systems fit the pattern to which the small systems hint. The phase-space distri-
bution shrinks to a strange attractor. In a system with several thermostated degrees of
freedom Liouville’s Theorem gives the details of the shrinkage[1, 15, 26]:

(d ln f/dt) ≡ −(⊗̇/⊗) =
∑

ζ ≡ exp[ (Ṡ/k) ] .

Here Ṡ is the external entropy production, the heat extracted from the controlled system
by the thermostats, divided by the thermostat temperature. ⊗ is a small comoving phase
volume. ⊗ has three possible evolutions: it can expand; it can shrink; or it can remain
the same. The last possibility is the equilibrium one, with no net heat transfer to the
outside world. The first possibility (expansion) is ruled out for steady states, as a con-
tinually expanding phase volume implies catastrophic instability. Only the possibility of
continual shrinkage, dissipation, is left. The accessible phase-space states for a nonequi-
librium steady state continually decrease in number as the volume shrinks (exponentially
fast) toward zero. The deterministic time-reversible thermostats make possible a simple
geometric interpretation of the Second Law of Thermodynamics. Nonequilibrium steady
states necessarily collapse to a zero-volume strange attractor. Thus nonequilibrium states
are vanishingly rare. Any attempt to reverse the (time-reversible) dynamics would lead to
divergence, with a positive Lyapunov sum, and a violation of the Second Law. What hap-
pens in fact is that, when reversed, the dynamics soon breaks its time symmetry and seeks
out again the attractor. Time-reversible thermostats have deepened our understanding of
the Second Law[1, 27].

6 Summary

The paradoxical reversibility properties of Newtonian and Hamiltonian mechanics can be
modeled with bit-reversible algorithms. Such algorithms don’t exist in cases where the
phase volume changes, where the mechanics is thermostated. In the latter case Lyapunov
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instability seeks out the unstable strange attractor, more stable still than is its repeller
twin, leading to a simple geometric understanding of the Second Law of Thermodynamics
for open systems.

The symmetry breaking revealed by strong shockwaves suggests that a deepened under-
standing of isolated systems can come from study of the local Lyapunov spectrum. Both
of these problem areas, nonequilibrium conservative systems and nonequilibrium open sys-
tems, suggest many interesting research opportunities for the future.
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Journal of Chemical Physics 123, 134101 (2005).

[14] L. V. Woodcock, “Isothermal Molecular Dynamics Calculations for Liquid Salts”,
Chemical Physics Letters 10, 257-261 (1971).

[15] B. Moran, Wm. G. Hoover, and S. Bestiale, “Diffusion in a Periodic Lorentz Gas",
Journal of Statistical Physics 48, 709-726 (1987).

[16] D. J. Evans, W. G. Hoover, B. H. Failor, B. Moran, and A. J. C. Ladd, “Nonequilibrium
Molecular Dynamics via Gauss’ Principle of Least Constraint”, Physical Review A 28,
1016-1021 (1983).
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Microscopic and macroscopic Rayleigh-Bénard flows:
continuum and particle simulations, turbulence,

fluctuations, time reversibility, and Lyapunov instability
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Abstract

We discuss the irreversibility, nonlocality, and fluctuations, as well as the Lyapunov
and hydrodynamic instabilities characterizing atomistic, smooth-particle, and finite-
difference solutions of the two-dimensional Rayleigh-Bénard problem. To speed up the
numerical analysis we control the time-dependence of the Rayleigh number,R(t) , so as
to include many distinct flow morphologies in a single simulation. The relatively simple
nature of these computational algorithms and the richness of the results they can yield
make such studies and their interpretation particularly well suited to graduate-level
research.

Keywords: Rayleigh-Bénard flows, macroscopic flows, microscopic flows, Lyapunov
instability, chaos.

1 Introduction

“Understanding Turbulence” is an enduring catch phrase and has been a potential funding
source since the early days of computers. There is no shortage of reviews ranging from
short sketches[1, 2, 3] to scholarly studies[4, 5, 6]. The vast research literature takes in
earth, air, fire, and water as well as the weather, the sun, aircraft design, and small-box
chaos. Spectra and power-law relations abound. Mostly the working fluid is incompressible
and often its motion is described as a superposition of modes or vortices. Two- and three-
dimensional turbulence behave differently, with the flow of energy away from or toward
smaller length scales in these two cases[4]. “Enstrophy”, the squared vorticity [ squared
rotation rate ], is “conserved” in two-dimensional incompressible flow[4].

Despite all this information there appears to be more to learn. How many vortices
should we expect to see? What is the Lyapunov spectrum like? How localized are the
vectors corresponding to the exponents? The simple nature of the underlying model, a
conducting viscous fluid, the complexity of the flows that result, and the multitude of
computational schemes, all provide opportunities for imaginative approaches and analyses.
We recommend their study and describe our own explorations of what seems to us the
simplest problem involving turbulence, Rayleigh-Bénard flow[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11].

The classical Rayleigh-Bénard problem describes the convective behavior of a compress-
ible, heat conducting, viscous fluid in the presence of gravity and a temperature gradient.
Here we suppose that the fluid is confined by a stationary square L × L box with fixed
boundary temperatures. Despite these simplest possible of boundary conditions, even in
two space dimensions this problem provides interesting internal flows of mass, momentum,
and energy. The heat driving these flows enters and exits along the boundaries. Most of

151



Proceedings of XL International Summer School–Conference APM 2012

it comes in at the bottom and flows out at the top. There are two competing mechanisms
for the heat flow from bottom to top. The simpler of the two is conduction, described by
Fourier’s law, Q = −κ∇T . But mechanical ( or “convective” ) heat flow is possible too
and comes to dominate conduction as the flow begins to move, and continues to grow as
the flow eventually becomes turbulent.

Thermal expansion near the bottom of the box provides the buoyancy necessary to
carry the hot fluid upward. Cooling and compression near the top encourages downward
flow. These vertical driving forces due to temperature and gravity are balanced by the
dissipative effects of heat conduction and viscosity which lead to macroscopic entropy
production. The dimensionless ratios of these effects, the Rayleigh Number R and, to a
lesser extent, the Prandtl Number P [ which we set equal to unity in our work here ] :

R ≡ g(∂ lnV/∂T )P∆TL3/(νD) ; P = (ν/D) ,

control the overall flow. The Nusselt number N completes the list of dimensionless flow
variables. It is an observable rather than an input. N is simply the ratio of the ( time-
averaged, if necessary ) vertical heat flux to the prediction of Fourier’s law :

N = −(LQy/κ∆T ) .

With our thermostated sidewalls the definition of the Nusselt Number is somewhat ar-
bitrary. Entropy production is a more appropriate measure of our flows’ separation from
equilibrium, though we will not discuss those interesting results here for lack of space.

The convective flow patterns characterizing Rayleigh-Bénard flow can be stationary,
periodic in time, or chaotic. It is often possible to observe qualitatively different solu-
tions – different numbers of convective rolls for instance – for the same external boundary
conditions[11]. And at very “high” Rayleigh numbers [ on the order of a half million or
more ], chaotic flows never repeat. Chaotic solutions describe at least two distinct regimes
of turbulence[1, 2], called “soft” and “hard”, and distinguished by the form of their fluc-
tuations, Gaussian or exponential respectively[1, 4, 5]. The time scales associated with
eddy rotation vary from seconds in the laboratory to æons inside the earth and sun. The
richness of Rayleigh-Bénard flow patterns, even or especially in two dimensions, together
with their illustration of the fundamentals of fluid mechanics, instability theory, nonlinear
dynamics, and irreversible thermodynamics, makes these problems an ideal introduction
to the use of numerical methods in computational fluid dynamics[2, 8, 9].

We choose to study here the simplest possible constitutive model, an ideal gas ,

PV = NkT = E = Nme −→ (∂ lnV/∂T )P = (1/T ) ; (S/k) =

∫L
0

∫L
0
ρ ln(T/ρ)dxdy .

For simplicity we set Boltzmann’s constant k, the particle mass m, and the overall mass
density ρ equal to unity. We choose the hot and cold temperatures equal to 1.5 and 0.5
so that ∆T ' T . Finally, we choose the gravitational constant g so as to give a constant-
density solution of the equation of motion in the quiescent purely conducting case :

−(dP/dy) = ρg = −ρ(kdT/dy)→ { g = (k∆T/mL) ≡ (1/L) → ρ ' 1 , a constant } .

With these simplifications a square [ N ≡ L× L ]-cell system with a Rayleigh number R
and a Prandtl Number P is achieved by choosing the two constitutive properties, kinematic
viscosity ν and thermal diffusivity D , to satisfy the two definitions :

(ν/D) ≡ P ; R ≡ (L/ν)(L/D) .
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Figure 1: An L×L square with an idealized roll using the “stick” boundary condition [ zero
velocity at the wall ] : ux ∝ + sin(y) cos(x/2) ; uy ∝ − sin(x) cos(y/2) ; −π ≤ x, y ≤ +π ,
is shown at the center. These data are also reflected, both to the right and to the left, to
make an array with three rolls. This illustrates a handy initialization technique to use in
the search for stable multiroll solutions.

Unlike experimentalists we computational scientists are not limited to physical materi-
als, dimensions, or boundary conditions. We have the undoubted luxury that our transport
coefficients ( as well as the gravitational acceleration and even the box size ) can all be
time dependent if we like. In the simulations reported here we typically use time-dependent
transport coefficients, chosen so that the Rayleigh number increases or decreases [ to check
for hysteresis ] linearly with time. In this way a whole range of Rayleigh numbers, with
varying roll numbers, kinetic energies, and Lyapunov exponents ( if the increase is carried
out sufficiently slowly ), can all be obtained with a single simulation.

For sufficiently large values of the Rayleigh number ( 4960 or more for the static fixed-
temperature boundary conditions used here[7] ) one or more viscous conducting rolls form
and evolve with time. With the convective heat flow directed upward, and on the average
balanced by the gravitational forces acting downward, either stationary, periodic, or chaotic
flows can be achieved. Figure 1 shows how a simple single vortex can be used to construct
initial conditions with one or more vortices.

Since the 1980s nominally steady-state solutions for such flows have been computed
with three distinct methods: microscopic molecular dynamics together with particle-based
and grid-based macroscopic simulation methods[8, 9, 10, 11]. The Smooth-Particle Ap-
plied Mechanics Method ( SPAM ) offers a welcome bridge between the microscopic and
macroscopic approaches[8]. In SPAM the dynamics of macroscopic particles is governed by
motion equations including the macroscopic irreversible constitutive laws. But the form
of those laws mimics that of the microscopic motion equations. In both cases the acceler-
ations are based on summed-up contributions from neighboring pairs of particles. SPAM
calculations can also be thought of as a finite-difference algorithm on an irregular grid.

The resulting macroscopic flow patterns exhibit interesting solution changes as the
Rayleigh number increases above the critical value of 4960 . The positions of the rolls’
centers can exhibit both periodic and chaotic motion. Lyapunov exponents characterize
the growth of the instabilities leading to chaotic motion[4, 7]. For continuum simulations
with thousands of degrees of freedom the simplest calculation of the instabilities involves
only the largest exponent. There is evidence that the “spectrum” of Lyapunov exponents
is roughly linear [ and with a negative sum, due to the dissipative nature of continuum
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flows ][4].
It turns out that the relative stability of particular flows depends upon the initial

conditions. No known variational principle ( like maximum entropy, or minimum entropy
production ) predicts which of the several flows is stable[11]. The various “principles” based
on energy or entropy can be evaluated for these simulations. Intercomparisons of the three
simulation methods can shed light on the dissipation described by the Second Law of
Thermodynamics and the differing time reversibilities of the microscopic and macroscopic
techniques.

In Section II we summarize the continuum physics of fluid flow problems: mass, mo-
mentum, and energy conservation are always required. Shear flows and heat flows can
result. In Section III we outline three numerical solution techniques and display some
typical results. In Section IV we present our conclusions and suggest research directions
useful for students.

2 Continuum Mechanics and Rayleigh-Bénard Flow

A physical description of any continuum flow necessarily obeys the conservation laws for
mass, momentum, and energy :

ρ̇ = −ρ∇ · u ; ρu̇ = −∇ · P + ρg ; ρė = −∇u : P −∇ ·Q .

The simplest derivation of these three laws uses an Eulerian coordinate system fixed in
space. The summed-up fluxes of each conserved quantity through the surfaces of each
of the L2 computational cells, plus the internal gravitational contributions give the time
rates of change in the cells. In the Rayleigh-Bénard problem the boundary source terms
introduce and extract energy at the bottom, along the sides, and at the top, while the
gravitational momentum density source ρg acts throughout the volume . The fluid’s con-
stitutive properties – the pressure tensor P and the heat flux vector Q – are computed
from the local state variables { ρ, u, e } and their gradients. P and Q are the momentum
and energy fluxes in a coordinate system “comoving” with the local velocity u(r, t) .

It is easy to solve the continuum flow laws by converting them to sets of ordinary
differential equations. These latter equations incorporate the linear phenomenological con-
stitutive relations pioneered by Newton and Fourier, expressing pressure in terms of the
symmetrized velocity gradient, and the heat flux vector in terms of the temperature gra-
dient :

P = (Peq − λ∇ · u)I − η[ ∇u+∇ut ] ; Q = −κ∇T .

κ is the thermal conductivity. We set the bulk viscosity equal to zero ( appropriate for an
ideal gas ) by setting λ+ η = 0 so that the pressure tensor has the following form :

Pxx = Peq − η[ (∂ux/∂x)− (∂uy/∂y) ] ;

Pyy = Peq − η[ (∂uy/∂y)− (∂ux/∂x) ] ;

Pxy = −η[ (∂uy/∂x) + (∂ux/∂y) ] .

With these constitutive relations specified we have a well-posed continuum problem ready
to solve.

Figure 2 shows observed stationary roll patterns typical of a Rayleigh-Bénard flow with
a gravitational force acting in the negative y direction and a temperature gradient resulting
in heat convection in the positive y direction. The temperature and velocity are fixed on
the horizontal and vertical boundaries, just as in the idealized one- and three-roll flows of

154



Microscopic and Macroscopic Rayleigh-Bénard Flows

Figure 2: Stationary roll patterns observed at Rayleigh Numbers of 10,000 and 32,000 with
a Prandtl number of unity. The velocities are taken from Eulerian grid-based solutions of
the conservation laws with linear Newton-Fourier constitutive relations.

Figure 1 . Higher values of the Rayleigh number result in solutions that form with three
or more rolls, periodic roll motions, and finally chaotic motions. See References 6 and 7 .

Figure 3 shows four typical chaotic Rayleigh-Bénard velocity plots. The Rayleigh
Number here is 800 000 . A mesh of 160× 160 cells and 161× 161 nodes was used.

3 Numerical Methods for Rayleigh-Bénard Flows

3.1 Particle Methods: Nonequilibrium Molecular Dynamics and SPAM

Nonequilibrium molecular dynamics is a straightforward but limited method for
studying Rayleigh-Bénard flows. Though the method is both simple and fundamental,
atomistic particle studies have several disadvantages : first, the equation of state can’t
be specified in advance ( only the interatomic force law is given in molecular dynamics )
; second, the number of degrees of freedom required to simulate convective rolls is either
thousands ( in two dimensions[9] ) or millions ( in three dimensions[10] ) ; third, the time
step in molecular dynamics simulations is a fraction of the collision time rather than the
considerably larger time [ dt = (dx/c) , where c is the sound velocity ] given by the con-
tinuum Courant condition. Finally, even with these large particle numbers and small time
steps, the fluctuations in the atomistic simulations are so large that snapshots of nominally
steady flows show large deviations from time averages.

Mareschal and Rapaport and their coworkers[9, 10] have studied two- and three-
dimensional molecular dynamics systems, relatively large at the time they were carried
out ( with 5000 and 3,507,170 particles respectively ). In both these cases time averages
were required. The simulations did confirm that these time averages of the atomistic flows
closely matched the corresponding stationary continuum simulations. We have carried
out a few corroborating simulations. In these we used thermostated boundaries composed
of particles tethered to fixed lattice sites. Rather than obeying conservative Newtonian
mechanics, where the bottom row of “hot” and top row of “cold” boundary particles sepa-
rately follow thermostated equations of motion with their temperatures controlled by the
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160 x 160 Cells, R = 800 000

Figure 3: Four snapshots of a turbulent flow computed with 160 × 160 computational
cells.

Nosé-Hoover friction coefficients[7] ( ζhot, ζcold ) :

{ r̈ = (F ({ r })/m)− ζhotṙ }hot ; { r̈ = (F ({ r })/m)− ζcoldṙ }cold .

Particle escapes can be prevented by using a strong repulsive boundary potential to reflect
any particle venturing “outside” the box. Figure 4 compares a time-averaged exposure of a
typical molecular dynamics run with 23,700 particles to the final snapshot from the same
simulation.

Smooth Particle Applied Mechanics (SPAM[8]) is a macroscopic particle alterna-
tive to molecular dynamics. SPAM simulations are based on the continuum constitutive
relations rather than atomistic interatomic forces. Hundreds of particles, rather than
thousands, can generate rolls, the timestep is much larger, and individual snapshots do
reproduce the stable roll structures quite well. SPAM defines local continuum averages
by combining contributions from a few dozen nearby particles. All of these continuum
properties, { ρ, u, e, P,Q, . . . } are local averages from sums using a weight function like
Lucy’s, which is shown in Figure 5 :

w(r < h) = (5/πh2)(1 + 3z)(1− z)3 ; z ≡ (r/h) .

Averages computed using this twice-differentiable weight function have two continuous
spatial derivatives, enough for representing the righthand sides of the diffusive continuum
equations with continuous functions.

Consider the simplest application of SPAM averaging, the definitions of the local den-
sities and velocities in terms of smooth-particle weighted sums :

ρ(r) ≡ m
∑
i

w(r − ri) ; ρ(r)u(r) ≡ m
∑
i

w(r − ri)vi .
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Figure 4: Simulation of Rayleigh-Bénard flow with molecular dynamics. A snapshot, using
smooth-particle averages of the particle velocities, is at the left. Averages appear at the
right.

Figure 5: Lucy’s weight function, normalized for two dimensions,
∫h

0 2πrw(r < h)dr ≡ 1 .

These definitions satisfy the continuum continuity equation exactly! The variation of the
density at a fixed location r can be evaluated by the chain rule :

(∂ρ/∂t)r = m
∑
i

w′vi · (ri − r)/|r − ri| .

Then notice that the gradient with respect to r of the product (ρu) includes exactly the
same terms, but with the opposite signs :

∇r · (ρu) = m
∑
i

w′vi · (r − ri)/|r − ri| .

Thus the SPAM version of the continuity equation ,

(∂ρ/∂t) ≡ −∇ · (ρu)←→ ρ̇ = −ρ∇ · u ,

is an identity, independent of the form or range h of the weight function w(r < h) . This
is not entirely a surprise as there is no ambiguity in the locations of the particles’ masses
and momenta.
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The pressure and energy are more complicated. The smooth-particle equation of
motion[8] is antisymmetric in the particle indices. Thus that motion equation ,

v̇i ≡ −m
∑
j

[ (P/ρ2)i + (P/ρ2)j ] · ∇iw(ri − rj) ;

conserves linear momentum ( but not angular momentum ) exactly. Notice that whenever
the pressure varies slowly in space the weight function plays the role of a repulsive potential
with the strength of the interparticle “forces” proportional to the local pressure.

The gradients in SPAM are evaluated by taking derivatives of the corresponding sums.
The temperature gradient, for example, is :

(∇T )i ≡ m
∑
j

(Tj − Ti)w′ij [ (rj − ri)/(|rij |ρij) ] ; ρij ≡
√
ρiρj or (ρi + ρj)/2 .

Notice that two neighboring particles make no contribution to the temperature gradient
if their temperatures match. With the gradients defined the pressure tensor and heat flux
vectors can be evaluated for all the particles and used to advance the particle properties
to the next time step :

{ ṙ, v̇, ė } −→ { r, v, e }

In all, the SPAM method averages involve about two dozen distinct particle properties.
This computational effort is compensated by SPAM’s longer length and time scales.

In addition to providing an alternative approach to solving the continuum equations
the SPAM averaging technique can be used to average molecular dynamics properties
such as P and Q. This approach is particularly valuable in shockwaves ( see Chapter 6 of
Reference 7 ), where constitutive properties change on an atomistic distance scale. It would
be interesting to compare the two sides of the continuum energy and motion equations and
to use this comparison to optimize the choice of the weight function’s range h .

The molecular dynamics results differ qualitatively from continuum results in their
time symmetry, so that averaging offers a way of reducing this conflict. Time-dependent
solutions offer a specially flexible technique for bringing the two approaches into better
agreement. The weight functions also offer a way of carrying out the coarse graining which
could be used to reduce the conflict between the microscopic and macroscopic forms of
mechanics.

3.2 Eulerian Finite-Difference Method[9]

Straightforward centered-difference approximations to the continuum equations provide a
useful approach to the Rayleigh-Bénard problem. Mareschal and his coworkers pointed
out that an efficient numerical method can be based on square cells or zones, with the
velocities and energies defined at the nodes and the densities defined in the cells. A small
10× 10 cell program written in this way would solve 3× 11× 11 + 10× 10 = 463 ordinary
differential equations. The solution procedure follows a seven-step plan: [1] use linear
interpolation and extrapolation near the boundaries to find the complete set of 484 nodal
variables and 400 cell variables; [2] use centered differences to find ∇v and ∇T ; [3] use
these gradients to obtain P and Q ; [4] evaluate ∇v : P and ∇ · Q ; [5] evaluate (∂ρ/∂t)
from the neighboring nodal values ; [6] evaluate (∂u/∂t) from the pressure gradients and
(∂e/∂t) by summing the convective contributions and the work and heat; [7] use fourth-
order Runge-Kutta integration to advance the 463 dependent variables to the next time
step.
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The Rayleigh-Bénard solutions – simple rolls[11], periodic solutions, or chaos – can be
observed in either two dimensions, where there are plenty of puzzles to solve, or three.
Because simulation and visualization are simpler in two dimensions, while the challenges
to understanding remain severe, we choose two dimensions. The critical Rayleigh Number
of about 5000 corresponds to an eddy width which can easily be resolved with 8× 8 cells
and a one-roll Reynolds number of order unity.

The Rayleigh number varies as L4. Doubling the sidelength L → 2L with g and the
transport coefficients fixed changes R : 5000→ 80000 and increases the number of rolls to
four. Desktop or laptop machines are quite capable of simulations with R = 1 000 000 , for
which this simple-minded reasoning could lead us to expect about (1000000/5000)1/4 ' 14
rolls. In fact this doesn’t happen. See Figure 7 below. In two dimensions the energy flow
is toward, rather than away from, large rolls. For R = 800K [ K indicates thousands ] and
a 160× 160 mesh one finds occcasional deep minima in the time-dependent kinetic energy.
These minima correspond to only two large rolls, as in the simple solutions without chaos,
with R ' 10K . In three dimensions the chaotic flow is qualitatively different, and more
complicated. Instead of whirling vortices one finds plumes ascending and descending, with
mushroom shaped heads for large Prandtl numbers ( glycerin ) where viscosity dominates
conductivity[1].

Figure 6: Kinetic energy per cell (vertical at top and horizontal at bottom) from a sim-
ulation with R = t. Notice, at the extreme left of the two plots, the reduction in the
horizontal kinetic energy at the transition from one roll to two ( R ' 25K ) .

Figure 6 shows the variation of the kinetic energy per cell with the Rayleigh Number,
where R = t ≤ 700K. The transitions go from one roll to two, and from two rolls to a
time-periodic arrangement with perhaps four, which in turn gives rise to chaos. Our simple
centered-finite-difference fixed-timestep code “blew up” at Rayleigh numbers of

{ 715K, 810K, 840K, 860K, 905K, 940K } for L = { 16, 24, 32, 48, 64, 96 } .

Figure 6 suggests that chaos sets in around R = 385K and gradually increases in strength
until the algorithm becomes unstable for the chosen mesh.

The motion responds relatively quickly to perturbations. To demonstrate this we show
in Figure 7 six snapshots from a 24× 24 simulation with all of the flow velocities instanta-
neously reversed from forward to backward at time 0, where the forward chaotic flow has
three distinct rolls. By a time of 500 (a few dozen sound traversal times) the flow is back
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to normal, again with three rolls. But in the transformational process of discarding the
time-reversed morphology the stabilizing flow acquires as many as seven rolls, in accord
with the estimate that roughly 8 × 8 cells required to resolve a roll. The quick reduction
in roll number as steady chaos is regained is again a symptom of the flow of energy from
smaller to larger rolls in two dimensions.

                                                  Six 24 x 24 Cell Ideal-Gas Snapshots

Figure 7: Snapshots at time 0, 100, 200, (bottom row, left to right) and 300, 400, 500 (top
row, left to right) starting with an instantaneously reversed chaotic flow with R = 800 000
.

Although there is no difficulty in simulating the motion on larger meshes even the
modest 576-cell simulation of Figure 7 provides an excellent characterization of chaos.
Characterizing chaos quantitatively entails evaluating Lyapunov exponents, the tendency
of nearby trajectories to separate farther or to approach one another. The separation of a
satellite trajectory from its reference has four component types :

δ ≡ ( {δρ}, {δux}, {δuy}, {δe} ) .

Keeping the separation constant by rescaling at every timestep gives the local exponent ,

λi(t) = ln(| δbefore |/| δafter |)/dt .

In atomistic simulations it is well known that the largest Lyapunov exponent can
be measured in configuration, momentum, or phase space, with identical longtime
averages[12]. In continuum simulations one would expect that the density, velocity, or
energy subspaces could be used in this same way. By choosing particular mass, length,
and time units any one of the three subspaces could be made to dominate the local Lya-
punov exponent.

Figure 8 shows the exponential separation of a satellite trajectory from its reference
trajectory, without rescaling, as measured in the density, velocity, energy, and complete
state spaces of the flow. The similarity of the four curves is so complete that we don’t
attempt to label them separatedly in the figure. Evidently, despite the changing mor-
phology of the chaotic vortices, the underlying chaos ( at a Rayleigh Number of 800K
) is quite steady. The research literature indicates that the Lyapunov spectrum in such
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Figure 8: Separation between two strongly chaotic simulations. The fourth-order Runge-
Kutta timestep is 0.05. Although four different sets of data (for ρ, u, e subspaces as
well as the complete space) are shown, here, the local Lyapunov exponents are scarcely
distinguishable from one another.

two-dimensional flows is roughly linear, and corresponds to a strange attractor with only
a few degrees of freedom, no doubt corresponding to the number of observed vortices.

The low dimensionality of two-dimensional turbulent chaos results from the tremendous
dissipation inherent in the Navier-Stokes-Newton-Fourier model. If we evaluate the three
“phase-space derivatives” which contribute to the continuum analog of Liouville’s particle
Theorem :

(∂ρ̇/∂ρ) ; (∂u̇/∂u) ; (∂ė/∂e) ,

[ here the dots are time derivatives at fixed cells or nodes ] the velocity and energy deriva-
tives give −4(η/ρ)/(dx)2 and −4κ/(dx)2 respectively while the density derivative vanishes.
In the end only a few degrees of freedom exhibit chaos.

4 Conclusions and Suggestions for Research

Continuum mechanics can be studied with finite-difference ordinary differential equations,
or with particle differential equations, resembling those used in molecular dynamics. The
finite-difference approach is certainly the most efficient of these possibilities. The Rayleigh-
Bénard problems exhibit a variety of flows, with interesting results at the level of a few
hundred compuational cells. The relative stability of the flows and the characterization
of the chaos are both interesting research areas. With the limited dimensionality of the
chaotic flows’ attractors estimating only a few Lyapunov exponents suffice to characterize
Rayleigh-Bénard chaos. The loci of Lyapunov vectors’ instability is yet another source of
fascinating questions and answers.

Though we have no space to discuss them here the useful smooth-particle technique
for bridging together the particle and continuum methods suggests a variety of problems
designed to reduce the discrepancies between the three types of numerical algorithm.
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Abstract

We present a kinematic analysis and dynamic simulation motion of a rigid body
consisting of two equal elliptical disks whose symmetry planes are at right angle. The
no-slip constraints of the body are integrable since the system is essentially holonomic.
Trajectories of the ground contact points are found. All equilibrium positions of the
body on the plane are found and their stability analysis is performed.

1 Introduction

Let us consider the rigid body of the following form: it comprises of two symmetric lam-
inae whose planes of symmetry make a right angle between each other. The laminae are
connected along the common axis of symmetry. When this body moves along the fixed
horizontal plane it touches the plane in two points (Fig. 1).

Figure 1: The Two-Circle-Roller and the Oloid.

The most known bodies of such a form are the Two-Circle-Roller [1, 2] and the Oloid [3,
4, 5]. The Two-Circle-Roller consists of two interlocked circular disks with the distance
between their centers is r

√
2, where r is a common radius of the disks (Fig. 1). The Oloid

is similar to Two-Circle-Roller: it consists of two interlocked circular disks but the distance
between their centers equals to their radius r. For both of these bodies their motion on the
fixed horizontal plane is studied in details [1]-[5]. However it is interesting to investigate
the motion of the rigid body whose form differs from Two-Circle-Roller and Oloid.

The theory proposed in [4, 5] allows to investigate the motion of the rigid body when
this body comprises of two symmetric laminae of the arbitrary form. In this paper we study
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the motion of the rigid body consisting of two interlocked elliptical disks whose planes of
symmetry make a right angle between each other. The distance between their centers can
be arbitrary value. Trajectories of the ground contact points are found. The equilibria of
the body on the plane are found and their stability conditions are obtained.

2 Problem Formulation

Let two identical elliptical disks with semi-axes a and b, (a > b) in perpendicular planes
be given such that the distance between their centers C1 and C2 equals 2∆ and ∆ <
a. Suppose that these elliptical disks are connected along their major axis of symmetry
(Fig. 2). According to the theory discussed in [4, 5] let us introduce the moving coordinate
frame Gx1x2x3. The origin of this frame will be at the midpoint G of C1C2 (i.e. G is
the center of mass of the system). The Gx3 - axis is perpendicular to the plane Π1 of the
first disk, Gx1 - axis is perpendicular to the plane Π2 of the second disk and Gx2 axis is
directed along the common axis of symmetry of two elliptical disks. The unit vectors of
this coordinate system will be e1, e2, e3.

Figure 2: Rigid body consisting of two elliptical disks.

We will parametrize the first disk by the angle θ between the negative direction of Gx2

axis and the direction to the point of contact A. Then the parametric equations for the
bound of the first disk in terms of θ have the following form:

x1 =
ab sin θ√

a2 sin2 θ + b2 cos2 θ
, x2 = − ab cos θ√

a2 sin2 θ + b2 cos2 θ
.

It is necessary to note that the natural arc-length parameter s is connected with the
variable θ by the formula:

ds

dθ
=
ab
√
a4 sin2 θ + b4 cos2 θ(

a2 sin2 θ + b2 cos2 θ
) 3

2

. (1)

Let us introduce also the angle ψ for the parametrization of the second disk: let ψ
be the angle between the positive direction of Gx2 axis and the direction to the point of
contact B. The parametric equations for the bound of the second disk have the form:

x2 =
ab cosψ√

a2 sin2 ψ + b2 cos2 ψ
, x3 = − ab sinψ√

a2 sin2 ψ + b2 cos2 ψ
.
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The radius - vector of the point A can be written as follows:

−→
GA = r1 =

ab sin θ√
a2 sin2 θ + b2 cos2 θ

e1 −

(
∆ +

ab cos θ√
a2 sin2 θ + b2 cos2 θ

)
e2.

The radius-vector of the point B has the form:

−−→
GB = r2 =

(
∆ +

ab cosψ√
a2 sin2 ψ + b2 cos2 ψ

)
e2 −

ab sinψ√
a2 sin2 ψ + b2 cos2 ψ

e3.

When the considered rigid body rolls on a fixed horizontal plane the three vectors
r2 − r1, (r1)′θ and (r2)′ψ are always in this plane. We can write this condition as follows:

< r2 − r1, (r1)′θ, (r2)′ψ >= 0,

where < ·, ·, · > is a triple scalar product of these vectors. From this condition we can
find the following connection between θ and ψ:

cosψ = − a2 cos θ√
a4 + 4ab∆ cos θ

√
a2 sin2 θ + b2 cos2 θ + 4b2∆2 cos2 θ

and obtain the radius – vector
−−→
GB = r2 in the θ – parametrization:

r2 =

(
∆− a2b cos θ

a
√
a2 sin2 θ + b2 cos2 θ + 2b∆ cos θ

)
e2−

−
b

√
a4 sin2 θ + 4ab∆ cos θ

√
a2 sin2 θ + b2 cos2 θ + 4b2∆2 cos2 θ

a
√
a2 sin2 θ + b2 cos2 θ + 2b∆ cos θ

e3.

(2)

Expression (2) for the radius - vector r2 should make a sense therefore we should have

a2 sin2 θ + 4pb cos θ
√
a2 sin2 θ + b2 cos2 θ + 4p2b2 cos2 θ ≥ 0.

This means that cos θ should satisfy to inequality:

cos θ > − a2

√
a4 + 4a∆b2 + 4∆2b2

.

Therefore we have the following restrictions for the variables θ and ψ:

− arccos

(
− a2

√
a4+4a∆b2+4∆2b2

)
<θ<arccos

(
− a2

√
a4+4a∆b2+4∆2b2

)
,

− arccos

(
− a2

√
a4+4a∆b2+4∆2b2

)
<ψ<arccos

(
− a2

√
a4+4a∆b2+4∆2b2

)
,
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3 Trajectories of the points of contact.

Let us derive now equation for the fixed plane in the Gx1x2x3 coordinate system. This
equation can be derived from the condition that points A, B and the tangent vector to the
first disk at A are in the fixed plane. Therefore, after some simplifications we get:

−a2 sin θX + b2 cos θY + b
(
a
√
a2 sin2 θ + b2 cos2 θ + b∆ cos θ

)
+

+Z

√
a4 sin2 θ + 4ab∆ cos θ

√
a2 sin2 θ + b2 cos2 θ + 4b2∆2 cos2 θ = 0.

The unit vector

n = − a2 sin θ√
2a4 sin2 θ+b4 cos2 θ+4ab∆ cos θ

√
a2 sin2 θ+b2 cos2 θ+4b2∆2 cos2 θ

e1+

+
b2 cos θ√

2a4 sin2 θ+b4 cos2 θ+4ab∆ cos θ
√
a2 sin2 θ+b2 cos2 θ+4b2∆2 cos2 θ

e2+

+

√
a4 sin2 θ + 4ab∆ cos θ

√
a2 sin2 θ + b2 cos2 θ + 4b2∆2 cos2 θ√

2a4 sin2 θ+b4 cos2 θ+4ab∆ cos θ
√
a2 sin2 θ+b2 cos2 θ+4b2∆2 cos2 θ

e3

is the normal vector to this plane. Therefore the angle between the plane of the first disk
and the fixed plane is determined by the formula:

cosϕ = (n · e3) =

=

√
a4 sin2 θ + 4ab∆ cos θ

√
a2 sin2 θ + b2 cos2 θ + 4b2∆2 cos2 θ√

2a4 sin2 θ+b4 cos2 θ+4ab∆ cos θ
√
a2 sin2 θ+b2 cos2 θ+4b2∆2 cos2 θ

.

The curvature of the bounding ellips of the first disk is:

k =
ab
(
a2 sin2 θ + b2 cos2 θ

) 3
2(

a4 sin2 θ + b4 cos2 θ
) 3

2

.

This curvature is connected with the curvature of the trajectory of the ground contact
point of the first disk by the the following equation [4, 5]:

K = k cosϕ.

Having the expression for K we can easily find the parametric equations of the tra-
jectory of point A on the fixed plane. For this purpose we introduce the fixed coordinate
system OXY Z. The origin O of this system coincides with the point of contact of the first
disk with the plane at θ = 0. The OX - axis is tangent to the first disk at θ = 0, the
OZ - axis is directed upwards. The OY - axis forms the right triple with the OX and OZ
axes. Let α be the angle between the tangent vector to the trajectory of the point A and
the OX-axis. Then the functions XA = XA (θ), YA = YA (θ) which give the parametric
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representation of this trajectory in terms of the variable θ can be determined as a solution
of the following system of differential equations [4, 5]:

dXA

dθ
=
ds

dθ
cosα,

dYA
dθ

=
ds

dθ
sinα,

dα

dθ
= K (θ)

ds

dθ
. (3)

Taking into account equation (1) we can rewrite equations (3) in the form:

dXA

dθ
=
ab
√
a4 sin2 θ + b4 cos2 θ(

a2 sin2 θ + b2 cos2 θ
) 3

2

cosα, (4)

dYA
dθ

=
ab
√
a4 sin2 θ + b4 cos2 θ(

a2 sin2 θ + b2 cos2 θ
) 3

2

sinα, (5)

dα

dθ
=

a2b2(
a4 sin2 θ+b4 cos2 θ

)×
×

√
a4 sin2 θ + 4ab∆ cos θ

√
a2 sin2 θ + b2 cos2 θ + 4b2∆2 cos2 θ√

2a4 sin2 θ+b4 cos2 θ+4ab∆ cos θ
√
a2 sin2 θ+b2 cos2 θ+4b2∆2 cos2 θ

.

(6)

Equations (4)-(6) are very complicated. In general case it is impossible to find the
explicit form of expressions for XA, YA and α. Therefore we integrate these equations
numerically for various values of parameters a, b and ∆. The similar equations can be
derived for the trajectory of the point B. Fig 3-4. shows the trajectories of points A and
B on the fixed plane. The bottom curve is the trajectory of point A and the upper curve
is a trajectory of point B.

Note that the system (4)-(6) can be solved for the particular values of parameters. For
the Oloid (a = b, ∆ = a/2) this system is solved in terms of elementary functions [4, 5].
For the Two-Circle-Roller (a = b, ∆ = a/

√
2) it is solved with the help of elliptic integrals

of the third kind [2].

4 Equilibria of the body and their stability

Having expressions for the vector
−→
GA = r1 and the normal vector to the fixed plane n,

we can easily find expression for the potential energy of the rigid body consisting of two
elliptical disks:

V = MgzG = −Mg
(−→
GA · n

)
=

=
Mgb

(
∆b cos θ + a

√
a2 sin2 θ + b2 cos2 θ

)
√

2a4 sin2 θ+b4 cos2 θ+4ab∆ cos θ
√
a2 sin2 θ+b2 cos2 θ+4b2∆2 cos2 θ

.

Critical points of the potential energy correspond to the equilibria of the system. The
derivative of the potential energy has the form:

V ′θ =
Mga3b3 sin θ cos θ√
a2 sin2 θ+b2 cos2 θ

×

×
(
b2 − 2a2 + 2∆2

)(
2a4 sin2 θ+b4 cos2 θ+4ab∆ cos θ

√
a2 sin2 θ+b2 cos2 θ+4b2∆2 cos2 θ

) 3
2

.
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Figure 3: Trajectories of the ground contact points A (bottom curve) and B (upper curve).
The values of parameters are: a = 2, ∆ = 1, b = 1.

Figure 4: Trajectories of the ground contact points A (bottom curve) and B (upper curve).
The values of parameters are: a =

√
3√
2
, ∆ = 1, b = 1.

Thus the rigid body consisting of two elliptical disks has two equilibria: θ = 0 and θ =
π/2. The sign of the second derivative of V , calculating at the corresponding equilibrium
gives the conditions of stability of this equilibrium. Therefore for the equilibrium θ = 0 we
have

V ′′
∣∣∣∣
θ=0

=
Mga3

(
b2 − 2a2 + 2∆2

)
b
(
b2 + 4a∆ + 4∆2

) 3
2

.

This means that the equilibrium θ = 0 is stable when b2− 2a2 + 2∆2 > 0 and unstable
when b2 − 2a2 + 2∆2 < 0. Similarly for the equilibrium θ = π/2 we have

V ′′
∣∣∣∣
θ=π/2

= −
√

2Mgb3
(
b2 − 2a2 + 2∆2

)
4a4

> 0.

and the equilibrium θ = π/2 is stable when b2 − 2a2 + 2∆2 < 0 and unstable when
b2 − 2a2 + 2∆2 > 0.

168



Motion of the rigid body consisting of two disks

The case when b2 − 2a2 + 2∆2 = 0 or

∆ =

√
a2 − b2

2

corresponds to neutral equilibrium. In this case the potential energy of the body is constant:
the center of mass of the body moves at a constant height.
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Several ways to automatically estimate optimal
technological parameters of vibrational screening devices
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Abstract

A great variety of computer analysis methods developed last years has shown their
potency in a number of problems. These methods such as swarm intelligence systems,
evolutionary algorithms etc could be used in any field where it is necessary to deal with
large amount of data. When working with a number of problems that preclude full
analytical studies, it became possible to solve extremum problems using this methods
joined with numerical models. The scope of such paired application of computer
models and numerical optimization techniques is constantly expanding, encompassing
a variety of practical areas: from economics to engineering.

This article presents an example of such methods application in the technical field.
The methods were used for making a preliminary estimation of optimal technical
parameters of vibrational screening devices. Basic data were obtained using original
high performance algorithm of vibrational screening modeling and experiments.

1 Introduction

When mastered by the research community, new scientific and methodological knowledge
not only widens the range of approaches available for solving practical problems, but also
changes the view of the objects studied [1]. In this way, development of computer simu-
lation methods had fundamentally changed new equipment creation processes. However,
the influence of such changes became widespread only quarter of a century after the lay-
ing of foundations and making up of basic principles behind the currently most common
approaches. This trend is clearly evident in the development of all areas of technical
knowledge, including the mining industry. The history of vibrational screening application
for separating granular materials extends back over three centuries and covers numerous
practical areas of human activity: from ore dressing to such sophisticated industries as
pharmacology. And yet, unified engineering approaches for calculating respective equip-
ment did not appear until the seventies of the previous century. At that time, a unified
approach could not be developed as it was conceptually impossible to consider material
at the level of individual particles due to their large numbers. The behavior of granular
medium under vibration depends upon specific features of interaction between its particles,
as well as between the particles and machinery structural parts, force fields and the envi-
ronment. In this regard, high significance is attached to dry friction forces and impacts.
That is, at the particle level, the system is essentially discontinuous, and small parameter
modifications may lead to radical changes in behavior of the material under examination.
For this reason, classical approaches considered granular materials as continuous media,
were based on task-specific phenomenology, and, therefore, had very limited applicability.
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2 Background in mining industry

Universal molecular dynamics and discrete element methods (DEM) that appeared in the
seventies of the twentieth century were not widespread until the mid-nineties. This was due
to the fact that, at that time, the scientific community had not yet sufficiently mastered
computational approaches to solving practical problems, as well as to the unavailability of
appropriate computing resources. By now, these two obstacles have been overcome almost
completely, although the high resource intensity of methods applied for analyzing granu-
lar media at the particle level and, as a result, the high time requirements of respective
simulation processes should be emphasized. In a general sense, it should be noted that de-
velopment of computer simulation methods not only changed the approach to calculations
of parts and machinery, but also cleared the way for radically new design and construction
techniques. In particular, when working with a number of models that preclude full an-
alytical studies, it became possible to solve extremum problems using, for example, such
methods as stochastic optimization. The scope of such paired application of computer
models and numerical optimization techniques is constantly expanding, encompassing a
variety of practical areas: from economics to engineering [2]. Numerical optimization tech-
niques imply relatively frequent computations of objective function values depending on
the resulting parameters of the model used and, therefore, naturally require high simulation
rates. This, of course, limits applicability of the above-mentioned universal granular media
examination methods due to their high resource intensity. With a view to solve several
problems, not excluding this one, a simplified method was developed for quick numerical
simulation of vibrational screening [3].

3 The simplified model of vibrational screening process and
its application for optimal design of screening devices

The proposed vibration screening simulation method is based upon generalization of clas-
sical approaches, as described in [4]. Granular material is represented in the form of a
cellular continuous medium hosting the processes of segregation, mixing, sieving and vi-
brational displacement. A separate model is used for each process which makes the general
calculation scheme highly flexible and easily adaptable to new conditions. For example,
the original computational scheme [3] using ideas from [5] allowed improving simulation
of the granular medium particles passage through sieve apertures; moreover, a separate
program was drawn up for vibrational displacement studies [6]. The diagram for material
representation on the screen surface is shown in Fig. 1.

This model has very low resource intensity and, despite its simplicity, is sufficiently
accurate. Its applicability has been tested through a series of experiments. Comparative
field experiment and model application results are shown in the following table (Fig. 2).

A program for automatic estimation of optimal vibrational screen parameters based on
joint use of simulation approaches and particle swarm optimization [7] was presented in
[8]. This program requires considerably less time, as compared even to a single detailed
DEM-based simulation. At the same time, with allowable value ranges specified, it enables
conducting a series of simulations and making up of a preliminary, but quite accurate
assessment of such optimal screen parameters as linear dimensions, aperture diameters,
useful screen area, its inclination angle and vibration parameters (i.e. the parameters de-
termining vibrational displacement velocities), as well as screen feed and other parameters.
An example of program application results is shown in Fig. 3.
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Figure 1: Material layer lateral section on the screen: a) the scheme of the section as it is
processed by the program, b) simulation visualisation

Figure 2: Experimental validation of the model

4 Prospects of the development of the approach

The prospects of these approaches to designing vibration equipment are covered in [9].
However, it is worth adding that the software system described is constantly improving.
Besides the extensive upgrading opportunities of the basic screening model itself, as men-
tioned above, the program may easily use other numerical optimization approaches. For

172



Several ways to automatically estimate optimal technological parameters of vibrational
screening devices

Figure 3: PSO and the vibrational screening model joined application results: crowded
areas contain optimal parameters values a) useful screen area and screen openings diameter,
b) length and width of the sieve, c) vibrational displacement rate and initial thickness of
the material layer

example, a version of the program was implemented, based on the differential evolution
method. The process of selecting optimal parameters may also be accelerated through re-
ductions in the number of simulations carried out by storing intermediate results obtained
in previous versions of the program. It may also be positively affected by reducing the
initial search area through the use of the available statistics and data mining methods.
Consequently, the software described allows conventionally dividing the optimal vibrating
screen design process into three phases. The first phase implies shaping of a search area
using alleged material characteristics and acceptable ranges of process parameters, as set
by the designer, using statistics data. The second phase uses numerical optimization and
the simplified screening model for preliminary estimations of equipment optimal parame-
ters. And the third phase includes direct equipment development by the designer, using
field experiments and more accurate methods, such as, for example, DEM. This structure
ensures early elimination of numerous incorrect technical solutions under minimum time
requirements and, all other things being equal, enables paying more attention to equipment
fine-tuning and improvement.
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Abstract
The method of constructing a limited positional control of a multidimensional

mechanical system is offered. The movement of the dynamic system with viscous
friction, potential forces, an uncertain limited influence (interference) is considered in
a bounded phase area. The built algorithm guarantees the coming of the system into
the phase zero in a finite (not fixed) time at any admissible interference and any initial
state from the particular bounded region of a phase space. The assumed restrictions on
system and movement parameters may be weaker, than the corresponding restrictions
in the other methods of solving the similar tasks, because inertia terms, viscous friction
and a part of potential forces aren’t included in an interference and aren’t compensated
by a control in the presented research. This may help to reduce demanded modules
of control components or to expand an acceptable area of movement. The given way
of solving may be useful, for example, to control of a space design or a manipulation
robot with viscous friction in hinges.

The offered method is based on the use of the function similar to Lyapunov function
and on the system decomposition. In particular, the indicated function helps to find
the multitude of admissible initial phase values. The numerical example of control
constructing is considered.

1 Problem formulation

The dynamic system movement, which is described by Lagrange equations

M(q)q̈ +Bq̇ = U(q, q̇) +Q∗(q, q̇) +Q, t ≥ 0, (q, q̇) ∈ Ω, (q0, q̇0) ∈ Ω0, (1)

is considered, where q – n-dimensional vector of generalized coordinates, Ω – a given
bounded phase movement area, Ω0 – an unknown region of admissible initial values; M(q)
– a known mass matrix, MT = M > 0 (symmetric), functions M(q), M−1(q) satisfy
Lipschitz condition in Ω; B 6= 0 – a known constant matrix, BT = B ≥ 0; U(q, q̇) – a
positional control,

|Ui | ≤ U0i = const, i = 1, n, (2)

U0i – preassigned constants; Q = Q(t, q, q̇) – an uncertain interference,

|Qi(t)| |Ω ≤ Q0i = const = Q0i(Ω), (q, q̇) ∈ Ω, t ≥ 0, i = 1, n, (3)

where Q(t) = Q( t, q(t), q̇(t)); Q∗(q, q̇) – a known continuous function.
It’s required to choose the positional algorithm U(q, q̇) (2), which leads the system

(1) into the phase origin O in a finite (not fixed) time at any interference realization Q(t)
(3), and also to find some corresponding area Ω0 . The methods for the similar tasks
were proposed in [1]–[4]. The presented work generalizes the results of the author [5] on
the case of a degenerate matrix of viscous friction.
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2 Control choice and the arrival into phase zero

Let’s compensate (annul) a part of the terms Q∗(q, q̇) in (1) by means of some positional
control U∗(q, q̇).

Designations U+(q, q̇) = U −U∗, m = rank B ≤ n, En m = diag { Em , 0} – (n×n)
matrix, where Em – the identity (m×m) matrix.

After the nondegenerate substitution

q = P z, det P 6= 0, P = const, P TB P = En m , (4)

the equation (1) is multiplied at the left by the matrix P−1M−1(q), the sum

U(q, q̇) = U∗ + U+, (5)

U∗(q, q̇) = −Q∗ −M P A P−1q, A = const = diag ≥ 0, (6)

is put into (1), where A – any expediently chosen matrix – the free parameter of the control
constructing procedure. The result is

z̈ +D+(t) En m ż +Az = w(z, ż) + ζ(t, z, ż), (z, ż) ∈ ΩZ , (z0 , ż0 ) ∈ ΩZ0, (7)

where D+(t) = DT
+ = P−1M−1(q(t)) P−1T > 0; ΩZ ,ΩZ0 – the images of Ω,Ω0 ;

w(z, ż) = P−1M−1U+, (8)

ζ(t) = ζ( t, z(t), ż(t)) = P−1M−1Q (9)

– the positional control and the uncertain interference.
Designations

U∗0i = sup
Ω
|U∗i (q, q̇)|, U+

0i = U0i − U∗0i , V +
0i = sup

Ω
|U+
i (q, q̇)|, i = 1, n. (10)

Let the inequalities U+
0i > 0, i = 1, n, are true. According to (2), it needs to subject

the sought control U+ to the limitation

V +
0i ≤ U

+
0i , i = 1, n. (11)

The following relations are gotten from (3), (9)

|ζi(t)| |ΩZ ≤ ζ0i = ζ0i(Ω) = const, t ≥ 0, i = 1, n, (12)

ζ0i(Ω) = sup
Ω

n∑
j=1

|( P−1M−1)ij | Q0j , i = 1, n. (13)

Let’s select the sought control w in the kind

wi = wi(zi , żi ), |wi | ≤ w0i = const, i = 1, n, (14)

ζ0i < w0i, i = 1, n. (15)

According to (8), (11), it needs to subject the sizes w0i to the restriction

sup
Ω

n∑
j=1

|( P M )ij | w0j ≤ U+
0i , i = 1, n. (16)
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Let the system of the relations (15), (16), (13) has a solution (w0i , i = 1, n), and let
any such solution is fixed.

The block form of (7) is

ẍ+D(t) ẋ+ Λx = u(x, ẋ) + ε(t, z, ż), (x, ẋ) ∈ ΩX , (x0 , ẋ0 ) ∈ ΩX0 , (17)

ÿ +D1(t) ẋ+Hy = h(y, ẏ) + ξ(t, z, ż), (18)

where x – m-dimensional vector, (x, y) = z, (u, h) = w, (ε, ξ) = ζ; D(t) = DT =
D( z(t)) > 0, as a diagonal block of the matrix D+ ; ΩX – a real movement area in the
subspace {(x, ẋ)}; ΩX0 – a projection of the region ΩZ0 on {(x, ẋ)}.

Designations u0i = w0i , ε0i = ζ0i , i = 1,m; h0i = w0 m+i , i = 1, n−m; ∆w0i =
w0i − ζ0i , ∆u0i = u0i − ε0i ; ρi(zi ) = −sign zi

√
2 ∆w0i |zi |; ρi – the corresponding

curve żi = ρi(zi ) on the phase plane O zi żi too;

gi = {−1, żi > ρi(zi ); 1, żi < ρi(zi ); sign zi , żi = ρi(zi )}, si = sign żi . (19)

Let’s choose the relay control w = (u, h) (14), (15) in the kind

ui = ui(xi , ẋi ) = ∆u0i gi(xi , ẋi )− ε0i si(ẋi ), i = 1,m, (20)

hi = hi(yi , ẏi ) = h0i gm+i(yi , ẏi ), i = 1, n−m. (21)

It’s disregarded a control delay in the paper. Therefore it’s accepted that all values
|gi | ≤ 1, |si | ≤ 1 are possible on the switches lines in sliding regimes.

Let’s introduce the continuous functions

Si(xi , ẋi ) = (1/2)ẋ2
i + (1/2)Λix

2
i + ∆u0i |xi |, S(x, ẋ) =

m∑
i=1

Si(xi , ẋi ), (22)

S > 0 out of the point x = ẋ = 0, S →∞ at |x|+ |ẋ| → ∞.
If all derivatives Ṡi(t) in accordance with (17), (20) exists,

Ṡi(t) = ẋi ∆u0i (gi + sign xi ) + ẋi (εi − ε0i si )− ẋi
m∑
j=1

Dij ẋj ,

Ṡ(t) =

m∑
i=1

|ẋi |
{
sign ẋi

[
∆u0i(gi + sign xi ) + εi − ε0i si

]}
− (Dẋ · ẋ). (23)

The functions in the curly brackets (23) are nonpositive (15), (19). Therefore

lim sup
∆t→ 0

∆S

∆t
≤ −( D ẋ · ẋ) ≤ 0, t ≥ 0, (24)

where ∆S = S(t+ ∆t)− S(t), lim sup – limit superior, on any trajectory (17)–(21), (12)
in every moment t ≥ 0, in particular, for sliding regimes of control switches. So, the
function S(t) doesn’t increase on any curve (17)–(21), (12).

This permits to select the set ΩZ0 (7) in the kind

ΩZ0 = Φ ⊆ ΩZ , Φ = ∪ { ( z(t), ż(t)), t ≥ 0 }, (25)

where Φ – the closure of the set Φ, Φ – the union of all trajectories (z, ż) at any realizations
(12) with any beginnings from the multitude{

( (x0 , ẋ0 ) ∈ ΩX0 , y0 = ẏ0 = 0 )
}
, (26)
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ΩX0 (17), in turn, is chosen in the kind

ΩX0 = ΩX =
{
S(x, ẋ) ≤ S∗ = const

}
. (27)

Such set ΩZ0 ⊆ ΩZ exists, because the real area of the movement (17)–(21), (12) tightens
into the point O at S∗ → 0 (27) [1]–[4] and coincides with ΩZ0 at enough small values
S∗ in accordance with constructing.

So, any trajectory with a beginning in ΩZ0 = Φ ⊆ ΩZ can’t go from ΩZ0 .
It follows from (24) that

S(t) ≤ S(τ)−
∫ t
τ
( D ẋ · ẋ) |s ds, 0 ≤ τ ≤ t. (28)

According to (17)–(21) the accelerations are bounded in the bounded region (25)–(27),
therefore according to the properties of the functions M−1(q), D+(q) (7), D(q) in the
area Ω the function ( D(t) ẋ(t) · ẋ(t)) in (28) satisfies Lipschitz condition in t on the
interval t ≥ 0. The equality

lim
t→∞

( D ẋ · ẋ) = 0 (29)

is true on an fixed trajectory, because in the opposing case the untrue conclusion { S(t) < 0,
∃ t > 0 } follows from (28) and the Lipschitz property in (28) [5].

The inequality |D ẋ |2 ≤ d∗( D ẋ · ẋ) is true for any matrix D = DT ≥ 0, where d∗
– an maximal characteristic root of D; the matrix D(q) (17) is bounded in norm on the
set Ω. Therefore the following relation is the consequence from (29)

lim
t→∞

D(t) ẋ(t) = 0. (30)

The equality (30) permits to decompose [4] the subsystem (17), (20) after an enough
big time into the one-dimensional independent equations

ẍi + Λixi = ui + εi + δi , |δi| ≤ δ0 = const, t ≥ t∗ = const ≥ 0, i = 1,m, (31)

where δi – the friction terms as an additional uncertain interference, δ0 – any unlimitedly
small number; moment t∗ depends on a trajectory and δ0 .

Let’s enter the additional restriction on the system and movement parameters

ε0i < u0i /3, i = 1,m, (32)

i.e. let the relations system (15), (16), (32), (13) has a solution (w0i , i = 1, n), and let
any such solution is fixed. The inequalities (32) guarantee that there aren’t rest points
distinct from the point O in the system at any interference realization (12). This follows
directly from the equalities (17)–(21).

Designations ai = u0i − 3 ε0i > 0 (32),

a = min
i

ai > 0, i = 1,m. (33)

Let’s fix any trajectory (17)–(21) with a beginning in the region ΩZ0 (25)–(27). Let’s
choose the moment t∗ (31) in accordance with the condition

|δi(t) | ≤ a/4, t ≥ t∗(δ0 = a/4), i = 1,m. (34)

Then the trajectory (31)–(34) comes into the point x = ẋ = 0 in a finite time ∆T [1]–[4].
The friction disappears in (18) at t ≥ t∗+ ∆T , consequently, the trajectory (y, ẏ) arrives
into the point O in a finite time too [1]–[4].

The formula of the corresponding positional control U (1), (2)

U(q, q̇) = −Q∗ −M P A P−1q + U+, U+(q, q̇) = M P w( P−1q, P−1q̇ ), (35)

is gotten from (4)–(6),(8), where w – the relay algorithm (20),(21), (15),(16),(32).
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3 Example of constructing the solution

The horizontal movement of a two-link manipulation robot is considered. The design pa-
rameters and the limits on the controlling moments coincide with the data in the example
from [2], but the viscous friction in both hinges and the external uncertain limited inter-
ference are added into the system. Unlike Sect. 1,2, here the admissible region Ω is an
unknown sought set Ω = Ω0 (25)–(27), (4).

It’s accepted that external interference limits Q0i (3) don’t depend on Ω.
Designations G = Ω0 ∩ {q̇ = 0}, C2 – the mass centre of the second link; O1 , O2 –

the vertical axes of hinges, and the points of these axes in the horizontal plane with C2 ;
m1 , m2 – masses of links; I1 , I2 – the inertia moments of links relating to the axes O1 ,
O2 correspondingly; l1 = |O1 O2 |, l2 = |O2 C2 |; q = (q1 , q2 ) – relative angles of the
links rotation [2]; K1 , K2 – the controlling moments in the hinges O1 , O2 , satisfying
the restriction |Ki | ≤ K0i = const, i = 1, 2 .

The purpose of a calculation is to provide the comparatively simple form and maximal
sizes of the set G, and to find the corresponding control, which leads the system into the
point O in a finite time.

After the transition to the nondimensional time t′ = K
1/2
02 (m2 l1 l2 )−1/2 t and

multiplying by K−1
02 the movement equations are nondimensionalized. They have the kind

(1)–(3), where a point above a function means d/dt′ ;

Q∗ = ( Q∗1 , Q∗2 ), Q∗1 = ( 2 q̇1 q̇2 + q̇2
2 ) sin q2 , Q∗2 = −q̇2

1 sin q2 (36)

– the terms, quadratically depending on velocities;

B = diag {b1 , b2 } = const > 0; (37)

Ui = Ki /K02 , U0i = K0i /K02 , i = 1, 2. It follows from (37), (17), (18) that

n = m = 2, x = z, u = w, ε = ζ, Λ = A, ΩX = ΩZ = ΩX0 . (38)

Let’s enter the data m2 = 10 kg, l1 = 1 m, l2 = 0.5 m, I1 = I2 = 3.33 kg · m2,
K01 = 2.9 N ·m, K02 = 1 N ·m, where m = metre, N = Newton [2]; Q01 = 3 · 10−2,
Q02 = 5.5 · 10−4;

b1 = b1C b, b2 = b2C b, b1C = 0.5, b2C = 1, b = const > 0, (39)

where b – a coefficient, which won’t affect the calculation results.
In accordance with (4), (37), (38) the coordinates transformation are

x = ΘTP−1
0 q, P0 = diag {b−1/2

1 , b
−1/2
2 }, Θ11 = Θ22 = cosϑ,

Θ21 = −Θ12 = sinϑ, ϑ = const, −π/2 < ϑ ≤ π/2, (40)

where ϑ – the free procedure parameter. It doesn’t need to consider the other matrixes
Θ = Θ−1T , because this doesn’t affect the constructing results.

Let’s demand the set G to be a maximal in area rectangle in the kind

G =
{
|qi | ≤ q∗i = const, i = 1, 2

}
, (41)

q∗1 q∗2 → max (42)

at the restrictions (16), (32). The boundary equation for the region Ω0 (22), (27), (40)
shows that the kind (41) is equivalent to the condition

∆u01 = ∆u02 , ϑ ∈ { ±π/4 }, Λ = 0. (43)
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Let’s put (43) into (27) and do the substitution of the parameter S∗ = s∗
√
b ∆u01 .

The results are the families of the regions

Ω( ∆u01 , s∗ ) ={
(1/2)(b1q̇

2
1 + b2q̇

2
2) +

√
2∆u01 max

(
|q1|
√
b1 , |q2|

√
b2

)
≤ s∗
√
b∆u01

}
, (44)

G(s∗ ) =

{ √
2 max

(
|q1 |

√
b1C , |q2 |

√
b2C

)
≤ s∗

}
. (45)

Therefore the criteria (42) at the restrictions (16), (32) takes on the form

s∗ → max . (46)

Designations εM = maxi ε0i , uM = maxi u0i , i = 1,m.
It was accepted that the limits Q0i don’t depend on Ω, therefore in accordance with

(6), (8), (10), (13), (32), (33), (40), (43) it may consider the dependences

ε0i( Θ, G ) = ε0i(ϑ, s∗ ), ∆u01(a, ϑ, s∗ ) = 2 εM (ϑ, s∗ ) + a,

u0i(a, ϑ, s∗ ) = ε0i + ∆u01 , V +
0i (w0 ,Θ, G ) = V +

0i (a, ϑ, s∗ ), U∗0i(a, ϑ, s∗ ). (47)

Let’s fix any parameters (a, ϑ). Let the following inequalities are true

V +
0i (a, ϑ, s∗ = 0) < U0i , i = 1, 2. (48)

The functions (47) have the certain properties of monotone change in a and in s∗ ,
which follow from (36), (43)–(45). According to these properties, the conditions (16), (32),
(48) and the relations U∗0i(a, ϑ, s∗ = 0) = 0 (36), the equation

min
i

{
U0i − V +

0i (a, ϑ, s∗ )− U∗0i(a, ϑ, s∗ )
}

= 0 (49)

has the unique root s∗ = s0
∗(a, ϑ) > 0, which is the maximal admissible value s∗ at given

(a, ϑ). Besides, the function s0
∗(a, ϑ) strongly monotonely decreases in a.

Therefore in accordance with the criteria (46) let’s fix some enough small value a = a0

as a primary constant of the constructing procedure. The characteristic time of the dynamic
process tCH must be not very large. This limits a0 from below, because tCH →∞ at
a0 → 0 (17)–(21), (32), (33).

Designation sM∗ = sM∗ (a0 ) = maxϑ s0
∗(a0 , ϑ).

If the parameter a0 is small compared with the value uM , it may say about the
quasi-optimal set G(sM∗ ) (41), (42), (45).

Thus, it needs to do the following procedure.

1. To value the supposed sizes of the function εM (47). This function doesn’t depend
on s∗ and ϑ (43), because the corresponding maximum on G from two values
ε0i (13) is achieved in the point O in the given example.

2. To choose the parameter

a = a0 = aC
√
b, aC = 10−2 (50)

(or some other acceptable enough small constant aC ), where b – the coefficient
from (39). The relation a0 /uM = a0 /(3 εM + a0 ) = 5 · 10−2 doesn’t depend on
b at aC = const (13), (40), (50).
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3. To fix any value ϑ (43).

4. To find in steps the functions (47) (except U∗0i ) and the family (44). The factors b
in (44) cancel on (13), (40), (50).

5. To find the functions U∗0i (47).

6. To check the condition (48) and to solve the equation (49). The gotten root

s0
∗ = sM∗ = sM∗ (aC = 10−2 ) = 2.13

doesn’t depend on ϑ (43) thanks to the relation b1 < b2 (39).

7. To get the quasi-optimal rectangle G by means of (41), (45). The result is

q∗1 = qM∗1 = sM∗ /
√

2 b1C = 2.13 rad, q∗2 = qM∗2 = sM∗ /
√

2 b2C = 1.50 rad.

8. To find the area (44) at s∗ = sM∗ .

9. To get the corresponding control algorithm U (35), (40), (43).

So, the reverse task was demonstrated with help of the example. Unlike Sect. 1,2, the
control parameters ∆w0i aren’t free in Sect. 3, are subjected to the choice of an possibly
less constant aC (50). It was shown that the found quasi-maximal (in some sense)
acceptable movement area Ω = Ω0 and corresponding quasi-optimal control U(q, q̇) don’t
depend on the norm ||B || (39)). This follows from the accepted parameters connection
(50) and the other procedure formulas.

The presented method of leading the dynamic system into the point O is useful, if the
matrix D(t) (17) is nondiagonal, m ≥ 2. If D(t) is diagonal, the ways [1]–[4] should be
implemented for positional control constructing.
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Abstract

The work concerns with the problem of hydraulic fracture propagating in time.
Then in the hypersingular equation, connecting the net-pressure with the fracture
opening, the integrand and limits of integration depend on the parameter (time). The
rate of the pressure change, being of practical significance, we derive a rule for eval-
uation of the time derivative of a hypersingular integral with respect to a parameter.
We present (i) the new concept of the complex variable hypersingular (CVH) integral
with the density and limits of integration depending on a parameter, (ii) the theorem,
which gives the rule for differentiation of the integral with respect to the parameter,
(iii) application of the derived rule to the particular case when the fracture propagates
under constant net-pressure.

1 Introduction

Using complex variable (CV) singular and hypersingular integral equations has proved
to be an efficient means for solving various problems of fluid and solid mechanics. In
particular, they are applied when studying hydraulic fractures (e.g. [1], [2], [3]). To the
date, the theory of the CV singular [4] and hypersingular [5] integrals refers to problems,
in which the boundary of a surface is fixed. Meanwhile, in problems of hydraulic fractures
the boundary of the fracture propagates in time. Therefore, when considering hydraulic
fractures, we need to extend the theory and to obtain a rule, which allows one to perform the
differentiation of the CV singular and hypersingular integrals with respect to a parameter
(time) when the density and/or contour depend on the parameter.

The main result of the paper is expressed by the proved theorem, which states that
under physically sound assumptions, the usual rule of differentiation of a proper integral
with respect to a parameter stays true for CVH integrals of arbitrary order. The paper
contains also needed prerequisites and illustration of the derived rule by the example of
the hydraulic fracture, propagating at early stage after initiation, when the net-pressure is
actually constant along the fracture surface.

2 Problem formulation

A mathematical formulation of the problem of hydraulic fracture includes (i) fluid, (ii)
solid, and (iii) fracture mechanics equations (see, e.g. [1], [2]). In this paper we focus on
the second group as that, which defines the dependence between the net-pressure p and the
fracture opening w. In the simplest case of a 2D problem for a straight crack, propagating
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along the x-axis, the dependence is given by the classical equation [6]:

p(x) = − E

4π(1− ν2)

b∫
a

∂w(τ)

∂τ

dτ

τ − x
, a ≤ x ≤ b, (1)

where E is the elasticity modulus, ν is the Poisson’s ratio of the rock mass, a and b are
points corresponding to the edges of the fracture; the integral on the r.h.s. is assumed as
the singular (principle value) integral. The equation (1) contains the spatial derivative of
the opening rather than the opening itself what is inconvenient in practical calculations.
Thus it is reasonable to re-write (1) in the hypersingular form:

p(α, x) = − E

4π(1− ν2)

b(α)∫
a(α)

w(α, τ)dτ

(τ − x)2
, (2)

where we have also taken into account that for a propagating fracture, its edges a, b, the
opening w and the net-pressure p are functions of the time. Thus, equation (2) defines
the change of the net-pressure in time as a hypersingular integral with the density and
limits depending on a parameter α. The latter, in the considered problem, is the time.
The rate of the pressure change ∂p(α, x)/∂α is a characteristic strongly dependent on the
fluid injection regime. Its evaluation is also of need for numerical modeling of hydraulic
fractures. Therefore, it is reasonable to obtain a rule for evaluation of the derivative of
the hypersingular integral in (2) with respect to the parameter α. To get such a rule, we
employ and extend the general theory of CV hypersingular integrals, presented in [5].

3 Theorem on the derivative with respect to parameter

Let ab be an open curve (arc) in the complex plane z = x+ iy (i =
√
−1). The equation of

the arc is τ(γ) = x(γ)+iy(γ), where γ is a real parameter such that its value γa corresponds
to start point a, while the value γb corresponds to end point b: a = x(γa) + iy(γa),
b = x(γb) + iy(γb). The arc is smooth in the sense explained in [4]. In further discussion,
the positions of the edges a and b may change depending on a real parameter α. Thus
γa = γa(α), γb = γb(α), a = a(α), b = b(α). We assume that the functions γa(α),
γb = γb(α) have Holder continuous derivatives.

Consider a hypersingular integral of order k

Ik(α, t) =

b(α)∫
a(α)

g(α, τ)

(τ − t)k
dτ (3)

with the density g(α, τ) depending on the parameter α. We assume that the density has
Holder continuous k − th derivative ∂kg(α,τ)

∂τk
with respect to τ for each α and it also has

Holder continuous derivative ∂g(α,τ)
∂α with respect to α for each τ ∈ ab. For any fixed α and

t ∈ ab, the integral (3) is defined in accordance with the general theory [5]. Consequently,
for a fixed α, the following formulae, used below, are true.

(i) Extended Newton-Leibnitz formula:∫ b(α)

a(α)

g(α, τ)

(τ − t)k
dτ = Jg(α, b)− Jg(α, a) +

iπ

k!
g

(k−1)
t (α, t), (4)
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where Jg(α, τ) is an antiderivative of the integrand g(α,τ)
(τ−t)k , that is

∂Jg(α, c)

∂c
=

g(α, c)

(c− t)k
. (5)

(ii) The third regularization formula for k ≥ 2:

d

dt

b(α)∫
a(α)

g(α, τ)

(τ − t)k−1
dτ = (k − 1)

b(α)∫
a(α)

g(α, τ)

(τ − t)k
dτ. (6)

By differentiating (5) with respect to α and changing the order of derivatives with respect
to α and c, what is justified under accepted assumptions, we obtain:

∂

∂c

(
∂Jg(α, c)

∂α

)
=

∂g(α,c)
∂α

(c− t)k
. (7)

Equation (7) means that ∂Jg(α,c)
∂α is an antiderivative of the function ∂g(α,c)/∂α

(c−t)k . Then using
this function and its antiderivative in the extended Newton-Leibnitz formula (4), we obtain:∫ b(α)

a(α)

∂g(α,τ)
∂α

(τ − t)k
dτ =

∂Jg
∂α

(α, b)− ∂Jg
∂α

(α, a) +
iπ

k!

∂g
(k−1)
t

∂α
(α, t). (8)

On the other hand, the results of differentiation of the both parts of (4) with respect to α
may be written as

∂

∂α

∫ b(α)

a(α)

g(α, τ)

(τ − t)k
dτ =

∂Jg
∂α

(α, b)− ∂Jg
∂α

(α, a) +
iπ

k!

∂g
(k−1)
t

∂α
(α, t)+

+
∂Jg
∂b

db

dα
− ∂Jg

∂a

da

dα
. (9)

Noting that the sum of the first three terms on the r.h.s. of (9) is given by the integral in
(8), equation (9) becomes:

∂

∂α

∫ b(α)

a(α)

g(α, τ)

(τ − t)k
dτ =

∫ b(α)

a(α)

∂g(α, τ)

∂α

dτ

(τ − t)k
+

g(α, b)

(b− t)k
db

dα
− g(α, a)

(a− t)k
da

dα
. (10)

Equation (10) shows that the classical rule for differentiation of a proper integral with
respect to a parameter holds for a CV hypersingular integral of an arbitrary order, as well.
Thus, we have proved the theorem.

Theorem 1 (Differentiation of a CVHI with respect to a parameter). For a smooth arc
a, b with a(α) and b(α) being Holder continuous in a parameter α and for a density g(α, τ)
having k − 1−th Holder continuous derivative with respect to τ and Holder continuous
derivative with respect to α, the derivative of a hypersingular integral Ik(α, t) with respect
to the parameter α has the form (10) similar to the common rule for proper integrals.

In the problem of hydraulic fracturing, k = 2, α has the meaning of the time, the
integral on the l.h.s. of (10) is proportional to the net-pressure, the density g(α, τ) is the
fracture opening and the derivatives db/dα and da/dα express the speeds, with which the
fracture front propagates. According to (10), the inflence of the speeds on the rate of the
pressure change strongly depends on the values g(α, a) and g(α, b) of the opening at the
points of the front a and b. Usually, near a point c of the front, the opening tends to zero
as (c− τ)γ , where γ > 0. Hence, we need to extend the theorem to the case when near an
edge point c (c = a or c = b) the density is of the form g(α, τ) = (c− τ)γgγ(α, τ).
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4 Extension to densities with derivatives having power-type
singularity at arc tips

Consider a density of the form g(α, τ) = (c− τ)γgγ(α, τ). For generality, we assume that
γ is a complex number with Reγ > 0. Note that if j − 1 < Reγ < j, where j is non-
negative integer, then the derivatives ∂jg(α, τ)/∂τ j and ∂jg(c, τ)/∂τ j−1∂c are singular at
the point τ = c, tending to infinity as 1/(c−τ)j−Reγ . As the definitions of the hypersingular
integral and the theorem of the previous section employ assumptions on the derivatives,
there is need in further agreements on the behaviour of the density. We shall assume that
k− 2 < Reγ < k− 1 and call g(α, τ) = (c− τ)γgγ(α, τ) the density of class Hk

∗ . For k = 1,
the class Hk

∗ coincides with the class H∗, defined and studied in [4].
For the density of classHk

∗ , we may represent the CVHI (3) as the sum of three integrals

b(α)∫
a(α)

g(α, τ)

(τ − t)k
dτ =

b1(α)∫
a1(α)

g(α, τ)

(τ − t)k
dτ +

a1(α)∫
a(α)

g(α, τ)

(τ − t)k
dτ +

b(α)∫
b1(α)

g(α, τ)

(τ − t)k
dτ, (11)

where a1(α) is an arbitrary point between a(α) and t, while b1(α) is an arbitrary point
between t and b(α). The first of them does not contain the edges as points of integration;
hence the general theory and the theorem are applicable to it. Two remaining integrals are
usual improper integrals because the point t does not belong to their intervals of integration;
their partial derivatives with respect to α may be evaluated in a common way because,
under the assumptions, the partial derivative ∂g(c, τ)/∂c is integrable. This implies the
extension of the theorem.

Extended theorem: for a density of class Hk
∗ , the theorem holds for points within an

open arc ab.
We shall not dwell on the limit values of the derivative ∂Ik/∂α, when t→ c (c = a or

c = b). They require involved calculations and will be discussed in a paper in preparation.
For k ≥ 2, we have Reγ > 0. Consequently, the density is zero at the edge points:

g(α, c) = 0. Hence, in this case, the differentiation formula (10) means that it is possible
to differentiate under the integral sign:

∂

∂α

∫ b(α)

a(α)

g(α, τ)

(τ − t)k
dτ =

∫ b(α)

a(α)

∂g(α, τ)

∂α

dτ

(τ − t)k
. (12)

This result is of special significance for hydraulic fractures, because the opening is zero at
the fracture front. In view of the regularization formula (6), used in the form similar to
(11), equation (12) may be written as

∂

∂α

∫ b(α)

a(α)

g(α, τ)

(τ − t)k
dτ =

1

k − 1

∂

∂t

∫ b(α)

a(α)

∂g(α, τ)

∂α

dτ

(τ − t)k−1
. (13)

In the next section, we shall check this formula by separate evaluation its left and right
hand side for a particular case of the hydraulic fracture propagation.

5 Example

At an early stage of the hydraulic fracturing, the fracture propagates in the toughness
dominated regime, when the influence of viscosity is negligible and the net-pressure is
actually constant along the fracture: p = p(α),∂p/∂x = 0 (recall that in the considered
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problem, parameter α is the time, x is the spatial coordinate). Then for plain-strain
conditions, the opening w in (1) is given by the well-known formula (e.g. [6]):

w(α, τ) =
4(1− ν2)

E
p(α)

√
[τ − a(α)][b(α)− τ ],

where we have taken into account that p, a and b may change in time depending on the
injection regime and local changes of fracture toughness. The equation (2) becomes:

p(α) = − 1

π

b(α)∫
a(α)

g(α, τ)dτ

(τ − x)2
, (14)

with g(α, τ) = p(α)
√

[τ − a(α)][b(α)− τ ]. For the derivative ∂p/∂α = dp/dα, it yields

dp

dα
= − 1

π

∂

∂α

b(α)∫
a(α)

g(α, τ)dτ

(τ − x)2
. (15)

We want to evaluate the r.h.s. of (15) by employing the derived formula (13) and to
compare the result with the l.h.s. of (15). To this end, the next two identities, easily
following from the general theory [4], [6] for x ∈ ab, are used:

b∫
a

√
(τ − a)(b− τ)dτ

(τ − x)2
= −π,

b∫
a

dτ√
(τ − a)(b− τ)(τ − x)

= 0. (16)

The first of them, actually gives (14) for the considered g(α, τ).
With g(α, τ) = p(α)

√
[τ − a(α)][b(α)− τ ], t = x and k = 2, the differentiation rule

(13) yields:

∂

∂α

∫ b(α)

a(α)

p(α)
√

[τ − a(α)][b(α)− τ ]

(τ − x)2
dτ =

=
dp(α)

dα

∫ b(α)

a(α)

√
[τ − a(α)][b(α)− τ ]dτ

(τ − x)2
+ p(α)

1

2

∂

∂x

b∫
a

(τ − a)db/dα− (b− τ)da/dα√
(τ − a)(b− τ)(τ − x)

dτ.

By using (16) and taking into account that a and b depend only on the time α, we have

∂

∂α

∫ b(α)

a(α)

p(α)
√

[τ − a(α)][b(α)− τ ]

(τ − x)2
dτ =

= −πdp(α)

dα
+ p(α)

1

2

(
db

dα
+
da

dα

)
∂

∂x

b∫
a

τ√
(τ − a)(b− τ)(τ − x)

dτ.

Writing τ = (τ − x) + x, the last integral is represented by the sum

b∫
a

τ√
(τ − a)(b− τ)(τ − x)

dτ =

b∫
a

dτ√
(τ − a)(b− τ)

+ x

b∫
a

dτ√
(τ − a)(b− τ)(τ − x)

.
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The first term of the sum does not depend on x, while the second term is zero by the
second of (16). Finally, we obtain:

∂

∂α

∫ b(α)

a(α)

p(α)
√

[τ − a(α)][b(α)− τ ]

(τ − x)2
dτ = −πdp(α)

dα
,

what actually coincides with (15).
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Abstract

This paper deals with fundamental problems related to welded steel structures in
cranes, and it is based on many years’ experience of crane inspections and condition
monitoring in Sweden. In general, failures in steel structures and machines occur due
to faulty designs, poor material quality, bad manufacturing processes, handling faults,
and a defective maintenance. Only the problems related to Faulty machine design are
treated here. Welded joints, in particular, are very sensitive to fatigue loads, corrosion,
low welding quality or a combination of these situations. Old cranes were designed
according to standards with a limited fatigue analysis, which resulted in weak welded
joints. Fortunately, newer standards include more detailed and precise calculation
processes that usually lead to better results. Nowadays there exists a wide series of
new high tensile weldable steels; however, although they show very high static yields
and ultimate strength, the fatigue strength (endurance limit) is very far from 100%
in relation with the static strength. One of the biggest difficulties for designers is
placing the welds on suitable places, i.e. on places with low stress. These stresses,
however, can be relieved by a heat treatment directly applied after welding, but this
technique is expensive and difficult to accomplish. Multiple examples of crane failures
and failure analysis are presented along the text. Some of them were discovered during
the inspections and therefore fatalities were avoided; other failures, unfortunately, led
to catastrophic crashes and death accidents.

1 Introduction

Cranes exist in an enormous variety of forms – each tailored to a specific use. Sometimes
sizes range from the smallest jib cranes, used inside workshops, to the tallest tower cranes,
used for constructing high buildings. We can even find large floating cranes generally used
to build oil rigs and salvage sunken ships. Hence cranes are used in many different environ-
ments and are subjected to different loads. So, for example, a crane used in an industrial
workshop where the ambient temperature is constant around the year will necessarily suffer
less and last longer than a harbor crane working in a corrosive environment with changing
temperatures, and, above the lifting loads, is subjected to wind, snow, and ice loads.

Since cranes are normally used for lifting loads, they must be light-weighted in order
to maximize their load capacity at the same time that a reduction of weight results in
material savings and a reduction of cost. For this purpose, carrying beams consist of steel
bars and plates where welded joints make an important contribution to the strength and
life length of cranes. The crane frames and other mechanical parts related to them are
subjected to variable loads and must be dimensioned for fatigue failures. The welding
technology of today provides an excellent joining capacity for the flexible fabrication of
different machine parts and structures; however, welded joints may represent the weakest
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part of structures when improperly done. Modern advances in welding techniques and
equipment have provided engineers with a range of attractive choices for fastening, as an
alternative to bolts or rivets for fabricating parts. Furthermore, machine elements can
often be manufactured at lower cost by welding than by casting or forging [1]. Figure 1
shows three examples of machine parts fabricated by welding. The majority of industrial
welding is done by fusion, with the joining pieces melting at their common surfaces. The
quality and strength of welded joints depends on the design, dimensioning, and manu-
facturing processes. Weak designs, wrong dimensioning, residual stresses in the joints or
metallurgical changes in the base material will decrease the life of crane structures and
may eventually lead to catastrophic failures involving severe injuries and even death. The
right design of welded joints requires taking multiple aspects into consideration, such as
the manner of loading the joints, the materials involved in the weld, and the geometry of
each joint itself [2].

An incorrect material selection may result in brittle material as well as welding prob-
lems such as cracking. Welding procedures have to be correctly formulated and approved
to avoid imperfections. Supervision needs to be implemented to insure that the quality
specified in current standards will be achieved. To assure fabrication with effective weld-
ing, workshop managers need to be aware of the source of potential troubles and introduce
appropriate quality procedures[3]. Since heat is used in welding operations, certain met-
allurgical changes take place in the parents (base) metals around the vicinity of the weld.
When the reliability of the components is high, a testing program should be established to
learn what changes or additions to the operations are necessary to ensure the best qual-
ity [4]. Breakdowns of welded structures are usually the consequence of fatigue loading.
Fatigue fractures are commonly initiated in the region close to the weld toe but can also
begin in the weld root and from discontinuities inside the weld [5]. In general, failures
in steel structures and machines occur due to faulty designs, poor material quality, bad
manufacturing processes, handling faults, and a defective maintenance. These different
reasons for failure in cranes and lifting machines are discussed below, and the conclusions
drawn from this analysis are based on a long experience over many decades of inspection
of such devices and machines.

Figure 1: Examples of machine parts fabricated by welding

2 Problems due to Faulty Designs and Poor Material Quality
In mechanical engineering, the design stage is probably the most important stage for the
life length of machine components. Piece dimensioning and design, material selection,
manufacturing methods, quality control, safety, ergonomics, etc. will be decided in this
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stage. Also, the budget assigned to the project and its economical limitations are typically
fixed under or before this stage, and must be taken into consideration. Gurney [6] stated
that in the design of a component or structure the designer has to satisfy three conditions:

1. It must be able to perform its specified functions as efficiently as possible.
2. It must be capable of being fabricated economically.
3. It must be capable of providing an adequate service life.
As a direct result of the first and second of these conditions the modern trends in

engineering design are to reduce factors of safety to a bare minimum, in order to reduce
weights and costs, and to increase the speed of operations of machines and production
processes, in order to make the most efficient use of the invested capital. Unfortunately
both these trends tend to work against the designer in his efforts to obtain an adequate
service life, particularly in cases where fatigue failure is likely to occur. Perhaps it is
therefore not so surprising that it has been estimated that 90% of the failures which occur
in engineering components can be attributed to fatigue [6]. A great number of evidences
from machine inspections show that Gurney’s statement is very true.

The strength of welded joints depends on many factors that must be properly controlled
in order to obtain high quality welds. The heat of welding may cause metallurgical changes
in the parent (base) metal in the vicinity of the weld. Residual stresses may be introduced
through thermal gradients, which cause differential expansion and contraction patterns,
the influence of clamping forces, and the changes in yield strength with temperature.
Residual stress and wrapping problems are most pronounced when welding pieces of varying
thickness and irregular shape, although these problems can be avoided by heating the parts
to a uniform temperature before welding, following detailed “good-welding practice” for the
application involved, giving the weldment a low-temperature stress-relieving anneal after
welding, and shot-peening the weld area after cooling [2]. Some advantages of welded
joints over threaded fasteners are that they are inexpensive and there is no danger of the
joint loosening. Some disadvantages of welded joints over threaded fasteners are that they
produce residual stresses; they distort the shape of the piece, metallurgical changes occur,
and disassembly is usually a hard problem [7]. This statement fits very well with the
experiences learned from inspecting cranes.

The essential points made by the authors in this article are the following:
1. Residual stress distortions can give tolerance failures in general purpose steel struc-

tures. Gearboxes with bad tolerances, due to welding problems like wrapping, when con-
nected to motors and rope drums can result in dangerous failures and crashes. Figure 2
shows a gearbox case where the gear flank is loaded only on one side due to an incorrect
shaft parallelism, what eventually resulted in pitting defects.

2. Residual stresses can also lead to stress relaxation and deformations, directly after
welding or later in service, due to external loads. In general, steel structure tolerances are
regulated in standards such as European Standards EN 1090-2 [8].

3. The residual stresses should be added to the load stresses in the fatigue-based
calculation of total life time. This is a very common problem, especially for very high
tensile steels, and its importance must be highlighted.

4. In the case of welded joints, the term “High quality” should be changed to “Right
quality” in order to take economical considerations into account.

It is very important to pay extra attention to the dimensioning procedure of welded
structures subjected to variable loads. Most of the cranes included in this research are
quite old, and they were designed according to old standards. The handbook “Design with
Weldox and Hardox” [9] which is based on the 1970’s Swedish Standard for steel struc-
tures StBK-N2 greatly differs from current fatigue-based procedures for the estimations of
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Figure 2: Pitting failure on one side of the gear due to the lack of parallelism of the shaft
supports of a gearbox housing

allowable stresses, traditionally based on static models. The static strength for a Weldox
960, for example, is 960 MPa, and if we use the recommended safety factor of 1.5 the final
allowable static yield strength is reduced to 640 MPa. On the other hand, the fatigue
strength (endurance limit) for fully reversed loading using a probability of failure QB <
10−5 (according to StBK-N2) with a fatigue stress concentration factor Kx = 5 (fillet welds
in weld class WB), for infinite life (N = 2 x 106), the resulting allowable fatigue strength is
less than 39 MPa. As this comparison proves, the fatigue strength of 39 MPa is only 6 % of
the initial static strength of 640 MPa. For 103 cycles, which can be considered as a static
load, the allowable fatigue strength is reduced to 491 MPa. It is worth mentioning that
the standard StBK-N2 has been replaced by Euro Code 3 [10], which should give about
the same result.

The following set of photos illustrates a variety of failure modes found in welded joints
taken during the inspection of cranes. These problems were found to be more common
than expected.

Figure 3 represents two images of a mobile crane boom. These photos clearly show the
cracks initiated in fillet welds (between the boom and a secondary plate), and how they
evolved through the weld material.

Figure 3: Cracks in fillet welds

Figure 4a shows the in-site inspection of a mobile crane boom. Figure 4b provides a
close up of the crane boom welded with tubes used for protecting electrical cables. These
tubes are fixed to the boom with a small weld. This arrangement produced an extra stress
concentration in the weld, which initiated a crack on the boom at the area with the highest
tension stress.
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Figure 4: Inspection of a mobile crane (a) and crack in the weld joint (b)

Figure 5 provides typical examples of welded parts on booms. Figures 5a and 5c show
a device for guiding steel ropes on the boom, which tends to be on the upper side of the
boom. As seen in the schematic, the device is welded on the part of the boom with the
highest tension stresses. It would be more effective to place the joints close to the neutral
plane of the beam. Figure 5b depicts two L-shaped profiles introduced for reducing the
clearance between telescoping booms at their most extended position. In this case, the
welds are also placed on a high-stress area.

Figure 5: Examples of welded parts on booms

The summation of the different types of stress actuating on a beam must be calculated
for the sections of the highest stress in order to calculate the total maximum stress. Figure
6 shows a diagram of how this addition can be carried out.

Figure 7a evidences how residual stresses can deform the upper flange of the head beam
of an overhead traveling crane. Figure 7b is a close up of the crack of figure 7a, where it is
shown that the crack goes through the whole flange used to support the crane rail. Similar
problems have been reported in the crane runways, which imply that cracks may appear
in both fillet welds and flanges. The round profile portrayed in the image is a backing
support for the weld.

3 Conclusions

As shown along the text, the life of cranes is affected by many factors, from the dimen-
sioning and design stage to crane handling and inspection. It is crucial to investigate type
and magnitude of the loads affecting each part of the weld before conducting fatigue cal-
culations. The quality of the material must match the minimum requirements set for a
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Figure 6: Calculation of stresses in beams

Figure 7: Deformations and cracks provoked by residual stresses

reliable design. Although the negative effect of corrosion has not been covered in this work,
it is important to keep in mind its consequences, as corrosion turns the ductile material
into brittle, and destroying the material from the surface. As a matter of fact, welds are
particularly sensitive to corrosion, especially when combined with fatigue loading; there-
fore, crane structures must be coated with paint or other protecting chemicals. Sometimes,
a disadvantageous design induces water and dirt to come inside unprotected beams and
structures. This detrimental situation facilitates corrosion in hidden spots not easy to de-
tect with visual inspection. Failures in crane structures may lead to extremely dangerous
situations for people in or around the cranes, and it normally leads to massive economical
losses. Therefore, at the challenging dichotomy faced by the designer between cost and
quality, the quality, the safety, and the future failure consequences of the crane must be
given clear priority.
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Abstract

In this paper we have proved that the assertion on the existence of residual motion
of the Earth rotation axis within the Earth is a result of erroneous interpretation of
the zenith distance (angle) measurements with instruments using as a reference the
plumb-in line or artificial horizon. The functional relationship between the plumb-in
line deviation and Moon’s perigee position has been established for an arbitrary point
on the rotating Earth surface. This relationship manifests itself as variations in the
gravitational acceleration vector direction and magnitude at the observation point or,
in other words, as periodical deviations of the plumb-in line (point normal). The
results of our work show that it is necessary to revise some postulates of metrology,
gravimetry, astronomy, geophysics and satellite navigation.

1 Sources of the problem

Based on observations of “variations of latitudes” from 1726 to 1890, the then astronomic
community put forward a hypothesis that the latitude variation results from the rotating
Earth wobbling on its rotation axis. In 1892, Chandler1 combined the latitude variation
observations collected by 17 observatories during the period from 1837 to 1891 in a united
time series, processed them, and revealed that latitude variations obey a characteristic
periodicity of 410–440 days [1]. The Chandler’s discovery and the “variation of latidude”
hypothesis did not get the necessary and sufficient experimental confirmation at that time;
however, at the turn of 19th century they allowed the scientific community to come up
with the following hypothesis: the Earth’s rotation axis executes within the Earth residual
motion with the characteristic “Chandler period”. At the end of the 20th century, leading
European and USA experts in the theory of the Earth’s polar (rotation axis) motion and
the Earth’s rotation theory had to state in the paper devoted to the Chandler’s discovery
centenary [2] the absolute absence of results of this phenomenon investigation.

2 Problem definition

The fact that the period close to the Chandler’s period manifests2 itself in variations in the
gravitational acceleration on the Earth’s surface leads to an assumption that Chandler’s
wobble in astrometry results from instability of the gravitational field at the point where the
zenith distance is measured3. Let us consider the problem of gravitational field instability
caused by the Moon as a problem of the Earth’s and Moon’s gravitational forces effect on

1Seth Carlo Chandler, Jr. (1846–1913)
2This paper does not consider results of spectral analysis of time series reflecting variations in the ocean

level, atmospheric pressure and Earth gravitational acceleration.
3The angle between the direction to the celestial body and zenith.
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a point mass located at point A on the Earth surface (Fig. 1). We will use an orthogonal
frame of reference Axyz with the origin at point A. Assume that it is oriented so that the
Axy plane is tangent to the Earth surface at point A, while the Az axis is directed away
from the Earth.

n

A

g(t)

plane tangent to point A

field line

surface of the Earth

l(t)

x y

z

Figure 1: Angle of the gravitational field line departure at point A

Define the force acting on the point mass at point A as a function of gradient of the
Earth–Moon system gravitational field potential U(t):

f(t) = −∇U(t) . (1)

Force f(t) that is tangent to the line of force is just that defines the plumb-in line. Variations
in the force f(t) direction in the Axyz frame of reference will be followed up through vector
l(t) by calculating angle γ(t) between the fixed unit vector n (Az axis ort) and vector l(t)
by using the cosine law:

γ(t) = acos
(
n · l(t)

)
, where l(t) = −

f(t)

|f(t)|
, |l(t)| = 1 . (2)

We do not take into account other evidently existing physical phenomena since they are
not critical in the problem defined here. I.e., we make the problem maximally simple in
order to reveal the process essence without diverting our attention to secondary factors
that, however, can play a significant role under other conditions.

3 Observer

Let us consider two fixed orthogonal frames of reference Oxeyeze and Ox′y′z′ with the
common origin at point O (Fig. 2). Plane Oxeye belongs to the ecliptic, while plane Ox′y′

coincides with the Earth equator plane. Assume that the Earth is an ellipsoid of revolution.
Oz′ is the axis of the Earth self-rotation and maximum inertia moment. Oz′ forms angle
ε with the Oze axis. Axes Ox′ and Oxe are of the same direction and are parallel to the
vernal equinox line à.

The point A coordinates on the Earth surface are given by the latitude and longitude.
Latitude ϕA is the angle between plane Ox′y′ (equator) and direction to point A. Longi-
tude λA is defined as an angle in the Ox′y′ plane between the zero meridian and point A
meridian. The zero meridian and point A rotate in block about axis Oz′. Designate the
distance between the Earth mass center O and point A as RA. This distance is a function
of latitude and parameters of the Earth’s ellipsoid of revolution:

RA = RA(ϕA, eterra, aterra) . (3)
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Figure 2: Observer A on the Earth surface.

In the fixed frame of reference Oxeyeze (Fig. 3), point A can be defined via the position
vector:

rA(t) = RA ·Px

(
ε
)
·Pz

(
λ(t)

)
·

cosϕA cosλA
cosϕA sinλA

sinϕA

 , |rA(t)| = RA , (4)

where Px, Pz are the Earth rotation matrices4; Ae is the point A projection to the ecliptic
plane Oxeye; λ(t) is the angle in the ecliptic plane Oxeye between axis Oxe and line
passing through points O and Ae. Let us define angle λ(t) via the Sun longitude λsun for
the appropriate epoch [3] and time moment selected for detecting the physical phenomenon
under study, e.g., when the event referred to as ”local midnight” takes place at point A:

λ(t) = λsun(t)− π . (5)

Notice that the conventional solar day (the time interval between the Sun transits) is
in fact formed by summing two angular velocities: that of the Earth self rotation and that
of additional rotation caused by the Earth annual revolution about the Sun:

ω(t) = ωterra(t) + ωyear(t) , (6)

here ωterra(t) is the Earth self rotation angular velocity (the Earth makes a turn around
its axis with respect to stars during the time equal to ≈ 23h56m04s); ωyear(t) is the

4Let position vector r define the point M location in the Oxyz frame of reference; then, if we consider
point M in a new frame of reference Ox′y′z′ obtained by a series of counterclockwise turns by appropriate
angles, its coordinates will be different. Matrices of rotation by angle ξ about axes Ox, Oy, Oz are given
below. The counterclockwise rotation is assumed to be positive.

r′ = Px(ξ)r , Px(ξ) =

 1 0 0
0 cos(ξ) − sin(ξ)
0 sin(ξ) cos(ξ)

 , r = P−1
x (ξ)r′

r′ = Py(ξ)r , Py(ξ) =

 cos(ξ) 0 − sin(ξ)
0 1 0

sin(ξ) 0 cos(ξ)

 , r = P−1
y (ξ)r′

r′ = Pz(ξ)r , Pz(ξ) =

 cos(ξ) sin(ξ) 0
− sin(ξ) cos(ξ) 0

0 0 1

 , r = P−1
z (ξ)r′
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Figure 3: ”Local midnight” at point A.

additional angular rotation velocity ensuring the usual apparent alternation of sunsets and
dawns, namely, the solar day. Since the measurement is performed only once a day, we
can neglect the ”fast” component of the Earth daily rotation ωterra; after that, the Earth
rotation speed will be represented only by the additional angular velocity ωyear(t). This
additional angular velocity is the time derivative of the Sun longitude λsun(t), thus (6)
gets the following form:

ω(t) = ωyear(t) = dλsun(t)
dt , where

2π

ωyear(t)
≈365 day (7)

This means that we assume the Earth to move round the Sun in the space facing it always
with the same side. Accordingly, the Observer staying at any point chosen on the Earth
surface will always retain his position with respect to the direction to the Sun.

4 Moon

The Moon’s orbit is a complex open spatial curve. The Moon motion is considered with
respect to fixed point O coinciding with the Earth mass center (Fig. 4). The Moon location
in the Oxeyeze frame of reference is set by a combination of 6 cyclically variable orbit
components [4].

rlune(t) = rlune
(
i(t), ψ(t), ϕ(t), e(t), a(t), t∗(t)

)
, (8)

where i(t) is the orbit tilt angle defined as the angle of intersection between the ecliptic
plane Oxeye and the Moon’s trajectory plane; ψ(t) is the node line longitude (the inter-
plane intersection line); the nodes are counted from the Oxe axis that is parallel to the
vernal equinox line à at any moment of the Earth motion (point O) about the Sun; ϕ(t)
is the angle between the nodal line and line of apsides; the Moon’s trajectory ellipticity
is defined by eccentricity e(t) and semimajor axis a(t); t∗ is the time moment when the
Moon passes through the perigee point.

For instance, relations for ψ(t) and ϕ(t) taken from paper [4] for the 1900 epoch look
like:

ψ(t) = 259◦ 10′ 59′′, 77− 1934◦ 08′ 31′′, 23 ·τ + 07′′, 48 ·τ2 + 0′′, 0080 ·τ3 ,
ϕ(t) = 75◦ 08′ 46′′, 61 + 6003◦ 10′ 33′′, 75 ·τ − 44′′, 65 ·τ2 − 0′′, 0530 ·τ3 ,

τ(t) = (2415020− t)/36525 ,

(9)
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Figure 4: Moon’s orbit components.

where τ(t) is the time expressed in Julian centuries as a function of the Julian date t.
Derivatives of these functions give us the periods of rotation of the nodal line and line of
apsides, respectively:

Tψ =
2π

dψ/dt
≈ −18.6 year , Tϕ =

2π
dϕ/dt

≈ 6 year (10)

Therefore, according to the angular velocity sum rule, rotation period of the perigee in-
volved in these two rotations about point O in the Oxeyeze frame of reference is

Tperigee =
Tψ · Tϕ
Tψ + Tϕ

≈ 8.8 year. (11)

Moon’s perigee mass. Let us find out how the Moon’s perigee displacement affects the
direction and magnitude of gravitational acceleration at point A on the Earth’s surface.
Substitute the Moon’s gravitational effect on the Earth with the equivalent gravitational
effect of a certain body located in the Moon’s perigee. Derive this body mass from the
Moon’s gravitational effect on the fixed Earth (point O) during one cycle Tlune≈28 days.
Due to the axial symmetry and non-zero eccentricity, the resulting force of the gravitational
nature will be directed towards the perigee (Fig. 5).

perigee

apogee

line of apsides
t0

ti

The Earth

yL

xL

Ox yL L
- plane of the Moon  orbit

f
0

f
П

fi

The Moon t1

Figure 5: Force fΠ is the Moon’s gravitational impact on the Earth for the period of its
revolution about the Earth by the Keplerian orbit.

The force module |fΠ| is the integral of the Moon’s gravitational impact on the Earth
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over the time interval equal to the period of the Moon revolution about the Earth:

|fΠ| =
1

2π
GM∗terraMlune

2π∫
0

cosα

r(α)2
dα , M∗terra = Mterra +Mlune , (12)

where

r(α) =
p

1 + e cosα
, p = a(1− e2) , α =

2π

Tlune
t . (13)

Here r(α) is the Moon’s focal radius as a function of angle α counted counterclockwise
from the direction to the perigee; p is the focal parameter; e is the eccentricity; a is the
semimajor axis. Integrating (12), we obtain:

|fΠ| = GM∗terraMlune
e

p2
. (14)

Now, knowing force module |fΠ|, we can write a relation for a certain mass ensuring the
necessary gravitational effect. Hereinafter we will refer to this mass as the Moon’s perigee
mass. Let us derive the desired mass from the two-body gravitational interaction law:

mΠ =
|fΠ|

GM∗terra
Π2
lune , Πlune =

p

1 + e
, (15)

here Πlune is the distance between the ellipse focus (point O) and the perigee. Substituting
(14) into (15), we obtain the expression for the perigee mass:

mΠ(e) = Mlune
e

(1 + e)2
, mΠ(e)

∣∣∣∣
e=0

= 0 . (16)

Thus, the Moon’s perigee mass is defined as a function of the Moon’s Keplerian orbit
eccentricity. As mentioned above, the Moon’s orbit components are of the cyclic character;
therefore, we can assume in the first approximation that eccentricity e(t) is a harmonic
function with the period equal to the time of the perigee revolution about the Earth
center [4]:

e(t) = e+
1

2

(
emax − emin

)
sin

(
2π

Tperigee
t

)
, e = const . (17)

Introduction of dummy perigee mass mΠ(e) allowed us to exclude the ”fast” Moon motion
component and consider only the Moon’s perigee motion. The perigee mass position in
the fixed frame of reference Oxeyeze is determined by position vector:

rΠ(t) =

a(1−e)︷ ︸︸ ︷
Πlune

(
e, a
)
·Pz

(
ψ(t)

)
·Px

(
i(t)
)
·Pz

(
ϕ(t)

)
·e1 (18)

5 Plumb-in line and Moon’s perigee

Let us reveal how angle γ(t) depends on the mutual arrangement of the Moon’s perigee Π
and Observer A on the rotating Earth surface (Fig. 6).

In the Oxeyeze frame of reference, point A (Observer) and point Π (Moon’s perigee
mass) rotate along their trajectories about point O (the Earth’s mass center) in the same
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direction (counterclockwise) but with different angular velocities. Point mass mA = 1 at
point A (Fig. 7) is subject to two gravitational forces (from the Earth and Moon’s perigee
mass).

fterra(t) = G mAMterra
rA
|rA|3

, fΠ(t) = G mAmΠ
rΠ − rA
|rΠ − rA|3

, (19)

here rΠ(t), rA(t) are the Moon’s perigee (18) and observer’s (4) position vectors, respec-
tively. Designate as f(t) the sum of forces acting at point A:

f(t) = fterra(t) + fΠ(t) , (20)

in this case, force f(t) in the mobile frame of reference Axyz is

fA(t) = PA(t)·f(t) , |fA(t)| = |f(t)| , (21)

where

PA(t) = Px (−ε)·Pz

(
λ(t)

)
·Py

(
π

2
− ϕA

)
. (22)
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Computations showed that the vector l(t) apex in the Axyz frame of reference (Fig. 6)
moves cyclically counterclockwise about normal n with the period of Tcycle≈ 411.8 days.
Figs. 8 and 9 illustrate this process graphically.

Period Tcycle≈411.8 days in the Axyz rotating frame of reference is a result of summing
two rotations: the Observer’s (point A) rotation about axis Oz′ with a period equal to that
of the Earth revolution about the Sun and Moon’s perigee rotation about the Earth’s center.
The long-period (≈ 8.8 year) component of the observed process (Fig. 8) is determined
only by cyclic variations in the Moon’s elliptic trajectory eccentricity and semimajor axis.
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Figure 9: A fragment of the vector l(t) apex trajectory projection on plane Axy and its
time scan.

Some difference in the amplitudes is inevitable since the data acquisition and processing
techniques used in astrometry are based on the following postulate: variations in the point
latitude are caused by motion of the Earth instant rotation axis (Chandler wobble) in the
absolute absence of external forces. Actually, each latitude measurement with classical
astrometric instruments occurs in the gravitational field that varies continuously due to
the Earth’s self-rotation and motion relatively to the Sun, Moon and planets. Naturally,
continuous and non-random variations in the gravitational pattern at the observation point
on the Earth change the spatial attitude of the plumb-in line (or artificial horizon) [5, 6].
This means that it is impermissible to combine in one time series observations obtained
with different instruments under different gravitational conditions.

The physical process suggested here is the only one that explains the field line spatial
variations with the period of about ≈ 411.8 day. Numerical modelling of the process fit
well the results of long-term observations of variations in the Earth gravitational field ∆g
performed at the Bad Homburg and Boulder stations (Fig. 10).

The Johannesburg and Brussels observations of the ”variation of latitude” ∆ϕ(t)
(Fig. 11) also confirm our version of the Chandler wobble nature and the actual absence
of the Chandler’s residual motion of the Earth instant rotation axis within the Earth. It
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should be emphasized that the observed ”variation of latitudes” (more exactly, the varia-
tion in the field line deviation angle) and the gravitational acceleration variation have the
same period and are strictly antiphased.
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Figure 11: Comparison of variations in the gravitational acceleration and ”variation of
latitudes” at stations Johannesburg [9] and Brussels [10].

The existence of the Chandler wobble (with the approximately ≈411-day period) has
been confirmed by analyzing cycle duration (Fig. 12) of the so called residual (or ”Chan-
dler”) motion of the Earth rotation axis based on the IERS data5.
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Among the entire totality of periods revealed, only the ≈ 411-day period reflects the
really existing process, i.e., is of the natural origin. Other periods, including the statistical

5http://hpiers.obspm.fr/eop-pc/
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pseudo-period of ≈ 432 days, do not reflect actual phenomena but result from drawbacks
of the experimental technique used in observation.

Fig. 13 illustrates the Moon influence on the variation in the spatial attitude of the
Earth–Moon system gravitational field line and, hence, in deviation of tangent vector l(t).
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Figure 13: Plumb-in line l(t) deviation at different Earth surface points as a function of
an external gravitating mass.

When the external gravitating mass approaches, an imaginary effect of the latitude
increase takes place at points A and D, while latitudes at points C and B seem to decrease.
Therefore, when the star zenith distances are observed simultaneously at one and the same
meridian but on different sides of the equatorial zone, the plumb-in line l(t) deviations
shall be in-phase.

Applying the resonance method of analyzing irregular time series [12] to perennial
observations of the Earth gravitational field variations obtained in the scope of the OHPDMC6,
we confirmed the existence of the gravitational field perturbations with the characteristic
period of about ≈ 411 days. Let us refer to this period according to its historical proper
name Chandler’s; here we should add that Chandler wobble can be detected in every
gravitation-based process observed on the Earth surface. Magnitudes of such "Chandler
wobbles” will always depend on the actual parameters of the earth Observer motion with
respect to the Moon’s perigee.

6 Conclusions

• In this paper we state that such a theoretically revealed phenomenon as Chandler
wobble 7 (residual motion of the Earth rotation axis within the Earth) does not
exist in reality. The observed variations in the star zenith distance measurements
are caused by variations in the plumb-in line that is used as a measuring instrument
reference. The plumb-in line (gravitational acceleration vector) deflections occur due
to the gravitating bodies surrounding the Earth, e.g., the Moon.

• Wrong interpretation of the zenith distance variations shown by astrometric instru-
ments required for corrections for the pole displacement and for irregularity of the
Earth rotation that are not only useless but, moreover, deform the verity. These

6http://ohp-ju.eri.u-tokyo.ac.jp/
7Let us refer to the 411-day period according to its historical proper name Chandler’s; note that Chan-

dler’s period can be detected in gravitation-based processes observed on the Earth surface. Magnitudes
of such period of Chandler will always depend on actual parameters of the earth Observer–Moon mutual
motion.
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corrections distort the Universal Time system, navigation systems (GPS, GLONASS,
etc.), results of geodesic, metrological and physical measurements, etc.
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Acoustic estimation of substance capacity into cylindrical
container
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Abstract

The acoustic measurement of liquid and solid substance capacity in cylindrical
motor transport tanks are considered. The knock acoustic source of sound pressure
is installed on the outside cylindrical container. The relative sound pressure levels
of “free” air volumes into tank are corresponded of different substance capacity into
cylindrical container and controlled by a microphone. The knock spectrums and sound
level meter signals considerably differed from each other in low frequency band are
analyzed.

1 Introduction

The volume of black oil transportation on highways of the Russian Federation has consid-
erably increased therefore a process of loading and the unloading of motor tanks should be
accelerated for exception of stoppage. The automatic remote control of oil product quantity
in a motor transport during loading and unloading is very important especially at night. It
will be noted that the hardware has been developed with relative acoustic measurements of
oil products mass with consideration for “free” air volume by sound pressure measurement
with compensation for influence of variable external and internal technological conditions
[1]. The knock acoustic source is installed on the outside cylindrical container. The relative
level of sound pressure of oil volumes is registered by the microphone fixed inside of air
phase of tank and the sound level meter installed with computer in the driver’s cab (Fig.1).
The microphone Mk, the sound level meter Sm, the computer PC, knock acoustic source
S and cylindrical motor tank Mt are shown on Fig.1.

Figure 1: The measuring installation of the motor tank: Mk is the microphone, S is the
knock acoustic source and PC is the computer

The eigen frequencies into cylindrical tank air space are excited by oscillation of the
metallic tank border when the knock acoustic source S at regular intervals is switched on.
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The complication of acoustic field measuring finds out so encompass factor for analysis
as acoustic oscillation in a fluid, acoustic oscillation of air, oscillation of a cylindrical
metallic border witch is installed on a foundation with damping elements of construction
and having an open sight hole .

Uniquely to solve the problem in view of these factors is very hard. There is a problem to
select of a physical analog to describe those regularities quantitatively. The mane purpose
of the work is to describe on the relative spectrum method using data witch was obtained
experimentally.

2 Measuring spectrum of levels of sound pressures

2.1 The sound source is located in the outside cylindrical container

The level of pressure Po is measured in the frequency band 63. . . 10000 Hz in the empty
tank and the level of pressure Рi is measured in the frequency band 63. . . 10000 Hz in the
partially filled tank (Fig.1). The attitude of pressure levels Po/Рi are disposed on the
ordinate axis and the substance capacities Vm are shown on the abscissa axis (Fig.2).

Figure 2: The diagram shows the dependence of the comparative pressure Po/Рi from the
substance capacity Vm for the motor tank

2.2 The harmonic sound source is located into the cylindrical container

There is second method of acoustic measurement liquid ore solid substance capacity in the
cylindrical motor transport tank when the tank is transported to the place of discharge
by a car and installed stationary on surface for same time (Fig.3). It is appropriate to
use the harmonic sound source and locates it into the cylindrical container. The graph
of attitude pressure levels Po/Рi and capacity of black oil Vm for case which shown on
Fig.3 is similar to Fig.2. Thus there are some channels of scattering the sound energy: the
damping properties of the black oil surface, the exit of the energy through the open tank
hole, the energy of scattering through the metallic border.
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Figure 3: The measuring installation of the cylindrical container: Sm is the sound level
meter, Mk is the microphone, S is the loud-speaker, G is the harmonic oscillator and PC
is the computer

2.3 Approximate model of the harmonic sound source

The solution of the problem with a point source located in the point (r, φ, z) can be
obtained in case of boundary conditions

Un|G =
∂P

∂n

∣∣∣∣
G

· 1

ρω2
= 0 (1)

If the located point source is switched on at time t=0 than the solution of the time-
dependent problem has view:(

∆− 1

c2

∂2

∂t2

)
P̃ (r, ϕ, z, t) = F0δ(X̄c − X̄ict)f(t) , (2)

where X̄i, X̄care coordinates of the source signal and microphone, ∆ is Laplas’ operator,
Fo is a coefficient, f(t) is the source function, c is sound speed.

The equation (2) can be solved by Laplas’ method and the acoustic pressure into the
cylindrical container is represented in the form

Pm̄(t) =
F0δ(X̄c − X̄ist.)

2πj

A+j∞∫
A−j∞

eptF̂ (p)dp

p2 + ω2
n̄

(3)

where ω are eigen frequencies, δ is Dirac’ function.

3 Conclusions

The constructed analytical solution of the problem is correct for the whole interval of fre-
quencies. But the most interesting experimental results in the area of medium frequencies
acoustical waves were fixed.
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waveguide stimulated by the point source
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Abstract

Through the example of elastic band it is shown that inverse wave can essentially
change the character of the energy flux behavior. The “laminar” energy flux at the
frequencies below the frequencies of existence of inverse wave is changed to the “tur-
bulent” one at the frequencies this wave exists.

1 Introduction

It is well known that in thin layers and plates there are special type of waves that have
a phase and group velocity directed into opposite sides. In the isotropic plates that are
described in this article only longitudinal inverse waves can exist.

Energy is one of the important physical values that describe processes of propagation of
waves. The group velocity corresponds to the energy transfer. Some unusual phenomenon
in the energy flux behavior could be observed if inverse wave exists. Article [1] is one of the
works where the energy fluxes are considered in the cases of medium with inverse waves.
This article is devoted to general energy flux of the transversal waves in a piezocrystal.

It seems that the first investigation of local energy fluxes (the energy flux dependence on
the cross-section) in normal wave in thin elastic plates was carried out in [2]. In this work
the phenomenon of the energy flux opposite direction of the normal waves was found. It
was noted that the same phenomenon usually takes place for inverse waves, but sometimes
it can take place for the usual wave, too. In article [3] it was shown that in cases when
normal waves propagate in the composed construction the opposite transfer of the general
energy fluxes can take place in the different elements of construction.

The aim of the article is to study the energy flux structure. These fluxes are induced
by the point force source. The consideration has been carried out on a simple elastic model
where inverse waves can exist. This is an infinite plate of constant width (elastic band).

This work continues the investigation of the local energy flux in a thin elastic plate
which was started in article [2].

2 The problem statement

Let us consider an elastic band (a plate with fixed width 2a and small thickness h). The
edges of the band are supposed to be free. The co-ordinate axes are directed by the
following way: axis y – along the band (−∞ < y < ∞), axis x – orthogonally to axis y
(−a < x < a).

The point force source is applied to the origin. It is polarized along the axis x. There
are longitudinal and shear vibrations in the band which are stimulated by the point force
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source. All vibration processes are supposed to be harmonic. We will omit the factor
e−iωt, which determines the dependence of time. The vibration equations and boundary
conditions of the problem have the following form

1

1− σ2

∂2u

∂x2
+

1

2(1 + σ)

∂2u

∂y2
+

1

1− σ
∂2v

∂x∂y
+
ρω2

E
u =

F

E
δ(x)δ(y)

1

1− σ2

∂2v

∂y2
+

1

2(1 + σ)

∂2v

∂x2
+

1

1− σ
∂2u

∂x∂y
+
ρω2

E
v = 0

(1)

(
∂u

∂x
+ σ

∂v

∂y

)∣∣∣∣∣
x=±a

= 0,

(
∂u

∂y
+
∂v

∂x

)∣∣∣∣∣
x=±a

= 0, (2)

where u and v are shear and longitudinal displacements correspondingly, ρ is the density
of material, E is the Young’s modulus, σ is the Poisson ratio, F is the external force.
Equations (1) are well known equations of Fylon of the thin plates theory. Boundary
conditions (2) describe the absence of the normal and tangential forces on the free edges.

3 Solution of the problem

The process of finding solution of the problem is traditional. After using the Fourier
transformation by variable y we get the integral representation of solution. For getting the
distribution in normal waves we use the theorem of residue. The result is that

u = 2πi
∑
n

Res
∆1(x, µ)

∆(µ)
eiµy, v = 2πi

∑
n

Res
∆2(x, µ)

∆(µ)
eiµy. (3)

Here
∆(µ) = dq sinλ1a cosλ2a+ pf sinλ2a cosλ1a,

k2∆1(x, µ) = { λ1λ2 (dq cosλ1a cosλ2a− pf sinλ1a sinλ2a)− λ1µqf cosλ1x−
− µ2 (dq sinλ1a sinλ2a− pf cosλ1a cosλ2a)− λ2µdp cosλ2x+

+ λ1λ2 sinλ1|x|∆(µ) + µ2 sinλ2|x|∆(µ) } ,

k2∆2(x, µ) = { µλ2 (dq cosλ1a cosλ2a− pf sinλ1a sinλ2a) + µ2qf sinλ1x+

+ µλ2 (dq sinλ1a sinλ2a− pf cosλ1a cosλ2a)− λ2
2dp sinλ2x−

− µλ2 signx cosλ1x∆(µ) + λ2µ signx cosλ2x∆(µ) } ,
where

d = λ2
1 − σµ2, p = 2λ1µ, f = λ2µ(σ − 1), q = λ2

2 − µ2,

µ is the dual variable to ordinate y by Fourier transformation. If we put the denominator
∆(µ) equal to zero we will get the well known dispersion equation for the wave numbers
of asymmetrical normal waves in this waveguide.

It is impossible to find analytical solution to this transcendental dispersion equation.
Therefore all next calculations will be carried out numerically with fixed geometrical di-
mensions and physical parameters. These calculations and experimental measurements for
different mechanical parameters were carried out by many authors. We use following values
of parameters. The width of the band a was taken to be 0.5 m, thickness h = 0.01 m, the
material was taken to be steel with material’s density ρ = 7800 kg/m3, Young’s modulus
E = 2.6 · 1011 N/m2, and Poisson ratio σ = 0.3.

Note that only waves that are damped from the source and waves with group velocity
directed from the source exist in the band. Thus, getting the normal-mode expansion of
forced field one should pay attention to the group velocity, but not to the phase one.
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4 The energy flux density

Analytical representation for energy flux density is that

Π =
ωEh
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Im
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2

(
∂u

∂y
+
∂v

∂x

)
u+

(
∂v

∂y
+
∂u

∂x

)
v

]
j+

+
ωEh
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(4)

We will calculate the energy flux density at two neighboring frequencies f = 4700 Hz and
f = 4710 Hz. The corresponding vector fields are presented in fig. 1 – 4. The abscissa axis
is directed orthogonal to the band. The ordinate axis is directed longitudinal to the band.
The source of the vibration is situated in the origin. The arrows show the direction of the
energy flux density.

Fig. 1 describes a case when inverse wave doesn’t exist (f = 4700 Hz). We can see that
the flux of energy is "laminar" in the whole. There are two small zones of "turbulence"
that can be interpreted as the "presage" of the future "turbulence". Fig. 2 shows the near-
source region in the larger scale. Fig. 3 and 4 describe a case when inverse wave exists
(f = 4710 Hz). The flux of energy on the fig. 3 is irregular and forms many vortexes. One
part of the band near the source is shown in fig. 4 in the magnified scale. There are two
symmetrical vortexes in fig. 4.

Thus, vector fields on fig. 1, 2 and 3, 4 are essentially different.

5 Conclusions

The appearance of inverse waves leads to essential change in the energy flux density be-
havior. The presence of energy transfer into the opposite direction generates numerous
vortexes along the whole waveguide.

So, we may conclude that in elastic waveguide at the frequencies, when inverse waves
exist, the transformation of energy transfer takes place. We have obtained this result
in the case of a simple model (thin elastic band), but the same effects can be found in
different types of waveguide with more complicated structure. If inverse waves exist the
same phenomenon can take place in waveguide with a different physical nature also.
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Figure 1: Vector fields of energy flux density without inverse wave in spectrum (frequency
4700 Hz)
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Figure 2: Vector fields of energy flux density near the source of field in a magnified
scale(frequency 4700 Hz)
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Figure 3: Vector fields of energy flux density after appearance of inverse wave in spectrum
(frequency 4710 Hz)
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Figure 4: Double vortex of energy flux in a magnified scale (frequency 4710 Hz)
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Abstract

An experimental study is carried of the dynamics of the light spherical body placed
in the rotating liquid-filled cavity. The containers used are of cylindrical and spherical
shape. The rotation axis is oriented horizontally. The rotation speed is sufficiently
high, so that under the action of the centrifugal force the free light body occupies a
position near the cavity axis. The system is subject to the translational vibrations,
perpendicular to the rotation axis.

In the absence of vibrations, the sphere rotates slower than the cavity (in the lab-
oratory frame). The influence of vibrations is manifested in the resonant excitation of
the differential rotation of the sphere. It occurs at coincidence of the inertial oscilla-
tions frequency of the sphere and the vibration frequency. Depending on the vibration
parameters, the intensive outstripping or lagging rotation of the sphere is excited. The
resonant areas position is determined by the ratio of the vibration frequency to the
cavity rotation speed n ≡ Ωvib/Ωrot. Depending on Ωrot, the sphere occupies different
steady positions, displacing along the rotation axis. Different steady positions of the
sphere are matched by different velocities of its rotation.

It is found that in the liquid contained between the sphere and the cavity end-walls
a shear flow appears in the form of the Taylor – Proudman column. At relatively
fast differential rotation of the sphere (outstripping or lagging) the column boundary
becomes unstable, giving rise to a two-dimensional wave propagating in the azimuthal
direction. The wave length decreases with the decrease of the differential rotation
speed of the sphere.

1 Introduction

Problems of vibrational hydrodynamics at rotation are actual as they consider the phe-
nomena widely spread in nature and engineering.

If a solid is placed in the liquid-filled rotating cavity, its rotation speed being different
from that of the cavity, then in the liquid the shear flow is generated in the form of a
column extended along the axis. It is called the “Taylor – Proudman column”, its boundary
is formed by the shear layer. The fluid particles do not cross the column boundary, as a
result it rotates practically as an organic whole with the speed different from that of the
surrounding liquid [1].

An important feature of the rotating hydrodynamic systems is their elastic properties
determined by the action of the inertia forces on the liquid particles. A remarkable example
are the inertial waves propagating on the interface of two centrifuged immiscible liquids of
different density (the light liquid forms a cylindrical column in the centre) in consequence
of the action of an external periodic force [2].
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Figure 1: The scheme of the cavities of the cylindrical and spherical shape

In case when a light solid body is placed in the liquid, under the action of the centrifugal
force of inertia it occupies the steady position on the cavity axis. An external periodic
force, for example due to the transversal vibrations, induces the circular body oscillations.
This leads to its differential rotation excitation [3]. In consequence, the liquid Taylor –
Proudman column is formed as a geometric continuation of the solid. When the body
is considerably shorter than the cavity, in which it is situated, then the liquid column
dynamics cannot be neglected. This case is studied in the present work on the light sphere
example.

2 Experimental setup and techniques

The experimental setup consists of the cavity in which the light body of the spherical shape
is placed. The cavity is filled with liquid (aqueous solutions of glycerin with the kinematic
viscosity ν = 1 – 10 cSt) and fixed on the platform of the electrodynamic vibrator, which
produces translational vibrations normal to the rotation axis. In experiments the cavities
made of plexiglass are used, one has the cylindrical shape (the sizes of cavity: R = 26.0 mm,
L = 62.0 – 72.0 mm) and the other is spherical (R = 44.5 mm) (fig. 1). Radius of the
sphere r = 17.7 mm, average density ρs = 0.17 g/cm3.

In the work the spherical body dynamics is studied depending on the cavity rotation
speed Ωrot in the absence of vibrations and at the vibration action. The velocity of rotation
is always high and the sphere occupies the steady position near the rotation axis under
the action of the centrifugal forces. In the experiments the sphere rotation speed Ωs in
the laboratory frame and the distances x1 and x2 from the sphere boundaries to the cavity
end-faces are measured. Observations are carried out in the stroboscopic illumination. The
rotation speed of the cavity and of the body is measured with the strobotachometer with
accuracy 0.06 rad/s. The body position in the cavity is found using the photo registration
method. The obtained data is used to calculate the relative rotation speed of the sphere
∆Ω = Ωrot−Ωs and its position relative to the end-faces of the cavity x = (x2−x1)/(x2+x1).

The cavity rotation speed varies in the interval Ωrot = 50 − 300 rad/s and is set with
the accuracy of 0.06 rad/s. Frequency and amplitude of vibrations vary in the intervals
fvib = 20− 45Hz, bvib = 0.1− 0.5 mm.

3 Experimental results

In the absence of rotation the light sphere is situated at the cavity boundary in its upper
part. With the increase of the cavity rotation speed Ωrot the sphere is entrained by the fluid
(in the rotation direction), and on reaching some critical value Ωrot it occupies the steady
position on the cavity axis. In the absence of vibrations the sphere in such state always
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Figure 2: The relative rotation velocity ∆Ω (1 ) and the sphere position x (2 ) vs. the
cavity rotation speed (a – cylindrical cavity, b – spherical) for ν = 5.0 cSt; here and
further light symbols signify the increase of Ωrot, dark – decrease

rotates slower that the cavity, thus ∆Ω < 0. Such behaviour of the sphere is characteristic
for both, cylindrical and spherical cavities (fig. 2, a, b, points 1 ). In process of the Ωrot
magnification the body lagging intensity gradually decreases. It occurs until rotation of
the whole system does not become almost solid-state. The experimental points obtained
at the decrease of Ωrot coincide with the points obtained at its increase. However, on
reaching the critical value, at which the sphere transition to the rotation axis occurred,
there is no collapse (the transition from the axis to the exterior boundary of the rotating
cavity) observed.

Besides the differential rotation speed of the sphere, at the changing of Ωrot there is
the changing of the sphere position on the rotation axis relative to the cavity end-walls,
characterized by the dimensionless coordinates (fig. 2, a, b, points 2 ). In the cavity of the
cylindrical shape (L = 72.0 mm) with increase of the velocity Ωrot the sphere position in
the center becomes unstable, and the sphere displaces along the rotation axis to one of the
end-faces. The new position of the sphere on the axis is stationary. The shift can occur
both to the right and to the left. It does not depend on the direction of the cavity rotation.
The relative velocity of the body rotation also does not depend on which end-wall it will
be moved to.

In the cavity of the spherical shape (fig. 2, b, points 2 ), the dependence of the sphere
position dynamics on Ωrot is opposite. Under the influence of the centrifugal forces at the
rotation velocity increase, the sphere transfers to the rotation axis, but not in the cavity
center, and to one of its poles. At the further increase of Ωrot the sphere gradually drifts
towards the cavity center, this displacement going in steps. When shifting the sphere to the
right or left, the curves of dependence x(Ωrot) are mirror-symmetrical, so it is the pitchfork
bifurcation.

The change of the fluid viscosity leads only to the change of the thresholds of loss of
stability of the sphere symmetrical position, its dynamics does not change qualitatively [4].

The behaviour of the sphere at vibrations significantly changes only in the resonance
areas when the frequency of vibration action coincides with the eigenfrequency of inertial
oscillations of the sphere. In the region Ωrot < Ωvib (Ωvib = 2πfvib) the excitation of
intensive outstripping rotation of the sphere is observed, which does not exist without
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Figure 3: The velocity ∆Ω (1 ) and the sphere position x (2 ) vs. the velocity Ωrot of the
cylindrical cavity (a) and spherical one (b); fvib= 30 Hz, bvib= 0.27 mm, ν = 5.0 cSt;
dashed lines – the experiment in the absence of vibration

vibrations (fig. 3, a, b, points 1 ). In the area where the vibration frequency is less than
the cyclic frequency of the cavity rotation (Ωrot > Ωvib), the intensive lagging differential
rotation is raised (∆Ω < 0). Intensive rotation in resonance areas is accompanied by high-
amplitude oscillations of the sphere of circular polarisation with the frequency of driving
force Ωvib. Out of the resonance areas the velocity of the sphere rotation at vibrations is
not different from the one in their absence.

At slow increase of the cavity rotation speed the outstripping rotation excitation
(threshold a) can occur smoothly (fig. 3, a) or abruptly (fig. 3, b) depending on the
parameters of vibrations. The finite-amplitude transitions are conventionally shown by
vertical arrows. At the subsequent increase of Ωrot the relative velocity starts to decrease
sharply. In the cylindrical cavity the rate of the outstripping motion decrease diminishes
in the threshold way in the point c, then the vibrational outstripping motion is maintained
up to the point d, where the vibrational curve crosses the gravitational one. In the cavity
of the spherical shape the threshold d is absent, the intensive outstripping motion stops
in the point c. At the decrease of the cavity rotation speed (dark points on fig. 3) the
measured data coincide with the results obtained at the increase of Ωrot. The breakdown
of the outstripping rotation occurs abruptly in the point b.

Simultaneously with velocity the sphere position changes in the resonance areas (fig. 3,
a, b, points 2 ) outside of which it practically coincides with the off-vibration case. In
the outstripping motion area the sphere shifts to one of the end faces. The maximum
displacement is observed in the point c, where the intensive outstripping motion is excited.
The position of the sphere in the cavity center (x = 0) is stable in the area of the resonant
lagging rotation.

Dot-dashed lines in fig. 3 show the position of the resonance frequency on the axis
Ωrot. In cavities of various geometry they differ at the same vibration parameters. In
the spherical cavity the resonance frequencies have smaller values Ω+

rot= 81.6 rad/s and
Ω−rot = 214.0 rad/s, for the cylindrical cavity – Ω+

rot= 94.2 rad/s and Ω−rot = 232.5 rad/s.
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Figure 4: Photos of the Stewartson shear layer in traversal section in the absence of
vibrations; Ωrot = 100.5 (a) and 75.5 rad/s (b, c), ν = 6.7 cSt, L = 62.0 mm

4 Flow structures

At differential rotation of the sphere, in the fluid volume between the sphere and the cavity
end-faces the Stewartson shear layer extended along the rotation axis is formed, delimiting
the Taylor – Proudman column. On fig. 4 the flow patterns in the cylindrical cavity in
the absence of vibrations are presented. In the centre the sphere is visible, around which
white light-scattering particles trace the column boundary.

At slow relative rotation of the sphere the column has the shape of the circular cylinder
(fig. 4, a), its traversal size coincides with diameter of the body. With magnification of the
difference of velocities between the sphere and the cavity the column boundary becomes
instable and takes the form of the polyhedral prism (b). Angular velocity of rotation of the
prism (wave phase velocity) in the laboratory frame is less than the velocity of the sphere
rotation. With growth of intensity of the differential rotation of the body the length of
the azimuthal wave propagating on the liquid column boundary, is incremented (c), the
number of bounds of the prism decreases. In the experiments, the patterns with the wave
numbers m = 3 – 6 are observed. In the spherical fluid shell the similar geostrophic flow
in the form of the Taylor – Proudman column is raised.

5 Analysis

In the absence of vibrations, the sphere dynamics is governed by the dimensionless grav-
itational acceleration Γ = 2g/(Ω2

rotd), where g is the gravitational acceleration, d – the
sphere diameter. With the increase of the cavity rotation speed the sphere rotation inten-
sity decreases, the experimental points displace towards lower |∆Ω| /Ωrot when the Γ value
is decreased (fig. 5). On the graph one can see that the cavity geometry influences only the
differential rotation intensity. The relative speed of the sphere varies according to the law
|∆Ω| /Ωrot ∼ Γ2. This result slightly differs from the one in case of the cylindrical body,
where |∆Ω| /Ωrot ∼ Γ1.75 [5].

The azimuthal wave, propagating on the Taylor – Proudman column boundary (fig. 4),
is due to the Stewartson shear layer instability [6, 7]. In difference from the cited works,
in our research the sphere is free, and its differential rotation relative to the cavity is not
set, but generated by the body circular oscillations under the action of the gravity field
and thus entirely determined by the dimensionless frequency ω = Ωrotd2/ν, i.e. the cavity
rotation speed.

The dependence of the dimensionless phase velocity of the azimuthal wave propagation
on the Stewartson layer boundary on the sphere differential rotation speed is shown on
fig. 6. Here ∆Ωw is calculated relative to the cavity: ∆Ωw = Ωw−Ωrot. The decrease of the
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Figure 5: Dependence of the dimensionless
rotation speed of the sphere on the dimen-
sionless acceleration Γ, ν =5 cSt

Figure 6: The dimensionless wave veloc-
ity vs. the relative rotation speed of the
sphere, ν =6.7 cSt

sphere rotation intensity leads to the wave phase velocity increase and the consequent wave
pattern change, at the same time the wave length decreases. Thus, at centrifugation the
triangular column is formed (m = 3), with the cavity rotation speed increase the transition
to the state with wave number m = 4 is observed, etc. The axisymmetric flow, when the
column has the circular cylinder shape (fig. 4, a), is observed at |∆Ω|/Ωrot < 0.016. The
boundaries of the column transformation are shown on fig. 6 with the dashed lines.

Comparison of the experimental results with the theoretical ones [7] for the negative
differential rotation of the sphere in the spherical liquid layer shows their satisfactory
agreement.

The dynamics of the intensive vibrational rotation of the sphere is determined by the
dimensionless vibration frequency n ≡ Ωvib/Ωrot (fig. 7). The curves obtained for the
vibrations of different frequency and equal amplitude are in good agreement on the chosen
plane of dimensionless parameters. As in the cylindrical cavity (fig. 7, a), as in the spherical
one (b), the values of n are equal for the resonant areas of both, outstripping and lagging
motion. This is true for both the differential rotation speed and the sphere position on the
axis. The most pronounced sphere displacement from the cavity centre along the rotation
axis is shown by the slash-dotted lines. It is remarkable that this one coincides with the
transition c, in which the intensive outstripping rotation is excited. The areas of the
resonant excitation of the inertial body oscillations (and its intensive differential rotation)
in different cavities are only slightly different in the dimensionless vibration frequency.
Partially this difference may be due to the different values of the relative body radius
r/R [8]. There are no qualitative changes in the sphere dynamics observed as the cavity
geometry is changed. The existence of the areas of the intensive lagging and outstripping
motion is explained by the coincidence of the vibration frequency with one of the two
eigenfrequencies of the sphere inertial oscillations. As a result, the resonant growth of its
oscillations amplitude occurs. This leads to the average force generation in the viscous
boundary layer on the solid surface of the light body [3], which in its turn excites the body
differential rotation.
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Figure 7: The dimensionless speed of the sphere differential rotation and its position on
the axis vs. the dimensionless vibration frequency for the cylindrical cavity (a) and the
spherical one (b); fvib = 30 Hz, bvib = 0.27 mm, ν = 5.0 cSt

6 Conclusion

Was experimentally studied the vibrational dynamics of the light spherical body in the
liquid-filled cavity (of cylindrical and spherical shape), rotating around the horizontal axis,
at vibrations normal to the rotation axis. The excitation of the intensive differential
rotation of the sphere (outstripping or lagging) in the resonant areas, which are determined
by the dimensionless vibration frequency n ≡ Ωvib/Ωrot. The outstripping rotation is
excited at n > 1, the lagging one – at n < 1.

The loss of stability of the sphere position in the cavity centre relative to the end-walls
is found. The maximal sphere displacement from the centre is observed at the frequency of
excitation of the outstripping rotation. On the contrary, at the intensive lagging vibrational
rotation the position of the sphere in the centre becomes stable.

Is found the wave instability on the boundary of the liquid column, which is formed by
the Stewartson shear layer.
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Abstract
Hydraulic fracturing is one of the most efficient methods to increase production

of oil, gas and heat from underground reservoirs. Its numerical modeling has been
the subject of numerous publications. The paper briefly summarizes their results and
presents recent findings, which notably improve numerical modeling. The conclusions
are drawn on new options and further work for enhancing numerical modeling of
hydraulic fractures.

1 Introduction

Hydraulic fracturing is a technique used extensively to increase the surface to or from which
a fluid flows in a rock mass. Beginning with the papers [1], [2], [3], [4], [5], [6], [7], numerous
studies have been published on the theory and numerical simulation of hydraulic fracturing
(see, e. g., the papers [8], [9], [10], [11], [12], [13], [14], [15], [16], [17] and detailed reviews
in many of them). They have provided knowledge on the asymptotics of the solution,
possibility to neglect the lag between the liquid front and the fracture contour and on the
typical regimes. The knowledge was incorporated in the computational codes for practical
applications (e.g. [11], [14]). Still, there is the need “to dramatically speed up” simulators
[14].

The goal cannot be reached without clear understanding of underlying computational
difficulties which strongly influence the accuracy and stability of numerical results and
robustness of procedures. The recent studies of the author [18], [19], [20], [21], tended
to address this challenge, have disclosed hidden features of the problem important for
numerical modeling. They have led to the modified formulation of the problem, which
opens new options for improving simulators.

The paper aims to (i) clearly explain the conventional formulation, (ii) present the
recent findings, summarized in the modified formulation, (iii) demonstrate the advantages
of the latter, and (iv) make conclusions on the further work.

2 Conventional formulation

A mathematical formulation of the problem includes (i) fluid, (ii) solid, and (iii) fracture
mechanics equations. Their conventional forms are as follows.

Fluid equations. They include the equation of the mass conservation and the Poiseuille
type eq1uation for flow in a narrow channel. For incompressible fluid, the mass conservation
means the volume conservation:

∂w

∂t
+ divq + ql = 0, (1)
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where w(x, t) is the channel width (fracture opening), q(x, t) is the flux vector through the
fracture height, ql(x, t) is the intensity of distributed sources (usually this term accounts
for leak-off and assumed positive), x denotes the vector of the position of a point on the
surface of the flow, t is the time. The flux and divergence are defined in the tangent plane
to the surface of the flow.

The Poiseuille type equation is of the form

q = −D(w, p)gradp, (2)

where p(x, t) is the net-pressure, D is a function or operator, such that D(0, p)gradp = 0.
Gradient is also defined in the tangent plane.

Substitution of (2) into (1) yields the lubrication (Reynolds) equation:

∂w

∂t
− div(D(w, p)gradp) + ql = 0. (3)

An initial spatial distribution w0(x) of the opening is defined at start time
t0:

w(x, t0) = w0(x). (4)

The spatial operator in (3), being elliptic of the second order, it requires only one boundary
condition (BC) at the fluid contour Lf . When neglecting the lag between the fluid front Lf
and the fracture contour Lc, it may be the condition of the prescribed normal component
qn of the flux:

qn(x) = q0(x), x ∈ Lf , (5)

where q0(x) is a known function at Lf ; at the points of the fluid injection it is defined by
the injection regime; at the points of fluid front, coinciding with the fracture contour, we
have w = 0 and equation (2) implies q0(x) = 0.

Solid mechanics equations define a dependence of the opening on the net-pressure
caused by deformation of rock:

Aw = p, (6)

with the condition of zero opening at points of the fracture contour xc:

w(xc) = 0. (7)

Commonly, the operator A in (6) is obtained by using the theory of linear elasticity. As
mentioned, when neglecting the lag, the condition of zero opening (7) replaces the condition
of zero flux on the front. Henceforth, we shall consider this case and write xc = x∗ with
the star marking that a quantity refers to the fluid front.

Fracture mechanics equations define the critical state and the perspective direction of
the fracture propagation. In the commonly considered case of the tensile mode of fracture,
these are:

KI(xc) = KIC , KII(xc) = 0, (8)

where KI is the tensile stress intensity factor (SIF), KIC is its critical value, KII is the
shear SIF.

The problem consists in solving the PDE (3) together with the elasticity equation (6)
under the initial condition (4), boundary conditions (5), (7) and the fracture conditions
(8). The global mass balance is usually employed to follow the fluid front propagation (e.g.
[7], [9], [11], [14]).
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3 Fluid particle velocity. Speed equation

The equations of the conventional formulation do not contain the average velocity of fluid
particles in a narrow channel. Rather it employs the flux q. The latter, by definition, is
the particle velocity averaged across the opening and multiplied by the opening

q(x) = v(x)w(x). (9)

Meanwhile, the particle velocity is the primary quantity used when deriving the mass con-
servation equation and the Poiseuille type equation. It and its averaged (across opening)
value are significant from the physical and computational points of view. Of special impor-
tance is that the limit value of the average particle velocity at the fluid front vn∗ represents
the speed of the front propagation V∗ [18]:

V∗ =
dxn∗
dt

= vn∗(x∗). (10)

Herein, xn∗ is the normal component of point x∗ on the front. It is assumed that sucking
or evaporation through the front is negligible.

In view of (9), the speed equation (10) may be written as

V∗ =
qn∗
w∗

. (11)

For the flux, defined by the Poiseuille type dependence (2), it specifies the speed equation
(SE) for a flow of incompressible fluid in a narrow channel [18]-[21]:

V∗ =
dxn∗
dt

= − 1

w∗(x∗)
D(w, p)

∂p

∂nx=x∗
. (12)

Thus we have the local condition (12) at points of the propagating fluid front. This allows
one to trace the propagation by well-developed methods of the theory of propagating
interfaces (see, e. g. [22]). In contrast, the conventional formulation employs the global
mass balance (e.g. [7], [9], [11], [14]), which is a single equation. The latter is sufficient
when considering 1-D problems with one point of the front to be traced. However, in the
general case of 2D fracture, it is preferable to employ the SE, which is formulated at each
of many traced points of the fluid front. This gives the first evidence that using the particle
velocity is beneficial from the computational point of view.

The next evidence follows from the definition of the flux (9). In view of (2) it implies:

v =
q

w
= − 1

w
D(w, p)gradp. (13)

From (10) and (13) we see that even when w∗(x∗) = 0 and qn∗ = 0, the limit of the ratio q/w
should be finite to exclude the front propagation with infinite velocity. Thus near the front,
where both the flux and the opening rapidly decrease, their ratio, representing the particle
velocity, does not change thus fast being finite and non-zero. Moreover, the particle velocity
is non-zero in the entire flow region except for flows with stagnation points. From (13), it
can be also seen that the particle velocity is notably smoother function than the pressure.
Therefore, the particle velocity is a better choice as an unknown function in the lubrication
equation than the flux or the pressure. We conclude that it is reasonable to employ the
particle velocity for numerical modeling of hydraulic fracture propagation. Below it will
be shown that the equality of the particle velocity at the front to the propagation speed
(10), provides additional computational advantages.
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4 Clear evidence that BVP is ill-posed

4.1 Nordgren problem

The SE (12) is additional to a prescribed boundary condition at the points of the fluid
front. For zero lag, this leads to difficulties common to over-determined problems when
solving the boundary value problem (BVP) numerically for a fixed position of the front on
an iteration. To disclose the difficulties and to find a means to overcome them, we study
the Nordgren problem [6].

The Nordgren model considers a straight fracture of the height h propagating along the
x-axis under plain-strain conditions. Then the net-pressure in equation (6) is proportional
to the opening: p = kew, where ke = (2/πh)E/(1 − ν2), E is the Young’s modulus, ν is
the Poisson’s ratio of rock mass. The fluid is assumed Newtonian and consequently the
operator D in (2) is the multiplier D(w, p) = klw

3, where in the case of an elliptic cross
section considered by Nordgren kl = 1/(π2µ), µ is the dynamic viscosity.

For simplicity, we neglect leak-off and use the dimensionless variables: xd = x/xn,
x∗d = x∗/xn, wd = w/wn, yd = y/yn, vd = v/vn, pd = p/pn, qd = q/qn, q0d = q0/qn, where
xn = (klke/4)1/5q

3/5
n t

4/5
n , wn = qntn/xn, yn = w3

n, vn = xn/tn, pn = krwn/4, qn, and tn are
normalizing length, opening, cubed opening, particle velocity, flux and time, respectively.
The normalizing quantities qn, tn may be chosen as convenient. From this point on, we
omit the subscript d at the normalized variables and consider only dimensionless values.
The PDE (3) becomes

∂w

∂t
− ∂2w4

∂x2
= 0. (14)

The initial condition (4) in the 1-D case reads

w(x, t0) = w0(x), (15)

with w0(x) = 0 ahead of the fluid front x∗. The BC (5) of the prescribed influx q0 at the
inlet x = 0 and the BC (7) of zero opening at the front x = x∗ are, respectively,

−∂w
4

∂x x=0
= q0, (16)

w(x∗, t) = 0. (17)

The SE (12) is not used in the conventional formulation. In the dimensionless variables it
reads:

V∗ =
dx∗
dt

= −4

3

∂w3

∂x x=x∗(t)
. (18)

We see that the PDE (14) is of second order in the spatial variable x, while there are three
rather than two boundary conditions (16)-(18) for any fixed position of the front x∗. It
can be shown (see subsection (4.3)) that under the BC (17), in limit x → x∗, the PDE
(14) turns into the SE (18). Thus one may expect difficulties when trying to solve the
problem (14)-(17) numerically under fixed x∗ at each iteration within a time step. Further
discussion confirms this suggestion.
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4.2 Straightforward solving BVP for starting PDE

Nordgren [6] used straightforward numerical integration of the problem (14)-(17). This
author applied Crank-Nicolson finite difference scheme to approximate the PDE (14) and
to meet the BC (16), (17). The SE (18) was not mentioned. The paper [6] does not
contain details of calculations on the initialization, the time step, the number of nodes in
spatial discretization, the number of iterations, stability of numerical results and expected
accuracy. To obtain knowledge on these issues, we also solved the BVP (14)-(17) in a
straightforward way by using the Crank-Nicolson scheme. The results are as follows [19].

Actually performing 20 iterations to account for the non-linear term w4 is sufficient
to reproduce four digits of the fracture opening, except for a close vicinity of the liquid
front. (Increasing the number to 100 iterations does not improve the solution for all tested
time and spatial steps.). For various time steps (∆t = 10−2, 10−3, 10−4) and different
spatial steps (10−2, 10−3, 10−4) taken in various combinations, the results are stable along
the main part of the interval [0, x∗(t)]. However, the results always deteriorate and they
are unreliable in a close vicinity of the front (1 − x/x∗ < 0.001). The results coincide
with those given in the paper [6] to the accuracy of two significant digits accepted in this
work. In all the calculations, by no means could we have a reliable third digit not only near
the front but in the entire flow region. Fine spatial meshes did not improve the accuracy
as compared with a rough mesh having the step 0.01. Moreover, using very fine spatial
meshes with the step less than 10−5 led to complete deterioration of the solution in the
entire flow region.

The numerical results clearly show that the BVP with a fixed position of the front
at an iteration cannot be solved accurately without regularization. The problem appears
ill-posed in the Hadamard sense [23].

4.3 Straightforward solving BVP for ODE of self-similar formulation

To further clarify the essence of the difficulties, we employ the fact that the Nordgren
problem does not include characteristic geometrical and time parameters. Consequently, its
self-similar formulation becomes available [6], [7]. For the constant influx q0, the self-similar
variables are: the self-similar coordinate ξ = xt−4/5, the self-similar opening ψ(ξ), the self-
similar particle velocity vψ(ξ) = −4

3
dψ3

dξ and the self-similar fracture length ξ∗ = x∗t
−4/5.

They define the physical quantities as the functions with separated temporal tβ and spatial
ς = x/x∗ = ξ/ξ∗ variables: w(t, x) = t1/5ψ(ξ), v(t, x) = t−1/5vψ(ξ), x∗ = ξ∗t

4/5. The self-
similar front speed is Vψ∗ = 0.8ξ∗; the physical speed is V∗ = dx∗

dt = 0.8ξ∗t
−1/5.

In terms of the self similar quantities, the PDE (14) becomes the ODE:

y
d2y

dξ2
+

1

3

(
dy

dξ
+ 0.6ξ

)
dy

dξ
− 3

20
y = 0, (19)

where y(ξ) = ψ3(ξ). The BC (16) and (17) become, respectively,

3
√
y(0)

dy

dξ ξ=0

= −3

4
q0, (20)

y(ξ∗) = 0. (21)

The SE (18) in the self-similar form reads:

dy

dξ ξ=ξ∗
= −0.6ξ∗. (22)
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In limit ξ → ξ∗, for a solution, satisfying the BC (21), the ODE (19) turns into the SE
(22). Hence, for the ODE (19), at the point ξ∗, we have imposed not only the BC (21) for
unknown function y, but also the BC (22) for its derivative dy/dξ. The problem appears
ill-posed. The following discussion makes it obvious.

Re-write the ODE (19) as

d2y

dξ2
+ a(y, dy/dξ, ξ)

dy

dξ
− 3

20
= 0, (23)

where a(y, dy/dξ, ξ) = (dy/dξ+ 0.6ξ)/(3y). The equations (21), (22) imply that the factor
a in (23) is finite at the fluid front.

It is easy to check by direct substitution that if y1(ξ1) is the solution of the problem
(19)-(21) for q0 = q01 with ξ∗ = ξ∗1, then y2(ξ2) = y1(ξ2

√
k)/k is the solution of the

problem ()-() for q02 = k−5/6q01 with ξ∗2 = ξ∗1/
√
k; herein, k is an arbitrary positive

number. This implies that C∗ = q0.6
0 /ξ∗ and C0 = y(0)/ξ2

∗ are constants independent on
the prescribed influx q0. As ξ∗ = q0.6

0 /C∗, it is a matter of convenience to prescribe q0

or ξ∗. A particular value of q0 or ξ∗ may be also taken as convenient. Indeed, with the
solution y1(ξ1) for q0 = q01, we find the solution for any q0: y(ξ) = y1(ξ

√
k)/k, where

k = (q01/q0)6/5, ξ = ξ1/
√
k (ξ∗ = ξ∗1/

√
k ).

Let us fix ξ∗. According to (21), (22), at the point ξ∗, we have prescribed both the
function y and its derivative dy/dξ. Thus, for the ODE of the second order (19) we have a
Cauchy (initial value) problem. Its solution defines y(0), dydξ ξ=0

and consequently the flux
q0 at ξ = 0. Hence, even a small error when prescribing q0 in (20), excludes the existence
of the solution of the BV problem (19)-(21). Therefore, by Hadamard definition [23], the
BV problem (19)-(21) is ill-posed. It cannot be solved without a proper regularization [24].

Direct computations confirm that it is impossible to accurately solve the BVP (23),
(20), (21). We performed hundreds of numerical experiments with various numbers of
nodal points and iterations and different values of the prescribed influx q01 at the inlet.
Finite difference approximations of second order for d2y/dξ2 and dy/dξ were combined
with iterations for the non-linear term a(y, dy/dξ, ξ). Up to 100 000 nodal points and up
to 1500 iterations were used in attempts to reach the accuracy of three correct digits, at
least. The attempts failed: by no means could we have more than two correct digits in the
entire flow region. Moreover, the results always strongly deteriorate near the fluid front.
The numerical results clearly demonstrate that the BV problem (19)-(21) is ill-posed. It
cannot be solved accurately without regularization.

5 e-regularization

5.1 e-regularization for self-similar formulation

A regularization method is suggested by the conditions (21), (22). Indeed, we may use them
together to get the approximate equation y ≈ 0.6ξ∗(ξ∗ − ξ) near the front. Hence, instead
of prescribing the BC (21) at the fluid front ξ = ξ∗, where it is implicitly complemented
by the SE (22), we may impose the boundary condition, which combines (21) and (22) at
a point ξε = ξ∗(1− ε) at a small relative distance ε = 1− ξε/ξ∗ from the front:

y(ξε) = 0.6ξ2
∗(1− ε). (24)

The BV problem (19), (20), (24) is well-posed and it may be solved by finite differences.
Numerical implementation of this approach shows that with ε = 10−3, 10−4, the results
for the step ∆ζ = ∆ξ/ξ∗ = 10−3, 10−4, 10−5, 10−6 coincide with those of the benchmark
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solution [19]. The time expense is fractions of a second. The results are stable if ε and ∆ζ
are not simultaneously too small (both ε and ∆ζ are greater than 10−5).

The essence of the suggested regularization consists in using the SE together with a
prescribed BC to formulate a BC at a small distance behind the liquid front rather than
on the front itself. Besides, the SE is also imposed at the point ξε; it is used for iterations.
We call such an approach e-regularization.

5.2 e-regularization for starting PDE

Extension of e-regularization to solve the starting PDE (14) requires using the BC (17)
on the front combined with the SE (18) to impose a BC at a small relative distance from
the front. Introduce the relative distance η = (x∗ − x))/x∗ from the front. The relative
distance from the inlet is ς = 1 − η = x/x∗. When using the variable ς, the PDE (14)
becomes:

d2Y

dξ2
+A(Y, ∂Y/∂ς, ς)

dY

dς
−B(Y, x∗)

∂Y

∂t
= 0, (25)

where Y (ς, t) = w3(ςx∗(t), t), A(Y, dY/dς, ς) = (∂Y/∂ς + 0.75x∗V∗ς)/(3Y ), B(Y, x∗) =
x2
∗/(4Y ). The BC (16), (17) in the new variables read:

3
√
Y (0)

x∗

∂Y

∂ς ς=0
= −3

4
q0, (26)

Y (ς, t)ς=1 = 0. (27)

The SE (18) takes the form:

∂Y

∂ς ς=1
= −0.75x∗V∗. (28)

Note that in view of the conditions (27) and (28), the factor A(Y, dY/dς, ς) and the term
B(Y, x∗)∂Y/∂t are finite at the fluid front ς = 1. Note also that under the BC (27), in
limit ς → 1, the PDE (25) turns into the SE (28). In terms of the starting problem, this
means that under the BC (17), in limit x→ x∗, the PDE (14) turns into the SE (18).

The regularization of the problem (25)-(27) follows the line used for the self-similar
formulation. The BC (27) is combined with the SE (28) to obtain the approximate equation
near the liquid front:

Y (ς, t) ≈ 0.75x∗(t)V∗(t)(1− ς). (29)

Thus we may impose the BC at a small relative distance ε from the front by taking equality
sign in (29):

Y (ςε, t) = 0.75x∗(t)V∗(t)ε, (30)

where ςε = 1−ε. In contrast with the problem (25)-(27), the problem (25), (26), (30) does
not involve an additional BC. We may expect that it is well-posed and provides the needed
regularization. Extensive numerical tests confirm the expectation [19]. We solved the
problem (25), (26), (30) by using the Crank-Nicolson scheme and iterations for non-linear
multipliers A(Y, dY/dς, ς) and B(Y, x∗) at a time step. The velocity was also iterated by
imposing the SE at the point ςε = 1 − ε. We could see that with ε = 0.0001, ∆ς = 0.01,
and fifty iterations of the non-linear terms at a time step, the relative error of the fracture
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length x∗ and the front speed x∗ was less than 0.03% at each of 20000 time steps. Moreover,
starting from the relatively small time t = 0.01, we could reach the time t = 36128 without
loss of accuracy. There were no signs of instability or deterioration of the opening near the
front in these and many other specially designed experiments. Therefore, e-regularization
is quite efficient.

5.3 e-regularization in general case

According to the rationale presented in the preceding subsections, it appears that the
strategy of using e-regularization when tracing 2-D hydrofracture propagation is as follows.
At each point of the liquid front, an exact boundary condition is changed to an approximate
equality at a small distance rε behind the front. This approximate equality is obtained by
combining the boundary condition at the fluid front, particular for a considered problem,
with the SE, which is quite general. In practical calculations, the distance (absolute rε
or relative ε) is taken small enough to use the equality sign in the derived approximate
condition. This gives us the e-regularized boundary condition near the front. The SE
is also assumed to be met at the distance rε with an accepted accuracy. This gives us
the e-regularized speed equation. The e-regularized boundary condition allows one to avoid
unfavorable computational effects; the e-regularized SE serves to find the front propagation.

In this way, in general, the speed equation (12) is combined with a condition on the
fluid front to obtain the e-regularized boundary condition [19], [20]:∫pε

p∗

1

w
D(w, p)dp = V∗rε, (31)

where p∗ is the pressure at the front, pε = p(rε) is the pressure at the distance rε from the
front.

The e-regularized form of the SE (12) is:

V∗(t) =
dxn∗
dt

= − 1

w
D(w, p)

∂p

∂n rε
. (32)

For the Nordgren problem, in the normalized variableswe have p = 4w, p∗ = 4w(x∗) = 0,
D(w, p) = w3, rε = εx∗; then, since Y = w3 and ∂/∂n = − 1

x∗
∂/∂ς, the regularized BC

(31) and the regularized SE (32) reduce to (30) and ∂Y/∂ςς=ςε = −0.75x∗V∗, respectively.

6 Choice of proper variables

In Section 2, it has been shown that the particle velocity is a better choice as an unknown
function in the lubrication equation than the flux or the pressure. A proper choice of the
spatial variables near the liquid front is suggested by e-regularization and by the asymptotic
behavior of the opening near the liquid front. Recall that the e-regularized equations (31)
and (32) actually employ the system moving with the front. Thus it is reasonable to re-
write the lubrication equation (3) in this system. In it, the r-axis is directed opposite to
the front velocity, while the other axis is tangent to the front. Then equation (3) becomes
[19]:

∂ lnw

∂t
=
∂vn
∂r

+ (vn − V∗)
∂ lnw

∂r
− 1

w
ql, (33)

where using lnw serves to account for an arbitrary power asymptotic behavior of the
opening w(r, t) = C(t)rα+O(rδ) near the front (α ≥ 0, δ > α). The value of the exponent
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α is known in a number of important particular cases, δ = 1 + α when the leak off is
neglected (see, e.g. [7], [8], [9], [15]).

When the opening has the power asymptotic near the front with α > 0, it yields singular
behavior of the spatial derivatives ∂w/∂r, ∂2w/∂r2 at the front, and this complicates
numerical solution of a problem. Therefore, it is reasonable, in addition to the particle
velocity, to use the variable Y = w1/α, which is linear near the front. In terms of the
variables Y , vn and r, the lubrication equation (3) near the liquid front becomes

∂Y

∂t
=
Y

α

∂vn
∂r

+ (vn − V∗)
∂Y

∂r
− Y 1−α

α
ql. (34)

The initial condition (4), boundary condition (5) and the SE (12) are easily re-written
in these variables.

In 1-D cases, the PDE (34) is applicable to the entire fluid. In these cases, there is the
only spatial coordinate x and it is reasonable to normalize x or, what is actually equivalent,
r by the distance x∗(t) from the inlet to the front. Then in terms of ς = x/x∗ = 1− r/x∗,
the lubrication equation (34) in 1-D cases reads:

∂Y

∂t
=

1

x∗

[
(ςV∗ − v)

∂Y

∂ς
− Y

α

∂v

∂ς

]
− Y 1−α

α
ql, (35)

where we have omitted the subscript n in the notation of the particle velocity. Note that
when ql near the front decreases faster than w = Y α, we may divide (35) by Y , obtaining
the equation

1

Y

∂Y

∂t
=
ςV∗ − v
x∗Y

∂Y

∂ς
− 1

αx∗

∂v

∂ς
− 1

αY α
ql, (36)

where under the assumed asymptotics of ql, the term (∂Y/∂t)/Y , the factor (ςV∗−v)/(x∗Y )
and the derivative ∂v/∂ς are finite, while the term ql/(αY

α) tends to zero at the liquid
front.

7 Modified formulation. Computational and analytical ad-
vantages

7.1 Modified formulation

Employing the suggested variables and e-regularization results in the modified formulation
of the hydraulic fracture problem. In contrast with the conventional formulation it uses
[18]-[21]:

1. the particle velocity, as a variable smooth near the liquid front, instead of the pres-
sure;

2. the opening taken in a degree, defined by its asymptotic behavior at the liquid front,
instead of the opening itself;

3. the speed equation at each point of the front to trace the fracture propagation by
the well-developed methods [22], instead of the commonly employed single equation
of the global mass balance; the speed equation also presents the basis for proper
regularization;
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4. e-regularization, that is imposing the boundary condition and the speed equation at a
small distance from the front rather than on the front itself, to exclude deterioration
of the solution near the front caused by the fact [18],[19] that the BVP is ill-posed
for a fixed position of the front when neglecting the lag;

5. the spatial coordinates moving with the front and evaluation of the temporal deriva-
tive under fixed values of these coordinates;

6. reformulation of the common system of equations and boundary conditions in terms
of the suggested variables complemented, when appropriate, with e-regularization.

7.2 Advantages of modified formulation

The computational advantages of using the modified formulation have been explained in
the course of the exposition. There are also analytical advantages, which appear due to
smoothness of the new variables (particle velocity and Y = w1/α) near the fluid front. In 1-
D cases, they allow one to obtain analytical solutions of problems, like those by Nordgren
[6], Spence & Sharp [7], which otherwise require involved calculations. The analytical
solutions of these problems may be found in the paper [21]. Further obvious applications
of the analytical approach may include accounting for leak-off, when the latter is prescribed
in separated temporal and spatial variables with a specially chosen temporal part and with
the spatial part having the same asymptotic near the fluid front as the opening. Analogous
axisymmetric problems may be solved in this way, as well.

8 Conclusions on further work

Further work on enhancing numerical modeling of hydraulic fractures may employ new
facilities suggested by the modified formulation of the problem. Some of them have been
mentioned above.

1. Since the SE is formulated at each point of the front, it notably extends options for
tracing the fracture propagation as compared with the traditional approach employ-
ing the single equation of the global mass balance. The SE opens the possibility
to use the well-developed numerical methods of the theory of propagating interfaces
[22]. In particular, level set methods and fast marching methods become of use.

2. New efficient iterative schemes may employ the particle velocity as an unknown
function, which is notably smoother than commonly employed net-pressure. What
also looks beneficial, only the first spatial derivatives of the particle velocity enter the
modified lubrication equation. The same refers to using the opening at the degree
defined by its asymptotic behavior near the front.

3. Employing e-regularization provides an opportunity for examining and improving the
accuracy of existing commercial codes serving for modeling hydraulic fractures.

4. For an area sufficiently close to the front, where the solution changes faster than
at the remaining part of a fracture, the PDE (34) and the SE (12), after spatial
discretization, suggest efficient integration in time of a non-linear system of ODE
under initial (Cauchy) conditions by using multi-stage methods like the Runge-Kutta
methods.
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5. Obtaining analytical solutions accounting for leak-off in 1-D plain-strain and ax-
isymmetric problems. Using these solutions for accurate description of the boundary
layer effects caused by the existence of the lag between the fluid front and the fracture
contour.

6. Working out improved while simple models and numerical schemes for accounting
for the proppant movement.

Perhaps, execution of these works may facilitate progress in solving even more difficult and
important problems of hydraulic fracturing concerning with strong inhomogenuity of rocks
and presence of multiple contacts and natural cracks, which may serve as channels for
fluid flow. Still the greatest challenge is to comprehend and to properly model hydraulic
fractures in low permiable shales.
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Abstract

The paper deals with the problem computer-aided design of nonlinear control sys-
tems. It is proposed to pass from the problem of synthesis of nonlinear control sys-
tems related to various theoretical complexities of the problem of parameterization
and reduction of the mathematical model of control object to the required form. The
developed software achieves the synthesis of control laws in symbolic form, and sends
for further analysis, simulation in Matlab. The methods of synthesis used the method
of exact linearization via nonlinear feedback, adaptive, robust algorithms based on
Lyapunov functions and direct compensation scheme.

1 Introduction

Modern controlled objects are characterized by a high degree of complexity to the factors
which are multi-dimensionality, nonlinearity, uncertainty, mathematical models and, etc.
Software computational tools can to accelerate synthesis control system and to reduce
the volume of routine work of designer. For today the majority modern research on the
synthesis and design of automatic control laws is carried out using mathematical packages
and specialized programming languages. With increasing dimension of problems, even the
use of software computational tools does not reduce difficulty the synthesis and simulation,
the developer substantially limits the possibilities computer-aided design [1]

The obvious solution specific problem is a decrease impact by designer on the process
of building control laws, by applying a formal analytical method. These methods allow by
mathematical model of control object, recorded in analytical or symbolic form, obtain the
control law in the analytical or symbolic form too. Ideal variant is a situation where the
synthesis of control laws in symbolic form is fully automatic.

The paper considers a variant of algorithm is fully automatic synthesis. Use two con-
tour control system, based on the method of feedback linearization [1,5], adaptive synthesis
algorithms based on Lyapunov functions and the scheme direct compensation [6,3]. Not
looking some restrictions of the proposed approach, greater value is the speed construc-
tion of a workable control laws which insure the motion control object along the required
trajectory.

Important to note that the strategy of synthesis of control systems, as a rule, is in a
preliminary study of the control object. At this stage is performed the numerical simulation
of the motion along the desired trajectories. The developed software complex gives the
designer a tool to quickly go from a mathematical model to the simulated results. In the
next stage designer can start to the synthesis higher quality control laws in manual or
automatic modes, based on radically different methods of synthesis, or by optimizing the
algorithm which is automatically synthesized at the before stage.
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2 Description of software

The developed software package has a modular, linear principle. Stage of the synthesis
is carried out with the use of library functions that are implemented in the language of
Maple. Stage modeling is performed in Matlab, a numerical experimental doing on basis
of generated during the synthesis of Matlab’s files containing the model and control laws.

Working with the software on the synthesis stage is to write a program in Maple, using
the developed functions.The initial data for the synthesis of a mathematical model of
control object, which is written in an analytical, symbolic form. After entering the model,
the designer run a series of function to perform. The structure of the software complex
with a sequence of functions of run is shown in Figure 1.

Figure 1: The functional structure of the software system.

Figure 2: Scheme function calls Matlab-files.

The final stage of using of the Maple is the generation of the system files for simulate
closed control system in the environment of MatLab (Fig. 2). Simulation in Matlab is
by running the file “model” or by constructing block model in the environment Simulink.

238



Software development rapid synthesis of nonlinear robust adaptive control systems of
complex dynamic objects

The major file is “rigid1” or “rigid”, which are inserted into the standard solver of ordinary
differential equations (ODE) as the called functions calculating of the next step.

The proposed scheme generation matlab-file is more flexible. In fact, the researcher
immediately after synthesis system receives all the graphs of the simulated signals the
control system. It may itself configure the Matlab simulation environment, depending on
the desired results. Among the important configurable selected parameters: a method of
solving an ODE step solving - greatly determine the speed and precision of simulation.

3 Algorithms for the main and adaptive control contour

In this paper used the strategy of direct adaptive control - direct compensation scheme,
and a group gradient algorithm, called adaptive algorithms with Lyapunov functions [6].
The model of uncertain dynamic control object is represented by the following equation:

·
x = f(x) + g(x)(u+ ω(x, t)T θ(x, u, t)) + δ(t), (1)

where
·
x = (x1, ...xn)T , u = (u1, ...um)T are the state and control vectors, respectively,

ω(x, t) - matrix (regressor) of dimension (n × q), θ(x, u, t) = (θ1, ...θq)
T - vector of un-

certainty parameters, δ(t) = (δ1, ...δn)T - vector of unmeasured external disturbances.
Feature of the model (1) is that all the uncertainty of the object control, including para-
metric, signaling, structural uncertainty is concentrated in the vector θ In accordance with
the principle of direct compensation form the control law as:

u = U0 − ω(x, t)T θ̂, (2)

θ̂ = Θ(x, θ̂, t), (3)

where θ̂ - estimate vector undefined parameters, If found by the regulator (3) estimate of
the vector equal to actual value θ̂ = θ , then the law (2) provides the full compensation of
the disturbing influence of uncertainty θ (without δ ) and model (1) can be written as:

·
x = f(x) + g(x)U0, (4)

Regulator (2), (3) can be designed with adaptive, adaptive-robust and robust nonlinear
control laws:

θ̂ = θ̂S + θ̂I , (5)

·
θ̂S = µω

∂V

x
(x)g(x), (6)

·
θ̂I = γω

∂V

x
(x)g(x)− σθ̂I , (7)

where µ > 0, γ > 0 and θ >) - constant, V (x) - a Lyapunov function that guarantees the
stability of the model (4), (5) - nonlinear robust control, (6) - adaptive and robust control.
Synthesis of the main control U0 is using the method of feedback linearization is described
in details [1,4]:

U0 =
1

LgL
r−1
f h

(−Lrf + ũ), (8)
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where r - vector relative degree, h(x) - additional output of the system (1).Going to the
synthesis of an additional control ũ, we use the method of inverse dynamics problems [5],
we write the control as follows:

ũ = (y∗)r + kre
r−1
y + ...+ k1ey, (9)

ey = y∗ − h(x), (10)

where y∗ - required trajectory. Control (7), (8) provide a tracking the output y → y∗. If
h(x) = x , then the problem is solved by tracking the state vector x→ x∗ or the problem
of stabilizing x→ 0.

4 Final comments

Practical results using of the software show the effectiveness the approach proposed rapid
synthesis of control systems. Testing was carried out on systems of various degrees of
complexity and uncertainty of the mathematical model of the object controls, in particu-
lar, examined three-tier manipulators, mobile underwater vehicles, 3-phase motors with a
maximum size of the ODE to 30.

Speed of symbolic synthesis is almost independent of the complexity of the mathemat-
ical model and is less than 1 minute. Speed of simulation depends on the chosen param-
eters of ODE solver, can be varied from minutes to hours depending on the complexity
of the problem. During symbolic synthesis can be run special procedures of optimization
of computational complexity of control laws which essentially accelerate the phase of the
simulation.

From the standpoint of the quality of the obtained control laws, the use of 2 inde-
pendent circuits requires careful selection of the coefficients of the laws (5) (6). During
numerical experiments to ensure an acceptable amplitude and frequency of the control laws
signal applied strategy to gradually tuning of the coefficients. In general, the simulation
results show the stability of the synthesized control system obtained control laws can be
immediately applied in practice in the implementation of control systems.
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Thermal stresses in a layered cylinder are the result of the
process cooling and consolidation of the melt during the

formation individual layers
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berms@mail.ru

Abstract

The formation of thermoelastic stresses review in a layered cylinder with a view
of phase transitions in separate layers. We formulate an evolutionary boundary value
problem in the quasistatic approximation of the kinetics of crystallization and changes
in temperature. Numerical solutions were obtained for three-layer cylinder in the case
of crystallization of one or two layers.

Modern industrial development is directly linked to the widespread introduction of new
materials, among them a special place is given layered composite materials (LCM). Engi-
neering processes for some of layered composite materials, such as bimetals or materials on
base glass and metal [1] include the temperature conditions under which in the materials
are possible phase transitions of first order. As a result, during the production of level
of technological stresses caused by from thermal stresses and crystallization stresses may
exceed the ultimate strength of a composite material that gives rise to defects. Therefore,
the development and improvement of methods for studying the kinetics of formation of
stresses, taking into account the phase transitions are modern problems in the mechanics
of deformable solids.

The main results of studies of domestic scientists of phase transitions in the framework
of continuum mechanics in recent years are reflected in the works [2-5]. In this paper we
consider the problem of determining the stress-deformation condition (SDC) at the last
stage of formation LCM - cooling, during which the possible consolidation of the individual
layers. Numerically solved the problems for of crystallization from the liquid phase of the
inner layer or two outer layers for LCM cylindrical form which made of three different
materials.

Mathematical model of this problem can be written using methods mechanics of growing
coats (bodies) [6], where of crystallized material is represented as growing out from the
liquid phase. Model is carried out under the following assumptions: the contribution of
the dissipative stresses is insignificant and does not have effect on heat transfer and course
processes of phase transformations; rheological processes are absent, it means maintaining
the elasticity of the solid and liquid phase, a quasistatic equilibrium of the liquid phase.

These assumptions make it possible to divide the problem into two independent:

• the problem of determining the temperature fields and the movement of
frontier the phase transition of first order, if any are possible in the material,
the numerical method for solving this problem is proposed in [7];

• boundary value problem of determining the SDC for a layered material with
thermal and structural homogeneities.
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One of ways constructs a boundary value problem with moving boundary; it constructs
equations of continuum mechanics and the boundary conditions in the velocities. Then
mathematical model will represent the system of equations for the unknowns σ̇ij , ˙εij , u̇i
containing for each layer: the equilibrium equation, the equation of state (like the Duhamel-
Neumann relations), the conditions of Cauchy, boundary conditions on the outer surface of
the LCM, conditions of pairing for different materials and equation at the phase interface.
In fact, the model will differ from the classical model of the mechanics of growing bodies
[6], only the last equation, so we stop for consider in detail this condition. We define the
conditions a complete mechanical at the boundary of the growing body (growing body will
be solid phase) and liquid phase. This condition of continuity vectors of the displacement
and the stress.

[ui]
∣∣∣
Γ∗kl

= 0 (1)

[σijnj ]
∣∣∣
Γ∗kl

= 0 (2)

here nj are the direction cosines of the outward normal to the Γ∗kl phase interface in
the k layer from the solution of the problem is known function of the temperature surface
phase transition boundary (Φ(M, t) = 0) for each point in time.

As for the layered materials in the case of crystallization of the inner layers have to
take into account the pressure arising from side the liquid phase, the stress of the liquid
phase is determined from the equation of state

σijnj

∣∣∣
Γ∗kl+0

= nj

∫ t∗
0

3K(ε̇− βṪ )δijdt = ni

∫ t∗
0

3K(ε̇− βṪ )dt,

where ε̇ = ε̇ii, t∗(M) is time of accession element to a growing body and also it‘s the
time the birth of element of the point M(x1, x2, x3) . Unknown vector of external forces
determined by the pressure of the fluid on boundary of growing the solid phase.

At the same time, to the deformation element, acquired in a liquid state, we add the
structural deformation associated with the change of aggregation state of the element and
the elastic deformation as resulting from the pressure of the liquid phase

ε∗ij = εij(t
∗ − 0) + εsij + εeij

where εsij− structural deformations, εeij− elastic deformations, εij(t∗ − 0)−initial of de-
formations of the solid phase will define as follows

εij(t
∗ − 0) =

∫ t∗
0

˙εijdt.

Structural deformations appear at the time of accession in the arisen solid phase, it can
be explained the change of aggregation state. If the arisen solid phase has got isotropic
nature, then the correct formula

εsij =
δij
3

(ρ+

ρ−
− 1
)
,

where ρ+, ρ−− density of liquid and solid phases, respectively.
The stresses in the accession element will be consisting from stresses accumulated in

the liquid phase and some stresses as result of deformation as part of a growing body:

σ∗ij =

∫ t∗
0
σ̇ijdt+ ∆σij .
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It is obvious, the value of the additional stresses and strains are related by Hooke’s law:

∆σij = Eijklε
e
kl.

In order to write the junction conditions of the liquid and solid phases in the rates of
stresses and displacements, we differentiate with respect to time of (1) and (2), we obtain

d

dt

[
ui(x1, x2, x3, t)

]∣∣∣
Γ∗kl

=
[ ∂
∂t
ui(x1, x2, x3, t) +

∂

∂xj
ui(x1, x2, x3, t)

dxj
dt

]∣∣∣
Γ∗kl

. (3)

It is obvious that
(
dx1
dt ,

dx2
dt ,

dx3
dt

)
are the components of the velocity vector ϑ(t), if we

take into account that the boundary of the phase transition is moving on normal vector,
then the speed of moving boundary we will define by the following expression

ϑ(t) = −∂Φ

∂t

gradΦ

|gradΦ|2
,

and condition (3) takes the form

[∂ui
∂t

]∣∣∣
Γ∗kl

= −ϑm
[ ∂ui
∂xm

]∣∣∣
Γ∗kl

. (4)

Similarly, differentiating with respect to time, the condition (2) and taking into account

d

dt

(
[σij ]nj

∣∣∣
Γ∗kl

)
=
(∂([σij ]nj)

∂t
+ ϑm

∂([σij ]nj)

∂xm

)∣∣∣
Γ∗kl

,

we get(∂[σij ]

∂t
nj +

∂nj
∂t

[σij ] + ϑm
∂[σij ]

∂xm
nj + ϑm

∂nj
∂xm

[σij ]
)∣∣∣

Γ∗kl

= 0. (5)

For the components of the normal vector we have the following equality

nj =
∂Φ

∂xj

( ∂Φ

∂xm

∂Φ

∂xm

)− 1
2
.

If we differentiate to time this, we obtain the connection between of components the
velocity of normal and the equation of surface

∂nj
∂t

=
( ∂2Φ

∂t∂xj

)
· 1

|∇Φ|
+
|ϑ|
|∇Φ|

nj .

Conditions (4) - (5) close the boundary value problem of elasticity theory for a layered
material with consolidating the layers.

Using the proposed model was obtained by numerical solution of the problem of deter-
mining the thermal stresses in the process of formation:

(1) layered rod, glass-aluminum-steel, aggregation state changes in the middle
layer for the elastic approximation (Fig. 1 a), b), c));

(2) three-layer cylindrical shell of aluminum -glass-aluminum, aggregation
state changes in outer layers for the elastic approximation (Fig. 1 d), e), f)).
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Fig . 1 (a) shows the position boundary of the phase transition in time. Fig. 1 (b) shows
the plots of stress intensity from time in the middle layer at the border contacts, it shows
that the interval of time, when the layer is crystallized, the stress intensity grows much
faster, that may be explained the existence structural deformation during crystallization.
Fig. 1 (c) shows the plots of stress intensity of upper graph and stresses lower graph from
the radial coordinate at the finite of moment time. Similar graphs were made and show
on Fig. 1 (d), (e), (f). But on some initial moment of time two boundaries of the phase
transition are in the presence of, this is reflected in the graph Fig. 1 (d).

(a) (b)

(c) (d)

(e) (f)

Figure 1: The results of numerical solution for composites glass-aluminum-steel and
aluminum-glass-aluminum in the elastic approximation
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The results are qualitatively consistent about mechanical representations of the defor-
mation process, taking into account the crystallization.
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Abstract
Following along the line of recent works, the present paper introduces the notion

of quasi-particles that are associated with surface acoustic waves (essentially Rayleigh
and shear horizontal waves) of different types via canonical conservation laws. The
emphasis is placed on original cases and on various type of perturbations. The estab-
lished wave-quasi-particle dualism is illustrated in the transmission-reflection problem
at interfaces.

1 Introduction

In recent works (see [1], [2], [3], [4]), influenced by the theories of phonons in solid state
physics and of solitons in mathematical physics, we have expanded a theory of quasi-
particles that are associated with surface acoustic wave (SAW) modes. These particles we
nicknamed “grains of SAWs” [5]. This association akin to a dualism is obtained, once we
know the continuum solution of the SAW problem, by exploiting the so-called canonical
equations of conservation of wave momentum and energy — see [6] for this general concept.
These equations are obtained by any means (e.g., application of Noether’s invariance the-
orem [7] in the case of nondissipative systems for which we know the Lagrangian; or direct
manipulation of the standard balance laws in the presence of dissipation). Special atten-
tion was paid to SAWs of the Rayleigh type or, when they exist, pure shear-h! orizontal
(SH) waves, e.g., on account of some piezoelectric coupling (so-called Bleustein-Gulyaev
SAWs [8]) or when the boundary is a material surface endowed with its own mechanical
properties (elasticity and inertia; case of so-called Murdoch SAWs [9]). Perturbations by
various means may be considered (dispersion, viscosity in the substrate [4], nonlinearity of
the substrate [3]).

In each case, the applied methodology consists in evaluating the expression of the
“mass” and the accompanying “kinetic energy” of the associated quasi-particle. This is
done by integrating the local conservation laws of wave momentum (cf. Brenig [10] for
this notion) over a material volume that is representative of the studied wave motion.
In propagation space this amounts to an average over one wavelength. Then one has to
substitute for the known analytical wave solution in the resulting equations. For linear
waves and also a weakly nonlinear perturbation [3] the obtained motion of the associated
quasi-particle is Newtonian and inertial. In the presence of dissipation the motion naturally
becomes non-inertial with an effect of friction [4]. The accompanying point-wise energy
equation is Leibnizian (strict conservation of kinetic energy or vis viva) or with a source
term corresponding to the power expended by a friction ! force.

The aim of this contribution is to present in one place but in a condensed manner most
of the relevant results exhibiting well an existing wave-quasi-particle dualism that offers
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an alternate view of elastic wave problems, in particular in crucial reflection-transmission
problems as useful in non-destructive evaluation (NDE) techniques.

2 The notions of conservation law, wave momentum and
quasi-particle

Although not sufficiently emphasized in most works by engineers, there exists a funda-
mental difference between field equations that govern individual degrees of freedom of a
physical system and conservation laws that pertain to the whole considered system. This
difference was first made clear by Emmy Noether in her celebrated theorem of 1918, proba-
bly the most fruitful theorem of mathematical physics of the 20th century [7]. For example,
referring to continuum solid mechanics in small strains the field equation (so-called balance
of -physical- linear momentum) reads in Cartesian index notation in the absence of body
force and for a volume element

∂

∂t
(ρ0 u̇i)−

∂

∂xj
σji = 0, (1)

where ρ0 is the matter density at the reference configuration, ui denotes the three com-
ponents of the displacement, u̇i denotes the corresponding velocity, and σji stands for the
symmetric Cauchy stress. This applies to elasticity, anelasticity, isotropic and anisotropic
bodies, in the presence or absence of material inhomogeneities. Equation (1) pertains to
the displacement component ui. In contrast, the local balance of energy governs all degrees
of freedom simultaneously and reads in the absence of external source of energy

∂

∂t

(
1

2
ρ0 u̇2 + E

)
− ∂

∂xj
(σji u̇i −Qj) = 0, (2)

where E is the internal energy per unit volume and Qj denotes the components of the
(in)flux of heat. Equation (2) in fact is a true conservation law for the considered thermo-
mechanical physical system. It reflects its invariance under time translations. It is not
the only conservation law as we should in parallel consider the invariance under spatial
parametrization (material coordinates). The resulting equation is called the conservation
of material (or pseudo-) momentum and generally reads [6]

∂

∂t
Pi −

∂

∂xj
bji = fSi , (3)

where

Pi = −ρ0 u̇j uj,i, bji = −
(

1

2
ρ0 u̇2 −W

)
δji − σj,k uk,i. (4)

Here bji is referred to as the Eshelby (material) stress, W = E − θ S, is the free energy
density, S is the entropy density, θ is the thermodynamical temperature, and the “force”
source term fSi accounts for effects of true material inhomogeneities, thermal and anelastic
effects, if any, all in the form of “forces of inhomogeneity” [6]. Equation (2) can also be
re-written as [6]

∂

∂t
(S θ) +

∂

∂xi
Qi = hS , (5)

where the heat source term hS also accounts for thermal and anelastic effects. For a per-
fectly homogeneous (but possibly anisotropic) purely elastic body fSi vanishes identically
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and (3) becomes a strict (covariant) conservation law reflecting an invariance under trans-
lation of material coordinates. This case follows from the application of Noether’ theorem
relating to the invariance under material space parametrization. Otherwise, equations (3)
and (5) are deduced from the standard equations (1) and (2) through manipulations. If
equations (1) is traditionally used to solve static and dynamic (wave) problems on ac-
count of prescribed boundary and initial conditions, the additional equation (3) must be
exploited in a second step, such as in a post-processing procedure. The book [6] is de-
voted to such applications in fracture, shock waves, phase transitions, nonlinear waves
and numerical schemes. In the present setting we propose to exploit equation (3) with a
view to associating a quasi-particle vision to linear wave processes of a certain type (e.g.,
acoustic surface waves propagating on the top of a substrate once the analytical wavelike
solution is known). In particular, an interesting quantity here is the so-called quasi-particle
(wave) momentum obtained by evaluating the average of Pi over a volume element most
representative of the studied wave process, i.e., symbolically

PQPi =<Pi> . (6)

Then equation (3) will yield the “equation of motion” of the associated quasi-particle by
integration over this volume. The same procedure is applied to the energy equation. The
effective “mass” of the quasi-particle is evaluated in the procedure. For lack of space we
shall not give details of computations that can be cumbersome in spite of their straight-
forwardness.

3 Rayleigh surface waves

A. Standard Rayleigh SAWs

In this case, x1 being in the propagation direction and x2 in the depth direction, both
equation (1) and the homogeneous form of equation (3) valid in the substrate (half space)
x2 > 0 are complemented by boundary conditions at x2 = 0 (free boundary) and limit
conditions at x2 → ∞ (vanishing of the amplitude). This standard Rayleigh SAW in a
linear homogeneous isotropic substrate concerns an elastic displacement polarized parallel
to the (x1, x2) sagittal plane ΠS . The Rayleigh solution is well known [11]. Its “dispersion”
relation reads

D(cR; cT , cL) ≡ 4
√

1− (cR/cT )2
√

1− (cR/cL)2 −
(
2− (cR/cT )2

)
2 = 0, (7)

where longitudinal and transverse wave speeds are given by

cL =

√
λ+ 2µ

ρ0
, cT =

√
µ

ρ0
, (8)

in terms of Lamé’s coefficients λ and µ. The above sketched out procedure with wave-
representative volume element Ω = [x10, x10 + λw] × [0,+∞) × [0, 1] — where λw is one
wave length chosen at any place x10 = (x1)0 along the path of the wave — is shown to
yield a Newton-like point-particle equation of motion in the x1 direction as

d
dt

(MR cR) = 0 (9)

where cR is the solution of (7) and the “mass” is given by an expression

MR = ρ0 π f(kR, αL, αT )U2, (10)
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where f is a complicated expression in terms of the Rayleigh wave number kR and the depth
attenuation coefficients of the longitudinal (αL) and transverse (αT ) components [2]. The
mass MR depends on all characteristic parameters of the SAW. What is important here is
the fact that this mass is proportional to the square of the amplitude of the wave hence to
its energy. This is an essential property of all quasi-particles exhibited in this contribution.
With some more work it can be shown that the volume integral of the energy equation
proves that the kinetic energy of the point-like quasi-particle is constant:

E =
1

2
MR c

2
R = const., (11)

so that the motion is not only Newtonian but also Leibnizian.

B. Perburbed Rayleigh SAWs

Several cases of perturbation of the above reported ideal case have been studied. The
simplest case is that of a perturbation by a surface energy distributed on the limiting
surface x2 = 0 [2]. The pathological case where the elastic medium at x2 = 0 is in contact
with a low-density inviscid fluid medium which occupies the half-space x2 < 0 is also
of interest. The Rayleigh wave associated with the semi-infinite elastic medium is then
perturbed by the existence of the fluid and it becomes a leaky Rayleigh wave. This is
examined in Ref. [2] yielding a nonsensical situation that can only be solved by the theory
of bounded beams in the framework of wave theory (cf. [12]). The question of how to
remedy this deficiency in the quasi-particle framework is unsettled.

4 SH and Bleustein-Gulyaev (BG) waves

4.1 Standard BG SAWs

Shear-horizontal (SH) SAWs are in principle much simpler than Rayleigh SAWS because
they involve only one displacement component u3 orthogonal to the sagittal plane ΠS , but
they exist only in specific conditions usually related to a perturbation of some kind of the
boundary conditions at the surface of the substrate (see, e.g., [13]). Such conditions are
obtained by coupling with electric properties in piezoelectric materials of 6mm symmetry
axis orthogonal to ΠS (see Chapter 4 in [8]). These SAWs were discovered by Bleustein and
Gulyaev in 1968. Their associated quasi-particles and their perturbations are particularly
easy to study in the present framework although coupling with quasi-electrostatics for
dielectrics is necessary. Equation (1) is replaced by the system

∂

∂t
(ρ0 u̇i)−

∂

∂xj
σji = 0,

∂

∂xi
Di = 0, (12)

with constitutive equations

σ = −∂L
∂e

=
∂W

∂e
, D =

∂L

∂E
= ε0 E + P, P = −∂W

∂E
, (13)

where

L =
1

2
ρ0 v2 +

1

2
ε0 E2 −W (e,E), (14)

and

W (e,E) =
1

2
Cijkl eij ekl − eqij Eq eij −

1

2
χij EiEj . (15)
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Here D is the electric displacement, e is the small strain, E is the electric field and, L
is a Lagrangian density. The three terms in (15) stand for elasticity, piezoelectricity and
electric polarization properties per se. For the sake of example the field equations (12) are
complemented by boundary conditions at the limiting plane x2 = 0 (mechanically free but
electrically grounded boundary)

nj σji = 0, φ = φ0 = 0, nj Dj = w, (16)

where φ is the electric potential (such that Ei = −∂φ/∂xi) and w is an eventual surface
charge density.

The energy equation is now given by

∂

∂t

(
1

2
ρ0 v

2 +W − 1

2
ε0 E2

)
− ∂

∂xj

(
σji

∂ui
∂t

+Dj
∂φ

∂t

)
= 0. (17)

It is shown [1] that equations (3)–(4) are replaced by

∂

∂t
Pi −

∂

∂xj
bji = 0, (18)

and

Pi = −ρ0 u̇j uj,i, bji = −
(

1

2
ρ0 u̇2 −W +

1

2
ε0 E2

)
δji − σj,k uk,i −Dj φi. (19)

The standard solution of the BG surface wave is now well known via the introduction
of an effective electric potential that accounts for the electromechanical coupling (cf. [8],
Chapter 4). The corresponding point thermo-mechanics of the associated quasi-particle is
obtained in the Newtonian-Leibnizian following form form [1]:

d
dt
PBG = 0,

d
dt
KBG = 0, (20)

wherein

PBG := MBG cBG, KBG =
1

2
MBG c

2
BG, MBG =

ρ0 π U
2

2K
2 , (21)

with

c̄2
T = c̄44/ρ0, c̄44 = c44 (1 +K2), K2 = e2

15/ε11 c44, K
2

= K2/(1 +K2), (22)

corresponding to the “dispersion” relation

D(ω, k1) := ω2 − c2
BG k

2
1, cBG = ω/kBG =

√
(c̄44/ρ0) (1−K4). (23)

In these equations, c44, e15 and ε11 = ε0 +χ11 are the only surviving material coefficients of
the general anisotropic expression (20) for the considered symmetry. The results (20)–(21)
are particularly simple with a momentum PBG in the x1 propagation direction, a massMBG

that is naturally quadratic in the wave amplitude, and a quasi-particle kinetic energy KBG

that appears purely kinetic (via the mass MBG) although originating in the continuum
framework from kinetic, elastic, piezoelectric and electrostatic energies altogether. The
BG solution (wavelike or particle-like) does not exist when the electromechanical coupling
factor K vanishes. It is the relative simplicity of the obtained solution that made the
authors envisage several types of perturbations.
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4.2 Bleustein-Gulyaev SAWs perturbed by a weak elastic nonlinearity

We contemplate the case where the volume energy (15) is augmented by a non-quadratic
elastic term to be treated further as a perturbation. This was recently treated in Ref.[3].
For the considered BG configuration, the pure elastic contribution in (15) is now written
as

W elas =
1

2
c44 Φ +

1

4
β c44 Φ2 + h.o.t, (24)

where h.o.t means higher order terms that are to be neglected and β is the small elastic
nonlinearity coefficient, and Φ = (u3,1)2 + (u3,2)2. The elastic energy now is a quartic,
what means that the system becomes a generator of third harmonic. It is shown that the
problem for x2 > 0 is reduced to the system

c̄44∇2u3 + β c̄44 [(Φu3,1),1 + (Φu3,2),2] = ρ0 ü3, ∇2ψ = 0, (25)

where ∇2 is the two-dimensional Laplacian in the (x1, x2) plane and Ψ is the same effective
electric potential as in the above recalled linear BG case. The boundary conditions at
x2 = 0 are formally unchanged compared to the linear case. The general form of equations
(12) and (17)–(19) is unchanged but for the elastic nonlinearity. But the propagating wave
solution now involves first and third harmonics of the basic frequency ω. For instance, the
u3 has the form

u3 = U exp(−αx2) cos(k x1 − ω t)
+ β U3 exp(−3αx2) cos(3 (k x1 − ω t)) +O(β2),

(26)

where α (a part of the solution) measures the exponential decrease of the amplitude with
depth in the substrate. The amplitude-dependent “dispersion” relation at order β now
reads:

D(ω, k, α) := ω2 − c̄44

ρ0

[
(k2 − α2)− β

4
U2 e−2αx2 (9α4 − 3 k4 + 2 k2 α2)

]
= 0. (27)

In the treatment of the associated quasi-particle, the relevant representative domain
of integration of the conservation equation is given by Ω = [0, λS ] × [0,+∞) × [0, 1],
where λS = 2π/kS is the wavelength of the first harmonic component as altered by the
nonlinearity. On account of the smallness of β it can be proved [3] that the following
Newton and Leibniz equations of motion and energy are obtained (the system still is non
dissipative involving no source terms in its quasi-particle solution):

d
dt

(MBGNL cBGNL) = 0,
d
dt

(
1

2
MBGNL c

2
BGNL

)
= 0, (28)

with, at order β,

MBGNL = MBG

[
1− β

4
(3K4 − 1) k2

BG U
2

]
, (29)

λS =
2π

k0

[
1− β k̄S

k0

]
= λBG

[
1− β k̄S

kBG

]
, (30)

cBGNL = cS =
ω

kS
= cBG

[
1− β k̄S

kBG

]
. (31)

It is observed that the wave number correction k̄S is negative, and both the mass and
the kinetic energy of the quasi-particle are increased compared to those of the linear case.
Note that the two equations (28) are proved independently of one another, all quantities
labelled BG relating to the linear case.
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4.3 Bleustein-Gulyaev SAWs perturbed by a weak viscosity of the elastic
substrate

This case is treated in detail in Ref. [4] to which the reader is referred. Both equations
(17) and (18) acquire source terms in their right-hand sides. This is treated in the case of
a wavelike solution perturbed by an added small viscosity of the substrate. The latter was
obtained in Ref. [14] to which we refer the reader. The quasi-particle motion becomes non-
inertial with a source term due to a friction. Simultaneoulsy, the associated kinetic energy
is no longer conserved. This case is distinctly remarkable in that the “mass” becomes a
function of time and the associated quasi-particle momentum is no longer strictly parallel
to the plane boundary: at order ε, the motion of our quasi-particle has become two-
dimensional in the sagittal place.

5 Other case: Murdoch SAWs

The reader may be deceived by the fact that we did not treat the case of Love SAWs (pure
SH SAWs existing as a result of the superimposition of a “slow” elastic layer of finite thick-
ness on top of the linear elastic substrate). The reason is due to the difficulty of carrying
the required analysis to its end. Fortunately, another model that also involves a unique SH
displacement is the one introduced by Murdoch [9]. This model is particularly interesting
because (i) of its purely mechanical nature, (ii) of its relative simplicity with a dispersive
monomode of propagation only (thus much simpler than the dispersive multimode Love
SAWs that need the consideration of a superimposed layer of small but finite thickness),
and (iii) it lends itself to remarkably simple computations. It may be said that it also
corresponds to the very thin plate limit considered by Tiersten and co-workers [15]–[16]
in thei! r study of signal-processing devices (wavelength of signal much larger than the
thickness of the superimposed layer). The basic field equations are

ρ0
∂2ui
∂t2

=
∂

∂xj
σji for x2 > 0; (32)

ρ̂0
∂2ûi
∂t2

=
∂

∂x̂j
σ̂ji − nj σ+

ji at x2 = 0. (33)

Region x2 < 0 is considered a vacuum. Here superimposed carets refer to quantities
related to the surface of unit outward oriented normal nj . Thus σ̂ji is a surface stress while
σ+
ji = limσji, x2 → 0+ is the three-dimensional stress from the body. Mass density ρ̂0 is

per unit surface, so that the limiting surface is endowed both with inertia and elasticity;
it is a “material ” surface. System (32)–(33) admits a pure SH SAW solution. We note

c2
T =

µ

ρ0
, ĉ2

T =
µ̂

ρ̂0
, k2

a =
µ

µ̂
. (34)

The resulting SH SAW solution u3 of (32)–(33) has a (true) dispersion relation given by

D(ω, k1) := ω2 − c2
T

(
k2

1 −
1

k2
a

(
ω2

ĉ2
T

− k2
1

)2)
= 0, (35)

and the solution exists only for phase velocities c such that ĉT < c = cM < cT . It
is shown [17] that the canonical conservation laws of wave momentum and energy are
obtained by combining those associated with the surface motion at x2 = 0 with the volume
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ones integrated over the depth in the substrate. The final result is a quasi-particle with
Newtonian-Leibnizian properties, i.e,

d
dt

(MM cM ) = 0,
d
dt

(
1

2
MM c2

M

)
= 0 (36)

with mass given by [17]

MM =

(
ρ̂0 +

ρ0

2α

)
U2 π kM , kM = k1 =

2π

αM
, (37)

α being the attenuation coefficient in depth such that

α =

(
c2

ĉ2
T

− 1

)
k2

1

ka
, (38)

hence a function of the wavelength. This provides an original example of quasi-particle
associated with a dispersive SAW.

6 An example of practical problem: transmission and reflec-
tion

6.1 Perfect interface between two solids

For the sake of simplicity we discard the attenuation in depth of the wave and thus consider
a propagating SH face wave. Propagation from left (medium 1) to right (medium 2) is
described by the following equations in 1D linear elasticity:

∂p

∂t
− ∂σ

∂x
= 0, p = ρ

∂u

∂t
, σ = µ

∂u

∂x
(39)

in media 1 and 2, and matching conditions at x = 0

u1 = u2, µ1 u1,x = µ2 u2,x. (40)

In each medium, the “dispersion” relation reads

D(ω, k) = ω2 − c2 k2 = 0, c = (µ/ρ)1/2. (41)

The general solution in media 1 and 2 is written

u1 = uI + uR, u2 = uT (42)

with

u1 = U cos(k1 x− ω t) +R0 U cos(k1 x+ ω t), u2 = T0 U cos(k2 x− ω t), (43)

where subscripts I, R and T refer to the incident, reflected and transmitted signals, re-
spectively. The conservation of energy flux stands in the well known form

F0 = 1−R2
0 − (z2/z1)T 2

0 ≡ 0. (44)

where R0 and T0 are the reflection and transmission coefficients such that (zα = ρα cα,
α = 1, 2, are impedances)

R0 =
z1 − z2

z1 + z2
, T0 =

2 z1

z1 + z2
. (45)
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In the associated quasi-particle picture the local conservation laws of wave momentum
and energy read in each medium

∂H

∂t
− ∂Q

∂x
= 0,

∂P

∂t
− ∂b

∂x
= 0, (46)

where the energy or Hamiltonian per unit volume H, the energy flux Q, the wave momen-
tum P and the (here reduced to a scalar) Eshelby stress b are defined by (see [6] for the
canonical definitions in three dimensions)

H = E +W =
1

2
ρ u2

,t +
1

2
ρ u2

,x, Q = σ ut = µu,x u,t (47)

P = −ρ u,t u,x, b = −(L+ σ u,x), L = H − σ u,x. (48)

With the perfect interface at x = 0, we can associate one quasi-particle with each wave
component of the problem. With an obvious notation we have the following “masses”:

MI = ρ1 k1 π U
2, MR = ρ1 k1 π R

2
0 U

2, MT = ρ2 k2 π T
2
0 U

2. (49)

The corresponding averaged wave momenta are given by

P I ≡<PI>= ρ1 ω π U
2 (50)

PR ≡<PR>= −ρ1 ω πR
2
0 U

2, P T ≡<PT >= ρ2 ω π T
2
0 U

2 (51)

where we account for the fact that the averaged wave momentum PR is oriented towards
negative x′s. We note ∆M , ∆P , and ∆H the possible misfits in mass, momentum and
kinetic quasi-particle kinetic energy defined by

∆M := MR +MT −MI , (52)
∆P = |PR|+ |P T | − |P I |, (53)
∆H = HR +HT −HI , (54)

where the symbolism | . . . | refers to the absolute value of its enclosure. That is, we are
comparing the strengths of the momenta and, therefore, we are not effecting a vectorial
balance. We say that a quantity is conserved during the transmission-reflection problem if
the corresponding misfit vanishes. It is shown that

∆H =

(
1

2
z1 ω π U

2

)
F0, (55)

where F0 has been defined in (44). But the latter vanishes. Accordingly, ∆H ≡ 0: kinetic
energy is conserved in the transmission-reflection problem seen as a quasi-particle process
that may be qualified of Leibnizian (conservation of vis-viva). But “mass” and momentum
are not generally conserved in the present problem as it is immediately shown that [18]

∆M = ρ2 k2 π T
2
0 U

2

(
c2

1 − c2
2

c2
1

)
, (56)

∆P =

(
c1 c2

c1 + c2

)
∆M, (57)

so that ∆P and ∆M always are in the same sign. In particular, ∆M > 0 if c1 > c2 and
∆M < 0 if c1 < c2; ∆M = 0 if and only if c1 = c2.
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6.2 Imperfect interface with possible delamination

In the case of an imperfect interface with possible delamination where the matching condi-
tions (45) are replaced by the conditions (known as Jones’ conditions [19])

σ1 = σ2 ≡ K [u], (58)

where K is a positive (spring) coefficient characterizing the degree of delamination and the
symbol [..] means the jump of its enclosure, i.e., [u] = u2 − u1 at x = 0. We must look for
complex solutions of the type u = A exp(i (k x− ω t)). Conditions (58) yield the following
equation that replaces (44) — now |R| and |T | are the moduli of complex reflection and
transmission coefficients:

FK = 1− |R|2 − (z2/z1) |T |2 ≡ 0. (59)

It is shown that [18]

FK = F0

(
1− z2

1 z
2
2

z2
1 z

2
2 + (K/ω)2 (z1 + z2)2

)
. (60)

The solution of this imperfect interface case is characterized by the parameter K/ω which
shows the role played by the frequency ω. The limit caseK →∞ corresponds to the perfect
interface for which (44) holds true. The limit case K → 0 corresponds to full delamination
(no more transmission and complete reflection: T = 0, R = 1).

In the associated quasi-particle picture, there is no need to redo the computations. It
suffices to replace the transmission and reflection coefficients of the perfect case by the
moduli of the new complex coefficients. Thus (55) is replaced by

∆H =

(
1

2
z1 ω π U

2

)
FK . (61)

But this also vanishes by virtue of (59). Similarly, (56) holds with T 2
0 replaced by |T |2

while (57) remains unchanged, noting that the coefficient c1 c2/(c1 + c2) does not depend
on K. In the case when K 6= 0 but media 2 and 1 are identical, the presence of the K
spring distribution can simulate a homogeneous surface of damage. In this case, both ∆M
and ∆P vanish so that K is no longer involved. The dependence on K shows only through
the value of any of MR, MT , PR and P T .

6.3 Case of a sandwiched slab and a multi-layered interface

In the case where an elastic slab (medium 2) of thickness d is sandwiched between two
media of elastic type 1, the propagation considered is from left to right with reflection
coefficient R in the left medium 1 and transmission coefficient T in the right medium
1. We assume that d � λ2, where λ2 is the (elastic wave) characteristic wavelength of
medium 2, so that the association of quasi-particle properties makes sense in the slab. We
need not reconsider the wavelike solution. It suffices to apply the results of the foregoing
paragraphs to the two interfaces at x = 0 (transition 1 → 2) and at x = d (transition
2 → 1). Just as before MI , MR, MT , P 1, PR and P T are masses and momenta granted
to the quasi-particles in left and right regions 1. We obviously have (compare (54))

MI ∝ U2, MR ∝ |R|U2, MT ∝ |T |U2, |R|2 + |T |2 = 1. (62)
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In an obvious notation we note

∆M11 = (MR +MT )−MI = 0, (63)

and

∆P 11 =
(
|PR|+ |P T |

)
− |P I | ≡ 0. (64)

Within the slab we distinguish between the particle momentum P
+ with mass M+ asso-

ciated with the right motion and particle momentum P
− with mass M− associated with

the left motion.
Thus for the interface x = 0 we can write

∆M1→2 := (M+ +M− +MR)−MI = (M+ +M−)−MT 6= 0, (65)

and

∆P 1→2 =
(
|P+|+ |P−|+ |PR|

)
− |P I | =

(
|P+|+ |P−|

)
− P T 6= 0, (66)

while for the interface x = d we have similarly

∆M2→1 = MT − (M+ +M−) = −∆M1→2 6= 0, (67)

and

∆P 2→1 = |P T | −
(
|P+|+ |P−|

)
= −∆P 1→2 6= 0. (68)

Note that, logically,(
|P+|+ |P−|

)
= ∆P 1→2 + |P T | (69)

while, obviously,

R ≡ R1→2→1, T = T1→2→1. (70)

These two coefficients can be computed in terms of the mechanical properties of media 1
and 2.

Case of a sandwiched multi-layered structure

With a careful bookkeeping, the formalism and “algebra” just introduced can be applied
to the more complicated case where the sandwiched slab is made of a number n − 1 of
perfectly elastic layers (each with its own elastic properties) numbered i = 2, . . . , n, in
perfect contact (cf. [18]).

7 Conclusive remarks

The wealth of treated cases shows that the association of the waves of interest and the
notion of quasi-particle is not a difficult matter but is limited by the analytical difficulties
met in solving the wavelike continuum problem.
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Influence of scale effects on local stiffness of filled
elastomers in structural modeling
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Abstract

A realistic model of spatial arrangement of fillers in rubber is developed. Structural
parameters of the model as the distribution of filler size, characteristics of secondary
clusters and the presence of large bulk particles (micropellets) are taken from AFM-
scans of carbon black filled rubber vulcanizates. A descriptor of filler distribution in
the matrix - inhomogeneity index is suggested. The analysis of stiffness and inhomo-
geneity index of synthesized 3D-structures allowed to judge the reliability of different
simplifications, as fillers of the same size or random filler arrangement and the ab-
sence of micropellets in structural modelling. Investigation of stiffness versus the size
of modelled volumes showed large deviations of measured values at small scale of
observation (≈ 1µm).

1 Introduction

The addition of active fillers (carbon black, silanized silica) to a rubber matrix leads to sig-
nificant reinforcement of composites. This reinforcement is manifested as an increase in the
toughness, durability of elastomers and, consequently to a longer service life, whereas their
elasticity and ability to multiple reversible deformations caused by stretching remain un-
changed. This is mainly due to strong interphase physicochemical interactions proceeding
in the composite. Filled elastomers are heterogeneous materials and have a microstructure
consisting of spatially connected clusters. A continuous filler network formed in the ma-
terial by the branches of fractal clusters even at a relatively low filler volume fraction of
≈ 12%.

To predict the macroscopic response of such composites under external loading, the
model should reflect in full measure the peculiarities of the microstructure of materials
and demonstrate the interactions between neighbor components. The high processing ca-
pabilities of modern computers make it possible to directly model a representative volume
of the filler network and then to apply some external loading. A starting point for such
simulations must be information about filler geometry and arrangement in the polymer
matrix. The new methods of analysis of AFM-images of filled rubbers developed recently
[1] allowed us to determine the filler geometry and parameters of secondary clusters. This
paper focuses on a method for computer synthesis of spatial filler networks. Input pa-
rameters for the model are taken from the structural analysis of AFM-images of filled
rubbers.

To investigate the changes of stiffness, such variables as filler fraction, size of rep-
resentative volume, presence or absence of single large inclusions, random or cluster filler
arrangement, and filler size (filler particles are equal in size, or particles sizes are distributed
in a log-normal fashion) are taken into account. Much attention is paid to the estimation
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of a minimal reliable size of the structure (mesoscale) to ensure that consideration is given
to a typical representative volume element.

2 Experiments and data analysis

In order to obtain input parameters for the model, carbon black filled styrene-butadiene
vulcanizate samples were examined. The content of carbon black of 10, 30 and 50 phr (i.e.,
grams of carbon black per 100 grams of polymer) corresponds to the volume fractions of
0.04, 0.13 and 0.21, respectively.

Experiments were carried out on an atomic force microscope Bruker Icon. The surfaces
of fresh cuts of filled polymer samples were examined. To perform statistical data analysis,
a few high-quality scans were acquired for each material and further analyzed using our
algorithms developed in Matlab. Example of microstructure image and processing results
are presented in Fig. 1.

Figure 1: AFM-image of the surface of SBR/50 (a) and the result of image segmentation (b)

The algorithm of image segmentetion involves two steps. 1): Find any local maxima of
the surface under study (vertices of future segments). 2): Examine the contour lines around
the obtained maxima and determine the boundaries of segments. Hence, the continuous
relief is divided into separate field of segments.

Examination of the sizes and shapes of segments allowed us to define two types of
inclusions in the polymer: 1) micropellets - for segments of size ≥ 300 nm and compactness
≥ 0.85. 2) filler aggregates - for the rest of segments. The fraction of micropellets is
calculated as the ratio of the total area of the bases of micropellets to the total area of filler
fragments. The results show that the fraction of micropellets decreases with increasing filler
concentration: 41, 23 and 1.1% for SBR/10, 30 and 50 phr respectively. The average size
of such structures is 555, 457, 354 nm. The aggregate size distributions in the materials
under study can be fairly well approximated by the log-normal probability distribution
density law with known parameters.

The segmented surfaces are not homogeneous. It is seen that these surfaces have the
high filler concentration regions connected by branches, i.e., the visible parts of spatial
secondary structures (agglomerates). The number of primary structures (aggregates), N ,
is related to the size of agglomerates, R by the fractal distribution law as N = µRD,
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where µ is the constant, and D is the fractal dimension. The algorithms for image analysis
developed previously [1] allowed us to calculate the fractal dimensions of the secondary
structures of filler aggregates in the materials under study: 1.78 for SBR/30 and 2.02
for SBR/50. The number of secondary structures per 1µm2 of image is 0.06 and 0.11
respectively (name this parameter α).

To quantify the filler distribution (non-spherical objects of different sizes) in the ob-
served areas, the heterogeneity index, J , is introduced. This value indicates the minimum
size of the window, where the filler arrangement is assumed to be homogeneous and can be
calculated as: the m squares of size s2 are randomly chosen in the examined image, and
J(s) is defined as

J(s) = (min(Ai/s
2) +max(Ai/s

2))/(2ϕ∗)

where Ai is the area occupied by filler segments in the i-th square; ϕ∗ - total fraction of
area occupied by segments in the analyzed image. The number of squares, m, is obtained
using the following equation: m = 0.1exp(−7s/L). The closer the value of J(s) to unity,
the more homogeneous the distribution of the filler throughout the material will be at this
scale. With decreasing s, the window starts to get the areas of both the high and low filler
concentration. The value of s∗, from which J(s) substantially deviates from unity, can be
regarded as a critical scale (mesoscopic scale); for any scale s ≥ s∗, the filler distribution
can be considered as homogeneous. For the examined materials s∗ is 13, 8 and 5 µm.

3 Structural model of filled rubber

The structure is modeled by a cube of side-length H. The cube is filled with spheres
representing micropellets or aggregates. The side H is related to the mesoscopic scale as
H = 1.5s∗. To avoid boundary effects, the cube of a greater volume was constructed,
and all the statistics were calculated in its central part with side-length s∗. The sizes
of spheres-micropellets were generated using uniform random distribution until the given
fraction of micropellets was reached. After that, they were arbitrarily placed in inside
the volume H3. The aggregates were generated using the lognormal distribution of sizes
until the total filler fraction was obtained. To construct the spatial network of secondary
structures, the cores of agglomerates were randomly placed in the volume. The number of
cores is related to the parameter α as (αH2 + 1)3. The fractal agglomerates of dimension
D grew sequentially around the cores until all the spheres were placed in the volume. The
algorithm to connect the i-th sphere and the k-agglomerate is as follows.

Let Rk be the size of the k-th agglomerate. The initial Rk is equal to the radius of
agglomerate core. The numbers of spheres belonging to this agglomerate and located at a
distance ≤ Rk ±Rδ from its core are collected into an array {a}, where Rδ is supposed to
be the average diameter of aggregates. An arbitrary value aj is taken from the array {a}.
Next, a series of trials are made to place the i-th sphere near the aj-th sphere avoiding
the intersections of the i-th sphere and the existing structures. To do this, the coordinates
of the i-th sphere are set using the randomly chosen spherical angles with respect to the
aj-th sphere. If all the trials fail, then the next arbitrary sphere with the number from
the array {a} is taken (previous aj-s are not considered). If all the elements from the
array {a} are checked and the i-th sphere is not yet connected with the k-th agglomerate
this means that the k-th agglomerate has reached its maximum size. In this case, further
growth of this agglomerate is stopped, and the i-th sphere is placed into the arbitrary
unoccupied region of the volume and becomes the core of a new agglomerate. In the case
of successful dislocation of the i-th sphere in the k-th agglomerate, the analysis of the
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fractal dependence between the existing number of spheres Nk and its size is performed.
if Nk > RDk then the agglomerate size increases: Rk = Rk +Rδ.

After all of this is over, the next i + 1 sphere-aggregate is connected with the k + 1
agglomerate (or the first agglomerate, if the last has been reached), until all the spheres
are placed inside the volume.

As regards the minimum distance between the aggregates (spheres) in the model, it
is impossible to extract it from the AFM-images because of the limitations associated
with the AFM-tip dimensions (10 nm). However, according to the dielectric spectroscopy
measurements [2], the minimal distance between the carbon black aggregates is ranging
between 2 and 5 nm.

4 Results and discussion

Apart from the structures synthesized using all the above mentioned parameters (case I),
the simplified realizations of these structures are constructed: case II - without micropellets;
case III - without micropellets and with spheres of equal size; case IV - without micropellets,
with spheres of equal size and with random filler arrangement in the matrix. Since the size
s∗ is quite high, the constructed volumes look like black cubes. For better representation,
only the “cuts” of the obtained materials - the spheres, whose z-coordinates are within 500
nm from the centre of the volume - are shown in Fig. 2.

Figure 2: ‘Cuts’ of the obtained structures - SBR/10 (a), SBR/30 (b), SBR/50 (c).

For comparison of the synthesized structures with their simplified versions from the
viewpoint of their mechanical stiffness and the development of the continuous filler-network,
the gap lgap between the closest spheres comprising the sample chain from top to bottom
was measured. That is, the first sphere at the top is arbitrarily selected, the closest sphere
that lies lower is found, the in-between gap is measured, the next lower sphere closest to
the second is found, and so on until the bottom is reached. The condition ‘the closest
sphere that lies lower’ means that the zi-coordinate of the centre of the i-th sphere which
is closest to the k-th sphere must lie lower than the point zk −Rk.

In the case of small extension applied to the modelled volume, the mechanical response
of the domain in the gap between the adjacent spheres can be described as the stiffness,
G, of an elastic rod. This type of modelling [3] provides the following relationship between
the gap size and stiffness:

G = EmR
2
min(25 + 4ψ)ln(1 + ψ)(δ/Rmin)0.15ln(δ/Rmin)−0.2ln(0.5+ψ)

where Em is the elastic modulus of the material in the gap; δ is the gap between the
spheres with radii Rmax and Rmin, calculated in the same way as lgap; ψ = Rmax/Rmin
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The values of the gap between the spheres and the average force Fz (Fz = Gu) in the
chain going from top to bottom are summarized (for extension u = 1 nm and modulus
Em 1 MPa) in Table 1. The table does not include any data for the materials with 10 phr
because at low filler concentration no branchy structures of agglomerates appear.

SBR/30 SBR/50
I II III IV I II III IV

gap lg, nm 29.8 27.3 19.3 42.2 22.1 22.6 13.6 13.4
Fz, kN 77 75 42 23 75 76 30 16.1

Table 3: Comparison of different realizations of the structure

I - ‘actual’ structure; II - without micropellets; III - without micropellets, spheres of
equal size; IV - without micropellets, spheres of equal size, random filler distribution.

As shown in Table, in all cases there are differences between the ‘actual’ and simplified
structures: a) the absence of micropellets (large-size inclusions) results in a minor decrease
in the gap, and thus the stiffness of the system changes; b) the spheres of equal size provide
a significant (20-30%) decrease in the gap size, as well as in the stiffness; c). Random filler
distribution causes a three-fold reduction in stiffness and a slight increase in the gap size
(significant for SBR/30).

Index of inhomogeneity J3 for the spatial structures could be calculated by simply
changing areas to volumes in eq. (1). However, this drastically increases the calculation
time. Thus, J3(s) was approximated with average value in the cross-sections of the ‘sample’.
Results are shown in Fig. 3.

Figure 3: Heterogeneity index for different realizations of spatial structures: (a) - SBR/10,
(b) - SBR/30, (c) - SBR/50.

The value of the scale factor, s, at which J(s) falls to almost unity, gives the minimum
size at which the material can be considered as a homogeneous one. Absence of micropellets
(II), usage of spheres of same size (III) and random filler distribution (IV) decrease the
inhomogeneities of filler distribution, especially for the materials with 10 and 30 phr (Fig.
3). The results clearly show that the presence of large inclusions in the material sufficiently
changes the homogeneity of the composite. At the same time, the presence of micropellets
changes only slightly the stiffness and gap size of volumes filled with spheres (See Table).
Thus, if one intends to use such systems to model the mechanical response of filled rubbers,
the micropellets can be neglected, but the other structural properties should be taken into
account. For case (I), the mesoscale is equal to 2000 nm for SBR/50, 6000 nm for SBR/30
and 11000 nm for SBR/10, respectively. For case (II), the mesoscale is equal to 2000 nm
SBR/50, 3500 nm for SBR/30 and 4000 nm SBR/10, respectively.
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Consider how the choice of a representative size of the volume influences the stiffness
of the ‘sample’. To this end, a number of volumes with a variable side length, s, were cut
arbitrarily from different places of large structures, and the average value of Fz and the
standard deviation were computed (Fig. 4).

Figure 4: Tensile force of the “sample” versus its size for SBR/30 (a) and SBR/50 (b).

The vertical bars in Figure 4 mark standard deviation. It is shown that the significant
variation of stiffness (force) is observed for small representative volumes (Fig. 4a). This
fact once again points out that the structural-mechanical investigation of such structures
based on the relatively small volumes can lead to essential disagreement with the bulk
properties. It is clearly shown that the standard deviation approaches some asymptotic
value as the variable side length, s, increases. These values of s are in agreement with
study when J(s) goes down to unity (see Fig. 3). The absence of micropellets (case II)
and other simplifications of the model also decrease the deviation and reduce the path to
asymptote.

5 Conclusion

An algorithm has been developed to construct the spatial structures reflecting the pecu-
liarities of the actual microstructure of filled polymers. The following structural properties
have been considered: the arrangement of filler particles in secondary structures (agglom-
erates), the minimum representative size of the modelled volume, the lognormal aggregate
size distribution, and the presence of large particles. These input parameters of the model
were determined in the structural analysis of the AFM-images of the materials under study.
To evaluate the size of filler dispersion inhomogeneity, a new characteristic - the hetero-
geneity index - was introduced. To find the input parameters for the model, the structural
analysis of styrene-butadiene carbon black filled vulcanizates with 10, 30 and 50 mass
parts of filler was performed. The simulation results reveal that the presence of micropel-
lets increases the scale of inhomogeneity of filler dispersion, but changes the stiffness of
the materials only slightly. It is shown that the use of ‘fillers’ of equal size increases the
homogeneity of the structure but decreases its stiffness. All the observed effects are more
pronounced at low and moderate filler concentrations. The approach and results presented
here will be used further in structural-mechanical modelling of filled elastomers.
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Abstract

The point boundary conditions in the models of continuum mechanics do not
usually create the solutions which could be obtained in the models of particles inter-
actions. For example that occurs in the linear and in nonlinear theory of elasticity
and in fluid mechanics. The corresponding MAC (method of additional conditions)
models were suggested using the MAC Green’s functions and the principle of super-
position. One example of these models was presented at the Conference APM 2011.
The differential MAC models are considered in this paper. The method introducing
these models is based on the changing of the classical differential equations using an
experiment. The experiment consists in the particular test problem in the classical
theory there the solution is not well from the physical point of view. Then the phys-
ically acceptable solution is taken to put it into the stated problem. Some terms in
the equations are excluded or added to include the test solution into the MAC model.
The classical membrane problem is considered and the differential MAC model for
membrane is introduced. This problem could be considered as a test problem to cre-
ate the MAC models for the elastic plate, elasticity, hydrodynamics, heat conduction
equation, Maxwell’s equations, Schroedinger equation and Klein-Gordon equation.
The differential MAC models are very convenient to consider them using the methods
developed in the classical theories. The application of the trigonometric series is con-
sidered as an example.
KEY WORDS: Continuum Mechanics, Differential MAC Model.

1 Introduction

An elastic body with the given displacement of its one point create the infinite stresses
acting near that point in the body [1], [2], [3], [4]. Then the elasticity theory should use
the stress-strain relations for infinite stresses. The experiment with the tension of a rod is
an important tool to obtain the real stress-strain relations for an elastic body. And that
experiments do not show the existance of such relations for infinite stresses. It means that
we cannot apply the traditional elasticity theory to the case of point boundary conditions.
For example if the force is applied to some point of the linear elastic body then the infinite
displacements are at that point and the condition of finite displacement at that point could
not be fulfilled. We suggest to use the differential MAC models of elasticity to analyze the
elastic problems not only with point boundary conditions but also in traditional distributed
boundary conditions in form of displacements or stresses. The strength criteria could be
used in the form which includes the strains but not stresses. The models which used
the membrane equation could be found in many problems of continuum mechanics. That
equation and particular problem for them will be considered first of all and the differential
MAC models for membrane will be introduced. Then these MAC models could be used to
create the MAC models for other theories of continuum mechanics.
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The membrane equation was considered in [6] where an integro-differential MAC model
for membrane was introduced. The differential MAC models for membrane are considered
in this paper.

2 Statement of the membrane problem

Let us consider an elastic membrane. The equation of motion of the membrane is given in
[7] or in [8]:

T0

(
∂2u

∂x2
+
∂2u

∂y2

)
= ρ

∂2u

∂t2
+ q(x, y, t), (1)

where the membrane lies in the plane (x, y) in its natural state, T0 is its tension per a unit
of length, u(x, y, t) is the transversal displacement of the point (x, y) of the initially plane
membrane, ρ is the density of mass per unit area, t is time, q(x, y, t) is the density of the
transversal body forces per unit area.
We can write the equation (1) in the form

c2

(
∂2u

∂x2
+
∂2u

∂y2

)
=
∂2u

∂t2
+ p(x, y, t), (2)

where

c2 =
T0

ρ
, p(x, y, t) =

q(x, y, t)

ρ
. (3)

The correspondent initial and boundary conditions should be added to the equation (2) to
obtain the unique solution of the problem.
Consider the steady state problem for the membrane without any given distributed forces
q = 0. Then the function u(x, y) does not depend on time t and the equation (2) becomes

∂2u

∂x2
+
∂2u

∂y2
= 0. (4)

the membrane could be considered bounded or unbounded with Dirichlet’s or Neumann’s
boundary conditions.

3 Differential MAC models for membrane

3.1 Model 1

Let us consider one particular problem for a circular elastic membrane with the fixed
boundary conditions on the circle and with the nonzero finite displacement at the center
of the membrane. We know that the solution of that problem does not correspond to the
results of the simple experiment with the real membrane [6]. Let us take the experimental
solution and substitute it into the membrane equation (4). Then we will transform the
classical equation of membrane to the form which includes the experimental function as a
solution of the new equation.
Let us take the membrane equation (4) in polar coordinates:

∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2

∂2u

∂ϕ2
= 0, (5)
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where r, ϕ are the polar coordinates. Let the membrane occupies the circle 0 ≤ r ≤ R <∞,
where R is the radius of a circle.
The boundary conditions are supposed to be

u(0) = u0, u(R) = 0. (6)

We accept the experimental solution as

u = u0

(
1− r

R

)
. (7)

The solution (7) is taken from the reality and it is just a function representing the experi-
mental results obtained in experiments with the circular membranes.
Then substituting the function (7) into the equation (5) we obtain the nonzero term

1

r

∂u

∂r
, (8)

which will be excluded from the equation (5). If we accept the equation (5) where the
second term is excluded for all possible membrane solutions then we obtain the differential
MAC model 1 for the steady state membrane problem in the following form

∂2u

∂r2
+

1

r2

∂2u

∂ϕ2
= 0. (9)

The equation (9) in Cartesian coordinates will take the form

∂2u

∂x2
+
∂2u

∂y2
− x

x2 + y2

∂u

∂x
− y

x2 + y2

∂u

∂y
= 0. (10)

The MAC model 1 corresponding to the equation (2) has the equation

c2

(
∂2u

∂x2
+
∂2u

∂y2
− x

x2 + y2

∂u

∂x
− y

x2 + y2

∂u

∂y

)
=
∂2u

∂t2
+ p(x, y, t). (11)

The equation (11) could be written in polar coordinates

c2

(
∂2u

∂r2
+

1

r2

∂2u

∂ϕ2

)
=
∂2u

∂t2
+ p̃(r, ϕ, t), (12)

where p̃(r, ϕ, t) = p(x, y, t). The boundary and initial conditions should be added to the
equation (11) or (12) to obtain an unique solution of the membrane problem. The methods
to obtain the solutions of the presented equations could be taken for example in [9].

3.2 Comparison of classical and MAC solutions for circular membrane

3.2.1 Problem 1

Consider a circular membrane under constant pressure −p in classical case. Then the
stated problem is

d2u

dr2
+

1

r

du

dr
= −p, u(R) = 0. (13)
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The solution of the problem (13) is

u(r) =
p

4
(R2 − r2). (14)

The differential MAC model 1 for membrane is

d2u

dr2
= −p, dU

dr
(0) = 0, u(R) = 0. (15)

The solution of the problem (15) is

u(r) =
p

2
(R2 − r2). (16)

Then we see that the value u(0) = pR2

2 in MAC model is two times more as in the classical
case.

3.2.2 Problem 2

Let us add the following condition to the above Problem 1:

u(0) = 0. (17)

Then the solution in classical case does not exist at all. But the MAC solution exists and
is as follows

u(r) =
pr

2
(R− r). (18)

3.2.3 Problem 3

Let us consider now the free symmetric harmonic vibrations of a circular membrane. The
stated problem in classical case is

d2U

dr2
+

1

r

dU

dr
+
ω2

c2
U = 0,

dU

dr
(0) = 0, U(R) = 0, (19)

where U(r) is the form of membrane corresponding to the eigenfrequency ω. The eigen-
frequences of the problem (19) satisfy the equation

J0

(
ωR

c

)
= 0, (20)

where J0(r) is the Bessel function of the first kind and of order zero.
The corresponding problem for MAC model 1 is in this case:

d2U

dr2
+
ω2

c2
U = 0,

dU

dr
(0) = 0, U(R) = 0, (21)

Solving the problem (21) we obtain the following eigenfrequences:

ωn =
πc

R
(0.5 + n), n = 0, 1, 2, . . . . (22)
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3.2.4 Problem 4

Let us replace the second condition in the classical and in the MAC models of membrane
in the Problem 3 through U(0) = 0. The eigenfrequences in classical model do not exist
at all. And the MAC model gives

ωn =
πc

R
n, n = 1, 2, . . . . (23)

3.3 MAC solution for rectangular membrane

The trigonometric series could be useful to consider the membrane problems for rectangular
membrane like in classical case.
Consider the following problem for a rectangular membrane using the differential MAC
model 1:

c2

(
∂2u

∂x2
+
∂2u

∂y2
− x

x2 + y2

∂u

∂x
− y

x2 + y2

∂u

∂y

)
= p, (24)

where p is a constant, −a ≤ x ≤ a, −b ≤ y ≤ b nd the boundary conditions are: u(−a, y) =
u(a, y) = u(x,−b) = u(x, b) = 0.
Multiplying the equation (24) by x2 + y2 the solution of the problem could be written in
the form

u(x, y) =

∞∑
n=1

∞∑
m=1

anm cos
πx(2n− 1)

2a
cos

πy(2n− 1)

2b
, (25)

where

anm =
p2

c2

(−1)n+m192a2b2(a2 + b2)

π2(2n− 1)(2m− 1){12a2b2 − π2(a2 + b2[b2(2n− 1)2 + a2(2m− 1)2]}
(26)

for n,m = 1, 2, . . ..

3.4 Model 2

The experimental solution of the real membrane test problem could be taken in more
general form:

u(r) = u0

(
1−

(
r

R

)α)
, (27)

where α is an experimental constant. We may change the classical membrane equation for
this symmetric problem to the following one:

∂2u

∂r2
+

1− α
r

∂u

∂r
= 0. (28)

The solution (27) satisfies the equation (28) exactly. It is not an unique equation which
includes the function (27) into its set of solutions. For example the following equations are
satisfied using the solution (27):

∂2u

∂r2
+

1

r

∂u

∂r
+ α2 1− u

r2
= 0 (29)
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or

∂2u

∂r2
+
α2 − α
r2

(1− u) = 0. (30)

We take the equation (28) to create the MAC model 2. Then the equation for the steady
state membrane problem will be

∂2u

∂r2
+

1− α
r

∂u

∂r
+

1

r2

∂2u

∂ϕ2
= 0. (31)

The differential MAC model 2 for membrane in polar coordinates therefore is

c2

(
∂2u

∂r2
+

1− α
r

∂u

∂r
+

1

r2

∂2u

∂ϕ2

)
=
∂2u

∂t2
+ p(r, ϕ, t). (32)

The equations (31) and (32) in polar coordinates are

∂2u

∂x2
+
∂2u

∂y2
− αx

x2 + y2

∂u

∂x
− αy

x2 + y2

∂u

∂y
= 0, (33)

c2

(
∂2u

∂x2
+
∂2u

∂y2
− αx

x2 + y2

∂u

∂x
− αy

x2 + y2

∂u

∂y

)
=
∂2u

∂t2
+ p(x, y, t). (34)

3.5 Model 3

The MAC model 1 was created for a bounded membrane. If we consider the unbounded
membrane then the experimental solution (7) will not satisfy both boundary conditions: at
the origin and at the infinity. We can consider the following virtual experimental solution
in this case

u = u0 exp(−βr), (35)

where β > 0.
The function (35) may satisfy the following differential equation

d2u

dr2
+ β

du

dr
= 0 (36)

or

d2u

dr2
− β2u = 0. (37)

The additional experiments with membrane should be used to choose the equation (36) or
(37). If we choose the equation (36) then the corresponding membrane equation for MAC
model 3 will take the form

c2

(
∂2u

∂r2
+ β

∂u

∂r
+

1

r2

∂2u

∂ϕ2

)
=
∂2u

∂t2
+ p(r, ϕ, t). (38)

We have considered some differential MAC models without changing the order of the
partial differential equation of membrane. But it is possible to consider the MAC models
introducing the differential equation of higher order as the classical one. It is not considered
in this paper.
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4 Differential MAC model for elasticity

Let us consider the following particular problem of the linear isotropic elasticity [5]. An
elastic body occupies the unbounded cylinder 0 ≤ r ≤ R, where R is the finite radius of
the cylinder. Let the displacement field of the body is in cylindrical coordinates r, ϕ, z:

ur = ur(r, ϕ), uϕ = ur,ϕ, uz = uz(r). (39)

Then the component uz satisfies the equation

∂2uz
∂r2

+
1

r

∂uz
∂r

= 0. (40)

Let us apply the boundary conditions uz(0) = u0 6= 0, uz(R) = 0. Then we have the same
mathematical problem as for the membrane problem where the MAC model 1 was created.
Using the obtained MAC model 1 for membrane we may introduce the MAC model 1
for elasticity equations. The differential MAC model 1 equations for the linear isotropic
elasticity in Cartesian coordinates are

(λ+µ)
∂e

∂x
+µ

(
∂2ux
∂x2

+
∂2ux
∂y2

+
∂2ux
∂z2

− y
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∂ux
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− z

y2 + z2

∂ux
∂z

)
+ρ0Bx = ρ0

∂2ux
∂t2

,

(41)
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+
∂2uy
∂y2

+
∂2uy
∂z2

− x

x2 + z2

∂uy
∂x
− z

x2 + z2

∂uy
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)
+ρ0By = ρ0

∂2uy
∂t2

,

(42)

(λ+µ)
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+µ

(
∂2uz
∂x2

+
∂2uz
∂y2

+
∂2uz
∂z2

− x

x2 + y2

∂uz
∂x
− y

x2 + y2

∂uz
∂y

)
+ρ0Bz = ρ0

∂2uz
∂t2

,

(43)

where

e =
∂ux
∂x

+
∂uy
∂y

+
∂uz
∂z

. (44)

Other MAC models for elasticity could be easily obtained too.

5 Conclusion

The differential MAC models of many physical theories may be created in similar way
replacing the Laplace operator through the given differential operators in MAC models
for membrane. Examples of the theories which could give the differential MAC models
are hydrodynamics, Maxwell’s equations, Schroedinger equation, Klein- Gordon equation,
heat conduction equation.
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Abstract

The paper presents the results of theoretical investigations of combustion and
detonation initiation in heterogeneous polydispersed mixtures. The problems of fuel
droplets atomization, evaporation and combustion being the key factors for ignition
delays and shock waves attenuation evaluation in heterogeneous mixtures and the
non-equilibrium effects in droplets atomization and phase transitions were taken into
account. The effects of droplets size non-uniformity and spatial distribution non-
uniformity on mixture ignition and flame acceleration were investigated for strong
and mild initiation of detonation: by a shock wave and spark ignition followed by
deflagration to detonation transition (DDT).

Keywords: spray, detonation, combustion, onset, droplet.

Introduction

Most of rocket and aviation engines have pulverized in air fuels combustion serving the base
of their working cycle. Thus combustible mixtures formation and deflagration or detonation
initiation in poly-dispersed fuel – air mixtures are the key aspects providing different
limitations for operation of those engines. Onset of detonation being very dangerous for
conventional engines could, however, serve the basis for creating new generation of engines
- pulse detonating engines (PDE). Dispersed mixtures having been formed by different
pulverizers could not be spatially uniform. However, in most experimental and theoretical
investigations the ignition characteristics of uniformly distributed in space mixtures were
studied. To achieve uniform droplet distribution and to avoid gravitational separation of
the mixture having been formed investigations under microgravity conditions are performed
[1]. The goal of the present research was, however, to investigate sensitivity of detonation
onset to mixture parameters non-uniformity (spatial non-uniformity of dispersed phase,
size distribution function, etc.) for both strong and mild initiation. Special attention was
paid to peculiarities of droplet interaction with a high enthalpy flow.

Mathematical model for polydispersed mixture combustion

The mathematical models for simulating turbulent chemically reacting flows in heteroge-
neous mixtures were described in details in [2 - 4]. Combustion processes in heterogeneous
mixtures differ greatly from that in homogeneous mixtures, because they are governed not
only by chemistry but also by physical processes of combustible mixture formation, such as
droplet atomization [3, 4], evaporation and diffusive mixing of fuel vapor with an oxidant.

The model applies both deterministic methods of continuous mechanics of multiphase
flows to determine the mean values of parameters of the gaseous phase and stochastic meth-
ods to describe the evolution of polydispersed particles in it and fluctuations of parameters.
Thus the influence of chaotic pulsations on the rate of energy release and mean values of
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flow parameters can be estimated. The transport of kinetic energy of turbulent pulsations
at the same time obeys the deterministic laws being the macroscopic characteristic.

The motion of polydispersed droplets (particles) is modeled making use of a stochastic
approach. A group of representative model particles is distinguished each of them repre-
senting a number of real particles. Motion of these particles is simulated directly taking
into account the influence of the mean stream of gas and pulsations of parameters in gas
phase [2, 3], as well as evaporation and atomization. Thus a great amount of real particles
(liquid droplets) was modeled by an ensemble of model particles. Each model particle was
characterized by a vector of values, representing its location, velocity, mass, number of real
particles represented by the given model one and other properties. The number of model
particles was 25000 each representing up to hundred thousand real particles (depending on
mass fraction of fuel). The number of cells was of the order of thousand. Thus the minimal
average number of model particles per a grid node was provided guaranteeing sufficient
accuracy of fluxes between phases evaluation.

The momentum equation for a single droplet motion in the gas flow has the following
form [2, 3]

m
du

dt
= mg − φ · ∇p+ fd,

dr

dt
= u, fd =

Cd
2
ρg
πd2

4
(v − u) |v − u| , (1)

the drag coefficient being the function of Reynolds number

Cd =

(
24

Re
+

4, 4√
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+ 0, 42

)
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ρ |v − u| d
µ

,
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√
ρ
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(
2− ρ

ρs

)
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(
T
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)4/5

ρs
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=


(
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2 M2

)1/(γ−1)
, M < 1

(γ+1)M2

(γ−1)M2+2

(
1 + γ−1

2
(γ−1)M2+2

2γM2−(γ−1)

)1/(γ−1)
, M ≥ 1

(2)

The energy equation for a droplet has the following form [2]

m
de

dt
= q +Qs,where e = cvsTs + h0

f Qs =
dm

dt
hL (3)

where hL is the latent heat of evaporation, Qs - the energy of phase transitions. Heat
flux to a single droplet from the surrounding gas flow is determined as follows [7]:

q =

{
πdλ ·Nu · (T − Ts), Re < 1000,

πd2ρ|v − u| · St · (Hr −Hw), Re ≥ 1000,

Nu = 2 + 0.16 ·Re2/3 · Pr1/3, St =
Cd
2
Pr−2/3

(4)

The non-equilibrium evaporation model is used to determine the evaporation rate [3]

ṁ = πd·ρD·Nu·log

(
1− Ye
1− Yw

)
Yw =

WNP0

Wp
exp

[
Hb

R

(
1

Tb(P0)
− 1

Ts

)]
−ṁ
√

2πRTs
πδepd2

(5)

The dynamic interaction of liquid droplets with the gaseous flow could bring to instability of
the interface in the shear flow and atomization of droplets. The criterion for liquid droplets

276



Combustion onset in non-uniform dispersed mixtures

instability is that of the critical Weber number [5]: We =
ρv2reld
σ , where σ is the surface

tension at the interface, vrel is relative velocity of a droplet versus gas. On exceeding
the critical value of the Weber number droplets break up due to vibrational instability
takes place. On essentially surpassing the critical Weber number other mechanisms start
playing essential roles in the break up process that brings to formation of fine mist [3, 5, 7].
These main characteristics of the atomization process could be taken into account by the
following approximate formula [3] determining mean diameters of droplets da originating
in atomization of initial droplets (diameter d):

da =


d =

(
6α2
πn

)1/3
, We < We∗

dWe∗
We , We∗ ≤We ≤We∗∗

d∗, We > We∗∗

We∗ = 12(1 +Lp−0.8),We∗∗ = 350 (6)

where n is the number of droplets per volume unit, α2 – volumetric fraction of the droplet
phase, We∗ - the critical Weber number, Lp = dρcσ

µ2c
- the Laplace number, ρc, µc - liquid

density and viscosity.
To determine the mean diameter of droplets d∗ after the breakup of a type of an

explosion (We > We∗∗) one needs to evaluate the part of the accumulated by a droplet
energy spent for the breakup. The assumption, that the breakup energy was spent for the
formation of new free surface makes it possible to evaluate the number N and the mean
diameter d∗ of the formed droplets:

N =

(
1 +

E∗
σπd2

)3

d∗ =
d

1 + E∗
σπd2

E∗ = Adrag −
N∗∑
i=1

miv
2
i∗

2
(7)

Where the breakup energy is evaluated as the difference between the work of the drag
forces separating small droplets from the initial one, and the kinetic energy of fragments’
scattering. Thus main assumption of the model is the following: work of drag forces in
separating pieces of droplets is spent for additional free surface formation and relative
kinetic energy of fragments.

Assuming that the initial droplet is split into N∗ equal droplets (N∗ = d3

d3∗
) having equal

velocities of radial expansion of the cloud v∗ and the separation of droplets takes place after
the droplet is moved away at a distance ∼ d∗, one obtains the following formulas:

Adrag =
1

8
N∗ρCdv

2
relπd

2
∗d∗ d∗ =

d

1 + 1
4

(
1
2Cdρv

2
rel −

1
3ρcv

2
∗

)
d
σ

(8)

The mean velocity of the cloud expansion v∗ could be evaluated based on the condition
of matching the two formulas for da atWe = We∗∗. The reason to perform that matching is
that both formulas for breakup regimes were obtained from experiments, thus, indirectly
the expansion of the cloud of droplets after the breakup should have been taken into
account. On the other hand, the dependence of characteristic droplets diameters on the
Weber number should be continuous. In modeling droplets breakup in a gas flow the
inertia of the process should be taken into account. Fragmentation does not take place
instantaneously: it needs time for small droplets to separate from the initial one, i. e. it
needs a definite time for the liquid bridges between the droplets to be established, elongated
and broken [3]. Then, finally the first order estimates give the following formula:

d∗ =
dWe∗

1
8Cd(We−We∗∗)We∗ +We∗∗

t∗ =
d

vrel

We∗
We

(
1 +

3

8
Cd

ρ

ρc

(
1− 4

CdWe∗

))
(9)
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Figure 1: Droplet diameter variation versus
time for droplets of different initial diame-
ters. V0 = 50m/s, taking into account at-
omization.

Figure 2: Mean droplet temperature varia-
tion versus dimensionless time for droplets
of different diameters. V0 = 50m/s, taking
into account atomization.

Coalescence of droplets due to collisions is neglected. This assumption is valid for rarefied
mixtures. In present simulations we’ll study mixtures, wherein volume fraction of fluid is
10−3, which provides the probability of collision 10−6.

Numerical investigation of gas-droplet interaction in streaming flows

In order to evaluate the influence of different factors on the rate of droplet evapora-
tion and mixture formation in heterogeneous detonation, let us investigate the problem
of droplet interaction with the streaming gas flow taking into account mechanical drag,
atomization of droplets, non-equilibrium heat and mass transfer. A series of model prob-
lems was regarded, in which gas flow and droplet initially had different relative velocities
and temperatures, and then relaxation took place. Those model problems are similar to
that encountered in shock wave initiation of detonation in combustible dispersed fuel-air
mixtures. The two-phase flow becomes strongly non-equilibrium behind the shock wave,
because due to mechanical inertia droplets keep their speed practically constant and gas
accelerates on passing the shock wave. Besides, due to thermal inertia, temperature inside
droplets practically does not change, while gas temperature increases instantaneously be-
hind the shock wave. Due to that reason gas temperature in all the numerical experiments
was assumed to be higher than the boiling temperature for liquid droplets.

The thermophysical properties for gas and droplets were assumed similar for all nu-
merical experiments: ambient pressure p = 1.013bar, temperature T = 1000K, gaseous
phase – air, liquid – n-decane (C10H22 ). Initial droplet temperature was assumed to be
T = 300K.

The relaxation processes for droplets of different diameters were regarded. Numbered
lines on the successive figures correspond to the following initial diameters of droplets: 1
– 1 µm; 2 – 5µm; 3 – 10 µm; 4 – 50 µm; 5 – 100 µm; 6 – 500 µm; 7 – 1000 µm.

Figs. 1-2 illustrate parameters of droplets variation in the process of mechanical and
thermal relaxation for the set of numerical experiments assuming initial velocity difference
to be equal to 50 m/s. Fig. 1 illustrates droplet diameter variation due to evaporation.
Large droplets undergo atomization until their diameter gets smaller. That is the reason
for the 6-th and 7-th curves in Fig. 1 to converge into one, because atomization terminates
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on reaching by all droplets one and the same diameter. It is seen from the figure that
evaporation time increases with the increase of initial droplet diameter, but the increase
does not take place monotonically: the increase of life time (curves 1, 2, 3, 4) changes for
a decrease (curves 4, 5) and then comes back to an increase (curves 5, 6, 7). That testifies
the effect of manifestation of different mechanisms depending on the characteristic size of
droplets.

One could distinguish the characteristic deceleration time τ (velocity decreases e times)
for each droplet. This time depends on droplet initial mass m0, relative gas velocity v0

and drag fd.

τ =
v0

a0
where a0 =

fd(t = 0)

m0
(10)

The time being normalized to this value, and droplet diameter being normalized to its initial
value allow us to obtain the dependences for a droplet temperature versus normalized time,
which is present in Fig. 2. The dynamics of droplet heating is the following. For small
droplets (curves 1, 2, 3, 4) in the very beginning the temperature increases due to external
heating. On rapid decrease of droplet relative velocity evaporation in the stream of gas
brings to a decrease of temperature. Then on decreasing droplet radius heat fluxes growth
brings to an increase of temperature until the droplet disappears. The first increase of
temperature is higher for larger droplets, which relative velocity decreases much slower
than for small droplets. Very large droplets follow different scenario. The first increase of
their temperature goes as high as up to the critical value. Then evaporation takes place
at a critical temperature very rapidly. Arrows with numbers in Fig. 2 indicate the end of
droplet life time. That is the reason for a larger droplet (curves 5 in Figs. 1 and 2) to have
a shorter life time.

Non-uniform sprays combustion

Numerical investigations of detonation initiation in dispersed hydrocarbon fuel - air mix-
tures after mild ignition via DDT and by shock waves of different intensities were performed
in tubes of cylindrical geometry. The flow was assumed to have the following initial tur-
bulence characteristics: energy k = 0.1J/kg, the mixing length l = 0.01m, mean velocity
u = 0, initial temperature 300 K. The number of model particles used in calculations was
25000. Validation of numerical scheme was performed based on comparing the obtained
results of numerical simulations for the detonation wave velocities in dispersed mixtures
with available experimental data. Fig. 6a illustrates detonation velocities in hydrocarbon-
oxygen two-phase mixtures developed in numerical simulations and in experiments [8-10].
Liquid n-decane (C10H22) fuel was used. Fig. 6b illustrates turbulent flame propagation
velocities versus velocity pulsation in gaseous mixtures of CH3OH,O2and N2. (Curves –
experiments [11], dots – numerical computations). Satisfactory coincidence of theoretical
and experimental data could serve a macroscopical validation for the developed model.

To simulate hydrocarbons the following parameters were taken: ρ = 850kg/m3; ∆H =
43MJ/kg; hL = 200kJ/kg; W = 140kg/kmol. The reduced kinetic model is provided in
[7]. The share of water in hydrocarbon decomposition was assumed to be ζ = 0.2.

Initiation of combustion by a shock wave was studied in a tube 0.5 m long and 0.05m
diameter. The aerosol occupied the cylindrical coaxial zone beginning from 0.1 m along the
axis its diameter being equal to 0.015 m. The mean droplets diameter was assumed 100µm,
minimal diameter - 10µm, maximal- 200µm. The droplets size distribution function was
assumed to be a triangular one. The initial droplets density was varied from 5 to 20kg/m3.
The results of simulations (Figs. 3 and 4) show that for different fuel concentration and
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a)

b)

Figure 3: Hydrocarbon concentration for shock wave propagation in dispersed mixture (a
- initial fuel density 5 kg/m3; b - initial fuel density 20kg/m3).

a)

b)

Figure 4: Pressure maps (Pa) for shock wave propagation in dispersed mixture (a - initial
fuel density 5kg/m3; b - initial fuel density 20kg/m3).

intensity of shock wave initiation different scenarios of the process are possible. There could
be formed a combustion wave lagging behind attenuating shock. There could be onset of
detonation, or galloping detonation in the dispersed layer. For high average density of fuel
droplets within the layer combustion does not take place inside layer, where pressure is
maximal, however high speed detonation type process onset on the periphery is observed
supported by the piston effect due to induced vapor combustion in the zones within the
concentration limits.

Mild ignition and detonation onset via DDT was simulated in a tube, which diameter
was 20 mm, the tube length was 2 m (Fig. 5), the mean droplet diameter was assumed
50µm, minimal diameter - 10µm, maximal - 100µm. The droplet size distribution function
was assumed to be a triangular one. The mixture filled the whole tube, initial droplet
volume concentration being equal α = 0.001.

Numerical modeling of two phase mixture ignition and combustion was carried out to
understand better the deflagration to detonation transition (DDT) processes. Submicron
particles did not play any role in the present study, as their lifetime was negligibly small
being below the limit of accuracy of numeric scheme. The size of droplets accounted by the
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Figure 5: Computational domain for DDT simulations.

Figure 6: Detonation velocities in n-decane (C10H22)-oxygen two-phase mixture (a) and
turbulent flame velocity in one-phase (b) mixture developed in numerical simulations and
in physical experiments.

model is the one larger then minimal size evaporating within one time step. Reaction rate
of smaller (submicron) particles cannot influence simulations, as the total energy release
of their burning out is distributed within the computational cell within one time step.
The effect of droplet size distribution function on the DDT process was investigated in
[4]. Here we’ll study the effect of droplet spatial distribution on the onset of detonation.
As it was shown in [2] droplet spatial non-uniformity promotes ignition and combustion
onset. In particular, the presence of concentration gradient in droplet spatial distribution
lowers the minimal ignition concentration in the zone of energy release. The successive
results illustrate the combustion zone averaged axial velocity variation versus time and
tube length for different spatial distributions of droplets.

For one and the same fuel content (ρ̄ = 0.8kg/m3) and similar droplet size distribution
function the spatial non-uniformity along the longitudinal co-ordinate was investigated.
The values of other ignition characteristics were also similar: T0 = 300K, p0 = 1bar, k0 =
0.1j/kg,Eign = 3.5j, tign = 100µs Fig. 7 presents the comparison of results obtained for
homogeneous (a) and non-homogeneous (b) spatial distribution of droplets. In case (b)
mean fuel concentration is decreasing along x-axis.

For the case (a) the turbulent flame propagation in the mixture is very non-monotonic.
Velocity first stays at the level of 200 m/s, then it increases up to 700 m/s, again decreases
to 600 m/s then increases to 1100 m/s and decreases to 500 m/s again, and then increases
up to 1800 m/s and decreases to an average self-sustaining velocity of 1600 m/s with
periodical oscillations near that value. It is seen, that in the beginning some galloping
combustion mode is established, which turns to be unstable with increasing amplitude of
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a) b)

c) d)

Figure 7: The effect of spatial non-uniformity of mean droplet concentration distribution (a
– uniform, b – non-uniform) on the onset of detonation in polydispersed mixtures. Velocity
versus axial coordinate (c) and versus time (d) diagrams.

a) b)

c) d)

Figure 8: The effect of increasing along the axis mean droplet concentration (a – uniform,
b – non-uniform) on the onset of detonation in polydispersed mixtures. Velocity versus
axial coordinate (c) and versus time (d) diagrams.
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a) b)

c) d)

Figure 9: The effect of spatial non-uniformity of mean droplet concentration distribution
in radial direction (a – uniform, b – minimum on the axis) on the onset of detonation in
polydispersed mixtures. Velocity versus axial coordinate (c) and versus time (d) diagrams.

oscillations until finally an overdriven regime is formed, after which mean velocity cannot
go down below the self-sustaining one. Detonation in poly-dispersed fuel-air mixture is
named a self-sustaining propagation of shock induced ignition. Comparison with cellular
gaseous detonation does not seem legible, because cellular structure is an attribute of
gaseous detonation, but by no means its definition.

Results of numerical simulations show that pre-detonation length remains practically
the same for different spatial distribution of condensed matter (Figure 7 c). It seems to
be even a little shorter for the case of the increased fuel concentration in the beginning of
the tube. While velocity versus time diagrams show essential increase of pre-detonation
time. This effect is due to a serious decrease of flame propagation velocity in the ignition
section (50 – 100 m/s), which takes place because of the increased heat losses to heat the
increased mass of droplets.

Figs. 8-9 illustrate DDT process after ignition in the non-uniform mixture with increas-
ing along the axis mean fuel content (Fig. 8), decreasing in the radial direction (minimal
in the center – Fig. 9). Comparison of results shows, that for the increasing fuel concentra-
tion along the axis pre-detonation length and time practically do not depend on such type
of non-uniformity, while for radial non-uniformity pre-detonation time grows due to initial
decrease of mean axial flame propagation velocity. When fuel concentration is maximal
in the ignition zone more time is needed to heat all the droplets, which increases ignition
delay, when fuel concentration is minimal in the ignition zone at the axis, propagation
velocity is limited by lean conditions, which brings to ignition delay due to the increase of
evaporation time to guarantee the necessary vapor concentration.

The results of simulations based on the developed model show that the zone of increased
density of droplets behind shock waves appear, which was first discovered numerically by
Korobeinikov [6] and named the ρ-layer. Later, the formation of ρ-layers in dusty gases
was confirmed experimentally. The present results show that for liquid droplets ρ-layers
are formed as well behind shock waves despite droplets atomization. After ignition of
dispersed mixture either turbulent combustion wave is formed lagging behind the atten-
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uating shock wave, or a self-sustaining detonation wave. The spatial non-uniformity of
droplet distribution in the radial direction for this type of initiation also inhibits the onset
of detonation.

Conclusions

Investigating the behavior of individual droplets in a heated air flow allowed distinguishing
two scenarios for droplet heating and evaporation. Small droplets undergo successively
heating, then cooling due to heat losses for evaporation, and then rapid heating till the
end of their life time. Larger droplets could directly be heated up to a critical temperature
and then evaporate rapidly. Atomization of droplets interferes heating and evaporation
scenario.

Investigating droplet cloud strong ignition by a shock wave showed that increase of
droplet concentration above definite value inhibits the onset of detonation in dispersed
mixtures and gives birth to a detonation mode typical for non-premixed systems, when
chemical reaction takes place only in a thin border layer of the cloud from thus supporting
the shock wave in pure gas propagation.

The onset of detonation in case of a mild ignition of dispersed mixtures at ambient
pressures and temperatures comes via galloping combustion mode with increasing am-
plitude finally bringing to an overdriven detonation regime, which then evolves into a
self-sustaining one. Generally speaking, convective combustion in dispersed mixture could
lead either to a galloping mode, or to onset of detonation. For large droplets and small
ignition energy only galloping combustion modes could be attained.

Non-uniform spatial distribution of droplets has a strong influence on predetonation
time (in most cases time is increasing) and much smaller effect on predetonation length.
Different types of spatial non-uniformity inhibit deflagration to detonation transition, or
direct initiation of detonation, while in case of turbulent flame initiation by spark ignition
spatial non-uniformity could serve a promoting factor [2].
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Abstract

A numerical algorithm for solving certain problems in mathematical physics (one-
and two-dimensional), are to determine the minimum of a quadratic functional defined
in a region containing the previously unknown surfaces. The latter is determined from
the minimal functional with unknown functions. We consider the problem for a plane
area. Two-dimensional problem is solved by the method of grids. Interface position
is defined from a minimum condition. The presented new algorithm uses various
methods to search minimum, in particular, genetic algorithms are implemented.

Keywords: algorithm, functional, at least, genetic algorithm, grid, function, area,
interface

1 Introduction

Mathematical models of many physical processes and the phenomena lead to the boundary-
value problems of mathematical physics containing in advance unknown surfaces, subject
to determination during the problem solution. An example of such problem is the model
of melting of ice - the so-called Stefan’s problem. Since Gibbs works, for the solving of
problems with unknown interfaces the variation methods are widely used. The idea of the
solution of such problem consists of in determination of the extremal or stationary points
of corresponding functional. A feature of this class of problems is that the variation should
be viewed not only the unknown function, but also the position of an unknown interface.
Thus, the mathematical challenge is to find such

u∗, Ã : I
(
u∗, Ã∗

)
= min

u∈H,Γ
I(u,Γ),

where u is some of the functions of a certain space H, and Γ is the position of an unknown
interface.

The mathematical theory of this class of problems in a certain degree of development
[8]. However, the numerical study of such problems are encountered considerable difficul-
ties. In this paper, we propose a numerical algorithm for solving problems with unknown
interfaces.The idea of the method is as follows.

Assume that we know any provision of Γ̃. Then, solving the problem of finding u
min
u
I(u, Γ̃), can be found ũ corresponding to the Γ̃. Substituting ũ in I, we obtain a

functional that depends only on Γ:

Ĩ(Γ) = I(ũ(Γ),Γ).

Steps of the algorithm can be roughly summarized as follows:
1. Set the initial position of the border: Γ0.
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2. A decision is determined u0.

3. Calculate I0 = I(u0,Γ0).

4. Γn−shall be verified the following approximation.

5. Find a solution un : min
u
I(u,Γn).

6. Calculate In = I(un,Γn.

7. Check the condition of convergence.

The key questions are:

a) Choice of the next iteration Γ;

b) Choice of conditions for convergence of the minimization of the sequence In.

2 Problem Statement

In the rectangular area, where given an equation k ±∆u = f , where ∆ = ∂2

∂x2
+ ∂2

∂y2
and

Dirichlet boundary conditions, it is necessary to determine the position of the unknown
interface Γ, which are given matching conditionsk+

∂up
∂n = k−

∂um
∂n .

Figure 1: Formulating the problem

Interface Γ is found by minimizing a functional

I =
1

2

∫
v+

k+∇u2dV+ +
1

2

∫
v−

k−∇u2dV− −
∫

v+∪v−

fudV

3 Genetic algorithm

Note that the result we solve the problem of minimum of several variables. For two-
dimensional problem the number of variables is twice the number of nodes used to ap-
proximate the unknown boundary. Therefore, it is essential to the issue of choosing a
method of finding the minimum. Promising class of algorithms are the so-called genetic
algorithms.What is a genetic algorithm?Genetic algorithm - a method for solving optimiza-
tion problems based on natural selection, just as it is in the process of biological evolution.
In the genetic algorithm is repeated modification of a family of individual decisions. At
each step in the genetic algorithm were selected randomly chosen subjects from the result-
ing current solution, called the parent and which is used to generate the next generation
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child. Through successive generations of selection is "evolution" toward an optimal solu-
tion.Genetic algorithm (GA) can be viewed as a type of random search, which is based on
mechanisms that resemble natural selection and reproduction.

Unlike existing techniques, the GA starts with a random set of initial solutions, called
population. Each element of the population is called a chromosome and represents a
solution to a first approximation. Chromosome is a string of characters of some nature,
not necessarily binary. Chromosomes evolve through many iterations, called generation
(or generations). During each iteration of the chromosome is evaluated using some fitness
function. To create the next generation of new chromosomes, called offspring, are formed
either by crossover of two chromosomes - the parents of the current population, either
by random changes (mutations) in one chromosome. New population is formed by (a)
selection according to the match function of some parents and offspring and (b) removal
of remaining in order to maintain a constant population size.

Chromosomes with higher fitness function are more likely to be selected (to survive).
After several iterations, the algorithm converges to the best chromosome, which is either
optimal or near-optimal solution.

Figure 2: Generalized structure of the genetic algorithm.

Thus, two kinds of operations:

1. Genetic operations: crossover and mutation;

2. Evolutionary operation: a choice.
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Genetic operations resemble the process of gene inheritance when creating a new offspring
in each generation. Evolutionary operation, making the transition from one population to
the next, like the process of Darwinian evolution.

There are two major advantages of genetic algorithms using optimization techniques
to the classic:

1. GA has no significant mathematical requirements for the types of objective func-
tions and constraints. The researcher should not simplify the object model, losing
its adequacy, and seeking the possibility of using artificially available mathematical
methods. It can be done a variety of target functions and constraints (linear and
nonlinear) defined on discrete, continuous and mixed universal sets.

2. When using the classic turn-based methodology of global optimum may be found only
when the problem has the property of convexity. At the same time the evolutionary
operations of genetic algorithms make it possible to effectively seek out the global
optimum.

4 Algorithm for solving

1. Set a, b, h, k+, k− and the type of interface (until I considered only the case of
straight boundaries).

2. Building a mesh: na is number of points on [0, a]; nb is number of points on [0, b];
xi = (i− 1) ∗ h, i = 1...na; yj = (j − 1) ∗ h, j = 1...nb.

3. In arrays xG, yG put the mesh nodes, through which the border. xG stores the x
coordinate interface and yG is coordinate y.

4. Plotted on a grid and the resulting interface.
5. Obtain sets V+ and V−. V+ will be stored in an array xV P - sites of x and yV P are

nodes on y; V− will be stored in an array xVM - sites of x, and yVM - sites in y.
6. Determine the location of the interface, to remember the coordinates of the interface

in arrays gNy and gNx.
7. Assign the interface unknown constant a, the array of unknowns.
8. Looking up, a solution to the V+:

(a) Write the boundary conditions up(:, 1) = 0, up(1, :) = 0, up(nb, :) = 0.
(b) Compute f(x, y) at grid points on the V+– fij .
(c) For internal nodes equates using difference formulami.Uravnenie k+δup =

f(x, y) takes the form upi+1j − 2upij + upi−1j + upij+1 − 2upij + upij−1 −
fijh

2/k+ = 0.
9. Solve the resulting system of equations.
10. Obtain the solution up, which depends on a, where a = up(gNy(i), gNx(i)).
11. Recall condition. If we assume that the boundary - a straight line, then the normal

n = [h 0]. If we denote the set of nodes V − um, then we can write the expression
for the gradients of the normal (written for the nodes within the mesh)
grup = [(up(gNy(i), gNx(i)) − up(gNy(i), gNx(i) − 1))/(h)(up(gNy(i), gNx(i)) −
up(gNy(i)− 1, gNx(i)))/(h)]

grum = [(um(gNy(i), gNx(i) + 1) − um(gNy(i), gNx(i)))/(h)(um(gNy(i) +
1, gNx(i))− um(gNy(i), gNx(i)))/(h)]

The difference equation for the condition has the form

kp∗(n(1)∗grup(1)+n(2)∗grup(2))−km∗(n(1)∗grum(1)+n(2)∗grum(2)) = 0.
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Because n = [h 0], we have

kp ∗ (up(gNy(i), gNx(i))− up(gNy(i), gNx(i)− 1))− km ∗ (um(gNy(i),

gNx(i) + 1)− um(gNy(i), gNx(i))) = 0.

For convenience gNy(i) = i, gNx(i) = j. Obtain

kp ∗ up(i, j)− kp ∗ up(i, j − 1)− km ∗ um(i, j + 1) + km ∗ um(i, j) = 0.

It is known that

up(i, j) = um(i, j).Thenkp∗up(i, j)−kp∗up(i, j−1)−km∗um(i, j+1)+km∗up(i, j) = 0

(kp+ km) ∗ up(i, j)− kp ∗ up(i, j − 1)− km ∗ um(i, j + 1) = 0

um(i, j + 1) = ((kp+ km) ∗ up(i, j)− kp ∗ up(i, j − 1))/km.

It turns out that we have expressed through the nodes set up V−, are in the column
that follows the border (marked with blue dots).

Figure 3: The column that follows the border

For the remaining nodes um:

(a) Write the boundary conditions um(:, na) = 0, um(1, :) = 0, um(nb, :) = 0.
(b) For internal nodes equates using difference formulas. Equation k−δum = f(x, y)

takes the form umi+1j−2umij+umi−1j+umij+1−2umij+umij−1−fijh2/k− =
0

(c) Compute f(x, y) at grid V− − fij .

12. Obtain a solution um, that depends on a = up(gNy(i), gNx(i)).

13. Searching of the functional

Term becomes

1. Term 1
2

∫
V+
k+∇u2dV+ becomes

1

2

∑
m

∑
n

∫xn+1

xn

∫ym+1

ym

(
ux2 + uy2

)
dxdy =

=
1

2

∑
m

∑
n

(
ux2 + uy2

)
(xn+1 − xn) (ym+1 − ym) = sp

There are

xn, ym ∈ V+, ux =
∂u

∂x
=
unm − un−1

m

h
, uy =

∂u

∂y
=
unm − unm−1

h
,∇u2 = ux2 + uy2.
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2. Term 1
2

∫
V−
k−∇u2dV− becomes

1

2

∑
m

∑
n

∫xn+1

xn

∫ym+1

ym

(
ux2 + uy2

)
dxdy =

=
1

2

∑
m

∑
n

(
ux2 + uy2

)
(xn+1 − xn) (ym+1 − ym) = sm

There are xn, ym ∈ V−.

3. Term 1
2

∫
V+
⋃
V−
fudV becomes so = sop+ som, where

sop =
1

2

∑
i

∑
j

fijupij
(
xj+1 − xj

)
(yi+1 − yi) , xj , yi ∈ V+

som =
1

2

∑
k

∑
l

fklumkl (xk+1 − xk) (yl+1 − yl) , xk, yl ∈ V−/Γ.

4. Functional I = sp + sm-so. This functionality is expressed through up (i, j), because
um was also expressed by up (i, j). The condition that the derivatives on the boundary
with coefficients kp and km is also taken into account.

5. Run for the functional genetic algorithm.

5 Test cases

As a test case the results of solving several model problems.
Example 1
We consider the solution of the model problem for elliptic equations

∂2u

∂x2
+
∂2u

∂y2
= −2y + 2y2 − 2x+ 2x2

In the rectangle centered at the origin, unit height and width equal to one. On the sides
of the rectangle placed homogeneous Dirichlet conditions. Exact solution is known

u(x, y) = xy − x2y − y2x+ x2y2.

Decision on the interface (i = 1) 0.03197Exact solution minFI = 0.0333.Thus, the error
can also be considered good.Now take a step less than h = 0.1, thus the number of nodes
increases.

Example 2
We consider the solution of the model problem for elliptic equations [21]

∂2u

∂x2
+
∂2u

∂y2
= −5π sinπx · sin 2πy

In the rectangle centered at the origin, unit height and width equal to two. On the sides
of the rectangle placed homogeneous Dirichlet conditions. Exact solution is known.

u(x, y) = sinπx · sin 2πy.

291



Proceedings of XL International Summer School–Conference APM 2012

Figure 4: The grid Figure 5: The border

Figure 6: The multitudes Figure 7: The functional

Figure 8: The grid Figure 9: The border

6 Conclusions

For two-dimensional problems with free (pre-unknown) boundary developed numerical al-
gorithm for finding its position, which is determined from the minimality of the corre-
sponding functional.
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Figure 10: The multitudes Figure 11: The multitudes

Figure 12: The functional
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On stability of double-layer hollow cylinder under axial shrinking

On stability of double-layer hollow cylinder under axial
shrinking

A.V.Popov
a_v_popov@mail.ru

Abstract

The problem is to study the equilibrium stability of double-layer hollow cylinder
within framework of nonlinear elasticiy. The cylinder consists of two parts inserted one
into another and is exposed to axial shrinking. Each part is a hollow cylinder and the
outer radius of inner one is larger then the inner radius of outer one in undeformed
state. Thus, the cylinder being studied is composed of two initially strained layers
and has internal stress, which exists even without external loads. The question is to
determine how this internal stress influences on the stability of given body. The model
of nonlinearly elastic isotropic incompressible material is used for solving the problem.
The equations for neutral balance, linearised boundary conditions and conditions at
the border of two layers are derived. The subcritical state solution is obtained from
the exact solution of nonlinear Lame’s problem for double-layer hollow cylinder. The
problem of stability yields homogenius boundary-value problem for ODE-system. The
numerical solution of system obtained allows answering the question of internal stress
influence on the critical values of axial shrinking force.

1 Statement of the Problem

The problem of equilibrium stability of compound isotropic non-linearly elastic cylinder
under axial shrinking is studied. Formation of the cylinder occurs as follows.

A hollow cylinder with inner radius a1 and outer radius b1 is posted in the other
hollow cylinder with inner radius a2 and outer radius b2 in such a way, that b1 > a2,
see Fig. 1. By the end faces of given compound cylinder a shrinking load is applied and
yields the resultant force P , that coincides with the axis of the cylinder. Let r1 be the
radial coordinate within the first cylinder, r2 be the radial coordinate within the outer
cylinder. Obviously, a1 6 r1 6 b1 and a2 6 r2 6 b2.

2 Subcritical State

Both parts of compound cylinder are supposed to be incompressible isotropic non-linearly
elastic bodies. Their deformation is described by the following coordinate transformation:

Rk = Rk(rk), Φ = ϕ, Z = λz ; k = 1, 2.

Here rk, ϕ, z and Rk,Φ, Z are cylindrical coordinates of undeformed and deformed state,
respectively; λ is elongation ratio. Deformation gradient tensor which corresponds to that
transformations:

Ck = R′k(rk)erer +
Rk(rk)

rk
eϕeϕ + λezez ; k = 1, 2.
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d
b 2

a
2

b 1

a
1
a

1

Figure 1: Cross-section of two parts of the compound cylinder before deformation.

Using the incompressibility condition det Ck = 1 one can find functions Rk(rk), (k = 1, 2):

R1(r1) =

√
R2
i −

a2
1 + r2

1

λ
, Ri = R1(a1),

R2(r2) =

√
R2
e −

b22 + r2
2

λ
, Re = R2(b2).

(1)

Neo-Hook model with equal shear modulus for both cylinders is used:

Dk = µCk + pk(rk)C
−T
k , k = 1, 2. (2)

Here Dk are Piola stress tensors, µ is the shear modulus, pk(rk) are functions of hydrostatic
pressure in incompessible bodies (k = 1, 2). Equilibrium equations for both cylinders are

∇ ·Dk = 0, k = 1, 2. (3)

Here ∇ is the nabla-operator in non-deformed state.
Boundary conditions are the following. The inner and the outer lateral surfaces of

compound cylinder are considered free from loads:

D1,rr(a1) = 0; D2,rr(b2) = 0. (4)

Further, the Caushy-Green stress σR of actual configuration and the radial coordinate are
considered to be equal at bordering lateral surface:

b1
λR1(b1)

D1,rr(b1) =
a2

λR2(a2)
D2,rr(a2); R1(b1) = R2(a2). (5)

Conditions (5) mean that there are no gaps between two parts while they are deforming.
Using Eq. (3) and boundary conditions (4)-(5) functions of hydrostatic pressure are

found as follows:

p2(r2) = −µ

[
b22

λ2R2
e

+
(R2

e − b22)(R2
2(r2)−R2

e)

2λ2R2
eR

2
2(r2)

+
1

λ
ln
b2R2(r2)

r2Re

]
, (6)

p1(r1) = p2(a2)− µ

[
b21 − a2

2

λ2R2
1(b1)

+
(R2

i − a2
1)(R2

1(r1)−R2
1(b1))

2λ2R2
1(b1)R2

1(r1))
+

1

λ
ln
b1R1(r1)

r1R1(b1)

]
. (7)
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Substituting R1(r1), R2(r2) from (1) to the second boundary condition (5) one get relation
between inner radius Ri and outer radius Re of compound cylinder:

Ri(Re) =

√
R2
e +

a2
1 + a2

2 − b21 − b22
λ

. (8)

The value P of the shrinking force is determined by formula

P = 2π

(
b1∫
a1

σZ,1(r1)r1 dr1 +
b2∫
a2

σZ,2(r2)r2 dr2

)
;

σZ,k(rk) = ez ·
(
CT
k ·Dk

)
· ez, k = 1, 2.

Here σZ, k(rk), k = 1, 2 are normal stresses along the axis of cylinder within the inner and
the outer part, respectively; ez is the frame vector along the axis of compound cylinder.
Using formulas (6)–(8) and boundary conditions (4), one can get the relation between
elongation ratio λ and the outer radius Re. Thus, P is a function of λ and radii a1, b1, a2,
b2. The final formula of P is bulky enough, that is why it doesn’t appear in the paper.

3 Neutral Balance

Let us consider the equilibrium intense-deformed state of compound cylinder, which is
determined by the position vector r of a particle, the subcritical state. We shall assume,
that alongside with it there is an infinitely closed equilibrium state which is defined by the
position vector r + ηw, where w is the vector of additional displacement, η is infinitesimal
parameter. Neutral balance of incompressible body is described as follows [1, 2]:

∇ ·D•k = 0, tr
(
C−1

k · ∇wk

)
= 0, k = 1, 2 ; (9)

D• =

[
d

dη
D (r + ηw)

]
η=0

. (10)

Linearised boundary conditions are following:

er ·D•1(a1) = 0; er ·D•2(b2) = q er ·
(
C−T2 (b2)

)•
; (11)

(
D1

dσ

dΣ

)•∣∣∣∣∣
r1=b1

=

(
D2

dσ

dΣ

)•∣∣∣∣∣
r2=a2

; w1(b1) = w2(a2). (12)

Here er is the radial basis vector in subcritical state; dσ, dΣ are elementary material plates
in undeformed and deformed state, respectively. From Eqs (2), (10) one derives

D•k = µ∇wk + p
(
C−Tk

)•
+ qkC

−T
k ; qk = p•k, k = 1, 2. (13)

Componental representations of vectors wk and tensors D•k (k= 1, 2) in frame er, eϕ,
ez are the following:

wk = uker + vkeϕ + wkez , D•k = D•k,rrerer +D•k,rϕereϕ + ... , k = 1, 2. (14)
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From Eqs (9), (13), (14) one obtains two systems of four equations (9), each of them
contains four unknown functions uk, vk, wk, qk, (k = 1, 2). Both systems allow following
solutions:

uk = Uk(rk) cos(nϕ)cos(αz), vk = Vk(rk) sin(nϕ)cos(αz),

wk = Wk(rk) cos(nϕ)sin(αz), qk = Qk(rk) cos(nϕ)cos(αz), k = 1, 2.
(15)

Here n = 0, 1, 2, 3, . . . and α is real number.
Using Eq. (15), variables ϕ, z are separating, and the boundary value problem appears

for two systems of four ordinary equations with unknowns Uk, Vk, Wk, Qk, (k=1, 2) and
boundary conditions (11),(12). Excluding unknown functions W1, Q1 and W2, Q2 from
appropriate systems, one derives two systems of six ODEs. Matrix form of these systems
is the following:

X′i + Ai (ρ) Xi = 0, Xi =
{
U1, U

′
1, U

′′
1 , V1, V

′
1 , V

′′
1

}
,

X′e + Ae (ρ) Xe = 0, Xe =
{
U2, U

′
2, U

′′
2 , V2, V

′
2 , V

′′
2

}
.

(16)

Here Xi, Xe are column vectors of unknown functions; Ai (ρ), Ae (ρ) are coefficient
matrices; prime sign ′ denotes derivation with respect to radial coordinate r1 or r2, re-
spectively. Applying finite-difference form [3] and using boundary conditions (12), both
systems (16) can be reduced to system of linear algebraic equatioins

S ·Y = 0, (17)

where Y is column vector of unknown values U1(a1), U ′1(a1), V1(a1), U2(b2), U ′2(b2), V2(b2).
The other values U ′′1 (a1), V ′1(a1), V ′′1 (a1), U ′′2 (b2), V ′2(b2), V ′′2 (b2) could be found using Y
components and boundary conditions (11). The system (17) is homogeneous concerning
unknowns required. The non-trivial solution of such system exists if

det S = 0. (18)

Criterion (18) is the characteristic equation for obtaining critical values of axial shrinking
force P . The criterion makes possible to find values of λ, Re, a1, b1, a2, and b2, which
initiate instability.

4 Numerical Results

Rod buckling modes was studied, it means that n = 1 in Eq. (15). A new parameter
ν = αb2 was introduced for numerical calculations. If α = πm/l, where l is initial length
of compound cylinder and m is the number of half-waves along an element of cylinder,
then one can consider ν as relative diameter of cylinder. Graphs were obtained for m = 1
since greater values of m yield same results as smaller values of l if their ratio m/l remains
constant. Values of axial force are dimentionless, i. e., P∗ = 2P/πµb2.

The stability area is a part of space of parameters (d, P∗), that lies below neutral
curve. In Fig. 2 solid curves represent compound cylinder, while dashed curves represent a
homogenious hollow cylinder with inner and outer radii equal to Ri and Re, respectively.
The homogenious cylinder is introduced for detection of initial stress influence, similar to
accessory ring in [4].

Results are presented for relatively long cylinder, ν = 0.1. That is, the ratio of diameter
to length is 1/5π with m = 1. It is quite easy to notice that slight (less than 2%) increasing
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Figure 2: Neutral curves for shrinking force in case of long thin-wall cylinder with ν = 0.1,
a1 = 0.9, a2 values appear near appropriate curves. Other values: b2 = 1, b1 = a1 + d.

of critical values of shrinking force takes place in rather narrow range of parameters d and
a2, e. g., see right graph in Fig. 2. With many other values of d and a2 the presence
of internal stress due to difference of b1 and a2 leads to decreasing of critical values of
P∗. Moreover, the cylinder studied can buckle even with no load applied, but because
of internal stress. For example, see left graph in Fig. 2 with a2 = 0.9 and d ≈ 0.084.
Thus, long thin-wall double-layer cylinder is mainly less stable under axial shrinking in
comparison to homogenious cylinder with the same values of inner and outer radii but
without any internal stress.
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Influence of the nonequilibrium distribution function on
dynamics of gas-surface scattering
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Abstract

We considered different aspects of interaction gas with aluminum plate. Computer
simulation by dynamic methods of nonequilibrium gas and surface molecules interact
in little district (2.5 of the lattice constant of the crystal structure) near surface.
The distribution function is reconstructed. We investigate the long tail of destruction
function on process of taking out molecules from surface.

Keywords: Boltzmann equations, Chapman-Enskog method, conjugate problem
the Navie-Stokes, the molecular dynamics method.

1 Introduction

The important question for the problem of layer near a moving spacecraft is boundary
conditions. It is necessary to know aerodynamic characteristics. These conditions are
known badly for rarefied gas and for turbulence streams. To solute the Boltzmann equation
is more difficult than Navier-Stokes equations. So better to solute Navier-Stokes equations.
Usually for the classical case near the surface the Knudsen layer is considered. This layer
has the length of order free path. M. Lunc, J. Luboncki, V.C.Liu , R.G. Patterson, W.
Bule, F.O.Goodman, H.Y.Wachman, R G. Barantsev, Yu. A.Ryzhev, G.V. Dubrovskii
and the others investigated the interaction molecules with surface near freely-molecular
simulations. At present majority experimental and theoretical results were received for
dispersion of monovelocity beam of atoms. Conjugated conditions at surface without the
Knudsen layer are written to count friction and heat flow to the surface by solution the
Boltzmann equation without collision integral in thin layer and by solution the Navie-Stokes
equations with addition new terms with influence of an angular momentum variation in
an elementary volume. The boundary conditions are made more accurate for rarefied gas
and for transition flow regime. The molecular dynamics method is used to investigate the
influence of the profile of the equilibrium distribution function on the exfoliation of the
surface layer of aluminum for moving surface. This is the first step.

2 Influence of the dispersion near the surface

The problem for moving gas near the surface has some singularities. The modified Bolt-
mann and Navier-Stokes equations are needed boundary conditions. To solute the Boltz-
mann equation is more difficult than Navier-Stokes equations. So better to solute Navier-
Stokes equations [1-9]. In our case the equation for two-part distribution function near the
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surface is

∂f2

∂t
+

2∑
i=1

ξi ·
[
∂f2

∂xi

]
+ ξi ·

∂

∂xi

[
xj
∂f2

∂xj

]
− Xi

m

∂f2

∂ξi

+X12 ·
∂f2

∂ξ1
+X21 ·

∂f2

∂ξ2
+X22

∂f2

∂ξ2
= 0.

Integrating in ξ we obtain the equation for one-particle distribution function with interac-
tion force gas molecule with surface molecules. Suggested algorithm is easily than classical.
For ξ2= 0 in solid body (without movement of the surface molecules) we have trajectory
problem i.e. the usual of DSMC code.

3 The method of investigation

To simulate the interaction of gas with the crystal surface method has been applied molec-
ular dynamics (MD), based on the solution of the equations of Newton [10]. In the first
stage of modeling is the initial distribution of particles in space (spatial configuration of
the crystal structure and the gas phase) and initial distribution of particle velocities cor-
responding to the mechanical and thermal motion of the system in the initial state. The
generation of initial conditions occurs at the macro and micro levels. At the macroscopic
level, wondered the geometric dimensions of the area in which calculations were carried
out ( Lx, Ly, Lz) and the macroscopic velocity. Under the macroscopic velocity of the
bombarding mean directional velocity of the gas stream. At the microscopic given level of
packing particle structure (fcc lattice of the crystal surface) and the velocity distribution
of the thermal motion of gas particles and the crystal structure. The thermal velocity
distribution at the initial time is generated according to the Maxwell distribution

f (υ) =
4√
π

(
m

2kT

)3/2

υ2e−
mυ2

2kT

where m is mass of atom, k is Boltzmann constant and T gas temperature.
The rate of gas particles at the initial moment of time is made up of directed macro-

scopic velocity and thermal velocity. The second stage computes the values of the coordi-
nates and velocities of particles (describing the evolution of the system over time), which
were carried out using the MD equations of motion integration algorithms with predeter-
mined conditions based on the scheme Varlet [10]. The time step was chosen to be 5 fs,
which is comparable with the period of molecular vibrations of the lattice.

The trajectories of the particles were calculated in a macroscopic ensemble under the
thermodynamic conditions: constant number of particles, constant volume and constant
temperature. The constancy of temperature in the system provides an introduction Noze-
Hoover thermostat [12]. The number of gas particles was chosen to be 25, which corre-
sponds to the pressure 1 atm in the computational volume 106 ang. at 290 K. The number
of particles in the structure of the computational domain is chosen equal to 10000. In this
paper, the interaction between particles of type structure-structure described by a Morse
potential [11]

U
(
rij
)

= D0

[
e−2α(r−r0) − 2e−2α(r−r0)

]
,

where r0 is the equilibrium internuclear separation and D0, The well depth, is the dissoci-
ation energy of the molecule, α is an adjustable shape parameter.
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For particles such as gas-gas and gas-structure described by Lennard-Johnes potential

U
(
rij
)

= 4ε

( σ

rij

)12

−

(
σ

rij

)6
 ,

where ε is well depth σ is affective atom diametr.
The potential parameters for the structure of the gas-particles were calculated using

the formula [10]

σgs =
σg + σs

2

and

εgs =
√
εg + εs

Theqradius of the particle interaction is chosen to be 2.5 of the lattice constant of the
crystal structure.

Due to the limited computing resources the distribution function of gas particles is
divided into a region of the velocities. For each region MD calculation was processed and
distribution function was reconstructed (Fig. 1). Some particles due to the directional
velocity received energy that enough to penetrate into the crystal structure (Fig. 2).
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Figure 1: Gas distribution function

Conclusion

Verified the absence of collisions between a gas in a narrow layer adjacent to the surface
even for the normal pressure. Displaying the introduction of the gas molecules and the
presence of fatigue effects in the case of directional velocity at the outer boundary. Proved
the possibility of rejection of the Knudsen layer.
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Influence of the dispersion in theory of continuous
mechanics

Evelina V. Prozorova
prozorova@niimm.spbu.ru

Abstract

For continuous mechanics formulation of equilibrium of angular momentum con-
ditions are suggested. In present time formulation of equilibrium force conditions are
used. These give us symmetric pressure tensor and disturbance of continuous medium.
In this work this question is discussed. Conditions of the existence of A.N. Kolmogorov
inertia interval is established.

Keywords: Angular momentum, conservation laws, nonsymmetrical stress tensor,
Boltzmann equations, Chapman-Enskog method, conjugate problem the Navie-Stokes,
the molecular dynamics method.

1 Introduction

Many experimental facts tell us about the importance of gradients of physical values (den-
sity, linear momentum, energy). In the previous studies, the problem of influence of dis-
persion on the models and equations of continuum mechanics was considered carefully for
various applications [1-4]. In those papers one can find also historical facts concerning
different approaches to this problem, as well as some examples: in particular, modified
Navier-Stokes equations, connection to kinetic theory, boundary layer, shock waves, nu-
merical solutions, asymptotical methods, etc. So, there is no need to repeat all the details
and discuss the importance of these equations.

Figure 1: Velocity distribution near the point M

Presented in previous papers the equations of motion, energy and angular momentum
were obtained before, but the use of force equilibrium conditions didn’t require the cal-
culation of angular momentum. When choosing the equilibrium conditions since the last
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equation to determine the degree of asymmetry of the stress tensor. The issue arose when
writing the law of conservation of density. Try to get it out of the equation by using
phenomenological principle.

2 Equation for the density

The modified equation for the density was received from the kinetic theory in the form

∂ρ

∂t
+
∂ρui
∂xi

+
∂

∂xi

(
xi
∂ρui
∂xi

)
= 0.

where ui - velocity, ρ - dencity, xi - position.

Figure 2: The influence of rotation of the elementary volume

The figure shows that the linear velocity v=ω ×
(
r′ − r

)
is the velocity with respect

to M for quasi-solid movement around axis without div (ρu). However, the point M can
be very involved in the rotation. Consequently, the cross product will appear if the axis
of rotation is chosen r′ − r. The point M may itself be involved in the rotation. For an
elementary volume v=ω×

(
r′ − r

)
formula means a rotation around the axis of the velocity

at centre of inertia but axis of moving of elementary volume can be lie outside it. So we
have for twisting an elementary volume. Consider the conclusion of the last term of the
equation of continuity.∫

(s)
Oρu

(
r′ − rc

)
ds =

∫
(s)

div (Oρu)
(
r′ − rc

)
dv

r - axis of rotation,rc - center of gravity. After integration, the mention expression was
received.

3 Infinite plate

The Blasius problem was considered by numerical and analytical. Some results for infinite
plate will be formulated here. The equation for this case is

d

dy

(
µ
du

dy

)
+

d

dy

(
µy
d2u

dy2

)
= 0.
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Boundary conditions are

u = 0, µ
du

dy
= τw, y = 0, u = U∞, y →∞.

Integrating gives

µ
du

dy
+ µy

d2u

dy2
= Const = τw.

Where y-coordinate, ρ-density, u-velocity, µ-viscosity. Index “w” is relative to surface.
From boundary condition we have Const = τw. τw is skin friction. Integral of the equation
is

u = C ln y +
τw
µ
y + Const.

Possible variant to satisfy boundary conditions is that under the y = ν
v∗
, where ν =

µ
ρ , v∗ =

(
τw
ρw

)1/2
we have ln = 0. Later on diminution velocity takes place up zero,

derivative can be very large but zero velocity observes between surface and y. So layer
of the rest liquid is formed. Thickness of this layer is 10−3cm. We have not reliable
measurements there. Probably for laminar layer there is no layer with zero velocity. Near
the edge the gradient of the velocity tends to work. It works near the rebuilding region too.
Far from edge friction strives to zero. It does not follow from the theory for semi-infinite
plate that the value of the friction is finite but if we suggest zero friction in the first integral
we can get the Karman formula for the mixture length. Equality τw = 0 provides u = 0
as y = 0 and u = U∞ as y → ∞ and leads to rebuilding of the flow. The profile of the
velocity becomes more completed than near the edge. The region with τw = 0 formulated
the inertial layer( N.A. Kolmogorov). This case relies to logarithm profile for boundary
layer. It is interesting that asymptotic friction for half- infinite plate has not the value for
infinite plate. In my opinion we have similar situation for tubes.

4 Conclusion

We consider influence the angular momentum variation in an elementary volume near the
surface and influence the cross flows through the sides of an elementary volume for great
gradients of the physical values. Some examples are investigated.
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Abstract

The work aims to develop a numerical method for modelling hydraulic fractures in
strongly inhomogeneous rocks. We employ the complex variable (CV) boundary inte-
gral equations specially tailored for blocky systems with multiple interfaces. Their nu-
merical implementation is carried out by including the CV boundary element method
(BEM) in frames of the fast multipole method (FMM) to solve systems with large
(up to millions) number of unknowns. Recurrent analytical quadrature rules are used
for increasing the robustness and accuracy of calculations. They are obtained for
higher order approximations of the density at straight and circular-arc, ordinary, tip
and multi-wedge elements. Conclusions are drawn on the accuracy of the method
developed.

1 Introduction

Hydraulic fracturing is one of the major techniques of reservoir stimulation employed by
the petroleum and gas industry. In practice this method is used in rock mass, which is
strongly inhomogeneous. Meanwhile, analytical studies and available numerical codes do
not account for this factor because of extreme mathematical difficulties. The most ad-
vanced code by the Schlumberger Company models only a vertical fracture propagating
across a few horizontal elastic layers. This work aims to develop a numerical method,
which may serve for accounting for strong inhomogeneity. As a basis, we employ bound-
ary integral equations (BIE) in a form specially tailored to model blocky systems with
complicated interfacial conditions at contacts of structural elements and containing pores,
inclusions and growing cracks [1], [2]. For such structures, solving the BIE by the boundary
element method (BEM) is superior over the finite element method. The main difficulty
when employing this method for strongly inhomogeneous rock is very large number (up
to millions) unknowns. To overcome the difficulty, we follow the line of combining the
BEM with the fast multipole method (FMM) (see, e.g. [3]). In this work the combined
BEM-FMM is developed for plane problems in complex variables (CV). In contrast with
known applications of the BEM-FMM, we employ (i) the mentioned special forms of the
BIE, (ii) combinations of circular-arc and straight boundary elements providing continuous
tangent when approximating smooth parts of external boundaries and contacts, (iii) spe-
cial singular elements accounting for singular behaviour of fields near singular points like
common apexes of structural elements, (iv) approximations of higher order for circular-arc
and straight boundary elements both ordinary and singular, (v) analytical recurrent for-
mulae for integrals defining influence coefficients of the BEM and multipole moments of
the FMM. We focus on the log-type kernels as the most difficult for evaluation. Results of
numerical tests highlight efficiency of the CV-BEM-FMM developed.
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2 Evaluation of influence coefficients to solve CV-BIE for in-
homogeneous media

The CV-BIE, specially derived for solving 2D potential and elasticity problems concern-
ing with blocky systems with multiple interfaces, cracks, inclusions and pores, contain
seven standard integrals [1], [2]. After representing the contour by boundary elements, the
integrals to be evaluated over a boundary element Le are:∫

Le

f(τ)

τ − z
dτ,

∫
Le

f(τ)

(τ − z)2
dτ,

∫
Le

f(τ)
∂k1

∂z
dτ,

∫
Le

f(τ)
∂k2

∂z
dτ,

∫
Le

f(τ)dk1(τ, z)dτ,

∫
Le

f(τ)dk2(τ − z)dτ,
∫
Le

f(τ) ln |τ − z|ds, (1)

where f(τ) is the density, z = x + iy is the CV coordinate of a filed point, τ is the CV
coordinate of an integration point, ds is the length increment of the integration path,
k1 = Ln( τ−zτ−z ), k2 = τ−z

τ−z . The recurrent analytical quadrature rules, serving for efficient
evaluation of the first six of them over straight and circular-arc, ordinary, tip and multi-
wedge boundary elements may be found in [1], [4].

Below we focus on evaluation of the last (log-type) integral in (1), which presents the
main difficulty when considering harmonic problems. They arise from the fact that in these
problems the density is real what complicates using the complex variables when deriving
recurrence analytical formulae for curvilinear singular boundary elements (see, e.g. [2], [5]).
Having this integral evaluated, analytical quadrature rules for singular and hypersingular
integrals are obtained by direct differentiation with respect to z, what in its turn serves
for efficient evaluation of the remaining integrals.

We consider two major forms of boundary elements, which allow one to represent a
smooth part of a contour by a curve with continuous tangent. These are (i) straight and
(ii) circular-arc elements. By linear transformation, integration over such an element is
reduced to that over a standard element.

(i) A straight element of the length 2l is transformed into the standard element along
the real axis [-1,1] in the variable τ ′ by the transformation τ = τC + l exp(iαC)τ ′, where τC
is the center of an element, αC is its angle with the x-axis. For the points of a transformed
straight element we have τ ′ = τ ′, where the overbar denotes complex conjugation.

For a density f(τ ′) on a standard straight element, the recurrent quadrature rules allow
us using approximation of an arbitrary order, accounting, when appropriate, for power-
type asymptotics near end point τ ′ = 1. As a rule, it is sufficient to use approximation of
the second order. Then

f(τ ′) =
3∑

k=1

fk

2∑
j=0

ckjτ
′j(1− τ ′)β, (2)

where fk (k = 1, 2, 3) are the nodal values of an approximated function, ckj (j = 0, 1, 2) are
the Lagrange coefficients. For an ordinary (non-singular) element, β = 0. For a singular
element, in numerical applications we assume β to be negative in cases when the density
enters the log-type integral: β = −α, with positive rational α = m/n (m < n). When
considering singular and hypersingular integrals, the exponent β in the density may be
positive rational itself: β = m/n (m < n). The value of β for a particular problem is
found by using the method suggested in [6] (for details, see [7]).
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(ii) A circular-arc element with the angle 2θ0 and radius R is transformed into the stan-
dard circular-arc element of unit radius, having the same angle and located symmetrically
with respect to the x-axis: τ = τC − iR exp(iαC)τ ′. Herein, τC is the center of the arc and
αC is the angle of the tangent at the midpoint of the arc with the x-axis. For points of
the transformed circular-arc element we have τ ′ = 1/τ ′. The approximation used on the
standard circular-arc element is:

f(τ ′) =

3∑
k=1

fk

1∑
j=−1

c̃kjτ
′jRe((eiθ0 − τ ′)β), (3)

where c̃kj (j = −1, 0, 1) are coefficients of the form-functions at the arc of unit radius (see,
e.g. [1]). The exponent β is prescribed similar to that for a straight ordinary or singular
element.

Below the approximations (2), (3), suggested for evaluation of influence coefficients,
serve us for evaluation of multipoles, as well.

3 Building quad-tree for FMM

A detailed description of the FMM algorithm may be found in [3]. Here we present the
specific features of its numerical implementation adjusted to the particular forms of the
CV-BIE. They are developed to minimize computer time and memory expense. Firstly, as
all our computations are performed in the CV, the input data on the geometry of boundary
elements is prescribed in the CV, as well. Thus a CV array of input data contains the
CV coordinates of the central points of boundary elements. These data are repeatedly
employed in further operations. In particular, an element is assumed to belong to a cell if
its central point belongs to the cell.

The input information for building the hierarchical quad-tree consists of (i) these data
on the coordinates of central points and (ii) a prescribed maximal number Nmax of ele-
ments, which may be in a leaf.

In our procedure, following the well-known general line (e.g.[3]), we avoid looking
through the entire input data matrix. Rather, at each level, only branches are taken
into consideration, and for each branch we consider only those points, which belong to
the branch. This tends to reduce memory and time expense. To reach this goal, we use
special renumeration of elements. The renumeration is performed as follows. We con-
sider a parent-branch at some level. For it, we have prescribed the total number M of
points belonging to it. The points are numerated in growing order from N1 to N2, so that
N2 = N1 + M − 1, and for each point, its number in the starting global numeration is
known.

The parent-cell is divided into four child-cells, numerated form 1 to 4. The M points
are analized to find the child, to which a point belongs. As a result, we attribute each of
M points to a child-cell and find the total number of points in each of the children. Denote
the total number of points in the k-th child Mk; obviously, M = M1 +M2 +M3 +M4. If
Mk = 0, the corresponding child is empty and it is excluded from further analysis. Points
of the first non-empty child k1 with the total number of points Mk1 obtain numbers from
N1 to N1 + Mk1 − 1; points of the second non-empty child k2 (if it exists) with the total
number of points Mk2 obtain numbers from N1 +Mk1 to N1 +Mk1+ Mk2 − 1, and so on.
Note, that in the new numeration, the first element of the first non-empty child-cell has the
number N1, while the last element of the last non-empty child-cell obtains the number N2.
Hence, the renumeration does not influence the numeration of elements in other cells on a
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considered level and on all preceeding levels. As a result, for each child, which becomes a
parent on the next level, the situation is reproduced: we have prescribed the total number
of points belonging to it and numerated in growing order, which does not influence the
numeration of points in other cells on the considered and preceeding levels. Finally, the
totality of points in all leaves coincides with the points of the input array; now these points
are numbered in that order, in which leaves appear in the dividing process.

In the course of dividing, we also save data on the number of a parent of a non-
empty cell, total number of leaves and branches at each level, CV coordinates of centroids
of non-empty cells, etc. These data are used later on for iterative solving the system
of the CV-BEM in subroutines performing standard translations (Moment-to-Moment,
Moment-to-Local and Local-to-Local) of the FMM (e.g. [3]). At each of the iterations,
the multipole moments of each of leaves should be known. Their evaluation is performed
by using analytical recurrence formulae, derived by the authors and presented in the next
section.

4 Evaluation of multipole moments

As mentioned, we focus on the integral with log-type kernel. When a collocation point
z is far away from a boundary element of integration Le, the expansion of the potential
G(τ, z) = − 1

2π ln |τ − z| into the Taylor series, yields:

− 1

2π

∫
Le

f(τ) ln |τ − z|ds ≈ 1

2π
Re

(
Rq∑
q=0

Oq(z − τ0)
∫
Le

Iq(τ − τ0)f(τ)ds

)
, (4)

where τ0 is the global CV coordinate of the center of that leaf, to which the element Le
belongs, z is the CV coordinate of a collocation point, Rq is the prescribed maximal degree
of multipole moments, which are kept in multipole expansions. The functions Oq(z − τ0)
and Iq(τ − τ0) are defined as (e.g. [3]):

O0(z − τ0) = −Ln(z − τ0), Oq(z − τ0) =
(q − 1)!

(z − τ0)q
for q ≥ 1,

Iq(τ − τ0) =
(τ − τ0)q

q!
for q ≥ 0.

An integral with the integrand Iq(τ − τ0)f(τ), containing the q-th degree of τ − τ0,
is called the multipole moment of order q. To evaluate the moments, we use the same
transformations of coordinates, which have been employed when evaluating the influence
coefficients.

For a straight boundary element, with the density function (2), we obtain:

M q
LS(τ ′0) =

1

q!

3∑
k=1

fk

2∑
j=0

ckjl(le
iαC )q

1∫
−1

τ ′j(1− τ ′)β(τ ′ − τ ′0)qdτ ′. (5)

For a circular-arc element with the density function (3), we have:

M q
LC(τ ′0) =

1

q!

3∑
k=1

fk

1∑
j=−1

c̃kj(−iR)(−iReiαC )q
eiθ0∫
e−iθ0

τ ′j−1Re((eiθ0−τ ′)β)(τ ′−τ ′0)qdτ ′, (6)
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In both cases, τ ′0 is the local CV coordinate of the leaf centroid.
Denote M j

q a typical integral on the right-hand side of equations (5) and (6),

M j
q =

b∫
a

w(τ ′)τ ′j(τ ′ − τ ′0)qdτ ′, (7)

Herein, w(τ ′) is a real weight function, accounting for behaviour of the density near the
end point b; for an ordinary straight or circular-arc element, w(τ ′) = 1; for a singular
straight element (b = −a = 1), w(τ

′
) = (1 − τ

′
)β ; for a singular circular-arc element

(b = a−1 = eiθ0), w(τ ′) =Re((eiθ0 − τ ′)β). When using three-node elements, we consider
j = 0, 1, 2 for a straight element and j = −2,−1, 0 for a circular-arc element. As (τ ′−τ ′0)q =
(τ ′ − τ ′0)q−1(τ ′ − τ ′0), equation (7) yields the recurrence formula:

M j
q = M j+1

q−1 − τ
′
0M

j
q−1. (8)

Although equation (8) may be employed for evaluation of all the moments, it does not
provide robust procedures for a straight element, because it requires using all the terms
M2+q

0 when calculating M2
q with q running from 1 to Rq. Meanwhile, as shown below, we

need to use equation (8) when considering negative degrees j = −1,−2, which appear in
moments for circular-arc elements.

An alternative, more convenient recurrence equation for non-negative degrees j (j =
0, 1, 2) employs binomial representation of τ ′j , written as τ ′j = [(τ ′ − τ ′0) + τ ′0]j . Denote

Ĩq =

b∫
a

w(τ ′)(τ ′ − τ ′0)qdτ ′. (9)

In many cases these coefficients are promptly evaluated recurrently in an analytical
form. Then for j = 0, 1, 2 we obtain:

M0
q = Ĩq, M

1
q = Ĩq+1 + τ ′0Ĩq, M

2
q = Ĩq+2 + 2τ ′0Ĩq+1 + τ

′2
0 Ĩq. (10)

Equations (9) and (10) provide efficient evaluation of moments for straight elements.
For circular-arc elements, we firstly find

M−1
0 =

b∫
a

w(τ ′)
1

τ ′
dτ ′, M−2

0 =

b∫
a

w(τ ′)
1

τ ′2
dτ ′. (11)

Then all higher-order moments are found recurrently by using (8), ( 9):

M0
q = Ĩq, M

−1
q = Ĩq−1 − τ ′0M−1

q−1, M
−2
q = M−1

q−1 − τ
′
0M
−2
q−1. (12)

Equations (9), (11), (12) provide evaluation of moments for circular-arc elements.

5 Numerical experiments

We used exact analytical formulae for integrals over a closed or open circular contour (see,
e.g. [1]) to (i) check that the derived formulae and developed procedures were correct,
(ii) study the influence of the highest order Rq of moments employed on the accuracy of
calculations. We considered both log-type and singular integrals.

312



Complex variable Fast Multipole Method for modelling hydraulic fracturing in
inhomogeneous media

For a field point outside a closed contour, the singular integral with constant density
is zero. Application of FMM and the moments of the form (5) and (6) gave this result
with high accuracy. Specifically, when approximating the contour by four straight or
circular-arc boundary elements, under the assumption that the field point is located at a
distance 0.05π from the contour, the evaluated value was 10−17 for both types of elements.
Approximations by a larger number of elements do not affect this accuracy notably.

In another example, we considered an open contour represented by the circular crack
with the angle 2θ0 = π

3 , radius R = 0.025, and the center of the circle at the point
τC = 0.3(1 + i). The length of the crack is L = 2Rθ0 = πR/3. The distance from the
center of the crack to the field point is R + nL with n = 1(3, 9). The relative distance is
r = R

R+nL . Table 1 contains the obtained data on the accuracy of the CV-FMM-BEM for
various r and Rq.

Table 4: Relative error of CV-BEM-FMM for various relative distance of field point and
for various number of moments

MLC , β = 0.0 MSC , β = 0.0
Rq 5 8 12 16 5 8 12 16

r=1/3
relative error 3E-5 2E-5 7E-7 4E-8 1E-2 6E-4 4E-5 2E-6
r=1/9
relative error 1E-6 1E-8 1E-8 1E-8 1E-4 3E-7 1E-10 1E-13
r=1/19
relative error 1E-7 1E-8 1E-8 1E-8 2E-6 1E-9 1E-12 3E-13

The data of Table 1 show that, as could be expected, the accuracy grows with growing
distance and the number of moments held in calculations. It can be also seen that to the
accuracy commonly provided by the conventional CV-BEM in calculations with double
precision (5-6 significant digits, at most), for r = 1/3 (1/9, 1/19), it is sufficient to hold
the moments of the degree Rq = 5 (4, 3) and Rq = 12 (6, 4), respectively, for ordinary
log-type and singular-type circular-arc element.
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Abstract

This paper investigates the deformation mechanisms of wood at the ultrastructural
scale. At this level, wood is composed of a periodic alternation of amorphous and
crystalline cellulose fractions, embedded in a soft hemicellulose-lignin matrix. The
mechanical response of wood is calculated under tensile loading conditions by means
of the computational homogenisation of a representative volume element (RVE) of
material. Three potential mechanisms of failure are suggested: axial straining of the
crystalline fraction of cellulose, accumulation of plastic strain in the amorphous portion
of cellulose and tensile rupture in the hemicellulose-lignin matrix due to cellulose
fibres separation. In order to validate the present multi-scale framework, we assess
successfully our numerical predictions for ultimate strains at the instant of failure with
experimental values.

1 Introduction

Wood microstructure can be understood as the result of an optimisation process developed
by nature over hundreds of millions years of evolution. One of its main features is its hier-
archical nature distributed across multiple spatial scales, from submicrometer dimensions
to macroscopic scales. This important feature has been a subject of intensive research over
the last few years in applied and computational mechanics circles [1, 2, 3]. Nevertheless,
despite the increasing interest in this subject and the considerable effort devoted to its
description, the complete understanding of the deformation and failure mechanisms of this
material at very small scales, and their implications on the macroscopic response, is still
an issue which remains open at present.

The constitutive description of wood at several scales has been widely investigated by
means of computational multi-scale constitutive models. In the context of elastic response,
several works have been presented. Holmberg et al. [1] studied the mechanical behaviour
of wood by means of a homogenisation-based multi-scale procedure, incorporating growth
rings, irregularity in the shape of cells and anisotropy in the layered structure of cell-walls.
Hofstetter et al. [4, 5] suggested five elementary phases for the mechanical characterisation
of wood. These were hemicellulose, lignin, cellulose, with its crystalline and amorphous
portions, and water. They proposed a multi-scale model and validated their numerical
predictions with experimental data. Qing and Mishnaevsky Jr. [6, 7] proposed a model
taking into account several scale levels and investigated the influence of microfibril angles,
shape of the cell cross-section and wood density on the elastic properties of wood. Recently,
Qing and Mishnaevsky Jr. [3] extended their model by incorporating progressive damage
to the homogenised elasticity matrix. Additional works in this field can be found, for
instance, in Ref. [8].
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In spite of this extensive work, a review of the current literature shows that little
research has been done in the context of irreversible processes and microscopic dissipative
phenomena taking place in wood at several scales. In Ref. [2], the authors investigated
the non-linear irreversible behaviour of wood cell-walls. By adopting a finite element-
based computational multi-scale approach, it was shown that one important mechanism of
dissipation under tensile loading is the shear plastic deformation in the hemicellulose-lignin
matrix due to the reorientation of cellulose fibres induced by their alignment with respect
to the loading direction.

Due to its relevance in the macroscopic mechanical response of wood and wood-based
materials, our main objective in this paper is to investigate the ultrastructural mechanisms
of deformation and failure in wood under tensile loading conditions by means of a com-
putational multi-scale approach. We study the local mechanisms of deformation in wood
for a wide range of initial orientation of fibres. Here, we study the failure mechanisms
associated with axial straining of the crystalline cellulose fraction, accumulation of plastic
strain in the amorphous portion of cellulose and tensile rupture in the hemicellulose-lignin
matrix due to cellulose fibres separation. We validate the present model by comparing our
numerical predictions for the strains at the instant of failure with experimental data for
wood under tension.

2 Ultrastructural mechanical properties of wood

At the ultrastructural scale [9, 10, 11], the wall of wood cells contains three fundamental
constituents: cellulose, hemicellulose and lignin. These constituents form a spatial ar-
rangement called microfibril which can be represented as a periodic unit building block of
rectangular cross-section (refer to Figure 1).

Figure 1: Schematic representation of the microfibril and basic constituents. The cross-
section on the left of the figure shows the crystalline cellulose in the centre covered with an
outer surface layer made up of amorphous cellulose [12], embedded in the hemicellulose-
lignin matrix [13]. The longitudinal view on the right illustrates a typical periodic arrange-
ment of crystalline and amorphous cellulose along the length of the microfibril.

Cellulose, hemicellulose and lignin constitute approximately 30%, 32.5% and 37.5%,
respectively, of the total volume of wood substance for compression wood cells [2]. The
cellulose is a long polymer composed of glucose units which is organised into periodic crys-
talline and amorphous regions along its length [14] (refer to Figure 1 for a representative
portion of this periodic amorphous-crystalline cellulose arrangement). This periodic ar-
rangement is further covered by an outer surface made up of amorphous cellulose [12].
The (volumetric) degree of crystallinity is defined as the ratio between the volume of crys-
talline cellulose and the total volume of (crystalline and amorphous) cellulose. Normally,
its value varies between 0.49 and 0.60 in wood cells of Scots pine and Norway spruce, with
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Figure 2: Typical RVE finite element mesh adopted for the computational homogenisation
of wood at the ultrastructural scale.

an average value of 0.52 [15]. The specific orientation of microfibrils with respect to the
longitudinal cell axis is called the microfibril angle (MFA) and is one of the most important
parameters controlling the balance between stiffness and flexibility in trees. Hemicellulose
is a polymer with little strength built up of sugar units, with mechanical properties highly
sensitive to moisture changes. Despite its partially aligned molecular structure, it can be
modelled isotropically. Lignin is an amorphous polymer whose purpose is to cement the
individual cells together and to provide shear strength. Its amorphous structure makes
possible the assumption of isotropy. Since the distribution of the hemicellulose and lignin
in the matrix is not important, it is possible to adopt a single equivalent material for the
description of the lignin-hemicellulose matrix [13]. In Ref. [16], the authors showed how
the hemicellulose-lignin matrix in wood tissue and in individual cells undergoes large shear
strains without apparent damage. This self-healing mechanism present in wood cells al-
lows the assumption of no limit for the maximum shear strain in the hemicellulose-lignin
matrix. Nevertheless, a maximum tensile strain of 15% can be adopted for the matrix [17],
as a limit strain for the separation between cellulose fibres. For further information about
the mechanical properties of the wood cell-wall constituents, we refer to Refs. [2, 19, 18].

3 Multi-scale finite element model

In this section, we consider the fully coupled two-scale finite element modelling of wood at
the ultrastructural scale, subject to in-plane tensile loading conditions. The computational
homogenisation scheme adopted here corresponds to the periodic boundary displacement
fluctuations model [20], typically associated with the modelling of (heterogeneous) periodic
media.

The procedure described in the following consists of modelling the mechanical response
of wood at the ultrastructural scale by means of one single layer, with cellulose fibres
oriented in one single direction.

The (microscopic) RVE consists of a two-dimensional periodic arrangement of crys-
talline and amorphous cellulose fibres embedded in the hemicellulose-lignin matrix. Figure
2 shows a typical RVE finite element mesh adopted for the computational homogenisa-
tion of the microstructure. It contains 4768 F-bar four-noded quadrilateral elements with
a total number of 4950 nodes. To eliminate volumetric locking, the F-Bar methodology
[21] is adopted throughout. For all of the finite element analyses we assume plane strain
conditions under large strains regime.

The crystalline cellulose is assumed to be elastic. The amorphous cellulose and the
hemicellulose-lignin matrix are modelled with an elastic-perfectly plastic von Mises law.
For details about the mechanical properties of the basic constituents, we refer to [19].

The macroscopic problem consists of a 10 × 10 mm portion of material whose constitu-
tive law is defined by the computational homogenisation of the above microstructure. Since
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Figure 3: Macroscopic finite element mesh adopted for the computation of the actual
tensile strain state at a Gauss-point.

we are interested in the mechanical response of the material, one single F-bar four-noded
quadrilateral element is adopted to determine the actual tensile strain state at a macro-
scopic Gauss-point as illustrated in Figure 3. We note that the same approach was used by
Govaert et al. [22] to investigate the time-dependent failure behaviour of off-axis loaded
composites. Appropriate boundary constraints are imposed on the element as shown in
Figure 3. In addition, since the in-plane shear strain is prevented in the wood cell-wall
composite due to the interlocking between two or more adjacent cells in the wood tissue
[16], the shear deformation is also prevented here by enforcing identical displacements in
the x-direction at the two nodes on the left of the element (in all of the cases, x and y-axes
coincide respectively with the horizontal and vertical directions).

The loading programme consists of applying a prescribed displacement in the y-
direction, sufficiently large to fail the material. The total prescribed displacement is applied
in 20 incremental steps. However, when no convergence is detected in the solution of the
RVE equilibrium problem at any macroscopic Gauss-point, smaller load increments are
taken to ensure the success of the whole macroscopic loading programme. During tensile
loading conditions, the (initial) MFA will evolve into a smaller angle α as shown in Figure
3. In order to investigate the reorientation of the cellulose fibres in wood, we select a wide
range of MFAs for our study, between 0 and 90o with respect to the loading direction.

In this investigation, the total failure of wood at the ultrastructural scale is assumed
to be associated with the local failure of one of the basic constituents (crystalline or amor-
phous cellulose, or hemicellulose-lignin matrix). When the (microscopic) strain exceeds the
maximum value or ultimate strain in at least one of the constituents, the whole cell-wall
composite is assumed to have failed and the corresponding numerical simulation is stopped.

The following potential mechanisms of failure [23] are suggested in this investigation.
The first failure mechanism is associated to the longitudinal straining of the crystalline
cellulose fraction. In this particular failure mode, the longitudinal tensile strain in the
crystalline cellulose reaches the ultimate strain of 0.0014 [19]. For each load step, the
longitudinal tensile strain is computed in the crystalline fraction of the microscopic finite
element mesh as the change in length per unit reference length.

The second potential mechanism of failure is the accumulation of plastic deformation
in the amorphous fraction of cellulose. The condition of failure is assumed to occur when
the volume averaged equivalent plastic strain reaches the value of 0.13 [19].
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A third type of failure mechanism can occur under a dominant state of tensile defor-
mation in the hemicellulose-lignin matrix, which is normally represented by the condition
of cellulose fibres separation. Here, the failure is assumed to occur when a maximum total
tensile strain of 0.15 is found [19].

4 Numerical results

Our purpose in this section is to validate the present multi-scale model with published
experimental data. For all the cases, the variation of the MFA during straining is computed
at each load step as the current orientation of the crystalline fraction of cellulose with
respect to tensile loading axis. Similarly, the macroscopic strain is calculated at each load
step as the current prescribed displacement divided by the initial length of 10 mm.

Figure 4 illustrates the maximum (macroscopic) strains obtained from our multi-scale

Figure 4: Ultimate tensile strains versus the MFA. Numerical predictions and some exper-
imental results obtained from Refs. [24, 25, 16, 26, 27, 28, 29].

finite element model at the instant of failure along with some experimental values reported
for a wide range of initial MFAs.

Despite the large scatter found in the mechanical properties of wood, our numerical
model reveals a reasonably good agreement with the reported data. For a very small initial
MFA, equal to 5o, our numerical model predicts an ultimate strain of 0.013, which is very
similar to the experimental value reported by Peura et al. and Reiterer et al., as shown in
Figure 4. Similarly, for a MFA close to 20o, our model predicts an ultimate strain of 0.02,
which is in good agreement with the result provided by Reiterer et al., for the same initial
MFA. We note that, the results shown in Figure 4 have been calculated with a volume
fraction of cellulose equal to 50% (following Refs. [30, 31] for S2-layer) when the MFA is
smaller or equal than 20o. For larger MFAs, we have adopted a value of 30% [32, 33].

For larger MFAs, between 20 and 45o, our numerical results match the experimental
data reasonably well. We emphasise the almost perfect matching with those values calcu-
lated for initial MFAs close to 45o, when compared with Burgert [34] and Keckés et al. [16].
In fact, the exponential trend described by our multi-scale model coincides qualitatively
with the trend shown by the experimental data, with small fracture strains for small MFAs
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and with larger strains for MFAs approaching 45o. It is also interesting to note that for
initial MFAs smaller than 30o, the dominant mechanism of failure is related to the axial
tensile straining of the crystalline cellulose.

We note that the published experimental data for MFAs larger than 45o is very scarce.
When compared to the value reported by Reiterer et al., for an MFA close to 50o, our
model overestimates the response with an ultimate strain of about 0.28. However, when
compared to the fracture strains published by Burgert et al. and Kamiyama et al., our
proposed model provides an almost perfect matching. For an angle of 55o, the predicted
maximum strain is near 0.33, and for 64.2o, the predicted value is 0.155, which are in good
agreement with the experimental results shown in Figure 4.

Unfortunately, tensile experiments on wood samples with MFAs larger than 65o have
not been reported to the best of our knowledge. Therefore, more information on fracture
strains as function of the MFA is needed here, probably on tissue of the S1-layer, in which
the MFA is near 90o [35].

For very large MFAs, over 70o, the prevailing failure mode is associated with the tensile
rupture of the matrix due to the separation of cellulose fibres. In general, for values of
MFA between 30 and 70o, the failure mechanism is associated with the inelastic yielding
of the amorphous portion of cellulose.

As suggested by Reiterer et al. [26], one of the main reasons for larger fibrillar an-
gles in the wood cell wall is the optimisation of extensibility. For instance, the ability to
develop large deformations is a fundamental feature in the branches of a tree. In order
to allow large strains without failure, plants have evolved in time by adapting their mi-
crostructure to withstand mainly wind loads, self-weight and snow. At the same time, their
microstructure must facilitate growth strains and adaptation to environmental conditions.
For example, compression wood cells are typical fibres which can be found in branches of
conifers. Normally, their MFA is larger than 45o [36]. Burgert et al. reported initial MFAs
for compression wood cells between 50 and 60o [28]. Reiterer et al. [26] and Gindl et al.
[37] published a value of 50o. Burgert et al. [38] determined by X-ray scattering a value
of 52o. Remarkably, by observing Figure 4, we can find that our model predicts the max-
imum ultimate strains within this interval, at about 50-55o. Any initial MFA out of this
range will result in a smaller ultimate strain and therefore, in reduced extensibility. Con-
sequently, our model is able to provide new clues into the understanding of how trees and
plants optimise their microstructure in order to develop larger strains without apparent
damage. The requirement of extensibility is of paramount importance when the material is
deformed by the combined action of internal growth processes and environmental loading
conditions.

5 Conclusions

This paper has investigated the deformation mechanisms of wood at the ultrastructural
scale by means of a computational multi-scale approach. Three potential mechanisms of
failure have been suggested under tensile loading conditions. These are: axial straining of
the crystalline cellulose fraction, accumulation of plastic strain in the amorphous portion
of cellulose and tensile rupture in the hemicellulose-lignin matrix due to cellulose fibres
separation. Our numerical predictions for the ultimate strains in the material have been
validated successfully with published experimental data. For initial MFAs smaller than 30o,
the dominant mechanism of failure is related to the axial tensile straining of the crystalline
cellulose whereas for very large MFAs, over 70o, the prevailing failure mode is associated
with the tensile rupture of the matrix due to the separation of cellulose fibres. For inter-
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mediate values of MFA, the failure mechanism is associated with the inelastic yielding of
the amorphous portion of cellulose. We believe that the present modelling strategy, with
the appropriate support of experimental work, can provide a robust platform for further
investigations with a particular view to clarify unsolved issues with the microscopic dis-
sipative mechanisms, and their influence on the macroscopic response, which still remain
open at present.
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Effective dynamical model of barotropic gas with rapidly
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Abstract

We consider the classical three-dimensional Navier–Stokes equations of viscous
compressible gas in a smooth bounded domain. The equations are supplemented
with the no-slip conditions on a fixed boundary and with rapidly oscillating initial
distributions of density. The state equation of the gas is the equation of a barotropic
medium. We strictly justify a homogenization procedure, as frequencies of oscillations
tend to infinity. As a result, we build up an effective homogenized limiting model of
barotropic viscous gas. This model consists of four equations. They are the momentum
and mass equations, which are the same as in the original model; the state equation,
which differs from the original equation of barotropic gas; and an additional kinetic
equation, which endows the model and holds the complete information about evolution
of oscillations.

1 Problem formulation

We consider the system consisting of the balance of mass equation

∂ρ

∂t
+ divx(ρu) = 0, (x, t) ∈ Ω× (0, T ), (1a)

the momentum equation

∂(ρu)

∂t
+ divx(ρu⊗ u)− µ∆xu− ξ∇xdivxu +∇xP = ρg, (x, t) ∈ Ω× (0, T ), (1b)

and the state equation of barotropic gas

P = aργ , (x, t) ∈ Ω× (0, T ). (1c)

The system is supplemented with the no-slip condition on the boundary ∂Ω,

u|∂Ω = 0, t ∈ (0, T ), (1d)

and with the initial data

ρ|t=0 = ρε0, u|t=0 = uε0, x ∈ Ω. (1e)

The domain Ω ⊂ R3 is bounded. Its boundary ∂Ω is smooth. In the problem (1),
(ρ,u, P ) are the sought functions, the constants µ > 0, ξ > −µ, and a > 0 are given, the
function g is a given density of distributed mass forces. In line with [1, formula (7.2)],
we suppose that g belongs to the space L1(0, T ;L2γ/(γ−1)(Ω)) ∩ L2(0, T ;Lr(Ω)), where
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1

r
+

1

γ
+

1

6
= 1. The adiabatic exponent γ is supposed to be greater than three. The

initial data depend on the small parameter ε > 0 and satisfy the following properties and
limiting relations:

uε0 ∈ L2γ/(γ−1)(Ω), ρε0 ≥ 0 a.e. in Ω, ρε0 ∈ Lγ(Ω), (2a)
ρε0 −→

ε↘0
ρ∗0 weakly in Lγ(Ω), (2b)

uε0 −→
ε↘0

u∗0 strongly in L2γ/(γ−1)(Ω). (2c)

The limiting relation (2b) models an effect of rapidly oscillating initial data. According
to the current theory of compressible Navier–Stokes equations [1, 2], for a fixed ε > 0
the problem (1) has a generalized solution (ρε,uε, P ε), where P ε := a · (ρε)γ . The very
important observation that motivates the present study is outlined by P.-L. Lions in [1,
remark 5.9]. In [1, remark 5.9] it is noticed that the limits of the family of solutions,
arising as ε ↘ 0, cannot be solutions of the problem (1) because if a limit of (ρε,uε, P ε)
is a solution of the problem (1) then necessarily there should be that ρε0 −→

ε↘0
ρ∗0 strongly.

But this limiting relation contradicts the limiting relation (2b).
The aim of the work is to study properties of the limiting points of the sequence

(ρε,uε, P ε) as ε ↘ 0. As the results of this study, we construct a limiting homogenized
model and strictly justify the homogenization procedure.

The notion of generalized solution of the problem (1) is introduced exactly as in [1,
section 5.1], [2].

Definition 1. A triple of functions (ρε,uε, P ε) is called a generalized solution of the
problem (1), if it satisfies the conditions

ρε ≥ 0 a.e. on Ω× (0, T ), (3a)
ρε ∈ L∞(0, T ;Lγ(Ω)) ∩ C([0, T ];Lp(Ω)) for 1 ≤ p < γ, (3b)
uε ∈ L2(0, T ;H1

0 (Ω)), ρε|uε|2 ∈ L∞(0, T ;L1(Ω)), (3c)

ρεuε ∈ C([0, T ];L
2γ/(γ+1)
weak (Ω)), (3d)

the state equation (1c), the integral equality

∫T
0

∫
Ω

[
ρεuε · ∂ϕ

∂t
+ (ρεuε ⊗ uε + P ε I− µ∇xuε − ξdivxuε I) : ∇xϕ

]
dxdt

= −
∫T

0

∫
Ω
ρεg · ϕdxdt −

∫
Ω
ρε0u

ε
0 · ϕ(x, 0)dx (3e)

for any vector-field ϕ ∈ C1(Ω × (0, T )), vanishing on ∂Ω and in the neighborhood of the
plane {t = T}, and the integral equality

∫T
0

∫
Ω

[
b(ρε)

∂ψ

∂t
+ b(ρε)uε · ∇xψ + ψ(b(ρε)− b′(ρε)ρε)divxuε

]
dxdt

= −
∫

Ω
b(ρε0)ψ(x, 0)dx (3f)

for any differentiable function b with a bounded derivative b′ ∈ C(R) and for an arbitrary
function ψ ∈ C1(Ω× (0, T )), vanishing in the neighborhood of the plane {t = T}.
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In (3d) we use the following notation. By C([0, T ];L
2γ/(γ+1)
weak (Ω)) we denote the space

of functions ϕ ∈ L∞(0, T ;L2γ/(γ+1)(Ω)) such that the mapping t 7→ ϕ(·, t) is weakly con-
tinuous on the interval [0, T ] with values in L2γ/(γ+1)(Ω). In other words, for an arbitrary

test function ψ ∈ L2γ/(γ−1)(Ω) the mapping t 7→
∫

Ω
ψ(x)ϕ(x, t)dx is continuous on [0, T ].

Remark 1. In the distribution sense, (3f) is equivalent to the so-called renormalized
balance of mass equation

∂b(ρε)

∂t
+ divx(b(ρε)uε) + (b′(ρε)ρε − b(ρε))divxuε = 0. (4)

Formally this equation follows from (1a) by multiplication on b′(ρε) and by use of the chain
rule.

In [1, section 7.2] (see also in [2]) the following existence result was established.
Proposition 1. For any fixed ε↘ 0 there exists a generalized solution (ρε,uε, P ε) of

the problem (1) in the sense of Definition 1.

Moreover, ρε belongs to Lp̃(K × (0, T )), where p̃ = γ +
2

3
γ − 1 and K is an arbitrary

compact subset of Ω. Also, the generalized solution admits the energy inequality∫
Ω

[1

2
ρε|uε|2dx +

a

γ − 1
(ρε)γ

]
dx +

∫ t
0
ds

∫
Ω

(µ|∇xuε|2 + ξ|divxuε|2)dx

≤
∫

Ω

1

2
|uε0|2ρε0dx +

∫
Ω

a

γ − 1
ργ0dx +

∫ t
0
ds

∫
Ω

(ρεuε · g)dx (5)

for almost every t ∈ [0, T ].

2 Uniform bounds with respect to ε. Limiting relations as
ε↘ 0

Implementing the standard technics for derivation of a priori bounds on solutions of the
Navier–Stokes equations, from (5) we rather easily deduce that

ess sup
τ∈[0,T ]

∫
Ω

[1

2
ρε|uε|2dx +

a

γ − 1
(ρε)γ

]
dx ≤ C1(T ; ‖g‖), (6)

‖uε‖L2(0,T ;H1
0 (Ω)) ≤ C2(T,Ω, C1), (7)

‖uε‖L2(0,T ;L6(Ω)) ≤ C3, (8)∥∥∥∥∂ρε∂t
∥∥∥∥
L∞(0,T ;W−1,2γ(γ+1)(Ω))

≤ C4, (9)

(∥∥∥∥∂(ρεuε)

∂t

∥∥∥∥
L∞(0,T ;W−1,1(Ω))

,

∥∥∥∥∂(ρεuε)

∂t

∥∥∥∥
L2(0,T ;H−1(Ω))

)
≤ C5, (10)

where the constants C1–C5 do not depend on ε.
In [1, theorem 7.1] the following rather delicate result was established.
Proposition 2. Let (ρε,uε, P ε) be a generalized solution of the problem (1). Let

ρε ∈ Lp̃(K × (0, T )), where p̃ = γ +
2

N
γ − 1 and K is an arbitrary compact subset of Ω.

Then ρε is bounded in Lp̃(K× (0, T )) by a constant, which depends only on the data of the
problem and does not depend on ε.
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The above stated bounds allow us to use the result of [1, theorem 5.1, part 1] and
establish the limiting relations

ρεuε →
ε↘0

ρ∗u∗ weakly in L2γ/(γ+1)(Ω× (0, T )), (11)

ρεuεiu
ε
j →
ε↘0

ρ∗u∗iu
∗
j inM(Ω× (0, T )), (12)

weakly* in L∞(0, T ;L1(K)) ∩ L1(0, T ;Lβ(K)), (13)
√
ρεuε →

ε↘0

√
ρu∗ weakly in L2γ/(γ+1)(Ω× (0, T )) (14)

for an appropriate subsequence of {ε ↘ 0}. Here (ρ∗,u∗) := w- lim
ε↘0

(ρε,uε) and √ρ :=

w- lim
ε↘0

√
ρε (in the space L2γ(Ω×(0, T ))). The exponent β is greater than one and depends

on γ. In (13) M is the space of Radon measures, i.e., the dual space to the space of
continuous functions.

The following convergence property of the so-called effective viscous flux [1, remarks
5.13, 5.18], [2, section 3.4] is very important for limiting transitions in (1).

Proposition 3. Let B be an arbitrary continuous on the semi-axis [0,+∞) function
such that B and B′ are bounded. Then the limiting relation

B(ρn){(µ+ ξ)divxun−a · (ρn)γ} →
n↗∞

B̄{(µ+ ξ)divxu∗−P ∗} in D′(Ω× (0, T )) (15)

holds true.
Here we denoted B̄ := w- lim

n↗∞
β(ρn), P ∗ := aw- lim

n↗∞
(ρn)γ ≡ w- lim

n↗∞
Pn.

In order to describe effectively superpositions of nonlinear functions and weakly con-
vergent sequences, we use Ball’s fundamental theorem on a version of Young measures,
which reads as follows [3] (see also in [4]).

Proposition 4. Let Ω be a bounded open subset of R3. Suppose a sequence of measur-
able functions {ρn}n≥1 is bounded in Lγ(Ω), 1 < γ < +∞.

Then there exist a subsequence still denoted by {ρn}n≥1 and a measurable set of
probability measures σx,t ∈ M(R), (x, t) ∈ Ω × (0, T ) with the distribution function
f(x, t, λ) := σx,t(−∞, λ] such that

(1) for a.e. (x, t) ∈ Ω × (0, T ) the function λ 7→ f(x, t, λ) is right continuous and has
the limits 1 and 0, as λ→ ±∞;

(2) for any Carathéodory function G : Ω× (0, T )× R 7→ R satisfying the condition

lim
|λ|→∞

‖G(·, ·, λ)‖C(Ω×(0,T ))

|λ|γ
= 0,

the sequence G(·, ·, ρn) converges weakly in L1(Ω× (0, T )) to the function

Ḡ(x, t) =

∫
R
G(x, t, λ)dλf(x, t, λ).

Moreover, the mapping (x, t) 7→
∫
R
|λ|γdλf(x, t, λ) from Ω×(0, T ) into R belongs to L1(Ω×

(0, T )).
Definition 2. The probability measures σx,t are called the Young measures associated

with the chosen subsequence {ρn}n≥1.
By dλf we denote the standard Stieltjes measure on Rλ generated by the function

λ 7→ f(x, t, λ) for a.e. (x, t) ∈ Ω× (0, T ).
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3 Formulation of the homogenized effective model

The following theorem and formulation of the homogenized effective model of dynamics of
viscous barotropic gas with rapidly oscillating initial data are the main results of the work.

Theorema H. (On homogenization of equations of viscous barotropic gas with rapidly
oscillating initial data.) Let {(ρε,uε)}ε>0 be a family of generalized solutions of the problem
(1) corresponding to the rapidly oscillating initial data (1e).

Then there exist a quadruple of functions (ρ∗,u∗, P ∗, f) and a subsequence {ε ↘ 0}
such that

ρε →
ε↘0

ρ∗ weakly in Lγ(Ω× (0, T )) ∩ Lp̃(K × (0, T )), (16)

uε →
ε↘0

u∗ weakly in L2(0, T ;H1
0 (Ω)), (17)

P ε →
ε↘0

P ∗ weakly in L1+κ(Ω× (0, T )), (18)

and the quadruple of functions (ρ∗,u∗, P ∗, f) is a solution of Problem H formulated imme-
diately below.

Problem H. In the domain (x, t, λ) ∈ Ω × (0, T ) × Rλ it is necessary to find an
effective density ρ∗ = ρ∗(x, t), an effective velocity field u∗ = u∗(x, t), an effective pressure
P ∗ = P ∗(x, t), and the right continuous and monotonously nondecreasing in λ distribution
function f = f(x, t, λ) such that 0 ≤ f ≤ 1 a.e. in Ω× (0, T )× Rλ, satisfying the balance
of mass equation

∂ρ∗

∂t
+ divx(ρ∗u∗) = 0, (x, t) ∈ Ω× (0, T ), (19)

the momentum equation

∂(ρ∗u∗)

∂t
+divx(ρ∗u∗⊗u∗)−µ∆xu

∗−ξ∇xdivxu∗+∇xP ∗ = ρ∗g, (x, t) ∈ Ω×(0, T ), (20)

the kinetic equation

∂f

∂t
+ divx(fu∗)− ∂

∂λ
(λfdivxu∗) +

∂

∂λ
(λM(f)) = 0 (x, t, λ) ∈ Ω× (0, T )×Rλ, (21)

where the nonlinear operator f 7→M(f) is defined by the formula

(M(f))(x, t, λ) :=
1

µ+ ξ

∫∞
λ

(asγ − P ∗(x, t))dsf(x, t, s),

the state equation

P ∗(x, t) = a

∫
[0,∞)

λγdλf(x, t, λ) ≡ aγ
∫

[0,∞)
λγ−1(1− f(x, t, λ))dλ (x, t) ∈ Ω× (0, T ),

(22)

the initial data

ρ∗|t=0 = ρ∗0(x), u∗|t=0 = u∗0(x), f |t=0 = f0(x, λ), (23)

where f0 is the distribution function of the Young measure associated with a subsequence
{ρε0}ε↘0, and the no-slip boundary condition

u∗|∂Ω = 0, t ∈ (0, T ). (24)
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The solution of Problem H is understood in the sense of distributions. That is, the
balance of mass equation (19) and the initial condition (23)1 are understood in the sense
of the integral equality∫T

0

∫
Ω
ρ∗
[∂ψ
∂t

+ u∗ · ∇xψ
]
dxdt = −

∫
Ω
ρ∗0(x)ψ(x, 0)dx (25)

for an arbitrary test-function function ψ ∈ C1(Ω × (0, T )) vanishing in the neighborhood
of the plane {t = T}, the momentum equation (20) and the initial condition (23)2 are
understood in the sense of the integral equality

∫T
0

∫
Ω

[
ρ∗u∗ · ∂ϕ

∂t
+ (ρ∗u∗ ⊗ u∗ − ξdivxu∗I− µ∇xu∗) : ∇xϕ

+
(∫

Rλ
γaλγ−1(1− f(x, t, λ))dλ

)
divxϕ

]
dxdt

= −
∫T

0

∫
Ω
ρ∗g · ϕdxdt −

∫
Ω
ρ∗0u

∗
0 · ϕ(x, 0)dx, (26)

where ϕ ∈ C1(Ω× (0, T )) is an arbitrary test-function vanishing on ∂Ω and in the neigh-
borhood of the plane {t = T}, and the kinetic equation (21) and the initial condition (23)3
are understood in the sense of the integral equality

∫T
0

∫
Ω

∫
Rλ

{∂Φ

∂t
+ u∗(x, t) · ∇xΦ− λ∂Φ

∂λ
divxu∗(x, t)

}
f(x, t, λ)dλdxdt

+

∫T
0

∫
Ω

∫
Rλ

∂Φ

∂λ
λMdλdxdt = −

∫
Ω

∫
Rλ

Φ(x, 0, λ)f(x, 0, λ)dλdx, (27)

where Φ ∈ C1(Ω× (0, T )×Rλ) is an arbitrary test function vanishing in the neighborhood
of the plane {t = T} and for large |λ|.

Remark 2. (Comments about derivation of the equations (19)–(22).) The balance of
mass equation (19) and the momentum equation (20) follow directly from the equations
(1a) and (1b) thanks to the limiting relations (11)–(13) and (18). The state equation (22)
follows directly from the state equation of barotropic gas (1c) on the strength of Proposition
4 due to the uniform bound (6) on (ρε)γ . The derivation of the kinetic equation (21) is
rather sophisticated. In order to construct (21), in the present work we follow the ideas of
P. Plotnikov and J. Sokolowski [5]. The kinetic equation appears as the result of the limiting
transition as ε↘ 0 in the renormalized balance of mass equation (4). The justification of
the limiting transition is heavily based on Proposition 4 and some additional facts from
the Young measure theory and on Proposition 3 on effective viscous flux.

Remark 3. (On an alternative formulation of Problem H.) On the strength of Propo-
sition 4, the effective density ρ∗ has an explicit representation in terms of the distribution
function f in the form of an additional state equation

ρ∗(x, t) =

∫
[0,∞)

λdλf(x, t, λ) ≡
∫

[0,∞)
(1− f(x, t, λ))dλ (x, t) ∈ Ω× (0, T ). (28)

In turn, this equation along with the kinetic equation (21) yield the balance of mass
equation (19). Consequently, in the formulation of Problem H the balance of mass equation
can be equivalently substituted by the state equation (28).
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Abstract

An experimental study showed that the growth of damage in rubbers subjected
to repeated loading was not the only reason for hysteresis losses. The viscoelastic
properties of elastomeric material also contributed to the hysteresis losses. Owing
to these properties, the material is capable of partial or complete recovery of its
mechanical properties after a long while or during heat treatment.

Numerous experiments on cyclic high-amplitude loading of rubbers have shown sub-
stantial hysteresis losses to occur during the first loading cycle; in the subsequent cycles,
the losses decrease and the material becomes less stiff [1, 2]. This phenomenon is known
as the Mullins effect and is attributed to a growth in damage of rubbers [3, 4]. The cause
of these losses may also be the viscoelastic properties of the elastomer. The objective of
this investigation was to study the viscoelastic properties in filled elastomers.

We performed experiments in which a specimen was subjected to cyclic stretching until
the stabilization of hysteresis losses was reached. Then the specimen was held at a fixed
temperature. Depending on the holding temperature, the mechanical properties of the
rubber were recovered partially or completely.

The elastomer used in the study had a carbon-black volume fraction of 50% and a
breaking extension of 250%.

Specimens were prepared in the form of a ring of 50 mm outer diameter, 4 mm width,
and 2 mm thickness. The ring was put on round grips designed for this purpose and
stretched. The merit of this shape of specimens was that they could not slip out of the
grip fixtures at large strains or be damaged by clamping.

Special measures were taken (labels were attached) to control the base distance during
the removal of the sample from the grips and its thermostatting for a given period of time.

Specimens prepared for testing were preliminarily annealed at 100◦C for 72 h to stabilize
their properties and to remove stresses induced during their preparation and storage. The
specimens were stretched at 20◦C with a speed of 100 %/min in a 2167 P-50 tensile-testing
machine.

Experiments were performed on several specimens of identical geometrical dimensions,
which were subjected to identical thermal treatment prior to testing. At the beginning of
testing, the specimens were cyclically loaded to the same deformation. The plots of cyclic
stretching were identical for all the specimens. After preconditioning the specimens were
thermostatted for different periods of time. Note that the recovery of their properties after
long-term thermostatting was complete.

Figure 1a presents the stress-strain plots under cyclic loading of a specimen to an
extension ratio of 50% and the plots for specimens held at 100◦C for 1 and 72 h.
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MPa

Figure 1: Tensile loading-unloading curves of thermo-statted specimens. Specimen pre-
conditioning at an extension ratio of (a) 50, (b) 100, and (c) 150%: (1) single-stretching
curve, (2) first loading of the virgin specimen, (3) the last cycle of specimen loading during
conditioning, (4) immediate (without thermo-statting) stretching of the specimen to an
extension ratio greater than the preconditioning extension, (5) stretching of the precondi-
tioned specimen after thermostatting for 1 h, and (6) the same after 72-h thermostatting.

Figures 1b and 1c show similar plots. In these cases, the specimen was preliminarily
subjected to cyclic stretching to 100 and 150%. The specimens thus aged were thermostat-
ted for 1 and 72 h and then stretched to a higher extension ratio.

From Fig. 1, it is seen that the specimens thermostatted for 1 h partially recovered
their mechanical properties.

Thermostatting for a long period of time (to 72 h) leads to the maximum recovery of
properties. At a low preliminary extension level (to 50% in the given case), the specimen
completely recovers its properties. However, if a specimen is conditioned at a higher
extension ratio, there is no complete recovery of the properties.

It may be assumed that there are two possible ways of evolution of the structure of
material — free and forced. The forced evolution of the material structure manifests itself

333



Proceedings of XL International Summer School–Conference APM 2012

when the stretching of a specimen causes the tightening of loops in molecular chains at
the molecular level, the slipping of chains, and their debonding from filler particles. This
evolution occurs under an external load. In turn, unloading leads to the loosening of loops
and the crawling of chains over or their adhering to inclusions. Under these conditions,
the kinetic energy of motion of polymer chain units is insufficient for the reverse process
of recovery to occur at the same rate as upon loading.

The loops tied to very tight knots take a very long time to disentangle and the formation
of the initial polymer-network morphology is very slow. Let us call this the free evolution
of the material structure. The softening of the material strongly depends on the volume
fraction of filler and is substantially less dependent on the elastomer-crosslink density [5].
After a long rest (tens or even hundreds of days) at room temperature, the initial properties
of rubbers may be recovered [6] (Fig. 2). The same takes place after thermostatting the
specimens for a certain time — 3 days in our experiments. This suggests that the defects
induced are either healed or the softening effect has a nature other than damaging, for
example, thixotropic (as a consequence of desorption of taut chains from the filler surface
[7], phase transition in the elastomer matrix near filler particles [8], or slippage of polymer
chains on the filler surface [9]).

Fukahori [10] reported experimental data suggesting that filled elastomers have a much
more complex structure than was anticipated. The complex structure has a softening
nature due to different causes associated with both viscoelastic mechanisms (thixotropic
properties) and damage buildup.

Figure 2 depicts a tensile stress-strain curve after resting a specimen at room temper-
ature for 256 days. These data confirm that the recovery of the elastomer properties takes
place at room temperature as well. The process is due to the thermal motion of molecules,
and this takes time. Heating only accelerates the thixotropic processes.

Figure 2: Recovery of the mechanical properties after 256 days of rest: (1) first stretching of
the specimen to 150%, (2) the last cycle of stretching the specimen during its conditioning,
and (3) specimen stretching after resting for 256 days.
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From the data presented in Figs. 1b and 1c, it is seen that, at large extension ratios
(more than 50% in our case), other processes that are presumably due to damage buildup
occur in the elastomer along with the changes related to the viscoelastic properties. The
greater the extension ratio during the preliminary cycling, the greater the amount of dam-
age that is not healed with time (upon thermostatting).

What is noteworthy in Fig. 1 is that the material “remembers” its ultimate strain.
When the specimens are stretched to an extension ratio that is higher than the one at
which a specimen was conditioned, the stress-strain curve very rapidly reaches the level of
the single stretching of the virgin specimen. This phenomenon is easy to explain in terms
of both viscoelastic properties and damage buildup. However, the complete recovery of
the initial properties of the specimen stretched to an extension ratio of more than 50%
does not take place even after long-term thermostatting. The stress-strain curve after
thermostatting lies below the first-stretching curve (Figs. 1b, 1c). This indicates that the
changes associated with the structure recovery are not accomplished to the full extent at
large deformations and the damage buildup process occurs simultaneously with thixotropic
changes.

The results obtained in these experiments show that, in addition to damage buildup
during deformation of rubbers, a considerable contribution to hysteresis losses is made by
the viscoelastic properties of the elastomer matrix.
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Abstract

The problem of thin body motion in gas parallel to the boundary is regarded. In
particular, the lift force in thin body motion parallel to rigid surface is determined
and compared with existing solution for the lift force in case of an infinite space. The
solution is determined under the assumption of fluid being ideal and compressible.
The Chaplygin-Zhukovsky hypothesis of rear-edge-limited solution is taken into con-
sideration. The solution of a problem is first reduced to singular integral equation
and then to the Fredholm equation, which is solved numerically. The generalization
of Zhukovski solution was obtained, which provides the lift force dependence on the
altitude of the flight. The behavior of the lift force is very peculiar: it increases on
decreasing altitude above the rigid surface. The screen effect becomes essential on
moving wing altitude being smaller than the wing’s length. The effect was detected
experimentally before and gave birth to construction of a special flying vehicle named
“ecranoplan”. It is shown in the paper that the lift force could increase several orders
of magnitude. This effect could be used in developing flying high-speed vehicles, which
could be used in the territories of smooth surface: steppes, deserts, lakes, swamps,
etc.

1 Introduction

It was observed that the lift force of a wing moving near flat surface increases strongly in
comparison with free flight. An article about screen effect by B.N. Juriev [1] was published
in 1923 in the USSR. That fact was used in creation of new flying devices - screen-flights,
which got the Russian name “ekranoplan”. In 1932 Finnish engineer T. Kaario proceeded to
test his flying apparatus that used a screen effect. Then (1963 - 1976) a Soviet constructor
R.L. Bartini created a screen-flight project SVVP-2500 that took off in 1974. The first
Soviet manned jet screen-flight SM-1 was created in collaboration with R. Alekseev in 1960
- 1961 [2]. Giant screen-flight KM was finished by 1966 and “Orlyonok” type screen-flights
were built from 1974 to 1983. Designing of new flying devices continues in many countries.

L.I. Sedov obtained an analytical solution for the lift force of a wing moving near
rigid surface in terms of Weierstrass functions [3] using the theory of a complex variable.
Approximate analytical solution of the problem of non-steady plane moving near rigid
surface was obtained by K.V. Rozjdestvensky [4] with the help of asymptotic expansion.
Theoretical investigation of a wing moving near rigid surface was made by A.N. Panchenkov
[5, 6], but the obtained solutions incorporated free constants. Experimental results are
shown in [7].

The problem of theoretical investigation of a wing’s behavior near a surface is still
far from being finalized. The present paper provides a theoretical solution for the two-
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dimensional linearized problem of a thin wing motion near rigid surface in compressible
fluid.

2 Mathematical statement of the problem

Figure 1: Schematic picture for thin wing motion above rigid surface.

The two-dimensional problem of thin body motion in the presence of rigid surface is
regarded. The coordinate system and flow scheme are shown in Fig. 1. It is assumed that
the wing is moving with constant velocity in an ideal compressible fluid near a motionless
surface y′ = 0 . In a motionless coordinate system x′, 0′, y′ adiabatic gas flow is described
by the continuity and Euler equations. The angle |α±| � 1 and mass forces are considered
to be negligibly small. These assumptions make the flow field to be potential. Streaming
condition of the equality of normal velocity component should be satisfied on the rigid
surface and on the body surface contacting fluid.

In movable coordinate system x = x′ + V t, y = y′ connected with the wing the gas
flow can be considered stable. After transfer to another independent variable x̃ = x

δ , δ =√
1−M2 the equations and boundary conditions describing the gas flow take the following

form:

∂2ϕ

∂x̃2
+
∂2ϕ

∂y2
= 0; (1)

0 ≤ x̃ ≤ L

δ
, y = h± :

∂ϕ(x̃, h±)

∂y
= V α±(δx̃); (2)

−∞ < x̃ <∞, y = 0 :
∂ϕ

∂y
= 0; (3)

p = p0 −
ρV

δ

∂ϕ

∂x̃
. (4)

Boundary conditions should be supplemented with function behavior at the infinity for
the uniqueness of the solution. Thus an analytical function satisfying boundary conditions
and decreasing at the infinity should be developed.

3 Problem solution

The solution of the Laplas equation can be developed in the form of a real part for the
analytical function of a complex variable ϕ(x̃, y) = ReΦ(z), z = x̃ + iy . Actually, it is
necessary to develop first derivative of the analytical function, which could be denoted as:
iT (z) = Φ′(z) . The development of the analytical function is reduced to the following

338



The lift force of a wing moving in compressible fluid near a rigid surface

boundary problem [8]:

0 ≤ x̃ ≤ L

δ
, y = h± : ReT (x̃+ ih) = −V α±(δx̃) = −V α̃±(x̃); (5)

−∞ < x̃ <∞, y = 0 : ReT+(x̃, 0+) = 0. (6)

The pressure can be developed from the following formula:

p(x̃+ iy) = p0 +
ρV

δ
ImT (x̃+ iy) (7)

For the uniqueness of the solution boundary conditions should be supplemented with func-
tion behavior at the infinity and at the ends of the segment 0 ≤ x̃ ≤ L

δ . It is considered
that the function tends to zero at the infinity and is limited at the rear edge of the wing,
which is the result of the Chaplygin-Zhukovsky hypothesis [9].

The solution is developed with the help of the symmetry principle. The following
non-dimentional variables are introduced ˜̃x = x̃

L̃
, ˜̃y = y

L̃
,
˜̃
h = h

L̃
, L̃ = L

δ .
The development of the analytical function is reduced to the following boundary prob-

lem:

0 ≤ ˜̃x ≤ 1, ˜̃y =
˜̃
h± : ReT (˜̃x+ i

˜̃
h) = −V α±(L˜̃x) = −V ˜̃α±(˜̃x); (8)

−∞ < ˜̃x <∞, ˜̃y = 0 : ReT+(˜̃x, 0+) = 0. (9)

The tildes will be omitted in the following equations.
The solution of the problem can be derived in the form of Cauchy type integral [8]:

T (z) = X1(z)[
1

2πi

∫1

0

1

X+
1 (t)

µ(t)

t+ ih− z
dt] +

1

2πi

∫1

0

ζ(t) + iη(t)

t+ ih− z
− (10)

−X2(z)[
1

2πi

∫1

0

1

X+
2 (t)

µ(t)

t− ih− z
dt] +

1

2πi

∫1

0

ζ(t)− iη(t)

t− ih− z
, (11)

where

X1(z) =

√
z − z1

z − z2
=

√
R11

R12
ei
θ11−θ12

2 , z1 = 1 + ih, z2 = ih; (12)

X2(z) =

√
z − z̄1

z − z̄2
=

√
R21

R22
ei
θ21−θ22

2 , z̄1 = 1− ih, z̄2 = −ih (13)

Arguments θ11, θ12, θ21, θ22 are chosen according to the rule shown in Fig. 2.

Figure 2: Rule to choose arguments θ1 = arg(z − z1), θ2 = arg(z − z2).

The function T (z) satisfies the boundary condition−∞ < x <∞, y = 0, T+(x, 0+) = 0.
It is assumed that µ(t) = −V ( ˜̃α+ + ˜̃α−), ζ(t) = −V ( ˜̃α+ − ˜̃α−) . The function T (z) will
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satisfy the boundary condition 0 ≤ x ≤ 1, y = h± ReT (x + ih) = −V ˜̃α±(x), if the
following singular integral equation will be fulfilled:

1

2π

∫1

0

η(t)

t− s
dt− 1

2π

∫1

0

(t− s)η(t)

(t− s)2 + 4h2
dt− V h

π

∫1

0

˜̃α+(t)− ˜̃α−(t)

(t− s)2 + 4h2
dt−

−R(s) sinα(s)
V

2π

∫1

0

√
t

1− t
(t− s)

(t− s)2 + 4h2
( ˜̃α+(t) + ˜̃α−(t))dt+

+ R(s) cosα(s)
V h

π

∫1

0

√
t

1− t
1

(t− s)2 + 4h2
( ˜̃α+(t) + ˜̃α−(t))dt = 0, (14)

where

α(s) =
1

2
[arctan(

2h

1− s
) + arctan(

2h

s
)], R(s) =

4

√
(1− s)2 + 4h2

s2 + 4h2
. (15)

4 The case of wing being a plate

If the wing has a shape of a plate ˜̃α± = −γ the singular integral equation takes the following
form:

1

π

∫1

0

η(t)

t− s
dt− 1

π

∫1

0

(t− s)η(t)

(t− s)2 + 4h2
dt+

+R(s) sinα(s)
V γ

π

∫1

0

√
t

1− t
(t− s)

(t− s)2 + 4h2
dt−

− R(s) cosα(s)
2V hγ

π

∫1

0

√
t

1− t
1

(t− s)2 + 4h2
dt = 0. (16)

The third and the fourth integrals can be taken analytically using the theory of residues
[10]. The following singular integral equation can be determined:

1

π

∫1

0

η̃(t)

t− s
dt =

1

π

∫1

0

(t− s)η̃(t)

(t− s)2 + 4h2
dt− F (s), (17)

where

η̃(s) =
η(s)

V γ
, F (s) = R(s) sinα(s)− 1, R(s) =

4

√
(1− s)2 + 4h2

s2 + 4h2
, (18)

α(s) =
1

2
[arctan(

2h

1− s
) + arctan(

2h

s
)]. (19)

5 The case of wing being convex

If the wing has a convex shape y+(x) = −γx2, y−(x) = −γx :

˜̃α+(x) = −2γx, ˜̃α−(x) = −γ, (20)

˜̃α+(x) + ˜̃α−(x) = −2γ(t+
1

2
), (21)

˜̃α+(x)− ˜̃α−(x) = −2γ(t− 1

2
). (22)

The singular integral equation takes the following form:
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1

π

∫1

0

η(t)

t− s
dt− 1

π

∫1

0

(t− s)η(t)

(t− s)2 + 4h2
dt+

2γV h

π

∫1

0

t− 1
2

(t− s)2 + 4h2
dt+

+R(s) sinα(s)
V γ

π

∫1

0

√
t

1− t
(t− s)

(t− s)2 + 4h2
(t+

1

2
)dt−

− R(s) cosα(s)
2γV h

π

∫1

0

√
t

1− t
1

(t− s)2 + 4h2
(t+

1

2
)dt = 0. (23)

The third, the fourth and the fifth integrals can be taken analytically using the theory of
residues [10]. The following singular integral equation can be determined:

1

π

∫1

0

η̃(t)

t− s
dt =

1

π

∫1

0

(t− s)η̃(t)

(t− s)2 + 4h2
dt− F (s), (24)

where

η̃(s) =
η(s)

V γ
, (25)

F (s) =
h

π
ln

(1− s)2 + 4h2

s2 + 4h2
+

1

π
(s+

1

2
)[arctan

1− s
2h

+ arctan
s

2h
]+

+
1

2
(R(s) sinα(s)− 1) + (s+

1

2
)R(s) sinα(s)− 2hR(s) cosα(s)−

− (1− s)
R2(s)

[cos 2α(s) +
2h

1− s
sin 2α(s)],

(26)

R(s) =
4

√
(1− s)2 + 4h2

s2 + 4h2
, α(s) =

1

2
[arctan(

2h

1− s
) + arctan(

2h

s
)]. (27)

The solution for the integral equations 1
π

∫1
0
ϕ(t)
t−s dt = ψ(s) which is limited in the point

x = 1 and has a singularity in the point x = 0 is developed in the following form [22]:

ϕ(x) = −
√

1− x
x

1

π

∫1

0

√
s

1− s
ψ(0)

s− x
ds. (28)

The mentioned form of solution for the integral equation is used to regularize the singular
integral equation and to reduce it to the Fredholm equation [11]:

η̃(x) +

∫1

0
η̃(t)K(x, t)dt = G(x), (29)

where

K(x, t) =
1

4π

√
1− x
x

sin[α(t)− δ(x, t)]
R(t)

√
[t(1− x)− x(1− t)]2 + 4h2

, (30)

G(x) =

√
1− x
x

1

π

∫1

0

√
s

1− s
F (s)

s− x
ds,R(s) =

4

√
(1− s)2 + 4h2

s2 + 4h2
, (31)

α(t) =
1

2
[arctan(

2h

1− t
) + arctan(

2h

t
)], δ(x, t) = arctan

2h

t(1− x)− x(1− t)
. (32)

The following formula is used to determine the lift force:

F =

∫L
0

[p−(s)− p+(s)]ds = δ

∫ L
δ

0
[p−(s̃)− p+(s̃)]ds̃. (33)
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The pressure is derived from the problem statement:

p(s̃) = p0 +
ρV

δ
ImT (s̃), p−(s̃)− p+(s̃) =

ρV

δ
(Im(T−(s̃)− T+(s̃))). (34)

In the case of a plate:

Im(T−(˜̃s)− T+(˜̃s)) = V γ[

√
1− ˜̃s

˜̃s

2

π

∫1

0

√
t

1− t
dt

t− ˜̃s
− η̃(˜̃t)], (35)

p−(˜̃s)− p+(˜̃s) =
ρV 2γ

δ
[2

√
1− ˜̃s

˜̃s
− η̃(˜̃t)], (36)

F =

∫L
0

[p−(s)− p+(s)]ds = L

∫1

0
[p−(˜̃s)− p+(˜̃s)]d˜̃s =

πρLV 2γ

δ
[1 +

1

π

∫1

0
[−η̃(˜̃s)]d˜̃s].

(37)

The derived lift force differs from its analog for boundless surface by an extra summand
which decreases with the increase of the height.

In the case of a convex wing:

F =
ρLV 2γ

δ
[

∫1

0

√
1− s
s

1

π

∫1

0

√
t′

1− t′
2t′ + 1

t′ − s
dt′ds−

∫1

0
η̃(s)ds] =

=
πρLV 2γ

δ
[
5

4
− 1

π

∫1

0
η̃(s)ds]. (38)

6 Results and discussions

The dependence of the reduced lift force Fδ
πρLV 2γ

upon the altitude h̃ = h
L is shown on

Fig.3, Fig.4.
As it is shown on Fig.3, Fig.4 the lift force decreases with the increase of the height

above the rigid surface until the force reaches its magnitude in a boundless medium.

Figure 3: The dependence of the reduced
lift force Fδ

πρLV 2γ
of a plate upon the alti-

tude H = h̃ = h
L .

Figure 4: The dependence of the reduced
lift force Fδ

πρLV 2γ
of a convex wing upon the

altitude H = h̃ = h
L .
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7 Conclusion

A linear problem of thin wing motion near rigid surface is reduced to the Fredholm equation
which is developed numerically as a system of linear equations. So the problem is solved
almost analytically.

The behavior of the lift force and the point of its application evolution depending on
the distance from the rigid surface are examined. It is shown that the lift force increases
with the decrease of the wing distance from the plane surface. It can be seen that a rigid
surface affects the lift force only on the altitude which is smaller than the length of a
wing. If the altitude above the surface surpasses the wing span the screen effect practically
disappears and the lift force tends to its value in an unbounded space determined by the
classical Zhukovsky solution.

The obtained solution evidently shows, that the increase of lift force near the screen
in the orders of magnitude allows developing flying vehicles carrying much more cargo at
lower fuel consumption.

The obtained solution would be useful for designing giant screen-flight vehicles, because
it is necessary to take into account the essential variation of lift force application center
and its value depending on altitude.

The effect could be used for developing vehicles for operation on other planets having
not very dense atmosphere and relatively smooth surface (like Mars). Flights in such an
atmosphere are energy consuming, while using the effect of lift force increase near the
surface could be very effective.
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Abstract

The paper is devoted to the study of averaged processes, which take place in fast
varying periodic structures. Particularly, oscillations of a string and bending oscil-
lations of a beam with variable cross-sections are considered. The method of direct
separation of motions and the concept of vibrational mechanics [1,2] are used for the
analysis of these systems. Thus, the applicability range of this method is broadened.
The influence of “fast” spatial modulations on the effective values of systems param-
eters is revealed and described. Particularly, it is obtained that the variability of
beam’s cross-section, along with other effects, leads to the emergence of the additional
“slow” longitudinal force. It is noted that the order of equations, which describe the
averaged processes in the examined periodic structures, under certain conditions may
be different from the order of corresponding equations, which characterize systems in
the absence of modulations.

1 Introduction

Continua composed of periodically repeated elements (cells) are used in many fields of
science and technology. Examples of such continua are composite materials, consisting of
alternating volumes of substances with different properties. Use of these materials enables,
in particular, to achieve the effect of heat or sound isolation. The simplest example is
material such as felt, which has long been used for these purposes. Various frame structures,
e.g. building frames and trusses of bridges, cranes and industrial constructions, railway
tracks and compound pipes are also periodic systems. Study of such structures is of
particular interest in connection with the problem of optimization of their properties.

Widely used approaches for wave examination in periodic systems are methods, based
on the utilization of the Floquet theory [3,4,5]. The so-called frequency stop bands, i.e.
frequencies ranges, in which a wave does not propagate through the considered structure,
can be determined by its means. However, in the framework of this theory it is problem-
atic to incorporate the (external) boundary conditions. Numerical approaches to study
and optimization of periodic structures, particularly, WFE method [6,7] and topology op-
timization method [8,9,10], are based on finite-element models of the considered structures,
and only approximate solution of a problem can be obtained by their means.

The present paper is devoted to the analysis of the averaged processes in spatially peri-
odic structures, particularly, to the study of long wave propagation in a string and a beam
with variable cross-sections. The aim of the research is to identify the effective (averaged)
properties of the considered systems in relation to these “slow” processes. The averaging
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procedure for stationary and non-stationary processes in periodic structures (composite
materials) based on the multiple scales method [11] combined with the averaging method
[12] was proposed in the monograph [13]. In the present paper the method of direct
separation of motions (MDSM) is used for the analysis of the considered mechanical sys-
tems. This method facilitates solution of various challenging problems of action of high
frequency vibrations on nonlinear mechanical systems [1,2]. The advantages of the MDSM
over methods [11,12] are the simplicity in application and the transparency of the physical
interpretation. Thus, the applicability range of the MDSM is broadened in the paper.

2 Oscillations of a string with variable cross-section

The equation of oscillations of a string with variable cross-section S = S0(1 + α sin kx),
0 ≤ α < 1 ,k >> π/l, where l is the length of the string, is considered

ρS
∂2u

∂t2
− ∂

∂x

(
T
∂u

∂x

)
= 0 (1)

here ρ is the density of the string material, T is the tension force, u(x, t) is a lateral
deflection of the string. The boundary conditions are homogeneous: u|x=0 = u|x=l = 0.
Partial solution of equation (1) is sought in the form u(x, t) = A(x)B(t). The following
equations for the new variables A(x) and B(t) are obtained

B̈ = −C1B;
d2A

dx2
+
C1ρS0

T
(1 + α sin kx)A = 0 (2)

Here C1 is a constant. The concept of vibrational mechanics and the MDSM [1,2] are used
for solving the second of these equations in the following manner: its solutions are searched
in the form

A = A1(x) + ψ(x, kx) (3)

where A1 is "slowly varying", and ψ is "fast varying", 2π-periodic in dimensionless
(“fast”) spatial coordinate x1 = kx variable, with period x1 average being equal to zero:
〈ψ(x, x1)〉 = 0. Angle brackets denote averaging by x1. The following equation is obtained
for variable A1 by averaging the second of equations (2) by x1

d2A1

dx2
+
C1ρS0

T
A1 = −C1ρS0

T
α 〈ψ sinx1〉 (4)

The boundary conditions are A1|x=0 = A1|x=l = 0. The equation for variable ψ is
available from equation (2) by subtracting equation (4). Its solution has the form

ψ = A1α
(
f1(C1µ) sinx1 + αf2(C1µ) cos 2x1 + α2f3(C1µ) sin 3x1 +O(α3) + ...

)
(5)

where µ = ρS0

/
(Tk2) << 1, f1, f2, f3... are functions of C1µ, expressions for which depend

on the number of retained terms in series (5). Employing the obtained relation for variable
ψ, the following equation is composed for variable A1

d2A1

dx2
+
C1ρS0

T

(
1 + α2 f1(C1µ)

2

)
A1 = 0 (6)
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Based on this equation, it may be concluded that modulations of string cross-sectional
area lead to a change of the effective (averaged) value of this parameter. To satisfy the
boundary conditions for variable A1 the following equality should hold true√

C1ρS0

T

(
1 + α2

f1(C1µ)

2

)
=
nπ

l
(7)

Retaining only the first term in series (5), that is justified for small α (α < 0.5), we
obtain expression f1(C1µ) = C1µ

1−C1µ
for function f1, while equation (7) will have two roots,

one of which is much greater than the other. So, formally the two values of the string
oscillations frequency

√
C1(1),

√
C1(2) correspond to the one value of the wave number

nπ/l. Such result indicates a change of the order of the considered equation (1) owing to
modulations of the string cross-section. The accounting of the other terms in solution (5)
leads to the emergence of the additional values of the frequency

√
C1, which correspond to

the one wave number nπ/l, every next of which exceeds the previous.
Series of numerical experiments was conducted to verify this conclusion. As an illus-

trative example, the dependence of the acceleration of the middle of the string ü(l/2, t) on
time at parameters ρS0/T = 1 (s/sm)2, l = 5 sm, α = 0.5, k = 2.6 1/sm and simple initial
conditions u|t=0 = sinπx/l, u̇|t=0 = 0 is presented in Figure 1.

Figure 1: The dependence of the acceleration of the middle of the string on time.

As is seen from Figure 1, modulations of string cross-section indeed lead to the emer-
gence of a spectrum of additional eigenfrequencies, which corresponds to the same wave
number nπ/l. Thereby, analitical results were confirmed by numerical experiments.

3 Bending oscillations of a beam with variable cross-section

We consider bending oscillations of a beam with variable cross-section, which are described
by the equation
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ρS
∂2w

∂t2
+

∂2

∂x2

(
EJ

∂2w

∂x2

)
= 0 (8)

Here ρ is the density and E is the Young’s modulus of the beam’s material, w(x, t) is
beam’s deflection, S = S(x) = S0(1 + α sin kx) is the cross-sectional area, J = J(x) =
J0(1 + α1 sin kx) is the moment of inertia of the cross-section. Employing the approach,
used above, for solving equation (8), we compose the equation for the slow variable A1.
Based on this equation it may be concluded that modulations of beam’s cross-section lead
to: the decrease of the effective moment of inertia of its cross-section, the emergence of the
additional "slow" longitudinal force, and the increase of the effective cross-sectional area.
As in the case of a string, satisfying the boundary conditions, we obtain an equation for
the constant C1, which has a number of roots.

Based on these results the conclusion is drawn that modulations of the beam cross-
section lead, firstly, to the change of the value of the fundamental eigenfrequency

√
C1(1)

in comparison with its non-modulated value, and, secondly, to the emergence of a spectrum
of additional eigenfrequencies, which corresponds to the same wave number nπ/l, i.e. to a
change of the order of the initial differential equation.

4 Conclusions

The equations, which describe the averaged, long-wave processes in a beam and a string
with variable cross-sections, are derived by means of the MDSM. Thus, the applicability
range of this method is broadened to the cases, when separation of variables can be per-
formed not in time, but, rather, in spatial coordinate. Based on the derived equations
the influence of “fast” spatial modulations on the systems’ effective (averaged) parame-
ters is detected. Particularly, it is shown that modulations of string cross-sectional area
lead to the increase of the effective value of this parameter, and the variability of beam’s
cross-section, along with other effects, leads to the emergence of the additional “slow” lon-
gitudinal force. It is noted that the order of differential equations, which describe the
averaged (slow) processes in the considered periodic structures, under certain conditions
may differ from the order of the corresponding equations in the absence of modulations.
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Abstract

Reliable mathematical modeling in hydromechanical system dynamics is very im-
portant for studies related to the safety of significant objects in the nuclear power
industry. Consideration is being given to problems of identification of anomalies in the
phase constitution of the coolant circulating throw the reactor primary circuit. Main
dynamical characteristics of the object under diagnosing are considered as continuous
functions of the bounded set of control variables. Possible occurrence of anomalies in
the phase constitution of the coolant can be detected owing to changes in dynamical
characteristics of the two-phase flow. As the normal state of the coolant and anomalous
one are characterized by different spectra, then it is necessary to minimize simultane-
ously individual differences between spectral components. So, the diagnostic problem
is formulated as the inverse spectral problem. Two novel hybrid algorithms for solv-
ing the corresponding global minimization problem are proposed. The first algorithm
M-PCALMS combines the stochastic Multi-Particle Collision Algorithm (scanning
of the search space) and deterministic gradient algorithm (local minimization) with
smoothing approximations of the error function. The second algorithm M-PCASFC
implements the local search procedure using the space-filling curve method. Results
of successful computational experiments are presented to illustrate the efficiency of
the approach.

1 Introduction

Modern methods for solving practical problems relating to trouble free, efficient and pro-
longed operation of complex systems are presumed the application of computational di-
agnostics [1]. The investigations are concerned with mechanical and hydromechanical
systems which are constituents of nuclear power plants, aerospace structures, chemical
process equipment. Computational diagnostic methods make it possible to study proper-
ties of the object under diagnosing on base of circumstantial measured data [2–4]. Input
data for diagnosing usually contain the results of experimental measurements of the sys-
tem certain investigatory characteristics; among them may be registered parameters of
oscillatory motion or impact process. It needs to evaluate causal characteristics like the
dynamic equation coefficients, boundary conditions, geometrical and other characteristics.
The diagnostic procedure is founded on the solution of the corresponding inverse spectral
problem; the problem in many cases may be reduced to a minimization of an appropriate
error criterion. Eigenvalues from the direct problem for the mathematical model and useful
measured data for the system are used in order to construct the criterion. When solving
these inverse problems, consideration must be given to following special features: the error
criterion may be represented by nondifferentiable and multiextremal function. In the gen-
eral case it is necessary to solve the problem using inaccurate incomplete experimental data.
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Possible availability of repeated or very close eigenvalues one should take into account. It
is well known that the above problem is often ill posed, so that small perturbations in the
data can result in large changes of the solution. Regularization technique is a standard
method of transforming the initial problem into well-posed form [5, 6]. Implementation
of special procedures is required for finding regularization parameters. Incompleteness of
the spectral data results in the error crterion being non-convex. As the error function has
numerous local minima, it is necessary to use global optimization methods.

Vibration monitoring methods are cost-effective and reliable tools for early failure de-
tection and preventive maintenance in the up-to-date nuclear power industry. One of the
most severe accidents in nuclear power generation is loss of coolant, where the re-circulating
coolant of the pressurized water reactor may flash into steam [7, 8]. The standard reac-
tor instrumentation can register signals caused by pressure fluctuation of the coolant. The
problem at hand is an interpretation of the registered spectra and useful data extraction for
diagnostics. Methods of solving the problem for computational models of the VVER-1000
primary circuit are under consideration. Possible occurrence of anomalies in the phase
constitution of the coolant can be detected owing to changes in dynamical characteristics
of the two-phase flow. Mathematical models for numerical analysis of acoustical oscilla-
tions in two-phase coolant have been developed [9]. As the normal state of the coolant
and anomalous one are characterized by different spectra, then it is necessary to minimize
simultaneously individual differences between spectral components. These differences can
be described by an appropriate error function. The goal is to find a set of controlling
variables, which will minimize the error function and determine current phase constitution
of the coolant. So, the diagnostics problem is formulated as the inverse spectral problem.

Implementation of the approach with the use of hybrid global optimization algorithms
is discussed. As usual hybrid algorithms combine stochastic and deterministic algorithms
in order to achieve better computational properties. Two novel stochastic algorithms have
been proposed recently: the Particle Collision Algorithm PCA [10] and the Multi-Particle
Collision Algorithm M-PCA [11]. The NMPCA is a good example of the hybridization
method [12]. The hybrid NMPCA performs as follows: first, a wide search in the solution
space is carried out using a stochastic optimization algorithm (the PCA), and then scanning
the promising areas is made with a deterministic local search technique (Nelder-Mead
Simplex). This searching is performed iteratively until a certain number of fitness function
evaluations is reached. However, it is well-known that the convergence theory for Nelder-
Mead simplex method is far from completion; so the method can fail to converge or converge
to non-stationary points [13]. As an alternative to the NMPCA two novel hybrid algorithms
are introduced. These algorithms combine the M-PCA and the deterministic gradient
techniques with smoothing approximations for fitness functions or the space-filling method
throw the local search.

The plan of the remainder of this paper is as follows. The section following contains
statement of the diagnostics problem. Section 3 provides brief descriptions of the hybrid
global optimization algorithms. In section 4 successful computational experiments for iden-
tifying anomalies of the VVER-1000 equipment components and the phase constitution of
the coolant in the primary circuit are presented to illustrate peculiarities of the approaches.
Section 5 gives conclusions and discussion on further work.

2 Formulation of the problem

It is supposed that a set of performance index values associated with a computational
model to be updated is defined by a set of controlling variables. Experimental spectral data
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registered by permanent instrumentation may be incomplete. So the goal is to determine
vectors of controlling variables using only measured data on natural frequencies of the
object. The standard approach is to set the inverse spectral problem and then to solve the
corresponding least squares problem

min
x∈X⊂Rn

f(x), (1)

where f(x) =
N∑
i=1

wi(ζi(x)− ζ∗i )2; x, X — the vector of controlling variables and its feasible

domain of the error function f(x) respectively; the wi stand for weighting factors that
reflect the confidence level in the measurements; N is the number of eigenvalues under
consideration; ζi(x) and ζ∗i denote the eigenvalues that correspond to computed (solutions
of the direct problem) and to measured natural frequencies respectively;

X =
{
xi
∣∣xLi ≤ xi ≤ xUi ; i = 1, n

}
; (2)

here xLi , x
U
i — the lower and upper bounds on the ith controlling variable.

As practical observations show, the error function in the considered problem is often
multiextremal. Therefore, it is necessary to turn to methods of global optimization. It is
clear that if the measured spectral data exactly match to the computational model then the
solution of the minimization problem will cause error function to take its global minimum
value of zero. Let us suppose that there is a unique solution of the ill-posed inverse spectral
problem and that this corresponds to the global minimum of the error function. However,
the fact is that the theoretical question of the uniqueness of solutions of the problem may
not be relevant to practical applications in which there is the additional complication of
accuracy of experimental measurements. Furthermore, some complications may arise due
to incompleteness of measured spectral data, influence of the two-phase interference on the
flow dynamics, the presence of noise, etc. Within the scope of this work we take it as a
convenient and reasonable assumption that global minimization of the error function in the
above inverse problem will yield correct model updating for objects under consideration.

3 Hybrid global optimization algorithms

3.1 The Particle Collision Algorithm (PCA)

The modern Particle Collision Algorithm [10] has some essential advantages in relation to
well known stochastic global optimization algorithms such as the Genetic Algorithm, Sim-
ulated Annealing, Fast Simulated Annealing, etc. Specifically, the PCA does not require
any additional parameters other than the number of iterations; the algorithm is extremely
easy to implement and can be applied to both continuous and discrete optimization prob-
lems. The PCA performs using the analogy with nuclear particle collision reactions, in
particular scattering and absorption. So, a particle that hits a high-fitness “nucleus” would
be “absorbed” and would explore the boundaries. Otherwise, a particle that hits a low-
fitness region would be scattered to another region. This reasoning makes it possible to
simulate the exploration of the search space and the exploitation of the most promising
areas of the fitness landscape throw successive scattering and absorption collision events.

The original PCA works as follows. First an initial configuration is chosen, then a
modification of the old configuration into a new one is implemented. The qualities of the
two configurations are compared. A decision then is made on whether the new configura-
tion is acceptable. If it is, the current configuration acts as the old configuration for the
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next step. If it is not acceptable, the algorithm proceeds with a new change of the old
configuration. It is pertinent to note that acceptance of current trial solution with certain
probability may avoid the convergence to local optima.

However, the PCA is in its early stages. In spite of its advantages over Genetic Al-
gorithm and Simulated Annealing in solving test problems, practical application of the
PCA is restricted because of solutions remain too expensive. As possible development,
the local search procedure in the algorithm could be improved. It seems promising to use
gradient methods for local minimization of the error function. But in so doing the problem
of non-differentiability of the function should be taken into account.

3.2 The Multi-Particle Collision Algorithm (M-PCA)

The modern Multi-Particle Collision Algorithm is based on the canonical PCA, but a new
characteristic is introduced: the use of several particles, instead of only one particle to act
over the search space [11]. So, the new outer loop for the particle control has been added to
the basic global optimization algorithm. Thanks to use of several particles the M-PCA can
better explore the search space, avoiding convergence to a local minimum. Coordination
between the particles was achieved throw a blackboard strategy, where the Best_Fitness
information is shared among all the particles in the process.

Similar to PCA, M-PCA also has only one parameter to be determined, the number
of iterations. But in this case, the total number of iterations is divided by the number of
particles which will be used in the process. The division of the task is the great distinction
of the M-PCA, which leads to a great reduction of required computing time.

The pseudo code brief description of the M-PCA algorithm is as follows.

0 Generate an initial solution Old_Config
Best_Fitness = Fitness (Old_Config)
Update Blackboard
For n = 0 to # of particles
For n = 0 to # of iterations

Update Blackboard
Perturbation( )
If Fitness (New_Config) > Fitness (Old_Config)
If Fitness (New_Config) > Best_Fitness
Best_Fitness := Fitness (New_Config)

End If
Old_Config := New_Config
Exploration( )

Else
Scattering( )

End If
End For

End For
2. Exploration( )
For n = 0 to # of iterations
Small_Perturbation ( )
If Fitness (New_Config) > Fitness (Old_Config)

If Fitness (New_Config) > Best_Fitness
Best_Fitness := Fitness (New_Config)

End If
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Old_Config := New_Config
End If

End For
Return
3. Scattering( )
pscatt = 1−( Fitness (New_Config)) / (Best_Fitness)
If pscatt > random(0, 1)
Old_Config := random solution

Else
Exploration ( )

End If
Return
Perturbation( )
For i = 0 to (Dimension-1)
Upper = Superior_Limit[i]
Lower = Inferior_Limit[i]
Rand = Random(0, 1)
New_Config [i] = Old_Config [i] – ((Upper – Old_Config [i])*
Rand) – ((Old_Config [i] – Lower)*(1 – Rand))
If (New_Config [i] > Upper)
New_Config [i] = Superior_Limit [i]

Else If (New_Config [i] < Lower)
New_Config [i] = Inferior_Limit [i]

End If
End If

End For
Return
Small_Perturbation( )
For i = 0 to (Dimension-1)
Upper = Random(1.0, 1.2) – Old_Config [i]
If (Upper > Superior_Limit [i])
Upper = Superior_Limit [i]

End If
Lower = Random(0.8, 1.0) – Old_Config [i]
If (Lower > Inferior_Limit [i])
Lower = Inferior_Limit [i]

End If
Rand = Random(0, 1)
New_Config [i] = Old_Config [i] – ((Upper – Old_Config [i])*
Rand) – ((Old_Config [i] – Lower)*(1 – Rand)) End For

Return

3.3 The smoothing technique for local optimization

Inverse problems are considered to be substantially difficult because of the kinks connected
with presence of the multiple frequencies in registered spectra of acoustical oscillations in
two-phase coolant. The difficulty motivated the development of algorithms for the solu-
tion of the minimization problem via some smooth approximation, which could be mini-
mized by using any of the efficient classical approaches for smooth optimization. Several
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approximations to smooth out the kinks may be introduced. One of them results in a
continuously differentiable approximate function, whereas another one leads to a twice
continuously differentiable approximate function. Two-parametric smoothing approxima-
tions were successfully used to solve problems of multi-criterion optimization of mechanical
and hydro-mechanical systems with continuous but not everywhere differentiable functions
[14].

3.4 The hybrid algorithm M-PCALMS

As an alternative to the NMPCA a novel hybrid algorithm M-PCALMS is introduced.
In this new version of the global optimization algorithm the local search mechanism is a
standard deterministic linearization method. Inverse problems are considered to be sub-
stantially difficult because of the kinks connected with presence of the repeated or very
close frequencies in registered spectra for the computational model under updating. The
difficulty motivated the development of algorithms for the solution of the minimization
problem via some smooth approximation, which could be minimized by using any of the
efficient classical approaches for smooth optimization. Several approximations to smooth
out the kinks may be introduced. One of them results in a continuously differentiable
approximate fitness function, whereas another one leads to a twice continuously differen-
tiable approximate function. These approximations replace the original function in some
neighborhoods of directional differentiability points. Moreover, this approach preserves
such important property of the original function as its convexity. It is clear that the ap-
proach makes it possible to implement efficient gradient techniques in the solution process.
In general case the error function is not differentiable everywhere, so the implementation
of the smoothing technique may be quite pertinent. Computational experiments show
the principal applicability of the proposed hybrid algorithm M- PCALMS for solving the
inverse spectral problems.

3.5 The hybrid algorithm PCASFC

Some powerful algorithms for multi-extremal non-convex optimization problem are based
on reducing the initial multi-dimensional problem to the equivalent problem of one dimen-
sion. This reduction can be executed by applying Peano-type space-filling curves mapping
a unit interval on the real axis onto a multi-dimensional hypercube [15, 16].. The Peano
curve development maps the segment [0, 1] of the real axis R1 into the hypercube X ⊂ R1

determined in (2). Actually, this is the case of continuous single-valued mapping that offers
finding point x(z) =

(
x1(z), . . . , , xn(z)

)T ∈ X for each point z ∈ [0, 1]:

min
x∈X

f(x1, . . . , xn) = min
0≤z≤1

φ(z).

So, the initial multi-dimensional minimization problem (1) is equivalent to the above one-
dimensional problem of finding the global minima of the discontinuous multi-extremal
function φ(z). The Hilbert technique is used here for building the development of the Peano
space-filling curve depending on parameter m that stands for the number of subdivision
levels.

The approach needs not any derivatives of the function to be minimized with updating
parameters. Some disadvantage of this approach is in the fact that one-dimensional prob-
lem obtained by the above reduction leaks some information on the closeness of iteration
points in the initial multi-dimensional space.

Algorithm SFC: reduction of the problem dimension using the space-filling curve
method.

355



Proceedings of XL International Summer School–Conference APM 2012

0. Set formally the point x∗ of local minimum. Let two small numbers γ1 > 0, γ2 > 0,
and the vector of constraints β ∈ Rn be given. Let k = 0, m = 1.

1. The local minimization phase: find new point x∗ (after l sub-iterations); set
k = k + l. If f

(
xk
)

= 0 then go to step 2. If f
(
xk
)
< γ1 and xki > βi for some

i ∈ Ix, Ix = {1, 2, ... , n} , then build the effective sub-vector xkeff , reduce the multi-
dimensional problem to the one-dimensional form and go to step 2. Else, go to step of
stochastic scanning.

2. Set m = m+ 1. If m ≤ mmax then go to step 3. Else, go to step 4.
3. Define the current value z∗ using the development of the Peano curve and calculate

the current approximation of φ(z∗). If φ(z∗) ≥ γ2 then go to step 2.
4. Reconstruct x∗ and f(x∗) using z∗ and φ(z∗).
5. Define the point of local minimum xLM = x∗, stop.
The pseudo code brief description of the hybrid M-PCASFC algorithm that combines

the PCA and the deterministic space-filling curve method is as follows.

0 Generate an initial solution Old_Config
Best_Fitness = Fitness (Old_Config)
Update Blackboard
For n = 0 to # of particles
For n = 0 to # of iterations
Update Blackboard
Perturbation( )
If Fitness (New_Config) > Fitness (Old_Config)
If Fitness (New_Config) > Best_Fitness
Best_Fitness := Fitness (New_Config)

End If
Old_Config := New_Config
Exploration( )

Else
Scattering( )

End If
End For

End For

2. Local search( )
Apply procedure of local search
using the Space-Filling Curve Method

Return

3. Scattering( )
pscatt = 1−( Fitness (New_Config)) / (Best Fitness)
If pscatt > random(0, 1)
Old_Config := random solution

Else
Exploration ( )

End If
Return
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4 Computational results

In this section two numerical examples of hybrid algorithms M-PCALMS and M-PCASFC
applications to inverse spectral problems for VVER-1000 nuclear reactor equipment are
presented. First example is devoted to the steam pipe finite element model updating. In
the second example the updating of the computational model of the coolant two-phase flow
dynamics in the primary circuit is carried out.

Example 1. The computations were performed in connection with the problem of
identification of the coolant phase constitution in the VVER-1000 primary circuit. Ap-
pearance of the second phase is possible: in a coolant heating zone (pressure tank of the
pressurizer), in an exit volume of the reactor pressure vessel (RPV), in a core barrel of
the RPV, in exit volumes of main circulating pumps. In order to formulate the inverse
problems two vectors of relative acoustic velocities in a coolant flowing throw the specified
zones are introduced. Let now the anomalous coolant state constitution be characterized
by second vector of controlling variables: x∗1 = 79.0%; x∗i = 100%, i = 2, 4. The error
function is determined using ten lower spectral components. Table 1 displays the known
spectral data for the considered model upating problem. Here we have: i — mode number;
ωi — natural ith frequency of the coolant oscillation under normal conditions (without
appearance of the second phase in the coolant); ω∗i — natural ith frequency of the coolant
oscillation with the availability of anomalies in coolant phase constitution.

Table 1: Given spectral data for Example 1

i 1 2 3 4 5 6 7 8 9 10
ωi, Hz 0.89 6.77 9.82 15.44 15.96 18.94 24.57 26.69 27.07 30.52
ω∗i , Hz 0.84 6.77 9.82 15.44 15.96 18.87 21.44 26.67 27.06 30.52

Figure 1: Number of final iterations of the M-PCALMS vs. relative velocities (Example 1)

The approximate solution reached by using the PCAHS algorithm is: x∗1 ≈ 78.9%;
x∗i = 100%, i = 2, 4. Fig. 1 and Fig. 2 illustrate the solution history (final iterations of the
hybrid algorithm). The inaccuracy of the relative acoustical velocity computing is about
1%. As follows from the results obtained in this example the coolant phase constitution
anomalies are conditioned by boiling process in the coolant heating zone.

Example 2. Let now the anomalous coolant state constitution be characterized by
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Figure 2: Number of final iterations of the M-PCALMS vs. error function and search
gradient norm (Example 1)

second vector of controlling variables: x∗1 = 77.5%; x∗2 = 88.0%; x∗3 = 82.5%; x∗4 = 100%.
The error function is determined using ten lower spectral components. Table 2 displays
the known spectral data for the considered model diagnostic problem.

Table 2: Given spectral data for Example 2

i 1 2 3 4 5 6 7 8 9 10
ωi, Hz 0.89 6.77 9.82 15.44 15.96 18.94 24.57 26.69 27.07 30.52
ω∗i , Hz 0.82 6.77 9.36 15.33 15.96 18.86 21.22 26.67 26.93 29.41

The approximate solution reached by using the PCALMS algorithm is: x∗1 ≈ 77.53%;
x∗2 ≈ 87.58%; x∗3 ≈ 83.23%; x∗4 = 100%. Fig. 3 and Fig. 4 illustrate the solution history
(final iterations of the hybrid algorithm). The inaccuracy of the relative acoustical velocity
computing is about 1%. As follows from the results obtained in this example the coolant
phase constitution anomalies are conditioned by boiling process in the coolant heating
zone, in the exit volume of the reactor pressure vessel and in the core barrel of the RPV.

5 Conclusions

Two novel global optimization algorithms combining a Metropolis-based stochastic al-
gorithm M-PCA and deterministic gradient technique or space-filling curve method for
local search are presented. Smoothing approximations are introduced during the local
search that makes it possible to expand the M-PCALMS algorithm on the class of non-
differentiable problems. The M-PCASFC algorithm being introduced here does not require
any gradient information. Both the algorithms were used for solving inverse spectral prob-
lems in connection with computational model updating for the two-phase coolant flow in
the nuclear reactor primary circuit and for the steam pipe supporting units. Numerical
experiments show the principal applicability of the proposed hybrid algorithms for solving
the above model updating problems. The future work will be devoted to increasing the
computational efficiency of tools for solution the model updating problems with regard to
noisy data.
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Figure 3: Number of final iterations of the M-PCALMS vs. error function and search
gradient norm (Example 2)

Figure 4: Number of final iterations of the M-PCALMS vs. error function and search
gradient norm (Example 2)
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Abstract

The aim of this study is to show that effect caused by the curvature of the surface
under the action of the Laplace forces needs to be taken into account when materials
are investigated by the Atomic force microscope (AFM). Indentation the probe of AFM
into the fluid is considered. The equation of the boundary of fluid in the axisymmetric
task is presented. It is analyzed different cone angle of the probe of the AFM and
different scales. The contribution of effect caused by the curvature of the surface under
the action of the Laplace forces is examined and it is found that the attenuation of
surface curvature near the probe caused by the Laplace forces is occurred on the length
1 mm.

1 Introduction

There are many different methods and tools for studying the nanoworld. The important
role belongs to the AFM. The AFM is used to obtain information about topology of
material structure and about mechanical properties. The interaction forces, for example
van der Waals force, electrostatic interaction, adhesion forces, capillary effects, need to be
taken into account when we investigate material at nanoscale.

In this paper we examined the effects caused by the curvature of the surface under the
action of the Laplace forces.

The Laplace law in total case is given as

∆p = α

(
1

r1
+

1

r2

)
,

where r1 and r2 – the principal surface curvatures, α – the surface tension, ∆p – the
pressure difference in neighboring phases, which are separated by a curved surface, or the
capillary pressure.

In the simplest case of a spherical surface (bubble or drop of fluid in the weightless)
both the principal radius of curvature r are equal and constant along the entire surface.
In this case the Laplace law is given as:

∆p =
2α

r
.

2 Equation of fluid boundary

The cylindrical system of coordinate and initial configuration is considered. The unit basis
vectors of the coordinate axes in the cylindrical system of coordinate is denoted as ir, iθ, iz
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and properties of the unit basis vectors are known as

∂ir
∂θ

= iθ,

∂iθ
∂θ

= −ir.

The boundary between phases is modeled by a constant thickness thin membrane (Figure
1). The Level set method [2] is used.

Figure 1: Modeling the thin membrane

Let us denote ξ - the curvature of the membrane.

ξ = f(r) + γ(r)z,

where γ(r) – the parameter, which is responsible for the membrane thickness, f(r) – the
parameter, which is responsible for the movement of the membrane. The derivatives of
this function is denoted as

ξ′ =
∂ξ

∂r
,

ξ′′ =
∂2ξ

∂2r
.

Let us denote x – the position vector of membrane points

x = rir + ξiz.

The gradient of deformation in the initial configuration in the cylindrical coordinates is
given by

Grad x = ir ⊗ ir + iθ ⊗ iθ + γiz ⊗ iz + ξ′iz ⊗ ir. (1)

Now we can define the tangent vectors

τ 1 =
(Grad x) ir∣∣(Grad x) ir

∣∣ =
1√

1 + (ξ′)2
ir +

ξ′√
1 + (ξ′)2

iz (2)
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τ 2 = iθ. (3)

The surface unit tensor Is is given by

Is = τ 1 ⊗ τ 1 + τ 2 ⊗ τ 2. (4)

Using Eq.(2) and (3), we can write Eq.(4) as

Is =
1

1 + (ξ′)2
ir ⊗ ir + iθ ⊗ iθ +

(ξ′)2

1 + (ξ′)2
iz ⊗ iz +

ξ′

1 + (ξ′)2
(ir ⊗ iz + iz ⊗ ir) . (5)

Let us move from initial configuration to current one. We can use next formula

JdivIs = Div
(
JIs(Gradx)−T

)
. (6)

We should find J - the third invariant and after that we can use Eq. (6).

J = det (Gradx) = γ (7)

We substitute Eq. (1), Eq. (5), Eq. (7) into the right hand side Eq. (6) and we obtain

Div
(
JIs (Gradx)−T

)
= γ′

1

1 + (ξ′)2
ir + γ

∂

∂r

(
1

1 + (ξ′)2

)
ir + γ′

ξ′

1 + (ξ′)2
iz +

+γ
∂

∂r

(
ξ′

1 + (ξ′)2

)
iz +

1

r
γ

1

1 + (ξ′)2
ir −

1

r
γir +

1

r
γ

ξ′

1 + (ξ′)2
iz.

So divergence of the surface unit tensor is calculated as

divIs =
∂

∂r

(
1

1 + (ξ′)2

)
ir +

∂

∂r

(
ξ′

1 + (ξ′)2

)
iz −

(ξ′)2

r(1 + (ξ′)2)
ir +

+
ξ′

r(1 + (ξ′)2)
iz +

γ′

γ(1 + (ξ′)2)
ir +

ξ′γ′

γ(1 + (ξ′)2)
iz. (8)

We can write boundary conditions in total case as

T n = f + div(αIs), (9)

where T – the Cauchy stress tensor, n – the exterior unit normal, f – the external forces
acting on the unit surface, α – the surface tension, Is – the surface unit tensor. The
equilibrium of fluid equation is given by

div(T) = ρg, (10)

where ρ – the density of fluid , g – the acceleration of free fall. We consider case without
the external forces acting on fluid. In this case boundary condition Eq. (9) could be
represented by

T n = div(αIs). (11)

Now we can find scalar product Eq.(11) with the exterior unit normal

T n · n = div(αIs) · n. (12)

Look at the left hand side Eq.(12), we can write it as

T n · n = −p I n · n = −p, (13)
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where I – the unit tensor, p – the pressure. The exterior unit normal is defined as

n = − ξ′√
1 + (ξ′)2

ir +
1√

1 + (ξ′)2
iz.

Now we can find the right hand side Eq. (12)

divIs ·n = − ξ′√
1 + (ξ′)2

∂

∂r

(
1

1 + (ξ′)2

)
+

1√
1 + (ξ′)2

∂

∂r

(
ξ′

1 + (ξ′)2

)
+

ξ′

r(1 + (ξ′)2)
(14)

We simplify Eq. (14) and the final form is

div(αIs) · n =
α√

1 + (ξ′)2

(
ξ′′

1 + (ξ′)2
+
ξ′

r

)
. (15)

Using Eq. (13) and Eq. (15), pressure is found

p = − α√
1 + (ξ′)2

(
ξ′′

1 + (ξ)2
+
ξ′

r

)
. (16)

Verification of formula. The boundary of the top half of drop is given by

ξ|z=0 =
√
R2 − r2.

The derivatives of this function is denoted as

ξ′
∣∣
z=0

= − r√
R2 − r2

, (17)

ξ′′
∣∣
z=0

= − R2

(R2 − r2)1.5
. (18)

Using Eq. (17) and Eq. (18), we can write Eq. (16) as

p =
2α

R
. (19)

Thus, we have the familiar Laplace formula. So Eq. (16) is true.
Consequence. The boundary conditions is considered

γ =
√

1 + (ξ′)2
∣∣∣
z=0

. (20)

γ′

γ
=

ξ′ξ′′

1 + (ξ′)2

∣∣∣∣
z=0

. (21)

We can find scalar product divIs with τ 1, using Eq. (2) and Eq. (8)

divIs · τ 1 = − ξ′ξ′′√
1 + (ξ′)2(1 + (ξ′)2)

+
γ′

γ
√

1 + (ξ′)2
.

Using Eq. (20) and Eq. (21), one can be write

divIs · τ 1 = 0.

Similarly we can find scalar product divIs with τ 2

divIs · τ 2 = 0.

So, at the boundary between phases does not appear additional shear strength.
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3 Solution

Introduction of the conical probe into the water at the temperature 200 C is considered as
an example. The density of fluid is ρ = 998 kg/m2. The acceleration of free fall is g = 9.8
m/s2. The pressure acting on fluid is p = −ρgξ. The surface tension is α = 72.8 ∗ 10−3

N/m. The wetting angle is 80, for example.
Equation of the boundary of fluid in the axisymmetric task is given by

ξ′′ = −(1 + (ξ′)2)

(
−ρgξ
α

√
1 + (ξ′)2 +

ξ′

r

)
. (22)

Eq. (22) is solved numerically with respect to ξ. Figure 2 shows the change in the geometry
of fluid surface by the Laplace forces, where the cone angle of the probe is 200.
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Figure 2: The change in the geometry of fluid surface at the nanolevel

Table 5 compares the depth of probe indentation and the height of fluid lifting.

Depth of probe indentation (m) Height of fluid lifting (m)

−1.53 · 10−4 4.15 · 10−4

7.76 · 10−6 6.45 · 10−5

3.08 · 10−6 8.75 · 10−6

5.38 · 10−7 1.11 · 10−6

7.68 · 10−8 1.34 · 10−7

9.88 · 10−9 1.56 · 10−8

1.17 · 10−9 1.74 · 10−9

Table 5: The depth of probe indentation and corresponding the height of fluid lifting

The obtained solution shows that the indentation of a probe into the fluid at 10.7 nm
is the cause of rising of fluid to a height of 20.2 µm. Thus, effect caused by the curvature
of the surface under the action of the Laplace forces needs to be taken into account.

Surface profiles were calculated for different scales and cone angle of a probe. It is found
that changing the geometry of the fluid surface caused by the Laplace forces is occurred
on the length 1 mm. Figure 3 shows the attenuation of surface curvature near the probe
on a nanolevel.
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Figure 3: The attenuation of surface curvature near the probe caused by the Laplace forces

4 Conclusions

It is built model which is taken into account effect caused by the curvature of the sur-
face under the action of the Laplace forces. Surface profiles were calculated for different
scales.The calculations shows that changing the geometry of the fluid surface caused by
the Laplace forces is occurred on the length 1 mm.
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Abstract

Brittleness is one of the most important mechanical properties of intact rock; how-
ever, the concept of brittleness in rock mechanics is yet to be precisely defined. Many
brittleness criteria have been proposed to characterise rock behaviour under triaxial
compression σ1 > σ2 = σ3, but there is no consensus as to which criteria is the most
suitable. It was shown recently that increasing σ3 can lead to contradictory intact rock
behaviour within different ranges of σ3. For example, rock behaviour can be changed
from Class I to Class II and then to Class I again, based on Wawersik and Fairhurst
classification. Brittleness in this case can vary within the range from absolute brittle-
ness to absolute ductility. This paper shows that no one existing criteria can describe
properly the variation of brittleness in this situation.

Two new criteria are proposed in the paper. These criteria are based upon the
balance between the post-peak elastic energy withdrawn from the material during the
rupture process and two other forms of post-peak energy associated with the failure
process: the rupture energy and the excess (released) energy. The brittleness indexes
based on the ratio between these parameters allow for the representation of the two
classes of rock behaviour (Class I and Class II) in the form of continuous, monotonic
and unambiguous scale of brittleness unlike other existing criteria.

1 Introduction

Brittleness is a very important mechanical property of intact rock because it has a strong
influence on the failure process and on the rock mass response to mining or tunnelling
activities. However, the concept of brittleness in rock mechanics is yet to be precisely
defined. Several brittleness criteria have been proposed to characterise material behaviour
under compression [1-19]. Difficulties in reaching a consensus can be explained by the
existence of two alternative failure mechanisms, tensile and shear fracturing, taking place
under different compressive loading conditions. Also brittleness can be treated in two
ways: as an intrinsic material property or as the material behaviour under the effect of an
external loading system contributing additional energy to the failure process.

Large seismic events are often produced when rock masses are submitted to triaxial
compression generating violent shear failures. The correct determination of brittleness at
such loading conditions is important to better understand these dynamic events. Unlike
the generally accepted idea that rising confining pressure σ3 makes rocks less brittle, the
reality is more complex. Recently published papers [1-3] showed that increasing σ3 can
lead to contradictory rock behaviour within different ranges of σ3. In fact, rock behaviour
can be changed from Class I to Class II and then to Class I again, based on Wawersik and
Fairhurst [20] classification. The range of brittleness variation in this case can vary from
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absolute brittleness to absolute ductility. No one existing criteria can describe properly
the variation of brittleness in this situation.

The paper proposes two new criteria allowing for the representation of the two classes
of rock behaviour (Class I and Class II) in the form of continuous, monotonic and unam-
biguous scale of brittleness unlike other existing criteria. These criteria rely upon energy
balance and are based on sound physics principles [1-3].

2 Rupture process at triaxial compression

Shear is the only form of large-scale rock failure at triaxial compression in nature and
laboratory experiments. We will discuss features of the failure process on the basis of labo-
ratory experiments obtained at stress conditions σ1 > σ2 = σ3. Shear rupture development
represents a localized failure process. Figure 1 shows four stages of shear rupture prop-
agation in a specimen when subjected to triaxial compression. The real shear resistance
and displacement along the future failure plane are very non-uniform. Three specific zones
can be distinguished (see Figure 1(ii)): (1) the process zone (or rupture head) where the
failure process is in progress; (2) the core frictional zone located behind the head where the
full friction is mobilized, and (3) the intact zone in front of the head where the resistance
is determined by the cohesive strength. With fracture propagation the cohesive strength
of decreasing zone (3) is substituted by the frictional resistance of increasing zone (2).
This process is accompanied by the decrease in bearing capacity of the specimen from the
cohesive strength to the frictional (residual) strength.

Figure 1: Four stages of shear rupture development in a specimen at triaxial compression
and specific zones of shear resistance.

In common experiments the specimen is equipped with a load cell and an axial gauge 1
as shown in Figure 1(i). These gauges are capable to measure only the average load bearing
capacity and the strain of the specimen during the loading procedure. On the basis of data
provided by these gauges in experiments with different levels of confining stress σ3 a set of
stress σ – strain ε1 curves can be plotted; where σ = σ1 − σ3 is the differential stress and
ε1 is the axial strain. Figure 2 shows symbolically two sets of σ − ε1 curves illustrating
two types of rock behaviour in the post-peak region with rising confining stress from σ3(0)

up to σ3(6). The development of shear rupture is mainly associated with the post-peak
part of σ− ε1 curves. The residual strength (horizontal parts of the curves) represents the
frictional resistance of the completed fault (Figure 1(iv)).

It is generally accepted that increase in confining stress σ3 increases an angle γ located
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Figure 2: Two sets of stress σ – strain ε1 curves illustrating two types of rock behaviour
in the post-peak region with rising confining stress from σ3(0) up to σ3(6).

between the elastic modulus E = dσ/dε1 and the post peak modulus M = dσ/dε1 (see
Figure 2a). This indicates the increase in the post-peak rupture energy (shaded area for
OABC curve) and the increase in stability of the failure process. However, such behaviour is
typical for relatively soft rocks only. For hard rocks increasing σ3 can cause very significant
decrease of angle γ within a certain range of σ3 (see Figure 2b). This can be followed by
the dramatic decrease in both: the post-peak rupture energy (shaded area for OABC curve
in Figure2b) and in the stability of the failure process. The variation of angle γ with rising
σ3 for hard rocks follows a typical pattern of initially decreasing, reaching a minimum and
then ultimately increasing since all rocks become ductile at very high σ3. The post-peak
modulus M in this situation can vary from negative to positive value and then to negative
value again indicating the variation of rock behaviour from Class I to Class II and then to
Class I again, based on Wawersik and Fairhurst classification [20]. It must be emphasized
that bearing capacity of the specimen determined by the shear rupture at the end of the
failure process (point B on the curve OABC in Figure 2b) can be very low and the fully
frictional resistance corresponding to the applied σ3 is mobilized after point C only.

Rock behaviour illustrated by Figure 2a is very well studied and theoretically grounded.
To explain features of hard rock behaviour shown in Figure 2b the following rupture model
was proposed [1-3]. It is known that a shear rupture can propagate in its own plane due
to the creation of short tensile cracks in front of the rupture tips [21-23]. This forms
the universal structure of shear ruptures represented by an echelon of blocks (or slabs)
separated by tensile cracks – known as ‘book-shelf’ structure [21-25] or Ortlepp shears
[26,27]. A model of shear rupture involving this mechanics is shown in Figure 3a. The
initial angle β0 of the tensile crack and block inclination to the shear rupture plane is
about 30–40o [28]. Shear displacement along the fault causes rotation of the blocks of the
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‘book-shelf’ structure between the rupture surfaces [1-3,22-25].

Figure 3: Illustration of rupture mechanisms at a) frictional and b) frictionless conditions
of shear fracture development.

Figure 3(a) illustrates the essence of the shear rupture mechanism providing large
rupture energy. Blocks located in the front part of the head create significant resistance
to shear; however, they collapse with rotation providing gradual transformation of shear
resistance within the head zone from cohesive to frictional levels. A graph under the shear
rupture in Figure 3(a) shows the shear resistance variation along the fault head. The
crushing and comminution of blocks within the head zone can absorb large amounts of
energy. This is expected since the development of shear fractures requires displacement to
occur along the total fault. This form of rupture development is classified as a crack-like
mode. Such a rupture mechanism normally produces Class I material behaviour in the
post-peak region. Four points on the stress–strain curve on the right correspond to the
four stages of deformation shown in Figure 1.

Figure 3(b) illustrates a model where rotating blocks can withstand the rotation without
collapse by behaving as hinges (see details in [1-3]). Due to consecutive formation and
rotation of the blocks, these should form a fan structure within the rupture head. A
remarkable feature of the rotating blocks (hinges) in the second half of the fan structure
(where β > 90◦) is the creation of active forces under the effect of normal stress applied.
A graph under the shear rupture in Figure 3(b) shows the shear resistance variation along
the fault head. The bottom part of the graph represents active forces (negative resistance)
acting in the second half of the head and assisting the fault displacement. In the core zone
represented by blocks that have completed their rotation the normal residual friction is
restored.

The fan structure represents a self-equilibrating mechanism and can move sponta-
neously as a wave with very small shear resistance. In the idealised fan-head model,
the resistance to rupture propagation is determined only by the tensile strength of the ma-
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terial associated with consecutive formation of blocks in front of the propagating rupture.
It is important that the fan head can propagate independently of the core zone, which can
remain immobile due to high frictional resistance. Hence, this mechanism creates condi-
tions for a pulse-like mode of fracture propagation. In this situation the rupture energy
is determined by shear resistance of the fan head only. The fan-head rupture mechanism
represents the most energy efficient shear rupture mechanism.

This mechanism is responsible for Class II behaviour with extremely small rupture
energy. At stage iii (Figure 1) of the fracture propagation, the bearing capacity of the
specimen can be less than at stage iv. It is because the shear resistance of the head
(process) zone can be close to zero, decreasing the bearing capacity of the specimen. The
longer the relative rupture head (process zone (1) in Figure 1) is, the smaller the shear
resistance at stage iii of the rupture propagation. The full frictional resistance is mobilised
at stage iv after the head completely propagates through the specimen. The stress-strain
curve in Figure 3b (right) illustrates post-peak features providing by the discussed fan-head
rupture mechanism.

We can conclude that fracture mechanisms operating within the process zone play the
key role in the character of transformation from the cohesive to frictional strength which
determines the shape of post-peak curves, the post-peak rupture energy and stability of the
failure process. Experiments conducted on hard rocks showed that within a certain range
of high confining stress σ3 the post-peak modulus M can approach the elastic modulus E
making angle γ close to zero and the post-peak rupture energy extremely low [1-3]. The
rupture control in this situation becomes absolutely impossible despite the use of extremely
stiff and servo-controlled testing machine. The failure process in this case inevitably has
an explosive like character.

3 Brittleness estimation

Traditionally the failure process associated with tensile crack formation is considered as
brittle while shear rupture development is treated as ductile behaviour. The failure process
in rocks subjected to triaxial compression has very complicated character: macroscopically
the failure zone is represented by a shear plane the structure of which on the micro-
level is formed due to tensile cracks. Such dual rupture mechanism creates difficulties in
determination of rock brittleness at triaxial compression. Several brittleness criteria have
been proposed [4-19], however, the concept of brittleness in rock mechanics is yet to be
precisely defined. Below we propose new brittleness indexes which characterise degree of
intrinsic macroscopic instability of rock specimen at failure. The loss of stability can take
place at the post-peak stage of the loading process only. The proposed criteria are based
upon the balance between the post-peak elastic energy withdrawn from the specimen body
at the rupture development and two other forms of post-peak energy associated with the
failure process: the rupture energy and the excess (released) energy.

Figure 4 shows a stress-strain curve illustrating the essence of the proposed criteria.
The failure process between points B and B’ is accompanied by the following variation in
the energy balance. The elastic energy dWe withdrawn from the material body corresponds
to the area ABCC’B’A’. The corresponding rupture energy dWr is represented by the area
ABB’A’. The area C’B’BC represents the excess (released) energy dWa. The mentioned
forms of energy can be calculated on the basis of elastic modulus E and post-peak modulus
M. It is known that these modules can vary significantly with the fracture development.
However, two infinitely near points located on a post-peak curve (for example points B
and B’) can be characterised by the same value of E, while the corresponding modulus M
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can be unambiguously determined on the basis of a tangent line.

Figure 4: Principle of the current brittleness estimation by brittleness indexes K1 and K2.

Equations (1), (2) and (3) describe the mentioned above forms of energy associated with
the rupture development between points B and B’ in Figure 4. Equation (3) describing
the post-peak rupture energy dWr takes into account the sign of post-peak modulus M for
Class I and Class II behaviour:

dW e =
σ2
B − σ2

B′

2E
(1)

dW a =
σ2
B − σ2

B′

2M
(2)

dW r = dW e − dW a =
(σ2
B − σ2

B′)(M − E)

2EM
(3)

The brittleness index K1 below is determined by the ratio between the post-peak rup-
ture energy and the withdrawn elastic energy:

K1 =
dW r

dW e
=
M − E
M

(4)

The brittleness index K2 represents the ratio between the excess (released) and the
withdrawn elastic energy:

K2 =
dW a

dW e
=

E

M
(5)

Brittleness indexes K1 and K2 characterize unambiguously the rock brittleness at dif-
ferent loading conditions. Figure 5 shows scales of rock brittleness indexes K1 and K2

with brittleness increasing from left to right [1-3]. The complete curves (differential stress
σ versus axial strain ε1) illustrate how the different curve shapes describe a variation in
brittleness. It is assumed, for simplicity, that the pre-peak parts of the curves are the
same. Areas defined by the large dotted triangles correspond to elastic energy We stored
within the rock material at the peak stress, while the smaller white triangles on the right
side of the curves represent the unconsumed portion of the stored elastic energy, within the
material, after failure. The post-peak parts of the curves, which are characterized by the
post-peak modulus M, are different for each curve. The grey areas represent the post-peak
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Figure 5: Scale of brittleness indexes K1 and K2 with characteristic shapes of complete
stress–strain curves [1-3].

rupture energy dWr associated with strength degradation at failure from the peak stress
to the residual strength (horizontal part of the post-peak curves).

Figure 5 shows variation in brittleness from absolute brittleness to ductility if read from
right to left. The absolute brittleness has the following characteristics and parameters:

1. The post-peak modulus is the same as the elastic modulus M = E.

2. There is no portion of the stored energy transformed into post-peak rupture energy
dWr = 0.

3. The withdrawn elastic energy is entirely transformed into excess energy dWe = dWa.

4. K1 = 0.

5. K2 = 1.

Within the range of brittleness indexes 1 > K1 > 0 and 0 < K2 < 1 the elastic energy dWe

withdrawn from the specimen material during stress degradation on the value dσ exceeds
the corresponding rupture energy dWr, leading to self-sustaining failure (brittle Class II
behaviour). The self-sustaining failure normally has a spontaneous character even for a
hypothetically perfectly stiff testing machine. The greater the difference between dWe and
dWr the closer the material behaviour is to absolute brittleness and the more violent is
the self-sustaining failure. It should be noted that the use of very stiff and servo-controlled
loading machines allow in many cases controllable failure for rocks characterized by the
positive post-peak modulus M due to the extraction of the excess elastic energy from the
material body. For the range of brittleness indexes +∞ > K1 > 1 and −∞ < K2 < 0
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the rupture development is not self-sustaining (Class I behaviour). Variation in failure
regimes corresponding to an increase in the rock brittleness is indicated in the upper part
of Figure 5. These regimes are: ductile, semi-brittle, transitional, brittle and super-brittle.
The characteristic features of the super-brittle regime are discussed in [1-3].

Figure 6: Variation of brittleness indexes K1 and K2 versus confining pressure σ3 for rocks
of different hardness (modified from [1-3]).

Figure 6 shows the variation of brittleness index K1 and K2 for four rocks exhibiting
different responses to rising confining pressure σ3 [1-3]. The self-sustaining failure regime
corresponds to 1 > K1 > 0 and 0 < K2 < 1. The sandstone curve indicates that an increase
in confinement σ3 makes the rock less brittle. This behaviour is typical for softer rocks.
For the quartzite, increase in confinement σ3 within the range of 0–100 MPa makes the
material more brittle. At greater confinement the brittleness decreases. For the granite,
increase in σ3 within the range of 0–30 MPa makes it less brittle. When σ3 > 30 MPa, the
brittleness increases dramatically. The dolerite curve also shows very severe rock embrit-
tlement. At σ3 = 75 MPa, according to the brittleness index K1, the dolerite became 250
times more brittle when compared to uniaxial compression (K1(0) = 1.5;K1(75) = 0.006).
At σ3 = 100 and 150 MPa the brittleness increased significantly, further approaching ab-
solute brittleness. The dotted lines indicate the expected brittleness variation for granite
and dolerite at greater values of σ3: the brittleness continues to increase until it reaches
a maximum at some level of σ3 and then decreases, as all rocks become ductile at very
high confining stresses. It is estimated in [1-3] that the maximum brittleness for granite
is reached at σ3 = 300 MPa. For rocks that as hard as quartzite, the mode of brittle-
ness variation is similar, but the maximum brittleness is lower and the range of confining
pressure where embrittlement takes place is smaller.

Brittleness indexes similar to K1 and K2 were proposed earlier in [4-8]:

k3 =
M

E +M
, [4, 5] (6)
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k4 =
M

E
, [5− 8] (7)

However, the brittleness indexes k3 and k4 include some uncertainties which can lead
to conflicting results for estimating the brittleness at different loading conditions. Also
these indexes do not allow the creation of continuous and unambiguous scale of brittleness
similar to the one presented in Figures 5 and 6. Two scales of brittleness for k3 and k4 are
shown in Figure 7.

Both scales of brittleness are stretched between −∞ and +∞, and the extreme points
of each scale (−∞ and +∞) are characterized by the same shape of stress–strain curves.
Another zone of discontinuity is located in a central part of the scales between conditions
of the absolute brittleness and absolute ductility. Hence, the brittleness indexes k3 and k4

are not ideal for brittleness characterisation at different levels of confining pressure.

Figure 7: Scales of brittleness indexes k3 and k4 with characteristic shapes of complete
stress–strain curves.

All other existing brittleness indexes representing ratios of different combination be-
tween pre-peak and post-peak strain [9-11]; involving parameters associated with the pre-
peak irreversible deformation only [12-15]; based on ratios between compressive and tensile
strengths [16-18]; determining brittleness from Mohr’s envelope [13] and others give also
conflicting results when samples are tested under triaxial compression at different levels of
σ3.
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4 Conclusions

The applicability of various criteria for assessing rock brittleness under triaxial compres-
sion has been analyzed. It is shown that only two criteria proposed in this paper can
describe properly the intrinsic material brittleness within the whole range of brittleness
variation from the absolute brittleness to ductility. These criteria are based upon the bal-
ance between post-peak elastic energy withdrawn from the material body at the failure
development and two other forms of post-peak energy associated with the failure process:
the rupture energy and the excess (released) energy. The brittleness indexes based on
the ratio between these parameters allow for the representation of the two classes of rock
behaviour (Class I and Class II) in the form of continuous, monotonic and unambiguous
scale of brittleness. Other existing criteria do not provide unambiguous characterisation
of rock brittleness at different loading conditions under triaxial compression.
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Distribution of the equilibrium positions of a shaft and
defining the angular speed of the ring in a floating ring

bearing
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thangspbstu@mail.ru

Abstract

Today, rotors of high-speed turbomachines are commonly supported by hydro-
dynamic journal bearings. Like other types of fluid bearings, rotors supported by
floating ring bearings may become unstable with increasing speed of rotation due to
self-excited vibrations. In order to study the stability of rotor, we have to define the
angular speed of the ring in the floating ring bearing since the speed of the ring ap-
pears in the formulas of the nonlinear bearing forces, which are modeled by applying
the short bearing theory for both fluid firms with the considering of the allowance of
the lubrication hydrodynamics and the centrifugal force. Additionally, the analytical
results are obtained from the condition of the equality of the torques acting on the
ring under the allowance of the both fluid firms.

1 Introduction

The theory of short bearing researches the rotation of the shaft in the bearing, which
is fixed in space. The gap between the rigid bodies is covered by incompressible fluid
(commonly known as Newton fluid). In the scope of this article, a more difficult model
of the floating bearing that is proposed in the research includes 3 parts (as in the figure
1): the first part is the floating shaft rotating with angular velocity ω1, the second part is
the floating ring rotating with angular velocity ω2 and the third part is the fixed cylinder
(bearing housing). The gap between the rigid bodies is covered by incompressible fluid,
where 4–1 and 4–2 are denoted the inner and outer fluid firm.

Dynamic of rotor in the floating bearing have been researched in the classical short
-– bearing theory, but all of them use the classical equation to describe the flow in the
gap, i.e. Reynolds equations, without the allowance of centrifugal force. As the result, the
rotation of the shaft is studied only under the allowance of the hydrodynamic forces [2] or
the allowance of the hydrodynamic forces and the friction of fluid [5].

The main point of this article is to define the angular speed of the ring in the floating
ring bearing with allowance of lubrication hydrodynamics and centrifugal force, which its
influence must be obtained in case of high speed shaft. The dependence of pressure on
the position of shaft in the gap is given by the equation describing the flow of the fluid
(Reynolds equations). By the short- bearing theory, the expression of the forces and the
torques is given by the following tract: the force acting on the shaft is defined by integrating
the function of pressure on the surface of shaft and the torques acting on the shaft and
the ring are defined by integrating the function of the shearing stress τrϕ in the cylindrical
system of coordinates. In this case (as in fig. 1), when defining the torque acting on the
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Figure 1: Mechanical model of rotor supported by floating ring bearing: 1 – floating shaft;
2 – floating ring; 3 – fixed bearing housing; 4 – incompressible fluid (4–1 – inner fluid firm,
4–2 outer fluid firm); ω1, ω2 are angular velocities of elements 1 and 2.

ring, we have to integrate the function of the shearing stress τrϕ on the both sides of the
ring in the floating ring bearing. The angular velocity of the ring ω2 which is considered
as a constant is defined by the condition of the equalization of the torques from both sides
of the ring.

2 Definition of the border of a lubricant layer

Without the influence of an external field of fluid 4-2, we shall consider only system “the
ring – shaft”. The system coordinates is fixed in the centre of the ring. Then in this system,
incompressible oil 4-1 is in a gap between the ring (O2, R2) that its axis of rotation is fixed
and a rotating floating shaft(O1, R1), see fig. 2. The ring rotates with angular speed ω2,
and the shaft rotates with angular speed ω1.

It is noted: h01 = R2 − R1 is a nominal gap, e1 = eP1(t) is eccentricity of the centre
of a floating shaft and γ1 = γ 1(t) is an angle describing the position of a line of centre of
the floating shaft and the centre of the rotating ring. The motion of a shaft on a lubricant
layer is non-stationary, i.e. position and speed of its centre depend on time so the external
loading and the reaction of the lubricant layer also depend on time.

In work [7] the expression for width of the gap (thickness of a lubricant layer) is received:

h1(θ1, t) = h01 − e1(t). cos θ1. (1)

And force on unit of the length, acting on the shaft:

q01 =
1

L

∫L/2
−L/2

(
p01 − p∗01

)
dz =

µL2(ω1 + ω2)

2h2
01

q01, (2)

where

q01 =

(
2
•
γ1

ω1+ω2
− 1

)
ε1 sin θ1 + 2

•
ε1

ω1+ω2
cos θ1

(1− ε1 cos θ1)3 , ε1 =
e1

h01
(3)
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Figure 2: The denoting schema for system “the ring - shaft”.

and p01 = p01(r, ϕ, z, t) is the function of the pressure in the internal firm 4-1, p∗01 =
p∗01(r, ϕ, t) is the function of pressure on the ends of the bearing, µ, L are the accordingly
dynamic viscosity of the fluid and the length of the bearing.

In a local system of coordinates(O2ξ1, O2η1), where the directionO2ξ1 correspondsθ1 =
0 (ϕ = γP1), projections of the forceFP1 acting on a shaft from a lubricant layer are written
as the following form:

FP1ξ = L

θ2∫
θ1

(R2 − h1)q01 cos θ1dθ1, FP1η = L

θ2∫
θ1

(R2 − h1)q01 sin θ1dθ1. (4)

The question on the borders of a lubricant layer now is unsolved, despite of a significant
amount of works on this question. In the theory of the dynamic loaded bearings usually
use one of the two following hypotheses:

1. The value of angle that is used to define the beginning and the end of the lubricant
layer is determined at the positions where the pressure is equal to zero, i.e. in the positions
where the thickness of a gap is narrowest or widest; often being denoted θ1 = 0, θ2 = π,
i.e. only half of the gap [5], [6] are accepted.

2. The value of angle θ1 = 0, θ2 = 2π, i.e. a lubricant layer surrounds all the shaft.
According to this hypothesis, there is a negative pressure that equal to the positive pressure
on the absolute value.

In the present work the second hypothesis is used, i.e. the lubricant layer is full of the
gap.
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3 Distribution of equilibrium positions of the shaft and the
ring in the lubricant layer in the floating ring bearing

As a result of integrating in the formulas (4), we receive the projections of the forceFP1
acting on a shaft from a lubricant layer:

FP1ξ =
2µL3 •ε1

h2
01

[∫π
0

R1. cos2 θ1

(1− ε1 cos θ1)3dθ1 +

∫π
0

e1. cos3 θ1

(1− ε1 cos θ1)3dθ1

]
,

FP1η=
µL3(ω1 + ω2)ε1

h2
01

(
2
•
γ1

ω1 + ω2
− 1

)[∫π
0

R1. sin
2 θ1

(1− ε1 cos θ1)3dθ1+

∫π
0

e1. cos θ1. sin
2 θ1

(1− ε1 cos θ1)3 dθ1

]
.

(5)

Let the shaft (O1, R1) loaded with a constant external force
−→
QP . In case (ε∗1, γ

∗
1)denotes

the coordinates of equilibrium position of the shaft in the bearing then
•
ε∗1 = 0,

•
γ∗1 = 0. It is

assumed that the external force
−→
QP is directed vertically downwards, the condition of the

equality forces shows that
∣∣∣∣−→QP ∣∣∣∣ is proportional to angular speed of the shaftω1. External

loading
−→
QP , for example, can be the gravity of the shaft. The set of equilibrium positions

of the centre of the shaft in the lubricant layer is a horizontal line segment O2M (on fig.
3 it is marked bold), in which ε∗1 ∈ [0, 1] depends on the external loading

−→
QP on the shaft.

If we use the first hypothesis, the curve of equilibrium positions of the centre of the shaft
O1 is a half of a circle, on fig. 3 this curve is marked as a dotted line. Here we notice
thatO2M = O2M

′ = h01 = R2 −R1.

Figure 3: A curve of equilibrium positions of the centre of the shaft.

Up to now we only considered system “the ring - shaft” and neglected the influence
of an external field of fluid 4-2. Now we shall consider the bearing which consists of
three rigid elements, as shown in figure 1. Similarly we receive the projections of the
reaction FB2 acting on the ring(O2, R2)from the external field of fluid 4-2 in local coordinate
system(Oξ2, Oη2), where the direction Oξ2 correspondsθ2 = 0 (ϕ = γB2(t0)), see the figure
4:
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Figure 4: Schematic of designations for the floating ring bearing.

FB2ξ =
2µL3 •ε2

h2
02

[∫π
0

R2. cos2 θ2

(1− ε2 cos θ2)3dθ2 +

∫π
0

e2. cos3 θ2

(1− ε2 cos θ2)3dθ2

]
,

FB2η =
µL3ω2ε2

h2
02

(
2
•
γ2

ω2
− 1

)[∫π
0

R2. sin
2 θ2

(1− ε2 cos θ2)3dθ2 +

∫π
0

e2. cos θ2. sin
2 θ2

(1− ε2 cos θ2)3 dθ2

] (6)

Here it is denoted:h02 = R−R2 - a nominal gap, e2 = e2(t) - eccentricity of the centre
of a floating ring and γ2 = γ2(t) - a angle describing position of a line of centre of bearing
– housing and the centre of rotating floating ring. Similarly we receive the projections of
the reactionFB1 acting on the floating ring(O2, R2) from the internal field of fluid 4-1 in
local coordinate system(Oξ2, Oη2):

FB1ξ = −µL
3(ω1 + ω2)R2

2h2
01

∫2π

0

sin θ1. cos
(
θ1 + γ∗1 − γ∗2

)(
1− ε∗1 cos θ1

)3 dθ1,

FB1η = −µL
3(ω1 + ω2)R2

2h2
01

∫2π

0

sin θ1. sin
(
θ1 + γ∗1 − γ∗2

)(
1− ε∗1 cos θ1

)3 dθ1.

(7)

Where (ε∗1, γ
∗
1) and (ε∗2, γ

∗
2)accordingly denote the coordinates of equilibrium position

of the rotating shaft and the floating ring. When the centre of the rotating shaft and the
centre of the floating ring are in the equilibrium position thenγ∗1 = π

2 , ε
∗
1 ∈ [0, 1]. Each

equilibrium position of the shaft (ε∗1, γ
∗
1) in the gap corresponds to a curve of equilibrium

positions of the centre of the floating ring, which is defined by the equation:

tgγ∗2 = −
FB1η(ε

∗
1,
π
2 ) + FB2η(ε

∗
2, γ
∗
2)

FB1ξ(ε
∗
1,
π
2 ) + FB2ξ(ε

∗
2, γ
∗
2)
. (8)
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4 Definition of constant speed of rotation of the ring in the
floating ring bearing

Let the shaft (O1, R1) rotates with the given constant angular speed ω1, and the floating
ring (O2, R2) rotates with unknown constant angular speed ω2. This angular speed ω2 is
included into expressions for all forces acting on the shaft and the floating ring. To define
the motions of elements of the bearing, it is necessary to investigate the dependence of
speed of rotation of the floating ring ω2 on the speed of rotation of the shaft ω1. Up to
now, the speed of rotation of the floating ring ω2 was determined only by an experimental
method [9], [10]. In this work we shall receive an analytical dependence of ω2 on ω1. We
notice that the moment of friction only exists in the field of positive pressure of the fluid.

At the equilibrium position
•
ε∗1 = 0,

•
γ∗1 = 0,

•
ε∗2 = 0,

•
γ∗2 = 0, from the equations (2), (3)

it is received that the pressure is positive in the area θ1 ∈ [π, 2π] and similar in the area
θ2 ∈ [π, 2π].

In the article [7], the expression for the torque acting on the floating ring from the
internal firm of the fluid in the short bearings theory is given:

M1 =
µ (ω1 + ω2) ε∗1L

3R2

8h2
01

∫2π

π
T1
∂Q∗1
∂θ1

dθ1 −R2L

∫2π

π
S1 dθ1, (9)

where T1 = 1−
2 ln
(

R2
R2−h1

)
(

R2
R2−h1

)2
−1
, S1 = 2µ(ω1−ω2)(

R2
R2−h1

)2
−1

, Q∗1 = sin θ1

[1−ε∗1 cos θ1]
3 .

The expression for the torque acting on the floating ring from the external firm of the
fluid in the short bearings theory:

M2 =
µω2ε

∗
2L

3

8h2
02

∫2π

π
(R− h2)T2

∂Q∗2
∂θ2

dθ2 − L
∫2π

π
S2 (R− h2) dθ2, (10)

where T2 = 1−
2 ln
(

R
R−h2

)
1−
(
R−h2
R

)2 , S2 = 2µω2

1−
(
R−h2
R

)2 , Q∗2 = sin θ2

[1−ε∗2 cos θ2]
3 .

Rotation of the floating ring around its axis is submitted by the below equation:

MB
1 −MB

2 = JB
•
ω2.

In case we assume the floating ring rotates with a constant angular speed ω2 then
•
ω2 = 0, so we get:

MB
1 −MB

2 = 0. (11)

The equations (9), (10) and (11) lead to the expression for definition of angular speed
of the ring ω2. In order to making a diagram, we take a numerical calculation with the
following parameters: radius of the bearing housing R = 0, 05, radius of the floating ring
R2 = 0, 048, radius of the floating shaft R1 = 0, 046.

This paper is devoted to define the speed of rotation of the ring in the floating ring
bearing with the considering of the allowance of lubrication hydrodynamics and centrifugal
force. By integration a component of tensor stress on a surface of the gaps, we received
obvious expressions for forces and the torques acting on the shaft and on the ring of the
floating ring bearing. Distribution of the equilibrium positions of the shaft in lubricant
layer in mobile coordinate system is researched. The dynamic analysis for the floating ring
is defined by analogy. Other parts of this article are devoted to define the speed of rotation
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Figure 5: Diagrams of the dependence of the relation of angular speed of the floating ring
to angular speed of the shaft ω2

ω1
from equilibrium position of the shaft and the floating

ring in the bearing at different values of angular speed of the shaft ω1.

of the ring in the floating ring bearing. The given problem is important for definition of the
forces acting on the shaft as they depend on angular speed of rotation of the floating ring.
Angular speed of rotation of the ring in the floating ring is received within the framework
of the short bearing theory from a condition of equality of the torque acting on the floating
ring from the fluid firms both outside and inside. Numerical calculation has shown that
angular speed of rotation of the floating ring in the floating ring bearing can vary in enough
wide limits.
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Investigation of the dynamics of a surface phase formation
in multicomponent solutions of surfactants
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Abstract

The surface properties and dynamics of the formation of a surface phase in individ-
ual and binary aqueous solutions of surface-active substances by the Wilhelmy plate
with the Langmuir-Blodgett barrier system are studied experimentally and theoreti-
cally. Salts of fatty organic acids are used as the surfactants - potassium laurate and
potassium kaprilat, which are members of the same homologous series, but differing
in properties. The properties of both one- and two-component solutions depending on
both total concentration of all surfactants and relative contribution of each surfactant
in the solution are investigated. The maximum surface pressure versus concentration
at different speeds of the barriers are plotted. It is revealed that these curves have
characteristic maximum. To interpret the results, a theoretical model allowing to
study kinetic characteristics of adsorption/desorption processes is proposed.

Introduction

The Langmuir-Blodgett barrier system was developed a hundred years ago specifically
to study the surface properties of insoluble surfactant. In the last few decades it has
been applied for studying solutions of soluble surfactant films. This study investigates the
processes of formation of the surface phase in monosolutions of surfactants and in binary
systems containing two surfactants. Such systems have not been adequately explored
because with an increase in the number of solution components the number of physico-
chemical parameters also increases, which can influence the behavior of the system. The
situation is further complicated if the components are mutually soluble. Nevertheless,
interest in these systems is increasingly growing because of their common occurrence in
nature and numerous applications in industrial processes, in power engineering, chemical
and petroleum industry, medicine, etc.

Presently existing models of time-dependent mass transfer require thorough experi-
mental verifications. A lot of publications devoted to the study of surface properties of
combined systems are based on the study of equilibrium states [1]. The inadequacy of
the equilibrium approach is especially evident in the processes with dynamically variable
conditions for the existence of the free surface. In this respect, the approach applied in
monographs [2, 3] seems to be more promising. The dynamic properties of the surface phase
formation were investigated experimentally and theoretically in a series of works by Yossi,
the results of which were summarized in monograph [2]. We can also mention the work [3],
the authors of which concentrate their attention on the dynamics of adsorption/desorption
processes.

The authors of this paper believe that the classical Langmuir-Blodgett method has not
yet exhausted its potential and can be successfully used to study the dynamic properties
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of the surface phase formation of one or more surfactants.

Description of the experimental setup, materials and measur-
ing method

Studies were performed with the use of the Langmuir-Blodgett barrier system and the Wil-
helmy balance (KSV Ltd., Finland) [4]. The setup allows studying the surface properties
of the solutions in a wide range of lifetime of the surface phase (from a few seconds and for
much longer time) and is characterized by high sensitivity at concentrations much lower
than the concentration of micelle formations. The dependence of the surface tension on
the time provides information about the rate of adsorption/desorption of surfactants and
allows us to estimate the characteristic times of mass exchange between the volume and
surface phases.

The experiments were carried out with solutions of potassium salts of fatty acids -
caprylic acid, propionic acid, and lauric acid prepared on the basis of an aqueous solution
of potassium alkali of molar concentration. These surfactants have different lengths of the
molecule, which leads to substantial differences in the ways they manifest their surface-
active properties. For preparation of solutions we used water of the first degree of purity
according to Russia state standard 52501-2005. The tray and setup barriers were cleaned
before each experiment. Purity of the surface was checked against that of deionized wa-
ter by indications of the Wilhelmy balance, which determine the force of pulling in the
Wilhelmy plate submerged into a liquid. At the time when the barriers are brought close
together the change in the surface pressure should not exceed 0.2 mN/m. After cleaning
the water is pumped out and the tray is filled with test solution. Before each measurement
the solution is kept in the tray for 20 minutes. The measurements were performed at a
constant temperature of samples of (23.0± 0.3)◦C. During all experiments the velocity of
the barrier motion was kept constant. The barriers located on the surface of the tray filled
with the test solution, first moved closer together with a certain fixed velocity, and then,
after reaching a given position, stopped and, without immediately began to move with
the same velocity in the opposite direction. Indications of the balance and the position of
barriers were transferred in real time to a computer.

The Wilhelmy plate being constantly immersed in the solution registers the magnitude
of the capillary force exerted by thesurface of the solution. Thus, during the experiment
the scales record changes of the surface tension compared to the initial equilibrium value
as a result of changes in the surface density of the surfactant due to an increase or decrease
of the surface area of the solution. This quantity is called the surface pressure. At the
beginning of each experiment, the indications of the balance were set to zero, i.e. the
surface pressure was measured with respect to the equilibrium value of the surface tension.

Discussion of results

The plots of surface pressure as a function of the surface area per one cycle of compression-
extension obtained for monosolutions of potassium laurate and potassium caprylate are
given below. Different curves correspond to various velocities of the barriers at the same
molar concentration of the surfactant.
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Fig.1 Variation of the surface pressure with the surface area for solutions of
potassium laurate a), caprylate b) potassium molarconcentration of C =

0.0036 mol/l for various velocities of barrier movement: v, mm/min: 1 - 10; 2
- 25; 3 - 50; 4 - 100

The graphs show that as the barriers approach each other the surface pressure increases,
which is associated with an increase in the surface concentration of the surfactant due to
a decrease in the surface area. However, the curves corresponding to a convergence and
divergence of barriers do not coincide because part of the surfactant molecules has enough
time to diffuse into the solution. With the growth of the compression rate the surface
pressure varies more strongly. The higher the rate of barrier convergence, the smaller
number of surfactant molecules have time to pass into the mass phase due to desorption.
This leads to a larger value of the maximum change in the surface pressure recorded during
each experiment. These data were used to construct curves of the maximum pressure
change versus the volume concentration of potassium laurate and potassium caprylate in a
molar KOH solution at different velocities of barrier motion. All curves show a pronounced
maximum, the position of which depends on the barrier velocity.

Fig.2 The dependence of the maximum value of pressure variation on the volume
concentration of a) the potassium laurate, b) the potassium caprylate at different barriers

velocities v, mm/min
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The existence of the extremum is associated with the competition between two mech-
anisms, depending differently on the volume concentration. On the one hand, an increase
in the volume concentration leads to an increases in the surface concentration of the sur-
factant, and, consequently, to a more significant change in the surface pressure during
compression of the surface. Therefore, at low concentration this dependence is directly
proportional. At a limiting value of the surface concentration, observed at different vol-
ume concentrations of various substances, a further increase in the surface pressure due to
barrier compression does not occur, and the curve approaches saturation. On the other
hand, the rate of mass transfer between the volume and surface phases monotonically
increases with increasing volume concentration.

This leads to a decrease in the maximum value of the surface pressure in the experiments
where the barriers are brought close together, so that instead of saturation one can observe
a descending part of the curve.

In the second series of experiments, measurements were made at a constant velocity
of the barrier motion, but for binary solutions containing both surfactants. At some
fixed molar concentration of surfactants, defined as the total number of molecules of both
surfactants in a unit volume of the solution, their relative content (the number molecules
of each surfactant per unit volume of the solution determined by the mole fraction of each
surfactant) changes:

X =
ν1

ν1 + ν2

where ν1 and ν2 is the number of moles of the first and second surfactant in the mixture.
On the dependencies of the maximum change in the surface pressure on the mole

fraction of potassium laurate at various total molar concentrations of the surfactant and
velocities of barrier motion we saw that at higher concentrations of the surfactants in the
solution the maximum change of the surface pressure is of monotonic character. Thus, the
variation in the composition of the mixture monotonically changes its surface properties,
which have intermediate values with respect to the values typical for the homogeneous
mixtures. However, at low concentrations the plots have a minimum, i.e., in the case of
a mixture, the molecules diffuse from of the surface layer into the solution faster than in
the case of a mono-component mixture. The rate of desorption depends on the mixture
composition.

The mathematical model

Here we shall construct a theoretical model, describing the time-dependent processes of
diffusion and adsorption/desorption of surfactants at the interface and near it under the
conditions of dynamical changing surface area of the solution. The coordinate system
is arranged in such a way that the x-axis is directed along the interface and the z-axis
is perpendicular to it so that the condition z=0 specifies the surface, and the axis itself
goes into the liquid. We shall restrict our consideration to the case of a two-dimensional
problem. The volume and surface concentrations will be denoted by C (t , x , z ) and Γ (t , x )
respectively. The constitutive relation defining the dynamics of dissolved surfactant is a
diffusion equation, valid for the bull of solution, taking into account a lead to surfactant
transfer along the boundary and in adjacent viscous skin layer:

∂C
∂t

+ Θ(t)z
∂C
∂z

= D
∂2C
∂z2.

(1)
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where D - is the diffusion coefficient of a surfactant in a liquid. Since we do not deal with
the problem of convective mass transfer, we may omit the corresponding term in (1). Here
S denotes the surface area, and Θ - the rate of deformation. Relation (1) was derived under
the requirement of fluid incompressibility.

The diffusion equation (1) for a surfactant found in the bulk solution must be supple-
mented by two equations for the surface concentration Γ (t,x), which are considered as its
boundary condition. Since the relaxation of the surface is fast enough in this system, we
can omit the term corresponding to the diffusion of the surfactant along the surface in the
equation. One of these equations for the examined system geometry is written as:

dΓ

dt
+ Θ(t)Γ = D

∂C
∂z
|z=0 (2)

However, boundary condition (2) for equation (1) is insufficient for an adequate descrip-
tion of the transport processes, since equation (2) introduces a new function Γ (t,x) into
consideration, and we need another relation, which relates surfactant concentrations at the
surface and in the solution. To determine the type of this relationship it is necessary to
compare the characteristic times of diffusion and adsorption/desorption. If the characteris-
tic diffusion time is much longer than the time of establishment of the material equilibrium
between the surface and near-surface layers due to adsorption/ desorption, we are dealing
with the diffusion kinetics [2,3]. In this case, the delivery of the surfactant molecules to
the surface at any variation of the solution thickness occurs almost instantaneously, and
the system is in the state of thermodynamic equilibrium. The specific form of the rela-
tionship between Γ and C, depends on the choice of the isotherm. For the problem under
consideration it is convenient to use the Langmuir isotherm:

Γ = Γ∞
C0

K2/K1 + C0
(3)

where Γ∞ - is the limiting surface concentration of the monolayer for a given surface-active
substances, C0 - is the value of the molar concentration of the surfactant in the near-surface
layer, K1 and K2 - are the coefficients of adsorption and desorption, respectively.

If the balance of the characteristic times in the system is opposite, i.e., the diffusion
processes occur much faster than the processes of adsorption/desorption, there is no equi-
librium in the system and we need to introduce the dynamic relationship between the
concentrations. In this case the Langmuir equation is used most commonly:

dΓ

dt
= K1C0

(
1− Γ

Γ∞

)
−K2

Γ

Γ∞
(4)

In the case of the adsorption kinetics (4) the diffusion occurs so quickly that the concen-
tration of the surfactant in the near-surface layer C0 is held constant, since the diffusion
always has time to remove extra molecules from the surface in the case of desorption, or
to carry new molecules to the surface in the case of adsorption. It is readily seen that
equation (3) is simply a stationary solution of equation (4).

Finally, if it is impossible to give preference to a certain kind of mass transfer process
one should refer to mixed kinetics [2, 3]. It is the most complex case for the analysis, since
the Langmuir equation takes the following form:

dΓ

dt
= K1C(t,0)

(
1− Γ

Γ∞

)
−K2

Γ

Γ∞
(5)

Equation (5) can not be solved independently, since in this case the near-surface surfactant
concentration is non-stationary.
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Suppose that the processes in the system occur according to the diffusion kinetics
scenario. In this case, to evaluate the evolution of the system we must solve equation (1)
for the boundary conditions (2, 3) and the following initial conditions:

t = 0 : Γ = Γe,C = C0. (6)

Here Γe - is the equilibrium value of the surface concentration of the surfactant at the
beginning of the barrier movement. Consider the specific case of dynamically changing
surfaces. Let the area of the surface phase is compressed with the constant rate V. To
solve, we use the method developed by Yossi in [2]. As a result, we obtain an expression

Γ(τ) = (1− Vt)

Γe + 2

√
D
π

√
τ∫

0

(
C0 − C(τ − λ, 0)

)
d
√
λ+ 2V

τ∫
0

Γ(τ)dτ

 , (7)

using the initial conditions (6). The approximation C0−C (τ − λ, 0) ≈ (Γe−Γ(τ−λ))dC/dΓ
can be used to solve equation (7) with respect to Γ, and the integrals can be replaced by
the approximate expressions according to the mean value theorem.

The numerical calculations have been performed in the paper [2]. They show that this
assumption does not introduce significant errors. Expressing in (7) the function of Γ(τ),
and assuming that the deviations from the equilibrium Π−Πe ≈ (Γ−Γe)dΠ/dΓ are small,
we arrive at the final expression for the evolution of the surface pressure:

∆Π(s) =

√
πV
4D

RTC0Γ2
∞(

C0 + K2
K1

)2

(1− s)
√
s(G
√
s +
√

1− s)
. (8)

Here T - is the temperature s - is the dimensionless area of the interface s(t) = 1 − Vt,
which varies in the range from 1 to 0.

To construct equation (8) we used the expression for the Langmuir isotherm (6) and
Gibbs isotherm, dΠ/dC = ΓeRT/C0 The transformations made in (8) result in the ap-
pearance of the dimensionless parameter G which is equal to the ratio of the characteristic
diffusion time to the characteristic time of the barrier motion:

G =

√
π

2

√
τD
τV

=

√
π

2

dΓ

dC

√
V
D
.

If the surface is compressed quickly, and G >> 1 relation (15) at the beginning of evolution
becomes close to a liner expression: ∆Π(s) ≈ (1− s)/s. For another limiting case G <<1
when the motion of the barriers is so slow that the diffusion processes have time to relax, we
get ∆Π(s) ≈ (1− s)/s In both cases the curve has no extremums and the surface pressure
varies monotonically.Assuming that the examined system evolves according to the scenario
of diffusion kinetics we can use the above experimental data to estimate the value of the
parameter G in the experiments with potassium caprylate: G ≈ 0.19

√
υ , where υ - is

the dimensional velocity of the barriers(mm/min).Taking into account these observations,
we compared the theoretical curves calculated by formula (8) with the experimental data
described by the curve of surface pressure versus surface area for the solutions used (b).
The results for different velocities of the barrier motion (for the sake of comparison with
experiment the surface area is expressed in mm2 are shown in the figure as surface pressure
versus surface area curves for a solution of potassium caprylate.

It is seen that for potassium caprylate there is a good agreement between the experi-
mental and theoretical data for all velocities of the barrier motion set during experiments.
There exists a value of C, for which an increase in the surface pressure during the motion
of the barriers is maximum (see Fig.3).
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Fig.3 Variation of the surface pressure with the surface area for the solution of potassium
caprylate. The experimental data (dots) are compare with the theoretical data (solid lines)
calculated by formula (15) at a fixed molar concentration of the solution C =0.0036 mol/l.
The curves correspond to different velocities of the barrier motion: v, mm/min: 10 (�); 25

(+); 50 (◦); 100 (♦).

Using (8) we shall try to clarify the physical meaning of the appearance of extremum
on the plot of the maximum surface pressure as a function of volume concentration of
the surfactant solution, shown on the dependence of the maximum change in pressure on
the mass concentration (Fig.4). For this purpose we fix a value s=0.5 and see how the
experimental points fit the theoretical curve, for example for the barrier velocity v=100
mm/min.

Fig.4 The dependence of the maximum pressure variation of the volume concentration of
potassium caprylate.It is a comparison of experimental data (◦) and theory (line),

calculated by the formula (15) at a fixed speed barrier,
v=100 mm/min.

If we differentiate (8) with respect to C0, you can get the value of concentration at the
curve maximum:

C∗0 =
K2

K1
≈ 0.4 · 10−3 (9)

Thus, the maximum of the curve corresponds to the case when concentration of the surfac-
tant in the solution is equal to the Langmuir-Shishkovsky constant a=K2/K1. The latter is

392



Investigation of the dynamics of a surface phase formation in multicomponent solutions
of surfactants

the ratio of the desorption coefficient to the adsorption coefficient. The physical meaning
of the constant follows from the Langmuir isotherm (3): it is an initial concentration of the
surfactant in a mixture, at which after the establishment of the equilibrium the monolayer
is exactly half full. Relation (9) can be used to estimate based on the experimental data
the ratio of the adsorption to the desorption coefficients: K2 = K1C0 ≈ 0.4 · 10−3K1. In
the framework of diffusion kinetics it is impossible to determine separately the adsorption
and desorption coefficients, because a priori the diffusion time is much longer than the
characteristic time of adsorption. Just this assumption has been used to derive formula
(8).

Conclusion

A theoretical model has been proposed to interpret the experimental data on the dynamics
of formation of the adsorbed film of a single surfactant. It allows us to describe the time-
dependent processes of diffusion and adsorption-desorption of a surfactant at the interface
and near it under the conditions of dynamically changing surface area of the solution.
Good agreement between the experimental and theoretical results (see surface pressure
versus surface area curve and curves of maximum change in pressure plotted as a function
of volume concentration), provides the basis for determining the type of kinetics of the
examined surfactant.

However, the kinetics scenario can be predicted without making a complex mathemat-
ical analysis. Let us estimate the following dimensionless parameter:

R =
Γ2
∞K̂2

a2D
, (10)

This parameter is the ratio of the characteristic diffusion time to the characteristic time of
adsorption-desorption. If the parameter R is large, the kinetics of the system is of diffusion
type, if it is small, the kinetics is of the adsorption type. As for the values entering into
relation (10) we can characterize them as follows. The reduced coefficient of desorption
K̂2 = K2

Γ∞
at times to 20 ms is almost independent of the type of material and is equal

to 100 s−1 [2]. The value of the saturation of the monolayer is also weakly dependent on
the material and is approximately equal to 5 ·10−10 mol/sm2. The Langmuir coefficient
is determined from the experiment (9). The diffusion coefficient of potassium caprylate
can be estimated as 10−6 sm2/s. As a result, we obtain: R ≈ 2. This means that potas-
sium caprylate (C8H15KO2) with some reservations can be attributed to the substances
governed by the diffusion kinetics. A similar analysis performed for the potassium laurate
(C12H23KO2), leads to a larger value of: R ≈20. The point is that the maximum of the
curve for laurate is shifted toward lower concentration (which is readily seen from the de-
pendence of the maximum change in pressure on the volume concentration). In general,
these results correlate well with the observations of Yossi, who stated that a surfactant
composed of heavier molecules of a homologous series, shows more pronounced diffusion
kinetics [2].

Thus, we offer three possible variants of representing boundary conditions, which corre-
spond to different types of kinetics of mass transfer processes at the surface of the solution:
adsorption-desorption, diffusion, and mixed kinetics. It has been shown that on the basis
of preliminary experimental data we can evaluate the type of kinetics inherent in a particu-
lar surfactant. A reasonable explanation has been given for the nonmonotonic dependence
of the increment of the surface pressure on the volume surfactant concentration observed
in the experiment. It has been found that the curve maximum corresponds to the case
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in which the surfactant concentration in the solution is exactly equal to the Langmuir-
Shishkovsky constant. The proposed approach for determining the Langmuir-Shishkovsky
constant is new and is not described in the literature.
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Abstract

The stability of the solutocapillary Marangoni flow initiated by a localized con-
centration source in the presence of an adsorbed layer of insoluble surfactant is in-
vestigated experimentally. It has been established that the main axisymmetric flow
becomes unstable with respect to azimuthally periodic disturbances, which leads to
the appearance of the surface flow with a multi-vortex structure. The structure of the
secondary flow is investigated depending on the intensity of the main flow and the
surface density of the surfactant. It has been shown that the azimuthal wave number
increases with the growth of the Marangoni number and decreases with the growth of
the surface density of the surfactant. A threshold value of the surface density of the
surfactant, at which the Marangoni flow does not occur, has been defined.

Introduction

The presence of the surface tension gradient induced by heterogeneities in temperature,
chemical composition or electric potential along the surface of the fluid gives rise to a
surface (or capillary) flow. The resulting surface motion is called, respectively, thermal,
solutal or electrocapillary Marangoni flow. Interest in this subject is related, first of all to
a wide class of both fundamental and applied problems, in which this class of flows has
been intensively studied during last few decades.

The structure of surface flows reflects the configuration of heterogeneity distribution
at the interface that provokes the appearance of surface tension gradient. As a rule, the
structure of such flows is easy to predict, and it can be modelled relatively well based on
theoretical and numerical studies. However, there are a number of experimental works, in
which the structure of the observed surface flows differs significantly from that predicted
theoretically and stemming from the problem symmetry. For example, experimental inves-
tigation of the thermal and solutocapillary convection from a concentrated source made in
[1 - 3] revealed the occurrence of a multivortex flow on the surface, whereas the numerous
experimental and theoretical studies showed the formation of a steady-state axisymmetric
radial flow in this situation.

In our opinion, these discrepancies are most likely caused by surfactants (frequently
uncontrolled in experiments), which generate an adsorption layer at the interface. For
example, it was shown in [4] that the use of anti-wetting covering in the problems of the
liquid bridge leads to its partial dissolution in the working fluid and, consequently, to the
appearance of the adsorbed film, which changes dramatically the results of the experiments.
The results gained by a series of qualitative experiments [5 - 6] have shown that thorough
cleaning of the water/air interface lead to the formation of flow structures predicted by
theoretical models and consistent with the symmetry of the problem. The content of even
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small amounts of surface-active impurities at the interface, specifically deposited on the
surface [5] or associated with inadequate fluid purification [6], leads to instability of the
initial surface flow and the formation of more complex secondary structures at the interface.
A more detailed experimental investigation and theoretical description of this phenomenon
has not yet been done.

The idea of the influence of adsorbed layers of surfactants a well-studied on the problem
of rising bubbles in the solution of surfactants. The explanation was first given by Frumkin
and Levich [7]. To date, their hypothesis has been successfully verified in several experi-
mental studies conducted with highly purified water and aqueous solutions of surfactants
[8 - 11]. However, no direct experimental observation of the distribution of concentration
and velocity on the bubble surface has been performed due to the small (a fraction of a
millimeter) size of the region under study. Numerical simulation that has been carried
out to take into account the adsorption-desorption process of surfactant molecules on the
surface of the bubble shows qualitatively good agreement with the available experimental
results [12 - 13]. Quantitative comparison of the results is a rather complicated procedure
because much effort is required to measure accurately such parameters of adsorbed films
as the rate of adsorption/desorption, characteristic relaxation time of the layer, etc.

In some studies the problem of the interaction of surfactant films with convective flows
on the surface [14 - 16] it was found that surfactants exert a destabilizing effect at the
early stage of thermocapillary convection, whereas in the other papers the presence of a
surfactant has a stabilizing effect at the beginning of convection, leading to an increase in
the threshold of the Marangoni number [17 - 19]. No attempts have been made to carry
out experimental studies of the layer stability in the context of the Pearson problem.

It is seen that the proposed situation, in which the development of the surface flow
is complicated by the presence of the adsorbed layer of surface-active impurities is widely
met in practice, but is still poorly explored. The existence of the adsorbed film of surface-
active impurities leads to a change in the boundary conditions (surface tension, surface
rheology). The redistribution of the surfactant molecules by a convective flow can lead to
inhomogeneous boundary conditions and, consequently, to loss of symmetry of the main
flow. From this point of view there is a need of making a more comprehensive study of the
evolution and stability of the surface flows in the presence of adsorbed surfactant films,
which will allow us to formulate the boundary conditions suitable for such problems. The
main purpose of the study is the investigation of the interaction in the context of a simple
model situation: the stability of an axially symmetric solute-capillary flow induced by a
concentrated source located at the surface. The paper presents the results of experimental
study into the structure and evolution of solutocapillary flow on the surface of the liquid,
depending on the intensity of convective motion (the solutal Marangoni number-la) and
the surface concentration of surface-active impurities.

Experimental setup and methods.

The main difficulty in the experimental investigation of this class of problems is the es-
tablishment of the "zero" surface, i. e., the surface, which is initially free of molecules of
other substances, which can be used to generate the required surface flow and eliminate
the influence of complicating factors. The existence of initially pure "zero" surface is also a
prerequisite for the creation of the surface layer with controlled properties and concentra-
tion. There are two ways of creating such conditions. The first is to select a sample liquid.
To extend the scope of research we used water as a base fluid. Out of commonly used fluids
(except molten metals and salts) water possesses the largest surface tension, which makes

396



Instability of solutocapillary flow in the presence of insoluble surfactant

the choice of surfactant practically unlimited. However, preparation of a "zero" surface for
water is quite a challenge. To solve this problem, we applied the second method, which
includes thorough cleaning of the liquid and experimental setup and constant observation
of the state of the interface.

A high level of water purification was achieved by applying successively the processes of
Bi distillation and deionization, which enable us to remove practically all impurities. For
the removal of impurities was accomplished by employing a Langmuir - Blodgett barrier
system and aspirator. The degree of contamination of the surface is controlled by Wilhelmy
balance. After completing the procedures of surface cleaning, par of water was pumped
out. The water - air interface dropped to about the middle height of the cuvette, where
the cuvette walls were transparent, which allowed us to apply the optical methods of
structure visualization. The solutocapillary Marangoni flow was created in the following
way. On the free surface of a horizontal layer of water (1, Fig.1) we placed a thin slice
(0.9 mm outer diameter) of a stainless steel tube 2, through which a weakly concentrated
aqueous solution of ethyl alcohol is feed by pump 3. Even small concentrations of the ethyl
alcohol solution substantially lowers the surface tension, which leads to the appearance
of convective flow at the interface, directed oppositely to a concentration gradient, i.e.,
from the center to the periphery of the cuvette. Ethyl alcohol is also a surfactant, but in
weakly concentrated solutions it does not form stable adsorbed films capable of affecting
the stability of solutocapillary flow.

Experiments have shown that the convective flow created at the surface in such a way
remains stable, i.e., preserves the axial symmetry throughout the experiment. Changing
concentration of the solution of ethyl alcohol and flow rate we can change the intensity
of convective flow. For flow visualization we used the standard knife- edge technique in
combination with light-scattering particles suspended in solution - glass, hollow spherical
particles of neutral buoyancy. The particles undergo pre-treatment to remove contaminants
from their surface. Knife-edge, created by laser 4 (wavelength 532 nm, power 200 mW)
and lens system 5 moved along the surface of the liquid. The flow patterns were recorded
by camera 6.

Fig.1 Scematics of experimental setup: 1 - water layer, 2 - a tube for feeding
aqueous solution of ethyl alcohol, 3 - feeding pump, 4 - laser, 5 - lens system, 6 -

photo camera

To create a film of surfactant on the surface of water we used insoluble surfactant (oleic
acid). In this case, the molecules of surface-active impurities are located on the surface
and do not penetrating into the liquid, which makes it possible to create a constant and
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controllable surface concentration. The fluid motion at the interface can only lead to a
redistribution of the molecules within the surface phase, which may change the local, but
not the total concentration of molecules on the surface. To create a film on the surface of
water we dissolved the surfactant in highly volatile and water - insoluble organic solvent -
hexane. With the help of a microsyringe the solution was injected onto the surface of water.
It rapidly spread over the surface covering all available area. As the solvent evaporates, a
homogeneous surface layer is formed. At the beginning of each experiment, we specified
the feed rate of the solution, its concentration and the surface density of the surfactant
molecules. These quantities were used to form two dimensionless governing parameters
of the problem: the degree of saturation of the layer by the molecules of surface-active
impurities.

Γ

Γe

where Γ - surface concentration of impurities, Γe - surface concentration of the saturated
mono-layer of a surfactant. The effective Marangoni number is.

Ma =
q

Dη2
· dσ
dC
· C

where q - dimensional mass flux of the surfactant solution, η - dynamic viscosity, D -
diffusion coefficient, σ - surface tension, C - volume concentration. During experiment we
investigated the structure of arising flow as a function of these dimensionless parameters.

The results of experiments and discussion

The structure of the concentration-capillary motion on the surface essentially depends on
the intensity of the Marangoni flow and the surface density of the surfactant. In the
absence of the surfactant an axially symmetric flow (radial flow) stable over the entire
range of the Marangoni numbers used in experiments is formed at the interface. Such a
structure of the flow formed in the absence of the surfactant served as additional criterion
of the water surface purity at the beginning of each experiment. The deviation of the flow
structure from the axial symmetry was the reason for of interrupting the test and repeating
the procedure of water purification and setup cleaning. The presence of a surfactant of
any surface density leads to instability of the main flow and the formation of secondary
structures in the form of a multivortex flow, periodic in the azimuthal direction.

The characteristic structures obtained experimentally for a fixed of Γ/Γe=0.35 and
different values of the Marangoni number Ma are given in (Fig.2). It is seen that at small
value of the Marangoni number the developed flow has a two-vortex structure (a). With an
increase in the flow velocity the structure loses stability at some value of Ma, giving way to
a four-vortex structure (b). A further increase of the mass flux leads to the appearance of
a more complicated structure with a greater number of vortices (6 and 8 vortices in Fig.2
(c) and (d), respectively). The value of the interval, in which there exists a stationary two-
vortex flow decreases with increasing wave number. Moreover, with increasing intensity of
the convective motion and at a constant surfactant content, in the vicinity of the source
one can observe the formation of the zone of axially symmetric flow, which increases with
the growth of Marangoni number. Similar evolution of the surface flow is observed at a
fixed value of the Marangoni number and variable value of Γ/Γe (Fig.3).
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Fig.2 Characteristic flow patterns 1 at Γ/Γe=0.35 and Ma · 107 : 0.5 (a), 1.0 (b), 2.5
(c), 4.0 (d)

In this case, the number of vortices decreases with the growth of the surfactant content
at the surface.

Fig.3 Characteristic flow patterns 2 at Ma = 0.5 · 107 and Γ/Γe: 0.2 (a), 0.25 (b), 0.3 (c),
0.35 (d)

When Γ/Γe approaches a certain threshold value depending on the Marangoni number,
no surface flow is formed at the surface. It is also seen that the size of the region of the
axially symmetric flow in the central part of the cuvette reduces with an increase in the
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quantity of the surfactant at the interface. On the basis of the character of the multi-
vortex flow described above, its symmetry and structure of the initiated flow we can derive
a wave number, which is defined as kϕ = 2π/ϕ , (where ϕ is the angular dimension of
the structure). It essentially depends on the Marangoni number and surface density of the
surfactants.

Fig.4 Azimuthal wave number as a function of the Marangoni number (left picture, Γ/Γe=
0.15) and the surfactant surface density (right picture, Ma=0.19·107)

The plots of azimuthal wave number as a function of the Marangoni number and surface
density of the surfactant were constructed based on the results of experiments and are given
in (Fig.4). It should also be noted that in the presence of surfactant at the interface there
is a threshold value of the Marangoni number, at which a convective flow is initiated. At
lower threshold values the flow on the surface is not formed. This threshold value depends
strongly on the surface concentration of the surfactant.

Conclusion

The results of experimental studies presented in this paper show that the flow structures
observed in some studies [1 - 6], contradict the results predicted theoretically in compliance
with the symmetry of the problem. This can be explained by the existence of uncontrolled
content of surface-active impurities involved in the formation of the adsorbed layers at
the interface. Experiments show that the presence of even small amounts of surfactant
molecules on the surface leads to instability of the main flow. The structure of the secondary
flow is determined by the geometry of a particular problem. In the case examined in this
paper, an axisymmetric flow becomes unstable with respect to multivortex flow, which is
periodic in the azimuthal direction. Moreover, the azimuthal wave number depends on the
intensity of the flow and content of the surfactant.

The mechanism of the instability of the basic flow is as follows. Initially, a uniform
distribution of particles on the surface is disturbed by the arising axially symmetric radial
flow, which transports surfactant molecules to the periphery. However, compression of
the adsorbed layer of insoluble impurities leads to the appearance of the surface pressure
in the layer. Because it is directed against the flow, it slows down the main flow. This
results in the formation of a peripheral zone, into which the flow does not penetrate. The
boundary of this zone sets new boundary conditions for the flow, instead of conditions
previously existing at the solid boundaries of the cuvette. Any violation of the symmetry
of the moving boundary leads to breaking of the main flow symmetry due to the presence
of feedback between the surface density of surfactant in the selected azimuthal direction
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and intensity of the main flow in the same direction. The resulting heterogeneity in the
distribution of the surfactant in the peripheral layer will increase leading to the instability,
whose azimuthal wave number will depend on the control parameters of the problem. Of
course, the proposed instability mechanism is hypothetical and should be tested in the
theoretical study, which is scheduled for the near future.
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Abstract

We explore the capability of Discontinuous Galerkin Finite Element methods to
solve numerically the charge transport equation in EHD convective problems. These
methods are especially suited to treat purely hyperbolic problems. We compute both
the electric and velocity fields in the case of strong injection. The numerical solution
compares very well to the analytical solution for the hydrostatic situation, as well as
with the theoretical linear stability criterion. The results are very promising for future
research of complex electroconvection problems.

1 Introduction

Electrohydrodynamics (EHD) is an interdisciplinary area dealing with the interaction of
fluids and electric fields or charges. It lies at the heart of several important industrial
important processes[1] . In this paper we analyze the classical problem of the 2D flow
between two parallel plates immersed in a dielectric liquid. When a high voltage is applied,
the electrodes inject electric charge into the liquid, and the Coulomb force put the liquid
into motion. Experiments and theoretical analysis show that the pattern of convection is
made of hexagonal cells similar to those of Rayleigh-Bénard convection[2, 3]. The onset
of the global motion is controlled by a non dimensional parameter involving the applied
electric potential, the mobility of the charge carriers and the properties of the fluid.

The transport of electric charge involves three different mechanisms: drift by the electric
field, convection by the velocity and th fluid and diffusion. In EHD, diffusion is only
relevant inside a very thin boundary layer near the electrodes, and it is not relevant for
phenomena developing in the bulk. So in our case the electric charge is transported only
by the electric and velocity fields. The problem becomes purely hyperbolic, and special
numerical treatments are needed.

In previous works we have simulated the time evolution of the 2D case using Particle-
In-Cell(PIC) methods to deal with the distribution of electric charge[4, 5]. The numerical
diffusion introduced by PIC methods is minimal, so they do a good job describing the
electric charge distribution. However, they have problems too. They are numerically
expensive, as a great number of particles are needed to simulate the problem. This is
specially true for 3D problems. Also, special care must be taken to assures the value of
the boundary condition for the charge near the injector.

Others methods have been used to simulate EHD problems: FE-FCT[4, 5], finite
volumes[6], etc. In this paper, we explore the application of Finite Elements Discon-
tinuous Galerkin methods to solve numerically the charge transport equation. We obtain
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Figure 1: Non-dimensional computational domain and boundary conditions for the prob-
lem.

the linear stability analysis criteria for strong injection and compare the computed value
with the analytical one[2, 3]. We will see that the Discontinuous Galerkin elements are
able to reproduce very accurately the value for the linear stability criterion with much less
CPU computing time than PIC methods.

2 Problem formulation

Two plane electrodes a distance d apart immersed in a non-conductive fluid are considered.
An electric potential is applied between the plates so that injection of charge occurs. The
electric field forces the charges away from the injector and in this way a space charge
appears. The Coulomb force pushes the charges and the liquid with them. If the electric
potential is high enough all the liquid is put into motion. Here we consider the 2D case, so
the system is considered to be infinite along one of the direction parallel to the electrodes.

The fluid is considered to be incompressible, isothermal and insulating with mass den-
sity ρ, kinematic viscosity ν and permittivity ε. An electric voltage Φ0 is applied between
the plates. The charge carriers are considered to be of the same type with an ionic mobility
K so they migrate along the liquid with a velocity KE, where E is the electric field. Unipo-
lar autonomous injection is assumed so the density of charge at the injector is constant
and equal to q0, and that the ions discharge instantaneously once they reach the opposite
electrode.

There are three mechanisms responsible for the motion of ions: convection by the fluid,
drift by the electric field and molecular diffusion. The last one can be neglected [1] so the
current density is given by J = q(KE + u), u being the velocity of the fluid and q the
electric charge density. The first term represents drift and the second one convection.

The scales for all the involved variables are

x, y ∼ d Φ ∼ Φ0 E ∼ Φ0/d
u ∼ KΦ0/d t ∼ d2/KΦ0 p ∼ ρK2Φ2

0/d
2

q ∼ εΦ0/d
2

(1)

p being the pressure.
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Figure 2: Charge density along the vertical central line of the domain for the hydrostatic
solution for C = 10 and t = 0.4. The analytical solution and the outcome of the numerical
simulation are shown.

The non-dimensional equation defining the problem are

∇2Φ = −q, E = −∇Φ, (2)

∇ ·
[
q(u + E)

]
+
∂q

∂t
= 0, (3)

∇ · u = 0, (4)
∂u

∂t
+ (u · ∇)u = −∇p+

M2

T
∇2u +M2qE, (5)

The non-dimensional parameters of the problem are

T =
εΦ0

ρηK
, C =

q0d
2

εΦ0
, M =

1

K

√
ε

ρ
(6)

T is the ratio of the force term to the viscous term, and will be the stability paramenter.
M is the ratio of the hydrodynamic mobilty[7] and C measures the injection strength.

In the linear stability analysis, the threshold value for the onset of the motion de-
pends on the wavelength of the perturbation[2]. The minimum of these values is the
absolute linear stability threshold. In the case of strong injection (C = 10), the critical
wavelength turns out to be kmin = 5.113. We consider as domain a rectangle of size
L = π/kmin = 0.614. This way, we solve the problem in one half of a convective cell. The
non-dimensional domain and boundary conditions are shown in figure 1. At the lateral
walls the perpendicular components of the electric and velocity field are null. The value of
the charge density at the injector (the bottom plate) is C.
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Figure 3: Charge density along the vertical central line of the domain for the hydrostatic
solution for C = 10 and t = 5.0. The analytical solution and the outcome of the numerical
simulation are shown.

3 Numerical algorithms

Both the electric field and the velocity field are computed using Continuous Galerkin Finite
Elements(CG-FEM). We solve the Navier-Stokes equation using a Incremental Pressure
Correction Scheme (IPCS)[8].

As described in the introduction, we use Discontinuous Galerkin Finite Elements (DG-
FEM) to solve the charge transport equation. These methods were originally developed to
deal with hyperbolic problems, but in recent years have been applied to all kind of problems
involving partial differential equations[9]. The key idea is to consider internal degrees of
freedom inside every element. The connection between elements is achieved using so called
numerical fluxes. In this way, conservation is imposed locally. These methods have proved
to be very stable when treating hyperbolic problems, and allow to work with complex
geometries, as well as prescribing different orders of approximation inside each element.

We use a structured mesh made of triangles. We consider second order elements for
the electric potential(CG-FEM) and the velocity field (CG-FEM). The pressure is approx-
imated using first order CG-FEM, in order to comply with the LBB condition. The IPCS
scheme is first order in time. For the charge density we use full upwind second order
DG-FEM, with a backward scheme in time in order to enhance stability. The resulting
numerical scheme is first order in time.

The algorithms have been implemented using the DOLFIN[10] Python library. This is
an interface to FEniCS[11], a framework for automated solution of differential equations
by the Finite Element method.
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Figure 4: Contour plot of the stream function for for t = 15, C = 10, M = 10, T = 200.

4 Results

We present some results from simulations in 2D for the strong injection regime (C = 10).
The bottom length of the rectangle is L = 0.614, which corresponds to the more unstable
wavelength according to the linear stability analysis[2]. The mesh has 40 regular intervals
along the X direction and 50 intervals along the Y direction, smaller near the injector at
the bottom and coarser near the collector at the top. The mesh has 2091 nodes and 4000
triangular elements. The time step is dt = 0.01 for all simulations.

4.1 Hydrostatic regime

In order to verify the ability of the DG-FEM method to simulate the charge distribution,
we have run simulations without computing the velocity. The results are compared with
the analytical solution for C = 10

Figure 2 shows the charge density along a vertical line at non-dimensional time t = 0.4.
The front of charge advancing towards the top electrode can be seen. The steady analytical
solution is also plotted. The DG-FEM is able to describe this front of charge with no
spurious oscillation near the region of the steepest gradient.

Figure 3 shows the computed and analytical charge densities along a vertical line when
the steady state has been reached. The maximum difference between the computed value
of the charge density and the analytical solution is less 0.5%. Also the values of the electric
current computed at the injector and the collector differ in less than 0.1%.
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Figure 5: Charge density for t = 15, C = 10, M = 10, T = 200. The central region of the
convective is void of electric charge.

4.2 Linear stability in the strong injection regime

In order to get the threshold value of the linear instability, we have run a set of simulations
changing the value of the stability parameter T for different fixed values of the mobility
parameter M . As an initial condition for the charge density, we set the analytical profile
for the hydrostatic regime. Then we compute the electric field and solve the Navier-Stokes
equation. The electric and velocity fields obtained are used to advance the charge density.
The process is repeated iteratively in time. All the simulations were done for the strong
injection regime, C = 10.

If the value of T is greater than the critical value Tc a velocity roll appears, with a
maximum velocity greater than the electric field (vmax = 4 for T = 200 andM = 10). The
velocity roll pushes the charge away from the central region, where a region void of electric
charge appears. Figure 4 show the contour plot of the stream function for M = 10 and
t = 15. The velocity roll is fully developed here. Figure 5 shows the distribution of electric
charge density for M = 10 and t = 15. The central region empty of charge is clearly seen.

Figure 6 plots the evolution in time for M = 10 and several values of T of the global
angular momentum of the convective cell, computed as Lam =

∫
|(r − r0)× u| dS, where

r0 points to the center of the domain. This magnitude gives an idea of the strength of the
velocity roll. For all values of T the growth becomes exponential in a certain interval of
time (this corresponds to the linear sections of the curve in the figure, as the scale of the Y
axis is logarithmic). In the linear stability analysis, in this region the angular momentum
is considered to depend on time as Lam = Aeσt, where σ is the growth factor. The value
of σ depends on T . The critical value TC for the onset of the instability corresponds to
σ = 0. Using a quadratic fit for the function σ(T ) the value of Tc is obtained for the
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Figure 6: Evolution in time of the total angular momentum for C = 10 and M = 10. The
critical value of T can be estimated from the regions where linear growth is observed (the
scale is logarithmic for the Y axis)

different values of M . Table 6 shows the values of Tc obtained from our simulations for
three different values of M .

These number are to be compared with T ac = 164.1, the critical value obtained from
the linear stability analysis, independent of the value of M [2]. The computed values are
very close to this theoretical number. The relative difference is only of 1.4%, which is
consistent with the analytical result.

5 Conclusions

We have explored the possibility of using Discontinuous Galerkin Finite Element methods
(DG-FEM) to solve numerically the charge transport equation in the 2D EHD convec-
tion between parallel plates in the strong injection regime. These methods are specially
suited to deal with hyperbolic problems, as it is this case due to the negligible charge
diffusion. We have used Continuous Galerkin Finite Element methods to solve the electric
and hydrodynamic problems.

In the hydrostatic regime, the DG-FEM method is able to describe the advancing front
of charge without spurious oscillations, and reproduces with a very good precision the
analytical solution.

When the whole problem is considered, computing both the electric and velocity fields,
the critical value for the onset of the linear instability obtained from the computation agrees
extremely well with the analytical solution obtained from the linear stability analysis. It
turns out to be essentially independent of the value of the mobility parameter, as it is
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M Tc
5 164.0
10 161.7
20 161.7

Table 6: Critical values for the onset of instability from the simulations for several values
of M . The value obtained from the linear stability analysis is T ac = 164.1

predicted by the theory.
Further work is needed to validate the capacity of the DG-FEM methods to deal with

EHD problems. In particular, the long term evolution of the charge density distribution
has to be examined, in order to analyze the possible influence of the numerical diffusion
that the method introduces, even if it is small. Also extensions to the 2D weak injection
case, in the first place, and to the 3D dimensional problem is envisioned in future works.
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[2] Atten P and Moreau R 1972 Stabilité électrohydrodynamique des liquides isolants
soumis a une injection unipolaire Journal de Mécanique 11 471–520.
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diélectriques fluides Rev. Gen. Electrostat. 78 717 – 734.

[8] Goda, K. 1979 A multistep technique with implicit difference schemes for calculating
two- or three-dimensional cavity flows Journal of Computational Physics 30(1) 76 – 95.

[9] Hesthaven J. S., Warburton T. 2008 Nodal Discontinuous Galerkin Methods Springer
(Springer).

410



Stability analysis of the 2D electroconvective charged flow between parallel plates using
Discontinuous Galerkin Finite Element methods

[10] Logg A. and Wells G.N. 2010 DOLFIN: Automated Finite Element Comput-
ing ACM Transactions on Mathematical Software 37(2) doi:10.1145/1731022.1731030,
arXiv:1103.6248.

[11] Logg A., Mardal, K. A. and Wells G.N. 2010 Automated Solution of Differential Equa-
tions by the Finite Element Method (Springer) doi:10.1007/978-3-642-23099-8.

P.A.Vázquez, Dpto. de F́ısica Aplicada III, E.S.I. Camino de los Descubrimientos s/n, 41092
Sevilla, Spain
P.A.Vázquez and A.Castellanos, Dpto. de Electrónica y Electromagnetismo, Facultad de F́ısica,
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain

411



Proceedings of XL International Summer School–Conference APM 2012

Particle dynamics simulation for supersonic heterogeneous
flows around an obstacle

Vladimir V. Vinnikov Dmitry L. Reviznikov Andrew V. Sposobin
vvinnikov@list.ru

Abstract

This paper is concerned with numerical simulation of dispersed phase dynamics
in supersonic dusty flows. Admixture equations are solved in Lagrangian variables
due to staightforward handling of particle reflections from an obstacle. Two common
approaches for particle simulation in path-following variables are discussed, namely:
discrete trajectories method and discrete elements method respectively. Both methods
yield particle concentrations and other required parameters for storage in arbitrary
grids and further processing.

1 Introduction

Gas flows with dispersed admixture often occur in various physical processes and technical
applications. Flow dynamics gains new qualities and shows new effects with the introduc-
tion of dispersed particles. New effects include compaction of a shock layer, intensification
of convective heat flux to an obstacle surface, erosion of the exposed surface and screen-
ing effect, as well as radiative heat exchange between the obstacle surface and incoming
particles. Almost every problem of two phase heterogeneous flows is quite complex and
computationally expensive due to the difference of characteristic scales for carying and dis-
persed phases. There are two approaches to the numerical simulation of particle dynamics.
The first one uses Eulerian description and treats admixture as continuous medium. The
second one treats every particle in admixture independently and uses governing equations
in Lagrangian variables. We use second approach, since it is more straintforward in simu-
lation of consequent particle collisions with another particles and their reflections from the
surface.

2 Discrete Trajectories and Discrete Element Methods

For given flow fields of carrying phase the dispersed phase dynamics is governed by par-
tial differential equations in Lagrangian variables. Admixture particles are modeled as
homogeneous isotermal hard spheres. The motion and heat transfer equations have the
form:

mp
dvp
dt

= fp, Ip
dωp
dt

= Tω, cmpmp
dTp
dt

= qc + qr

where mp is mass, Ip – moment of inertia, Tp – temperature, vp – velocity, ωp – angular
velocity, cmp – heat capacity of particle’s material, fp, – external forces, Tω – torque, qc
and qr – convective and radiative heat fluxes respectively. Integrating these eqiations one
yields stream lines for the discrete trajectories method and individual particle trajectories
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for the discrete element method. In the first method admixture propagates from inlow to
outflow boundaries with constant concentration discharge rate along the stream lines. In
the second method each computational particle travels independently and can participate
in unsteady unique events, such as interparticle collisions.

The discrete element method is much more computationally consuming then its steady
counterpart since it requires not just single particle per stream line, but regular inflow of
particles to maintain the specified admixture volume concentration at the inlet. To simulate
interparticle collisions on every computational step

[
tn; tn+1

]
one constructs a trajectory

approximation for each particle as the polynomial r(t) = r2t
2 + r1t + r0. The condition

for collision of pairs of particles i and j is expressed by the equation
∣∣ri(t)− rj(t)

∣∣2 =
(rpi + rpj)

2, where rpi, rpj are particles’ radii.

3 Direct Collisions Simulation and Monte-Carlo method

The most accurate solution can be obtained by using an authors’ full-scale version of the
discrete element method [1], where each computational particle stands for a single real one.
Parameters of paired interparticle encounters and collisions with an obstacle surface are
computed using the above-said polynomial trajectory approximation. All particle impacts
during one computational step

[
tn; tn+1

]
are simulated sequentially in chronological order

using the queue of collisions. Parameters for a pair of particles after collision as well as
particle properties after reflection from a surface are calculated according to the model
of hard spheres [3]. Processing of each collision event removes all subsequent encounters
for this particle from the queue. Then one obtains particle parameters after collision at
the instant τ ∈ (tn; tn+1], proceeds to integration of equations of movement and heat
exchange on the interval (τ ; tn+1], approximates new trajectory and computes parameters
for new collisions. Newly found encounters are placed in the global queue and treated in
a consistent chronological order. It is necessary to put all collisions in the queue, not just
the first one, since some of them, including early ones can be removed as not happened.
This algorithm continues until the encounter queue is empty on the current computational
step.

This approach allows to simulate complex heterogeneous flows with the best accuracy,
including repeated mutual collisions of particles and their reflection from the obstacle sur-
face. However, the implementation of this method involves considerable computational
cost and parallelization is possible only for solving movement and heat equations. Colli-
sions in the queue are handled sequentially and generally unsuitable for parallel processing.
Therefore such numerical treatment of interparticle collisions is very computationally ex-
pensive.

There are means to decrease computational costs for interpaticle collisions and speed up
simulation via some loss of spatial detalization for admixture. Two existing approaches are
based on assumptions allowing to scale up particle dynamics from a single real particle to
a group of them. Further simplification trades history of collisions for each computational
particle on every timestep to random trials thus excluding unique deterministic trajectories
and introducing stochastic averaged ones.

First approach to reduce the demands of discrete element mehod for computational
resources is to represent every F real particles by a single probe particle. The probe
particle has physical characteristics of a single particle when solving the equations of
motion and simulating interactions with other particles. One should take into consid-
eration the factor F for obtaining integral properties, such as an action of admixture on
a carrier gas or an obstacle surface, or kinetic energy dissipation due to inelastic colli-
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sions. To preserve the properties of the dispersed phase it is necessary to ensure that a
probe particle has the same intensity of collisions along the trajectory, as a single real
particle has. Therefore, the equation that determines the conditions of collision for a
pair of probe particles is

∣∣ri(t)− rj(t)
∣∣2 = (rpi

√
F + rpj

√
F )2. The results are the mo-

ments of time when a distance between centers of mass of the probe particles equals
rpi
√
F + rpj

√
F . Parameters of particle pairs after collision are computed using a normal-

ized vector defining the relative positions of the particles at the instance of the impact:
nij =

(
rpi + rpj

) (
rj(τ)− ri(τ)

) ∣∣rj(τ)− ri(τ)
∣∣−1

The distinctive feature of the direct collisions simulation algorithm is an essentially
consequent way of processing the queue of collisions. Parallelization is straightforward
to implement only for integration of equations of movement and heat exchange at each
computational time step. At the same time the computational costs reduce nonlinearly
at the stage of collisions simulation increasing the integration step expences in overall
costs , which means the increase of parallelization efficiency for the problem solution in
whole. Figure 1 shows plots of the computer time costs versus the factor F for solving
the problem in quasi-3D formulation. One can see that implementation of probe particles
in combination with parallel computing reduces runtime up to a factor 10 while retaining
the accuracy of full-scale solution (see Fig. 2). The problem was solved using PC based on
Intel Xeon CPU with 4 cores.
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Figure 1: Runtime costs for the algorithms:
1 - successive, 2 - parallel
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Figure 2: Runtime reduction for the algo-
rithms: 1 - successive, 2 - parallel

Second approach to reduce computational costs is to use stochastic Direct Simulation
Monte-Carlo methods (DSMC), e.g. [2]. In these methods particle dynamics on every
timestep

[
tn; tn+1

]
is simulated via consecutive advection and collision stages. On colli-

sion stage computational domain U is split into nonintersecting cells U =
⋃M
m=1 Um. All

particles contained in a one cell undergo statistical trials for possible collisions. A variety
of Monte-Carlo methods is provided in [2, 4, 5]. We use one of the most popular variant of
DSMC without time counter (No Time Counter, NTC) [2] with the following algorithm:

1. Compute the number of trials for collisions. Pm = F
Nn
m(Nm

n −1)
2

υmax
Vm

(
tn+1 − tn

)
, where

υmax = maxi,j υij for all particles i and j in the cell Um, υi,j = π
(
rpi − rpj

)2 ∣∣vi − vj
∣∣,

rp – particle radius, v – particle velocity, Nm
n – number of particles in the cell, Vm – cell

volume, F – ratio between real and computational particles.
2. Proceed trials Pm times. On each trial select equiprobably a pair of particles pi and
pj from cell Um, then compute υij . Generate random number β, uniformly distributed
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on [0; 1]. If β <
υij
υmax

then simulate a collision, otherwise proceed with next trial. In
case of collision compute vector of relative positions nij and if particles are closing-in
nij
(
vj − vi

)
< 0 then change their parameters according to the model of collision.

There are several approaches to calculation of nij in literature:
1. Vector nij connects particles mass centers nij =

(
rpi + rpj

) rj−ri
|rj−ri| .

2. Vector direction is randomly uniformly distributed in space:
nij =

(
rpi + rpj

)
(i cosχ+ j sinχ cos ε+ k sinχ sin ε), where cosχ = 2β − 1, sinχ =√

1− cos2 χ, ε = 2πα, α and β are uniformly distributed on [0; 1].
3. Projection b of vector nij on the plane orthogonal to relative velocity vector vj − vi is
distributed on

[
0; rpi + rpj

]
proportionally |b| [2]:

nij =
(
rpi + rpj

) (
i′′ cosχ+ j′′ sinχ cos ε+ k′′ sinχ sin ε

)
, where cosχ =

√
β, sinχ =√

1− cos2 χ, ε = 2πα, α and β are uniformly distributed on [0; 1]. Coordinate system
0x′′y′′z′′ is yielded by rotation of initial system 0xyz, so that axis 0x′′ becomes collinear
with vector of relative velocity : i′′ = vj−vi

|vj−vi|
The DSMC variants are quite feasible for molecular dynamics simulation; however in

case when gradients of particles concentration are large, statistical methods suffer from a
loss of accuracy.

4 Results and Discussion

First, we consider a computational experiment for chaoticaly moving particles without car-
rying gas phase. At initial moment computational domain is filled with monosized particles
uniformly distributed in space. Their velocity lengths are equal, and velocity directions
are distributed uniformly. Domain has periodical boundary conditions. In general case
particle collisions are inelastic. Distributions of collisions number against angle are shown
on Fig. 3. This angle is the angle between vector of relative velocity and vector connect-
ing particle mass centers at an instant of collision. First and second variants for vector
nij yield similar results, yet they have qualitative differences from solutions, obtained by
precise simulation and DSMC with the third variant of relative position vector nij . The
collisions number Na is non-dimentionalized by the number of particles entering computa-
tional domain through unit of surface per unit of time Ns. Dissipation of kinetic energy
EKdisp is scaled to summary kinetic energy of particles at the inflow EK0 (Fig. 4).

Next we consider a problem of supersonic heterogeneous flow over a sphere. Gas phase
is governed by a system of modified Euler equations. Gasdynamics equations are inte-
grated numerically via HLL scheme. Boundary conditions for a solid curvilinear surface
are approximated according to the ghost-cell immersed boundary method on rectangular
grids. Parameters of a gas phase represent the atmospheric conditions at 10 km; Mach
number M∞ = 6. Admixture is represented by particles 10 µm in diameter of aluminum
dioxide Al2O3. Volume concentration for admixture is CV 0 = 104. Sphere radius is 3 cm.
It’s necessary to note that regardless of axial symmetry for carrying gas flow, admixture
simulation should be proceeded in three dimentions. To reduce computational costs for
the full-scale discrete element method we used probe particles with various values of factor
F .

Figures 5-7 show dynamical and energetical impact of admixture on the sphere surface
in the case of inelastic interparticle collisions. Velocity restitution coefficient for hard
spheres model was defined equal to 0.5. One can see that DSMC yields lower intensity of
particle-surface collisions and, correspondingly, higher averaged particle normal velocity at
the moment of collision with the surface (see Fig 5-6). Intensity of collisions is related to
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Figure 3: Distribution of collisions number
vs. angle between vector of relative velocity
and vector connecting particle mass centers
at an instant of collision. 1-3 – DSMC, 4
– reference simulation by the full-scale dis-
crete element method.
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Figure 4: Summary dissipation of particles
kinetic energy due to inelastic collisions.
1-3 – DSMC, 4 – reference simulation by
the full-scale discrete element method.

intensity of inflow particles I∞ and averaged normal velocity VN is scaled to particle free
streem velocity V∞.
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Figure 5: Intensity of particle collisions
with the sphere surface. 0 – Discrete
trajectory method without interparticle
collisions, 1-3 – DSMC, 4 – reference sim-
ulation by the full-scale discrete element
method.
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Figure 6: Averaged value of particle nor-
mal velocity at an instant of collision with
the sphere surface. 0 – Discrete trajectory
method without interparticle collisions, 1-
3 – DSMC, 4 – reference simulation by the
full-scale discrete element method.

The screening effect can be observed. It arises due to some kinetic energy dissipation
for incident particles colliding with reflected ones and leads to lower impact of admixture
on the surface. First and second variants for nij in DSMC give less intensive kinetic
dissipation (see Fig. 4), what leads to underestimation of the screening effect compared to
the reference results of the full-scale discrete element method. Third variant of nij is in
close agreement with the accurate solution (see Fig. 7). The main drawback of all Monte-
Carlo methods is that they prone to underestimate the number of subsequent collisions
in the areas with strong macroscopic gradients of admixture concentration (Fig. 8) and
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Figure 7: Energy flux density from ad-
mixutre to the surface of the sphere. 1-3
– DSMC, 4 – reference simulation by the
full-scale discrete element method.
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Figure 8: Summary number of interparti-
cle collisions. 1, 2 – away from the surface
(d > 0.02R), 3, 4 – in the vicinity of the
surface (d <= 0.02R). 2, 4 – DSMC, 1, 3
– reference simulation by the full-scale dis-
crete element method. Here d – distance
from particle to the obstacle surface, R –
sphere radius.
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Figure 9: Averaged normal velocity compo-
nent for a particle at an instant of collision
with the surface. 0 – Collisionless simula-
tion, 1-3 – DSMC, 4 – reference simulation
by the full-scale discrete element method.
Iinterparticle collisions are absolutely elas-
tic.
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Figure 10: Summary dissipation of par-
ticles kinetic energy due to inelastic
collisions. 1-3 – DSMC, 4 – reference
simulation by full-scale discrete element
method. Iinterparticle collisions are abso-
lutely elastic.

so misrepresent dynamic action of admixture on the surface (see Fig. 5,6). Regardless
of these numerical qualities the intergral parameters such as energy flux density (Fig. 7)
yielded by the third DSMC method are quite accurate. It can be explained by the fact that
the maximum energy dissipation occurs for the first collisions at high relative velocities.
Represented energy flux density is scaled to Q∞ – energy flux density for free stream
particles.

Similar computations were carried out for a case of absolutely elastic interparticle
collisions.The plots for dynamical and energy impact of admixture on a surface are shown
on Fig. 9-10. One can see that the diferences between various DSMC methods are nearly
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vanish, since there is no kinetic energy dissipation in such collisions. In this case the
screening effect arises only due to change of velocity direction for incident particles colliding
with reflected ones.

Conclusions

Two approaches to numerical simulation of collisional dynamics of dispersed admixture
in heterogeneous flows are discussed, namely direct full-scale discrete element numerical
simulation and statistical Monte-Carlo simulation. Implementation of probe particles in
the discrete element method significantly extends application area by reducing demands
for computer memory and runtime allowing to implement parallel computing algorithms.
Therefore modifications of discrete-element method make numerical simulation of three-
dimensional dusty flows past an obstacle quite plausible. It is shown that the DSMC
method used for the problem of heterogeneous flow over the obstacle yields correct and
accurate integral parameters of admixture impact on the surface such as particles energy
flux density to the obstacle.

Acknowledgements

The work is supported by RFBR grant No 12-08-00867 and President’s grant for support
for young Russian scientists MK-179.2011.8.

References

[1] Reviznikov D.L. and Sposobin A.V. Direct numerical modeling of disperse phase flow
of gas-particle mixture over a body [in Russian]// e-journal “Trudy MAI”, 2007, No.26,
13 p.

[2] Bird G. A. Molecular Gas Dynamics and the Direct Simulation of Gas Flows. // New
York, Oxford, Claredon Press, 1994, 476 p.

[3] Crowe C.T., Sommerfeld M. and Tsuji Y. Multiphase flows with droplets and particles.
CRC Press LLC, 1998, 471 p.

[4] Bird G. A. Sophisticated DSMC. // Proceedings of the Notes from a short course held
at the DSMC07 Conference, Santa Fe, USA, 2007.

[5] Volkov A.N., Tsirkunov Yu.M. CFD / Monte Carlo simulation of collision-dominated
gas-particle flows over bodies. // Proceedings of ASME 2002 Fluids Engineering Divi-
sion Summer Meeting, Montreal, Quebec, Canada, July 14-18, 2002.

[6] Mikhatulin D.S., Polezhaev Yu.V., Reviznikov D.L. Heat exchange and destruction of
bodies in supersonic heterogeneous flows. [in Russian]. Moscow, Janus-K, 2007, 392 p.

[7] Vinnikov, V. and Reviznikov, D. and Sposobin, A. Two-phase shock layer in a super-
sonic dusty gas flow // Mathematical Models and Computer Simulations, 2010, Vol. 2,
No. 4, pp. 514–525.

Vladimir V. Vinnikov, Moscow Aviation Institute, Volokolamskoe sh. 4, 125993, Moscow, Russia
Dmitry L. Reviznikov, Moscow Aviation Institute, Volokolamskoe sh. 4, 125993, Moscow, Russia
Andrew V. Sposobin, Moscow Aviation Institute, Volokolamskoe sh. 4, 125993, Moscow, Russia

418



Convection and heat transfer in liquid with internal heat release in a rotating horizontal
cylinder

Convection and heat transfer in liquid with internal heat
release in a rotating horizontal cylinder

Alexey A. Vjatkin Victor G. Kozlov Rustam R. Sabirov
vjatkin_aa@pspu.ru kozlov@pspu.ru sabirov@pspu.ru

Abstract

The convection of heat-generating fluid in a rotating horizontal cylinder is experi-
mentally investigated. The thresholds of thermal convection excitation, heat transfer
in the cylinder and the structure of convective flows depending on the heat capacity,
viscosity and relative length of the cavity are studied. Different modes of convection
are revealed. In case of relatively rapid rotation due to the centrifugal force of inertia
the temperature distribution is axially symmetric and has a maximum in the center of
the cavity. The heat transfer, additional to the molecular one, in this case is provided
by the inertial waves and the Ekman flows near the end walls of the cavity. With
decrease of rotation velocity the convective flow arises in a threshold way in the form
of vortex cells periodically arranged along the axis. The excitation of mean convec-
tion is caused by the action of termovibrational mechanism. In overcritical domain
the stationary vortex regime is replaced by the oscillatory one (the fluctuations are
associated with the periodic variation of the convective structures). For very slow
rotation the quasi-stationary gravitational mechanism predominates.

1 Introduction

During the experiment a cylinder filled with a viscous heat-generating fluid rotates around
its horizontal axis in a gravity field. The outer wall of the cylinder is isothermal, its temper-
ature is maintained constant. In the cavity frame the gravity field oscillates. The frequency
of oscillations coincides with the frequency of rotation. The averaged convection is caused
by the nonisothermal liquid oscillations relative to the cavity caused by the gravity. This
"vibrational" mechanism of averaged convection has been theoretically described in [1]. It
is also shown that in case of liquid with internal heat release the averaged convection in the
cavity rotating around a horizontal axis is characterized by a centrifugal Rayleigh number
Ra = Ω2R6βq/νχ2cpρ, vibrational parameter Rv = (gβR3q)2/2νχ3c2

pρ
2Ω2 and dimension-

less velocity of rotation ω = ΩR2/ν. Here β, ν and χ - coefficients of thermal expansion,
kinematic viscosity and thermal diffusivity of fluid, cp - specific heat of fluid at constant
pressure, ρ - fluid density, R - radius of the cylinder, q - volumetric power of internal heat
sources, Ω ≡ 2πn - angular velocity of rotation (n - rotational speed of the cavity). The
various problems of termovibrational convection in rotating cavities were investigated in
[2] [3].

2 Experimental setup and technique

The cavity (Fig. 1) is made of a Plexiglas cylinder 1 with flanges 2 on both end sides.
The length of the working part of the cell l = 170 mm, the internal diameter d = 36 or 44
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Figure 1: The sketch of the cavity.

mm. The water and glycerol-water solutions of different concentrations are used as working
fluids. The internal heat generation is produced by the alternating electric current passing
through the liquid. The flanges are equipped with the copper electrodes and the liquid is
added with copper sulfate (not more than 5 proc.) for conductivity. The temperature in
the cavity is measured with RTDs. The sensor T1 is located on the axis of the cavity, T2 -
on the cylindrical wall. Both thermometers are made of copper wire and extend along the
entire cell length, thus measuring the average temperature along the cell.

To provide the constant temperature of the external wall of the cell the last is placed
in a Plexiglas cylinder 3 of a larger diameter, which is also closed with flanges. The water
of desired temperature from the thermostat is pumped in the space between the walls of
the cylinders. One more sensor Т3 controls the temperature of liquid in this water shirt.
Due to the system of bearings and seals the working cell can rotate freely. The rotation is
given by the stepper motor 4, the rate ranged from 0.01 to 2.00 revolutions per second.

The sensors data is processed by the Termodat device 5 which rotates with the cavity
and transmits the signal to the computer. The connection to the computer is carried out
with a multichannel electrical collector 6. The collector is also used for providing the
Termodat with power and internal heating of liquid in the cavity. The walls of the cell are
transparent, which allows the visual observation and photography of convective structures.
In experiments with photo recording the small amount of light scattering particles of Resine
Amberlite is added in liquid. The particles diameter is 50 microns, the density is about
the liquid density. The photos are made from the side of the cylinder. The longitudinal
vertical light knife is used for illumination. The experiment starts with the relatively rapid
cell rotation, electrical current is passed through the liquid. The measurements start after
establishing of a stationary temperature distribution in the cavity. During the experiment
the rotational velocity of the cylinder is reduced step by step.

3 Results of experiment

The rotation of the cavity around the axis of symmetry produces an axisymmetric field
of the centrifugal forces of inertia ρΩ2r. In this case the temperature distribution Θ0 =
q(R2 − r2)/4λ corresponds to a stable equilibrium state of the liquid. Here q - volumetric
power of internal heat sources, λ - coefficient of thermal conductivity, r - distance from
the axis of the cavity. This equation allows to determine the temperature at the center
of the cavity relative to the wall Θ

′
= qR2/4λ. At the beginning of the experiment the

temperature in the center of the cavity is higher than the temperature at the cylindrical
boundary, which leads to the nonuniformity of the thermophysical properties of fluids. It
should be noted that when analyzing the experimental results all parameters are calculated
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Figure 2: Temperature T1 and dimensionless parameter Θ
′
/Θ versus the speed of rotation;

a, b - water, R = 1.8 cm, q = 0.034 (1 ), 0.050 (2 ), 0.063 (3 ) and 0.065 W/cm3 (4 ); c, d -
C = 50 %, R = 1.8 cm, q = 0.030 (1 ), 0.051 (2 ), 0.076 (3 ) and 0.103 W/cm3 (4 ).

using the average temperature in the cavity.
The temperature T1 variation with n in liquids of different viscosities are presented

in (Fig. 2, a and c). The curves of heat transfer corresponding to these experiments are
shown in (Fig. 2, b and d). A dimensionless parameter chosen to characterize the heat
transfer is Θ

′
/Θ, here Θ = T2−T1 - the experimental value of the fluid temperature at the

cavity axis relative to the cylindrical wall. One can see a slight change in temperature T1

with a decrease in speed (field I ). With increasing the viscosity of liquid and its internal
heating this change becomes more significant. In this case the temperatures Θ and Θ

′ are
consistent only in the limit of high rotation speed. The flow visualization demonstrates that
with the relatively rapid rotation when the heat transfer in the cavity nearly corresponds
to the molecular one and the vortical structures in the volume of the cavity are absent,
the powder settles on the inner wall of the cavity into thin rings (Fig. 3, a). As it will
be shown below this is caused by slow averaged currents that are generated by an inertial
wave that occurs near the ends of the cavity [4]. In experiments with a viscous fluid the
rotation speed reduction leads to a greater increase in heat transfer. It is indicated by the
decrease of the temperature T1 (Fig. 2, c and d).

With further decreasing the velocity of rotation one observes the change in the regime
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Figure 3: Pictures of structures: water, R = 1.8 cm, q = 0.063 W/cm3, n = 1.1 (a) and
0.55 rps (b).

of convection, which is accompanied with a critical change in heat transfer (Fig. 2, the
boundary of areas I and II ). The observations show that the critical temperature change
is associated with the appearance of the periodic system of vortex cells (Fig. 3, b). The
excitation of the convection is associated with the action of thermovibrational mechanism
which is based on the fluctuations of non-isothermal fluid with respect to the cavity caused
by the gravity force [1]. The picture shows the overcritical structure of convection, as the
flows near the threshold are weak and their visualization is problematic. The structure of
the currents in liquids of different viscosity is the same.

Experiments with water in the cell of larger radius show that the reduction in speed
also leads to a crisis of heat transfer (Fig. 4, the boundary of areas I and II ). When
the volumetric power of heat sources is relatively large the averaged convection looks like
a system of vortex cells (Fig. 5) as in the experiments with the cavity of smaller radius.
Another behavior is observed with decreasing of the rate of heating: one can see two critical
transitions in heat transfer (Fig. 4, shaded area). In this range of values of n the variation
curves of heat transfer is different from other areas. It was problematic to determine the
convective structures in this domain.

With further decrease of rotation speed the different modes of convection are observed.
The order of regime change does not depend on the radius of the cell and fluid viscosity.
The stationary vortex convection regime is replaced by the oscillatory one. In experiments
with the liquids of relatively low viscosity the regular low-frequency oscillations of the
temperature T1 are detected. The observations show that these fluctuations are associated
with shifts in convective flows, the vortexes develop and decay periodically. In the liquids of
higher viscosity the structures also change periodically but their complete destruction does
not occur and the temperature sensor in the center of the cavity captures the oscillations
of low intensity.

For very slow rotation (Fig. 2, 4, the boundary of areas II and III ) the sensor detects
oscillations of temperature T2. The period of oscillation is equal to the period of rotation of
the cavity and the amplitude reaches a few degrees at a very slow rotation. This indicates
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Figure 4: Temperature T1 and dimensionless parameter Θ
′
/Θ versus the rotation velocity;

a, b - water, R = 2.2 cm, q = 0.016 (1 ), 0.030 (2 ), 0.050 (3 ) and 0.061 W/cm3 (4 ).

Figure 5: Photo of convective flows: water, R = 2.2 cm, q = 0.065 W/cm3, n = 0.5 rps.

the predominance of the quasi-stationary gravitational mechanism of convection.
With increase of the heat release and temperature Θ the velocity of rotation corre-

sponding to the threshold of convection excitation increases monotonically (Fig. 6). The
instability areas are below the threshold curves (shaded). With increasing of the viscosity
the threshold curves are shifted to the higher values of n.

4 Discussion of results

Consider the possible mechanism of formation of ring structures at large n. The rotation
of the cavity filled with a nonuniformly heated fluid in a static external force field (gravita-
tional in our case) results in fluctuations of the liquid relative to the cavity. In a rotating
and simultaneously oscillating fluid the inertial waves can be excited [4]. Characteristic
surfaces with intensive shear flows are specific for them. The angle between the character-
istic surfaces and the axis of rotation is defined by the condition tanϕ = (4/N − 1)−1/2.
Here N ≡ Ωosc/Ω - dimensionless frequency of liquid oscillation (Ωosc - radian frequency
of liquid oscillation, Ω = 2πn - angular velocity of the cavity). In our case the fluctuations
of fluid in the cavity frame occur with a frequency of rotation, that is N = 1. Thus, the
tangent of the angle does not depend on the cell radius R and equals to 1/

√
3. The di-
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Figure 6: The dependency of the critical velocity on the temperature Θ. R = 1.8 cm,
water (1 ), C = 25 (2 ) и 50 % (3 ); R = 2.2 cm, water (4 ).

mensionless spatial period Λ/R is 4
√

3. Fig. 7 shows photographs of structures and the
possible location of the characteristic surfaces (dashed lines). One can see that the char-
acteristic surfaces determine the position of the rings on the cavity wall. The theoretical
value Λ/R agrees well with the experiment. The characteristic surface of excited wave is a
cone. Liquid oscillates along the cone. Averaged flow leading to a redistribution of powder
on the surface could be generated in the Stokes boundary layers by wave reflection from
the cavity wall. In a thin cell (Fig. 7, a) the waves from the opposite ends of the cavity
reflect from the walls being spatially coherent, so the structures they form are regular. In
the cell of bigger radius (Fig. 7, b) such agreement is absent: the powder forms two rings
at the lines of intersection of the characteristic surfaces of the opposing waves with the
boundary of the cavity.

With the rapid rotation a weak radial motion of the fluid can also be generated in
the viscous Ekman layers occurring near the end walls of the cylinder in the presence of
differential azimuthal rotation of the fluid [4]. Thus the equilibrium state of the liquid
subject to the rapid rotation may be disturbed by inertial waves and Ekman flows. This
could explain the difference between the temperature field in the cavity from the case of
rigid-body rotation of the entire system (Fig. 2 and 4).

In Fig. 8 (a) the threshold curves of the convection excitation are presented on the
plane Ra,Rv. The area of quasi-equilibrium is marked by hatching. The points obtained
for water and glycerin solution of a low concentration of 25 and 35 % agree with each
other. With viscosity increase the noticeable discrepancy between the curves appears.
This could be explained by the influence of the Coriolis force which is characterized by
the dimensionless rotational speed ω. It is known that the Coriolis force has a stabilizing
effect on the three-dimensional vortex structures both in gravity [5] and vibrational [2]
convection. Only in the case of two-dimensional vortices oriented parallel to the axis of
rotation the Coriolis force has no effect. In this case the dependence on the dimensionless
frequency is absent, as in [3]. Fig. 8 (b) shows the threshold values of vibration parameters
Rv versus the dimensionless velocity at a definite value of the centrifugal Rayleigh number
Ra = −4 ·104 (dashed line in Fig. 8, a). At large ω (experiments with water) the threshold
of thermovibrational convection excitation (critical value of Rv) does not depend on the
ω. It can be assumed that the convective structures in the threshold are termovibrational
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cylinder

Figure 7: Photos of structures: water, a - R = 1.8 cm, q = 0.063 W/cm3, n = 1.1 rps; b -
R = 2.2 cm, q = 0.065 W/cm3, n = 1.5 rps.

rolls elongated along the axis of rotation, similar to ones found in another problem [1].

5 Conclusion

Thermovibrational convection of heat-generating fluid in a horizontal cylinder with rota-
tion is investigated experimentally. The effect of viscosity on the threshold of convection is
studied. Heat transfer and the structure of convective flows at different regimes of convec-
tion are considered. It is shown that the threshold of the onset of convection is determined

Figure 8: a - threshold curves in the plane of control parameters Ra,Rv; R = 1.8 cm, water
(1 ), C = 25 (2 ) 35 (3 ), 40 (4 ) and 50 % (5 ); R = 2.2 cm, water (6 ); b - the critical
vibrational parameter Rv versus the dimensionless rotation velocity ω at Ra = -4·104.
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by the parameters Ra,Rv, and dimensionless speed of rotation.
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Abstract

The mathematical model of the vibrational motion of the cavity filled with viscous
gas is defined. The numerical investigation of the heat and mass transfer processes in
the cavity as a result of vibrations is performed. The maximum values of temperature
and pressure of the gas on the walls of the cavity depending on the frequency of
vibration were found. The cavity is filled by perfect viscous gas with air characteristics.
The case is considered in a one-dimensional setting. The gas characteristics were
chosen like the air characteristics.

1 Introduction. Problem formulation

As the technological expansion, people are more and more contact with the phenomena
of vibration. Almost all machines are susceptible to mechanical vibrations in a varying
degree. Even with a free flight of the spacecraft there is vibration from the operating
equipment [1]. Vibration of machines may be a cause of abnormal operation of machinery
and cause serious accidents. It is quite common to situations where there are cracks, pores
or voids filled with air. Therefore, it is important to study gas influence to the boundaries
of the cavity. We will numerically investigate the effects of the vibrating action with a
constant frequency on the rectangular cavity filled with a viscous perfect gas. Due to the
medium compressibility there is a forming of acoustic waves, which reinforce the heat and
mass transfer. There are two frequencies: the natural frequency of the system and the
oscillation frequency caused by the boundary conditions [2]. Specifying high-frequency
vibration leads to appearance of shock waves. It is useful to determine the intensity of
the impact of the waves on the boundary to avoid possible destructions of the product.
Using this data (maximum pressure and maximum temperature near the boundary) we
may calculate the maximum frequency of vibration for the other given characteristics.

2 Mathematical model

The cavity of length L filled with a viscous perfect gas with thermal properties of air is
considered. At the initial moment the gas in the cavity stayed at rest with a constant
temperature T0 and a constant pressure P0. The equilibrium state is disbalanced due to
the vibrational effects of amplitude A and frequency ω. In the beginning the cavity was in
the extreme right position. The boundaries are kept in temperature equal with the initial
temperature. The thermal conductivity, the dynamic viscosity and the heat capacity are
assumed to be constant.
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The motion of the gas under these assumptions is described with the one-dimensional
nonstationary system of equation in Cartesian coordinates, consisting of conservation laws
of mass, momentum and energy. The Clapeyron ideal gas law is considered as the equation
of state for gas. The system is written in the noninertial frame of reference associated with
the vibrating cavity. Use the following formulas for the transition:

t = t′, (1)

x = x′ −A cos(ωt), (2)

u = ∂x
∂t = u′ +Aω sin(ωt) (3)

Here, t is time in the noninertial frame of reference, x is coordinate in the noninertial
frame of reference, u is the velocity in the noninertial frame of reference, t′ is time in
the inertial frame of reference, x′ is coordinate in the inertial frame of reference, u′ is the
velocity in the inertial frame of reference.

The system of dimensionless equations describing motion of such gas has the form

∂ρ̃

∂τ
+
∂ρ̃ũ

∂X
= 0, (4)

∂ρ̃ũ

∂τ
+
∂ρ̃ũũ

∂X
= − ∂P̃

∂X
+

4

3

1

Re

∂2ũ

∂X2
+ ρ̃AΩ2 cos(Ωτ), (5)

∂ρ̃Θ

∂τ
+
∂ρ̃ũΘ

∂X
=

γ

Pe

∂2Θ

∂X2
− P̃ ∂ũ

∂X
+

4

3

1

Re
(
∂ũ

∂X
)2, (6)

P̃ =
ρ̃(Θ + 1)

γ
, (7)

The dimensionless variables are taken as:

X =
x

L
, τ =

t
√
γRT0

L
, ũ =

u√
γRT0

, P̃ =
P

γP0
, ρ̃ =

ρ

ρ0
, Θ =

T − T0

T0
,

Dimensionless parameters:
Re = ρ0L

√
γRT0
µ - acoustical Reynolds number

Pe =
ρ0Lcp

√
γRT0

k - Peclet number
γ =

cp
cv

- adiabatic exponent
Ω = ωL√

γRT0
- nondimensional vibration frequency

Ã = A
L - nondimensional vibration amplitude√

γRT0 is adiabatic speed of sound in the region of the temperature T0.
Here, ρ is the density, P is the pressure, T is the temperature, R is the gas constant,

µ is the coefficient of dynamic viscosity, k is the thermal conductivity coefficient and cv is
the specific heat capacity at constant volume.

The initial conditions are as follows:

ũ|τ=0 = 0,Θ|τ=0 = 0, P̃ |τ=0 =
1

γ
, ρ̃|τ=0 = 1 (8)

The boundary conditions are as follows:

Θ|X=0 = 0, ũ|X=0 = 0,Θ|X=1 = 0, ũ|X=1 = 0 (9)
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3 Parameters of calculation and numerical scheme

The main positions of the numerical method will be described here. In obtaining a nu-
merical solution, we choose a number of locations (n grid points) and seek the solution
there. The differential equations (4)-(7) with (8), (9) are solved by converting them into
discretization equations (algebraic equations). The discretization equations are obtained
by the control volume approach and the second-order treatment of the numerical scheme
[3]. The system (4)-(7) is written as:

aΦΦi = bΦΦi+1 + cΦΦi−1 + dΦ (10)

ρ̃i = ρ̃i(Φi) (11)

aΘΘi = bΘΘi+1 + cΘΘi−1 + dΘ (12)

P̃i = P̃i(Θi) (13)

where

Φi = ρ̃iũi (14)

is the mass flux;aΦ, bΦ, cΦ, dΦ, aΘ, bΘ, cΘ, dΘ are the known numeric functions, i =
2..n − 1, (11) is the equation of continuity, (13) is the equation of state for gas. We use
the staggered grid for the mass flux Φ and for the velocity u. In the staggered grid, the
velocity components are calculated in points that lie on the faces of the control volume [4].

This is the sequence of operations:
1. Start with a guessed fields of velocity, pressure and density;
2. Calculate the coefficients for the equations (10), and solve this system to
obtain Φ by the TriDiagonal-Matrix Algorithm [3];
3. Calculate the density by use of (11);
4.Calculate the coefficients for the equations (12), and solve this system to obtain
Θ by the TriDiagonal- Matrix Algorithm [3];
5. Calculate the pressure by use of (13);
6. Calculate the velocity by use of (14);
7. Return to step 2 and repeat until convergence.
The computation grid was uniform and consisted of 1000 nods. The time step was

taken to be ∆τ = 0.1∆X(i.e., on condition that the wave will pass a distance of ∆X or
less during the time ∆τ where ∆X is the size of control volume).

The dimensionless parameters were taken following:Ω = 0.144, 0.288, 0.432, 0.576,
0.720, 0.864, 1.008, 1.152, Ã = 2, Re = 100000, P e = 80000, γ = 1.4. We will use the
dimensionless parameters for the analysis of the results.

4 Analysis of the results

We will first describe the behavior of the gas at the beginning of the vibration exposure.
At the initial instant of time the cavity was situated at the rightmost position. Then the
cavity begin to move to the left. Consequently, there are increasing of mass of the gas
and a pressure jump near the right boundary. The calculations showed that the pressure
to the right boundary at this time will be the maximum for all time of vibration. At the
left boundary at the same time, however, there are great gas rarefaction and minimum
pressure. Fig.1 shows the temperature at the nearest to the boundary points depending
on time. Two frequencies are showed here. They are the natural frequency of the system
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Figure 1: The time dependence of pressure: 1 - at the point X = 0.0005, 2 - at the point
X = 0.9995

and the oscillation frequency caused by the boundary conditions (Ω = 0.144)[2]. However,
all further collision of waves with boundaries will cause less pressure jumps as compared
with pressure jump at the right boundary which was a result of impact to the resting
gas.With increasing frequency of vibration the maximum pressure in the boundary points
is increased.

The numerical experiments showed that the maximum temperature in the nearest to
borders grid points is not achieved at the same time with the maximum pressure. One
reason for this is the influence of given constant wall temperature, which constrains the
temperature jumps at the boundary. Let us consider the most intense vibration frequencies
of the cavity since Ω = 0.720. With such frequencies even the first acoustic wave is a shock
wave. Therefore, it causes an intense temperature jump, and several less intense pressure
jump. Following collision of shock waves cause a smaller increase in temperature, because
the intensity of the shock wave decreases with time. Fig.2 and Fig.3 give the distributions

Figure 2: The pressure as a function of co-
ordinate: 1 - τ = 0.74, 2 - τ = 0.89, 3 -
τ = 1.38

Figure 3: The temperature as a function of
coordinate: 1 - τ = 0.74, 2 - τ = 0.89, 3 -
τ = 1.38

of pressure and temperature depending on coordinate at instants of time corresponding to
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maximum pressure (τ = 0.74), maximum temperature (τ = 1.38) and intermediate time
when where is a forming of the shock wave (τ = 0.89).

With less intense vibration frequencies of the cavity the shock waves reach maximum
intensity later than the first passage of the field. Therefore, the strongest collision of shock
wave with the wall are later than with frequencies which more intensify than was considered
earlier. The results are presented in Tab.1. Here for each of the considered frequencies are
showed the period of cavity vibration T, maximum pressure P̃max near boundaries of the
cavity, maximum pressure Θ̃max near boundaries of the cavity and times when this values
are showed (τ(P̃max) and τ(Θmax)).

Table 7:

Ω T P̃max τ(P̃max) Θmax τ(Θmax)

0.144 43.617 0.756 0.99 0.006 55.57
0.288 21.809 0.884 0.96 0.045 11.52
0.432 14.539 1.111 0.91 0.114 5.50
0.576 10.904 1.456 0.85 0.190 3.49
0.720 8.723 1.940 0.79 0.305 1.41
0.864 7.270 2.593 0.74 0.897 1.38
1.008 6.231 3.445 0.68 1.413 1.30
1.152 5.4521 4.511 0.63 2.337 1.20

5 Conclusions

There are two frequencies: the natural frequency of the system and the oscillation fre-
quency caused by the boundary conditions. The maximum values of the pressure and the
temperature at the boundaries of the frequencies with investigated range are obtained.
The time of observation of these values is found. The results provide an opportunity to de-
termine the maximum frequency of vibration for given other vibration parameters, taking
into account the specific properties of the material forming the wall of the cavity.
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Abstract

We present a method to study the scattering of SH wave and the ground motion in
the half-space containing a shallow buried cavity of arbitrary shape and a linear crack
in any orientation. The methods of complex function and multi-polar coordinate sys-
tem are utilized to construct a suitable Green’s function, which is used for computing
stress caused by the line source. Then a crack can be built with the crack-division
technique, by loading force that are equal but opposite to the stress at the crack.
The dynamic stress concentration factor around the cavity and the dynamic stress
intensity factor at crack tips under varied conditions are calculated, and the results
indicates that: the dynamic stress concentration factor can be changed greater with
the difference of the shape of the hole, the incident angle, and/or the wave number,
compared to the variety of the parameters of the crack. In general, the dynamic stress
intensity factor at the crack tip is as the change of the wave number to a periodic
fluctuation.

Key words: cavity of arbitrary shape, crack, scattering of SH wave, method of
complex function, Green’s function

1 Introduction

The problem of scattering of elastic waves by all kinds of defects is of considerable impor-
tance, in geophysics, fracture mechanics, explosion mechanics, ultrasonic testing and other
areas, and it is therefore naturally to receive much attention[1]. Defects, such as cavities,
cracks, inclusions and linings, can be existed individually [2-8] or collectively [9-10]. In
principle, the defects with arbitrary shapes can be conformal mapped into circular ones,
then the dynamic response of elastic wave can be obtained. However, when the defects are
spindly, just like cracks, it cannot be calculated correctly using the wave function expan-
sion method due to the extremely divergence of Bessel function. So we must take other
measures, for example the ray method and the Integral Equation Method [9, 11-13], though
they are relatively cumbersome. The interaction of cavities and cracks by SH wave has
been studied by some researchers. For example, Liu et al. [14] has treated the scattering
of SH wave by a crack originating at a circular hole edge. An approximate solution for the
scattering of SH wave by a crack inside a circular inclusion was given by Lu et al. [15].
Until now, few efforts have been made to study the interaction of cavities and cracks when
the crack is placed in any position and direction, especially when the cavity is of arbitrary
shape.

In this paper, we study the scattering of SH wave and the ground motion in the half-
space containing a shallow buried cavity of arbitrary shape and a linear crack in any
orientation, using the Green’s function method and multi-polar coordinate system. The
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crack is built with the crack-division technique, by loading force that are equal but opposite
to the stress at the crack. The dynamic stress concentration factor around the cavity and
the dynamic stress intensity factor at crack tips under varied conditions are calculated.

2 Fundamental Equations

By introducing the complex variable z = x+ iy, z̄ = x− iy , the governing equation of the
steady-state SH wave propagation can be expressed in the complex plane (z, z̄)as

∂2W

∂z∂z̄
+
k2

4
W = 0 (1)

where k is the wave number, W is the amplitude of the displacement. The correspond-
ing expressions of stress are given by

τr3 = µ(
∂W

∂z
eiθ +

∂W

∂z̄
e−iθ), τθ3 = iµ(

∂W

∂z
eiθ − ∂W

∂z̄
e−iθ) (2)

where ’3’ represents the out-of-plane direction.
The method of conformal mapping Z = w(η), η = eiθ is used, the external region of the

z plane is mapped into the external region with a unit circle in η plane, and the conformal
mapping function can be generally expressed as

Z = w(η) =
lη +mη−1

1− nη−1
, (|n| < 1) (3)

where l = l1 + il2, m = m1 + im2, n = n1 + in2 . In particular, for elliptical holes, l = a+b
2 ,

m = a−b
2 ,n = 0 , where a and b are the length of the major and minor axis, respectively; for

square holes, the mapping function is Z = w(η) = 1.11a(η− 1/9η3), where a is half of the
length of the side; and for triangular holes, Z = w(η) = c(η +mη−n), (c > 0, 0 ≤ m < 1

n).
Substituting the mapping function (3) into Eq.(1) and Eq.(2), we obtain

1

w′(η)w̄′(η)

∂2W

∂η∂η̄
+
k2

4
W = 0 (4)

τr3 =
µ

|w′(η)|
(η
∂W

∂η
+ η̄

∂W

∂η̄
), τθ3 =

iµ

|w′(η)|
(η
∂W

∂η
− η̄ ∂W

∂η̄
) (5)

Boundary conditions can be expressed as follows

τr3 = 0, when η = eiθ (6)
τ = 0, at the surface of half space (7)

3 Green’s Function

The Green’s function here should meet Eq.(4), Eq.(6)and Eq.(7). In a complete half-space,
the disturbance impacted by the line source loading δ(r− r0) can be described in this form

G(i) =
i

4µ
H

(1)
0 (k|w(η)| − w(η0)|) (8)

where H(1)
0 (·) is the zero-order Hankel function of the first kind. The reflected wave is

generated due to the surface of half-space, and it can be derived directly according to the
characteristics of SH-wave,

G(r) =
i

4µ
H

(1)
0 (k|w(η)| − w̄(η0)| − 2ih) (9)
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The expression of the scattered wave excited by the elliptic cavity should meet the
governing equation (4), as well as the stress free condition at the surface of the half-place.
It can be constructed in plane

G(s) =

+∞∑
n=−∞

An{H(1)
n [k|w(η)|][w(η)

w̄(η)
]n +H(1)

n [k|w(η)− 2ih|][w(η)− 2ih

w̄(η)− 2ih
]n} (10)

The symmetry of the SH-wave, the method of complex function and multi-polar coor-
dinate system are used in Eq.(14), in which An are unknown coefficients to be determined
by the boundary condition around the edge of the cavity, H(1)

0 (·) is the order-n Hankel
function of the first kind. Then we can get the Green’s function by compositing those three
components

G = G(i) +G(r) +G(s) (11)

Substituting Eq.(5) and Eq.(11) into Eq.(9), we have
∞∑

n=−∞
Anεn = ε (12)

where

εn =
µk

2
{[H(1)

n−1(k|w(η)|)[ w(η)

|w(η)|
]n−1 −H(1)

n+1(k|w(η)− 2ih|)[ w(η)− 2ih

|w(η)− 2ih|
]−(n+1)]

· ηw
′(η)

R|w′(η)|
− [H

(1)
n+1(k|w(η)|)[ w(η)

|w(η)|
]n+1 −H(1)

n−1(k|w(η)− 2ih|)

·[ w(η)− 2ih

|w(η)− 2ih|
]−(n−1)]

η̄w̄′(η)

R|w′(η)
}

ε =
ik

8
H

(1)
1 (k|w(η)− w(η0)|) · [ w̄(η)− w̄(η0)

|w(η)− w(η0)|
ηw′(η)

R|w′(η)|
+

w(η)− w(η0)

|w(η)− w(η0)|

· η̄w̄
′(η)

R|w′(η)|
] +

ik

8
·H(1)

1 (k|w(η)− w̄(η0)− 2ih|) · [ w̄(η)− w̄(η0) + 2ih

|w(η)− w̄(η0)− 2ih|
ηw′(η)

R|w′(η)|
−

w(η)− w̄(η0)− 2ih

|w(η)− w̄(η0)− 2ih|
η̄w̄′(η)

R|w′(η)|
]

Eq.(12) is a function containing infinite unknown coefficients An, we can transform it
into infinite algebraic equations by multiplying e−mθ on both sides of Eq.(12) and inte-
grating over the interval (−π, π), then we can get

∞∑
n=−∞

Anεmn = εm (13)

where εmn = 1
2π

∫π
−π εne

−mθdθ, εm = 1
2π

∫π
−π εe

−mθdθ . By intercepting finite terms,
Eq.(13) converts to algebraic equations containing unknown coefficients An, which can be
solved by the Gaussian method, then we can get the Green’s function G.

4 The scattering of SH wave by the cavity and the crack

4.1 The first kind problem (SH wave incidences from below)

Just shown as Fig.1, there is an irregular cavity and a linear crack of arbitrary position
and direction in half space, and SH wave incidences from below. It can be regarded as
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Figure 1: Model of half space with an arbitrary-shaped cavity and an crack when SH-wave
incidences below

the Seismic problems of subsurface structures. To solve the problem, we should set up 3
coordinates XOY , X ′O′Y ′ and X ′′O′′Y ′′, the relationship of them are

x′ = x cosβ + y sinβ, y′ = y cosβ − x sinβ,

x′′ = x, y′′ = y − h1, h3 =
h2 + b sinβ

cosβ

The incident wave and the reflected wave can be expressed as

W
(i)
1 = W0 exp{ ik

2
[(w(η)− ih)e−iα0 + (w̄(η) + ih)eiα0 ]} (14)

W
(r)
1 = W0 exp{ ik

2
[(w(η)− ih)eiα0 + (w̄(η) + ih)e−iα0 ]} (15)

In the same turn, the corresponding expressions of stress can be obtained by Eq.(5).
When the displacement and the stress are obtained, then a crack can be built with the
crack-division technique, by loading force that are equal but opposite to the stress at the
crack. The additional wave field caused by the crack is

W
(c)
1 = −

∫ (2a+b,h3)

(b,−h3)
τθz,1G1dz

′

Finally, in half space containing an irregular cavity and a linear crack of arbitrary
position and direction, the wave field of the first kind problem is

W1 = W
(i)
1 +W

(r)
1 +W

(s)
1 +W

(c)
1 (16)

4.2 The second kind problem (SH wave incidences vertically from up-
side)

Just shown as Fig.2, there is an irregular cavity and a linear crack of arbitrary position
and direction in half space, and SH wave incidences vertically from upside. It can be
regarded as the anti-explosion problem of subsurface structures. For this problem, there
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Figure 2: Model of half space with an arbitrary-shaped cavity and an crack when SH-wave
incidences from upside

is no reflected wave, and the incident wave can be written as

W
(i)
2 = W0 exp{−k

2
[(w(η)− ih)− (w̄(η) + ih)]} (17)

Using similar methods, we can calculate the wave field of the second kind problem.

5 Dynamic Stress Concentration Factor (DSCF) and Dy-
namic Stress Intensity Factor (DSIF)

The dynamic stress around a shallow-buried cavity can be described by the dynamic stress
concentration factor (DSCF) in the presence of the steady incident SH-wave

τ∗θ3 = |τθ3/τ0| (18)

where τθ3 is the hoop stress around the cavity, and τ0 = µkW0 is the amplitude peak of
the incident stress.

By picking the stress close enough to the crack tip as the nominal stress, we can get
the dynamic stress intensity factor (DSIF) at the crack tip

K3 =
τr3|r→r1
τ0Q

(19)

where τr3|r→r1 is the nominal stress of tiny distance from the crack tip, Q =
√
b/2 is the

characteristic parameter,b is the length of the crack.

6 Numerical Results and Discussion

In this section, numerical examples are provided to show the distribution of the DSCF
around the cavity and the DSIF at the crack tip with the variation of various parameters,
such as the wave number k, the incident angle α, the shape of the cavity, the distance of
the center of the circular cavity to the horizontal interface, the length of the crack etc..
Then we specialize the problem by setting the cavity as a circular one or by removing the
crack, and the results are in conformity with published work available in the literature
[6,7,10].
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Figure 3: the DSCF around an ellipse cavity when SH-wave incidences from different
directions

Figure 4: the DSCF around different shaped cavities for different wave numbers.

6.1 The DSCF around the cavity

(1) The results presented in Fig.3 show the variation of DSCF around the elliptic cavity
with respect to the incident angle. We can see from it that the DSCF around the cavity
varies widely, both for its amplitude and its shape, under deferent incident angle. (2) The
distribution of DSCF around the cavity with respect to the change of the shape of the hole
and the wave number is shown in Fig.4, where Fig.4(A) is the DSCF around a ellipse hole
when the incident angle is 90◦, Fig.4(B) shows the DSCF around a triangular cavity when
the incident angle is 0◦. The results indicate that the shape of the DSCF around the cavity
varies widely for different cavities, and the amplitude of the DSCF can change a lot under
different wave numbers. (3) Fig.5 shows the variation of DSCF around the elliptic cavity
with respect to the distance of the center of cavity to the horizontal interface. Fig.5(A)
shows the DSCF under the condition of h2/a is 5, 13, and with no crack, respectively.
Fig.5(B) gives the calculation results of the variation of DSCF at θ = 90◦ vs. the depth
of the crack. The results indicate that the value of DSCF decreases periodically with
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Figure 5: the DSCF with the variation of the depth of the crack.

Figure 6: the DSCF around the cavity with different inclining angles of the crack

increasing distance, but the degradation is slight and related to the direction of the crack.
(4) The magnitude of DSCF vs. inclining angles of the crack is plotted in Fig.6, and we
can see that the effect of inclining angles to DSCF is less than those parameters such as
the wave number, the incident angle and the shape of cavity.

6.2 the DSIF at the crack tip

(1) Fig.7 and Fig.8 demonstrate the effect of inclining angles of the crack and the incident
angle on the DSIF, respectively. Fig.9 presents a qualitative analysis on the variation of
DSIF vs. wave number with different length of the crack. This analysis indicates that the
dynamic stress intensity factor at the crack tip is as the change of the wave number to a
periodic fluctuation, and the change is more violent when the crack is longer.

(2) The variation of DSIF vs. the depth of the crack with different length of the crack
is plotted in Fig.10, and the wave incidences vertically from upside. Generally speaking,
the DSIF at the crack tip decrease gradually with the increase of crack depth, and the
DSIF is proportional to the length of the crack.
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Figure 7: Variation of DSIF vs. wave num-
ber with different angles of the crack

Figure 8: Variation of DSIF vs. wave num-
ber with different directions of the incident
SH-wave

Figure 9: Variation of DSIF vs. wave num-
ber with different length of the crack

Figure 10: Variation of DSIF vs. depth of
the crack with different length of the crack
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7 Concluding remarks

This paper presented an analytical method to solve the scattering of SH wave by a cavity
of arbitrary shape and a crack at arbitrary position and direction. The methods of complex
function and multi-polar coordinate system have been used, and the crack is built with
the crack-division technique. The numerical results were presented for both DSCF and
DSIF under varied conditions, the results indicates that: the dynamic stress concentration
factor can be changed greater with the difference of the shape of the hole, the incident
angle, and/or the wave number, compared to the variety of the parameters of the crack.
In general, the dynamic stress intensity factor at the crack tip is as the change of the wave
number to a periodic fluctuation. An accurate investigation of the response is certainly
an aid in the successful estimation of the detection of location, length, and depth of the
crack. It is also a prerequisite for the inverse problem, and the method in the paper could
be used to study some other correlative problem.
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