A METHOD FOR DIGITIZING, PREPARING AND USING LIBRARY TAPES OF SHIP STRESS AND ENVIRONMENT DATA

This document has been approved for public release and sale; its distribution is unlimited.

SHIP STRUCTURE COMMITTEE

1973

SSC-236

SHIP STRUCTURE COMMITTEE

AN INTERAGENCY ADVISORY COMMITTEE DEDICATED TO IMPROVING THE STRUCTURE OF SHIPS

MEMBER AGENCIES:

UNITED STATES COAST GUARD NAVAL SHIP SYSTEMS COMMAND MILLEARY SEALTET COMMAND MARITIME ADMINISTRATION AMERICAN ROMAND OF SEUPPING

ADDRESS CORRESPONDENCE TO:

SECRETARY SHIP STRUCTURE COMMITTEE U.S. COAST SUARD HEADQUARTERS WASHINGTON, D.C. XXXXI 20590

SR 187

18 JUL 1973

The collection of full scale hull stress, ship motion and environmental data on ships at sea has been a significant part of the Ship Structure Committee program for several years. Yet, collection of data is only the first step in the long process of improving understanding of the loads experienced by a ship's hull. Results of the at-sea measurements must be reduced to facilitate analysis and then analyzed in detail, and the Ship Structure Committee has been active in these areas as well.

This report describes a method which has been developed for converting the unprocessed full scale data into a form which can be analyzed on a conventional digital computer. Additional information on the computer program may be found in SSC-237, Computer Programs for the Digitizing and Using of Library Tapes of Ship Stress and Environment Data.

Comments on this report would be welcomed.

60 1/2 30) W. F. REA, 111

Rear Admirel, U. S. Coast Guard Chairman, Ship Structure Completee SSC-236

Final Technical Report

on

Project SR-187, "Ship Response Data Study"

PART I

A METHOD FOR DIGITIZING, PREPARING AND USING LIBRARY TAPES OF SHIP STRESS AND ENVIRONMENT DATA

by

Aldie E. Johnson, Jr. James A. Flaherty Isaac J. Walters

Teledyne Materials Research

under

Department of the Navy Naval Ship Engineering Center Contract No. N00024-69-C-5161

This document has been approved for public release and sale; its distribution is unlimited.

U.S. Coast Guard Headquarters Washington, D.C. 1973

. - _-- .

ABSTRACT

A method of analogue signal processing used to produce digital library tapes of midship bending stress data is described in this report. Examples of retrieval of the data for subsequent analysis using digital computers are given. A means is described for a) translating midship bending stress data recorded on analogue magnetic tape to digital form; b) measuring certain statistical parameters of the data and summarizing and storing this information; c) providing on the same digital tape the logbook data concerning environmental and ship conditions at the time of original analogue data recording; and d) providing a means for selective retrieval of data for subsequent analysis. The programs used provide a means of accommodating the several ways in which the original data were recorded, and permit a consistent analysis of the data which were acquired over the ten-year duration of Ship Structure Committee Project SR-153, The basic procedures and programs are read-"Ship Response Statistics." ily adaptable to handle other analogue signal processing of varying formats, and are not necessarily restricted to handling midship bendina stress data.

TABLE OF CONTENTS

SECTION		PAGE
I	INTRODUCTION	1
	A. Background and Objective of Study B. Definitions C. Scope of This Report D. Nature of Data	1 2 3 4
II	PROCESSING TECHNIQUE	6
	A. General B. Logbook Data Processing C. Analogue Signal Processing D. Digital Data Processing E. Computer Programs	6 8 10 11 14
III	PROGRAM VERIFICATION AND TESTS	16
	A. Data Processing B. Demonstration Examples	16 19
IV	RESULTS	23
V	CONCLUDING REMARKS	51
VI	ACKNOWLEDGEMENTS	52
VII	REFERENCES	53

-iii-

- . .

PAGE

___ -

FIGURE		PAGE
1	Typical Interval Data Sample	5
2	Schematic of Data Flow	8
3	Signal Conditioning for Processing Analogue Data Tapes	11
4	Basic Computer Configuration for Processing Data	12
5	Data Processing Equipment	12
6	Comparison of Digital Record with Original Analogue	18
7	Results of Example No. 1	37
8	Results of Example No. 2	37
9	Results of Example No. 3	38
10	Results of Example No. 4	38
11	Results of Example No. 5	39
12	Results of Example No. 6	39
13	Results of Example No. 7	40
14	Results of Example No. 9	40
15	Results of Example No. 10	41
16	Results of Example No. 11	41
17	Results of Example No. 12	42
18	Results of Example No. 13	42
19	Results of Example No. 14	43
20	Results of Example No. 15	43
21	Results of Example No. 16	44
22	Results of Example No. 17	44
23a	Results of Example No. 18 (Beaufort Sea State 0-3)	45
23b	Results of Example No. 18 (Beaufort Sea State 4-12)	45
24a	Results of Example No. 19 (Beaufort Sea State 0-3)	46
24Ь	Results of Example No. 19 (Beaufort Sea State 4-12)	46
25a	Results of Example No. 20 (Beaufort Sea State 0-3)	47
25b	Results of Example No. 20 (Beaufort Sea State 4-12)	47
26a	Results of Example No. 21 (Beaufort Sea State 0-3)	48
26b	Results of Example No. 21 (Beaufort Sea State 4-12)	48

TABLE		PAGE
I	Digital Library Tapes	4
II	Vessel and Analogue Data Identification	5
III	Data Included for Each Interval	7
IV	Data Included for Each Voyage	7
V	Logbook Tape Printout	9
VI	List of Programs Available in Ref. 3	14
VII	Printout of Digital Record of Test Case	17
VIII	Comparison of Analogue and Digitized Results	18
IX	Data Processing Printout (SS WOLVERINE STATE)	20
Х	Demonstration Examples	22
XI	Printout of Example No. 1	24
XII	Printout of Example No. 8	31
XIII	Modified Printout of Example No. 16	49

SHIP STRUCTURE COMMITTEE

The SHIP STRUCTURE COMMITTEE is constituted to prosecute a research program to improve the hull structures of ships by an extension of knowledge pertaining to design, materials and methods of fabrication.

RADM W. F. Rea, III, USCG, Chairman Chief, Office of Merchant Marine Safety U.S. Coast Guard Headquarters

Capt. J. E. Rasmussen, USN Head, Ship Systems Engineering and Design Department Naval Ship Engineering Center Naval Ship Systems Command Mr. E. S. Dillon
Deputy Asst. Administrator
for Operations
Maritime Administration

1

Mr. K. Morland Vice President American Bureau of Shipping CAPT L. L. Jackson, USN Maintenance and Repair Officer Military Sealift Command

SHIP STRUCTURE SUBCOMMITTEE

The SHIP STRUCTURE SUBCOMMITTEE acts for the Ship Structure Committee on technical matters by providing technical coordination for the determination of goals and objectives of the program, and by evaluating and interpreting the results in terms of ship structural design, construction and operation.

NAVAL SHIP ENGINEERING CENTER AMERICAN BUREAU OF SHIPPING Mr. P. M. Palermo - Chairman Mr. S. Stiansen - Member Mr. J. B. O'Brien - Contract Administrator Mr. I. L. Stern - Member Mr. G. Sorkin - Member Mr. C. H. Pohler - Member NATIONAL ACADEMY OF SCIENCES U. S. COAST GUARD Ship Research Committee LCDR C. S. Loosmore - Secretary Mr. R. W. Rumke - Liaison CAPT H. H. Bell - Member Prof. R. A. Yagle - Liaison CDR J. L. Coburn - Member CDR W. M. Devlin - Member SOCIETY OF NAVAL ARCHITECTS & MARINE ENGINEERS MARITIME ADMINISTRATION Mr. T. M. Buerman - Liaison Mr. J. J. Nachtsheim - Member Mr. F. Dashnaw - Member BRITISH NAVY STAFF Mr. A. Maillar - Member Mr. R. F. Coombs - Member Dr. V. Flint, Liaison Mr. F. Seibold - Member WELDING RESEARCH COUNCIL MILITARY SEALIFT COMMAND Mr. K. H. Koopman - Liaison Mr. R. R. Askren - Member Mr. T. W. Chapman - Member INTERNATIONAL SHIP STRUCTURE CONGRESS CDR A. McPherson, USN - Member Mr. A. B. Stavovy - Member Mr. J. Vasta - Liaison

-vi-

I. INTRODUCTION

A. Background and Objective of Study

Midship bending stress data from four dry-cargo ships, accumulated during the period 1959 through early 1970 under Ship Structure Committee Project SR-153, "Ship Response Statistics" were recorded as analogue signals on frequency modulation (FM) magnetic tape. The data are contained on 163 reels of 10 1/2-inch diameter, l-inch wide magnetic tape. Associated logbooks contain hand-entry data relative to pertinent ship, sea, and weather information. The data reduction accomplished prior to the initiation of the current project had been adequate for the individual analysis of each ship voyage, but, because of the form of the data, extensive analysis (particularly comparative analysis between ships or equivalent sea and weather conditions) became prohibitively difficult, thus limiting the usefulness and value of the data collected. Further, the method of data acquisition and handling had improved significantly since initiation of the data acquisition program, and there had not been a consistent processing of the analogue data--even to special procedures being required for individual tapes.

Subsequent to the initiation of the data collection program, better techniques became available for digital processing of data by high-speed computers, thus making the effort under the present project more practicable. The current project was intended to determine the feasibility of converting the existing analogue data (including logbook information) to digital form, to develop the programming required to process the data and to convert the accumulated midship bending stress data and associated information to digital form.

The feasibility phase of the study (Ref. 1) established the type of data and purpose for which the data would be required, determined the desired format of data, and established the constraints on the insertion, extraction, and application of the data. Consideration was given to the character of the raw material in hand and the computer capabilities available for processing and analyzing of data.

During the subsequent effort (Ref. 2), a basic computer program (plus preprocessor programs) was developed to incorporate the information derived during the feasibility study. After debugging and documenting the program, verification was accomplished using sample data from the SS WOLVERINE STATE.

The final effort required the processing of data from the four vessels SS HOOSIER STATE, SS WOLVERINE STATE, SS MORMACSCAN and SS CALIFORNIA BEAR. This effort resulted in the preparation of magnetic tapes that contained, in digital form, the recorded analogue signal of wave-induced and first-mode frequencies, the associated logbook information, and derived stress data for each 30-minute interval of data originally recorded. Summary tapes of the logbook information and derived stress data for each interval (deleting the digitized records) were prepared for more efficient utilization in any subsequent statistical analyses. Following preparation of these tapes, demonstration examples (of the type of parametric studies that could be made for statistical analysis) were run to indicate several possible uses of the data. These illustrative examples served to define the latent capability of the digitized materials and to illustrate the method of extraction of selected information from summary tapes. The examples selected were illustrative only and were not intended for use in studying any existing physical phenomena. This report contains the description of the processing of data and the illustrative examples.

B. Definitions

To minimize possible confusion in this report, certain definitions and nomenclature, as used herein, are given here for reference.

Interval--nominally a 30-minute segment of recorded analogue data for which there was a corresponding logbook entry. An interval normally consisted of a 1-minute zero segment, followed by a 1-minute calibration segment, followed by a 28-minute segment of data. An interval was recorded once every four hours, but the recording time was not necessarily coincident with the beginning of a deck watch.

Long Interval--Under certain conditions (when stress levels exceeded a preset level) the recording system turned on automatically before the next interval was scheduled, and recorded data continuously until the stress levels fell below the preset level. No zero or calibration signals preceded the long interval data, but the normal interval would override to record the zero and calibration every four hours. There were no logbook entries corresponding to long intervals other than the entry for each watch. Long intervals could be of any duration depending on when during a watch the preset levels were exceeded, but were never longer than the remaining 3 1/2 hours of the watch. Long intervals minute segments by a letter A-G which follows the immediately preceding interval number.

<u>Voyage</u>—the passage of a vessel from one port to another during which significant open-sea data were recorded. Estuary, river or harbor travel or travel between intracontinental ports (e.g., northern Europe) were <u>not</u> voyages, and a round trip would be considered two voyages.

Pass--a single-channel of frequency modulation (FM) analogue data recorded once through the tape. Normally, only one channel of data and its corresponding compensation channel were recorded during a voyage. Since the FM analogue tape had a 14-channel capability, upon completion of recording one pass, the ship's crew was able to switch the data and compensation to different recording channels and thus make more efficient use of the FM tape. Depending on many factors, a complete voyage could be recorded as several passes on one or more tapes.

<u>Burst--a</u> group of exponentially-decaying stress variations at the frequency of first-mode vibration, superimposed on the wave-induced bending stress variations. A burst of first-mode stress variations was usually excited by a slam. Maximum peak-to-trough amplitude of a burst normally occurred within one or two cycles of the beginning of the burst, and was rarely more than about 10% of the peak-to-trough wave-induced bending stress variation. Bursts were classified by their maximum amplitudes.

<u>Full Bridge</u>-All vessels were instrumented with an active stress gage and temperature-compensating gage (half-bridge) on both port and starboard sides. These four elements were wired into a four-arm Wheatstone bridge (full-bridge). The output signal was calibrated to represent the average midship vertical longitudinal bending stress. Horizontal longitudinal stress variations were eliminated by the configuration of the active gages in the bridge.

Half Bridge--On the SS WOLVERINE STATE only, a number of voyages were made with the two half-bridges on each side recorded separately on two separate tape channels. In the half-bridge configuration, stress contributions from horizontal bending were not eliminated. However, by recombining (adding) the two signals during data reduction, horizontal effects were again eliminated. In the event of failure of a transducer or amplifier on one side, the data from the remaining side were reported, but identified as "half-bridge". Logbook Data--the information recorded by the watch officer during each watch relative to sea, weather, and vessel conditions. The format of these data changed during the program, and certain data were not consistently reported. There normally was an appropriate logbook entry for each interval of recorded data, and correlation was made by comparison of times between the recording instrumentation time meter and the logbook time recording.

Zero Signal--the automatic recording system initiated the recording of each interval by imposing a 1-minute period in which the excitation to the gages was interrupted. The purpose of the zero period was to provide a means of detecting any drift in the DC amplifiers.

<u>Calibration Signal--immediately</u> following the zero signal, there occurred a 1-minute period during which a calibration resistor was shunted every three seconds across one arm of the stress-gage bridge, which resulted in the superposition of ten cycles of offset on the stress signal. The magnitude of the calibration resistor was selected to produce the equivalent of a 10,000 psi stress, and thus provided a calibration for each interval.

<u>Peak-To-Trough</u>--the normal cyclic stress variation associated with the longitudinal bending of a vessel was determined from the maximum value of a positive stress (peak) and the next maximum negative stress (trough).

<u>Mean Value Stress</u>-determined as the average stress during an interval. The excursion in mean value stress for each interval in a pass was determined relative to the mean value stress in the first interval of that pass.

Ship Calibration Factor--determined from comparison of stresses measured during a dockside loading with the corresponding stresses calculated theoretically. This enabled the determination of the effects of unfairness in plating and other factors that may have yielded slight variations in measured stress from that stress determined theoretically using the gage location and calculated ship stiffness.

<u>Whipping</u>--the transient dynamic response of the vessel, occurring at the first-mode frequency as a result of impact loads (such as from a slam), and not to be confused with steady-state dynamic loads such as in springing.

C. Scope of This Report

This study resulted in two reports, 25 digitized data tapes, two summary tapes and computer printouts of the demonstration examples. This report summarizes the results of the study and provides documentation supporting the results. Reference 3 contains the necessary documentation on each of the computer, preprocessor, edit, and post-processor programs used to prepare and digitize the data, correct and edit data, and read and extract information for statistical study. As shown in Table I, the digitized data are contained on 3 magnetic tapes for the SS HOOSIER STATE, 15 tapes for the SS WOLVERINE STATE, 4 tapes for the SS MORMACSCAN and 3 tapes for the SS CALIFORNIA BEAR. In addition, included are two summary tapes. One tape contains summarized data from all four vessels when instrumented in a "full-bridge" midship bending stress gage configuration and the other tape contains summarized data from both port and starboard midship bending stress gage configurations (the "half-bridge" configuration available only on certain of the SS WOLVERINE STATE voyages). A copy of the computer printouts that resulted from the demonstration examples is available from the Ship Structure Committee, as are the digital tapes.

Digital	Tape No.	Shi	р	Full or Half Bridge	No. of Voyages	No. of Intervals	No. of Analogue Tapes
HOOS	01	SS HOOSIER	STATE	Full	12	574	7
HOOS	02	н	ы	"	11	471	6
HOOS	03	"			10	540	5
WOLV	01	SS WOLVERIN	e state	Full	11	540	13 1/2
WOLV	02	٩	v		10	576	11 1/2
WOLV	03	н			11	601	15 1/2
WOLV	04	н			12	575	13
WOLV	05			"	6	377	5 1/2
WOLV	10			Half	10	611	3
WOLV	11	n			8	398	4
WOLV	12		н		5	572	2
WOLV	13	u			6	597	2
WOLV	14	*		D	10	617	6
WOLV	15		a	u	9	604	8
WOLV	16		a	- 0	7	547	7
WOLV	17		н		8	597	7
WOLV	18				10	603	8 1/2
WOLV	19	n	11	я	5	404	7 1/2
SCAN	01	55 MORMAC	SCAN	Full	9	563	4 1/2
SCAN	02	H	a		11	561	6 1/2
SCAN	03	R	"		6	370	3 1/2
SCAN	04	"	n	"	6	368	3 1/2
BEAR	01	SS CALIFOR	NIA BEAR	Fu11	8	590	4 1/2
BEAR	02				10	572	5 1/2
BEAR	03	u	u		6	392	3
TOTAL	25				217	13,220	163

TABLE I - DIGITAL LIBRARY TAPES

D. Nature of Data

The data under consideration were obtained from stress gages mounted on the sheer-strake plating approximately amidships on four dry-cargo vessels: SS HOOSIER STATE, SS WOLVERINE STATE, SS MORMACSCAN, and SS CALIFORNIA BEAR. A general description of the vessels and of the data is contained in Table II. Further details of instrumentation and ship characteristics can be found in previous Ship Structure Committee reports listed in References 4-9.

The primary objective of Project SR-153 was to obtain wave-induced midship bending moment stress data on a number of vessels operating for significant periods on various trade routes. The stress data were recorded as analogue signals on magnetic tape. The information was recorded using frequency modulation (FM) techniques at a tape speed of 0.3 inch per second. Since the system was essentially unmanned, a mechanical programmer was used to obtain a half-hour sample of data each four hours except when certain preset levels of stress were exceeded, in which case the instrument recorded continuously. A typical analogue record is shown in Figure 1, which shows the system zero, followed by the square wave calibration, which is followed by the actual record. The system bandpass characteristic was from 0 Hz to approximately 50 Hz, such that wave-induced information and the lower modes of ship vibratory data were recorded. In addition, higher frequency, nonperiodic data such as spikes (below the 50 Hz bandpass cut off) induced by slamming or noise were recorded. The recording system thus obtained higher frequency data beyond the primary scope required under the data acquisition contract (Project SR-153). The objective of the current study was to digitize and process

-5-	
-----	--

TABLE II						
VESSEL	AND	ANALOGUE	DATA	IDENTIFICATION		

VESSEL	түре	L X B X D (FEET)	PRIMARY ROUTES	APPROX. SHIP-YEARS OF DATA
SS HOOSIER STATE	General Cargo, C4-S-B5 (Machinery Aft)	520 x 71 x 54	North Atlantic	2.5
SS WOLVERINE STATE	General Cargo, C4-S-B5 (Machinery Aft)	520 x 71 x 54	North Atlantic and Pacific	5,5
SS MORMACSCAN	General Cargo, Type 1624	463 x 68 x 41	North Atlantic and East Coast of So. America	3.5
SS CALIFORNIA BEAR	General Cargo, C4-5-1A Standard Mariner	563 x 76 x 44	Pacific	2.5

NOTES

 $\underline{\text{STRESS GAGES}}$. All gages located on side shell just below main deck, approximately amidships.

RECORDING MEDIUM: 1-inch wide magnetic tape, mylar-base, 1.0 mil thick.

<u>DATA RECORDED:</u> Individual or average (of Port and Starboard) midship longitudinal vertical bending moment stress.

RECORDING METHOD, SPEED AND RESPONSE: Frequency modulation recording at 270 Hz center frequency, tape speed of 0.3 ips; data frequency response flat from DC to 50 Hz.

TYPICAL DATA CHARACTERISTICS: Nave-induced data < 0.2 Hz; first mode (freefree) vertical natural frequency of vessel < 1.5 Hz; second mode of stiffest vessel ~ 5.0 Hz.

PROGRAMMING: Data recorded for 1/2 hour out of every 4 hours except that when stresses exceeding preset levels were reached the recording interval was automatically increased for anywhere from an additional 15 minutes up to the full remaining 3 1/2 hours.

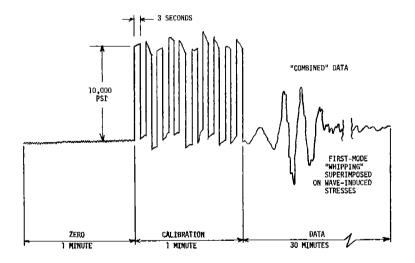


FIGURE I - TYPICAL INTERVAL DATA SAMPLE

only wave-induced bending stresses and first mode "whipping" data; hence, filtering of the higher frequency analogue data that was recorded eliminated data not to be included in the current study.

Weather and other environmental data, including a qualitative assessment of the sea state, were available in logbooks maintained by the watch officer on each vessel and were correlated with the analogue tape data by means of time readings.

II. PROCESSING TECHNIQUE

A. General

The processing technique was determined by consideration of the following:

- 1. Reduction in the volume of tapes without sacrifice of information, accuracy or ability to utilize or evaluate data.
- 2. Efficiency of extracting previously determined summary information and of access to "raw" data.
- 3. Ability to reproduce analogue data (at wave-induced and firstmode frequencies) and to develop spectral data at wave frequencies.
- 4. Use of nonspecial computational equipment for automatic processing of data.
- 5. Maximum utilization of existing editing, collating and analysis of analogue data from all vessels.
- 6. Standardization of presentation of data from all vessels, from each interval and from each voyage.

As a consequence of the above considerations, the data were processed in the following format:

- 1. Each digitized tape contained more than one (complete) voyage, but voyages from only one vessel.
- 2. Intervals were defined as analogue signals recorded for a period of 30 minutes continuous real time. Recorded data for longer continuous periods (the "long intervals") were identified in 30-minute segments each of which was processed as an interval. Twenty minutes (real time) of each interval was digitized and analyzed.
- 3. Each interval of data included Identification Data, Logbook Data, Interval Summary Data and Digitized Analogue Signal (See Table III and narrative under "Digital Data Processing" for description of material in each of these classifications).
- 4. Each voyage was summarized following the recording of the digitized intervals which comprise that voyage. This summary included both Identification Data and Voyage Summary Data. (See Table IV and narrative under "Digital Data Processing" for description of material included in each of these classifications).

The general flow of data resulted in preparing the logbook information separately and subsequently merging with the digitized analogue signals. Processing of the information was done on-line and the results were merged interval-by-interval and voyage-by-voyage until a tape was completed. Further editing, as required, and compacting of tape was done prior to the preparation of the summary tapes. This is shown schematically in Figure 2, and is described in more detail in subsequent sections of this report. Programming details and operating instructions are given in Reference 3.

TABLE III

DATA INCLUDED FOR EACH INTERVAL

INTERVAL IDENTIFICATION AND LOGBOOK DATA:

FM ANALOG TAPE REFERENCE LOGGOK INDEX NUMBER INTERVAL NUMBER DATE DATE DATE LOGGOK INDEX NUMBER TIME (GREENWICH MEAN) LATITUDE PREVIOUS NOON COURSE (DEGREES) SPEED (AVG. PAST 4 HRS. IN KNOTS) ENGINE RPM BEAUFORT SEA STATE RELATIVE WIND VELOCITY (KNOTS) TRUE WIND VELOCITY (KNOTS) RELATIVE WAVE DIRECTION (DEGREES PORT OR STBD.) WAVE HEIGHT (FEET) WAVE FREID (SECONDS) WAVE LENGTH (FEET) SWELL LENGTH (FEET) BAROMETER READING (IN. HG OR MILLIBARS) SEA TEMPERATURE (DEG. F) ALR TEMPERATURE (DEG. F) WEATHER CODE COMMENT CODE (SLAMMING, HEAVY GOING, ETC.)

INTERVAL SUMMARY:

NUMBER OF WAVE-INDUCED PEAK-TO-TROUGHS NUMBER OF BURSTS OF FIRST-MODE WAVE-INDUCED RMS STRESS MAXIMUM WAVE-INDUCED PEAK-TO-TROUGH STRESS MAXIMUM FIRST-CYCLE FIRST-MODE PEAK-TO-TROUGH STRESS MEAN VALUE STRESS (RELATIVE TO FIRST INTERVAL IN PASS) TABULATION OF ALL WAVE-INDUCED PEAK-TO-TROUGH STRESSES

DIGITAL RECORD OF INTERVAL

DIGITIZED ANALOG DATA FOR INTERVAL USING SAMPLING RATE OF 10 PER SECOND (12,000 DATA POINTS)

TABLE IV

DATA INCLUDED FOR EACH VOYAGE

VOYAGE IDENTIFICATION:

SHIP NAME OWNER'S VOYAGE NUMBER DATE VOYAGE START DATE VOYAGE END ROUTE (FROM/TO) ROUTE CODE FM TAPE REFERENCES SHIP CALIBRATION FACTOR LOCATION OF ACTIVE GAGES (FORE/AFT POSITION) DRAFT - FWD DRAFT - FWD DRAFT - AFT

VOYAGE SUMMARY:

NUMBER OF WAVE-INDUCED (W.I.) PEAK-TO-TROUGHS NUMBER OF BURSTS OF FIRST MODE MAXIMUM WAVE-INDUCED RMS STRESS MAXIMUM WAVE-INDUCED PEAK-TO-TROUGH STRESS MAXIMUM FIRST-CYCLE FIRST-WODE PEAK-TO-TROUGH STRESS MAXIMUM EXCURSION OF MEAN VALUE

Three computer systems were utilized in the processing of the data. An IBM 1130 system was used to prepare paper tapes for inputting the logbook information, a DEC PDP-8/I was used for processing and preparing of the data tapes, and an IBM 360 system was used for editing and compacting the digitized tapes and for performing the demonstration examples.

236

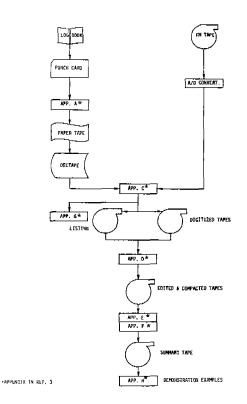


FIGURE 2 - SCHEMATIC OF DATA FLOW

B. Logbook Data Processing

Initially, the logbook information and analogue tape records were correlated and edited. Editing consisted of determining the number, sequence and acceptability of the analogue signals, including identification of long intervals. Each interval of data to be analyzed was correlated with a corresponding logbook entry. The logbook data were punched on computer cards, and the punched data were verified and edited by listing on an IBM 1130 computer-printer. The data then became output on punched paper tape in ASCII (American Standard Code for Information Interchange) format to be consistent with the PDP 8/I teletype paper-tape reader. The intermediate step of using punched cards provided simpler and quicker punching, verification and/or correction of the punched data than would have been possible by going directly to punched paper tape through the teletype. In addition, the preparation of logbook data through the use of other existing equipment permitted the uninterrupted use of the PDP-8/I and its equipment for the analogue data processing.

The logbook preprocessor program was used to prepare the paper tapes. Since the data in the hand-entry logbooks were recorded by a crew member of each particular vessel during each voyage, the amount of data recorded, the manner of recording, and the correctness of observations necessitated considerable editing and discretion during the preparation of the logbooks for punching. The preprocessor program was written to accept the four major formats in which the data were recorded and to convert (before punching the paper tape) to a single format whose output is that shown on Tables III and IV.

The details of the program and its operation which accomplished the editing and punching of the paper tapes is given in Appendix A of Reference 3, along with a generalized flow chart. A typical printout of a logbook tape is shown in Table V, and consists of a Header, Interval Identifications, and Voyage Identifications.

-8-

TABLE V - LOGBOOK TAPE PRINTOUT

```
- HEADER INFORMATION
 LIBRARY TAPE NUMBER NO39 SHIP STRUCTURE COMMITTEE
                                                          N00024-69-C-5161
                     424610 0 0138 0 0 0149 0 0 0149 0 0 02107L2108L2110L2
 111L2123L2124L3145D4109L4110D4132L4136D
 INTERVAL IDENTIFICATION
 192W1-1
             01023 12-12-62210039-37 N067-03 W08117.0080306070P3130101P04
 03030
                  30+2046026PTCDY
 192W1-1
             01124 12-13-62010039-37 N067-03 W08216+0081305056P2118102P04
 05045037P
             045030+1750032PTCDY
  ROLLING AND PITCHING EASY
             01225 12-13-62050039-37 N067-03 W08216+0081706067P2625102P06
 19201-1
                 30.1062033GLDY
 05045
  ROLLING AND PITCHING EASY
             01326 12-13-62090039-37 N067-03 W08216.0081607073P3030102P06
  192W1-1
 09040
                  30+04660330CAST
  ROLLING AND PITCHING EASY
  192W1-1
             01427 12-13-62130039-37 N067-03 W08216.5081006072P3130102P06
 09060062P 050030-0154036MTCDY
  ROLL MOD PITCH EASY
  192W1-1
             01528 12-13-62170039-37 N067-03 W08216.6080806072P3130102P06
  09050
  9050 29.9756038CLDY
ROLL MOD PITCH EASY
                                                                       ı
    i 1
                                                                          1
    1
                                                                       1
    1
      1
                                                                         1
                                                                       Ł
    1
      I
    Т
      1
    1
                                                                          1
      Ł
    1 1
  192W2-1
              00606 12-21-62070049-39 N006-54 W 19+007940515853317045P04
  05040
                  29.7848047CLEAR
   ROLLING EASY-
              00707 12-21-62110049-39 N006-54 W03918+007920712653528084P06
  19282-1
  07040084P
              030029.8248046CLDY
   ROLLING AND PITCHING
              00808 12-21-62150049-39 N006-54 W04014+607930711653935075P08
040029+90430460CAST
  192W2-1
  0A070075P
   ROLLING AND PITCHING
              00909 12-21-62190049-39 N006-54 W04515.007860400052914000504
  19282-1
  05050090P
               040030.0644040PTCDY
   ROLL AND PITCH MOD TO HEAVY
92W2-1 01010 12-21-62230049-39 N006-54 W 16+207880403352716070504
  19282-1
  05040045P
              030030-2242030PTCDY
   ROLLING EAST
  WOLVERINE STATE 19212-12-6212-21-62PHILADELPHIA TO BREMERHAVEN GER 01-05
  VOYAGE IDENTIFICATION
```

The punched-paper-tape logbook data were loaded in "blocks" (128 characters/block) on the PDP-8/I computer through the teletype and then were converted to EBCDIC (Extended Binary Coded Decimal Interchange Code), consistent with the required magnetic tape format. After conversion in the PDP-8/I, the data were stored on DECtape for merging during the data processing phase.

The magnetic tape label (Header) utilized the first three blocks on the paper tape for operating instructions for the processor program to control the data processing phase. Included in this information were the number of voyages to be written on each magnetic tape, the number of original FM analogue tape passes for each voyage, the number of intervals in each pass of data, the interval numbers which were not to be digitized, those intervals which were long intervals and intervals where halts were needed in the processing. Each logbook interval consisted of two blocks on the DECtape, which contain the Interval Logbook Data. Four DECtape blocks were left blank after each logbook interval. These were utilized by the data acquisition program for storage of Interval Summary data (i.e., wave-induced peak-to-troughs, RMS stress, maximum peak-to-trough first mode, etc., as shown on Table III).

The last two blocks of paper tape contained the Voyage Logbook Data and were handled in the same manner as the Interval Logbook Data. Again, four DECtape blocks were left blank after each voyage identification for storage of Voyage Summary data (see Table IV).

C. Analogue Signal Processing

The original data, as recorded on FM analogue tape, were conditioned to a form acceptable to the data processor. In addition, extraneous or erroneous signals were eliminated or minimized before processing. The FM analogue data were recorded from 0 to 50 Hz. However, since only wave-induced and first bending mode data were to be processed, it was determined during the feasibility study that the only frequency data of current interest was from 0 to 2 Hz which would include all wave-induced data and first-bending-mode data for the four vessels.

The signal conditioning for the processing of tapes is shown on the flow diagram, Figure 3. The \pm 1-volt rms (full-scale) FM analogue signal (and the recorded compensation channel) passed through the respective discriminators to achieve electronic compensation. The square-wave generator, calibration control and zero control permitted checking of the signal to a consistent basis before conditioning it for processing by the PDP-8/I. The A/D converter of the PDP-8/I accepts analogue signals only between -10V and OV, hence, signal conditioning was used to center the signal at -5V and amplify it to maximize the available range. The 2 Hz low-pass filter eliminated any recorded signal whose frequency was above that of current interest (i.e., wave-induced and first mode only).

The compensated, filtered, amplified and offset signal (called "combined" signal for convenience) was split into three parallel paths for easier processing; namely, the "combined", "wave-induced" and "first-mode" paths. These three signals were then used as input into the A/D converter and multiplexer.

The combined signal (which contained both wave-induced and first-mode signals) was applied directly to the multiplexer. The function of this signal was to provide the zero and calibration signals for control and scaling purposes. It was also the signal which was digitized and recorded.

The combined signal was also passed through a bandpass filter set to pass only wave-induced signals (0.01-0.2 Hz real time). Because bandpass filters characteristically do not pass a nonperiodic signal (such as the DC offset used to center the signal in the available range for the processor) it was necessary to restore the offset at the output of the filter. This wave-induced signal was applied to the multiplexer where it was digitized, and measurements of wave-induced peak-to-trough values, number of cycles, etc., were made.

The combined signal was also passed through a bandpass filter set to pass only the first-mode signal (0.2-2.0 Hz). Again, the offset had to be restored. This first-mode signal was applied to the multiplexer, and measurements of first-mode amplitudes and numbers of occurrences, etc., were made.

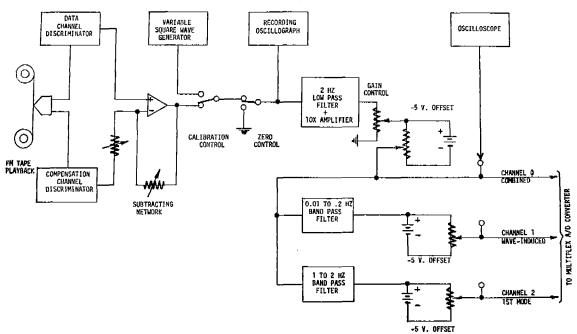


FIGURE 3 - SIGNAL CONDITIONING FOR PROCESSING ANALOGUE DATA TAPES

D. Digital Data Processing

The computer system used to perform a particular function is dependent on the hardware available and the software to make it work. Hardware consists of the equipment (i.e., central processor, input and output devices, and features such as clocks, auxiliary storage, etc.) needed to perform the job. Software is the method by which the computer hardware is told what to do, and consists of the programs which direct and control the method of operation.

The hardware utilized for the basic digital data processing was a Digital Equipment Corporation (DEC) PDP-8/I computer processor. The PDP-8/I and its peripheral equipment are shown schematically in Figure 4. The system consisted of the Central Processing Unit, 8192-word core memory, Analogue-to-Digital (A/D) Converter and Multiplexer, ASR-33 Teletype, Peripheral Equipment Corporation (PEC) IBM compatible magnetic tape unit, DECtape (auxiliary storage), Extended Arithmetic Element Hardware multiply and divide and Programmable Real-Time clock. Figure 5 shows the equipment used to process the data.

The Central Processor handled all arithmetic, logic, and system-control operations. It allowed the computer to store, retrieve, control and modify information and served as an interface between peripheral input/output equipment and core memory.

Core memory provided random-access storage for both instructions to be performed and information to be processed or distributed. The PDP-8/I, a singleaddress, fixed-word-length, parallel-transfer computer, used 12 bit, 2's complement arithmetic. Cycle time of the random-address magnetic core memory was $1.6\mu s$. Standard features included indirect addressing and facilities for instruction skip and program interrupt as a function of the input/output device condition. It was the program interrupt facility in conjunction with the Real-Time clock that allowed the programing of a real-time data acquisition system.

-11-

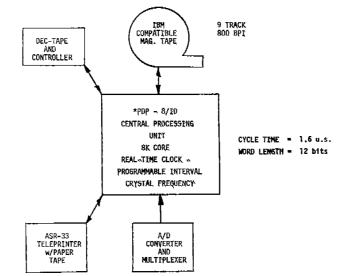


FIGURE 4 - BASIC COMPUTER CONFIGURATION FOR PROCESSING DATA

*PROGRAMMED DATA PROCESSOR

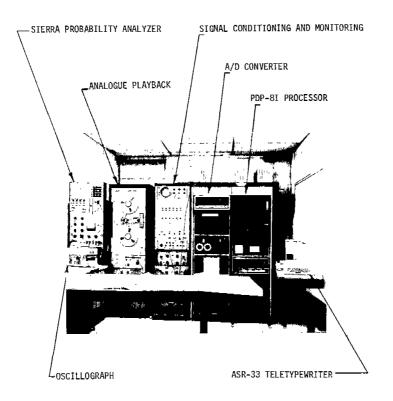


FIGURE 5 - DATA PROCESSING EQUIPMENT

The Analogue-to-Digital (A/D) Converter and Multiplexer allowed for fast multichannel scanning and conversion of analogue data from external signal sources. As configured, the system could multiplex up to 16 analogue signals concurrently and could convert the signals (0 to -10 volt range) to binary numbers. The A/D converter had a successive approximation converter that measured a 0 to -10 volt analogue input signal and provided a binary output indication of the input signal amplitude. Output was binary numbers from 6- to 12-bit accuracy with negative numbers represented in 2's complement notation.

The ASR-33 (Automatic Send-Receive) teletype was used to type in or print out information from the computer. The basic code was ASCII. Input was from either the perforated-paper-tape reader or keyboard. Output was either printed and/or punched on paper tape. The Teletype was an extremely slow device (approximately 10 characters/sec) and was used normally for program editing, assemblies and operator intervention during real-time operations.

The IBM Compatible Magnetic-Tape unit was an incremental-write, synchronous-read device. Tape format was 9-track, 800 bpi (bits/inch) consistent with industry-standard synchronous systems, allowing data acquired with this system to be utilized by another computer installation. The incremental writing allowed considerable flexibility in the acquisition of data, data reduction, and storage. Data was written one word at a time, eliminating the need for a buffer memory for storage of a block of data as would be required with synchronous-write units.

The DECtape served as an auxiliary magnetic-tape data-storage facility. Information was stored at fixed positions on the systems. This allowed for randomaccess read/write without disturbing other recorded information. The tape consisted of a series of data blocks (128 words/block) numbered from 1 to n. This allowed for the storage of 188,544 words in 1473 blocks which could be randomly accessed. Data were written/read in block format.

The Real-Time Clock provided a method of accurately measuring time intervals. The timing frequency was 10 KHz. The length of time to cause an interrupt was under program control. Using the interrupt facility and setting the clock allowed multiple processing. The clock was used to set the data sampling rate for running the program.

The Extended Arithmetic Element provided for hardware multiplication and division. This increased the speed a hundred fold by which multiplication and division could take place, and was extremely useful in a real-time environment.

To utilize the computer/processor and its peripheral equipment required instruction. This was where the software (computer program) came in.

The software requirements for the ship data processing consisted basically of two programs; the Logbook Pre-processor Program and the Data Conversion and Analysis Program. Other programs were used for special circumstances. All programs required during the performance of this contract are identified in Table VI and documented in Reference 3.

Once the data tapes were prepared, and the summary tapes created, data were available to perform the demonstration examples. The program PARM and its peripheral programs read the summary tapes and provided the listing of the required data (and punched cards). Use of commercially-available mechanical sorting equipment provided punched cards ready for computer plotting of the individual examples. TABLE VI - LIST OF PROGRAMS AVAILABLE IN REF. 3

APPENDIX A - LOGBOOK PRE-PROCESSOR PROGRAM APPENDIX B - LOGBOOK PAPER TAPE LOAD PROGRAM APPENDIX C - DATA CONVERSION AND ANALYSIS PROGRAM APPENDIX D - SUMMARY TAPE AND EDIT PROGRAM APPENDIX E - FINAL SUMMARY TAPE PROGRAM APPENDIX F - SUMMARY TAPE CORRECTION PROGRAM APPENDIX G - SUMMARY TAPE LISTING PROGRAM APPENDIX H - PARAMETRIC STUDIES PROGRAM APPENDIX I - RELATIVE WIND DIRECTION CORRECTION SUBROITINE

E. Computer Programs

A brief description of the function of each computer program follows. The details are given in Reference 3, along with operating instructions.

A listing of the computer program (Logbook Pre-processor) used to accomplish the editing and punching on paper tape of the logbook information is given in Appendix A of Reference 3 with a generalized flow chart. This program was used to prepare the paper tapes which provided operating instructions in the header and included such information as the number of voyages to be written on each magnetic tape, the number of original FM analogue tape passes for each voyage, the number of intervals in each pass of data, any interval numbers which would be digitized and other special instructions.

The paper tape output from the above program had to be read into the PDP processing computer and stored for use and subsequent merging with the digitized recorded data. Storage was on DECtape and the data could be input independently of the actual processing. In Appendix B of Reference 3 are given the details of the program which accomplishes the DECtape storage (Logbook Paper Tape Load program).

The main processing program, Data Conversion and Analysis program is given in detail in Appendix C of Reference 3. This program operated in a Real-Time environment through the Real-Time Programmable Clock. Programming was done in Assembler Language for DECtape, to take advantage of the shortened processing time, to work within the 8K word memory, and to utilize the single DECtape auxiliary storage unit. This permitted the processing to be done at a rate increase factor up to 25 over the recorded rate (0.3 inches/second for the FM analogue tape) without requiring starting and stopping of the analogue playback unit.

The three basic signals (i.e., the combined, wave-induced, and first-mode signals) which were fed to the A/D and multiplexer unit were digitized individually, although the data processing was done essentially simultaneously and continuously within the processor without the need to stop and start the analogue playback.

The practicality of processing and writing a complete digital data tape without errors, (which would have necessitated considerable rerunning of much already completed and correct data) early indicated the requirement for the capability to edit and compact partially filled data tapes onto one essentially filled data tape. The Summary Tape and Edit program (SUMT) was written to allow for the creation of a full digital data tape from as many as four partially filled data tapes. The editing capabilities included options to delete complete intervals and to recalculate the voyage summary data, correct selected items in the interval logbook data, and to provide for the addition of a reprint of the voyage-identification record at the beginning of each voyage. Two versions of this program (see Appendix D of Reference 3) were required because of the inconsistency in the manner in which the intervals were recorded in the logbooks. In Version I, the intervals to be corrected are identified only by index number (the majority of data were recorded this way). In Version II, to accommodate some of the earlier-recorded data, the intervals were identified by both the interval number and the logbook index number.

Two final summary tapes were created from the edited data tapes which resulted from the above edit, compact and correct routine. One summary tape contained only full-bridge data, and the second contained only half-bridge data. These summary tapes were created to minimize the computer processing time for the demonstration examples or any subsequent detailed analysis by eliminating all digitized signal records and by retaining only the voyage identification, logbook and summary records and the interval identification, logbook and summary records. In effect, by elimination of 12,000 pieces of raw data recorded for each interval, approximately 90 per cent of the information was eliminated, and considerable economy could be realized. Thus, the identification and processed data from a maximum of 150 voyages could be recorded on each summary tape. The details of the Final Summary Tape program (FSMT) are given in Appendix E of Reference 3.

An inconsistency in the Logbook Pre-processor program in the routine which determined relative wind direction resulted in some values of Relative Wind to be in error by 180° as punched on the paper tapes and which, therefore, were carried through to the final summary tapes. A subroutine RELWND was written to determine Relative Wind correctly and which could be applied to any of the programs. However, this correction was applied only to the final summary tapes through the Summary Tape Correction program (CRCT) which creates a correct Final Summary Tape.

In the course of the data processing, it became evident that a simple listing program which printed the magnetic tape information from the digital data tapes in a readable format would be very beneficial. This program (LIST--Appendix G of Reference 3) was not essential to the processing, but it was a considerable convenience during the processing of data, and, in particular, in the continual checking of processed data to assure that what was printed on the digital data tapes was correct. LIST contains an option to suppress the digitized data and print only the identification, logbook and summary data. This option was used to check and edit the digital data tapes before preparing the compacted data tapes (using SUMT).

The utilization of the data on the Final Summary Tapes required a program to read the tapes and perform comparisons or select certain data. The program PARM was written to permit the reading of the summary tape and to extract the required information as punched cards, printout or stored on magnetic tape for other processing. As noted earlier, punched card output was used and further processed with commercial mechanical card sorting equipment. This program is given in detail in Appendix H of Reference 3.

Certain program subroutines are essential to the processing of the data. To the extent possible, use was made of standard software provided by the computer manufacturer (IBM) or available through computer service bureaus, and modifications, where necessary, were incorporated. The subroutines included Relative Wind Direction (RELWND), Data Compression (ALIGN-EBCDIC), Conversion (BCNV), Shift (SHFT2V) and Masking (AND). With the exception of RELWND (described in Appendix I of Reference 3), the subroutines are described in the Appendices where used.

ILI. PROGRAM VERIFICATION AND TESTS

A. Data Processing

Data handling on magnetic tapes required verification that the intended data had been placed correctly on the digital tape and were retrievable on command. To assure that the original data were correctly transferred and processed, it was necessary to perform two independent checks; namely, 1) verify the primary portions of the program, and 2) verify the adequacy of the digitized record to reproduce the analogue signal.

Prior to the actual processing of data, the primary functions of the program were verified. These included:

- 1. Individual subroutine (e.g., read in data, perform calculations, write out data, etc.)
- 2. Interpretation of zero stress and calibration signals
- 3. Handling of wave-induced data
- 4. Handling of first-mode data
- 5. Handling of long intervals of data

Critical evaluation tests were performed on data taken from the SS WOLVER-INE STATE data library. Since the SS WOLVERINE STATE was known to exhibit firstmode whipping and had experienced continuous recordings at times, three intervals were selected from voyage 263 W2-11. These corresponded to:

Interval	Logbook Index		
20 21	91 92	((Average data, slight first mode, two successive intervals
12	83		Long interval, substantial first mode

Initially, the FM analogue signals of these three intervals were rerecorded as if they were three consecutive intervals. The analogue signal was passed through the appropriate filters to yield three separate traces which corresponded to the three signals shown on Figure 3. Each of these traces was then fed into the A/D converter to verify that the programming could interpret properly the incoming data and perform the required operations. Upon satisfaction that each element of the program was correct, the re-recorded three-interval record was input to the A/D converter and the program checked in its entirety.

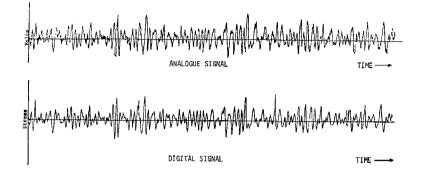

To assure that the program performed properly, the digitized magnetic tape was played back on an IBM 360/50 computer and a complete listing made of the tape, portions of which are reprinted as Table VII. (The 12,000 actual data points digitized for each interval are not reproduced in Table VII.) A typical Interval Identification and Interval Summary (for Interval No. 20) is shown at the top of the Table and at the bottom of the Table is displayed the Voyage Identification and Voyage Summary for the 4-interval "test" voyage. The digital playback printout of the identification and logbook data was checked against the original data which were input by punched tape.

TABLE VII - PRINTOUT OF DIGITAL RECORD OF TEST CASE

INTERVAL NO. 20 IDENTIFICATION AND SUMMARY

005305	515.53	910200	48019	TUPPO	405015					
			UDERAI	····		<u></u>				
		•• ••		;				_ <u></u>		
··· 146-		1596-	- 3045-							
553	1262	1548	70%	1909	1447	691	1607	992	46Z	
- -1346 732	59 7 2935	-1379- 2986	698	942	706	-2448	-2574-	-1346 -1	169 -	
		-1018-	1068 	1581 1531	1447 -1585 -	1228 	1060 - 2566		304	
1708	917	2692	1775	1522	799	2111	1994		489 - 430	
1489 1977	774	-2532-	-2853-		1768	-1485-	- 742	732-	588 -	
165 7	1060 1438	1245 -1085	1985 1615	1447 - 1691-	2734 - 1396 -	1127 -1565-	841		194	
1203	858	1186	1447	1657	1674	1194	-1152 992		656 - 223	
-1236-	2372-	-1893-	- 1901 -	2016	-1312	-1304-	-1901			
925 	950	1102 1598-	1287 -1304	1430	1245	1270	1321		009	
1579	1935	1207	1758		275 1665	-1228 - 2010	- 1809 - 723		960 - 541	
	-1220-		572.		-1415-		-1565-		405-	_
1573	1169	1421	1851	1859	1556	0	Ō	0	0	
··	0 000		0- 0	Q 0	ę 0	0	000000000		- <u>0</u> -	
— õ	ě.	ŏ	ĕ.	ŏ-	ŏ		ŏ			
0	0	0	0	0	C	ø	D	Ĵ	ā	
n0	- - 0 - 0	0 -	0: 0	-	Q. C	00	- 0	·	<u>0</u>	
	ŏ	è-	ŏ-	ĕ	ē	ŭ	0		0. 10	
0	0	0	0	0	Ō	ō	Ō	ŏ	ō,	~ 1
		-		0			0	<u>0</u> .	- }	-
	ŏ	ĕ	0	ŏ	ŏ.	<u> </u>	. 0	. v	õ	
Ó	Ō	ō	ō	ō	<u>-</u> - 0	0	· Õ	ō '	ō	
	0	0 0			Q	Q	0	0 D	0 0	•
		<u>u</u>			<u></u>		a		<u>ů</u> _	
0	0	0	ō	ō	Ō	ō	ō	Ō	ō	
	<u> </u>	<u>e</u>	0. 0	<u> </u>	<u> </u>		<u>0</u>	<u>_</u>	0 2.	• •
ŭ	0			0	0	<u> </u>		·		_
Ċ	ŏ	Ó	Ö	Ó	ō	ō	0	ō .	· 9 ·	
<u> </u>	•	0 -	0	<u>e</u>	<u>e</u> -	Q D	0	<u>_</u>	<u></u>	
		Q	0	C		0	ŏ	<u>0</u>	<u> </u>	·
Ō	ō	ŏ	ō	Ó	Ó	ō	ō	ō	Ō.	
<u> </u>			<u> </u>	÷	····· 0·		- <u>0</u>	Q,		
<u> </u>			0 0	C	<u></u>	<u>.</u>			<u> </u>	
Ó	Ó	Ó	Ō	ė	ō	ō	Ó	2	D	
	0.	0. 0		<u>0</u>	0	0	<u> </u>	<u>_</u>	<u> </u>	
0	0	<u>0</u>	¢	Ç.	č	0	ů		<u> </u>	
Ó	Ō	ō	ō	0	ō	ō	Ó	<u>0</u> ,	0	
Q.	<u>0</u> -	0			c		<u>0</u>		<u> </u>	
0	0		0		<u> </u>	<u> </u>	õ	<u>0</u>	_ <u>ŏ</u> _	
	-		-							
		VO	YAGE	IDEN	TIFIC	ATION	AND	SUMMAR	Y	
					/6606/(97EURO	P	. <u>.</u>		
		DA AMER	LA EAS	<u>T</u>	05-0	1203 W	DSH			
6		INE STA			05-0	D9/EURO D1263 W SPORTMI	2-1			_

The playback data for one interval of the digitized record was output as punched cards which were in turn used to generate an x-y plot of amplitude as a function of time. This resulting curve was compared with an oscillograph record (to approximately the same scale) of the original filtered (0-2.0Hz) analogue signal. Comparisons of these curves for a representative portion of the record is shown in Figure 6. This comparison indicated the adequacy of the digitized record to reproduce the analogue signal. It should be noted that the digitized record reproduced the analogue signal so faithfully that some noise spikes and other erroneous sporadic signals which passed the 2 Hz low-pass filter were reproduced also. Certain of these signals were falsely identified as first-mode bursts in the subsequent demonstration examples. See further discussion in RESULTS section.

FIGURE 6 - COMPARISON OF DIGITAL RECORD WITH ORIGINAL ANALOGUE

The original (filtered) analogue signal of each of the three intervals was reanalyzed in accordance with the method used previously for data analysis (using the Sierra Probability Analyzer). This is described in some detail in Reference 5. The results of the probability analysis of the analogue record are compared in Table VIII with the similar information derived from the digital processor program. It is to be expected that the RMS values will be at variance

TABLE VIII - COMPARISON OF ANALOGUE AND DIGITIZED RESULTS

INTERVAL 20	(Digital) PDP-8/I <u>Computer</u>	(Analogue) Sierra <u>Probability Analyzer</u>
Number Cycles W.I. Number Bursts First Mode RMS M.I. Stress, psi Maximum Peak-to-Trough M.I. Stress, psi Maximum Peak-to-Trough First Mode Stress, psi Moan Value Stress, psi	146 2 1506 3045 1497 207	437 * 1150 3100
INTERVAL 21		
Number Cycles W.I. Number Bursts First Mode RMS W.I. Stress, psi Maximum Peak-to-Trough W.I. Stress, psi Maximum Peak-to-Trough First Mode Stress, psi Mean Value Stress, psi	191 4 1088 2210 945 1116	433 910 2100
INTERVAL 12		
Number Cycles W.I. Number Bursts First Mode RMS W.I. Stress, psi Maximum Peak-to-Trough W.I. Stress, psi Maximum Peak-to-Trough First Mode Stress, psi Mean Value Stress, psi	174 5 2593 6135 1563 -193	362 2570 5700
INTERVAL 12-A		
Number Cycles W.I. Number Bursts First Mode RMS W.I. Stress, psi Maximum Peak-to-Trough W.I. Stress, psi Maximum Peak-to-Trough First Mode Stress, psi Mean Value Stress, psi	176 3 2452 5535 1459 -279	

*NOTE: Dashes indicate that no data was obtained using the Probability Analyzer.

because the digital analysis is truly an RMS determination with each data point (peak-to-trough stress variation) being considered individually, whereas in the analogue determination, each data point falls into a histogram of 16 equal-stress-level bands, and the RMS is determined from the number of points in each band and the mid-band stress. The maximum peak-to-trough stresses compare quite well. The digital analysis is based on only peak-to-trough data, whereas the analogue analysis has twice the number of points due to utilizing both peak-to-trough and trough-to-peak data.

From the verification studies summarized above (and including that shown in Table VIII), sufficient confidence was obtained to proceed with the processing of the records into digital form.

During the processing of tapes, two types of checks were made. Validation of selected pieces of data was made from each interval, and a random sampling of other data was validated.

Subsequent to the processing program given in Reference 2, changes were incorporated which printed (on the ASR-33 teletype) selected information which could be compared readily with the previously determined data from the Sierra Probability Analysis. Included in this printout (one time per interval which occurred after each interval processing was completed and during the period where the program was searching for the start of the next interval) were the number, RMS and maximum stress values of wave-induced peak-to-trough stresses recorded during the interval, the number and maximum stress value of first-mode bursts recorded, and the mean value of stress for the interval (relative to the mean value of the first interval of the pass). A typical printout (a 5-pass, 4-voyage tape of SS WOLVERINE STATE data is given in Table IX. These printouts provided the basis for either rerunning the data or the selecting, editing and/or deletion of intervals when the data tapes were combined into the final compacted data tapes.

Correction of logbook data was accomplished either through the editing during preparation of the punched paper tapes or during the editing and compacting of the partially-filled data tapes.

B. Demonstration Examples

The addition of the demonstration examples to the effort provided the opportunity to demonstrate the capability of extracting selected information from the digitized data and to illustrate a variety of comparisons which could be made readily from the many ship years of data accumulated under project SR-153. Using the original data in analogue form would have made such comparisons prohibitively difficult.

All intervals were included in these studies (long intervals as well as the regular once-per-watch intervals) which tends to overemphasize certain conditions. However, for statistical studies it would only be required to determine data from the numbered intervals and not the number-lettered intervals (i.e., read data in Interval 16, but not in 16A). This can be accomplished quite readily within the PARM program by changing an input card (i.e., sort on numbered intervals only).

TABLE IX-3

MOUNT NEW DECTAPE? N

START OF	VOYAGE 2 (WS	2161			
INTERVAL	NO. PEAK TO		ы15	MAX PEAK	10 TROUGHS
NO.	W + E +	IST MODE	9 I I	¥+1+	IST MODE
01	151		3170	6325	
Ø2 Ø3	157		2323	5371	
	159	1	2539	5709	1939 -
Ø4 Ø5	153		1646	3989	-
05 06			1785	3709	-
06A	127 119		8016	4801	-
96B	195		2216	4971	-
87			2293	4324	•
97A	112		2798	6571	•
07B	116	i i	2385	5986	2031 -
	128	L	2493	5648	1692 -
66	123		8590	4694	•
69	123		2339	5171	-
10	116		2106	3940	-
11	153 139	1	2354	5340	2616 -
13	153	1	1906	4093	30i6 -
13	153		1769	3447	-
15	156		1616	3278	-
15	135		1692	4366	-
17	135		1539	4348	-
18	125		1462	3647	-
164	145	9	1462	3232	-
168	153	4	2693	6325	4948
19	153	4	2631	6679	3047
20	154		2447	5063	
21	164		1769	3816	
22	128		1308	2677	-
23	104		1136	5510	-
24	85		1031	2077	-
25	75		1946	2431	-
26	129		1531	2293	-
20	76		1215	3168.	•
28	62		1616	3278	-
29	73		1662	4340	-
30	7J 58		1662	3493	-
31	56 56		1277	2570	-
35	54		1077	2354	-
96	34		1646	1923	-

END OF PASS 1

**END OF VOYAGE 2

TABLE IX - DATA PROCESSING PRINTOUT (SS WOLVERINE STATE)

DECTAPE ON 47 TOTAL NO. OF VOYAGES-

Øц					
	07	VOYAGE	1	(95	192)

INTERVAL	NO. PEAK TO TRO	UGHS KAIS	MAX PEAK	TO TROUGHS	MEAN
NG,	H.I. IST	MODE W.I.	8.1.	15T MODE	VALUE
23	196	315	674		
24	136	631	1890		1864
25	132	616	1305		1867
26	125	768	1764		1735
27	114	1847	1879		1979
28	129	1219	3026		1706
29	103	1385	2762		1764
30	81	1766	3428		1965
31	79	1761	3869		1965
32	112	620	4044		1965
33	65	1836	3643		1922
34	124	1219	2653		244
35	163	1198	2205		1391
36	146	1606	3786		1778
37	161	1491	3069		1993
36	187	2051	4174		1635
39	165	1879	4245		893
46	132	2160	4698		946
41	89	2108	3858		1348
48	89	2260	5788		1276
43	77	2323	5849		1429
44	90	1607	3758		1348
45'	86	2022	5493		1237
46	93	1621	3614		760
47	99	1528	3557		1305
48	73	1979	3685		1434
49	79	1686	3780		1262
50	93	1686	3973		1176
51	77	2006	5551		975
52	80	1621	3313		1096
50	78	1663	4274		1147
54	68	1851	3385		1104
55	73	1463	2624		1004
56	75	1549	3069		916
57	85	1264	2667		586
58	77	1425	2811		487
59	73	1534	2911		745
60	70	1477	2940		674
61	90	946	2094		674
62	78	1264	8599		860
63	77	1147	2452		803
64	76	989	8198		846
65	79	889	1692		1118
66	71	1847	1979		1161
67	66	975	2553		1161
68	67	1118	2205		1176

END OF PASS

TABLE IX-2

MOUNT NEW DECTAPE? N

INTERVAL	NO. PEAK TO TROUGHS	RMS	MAX PEAK TO TROUGHS	MEAN
NO.	W.I. 15T MODE	8.1.	VII IST MODE	VALUE
61	66	1063	1979	
62	69	601	1783	276
63	63	507	817	695
Ø4	56	785	1308	736
05	56	523	932	1838
Ø6	184	294	670	1863
07	165	1308	3384	867
Ø8	175	1396	2584	785
09	113	736	1717	1896
10	56	899	1763	1374

END OF PASS 2

*

**END OF VOYAGE 1

٠	u				
5					

TABLE IX-4

MOUNT NEW DECTAPE? N

START OF VOYAGE 3 (WS-229)

INTERVAL NO.	NO• PEAK ₩•1•	TO TROUGHS 157 Mode	RMS V•I•	MAX PEAK V•I•	TO TROUGHS 15T MODE	MEAN VALUE
ØI	161		442	961		
82	149		518	1075	-	253
03	157		455	999		63
84	156		484	948		1214
Ø5	150		531	3085		1100
Ø6	145		569	1315		948
87	129		430	885	-	152
Ø8	145		543	1087	-	595
89	127		438	809	-	76
10	116		488	986		948
11	104		493	1037		771
12	96		594	1302		516
13	121		569	1239	-	759
14	119		430	872	-	1506
15	96		581	1075	-	1076
16	114		505	1037		619
17	105		450	1075		657
18	61		569	1252		771
19	111		442	1068	-	772
20	189		417	847		1442
21	77		935	1707	-	1012
22	77		923	671		276
23	72		1429	2633		341
24	65		1517	4224		177
25	64		1151	2770	-	148
26	81		1075	2403	-	519
27	72		1226	2554		50
28	72		1214	2782		366
29	68		796	1796		493
30	65		973	2023		126
31	70		910	1871	-	924
32	67		822	1479	-	1076
33 34	77		784	1682	-	557
34	63 67		822	1998		126
35	67		1011	1684		202
36	69		708	1226	•	51
38	70		708	1479	-	1164
39	72		594	1252	-	532
40	69		594	1163		37
41	67		561	1151		177
42	70		594 505	1037 1037		50
43	66		505	923	-	241
44	54		326	923 556	-	1379
46	48		189	341	-	1050
47	36		189	215		392 442
46	45		164	177	_	442 380
49	63		227	328	-	389
50	47	-	265	404		2062
			603	404	-	1001

END	ΩF.	PASS	1	
-	U 1	1000		

**END OF VOYAGE 4

MOUNT NEW DECTAPE? N

START OF VOYAGE 4 (WS 230)

** END OF JOB **

INTERVAL	NO. PEAK TO		RIS		TO TROUGHS	MEAN
NO.	W•I•	1ST MODE	₩•I•	9 · I ·	1ST MODE	VALUE
Ø1	186		165	330		
92 01	164		203	406		1131
02 03	200		457	978		1067
64	189		940	2656		775
05	180		1334	2809		- 382
85	176		1449	3571		- 267
07	190		1321	3050		533
08	183		1614	3711		889
Ø6A	182		1792	4054		915
10	195		1169	2974		533
11	127		775	1817		- 954
12	134		635	1690		- 1399
13	208		788	2008		457
14	196		864	1766		668
15	163		1004	2237		546
16	179		864	1728		457
17	191		636	1919		- 763
18	162		749	1817		- 636
19	189		635	1360		- 288
20	184		699	1499		521
21	174		610	1263		254
22	176		317	699		305
23	174		279	483		- 1094
24	163		241	559		- 1564
25	184		279	571		- 979
26	171		343	737		58
27	205		724	1436		- 89
58	183		877	1894		- 255
29	153		711	1461		- 178
30	106		1830	3635		165
30A	121		2173	4410	2173	588
31	103		1978	3876		699
32	97		1550	1224		597
33	102		869	1830		686
35	89		419	851		- 229
36	94		381	626		- 1987
37	96		279	571		- 1920
38	98		483	953		- 267
39	85		1182	2440		317
40	78		3037	6202		279
41 42	70 68		2148	4986		279
43	66		2707 2567	5236 5020		- 217
44	65					- 369
45	56		1118 1639	1962 3241		
46	57		1334	3241		673
47	61		635	1512		571
48	50		432	638		- 64
49	49		381	737		- 1310 - 1577
			301	141		- 15//

TABLE IX-5

END OF PASS 1

**END OF VOYAGE 3

To illustrate the manner in which comparisons can be made, a series of twenty-one examples were made. These are summarized in Table X. Examples 1-8 were intended to illustrate a possible correlation between slamming and the ship or sea conditions which are responsible. Examples 9-15 were intended to illustrate any correlation between the wind direction and the wave-induced stress, and Example 16 was intended to illustrate correlation between observed conditions. Example 17 was intended to identify sea conditions encountered on eastbound North Atlantic runs during the winter months. In that some of the SS WOLVERINE STATE permitted it, (halfbridges recorded separately) the horizontal longitudinal midship bending stress could be determined as well as the vertical longitudinal midship bending stress. Examples 18-21 were intended to retrieve these data to illustrate this possibility.

TABLE X - DEMONSTRATION EXAMPLES

		A		В	c	D	E	F	Idertif	ication,	Plot		Plot			
Example No.	Primary Sort On	Values Of	Secondary Sort On	Values of	Print (1)	Print (2)	1	Print (4)	Print (5)	Print (6)	x	Y	No. Peints	Sucan Tape		See Fig No.
1	Max. 1st Mode Peak+to-Tro.	22.0 ks1			Max. W.I. Peak-to-Tro.				Tape Ref. No.	Interval No.	A	²	859	Full I	Bridge	7
2	•	•			Rel. Wave Direction	Rel. Swell Direction			•	н	A	С	843			8
3	•	•			Beaufort Sea State				•		С	A	857	•	•	9
4	•	-			True Wind Speed					ri	A	c	852	•	-	10
5	"	a			RMS-W.I.				7	H	A	C	859		-	11
6		9	<u> </u>		Draft-IND				42	н	A	c	239			12
7	Pi	M N			Eng. RPM	Eng. RPM Next Int.	Ship Speed	Ship Speed Next Int.	49	n	A	ξ-F	290	-		13
8	n	-	1		Comments				9	b				n	a	-
9	Beaufort Sea State	<u>></u> 4	Rel. Wind Dir.	0 <u>≺</u> n <u>≺</u> 15*	RMS-N.I.				n	ŋ	A	C	1099	•		14
10	n 1	•	-	15° < n<45°	•				*	"	A	Ċ	1864	•	~	15
11	•	-	•	45° <n<u><75°</n<u>	•					24	A	c	1021	•		16
12		•		75° <n<105°< td=""><td>*</td><td></td><td></td><td></td><td>η</td><td>"</td><td>A</td><td>c</td><td>393</td><td>•</td><td>-</td><td>17</td></n<105°<>	*				η	"	A	c	393	•	-	17
13		,		105° < n <u>~</u> 135°	7				4		Α	C	138	•	"	18
14	P		"	135" <n<u><165°</n<u>	ĸ					"	A	C	-05	u	"	19
15	n		•	165* <n<u><180°</n<u>			· ·			"	A	c	60	•	U	20
16	Beaufort Sea State	<u>≥4</u>			Wave Height				μ	#	A	С	4528	•	ta ta	21
17	Pouting Code	01-05 00 y	Date Voyage Start	Oct-Har	Boaufort Sua State	True Wind Speed			•	•	C	ņ	1121	"	4	z≵
16	Gage Location	PORT			Rel, Wave Direction	RMS-W.I.				n	¢	D	1236/ 1675	Half I	Bridga	23
19	4	ST8D						}	4		Ç	G	868/ 1521		H	24
20		PORT			Rel. Swell Direction	₩ ₩			<u> </u>		7	ð	852/ 1358	<u> </u>	P	25
21		STRD	-1/2()		•		a and the state of				¢	D	678/ 1296	•	8	26

IV. RESULTS

The initial objective of this study has been realized through the processing of all applicable data from the four vessels. The results are evident primarily as the digitized magnetic tape. However, in satisfaction of the requirement that the data be in retrievable form for subsequent evaluation, a series of demonstration examples proved that the required data were actually on the data tapes and in a form suitable for subsequent acquisition of selected information for further study. The results of these illustrative examples were intended only to demonstrate several possible ways in which data can be retrieved and to illustrate possible presentation or utilization of the data from the demonstration examples, nor was there any intent to use these examples to study any particular physical phenomena. The results of the twenty-one examples are given in subsequent paragraphs, but conclusions are drawn only relative to the satisfactory retrieval of data, and not to interpretation or meaning of the result themselves.

The results are presented in two ways; namely, a complete printout of pertinent data, and plots of data (where applicable) for each example. Because of the extensive amount of printout, a complete printout of all examples is not incorporated in this report. Rather a typical printout (for Example 1 as identified on Table X) is shown as Table XI. (Copies of other printouts are available from the Ship Structure Committee.) Included are the identification of ship/voyage/interval of each data point, and the maximum values of first-mode and of wave-induced peak-totrough stress. These stresses are plotted in Figure 7 as abscissa and ordinate. Figures 8-26 present the results of the remaining examples.

As a consequence of reviewing the results of the demonstration examples, it was obvious that further study would be required to verify the validity of certain of the first-mode data (e.g., Figures 7-13 display several data points at very high apparent first-mode stress levels). Initial investigation indicated that these signals result from spurious transients which have considerable energy in the first-mode frequency filter bandpass. Comparison of a few of the original analogue signals with the corresponding filtered digital signals clearly indicate that noise transients (obviously of significantly differing shape and duration than the firstmode bursts of interest) are faithfully reproduced on the digitized record. The criteria used to determine the first-mode bursts did not discriminate between actual first-mode bursts and the spurious transients and thus listed both. These, in turn, being on the data tapes and summary tapes, were retrieved in the examples. Experience with the first three tape-recorder installations on these vessels indicated that the design of the tape tension arms, the horizontal tape-reel axes, and unsuitable mounting combined to create transients on the data tapes as a result of impact on the vessel or the transport system (for further discussion see Ref. 10). This problem applies only to first-mode data from the SS HOOSIER STATE, the SS MORMACSCAN, the SS CALIFORNIA BEAR, and early data from the SS WOLVERINE STATE. No reservations need be entertained about data other than the first mode.

The results reported herein are based on the information presently contained on the data tapes and the final summary tapes, and no attempt has been made to delete or suppress any information at this time. Each data point has been plotted with an "X" symbol, and in many cases of identical values, overprinting has resulted. No attempt has been made to produce "dot" plots which would show the number of overprints; however, these data are available on the printouts. The number of actual data points plotted on the several figures is included in Table X.

The required data retrieved from the Final Summary tapes were sorted, in most cases, in ascending or descending order of one of the variables before printing or

TABLE XI - PRINTOUT OF EXAMPLE NO. 1

FULL BRIDGE DATA ONLY

CODE 1. MAX 1ST MODE Partnet OPEARED SHELL HEREIN

CODE 14	MAX 1ST MODE P-TO	-T GREATER 2KSI VER:	SUS MAX W.I. P-TO-T	CODE 1.
VOYAGE	INTERVAL	MAK WAVE IND.		VOYAGE
1.0.	80.	PEAK-TO-TROUGH	MAX 1ST MODE	1.0.
183H1→1	01920	100	PEAK-TO-TROUGH	215W1-1
30MM51+3	016130	2350	2000	31MH51-3
141H1-5	014010	2650	2000	155H1-1
31MM51-5	004065	3150	2000	33091-7
139H1-5	02402	3200	2000	21744-1
175H1-1	00849	3250	2000	25CB1-7
13911-5	024024	3600	2000	17484=1
25MH51-3	021250	4150	2000	34CB1=4
30MM51-1	02929	4300	2000	34681-4
175H1+1	01152	6600	2000	205#1-1
30MM51-3	011094	5250	2000	141H1-5
163H1-5	06506C	5350	2000	159H1-1
25CB1-4	00606A	5750	2000	163H1-5
227W2-1	00407C	5900	2000	30MMS1-3
21702-1	006094	5900	2000	237W1-10
217#2-1	005088	6350	2000	34091-4
161H1-3	0401	6400	2090	141H 1-3
163H1-5	04402	6500	2000	175H1-1
211W1-1	018165	6600	2000	14581-1
170W2-1	03938	6650	2000	14781-5
237¥1-7	04402F	5700	2000	35081-12
25CB1-4	00202	7000	2000	17492-1
173H1-1	02122A	7150	2000	151H1-5
163H1-5	065030	7350	2000	29081-3
175H1-3	031168	7550	2000	17484-1
31MH51-1	02824A	8700	2000	170*2-1
25681-4	00404A	8600	2000	23711-7
183H1-1	01516	400	2050	178×2-1
103H1-1	00405	1350	2050	175H1=3
14581-1	03666	2250	2050	32081-11
165H1-3	00212	2400	2030	23741-4
161H1-1	01262	2750	2050	170W2-1
25MMS1+1	0322¢C	2800	2050	34CB1-7
32C81→3	00201	3150	2030	17482-1
25MM51-3	023278	3600	2050	33CB1-8
163H1-1	05449	3800	2050	141H1-3
31MM51-1	01714E	3600	2050	31MH51-1
38MM51-4	03291	4200	2050	32081-3
29CB1-3	027246	4650	2030	14341-3
32C81-3 165H1-3	01009E	4800	2050	25MMS1-3
237W1-10	01727	4850	2050	25MM51=3 151H1=3
32CB1=3	07508	5000	2050	163H1=5
21782-1	01009	5100	2050	177H1-1
21782-1	00407 01406	5150 5150	2050 2050	32081-3
25001-3	00411	5350	2050	25MM51-7
151HI-5	04411 04537E	5650	2050	211W1-1
196W2-1	045372	3650	2030	108/2-1
177H1-1	01549	5800	2050	25CB1-7
25MMS1-7	00202A	5650	2050	151H1-5
Paramor-1	002024	2020	50.00	avana-3

								E DATA			
		MAX	157	NODE	P-TO-T	GREATER	2K51	VERSUS	HAX	Wels	P=10-1
VOYAGE		11	NTER!	AL.		MAX WAY	E IND				
1:0.			NO,			PEAK-TO		е бы	DC AL	(1ST	TAOUGH
1591-1		01	3807	4		600		un	F C AP	2050	INDUGN
1MMSL-		0.	1260	2		605				2050	
55H1-1		- 04	1765			640				2050	
3091-7		0:	3940/	h		605				2050	
1784-1			3739			700				2050	
5CB1-7			2003(:		740	i i i			2050	
7484-1			909			850	0			2050	
4CB1=4			003			925				2050	
4061-4			902	4		195				2050	
0581-1			103			45				2100	
41H1-5 59H1-1			419			95				2100	
63H1~5			9791			220				2100	
OMMS1-			321			220				2100	
37W1-1	\$		3110	-		350				2100	
4091-4			9125			400				2100	
4181-3			4110			420				2100	
75H1-1			240/	•		425				2100	
4581-1			255			465				2100	
4781-5			1043			475				2100	
5081-1			2010			525				2100	
7492-1	£		3863			545				2100	
51H1-5			436			570				2100	
9081-3			442	L		585				2100	
7484-1			5051			605 620				2100	
70-2-1			1514	•		620				2100	
3741-7			1010	•		440				2100	
78x2-1			469/			650				2100	
75H1=3			017	•		665				2100	
2081-1	1		701/			710				2100	
3741-1			927			730				2100	
7092-1			726	•		770				2100	
4CB1=7			0091	f		925				2100	
7482-1			553			985				2100	
3CB1-8			004			360				2150	
41H1-3		01	5430			390				2150	
1MHS1-	1	01	1111			390				2150	
2081-3		00	8070)		435				2150	
29₩1-4		- 68	12304			440	ò			2156	
43H2-3			631			440	٥			2150	
5MMS1-	3		5298			460				2150	
51H1-3			1011			490				2150	
63H1=5			402/			500				2150	
7TH1-1			348			510				2150	
2081-3	_		0090			510				2150	
SMM51-			1070			540	0			2150	
1 1 1 1 - 1											

02851E

03620A 04335A

2150 2150

2150

TABLE XI-2

CODE 1. MAX 1ST MODE P-TO-T GREATER ZKSI VERSUS MAX W.I. P-TO MAX WAVE IND. PEAK-TO-TROUGH 6500 7050 7700 VOYAGE INTERVAL VOYAGE 1.00 151H1-3 151H1-3 217W5-1 29C81-3 29C81-3 174W5-1 34C81-7 183H1-3 183H1-3 NO. 00505A 061020 04644A 05206 04848A 06110C 04125 00607 \$350 10350 163H1-5 139H1-5 31MM51-1 37MM51-4 2150 2500 3600 3600 3650 4700 02503E 01513C 03236 163H1-1 139H1-3 175H1-3 175H1-3 175H1-1 05954A 02122D 02544 04001A 4950 5500 5500 106H2-1 32CB1-7 237#1-10 211#1-1 \$150 02018D 217W2-1 34C81-7 174W3-1 217W2-1 29C81-4 237W1-7 00508D 6750 6800 7250 2200 2200 2200 2200 004070 054068 06301 2200 34CB1-7 34CB1-7 174W2-1 34CB1-7 05201F 9550 9550 04110F 34C81-7 25MM51-5 139H1-5 24C81-3 139H1-5 139H1-5 139H1-5 163H1-1 183H1-3 25MM51-3 145H1-3 141H1-3 141H1-3 01514E 2250 2250 2250 2250 2250 2250 05048 03808C 2150 2400 2900 3050 3100 3350 3800 3830 4100 023018 056510 02204 02428E 2250 2250 2250 2250 2250 02108A 5350 5600 141M1-3 25MM51-3 163H1-5 217W4-1 217W4-1 217W4-1 151H1-5 174W2-1

2250 2250

00811D 03314 04335C 00807A

FULL BRIDGE DATA ONLY

TABLE XI-3

TABLE XI-5

FULL BRIDGE DATA ONLY

TABLE XI-6

FULL BRIDGE DATA ONLY

25-

FULL BRIDGE DATA ONLY

CODE 1. MAX 1ST MODE P-TO-T GREATER 2KSI VERSUS MAX Wele P-TO-T CODE 1. MAX 1ST MODE P-TO-T GREATER 2KSI VERSUS MAX W.I. P-TO-T CODE 1. MAX 1ST MODE P-TO-T GREATER 2KSI VERSUS MAX W.I. P-TO-T VOYAGE INTERVAL MAX WAVE IND. PEAK-TO-TROUGH VOYAGE MAX 15T MODE PEAK-TO-TROUGH VOYAGE INTERVAL MAK WAVE IND. MAN 1ST MODE PEAK-TO-TROUGH INTERVAL MAX WAVE IND. MAX 1ST MODE 1+D+ 32C91-3 I.D. 29081-4 34081-7 ND. PEAK-TO-TROUGH 9700 NO -I.D. NO. PEAK-TO-TROUGH 7400 PEAK-TO-TROUGH 00605E 05004A 17493-1 04646A 03017C 2250 25MMS1=7 00404C 03131 05102F 175H1-3 19003-1 183H1-3 139H1-5 2400 163H1+5 21794-1 174#2-1 7950 8050 197#3-1 2500 2500 2500 2500 163H1=9 04133A 04104A 29081+3 151H1=5 31MMS1=5 29051-3 34CB1-4 151H1-5 34CB1-7 25MM51-7 05909A 384M51=4 314M51=5 2300 2300 2300 2300 2300 2300 139H1-5 02703A 34C51-7 35C81-12 05706A 165H1-3 314051-5 38MH51-4 32C81-3 163×1-5 29MH51-3 6400 7450 2800 139H1-3 175H1-1 29C81=7 237w1=7 03245A D2728F B6402C 32CB1=3 147H1=5 00908E 4 800 13941-5 02301C 4500 4750 4900 17252-1 145H1-3 16381-5 25MMS1-3 155H1-1 25MM51-3 163H1-5 07109A 35081-12 03104D 2400 2400 32C01-3 25MH51-3 29CB1-3 01216A 155H1-3 217W3-1 5450 19083-1 5650 01305B 25MHS1=7 17042-1 28CB1-3 145H1-1 188-2-1 16141-1 151H1=3 237W1=7 7900 32C81-3 25M451-3 163H1-5 33C81-8 217W3-1 8000 8500 34C51-8 163H1-5 31MH51-5 33CB1-8 00303C 01103E 2300 2300 2350 2350 06503A 2550 2550 2550 2550 231W1-4 172W2-1 197w2-1 25C81-4 198#2-1 20C81=4 175H1=1 00303F 29C81=3 175H1=3 29C81=3 7050 161H1=1 139H1=5 027056 03118A 02122B 29C81=4 103H1-1 175H1=3 29C81-3 35C81-7 04113E 31MM51-1 2350 2350 151H1-5 32M451-3 175H1-3 141H1-5 17492-1 03902E 30MMS1-1 00237A 34081-4 02402D 07311 3100 139H1-5 2400 2950 29CB1-4 139H1-5 03909E 14181-1 4100 163H1-5 01341E 16541-3 3300 3700 4000 139H1+5 141H1=5 147H1=3 13941-3 2450 161H1-1 31MMS1-5 00606C 151H1-5 25HH51-7 04234C 00707A 30MMS1-3 25MM51-1 37MM51-4 2600 2600 161H1=1 163H1-5 149H1-1 07008A 151H1-5 25MMS1-5 147H1-5 01202A 00303 4100 4850 2150 2350 33081-7 174W4-1 2°C81-4 5700 2350 2350 2350 2350 2350 2350 00404B 151H1=5 175H1=9 5250 05610E 03320A 215#1-1 00404A 005050 151H1-3 29081=3 211W1-1 6400 6400 34CB1-4 151H1-3 237W1=10 07204A 174W3-1 163H1-5 04646C 08523 11MN51#1 04126A 059080 16161-5 34681-7 211W1-1 2350 2350 13941=3 01718A 7650 17493-1 32081-3 29681-4 05509A \$350 197₩2-1 019404 34081-4 05013F 12600 2600 2650 231W1-1 141K1-3 175H1-3 149H1-1 01341B 02714A 34CB1-6 211W1-1 174W4-1 01715D 139H1-5

FULL BRIDGE DATA ONLY

TABLE XI-7

VOYAGE

FULL BRIDGE DATA ONLY

CODE 1. MAK 15

MAK 1ST MODE P-T	0-T GREATER 2KST VERS	SUS MAX MEIN POTONT	CODE 1:	MAX 1ST MODE	P-TO-T GREATER 2KSI VERS	US MAX NoIs P-TO-T	CODE 1.	MAX 1ST MODE P	-TO-T GREATER 2KSI VERSUS MA
INTERVAL			VOYAGE	INTERVAL	MAX WAVE IND.		VOYAGE	INTERVAL	MAX WAVE IND. M
NO.	DEAK-TO-TROUCH	MAX 1ST MODE PEAX-TO-TROUGH	1.0.	NO.	PEAK-TO-TROUGH	NAX 1ST MODE PEAK-TO-TROUGH	I.D.	NO.	PEAK-TQ-TROUGH PE
0186B	2900		139H1-5	02503F	2000	PLACETOFILLUGH	29081-4	050040	7100
01323	3550	2650	139H1-5	02604D	2250	2000	17892-1	04065 01412 05403C 05307 042348	7150
01767	3700	2650	175H1-3	04026A	3050	2800 2800 2800 2800	21191-1	01412	7550
01516A	4000	2650	13941-5	038088	3200	2800	34091-7	054030	6500
06055	4000	2650	24MH51-5	03734	3200	2200	29081-4	05307	8950
02226A	4000	2650	161H1=3	02806	3750	2600	151H1-5	042349	3150
01424	4150	2030	31MM51-5	00404A	4500	2600	22MM51-3	00505	3150
059548	4450	2650	32CB1-3	00908D	4600	2600	147H1-1	02751	3600
02623A	4550	2650	175H1+3	027148	4750	2800	21784-1	01337	4800
01415A		2650	21783=1	01305F	4900	2800	31MMS1-5	005050	4950
00262	5050	2650	11MM51-3	04227		2800	149H1-1	03152	5100
00910A	5200	2650	314851-5	00404E	4950	2800	165H1-3	04355	5100
	5750	2650	16981-3	03444	4950	2800	161H1-3	04422	5550
05927	5950	2650	217W2-1	00304	5000	2800	190#3-1	01515	
03104E	6000	2650	33CB1-8	00306 03725A	5000	2800	25CB1-7	01515 03518E	6650
05908B	6650	2650	14981-1	031258	5150	2800	29CB1-3	017245	7750
03736	6700	2650	141H1-3	03062 01240B	5200	2800	29CB1-4	02724C 050D4E	6500
04214E	\$750	2650		012408	3500	2800	14141-1	03104	8750
01552	7100	2650	30MMS1-1	027270	5550	2800	30MM51-1	02308 02727C	3000
00404D	6500	2450	147H1-1	01337	6000	2800	215W1-1	027270	3800
002020	8700	2650	29CB1-4	057118	6150	2600	32081-3	01312 010098	4100
06503A	10150	2650	29681-7	02134	6500	2600		010048	5150
065248	2300	2700	34681-7	06009A	9250	2000	198W2-1	02323 04537C	5450
025030	2400	2700	25CB1-4	60404C	9250	2800	151H1=5	045370	5550
01601A	2700	2700	139H1=5	03808	9250 1500 2500	2800 2800 2850	231W1-4	02443	5750
03909	2900	2700	13941-5	03909A	2500	2850 2850 2850 2850 2850	23141-4	02140	7600
00101	3750	2700	141H1-5	02510	2600	2850	25CB1+4	00505A	8150
009088	3850	2700	183H1+3	03417	3000	2850	188W2-1	027508	8900
03343	4500	2700	16381-5	08927A	3300	2850	29081-4	05105A	6950
00505C	5300	2700	175H1-1	027288	4400	2850	34081-7	060098	9100
06301A	5500	2700	17492-1	01009	4650	2850	34(81-4	03801A	10150
0630IB	5650	2700	165H1-3	03747	4650	2850	34081-4	03902D	11650
05706C	6200	2700	32081-3	01110C 060558	4450	2850	16341-5	08422A	2800
05509B	6450	2700	163H1-1	060559	5000	2850	155H1-3	00801A	4700
06301E	6750	2700	31MM51-5	00404	5190	2850	31MMS1-5	00505	5050
057110	7150	2700	30MM51-1	02828A	5300	2850	25MM51-3	024284	6000
05504C	7200	2700	25MH51-7	00707B	5350	2850	21581-1	00505 02428A 01918B	6700
059060	7500	2700	25CB1=7	035168	5650	2650	151H1-3	00606D	7300
059060		2700	29081-7	05901A	7350	2440	163H1-5	06604A	7300
01429C 04214	7900	2700	147H1=5	101218	7150	2850	29CB1-7	03346	7450
	8050	2700	25081-7	018018	7350 7500	2650	217w2-1	03346 00609E	7500
02604C	2050	2750	29081-3	01209	8400	2850	29CB1-4	04903	9650
08725	2000	2750 2750	29681-4	051050	9450	2650	34081-7	052010	9850
02171	2600	2750	139H1-5		9450	2890	141H1-5	03217	1600
00807C	3750	2750	29MM51-5	02503A	2550	2900	31MMS1=1	056104	2600
03718	5050	2750	520H3-3	013138	2600	2900 2900	163H1-1	01513A 056518	
01204F	5400	2750	139H1-3	019200	2950	2400	163H1-5	08626	3350
00605C	5650	2750	31MM51-5	00606	3750	2900		00040	3400
02851B	5700	2750	165H1-3	01525	4500 4850	2900 2900	165H1-3 25MMS1-3	00313	3450
012150	6550	2750	175H1-3	02815	4850	2900		012168	3550
00706C	10900	2750	35CB1-12	03306C	0008	2900	32CB1-3	01110E	3700
00101	12550	2750	175H1-1	021220	6900	2900	175H1-1	02728D	3900

TABLE XI-9

. FULL BRIDGE DATA ONL

TABLE XI-11

TABLE XI-12

FULL BRIDGE DATA ONLY

CODE 1. MAX 1ST MODE P-TO-T GREATER 2KSI VERSUS HAX W.I. P-TO-T CODE 1. MAX 1ST MODE P-TO-T GREATER 2KSI VERSUS MAX W.I. P-TO-T

: FULL SRIDGE DATA ONLY

FULL BRIDGE DATA ONLY

CODE 1. MAX 1ST MODE P-TO-T GREATER 2X51 VERSUS HAX W.L. P-TO-T

CODE 11	HAA IST MUUL PE	10-T GREATER 2KSI VERS	US MAX Wels P-TO-T	CODE II	WAY TOL WODE I	P-TO-T GREATER 2KSI VERS	US MAX Wele P-TO-T	CODE I	MAN 1ST MODE P	P-TO-T GREATER 2X51 VERSU:	5 HAX WELE POTO-1	t
VOYAGE	INTERVAL	MAX WAVE IND.		VOYAGE	INTERVAL	MAX WAVE IND.		VOYAGE	INTERVAL			
1.0.	NO.	PEAK-TO-TROUGH	MAX 1ST MODE	1.0.	NO.	MAA WAVE IND.	MAX 15T MODE	1.0.	NO NO	MAX WAVE IND. PEAK-TO-TROUGH	MAX 1ST MODE	
31MMS1-5	00303A		PEAK-TO-TROUGH	31MM51-5	00606A	PEAK-TO-TROUGH	PEAK-TO-TROUGH	I+D+ 304451-1	ND. 01246	PEAK-TU-TROUGH	PEAK=TO=TROUGH	
217+2-1	003060	3900	3100	29081-7	0.0000	4500	3250	30443141	01246	5000	3450	
		4700	3100	23001-1	50417	5450	3250	20742-1	01619	5550	3450	
172w2-1	02526	5000	3100	174W3-1	02629	5600	3250	29MMS1-3 25MMS1-7	00809A	3150	3500	2
15101-5	045378	5050	3100	211W1-1	01816F	6400	3250	25MMS1-7	006069	6160	3500	7
16581-3	01727A	5250		29681-4	01816F 05105D	8800	3250	15581-1	006664	6700	3500	- T
33081-8	03927A	5300	3100	29081-4	047010	9800	3250	151H1-3	003036	3150 5150 6750 8700	3500	
34081-7	05605D	5300 5550	3100	34081-4	05114A	11350	3250	34651-7	083038	6750	3500	
35081-12	032058	5600	3100	163H1-5	08624A	2050	3250	34681-7	053020	8700	3500	
15081-12	03306D	5601	3100	29MM51-3	01415E	4650	3300	34C81-7 34C81-7	00609A 006069 006669 00303C 053028 05302A 05403 04903D	9250	3500	
211w1-1	000000	5850	3100	31MMS1-5	002028	4630	3300		05403	9900	3500	
	02018C	6350	3100	214431-2		4750	3300	29CB1-4	049030	11100	3500	
163H1-5	06402C	6700	3100	165H1-3	03545	5100	3300	139H1-5	02907 00101A 01009F	2050	3550	
32081-4	03216E	6900	3100	151H1-5	04436A	5800	3300	29MMS1-5	00101A	3900	3550	
165H1-3	04456	2300	3150	34681-7	05403Å	9000	3300	32081-3	01009F	4250	3550	
16541-3	02434	2950	3150	174₩2-1	05250A	9200	3300	141H1-5	03015	4600	3550	
139H1-5	02434 02402C	3850	3150	29081-4	04802E	9650	3300	32081-3	03015 01009Å	5150	3530	
165H1=3	00818	3950		139H1-5	02806	1300	3300	151H1-5	043358	5600	3550	
32091-3	00807A	4500	3150	1308185	02000	2050	3350	16341-5	065038	2600	3550	
197#2-1	03925		3150	139H1-5 25MM51-3	04010A 02125C	4800	3350	10301-3	065038	8400	3550	
35081-12	03306	5850	3150	28081-3	009100	3000	3350	21701-1	00908A	9500	3550	
175H1=3		5900	3150	151H1-5	046388	3000	3350	235W1-10	01016 05002 03421A 04102A	1500	3600 3600	
2371-4	030175	6600	3150	29081-4		5900	3350	147H1=3	05002	3350	3600	
	05320A	8400	3150	29001-4	05307A	7100	3350	175H1-3	03421A	4600	3600	
159H1-1	02966	1000	3200	151H1-3	003038	7750	3350	32CB1-7	04102A	5450	3600	
129H1-5	03808A	2050	3200	34CB1-7	05908E	9450	3350	25CB1-7	01902C	5700	3600	
163H1-5	07513	2150	3200	151H1-5	03324	1700	3400	29081+4	01902C 05408A	6650	3600	
145H1-1	02355	2250	3200	139H1=5	02705E 02604E	1750	3400	237#1-7	065030	6900	3600	
25MM51+3	01216C	3300	3200	139H1-5	02604E	1800	3400	36081+7	052010	7900	3600	
30HM51-3	02118	3500	3200	163H1=5	08624	2150	3400	34C81-7 25C81-4	06503D 05201C 00202B	9250	3600 3600	
14761-1	03458	3600	3200	29MM51-5	01913E	2600	3400	151H1-5	01404	1700	3650	
235W1-4	02628	4000		38MM51=4	03756A	3050	3400	29MM51-3	01606 005068 00505A	1700	3650	
314451-5	006066	4450	3200	29MM51-3	005060	3950	2400	31MMS1-5	005060	3500	3650 3650	
175H1-1	027250	4490	3200	32CB1-3	00706Å	4650		310031-3	00505A	4850	3650	
30M451-1	027200	4650	3200	31MM51-5	007008		3400	172W2-1 211W1-1	02324	5200 6650	3650	
	002378	4700	3200	314491-3	005058	4750	3400	211W1-1	01311A	6850	3650	
33C81-7	00363A	5050	3200	147H1-3	07770	5050	3400	21792-1	02324 01311A 00506A	7150	3650	
33CB1-7	00363	5350	3200	34CB1=7	03504E	5250	3400	34081-4	03801	9950	3650	
203w1-1	03332	5750	3200	175H1-1	02223A	5350	3400	34081-4	03801 03902C	10900	3650	
175#1-3	03219	6150	3200	23701-4	051188 01314E	5500	3400	139H1-5	028065	2050	3700	
30CB1-4	03903A	6200	3200	29MM51-3	01314E	5750	3400	139H1-5	02604A 089278 005018	2650	3700	
29081-4	05610A	6950	3200	175H1-3	01704	5800	3400	163H1-5	089275	4050 4350	3700	
217W1-1	00706B	7350	3200	35CB1-12	032050	6050	3400	155H1-3	006018	4350	3700	
25MMS1-5	01514D	8350	3200	29CB1-4	05711A	6500	3400	163H1-5	06503C	7000	3700	
197W2-1	03521	8400	3200	25081-7	03516C	6800	3400	217-2-1	00407A	7100	3700	
34CB1-4	04912B	8700	3200	25C81-7 174W2-1	04947	8250	3400	21/82-1	004076	1100	3700	
17042-1	01817	9050		34081-7	05201	9700	3400	34081=7	092018	0006		
35C81-7	04012E	0100	3200	12141-6		1400		29091-4	052068 049038	11150	3700	
163H1-5	08119	9100 1650	3200	151H1-5 147H1-5	02414	1600	3450	29C81-4 175H1-3	049035	11500	3700	
		1050	3250	14/111-0	11233	1100	3450	175H1=3	03825	1700	3750	
14141-5	01601	2800	3250	151H1-1	02441A	3200	3450	14181-5	02409	2950	3750	
13981-5	039098	2850 3350	3250	30MMS1+3	01311A	4000	3450	31MMS1-5	00303D	4850	3750	
16321-5	071098	3350	3250	163H1-5	08927	4050	3450	32081=3	00706C	4850 4850	3750	
31MMS1-1	01714A	3400	3250	163H1-1	06055A	4700	3450	29MMS1-3	014155	5500	3750	
141H1-3	01139	3600	3250	151H1-5	03930A	4800	3450	29%MS1-3 31MMS1-5	00404C	5650	3750	

TABLE 2	XI-	13
---------	-----	----

FULL BRIDGE DATA ONLY

TABLE XI-15

FULL BRIDGE DATA ONLY

FULL BRIDGE DATA ONLY

CODE 14 MAX 1ST HODE P-TO-T GREATER 2451 VERSUS MAX Wals P-TO-T

CODE 1. MAX 1ST MODE P-TO-T GREATER 2KS1 VERSUS MAX W.I. P-TO-T CODE 1. MAX 1ST MODE P-TO-T GREATER 2KS1 VERSUS MAX W.I. P-TO-T VOYAGE INTERVAL VOYAGE INTERVAL MAX WAVE IND. PEAK-TO-TROUGH 3050 VOYAGE INTERVAL MAX WAVE IND. PEAK-TO-TROUGH MAX WAVE IND. MAX 1ST MODE MAX 1ST HODE MAX 1ST MODE 1.D. 29MMS1=3 I.D. NO. I.D. ND. PEAK-TO-TROUGH PEAK-TO-TROUGH PEAK-TO-TROUGH NO. PEAK-TO-TROUGH 163H1-5 29MM51-3 08626E 01204E 05219 04113F 21783-1 6400 6750 4500 4550 4550 29MH31=3 197W2-1 29C81-4 32C81-11 29C81-4 237W1-4 35CB1-7 01415C 028268 03824 4300 3750 4100 304HS1-1 34CB1-7 4550 9100 9750 05701 8000 8500 29CB1=4 163H1=5 04802A 05701F 052014 7750 4100 3750 235W1-10 151H1-1 01521 088260 3150 3400 04802 6750 4400 4600 4600 2350 4300 1500 163H1-5 29CB1-4 08826B 29MM51-5 188W2-1 01414E 01331 4450 7150 9950 2 800 4150 4150 3600 217w2=1 139H1=5 00306C 02705D 053078 3800 02467 5000 175H1-3 149H1-1 217W2-1 29081-4 051055 03320B 4690 4150 4150 3400 29MMS1-5 141H1-5 01904 2650 6850 7550 45.30 01313A 3450 3850 02546A 31MM51-5 4100 3000 5050 1800 4650 4700 4700 4750 141H1-3 175H1-1 4250 00407E 03264 004048 01341 3450 4150 4200 4200 145H1=1 217W2=1 147H1-3 175H1-1 08073 00950A 02728A 4200 9350 8700 3850 15CB1+7 04214F 02815 5100 00609C 017158 3850 211W1-1 34CB1-7 175H1-3 15101-5 03526 3850 4200 35081-7 042148 6200 7800 061106 11200 35081-7 0421AC 6850 2700 4750 197W2~1 151H1-5 25MM51-3 03122 235W1-10 139H1-5 02228 03319 3850 4250 2550 4100 2900 3500 4150 29081-4 29081-4 151H1-1 04903C 10000 011158 3150 4800 02224 25MMS1-3 022260 235W1-4 4800 4200 4250 4250 10650 3850 35081-12 17222-1 04966 3900 06667 5250 197W2-1 27C81-4 5400 5950 27CB1-4 151H1-5 34081-4 9900 04632 02709 03902F 3900 4550 A250 29C81-4 217W2-1 04701E 02709A 04537A 01702F 6750 1530 4250 3900 4100 8000 1290 1700 2050 3550 34C81-7 235W1-10 00306E 05149A 05302F 141H1-5 5550 4650 3900 17492-1 03545 3950 3950 139H1-5 02301E 2650 4300 \$100 4650 141H1=5 141H1=5 29MM51-3 145H1-1 007080 34081+7 06110 03125D 10000 4650 016015 4300 31MM51-1 29MM51-5 014030 3950 3950 4100 4300 4450 3300 3603 4900 163H1-5 07210 217#2-1 004078 013130 6300 25MM51-3 183H1-1 01115A 16341-5 D8725D 175H1-3 4700 4350 4350 1900 3950 03421 25MM51-5 170#2-1 17484-1 00404E 04526A 4900 009068 6050 3950 01254 4300 25HH51-3 021258 8150 3950 3950 5100 02322 7500 6350 34C81-4 050130 3900 29C81-4 29C81-4 04701A 9300 165H1-3 01020 3950 4950 4350 215W1-1 01914A 34051-4 033018 12300 3950 068020 10300 4350 4350 4950 27CB1-4 34CB1-7 235W1-10 061108 25MM51=7 00404A 06806A 4650 5000 02608 12300 4350 163H1-5 175H1-3 01906 5600 4000 02817 1550 4400 5000 145H1-3 141H1-5 02939 141H1-5 151H1-5 31HM51-5 6350 1900 617028 2050 5050 00303E 4000 4000 4000 4000 25CB1-7 29CB1-4 020038 6700 7400 8500 017028 1950 4400 044340 5950 5050 235W1=10 217-2-1 01622 3300 4400 235W1-10 235W1-10 02024 2400 5100 01412A 04003A 003068 3000 21191-1 4650 175H1-3 31MM51-3 02714 32C81-3 29C81-3 00605A 04543C 5100 34081-4 10650 4250 4400 5050 8900 2050 2250 32CB1=3 ODGOBC 3900 4000 4100 4400 4400 139H1-5 235W1-10 35CB1-7 175H1-3 35CB1+12 29C81-3 16381-5 08725B 4050 03407A 02926A 7150 4400 02806A 02634 5150 5150 4050 8650 29MMS1=3 007084 4400 4350 4050 163H1-5 31MH51-5 08422 003038 04012A 03219A 3050 6250 5150 5150 15141-3 00910A 3650 4450 5150 163H1-1 05348C 4450 6900 7450 7600 8350 35081-7 041130 4050 186W3-1 34C81-7 01818 6430 8200 4450 29081=4 05206A 10600 4150 2150 5200 141H1-5 235W1-10 29781-4 055090 4050 4050 4050 4450 4450 02411 02329 045438 29081-3 17292-1 061624 8250 183H1-3 147H1-1 25MHS1-3200 145H1-3 01828 4450 5200 5200 03720 4500 29CB1-4 29681-4 04802D 014148 9500 2650 4050 02549 00303D 4000 4500 31MM51=5 00505E 5100 35CB1=12 139H1=5 174W2=1 5300 7300 4500 03407 6350 2100 5200 5250 29MMS1=5 159H1-1 25MM51-3 01148 02125A 4350 A100 15181-5 06537 4500 4100 29CB1-7 032458 8200 4500 008075 6600 5250

28-

TABLE XI-17

. FULL BRIDGE DATA ONLY

CODE 1, MAX 15T MODE P-TO-T GREATER 2KSI VERSUS MAX W.I. P-TO-T

FULL BRIDGE DATA ONLY

CODE 1. MAX 15T MODE P-TO-T GREATER 2KSI VERSUS MAX W.I. P-TO-T

							an curv sette baildal				
VOVAGE	INTERVAL	MAX WAVE IND.	MAK 1ST MODE	VOYAGE	INTERVAL						
I+D+	NO.	PEAK-TO-TROUGH	PEAK-TO-TROUGH	I.D.	NO.	MAX WAVE IND.	MAX 1ST MODE				
151H1=3	00708	7100		139H1-5	028065	PEAK-TO-TROUGH	PEAK-TO-TROUGH				
174₩2-1	05654A	9400	5250	237W1-4	05927A	2100	6600				
170₩2-1	01918A	10300	5250	139H1-5	028068	6200	6400				
209¥2-1	00102	10300	5250	18141-1	020000	2000	6650				
235W1-10	01723	5050	5300	151H1-5 235W1-10	011018	3900	6650				
35081-12	03306F	3700	\$350	20001-10	02127	2650	6700				
29081-4	04701C	7200	5350	235W1-10	02735	1800	6750				
34081-4	038010	10150	5350	235#1-4	02426	4150	6800		TADLE	VT 10	
14181-5	01702	14650	5350	175H1-1	01051	4350	6900		IABLE	XI-18	
163H1-5		2100	5450	141H1-5	01603B	1850	6950				
	08826A	3150	5450	17442-1	05351A	7600					
21742=1	00306A	4600	5450	139H1-5	02604F	2400	6950				
31HRS1-5	004040	3900	5450	139H1-5	02503B	2350	7000				
34681-7	05302C	10800	5450	25MM51=7	00707D	3750	7050				
141H1-5	01702A	1800	5500	151H1-5	04031		7050			FULL BRIDGE DAT	
139H1-5	02806F	2000	5500	21784-1	02101A	2100	7100			FOLL BRIDGE DAT	
33C81-8	03826	5350	5500	21711-1	009088	7050	7100	CODE 1. MAY 10	T HOOT D-TO-	F GREATER 2KSI VERS	
235W1-10	00915	1010	5550	235W1-10	02938	12250	7100	CODE 11 PRA 15		ORCATER TRAT VERS	US MAX Wele Peront
141H1-5	03318	1300		14101-5	02106	1300	7200				
170W2=1	02221		5600	141H1-5 235W1-10	02431	2150	7300		RVAL	MAX WAVE IND.	MAX 1ST MODE
165H1-3	00616	8500	5600	14181-5		2500	7300	I+D+ NC		PEAK-TO-TROUGH	PEAK-TO-TROUGH
163H1-5	067250	3600	5650	21191-1	018030	2190	7400	32CB1-4 0341		4900	11600
35CB1-7	040128	4200	5650	197W2-1	02018E	6650	7500	25MM51-5 0151		9550	12450
29CB1-3	04543A	4850	5650		03622	10350	7990	141H1-5 0180		2550	12500
16541-3		8700	5650	35051-12	03306B	6500	7600	170W2~1 0111		6500	13800
21744-1	00919	3050	5700	174W2-1	05553A	9700	7600	235W1-10 0131	19	2700	13850
182w2-1	04930A	5650	5700	235W1-20	03241	1150	7650	23591-4 0101		3250	13850
235W1-10	04356 01925	3950	5750	198₩2-1	02020	4050	7750	175H1-1 009		5500	15050
25MH51=7		2650	5600	141H1-3	01543A	4550	7750	174N3-1 0454	45C	6850	22200
235W1-10	004040	5500	5800	29051-3	04543	9350	7800	170/2-1 038:	97	10650	26850
14141-5	02533	2500	5850	139H1+5	02301	2550	7900	NUMBER OF DATA POIN	15 4 859		
14111-3	014018	2900	\$850	237#1-7	065065	5900	7900	NUMBER OF DATA POIN	15 - 859		
163H1-5	08725A	2900	5850	141H1-3	01601E	2700	8000				
170+2-1	01716	6700	5650	31MM51-3	04126	4800	5050				
155H1-3	01812	1000	5900	25HH51-7	00606C	5550	6100				
29081-4	04903A	\$500	5900	170-2-1	02019	8200	5200				
151H1-5	044360	4950	6000	15181-5	03425	4200	6250				
23741-4	05116A	5600	6000	14181-5	017020	2250	9000				
165H1=3	04254	5900	6000	25MH51-7	00606E	5450					
235W1-10	Q3140	1750	6050	139H1=5	038080	2650	9050				
141H1-3	00230	1150	6100	170₩2-1	01615	7000	9150				
141H1-5	01702C	1750	6100	141H1-5	01603E		9200				
25MM51-7	00505	5050	6100	17484-1	002020	2500	9490				
147H1-5	08302	4150	6300	141H1-5	01803A	1650	9500				
19792-1	03218	5900	4300	738W1-10	010034	2900	9950				
139H1-5	02604	2150	6400	235W1-10 25MMS1-7	01420	2300	10050				
139H1-5	02705	1800	6500	32081-3	00707E	4050	10150				
139H1-5	027050	2000	6500	14101-5	00706	5500	10200				
139H1-5	039090	2400	6500	141H1-5	02914	2100	10250				
139H1-5	02806D	2050		141H1-5	016010	2650	10500				
163H1-5	08826D	3700	6550	25HHS1-7	00202	5600	11000				
174W1-1	008114	9550	6550	151H1-5	044369	5650	11150				
	*****	9000	6550	14181-5	02005	2580	11950				

plotting. This served two purposes; namely, 1) to illustrate a more useful format if further detailed analysis of similar data were anticipated; and 2) provide for more efficient plotting. In some instances (e.g., Examples 18-21) an additional item of data was acquired from the tapes which could be used for further detailed sorting. Typically, each Beaufort Sea State (BSS) value could yield a plot of data, or, as in the cases of Figures 23-26, selected values of BSS could be combined for plotting.

Example 8 does not lend itself readily to plotted presentation, therefore, only the printout has been presented in this report (see Table XII). For illustrative purposes, additional information which could help in evaluation of this type of study has been included in the printout.

Review of Figures 7-26 indicates that, in some instances, definite trends appear. In other instances, no substantial pattern emerges, possibly due to the apparent loss from overprinting data. For a particular detailed analysis, alternate forms of presentation would be worthy of further investigation.

Figures 7 and 8 exhibit clearly the effect of establishing a lower limit (i.e., delete data less than 2.0 Ksi of maximum first-mode stress). It is evident that elimination of the higher first-mode stresses which are attributable to the spurious transients, and replotting of the data, to an expanded scale would improve the visibility. Again, alternate presentation formats should be investigated when performing a detailed analysis.

In Figure 9 is indicated the result of data missing from the logbooks. Data handling within the computer has been prescribed to substitute a value of zero if a data field were left blank. Thus, the indicated high stresses at BSS of zero are in reality an indication of lack of logbook data. The apparent high stresses at BSS of one are attributed to the spurious transients in the first-mode data.

The results given in Figure 12, are indicative of relatively sparse data on draft recorded in the logbooks.

The effect of experiencing first-mode slamming, as evidenced by possible action by the ship captain to change speed, introduces an interesting set of data (Figure 13). While the preponderance of data indicates little, if any, change in speed from one 4-hour period to the next, there does appear to be an incidence of increased speed. Review of the logbooks in these instances indicates some anomalies. In many cases the ship was hove-to when it experienced slamming, but the weather improved sufficiently during the next four hours to permit getting underway.

Figures 14-20, taken collectively, show the obvious trend that beam seas are avoided in heavy weather. Further refinement of these data, as for example, determining the average RMS stress for each BSS might be of benefit in analysis of such data.

Figure 21, as in previous results, does not indicate clearly where the bulk of the data fall due to overprinting of data points. A total of 4,528 data points have been plotted and the tabulation in Table XIII shows the degree of overprinting. From these data, the average observed wave heights have been determined and plotted as filled circles on the figure. The average heights appear quite reasonable, even though certain of the logbook entries are questionable and tend to bias the average (e.g., 16 data points actually recorded as 35 to 40 feet--which are plotted as 38 ft.--result from the inclusion of long intervals). Again, it should be noted that for these examples, all intervals (whether regular or long) are included, and thus tend to skew the statistical sample toward the severe weather conditions.

TABLE XII - PRINTOUT OF EXAMPLE NO. 8

TABLE XII-2

.

TABLE XII-3

CODE 6. MAX 1ST MODE PEAK-TO-TROUGH GREATER THAN 2KSTILIST CONNENTS

VOYAGE	INTERVAL	HAX 1ST HODE	COMMENTS
I.D.	NO.	PEAK-TO-TROUGH_	
139H1-5	02402	2000	PITCH ROLL MODERAT
139H1-5	02402A	2000	PITCH ROLL MODERAT
183H1-1	01920	2000	
163H1-5	06402	2000	
163H1-5	06503D	2000	HOVE TO
163H1-5	06806C	2000	PITCHING HEAVILY
17042-1	03938	2000	
217W2=1	004070	2000	PITCHING HEAVY
21792-1	005085	2000	PETCHING HEAVY
21792-1	00609A	2000	
21101-1	01816E -	2000	
237W1=7	06402F	2000	ROLL AND PITCH
25CB1-4	00202	2000	SEAS OVER BOW
25081-4	00404A	2000	DCC SLAMMING
23061-4	006054	2000	
30HM51-1	02929	2000	PITCHENG DEEPLY
31KM51-1	02824A	2000	LABORENG HOVE TO
25HMS1=3	021250	2000	HEAVY PITCHING HEAD
30KH51=3	01109A	2000	PITCHING MODERATELY
30HMS1=3	01613D	2000	VESSEL ROLLING EASY
3[MHS1=3	-006068	2000	PITCHING DEEPLY
175H1+1	02122A	2000	BOLLING YAWING HEA
175HI+1 "		2000	PITCH MOD NOLL EASY
175H1-1	01157	2000	
17541-1			PITCH HEAVY ROLL
14181-5	031168	2000	VESSEL HOVE TO
16141-3	016010	2000	SLAMMING
	04018	2000	REDUCES SPEED AVOID
195H1-1	00765	2050	PITCHENG HEAVELY
17781-1	01549	2090	
15181-5	04537E	2050	PITCH HEAVY ROLL EAS
18381-1	00408	2050	
183HL-1	01516	2050	
163HE-1	05449	2050	ROLLING AND PETCHING
17474-1	00909	2050	ROLLING PITCH HOD
217#2-1	00407	2050	PETCHING HEAVY
217W3-1	01405	2050	
21784-1	09739	2050	PITCHING ROLLING HE
198¥2-1	01018	2050	PETCH HOD
215W1-1	AT0800	2050	
23791-10	07504	2050	PITCH AND ROLL HEAVY
25CB1-3	00411	2050	
25081-7	020030	2050	
34081-4	03902A	2050	
34681-4	040018	2050	
29081-3	027248	2050	
32CB1=3	00201	2050	
32081-3	01009	2050	
32681-3	010095	2050	
33081-7	03940A	2050	
31MM51-1	01714E		
	011146	2050	ICING ON DECK MAT

CODE .	MAX 15T MODE	PEAK-TO-TROUGH	GREATER THAN 2K31+LIST COMMENTS
VOYAGE	INTERVAL NO.	NAX 1ST MODE PEAK-TO-TROUGH	

VOYAGE I • D •	INTERVAL NO.	MAX 1ST MODE	CORRENTS	VOYAGE	ENTERVAL	PEAK-TO-TROUGH GR MAX 1ST MODE	COMMENTS
29MM51-1		PEAK-TO-TROUGH		l e D e	NO.	PEAK-TO-TROUGH	
254851-3	03229C	2050	HEAVY SEAS	29681-4	05206	2150	PITCHING HEAVILY RE
	023276	2050	HEAVY ROLLING MOD LA	32681-3	008070	2150	
55KM51-7	002024	2050	ROLLING PITCHING LAB	32681-3	01009C	2150	
14451-3	04124C	2050		31MMS1-1	01111A	2150	
8MM51-6	03251	2050		25MH51-3	025298	2150	PITCHING VERY HEAVY
45H1-1	03668	2050	PITCHING MODERATE TO	25MMS1-7	007070	2150	ROLLING FITCH HEAV
61H1=1	01262	2050	ROLLING PITCHING M	14141-3	01543C	2150	OCC. POUND HOD. PITC
45H1-3	00212	2050	ROLL YAW HOD LY	18341-3	04125	2200	CCCC FOUND-ROOT FILL
65H1-3	01727	2050	ROLL PITCH YAW HEAVI	139HI-3	01516	2200	ITCHING ROLLING'H
47H1=5	09010	2100	ROUGH	139H1-5	02503E	2200	PITCH ROLL MOD SOM
91H3-5	01436	2100	PITCH HEAVY ROLL HOD	163H1+1	00607	2200	FILE ROLL MOD SOM
59H1=1	03731	2100	ROLL YAW EASY	163H1-1	09934A	2200	
63H1-9	08321	2100	CLOUDY VESSEL ROLLIN	143H1-5	04220	2200	INCREASING WIND SW
7042-1	01514	2100	ROLLING HOD TO MEAN	174₩2-1	05250	2200	CLOUDY VESSEL ROLLIN
7092-1	02724	2100	DOLLING AND DURAN	17493-1	045458		ROLLING PITCH YAW H
0541-1	00103	2100	ROLLING AND PITCH H	17444-1	01915	2200	
7492-1	05553	2100		217W2-1		2200	ROLLING PITCHING EA
7484-1	00505A	2100	ROLLING PITCH YAW H Rolling Pitch Kod		004070	2200	PITCHING HEAVY
78W2-1	03663	2100	KULLING PITCH KOD	217W2-1	005080	2200	PITCHING HEAVY
7842-1	04469A	2100	RED SPEED TO PREVEN	188W2-1	02345	2200	ROLL HOD TO HEAVY
3741-4	059278	2100	ROLL PITCH HEAVIL	21191-1	020180	2200	
3791-7	06604C			23791-7	06301	2200	
741-10	09125	2100		237W1-10	09225	2200	
		2100		34081+7	09201F	2200	
2081-11	05701A	2100	ROUGH SEAS	34081-7	055040	2200	
4681~4	046118	2100		34CB1-7	04009C	2200	
4081-7	04009F	2100		34091-7	06110F	2200	
5CB1-12	03205	2100	PITCHING HEAVY AT	29081-4	054086	2200	PITCHING HEAVILY RE
9681-3	04442A	2100	PASSED THROUGH COL	32081-7	04001A	2200	
DMM51=3	01311C	2100	ROLLING PITCHING H	31MM51-1	015130	2200	ICING OVERALL
175H1-1	01253	2100	ROLL MOD. PITCH DEEP	37MM51=4	03236	2200	ROLLING PITCHING D
75H1~3	03017	2100	ROLL HOD, PITCH DEEP	25MH51-5	01514E	2200	HOUNTAINOUS SEAS S
41H1-3	01240A	2100	PITCH ROLL NOD	17581-1	021220	2200	ROLLING YANING HEA
41H1-5	03419	2100	RIDING EASILY	175H1-3	02108	2200	RULLING TAWING HEA
45H1-1	01043	2100	PITCH ROLL HEAVILY	183H1-3	02204		PITCH HOD. TO HEAVY.
43H1=3	01631	2150	PITCHING ROLL MOD	13941-5	023018	2250	
77H1-1	01346	2150	FALSHING ROLL HOD	139H1=5	023018	2250	PITCH ROLL MODERAT
5TH1-3	00101A	2150	PITCHING MODERATELY	13941-5		2250	PITCH ROLL MOD.
51H1-3	00303	2150		15101-5	04010	2250	PITCHING AND ROLLING
51H1=3	00505A	2150	ROLL AND PITCHING HE Pitch Roll Heavily	12341-5	043350	2250	
51H1-5	043354	2150	FILL RULL HEAVILT	14341-1	036510	2250	ROLLING PITCHING H
6381-5	044024	2150		163H1-5	06604	7250	VESSEL ROLL PITCH
7483-1	044484	2130		143H1-5	07008	2250	PITCH YAW HOD LY R
1795-1		2150	ROLL PITCH YAW HEAV	174#2-1	008078	2250	PITCH HEAVY
	06102D	2190	PITCH ROLL HEAVY	174#2-1	096545	2250	ROLLING PITCH YAW H
45w2-1	02851E	2190	ROLL PITCH MOD TO H	17483-1	046468	2250	ROLL PITCH YAW HEAV
2981-4	002304	2150		21702-1	000110	2250	
1191-1	02119	2190		21784-1	03314	2250	
9081-7	035204	2150	PITCHING HEAVY	21784-1	03920	2250	PITCHING HEAVY
ACB1-7	061200	2150		24081-3	09048	2250	
93CB1-8	01004	2190		34CB1-4	04104A	2250	
29681-3	046444	2150	PITCHING HEAVILY	29081-3	04644	2250	PITCHING HEAVILY

-31-

TABLE XII-5

TABLE XII-6

CODE 6. MAX 1ST HODE PEAK-TO-TROUGH GREATER THAN 2KSI.LIST COMMENTS

CODE B. MAX 1ST FODE PEAK-TO-TROUGH GREATER THAN 2X51.LIST COMMENTS

CODE 8, MAX 1ST MODE PEAK-TO-TROUGH GREATER THAN 2K81+LIST COMMENTS

		CHREIDUIRDOGH GH	CALER THAN PROJECTS COMMENTS				CALES THAN ZASEBUTST COMMENTS				CATCH THAN ENDIFICIAL COMMENT
VOYAGE	INTERVAL NO.	MAX 1ST MODE PEAK-TC-TROUGH	COMMENTS	VOYAGE 1.0.	INTERVAL NO.	MAK IST MODE PEAK+TO-TROUGH	COMMENTS	VOYAGE I+D+	INTERVAL NG	MAX 1ST MODE PEAK-TO-TROUGH	COMMENTS
24M451-5	06957	2250	PITCH HEAVY	141H1-5	03116	2350	ROLLING EASILY PITCH	237W1-7	06402C	2500	ROLL AND PITCH
25M451-3	024288	2250	HEAVY PITCHING	16181-1	01666	2330	MODERATE ROLLING	34681-7	057064	2500	HERE AND FILEN
25MRS1-3	0242BE	2290	HEAVY PITCHING	1#3H1-3	04024	2400	PARAME ADDREDA	34081-7	05908A	2500	
175H1=3	021084	2250	PITCH NOD. TO HEAVY.	155H1-3	00801	2600		29681-7	03245A	2500	ROLLING MEAVY
175H1=3	030170	2290	FILL MODE TO REAVES	13981-5	025030	2400	51551 6417 MAR 4411	35081-12	031040	2500	NOCETHE HERYI
14111-3	011190	2250	ROLL MOD. PITCH DEEP	15181-5	04133A	2400	PITCH ROLL HOD SOM	29081-3	02825A	2500	
165H1-3	01040	2300	AOLLING MODERATELY	16341-5	04705	2400	ROLLING AND PITCHING	32CB1-3	006056	2500	
185H1-1	00361	2300	ROLL MOD LY	163H1-5	06907		VES RUNNING BEFORE	32CB1-3	011108	2500	
139H1=3	01617		PITCHING MODERATELY	163H1-3	07614	2400	VESSEL ROLLING	25MM51-7	00404	2500	861 F F 148
139H1-5		2300		17042-1		2400	VESSEL ROLLENG MOD L	25MM 51-7	004040	2500	ROLLING PITCHING H
	02705A	2300	PITCHING AND ROLLING	172-2-1	00908	2400		17561-3	027144		ROLLING PITCHING H
147H1-5	08403	2300	ROUGH		02223	2400	PITCHING AND ROLLIN	14181-3	013418	2500	PITCH HOD TO HEAVY R
151H1-3	004040	2300	ROLLING VIOLENTLY	172₩2-1	05960	2400	ROLLING EASY	13941-5	023010	2500	PITCH ROLL HOD DCC
151H1-5	01808	2300	PITCH ROLL EASY	217W3-1	01103E	2400		163H1-9		2510	PITCH NOLL MODERAT
165H1-5	06503A	2300	HOVE TO	217#3-1	013058	2400			07109A	2550	PITCHING ROLLING H
197#2-1	03723	2300	ROLL PITCH MOD TO H	231¥1-4	02039	2400		163H1-9	07412	2550	ROLLING PITCHING M
190W3-L	01616	2300	ROLL EASY FITCH HOD	100/2-1	02952	2400	ROLL PITCH MOD TO HE	174 (2-1	05351	2550	ROLLING PITCH YAW H
23741-7	063016	2300		25681-4	00303F	2400	SEAS OVER BOW	19842-1	00909	2550	
25081-4	004048	2300	OCC SLAMMING	33081-8	03927	2400		34CB1-4	03902E	2550	
34C81-8	083010	2300		35C81-12	03104D	2400		33681-8	03826A	2550	
32081-3	00908E	2300		29081-4	05105	2400	PITCHING HEAVILY BE	28681-3	009100	2550	
32C81-3	011100	2300		32081-3	006076	2400	· Caucing (mension) ac	29681-3	01108	2550	
25HHS1-3	024280	2300	HEAVY PITCHING	29MM51-3	013140	2400	ROLLING KOD.	29CB1-3	026230	2550	
25MHS1=7	006060	2300	ROLLING PETCHING M	31MH51-5	00202	2400	VESSEL PITCHING DEEP	29081-3	044428	2550	PASSED THROUGH COL
175H1-1	027285	2300	ROLLING HOD.	31MM51-5	00606D	2400	PITCHING DEEPLY	29681-3	04442C	2550	PASSED THROUGH COL
1+5H1-1	03470	2300	PITCHING ROLLING HEA	18MH51-4	032518	2400	FILCHING DEEPER	29CB1-4	05004	2550	PETCHING HEAVILY RE
149H1=1	019404	2350	ROUGH	38MH51-4	03857	2400		12081-3	010090	2550	
139H1=5	024028	2350	PETCH ROLL MODERAT	17581-1	021220	2400	ROLLING YAWING REA	35081-7	041135	2550	FITCH AND ROLLING
139H1-5	024020			145#1-3	04905	2400	ROLLING PITCHING HEA	25MHS1=3	012164	2550	PITCHING HEAVILY ROL
13941-5		2350		165H1-3	02131	2450		25MM51-3	02327C	2550	HEAVY ROLLING HOD LA
	027058	2350	PITCHING AND ROLLING	14941-1	01940		ROLL PITCH YAW HEAVI	25MH51-3	025290	2550	PITCHING VERY HEAVY
147H1-5	08707	2350	ROUGH			2450	ROUGH	31MMSL+5	003030	2550	LIGHT SLAMMING
151H1-5	012024	2350	ROLL HEAVY	139H1=5	0171#D	2450		17581-1	031184		
151H1-5	042340	2350	ROLLING EASY PITCHIN	151H1-3	004044	2450	ROLLING VEOLENTLY			2550	VESSEL HOVE TO
163H1-5	07311	2350	ROLLING 30/40 DEG	151H1-3	005058	2450	PITCH ROLL HEAVILY	16181-1	04852	2550	HEAVY ROLLING PITC
19742-1	03420	2350	ROLL PITCH HOD TO H	151H1-5	02717	2450	RIDING EASILY	13981-5	03909E	2600	PITCHING AND ROLLING
174#3-1	04545	2350		163H1-1	00809	2450		14741-3	07063	2600	
17484-1	001010	2350	ROLLING PITCH NOD	165H1=5	0700#A	2450	PITCH YAW MOD LY R	151H1-9	04638	2600	
211W1-1	017150	2350		17493-1	046460	2450	NOLL PITCH YAW HEAV	163H1-5	06503	2600	HOVE TO
34081-4	05013A	2350		17484-1	004048	2450	ROLLING PITCH HEAVY	215W]-1	01211	2600	ROLLING AND PITCHIN
34051-7	03302E	2350		29CB1=4	05610E	2450	PITCHING MOD RED.	213W1-1	013118	2600	FITCHING HEAVY
34C61-7	059080	2350		32MM51-3	04446A	2450	ROLLING PITCHING E	213W1-1	02018F	2600	
29681-3	02724D	2350		30MM51-1	00237A	2450	PITCHING MOD.	237W1-10	07204A	2600	
29081-4	050044	2350	PITCHING HEAVILY NE	31KM51-5	006060	2450	PITCHING DEEPLY	34081-4	03902	2600	
31MM51-1	015138	2350	ICING OVERALL	141H1-3	01341E	2450	PETCH ROLL MOD DCC	34081-4	05013F	2600	
25KM51=5	00303	2350	HEAVY PITCHING NOL	161H1=1	00555	2450		33(61-7	003638	2600	
25MMS1=7	007074	2350	ROLLING PITCH HEAV	139H1=3	01718A	2500		29CB1-4	05509A	2600	PITCHING HOD RED.
31HM51-3	041264	2350		163H1-5	08523	2500	O CAST DCC L L RAIN	25MM51-1	01229	2600	HEAVY SEAS
			ROLLING EASILY	19703-1	00101	2500	NGLL PLICH MOD	37MMS1-4	03539	2600	PITCHING HEAVILY
161H1-1	01615	2350		231W1=1	02936	2500	HARE LITEN HAR	30MM51-3	013119	2600	ROLLING PITCHING M
175H1-3	03320A	2350	ROLL PITCH MOD	21784-1	02606	2500	ROLL AND PITCHING H	14181-5	02207	2600	PITCH ROLL MOD
175H1-3	03926	2350	ROLLING PITCH MOD.			2500	HOLLENG PITCHING HE	159#1-1	D1552	2650	ROLLING PITCHING H
175H1-3	04028	2350	ROLLING PITCH MOD.	190₩3-1	03131	2200	HAPPERA ATICUTAA NE	15441-1	01002	2030	Paretua streates u

-32--

TABLE XII-8

TABLE XII-9

----MENTS

CODE 8+	MAN 1ST MODE	PEAK-TO-TROUGH GR	EATER THAN SASINLIST CORRENTS	CODE S.	MAX 15T VODE	PEAK-TO-TROUGH GR	EATER THAN 2KS1+LIST COMMENTS		MAK 15T MOOE	PEAK-TO-TROUGH GR	EATER THAN 2KSISLIST CORMEN
VOYAGE 1:0+	INTERVAL NO.	MAX 15T MODE PEAK-TO-TROUGH	CONHENTS	VOYAGE I+D+	INTERVAL NO.	MAX 1ST MODE PEAK-TC-TROUGH	COMMENTS	VOYAGE 1+D+	INTERVAL NQ+	MAX 1ST MODE PEAK-TO-TROUGH	COMMENTS
13981-5	02503	2650		16541-3	01444	2600	ROLL AND PITCH MEAVE	294M51-5	013336	2900	PITCHING DEEPLY
163H1=1	059549	2650	PITCH ROLL MOD SOM	13941-5	02903F	2800	PITCH ROLL MOD SOM	31MM51-5	00606	2900	PITCHENG DEEPLY
163H1-1	04055	2650	INCREASING WIND SW	13981-5	02604D	2400	PITCH ROLL MODERAT	175H1-1	021220	2900	ROLLING YAWING HEA
170-2-1	03736	2650	RAIN ROLLING AND PIT	13981-5	038085	2400	PITCH ROLL MOD.	175H1=3	02015	2900	PITCHING HEAVY
17484-1	002020	2690	ADLLING PITCHING NO	21792-1	00306	2800	FILE ROLL MODE	165H1-3	01525	2900	ROLL PITCH YAW HEAVI
23741=4	05927	2650	ROLLING PITCH HEAVY	217₩3-1	01101F	2800		165H1=3	04355	2950	ROLL PITCH YAW HEAVI
23741-7	06303A	2630		25061-4	00404C	2400	OCC SLANNING	14941-1	03152	2950	205
25081-4	00404D	2650	OCC SLAMMING	34051-7	04009A	2800	OCC SEAMAING	151H1-5	042348	2950	NOLLING EASY PITCHIN
34681-7	059085	2450	nce arbunite	29081-7	02134	2800		217w4+T	09337	2950	(
33081-7	00262	2650		33681-8	03725A	2800		190W3=1	01515	2950	NGLL EASY PITCH MOD
35081-12	03104E	2650		29081-4	057118	2400	PITCHING HOD RED.	25081-7	035185	2950	PITCHING
28081-3	00910A	2650		32C81-3	009080	2800	Parcella Mob Hage	29(6)=3	02724C	2950	
29681-3	02623A	2650		30M-51-1	027270	2800	ROLLING PITCHING HOD	29661-4	05004E	2950	PITCHING REAVILY RE
35081-7	04214E	2650	PITCH AND ROLLING	24M.451+5	03736	2000	PITCHING HOD TO HEAV	22MM51-3	00505	2950	PITCHING MODERATELY
29HH51-3	01415A	2650	N LY STORM	31MHS1-3	04227	2800	CONFUSED SEAS SWEL	31 MM 51 - 5	005050	2930	PITCHING DEEPLY
29HM51=3	01916A	2650	N LT STORM	31MH51-5	00404A	2800	PITCH. NOD.	1#7H1=1	02791	2950	ROUGH
25HM51-3	02226A	2650	VESSEL PITCHING LA	31MM53-5	00404E	2000	PETCH+ HOD+	161H1-3	04422	2950	SPEED REDUCED TO AVO
161H1=1	01767	2650	PODERATE ROLLING	147H1-1	01137	2400		151H1-5	069370	3000	PETCH HEAVY ROLL EAS
161H1-1	01868	2650	PODERATE PITCHING	175H1-3	027148	2800	PITCH HOD TO REAVY R	196W2-1	02323	1000	ROLL EASY
165H1-3	01323	2650	ROLL PITCHING	175H1-3	04028A	2400	ROLLING PITCH NOD.	23191-4	02140	3000	HEAVY POUNDING
145H1-1	01424	2690	ROLL PITCH MOD LY	141H1-3	012405	2800	PITCH NOLL MDD	23191-4	02443	1000	2
165H1-3	03343	2700	ROLL AND PITCH HEAVI	149H1-1	03062	2800	PETCH HOD ROLLING EA	15642-1	02790B	3000	ROLL PITCH MOD TO N
143H1-3	01429C	2700	PITCHING ROLL MOD	161H1-3	02806	2800	PITCH ROLL HODERAT	215W1-1	01312	3000	ROLLING AND PITCHIN
139H1-5	025030	2700	PITCH ROLL MOD SON	165H1=3	03747	2850	ROLL AND PITCH HEAVE	25681-4	005054	3000	
139H1-5	03909	2700	FITCHING AND ROLLING	183H1+3	03417	2850		34681-4	03801A	3000	
163H1-5	06301A	2700	FLICHTHA MAD KATTING	139H1-5	03608	2850	PITCH ROLL MOD.	34681-4	03902D	3000	
16341-5	063018	2700		139H1-5	03909A	2850	PITCHING AND ROLLING	34CB1-7	060098	3000	
163H1-5	086248	2700	P CLOUDY ROLLING MOD	147H1-3	101218	2850	VERY ROUGH VESSEL IN	29081-4	09105A	3000	PITCHING HEAVILY RE
34C31-7	05104C	2700	F GEODOF ROLLING RUD	163H1-1	060558	2850	RAIN ROLLING AND PIT	32CB1-3	01009B	3000	
34681-7	05704C	2700		163H1-5	059274	2850	FULL SEA SPEED	304H51-1	027270	3000	ROLLING PITCHING HOD
34681-7	05908C	2700		17482-1	01009	2550	PITCH HOD	14101-3	02308	3000	PITCH ROLL MOD
34081-8	06301E	2700		25081-7	016018	2550		155H1-3	008014	3050	
29081-4	055098	2700	PITCHING MOD RED.	25CB1-7	03516B	2650	PITCHING	151H1-3	006060	3050	HOVE TO STRONG NW GA
29081-4	05711C	2700	PITCHING HOD RED.	29681-3	01209	2550		163H1+3	06604A	3050	VESSEL ROLL PITCH
32001-1	009088	2700	Tricitile Hop Hopp	29681-4	05105C	2850	PETCHING HEAVELY HE	163H1=3	08422A	3050	O CAST FOG PATCHES
15C81-7	04214	2700	PETCH AND ROLLING	29081-7	05901A	2850	PITCHING HOD RED.	217WZ-1	00609E	3050	
31MHS1-5	00101	2700	VESSEL PITCHING HEAV	32081-3	01110C	2650		215W1-1	019188	3050	NOLL HOD
31MM51-5	00505C	2700	PITCHING DEEPLY	30MM51-1	02828A	2850	ROLLING PITCHING MOD	34681-7	052010	3050	
14141-5	01601A	2700	SLAMMING	25HMS1=7	007078	2550	ROLLING PETCH HEAV	29CB1-7	03346	3050	
139H1-5	02604C	2750	PITCH ROLL HODERAT	31HHS1-5	00404	2850	PITCH. HOD.	29CB1-4	04903	3050	PITCHING HEAVILY
163H1=5	08725	2750	ROLLING EASY	175H1+1	027288	2850	ROLLING MOD.	25MHS1=3	02428A	3050	HEAVY PITCHING
17491-1	01215C	2750	ROLLING AND PITCHEN	14181-9	02510	2850	PITCH ROLL REAVILY	31MH.51-3	00505	3050	PETCHING DEEPLY
17484-1	00101	2750	ROLLING PETCH KOD	139HL-3	019200	2900	PITCH ROLL REAVILY PITCH ROLL MODERAT	15181-3	045378	3100	PITCH HEAVY ROLL EAS
21793-1	01204F	2750		139H1-5	025034	2900	PITCH ROLL MOD SOM	163H1-1	056518	3100	ROLLING PETCHING H
21744-1	03718	2750		178w2-1	04065	2900	ROLLING PITCHING HD	163H1-5	06402C	3100	
21791-1	00706C	2750	ROLLING AND YAWING	21191-1	01412	2900		163H1-5	06826	3100	RED SPD TO PREVENT P
16892-1	028510	2790	ROLL PITCH HOD TO H	34CB1-7	05403C	2900		172W2-1	02526	3100	ROLLING HEAVY
32CB1=3	00605C	2750		35081-12	03306C	2900		21742-1	00306D	3100	
52CB1-3	00807C	2750		29681-4	05004D	2900	PITCHING HEAVILY RE	211#1-1	02018C	3100	
16181-1	02171	2750	HODERATE PITCHING	29081-4	05307	2900	PITCHING HEAVILY RE	34681-7	056050	3100	

TABLE XII-11

TABLE XII-12

CODE 8. MAX 1ST MODE PEAK-TO-TROUGH GREATER THAN 2KSI:LIST COMMENTS

CODE B: MAX 1ST HODE PEAK-TO-TROUGH GREATER THAN 2KSI.LIST COMMENTS

CODE By MAX 1ST MODE PEAK-TO-TROUGH GREATER THAN 2KSIGLIST COMMENTS

-34-

		and the fitted and as	ERIER THAN ZESTIGIST COMMENTS				CALCH THAN ZESTICIST COMMENTS		101 101	CAR-IG-THOUGH GRE	ATER THAN 2KSI4LIST COMMENTS	
VOYAGE I.D.	NTERVAL NO:	MAX 1ST MODE PEAK-TD-TROUGH	COMMENTS	VOYAGE I D.	INTERVAL NO.	MAN 1ST MODE PEAK-TO-TROUGH	COMMENTS	VOYAGE 1.0.	INTERVAL NO.	MAX 151 MODE PEAK-TQ-TROUGH	COMMENTS	
33C81-8	03927A	3100		29CB1-7	00417	3250	PITCHING HEAVILY	304M\$1-1	01246	3450	PITCHING HEAVILY R	
35C81-12	03205E	3100	PITCHING HEAVY AT	29681-4	047010	3250	PITCHING HEAVILY	30MM51+3	013114	3450	PLICHING HEAVILY A	
35CB1-12	033060	3100	CITCHING BEAUT RI	29681-4	051050	3210	PITCHING HEAVILY RE	155H1-1	006644	3500	ROLLING PITCHING M	
32C81-3	01110E	3100		318MS1-1	01714A	3250	TOTAL OF PERSON AND	151H1~3	003030	3500	PITCHING HEAVILY	
32081-4	03216E	3100		314H51-5	00606A	3250	ICING ON DECK HAT	34681-7	05302A		ROLL AND PITCHING HE	
31MM51-1	01513A	3100	ICING OVERALL	141H1-3	01139	3250	PITCHING DEEPLY	34651-7	053028	3500		
254H51-3	012160	3100		141H1=5	01601	3250	ROLLING MODERATELY	3+C51-7	05403	3500		
31HH51-5	00303A		PITCHING HEAVILY ROL	165H1-3	03345	3300	SLAMHENG	29081-4		3500		
17541-1	02728D	3100	LIGHT SLAMMENG	151H1-5	04436A		ROLL AND PITCH HEAVE	29MM51=3	04903D	3500	PITCHING HEAVILY	
14101-5		3100	ROLLING HOD.	163H1-5	08624A	3300	PITCH HEAVY ROLL HOD	25HM51=7	00809A	3500	ROLLING PITCHING H	
165H1=3	03217	3100	ROLLING EASILY FITCH	174W2-1	05250A	3300	P CLOUDY ROLLING HOD		006060	3500	ROLLING PITCHING H	
	00313	3100	ROLL YAW HOD LY	34681-7	054034	3300	HOLLING PITCH YAW H	139H1-5	02907	3550	PITCH ROLL MOD.	
165H1-3	01727A	3100	ROLL PITCH YAW HEAVI	29681-4	04602E	3300		151H1-5	043355	3550		
16541-3	02434	9150	ROLL PITCH YAW HEAVI	29MA51-3		3300	PITCHING HEAVILY	163H1-5	065039	3550	HOVE TO	
165H1-3	04456	3150	ROLL HOD PITCH HEAVY	314451-5	01415E	3300	N LY STORM	237W1-1	009084	3550	ROLLING YAWING HEAV	
13981-5	02402C	3150	PITCH ROLL ADDERAT		002028	3300	VESSEL PITCHING DEEP	32081-3	010094	3550	HERE TRAINS HERE	
19742-1	03925	3150	ROLLING PITCHING EA	13981-5	02804	3350	STEADY	32CB1=3	010095	3550		
23741-4	05320A	3150		139/1-5	04010A	3350	PITCHING AND ROLLING	29HH51=3	001014	3550	VESSEL ROLLING PIT	
35681-12	03306	3150		151H1-3	003038	3350	ROLL AND PLICHING HE	141H1-5	03015	3550	ROLLING EASILY PITCH	
32081-3	00807A	3150		151H1-9	046368	3350		235W1→10	01016	3600	intering charges Fillen	
175H1-9	030178	3150	ROLL HOD. PITCH DEEP	34681-7	05908E	3350		237W1-7	065030	3600		
165H1-3	00818	3150	ROLL" PLICH MOD LY	28081-3	00910C	3350		21CB1-4	002025	3600	SEAS OVER BOW "	
159H1-1	02966	3200	ROLLING EASY	29CB1-4	053074	3310	PITCHING HEAVILY RE	25681-7	019020	3600	JEHS VIEN BUR	
139H1-9	03808A	3200	PITCH ROLL HOD.	25MMS1-3	02125C	3350	HEAVY PITCHING HEAD	34081-7	052010	3600		
163H1-5	07513	3200	VESSEL ROLLING MOD L	139H1-5	02604E	3400	PITCH ROLL MODERAT	29081-4	05408A	0088	DETENSION AND AND AND AND	
17042-1	01817	3200	POUNDING RED SPEED	13941-5	02705E	3400	PITCHING AND ROLLING	32081-7	04102A	3600	PITCHING HEAVILY RE	
19762-1	03521	3200	ROLL PITCH HOD TO H	147H1-3	07770	3400	ROUGH	14 TH1 - 3	05002	3600	NO. 50 . 60	
20301-1	03332	3200	PITCHING EASY	151H1-5	03324	3400	PITCH NOLL EASY	17581-3	034214	3600	MODERATE	
21781-1	00706B	3200	ROLLING AND YAWING	163H1-5	08624	3400	P CLOUDY ROLLING HOD	15181-5	01606	3650	PITCHING HODERATELY	
23541-4	02628	3200	NVELTING AND TARTING	17442-1	04947	3400	P CLOUDT ROLLING MOD	172#2-1	02324		PITCH ROLL MOD.	
34001-4	049125	3200		23741-4	051188	3400		217N2=1		3650	PITCHING HOD	
33081-7	00363	3200		25061-7	03518C	3400		211W1-1	A60200	3650	PETCHING HEAVY	
33081-7	00363A	3200		34CB1-7	05201	3400	PITCHING		01311A	3650	PITCHING HEAVY	
29081-4			PITCHING MOD RED.	34081-7	05504E	3400		34CB1-4	03801	3650		
	05610A	3200	PTICHING MOD RED.	35081=12	032090			34081-4	03902C	3650		
30081-4	03903A	3200		29081-4	057114	3400	PITCHING HEAVY AT	29MM51-3	00506B	3650	ROLLING PITCHING H	
15CB1-7	04012E	3200	PITCH HOD	32CB1-3	007064	3400	PITCHING MOD NED.	31MH51-5	00505A	3650	PITCHING DEEPLY	
25HM51-1	01216C	3200	PITCHING HEAVILY NOL	29-451-3		3400		155H1=3	000018	3700		
254M51~5	01514D	3200	HOUNTAINOUS SEAS S	294451-3	00506D	3400	ROLLING PITCHING H	139H1-5	02604A	3700	PITCH ROLL MODERAT	
30MM51-1	002378	3200	PITCHING HOD+	29MM51-5	01314E	3400	ROLLING MOD+	139H1-5	02806E	3700	STEADY	
30MM51-3	02118	3200	PITCHING DEEPEY		013132	3400	PITCHING DEEPLY	163H1-5	06503C	3700	KOVE TO	
314M51-5	00604E	3200	PITCHING DEEPLY	31MM51~5	00505B	3400	PITCHING DEEPLY	163H1-5	089278	3700	FULL SEA SPEED	
147H1-1	03w5B	3200	MODERATE	36MM51-4	03756A	3400		217#2-1	004 07A	3700	PETCHING HEAVY	
175H1-1	02728C	3200	ROLLING HOD.	17581-1	02223A	3400	ROLLING YAWING HEA	34CB1=7	052018	3700		
179H1-3	03219	3200		175H1-3	01704	3400	PITCH HEAVY, ROLL HO	29C01=4	04903B	3700	PITCHING HEAVILY	
145H1-1	02355	3200	ROLLING YAWING PITCH	151H1-1	02441A	3450	ROLLING EASILY	29CB1-4	05206B	3700	PITCHING HEAVILY RE	
139H1-5	039098	3250	PITCHING AND ROLLING	147H1-5	11233	3450	HODERATE	21793-3	01204E	3730		
163H1-5	071098	3250	PITCHING ROLLING H	15141-5	02414	3450	RIDING EASILY	237W1-4	05219	3750		
163H1-5	08119	3250	CLOUDY VESSEL ROLLIN	151H1-5	03930A	3450	PETCH MOD ROLL EASY	29CB1-4	044024	3750	PITCHING HEAVILY	
174₩3-1	02829	3250	PITCH EASY	16381-1	06055A	3450	RAIN ROLLING AND PIT	32061-3	00706C	3750	Contraction (Secondary)	
211W1-1	01816F	3250		163H1-5	08927	3450	FULL SEA SPEED	35081-7	041135	3750	PITCH AND ROLLING	
34C81-4	05114A	3250		20762-1	01819	3450	PITCHING MOD	294M51=3	014158	3750	N LY STORM	
		-										

NDLC	VII-IO	

TABLE XII-13

TABLE XII-14

OYAGE 1.D.	NTERVAL NO.	MAX 1ST HODE PEAK-TO-TROUGH	COMMENTS	VOYAGE 1.D.	INTERVAL ND.	MAX 1ST PODE PEAK-TC-TROUGH	COMMENTS	VOYAGE [+D+	NO,	MAX 1ST MODE PEAK=TO-THOUGH	C0*
HM51-5	003030	3750	LIGHT SLAMMING	29CE1-4	04701	4100	PITCHING HEAVILY	163H l+ 5	08325E	4550	RED SPD
HM51=5	004040	3750	PITCH. HOD.	29051-4	04802	4100	PITCHING HEAVILY	34C81+7	05201A	4550	
5H1-3	03625	3750	ROLLING HODERATELY	294451-3	015168	4100	ATCHING HEAVILT	30MMS1-1	028298	4550	ROLLING
1#1-5	02409	3750	PITCH ROLL HEAVILY	29MM51-5	014145	4100	RITCHING MOD. TO UT	29.MM51-3	01415C	4550	N LY ST
3H1-9	086268	3800	RED SPD TO PREVENT P	25MM51-3	02125A	4100	PITCHING MOD. TO HEA HEAVY PITCHING HEAD	15141-1	01331	4500	TAWING
3H1-5	098260	3800	RED SPD TO PREVENT P	149H1=1	02546A	4150	VERY ROUGH	21742-1	00306C	4500	
C81-4	031058	3600		217W2-1	00407E	4150	YERT ROUGH	235W1-10	01321	4500	
C01+4	013078	3800	PITCHING HEAVILY RE	188w2-1	02467	4150	PITCHING HEAVY Roll mod to Heavy	139H1-5	027050	4850	PITCHIN
7₩2-1	03319	3850	PITCHING HEAVILY AE	29 VM 51 - 5	01414E	4150	DISCUSSION NOT TO HEAVY	31//×51-5	00404B	4650	PITCH.
CB1-4	049030		ROLL PITCH MOD TO N	175H1=3	033208	4150	PITCHING MOD. TO HEA	141H1-5	01904	4650	PITCHING
C81-4	050048	3850	PITCHING HEAVILY	217w2-1	006090	4150	NGLL PITCH HOD	147H1-3	08073	4700	MODERATI
01-7		3650	PITCHING HEAVILY RE	21141-1	017159	4200		175H1=1	00950A	4700	PITCH H
C91-7	042148	3850	PITCH AND ROLLING	34681-7	061104	4200		15181-5	01526	4750	YAW EAST
	04214F	3850	PITCH AND ROLLING	14541-1		4200		35681-7	04214C	4750	PITCH
H451-5	013134	3850	PITCHING DEEPLY	151H1=5	03264	4200	PITCH MOD ROLLING EA	13981-5	023010	4600	PITCH
3H1-1	02728A	3850	ROLLING MOD.		03122	4250	PITCHING AND ROLLING	235W1-10	02229	4800	
5H1-3	02815	3850	PITCHING HEAVY	15181-5	04537A	4250	PITCH REAVY ROLL EAS	23581-10	02224		ROLLIN
1H1-3	01341	3850	PITCH ROLL NOD OCC	172-2-1	06667	4250	ROLLING PITCHING YA	34081-4	02224 03902F	4800	
181-1	04966	3900	RIDING EASILY	27CB1-4	02709	4250				4800	
792=1	04632	3900	PITCH HOD	25MH51-3	Q1115B	4250	PITCHING HEAVILY	35CB1-12	03306E	4800	
CB1-7	05302F	3900		25MMS1+3	022260	4250	VESSEL PITCHING LA	29CB1-4	04701E	4800	PITCH
CB1-4	02709A	3900		139h1-5	023016	4300	PITCH ROLL HODERAT	17442-1	05149A	4850	ROLLIN
3#1-5	07210	3950	ROLLING HEAVY LT RAI	217w2-1	004079	4300	PITCHING HEAVY	217₩2-1	00306E	4850	
3H1-9	087250	3950	ROLLING EASY	29MM51-3	007080	4300	PITCHING HEAVILY ROL	34(8)-7	06110	4850	
0W2-1	02322	3950	ROLLING HEAVY	141H1-5	01702F	4300	PITCHING ROLLING M	31MM51-1	031250	4650	KOVE TO
5¥1=10	03545	3950		14541-1	039718	4300		183H1=1	01254	4900	
(81-4	038018	3950		17494-1	00404E	4350	ROLLING PITCH HEAVY	294M51-5	013130	4900	PETCHING
CB1-4	050130	3951		217#4-1	04526A	4350	VERY ROUGH SEAS	25 MM51-3	01115A	4900	PITCHIN
MHS1-5	009088	3950		34CB1-7	06110B	4350	TERT ROUGH BEAD	254M51-3	021258	4500	HEAVY P
1H1-5	01401F	3930	SLAMMING	29681-4	04701A	4350	PITCHING HEAVILY	215=1-1	01918A	4950	ROLL MO
1H1=5	016030	3950	MOD PITCH ROLLING	29681-4	048020	4350	PITCHING HEAVILY	165H1=3	01020	4950	ROLL
101-1			MOD PITCH RULLING	17541-3	03421	4350		163H1-5	06805A	5000	PITCHIN
	01412A	4000					PITCHING MODERATELY	25MHS1-7	004044	5000	ROLLING
CB1-7	020038	4000		16541-3	02939	4400	ROLL EASY	151+1-5	044360	5050	PITCH H
CB1=4	04003A	4000		217W2-1	003068	4400		141+1-5	017028	5050	PITCHIN
CB1=4	02606	4000		235W1-10	01622	4400		235W1-10	01624		-11 CH I M
CB1-4	04#028	4000	PITCHING MEAVILY	235W1-10	02837	**00		235W1-10	01024	5100	
MMS1-5	00303E	4000	LIGHT SLAMMING	35C91-12	03407A	4400		235N1-10 29CB1-3	D2026 04543C	5100	
5H1-3	01906	4000	PITCHING HEAVILY	29081-3	02926A	4400				5100	
181-3	00910A	4050		31M451-5	00303	4400	LIGHT SLAMMING	32CB1=3	006054	5100	
3H1-1	0534BC	4050	ROLLING AND PITCHING	175H1-3	02714	4400	PITCH HOD TO HEAVY R	139H1-5	02806A	5150	STEADY
3H1-5	087258	4050	ROLLING EASY	141H1-5	01702E	4400	PITCHING ROLLING H	235W1-10	02634	5150	
C91-3	045438	4050		163H1-5	08422	4450	O CAST FOS PATCHES	29681-4	05206A	5150	PLICH
CB1-4	047018	4050	PITCHING HEAVILY	17282-1	06162A	4450	ROLLING VERY HEAVY	35CB1=7	040124	5150	PITCH
CB1-4	04802D	4050	PITCHING HEAVILY	18613-1	01818	4450	PITCH HEAVY ROLL NO	175/1-3	03219A	5150	
C81-4	05509C	4050	PITCHING HOD MED.	34CB1-7	054035	4450		235W1-10	02329	5200	
C81-3	009080	4050		31M ^U S1=5	003038	4450	LIGHT SLAMHING	35081-12	03407	5200	-
CB1-7	041130	4050	PITCH AND ROLLING	18341-3	03720	4500		31HM51-5	00505E	5200	PITCHIN
MM51-3	00708A	4050	PITCHING HEAVILY ROL	151k1-5	04537	4500	PITCH HEAVY ROLL EAS	141H1-5	02611	5200	PITCHIN
9H1-1	01145	4050	ROLLING PITCH YAWI	29CB1-7	032458	4500	ROLLING HEAVY	165H1-3	01628	5200	ROLL P1
			ROLL PITCH MOD	254451-7	003030	4500	ROLLING REAVILY	139H1-5	026048	5250	PITCH
7W2-1 CE1-11	03824 05701F	4100	ROUGH SEAS	14781-1	02549	4500	ROUGH	151H1-3	00708	5250	HOVE TO

						210					CODE 8. MAX 131 WODE PEAK+TO-TROUGH GREATER THAN 2KSIsLIST COMMENTS		COMMENTS	F	MOUNTAINOUS SEAS S	MOD PITCH ROLLING	KOLL FITCH HOP TO H		DITEN NON BUIL FARM		ROLLING PITCHING NO																							
						ABLE VII-IS					EAK-TO-TROUGH		WAX 15T MODE	FEAK- 10-19006H	12450	12500	13600	13850	00001		26650	626																						
					ŀ						3004 151 XAM 48		=		015149		-1 01110					×,																						
5 1 N 3											3000		CANCE ADA	1.0.1	5-15WW92	14141-5	17042-1	235W1-10		1-14421		NUMPER OF																						
CODE &: MAX 151 MODE PEAK-TO-TROUGM GREATER THAN 2X51+L151 COMHENTS	COMMENTS	STEADY		57EAD7			PITCHING MOD	PITCH HEAVILY	ROLLING PITCH TAN H	MOD PITCH ROLLING	PITCH ROLL MODERAT	VITCH ROLL HOD DOM		PITCHENG HEAVY	ROLLING YANJNG MEAV			VO FITCHING ROLLS		ROLL PLTCH HOD TO H	ROLLING PITCH YAW H			PITCH NOD		PITCH BOLL HODERAT		0×1×1×00		-52	PITCH ROLL EASY	PITCHING ROLLING M	ROLLING PITCHING M		HOD PITCH BOLLING	ROLLING PITCH HEAVY	NOD FITCH ROLLING		HOLLING PITCH HEAV	NOLLING FASILY PITCH	SLAMMING	AOLLING PITCHING LAB	PITCH HEAVY AGLE MOD	
PEAK-TO-TROUGH GR	MAN 15T MODE Peak-to-though	6500	5400	0490		4780	6000	0049	0669	6950	0001			100	2100	1200				0251	1400	7400	1630		7000	0061	1900	0000			8250	0005	0506	0016		0056	0666	10050	10150	10250	10500	11000	11150	
AAX 1ST MODE	LNTERVAL 40+	020060	059274		111110		02426	15010	09351A	014035		050570		021014	230600			40770	020185		-		14260	02020	04440	02301	040060		92140		03425	017020				002020					016010	00202	04436B	
	VOYA5E 1.04	134H1-5			111111	23541-10	23541-4	17541-1	1-2442	6-1H191	611H681		15141-1	217W4-1	217W1-1	01-7#Cf7			1111	1-2M2-01	17442-1	35CB1-12	23541-10	1-2MB61		139H1-5	2-1ML-2	141H1-5		12042-1	15141-5	141H1+5	L-194H62	1-1-4591	1-200/7	1704041	141M1-9	01-1852	1-15-M62	2010100	2-1H171	25MMS1-7	151H1-3	
CODE BI MAX 15T MODE PEAK-TO-TROUGH GREATER THAN 2K51+L157 COMMENTS	COMMENTS	00111110 000 000 000	PITCH HELVY	H NAY HITCH PLILA H	ROLLING			DITUTU DESUT	REP SPD TO PREVENT P			PITCH. MOD.	PITCHING ROLLING H	STEADY	PITCHING BOLLING H		ROLLING HEAVY	ROLLING EASILY NO PI	RULLING CAST		ROLL PITCHING HEAV	ROLL HEAVY	ROLL PITCH HOD LY	PITCHING EASY		KULLING PITCHING H	ROLLING ROD TO HEAV		SLARH ING	RULL 2001	POLY AND LY DITCH HE	PITCH HEAVY ROLL MOD			ROLLING PITCHING M	GTEADT Division Anii the L			PLTCH ROLL MODERAT	PITCHING AND ROLLING	PITCHING AND NULLING	STEADY	RED SPD TO PREVENT P	XOLLING AND FLICHTO
: РЕАК-ТО-ТАОИСН СЛ	MAX 1ST HODE		5250	5250	5300	0566	0526		0946	0645	5450	5450	0515	0050	0056	0656	0000	00+6		0494	5690	5700	5700	5730	2995	0000	5850	5850	5650	0044	0003	6000	6000	6050	6100	0100		6300	6400	65-00	0240	6550	6550	0559
MAX 1ST MODE	1NTERVAL NO.	01010	008078	056544	20100	214010	03306F	047010	006264	003064	053020	010000	20110	01000	017024	61600	12220	51660		040128	00416	049304	61600	04356	01925		01716	02533	016018	21810	04240	044360	O5L18A	01100	50500	06200	01102	03218	02604	02705	021050	028060	08326D	A11800
CODE 8.	VOYAGE	17042-1	17442-1	17412-1	20942-1		35CB1-12	29CB1-4	163H1-3	227+2-1	34CB1-7	31MHS1-5		33061-1	141H1-5	239W1-10				15CB1-1	16 JH1-3	1-4ML12	16541-3	1 F2 W2-1	21-14-52		17042-1	23541-10	14141-5		2-10347	151H1-5	23741-4	235W1-10	25HHS1-7			19742-1	13941-5	13941-5	2-14661 8-14564	5-1H6E1	163H1-5	17443-1

TABLE XII-16

-36-

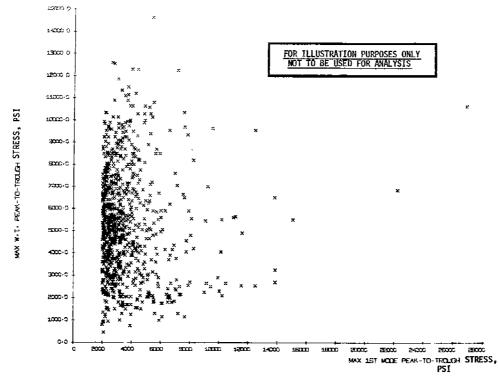


FIGURE 7 - RESULTS OF EXAMPLE NUMBER 1. Code 1, Max 1st Mode P-To-T Greater 2KSI Versus Max W.I. P-To-T

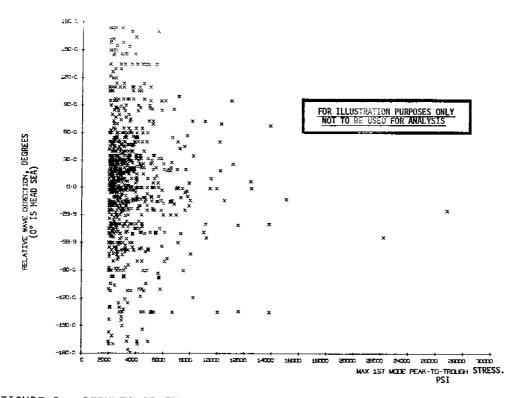


FIGURE 8 - RESULTS OF EXAMPLE NUMBER 2. Code 2, Max 1st Mode P-To-T Greater 2KSI Versus Relative Wave Direction

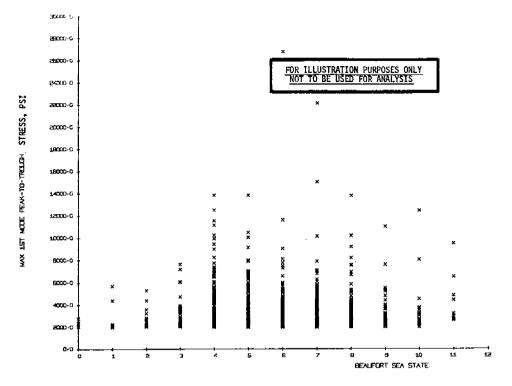


FIGURE 9 - RESULTS OF EXAMPLE NUMBER 3. Code 3, Beaufort Sea State Versus Max 1st Mode P-To-T Greater Than 2KSI

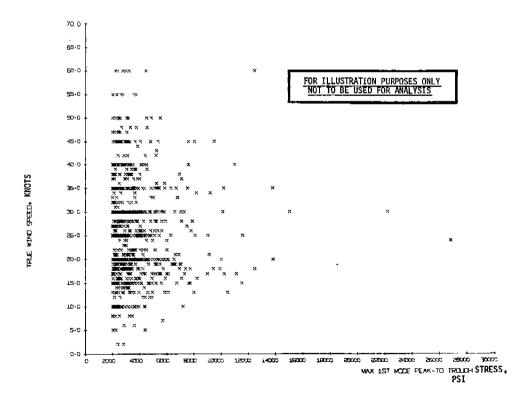


FIGURE 10 - RESULTS OF EXAMPLE NUMBER 4. Code 4, Max 1st Mode P-To-T Greater Than 2KSI Versus True Wind Speed

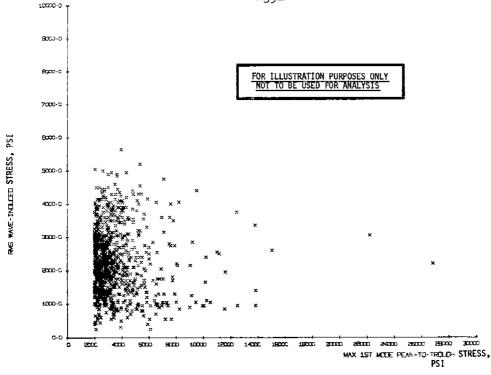


FIGURE 11 - RESULTS OF EXAMPLE NUMBER 5. Code 5, Max 1st Mode P-To-T Greater Than 2KSI Versus RMS Wave Induced

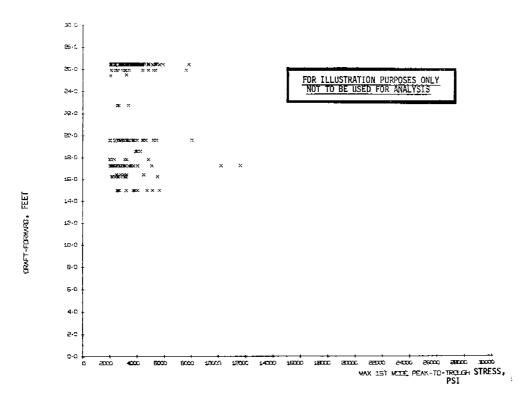


FIGURE 12 - RESULTS OF EXAMPLE NUMBER 6. Code 6, Max 1st Mode P-To-T Greater Than 2KSI Versus Draft Forward

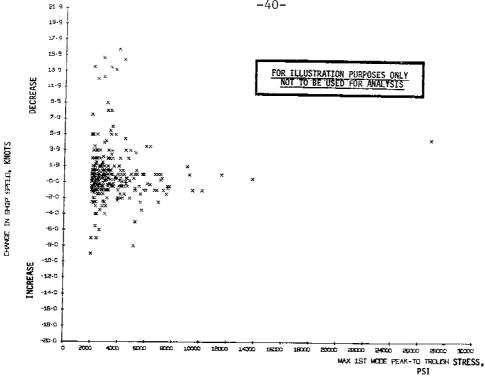


FIGURE 13 - RESULTS OF EXAMPLE NUMBER 7 - Code 7, Max 1st Mode P-To-T Greater 2KSI Versus Change in Ship Speed

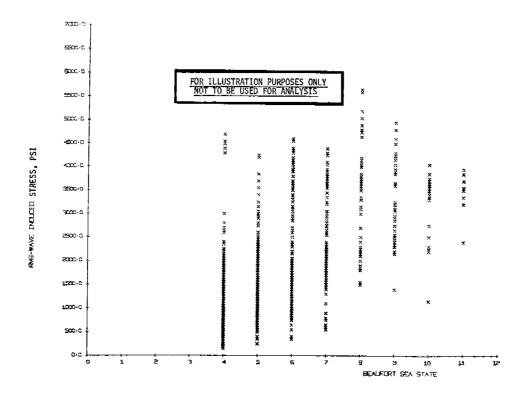


FIGURE 14 - RESULTS OF EXAMPLE NUMBER 9 - RMS WAVE-INDUCED STRESS VS. BSS FOR Relative Wind Direction Greater Than O, Less Than Or Equal 15, (O $^{\rm O}$ IS HEAD SEA)

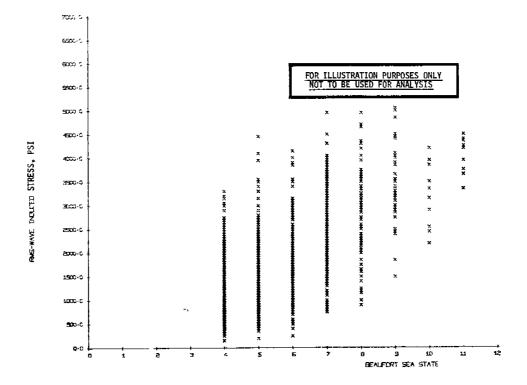


FIGURE 15 - RESULTS OF EXAMPLE NUMBER 10 - RMS WAVE-INDUCED STRESS VS. BSS FOR Relative Wind Direction Greater Than 15, Less Than Or Equal 45, (0° IS HEAD SEA)

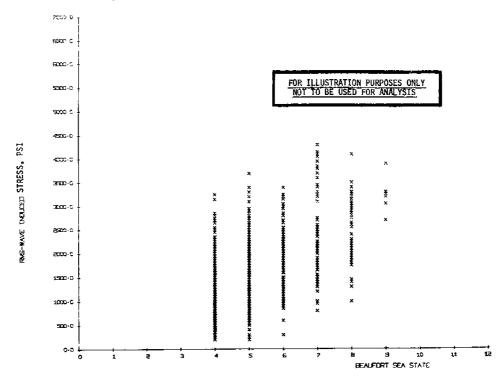
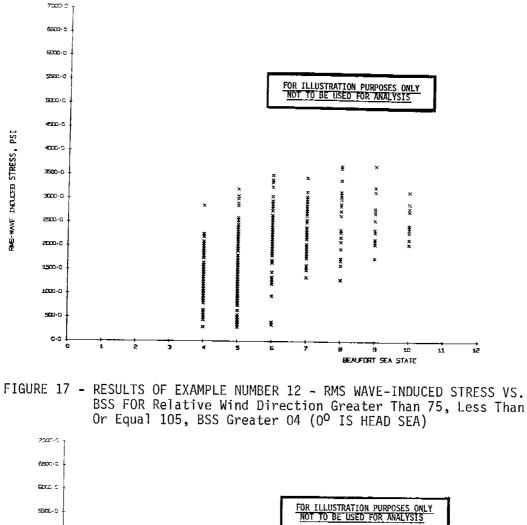



FIGURE 16 - RESULTS OF EXAMPLE NUMBER 11 - RMS WAVE-INDUCED STRESS VS. BSS FOR Relative Wind Direction Greater Than 45, Less Than Or Equal 75, (0° IS HEAD SEA)

-41--

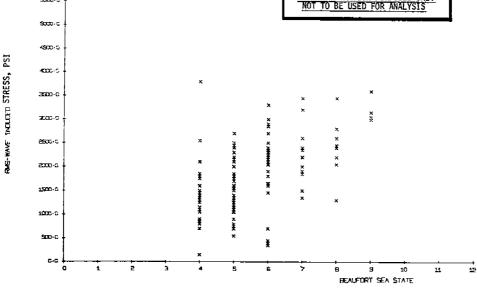


FIGURE 18 - RESULTS OF EXAMPLE NUMBER 13 - RMS WAVE-INDUCED STRESS VS. BSS FOR Relative Wind Direction Greater Than 105, Less Than Or Equal 135, (0^o IS HEAD SEA)

-

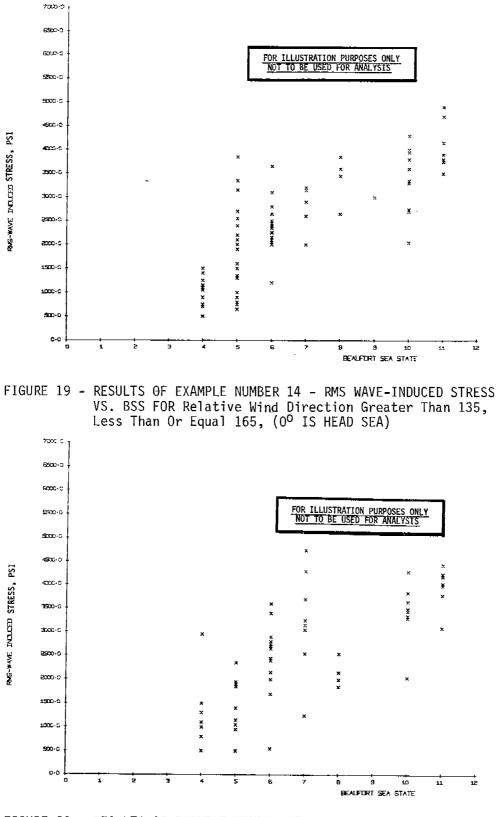


FIGURE 20 - RESULTS OF EXAMPLE NUMBER 15 - RMS WAVE-INDUCED STRESS VS. BSS FOR Relative Wind Direction Greater Than 165, Less Than Or Equal 180, (0° IS HEAD SEA)

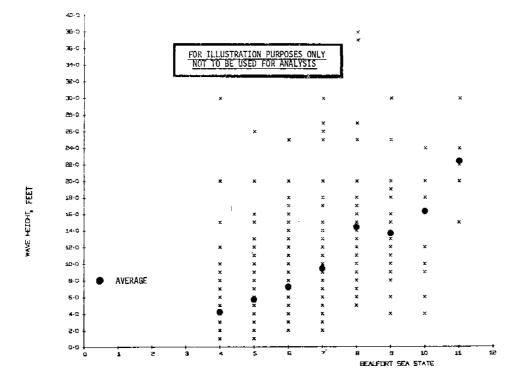


FIGURE 21 - RESULTS OF EXAMPLE NUMBER 16 - Code 16, Beaufort Sea State Vers. Wave Height, All Relative Wind Directions

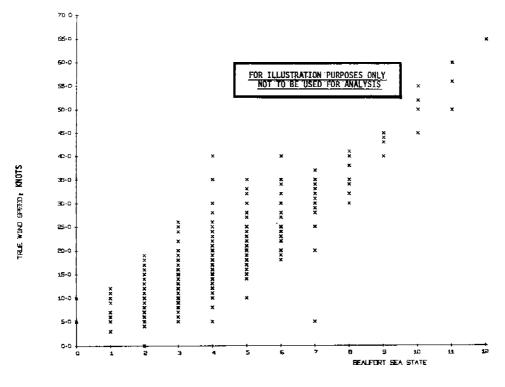


FIGURE 22 - RESULTS OF EXAMPLE NUMBER 17 - Code 17, Routing Code 01-05 Only, Date Voyage Starts, Oct to Mar Only

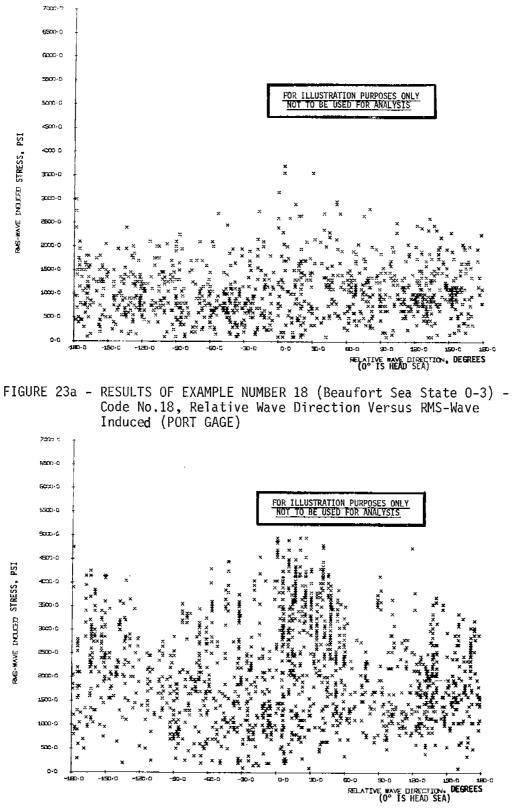


FIGURE 23b - RESULTS OF EXAMPLE NUMBER 18 (Beaufort Sea State 4-12) -Code No.18, Relative Wave Direction Versus RMS-Wave Induced (PORT GAGE)

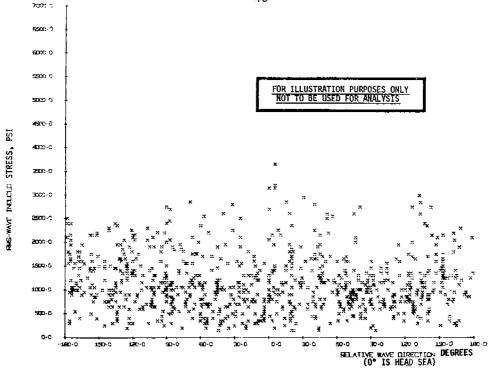


FIGURE 24a - RESULTS OF EXAMPLE NUMBER 19 (Beaufort Sea State 0-3) -Code No.19, Relative Wave Direction Versus RMS-Wave Induced (STBD. GAGE)

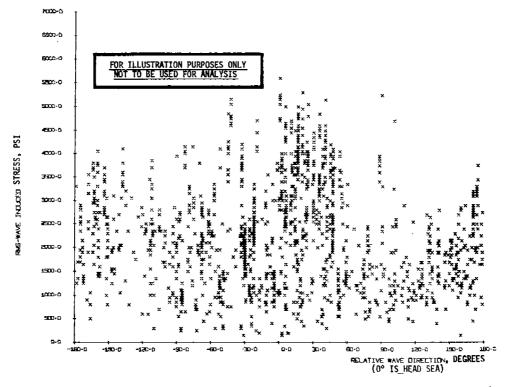


FIGURE 24b - RESULTS OF EXAMPLE NUMBER 19 (Beaufort Sea State 4-12) -Code No.19, Relative Wave Direction Versus RMS-Wave Induced (STBD GAGE)

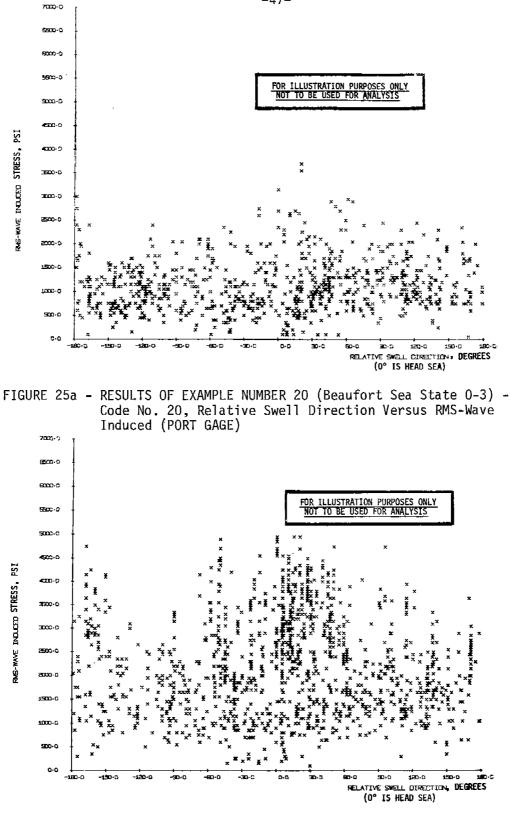


FIGURE 25b - RESULTS OF EXAMPLE NUMBER 20 (Beaufort Sea State 4-12) -Code No.20, Relative Swell Direction Versus RMS-Wave Induced (PORT GAGE)

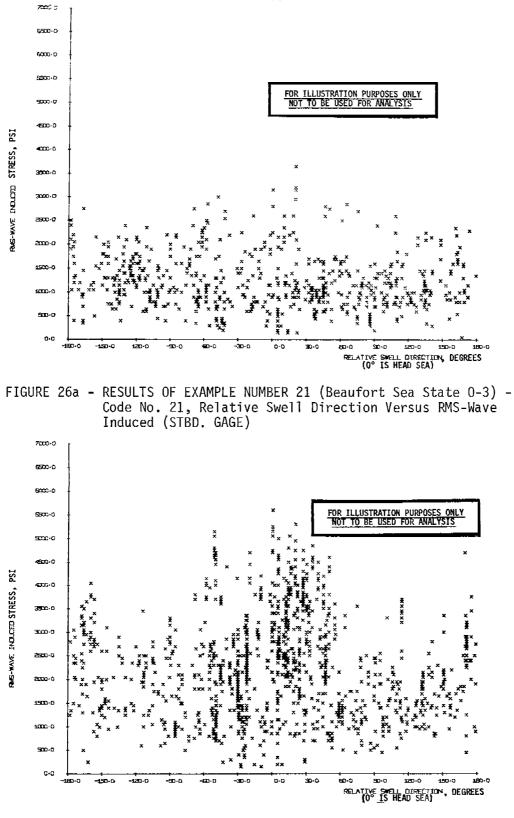


FIGURE 26b - RESULTS OF EXAMPLE NUMBER 21 (Beaufort Sea State 4-12) -Code No. 21, Relative Swell Direction Versus RMS-Wave Induced (STBD. GAGE)

SEAUFORT SEA STATE= 6

			*					
			•				BALLES	
WAVE	HEIGHT	E	2	NO.	OF	DATA		29
WAVE	HEIGHT	n N	3	NO.	OF	DATA	POINTS=	
WAVE	HEIGHT	=	4	NO.	OF	DATA	POINTS=	34
WAVE	HEIGHT		5	NO.	OF		POINTS	81
WAVE	HEIGHT		6	NO.	OF	DATA	POINTS=	146
WAVE	HEIGHT		7	NO.	OF	DATA	POINTS=	
WAVE	HEIGHT	*	6	NO.	OF	DATA	POINTS=	
WAVE	MEIGHT	c	9	NO.	OF	DATA	POINTS	
WAVE	HEIGHT	-	10	NO.	OF	DATA	POINTS=	
WAVE	HEIGHT		11	NO.	ÓF	DATA	POINTS	
WAVE	HEIGHT		12	NO.	OF	DATA	POINTS=	_16
WAVE	HEIGHT	ũ	13	NO.	OF	DATA	POINTS=	2
WAVE	HEIGHT	3	14	NO.	OF	DATA	POINTS	2
WAVE	HEIGHT		15	NO.	OF	DATA	POINTS	6
WAVE	HEIGHT	-	16	NO.	ÖF	DATA	POINTS	34
WAVE	HEIGHT	-	17	NO.	OF	DATA	POINTS=	
WAVE	HEIGHT	-	18	NO.	OF	DATA	POINTS	<u>2</u> 1
WAVE	HEIGHT	-	20	NO.	OF	DATA	POINTS	7
WAVE	HEIGHT		25	NO.	OF	DATA	POINTS=	3
0046	inc i offi		69	110.0	UF	DATA	POINTS=	2
	BEAUFOR		PC 4		-			
	DERUPOR	< I_	SE A	STATE=	7	-		
	BENGFOR	<u> </u>	35 A	STALET		•		
WAVE						DATA	POINTS	
WAVE	HEIGHT		2	NO,	OF	DATA	POINTS=	7
WAVE	HEIGHT HEIGHT		2 3	ND. NO.	0F 0F	DATA	POINTS=	26
WAVE WAVE	HEIGHT HEIGHT HEIGHT		2 3 4	ND . NO . NO .	OF OF OF	DATA	POINTS= POINTS=	_26 12
WAVE	HEIGHT HEIGHT		2 3 4 5	ND . NO . NO . NO .	OF OF OF OF	DATA DATA DATA	POINTS= POINTS= POINTS=	26 12 23
WAVE WAVE WAVE	HEIGHT HEIGHT HEIGHT HEIGHT		2 3 4 5 6	NO . NO . NO . NO . NO .	OF OF OF OF	DATA DATA DATA DATA	POINTS POINTS POINTS POINTS	26 12 23 60
WAVE WAVE WAVE WAVE	HEIGHT HEIGHT HEIGHT HEIGHT HEIGHT	2 2 2	2 3 4 5 6 7	NO N	OF OF OF OF OF	DATA DATA DATA DATA DATA	POINTS POINTS POINTS POINTS POINTS	26 12 23 60 38
WAVE WAVE WAVE WAVE WAVE	HEIGHT HEIGHT HEIGHT HEIGHT HEIGHT HEIGHT	2 2 2	2 3 4 5 6 7 8	ND • NO • NO • NO • NO • NO •	OF OF OF OF OF OF	DATA DATA DATA DATA DATA DATA	POINTS POINTS POINTS POINTS POINTS POINTS	26 12 23 60 38 94
WAVE WAVE WAVE WAVE WAVE	HEIGHT HEIGHT HEIGHT HEIGHT HEIGHT HEIGHT	2 2 2	2 3 4 5 6 7 8 9	NO . NO . NO . NO . NO . NO . NO .	OF OF OF OF OF OF	DATA DATA DATA DATA DATA DATA DATA	POINTS POINTS POINTS POINTS POINTS POINTS POINTS	26 12 23 60 38 94 38
WAVE WAVE WAVE WAVE WAVE WAVE WAVE	HEIGHT HEIGHT HEIGHT HEIGHT HEIGHT HEIGHT HEIGHT HEIGHT	2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2 3 4 5 6 7 8 9 10	NO • NO • NO • NO • NO • NO • NO •	OF OF OF OF OF OF OF	DATA DATA DATA DATA DATA DATA DATA	POINTS POINTS POINTS POINTS POINTS POINTS POINTS POINTS	26 12 23 60 38 94 38 92
WAVE WAVE WAVE WAVE WAVE WAVE WAVE WAVE	HEIGHT HEIGHT HEIGHT HEIGHT HEIGHT HEIGHT HEIGHT HEIGHT HEIGHT	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 3 4 5 6 7 8 9 10 11	ND • NO • NO • NO • NO • NO • NO • NO •	OF OF OF OF OF OF OF	DATA DATA DATA DATA DATA DATA DATA DATA	POINTS POINTS POINTS POINTS POINTS POINTS POINTS POINTS POINTS	26 12 23 60 38 94 38 92 14
WAVE WAVE WAVE WAVE WAVE WAVE WAVE WAVE	HEIGHT HEIGHT HEIGHT HEIGHT HEIGHT HEIGHT HEIGHT HEIGHT HEIGHT	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 3 4 5 6 7 8 9 10 11 12	NC • NO • NO • NO • NO • NO • NO • NO • NO	OF OF OF OF OF OF OF OF	DATA DATA DATA DATA DATA DATA DATA DATA	POINTS POINTS POINTS POINTS POINTS POINTS POINTS POINTS POINTS POINTS	26 12 23 60 38 94 38 92 14 31
WAVE WAVE WAVE WAVE WAVE WAVE WAVE WAVE	HEIGHT HEIGHT HEIGHT HEIGHT HEIGHT HEIGHT HEIGHT HEIGHT HEIGHT HEIGHT	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 3 4 5 6 7 8 9 10 11 12 13	NO . NO . NO . NO . NO . NO . NO . NO .		DATA DATA DATA DATA DATA DATA DATA DATA	POINTS POINTS POINTS POINTS POINTS POINTS POINTS POINTS POINTS POINTS POINTS	26 12 23 60 38 94 38 92 14 31 2
WAVE WAVE WAVE WAVE WAVE WAVE WAVE WAVE	HEIGHT HEIGHT HEIGHT HEIGHT HEIGHT HEIGHT HEIGHT HEIGHT HEIGHT HEIGHT HEIGHT		2 3 4 5 6 7 8 9 10 11 12 13 14	NO	OF OF OF OF OF OF OF OF OF OF	DATA DATA DATA DATA DATA DATA DATA DATA	POINTS POINTS POINTS POINTS POINTS POINTS POINTS POINTS POINTS POINTS POINTS POINTS	26 12 23 60 38 94 38 92 14 31 2 1
WAVE WAVE WAVE WAVE WAVE WAVE WAVE WAVE	HEIGHT HEIGHT HEIGHT HEIGHT HEIGHT HEIGHT HEIGHT HEIGHT HEIGHT HEIGHT		2 3 4 5 6 7 10 11 12 13 14 15	NO		DATA DATA DATA DATA DATA DATA DATA DATA	POINTS POINTS POINTS POINTS POINTS POINTS POINTS POINTS POINTS POINTS POINTS POINTS POINTS	26 12 23 60 38 94 38 92 14 31 2 16
WAVE WAVE WAVE WAVE WAVE WAVE WAVE WAVE	HEIGHT HEIGHT HEIGHT HEIGHT HEIGHT HEIGHT HEIGHT HEIGHT HEIGHT HEIGHT HEIGHT HEIGHT		2 3 4 5 6 7 8 9 10 11 12 13 14 15 17	NO.	OF OF OF OF OF OF OF OF OF OF OF	DATA DATA DATA DATA DATA DATA DATA DATA	POINTS POINTS POINTS POINTS POINTS POINTS POINTS POINTS POINTS POINTS POINTS POINTS POINTS	26 12 23 60 38 94 38 92 14 31 2 1 16 5
WAVE WAVE WAVE WAVE WAVE WAVE WAVE WAVE	HEIGHT HEIGHT HEIGHT HEIGHT HEIGHT HEIGHT HEIGHT HEIGHT HEIGHT HEIGHT HEIGHT HEIGHT		2 3 4 5 6 7 8 9 10 11 12 13 14 15 17 18	NC NO	OF OF OF OF OF OF OF OF OF OF OF OF	DATA DATA DATA DATA DATA DATA DATA DATA	POINTS POINTS POINTS POINTS POINTS POINTS POINTS POINTS POINTS POINTS POINTS POINTS POINTS POINTS	26 12 23 60 38 94 38 92 14 31 2 1 16 5 3
WAVE WAVE WAVE WAVE WAVE WAVE WAVE WAVE	HEIGHT HEIGHT HEIGHT HEIGHT HEIGHT HEIGHT HEIGHT HEIGHT HEIGHT HEIGHT HEIGHT HEIGHT HEIGHT		2 3 4 5 6 7 8 9 10 11 12 13 14 15 17 18 20	NO	OF OF OF OF OF OF OF OF OF OF OF OF OF	DATA DATA DATA DATA DATA DATA DATA DATA	POINTS POINTS POINTS POINTS POINTS POINTS POINTS POINTS POINTS POINTS POINTS POINTS POINTS POINTS	26 12 23 60 38 94 36 92 14 31 2 16 5 3 20
WAVE WAVE WAVE WAVE WAVE WAVE WAVE WAVE	HEIGHT HEIGHT HEIGHT HEIGHT HEIGHT HEIGHT HEIGHT HEIGHT HEIGHT HEIGHT HEIGHT HEIGHT HEIGHT HEIGHT		2 3 4 5 6 7 8 9 10 11 12 13 14 15 17 18 20 25	NO. NO.	OF OF OF OF OF OF OF OF OF OF OF OF OF	DATA DATA DATA DATA DATA DATA DATA DATA	POINTS POINTS POINTS POINTS POINTS POINTS POINTS POINTS POINTS POINTS POINTS POINTS POINTS POINTS POINTS POINTS POINTS	26 12 23 60 38 94 38 92 14 31 2 1 16 5 3 20 5
WAVE WAVE WAVE WAVE WAVE WAVE WAVE WAVE	HEIGHT HEIGHT HEIGHT HEIGHT HEIGHT HEIGHT HEIGHT HEIGHT HEIGHT HEIGHT HEIGHT HEIGHT HEIGHT HEIGHT		2 3 5 6 7 8 9 10 11 12 13 14 15 17 18 20 25 26	NO	OF OF OF OF OF OF OF OF OF OF OF OF OF O	DATA DATA DATA DATA DATA DATA DATA DATA	POINTS POINTS POINTS POINTS POINTS POINTS POINTS POINTS POINTS POINTS POINTS POINTS POINTS POINTS POINTS POINTS POINTS POINTS	26 12 23 60 38 94 38 92 14 31 2 1 16 5 3 20 5 5
WAVE WAVE WAVE WAVE WAVE WAVE WAVE WAVE	HEIGHT HEIGHT HEIGHT HEIGHT HEIGHT HEIGHT HEIGHT HEIGHT HEIGHT HEIGHT HEIGHT HEIGHT HEIGHT HEIGHT HEIGHT HEIGHT		2 3 4 5 6 7 8 9 10 11 12 13 14 15 17 18 20 25 26 27	NO	OF OF OF OF OF OF OF OF OF OF OF OF OF O	DATA DATA DATA DATA DATA DATA DATA DATA	POINTS POINTS POINTS POINTS POINTS POINTS POINTS POINTS POINTS POINTS POINTS POINTS POINTS POINTS POINTS POINTS POINTS POINTS POINTS	26 12 23 60 38 94 38 94 38 94 31 2 14 31 2 16 5 3 20 5 4
WAVE WAVE WAVE WAVE WAVE WAVE WAVE WAVE	HEIGHT HEIGHT HEIGHT HEIGHT HEIGHT HEIGHT HEIGHT HEIGHT HEIGHT HEIGHT HEIGHT HEIGHT HEIGHT HEIGHT		2 3 5 6 7 8 9 10 11 12 13 14 15 17 18 20 25 26	NO	OF OF OF OF OF OF OF OF OF OF OF OF OF O	DATA DATA DATA DATA DATA DATA DATA DATA	POINTS POINTS POINTS POINTS POINTS POINTS POINTS POINTS POINTS POINTS POINTS POINTS POINTS POINTS POINTS POINTS POINTS POINTS	26 12 23 60 38 94 38 94 31 2 14 15 3 20 5 5 4

TABLE XIII - MODIFIED PRINTOUT OF EXAMPLE NO.16

	BEAUFOR	۲۶	SEA	STATE=	4			
WAVE	REIGHT	=	1	NO.	0F	DATA	POINTS.	39
WAVE	HEIGHT	5	2	NO.	OF	DATA	POINTS=	239
WAVE	REIGHT	t	э	NO.	0F	DATA	POINTS=	392
WAVE	HEIGHT	t	4	NO.	OF	DATA	POINTS=	355
		=	5	NO.	OF	DATA	POINTS=	199
WAVE	HE1GHT	₽	6	NO.	OF	DATA	POINTS=	371
		=	7.	NO.	OF	DATA	POINTS	25
	HEIGHT	Ξ	8	NO.	OF	DATA	POINTS=	28
		=	9	NO.	OF	DATA	POINTS=	1
	HEIGHT	=	10	NO.	OF	DATA	POINTS=	6
	HEIGHT	8	12	NO.	OF	DATA	POINTS=	1
WAVE	HEIGHT	=	15	NO.	OF		POINTS=	2
	HEIGHT		20	NO.	ÔF	DATA	POINTS	11 1 1
WAVE	HEIGHT	=	30	NO.	OF	DATA	POINTS	1

PEAUFORT SEA STATE 5

//AVE	HEIGHT	=	1	NO.	0F	0ATA	POINTS.	12
WAVE	HEIGHT	Ŧ	2	NO •	ÖF	DATA	POINTS=	77
WAVE	HEIGHT	=	3	NO.	0F	DATA	POINTSE	169
-WAVE.	HEIGHT	-	4	NO.	OF	DATA	POINTS=	196
WAVE	HEIGHT	=	5	ΝО.	OF	DATA	POINTS=	230
- NVAE	HEIGHT	° =	6	NO.	ÖF	DATA	POINTS=	162 -
WAVE	HEIGHT	=	7	NO.	OF	DATA	POINTS=	61
WAVE	HEIGHT	=	8	NO.	ŌF	DATA	POINTS=	71
WAVE		≓	9	NC.	OF	DATA	POINTS=	10
	HEIGHT	=	10	NO.	OF	DATA	POINTS=	195
WAVE	HEIGHT	=	11	NO 🖬	OF	DATA	POINTS#	43
- WAVE	HEIGHT	_	12	- NO.	OF	DATA	POINTS=	9
WAVE	HEIGHT	=	13	NO •	OF	DATA	POINTS=	1
WAVE	THE TGHT	=	15	NO.	OF	DATA	POINTS=	Э
WAVE	HEIGHT	=	16	NO.	OF	DATA	POINTS=	1
	HEIGHT		50	NO.	OF	DATA	POINTS	1
WAVE	HEIGHT	=	26	NO 🛛	OF	DATA	POINTS=	1

BEAUFORT SEA STATE &

WAVE HEIGHT	• 5	NO.	ŌF	DATA	POINTS.	
WAVE HEIGHT	= 6	NO.	OF	DATA	POINTS=	15
WAVE HEIGHT	= 7	- NÖ.	OF	DATA	POINTS=	4
WAVE HEIGHT	= 6	NO.	OF	DATA	POINTS=	29
WAVE HEIGHT	• 9	NO.	OF	DATA	POINTS=	9
WAVE HEIGHT	= 10	NO.	OF	DATA	POINTS=	47
WAVE HEIGHT	= 11	NO.	OF	DATA	POINTS-	1
	= 12	NO.	0F	DATA	POINTS=	45
WAVE HEIGHT	-13	NO.	OF	DATA	POINTS	4
WAVE HEIGHT	= 14	NO.	OF	DATA	POINTS=	16
WAVE HEIGHT	= 15	NO.	OF	DATA	POINTS*	26
	= 16	NO.	OF	DATA	POINTS=	6
WAVE HEIGHT	17	NO.	OF'	DATA	POINTS=	2
WAVE HEIGHT	= 18	NO.	OF	DATA	POINTS=	11
WAVE HEIGHT	= 20	NO.	OF	DATA	POINTS=	26
WAVE HEIGHT	25	NO .	OF	DATA	POINTS=	2
WAVE HEIGHT	= 27	NO.	٥F	DATA	POINTS=	- 7
WAVE HEIGHT	= 37	NQ.	OF	DATA	POINTS=	1
WAVE HEIGHT	- 38	NO.	OF.	DATA	POINTS	-16

	XIII-4
TADLE	XIII-4

BEAUFORT SEA STATE 10

			_						
WA	VE	HEIGHT	=	4	NO.	OF	DATA	POINTS=	5
WA	VE	HEIGHT	3	6	NO.	OF	DATA	POINTS=	2
NA.	VE	HEIGHT	=	9	NO.	OF	DATA	POINTS=	2
	VE	HEIGHT		10	NO	OF	DATA	POINTS=	7
WA	VE	HEIGHT	#	12	NO.	OF	DATA	POINTS=	1
WA	VE	HEIGHT	=	18	NO.	OF	DATA	POINTS	8
WA	VE	HEIGHT	=	20	NO 🖬	OF	DATA	POINTS=	18
- WA	VE	HEIGHT	=	24	NO.	OF	DATA	POINTS=	- ð
		BEAUFO	RT	SEA	STATE=	11			
AW	VE	HEIGHT	- 2	15	NO.	OF	DATA	POINTS=	3
	VE.			20	NO.	OF	DATA	POINTS=	1
WA	VE	HEIGHT	=	22	NO.	OF	DATA	POINTS	11
	VE.	HEIGHT		24	NO.	ÖF		POINTS.	14

WAVE HEIGHT

	HEIGHT		4				POINTS=	7
WAVE	HEIGHT	E	6	NO.	OF	DATA	POINTS.	4
	HEIGHT			NO.	OF	DATA	POINTS=	19
	"HE IGHT"			NO.	ĨÓF	DATA	POINTS=	ź
	HEIGHT			NO.	OF	DATA	POINTS=	12
	HEIGHT			NO.	ŌF	DATA	POINTS-	2
WAVE	HEIGHT	z	12	NO.	OF	DATA	POINTS=	7
WAVE	HEIGHT		13	NO,	ÖF	DATA	POINTS=	2
	HEIGHT		15	NO.	OF	DATA	POINTS=	2
WAVE	HEIGHT	Ξ	16	NO.	OF	DATA	POINTS-	18
	HEIGHT			NO.	OF	DATA	POINTS=	5
WAVE	HEIGHT		19	NO.	OF	DATA	POINTS=	14
	HEIGHT			NO.	0F	DATA	POINTS=	15
	HEIGHT		25	NO.	OF	DATA	POINTS=	1
WAVE	HEIGHT	=	30	NO.	OF	DATA	POINTS=	ī

BEAUFORT SEA STATE= 9

In addition to the plots, as defined in Table X, the number of data points to be plotted in certain examples appears to be excessive to interpret results. Recognizing that each of the examples numbered 18-21 would contain half of the total intervals recorded on the half-bridge summary tape (approximately 2,775 data points per example), the Beaufort Sea State was read in addition to the required data. Thus, the total number of data points could be sorted further by B.S.S. Example 18 has been plotted for values of B.S.S. between zero and three in Figure 23a, and B.S.S. between four and twelve in Figure 23b. Similarly, Figures 24-26 break the total data into groupings by B.S.S. With the data on cards as output from the program, considerable further processing can be done quite readily with additional card sorting and/or other simple programming.

In any computer analysis system, the computer time and/or cost to perform the several tasks is very important. The approximate computer times for processing 100 intervals and output to a Final Summary Tape follow. The key punched logbook data were loaded onto perforated paper tape using a standard IBM 1130 computer with paper-tape punch. Approximately one hour of computer time is required to list, edit and prepare the paper tape (including verification printout). The paper tape was read into a PDP-8/I Computer and the data stored on DECtape using approximately 30 minutes of computer processor time. To digitize and process 100 intervals (originally recorded for approximately 32 minutes each at 0.3 inch/minute) at a speed-up factor of 25, requires approximately 2 1/4 hours of PDP-8/I computer time.

The preparation of a Final Summary Tape from several tapes is dependent on several factors. The generation of a tape equivalent to the full-bridge data tape (approximately 7700 intervals from 15 data tapes) required approximately 1 hour of IBM 360/65 computer time. It requires approximately 10 minutes to run a Final Summary Tape through the IBM 360/65 to retrieve the data from the PARM program. However, judicious use of the program permits several studies to be run with each pass of the tape through the computer. For example, the first eight of the demonstration examples were retrieved in one pass. Depending on the output specified, mechanical card sorting and preparation of computer plots are very dependent on equipment used and operator experience. Typically, plots equivalent to Figure 24b (using a Calcomp 565 plotter operating through an IBM 1130 computer) require

approximately 1.4 hours of computer time. The simpler plots (and with fewer data points) require less time, but are not necessarily linear with the number of data points.

V. CONCLUDING REMARKS

The data from 13,220 intervals of midship bending stress and accompanying logbook information have been processed to digital form. The original data from 163 analogue tapes, covering 217 voyages of the SS HOOSIER STATE, SS WOLVERINE STATE, SS MORMACSCAN, and SS CALIFORNIA BEAR are now available on 25 digital tapes to permit easier access for further study.

In addition, two summary tapes (which retain only the logbook data and the derived data) have been prepared. These tapes were used to retrieve selected data to illustrate the manner of retrieval, to indicate possible formats for presentation of data, and to show the type of statistical information available from these data. Inasmuch as these demonstration examples were intended as illustrative of capabilities, no interpretive analysis was done of the data.

The computer programs which were written to process the data and perform the demonstration examples are documented in Reference 3.

The data available on the digital tapes have been edited, as required, to provide a single consistent basis for treatment of the original information (analogue tape and logbook). The analogue signals are faithfully reproduced by the digital record to permit reconstruction of the wave-induced and first-mode signals. So faithful is the reproduction that some spurious transients, attributed to noise and other factors, are also included in the reconstruction. On all of the fullbridge data, because of the hard-mounted, vertical tape-reel configuration of the tape-recording system, these spurious transients occur in the first-mode data (only) and further study and editing of these data should be undertaken before full confidence in the total first-mode data can be established.

VI. ACKNOWLEDGEMENTS

The authors wish to acknowledge the considerable assistance of Mrs. Judith R. Petrovic in programming for the IBM 360 System.

-52-

VII. REFERENCES

- Bailey, F. C., and Johnson, A. E., Jr. <u>Feasibility of Digitizing</u>, <u>Cataloging and Preparing Library Tapes of Ship Stress and Environ-</u> <u>ment Data</u>. Teledyne Materials Research Technical Report No. 1149(a), 7 March 1969.
- Johnson, A. E., Jr., and Flaherty, J. A. <u>Development of Processor</u> <u>Program for Digitizing and Preparing Library Tapes of Ship Stress and</u> <u>Environment Data</u>. Teledyne Materials Research Technical Report No. <u>E-1149(b)</u>, November 4, 1970.
- 3. Johnson, A. E., Jr., Flaherty, J. A., and Walters, I. J. <u>Computer</u> <u>Programs For the Digitizing and Using of Library Tapes of Ship Stress</u> and Environment Data, Ship Structure Committee Report SSC 237, 1973.
- 4. Fritch, D. J., and Bailey, F. C. <u>An Unmanned System for Recording</u> <u>Stresses and Acceleration on Ships at Sea</u>. Ship Structure Committee Report SSC-150, June 1963.
- 5. Fritch, D. J., Bailey, F. C., and Wise, N. S. <u>Preliminary Analysis</u> of Bending Moment Data from Ships at Sea. Ship Structure Committee Report SSC-153, December 1963.
- Fritch, D. J., Bailey, F. C., and Wise, N. S. <u>Acquisition and Analysis</u> of <u>Acceleration Data</u>. Ship Structure Committee Report SSC-159, February 1964.
- Fritch, D. J., Bailey, F. C., and Wise, N. S. <u>Results from Full-Scale</u> <u>Measurements of Midship Bending Stress on Two C4-S-B5 Dry-Cargo Ships</u> <u>Operating in North Atlantic Service</u>. Ship Structure Committee Report SSC-164, September 1964.
- Fritch, D. J., Bailey, F. C., and Wheaton, J. W. <u>Results from Full-Scale Measurements of Midship-Bending Stresses on Two Dry-Cargo Ships</u> -Report #2. Ship Structure Committee Report SSC-181, March 1967.
- 9. Walters, I. J., and Bailey, F. C. <u>Results from Full-Scale Measurements</u> of Midship Bending Stresses on Three Dry-Cargo Ships. Ship Structure Committee Report SSC-209, 1970.
- Wheaton, J. W., Kano, C. H., Diamant, P. T., and Bailey, F. C. <u>Analysis of Slamming Data from the SS WOLVERINE STATE</u>, Ship Structure Committee Report SSC-210, 1970.

Unclassified			
Security Classification			
	annotation must be e		
DOCUMENT CONTROL DATA - R & D (Security classification all title, body of abstract and indexing annotation must be entred when the overall report is classificant in a AEPORT security of Composed author) TELEDYNE MATERIALS RESEARCH 303 Bear Hill Road Waltham, MA 02154 OF SHIP STRESS AND ENVIRONMENT DATA A METHOD FOR DIGITIZING, PREPARING AND USING LIBRARY TAPES OF SHIP STRESS AND ENVIRONMENT DATA SCRIPTIVE NOTES (Type of report and inclusive dates) FINAL REPORT FINAL REPORT THORES (First reage, middle initial, lest name) Aldie E. Johnson, Jr. Isaac J. Walters James A. Flaherty Soft DATE Schert row. NO0024-69-C-5161 NO0024-69-C-5161 Soft Ship Structure Committee Research Project SR-187 - Part I Distribution of this document is unlimited SSC-236 Structure Committee Naval Ship Engineering Center Midship bending stress and environmental data from four dry-cargo s Structure Committee Naval Sh			
		1	
REPORT TITLE			
A METHOD FOR DIGITIZING, PREPARING A	AND USING LIBR	ARY TAPE	S
OF SHIP STRESS AND ENVIRONM	TENT DATA		
DESCRIPTIVE NOTES (Type of report and inclusive dates)			10
FINAL REPORT			
AUTHOR(\$) (First name, middle initial, last name)			
	J. Walters		
James A. Flaherty			
REPORT DATE 1973	74. TOTAL NO. O	F PAGES	75. NO. OF REFS
	53		10
2. CONTRACT OR GRANT NO.	28. ORIGINATOR		
N00024-69-C-5161		-	
D. PROJECT NO.		E-1149(o	c)
c. Research Project SR-187 - Part I	95. OTHER REPO	RT NO(5) (An	y other numbers that may be easigned
	une report)		
d.			SSC-236
0. DISTRIBUTION STATEMENT			
Distribution of this document is unl	limited		
I- SUPPLEMENTARY NOTES	12. SPONSORING	MILITARY AC	
	Ship	Structure	e Committee
	Noval	Shin End	ringering Center
	navar	энтр ги	gineering bencer
3. AGSTRACT			· · · · · · · · · · · · · · · · · · ·
accumulated during the period 1959 (through early ponse Statisti es. During th which has bee ls recorded. re contained o cu 25 reels o stored on two n to convert t nal digital fo	1970 und cs," hav e process n includ n 163 re f digita summary he origi: rmat and	er Ship Structure e been processed sing, selected ed on the digital els of magnetic tape. l tape and pertinent reels. nal analog data and to provide a
D PORT A BAR BAR BAR BAR BAR BAR BAR BAR BAR B	adan santan menangan sa sa A. Mootetoo IQ		Unclassified

Security Classification

Unclassified

..

Security Classification

KEY WORDS		K A	LIN			IK C
	ROLE	WT.	RÔLE WT		ROLE	WT
		1			1	
SHIP STRESS						
PROCESSOR PROGRAMS			,			
LIBRARY TAPES						ļ
DIGITIZING						i
						1
					f i	
						1
					1	1
						1
						1
						1
					1	
					ł	[
					1	
				ĺ		
					-	
		i	·			
·						
		Unc.	lassifi	ed		

SHIP RESEARCH COMMITTEE Maritime Transportion Research Board National Academy of Sciences-National Research Council

The Ship Research Committee has technical cognizance of the inter agency Ship Structure Committee's research program: PROF. R. A. YAGLE, Chairman, Prof. of Naval Architecture, University of Michigan DR. H. N. ABRAMSON, Tech. Vice President, Dept. of Mech. Sciences, Southwest Res. Inst. PROF. R. W. CLOUGH, Prof. of Civil Engineering, University of California MR. E. L. CRISCUOLO, Senior NDT Specialist, Naval Ordnance Laboratory PROF. J. E. GOLDBERG, Prof. of Civil Engineering, Purdue University PROF. W. J. HALL, Prof. of Civil Engineering, University of Illinois DR. S. R. HELLER, JR., Chairman, Civil & Mech. Eng. Dept., The Catholic Univ. of America MR. G. E. KAMPSCHAEFER, JR., Manager, Technical Services, ARMCO Steel Corporation MR. R. C. STRASSER, Director of Research, Newport News Shipbuilding & Dry Dock Company MR. H. S. TOWNSEND, Vice President, U. S. Salvage Association, Inc. DR. S. YUKAWA, Consulting Engineer, General Electric Company MR. R. W. RUMKE, Executive Secretary, Ship Research Committee

Advisory Group I, "Ship Response and Load Criteria", prepared the project prospectus and evaluated the proposals for this project: DR. H. N. ABRAMSON, Chairman, Tech. Vice President, Dept. of Mech. Sciences, Southwest Research Institute DR. C. CHRYSSOSTOMIDIS, Asst. Prof. of Naval Architecture, Mass. Inst. of Technology PROF. A. M. FREUDENTHAL, College of Engineering, George Washington University DR. R. GLASFELD, Naval Architect, General Dynamics Corporation MR. R. G. KLINE, Assoc. Research Consultant, U. S. Steel Corporation DR. M. K. OCHI, Research Scientist, Naval Ship Research & Development Center MR. R. C. STRASSER, Director of Research, Newport News Shipbuilding & Dry Dock Company The SR-187 Project Advisory Committee provided the liaison technical guidance and reviewed the project reports with the investigator: MR. W. H. BUCKLEY, Chairman, Coordinator of Hydrofoil Struct. Res., Naval Ship Research and Development Center PROF. A. M. FREUDENTHAL, College of Engineering, George Washington University MR. R. G. KLINE, Assoc. Research Consultant, U. S. Steel Corporation

SHIP STRUCTURE COMMITTEE PUBLICATIONS

These documents are distributed by the National Technical Information Service, Springfield, Va. 22151. These documents have been announced in the Clearinghouse journal U.S. Government Research & Development Reports (USGRDR) under the indicated AD numbers.

- SSC-223, Compressive Strength of Ship Hull Girders Part II Stiffened Plates by H. Becker, A. Colao, R. Goldman, and J. Pozerycki. 1971. AD 733811.
- SSC-224, Feasibility Study of Glass Reinforced Plastic Cargo Ship by R. J. Scott and J. H. Sommella. 1971. AD 735113.
- SSC-225, Structural Analysis of Longitudinally Framed Ships by R. Nielsen P. Y. Chang, and L. C. Deschamps. 1972. AD 752769.
- SSC-226, Tanker Longitudinal Strength Analysis User's Manual and Computer Program by R. Nielsen, P. Y. Chang, and L. C. Deschamps, 1972. AD 752770.
- SSC-227, Tanker Transverse Strength Analysis User's Manual by R. Nielsen, P. Y. Chang, and L. C. Deschamps. 1972. AD 752771.
- SSC-228, Tanker Transverse Strength Analysis Programmer's Manual by R. Nielsen, P. Y. Chang, and L. C. Deschamps. 1972. AD 752742.
- SSC-229, Evaluation and Verification of Computer Calculations of Wave-Induced Ship Structural Loads by P. Kaplan and A. I. Raff. 1972. AD 753220.
- SSC-230, Program SCORES -- Ship Structural Response in Waves by A. I. Raff. 1972. AD 752468.
- SSC-231, Further Studies of Computer Simulation of Slamming and Other Wave-Induced Vibratory Structural Loadings on Ships in Waves by P. Kaplan and T. P. Sargent. 1972. AD 752479.
- SSC-232, Study of the Factors which Affect the Adequacy of High-Strength, Low Alloy, Steel Weldments for Cargo Ship Hulls by E. B. Norris, A. G. Pickett, R. D. Wylie. 1972. AD 752480.
- SSC-233, Correlation of Model and Full Scale Results in Predicting Wave Bending Moment Trends by D. Hoffman, J. Williamson, E. V. Lewis. 1972. AD 753223.
- SSC-234, Evaluation of Methods for Extrapolation of Ship Bending Stress Data by D. Hoffman, R. Van Hooff, E. V. Lewis. 1972. AD 753224.
- SSC-235, Effect of Temperature and Strain Upon Ship Steels by R. L. Rothman and R. E. Monroe. 1973.