Search for an Infrared Electro-optic Effect in a Thin $YBa_2Cu_3O_{6+x}$ Superconducting Film

A. C. Wint^a, Z. Zhang^b, and D. B. Tanner^a

^aDepartment of Physics, University of Florida, Gainesville, FL 32611-8440, USA

^bGeorge W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Ga 30332-0405, USA

We report on the effects of supercurrents on the ab-plane optical transmittance of a thin superconducting YBa₂Cu₃O_{6+x} film in the 40–350 cm⁻¹ (5–44 meV) frequency range, and at two temperatures 40 and 75 K below T_c . The electro-optic transmittance spectra are compared and contrasted with the current-free spectrum at each temperature.

The results at 75 K indicate that supercurrents below the critical current $I_c(75k)$ at this temperature have little effect on the transmittance, while above $I_c(75K)$ we observe marked changes. In contrast, at 40 K, the supercurrents trigger changes in the electro-optic transmittance even below the critical current $I_c(40K)$ at that temperature. We compare the electro-optic data with two-fluid model simulations of the transmittance, by assuming that the only effect of the current is to reduce the superfluid fraction of the condensate.

Sorting category: Ba Superconductivity

Keywords: superfluidity, rubidium, cuprate

LT2433