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Mining Research Centre established at 
University of Pretoria

A multidisciplinary Mining Resilience Research Centre (MRRC) has been established at the University of Pretoria (UP) to
focus on multi-disciplinary research activities within the mining industry and to develop lasting partnerships with leading
international research and academic institutions.

Prof Jan du Plessis, Sasol Chair in Health, Safety and Environment in the Department of Mining Engineering at UP, says
although mining faces severe challenges under the current economic conditions, it remains an important sector for growth
and transformation in Africa. ‘Issues around legacy, responsibility, impact and innovation need to be addressed in order to
achieve a resilient mining industry in Africa. At the heart of any strategy to achieve resilience in African Mining lies the
requirement for appropriate knowledge, capability, attitude and behaviour of the mining leaders of the future. The
establishment of the MRRC is the result of thorough industry consultation and the main aim of this Centre is to provide
modern approaches, world class facilities and globally relevant topics, making it possible for researchers to excel and for the
industry to build capacity.’ 

According to the World Bank (2016), Africa is home to about 30% of the world’s mineral reserves, 10% of the world’s
oil, and 8% of the world’s natural gas. In South Africa the mining industry is responsible for an estimated19% of all
economic activity and supports at least another 25 % of up and downstream economic activities. Despite this considerable
wealth on the continent, it is plagued by poverty, social inequality, and slow economic development. However, mining
remains a key driver for growth and is inextricably linked to Africa's future - with mining comes employment and skills
development, investment in education, the construction of infrastructure and the generation of much-needed revenue.

Amongst others the MRRC is establishing multidisciplinary collaborations that will address:

� future mining education with the aim to co-create, develop and adopt a Resilient African Mining Model as the blueprint
for mine designs of the future; 

� future new technologies including mechanised mining, automation, robotics and the associated workplace order and
culture;

� future socio-economic aspects of mining, on how empowered, technologically enabled and educated communities relate to
mining operations; and

� future mining governance in Africa to meet the highest standards.

Faculties that currently form part of the MRRC are the Faculties of Humanities, Natural and Agricultural Sciences,
Economic and Management Sciences, Engineering, Built Environment and Information Technology and Law. The intention is
that more faculties at the University of Pretoria that are involved in mining research will eventually also form part of the
MRRC activities, making it a fully interdisciplinary mining research centre. The MRRC is currently busy with six research
projects in Engineering, Built Environment and Humanities.

As part of the Centre strategic intend it has and will continue to form partnerships with leading International and local
universities. This will include student and lecturer exchanges, joint research activities and the opportunities for post graduate
studies in the different speciality fields.

L. Swart
Department of University Relations, University of Pretoria

Contact: (012) 420-3650
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One might ask what benefit the Danie Krige
Geostatistical Conference imparted to the delegates.
Principally, it drew us together and confirmed again the

importance of the work being done in the field of geostatistics.
A significant concern over the past decade and a half has been
the declining numbers of local geostatistics practitioners and
the need for ongoing education of the geostatistical fraternity.
Unfortunately, there are many geostatisticians working in
South Africa who have become ‘transparent’ to the
professional institutions in that they are not affiliated in any
way. All participants at the Conference were urged to enrol as
members of the Southern African Institute of Mining and
Metallurgy (SAIMM), and the Geostatistical Association of
Southern Africa (GASA). 

Papers published in this issue of the Journal arose from the
Proceedings of the Danie Krige Geostatistical Conference,
which in turn was based on submissions of original
geostatistical research presented in the Danie Krige
Commemorative Volume. The intention for the Danie Krige
Geostatistical Conference was to provide the authors of papers
in the Commemorative Volume with a platform from which to
present their research. However, most of the twenty-two
papers contained in the Proceedings were original items of
research that relate to, or are extensions of, work published in
the Commemorative Volume. The international call for papers
in honour of Professor Krige through the SAIMM resulted in
three issues of the Journal, published in March 2014, in
August 2014, and in January 2015, and included 35 papers
submitted by 83 authors from 17 countries around the world.
The theme of the Danie Krige Geostatistical Conference,
‘Geostatistical Geovalue - Rewards and Returns for Spatial
Modelling’, highlighted the role of geostatistics in optimizing
financial returns from mineral extraction by minimizing
uncertainty. ‘Geovalue’ refers to the capitalized value of the
Earth’s primary natural resources, and only the diligent and
correct application of geostatistics can maximize this value.
The Conference went a long way in presenting new and
innovative ways to improve ‘geovalue’, but it is felt necessary
to briefly explain the history underlying the development of
geostatistics.

In 1644 Descartes used a method, later to be referred to as
the Voronoi diagram after the Ukrainian mathematician
Georgy Voronoy (1868–1908), in a strictly geometric or
polygonal method of estimation; a similar method employs
what are known as Thiessen polygons. Others who
investigated spatial variability include Bertil Matern (1917–
2007), a Swedish statistician whose research applied to
forestry, and Lev Gandin (1921–1997), a Russian
mathematician whose work centred on climatology and the
best way to average scattered meteorological data to give a
spatial average. Georges Matheron (1930–2000), who knew of
the work of Matern and Gandin, drew heavily on the work
done by Andrey Kolmogorov (1903–1987), a Russian 

mathematician who made significant contributions to the
mathematics of probability theory as well as other areas.
Matheron, intrigued by the pioneering work of Danie Krige
and Herbert Sichel in the late 1940s and early 1950s on topics
specific to mining and mineral resource evaluation, went on to
formalize Krige’s evaluation methods at Ecole des Mines de
Paris in Fontainebleau, France. It was Krige’s work in
particular that became known as geostatistics, and the
technique for estimating values at unsampled localities using
nearby samples that Matheron referred to as ‘kriging’.
Evidence presented by Noel Cressie indicates that both Georges
Matheron and Lev Gandin independently developed ordinary
kriging as we know it today.

What was particularly important in the advancement of
geostatistics and the spreading of this idea through industry
as an estimation technique in mineral resource evaluation was
the parallel development of computing technology. Computing
power grew quickly from its inception in the late 1940s and
early 1950s, without which the science of geostatistics would
simply not have been possible. In addition, a growing range of
software for application to geostatistical problems also found a
place on the stage. The application of geostatistics grew not
only in mining- and mineral resource-related problems, but
also in soil science, meteorology, environmental science, the
oil and gas industries, and more recently in ecology and image
analysis.

The simple concepts lying at the foundations of
geostatistics need some air-time lest readers relegate the
contents of this volume to paths less well trodden. Krige’s
main aim was to convince South African mining engineers in
particular to use multiple regressions to predict the grade of
mining blocks from the huge amount of assay values that had
already been collected. Spatial modelling and the need to
predict point or block estimates in space from surrounding
data has given rise to what is today known as geostatistics.
This is a significant break from classical statistics, which
demands that data values be both random and independent.
Geostatistics has taken a more pragmatic view, with its
fundamental premise being that while data values may be
random, they are not independent of one another. Closer
sample values will be more similar than those farther apart. If
one imagines a point in space for which you would like to
estimate a value (or grade) from surrounding samples, one
could simply calculate their average and assign it as the
estimate. If the concept of spatial dependence between
variables is allowed to ferment, the next logical step would be
to weight the contributions of local data values to the estimate
based on their distance away from the point being estimated;
nearer data points contribute a greater proportion of their
value to the estimate than points further away. Hence, inverse
distance estimation – a weighted linear combination of nearby
sample values. Immediately, questions arise about the nature,
validity, and confidence one might place in the estimate
produced in this way. What confidence do we have in the
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estimate? Is it a single point estimate or only one value from a
probability distribution; is the inverse distance function
appropriate; how many samples should we use; what is the
maximum distance for including samples in the estimate; what
should we do if the samples are clustered; how do we manage
anisotropy; how do we deal with outliers; what is the data
from a skewed distribution; how do we manage the regression
effect; and how will the estimate change if we consider an area
or volume rather than a point estimate? Almost half these
questions can be answered by resorting to the standard
geostatistical approach, which is to use a variogram, a graph
which shows how the variance of the difference between data
points changes as the distance between them increases.
Georges Matheron succeeded in answering the balance of the

questions by developing the concepts of ordinary kriging for
the mining industry.

It is now sixteen years since the last significant
geostatistical conference, Geostats 2000, which was held in
South Africa. The length of time between geostatistical
conferences rang a note of concern amongst all delegates and
acted as a reminder that we should be in regular contact to
share ideas. The Danie Krige Geostatistical Conference
provided geostatisticians with just such an opportunity and I
trust that the momentum for good quality research generated
by this Conference will be carried into the future.

R.C.A. Minnitt
Conference Convener

Journal Comment (continued)
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Exceptionalism comes easily to South Africans. We are used to living in a country with wonderful weather,
spectacular scenery, and the richest collection of mineral wealth in our ground. There is no other country in
the world where you have two Nobel Peace Prize winners who lived in the same street. We are the Rainbow

Nation of Desmond Tutu; the country where Gandhi formulated his ideas of passive resistance; and the people led by
Nelson Mandela that practised reconciliation instead of a civil war. Johannesburg is the city where all of these great
leaders lived and worked; it is also the location of the world’s greatest deposit of gold; and is even claimed to be the
world’s largest manmade urban forest. I was born in Germiston (now regarded as part of greater Johannesburg; both
cities were founded in 1886), and I grew up feeling proud of the accomplishments of the industrialists of my father’s
generation. The city was home to the Rand Refinery (the world’s largest refinery of gold, which has refined 30% of
all the gold mined in the world since antiquity), and the largest railway junction in the Southern Hemisphere.

South Africa, as a country, does not do things in half measures. For a few decades in the 20th century, South
Africans were pariahs because of our discriminatory apartheid laws, then during the Mandela years we went to being
one of the world’s favourite nations and were a shining example to the world in how to overcome discrimination, and
how to unite divided societies. Unfortunately, more recently, our reputation has been sullied and we have become
known as one of the world’s more violent, lawless, unequal, corrupt, and ineffective countries. Our national psyche
seems to demand that we are either at the top or at the bottom of the pile. Surely there has to be a better way –
maybe we could try to be just a normal and peaceful place.

The writer of the book of Ecclesiastes (usually assumed to be King Solomon) was someone in a position to test
what made for a successful life. He pursued great wealth and found that unsatisfying; he pursued a life of hedonistic
pleasures and found that to be like ‘chasing after the wind’; he attained great wisdom and knowledge and found
even that to be ‘utterly meaningless’. Eventually he concluded that the secret to a happy and successful life was to
find pleasure in the simple things – a shared meal with friends, the satisfaction of work, laughing together, and
enjoying the beauty around us – a celebration of the ordinary. Despite this really good advice, we do seem to pay
special attention to people who achieve first place and to things that are bigger or better than other things like them.

Charles Schulz, the creator of the Peanuts comic strip said ‘Nobody remembers who came in second’. Andrew
Carnegie said something similar: ‘The first man gets the oyster, the second man gets the shell’. Most people I know
will remember that Neil Armstrong was the first man who walked on the moon, but it is probably true that fewer will
remember that it was Buzz Aldrin who was the second, and even fewer still that Pete Conrad was third. By the way,
all three of these astronauts were born in the same year, 1930.

If you drive to the top of Northcliff Hill in Johannesburg, apart from the spectacular view of the World Cup soccer
stadium to the south and the Sandton skyline to the north, you can see a signboard that states ‘At 1807 metres
above sea level the ridge is only 1 metre lower than the highest point in the Johannesburg municipal area’. Being of a
curious turn of mind, I find this kind of statement drives me to distraction. I think that it should be against the law to
say what is in second place without saying what is in the first place. After seeing this sign for the first time, it took
me a little while to find out what the actual highest point of ground in Johannesburg is. In case you are wondering
too, it is on the Observatory Ridge (to the east of the city centre), just above the site of the old observatory and the
home of some technical societies.

That got me thinking about how things are measured and ranked. Many lists and rankings are contentious
because they don't make explicit all of the factors that are included in the evaluation. Even if the factors are listed,
different people might weight them differently.

For example, Victoria Falls is undoubtedly one of the world’s greatest waterfalls. Yet it is not the highest. That
honour belongs to the Angel Falls (979 m) in Venezuela, followed by the Tugela Falls (948 m) in South Africa. It is
also not the widest; that title belongs to Iguazu Falls (2700 m) between Argentina and Brazil. It also does not have
the largest mean annual flow rate; which goes to Niagara Falls (2407 m3/a) between Canada and the USA. What
distinguishes the Victoria Falls (apart from its spectacular natural beauty) is that it is the largest falling sheet or
curtain of water in the world, being 1.7 km wide and with a single drop of 108 m.

The largest lake in the world is also subject to definition. If saltwater lakes are included, then the Caspian Sea is
the largest by surface area and by volume, but if we restrict the category to freshwater bodies only, then Lake
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Superior (North America) has the largest surface area (followed by Lake Victoria in Africa), while Lake Baikal in
Asia is the largest by volume (containing approximately 20% of Earth's fresh surface water), followed by Lake
Tanganyika in Africa. The deepest lake in the world is Lake Baikal, followed by Lake Tanganyika, then the Caspian
Sea. So, if anyone asks me the ambiguous question ‘What is the largest lake?’, they will get quite an earful in
response.

Even greater complexities occur when rating universities. This month saw the release of a list of 1000 top
universities worldwide by the Center for World University Rankings (CWUR). The South African universities
included in this list were the University of the Witwatersrand (176th), University of Cape Town (265th), Stellenbosch
University (329th), University of KwaZulu-Natal (467th), and University of Pretoria (697th). This is quite
impressive, given that there are approximately 20 000 universities internationally. The factors taken into account
include quality of education, alumni employment, quality of faculty, publications, influence, citations, broad impact,
and patents. The highest scoring position of these universities went to Wits University, being rated 35th in the world
for alumni employment.

There are numerous university ranking systems, each with a different emphasis. Four of the most prominent are
the Times Higher Education (THE) World University Rankings (perhaps the most widely accepted), the CWUR, QS
World University Rankings, and the Academic Ranking of World Universities (ARWU/Shanghai). Earlier this year,
the THE ranking of South African universities showed UCT (1), Wits (2), Stellenbosch (3), UKZN (4), Pretoria (5),
and Unisa (6). The top five universities appearing in both these lists also appear in the top five positions in the QS
ranking. These institutions are well known for providing graduates to the mining and metallurgical industries.

South Africa was once overwhelmingly dominant in gold production. However, this was achieved at a high social
cost, with the introduction of the migrant labour system that has been so damaging to large portions of our society,
and we continue to reap the cost of this today. In recent years, South Africa’s gold production has decreased as many
mines have become depleted, and the remaining ores are deeper, and extraction of the gold has become more
expensive. South Africa no longer holds the dominant position it once did in gold.

Chromium (seen as essential to the production of stainless steel) is another element that South Africa has in
great abundance. South Africa’s chromite reserve base has been calculated at more than 70% of the world’s total.
World production of chromite is dominated by South Africa, with Kazakhstan in second place. Chromite production
clearly depends significantly on what is in the ground, but is also affected by policies and infrastructure development
within a country, as can be seen by the significant increase in chromite production in Turkey, and the significant
decline in chromite production in Zimbabwe during the past decade.

Ten years ago, 90% of the chromite that South Africa produced was converted to ferrochromium (FeCr) in South
Africa, making SA by far the world’s largest producer of this ferro-alloy. China, by comparison, has very little
chromite, and has to either import it (much of it from South Africa) to produce FeCr, or has to import the FeCr
necessary for its stainless steel production. Thirty years ago, China was in seventh place for FeCr production,
producing only 120 kt/a. By 2006 (ten years ago), China’s FeCr production had grown to 1.0 Mt/a, and they had
moved up to third place (after South Africa with 3.0 Mt/a, and Kazakhstan with 1.2 Mt/a). China continued to grow
rapidly, and South Africa’s production of FeCr declined as a result of power shortages and higher costs. China
overtook South Africa as the world’s leading producer of ferrochromium in 2012. I suppose that the question has to
be asked whether it really matters if our country is in first or second place, but it certainly does matter whether the
minerals in the ground contribute in the best way possible to the prosperity of the people of our region.

The Greek historian Polybius said: ‘Those that know how to win are much more numerous than those who know
how to make proper use of their victories’. I hope that the mining industry in southern Africa will strive towards
making ‘proper use’ of our natural resources to the benefit of our people.

R.T. Jones
President, SAIMM
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Owing to the extreme depths of the gold-
bearing reefs at the AngloGold Ashanti (AGA)
Witwatersrand operations and the prohibitive
expense and time involved in drilling
boreholes to the required depth, only limited
drilling and sampling data is available ahead
of the mining face. Whereas traditional
estimation techniques are interpolative, within
the Witwatersrand the estimation is primarily
extrapolative, with the majority of the data
being sourced from the mined-out areas. This
significant challenge to estimation resulted in
the development of a unique method of
Mineral Resource estimation and evaluation.

Macro cokriging (MCK) was first introduced in
1994 and has been is use for 20 years by
AGA. There are three key aspects to this
technique; namely a Bayesian approach to
estimation, the estimation of mixed support
size data (MCK), and the utilization of four-
parameter distributional models. 

(1)  The Bayesian process followed allows
for the integration of the limited
advanced data with the large data-set
from the previously mined-out areas.
Krige et al. (1990), and later Dohm
(1995), proposed the use of a
Bayesian geostatistical approach
where ‘the geological, statistical and
spatial characteristics observed in the
known population area hold for the
virgin areas’

(2)  Estimation by MCK of two different
sampling support sizes, one at block
support, representing the dense
underground chip sampling data and
the other cluster support, representing
the widely spaced borehole data
(Dohm, 1995; Chamberlain, 1997).
The MCK technique is not strictly
cokriging, but the modification of the
diagonal kriging matrix to reflect
different nugget effects related to
different data supports. The
methodology also assumes the same
spatial covariance structure for the
different data supports and thus does
not use cross-variograms

(3)  The continued development of distrib-
utional models beyond the use of the
two- and three-parameter lognormal
models led to the development of four-
parameter distributional models by
Sichel (1990) and Sichel et al. (1992)
that are more applicable for the gold
reefs of the Witwatersrand. Estimation
is done in natural logarithmic (Ln)
space because of the highly skewed
gold distribution. The final gold
estimates are calculated by back-
transforming the estimates using four-
parameter distribution models (Dohm,
1995; Chamberlain, 1997).  

Resource estimation for deep tabular
orebodies the AngloGold Ashanti way
by T. Flitton* and R. Peattie*

The extreme depths and consequent expense of drilling and sampling the
gold-bearing reefs of the Witwatersrand Basin have resulted in limited
data being available for estimation of grade ahead of the mining face.
There is, however, a wealth of information from mined-out areas of these
deposits. This estimation challenge resulted in the development of a
unique method of Mineral Resource estimation. 

AngloGold Ashanti (AGA) utilizes a technique termed macro cokriging
(MCK), which allows for the integration of the limited advanced borehole
data with the large chip sample data-sets from the previously mined-out
areas by adopting a Bayesian geostatistical approach. The MCK process, in
short, is the estimation of mixed support size data together with the
application of four-parameter distribution models.

The gold value estimation for the Carbon Leader Reef (CLR) on the
AGA TauTona Mine is used in this paper as a case study of the process
and to demonstrate the effectiveness of this technique through production
reconciliation. The current method has been proven over the last 20 years
and is now an established part of the Mineral Resource evaluation process
within AGA.
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Many of the processes developed and used by AGA are
based on the work completed and detailed by Dohm (1995)
and Chamberlain (1997). 

The unique estimation method followed does not,
however, detract from the criticality of having a sound
geological model. It is imperative for this and any other
estimation process that the geological model accurately
represents the understanding of the deposit.

AGA’s TauTona Mine lies on the West Wits Line, just south
of Carletonville in North West Province, about 70 km
southwest of Johannesburg (Figure 1). Mining at this
operation commenced over 50 years ago and currently takes
place at depths ranging from 2000 m to 3640 m below
surface. The mine has a three-shaft system and employs a
sequential and/or scattered grid mining method to extract the
gold in the deep, narrow, tabular orebody. The grid is pre-
developed through a series of haulages and crosscuts.
Stoping takes place by means of breast mining using conven-
tional drill-and-blast techniques. The smallest mining unit
(SMU) is 100 m × 100 m.

The CLR is the principal economic horizon at TauTona.
The CLR is located near the base of the Johannesburg
Subgroup, which forms part of the Central Rand Group of the

Witwatersrand Supergroup. The CLR is a thin (on average 
20 cm thick) tabular, auriferous quartz pebble conglomerate.

The sampling data is comprised of underground chip
sample sections (425 917 points), underground boreholes,
and surface boreholes from TauTona and neighbouring
mines. Underground sampling is in the form of chip sampling
taken on the mining face using a hammer and chisel. All
sample locations are reported as a composite over a
mineralized width, resulting in a single channel width (cm)
and gold metal accumulation value (cm.g/t) (Figure 2). The
natural logarithms (Ln) of this metal accumulation is used in
the estimation. 

An upfront Bayesian assumption is made that the mined-out
areas are from the same statistical population as the areas yet
to be mined – these are generally down-dip or along strike.
The underlying assumption is that the Ln mean and Ln
variance of the metal accumulation of a deposit will vary from
locality to locality but the shape of the distribution will
remain constant (Dohm, 1995; Chamberlain, 1997). Thus,
with appropriate consideration of support differences, the
distribution of data for the mined-out area can be equated to
the unmined area, with the sparse surface boreholes being a
subset of the whole. 

�
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The geological model that underlies the estimation
process is crucial input to effective estimation and the validity
of the above assumptions. The individual domains
(geozones) within the geological model must not only be
geologically homogeneous but also define the gold grade
distribution. The geozones subdivide the data into distinct
populations and the parameters of these populations play a
critical role in the development of the estimates (Dohm, 1995;
Chamberlain, 1997). It is thus important to identify, separate,
and validate geozones on an ongoing basis so that the
geological model is robust and stationarity is maintained as
far as possible.

Determining and validating geozone boundaries is done
using a combination of statistical techniques such as classical
comparative statistics, histograms, and quantile-quantile
scatter plots as well as geostatistical techniques such as
trend, channel width, and boundary analysis. Many of these
techniques were described by both Dohm (1995) and
Chamberlain (1997). Comparative semivariograms and
bivariate statistical scatter plots are also used to further refine
geozones.

In recent years, extensive work has been done on refining
the geozone model for the CLR, supported by new thinking in
geochemistry and spectral scanning in addition to the
traditional geostatistical techniques. Five geozones have been
identified in the CLR (Figure 2). All geozone boundaries for
estimation are treated as ‘soft’, with a skin of overlapping
data being selected as the result of boundary analysis work. 

The prohibitive cost involved in deep drilling means that
boreholes are normally drilled on a wide spacing, resulting in
very low data support. To ensure that as much of this data as
possible is available for the estimation process AGA uses
‘clusterizing’ and ‘acceptorizing’ processes to try to optimize
its availability. The surface boreholes usually consist of
multiple reef intersections that are drilled from a single
parent diamond borehole. These intersections can range from
less than one metre apart up to tens of metres for ‘long
deflections’ (Figure 3). 

Borehole cluster analysis, also known as ‘clusterization’,
aims to determine whether the gold values within the original
cluster are sufficiently different from the gold values in the
long deflection of the same borehole and as such can be
treated independently (O’Brien, 1996; Chamberlain, 1997).
The borehole intersection clusters from long deflections are
compared to those obtained from original closely spaced
intersection values, using the standard statistical analysis of
variance approach (O’Brien, 1996). If the analysis of variance
shows that the samples from clusters under consideration are
not significantly different, then all samples are combined in a
‘super cluster’ for further use.

The acceptability of all cored borehole reef intersections is
classified according to their mechanical acceptability
(completeness of cut, identification of missing chips) and
geological acceptability (complete reef, presence of faulting or
shearing). The classification of mechanical acceptability is a
subjective process and traditionally, if a sample was classified
as mechanically unacceptable, the entire intersection would
not have been used in estimation. This significantly reduced
the number of intersections that could be used and reduced
the size of the very limited data-set even further. The
‘acceptorizing’ process aims to statistically identify which of
the unacceptable intersections can be retained and which
need to be removed, so as to maximize the number of
borehole samples used in the resource estimation process. 

The statistical basis of the ‘acceptorizing’ process is
derived from Heyns (1958) and also as expanded and
discussed in Dohm (1995), O’Brien (1996), and Chamberlain
(1997). Generally there is a mixture of acceptable and non-
acceptable intersections within any particular cluster. The
logarithms of the ratios of the non-acceptable to acceptable
intersection pairs are calculated and 95% confidence limits
are set up around the mean of the logarithms.  The individual
intersections are then plotted against the mean for each
cluster (Figure 4). Non-acceptable outliers are then reviewed
and removed and the process repeated until the amount of
acceptable data that lies outside these confidence limits is at
most 5%. Acceptable intersections are not discarded without
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evidence of significant mechanical loss or geological
unacceptability (O’Brien, 1996). 

The CLR borehole data-set consists of 58 clusters after
the clusterizing and acceptorizing processes have been
carried out.

The underground chip sampling and surface boreholes are on
very different densities, with the chip sampling spacing
typically around 5 m × 5 m and the surface boreholes spacing
on anything up to 1000 m × 1000 m. The process of
preparing the data for estimation of two different sampling
support sizes is a critical aspect of the MCK process. The
process taken is to first regularize the chip sampling data into
a predetermined block size. The method used to calculate this
optimum block size is referred to as the variance size of area
analysis (VSOA). The approach ensures that the block size
selected is such that the within-block variance is effectively
maximized and the between-block variance minimized using
the linear extrapolation of dispersion variance. Regularization
of chip sampling data on the CLR is performed into 420 m ×
420 m-sized blocks as determined by the VSOA (Figure 5).

Those 420 m × 420 m blocks that are not fully informed
by the chip sampling, whether due to having too few data
points or due to the chip sampling not having a good spatial
distribution within the block, are rejected. This data is not,
however, lost as it is then created in ‘pseudo’ boreholes
known as clusters. Clusters are created on a 30 m × 30 m
block size for the CLR (approximating a parent borehole and
its short deflections) by regularizing the samples within that
area. The cluster support data, which now approximates a
borehole, is then combined with the real borehole data.

In this way the total data-set is split into block support
data and cluster data (inclusive of the boreholes). 

Estimation in MCK is done in natural logarithmic space and
therefore the key components to allow the final back-
transform are Ln mean and Ln variance. The Ln mean and Ln
variance are compared on a scatter plot for the chosen block
support data in order to determine whether there is a
significant relationship between the two. Ln variance can be

estimated from the established relationship using the
estimated Ln mean value if a significant relationship is
demonstrated. The Ln variance is estimated independently,
however, if the relationship is poor. 

In some instances a linear relationship, although
significant, does not produce reliable results at the final
stages of reconciliation and thus it becomes necessary to
estimate Ln mean and Ln variance separately (Figure 6).
Both Ln mean and Ln variance are estimated for all geozones
of the CLR using MCK since the relationship between Ln
mean and Ln variance is poor. 

Two sets of variograms are required for estimation, one for
block support and one for cluster support. Both sets of
variograms are done on Ln mean (value) and Ln variance if
the relationship described above is poor. 

The block support (420 m × 420 m) data based on the
VSOA process therefore presumes that most or all of the
variance is constrained within the block and thus results in a
block support variogram model with zero nugget variance.
The block support variography is generally characterized by
longer ranges, in the order of 1000 m or more (Figure 7), due
to the large block sizes. 
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Cluster support variograms (inclusive of the boreholes)
are calculated and modelled to determine the nugget variance
(Figure 8), with the final cluster variogram used in MCK
being a combination of the nugget as modelled from the
cluster variogram and the sill and ranges from the block
variogram. 

MCK of the two support sizes is performed by modification of
the kriging matrix to allow different nugget effects; this
allows the weighting of the block data differently to the
clusters using the combined block and cluster variogram and
thus accounting for their support difference (Chamberlain,
1997). The estimation employed for MCK, while termed
cokriging, is not strictly cokriging as the data does not need
to be collocated nor does it require cross-variograms, with the
data for the two support sizes (blocks and clusters) not
existing at the same locations. The block size estimated is the
same as the block size determined by the VSOA process, in
this case 420 m × 420 m.

The number of samples used in MCK has a large
influence on the resulting estimate. If the number of samples
used is too small (i.e. from a restrictive search
neighbourhood), conditional bias could be introduced.
Conversely, too many samples could cause undesirable
smoothing levels and introduce significant amounts of
negative weights, which will also increase the processing
time. The amount of samples used in MCK is also controlled
by the search neighbourhood.  Search parameters used in the
MCK process are established through a process of
optimization similar to the quantitative kriging
neighbourhood analysis (QKNA) process described by Vann
et al. (2003). The discretization, numbers of samples, and
neighbourhood searches are determined by analysing the
kriging variance, regression slope, and percentage of negative
weights. This is an iterative process and usually needs to be
done for a number of iterations on spatially separated blocks. 

The 95% confidence limits are calculated using kriging
variance, i.e. Ln 95% lower limit = Ln mean – 1.96 * Ln
kriging variance. This methodology is used because the
distribution of variances within the 420 m × 420 m blocks is
assumed to approach normality. These values are then input
into the CLN model to calculate the limits (Chamberlain,
1997).

Traditional lognormal distributions have been found to be
sub-optimal. Sichel (1990) and Sichel et al. (1992) suggested
possible alternatives to lognormal distribution models. The
suggested four-parameter distributional models were tested
against more traditional models by Dohm (1995) and
successfully shown to be a more accurate estimation
technique than traditional techniques using lognormal theory
by Chamberlain (1997). 

The distribution needs to be defined and fitted once the
most appropriate model is determined. Either a four-
parameter compound lognormal (CLN) or logarithmic
generalized inverse Gaussian distribution (LNGIG) model is
used, depending on which distribution model best fits the
gold grades and a theoretical test on the shape parameters of
the log-transformed values. A theoretical test to differentiate
between the two was detailed by Dohm (1995) and can be
graphically represented. All the geozones of the CLR follow
the CLN distributional model (Figure 9). 

The process of distributional fitting is followed by using
classical statistics on the observed data and modelling the
distribution using both the histograms of Ln(value) as well
as the value (Figure 10). Generally, the fitted CLN model
maximum difference (from the observed frequency of the
data) needs to be less than the test value for the model fit to
be acceptable and so that the Kolmogorov-Smirnov test for
goodness of fit does not reject the null hypothesis that the
model describes the distribution of the data at the 1% level of
significance. The model parameters in the case of the CLN
calculated from fitting the distribution used in back-
transforming are location (mean), spread (variance),
skewness, and kurtosis.
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Estimation is done in natural logarithmic (Ln) space
because of the highly skewed gold distribution. The final gold
estimates are calculated by back-transforming the estimates
using the CLN model in the case of the CLR. The value is
estimated by MCK, as is the variance. The skewness and
kurtosis parameters are derived from the distribution model
of the a priori data as per the Bayesian assumptions.

The mean block value of the actual input sampling data at
block support is then compared with CLN estimated block
values in mined-out areas to determine if a regression effect
is present. There is generally a small regression effect still
present (Figure 11), thus the back-transformed estimates 
are regressed using the linear regression observed. Upper 
and lower limits of the linear regression are identified and 
the regression is applied to the range of estimates over which
the regression is valid. The regression-corrected block
estimates are used further in the long-range forecasts of
value for the CLR.
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Numerous methods of reconciliation performed by
Chamberlain (1997) validated and demonstrated the
effectiveness of MCK. As a final step in the validation
process, a similar exercise was followed for the CLR by
comparing block estimates over a ten-year period. 

The underground chip sample database from TauTona
and neighbouring mines in 2005 consisted of 353 072
points, and 425 917 points in 2015 (Figure 12), reflecting a
notable 72 845 increase in samples. The 420 m × 420 m
block estimates were compared for the two periods for a
selected number of blocks where there had been the largest
change in data (Figure 12). There was an initial need to
ensure that the estimates used the same geozones, as there
has been extensive work on the geological model over time.
Thus the 2005 data was re-estimated using the variography,
estimation parameters, and distributional models from 2015.
This again highlights the importance of accurate and
appropriate geological modelling. The 420 m × 420 m blocks
for the two periods are compared in Figure 13. There is a very
close correlation between the 2005 and 2015 block estimates
for the 18 blocks. 

As this reconciliation process provides common critical
parameter inputs into the two estimates for 2005 and 2015, it
would be a best-case result and could bias the 2005
estimates. Therefore a further reconciliation was done taking
the 2005 estimates as done in 2005 vs the 2015 estimates.
Figure 14 shows the comparison between the two sets of
results, together with the 95% confidence limits from 2005.
The MCK estimates from 2015 are well within the 95%
confidence limits for the 2005 estimation, indicating that the
estimation process used is acceptable and robust for un-
informed areas. 

MCK has a proven and reliable track record and the estimates
have been shown to reconcile well over a long timeframe and
distance from mining area. Adopting and using a Bayesian
approach together with MCK and an appropriate distribution
model has resulted in effective and appropriate long-range
value forecasts for the CLR. The process is still highly
dependent, however, on an accurate geological model as well
as a full understanding of the statistical and spatial
parameters of the known data. The MCK estimation method
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has undergone intense scrutiny by a number of external
auditors over the past couple of years and proved to be
appropriate for the CLR.

While some of the views expressed in this paper are those of
the authors, these opinions have been developed through the
wisdom shared by many experienced Mineral Resource
professionals over the years. In particular, we are indebted to
Christina Dohm, Vaughan Chamberlain, Mike O’Brien, Patrick
Rice, and Robert Lavery on their work leading to the
established practice of MCK and training therein.
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For adequate technical and financial
evaluation of a project, attempts should be
made to estimate the recoverable resources –
the portion of the in situ resource that can be
economically extracted by mining. To achieve
this, the estimates of the tonnage and grade of
the mineralization should be produced above a
given economic cut-off and should take into
consideration the proposed mining selectivity. 

At the early stages of exploration, we often
have only broad-spaced sample data to
estimate with. Ordinary kriging (OK), a
commonly used linear interpolator, may be
used to estimate grades into larger panels
(estimation into smaller panels that are not
adequately supported by dense data may result
in smoothed and conditionally biased

estimates). These larger panels, which are
suitable for the broadly spaced data, often do
not adequately represent the selectivity
expected at the time of mining. The mining
selectivity (represented by the smallest mining
unit or SMU) is based on the deposit type and
the chosen mining equipment. 

Nonlinear techniques, such as uniform
conditioning (UC) and multiple indicator
kriging (MIK), are commonly used to generate
estimates at SMU scale reflecting the proposed
mining selectivity. With these techniques, the
portion of the mineralization that can be
economically extracted is estimated by
determining the distribution of SMUs within
each panel based on a change-of-support
model. Estimates of the grades and
proportions extractable above a given cut-off
are provided for each panel without specifying
precise spatial locations for this recoverable
mineralization. A better understanding of the
actual spatial locations of the SMUs would
significantly simplify the manipulation of the
results for mine planning purposes and would
enhance the technical and financial evaluation
of the project.       

In 2006, Marat Abzalov (Abzalov, 2006)
proposed a method called localized uniform
conditioning (LUC) for predicting the spatial
locations of the economically extractable
mineralization by assigning a single grade to
each SMU-sized block. LUC enhances the UC
approach by localizing the model results. The
grades of the SMUs are derived from the
conventional UC grade-tonnage relationships.
For each panel, the UC grade-tonnage function
is divided into grade classes and the mean
grades of the grade classes are assigned to the

A test of the appropriateness of the
LUC technique in high-nugget Birimian-
style gold deposits
by E. Maritz*

The localized uniform conditioning (LUC) technique was proposed by
Marat Abzalov in 2006. The technique converts conventional uniform
conditioning (UC) grade-tonnage curves into single grade values attached
to each smallest mining unit (SMU). This is achieved by ranking the SMUs
within a panel in increasing order of their grade (based on the direct
kriging of SMUs). This ranking is then used to localize the conventional
UC grade-tonnage curves for each panel by dividing them into classes and
computing their mean grades, which are assigned to the SMUs. The quality
of this localization process will depend heavily on the validity of the grade
patterns predicted by the direct kriging of the SMUs. Abzalov noted that
where the distribution of data available for the direct kriging of the SMU is
characterized by strong short-range variability, the advantages of using
the LUC approach may be more limited. Consequently, a study was
undertaken to determine how valid the predicted grade patterns of a
typical Birimian-style gold deposit (with high nugget effect and strong
short-range variability) might be expected to be. This was determined by
comparing the direct SMU kriging ranking (based on sparse data) with the
grade control model ranking (based on close-spaced data and the best
available estimate of the deposit). The results showed a satisfactory
correlation between these rankings and it was concluded that, although
the grade patterns predicted by the direct kriging of the SMUs may be less
meaningful for deposits exhibiting strong short-range continuity, there is
nevertheless a convincing relationship with the actual (or best available)
rankings. Therefore, the LUC technique is still considered to be useful for
this style of deposit. 
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SMUs in the panel. The method of mean grade assignment is
based on a predicted grade pattern within each panel. The
grade pattern is determined by OK of the SMUs from the
sparse data-set and is used to rank the SMUs within each
panel in increasing order of their grade before assigning the
mean grades of the UC grade classes. 

Abzalov (2006) noted that spatial grade distribution
patterns are often recognized by geoscientists in deposits
even when drill spacing is still too broad for direct accurate
modelling of small block grades, but sufficient for identifi-
cation of the major distribution trends. He suggested that,
even when drill spacing is too broad to avoid a smoothed
SMU grade estimate, direct kriging of the small blocks can be
used to obtain reliable grade patterns and the resultant SMU
ranking within the panels. Abzalov deemed that this was
particularly applicable to continuous mineralization charac-
terized by a low nugget effect, such as disseminated base-
metal sulphides, bauxites, and iron oxide deposits. He
cautioned that where the data is sparse and not close to a
panel, or its distribution is characterized by strong short-
range variability, there could be less of a meaningful pattern.
Accordingly, if the predictions of the SMU rankings by OK (or
any other technique) are inadequate, the advantages of using
the LUC approach will be more limited, or LUC may even be
entirely unsuitable. A basic assumption of the conventional
UC approach is that the locations of ore and waste within the
panels are unknown (the SMUs are distributed randomly
within the panels). The LUC method aims to overcome this
theoretical constraint by attempting to predict the spatial
locations of the SMUs, but its validity is strongly dependent
on the ability to confidently estimate the rankings of the
SMUs within the panels. 

As a result of this, a study was undertaken to determine
how meaningful the predicted grade patterns of a typical
Birimian-style gold deposit (with high nugget effect and
strong short-range variability) might be expected to be. This
was determined by investigating the relationship between the
LUC ranking (based on the direct kriging of the SMUs from

sparse data) and the grade control model ranking (based on
close-spaced data and the best available estimate of the
deposit).

The northern pit of the Tambali gold deposit was chosen for
the case study. The deposit forms part of the Sadiola gold
mine located in Mali close to the border with Senegal and
approximately 440 km northwest of the capital Bamako
(Figure 1).  

The Sadiola gold deposits lie within the Kenieba
Kedougou Birimian greenstone belt of southwestern Mali
(2.17–2.18 Ga). The deposits are hosted by the Kofi
Formation – a dominantly metasedimentary unit. At Tambali,
the host rocks consist of moderately-sorted meta-sandstone
with minor meta-siltstone interbeds and a finely bedded
siltstone-shale unit with minor sandstone interbeds. These
metasedimentary units are north-trending, but are intruded
by numerous NNE-trending quartz-feldspar porphyry (QFP)
dykes and plugs. The mineralization is developed in all host
rocks and the mineralization trends are associated with
structural corridors (shear zones) marked by veining,
alteration, and weathering. The dominant ore mineral is
arsenopyrite, although pyrite, and to a lesser extent
pyrrhotite, have also been observed in drill core. Antimony-
bearing minerals are present in trace to minor amounts. The
pathfinder element association of the ore typically comprises
As-Au-Sb ± Ag-Bi-Mo.

Gold grade and structural trends were used to interpret
the mineralization using Leapfrog© software. The interpre-
tation was generated using the implicit Leapfrog© Grade
Interpolation technique, which involves the 3D contouring of
grades while taking into account a chosen grade threshold
and defined structural trends. The output envelope based on
a threshold (or lower grade limit) of 0.35 g/t was selected as
it was deemed to best represent the mineralization. Before
finalizing, it was adjusted by a few manual edits where
required. The domain used for the study included all material
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occurring within the mineralization envelope and represented
the north- to northeast- trending shear fabric to which the
mineralization is related (Figure 2). 

All available exploration and grade control data from the
mined-out portion of the Tambali North pit informed the
study. The exploration drill-hole spacing was approximately
25 m E by 25 m N and the grade control drill-hole spacing
approximately 6.25 m E by 12.5 m N (Figure 2).  

The study area contained 4851 composited grade control
plus exploration samples (all available data, i.e. the dense
data-set) and 806 composited exploration samples (the
sparse data-set). All composites were approximately 2 m long
(Figure 3).

A grade capping exercise showed that capping the
exploration data-set to 15 g/t and the total data-set to 25 g/t
would be appropriate for estimation. The investigation of
histograms, log probability plots, and mean and variance
plots was used to determine suitable grade cap values. A total
of four values were capped for the exploration data-set
(representing about 0.5% of the data-set) and eleven values
for the total data-set (representing about 0.2% of the total 

data-set). The two data-sets were de-clustered with the
ISATIS© software, which makes use of a moving window to
assign de-c1 (perpendicular to the major and semi-major
planes). The experimental variogram was modelled with a
nugget effect and two spherical structures (Figure 5). The 

relative nugget effect of this variogram, calculated as a
ratio of nugget to the global sill, is approximately 33%. This
variogram model has been used further in this study for all
the block grade estimation using OK and UC techniques. 

The optimal set of estimation parameters was determined
by a kriging neighbourhood analysis (KNA). The kriging
efficiency and slope of regression were used to investigate
conditional bias for a given set of estimation parameters
(Figure 6). At the chosen block size of 30 m N by 30 m E by
10 m RL and a maximum number of composites of 80, the
slope of regression and kriging efficiency were satisfactory at
about 0.95 and 0.82 respectively.  

The final set of estimation parameters used for kriging
are summarized in Table I.

The Tambali mining equipment supports selectivity (SMU
size) of 10 m N by 10 m E by 3.33 m RL (mining of 10 m
benches in 3.33 m flitches). In total, 27 SMUs fit within each
panel of size 30 m N by 30 m E by 10 m RL.

A test of the appropriateness of the LUC technique
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The sparse data-set (early stage/exploration) was used
for kriging both the SMUs and the panels. The same
variogram model and the same search neighbourhoods were
used for both kriging runs (Table I). The distributions of the
OK grades of the SMU and panels are compared in Figure 7
(represented by a 3.33 m horizontal slice through the block
models).  

Ordinary kriging estimates of the SMUs based on all
available data (dense data-set: grade control plus exploration
samples) were also generated and were considered to
represent the best available estimate of the SMU grades. For
the purposes of this study; they are referred to as the ‘true’
SMU grades. The SMU estimates from sparse data were
excessively smoothed in comparison with these ‘true’ SMU
grades, as shown in Figure 8. The global mean grades were
similar, but the variances differed markedly with the ‘true’
grade standard deviation of 0.75 much greater than the
standard deviation of the sparse data estimates (0.52). As
noted by Abzalov (2006), an attempt to use SMU grades

obtained by kriging with the sparsely distributed data can
lead to very inaccurate assumptions regarding the optimal
mining scenarios. 

ISATIS© software was used to model the recoverable
resources from the sparse data using the conventional UC
method. Correction for the information effect was made
during the change of support procedure. The information
effect takes account of the fact that the SMUs will ultimately
be selected on an estimated grade (based on the grade control
samples) instead of the real grade. Hence, some ore blocks
will be misclassified as waste and vice versa. In order to
obtain a more realistic recoverable estimate that takes
account of this misclassification, a correction for the
information effect was made by assuming that the final
sampling mesh will be 6.25 m E by 12.5 m N by 2 m RL (i.e.
the production or grade control sample spacing). 

The grade-tonnage curves of the OK panel grades, the
block anamorphosis function (at SMU support), and the UC
grades are shown in Figure 9. Compared with the panel

Table I

Minimum number of composites 10 10 10

Maximum number of composites 80 80 40

Search ellipsoid rotation Azimuth: 35 Dip: 75 Azimuth: 35 Dip: 75 Azimuth: 35 Dip: 75
Dip direction: 125 Dip direction: 125 Dip direction: 125

Search ellipse dimensions 70×50×20 70×50×20 35×25×15

Discretization 5×5×5 5×5×5 5×5×5
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estimate, the block anamorphosis and the UC estimate
showed greater selectivity (initial lower tons at higher grade).

The conventional UC grade-tonnage relationships
corresponded significantly better with the grade-tonnage
relationships of the ‘true’ SMU grades than that obtained
with the OK estimates from sparse data (Figure 10). The UC
model represents a significant improvement in comparison
with the ‘unconditioned’ OK estimates from sparse data. 

The conventional UC results were localized by the LUC
technique, which involved ranking the SMU blocks within

each panel (based on the OK SMU grades from sparse data)
and deriving the grades of the SMU ranks from the UC model
and assigning them to the corresponding SMU blocks 
(Figure 11).  

The grade-tonnage curves of the LUC estimate were very
similar to those of the UC estimate (Figure 12). The good
match between the grade-tonnage curves derived from UC
and LUC is expected as the LUC algorithm simply localizes
the UC results, maintaining the grade–tonnage relationships
predicted by the conventional UC model. 

�
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The grade distribution of the LUC estimates was less
smoothed than that of the sparse data OK estimates and,
compared with the ‘true’ SMU grades, it better represented
the variability of the deposit (Figure 13). The standard
deviation of the SMU grades modelled by the LUC method

(SD = 0.80) was closer to that of the ‘true’ grades (SD =
0.75) and significantly larger than that obtained by kriging
from a sparse data grid (SD = 0.52). 

It is evident that the LUC estimate is a significantly better
estimate of the recoverable resources than the OK estimates

A test of the appropriateness of the LUC technique

VOLUME 116                                       615 �



A test of the appropriateness of the LUC technique

(from sparse data) and better represents the variability
expected at the time of mining. The LUC estimate is still
noticeably different from the ‘true’ grades. The technique
itself does not make up for the fact that the LUC estimate is
based on sparse (incomplete) data and that the LUC result
depends heavily on the grade pattern predicted by the direct
SMU kriging (also from sparse data).

The quality of the LUC localization is dependent on the
meaningfulness of the grade pattern predicted by the direct
kriging of the SMU (Abzalov, 2006). The resultant grade
pattern is used for ranking of the SMUs into increasing order
of their grade, which determines the order in which the mean
grades of the UC grade classes are assigned to the SMUs. 

For the case study, the quality of the localization was
assessed by comparing the rankings of the ‘true’ grades with
the LUC rankings. For both data-sets, the 27 SMUs within
each panel were sorted in increasing order of grade. Thus,
each SMU was assigned a ‘true’ ranking as well as a
‘predicted’ (or LUC) ranking between 1 and 27. The SMUs
that fell outside of the estimation domain were disregarded
(the affected panels therefore had fewer ranking pairs). A
scatter plot showed a reasonable correlation between the
‘true’ and LUC rankings with a correlation coefficient of 0.6
(Figure 14). 

The number of occurrences of each ranking combination
(‘true’ vs. LUC) was subsequently counted across all panels.
For example, counting the number of instances where the
actual and predicted ranks were both 1; then the number of
instances where the actual rank was 1, but the predicted rank
was 2; and so forth. The result is presented in Figure 15 and
shows all possible ranking combinations for up to 27 SMUs.

The actual (or ‘true’) ranking is shown on the X-axis and the
predicted (or LUC) ranking on the Y-axis. The colouring is
based on the number of instances that a rank pair occurred. 

Overall, the results showed a reasonable relationship
between the actual and predicted rankings, with a signifi-
cantly greater amount of predicted SMU rankings being closer
to the actual rankings than further away. It can be concluded
that, even though we are dealing with a deposit exhibiting
high nugget effect and strong short-range variability, there
nevertheless appears to be some confidence in the local
positioning achieved by the LUC technique, i.e. it does not
appear to be random, but shows a relationship with the ‘true’
positioning.
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LUC can easily incorporate external information such as
high-resolution geophysical data or other estimation
techniques, as pointed out by Abzalov (2006). The LUC
ranking determined by OK was compared with rankings
obtained by inverse distance weighting (IDW) to evaluate the
robustness of the OK estimation technique for determination
of the rankings (Figure 16). Two IDW estimates were
produced - one to the power of 2 (IDW2) and one to the
power of 5 (IDW5). 

Visually, the LUC results from the OK and IDW rankings
look similar, with the LUC model based on IDW rankings
slightly more smoothed in comparison with that based on OK
rankings. However, when comparing the rank count plots for
the three scenarios (counting the number of occurrences of
each ranking combination) the LUC ranking based on OK
appears to be better correlated with the ‘true’ rankings than
those based on IDW2 and IDW5 (Figure 17). In turn,
compared with the IDW2 rankings, the IDW5 rankings show a
better relationship with the ‘true’ rankings. 

As a last check of the reliability of the LUC estimate, it was
compared with the grade control model estimate over the
study area (Table II). For confidentiality purposes, the grades
have been factored with a constant value.

The grade control and LUC models compared well, with
tons and metal within about 4–9% of each other and grades
within 1–2%.

A basic assumption of the conventional UC approach is that
the locations of ore and waste within the panels are
unknown. The LUC method aims to overcome this theoretical
constraint by attempting to predict the spatial locations of the

SMUs, but its validity is strongly dependent on the ability to
confidently estimate the rankings of the SMUs within the
panels. 

Since 2006, the LUC method has been implemented in
commercial software and has been commonly used for the
estimation of recoverable resources. The LUC technique is an
enhancement of the conventional UC technique and it
reproduces the conventional UC grade-tonnage relationships.
Even though this is the case, the validity of the localization is
heavily reliant on the ability to reasonably predict SMU
rankings from sparse data and the accuracy of this
localization depends on the techniques used for the SMU
ranking (Abzalov, 2014). It is considered that, when using
direct kriging of the SMU for ranking, the presence of a high
nugget effect and strong short-range variability could
potentially result in inadequate localization. Accordingly, if
the predictions of the SMU rankings by OK (or any other
technique) are inadequate, the advantages of using the LUC
approach will be more limited or LUC may even be entirely
unsuitable. It is therefore deemed necessary to assess the
quality of the localization before accepting a LUC result. In
the mined-out area of an active open pit, one could achieve
this by comparing the rankings of the SMUs based on close-
spaced grade control data with the rankings based on sparse
exploration data (as was done in this study). In an unmined
pit with no close-spaced data, it is more difficult to assess the
quality of the localization. However, one could attempt to
improve the rankings from the direct kriging of the SMUs by
integrating them with auxiliary data such as geophysical or
geochemical information as proposed by Abzalov (s2014). 

In the current study, the LUC technique was implemented
for the mined-out portion of a typical Birimian-style gold
deposit (mined by open pit methods) to model the grades of
SMU-sized blocks from sparse, early-stage data. The LUC
grade-tonnage relationships closely matched the conventional
UC grade-tonnage relationships and better predicted the
grade-tonnage relationship of the ‘true’ grades than those
derived from ordinary kriging. In order to assess the quality
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of the LUC localization, the direct SMU kriging rankings
(based on sparse data) were compared with the grade control
model rankings (based on close-spaced data and the best
available estimate of the deposit). The results showed a
reasonable relationship between the actual and predicted
rankings and it was concluded that, even though the grade
patterns predicted by the direct kriging of the SMUs may be
less meaningful for deposits exhibiting strong short-range
continuity, there nevertheless appears to be some confidence
in the local positioning achieved by the LUC technique.
Therefore, it is considered that the use of the LUC technique
may be useful for this style of deposits. 
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Table II

0.0 778 083 1.39 1 084 858 713 083 1.41 1 005 692 -8% 1% -7%

0.4 777 472 1.40 1 084 658 711 667 1.41 1 005 208 -8% 1% -7%

0.5 775 528 1.40 1 083 744 706 583 1.42 1 002 855 -9% 2% -7%

0.6 757 944 1.42 1 073 911 691 083 1.44 994 202 -9% 2% -7%

0.7 718 417 1.46 1 048 128 650 417 1.49 967 707 -9% 2% -8%

0.8 651 805 1.53 998 432 590 333 1.56 922 518 -9% 2% -8%

0.9 575 139 1.62 933 577 529 833 1.64 871 178 -8% 1% -7%

1.0 510 944 1.71 872 971 470 417 1.73 814 883 -8% 1% -7%

1.1 445 139 1.81 804 089 412 833 1.83 754 347 -7% 1% -6%

1.2 384 000 1.91 733 918 355 000 1.94 687 977 -8% 1% -6%

1.3 330 444 2.02 667 239 308 000 2.04 629 348 -7% 1% -6%

1.4 286 139 2.12 607 876 267 833 2.15 575 153 -6% 1% -5%

1.5 242 917 2.24 545 271 231 250 2.26 522 203 -5% 1% -4%

2.0 121 722 2.78 337 940 115 917 2.80 324 365 -5% 1% -4%





The successful implementation of uniform
conditioning (UC) requires a good
understanding of both project-scale and local-
scale geological controls on mineralization. On
a project scale, orientation of the mineral-
ization as well as the nature of ore/waste
contacts, together with an understanding of
size and distribution of high- and low-grade
ore blocks, forms a key component of the UC
process. Any geological feature that disturbs
the main mineralization must also be
understood and modelled correctly. In addition
to the basics of any estimation technique like
proper database protocols, quality assurance
and control (QA/QC) for both laboratory and
drilling practices, and sound geological
models, UC is heavily reliant on proper
domaining and robust kriged estimates. This
differs from some statements in the literature,
that UC performs well when domains are not
strictly stationary (in theory, loose domaining
can be used, but experience has found that
this is not the case in practice). UC is a

variation of Gaussian disjunctive kriging that
is better adapted to situations where
stationarity is not very good (Vann, 1998).
The change-of-support model for the
Nyankanga project uses a drill pattern of 40 ×
40 × 1 m for Indicated Resources and 40 × 80
× 1 m for Inferred Resources to produce grade-
tonnage relationships on a support size of 10 ×
10 × 3.33 m. The behaviour of this grade-
tonnage relationship is a reflection of the local
geological controls on mineralization. Practical
reconciliation studies have shown that
improvements in the geological and statistical
domains of the Nyankanga orebody results in
better local accuracy while still preserving the
global accuracy that comes with a UC model.
This allows for the UC model to be used for
both underground and open pit mine planning
scenarios.

The Nyankanga deposit forms the
southwestern limit of the current known
resources along the Geita central trend and
suboutcrops in low ground below 10 to15 m of
barren, transported laterite cover. The main
orebody ranges up to 100 m in thickness in
the central part of the deposit and dips sub-
parallel to the stratigraphy. Two phases of
syn- to post-mineralization dykes occur
throughout the deposit and are thought to
represent late felsic evolution of the intrusive
system at Nyankanga. Initial emplacement of
en-echelon felsic porphyry (FP) dykes 50 to
100 m apart occurred dominantly along pre-
existing joint sets dipping 40 to 50 degrees in
a northwesterly direction with some dilation
parallel to the ore zone where they crosscut the
stratigraphy. A barren, final-stage quartz
porphyry (QP) dyke crosscuts and displaces all
lithologies and mineralization and has been
emplaced along similar joint-related structures.

The practical implementation of uniform
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Operations, and a case study as applied
for potential underground mining at
Nyankanga pit, Geita gold mine, Tanzania
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Another late-stage QP dyke dips 70 to 80 degrees to the
southeast. All dykes follow the same sigmoidal drag-folded
pattern as the bedding and orebody (Figure 1). 

On a local scale, the mineralization model follows a
complex interplay between structure and lithology. The
higher grade mineralization occurs mostly in the banded iron
formation (BIF) and lower grade mineralization mostly occurs
in the microdiorite (MD) units. High-grade mineralization can
traverse into the MD unit manifested as brecciated zones. The
felsic intrusive that cuts through the orebody is mostly
barren, but some high-grade samples occur in the contact
areas due to remobilization of gold.

The initial UC model for the Nyankanga deposit at Geita
gold mine was produced in 2006 (Gaunt, 2006) with
guidance and technical support provided by V.A Chamberlain
from the corporate office. Mineral Resource models created
prior to this used deterministic wireframes of the ore zones
that were subdivided into BIF and MD type mineralization.
Kriged block models with block sizes generally much smaller
than the drill-hole spacing were used as a basis for the
annual published Mineral Resource and mine planning
processes. Over the last 7 years, numerous geologists worked
on gaining a better understanding of the local geological
controls and the Resource model using UC as a primary
technique evolved through regular analyses of reconcili-
ations, allowing for continuous improvements in the practical
implementation of this technique. 

Statements like ‘UC does not work’ are common in the
industry, and learning experience from Geita has shown that
insufficient time spent on data validation, QA/QC checks,
improper domaining, and substandard optimization of
kriging parameters can lead to poor-quality or biased kriged
estimates, resulting in poor reconciliations between the UC
and grade control models. 

During the exploratory data analysis stage it is important
to ensure that all drill-hole information is representative (i.e.
sampled across the entire orebody width) and sample

intervals reflect the variability at an appropriate width.
Compositing of sampling data was done on a 1 m interval
since this was the accepted sampling interval that represents
the local grade-lithological relationships. 

Two basic models exist that describe the spatial distribution
of the variable to be estimated –  the mosaic- and diffusion-
type models. In a mosaic-type model the edges of the high-
grade material are not systematically lower than central
areas, while in a diffusion-type model, high and low grades
are separated by intermediate grade material (Deraisme,
2012). Gaussian-based methods like the discrete Gaussian
model (DGM) are applicable when the orebody displays
characteristics of the diffusion model. 

When using UC a Gaussian distribution is employed. The
Gaussian transformed grades, however, have to show
properties of bi-Gaussianality. This simply means that linear
combinations of data pairs separated by a vector h follow a
normal distribution. This is an important assumption when
using UC, since the DGM change of support assumes that
point values within a block are correlated with the block
values (Deraisme, 2012).

In addition to the test for bi-Gaussianality one should
initially test for normality of the transformed variable
(Harley, 2009). This is conveniently done using a normal
probability plot, which must show that the standard Gaussian
data-set has a mean close to zero and standard deviation
close to unity. These tests were conducted in Isatis and
confirmed that UC is an appropriate estimation method.

The histograms of samples together with the corresponding
variograms and the subsequent DGM change-of-support
model from points to blocks are fundamental to the UC
process. Effective domaining is therefore critical, since the
characteristics of each population (in the form of histograms
and semivariograms) can be adequately determined. The local
geology at Nyankanga is complex and hence numerous
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domains have been constructed for the entire project. The
domaining process considered all geological features on strike
of the orebody as major domain boundaries. Subdomains to
reflect the local geological variation were then created by
analysing grade variation in relation to local geological
features. This step is critical to ensure that robust kriged
estimates are achieved.  

Strong relationships between lithology and grade were
identified, and by conducting trend analyses across the three
dimensions of the orebody suitable subdomains were created.
The orebody limit was chosen at 0.5 g/t (boundary of ore
wireframe). This corresponded in some instances with a
structural contact along a thrust surface. The grade rapidly
decreases to below 0.5 g/t as one move across the orebody
limit. Subdomains are then created based on BIF- and MD-
hosted rock types, since the grade signatures within these
units are significantly different (Figure 2). This key aspect of
domaining forms an integral part of separating high- and
low-grade units of the orebody, which aids in planning for
underground mining scenarios (Table I). Historical reconcili-
ations to grade control models were poor when these
domains based on BIF and MD was not created. Analyses of
these reconciliations showed a significant overstatement of
high-grade tonnages (Figure 3). In Figure 3, ‘Old Model’
refers to combined BIF and MD domains and ‘ResMod’ refers
to the new resource model where BIF and MD were treated as
separate domains. ‘GC MOD’ refers to the grade control model
that was generated after close-spaced drilling.

Table I shows significant differences in mean grade and
variance between the BIF and MD units. The coefficient of
variation is also significantly high, suggesting highly skewed
distributions. The high-grade tails form a significant portion
of the gold above the economic cut-off. The orebody is up to
100 m wide in the central portion and therefore multiple
cutbacks are planned to access the deeper portions of the ore.
The economic viability of these cutbacks depends on large
amounts of capital spending and the relatively higher grade
of ore to pay back this capital and generate profits. UC was
therefore deemed an appropriate technique to estimate these
high-grade units from relatively widely spaced drill-holes (40
× 40 × 1 m). It was therefore deemed important to validate
the change-of-support model that translates point distrib-
utions as shown in Figure 2 to mineable block units.

A robust semivariogram, optimal kriging parameters, and a
validated data-set may be used to produce panel estimates
per geological/geostatistical homogenous zone. The standard
checks like stepping through sections and comparing kriged
estimates to sample information, checking the effect of high-
grade outliers (especially in poorly informed blocks), and
comparing local kriged estimates with local sample averages
were performed. In addition to this, the DGM change-of-
support distribution was validated against the distribution of
panel kriged blocks.  An example of this validation is shown

The practical implementation of uniform conditioning at AngloGold Ashanti
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for one of the domains. The change of support using the
point variogram and declustered sample point file was
conducted to produce a global grade-tonnage relationship on
the same support as the panel kriged blocks. The global
distribution which shows the downside risk due to
information effect closely resembles the kriged distribution
on 40 × 40 ×10 m panel support (Figure 4). 

Deviations in the above relationships can be due to a
number of reasons and hence this forms a good validation
technique. Practical issues that could contribute to such
deviations are summarized as follows:

1.  Significant nugget effect and ranges that may be
shorter than the panel size to be estimated. Kriged
panel size is much smaller than the drill-hole spacing

2.  Poor choice of search neighbourhood and number of
samples used to estimate panels

3.  Closer and wider spaced drill-hole areas being
estimated with the same estimation parameters (block
size, minimum/maximum number of samples, block
size, search neighbourhood)

4.  In areas of wider spaced drill-hole information, the
presence of a few high-grade outliers causes
significant smearing of grade in the kriged distri-
bution.

Prior to the adoption of UC, all of the above were checked
and modified if necessary to produce robust kriged estimates
of panel grades. This ensures that the local accuracy of the
kriged estimates has not compromised the equivalent global
accuracy.

UC was first developed to relax the hypothesis of strict
stationarity needed for disjunctive kriging and conditional
expectation (Rivorard, 1994). In practice, however, it was
observed that effective application of domaining resulted in
improved reconciliations (Figure 3).

UC is performed for each domain and requires:

1.  Gaussian anamorphosis modelling on point support,
which requires a normal-score transformation

2.  A change-of-support correlation (or coefficient) is
determined for a selective mining unit (SMU) support
(r). During this stage it is also possible to account for
the information effect resulting from the final
estimates of the SMU 

3.  A change-of-support coefficient at a panel support (R)
is determined from the panel dispersion variance and
Gaussian variance properties of the anamorphosis
model.

Knowing a representative histogram of point samples allows
prediction of the recoverable resources by applying a cut-off
grade. A model of the distribution with an appropriate change
of support is needed to compute the global recoverable
resources for any cut-off. Isatis uses the discrete Gaussian
model (Poisson, 2008).

1.  This model corresponds to a diffusion type of model
2.  Grade distributions are rarely Gaussian. The raw

distribution Z(x) is transformed into a Gaussian distri-
bution Y(x): this transformation is called Gaussian
anamorphosis and is noted: Z(x) =  (Y(x)), as
presented in Figure 5

3.  The anamorphosis is bijective and invertible: knowing
the anamorphosis is equivalent to knowing the
histogram, hence recoverable resources may be
computed by applying a cut-off on the Gaussian distri-
bution

4.  The Gaussian grades need to be bi-Gaussian. Checks
for this have been discussed in the preceding section.

The following practical issues need to considered and
implemented effectively.

1.  Point samples should be declustered to prevent
misrepresentation of population histogram character-
istics.  Drilling data occurs within grid patterns of 20 ×
20 m and 40 × 40 m for Indicated Resources at Geita;
hence a declustered mean was obtained at these drill
spacings and compared with the ordinary kriged
estimate. On a global basis, the mean grades of point
samples and panels are in close agreement (Table II)

2.  The declustered mean and variance of the raw data
should be in close agreement with the mean and
variance of the model fit, and in Gaussian space these
should be close to 0 and 1 respectively 

3.  The tail end of the distribution is modelled up to an
acceptable upper limit that represents the domain. In
this instance an outlier analysis should be performed
and the upper value modelled accordingly. This upper
value is further validated after the change of support
is performed.

�
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The theory behind the change of support as used in the
discrete Gaussian model is covered in detail by Neufeld
(2005). The change-of-support model is applied after the
anamorphosis of point data. During this process a function
defined by Hermite polynomial expansion is fitted to the
data, which provides a mapping of the point variable Z to the
Gaussian variable Y and vice versa: (z (x) = (y(x))).

The change of support was conducted for BIF and MD as
part of zone 2 in the Nyankanga resource model (Table III).
Outlier analyses were performed on these point distributions
and 80 g/t and 100 g/t were chosen as appropriate top
capping limits for the BIF and MD respectively. Maximum
values of 496 g/t and 378 g/t occur within the sampled distri-
butions of BIF and MD respectively.

An error variance associated with the ’future’ estimates
of SMU in the absence of grade control drilling was computed
by applying the information effect. This was determined by
using the same semivariograms and realistic grade control
drill patterns. 

The distributions of SMUs obtained from UC were
compared to the global (DGM) distribution obtained from the
points to SMU and were found to be in close agreement. 

As explained above, a change-of-support correlation (r) from
points to blocks (SMU) can be computed, and in a similar
manner a change-of-support correlation (R) from points to
panels is computed. In both instances the variance of SMUs
and panels are used and therefore it is important to ensure
these variances are accurate. 

In areas with wider spaced drill-hole information, the
variance of panel estimates (VarZ*, or shown as Bvar in
Figure 6) tends to be lower due to the smoothing effect of
kriging. In this instance it is advisable to use appropriate
dispersion variance (Var ZV*, or shown as Dvar in Figure 6)
grouped per geographical areas. In Isatis this can be achieved
by using two or three intervals of dispersion variance, and in

this case the SMU distributions are accordingly computed to
reflect the appropriate dispersion variance (Figure 6).

The risk of selection of the SMU dimensions must, given its
importance, be quantified by conducting a selectivity study
that takes into account the spatial structure of the mineral-
ization, the size of the SMU, and the data spacing
(Chamberlain, 2009).

The SMU is defined as the smallest block that could be
mined by the mining fleet, and an ore block marked out in
the field will often consist of a number of contiguous SMUs.
The equipment fleet used or being evaluated, as well as
practicalities like finding maximum value by comparing
economic factors against the orebody geometry with minimal
dilution, need to be taken into account when defining the
SMU.

During the initial project phase (Figure 7), the SMU can
only be determined empirically. However it is critical that
during the latter stages of the Pre-feasibility Study or early in
the Feasibility Study a representative volume of up to one
year’s production volume is drilled out to grade control
spacing. This will allow for a reconciliation of the initial
Recoverable Resource model and a further adjustment to
reflect the reality of additional information. It will also serve
to significantly reduce the level of risk in the early mining
phase. 

A 10 × 10 × 3.33 m SMU was used in the resource model.
The current mining fleet at Geita is capable of mining to a
selectivity of 10 × 10 × 3.33 m, and larger mining perimeters
are normally made up of a series of 10 × 10 m SMUs based
on the orebody shape and grade distribution.

The current resource model is constructed on a 0.5 g/t
resource envelope (wireframe). A kriged block model (40 ×
40 × 10 m) is sub-celled within this wireframe. Each kriged
block is informed with a grade-tonnage curve depicting the
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Table II

BIF 5 4025 6.45 32.07 9308 6.52 119.8 1.0
MD 5 6037 1.64 2.83 22563 1.73 52.0 5.5

Table III

BIF AU<80 TC 26.250 26.261 0.702 0.677 0.964 0.430 0.634
MD AU<100 6.378 6.379 0.746 0.715 0.958 0.374 0.522
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grades and tonnages of smaller mineable units (10 × 10 ×
3.33 m). This is computed using UC. This model is
appropriate for open pit planning since complete benches are
planned and mined. Ore (according to the various cut-offs,
where marginal cut-offs are in the order of 0.9 g/t and the
high-grade ore cut-off in the order of 1.1 to 1.3 g/t) and
waste are identified via grade control drilling to a 10 × 5 m
spaced grid. All mined material is then appropriately
stockpiled. Reconciliations to the original SMU resource
model are reasonable and acceptable when done over an
annual mined volume for open pit mining.

In the underground mining scenario, mining is carried
out according to a higher cut-off (3–4 g/t). From a planning
perspective, larger stopes will have to be designed on the
higher grade kriged blocks. However since the current
resource model is based on a 0.5 g/t resource envelope and
40 m spaced data in the underground areas, the kriged
estimates tend to under-represent the variability of the higher
grade stope-scale mineable units and the full underground
potential may not be realized if kriged blocks are used to
identify the higher grade zones. This becomes more evident
in the wider portion of the orebody, where a mixture of low-
and high-grade blocks tends to result in an average kriged
block estimate. In order to assess whether the current UC
model is adequate to predict the higher grade tonnage
behaviour as can be expected from underground stopes, a
study was conducted in a relatively closer-drilled area 

(Robins, 2010). The placement of the underground stopes
will be based on a deterministic high-grade wireframe using
20 × 20 m spaced drilling. Although this still forms part of
the open pit mining area, the geological characteristics are
expected to extend into the underground mineable portion.
The process followed in this study area can be summarized as
follows.

1.  Based on mapping and drilling information, structural
wireframes were computed. Using all relevant
geological information, a high-grade (5 g/t) wireframe
was generated

2.  The high-grade wireframe was then used to guide the
string interpretation and produce a resource envelope
that geologically holds potential high-grade mineable
blocks. The cut-off for which the kriged resources
contain all the high-grade material is seen at approxi-
mately 2 to 2.5 g/t 

3.  The resource envelope (produced by 20 × 20 m spaced
drilling) was then estimated using appropriate
ordinary kriging parameters. The grade and tonnages
were reconciled to the grade control model (produced
by 10 × 5 m spaced drilling) and the UC model
(produced by 20 × 20 m to 40 × 40 m spaced drilling).

Generally, the geological model was used to infer
continiuty according to the directions of the structural
features. 

The exploration data was extracted within the 2 g/t
resource envelope. A variogram was generated, and using
optimized kriging parameters relevant to 20 × 20 m spaced
drilling the envelope was estimated using ordinary kriging
into 20 × 20 × 10 m parent block sizes (Figure 8). This model
was then reconciled to the grade control and original UC
models. 

As can be seen in Figures 8 and 9, the grade control
model is more variable  than the 20 m high-grade resource
model. Both of the above models were then reconciled to the
original UC model in the mined-out volume (Figure 10). 
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The planned mining methodology is bottom-up longitudinal
stoping, and backfilling with a combination of cemented rock
fill (CRF) and loose rock fill (LRF). The CRF negates the need
to leave pillars. Slot rises would be excavated either by using
airleg mining techniques or longhole drill-and-blast rises
with uphole production drilling. (Rees, 2013)

A typical cross-section of the stope design is shown in
Figure 11. To ensure a practical mining shape the footwall
angle has been maintained at a minimum 40°. It is possible
to mine stopes with footwall angles less than 40° but in
practice this results in ore being left on the footwall (lower
mining recovery). 

Based on the above study, which represents a wider
portion of the orebody (up to 80 m wide), the following
salient conclusions were established.

1.  Using all geological information it is possible to
delineate relatively higher grade wireframes based on
20 m drill spacing. The shapes of these wireframes are
coherent enough to mimic larger underground stopes
(1.2 Mt, which represents an annual volume of
underground mining, was delineated in this exercise)

2.  During the wireframing process the core high-grade
units (5 g/t) occur within a broader envelope of >2 g/t
material. This process of modelling the lower grade
halo around the core high-grade envelope is
subjective, and the geological controls on mineral-
ization at this scale are complex and cannot be easily
correlated using 20 m spaced data. Closer spaced
information is required, as can be seen in Figures 8
and Figure 9

3.  Due to the above geological complexities a portion of
the internal waste zones tends to be modelled with the 
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high-grade envelope, and the amount of this material
is known after grade control has been applied in these
areas. Also, the contact of the high-grade stopes tends
to more variable than that delineated by using 20 m
spaced data. In addition, due to the differences in block
support size between the ordinary kriged (20 × 20 ×
10 m) and the grade control blocks (10 × 10 × 3.33
m), a poor correlation in the shapes of the grade and
tonnages can be expected between these two models.
Therefore incorporating an ordinary kriged model into
these high-grade wireframes does not reconcile well
with the grade control model and an overstatement of
gold of up to 25% at a 2.5 g/t cut-off occurs, as seen in
Figure 10

4.  The UC model performs better, with closer grade and
tonnage reconciliations to grade control. It is therefore
suggested that the potential underground stope areas
be drilled to a 20 × 20 m grid as per the original
drilling strategy. Higher grade stopes can then be
wireframed using the same principles as used in this
exercise. Care should be taken, however, to
incorporate the lower grade halo (up to 2 g/t) around
the high-grade core. This will ensure that all potential
high grades are captured. A UC model can then be
used for estimating the grade-tonnage relationship.
The exact shapes of the high-grade stopes will have to
be determined by mapping and drilling information
obtained from underground development crosscuts
across the width of the orebody

5.  The uncertainty in the UC estimate can be quantified
based on the reconciliation to grade control.
Appropriate planned ore loss and dilution factors can
be computed using this reconciliation and applied
appropriately in the mine planning process. An
alternative to this approach would be to conduct a
simulation study and quantify the uncertainty.

The geological nature of the orebody at Geita is conducive to
the usage of uniform conditioning (UC) methods, and
historical reconciliations have shown this to be a robust
technique to produce recoverable resource models for
quantifying published Mineral Resources and for use in both
medium- and long-term planning. Planning in the open pit
environment implies a free selection of the SMU, while that in
the underground environment implies a fixed selection of the
SMU. The spatial positions of high-grade units are important
for underground planning, and reconciliation studies for the
Nyankanga deposit have shown that a tighter drill spacing
will be required to indicate the position of these high-grade
units. The accuracy of local predictions of the grades and
tonnages within these high-grade wireframes is better if a UC
model is used rather than a deterministic ordinary kriged
model.

The importance of the geological model, understanding of
local grade variation, and improved domaining between the
banded iron formation (BIF) and microdiorite (MD) units
have been highlighted in this paper. This assisted in
improving local SMU accuracy to aid in the underground
evaluation of stopes. 

The highly positive skewed sample distribution present in
the Geita orebodies was adequately represented in the UC
model, and this ensured that the total orebody potential was
captured prior to any financial decisions to start new and
capital-intensive cutbacks or underground development
decline systems. Appropriate underground mine planning
modifying factors can be computed from the reconciliation
study and used in the Resource conversion process. This
potential could have been easily under- or overestimated if
linear kriging methods were employed based on the initial
wide-spaced exploration data.

The contributions of AngloGold Ashanti employees V.A
Chamberlain, T. Gell, S. Robins, and A. Sissoko in developing
the UC processes and reconciliation methodologies at Geita
gold mine are gratefully acknowledged. The validation of
SMU for both open pit and underground mining was guided
by V.A Chamberlain and S. Robins. 
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Expert opinion is used in various fields such
as engineering, biological research, economics
etc. (Kuhnert et al., 2009, Pearce et al., 2001)
to assess uncertainty where limited or no hard
data is available. Several approaches exist for
combining probabilities obtained from expert
opinion. The linear opinion pool (Stone, 1961;
Winkler, 1968) is a weighted combination of
expert opinion probabilities that satisfies the
marginalization property. This requires that
the combined probability is the same for
combining either the marginal distributions or
the joint distributions and then calculating the
marginal distribution (Clemen and Winkler,
1999). Game theory is applied in deciding on
when to combine which probabilities obtained
from different methods that are equally
appropriate based on the available data
(Bickel, 2012).

A hierarchical modelling framework for
combining expert opinion data and actual
observed data for inferential purposes in a
spatial context demonstrated that even a
misleading expert opinion can be useful in
cases where hard data refutes the expert
opinion data (Lele and Das, 2000). The expert
opinion data is influenced by hard data, hence
the data-sets are not independent; for
example, probabilities generated from different
likelihood functions (Journel, 1986). Truong et
al. (2014) illustrate how expert opinion is
used as input to determine variogram
parameters for downscaling from block
support observations to point support where
no point support observations are available.

Spatially, it is often very difficult to obtain
or access hard data for a sampling
optimization strategy. This paper demonstrates
how expert geological opinion is firstly used to
generate a composite probability map for
diamond concentration using a greyscale
hand-sketching technique; secondly, how the
probability map is then calibrated to the correct
sample support size; and thirdly, how the map
is populated using the diamond grade distri-
bution histogram obtained from observed
analog data. Figure 1 shows the orientation
and size of the virtual orebody (VOB) for a
submerged diamondiferous marine placer
target area in southwestern Namibia.

Onshore diamondiferous linear beaches along
the Namibian coast (Figure 1) have been the
mainstay of Namdeb’s diamond production for 

Construction of an expert-opinion-based
virtual orebody for a diamondiferous
linear beach deposit
by J. Jacob* and C. Prins†

During early-stage diamond exploration projects, hard data underpinning
spatial continuity is often very limited. An extreme example of this is a
submerged diamondiferous marine placer target area alongside a current
onshore mining area in southwestern Namibia. Although an abundance of
geological and grade data exists for the adjacent onshore mining area, the
target area itself contains no such information. Despite this apparent
abundance of data, it is extremely difficult to obtain a variogram (Prins
and Jacob, 2014) for use in this study area. The use of traditional
simulation techniques is further hindered by the fact that diamond
entrapment within the highly gullied footwall is non-stationary. An
alternative approach for creating a simulated virtual orebody (VOB) is
thus required in order to enable the assessment of sampling strategies.

This paper demonstrates how expert opinion is used to generate a
composite probability map for diamond concentration using a greyscale
hand-sketching technique. The probability map is subsequently calibrated
and populated using the diamond distribution for different raised beaches
obtained from analog data based on sample results adjacent to the target
area. The resultant grade simulation is used to test different sample
scenarios and is a first step towards determining an appropriate sampling
strategy for the target area. The VOB is used to analyse and rank the
efficiency of different sampling strategies for grade determination of
submerged diamondiferous linear beach exploration targets.

Expert opinion, simulation, diamondiferous marine placer, non-stationary.

* Namdeb Diamond Corporation.
† Anglo American plc.
© The Southern African Institute of Mining and

Metallurgy, 2016. ISSN 2225-6253. This paper
was first presented at, The Danie Krige
Geostatistical Conference 2015, 19–20 August
2015, Crown Plaza, Rosebank.
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more than 80 years. These beaches are developed at different
elevations, occurring as high as 30 m above sea level and as
low as 30 m below sea level. A modern day analogue would
be the present-day gravel beaches along the Black Sea in the
Bolshoi Sochi region, which are perhaps good examples of
what the study area’s beaches would have looked like
thousands of years ago (Spaggiari et al., 2006). The fossil
gravel deposits of the study area extend continuously for
approximately 100 km northward from the Orange River
mouth along the coastline. Most of the onshore beaches have
been mined out to date, but great potential exists in
remaining areas that are currently submerged under water.
During 2010, the concept of planned, controlled shoreline
accretion was initiated; until then, accretion was a
consequence of the stripping and dredging processes. Beach
accretion is a natural process resulting from overabundance
in sediment supply, which in effect builds the coastline
outwards. The stripping and dredging processes are used to
remove overburden sand in order to gain access to the
diamondiferous basal marine gravel.  At present, focused
deliberate beach accretion is inherent in the mine plan and is
also considered a possible means for mining of the
submerged beaches. Therefore it is imperative to find a way
to determine the diamond grade to justify the accretion for
future mining areas.

The sea’s high-energy swash zone makes obtaining
upfront data well in advance of mining a challenge. In
addition to the high-energy swash zone aerated water
column, a sand overburden sequence must be penetrated
before the diamondiferous basal gravel sequence is reached.
At present, a probe drill platform (PDP) is the only
implemented technology that successfully withstands these
energies in the vigorous swash zone, and it provides
geological data only. Furthermore, the sample size is too
small for grade determination in the submerged target areas,
due to the low-grade nature of the deposit (Jacob et al.,
2013). The PDP is restricted by a land-bound base station
and can operate only within 300 m from the current 

shoreline. The potential of the offshore linear beaches,
however, extends up to 4 km seaward, and the challenge is
thus to generate a VOB that can be used for sampling
strategy and risk studies in the absence of any hard data.

The initial delineation of the onshore raised beaches was
done between the 1930s and 1960s by a comprehensive 1 m-
wide trench campaign. The 1 m trenches were spaced 500 m
apart along the coast covering the 100 km from the Orange
River mouth northwards to Chameis Bay (Figure 1). These 1
m trenches, orientated normal to the coastline, spanned six
distinct onshore raised beaches. Continuous trench paddocks
of 5 m lengths resulted in more than 26 000 samples at 5 m2

support. Diamonds are concentrated in both gravel lenses
(mobile trapsites) suspended above the bedrock footwall and
in the highly gullied footwall. An example of the very detailed
methodical mapping (1930s to 1960s) of the 1 m trench
sections where the locations of individual diamonds are
recorded is shown in Figure 2. The morphology of the marine
erosion pattern on the bedrock surface (fixed trapsites)
dominates the distribution of alluvial diamonds (Jacob et al.,
2006). From detailed sampling results it is evident that two-
thirds of the diamonds occur in the fixed trapsites, with one-
third in the mobile lenses; this observation is incorporated in
the construction of the VOB.

Prins (2011) developed a method using an expert opinion-
based hand sketch to simulate the occurrence of diamonds in
a VOB in cases where no hard data (spatial diamond grade) is
available. The hand sketch is constructed on the principle
that darker areas in the sketch represent areas with a higher
probability of containing diamonds. This VOB is designed to
form a strip connecting the current onshore area to the edge
of the mining license approximately 4 km offshore (Figure 1).
The methodology of developing the probability map based on 
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expert opinion is shown in Figure 3. The first step is the
bedrock morphology sketch by the expert. The bedrock
morphology is based on actual bedrock patterns currently
exposed by onshore mining activities and exposed bedrock
patterns obtained from bathymetry surveys in water depths
greater than 30 m. Secondly, sea-floor bathymetry contour
lines are used as a proxy for gravel beach location suspended
above the bedrock fixed trapsites. These two sketches are
merged in such a way that the shading reflects the 2/3:1/3

proportion of diamond potential of the two trapsite types,
resulting in a single combined probability model that can be
used as a diamond potential entrapment map for the 1 × 
4 km strip.

Geologists with combined experience in the order of 50
years were asked to assess the resultant sketch after the

merging described above. All agreed that the proposed model
reflects current understanding of what could be a reasonable
representation of diamond distribution in the study area,
based on their extensive onshore production experience. 

This paper introduces an additional aspect to the method
proposed by Prins (2011), by applying the grade (stones 
per m2) profile observed across the different beaches,
resulting in a grade-distance profile in the VOB (Figure 4).
This profile is based on the average grade of the six onshore
linear beaches obtained from the 26 000 sample results
spanning roughly 100 km from the Orange River mouth to
Chameis Bay (Figure 1). 

Statistical manipulation to align the hand sketch with the
proxy grade data requires four steps. The first step is to
regularize the sketch, mapped to scaled coordinates, into

Construction of an expert-opinion-based virtual orebody
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pixels representing 5 m2 data so that it is aligned with the
support size of the proxy data. Secondly, a normal score
transformation is applied to the potential obtained from the
sketch. Thirdly, a back-transformation of the regularized
sketch data is done using the distribution of the proxy data.
Finally, a 5th-degree polynomial fitted to the grade in stones
per 5 m2 per beach (Figure 4), with the y-axis as independent
variable, is used to adjust the grade prior to seeding stones
into the VOB. The grade-distance profile observed is thus
matched to the grade-distance of the hand-sketched diamond
entrapment potential map. 

The outcome is finally adjusted by shifting the greyscale
potential through histogram transformation, adjustment of
individual histogram classes, and the random removal of
stones (decimation). This is done in order to honour the zero
proportions tail characteristics of the histogram, and
univariate statistics of the proxy data.

Once the grade for a particular line of pixels is
determined, the total number of stones for that line can be
seeded. The individual stone locations simulated into the
VOB based on the 5 m2 pixels’ greyscale potential is shown in
Figure 5. For example, the first pixel will have the potential to
randomly receive 5/96th (the second pixel 2/96th, the third

pixel 6/96th and so forth) of the number of stones for that
line. 

The process is graphically depicted in Figure 6, which
shows how the two hand sketches are merged and the
resulting 1 × 4 km VOB. The three diagrams on the left-hand
side in Figure 6 represent probability maps, while the right-
hand side diagram represents the locations of populated
individual stones. Figure 7 (b, c, and d) is a zoomed-in
version of the right-hand diagram in Figure 6, and individual
dots representing the location of stones can be observed on
this scale.  

This simulation is one realization that is sampled,
evaluated, and used to rank different sample spacing/size
combinations to determine the optimum sampling strategy.

To create multiple realizations to facilitate decision-making
for the exploration project, the hand sketch is also populated
with the grade characteristics of individual beaches. This is
done by regularizing the sketch to a sample support size of 
5 m2 so that it is directly comparable to the support of the
proxy sample data. A Gaussian transform of the potential
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map is back-transformed using the transformation table of
the proxy data. The underlying potential sketch remains
unchanged but different results are obtained when back-
transforming as the resultant realizations will have low,
medium, and high grades with different higher order
statistics (Figure 7).

In this way a range of possible outcomes is generated as
realizations available for analysis. Since grade (the spatial
intensity of the stones per unit area) affects the confidence of
the resource estimates for a specific sample campaign, the
realizations give an indication of the variability in the
outcome of the assessments of the sample campaign
effectiveness. The benefit of this work is that it can be used
in risk rankings and assessments. Based on acceptable levels
of uncertainty and taking into account the cost to execute a
sampling campaign and the confidence obtained for the block
estimates, the sampling scenarios can be ranked and a
decision made on the appropriate course of action.

The authors admit to an acute awareness of the challenges of
this approach. The quality of the hand sketch, paper texture,
grey shading, and scan quality all impact on the final result
of the VOB. In highly non-stationary environments where
kriging is sometimes not possible, sample size and spacing
are the most influential factors on the outcome of the final
estimate. The VOB presented in this paper provides a first
attempt at ranking different sampling scenarios. It also
provides a preliminary risk quantification tool until such time
when hard data becomes available for incorporation into
conditional simulations. As data becomes available, the
sample size and spacing should be re-assessed to confirm the
outcome of the sketching technique, using well-established
geostatistical simulation methods (Kleingeld et al., 1996)
developed for discrete particles.

The authors would like to thank the De Beers, Anglo
American, and Namdeb Mineral Resource Departments for
their support, providing access to data, and permission to
publish this work. The research presented in this paper forms
part of a greater resource development project, also
incorporated in a PhD study at the University of the
Witwatersrand. The authors appreciate the comments and
helpful suggestions from the reviewers.
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It has been said that ‘we make a living by
what we receive, but we make a life by what
we give’. Professor Krige epitomized this in
both thought and deed, by showing that true
success in life does not revolve around
material accomplishments accrued as an
individual, but is defined by that which one
does and leaves for others.

It was the author’s privilege to be
associated with Professor Krige for over 20
years, both initially as a student during
doctoral studies at the University of the
Witwatersrand and later with him as mentor,
counsellor, and ‘father figure’ for the period
that followed. 

This paper will cover the two aspects that
defined Professor Krige;  firstly his personal
life and career, including the achievements of
both; while the second part will briefly touch
on his immense contribution to industry and
the world for over half a century, through his

pioneering work in ore deposit evaluation,
economics, and of course geostatistics. Indeed,
his passing was recorded in Wikipedia under
‘notable persons’, a distinction he shared with
renowned figures such as Margaret Thatcher.

This memorial lecture would be incomplete
without firstly throwing light on some of the
things Professor Krige held very dear in his
life, as told in his interview in 2012 with
Professor R.C.A. Minnitt of the University of
the Witwatersrand.

Professor Krige was born in Bothaville in
the Free State and was the youngest of nine
children born to a pastor. 

Professor Krige was a devout Christian,
who always emphasized that what made a
difference in his life was his belief in Jesus
Christ. He also acknowledged that he had been
the recipient of gifts of grace from the Creator –

The basic tenets of evaluating the
Mineral Resource assets of mining
companies, as observed through
Professor Danie Krige’s pioneering
work over half a century
by W. Assibey-Bonsu*

This paper constitutes a write-up of the first Professor Danie Krige
memorial lecture in 2014, which was organized by the University of the
Witwatersrand in collaboration with the Southern African Institute of
Mining and Metallurgy (SAIMM) and the Geostatistical Association of
Southern Africa, at which his wife, Mrs Ansie Krige, the SAIMM, and
Professor RCA Minnitt also spoke. The memorial lecture was presented by
his previous PhD graduate student, Dr Winfred Assibey-Bonsu.

During that inaugural memorial lecture, the SAIMM highlighted three
activities that the Institute would undertake going forward, so as to
remember this great South African mining pioneer:

� The publication of a Danie Krige Commemorative Volume of the
SAIMM Journal

� An annual Danie Krige Memorial Lecture to be facilitated by the
School of Mining Engineering at the University of the
Witwatersrand

� The annual award of a Danie Krige Medal.

What follows is both a tribute to his work and a testimony to the great
man’s deep personal integrity, belief in family, humility, and faith in
Christ: all of which led him to become a giant not only in the South African
mining industry, but indeed worldwide.

geostatistics, kriging, conditional bias, block model, regionalized variables,
regression, ore evaluation.

* Gold Fields Limited.
© The Southern African Institute of Mining and

Metallurgy, 2016. ISSN 2225-6253. This paper
was first presented at, The Danie Krige
Geostatistical Conference 2015, 19–20 August
2015, Crown Plaza, Rosebank.
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‘grace given to him’ – drawing attention to six specific areas,
in which he could identify the grace of the Almighty at work
in his life and career:

It was a tribute to his parents for the practical application of a
godly lifestyle, the establishment of a firm foundation, and a
life philosophy that was modelled by them in every area of
life – an example being, that even with the limited resources
at their disposal, they ensured that seven of the nine siblings
received a tertiary education.

The second of the gifts of grace that he acknowledged was
the support he received from his two spouses. He was happily
married for 45 years to his first wife (until her death), and
thereafter for 20 years to Ansie.

The third gift of grace was the way in which his career
developed, and the various changes in direction that it took,
as his research unfolded.

The fourth gift of grace was that when he returned to work at
Anglovaal, the company began to apply his advanced
methods of evaluation on their mines.

The fifth gift of grace was that on retirement from Anglovaal
at the age of 60, he received the unexpected opportunity of
taking up the Chair of Professor of Mineral Economics at the
University of the Witwatersrand, which he occupied for the
next 10 years. This enabled him to teach and undertake
extensive consulting work for mining companies both locally
and internationally, and was, in his opinion, a great blessing.

The final gift of grace was that after leaving the University of
the Witwatersrand, he was still able to undertake extensive
national and international consulting work, which kept him
occupied and young for the following 20 years.

He also acknowledged with deep gratitude that while the
opportunities were presented to him, it was his responsibility
to make good use of them and that without these gifts of
grace, his life’s work would not have been possible.

The photos that follow bear testimony to his strong belief
in family values, those same ones he was blessed with as a
young boy.

Professor Krige matriculated from Monument High School at
the age of 15 and in 1938, at the age of 19, graduated as a
Mining Engineer from the University of the Witwatersrand. It
was clear early on that he was destined for great
achievements.

The two photographs above show the great difference
between the robe of a university graduate and typical clothes
of an underground miner, and provide a perfect illustration of
Professor Krige’s values regarding theoretical developments
aimed at solving practical problems.

�

636 VOLUME 116   



Professor Krige worked with Anglo Transvaal on a number of
gold mines on the Witwatersrand until 1943, and thereafter
joined the Government Mining Engineering Department,
where he worked for a further eight years. He spent time
studying data and developing mathematical models. He
returned to industry as Group Financial Engineer of the
Anglovaal Group until 1981, when he ‘retired’. He then spent
another ten years (of his ‘retirement’) as Professor of Mineral
Economics at the University of the Witwatersrand.

Professor Krige’s seminal papers, published in the Journal
of the Chemical, Metallurgical and Mining Society of South
Africa, led to additional fundamental research in France on
‘regionalized variables’ by Professor George Matheron and
his team. Professor Matheron named the new method of
linear estimation of the regionalized variables using a spatial
model ‘kriging’, in recognition of Professor Krige’s distin-
guished pioneering work.

His 1951 paper, based on his MSc (Eng.) thesis at the
University of the Witwatersrand, expounded his pioneering
work in geostatistics in more detail. His research and paper
covered and assisted with the statistical explanation of
conditional biases in block evaluation. It stimulated the use
of regression corrections for routine ore reserve evaluations
by several mines, and the technique was essentially the first
elementary basis of what is now known as kriging. The paper
introduced, inter alia, the basic geostatistical concepts of
support, spatial structure, selective mining units, and grade-
tonnage curves. The concept of recoverable
resources/reserves in current use is based on what is known
as ‘Krige’s relationship’.

Kriging is currently applied worldwide in the fields of
exploration, ore evaluation, environmental studies,
petroleum, agriculture, fisheries, and other disciplines.
Professor Krige’s outstanding influence on the worldwide
mining industry is visible every day, as shown by the
decision-making processes followed by international mining
companies.

Over the course of his career, he published some 96
technical papers, including the Geostatistics Monograph, the
first in the Monograph Series of the SAIMM. A complete
record of all his publications is available digital format from
the SAIMM.

As a professional engineer, Professor Krige served for many
years on the Mining Committee of the Engineering Council of
South Africa and on the Council of the SAIMM. He was a co-
founder of the International Association of Mathematical
Geology, the Geostatistical Association of Southern Africa,
the Geostatistical Association of Australia, and the Statistical
Association of South Africa.

He also served as a director of several companies, on the
sub-committee of the South African Prime Minister’s
Economic Advisory Council during 1967/8, as well as on
various committees of the South African Chamber of Mines.
He was a member of the SAMREC Working Committee for
The South African Code for Reporting of Exploration Assets,
Mineral Resources and Mineral Reserves (SAMREC Code) as
first published in 2000.

Amongst all of this, he still managed to find time to
design the State aid formula, which assisted a large number
of gold mines to survive the period of low gold prices;
establish the original South African uranium contracts; and
in 1955 and writing in Afrikaans, publish probably one of
the first papers on risk analysis for new mining investment.
He also gave major inputs in the fields of financial analysis
and taxation. 

Professor Krige was especially committed to the
Application of Computers and Operations Research in the
Mineral Industry (APCOM) symposia. He was South Africa’s
representative on the International APCOM Council from its
inception, served as the Chairman of Council, and was the
first member outside of the USA to be elected to this position.
He initiated and was directly involved with all arrangements
for the APCOM symposia held in South Africa (in 1972,
1987, and 2003), and is believed to have attended all APCOM
symposia until he was almost 90 years old. In 2003, two
weeks after a major operation, he managed to convince his
medical doctors to allow him to attend the 2003 APCOM in
Cape Town, South Africa, where he was a keynote speaker
and also presented two other papers.

During his time as a Professor of Mineral Economics at
the University of the Witwatersrand, he was responsible for
postgraduate courses in geostatistics and mineral economics,
and supervised many masters and doctoral theses. While at
the university and afterwards, he presented courses in
geostatistics and lectured at South African universities as
well as universities in Australia, Germany, Taiwan, Chile,
Russia, and China, to name but a few. He also still found the
time to undertake valuable consultancy work locally and
internationally, and participated in and contributed to many
international congresses all over the world.

Over his lifetime, Professor Krige was the recipient of
numerous local and international awards, too many to
mention all. His academic achievements and awards
included:

� DSc (Eng.) 1963, University  of the Witwatersrand
� DIng (HC) 1981, Honorary Degree, University  of

Pretoria
� Honorary Doctorate from Moscow State Mining

University
� Honorary Doctorate from the University of South Africa

(UNISA)
� Order of Meritorious Service Class 1, Gold, awarded by

the South African State President
� The highest award of the SAIMM, the Brigadier Stokes

Award, in 1984
� Many other merit awards from the SAIMM, including

two gold medals in 1966 and 1980 and two silver
medals in 1979 and 1993

� International Association of Mathematical Geology –
William Krumbein Medal, 1984

� One of the highest awards from the American Society
of Mining Engineers – the Daniel Jackling Award

� Several awards from APCOM International Council,
including the Distinguished Achievement Award, 1989

The basic tenets of evaluating the Mineral Resource assets of mining companies
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� Elected as Foreign Associate of the US National
Academy of Engineers (NAE) 2010, the first South
African to ever receive this award, for his distinguished
contributions to Engineering

� Order of the Baobab in silver – awarded by President
Jacob Zuma.

Although it is  impossible to provide a comprehensive list in
this paper, the author will try to detail at least some of the
many principles that Professor Krige brought forth over half a
century.

The mining industry requires very capital-intensive
investments. Figures 1 and 2 provide some examples in this
regard. 

Figure 1 shows that in 2007 Rio Tinto’s acquisition of
ALCAN, a Canadian aluminium company, cost US$38.1
billion. It further shows that the estimated cost for Billiton’s
Olympic Dam Project in Australia was US$27 billion.

Figure 2 illustrates that in 2007 Gold Fields Limited
acquired the South Deep Gold Mine in South Africa at a cost
of US$2.5 billion (the equivalent of R22.2 billion at the then-
prevailing exchange rate). It also shows that in 2011
Newmont’s acquisition of Fronteer Gold Inc. cost US$2.3
billion, and that Barrick’s ongoing development of the
Pascua–Lama gold mine in South America was estimated at
US$8.5 billion.

Mineral Resources and Mineral Reserves are the
fundamental assets of mining companies and capital-

intensive investments are made with respect to these. The
strategic objective is to explore, acquire, develop, and
ultimately mine them, but one critical risk exists in the
uncertainty of the estimation of Resources and Reserves. If,
after intensive capital investments, it is subsequently found
that the expected Mineral Resources and Mineral Reserves
were inefficiently estimated or valued, billions of dollars may
be lost.  Professor Krige’s pioneering research work provides
technical solutions to mitigate these technical and financial
risks when evaluating these fundamental assets.

Professor Krige emphasized the critical importance of data
integrity as the lifeblood of Mineral Resource and Reserve
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evaluation. Ensuring data integrity includes data validation
and authorization, use of standards and blanks with
approved laboratories, and also database safety and security,
which are all critical requirements of the Sarbanes–Oxley Act
of 2002 (SOX) that is necessary for compliance with the New
York Stock Exchange regulations.

Professor Krige highlighted geology as the foundation of
Mineral Resource and Reserve modelling. He emphasized that
orebodies differ and that the main geological characteristics,
including lithological and structural features, mode of origin
and formation, as well as controls of mineralization, are
critical inputs in orebody modelling. 

He further warned against the dangerous practice of
subdividing orebodies, not on geological grounds, but directly
on grade only, as this can lead to serious biases, particularly
where the data in one or more subdivisions is insufficient to
allow proper geostatistical analysis.

In the field of Mineral Resource and Reserve evaluation,
geology and geostatistics are two inseparable sides of the
same coin. As stressed above, on the one side geology
concentrates on the physical features of the orebody, such as
structures, source, deposition, and type of mineralization.
Geostatistics is the other side of the coin, and provides
mathematical, statistical,  and geostatistical models for the
analytical data available from sampling, in order to introduce
efficient evaluation techniques for Resource and Reserve
estimate, and to attach confidence limits to these estimates.

Uncertainty is fundamental in all branches of science and
in human life itself. Uncertainty is the reason for the
introduction of mathematical and statistical techniques in
geology and is behind the birth of geostatistics over half a
century ago.

The initial efforts in applying classical statistical procedures
to orebody evaluation in South Africa date back to 1919
(Watermeyer) and 1929 (Truscott). It was only in the late
1940s and early 1950s that Sichel (1947, 1952) introduced
the lognormal model for gold values, and using this model
developed the ‘t’ estimator. Departures from the usual
lognormal model were largely overcome with the introduction
in 1960 (Krige, 1960) of the three-parameter lognormal
model, which requires an additive constant before taking
logarithms. However, there were still cases that could not be
covered by the three-parameter lognormal model, and Sichel
(1992) introduced the more flexible compound lognormal
distribution, originally developed by him for diamond distrib-
utions.

Geostatistics as such did not really originate until the basic
concept of ore grades as a spatial variable, with a spatial
structure, was introduced in 1951/52 by Professor Krige. 

This arose firstly from his endeavour to explain the
phenomenon experienced on the South African gold mines
for many decades, where ore reserve block estimates consis-

tently showed significant undervaluation in the lower grade
categories, and overvaluation for estimates in the higher
grade categories, during subsequent mining, i.e. what is now
known as conditional biases, illustrated in the form of a
simple diagram in Figure 3. Professor Krige’s pioneering
work provided the geostatistical explanation of conditional
biases as unavoidable errors resulting from the use of limited
data on the periphery of blocks, which was used in
evaluating ore reserve blocks. He proposed and implemented
corrective measures to eliminate these significant conditional
biases. The regression corrections were applied routinely to
block estimates on several mines in the early 1950s and
represented the actual birth of kriging. The regressed
estimate was, in effect, a weighted average of the peripheral
estimate and the global mean of the mine section – it was the
first application of kriging. It could be called ‘simple
elementary kriging’, being based on the spatial correlation
between the peripheral values and the actual grades of the
ore in the blocks, and giving proper weight to the data
outside the block periphery via the mean. In this way, the
spatial concept and kriging were introduced. The concept of
‘support’ is very basic to geostatistics, and was first covered
by Ross (1950), and further developed by Krige (1951),
including Krige’s variance-size of area relationship. 

Professor Krige’s pioneering work in the early 1950s aroused
interest worldwide, particularly in France where, at the
instigation of Professor Maurice Allais, Professor Krige’s
papers were republished in French (Krige, 1955). One of
Professor Allais’s students, later to become world renowned
as Professor George Matheron, started the development of the
theory of regionalized variables. Matheron also proposed the
use of the variogram to define the spatial structure. This
model is an extension and refinement of the concept covered
by De Wijs (1951,1953). Professor Krige’s regressed
estimates were then still called ‘weighted moving averages’
until Matheron’s insistence in the middle 1960s on the term
‘kriging’ in recognition of Professor Krige’s pioneering work.

During 1963 to 1966 (Krige, 1963, 1966) the spatial
patterns were defined in far more detail. These studies
covered the spatial correlations between individual ‘point’
sample values, as well as those between regularized data
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blocks. The corresponding correlograms or covariograms
were used on a simple kriging basis for block evaluations.
Kriging on a routine basis for ore reserve evaluation was,
therefore, already in use on some Anglovaal gold mines more
than 50 years ago.

It is instructive to observe that on the South African gold
mines, the improvement in the standard of block evaluations
due to the elimination of conditional biases accounts for some
70% of the total level of improvement achievable today, using
the most sophisticated geostatistical techniques. It is for this
reason that Professor Krige placed so much emphasis on the
‘proper’ implementation of the methods to mitigate
conditional biases. Thus, the elimination of conditional biases
is not only the major contributor to the reduction of
uncertainty in assessing the Mineral Resources of mining
companies; it is also an integral and fundamental part of any
kriging and Mineral Resource and Reserve assessment
process.

The elimination of conditional biases is basic to ore
evaluation and all geostatistical procedures, as emphasized
by David (1977) in his popular geostatistics book
‘Geostatistical Ore Reserve Estimation’. As David states,
conditional unbiasedness is the ‘key point of Krige’s 1951
paper, one of the key points of his 1976 paper but even then,
still appeared as a revelation to many people’.

Any increase in knowledge and available data relevant to any
uncertainty being studied will reduce the level of uncertainty,
provided that the knowledge is applied properly. Knowledge
will never be perfect and data never complete, and therefore
uncertainty will never be entirely eliminated. However, any
procedure or technique that does not use all relevant data in
order to provide the ‘best’ perspective on the remaining
uncertainty must not be accepted. Professor Krige reported
that in his worldwide experience, he unfortunately
encountered many cases where practitioners had erred in
respect of this fundamental concept. In too many cases,
Mineral Resources and Mineral Reserves were estimated from
limited data, and further relevant data was ignored. Use of
insufficient data can still be a problem today. In 1950 only
the peripheral data for each block was used, while now, with
the use of geostatistics, the data search routine is still often
inadequate, even with the complete database available on the
computer. This is often compounded with no advance
analysis to determine the minimum search routine required to
eliminate the biases, and no follow-up studies to record the
presence of these biases and the need to eliminate them.

The graphs and tables that follow, some which are taken
from Professor Krige’s historical and practical work, illustrate
the effect and outcomes of conditional biases.

Figure 4 illustrates feasibility block estimates versus final
production blast-hole averages for an aluminium deposit.
There is no correlation between the feasibility block estimates
and those observed during production, as demonstrated by

the regression trend, which could lead to significant risk in
invested capital. Figure 5 illustrates similar conditional bias
problems and demonstrates why they are important, and
shows how they result in misclassification of ore blocks,
resulting in levels of profit well below what can be achieved.
Figure 6 demonstrates the improved estimates for the data in
Figure 5 that can be achieved through using ‘proper’ kriging
with an adequate search.

More recent practical examples of conditional biases are
illustrated in Tables I and II and Figure 7. Table I, a case
study of a historically mined-out open pit, demonstrates that
even the latest sophisticated geostatistics method used to
estimate recoverable resources can suffer from inherent
conditional biases. Table II shows the effect of conditional
biases over time, from a historically mined-out case study,
with consistently large negative percentage errors for tons
and positive errors for grade, over various time periods and
cut-offs. Figure 7 illustrates the financial impact of the errors
over the respective cut-offs and time periods.
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Mineral Resource estimation for a new or an existing mine
covers two major stages:

� At the initial or first stage, the data is limited and is
obtained either from a broad drill-hole grid or from an
initial main development grid

� During the second or final stage, more data becomes
available from grade control drilling or from stope faces
and auxiliary developments.

Apart from providing a basis for short- and longer term
mine planning and viability studies, evaluations are
frequently required to provide Resource and Reserve classifi-
cation figures (Measured/Indicated/Inferred and
Proven/Probable), to substantiate a major capital investment
and/or the raising of finance. At both stages of evaluation,
the evaluation technique should ensure minimum error
variances/uncertainty. These requirements are linked closely
to the expected slopes of regression of the eventual follow-up
values on the original block estimates. Slopes of less than
unity indicate the presence of conditional biases, with blocks
in the upper grade categories overvalued and low-grade
blocks undervalued.

The efficiency of block evaluations
Block evaluations subject to conditional biases have lower
efficiencies. Professor Krige in 1996 proposed to define and
measure the efficiency as follows:

where:
BV = block variance (i.e. the variance of actual block

values, calculated from a variogram)
KV = kriging variance (i.e. the error variance of respective

block estimates).

For perfect evaluations: KV = 0, the dispersion variance
(DV) of the estimates (calculated from the observed kriged
model) = BV, and then:

Where only a global estimate of all blocks is practical, all
blocks will be valued at the global mean, i.e.:

Usually, blocks are valued imperfectly. With no
conditional biases:

However, with conditional biases present, this
relationship does not hold and then:

because of insufficient smoothing, and

The efficiency of a block evaluation can even be negative
if KV > BV. As stressed by Professor Krige, such a situation is
unacceptable and the block evaluations will be worthless; yet
he encountered several such cases in practice, where the data
accessed per block was inadequate.

In order to avoid unacceptable negative efficiency for block
estimates, the following critical control limit test is proposed
for the regression slope to test for conditional biases
(Assibey-Bonsu, 2014):

Regression slope can be written as:

[1]

where LM is the respective Lagrange multiplier for ordinary
kriging, and BV and KV are as defined above.

Where only a global estimate of all blocks is practical, all
blocks will be valued at the global or sub-domain mean, i.e.,
KV = BV and efficiency = 0

Substituting KV = BV into Equation [1]

Thus, a regression slope of less than 0.5 will always lead
to a negative block efficiency estimate (i.e. worthless kriged
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Table I

12.0 3.0
6.0 2.3
0.3 1.7

Table II

0.6 -15% 31% -15% 20% -15 16%
0.7 -14% 31% -16% 22% -16% 18%
1.0 -3% 27% -16% 24% -17% 19%
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estimates). This highlights the danger of accepting block
estimates that have a slope of regression less than 0.5. 

The critical regression slope limit of 0.5 should only be
used to identify blocks that will result with negative kriging
efficiencies. Ideal slopes of regression should be greater than
0.95, as proposed by Krige (1996).

An extensive study of some 70 cases by Professor Krige,
covering a wide range of spatial and data patterns, indicated
a correlation between kriging efficiency and the regression
slope (actuals on estimates) of 87.5% (Krige, 1996). Thus
the slope (or the extent of conditional biases present)
effectively incorporates all the major factors affecting the
efficiency of block evaluations.

The absence of conditional biases is unavoidably
accompanied by some smoothing, and it is a fallacy to use the
data search routine for block evaluation in an endeavour to
reduce or eliminate it. Smoothing is inevitable and essential
for conditionally unbiased estimates.

This can be explained in terms of a theoretical approach
by reviewing the definition of the slope of the line of
regression of actuals (Y) on estimated block values (X):

where y and x are the standard deviations of actuals and
estimates respectively, and r is the correlation coefficient. 

If the slope is to be unity, (i.e. slope = approx. 1) for
unbiased block estimates and (r) is less than unity, because
estimates are never perfect, then:

I.e., the standard deviation (or variance) of the actual or
real block values must be larger than that of the estimated
block values. The gap between these two variances (the
smoothing effect) can therefore be reduced only by increasing
the correlation (r) between block estimates and actual values,
i.e. by improving the efficiency of the estimation technique or
by providing more data. No mathematical manoeuvring can
achieve this objective.

Various post-processing techniques are available to
remove smoothing effects (e.g., Krige and Assibey-Bonsu,
1999; Journel et al., 2000) and should be applied only to
block estimates that are conditionally unbiased.

Disastrous errors and critical risks will result from using
erroneous data. Various processes that are usually set out in
company or mineral resource regulatory body standards and
protocols should be followed to ensure overall data integrity.
The SAMREC Code, Table 1, provides good guidelines as to
those aspects that should be considered and reported on in
the relevant Competent Person reports.

Geology should always be recognized as a vital element in
deposit modelling. Experience has shown that geostatistical

Mineral Resource and Reserve assessment, without proper
geological input, can also be disastrous and constitute a
critical risk. A robust geological model is therefore a prereq-
uisite, and if the geostatistical model does not agree with the
geological one, there are grounds for serious concern. Either
one or both models should be critically re-examined, so as to
establish the essential correlation and validation.

Use effective tools, including slope of regression and block
efficiencies, in this regard.

This is a further important aspect, not only to ensure that
estimates have the quality required and that no biases are
present, but also to timeously record the differences and
facilitate corrective action.

Research new techniques and applications, but validate new
techniques properly by way of (follow-up) checks to confirm
the absence of biases and the practical advantages to be
gained when they are applied in practice. 

The industry seems to be going backwards in certain areas,
with a widespread misunderstanding of the causes and
consequences of conditional biases. The following are some
of the possible causes.  

� In certain universities, as well as training provided
elsewhere in the industry, geostatistics is taught using
commercially available computer programs, with the
emphasis being how to use the programs

� Unfortunately, this is what many mining companies
expect: graduates or practitioners who are good at
operating programs (the ‘black box approach’). This
does not allow much time for teaching the
fundamentals of geostatistics and the consequences of
misusing the technology

� What complicates matters is that the universities rarely
have large databases to demonstrate the strengths and
weaknesses of various methods in different
environments, and research is by its own nature geared
towards only the development of theoretical geosta-
tistics, often based on strong stationarity assumptions.

‘… after half a century of phenomenal developments in
geostatistics, conditional biases which gave birth to this
subject, are still encountered in practical applications…
the main concern is that this record will be tarnished by
the all too ready acceptance (in certain cases) of
estimates, which are still conditionally biased. For the
future, I would like to see geostatistics continue to grow
from strength to strength with new models, techniques
and applications, but where these are all validated
properly by way of (follow-up) checks to confirm the
absence of biases and the practical advantages to be
gained when they are applied in practice’ Professor
Danie Krige.
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Professor D. Krige was indeed a pioneering giant, and the
South African mining industry is blessed to have had the
benefit conferred by his immense contributions. He always
gave willingly and unselfishly, with the rewards being not
gold, platinum, and diamonds, but the tools for others to
utilize in finding and evaluating Mineral Resources, so as to
achieve a positive financial return, while minimizing the
associated risk. He took the industry far along the road, but
the journey is not over and it now remains the responsibility
of those that follow to adhere to his principles, and indeed
continue to build on them, to ensure his legacy lives on.

The author wishes to thank Gold Fields Limited for the
support and time it has allowed in collating and presenting
this paper.
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Disciplines unite at Wits to prepare
mining for the 21st century 

29 June 2016 – Johannesburg: Innovative technology solutions for the struggling mining sector are the focus of a new
unit at Wits University, bringing together various disciplines and headed by former School of Mining Engineering head
Professor Fred Cawood. 

The Wits Mining Institute (WMI) will house the school’s Digital Mine project – already well advanced in developing
a mock mine within the Chamber of Mines building on Wits University’s West Campus – and a college network to
develop 21st century skills at artisan and technician level. 

‘The institute’s mission is to make mining safer and more sustainable by harnessing fast-developing technologies
and practices from different sectors – which are sadly not always incorporated into mining applications quickly enough
to address the industry’s many challenges,’ said Professor Cawood. 

He said the breakthrough that the WMI had made was to forge working links across the university’s schools and
research units, so that mining issues could be addressed in an integrated manner. 

‘It has taken some time to achieve this, but the WMI now draws upon a formidable battery of expertise and
insights from disciplines like architecture, public health, law, global change, population migration, urban development,
electronics and computer science,’ he said. ‘These now augment the already substantial work being done within the
School of Mining Engineering through its Centre for Mechanised Mining Systems and the Centre for Sustainability in
Mining and Industry.’ 

He said that South Africa’s deep level ore bodies posed particularly difficult challenges to mining operations, but
argued that encouraging progress was already being made to show the path forward for both established and new
operations. 

‘Work on converting ‘indoor’ positioning systems to underground applications is already underway, for instance,
paving the way to developing an automated tunnel for mining at depths no longer viable or safe for humans to
operate,’ said Professor Cawood. 

Cutting edge software, sensors and related high-tech infrastructure were allowing developments like real time
underground airflow modeling, and access systems that could automatically exclude personnel restricted by health
issues or legal compliance requirements. 

‘This kind of intervention brings us closer to the concept of the intelligent mine, where the data required for good
decisions is available in real time – and in many cases can inform automated responses that removes the risk of
human error,’ he said. ‘The vision of safe and more efficient operations is reachable, if we can adapt and apply the
remarkable technologies available to us.’ 

The mock mine at Wits University currently includes a 67 m life-size mine tunnel called ‘Nick’s Tunnel’ a stairwell
equipped as a mock vertical shaft, the NCM Stope, Lamp room and Control room – which are used for both teaching
and research into aspects such as security, systems integration and video analytics. 

Skills development by the WMI will focus on modern skills required to install and maintain the various new
technologies being implemented or considered by mechanised and digital mines. 

‘Mines that are already mechanised find themselves in a difficult position, as last century’s skills are unable to
properly manage and advance the modern technologies that they have installed in their operations,’ said Professor

The.  major funders of the digital mining infrastructure to date are
Gold Fields, Aveng Mining, the Minerals and Education Trust Fund,
Wits University, New Concept Mining and Sibanye Gold, who is
currently the largest sponsor. The research agenda is significant, with a
total of 16 postgraduates who use/used the facility for their research
and 10 undergraduate students who will graduate at the end of 2016
with a digital mining competence. The research projects are sponsored
by different companies who are partnering with the WMI in its
objective to prepare the sector for 21st century mining.

S. Braham
Account Director

Contact: (011) 646-9322



Uniform conditioning (UC) is a nonlinear
estimation technique that estimates the
conditional distribution of metal and tonnage
above cut-off within a mining panel. It does
not directly estimate grade, although grade is a
typical outcome from the estimated metal-
tonnage distribution or the results produced by
localized uniform conditioning (LUC). UC
results are typically presented as a recoverable
resource above multiple cut-off grades. The
advantage of UC is that it can be used on
widely spaced data, across domains that are
not strictly stationary, provided that there is
sufficient data for a conditionally unbiased
estimate of the panel mean grade (Rivoirard,
1994). 

Previous studies where UC has been
applied to porphyry copper deposits (Deraisme
et al., 2008; Deraisme and Assibey-Bonsu,
2011; Millad and Zammit, 2014) show the
application of the method to normal grade

distributions. Additional studies have applied
this approach to gold deposits (Assibey-
Bonsu, 1998; Humphreys, 1998) and an iron
ore deposit (De-Vitry et al., 2007), indicating
that the method is applicable on skew,
lognormal distributions. While UC has been
practically applied to different types of deposit,
it is not known how well UC predicts actual
grades for the underlying grade distribution.

This paper discusses the UC estimation
method as well as the popular add-on, LUC,
presented by Abzalov (2006). A case study is
presented that compares UC and LUC estimates
of two hypothetical data-sets, referred to
herein as scenario 1 and scenario 2. Scenario 1
is a normally distributed grade distribution
and scenario 2 is a skew, lognormally
distributed grade distribution, both of which
are compared against the simulated
realizations that represent the actual grades. 

The conditions found in the two data-sets
are similar to those found in naturally
occurring mineral deposits. The aim of this
investigation is to determine the underlying
conditions of the grade distribution that
produces favourable results when applying UC,
and subsequently LUC, to such data-sets.

The following section describes a UC with LUC
workflow, which follows the process outlined
in Figure 1.

This initial part of the UC workflow is to
prepare and carry out exploratory data
analyses, including histograms, to understand
the sample grade distribution and variability in
the deposit. The data must be appropriately

When should uniform conditioning be
applied?
by K. Hansmann*

Blindly applying any methodology to estimate the recoverable resources of
a mineral deposit without considering the suitability of the approach to the
deposit being evaluated can render misleading results. While ‘running the
software’ provides an answer, one should, amongst numerous other
considerations, understand the impact the underlying distributions and
assumptions have on the validity of the result.

Uniform conditioning (UC) is a nonlinear estimation method that
models the conditional distribution of smallest mining unit (SMU) block
grades within panels, and localized uniform conditioning (LUC) places
these SMU at plausible locations within a panel. The localization process
does not improve the accuracy of the UC result, but rather presents the
result in a more practical format; particularly for use in mine planning.

A case study was carried out to compare the suitability of UC and LUC
on two hypothetical data-sets. The data-sets are simulated realizations of
a normal grade distribution and a highly skewed lognormal grade distri-
bution which are akin to grade distributions found in mineral deposits. The
estimation methods were applied to both data-sets, and the results
compared with the actual grades of the simulated realizations. This paper
presents an overview of UC and LUC, with discussions around the case
study results.

change of support, Gaussian anamorphosis, localized uniform
conditioning, lognormal distribution, normal distribution, uniform
conditioning.

* University of the Witwatersrand, Johannesburg,
South Africa.
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declustered, so that the normal score transforms of the grades
are an accurate representation of the grade distribution. This
is important for the Gaussian anamorphosis function (to be
discussed later), and failure to correctly complete this will
affect the results of the UC estimate. 

As the discrete Gaussian model (DGM) for change of support
is used for UC, the data must be transformed to the
equivalent Gaussian (or normal score) values using
declustered weights. This is performed by transforming the
cumulative distribution frequency (CDF) of the original
grades to a Gaussian probability CDF, on a percentile to
percentile basis for the entire data-set. Figure 2 shows the
CDF of a lognormal grade distribution (data from scenario 2)
on the left, with the green and red lines showing percentile
paired mapping of values to the equivalent normal score
values on the right.

The DGM relies upon the assumption of bivariate
Gaussianity of the transformed grades (Rivoirard, 1994).
Bivariate Gaussianity means that any linear combination of
the Gaussian transformed data is also Gaussian. Several tests
exist to determine if the transformed data conforms to such
conditions, and is therefore suitable for use with the DGM.
Schofield (1988), Rivoirard (1994) and Humphreys (1998)
give practical examples on how these tests may be run.  

The quality of the panel estimate determines the success of
the UC estimation (Rivoirard, 1994). A panel estimate should
be conditionally unbiased (Rivoirard, 1994; De-Vitry et al.,
2007), so that the UC conditional grade distribution will be
an accurate estimate of the actual grade distribution. The
panel estimate can be carried out using any linear estimator,
but conventionally ordinary kriging (OK) is used. 

The panel size should be chosen relative to the spacing of
the sample data. De Vitry et al. (2007) suggested that the
panel should be as small as possible to ensure an accurate
estimate, but large enough for minimal conditional bias of the
estimate. The number of smallest mining units (SMU) within
the panel is linked to the resolution of the grade-tonnage
relationship, as the number of SMU discretizes the grade-
tonnage curve of the panel (Harley and Assibey-Bonsu,
2007).

The DGM can be used to derive the marginal histograms at
different supports. The Gaussian anamorphosis function is
modelled by a set of Hermite polynomials, weighted with an
accompanying set of Hermite coefficients. A full description
of Hermite polynomials and how these may be calculated is
given by Rivoirard (1994). 

A point and fitted model anamorphosis function for a
normal and lognormal distribution are shown in Figure 3.
The anamorphosis function for the lognormal distribution is
constructed from the normal score data, by plotting pairs of
grade and Gaussian transformed grade values.
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The Hermite polynomials are functions of the standard
Gaussian distribution, and therefore they express
probabilities and have the properties of a standard Gaussian
distribution (data is symmetrically distributed around the
mean value of zero, and has a unit variance). An additional
property (see Table I) shows the variance of the grade Z(x)
expressed by the sum of Hermite coefficients, excluding the
0th, which describes the mean. 

The number of Hermite coefficients used to fit the
anamorphosis model can vary, and the optimal number
depends on the how well the polynomial set fits the
underlying distribution. Neufeld (2005) recommends using
less than 100 coefficients, although 20 to 30 coefficients are
usually sufficient.

The variance of grades depends on the support that the
grade represents, and a change-of-support model, like the
DGM, is used to predict the distribution of grade at different
supports. Grades at a point support have a higher variance
than grades of SMU, which similarly have a higher variance
than grades of panels. As the support of a grade increases, so
the grade values tend towards the population mean, have less
deviation from it, and are more symmetrical around it 
(Figure 4).  

There is a correlation between the distribution of grades
seen at a point support and the distribution of grades seen at
a SMU support, named the SMU change-of-support co-
efficient (r). Similarly, there is a correlation between the
distribution of grades seen at a point support and the distri-
bution of grades seen at a panel support, named the panel
change-of-support coefficients (R). The ratio R/r is the
correlation of SMU grades and panel grades. The R and r
change-of-support coefficients are determined by solving the
variance equations and the Gaussian anamorphosis
equations at SMU and panel supports, shown in Table I
(Rivoirard, 1994).

The schematic in Figure 5 shows the relationship between
grades at a SMU support, grades at panel support, and how a
distribution of SMU grades is conditional on panel grade. A
low R/r ratio indicates a weak correlation between the SMU
and panel grades, which is caused by a high-nugget semivar-
iogram and/or short semivariogram ranges relative to the

data spacing. A high R/r ratio is indicative of a strong
correlation between SMU and panel grades, which indicates
good grade continuity in the deposit. 

The result of a UC estimate is presented as a distribution of
grades, shown as metal content and tonnages reported for a
series of cut-off grades. While this is insightful information
about the grade-tonnage distribution, it is not a particularly
practical data format as the SMU location is not provided. 

Abzalov (2006) presents LUC as a simple extension to UC
that provides a practical solution for visualizing grades at the
SMU level. A UC grade-tonnage distribution is decomposed to
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Table I

Variance equations

Gaussian anamorphosis equations

i Hermite coefficient
Hi Hermite polynomial evaluated for Gaussian value
2 Dispersion variance
n Number of Hermite polynomial terms
R Panel change-of-support coefficient [0 ≤ R ≤ 1]

r SMU change-of-support coefficient [0 ≤ r ≤ 1]
Z(V) Grade at panel support V
Z(v) Grade at SMU support v
Z(x) Grade at point location x



When should uniform conditioning be applied?

a series of grade values that reproduce the grade-tonnage
relationships. These plausible SMU grades are located into a
SMU model based on the rank location of grades from a
linear estimate of equally sized blocks. This results in a direct
grade model at the SMU resolution that respects the grade-
tonnage distributions of the UC panels and attempts to reflect
the localized spatial grade distribution within the panel.

The objective of this case study is to assess the suitability of
UC and LUC for two data-sets with different grade distrib-
utions, namely scenario 1 and scenario 2. The two scenarios
are distinctly different and represent two end-members of the
range of grade distributions that may typically be seen in
mineral occurrences, being a symmetrical distribution and a
positively skewed distribution. The grade distributions were
synthetically generated and sampled to mimic how this would
be done in a mineral exploration project.

The UC with localization procedure described in this paper
was followed for both data-sets, as outlined in Figure 1.

Two sets of simulated data were generated, which were used
as base data for the assessment. A single realization was
simulated on a 2 m × 2 m × 2 m point grid, over a 800 m ×
600 m area, with a thickness of 200 m, for each distribution.
A plan view at surface through both simulations is shown in
Figure 6 and Figure 7.

A spatially representative subset of data was taken from both
simulations, which makes up the sample database used for
this project. A total of 417 pseudo drill-holes, each containing
100 composites, was taken over the study area. The area is
densely sampled, and this drilling grid would be consistent
with that of a feasibility-stage project. 

Although both scenarios are equally sampled (at a
density of 1%), the drill-hole spacing relative to the semivar-
iogram ranges for scenario 1 is closer than for scenario 2. For
scenario 1, the samples are spaced at approximately one-third
of the semivariogram ranges (120 m) in X and Y, while for
scenario 2 the samples are spaced at approximately the
maximum semivariogram range (40 m). Statistics of both
scenarios are compared, but there is no correlation between
them as the simulations were run independently. Declustered
statistics are presented in Table II, histograms in Figure 8 and
Figure 9, and modelled semivariograms in Figure 10 and
Figure 11.

In scenario 1, the grade distribution is symmetrical, with
a comparatively low nugget effect (12%) and well-defined
continuity up to distances of 170–300 m. Slight anisotropy
was evident, and possibly some zonal anisotropy seen in the
Y-direction where the variance does not reach the sill value.
The distribution is approximately normal, and is similar to
what one would find in a porphyry copper mineral
occurrence. The first distribution has a smaller range of grade
values than the second (approximately half). 

In scenario 2, the grade distribution is approximately
lognormal, supported by the shape of the histogram. This
distribution has the characteristics of being asymmetrical,
strongly positively skewed, with a long tail. There is a higher
nugget effect (26%), with long-range continuity of approxi-
mately 60–90 m. The coefficient of variation (CoV) for
scenario 2 is higher (1.3) than that of scenario 1 (0.4),
showing a wider spread and higher variability of grade
values. 

Panel grade estimates, using OK, were produced for both
scenarios with the intent of minimizing conditional bias while
retaining some local variability. The block sizes were chosen 
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Table II

Scenario 1 41 700 417 0.0 29.6 11.8 21.5 4.6 0.1 0.3 0.4
Scenario 2 41 700 417 0.0 59.3 4.1 30.3 5.5 3.7 19.5 1.3



relative to the average sample spacing, at 50 m × 50 m × 
20 m. Ten discretization points were chosen in the X and Y
directions, based on a quantitative kriging neighbourhood
analysis (QKNA) optimization of the block variance.
Discretization points in the Z direction were chosen to be
equal to the compositing length.  A sufficiently large search
neighbourhood was chosen for the panel estimate to ensure
high slopes of regression, without the introduction of too
many (>5%) negative kriging weights.  

The panel model estimation for scenario 1 had a mean
slope of regression of 0.97; while that of the scenario 2 
panel model estimation was 0.72. Figure 12 and Figure 13
show plan views of the respective scenarios, at surface
elevation. Comparing these to the simulated data (Figure 6
and Figure 7), the grade smoothing effect and reduction of
variance from the OK is evident.  

Sample data was converted to normal scores and tested for
bivariate Gaussianity. For both scenarios, the test results
were consistent with bivariate Gaussian conditions of the
Gaussian transformed data. Change of support was carried
out for each scenario using the DGM, with parameters shown
in Figure 3. 

In scenario 1 the SMU change-of-support coefficient
indicates a strong correlation between point and SMU grades.
For scenario 2, the SMU change-of-support coefficient implies
a weak correlation between point and SMU grades and is a
result of the high nugget effect. 

Panel change-of-support coefficients are measured from
the direct variance of estimated panel grades. Well-informed
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panels, as defined by the number of samples in the
neighbourhood and semivariogram ranges, will have better
estimation confidence. To account for this, different panel
change-of-support correlations are used for panels with
similar confidence in the estimation. Three such isovariance
groupings were used for each scenario, and the ranges of
these results are shown in Table III. Relatively higher
variances of estimated panel grade groupings are typically
from better-informed areas where there is better grade
continuity that results in a greater spread of estimated panel
grades. Conversely, relatively lower estimated panel grade
variance groupings are for worse-informed areas, where there
is more evidence of smoothing and panel estimates are closer
to the mean, giving rise to less variance

UC was carried out for both data-sets using the panel model
and DGM. After completion of UC, the model was localized
using a local SMU model, which was estimated using smaller
kriging neighbourhoods to reflect local variability. 

The performance of UC may be assessed by how closely the
UC grade-tonnage estimate conforms to the actual simulated
model and an OK model, as a benchmark for a linear
estimator. This comparison was made globally, to
demonstrate the effects of incorrectly predicting the
extractable tonnage of the deposit, and locally, to
demonstrate the effects of getting individual panel grades
right/wrong. 

The grade-tonnage relationship for the normally distributed
scenario is shown in Figure 14. The global UC prediction of
tons and grades is very close to the actual grades, and shows
a slight improvement on the OK grade-tonnage curve. 

In the case of the normally distributed grades (scenario
1), where there is good data coverage (relative to the
semivariogram ranges), OK performs well for determining
recoverable resources. Slopes of regression for the OK model
were, on average, close to unity, indicating a very low
conditional bias (which is reflected in the OK estimates being
close to the actual values). However, UC marginally
outperforms OK in terms of estimating a recoverable
resource, as it more closely predicts the grade and tonnage of
the simulated reality. For low cut-off grades, there is slightly
less tonnage than predicted for the both the OK and UC
model, but the UC estimates are closer to the actual values. 

Where the grade data has an underlying lognormal distri-
bution (scenario 2) with relatively poor data coverage, the
simulated model shows a decline in tonnage (or volume) as
the cut-off grade increases (Figure 15). OK generates a
moderate estimation of the grade and tonnage extractable for
any cut-off grade. This lack of adherence to the grade-
tonnage curve can be explained by a grade smoothing, which
was expected, as the slopes of regression of the panel
estimate were, on average, poor. UC gives a better result than
OK, but the resultant estimation of grades and tonnage does
not closely conform to the actual values. As the selectivity
increases (i.e. high-grade areas are targeted), the average
grade of the actual material will be higher than the OK model
predicts.

�

650 VOLUME 116     

Table III

Sample variance (sill) 21.7 g/t2 30.6 g/t2

Dispersion variance in SMU (theoretical value) 4.22 g/t2 24.45 g/t2

SMU change of support coefficient, r 0.903 0.503
Dispersion variance in panel (measured values) 6.17 g/t2–13.39 g/t2 0.91 g/t2–1.04 g/t2

Panel change of support coefficient, R 0.537–0.791 0.230–0.215
Change of support correlation R/r 0.595–0.876 0.427–0.457



At low cut-off grades, a linear estimated model frequently
shows an overestimation of volume or payable ground. This
is referred to as the ‘vanishing tons’ problem as described by
David (1977), which is seen when mining commences and
less material is recovered than was predicted. This is caused
by a conditional bias and/or smoothing in the estimate,
which are reflected respectively by low slopes of regression
and/or higher estimation variance in the estimated result.
This phenomenon is amplified by a high nugget effect and
small block sizes used for estimation. 

In order to resolve a conditional bias, one can estimate
grades into larger blocks. However, estimating into larger
blocks can produce an over-smoothed histogram, or too much
average material, and does not provide the accuracy required
to select blocks for mining. This is the ‘kriging oxymoron’
(Isaaks, 2004), which states that a kriged estimate cannot be
conditionally unbiased and accurate at the same time. UC
uses the ‘conditionally unbiased’ large block estimator to
condition the average of a distribution of small blocks,
thereby maintaining the correct grade-tonnage curves and
applying a conditional distribution to obtain an accurate
histogram of small block (SMU) grades. This attempts to
satisfy the apparent contradiction embodied in the kriging
oxymoron. 

An assessment was done to compare the grade-tonnage
results of panels that are well estimated and did not contain a
conditional bias (as determined by the slope of regression)
against poorly estimated panels. Panels chosen for this
assessment are shown in Figure 16, where values with the
better slopes of regression fall on or close to the 1:1
regression line.

For the normally distributed data, if the mean panel grade
estimate is correct, the UC accurately predicts the distribution
of grades and tonnage (Figure 17). For the lognormally
distributed data, UC predicts the grade-tonnage relationship
(Figure 19 and Figure 20) fairly well. For both distributions,
if the mean panel grade is wrong, the distribution of SMU
grades will not necessarily match the simulated distribution
(Figure 18 and Figure 21). It appears that, in addition to an
unbiased panel estimate, UC performs slightly better on an
individual panel basis when the underlying distribution is
normal.  

The localization of the UC result places individual SMU
grades (derived from the SMU grade-tonnage curve within
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the panel) at specific locations within the panel, based on the
estimated grades of the OK SMU model. The success of the
localization is verified by visual comparison and by statis-
tically comparing the rank values of the actual versus the UC
ranking (Figure 22). 

The success of localization depends entirely on the
reliability of the OK SMU estimate. However, the smoothing
and inaccuracy of this estimate is the prime motivation to use

UC in preference to linear estimates. If the OK SMU estimate
provides a good spatial representation of the local grades,
then the location of the UC grades within the panel will be
more accurate. This confirms Abzalov’s (2006) findings that
the localization success is dependent on available data
(among other factors). 

If the data is closely spaced enough to provide accurate
localization, then it is also likely that the data is sufficiently
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closely spaced for a linear estimation to accurately predict the
model grade value. In this circumstance, the benefit of using
a nonlinear UC estimator over a linear estimator is not as
significant as the benefit seen with widely spaced data. This
is evident in the grade-tonnage predictions for the well-
estimated data, where the OK and UC results are similar; and
the predictions for the poorly estimated data, where the UC
results show a significant improvement over the OK results. 

Although LUC is a useful addition to UC, it does not
improve the accuracy of the UC estimate and the localization
algorithm cannot predict the placements of SMU beyond the
available data. This is the main problem: one cannot simulta-
neously know the local mean and the local variability from
limited local data. The single largest contribution of the
localization approach is to present a UC model in a more
accessible and immediately useful format for mine planning.

UC performs well in terms of estimating grades and tonnages
when there is a normal underlying grade distribution and
good sample coverage relative to the variogram ranges, which
result in low conditional biases. In such circumstances a
linear estimator can also closely predict recoverable resources
and provide a spatially representative grade model, although
the UC estimate of tons and grades is slightly better. 

When there is an underlying lognormal distribution and
poor sample coverage relative to variogram ranges,
conditional biases of a linear panel estimate will occur. This
results in UC providing a more accurate global estimate of
grades and tonnage than a linear estimate. The individual
panel results predict the actual grade and tonnage distri-
bution when there is no evidence for conditional bias for that
panel. 

LUC results are favourable when there is sufficient closely
spaced data, in which case it is likely that a linear estimation
could also accurately predict the model grade values.
Therefore, the benefit of using a nonlinear UC estimator over
a linear estimator is more significant when the data is widely
spaced. 

My thanks to those who reviewed  this work, and  partic-
ularly to  Michael Harley of Anglo American for his advice. 
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Open pit mines are characterized by high
production levels and low operational costs
compared to other exploitation methods.
Unfortunately, when using this technique,
material with poor economic value (waste)
usually has to be removed to give access to
more economically profitable material. Each
block is characterized by its metal content,
density, lithology, and other relevant attributes
that are derived by using estimation
techniques specifically designed to deal with
the spatial nature of the mineralization. The
value of a mine plan is thus determined by the
value contained in the blocks that are
extracted at certain periods and has a clear
dependency on the block schedule, the order in
which the material is extracted and processed. 

Generally speaking, different problems are
usually considered by mining planners for the
economic valuation, design, and planning of
open-pit mines, as pointed out by Hustrulid
and Kuchta (2006); for example, the ‘final pit
problem’, also called the ’ultimate pit limit
problem’, which aims to find the region of
maximal undiscounted economic value for

exploitation under certain geotechnical
stability constraints. Another example is
known as the open pit production scheduling
problem, which aims to find an optimal
sequence of extraction in a certain finite time
horizon with bounded capacities (for example,
extraction and processing) at each period and
where the usual optimality criterion is the total
discounted profit. A common practice for the
formulation of these problems consists of
describing an ore reserve via the construction
of a three-dimensional block model from the
orebody with each block corresponding to the
basic volume of extraction, characterized by
several geological and economic properties that
are estimated from sample data. For this
reason, the open pit production scheduling
problem is also known as the block scheduling
problem. Block models can be represented as
directed graphs where nodes are associated
with blocks, while arcs correspond to the
precedence of these blocks, induced by
physical and operational requirements derived
from the geomechanics of slope stability. This
discrete approach gives rise to huge combina-
torial problems, the mathematical formulations
of which are special large-scale instances of
integer programming (IP) optimization
problems; see for instance Caccetta (2007).
Precedence between blocks is one of the most
important sets of constraints, as the extraction
process proceeds from surface down to the
bottom of the mineralization. This idea applies
to every block in the model: it is not possible
to access a given block in a certain time unless
the blocks that are above have already been
extracted, because stability of the pit walls

Optimizing open-pit block scheduling
with exposed ore reserve
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must be ensured. The amount of material to be transported
and processed in each period is subject to upper and lower
bounds, resulting from transportation and plant capacities,
usually expressed in tons.   

Regarding the block scheduling problem, a very general
formulation was proposed by Johnson (1968, 1969), who
presented a linear programming model under slope, capacity,
and blending constraints (the latter given by ranges of the
processed ore grade) within a multi-destination setting, i.e.,
the optimization model decides the best process to apply on a
block-by-block basis. Unfortunately, the complexity of the
model was too great to be solved in realistic case studies, and
therefore the industry preferred an approach based on nested
pits, computed as a parametrization of the ultimate pit solved
with the algorithm proposed by Lerchs and Grossmann
(1965) and subsequent improvements (see, for example,
Picard, 1976; Hochbaum and Chen, 2000; Amankwah et al.,
2014). 

Caccetta and Hill (2003) proposed a model containing
additional constraints on the mining extraction sequence and
used a customized version of the branch-and-cut algorithm to
solve it up to a few hundreds of thousands of blocks. Bley et
al. (2010) used a similar model, but considering a fixed cut-
off grade and incorporating additional cuts based on the
capacity constraints that strengthen the formulation of the
problem. This strategy was also used by Fricke (2006) in
order to find inequalities that improve various integer
formulations of the same model. Gaupp (2008) also reduced
the number of variables by deriving minimum and maximum
extraction periods for each block, therefore eliminating some
of the variables and reducing the original MIP model size.
Bienstock and Zuckerberg (2010) used Lagrangian relaxation
on all constraints except the precedence constraints, reducing
the model to the final pit problem. Chicoisne et al. (2012)
focused on the case of one destination and one capacity
constraint per period, developing a customized algorithm for
the linear relaxation and a heuristic based on topological
sorting to obtain integer feasible solutions. Cullembine et al.
(2011) proposed a heuristic procedure using Lagrangian
relaxation on lower and upper capacity constraints and a
sliding time window strategy, in which late periods are also
relaxed while variables of early periods are fixed
incrementally. Lambert and Newman (2013) employed a
tailored Lagrangian relaxation, which uses information
obtained while generating the initial solution to select a
dualization scheme for the resource constraints. Dagdelen et
al. (1986, 1999) and Ramazan et al. (2005) worked on a
model with fixed cut-off grades and upper and lower bounds
for blending. Boland et al. (2009) proposed a different model,
in which they aggregate blocks for the extraction decisions,
including slope constraints, while the processing decisions
are modelled at the level of individual blocks. Jélvez et al.
(2016) used heuristics based on incremental and aggregation
approaches in order to solve the open pit block scheduling
problem. The model considers upper and lower capacity
constraints, but the application considers only upper bounds.
Zhang (2006) used a genetic algorithm combined with a
block aggregation technique. Another approach is developed
by Tabesh and Askari-Nasab (2011), who presented an
algorithm that aggregates blocks into mining units and uses
Tabu search to calibrate the number of final units; the

resulting problem is then solved using standard IP
algorithms. The aggregation technique is interesting, because
it is based on a similarity index that considers attributes like
rock type, ore grade, and the distance between the blocks.

The problem that this paper addresses is the design of a
block schedule, but with the additional constraint of leaving
enough exposed ore reserve that is readily available at the
start of every period. Usually, once the phases are designed,
their scheduling is adjusted so that there is always enough
exposed ore to feed the processes for a few months.
Unfortunately, these considerations are not included in the
strategic optimization model that generates the phases and
therefore operational delays may impact production. While
this could be addressed using stocks, this is theoretically
more complex (because of potential nonlinearity) and in
practice requires material re-handling, which is more
expensive and more difficult to track than material coming
straight from the mine. On the other hand, as we show in this
work, these constraints can be included in the block
scheduling without these shortcomings. This may prove
particularly relevant in the case of mines with disseminated
or irregular ore distribution, and may be used as a tool to
reduce stock sizes and therefore the operation footprint.

In terms of the model itself, as we will see later, the only
cost to pay in the model is the introduction of new variables
representing the exposed blocks and the corresponding new
constraints, to be described in the next section.

In this section the conceptual model is presented using an IP
framework. It is important to stress that this new
mathematical model is an extension of those considered as
classical, but adds new variables and constraints that identify
the blocks as exposed ore reserve. 

Let B be the set of blocks, and #B denote the number of
blocks. Each block has a certain number of attributes such as
tonnage and ore grade; these attributes permit the economic
value of every block in B to be determined. The slope
requirements for the set of blocks are described by a set of
precedence arcs A B×B, in such a manner that the pair (i,j)

A means that block i must be extracted by period t if block j
needs to be extracted at period t. 

In this model, a decision whether the extracted material
should be sent to a processing plant or to the waste dump is
included, thereby defining a variable cut-off grade. For each
block i it is assumed that the tonnage i, the ore grade i, and
the net discounted value, given by bi

t – pi
t if block i is sent to

processing plant at period t, and – mi
t if block i is sent to

waste dump at period t, are known.
For every period t, maximum limits are imposed on the

amount of material that is mined (Mt), and on the amount of
ore that is milled (Pt). Moreover, in each period a minimum
exposed ore reserve F t made available for the start of the
next period must be guaranteed. For this, we will not allow
every block to contribute to this minimum exposed reserve
requirement, but only those above a certain cut-off grade cg.
In order to do this, it will be convenient to introduce the
parameter
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The reason for doing this is to give the model flexibility
to choose mineralization from waste, but to prevent it from
using many very low-grade blocks to comply with the
constraint, therefore defeating the purpose of the model. 

Table I summarizes the indexes, sets, and parameters
used in the IP model.

Three types of variables are used in the model, all of
them binary. The first type is the variable associated to the
extraction for processing purposes for each block:

if block i is extracted and processed at period t
otherwise 

The second variable type describes the decision relating
to the disposal of a block by sending it to the waste dump:

if block i is extracted and sent to waste dump at t
otherwise

The third variable type is used to identify exposed blocks;
throughout the paper it will be called the ‘visibility’ or
‘exposure’ variable:

if block i is exposed at period t
otherwise

The objective function for the model is the usual
maximization of net present value (NPV). The formulation of
the mathematical model is as follows: 

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

The objective function [1] represents the maximization of
the cumulative discounted cash flow. Constraint [2] simply
expresses that it is not possible to choose two different
destinations for a block, i.e., a block can be sent either to
process or to the waste dump, but not to both at the same
period. Constraints [3] and [4] establish an upper bound on
mining and ore production for each period. Analogous
constraints related to other capacities of the system could
also be established (e.g. water, energy, etc.). Constraint [5] is
the usual slope constraint of open pit planning models, but
written in a manner consistent with the identification of
blocks that can be declared exposed for the start of the next

period. Constraint [6] ensures that once exposed a block
needs to be extracted and sent to the processing plant in the
next period. Constraint [7] ensures that a minimum exposed
reserve (in terms of units of extractable metal) must be
available for the start of the next period (therefore, this is not
imposed for period T). Finally, constraint [8] declares the
nature of the variables involved in the model.

The model proposed here (which we name OPBSEO for
‘open pit block scheduling with exposed ore reserve’)
contains #B×T new binary variables with respect to the
standard open pit scheduling model (see, for example, CPIT
in Espinoza et al. (2013)). The model has also #B×(T-1)
additional constraints of type [6] and T-1 constraints of type
[7]. While in this work we focus on the model and the
properties of its solutions, it is worth noting that the problem
not only has more variables and constraints, but the structure
is harder to exploit. In the CPIT problem (and also PCPSP),
the vast majority of constraints correspond to precedences
and they involve only two variables, one with coefficient 1
and other with coefficient -1. This corresponds to flow
conservation constraints in a MAXFLOW problem, which
allows the use of adapted methods like the BZ algorithm (see
Bienstock and Zuckerberg, 2010). This is not the case for
OPBSEO, as the precedence constraints do not have this
simple structure.

It is also interesting to point out than an alternative way
to approach the issue of exposed ore reserves is to use the
standard formulation but with shorter time periods, so there
is more control of the production at each moment in time.
This means duplicating or triplicating the number of periods
in which to handle ore reserve, and therefore implies that the
total number of variables grows in the same order of
magnitude, and in addition, this may produce a large number
of requirements in terms of ore at every period, leading to
infeasibilities. 

In this section a description of the application of OPBSEO to
some instances is provided. The aim of these experiments is
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Table I

B Set of blocks

A Set of precedence arcs

T Time horizon (number of periods)

bi
t Discounted profit resulting from the mining of block i

at period t

pi
t Cost of mining and processing block i at period t

mi
t Cost of mining block i at period t

Mt Maximum mining capacity for period t

Pt Maximum processing capacity for period t

Ft Minimum exposed ore reserve required at period t
(as metal)

i Tonnage of block i

i Ore grade of block i

cg Cut-off grade to define minimum exposed ore 
reserve requirement
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essentially to evaluate the performance of the proposed model
and compare it with the equivalent IP model, but without
exposed ore reserve requirements in terms of extraction
geometries, exposed mineralization, and (to a lesser extent)
NPV. In the first subsection the implementation of the model
on a hypothetical two-dimensional orebody is described.
Then two more realistic three-dimensional instances (block
models and parameters) are presented, and finally the
experiments on these instances as case studies are described
and compared.  

The instance considered here is a two-dimensional orebody
(a slice of a three-dimensional deposit) that requires mining
with a 45° slope angle. The block model contains 399 regular
blocks, each of which has attributes such as tonnage and
copper grade. Economic values associated with the extraction
and destination (processing plant or waste dump) of the
blocks are also given. The model decides the best destination
for each block and defines exposed mineralization for each
period while maximizing the NPV of the entire project. The
planning horizon for this hypothetical case study is 3 years
(considering annual periods) and the discount rate is set to
10%. Mining and processing capacities are fixed to a
maximum of 4 Mt and 2.8 Mt per year, respectively. For each
period, a minimum of 12 kt of exposed ore reserve is required
and the minimum ore grade for a block to be considered
exposed ore reserve is set to 0.3%.  

The schedule obtained is shown in Figure 1. We can
distinguish three important groups of blocks: unmined
blocks, which are represented by code 0 (white); blocks
mined in each period, encoded by numbers 1-2-3 (cyan,
yellow, and brown, respectively); and exposed blocks within
each period, in order to be mined and sent to processing at
the next period (orange). An important aspect to highlight
from the schedule is the geometry obtained at the bottom of
the pit per period, which is quite satisfactory in terms of
operational spaces.

The instances considered for this study were obtained from
Minelib (Espinoza et al., 2013), a publicly available library of
test problem instances for open pit mining problems, some of
which correspond to real-world mining projects, making it

very interesting for comparison. In our case, we used the
Newman1 and Marvin instances described below, because
they were more appropriate for our study in terms of the size
of the instances (as mentioned before, the resulting problem
is quite complex and required long computational times).  

The block model contains 1060 regular blocks. For each block
there are attributes such as rock type, tonnage, ore grade,
and economic values associated the destination of the blocks
(waste dump or processing plant). In this instance the wall
slope requirements are not given by an angle as usual, but to
remove a given block, five blocks above must be extracted.

Annual periods with a yearly discount rate equivalent to
an 8% are considered. The planning horizon is 6 years, but
capacities permit completing the exploitation in 3 years.
Mining and processing capacities are fixed to a maximum of
2 Mt and 1.1 Mt per year, respectively. For each period, a
minimum of 5 kt of exposed ore reserve is required (as metal,
calculated as tonnage multiplied by ore grade) to ensure
production in the first half of the period, and the minimum
grade for a block to be considered exposed ore reserve is set
to 0.3%.

This block model contains 53 271 blocks of 30 × 30 × 30 m,
but this can be reduced when blocks that are not accessible
are removed from the block model. The wall slope
requirements are given by a 45° slope angle and by using
seven levels of precedence above a given block. This deposit
contains two metals of interest, copper and gold, and for each
block there are attributes such as tonnage and grade. In order
to consider a single-element deposit instead of multi-element
one, we use a copper equivalent grade:

where EGcu is the copper equivalent grade, cu and au are the
copper and gold grades, Pcu and Pau are the copper and gold
prices, and Rcu and Rau are the copper and gold recoveries,
respectively. The model contains some economic parameters
that are used to obtain more realistic economic values for
each block. The block value was obtained according the
following expression:

where EVi is the economic value of block i and P is the price
of the element of interest. Coefficients Cs, Cm

ref, and Cp are the
selling, reference mining, and processing costs, respectively.
The term Cm

caf is the block mining cost adjustment factor
associated with the position (depth) of the block and f is an
appropriated unit conversion factor. R is the metallurgical
recovery, i is the equivalent ore grade, and i is the tonnage
of block i. We consider annual periods with a yearly discount
rate of 10%, and the planning horizon is 7 years. Mining and
processing capacities are fixed to a maximum of 60 Mt and
20 Mt per year, respectively. For each period, a minimum of
100 kt of exposed ore reserve (as metal) is required to ensure
the first 4 months of production, and the minimum grade in
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order to a block for be considered exposed ore reserve is set
to 0.25%. Table II summarizes the main economic and
technical parameters.

In this subsection further detail is provided about the
implementation of the exposed ore reserve model and other
strategy to compare them. In the following cases no
operational spatial constraints were considered. The following
cases were implemented:

� Open pit block scheduling model with exposed ore
reserve OPBSEO as detailed previously. 
This is the main experiment in the article. The objective
is to analyse the block schedule obtained in terms of
extraction geometry, exposed ore reserve, and NPV.
Newman1 and Marvin cases were implemented using
the parameters explained in the previous subsection. 

� Open pit block scheduling model without exposed
mineralization, that is, OPBSEO but without binary
variable yi

t and without constraints [6] and [7]. This
model is denoted as OPBS.

OPBS considers precedence constraints and limited
mining and processing capacities only. Newman1 and Marvin
instances were implemented using the parameters (if
corresponding) detailed in the previous subsection. The
comparison between OPBS and OPBSEO models is interesting
because it allows the evaluation of the insertion within the
same formulation of the exposed ore reserve concept.  

In order to implement cases (a) and (b), PuLP was used
(see Mitchell, 2009), which is a free open-source software
written in Python that allows optimization problems to be 
set and solved with different optimization engines. In our
case, we used GUROBI version 5.6.0 to solve the resulting 
IP models. Integer instances are solved up to a maximum 
5% gap.

In all cases the resolution of the instances was performed
on an Intel Core i5-3570 CPU machine with 16 GB running
Windows XP version 2003. This machine has one processor
with four cores, and is clocked at 3.4 GHz.

Our interest is to evaluate the introduction of a new model
with exposed ore reserve requirements, comparing the results
obtained from OPBSEO and OPBS models, in terms of
production plans, but also in terms of geometries and NPV.
The results and discussion for two case studies, named
Newman1 and Marvin, are presented.

The pits obtained when scheduling the Newman1 case are
shown in Figure 2, which presents XZ and YZ section views
for both schedules, OPBS (left) and OPBSEO (right). The
colours correspond to the periods at which the blocks are
extracted. There are three extraction periods (cyan, yellow,
and brown), unextracted blocks appear in dark blue.

First notice that this data-set has a very special shape. It
is not a ‘box full of blocks’, but it consists of different disjoint
parts. Also, the slopes at the borders are very steep. This is a
property of the data-set as available in Minelib, and has
nothing to do with the schedules. The most interesting

property regarding the obtained geometries is that those with
exposed ore reserve are better in terms of operational spaces
and regularity. They are closer to a worst case and therefore
suffer from fewer operational problems.

The production plans for the schedules are presented in
Table III, which contains the following information: period
indicates the year of the production, grade is the average
grade of processed blocks, ore tons and total tons are respec-
tively the processed and extracted material per period (in
tons). Finally, exposed tons is the material exposed in that
period and made available for the next period (in metal tons).
The production plans are similar and both saturate the
mining capacity, but the grades and exposed tonnages differ
significantly. Indeed, OPBSEO extracts 9% less ore tonnage,
but ensures that there is sufficient exposed ore for at least 6
months at the beginning of each period.

Regarding the NPVs (see Table IV), the block schedule
computed using OPBS extracts blocks with higher grades as
soon as possible, but OPBSEO has to deal with additional
constraints of exposed ore reserves, which forces it to delay
some high-grade blocks for future extraction. Still, the
difference in NPVs is only 4% in favour of OPBS. 

The pits obtained when scheduling the Marvin case are
presented in Figure 3, showing a YZ-section view and a
horizontal plane for both schedules, obtained from OPBS
(left) and OPBSEO (right). The colours correspond to the
periods at which the blocks are extracted.

First of all, there is a large difference between the
extraction geometries; it is worth noting that for this case, the
pits obtained using the OPBSEO model are more operational
than those obtained using OPBS.

Both models aim to maximize NPV and therefore to
extract blocks with higher grades as soon as possible, but
OPBSEO must ensure a minimum exposed ore reserve at the
beginning of each period, allowing a large horizontal surface
in the bottom of each pit. 

Production plans obtained from models OPBS and
OPBSEO are shown in Table V, where he impact of the
exposed ore reserve constraints appears in terms of ore and
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Table II

Copper price 3.02 US$/lb
Gold price 1132 US$/oz
Copper recovery 0.88 -
Gold recovery 0.60 -
Selling cost 0.60 US$/lb
Processing cost 10 US$/ton
Reference mining cost 1.8 US$/ton
Increment mining cost 0.002 US$/ton • m
Slope angle 45 degrees
Time horizon 7 Years
Discount rate 0.10 -
Mining capacity 60 000 000 t/a
Processing capacity 20 000 000 t/a
Minimum exposed ore (as metal) 100 000 t/a
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total tonnages, grade profile over time, and exposed tonnage
(as metal) per period, as in Table III. It is interesting to
observe that there are no differences in terms of ore tonnage,
but the OPBSEO model reported 11% less total tonnage than
the solution obtained using the OPBS model (recall that in
this case the model must ensure at least 4 months’ supply of
exposed ore at the beginning of each period), but about the
same amount of ore (the difference is less than 0.1%). 

Table VI shows the discounted values for both models.
The results are similar to the other example: OPBS is able to
provide a schedule with higher value by extracting high-
grade blocks as soon as possible, while OPBSEO delays some
of these blocks to ensure minimum exposed ore reserves in
order to keep ore available for future exposure. The difference
in NPVs in this case is about 5%, but we observe that the
solutions are optimal only within the time horizon considered
here. Indeed, the production plans suggest that additional
periods may lead to different solutions and 
higher NPVs.

In this paper, the concept of exposed ore reserve is introduced
in a mathematical model and defined at a given period as the

set of blocks for which all its preceding blocks have been
already extracted, but not the block itself. A new integer
programming model, named OPBSEO, to generate block
schedules under exposed ore reserve requirements has been
presented and tested in a set of standard instances.

First, the model was tested on a two-dimensional
instance to validate the solutions that it provided, with
satisfactory results. The model was then tested on two
realistic instances, providing comparisons between the
solutions from the OPBSEO model and the equivalent one,
but without exposed ore requirement, named OPBS. The
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Table III

1 1.77 785 471 1 999 937 475 1.44 729 864 1 998 338 5 005
2 1.48 1 099 749 1 973 150 424 1.74 903 975 1 999 944 5 014
3 1.70 1 094 495 1 620 287 - 1.77 1 099 498 1 541 290 -
Total 2 979 715 5 593 374 899 2 733 337 5 539 572 10 019

Table IV

1 7 616 322 4 086 113
2 6 655 602 7 767 913
3 7 987 006 9 436 000
Total NPV 22 258 930 21 290 026



solutions obtained with the aid of the proposed model are
consistent with those obtained by other optimization models
for mine planning that do not have exposed ore reserve
requirements in their formulation. 

The new model, compared with  similar optimization
models without the exposed ore reserve requirement, suffers
from a small reduction in the value of the solution due to the
additional requirements included. However, the geometrical
nature of the new solutions obtained in the tests performed
exhibits better operational spaces and regularity. While it is
not possible to generalize this property of the solutions to
other instances, it is believed that the model has the potential
to produce results that are better suited to the type of
operational spacing needed in mining operations, thus adding
a valuable alternative to the current tools used by mine
planners. Besides, this new requirement ensures the quantity
of metal produced from the beginning of each period in the
schedule, making compliance with medium- and short-term
mine planning stages easier.  

A potential research path to pursue in the future relates
to the definition of the exposed ore reserve. In the present
version we only consider a minimum amount of metal readily
available at the beginning of every period, but other metal
components could also be considered, expressed in terms of
tonnage, grades, or economic value; or this requirement could
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Table V

1 1.03 19 994 670 59 989 965 0 0.72 19 999 638 59 891 451 100 134
2 1.14 19 971 010 49 490 568 359 0.92 19 966 980 45 939 352 100 055
3 1.05 19 980 880 40 052 602 1 462 1.14 19 985 370 39 798 429 100 026
4 1.02 19 985 340 44 985 249 4 719 1.09 19 987 840 42 930 865 100 099
5 0.97 19 999 920 49 166 274 7 569 1.14 19 990 580 52 232 416 100 362
6 0.92 19 999 290 52 191 380 6 254 1.14 19 992 410 46 784 718 100 159
7 0.88 15 535 850 46 060 989 - 1.47 15 516 740 16 587 549 -
Total 135 466 960 341 937 027 20 363 135 439 558 304 164 781 600 835

Table VI

1 582 605 720 329 142 653
2 629 312 551 463 833 658
3 523 828 567 586 467 752
4 444 162 523 494 561 419
5 371 571 924 398 567 122
6 304 876 581 339 961 783
7 191 140 416 273 394 271
Total NPV 3 047 498 282 2 885 928 658
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be relaxed, for example, to consider blocks at a maximum
distance from surface that is larger than only one bench.
Other important questions for future study relate to assessing
the suitability of the model for different types of deposits and
mining operations, and which conditions are required in
order to produce solutions with the geometrical properties
that have been observed in the present study.

The proposed model exhibits great potential in terms of
applicability, but further algorithmic research is required to
improve the computational execution time in the case of very
large instances. However, it is important to mention here that
the present paper has focused on introducing the concept and
presenting the associated model. As the results obtained in
the instances tested are encouraging enough to warrant
additional research, it is believed that the first step taken in
this study will serve as a solid foundation for new ways of
thinking about mine planning, to the benefit of industry and
practitioners. 
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Modelamiento Matemático, Universidad de Chile; and Basal
Project FB0809 AMTC-Advanced Mining Technology Center,
Universidad de Chile.

AMANKWAH, H., LARSSON, T. and TEXTORIUS, B. 2014. A maximum flow

formulation of a multi-period open-pit mining problem. Operational
Research, vol. 14, no. 1. pp. 1–10.

BIENSTOCK, D. and ZUCKERBERG, M. 2010. Solving LP relaxations of large-scale

precedence constrained problems. Operational Research, vol. 14. pp. 1–14.

BLEY, A., BOLAND, N., FRICKE, C., and FROYLAND, G. 2010. A strengthened

formulation and cutting planes for the open-pit mine production

scheduling problem. Computers and Operations Research, vol. 37, no. 9.

pp. 1641–1647.

BOLAND, N., DUMITRESCU, I., FROYLAND, G., and GLEIXNER, A. 2009. LP-based

disaggregation approaches to solving the open-pit mining production

scheduling problem with block processing selectivity. Computers and
Operations Research, vol. 36, no. 4. pp. 1064–1089.

CACCETTA, L. 2007. Application of optimisation techniques in open-pit mining.

Handbook of Operations Research in Natural Resources. Weintraub A.,

Romero, C., Bjørndal, T., and Epstein, R. (eds.). Springer, New York.

CACCETTA, L. and HILL, S. 2003. An application of branch and cut to open-pit

mine scheduling. Journal of Global Optimization, vol. 27. pp. 349–365.

CHICOISNE, R., ESPINOZA, D., GOYCOOLEA, M., MORENO, E., and RUBIO. E. 2012. A

new algorithm for the open-pit mine production scheduling problem.

Operations Research, vol. 60, no. 3. pp. 517–528.

CULLENBINE, C., WOOD, R.K., and NEWMAN, A. 2011. A sliding time window

heuristic for open-pit mine block sequencing. Optimization Letters, vol. 5,

no. 3. pp. 365–377.

DAGDELEN, K. and JOHNSON, T. 1986. Optimum open-pit mine production

scheduling by lagrangian parameterization. Proceedings of the 19th
International Symposium on Application of Computers and Operations

Research in the Mineral Industry (APCOM). Ramani, R.V. (ed.). SME,

Littleton, CO. pp. 127–141,

DAGDELEN, K. and AKAIKE, A. 1999. A strategic production scheduling method

for an open-pit mine. Proceedings of the 28th International Symposium on
Application of Computers and Operations Research in the Mineral
Industry (APCOM). Proud, J., Dardano, C., and Francisco, M. (eds.). SME,

Littleton, CO. pp. 729–738.

ESPINOZA, D., GOYCOOLEA, M., MORENO, E., and NEWMAN, A. 2013. Minelib: a

library of open-pit mining problems. Annals of Operations Research, 

vol. 206, no. 1. pp. 93–114.

FRICKE, C. 2006. Applications of integer programming in open-pit mining. PhD

thesis, Department of Mathematics and Statistics, University of

Melbourne, Melbourne.

GAUPP, M. 2008. Methods for improving the tractability of the block sequencing

problem for open-pit mining. PhD thesis, Colorado School of Mines,

Golden, CO.

HOCHBAUM, D. and CHEN, A. 2000. Performance analysis and best implemen-

tation of old and new algorithms for the open-pit mining problem.

Operations Research, vol. 48. pp. 894–914.

HUSTRULID, W. and KUCHTA, K. 2006. Open-Pit Mine Planning and Design (2nd

edn). Taylor and Francis, London.

JÉLVEZ, E., MORALES, N., NANCEL-PENARD, P., PEYPOUQUET, J., and REYES, P. 2016.

Aggregation heuristic tor the open-pit block scheduling problem. European
Journal of Operational Research, vol. 49, no. 3, pp. 1169–1177.

JOHNSON, T.B. 1968. Optimum open-pit mine production scheduling. PhD thesis,

Operations Research Department, University of California, Berkeley.

JOHNSON, T.B. 1969. Optimum open-pit production scheduling. A Decade of
Digital Computing in the Mineral Industry. Weiss, A. (ed.). AIME, New

York. pp. 539–562.

LAMBERT, W.B. and NEWMAN, A. 2013. Tailored lagrangian relaxation for the

open.pit block sequencing problem. Annals of Operations Research, 

vol. 222, no. 1. pp. 1–20.

LERCHS, H. and GROSSMANN, I. 1965. Optimum design for open pit mines. CIM
Bulletin, vol. 58. pp. 47–54.

MITCHELL, S. 2009. An introduction to pulp for Python programmers. The
Python Papers Monograph, vol. 1.

PICARD, J. 1976. Maximal closure of a graph and applications to combinatorial

problems. Management Science, vol. 22, no. 11. pp. 1268–1272.

RAMAZAN, S., DAGDELEN, K., and JOHNSON, T. 2005. Fundamental tree algorithm

in optimizing production scheduling for open-pit mine design. Mining
Technology, vol. 114, no. 1. pp. 45–54.

TABESH, M. and ASKARI-NASAB, H. 2011. Two-stage clustering algorithm for

block aggregation in open pit mines. Mining Technology, vol. 120, no. 3.

pp. 158–169.

ZHANG, M. 2006. Combining genetic algorithms and topological sort to optimize

open-pit mine plans. Proceedings of the 15th International Symposium on
Mine Planning and Equipment Selection (MPES). Cardu, M., Ciccu, R.,

Lovera, E., and Michelotti, E. (eds.). FIORDO S.r.l. Torino, Italy. 

pp. 1234–1239.     �

�

662 VOLUME 116     



Mine planning is defined as the process of
mining engineering that transforms the
mineral resource into the best productive
business. A central point of this process is the
production plan, which is a bankable
document that sets the production goals over
the planning horizon (short, medium, or long)
(Rubio, 2006). In turn, this production plan is
supported by a production scheduling that
indicates which part of the resource must be
extracted in each period and what to do with
these portions of the resource in order to reach
the production goals indicated in the
production plan.

In order to deliver a feasible production
scheduling, the mine planning process must
deal with complex issues like operational and
metallurgical limitations, slope angles, stock
handling, design, mining system selection,
fleet considerations, etc. This means that it is
not possible to construct the production
scheduling in a single step considering all the
elements involved, but that the process is split
into different stages, which depending on the
time horizon and level of decision, rely on

different levels of information and must
comply with different levels of precision and
detail.

Among the relevant aspects that are
traditionally left out by optimization tools for
mine planning, it is possible to mention
(Espinoza et al., 2013): optimal mine design
of phases, roads, and operational space;
equipment considerations like location,
capabilities, and optimal fleet size; optimal
processing capabilities; inventory
management; and stochastic data. As the
planning horizon decreases from long-term to
shorter periods, the length of this list increases
as it must comply with additional consider-
ations of more detailed decision levels (see, for
example, Newman et al., (2010) for a more
detailed presentation of the different decisions
levels).

One example of the increasing complexity
of the information and planning constraints
that we address in the model used in this
study is that long-term production scheduling
is constructed without taking into account the
variability of the ore content within a phase
bench. Indeed, in long-term mine planning,
large portions of material (called bench
phases, see Figure 1 for a graphical example)
are scheduled assuming a homogeneous distri-
bution of materials within the bench. Indeed,
the actual attributes of the rock (like grades or
hardness) change within the bench and
therefore, the availability of ore for processing
is a function of the schedule within the bench,
which in turn is limited, for example, by the
location of the ramps and the type of
equipment used in the mine.

Increasing the value and feasibility of
open pit plans by integrating the mining
system into the planning process
by N. Morales* and P. Reyes†

We present a model that allows us to consider mine production scheduling
coupled with the mining system at different levels of detail: from the
standard origin-destination approach to a network considering different
processing paths. Each of these is characterized by variable costs,
capacities, and geometallurgical constraints.

We then apply this model to a real mine, comparing the results with
those obtained by traditional methodology: the destination of materials
defined a priori, before computing the schedules, using standard criteria
like cut-off grades.

As expected, using optimization to schedule and define dynamically
the best processing alternatives shows a big opportunity for potential
value improvement. However, the main result is that using only origin-
destination and fixed cut-off grades may produce schedules that are not
feasible when the actual constraints of the mining system are taken into
account. Therefore, it is essential to include the considerations proposed in
the planning process.
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A result of the example described above is that
constructing medium- and short- term production scheduling
can be very difficult, because the planner must comply with
production goals set in longer-term decisions which are based
on less restrictive constraints. Furthermore, there are very
few computational optimizing tools to aid the short-term
planner, so the process is a manual -trial-and- error
procedure with an important time investment that consists of
finding a feasible scheduling, leaving little room for
optimality in terms of recoverable metal, fleet utilization, and
reserves consumption among other items. Hence, at the end
of the day, the short-term plans are unfeasible (within the
parts of the mine scheduled for production) or the costs are
higher than the optimal.

The approach that we propose aims to advance the
solution of this and other issues related to short-term mine
planning. For this, we integrate considerations related to the
mine, but also elements related to the mining system
downstream.

The standard way of looking at the mining system from a
mine scheduling point of view can be illustrated as in Figure
2, in which material is evaluated in terms of the net profit
with regard to a certain process choice. For example, the
value of a block sent to the plant is different from the value
of the same block sent to the waste dump. In fact, in long-
term mine planning, this potential choice is reduced further
on by using cut-off grades. Indeed, the actual destination of a
block is chosen before scheduling simply by assuming that it
will be sent to the most profitable process (plant or waste).

In this paper, we develop a different approach that aims
for a more balanced (and hopefully more realistic) view of the
mining system. We understand the mine planning scheduling
from a pull perspective in which schedules are developed to
maximize value and, therefore, must comply with consider-
ations in terms of capacities, recoveries, and ultimately value.

Our approach considers that there are many processing
alternatives or processing paths. For example, as presented in
Figure 3, an extracted block can go straight to a waste dump,
or it can be sent to either of the two available crushers. In the
latter case, the possibilities depend on the transportation
system (whether the connection exists and its capacity) as
well as the processing limitations of each facility (type of
material, grades, etc).

The modelling we propose assigns material coming from
the mine to the possible processing path. Depending on this
decision, the corresponding material will have a certain
economic value, but it will use certain processing resources
like crushing time or transportation along the processing
path.

For example, if one portion of material from a mine is
assigned the highlighted path in Figure 3, then its actual
economic value will be:

V =   –MiningCost − TranspCostMine1ToCrusher1 −
CrushingCost1
−TranspCostCrusher1ToMill1 − MillingCost1
−TranspCostMill1ToPlant2 − ProcessingCost
Plant2 + IncomePlant2.

Certainly, the economic value in this case is different from
that for any other path, and thus the optimal value will
depend on the processing path choices.

Notice that the selection of the best processing path is not
only dependent on the material itself, as assumed when using
cut-offs to make such decisions. Indeed, the best processing
path changes at each moment depending on the available
processing capacities or the blending properties that impact
the recovery at each plant. To account for these elements, we
consider that:

� At each node in the mining system, a certain (possibly
limited) number of resources are used. In this case, the
resource is shared by all the paths going through the
node. For example, in Figure 3 the total milling capacity
at Mill1 is shared by the material coming from either
Crusher1 or Crusher2

� At each node in the mining system there may be
blending constraints that limit, for example, the
maximum content of certain pollutant. This constraint
is applicable mostly at the plant nodes.

Mine considerations are among the most studied in the
literature on open pit scheduling. They refer to the techno-

�

664 VOLUME 116     



logical aspects needed to comply with a certain slope angle
required for the pit. Furthermore, they also refer to overall
operation size, which translates into mining capacities.

In terms of the mine, we consider that the material is
discretized into mining reserve units (MRUs) (we use the
term reserve as the MRUs are already scheduled for
extraction in the long-term plans). Each MRU may
correspond to a block in the original block model or it can
represent other structures, either larger (drilling polygons) or
smaller (shovel buckets) ones. This depends on long-term
schedules. Notice that the actual set of available MRUs for
scheduling is an input for the model.

For each MRU, there are some attributes that must be
considered in the mining system constraints. For example,
nodes could have capacity constraints. In that case, those
MRUs will have a tonnage attribute stating the maximum
tonnage allowed.

MRUs are also related by precedences referred to the
slope angle or accessibility constraints. Slope precedence
constraints relate to the fact that in an open pit mine there is
a minimum angle to ensure the stability of the pit walls,
hence it is not possible to excavate vertically as much as
desired. Accessibility precedences relate to the fact that in the
short term, there are already ramps constructed, and
extraction will start in those ramps and will be propagated
through the bench. This is, indeed, overlooked in long-term
planning because, as explained previously, scheduling is
done at the bench-phase level of aggregation.

The strategic decision of determining the optimum final pit
has been effectively treated using the Lerchs-Grossman
algorithm (Lerchs and Grossman, 1965) or the Picard flow
networks method (Picard, 1976; Cacceta and Giannini, 1986).
These methods are based on a block model that characterizes
a mineralized body only in terms of the economic value of
each block and the slope precedence constraints. As a result,
these models are very aggregated and ignore key elements
like mining and processing capacities or the possibility of
selecting the optimal block destination in a dynamic setting.

The problem of generating a production schedule in open
pit mines has also been studied at different levels of detail.
For example, Johnson (1968) introduces a mixed integer
problem for scheduling under capacity, slope angle, and
grade constraints. The mathematical formulation shares
several elements with ours (processing and mining capacity,
grade control, multiple periods and destinations, slope
controls), but the focus is quite different. Johnson (1968)
focuses on strategic planning and introducing the
mathematical formulation. We are more interested in the
impact of more complex models on the planning results.

The problem introduced by Johnson (1968) and
variations of that method have been widely studied, because
it has proven to be very difficult to solve in practical cases
due to the size of the problem. For example, some papers that
provide techniques to speed the resolution of the model are
those by Cacceta and Giannini (1986, 1988), and more
recently Gaupp (2008), Cullenbine, Wood, and Newman
(2011), Bienstock and Zuckerberg (2010), Chicoisne et al.
(2012); and others that propose heuristics are Cacceta,

Kelsey, and Giannini (1998), Gershon (1983, 1987), or
Dagdelen and Johnson (1986) and Whittle Programming
(1998)  for parametric methods. Nevertheless, all these
studies have a different focus than ours, as they concentrate
on the resolution of the problem.

Works that are closer to ours are Kumral (2012, 2015),
which schedule blocks under slope constraints and capacity
constraints (with upper and lower bounds) and where the
model decides the final destination of the blocks. Kumral
(2014) also considers bounds on the grades sent to the plant
and uses conditional simulations to incorporate ore grade
variability and compares the results using a priori cut-off
grades (which is the standard procedure in mine planning)
rather than allowing the model to decide such destinations.
Kumral (2015) includes constraints to reduce production
variation between consecutive periods. Both papers are,
nevertheless, oriented to long-term scheduling, do not
consider the short-term accessibility constraints included in
this work, and focus on block destination and not alternative
processing paths.

Regarding open pit block scheduling for the short term,
Smith (1988) poses a mixed integer programming model that
is responsible for block extraction scheduling in the short
term, with the objective of maximizing the production of the
material of interest, subject to certain constrains on blending,
while ensuring a simple scheme of horizontal and vertical
constrains without considering the presence of stocks. In the
same line, Morales and Rubio (2010) present a model to
maximize the production of metal in a copper mine, subject to
certain geometallurgical constraints. Eizavy and Askari-
Nasab (2012) present aggregation techniques to help solving
a mixed integer model for short-term open pit mining. The
model considered there includes, as ours does, stocks,
blending, and capacity constraints, but with fixed block
destinations and directional constraints in bench accessi-
bility, which is very different from our approach.

In this section we present the main notation and the
mathematical formulation of the optimization model used in
this work. A brief introduction to the mathematical model
follows, and then a discussion about its use, limits, and
potential extensions for real applications.

To begin, we consider a set of MRUs B = {1, 2, . . . , N}. Time
is divided in T time periods, given in advance, hence the
production is scheduled in periods t = 1, 2, . . . , T.
Nevertheless, we do not assume that the periods have the
same length.

There exists a set of processing paths D and we denote by
d D the potential processing paths in the mining system. In
this way, the economic value perceived if MRU i is sent
through processing path d D is denoted as v(i, d).

While the case study is short-term, we still consider that
value of money over time is adjusted using an discount factor
(t) so that (t) is the present value of a dollar perceived

during time period t. For example, if the time periods had the
same length (a year) and the yearly discount rate is , then
we would have that (t) = (1+ )t

1    .
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We consider two sets of attributes A and Ã. A refers to
the block attributes that participate in capacity constraints
like tonnage or processing times. Ã relates to the attributes
that are averaged, like grades or pollutant contents. The value
of attribute a A (or a Ã) in MRU i is denoted by g(i, a).

We model the precedence constraints as a set of arcs E
B × B, where (i, j) E means that MRU j has to be extracted
before MRU i. (We provide extensive examples of this in the
case study.)

We consider a set of pairs N = {(a , D )} =1
n where a A

and D D. For any (a, D) N, and for each t = 1, 2, . . . , T
we are given a minimum capacity (thus a demand) M−(a, D,
t) R {− } and and maximum capacity M+(a, D, t) R 
{ }. Similarly, we have a second set of pairs N~ = {(a , D )}

=1
n~

where a Ã and D D. For any (a, D) N~, and for each t =
1, 2, . . . , T we are given minimum and maximum average
allowed values B−(a, D, t) R {− } and B+(a, D, t) R 
{ }, respectively. For simplicity, we assume that attribute ton
(i), the tonnage of MRU i, is the average of the weights.
Extending the model to arbitrary weights is trivial.

The idea of having lower and upper bounds defined on
sets of processing paths instead of bounds to each of the
processing paths is that, as mentioned in the Introduction,
the associated constraints aim to model limits at the nodes
and, therefore, they will apply over the set of paths that go
through them.

The model also considers a set S of stocks. Each stock can
be seen as a MRU in the sense that all attributes a A have
to be defined and we denote h(s, a) the value of the attribute
a A for one ton of stock s S. We define h(s, ã)
analogously for ã Ã. Finally, we consider u(s, d) to be the
value of sending one ton of stock s through processing path 
d D.

Note that the above definitions of value and attributes of
stocks are per ton of material. This is because while stocks
are treated similarly to MRUs, they are also different as they
are not subject to precedence constrains. Moreover, it is
possible to extract fractions of them and to send different
fractions through different processing paths.

Given the above, in this model we use stocks only as
possible sources of mineral, and not possible destinations.
This will be discussed further.

A summary of this notation can be found in Table I

This subsection introduces the decision variables, the
objective function, and the constraints expressed in
mathematical terms.

The decision variables are related to the decision whether
to mine a given MRU, when to do so, and what processing
path is chosen for that MRU; and similarly for material at the
stockpiles. The constraints considered are those described
above: capacity, blending, and precedence. Other constraints
include scheduling constraints and constraints related to the
nature of the variables.

We consider, for each MRU i B, processing path d D, and
period t = 1, 2, . . . , T , the variable

[1]

Similarly, for processing path d D, period t = 1, 2, . . . ,
T and stock s S:

[2]

The goal function considers the overall gain obtained from
extracting and processing the MRUs, discounted over the
planning horizon:

[3]

Finite mass—The following constraint simply ensures that
each MRU is processed at most once and sent through at
most one processing path. For all MRU i B:

[4]

Similarly, for each stock s S.

[5]

where ton(i) is the weight (in tonnage) of stock s S.
Precedence constraints—As described before, these
constraints are encoded in sets of arcs. They read, for each 
t = 1, 2, . . . , T and for (i, j) E :

�
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Table I

B Set of MRUs

T Number of periods

A Set of capacity attributes

A
~

Set of blending attributes

D Set of processing paths

S Set of stocks

E Set of precedence arcs

i, j MRUs, elements of B

t Time period, t {1, 2, . . . , T}

v(i, d) Economic value perceived if processing path d D is
chosen for MRU i B

g(i, a) Value of attribute a A (or Ã) of MRU i B

M −(a, D, t) Minimum and maximum capacities for attribute for 
M+(a, D, t) processing path d D D at period t {1, 2, . . . , T}

B−(a, D, t) Minimum and maximum average values for attribute 
B+(a, D, t) for processing paths d D D at period t {1, 2, . . . , T}

(t) Update factor for period t {1, 2, . . . , T}

u(s, d) Economic value perceived if one ton of stock s S is sent
through processing path d D

h(s, a) Value of attribute a A (or Ã) of stock s S



[6]

Capacity—For any time period t = 1, . . . , T and (a, D) N ,
we have that:

[7]

Blending—For any time period t = 1, . . . , T and (a, D) N
~

,
we have:

[8]

In the actual formulation of the problem, we transform
these constraints to their equivalent linear representation.

Scheduling constraints—We also consider several constraints
that allow fixing or limiting the schedule of the MRUs. This is
useful, for example, to construct heuristics for resolution of
the problem or to compare the solutions obtained with other
approaches (see later for examples). For this, we consider for
each MRU i, time periods −(i), +(i)  {1, 2, . . . , T}

where MRU i cannot be extracted before −(u) and has to be
extracted by period +(u).

These constraints read:

[9]
and

[10]

The above formulation can be used, for example, to impose
capacity or blending constraints that apply only to a certain
set B B of MRUs. For this, it suffices to create an attribute ā
such that g(i, ā) = 0 if MRU i / B. In this way, the MRUs
outside B do not participate in the capacity or blending
constraints. An example of this is the simulating the
assignment of loading equipment to certain parts of the mine
(see below for more details). The same technique can be
used, for example, to impose capacities on the stocks.

Similarly to the example above, by creating dummy
attributes, it is possible to place a restriction such that MRUs
in a given set B B (and/or from given stocks) are not sent
through a certain processing path d D.

Using the above two techniques it is possible preset the
processing paths for certain MRUs or, for example, to fix cut-
off grades for a given process path, or to force the condition
that the material of a given stock follows some specific path.

Precedence constraints can be used, for example, to model

bench-by-bench extraction. This means that, within each
phase, it is not possible to start the extraction of a lower
bench unless the one immediately overlying it has been
completely mined. For this, it suffices to mark as
predecessors all the MRUs located in the bench phase
immediately above a given one.

Another type of constraint that can be modelled using
precedence constraints is related to the minimum/maximum
distance (in benches) that must/can exists between two
contiguous phases in the mine. For example, if we consider a
minimum lead of three benches between hypothetical phases
1 and 2, this can be represented as imposing the requirement
that MRUs in bench 1 of phase 2 are predecessors of MRUs
in bench 4 of phase 1.

The model presented does not consider the capacities of the
shovels or transportation fleet explicitly. Therefore, it cannot
be used, in a direct manner, to optimize the assignment of
loading equipment to different sectors of the mine over time.
However, assignments of loading equipment can be modelled
as capacities to specific parts of the mine or time periods (as
described previously). Conversely, given a certain assignment
of the loading equipment, it is possible to model it by
considering capacities in specific parts of the mine, at specific
time periods. This approach allows us to use the model to
optimize loading fleet assignments by looking at different
potential scenarios.

In general, it is difficult to model stocks, because the
attributes of the stocks (grades, tonnage) change with the
schedule being computed. For example, one possible (but
extreme) model consists of assuming that the grade of the
stock is the average grade of its current content. This is
highly nonlinear assumption, and thus difficult to solve.
Even worse, it is not realistic, because mixing is not
homogeneous, thus the stock ends up with layers of different
grade.

In the case of the model proposed in this paper it is
possible to consider stocks as an input, as described before,
but also as a possible destination for the MRUs. The actual
scheduled process could then be split into several small
stages: no mixing in the stocks occurs for a number of
periods, then the stocks are updated accordingly to the
material sent to them, and the scheduling process continues.

An advantage of using a mathematical formulation of the
problem is the fact that the objective function is very flexible.
For example, it suffices to set (t) = 1 in case of
undiscounted cash flows. Moreover, the economic value could
refer only to costs that need to be minimized. Further on,
considering the fact that different processing paths may lead
to different metallurgical recoveries, it allows consideration of
the case of maximizing the net mineral production.

Depending on the choice of variables, it is possible to write
equivalent formulations of the problem above that may be
better suited for computational purposes. For example, it is
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possible to use a by-formulation of the variables that allows
the use of efficient solving schemes based on relaxation of
certain constraints. A more detailed discussion on these
topics can be found in in Espinoza et al. (2013).

In this section we introduce the case study used for applying
the model described in the previous sections, as well as the
experiments that were carried out.

For the case study, and in order to keep actual data
confidential, we show only the information that is relevant
for presenting the results. We have also normalized values
like production tonnage, as described later.

The case study is of a porphyry copper mining complex
consisting of two open pits or sub-mines, Mine1 and Mine2.
The actual mining system consists of several crushers
(including some in-pit), conveyor belts, intermediate
stockpiles, and uses trucks for transportation. There are three
different final processes, in some cases with more than one
location each. Each block has more than 20 different
processing paths.

All the alternatives mentioned previously are included in
the modelling of the problem and its resolution, but for the
sake of simplicity and to keep information confidential, we
report for an aggregated system as shown in Figure 4. Note
that standard planning procedures work at this level of
aggregation, therefore it is also useful for comparison
purposes.

In our case study, the most profitable plant is Plant1, but
it is also the one with more geometallurgical constraints.
Plant2 and Plant3 have lower mineral recoveries and take
longer to process the ore. Indeed, although no discount rate is
applied between different periods in the planning, the
economic values of MRUs sent to Plant2 and Plant3 are
penalized according to the time required to produce the final
product.

The planning horizon consists of a trimester, split into 12
periods with different lengths (from 4 days to 11 days). See,
for example, Table II for details.

The capacity and blending constraints that affect the
system are discussed below.

Capacity constraints are summarized in Table II. We are given
three different mining capacities regarding the transportation

limits: one upper bound for each mine (Mine1 and Mine2)
and one for the entire mining complex. It should be noted
that the joint capacity of both pits is larger than the global
capacity of the mine, which allows some flexibility in the
process.

The case study included only one geometallurgical constraint,
on Plant1, referring to a minimum Cu/Fe ratio of 0.5 for
material fed to that plant in order to guarantee the efficiency
of the process.

In terms of precedence constraints, we consider slope
constraints, accessibility constraints at each bench, and
bench-by-bench constraints.

These constraints are given by a certain slope angle and a
tolerance height z. Given two MRUs i, j, we consider that j is
a predecessor of i if the mass centre of j lies in the upper cone
with the vertex at the mass centre of i and angle , and the
vertical distance between these mass centres is at most z.
For example, in Figure 5a, MRU j is a predecessor of MRU i
but jt is not, because although it is within the cone of angle ,
it is farther than z above the mass centre of i.

Notice that the threshold z is used only to limit the
number of arcs created in this way. Using this parameter is
very common and does not mean that slope constraints are
violated.

As seen in Figure 5, due to transitivity, the MRU jt is a
predecessor of i even though the arc itself is not explicitly 
in E.

At each bench phase we consider at least one special MRU i0
representing the location of a ramp (see Figure 5b). Then,
from this MRU i0, we compute the shortest Euclidean path
that goes through MRUs in that bench phase, and add the

�
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Table II

1 6 35 36 59 12 6 17
2 7 41 42 64 10 3 13
3 7 41 42 69 12 5 17
4 11 64 66 100 20 10 30
5 10 58 60 92 20 10 29
6 7 41 42 63 14 3 17
7 7 41 42 70 14 6 20
8 4 23 24 44 9 4 12
9 10 58 60 94 20 6 26
10 7 41 42 67 14 5 18
11 7 41 42 62 15 7 21
12 7 41 42 66 14 7 21



precedence constraints accordingly. This allows us to
guarantee that extraction within a bench phase (a) is
propagated from the ramps, and (b) remains always
continuous.

We also use precedence constraints to ensure that the
extraction of a bench phase occurs only when the overlying
bench has already been extracted. For this, we include
precedence constraints between the MRUs of the lower 
bench and the MRUs at the top, as explained previously (see
Figure 5c).

Notice that as these constraints relate only MRUs in the
same phase, they cannot substitute slope precedences, which
may affect MRUs from different phases.

The experiments generate production schedules using the
optimization model and we compare them to the standard
approach. The results of the experiments allow us to compare
three scenarios: considering all the relevant short-term
constraints (MODEL), with the MRU destinations defined
beforehand (FIXED), or the standard approach (STD).

� STD corresponds to schedules and production plans
obtained using the standard methodology available at
the mine. In this case, the schedule is done at the
beginning. The method takes into account the
properties (attributes) of each individual MRU to define
its final destination (and not the processing path that
leads to it). Then the schedule is reviewed to satisfy
mining and blending constraints at the final destination

� FIXED is a special case in which we preset the final
destination of the MRU in the same way as in STD, and
then schedule using the same considerations about
mining and final destination capacities and blending
constraints. In this case, the schedule used is the
optimization model presented previously, but
collapsing all the processing paths. Therefore, there is a
unique aggregated path per destination, so as to mimic
the STD case (See Figure 2 as an example)

� MODEL represents the resulting schedules and plans of
our model. In this case, the economic values of the
MRUs are computed for each possible processing path,
and capacities and blending constraints are set at the
node levels in the complete mining system. The
scheduling process is carried out by the model, but also

including the scheduling and processing path decisions
as variables and not inputs.

As is mentioned in the description, schedules STD and
FIXED do not take into account the mining system, but only
the source and destination capacities. This is, indeed, the
standard procedure in most mines (including this case
study). This scheme is shown in Figure 2. In this case,
intermediate nodes (including their associated capacities and
constraints) are ignored in favour of an aggregated view that
takes into account only the source and potential destinations.

For this reason, it was important to see whether these
new elements introduced any changes in the resulting
schedules or the assignment of MRU destinations. For this,
we set two instances in which we considered the complete
mining system but forced the model to comply with the STD
and FIXED schedules, respectively. It was required to force
the extraction of the MRUs at the same time periods of the
corresponding schedules, and also to assign the actual
processing path and comply with all the constraints along
these paths.

In this section we present and discuss the results obtained
from the numerical experiments.

Firstly, we show the production plans obtained and some
general conclusions. Next, we present the main result of this
work, which shows the relevance of integrating the mining
system in the mine scheduling. Finally, we analyse the
differences in the production plans obtained.

The resulting production plans are presented in Figure 6, in
which we have de-aggregated the production for each
schedule in terms of the final destination of the material.

We recall that the planning periods have different
lengths, which translate into capacities that change from
period to period.

Overall, these production plans show that the results
obtained improve as more detail of the mining system is
considered. More specifically:

� As expected, production schedules originating from
optimization models tend to fulfill capacity constraints
easily. However, the STD plan fails to comply with the
mining tonnage constraint in some periods (see Figure
6, for example at periods 5 and 9). This is due to the
fact that STD doesn’t consider those constraints in the
model

� FIXED and MODEL schedules tend to make better use
of the processing capacities. For example, as there is no
imposed capacity constraint on Plant3, both schedules
make greater use of processing paths to that
destination

� As there are no lower bounds imposed in the total
mining tonnage, MODEL is able to produce higher
production plans with less material extraction.  For
example, in periods 4 and 5 the total mined tonnage
(stocks included) is about 85% of total capacity.

The economic values of the three schedules are presented in
Table III, normalized by the value obtained using the
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standard methodology. The numbers presented here must be
regarded only as a reference because, as discussed later,
there are several considerations to take into account.

The scheduling FIXED (fixed destinations) results in a
plan with value 44% higher than the traditional methodology
(STD). Moreover, if we consider the destinations as part of
the decision process (MODEL), the value is 14% higher than
FIXED. In total, we obtain an increase of 58% with respect to
STD.

The increase in value using optimization models for
scheduling is expected and well documented in many case
studies (see, for example, Caccetta and Giannini, 1988;
Chicoisne et al., 2012). The increase due to selecting the
optimal destination is also expected (see, for example,
Kumral, 2013). Using an optimization model tends to
produce superior results compared with manual or semi-
automated procedures, within the corresponding model.
Indeed, it is very important to note that these increases in
value are not always reflected, because there are operational
constraints not considered in the model. In our case it is
important to take into account the following:

� STD is the only scheduling considered that satisfies the
requirements of the planning procedure. Accordingly, it
is the more realistic plan. Recall that STD considers
only an aggregated level of constraints (for example, as
in Figure 2) and therefore the model has less
constraints than the corresponding MODEL version (as
in Figure 4)

� Conversely, while FIXED and MODEL can be seen as
good guides for constructing an operational plan, these
models do not take into account all the complexities of
a scheduling. Therefore, their economic values tend to
be over-optimistic. Previous experiences comparing

results from STD and FIXED show that about half of
the increase by using a scheduling algorithm is lost in
operational considerations (see Vargas, Morales, and
Rubio, 2009a, 2009b  for example).  Then, we could
expect a value increase of about 22%

� The economic value of MODEL has been evaluated
under the same parameters as STD and FIXED, that is,
at the origin/destination level using average costs.
Nevertheless, the actual optimization process used
costs to each processing path and the scheduling is
optimized accordingly.

Despite the above considerations, we conclude that there
is a huge potential value increase to be gained by means of
optimized schedules. Furthermore, this approach allows the
optimization model to choose the actual processing
alternative for the material.

It may be also tempting to conclude that the potential of
value optimization depends on scheduling instead of grade
optimization. This requires further analysis because, as
discussed in the following section, our experiments show that
STD and FIXED cannot be applied because they do not satisfy
the mining system constraints.

We would like to point out how feasible it is to let the model
choose the schedule. Thus, we set up an experiment taking
into account the following considerations:

1.  We used the same mining system modeling as in
MODEL, i.e., we included all the intermediate nodes
with the corresponding constraints

2.  We included an additional constraint indicating that
the extraction period of each MRU must be the same
as in STD and FIXED

3.  We allowed the model to schedule: the model chooses
the processing path (and therefore, the final
destination).

We expected that the model would produce a schedule
with different choices for the destinations and with higher
value. As it turned out, the resulting schedules were
unfeasible. This means that there was no possible
assignment of processing paths to the MRUs that would
comply with the capacities and blending constraints (at the
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Table III

STD 1.00
FIXED 1.44
MODEL 1.58



detailed mining system), but also respecting the schedule of
STD or FIXED. Therefore, we conclude that these schedules
were unfeasible from the very beginning.

We would like to stress that in the above experiment, the
decision of which processing paths to use (and therefore
destination) was made by the model. That is, even with this
added flexibility the problem still remained unfeasible.

In the following sections we provide some analysis to
illustrate how the schedules differ.

The changes in the production plans presented in the
previous section also suppose changes in the production
schedule. Table IV shows how the FIXED and MODEL
schedules make different decisions regarding the extraction
time for individual MRUs. The rows of the table are separated
for each mine and correspond to the following.

� Same—This corresponds to the MRUs that are
scheduled at the same time period as in the STD case

� Schedule Before—This corresponds to the fraction of
MRUs that were scheduled at a period strictly before
the period in the STD case

� Schedule After—This is the fraction of MRUs scheduled
for extraction at a period strictly after the period in STD

� New Schedule—This corresponds to MRUs that were
not scheduled for extraction in STD, but are now
scheduled at a certain period

� Not scheduled—This is the case of MRUs that were
originally scheduled for extraction by STD, but now
they are left unmined by the corresponding schedule.

We observe from Table IV that, overall, the scheduled
period remained the same in only about half of the cases, and
that the decision for MRUs that were mined in all schedules
is significant and accounts for about 20% of the tonnage.

What is more interesting is that there are very large
differences in terms of the MRU being mined in the
schedules. Indeed, if the destination decisions are the same
as in the STD case (which is the FIXED plan), there is a
difference of about 20% in terms of areas scheduled for
mining, but this difference increases to 30% when
destinations can be changed (MODEL case). 

In order to compare the results obtained using a predefined
destination for the MRUs with those obtained by letting the
model choose the best option, we compare the actual
destinations assigned to the MRUs in Table V.

Table V is constructed as follows. On each row we have
the tonnage that the solution for STD or FIXED sent to the
corresponding destination, but split according to the solution
for MODEL. For example, the row Plant1 corresponds to
material sent to Plant1 by FIXED. It indicates that 6.1% of the
total mineral content was sent by the fixed destination to the
plant (Total column), but the MODEL solution did the same
for only 5% of this material, while 1.1% remained
unextracted.

A first conclusion from Table V is that the there is a
change of approximately 13% in the chosen destination of
MRUs, as there are values that differ from zero outside the
diagonal of the table. The only exception to this is the Plant2
destination. Indeed, both solutions send exactly the same
0.4% of the total tonnage to this destination.

We also observe that, while the total tonnage of material
sent to Plant1 is not significantly different, MODEL mines
less material by reducing the material sent to the waste dump
while still increasing production, in particular the usage of
Plant3.

We have successfully modelled the mining system and
extraction of an open pit operation under complex consider-
ations and constraints of short-term planning that include
accessibility, blending constraints, transportation and
processing costs, slope angles, mining and processing
capacities, etc

Increasing the value and feasibilitly of open pit plans
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Table IV

Mine1 Same 50 50

Schedule Before 13 9

Schedule After 8 5

New Schedule 11 10

Not Scheduled 18 26

Mine2 Same 46 43

Schedule Before 15 11

Schedule After 4 6

New Schedule 21 22

Not Scheduled 14 18

Table V

STD and Not mined 55.3 3.0 0.9 0.0 2.2 61.4
WstDump 5.6 15.6 0.0 0.0 1.9 23.1

Plant1 1.1 0.0 5.0 0.0 0.0 6.1
FIXED Plant2 0.0 0.0 0.0 0.4 0.0 0.4

Plant3 0.7 0.1 0.0 0.0 8.2 8.9
Total 62.7 18.6 6.0 0.4 12.3 100.0



Increasing the value and feasibilitly of open pit plans

We applied our model to a real case study, for which we
conducted a series of experiments, in particular to compare
the effect of using fixed rules to determine the destination of
the blocks or MRUs (using, for example, cut-off grades)
rather than leaving the optimal decision to the model.

The results show a high potential increase in the final
value of a schedule under similar operational constraints,
which is expected when comparing output from an
optimization model with practice.  Even better, the results
also show an important potential in terms of using dynamic
cut-off grades in order to optimize the final value of a mine
operation, even under the hard limitations of volumes and
design imposed by medium- and long-term decisions.

Even though the obtained schedule is not fully
operational, it is close enough to provide a good guide for
planners. Even more important, it allows the planner to make
more robust decisions by exploring different scenarios. For
example, although it is not reported in this article, we have
used the model to study how the scheduling and processing
path decisions change in the case of operational failure of the
crushers, as well as considering different MRU definitions to
study the impact of dilution of the scheduling process.

In terms of extensions of this work, we see at least the
following research topics and applications:

(1)  Improving the computation time, in order to be able
to tackle more scenarios and larger case studies

(2)  Improving the geometrical constraints imposed in the
model so as to obtain schedules closer to operational
ones

(3)  Extending the models in order to deal with
operational variability or geological and operational
uncertainties.

This work was supported by CONICYT-Chile through the
Basal Grant AMTC (FB0809). We would like to thank
Edgardo Madariaga for his valuable technical support during
this research.
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Mineral deposits are most commonly
represented by a block model that divides the
orebody into a three-dimensional array of
blocks. Each block consists of a cluster of
similar characteristics such as rock type and
ore grade, and has attributes such as tonnage
of ore contained within the block and an
expected economic value (Bley et al., 2010).
For each block, the mine production
scheduling problem consists of the decisions of
(1) whether to mine a block, (2) when to mine
that block, and (3) how to process the mined
block. The overall objective is to maximize the
net present value (NPV) while meeting
feasibility constraints such as production,
blending, sequencing, and pit slope (Dagdelen,
2001).

Three main sub-problems of scheduling
are the determination of production rates,
discrimination between ore and waste, and
block sequencing (Kumral, 2013a). These
problems are interdependent; one sub-problem
cannot be solved if the others have not been
solved previously. However, in common
applications, production rates are usually
assumed and the other sub-problems are
solved under this assumption (Menabde et al.,
2004; Nehring et al., 2010; Asad and Topal,
2011). This leads to sub-optimal results. Our
approach introduces a concept of cut-off range,

which regards the cut-off grade as guidance
and optimizes it within the range provided.
This is a step toward simultaneously
optimizing production rates along with process
destination discrimination and extraction
sequencing.

Exact methods such as mixed integer
programming (MIP) have been used for the
block sequencing problem to obtain an optimal
result for various cases (Kumral, 2013b; Little
et al., 2013; Nehring et al., 2012; de Carvalho
Jr. et al., 2012) and yields a deterministic plan.
However, MIP suffers from certain drawbacks.
The size of the problem increases exponen-
tially as the level of complexity (such as
multiple metals, process destinations, rock
types) increases (Rothlauf, 2011). To
overcome the data size problem in MIP, block
aggregation is suggested (Tabesh and Askari-
Nasab, 2011; Topal, 2011) but naturally, this
results in loss of optimality. Also, given that
the block model is based on drill-hole data but
is usually generated by geostatistical
simulation, it is impossible in practice for the
generated schedule to be optimal. Considering
the amount of time MIP takes with large data-
sets and that MIP is unnecessarily precise in
our case, a faster, approximately-optimal
algorithm is much more suited to the practical
need.

Another widely used exact method is the
Lerchs-Grossman algorithm (Lerchs and
Grossman, 1964), which yields the ultimate
pit. This is an algorithm based on graph theory
that converts each block to nodes. Although
faster than MIP, in addition to the problems in
MIP, when using Lerchs-Grossman algorithm
it is difficult to assign varying pit slopes at
different points and determine mining and
processing capacities for each period. Dagdelen
and Johnson (1986) attempted to handle the
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capacity constraints problem by incorporating the Lagrangean
multiplier. The selection of the Lagrengean multiplier is a
significant problem and the viability of the sequence
generated depends on this selection. There is no clear way to
determine the multiplier such that the NPV of the project is
maximized.

In this research, simulated annealing (SA) meta-heuristic
with addition of heuristic memory is utilized to solve mine
production scheduling. The addition of heuristic memory
helps to reduce the randomness of SA and improves
computational efficiency. Heuristic memory learns the path of
search in SA in such a way as to accelerate escape from local
optima. As such, this addition can be seen as the incorpo-
ration of machine learning into the optimization process.
Machine learning takes existing data a step further by
automatically learning and improving the performance based
on the data (Witten and Frank, 2005). Machine learning
consists of many different techniques based on mathematical
and empirical methods. These methods can be used to
enhance the optimization and are especially easy to integrate
with meta-heuristic approaches.

The application of SA to the mine production scheduling
problem was developed by Kumral and Dowd (2005). This
approach gradually improves an initial non-optimal solution
by making several changes at each step and observing the
effects of the changes. Although reaching the near-optimal
solution takes time, the advantage of this technique is that it
can be stopped at any time to obtain the most profitable
solution so far.

The application of genetic algorithms was first introduced
by Clement and Vagenas (1994). Based on the principles of
natural selection, multiple feasible solutions are mixed by
involving randomization. Similar to SA, solutions are
improved gradually and the process can be stopped to obtain
the best solution so far.

Ant colony optimization is a population-based
metaheuristic method  first developed by Dorigo and Birattari
(2010) to imitate the foraging mechanism of ants. Ant colony
optimization was proposed to solve the mine production
scheduling problem by Sattarvand and Niemann-Delius
(2013), Sattarvand (2009), and Shishvan and Sattarvand
(2015). Using the Lerchs-Grossman method to produce an
initial solution, the schedule was improved through iterations
based on pheromone trails.

Reinforcement learning is similar to SA and genetic
algorithms in terms of being an algorithm for searching the
parameter space using the concept of reward; which in our
case will be the improvement in the NPV. However, it yields
better immediate results by applying a trial-and-error search
having a memory-like system by incorporating historical
error into its search mechanism (Sutton and Barto, 1998).
Combined with dynamic programming, this type of learning
can be used to adapt incoming updated information, for
example during mine exploration.

Bayesian inference assumes the quantities of interest and
parameters have an underlying probability distribution. By
combining these probability distributions and observed data,
optimal decisions can be made (Mitchell, 1997). Bayesian

learning can be used to estimate the parameters, their
relations to other parameters, and update their values with
the incoming new drilling data.

SA was developed initially by Kirkpatrick et al. (1983) and
Cerny (1985). The method was applied to open pit mine
production scheduling by Kumral and Dowd (2005) and
Kumral (2013a) by the following steps:

Step 1: Start with a non-optimal feasible solution
Step 2: Select a portion of the blocks
Step 3: Possibility 1: modify ore-waste discrimination.

Change ore blocks to waste, and waste to ore by
some probability
Possibility 2: modify the period of the given
block to a previous or following period by some
probability

Step 4: Recalculate NPV for the newly found solution
Step 5: Apply the Metropolis criterion as the acceptance

criterion; accept the new solution with the
probability yielded by Metropolis

Step 6: If the NPV has not increased for last n steps,
terminate. Otherwise, go to Step 2.

The Metropolis criterion (Metropolis et al., 2004), shown
in Equation [1], is a criterion that takes two solutions and a
temperature T as inputs and outputs a probability of
acceptance between 0 and 1, where E0 is the current
solution's NPV and E is the newly found solution's NPV.

[1]

T should be chosen high at first and then decreased
slowly. If T decreases slowly enough, theoretically a global
minimum will be reached (Lundy and Mees, 1986).
According to how the Metropolis criterion is set up, at higher
temperatures the criterion tends to accept solutions that are
not improving as well as those are improving. This stage is
called ‘exploration of the parameter space’, as shown in
Figure 1a. As T is lowered, there is less chance of accepting
solutions that are not improving. If T is not decreased slowly
enough, there is a chance of becoming stuck at a local
minimum as shown in Figure 1b.

�
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As SA takes time, ideally the initial solution should
provide very fast, although sub-optimal, results. The ranked
positional weight (RPW) algorithm is a heuristic algorithm
that draws a downward cone from each block and the block
gains a score according to the economic values of the blocks
in the downward cone (Gershon, 1987b). This approach
follows the logic that if a block is underlain by a valuable
block, it should gain more score as the removal of this block
leads the way to the underlying valuable block. After the
scoring has been completed, a schedule is generated such
that starting from the first level, the highest, scored blocks
will be mined. The RPW fits our purpose well because it
produces a feasible solution rapidly.

A computer program was written to perform RPW and SA
as demonstrated in Algorithm 1 to perform mine production
scheduling. First, RPW is run to generate an initial feasible,
sub-optimal solution. Then this solution is transferred to SA,
which needs an initial input. SA gradually improves this
solution at each iteration and outputs the result. A feasible
solution respects the slope constraints, mining capacity
constraints, and processing capacity constraints.

In this paper, in addition to SA, the developed SA variant
method with memory is used to solve a mine production
scheduling problem. In SA, only improvement is tracked and
the decisions are made based on improving the objective
function. Thus, SA is memoryless (Glover and Kochenberger,
2003). Tabu search attempted to improve SA by creating a
dynamic list of forbidden solutions, thus introducing a
concept of memory (Glover, 1989, 1990). However, this is
very specific and limited. Tabu search only attempts to
decrease re-visitation of the same solutions; it does not
attempt to utilize the information in the solutions in some
way. 

Our proposed SA variant method, improved SA with
heuristic memory, deducts information from the ‘big data’
produced by SA through inputting a heuristic (a quantifiable
component of the solution that is thought to influence the
objective function) and recording the heuristics value and the
corresponding objective functions value. This method adds a
memory on top of SA, with the intent of making it faster to
find the global optimum. The representation of heuristic
memory-added SA can be followed through the pseudocode
demonstrated in Algorithm 2. The algorithm contemplates
whether the provided heuristics indeed have an effect on the
objective function by collecting data and looking at the
relationship between the heuristic and objective function. If
the heuristic has an effect, the value of the heuristic, along

with a balancing parameter k1, is also added into the
objective function to increase its effect. With this approach, if
there is a known or reasoned important component of the
problem, it can be put forward rather than performing a
wholly random search. A comparison of the SA flow chart
and SA with the heuristic memory-added flow chart is given
in Figure 2.

An improved meta-heuristic approach to extraction sequencing and block routing
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The program is able to work with multiple metals, process
destinations, and rock types. Other details of the program are
as follows: 
� Cooling schedule—If initial temperature is too high, all

new solutions are accepted. This will lead to undirected
search. If initial temperature is too low, only improved
solutions will be accepted and the annealing process
will be reduced to a local search. Therefore, the initial
temperature is set by taking the first two solutions and
finding T in Equation [1] such that the equation will be
equal to 0.5. This sets T such that, in the beginning, a
solution will have a 50% chance of being accepted even
if it is not improving. Decrementing T is accomplished
by T T × 0.9999 to ensure it decreases slowly
enough to accept more solutions. Each time a fixed
number of solutions are found (40 solutions), T is
updated as described

� Stopping criteria—There are two conditions that can
stop the annealing loop:  

• When the Metropolis Criterion does not accept the
solution for a pre-set, empirically selected amount
of iterations (in our case, four iterations)

• When the program loops for a user-set amount of
value. The second condition exists to produce
solution under limited time. However, the longer
the program is allowed to run, the better the
results

� Maximum number of solutions at each temperature—
This is a parameter that sets the number of generated
solutions before decreasing the temperature. This
should depend on the size of the data, so in our
program we set it to 200 solutions

� Cut-off range—SA uses the guidance of the cut-off
grades. However, it does not adhere to them strictly.
During the generation of transition destinations
process, the cut-off range is used to decide to which
extent the blocks out of the limits of the cut-off grade
could be accepted. This parameter may have a major
effect on the results. If set high enough, it can remove
cut-off grade boundaries altogether

� Number of iterations—SA terminates either when there
is no improvement or when the given number of
iterations is reached. Mining problem sizes are very
large and thus the number of iterations is usually
reached sooner than settling on the ideal solution. This
parameter should be selected as large as possible as
time permits

� Short-coming process blocks effect—This parameter is
used as the balance between maximizing NPV and
satisfying capacity constraints in the objective function.
The parameter specifies how important it is to fulfill the
process capacities. This value ranges between zero
where it is not considered and unity where this
criterion is all that matters 

� Mining cost adjustment factor—The modifiable mining
cost adjustment factor (MCAF) is used to reflect the
increased cost of transport in deeper levels of the
deposit. MCAF is entered by the user and the MCAF 
is added to the mining cost using the Equation [2].  

[2]

� Heuristic memory—For each heuristic, the heuristic
value and the objective function value are stored. When
enough data is produced, a function-fitting method
(Equation [3]) is performed to deduct information of
how this heuristic influences the objective function. In
our case, the number of blocks was the heuristic used
and the fitting function was linear regression. This
influence, along with a balancing parameter (k), is
included in the objective function. The balancing
parameter depends on the coefficient of determination,
R2, of the fitting function. Possible heuristics include 

the number of blocks, number of ore blocks, block
grade versus process destination, coordinates of the
main ore clusters, mine depth, and mine life. 

[3]

To demonstrate an application of meta-heuristic optimization
on mine production scheduling, a program has been written
using SA with the heuristic method approach. 

The case study  considers a copper and molybdenum
deposit generated from a public drill-hole data-set in
http://www.kriging.com/datasets/ Using sequential Gaussian
simulation, a 3D block model of 595 046 blocks was created,
where each block is 10×10×10 m in size. The mining
company has one waste dump and three process destinations
(low-, middle-, and high-grade processing), where the ore is
processed by different procedures and thus their costs and
recoveries are different. The slopes are 45 degrees in four
directions (north, south, east, and west). Parameters for the
case study are given in Table I. With 595 046 blocks, four
periods, and four total destinations there are 595 046 × 4 ×
(4 + 1) = 11 900 920 decision variables. In the calculation,
destinations are incremented by one because the the decision
can also be taken not to extract the block. 

Cut-off grades were calculated using the method of
Osanloo and Ataei (2003) for finding the equivalent cut-off
grade for multiple metal deposits, yielding 0.4859%,
0.6006%, and 0.7257 % respectively for each process. First,
the RPW algorithm (Gershon, 1987a,b) was run to output a
sub-optimal initial result. This result was input to the SA and
SA with heuristic memory as an initial solution. All solutions
respect the slope, mining, and process capacity constraints.

The resultant NPV of each algorithm is given in Table II.
Using SA improved the RPW results by $75 743 914, which
is 4.70%. SA with heuristic memory, on the other hand,
improved the NPV by $77 386 239, which is a 4.80%
improvement, when run for the same amount of time. 

Figures 3 and 4 show various cross-sections of the
orebody. These figure also compare the RPW and SA outputs,
with each colour corresponding to an extraction period (1:
light blue, 2: green, 3: orange, 4: red, dark blue: not
extracted). It can be seen from these figures that compared to
the RPW algorithm, SA is inclined to mine the blocks in the
earlier periods to increase the NPV. However, the SA results
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look less smooth than the ranked positional algorithm’s
result. This is mainly because of the structure of annealing,
where blocks are switched between the periods one by one,
causing the sections to look rugged. 

Figure 5 shows the average grade of Cu and Mo at each
period for each process, as well as the number of blocks
extracted at each period. These results belong to the SA

An improved meta-heuristic approach to extraction sequencing and block routing
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Table I

10 10 10 Block dimensions (m)

98 132 46 No. of blocks in x, y, z directions

4 No. of total destinations

3 No. of ore destinations

1 No. of waste destinations

4 No. of periods

2 No. of rock types

3 3 3 3 Mining cost of each destination rock type 

1 ($ per ton

4 4 4 4 Mining cost of each destination rock type 

2 ($ per ton)

0 15 30 50 Mineral processing cost of each destination rock 

type 1 ($ per ton)

0 18 38 53 Mineral processing cost of each destination rock 

type 2 ($ per ton)

0 60 70 80 Sales cost of each destination ($/ton concentrate)

5 5 5 5 Specific gravity of each destination (t/m3)

60 Mining capacity (ore and waste) (in thousands of 

number of blocks)

25 20 15 Processing capacity of each destination 

(in thousands of number of blocks)

0.01 Cut-off range

2 Number of metals (Cu and Mo)

10000 30000 Ore price ($ per ton) (Cu and Mo)

0 40 70 95 Recovery for each destination metal 1 rock 

type 1 (%)

0 30 40 75 Recovery for each destination metal 2 rock 

type 1 (%)

0 40 80 95 Recovery for each destination metal 1 rock 

type 2 (%)

0 30 40 75 Recovery for each destination metal 2 rock 

type 2 (%)

0.1 Discount rate

300 Number of iterations

0.9 Shortcoming process block effect

0.1 MCAF

0.600 0.680 0.780 Copper grade requirement (%)

0.043 0.063 0.010 Molybdenum grade requirement (%)

Table II

Ranked positional weight $1 613 205 645

Ranked positional weight + simulated annealing $1 688 949 559

Ranked positional weight + simulated annealing $1 690 591 884

with heuristic memory
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method, but the SA with heuristic memory results are very
similar and not distinctive and thus yield the same figures
because of the process capacity push mechanism. On the
other hand, the intelligent search mechanism through
heuristic memory also reduces the running time by about
25%. To maximize NPV, the approach forces to reach the
capacities. Therefore, the results are similar but the NPVs are
different. This can be observed in the NPV increases in 
Table II.  While the number of blocks extracted and the
average grades are similar, the block configurations are
different with these two methods. It should also be noted

that average grade is persistent within a range throughout
the periods at each destination. Therefore, there are no
distinctive changes in average grades. This is important for
the processes to choose and maintain a recovery, where
fluctuations in the block grades affect the recovery process
negatively. Another point to note is that process capacity
push is working well, except for the high-grade process. The
reason for this is the grade is not homogeneous and there are
not enough high-grade blocks for the later periods. Most of
the high-grade material is near the surface, thus the capacity
during the first period is completely filled. It can also be
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observed from Figure 5 that number of blocks sent to each
process at each period is below the corresponding capacity,
satisfying the process capacity constraints. The processing
capacities are 25 000, 20 000, and 15 000 blocks for the low-
, medium-, and high-grade processes, respectively (Table I).
As can be seen from Figure 5, for the low- and medium-
grade processes, capacity satisfaction is quite good. Since the
number of high-grade blocks is low, there is a decreasing
order of number of blocks. In this case, there may be a few
solutions: establishing stockpiles, changing the high-grade
process design to meet the grade requirement, or re-installed
high-grade process capacities. This is a common problem in
mining operations because the capacity installation ignores
ore material heterogeneity. As can be also seen from Figure
5, the grades at each destination are consistent in terms of
periods. Mining capacity was 60 000 and was also satisfied,
as the numbers of blocks extracted in each period are 60 000,
60 000, 59 703, and 46 609 respectively.

Lastly, the overall average grades of low-, medium-, and
high-grade processes are compared in Figure 6. Average Cu
and Mo grades obtained at each process destination are given
as 0.6081% and 0.043 275% for low-grade processing, 0.677
325% and 0.062 778 25% for medium-grade processing, and
0.776 868 25% and 0.101 760 25% for high-grade
processing. The average grades are highly compatible with
the grade requirements. As expected, the high-grade process
has the highest average grade, followed by the medium and
low grades. 

The use of SA after a heuristic-based method guarantees that
it will either produce a better solution or return the initial
solution. It is true that SA takes time to reach the optimal
value. However, unlike exact methods, it can be stopped at
any point and best solution found so far can be returned.
Moreover, almost all parameters can be integrated into SA,
such as process capacity, transportation cost, and multiple
process destinations, which are impossible to integrate in
some other techniques. In exact methods, as the number of
parameters increases, the problem size increases exponen-
tially, whereas with SA the problem size increases propor-
tionally; only as much as the expansion of the search space.
SA is also more convenient to apply to our problem than

other meta-heuristic methods such as genetic algorithms,
particle swarm optimization, and evolutionary search because
these types of algorithms require a pool of initial solutions. In
our case, we used RPW to generate the initial solution, which
can provide only one solution. For such a large problem,
generating more than one solution is hard and time-
consuming.

It is observed from the case study that usage of SA can
add large gains to the revenue compared to RPW. The
average grade and number of blocks sent to destinations
were overall stable. Moreover, the case study has shown that
the revenue of the solution obtained in the same amount of
time has been increased by SA with heuristic memory. As the
running time increases, further improvement can be
achieved. 

In the case study of the heuristic-memory-based SA, a
linear fitting function was used. Efficiency of the memory
enhancement can be increased through improving this fitting
function. Also, in our case most parameters related to
heuristic-memory-based SA were chosen empirically, such as
when to produce the first function, how often to update the
function, and how to balance the optimal function with the
heuristic. Research can be conducted on how to optimize
these parameters. 

The main issue in all meta-heuristic applications is the
parameter selection. This is also true for all types of SA.
Selection of SA-related parameters such as the temperature,
number of iterations, and maximum number of solutions at
each temperature can affect the running time of the program
to a great extent. If the parameters are poorly set and the
program is run for a short time, the results may not be
optimal. 
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Determination of optimum cut-off grades is a
fundamental issue in mineral extraction as it
assigns the boundaries between ore and waste
over time. 

The profit from a mining operation is a
direct function of the sequences of cut-off
grades and associated ore tonnages that define
the life-of-mine production schedule. As profit
varies with these sequences there will be a
sequence, or sequences, that optimize any
specified profit criterion. The most widely used
cut-off grade optimization criterion is
maximum net present value (NPV) of profits.
The NPV can be maximized by maximizing
profit per unit time. This process necessitates
applying, in the early years of operation, the
highest cut-off grade that can provide
sufficient ore to satisfy the requirements of the
processing plant. As time passes, the cut-off
grade must be lowered, thereby lowering the
opportunity cost. Hence, the highest NPV is
achieved.

The objectives of this paper are to develop
general methods for determining optimal
sequences of cut-off grades for multi-mineral
deposits by means of genetic algorithms, to
implement this method in computer programs,
and to assess the performance of the method.
In order to assess the performance of the

genetic algorithms method, the grid search
method and the dynamic programming method
are used and compared with the results of the
case of genetic algorithms. The computer
programs developed for this purpose are
capable of determining optimal sequences of
cut-off grades for multi-mineral deposits that
contain up to three valuable minerals.

Mine planning and the financial evaluation
of mineral deposits that contain more than one
valuable mineral are generally done on the
basis of parametric cut-off grades or the
equivalents. However, because of problems
related to this method, an alternative method
of individually optimizing the cut-off grades of
the component minerals has been used. The
main problem arises from the fact that the
revenue and the costs must be calculated on
the basis of the average grades of the
individual minerals from the calculated
equivalent grade. If the constituent minerals
are highly correlated, the average grades can
be estimated by iteration and by defining some
additional parameters for the equivalent grade-
tonnage data (Dowd and Xu, 1999). However,
if there is very little correlation between the
minerals, the validity of the equivalents
method is not obvious. Because of the
problems the equivalents method brings about,
in order to optimize a multi-mineral deposit,
the constituent minerals are best dealt with
separately.
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Multiple cut-off grade optimization by genetic algorithms

Genetic algorithms constitute a class of stochastic algorithms
that use a search method based on the principles of biological
genetics and natural evolution. Holland (1975) proposed the
basic principles of genetic algorithms. In this approach,
individuals of a population are represented as chromosomes
and an expanded set of genetic operations takes place. It is
presumed that the potential solution of any problem is an
individual and can be represented by a set of parameters.

The vocabulary of genetic algorithms is borrowed from
genetics science. In nature, each cell of every living organism
has a set of chromosomes that make up DNA. Chromosomes
are made up of genes, which control different characteristics
of an organism. In genetic algorithms, a potential solution to
a problem is called an individual or chromosome. Individuals
make up a population. Genetic operations, such as crossover,
mutation, and reproduction, are also used in genetic
algorithms.

Genetic algorithms are particularly suited to the solution
of large-scale optimization problems. They belong to the class
of probabilistic algorithms but are very different from random
algorithms as they combine directed and stochastic searches.
Another important property of genetic-based search methods
is that they maintain a population of potential solutions.
Genetic algorithms can also easily escape from local optima
by using genetic operators, such as mutation. 

A genetic algorithms flow chart is given in Figure 1.
The basic principles of genetic algorithms are as follows:

1.  A set of strings composed of finite elements, generally
a binary code, is assigned. Each string refers to a point
in the search space or a solution to the problem among
the alternatives. Genetic algorithms work on these
strings, which are called chromosomes or individuals

2.  A first generation, i.e. a population, of individuals, is
selected. Generally, the selection is done at random 

3.  The individuals are evaluated on the basis of their
return values. Fitness values are assigned to the
individuals in order to rank them on the basis of their
return values. The values assigned to better solutions
result in higher fitness values

4.  Some of the individuals are selected on the basis of
their fitness values. The individuals with lower fitness
values lose in competition

5.  Parents are chosen from among the selected
individuals. They are crossed over by pairs. The result
is two new individuals from each parent

6.  Some chromosomes enter a mutation process. That is,
one or more digits of a string are changed at random.
A new population is ready

7.  The process is repeated from step 3 until it converges
to a stable value or an assigned number of generations
is reached.

�
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Genetic algorithms work with representations of solutions.
The representation is a symbol string, which carries all the
information about the individual. The string has a fixed
length and is called a chromosome or individual. The length
of the string of an individual depends on the precision
requirements. The string can be composed of real decimal
numbers or characters, but the most widely used string
representation is binary numbers.

The mapping value of a binary string into a real number
is straightforward. The binary string is converted into a real
number, which is an integer. Then a corresponding real
number, which is the mapping value, is found.

In order to initialize an individual composed of binary
strings, all bits are to be initialized randomly.

In genetics science, individuals make up a population. The
bigger the population, the more extended the search area.
However, the number of individuals adversely affects the
speed of a computer program based on genetic algorithms.

After initialization of a population made up of binary or real
number strings, an evaluation process takes place. Each
individual is assigned a fitness value, which is calculated on
the basis of objective function for the problem.

Good individuals with better fitness values are selected in a
selection process. Each generation produces new individuals
from the current population. Selection is a process of finding
how many times each individual from the current population
should be copied to generate a new set of solutions or a new
population. The process resembles natural selection in that
individuals that give better results in the evaluation process
have a greater chance of reproducing. The selection process
consists of determining the number of times that a particular
individual is chosen to have offspring. The selection process
can be deterministic or probabilistic.

In deterministic selection, better individuals are
determined to have more offspring than poor ones.
Individuals with very low fitness values have no chance of
survival. Deterministic selection helps to get rid of poor
individuals and to generate a quick result. 

The roulette wheel  method is the most widely used
selection method in genetic algorithms. It is a probabilistic
method in which individuals with better fitness values are
more likely to reproduce, although weak individuals still have
a chance of survival. Individuals are represented on the
wheel as a proportion of their fitness values. 

There are other parameters that can be applied to the
deterministic and probabilistic approaches. Scaling is one of
these. When the fitness values of individuals of a population
are sufficiently distinct, there is no need for any kind of

scaling. But if the fitness values are close to each other,
which is generally the case as generations pass and most of
the individuals have relatively good fitness values, good
individuals will lose competitiveness. Scaling is used to
improve the situation. The individuals are scaled in order to
improve the competition abilities of the good individuals
during the selection process. This is generally achieved by
subtracting the same number from all the fitness values of
the individuals. Consider a problem with only two
individuals. Suppose that their fitness values, based on their
performances, are 495 and 497. If one of them is to be
selected randomly, the chance of the first individual being
selected is 49.9% and that of the second is 50.1%. Although
one of the individuals is obviously better, the chances of
selection are almost the same.  However, if the fitness values
of the individuals are scaled by subtracting 490 from both,
the chances of being selected change to 41.7% and 58.3%
respectively.

Another commonly used method of improving the
performance of a genetic algorithms process is elitist
selection. In genetic algorithms there is always a risk of
losing the best individual when generations pass. In elitist
selection, the most fit individual, or individuals, after each
evaluation phase could be carried to the next generation
unchanged (Zalzala and Fleming, 1977). 

As in nature, there are mainly two types of classical genetic
operators in genetic algorithms: crossover and mutation.

Crossover is the basic operator for the production of new
chromosomes. It mimics the sexual reproduction of living
organisms. Two parents come together and they produce two
infants whose genes resemble those of the parents. The
common forms of crossover are 1-point crossover, 2-point
crossover, n-point crossover, and uniform crossover (Green,
1999).

In 1-point crossover, a crossover point is randomly
selected for each couple. Each half of the chromosomes then
crosses over to find two new offspring that resemble both
parents.

The basic difference in 2-point crossover is that there are
two crossover points assigned for each couple. The sections
between the two crossover points are swapped for the new
individuals.

In n-point crossover, there are n crossover points. The
parts of the strings of the parents between every two
crossover points are swapped for the new infants. As a result,
the infants would get the parts of the string of a parent
between every successive crossover point.

In uniform crossover, a number of points are selected at
random. Each selected point is swapped over rather than
swapping a part of the string.

Parents are chosen from among the selected individuals
randomly according to an explicitly assigned crossover
probability. 

Multiple cut-off grade optimization by genetic algorithms
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Multiple cut-off grade optimization by genetic algorithms

In nature, copying DNA to create offspring can sometimes
result in errors. These errors, called mutations, generally do
not have a positive effect on the fitness of the individual,
although they can sometimes result in beneficial features and
they can be passed to succeeding generations via
reproduction. Mutation is so important for the evolution of
living organisms that without it nature would have been in a
vicious circle rather than an evolutionary process.

Genetic algorithms are very different from other
stochastic search methods in the method used for searching.
Searching starts as a randomly selected population and future
solutions depend on mutual relationships of the individuals.
Without the mutation process, the search area would be so
restricted that finding the global maximum point would be
almost impossible in large-scale problems. The search area
can be widened gradually by the mutation process and
deepened by the crossover process; the features of
individuals are improved by the selection process. Individuals
evolve gradually until the solutions converge to a maximum
point or a predetermined number of generations is reached.

As in the crossover process, mutation points are selected
randomly. However, the probability of mutation should be
comparatively low, since it is not a common process like
crossover. There are different types of mutation. In bit-by-bit
mutation, random numbers are generated for each digit of the
whole population and, depending on the assigned mutation
probability, the digit might be changed. In binary code this is
a trivial exercise. If the original digit value were 0, the
changed value would be 1, and vice versa. In string mutation,
however, the mutation probability value is assigned on the
string basis. After random numbers have been generated, if a
string is mutated, another random number is generated and
assigned to the mutation point for the string.

Many cut-off grade optimization problems have huge
numbers of local optimum values, which are widely separated
from the global optimum point and from each other.
Stochastic search methods can easily fail to find the global
optimum point for such problems. The real challenge in such
problems is finding solutions close to the global optimum
point for a restricted time. Genetic algorithms are more robust
in this context than many other existing search methods.

Yun et al. (1998) applied genetic algorithms to the
Jingtieshan iron ore mine in China in order to optimize cut-off
grade and minimum average grade, which is a criterion used
in China to define ore for mining purposes. They used net
present value as a fitness value, binary representation,
roulette wheel selection, and 100 iterations (number of
generations).

Encoding and evaluation processes used in this paper for
the application of genetic algorithms to cut-off grade
optimization are described below.

Encoding of an individual for the optimization of a single cut-
off grade for an ore deposit with only one valuable mineral is

straightforward. The string is composed of only one gene,
which represents a cut-off grade. The size of the string
depends on the number of cut-off grades to be evaluated
(searched). If the binary representation is used, the string
will be long. A 5-bit string can represent 25 = 32 cut-off
grades. To derive real values from the binary code (i.e.
mapping) the string the formula is:

where
X: the mapping value
Xmin: the minimum cut-off grade to be searched for
Xmax: the maximum cut-off grade to be searched for
L: the length of the binary string
Y: the value of binary representation.

The value of the binary representation for a 5-bit string
would be an integer between 0 for string 00000 and 31 for
string 11111.

The application of genetic algorithms to the solution of
the optimum cut-off grade problem requires a crucial increase
in the length of the string. Since in each year in the mine life
there might be a different optimum cut-off grade, there
should be different genes in the same string. If the mine life
is 20 years, the string will be composed of 20 genes, each
with a length of  five bits, making the total length of the
chromosome 100. 

In genetic algorithms, every individual is assigned to a fitness
value depending on its performance. In cut-off grade
optimization, the objective function is maximum NPV. The
higher the discounted profit, the better the individual.

The optimization of cut-off grades for multi-mineral deposits
is significantly more complex than for single-mineral
deposits. A multivariate grade distribution must be used and
consequently the dimension of the data increases. This
increase in dimension causes an exponential increase in the
area to be searched for the optimum. 

Besides, genetic algorithms work on representatives of
solutions, known as chromosomes.  The structures of
chromosomes for single-mineral deposits and for multi-
mineral deposits differ in that as the number of minerals
increases, the length of the related chromosomes increases
arithmetically.

The application of genetic algorithms to the optimization
of cut-off grades for multi-mineral deposits brings about a
further increase of the length of the string. Since for each
year of mine life there might be a different optimum cut-off
grade, there should be different genes in the same string. In
the case of a two-mineral deposit, if the mine life is 20 years,
the string would be composed of 40 genes, each five bits in
length, making the total length of the chromosome 200.

�
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The genetic algorithms computer program developed in
this research work is capable of optimizing cut-off grades for
mineral deposits that contain up to three minerals. Binary
representation is used and if 32 different cut-off grades are to
be searched for each mineral, 5-bit genes must be used.
Three minerals require a 15-bit string length. Therefore, if
the maximum mine life is 20 years, an ore deposit that
contains three minerals requires a string size of 300.

The process of scaling is used in order to improve the
selection process. Fitness values are scaled by subtracting the
fitness value of the worst individual from the fitness values
of all the individuals of the population.

One safeguard has proved necessary to improve the
computation results. We know that true maximization of NPV
necessitates a sequence of declining cut-off grades. However,
only a very small part of randomly selected populations can
have cut-off grades in declining order for the life of the mine.
Consequently, the algorithm has been changed in such a way
that if the depletion rate for a specific year is more than that
of the previous year, the cut-off grade for the specified year is
set deterministically to that of the previous year. This policy
enables the program to search for the optimum among the
alternatives that are limited to sequences of declining cut-off
grades, and brings about a substantial improvement in the
performance of the algorithm.

With respect to the other two methods used in this
research, genetic algorithms use four additional parameters
that are not directly related to technical or economic
constraints. These parameters are population size, generation
size, crossover rate, and mutation rate. These parameters
have been tested in order to determine an optimum range of
control values that will generate the highest discounted
profit. As a result of the tests, a population size between 250
and 500, a generation size between 400 and 500, a crossover
rate of 20% to 50%, and a mutation rate of 40% to 100% are
proved to be reasonable.

For the sake of comparison, the results have been tested
by other methods that were used in multi-mineral cut-off
grade optimization. These are the grid search method and the
dynamic programming method. The grid search method used
here is explained by Cetin and Dowd (2013). The use of
dynamic programming in multi-mineral cut-off grade
optimization used in this work is explained by Cetin and
Dowd (2011).

A case study has been included here to illustrate the
application of the software for determining optimal cut-off
grades for multi-mineral deposits.

The case study is of a gold, lead, and zinc deposit. 
The technical and economic data are shown in Table I and
Figure 2. The results are given in Table II.

For the sake of comparison, the deposit shown in Figure1
is applied to the grid search method and dynamic
programming method. The technical and economic data for
the grid search method are shown in Table III and Figure 2.
The results are given in Table IV. The technical and economic
data for dynamic programming method are shown in Table V
and Figure 2. The results are given in Table VI.

Table VII compares the results of the three methods. 
The results indicate that all three method give reasonable

results but genetic algorithms deliver a better result. Genetic
algorithms is a more robust search engine since it can easily
escape from a local optimum point by means of crossover and
mutation tools, and its natural selection environment.

The paper shows the applicability and robustness of genetic
algorithms methods to multi-mineral cut-off grade
optimization.

Determination of a complete mine production schedule
requires complex modelling of an orebody and the inclusion
of access constraints. The work described serves to find
broad indications of optimum cut-off grades and a mining
sequence that gives optimum discounted profits by using
technical and economic constraints only. Detailed mine
scheduling that includes physical, or access, constraints is
beyond the scope of this research. The orebody is defined by
a grade-tonnage distribution, which gives the ore tonnage for
different grade intervals. Access constraints are not included,
so that any parcel of the orebody is assumed to be
immediately accessible. In other words, the grade-tonnage
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Table I

Lower limit of cut-off grades for gold (%) 0

Upper limit of cut-off grades for gold (%) 0.009

Lower limit of cut-off grades for zinc (%) 0

Upper limit of cut-off grades for zinc (%) 3

Lower limit of cut-off grades for lead (%) 0

Upper limit of cut-off grades for lead (%) 1.5

Mining capacity (t/a) 1 200 000

Mineral processing capacity (t/a) 1 000 000

Marketing and/or refining capacity for gold (t/a) 10

Marketing and/or refining capacity for zinc (t/a) 11000

Marketing and/or refining capacity for lead (t/a) 1600

Selling price for gold (dollars per ton) 11 000 000

Selling price for zinc (dollars per ton) 1 400

Selling price for lead (dollars per ton) 600

Marketing and/or refining cost for gold (dollars per ton) 3 000 000

Marketing and/or refining cost for zinc (dollars per ton) 300

Marketing and/or refining cost for lead (dollars per ton) 150

Recovery rate for gold (%) 46

Recovery rate for zinc (%) 80

Recovery rate for lead (%) 85

Variable mining cost of material mined (dollars per ton) 0.4

Variable concentration cost of material 0.4
processed (dollars per ton)

Fixed costs (dollars per year) 1 000 000

Discount rate (%) 10

Population size (number of individuals 500
in the population)

Number of generations 500

Crossover rate (%) 50

Mutation rate (%) 60
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Table II

1 82 319 950 74 836 319 1 164 693 1 000 000 9 10 564 1526 0.0012 3 000 0.800

2 82 319 950 68 033 017 1 164 693 1 000 000 9 10 564 1526 0.0012 3 000 0.800

3 82 020 659 61 623 335 1 158 748 1 000 000 9 10 582 1526 0.0012 2 600 0.800

4 82 020 659 56 021 214 1 158 748 1 000 000 9 10 582 1526 0.0012 2 600 0.800

5 82 020 659 50 928 376 1 158 748 1 000 000 9 10 582 1526 0.0012 2 600 0.800

6 79 839 492 45 067 312 1 114 896 1 000 000 9 10 342 1507 0.0012 0.800 0.700

7 79 839 492 40 790 283 1 114 896 1 000 000 9 10 342 1507 0.0012 0.800 0.700

8 72 691 453 33 911 099 1 000 000 1 000 000 8 9482 1462 0.0000 2 400 1 100

9 18 589 355 8 463 256 255 730 255 730 2 2425 374 0.0000 2 200 0.800
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Table III

Lower limit of cut-off grades for gold (%) 0

Upper limit of cut-off grades for gold (%) 0,009

Interval between cut-off grade decisions gold (%) 0,0006

Lower limit of cut-off grades for zinc (%) 0

Upper limit of cut-off grades for zinc (%) 3

Interval between cut-off grade decisions zinc (%) 0,2

Lower limit of cut-off grades for lead (%) 0

Upper limit of cut-off grades for lead (%) 1,5

Interval between cut-off grade decisions lead (%) 0,1

Mining capacity (tons per year) 1 200 000

Mineral processing capacity (t/a) 1 000 000

Marketing and/or refining capacity for gold (t/a) 10

Marketing and/or refining capacity for zinc (t/a) 11000

Marketing and/or refining capacity for lead (t/a) 1600

Selling price for gold (dollars per ton) 11 000 000

Selling price for zinc (dollars per ton) 1 400

Selling price for lead (dollars per ton) 600

Marketing and/or refining cost for gold (dollars per ton) 3 000 000

Marketing and/or refining cost for zinc (dollars per ton) 300

Marketing and/or refining cost for lead (dollars per ton) 150

Recovery rate for gold (%) 46

Recovery rate for zinc (%) 80

Recovery rate for lead (%) 85

Variable mining cost of material mined (dollars per ton) 0,4

Variable concentration cost of material 0,4

processed (dollars per ton)

Fixed costs (dollars per year) 1 000 000

Discount rate (%) 10

Table IV

1 82 423 897 74 930 816 1 167 041 1 000 000 9 10 572 1527 0.0012 2,600 1,500

2 82 423 897 68 118 923 1 16 7041 1 000 000 9 10 572 1527 0.0012 2,600 1,500

3 82 423 897 61 926 294 1 167 041 1 000 000 9 10 572 1527 0.0012 2,600 1,500

4 82 344 016 56 242 071 1 165 144 1 000 000 9 10 564 1526 0.0012 2,600 1,300

5 82 344 016 51 129 155 1 165 144 1 000 000 9 10 564 1526 0.0012 2,600 1,300

6 80 753 096 45 583 017 1 131 110 1 000 000 9 10 377 1513 0.0006 2,600 1,300

7 80 75 3096 41 439 107 1 131 110 1 000 000 9 10 377 1513 0.0006 2,600 1,300

8 80 30 1619 37 46 1298 1 122 803 1 000 000 9 10 374 1510 0.0006 1,600 1,100

9 5 350 339 2 269 066 74 718 66 991 1 693 101 0.0006 0.800 1,400

Table V

Lower limit of cut-off grades for gold (%) 0

Upper limit of cut-off grades for gold (%) 0.009

nterval between cut-off grade decisions gold (%) 0.0006

Lower limit of cut-off grades for zinc (%) 0

Upper limit of cut-off grades for zinc (%) 3

nterval between cut-off grade decisions zinc (%) 0.2

Lower limit of cut-off grades for lead (%) 0

Upper limit of cut-off grades for lead (%) 1.5

Interval between cut-off grade decisions lead (%) 0.1

Mining capacity (t/a) 1 200 000

Mineral processing capacity (t/a) 1 000 000

Tonnage interval between decisions to mine or not (t/a) 20 000

Marketing and/or refining capacity for gold (t/a) 10

Marketing and/or refining capacity for zinc (t/a) 11000

Marketing and/or refining capacity for lead (t/a) 1600

Selling price for gold (dollars per ton) 11 000 000

Selling price for zinc (dollars per ton) 1 400

Selling price for lead (dollars per ton) 600

Marketing and/or refining cost for gold (dollars per ton) 3 000 000

Marketing and/or refining cost for zinc (dollars per ton) 300

Marketing and/or refining cost for lead (dollars per ton) 150

Recovery rate for gold (%) 46

Recovery rate for zinc (%) 80

Recovery rate for lead (%) 85

Variable mining cost of material mined (dollars per ton) 0.4

Variable concentration cost of material 0.4

processed (dollars per ton)

Fixed costs (dollars per year) 1 000 000

Discount rate (%) 10
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distribution is identical for all parts of the orebody and for all
parcels of ore.

It is very clear from this work, and that done by others,
that maximum NPV can be achieved only by a declining cut-
off grades policy. That is, the mining operation should start
with a relatively high cut-off grade that declines gradually
over the life of the mine. For that reason, and in order to
increase the speed of the computations, production schedules
that do not have declining cut-off grades are eliminated
explicitly in the computer program.

The genetic algorithms method is a very robust search
engine. The crossover, mutation and natural selection
behaviour of the method ensures that it escape from a local
optimum point.

The software developed for this study includes programs
for the determination of optimum cut-off grades for multi-
mineral deposits by means of the genetic algorithms, grid
search method, and dynamic programming are written in C++
code. Although all the programs written are basically for cut-
off grade optimization, they are slightly different in terms of
data requirements.
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Table VI

1 81 144 899 73 76 8090 1 160 000 999 881 9 10584 1525 0.0024 3 000 0.300

2 81 144 899 67 06 1900 1 160 000 999 881 9 10584 1525 0.0024 3 000 0.300

3 81 144 899 60 96 5364 1 160 000 999 881 9 10584 1525 0.0024 3 000 0.300

4 81 14 4899 55 42 3058 1 160 000 999 881 9 10584 1525 0.0024 3 000 0.300

5 79 199 360 49 17 6571 1 120 000 997 909 9 10349 1507 0.0012 2 800 0.200

6 79 19 9360 44 70 5974 1 120 000 997 909 9 10349 1507 0.0012 2 800 0.200

7 79 19 9360 40 64 1795 1 120 000 997 909 9 10349 1507 0.0012 2 800 0.200

8 71 81 4509 33 50 1999 1 000 000 1 000 000 8 9482 1462 0.0000 3 000 0.000

9 20 90 8899 8 867 414 291 151 29 1151 2 2761 426 0.0000 3 000 0.000

Table VII

1 0.0012 3 000 0.800 0.0012 2 600 1 500 0.0024 3 000 0.300

2 0.0012 3 000 0.800 0.0012 2 600 1 500 0.0024 3 000 0.300

3 0.0012 2 600 0.800 0.0012 2 600 1 500 0.0024 3 000 0.300

4 0.0012 2 600 0.800 0.0012 2 600 1 300 0.0024 3 000 0.300

5 0.0012 2 600 0.800 0.0012 2 600 1 300 0.0012 2 800 0.200

6 0.0012 0.800 0.700 0.0006 2 600 1 300 0.0012 2 800 0.200

7 0.0012 0.800 0.700 0.0006 2 600 1 300 0.0012 2 800 0.200

8 0.0000 2 400 1 100 0.0006 1 600 1 100 0.0000 3 000 0.000

9 0.0000 2 200 0.800 0.0006 0.800 1 400 0.0000 3 000 0.000



The decrease in average copper grades,
increasing depth of deposits, depletion of
copper oxide ores, and increasing energy costs
have caused an overall increase in operational
and capital costs of copper mining (Bearman,
2007; Harmsen et al., 2013). This has led to a
continuous search for new mining methods
and technologies that would complement or
replace conventional mining methods and
allow metal recovery at lower costs. In situ
leaching (ISL) has been proposed to recover
metals more cheaply, with less environmental
damage and less energy usage than conven-
tional mining (O Gorman et al., 2004). In
principle, ISL removes the metals while leaving
the deposits essentially undisturbed by
conventional mining (Schlitt, 1992). Metal is
extracted from the host rock by the injection of
a chemical solution into the orebody. The
pregnant solution is then pumped to the
surface, where the metals are recovered (IAEA,
2001). ISL is the major method for uranium
mining and has been successfully used since
the mid-1970s in the USA and the former
Soviet Union (Akin et al., 1996; Mudd, 2001).
However, in the case of copper, the use of ISL
remains in the experimental stage due to
insufficient metal recoveries and long leaching
times, mainly because of poor solution contact

with the ore and poor aeration (Gorman et al.,
2004), which makes the method uneconomic.
Therefore, an in situ mining (ISM) method has
recently been proposed, which integrates
conventional underground mining method(s)
and ISL in a novel way (Castro et al., 2013). 

In the ISM method, blasted rock in a large
stope is irrigated with a leaching solution, if
the sublevel stoping (SLS) method was
employed to access the orebody. The leaching
process is carried out taking into consid-
eration, for example, the ventilation and
extraction system of a large stope, where the
ore could be compacted over time due to the
characteristics of the SLS method. It is
expected that ISM will improve on the
metallurgical recovery obtained with ISL
through the incorporation of mining
procedures and the control of metallurgical
variables such as degree of compression,
removal of material, temperature, and
ventilation. 

In this study, a laboratory model and an
experimental methodology were developed to
evaluate the influence of the main operational
variables on the ISM method for copper
sulphide deposits. Continuous samples of the
pregnant leach solution (PLS) were measured
and analysed for pH, redox potential, and
dissoluble copper by atomic absorption
spectrometry. During leaching of a copper
sulphide sample, the gallery was aerated using
an air pump. The adjustment of copper curves
within the shrinking core kinetic model over
time showed that all experiments exhibited a
diffusional control mechanism. 
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ISL involves irrigating an ore deposit with a leaching solution
through injection wells. The injected solution permeates
through channels in the ore and solubilizes the metal(s) of
interest. The PLS is then returned to the surface through
recovery wells to be processed (Figure 1) (NRC, 1997a).

According to the literature (Morais et al., 2008; Venter et
al., 2009), there are many similarities in the leaching
processes for copper and uranium deposits. Solutions used in
both cases are either acid or alkaline, with the most common
being sulphuric acid with the addition of an oxidizing agent.
Moreover, for both copper and uranium, injection and
recovery wells are used to irrigate the orebody and recover
the PLS (Llorente, 1991). In 2013, 47% of the world’s
uranium produced was produced through the ISL method
(WNA, 2014). Despite the resemblances to uranium
extraction, the recovery of copper by ISL is less satisfactory.
Some of the more likely reasons include the difference in
particle size, control of solutions leaks, and mineralogy.

The literature and case study show (Gorman et al., 2004;
Pradhan et al., 2008) that the variability of metallurgical
recoveries through the ISL is associated with low or no
control of geometallurgical variables such as fragmentation,
aeration, and temperature. To overcome these deficiencies,
the ISM method, in which leaching and conventional
underground mining methods are integrated in a novel way,
was proposed (Castro et al., 2013). 

As shown in Figure 1, the development for ISM is similar to
the SLS method, but the broken material is irrigated inside
the stope instead of being loaded and hauled to the surface
(Castro et al., 2013). ISM considers that only the material
corresponding to the increase in volume due to blasting will
be transferred to the surface. Consequently, mining and
processing costs would decrease significantly due to the
reduction in the amount of material that needs to be moved
and elimination of the need for comminution processes. In
addition, the lower impact on the surface due to less waste
production and better prevention and monitoring of solution
leakages (compared with ISL, since the irrigation of the
mineral is delimited by the stope and is located
underground), delivers environmental benefits. Furthermore,
ISM allows a better control of fragmentation by blasting than

ISL, by increasings the mineral surface exposed to the
leaching solution, improving the permeability, and thus
enabling control of other variables: temperature, aeration,
and material extraction. 

The ISM method consists of the following unit operations:
drilling and blasting, loading and hauling, ventilation, and
stope irrigation. 

Drilling and blasting is the first fragmentation process
that will increase the mineral surface exposed to the leaching
solution as well as the permeability of the ore to be irrigated.
The blasting design should be aimed at obtaining the degree
of fragmentation that minimizes the costs and maximizes the
copper recovery. Loading and haulage is limited to removing
the swell material. In the case of channelling or reduction in
permeability, constant extraction of material at drawpoints
could probably improve recovery by reordering the fragments
and creating high-permeability zones. 

The application of air flow provides the required oxygen
to increase sulphide copper oxidation and to improve the
activity of leaching microorganisms (Lorca, 2004; Ghorbani
et al., 2011). This effect has been observed at the Miami
mine in Arizona, USA, where maintaining an efficient
ventilation system greatly contributed to the copper recovery
(Herrera, 1987). The aeration requirements should therefore
be evaluated with respect to the leaching process parameters
(i.e. mineralogy) (Wu et al., 2006). 

The irrigation system must allow homogenous irrigation
of the material as well as consistent concentration of the
leaching solution inside the stope. For the irrigation, it is
important to consider the drilling of broken material and
intubation of the wells. The set-up proposed for ISM is shown
in Figure 1. The influence of mining variables was studied
(air flow, temperature, and granular density) through
controlled experiments, and the results are described in
subsequent sections.  

A laboratory model (Figure 2) was designed and constructed
to evaluate the effect of various mining and metallurgical
parameters on copper recovery using the ISM method. The
main structure of the model was a high-density polyethylene
cylinder 700 mm in height and 400 mm in diameter. A
drawbell, made of Robalon, and a gallery were attached to the
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base of the cylinder for extraction of material. A container for
the PLS was placed under the gallery. To ensure the constant
recirculation of the PLS, a pump was incorporated next to the
PLS container. To investigate the effect of ventilation, an air
pump was added to the model. A heater and temperature
regulator were used for temperature control, and a hydraulic
press to investigate the effect of compression of the material.
Figure 3 shows photographs of the laboratory model.

As shown in Figure 4A, a stainless steel plug closed the
drawbell and prevented movement of material during
leaching, but enabled drip-feeding of PLS. An acrylic gallery
was placed under the drawbell. The gallery, designed with a
5.5° inclination, included a set of holes to allow the drainage
of the PLS into the container. 

The laboratory model was designed to allow a vertical
load to be applied to the confined material. The model
dimensions also minimized the effect of the wall, avoiding
the solution flowing through the pipe rather than the material
(Llorente, 1991). The model had a capacity to contain 75–
80 kg of crushed sample.

An ore sample was obtained from a copper mine located in
the Atacama region, Chile. The sample was crushed using a
roller crusher and then classified using four sized sieves
(Table I). The size distribution was arbitrarily defined for this
research.

The samples granulometry shown in Figure 5 was
obtained by crushing. The uniformity index (d60/d10) of 2.4
reveals a well-graded distribution of samples.

Copper grade was estimated at 0.6% by X-ray
fluorescence spectrometry (Table II). Among all copper
species observed by X-ray diffraction (1.9% of the total),
1.2% corresponded to secondary sulphides and 0.7% to
primary sulphides (Figure 6). No copper oxides were
identified in the sample. Optical microscopy revealed the
presence of molybdenum as MoS2 and titanium, as TiO2. 

The leaching experiments were performed using 75 kg of
sample. Leaching solutions were prepared with reagent-grade
chemicals and distilled water. The leaching solution

contained 20 g/L H2SO4 and 3 g/L of Fe (III) as the oxidizing
agent. Sulphuric acid was employed to maintain the desired
pH (1.8–2.0). Samples of the solution were continuously
taken from the PLS container to determine the pH, Eh, and
copper concentration by atomic absorption spectrometry. 

In situ mining through leaching
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Table I

-8+10 2.36
-4+8 4.75
-1/4+4 6.4
-3/8+1/4 9.5
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Five experimental cases were developed (Table III). The
base case considered the leaching of the sample without
previous compression, at room temperature (20°C average)
and without artificially induced air flow. The effects of four
variables were studied: density, extraction, temperature of
the leaching solution, and air incorporation. To study the
effect of compression, the density of the sample was
increased by 10.4% from 1.15 to 1.27 t/m3. In the case of
material extraction, a removal rate of 1.5 kg/d for 7 days was
considered. To study the influence of temperature, the
temperature was increased incrementally up to an average of
29°C, and to evaluate the effect ventilation, the air pump was
used to provide 270 L/h of air to the model. The laboratory
protocol is shown in Figure 7.

The natural compression of the material by the overburden
weight results in an increase in density and decreasing
porosity with increasing depth (Fatt, 1952; Bass, 1980). The
increase in pressure due to taller leach columns also leads to
a reduction in the porosity and, therefore, a decrease in
leaching efficiency (Dixon, 2007). During the laboratory
experiments, increasing the material density by 10.4% led to
a reduction of the recovery: 16.5% in case 1a and 13.4% in
case 1b, in comparison to the 19.9% in the base case within
the same period of time (Figure 8A). This represents a
reduction of 17.1% and 32.6% in copper recovery for cases
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Table III

Base case 75 20 3 1.15 20 No Yes
Case 1a 75 20 3 1.27 20 No Yes
Case 1b 75 20 3 1.27 20 No No
Case 2 75 20 3 1.15 29 No No
Case 3 75 20 3 1.15 20 Yes No

Table II

Composition (%) 51.7 21.3 6.92 6.43 1.98 5.59 4.26 0.96 0.63 0.08 0.05 0.04 0.03 0.04 0.03 0.02 0.01



1a and 1b, respectively. Therefore, the compression of the ore
being leached must be considered in the future work to
prevent over-estimation of the recovery through the leaching
operation. The applied vertical stress must be defined
according to the height of the stope.

The effect of material extraction was studied in two cases,
with and without initial compression of the sample and after
750 hours of irrigation. As indicated in Figure 8B, only the
base case shows an increase in copper recovery after material
extraction. Even though the results from the laboratory
testing were inconclusive with regard to the effect of material
extraction on copper recovery, the benefits of extraction
cannot be dismissed as the removal of material had been
shown to improve the permeability by creating zones of
higher porosity (Kvapil, 1992) and could contribute to
reordering of the fragments and channeling of the solution.
Therefore, it is recommended to continue the study by
extending the range of extraction and initial permeability.

During the leaching process, the temperature can rise
naturally due to the exothermic nature of the sulphide
oxidation reactions. The effect of the geothermal gradient
(1°C for each 100 m) should also be considered. The
temperature may also be maintained artificially through
heating of the leaching solution. High dependence of the
metallurgical recovery on the temperature was observed by
Lorca (2004). The increase in the temperature reduces the
passivation of the sulphide minerals and makes the
passivation layer less stable (Lorca, 2004; Pradhan et al.,
2008). The activity of leaching microorganisms also improves
with increasing temperature (Kelly et al., 2008). In the
present study, copper recovery increased from 19.9% to
29.8% when the temperature of the leaching solution was
increased from 20°C to 29ºC, representing a 49.7%
improvement over the base case scenario (Figure 8C).

An air flow of 270 L/h into the drawbell base increased the
recovery from 19.9% to 33.8%, which represents a 69.8%
improvement over the base case scenario (Figure 8D). 

The copper recovery in cases 2 and 3, (Figure 8D) shows the
necessity of considering the effects of variables when
designing the ISM method. The decision should be made
based on the economic evaluation of the project. It is
envisioned that there will be a trade-off between increasing
mining and processing costs and increasing copper recovery,
which will influence the net present value (NPV) estimation.

In addition to pH, Eh, and copper measurements, the PLS
was examined under the microscope, and microorganisms
were detected. Considering that no chemical oxidant were
added after the experiments began, the presence of microor-
ganisms in the PLS allowed the ferric iron to regenerate
during the leaching process.  

Table IV shows a resumé of the experimental variables
and copper recoveries.

The leaching kinetics were described by the shrinking core

In situ mining through leaching
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model. The reaction-controlled process is expressed by
Equations [1] and [2] (Levenspiel, 1962). Equation [1]
presents the relationship between the copper recovery (X),
the time of reaction (t), and the theoretical time for the
leaching reaction to proceed to completion ( ).

[1]

[2]

where is a function of the density of the solid ( the particle
radius (R), the molar mass(b), the kinetic coefficient (ks),
and the concentration of the leaching solution (CAL). On the
other hand, the diffusional-controlled process is described by
Equations [3] and [4]; in this case ( ) is also a function of
the effective diffusion (Deff).

[3]

[4]

Table V shows the diffusional reaction controlling
mechanism, which best describes the experimental results.
Also shown are the experimentally determined Kdiff values
and the theoretical time ( ) for completion.

Based on the diffusional-controlled equations, the copper
recovery with time can be improved by decreasing the
fragment size, increasing the temperature (increasing the
effective diffusion through the product layer), increasing the
concentration gradient, or decreasing the thickness of the
diffusion layer, among other possibilities.

Using the shrinking core model, the maximum copper
recovery is estimated at t = 10 years (Figure 9). The
estimation is developed for six different granulometries,
considering the experimental results of the base case and
case 3. The effect of fragment size is greater in the case base

than for case 3. Case 3 (aertion study) resulted in the best
experimental recovery during the leaching tests. 

As shown in Figure 9, the difference in the estimated
copper recovery (X) between the base case and case 3
(including air flow) increases with particle size. This
relationship is shown in Table VI.

The second part of the investigation was focused on the
feasibility and applicability of the ISM method. A business
model was developed to investigate the feasible point of
applying ISM. The case study was conducted on an orebody
that could be considered as a mid-size mining operation in
Chile. The orebody was exploited by conventional SLS, which
was economically compared with the same orebody exploited
by ISM. 

Both initial cases considered a production rate of 1 000 kt/a.
The capital and operational costs for the SLS were derived
from a preliminary economic assessment developed for an ore
deposit located in the north of Chile. 

As indicated in Table VII, the mining cost will reach
US$16.28 per ton for conventional mining and US$9.16 per
ton for ISM. In the case of ISM, an additional 15% is
incorporated for the leasing of the mining equipment.

According to Table VII, the main difference between the
mining costs for these methods is due to the reduction in
loading and hauling of ore, since in ISM only the portion
corresponding to swelling is sent to the surface after blasting.

In terms of the operational processing plant costs, the
conventional mining case includes primary and secondary
crushing, agglomeration, stacking, leaching, solvent
extraction (SX), and electrowinning (EW). Considering these
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Table IV

Base case 1180 Temperature, aeration, density - 23.1
Case 1a 1180 Temperature, aeration Density increased from 1.15 to 1.27 t/m3 16.5
Case 1b 743 Temperature, aeration Density increasedfrom 1.15 to 1.27 t/m3 13.4
Case 2 648 Aeration, density Temperature increased from 20°C to 29°C average 29.8
Case 3 648 Temperature, density Aeration: from natural aeration to an artificial flow of 215 L/min 33.8

Table V

Base case 0.88 0.98 Diffusion 2×10-5 6.6 -
Case 1a 0.81 0.94 Diffusion 1×10-5 10.7 62.1
Case 1b 0.80 0.92 Diffusion 9×10-6 11.1 68.2
Case 2 0.85 0.96 Diffusion 5×10-5 2.2 66.7
Case 3 0.80 0.94 Diffusion 7×10-5 1.6 75.8

* Variation between the registered value in the base case and the respective case study



operations, the processing cost in conventional mining
method would be US$15.3 per ton. It is expected that ISM
would not require such operations as crushing, agglom-
eration, and stacking. By benchmarking of different
operations in Chile, it was established that approximately
40.9% of the processing costs correspond to SX-EW

operations and 59.1% to the other operations (comminution
processes, agglomeration, stacking, and leaching). Thus, the
plant cost for ISM reaches approximately US$6.26 per ton.
Based on the Florence project in Arizona (SRK, 2010), the
additional operational cost of solution injection and recovery
in ISM is considered at US$0.28 per pound Cu.

The mine investment includes the development of ramps,
ventilation equipment, shafts, and mining equipment. The
mine investment has been estimated as US$6.334 million 
for conventional mining. For ISM, it is estimated that less
investment would be required, due to the less intensive use
of equipment as only a fraction of the material is hauled 
to the surface, which will required an investment of
US$526 000.

The capital expenses of the processing plant for conven-
tional mining include the costs of equipment for comminution
and agglomeration, leaching, SX, EW, tank farm, and civil
works among other operations. Therefore, the processing
plant investment for conventional mining has been estimated
at US$38.54 million. ISM does not entail comminution and
agglomeration, but includes the development of injection and
recovery wells. The total plant investment for ISM
corresponds to US$19.11 million. This includes a scaled
average cost of US$3.27 million for the wellfield, based on
the case studies of San Manuel, Florence, and Gunnison
mines (Williamson, 1998; SRK, 2010; M3, 2011). 

The capital and operating costs of mining and processing
plant are summarized in Table VIII. The copper recovery in
the conventional mining method, for this economic
evaluation, is considered constant and equal to 85%, while
copper recovery in ISM is dependent on the leaching kinetics
(Figure 10A). The volume of PLS considered to be sent to the
processing plant per year in ISM is presented in Figure 10B.
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Table VI

0.48 0
1.0 22
1.5 35
2.0 32
2.5 29
3.0 27

Table VII

Production drilling 0.53 0.79
Production blasting 0.38 0.56
Haulage 0.62 0.12
Transport 0.93 0.18
Production fortification 0.85 0.55
Production drill-holes 1.09 1.42
Mining services 2.12 0.86
Sub-total (considering ISM leasing) 6.52 4.50
Maintenance cost 7.26 1.42
Stope preparation 2.50 3.25
Total 16.28 9.16

Table VIII

Maximum copper recovery % 85 60
Copper price US$/lb 2.80 2.80
Discount rate % 10 10
Mine operational expenses US$/ton 16.3 9.2
Processing plant operational expenses US$/ton 15.28 6.82
Wellfield operational expenses US$/lb Cu 0 0.28
Mine capital expenses US$ million 6.334 0.526
Processing plant capital expenses US$ million 38.5 15.8
Wellfield capital expenses US$ million 0 3.3
Production rate kt/a 1,000 1,000
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According to the economic evaluation, the net present value
(NPV) of both the conventional mining and ISM operations is
on average, equal to US$61 million (US$60.95 million and
US$62.05 million respectively). According to the NPV,
internal rate of return (IRR), and NPV/investment (NPVI),
both methods are profitable. The average cash cost per pound
copper is US$1.39 for SLS and US$1.19 for ISM. ISM also
presents a better IRR (27% versus 37%) and NPVI (0.95
versus 2.68) than conventional mining. Different procedures
should be evaluated to enhance the ISM method by
increasing the copper recovery, which will improve the NPV,
making it more profitable and cost-effective compared to
conventional mining.

Drilling and blasting can increase the leaching efficiency due
to the increase in the leachable surface. A sensitivity analysis
was carried out to evaluate the impact of this operation on
the operating expenses (OPEX). The analysis showed that
OPEX is more sensitive to drilling and blasting than to
hauling and loading and mine services. 

A sensitivity analysis for copper price, grade, costs, and
investment was also completed. As shown in Figure 11, the
NPV of both methods is more sensitive to the price of copper
and grade than to the OPEX and capital expenditure (CAPEX)
of the project. A price decrease of 25%, which corresponds to
a drop of US$2.17 per pound, results in a negative NPV for
the conventional mining case. In the same scenario, ISM
maintains a positive NPV of US$18.1 million. When the
copper grade is decreased by 25%, the NPVs are US$2.2
million for SLS and US$26.4 million for ISM. Accordingly,
under unfavourable price and grades conditions, the ISM
method represents a better alternative.

After evaluation of conventional mining and ISM at equal
tonnages of blasted material per year (ISM case A), two
additional cases were considered:

� Case B—equal tonnages of copper per year were
assumed for ISM and SLS. Based on the leaching
kinetics, to recover the same tonnage of copper for ISM,
a higher tonnage of ore should be blasted in a shorter
period of time

� Case C—the estimated copper recovery, based on the
shrinking core model, in ISM is assumed to be increase
up to a maximum of 67% by leaching at elevated
temperature. The recovery in SLS is maintained at 85%.
To achieve the increase in copper recovery in ISM,
additional technology will be required to heat the
leaching solution. 

Table IX shows the summary of the economic indices
estimated for the conventional and ISM cases.

As shown in Table IX, the NPV of the SLS case study is
less than that for ISM. The registered NPVs for ISM are A < B
< C; Case B considers an accelerated mine plan (a greater
tonnage of ore must be blasted and irrigated per year than in
case A), and the life of mine is shorter. This results in the
cash flow being less affected by the discount rate. A greater
NPV is achieved in case C due to the increase in the leaching
kinetics by heating of the leaching solution. 

The capital expenses of ISM are less than those estimated
for conventional mining. ISM considers leasing of mining
equipment as is less hauling- and loading-intensive than
SLS. The increases of CAPEX in cases B and C are due to the
larger number of stopes required in a shorter period of time
(case B) and additional technology required in the processing
plant (case C). 

Based on the results, to optimize the NPV of the project, it
is essential to improve control of the parameters that affect
copper recovery. This can be achieved, for example, by
increasing the surface area of the mineral in contact with the
leaching solution by blasting to increase fragmentation,
increasing the temperature or the aeration, and increasing the
activity of leaching microorganisms. There will be a trade-off
between increased recovery of copper over time and increased
operational cost. 

�
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Table IX

Conventional 1000 10.9 0.85 64.4 60.95 0.95 27 1.39 10
ISM case A 1000 Variable Max. 60% 23.1 62.05 2.68 37 1.19 14
ISM case B Variable 10.9 Max. 60% 27.5 87.45 3.19 62 1.07 10
ISM case C 1000 Variable Maax. 67% 24.8 94.28 4.07 60 1.12 11



As shown schematically in Figure 12A, the increase in
the OPEX of ISM (heating of solutions or more extensive
drilling and blasting) increases the recovery of copper over
time. This effect was observed in case C. The rise in OPEX
will have a negative impact on the NPV (Figure 12B).
Considering the effects of operational expenditures and that
the copper recovery does not increase steadily over time, the
ratio of OPEX to copper recovery will decrease as maximum
recovery is approached. 

Based on Figure 12, Figure 13 shows the NPV–OPEX
relationship for ISM. Unlike conventional mining, the
increase in OPEX will results in a higher NPV for ISM (green
zone) as a consequence of higher copper recovery over time.
However, the OPEX/recovery ratio will increase when a
slower leaching kinetic is reached or maximum recovery of
copper is achieved. When the increase in the OPEX adversely
affects the net value, the project’s NPV will be negatively
affected (red zone). The maximum recovery rate depends on
several factors, such as mineralogy and the operational
parameters considered in the project.  

A laboratory model and an experimental protocol to evaluate
in situ mining (ISM) were developed. These allowed a
preliminary estimate to be made of the recovery of copper
from sulphide deposits. The model design allowed
compression and extraction of the mineral sample contained
in the leaching column as well as the application of aeration
to the ore sample and heating of the leaching solution. The
experimental parameters used for air flow and the irrigation
rate were taken from the literature, while the size distribution
was arbitrarily defined. To evaluate the efficiency of leaching
for a given deposit, the post-blasting size fragmentation
should be considered in the experimental evaluation.

The results of the experimental test work showed that
increasing the material density reduced the copper recovery
on average by 24.8%. Thus, ignoring the effect of
compression may lead to overestimation of the copper
recovery in an ISM operation. With respect to the mineral
extraction operation, only the base case showed an increase
in the copper recovery. Further studies should be conducted
to assess the benefits of, for example, improving the
permeability, on recovery. Increasing the temperature of the
leaching solution as well aeration of the model through the
gallery improved the copper recovery in comparison to the
base case by 49.7% and 69.8% respectively. Stope ventilation
and heating of the leaching solution should therefore be
economically evaluated. In relation to the shrinking core
model, a similar kinetic behaviour was observed in the

leaching of the copper sulphide samples, where the kinetic
data best fitted the diffusion-controlled reaction in all the
study cases.

According to the economic evaluation, ISM effectively had
lower mining and processing costs and required lower
investment than the conventional mining case. In the case
studied, with a maximum metallurgical recovery of 60%, ISM
and SLS present a NPV of approximately US$61–62 million.
By accelerating stope development and irrigation of the ore,
the NPV reaches US$87.4 million, representing an increase of
40.9% for ISM. On the other hand, the acceleration of
leaching kinetics at elevated temperature results in a NPV of
US$94.3 million, an increase of 51.9%. According to the
economic index and the sensitivity analysis, the NPV of ISM
is more sensitive to metallurgical recovery than to costs. This
makes it possible to maximize the project NPV by increasing
the copper recovery, even when this results in increased
operational and capital costs. However, the relation between
costs, recovery, and NPV is neither constant over time nor
equivalent among different mineral deposits, since it will
depend on the leaching kinetics. The relationship between
these variables will not be persistent since the achievable
recovery is subject to an upper limit. The maximum OPEX
and CAPEX that lead to a profitable increase in metallurgical
recovery should be calculated for each case to establish the
cost limits under which it is possible to optimize the benefit
of the ISM method.
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CAPEX Capital expenditure
ISL In situ leaching
ISM In situ mining
IRR Internal rate of return
NPV Net present value
OPEX Operating expenditure
PLS Pregnant leach solution
SLS Sublevel stoping
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Knowledge of coal quality properties (ash,
sulphur, moisture, and heating value) is one of
the key aspects for mines and power plants.
Modern mines invest time and economic and
technological resources in order to manage
coal quality for final use in power plants. Since
the coal market is characterized by the need
for a uniform product of particular specifi-
cations (Keleher et al., 1998), it is critical that
the delivered product meet the quality
requirements imposed by contracts. Oman et
al. (2001) state that boiler efficiency at power
plants is affected mainly by the changes in
coal quality. Therefore, coal quality
management is a fundamental concern.

In order to deliver a uniform product,
mines usually use coal blending in order to
homogenize mixtures of coal in such a way
that the properties of the final blend satisfy
particular specifications. Coal blending is also
called coal mixing (Arnold and Smith, 1994).
Mines blend coal to not only meet the
customer’s requirements, but also to optimize
the life of their high-quality reserves (Reeves,
1995).

Coal blending can be performed at the
mine site, on stockpiles, and in bins, bunkers,
and silos (Arnold and Smith, 1994). There are
a number of techniques that enhance the
blending process, such as different ways of
storage (circular stockpiles, longitudinal
stockpiles), different procedures for stacking,
and different processes of reclaiming. Wolpers
(2014) indicates that stockpile homoge-
nization systems equalize variations in
chemical and physical properties of the raw
materials and transform low-quality grades
into a uniform mixture of higher material
quality. Therefore, there is a need to know coal
quality before stacking coal at the stockpiles so
that potential problems can be blended out
(France, 1999). Schott (2004) also stated that
input properties of coal are a main factor for
performance of homogenization of bulk
materials in mammoth silos.

Blankenship (1995) used online coal
quality data for fuel analysis in order to obtain
better coal blending. The fundamental
components of online coal quality studies are
coal analysers, and they are employed in
monitoring, blending, or sorting applications
(Laurila, 1995). An example of integration of
online coal analysers and a control algorithm
is given by Ganguli et al. (1998). Prompt
gamma neutron activation analysis (PGNAA)
is considered to give the best online analysis
precision for reporting coal parameters such as
ash, moisture, sulphur, and heating value, by
determining the concentration of primary
elements (France, 1999).

Coal quality management model for
dome storage (DS-CQMM)
by M.A. Badani-Prado*, V. Kecojevic*, and D. Bogunovic†

Coal quality (ash, sulphur, moisture, and heating value) is one of the
fundamental concerns for both coal mines and power plants. In order to
deliver uniform coal quality to the power plant, there is a need for real-
time monitoring of coal quality from the mine to the coal stockpiles. The
specific problem represents the process of stacking the coal inside an
enclosed facility such as a dome. The objective of this research was to
develop a custom-made and integrated coal quality management model for
dome storage (DS-CQMM). The DS-CQMM merges existing technology in
surface mines, such as coal analysers, together with automation
technologies, information technologies (IT), and mathematical models.
The DS-CQMM is organized into four major sections: Delay Time
application, Stacker application, Reclaimer application, and Live Stockpile
application. A sub-process called Volume Calculation is embedded in
Stacker application, while an additional feature called Forecast tool is
included in the Reclaimer application. The DS-CQMM model was developed
for a surface coal mine in the southern USA.
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Coal quality management model for dome storage (DS-CQMM)

An example of the importance of coal management is
demonstrated by a mine in central Mississippi, which
provides coal to a 440 MW power plant. The mine experi-
mented with multiple coal quality analysers in order to find
an accurate and reliable solution. The mine and adjacent
power plant were challenged with quality deliveries;
therefore, a suitable solution was to acquire coal analysers
that would ensure that the product delivered to the power
plant did not exceed a certain ash content. A dual gamma ash
gauge was installed, with an associated microwave moisture
meter to monitor coal quality. At first, the results were
encouraging, but soon the operators found that the variation
in coal flow rate was causing disparities in ash and moisture
results. Additionally, the performance of microwave moisture
meters is diminished with an increase in moisture concen-
tration, and coal operators are wary of using them where
moisture exceeds 30% (Foster and Heger, 2014).  Due to
these problems, the dual gamma ash gauge was removed
from service. According to the mine and power plant
operators, two lessons were learned from this experience:
‘Real-time coal quality data is extremely valuable, but
incorrect real-time data is worse than no real-time data at all.’
The mine then addressed the problem by installing PGNAA
analysers on the conveyor belt system. The analysers were
used to monitor coal flow to the silos and boilers in such a
way that if low-quality coal was arriving, control room
operators could make adjustments to the blend ratio,
depending on the real-time data retrieved from the analysers
(Foster and Heger, 2014). However, since silos were used
only for temporary storage, the entire system had limited
impact on the blending process and therefore on the final
quality of the coal being delivered.

A power plant near Castle Dale, Utah used a coal analyser
to control the ash fusion temperature of the coal blend
(Snider et al., 2005). Low ash fusion temperatures were the
primary cause of slagging and unplanned outages. Engineers
from the plant studied the relationship between certain coal
ash minerals and the softening temperature of the ash, and
developed formulae that estimated the ash-softening temper-
atures of the coal blend as a function of the ash components.
They realized that PGNAA analysers could help determine the
chemistry of the six major ash components and the ash-
softening temperature (Snider et al., 2005). The analyser
monitors blend coal conveyed from the stockpiles to the
screening transfer building and then to a second transfer
tower, which is connected to the storage barn (Snider et al.,
2005). This solution was effective in dealing with ash
challenges and led to reduced slagging, but lost generation
and frequency of forced outages indicated that the rest of the
quality tags should be given more attention.

According to Woodward (2008), the number of analysers
purchased by utilities is growing. This shows that the coal
mining industry has realized the advantages of using
analysers for quality management purposes.

France (1999) investigated the utilization of coal
analysers in a coal management system already installed in a
coal mine. The coal analysers automated the data with a two-
dimensional image of the stockpiles by accepting the coal
quality data into stockpiling modelling software. The software
allows users to visualize and analyse the coal stockpile
stacked by the stacker/reclaimer. The model also provides the

ability to predict the quality of the coal in case of reclaiming a
specific area of the stockpile. The stockpile management
system provides a visual output that allows graphic analysis
of the content of ash and sulphur in the stockpile. This is an
example of how online coal analysers can enhance the
automation of coal quality management using computer
technologies. Nonetheless, to the best knowledge of the
authors, the visual output shows only two quality parameters
(ash and sulphur) of the stacked coal.

There is a lack of real-time coal quality management
models for dome storage. The specific problem represents the
process of stacking the coal inside the enclosed facility such
as a dome.  This process generates the unique geometry of
the stockpile due to the physical constraints caused by the
circular shape and walls of dome and height and length of
stacker. The reclaiming process also creates a particular
shape of stockpile. The specific challenge to the mine is to
know spatial distribution of coal quality parameters, volume,
and tonnage in such a stockpile.

The objective of this research study was to develop a
user-friendly interface for a coal quality management model
for a dome storage (DS-CQMM) by using existing
technologies in a surface coal mine in southern USA, merging
automation technologies with information technologies (IT)
and mathematical modelling. Specific aims were as follows:

i Create multiple user-friendly applications based on the
Windows® OS for the process of stacking and
reclaiming coal flow into a dome storage

ii Establish the connection between the applications, the
coal analyser, and the distributed control system (DCS)
room databases in order to retrieve and store necessary
data for building a DS-CQMM model

iii Develop an algorithm for retrieving data from the DCS
room database containing the velocities of different
conveyor belts, and calculate the time remaining for a
given batch of coal coming from the crusher and belt
conveyors to the boom of the stacker inside the dome

iv Formulate a three-dimensional mathematical model for
developing a stacking algorithm that will assign shape
and relative position of the coal stockpile inside the
dome

v Create an algorithm for calculating the coal volume that
is being stacked into the dome and assign quality
properties for presenting values in tons for the user
interface

vi Formulate a mathematical model for developing a
reclaiming algorithm that will show the operator the
different ranges of values of different quality tags of
the remaining coal inside the dome (in addition, it
needs to show the remaining shape of the coal stockpile
after reclaiming

vii Build a tool that implements a set of tables with
numerical values of coal quality and tonnage for
forecasting future reclaiming processes

vii Develop multiple simulators for each created application
in order to test the model.

The proposed technical approach for the development of the
DS-CQMM is based on the technological process designed at a
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surface coal mine operated by one of the largest coal
companies in the USA. Figure 1 shows the basic concept of
the system and the flow of the coal from the dumping point
to the dome. The system consists of a hopper, crusher, coal
analyser, conveyor belt system, transfer towers, dome,
stacker, reclaimer, and emergency reclaimer. 

Truck (a) dumps the coal through the hopper (b) into the
crusher (c). Crushed coal is transported by the belt conveyor
1 (e) to the transfer tower 1 (f) and belt conveyor 2 (g) and
then to transfer tower 2 (h), which is designed to direct coal
to either the emergency stockpile, power plant silos, or dome
(j). The process at the transfer towers is conducted by the
actuation of fast-acting proportional flop gates located on the
towers. Coal quality and timestamps are recorded by the coal
analyser (d), which is located above the belt conveyor 1 (e).

The coal flow directed to the dome (j) by the belt conveyor 3
(i) is delivered to the stacker (k). The boom of the stacker (k)
rotates and steers the coal to its final location through a
built-in belt conveyor (l). Finally, the coal is retrieved by the
reclaimer (m) and transported outside the dome to the silos
located at the power plant. In addition to the reclaimer (m),
an emergency reclaimer (n) is installed at floor level in order
to reclaim coal in case of the reclaimer’s (m) failure or
maintenance.

The PGNAA coal analyser provides coal quality
information in real time, every minute for each batch of coal.
A stacker stores the coal inside the dome and has one degree
of freedom in the rotational (azimuthal) angle. A reclaimer
that reclaims coal from the dome has two degrees of freedom:
one in the rotational angle, and the other one in the elevation
angle. Ultrasonic sensors are used for measuring the level of
the coal stockpile, and encoders for determining the angular
position of the stacker and the angular position and elevation
of the reclaimer.

Figure 2 shows the concept of the DS-CQMM that is
developed through this research. This model is organized into
four major sections: (i) Delay Time application; (ii) Stacker
application; (iii) Reclaimer application; and (iv) Live Stockpile
application. A sub-process called Volume Calculation is
embedded in the Stacker application, while an additional
feature called Forecast tool is included in the Reclaimer

Coal quality management model for dome storage (DS-CQMM)
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application. All sections are related to each other in such a
way that the data must be sequentially generated so that the
DS-CQMM works properly in a specific coal mine.

One of the most important components of the DS-CQMM
is database synchronization. All applications are designed to
retrieve, parse, and store values from and into the three
different databases and their tables. These databases include:
‘Coal Analyser’ database, ‘DCS’ database, and ‘DS-CQMM’
database. Figure 3 shows the structure of these databases
and their tables that are needed for a proper performance of
the DS-CQMM. 

Coal has to be transported between the coal analyser (starting
point of the system) and the final point inside the dome. The
coal analyser provides the instantaneous quality input of the
current batch of coal that is passing under the detector at the
beginning of the first belt conveyor. Therefore, it is necessary
to know, for each batch, what its quality tags and timestamp
are, and when will it reach the boom of the stacker in order to
assign the angular position of the boom and the quality tags.

Mine operators can set and change the velocities of each
belt conveyor, and this is achieved by the variable frequency
drives (VFDs). After setting or changing the velocities, the
DCS will retrieve the values from the programmabler logic
controllers (PLCs) and store them along with a timestamp
into the DCS database.

By accessing the DCS database, belt conveyor velocities
can be queried every second or less to compare them with
previous values and observe whether the belt conveyor has
changed its velocity. Along with this information, querying
the Coal Analyser database, and the absolute time from the
DCS database clock, one is able to program a routine that
calculates the coal delay time. For example, if it is supposed
that there is only one batch of coal being transported from
the coal analyser to the dome, its trajectory can be analysed
along the belt conveyor system, the two towers, and finally

the boom of the stacker. First, the coal is analysed by the
PGNAA at the beginning of the conveyor system. Then, it is
carried by the belt conveyor 1 and, depending on its velocity,
it takes a certain time to travel along this conveyor. After
that, it passes through the transfer tower 1 and it is directed
towards belt conveyor 2. This process takes a fixed time. It is
then carried through belt conveyor 2, transfer tower 2, and
belt conveyor 3, repeating the described process. When the
coal reaches the dome, it takes a certain time to be
transferred to the stacker from belt conveyor 3. This can be
considered as a delay time similar to the transfer tower’s
delay time. Finally, the stacker’s belt conveyor meets the
same criteria as the other belt conveyors. Once the batch of
coal has reached the boom of the stacker, it is ready to be
stacked inside the dome.

The process of the Delay Time application starts
‘attaching’ the quality tags to the batch of coal during
transportation through the conveyor system. In this way, a
query to the Coal Analyser database is performed and stored
into local memory. By retrieving the belt conveyors’
velocities, the Delay Time application calculates the time a
batch of coal takes to be transferred from the coal analyser to
the boom of the stacker inside the dome. When the coal
reaches that point (i.e. when the coal is at the boom of the
stacker and is ready to be stacked), the coal quality
information with its timestamp is passed to the next
application for further analysis and database storage.

Mine operators need to know and visualize the actual
quantity (volume and tonnage), location, and properties
(heating value, moisture, ash, and sulphur) of stacked coal
inside the dome. In order to accomplish this task, the first
step is to determine the angular position of the boom of the
stacker inside the dome. This enables the assignment of a
relative position to the coal inside the dome, along with its
particular properties. For this purpose, absolute rotary
encoders record the angular position of the boom of the
stacker into the DCS database through the PLCs. This is then
retrieved by the Stacker application in order to build the
virtual stockpile. Another important piece of information is
the height of the stockpile, which is measured by an
ultrasonic sensor located at the boom of the stacker. This
value is stored into the DCS database.

The geometry of the dome and coal stockpile is designed
by using trigonometry equations. Discretization is conducted
by a three-dimensional method using the cylindrical
coordinate system. This ad-hoc model considers the ground
of the dome as reference plane and the centre of the base
circumference as the origin of the coordinate system.
Discretization of the dome is performed as follows (Figure 4):

� Polar axis ( ): the dome is divided into 360 equal parts,
each one corresponding to one degree on the angular
coordinate. This is performed in order to retrieve the
rotational angle of the boom of the stacker and the
rotational angle of the reclaimer from the DCS database
with a resolution given by the PLCs of one degree 

� Radial axis ( ): the dome is also divided on the radial
coordinate, forming concentric circumferences with 
0.3 m (1 ft) of radius-length difference. The
discretization on this axis provides the third dimension 

�
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� Longitudinal axis (z): the dome is divided on the
longitudinal axis into 90 equal parts with 0.3 m (1 ft)
of distance. Since the maximum height of the coal
stockpile is 26 m (85 ft), there is no need to extend the
division further than 27.4 m (90 ft).

The model for the coal stockpile in the Stacker application
is based on the following assumptions: (i) the stockpile’s
shape is approximately pyramidal; (ii) the analysis is
performed in a plane that ‘cuts’ the pyramid in half; and (iii)
the analysis is conducted in a two-dimensional plane. These
three assumptions simplify the mathematical modelling and
make analysis feasible.

The first assumption is made because of the admissible
approximation between the shape of the coal stockpile and
the shape of the pyramid observed in perpendicular planes.
The stockpile’s peak is located at a given (and constant)
distance from the centre of the dome. Using this information,
the second assumption is formulated. Since the stockpile’s
height and stacker’s angular position are key inputs of the
DS-CQMM, the location of the stockpile’s peak seems to be a
reasonable main reference for the mathematical model and
further graphical user interface (GUI). Therefore, the plane
where the radius for the stockpile’s peak is constant ( = peak

= constant) is used for developing the model. The third
assumption is an extension of the second assumption, i.e.
given that the plane of study results in a cylindrical shape, it
can be ‘unfolded’ and the mathematical model developed in a
conventional plane with angle measurements in the abscissae
and height measurements in the ordinates. Additionally, the
mathematical model needs a point as an absolute reference
(origin). At that point, angles 0° and 360° concur,
establishing a rotational symmetry (Figure 5).

Since the dome is discretized in three dimensions, then
the stockpile can be built as a pyramid and one can calculate
the volume based on geometrical shape. Recall that the
divisions are performed on the three axes ( , ,z) at given
distances. A closer observation of the resulting unit division
of the intersection of these three divisions allows us to find
the primary unit of volume, which is shown in Figure 6.
Sides a and b measurements are each 0.3 m (1 ft) in length.
Side c has no linear shape because it depends on the position
of the prism, being larger if it is located farther from the
centre of the dome. In other words, side c depends on the
radius; therefore, there are two measurements of this side in
each prism, therefore their average is taken for calculations.

The shape of the actual stockpile is plotted on the screen
by querying the DS-CQMM database so the mine operator can
know the actual shape of the coal stockpile inside the dome.
Simultaneously, the screen shows an update of the remaining
time until the next batch of coal along with its quality tags

will arrive to the boom of the stacker. This enables the
operator to rotate the boom of the stacker to a specific
location in the dome. This is achieved by using the Delay
Time application that queries the Coal Analyser database.

The Stacker application retrieves the angle of the boom of
the stacker from the DCS database along with the height of
the stockpile measured after the stacking process. The
rotational angle and the stockpile’s height are the key inputs
for this application. After retrieving these measurements, the
Stacker application calculates and generates data that is
finally stored into the Stacker and Dynamic tables in the DS-
CQMM database.

The stockpile’s shape is plotted in a plane that follows the
criteria explained in Figure 5 where a plane ( z) is extracted
from the dome at a constant radius. Along with the quality
tags, the Stacker application assigns the corresponding
tonnage to each block using the volume and coal density. 

One of the objectives of the DS-CQMM was to develop a user-
friendly interface for determining the coal quality distribution
inside the dome. Therefore, the Reclaimer application should
have a configuration that allows the operator to navigate
through the applications with minimal training. The
Reclaimer application should also be able to obtain the correct
inputs in order to show the previous and later status of the
coal stockpile at the reclaiming process. In addition,
numerical values of different coal quality tags should be
available in tables for more accurate studies and analysis.
Since the dome is used for storing purposes, the operator
should be able to observe how much coal can be reclaimed,
from which point of the dome, and the average of each
quality tag that the reclaimed coal would have. All these
objectives are achieved with the Reclaimer application and
the Forecast tool.

The Reclaimer application shows the actual state of the
coal stockpile inside the dome using the same interface
layout as the Stacker application; which means that the
interface is implemented in a two-dimensional plane where
the radius of the peak of the stockpile is located. The operator
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has three options while the shape of the stockpile is being
displayed: (i) to see the distribution of the different coal
quality tags of the stockpile differentiated by colours; (ii) to
perform the reclaiming process; and (iii) to start the Forecast
tool.

The Forecast tool shows interactive tables; by selecting
different cells or range of cells, the operator can display
different values of coal quality and tonnage.

The operator is able to observe the coal quality distri-
bution of the actual stockpile differentiated by colours. These
colours are associated with a range of values for each quality
tag. In other words, different ranges of coal quality are shown
by colours for each coal quality tag following the actual shape
of the stockpile.

The program retrieves the values of the different coal
quality tags along with their position from the dynamic table
in the DS-CQMM database so that the operator can decide
which of the quality tags (ash, heating value, moisture, or
sulphur) will be shown in the display area.

The process of plotting the quality distribution is the
same for all tags. First, ranges of quality are set for each
colour. Then, each point’s quality value is compared with the
ranges and the program decides which colour is assigned to
that particular point. Finally, points are plotted into the
display area.

It is important to recall that the points plotted correspond
to the blocks located in the plane = peak (i.e. the stockpile’s
peak radius). This situation is similar to the Stacker
application where the two-dimensional implementation was
performed. However, the database contains the entire data
from the stockpile stored for every block: the location ( , ,z)
of the block, its quality tags, and the tonnage.

For this particular section of the DS-CQMM, three inputs
are needed: initial angle of the reclaiming process ( s), final
angle of the reclaiming process ( f), and final angle of the
reclaimer after the reclaiming process ( ).

For historical records, the program stores the reclaimed
coal properties and tonnage divided by blocks into reclaimer
and dynamic tables in the DS-CQMM database; it then deletes
the blocks that are located above the line defined by the
reclaimer angle ( ) from the Dynamic table in the DS-CQMM
database.

It is important to recall that the Dynamic table is used as
a bridge table between the Stacker and Reclaimer tables. This
table contains the actual state of the dome’s stockpile. In that
sense, the blocks corresponding to reclaimed coal are deleted
from the Dynamic table but not from the reclaimer table.

The process of calculating the height and deleting the
points above is repeated for every radius point k at every
angle k contained in the s, f range.

The final shape of the stockpile is shown in the Reclaimer
application display area after the reclaiming process. It
corresponds to the plane where the radius is constant ( =

peak); however, there is coal stacked above that height
‘behind’ that plane. This is not reflected at the application
display area, but remains stored in the DS-CQMM database
and is reflected in numerical values at the Forecast tool.

Reclaimer application is a useful tool for graphical
determination of coal quality distribution inside the dome. It
gives the operator a good approximation of quality values
and relative position of the stacked coal. However, it is

necessary to obtain numerical values of coal quality data for
different purposes such as forecasting, mine planning,
blending, etc. The Forecast tool is developed for giving the
operator information about the numerical values within a
given range of angle and height for each coal quality tag,
presented in tables. It also gives the operator a quick
reference of average values of all the quality tags by selecting
specific cells. Each quality tag and tonnage includes its own
table of values that are shown on a display grid. These tables
are divided using the same concept as used for Stacker and
Reclaimer applications, i.e. by angles on the abscissae and
heights on the ordinates. The user can select one of the
following tables: Ash; Heating Value; Moisture; Sulphur; or
Tonnage. The average values of the selected quality tag are
shown in the table within a range of angles and heights.

The Forecast tool provides a dynamic way to obtain
quality tag averages and a total summation of the tonnage of
selected cells. The program obtains the initial and final value
of the angle by retrieving the initial and final selected
column. Once these values are obtained, it queries the
Dynamic table in the DS-CQMM database for retrieving the
averages and summation values.

After selecting the table of interest (i.e. any quality tag or
tonnage table), the operator can select any range of cells from
the table and the Forecast tool provides the averages and
summation of the rest of the quality tag values. This flexible
tool provides the user with the ability to forecast the
reclaiming process based on one decision variable and to
know the value of the rest of the variables in the system in a
dynamic way.

The emergency reclaimer is installed at the dome’s ground
level. This reclaimer is designed to work when the mobile
reclaimer is undergoing  maintenance or suffers a possible
failure. It is located at 290° from the origin and the area of
the live stockpile covers from angle 200° to angle 360°
(Figure 7).

The coal will spend less time in this area of the dome
than in the rest of the dome. In fact, the quantity of coal
stored in the live stockpile increases and decreases
constantly. By locating the stacker at angle 290° and
activating the emergency reclaimer, this stockpile will
dynamically change its shape.

�
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Above the emergency reclaimer, an ultrasonic sensor is
installed in order to provide the value of the stockpile’s
height constantly. In this way, the Live Stockpile application
can retrieve that value from the DCS database in order to
build the model.

The Live Stockpile application consists of a stacking part
and reclaiming part. The operator decides what action is
taken by switching between different available options:
stacking, reclaiming, or coal quality display.

The Coal Quality Distribution display functions in the
same way as in the Reclaimer application. This process
shows the quality tags distributed within the coal stockpile
differentiated within quality ranges by different colours. It is
performed in the z plane where the radius is constant and
coincides with the radius of the peak of the stockpile (i.e. =

peak). The difference is that coal quality distribution is shown
in this section from angle 200° to angle 360°.

For implementation of the stacking part on the Live
Stockpile application, the same inputs (i.e. stacker angular
position ( 0) and stockpile height (z0)), and same volume
calculation concepts as Stacker application are used. The data
generated is also stored in Stacker and Dynamic tables in the
DS-CQMM database. Additionally, this section includes the
same graphical outputs as the Stacker application.

The display area shows the shape of the actual coal
stockpile in a plane z where the radius is constant and
coincides with the radius of the peak of the stockpile (i.e. =

peak).
Although the concept and development of the stacking

part in the Live Stockpile application is similar to the Stacker
application, the reclaiming concept and development is
completely different. In the Reclaimer application, the
reclaimer performs the reclaiming process on the surface of
the stockpile. In other words, it reclaims from top to bottom
and from side to side. In this case, the emergency reclaimer is
located in a fixed position at ground level and reclaims from
the bottom and from only one point of the stockpile. These
are opposing concepts.

The reclaiming process at the live stockpile can be
compared with an hourglass when it is running empty. The
shape of the remaining stockpile will contain a hole with a
shape of an inverted pyramid. 

For implementation of the mathematical model, it is
necessary to build an inverted pyramid that works as the
reclaimed volume by the emergency reclaimer. For that
purpose, the mathematical model is implemented on plane z
where the radius is constant and coincides with the
stockpile’s peak radius ( = peak). The width of the
emergency reclaimer is also taken into consideration for
accuracy.

The length of the emergency reclaimer is considered in
the third dimension (i.e. z plane). The influence of the
emergency reclaimer’s length on the live stockpile is reflected
in the reclaiming process: the remaining stockpile has a dead
volume originated by the emergency reclaimer’s length. The
dead volume has a triangular shape in plane z determined
by the angle of repose of coal ( ). 

It should be noted that the DS-CQMM model was designed for
a US-based surface coal mine and all units in Figures 8–16

are given in US units. However, in the text of this paper, all
these units were converted to the metric system.

The screen of the Delay Time application test program is
shown in Figure 8. The actual delay time (g) in seconds and
the calculated delay time (f) are shown for each belt
conveyor. The scroll bar (e) can be used to increase or
decrease the velocity rate of the belt conveyor with ranges
between 1.52 m/s (5 ft/second) and 3.35 m/s (11 ft/second)
with increments of 0.3 m/s (1 ft/second). The velocity for
each belt conveyor can be changed independently. The
transfer towers are represented by a labelled square (c) that
contains the actual residence time of coal (d) inside the
tower. Raw data retrieved from the Coal Analyser database
(k) is passed to the next stage for further analysis and
processes. The total time that coal remains on the conveyor
belts and in the towers (h) is the summation of all final delay
times. The program starts by activating the ‘Start’ button (i),
and closes database connections and the delay time
applications through the ‘Close’ button (j).

The two key inputs of the Stacker application ( 0 and z0)
are shown as keyboard inputs. In the mine, these two inputs
are retrieved automatically from the DCS database.

Suppose that a stacking process is taking place. The
boom of the stacker is positioned at angle 65° and coal is
stacked until the stockpile reaches the maximum height, 26
m (85 ft). The boom of the stacker then rotates to angle 70°
and later to 75°, and stacks coal up to 26 m (85 ft). It is
important to emphasize that the rotational angle of the
stacker ( 0) is stored in the DCS database by the PLC and the
height of the stockpile (z0) is measured by the ultrasonic
sensor and stored in the same database.

In case the operator decides to stack coal in a different
location than the continuous stockpile, because the quality
has a given characteristic or for any other reason, the Stacker
application is able to build that stockpile. Figure 9 shows the
final shape of the stockpile with coal stacked at 160° and 20°
up to the maximum height. It should be noted that the left-
hand branch of the stockpile does not overlap the existing
branches.
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Integration between the Stacker application and the Delay
Time application is implemented in order to allow the
operator to know the exact time remaining for that particular
batch of coal to reach the boom of the stacker. This feature
provides an extra benefit to the stacking process.

The ‘Start’ button that initiates the timer and triggers the
queries is implemented for testing purposes; that action is
automatically started when new data is available from the
Coal Analyser database.

After stacking coal inside the dome, it is important to
know the range of coal quality and its location. It is also
important that the operators have an intuitive interface. For
that purpose, the Reclaimer application provides the location
of coal and, depending on the quality tag; it shows the range
of quality distribution differentiated by colours.

Additionally, the Reclaimer application provides
numerical values of coal quality, dividing the dome by angle
and height ranges and displaying them in a table. This is
implemented in a separate table for each quality tag and
tonnage so that when the operator needs to know or
‘forecast’ the other quality tags based on that table, all that is
required is to make a simple cells selection.

The example starts from the stockpile that has been
created with the Stacker application. When the Reclaimer
application is launched, it displays the actual shape of the
coal stockpile. The display area shares the same concept as
the Stacker application, where the stockpile is shown in two
dimensions on plane z where the radius is constant and
coincides with the radius where the peak of the stockpile is
located ( = peak).

Now that the stockpile’s actual shape is known, one can
see the distribution of coal quality on the chart. Four coal
quality tags are available in different colours for display. By
selecting the corresponding buttons, the Reclaimer
application displays the quality distribution associated with
the quality tag. Figure 10 shows distribution of the heating
value.

Once the operator decides what portion of the stockpile
will be reclaimed – either using a graphical (Reclaiming
application) or numerical (Forecast tool) approach – the
reclamation process is performed. After finishing reclaiming
coal, the Reclaimer application retrieves the required inputs
from the DS-CQMM and DCS databases and displays the
remaining shape of coal stockpile inside the dome. This is

shown in Figure 11, where the reclaimed coal has been
removed from the dome starting at angle 5° and ending at
angle 90° and where the final angle of the reclaimer ( ) is
30°.

The Forecast tool is used for a more accurate approach
and for an interactive way of calculating the average quality
of a specific portion of coal. This tool displays an expandable
menu where the quality tag tables are contained. Each table
consists of cells that show the calculated average of quality
within the range of angle and height that are shown on the
headers of rows and columns. There is also a table for the
summation of the tonnage using the same range division.

By selecting one of the tables, the Forecast tool queries
the Dynamic table in the DS-CQMM database and retrieves
the average of the quality within the ranges if the option
chosen is a quality tag, and retrieves the summation of the
tonnage within the range if tonnage is chosen.

The division ranges of the rows and columns of the tables
are performed as follows: angle divisions (every 20°) and
height divisions (every 1.5 m (5 ft)). These values could be
changed internally in the program code.

There is an essential difference between the graphical and
numerical approaches. The highest height value shown in the
charts for the stockpile is different, as shown in the tables.
This situation is explained as follows lines. Recall that the
GUI in two dimensions is developed in a plane that
corresponds to a constant radius coincident with the
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stockpile’s peak radius (i.e. = peak), and given that the
reclaiming process is performed in a perpendicular plane, it
cannot be completely reflected in the charts. However, this is
avoided in the tables where the database is queried for the
entire content of the dome. For this reason, the heights of the
stockpile in the charts and in the tables are not consistent
due to the existence of remaining coal ’behind’ the charts’
plane. That coal is stacked to a greater height than that
shown in the graphical approach.

The Tonnage table uses a different concept. Figure 12
shows that it shares the same layout as the Quality-tag
tables; the difference is that the queries against the DS-
CQMM database are different. The value displayed in cells is
a total summation of the tonnage contained in the ranges
shown in the headers of the rows and columns.

Assume that the operator needs to forecast a given
portion of coal for reclaiming and its location inside the dome
based on the quantity of coal. The Tonnage table should be
selected for starting the process. By selecting which part of
the dome’s coal will be reclaimed, the Forecast tool returns
the total value of tonnage and the average of the four coal
quality tags within the selected cells. Figure 13 shows a
forecast process (in the ‘Forecast’ square) by selecting a
range of cells.

The Live Stockpile application is a specific part of the
dome that covers the area from angle of 200° to 360°. The
emergency reclaimer is installed at ground level at angle of

290°. The live stockpile is characterized by its dynamic
behaviour of continuous stacking and reclaiming processes,
which increase and decrease its height regularly.

When the Live Stockpile application is launched, the
stockpile’s actual shape is displayed for the operator. Suppose
that coal has been stacked at angle 240° up to 26 m (85 ft).
Its height is measured by the ultrasonic sensor located at the
boom of the stacker and stored in the DCS database. At this
point, the blocks containing the tonnage and quality tags
created by stacking part of the Live Stockpile application are
stored in the Dynamic and Stacker tables in the DS-CQMM
database.

If one assumes that the boom of the stacker moves to
angle 290° (which is the position where the emergency
reclaimer is installed) and stacks up to 26 m (85 ft), which is
the maximum height designed to be stacked inside the dome,
the shape of the stockpile is created and its quality tags are
as shown in Figure 14. The quality distribution display part
of this application is similar to the previous Reclaimer
application; it shows the distribution of the coal quality inside
the dome by selecting quality tags buttons. An example of
moisture distribution is shown in Figure 15.

This stockpile behaves dynamically, increasing and
decreasing its height constantly. An ultrasonic sensor is
installed above the emergency reclaimer at the dome for
measuring the live stockpile’s height, even if the boom of the
stacker is not located at this angle. If the operator activates
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the emergency reclaimer, the stockpile will decrease in height
due to reclaiming process. The ultrasonic sensor provides the
height and the Live Stockpile application builds the stockpile.
Figure 16 shows the shape of the stockpile after being
reclaimed to 12 m (40 ft). It has a flat zone due to the width
of the emergency reclaimer. The slope of the reclaimed part
has the same slope as the rest of the stockpile, which is the
angle of repose of coal ( ).

It is important to note that, along with the final shape of
the stockpile, the numerical values of the average of the
quality tags and the total summation of the tonnage of the
reclaimed coal are shown. 

The coal quality management for dome storage (DS-CQMM)
model developed through this research provides a graphical
and numerical distribution of coal quality and its relative
position inside the dome by integration of a variety of
technologies. Mathematical models for different DS-CQMM
applications were developed and interaction between these
applications and databases was established. Algorithms for
three-dimensional assignment of coal properties during the
stacking process and reclaiming process based on the
reclaimer’s operations were developed, and a useful tool to
forecast coal reclaiming process was designed.

This model can be helpful in the process of managing coal
quality as follows: 

� Storing coal inside the dome is an advantage for
reclaiming purposes. If the mine needs a specific
tonnage with a specific quality in a relatively short
time-frame, then a dome with an appropriate quality
management system is enormously helpful

� If we know the quality of the coal stored inside the
dome and, most importantly, where it is stored and
how many tons are available, then the process of
blending the coal incoming from the mine and retrieved
from the dome can be accomplished.
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2016
31 July–3 August 2016 — Hydrometallurgy Conference 2016
‘Sustainable Hydrometallurgical Extraction of Metals’ in
collaboration with MinProc and the Western Cape Branch
Belmont Mount Nelson Hotel, Cape Town
Contact: Raymond van der Berg
Tel: +27 11 834-1273/7, Fax: +27 11 838-5923/833-8156
E-mail: raymond@saimm.co.za, Website: http://www.saimm.co.za

8 August 2016 — South African Underground Coal
Gasification Association
2nd Underground Coal Gasification Network Workshop
CDH Sandton, Johannesburg
Contact: Shehzaad Kauchali
Email: shehzaad.kauchali@wits.ac.za
Website: http://www.saucga.org.za

9–12 August 2016 — Thirty Third Annual International
Pittsburgh Coal Conference 2016
International Convention Centre, Cape Town, South Africa
Contact: Raquel (South Africa)
Tel: +27 11 475-2750 or +27 82 509-6485
Email: pcc@@ap22ude.co.za
Contact: H.M. Peck (International)
Tel: +1(412) 624-7440, Fax: +1(412) 624-1480
Email: ipcc@pitt.edu, Website: http://www.pccpitt.org

16–18 August 2016 — The Tenth International
Heavy Minerals Conference ‘Expanding the horizon’
Sun City, South Africa
Contact: Camielah Jardine
Tel: +27 11 834-1273/7, Fax: +27 11 838-5923/833-8156 
E-mail: camielah@saimm.co.za, Website: http://www.saimm.co.za

27 August–4 September 2016 — 35th International Geological
Congress
Cape Town, South Africa
Contact: Craig Smith
Tel: +27 11 492-3370, Fax: +27 11 492-3371
E-mail: craig.smith@gssa.org.za

31 August–2 September 2016 — MINESafe Conference
Striving for Zero Harm
Emperors Palace, Hotel Casino Convention Resort
Contact: Raymond van der Berg
Tel: +27 11 834-1273/7, Fax: +27 11 838-5923/833-8156
E-mail: raymond@saimm.co.za, Website: http://www.saimm.co.za

12–13 September 2016 — Mining for the Future 2016 
‘The Future for Mining starts Now’
Electra Mining, Nasrec, Johanannesburg
Contact: Camielah Jardine
Tel: +27 11 834-1273/7, Fax: +27 11 838-5923/833-8156 
E-mail: camielah@saimm.co.za, Website: http://www.saimm.co.za

12–14 September 2016 — 8th International Symposium on
Ground Support in Mining and Underground Construction
Kulturens Hus – Conference & Congress, Luleå, Sweden
Contact: Erling Nordlund
Tel: +46-920493535, Fax: +46-920491935
E-mail: erling.nordlund@ltu.se, Website:
http://groundsupport2016.com

19–21 October 2016 — AMI Ferrous and Base Metals
Development Network Conference 2016
Southern Sun Elangeni Maharani, KwaZulu-Natal, South Africa
Contact: Raymond van der Berg
Tel: +27 11 834-1273/7, Fax: +27 11 838-5923/833-8156
E-mail: raymond@saimm.co.za, Website: http://www.saimm.co.za

25 October 2016 — The Young Professionals Week, 
14th Annual Student Colloquium
Mintek, Randburg
Contact: Raymond van der Berg
Tel: +27 11 834-1273/7, Fax: +27 11 838-5923/833-8156
E-mail: raymond@saimm.co.za, Website: http://www.saimm.co.za

2017
9–10 March 2017 — 3rd Young Professionals Conference
Innovation Hub, Pretoria, South Africa
Contact: Camielah Jardine
Tel: +27 11 834-1273/7, Fax: +27 11 838-5923/833-8156 
E-mail: camielah@saimm.co.za, Website: http://www.saimm.co.za

9–12 May 2017 — 6th Sulphur and Sulphuric Acid 2017
Conference
Cape Town, South Africa
Contact: Camielah Jardine
Tel: +27 11 834-1273/7, Fax: +27 11 838-5923/833-8156 
E-mail: camielah@saimm.co.za, Website: http://www.saimm.co.za

25–28 June 2017 — Emc 2017: European Metallurgical
Conference
Leipzig, Germany
Contact: Paul-Ernst-Straße
Tel: +49 5323 9379-0, Fax: +49 5323 9379-37
E-mail: EMC@gdmg.de, Website: http://emc.gdmb.de

27–29 June 2017 —4th Mineral Project Valuation School
Mine Design Lab, Chamber of Mines Building, The University of
the Witwatersrand, Johannesburg
Contact: Raymond van der Berg
Tel: +27 11 834-1273/7, Fax: +27 11 838-5923/833-8156
E-mail: raymond@saimm.co.za, Website: http://www.saimm.co.za

2–7 October 2017 — AfriRock 2017: ISRM International
Symposium ‘Rock Mechanics for Africa’
Cape Town Convention Centre, Cape Town
Contact: Raymond van der Berg
Tel: +27 11 834-1273/7, Fax: +27 11 838-5923/833-8156
E-mail: raymond@saimm.co.za, Website: http://www.saimm.co.za

25–27 October 2017 — AMI Precious Metals 2017 
‘The Precious Metals Development Network (PMDN)’
Gauteng, South Africa
Contact: Raymond van der Berg
Tel: +27 11 834-1273/7, Fax: +27 11 838-5923/833-8156
E-mail: raymond@saimm.co.za, Website: http://www.saimm.co.za

INTERNATIONAL ACTIVITIES
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Company Affiliates
The following organizations have been admitted to the Institute as Company Affiliates

3 M South Africa

AECOM SA (Pty) Ltd

AEL Mining Services Limited

Air Liquide (PTY) Ltd

AMEC GRD SA

AMIRA International Africa (Pty) Ltd 

ANDRITZ Delkor (Pty) Ltd

Anglo Operations (Pty) Ltd

Arcus Gibb (Pty) Ltd

Aurecon South Africa (Pty) Ltd

Aveng Engineering

Aveng Mining Shafts and Underground

Axis House Pty Ltd

Bafokeng Rasimone Platinum Mine

Barloworld Equipment -Mining

BASF Holdings SA (Pty) Ltd

BCL Limited

Becker Mining (Pty) Ltd 

BedRock Mining Support Pty Ltd

Bell Equipment Limited

Blue Cube Systems (Pty) Ltd 

Caledonia Mining Corporation

CDM Group

CGG Services SA

Concor Mining

Concor Technicrete

Cornerstone Minerals Pty Ltd

Council for Geoscience Library

Cronimet Mining Processing SA (Pty) Ltd

CSIR Natural Resources and the
Environment (NRE)

Data Mine SA

Department of Water Affairs and Forestry

Digby Wells and Associates

DRA Mineral Projects (Pty) Ltd

DTP Mining 

Duraset

Elbroc Mining Products (Pty) Ltd

eThekwini Municipality

Exxaro Coal (Pty) Ltd

Exxaro Resources Limited

FLSmidth Minerals (Pty) Ltd 

Fluor Daniel SA ( Pty) Ltd

Franki Africa (Pty) Ltd-JHB

Fraser Alexander Group

Geobrugg Southern Africa (Pty) Ltd

Glencore

Goba (Pty) Ltd 

Hall Core Drilling (Pty) Ltd

Hatch (Pty) Ltd

Herrenknecht AG

HPE Hydro Power Equipment (Pty) Ltd 

IMS Engineering (Pty) Ltd

Ivanhoe Mines SA

Joy Global Inc.(Africa)

Kudumane Manganese Resources

Leco Africa (Pty) Limited

Longyear South Africa (Pty) Ltd

Lonmin Plc

MAGOTTEAUX (PTY) LTD

MBE Minerals SA Pty Ltd

MCC Contracts (Pty) Ltd

MD Mineral Technologies SA (Pty) Ltd

MDM Technical Africa (Pty) Ltd

Metalock Engineering RSA (Pty) Ltd

Metorex Limited

Metso Minerals (South Africa) Pty Ltd 

MineRP Holding (Pty) Ltd

Mintek

MIP Process Technologies

MSA Group (Pty) Ltd

Multotec (Pty) Ltd

Murray and Roberts Cementation

Nalco Africa (Pty) Ltd

Namakwa Sands(Pty) Ltd

New Concept Mining (Pty) Limited

Northam Platinum Ltd - Zondereinde

PANalytical (Pty) Ltd

Perkinelmer

Polysius A Division Of Thyssenkrupp
Industrial Sol

Precious Metals Refiners

Rand Refinery Limited

Redpath Mining (South Africa) (Pty) Ltd

Rocbolt Technologies

Rosond (Pty) Ltd

Royal Bafokeng Platinum

Roymec Global (Pty) Ltd

RungePincockMinarco Limited

Rustenburg Platinum Mines Limited

Salene Mining (Pty) Ltd

Sandvik Mining and Construction Delmas
(Pty) Ltd

Sandvik Mining and Construction RSA(Pty)
Ltd 

SANIRE

SENET (Pty) Ltd

Senmin International (Pty) Ltd

Smec South Africa

SMS group Technical Services South Africa
(Pty) Ltd

Sound Mining Solution (Pty) Ltd

South 32

SRK Consulting SA (Pty) Ltd

Technology Innovation Agency

Time Mining and Processing (Pty) Ltd

Tomra (Pty) Ltd

Ukwazi Mining Solutions (Pty) Ltd

Umgeni Water

Vietti Slurrytec (Pty) Ltd 

Webber Wentzel

Weir Minerals Africa

Worley Parsons RSA (Pty) Ltd



2016
� CONFERENCE

Hydrometallurgy Conference 2016 ‘Sustainable 
Hydrometallurgical Extraction of Metals’
in collaboration with MinProc and the Western 
Cape Branch
31 July–3 August 2016, Belmont Mount Nelson Hotel, Cape Town

� CONFERENCE
The Tenth International Heavy Minerals Conference 
‘Expanding the horizon’
16–18 August 2016, Sun City, South Africa

� CONFERENCE
MINESafe Conference Striving for Zero Harm
31 August–2 September 2016, Emperors Palace, Hotel Casino
Convention Resort, 

� CONFERENCE
Mining for the Future 2016 ‘The Future for Mining starts
Now’
12–13 September 2016, Electra Mining, Nasrec, Johannesburg

� CONFERENCE
AMI Ferrous and Base Metals Development Network 
Conference 2016
19–21 October 2016, Southern Sun Elangeni Maharani,
KwaZulu-Natal 

� COLLOQUIUM
The Young Professionals Week
14th Annual Student Colloquium
25 October 2016, Mintek, Randburg

2017
� CONFERENCE

3rd Young Professionals Conference
9–10 March 2017, Innovation Hub, Pretoria

� CONFERENCE
6th Sulphur and Sulphuric Acid 2017 Conference
9–12 May 2017, Cape Town, South Africa

� CONFERENCE
4th Mineral Project Valuation School
27–29 June 2017, The University of the Witwatersrand,
Johannesburg

� SYMPOSIUM
AfriRock 2017: ISRM International Symposium ‘Rock
Mechanics for Africa’
2–7 October 2017, Cape Town Convention Centre, Cape Town

� CONFERENCE
Precious Metals 2017 ‘The Precious Metals Development
Network (PMDN)’
25–27 October 2017, Gauteng, South Africa

SAIMM DIARY

For further information contact:
Conferencing, SAIMM

P O Box 61127, Marshalltown 2107
Tel: (011) 834-1273/7

Fax: (011) 833-8156 or  (011) 838-5923
E-mail: raymond@saimm.co.za

For the past 120 years, the
Southern African Institute of
Mining and Metallurgy, has

promoted technical excellence in
the minerals industry. We strive to
continuously stay at the cutting
edge of new developments in the
mining and metallurgy industry.
The SAIMM acts as the corporate
voice for the mining and
metallurgy industry in the South
African economy. We actively
encourage contact and
networking between members
and the strengthening of ties. The
SAIMM offers a variety of
conferences that are designed to
bring you technical knowledge
and information of interest for the
good of the industry. Here is a
glimpse of the events we have
lined up for 2016. Visit our website
for more information.

EXHIBITS/SPONSORSHIP

Companies wishing to sponsor

and/or exhibit at any of these 

events should contact the

conference co-ordinator

as soon as possible
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Fall Of Ground Early Warning Systems

The FOGLight and FOGStick 

early warning devices detect 

and warn mining crews of 

potentially unsafe conditions, 

helping to provide a safer 

working environment 

underground.

The FOGLight is installed in a 

hole drilled into the rock above 

an excavation. Once activated 

the unit fl ashes green until 

movement occurs to trigger the 

fl ashing amber warning light.

The FOGStick is installed 

between the fl oor and roof 

of an excavation to monitor 

closure in a working place.  

The FOGStick activates 

upon installation and can 

be removed at the end of 

each shift and stored safely 

until the next day. Highly 

visible green LEDs fl ash 

to confi rm that closure is 

within acceptable limits 

and these switch to 

fl ashing red LEDs if 

excessive closure occurs.


