
ON THE POISSON LAW OF SMALL NUMBERS.

BY LUCY WHITAKER, B.Sc.

PART I. THEORY AND APPLICATION TO CELL-FREQUENCIES.

(1) Introductory.

Let p denote the probability of the happening of a certain event A, and
q = 1 — p, the probability of its failure in one trial. Then it is well known that
the distribution of the frequencies of occurrence n, n — 1, n — 2 ... times in a series
N of n trials is given by the terms of the point binomial

The fitting of point-binomials plotted on an elementary base c to observed
frequency distributions has been discussed by Pearson*, and he has indicated that,
if c be unknown, the problem can be solved in terms of the three moment coefficients
fu, /ij, fit required to find c, p and n. In actual practice but few cases of frequency
can be found which are describable in terms of a point-binomial, and of these few
a considerable section have n negative, p greater than unity and q negative; thus
defying at present interpretation, however well they may serve as an analytical
expression of the frequency.

The hypothesis made in deducing the binomial (p + q)n as a description of
frequency is clearly that each trial shall be absolutely independent of those which
precede it. In this respect it may be said that binomial frequencies belong to the
teetotum class of chances, and not to those of card-drawings, when each drawing
is unreplaced. In the latter case the "contributory cause groups are not inde-
pendent," and our series corresponds to the hypergeometrical rather than to the
binomial type of progression^.

Using the customary notation & = / v ^ 8 - Pa = fain**tne binomial is determined
from :

• "Skew Variation in Homogenous Material,"Phil. Trans. Vol. 186, A, p. 347, 1895.
t Phil. Tram. Vol. 186, A, p. 381, 1895.
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LUCY WHITAKER 37

In order that n should be positive, it is needful that

should be positive. If this is satisfied clearly c will be real because /9, is always
positive. Further then

.. . 1 6 - 2 & + 2 £ ,

is always less than a quarter and p and q will therefore be real. If the reader
will turn to Rhind's diagram, Biometrika, Vol. vn. p. 131, he will see that the line
3 - yS2 + A = 0 cuts off all curves of Types III, IV, V and VI, and includes a
portion only of Type I, with a part of its V and J varieties. The binomial
description of frequency, therefore, is not—considering our experience of frequency
distributions—likely to be of very universal application.

(2) Further Limitations.

Now let us still further limit our binomial by supposing:

(i) that the unit of grouping of the observed frequencies corresponds to the
actual binomial base unit c and (ii) that the first of the observed frequencies
corresponds to the term Npn of the binomial*.

In this case the mean m of the observed frequency measured from the first
term of the frequency will be equal to the nq of the binomial and the standard
deviation of the observed distribution will be equal to 'Jnpq. We have thus:

p = cr*/m, q=l—<r*/m, n = m"/(in - cr2) (iii)

and n and q will both be negative, if m be less than a3. The condition for a
positive binomial is therefore that a be less than »Jm.

(3) Probable errors of the constants of a Binomial Frequency.

It is desirable to find the probable errors of p and n as determined by these
formulae. We have:

/ju1'=nq, fH=npq,

Sfir,.' = qSn + nSq, Sfi? = pqSn + nq8p + npSq,

assuming deviations may be represented by differentials.

Hence, since dp= — dq:
8/j.i - (p - q) B/j^'= qs8n and pSfi^' — Sfi? = nqSq.

Square each of these results, sum for all samples and divide by the number of
samples, and we have:

* The exact natnre of these limitations mast be fully appreciated. The best fitting binomial to
a given frequency distribution will usually be far from one in which the first term of the binomial
corresponds to the first observed frequency. The modes of the binomial and the observed frequency
will closely correspond, but the "tails" of the binomial may be quite insignificant and correspond to no
observed frequencies.
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38 On the Poisson Law of Small Numbers

Now a is the standard deviation of variations in ^ and therefore

Similarly a^ is the standard deviation of variations in the mean and therefore

ai
li> = ̂ IN. Lastly the product o-^a^-r ^ measures the correlation between

deviations in /i, and /*,' and is known to be

Thus we have:

Butf fi4 = vpq ( 1 + 3 (n - 2)pq}, )
V (iv).

Whence after some purely algebraical reductions we deduce:

<•>

Formulae (v) and (vi) are very important; they enable us to obtain the
probable errors for n and p when a binomial limited in the present manner is
fitted to a frequency distribution];.

We see at once, that as n grows large and q grows small

<7p=£T? approaches the limit V2/JV,

or the probable error, 67449 V2/2\T, of p and q is finite. But o-2 being finite <rn

becomes infinitely great, or the probable error of n indefinitely large. Thus when
the n of the binomial is very large, q being very small, the probable error of its
determination is so great that its actual value is not capable of being found
accurately. Again, suppose N embraced 200 observations, the probable error of q
would be of the order '07; if N corresponded to only eighteen observations, then
the probable error of q would be of the order '22. It is clearly wholly impossible

* Biometrika, Vol. n. " On the Probable errors of Frequency Constants," see p. 275 (iv), p. 276 (vii),
and p. 279 (xii).

t Phil. Trans. Vol. 186, A, p. 347, 1895.
X There is DO difficulty in obtaining the probable errors of n and p from the more general values

in (ii). In this case

The values of a^, a^ and r^jft| for different values of /S, and ft, have been tabled by Rhind, Biometrika,
Vol. vn. pp. 136—141.
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Lucy WHITAKER 39

from series of observations even of the order 200, much less of order 18, to assert
that q is or is not really a " small quantity." Thus the observed value of q corre-
sponding to a population of extremely small q might easily show q= "15 to -50 !.

(4) Poisson—Law of Small Numbers.

A last limitation of the point-binomial is made by supposing the mean m = nq
to remain finite, but q to be indefinitely small. We write :

q + q)n = N(1 - gji

m m

= N(1 -</)« (l + q)q nearly

Here the successive terms give the frequency of occurrence of 0, 1, 2, 3. . .
successes on the basis of each success not being prejudiced by what has previously
occurred. This is the Law of Small Numbers. It was first published by Poisson
in 1837*. It was adopted later by Bortkewitsch, who published a small treatise
expanding by illustrations Poisson's workf. The same series was deduced later
by " Student" in ignorance of both Poisson and Bortkewitsch's papers, when
dealing with the counts made with a haemacytometerj.

The mean is at m from the first group, the other moments as " Student" has
shewn § are:

fa = m, ^ = m, ji, = 3TOS + m.

Hence ft = 1/m, & - 3 = l/m.

When the mean value is large, /S,, /3a and the higher /3's approach the values
given by the Gaussian curve.

Clearly the Poisson-Exponential formula contains only the single constant

m = /A/ and its probable error is therefore •67449cr/\/iV = -67449 /-^-. This will,

if N be reasonably large and m not too big, be a small or at any rate a finite
quantity (i.e. not like an for q very small). Hence it might be supposed, although
erroneously, that the Poisson-Exponential formula was capable of great accuracy
in addition to its great simplicity. But this is to neglect the fundamental
assumptions on which it is based, namely:

(i) that the data actually correspond to a binomial,

(ii) that in that binomial q is small and n large.

Clearly (i) shows us that, if we can find the binomial, it will actually be closer
to the observed frequency than Poisson's merely approximate formula.

* Rechercha tur la Probability des Jugements. Paris, 1837, pp. 205 et seq.
t Dai Getetz der kleinen Zahlen, Leipzig, 1898.
X "On the Error of Counting with a Haemacytometer," Biometrilca, Vol. v, pp. 351—5, 1907.
§ They may be deduced at once from (iv).
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40 On the Poisison Law of Small Nuvibe?'s

Secondly (ii) can only be justified as an assumption by actually ascertaining
the form of the binomial from the data and testing whether n is large and q small
and positive. I t appears absurd to base our formula on an approximation to
a binomial of a particular kind when, on testing in the actual problem, such a
binomial does not describe the results. As a merely empirical formula, the
Poisson-Exponential of course can be tested by the usual processes for measuring
goodness of fit, but no such test nor any discussion of the probable errors of their
results have been provided by Bortkewitsch himself nor by Mortara, who has
followed recently his lines in a work to be considered later. As a matter of fact in
the cases dealt with by Bortkewitsch, by Mortara and by " Student," n will be found
almost as frequently small and negative as large and positive, and q takes a great
variety of values large and negative and large and positive, as well as small
and positive. Thus the initial assumptions made from which the " law of small
numbers" is deduced are by no means justified on the material to which it has so
far been applied.

(5) Application of the Law of Small Numbers to determine tlie Probable Errors
of Small Frequencies. Given a distribution of frequency for a population N let vBt

be the frequency in the cell of the sthrow and tth column of a contingency table
(or if we drop t, rie would stand for the frequency of any class). Then if we take
a random sample of N individuals from this population, the chance that an indivi-
dual is taken out of the nu cell is n^N, and that it is not is 1—=p. Therefore if

the original population be so large that the withdrawal of an individual does not
affect the next draw, the frequency of individuals in M random samples of N will
be given by the terms of the binomial:

-*)+*}'•
Now, if nsi/N be very small, and iV large this will approximate to the

Poisson series:

where m =-^. x N. But vJN will approximately be the mean proportion of the
N

whole in the st cell of the sample itself = n^jN, or m = nH. Thus if in any cell of
a contingency table, or in any sub-class of a frequency whatsoever, we have a
frequency nn small as compared to the population N, then in sampling, this small
frequency will have a distribution approximating to the Poisson Law, and tending
as nrt becomes larger to approach the Gaussian distribution*. It would appear,

* Such approach is usually assumed when we speak of

•67449

as tbe probable error of the frequency na. But snob a "probable error'.' has really no meaning if na

be very small and tbe exponential law be applied.
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Lucy WHITAKER 41

therefore, that the Poisson Law of Small Numbers should be applied in order to
deal with the errors of random sampling iu any small frequency, and an appeal
should not be made—as is usually the case—to Sheppard's Tables on the assump-
tion that the frequency is Gaussian.

The following Table I illustrates the results obtained (a) from the Binomial,
(6) from the Poisson-Exponential and (c) from the normal curve on the two
hypotheses that (i) the frequency is 10 in the 1000 and (6) is 30 in the 1000.
But here a word must be said as to which Gaussian is to be compared with the
Binomial or the Poisson-Exponential. The usual method of fitting a Gaussian is
to give it the same mean and standard-deviation as the material to which we are
fitting it. For example, we should compare the Poisson exponential with a Gaussian
at mean m and with standard-deviation \fm, or the point binomial with mean nq

TABLE I.

Comparison of Binomial, Poisson-Exponential and Gaussian for cell-frequency
variations in samples for case of 10 and 30 in a total population of 1000

- Percentage Frequency

d

be
r

g
3

0
i

s
3
4
5
6
7
8
9

10

11
IS
IS
lit
15
16
17
18
19
SO
SI
SS
S3

10 in 1000

Binomial

•00004
•00044
•00020
00739
•01861
•03745
•06274
08999
•11282
•12561

•12574

•11431
•09516
•07305
•05202
•03454
•02148
01256
00693
00362
•00179
•00085
00038
00016

Foisson-
fixponential

•00005
•00045
•00227
•00757
•01892
•03783
•06306
•09080
•11260
•12511

•12511

•11374
•09478
•07291
•05208
•03472
•02170
•01276
•00709
00373
•00187
•00089
•00040
•00018

Gaussian

•00132
•00327
•00735
•01491
•02736
•04539
•06806
•09224
•11300
•12514

•12526

•11334
•09271
•06854
•04580
•02767
•01511
•00746
•00333
•00134
•00049
•00016
00005
•00001

19
SO
SI
SS
S3

H
S5
S6
S7
S8
S9

SO

SI
SS
SS
Sit
35
36
37
38
39
Ifi
41
42

Binomial

•00848
•01287
•01857
•02556
•03362
04233
•05110
•05927
•06613
•07107
•07367

•07375

•07137
06684
06064
•05334
•04553
•03775
•03042
•02384
•01819
•01351
•0O979
•00691

30 in 1000

Poisson-
Exponential

•00894
•01341
01916
•02613
03408
•04260
•05112
•05898
•06553
•07021
•07263

•07263

•07029
•06590
•05991
•05286
•04531
•03776
03061
•02417
•01859
•01394
•01020
•00729

Gaussian

•01100
•01553
•02118
•02792
•03544
•04373
•05198
•05970
•06625
•07104
•07360

•07367

•07126
•06659
•06013
•05246
•04423
•03602
•02835
•02156
•01584
•01125
•00771
•00511

Biometrika x
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42 On the Poisson Law of Small Numbers

and standard-deviation "Jnpq. These will, however, not be identical standard
deviations as p is not truly unity. In ordinary practice, in testing for example the
30 in 1000 frequeacy, we should put the centre of our Gaussian at our 30 group,
and use a standard deviation = V30 (1-30/1000) = V30 x "97 = 5"39444 to enter
the table of the probability integral. This is, of course, the Gaussian we obtain
by the method of least squares, but to assume that it is " the best" is to argue in
a circle, because we then take least squares as a test of what is best*. I t is
not the Gaussian which is directly reached by proceeding either to a limit of the
Binomial or to the Exponential, for example, by applying Stirling's Theorem. It
will be seen by examining Table I I that the Gaussian curve develops out of the
exponential by a mode at the point midway between the two equal terms, rather
than by a mode at the mean, which coincides with the centre of the second of
them. If we apply Stirling's Theorem to the termf

of the binomial N(p + q)n it becomes

Ur= -" e-\{r-nq + h(p-'.
V2TT 'Jnpq

i.e. the ordinate of a Gaussian curve of Standard Deviation 'Jnpq and mean at
nq — $ (p — q). These give for the Poisson-Exponential the Gaussian with standard-
deviation \/m and mean m- \. The above type of curve which gives frequencies
by coordinates and not by areas has been termed by Sheppard a 'spurious curve
of frequency'; at the same time it is the method by which Laplace and Poisson
first reached the normal curve, and the real point at issue is whether we shall get
better approximations to the discontinuous frequencies of the binomials by using
Gaussian ordinates than by using the areas of a Gaussian curve. At the same
time it has been shewnj that if a Gaussian curve gives a series of frequencies by
its areas, then if its standard-deviation be a', a spurious Gaussian frequency curve
with standard deviation given by o-0

2 = a2 + -fah2, h being the sub-range, will closely
give the frequencies by its ordinates. It seems probable therefore that the
Gaussian curve with mean at nq — \ (p — q) and standard deviation 'Jnpq — -^
will more closely represent the binomial for cell frequency variation by its areas,

* There is a further flaw in this treatment—the Gaussian is continuous, the Binomial and the
Poisson-Exponential are not. If tT be the rth term of either of the latter series, we ought really to
make

a minimum by the conditions <Ju/dm=du/d<7=0. No complete solution of this problem has hitherto
been determined.

+ The final form for ur may be obtained by neglecting the terms in — in the formula given by
Pearson, Phil. Trans. VoL 186, A, p. 347, footnote. n

t Biometrika, Vol. in. p. 311.
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LUCY WHITAKER 43

than if we apply the ordinary process of mean nq, standard deviation \lrvpq, and
Sheppard's table for areas to the frequencies. It will be noted that this amounts
to using Sheppard's correction on the crude second-moment and slightly shifting
the central ordinate towards the side of greater frequency. This is the Gaussian
curve used in Table I.

The object of the present section of our work is to indicate how far it is
legitimate to use the Poisson-Exponential up to cell frequencies of the order 30
in a population of about 1000* and how far we then reach a state of affairs, which
for practical purposes may be described by ordinary tables of the Gaussian. I t
will be seen from Table I that the Poisson-Exponential even for nrt = 10 and 30 is
not extremely divergent from the Binomial.

In Plate VII the trausition of the exponential histograms of frequency towards
the Gaussian form is indicated for cell-frequency = 1, 5, 10, 15, 20, 25 and 30 ; in
the cases of 10 and 30 the corresponding Gaussian curves are drawn.

It will be seen that with due caution the Poisson-Exponential may be reason-
ably used up to frequencies of about 30 in the 1000, and that after that it would
be fairly satisfactory to use the areas of the Gaussian curve as provided in the usual
tables.

(6) In order to table the results of the Poisson-Efponential for easy use, it
seemed desirable to turn them into percentages of excess and defect. For example
take the distribution for a frequency 5. It is:

0
1

2

3
4

5

6

7

8

9

10
11

12

13

•006,737,94.5

•033,689,725
•084,224,310
140,373,850

175,467,310
•175,467,310

•146,222,755

104,444,825

•065,278,015
036,265,564

018,132,782

008,242,173

•003,434,238

•001,320,860

Per cent, of Cases in which :
a defect of 5 occurs

„ 4 or more „

„ 3 or more „
„ 2 or more „

„ 1 or more „

the true value „

an excess of 1 or more „

,, 2 or more „
„ 3 or more „

„ 4 or more „

„ 5 or more „ :
„ 6 or more „ :

„ 7 or more „ :

„ 8 or more „ :

: 0-674

4-043

12465
26503

44-049
17-547
38404

23-782

13 337

6809
3183

1-370
0-545

0-202

* Of course in the PoiESon-Exponential itself the total frequency plays no part; it is only usefnl in
testing the validity of the approximation.

6-2
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44 On the Poisson Law of Small Numbers

Thus we see that if the true value of the frequency be 5 for the average sample,
it will only lie outside the range 1 to 10 in "674 + 1-370 = 2-044 cases per cent., or
the odds are 49 to 1 that the value found will be from 1 to 10.

On the other hand it will lie outside the range 2 to 8 in 4-043 + 6-809=10-852 %
of cases, or once in about 9 trials the frequency will lie outside this range. Or,
again, once in about every four trials (258%) the result will fall outside the
range 3 to 7.

On the other hand if we write a = V5 (1 - -005) = 2-23047, we have - 4"5
and + 5'5 as the deviations from a mean 5 of all beyond 0'5 and above 10'5,
giving %/cr = — 2-0175 and + 2-4658 respectively. These cut off tail areas of
•02181 and 00684, respectively. Thus in 2865—not 2-044—per cent, of cases
we should assert that the- frequency would lie outside the range 1 to 10, or the
odds that it would lie inside this range are now only about 34 to 1, not 49 to 1.
Calculated from the Gaussian the frequencies outside ranges 2 to 8 and 3 to 7
correspond to 1 0 1 % and 26-2 7o of the trials instead of 1 0 9 % and 25-8%. If
we take for the standard-deviation of our Gaussian vnpq — -fa = 2'21171, we find
that the odds in the first case are still only 35 to 1, but the percentages in the
other two cases are 11 '3 and 25'8.

It will be clear that near the centre of the curve—especially when we equalise
the excess and defect of the Gaussian by taking equal ranges on both sides—it
does not give bad percentages of frequency, but that it does not lend itself to
the accurate determination of the range for reasonable working odds such as
50 to 1.

It will be noted that the total area in excess and defect of 2 and more
= 23"782 + 26-503 = 50285, or corresponds very nearly to the "probable error."
Actually the Gaussians with standard deviations of 2-23047 and 2'21l7l give
probable errors of 1-504 and 1-492 respectively, so that the Gaussian with 1-5 as
the probable error is very nearly accurate.

Table I I gives the Poisson-Exponential; it will enable the reader to appreciate
the range of probable variation in small frequencies. Thus we realise that in
37 % of cases in which the true frequency is 1, the cell will be found empty;
in 13'5 per cent, of cases it will be empty when the actual frequency is 2, and in
5 % °f cases when the frequency is 3 and in 1*8 % when the frequency is 4. These
results indicate how rash it is to assume that a sample 4-fold table with one zero
quadrant signifies perfect dependence or association in the attributes of the
material sampled. The second line below gives the percentages of cases that 0
would appear in a cell when the actual number to be expected is that in the first
line calculated from Table II on the usual theory of a priori probabilities:

Actual

Percentage ...

0

63-21

1

23-2b

2

8-55

3

3 1 5

4

1-16

5 6

0-43 1 0-16

7

0-06

8

0-02

9 & over

o-oi
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48 On the Poisson Law of Small Numbers

PART II. CRITICISMS OF PREVIOUS APPLICATIONS OF
POISSON'S LAW OF SMALL NUMBERS.

(7) We now turn to the illustrations which various authors have given of
the Law of Small Numbers.

"Student's " Gases. We take first the series given by " Student" in his memoir
on counting with a Haemacytometer*. They are of special importance because
the series at first appear of fairly adequate size, namely consisting of 400
individuals, and further we should anticipate that the Law of Small Numbers
would hold in his cases. He obtains better fits with the binomial than with the
exponential but, as he remarks, he has one more constant at his disposal. On the
other hand, if the exponential be a true approximation, the binomial ought to come
out with a large n and a small but positive q. " Student" finds for his four
series:

I. 400 x (1-1893 - -1893)-3'6054.
II. 400 x (-97051 + •02949)46M84.

III. 400 x (1-0889 - -OSSg)-20'2478.
IV. 400 x (-9525 + -047of6263.

II. and IV. may, perhaps, be held fairly to satisfy the conditions, although it
is not certain if 46 is to be considered a large n or '05 a very small q.

I. and III. fail to satisfy the conditions at all, unless the probable errors of q
and n are such that q might really be a small positive quantity and n really large
and positive. The following are the values for the four series of n and q and their
probable errors:

I. q = - -1893 + -0647, « = - 3*6054 ± 1-2209.
II. q = + -0295 ± -0457, n = 46-2084 + 71-7373.
III. q = - -0889 + -0534, n = - 202473 + 12-1165.
IV. q = + -0475 ± 0452, n = 98"5263 + 93-7494.

Now while these results are very satisfactory for II. and IV., they are not
wholly conclusive for I. and III. We can approach the matter from another
standpoint; the probable error of q for p = 1 is

•67449 -j-g. V2 = -67449 x -0707

in " Student's" cases. Thus the deviation of q from q a very small quantity is for
I. 2-68 times the S. D., and for III. T26 times the S. D. Since q may be either
positive or negative, we may reasonably apply the probability tables and the odds
against deviations occurring as great as these are in one trial about 250 to 1 and
9 to 1 respectively. Hence in four trials we should still have large odds against
their combined appearance.

* Biometrika, Vol. v. p. 356.
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LUCY WHITAKER 49

We have said that the results for II. and IV. are fairly satisfactory, i.e. we
mean that they are consistent with q being small and positive and n being large;
but of course they are also consistent with q being negative and n being small and
negative.

It will be obvious from these results for " Student's" data that it is extremely
difficult to test the legitimacy of the hypothesis on which the " Law of Small
Numbers " is based. In none of the cases dealt with by Bortkewitsch, much less
in those dealt with by Mortara, are the populations (JV) anything like as extensive
as those considered by" Student." But populations of even 400 give, as we see, too
large values of the probable errors of q and n for us to be certain of our conclusions.

(8) Bortkewitsch's Cases. TakiDg Bortkewitsch next, he deals with the
following cases:

I. Suicides of Children in Prussia for 25 years: (a) Boys, (6) Girls, 25 cases.

II. Suicides of Women in eight German States for 14 years: 112 cases or
8 subseries of 14.

III. Accidental Deaths in 11 Trade Societies in 9 years: 99 cases, or 11 sub-
series of 9.

IV. Deaths from the Kick of a Horse in 14 Prussian Army Corps for 20 years:
280, or, as Bortkewitsch, 200 cases.

It will be noted at once that Bortkewitsch's populations (N) are far too small
for any effective determination of the legitimacy of his application of Poisson's
formula to his data.

We take his cases in order:

I. (a) Suicides of Boys.
TABLE III.

Number of Suicides

Number of Years

0

4

1

8

S

5

S

3

4

4

5

0

6

1

7 and over

0

The binomial is:
25 [1-2033 - -2033]-9"25.

Mean 1-9600 and ^ = 3-2584.
We have q = - -2033 + -2421, n = -96425 ± 10-9416.

If q were really zero its probable error would be + -1908. Clearly 25 cases are
wholly inadequate to test the legitimacy of applying the Poisson-Exponential to the
frequency*. But to what extent is the reader made conscious by Bortkewitsch
that his cases fail entirely to demonstrate the legitimacy of applying his hypotheses ?

* The x2 for the binomial is 2-379 and for the exponential 2-836, showing a somewhat better
result for the binomial.

Biometrika x 7
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50 On the Poisson Law of Small Numbers

I. (b) Suicides of Girls.
TABLE IV.

Number of Suicides

Number of Years

0

15

;

g

2

1

S

0

The binomial is :

25 [-7418 + -2582]1™1.

Mean = "4400 and ^ = "3264.

We find 9 =-2582 +-1012, n = T7041 ± -7850.
As in the case of the boys' suicides, if q were practically zero its probable error

would be + 1908, and there is nothing in this result again to justify us in asserting
that q is indefinitely small and n indefinitely large.

Actually we have:
TABLE V.

Number of Suicides per Year.

Actual

Bortkewitsch ...
Binomial (a)
Binomial (6)

0

15

16-1
15-0
15-2

1

9

7-1
8-9
8-7

1

1-8
11
11

S

0

—

(a) is the binomial considered above, (6) is the binomial obtained by taking
n a whole number = 2, and q = mean/2 = -22, i.e. 25 (78 + -22)».

It is clear that either (a) or (b) gives better results than the Poisson-Expo-
nential. Applying the test of goodness to fit, we have

X2 = "007 for the binomial (a),

X* = "610 for Bortkewitsch's solution.

Both give P > '60 but the first is much better than the second.

If both boys and girls are taken together, we find the binomial

25 (-9333 + -0667)36.

This is the nearest approach to a small q and big n we have so far found—i.e. the
nearest approach so far to an exponential, but ib is reached by a process, i.e. that of
addiDg together two series of entirely different means and variabilities in a manner
which cannot be justified, for Bortkewitsch's hypothesis depends essentially on the
homogeneity of his material. Even here the fit of the point binomial is slightly
better than that of tbe exponential.
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LUCY WHITAKER 51

II. Suicides of Women in Eight German States. Bortkewitsch gives the
following table :

TABLE VI.

State

(a) Schaumburg-Lippe
(6) Waldeck
(c) Liibeck
(d) Reuss a. L....
(e) Lippe
(/) Schwarzburg-Rudolstadt .
(.17) Mecklenburg-Strelitz
(A) Schwarzburg-Sonderhausei1

Totals

Number of Suicides of Women per Year

0

4
1
1
1
2

9

1

4
4
3
3
3
1
1

19

8

2
3
2
3
1

2
4

17

S

4
4
4
3
2
2
1

20

•4

1
3
2
3

4
2

15

5

1
1
1
1
5

2

11

6

1
2
3
1
1

8

7

2

2

8

1
2

3

9

2
3

5

iO

«
°-

| 
1 

1 
1 

1 
1

3

Totals

14
14
14
14
14
14
14
14

112

The resulting binomials a re :

(a) 14 ( -9714 + -0286)50™24,

(b) 14 ( -8571 + •1429)"'4"0,

(c)

(d)

(e)

(/)

14 ( -5819 + -4181)0™3,

14 (1-0058 - •0058)-450-2'*,

14 (1-3929--3929)- r 2 r a \

14 ( -6071 + •3929)ls'°9<)9
)

14 (1-5792 - -5792)-"207,

14 (1-6609 - -6609)-811KS.

Thus it will be seen that of the eight binomials only four have a positive q,
and of these only one can be said to have a very small q, and even in this case the
n is not indefinitely large. Of the four negative binomials three have quite
substantial q's, and the fourth with its small negative q corresponds most closely
to the Poisson-Exponential. The probable error of q for q = 0 is + 2549. The
number, 14, of cases taken is therefore wholly inadequate to test whether the
Poisson-Exponential may be applied to these data. The mean value of q is
negative and =- -0820 ± -0901, and the standard deviation of 17 =-3928 + 0637,
which are within the limits of random sampling of q = 0 with a standard deviation
of -3779. We shall return to a different manner of considering the point later.
At present we wish only to indicate that the hypothesis is that q is a very small
positive quantity and that data which give q a standard deviation of 3928, or in
the next example of "4714 are really inadequate to test such a hypothesis ; for in
the resulting binomials q may easily lie anywhere between + "8 and — -8, and it
is not possible to demonstrate that its real value is practically an exceeding small
positive quantity.

7—2
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52 On the Poisson Law of Small Numbers

III. Accidental Deaths in 11 Trade Societies. Bortkewitsch provides data
from which the following table is deduced:

TABLE VII.

Index Number
of Society

is
n
IS
SO
SS
S7
29

1,0

55
Totals ...

Accidental Deaths

0

2

2
1

5

7

2
1

4

1
1

9

S

3
3
1

3

2

2

14

S

2

3
1
1
2
1
1
1
1

13

4

1
1
1
2
2
1
3
1

1
1

14

5

I

1
1
2
1

2
1
4
3

16

G

1

2

1
1
1
1

7

7

1

1

1
2
1

1

7

«

3

1

2
1

1

8

9

1

2

70

1

1

77

1

1

m

i

I

is

1 
1 

1 
1 

1 
1 

I
I 

1 
' 1

—

u

- 
1 I

I 1 1 1 1 I
I 

1

1

Totals

9
9
9
9
9
9
9
9
9
9
9

99

The resulting binomials are:
(13)
(14)
(12)
(20)
(23)
(27)
(29)
(41)
(40)
(42)
(55)

9( -4914 +
9( -6184 +
9 (1-9227 -
9(1-1282-
9( -9921 +
9( -5229 +
9(1-4130-
9( -8454 +
9 (2-0342 -
9 ( -9322 +
9( -6154 +

•oosey™108,
i Q Q I CVj'6962

•9227)-"690,

•1282)-338000

•0079)7 8 4 0 5 0 2 ,
•477l)8-958S,

•4130)-""2580

•1546)s3'oeM
)

l-0342)-"0M,
• 0 6 7 8 ) 6 7 ^

•3846)ir2C87.

Of these eleven binomials seven have a positive q; only one of these (23)
actually corresponds to a really small q and large n, although a second, (42),
approximates to this condition. In the five other cases the q's are quite sub-
stantial ; in (13) the q is larger than p. Of the four negative q's none can be said
to be so small and the n so large as to suggest that they really correspond to the
Poisson-Exponential. The probable error of q for q = 0 is, however, ± -3180, and
thus for such small series, no test whatever can be really reached of the legitimacy of
applying the Poisson-Exponential to such data. We may note, indeed, that seven
of the eleven values of q exceed the probable error and two of these are more than
three times the probable error. We should only expect two negative values of q
as great or greater than -9227 in 80 trials, whereas two have occurred in 9 trials,
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LUCY WHITAKBR 53

so that the odds are considerably against such an experience. The mean value of
q is - 0 4 6 9 ± -0959 and the standard deviation of q is 5127 + -0678, both results
compatible with q indefinitely small and a standard deviation = -4714. The main
problem, however, of the legitimacy of applying the Poisson-Exponential to such
series cannot be answered by data involving only total frequencies of 9 to 14
cases in the individual series.

Bortkewitsch examines the matter from another standpoint. He clubs the
results given for each application of the Poisson-Exponential together and
examines the observed totals against the sums of the calculated totals. Thus
calculating the 11 Poisson-Exponential series* and adding them together
Bortkewitsch finds for observed and calculated deaths:

TABLE VIII.

Accidental Deaths in 11 Trade-Societies.

Number of Deaths

Observed Frequencies
Sums of 11 Exponentials

Single Binomial

0

5
3-7

3-8

1

9
9-6

9-5

2

14
139

13-9

8

13
15-2

15-6

k

14
14-3

14-8

5

16
12 3

12-4

6

7
9 8

9-6

7

7
7-3

6-9

8

8
5-8

4-8

9

2
3 3

3 1

10

1
2-0

2-0

11

1
1-2

1-2

IS

1
0-7

0-7

IS & over

1
0-6

0-7

Totals

99
99

99

If we attempt to fit a single binomial to the observed line of totals, we obtain :

m = 4-3636, a2 = 7-5849
leading to the negative binomial :

99 (1-7382--7382)-59111.

Here: q= - 7 3 8 2 ± \L829f, n = - 59111 + -1391,

or the constants are significantly substantial with regard to their probable errors.
The resulting frequencies are given in the last line of the table above. The reader

* The values of the means and standard deviations for the eleven societies are:

13
14
12
20

m
7-889
2-556
2-556
4-333

a
1-969
1-343
2-217
2-211

23
27
29
41

m
6-222
1-889
5 889
5-111

<r
2-485
0-994
2-885
2-079

40
42
55

m
2-889
4-556
4-333

a
2-424
2061
1-633

All these means are less than 10, which is the limit reached by Bortkewitsch's Tables for the Poisson-
Exponential. Bortkewitsch says he has taken the societies for which " the statistics indicated the
smallest numbers of such accidents." This is not very clear. It is certain that a society with a mean
number of accidents =100, if it consisted of 200,000 members, would be more suitable for application
of the exponential, than one with a mean of 8 if it only contained 10,000 members. Both Bortkewitsch
and Mortara confine their results to means less than 10, and seem to indicate that "smallness" has
been determined by the absolute frequencies, but clearly it is relative frequency with which we have to
deal. The use of such a term as Das Gesetz der kleinen Zahlen for the Poisson-Exponential seems open
to serious objection, if it be associated with " m " an absolutely small number, and not with smallness
of " q."

t For 9 = 0, the probable error would be ±-0959 and accordingly q is very divergent from the
Poisson-Exponential value of zero.
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On the Poisson Law of Small Numbers

will be surprised to see how closely the single negative binomial determined by
two constants gives the same result as the sum of the eleven Poisson-Exponentials
determined by eleven constants, no one of which is really of any significance for its
own exponential*. If we apply the condition for "goodness of fit," x2=5 -83 for
the single binomial and jg = 5-88 for the sum of the eleven Poisson exponentials,
leading to JP=-950 and P=*951 respectively, or the fit with a single negative
binomial is slightly better than that with eleven exponentials. The two constants
are significant, the eleven constants have no real significance for their individual
series, as is demonstrated by the fact that the binomials for these series do not
approximate to the Poisson-Exponential type.

We may now consider the previous case of suicides of women from the same
standpointf. The following are the data as given by Bortkewitsch:

TABLE IX.

Suicides of Women in Eight German States.

Number of Suicides

Observed Frequencies
Sum of 8 Exponentials

Single Binomial

0

0
8-0

12-6

1

19
169

18-4

2

17
20-3

18-8

S

20
18-7

16-4

15
151

13-2

5

11
11-4

9-9

6

8
8 3

7 -3,

7

2
5-6

5 1

8 •

3
3 6

3-5

9

5
2-1

2-4

10 & over

3
2-0

4-5

Totals

112
112

112

For the single binomial we have:

m = 3-4732, o-2 = 82312,

leading to: 112 (23699 - 1-3699)-2M34,

where q= - 13699 ± '1490, n = - 2'5354 ± -3076.

If q were very small its probable error would be + '0901. The values of q and n
are quite significant, q is large and negative and n is small and negative. The
resulting frequencies are given in the last line of the table as "Single Binomial."
Turning now to the test of " goodness of fit," we have for the sum of the 8 ex-
ponentials x 2 = 7-957, and for the single binomial ^ 2 =7740, leading to P = 6 3 3

* If the reader will turn to the 6rst footnote on p. 53 he will note that for nine cases, the standard
deviations of the means (<rlj$) are roughly about -7 or errors of ± 1 to ±1-5 may easily occur in the
means. Hence with the possible exception of (18) and (27) the m's have not significant differences, and
are not typical of the individual societies.

t The values of the means and standard deviations are:

Schanmburg-Lippe
Waldeck
Lubeck
Beuss a. L.

m
1-429
2-214
2571
2-643

1178
1-378
1-223
1-631

Lippe I 2-857
Schwarzburg-Bndolstadt... i 5-143
Mecklenburg-Strelitz ... j 5-286
Schwarzburg-Sonderhausen | 5-642

a
1-995
1-767
2-889
3-061

The standard deviation of the mean is here aj-Jli, or, say, -5. Thus errors of 1 might easily occur
in the values of m. There are probably significant differences between the first five and the last three
states, but not between the first five among themselves or the last three among themselves. Thus the
Poisson-Exponentials, if correct in theory, are not significant for the individual states.
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LUCY WHITAKER 55

and "654 respectively. Thus again the single binomial with only two constants
give a fit slightly better, than the sum of eight exponentials with eight constants.

Bortkewitsch looking at the observed frequencies and the sum of 8 or 11
exponentials—without using any satisfactory test for " goodness of fit"—assumes
that the coincidence is so good as to justify his hypothesis. But a better fit can
be obtained with two instead of 8 or 11 constants by simply using a negative
binomial. We must note here that Bortkewitsch is using the final coincidence
merely as justification of the Poisson-Exponential; the total frequency is not
describable in terms of the 8 or 11 constants as it is in terms of the two, for
these eight constants are not really significant for his individual eleven trade
societies or for the suicides in the individual eight states. If he wants to describe
the total, he has no constants by which he can do it. If, on the other hand, he
wishes to describe what has occurred in the individual societies or states, we have
seen that their binomials differ very widely from Poisson-Exponentials. If, lastly,
no stress be laid on the individual cases as having too large probable errors, but
only ou the general coincidence with total frequencies, then the same coincidence
would justify us in using a single binomial with two constants only*. I t appears
to us that to properly test the Poisson-Exponential, we need not 9 or 14 instances
in the individual case, but several hundred instances,—more, indeed, than "Student"
has taken—and that no proof of the " Law of Small Numbers " can be obtained
on data such as those of Bortkewitsch or Mortara.

IV. Deaths from the Kick of a Horse in Prussian Army Corps, omitting four
Corps with Bortkewitsch.

Here the results are :
TABLE X.

Number of Deaths ...

Number of Corps

0

109

1

65

2

22

S

3

4

1

Totals

200

Whence:
TO = 6 1 , ^ = -6079

and the binomial is:
200 (-996,557 + •003,443)in'1?107.

This is the first of Bortkewitsch's illustrations for which his hypothesis that q is
small and n large is really j ustified by his data. For:

q = -0034 + -0670,

n = 177-1711 ±3449-103.

The probable error of q for q really zero is + -0674.

* Of course immensely better general total fits are obtained by using the sums of the actual 8 or 11
binomials than by the Poisson-Exponential sum or the single binomial, but the results in that case
involve 16 or 22 non-significant constants.
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56 On the Poisson Law of Small Numbers

The actual results as given by tbe binomial and the Poisson-Exponential are:

TABLE XL

Number of Deaths ...

Observed
Binomial
Exponential

0

109
108-6
108-7

I

65
66 4
66 3

2

22
20-2
20-2

3

3
4-1
4-1

Ji and over

1
0'7
0-7

Actually if we work to two decimal places in the frequencies we have X2 = '61
for both binomial and exponential, or the goodness of fit is practically identical.

In this case it seemed worth discussing the binomial fit more at length.
Taking the moment coefficients about the mean we have:

(i) Mean =ng = -0100.

(ii) ft2 = npq = '6079.

(iii) fi, = npq (p - q) = '590,562.

(iv) /i4 = npq (1 + Snpq - Qpq) = 1-643,373.

We have already discussed tbe binomial from (i) and (ii), giving %s for goodness
of fit = '6096. Using (ii) and (iii) we have for the binomial

200 (-985,739 + •014.261)43'2431,

giving ^2 = -665.

Using (iii) and (iv) we have:

200 (-979,524 + •O20,O57)s°'!fO!J°,

giving X1 = -707:

Putting: /32 = fij^ and A = /v1//^3,

we have : /32 - 3 = (1 - 6pq)/npq, /3, = (1 - 4pq)/npq,

and working from /3] and /32 we find:

200 (-969,150 + -OSO^O)18-86"

and in this case ^ s = 1-1286.

• This of course does not give a bad fit, but it is clear that working from the
lowest moment coefficients, as we might anticipate, gives the best results.

But if q be the chance of death from the kick of a horse, and n the number of
men in an army corps, then the binomial should be

200 (p+q)n.

Now it is obvious that none of the binomials give, by their value of n any
approach to the real number of men in an army corps. If we start with the
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LUCY WHITAKKR 57

number of men n in an army corps as 50,000*, we have nq = '61 and q = "000,0122,
thus reaching the binomial

200 (-999,9878 + •000)0122)M.OM,

giving as compared against Bortkewitsch :
Binomial Bortkewitsch

0 1086876 108-6703
1 663002 66-2889
2 202213 202181
3 41115 41110
4 and over 7035 -7034
and x* = -608,298 -608,318

or, the slight advantage to the binomial exists but is of no significance.

Now it seems to us that in this case the use of the exponential is justified for
the total frequencies, but as far as describing those frequencies is concerned, it
gives no better result than the binomial. But as in the other five of Bortke-
witsch's cases the Exponential is not justified by the individual series themselvesf.

It is perfectly true that the exponential has a definite theory behind it, and
is interpretable in terms of that theory, i.e. we must suppose the probability of an
occurrence very small and the chance of its repetition absolutely identical. But
is the second of these conditions ever likely to be demonstrable a priori, or must

* This supposes that every man in the army corps is equally liable to death from the kick of
a horse; of course a very arbitrary assumption.

t To illustrate the idleness of the application of the Poisson-Exponential even to these data for the
Prussian Army Corps, we give here the binomials for the whole of the 14 corps.

Index Number
f Corps

G
I
II
in
IV
V

VI
VII

VIII
IX
X

XI
XIV
XV

Binomial
20 (-95 +-OS)10-0000

20 (1-325 - -325)-2-«»l>

20 (1-5667 --5667)- ' - 0 5 8 8

20 (-9 + -1)8-0000

2O(-6+-4)i-o«»
20 (-6318 + -3682)1-4038

20 (1 -0912 - -0912)-9-32O2
20 (-9+ 1)0 0000

20 (-65 + •35)1-oo°o
20(-8115+-1885)3"83

20(l-05--05)-1|s-oooo
20 (Vll--11)-"-a"38

20(1-05- -05)-^-ix»o

One seeks in vain through these binomials for any approach to q very small and positive and n very
large and positive. In no case does n approach the number of men in an army corps, say 50,000,
or q equal the chance of a death from the kick of a horse, say, -0000122! It seems impossible by
clubbing snch equations together to give any satisfactory proof that the Poisson-Exponential really does
apply to individual cases. In the 20 years involved, there were doubtless great changes in both
the training and the personnel of each army corps, and the results obtained may be just as much due to
snch causes as to the errors of Bmall samples.

Biometrika x 8
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58 On tlie Poisson Law of Small Numbers

not we a posteriori demonstrate it from the data themselves ? Child suicide may
be influenced by example, by environmental conditions in different districts,
possibly even by meteorological conditions in different years. Again, even in
different army corps the conditions may be far from uniform, the spirit of the
corps, the teaching with regard to the handling of horses, the experience of past
life according to whether the corps is raised in town or rural districts may all tell.
Even Bortkewitsch before he gets his best fit removes four corps or 80 observations
from his data. We do not criticise this removal, but even unremoved he says the
fit of theory with experience leaves " wie man sieht, nichts zu wunschen iibrig"
(p. 25). But the binomial is before removal:

280 (1-085,714 - -085,7 H)-"™.6"
in which q is not very small and is negative, and n is not very large and is not
positive. I t is true that the probable error of q for q insignificant is in this case
+ '0570, but this only shows that the data were insufficient in quantity to
determine whether the exponential could be applied or not.

(9) Mortar a's Cases.

Mortara* in an interesting paper has realised the possibility of repetitions not
being independent and has discussed a constant Q', by which he proposes to test
such influence. This quantity Q' should be unity, if the Bortkewitschian hypo-
thesis can be applied. He then takes 16 or 17 districts with records of 10 years,
and calculates the mean number of deaths from some special cause per year, say,
for each district for those years. If this mean number exceeds 10, he casts out
that district, presumably on the ground either (i) that such a number is no
longer small, or (ii) that it differentiates the district from those with lower
numbers. Thus Bologna with 10'9 deaths by murder is excluded and Bergamo
with 8-4 is included, although Q' = 1 for both. Bologna with 7-l deaths from
smallpox is included, but Pavia with 12'3 is excluded although the Q' of the
former is 2-5 and that of the latter 1*7. What method should be employed in
dealing with the frequency of the excluded districts which may amount to 50 °/o

of all districts is not discussed. Having thus reduced his available districts,
Mortara proceeds to apply the exponential to each individual district; he adds up
the results for each district and compares his totals with the observed totals. It
will thus be observed that he fits his exponential to ten observations, and then adds
together five or more districts to get his totals. We can equally well apply this
process by fitting a binomial to each 10 observations and then adding up such
results. But it is quite clear that on the basis of ten observations, it is, owing to the
large probable errors, wholly impossible to assert, whether a binomial of the kind
required by the Bortkewitsch-Mortara hypothesis,—i.e. one of very small positive q
and very large positive n—really is justified. We can illustrate this at once from
Mortara's Tables (see his pp. 42 and 45) for deaths from Chronic Alcoholism. The

* " Sulle variazioni di frequenza di alcuni fenomeui demografici rari," Annali di Statistica. Serie v.
Vol. iv. pp. 5—81. Roma, 1912.
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LUCY WHITAKER 59

observed numbers, and those deduced from the binomials are given in the
accompanying table. At the foot are the observed totals, Mortara's exponential
totals and the binomial totals.

Calabria

Foggia

Siracusa

Potenza

Catanzaro

Salerno

Cosenza

linlogna

Totals

0

1
1-49
118

1
100

•96

2
•82

112

2
•41
•78

1
15

•88

1
•06
•40

2
•0(5
•43

•01
•40

10
400
615

' 1

3
2-84
2-85

2
2-30
2-29

1
2 05
2-16

1-30
1-61

1
•63

1-35

1
•31
•86

•29
•88

•06
•76

8
9-78

12-75

TABLE

s

4
2 7 0
3-06

4
2-65
2-70

3
2-56
2 33

2
2-09
1-95

3
1-32
1-46

1
•79

1-18

1
•75

1-17

3
•21
•97

21
13-07
14-82

S

1-71
1-91

2 03
2-08

_
2-14
1-85

2
2 23
1-80

1
1-85
1-36

_
1-35
1-31

_
1-29
1-27

1
•49

1-06

4
13-09
12-64

XII.

i

2
•si
•76

2
1-17
1-18

2
1-34
1-21

1
1-78
1-41

_
1-95
1-17

2
1-72
1-27

1
1-68
1-23

1
•88

1-05

11
11-33
9-28

Deaths from

5

•31
•20

1
•54
•53

2
•67
•69

1
1-14

•98

_
1-63

•95

_

1-75
1-14

_
1-75
1-10

1
1-24

•98

5
9-03
6-57

0

•10
03

•21
19

•28
•35

1
•61
•63

1
1-14

•75

1
1-49

•95

3
1-51

•93

1
1-47

•87

7
6-81
4-70

03
—

•07
•06

10
17

1
•28
•38

1
•69
•57

1
1-09

•77

1
112

•75

1-49
•76

4
4-87
346

Chronic Alcoholism.

S

•01
—

•02
•01

•03
•07

_
•11
•21

1
•36
•43

2
•69
•59

_

•73
•59

1-32
•64

3
3-27
2-54

9

—

.
•01
—

_
•01
03

_
•04
•12

_
17

•31

_
•39
•45

1
•42
•44

104
•53

1
2-08
1-88

10

—

—
—

_

•01

_
01
•06

_
•07
•23

_
•20
•33

_
•22
•33

1
•74
•43

1
1-24
1-38

i

11

i

—

—

—

_

—

_

•03

1
03
•16

1
•09
•24

•10
•24

•48
•35

2
•70

1-02

IS

—.
—

—
—

—

_

•01

_
•01
12

•04
•17

1
05

•17

•28
•28

1
•38
•75

13

—
—

—
—

—

01

.

•08

•02
12

.
•02
13

•15
•21

•19
•55

n &
over

—
—

—
—

—

—

•17

•01
•22

•01
•33

2
•14
•71

2
•16

1-43

Observed
Mortara
Binomial

O.
M.
B.

O.
M.
B.

O.
M.
B.

O.
M.
B.

O.
M.
B.

O.
M.
B.

0.
M.
B.

O.
M.
B.

The following are the binomials for the 8 districts out of 16 which Mortara
has selected.

Reggio Calabria
Foggia
Siracusa
Potenza
Catanzaro
Salerno
Cospnza
Bologna

10 ( -7842 f
10 ( -9609 +
10 (1-3000 -
10 (1 -5500 -
10 (2-7524 -
10 (2 -3510 -
10 (2-5308 -
10 (33161 -

-2158)+S(i«9

•O391)68770'
-3000)-8K:o

ooOO)-5-8182

1-7524)-2-391"

l-3510)-s~M

l-.5308)-3-S970

23161) -

8—2
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60 On the Poisson Law of Small Numbers

Examining these we see that there are only two in which q and n are positive
and only one in q is small and positive and n moderately large. The probable
error of q for 10 observations on the assumption that n is very large and q very
small is + '3016 and is quite inconsistent with the last four districts being samples
from exponentially distributed frequencies. The other four districts may or may
not belong to such frequencies—the data are wholly inadequate to determine
whether they do or not. Reggio Calabria and Foggia have the lowest Q's,
i.e. 0'9 and I/O. But that six districts out of an already selected eight give
negative q and a seventh a relative large q and small n suggests the inapplicability
of the hypothesis adopted. If we seek for " goodness of fit" of the totals, we find :

Binomial Exponential

X2 = 25-12 47-92
P = -0336 -0000

Thus the odds against the binomial system are 28 to 1, but the odds against
the exponential are enormous. It does not seem possible to justify the treatment
of such data by the use of the Poisson-Exponential.

Let us turn to a second of Mortara's illustrations, that of deaths from small-
pox. He rejects first six out of the 17 districts, the remaining ten are given in
Table XIII. The districts give the following binomials:

Venezia 10 ( -9500 + -0500)16

Bologna 10 ( -9889+ -01II)8'
Treviso 10 ( 2-2000 - 1-2000)-8333

Pavia 10 ( l"800O - -SOOO)-1"00

Cagliari 10 ( 4 5 1 9 0 - 3-5190)-™"
Padova 10 ( 36833 - 2-6833)-»«
Verona 10( 5 6 0 0 0 - 4-6000)-|B"
Brescia 10 (9 -9727 - 8-9727)-367S

Bergamo 1 0 ( 2 - 3 8 2 1 - 1-3821)-™511

Catanzaro 10(156128 - 14-6128)-'2*19

Vicenza 10 ( 34854 - 2-4854)-16*"

Out of the eleven cases only two give q small and positive; not a single one
gives for q anything like the chance of a death from small-pox in the district, nor
for n anything like the population of the district. There is an increasing divergence
from the positive binomial as Mortara's Q' increases in value. We see that in nine
cases, however, a negative binomial not the exponential is required to describe the
frequencies. The probable error of q, for insignificant q is as before + "3016, and
therefore it is improbable that q is zero in at least 9 out of these 11 districts.

Examining the totals we find
Binomial Exponential

X* = 9-64 570-79
P = 67 000,000
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LUCY WHITAKER 61

TABLE XIII.

Deaths from Small-pox (1900—1909).

Venezia
I

Bologna

Treviso

Pavia

Cagliari

Padova

Verona

Brescia

Bergamo

Catanzaro

Vicenza

Totals

0

4
4-49
4-40

4
4-07
4-04

5
3-68
5 1 8

4
3-01
4-14

5
1-23
4-07

3
•91

3-12

4
•91

4-07

2
•37

4-29

2
•20
•86

3
•20

4-80

3
•17

1-28

39
1924
40-25

1

5
3 60
3 71

4
3 66
3-68

3
3 68
2-36

3
3 62
2-76

1
2-57
1-89

3
2-18
2-03

3
2-18
1-74

3
1-22
1-42

•79
1-41

3
•79

1-20

_
•68

1-50

28
24-97
23-70

S

1-44
1-46

1
1-65
1-65

1
1-84
1-18

2
2-17
1-53

1
2-70
1-17

_
2-61
1-40

_

2-61
1-09

2
2-01

•87

2
1-54
1-57

1
1-54

•71

1
1-39
1-42

11
21-50
14-05

S

1
•38
•36

1
•49
•49

•61
•61

•87
•79

]

1-89
•79

2
2-09

•98

1
2-09

•75

2
2-21

•62

2
2-00
1-46

1
2-00

•50

1
1-91
1-23

12
16-54
8-58

•08
•06

_
•11
•11

•15
•32

•26
•40

•99
•55

_
1-25

•70

,

1-25
•54

__
1-82

•47

1-95
1-23

1
1-95

•38

1
1-95
1-02

2
11-76
5-78

5

•01
•01

•02
•02

1
•03
•17

1
•06
19

1
•42
•39

1
•60
•50

_
•60
•40

_
1-20

•37

1
1-52

•98

1-52
•31

1
1-60

•82

6
7 58
416

G

—

•01

_
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_
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_
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•65
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3-08
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•05
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1
•55
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_
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1
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•51
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1
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•39

2
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_
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_
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•13

_
•01
•14

_
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•17

1
•12
•27
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•16

_
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•30

1
•46

1-20
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—

_

—
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•01
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—
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1

10

._

•11

. _
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•14

•04
• 1 8 '

•04
14

_
•06
•23
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16

•99

11

—

_
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—
•06

—
•07

—
•09

•12

•02
•12

•02
•12

•02
•17

•06
•75

IS or

more

—

_

—

—

—

—
•25

•16

1

•35

1*

•79

•01
•24

1*
•01

1-04

1
•01
•48

4
•03

3-31

Observed
Mortara
Binomial

O.
M.
B.

O.
M.
B.

O.
M.
B.

O.
M.
B.

O.
M.
B.

0.
M.
B.

O.
M.
B.

O.
M.
B.

O.
M.
B.

0.
M.
B.

O.
M. !
B.

* 1 at '12 or more' in cases of Brescia and Catanzaro was found to signify 1 at 20 in the case of
Brescia, and 1 at 27 in case of Catanzaro, if the means were to agree with those given by Mortara.
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62 On the Poisson Law of Small Numbers

In other words the binomials give a reasonable total fit, the exponentials u
practically impossible one.

But there is another question to be asked in such series as those of Mortara:
What justification is there in cutting off at 10 cases, say of murder? A province
may have a million inhabitants and, perhaps, 40 murders occur in a year*. Hence
the binomial is for ten year returns

10 xf24'999 |
^25000 25^25,000 25,000,'

but this is as close as anything can be desired to the exponential series. I t may
be reasonable to apply a separate series to districts giving 4"2 and 36'6 murders
per annum respectively, but it is difficult to see why the latter district should be
altogether excluded from treatment. If the theory of the binomial be applicable
at all, then it applies practically as well to districts with 40 murders as to districts
with 4 ; for, we need no indefinitely small q to get a closely exponential series.
If we take the case of deaths by murder, Mortara has retained only 6 out of 16
provinces, yet his criterion Q' (see his Table, p. 51) is not more divergent from
unity for the rejected provinces than for those retained ; the binomials are indeed

Eeggio Treviso 10( 7000 + -S

Venezia 10 ( 5619 + ^

Vicenza 10 ( 9571 + •0429)lu"SIM

Padova 10( -4774 + •5226)nac8

Pa via 10 (1-8102--8162)"9'0061

Bergamo 10 ( '88-57 + -1143)7"808

only one of which gives q small and positive and n large.

The mean Q' for the retained provinces is "967 with a range from '7 to 14 and
for the rejected 103 with a range from -8 to 1*4. Even if—which is not the case
—the probability of an individual being murdered were too great for the ex-
ponential, it ought to follow the binomial, but this, as a rule, it does not do, unless
we give some wholly new interpretations to q and n; the actual values render the
theory of the binomial as stated inapplicable.

(10) Mortara's Criterion.

As a matter of fact the only test of whether an exponential will legitimately
fit a given series or not is to determine the binomial (p + q)n and ascertain
whether p is slightly less than unity. But:

p = npq/nq

(Standard Deviation)8

Mean
* We assume that each individual is equally likely to be murdered. But if there be a graduated

probability for murder throughout the community, what right have we to apply Poisson's Beries at all ?
The essential basis of the application—equal chance of each individual—is wanting.
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LUCY WHITAKER 63

Now if w, be the number of deaths, say, occurring in any year and there be
I years under consideration, then:

(Standard Deviation)' = ft'fo""??,
6

or, if we use the form preferred by Bortkewitsch*

TT

Hence : p = —I) nq

This in other notation is Mortara's Q'2, the only criterion he actually uses
provided by his equation (17 ter), p. 18. Thus his Q', which he says must not
differ much from 1, is only s/p, and it would be better to use p—which has a
direct physical meaning—than Mortara's Q' = s/p. Clearly Mortara's somewhat
elaborate process of deducing Q', does not amount to more than saying: Fit a point
binomial and test if p is slightly less than unity. We contend that it is best
straight off to fit the binomial.

It is true that Mortara does not reach his Q'2, our p, by the simple process of
asking whether the binomial is one with" a positive probability less than unity.
He endeavours to obtain it by considering whether there is "lumpiness" in the
observations. But it seems to us clearer and briefer to ask: Are the contributory
cause-groups independent as in teetotum spinning? If so, the data will fit a true
binomial and p will of necessity be a positive quantity less than unity. If they
are not of this character then p must of necessity be greater than unity. It is of
interest to see how Mortara's test of dependence of contributory cause groups
leads to a criterion, but he actually only gets his Q'2, i.e. our binomial p after
a series of hypotheses which much limit, and that in no very obvious manner,

* The use of *JIOT Jl-1 in the value of the standard deviation when I is small has been several
times discussed. It may be dealt with as follows: The probable errors of a mean as deduced by the
two processes are

E = -67449. alJT,

and £'=-67449.(7/71^1,

£ ' =-67449 ^ + ••• )

=-67449-L (a+ -£=-?=

Now the probable error of <r is 67449 —T=, and —7= is less and often much less than 67449.
JU J21

Hence if we only know a from the observations themselves, and this is the usual case, we have:

£'=•67449-^-cr',

where a' differ from a by a quantity usually far less than the probable error of a. In other words the
refinement of nping E' for E is idle having regard to the accuracy of our observations; and the form
used by Bortkewitsch and Mortara with S / J - 1 for , / f i s of no importance.
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64 On the Poisson Law of Small Numbers

the nature of those contributory causes groups. Of course if their dependence
were, of the nature of successive draws from a pack, then the result would be
a hypergeometrical series and Q* would have no physical meaning for the series
at all.

(11) We will deal with one further illustration out of many considered by
Mortara which are of like character. In the case of Marriages of Uncle and Niece
(see Table XIV, p. 65), where the distribution of Q's is the most favourable
for his theory, the binomials are

Reggio Marche 10 ( 7000 + -3000)1'0

Umbria 10( 9000 + -1000)50

Basilicata 10(1-4000 - -4000)-1'8

Sardegna 10 ( -44545+ •55455)''98M

Emilia 10 ( "9818 + •0182)1201000

Abruzzi ' 10 ( 8429 + -1571)"'8182

Lazio 10(1-2548 - -2548)-1"648

Puglie 10(1-5111 - -Sill)-'10435

Veneto 10(1-3444 - -3444)-1-306*5

Toscana 10(2-2667 -l-2667)-4-a31s

Calabria 10(1-3584 - •3584)-24"8305

of which only one (Emilia) approaches the conditions for an exponential distribu-
tion. If we tost the totals at the foot of Table XIV, we find the result much to the
advantage of the binomial, for which P = "902 as against 714 for the exponential.

(12) On Mortara's own showing nearly all the Qs of his numerous series are
greater than unity, and very few of the binomials are positive. If we consider the
distribution of Q's, given in his work omitting Table 13 (Deaths from Malaria) we
find a range from "5 to 3'6 with a mean Q at

1-2565 ± -0847,

while for the distribution of all the p's in the binomials we have determined, we
find a range from -4 to I.r6 with a mean p at 2-5655 + -3817.

These results are sufificient to show that there is no real distribution of p round
the value unity but the binomials have a distinct tendency to be negative.

(13) But the whole theory of Poisson's exponential law in the hands of Bortke-
witsch and Mortara appears essentially vague. The binomial is built up on the
assumption of the repetition n times of a number of independent events, of which
the chance of occurrence is identical and equal to q. The population is n and the
chance of occurrence q in the case of each individual. The mean frequency of
occurrence is nq. But if q be very small we have seen that the series i.-i

m2
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LUCY WHITAKEB. 65

TABLE XIV.

Marriages of Uncle and Niece (1900—1909).

Marehe 0.
M.
B.

Umbria 0.
M
B.

Basilicata 0.
M
B.

Sardegna 0.
M.
B.

Emilia 0.
M.
B.

Abnizzi 0.
M.
B.

Lazio 0.
M.
B.

Puglie 0.
M.
B.

Veneto 0.
M.
B.

Toscana 0.
M.
B.

Calabria 0.
M.
B.

Totals 0.
M.
B.

0

7
7-41
7

6
6-06
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6
5-49
6-04

2
3 3 3
2-01

1
1-11
1-09

_
•61
•48

1
•45
•63

_
•27
•55

1
•11
•21

_
•04
•31

_

•00

24
24-88
24-22

1

3
2-22
3

3
3 03
3-28

3
3 29
2-59

5
3-66
4-96

3
2-44
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3
1-70
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1
1-40
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3
•98
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•70

•24
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•33
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1
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_
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3
2-01
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2
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1
2-38
2-48

2
2-17
2-09

1
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1
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1-26

1
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_
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12
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S
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—
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1
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2
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3
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3
2-24
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2
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•26
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_
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1
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_
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2
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1
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1
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5
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66 On the Poisson Laio of Small Numbers

from which n has disappeared, and in this exponential we have seen that
Bortkewitsch and Mortara suppose m small, i.e. 10 or under. We have seen
that there is no reason why m should be absolutely small, and that the name
given by Bortkewitsch to the Poisson-Exponential—i.e. the " Law of Small
Numbers"—is misleading. But supposing the mean occurrence m to be small,
it by no means follows that q need be small and n finite. For if g = "2 and n = 4,
m would be "small"—and the sort of small number with which our authors deal,
but the mere fact that the mean frequency of occurrence was 2 would not justify
our using the Poisson-Exponential for

(•8 + -2)'.
The fact is that when our authors speak of the deaths in a Prussian Army

corps from the kick of a horse, or the suicides of schoolgirls, or the deaths from
chronic alcoholism as being "small," they really mean small as compared with the
number of persons exposed to risk. They had probably in mind all the men in
the army corps, all school-girls or all individuals liable to death in the towns
considered. But are all men in the army corps,—or only the cavalry, the artillery,
etc.,—equally liable to death from the kick of a horse ? Is every school-girl equally
liable to commit suicide or only a very few morbid and unhealthy minded girls?
Is every individual equally liable to die of chronic alcoholism, or only perhaps the
10 or 12 confirmed and aged drunkards in a town ? The moment we realise these
doubts, what is the population n to be considered? It is not m being small, but
the smallness of m/n that leads us to believe that the binomial may have passed into
an exponential. But if only six school-girls per year in a community are in the
least likely to commit suicide, what is the justification for the " law of small
numbers," if the average number of suicides be '65 ? Further, if we pass to even
a large community in which the tendency to commit suicide is graded—a very
probable state of affairs—m might be small and n large, and yet since q is not
constant, the binomial and its exponential limit would not be applicable; and this
non-applicability would not depend on " lumpiness "—i.e. contagion or example in
occurrence. Thus the probability might be:

(Pi + 9i) (Pt + ?*) (Pa + 2s) • • • (pn + qn)

with all the p's independent (as in spinning differently divided teetotums) and not
correlated (as they would be in drawing successive non-returned cards from a pack).
It would seem therefore that a priori we should not expect the conditions for the
exponential to be fulfilled in most of the cases selected by Bortkewitsch and
Mortara, although with perfect mixing we might expect it in the cases cited
by "Student."

(14) In order to test this point on adequate numbers, the ages at death of all
persons dying over 70 years of age were extracted for a period of three complete
years from the notices of death in the Times newspaper for the years 1910—1912:
see Table XV. These announcements of death are those of individuals in a fairly
limited class, which may be considered stable in numbers for these three years.
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68 On the Poisson Law of Small Numbers

Table XVI shows that the announcements of deaths over 70 years of age only
amount to 3'7<i per day for males and 3'52 for females. These are certainly "small
numbers," but " small" with regard to what ? Are we to consider n as the number
of the population which embraces, (i) all the individuals of the limited classes of
the same range of ages as the defunct, (ii) all the individuals announced as dead
on the same day, (iii) all the individuals of whatever ages of the class which
announces deaths in the Times! Or, should we refer to all the individuals in the
community of that range of ages, or the whole community at large, i.e. the chance

. that in a population of so many millions an individual over 70 or 80 as the case
may be will die and have their death announced in the Times newspaper? Well,
it really does not matter, because if for any one or all of these populations the
binomial (p + q)n applied, we should get if q were small and n large, the Poisson
series

and this quite regardless of the size of n. If therefore we did find a series in
which q was very small and n large, we might not be able to say to which, if any
of the above populations n applied. On the other hand the mere fact that TO is
small is no justification for the use of the "law of small numbers" as is sometimes
implied. If it be argued that the small number of people who die over 80 and
have their names recorded in the Times are drawn from a small population, we
reply so it may be argued are the school children who commit suicide, the uncles
who feel any inclination to marry their nieces, or the men liable to die of chronic
alcoholism; and we can in the case of the announcement of deaths test the values
of q and n on fairly adequate numbers. As a matter of fact we do not know, in
attempting to apply the Poisson formula, what is the population from which we
are drawing our individuals, and ther justification of the Poisson formula lies only
in showing that there actually does exist a binomial for which q is small and
n large. We might imagine that as we got to the higher ages practically every
person of that age would die, or that in our notation q would be 1 nearly and p be
a very small quantity; thus an approach might be made to the Poisson-Exponential.
But the approach to the Poisson-Exponential arises not through q approaching
unity but from q becoming very small. Nor again in the lower age groups do we
find ourselves left with a positive binomial.

In all cases except women over 90 years of age, we find that a negative
binomial best fits the observations. Even in the case of the announcements of
deaths of women over 90 years, we find that the approach of the binomial to the
Poisson exponential depends on

1 + \
•53-3333;

being measured with sufficient approximation by e = 271828. But

(l-01875)53SS3 = 2-69323,
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and is therefore not a very close approximation, a result shown when we use
a binomial by the substantial improvement in the measure P of " goodness of
fit." Even in this case we are not prepared to say what is the population for
which the q = '01875 in the case of these announcements of deaths of women over
90 years of age. It can scarcely be that there are only 29 women over 90 years

TABLE XVI.

Constants for Deaths of Aged.

Men.

Age over

70 years ...
SO years ...
85 years ...
.90 years ...

P

1-12965
1-12152
1-01903
1 -00654

<1

- 12965
- 12152
- 01903'
- -00654

Probable
Error
of q

+ 03314
+ 03349
+ -02902
+ 02934

it

-28-8747
-14-0703
-43-25)96
-42-8498

Probable
Error
of n

+ 7 3734
+ 3-8704
+ 67-5797
+ 192-3069

m

3-7436
1-7099

•8239
•2801

Binomial
P

1355
•9358
•9737
•6741

Expo-
nential

P

•0045
•1129
•9715
•6672

Women.

Ape over
Probable

Error
of q

Probable
Error
of n

Binomial
P

Expo-
nential

P

70 years
80 years
So years
90 years

1 -34012
1 -20770
1 14507
•98125

- -34012
- -20770
- -14507
+ -01875

+ -04161
± -03294
+ -03077
+ -02779

- 1 0 3 5 2 2
-10-4400
- 8-1447
+ 29-0573

± 1-2307
± 1-8309
+ 1-9G27
+ 43-0634

3-5210
21569
11816

•5447

•8084
•9686
•9860
•9848

•0000
•0018
•1062
•8116

of age living in the country, whose deaths are likely to be announced in the Times
when they occur. Further the probable error of q is such that actually this case
might equally well be a random sample from material following a negative
binomial. Analysing our material we see that our first two cases of males and
the first three of females are such that they could not possibly be random samples
from positive binomials, the probable errors of q are too small. Next, seven cases
out of the eight do give actually negative binomials and the eighth might, having
regard to its probable errors, well be a negative binomial. Thus although our
daily occurrences are certainly in Bortkewitsch and Mortara's sense " small numbers,"
they give no support to the use of a Poisson-Exponential.

If it be said that these " small numbers " differ in character from those used
by our authors, the reply must be: we know in none of these cases the real
population from which deaths are to be considered as drawn. The chances of
death are certainly graduated with age, but the chances of suicide are graduated
with temperament, and the same is true of alcoholism, or again the chance of
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70 On the Poisson Law of Small Numbers

death by accident is graduated with occupation. At any rate until those who
support the use of the " law of small numbers" demonstrate its application on
material, where the probable errors are sufficiently small for us to measure the true
value of q and n, no advance can be made. Nor until we have clear ideas of the
population, n in which the chance is q, is it possible to assert that it may be used
for the suicides of school children, and the marriage of uncle and niece, and must
not be used for the deaths of aged people, which certainly occur in "smaller"
numbers.

In the illustrations of deaths we have taken, certainly the Poisson-Exponential
is not the rule, although the distributions appear to approach it, as towards a limit,
when the number of deaths approach zero. But our data which show the rule of
the negative binomial appear to show it in no more marked manner than much of
the data selected by Mortara himself indicate the negative binomial, although owing
to the sparsity of his material his results are far more erratic and unreliable. Nor
is Bortkewitsch much behind Mortara in the evidence he produces for a negative
binomial being as reasonable a description—possibly owing to inherent lumpiness—
as a positive binomial of these " small number " frequencies.

(15) Conclusions.

(a) The Poisson-Exponential gives a fairly reasonable method of dealing with
the probable deviations of small sub-frequencies in the case of random sampling.
When the average value of a sub-frequency is not more than 3 °/o of a population,
then Poisson's formula suffices in most practical cases to determine the range of
error likely to be made. Tables are given to assist its use.

(b) The application of the Poisson-Exponential to various data by Bortkewitsch
and Mortara has hardly been justified by those writers, for they have not tested
whether the probability q is small and positive and the power n large and positive
in the cases considered by them. When this is actually done, it is found that
their hypotheses, having regard to the probable errors of q and n, are largely
unjustified in the case of their illustrations. Even in such cases where it is
justified, a binomial gives a better result as measured by the test for goodness
of fit.

(c) Negative binomials repeatedly occur and give just as good fits, where
they occur, as positive binomials. In the illustrations taken by Mortara, the
frequency 10 used is so small that it is not possible to assert that either positive
or negative binomials are demanded by the data. Still the average p of his results
is very significantly in excess of unity.

(d) Mortara like Bortkewitsch cuts out of his data straight off all districts
with, on the average, more than 10 cases in the year. But the q obtained from
20, 40, or even 100 cases in a population of 100,000 is a small q in the sense that
the resulting binomial is adequately expressed by a Poisson-Exponential. There
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LUCY W H I T A K E R 71

appears to be no valid reason for such a procedure, except the experience that
many such cases actually give negative binomials*. It seems to us theoretically
unjustifiable to apply the exponential to 8 cases say in a district of 100,000, and
not apply it to 12 cases in a district of 200,000. Actually p may be 1*4 in the
first case and only 0'9 in the second.

(e) We consider that the reasonable method in every case is not to start with
the Poisson-Exponential, which screens the truth or falsity of the a priori
hypotheses, but to fit a binomial regardless of the magnitude of p. The fact that
quite as good fits are obtained with negative as with positive binomials suggests
that a new interpretation of these cases of "negative probability" is requisite.
Several cases of the interrelation of "contributory cause groups" which provide
a series represented by a negative binomial (p — q)~n have been recognisedf.
A general interpretation based on a very simple conception seems needed for
these demographic cases in which the law of small numbers appears far more often
to correspond to a negative than to a positive binomial.

Tbis paper was worked out in the Biometric Laboratory, and I have to thank
Professor Karl Pearson for his aid at various stages.

* Can we oite in addition perhaps, the fact that existing tables of mxe-mjx\ do not extend beyond
m=10?

+ Pearson, Biometrika, Vol. rr. p. 208.
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