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ROOM AND LQW TEMPERATURE TESTS OF PLATES—>— —
WITH REINFORCED O-G~ —

T. lIVTROI)UCTTON~“”

(1)This report continues ~he work described previOus’lY .

hwhich the investigation of various room temperature prop-

erties of selecte~ types of are-welded reinforcement for .,

openings in plain-carbon structural steel plates loaded un-

der uniform tension l,edto the conclusion that from the

standpoint of performance the square opening with rounded

corners having a 1 l/8-in. radius and the circular opening

appeared to giv~ the best properties. Since this investi-

gation covered only the behavior of specimens at room tem-

perature~ the problem of their behavior in the more criti,-

cal low temperature range was unknown. Moreovertit was

desirable to parallel the previous tests(1) of s6-in, by

I/k-in. plates with tests of 48-in. by l/2-in. plates in

order to use thicker plate which would have a higher

transition temperature.

This progress report includes tests of four specimens

36 in. by 1/4 in. and nine specimens 48 in. by 1/2 in. in

cross-sections four of the former and four of the latter

being tested at low temperatures. ~1 specimens had a

g-in- by 9-ino square OP@ning with rounded corners rein-

forced by a

sert platen

welded face bar~ single doubler plate~ or in-

The strength characteristics, the unit strain



material,.

(2)Progres~ Report .

IT. OBJECT

This part of the

forcement of mpenings

AND SCXM!EOF

experimental

reports will be referred

Report(l] and the Second

THE INVESTIGATION

program on welded rein-

i,nstructural steel members’was

planned prima~ily to find information concerning the be-

havicm at low temperatruw of plates with a square opening

with rounded corne~s and various types of reinforcement and

to test plates of greater thickness. The influence of low

temperature+on such factors as general yielding? ultimate

and

re-

ported in the First !&ogress Rnport{L). The results of the

tests in that report are compared.with the rbom and I,owtem-

perature tests in this repmt.
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AU specimens were fabricated from the same steel used

skilledgrade meeting ASTM Specification A7 - 49T and was

used in the as-rnlled condition. The chemical analysis for

l/\-in. I?lateNo. 24 gave

c MD, P s Si

and for 1

c Mn P s Si Ni Cr Cu

0022 Oekp o.o1o 0.028 0.05 0.07 TR 0.066

The only significant difference in these two analyses, which

were made by different laboratories~ occurred in respect to

the amount of phosphorus and sulphur.

The tensile properties at room temperature as determined

by tests @ ASTM standard flat specimens at -20” and -%6”F.

as determined by tests of l-in. wide flat specimens are

given in

men with

order to

The

shown in

temperature range fell between temperatures of about -iO°F.

and some temperature in excess of 160@F., the maximum at

Tabh 1. It was necessary to use a tensile speei-

a reduced width far the low temperature tests in

utilize fixtures made for this type of test.

(Charpy keyhole-notch-impact test results 3) are

Fig. 1 for 112-in. Plate No. 4. The transition

->.
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WBIII I ,.

MECHANICALPEOPEWKCESOF’PL4TJMCM’DPN?EREN1’T%ICKKE$S
SEMI-KH.LEI)STEEL~ AS ROLIE12

I
-

.— —— ..——.7.— — .“

Plate Th~~ki~s~ Temp. Upper Ultimte Zlmg . Red. c)f Tear-Test
No. Yield Stmngt;h in 3 in” Area Transition

Point
iii. Ihg. F. ~Mi fii. . ~n.sg* 1’.~ercent percent——- — ..— —..+.— ——

39,900

38,800

32,two

bbwo

M&loo

44,300

45,100

4.4,000

44.W
1!IJ,3800

36,500

36,900

27dl

:27..}J

32.6

?7.8

29.5

29.L

29.2

28.2

28.6
29=3

31.2

29s7

b Tem~ratur~ ~es h;

-46 44,100 71,1@0 29.1

-20 40,700 66,3W 32.1

-116 55,100 73,600 27.9

320

,-

410

40

* Cut fromp~ently strainedspecimmand nmralized.

I.,



50-

40

2

30— — — —

()
()

2()

20 c

O 15FT.-LB.
AT -24° F.

10

LJ
2 b

o
-80 -40 0

Fig. 1 . Charpy Keyhole

TEMPERATURE- DEG. E

120 i60

Notch-Impact Test ResultsforSteelU as Rolled.
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which tests were made. The transition temperature

per cent of maximum energy absorption would appear

,.

for 50

to be

about 20°F. The temperature for an energy absorption of

15 ft.-lb. was about -24-”F.

The transition temperature as determined by the Navy

tear test for specimens of full plate thickness and the av-

erage ASTM grain size were found to be as follows: I

Plate Plate Thickness Transition Tem- Average ASTM
Noe inches Peraturea oF. Grain Size

.18 I/’k -40 8

4 40 6

10 2 120 5

The microstructure of these plates were shown in the First

Progress Report(1)0

These data were used in selecting

the low temperature tes{s. Except for

.,

the temperature for

Specimen No.. 50,

which was tested at -20°F.~ all specimens were loaded at

-46QF., which temperature was considered low enough to give

a predominantly cleavage failure even in the l/4-in. plates. “ “

This latter temperature was also about the lowest which the

refrigerator equipment could maintain constant while absorb-

ing the heat given off by the specimen during plastic deforma-

tion.

The same coated welding electrodes, 1/8 and 5/32 in. in
#

diametera meeting AWS Specification E-601O were used as in

the first group of tests. The properties of the weld metal

were not especially investigated.



reported in the l?irstProgress Report(110 The same method

of fabrication was carefully followed. Table IT gives the

program and Table 111 the plates from which “hhespecimens

and details were cut. Sketches of the specimens including

the dimensions of’the welds are shown in Figs. 2 and ~.

Xt was necessary to make the k8-Ln. wide specimens from

48-in. plate. In order to increase the length of the butt

weld joining the specimen to the pulling plates of the test-

ing machinea wi~g plates of the same thickness and ~ in. by

@ in. in size were welded to the four corners of these

specimens. These plates after the completion of the weM-

ing were flame-cut and ground to the shape shown in Fig. 2

in order to minimhe the possibility of fracture.

No specimen was tested until at least seven days after

the welding of the reinforcement.

~. Method of Loading.— —

The specimens were tested in a 2,%00$000-lb. capacity

universal hydraulic testing machine. They were butt welded

to the pulling plates$ which in turn were free to swivel on

the pins of the elevises of the testing machine. The center-

line of’the specimens was aligned with@ 1116 in. of the

line joi~tig the centers of the clevis”pins.
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TLBIEII

DESCRIPTIONOF SPECIMENSWITH 9 h. X 9in0 OEENIN&3
WITH3-1/8b. CORNERRADIUS

spec. Size of ReinforcementPercentage Gross-section !&St
NCI. of Reinforce- Ar= - sqs in. Temp,

in. ment Gross Net Deg.F,
——. -—-— —

Openjmg F&hn~orced by a l?a.ce Bar.

2~lp 24.32
2 x 1,/2 ;; 24.37

OpeningReinforcedby a S~le lloublerPlate.

7.?h
7.7Lt
7.22
7.22

8.17
8.1.?

21.24
21.25

72
45
75
-46

7’7
-46

70
20

18 x 18 X 1/2 96 24.17 21J.01 74
13x18x3-/2 96 24.00 24.01 46

Opening Reinforcedby an Inser-LPlate.

Isox 1 23.63 22.09
l~DX 1 G 23.58 22.10

$

1511x 1 66 24.00 22.09 -L6
12”3/4x 32-3A ~ 1 39 24.00 21.38 76
1.2-3~4x3.2-3/4x 1 39 24.00 21.38 -46

* previously described in First ,Wogress Report(1).
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TABLE111

LISTOF PLATESWFJlFORFABRICATIONOF EACHSPECIMEN

Spec. No. Plate No. Used For
WY -1= nforcmfant

9

10

S

21

31

32

34

49

50

51

52

55

55A

56

70

71

99

19

18

17

16

15

6

6

6

26

3

19

18

21

25

21

21

26

25

25

25

26

10

10

10

10

10

21

Mechanical ~operties d these plates are given
in Table I-



O — LOCATIO?IJ THERMOCOUPLES

48” I

SAME ON BOTH FACES

1/2” -

L

I p’--,

i

I

–~

1
1-

L+-J

t-3-
%

I
-m

‘o
I

-i’-

—

—

52” I

#?- --,

~ I
—— __l.+_- ~-

L -J

~w . 48”

I

1

r
‘m

—

t
o
i
-k

-

Fig. 2 . Body Plates of 3Gin.x l/4-in.and 48-in.x l/2-fi.Specimens. LocationofSlide-wire

—

t
—

ResistanceGages and Thermocouples.
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t-+-i Fttt-ii

‘32’. 7=1=1n-ix- 3. kSPEC. NO. 10,31 .

9“

..
I %

\
,, ,

I}HR
r
e)

*.- .

* i 1

t-+-l

y“’J+&T’
SRZC. NO. 21,34

-f

{)’..%.
SPEC. NO.

‘s’5’’’6’=% “-’”--L

Fig. 3 . Details of the Face Bar, Doubler Plate and Insert Plate
Types of Reinforcement,
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ternperatme and were remotely cmtmlled$ since no Ureqt

observations on the plates could be mad= in the low tem-

perature tests.

The principal measurements of the elongation were made

straddling the region around

located m ‘bothfaces of the

across the width as shown in

the opening by Slide-wire gages

plate on four equal spack.lgs

Fig. 2. Since the gage length

pattern of Specimens No. Jl and S2.

IV. RESULTS OF TESTS

Three factors were varied in the tests reported herein:

the body plate width and thic’knessathe type clfreinforce-

ment~ and the testing temperature. The Shape of ‘tha9-iizO

by 9-h. opening was the.same for all specimens~ square with

rounded comers. The results of the tests are shown in



1‘m

SPECS. NO. 9 8( lo

K A–12
A–7

: AR–1

SPECS. No. 31899 SPECS. NO. 49 &50

S PEG, NO. 32 SPECS. NO. 51852
%SPEC. NO. 52

Lf-

Fig. 4 . LocationofSR-4 G agesAround theOpeningoftheSpecirnen,
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SYMBOL :;;:
— .4

I A–1 I

K A–12

A–7

: AR-1

SPEG. No. 2 I

t

w

w

~PEC.No.55

SPEC. No. 34

PI
7“

\ T

–K–K—+%
-a

‘g
450

m

2$ 2+ 4+’ 4+” 3“ 3“ +“
4

SPECS. No. 55A &56

Fig. S . Location of SR-4 Gages Around the Opening in the Specimen.
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E@ec● Per Tee-b Fmc ture$+ General YieldinE Ultimite strength Em3rgy Absorp .*%
No. Cent T.mp● Per Cent Load Avo. Stress bad Am. Stmsa >

Cf c s Un- Gross Net Gross Net I&- Fai&e

Natureof —
Final

Fraotme

36”x 1/4”B* Plate, FaceBarReinforeemnt.

9 ho 44 lj~

47 9;
329 35.5 U*8 451.050.1 59.2 74? 1063 Weld to Relnf.

99 @ 30 3!@ 37.@ 44.0 507.056.L 65.5 1062 1019 Throughope- .
1

M 75 69 31 313 34.8 43.9 467.051.9 65.5 1214 1504 Throughopen~. ~
g 16 -46 7; 25 0 364 bO.4 ~0.h S27.0 58.6 73.0 1857 1880 Through opan@ .

* Proportionin percentof totalnetcross-seeticmareaat,fraoturesurfaoe includingfrac~ andunbrokensection>If any,
c = Cleava@. S = Shear.

‘;+’ 3&~L. gag~ ~~~gfi for36”x l/4° plateS.48-ti.gage le~th for 48” x 1/2” plates.



TM31E?V (Cont. )

Spec * Per Test Fracture* Gmeral Yiel~_ Ultimati strength EmtrgyAbsorP ●* Nature of
No ● Cent Tew .

——
Per Cent Load Ave. !3tre6s “—–-–”T– mImad Ave. Strem b Final

of c s un- oroe6 Net Gross Net ulti- Failure Frac twe
RaM. broken mt%

Load
Deg.F . kips ksi ksi kips kei ksi 1000Js in-lb *

--

62
62

96
96

$f%
39
39

70
+0

?b
46

70
69

46
?6

-M

66 34 m 33.3 36J 478.0 S3.1 57,9 .I&;
J40 376 l&8 ij6.O 551.5 61.3 67.$

)@’ ~ 1/2” Body Plate. Face BarReinforcement”..— ..,. —

77 23 ;4J 30.4 3,1Lc8X255 51,6 59.0 3510
9; 10 36.6 @.5 410 58,8 66.8 ~@2

lL8” x l/2nkdy mate. SingleDoublerPlate Reinforcement.

u 81 19 770 31.9 32.1 13& ~7,b 57.7 4730
10CI 00 %0 39.6 39.6 2460 60.8 60.8 L303

40’ x @ II* Plate* Insert PlateWinforoement.

48$

~710
563.0

gg

4660
@8
3220
3699
2084

L
Weldtoreinf. p
Through opening.

Through opening y
Through opening .
Through body pkte .
~- ~
Through Opentl’lg

—

# Initial failure h pulllng plate. SWC. No. 51 reloaded after3 dsy_e,SWC, No.* aftm’ 9 dayB5 andSpeo. No. % altar
10 days*



TABI.EV

AVERAGEUNITS’PRAIN FJEZUKANTAVERAGEFJ.(IHGATIONTO ULTI.MA~
AITI)TO l?AllNRIlFOR ALL SPEC131ElJS

36” IC1/4” Body Plate. Face Bar Reinforcement.

1.97 2.73 2340 3329
2.55 2.38 3326 3193

75 3.Oh ~.oo 3909 lm3
: -IJ6 1.93 II.16 5980 7}100

36wx i/lp hc& Plate . Shgle fioublerPlateR8ird?orcement.

Is 76
32 -46

1.70 2.70 1999 3013
1.93 2.39 2451 3090

3611x 1/4”Body Plate. InsertPlateReinforcement.-— .

21 77
34 ‘6-~!

2.06 3.72 3519 11521

3.55 3xl S630 5255

}1811X l/V Body Plate. Face Bar Reinforcement,.—-.

49 3.36 ;.;; 3082 il136
so -Y) 4.90 . 5171i 4938

Ml” x 1/2” Bdy Plate. singlel)~ublerPlateReinforcement.—-— ——

!@ x 142: Body Plate. klsert Plate fkingcmwllent &,——.
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Fig. 6. Distribution acroBs Plstc of Elongation on n
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Fig. 8 . Distribution across Plate of Elmgstinn on a
Gage Ler@h Equal i. ihc W,dth of th~ Plate,
SPPCS. 15 and 32.
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4.0

3.5 -—- /
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The five elongations at the given gage locations across

the plate were averaged. The relation between the applied

load and this average elongation is shown in Figs. 14 to 21

for the various Sp=eimenso The principal data from these

figures are summarized in Table lV.

The shapes of the load-~lcmgation curves for identical

specimens tested at room and low temperature were similar up

to the ultimate Ioada except that the strength l.eVelfor %he

plates”tested at the lower temperatures was higher. .13eyond
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the ultimate load the shape of these curves depended prima-

rily upon the percentage of cleavage in the fracture.

Specimens No. 993 3%5 50$ 52Y 569 and 71~ all having be-

tween 96 and 100 per cent cleavageq su.f~eredsudden frac-

tures at the ultimate load with no additional elongation

beyond that point. As a shear traeture developed ‘beyond

the ultimate load in Specimens No. 31,~ 32$ and 559 all hav-

ing between 57 and TS per cent cleavagej the load fell off

gradually to the point where a sudden cleavage fracture oc-

curred and the load dropped off’sharply. The more ductile

behavior of Specimens No. 9? 105 Is? 219 k9~ Sl$ and 55A

with zero per cent cleavage and Specimen No. 70 with 1 per

cent cleavage was apparent in the gradual reduction of the

load as the shear fracture progressed across the plate.

The amount of elongation occurring after ‘ultimateload in

this last group of specimens depended largely on the por-

tion of the width of the specimen which remained unbroken

and therefore bore no close relation to the amount of’

elongation up to the ultimate load.

Specimens tested both at room and at low temperature

exhibited a noticeable necking in the direction of the width

of the plates and a simultaneous reduction of the thickness

over the affected area. The ones which failed by a shear

type fracture showed in addition a reduction of thickness
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was apparent. Specimens No. 52 and 56, which failed ttiough

the body plate outside of the reinforcement, developed less

energy to ultimate load than did their corresponding plates

at room temperature. The failure of these plates was per-

haps somewhat premature but still occurred at a stress level

at which a failure through the opening was imminent. Of the

pairs of specimens, which failed through the

mens No, 4-9and 50 followed the trend of the

and Specimens No. 70 and Tl followed exactly

trend. While the relative energy absorption

Opening$ Speci-

l/4-in. plates,

the opposite

of the l/4-in.

plates at. the two temperatures followed a s~mple pattern,

it appeared to obey a more complex relation for the l/2-in,

plates.

The random behavior of the 1#2-in, plates as compared

to the consistent trend of the I/k-in. plates suggests that

the thickness of

tor in governing

l/2-in. Spec~men

l/’4-~nmSpecimen

the plate was becoming a significant fac-

their behavior, It should be noted that

No. 70 and 71 were the same ~ri type as

No. 22$ wh~ch developed the lowest @nergY

absorption of all the l\4-in, plates with the square open-

(1)ing with rounded corners . These two specimens were also

lowest in energy absorbing capacity among the l/2-in. plates.

The energy absorption to ultimate load of Specimen No, ’71

at -k69F. was little more than half that developed by
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TA13LE VI

GENERAL YIELDING ANDFRACTURES OF THE SPECIMENS

Spec. Load in Kips at Percentage Location of First Luders
No. First General First ~ltimate of Cleavage Lines, First Crack, Max.

Luders Yielding Crack Load in Fracture Unit Strain Concentration,
Lines and Lateral Buckling *

36 x 1/4 in. Body Plate 180$$1

9 60 319 451 451 0

E

—. -1- %J80

w~ %

I

99

10 6!3

31

~

340 507 507 97 —— + -—

~~

313 467 467’ 0

364 527 527 75

i

I

I

I
‘::Legend

Max. unitstrainconcentrationaccordingtoSR-4 gage readings

Luders linesappearingbeforegeneralyieldingofspecimen.

Lateralbucklingofplateinregionsofcompression stress.

Point offirstcrack.

Fracture
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GENERAL YIELDING

TABLE VI (Cont.)

AND FRACTURE OF THE SPECIMENS

Spec. Load in Kips at Percentage Location of First Luders
No. First General First Ultimate of Cleavage Lines, First Crack, Max.

Luders Yielding Crack Load in Fracture Unit Strain Concentration,
Lines and Lateral Buckling*

15 362 362 522.5 522.5

32

21 100

34

0

441 548 548 63

300 478 478 0

376 551.5 551.5 96

48 x 1/2 in. Body Plate

49 700 740 1255 1255 0

50 880 1410 1410 99

e220 ‘

+-

220
* ‘ [00

I

w—.•t.—
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TABLE VI (Cont.)

GENERAL YIELDING AND FRACTURE OF THE SPECIMENS

Spec. Load in Kips at Percentage Location of First Luders
No. First General ~ ~rst Ultimate of Cleavage Lines, First Crack, Max.

Luders Yielding Crack Load in Fracture Unit Strain Concentration,
Lines and Lateral Buckling+<

51 500 770 1300 1385

0,

0

52 950 1560 1560 100

55 700 800 1275 1275

55A 700 800 1288 i288

56 900 1360 1360

57

100 T+@
4

-l––

‘~
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lTABLE VI (Cont.)

GENERAL YIELDING AND FRACTURE OF THE SPECIMENS

Spec. Load in Kips at Percentage Location of First Luders
No. First General Pirst Ultimate of Cleavage Lines, First Crack, Max.

Luders Yielding Crack Load in Fracture Unit Strain Concentration,
Lines and Lateral Buckling~

I

70 700

71

800 1276 1276

800 1176 1176

17

100

I

EIEr-1 .—

1
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Specimen lie.563 which had the next lowest ww.a?gyabsorption.

Xt would appear that any l/2-in. plate with a higher stress

concentration factor cm any plat-e~/% in. or greater in

thickness could be expected to develop a relatively lower

energy absorption at room tempe~ature aridto suffer a large

reduction in =nergy absorption at low temperatures.

Any comparison of the energy absorption of the various

specimens must take into account the dimensions of th~ dif’-

f’erenttypes of Specimensb Three cross-seetior~sizes were

used% S6 in. by li~ i,n.q36 in. by 112 in.~ and %8 in. by

1/2 in. The gaged area was 36 in. long f’orthe 36 in. wide

and 48 in. for those %8 h. wide. It was f’o~ndfor these

stiilar types of specimens that the ~Ghl energy absorption

was’more or less proportional to the volume of the gaged

region.

ln the First Progress Report(1)~ the energy absorption

to failure was used as the basis of diseussion~ while in

this report the energy absorption to ultimate load is used.

This change in viewpoint came about from two factors:

The energy absorption at ultimate load corresponds

to the maximum load-carrying capacity of a member

and the point beyond which its structural usefuln-

ess is questionable.

In these testsl the energy absorption beyond ultl-

m~te load was as much a function of the portion of



load and ultimate strength also absorbed the most energy.

A clearer picture of these relations has been established in

this report.

Figure 2?6skuws the linear relation between the loga-

rithm of the energy absorption to ultimate load and the

ultimate strength. The results of all tests from the l?ir~t
/...-%
‘L~2) and this report, are in-and Second Progress Reports

eluded in this figure. Four conclusions may be drawn from

these data.

ultimate load became.

stre.ngt~ increased.

of the energy absorption to

greater as the ultimate

2. The values for the I/k-in. specimens with the higher

stress concentration factors fell to the left on

the plots those with.tlvslower factors to the righto

so Lowering the testing temperature moved the values

to the right on the plot in the ease of the,l/kin~



/

I 1 I
z F 4-7

—..
CIRCULAR D* m

—SO,, ROUND G ❑ ● ❑ /

S9., sHARP C. A A 71
0’

—

O GOLD TEsT
37

{ -132 / ‘
6-

H g9’ 12“ ,4 ~6

22

A20~ @5

?’
7 \*f.

*%

~13

,14A

i 50 55 60 65 70

ULTIMATE NET STRESS ‘KS I

Fig. 26. Comparison of Energy Absorption to Ultimate Load with Ultimate Strength.

6000

4000

2000

1000 ----
32

800
: ?$ .

600
‘ “22

400

200 L—L—l—u

CIRWLAR 00

SQ. ROUNDG. ❑ ■

SQ. ROUNO G. A A

O GOLD TEST

I z 4 6810 20 40 60 80 100 144

RATIO OF HALF- WIDTH OF OPENING TO NOTCH RADIUS - Ro/ RN

Fig.26a.. Relation between the Ener~y Absorption to Ultimate Load of
Plate6 with Openings and ~~e Notch-Acuity of the Opening.



4-.

-M-’@particular Spectw?rl.

four cmclusicms have a significant meaning when

design.. Any improvement in the design of the re-



of the opening. Figure 26{a] compares the energy absorption

‘Oto ultimate load and the ratio ~. The width of the scatt~r

bands in the latter figure was smaller than in the plot us-

ing the energy absorption to failure. The relation be~y’eeu
R
o forthe energy absorption to ultimate load and the ratio$ ~h

the I\%-in. plates at -k6”F. and the unreinforced 1~2-in

plates at room temperature was similar to that for the l\k-
RO

in. plates at room temperature. Since the ratio~ ~N3 “was

not varied for the remaining specimens~ no definite trend

for them was established.

When the unit strain energy to ultimate load was com-

pared in Fig. 2T with the unit elongation to ultimate loads

for the reinforced platesj the points for both the room and

the low temperature tests fell along the same line; and a

method was provided for comparing the energy absorption of

the similar specimens of different sizes. All the plates

considered in this figure had a square opening with a

rounded corner. The data for this figure are given in Ta-
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1.

2.

3.

4.

h,

the two

Decreased the ultimate strength~ the rate of de-

crease being greate~ for the tests at -h6~F. than

~cm those at room temperature.

Tncreastw3 slightly the energy absorbing capacity of

the l.fl~-i,n.plates.

a,”bsmbirigcapacity of the l/b-i,no

in the energy absorbing capacity

Reduced tile~lle~gy

plates at 4%5~Fo

Ikde little change

of the I\h-.in.plates at room temperature.

consideration of the generally opposite effects for

plate thicknesses of increasing the percentage of
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To reduc~ the maximum

around the opening.

stress concent~ation factor

The plots of the unit

tors in the First Progress

Figs. 31 to 3.8 showed that

elastic strain concentration fac-

Repo#J and this report in

the strain-raising effect of the

opening$ whether reimmorced or not7 was cb~ely concentrated
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Specimen No. 99

Specimen No. 32
Specimen No. 34

Specimen No. 50

Fig. 39 Photographs of Specimens After Fracture
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Specimen No. 51
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Specimen No. 55A

Fig. 40 Photographs of Specimens AfterIb=adure
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CLEAVAGE SHEAR NOT FRACTURED
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Fig. @ . Nature of the Fractured Edges of the Specimens.



-61-

st lower temperat~re.s~in plates: with openings than at room

temperature. The Second .-Pr@gressReport (2) has already

shown that higher relative “energy absorption in the plastic

Etress range occumed around the opening in the test at tkw

lower temperat-dre9

the results of the

It seems ther~fore

and this ‘ev~d&ce is substantiated by

forthc~~,ingFourth Progress Report 0+).

that lowering the testing tenperatu.r~



.,
.,. ,

OF kips Day; Per Cent C S
,.

g20~ “-” .“” ~~%’13&,.51 8.% o 81-

52 -46 .93XJW60””’’””9 6.9 100 0

5!5 PO ,1156- 77.6 10 3.8 57 28
.,

In this table’>‘thepercentage of the ultimate -loadis given”

in terms of the actual ultlmate load, and not the assumed ~ .

value in T-ableIV. The increase in load upon reloading is

a measure-of the amount by which the reloading curve rose

above the unloadingcurve in Figs. ’19and 20,
..

The location of the first failure in all three speci-
1

mens occurred in the weld connecting the body plate ta the I

l/2-in. pulling plate. The fracture started at the outer

edge of the sp&imen. The cause of these incidental fail-

ures was “clear only in the case of Specimen No. 521 in which

the fracture started at an occlusion in the weld. The

stress-raisingeffe.cts of the surface rotighnessof,the ,weld

and the radius at the end connection of the specimbns to

the pulllng plate contributed to thesefractures.

The reinforcement for Specimens No. 51 and 52 consisted

of a l\2-in, doubler platea and for Specimen No. ~~ of a
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by these specimens was in excess of 60~000 lb. per sq. in.a

the strength of neither plate was appreciably diminished if

at all~ by these incidental failures.

v. cmmJ-usN.ms

Che very important gene~al conclusion has resulted from

these tests and may be stated as follows:

1. Cleavage fractures with high energy absorption and

high ultimate st~ength a~e possible in welded st,ruc-

tums~ provided that all,stmess-raising effects are

sufficiently reduced and that the operating tempera-

ture af the structure is not far below the fractur~

transition tempe~a,ture for the steel a,s determined

by the Navy tea~ test.

The following specific conclusions appear to be justi-

fied by the recent results of this investigation:



20

3.

.4.
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