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Introduction

The International Workshop on Real and Complex Singularities is organized by
the Singularities Group of the Institute of Mathematical and Computer Sciences
(ICMC) of the University of São Paulo (USP), campus São Carlos. It is one
of the key events for people working in singularity theory, algebraic geometry,
bifurcation theory and related areas. It brings together world experts and young
researchers to report on their recent achievements, to exchange ideas and to
address trends of research in a highly stimulating environment. The Workshop
is a bi-annual event which started in 1990.

The 15th edition of the International Workshop on Real and Complex Sin-
gularities took place from July 22 to 28, 2018 at the ICMC-USP, São Carlos.
It was dedicated in honor of Maria Ruas and Terence Ga↵ney’s 70th birth-
days and Marcelo Saia’s 60th birthday. As in previous editions, the Workshop
aimed at the interaction between undergraduate and graduate students, young
researchers and world experts of Singularities and other related areas, and the
dissemination of scientific works. The activities of the Workshop consisted of
lectures, short courses, communications and posters on the most diverse fronts,
within the Theory of Singularities. The program consisted of 20 plenary sessions,
6 among them were special plenary sessions, where the speakers presented pa-
pers recently developed in collaboration with professors Terence Ga↵ney, Maria
Ruas and Marcelo Saia, honored in this edition, 48 ordinary sessions, and 34
posters.

We consider that the Workshop successfully achieved its goal. The quality of
the lectures presented was strongly appreciated by the participants; the themes
of the o↵ered short courses and the e↵ective participation of graduate students
and young researchers were again highlights of this event.

It had a significant number of participants. The 145 participants came from
several Brazilian and foreign institutions, for example, from the USA, Japan,
Spain, France, England, Canada, Peru, Mexico, Poland, Germany. We thank
the speakers and the participants whose presence was the real success of the
Workshop.

The organization of the Workshop was possible thanks to the help of many
people and institutions. The members of the Scientific Committee: Enrique Ar-
tal Bartolo, Jean-Paul Brasselet, Alexandre César Gurgel Fernandes, Marcelo
Escudeiro Hernandes, Zbigniew Jelonek, Ursula Ludwig, Takashi Nishimura,
Regilene Delazari dos Santos Oliveira, Maria Aparecida Soares Ruas, José Seade,
Mihai Tibăr. The members of the Organizing Committee: Grazielle Feliciani
Barbosa, Nivaldo de Góes Grulha Junior, Raimundo Nonato Araújo dos San-
tos, Tháıs Maria Dalbelo, Aurélio Menegon Neto and Miriam da Silva Pereira.
The Workshop was funded by Institutions from Brasil: FAPESP, CNPq and
INCTMat.

The articles in the present volume were submitted by participants of the
15th International Workshop on Real and Complex Singularities. They show a
wide spectrum of topics in Singularity Theory. We thank all the contributors
for their high quality research articles.
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• Maria Michalska - (ICMC-USP)

• Maria Pe Pereira - (Universidad Complutense De Madrid)

• Markus Banagl - (Heidelberg University)

• Masaaki Umehara - (Tokyo Institute Of Technology)

• Masatomo Takahashi - (Muroran Institute Of Technology)

• Mateus Schmidt Mattos Lopes Pereira - (USP)

• Matthias Pablo Zach - (Johannes Gutenberg Universitaet Mainz)

• Meral Tosun - (Galatasaray University)

• Michal Piotr Farnik - (Jagiellonian University)

• Michelle Ferreira Zanchetta Morgado - (UNESP)

• Michelle Lira Dos Santos Molino - (UFF)

• Nancy Carolina Chachapoyas Siesquén - (UNIFEI)

• Nguyen Thi Bich Thuy - (IBILCE UNESP)

• Nguyen Xuan Viet Nhan - (Sao Paulo University)
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• Rafaela Soares De Carvalho - (UFSCar)

• Rafaella De Souza Martins - (Universidade Federal De Santa Catarina )

• Raimundo N. Araujo Dos Santos - (USP-ICMC)
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ON THE INDEX OF PRINCIPAL FOLIATIONS OF SURFACES IN R3

WITH CORANK 1 SINGULARITIES

J. C. F. COSTA, L. F. MARTINS, AND J. J. NUÑO-BALLESTEROS

Abstract. It is well known that the index associated to the principal foliations at a cross-cap
point is 1

2
. In this work we study the index for other corank 1 singularities from (R2, 0) to

(R3, 0) which either are simple or are non-simple but included in strata of Ae-codimension
 3. We show that the index, under certain conditions, is always 0 or 1, bearing out that the
Loewner conjecture could be true for all corank 1 singularities.

1. Introduction

The classical Loewner conjecture states that the index of the binary di↵erential equation
(BDE) which represents the equation of the principal directions of a smooth immersed surface
in R3 at an isolated umbilic point is always less than or equal to 1. The Loewner conjecture
is a stronger version of the famous Carathéodory conjecture, which claims that every smooth
convex embedding of a 2-sphere in R3 must have at least two umbilics. In fact, since the sum
of the indices of the umbilics of a compact immersed surface is equal to its Euler-Poincaré
characteristic (according to the Poincaré-Hopf formula) it follows that the Loewner conjecture
implies the Carathéodory conjecture, not only for a convex embedding of a 2-sphere, but for any
immersion. The Loewner conjecture is true in the analytic case (cf. [19, 30]) but the smooth
case is still open, as far as we know.

A natural question is whether or not the Loewner conjecture is still true when we consider
a singular surface parametrised as the image of a smooth non-immersive map germ
f : (R2

,0) ! (R3
,0). In fact, if the non-immersive point is isolated then we have a well

defined BDE for the principal directions outside the origin and it makes sense to consider the
index of the singular point of the BDE. By definition, the corank of f is the dimension of the
kernel of its di↵erential at the origin. When f has corank 2, then it is known that this conjecture
is false, since it is not di�cult to construct a surface with an isolated singular point of index
two (see [11], Remark 4.7). However, we believe that if f has corank 1, then the index is always
less than or equal to one and hence, the Loewner conjecture is also true in this case. The main
purpose of this paper is to analyse many examples which support this conjecture.

The family of examples we consider here is taken from Mond’s classification in [23], where
he gives a classification under A-equivalence (that is, changes of coordinates in the source and
target) of all smooth germs f : (R2

,0) ! (R3
,0) which either are simple or are non-simple but

included in strata of Ae-codimension  3. All map germs in this list have corank 1, so we can
use them to test our conjecture. Of course this list is far from being a complete classification,

2010 Mathematics Subject Classification. Primary 58K05; Secondary 34A09, 53A05.
Key words and phrases. Singular surfaces, Lowener conjecture, index, principal lines.
The first named author has been supported by grant 2018/25157-3, São Paulo Research Foundation (FAPESP).

The second named author has been supported by grant 2018/19610-7, São Paulo Research Foundation (FAPESP).
The third named author has been supported by MICINN Grant PGC2018–094889–B–I00 and by GVA Grant
AICO/2019/024.
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2 J. C. F. COSTA, L. F. MARTINS, AND J. J. NUÑO-BALLESTEROS

but they are the most natural examples to begin with the analysis. Our main result is that the
index, under certain conditions, is always 0 or 1 in all these examples (Theorem 3.4).

In final of the paper we also consider generic deformations of the singular surface. Let

f� : (R2
,0) ! (R3

,0), � 2 (�", "),

be a generic deformation of a corank 1 map germ f , i.e. f0 = f , f� is generic for � 6= 0 and the
map (�, t) 7! f�(t) is smooth. D. Mond showed in [24] how to count the number of cross-caps
in f�. Using his result, we estimate the number of umbilic points that appear on the image of
f� in a neighbourhood of its singular point (Proposition 5.3).

Some references for index of BDE’s are [4, 6, 7, 8, 20].

2. Surfaces with corank 1 singularities

We shall consider surfaces in R3 defined as the image of a corank 1 smooth map f : U ! R3,
where U is an open subset of R2. The di↵erential geometry of singular surfaces has been an
object of interest in the past decades and it can be considered with di↵erent approaches (cross-
caps or Whitney umbrellas, cuspidal edges, swallowtails or more general types of fronts, etc.)
For example, see [3, 10, 14, 16, 17, 22, 25, 26, 27, 28]. See also [21], where the authors studied
in depth the geometry of surfaces in R3 with corank 1 singularities.

From the Singularity Theory point of view, if we are concerned in corank 1 map germs
(R2

,0) ! (R3
,0) up to A-equivalence then we have a classification list given by D. Mond in

[23]. The Mond’s classification is summarized in Table 1 for either simple map germs or non-
simple but included in strata of Ae-codimension  3. When k is even, S+

k is equivalent to S
�
k ,

and C
+
k to C

�
k .

We recall that two map germs f, g : (R2
,0) ! (R3

,0) are said to be A-equivalent, denoted
by f ⇠ g, if there exist germs of di↵eomorphims h : (R2

,0) ! (R2
,0) and k : (R3

,0) ! (R3
,0)

such that g = k � f � h
�1. For more details about definitions and notations from Singularity

theory used in this work (such as, Ae-codimension, simple germs, etc.), see [31].

Table 1: A-classes of corank 1 map germs (R2
,0) ! (R3

,0) either
simple or non-simple but included in strata of Ae-codimension  3 (cf. [23]).

Germ Ae-codimension Name
(x, y2, xy) 0 Cross-cap (S0)
(x, y2, y3 ± x

k+1
y), k � 1 k S

±
k

(x, y2, x2
y ± y

2k+1), k � 2 k B
±
k

(x, y2, xy3 ± x
k
y), k � 3 k C

±
k

(x, y2, x3
y + y

5) 4 F4

(x, xy + y
3k�1

, y
3), k � 2 k Hk

(x, xy + y
3
, xy

2 + ay
4), a 6= 0, 1

2 , 1,
3
2 3 P3

Surfaces in the same A-orbit clearly have di↵eomorphic image but not necessarily they have
the same local di↵erential geometry. So, we cannot take f as one of the normal forms in the
above table. We need parametrisations for corank 1 surfaces in R3 obtained with changes of
coordinates at source and target which preserve the geometry of the image.

The geometry of singular surfaces parametrised locally by a germ of a smooth function A-
equivalent to one of those in Table 1 is considered, for instance, in [10, 15, 26].

We summarize in the next result the partition of the set of all corank 1 map germs
f : (R2

,0) ! (R3
,0) according to their 2-jets under the action of the group A2 (i.e., the

group of 2-jets of di↵eomorphisms in the source and target). We denote by J
2(2, 3) the space of
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2-jets j2f(0) of map germs f : (R2
,0) ! (R3

,0) and by ⌃1
J
2(2, 3) the subset of 2-jets of corank

1.

Proposition 2.1. (Classification of 2-jets [23]) There exist four orbits in ⌃1
J
2(2, 3) under the

action of A2
, which are

(x, y2, xy), (x, y2, 0), (x, xy, 0), (x, 0, 0).

The following result gives relevant parametrisations for corank 1 surfaces in R3 according to
the classification given in Proposition 2.1. The cross-cap case, that is, when j

2
f(0) ⇠ (x, y2, xy)

is done in [10, 32], and the case j
2
f(0) ⇠ (x, 0, 0) is not of our interest here because f is a non-

simple wich is included in a stratum of Ae-codimension > 3.

Proposition 2.2. ([15]) Let f : (R2
,0) ! (R3

,0) be a corank 1 map germ. Then, after using

smooth changes of coordinates in the source and isometries in the target, we can reduce j
k
f(0)

to the form

(1) (x, y) 7!

0

@x ,
1

2
y
2 +

kX

i=2

bi

i!
x
i
,
1

2
a20x

2 +
kX

i+j=3

aij

i!j!
x
i
y
j

1

A ,

if j
2
f(0) is A-equivalent to (x, y2, 0), or

(2) (x, y) 7!

0

@x , xy +
kX

i=3

bi

i!
y
i
,
1

2
a20x

2 +
kX

i+j=3

aij

i!j!
x
i
y
j

1

A ,

if j
2
f(0) is A-equivalent to (x, xy, 0), where bi, aij are constants.

Let f : (R2
,0) ! (R3

,0) be a map germ of corank 1 and let j
k
f(0) be given by (1) in

Proposition 2.2. Then, the conditions for f to be A-equivalent to Sk, Bk, Ck or F4 are as follows
(see [15, 26]):

(3)

S1 : a03 6= 0, a21 6= 0,
Sk�2 : a03 6= 0, a21 = · · · = ak1 = 0, a(k+1)1 6= 0,
B2 : a03 = 0, a21 6= 0, 3a05a21 � 5a213 6= 0,
Bk�3 : a03 = 0, a21 6= 0, 3a05a21 � 5a213 = 0,

⇠3 = · · · = ⇠k�1 = 0, ⇠k 6= 0,
Ck�3 : a03 = 0, a21 = · · · = a(k�1)1 = 0, ak1 6= 0, a13 6= 0,
F4 : a03 = 0, a21 = 0, a31 6= 0, a13 = 0, a05 6= 0,

where ⇠m depends on the (2m+1)-jet of the third component of (1) in Proposition 2.2 (see [15]).
If f is such that the j

k
f(0) is given by (2) in Proposition 2.2, then the conditions for f to be

A-equivalent to Hk or P3 can be deduced in a similar way (see for instance [26]). In particular,
we distinguish between the Hk and P3 singularities by looking at the coe�cient a03. We have:

(4)
Hk�2 : a03 6= 0,
P3 : a03 = 0.

In order to characterize completely the Hk and P3 singularities some more conditions are
necessary (see [26]). Since these other conditions are not used here in our calculations, we will
omit them except for the condition a04�3a12b3 6= 0 for P3-singularity which we show now. In fact,
let f be A-equivalent to P3. We compute the double point curve of f(x, y) = (x, p(x, y), q(x, y)),
which is defined by equations:

p(x, y)� p(x, u)

y � u
=

q(x, y)� q(x, u)

y � u
= 0.
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This gives us the two following equations:

24x+ 4b3(u
2 + uy + y

2) + b4(u
3 + u

2
y + uy

2 + y
3) + h.o.t. = 0,

a04(u
3 + u

2
y + uy

2 + y
3) + 4xa13(u

2 + uy + y
2)

+ 6x(a22x+ 2a12)(u+ y) + 12a21x
2 + 4a31x

3 + h.o.t. = 0,

where h.o.t. means “higher-order terms”.
Now, using the first equation to eliminate the variable x, one obtains a curve in the plane

(y, u) which is isomorphic to the double point curve:

W = 1/24(u+ y)(a04(u
2 + y

2)� 2a12b3(u
2 + uy + y

2) + h.o.t. = 0.

We know from [24] that if f is A-equivalent to P3, then the Milnor number of W at the
origin must be equal to 4. This implies that W is 3-determined and thus, its 3-jet has to be
nondegenerate. In other words, the discriminant of j3W(0) must be di↵erent of 0, that is,

(a04 � 3a12b3)(a04 � a12b3) 6= 0

holds. In particular, a04 � 3a12b3 6= 0.

3. Index of lines of curvature

Let f : U ⇢ R2 ! R3 be a smooth map given by f(x, y) = (f1(x, y), f2(x, y), f3(x, y)). The
first and the second fundamental forms for f are given, respectively, by

I = E dx
2 + 2F dxdy +Gdy

2 and II = Ldx
2 + 2M dxdy +N dy

2

where
E = hfx, fxi , F = hfx, fyi , G = hfy, fyi ,

L =
det(fx, fy, fxx)p

EG� F 2
, M =

det(fx, fy, fxy)p
EG� F 2

, N =
det(fx, fy, fyy)p

EG� F 2
,

and the subscripts denote partial derivatives. It follows that L,M,N are only defined if the
denominator does not vanish; that is, at the regular points of f because EG�F

2 = kfx⇥fyk 6= 0
only in these points. For situations which include the case where f may have singularities, we
can define

(5) L
0 = det(fx, fy, fxx) , M

0 = det(fx, fy, fxy) , N
0 = det(fx, fy, fyy) ,

and work with this functions instead of L,M,N .
We recall that umbilics points are regular points of f in which the second fundamental form

is proportional to the first. Then, the rank of the matrix

(6)

✓
E F G

L
0

M
0

N
0

◆

is not maximal either at an umbilic or at a singular point of f .
Suppose that (x, y) is a regular point of f which is not umbilic. Then the principal directions of

f at (x, y) are defined as the directions determined by the eigenvectors of the second fundamental
form at (x, y). The equation of the principal directions of f is given by the binary di↵erential
equation (BDE)

(7) (FN
0 �GM

0) dy2 + (EN
0 �GL

0) dxdy + (EM
0 � FL

0) dx2 = 0 .

Thus, the principal directions define a pair of orthogonal line fields on the surface, which are
singular either at an umbilic or at a singular point of f .
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The equation (7) can be seen as a particular case of a positive quadratic di↵erential form
(PQD) on M = f(U) in the sense of [13], that is, as a quadratic di↵erential form ! such that for
every point p in M the subset !(p)�1(0) of the tangent plane TpM of M at p is either: (i) the
union of two transversal lines (in this case p is called a regular point of !), or (ii) all TpM (in
this case p is called a singular point of !). In local coordinates (x, y), a PQD form is given by

(8) ! = A(x, y)dy2 +B(x, y)dxdy + C(x, y)dx2
,

where A,B,C are smooth functions, called the coe�cients of the PQD, such that
B

2 � 4AC � 0. Because (8) is a PQD, B
2 � 4AC = 0 if and only if A = B = C = 0

([13]). The points where A = B = C = 0 are the singular points of ! and the set

� = {(x, y) 2 U ;B2 � 4AC(x, y) = 0}
which is called the discriminant of the PQD coincides with its singular set. (For a general
quadratic di↵erential equation which is not necessarily a PQD, the discriminant � is di↵erent
from the set of singular points of the equation; see for example the survey paper [29].)

Therefore, if ! is the PQD (7) associated to f then (x, y) 2 4 if and only if (x, y) is an
umbilic or singular point of f (and hence a singular point of !), which can be easily seen from
the matrix (6). Then, all important features of the equation (8) occur on the discriminant.
Taking an isolated singular point p of !, we can consider the index at p associated with any of
the lines of principal curvature determined by !, which is denoted in the literature by ind(!, p)
but we shall denote here by indP(f, p) in order to specify f and with P indicating principal,
as a reference for the equation (7). This means the number of turns of the line field when we
run through a small circle centered at p. For instance, we can easily to compute the index
of the three types of generic umbilics classified by Darboux (see, for instance, [2, 9, 12, 14]):
the lemon (or D1), the monster (or D2) and the star (or D3), which are 1/2, 1/2 and �1/2,
respectively. Moreover, from the description for the principal lines at a cross-cap point p of f ,
whose configuration can be found in [12], for example, we deduce that the index indP(f, p) is
1/2 (see Figure 1).

L M S WD D2 3D1

Figure 1. From left to right: configuration of integral curves of the principal
directions at generic umbilics D1, D2 and D3, and of the principal lines at a
cross-cap point of f , W .

In order to consider the index indP(f, p) it is necessary to have p as an isolated singular point
of ! (for example, we should eliminate the possibility of the existence of a sequence of umbilic
points on the smooth part of the surface that converges to p ). We shall consider this question.
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For this, we use the following lemma which shows that the index of an isolated singular point of
a PQD is related to the mapping degree, given in terms of the coe�cients of !.

Lemma 3.1. ([18], Part 2, VIII, 2.3) Let p be an isolated singular point of the positive quadratic

di↵erential form ! = A(x, y) dy2 +B(x, y) dxdy + C(x, y) dx2
. Then,

ind(!, p) = �1

2
deg((A,B), p) = �1

2
deg((B,C), p)

where deg((A,B), p) and deg((B,C), p) denote the mapping degrees of the maps (A,B) and

(B,C), respectively, at p.

Let h : (Rn
,0) ! (Rn

,0) be a continuous map such that 0 is isolated in h
�1(0). The degree

deg(h,0) of h at 0 is defined as follows: choose a "-ball Bn
" centered at 0 in Rn so small that

h
�1(0)\B

n
" = {0} and let Sn�1

" be the (n�1)-sphere centered at the origin of radius ". Choose
an orientation of each copy of Rn. Then the degree of h at 0 is the degree of the mapping
h

khk : Sn�1
" ! S

n�1 (Sn�1 ⇢ Rn is the unit standard sphere), where the spheres are oriented

as (n � 1)-spheres in Rn. If h is di↵erentiable, this degree can be computed as the sum of the
signs of the Jacobian determinant of h (i.e., of its derivative) at all the h-preimages near 0 of a
regular value of h near 0.

We also recall that h : (Rn
,0) ! (Rn

,0) is a quasi-homogeneous map germ with weight
a = (a1, . . . , an) 2 Nn and quasi-degree d = (d1, . . . , dn) 2 Nn if

hi(�
a1x1,�

a2x2, . . . ,�
anxn) = �

dihi(x1, x2, . . . , xn)

for each i = 1, 2, . . . , n and all � > 0. We say that a smooth function has quasi-order m if
all monomials in its Taylor expression have quasi-degree greater than or equal to m. We say
that h is a semi-quasi-homogeneous map with weight a and quasi-degree d if h = g + G with
g a quasi-homogeneous map germ with weight a and quasi-degree d such that 0 is isolated in
g
�1(0), and each component Gi of G has quasi-order greater than di, i = 1, 2, . . . , n.
The following theorem shows that for semi-quasi-homogeneous map germs, the degree at a

zero coincides with the degree at this zero of its quasi-semi-homogeneous part.

Theorem 3.2. ([5]) With the above notations, let h = g+G be a semi-quasi-homogeneous map

germ. Then 0 is isolated in h
�1(0) and

deg(h,0) = deg(g,0).

Before giving the results about the index of the lines of curvature for a corank 1 surface, we
present an illustrative example explaining all our calculations.

Example 3.3. Let S
+
1 -standard be the map germ given by (x, y2, y3 + x

2
y) as in Table 1. The

coe�cients of its first and second fundamental forms are, respectively:

E = 1 + 4x2
y
2
, F = 2xy(x2 + 3y2), G = 4y2 + (x2 + 3y2)2

and

L
0 = 4y2, M

0 = 4xy, N
0 = �2x2 + 6y2.

Let Ady
2 + Bdxdy + Cdx

2 = 0 the BDE of the principal directions of S
+
1 -standard. Then,

from (7) we have that

A = �8x5
y�16xy3�24x3

y
3
, B = �2x2+6y2�12x4

y
2�16y4�36y6, C = 4xy+8x3

y
3�24xy5.

Consider the map germ h = (B,C) : (R2
,0) ! (R2

,0) given by h = g +G taking

g(x, y) = (�2x2 + 6y2, 4xy) and G(x, y) = (�12x4
y
2 � 16y4 � 36y6, 8x3

y
3 � 24xy5).
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In this case, g is a homogeneous map germ, 0 is isolated in g
�1(0) and each component Gi of

G has quasi-order greater than 2. Then, by Theorem 3.2, the degree of h in 0 coincides with the

degree of g in 0. It is easy to calculate the degree of g in 0, which is -2. Hence, by Lemma 3.1,

the index of the BDE associated to S
+
1 -standard is 1.

The case S
�
1 -standard is analogous. Repeating this same sketch of calculations, we can con-

clude that the index of the BDE associated to S
�
1 -standard is 0. Figure 2 shows S

�
1 and S

+
1 -

standards surfaces with their lines of curvatures.

Figure 2. Standards S+

1
and S�

1
surfaces and their lines of curvature.

In Proposition 2.1 are listed four orbits in ⌃1
J
2(2, 3) under the action of group A2, with

the first one corresponding the known case of the cross-cap (cf. [10, 32]) and the fourth orbit
listed corresponding to a non-simple germ wich is included in a stratum of Ae-codimension
> 3. Then it is just remaining to consider two cases in the 2-jet classification: (x, y2, 0) and
(x, xy, 0). The next theorem complete the study of the index of an isolated singular point of a
BDE which represents the equation of the principal directions of a corank 1 simple map germ
f : (R2

,0) ! (R3
,0) or non simple but in strata of Ae-codimension  3.

Theorem 3.4. Let f : (R2
,0) ! (R3

,0) be a corank 1 simple map germ or non-simple strata

of Ae-codimension  3. Consider j
k
f(0) as in Proposition 2.2. If a

2
12 � a21a03 6= 0 then 0 2 R2

is an isolated singular point of the BDE associated to f given in (7) and

indP(f,0) =

8
<

:

0 if a21a03 < 0
0 if a

2
12 > a21a03

1 if a
2
12 < a21a03

if j
2
f(0) has type (x, y2, 0) and

indP(f,0) =

⇢
0 if a21a03  0
1 if a21a03 > 0

if j
2
f(0) has type (x, xy, 0).

Proof. Under hypothesis, we just need to consider map germs which are A-equivalent to one of
those given in Table 1 and such that the 2-jet has the type (x, y2, 0) or (x, xy, 0). We divide the
proof in three parts. In all of them, we start with the following procedure:

Given f : (R3
,0) ! (R2

,0), we first calculate the coe�cients E,F,G, L
0
,M

0
, N

0 associated
to f ; second we get the BDE expression of the principal directions of f given by (7), denoted
here by Ady

2 +Bdxdy + Cdx
2 = 0.

These calculations can be done quickly using for instance the Mathematica software. Thus,
they will be omitted here.
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Part 1. j
2
f(0) ⇠ (x, y2, 0).

• Consider f A-equivalent to S1 given in Table 1 (this means f is A-equivalent to S
+
1 or

S
�
1 ). The conditions on the coe�cients of a S1-singularity are a03 6= 0 and a21 6= 0. We use the

same procedure given in Example 3.3. After calculating the coe�cients of the first and second
fundamental forms associated to f and getting the BDE expression of the principal directions of
f , let us take the semi-quasi-homogeneous map h = (B,C) : (R2

,0) ! (R2
,0). So, in this case

we can consider h = g +G, where

g(x, y) = (�a21

2
x
2 +

a03

2
y
2
, a21xy + a12y

2)

is quasi-homogeneous (in fact homogeneous) and G has higher order terms. We call resultant
of g to the resultant of the two components of g (with respect to one of the variables). The
resultant of g is given by the expression a

2
12 � a21a03 (which is not zero by hypothesis) then we

can conclude that 0 is isolated in g
�1(0). Therefore, by Theorem 3.2, 0 is isolated in h

�1(0) and
the degree of h in 0 coincides with the degree of g in 0. Now we apply Lemma 3.1 to calculate
the index indP(f,0). To do this, let us calculate the degree of g at 0. Since a03, a21 6= 0, it may
occur:

(i) a21a03 < 0 or (ii) a21a03 > 0.

Taking the following change of coordinates in the source of g
⇢

X = a21x+ a12y

Y = y

it holds that

g ⇠ (� 1

2a21
(X2 � 2a12XY + (a212 � a21a03)Y

2), XY ).

Taking now the change of coordinates in the target k1(u, v) = (�2a21u, v), we have

g ⇠ (X2 � 2a12XY + (a212 � a21a03)Y
2), XY ).

After one more change of coordinates in the target given by k2(u, v) = (u+2a12v, v), it holds
that

g ⇠ (X2 + (a212 � a21a03)Y
2
, XY ) = g̃(X,Y ).

Due the previous change of coordinates, it follows that

deg (g,0) = �sgn(2X2 � 2(a212 � a21a03)Y
2) deg (g̃,0),

where sgn denotes the sign of a function.
If a21a03 < 0 then a

2
12 � a21a03 > 0. So, g̃ is not surjective and thus deg (g̃,0) = 0. Hence

deg (g,0) = 0 and thus indP(f,0) = 0.
If a21a03 > 0, we have two possibilities: a

2
12 > a21a03 or a

2
12 < a21a03. If a212 > a21a03 then

a
2
12 � a21a03 > 0 and as already done, indP(f,0) = 0. If a212 < a21a03 then a

2
12 � a21a03 < 0. In

this case, the Jacobian determinant of g̃ is equal to

2X2 � 2(a212 � a21a03)Y
2
> 0

for any (X,Y ).
Taking any regular value of g̃, there always exist two g̃-preimages for which the signs of the

Jacobian determinants are 1. Hence deg (g̃,0) = 2, which implies that deg (g,0) = �2 and thus
indP(f,0) = 1.

• Consider f A-equivalent to Sk given in Table 1, for any k � 2. By conditions on the
coe�cients of a Sk-singularity given in (3) and by hypothesis a

2
12 � a21a03 6= 0, one has that

a12 6= 0.
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We reproduce the same steps as in the previous case. From the coe�cients B and C of (7) for
f , we can take, for all k � 2, the semi-quasi-homogeneous map h = (B,C) : (R2

,0) ! (R2
,0)

given by h = g +G, where

(9) g(x, y) =

✓
�

a(k+1)1

(k + 1)!
x
k+1 +

a03

2
y
2
, a12y

2

◆

is quasi-homogeneous and G has higher-order terms. In the expression of the resultant of g

appears just a12, which is not zero in this case. Therefore, for all k � 2, the map germ g in (9)
is clearly not surjective and hence its degree is 0. By Theorem 3.2, deg(h,0) = deg(g,0) = 0.
As consequence, by Lemma 3.1, the indP(f,0) = 0.

• Consider f A-equivalent to Bk given in Table 1, for any k � 2. A Bk-singularity is
characterized by conditions which appear in (3). Since a03 = 0, the general hypothesis reduces
to a12 6= 0. We proceed in the same way as in the previous cases, following the same steps.

In this case, for all k � 2, we can take the semi-quasi-homogeneous map

h = (B,C) : (R2
,0) ! (R2

,0)

given by h = g +G, where

(10) g(x, y) =

✓
�1

2
a21x

2
, a12y

2 + a21xy

◆

is homogeneous and G has higher-order terms. The resultant of g is given by a
2
12a21 which is

not zero. Therefore, for all k � 2, the map germ g in (10) clearly is not surjective and hence its
degree is 0. Then, again we have that indP(f,0) = 0.

• Consider f A-equivalent to Ck given in Table 1, for any k � 3. A Ck-singularity is charac-
terized by conditions

a03 = 0, a21 = a31 = · · · = a(k�1)1 = 0, ak1 6= 0 and a13 6= 0.

Then, the general hypothesis again reduces to a12 6= 0. Proceeding in the same way as in the
previous cases, for all k � 3, we can take the semi-quasi-homogeneous map

h = (B,C) : (R2
,0) ! (R2

,0)

such that h = g +G, where

(11) g(x, y) =

✓
� 1

k!
ak1x

k
, a12y

2

◆
,

is quasi-homogeneous and G has higher-order terms.
In the expression of the resultant of g just appears a12, which is not zero. Therefore, for all

k � 3, the map germ g in (11) clearly is not surjective and hence its degree is 0 from which one
concludes that indP(f,0) = 0.

• Consider f A-equivalent to F4 given in Table 1. The F4-singularity is characterized by
conditions

a03 = a21 = a13 = 0, a31 6= 0 and a05 6= 0.

Then, the general hypothesis again reduces for a12 6= 0. In this case, we can take the semi-
quasi-homogeneous map h = (B,C) : (R2

,0) ! (R2
,0) given by h = g +G, where

(12) g(x, y) =

✓
�1

6
a31x

3
, a12y

2

◆

is quasi-homogeneous and G has higher-order terms.
The resultant of g is given by a12 which is not zero. Therefore, the map germ g in (12) is also

non surjective and hence its degree is 0. Thus indP(f,0) = 0.
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Part 2. j
2
f(0) ⇠ (x, xy, 0) and f is a simple map germ.

In this case f is A-equivalent to Hk given in Table 1, with k � 2. We have already seen in
Section 2 that a necessary condition to Hk-singularity occurs is a03 6= 0.

In this case, we can take the semi-quasi-homogeneous map h = (B,C) : (R2
,0) ! (R2

,0),
h = g +G, where

(13) g(x, y) =

✓
a12x

2 + a03xy,
1

2
a21x

2 � 1

2
a03y

2

◆

is homogeneous and G has higher-order terms.
The resultant of g is given by the expression �a

2
03(a

2
12 � a21a03), which is not zero. Then 0

is isolated in g
�1(0).

Consider the following change of coordinates in the source of g:
⇢

X = x

Y = a12x+ a03y .

Then

g ⇠
✓
XY,

1

2a03

�
�(a212 � a21a03)X

2 + 2a12XY � Y
2
�◆

.

Taking another change of coordinates k1(u, v) = (u, 2a03v), now in the target, it holds that

g ⇠ (XY,�(a212 � a21a03)X
2 + 2a12XY � Y

2).

After one more change of coordinates in the target given by k2(u, v) = (u, v�2a12u), we have

g ⇠ (XY,�(a212 � a21a03)X
2 + 2a12XY � Y

2) = g̃(X,Y ).

Due the previous changes of coordinates applied in g, it follows that deg (g,0) = deg (g̃,0),
which does not depend on the sign of a03.

If a212 � a21a03 > 0 then g̃ is not surjective. In fact, take for instance (0, ✏) 2 R2
, ✏ > 0 small

enough. Then there is not (X,Y ) such that g̃(X,Y ) = (0, ✏). Suppose by absurd that

XY = 0 and � (a212 � a21a03)X
2 + 2a12XY � Y

2 = ✏.

From the first expression, X = 0 or Y = 0. If X = 0, then the second equation reduces
to �Y

2 = ✏ > 0. Otherwise, if Y = 0, then we obtain �(a212 � a21a03)X2 = ✏ > 0 while
(a212 � a21a03) > 0.

Thus, g̃ is not surjective and deg (g̃,0) = 0 = deg (g,0). Hence, indP(f,0) = 0.
If a212 � a21a03 < 0, the Jacobian determinant of g̃ is equal to

�2Y 2 + 2(a212 � a21a03)X
2
< 0.

For any regular value of g̃, there always exist two g̃-preimages for which the sign of the
Jacobian determinants of g̃ are �1. Hence deg(g̃,0) = �2, which implies that deg(g,0) = �2
and thus indP(f,0) = 1.

Part 3. j
2
f(0) ⇠ (x, xy, 0) and f is a non-simple strata of Ae-codimension  3.

In this case f is A-equivalent to P3 given in Table 1. We have already seen in Section 2 that
necessary conditions to P3-singularity occurs are a03 = 0 and a04 � 3a12b3 6= 0.

In this case, we can take the semi-quasi-homogeneous map h = (A,B) : (R2
,0) ! (R2

,0)
given by h = g +G, where

g(x, y) =

✓
1

2
a21x

2 +

✓
�1

6
a04 +

1

2
a12b3

◆
y
3
, a12x

2

◆
,

is quasi-homogeneous with weight (3, 2) and quasi-degree (6, 6) and G has only higher-order
terms. Moreover, since a12 6= 0 and a04�3a12b3 6= 0, the resultant of g given by a

2
12(a04�3a12b3)2
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is not zero. Therefore g
�1(0) = 0. In particular, h is semi-quasi-homogeneous and deg(h) =

deg(g) = 0 because g is not surjective. So, indP(f,0) = 0. ⇤

From Theorem 3.4 it holds that:

Corollary 3.5. Let f be a map germ in the A-class of one of the map germs given in Table 1,

with j
k
f(0) as in Proposition 2.2. Suppose that a

2
12 � a21a03 6= 0.

(i) If f ⇠ S
±
1 or Hk then indP(f,0) = 0 or 1.

(ii) If f ⇠ S
±
k�2, B

±
k , C

±
k , F4 or P3 then indP(f,0) = 0.

Remark 3.6. It follows from Theorem 3.4 that for any corank 1 map germ f satisfying its

hypothesis, the singularity of the BDE of the principal directions of f is an isolated point, i.e.

there is not sequence of umbilic points on the smooth part of the surface that converges to the

singular point of the surface.

4. Geometric interpretation of the condition a
2
12 � a21a03 6= 0

Let f : (R2
,0) ! (R3

,0) be a corank 1 map germ whose 2-jet has A2-type either (x, y2, 0) or
(x, xy, 0). We want to analyze the circles which have a special contact with f at the origin. To
do this, we need to look at the singularity type of the contact map germ Cv,u : (R2

,0) ! (R2
,0)

given by

Cv,u(x, y) = (hf(x, y),vi, kf(x, y)� uk2 � kuk2),
where v,u 2 R3, kvk = 1 is the unit normal vector of the circle and u is its centre. Note that
the first component is nothing but the height function which measures the contact of f with the
normal plane to v and the second component the squared distance function which measures the
contact of f with the sphere of centre u.

In order to consider the desired contact we use the umbilic curvature, the binormal and
asymptotic directions defined in [21], which are related to contact properties of the surface given
by f with planes and spheres. The umbilic curvature u is an important second-order invariant
of the f : when it is non-zero, then 1/u is the radius of the unique sphere with umbilical contact
(that is, contact of type ⌃2,2 in Thom-Boardman terminology) with the surface at the singular
point. See [21] for details.

We recall that a map germ g : (R2
,0) ! (R2

,0) has type ⌃2,1 if and only if its 2-jet is
equivalent to (x2

, 0).

Lemma 4.1. Let f : (R2
,0) ! (R3

,0) be a corank 1 map germ with j
k
f(0) as in Proposition

2.2 and with non-zero umbilic curvature u at the origin.

(i) If j
2
f(0) ⇠ (x, y2, 0), there are exactly two circles with contact of type ⌃2,1

with f at the

origin, given by u = (0, 0, 1/a20) and v = (0, 0, 1) or v = (0,�a20, b2)/
p

a
2
20 + b

2
2.

(ii) If j
2
f(0) ⇠ (x, xy, 0), there is exactly one circle with contact of type ⌃2,1

with f at the

origin, given by u = (0, 0, 1/a20) and v = (0, 0, 1).

Proof. Notice that the circle determined by u,v has contact of type ⌃2,1 if and only if the sphere
of centre u has umbilical contact and the plane normal to v is binormal (i.e., it has a degenerate
contact ⌃2,1). Then, our results follow from the analysis of contacts with spheres and planes in
[21], where the umbilic curvature at the origin is u(0) = |a20|. ⇤

We observe that if j2f(0) ⇠ (x, y2, xy) then there is not circle with contact of type ⌃2,1 with
f at the origin (because there is not sphere with contact of type ⌃2,2 with f , see [21] for details).
The circles with contact of type ⌃2,1 with f given in the above lemma will be called ⌃2,1

-circles

for simplicity.
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Definition 4.2. Let g : (R2
,0) ! (R2

,0) be a map germ of type ⌃2,1. We say that g is
⌃2,1

-generic if it is A-equivalent to a finitely determined map germ of the form

(x2
, c0x

3 + 3c1x
2
y + 3c2xy

2 + c3y
3),

for some c0, c1, c2, c3 2 R.

Remark 4.3. It follows from the definition that if j
3
g(0) = (x2

, c0x
3+3c1x2

y+3c2xy2+ c3y
3),

then a necessary condition for g being ⌃2,1
-generic is that c

2
2 � c1c3 6= 0. In fact, a necessary

condition for finite determinacy for map germs (R2
,0) ! (R2

,0) is that its Jacobian determinant

has to be non-degenerate. A simple computation shows that the Jacobian determinant of j
3
g(0)

is 6x(c1x2 + 2c2xy + c3y
2), so we must have c3 6= 0 and c

2
2 � c1c3 6= 0.

Corollary 4.4. Let f : (R2
,0) ! (R3

,0) be a corank 1 map germ with j
k
f(0) as in Proposition

2.2 and with non-zero umbilic curvature u at the origin. Assume that the ⌃2,1
-circles of f have

⌃2,1
-generic contact. Then, a

2
12 � a21a03 6= 0.

Proof. It is easy to show that for u = (0, 0, 1/a20) and v = (0, 0, 1), we have:

j
3
Cv,u(0) =

✓
1

2
a20x

2
,� 1

3a20
(a30x

3 + 3a21x
2
y + 3a12xy

2 + a03y
3)

◆
.

When j
2
f(0) ⇠ (x, y2, 0) and we consider u = (0, 0, 1/a20) and v = (0,�a20, b2)/

p
a
2
20 + b

2
2,

we get

j
3
Cv,u(0) =

 
� 1

2
p
a
2
20 + b

2
2

a20y
2
,� 1

3a20
(a30x

3 + 3a21x
2
y + 3a12xy

2 + a03y
3)

!
.

So the result follows from Remark 4.3.
⇤

5. Umbilics and cross-caps of generic deformations

Let f : U ⇢ R2 ! R3 be a smooth map. It was shown in [12] that f is principally structurally
stable at an umbilic point if and only if it is one of the Darbouxian umbilics Di, i = 1, 2, 3 (see
also [2]). Furthermore, the unique stable singularity for f is a cross-cap point.

The map f is said to be generic if the ulfoldings

D : R3 ⇥ U ! R3 ⇥ R, (u, (x, y)) 7! (u, du(x, y)), du(x, y) =
1

2
kf(x, y)� uk2

and

H : S2 ⇥ U ! S
2 ⇥ R, (v, (x, y)) 7! (v, hv(x, y)), hv(x, y) = hf(x, y),vi

are generic in the Thom-Boardman sense (see [11] for details). So, if the map f is not generic,
we can take a generic deformation f� : U0 ⇢ U ! R3, � 2 (�", "), of f , i.e. f0 = f , f� is
generic for � 6= 0 and the map (�, t) 7! f�(t) is smooth, and the index indP(f, p) is equal to
(D1 +D2 �D3 +W )/2, where D1, D2, D3 also denote the number of umbilics of each type and
W the number of cross-caps points that appear in f� near p, for � 6= 0 small enough.

When f : (R2
,0) ! (R3

,0) is a corank 1 map germ and f�, � 2 (�", "), is a generic
deformation of f , D. Mond showed in [24] how to count the number of cross-caps in f�. More
precisely, it is showed the following possibilities for W in f� according the A-types of f given in
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Table 1:

S
±
k , k � 1 : W =

⇢
2n ; n = 0, 1, . . . , k+1

2 if k is odd
2n+ 1 ; n = 0, 1, . . . , k

2 if k is even
B

±
k , Hk, k � 2 : W = 0, 2

C
±
k , k � 3 : W =

⇢
2n+ 1 ; n = 0, 1, . . . , k�1

2 if k is odd
2n ; n = 0, 1, . . . , k

2 if k is even
F4, P3 : W = 1, 3.

As an immediate consequence of this, we obtain some information about the number of umbilic
points in f�. In fact, this number is equal to D1 +D2 +D3 = 2(indP(f,0) +D3) �W . So, if
W is even (respec. odd), the number of umbilic points that appear in f� is even (resp. odd).
Consequently, we have:

Lemma 5.1. Let f : (R2
,0) ! (R3

,0) be a corank 1 map germ simple or non-simple but

including in strata of Ae-codimension  3. If f� : (R2
,0) ! (R3

,0) is a generic deformation

of f then the number of umbilic points that appear in f� near 0, for � small enough, is:

(i) even if f ⇠ S
±
k (with k odd), B

±
k , C

±
k (with k even) or Hk;

(ii) odd if f ⇠ S
±
k (with k even), C

±
k (with k odd), F4 or P3.

We shall give more precise information about the number of umbilic points in f�. Before
stating the result and proving it, we need recall some facts about multiplicity for special types
of singular points of a map.

Given a smooth map germ f : (R2
,0) ! (R3

,0), we say that 0 is a 2-rounding of f if 0 is
either a 2-flattening (that is, there is a unit vector v 2 R3 such that 0 is a singularity of type
⌃2,2 of hv) or a non-flat 2-rounding (that is, it is not a 2-flattening and there is u 2 R3 such
that 0 is a singularity of type ⌃2,2 of du). It is known that a regular (resp. singular) point of f
is a 2-rounding if and only if it is an umbilic point (resp. it is not a cross-cap point). See [11]
for details. So, since a generic deformation of f only has umbilics of type Di, i = 1, 2, 3, and
cross-caps, and since cross-caps are not 2-roundings, then in order to estimate the number of
umbilic points in f� it is enough to estimate the number of its 2-roundings, which is denoted by
nR(f�,0).

The number nR(f�,0) is related with the multiplicity of 0 as a rounding of f , µR(f,0), as
follows:

nR(f�,0)  µR(f,0) and nR(f�,0) ⌘ µR(f,0) (mod 2),

for � small enough, if µR(f,0) is finite (see Theorem 2.9 of [11]), where

µR(f,0) = dimR
C

1(R2
,0)

R(f,0)
,

with C
1(R2

,0) being the ring of germs at 0 of smooth real-valued functions on R2 and R(f,0)
the ideal generated by the germs at 0 of the 4-minors of the matrix given by

0

BBBB@

f1x f2x f3x 0
f1y f2y f3y 0
f1xx f2xx f3xx E

f1xy f2xy f3xy F

f1yy f2yy f3yy G

1

CCCCA
,

where f = (f1, f2, f3). See [11] for details.
We also recall that if h : (Rn

,0) ! (Rn
,0) is a smooth map germ with 0 isolated in h

�1(0),
then the multiplicity µ(h,0) of h at 0 is defined by

µ(h,0) = dimR
C

1(Rn
,0)

hhi ,
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where hhi is the ideal generated by the components of h. It is known that µ(h,0) is the number
of complex h-preimages near 0 of a regular value of h near 0. If h = (h1, . . . , hn), with each
hi being a homogeneous polynomial such that 0 is isolated in h

�1(0), it is well known that
µ(h,0) = d1 · · · dn, where di is the degree of each hi. On the other hand, writing h = g + G,
where g = (g1, . . . , gn) with gi being the first non-zero jet of hi, then µ(h,0) = µ(g,0), if 0 is
isolated in g

�1(0). When 0 is not isolated in g
�1(0) in the above construction, we can take a

suitable selection of weights associated with any variable in order to make possible a di↵erent
decomposition h = g

0+G
0 satisfying µ(h,0) = µ(g0,0). In fact, it is valid the same statement of

Theorem 3.2, with multiplicity instead of index (see Remark 3.1 of [5]). Furthermore, one shall
use the following result:

Proposition 5.2. ([1, 5]) Using the above notations, let h = g+G be a semi-quasi-homogeneous

map germ with weight a = (a1, . . . , an) and quasi-degree d = (d1, . . . , dn). Suppose that

µ(h,0) < 1. Then

µ(h,0) = µ(g,0) =
d1 · · · dn
a1 · · · an

.

Let us denote by ⌃Di the number of umbilic points of f�, that is, ⌃Di = D1 +D2 +D3. So,
one gets the following result:

Proposition 5.3. Under the same assumptions in Theorem 3.4, if the umbilic curvature of f is

non-zero at the origin and f� is a generic deformation of f , then the number of umbilic points

of f�, for � small enough, if finite, satifies:

(i) f ⇠ S
±
k , k � 1: ⌃Di  k + 1 with ⌃Di ⌘ k + 1 (mod 2).

(ii) f ⇠ C
±
k , k � 3: ⌃Di  k with ⌃Di ⌘ k (mod 2).

(iii) f ⇠ B
±
k or Hk, k � 2: ⌃Di = 0 or 2.

(iv) f ⇠ F4 or P3: ⌃Di = 1 or 3.

Furthermore, D3 � W when indP(f,0) = 0, and D3 � W
2 when indP(f,0) = 1.

Proof. We shall count the number nR(f�,0) of 2-roundings of f�. Let us take f = (x, f2, f3) as
in Proposition 2.2.

Since f is not a cross-cap and u(0) = |a20| 6= 0, it follows from Corollary 2.17 of [21] that 0 is
a non-flat 2-rounding of f . From [11] we conclude that R(f,0) = hPy, Pxyi if j2f(0) ⇠ (x, y2, 0)
and R(f,0) = hPy, Pyyi if j2f(0) ⇠ (x, xy, 0), where

Py =

��������

fx 0
fxx E

fxy F

fyy G

��������
, Pxy =

��������

fx 0
fy 0
fxx E

fyy G

��������
and Pyy =

��������

fx 0
fy 0
fxx E

fxy F

��������
.

Let h : (R2
,0) ! (R2

,0) given by h = (Py, Pxy) or (Py, Pyy). Then

µR(f,0) = dimR
C

1(R2
,0)

hhi = µ(h,0).

• Let us suppose that j2f(0) ⇠ (x, y2, 0).
If f ⇠ S

±
1 or B±

k then a21 6= 0. After some calculations we take h = g +G, where

g(x, y) = (�a21x� a12y,
1

2
a21x

2 � 1

2
a03y

2)

and G has higher-order terms. Since the resultant of g is given by the expression
1
2a21(a

2
12 � a21a03) and a

2
12 � a21a03 6= 0 by hypothesis, we have that 0 is isolated in g

�1(0) and
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it holds that
nR(f�,0)  µR(f,0) = µ(g,0) = 2 .

By Lemma 5.1, ⌃Di is even for S±
1 and B

±
k and, therefore, ⌃Di = 0, 2 .

If f ⇠ Sk�2, C
±
k or F4 then we reproduce the same steps as in previous case, taking an

apropriated g such that h = g + G satisfies the Corollary 5.2, getting after calculations the
desired results.

• Let us suppose now that j
2
f(0) ⇠ (x, xy, 0). We take f ⇠ Hk or P3, depending on a03 is

non-zero or zero, respectively. Since h = (Py, Pyy), we take h = g +G, where

g(x, y) =

✓
a12x+ a03y,�

1

2
a21x

2 +
1

2
a03y

2

◆

when f is of Hk type, or g(x, y) = (a12x+( 12a04�a12b3)y2,� 1
2a21x

2), when f is of P3 type with
a21 6= 0, or g(x, y) = (a12x + ( 12a04 � a12b3)y2, (

1
6a04 �

1
2a12b3)y

3), when f is of P3 type with
a21 = 0, with G having higher-order terms. Since a12 6= 0 from hypothesis, and a04� 3a12b3 6= 0
when f is of P3 type, which appear in the expression of the resultant of g, then we conclude
that h is semi-quasi-homogeneous and so, it follows that µ(h,0) = µ(g,0) = 2 if f ⇠ Hk, and
µ(h,0) = µ(g,0) = 4 if f ⇠ P3 type. So, the result on ⌃Di follows from Lemma 5.1.

For the second part of the proposition, it is enough to use the relation

D1 +D2 �D3 = 2 indP(f,0) +W.

⇤

Acknowledgments. The authors would like to thank the referee for careful reading and
comments.
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FINITE TYPE ⇠-ASYMPTOTIC LINES OF PLANE FIELDS IN R3

DOUGLAS H. DA CRUZ AND RONALDO A. GARCIA

Abstract. We prove that a finite type curve is a ⇠-asymptotic line (without parabolic points)
of a suitable plane field. It is also given an explicit example of a hyperbolic closed finite type
⇠-asymptotic line. These results obtained here are generalizations, for plane fields, of the
results of V. Arnold.

1. Introduction

A regular plane field in R3
is usually defined by the kernel of a di↵erential one form or a unit

vector field ⇠ : R3
! R3

. In this last case ⇠(p) is the normal vector to the plane at point p. The

classical and germinal work about plane fields in R3
is [14].

The normal curvature of a plane field is defined by (see [2] and [5])

kn(p, dr) = �
hd⇠(p), dri

hdr, dri
.

For integrable plane fields the normal curvature is the usual concept of curves on surfaces.

The regular curves � : I ! R3
such that kn(�(t), �

0
(t)) = 0 are called ⇠-asymptotic lines and

the directions dr such kn(p, dr) = 0 are called ⇠-asymptotic directions.
Recall that asymptotic lines on surfaces are regular curves � such that kn(�(t), �

0
(t)) = 0.

Also, asymptotic lines are the curves � such that the osculating plane of � coincides with the

tangent plane of the surface along it, so asymptotic lines are of extrinsic nature.

The local study, and singular aspects of asymptotic lines on surfaces in R3
, near parabolic

points, is a very classical subject, see [3, 6, 7, 8], [9] and references therein.

The study of closed asymptotic lines of surfaces in R3
under the viewpoint of qualitative

theory of di↵erential equations is more recent, see [6, 7, 8]. It is worth to mention that existence

of closed asymptotic lines on the tubes of “T-surfaces” is still an open problem. See [1, page

107] and [11].

Also, it is not known if there is a surface in R3
having a cylindrical region foliated by closed

asymptotic lines (see [13, page 110]). In S3, all asymptotic lines of the Cli↵ord torus are globally

defined, and they are the Villarceau circles.

V. Arnold in [4] studied the topology of asymptotic lines being curves of type (t, t
m
, t

n
) near

t = 0, which are called of finite type. Also, it was shown in [4] that the projection of a closed

asymptotic line of a hyperbolic surface of graph type (x, y, h(x, y)) in the horizontal plane (x, y)

cannot be a starlike curve.

The main results of this work are the following.

The Theorem 3.1 states that any finite type curve is a ⇠-asymptotic line (without parabolic

points) of a suitable plane field in R3
.

The Theorem 4.3 gives an example of a hyperbolic closed finite type ⇠-asymptotic line of a

plane field in R3
.

http://dx.doi.org/10.5427/jsing.2020.22b


18 DOUGLAS H. DA CRUZ AND RONALDO A. GARCIA

2. Preliminaries and Previous Results

In this paper, the space R3
is endowed with the Euclidean norm | · | = h·, ·i

1
2 .

Definition 2.1 ([10, Definition 5.15]). A subset ⌦ ⇢ R2
is called a starlike convex set if there

is a point p 2 ⌦, called the star point, such that, for every q 2 ⌦, the segment pq lies in ⌦. The

boundary of a starlike convex set is called a starlike curve.

Theorem 2.2 (D. Panov, see [4]). The projection of a closed asymptotic line of a surface
z = '(x, y) to the plane {z = 0} cannot be a starlike curve (in particular, this projection cannot
be a convex curve).

Definition 2.3 ([4]). A smoothly immersed curve � : I ! R3
is said to be of finite type at

a point x, if {�
0
(x), �

00
(x), . . . , �

(k)
(x)} generate all the tangent space T�(x)R3

for some k 2 N.
Here �

(k)
(x) denotes the derivative of order k of �. In a neighborhood of this point, the curve

is parametrized locally by �(x) = (x, amx
m

+ O
m+1

(x), bnx
n
+ O

n+1
(x)), where m,n 2 N,

ambn 6= 0 and 1 < m < n.

The set {1,m, n}, (1 < m < n), of the degrees of � is called the symbol of the point. If

n = m+ 1, then � is said to be of rotating type at the point.

If a curve is of finite type (resp. rotating type) at every point, then it is called of finite type
curve (resp. rotating type curve).

A finite type curve � can have inflection points, i.e., points where the curvature of � vanishes.

Arnold’s Theorem (See [4]). An asymptotic curve of finite type on a hyperbolic surface is a
rotating curve.

Every rotating space curve of finite type is an asymptotic line on a suitable hyperbolic surface.

A new proof of Arnold’s Theorem will be given in the appendix.

2.1. Plane fields in R3
. Let ⇠ : R3

! R3
be a vector field of class C

k
, where k � 3.

Definition 2.4. A plane field ⇠ in R3
, orthogonal to the vector field ⇠, is defined by the 1-form

h⇠, dri = 0, where dr is a direction in R3
. See Fig. 1.

Theorem 2.5 ([2, Jacobi Theorem, p.2]). There exists a family of surfaces orthogonal to ⇠ if,
and only if, h⇠, curl(⇠)i ⌘ 0.

A plane field ⇠ is said to be completely integrable if h⇠, curl(⇠)i ⌘ 0. A surface of the family

of surfaces orthogonal to ⇠ is called an integral surface.

2.2. Normal curvature of a plane field.

Definition 2.6 ([2, p. 8]). The normal curvature kn of a plane field in the direction dr orthog-

onal to ⇠ is defined by

kn =
h⇠, d

2
ri

hdr, dri
= �

hd⇠, dri

hdr, dri
.

This definition agrees with the classical one given by L. Euler, see [5].

The geometric interpretation of kn is given by means of the curvature of a plane curve, which

we shall now describe.

In the plane ⇡(p0, dr) generated by ⇠(p0) and dr (direction orthogonal to ⇠(p0)) we have a line

field `(p) orthogonal to vector ⇠̄(p) 2 ⇡(p0, dr) obtained projecting ⇠(p) in the plane ⇡(p0, dr),

with p 2 ⇡(p0, dr). The integral curves 'p(t) of the line field ` are regular curves and kn(p0, dr)

is the plane curvature of 'p0(t) at t = 0. See Fig. 2.
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Figure 1. Plane field ⇠ in R3
defined by the 1-form h⇠, dri = dz � ydx = 0,

where ⇠(x, y, z) = (�y, 0, 1) and dr = (dx, dy, dz).

Figure 2. Line field and normal curvature kn(p0, dr).

2.3. ⇠-asymptotic lines and parabolic points of a plane field. The ⇠-asymptotic directions

of a plane field ⇠ are defined by the following implicit di↵erential equation

h⇠, dri = 0, hd⇠, dri = 0. (2.1)

and will referred as the implicit di↵erential equation of the ⇠-asymptotic lines.

A solution dr of equation (2.1) is called a ⇠-asymptotic direction. A curve � in R3
is a ⇠-

asymptotic line if � is an integral curve of equation (2.1). Analogously to the case of asymptotic

lines on surfaces, for plane fields the osculating plane of a ⇠�asymptotic line coincides with the

plane of the distribution of planes passing through the point of the curve. See also [2, page 29].

Definition 2.7. If at a point r there exists two real distinct ⇠-asymptotic directions (resp. two

complex ⇠-asymptotic directions), then r is called a hyperbolic point (resp. elliptic point).

Definition 2.8. If at r the two ⇠-asymptotic directions coincide or all the directions are ⇠-

asymptotic directions then r is called a parabolic point.
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Example 2.9. The circle in R3
given by x

2
+ y

2
= 1, z = 0, is a ⇠-asymptotic line without

parabolic points of the plane field ⇠ defined by the orthogonal vector field ⇠ = (⇢, %,�), where

⇢ = x
2
yz + y

3
z � x

2
y � y

3
+ xz � 2yz + y, % = x

3
� x

3
z � xy

2
z + xy

2
+ 2xz + yz � x and

� = �x
2
� y

2
. See Fig. 3. The plane field ⇠ is not completely integrable. By the Theorem 2.2,

this circle cannot be an asymptotic line of a regular surface z = '(x, y).

Figure 3. The circle is a ⇠-asymptotic line without parabolic

points of the plane field defined by the orthogonal vector field

⇠ = (⇢, %,�), where ⇢ = x
2
yz + y

3
z � x

2
y � y

3
+ xz � 2yz + y,

% = x
3
� x

3
z � xy

2
z + xy

2
+ 2xz + yz � x and � = �x

2
� y

2
.

Proposition 2.10. Given a plane field ⇠, let ' : R3
! R be a di↵erentiable nonvanishing

function. Then a curve � is a ⇠-asymptotic line if, and only if, � is a ⇠-asymptotic line of the
plane field e⇠ orthogonal to the vector field e⇠ = '⇠.

Proof. The implicit di↵erential equation of ⇠-asymptotic lines of e⇠ is given by

he⇠, dri = 'h⇠, dri = 0, hde⇠(dr), dri = d'(dr)h⇠, dri+ 'hd⇠(dr), dri = 0.

Then � is a ⇠-asymptotic line of ⇠ if, and only if, � is a ⇠-asymptotic line of the plane field e⇠. ⇤
2.4. Tubular neighborhood of an integral curve of a plane field. Let ⇠ be a plane field

orthogonal to a vector field ⇠(x, y, z). Then d⇠ = ⇠xdx+ ⇠ydy + ⇠zdz. Let

�(x) = (�1(x), �2(x), �3(x))

be a curve such that (�
0
1(x), �

0
2(x)) 6= (0, 0) for all x. SetX(x) = �

0
(x), Y (x) = (�

0
2(x),��

0
(x), 0),

Z(x) = (X ^ Y )(x) and ↵ : R3
! R3

,

↵(x, y, z) = �(x) + yY (x) + zZ(x). (2.2)

The map (2.2) is a parametrization of a tubular neighborhood of �. At this neighborhood, the

position point is given by r = ↵(x, y, z) and then dr = d↵ = ↵xdx + ↵ydy + ↵zdz. It follows

that the implicit di↵erential equation (2.1) of the ⇠-asymptotic lines is given by

h⇠, d↵i = adx+ bdy + cdz = 0,

hd⇠, d↵i = L1dx
2
+ L2dxdy + L3dy

2
+ L4dxdz + L5dydz + L6dz

2
= 0,

(2.3)

where,

a = h⇠,↵xi, b = h⇠,↵yi, c = h⇠,↵zi,
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and

L1 = h⇠x,↵xi, L2 = h⇠x,↵yi+ h⇠y,↵xi, L3 = h⇠y,↵yi,

L4 = h⇠x,↵zi+ h⇠z,↵xi, L5 = h⇠y,↵zi+ h⇠z,↵yi, L6 = h⇠z,↵zi.

Proposition 2.11. Let �(x) = (�1(x), �2(x), �3(x)) be a curve such that, for all x,

(�
0
1(x), �

0
2(x)) 6= (0, 0).

Consider a tubular neighborhood of � parametrized by equation (2.2). If ⇠ is a plane field such
that a

c and b
c are well defined in a neighborhood of �, where a, b, c are given by (2.3), then the

implicit di↵erential equation of the ⇠-asymptotic lines, in this neighborhood, is given by

dz = �

⇣
a

c

⌘
dx�

✓
b

c

◆
dy, edx

2
+ 2fdxdy + gdy

2
= 0, (2.4)

where,

e = L1 �
aL4

c
+

a
2
L6

c2
, g = L3 �

bL5

c
+

b
2
L6

c2
, f =

L2

2
�

(aL5 + bL4)
2c

+
abL6

2c2
.

Furthermore, in this neighborhood, the parabolic set of ⇠ is given by eg � f
2
= 0.

Proof. In a neighborhood of �, solve the first equation of (2.3) in the variable dz to get the first

equation of (2.4). Replace this dz in the second equation of (2.3) to get the second equation of

(2.4).

If eg � f
2
< 0 at a point (resp. eg � f

2
> 0), then the equations (2.4) define two distinct

⇠-asymptotic directions at this point (resp. two complex ⇠-asymptotic directions).

If eg � f
2
= 0 at a point, then at it the ⇠-asymptotic directions coincide or, if e = g = f = 0,

all directions are ⇠-asymptotic directions. ⇤
Definition 2.12 ([2, p. 11]). Let ⇠ be a plane field satisfying the assumptions of Lemma 2.11.

The function defined by K = eg � f
2
is called the Gaussian curvature of ⇠.

Lemma 2.13. Let �(x) = (�1(x), �2(x), �3(x)) be a ⇠-asymptotic line of a plane field ⇠, such that
(�

0
1(x), �

0
2(x)) 6= (0, 0) for all x. Consider a tubular neighborhood of � parametrized by equation

(2.2). Then, in a neighborhood of �, the vector field ⇠ is given by

⇠(x, y, z) = l0(x)Y (x) + k0(x)Z(x)

+

✓
yk1(x) + zl1(x) +

✓
y
2

2

◆
ek1(x) + yzej1(x) +

✓
z
2

2

◆
el1(x) + eA(x, y, z)

◆
X(x)

+

✓
yk2(x) + zl2(x) +

✓
y
2

2

◆
ek2(x) + yzej2(x) +

✓
z
2

2

◆
el2(x) + eB(x, y, z)

◆
Y (x)

+

✓
yk3(x) + zl3(x) +

✓
y
2

2

◆
ek3(x) + yzej3(x) +

✓
z
2

3

◆
el3(x) + eC(x, y, z)

◆
Z(x),

(2.5)

where
X(x) = �

0
(x), Y (x) = (�

0
2(x),��

0
1(x), 0), Z(x) = (X ^ Y )(x),

eA(x, 0, 0) = eB(x, 0, 0) = eC(x, 0, 0) = 0

and
[(�

0
3�

00
1 � �

0
1�

00
3 )�

0
1 + (�

0
3�

00
2 � �

0
2�

00
3 )�

0
2]k0 � (�

0
1�

00
2 � �

0
2�

00
1 )l0 = 0. (2.6)

Furthermore, if

k0 = �
0
1�

00
2 � �

0
2�

00
1 , l0 = (�

0
3�

00
1 � �

0
1�

00
3 )�

0
1 + (�

0
3�

00
2 � �

0
2�

00
3 )�

0
2 (2.7)

and �
0
1(x)�

00
2 (x) � �

0
2(x)�

00
1 (x) 6= 0 for all x, then the implicit di↵erential equation of the ⇠-

asymptotic lines is given by (2.4).



22 DOUGLAS H. DA CRUZ AND RONALDO A. GARCIA

Proof. The expression (2.5) holds, since � is an integral curve of the plane field defined by ⇠.

Also, as � is a ⇠-asymptotic line, h⇠(x), �
00
(x)i = 0 for all x, which gives the equation (2.6).

If �
0
1(x)�

00
2 (x)� �

0
2(x)�

00
1 (x) 6= 0, then c(x, 0, 0) 6= 0. The conclusion then follows from Propo-

sition 2.11. ⇤

3. Finite type ⇠-asymptotic lines of plane fields

In this section the following result is established.

Theorem 3.1. Any finite type curve is a ⇠-asymptotic line (without parabolic points) of a suitable
plane field.

Proof. Let �(x) = (�1(x), �2(x), �3(x)) = (x, amx
m + O

m+1(x), anx
n + O

n+1(x)) be a finite type

curve. Consider a tubular neighborhood of � parametrized by equation (2.2) and the vector field

⇠ given by (2.5). Set k0(x) ⌘ 1 and solve (2.6) for l0(x). Then � is a ⇠-asymptotic line of the

plane field orthogonal to ⇠.

We have that

a(x, 0, 0) = 0, b(0, 0, 0) = 0, and c(0, 0, 0) = amm(m� 1) 6= 0.

By Proposition 2.11, in a neighborhood of (0, 0, 0), the equation of ⇠-asymptotic lines are given

by (2.4).

Set l1(x) ⌘ 0 and define k1(x) by

k1 =
((�0

1)
2 + (�0

2)
2)2[(�00

2 �
000
3 � �

00
3 �

000
2 )�0

1 + (�00
3 �

000
1 � �

00
1 �

000
3 )�0

2 + (�00
1 �

000
2 � �

00
2 �

000
1 )�0

3]
((�0

1
)2 + (�0

2
)2 + (�0

3
)2)(�0

1
�
00
2
� �

0
2
�
00
1
)

+
2(�0

1�
00
2 � �

0
2�

00
1 )

((�0
1
)2 + (�0

2
)2 + (�0

3
)2)

.

Then K(x, 0, 0) = �1. ⇤

4. Hyperbolic closed finite type ⇠-asymptotic line

Examples of hyperbolic asymptotic lines on surfaces are given in [6, 7, 8].

In this section it will be given an example of a hyperbolic closed ⇠-asymptotic line of finite

type for a suitable plane field.

Proposition 4.1. Let �, �(x) = (�1(x), �2(x), �3(x)), be a curve such that

(�
0
1(x), �

0
2(x)) 6= (0, 0), �

0
1(x)�

00
2 (x)� �

0
2(x)�

00
1 (x) 6= 0

for all x. Consider the tubular neighborhood ↵ given by (2.2) and the vector field ⇠ given by
(2.5), with k0(x), l0(x) given by (2.7). Let H(x) be a nonvanishing function and define k1(x) by

k1 =
((�0

1)
2 + (�0

2)
2)2[(�00

2 �
000
3 � �

00
3 �

000
2 )�0

1 + (�00
3 �

000
1 � �

00
1 �

000
3 )�0

2 + (�00
1 �

000
2 � �

00
2 �

000
1 )�0

3]
((�0

1
)2 + (�0

2
)2 + (�0

3
)2)(�0

1
�
00
2
� �

0
2
�
00
1
)

+
[(�0

1�
00
1 + �

0
2�

00
2 )�

0
3 � ((�1)

2 + (�2)
2)�00

3 ]l1 + 2(�0
1�

00
2 � �

0
2�

00
1 )H

((�0
1
)2 + (�0

2
)2 + (�0

3
)2)(�0

1
�
00
2
� �

0
2
�
00
1
)

.

(4.1)

Then, � is a ⇠-asymptotic line, without parabolic points, of the plane field orthogonal to the
vector field ⇠.

Furthermore, K(x, 0, 0) = �(H(x))
2.

Proof. By direct calculations, we can see that � is a ⇠-asymptotic line. The implicit di↵erential

equation of the ⇠-asymptotic lines are given by (2.4) and e(x, 0, 0) = 0, f(x, 0, 0) = H(x). Since

e(x, 0, 0) = 0, then K(x, 0, 0) = �(H(x))
2
for all x.

⇤
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4.1. Poincaré map associated to a closed ⇠-asymptotic line. Let � : [0, l] ! R3
,

�(x) = (�1(x), �2(x), �3(x)), be a closed ⇠-asymptotic line, without parabolic points, of a plane

field ⇠, such that �(0) = �(l), (�
0
1(x), �

0
2(x)) 6= (0, 0), �

0
1(x)�

00
2 (x)� �

0
2(x)�

00
1 (x) 6= 0 for all x, and

consider the tubular neighborhood ↵ given by (2.2).

This means that � is a regular curve having a projection in a plane which is a strictly locally

convex curve.

By the Proposition 2.13, ⇠ is given by (2.5) and the implicit di↵erential equations of the

⇠-asymptotic lines is given by (2.4).

Let ⌃x0 = {(x0, y, z)} be a transversal section. Then ↵(⌃x0) is the plane spanned by Y (x0)

and Z(x0). By Lemma 2.13, in a neighborhood of �, the ⇠-asymptotic line passing through

↵(x0, y0, z0) intersects ↵(⌃x0) again at the point

↵(x0 + l, y(x0 + l, y0, z0), z(x0 + l, y0, z0)),

where (y(x, y0, z0), z(x, y0, z0)) is solution of the following Cauchy problem

dz

dx
= �

a

c
�

✓
b

c

◆
dy

dx
= A+B

dy

dx
,

e+ 2f
dy

dx
+ g

✓
dy

dx

◆2

= 0,

(y(x0, y0, z0), z(x0, y0, z0)) = (y0, z0).

(4.2)

The Poincaré map P, also called first return map, associated to � is defined by P : U ⇢ ⌃ ! ⌃,

P(y0, z0) = (y(l, y0, z0), z(l, y0, z0)). See Fig. 4.

A closed ⇠-asymptotic line � is said to be hyperbolic if the eigenvalues of dP(0,0) does not

belong to S1. See [12] for the generic properties of the Poincaré map associated to closed orbits

of vector fields.

We will denote by dP(0,0) the matrix of the first derivative of the Poincaré map evaluated at

(y0, z0) = (0, 0).

Figure 4. Poincaré return map.

Proposition 4.2. Let � : [0, l] ! R3, �(x) = (�1(x), �2(x), �3(x)), be a closed ⇠-asymptotic line,
having a projection in a plane which is a locally strictly convex curve.
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Let P be the Poincaré map associated to �. Then dP(0,0) = Q(l), where Q(x) is solution of
the following Cauchy problem:

d

dx
(Q(x)) = M(x)Q(x), Q(0) = I, (4.3)

where I is the identity matrix, and M(x), Q(x) are the matrices given by

M(x) =

 
�

ey(x,0,0)
2f(x,0,0) �

ez(x,0,0)
2f(x,0,0)

(A)y (x, 0, 0) (A)z (x, 0, 0)

!
,Q(x) =

 
dy
dy0

(x, 0, 0) dy
dz0

(x, 0, 0)
dz
dy0

(x, 0, 0) dz
dz0

(x, 0, 0)

!
,

where A = �
a
c .

Proof. To fix the notation suppose that

�(0) = �(l), (�
0
1(x), �

0
2(x)) 6= (0, 0), and �

0
1(x)�

00
2 (x)� �

0
2(x)�

00
1 (x) 6= 0 for all x

.

Let (y(x, y0, z0), z(x, y0, z0)) be solution of the Cauchy problem given by equation (4.2). Then,

at (y, z) = (0, 0),
dy
dx (x, 0, 0) =

dz
dx (x, 0, 0) = 0.

Di↵erentiating the first equation of (4.2) with respect to y0 (resp. z0), it results that:

d

dx

✓
dz

dy0

◆
= Ay

dy

dy0
+Az

dz

dy0
+B

d

dx

✓
dy

dy0

◆
+

✓
By

dy

dy0
+Bz

dz

dy0

◆
dy

dx
, (4.4)

respectively,

d

dx

✓
dz

dz0

◆
= Ay

dy

dz0
+Az

dz

dz0
+B

d

dx

✓
dy

dz0

◆
+

✓
By

dy

dz0
+Bz

dz

dz0

◆
dy

dx
. (4.5)

Di↵erentiating the second equation of (4.2) with respect to y0 (resp. z0), it results that:

ey
dy

dy0
+ ez

dz

dy0
+ 2f

d

dx

✓
dy

dy0

◆
+ 2

✓
fy

dy

dy0
+ fz

dz

dy0
+ g

d

dx

✓
dy

dy0

◆◆
dy

dx

+

✓
gy

dy

dy0
+ gz

dz

dy0

◆✓
dy

dx

◆2

= 0,

(4.6)

respectively,

ey
dy

dz0
+ ez

dz

dz0
+ 2f

d

dx

✓
dy

dz0

◆
+ 2

✓
fy

dy

dz0
+ fz

dz

dz0
+ g

d

dx

✓
dy

dz0

◆◆
dy

dx

+

✓
gy

dy

dz0
+ gz

dz

dz0

◆✓
dy

dx

◆2

= 0.

(4.7)

Evaluating (4.4), (4.5), (4.6), (4.7) at (y, z) = (0, 0), it follows that:

Ay
dy

dy0
+Az

dz

dy0
=

d

dx

✓
dz

dy0

◆
, ey

dy

dy0
+ ez

dz

dy0
+ 2f

d

dx

✓
dy

dy0

◆
= 0,

Ay
dy

dz0
+Az

dz

dz0
=

d

dx

✓
dz

dz0

◆
, ey

dy

dz0
+ ez

dz

dz0
+ 2f

d

dx

✓
dy

dz0

◆
= 0.

Then
d
dx (Q(x)) = M(x)Q(x). Since (y(0, y0, z0), z(0, y0, z0)) = (y0, z0), it follows thatQ(0) = I.

Since P(y0, z0) = (y(l, y0, z0), z(l, y0, z0)), the first derivative dP(0,0) is given by Q(l). ⇤
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4.2. Example of a hyperbolic closed finite type ⇠-asymptotic line. An explicit example

of a hyperbolic closed ⇠-asymptotic line is given in the next result.

Theorem 4.3. Let � : [0, 2⇡] ! R3, �(x) = (sin(x), cos(x), sin
3
(x)), see Fig. 5. Then it is a

hyperbolic finite type ⇠-asymptotic line of a suitable plane field.

Proof. Let ⇠ be a plane field orthogonal to the vector field ⇠ given by (2.5), where k0(x) and

l0(x) are given by (2.7). Let k1(x) given by (4.1), with H(x) ⌘ 1. Then

k1(x) =
3(3cos

2
(x)� 1)sin(x)l1(x) + 24cos

3
(x)� 18cos(x)� 2

9cos6(x)� 18cos4(x) + 9cos2(x) + 1
.

By Proposition 4.1, � is a ⇠-asymptotic line without parabolic points and K(x, 0, 0) = �1.

Performing the calculations, ez(x, 0, 0) = E(x) + l2(x). Solve ez(x, 0, 0) = 0 for l2(x). This

vanishes the entry

⇣
�

ez(x,0,0)
2f(x,0,0)

⌘
of M(x) given by Theorem 4.2. From (4.3), it follows that the

eigenvalues of dP(0,0) are given by

exp

✓Z 2⇡

0
�
ey(x, 0, 0)

2f(x, 0, 0)
dx

◆
and exp

✓Z 2⇡

0
Az(x, 0, 0)dx

◆
.

Set l1(x) = cos(x). Then

Az(x, 0, 0) = 9sin(x)cos8(x) + 54sin(x)cos6(x)� 9cos6(x)� 117sin(x)cos4(x)

+ 18cos4(x) + 55cos2(x)sin(x)� 9cos2(x)� 1.

It follows that
R 2⇡
0 Az(x, 0, 0)dx = �

25⇡
8 . Let k3(x) = 0 and k2(x) a solution of the equation

ey(x, 0, 0) + 2f(x, 0, 0) = 0. It follows that

Z 2⇡

0

✓
�
ey(x, 0, 0)

2f(x, 0, 0)

◆
dx = 2⇡.

⇤

(a) Curve �(x) = (sin(x), cos(x), sin3(x)). (b) Curve �(x) on the cylinder
�(x, y) = (sin(x), cos(x), y).

Figure 5. Finite type curve �(x) = (sin(x), cos(x), sin
3
(x)).
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Appendix

A new proof of Arnold’s Theorem

The proof of Arnold’s Theorem [4] is given on graph surfaces z = z(x, y). Using a�ne

coordinates, the surface takes the form z = xy + . . . , where the dots denote the terms of higher

order. Arnold showed that an asymptotic line x = x(t), y = y(t), z = z(t) of finite type is a

rotating curve.

After that, he proves that given a rotating curve x = x(t), y = y(t), z = z(t) then there

exists an appropriated function H(x, y) such that the rotating curve is an asymptotic line of the

surface z = H(x, y).

Below, will be given a geometric proof of Arnold’s Theorem, with an explicit parametrization

of the surface.

Proof. Let � be a curve of finite type (u, u
m
, u

n
), n � m. Set N(u) = (�

0
2(u),��

0
1(u), 0).

Consider the local surface parametrized by

↵(u, v) = �(u) + vN(u) + (k1(u)v + k2(u)v
2
+ k3(u)v

3
+O

4
(v))(�

0
^N)(u).

https://doi.org/10.1016/S0007-4497(99)00116-5
https://doi.org/10.1142/9108
https://doi.org/10.1007/bf01446224
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Let N↵ be the unit normal vector

N↵ =
↵u ^ ↵v

|↵u ^ ↵v|
.

The implicit di↵erential equation of the asymptotic lines of ↵ is given by

edu
2
+ 2fdudv + gdv

2
= 0,

where e = h↵uu, N↵i, f = h↵uv, N↵i and g = h↵vv, N↵i.

Supposing that � is an asymptotic line of ↵, and parametrized by v = 0, we have that

e(u, 0) = 0. Then by equation (4.1) it follows that

k1(u) =
[(n�m)m

2
u
2(m�1)

+ n� 1]nu
n�m

[1 +m2u2(m�1) + n2u2(n�1)](m� 1)m
. (A.8)

Direct calculations show that

f(u, 0) =
(n�m)(n� 1)n(1 +m

2
u
2(m�1)

)
2
u
n�m�1

(m� 1)m
.

It follows that f(0, 0) 6= 0 if, and only if, n = m+ 1, i.e., � is a rotating curve.

If � is a rotating space curve of finite type (u, u
m
, u

m+1
), m � 2, set N(u) = (�

0
2(u),��

0
1(u), 0)

and let

�(u, v) = �(u) + vN(u) + k1(u)v(�
0
^N)(u),

where k1(u) is given by (A.8) with n = m + 1. Therefore, e(u, 0) = [�u,�v,�uu](0, 0) = 0 and

f(0, 0) = [�u,�v,�uv](0, 0) =
m+1
m�1 6= 0. Then � is an asymptotic line, without parabolic points,

of the surface parametrized by � in a neighborhood of (u, v) = (0, 0). ⇤
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ON THE CHARACTERISTIC CURVES ON A SURFACE IN R4

JORGE LUIZ DEOLINDO-SILVA

Abstract. We study some robust features of characteristic curves on smooth surfaces in R4.
These curves are analogous to the asymptotic curves in the elliptic region. A P3(c)-point is an
isolated special point at which the unique characteristic (or asymptotic) direction is tangent
to the parabolic curve. At this point, by considering the cross-ratio invariant, we show that
the 2-jet of the curve formed by the inflections of the characteristic curves is projectively
invariant. In addition, we exhibit the possible configurations of the characteristic curves at a
P3(c)-point.

1. Introduction

For surfaces in R3, an asymptotic direction is a self-conjugate tangent direction, and a charac-
teristic direction is a tangent direction such that the angle it forms with its conjugate direction
is extremal. At a hyperbolic (resp. parabolic or elliptic) point there are two (resp. one or
0) asymptotic directions and at an elliptic (resp. parabolic or hyperbolic) point there are two
(resp. one or 0) characteristic directions. The asymptotic and characteristic curves are the
integral curves of asymptotic and characteristic directions, respectively. It is well known that
the characteristic curves are, in many ways, analogous to the asymptotic curves in the elliptic
region (see [4, 5, 20]) and both curves are given, in a local chart, by a binary di↵erential equation
(BDE)

(1) A(x, y)dx2 + 2B(x, y)dxdy + C(x, y)dy2 = 0,

where the coe�cients A, B, and C are smooth functions defined in an open subset U of R2. The
discriminant curve of equation (1) of the asymptotic and characteristic curves coincides with the
parabolic curve. At cusps of Gauss the unique asymptotic and characteristic direction is tangent
to the parabolic curve (see for example [1]). Although asymptotic curves can be also defined
using the contact of the surface with lines, the characteristic curves do not satisfy this property.

In [20], Oliver used Uribe-Vargas’s cr-invariant defined in [24], to show that the topological
type of the singularity of the characteristic curves at a cusp of Gauss is invariant under projective
transformations. Furthermore, the locus of inflection points of the characteristic curves (char-
acteristic inflection curve) has some geometrical meaning. In particular, he classified a cusp
of Gauss in terms of the relative position of the parabolic curve, the characteristic inflection
curve and conodal curve. In this paper, we extend the results in [20] on characteristic curves for
surfaces in R4.

The study of the di↵erential geometry of immersed surfaces in 4-space was carried out by
several authors, for example [2, 3, 10, 11, 16, 17, 19, 21, 23]. The study of characteristic curves
did not receive the same treatment in the current literature. The definition of characteristic
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Key words and phrases. Characteristic curves, singularities, binary di↵erential equations, projective invariants,
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This study was financed in part by Coordenação de Aperfeiçoamento de Pessoal de Nı́vel Superior - Brasil

(CAPES) under grant number 88887.357189/2019-00.

http://dx.doi.org/10.5427/jsing.2020.22c


ON THE CHARACTERISTIC CURVES ON A SURFACE IN R4 29

curves for surfaces in R4 is inspired from (and is analogous to) that for surfaces in R3 in the
following way: for surfaces in R3, there is a relation between the BDEs of the asymptotic curves,
of the characteristic curves and of the lines of principal curvature. By considering the BDE
(1) as a point in the projective plane, the BDEs of the asymptotic curves and of the lines of
principal curvature determine the BDE of the characteristic curves, such that the three BDEs
define (at each point on the surface) a self polar triangle in the projective plane. In fact, the
BDE of the asymptotic curves determines the other two BDEs ([4, 23]). Asymptotic directions
are also defined on surfaces in R4 and are given by a BDE (see §3). Its equation is used to define
in a unique way, two other BDEs such that the three equations form a self-polar triangle in the
projective plane. One of them is what is called the BDE of the characteristic curves (called
a characteristic BDE, for short) (see [23]). In this sense, the asymptotic and characteristic
directions on surface in R4 behave as solutions of BDEs in the same way as its analogue on
surfaces in R3.

For a surface in R4, the asymptotic directions are also captured by the contact of the surface
with lines. This contact reveals aspects of the di↵erential geometry of the surface in the closure
of its hyperbolic region and is described by the A-singularities of the family of orthogonal projec-
tions to 3-spaces. The projection along an asymptotic directions at a point on the parabolic set
may have a P3(c)-point. Away from inflection points, the characteristic and asymptotic curves
are generically a family of cusps at ordinary parabolic points and have a folded singularity at a
P3(c)-point.

This point has similar behavior to the cusps of Gauss on surfaces in R3 (see [3, 10, 19, 24]). In
[9, 10], we defined the cr-invariant at P3(c)-points and showed that the S2-curve, flecnodal curve
and multi-local singularities curves are robust features of the surface in 4-space (Euclidean, a�ne
or projective). Although the characteristic curves are not projective invariant of the surface, our
goal is to produce results on the characteristic curves at P3(c)-points similar to those results of
Oliver [20]. At a P3(c)-point, we show that the 2-jet of the curve formed by the inflection points of
the characteristic curves (characteristic inflection curve) and the topological type of singularity
of the characteristic curves in the elliptic domain are invariants under projective transformations.
In addition, we list the possible configurations of the parabolic, S2 and characteristic inflection
curves using the cross-ratio invariant of this set of curves.

2. Binary differential equation

To study the configurations of characteristic curves, we need some results on BDEs which are
studied extensively (see for example [22] for a survey article). We recall some results concerning
the configurations of the solution curves of a BDE. A BDE defines two directions in the region
where � = B

2 �AC > 0, a double (repeated) direction on the set � = {� = 0} and no direction
where � < 0. The set � is the discriminant of the BDE. For generic BDEs and at generic points
on �, the integral curves of (1) is a family of cusps, and the discriminant curve is a smooth
curve traced by these cusps, except at isolated points called folded singularity (see below).

Consider the manifold of contact elements to the plane, that is, PT
⇤R2 = R2 ⇥ RP 1, and

take the a�ne chart q = dx/dy, then PT
⇤R2 is endowed with the canonical contact struc-

ture determined by the 1-form dx � qdy. The projection associated to the contact structure is
⇡ : PT

⇤R2 ! R2 and given by ⇡(x, y, q) = (x, y). When the coe�cients of a BDE do not vanish
simultaneously, we may assume that A 6= 0 and take

(2) ⌦(x, y, q) = A(x, y)q2 + 2B(x, y)q + C(x, y).
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The set ⌦ = 0 is a surface M. The directions defined by (1) lift to a single valued field

(3) ⇠ = ⌦q@y + q⌦q@x� (⌦y + q⌦x)@q

on M obtained by intersecting the contact planes with the tangent planes to M. (See, for
example, [8] for a suitable lifted field). The regions where � > 0, the image of ⇡|M is a two-fold
covering. The critical set of ⇡|M given by ⌦ = ⌦q = 0 is called the criminant (its projection is
the discriminant curve).

Stable topological models of (1) arise when the discriminant is a regular curve (or is empty).
At almost all points of the discriminant, the field ⇠ is regular i.e., the unique direction at a point
of the discriminant is transverse to it, then the BDE is smoothly equivalent to dx2+ydy

2 = 0 ([6],
[7]). When ⇠ has an elementary singularity, the unique direction is tangent to the discriminant
at that point, then equation (1) is smoothly equivalent to dx

2+(�x+�y2)dy2 = 0 with � 6= 0, 1
16

([8]); the corresponding point in the plane is called a folded singularity of the BDE. There are
three topological models: a folded saddle if � < 0, a folded node if 0 < � <

1
16 and a folded

focus if 1
16 < �. These occur when the lifted field ⇠ has a saddle, node or focus, respectively (see

Figure 1 and [8]).
A solution curve of (1) has an inflection point at the projection of a point on M where

(4) ⌦ = ⌦y + q⌦x = 0.

There is a smooth curve of such points which is tangent to the discriminant curve at folded
singularities of equation (1) ([5]).

Figure 1. A folded saddle (left), node (center) and focus (right).

3. Characteristic curves on surfaces in R4

Let M be a regular surface in R4. For a given point p 2 M , consider the unit circle in TpM

parametrized by ✓ 2 [0, 2⇡]. The curvature vectors ⌘(✓) of the normal sections of M by the
hyperplane h✓i�NpM form an ellipse in the normal plane NpM called the curvature ellipse and
is the image this unit circle by a pair of quadratic forms

(Q1, Q2) = (ax2 + 2bxy + cy
2
, lx

2 + 2mxy + ny
2),

where a, b, c, l,m, n are the coe�cients of the second fundamental form of M at p ([16]). Points
on the surface are classified according to the position of the point p with respect to the ellipse
(NpM is viewed as an a�ne plane through p). The point p is called elliptic/parabolic/hyperbolic
if it is inside/on/outside the ellipse at p, respectively.

Following the approach in [2], a binary form Ax
2+2Bxy+Cy

2 is represented by its coe�cients
(A,B,C) 2 R3, there is a cone � given by B

2 �AC = 0 representing the perfect squares. If the
forms Q1 and Q2 are independent, they determine a line in the projective plane RP 2 and the
cone a conic that we still denoted by �. This line meets the conic in 0/1/2 points according as
�(p) < 0/ = 0/ > 0, where

�(p) = (an� cl)2 � 4(am� bl)(bn� cm).
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A point p is elliptic/parabolic/hyperbolic if � < 0/ = 0/ > 0. The parabolic set is denoted by

�-set. If Q1 and Q2 are dependent, the rank of the matrix

✓
a b c

l m n

◆
is 1 (provided either

of the forms is non-zero); the corresponding points on the surface are referred to as inflection
points. There is an action of GL(2,R) ⇥GL(2,R) on pairs of binary forms. The orbits of this
action are as follows (see for example [13]):

(x2
, y

2) hyperbolic point
(xy, x2 � y

2) elliptic point
(x2

, xy) parabolic point
(x2 ± y

2
, 0) inflection point

(x2
, 0) degenerate inflection point

(0, 0) degenerate inflection point.

The asymptotic directions (labelled by conjugate directions in [16]) are defined as the direc-
tions along ✓ such that the curvature vector ⌘(✓) is tangent to the curvature ellipse (see also
[17]). A curve on M whose tangent direction at each point is an asymptotic direction is called
an asymptotic curve. The asymptotic curves of M are solution curves of the BDE

(5)  (x, y, q) = (am� bl)q2 + (an� cl)q + (bn� cm) = 0,

([17, 16]). We call this equation the asymptotic BDE. The discriminant of the BDE (5) is the
�-set and is a generic smooth curve on surface. Away from inflection points, at a hyperbolic
(resp. parabolic or elliptic) point there are 2 (resp. 1 or 0) asymptotic directions at that point.

Since we do not distinguish between a BDE and its non-zero multiples, at each point (x, y),
we can view a BDE (1) as a quadratic form in dx, dy and represent it by the point (A : 2B : C)
in RP 2. To a point (A : 2B : C) is associated a polar line with respect to the conic �. Three
points in RP 2 form a self-polar triangle if the polar of any of the three points is the line through
the remaining two points. In our case the point (A : 2B : C) is parametrized by (x, y) 2 U (for
more details, see [15] chapter 7). The metric on M is given by ds

2 = X1dx
2+2X2dxdy+X3dy

2

and determines a point (X1 : 2X2 : X3) in the projective plane. It turns out that the polar
line of (X1 : 2X2 : X3) consists of BDEs whose solutions are orthogonal curves on M ([4, 23]).
This polar line intersects the polar line of the asymptotic BDE (5) at a unique point (P) which
represent a BDE, called the BDE of the lines of principal curvature ([23]). The BDEs (A) of the
asymptotic curves and the BDE (P) determine a unique BDE (C), the characteristic BDE, such
the three of them form a self-polar triangle in the projective plane. In fact, (C) is the Jacobian
of (A) and (P) ([23]), and if the surface M is parametrized by �(x, y), the characteristic BDE is
given by

�(x, y, q) =(L(GL� EN)� 2M(FL� EM))q2 + 2((M(EN +GL)� 2LNF ))q

+ 2M(GM � FN)�N(GL� EN) = 0,
(6)

where E = h�x,�xi, F = h�x,�yi, G = h�y,�yi, L = (am � bl), 2M = (an � cl) and
N = (bn�cm). A characteristic curve is the a curve on M whose tangent direction at each point
is a characteristic direction. The discriminant curve of the BDE (6) coincides with the parabolic
set. At elliptic point there are two characteristic directions and at each parabolic point there is
one.

The asymptotic directions can be described via the singularities of the projections of M to
3-spaces (see [2]). Consider the family of orthogonal projections given by

P : M ⇥ S
3 ! TS

3

(p,u) 7! (u, p� hp,uiu).
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For u fixed, the projection can be viewed, locally at a point p, as a map germ

Pu : (R2
, 0) ! (R3

, 0).

(Two germs f and g are said to be A-equivalent and write f ⇠A g, if g = k � f � h
�1 for

some germs of di↵eomorphisms h and k of, respectively, the source and target.) The generic
A-singularities of Pu are those that have Ae-codimension  3 (which is the dimension of S3),
see Table 1 and Table 2.

Table 1. The generic local singularities of orthogonal projections of M to 3-
spaces ([18]).

Name Normal form Ae-codimension

Immersion (x, y, 0) 0
Cross-cap (x, y2, xy) 0

B
±
k (x, y2, x2

y ± y
2k+1), k = 2, 3 k

S
±
k (x, y2, y3 ± x

k+1
y), k = 1, 2, 3 k

C
±
k (x, y2, xy3 ± x

k
y), k = 3 k

Hk (x, xy + y
2k+2

, y
3), k = 2, 3 k

P3(c) (x, xy + y
3
, xy

2 + cy
4), c 6= 0, 1

2 , 1,
3
2 3⇤

⇤ The codimension of P3(c) is that of its stratum.

Table 2. Bi-germs of Ae-codimension 2 of orthogonal projections of M to 3-
spaces ([14]).

Name Normal Form Ae-codimension

[A2] (x, y, 0;X,Y,X
2 + Y

3) 2
(A0S0)2 (x, y, 0;Y 2

, XY + Y
5
, X) 2

A0S
±
1 (x, y, 0;Y 3 ±X

2
Y, Y

2
, X) 2

A0S0|A±
1 (x, y, 0, X,XY, Y

2 ±X
2) 2

For a complete table see [14].

The projection Pu is singular at p if and only if u 2 TpM . The singularity is a cross-cap
unless u is an asymptotic direction at p. The Ae-codimension 2 singularities occur on curves on
a generic surface and the Ae-codimension 3 ones occur at special points on these curves. When
projecting the surface along an asymptotic direction at a parabolic point, the projection may
have a P3(c)-singularity ([3, 10]). If we call S2-curve (resp. B2, (A0S0)2, A0S

±
1 , A0S0|A±

1 -curve)
the closure of the set of points p on M for which there exists a projection Pu having an S2

(resp. B2, (A0S0)2, A0S
±
1 , A0S0|A±

1 )-singularity at p, then these curves meet the parabolic set
tangentially at a P3(c)-singularity (see Proposition 3.1 and for a complete proof [9, 10]). At a
P3(c)-singularity the unique asymptotic (or characteristic) direction is tangent to the parabolic
set. This point is called a P3(c)-point and is also a point where the asymptotic (or characteristic)
curves have a folded singularity (see §2).

Throughout this paper, we consider the family of orthogonal projections P where the map
Pu has P3(c)-point. We can take u = (0, 1, 0, 0) as an asymptotic direction. We choose local
coordinates at p such that the surface is given in Monge form

�(x, y) = (x, y, f1(x, y), f2(x, y))
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where (j1f1(0, 0), j1f2(0, 0)) = (0, 0) and with 2-jet of (f1
, f

2) = (Q1, Q2). We denote by
(X,Y, Z,W ) the coordinates in R4 and we parametrize the directions near u by (u, 1, v, w).
Instead of the orthogonal projection to the plane (u, 1, v, w)?, we project to the fixed plane
(X,Z,W ). The modified family of projections is given by

P : (R2 ⇥ R3
, 0) ! (R3

, 0)
((x, y), (u, v, w)) 7! Pu = (x� uy, f

1(x, y)� vy, f
2(x, y)� wy),

with P0(x, y) = (x, f1(x, y), f2(x, y)). As the P3(c)-point belongs to �-set and if we denote by
o(k) the terms of order greater than k in x1, . . . , xr, then we can take (Q1, Q2) = (x2

, xy) and
write

(7)
f
1(x, y) = x

2 +
P3

i=0 a3ix
3�i

y
i +

P4
i=0 a4ix

4�i
y
i +

P5
i=0 a5ix

5�i
y
i + o(5),

f
2(x, y) = xy +

P3
i=0 b3ix

3�i
y
i +

P4
i=0 b4ix

4�i
y
i +

P5
i=0 b5ix

5�i
y
i + o(5).

The 2-jet of the coe�cients of a, b, c, l,m, and n of (Q1, Q2) are given as follows

a = 1
2f

1
xx = 1 + 3a30x+ a31y + 6a40x2 + 3a41xy + a42y

2
,

b = 1
2f

1
xy = a31x+ a32y +

3
2a41x

2 + 2a42xy +
3
2a43y

2
,

c = 1
2f

1
yy = a32x+ 3a33y + a42x

2 + 3a43xy + 6a44y2,
l = 1

2f
2
xx = 3b30x+ b31y + 6b40x2 + 3b41xy + b42y

2
,

m = 1
2f

2
xy = 1

2 + b31x+ b32y +
3
2b41x

2 + 2b42xy +
3
2b43y

2
,

n = 1
2f

2
yy = b32x+ 3b33y + b42x

2 + 3b43xy + 6b44y2.

The curve formed by the locus of geodesic inflection points of the characteristic (resp. as-
ymptotic) curves we call characteristic inflection curve (resp. flecnodal curve (see [9, 10])) and
denoted by Ch-curve (resp. Fl-curve). We have the following result.

Proposition 3.1. Let M be a surface in R4 given in Monge form as in (7), and suppose that
the origin is a P3(c)-point. Then we have the following initial terms of the following curves:

a) the parabolic curve (�-curve):

x =
6a32b33 � 9b233 � 6a44

a32
y
2 + o(2).

b) the B2-curve:

x =
2(3a332b33 � 4a232b

2
33 � 3a44a232 � 8a44a32b33 + 12a44b233 + 8a244)

a32(a32 � 2b33)2
y
2 + o(2).

c) the S2-curve:

x =
6(a332b33 + 48a232b

2
33 � 72a32b333 � a44a

2
32 � 72a44a32b33 + 36a44b233 + 24a244)

a32(a32 + 6b33)2
y
2 + o(2).

d) the A0S
±
1 -curve:

x =
3a232b

2
33 � 4a32a44b33 + 3a44b233 + 2a244
a32(4a32b33 � 4b233 � 3a44)

y
2 + o(2).

e) the (A0S0)2-curve:

x =
12a32b33 � 9b233 � 6a44

a32
y
2 + o(2).

f) the A0S0|A±
1 -curve:

x =
3a232b

2
33 � 16a32a44b33 + 12a44b233 + 8a244

4(a32b33 � b
2
33 � a44)a32

y
2 + o(2).
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g) the Fl-curve:

x =
6(a32b33 � a44)(24a32b33 � 36b233 + a

2
32 � 24a44)

a32(6b33 � a32)2
y
2 + o(2).

h) the Ch-curve:

x =
6(a32b33 � a44 � 3b233)(36b

2
33 � 24a32b33 + a

2
32 + 24a44)

a32(a32 + 6b33)2
y
2 + o(2).

All the above curves are tangent to the parabolic curve at the P3(c)-point and any two have
contact of order 2 at the origin.

Proof. The singularity of the projection P0 is A-equivalent to a P3(c)-singularity when a33 = 0,
a32, a44, b33 6= 0, a44/(a32b33) 6= 0, 1/2, 1, 3/2, and 5a32b33 � 6b233 � 4a44 6= 0 ([9, 21]). All the
curves �, B2, S2, A0S

±
1 , (A0S0)2, A0S0|A±

1 are determined in [9, 10] using adjacencies of the
P3(c)-singularity.

The curves in g) and h) are obtained using the asymptotic and characteristic BDEs. In fact,
the 2-jet of the characteristic BDE (6) is written as

j
2� =q

2 + (2b32x+ 6b33y)q + (2a32b32 � 6a31b33 + a31a32 + 12b32b33 + 3a43)xy + a32x

(a42 + a
2
32 + 2b232 � 2a31b32 + 3a30a32 + 4b31a32)x

2 + (18b233 � 6a32b33 + 6a44)y
2
.

(8)

Thus, we can write by the implicit function theorem

x =
6(�a44 + a32b33 � 3b233)

a32
y
2 � (6b33a32)yq �

1

a32
q
2 + o(2).

Substituting the expression of x into �y + q�x = 0 we obtain
⇣
18b233 � 6a44 + 6a32b33

⌘
y +

⇣
3b33 +

1

2
a32

⌘
q + o(1) = 0.

Again, solving implicitly the last equality, we get

q =
12(a32b33 � a44 � 3b233)

(6b33 + a32)
y + o(1).

Substituting q in the expression of x gives the 2-jet of the characteristic inflection curve. The
2-jet of the flecnodal curve is also determined in [9, 10] using the same approach above for the
asymptotic BDE. ⇤

We denote the tangent lines to the Legendrian lifts of the parabolic, B2, S2, flecnodal,
characteristic inflection, (A0S0)2, A0S1, and A0S0|A±

1 curves in PT
⇤
M at a P3(c)-point by

lP , lB , lS , lF , lC , ls02 , ls1 , and ls01 , respectively. We denote by lg the contact element at the
P3(c)-point (i.e., the vertical line in the contact plane at that point).

Remark 3.1. By Proposition 3.1, lP , lS , lB , lF , and lC are distinct unless

(5a32b33 � 6b233 � 4a44) = 0.

This condition is precisely that for the family of the orthogonal projections P to fail to be a
versal unfolding of a P3(c)-singularity ([10]). In a generic one-parameter family of surfaces case
(see [3, Proposition 4.3]) there are double P3(c)-points.

Theorem 1. At a generic P3(c)-point, the 2-jet of the Ch-curve is projectively invariant.
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Proof. The cross-ratio of lines lP , lg, lS , lC is given by

(lP , lg : lS , lC) =
cS � cP

cC � cP
=

9(5a32b33�6b233�4a44)
2

a32(a32+6b33)2

� 9(5a32b33�6b233�4a44)2

a32(a32+6b33)2

= �1,

where cP , cS , and cC are the coe�cients of order 2 of the parabolic curve, S2-curve and Ch-
curve, respectively. The result follows from the fact that the 2-jet of the Ch-curve depends on
the S2-curve and parabolic curve which are projective invariants ([9, 10]). ⇤
Proposition 3.2. The topological type of the singularity of the characteristic BDE at a P3(c)-
point is invariant under projective transformations.

Proof. The singularity type is determined by equation (8). It is given by the type of the singu-
larity of the lifted field ⇠: a saddle, node or focus. Since a P3(c)-point is a folded singularity, the
characteristic BDE is locally smoothy equivalent to dx

2 + (�x+ �y
2)dy2 = 0, where

� = �3

2

(5a32b33 � 6b233 � 4a44)

a
2
32

determines the topological type of singularity if and only if � 6= 0, 1
16 (see [5]). Observe that the

coe�cients a44 and b33 of � depend on a combination of the cross-ratios ⇢1 = (lP , lB : lS , lF ),
⇢2 = (lP , lg : ls01 , ls02), ⇢3 = (lP , lg : ls1 , ls02), and a32. In fact,

⇢1 =
a32 � 3b33
a32 � 6b33

,

⇢2 = �21a232b
2
33 � 60a32b333 + 36b433 � 32a32a44b33 + 48a44b233 + 16a244

24a32(a32b33 � b
2
33 � a44)b33

,

⇢3 = �21a232b
2
33 � 60a32b333 + 36b433 � 32a32a44b33 + 48a44b233 + 16a244

6(4a32b33 � 4b233 � 3a44)a32b33
.

Using ⇢1 we get b33 =
1

3

(⇢1 � 1)a32
2⇢1 � 1

. From ⇢2 and ⇢3 it follows that

6a32b33((3⇢3 � 4⇢2 + 1)a44 + 4b33(6⇢2 � ⇢3)(a32 � b33)) = 0.

Replacing b33 in the above equation, we obtain

a44 =
4

9

a
2
32(⇢1 � 1)(⇢2 � ⇢3)(5⇢1 � 2)

(2⇢1 � 1)2(4⇢2 � 3⇢3 � 1)
.

Since a32 6= 0, substituting b33 and a44 into �, shows that the type of singularity of the char-
acteristic BDE depends only on the values of the cross-ratios ⇢1, ⇢2 and ⇢3, all of which are
projective invariants. ⇤

At a P3(c)-point, the 4-jet of the parametrization �(x, y) = (x, y, f1(x, y), f2(x, y)) of the
surface M is equivalent, by projective transformations, to the normal form

(9) (x, y, x2 + xy
2 + ↵y

4
, xy + �y

3 +  ),

where 6�2 + 4↵� 15� + 5 6= 0, ↵ 6= 0, 1/2, 1, 3/2, and  is a polynomial of degree 4 (see [11]).
According to Proposition 3.2, we can use the normal form (9) to present the topological type

of the singularity of the characteristic BDE at a P3(c)-point. In [9, 10] we showed that ↵ and
� in (9) are also projective invariants described as functions of ⇢1, ⇢2 and ⇢3. This allows us to
recalculate the expressions of the curves in Proposition 3.1 in terms of ↵ and �. In fact, consider
representing M locally as a surface M̄ in P4, given in the a�ne chart {[x : y : z : w : 1]} in
Monge form [x : y : f1(x, y) : f2(x, y) : 1]. We can take (f1

, f
2) with 4-jet as in (9) and use the

equations of the curves in Proposition 3.1 with a32 = 1, a44 = ↵, and b33 = �.
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Theorem 2. At a P3(c)-point, the characteristic BDE has a folded singularity if and only if
� = �(5� � 6�2 � 4↵) 6= 0, 1

24 . The singularity is a folded saddle if � < 0, a folded node if
0 < � <

1
24 , and folded focus if � >

1
24 .

Proof. The proof follows from Proposition 3.2. Note that � = � 3
2 (5�� 6�2 � 4↵) 6= 0, 1

16 . Thus
the singularity of the characteristic BDE is determined by values of �. ⇤

Asymptotic
Curves

Parabolic
Curve

Characteristic
Curves

Figure 2. The asymptotic and characteristic curves at a P3(c)-point. � <

�1/24 (first); �1/24 < � < 0 (second); 0 < � < 1/24 (third) and � > 1/24
(fourth).

Remark 3.2. The types of the singularities of the asymptotic and characteristic BDE are not
related ([23]). However, for surfaces in R4, thanks to Theorem 2, the types of these singularities
have opposite indices at a P3(c)-point, that is, on one side of the parabolic curve we have a folded
saddle and on the other a folded node or focus or vice-versa. This also happens for surfaces in R3

at cusps of Gauss [4]. Figure 2 shows the generic configurations of asymptotic and characteristic
curves at a folded singularity.

Following the approach in [20], we denoted by ⇢c the cross-ratio (lP , lg : lC , lB) and call it
the characteristic cross-ratio. It can be written in terms of the coe�cients of normal form (9)
as follows

⇢c = �9(2� � 1)2

(1 + 6�)2
.

As the generic relative positions of the relevant curves at a P3(c)-point are determined by their
2-jets, we can give the their relative positions in terms of the values of ⇢c. In what follows, we
present the relative positions of the curves �, B2, S2, Fl, and Ch.

Theorem 3. Let cP , cB, cS, cF , and cC be the coe�cients of order 2 associated to curves �,
B2, S2, Fl, and Ch, respectively, at a P3(c)-point of a smooth surface in R4. Then there are 4
possible relative positions of these curves depending on the values of ⇢c:

(i) If ⇢c < �9, then cC < cP < cB < cF < cS

(ii) If �9 < ⇢c < �1, then cC < cP < cB < cS < cF

(iii) If �1 < ⇢c < �1/9, then cC < cP < cS < cB < cF

(iv) If �1/9 < ⇢c < 0, then cC < cP < cS < cF < cB .

Proof. The proof follows from Proposition 3.1 with a32 = 1, a44 = ↵ and b33 = �. It is easy to
check that the coe�cients cP , cB , cS , cF , and cC satisfy cC < cP < cB , cS , cF for all value of
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↵,�. Furthermore,

cB � cS =
8(6� � 1)(4↵+ 6�2 � 5�)2

(2� � 1)2(1 + 6�)2
,

cB � cF =
8(3� � 1)(4↵+ 6�2 � 5�)2

(2� � 1)2(1 + 6�)2
,

cS � cF = �216�(4↵+ 6�2 � 5�)2

(6� � 1)2(1 + 6�)2
.

Since 4↵ + 6�2 � 5� 6= 0 (see Remark 3.1), we have cB > cS if and only if � > 1/6; cB > cF if

and only if � > 1/3; and cS > cF if and only if � < 0. This and the fact that ⇢c = � 9(2��1)2

(1+6�)2 ,
for each value of � we obtain the desired result. ⇤

Theorem 4. With notation in Theorem 3, consider the 2-jets of curves �, S2, and Ch rep-
resented by the parabolas x = cP · y2, x = cS · y2, and x = cC · y2, respectively. There are
four possible configurations for �, S2, and Ch and these are determined by ↵ and �. They are
described by Figure 3.

3

a

bcP = 0

cS = 0

8

7

6
5

4
2

1

10
9

11

cC= 0

1 - 3 2 - 4 - 10 5 - 7 - 9 6 - 8 - 11

H

EP

H

H HP

P

P

E E E

Figure 3. Partition of (↵,�)-plane. The bottom pictures are the configurations
of �-curve (black), S2-curve (green), and Ch-curve (blue) at a P3(c)-point. H,
P, and E mean hyperbolic, parabolic, and elliptic region, respectively.
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Proof. Consider the 2-jets of the parametrisation of the �-curve, S2-curve, Ch-curve with the
second order coe�cients given by

cP = 3(2� � 3�2 � 2↵),

cS =
6(36↵�2 � 72�3 + 24↵2 � 72↵� + 48�2 � ↵+ �)

(1 + 6�)2
,

cC =
6(�3�2 � ↵+ �)(36�2 + 24↵� 24� + 1)

(1 + 6�)2
.

The generic configurations of these curves occur when ↵ and � avoid the set

{cP = 0} [ {cS = 0} [ {cC = 0}.
The conditions cP = 0, cS = 0, and cC = 0 determine curves in (↵,�)-plane represented by
dashed curve, dot-dashed curve, and doted curve in Figure 3, respectively. Then the (↵,�)-
plane is partitioned into 11 open regions. There are four di↵erent configurations of the �-curve,
S2-curve, and Ch-curve that are given at the bottom of Figure 3. For instance, in regions 1
and 3, the configurations of the �-curve, S2-curve, Ch-curve are described in the first bottom
picture; in regions 2, 4 and 10, the configurations are described in the second bottom picture
and so on. ⇤
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HORO-FLAT SURFACES ALONG CUSPIDAL EDGES IN THE

HYPERBOLIC SPACE

SHYUICHI IZUMIYA, MARIA CARMEN ROMERO-FUSTER, KENTARO SAJI,
AND MASATOMO TAKAHASHI

Abstract. There are two important classes of surfaces in the hyperbolic space. One of class
consists of extrinsic flat surfaces, which is an analogous notion to developable surfaces in
the Euclidean space. Another class consists of horo-flat surfaces, which are given by one-
parameter families of horocycles. We use the Legendrian dualities between hyperbolic space,
de Sitter space and the lightcone in the Lorentz-Minkowski 4-space in order to study the
geometry of flat surfaces defined along the singular set of a cuspidal edge in the hyperbolic
space. Such flat surfaces can be considered as flat approximations of the cuspidal edge. We
investigate the geometrical properties of a cuspidal edge in terms of the special properties of
its flat approximations.

1. Introduction

The tangent plane at a point of a regular surface is a flat approximation of the surface at a
point, which is the basic idea to define the curvatures of the surface at the point. In this sense,
the curvature at a point measures how far or near is the shape of the surface from a plane at the
given point. On the other hand, the normal plane of a surface at a point also provides important
information of the surface, for instance, the notion of normal section plays an important role in
surface theory. One of the possible generalizations of this viewpoint consists in considering flat
surfaces which are tangent or normal to the surface along a given curve. In [12, 18], osculating
(and normal) flat surfaces along a curve on a surface in the Euclidean space are investigated,
and with the help of these notions, the geometrical behaviour of a curve lying on a given surface
was studied in [11,16].

On the other hand, several articles on the di↵erential geometry of surfaces with singularities
have appeared during the two last decades [4, 7–14, 21, 25, 26, 29–34, 36]. An important class of
singular surfaces is provided by the wave fronts, on which a smooth unit normal vector field of
the surface even at a singular point exists. This means that a tangent and thus normal planes
can be defined at any point of a wave front. One of the simplest and generic wave fronts is a
cuspidal edge, whose set of singular points is a regular space curve. In [23], osculating and normal
flat surfaces along the singular points of a cuspidal edge in the Euclidean space are defined and
investigated.

In the present paper we analyze the geometry of cuspidal edges in the hyperbolic space. We
point out that in the hyperbolic 3-space there exist two notions of flatness of surfaces [19, 22]
other than that of flat Gaussian curvature surfaces. We shall consider extrinsic flat surfaces and
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horospherical flat surfaces. The notion of extrinsic flat surfaces is a direct analogy to that of flat
surfaces in the Euclidean space. However, the notion of horospherical flat surfaces has completely
di↵erent properties [22]. It is a one-parameter family of horocycles, namely, a surface swept by
a horocycle. We call them horocyclic surfaces. We call each horocycle a generating horocycle.
It is known that a horospherical flat surface is (at least locally) parametrized as a horocyclic
surface [22, Theorem 4.4]. We introduce osculating and normal horospherical flat surfaces along
a cuspidal edge and we call them flat approximations. The main purpose of this paper is to
investigate the geometrical properties of a cuspidal edge in terms of the special properties of its
flat approximations. We use in §2 the Legendrian duality theorem obtained in [15] in order to
define the flat wave fronts as well as some invariants of cuspidal edges in the hyperbolic space.
Moreover, certain families of functions of the cuspidal edge are introduced in §2 as the main tool
in this paper. In §3, we quickly review the general theory of horocyclic surfaces given in [22].
The basic properties of the above families of functions are investigated in §4 and §5. In §6.3 we
analyze special cuspidal edges depending on special properties of flat approximations. Finally,
in §7 we make a remark on the global properties of a curve in the hyperbolic space from the
view point of the Legendrian duality.

We shall assume throughout the whole paper that all the maps and manifolds are of class C1

unless the contrary is explicitly stated.

2. Flat fronts in the hyperbolic space

The hyperbolic space is realized as a spacelike pseudo-hypersphere with an imaginary radius in
the Lorentz-Minkowski 4-space. The first author obtained in [15] a general theory on Legendrian
dualities for pseudo-spheres in the Lorentz-Minkowski space leading to a commutative diagram
between certain contact manifolds defined by the dual relations. Such dualities have proven to
be useful in the study of the di↵erential geometry of submanifolds of the pseudo-spheres and the
results obtained have been described in several papers [2, 5, 17, 22,24]. See also [6, 27, 28].

We observe that the flatness of a surface contained in a three dimensional pseudo-sphere is
determined by the degeneration of the dual surface. By taking this fact into account, we investi-
gate in the present paper the flat approximations of cuspidal edges contained in the hyperbolic
3-space.

Consider the Lorentz-Minkowski 4-space R4
1 = (R4

, h , i) with the pseudo-inner product
h , i = (�+++) and the following subspaces

H
3 = {v 2 R4

1 | hv,vi = �1}, S
3
1 = {v 2 R4

1 | hv,vi = 1}, LC
⇤ = {v 2 R4

1 | hv,vi = 0}

that we call respectively, the hyperbolic 3-space, the de Sitter 3-space and the lightcone. We take
now the submanifolds,

�1 = {(v,w) 2 H
3 ⇥ S

3
1 | hv,wi = 0},

�2 = {(v,w) 2 H
3 ⇥ LC

⇤ | hv,wi = �1},
together with their corresponding canonical projections

⇡11 : �1 ! H
3
, ⇡12 : �1 ! S

3
1 , ⇡21 : �2 ! H

3
, ⇡22 : �2 ! LC

⇤
.

We can consider the 1-forms hdv,wi and hv, dwi on R4
1 ⇥ R4

1, given by

hdv,wi = �w0dv0 + w1dv1 + w2dv2 + w3dv3, hv, dwi = �v0dw0 + v1dw1 + v2dw2 + v3dw3,

for v = (v0, v1, v2, v3), w = (w0, w1, w2, w3) 2 R4
1. Clearly, the restrictions

✓i1 = hdv,wi |�i , ✓i2 = hv, dwi |�i (i = 1, 2)



42 S. IZUMIYA, M. C. ROMERO-FUSTER, K. SAJI, AND M. TAKAHASHI

determine the same hyperplane field over �i. Moreover, �i is a contact manifold with the
contact form ✓i1(= ✓i2), and ⇡i1, ⇡i2 are Legendrian fibrations [15, Theorem 2.2]. There is a
contact di↵eomorphism �12 : �1 ! �2, given by �12(v,w) = (v,v ±w) [15, page 330].

For a non-zero vector v 2 R4
1 and a real number c, we define a hyperplane with pseudo normal

v by

HP (v, c) = {x 2 R4
1 | hx,vi = c }.

We say that HP (v, c) is a spacelike, a timelike or a lightlike hyperplane according v satisfies that
hv,vi < 0, hv,vi > 0 or hv,vi = 0 respectively. We then have three kinds of totally umbilical
surfaces in H

3, given by the intersection of H3 with the di↵erent hyperplanes of R4
1: A surface

H
3 \HP (v, c) is said to be a sphere, an equidistant surface or a horosphere provided HP (v, c)

is a spacelike, a timelike or a lightlike hyperplane respectively. Moreover, an equidistant surface
H

3 \HP (v, 0) is called a hyperbolic plane.
Let U ⇢ R2 be an open subset. We say that two maps f : U ! H

3 and g : U ! S
3
1 are

�1-dual (one to each other) if the map (f, g) : U ! �1 is isotropic [15]. Then a map f : U ! H
3

is said to be a frontal if it has a �1-dual g : U ! S
3
1 . Moreover, we say that f : U ! H

3 is
a front provided it has a �1-dual g : U ! S

3
1 , such that (f, g) : U ! �1 is an immersion.

Analogous concepts for the �2-duality can be introduced too.
A map f : U ! H

3 is said to be flat (or more precisely, extrinsically flat) if its �1-dual
g : U ! S

3
1 satisfies that rank dgp  1 for any p 2 U . On the other hand, f : U ! H

3 is
said to be horospherically flat (or horo-flat) provided its �2-dual, g : U ! LC

⇤, satisfies that
rank dgp  1 for any p 2 U .

Let M3 be a 3-dimensional manifold. A singular point p of the map-germ f : (U, p) ! M
3 is

a cuspidal edge if f is A-equivalent to the germ (u1, u2) 7! (u1, u
2
2, u

3
2) at 0. If a singular point

p of f : (U, p) ! M
3 is a cuspidal edge, then we also say that the germ f is a cuspidal edge.

Here we recall that two map-germs f, g : (R2
, 0) ! (R3

, 0) are A-equivalent provided there exist
di↵eomorphism germs � : (R2

, 0) ! (R2
, 0) and � : (R3

, 0) ! (R3
, 0) such that � � f � ��1 = g.

It is well-known that a cuspidal edge f : (U, p) ! H
3 is a front, namely, there exists a �1 dual

g : (U, p) ! S
3
1 of f such that (f, g) is an immersion (see [1, 25], for example). Since both, the

singular set S(f) of f and its image f(S(f)), are regular curves, we can take a local coordinate
system (u1, u2) centered at p on U such that

S(f) = {(u1, u2)|u2 = 0}, | hfu1(u1, 0), fu1(u1, 0)i | = 1, and det(fu1 , fu2u2 , g, f) > 0.

We set u1 = u and �(u) = f(u, 0) and define vector fields along � as follows:

(2.1)

t(u) = fu(u, 0),
⌫(u) = g(u, 0),
b(u) = �(u) ^ t(u) ^ ⌫(u),
l"
⌫
(u) = �(u) + "⌫(u),

l"
b
(u) = �(u) + "b(u),

where " = ±1. Here, for any x1,x2,x3 2 R4
1, we define a vector x1 ^ x2 ^ x3 by

x1 ^ x2 ^ x3 =

��������

�e0 e1 e2 e3
x
1
0 x

1
1 x

1
2 x

1
3

x
2
0 x

2
1 x

2
2 x

2
3

x
3
0 x

3
1 x

3
2 x

3
3

��������
,

where {e0, e1, e2, e3} is the canonical basis of R4
1 and xi = (xi

0, x
i

1, x
i

2, x
i

3). Then {�, t,⌫, b} is a
pseudo-orthonormal frame satisfying det(�, t,⌫, b) = 1, and {�, t, l"

⌫
, b}, {�, t, l"

b
,⌫} are moving
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frames along �. We then have the following Frenet-Serret type formulae:

(2.2)

0

BB@

�0

t0

⌫ 0

b0

1

CCA =

0

BB@

0 1 0 0
1 0 

h

⌫

h

b

0 �h
⌫

0 
h

t

0 �h
b

�h
t

0

1

CCA

0

BB@

�
t
⌫
b

1

CCA,

(2.3)

0

BB@

�0

t0

(l"
⌫
)0

b0

1

CCA =

0

BB@

0 1 0 0
h"
⌫

0 "
h

⌫

h

b

0 h"
⌫

0 "
h

t

"
h

t
�h

b
�"h

t
0

1

CCA

0

BB@

�
t
l"
⌫

b

1

CCA,

and

(2.4)

0

BB@

�0

t0

(l"
b
)0

⌫ 0

1

CCA =

0

BB@

0 1 0 0
h"
b

0 "
h

b

h

⌫

0 h"
b

0 �"h
t

�"h
t

�h
⌫

"
h

t
0

1

CCA

0

BB@

�
t
l"
b

⌫

1

CCA,

where

(2.5)


h

⌫
= h�00

,⌫i ,

h

b
= � det(�,�0

,�00
,⌫),


h

t
= det(�,�0

,⌫,⌫ 0),
h"
⌫

= 1� "
h

⌫
,

h"
b

= 1� "
h

b
.

Here, we call h
⌫
the normal curvature, h

b
the geodesic curvature, h

t
the cuspidal torsion, h"

⌫

the horospherical normal curvature, h"
b
the horospherical geodesic curvature of the cuspidal edge

respectively. Since b = �^t^⌫, the horospherical geodesic curvature corresponds to the singular
curvature [34].

We denote I = U \ S(f) and introduce the following functions on H
3 ⇥ I:

(2.6)
H

"

l⌫
(x, u) = hx, l"

⌫
(u)i+ 1,

H
"

lb
(x, u) = hx, l"

b
(u)i+ 1.

One can also consider H⌫(x, u) = hx,⌫(u)i and Hb(x, u) = hx, b(u)i. Considering these func-
tions is analogous notion in the Euclidean space [23]. See Appendix A for these cases.

We can take x as a parameter and regard these functions as parameter families of functions
of u, then we can look at their corresponding discriminant set.

Let g : (R, 0) ! (R, 0) be a function. For a manifold N and p 2 N , a function

G : (N ⇥ R, (p, 0)) ! (R, 0)
is called an unfolding of g if G(p, u) = g(u) holds. In this setting, we regard G as a parameter
family of a function g. We assume that g

0(0) = 0 and define the set ⌃G and the discriminant
set DG of G as

⌃G = {(q, u) 2 N ⇥ R | G(q, u) = Gu(q, u) = 0},
DG = {q 2 N | there exists u 2 R such that G(q, u) = Gu(q, u) = 0}.

If the map (G,Gu) is submersion at (p, 0), then ⌃G is a manifold. By definition, the discriminant
set is the envelope of the family {q 2 N |G(q, u) = 0}u2R (see [3, Section 7] or [21, Section 5] for
the general theory of unfoldings and their discriminant sets).

Now apply (N, p) = (H3
, p) for p 2 H

3 and G = H
"

l⌫
, H

"

lb
. Since l"

⌫
and l"

b
are lightlike,

the discriminant sets DH
"
l⌫

and DH
"
lb

are the envelopes of families of horospheres. For a fixed
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u, {x 2 H
3(�1) | H"

l⌫
(x, u) = 0} are two horospheres tangent to the cuspidal edge at �(u)

and {x 2 H
3(�1) | H"

lb
(x, u) = 0} are two horospheres normal to the cuspidal edge at �(u),

respectively. We investigate these functions and discriminant sets in Sections 4 and 5.
In what follows, we shall use the following abbreviation:

⌫ = 
h

⌫
, b = 

h

b
, t = 

h

t
.

3. Horocyclic surfaces

In this section, we give a quick review of general treatment of horocyclic surfaces. See [22] for
detail. Let g : I ! H

3(�1) be a regular curve. Since H
3(�1) is a Riemannian manifold, we can

reparametrize g by the arc-length. Hence, we may assume that g(s) is a unit speed curve. Then
the hyperbolic curvature h and the hyperbolic torsion ⌧h is defined by h(s) = |g00(s) � g(s)|
and

⌧h(s) = �det(g(s), g0(s), g00(s), g000(s))

(h(s))2
,

where |v| =
p
| hv,vi | for v 2 R4

1. It can be shown that the curve g(s) satisfies the condition
h(s) ⌘ 0 if and only if there exists a lightlike vector c such that g(s)� c is a geodesic, where ⌘
stands for the equality holds identically. Such a curve is called an equidistant curve. Moreover
g is called a horocycle if h(s) ⌘ 1 and ⌧h(s) ⌘ 0. Let {�,a1,a2,a3} be a pseudo-orthonormal
basis of R4

1 which satisfies h�,�i = �1 and hai,aii = 1 (i = 1, 2, 3). Setting

g(s) = � + sa1 +
s
2

2
(� + a2),

we see that h(s) ⌘ 1 and ⌧h(s) ⌘ 0. Thus s 7! g(s) is a horocycle. Furthermore, let
{�(u), a1(u), a2(u), a3(u)} be a pseudo-orthonormal frame on an open interval I which satisfies
h�(u),�(u)i = �1 and hai(u),ai(u)i = 1 (i = 1, 2, 3). Then the surface

(3.1) F : (u, s) 7! �(u) + sa1(u) +
s
2

2
(�(u) + a2(u))

is a one-parameter family of horocycles, namely, a horocyclic surface. We define fundamental
invariants of horocyclic surfaces. Since a horocyclic surface (3.1) is determined by the frame
{�(u),a1(u),a2(u),a3(u)}, the six functions c1(u), . . . , c6(u) is defined by the following Frenet-
Serre type equations:

(3.2)

0

BB@

�0(u)
a0
1(u)

a0
2(u)

a0
3(u)

1

CCA =

0

BB@

0 c1(u) c2(u) c3(u)
c1(u) 0 c4(u) c5(u)
c2(u) �c4(u) 0 c6(u)
c3(u) �c5(u) �c6(u) 0

1

CCA

0

BB@

�(u)
a1(u)
a2(u)
a3(u)

1

CCA .

Let ↵ be a function of u, and set F̄ (u, s) = F (u, s � ↵(u)). Then the images F̄ (R ⇥ I) and
F (R⇥ I) coincide. We set c̄1, . . . , c̄6 be the invariants defined by (3.2) of F̄ (u, s). Then we have
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the equation

(3.3)

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

c̄1(u) = c1(u) +
↵(u)2

2
(c4(u)� c1(u)) + ↵(u)c2(u) + ↵

0(u),

c̄2(u) = c2(u) + ↵(u)(c4(u)� c1(u)),

c̄3(u) =

✓
1 +

↵(u)2

2

◆
c3(u) + ↵(u)c5(u) +

↵(u)2

2
c6(u),

c̄4(u) = c4(u) +
↵(u)2

2
(c4(u)� c1(u)) + ↵(u)c2(u) + ↵

0(u),

c̄5(u) = c5(u) + ↵(u)(c3(u) + c6(u)),

c̄6(u) =

✓
1� ↵(u)2

2

◆
c6(u)� ↵(u)c5(u)�

↵(u)2

2
c3(u).

Then we see that c̄1(u)� c̄4(u) = c1(u)� c4(u) and

(3.4) c̄1(u)� c̄4(u) = c̄2(u) = 0 if and only if c1(u)� c4(u) = c2(u) = 0.

Furthermore, the following proposition holds (see [22, Proposition 5.3]).

Proposition 3.1. The horocyclic surface F is horo-flat if and only if c1(u)� c4(u) = c2(u) = 0
for any u 2 I.

4. Osculating horo-flat surfaces

In this section, we construct a parametrization of the discriminant set of H"

l⌫
.

Let f : (U, p) ! H
3 be a cuspidal edge. As in Section 2, we assume I = S(f)\U = {(u, 0)}\U

and set �(u) = f(u, 0). Then we have vector fields along � as in (2.1). We consider invariants
defined in (2.5). We assume (t, h"⌫)(u) 6= (0, 0) for any u 2 I unless otherwise stated.

4.1. The discriminant set of H"

l⌫
. By di↵erentiating (2.3), we have

(4.1)
(l"

⌫
)0 = h"

⌫
t+ "tb,

(l"
⌫
)00 = h"

⌫
� + "(�bt � 

0
⌫
)t+ (⌫ � "

2
⌫
+ "

2
t
)⌫ + (b � "⌫b + "

0
t
)b,

(l"
⌫
)000 = "(�bt � 20

⌫
)�

+
�
1� 

2
b
� "t

0
b
� 2"b0t � "

00
⌫
+ "(�1 + 

2
b
+ 

2
t
)⌫ � 

2
⌫
+ "

3
⌫

�
t

+(�bt + 
0
⌫
� 3"t0t � 3"0

⌫
⌫)⌫

+
�
� "

2
b
t � "

3
t
� 2"b0⌫ + 

0
b
+ "

00
t
+ (t � "

0
b
)⌫ � "t

2
⌫

�
b.

Since {�, t,⌫, b} is a basis of R4
1, we can set x = x�� + xtt+ x⌫⌫ + xbb. Then H

"

l⌫
(x, u) = 0

if and only if x� = "x⌫ + 1. Moreover, H"

l⌫
(x, u) = (H"

l⌫
)u(x, u) = 0 if and only if the equalities

x� = "x⌫ + 1, xt = �"ts, xb = h"
⌫
s

hold for some s 2 R, under the assumption (t, h"⌫) 6= (0, 0). Since x 2 H
3, we have that

x⌫ = "s
2(2

t
+ (h"

⌫
)2)/2. Thus H"

l⌫
(x, u) = (H"

l⌫
)u(x, u) = 0 if and only if

x =

✓
s
2

2
(2

t
+ (h"

⌫
)2) + 1

◆
� � "tst+

"s
2

2
(2

t
+ (h"

⌫
)2)⌫ + h"

⌫
sb

for some s 2 R. Thus DH
"
l⌫

is parameterized by

(u, s) 7! x = � +
⇣
� "tt+ h"

⌫
b
⌘
s+

s
2

2

⇣

2
t
+ (h"

⌫
)2
⌘
l"
⌫
.

We set

D
"

l
=

�"tt+ h"
⌫
bp


2
t
+ (h"

⌫
)2
,
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and call it the normalized b-Darboux vector field. By applying a parameter change

s̃ = s

q

2
t
+ (h"

⌫
)2,

we obtain the following parameterization of DH
"
l⌫

(u, s) 7! x = � +D
"

l
s+

s
2

2
l"
⌫
.

Since |D"

l
| = 1, for a fixed u, s 7! � + D

"

l
s + s

2l"
⌫
/2 is a horocycle, see §3. We also see that

{�, D"

l
, "⌫, (l"

⌫
)0/|(l"

⌫
)0|} is a pseudo-orthonormal frame of R4

1. Following §3, we set

{�,a1,a2,a3} = {�, D"

l
, "⌫, (l"

⌫
)0/|(l"

⌫
)0|},

and

(4.2) Fl⌫(u, s) = F
"

l⌫
(u, s) = � + a1s+

s
2

2
(� + a2).

By definition, Fl⌫ is a �2-dual of l
"

⌫
. An example of the osculating horo-flat surface Fl⌫ of

(4.3) f(u, v) =
⇣
f1(u, v), f2(u, v), f3(u, v),

p
f1(u, v)2 + f2(u, v)2 + f3(u, v)2 � 1

⌘
,

where f1(u, v) = 3 + u, f2(u, v) = u
2
/2 + v

2
/2, f3(u, v) = u

2
/2 + uv

2
/2 + v

3
/2 near (0, 0) is

provided by Figure 1. We can now define invariants c⌫,1, . . . , c⌫,6 as in (3.2), namely,

Figure 1. Cuspidal edge, Fl⌫ and the both surfaces together

(4.4)

0

BB@

�0

a0
1

a0
2

a0
3

1

CCA =

0

BB@

0 c⌫,1 c⌫,2 c⌫,3

c⌫,1 0 c⌫,4 c⌫,5

c⌫,2 �c⌫,4 0 c⌫,6

c⌫,3 �c⌫,5 �c⌫,6 0

1

CCA

0

BB@

�
a1

a2

a3

1

CCA.
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It is not di�cult to see that

(4.5)

c⌫,1 =
�"tp


2
t
+ (h"

⌫
)2
,

c⌫,2 = 0,

c⌫,3 =
h"
⌫p


2
t
+ (h"

⌫
)2
,

c⌫,4 = c⌫,1 =
�"tp


2
t
+ (h"

⌫
)2
,

c⌫,5 =
�
h

o


2
t
+ (h"

⌫
)2
,

c⌫,6 =
�"⌫ + 

2
⌫
+ 

2
tp


2
t
+ (h"

⌫
)2

,

c⌫,3 + c⌫,6 =
p

2
t
+ (h"

⌫
)2,

where we set
�
h

o
= �b

�
(h"

⌫
)2 + 

2
t

�
+ "t(h

"

⌫
)0 � "h"

⌫

0
t
.

By the condition (t, h"⌫) 6= (0, 0), we have c⌫,3 + c⌫,6 6= 0. The invariant c⌫,5 corresponds to the
invariant � of the Euclidean case (see [18, 23]). Note that if (t, h"⌫) ⌘ (0, 0), then by (2.3), it
holds that (l"

⌫
)0 ⌘ 0. This implies that Fl⌫ is a horosphere.

By (4.4) and (4.5), we see

F
0
l⌫

= �0 + a0
1s+

s
2

2
(�0 + a0

2)

= c⌫,1s� + c⌫,1a1 + c⌫,1sa2 +

✓
c⌫,3 + c⌫,5s+

s
2

2
(c⌫,3 + c⌫,6)

◆
a3(4.6)

(Fl⌫)s = s� + a1 + sa2,(4.7)

where 0 = @/@t. We set

(4.8) � = (c⌫,3 + c⌫,6)s
2 + 2c⌫,5s+ 2c⌫,3

and

(4.9) ⌘ = @u� c⌫,1@s,

then we see S(Fl⌫) = {(u, s) 2 I⇥R |�(u, s) = 0} by (4.6) and (4.7). We also see ker dFl⌫ = h⌘iR
on S(Fl⌫) holds. By (4.6), (4.7) and (4.5),

⌫l = a2 � sa1 �
s
2

2
(� + a2) 2 S

3
1

is a �1-dual of Fl⌫ , and Fl⌫ + ⌫l = � + a2 is a �2-dual of Fl⌫ . Since the �2-dual of Fl⌫

degenerates to a curve, Fl⌫ is a horo-flat surface. On the other hand, since c⌫,1� c⌫,4 ⌘ c⌫,2 ⌘ 0,
we also see that Fl⌫ is a horo-flat surface by Proposition 3.1. It follows that each of Fl⌫ is
a horo-flat surface tangent to the cuspidal edge at any �(u), so that we call it an osculating
horo-flat surface (along the cuspidal edge).

4.2. Singularities of osculating horo-flat surface. We consider singularities of osculating
horo-flat surface Fl⌫ . A singular point p of the map-germ f : (U, p) ! (R3

, 0) is a swallowtail if
f is A-equivalent to (u, v) 7! (u, 4v3 +2uv, 3v4 + uv

2) at 0. A singular point p of f is a cuspidal
lip (respectively, a cuspidal beak) if f is A-equivalent to (u, v) 7! (u, 2v3 + �u

2
v, 3v4 + �u

2
v
2)

at 0 with � = +1 (respectively, � = �1). A singular point p of f is a cuspidal cross cap if f is
A-equivalent to (u, v) 7! (u, v2, uv3) at 0.
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Since ⌫l : U !2 S
3
1 , the map (Fl⌫ ,⌫l) : U ! �1 is an immersion if and only if

(4.10) det(F 0
l⌫
,rF

⌘
⌫l,⌫l, Fl⌫)|S(Fl⌫) 6= 0,

where ⌘ is given by (4.9), and rF

⌘
be the canonical covariant derivative by ⌘ along F induced

from the Levi-Civita connection on H
3. Since

rF

⌘
⌫l = ↵0� + ↵1a1 + ↵2a2 + (�c⌫,6 + sc⌫,5 + (s2/2)(c⌫,3 + c⌫,6))a3

(↵0,↵1,↵2 are some functions), the left hand side of (4.10) is c⌫,1(c⌫,3 + c⌫,6 � c⌫,1�). Thus by
the assumption c⌫,3 + c⌫,6 6= 0, the condition (4.10) is equivalent to c⌫,1(u) 6= 0. Let Q be the
discriminant of � = (c⌫,3 + c⌫,6)s2 +2c⌫,5s+2c⌫,3 (in (4.8)) regarding a quadratic equation of s:

Q(u) = c⌫,5(u)
2 � 2c⌫,3(u)(c⌫,3(u) + c⌫,6(u)) = c⌫,5(u)

2 � 2h"
⌫
(u).

If Q < 0, then there is no singular point. If Q(u0) = 0, we set s0 = �c⌫,5(u0)/(c⌫,3(u0)+c⌫,6(u0)).
Then (u0, s0) is a singular point of Fl⌫ .

Proposition 4.1. Under the above notation, we have the following.
(I) If Q(u0) = 0, the singular point (u0, s0) of Fl⌫ is a cuspidal edge if and only if

c⌫,1((c
0
⌫,3 + c

0
⌫,6)s

2 + 2c0
⌫,5s+ 2c0

⌫,3) 6= 0

at u0. Moreover, there are no swallowtails. The singular point (u0, s0) is a cuspidal lip if and
only if c⌫,1 6= 0, (c0

⌫,3 + c
0
⌫,6)s

2 + 2c0
⌫,5s+ 2c0

⌫,3 = 0, and

(4.11) det

✓
(c00

⌫,3 + c
00
⌫,6)s

2 + 2c00
⌫,5s+ 2c00

⌫,3 2(c0
⌫,3 + c

0
⌫,6)s+ 2c0

⌫,5

2(c0
⌫,3 + c

0
⌫,6)s+ 2c0

⌫,5 2(c⌫,3 + c⌫,6)

◆
> 0

at (u0, s0). The singular point (u0, s0) is a cuspidal beak if and only if c⌫,1 6= 0,

(c0
⌫,3 + c

0
⌫,6)s

2 + 2c0
⌫,5s+ 2c0

⌫,3 = 0,

the left hand side of the determinant (4.11) is negative, and

(4.12) s
2(c00

⌫,3+ c
00
⌫,6)+2sc00

⌫,5+ c
00
⌫,3�2c0

⌫,1(s(c⌫,3+ c⌫,6)+ c⌫,5)

� 4c⌫,1(s(c
0
⌫,3 + c

0
⌫,6) + c

0
⌫,5) + 2c2

⌫,1(c⌫,3 + c⌫,6) 6= 0

at (u0, s0). The singular point (u0, s0) is a cuspidal cross cap if and only if c⌫,1 = 0 and
c
0
⌫,1((c

0
⌫,3 + c

0
⌫,6)s

2 + 2c0
⌫,5s+ 2c0

⌫,3) 6= 0 at u0.
(II) If Q(u) > 0, let s be the solution of � = 0, namely,

(4.13) s =
�c⌫,5 ±

q
c
2
⌫,5 � 2c⌫,3(c⌫,3 + c⌫,6)

c⌫,3 + c⌫,6
.

Then (u, s) is a singular point. The singular point is a cuspidal edge if and only if c⌫,1 6= 0 and

(4.14) (c0
⌫,3 + c

0
⌫,6)s

2 + 2c0
⌫,5s+ 2c0

⌫,3 � 2c⌫,1((c⌫,3 + c⌫,6)s+ c⌫,5) 6= 0

at (u, s). The singular point is a swallowtail if and only if c⌫,1 6= 0 and the left hand side of
(4.14) vanishes, (c⌫,3 + c⌫,6)s + c⌫,5 6= 0, and (4.12) holds at (u, s). Moreover, there are no
cuspidal lips and cuspidal beaks. The singular point (u, s) is a cuspidal cross cap if and only if
c⌫,1 = 0 and c

0
⌫,1((c

0
⌫,3 + c

0
⌫,6)s

2 + 2c0
⌫,5s+ 2c0

⌫,3) 6= 0 at (u, s).

There are criteria for these singularities of horo-flat surfaces in [22, Theorem 6.2]. However,
since the condition c⌫,3 ⌘ 0 is assumed in [22, Theorem 6.2], we give a proof.



HORO-FLAT SURFACES ALONG CUSPIDAL EDGES IN THE HYPERBOLIC SPACE 49

Proof. Since (4.10) is equivalent to c⌫,1(u) 6= 0, Fl⌫ is a front at a singular point if and only
if c⌫,1 6= 0 when Q � 0. We show the proposition by using Proposition B.1. By (4.6) and
(4.7), � in (4.8) is an identifier of singularities which is defined just before Proposition B.1. If
Q(u0) = 0, then �s(u0, s0) = 0. Thus ⌘�(u0, s0) 6= 0 if and only if �u(u0, s0) 6= 0. This proves the
assertion for a cuspidal edge. Furthermore, since ⌘�(u0, s0) = 0 implies (�u,�s)(u0, s0) = (0, 0),
this proves the assertion for a swallowtail. When (�u,�s)(u0, s0) = (0, 0), calculating the Hesse
matrix of � and ⌘⌘�, we have the assertion of the case of Q(u0) = 0 by (3) of Proposition B.1. If
Q(u) > 0, by Proposition B.1 with the data � = (c⌫,3+c⌫,6)s2+2c⌫,5s+2c⌫,3 and ⌘ = @u�c⌫,1@s,
we can show the assertion. ⇤

By (4.8), if c⌫,3 ⌘ 0, then (u, 0) is a singular point of Fl⌫ . This means that all generating
horocycles are tangent to Fl⌫ |S(Fl⌫) at all the regular points of this curve. Thus Fl⌫ is said to
be horo-flat tangent if c⌫,2 ⌘ c⌫,3 ⌘ c⌫,1 � c⌫,4 ⌘ 0 holds (see [22, Section 5] for detail). See also
Section 6.3. If Fl⌫ is horo-flat tangent, then we have the following corollary. In this case, since
c⌫,3 + c⌫,6 6= 0, it holds that c⌫,6 6= 0, and S(Fl⌫) = {s(c⌫,6s+ 2c⌫,5) = 0}.

Corollary 4.2. Under the assumptions c⌫,2 ⌘ c⌫,3 ⌘ c⌫,1 � c⌫,4 ⌘ 0 and c⌫,6 6= 0 on the
singularities of Fl⌫ , the map Fl⌫ is a front, and the following assertions hold:
(I) If c⌫,5(u0) = 0, then Q(u0) = 0 and d�(u0, 0) = 0 hold, in particular there are no cuspidal
edge and swallowtail. The singular point (u0, 0) is a cuspidal beak if and only if

c
0
⌫,5(�2c0

⌫,5 + c⌫,1c⌫,6) 6= 0

at u0, Moreover, there are no cuspidal lips.
(II) If c⌫,5(u) 6= 0, then Q(u0) > 0 and

(1) d� 6= 0 at both (u, 0) and (u,�c⌫,5/c⌫,6).
(2) A singular point (u, 0) is a cuspidal edge. A singular point (u,�c⌫,5/c⌫,6) is a cuspidal

edge if and only if c⌫,5c0⌫,6 � 2c0
⌫,5c⌫,6 6= 0 at u.

(3) A singular point (u, 0) is not a swallowtail. A singular point (u,�c⌫,5/c⌫,6) is a swallow-
tail if and only if c⌫,5c0⌫,6�2c0

⌫,5c⌫,6 = 0 and a formula (4.12) with c⌫,3 ⌘ 0, s = �c⌫,5/c⌫,6

holds at u.

Proof. Since c⌫,3 ⌘ 0, we have h"
⌫
⌘ 0 by (4.5). By the assumption c⌫,6 6= 0, it holds that t 6= 0.

Again by (4.5), we get c⌫,1 6= 0. By (4.10), this condition is equivalent to that Fl⌫ is a front,
we have the first assertion. One can easily show the other assertions by applying Proposition
4.1. ⇤

5. Normal horo-flat surfaces

In this section, we construct a parametrization of the discriminant set of H"

lb
.

Let f : (U, p) ! H
3 be a cuspidal edge. Under the same notation as in Section 4, we assume

(t, h"b)(u) 6= (0, 0) for any u 2 I unless otherwise stated.
By using similar arguments to those of Section 4, we obtain the following. Since

(l"
b
)0 = h"

b
t� "t⌫,

we have that Hlb(x, u) = (Hlb)u(x, u) = 0 if and only if

x� = "xb + 1, xt = "ts, x⌫ = h"
b
s, for some s 2 R,

where x = x�� + xtt+ x⌫⌫ + xbb.
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Since x 2 H
3, it holds that xb = "

s
2

2
(2

t
+ (h"

b
)2) and thus

x� =
s
2

2
(2

t
+ (h"

b
)2) + 1, xt = "ts, x⌫ = h"

b
s, xb =

"s
2

2
(2

t
+ (h"

b
)2).

We set

D
"

lb
=

"tt+ h"
b
⌫p


2
t
+ (h"

b
)2
,

and call it the normalized ⌫-Darboux vector field. Now, by a parameter change,

s̃ = s

q

2
t
+ (h"

b
)2,

and rewriting s̃ as s, we obtain the following parameterization of DH
"
lb

(u, s) 7! x = � +D
"

lb
s+

s
2

2
l"
b
.

As seen in the case of Hl⌫ , since |D"

lb
| = 1, for a fixed u, s 7! � +D

"

lb
s+

s
2

2
l"
b
is a parabola and

thus a horocycle ([22, Section 4]).
We have that {�, D"

lb
, "b, (l"

b
)0/|(l"

b
)0|} is a pseudo-orthonormal frame. Analogously to Section 4,

we set
{�

b
,ab,1,ab,2,ab,3} = {�, D"

lb
, "b, (l"

b
)0/|(l"

b
)0|}

and

(5.1) Flb(u, s) = F
"

lb
(u, s) = �

b
+ ab,1s+

s
2

2
(�

b
+ ab,2).

By definition, Flb is a �2-dual of l
"

b
. Similarly to the case of H"

l⌫
, the invariants cb,1, . . . , cb,6 are

defined by the relation

(5.2)

0

BB@

�0
b

a0
b,1

a0
b,2

a0
b,3

1

CCA =

0

BB@

0 cb,1 cb,2 cb,3

cb,1 0 cb,4 cb,5

cb,2 �cb,4 0 cb,6

cb,3 �cb,5 �cb,6 0

1

CCA

0

BB@

�
b

ab,1

ab,2

ab,3

1

CCA.

Then we have

(5.3)

cb,1 =
"tp


2
t
+ (h"

b
)2
,

cb,2 = 0,

cb,3 =
h"
bp


2
t
+ (h"

b
)2
,

cb,4 = cb,1 =
"tp


2
t
+ (h"

b
)2
,

cb,5 =
�
h

n


2
t
+ (h"

b
)2
,

cb,6 =
�"b + 

2
b
+ 

2
tp


2
t
+ (h"

b
)2

cb,3 + cb,6 =
p

2
t
+ (h"

b
)2,

where we set
�
h

n
= �⌫((h"b)2 + 

2
t
)� "t(h

"

b
)0 + "h"

b

0
t
.

By (5.3), ⌫lb = �(s2/2)�
b
� sab,1 + (1� s

2
/2)ab,2 is a �1-dual of Flb, and Flb + ⌫lb = �

b
+ab,2

is a �2-dual of Flb. Since the �2-dual of Flb degenerates to a curve, Flb is a horo-flat surface.
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It follows that each of Flb is a horo-flat surface normal to the cuspidal edge at any �(u), so
that we call it a normal horo-flat surface (along the cuspidal edge). An example of the normal
horo-flat surface Flb of f as in (4.3) near (0, 0) is provided by Figure 2. Similar calculations

Figure 2. Cuspidal edge, Flb and the both surfaces together

to those in Section 4, lead to the characterization of the singularities of Flb (just substitute cb,i

into c⌫,i (i = 1, . . . , 6) in Proposition 4.1 and Corollary 4.2). By comparing (4.5) and (5.3), we
see that changing ⌫ to b and t to �t in the formulae for c⌫,i, leads to the formulae for cb,i
(i = 1, . . . , 6).

6. Special cuspidal edges

We consider a cuspidal edge f , where either Fl⌫ or Flb has special properties. The special horo-
flat surfaces which are one-parameter families of horocycles (horo-flat horocyclic surfaces) are
classified in [22, pp815–818]. We consider here the cases of the horo-cylinder and the horocone.
We review the special horo-flat surfaces given in [22].

Definition 6.1. A horocyclic surface with the invariants c1, . . . , c6 is called a regular horocylin-
drical surface if c1 ⌘ c2 ⌘ c4 ⌘ c5 ⌘ 0, and c3(c3 + c6) > 0. A horocyclic surface is called a
secondary regular horocylindrical surface if c1 ⌘ c2 ⌘ c4 ⌘ c6 ⌘ 0, and c

2
5 � 2c23 < 0.

Definition 6.2. A horocyclic surface with the invariants c1, . . . , c6 is called a generalized horo-
cone if c1 ⌘ c2 ⌘ c3 ⌘ c4 ⌘ 0. A generalized horocone is called a horocone with a single
vertex if c5 ⌘ 0 and there is no subinterval J ⇢ I such that c6|J = 0. A horocone with two
vertices is a generalized horocone with the property that there is no subinterval J ⇢ I such
that c5|J = 0, and there exists � 2 R such that c6 = �c5. A generalized horocone is called a
semi-horocone if the following holds for (i, j) = (5, 6) or (i, j) = (6, 5): There is no subinterval
J ⇢ I such that ci|J = 0 and cj/ci is not constant on {t 2 I | ci(u) 6= 0}. If the condition
c1 ⌘ c2 ⌘ c3 ⌘ c4 ⌘ c6 ⌘ 0 holds and there is no subinterval J ⇢ I such that c5|J = 0, then the
image of the horocyclic surface is a horosphere. We call this a conical horosphere.
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Let ↵ be a function. By (4.5) and substituting c⌫,1 � c⌫,4 ⌘ 0, c⌫,2 ⌘ 0 in (3.3), we get

(6.1)

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

c̄⌫,1 = c̄⌫,4 =
�"tp


2
t
+ (h"

⌫
)2

+ ↵
0
,

c̄⌫,2 = 0,

c̄⌫,3 =
↵
2

2

p

2
t
+ (h"

⌫
)2 + ↵

�
h

o


2
t
+ (h"

⌫
)2

+
h"
⌫p


2
t
+ (h"

⌫
)2
,

c̄⌫,5 =
�
h

o


2
t
+ (h"

⌫
)2

+ ↵

p

2
t
+ (h"

⌫
)2,

c̄⌫,6 = �↵
2

2

p

2
t
+ (h"

⌫
)2 � ↵

�
h

o


2
t
+ (h"

⌫
)2

+
�"⌫ + 

2
⌫
+ 

2
tp


2
t
+ (h"

⌫
)2

,

c̄⌫,3 + c̄⌫,6 =
p

2
t
+ (h"

⌫
)2,

and similarly, for a function �, we get

(6.2)

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

c̄b,1 = c̄b,4 =
"tp


2
t
+ (h"

b
)2

+ �
0
,

c̄b,2 = 0,

c̄b,3 =
�
2

2

p

2
t
+ (h"

b
)2 + �

�
h

n


2
t
+ (h"

b
)2

+
h"
bp


2
t
+ (h"

b
)2
,

c̄b,5 =
�
h

n


2
t
+ (h"

b
)2

+ �
p

2
t
+ (h"

b
)2,

c̄b,6 = ��(u)
2

2

p

2
t
+ (h"

b
)2 � �

�
h

n


2
t
+ (h"

b
)2

+
�"b + 

2
b
+ 

2
tp


2
t
+ (h"

b
)2

,

c̄b,3 + c̄b,6 =
p

2
t
+ (h"

b
)2.

We remark that one can obtain the formula for Flb by interchanging ⌫ to b and t to �t in
the formula for Fl⌫ .

6.1. Horocylinders as osculating and normal horo-flat surfaces. We consider the condi-
tion for Fl⌫ and Flb to be horocylinders. By (6.1) and (6.2), setting

(6.3) ↵c =
��h

o

(2
t
+ (h"

⌫
)2)
p

2
t
+ (h"

⌫
)2
,

and

(6.4) �c =
��h

n

(2
t
+ (h"

b
)2)
p

2
t
+ (h"

b
)2
,

we see that c⌫,5 ⌘ 0, cb,5 ⌘ 0. Thus, c̄⌫,1 = c̄⌫,4 ⌘ 0 if and only if

(6.5)
�"tp


2
t
+ (h"

⌫
)2

+ ↵
0
c
⌘ 0,

and c̄b,1 = c̄b,4 ⌘ 0 if and only if

(6.6)
"tp


2
t
+ (h"

b
)2

+ �
0
c
⌘ 0.

Set

C
h

o
= �2"t(

2
t
+ (h"

⌫
)2)2 � 2(2

t
+ (h"

⌫
)2)(�h

o
)0 + 3�h

o
(2

t
+ (h"

⌫
)2)0

and

C
h

n
= 2"t(

2
t
+ (h"

b
)2)2 � 2(2

t
+ (h"

b
)2)(�h

n
)0 + 3�h

n
(2

t
+ (h"

b
)2)0.
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Then the condition (6.5) is equivalent to C
h

o
⌘ 0, and (6.6) is equivalent to C

h

n
⌘ 0. Moreover,

if ↵c satisfies (6.3), then c̄⌫,3 is equal to a positive functional multiplication of

�(�h
o
)2

2(2
t
+ (h"

⌫
)2)2

+ h"
⌫
,

and if �c satisfies (6.4), then c̄b,3 is equal to a positive functional multiplication of

�(�h
n
)2

2(2
t
+ (h"

b
)2)2

+ h"
b
.

Thus we obtain the following proposition.

Proposition 6.3. The horocyclic surface Fl⌫ is a regular horocylindrical surface if and only if
C

h

o
⌘ 0 and

�(�h
o
)2

2(2
t
+ (h"

⌫
)2)2

+ h"
⌫
> 0.

The horocyclic surface Flb is a regular horocylindrical surface if and only if Ch

n
⌘ 0 and

�(�h
n
)2

2(2
t
+ (h"

b
)2)2

+ h"
b
> 0.

We see that if t ⌘ 0. Then �h
o
= �b(h"⌫)2 and �h

n
= �⌫(h"b)2 hold, and also c̄⌫,1 = c̄⌫,4 = ↵

0
c

and c̄b,1 = c̄b,4 = �
0
c
. We give examples of cuspidal edge whose osculating and normal horo-flat

surfaces are horocylinders.

Example 6.4. (regular horocylindrical surface) We set t ⌘ b ⌘ 0 and ⌫ satisfies h"
⌫
> 0.

Setting ↵c = 0, then we see that c̄⌫,1 = c̄⌫,2 = c̄⌫,4 = c̄⌫,5 = 0, and c̄⌫,3(c̄⌫,3 + c̄⌫,6) > 0. Then by
definition, Fl⌫ is a regular horocylindrical surface. Similarly, we set t ⌘ ⌫ ⌘ 0 and b satisfies
h"
b
> 0. Setting �c = 0, then we see that c̄b,1 = c̄b,2 = c̄b,4 = c̄b,5 = 0, and c̄b,3(c̄b,3 + c̄b,6) > 0.

Then by definition, Flb is a regular horocylindrical surface.

Example 6.5. (secondary regular horocylindrical surface) We set t ⌘ ⌫ ⌘ 0 and b = 1.
Setting ↵c = 0, then we see that c̄⌫,1 = c̄⌫,2 = c̄⌫,4 = c̄⌫,6 = 0, and c̄

2
⌫,5 � 2c̄2

⌫,3 < 0. Then by
definition, Fl⌫ is a secondary regular horocylindrical surface. We set t ⌘ b ⌘ 0 and ⌫ = 1.
Setting �c = 0, then we see that c̄b,1 = c̄b,2 = c̄b,4 = c̄b,6 = 0, and c̄

2
b,5 � 2c̄2

b,3 < 0. Then by
definition, Flb is a secondary regular horocylindrical surface.

6.2. Horocones as osculating and normal horo-flat surfaces. If the discriminant Ql⌫

(respectively, Qlb) of

c̄⌫,3 =
↵
2

2

q

2
t
+ (h"

⌫
)2 + ↵

�
h

o


2
t
+ (h"

⌫
)2

+
h"
⌫p


2
t
+ (h"

⌫
)2

= 0

 
respectively, c̄b,3 =

�
2

2

q

2
t
+ (h"

b
)2 + �

�
h

n


2
t
+ (h"

b
)2

+
h"
bp


2
t
+ (h"

b
)2

= 0

!

as an equation of ↵ (respectively, �) is non-negative, then we have a solution ↵ (respectively, �).
We set

�
h

o
=

�"tp

2
t
+ (h"

⌫
)2

+ ↵
0

and
�
h

n
=

"tp

2
t
+ (h"

b
)2

+ �
0
.

Then if �h

o
⌘ 0, (respectively, �h

n
⌘ 0,) Fl⌫ (respectively, Flb) is a generalized horocone. Thus

we can state the following:
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Proposition 6.6. The horocyclic surface Fl⌫ is a generalized horocone if and only if �h

o
⌘ 0 and

Ql⌫ � 0. The horocyclic surface Flb is a generalized horocone if and only if �h

n
⌘ 0 and Qlb � 0.

We give examples of cuspidal edge whose osculating and normal horo-flat surfaces are horo-
cones.

Example 6.7. (horocone with single and two vertices) We take t ⌘ 0, a non-zero constant b
and a constant ⌫ satisfying h"

⌫
> 0 and 

2
b
� 2h"

⌫
� 0. We also take a constant ↵ which is a

solution that c̄⌫,3 = 0. Then c̄⌫,1 ⌘ c̄⌫,2 ⌘ c̄⌫,3 ⌘ c̄⌫,4 ⌘ 0 holds. Moreover, we see

c̄⌫,5 = �b + ↵h"
⌫
, c̄⌫,6 = h"

⌫
.

Thus setting b and ⌫ satisfying �b+↵h"⌫ = 0, then we obtain a horocone with a single vertex.
On the other hand, �b + ↵h"

⌫
6= 0, then we obtain a horocone with two vertices.

Similarly, we take t ⌘ 0, a non-zero constant ⌫ and a constant b satisfying h"
b
> 0 and


2
⌫
� 2h"

b
� 0. We also take a constant � which is a solution that c̄b,3 = 0. Then

c̄b,1 ⌘ c̄b,2 ⌘ c̄b,3 ⌘ c̄b,4 ⌘ 0

holds. Moreover, we see

c̄b,5 = �⌫ + �h"
b
, c̄b,6 = h"

b
.

Thus setting that ⌫ and b satisfy �⌫ + �h"
b
= 0, then we obtain a horocone with a single

vertex. On the other hand, if �⌫ + �h"
b
6= 0, then we obtain a horocone with two vertices.

Example 6.8. (semi-horocone) We set "⌫ ⌘ 1 and "t < 0. By (6.1),

c̄⌫,1 = c̄⌫,4 = �"t/
q

2
t
+ ↵

0
.

Let ↵ be a solution of 1 + ↵
0 = 0, i.e., ↵ = �u + A, where A is a su�ciently large positive

constant such that �"t is positive around u = 0. We take t = �2"(u+A) and b = �u
2+A

2.
Then c̄⌫,1 ⌘ c̄⌫,2 ⌘ c̄⌫,3 ⌘ c̄⌫,4 ⌘ 0. Moreover, c̄⌫,5 = �u

2 +A
2 and c̄⌫,6 = 2(u+A). Thus we get

a semi-horocone Fl⌫ .
Similarly, set "b ⌘ 1 and "t > 0. Let � be a solution of 1 + �

0 = 0 i.e., � = �u + B,
where B is a su�ciently small negative constant such that "t is positive around u = 0. We
take t = �2"(u + B) and ⌫ = u

2 � B
2. Then, we see that c̄b,1 ⌘ c̄b,2 ⌘ c̄b,3 ⌘ c̄b,4 ⌘ 0,

c̄b,5 = u
2 �B

2 and c̄b,6 = �2(u+B). Thus we get a semi-horocone Flb.

6.3. Special cases. If b ⌘ 0, then ⌫ is the principal normal direction of �, or equivalently, b
is the bi-normal direction of �. If ⌫ ⌘ 0, then ⌫ is the bi-normal direction of �, and which to
say that b is the principal normal direction of �.

Important particular cases are:

(i) ⌫ ⌘ " (i.e., h"
⌫
⌘ 0) in H

"

l⌫
,

(ii) b ⌘ " (i.e., h"
b
⌘ 0) in H

"

lb
.

If (i) is satisfied, then c⌫,3 ⌘ 0 holds, and if (ii) is satisfied, then cb,3 ⌘ 0 holds. Namely,
the singular set of the original cuspidal edge and the singular set of the osculating and the
normal horo-flat surfaces coincide respectively. By Proposition 4.1, we have the conditions of
singularities of the osculating and normal horo-flat surfaces in terms of the information of the
singular locus of the cuspidal edge.
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7. Duals of the singular set of the cuspidal edge

Since the curve � of the parameterization (4.2) takes values in H
3, we can consider the �1

and �2 duals of �. We set Hs

�
: S3

1 ⇥ I ! R (respectively, H l

�
: LC⇤ ⇥ I ! R) by

H
s

�
(x, u) = hx,�(u)i

⇣
respectively, H l

�
(x, u) = hx,�(u)i+ 1

⌘
.

Then we have a parameterization of the discriminant set of Hs

�
given by

DDl(�, u) = cos�⌫(u) + sin�b(u).

The corresponding singular set S(DDl) is

S(DDl) =
n
(�, u)

��� cos� = ±b/
q
2
⌫
+ 

2
b
, sin� = ⌥⌫/

q
2
⌫
+ 

2
b

o
,

with 0

BB@

�0

t0

n0

e0

1

CCA =

0

BB@

0 1 0 0
1 0 h 0
0 �h 0 ⌧h

0 0 �⌧h 0

1

CCA

0

BB@

�
t
n
e

1

CCA,

where {�, t,n, e} is the hyperbolic Frenet frame along � and h = |t0� �| (see Section 3). Since

DDl|S(DDl) = ±e, it follows that ±e = ±(b⌫ � ⌫b)/
p

2
b
+ 2

⌫
, and ⌧h = �t +


0
⌫
b � 

0
b
⌫


2
b
+ 2

⌫

([20, p109]).
On the other hand, we have a parameterization of the discriminant set of H l

�
given by

HSl(�, u) = �(u) + cos�⌫(u) + sin�b(u),

where � 2 [0, 2⇡). We also have

S(HSl) =

(
(�, u)

��� cos� =
⌫ ±

p
⌫ + 

2
b
� 1

2
⌫
+ 

2
b

)
.

Thus DDl and HSl are �3-dual each other. Here, �3 = {(v,w) 2 LC
⇤ ⇥ S

3
1 | hv,wi = 1}

and as in Section 2, the phrase “DDl and HSl are �3-dual” amounts to say that the map
(DDl, HSl) : U ! �3 is isotropic with respect to the contact structure defined by the restrictions
of the 1-forms

✓31 = hdv,wi |�3 , ✓32 = hv, dwi |�3 .

See [15] for details.
Now, we give a global property of a curve in the hyperbolic space. There is a relation

(7.1)

0

BB@

�0

t0

n0

e0

1

CCA =

0

BBBBB@

1 0 0 0
0 1 0 0

0 0 ± ⌫p
2
⌫
+ 

2
b

± bp
2
⌫
+ 

2
b

0 0 ± bp
2
⌫
+ 

2
b

⌥ ⌫p
2
⌫
+ 

2
b

1

CCCCCA

0

BB@

�
t
⌫
b

1

CCA

between {�, t,n, e} and {�, t,⌫, b}. If we define ✓ by

cos ✓ = ± ⌫p
2
⌫
+ 

2
b

, sin ✓ = ± bp
2
⌫
+ 

2
b

,

then we get that t = ✓
0 � ⌧h. And in the case that the singular set forms a circle C = R/Z, we

obtain Z

C

(⌧h + t) du = ✓(1)� ✓(0) = 2n⇡ (n 2 Z).



56 S. IZUMIYA, M. C. ROMERO-FUSTER, K. SAJI, AND M. TAKAHASHI

Observe that the integer n is the linking number of {n, e} around {�, t} along �(C), with respect
to {⌫, b}.

Appendix A. Osculating and normal extrinsic flat surfaces

We consider the following smooth functions on H
3(�1)⇥ I:

H⌫(x, u) = hx,⌫(u)i ,
Hb(x, u) = hx, b(u)i .

Then by using the functions H⌫ and Hb, we can obtain analogous results. The discriminant
set of these functions are envelopes of the osculating or the rectifying hyperbolic planes. In the
Euclidean case, the discriminant set of the functions corresponding to them are envelopes of the
osculating or the rectifying planes. The results and the geometric meaning of them for these
cases are quite similar to those of the case in the Euclidean space [18, 23]. Thus we only give
here the parameterizations for the discriminant sets of H⌫ and Hb.

The discriminant set DH⌫ of the function H⌫ can be parameterized by

(u,�) 7! cosh��(u) + sinh�D⌫(u), D⌫(u) =
tt+ ⌫b


2
t
+ 2

⌫

(u),

where we assume (t,⌫) 6= (0, 0). This is a one-parameter family of geodesics tangent to the
cuspidal edge. Therefore, DH⌫ is called an osculating extrinsic flat surface along the cuspidal
edge.

The discriminant set DHb of the function Hb can be parameterized by

(u,�) 7! cosh��(u) + sinh�Db(u), Db(u) =
�tt+ b⌫


2
t
+ 

2
b

(u),

where we assume (t,b) 6= (0, 0). This is a one-parameter family of geodesics normal to the
cuspidal edge, so that DHb is called a normal extrinsic flat surface along the cuspidal edge.

Appendix B. Criteria for singularities

We state the some criteria to characterize the singularities used in Sections 4 and 5. Let
f : U ! H

3 be a frontal with a �1-dual g : U ! S
3
1 . A function ⇤ is called an identifier

of singularities if it is a non-zero functional multiplication of the function det(fu, fv, g, f) for a
coordinate system (u, v) on U . If p 2 U satisfies rank dfp = 1, then there exists a vector field ⌘
such that h⌘qiR = ker dfq for all q 2 S(f). We call ⌘ a null vector field. Let p 2 U be a singular
point satisfying d⇤(p) 6= 0. Then there exists a parametrization c : ((�z, z), 0) ! (U, p) of S(f)
near p, where z > 0. Let rf

⌘
be the canonical covariant derivative by ⌘ along a map f induced

from the Levi-Civita connection on H
3. We set

 (u) = det

 
df(�(u))

dt
,
d(rf

⌘
g)(�(u))

dt
, g(�(u)), f(�(u))

!
.

Then we have the following criteria for singularities:

Proposition B.1. Let p 2 U be a singular point of f satisfying rank dfp = 1. Then p is

(1) a cuspidal edge if and only if f is a front at p, and ⌘⇤(p) 6= 0.
(2) a swallowtail if and only if f is a front at p, d⇤(p) 6= 0, ⌘⇤(p) = 0 and ⌘⌘⇤(p) 6= 0.
(3) a cuspidal beak (respectively, cuspidal lip) if and only if f is a front at p, d⇤(p) = 0,

detHess⇤(p) < 0 and ⌘⌘⇤(p) 6= 0 (respectively, detHess⇤(p) > 0).
(4) a cuspidal cross cap if and only if ⌘⇤(p) 6= 0,  (0) = 0 and  

0(0) 6= 0.
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These criteria for singularities in H
3 can be easily shown by well-known criteria in [35, Corol-

lary 2.5] (see also [25, Proposition 1.3]) for (1) and (2), in [22, Theorem A.1] for (3), and in
[8, Corollary 1.5] for (4).
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Dedicated to Professor Toshizumi Fukui for his sixtieth birthday.

Abstract. In the second, fourth and fifth authors’ previous work, a duality on generic real
analytic cuspidal edges in the Euclidean 3-space R3 preserving their singular set images and
first fundamental forms, was given. Here, we call this an “isometric duality”. When the
singular set image has no symmetries and does not lie in a plane, the dual cuspidal edge is not
congruent to the original one. In this paper, we show that this duality extends to generalized
cuspidal edges in R3, including cuspidal cross caps, and 5/2-cuspidal edges. Moreover, we
give several new geometric insights on this duality.

Introduction

Consider a generic cuspidal edge germ f whose singular set image is a given space curve C. In
the second, fourth and fifth authors’ previous work [14], the existence of an isometric dual f̌ of f
was shown, which is a cuspidal edge germ having the same first fundamental form as f . Roughly
speaking, a cuspidal edge which has the same first fundamental form and the same singular set
image as f but is not right equivalent to f , is called an “isomer” of f (see Definition 0.6 for
details). The isometric dual f̌ is a typical example of isomers of f . Recently, the authors found
that if we reverse the orientation of C, two other candidates of isomers of f denoted by f⇤ and
f̌⇤ are obtained by imitating the construction of f̌ . These two map germs f⇤ and f̌⇤ are cuspidal
edge germs which are called the inverse and the inverse dual of f , respectively (f̌⇤ is just the
isometric dual of f⇤). In this paper, we will show that all of isomers of f are right equivalent to
one of

f̌ , f⇤, f̌⇤.

We will also determine the number of congruence classes in the set of isomers of f .

By the terminology “Cr-di↵erentiable” we mean C1-di↵erentiability if r = 1 and real an-
alyticity if r = !. We denote by R3 the Euclidean 3-space. Let U be a neighborhood of the
origin (0, 0) in the uv-plane R2, and let f : U ! R3 be a Cr-map. Without loss of generality,
we may assume f(o) = 0, where

(0.1) o := (0, 0), 0 := (0, 0, 0).
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A point p 2 U is called a singular point if f is not an immersion at p. A singular point p 2 U
is called a cuspidal edge point (resp. a generalized cuspidal edge point) if there exist local Cr-
di↵eomorphisms ' on R2 and � on R3 such that '(o) = p, �(f(p)) = 0 and

(f3/2 :=)(u, v2, v3) = � � f � '(u, v)
�
resp. (u, v2, v3↵(u, v)) = � � f � '(u, v)

�
,

where ↵(u, v) is a Cr-function. Similarly, a singular point p 2 U is called a 5/2-cuspidal edge
point (resp. a fold singular point) if there exist local Cr-di↵eomorphisms ' on R2 and � on R3

such that '(o) = p, �(f(p)) = 0 and

(f5/2 :=)(u, v2, v5) = � � f � '(u, v)
�
resp. (u, v2, 0) = � � f � '(u, v)

�
.

Also, a singular point p 2 U is called a cuspidal cross cap point if there exist local Cr-
di↵eomorphisms ' on R2 and � on R3 such that '(o) = p, �(f(p)) = 0 and

(fccr :=)(u, v2, uv3) = � � f � '(u, v).
These singular points are all generalized cuspidal edge points.

Let Gr
3/2(R

2
o,R

3) (resp. Gr(R2
o,R

3)) be the set of germs of Cr-cuspidal edges (resp. gener-

alized Cr-cuspidal edges) f(u, v) satisfying f(o) = 0. We fix l > 0 and consider an embedding
(i.e. a simple regular space curve)

c : J ! R3 (J := [�l, l])

such that c(0) = 0. We do not assume here that u 7! c(u) is the arc-length parametrization (if
necessary, we assume this in latter sections). We denote by C the image of c. Here, we ignore
the orientation of C and think of it as the singular set image (i.e. the image of the singular
set) of f . We let Gr

3/2(R
2
o,R

3, C) (resp. Gr(R2
o,R

3, C)) be the subset of Gr
3/2(R

2
o,R

3) (resp.

Gr(R2
o,R

3)) such that the singular set image of f is contained in C (we call C the edge of f).
Similarly, a subset of Gr(R2

o,R
3, C) denoted by

Gr
ccr(R

2
o,R

3, C), (resp. Gr
5/2(R

2
o,R

3, C) )

consisting of germs of cuspidal cross caps (resp. 5/2-cuspidal edges) is also defined.
Throughout this paper, we assume the curvature function (u) of c(u) satisfies

(0.2) (u) > 0 (u 2 J).

Let U be a neighborhood of J ⇥ {0} of R2 and f : U ! R3 a Cr-map consisting only of
generalized cuspidal edge points along J ⇥ {0} such that

(0.3) f(u, 0) = c(u) (u 2 J).

We denote by Gr(R2
J ,R

3, C) the set of such f (f is called a generalized cuspidal edge along C).
Like as the case of map germs at o, the sets

Gr
3/2(R

2
J ,R

3, C), Gr
ccr(R

2
J ,R

3, C), Gr
5/2(R

2
J ,R

3, C)

are also canonically defined. For each point P on the edge C, the plane ⇧(P ) passing through
P which is perpendicular to the curve C is called the normal plane of f at P . The section of
the image of f by the normal plane ⇧(P ) of C at P is a planar curve with a singular point at
P . We call this the sectional cusp of f at P . Moreover, we can find a tangent vector v 2 TPR

3

at P , which points in the tangential direction of the sectional cusp at P . We call v the cuspidal

direction (cf. (3.6) and Figure 1). The angle ✓P of the cuspidal direction from the principal
normal vector of C at P is called the cuspidal angle.

If we normalize the initial value ✓c(0) 2 (�⇡,⇡] at c(0)(= 0), then the cuspidal angle

✓(u) := ✓c(u) (u 2 J)
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Figure 1. A cuspidal edge and its sectional cusp

at c(u) can be uniquely determined as a Cr-function on J . In [12, 16], the singular curvature
s(u) and the limiting normal curvature ⌫(u) along the edge c(u) are defined. In our present
situation, they can be expressed as (cf. [3, Remark 1.9])

(0.4) s(u) := (u) cos ✓(u), ⌫(u) := (u) sin ✓(u) (u 2 J).

By definition, (u) =
p
s(u)2 + ⌫(u)2 holds on J . We say that f 2 Gr(R2

o,R
3, C) is generic

at o if

(0.5) |s(0)| < (0).

We denote by Gr
⇤(R

2
o,R

3, C) the set of germs of generic generalized Cr-cuspidal edges in
Gr(R2

o,R
3, C), and set

Gr
⇤,3/2(R

2
o,R

3, C) := Gr
⇤(R

2
o,R

3, C) \ Gr
3/2(R

2
o,R

3, C),

Gr
⇤,ccr(R

2
o,R

3, C) := Gr
⇤(R

2
o,R

3, C) \ Gr
ccr(R

2
o,R

3, C),(0.6)

Gr
⇤,5/2(R

2
o,R

3, C) := Gr
⇤(R

2
o,R

3, C) \ Gr
5/2(R

2
o,R

3, C).

On the other hand, for f 2 Gr(R2
J ,R

3, C), we consider the condition

(0.7) |s(u)| < (u) (u 2 J),

which implies that all singular points of f along the curve C are generic. We denote by

(0.8) Gr
⇤(R

2
J ,R

3, C)

the set of f 2 Gr(R2
J ,R

3, C) satisfying (0.7). Moreover, if

(0.9) max
u2J

|s(u)| < min
u2J

(u)

holds, then f is said to be admissible. We denote by

(0.10) Gr
⇤⇤(R

2
J ,R

3, C)

the set of admissible f 2 Gr(R2
J ,R

3, C). Then by imitating (0.6),

(0.11) Gr
⇤,3/2(R

2
J ,R

3, C), Gr
⇤⇤,3/2(R

2
J ,R

3, C)
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are also defined. The following assertion is obvious:

Lemma 0.1. Suppose that f belongs to Gr
3/2(R

2
o,R

3, C) (resp. Gr
⇤,3/2(R

2
o,R

3, C) ). Then there

exists "(> 0) such that f is an element of Gr
3/2(R

2
J("),R

3, C) (resp. Gr
⇤⇤,3/2(R

2
J("),R

3, C)), where

J(") := [�", "].

Let O(3) (resp. SO(3)) be the orthogonal group (resp. the special orthogonal group) as the
isometry group (resp. the orientation preserving isometry group) of R3 fixing the origin 0.

Definition 0.2. Suppose that fi (i = 1, 2) are generalized cuspidal edges belonging to
Gr(R2

o,R
3, C) (resp. Gr(R2

J ,R
3, C)). Then the image of f1 is said to have the same image

as f2 if there exists a neighborhood Ui(⇢ R2) of o (resp. J ⇥ {0}) such that f1(U1) = f2(U2).
On the other hand, f1 is said to be congruent to f2 if there exists an orthogonal matrix T 2 O(3)
such that T � f1 has the same image as f2.

We then define the following two equivalence relations:

Definition 0.3. For a given f belonging to Gr(R2
o,R

3, C) (resp. Gr(R2
J ,R

3, C)), we denote by
ds2f its first fundamental form. A generalized cuspidal edge g belonging to Gr(R2

o,R
3, C) (resp.

Gr(R2
J ,R

3, C)) is said to be right equivalent to f if there exists a di↵eomorphism ' defined on
a neighborhood of o (resp. J ⇥ {0}) in R2 such that g = f � '.

Definition 0.4. For a given generalized cuspidal edge f 2 Gr(R2
o,R

3, C) (resp. Gr(R2
J ,R

3, C)),
we denote by ds2f its first fundamental form. A generalized cuspidal edge g 2 Gr(R2

o,R
3, C)

(resp. Gr(R2
J ,R

3, C)) is said to be isometric to f if there exists a di↵eomorphism ' defined on
a neighborhood of o (resp. J ⇥ {0}) in R2 such that '⇤ds2f = ds2g.

In particular, we consider the case f = g. If '⇤ds2f = ds2f and ' is not the identity map, then

' is called a symmetry of ds2f . Moreover, if ' reverses the orientation of the singular curve of f ,
then ' is said to be e↵ective.

Remark 0.5. A cuspidal edge g 2 Gr
3/2(R

2
o,R

3, C) (resp. Gr
3/2(R

2
J ,R

3, C)) has the same image

as a given germ f 2 Gr
3/2(R

2
o,R

3, C) (resp. Gr
3/2(R

2
J ,R

3, C)) if and only if g is right equivalent

to f (cf. [10]).

If two generalized cuspidal edges f, g 2 Gr(R2
o,R

3, C) (resp. Gr(R2
J ,R

3, C)) are right equiv-
alent, then they are isometric each other. However, the converse may not be true. So we give
the following:

Definition 0.6. For a given f 2 Gr(R2
o,R

3, C) (resp. Gr(R2
J ,R

3, C)), a generalized cuspidal
edge g 2 Gr(R2

o,R
3, C) (resp. Gr(R2

J ,R
3, C)) is called an isomer of f (cf. [14]) if it satisfies the

following conditions;

(1) g is isometric to f , and
(2) g is not right equivalent to f .

In this situation, we say that g is a faithful isomer of f if

• there exists a local di↵eomorphism ' such that '⇤ds2f = ds2g, and
• the orientations of C induced by u 7! f � '(u, 0) and u 7! g(u, 0) are compatible with
respect to the one induced by u 7! f(u, 0).

In [14, Corollary D], it was shown the existence of an involution

(0.12) G!
⇤,3/2(R

2
o,R

3, C) 3 f 7! f̌ 2 G!
⇤,3/2(R

2
o,R

3, C).
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To construct f̌ , we need to apply the so-called Cauchy-Kowalevski theorem on partial di↵erential
equations of real analytic category (cf. Theorem 3.8). Here, f̌ is called the isometric dual of f ,
which satisfies the following properties:

(i) The first fundamental form of f̌ coincides with that of f .
(ii) The map f̌ is a faithful isomer of f .
(iii) If ✓(P ) is the cuspidal angle of f at P (2 C), then �✓(P ) is the cuspidal angle of f̌ at P .

In [14], a necessary and su�cient condition for a given positive semi-definite metric to be realized
as the first fundamental form of a cuspidal edge along C is given. In this paper, we first prove
the following using the method given in [14]:

Theorem I. There exists an involution (called the first involution)

(0.13) IC : G!
⇤ (R

2
J ,R

3, C) 3 f 7! f̌ 2 G!
⇤ (R

2
J ,R

3, C)

defined on G!
⇤ (R

2
J ,R

3, C) (cf. (0.8)) satisfying the properties (i), (ii) and (iii) above. Moreover,

regarding f and f̌ as map germs at o (cf. Lemma 0.1), IC induces a map

(0.14) Io : G!
⇤ (R

2
o,R

3, C) 3 f 7! f̌ 2 G!
⇤ (R

2
o,R

3, C),

which gives a generalization of the map as in (0.12).

The existence of the map Io follows also from [5, Theorem B], since f̌ is strongly congruent
to f in the sense of [5, Definition 3]. However, the existence of the map IC itself does not follow
from [5], since f̌ given in Theorem I is not a map germ at o, but a map germ along the curve
C. Some variants of this result for germs of swallowtails and cuspidal cross caps were given in
[5, Theorem B] using a method di↵erent from [14]. (For swallowtails, the duality corresponding
to the above properties (i), (ii) and (iii) are not obtained, see item (4) below.) The authors find
Theorem I to be suggestive of the following geometric problems:

(1) How many right equivalence classes of isomers of f exist other than f̌?
(2) When are isomers non-congruent to each other?
(3) The existence of the isometric dual can be proved by applying the Cauchy-Kowalevski

theorem. So we need to assume that the given generalized cuspidal edges are real ana-
lytic. It is then natural to ask if one can find a new method for constructing the isometric
dual in the C1-di↵erentiable category.

(4) Can one extend isometric duality to a much wider class, say, for swallowtails?

In this paper, we show the following:

• For a given generalized cuspidal edge f 2 G!
⇤⇤(R

2
J ,R

3, C), there exists a unique gener-
alized cuspidal edge f⇤ 2 G!

⇤⇤(R
2
J ,R

3, C) (called the inverse of f) having the same first
fundamental form as f along the space curve c(�u) whose cuspidal angle has the same
sign as that of f . Moreover, any isomers of f are right equivalent to one of {f, f̌ , f⇤, f̌⇤}
(see Theorem II), where f̌⇤ := IC(f⇤) is called the inverse dual of f .

• The four maps f, f̌ , f⇤, f̌⇤ are non-congruent in general. Moreover, the right equiva-
lence classes and congruence classes of these four surfaces are determined in terms of the
properties of C and ds2f (cf. Theorems III and IV).

• Suppose that the image of a C1-di↵erentiable cuspidal edge f is invariant under a non-
trivial symmetry T 2 SO(3) (cf. Definition 1.2) of R3. Then explicit construction of f̌
without use of the Cauchy-Kowalevski theorem is given (see Example 5.3).

About the last question (4), the authors do not know whether the isomers of a given swallowtail
will exist in general, since the method given in this paper does not apply directly. So it left here
as an open problem. (A possible isometric deformations of swallowtails are discussed in authors’
previous work [5].)
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The paper is organized as follows: In Section 1, we explain our main results. In Section 2,
we review the definition and properties of Kossowski metrics. In Section 3, we prove Theorem I
as a modification of the proof of [14]. In Section 4, we recall a representation formula for
generalized cuspidal edges given in Fukui [3], and prove Theorem II. In Section 5, we investigate
the properties of generic cuspidal edges with symmetries. Moreover, we prove Theorems III and
IV. Several examples are given in Section 6. Finally, in the appendix, a representation formula
for generalized cusps in the Euclidean plane is given.

1. Results

Let ds2 be a Cr-di↵erentiable positive semi-definite metric on a Cr-di↵erentiable 2-manifold
M2. A point o 2 M2 is called a regular point of ds2 if it is positive definite at o, and is called a
singular point (or a semi-definite point) if ds2 is not positive definite at o. Kossowski [8] defined
a certain kind of positive semi-definite metrics called “Kossowski metrics” (cf. Section 2). We
let ds2 be such a metric. Then for each singular point o 2 M2, there exists a regular curve
� : (�", ") ! M2 such that �(0) = o and � parametrizes the singular set of ds2 near o. Such
a curve is called the singular curve of ds2 near o. In this situation, if ds2(�0(0), �0(0)) does not
vanish, then we say that “ds2 is of type I at o”. The first fundamental forms (i.e. the induced
metrics) of germs of generalized cuspidal edges are Kossowski metrics of type I (cf. Proposition
3.1).

Setting M2 := (R2;u, v), we denote by Kr
I (R

2
o) the set of germs of Cr-Kossowski metrics of

type I at o := (0, 0). We fix such a ds2 2 Kr
I (R

2
o). Then the metric is expressed as

ds2 = Edu2 + 2Fdudv +Gdv2,

and there exists a Cr-function � such that EG� F 2 = �2. Let K be the Gaussian curvature of
ds2 defined at points where ds2 is positive definite. Then

(1.1) K̂ := �K

can be considered as a Cr-di↵erentiable function defined on a neighborhood U(⇢ R2) of o (cf.
[12, 5]). If K̂ vanishes (resp. does not vanish) at a singular point q 2 U of ds2, then ds2 is
said to be parabolic (resp. non-parabolic) at q (see Definition 2.6). We denote by Kr

⇤(R
2
o) (resp.

Kr
p(R

2
o)) the set of germs of non-parabolic (resp. parabolic) Cr-Kossowski metrics of type I at

o. The subset of Kr
p(R

2
o) defined by

Kr
p,⇤(R

2
o) := {ds2 2 Kr

p(R
2
o) ; K̂

0(o) 6= 0}
⇣
= {ds2 2 Kr

I (R
2
o) ; K̂(o) = 0, K̂ 0(o) 6= 0}

⌘

plays an important role in this paper, where K̂ 0 = @K̂/@u. Metrics belonging to Kr
p,⇤(R

2
o)

are called p-generic. On the other hand, if K̂ vanishes identically along the singular curve of
ds2 2 Kr

I (R
2
o), we call ds2 an asymptotic Kossowski metric of type I. We let Kr

a(R
2
o) be the set

of germs of such metrics. This terminology comes from the following two facts:

• for a regular surface, a direction where the normal curvature vanishes is called an as-
ymptotic direction, and

• the induced metric of a cuspidal edge whose limiting normal curvature ⌫ vanishes
identically along its singular set belongs to Kr

a(R
2
o). (Such a cuspidal edge is called an

asymptotic cuspidal edge, see Proposition 4.12.)
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By definition, we have

Kr
⇤(R

2
o) \Kr

p(R
2
o) = ;, Kr

⇤(R
2
o) [Kr

p(R
2
o) = Kr

I (R
2
o),

Kr
a(R

2
o) ⇢ Kr

p(R
2
o) ⇢ Kr

I (R
2
o).

For ds2 2 Kr
a(R

2
o), the Gaussian curvature K can be extended on a neighborhood of o as a Cr-

di↵erentiable function. Let ⌘ 2 ToR
2 be the null vector at the singular point o of the asymptotic

Kossowski metric ds2. If

(1.2) dK(⌘)(o) 6= 0,

then ds2 is said to be a-generic, and we denote by Kr
a,⇤(R

2
o)(⇢ Kr

a(R
2
o)) the set of germs of

a-generic asymptotic Cr-Kossowski metrics. Considering the first fundamental form ds2f of f ,
we can define a map

(1.3) Jo : Gr
⇤(R

2
o,R

3, C) 3 f 7! ds2f 2 Kr
I (R

2
o).

Theorem II. There exists an involution (called the second involution)

I⇤
C : G!

⇤⇤(R
2
J ,R

3, C) 3 f 7! f⇤ 2 G!
⇤⇤(R

2
J ,R

3, C)

defined on G!
⇤⇤(R

2
J ,R

3, C) (cf. (0.11)) satisfying the following properties:

(1) f⇤ has the same first fundamental form as f , and is a non-faithful isomer of f ,
(2) I⇤

C � IC = IC � I⇤
C , where IC is the first involution as in Theorem I.

(3) Regarding f and f⇤ as map germs at o (cf. Lemma 0.1), I⇤
C canonically induces a map

(1.4) I⇤
o : G!

⇤ (R
2
o,R

3, C) 3 f 7! f⇤ 2 G!
⇤ (R

2
o,R

3, C)

such that Jo � I⇤
o = Jo and I⇤

o � Io = Io � I⇤
o .

(4) Suppose that g belongs to G!
⇤ (R

2
o,R

3, C) (resp. G!
⇤⇤(R

2
J ,R

3, C)). If the first fundamental

form of g is isometric to that of f , then g is right equivalent to one of f, f̌ , f⇤ and f̌⇤.

Recently, Fukui [3] gave a representation formula for generalized cuspidal edges along their
edges in R3. (In [3], a similar formula for swallowtails is also given, although it is not applied in
this paper.) We denote by Cr(Ro) (resp. Cr(R2

o)) the set of Cr-function germs at the origin of
R (resp. R2). We fix a generalized cuspidal edge f 2 Gr(R2

o,R
3, C) arbitrarily. The sectional

cusp of f at c(u) induces a function µ(u, t) 2 Cr(R2
o) which is called the “extended half-cuspidal

curvature function” giving the normalized curvature function of the sectional cusp at c(u) (see
the appendix). The value

(1.5) c(u) :=
µ(u, 0)

2
coincides with the cuspidal curvature at the singular point of the sectional cusp, and so it is
called the cuspidal curvature function of f (cf. [12]). In Section 4, we give a Björling-type
representation formula for cuspidal edges (cf. Proposition 4.3), which is a modification of the
formula given in Fukui [3]. (In fact, Fukui [3] expressed the sectional cusp as a pair of functions,
but did not use the function µ.) Fukui [3] explained several geometric invariants of cuspidal
edges in terms of s,⌫ and ✓. In Section 4, using several properties of modified Fukui’s formula
together with the proof of Theorem I, we reprove the following assertion which determine the
images of the maps Io and Jo (the assertions for the map I⇤

o are not given in [14, 5, 6]):

Fact 1.1. The maps Io, I⇤
o and Jo (cf. (0.14), (1.3) and (1.4)) satisfy the followings:

(1) These two maps Io and I⇤
o are involutions on G!

⇤,3/2(R
2
o,R

3, C), and Jo maps

G!
⇤,3/2(R

2
o,R

3, C) onto K!
⇤ (R

2
o) (cf. [14, Theorem 12]).
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(2) The two maps Io and I⇤
o are involutions on G!

⇤,ccr(R
2
o,R

3, C), and Jo maps

G!
⇤,ccr(R

2
o,R

3, C) onto K!
p,⇤(R

2
o) (cf. [5, Theorem A]).

(3) The two maps Io and I⇤
o are involutions on G!

⇤,5/2(R
2
o,R

3, C), and Jo maps

G!
⇤,5/2(R

2
o,R

3, C) onto K!
a,⇤(R

2
o) (cf. [6, Theorem 5.6]).

We may assume that the origin 0 is the midpoint of C, and give here the following terminolo-
gies:

Definition 1.2. The curve C admits a symmetry at 0 if there exists T 2 O(3) such that
T (C) = C and T is not the identity. Moreover, T is said to be trivial if T (P ) = P for all
P 2 C. A symmetry of C which is not trivial is called a non-trivial symmetry. (Obviously, each
non-trivial symmetry reverses the orientation of C.) A non-trivial symmetry is called positive

(resp. negative) if T 2 SO(3) (resp. T 2 O(3) \ SO(3)).

If C lies in a plane, then there exists a reflection S 2 O(3) with respect to the plane. Then S
is a trivial symmetry of C. We prove the following assertion.

Theorem III. Let f 2 G!
⇤⇤,3/2(R

2
J ,R

3, C), that is, f is admissible. Then the number of the

right equivalence classes of f , f̌ , f⇤ and f̌⇤ is four if and only if ds2f has no symmetries (cf.
Definition 0.4).

Moreover, we can prove the following:

Theorem IV. Let f 2 G!
⇤⇤,3/2(R

2
J ,R

3, C). Then the number Nf of the congruence classes of

the images of f, f̌ , f⇤ and f̌⇤ satisfies the following properties:

(1) If C has no non-trivial symmetries, and also ds2f has no symmetries, then Nf = 4,
(2) if not the case in (1), it holds that Nf  2,
(3) Nf = 1 if and only if

(a) C lies in a plane and has a non-trivial symmetry,

(b) C lies in a plane and ds2f has a symmetry, or

(c) C has a positive symmetry and ds2f also has a symmetry.

2. Kossowski metrics

In this section, we quickly review several fundamental properties of Kossowski metrics.

Definition 2.1. Let p be a singular point of a given positive semi-definite metric ds2 on M2.
Then a non-zero tangent vector v 2 TpM2 is called a null vector if

(2.1) ds2(v,v) = 0.

Moreover, a local coordinate neighborhood (U ;u, v) is called adjusted at p 2 U if @v := @/@v
gives a null vector of ds2 at p.

It can be easily checked that (2.1) implies that ds2(v,w) = 0 for all w 2 TpM2. If (U ;u, v)
is a local coordinate neighborhood adjusted at p 2 U , then F (p) = G(p) = 0 holds, where

(2.2) ds2 = E du2 + 2F du dv +Gdv2.

Definition 2.2. A singular point p 2 M2 of a Cr-di↵erentiable positive semi-definite metric ds2

on M2 is called K-admissible if there exists a local coordinate neighborhood (U ;u, v) adjusted
at p satisfying

(2.3) Ev(p) = 2Fu(p), Gu(p) = Gv(p) = 0,

where E,F,G are the Cr-functions on U given in (2.2).
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If ds2f is the induced metric of a Cr-map f : U ! R3 and fv(p) = 0, then (2.3) is satisfied
automatically (cf. Proposition 3.1). The property (2.3) does not depend on the choice of a local
coordinate system adjusted at p, as shown in [8] and [4, Proposition 2.7]. In fact, a coordinate-
free treatment for the K-admissibility of singular points is given in [8] and [4, Definition 2.3].

Definition 2.3. A positive semi-definite Cr-di↵erentiable metric ds2 is called aKossowski metric

if each singular point p 2 M2 of ds2 is K-admissible and there exists a Cr-function �(u, v) defined
on a local coordinate neighborhood (U ;u, v) of p such that

EG� F 2 = �2 (on U),(2.4)

(�u(p),�v(p)) 6= (0, 0),(2.5)

where E,F,G are Cr-functions on U given in (2.2).

The above function � is determined up to ±-ambiguity (see [5, Proposition 3]). We call such
a � the signed area density function of ds2 with respect to the local coordinate neighborhood
(U ;u, v). The following fact is known (cf. [8, 16]).

Fact 2.4. Let ds2 be a Cr
-di↵erentiable Kossowski metric defined on a domain U of the uv-

plane. Then the 2-form dÂ := �du ^ dv on U is defined independently of the choice of adjusted

local coordinates (u, v).

We call dÂ the signed area form of ds2. Let K be the Gaussian curvature defined on the
complement of the singular set of ds2.

Fact 2.5 ([8] and [4, Theorem 2.15]). The 2-form ⌦ := KdÂ can be extended as a Cr
-di↵erential

form on U .

Definition 2.6. We call ⌦ the Euler form of ds2. If ⌦ vanishes (resp. does not vanish) at a
singular point p 2 U of ds2, then p is called a parabolic point (resp. non-parabolic point).

The following fact is also known (cf. [8, 4, 5]).

Fact 2.7. Let p be a singular point of a Kossowski metric ds2. Then the null space (i.e. the

subspace generated by null vectors at p) of ds2 is 1-dimensional.

By applying the implicit function theorem for � (cf. (2.5)), there exists a regular curve �(t)
(|t| < ") in the uv-plane (called the singular curve) parametrizing the singular set of ds2 such
that �(0) = p. Then there exists a Cr-di↵erentiable non-zero vector field ⌘(t) along �(t) which
points in the null direction of the metric ds2. We call ⌘(t) a null vector field along the singular
curve �(t).

Definition 2.8 ([4]). A singular point p 2 M2 of a Kossowski metric ds2 is said to be of type I

or an A2 point if the derivative �0(0) of the singular curve at p (called the singular direction at
�(t)) is linearly independent of the null vector ⌘(0). Moreover, ds2 is called of type I if all of the
singular points of ds2 are of type I.

3. Generalized cuspidal edges

Fix a bounded closed interval J(⇢ R) and consider a Cr-embedding c : J ! R3 with arc-
length parameter. We assume that the curvature function (u) of c(u) is positive everywhere.
We fix a Cr-map f̃ : Ũ ! R3 defined on a domain Ũ in the xy-plane R2 containing J1 ⇥ {0}
such that each point of J1 ⇥ {0} is a generalized cuspidal edge point and

f̃(J1 ⇥ {0}) = C (C := c(J)),
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where J1 is a bounded closed interval in R. Such an f̃ is called a generalized cuspidal edge along

C. For such an f̃ , there exists a di↵eomorphism

' : U 3 (u, v) 7! (x(u, v), y(u, v)) 2 '(U)(⇢ Ũ)

such that

(3.1) f(u, v) := f̃(x(u, v), y(u, v))

satisfies

(3.2) f(u, v) = c(u) +
v2

2
⇠̂(u, v),

where ⇠̂(u, 0) gives a vector field along c which is linearly independent of c0(u).

Proposition 3.1. The induced metrics of Cr
-di↵erentiable generalized cuspidal edges are Cr

-

di↵erentiable Kossowski metrics whose singular points are of type I.

Proof. Let f be a generalized cuspidal edge as in (3.2), and let ds2f = Edu2 + 2Fdudv + Gdv2

be the first fundamental form of f . Then

E = fu · fu, F = fu · fv, G := fv · fv
hold, where “·” is the inner product of R3. Since fv(u, 0) = 0, one can easily check (2.3). By
(3.2), we have

EG� F 2 = |fu ⇥ fv|2 = v2
����

✓
c
0 +

v2

2
⇠̂u

◆
⇥

⇣
⇠̂ +

v

2
⇠̂v
⌘����

2

,

where ⇥ denotes the cross product in R3. Since two vectors c0(u), ⇠̂(u, 0) are linearly indepen-
dent, the function � on U given by

(3.3) � := v�0, �0 :=

����

✓
c
0 +

v2

2
⇠̂u

◆
⇥

⇣
⇠̂ +

v

2
⇠̂v
⌘����

is Cr-di↵erentiable and �0(u, 0) 6= 0. Moreover, �2 coincides with EG� F 2. Since �v 6= 0, ds2f
is a Kossowski metric. Since fv(u, 0) = 0, @v := @/@v gives the null-direction, which is linearly
independent of the singular direction @u. So all singular points of ds2f are of type I. ⇤

Let ds2f be the induced metric of Cr-di↵erentiable generalized cuspidal edge f 2 Gr(R2
J ,R

3, C).

We set K̂(:= �K) (cf. (1.1)), where K is the Gaussian curvature of ds2f defined at points where

ds2f is positive definite. As mentioned in the introduction, K̂ can be extended as a Cr-function

on U . Moreover, Ǩ := vK also can be considered as a Cr-function on U (cf. [12, 5]).

Corollary 3.2. The following assertions hold:

(1) K̂(u, 0) 6= 0 if and only if Ǩ(u, 0) 6= 0, and
(2) K̂u(u, 0) 6= 0 if and only if Ǩu(u, 0) 6= 0, under the assumption K̂(u, 0) = 0.

Proof. By (3.3), we have the expression � = v�0, where �0(u, 0) 6= 0. So if we set Ǩ = vK,
then K̂ = �0Ǩ, and K̂(u, 0) = �0(u, 0)Ǩ(u, 0) hold, and so the first assertion is obvious.
Di↵erentiating K̂ = �0Ǩ, we have

K̂u = (�0)uǨ + �0Ǩu.

Since K̂(u, 0) = 0 implies Ǩ(u, 0) = 0, we have K̂u(u, 0) = �0(u, 0)Ǩu(u, 0), proving the second
assertion. ⇤
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Remark 3.3. For a generalized cuspidal edge f ,

⌫(u, v) :=
(2c0(u) + v2⇠̂u(u, v))⇥ (2⇠̂(u, v) + v⇠̂v(u, v))

|(2c0(u) + v2⇠̂u(u, v))⇥ (2⇠̂(u, v) + v⇠̂v(u, v))|
gives a Cr-di↵erentiable unit normal vector field on U . So f is a frontal map.

Definition 3.4. A parametrization (u, v) of f 2 Gr(R2
J ,R

3, C) is called an adapted coordinate

system (cf. [12, Definition 3.7]) if

(1) fv(u, 0) = 0 and |fu(u, 0)| = |fvv(u, 0)| = 1 along the u-axis,
(2) fvv(u, 0) is perpendicular to fu(u, 0).

To show the existence of an adapted coordinate system, we prepare the following under the
assumption that the curve c(u) is real analytic:

Lemma 3.5 ([5, Proposition 6]). Let ds2 be a C!
-di↵erentiable Kossowski metric defined on an

open subset U(⇢ R2). Suppose that � : J ! U is a real analytic singular curve with respect to

ds2 such that

(3.4) ds2(�0(t), �0(t)) > 0 (t 2 J).

Then, for each t0 2 J , there exists a C!
-di↵erentiable local coordinate system (V ;u, v) containing

(t0, 0) such that V ⇢ U and the coe�cients E,F,G of the first fundamental form

ds2 = Edu2 + 2Fdudv +Gdv2

satisfy the following three conditions:

(1) �(u) = (u, 0), E(u, 0) = 1 and Ev(u, 0) = 0 hold along the u-axis,
(2) F (u, v) = 0 on V , and

(3) there exists a C!
-function G0 defined on V such that G(u, v) = v2G0(u, v)/2 and

G0(u, 0) = 2.

Proof. Applying [5, Proposition 6] at the point (t0, 0) on a singular curve of ds2, we obtain the
desired local coordinate system. ⇤

Corollary 3.6. For each generalized cuspidal edge f 2 G!(R2
J ,R

3, C) along C and for each

singular point p of f , there exists a local coordinate neighborhood (V ;u, v) of p such that the

restriction f |V of f is parametrized by an adapted coordinate system.

Proof. We let ds2f be the first fundamental form of f(x, y). By Lemma 3.5, we obtain a parameter
change (x, y) 7! (u(x, y), v(x, y)) on a neighborhood of p such that the new parameter (u, v) of
f(u, v) defined by (3.1) satisfies (1)-(3) of Lemma 3.5 for the first fundamental form ds2f of f .
Then we can show that this new coordinate system (u, v) is the desired one: Since the u-axis is
the singular set of ds2f , we have fv(u, 0) = 0. On the other hand, fu(u, 0) · fu(u, 0) = E(u, 0) = 1
and

(3.5) fvv(u, 0) · fu(u, 0) =
@F (u, v)

@v

����
v=0

= 0.

Finally, we have

fvv(u, 0) · fvv(u, 0) =
1

2

@2G(u, v)

@v2

����
v=0

=
G0(u, 0)

2
= 1,

proving the assertion. ⇤
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From now on, we assume that f(u, v) is parametrized by the local coordinate system as in
Definition 3.4. Then u is the arc-length parameter of the edge c(u) := f(u, 0). In this section, we
assume that the curvature function (u) of c(u) is positive for each u. Then the torsion function
⌧(u) is well-defined. We can take the unit tangent vector e(u) := c

0(u) (0 = d/du), and the unit
principal normal vector n(u) satisfying c

00(u) = (u)n(u). We set

b(u) := e(u)⇥ n(u),

which is the binormal vector of c(u). Since fvv(u, 0) is perpendicular to e(u), we can write

(3.6) fvv(u, 0) = cos ✓(u)n(u)� sin ✓(u)b(u),

which is called the cuspidal direction. As defined in the introduction,

• the plane ⇧(c(u)) passing through c(u) spanned by n(u) and b(u) is the normal plane
of the space curve c(u),

• the section of the image of f by ⇧(c(u)) is a plane curve, which is called the sectional

cusp at c(u), and
• the vector fvv(u, 0) points in the tangential direction of the sectional cusp at c(u). So
we call ✓(u) the cuspidal angle function.

• By using ✓(u), the singular curvature s and the limiting normal curvature ⌫ along the
edge of f (cf. [16]) are given in (0.4).

The following fact is important:

Lemma 3.7 ([16]). The singular curvature is intrinsic. In particular, it is defined along the

singular curve with respect to a given Kossowski metric (cf. [4, (2.17)]). More precisely,

(3.7) s(u) =
�Evv(u, 0)

2
holds, where (u, v) is the coordinate system as in Lemma 3.5.

Proof. As shown in [16, Proposition 1.8], s is expressed as

(3.8) s =
�FvEu + 2EFuv � EEvv

2E3/2�v
,

where (u, v) is a local coordinate system such that the u-axis is the singular set and @v points
in the null direction. If (u, v) is the local coordinate system as in Lemma 3.5, then F = 0,
� = v

p
EG0 and E(u, 0) = 1 hold. So we can obtain (3.7). ⇤

We now prove the following theorem under the assumption that the curve c is real analytic:

Theorem 3.8. We let U be an open subset of the uv-plane R2
containing J⇥{0} and ds2 a real

analytic Kossowski metric satisfying (3.4). Suppose that the curvature function  of the curve

c is positive everywhere and the absolute value of the singular curvature s(u) of ds2 along the

singular curve

J 3 u 7! (u, 0) 2 U

is less than (u) for each u 2 J . Then there exist two real analytic generalized cuspidal edges

g+, g� defined on an open subset V (⇢ U) containing J ⇥{0} satisfying the following properties:

(1) The maps u 7! g+(u, 0) and u 7! g�(u, 0) parametrize C, which induce the same orien-

tation as c : J ! R3
.

(2) ds2 is the common first fundamental form of g+ and g�.
(3) g� is a faithful isomer of g+.
(4) If ±⌫ : J ! R are the limiting normal curvature functions of g±, then �⌫ = �+⌫ holds

on J .
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(5) If ds2 is non-parabolic at (u, 0), then g+ and g� have cuspidal edges at (u, 0).

Moreover, suppose that h : U ! R3
is a generalized cuspidal edge whose first fundamental form

is ds2. If u 7! h(u, 0) parametrizes C giving the same orientation as c : J ! R3
, then h

coincides with g+ or g�.

We prove this theorem from here on out, as a modification of the proof given in [14].

Remark 3.9. For each t0 2 J , we can take a connected local coordinate neighborhood
(V (t0);u, v) of (t0, 0) satisfying (1), (2) and (3) of Lemma 3.5. Since J is compact, we can
find finite points t1, ..., tk 2 J such that {V (tj)}kj=1 covers the singular curve J ⇥ {0}. It is su�-
cient to prove Theorem 3.8 by replacing U by each V (tj) (j = 1, ..., k). (In fact, the assertion of
Theorem 3.8 contains the uniqueness of g± on each V (tj), and so g± obtained in V (tj) can be
uniquely extended to V (tj) [ V (tj+1) for each j = 1, ..., k � 1.)

The statements of Theorem 3.8 are properties of the maps g± which do not depend on the
choice of a local coordinate system containing J ⇥ {0}. As explained in Remark 3.9, we may as-
sume the existence of a local coordinate system (U ;u, v) satisfying (1), (2) and (3) of Lemma 3.5,
without loss of generality. Then U contains a bounded closed interval I on the u-axis such that
I ⇥ {0} gives the singular set of ds2. We now show the existence of a real analytic generalized
cuspidal edge g(u, v) such that g(u, 0) = c(u), gv(u, 0) = 0 and

gu · gu = E, gu · gv = 0, gv · gv = G,

which is defined on a neighborhood of I ⇥ {0} in U using the Cauchy-Kowalevski theorem. (We
remark that c(u) is parametrized as an arc-length parameter.) As in Lemma 3.5, we can write
G = v2G0/2. The following lemma holds:

Lemma 3.10. If there exists a real analytic generalized cuspidal edge g (= g±) as in Theorem 3.8,

then it is a solution of the following system of partial di↵erential equations

(3.9)

8
>>><

>>>:

gv = v⇣,

⇠v (= guv) = v⇣u,

⇣v =
1

4

�
(⇣, gu, ⇠u)

T
��1

✓
(G0)v,�v(G0)u, 2r � v(G0)uu + 4v⇣u · ⇣u

◆T

of unknown R3
-valued functions g, ⇠, ⇣ with the initial data

(3.10) g(u, 0) = c(u), ⇠(u, 0) = c
0(u)(= gu(u, 0)), ⇣(u, 0) = x(u),

on I, where AT
denotes the transpose of a 3⇥ 3-matrix A and

(3.11) x(u) := cos ✓(u)n(u)⌥ sin ✓(u)b(u), cos ✓(u) :=
s(u)

(u)
.

Remark 3.11. Since gv = v⇣ and ⇠v = v⇣u, we have ⇠v = v⇣u = guv. Thus, the initial condition
⇠(u, 0) = gu(u, 0) yields ⇠(u, v) = gu(u, v).

Proof of Lemma 3.10. Since ds2 is real analytic, E and G are real analytic functions. Since
gv(u, 0) = 0, we can write

gv(u, v) = v⇣(u, v),

where ⇣(u, v) is a real analytic function defined on a neighborhood of I ⇥ {0} in R2. Then

(3.12) ⇣v · ⇣ =
(⇣ · ⇣)v

2
=

(G0)v
4

.

On the other hand, since

(3.13) vgu · ⇣ = gu · gv = 0,
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we have gu · ⇣ = 0. Di↵erentiating this, we have

0 = v(⇣ · gu)v = v⇣v · gu + v⇣ · guv = v⇣v · gu + gv · guv = v⇣v · gu +
Gu

2
.

Since G = v2G0/2, we have

(3.14) ⇣v · gu = �v

4
(G0)u.

We now obtain information on ⇣v · guu. It holds that

v⇣ · guu = gv · guu = (gv · gu)u � guv · gu = �guv · gu = �Ev

2
,

that is, we obtain

(3.15) ⇣ · guu = �Ev

2v
.

On the other hand, we have that

⇣ · guu + v⇣v · guu = gvv · guu = (gvv · gu)u � gvvu · gu
= {(gv · gu)v � (gv · guv)}u � (guv · gu)v + guv · guv
= (�Gu/2)u � (Ev/2)v + guv · guv.

This, together with (3.15), gives the following identity

(3.16) ⇣v · guu =
Ev � vEvv

2v2
� v

(G0)uu
4

+ v⇣u · ⇣u.

Since Ev(u, 0) = 0, the function Ev/v is a real analytic function, and the function

(3.17) r(u, v) :=
Ev � vEvv

v2
=

✓
�Ev

v

◆

v

is also real analytic. By (3.13), (3.14) and (3.16), we have the third equality of (3.9) under the
assumption that the 3⇥ 3 matrix

M(u, v) := (⇣, gu, ⇠u)

is regular, where ⇠ := gu. The map g must have the initial data (3.10), where

x(u) = ⇣(u, 0) = lim
v!0

gv(u, v)

v
= gvv(u, 0).

By (3.6), x(u) can be written in the form

(3.18) (x+(u) :=)x(u) = cos ✓(u)n(u)� sin ✓(u)b(u),

where ✓(u) is the function defined by (3.11) and (u) (resp. s(u)) is the curvature function of
c(u) (resp. the singular curvature function defined by (3.7)). In fact, since the singular curvature
s of ds2 is less than  on I, there exists a real analytic angular function ✓ : I ! R satisfying
(3.11) and

0 < |✓(u)| < ⇡

2
(u 2 I).

Moreover, such a ✓ is determined up to a ±-ambiguity. In particular,

(3.19) (x�(u) :=)x(u) = cos ✓(u)n(u) + sin ✓(u)b(u)

is the other possibility. ⇤
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We now return to the proof of Theorem 3.8. We have

(M(u, 0) =) (⇣(u, 0), gu(u, 0), guu(u, 0))

= (cos ✓(u)n(u)� sin ✓(u)b(u), e(u), (u)n(u)) .

Since the singular curvature of ds2 satisfies |s| <  on I, the function sin ✓ does not vanish on I.
Thus the matrix M(u, 0) is regular for each u 2 I. We can then apply the Cauchy-Kowalevski
theorem (cf. [9]) for the system of partial di↵erential equations (3.9) with initial data (3.10)
and obtain a unique real analytic solution (g, ⇠, ⇣) of (3.9) defined on a neighborhood of I ⇥ {0}
in R2. Thus, we obtained the existence of real analytic generalized cuspidal edges g±(u, v)
corresponding to the initial data x±(u). By the above construction of these g±, the functions
±✓ coincide with the cuspidal angles of g±, respectively. To accomplish the proof of Theorem 3.8,
we need to verify that the first fundamental forms of g± coincide with ds2. To show this, we
consider the case g = g+ with initial condition x(u) := x+(u), without loss of generality. The
third equation of (3.9) yields ⇣v · ⇣ = (G0)v/4, and hence we have (⇣ · ⇣ �G0/2)v = 0. Since

⇣(u, 0) · ⇣(u, 0)� G0(u, 0)

2
= x(u) · x(u)� 1 = 0,

the Cauchy-Kowalevski theorem yields that

(3.20) ⇣ · ⇣ =
G0

2
.

Hence, by the first equation of (3.9), we have

(3.21) gv · gv =
v2G0

2
= G.

On the other hand, using (3.9), we have

(⇠ � gu)v = ⇠v � guv = v⇣u � (gv)u = v⇣u � (v⇣)u = 0.

The initial condition ⇠(u, 0) = gu(u, 0) yields that gu = ⇠. Then guv = ⇠v = v⇣u and

guv · ⇣ = v⇣u · ⇣ = v
(⇣ · ⇣)u

2
=

v(G0)u
4

hold. Using this, we have

(gu · ⇣)v = guv · ⇣ + gu · ⇣v =
v(G0)u

4
� v(G0)u

4
= 0.

Since gu(u, 0) · ⇣(u, 0) = 0, we can conclude that gu · ⇣ = 0, that is,

(3.22) gu · gv = 0

is obtained. We now prepare the following:

Lemma 3.12. Suppose that (which is one of the conditions in (3.9))

⇣v · ⇠u(= ⇣v · guu) =
2r � v(G0)uu + 4v⇣u · ⇣u

4
.

Then the initial condition (3.18) implies the following identity

(3.23)
Ev

2
+ v⇣ · ⇠u = 0.
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Proof. Using (3.20), we have that

(⇣ · ⇠u)v = ⇣v · ⇠u + ⇣ · ⇠uv = ⇣v · ⇠u + ⇣ · guuv = ⇣v · ⇠u + ⇣ · (v⇣uu)

=
1

4

✓
2r � v(G0)uu + 4v⇣u · ⇣u

◆
+ ⇣ · (v⇣uu)

=
r

2
� v

2
(G0)uu + v(⇣u · ⇣u + ⇣ · ⇣uu)

=
r

2
� v

4
(⇣ · ⇣)uu +

v

2
(⇣ · ⇣)uu =

r

2
.

By (3.17), ✓
⇣ · ⇠u +

Ev

2v

◆

v

= 0

holds. On the other hand, we have

⇣(u, 0) · ⇠u(u, 0) = x(u) · guu(u, 0) = (cos ✓(u)n(u)� sin ✓(u)b(u)) · c00(u)
=

�
cos ✓(u)n(u)� sin ✓(u)b(u)

�
· ((u)n(u)) = (u) cos ✓(u)

= (u)
s(u)

(u)
= s(u) =

�Evv(u, 0)

2
= lim

v!0

�Ev(u, v)

2v
.

So we obtain (3.23). ⇤

We again return to the proof of Theorem 3.8. By (3.23), we have

1

2
(gu · gu)v = guv · gu = (gv · gu)u � gv · guu = �gv · guu =

Ev

2
.

This, with the initial condition gu(u, 0) · gu(u, 0) = c
0(u) · c0(u) = 1 implies

(3.24) gu · gu = E.

By (3.24), (3.22) and (3.21), we can conclude that ds2 coincides with the first fundamental form
of g = g+, which implies the existence and uniqueness of g = g+. Replacing ✓ by �✓, we also
obtain the existence and uniqueness of g = g�. Since the cuspidal angles of g± are distinct, the
image of g� does not coincide with g+. Since the orientation of u 7! g�(u, 0) is compatible with
that of the curve u 7! g+(u, 0), the map g� is a faithful isomer of g+.

Here, we suppose ds2 is non-parabolic at (u, 0), then g+ and g� are wave fronts by [5, Propo-
sition 4 (o)]. Since ds2 is of type I, the criterion of cuspidal edges given in [5, Proposition 4 (i)]
yields that g+ and g� are both cuspidal edges.

Finally, the last assertion of Theorem 3.8 follows from the uniqueness of the system of partial
equations (3.9) as a consequence of the Cauchy-Kowalevski theorem, proving Theorem 3.8.

By the above proof of Theorem 3.8, we obtain the following:

Corollary 3.13. The cuspidal angle of g� is �✓, where ✓ is the cuspidal angle of g+. In

particular, g� is a faithful isomer of g+ since sin ✓ 6= 0.

We next prove the following:

Lemma 3.14. Let U be an open subset of the uv-plane R2
containing J ⇥ {0}, and let ds2 be a

real analytic Kossowski metric of type I defined on U satisfying (1)–(3) of Lemma 3.5. Suppose

that the singular set of ds2 consists only of non-parabolic points. If there exist open subsets

Vi(⇢ U) (i = 1, 2) containing J ⇥ {0} and a di↵eomorphism ' : V1 ! V2 such that '⇤ds2 = ds2

and '(u, 0) = (u, 0) hold for u 2 J , then V1 = V2 and ' is the identity map.
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Proof. Let c(u) (u 2 J) be a space curve satisfying the assumption of Theorem 3.8, and let g+
be one of cuspidal edges realizing ds2 as in Theorem 3.8. Since g+ �' and g+ have the common
first fundamental form ds2, the last assertion of Theorem 3.8 yields that g+ � ' coincides with
either g+ or g�. Since g+�' and g+ have the same image, they have a common cuspidal angle at
each point of C. So there exists a symmetry T of C such that T � g+ �' = g+. Suppose T is not
the identity map. Since '(u, 0) = (u, 0), ' maps the domain D+ := {v > 0} to D� := {v < 0}.
However, it is impossible, because '⇤ds2 = ds2 and the Gaussian curvature on D+ takes the
opposite sign of that on D� (cf. [5, (1.14)]). Thus, T is the identity map and g+ �' = g+ holds.
Since the singular set of g+ consists of cuspidal edge points, g+ is injective, and ' must be the
identity map. ⇤

Proposition 3.15. Let ds2 be a real analytic Kossowski metric belonging to K!
⇤ (R

2
o). Suppose

that ' is a local C!
-di↵eomorphism satisfying '⇤ds2 = ds2 and '(o) = o which is not the identity

map. Then ' is an involution which reverses the orientation of the singular curve. Moreover,

such a ' is uniquely determined.

Proof. We can take a local coordinate system satisfying (1)–(3) of Lemma 3.5. Since '(o) = o,
the fact that u 7! (u, 0) is the arc-length parametrization with respect to ds2 yields that either
'(u, 0) = (u, 0) or '(u, 0) = (�u, 0) holds. If '(u, 0) = (u, 0), then by Lemma 3.14, ' is the
identity map, a contradiction. So we have '(u, 0) = (�u, 0). This means that ' reverses the
orientation of the singular curve. In this situation, we have ' � '(u, 0) = (u, 0). Applying
Lemma 3.14 again, '�' is the identity map, that is, ' is an involution. We next suppose that  
is another local C!-di↵eomorphism satisfying  ⇤ds2 = ds2 and  (o) = o. Then '� (u) = (u, 0)
holds, and Lemma 3.14 yields that ' �  is the identity map. So  must coincide with '. ⇤

Corollary 3.16. Let ds2f be a real analytic Kossowski metric as the first fundamental form of

f 2 G!
⇤,3/2(R

2
J ,R

3, C). Suppose that ' is a C!
-symmetry of ds2f , then it is e↵ective and is an

involution reversing the orientation of the singular curve.

Proof. Without loss of generality, we may assume that the parameters (u, v) of f(u, v) satisfy
(1)-(3) of Lemma 3.5 for ds2f . Let P be the midpoint of C with respect to the arc-length
parameter. Then there exists c 2 J such that f(c, 0) = P . Thinking o := (c, 0), we may regard f
belongs to G!

⇤,3/2(R
2
o,R

3, C). Since f 2 G!
⇤,3/2(R

2
J ,R

3, C), by restricting f to a neighborhood of

o, the metric ds2f can be considered as an element of K!
⇤ (R

2
o) (cf. [5, (2) of Theorem A]). So the

symmetry ' of ds2f satisfies the desired property by Proposition 3.15. Since ' is real analytic,
the property is extended on a tubular neighborhood of the singular curve. ⇤

Moreover, the following important property for symmetries of Kossowski metrics is obtained:

Theorem 3.17. Let p be a singular point of a real analytic Kossowski metric ds2 which is

an accumulation point of non-parabolic singular points of type I. Suppose that ' is a local C!
-

di↵eomorphism fixing p satisfying '⇤ds2 = ds2. Then ' is an involution and reverses the

orientation of the singular curve if it is not the identity map.

Proof. Let �(t) be a real analytic parametrization of the singular curve of the real analytic
Kossowski metric ds2 such that �(0) = p. We let {pn}1n=1 be a sequence of non-parabolic points
converging to p. Since � is real analytic, the existence of such a sequence implies that, for
su�ciently small "(> 0), �((�", 0) [ (0, ")) consists of non-parabolic points of type I. Then

s(t) :=

Z t

0

p
ds2(�0(u), �0(u)) du (t 2 (�", "))
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is a monotone increasing function of t, giving a continuous parametrization of �. Using this
parameter s, either ' � �(s) = �(s) or ' � �(s) = �(�s) holds. If the former case happens, then
applying Proposition 3.15 at a non-parabolic point �(s) (s 6= 0), ' must be the identity map on
a neighborhood of �(s). Since ' is real analytic, it must be the identity map on a neighborhood
of p.

We next consider the case that ' � �(s) = �(�s). Then ' � ' � �(s) = �(s), and the above
argument implies that ' is an involution, proving the assertion. ⇤

Proof of Theorem I. Let ds2f be the first fundamental form of f . Then ds2f is a Kossowski

metric of type I, by Proposition 3.1. Since f belongs to G!
⇤ (R

2
J ,R

3, C) (cf. (0.5)), the singular
curvature s of ds2f is less than  on J . By Theorem 3.8, there exist two generalized cuspidal

edges g+, g� 2 G!
⇤ (R

2
J ,R

3, C) whose first fundamental forms coincide with ds2f . Since ds
2
f is the

first fundamental form of f , the last assertion of Theorem 3.8 yields that either f = g+ or f = g�
holds. Without loss of generality, we may set f = g+, then f̌ := g� is the desired isometric dual
of f . The remaining assertions for f 2 G!

⇤ (R
2
o,R

3, C) follow from Lemma 0.1. ⇤

Definition 3.18. For each f 2 G!
⇤ (R

2
o,R

3, C) (resp. f 2 G!
⇤ (R

2
J ,R

3, C)), we call the above
f̌ 2 G!

⇤ (R
2
o,R

3, C) (resp. f̌ 2 G!
⇤ (R

2
J ,R

3, C)) the isometric dual of f .

4. A representation formula for generalized cuspidal edges

We set J = [�l, l] (l > 0). Let c : J ! R3 be an embedding with arc-length parameter whose
curvature function (u) is positive everywhere. We denote by e(u) := c

0(u), and by C the image
of c. We let n(u) and b(u) be the unit principal normal vector field and unit binormal vector
field of c(u), respectively. We fix a su�ciently small �(> 0) and consider a map given by

(4.1) f(u, v) := c(u) + (A(u, v), B(u, v))

✓
cos ✓(u) � sin ✓(u)
sin ✓(u) cos ✓(u)

◆✓
n(u)
b(u)

◆
,

where u 2 J and |v| < �. Here A(u, v), B(u, v) and ✓(u) are Cr-functions, and satisfy

A(u, 0) = Av(u, 0) = 0, Avv(u, 0) 6= 0, B(u, 0) = Bv(u, 0) = Bvv(u, 0) = 0.

Then it can be easily checked that any generalized cuspidal edges along C are right equivalent
to one of such a map. Moreover, if Bvvv(u, 0) 6= 0, then f is a cuspidal edge along C. The
function ✓(u) is called the cuspidal angle at c(u). Let (u) be the curvature of c(u). Then the
Cr-functions defined by

(4.2) s(u) = (u) cos ✓(u), ⌫(t) = (u) sin ✓(u)

give the singular curvature and the limiting normal curvature respectively. The map germ f can
be determined by

(✓(u), A(u, v), B(u, v)).

We call these functions Fukui’s data.

Definition 4.1. In the expression (4.1), if

• u is an arc-length parameter of c,
• for each u 2 J , the map (��, �) 3 t 7! (A(u, t), B(u, t)) 2 R2 is a generalized cusp at
t = 0 (called a sectional cusp at u), and t gives a normalized half-arc-length parameter
(see the appendix),

then the expression (4.1) of f by setting v = t as the normalized half-arc-length parameter is
called the normal form of a generalized cuspidal edge.
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We now fix such a normal form f . We set

(4.3)

✓
v2(u)
v3(u)

◆
=

✓
cos ✓(u) � sin ✓(u)
sin ✓(u) cos ✓(u)

◆✓
n(u)
b(u)

◆
,

then we have

(4.4) f(u, t) = c(u) +A(u, t)v2(u) +B(u, t)v3(u).

Definition 4.2. Let (a, b) (a < b) be an interval on R, and � 2 (0,1] a positive number.
A Cr-di↵erentiable (r = 1 or r = !) quadruple (, ⌧, ✓, µ̂) is called a fundamental data (or a
modified Fukui-data) if

•  : (a, b) ! R is a Cr-function such that  > 0,
• ⌧, ✓ : (a, b) ! R and µ̂ : (a, b)⇥ (��, �) ! R are Cr-functions.

Summarizing the above discussions, one can easily show the following representation for-
mula for generalized cuspidal edges, which is a mixture of Fukui’s representation formula as in
[3, (1.1)] for generalized cuspidal edges and a representation formula for cusps in the appendix
(cf. Lemma A.1):

Proposition 4.3. Let (, ⌧, ✓, µ̂) be a given fundamental data and c(u) (u 2 J) the space curve

with arc-length parameter whose curvature function and torsion function are (u) and ⌧(u).
Then,

(4.5) f(u, t) := c(u) + (A(u, t), B(u, t))

✓
cos ✓(u) � sin ✓(u)
sin ✓(u) cos ✓(u)

◆✓
n(u)
b(u)

◆

gives a generalized cuspidal edge written in a normal form along C := c(J), where (A,B) is

given by

(4.6) (A(u, t), B(u, t)) =

Z t

0
v(cos�(u, v), sin�(u, v))dv, �(u, t) :=

Z t

0
µ̂(u, v)dv.

Moreover,

(1) ✓ gives the cuspidal angle of f along c,

(2) t 7! µ̂(u, t) is the function given in (A.2) for the sectional cusp of f at u.

Furthermore, any generalized cuspidal edge along C is right equivalent to such an f constructed

in this manner (see also Remark 0.5).

Remark 4.4. Let c0(u) be a space curve parametrized by the arc-length parameter u defined
on an interval J := [�l, l] (l > 0), whose curvature function and torsion function are (u) and
⌧(u), respectively. We assume that c0(0) = 0. Suppose that C := c0(J) admits a non-trivial
symmetry T . Since 0 is the midpoint of C and is fixed by T , we may assume that T 2 O(3) and
set � := det(T ) 2 {1,�1}. Then c1(u) := Tc0(�u) is a space curve whose curvature function
and torsion function are (u) and �⌧(u) respectively. We denote by ei(u)(:= c

0
i(u)), ni(u) and

bi(u) (i = 0, 1) the unit tangent vector, unit principal normal vector and unit binormal vector
of ci(u), respectively. Di↵erentiating T � c0(u) = c1(u), we have

Te0(�u) = T � c00(�u) = �c
0
1(u) = �e1(u),

0(�u)Tn0(�u) = T � c000(�u) = c
00
1(u) = 1(u)n1(u).

In particular, Te0(�u) = �e1(u), Tn0(�u) = n1(u) and 0(�u) = 1(u) hold, where
i (i = 1, 2) is the curvature function of ci. Since � := det(T ) 2 {1,�1}, we have

b0 = e0 ⇥ n0 = (�Te1)⇥ (Tn1) = �T (e1 ⇥ n1) = ��Tb1.
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Using this, one can also obtain the relation ��⌧0(�u) = ⌧1(u), where ⌧i (i = 1, 2) is the torsion
function of ci. We set

fi := ci + (Ai, Bi)

✓
cos ✓i � sin ✓i
sin ✓i cos ✓i

◆✓
ni

bi

◆
(i = 0, 1),

and suppose

A0(�u, t) = A1(u, t), B0(�u, t) = ��B1(u, t), ✓0(�u) = ��✓1(u).
Then

T � f0(�u, t)

= Tc0(�u) + (A0(�u, t), B0(�u, t))

✓
cos ✓0(�u) � sin ✓0(�u)
sin ✓0(�u) cos ✓0(�u)

◆✓
Tn0(�u)
Tb0(�u)

◆

= c1(u) + (A1(u, t),��B1(u, t))

✓
cos(��✓1(u)) � sin(��✓1(u))
sin(��✓1(u)) cos(��✓1(u))

◆✓
n1(u)

��b1(u)

◆

= c1(u) + (A1(u, t), B1(u, t))

✓
cos ✓1(u) � sin ✓1(u)
sin ✓1(u) cos ✓1(u)

◆✓
n1(u)
b1(u)

◆
= f1(u, t).

Thus, we obtain the relation f1(u, t) = T � f0(�u, t). In particular, f1 has the same first funda-
mental form as f0. Moreover,

(a) if T 2 SO(3), then the cuspidal angle of f1 takes opposite sign of that of f0. By the
uniqueness of the isometric dual of f0 (cf. Theorem 3.8), f̌0(u, t) = f1(u, t) = T �f0(�u, t)
holds, that is, f1 is the faithful isomer (i.e. the isometric dual) of f0.

(b) if T 2 O(3) \ SO(3), then the cuspidal angle of f1 coincides with that of f0. Then
f0(u, t) = f1(u, t) = T � f0(�u, t) holds (cf. Theorem 3.8), that is, the image of f0 is
invariant by T .

Remark 4.5. Let f(u, t) be a generalized cuspidal edge associated to the data

((u), ⌧(u), ✓(u), µ̂(u, t)).

Then f#(u, t) := f(�u, t) is also a generalized cuspidal edge along the same space curve as f but
with the reversed orientation. If we set c#(u) := c(�u), then c#(u) = f#(u, 0) holds. By a simi-
lar calculation like as in Remark 4.4, one can easily verify that ((�u),�⌧(�u),�✓(�u), µ̂(�u, t))
gives the fundamental data of f#(u, t).

We next prove Theorem II in the introduction.

Proof of Theorem II. We fix f 2 G!
⇤⇤(R

2
J ,R

3, C) arbitrarily. We denote by ds2f the first funda-
mental form of f . Since f is admissible, the singular curvature s(u) satisfies (0.9), and so (0.7)
holds. By Theorem 3.8, there exist two distinct generalized cuspidal edges g± whose first funda-
mental forms coincide with ds2f such that g+ = f , and u 7! g�(u, 0) has the same orientation as

that of u 7! f(u, 0). Since f is admissible, the singular curvature s is determined only by ds2f .

Thus g± belong to G!
⇤⇤(R

2
J ,R

3, C). By the proof of Theorem I, we know that f̌ := g� gives the
isometric dual of f .

On the other hand, we replace u with �u (that is, the orientation of C is reversed). Since f
is admissible, it holds that

0 < |s(u)|  min
u2J

(u) < (�u) (u 2 J).

So, applying Theorem 3.8 again, there exist two distinct generalized cuspidal edges

h± 2 G!
⇤⇤(R

2
J ,R

3, C)



DUALITY ON GENERALIZED CUSPIDAL EDGES 79

such that u 7! h±(u, 0) have the same orientation as that of u 7! f(�u, 0). Then ds2f gives the
common first fundamental form of the generalized cuspidal edges h±. By (3.11), we may assume
that the cuspidal angle ✓⇤(u) (resp. �✓⇤(u)) (✓⇤(u)✓(u) > 0) of h+ (resp. h�) satisfies

cos ✓⇤(u) =
s(u)

(�u)
.

Since the orientation of the singular curves of h± is opposite of that of f , the two maps h± are
non-faithful isomers of f . We set

f⇤ := h+ (the inverse), and f̌⇤ := h� (the inverse dual).

By the above Remark 4.5, the cuspidal angle of f#(u, v) := f(�u, v) is �✓(�u), the cuspidal
angle ✓⇤(u) takes opposite sign of that of f#(u, v). So the image of f does not coincide with
that of f⇤. Hence f⇤ is an isomer of f .

By our construction of f⇤, (1), (2) and (3) are obvious. So we prove (4). We suppose that
the first fundamental form of a generalized cuspidal edge k 2 G!

⇤⇤(R
2
I ,R

3, C) is isometric to ds2f .

(The case that k 2 G!
⇤ (R

2
o,R

3, C) is obtained by Lemma 0.1.) Since the first fundamental form is
determined independently of a choice of local coordinate system, we have JC(f �') = JC(f)�',
where ' is a di↵eomorphism on a certain tubular neighborhood of J ⇥ {0}. So we may assume
that ds2k = ds2f without loss of generality. Then k must coincide with one of {g+, g�, h+, h�},
because of the uniqueness of the solution of (3.9) with initial condition (3.10). ⇤
Definition 4.6. We call the above f⇤ and f̌⇤ the inverse and the inverse dual of
f 2 G!

⇤⇤(R
2
J ,R

3, C), respectively.

We next give criteria of a given germ of generalized cuspidal edge to be a cuspidal edge,
cuspidal cross cap or 5/2-cuspidal edge in terms of the extended half-cuspidal curvature function
µ̂.

Proposition 4.7. Let f 2 Gr(R2
J ,R

3, C) be the generalized cuspidal edge associated to a fun-

damental data (, ⌧, ✓, µ̂). Then

(1) f gives a cuspidal edge along the u-axis if µ̂(u, 0) 6= 0,
(2) f gives a cuspidal cross cap at o if µ̂(0, 0) = 0 and µ̂u(0, 0) 6= 0,
(3) f gives a 5/2-cuspidal edge along the u-axis if µ̂(u, 0) = 0 and µ̂vv(u, 0) 6= 0.

The first and the second assertions have been proved in [3, Proposition 1.6].

Proof. We may assume that f is written in a normal form. The first assertion follows from (1)
of Proposition A.2. The second assertion follows from the criterion for cuspidal cross caps given
in [2], but can be proved much easier using (2) of [3, Proposition 4.4]. The third assertion is a
consequence of (2) of Proposition A.2. ⇤

To compute the first and the second fundamental forms of f in terms of fundamental data,
the following Frenet-type formula for singular curves is convenient.

Lemma 4.8 (Izumiya-Saji-Takeuchi [7] and Fukui [3]). The following formula holds (cf. (4.3)):

(4.7)

0

@
e
0

v
0
2

v
0
3

1

A =

0

@
0  cos ✓  sin ✓

� cos ✓ 0 ⌧ � ✓0

� sin ✓ �(⌧ � ✓0) 0

1

A

0

@
e

v2

v3

1

A.

This formula can be rewritten as (cf. (4.3))
0

@
e
0

v
0
2

v
0
3

1

A =

0

@
0 s ⌫

�s 0 t
�⌫ �t 0

1

A

0

@
e

v2

v3

1

A,
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which is the one given in Izumiya-Saji-Takeuchi [7, Proposition 3.1], where t is the cusp-

directional torsion defined in [11] and has the expression (cf. [3, Page 7])

(4.8) t = ⌧ � ✓0.

Using Lemma 4.8, one can easily obtain the following by a straightforward computation:

Proposition 4.9 (Fukui [3]). The first fundamental form ds2f = Edu2 +2Fdudt+Gdt2 of f as

in (4.5) is given by

E = (1� (A cos ✓ +B sin ✓))2 + (Au + (✓0 � ⌧)B)2 + (Bu � (✓0 � ⌧)A)2,(4.9)

F = At(Au + (✓0 � ⌧)B) +Bt(Bu � (✓0 � ⌧)A), G = t2,

where , ⌧, ✓ are functions of u and A,B are functions of (u, t).

Proof. Di↵erentiating f = c+Av2 +Bv3, we have

fu = (1� (A cos ✓ +B sin ✓))e+ (Au + (✓0 � ⌧)B)v2 + (Bu � (✓0 � ⌧)A)v3,

ft = Atv2 +Btv3.

Since E = fu · fu, F = fu · ft and G = ft · ft, we obtain the assertion. ⇤

We can write

µ̂(u, t) = µ0(u) + µ1(u)t+ µ2(u)t
2 + µ3(u, t)t

3,

and then Lemma A.1 yields that

A =
t2

2
� µ0(u)2

8
t4 � µ0(u)µ1(u)

10
t5 + t6a6(t, u),(4.10)

B =
µ0(u)

3
t3 +

µ1(u)

8
t4 +

2
�
�µ0(u)3 + 2µ2(u)

�

30
t5 + t6b6(t, u),(4.11)

where a6(t, u) and b6(t, u) denote Cr-functions.

Corollary 4.10. The Gaussian curvature K of ds2f satisfies

K(u, t) =
K0(u)

t
+K1(u) +K2(u)t+K3(u, t)t

2,

where

K0 := µ0⌫ , K1 := �sµ2
0 � 2t + ⌫µ1,

K2 := �⌫µ
3
0

2
+
s⌫µ0

2
� 3sµ0µ1

2
+ ⌫µ2 � 2µ0

0t +
µ0

2
0t,

and K3(u, t) is a Cr
-function. Here s,⌫ and t are defined in (0.4) and (4.8). Moreover,

µ0 = c/2 (cf. (1.5)) and 0t = dt(u)/du.

Fukui [3, Theorem 1.8] has already determined the first two terms K0 and K1. So the essential
part of the above corollary is the statement for K2.

Proof. One can obtain this formula by computing the sectional curvature of ds2f , or alternatively,
one can get it by computing the second fundamental form of f as Fukui did in [3]. In each
approach, (4.10) and (4.11) play crucial roles. ⇤

As a consequence of this corollary, the first term

K0 := µ0⌫ =
c⌫
2
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defined in [12] is an intrinsic invariant, which is called the product curvature. The second term
K1 is an intrinsic invariant. We consider the term K2. Since K0 = c⌫/2, and since µ0 is equal
to the cuspidal curvature c, the fact that s and c⌫ are intrinsic yields that

K̃2 := �⌫µ
3
0

2
� 3sµ0µ1

2
+ ⌫µ2 � 2µ0

0t +
µ0

2
0t

is also an intrinsic invariant. Using this, we can prove the following assertion:

Proposition 4.11. Let f 2 Gr(R2
J ,R

3, C) be the generalized cuspidal edge associated to a

fundamental data (, ⌧, ✓, µ̂) satisfying sin ✓ 6= 0. Then

(1) f gives a cuspidal edge along the u-axis if K0(u) 6= 0,
(2) f gives a cuspidal cross cap at u = 0 if K0(0) = 0 and dK0(0)/du = 0, and
(3) f gives a 5/2-cuspidal edge along the u-axis if K0(u) = 0 and K2(u) 6= 0.

In particular, these conditions depend only on the first fundamental form of f .

Proof. Since sin ✓(u) 6= 0, we have ⌫(u) 6= 0. Since K0 = µ0⌫ , K0(u) = 0 if and only if
µ0(u) = 0. Since µ0(u) = µ̂(u, 0)(= c(u)), the first and second assertions follow from (1) and
(2) of Proposition 4.7, respectively. On the other hand, if µ0(= c) is identically zero, then
K2 = ⌫µ2. So K2(u) 6= 0 if and only if µ2(u) 6= 0. Thus, the third assertion immediately follows
from (3) of Proposition 4.7. ⇤

We now prove Fact 1.1 in the introduction.

Proof of Fact 1.1. Since sin ✓ 6= 0 if and only if ⌫ 6= 0, the assertions (1) and (2) follow from
Theorem 3.8. We next prove (3). We remark that

K!
⇤ (R

2
o) = {ds2f 2 K!

I (R
2
o) ; K0(0) 6= 0},

K!
p,⇤(R

2
o) = {ds2f 2 K!

I (R
2
o) ; K0(0) = 0, dK0(0)/du 6= 0},

K!
a,⇤(R

2
o) = {ds2f 2 K!

I (R
2
o) ; K0(u) = 0, K2(0) 6= 0}

hold in terms of our coordinates (u, t). We have shown the following (cf. Propositions 4.7 and
4.11).

• K0(0) 6= 0 if and only if µ0(0)(= c(0)) 6= 0.
• K0(0) = 0 and dK0(0)/du 6= 0 if and only if µ0(0)(= c(0)) = 0 and dµ0(0)/du 6= 0.
• K0(u) = 0 and K2(0) 6= 0 if and only if µ0(u) = 0 and µ2(0) 6= 0.

By Corollary 3.2, the following assertions hold:

• K̂(o) 6= 0 if and only if K0(0) 6= 0.
• K̂(o) = 0 and @K̂(o)/@u 6= 0 if and only if K0(0) = 0 and dK0(0)/du 6= 0.

So the first fundamental form ds2f of f belongs to K!
⇤ (R

2
o) (resp. K!

p,⇤(R
2
o)) if and only if

µ0(0)(= c(0)) 6= 0 (resp. µ0(0)(= c(0)) = 0 and dµ0(0)/du 6= 0). On the other hand, ds2f
belongs to K!

a,⇤(R
2
o) if and only if µ0(u) = 0 and µ1(0) 6= 0. In fact, ⌘ := @/@t gives the

null direction of f along the u-axis (as the singular curve of ds2f ), and we have (cf. (1.2))
dK(⌘) = Kt(u, 0) = K2(u). ⇤

Finally, we consider the cuspidal edges with vanishing limiting normal curvature: A cuspidal
edge is called asymptotic if its first fundamental form is asymptotic (see Section 1), which is
equivalent to the condition that the cuspidal angle ✓(u) of f is constantly equal to 0 or ⇡ along
its edge.
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If f is an asymptotic cuspidal edge, the singular curvature s, limiting normal curvature ⌫
and cusp-directional torsion t satisfy

(4.12) s = ", ⌫ = 0, t = ⌧,

where " := cos ✓ (2 {1,�1}). So we get the following:

Proposition 4.12. Let f 2 Gr
3/2(R

2
J ,R

3, C) be a cuspidal edge associated to a fundamental

data (, ⌧, ✓, µ̂). If sin ✓ vanishes identically, then

(1) the limiting normal curvature ⌫ vanishes identically,

(2) the first fundamental form of f is an asymptotic Kossowski metric, and

(3) the Gaussian curvature K of f can be extended across its singular set as a Cr
-function.

Moreover, the sign of K coincides with the sign of (K1 =)� "µ2
0 � ⌧2 whenever K1 6= 0, where

" := cos ✓.

As an application, we first consider the case K vanishes identically.

Corollary 4.13. Let f 2 Gr
3/2(R

2
J ,R

3, C) be the cuspidal edge whose Gaussian curvature K
vanishes identically. Then C is a regular space curve whose torsion function does not vanish,

and f is the tangential developable of C. In particular, f has no isomers.

Proof. Since K vanishes identically, the identity �"µ2
0 = ⌧2 holds along C. Since f is a cuspidal

edge, µ0 has no zeros, and the left hand side does not vanish. Thus, the torsion function ⌧ of
C also has no zeros. Since f is a wave front, its principal directions along C are well-defined
(cf. [13, Proposition 1.6]). Moreover, each singular point of f is disjoint from umbilical set (cf.
[13, Proposition 1,10]), and the zero principal curvature direction is uniquely determined at each
point of C. Moreover, it can be easily seen that this direction must be the tangential direction
of C. Since K vanishes identically, f must be a ruled surface (cf. [13, Proposition 2.2]), so it
must be the tangential developable of C. ⇤
Remark 4.14. The standard cuspidal edge f0(t) = (u2, u3, v) does not satisfy the assumption
of Corollary 4.13, since the singular set image is a line.

We next consider the case K > 0. If ✓ = ⇡ and µ0 is su�ciently large, then the Gaussian
curvature K near the singular set can be positive. So we can construct cuspidal edges with
K > 0. The following assertion is an immediate consequence of Proposition 4.12.

Corollary 4.15. Let f 2 Gr
3/2(R

2
J ,R

3, C) be the cuspidal edge whose Gaussian curvature K is

bounded near singular set and positive, then it is asymptotic satisfying ✓ = ⇡ and s < 0.

The negativity of s has been pointed out in [16]. Although Theorem 3.8 does not cover the
case ⌫ = 0, Brander [1] showed the existence of cuspidal edges in the case of K = 1 along a
given space curve C of ⌫ > 0 using the loop group theory.

5. Relationships among isomers

In this section, we show several properties of isomers, and prove the last two statements in
the introduction. We fix a space curve c(u) satisfying c(0) = 0 which is parametrized by arc-
length defined on a closed interval J := [�l, l] (l > 0) whose curvature function (u) is positive
everywhere. We prove the following:

Proposition 5.1. Let f 2 G!
⇤,3/2(R

2
J ,R

3, C). Then f̌ is congruent (cf. Definition 0.2) to f if

and only if

(1) C lies in a plane, or
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(2) C has a positive non-trivial symmetry and the first fundamental form ds2f has an e↵ective

symmetry (cf. Definition 0.4).

Proof. We suppose that f̌ is congruent to f . By Remark 4.5, it is su�cient to consider the
case that C does not lie in any plane. By Remark 0.5, there exist an isometry T on R3 and a
di↵eomorphism ' defined on a neighborhood of the singular curve of f such that

(5.1) T � f � ' = f̌ .

We consider the case that T fixes each point of C. Then C must lie in a plane, a contradiction.
So T is a non-trivial symmetry of C, that is, it reverses the orientation of C. We suppose that
T is a negative symmetry. Then (b) of Remark 4.4 implies that the image of f coincides with
that of T � f . Since the image of f̌ is di↵erent from that of f , this case never happens. So T
must be a positive symmetry, and then ' gives an e↵ective symmetry of ds2f .

Conversely, if C has a positive non-trivial symmetry and the first fundamental form ds2f has
an e↵ective symmetry ', then T � f � ' is a faithful isomer of f as seen in (a) of Remark 4.4.
Since such an isomer is uniquely determined (cf. Theorem 3.8), we have (5.1). ⇤
Remark 5.2. Suppose that C is planar and S is the reflection with respect to the plane con-
taining C. For each f 2 Gr

⇤,3/2(R
2
J ,R

3, C), S � f gives a faithful isomer of f . Moreover, if f is

real analytic (i.e. r = !), then we have f̌ = S � f (cf. Definition 3.18).

Example 5.3. Let f 2 G1
⇤ (R2

J ,R
3, C) be an admissible generalized cuspidal edge whose fun-

damental data is (, ⌧, ✓, µ̂) (⌧ 6= 0). Suppose that , ⌧ and ✓ are constant, and the extended
half-cuspidal curvature function µ̂ does not depend on u. In this case, without assuming the real
analyticity of f , we can show the existence of an isometry T 2 SO(3) and an e↵ective symmetry
' of ds2f such that T � f � ' gives a faithful isomer of f as follows: In fact, in this case C has

the constant curvature  and the constant torsion ⌧ . Since ⌧ 6= 0, C is a helix in R3 and there
exists a 180�-rotation T 2 SO(3) with respect to the principal normal line at 0 2 C such that
T (C) = C. By the first part of Proposition 5.10, it is su�cient to show that the first fundamental
form

ds2f = E(t)du2 + 2F (t)dudt+G(t)dt2

of f admits an e↵ective symmetry ' as an involution. In fact, if such a ' exists, then (f̌ :=)T�f�'
gives the isometric dual of f . In this situation, two functions A,B can be expressed as (cf.
(4.9) and (4.6)) A(t) := t2↵(t) and B(t) := t3�(t), where ↵(t) and �(t) are Cr-functions. By
Proposition 4.9,

• E(t) is positive for each t,
• there exists a C1-function F0(t) such that F (t) = t4F0(t), and G(t) = t2.

Setting

!1 =
p
E(t)

✓
du+

F (t)

E(t)
dt

◆
, !2 = t

s
E(t)� t6F0(t)2

E(t)
dt,

we have ds2f = (!1)2 + (!2)2. Moreover, if we set

(5.2) x(u, t) := u+

Z t

0

F (v)

E(v)
dv, y(t) :=

Z t

0

s
E(v)� v6F0(v)2

E(v)
dv.

Then we can take (x, y) as a new local coordinate system centered at (0, 0), and t can be
considered as a function of y. So we can write t = t(y), and

ds2f = E(y)dx2 + t(y)2dy2.
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So the local di↵eomorphism ' : (x, y) 7! (�x, y) gives an e↵ective symmetry of ds2f .

Regarding the fact that the fundamental data of f is (, ⌧, ✓, µ), we show in later that f̌ is
right equivalent to the cuspidal edge whose fundamental data of (, ⌧,�✓, µ), see Proposition
6.1.

Proof of Theorem III. Suppose that ds2f admits a symmetry '. Then this symmetry is e↵ective

(cf. Corollary 3.16). So, f � ' and f̌ � ' must be right equivalent to f̌⇤ and f⇤, respectively. In
particular, the number of right equivalence classes of f, f̌ , f⇤, f̌⇤ is two.

Conversely, we suppose that two of {f, f̌ , f⇤, f̌⇤} are right equivalent. Replacing f by f̌ , f⇤,
f̌⇤, we may assume that one of the right equivalent pair is f and the other is g 2 {f̌ , f⇤, f̌⇤}.
Without loss of generality, we may assume that f is written in a normal form. Since f̌ cannot
be right equivalent to f , the map g must be right equivalent to f⇤ or f̌⇤, that is, there exists a
local di↵eomorphism ' such that g = f �', which implies '⇤ds2f = ds2f . If ' is an identity map,

then g = f holds. However, it contradicts the fact that u 7! f(u, 0) and u 7! f⇤(u, 0) = f̌⇤(u, 0)
give mutually distinct orientations to C. So, by Corollary 3.16, ' must be an e↵ective symmetry
of ds2f . ⇤

Corollary 5.4. Let f 2 G!
⇤⇤,3/2(R

2
J ,R

3, C). Suppose that

(1) C is planar and does not admit any non-trivial symmetry at 0, and

(2) ds2f admits no e↵ective symmetries (cf. Definition 0.4).

Then

• f̌ := S � f holds, where S 2 O(3) is the reflection with respect to the plane containing C,

• the isometric dual, inverse and the inverse dual are given by S � f , f⇤ and S � f⇤,
respectively. Moreover, f⇤ is not congruent to f .

In particular, the four maps consist of two congruence classes.

Proof. As seen in Remark 5.2, f̌ := S � f holds. We next prove the second assertion. Since C
lies in a plane, IC(f) = S � f holds. By applying Theorem II, the right equivalence classes of
J�1
C (JC(f)) are represented by {f, S � f, f⇤, S � f⇤}. It is su�cient to show that f⇤ is not

congruent to f . If not, then, by Remark 0.5, there exist T 2 O(3) and a di↵eomorphism ' defined
on a neighborhood of the singular curve of f such that T �f⇤ �' = f . In particular, '⇤ds2f = ds2f
holds. By (1), T is not non-trivial. So, ' must be an e↵ective symmetry, contradicting (2). ⇤

We next consider the case that ds2f has an e↵ective symmetry.

Proposition 5.5. Let f 2 G!
⇤⇤,3/2(R

2
J ,R

3, C). Suppose that

(1) C is non-planar and does not admit any non-trivial symmetry at 0,

(2) ds2f admits an e↵ective symmetry '.

Then f̌(:= IC(f)) is not congruent to f , and f̌ , f̌ �' and f �' give the isometric dual, inverse

and inverse dual, respectively.

Proof. By Proposition 5.1, f̌ is not congruent to f . Since f̌ � ' (resp. f � ') has the same first
fundamental form as f , the fact that ' is e↵ective yields that it coincides with either f⇤ or f̌⇤.
Since the cuspidal angle of f̌ � ' (resp. f � ') takes the opposite sign (resp. the same sign) of
that of f (cf. Remark 4.5), we have f⇤ = f̌ � ' (resp. f̌⇤ = f � '). ⇤
Corollary 5.6. Let f 2 G!

⇤⇤,3/2(R
2
J ,R

3, C). Suppose that

(1) C is planar and does not admit any non-trivial symmetry at the origin 0,

(2) ds2f admits an e↵ective symmetry '.
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Then

• f̌ = S � f holds, where S 2 O(3) is the reflection with respect to the plane containing C.

• Moreover, S � f, S � f � ', f � ' give the isometric dual, inverse and inverse dual,

respectively.

As a consequence, all of isomers are congruent to f .

Proof. As we have seen in Remark 5.2, f̌ = S � f holds. Since S � f � ' (resp. f � ') has the
same first fundamental form as f , the fact that ' is e↵ective yields it coincides with f⇤ or f̌⇤.
Since the sign of cuspidal angle of S � f � ' (resp. f � ') along the curve c#(u) := c(�u) takes
the opposite sign (resp. the same sign) of that of f , we have f⇤ = S � f � ' (resp. f̌⇤ = f � ').
Finally, it is obvious that the four maps are congruent. So the proposition is proved. ⇤

We then consider the case that C has a non-trivial symmetry.

Proposition 5.7. Let f 2 G!
⇤⇤,3/2(R

2
J ,R

3, C). Suppose that

(1) C is non-planar and admits a non-trivial symmetry T 2 O(3) at 0,
(2) ds2f does not admit any e↵ective symmetries.

Then

• f̌ := IC(f) is not congruent to f , and
• T � f̌ , T � f are the inverse and inverse dual, respectively.

In particular, f, f̌ , T � f̌ and T � f consist of two congruence classes.

Proof. By Proposition 5.1, f̌ is not congruent to f . So the assertion can be shown easily. ⇤
We get the following corollary.

Corollary 5.8. Let f 2 G!
⇤⇤,3/2(R

2
J ,R

3, C). Suppose that C lies in a plane and admits a non-

trivial symmetry T at the origin 0. Then f̌ = S � f holds, and T � f, S � T � f give the inverse

and the inverse dual of f , where S is a reflection with respect to the plane. As a consequence,

f, f̌ , f⇤, f̌⇤ belong to a single congruence class.

Proof. Obviously, f̌ = S �f holds (cf. Remark 5.2). On the other hand, T �f gives a non-faithful
isomer, and its isometric dual S � T � f also gives another non-faithful isomer. ⇤

Figure 2. The four cuspidal edges given in Example 5.9

Example 5.9. We set

f(u, v) :=

✓
'(u, v) cosu� 1, '(u, v) sinu, v3u+ 2v3 � v2

◆
,
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where '(u, v) := �v3u� 2v3 � v2 + 1. Then, it has cuspidal edge singularities along

c(u) (:= f(u, 0)) = (cosu� 1, sinu, 0).

By setting,

S :=

0

@
1 0 0
0 1 0
0 0 �1

1

A , T :=

0

@
1 0 0
0 �1 0
0 0 1

1

A ,

S � f is the faithful isomer, and T � f, TS � f are non-faithful isomers. We remark that f is
associated to Fukui’s data (✓, A,B) given by

✓ =
⇡

4
, A(u, v) :=

p
2v2, B(u, v) :=

p
2v3(u+ 2).

Finally, we consider the case that C and ds2f admit a symmetry and an e↵ective symmetry,
respectively.

Proposition 5.10. Let f 2 G!
⇤⇤,3/2(R

2
J ,R

3, C). Suppose that

(1) C is non-planar and admits a non-trivial symmetry T 2 O(3) at 0,
(2) ds2f admits an e↵ective symmetry '.

Then any isomer of f is right equivalent to one of f̌ , f̌ � ', f � '. Moreover,

• if T is positive (i.e. T 2 SO(3)), then f̌ = T � f � ', and
• if T is negative (i.e. T 62 SO(3)), then f̌ is not congruent to f .

Proof. We set g := T � f � '. If T is positive, then g is a faithful isomer of f as shown in
Remark 4.4. On the other hand, if T is negative, then f̌ is not congruent to f by Proposition 5.1
and so it not congruent to f . ⇤
Proof of Theorem IV. We suppose that C has no non-trivial symmetries, and also ds2f has no

symmetries. If two of {f, f̌ , f⇤, f̌⇤} are mutually congruent, replacing f by one of its isomers, we
may assume that f is congruent to g, where g is one of {f̌ , f⇤, f̌⇤}. By Proposition 5.1, we may
assume that g = f⇤ or g = f̌⇤. Suppose that g is congruent to f . Then (cf. Remark 0.5) there
exist a non-trivial symmetry T 2 O(3) of C and a local di↵eomorphism ' such that

T � g � ' = f.

Since C has no non-trivial symmetries, and ds2f has also no symmetries, ' is the identity map
and T is not a non-trivial symmetry. However, this contradicts the fact that u 7! f(u, 0) and
u 7! f⇤(u, 0) = f̌⇤(u, 0) give mutually distinct orientations to C. So we obtained (1).

The assertion (2) follows from Corollaries 5.4, 5.6, 5.8 and Propositions 5.5, 5.7, and 5.10, by
using the fact that any symmetries of ds2f are e↵ective (cf. Corollary 3.16).

Finally, suppose that Nf = 1. We first consider the case that C lies in a plane. If C has no
non-trivial symmetries and ds2f has also no symmetries, then Nf = 2 holds by Corollary 5.4.

So either C or ds2f has a symmetry. If C has a symmetry, then Nf = 1 by Corollary 5.8 (this

corresponds to the case (a)). On the other hand, if C has no non-trivial symmetries and ds2f
also has a symmetry ', then ' is e↵ective (cf. Corollary 3.16). So, Corollary 5.6 yields that
Nf = 1. (This corresponds to the case (b). In fact, we denote by T0 the reflection with respect
to the plane containing C. We let T1 be a non-trivial symmetry of C. If T1 is positive, then (b)
holds obviously. On the other hand, if T1 is negative, then T0 � T1 is a positive symmetry and
(b) holds.)

So we may assume that C does not lie in any planes. The assumption Nf = 1 implies f̌ must
congruent to f . By Proposition 5.1, this holds only when (c) happens, since C does not lie in
any planes. ⇤
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6. Examples

One method to give a numerical approximation of a isometric dual g of a real analytic cuspidal
edge f is to determine the Taylor expansion of g(u, v) at v = 0 along the u-axis as a singular set
so that g = IC(f). In [14, Page 85], we give a numerical approximation of the isometric dual of

f0(u, v) =

✓
u,�v2

2
+

u3

6
,
u2

2
+

u3

6
+

v3

6

◆
.

We denote by C the image of singular curve u 7! f0(u, 0). In the figure of the isometric dual
g0 = IC(f0) given in [14, Figure 2], the surface g0 seems like it is lying on the almost opposite
side of f0. This is the reason why the cuspidal angle ✓(u) of f0(u, v) is ⇡/2 at u = 0. The red
lines of Figure 3 (left) indicates the section of f0, g0 at u = �1/4. The orange (resp. blue) surface
corresponds to f0 (resp. g0). We can recognize that the cuspidal angle takes value less than ⇡/2,
that is, the normal direction of g0 is linearly independent of that of f0 at (u, v) = (�1/4, 0). On
the other hand, Figure 3 (right) indicates the images of the numerical approximations of the two
non-faithful isomers f1, g1 of f0.

Figure 3. The images of f0, g0 (left), and the images of f0, f1, g1 (right), where
f0 is indicated as the orange surfaces.

By Proposition 4.9, one can easily observe that the first fundamental form of f�✓ does not
coincide with that of f✓. This means that the image of f�✓ cannot coincide with that of f✓ nor
f̌✓. However, one might expect the possibility that f�✓ is an isomer of f✓. Here, we consider
the case that the space curve C has a non-trivial symmetry T . In this case, we know that
f, f̌ , T � f, T � f̌ are only the possibilities of isomers. Thus, if f�✓ is an isomer of f✓, then
it must be congruent to either f or f̌ . We give here the following two propositions which are
related to one of these possibilities (by the following Proposition 6.1, Example 5.3 is just the
case that f�✓ is right equivalent to f̌ .)

Proposition 6.1. Let C be a space curve which admits a non-trivial symmetry T 2 SO(3) at

0, and let f := f✓ 2 G1(R2
J ,R

3, C) be a generalized cuspidal edge as in the formula (4.1) such

that

• T � f(�u, 0) = f(u, 0), and
• the cuspidal angle ✓ satisfies ✓(u) = �✓(�u) where � 2 {+,�}.

Suppose that A(u, v) and B(u, v) satisfy one of the following two conditions:

(1) A(�u,�v) = A(u, v) and B(�u,�v) = �B(u, v) or
(2) A(�u, v) = A(u, v) and B(�u, v) = �B(u, v).
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Then f✓ = T � f��✓ � ' holds, where '(u, v) = (�u,�v) (resp. '(u, v) = (�u, v)) in the case

of (1) (resp. (2)). In particular, f�✓ is a right equivalent to f̌ if � = +, and the image of f is

invariant under T if � = �.

Proof. We consider the case � = +, that is, ✓(u) = ✓(�u). Since T �c(�u) = c(u) and T 2 SO(3)
(cf. Remark 4.4),

�Te(�u) = e(u), Tn(�u) = n(u), b(u) = �Tb(�u).

In the case of (1) (resp. (2)), we set '(u, v) := (�u,�v) (resp. '(u, v) := (�u, v)). Then
A � '(u, v) = A(u, v) and B � '(u, v) = �B(u, v) hold, and so

T � f✓ � ' = c+ (A,�B)

✓
cos ✓ � sin ✓
sin ✓ cos ✓

◆✓
n

�b

◆

= c+ (A,B)

✓
cos ✓ sin ✓
� sin ✓ cos ✓

◆✓
n

b

◆
= f�✓,

proving the relation f✓ = T � f��✓ � '. The case ✓(u) = �✓(�u) is proved in the same way.
We then consider the case that � = 1. In this case, f✓ = T � f�✓ � ' holds. Since T is

an isometry of R3, we have '⇤ds2f = ds2g, where f := f�✓ and g = f�✓. So g is isometric to
f . Since the cuspidal angle of g takes the opposite sign of that of f , the image of g does not
coincide with f . So g is a faithful isomer of f . Then the uniqueness of the faithful isomer of f
(cf. Theorem 3.8) yields that g is right equivalent to f̌ . ⇤

Similarly, the following assertion holds.

Proposition 6.2. Let C be a space curve which admits a non-trivial symmetry T 2 O(3)\SO(3)
at 0, and let f := f✓ 2 G1(R2

J ,R
3, C) be a generalized cuspidal edge as in the formula (4.1)

such that

• T � f(�u, 0) = f(u, 0), and
• the cuspidal angle ✓ satisfies ✓(u) = �✓(�u), where � 2 {+,�}.

Suppose that A(u, v) and B(u, v) satisfy one of the following two conditions:

(1) A(�u,�v) = A(u, v) and B(�u,�v) = B(u, v),
(2) A(�u, v) = A(u, v) and B(�u, v) = B(u, v).

Then f✓ = T � f�✓ � ' holds, where '(u, v) = (�u,�v) (resp. '(u, v) = (�u, v)) in the case

of (1) (resp. (2)). In particular, f�✓ is right equivalent to f̌ if � = �, and the image of f is

invariant under T if � = +.

Proof. Like as in the case of the proof of Proposition 6.1, �Te(�u) = e(u) and Tn(�u) = n(u)
hold. Since det(T ) = �1, we have Tb(�u) = b(u). In the case of (1) (resp. (2)), we set
'(u, v) := (�u,�v) (resp. '(u, v) := (�u, v)), then the relation f✓ = T � f�✓ �' is obtained like
as in the case of the proof of Proposition 6.1. One can also obtain the last assertion imitating
the corresponding argument in the proof of Proposition 6.1. ⇤
Example 6.3. Let a, b be real numbers so that a > 0 and b 6= 0. Then

c(u) :=

✓
a cos

⇣u
c

⌘
� a, a sin

⇣u
c

⌘
,
bu

c

◆
(u 2 R)

gives a helix of constant curvature  := a/c2 and constant torsion ⌧ := b/c2, where c :=
p
a2 + b2.

At the point 0 := c(0) on the helix, c satisfies T (c(R)) = c(R), where T 2 SO(3) is the 180�-
rotation with respect to the line passing through the origin 0 which is parallel to the principal
normal vector n(0). We set a = b = 1, ✓ = ⇡/4. By setting

(A1, B1) := (v2, v3), (A2, B2) := (v2, v5), (A3, B3) := (v2, uv3).
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The surfaces gi,± := f±⇡/4 (i = 1, 2, 3) associated to the Fukui data (c,±⇡/4, Ai, Bi) correspond
to cuspidal edges, 5/2-cuspidal edges, and cuspidal cross caps, respectively. The first two cases
satisfy (1) of Proposition 6.1 and the third case satisfies (2) of Proposition 6.1. So gi,� (i = 1, 2, 3)
is a faithful isomer of gi,+.

Figure 4. The images of cuspidal edges g1,± (left), 5/2-cuspidal edges g2,±
(center) and cuspidal cross caps g3,± (right) given in Example 6.3.
(The orange surfaces correspond to gi,+ and the blue surfaces correspond to gi,�
for i = 1, 2, 3.)

Finally, we consider the case of fold singularities:

Example 6.4. We let c(u) be a C1-regular space curve with positive curvature  and torsion
⌧ . If we set

g±(u, v) := c(u) +
v2

2
(cos ✓n(u)⌥ sin ✓b(u)),

then it can be easily checked that g� is a faithful isomer of g+, where ✓ is a constant. These two
surfaces can be extended to the following regular ruled surfaces:

g̃± = c(u) +
v

2
(cos ✓n(u)⌥ sin ✓b(u)).

Appendix A. A representation formula for generalized cusps

A plane curve � : J ! R2 is said to have a singular point at t = t0 if �̇(t0) = 0 (the dot
means d/dt). The singular point t = t0 is called a generalized cusp if �̈(t0) 6= 0. In this situation,
it is well-known that

(i) t = t0 is a cusp if and only if �̈(t0),
...
� (t0) are linearly independent,

(ii) (cf. [15]) t = t0 is a 5/2-cusp if and only if �̈(t0),
...
� (t0) are linearly dependent and

3det(�̈(t0),�
(5)(t0))�̈(t0)� 10det(�̈(t0),�

(4)(t0))
...
� (t0) 6= 0.

From now on, we set t0 = 0. The arc-length parameter s(t) of � given by

s(t) :=

Z t

0
|�̇(u)|du

is not smooth at t = 0, but if we set w := sgn(t)
p
|s(t)|, then this gives a parametrization of �

near t = 0, which is called the half-arc-length parameter of � near t = 0 in [17]. However, for
our purpose, as Fukui [3] did, the parameter

(A.1) v :=
p
2w = sgn(t)

✓
2

Z t

0
|�̇(u)|du

◆1/2

called the normalized half-arc-length parameter is convenient, since it is compatible with the
property |fvv| = 1 for adapted coordinate systems (cf. Definition 3.4) of generalized cuspidal
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edges. This normalized half-arc-length parameter can be characterized by the property that
v2/2 gives the arc-length parameter of �. Then by [17, Theorem 1.1], we can write

(A.2) �(v) =

Z v

0
u(cos ✓(u), sin ✓(u))du, ✓(v) =

Z v

0
µ̂(u)du.

We need the following lemma, which can be proved by a straightforward computation.

Lemma A.1. Let v be the normalized half-arc-length parameter of the generalized cusp �(w) at
w = 0. Then there exists an orientation preserving isometry T of R2

such that

(A.3) T � �(v) =
⇣v2

2
� µ2

0v
4

8
� µ0µ1v5

10
,
µ0v3

3
+

µ1v4

8
+

(�µ3
0 + 2µ2)v5

30

⌘
+ o(v5),

where

µ̂(v) =
2X

j=0

µjv
j + o(v3),

and o(v5) (resp. o(v3)) is a term higher than v5 (resp. v3).

Using this with (i) and (ii), one can easily obtain the following assertion:

Proposition A.2. Let v be the normalized half-arc-length parameter of the generalized cusp

�(w) at w = 0. Then

(1) w = 0 is a cusp of � if and only if µ0 6= 0, and
(2) w = 0 is a 5/2-cusp of � if and only if µ0 = 0 and µ2 6= 0.

It is remarkable that the coe�cient µ1 does not a↵ect the criterion for 5/2-cusps. In this case,
µ0 = 0 holds, and µ1 and µ2 are proportional to the “secondary cuspidal curvature” and the
“bias” of �(t) at t = 0, respectively. Geometric meanings for these two invariants for 5/2-cusps
can be found in [6, Proposition 2.2].

Acknowledgements. The authors thank Toshizumi Fukui and Wayne Rossman for valuable
comments.

References

[1] D. Brander, Spherical surfaces, Exp. Mathematics 25 (2016), 257–272.
[2] S. Fujimori, K. Saji, M. Umehara and K. Yamada, Singularities of maximal surfaces, Math. Z. 259 (2008),

827–848. DOI: 10.1007/s00209-007-0250-0
[3] T. Fukui, Local di↵erential geometry of cuspidal edge and swallowtail, to appear in Osaka J. Math.
[4] M. Hasegawa, A. Honda, K. Naokawa, K. Saji, M. Umehara and K. Yamada, Intrinsic properties of surfaces

with singularities, Internat. J. Math. 26 (2015), 1540008, 34pp.
[5] A. Honda, K. Naokawa, M. Umehara, and K. Yamada, Isometric deformations of wave fronts at non-

degenerate singular points, to appear in Hiroshima Math. J.
[6] A. Honda, K. Saji, Geometric invariants of 5/2-cuspidal edges, Kodai Math. J. 42 (2019), 496–525.

DOI: 10.2996/kmj/1572487230
[7] S. Izumiya, K. Saji and N. Takeuchi, Flat surfaces along cuspidal edges, J. Singul. 16 (2017), 73–100.

DOI: 10.5427/jsing.2017.16c
[8] M. Kossowski, Realizing a singular first fundamental form as a nonimmersed surface in Euclidean 3-space,

J. Geom. 81 (2004), 101–113. DOI: 10.1007/s00022-004-2511-y
[9] S.G. Krantz and H.R. Parks, A Primer of Real Analytic Functions (Second Edition), Birkhäuser 2002, USA.
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Abstract. Given a null-cobordant oriented framed link L in a closed oriented 3–manifold
M , we study the condition for the existence of a generic smooth map of M to the plane that
has L as an oriented framed regular fiber such that the singular point set is unlinked with L.
As an application, we give a singularity theoretical proof to the theorem, originally proved
by Hector, Peralta-Salas and Miyoshi, about the realization of a link in an open oriented
3–manifold as a regular fiber of a submersion to the plane.

1. Introduction

Let M be a smooth closed oriented 3–dimensional manifold and f : M ! R
2 a smooth map.

If y 2 f(M) ⇢ R
2 is a regular value, then f�1(y) is an oriented link inM and is naturally framed.

Furthermore, if f is generic enough, then the singular point set S(f) of f is an unoriented link
in M r f�1(y). In our previous paper [19], for an oriented framed link L in M , we characterized
those unoriented links in M r L which arise as the singular point set of a generic map that has
L as an oriented framed regular fiber. Such a characterization was given in terms of a relative
Stiefel–Whitney class, or an obstruction to extending the trivialization of TM |L induced by the
framing over the whole manifold M .

In this paper, we first study the obstruction class more in detail, and give a more practical
characterization in terms of Z2 linking numbers. We also clarify the components of L which
have non-trivial Z2 linking numbers with the singular point set. Then, as an application of such
studies, we consider submersions of open oriented 3–manifolds to R

2 that realize given oriented
framed links as regular fibers. The idea is to consider a generic map f whose singular point set
S(f) is unlinked with a given oriented framed regular fiber and to delete a neighborhood of the
singular point set S(f) for obtaining a submersion. In this way, we get a singularity theoretical
proof to the characterization theorem, originally due to Hector and Peralta-Salas [9] and Miyoshi
[14], of those oriented (framed) links in R

3 that arise as regular fibers of submersions. Recall
that their proofs used the h-principle for submersions due to Phillips [16]. Instead, in this paper,
we arrange the singular point set by using Levine’s cusp elimination techniques [12] (see also
[18, 19]) in a controlled way and push it to infinity, so that we get a submersion.

The paper is organized as follows. In §2, we recall several definitions and terminologies
together with our main theorem in [19], which describes the characterization of singular point
sets as unoriented links in terms of a certain obstruction class. In §3, we study the obstruction
class more in detail, especially for closed oriented 3–manifolds M with H⇤(M ;Z) ⇠= H⇤(S3;Z).
In such a case, we can identify the obstruction class in terms of Z2 linking numbers. Then, we can
describe the condition for the obstruction class to vanish in terms of Z2 linking numbers. Finally

2000 Mathematics Subject Classification. Primary 57R45; Secondary 57R30, 58K30, 57M25, 57R20.
Key words and phrases. Submersion, link, 3–manifold, excellent map, singular point set, regular fiber, relative

Stiefel–Whitney class, framing.
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in §4, we apply these results to submersions of open oriented 3–manifolds to R
2. We will see that

our singularity theoretical proof works well for punctured 3–manifolds, i.e. open 3–manifolds of
the form M� = MrD3 obtained from a closed 3–manifold M by removing a small closed 3–disk
D3 in M . For a general open oriented 3–manifold, we need to use an “absolute version” of the
h-principle due to Phillips. Recall that the original proof due to Hector and Peralta-Salas [9] or
Miyoshi [14] used the “relative version”, stronger than the “absolute version”, of the h-principle
[7].

Throughout the paper, manifolds and maps are di↵erentiable of class C1 unless otherwise
indicated. All (co)homology groups are with Z2–coe�cients unless otherwise indicated. The
symbol “⇠=” means an appropriate isomorphism between algebraic objects or a di↵eomorphism
between smooth manifolds.

2. Preliminaries

Let M (resp. N) be a closed 3–dimensional manifold (resp. a possibly noncompact surface)
and consider a map f : M ! N . We denote by S(f) the set of singular points of f . A point
in S(f) is a fold singularity (or a cusp singularity) of f if the map germ of f at that point is
modeled on the map germ (x, y, z) 7! (x, y2 ± z2) (resp. (x, y, z) 7! (x, y3 + xy � z2)) at the
origin. We say that a fold singularity is definite (resp. indefinite) if it is modeled on the map
germ (x, y, z) 7! (x, y2 + z2) (resp. (x, y, z) 7! (x, y2 � z2)). We say that f is excellent if S(f)
consists only of fold and cusp singularities. It is known that the set of excellent maps is always
open and dense in the mapping space C1(M,N) endowed with the Whitney C1 topology (for
example, see [6, 21]). If f is an excellent map, then S(f) is an (unoriented) link in M , i.e. a
finite disjoint union of smoothly embedded circles.

Let f : M ! N be a map. For a regular value y 2 f(M) ⇢ N , we call L = f�1(y) a regular
fiber, which is a link in M r S(f). Note that L is naturally framed : its framing is given as the
pull-back of the trivial normal framing of the point y in N . Furthermore, when M and N are
oriented, L is naturally oriented.

In the following, we fix an orientation for R
2 once and for all. For excellent maps of closed

oriented 3–manifolds into R
2, we have the following (for details, see [17, Proposition 5.1] and

[19]).

Lemma 2.1. Let L be an oriented framed link in a closed oriented 3–manifold M . Then, it is
realized as an oriented framed regular fiber of an excellent map f : M ! R

2 if and only if it is
framed null-cobordant: i.e. there exists a compact oriented normally framed surface V embedded
in M whose framed boundary coincides with L.

Remark 2.2. Let L be an oriented link in a closed oriented 3–manifold M . Then, we can
easily show that it bounds a compact oriented surface in M if and only if L represents zero in
H1(M ;Z). This can be proved by considering a certain map M r L ! S1. In particular, if
H1(M ;Z) = 0, then every oriented link bounds a compact oriented surface embedded in M .

Remark 2.3. It is known that every link in the 3–sphere is realized as a regular fiber of a
restriction to S3 of a certain polynomial map R

4 ! R
2 (see [1]). Furthermore, in [4], for a given

link in the 3–sphere, the authors give an explicit algorithm to construct a quasi-holomorphic
polynomial C2 ! C whose restriction to the unit sphere S3 has the link as a regular fiber.

Now, let L be an oriented framed link in a closed oriented 3–manifold. If L is realized as a
framed regular fiber of an excellent map f : M ! R

2, then S(f) is a link in M r L. Thus, it is
natural to ask the following.
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Question 2.4. Which links in M rL appear as the singular point set S(f) of an excellent map
f : M ! R

2 such that f�1(y) coincides with L as oriented framed links for some regular value
y 2 R

2 ?

In order to answer to the above question, let us prepare some notations and terminologies.
For an (unoriented) link J in M r L, we denote by [J ]2 2 H1(M r L) the Z2–homology class
represented by J . Let N(L) be a small tubular neighborhood of L in M disjoint from J . Since
L is a framed link, we have a natural trivialization of TM |N(L). The obstruction to extending
it over M is the relative Stiefel–Whitney class (see [10]), denoted by w2(M,L), which is an
element of the Z2–cohomology group H2(M,N(L)) ⇠= H2(M,L). Note that by excision and
Poincaré–Lefschetz duality, we have

H2(M,N(L)) ⇠= H2(M r IntN(L), @N(L)) ⇠= H1(M r IntN(L)) ⇠= H1(M r L).

The following characterization, which answers to Question 2.4, has been proved in [19]. Recall
that the proof was singularity theoretical in the sense that we used a result of Thom [20] about
the homology class represented by the singular locus, and a cusp elimination result by Levine
[12] for arranging the singular locus of an excellent map.

Theorem 2.5. Let L be an oriented null-cobordant framed link in a closed oriented 3–manifold
M , and J an unoriented link in M r L. Then, there exist an excellent map f : M ! R

2 and
a regular value y 2 R

2 such that f�1(y) coincides with L as oriented framed links and that
S(f) = J if and only if [J ]2 2 H1(M r L) is Poincaré dual to w2(M,L) 2 H2(M,L).

3. Case of integral homology 3–spheres

In this section, we mainly consider closed oriented 3–manifolds M with

H⇤(M ;Z) ⇠= H⇤(S
3;Z)

and replace the condition described by the obstruction class w2(M,L) in Theorem 2.5 with that
of Z2 linking numbers.

First, let M be an arbitrary closed oriented 3–manifold and L an oriented framed link in M .
For the inclusion j : (M, ;) ! (M,L), the induced homomorphism j⇤ : H2(M,L) ! H2(M)
sends w2(M,L) to the second Stiefel–Whitney class w2(M) of M , which vanishes. By the
cohomology exact sequence

H1(L)
������!H2(M,L)

j⇤�����!H2(M),

we have that w2(M,L) = �(↵) for some ↵ 2 H1(L), although such an ↵ may not be unique. In
fact, such a class can be explicitly given as follows.

Set L = L1[L2[ · · ·[Lµ, where Ls are the components of L, s = 1, 2, . . . , µ. It is known that
the tangent bundle TM of a closed oriented 3–manifold M is always trivial. Once a trivialization
⌧ of TM is fixed, we can compare it with the specific trivialization of TM |Ls associated with
the framing given for each component Ls of the framed link L. (We consider the trivialization
given by the ordered vector fields v1, v2 and v3, where v1 is tangent to Ls consistent with the
orientation, and v2, v3 are consistent with the framing.) This defines a well-defined element as
in ⇡1(SO(3)) ⇠= Z2 for each s. Then, we have proved the following in [19].

Lemma 3.1. Let ↵ 2 H1(L) be the unique cohomology class such that the Kronecker product
h↵, [Ls]2i 2 Z2 coincides with as for each component Ls of L. Then, we have �(↵) = w2(M,L).

Note that the trivialization ⌧ of TM may not be unique. The set of homotopy classes of
such trivializations is in one-to-one correspondence with the homotopy set [M,SO(3)]. If we
consider the set of homotopy classes of trivializations on the 2–skeleton of M , then each such
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trivialization up to homotopy defines a spin structure on M , and the set of spin structures is in
one-to-one correspondence with H1(M) (see [13]).

By the cohomology exact sequence,

(3.1) H1(M)
i⇤�����!H1(L)

������!H2(M,L)
j⇤�����!H2(M),

we see that for an arbitrary element � 2 Im i⇤, we could choose ↵ + � instead of ↵, where
i : L ! M is the inclusion map. The observation in the previous paragraph shows that this
corresponds to choosing another trivialization which is “twisted along �”.

The following proposition has also been proved in [19].

Lemma 3.2. Let L be an oriented framed link which bounds a compact oriented surface V con-
sistent with the framing. Let ↵ 2 H1(L) be an element such that �(↵) = w2(M,L). Then, we
have

hw2(M,L), [V, @V ]2i = h�(↵), [V, @V ]2i
= h↵, [L]2i
⌘ ]L (mod 2),

where h· , ·i is the Kronecker product, [V, @V ]2 2 H2(M,L) is the fundamental class of V in
Z2–coe�cients, and ]L denotes the number of components of L.

Note that the above lemma is applicable for an arbitrary null-cobordant framed link L and
that the value h↵, [L]2i 2 Z2 does not depend on a particular choice of ↵. Furthermore, if L has
an odd number of components, then the obstruction w2(M,L) never vanishes.

Let us now consider the case of a local knot component. Suppose that the oriented framed
link L contains a component Ls that lies in the interior of a closed 3–disk D embedded in M .
Set U = IntD, which is an open set of M di↵eomorphic to R

3. In the following, let us identify
U with R

3. In this case, up to homotopy, we may assume that the trivialization ⌧ of TM over
U is given by the standard one of TR3.

Let ⇡ : R3 ! H be the orthogonal projection onto a generic hyperplane H ⇠= R
2 in the

sense that ⇡|Ls is an immersion with normal crossings. Recall that the first vector field defining
the trivialization TM |Ls associated with the framing on Ls is tangent to Ls consistent with the
orientation. Since ⇡|Ls is an immersion, we may assume that at each point x of Ls the remaining
two vector fields give a 2–framing that is a basis for a 2–plane Nx ⇢ TxR

3 transverse to TxLs

containing the direction H? perpendicular to H. Then, we count the number of times modulo
2 the 2–framing rotates in Nx with respect to a fixed positive direction of H? while x goes once
around Ls. This number is denoted by tv(Ls), which is an element in Z2. Then, we have proved
the following in [19].

Lemma 3.3. Let ↵ 2 H1(L) be an arbitrary element such that �(↵) = w2(M,L). Then, we have

h↵, [Ls]2i ⌘ tv(Ls) + c(Ls) + 1 (mod 2),

where c(Ls) denotes the number of crossings of the immersion ⇡|Ls : Ls ! H with normal
crossings.

From now on, we will consider integral homology 3–spheres for M in this section. Let us start
with the following.

Definition 3.4. For an oriented link L in a closed oriented 3–manifold M with H1(M ;Z) = 0,
we always have a Seifert surface, i.e. a compact oriented surface V embedded in M such that
@V = L. Such a Seifert surface is not unique; however, it is known that the induced framing on
L is uniquely determined (for example, see [9, §3.6.1]). In the following, such a framing is said
to be preferred.
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negative

positive

Figure 1. Seifert algorithm for positive and negative crossings

Then, for oriented links with preferred framings in the 3–sphere S3, we have the following.
In the following, we fix an orientation for S3 once and for all.

Proposition 3.5. Let L = L1 [ L2 [ · · · [ Lµ be an oriented link in S3, on which a preferred
framing is given. Then w2(S3, L) = 0 if and only if for each s with 1  s  µ, we have

X

t 6=s

lk(Ls, Lt) ⌘ 1 (mod 2),

where lk denotes the linking number.

Proof. First, note that by the exact sequence (3.1) with M = S3, we see that � is injective and
that ↵ 2 H1(L) with �(↵) = w2(S3, L) is uniquely determined. Therefore, w2(S3, L) = 0 if and
only if h↵, [Ls]2i = 0 for all s.

Now, we may assume that L is contained in U ⇢ S3 as above, and let us consider the generic
projection ⇡|L : L ! H. By the so-called Seifert algorithm, we can construct a compact oriented
surface V ⇢ S3 with @V = L (see Fig. 1). Then, by construction, we see that when ⇡(x) goes once
around ⇡(Ls), each time it goes through a positive (resp. negative) crossing point, it contributes
+1/2 (resp. �1/2) to tv(Ls). Since the number of crossing points of ⇡(Ls) and ⇡(Lt) is even for
each t 6= s, and ⇡(x) goes through each self-crossing point of ⇡(Ls) twice, we have

tv(Ls) ⌘
1

2

X

t 6=s

ec(Ls, Lt) + ec(Ls) (mod 2)

for each s, where ec(Ls, Lt) is the sum of the signs of crossing points of ⇡(Ls) and ⇡(Lt), and
ec(Ls) is the sum of the signs of self-crossing points of ⇡(Ls). Then, since ec(Ls) ⌘ c(Ls) (mod 2),
by Lemma 3.3, we have

h↵, [Ls]2i ⌘ 1

2

X

t 6=s

ec(Ls, Lt) + 1 (mod 2)

⌘
X

t 6=s

lk(Ls, Lt) + 1 (mod 2),

by the definition of linking numbers. Hence, the result follows. ⇤
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Remark 3.6. The condition that appears in the statement of Proposition 3.5 is very similar
to that in [9, Theorem 3.6.11]. In fact, in §4 we will prove the theorem obtained in [9] as an
application of our Proposition 3.5.

In fact, we have the following more general result.

Proposition 3.7. Let M be a closed connected oriented 3–manifold with

H1(M ;Z) = 0

and L = L1 [ L2 [ · · · [ Lµ be an oriented link in M , on which a preferred framing is given.
Then, w2(M,L) = 0 if and only if for each s with 1  s  µ, we have

(3.2)
X

t 6=s

lk(Ls, Lt) ⌘ 1 (mod 2).

Proof. Since H1(M ;Z) = 0, there exists a Seifert surface V for L, which is a compact oriented
surface embedded in M with @V = L. By definition, this is consistent with the framing of L. Set
V 0 = V r IntN(L) and eLs = V 0\N(Ls) for each s, where N(L) is a small tubular neighborhood
of L in M , N(Ls) is the component of N(L) containing Ls, @N(L) intersects V transversely,
and V \N(L) is a collar neighborhood of @V in V . Note that eLs is a knot parallel to Ls, and
we orient eLs consistently with Ls. Then, the oriented link bLs = LrLs is Z–homologous to �eLs

in M r Ls, where �eLs denotes eLs with the opposite orientation.
Now, suppose w2(M,L) = 0. In this case, the given framing of L extends over M . Let us

suppose that a Seifert surface Vs for Ls is consistent with the given framing of Ls for some s.
Then, by Lemma 3.2 applied to Ls, w2(M,Ls) 2 H2(M,Ls) does not vanish, as we obviously
have ]Ls = 1. This implies that as 2 Z2 as appears in Lemma 3.1 does not vanish. This
contradicts our assumption that the framing of L extends over M . Therefore, an arbitrary
Seifert surface Vs for Ls is not consistent with the given framing of Ls for each s. Since V is
consistent with the framing of Ls, the linking number of Ls and eLs must be an odd integer.
Since �eLs is Z–homologous to bLs in M r Ls, we have the congruence (3.2).

Conversely, suppose (3.2) holds for each s. Then, by the above argument we see that as = 0
for each s. Hence, by Lemma 3.1, we have w2(M,L) = 0. This completes the proof. ⇤

In fact, the above argument implies the following.

Proposition 3.8. Let M be a closed connected oriented 3–manifold with

H1(M ;Z) = 0

and L = L1 [L2 [ · · ·[Lµ be an oriented link in M , on which a preferred framing is given. For
each s with 1  s  µ, define as 2 Z2 by

as =
X

t 6=s

lk(Ls, Lt) + 1 (mod 2).

Let ↵ 2 H1(L) be the unique cohomology class such that h↵, [Ls]2i = as for all s. Then, we have
�(↵) = w2(M,L).

When H1(M ;Z) = 0, we have H1(M) = 0 = H2(M), and hence the exact sequence (3.1)
implies that we have the isomorphism � : H1(L) ! H2(M,L). We easily see that its composition
with the isomorphism H2(M,L) ! H1(M r L) corresponds to the Alexander duality whose
inverse isomorphism is given by taking Z2 linking numbers. This observation together with
Theorem 2.5 leads to the following, which answers to Question 2.4 for oriented framed links in
integral homology 3–spheres.
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Theorem 3.9. Let M be a closed connected oriented 3–manifold with

H1(M ;Z) = 0,

L = L1 [ L2 [ · · · [ Lµ be an oriented link in M , and J be an unoriented link in M r L. Then,
there exists an excellent map f : M ! R

2 such that L = f�1(y) for a regular value y 2 R
2 and

J = S(f) if and only if for each s with 1  s  µ, the Z2 linking number of J with Ls coincides
with X

t 6=s

lk(Ls, Lt) + 1 (mod 2).

Proof. By the above observations, we see that [J ]2 2 H1(M r L) is Poincaré dual to

w2(M,L) 2 H2(M,L)

if and only if it satisfies the condition on Z2 linking numbers in the theorem. Thus, the result
follows from Theorem 2.5. ⇤

Let us observe the following.

Lemma 3.10. If the congruence (3.2) holds, then the number of components of L must be even.

Proof. Consider the sum of all linking numbers
µX

s=1

X

t 6=s

lk(Ls, Lt) 2 Z

over all s and t with s 6= t. Since lk(Ls, Lt) = lk(Lt, Ls), the above sum must be even. On the
other hand, the congruence (3.2) implies that the above sum has the same parity as the number
of components of L. Thus the result follows. ⇤

The above lemma together with Theorem 3.9 implies that for an integral homology 3–sphere
M and an excellent map f : M ! R

2, if L = f�1(y) has an odd number of components for a
regular value y 2 R

2, then S(f) has a non-trivial linking number with a component of L.
In order to get a more general result, let us introduce the following definition.

Definition 3.11. Let M be a closed connected oriented 3–manifold and L, L0 be non-empty
disjoint closed sets in M . We say that L and L0 are not linked if there exists an embedded
2–sphere in M r (L [ L0) which separates M into two components in such a way that one of
them contains L and the other contains L0. If such a 2–sphere does not exist, then we say that
L and L0 are linked.

Lemma 3.12. Let M be a closed connected oriented 3–manifold containing an embedded 2–sphere
S which separates M into two components M1 and M2, where M1 and M2 are the closures of
the connected components of M r S. If a framed link L is contained in IntM1 and is framed
null-cobordant in M , then it is also framed null-cobordant in IntM1.

Proof. Let V be a compact oriented normally framed surface in M which bounds L and is
consistent with the framing of L. We may assume that V and S intersect each other transversely.
Then, V \S consists of a finite number of simple closed curves in the 2–sphere S. By considering
V \M1, adding 2–disks bounded by the simple closed curves in S, and by slightly translating the
2–disks in a parallel manner using the inner-most argument, we get a compact oriented surface
embedded in IntM1. This gives a desired framed null-cobordism for L in IntM1. ⇤

We have the following as a result of Lemma 3.12.
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Proposition 3.13. Let M be a closed connected oriented 3–manifold and f : M ! R
2 a smooth

map. For a regular value y 2 R
2, if L = f�1(y) is non-empty and has an odd number of

connected components, then L is necessarily linked with S(f).

Proof. Suppose that there exists a 2–sphere S that separates L and S(f). Let M1 and M2 be
the closures of the two components of M r S such that L ⇢ IntM1 and S(f) ⇢ IntM2. Since
L is framed null-cobordant in M , it is also framed null-cobordant in IntM1 by Lemma 3.12.
Therefore, there exists a compact oriented normally framed surface in IntM1 that bounds L. Let
cM1 be the closed oriented 3–manifold obtained by attaching a 3–disk to M1 along the boundary
S. Then, since f |M1 is a submersion and ⇡2(SO(3)) vanishes, we see that the trivialization of

T cM1|L extends to cM1, and hence w2(cM1, L) vanishes. Then, by Lemma 3.2 applied to L ⇢ cM1,
this leads to a contradiction, since ]L is odd by our assumption. Therefore, L and S(f) are
necessarily linked. This completes the proof. ⇤

Note that the above proposition holds not only for excellent maps, but also for smooth maps.
In the case of integral homology 3–spheres, by Theorem 3.9 we have the following.

Proposition 3.14. Let M be a closed connected oriented 3–manifold with

H1(M ;Z) = 0

and L = L1[L2[ · · ·[Lµ be an oriented link in M . For an arbitrary excellent map f : M ! R
2

such that L = f�1(y) for a regular value y 2 R
2, S(f) necessarily links with each component Ls

of L with

(3.3)
X

t 6=s

lk(Ls, Lt) ⌘ 0 (mod 2).

Compare the above proposition with [19, Problem 5.1]. For example, if the congruence (3.3)
holds for all s, then for an excellent map f : M ! R

2 such that f�1(y) = L for a regular value
y 2 R

2, each component of L links with at least one component of S(f).
We do not know if the results in this section for M with H1(M ;Z) = 0 also hold for M with

H1(M) = 0 in Z2–coe�cients.

Remark 3.15. In fact, Proposition 3.14 holds not only for excellent maps, but also for smooth
maps, which can be proved as follows. Suppose that there exists a smooth map g : M ! R

2 such
that L = g�1(y) for a regular value y 2 R

2 and that S(g) does not link with Ls. Then, we can
approximate g by an excellent map f such that S(f) ⇢ N(S(g)) and f |MrN(S(g)) = g|MrN(S(g))

for a su�ciently small neighborhood N(S(g)) of S(g). Then, such an f leads to a contradiction.

4. Submersions of open 3–manifolds to R
2

In this section, as an application of our results in [19] and in the previous sections of the
present paper, we consider submersions of open orientable 3–manifolds to R

2.
First, let us recall the following fundamental theorem for submersions of R3 to R

2 obtained
in [9].

Theorem 4.1 (Hector and Peralta-Salas, 2012). Let L = L1[L2[ · · ·[Lµ ⇢ R
3 be an oriented

link in R
3. Then, there exists a submersion f : R3 ! R

2 such that f�1(y) = L for some y 2 R
2

if and only if for each s with 1  s  µ, we have
X

t 6=s

lk(Ls, Lt) ⌘ 1 (mod 2).

Recall that in [9], the authors used the h-principle for submersions [7, 16] for the proof. Here,
we give a new proof to the above theorem using our singularity theoretical techniques.
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Proof of Theorem 4.1. Let L be an oriented link in R
3 which satisfies the condition about the

linking numbers as in the theorem. By identifying the interior of an embedded 3–disk D in S3

with R
3, we may assume that L ⇢ IntD ⇢ S3. Then, by Proposition 3.5, we have w2(S3, L) = 0

with respect to the preferred framing on L. Therefore, for an arbitrary non-empty link J in
S3 r D, there exists an excellent map g : S3 ! R

2 and a regular value y 2 R
2 such that

L = g�1(y) and J = S(g). By restricting g to R
3 = IntD, we get a submersion f : R3 ! R

2

which has L as a regular fiber.
Conversely, suppose that we have a submersion f : R3 ! R

2 and a regular value y 2 R
2

such that f�1(y) = L. Then, we can find an embedded 3–disk D ⇢ R
3 whose interior contains

L. Note that f |D : D ! R
2 is a submersion which has L as a regular fiber. By embedding D

into S3, we can extend f |D to a smooth map g1 : S3 ! R
2. Here, f(@D) misses y 2 R

2, and
since the second homotopy group of R2 r {y} is trivial, f |@D is null-homotopic inside R

2 r {y}.
Therefore, we can arrange the smooth map g1 in such a way that g1 has y 2 R

2 as a regular value
and that g�1

1
(y) = L ⇢ IntD. Then, by slightly perturbing g1 on a neighborhood of S3 r IntD,

we get an excellent map g2 : S3 ! R
2 such that y 2 R

2 is a regular value, that g�1

2
(y) = L, and

that S(g2) is contained in S3 r IntD. In particular, S(g2) is Z2 null-homologous in S3 rL, and
hence we have w2(S3, L) = 0. Then, by Proposition 3.5, we get the result. ⇤
Remark 4.2. More generally, instead of R3, the above theorem holds also for an arbitrary open
3–manifold of the form M r D3 for a closed connected orientable 3–dimensional manifold M
with H1(M ;Z) = 0, where D3 is a small closed 3–disk embedded in M .

In the case of a link with an odd number of components, we have the following.

Remark 4.3. Let f : R
3 ! R

2 be a smooth map, and suppose that y 2 R
2 is a regular

value such that L = f�1(y) is compact and has an odd number of components. Then, by
Proposition 3.13 together with an argument similar to the above, we see that the singular point
set S(f) necessarily links with L (see also the paragraph just after [15, Theorem 10]): in other
words, we can find no 2–sphere embedded in R

3 that separates L and S(f). This implies, in
particular, that such an f can never be a submersion.

In fact, we have the following.

Proposition 4.4. Let M be a closed connected orientable 3–manifold with

H1(M ;Z) = 0

and set M� = MrD3. Let L = L1[L2[ · · ·[Lµ ⇢ M� be an oriented link such that f�1(y) = L
for some excellent map f : M� ! R

2 and a regular value y 2 R
2. Then, each component Ls of

L with

(4.1)
X

t 6=s

lk(Ls, Lt) ⌘ 0 (mod 2)

links with at least one component of S(f). In particular, such an f can never be a submersion.

Compare the above proposition with [19, Problem 5.1]. See also [2, 3, 5, 11] for related
physical results.

Proof of Proposition 4.4. First note that each component of S(f) is di↵eomorphic to a circle or
a real line. Furthermore, S(f) is a closed submanifold of M� which may have infinitely many
connected components.

Let Vs be a Seifert surface for Ls inM , where Ls satisfies (4.1). We may assume that Ls ⇢ M�

and that S(f) intersects Vs transversely at finitely many points. We have only to show that there
are an odd number of intersection points.
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Let eD be a 3–disk in M such that Int eD � D3, L\ eD = ;, Vs\ eD = ;, and that @ eD intersects
S(f) transversely at finitely many points. Then, by an argument similar to that in the proof of
Theorem 4.1, we can construct an excellent map g : M ! R

2 such that g|MrInt eD = f |MrInt eD
and that g�1(y) = L. By our assumption (4.1), we have that Ls has a non-trivial Z2 linking
number with S(g) by Theorem 3.9. Therefore, S(g) intersects Vs transversely at an odd number
of points. By construction of g, this implies that S(f) also intersects Vs transversely at an odd
number of points. This completes the proof. ⇤
Remark 4.5. In fact, the above proposition holds not only for excellent maps, but also for
smooth maps if we replace the statement “Ls links with at least one component of S(f)” by “Ls

links with S(f)”. This can be proved by an argument similar to that in Remark 3.15.

The following is a special case of a theorem proved by Miyoshi [14], who used a relative version
of the h-principle for submersions [7]. Here, we use our singularity theoretical arguments in order
to prove the theorem for punctured 3–manifolds.

Theorem 4.6. Let M be a closed orientable 3–manifold and L a compact oriented framed link in
M� = M rD3. Then, there exists a submersion f : M� ! R

2 such that f�1(y) coincides with
L as oriented framed links for some y 2 R

2 if and only if L bounds a proper normally framed
surface in M� and the trivialization of TM�|L induced by the framing of L extends over M�.

Proof. If there exists a submersion f as in the theorem, then the inverse image by f of the
half line [y1,1)⇥ {y2} ⇢ R

2 is a proper normally framed surface in M� that bounds L, where
y = (y1, y2). Furthermore, since f is a submersion, we can pull-back the natural trivialization of
TR2 to M� by f in such a way that the pull-back naturally extends the trivialization of TM�|L
induced by the framing of L.

Conversely, suppose that L bounds a proper normally framed surface V in M� and the
trivialization of TM�|L induced by the framing of L extends over M�. Let eD be a small 3–disk
neighborhood of D3 whose interior contains D3 such that eD ⇢ M r N(L) for a small tubular
neighborhood N(L) of L in M . Then, we may assume that V intersects @ eD transversely along
finitely many embedded oriented circles. Note that then V \ @ eD bounds a compact oriented
surface V 0 in eD. Then, by replacing V \ eD by V 0, we see that L is framed null-cobordant
in M . Furthermore, by our assumption, the trivialization of TM�|L induced by the framing
of L extends over M�. Since ⇡2(SO(3)) vanishes, this implies that it also extends over M .
Therefore, we have that the obstruction w2(M,L) vanishes. Hence, by Theorem 2.5, there exists
an excellent map f : M ! R

2 and a regular value y 2 R
2 such that f�1(y) coincides with L as

oriented framed links and that S(f) is contained in IntD3. Then, f restricted to M� = M rD3

is a desired submersion. ⇤
In fact, if we use the “absolute version” of the h-principle [16] in order to treat the end of

an open 3–manifold, we can prove the following. Note again that the following theorem was
originally proved by Miyoshi [14] by using a “relative version” of the h-principle [7].

Theorem 4.7. Let M be an open orientable 3–manifold and L a compact oriented framed link in
M . Then, there exists a submersion f : M ! R

2 such that f�1(y) coincides with L as oriented
framed links for some y 2 R

2 if and only if L bounds a proper normally framed surface in M
and the trivialization of TM |L induced by the framing of L extends over M .

Proof. Necessity can be proved by the same argument as in the proof of Theorem 4.6.
Conversely, suppose that there exists a proper normally framed surface V in M that bounds L

as described in the theorem. Let Q be a compact 3–dimensional submanifold ofM with boundary
such that IntQ � L and that @Q intersects V transversely along finitely many embedded circles.
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Let us first construct a smooth map g1 : M ! R
2 as follows. Let h : V ! [0,1) be a smooth

function such that h�1(0) = @V = L and that h is non-singular near @V . Let N(V ) ⇠= V ⇥ I
be a tubular neighborhood of V in M , where I = [�1, 1] and the I–factor is consistent with the
normal orientation of V . Then, we define g1 on N(V ) by

N(V ) ⇠= V ⇥ I
h⇥idI�����![0,1)⇥ I ⇢ R

2,

where idI is the identity map of I. We can extend g1|N(V ) to N(V ) [N(L) in such a way that
g1|N(L) is a submersion, that the origin 0 is a regular value, and that the framed regular fiber

g�1

1
(0) coincides with L. Then, since R2r g1(N(V )[N(L)) is contractible, we can extend g1 to

the whole manifold M in such a way that 0 is still a regular value and that the framed regular
fiber g�1

1
(0) coincides with L.

Set Q0 = Q r IntN(L), which is a compact 3–manifold with boundary @Q [ @N(L). Note
that g1(Q0) ⇢ R

2 r IntD, where D is a small 2–disk neighborhood of the origin.
By our assumption, the framing on L extends over M . Using such a framing, we can construct

a bundle epimorphism T (M r IntQ) ! T (R2 r IntD) covering g1|MrIntQ. Then, by the h-
principle for submersions, g1 is homotopic to a smooth map g2 : M ! R

2 such that

(1) g2 is a submersion over M r IntQ,
(2) g2 = g1 over N(L),
(3) g2(M r IntN(L)) ⇢ R

2 r IntD.

Then, we can approximate g2 by an excellent map g3 that enjoys the same properties as g2
described above. Then, S(g3) is a closed subset of Q, which is compact. Therefore, S(g3) is
an unoriented link in Q r IntN(L). Furthermore, as we started with a framing that extends
over M , the obstruction to extending the framing on @(Q r IntN(L)) induced by g3 to the
whole Q vanishes. This implies that the Z2–homology class represented by S(g3) vanishes in Q.
Then, by our techniques developed in [19] using Levine’s cusp eliminations (see [12, 18]), we can
homotope g3 to an excellent map g4 that satisfies the properties described above such that S(g4)
is unlinked from L: more precisely, there exists an embedded 3–disk B ⇢ IntQrN(L) such
that IntB � S(g4). Then, for an appropriate embedded arc A ⇢ M r N(L) that “connects”
B to infinity, we see that M is di↵eomorphic to M r (A [ B) by a di↵eomorphism that is the
identity on N(L) (for example, see [14]). Then, the restriction of g4 to M r (A [ B) gives the
desired submersion. This completes the proof. ⇤

Remark 4.8. It is known that there exist open 3–manifolds that cannot be embedded in compact
3–manifolds [8].

We finish this paper by posing an open problem.

Problem 4.9. Is there a polynomial map R
3 ! R

2 that is a submersion and has a compact
regular fiber as in Theorem 4.1?

Compare the above problem with Remark 2.3.
One can find some relevant open problems in [9, §4] as well.
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LOOPS IN GENERALIZED REEB GRAPHS ASSOCIATED TO STABLE

CIRCLE-VALUED FUNCTIONS

ERICA BOIZAN BATISTA, JOÃO CARLOS FERREIRA COSTA, AND JUAN J. NUÑO-BALLESTEROS

Abstract. Let N be a smooth compact, connected and orientable 2-manifold with or without
boundary. Given a stable circle-valued function � : N ! S1, we introduced a topological
invariant associated to �, called generalized Reeb graph. It is a generalized version of the
classical and well known Reeb graph. The purpose of this paper is to investigate the number
of loops in generalized Reeb graphs associated to stable circle-valued functions � : N ! S1.
We show that the number of loops depends on the genus of N , the number of boundary
components of N , and the number of open saddles of �. In particular, we show a class of
functions whose generalized Reeb graphs have the maximal number of loops.

1. Introduction

The Reeb graph was introduced by Reeb in [13] and it is well known that it is a complete
topological invariant for Morse functions from S2 to R, where S2 is the standard sphere in R3

(see [1, 14]).
Although originally introduced as a tool in Morse theory, the Reeb graphs have several appli-

cations in Computational Geometry, Computer Graphics, Engineering, Applied Mathematics,
etc. A more extensive discussion of Reeb graphs and their variations in geometric modeling and
visualization applications can be found in [4, 7].

An interesting problem related to Reeb graphs in the context of computational geometry is
to investigate the number of loops of such graphs. The number of loops in a Reeb graph of a
Morse function over a 2-manifold (orientable or non-orientable) with and without boundary was
investigated in [5]. Later, some of these results were generalized in [8].

In this paper we study a similar problem. We investigate the number of loops in a graph as-
sociated to a stable circle-valued function � : N ! S1, where N is a smooth compact, connected
and orientable 2-manifold with or without boundary and S1 is the standard sphere in R2. The
study of stable circle-valued functions was initiated by S.P. Novikov in the early 1980’s related
with a hydrodynamic problem [11, 12]. Today we can find applications and connections to many
geometrical problems. Recently, an interesting connection with Singularity theory was obtained
by the authors related to the topological classification of finitely determined map germs from
(R3, 0) to (R2, 0) (see [2, 3]).

A stable circle-valued function is defined as follows:

Definition 1.1. Let N be a smooth compact, connected and orientable 2-manifold with bound-
ary @N (including the case when @N = ;), and let P be a smooth 1-manifold. We say that
� : N ! P is stable if:
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The first named author has been partially supported by UFCA and CAPES, CSF-PVEs - 88881.062217/2014-

01. The second named author has been partially supported by grant 2018/25157-3, São Paulo Research Founda-
tion (FAPESP). The third named author has been partially supported by MICINN Grant PGC2018–094889–B–I00
and by GVA Grant AICO/2019/024.

http://dx.doi.org/10.5427/jsing.2020.22g


LOOPS IN GENERALIZED REEB GRAPHS 105

(1) � is Morse with distinct critical values;
(2) � does not have critical points in @N ;
(3) �|@N is regular.

If P = R and � : N ! R is stable, we can consider the following equivalence relation in N :
given x, y 2 N , x ⇠ y if and only if �(x) = �(y) and furthermore, x and y are in the same
connected component of ��1(�(x)). Reeb [13] showed that the quotient set N/ ⇠ admits a graph
structure which is called Reeb graph associated to �.

Intuitively, the Reeb graph associated to � is obtained by contracting each connected compo-
nent of the level curves of � to points, where the vertices correspond to connected components
of level curves containing critical points. Consider the following example, where � : N ! R is
the height function and N is a closed 2-manifold:

z

z
z

z

1

2

3
4

1

2

3
4

RN γ

Figure 1. Reeb graph associated to the height function

When N is di↵eomorphic to the sphere S2, the Reeb graph is a tree (see [13]).
Since the Reeb graph gives the topological information about N , it is interesting to investigate

the relation of its structure with topological elements such as Euler characteristic, Betti numbers,
genus, etc. For instance, as motivation for this work, we can cite the following results:

Proposition 1.2. ([5, 8]) The Reeb graph of a Morse function over a connected orientable
2-manifold of genus g without boundary has g loops.

Proposition 1.3. ([5, 8]) The Reeb graph of a Morse function over a connected orientable
2-manifold of genus g with h > 1 boundary components has between g and 2g + h� 1 loops.

Notice that the number of loops in the Reeb graph is given by the first Betti number of the
graph, which is the rank of the first homology group. Also, it follows that the first Betti number
of the 2-manifold N bounds from above the first Betti number of the graph, i.e.,

number of loops  �1(N).

Figure 2 provides an example of a Reeb graph associated to � : N ! S1, where N is a
2-manifold with h = 4 boundary components and genus g = 1. The Reeb graph in this case has
3 loops, with 3  2g + h� 1 = 5 = �1(N).

Remark 1.4. In the Reeb graph given in Figure 2, the slim traces indicate circle fibers and the
bold traces arc fibers of �, respectively. In Section 2, these di↵erent kind of traces in a Reeb
graph are defined with more details.
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�

Figure 2. Reeb graph of a circle-valued Morse function �.

In this work we obtain a similar relation to the number of loops, but now in a more general
context, using stable circle-valued functions � : N ! S1 and the notion of generalized Reeb
graphs.

2. The generalized Reeb graph

The generalized Reeb graph was introduced by the authors in [2, 3]. It is a generalized version
of the classical Reeb graph, and it was inspired in Maksymenko’s work [10].

Let � : N ! S1 be a stable circle-valued function, where N is a smooth connected, compact
and orientable 2-manifold with or without boundary. Consider the following equivalence relation
in N , analogous to the one given in the previous Section: given x, y 2 N , x ⇠ y if and only if
�(x) = �(y), where x and y are in the same connected component of ��1(�(x)). The following
result shows the structure of N/ ⇠:

Proposition 2.1. Let N be a smooth connected, compact and orientable 2-manifold with or
without boundary. Let � : N ! S1 be a stable circle-valued function. Then, the quotient space
N/ ⇠ admits a graph structure as follows:

(1) The vertices are the connected components of level curves ��1(v), where v 2 S1 is a
critical value;

(2) Each edge is formed by points that correspond to connected components of level curves
��1(v), where v 2 S1 is a regular value.

Proof. Since � is stable its critical points are isolated and N being compact, � has a finite number
of critical points. Moreover, N connected implies N/ ⇠ connected.

Let v1, . . . , vr be the critical values of �. Then,

�|N � ��1({v1, . . . , vr}) : N � ��1({v1, . . . , vr}) ! S1 � {v1, . . . , vr}

is regular, and the induced map

�̃ : (N � ��1({v1, . . . , vr}))/ ⇠! S1 � {v1, . . . , vr}

is a local homeomorphism. Each connected component of S1�{v1, . . . , vr} is homeomorphic to an
open interval, so each connected component of (N���1({v1, . . . , vr}))/ ⇠ is also homeomorphic
to an open interval.

⇤
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Remark 2.2. (1) Let Ci be the connected components of @N , with i = 1, . . . , n. Then
�|Ci : Ci ! S1 is a di↵eomorphism.

(2) The level curves of � intersect @N transversely.

The possible topological types of the level curves of � : N ! S1 are:

(a) circle (b) saddle (c) max/min (d) line (e) half
open saddle

(f) open
saddle

Figure 3. Topological types of level curves

By Remark 2.2 item (2), the level curves of � that can intersect @N are only the types (d), (e)
and (f). Furthermore, by item (1), each level curve of � can intersects at most once a connected
component Ci of @N , and these intersections happen in regular points.

The graph structure of N/ ⇠ given in Proposition 2.1 associated to a stable function
� : N ! S1 will be denoted by �� . Each edge of �� can be of two types: one corresponds
to connected components of circle type and will be denoted by a slim trace; another corresponds
to connected components of interval type and will be denoted by a bold trace. We denote by �
the subgraph of �� given by the slim edges with their respective vertices, and by �0 the subgraph
of �� given by the bold edges with their respective vertices (i.e., �� = � [ �0).

Each vertex of the graph can be of six types, depending if the connected component has a
maximum/minimum critical point, a saddle point, a half open saddle point, an open saddle point
or a regular point. Then, the possible incidence rules of edges and vertices when � : N ! S1 is
stable are given in Figure 4.

d e f

Figure 4. Incidence rules

We denote by S, S0, S00, M , C and I the number of vertices of type (a) through (f), respectively.
Figure 5 represents some possible structures of the graph N/ ⇠ for stable maps from N to

S1. Notice that � and �0 are not necessarily connected graphs.



108 E.B. BATISTA, J.C.F. COSTA, AND J.J. NUÑO-BALLESTEROS

U ’=

γ1

U ’=

γ2

U ’=

γ3

Figure 5. Graphs N/ ⇠ for stable maps �i : N ! S1, i = 1, 2, 3

Let v1, . . . , vk 2 S1 be the critical values of � : N ! S1. We choose a base point v0 2 S1 and
an orientation. We can reorder the critical values such that v0 < v1 < . . . < vk and we label
each vertex with values i 2 {1, . . . , k}, if it corresponds to critical values vi.

Definition 2.3. Let � : N ! S1 be a stable circle-valued function. The graph given by N/ ⇠
together with the types of edges and the labels of the vertices, as previously defined is called the
generalized Reeb graph associated to �.

Example 2.4. Consider the stable circle-valued functions �1 : S2 ! S1, �2 : N ! S1, where N
is a 2-manifold with boundary, as appear in Figure 5. The respective generalized Reeb graphs,
��1 and ��2 , are exhibited in Figure 6.

S1
S1

S2
N� ��

� � �

� �

� �

�

� �

�
�

���
���

Figure 6. Generalized Reeb graphs

As previously stated, the main goal of this work is to investigate the number of loops in
generalized Reeb graphs. This number is defined as follows:

Definition 2.5. Let �� be the generalized Reeb graph associated to the stable function
� : N ! S1. The first Betti number of �� , denoted by �1(��), is called the number of loops of
�� .

In what follows, the notation �i will indicate the ith Betti number.
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3. Number of loops and other properties of ��

In this section we investigate the number of loops in generalized Reeb graphs and present
some other properties of these graphs.

From now on, N will be a smooth connected, orientable and closed 2-manifold or N will be a
2-manifold with boundary obtained by taking a closed 2-manifold and removing h-disks. In the
last case, by simplicity, we will simply say that N is a 2-manifold with boundary.

Theorem 3.1. Let N be a closed 2-manifold of genus g and let � : N ! S1 be a non regular
stable circle-valued function. Then the generalized Reeb graph �� of � has g loops.

Proof. First notice that �� is connected and �(��) = V � E, where V,E denote the number of
vertices and edges of �� , respectively.

On one hand, V = M + S + I where M,S, I are the numbers of vertices of type: max/min,
saddle or regular, respectively. Since � is non regular, V 6= 0.

On the other hand, by Euler’s formula E = 1
2

PV
i=1 deg(vi) where vi 2 V and deg(vi) (the

degree of vi) is the number of edges incident to vi. As � is stable, the degree of each vertex of
max/min type is 1, while of regular type is 2 and of saddle type is 3. Hence,

�(��) = V � E = M + S + I � 1

2
(M + 2I + 3S) =

M � S

2
=

2� 2g

2
= 1� g.

Since �� is connected, it follows that �1(��) = g, i.e., �� has g loops.
⇤

Remark 3.2. If � : N ! S1 is a stable circle-valued function, where N is a closed 2-manifold
with �(N) 6= 0, then � is always non regular. In fact, suppose � is regular. Then, � should be
surjective and from Ehresmann’s fibration theorem [6], � should be a locally trivial fibration. In
particular, since F is a fiber of this fibration, it should happen that 0 6= �(N) = �(S1)�(F ) = 0,
which is an absurd.

Corollary 3.3. (Proposition 3.4 [2]) Let � : S2 ! S1 be a stable circle-valued function. Then
the generalized Reeb graph of � is a tree.

Remark 3.4. (1) Notice that the definition of generalized Reeb graph di↵ers from the classical
Reeb graph with respect to the vertices. In the classical case, the vertices are related just with
the connected components of level curves ��1(v) which contain a critical point. Hence, our
generalized Reeb graph contains some extra vertices corresponding to the regular connected
components of ��1(v), where v is a critical value. Of course the classical Reeb graph can be
obtained from the generalized one just by eliminating the extra vertices and joining the two
adjacent edges. But in general, the generalized Reeb graph provides more information.

(2) The Figure 7 shows two stable functions �1, �2 : S2 ! S1 with their respective generalized
Reeb graphs. Both functions share the same classical Reeb graph, but the generalized Reeb
graphs are di↵erent. The stable function �1 is non surjective while �2 is surjective. Then �1
and �2 could not be topologically equivalent, i.e., there are no homeomorphisms � : S2 ! S2

and  : S1 ! S1 such that �1 =  � �2 � ��1. This shows that the classical Reeb graph is not
su�cient to distinguish between these two examples.

(3) If � : S2 ! S1 is not surjective, then � may be regarded as a Morse function from S2 to
R (via stereographic projection). In this case, the generalized Reeb graph can be obtained from
the classical one just by adding the extra vertices each time that one passes through a critical
value.
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Figure 7. Stable functions and their generalized Reeb graphs

It is obvious that the labeling of vertices of the generalized Reeb graph is not uniquely
determined, since it depends on the chosen orientations and the base points on each S1. Di↵erent
choices will produce either a cyclic permutation or a reversal of the labeling in the generalized
Reeb graph.

The following result shows that the number of open saddles together with the genus and the
number of boundary components of N , determine the number of loops in the generalized Reeb
graph associated to � : N ! S1:

Theorem 3.5. Let N be a 2-manifold with boundary and let � : N ! S1 be a stable circle-valued

function. Then, the number of loops in �� is given by g+
h+ S00

2
, where g is the genus of N , h

is the number of connected components of @N and S00 is the number of vertices of open saddle
type.

Proof. Since �� is connected we have �0(��) = 1. The Euler characteristic of �� is given by
�(��) = �0(��)� �1(��) = 1� �1(��), where �1(��) represents the number of loops in �� .

We also have that �(��) = V � E, where V , E denote the number of vertices and edges of
�� , respectively. Moreover, V = M + S + S0 + S00 + C + I where M,S, S0, S00, C, I denote
the numbers of vertices of each type listed in Section 2. On the other hand, by Euler’s formula

E =
1

2

VX

i=1

deg(vi)

where vi 2 V .
Since � is stable, the degree of each vertex of max/min type is 1, while of regular type is 2

and saddle type is 3. Hence,

�(��) = V � E = M + S + S0 + S00 + C + I � 1

2
(M + 2C + 2I + 3S + 3S0 + 4S00)

) �(��) =
M � S � S0 � 2S00

2
=
�(N)� S00

2
= 1� g � (S00 + h)

2
.

Therefore, the number of loops is given by �1(��) = g +
(h+ S00)

2
.

⇤
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The next proposition shows that the first Betti number of N bounds the number of loops in a
generalized Reeb graph, similar to what happens with the classical Reeb graph (see Section 1):

Proposition 3.6. Let N be a 2-manifold with boundary and let � : N ! S1 be a stable circle-
valued function. Then, the number of loops = �1(��)  �1(N).

Proof. In the proof of Theorem 3.5 we showed that 2�(��) = �(N)� S00. Then,

�1(N) = 2�1(��)� 1� S00.

Note that

�(��) = �(� [ �0) = �(�) + �(�0)� �(� \ �0) = �(�)� S00 � S0,

because

�(�0) = V � E = S0 + S00 + I � 1

2
(2S0 + 4S00 + 2I) = �S00

and �(� \ �0) = S0.
However, since N is a 2-manifold with boundary, the number of connected components of �

is at most S0, which means that �(�)  S0 � �1(�).
Then,

�(��) = �(�)� S00 � S0  ��1(�)� S00  �S00.

Therefore,
�0(��)� �1(��) = �(��)  �S00 , �1(��) � 1 + S00.

Consequently,

�1(N) = 2�1(��)� (1 + S00) � �1(��) ) �1(��)  �1(N).

⇤

A consequence of Theorem 3.5 and Proposition 3.6 is the following relation

g +
(h+ S00)

2
 2g + h� 1 ) S00  2g + h� 2.

The next result shows a class of functions whose generalized Reeb graphs have the maximal
number of loops:

Theorem 3.7. Let N be a 2-manifold with boundary and let � : N ! S1 be a stable circle-valued
function. If �0(�) = S0 then �� has the maximal number of loops, i.e., �1(��) = 2g + h� 1.

Proof. Since � is stable and h 6= 0, then �0 6= ;. We divide the proof in two cases:

Case 1: S0 = 0.

Since �� = � [ �0 is connected, � \ �0 is the set of vertices that correspond to the half open
saddles type and �0 6= ;, we have that � = ;.

Consequently, M = 0 and S = 0. By the Poincaré-Hopf Theorem it follows that

2� 2g � h = M � S � S0 � S00 = �S00 ) S00 = 2g + h� 2.

As
1� �1(��) = �(��) = �(�0) = �S00 = �(2g + h� 2),

then �1(��) = 2g + h� 1.

Case 2: S0 6= 0.
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Notice that the level curves of half open saddle type divide N in two connected components.
Consider ↵1, . . . ,↵S0 the level curves of half open saddle type, and let vi be the vertex corre-
sponding to ↵i in �� = � [ �0, with i = 1, . . . , S0. Then, for each vertex vi there are 3 incident
edges, 2 bold traced edges and 1 slim traced edge.

Let Bi be the connected component of N determined by ↵i that contains the level curves
corresponding to the slim traced edges arriving at vi. Since � \ �0 = {vi, i = 1, . . . , S0},
�� = � [ �0 is connected and �0(�) = S0, then each connected component of � contains exactly
one vertex vi, i = 1, . . . , S0.

Assume that Bi \ @N 6= ; for some i = 1, . . . , S0. Then, Bi contains the level curves of
interval type. Consequently, it contains a level curve of half open saddle type. Hence, there is a
connected component of � which contains two vertices corresponding to half open saddles. But
this is a contradiction, therefore Bi \ @N = ;.

Since �|Bi is Morse for every i = 1, . . . , S0, it follows thatBi contains only level curves of saddle
type, circle type and max/min type. Also, the subgraph ��|Bi

satisfies 1� �1(��|Bi
) = Mi �Si,

where Mi is the number of vertices of max/min type and Si is the number of vertices of saddle
type of ��|Bi

, respectively. It follows that

S0X

i=1

�
1� �1(��|Bi

)
�
=

S0X

i=1

(Mi � Si) ) S0 � �1(�) = M � S ) �1(�) = �M + S + S0.

Also, notice that �0(�) = S0 implies �0(�0) = 1, then

�(�0) = �S00 ) �1(�
0) = 1 + S00.

Consequently,

�(��) = �(�) + �(�0)� �(� \ �0) = �0(�)� �1(�) + �0(�0)� �1(�0)� S0

= S0 � (�M + S + S0) + 1� (1 + S00)� S0 = M � S � S0 � S00 = �(N).

Therefore, �1(��) = 2g + h� 1.
⇤

The next picture illustrates a stable circle-valued function under the conditions of Theorem 3.7.

Ν

Figure 8. Stable circle-valued function with maximal number of loops in the
generalized Reeb graph
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Remark 3.8. Consider � : N ! S1 a stable circle-valued function, where N is a 2-manifold
with boundary and genus zero. Notice that since �0(�)  S0, if �0(�0) = 1 then �0(�) = S0.
Consequently, the number of loops of �� is maximal.
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Abstract. Let M be a connected compact surface with boundary. A C1 map M ! R2

is admissible if it is non-singular on a neighborhood of the boundary. For a C1 stable
map f : M ! R2, denote by c(f) and n(f), i(f) the number of cusps and nodes, connected
components of the set of singular points respectively. In this paper, we introduce the notion of
admissibly homotopic among C1 maps M ! R2, and we will determine the minimal number
c+ n for each admissibly homotopy class.

1. Introduction

Let M be a connected compact surface with boundary @ and P a surface without boundary.
Denote by C

1(M,P ) the set of C1 maps M ! P equipped with the Whitney C
1 topology.

A C
1 map f : M ! P is called a C

1 stable map, (or stable map for short), if there exists a
neighborhood N(f) ⇢ C

1(M,P ) of f such that every map g 2 N(f) is C1 right-left equivalent1

to f . A C
1 map f : M ! P is stable if and only if f has fold, cusp and B2 as its singularities,

and f |(S(f)[@)\(C(f)[B(f)) is an immersion with normal crossings, where C(f) and B(f) denote
the set of cusp points and B2 points of f respectively, see Proposition 2.2 for details.

Note that if a C
1 map f : M ! P is stable, then f |@ : @ ! P is stable. Note also that a

B2 point is a fold point (or regular point) if we ignore the boundary (resp. we restrict f to
boundary).

A C
1 map f : M ! P is called admissible if it is submersive on an open neighborhood of

the boundary. Note that a C
1 stable map f : M ! P is admissible if and only if it has no B2

points.
For a C

1 stable map f : M ! P , denote by c(f) and n(f), i(f) the numbers of cusps and
nodes, connected components of the set singular points of f respectively.

Denote by Mk a connected compact surface with exactly k boundary components. A con-
nected compact and orientable (or non-orientable) surface of genus g with exactly k boundary
components is denoted by ⌃g,k (resp. Ng,k). The 2-dimensional sphere and the plane are denoted
by S

2 and R2 respectively.
For a C

1 map f : M ! P , define the set of singular points of f as

S(f) = {p 2 M | rank dpf < 2}.
We call f(S(f)) the apparent contour (or contour for short) of f and denote it by �(f). For
a closed surface M , the apparent contour of a stable map M ! P (P = R2, S2) relates the
topology of M as classical result of Thom [11] and a formula obtained by Pignoni [9] show.

2000 Mathematics Subject Classification. Primary 57R45; Secondary 57R35, 57R90, 58K65 .
Key words and phrases. stable map, cusps, nodes.
1Two maps f , g 2 C1(M,P ) are C1 right-left equivalent if there exist a di↵eomorphism � : M ! M

preserving the boundary and a di↵eomorphism  : P ! P such that f � � =  � g.

http://dx.doi.org/10.5427/jsing.2020.22h
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Pignoni [9] introduced the notion of a minimal contour of a closed surface: The contour �(f)
of a stable map f : M ! R2 is called a minimal contour of M if the number c(f) + n(f) is the
smallest among stable maps g : M ! R2 which satisfy i(g) = 1. Then, Demoto [2] introduced
the notion of a minimal contour of a C

1 map f0 : M ! P between surfaces and studied that of
a C

1 map S
2 ! S

2: Let f0 : M ! P be a C
1 map and f : M ! P a C

1 stable map which
is homotopic to f0 and satisfies i(f) = 1. Call �(f) a minimal contour of f0 if the number
c(f) + n(f) is the smallest among C

1 stable maps g : M ! P which are homotopic to f0 and
i(g) = 1. Then, Kamenosono and the author [7] studied minimal contours of C1 maps M ! S

2

of closed surfaces M . Apparent contours of stable maps between surfaces were also studied
in [15, 16, 3, 17]. Studying minimal contours of C

1 maps make the very first step toward
classifying generic C

1 maps of surfaces up to right-left equivalence.
In this paper, we study minimal contour of C

1 maps of surfaces with boundary. More
precisely, for a surface M with boundary and a surface P without boundary, we introduce the
notion of admissibly homotopic which is an equivalence relation among admissible C

1 maps
M ! P , and admissible minimal contour of an admissible C

1 map M ! P . Then, we study
admissible minimal contours of admissible C

1 maps M1 ! R2.
This paper is organized as follows. In §2, we prepare some notions and introduce the main-

theorems (Theorems 2.3 and 2.5). In §3, we prepare some notions concerning stable maps
f : Mk ! R2 (k � 1) and introduce the formula as an application of formulas obtained by
Pignoni [9] and Imai [6]. In §4, we construct admissible stable maps ⌃g,1 ! R2 (g � 0) and
Ng,1 ! R2 (g � 1) which are in the lists of Theorem 2.3 and 2.5 respectively. In §5, we show
the contours of stable maps constructed in § 4 are admissible minimal contours. In §6, we pose
a problem which concerns the apparent contours of stable fold maps f : Mk ! R2, where a
stable map f : Mk ! R2 of a surface with boundary is called fold map if it has no cups as its
singularities.

Throughout this paper, all surfaces are connected and smooth of class C1, and all maps are
smooth of class C

1 unless stated otherwise. The symbols r and g � 0 denote integers. For a
topological space X, idX denotes the identity map of X.

2. Main-Theorem

In this section, we introduce some notions and introduce the main-theorems (Theorems 2.3
and 2.5).

Let Mk be a compact and connected surface with exactly k boundary components @1[· · ·[@k.
Then, admissible C

1 maps f0, f1 : Mk ! R2 are said admissibly homotopic if there exists a C
1

map H : Mk ⇥ [0, 1] ! R2 such that Ht = H(·, t) : Mk ! R2 is an admissible C
1 map for each

t 2 [0, 1], and H0 = f0 and H1 = f1.
Let f : Mk ! R2 be an admissible C

1 map. Then, for each component @j , orient the regular
curve f(@j) ⇢ R2 so that at each point, the inner of f(Mk) is in the left hand side. Note that
the definition of the orientation for f(@j) ⇢ R2 is well-defined by virtue of the assumption that
f is admissible. Then, call the rotation number of f(@j) ⇢ R2 the boundary rotation number of
@j (or rotaion number of @j for short) with respect to f and denote it by W (f ; @j). If k = 1,
then call the rotation number of f(@) ⇢ R2 the boundary rotation number of f and denote it
by W (f). Furthermore, in the case that M = ⌃g and k = 1, define s(f) = +1 (or �1) if there
exists a neighborhood of N(@) of @ such that f |N(@) preserves (resp. reverses) the orientation of
N(@).

Proposition 2.1. (1) Admissible stable maps f0, f1 : ⌃g,1 ! R2 are admissibly homotopic
if and only if W (f0) = W (f1) and s(f0) = s(f1).



116 TAKAHIRO YAMAMOTO

(2) Admissible stable maps f0, f1 : Ng,1 ! R2 are admissibly homotopic if and only if
W (f0) = W (f1).

Proof. (1) If f0 and f1 are admissibly homotopic, then s(f0) = s(f1) and regular curves f0(@)
and f1(@) are regularly homotopic. It implies that W (f0) = W (f1).

We consider the opposite direction. If W (f0) = W (f1), then regular curves f0(@) and f1(@)
with the canonical orientation are regularly homotopic. Thus, there exists a C

1 map

H
0 : @ ⇥ [0, 1] ! R2

so that H 0(·, 0) = f0|@ and H
0(·, 1) = f1|@ . Then, we can extend H

0 to a C
1 map

H
00 : N(@)⇥ [0, 1] ! R2

on a neighborhood of @ so that H 00|@⇥[0,1] = H
0 and H

00
t = H

00(·, t) : N(@) ! R2 is a submersion
for any t 2 [0, 1]. Note that if s(f0) = s(f1) = +1 (or s(f0) = s(f1) = �1), then H

00
t = H

00(·, t)
is an immersion which preserves (resp. reverses) orientation of a neighborhood of @ for each
t 2 [0, 1]. On the other hand, we decompose ⌃g,1 into a simplicial complex. We also decompose
⌃g,1 ⇥ [0, 1] into a simplicial complex which is compatible with the simplicial decomposition of
⌃g,1. We define a map H : ⌃g,1 ⇥ [0, 1] ! R2 by the following manner:

0-simplex: If a 0-simplex � =< a0 > is in N(@)⇥ [0, 1] (or ⌃g,1⇥{0}, ⌃g,1⇥{1}), then we
define H(a0) = H

00(a0) (resp. H(a0) = f0(a0), H(a0) = f1(a0)). Otherwise, we define
H(a0) = 0 2 R2.

1-simplex: If a 1-simplex � =< a0, a1 > is in N(@) ⇥ [0, 1], (or ⌃g,1 ⇥ {0}, ⌃g,1 ⇥ {1}),
then H|� is defined by H|� = H

00|� (resp. H|� = f0|�, H|� = f1|�). Otherwise, we
define H|� by H(x) = �0H(a0)+�1H(a1), where x = �0a0+�1a1 2 � with the property
that �i 2 R�0 and �0 + �1 = 1.

2-simplex: If a 2-simplex � =< a0, a1, a2 > is in N(@)⇥ [0, 1] (or ⌃g,1 ⇥ {0}, ⌃g,1 ⇥ {1}),
then H|� is defined by H|� = H

00|� (resp. H|� = f0|�, H|� = f1|�). Otherwise, we
define H|� by H(x) = �0H(a0)+�1H(a1)+�2H(a2), where x = �0a0+�1a1+�2a2 2 �

with the property that �i 2 R�0 (i = 0, 1, 2), and �0 + �1 + �2 = 1.

3-simplex: If a 3-simplex � =< a0, a1, a2, a3 > is in N(@)⇥ [0, 1], then H|� is defined by
H|� = H

00|�. Otherwise, we define H|� by

H(x) = �0H(a0) + �1H(a1) + �2H(a2) + �3H(a3),

where x = �a0 + �1a1 + �2a2 + �3a3 2 � with the property that ai 2 R, ai > 0
(i = 0, 1, 2, 3), and a0 + a1 + a2 + a3 = 1.

Then, by perturbing H slightly, if necessary, we obtain a desired C
1 map ⌃g,1 ⇥ [0, 1] ! R2.

Namely, f0 and f1 are admissibly homotopic.
(2) The case of C1 maps Ng,1 ! R2 is also proved by similar way of (1). We omit the proof

here. ⇤

C
1 stable maps of compact and connected surfaces with boundary into surfaces without

boundary are characterized by the following way.

Proposition 2.2 (Bluce and Giblin [1]). Let M be a compact and connected surface possibly
with boundary @ and P a surface without boundary. A C

1 map f : M ! P is C
1 stable if and

only if it satisfies the following conditions.

(1) (Local conditions) In the following, for p 2 @, we use local coordinates (x, y) around p

such that IntM and @ correspond to the sets {y > 0} and {y = 0} respectively.
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(1a) For p 2 IntM , the germ of f at p is right-left equivalent to one of the following:

(x, y) 7!

8
><

>:

(x, y), p: regular point,

(x, y2), p: fold point,

(x, y3 + xy), p: cusp point.

(1b) For p 2 @, the germ of f at p is right-left equivalent to one of the following:

(x, y) 7!
(
(x, y) p: regular point of f |N(@M),

(x, y2 + xy) p: B2 point.

(2) (Global conditions) For each q 2 f(S(f) [ @), the multi-germ

(f |S(f)[@ , f
�1(q) \ (S(f) [ @))

is right-left equivalent to one of the four multi-germs whose images are as depicted in
Figure 1, where blue curves and gray curves represent f(S(f)) and f(@) respectively:
(1) represent immersion mono-germs (R, 0) 3 t 7! (t, 0) 2 (R2

, 0) which correspond to
a single fold point or a single boundary point respectively, and (2) represents cusp
mono-germ (R, 0) 3 t 7! (t2, t3) 2 (R2

, 0) which correspond to a cusp point, (3)
represents B2 multi-germ which corresponds to a single point in @\S(f), (4) represent
normal crossings of two immersion germs, each of which corresponds to a fold point or
a boundary point.

q q q q

q q q

(1) (2) (3)

(4)

Figure 1. The images of multi-germs of f |S(f)[S(f |@M )

Let f0 : M1 ! P be an admissible C
1 map and f : M1 ! P an admissible C

1 stable map
which is admissibly homotopic to f0. Call �(f) an admissible minimal contour of f0 if the number
c(f) + n(f) is the smallest among stable maps g : M1 ! R2 which are admissibly homotopic to
f0 and i(g) = 1. Note that the number of connected components of the set of singular points is
allowed to vary during admissible homotopy.

Theorem 2.3. Let g � 0 be an integer and f : ⌃g,1 ! R2 be a rotation number r admissible
stable map. The contour �(f) is an admissible minimal contour if and only if the pair (c(f), n(f))
is one of the pairs below:

g = 0:

(c(f), n(f)) =

(
(r + 1, 0) if r � 0,

(�r � 1,�r � 1) if r  �1.
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g = 1:

(c(f), n(f)) =

8
><

>:

(r + 3, 0) or (r � 1, 4) if r � 1,

(r + 3, 0) if �2  r  0,

(�r � 3,�r � 3) if r  �3,

g = 2:

(c(f), n(f)) =

8
>>>>>><

>>>>>>:

(r � 3, 6) if r � 3,

(1, 5) if r = 2,

(r + 1, 4) or (r + 5, 0) if �1  r  1,

(r + 5, 0) if �4  r  �2,

(�r � 5,�r � 5) if r  �5,

g � 3:

(c(f), n(f)) =
8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

(r � 2g + 1, 2g + 2) if r � 2g � 1,

(2, 6 + 2k) if r = 9� 2g + 4k, k = 0, . . . , g � 3,

(1, 6 + 2k) if r = 8� 2g + 4k, k = 0, . . . , g � 3,

(0, 6 + 2k) if r = 7� 2g + 4k, k = 0, . . . , g � 3,

(1, 5 + 2k) if r = 6� 2g + 4k, k = 0, . . . , g � 2,

(r + 2g � 3, 4) or (r + 2g + 1, 0) if 3� 2g  r  5� 2g,

(r + 2g + 1, 0) if �2g  r  2� 2g,

(�r � 2g � 1,�r � 2g � 1) if r  �1� 2g.

Remark that the number c+n of an admissible minimal contour of a C
1 map f0 : ⌃g,1 ! R2

depend only on the boundary rotation number W (f0). It does not depend on the sign s(f0).

Corollary 2.4. The number c + n of an admissible minimal contour of a rotation number r

admissible stable map ⌃g,1 ! R2 is one of the items below:

c+ n =

8
>>>>>>>><

>>>>>>>>:

r + 3 if r � 2g � 1,

(r + 2g + 5)/2 if 3� 2g  r < 2g � 1 and r ⌘ 3� 2g mod 4,

(r + 2g + 6)/2 if 2� 2g  r < 2g � 1 and r ⌘ 2� 2g or �2g mod 4,

(r + 2g + 7)/2 if 1� 2g  r < 2g � 1 and r ⌘ 1� 2g mod 4,

r + 2g + 1 if �2g  r  2� 2g,

�2(r + 1 + 2g) if r  �1� 2g.

Theorem 2.5. Let g � 1 be an integer and h : Ng,1 ! R2 be a rotation number r admissible
stable map. The contour �(h) is an admissible minimal contour if and only if the pair (c(h), n(h))
is one of the items below:

(c(h), n(h)) =

8
>>><

>>>:

(1, |g + r � 4|/2) if r � 2� g and r ⌘ g mod 2,

(0, |g + r � 3|/2) if r � 1� g and r 6⌘ g mod 2,

(1,�(g + r)/2) if r  �g and r ⌘ g mod 2,

(0,�(g + r + 1)/2) if r  �1� g and r 6⌘ g mod 2.
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3. Topological formula of apparent contour

In this section, we introduce topological formula of apparent contours of admissible stable
maps M ! R2 of surfaces with boundary.

Let us recall some notions introduced by Pignoni [9]. Let Mk be a compact and connected
surface with exactly k boundary components @ = @1 [ · · · [ @k and f : Mk ! R2 an admissible
stable map whose contour is non-empty. Then, for each component @j , orient the regular curve
f(@j) ⇢ R2 so that at each point, the inner of f(Mk) is in the left hand side. Note that
the definition of the orientation for f(@j) is well-defined by virtue of the assumption that f is
admissible. Let S(f) = S1[ · · ·[S` be the decomposition of S(f) into the connected components
and set �i = f(Si) (i = 1, . . . , `). Note that �(f) = �1 [ · · · [ �`. For each �i, denote by Ui the
unbounded component of R2 \ �i. Note that @Ui ⇢ �i.

Orient �i so that at each fold point image, the surface is “folded to the left hand side”. More
precisely, for a point y 2 �i which is not a cusp or a node, choose a normal vector v of �i at y
such that f�1(y0) contains more elements than f

�1(y), where y
0 is a regular value of f close to

y in the direction of v. Let ⌧ be a tangent vector of �i at y such that the ordered pair (⌧, v)
is compatible with the given orientation of R2. It is easy to see that ⌧ gives a well-defined
orientation for �i.

Definition 3.1. A point y 2 @Ui \{cusps, nodes} is said to be positive if the normal orientation
v at y points toward Ui. Otherwise, it is said to be negative.

A component �i is said to be positive if all points of @Ui\{cusps, nodes} are positive; otherwise,
�i is said to be negative. The numbers of positive and negative components are denoted by i

+

and i
� respectively.

By the geometrical condition of the surface ⌃g,1, we obtain the following lemma.

Lemma 3.2. Let f : ⌃g,1 ! R2 be an admissible stable map whose singular points set consists
of one component. Then, the contour is a negative component.

Definition 3.3. A point y 2 @Ui \ {cusps, nodes} is called an admissible starting point if y is
a positive (or negative) point of a positive (resp. negative) component �i. Note that for each i,
there always exists an admissible starting point on �i.

Definition 3.4. Let y 2 �i be an admissible starting point and Q 2 �i a node. Let ↵ : [0, 1] ! �i

be a parameterization consistent with the orientation which is singular only when the image is
a cusp such that ↵

�1(y) = {0, 1}. Then, there are two numbers 0 < t1 < t2 < 1 satisfying
↵(t1) = ↵(t2) = Q.

We say thatQ is positive if the orientation of R2 atQ defined by the ordered pair (↵0(t1),↵0(t2))
coincides with that of R2 at Q; negative, otherwise.

The number of positive (or negative) nodes on �i is denoted by N
+
i (resp. N�

i ). The definition
of a positive (or negative) node on �i depends on the choice of an admissible starting point y.
However, it is known that the algebraic number N+

i �N
�
i does not depend on the choice of y,

see [12] for details. Thus, the algebraic number N
+ � N

� =
Pk

i=1(N
+
i � N

�
i ) is well defined.

Note that nodes arising from �i \ �j (i 6= j) play no role in the computation.
Then, we have the following formula as an application of the formula of Pignoni [9] and

Imai [6].

Proposition 3.5. For an admissible stable map f : Mk ! R2, we have

(3.1) g = "(Mk)

0

@(N+ �N
�) +

c(f)

2
+ (1 + i

+ � i
�)� 1

2

kX

j=1

(rj + 1)

1

A
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where "(Mk) is equal to 1 if Mk is orientable or 2 if Mk is non-orientable, and rj denotes the
rotation number of f |@i .

Proof. To compute the Euler characteristic �(Mk), apply a result of Levine [8]: For an admissible
stable map f : Mk ! R2, we have

�(Mk) =
X̀

i=1

⌧(�i) +
1

2

kX

j=1

⌧(ej),

where �i and ej denote f(Si) and f(@j) respectively, and ⌧(�i) and ⌧(ej) denote the double
tangent turning number of �i and ej with respect to the canonical orientation respectively. For
an oriented closed curve ↵, the double tangent turning number ⌧(↵) is defined as the degree of
the map ↵ ! RP 1 assigning to each point on the curve its tangent line. This map is also defined
at cusp points. If ↵ has no cusps, then ⌧(↵) = 2r(↵) where r(↵) denotes the normal degree of
↵. To compute ⌧(↵), apply a result of Quine [10]: For a closed plane curve ↵, we have

⌧(↵) = 2⌘(↵) + 2n+ � 2n� + c
+ � c

�
,

where ⌘(↵) = ±1 is defined according to the orientation of the curve ↵, c+ (or c
�) denotes

the number of positive (resp. negative) cusps of ↵, and n
+ (or n

�) the number of positive
(resp. negative) nodes of ↵, see [10] for details. Comparing the definitions of the items in the
Quine’s formula with the ones introduced in this paper, we see: (a) the sign of the double points
is the opposite of that defined by Quine; (b) when the contour is endowed with its canonical
orientation, each cusp is negative. Thus,

⌧(�i) = 2⌘(�i) + 2N�
i � 2N+

i � ci,

where ci denotes the number of cusps of �i. ⌘(�i) = +1 if and only if �i is negative.

kX

i=1

⌧(�i) = 2i� � 2i+ + 2N� � 2N+ � c(f).

Each f(@j) is a closed curve with no cusp: ⌧(f(@j)) = 2rj . Hence, by applying the formula of
Levine to f , we obtain

(3.2) �(Mk) = 2i� � 2i+ + 2N� � 2N+ � c(f) +
kX

j=1

rj .

Then, the result follows immediately. ⇤

Corollary 3.6. Let f : ⌃g,1 ! R2 be an admissible stable map of rotation number r. Then, the
number of cusps of f and the rotation number r never have the same parity.

Lemma 3.7. Let f : ⌃g,1 ! R2 be an admissible stable map. If �(f) has a node, then it has at
least one negative node.

4. Admissible stable maps M1 ! R2

In this section, we construct boundary rotation number r 2 Z stable maps fr,g : ⌃g,1 ! R2

(g � 0) and hr,g : Ng,1 ! R2 (g � 1) whose singular points sets consist of one component and
whose pairs (c, n) are in the lists of Theorems 2.3 and 2.5 respectively. Note that constructing
such stable maps is a part of a proof of Theorem 2.3 (or Theorem 2.5).

Note that in Figures, boundary curves are drawn in gray and the image of boundary curves
are also drawn in gray.
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Figure 2. Modification I: By applying this modification, the rotation number
increase by one.

4.1. Admissible stable maps ⌃0,1 ! R2. For a boundary rotation number r0 admissible stable
map f

0 : ⌃g0,1 ! R2 whose singular points set consists of i0 components and have c0 cusps and n
0

nodes, by applying modifications I (or II, III) defined by Figure 2 (resp. Figures 3, 4), we obtain
a boundary rotation number r admissible stable map f : ⌃g,1 ! R2 whose singular points set
consists of i components and has c cusps and n nodes. Note that a C

1 map ⌃g,1 ! R2 is locally
defined by the projection R3 ! R2 into the xz-plane composed with a C

1 map ◆
0 : D2 ! R3 of

the 2-dimensional disc. Figures 2, 3 and 4 represent modifications for a C
1 map ◆

0 : D2 ! R3.
Note that the modified maps ◆ : D2 ! R3 in Figure 2 and 3, 4 have one cross-cap:

(1) Modification I (Figure 2):

(r, g, i, c, n) = (r0 + 1, g0, i0, c0 + 1, n0)

(2) Modification II (Figures 3):

(r, g, i, c, n) = (r0 � 1, g0, i0, c0 + 1, n0 + 1)

(3) Modification III (Figure 4):

(r, g, i, c, n) = (r0 � 2, g0 + 1, i0, c0, n0)

Figure 5 define a rotation number �1 admissible stable map f�1,0 : ⌃0,1 ! R2 whose triple
(i, c, n) is equal to (1, 0, 0). More precisely, f�1,0 is defined by f�1,0 = ⇡xz � ◆.

By applying modification I inductively to f�1,0, we obtain an admissible stable map

fr,0 : ⌃0,1 ! R2

whose triple (i, c, n) is equal to (1, r + 1, 0) for each integer r � �1.
By applying modification II inductively to f�1,0, we obtain an admissible stable map

fr,0 : ⌃0,1 ! R2

whose triple (i, c, n) is equal to (1,�r � 1,�r � 1) for each integer r  �1.

4.2. Admissible stable maps ⌃1,1 ! R2. For each integer r
0  2, by applying modification

III to fr0,0, we obtain boundary rotation number r  0 admissible stable maps fr,1 whose triples
(i, c, n) are one of the items below:

(i, c, n) =

(
(1, r + 3, 0) if �2  r  0,

(1,�r � 3,�r � 3) if r  �3.
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Figure 3. Modification II: By applying this modification, the rotation number
decrease by one.

D
2 ⌃1,1
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Figure 4. Modification III: By applying this modification, the rotation number
decrease by two and the genus of the source surface increase by one.

D
2
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◆ ⇡xz

Figure 5. Admissible stable map D
2 ! R2 of rotation number �1.

Let us construct stable maps fr,1 (r � 1). Figures 6 and 7 show degree one stable maps
f
0
1, f

0
2 : ⌃1 ! S

2 obtained by Kamenosono and the author [7]. Note that the contours of these
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Figure 6. A degree one stable map f1 : ⌃g ! S
2: f

0
1 is obtained by the fol-

lowing manner: (1) Define S
2
r = {(x, y, z) 2 R3 | z2 + y

2 + z
2 = r

2} and put
M = S

2
1/2 [ S

2
1 [ S

2
2 . Define t1 : M ! S

2
1 by x 7! x/|x|. (2) By attaching

two handles vertically between S
2
1/2 and S

2
1 , S

2
1/2 and S

2
2 , we obtain a degree

one stable map t
0
1 : S

2 ! S
2 whose triple is equal to (2, 0, 0). (3) By at-

taching a handle horizontally as the Figure, we obtain a degree one stable map
f
0
1 : ⌃g ! S

2 whose triple (i, , c, n) is equal to (1, 0, 4).

maps are minimal contours. Stable maps f 0
1, f

0
2 : ⌃1 ! S

2 induce rotation number one admissible
stable maps f

1
1,1, f

2
1,1⌃1,1 ! R2 whose contours are as depicted in right-hand side of Figures 8

and 9 respectively. By applying modification I inductively to f
1
1,1 and f

2
1,1, we obtain rotation

number r � 1 admissible stable maps f
1
r,1, f

2
r,1 : ⌃1,1 ! R2 whose triples (i, c, n) are equal to

(1, r � 1, 4), (1, r + 3, 0) respectively.

4.3. Admissible stable maps ⌃2,1 ! R2. For each r
0  0 (or r

0 = 1, 2, 3), by applying
modification III to fr0,1 (resp. f

1
r0,1, f

2
r0,1), we obtain boundary rotation number r  �2 (resp.

r = �1, 0, 1) admissible stable maps fr,2 (resp. f
1
�1,2, f

1
0,2, f

1
1,2, f

2
�1,2, f

2
0,2, f

2
1,2) whose triples

(i, c, n) are one of the items below:

(i, c, n) =

8
><

>:

(1, r + 1, 4) or (r + 5, 0) if �1  r  1,

(1, r + 5, 0) if �4  r  �2,

(1,�r � 5,�r � 5) if r  �5.

Let us construct rotation number r � 2 admissible stable maps ⌃2,1 ! R2.

Proposition 4.1. For each g � 2, there are rotation numbers 2g � 2 and 2g � 1 admissible
stable maps f2g�2,g and f2g�1,g : ⌃g,1 ! R2 whose triples (i, c, n) are equal to (1, 1, 2g + 1) and
(1, 0, 2g + 2) respectively.



124 TAKAHIRO YAMAMOTO

x

yz

Attach a handle horizontally

id2S f
0
2

⌃1

Figure 7. A degree one stable map f
0
2 : ⌃g ! S

2: f2 is obtained by attaching
a handle horizontally to the source sphere of the identity map on S

2.

⌃1 ⌃1,1

f1 f
1
1,1

Figure 8. Admissible stable map f
1
1,1 : ⌃1,1 ! R2.

Proof. Figures 10 and 11 define boundary rotation number two and three admissible stable maps
f2,2 and f3,2 : ⌃2,1 ! R2 whose triples (i, c, n) are equal to (1, 1, 5) and (1, 0, 6) respectively. More
precisely, to define f2,2 (or f3,2), we decompose ⌃2,1 into three pieces. Then, define inclusions
of each pieces into R3 as depicted in Figure 10 (resp. Figure 11). Note that ⌃2,1 is restored
by attaching the three pieces along bold curves and dotted lines which are labeled in Figure 10
(resp. Figure 11). An admissible stable map f2,2 (resp. f3,2) is defined by the projection ⇡xz

composed with the inclusion.
We can construct such admissible stable maps f2g�2,g and f2g�1,g as well as the cases f2,2

and f3,2. ⇤

By applying modification I inductively to f3,2, we obtain a rotation number r admissible
stable map fr,2 : ⌃2,1 ! R2 whose triple (i, c, n) is equal to (1, r � 3, 6) for each r � 3.
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Figure 9. Admissible stable map f
2
1,1 : ⌃1,1 ! R2
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Figure 10. Admissible stable map ⌃2,1 ! R2.

4.4. Admissible stable maps ⌃g,1 ! R2 (g � 3). Let us consider the case g = 3. In this case,
we already have admissible stable maps f4,3 and f5,3 whose triples (i, c, n) are equal to (1, 1, 7)
and (1, 0, 8) respectively by Proposition 4.1.

By applying modification III to fr0,2 where 2  r
0  5 or r

0  �2 (or f
1
r0,2, f

2
r0,2 where

�1  r
0  1), we obtain boundary rotation number 0  r  3 or r  �4 (resp. �3  r  �1)

admissible stable maps fr,3 (resp. f1
r,3, f

2
r,3) whose triples (i, c, n) are one of the items below:

(i, c, n) =

8
>>>>>><

>>>>>>:

(1, r � 1, 6) if 1  r  3,

(1, 1, 5) if r = 0,

(1, r + 3, 4) or (r + 7, 0) if �3  r  �1,

(1, r + 7, 0) if �6  r  �4,

(1,�r � 7,�r � 7) if r  �7.

Then, by applying modification I inductively to f5,3, we obtain a boundary rotation number r

admissible stable map fr,3 : ⌃3,1 ! R2 whose triple (i, c, n) is equal to (1, r�5, 8) for each r � 5.



126 TAKAHIRO YAMAMOTO

x

yz

A

A

B

B

C

C

D

D

E

E

Figure 11. Admissible stable map ⌃2,1 ! R2.
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Figure 12. Modification IV: By applying this modification, the rotation num-
ber increases by two.

Similarly, for each g � 4 and r  2g � 3, we construct fr,g where 5 � 2g  r  2g � 3 or
r  2 � 2g (or f

1
r,g, f

2
r,g where 3 � 2g  r  5 � 2g) by applying modification III to fr0+2,g0�1

(resp. f
1
r0+2,g0�1, f

2
r0+2,g0�1 where 5 � 2g0  r

0  7 � 2g0). Then, by applying modification I
inductively to f2g�1,g, we obtain an admissible stable map fr,g for each r � 2g � 1. Note that
we already have f2g�2,g in Proposition 4.1.

4.5. Admissible stable maps Ng,1 ! R2. By applying modification IV (or V, VI) defined
by Figure 12 (resp. Figures 13, 14) for a boundary rotation number r

0 admissible stable map
h : Ng0,1 ! R2 whose singular points set consists of i0 components and has c0 cusps and n

0 nodes,
we obtain a boundary rotation number r admissible stable map h : Ng,1 ! R2 whose singular
points set consists of i components and has c cusps and n nodes:

(4) Modification IV
(r, g, i, c, n) = (r0 + 2, g0, i0, c0, n0 + 1)

(5) Modification V
(r, g, i, c, n) = (r0 � 2, g0, i0, c0, n0 + 1)
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Figure 13. Modification V: By applying this modification, the rotation number
increases by two.
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Figure 14. Modification VI: By applying this modification, the rotation num-
ber decreases by one.

(6) Modification VI
(r, g, i, c, n) = (r0 � 1, g0 + 1, i0, c0, n0)

Note that the modified map ◆
0 : D2 ! R3 have one cross-cap.

Furthermore, by applying modification III to a boundary rotation number r
0 admissible stable

map h
0 : Ng0,1 ! R2, we obtain a boundary rotation number r

0 � 2 admissible stable map
h
0 : Ng0+2,1 ! R2.
Figure 15 defines C

1 maps ◆i : N1,1 ! R3 (i = �2,�1, 2 and 3). Then, the projection ⇡xz

composed with ◆�2, ◆�1, ◆2 and ◆3 define boundary rotation number �2, �1, 2 and 3 admissible
stable maps h�2,1, h�1,1, h2,1 and h3,1 : N1,1 ! R2 whose triples (i, c, n) are equal to (1, 0, 0),
(1, 1, 0), (1, 0, 0) and (1, 1, 0) respectively.

By applying modification IV to h�2,1 and h�1,1, we obtain boundary rotation number zero
and one admissible stable maps h0,1 and h1,1 : N1,1 ! R2 whose triples (i, c, n) are equal to
(1, 0, 1) and (1, 1, 1) respectively.

By applying modification IV inductively to h2,1 and h3,1, we obtain a boundary rotation
number r � 2 admissible stable map hr,1 : N1,1 ! R2 whose triple (i, c, n) is equal to (1, 0, (r �
2)/2) if r � 2 is even, (1, 1, (r � 3)/2) otherwise.

Similarly, by applying modification V inductively to h�2,1 and h�1,1, we obtain a boundary
rotation number r  �1 admissible stable map hr,1 : N1,1 ! R2 whose triple (i, c, n) is equal to
(1, 0, (�r � 2)/2) if r  �1 is even, (1, 1, (�r � 1)/2) otherwise.

Thus, we see that for each triple (i, c, n) in the list of Theorem 2.5 (g = 1), there exists an
admissible stable map N1,1 ! R2 whose triple (i, c, n) is the triple.

Then, by applying modification III inductively to hr0,1 : N1,1 ! R2, we obtain a boundary
rotation number r admissible stable map hr,g : Ng,1 ! R2 whose triples (i, c, n) are in the list of
Theorem 2.5 for each odd number g � 1 and each r 2 Z. Furthermore, by applying modification
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Figure 15. Admissible stable maps N1,1 ! R2 of rotation numbers �2,�1, 2
and 3, respectively

VI inductively to hr0,g0 : Ng0,1 ! R2 with odd g
0 � 1, we obtain hr,g : Ng,1 ! R2 whose triples

(i, c, n) are in the list of Theorem 2.5 for each even g � 2 and r 2 Z.
Thus, we see that for each (i, c, n) in the list of Theorem 2.5, there is a boundary rotation

number r admissible stable map h : Ng,1 ! R2 whose triple (i, c, n) is equal to the triple.

5. Proof of minimum of c+ n in Theorem 2.3

Let g 2 Z�0 and r 2 Z. To prove Theorem 2.3 we need the following Lemmas.

Lemma 5.1 (M. Yamamoto [14]). Let f : ⌃g,1 ! R2 be a rotation number r admissible stable
map whose singular points set consists of one component. Then, c(f) � |r+1|�2g and c(f) 6⌘ r

mod 2.

Lemma 5.2. Let f : ⌃g,1 ! R2 be a rotation number r admissible stable map whose singular
points set consists of one component.

(1) If f has no cusps, then r ⌘ 2g � 1 mod 4.
(2) If r ⌘ 2g + 1 mod 4, then �(f) has at least two cusps.

Proof. (1) For such stable map f : ⌃g,1 ! R2, ⌃g,1 is decomposed into three pieces as

⌃g,1 = ⌃g�t,1 tN(S(f)) t ⌃t,2, 0  t  g,

where N(S(f)) denote a tubular neighborhood of S(f). Note that f1; = f |⌃g�t,1 and f2 := f |⌃t,2

are immersions. Then, by applying a result of Heafliger:

For an immersed surface Mk ⇢ R2, the Euler-Poincare characteristic
�(Mk) is equal to the normal degree of @Mk.

If W (f1) = k, then we have �(⌃g�t,1) = k and �(⌃t,2) = k+ r. This shows that 2g = 1+ r+4t.
(2) Put r = 2g + 1 + 4k. Then, formula (3.1) implies the conclusion. ⇤

Let us divide a proof into two cases g = 0 and g � 1.
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5.1. g = 0. Lemma 5.1 shows that the contour �(fr,0) is an admissible minimal contour for each
r � 0.

Let us consider the case r  �1. Let f : ⌃0,1 ! R2 be an admissible stable map of rotation
number r whose singular points set consists of one component. Then, Lemma 5.1 implies that
c(f) � �(r + 1). In this case, (3.1) and Lemma 3.2 show that

r + 1

2
= (N+ �N

�) +
c(f)

2
.

Then, we have

r + 1

2
= (N+ �N

�) +
c(f)

2
� (N+ �N

�)� r + 1

2
.

This implies that (r + 1) � (N+ � N
�). Note that (r + 1) is negative. Thus, we have

N
� � �(r + 1). Then,

c(f) + n(f) � c(f)

2
+

r + 1

2
+ 2N� � �2(r + 1).

Thus, for such admissible stable maps, we have c(f) + n(f) � �2(r + 1). This shows that the
contour �(fr,0) (r  �1) is an admissible minimal contour.

5.2. g � 1. At first, let us consider the case r � 2g � 1. Let f : ⌃g,1 ! R2 be an admissible
stable map of rotation number r whose singular points set consists of one component. Then the
formula (3.1) and Lemma 3.2 show that

(5.1) g +
r + 1

2
= (N+ �N

�) +
c(f)

2
.

If �(f) has no node, then c(f) = 2g+ r+1. If �(f) hsa a node, then Lemma 3.7 and Lemma 5.1
yeild that

c(f) + n(f) � c(f)

2
+ g +

r + 1

2
+ 2N� � r + 3.

This shows that the contour �(fr,g) (r � 2g � 1) is an admissible minimal contour.
The case �2g  r  2g is also proved by using Lemmas 5.1, 5.2 and the similarly argument

as the above case.
Then, let us consider the case r  �2g � 1. Let f : ⌃g,1 ! R2 be a rotation number r

admissible stable map whose singular points set consists of one component. The formula (5.1)
and Lemma 5.1 imply

g +
r + 1

2
� (N+ �N

�) +
�r � 1� 2g

2
.

Thus, we have

2g + r + 1 � (N+ �N
�).

Note that 2g + r + 1 is negative. Thus, N� � �(2g + r + 1). Then,

c(f) + n(f) � c(f)

2
+ g +

r + 1

2
+ 2N� � �2(r + 2g + 1).

Therefore, the contour �(fr,g) (r  �2g � 1) is admissible minimal contour.
It completes the proof of Theorem 2.3.
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6. Proof of minimum of c+ n in Theorem 2.5

Let g 2 Z�1 and r 2 Z. Proposition 3.5 yeilds the following lemma.

Lemma 6.1. Let h : Ng,1 ! R2 be a boundary rotation number r admissible stable map whose
singular points set consists of one component. Then, the numbers g+ r and c(h) never have the
same parity. In particular, if g + r is an even number, then h has at least one cusp.

Proof. Let h : Ng,1 ! R be a such stable map. Then, formula (3.1) induces the following modulo
two equation

g ⌘ c(h)� (r + 1).

It implies the conclusion. ⇤

We divide a proof into two cases g = 1 and g � 2.

6.1. g = 1. Lemma 6.1 shows that the contours �(hr,1) (r = �2,�1, 2, 3) are admissible minimal
contours.

At first, let us consider the case r � 4. Let h : N1,1 ! R2 be a boundary rotation number r
admissible stable map whose singular points set consists of one component.

(i1) i
+ = 1. Then, the formula (3.1) implies 2(N+ � N

�) + c(h) = r � 2. If �(h) has no
nodes, then c(h) = r � 2. If �(h) has a node, then

c(h) + n(h) =
r � 2 + c(h)

2
+ 2N� � r � 2 + c(h)

2
.

This yeilds that if r � 4 is odd (or even), then

c(h) + n(h) � (r � 1)/2

(resp. c(h) + n(h) � (r � 2)/2).
(i2) i

� = 1. Then, the formula (3.1) implies 2(N+ � N
�) + c(h) = r + 2. If �(h) has no

nodes, then c(h) = r + 2. If �(h) has a node, then

c(h) + n(h) =
r + c(h) + 2

2
+ 2N� � r + c(h) + 2

2
.

This yields that if r � 4 is odd (or even), then

c(h) + n(h) � (r + 3)/2

(resp. c(h) + n(h) � (r + 2)/2).

(i1) and (i2) show that if r � 4 is odd (or even), then c(h) + n(h) � (r � 1)/2 (resp.
c(h) +n(h) � (r� 2)/2). This implies that the contour �(hr,1) (r � 4) is an admissible minimal
contour.

Then, let us consider the case r  �3. Let h : N1,1 ! R2 be a boundary rotation number r

admissible stable map whose singular points set consists of one component.

(i1) i
+ = 1. Then, the formula (3.1) induces 2(N+ � N

�) = r � c(h) � 2. Note that
r � c(h)� 2  0. Thus, we have N

� � �(r � c(h)� 2)/2. Then,

c(h) + n(h) =
r + c(h)� 2

2
+ 2N� � 3c(h)� r + 2

2
.
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Lemma 6.1 yields that if r  �3 is odd (or even), then c(h) + n(h) � (�r + 5)/2 (resp.
c(h) + n(h) � (�r + 2)/2).

(i2) i
� = 1. Then, the formula (3.1) induces 2(N+ � N

�) = r � c(h) + 2. If �(h) has no
nodes, then c(h) = r+2. If �(h) has a node, then (N+ �N

�) = (r� c(h) + 2)/2  0. Thus, we
have N

� � �(r � c(h) + 2)/2. Then,

c(h) + n(h) =
r � c(h) + 2

2
+ 2N� � 3c(h)� r � 2

2
.

Lemma 6.1 shows that if r  �3 be odd (or even), then c(h) + n(h) � (�r + 1)/2 (resp.
(�r � 2)/2).

(i1) and (i2) show that �(hr,1) (r  �3) is an admissible minimal contour.
Formula (3.1) implies the following.

Lemma 6.2. Let h : N1,1 ! R2 be a boundary rotation number 0 admissible stable map whose
singular points set consists of one component. Then, c(h) + n(h) � 1.

Therefore, �(h0,1) is an admissible minimal contour.
We can show that �(h1,1) is minimal as the above case.
Thus, we complete the proof of the Theorem 2.5 for g = 1.

6.2. g � 2. Lemma 6.1 shows that the contours �(h�g,g) and �(h�g�1,g) are admissible minimal
contours.

At first, let us consider r � �g + 1. Let h : Ng,1 ! R2 be a boundary rotation number r

admissible stable map whose singular points set consists of one component.
(i1) i

+ = 1. Then, formula (3.1) shows that 2(N+ � N
�) + c = g + r � 3. If �(h) has no

nodes, then c(h) = g + r � 3. If �(h) has a node, then

c(h) + n(h) = c(h) +
g + r � c(h)� 3

2
+ 2N� � g + r + c(h)� 3

2
.

Lemma 6.1 shows that if g + r is even (or odd), then c(h) + n(h) � (g + r � 2)/2 (resp.
c(h) + n(h) � (g + r � 3)/2).

(i2) i� = 1. Then, formula (3.1) shows that 2(N+ �N
�) + c(h) = g + r + 1. If �(h) has no

nodes, then c(h) = g + r + 1. If �(h) has a node, then

c(h) + n(h) = c(h) +
g + r � c(h) + 1

2
+ 2N� � g + r + c(h) + 1

2
.

Lemma 6.1 shows that if g + r is even (or odd), then c(h) + n(h) � (g + r + 2)/2 (resp.
c(h) + n(h) � (g + r + 1)/2).

(i1) and (i2) implies that the conturs �(hr,g) (r � �g+1) are an admissible minimal contours.
Then, let r  �g � 2. Let h : Ng,1 ! R2 be a boundary rotation number r admissible stable

map whose singular points set consists of one component.
(i1) i

+ = 1. Formula (3.1) shows that 2(N+ � N
�) = g + r � c(h) � 3  0. Thus, we have

N
� � �(g + r � c(h)� 3)/2, Then,

c(h) + n(h) = c(h) +
g + r � c(h)� 3

2
+ 2N� � �g � r + c(h) + 3

2
.

Lemma 6.1 shows that if g + r is even (or odd), then c(h) + n(h) � (�g � r + 4)/2 (resp.
c(h) + n(h) � (�g � r + 3)/2).
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(i2) i
� = 1. Formula (3.1) shows that 2(N+ � N

�) = g + r � c(h) + 1  0. Thus, we have
N

� � �(g + r � c(h) + 1)/2, Then,

c(h) + n(h) = c(h) +
g + r � c(h) + 1

2
+ 2N� � �g � r + 3c(h)� 1

2
.

Lemma 6.1 shows that g + r is even (or odd), then

c(h) + n(h) � (�g � r + 2)/2

(resp. c(h) + n(h) � (�g � r � 1)/2).
(i1) and (i2) implies that �(hr,g) (r � �g � 2) is an admissible minimal contour.
It completes the proof of Theorem 2.5.

7. Problem

Let M be a compact connected surface with boundary and P a surface without boundary. A
C

1 map f : M ! P is called a fold map if f has only fold points as its singularities.
Let f : M ! R2 be a boundary rotation number r admissible stable fold map. Then, call the

contour �(f) an F-(i, n)-minimal contour of boundary rotation number r maps M ! R2 if the
pair (i(f), n(f)) is the smallest among rotation number r admissible stable fold maps M ! R2

with respect to the lexicographic order.

Problem 7.1. Let M = ⌃g,1 or Ng,1. Study an F-(i, n)-minimal contour of boundary rotation
number r maps M ! R2.
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A QUICK TRIP THROUGH FIBRATION STRUCTURES

A. A. DO ESPIRITO SANTO, D. DREIBELBIS, M. F. RIBEIRO,

AND R. N. ARAÚJO DOS SANTOS

Abstract. In this article we review the classical results about the existence of fibered struc-
tures for real and complex singularities in the local setting, commonly known in the literature
as Milnor’s fibration structures. After reviewing the classical studies, we describe some gen-
eralizations in two main directions, namely, the existence of open book structures on semi-
algebraic manifolds, and the existence of the Milnor fibration in a stratified sense.

1. Introduction

The existence of a fibration near an isolated singularity is fundamental to the understanding
of the local structure of the pair space-function.

In the famous Princeton notes of 1968 [Mi], J. Milnor established the foundations for study-
ing fibration structures for germs of complex analytic functions f : (Cn+1

, 0) ! (C, 0) with
dimSing f � 0. In this setting, it was shown that given a representative f : U ⇢ Cn+1 ! C
with U an open set in Cn+1, f(0) = 0, there exists a small enough real number "0 > 0 such that
for any 0 < "  "0,

(1) � :=
f

kfk : S2n+1
" \K" ! S

1

is a locally trivial smooth fibration, where K" = f
�1 (0)\S2n+1

" is called the link of the singularity
at the origin.

In chapters 5, 6 and 7 of [Mi], Milnor gave differentiable and topological descriptions of the
link and the fibers F✓ = �

�1
�
e
i✓
�
, where e

i✓ 2 S
1
, showing that independent of the dimension

of the singular locus, the fiber is a (2n)-dimensional smooth parallelizable manifold with the
homotopy type of a k-dimensional CW-complex, with k  n.

In addition, whenever Sing f = {0}, Milnor associated to the singular point of f a multiplicity
denoted by µ(f), later named by several authors as the Milnor number of the singularity, given
by the topological degree of the map

"
rf

krfk : S2n+1
" ! S

2n+1
" .

In this case it was also shown that the fiber F✓ has the same homotopy type of a bouquet of
n-dimensional spheres

Wµ(f)
i=1 S

n
i , with µ(f) spheres in the bouquet.

In 1976, Lê Dũng Tráng in his article [Le] proved the existence of a general fibration structure
on a complex analytic set, as follows.

Let X be an analytic set in an open neighborhood U of the origin 0 2 Cn+1. Let
f : (X, 0) ! (C, 0) be a germ of a holomorphic function.
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Theorem 1.1. [Le, Milnor-Lê Fibration] For any small enough " > 0, there exists ⌘, 0 < ⌘ ⌧ ",
such that

(2) f| : B
2n+2
" \X \ f

�1(D⌘ \ {0}) ! D⌘ \ {0}

is a locally trivial topological fibration.

An important point to notice here is that this topological fibration structure becomes a smooth
fibration if X \ Vf is a non-singular analytic set in Cn+1 (see details in [Ham, Le]).

As a particular case of the previous theorem, one can state:

Corollary 1.2. [Le, Existence of Milnor-Lê (tube) fibration] Let f :
�
Cn+1

, 0
�
! (C, 0) be a

holomorphic function germ. Then there exists small enough " > 0, such that for any 0 < � ⌧ ",
the map

f| : B
2n+2
" \ f

�1 (D� \ {0}) ! D� \ {0}(3)

is the projection of a locally trivial smooth fibration. In addition, for any small enough ", there
exists ⌘, 0 < ⌘ ⌧ ", such that

(4) f| : B
2n+2
" \ f

�1
�
S
1
⌘

�
! S

1
⌘

is the projection of a locally trivial smooth fibration. Moreover, the fibrations (1) and (4) are
equivalent1.

Milnor also explained how to extend the study to a real analytic map germ

G : (Rm
, 0) ! (Rp

, 0), m > p � 2,

with isolated singular point at the origin, i.e., SingG = {0} as a germ of a set. In this case he
observed that, for any small enough " > 0, there exists a projection map

S
n�1
" \K" ! S

p�1
1

that is a smooth locally trivial fibration, induced by G, but which in general fails to be the
canonical map G/kGk like (1) (see section 2.2). However, one gets that G always induces a
trivial fibration structure over a neighborhood of the link K", and consequently an open book
structure (or NS�pair) on S

n�1
" for some extension of the projection G/kGk (see Section 3).

More recently in [ACT1, AT1, AT2], the authors have defined and proved the existence of
singular higher open book structures on spheres of small enough radius, which extends the real
and complex fibrations results previously proved by Milnor.

In another direction, the authors in [DACA] have shown how it is possible to extend these
results to the class of semi-algebraic maps, in such a way that it is possible to derive, as
a particular case, the existence of fibration structures mentioned above. More precisely, let
G : Rm ! Rp

, m > p � 2, be a C
2 semi-algebraic map and W ,! RN an embedded com-

pact and connected semi-algebraic manifold. The authors adapted some conditions used in
[ACT1, ACT2, AT1, AT2, Ma] to ensure that the restriction map

G =
G

kGk : W \ VG ! S
p�1

with VG := G
�1(0), gives a higher open book structure on W and consequently a locally trivial

smooth fibration. In this case, the link of the structure is VW (G) = W \ VG.

1Two locally trivial smooth fibrations p : E ! B and p0 : E0 ! B are said to be equivalent if there is a smooth
diffeomorphism h : E ! E0 such that p0 � h = p.
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In the past few years the study of the existence of fibration structures in the real setting has
concentrated on real maps with isolated singularities and on classes of singular maps with the
property SingG ⇢ VG, which in this work will be denoted by DiscG = {0} (cf [ACT1, AT1,
AT2, C, CSS3, DA, Ma, Mi, PT, RSV]).

The complementary case, when DiscG is larger than {0}, has been studied, for instance, by
Hamm in [Ham]. Hamm studied the case where the germs of holomorphic maps

G : (Cn+p
, 0) ! (Cp

, 0)

are also an ICIS - Isolated Complete Intersection Singularity 2. This means the map defines a
local complete intersection germ VG such that VG has an isolated singularity at the origin, i.e.,
the ICIS condition amounts to the condition SingG \ VG = {0}. Hamm proved the following
result.

Theorem 1.3. Let G := (G1, . . . , Gp) : (Cn+p
, 0) ! (Cp

, 0), p � 1, be an ICIS at 0. Then,

(5) G| : B
2(n+p)
" \G

�1(B2p
⌘ \DiscG) ! B

2p
⌘ \DiscG

is a locally trivial smooth fibration.

This fibration was also called the Milnor fibration and it generalizes the previous isolated
singular case for holomorphic functions. The discriminant set DiscG is a complex hypersurface
of Cp. Hence, it does not disconnect the complement B

2p
⌘ \ DiscG and the topological type

of the fibers of (5) does not change. Moreover, the fiber F is a real 2n-dimensional smooth
manifold with the homotopy type of a bouquet of n-dimensional spheres

Wµ
i=1 S

n
i , where now

µ := rankHn(F,Z), the rank of the homology in the middle dimension of the fiber with integer
coefficients.

For a real analytic map germ G : (Rm
, 0) ! (Rp

, 0) with positive dimensional discriminant set,
i.e. dimDiscG > 0, the existence of fibration structures was pointed out theoretically in [ACT1,
Theorem 1.3] and [MS], but no concrete families of examples have been studied. In [CGS], the
authors presented a Milnor-Lê type result over the complement of the image G(SingG), under
assumptions of Thom regularity.

In [ART1] the authors have considered this general situation and have introduced two local
fibrations structures. The first one was over the complement of the discriminant, which was
called a Milnor-Hamm tube fibration. The second was a general notion of stratified tube fibration
by considering in addition all singular fibers over the stratified discriminant. In the latter case,
the tube fibration, which was called a singular Milnor tube fibration, is actually a collection of
finitely many fibrations over path-connected subanalytic sets.

In [ART2], the authors considered again the setting dimDiscG > 0 and introduced the
Milnor-Hamm sphere fibration. They gave natural sufficient conditions for which this fibration
exists, and they presented several classes of maps which satisfies these conditions. Moreover,
they have shown that the Milnor-Hamm tube and Milnor-Hamm sphere fibrations are extensions
of the previous ones treated in [ACT1, AT1, AT2, CGS, CSS2, Ma, Mi].

In this work we present a brief survey about the results described above, as well as some
comparisons between the main results found in the literature. This paper complements the nice
survey paper [S2], recently published.

2One of the richest sources of information on ICIS is Looijenga’s classical book [Lo2]. See also the reedited
version [Lo3].
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2. 0-dimensional discriminant set

In this section we consider the fibration on the so-called Milnor’s tube, and the fibration on a
sphere of radius small enough for the case where the classical discriminant set is 0-dimensional.
Classically, this case was studied in two approaches: isolated critical point and isolated critical
value.

2.1. Isolated critical point: tube fibration. Given a representative of G : (Rm
, 0) ! (Rp

, 0),
m > p � 2, in the first part of the proof of [Mi, Theorem 11.2], Milnor proved that if G has
an isolated critical point at the origin 0 2 Rm, then for any small enough " > 0, there exists ⌘,
0 < ⌘ ⌧ ", such that the restriction map

(6) G| : B
m
" \G

�1(Sp�1
⌘ ) ! S

p�1
⌘

is the projection of a locally trivial smooth fibration. More precisely, Milnor proved the following
result:

Theorem 2.1. [Mi] Let G : (Rm
, 0) ! (Rp

, 0) be a real analytic map germ such that SingG = {0}
as a germ of an analytic set at the origin. Then there exists "0 > 0 such that, for each ",
0 < "  "0, there exists ⌘, 0 < ⌘ ⌧ ", such that (6) is a smooth fiber bundle.

Geometrically, a standard picture for the total space B
m
" \ G

�1(Sp�1
⌘ ) is as in the Figure 1

below3. The boundary manifold B
m
" \ G

�1(Sp�1
⌘ ) looks like a “tube” surrounding the special

fiber VG. For this reason several authors called this space “the Milnor tube”.

Figure 1. G(x, y, z) = (x, y(x2 + y
2 + z

2)) Milnor tube and Milnor sphere fibrations.

Remark 2.2. It is not hard to see that the structure of the fibration (6) does not change up to
isotopy for any " > 0 and ⌘ > 0 small enough. Consequently, we will denote the Milnor tube as
MG.

2.2. Sphere fibration: Milnor’s example. Concerning the sphere fibration in this real set-
ting, Milnor guaranteed the existence of a diffeomorphism between the Milnor tube MG and
the complement S

m�1
" \ int(T ) of an open tubular neighborhood int(T ) of the link K" in S

m�1
" ,

where T :=
�
x 2 S

m�1
" | kG(x)k  ⌘

 
. This diffeomorphism is the identity on the boundary of

3In the case the link K" = VG \ Sm�1
" is not empty for any small enough ".
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the tube, which allows one to extend it to an open book structure (see Section 3). This dif-
feomorphism and the locally trivial smooth fibration (6) guaranteed by Theorem 2.1, can be
composed to get a map

⇣ : Sm�1
" \ int(T ) ! S

p�1
⌘

which is a fibration, as stated in the following result:

Theorem 2.3. [Mi, Theorem 11.2, p. 97] Let G : (Rm
, 0) ! (Rp

, 0), m � p � 2, be a real
analytic map germ such that SingG = {0} as a germ of an analytic set at the origin. Then there
exists "0 > 0 such that, for each ", 0 < "  "0, there exists ⌘, 0 < ⌘ ⌧ ", such that
(7) ⇣ : Sm�1

" \ int(T ) ! S
p�1
⌘

is a smooth fiber bundle.

Moreover, Milnor showed that each fiber F⇣ of the fibration ⇣ is a smooth compact (m� p)-
dimensional manifold bounded by a copy of K". If the link K" is not empty for any small
enough " > 0, it is a (m � p � 1)-dimensional closed smooth submanifold of the sphere and
the fiber is (p � 2)-connected. On the other hand, if the link K" is empty, then the manifold
B

m
" \G

�1(Sp�1
⌘ ) is diffeomorphic to the sphere S

m�1
" . Moreover, when m > p the fibration (7)

given in Theorem 2.3 becomes a Hopf fibration4
G| : S

2t�1 ! S
t, with t = 2, 4, 8.

Next, Milnor presented the following remark without a proof [Mi, remark on p.99]:
“with a little more effort one can prove that the entire complement Sm�1

" \K" also fibers on
S
p�1
⌘ ”.

In order to make this more precise, in [AT1, AT2] and [ACT1], the authors gave a complete
proof for this remark.

Milnor also noted that in general the map projection of the fibration (7) fails to be the
canonical map G/kGk, like it is for the above cited case of holomorphic function germs. In
particular, in [Mi, p. 99], Milnor considered the mapping G := (G1, G2) : (R2

, 0) ! (R2
, 0)

given by G(x, y) = (x, x2 + y(x2 + y
2)) which satisfies SingG = VG = {0} and consequently has

an isolated singular point at the origin. Theorem 2.3 gives the existence of the fibration in the
sphere. However, the map G/kGk cannot be the projection of a locally trivial smooth fibration
on S

1
" , because it is not a submersion for " small enough.

In fact, considering v := (x, y) and the matrix

A(v) =
✓

G1(v)rG2(v)�G2(v)rG1(v)
v

◆

one can see that there exists a curve C (see Figure 2) of tangency points between the fibers of
the map

G/kGk : B2
" \ VG ! S

1

and the small spheres 5. The curve C contains the origin in its closure, hence the intersection
C \ S

1
" provides the critical locus of the map G/kGk : S1

" ! S
1 for any small enough " > 0.

As we will see in more details in the next section, the curve C represents the set of ⇢-nonregular
points of G/kGk (see Lemma 2.10 and Remark 2.11). Consequently (c.f. Definition 2.9), the
map G/kGk is not ⇢-regular and this is precisely the reason why the map G/kGk fails to be the
projection of a locally trivial smooth fibration.

4It is well known that this case is only possible for the pairs of dimensions (m, p) 2 {(4, 3), (8, 5), (16, 9)},
according to [CL, Lemma 1, p. 151], and G : A ⇥ A ! A ⇥ R is given by G(x, y) = (2xȳ, |y|2 � |x|2), where A
denotes the complex numbers, the quaternions, or the Cayley numbers.

5It is also known as the polar curve.
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Figure 2. Curve of tangencies between the fibers of G/kGk and spheres cen-
tered at the origin, for G(x, y) = (x, x2 + y(x2 + y

2))

Remark 2.4. The phenomenon described above in the Milnor example can be reproduced in
higher dimensions using the isolated singularity map G : (Rm+2

, 0) ! (R2
, 0) given by

G(x, y, z1, . . . , zm) = (x, x2 + y(x2 + y
2 + z

2
1 + · · ·+ z

2
m)).

2.3. Non-isolated singular case: tube fibration. Both fibrations, the Milnor tube fibration
and the sphere fibration, in the real case were extended later for non-isolated singular map germs
under the assumption that the discriminant set is 0-dimensional . In order to state properly these
results we need to provide new definitions and notations.

Let us consider U ⇢ Rm an open subset such that 0 2 U and let ⇢ : U ! R�0 be a non-negative
proper function which defines the origin.

Definition 2.5. Let G : (Rm
, 0) ! (Rp

, 0) be an analytic map germ. We denote by

M⇢(G) := {x 2 U | ⇢ 6tx G}

the set of ⇢-nonregular points of G, sometimes also called the Milnor set of G.

The transversality of the fibers of a map G to the levels of ⇢ is called ⇢-regularity and we will
see below that it is a condition for the existence of a locally trivial smooth fibration. It was used
in the local (stratified) setting by Thom, Milnor, Mather, Looijenga, Bekka, e.g. [Be, Lo1, Mi,
Th1, Th2] and more recently in [ACT1, AT1, AT2], and [CSS1, CSS3] under a different name
d-regularity, as well as at infinity in the references [ACT2, DRT, NZ, Ti1, Ti2].

It follows from Definition 2.5 that the Milnor set M⇢(G) is the set of points x 2 U such
that the vectors {r⇢(x),rG1(x), . . . ,rGp(x)} are linearly dependent over R, i.e., M⇢(G) is the
singular locus Sing (G, ⇢) of the pair of map (G, ⇢) : U ! Rp⇥R. Hence, the singular set SingG
is included in M⇢ (G).

For the sake of simplicity, in what follows ⇢ is the square of the Euclidean distance function
⇢(x) = kxk2, and we write M(G) := M⇢(G) for short. However, all results carry out easily over
any other function ⇢ as considered above.

Consider the following condition:

(8) M(G) \ VG \ VG ✓ {0}

where the closure of the set M(G) \ VG is thought as a germ of a set at the origin. See Figure 3
for an example.

Condition (8) was used in [ACT1, AT1, AT2], where it was shown that it insures the existence
of the Milnor tube fibration. More recently, this condition was adapted by the authors in [ART1]
and used in a stratified sense to ensure the existence of a singular Milnor tube fibration (see



140 DO ESPIRITO SANTO, DREIBELBIS, RIBEIRO, AND ARAÚJO DOS SANTOS

Figure 3. From Example 2.8, M(G) is the cone and the plane, while VG is the
plane and the line. Hence G satisfies Condition (8).

Section 5.1 below). Note that this condition is equivalent to saying that for all small enough
" > 0 and 0 < ⌘ ⌧ ", the map:

G| : S
m�1
" \G

�1(B
p
⌘ \ {0}) ! B

p
⌘ \ {0}

is a locally trivial smooth fibration.
In [Ma] D. Massey considered Condition (8) but with different notation and called it the

Milnor condition (b). Massey used the condition to prove the existence of the Milnor tube
fibration in the local setting, as in Theorem 2.6 below. Here we shall use the same notation of
[ACT1] and [ART1].

Theorem 2.6. [Ma, Existence of the (full) Milnor’s tube fibration] Let G : U ! Rp be as above
and assume that it has isolated critical value at origin, i.e. DiscG = {0}, and satisfies Condition
(8). Then there exists "0 > 0 such that, for each ", 0 < "  "0, there exists ⌘, 0 < ⌘ ⌧ ", such
that

(9) G| : B
m
" \G

�1(B
p
⌘ \ {0}) ! B

p
⌘ \ {0}

is the projection of a locally trivial smooth fibration.

Corollary 2.7. [Ma, Existence of the tube fibration] Given G with the conditions of Theorem 2.6,
for any small enough " > 0, there exists ⌘, 0 < ⌘ ⌧ ", such that

G| : B
m
" \G

�1(Sp�1
⌘ ) ! S

p�1
⌘

is the projection of a locally trivial smooth fibration.

In this case we also denote MG = B
m
" \G

�1(Sp�1
⌘ ) and also call it the Milnor tube.

Example 2.8. Let G : (R3
, 0) ! (R2

, 0) given by G(x, y, z) = (xy, xz). Consider v := (x, y, z).
One has that

JG(v) =


y x 0
z 0 x

�

and

JG(v)[JG(v)]t =


x
2 + y

2
yz

yz x
2 + z

2

�
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where JG(v) and [JG(v)]t denote the Jacobian matrix of G in v and its transpose, respectively.
We know that SingG = {det (JG(v)[JG(v)]t) = 0} thus SingG = {x = 0}. Since

VG = {x = 0} [ {y = z = 0}

one gets that DiscG = {0}. Now to compute the Milnor set M(G) let us consider the matrix

B(v) :=

2

4
y x 0
z 0 x

x y z

3

5 .

The Milnor set M(G) = {v 2 R3 | det (B(v)) = 0}. Consequently,

M(G) = {x = 0} [ {x2 � y
2 � z

2 = 0},

and G satisfies Condition (8). Therefore, by Theorem 2.6, G has a Milnor tube fibration.
In Figure 4 below one can see that the Milnor tube MG consists of two connected components.

Compare with Figure 1.

Figure 4. Milnor tube and Milnor sphere fibrations for G(x, y, z) = (xy, xz).

2.4. Existence of the Sphere fibration. Several authors have worked on the problem of fi-
bration over spheres in the real setting, for isolated and non-isolated singularities, e.g. [A1,
ACT1, AT1, CSS1, CSS3, RA, RSV]. In [ACT1, AT1, AT2] the authors generalized all pre-
vious results as we describe below. In order to explain their main results, define the map
 : Rm \ VG ! S

p�1 through the diagram:

Rm \ VG
G //

 &&

Rp \ {0}

⇡1

✏✏
S
p�1

where ⇡1 is radial projection: ⇡1(x) = x/kxk. Given a neighborhood U 2 Rm of 0, define the
set of ⇢-nonregular points of  as the set

M( ) = {x 2 U \ VG | ⇢ 6tx  } .

Definition 2.9. The map germ  is ⇢-regular when M( ) = ;, as a germ of a set at the origin.

The set M( ) was characterized as follows.
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Lemma 2.10. [AT1, AT2, ACT1, S] Let G := (G1, . . . , Gp) : (Rm
, 0) ! (Rp

, 0) be an analytic
map germ. Then on the open set {G1(x) 6= 0}6 one has that

M( ) =

8
>>><

>>>:
x 2 U \ VG | rank

2

6664

⌦2(x)
...

⌦p(x)
r⇢(x)

3

7775
< p

9
>>>=

>>>;
,

where ⌦k = G1rGk �GkrG1, for k = 2, . . . , p.

Remark 2.11. We notice that for any x /2 VG, if ⇢ tx G then ⇢ tx  . Hence,
M( ) ⇢ M(G) \ VG.

Since the ⇢�regularity is a measurement of transversality between the normal spaces of the
fibers of ⇢ and  , the set M( ) does not depend on the particular choice of the open set
{G1(x) 6= 0}. In general, for Gi(x) 6= 0, 1  i  p, one can find appropriate generators for
the normal space of the fibers Xy =  �1(y), y =  (x), considering the collection of vectors
⌦i,k(x) = GirGk(x) � GkrGi(x), k = 1, 2, 3, . . . , î, . . . , p, where î means that the index i is
omitted. See [DACA, Lemma 3.3 and Remark 3.4] for more details.

It also follows from [AT1] that the condition M( ) = ; is equivalent to saying that for small
enough " > 0, the projection  : Sm�1

" \ K" ! S
p�1 is a smooth submersion. However, since

the map is not proper (unless the link is empty), it might not be a fibration.
In [ACT1] the authors used Condition (8) to ensure that the map  is a projection of a locally

trivial smooth fibration. In this setting where DiscG = {0} their result can be read as:

Theorem 2.12. [ACT1, Theorem 1.3] Let G : U ! Rp, m > p � 2 be an analytic map germ
such that codimVG = p. Suppose G satisfies Condition (8), i.e.,

M (G) \ VG \ VG ✓ {0} .
If  is ⇢-regular, then for any ", 0 < "  "0, the map projection
(10)  : Sm�1

" \K" ! S
p�1

is a locally trivial smooth fibration, independent (up to isotopies) of small enough " > 0 .

Example 2.13 ([Han], p. 35). Let G : (R3
, 0) ! (R2

, 0), G(x, y, z) = (x2 + y
2
, (x2 + y

2)z). By
hand calculations, one can see that SingG = VG = {x = y = 0}, hence DiscG = {0}. Moreover,
by Lemma 2.10, M( ) = ; and therefore  is ⇢-regular. Also, M(G) = R3,

M (G) \ VG \ VG = VG 6= {0}
and Condition (8) fails. Therefore we cannot prove that is a locally trivial fibration. Indeed, the
topological type of the fibers of  changes along S

1; sometimes the fiber is a circle, sometimes the
fiber is empty (see Figure 5). This shows that the hypothesis in Theorem 2.12 (or, Theorem 1.3
of [ACT1]) can not be weakened and therefore it is sharp!

Example 2.14 (Revising the sphere fibration for holomorphic functions). Let
f :

�
Cn+1

, 0
�
! (C, 0)

be a germ of a holomorphic function. We see that the hypothesis of Theorem 2.12 are naturally
satisfied if we consider f as a real map germ from R2n+2 to R2. Indeed, it is well known that
any holomorphic function satisfies the Łojasiewicz inequality

kf(z)k✓  ckrf(z)k,

6Here, this set means {x 2 U \ VG |G1(x) 6= 0}.
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 �!

Figure 5.  for G(x, y, z) = ((x2+y
2), (x2+y

2)z). Colored points on S
1 have

circles for fibers, while gray points have empty fibers.

where 0 < ✓ < 1, c > 0, and for any z in a small open neighborhood of the origin. So the isolated
critical value condition is already satisfied. Moreover, Hamm and Lê in [HL, Theorem 1.2.1 p.
322] have proved that the Łojasiewicz inequality implies that f is Thom regular at Vf and hence
f satisfies Condition (8). Finally, by [Mi, Lemma 4.3], one gets that for all " > 0 small enough,
M(f/kfk) = ;, as a germ of a set. Therefore, from Theorem 2.12 the Milnor fibration on the
sphere follows.

Let us point out some important facts.

In the paper [S1] published in 1997, the author used the method known as Pencil to construct
examples of real analytic map germs with isolated singular point at the origin, which induces the
so-called “Open book decomposition on the sphere” (see Definition 3.3), and hence the Milnor
fibration on the sphere. Such construction was also used by the authors in [RSV]. In the paper
[RA] published in 2005, the authors used this technique and tools from Stratification theory
to ensure the existence of the Milnor fibration for real map germs G : (Rm

, 0) ! (R2
, 0) with

m > 2. Inspired by [RA], in the paper [AT1] on arXiv (2008) and in the paper [AT2] published
in 2010, the authors used the technique of blow-up to provide a generalization of the method for
map germs G : (Rm

, 0) ! (Rp
, 0) with m > p � 2, and with that, they were able to prove two

results which were generalized later in [ACT1].
In order to produce a new class of purely real examples, the authors in [ACT1] used the

theory of mixed functions (see [Oka1, Oka2, Oka3] and Chapter 3 of [Ri] for definitions and
properties), and proved Theorem 2.16 below. Before stating the theorem, let us consider the
following definition.

Definition 2.15. [CT, CT1, CSS3, Oka2, Oka3, PT] A mixed polynomial function f : Cn ! C
is called polar weighted-homogeneous if there are non-zero integers p1, ..., pn and d, such that
gcd(p1, ..., pn) = 1 and

nX

j=1

pj (⌫j � µj) = d

for any monomial of the expansion f (z, z̄) =
P
⌫,µ c⌫,µz

⌫ z̄µ. We call (p1, ..., pn) the polar weight
of f and d the polar degree of f . More precisely, f is polar weighted homogeneous of type
(p1, ..., pn; d) if and only if it satisfies the following equation for all � 2 S

1:

f(� · (z, z̄)) = �
d
f(z, z̄),



144 DO ESPIRITO SANTO, DREIBELBIS, RIBEIRO, AND ARAÚJO DOS SANTOS

where the corresponding S
1-action on Cn is:

� · (z, z̄) =
�
�
p1z1, ...,�

pnzn,�
�p1 z̄1, ...,�

�pn z̄n

�
, � 2 S

1
.

Theorem 2.16. [ACT1, Theorem 1.4] Let f : Cn ! C be a non-constant mixed polynomial
which is polar weighted-homogeneous, n � 2, such that codimRVf = 2. Then for any " > 0 small
enough, the projection

f/kfk : S2n�1
" \K" ! S

1

is a locally trivial smooth fibration, independent (up to isotopies) of small enough " > 0.

Moreover, they proved the result below where now no control on the projection of the fibration
is required outside a neighborhood of the link in the sphere.

Theorem 2.17. [ACT1, Theorem 2.1] Let G : U ! Rp, m > p � 2 be an analytic map such
that codimVG = p and DiscG = {0} which satisfies Condition (8). Then there exists a locally
trivial smooth fibration

S
m�1
" \K" ! S

p�1

which is independent of small enough " > 0, up to isotopies.

The control of the projection of the fibration is directly related to the ⇢-regularity of the
map  , as has been seen in Theorem 2.12 and in the discussion that precedes it. This point
is the main difference between Theorem 2.12 and Theorem 2.17 (for further details see [ACT1,
Section 2]).

2.5. Fibration on sphere under Thom regularity condition. In the sequence of papers
[CSS1, CSS3], the authors considered maps germs G : (Rm

, 0) ! (Rp
, 0), m > p � 2, with iso-

lated critical value and satisfying a condition called d-regularity which, together with the Thom
regularity, ensured the existence of the sphere fibrations. To do that, the authors associated to
G a pencil, as we explain below. We follow the notations and the construction as described in
the paper [CSS1], published in 2010.

For each l 2 RPp�1 consider the line Ll ⇢ Rp through the origin and set
Xl = {x 2 U |G(x) 2 Ll} .

In particular, if we consider the commutative diagram

Rm \ VG
G //

 

&&

 ⇤

��

Rp \ {0}

⇡1

✏✏
S
p�1

⇡

✏✏
RPp�1

where ⇡1 is radial projection and ⇡ is the canonical double covering, then Xl = ( ⇤)�1(l) [ VG.
Each Xl is a real analytic variety that contains VG, and since G has an isolated critical value,

then each Xl \ VG is either empty or it is an (m� p+ 1)-dimensional smooth submanifold of U .
The family

�
Xl : l 2 RPp�1 is called the canonical pencil of G.

Definition 2.18. [CSS1, Definition of d-regularity] The map G is said to be d-regular at 0 if
there exist a metric d induced by some positive-definite quadratic form and an " > 0 such that
every sphere (for the metric d) of radius  " centered at 0 meets each Xl \ VG transversely,
whenever the intersection is not empty. We shall also say that G is d-regular with respect to the
metric d.
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In order to study the existence of Milnor fibrations associated to a map G, the authors
introduced an auxiliary function G : Bm

" \ VG ! B
p
" called the Spherification map of G. This

function was defined by

G(x) = kxk G(x)

kG(x)k

and it was used to characterize the d-regularity as follows.

Proposition 2.19. [CSS1, Proposition 3.2] Let G : (Rm
, 0) ! (Rp

, 0) be an analytic map germ
with an isolated critical value at the origin. The following statements are equivalent:

(i) The map G is d-regular at 0.
(ii) For each sphere S

m�1
" of small enough radius " > 0, the restriction map

G : Sm�1
" \ VG ! S

p�1
"

is a submersion.
(iii) The spherification map G is a submersion at each x 2 B

m
" \ VG.

(iv) The map  | : S
m�1
" \K" ! S

p�1 is a submersion for any small enough sphere S
m�1
" .

This proposition shows that when d is the square of the Euclidean metric, then d-regularity
of G is equivalent to ⇢-regularity of  . The main result of [CSS1] is the following.

Theorem 2.20. [CSS1, Theorem 5.3] Assume either VG is a point or dimVG > 0 and G has
the Thom regularity. The following statements are equivalent:

(i) The map G is d-regular at 0.
(ii) One has a commutative diagram of smooth fiber bundles on S

m�1
" \ K" for any small

enough sphere S
m�1
" :

S
m�1
" \K"

� //

 ��
RPp�1

S
p�1

⇡��

where  := (G1(x) : · · · : Gp(x)) and � := G/kGk : Sm�1
" \ K" ! S

p�1 is the Milnor
fibration on G.

(iii) For any small enough sphere S
m�1
" , the restriction G : Sm�1

" \ VG ! S
p�1
" is a smooth

fiber bundle and this is the Milnor fibration � up to multiplication by a constant.

2.6. Comparing the fibration structure on spheres under Thom regularity at VG and
Condition (8). One can show that if a map germ G is Thom regular at VG then G satisfies
Condition (8). Example 2.21 below shows that the converse in not true in general. Therefore,
Theorem 2.12 is more general than Theorem 2.20.

Example 2.21. [Han, Example 1.4.9] Consider G(x, y, z) = (x, y(x2 + y
2) + xz

2) in three real
variables. One has that SingG = VG = {x = y = 0} and M(G) = {x = y = 0} [ {z = 0}.
Hence, M(G) \ VG \ VG = {0} and Condition (8) holds. We claim that M( ) = ;. Indeed, let
v = (x, y, z) 2 R3 and consider the matrix

B(v) :=

⌦2(v)

v

�
,
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where
⌦2(v) = (x(2xy + z

2)� y(x2 + y
2)� xz

2
, x(x2 + 3y2), 2x2

z).

By Lemma 2.10,
M( ) = {v 2 B

3
" \ VG | det

�
B(v)[B(v)]t

�
= 0}.

Since

det
�
B(v)[B(v)]t

�
= (x2 + y

2)(x6 + 3x4
y
2 + 5x4

z
2 � 8x3

yz
2 + 3x2

y
4 + 6x2

y
2
z
2 + y

6 + y
4
z
2)

and M( ) ⇢ M(G) \ VG, then M( ) = ;. By Theorem 2.12, we get the sphere fibration
 : Sm�1

" \K" ! S
p�1.

On the other hand, for any value z 6= 0, consider the point p = (0, 0, z), TpVG = span {(0, 0, 1)} ,
and the sequence pn = ( 1n , 0, z) which converges to p. One has that TpnG

�1(G(pn)) = span {vn},
where

vn =

0

@0,
�2zq

4z2 + 1
n2

,
1p

4z2n2 + 1

1

A ;

hence vn ! (0,±1, 0), where plus and minus depends on the sign of z. Therefore,

lim
n
(TpnG

�1(G(pn))) = span {(0, 1, 0)}

and G is not Thom regular at VG.

Remark 2.22. Another source of examples of maps with Milnor tube and sphere fibration
without the Thom regularity can be found in the recent paper [Ri2].

3. Open Book Structures on semialgebraic sets

The classical open book structures with smooth binding appear in the literature relative to
3-manifolds and in different branches of mathematics under many names like Lefschetz pen-
cils (Algebraic and Symplectic Geometry), fibered links, Neuwirth-Stallings pairs, or spinnable
structures (Topology).

As explained by the authors in [AT1], this consists of a pair (K, ✓) where K ⇢ M is a 2-
codimensional submanifold of a real manifold M and ✓ : M \ K ! S

1 with S
1 := @B

2
, is a

locally trivial smooth fibration such that K admits a neighborhood N diffeomorphic to B
2 ⇥K

for which K is identified with {0} ⇥ K and the restriction ✓|N\K is the following composition
with the natural projections:

N \K di↵eo' (B2 \ {0})⇥K
proj! B

2 \ {0} s/ksk! S
1
.(11)

In that case, K is the binding and the closure of the fibers of ✓ are the pages of the open book.
As described in the introduction, an important example of classical open book structure

on a small sphere S
2n�1
" can be obtained if we consider a germ of a holomorphic function

f : (Cn
, 0) ! (C, 0), under the condition that Sing f = {0}.

Milnor noted that if G : (Rm
, 0) ! (Rp

, 0), m � p � 2, has an isolated critical point at
0 2 Rm, then for any small enough " > 0, the complement Sm�1

" \K" of the link K" is the total
space of a smooth fiber bundle over the unit sphere S

p�1. In such a case, one can conclude from
Milnor’s comment that the sphere S

m�1
" is endowed with an open book structure with binding

K", where now the binding is of higher codimension p � 2 instead of 2.
These structures were extended later, as follows:
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Definition 3.1. [AT2, Definition 2.1] A higher open book structure of a real manifold M is a pair
(K, ✓), where K is a p-codimensional non-empty submanifold of M and ✓ : M \K ! S

p�1 is a
locally trivial smooth fibration over the sphere S

p�1 = @B
p, such that K admits a neighborhood

N diffeomorphic to B
p⇥K for which K is identified to {0}⇥K and the restriction ✓|N\K is the

composition
N \K di↵eo' (Bp \ {0})⇥K

proj! B
p \ {0} s/ksk! S

p�1
.

Figure 6. Left: an example of N and K from Definition 3.1. Right: a cross
section of the corresponding open book structure.

Remark 3.2. In this case E. Looijenga in [Lo1] called this structure a Neuwirth-Stallings pair,
or NS-pair, and denoted them by (Sm�1

" ,K").

In [AT1], the authors presented a general criterion for the existence of these structures associ-
ated to a real map germ G with isolated critical point at 0 2 Rm and with ✓ = G/kGk (see [AT1,
Theorem 1.1]). In [AT2], they focused on the existence of higher open book structures defined
by map germs which satisfies the condition SingG \ VG ⇢ {0}, which is the most general one
under which open book structures with non-singular binding K may exist. Finally, in [ACT1],
the authors introduced the notion of singular open book structure as follows.

Definition 3.3. [ACT1, Definition 1.1]. The pair (K, ✓) is a higher open book structure with
singular binding on an analytic manifold M of dimension m � 1 � p � 2, if K ⇢ M is a
singular real subvariety of codimension p and ✓ : M \ K ! S

p�1 is a locally trivial smooth
fibration such that K admits a neighborhood N for which the restriction ✓|N\K is the composition

N \K h! B
p \ {0} s/ksk! S

p�1, where h is a locally trivial fibration.

They investigated the case when VG contains non-isolated singularities and thus the link K"

is not a manifold. Under the hypothesis of Theorem 2.12, they ensured the pair (K", ) is an
open book structure with singular binding on S

m�1
" having extended all previous results related

to the existence of open book structures of [AT1] and [AT2]. In addition, they found important
classes of genuine real analytic mappings which yield such structures (see for instance Theorem
2.16).

Remark 3.4. Based on the results obtained in [ACT1], the authors in [ACT2] considered poly-
nomial maps G : Rm ! Rp, m � p � 1. Under certain adapted conditions defined in terms of
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the Milnor sets M(G) and M( ), they ensured the existence of an open book decomposition at
infinity with singular binding (i.e., on spheres of large enough radius R).

Motivated by recent techniques developed in [ACT1, AT1, AT2] and [ACT2], the authors
in [DACA] guaranteed the existence of a fibration structure associated to a more general class
of maps and sets. Actually, they have considered C

2-semi-algebraic maps G : Rm ! Rp and
embedded compact semi-algebraic manifolds without boundary W ⇢ Rm of dimension n�1 � p.
In this new setting, they introduced sufficient conditions in order to ensure the existence of an
open book structure on W and, as a consequence, extended both previous open book structures
on local and global cases. For that, the first step was to consider an appropriate extension of
the Milnor set as below.

Definition 3.5. [DACA]
Let G : Rm ! Rp be a C

2-semi-algebraic map, W ⇢ Rm a compact semi-algebraic (n � 1)-
dimensional submanifold embedded in Rm and

Ḡ :=
G

kGk : Rm \ VG ! S
p�1

.

Consider Ḡ|W : W \ VW (G) ! S
p�1 where VW (G) = VG \W , and

(i) ⌃G the set of critical points of G;
(ii) ⌃Ḡ the set of critical points of Ḡ;
(iii) ⌃W

G the set of critical points of G|W ;
(iv) ⌃W

Ḡ
the set of critical points of Ḡ|W .

The map G satisfies the generalized Milnor condition (b) whenever ⌃W
G \ VW (G) \ VW (G) = ;.

Moreover, G satisfies the generalized Milnor condition (a) when ⌃W
Ḡ

= ;.

With the notations above, the authors in [DACA] stated and proved the following result.

Theorem 3.6 (Structural Theorem). Let G : Rm ! Rp be a C
2-semi-algebraic map such

that G satisfies the generalized Milnor condition (a). Then the following statements are equiva-
lent:

(i) Ḡ|W is a locally trivial smooth fibration induced by G on W ;
(ii) The map G satisfies the generalized Milnor condition (b).

Let us point out that the proof of Theorem 3.6 follows similar arguments used in [ACT1,
ACT2, AT2], and consequently also guarantee the existence of an open book structure on W .
The Structural Theorem generalizes the analogues for local and global cases.

In addition, considering the canonical projection ⇡j : Rp ! Rp�1 for p � 2, and

⇡j(x1, . . . , xp) = (x1, . . . , xj�1, xj+1, . . . , xp),

where j = 1, . . . , p, the authors also have shown that the composition Ĝj := ⇡j �G : Rm ! Rp�1

provides a new open book structures for W , (see [DACA, Lemma 3.5]). Moreover, the fibers of
new and old structure are related as follows: if FG and FĜj

are the fibers of locally trivial smooth
fibrations induced by G and Ĝj on W , respectively, then FĜj

is homotopically equivalent to the
product FG ⇥ [0, 1]. This ensures that one can, without loss of generality, reduce the study of
the topology of the fibers of a C

2-semi-algebraic map G = (G1, . . . , Gp) : Rm ! Rp satisfying
generalized Milnor conditions to the study of the singularity type of Gi, i = 1, . . . , p, i.e., any
coordinate function.
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4. Positive dimensional discriminant set

Let
G : U ⇢ Rm ! Rp

, m > p � 2,

be a representative of a map germ G : (Rm
, 0) ! (Rp

, 0) with positive dimensional discriminant
set DiscG. Consider a Whitney stratification W = {Cj}rj=1 of DiscG with the origin a single
stratum. Let us assume that the complement Rp \ DiscG is equal to union [k

i=1Di, where on
each connected component Di the topology of the fibers of G does not change.

Let us consider the following situation: for i 6= j such that Ck ⇢ Di\Dj \{0}, let pi 2 Di and
pj 2 Dj and let li,j be a path connecting them, with li,j intersecting Ck once and is in general
position7 (see Figure 7).

The problem is: How do we describe the topological changes of the topology of the fibers over
pi and over pj as we travel along li,j?

Figure 7. Positive dimensional discriminant set and the complementary set
Rp \DiscG.

Maybe this problem is too hard to approach as it is stated. However, it motivates one to
think of a natural way to extend the Milnor fibrations for map germs with positive dimensional
discriminant sets as done by H. Hamm in [Ham] (see Theorem 1.3).

As explained in detail in [ART1] and [ART2], in this new setting the following problems have
to be taken into account so that the fibration problem can be well posed:

a) The local fibration must be independent of the small enough neighborhood data, like in
Equations (1) and (5). This does not come automatically for map germs with positive
dimensional discriminant set outside the ICIS case (see Examples 4.2 and 2.13).

b) The image of the map germ G may not be a neighborhood of {0} in Rp (see Example
5.9). Moreover, it may not be independent of the radius " of the ball Bm

" ⇢ Rm, and
thus the image of G may not be well defined as a set germ in (Rp

, 0) (see Examples 4.2
and 2.13).

c) The set G(SingG) may not be well defined as a set germ. In case the image G(SingG)
of the singular locus is a set germ, and when the image ImG is a set germ too and has a

7It means that the tangent vector of li,j at the point of intersection is not contained in the tangent space of
the stratum Ck
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boundary8 which contains the origin {0}, then in this new setting it seems appropriate
that the “discriminant set” DiscG should contain this boundary (see Definition 4.7).

Recall that, given subsets V,W ⇢ Rp containing the origin and denoting (V, 0) and (W, 0)
their respective germs at {0}, then one has (V, 0) = (W, 0) as a germ of a set if and only if there
exists some open ball B" ⇢ Rp centered at 0 and of radius " > 0 such that V \B" = W \B".

Definition 4.1. [ART1] Let G : (Rm
, 0) ! (Rp

, 0), m � p > 0, be a continuous map germ.
We say that the image G(K) of a set K ⇢ Rm containing 0 is a well-defined set germ at
0 2 Rp if, for any open balls B", B"0 centered at 0, with ", "0 > 0, we have the equality of germs
[G(B" \K)]0 = [G(B"0 \K)]0.

Whenever the images ImG and G(SingG) are well-defined as germs, we say that G is a nice
map germ.

Example 4.2. [ART1, Example 2.1] Let G : (R2
, 0) ! (R2

, 0), G(x, z) = (x, xz). For the 2-disks
Dt := {|x| < t, |z| < t}

as a basis of open neighborhoods of 0 for t > 0, we get that the image At := G(Dt) is the
full angle with vertex at 0, having the horizontal axis as bisector, and of slope < t. Since the
relations defining At depend of t, it means that the image of G is not well-defined as a germ (see
Figure 8). A similar behavior happens over C instead of R.

Figure 8. Images At1 and At2 with t1 6= t2 in the yellow and blue color, respectively.

Remark 4.3. The authors in [ART1] point out that even if the image ImG of a map G is well-
defined as a germ, the restriction of G to some subset might not be (see [ART1, Remark 2.3]).
Therefore, in the definition of a nice map germ, it is necessary to ask that the set G(SingG) is
well-defined as a germ as well.

Example 4.4. Given G : (Rm
, 0) ! (Rp

, 0), m � p � 2 with DiscG = {0}. If Condition (8)
holds true, then G is a nice map germ (see [Ma, Corollary 4.7]). In particular, any non-constant
germ of a holomorphic function is nice.

Remark 4.5. One can do similar calculations as in Example 4.2 on the map germ
G : (R3

, 0) ! (R2
, 0), G(x, y, z) = (x2 + y

2
, (x2 + y

2)z)

8[ART1]: Whenever Im G is well-defined as a set germ, its boundary @Im G := Im G \ int(Im G) is a closed
subanalytic proper subset of Rp, where intA := Å denotes the p-dimensional interior of a subanalytic set A ⇢ Rp

(hence it is empty whenever dimA < p), and A denotes the closure of it. One considers here @Im G as a set germ
at 0 2 Rp; this is of course empty if (and only if) the equality (Im G, 0) = (Rp, 0) holds.
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(Example 2.13), and find that ImG is not well-defined as a set germ, and thus G is not nice.
Note that while DiscG = {0}, Condition (8) is not satisfied, so we cannot conclude that G is
nice (like we could in Example 4.4).

Example 4.6. In [ART1] the authors found sufficient conditions for an analytic map germ with
positive dimensional discriminant set to be a nice germ and have introduced a good class of
maps with this property, namely the map germs of type

fḡ : (Cn
, 0) ! (C, 0),

where f, g : (Cn
, 0) ! (C, 0) are holomorphic germs such that the meromorphic function f/g is

irreducible.

The authors in [ART1] gave an appropriate definition of the discriminant set as the locus
where the topology of the fibers may change.

Definition 4.7. For a nice map germ G, the discriminant is the following set

(12) Disc⇤ G := G(SingG) [ @ImG

which is a closed subanalytic set of dimension strictly less than p, well-defined as a germ since
G is nice.

Usually the discriminant set DiscG is just G(SingG). However, in this new setting where
dim DiscG > 0, the complement of the discriminant set may consist of several connected com-
ponents through the origin (see Figure 7), and hence the base space of the fibration may not be
a connected space and the topological type of the fibers may not be unique. Consequently, the
classical definition of discriminant is not sufficient to detect the change of the topological type
of the fibers. We also note that when DiscG = {0} (like in the previous sections) and G satisfies
Condition (8), then Disc⇤ G = DiscG.

5. Singular Milnor tube fibration

Definition 5.1. Let G : (Rm
, 0) ! (Rp

, 0), m � p > 0, be a non-constant analytic nice map
germ. We say that G has a Milnor-Hamm (tube) fibration if, for any " > 0 small enough, there
exists 0 < ⌘ ⌧ " such that the restriction:

(13) G| : B
m
" \G

�1(Bp
⌘ \Disc⇤ G) ! B

p
⌘ \Disc⇤ G

is a locally trivial fibration over each connected component Ci included in B
p
⌘ \ Disc⇤ G, such

that it is independent of the choices of " and ⌘ up to diffeomorphisms.

In order to guarantee the existence of fibration (13), the authors in [ART1] considered the
following condition

(14) M(G) \G�1(Disc⇤ G) \ VG ✓ {0}

where the closure of the analytic set M(G) \ G
�1(Disc⇤ G) is considered as a set germ at the

origin. Condition (14) is a direct extension of Condition (8). Therefore, the next result is a
natural extension of Theorem 2.6 for the case where dimDisc⇤ G > 0.

Theorem 5.2. [ART1, Lemma 3.3] Let G : (Rm
, 0) ! (Rp

, 0) be a non-constant nice analytic
map germ, m � p > 0. If G satisfies Condition (14), then G has a Milnor-Hamm (tube) fibration
(13).
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A similar type of fibration but with the stronger assumptions of Thom regularity have been
studied in [CGS]. In the article, the authors considered a real analytic map germ
G : (U, 0) ! (Rp

, 0), where U ⇢ Rm is an open set, m > p � 2, G has a critical point at
0, and VG has dimension � 2. They considered a fixed closed ball B̄m

" as a stratified set with
strata the interior B

m
" and the boundary S

m�1
" = @B̄

m
" , the restriction map G| : B̄

m
" ! Rp and

its discriminant set as �"G := G(C(Bm
" ) [ C(Sm�1

" )), where C(Bm
" ) and C(Sm�1

" ) stand for the
set of critical points of G on the open ball and on the sphere, respectively. With these notations,
they used the Thom Isotopy Theorem to get that the map

G| : B̄
m
" \G

�1(Rp \�"G) ! Rp \�"G
is a locally trivial fibration (see [CGS, Proposition 2.1]). As a consequence for each fixed " > 0
and ⌘ > 0 they obtained the following locally trivial fibration [CGS, Corollary 2.2]:

(15) G| : B̄
m
" \G

�1(Bp
⌘ \�"G) ! B

p
⌘ \�"G.

In order to ensure that the fibration (15) does not depend on " > 0, they considered Whitney
stratifications W and S of U and G(U), respectively, such that VG is a union of strata and
both stratifications give the stratification of G. They further assume that G satisfies the Thom
af -property with respect to such stratification of G i.e., (W, S, G) is a Thom stratified mapping
(see [CGS, Proposition 2.4 ]).

Since the Thom af -property implies Condition (14), the examples below show that [CGS,
Proposition 2.4] under the nice condition is a particular case of Theorem 5.2.

Example 5.3. [ART1, Example 5.3] Let F be one of the mixed functions:
1) F1(x, y) = xyx̄ from [ACT1],
2) F2(x, y, z) = (x+ z

k)x̄y for a fixed k � 2 from [PT],

3) F3(w1, . . . , wn) = w1

⇣Pk
j=1 |wj |2aj �

Pn
t=k+1 |wt|2at

⌘
from [Oka4].

They are all polar weighted-homogeneous and thus, by [ACT1, Theorem 1.4], one obtains that
Disc⇤ Fj = {0} and that Fj is nice and has Milnor tube fibration. It was also proved in the
respective papers that Fj is not Thom regular.

Let Gj := (Fj , g), where g(v) = v and note that Disc⇤ Gj = {0}⇥C. By [ART1, Lemma 5.1]
the map Gj satisfies Condition (14) and therefore, by Theorem 5.2, Gj has a Milnor-Hamm
(tube) fibration. However, again by [ART1, Lemma 5.1] Gj is not a Thom stratified mapping.

Summing up, the authors in [ART1] have shown that the Thom regularity of the map G may
fail whereas the Milnor-Hamm (tube) fibration still exists. Moreover, they present several classes
of map germs with Milnor-Hamm fibration by introducing a weaker type of Thom regularity
condition called @-Thom regularity condition.

Remark 5.4. In article [MS], the authors defined a type of tube fibration in a more general
setting and presented a necessary and sufficient condition on the fibers of coordinate functions
to ensure its existence [MS, Proposition 2.5]. However, since their main objective was to study
the topology of real analytic map germs with isolated critical value, i.e., DiscG = {0}, they did
not present examples in the more general case.

5.1. Singular Milnor tube fibration. In [ART1] the authors have defined a general notion of
stratified tube fibration by considering all singular fibers over the stratified discriminant, and they
have shown that such structure is a natural generalization of Milnor-Hamm fibration. In that
case, the tube fibration is actually a collection of finitely many fibrations over path-connected
subanalytic sets. In order to make this notion more precise, they made use of the classical
stratification theory (see e.g. [GLPW]), and they considered the following definitions.
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Definition 5.5. [ART1] Let G : (Rm
, 0) ! (Rp

, 0) be a non-constant analytic map germ,
m � p > 1. Let G" : Bm

" ! ImG" denote the restriction of G to a small ball. Consider a
locally finite subanalytic Whitney stratifications (W, S) of the source of G" and of its target,
respectively, such that ImG" is a union of strata, that Disc⇤ G" is a union of strata, and that
G" is a stratified submersion. In particular every stratum is a non-singular, open and connected
subanalytic set at the respective origin, and moreover:

(i) The image by G" of a stratum of W is a single stratum of S,
(ii) The restriction G| : W↵ ! S� is a submersion, where W↵ 2 W, and S� 2 S.

One calls (W, S) a regular stratification of the map germ G.
We say that G is S-nice whenever all the above subsets of the target are well-defined as

subanalytic germs, independent of the radius ".

Definition 5.6. [ART1] Let G : (Rm
, 0) ! (Rp

, 0) be a non-constant S-nice analytic map germ.
We say that G has a singular Milnor tube fibration relative to some regular stratification (W, S),
which is well-defined as a germ at the origin by our assumption, if for any small enough " > 0
there exists 0 < ⌘ ⌧ " such that the restriction:
(16) G| : B

m
" \G

�1(Bp
⌘ \ {0}) ! B

p
⌘ \ {0}

is a stratified locally trivial fibration which is independent, up to stratified homeomorphisms, of
the choices of " and ⌘.

The authors clarified the notion of stratified fibration by saying that stratified locally trivial
fibration meant that for any stratum S� , the restriction G|G�1(S�) is a locally trivial fibration.

In order to ensure the existence of stratified fibration (16), they defined the stratwise Milnor
set M(G) with respect to the stratifications W and S, as the union of the Milnor sets of the
restrictions of G to each stratum. Namely, M(G) := t↵M(G|W↵

), where

M(G|W↵
) :=

�
x 2 W↵ | ⇢|W↵

6tx G|W↵

 
,

with W↵ 2 W the germ at the origin of some stratum, and ⇢|W↵
the restriction of the distance

function ⇢ to the subset W↵ (see [ART1, Definition 6.4]). They then considered the following
condition:
(17) M(G) \ VG \ VG ⇢ {0}.
which restricted to M(G) \G�1(Disc⇤ G) is just Condition (14). Finally, with the notations and
definitions above, the main result in this new setting is the following:

Theorem 5.7. [ART1] Let G : (Rm
, 0) ! (Rp

, 0) be a non-constant S-nice analytic map germ.
If G satisfies Condition (17), then G has a singular Milnor tube fibration (16).

The corollary below says that the singular Milnor tube fibration (16) generalizes the previous
Milnor-Hamm fibration.

Corollary 5.8. [ART1] Under the hypotheses of Theorem 5.7, the map G has a Milnor-Hamm
fibration over B

p
⌘ \Disc⇤ G, with nonsingular Milnor fiber over each connected component.

Example 5.9. [ART1] Let G : (R3
, 0) ! (R2

, 0), G(x, y, z) = (xy, z2). One has:
VG = {x = z = 0} [ {y = z = 0} ImG = R⇥ R�0 ( R2

SingG = {x = y = 0} [ {z = 0} G(SingG) = {0}⇥ R�0 [ R⇥ {0}
Disc⇤ G = {(0,�) |� � 0} [ {(�, 0) |� 2 R} G

�1(Disc⇤ G) = {x = 0} [ {y = 0} [ {z = 0}

M(G) = {x = ±y} [ {z = 0} M(G) \G�1(Disc⇤ G) = {x = ±y}.
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It follows that G is nice and satisfies Condition (14). Indeed to check this, consider

p0 = (x0, y0, z0) 2 M(G) \G�1(Disc⇤ G) \ VG.

Hence, there exists a sequence pn := (xn, yn, zn) 2 M(G) \ G
�1(Disc⇤ G) such that pn ! p0

with p0 2 VG. Consequently, z0 = 0 and xn = ±yn 6= 0 because pn 62 G
�1(Disc⇤ G). Since

x0 = limxn = ± lim yn = y0 = 0, one concludes that p0 = (0, 0, 0). Thus G has a Milnor-Hamm
fibration by Theorem 5.2. In particular, each fiber consists of four open segments, consisting of
hyperbolas sitting in two planes parallel and equal distance to the xy-plane, (see Figure 9).

The complement R2 \ Disc⇤ G consists of 3 connected components. We have: the fiber over
R⇥R<0 is empty; the fiber over R>0⇥R>0 and the fiber over R<0⇥R>0 are two non-intersecting
hyperbolas, with 4 connected components.

Moreover, it follows that G is S-nice and satisfies Condition (17), thus it has a singular tube
fibration by Theorem 5.7. The singular tube fibration fibers over three of the strata of the dis-
criminant as follows: over the positive vertical axis, the fibers are two disconnected components
each of which being two intersecting lines; over the positive and the negative horizontal axis, the
fibers are both hyperbolas with two components (see Figure 9).

Figure 9. The Milnor-Hamm tube fibration (left) and the singular Milnor tube
fibration over Disc⇤ G (right) for G(x, y, z) = (xy, z2). Each color scheme is a
fibration over a connected component of the codomain.

In order to find good class singularities with the singular Milnor tube fibrations, the authors
considered the following condition of regularity which does not require W to be a Thom regular
stratification.

Definition 5.10. [ART1] Let G : (Rm
, 0) ! (Rp

, 0) be a non-constant analytic map germ. We
say that G is Thom regular at VG if there exists a Whitney stratification (W, S) like in Definition
5.5 such that 0 is a point stratum in S, that VG is a union of strata of W, and that the Thom
ag-regularity condition is satisfied at any stratum of VG.

Then they proved the following result

Theorem 5.11. [ART1] Let G : (Rm
, 0) ! (Rp

, 0) be a non-constant S-nice analytic map germ.
If G is Thom regular at VG, dimVG > 0, then G has a singular Milnor tube fibration (16). In
particular, if VG \ SingG = {0} and dimVG > 0, then G has a Milnor-Hamm fibration (13). ⇤
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Example 5.12. Let f, g : C2 ! C given by

f(x, y) = x
2 + y

2 and g(x, y) = x
2 � y

2
.

One has V(f,g) = {(0, 0)} and

Sing (f, g) = {x = 0} [ {y = 0};

hence (f, g) is obviously Thom regular at V(f,g). It then follows from [ART1, Theorem 4.3] that
fḡ is Thom regular at Vfḡ hence, by Theorem 5.11, it has a Milnor-Hamm fibration, and also a
singular Milnor tube fibration.

6. Milnor-Hamm sphere fibration

Inspired by the techniques developed by Milnor [Mi] and detailed in [AT2], the authors in
[ART2] considered the problem of existence of a fibration structure over small spheres under a
general situation when the discriminant Disc⇤ G has positive dimension. They introduced the
Milnor-Hamm sphere fibration, gave natural sufficient conditions of singular maps that shows
the fibration exists, and exhibited several such classes of singular maps. They then stated the
problem of equivalence with the corresponding tube fibration and they showed how to solve it
for some class of maps in the general setting under natural supplementary conditions.

First, the authors introduced a natural condition for a nice map germ G under which it was
possible to define the sphere fibrations whenever Disc⇤ G is positive dimensional.

Definition 6.1. [ART2] Let G : (Rm
, 0) ! (Rp

, 0) be a real analytic map germ. We say that
its discriminant Disc⇤ G is radial if, as a set germ at the origin, it is a union of real half-lines or
the origin only.

The next example is a natural way of building map germs with radial discriminants.

Example 6.2. [ART2] Let f : (Rm
, 0) ! (Rp

, 0) be a real analytic map germ and let
g : (R, 0) ! (R, 0) be a germ of a diffeomorphism, such that f and g are in separable vari-
ables, and consider the pair of map germs

G := (f, g) : (Rm ⇥ R, 0) ! (Rp ⇥ R, 0).

Since SingG = Sing f ⇥ R, one has that if Disc⇤ f is radial, then Disc⇤ G is radial.

Let G : U ! Rp be a representative of the map germ G for some open set U 3 0 and recall
the definition of  :

(18)  :=
G

kGk : U \ VG ! S
p�1

.

In order to define a new fibration structure associated to the nice map germ G under assump-
tion of radial discriminant, the authors have shown [ART2] that the restriction

(19)  | : S
m�1
" \G�1(Disc⇤ G) ! S

p�1 \Disc⇤ G

is well defined for " > 0 small enough.

Definition 6.3. [ART2] We say that the map germ G : (Rm
, 0) ! (Rp

, 0) with radial discrimi-
nant has a Milnor-Hamm sphere fibration whenever the restriction (19) is a locally trivial smooth
fibration which is independent, up to diffeomorphisms, of the choice of " provided it is small
enough.
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In this more general setting, in [ART2] the authors defined ⇢-regularity of  whenever the
following inclusion of germs is satisfied: M( ) ⇢ G

�1(Disc⇤ G).
Finally with the notations and definitions above, the most general result regarding the exis-

tence of fibration structures on a sphere associated to non-constant nice map germs has been
enunciated and demonstrated in [ART2]. It is the direct extension of [ACT1, Theorem 1.3] and
its proof follows from the case Disc⇤ G = {0}.

Theorem 6.4. Let G : (Rm
, 0) ! (Rp

, 0), m > p � 2, be a non-constant nice analytic map germ
with radial discriminant, satisfying Condition (14). If  is ⇢-regular then G has a Milnor-Hamm
sphere fibration.

Example 6.5. [ART1, ART2] Let G : (R3
, 0) ! (R2

, 0) given by G(x, y, z) = (xy, z2). It follows
from Example 5.9 that G

�1(Disc⇤ G) is the union of the coordinates planes in R3, hence it
intersects the sphere S

2
" on three great circles. Since M( G) = SingG, it follows that  is

⇢-regular. Therefore, by Theorem 6.4 G has a Milnor-Hamm sphere fibration (see Figure 10).

 |�!

Figure 10. Milnor-Hamm sphere fibration for G. Each color scheme is a fibra-
tion over a connected component of the S

1 \Disc⇤ G.
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Abstract. Khimshiashvili proved a topological degree formula for the Euler characteristic
of the Milnor fibres of a real function-germ with an isolated singularity. We give two gener-
alizations of this result for non-isolated singularities. As corollaries we obtain an algebraic
formula for the Euler characteristic of the fibres of a real weighted-homogeneous polynomial
and a real version of the Lê-Iomdine formula. We have also included some results of the same
flavor on the local topology of locally closed definable sets.

1. Introduction

Let f : (Rn
, 0) ! (R, 0) be an analytic function-germ with an isolated critical point at the

origin. Khimshiashvili [16] proved the following formula for the Euler characteristic of the real
Milnor fibres of f :

�
�
f
�1(�) \B✏

�
= 1� sign(��)ndeg0rf,

where 0 < |�| ⌧ ✏ ⌧ 1, B✏ is the closed ball centered at the origin of radius ✏ and deg0rf is
the topological degree of the mapping rf

|rf | : S✏ ! S
n�1 (here S✏ is the boundary of B✏). Later

Fukui [15] generalized this result for the fibres of a one-parameter deformation of f . A corollary
of the Khimshiashvili formula due to Arnol’d [1] and Wall [37] states that

�({f  0} \ S✏) = 1� deg0rf,

�({f � 0} \ S✏) = 1 + (�1)n�1deg0rf,

and if n is even,
�({f = 0} \ S✏) = 2� 2 deg0rf.

In [31] Szafraniec extended the results of Arnold andWall to the case of an analytic function-germ
f : (Rn

, 0) ! (R, 0) with non-isolated singularities. Namely he constructed two function-germs
g� and g+ with isolated critical points and proved that

� ({f  0} \ S✏) = 1� deg0rg+ and � ({f � 0} \ S✏) = 1� deg0rg�.

In [32] he improved this result for weighted homogeneous polynomials. If f : Rn
! R is

a weighted homogeneous polynomial then he constructed two polynomials g1 and g2 with an
algebraically isolated critical point at 0 such that

�
�
{f  0} \ S

n�1
�
= 1� deg0rg1 and �

�
{f � 0} \ S

n�1
�
= 1� deg0rg2.

Thanks to the Eisenbud-Levine-Khimshiashvili formula [14, 16],

�
�
{f  0} \ S

n�1
�

and �
�
{f � 0} \ S

n�1
�
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can be computed algebraically.
The aim of this paper is to extend the Khimshiashvili formula for function-germs with ar-

bitrary singularities. We will work in the more general framework of definable functions. Let
f : (Rn

, 0) ! (R, 0) be a definable function-germ of class C
r, r � 2. Our first new result

is Lemma 2.5 where we give a relation between the Euler characteristic of f�1(�) \ B✏ (resp.
f
�1(��) \ B✏), with 0 < � ⌧ ✏ ⌧ 1, and the Euler characteristic of the link at the origin

of {f  0} (resp. {f � 0}). Applying the results of Szafraniec, we obtain our first general-
ization of the Khimshiashvili formula (Corollary 2.6) for polynomially bounded structures and
an algebraic formula for the Euler characteristic of a regular fibre of a weighted homogeneous
polynomial (Corollary 2.7). We note that the paper [7] presents a di↵erent approach for the
computation of this Euler characteristic.

Our second generalization of the Khimshiashvili formula is an adaptation to the real case of
the methods based on the generic polar curve, introduced in the complex case by Lê [19] and
Teissier [34, 35] and developed later by Massey [24, 25, 26]. For v 2 S

n�1, we denote by �v the
following relative polar set:

�v = {x 2 Rn
\ ⌃f | rank(rf(x), v) < 2} ,

where ⌃f = {x 2 Rn
| rf(x) = 0} is the critical locus of f . For v generic in S

n�1, �v is a
curve. Let B be the set of its connected components. For each b 2 B, we denote by �(b) the
sign of det

⇥
rfx1 , . . . ,rfxn

⇤
on b, where for i = 1, . . . , n, fxi denotes the partial derivative @f

@xi
.

Morevover on b the partial derivative @f
@v does not vanish so we can decompose B into the disjoint

union B
+
tB

�, where B+ (resp. B�) is the set of half-branches on which @f
@v > 0 (resp. @f

@v < 0).
This enables to define the following indices (Definition 4.8):

�
+ =

X

b2B+

�(b) and �
� =

X

b2B�

�(b).

Then we define the following four indices (Definition 4.11):

�
+,+ = �

�
f
�1(0) \ {x1 = a} \B✏

�
� �

�
f
�1(↵) \ {x1 = a} \B✏

�
,

�
+,� = �

�
f
�1(0) \ {x1 = �a} \B✏

�
� �

�
f
�1(↵) \ {x1 = �a} \B✏

�
,

�
�,+ = �

�
f
�1(0) \ {x1 = a} \B✏

�
� �

�
f
�1(�↵) \ {x1 = a} \B✏

�
,

�
�,� = �

�
f
�1(0) \ {x1 = �a} \B✏

�
� �

�
f
�1(�↵) \ {x1 = �a} \B✏

�
,

where 0 < ↵ ⌧ a ⌧ ✏. Our second generalization of the Khimshiashvili formula relates the
Euler characteristic of the real Milnor fibres to these new indices. Namely in Theorem 4.12 we
show that

�
�
f
�1(��) \B✏

�
= 1� �

�
� �

�,� = 1� �
+
� �

�,+
,

and that
�
�
f
�1(�) \B✏

�
= 1� (�1)n��

� �
+,+ = 1� (�1)n�+

� �
+,�

,

where 0 < � ⌧ ✏ ⌧ 1. Then we apply this result to the case where ⌃f has dimension one. In
this case, we denote by C the set of connected components of ⌃f \{0}. For v 2 S

n�1 generic, the
function v

⇤ does not vanish on any half-branch c 2 C, so we can decompose C into the disjoint
union C

+
t C

�, where C
+ (resp. C�) is the set of half-branches on which v

⇤
> 0 (resp. v⇤ < 0).

For each c 2 C, let ⌧(c) be the value that the function a 7! degqrf|x�1
1 (a), {q} = c \ {x1 = a},

takes close to the origin. Then we set �+ =
P

c2C+ ⌧(c) and �
� =

P
c2C� ⌧(c). In this situation,

Theorem 4.12 takes the following form (Theorem 5.4):

�
�
f
�1(��) \B✏

�
= 1� �

�
� �

� = 1� �
+
� �

+
,

�
�
f
�1(�) \B✏

�
= 1� (�1)n(�+

� �
�) = 1� (�1)n(��

� �
+),
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where 0 < � ⌧ ✏ ⌧ 1. Hence the indices �+, ��, �+ and �
� appear to be real versions of the first

two Lê numbers defined by Massey in [24]. We note that the paper [36] contains also formulas
for the Euler characteristic of the real Milnor fibres of a function-germ with a one-dimensional
critical locus.

In the complex case, the Lê-Iomdine formula ([20, 18], see also [24, 27, 28, 30] for improved
versions) relates the Euler characteristic of the Milnor fibre of an analytic function-germ with
one-dimensional singular set to the Milnor fibre of an analytic function-germ with an isolated
singularity, given as the sum of the initial function and a su�ciently big power of a generic linear
form. As a corollary of Theorem 5.4, we establish a real version of this formula (Theorem 5.12),
i.e., a relation between the Euler characteristic of the real Milnor fibres of f and the real Milnor
fibres of a function of the type f + v

⇤k, for v 2 S
n�1 generic and k 2 N big enough.

We have also included some results on the local topology of locally closed definable sets. More
precisely, we consider a locally closed definable set X equipped with a Whitney stratification
such that 0 2 X, and a definable function g : (X, 0) ! (R, 0) with an isolated critical point at
the origin. In Lemma 3.1 we extend to this setting the results of Arnold and Wall mentioned
above, i.e., we give relations between the Euler characteristics of the sets X \ {g ? ± �} \ B✏,
where 0 < � ⌧ ✏ ⌧ 1 and ? 2 {,�}, and the Euler characteristics of the sets X \ {g ? 0}\ S✏,
where 0 < ✏ ⌧ 1 and ? 2 {,�}. We give two corollaries (Corollaries 3.3 and 3.4) when the
stratum that contains 0 has dimension greater than or equal to 1.

The paper is organized as follows. In Section 2, we prove the first generalization of the
Khimshiashvili formula based on Szafraniec’s methods. In Section 3, we give the results on the
local topology of locally closed definable sets. Section 4 contains the second generalization of
the Khimshiashvili formula, based on the study of generic relative polar curves. In Section 5, we
establish the real version of the Lê-Iomdine formula.

Acknowledgments. A large part of this paper was written during two visits of the author in
the Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo - Campus
de São Carlos. The author thanks this institution, especially Maria Ruas and Nivaldo Grulha,
for the financial support and the hospitality. He also thanks Dirk Siersma for fruitful discussions
on one-dimensional singularities.

2. Some general results on the real Milnor fibre

Let f : (Rn
, 0) ! (R, 0) be a definable function-germ of class Cr, r � 2. By Lemma 10 in [2]

or by the main theorem of [21], we can equip f
�1(0) with a finite Whitney stratification that

satisfies the Thom (af )-condition.

Lemma 2.1. There exists ✏0 > 0 such that for 0 < ✏  ✏0, there exists �✏ such that for 0 < �  �✏,
the topological type of f�1(�) \B✏ does not depend on the choice of the couple (✏, �).

Proof. Let ✏0 > 0 be such that for 0 < ✏  ✏0, the sphere S✏ intersects f�1(0) transversally. Then
there exists a neighborhood U✏ of 0 in R such that for each � 2 U✏, the fibre f

�1(�) intersects
the sphere S✏ transversally. If it is not the case, then we can find a sequence of points (pm)m2N
in S✏ such that the vectors pm

|pm| and
rf(pm)
|rf(pm)| are collinear, and such that the sequence converges

to a point p in S✏ \ f
�1(0). If S denotes the stratum of f�1(0) that contains p then, applying

the Thom (af )-condition, there exists a unit vector V normal to TpS such that p
|p| and V are

collinear. This contradicts the fact that S✏ intersects f�1(0) transversally.
Now let us fix ✏ > 0 with ✏  ✏0. Let us choose �✏ > 0 such that [0, �✏] is included in U✏ and

� is a regular value of f for 0 < �  �✏. Let (✏1, �1) and (✏2, �2) be two couples with 0 < ✏i  ✏

and 0 < �i  �✏i for i = 1, 2. If ✏1 = ✏2 then the Thom-Mather first isotopy lemma implies that
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the fibres f�1(�1)\B✏1 and f
�1(�2)\B✏2 are homeomorphic. Now assume that ✏1 < ✏2. By the

same arguments as above, there exists a neighborhood U of 0 in R such that for each � 6= 0 in U ,
the distance function to the origin has no critical point on f

�1(�) \ (B✏2 \ B̊✏1). Let us choose
�3 6= 0 in U such that 0 < �3  min{�1, �2}. By the first case, f�1(�3) \ B✏1 is homeomorphic
to f

�1(�1) \ B✏1 and f
�1(�3) \ B✏2 is homeomorphic to f

�1(�2) \ B✏2 . But, since the distance
function to the origin has no critical points on f

�1(�3) \ (B✏2 \ B̊✏1), the fibres f
�1(�3) \ B✏2

and f
�1(�3) \B✏1 are homeomorphic. ⇤

Of course a similar result is true for negative values of f .

Definition 2.2. The (real) Milnor fibres of f are the sets f�1(�)\B✏ and f
�1(��)\B✏, where

0 < � ⌧ ✏ ⌧ 1.

Sometimes we call f�1(�)\B✏ (resp. f�1(��)\B✏) the positive (resp. negative) Milnor fibre
of f . The Khimshiashvili formula [16] relates the Euler characteristic of the Milnor fibres to the
topological degree of rf at the origin, when f has an isolated singularity.

Theorem 2.3 (The Khimshiashvili formula). If f has an isolated critical point at the origin
then

�
�
f
�1(�) \B✏

�
= 1� sign(��)ndeg0rf,

where 0 < |�| ⌧ ✏ ⌧ 1.

Proof. We give a proof for we will need a similar argument later. Let U be a small open subset
of Rn such that 0 2 U and f is defined in U . We perturb f in a Morse function f̃ : U ! R.
Let p1, . . . , pk be the critical points of f̃ , with respective indices �1, . . . ,�k. Let � > 0, by Morse
theory we have:

�
�
f
�1([��, �]) \B✏

�
� �

�
f
�1(��) \B✏

�
=

kX

i=1

(�1)�i .

Actually we can choose f̃ su�ciently close to f so that the pi’s lie in f
�1([� �

4 ,
�
4 ]). Now the

inclusion f
�1(0)\B✏ ⇢ f

�1([��, �])\B✏ is a homotopy equivalence (Durfee [8] proved this result
in the semi-algebraic case, but his argument holds in the C

r definable case, see also [6, 17]) and
f
�1(0) \ B✏ is the cone over f�1(0) \ S✏, so �

�
f
�1([��, �]) \ B✏

�
= 1. This gives the result for

the negative Milnor fibre. To get the result for the positive one, it is enough to replace f with
�f . ⇤

The following formulas are due to Arnol’d [1] and Wall [37].

Corollary 2.4. With the same hypothesis on f , we have:

�({f  0} \ S✏) = 1� deg0rf,

�({f � 0} \ S✏) = 1 + (�1)n�1deg0rf.

If n is even, we have:

�({f = 0} \ S✏) = 2� 2 deg0rf.

Proof. By a deformation argument due to Milnor [23], f(��) \ B✏, � > 0, is homeomorphic to
{f  ��} \ S✏, which is homeomorphic to {f  0} \ S✏ if � is very small. ⇤

We start our study of the general case with an easy lemma.
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Lemma 2.5. Let f : (Rn
, 0) ! (R, 0) be a definable function germ of class C

r, r � 2, and let
0 < � ⌧ ✏. If n is even then

�
�
f
�1(��) \B✏

�
= � ({f � 0} \ S✏) ,

and
�
�
f
�1(�) \B✏

�
= � ({f  0} \ S✏) .

If n is odd then
�
�
f
�1(��) \B✏

�
= 2� � ({f � 0} \ S✏) ,

and
�
�
f
�1(�) \B✏

�
= 2� � ({f  0} \ S✏) .

Proof. If the Milnor fibre is empty or a compact manifold without boundary then the result is
obvious.

Otherwise, if n is even then f
�1(��)\B✏ is an odd-dimensional manifold with boundary and

so

�
�
f
�1(��) \B✏

�
=

1

2
�
�
f
�1(��) \ S✏

�
= � ({f � ��} \ S✏) .

But for � small, the inclusion {f � 0}\S✏ ⇢ {f � ��}\S✏ is a homotopy equivalence (see [8]).
If n is odd then {f � ��} \ B✏ is an odd-dimensional manifold with corners. Rounding the

corners, we get

� ({f � ��} \B✏) =
1

2

⇣
�
�
f
�1(��) \B✏

�
+ � ({f � ��} \ S✏)

��
�
f
�1(��) \ S✏

� ⌘
=

1

2

�
�
�
f
�1(��) \B✏

�
+ � ({f � ��} \ S✏)

�
.

But the inclusion {f � 0} \B✏ ⇢ {f � ��} \B✏ is a homotopy equivalence and so

� ({f � ��} \B✏) = 1.

⇤

For the rest of this section, we assume that the structure is polynomially bounded. The
techniques developed and the results proved by Szafraniec [31] (see also [4]) are valid in this
context. Let !(x) = x

2
1 + · · ·+ x

2
n. Then there exists an integer d > 0 su�ciently big such that

g+ = f �!
d and g� = �f �!

d have an isolated critical point at the origin. Moreover Szafraniec
showed that

� ({f  0} \ S✏) = 1� deg0rg+ and � ({f � 0} \ S✏) = 1� deg0rg�.

Applying the previous lemma, we can state our first generalization of the Khimshiashvili formula.

Corollary 2.6. If 0 < � ⌧ ✏, we have:

�
�
f
�1(��) \B✏

�
= 1� (�1)ndeg0rg�,

and
�
�
f
�1(�) \B✏

�
= 1� (�1)ndeg0rg+.

In general, the exponent d is di�cult to estimate. However, in the case of a weighted-
homogeneous polynomial, Szafraniec [32] provided another method which is completely e↵ective.

Let f : Rn
! R be a real weighted homogeneous polynomial function of type (d1, · · · , dn; d)

with rf(0) = 0. Let p be the smallest positive integer such that 2p > d and each di divides p.

Also let ai =
p

di
and
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! =
x
2a1
1

2a1
+ · · ·+

x
2an
n

2an
.

Now consider g1 = f�! and g2 = �f�!. Szafraniec proved that g1 and g2 have an algebraically
isolated critical point at the origin and that

�
�
{f  0} \ S

n�1
�
= 1� deg0rg1 and �

�
{f � 0} \ S

n�1
�
= 1� deg0rg2.

Applying Lemma 2.5, we obtain the following Khimshiashvili type formula for the fibres of a
real weighted homogeneous polynomial.

Corollary 2.7. We have
�
�
f
�1(�1)

�
= 1� (�1)ndeg0rg2,

and
�
�
f
�1(1)

�
= 1� (�1)ndeg0rg1.

Note that deg0rg1 and deg0rg2 can be computed algebraically thanks to the Eisenbud-
Levine-Khimshiashvili formula [14, 16] because they have an algebraically isolated zero at the
origin.

Let us apply this corollary to the examples presented in [32].

(1) Let f(x, y, z) = x
2
y � y

4
� yz

3. By [32], we have that deg0rg1 = deg0rg2 = 1. So
�
�
f
�1(�1)

�
= �

�
f
�1(1)

�
= 2.

(2) Let f(x, y, z) = x
3 + x

2
z � y

2. By [32], we have that deg0rg1 = 1 and deg0rg2 = �1.
So �

�
f
�1(�1)

�
= 0 and �

�
f
�1(1)

�
= 2.

(3) Let f(x, y, z) = x
3
�xy

2+xyz+2x2
y�2y3�y

2
z�xz

2+yz
2. Then by [32], deg0rg1 = 3

, so �
�
f
�1(1)

�
= 4.

3. Some results on the topology of locally closed definable sets

Let X be a locally closed definable set. We assume that 0 belongs to X. We equip X with
a finite definable C

r, r � 2, Whitney stratification. The fact that such a stratification exists is
due to Loi [22]. Recently Nguyen, Trivedi and Trotman [29] gave another proof of this result.
We denote by S0 the stratum that contains 0.

Let g : (X, 0) ! (R, 0) be a definable function that is the restriction to X of a definable
function G of class C

r, r � 2, defined in a neighborhood of the origin. We assume that g has
at worst an isolated critical point (in the stratified sense) at the origin. As in the previous
section, the positive and the negative real Milnor fibres of g are the sets g

�1(�) \ X \ B✏ and
g
�1(��) \X \B✏, where 0 < � ⌧ ✏ ⌧ 1.

Lemma 3.1. For 0 < � ⌧ ✏ ⌧ 1, we have

�
�
X \ g

�1(��) \B✏

⌘
= �

�
X \ {g  0} \ S✏

⌘
,

and
�
�
X \ g

�1(�) \B✏

⌘
= �

�
X \ {g � 0} \ S✏

⌘
.

Proof. Using the methods developed in [11], we can assume that the critical points of g on
X \S✏ are isolated, that they lie in {g 6= 0} and that they are outwards-pointing (resp. inwards-
pointing) in {g > 0} (resp. {g < 0}). Let us denote them by {p1, . . . , ps}.

We recall that if Z ⇢ Rn is a locally closed definable set, equipped with a Whitney stratifi-
cation and p is an isolated critical point of a definable function � : Z ! R, restriction to Z of a
C

2-definable function �, then the index of � at p is defined as follows:

ind(�, Z, p) = 1� �
�
Z \ {� = �(p)� ⌘} \Br(p)

�
,



ON THE TOPOLOGY OF NON-ISOLATED REAL SINGULARITIES 165

where 0 < ⌘ ⌧ r ⌧ 1 and Br(p) is the closed ball of radius r centered at p.
As in [11], Section 3, we can apply the results proved in [9]. Namely, by Theorem 3.1 in [9],

we can write

�
�
{g  0} \X \ S✏

�
=

X

i | g(pi)<0

ind(g,X \ S✏, pi),

and for 0 < � ⌧ ✏,

�
�
{g  �} \X \B✏

�
=

X

i | g(pi)<0

ind(g,X \B✏, pi) + ind(g,X, 0).

By Lemma 2.1 in [9], ind(g,X \ S✏, pi) = ind(g,X \B✏, pi) if g(pi) < 0. Moreover,

ind(g,X, 0) = 1� �
�
g
�1(��) \X \B✏

�

and, as explained in the proof of Theorem 2.3, � ({g  �} \X \B✏) = 1 if � is small enough.
Combining these observations, we find that

�
�
X \ g

�1(��) \B✏

�
= �

�
X \ {g  0} \ S✏

�
.

⇤

Remark 3.2. We believe that it is possible to establish these equalities applying a stratified
version of the Milnor deformation argument mentionned in the proof of Corollary 2.4. This is
done by Comte and Merle in [5] when X is conic and g is a generic linear form.

For the rest of this section, we will denote by Lk(Y ) the link at the origin of a definable set
Y .

Corollary 3.3. Assume that dim S0 > 0 and that g|S0
has no critical point at 0, i.e., g�1(0)

intersects S0 transversally at 0. Then the following equalities hold:

�
�
Lk(X \ {g  0})

�
= �

�
Lk(X \ {g � 0})

�
= 1,

and

�
�
Lk(X)

�
+ �

�
Lk(X \ {g = 0})

�
= 2.

Proof. If g|S0
has no critical point at 0, then g : X ! R is a stratified submersion in a neighbor-

hood of 0. Furthermore for 0 < ✏ ⌧ 1, the sphere S✏ intersects X \ {g = 0} transversally, so 0
is a regular value of g|X\B✏

. Therefore if � is small enough,

�
�
X \ {g = ��} \B✏

�
= �

�
X \ {g = �} \B✏

�
= �

�
X \ {g = 0} \B✏

�
= 1.

It is enough to apply the previous lemma and then the Mayer-Vietoris sequence. ⇤

For v 2 S
n�1, we denote by v

⇤ the function v
⇤(x) = hv, xi, where h , i is the standard scalar

product. The previous corollary applies to a generic linear form v
⇤.

Corollary 3.4. Assume that dim S0 > 0. If v /2 S
n�1

\ (T0S0)?, then

�
�
Lk(X \ {v

⇤
 0})

�
= �

�
Lk(X \ {v

⇤
� 0})

�
= 1,

and

�
�
Lk(X)

�
+ �

�
Lk(X \ {v

⇤ = 0})
�
= 2.

Proof. If v /2 (T0S0)?, then v
⇤
|S0

has no critical point at 0. ⇤
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Let us relate this corollary to results that we proved in earlier papers. Combining Theorem 5.1
in [11] and the comments after Theorem 2.6 in [12], we can write that if dim S0 > 0,

�
�
Lk(X)

�
+

1

g
n�1
n

Z

Gn�1
n

�
�
Lk(X \H)

�
dH = 2,

where Gn�1
n is the Grassmann manifold of linear hyperplanes in Rn and g

n�1
n is its volume. This

last equality is based on the study of the local behaviour of the generalized Lipschitz-Killing
curvatures made in [5] and [11]. We see that it is actually a direct consequence of Corollary 3.4,
which gives a more precise result on the local topology of locally closed definable sets. Similarly
for 0 < k < dim S0, we know that

�
1

g
n�k�1
n

Z

Gn�k�1
n

�
�
Lk(X \H)

�
dH +

1

g
n�k+1
n

Z

Gn�k+1
n

�
�
Lk(X \ L)

�
dL = 0,

where G
n�k
n is the Grassmann manifold of k-dimensional vector spaces in Rn and g

n�k
n is its

volume. In fact a recursive application of Corollary 3.4 shows that �
�
Lk(X\H)

⌘
= �

�
Lk(X\L)

⌘

for H generic in G
n�k�1
n and L generic in G

n�k+1
n .

Let us give another application of Corollary 3.4 to the topology of real Milnor fibres. As in
the previous section, f : (Rn

, 0) ! (R, 0) is the germ at the origin of a definable function of class
C

r, r � 2. We assume that f�1(0) is equipped with a finite Whitney stratification that satisfies
the Thom (af )-condition. Let S0 be the stratum that contains 0.

Corollary 3.5. If dim S0 > 0 and if v /2 S
n�1

\ (T0S0)?, then for 0 < � ⌧ ✏ ⌧ 1, we have

�
�
f
�1(�) \B✏

�
= �

�
f
�1(�) \ {v

⇤ = 0} \B✏

�
,

and
�
�
f
�1(��) \B✏

�
= �

�
f
�1(��) \ {v

⇤ = 0} \B✏

�
.

Proof. Applying Corollary 3.4 to the sets {f � 0} and {f  0}, we get that

�
�
Lk({f ? 0})

�
+ �

�
Lk({f ? 0} \ {v

⇤ = 0})
�
= 2,

where ? 2 {,�}. Lemma 2.5 applied to f and f|{v⇤=0} gives the result. ⇤
In the next section, we will give a generalization of this result based on generic relative polar

curves.

4. Milnor fibres and relative polar curves

Let f : (Rn
, 0) ! (R, 0) be a definable function-germ of class Cr, r � 2. We will give a second

generalization of the Khimshiashvili formula in this setting. For this we need first to study the
behaviour of a generic linear function on the fibres of f and the behaviour of f on the fibres of
a generic linear function.

We start with a study of the critical points of v⇤|f�1(�) for � small and v generic in S
n�1. Let

�v = {x 2 Rn
\ ⌃f | rank(rf(x), v) < 2} .

We will need a first genericity condition. We can equip f
�1(0) with a finite Whitney stratifi-

cation that satisfies the Thom (af )-condition.

Lemma 4.1. There exists a definable set ⌃1 ⇢ S
n�1 of positive codimension such that if v /2 ⌃1,

then {v
⇤ = 0} intersects f

�1(0) \ {0} transversally in a neighborhood of the origin.

Proof. It is a particular case of Lemma 3.8 in [10]. ⇤
Lemma 4.2. If v /2 ⌃1 then �v \ f

�1(0) = ;.
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Proof. If it is not the case then we can find an arc ↵ : [0, ⌫[! f
�1(0) such that ↵(0) = 0 and

for 0 < s < ⌫, rf(↵(s)) 6= 0 and rank(rf(↵(s)), v) < 2. Let S be the stratum that contains
↵(]0, ⌫[). Since rf(↵(s)) is normal to T↵(s)S, the points in ↵(]0, ⌫[) are critical points of v⇤|S and

hence lie in {v
⇤ = 0}. This contradicts Lemma 4.1. ⇤

Corollary 4.3. If v /2 ⌃1 then �v \ {v
⇤ = 0} = ;.

Proof. As in the proof of the previous lemma, we see that

if �v \ {v
⇤ = 0} 6= ;, then �v \ f

�1(0) 6= ;.

⇤

Lemma 4.4. There exists a definable set ⌃2 ⇢ S
n�1 of positive codimension such that if v /2 ⌃2,

�v is a curve (possibly empty) in the neighbourhood of the origin.

Proof. Let
M = {(x, y) 2 Rn

⇥ Rn
| rank(rf(x), y) < 2} .

Let p = (x0, y0) be a point in M \ (⌃f ⇥Rn). We can assume that fx1(x0) 6= 0. Therefore locally
M \ (⌃f ⇥ Rn) is given by the equations m12(x, y) = · · · = m1n(x, y) = 0, where

mij(x, y) =

����
fxi(x) fxj (x)
yi yj

���� .

The Jacobian matrix of the mapping (m12, . . . ,m1n) has the following form
0

B@
⇤ · · · ⇤ �fx2 fx1 · · · 0
...

. . .
...

...
...

. . .
...

⇤ · · · ⇤ �fxn 0 · · · fx1

1

CA .

This implies that M \(⌃f⇥Rn) is a C
r�1 manifold of dimension n+1. The Bertini-Sard theorem

([3], 9.5.2) implies that the discriminant D of the projection

⇡y : M \ (⌃f ⇥ Rn) ! Rn

(x, y) 7! y

is a definable set of dimension less than or equal to n�1. Hence for all v 2 S
n�1

\D, the dimension
of ⇡�1

y (v) is less than or equal to 1. But ⇡�1
y (v) is exactly �v and we set ⌃2 = D \ S

n�1. ⇤

Corollary 4.5. Let v 2 S
n�1 be such that v /2 ⌃2. There exists �

0
v such that for 0 < |�|  �

0
v,

the critical points of v⇤|f�1(�) are Morse critical points in a neighborhood of the origin.

Proof. After a change of coordinates, we can assume that v = e1 = (1, 0, . . . , 0) 2 Rn and so
that v⇤(x) = x1.

Let p be a point in �v = �e1 . If fx1(p) = 0 then, since the minors m1i =
@(f,x1)
@(x1,xi)

, i = 2, . . . , n,

vanish at p, fxi(p) = 0 for i = 2, . . . , n and so p belongs to ⌃f , which is impossible. Therefore
fx1(p) 6= 0 and by the proof of Lemma 4.4, we conclude that �e1 is defined by the vanishing of
the minors m1i, i = 2, . . . , n, and that

rank
�
rm12, . . . ,m1n

�
= n� 1

along �e1 . Let a be an arc (i.e., a connected component) of �e1 , and let ↵ : [0, ⌫[! ā be a C
r

definable parametrization such that ↵(0) = 0 and ↵(]0, ⌫[) ⇢ a. Since f does not vanish on a,
the function f � ↵ is strictly monotone which implies that for s 2]0, ⌫[,

(f � ↵)0(s) = hrf(↵(s)),↵0(s)i 6= 0.
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Hence the vectors
rf(↵(s)),rm12(↵(s)), . . . ,rm1n(↵(s))

are linearly independent since the rm1i(↵(s))’s are orthogonal to ↵
0(s). By Lemma 3.2 in [33],

this is equivalent to the fact that the function x1 : f
�1(f(↵(s)) ! R has a non-degenerate

critical point at ↵(s). It is easy to conclude because �e1 has a finite numbers of arcs. ⇤
From now on, we will work with v 2 S

n�1 such that v /2 ⌃1[⌃2. After a change of coordinates,
we can assume that v = e1 = (1, 0, . . . , 0) and so the conclusions of Lemma 4.1, Lemma 4.2,
Corollary 4.3, Lemma 4.4 and Corollary 4.5 are valid for �x1 and {x1 = 0}. Let us study the
points of �x1 more accurately. By the previous results, we know that if p is a point of �x1 close
to the origin then p is a Morse critical point of x1|f�1(f(p)), fx1(p) 6= 0, x1(p) 6= 0 and f(p) 6= 0.

Lemma 4.6. Let p be a point in �x1 close to the origin. Let µ(p) be the Morse index of
x1|f�1(f(p)) at p. Then p is a Morse critical point of f|x�1

1 (x1(p))
and if ✓(p) is the Morse index

of f|x�1
1 (x1(p))

at p then

(�1)µ(p) = (�1)n�1sign(fx1(p))
n�1(�1)✓(p).

Proof. By Lemma 3.2 in [33], we know that

det
⇥
rf(p),rfx2(p), . . . ,rfxn(p)

⇤
6= 0,

and that

(�1)µ(p) = (�1)n�1sign(fx1(p))
nsign det

⇥
rf(p),rfx2(p), . . . ,rfxn(p)

⇤
.

But rf(p) = fx1(p)e1 and so det
⇥
e1,rfx2(p), . . . ,rfxn(p)

⇤
6= 0 and

(�1)µ(p) = (�1)n�1sign(fx1(p))
n�1sign det

⇥
e1,rfx2(p), . . . ,rfxn(p)

⇤
.

Still using Lemma 3.2 in [33], we see that p is a Morse critical point of f|x�1
1 (x1(p))

and that

(�1)µ(p) = (�1)n�1sign(fx1(p))
n�1(�1)✓(p).

⇤
Lemma 4.7. Let p be a point in �x1 close to the origin. Then

det
⇥
rfx1(p),rfx2(p), . . . ,rfxn(p)

⇤
6= 0

and
(�1)✓(p) = sign (x1(p)fx1(p)) sign det

⇥
rfx1(p),rfx2(p), . . . ,rfxn(p)

⇤
.

Proof. Since det
⇥
e1,rfx2(p), . . . ,rfxn(p)

⇤
6= 0, we can write

rfx1(p) = �(p)e1 +
nX

i=2

�i(p)rfxi(p),

and so,

det
⇥
rfx1(p),rfx2(p), . . . ,rfxn(p)

⇤
= �(p)det

⇥
e1,rfx2(p), . . . ,rfxn(p)

⇤
.

Let ↵ : [0, ⌫[! �x1 be a parametrization of the arc that contains p. We have

(fx1 � ↵)
0(s) = hrfx1(↵(s)),↵

0(s)i = �(↵(s))he1,↵
0(s)i = �(↵(s))(x1 � ↵)

0(s).

But since fx1 and x1 do not vanish on �x1 , (fx1 � ↵)0(s) and (x1 � ↵)0(s) do not vanish for s

small. Therefore for p close to the origin, �(p) 6= 0 and

sign �(p) = sign (x1(p)fx1(p)) .

⇤
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Let B be the set of connected components of �x1 . If b 2 B then b is a half-branch on which
the functions fx1 and det

⇥
rfx1 , . . . ,rfxn

⇤
have constant sign. So we can decompose B into the

disjoint union B
+
t B

� where B
+ (resp. B�) is the set of half-branches on which fx1 > 0 (resp.

fx1 < 0). If b 2 B, we denote by �(b) the sign of det
⇥
rfx1 , . . . ,rfxn

⇤
on b.

Definition 4.8. We set �+ =
P

b2B+ �(b) and �
� =

P
b2B� �(b).

Remark 4.9. If f has an isolated critical point at the origin then for ⌘ 6= 0 small enough,
(rf)�1(⌘, 0, . . . , 0) is exactly �x1 \ f

�1
x1

(⌘). Moreover if p 2 �x1 \ f
�1
x1

(⌘), then

sign det
⇥
rfx1(p),rfx2(p), . . . ,rfxn(p)

⇤
6= 0.

Hence (⌘, 0, . . . , 0) is a regular value of rf and so

deg0rf =
X

p2�x1\f�1
x1 (⌘)

sign det
⇥
rfx1(p),rfx2(p), . . . ,rfxn(p)

⇤
.

If ⌘ > 0 (resp. ⌘ < 0), this implies that deg0rf = �
+ (resp. ��).

The following lemma will enable us to define other indices associated with f and x1.

Lemma 4.10. There exists ✏0 > 0 such that for 0 < ✏  ✏0, there exists a✏ > 0 such that
for 0 < a  a✏, there exists ↵a,✏ > 0 such that for 0 < ↵  ↵a,✏, the topological type of
f
�1(↵) \ {x1 = a} \B✏ does not depend on the choice of the triple (✏, a,↵).

Proof. For a > 0 small enough, we define �(a) by

�(a) = inf
�
|f(p)| | p 2 �x1 \ {x1 = a}

 
.

The function � is well defined because �x1 \ {x1 = a} is finite and �(a) > 0. Moreover it is
definable and so it is continuous on a small interval of the form ]0, u[. This implies that the set

O = {(a,↵) 2 R⇥ R⇤
| a 2]0, u[ and 0 < ↵ < �(a)}

is open and connected.
Since {x1 = 0} intersects f�1(0) \ {0} transversally (in the stratified sense),

{x1 = 0} \ f
�1(0) \ {0}

is Whitney stratified, the strata being the intersections of {x1 = 0} with the strata of f�1(0)\{0}.
Let ✏0 > 0 be such that for 0 < ✏  ✏0, the sphere S✏ intersects {x1 = 0}\f�1(0) transversally.

Then there exists a neighborhood U✏ of (0, 0) in R2 such that for each (a,↵) in (R ⇥ R⇤) \ U✏,
the fibre f

�1(↵) \ {x1 = a} intersects S✏ transversally. If it is not the case, then we can find

a sequence of points (pm)m2N in S✏ such that the vectors e1,
pm

|pm| and rf(pm)
|r(pm)| are linearly

dependent, and such that the sequence converges to a point p in S✏ \ f
�1(0) \ {x1 = 0}. If S

denotes the stratum of f�1(0) that contains p then, applying the Thom (af )-condition and the
method of Lemma 3.7 in [11], there exists a unit vector v normal to TpS such that the vectors e1,
p
|p| and v are linearly dependent. But e1 and v are linearly independent for {x1 = 0} intersects

S transversally at p. Therefore S✏ does not intersect S \ {x1 = 0} transversally at p, which is a
contradiction. Moreover we can assume that U✏ \O is connected.

Now let us fix ✏ > 0 with ✏  ✏0. Let us choose a✏ > 0 such that a✏ < u and the interval ]0, a✏]
is included in U✏. For each a 2]0, a✏], there exists ↵0

a,✏ such that {a}⇥]0,↵0
a,✏] is included in U✏.

We choose ↵a,✏ such that ↵a,✏  ↵
0
a,✏ and ↵a,✏ < �(a), which implies that (a,↵) is a regular

value of (x1, f) for 0 < ↵  ↵a,✏.
Let (✏1, a1,↵1) and (✏2, a2,↵2) be two triples with 0 < ✏i  ✏, 0 < ai  a✏i and 0 < ↵i  ↵ai,✏i

for i = 1, 2. If ✏1 = ✏2 then the Thom-Mather first isotopy lemma implies that the fibres
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f
�1(↵1) \ {x1 = a1} \ B✏1 and f

�1(↵2) \ {x1 = a2} \ B✏2 are homeomorphic, because (a1,↵1)
and (a2,↵2) belong to the connected set U✏1 \O.

Now assume that ✏1 < ✏2. By the same arguments as above, there exists a neighborhood U

of (0, 0) in R2 such that for each (a,↵) 2 (R ⇥ R⇤) \ U , the distance function to the origin has
no critical point on

f
�1(↵) \ {x1 = a} \ (B✏2 \ B̊✏1).

Let us choose (a3,↵3) 2 (R⇥ R⇤) \ U such that

0 < a3  min{a✏1 , a✏2} and ↵3  min{↵a3,✏1 ,↵a3,✏2}.

Then, by the first case, f�1(↵3)\ {x1 = a3}\B✏1 is homemorphic to f
�1(↵1)\ {x1 = a1}\B✏1

and f
�1(↵3) \ {x1 = a3} \ B✏2 is homemorphic to f

�1(↵2) \ {x1 = a2} \ B✏2 . But, since the
distance function to the origin has no critical point on f

�1(↵3)\ {x1 = a3}\B✏2 \ B̊✏1 , the fibre
f
�1(↵3) \ {x1 = a3} \B✏1 is homeomorphic to f

�1(↵3) \ {x1 = a3} \B✏2 . ⇤
Similarly, there exists ✏

0
0 > 0 such that for 0 < ✏  ✏

0
0, there exists b✏ > 0 such that for

0 < a  b✏, the topological types of f�1(0)\ {x1 = a}\B✏ and f
�1(0)\ {x1 = �a}\B✏ do not

depend on the choice of (✏, a). Therefore we can make the following definition.

Definition 4.11. We set

�
+,+ = �

�
f
�1(0) \ {x1 = a} \B✏

�
� �

�
f
�1(↵) \ {x1 = a} \B✏

�
,

�
+,� = �

�
f
�1(0) \ {x1 = �a} \B✏

�
� �

�
f
�1(↵) \ {x1 = �a} \B✏

�
,

�
�,+ = �

�
f
�1(0) \ {x1 = a} \B✏

�
� �

�
f
�1(�↵) \ {x1 = a} \B✏

�
,

�
�,� = �

�
f
�1(0) \ {x1 = �a} \B✏

�
� �

�
f
�1(�↵) \ {x1 = �a} \B✏

�
,

where 0 < ↵ ⌧ a ⌧ ✏.

Now we are in position to state the generalization of the Khimshiashvili formula. Remember
that e1 satisfies the genericity conditions of Lemmas 4.1 and 4.4.

Theorem 4.12. Assume that e1 /2 ⌃1 [ ⌃2. For 0 < � ⌧ ✏ ⌧ 1, we have

�
�
f
�1(��) \B✏

�
= 1� �

�
� �

�,� = 1� �
+
� �

�,+
,

�
�
f
�1(�) \B✏

�
= 1� (�1)n��

� �
+,+ = 1� (�1)n�+

� �
+,�

.

Proof. The set of critical points of x1 on f
�1(��) \ B̊✏ is exactly �x1 \ f

�1(��). Moreover we
know that if p 2 �x1 \ f

�1(��) then x1(p) 6= 0. By Morse theory, we have

�
�
f
�1(��) \B✏ \ {x1 � 0}

�
� �

�
f
�1(��) \B✏ \ {x1 = 0}

�
=

X

p2�x1\f�1(��)

x1(p)>0

(�1)µ(p),

�
�
f
�1(��) \B✏ \ {x1  0}

�
� �

�
f
�1(��) \B✏ \ {x1 = 0}

�
= (�1)n�1

·

X

p2�x1\f�1(��)

x1(p)<0

(�1)µ(p).

Here we remark that f�1(�)\B✏ is a manifold with boundary and x1 may have critical points on
the boundary. But by Lemma 3.7 in [11], these critical points lie in {x1 6= 0} and are outwards-
pointing (resp. inwards-pointing) in {x1 > 0} (resp. {x1 < 0}). That is why they do not appear
in the above two formulas. Adding the two equalities and applying the Mayer-Vietoris sequence,
we obtain

�
�
f
�1(��) \B✏

�
� �

�
f
�1(��) \B✏ \ {x1 = 0}

�
=

X

p2�x1\f�1(��)

x1(p)>0

(�1)µ(p) + (�1)n�1
X

p2�x1\f�1(��)

x1(p)<0

(�1)µ(p).
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Since rf = fx1e1 on �x1 , it is easy to check that p belongs to �x1 \ {f < 0} \ {x1 > 0} if and
only if p belongs to �x1 \ {fx1 < 0}\ {x1 > 0} and p belongs to �x1 \ {f < 0}\ {x1 < 0} if and
only if p belongs to �x1 \ {fx1 > 0} \ {x1 < 0}. Let us decompose B

+ into the disjoint union
B
+ = B

+,+
t B

+,� where B
+,+ (resp. B

+,�) is the set of half-branches of B+ on which x1 > 0
(resp. x1 < 0). Similarly we can write B

� = B
�,+

t B
�,�. Combining Lemma 4.6 and Lemma

4.7, we can rewrite the above equality in the following form:

�
�
f
�1(��) \B✏

�
� �

�
f
�1(��) \B✏ \ {x1 = 0}

�
= �

X

b2B�,+

�(b)�
X

b2B+,�

�(b). (1)

Since (��, 0) is a regular value of (f, x1) then there exists a� > 0 such that for 0 < a  a�,
(��,±a) are regular value of (f, x1) and

�
�
f
�1(��) \ {x1 = ±a} \B✏

�
= �

�
f
�1(��) \ {x1 = 0} \B✏

�
.

Let us fix a such that 0 < a  a� and let us relate �
�
f
�1(��) \ {x1 = �a} \ B✏

�
to

�
�
f
�1(↵) \ {x1 = �a} \ B✏

�
where 0 < ↵ ⌧ a. Note that the set of critical points of f on

{x1 = �a} \ B̊✏ is exactly �x1 \ {x1 = �a}. Moreover this set of critical points is included
in {f > ��}. Indeed, if it is not the case, then there is a half-branch of �x1 that intersects
{x1 = �a} on {f  ��}. But since x1 and f are negative on this branch, this would imply that
�x1 intersects {f = ��} on {�a  x1 < 0}, which is not possible for a  a�.

Now let us look at the critical points of f on {x1 = �a} \ S✏. In the proof of Lemma
4.10, we established the existence of a neighborhood U✏ of (0, 0) in R2 such that for each
(a,↵) 2 (R⇥R⇤)\U✏, the fibre f

�1(↵)\ {x1 = a} intersects S✏ transversally. Therefore we can
choose � such that the critical points of f on {x1 = 0}\S✏\{f 6= 0} lie in {|f | > �}. Moreover by
a Curve Selection Lemma argument, they are outwards-pointing in {f > �} and inwards-pointing
in {f < ��}. So, if a is small enough, then the critical points of f on {x1 = �a}\S✏ \ {f 6= 0},
lying in {|f | > �}, are outwards-pointing (resp. inwards-pointing) in {f > �} (resp. {f < ��}).
By Morse theory, we find that

�
�
{f  ��} \ {x1 = �a} \B✏

�
� �

�
{f = ��} \ {x1 = �a} \B✏

�
= 0

�
�
{��  f  �↵} \ {x1 = �a} \B✏

�
� �

�
{f = ��} \ {x1 = �a} \B✏

�
=

X

p2�x1\{x1=�a}
f(p)<0

(�1)✓(p),

�
�
{f � ↵} \ {x1 = �a} \B✏

�
� �

�
{f = ↵} \ {x1 = �a} \B✏

�
=

X

p2�x1\{x1=�a}
f(p)>0

(�1)✓(p).

By the Mayer-Vietoris sequence, we have that

1 = �
�
{x1 = �a} \B✏

�
= �

�
{f  ��} \ {x1 = �a} \B✏

�

+�
�
{��  f  �↵} \ {x1 = �a} \B✏

�
� �

�
{f = ��} \ {x1 = �a} \B✏

�

��
�
{f = �↵} \ {x1 = �a} \B✏

�
+ �

�
{�↵  f  ↵} \ {x1 = �a} \B✏

�

+�
�
{f � ↵} \ {x1 = �a} \B✏

�
� �

�
{f = ↵} \ {x1 = �a} \B✏

�
.

Using the fact that the inclusion

{f = 0} \ {x1 = �a} \B✏ ⇢ {�↵  f  ↵} \ {x1 = �a} \B✏



172 NICOLAS DUTERTRE

is a homotopy equivalence and applying the above equalities, we get

1 =
X

p2�x1\{x1=�a}
f(p)<0

(�1)✓(p) +
X

p2�x1\{x1=�a}
f(p)>0

(�1)✓(p) + �
�
f
�1(��) \ {x1 = �a} \B✏

�

+�
�
f
�1(0) \ {x1 = �a} \B✏

�
� �

�
f
�1(�↵) \ {x1 = �a} \B✏

�
.

By Lemma 4.7, we can rewrite this equality in the following form:

1 = �

X

b2B+,�

�(b) +
X

b2B�,�

�(b) + �
�
f
�1(��) \ {x1 = �a} \B✏

�
+ �

�,�
. (2)

Combining (1) and (2), we obtain the first equality of the statement. The second one is obtained
replacing �a with a in the above discussion. The third and fourth ones are obtained replacing
f with �f . ⇤

Remark 4.13. (1) If f has an isolated critical point at the origin then we recover the
Khimshiashvili formula because

�
�,� = �

+,+ = �
+,� = �

�,+ = 0

and �
+ = �

� = deg0rf .
(2) If we denote by S0 the stratum that contains 0 and if we assume that dim S0 > 0,

then by the Thom (af )-condition, the polar curve �v is empty in a neighborhood of 0
if v /2 S

n�1
\ (TxS0)?. Then applying Equality (1) of the previous proof, we recover

Corollary 3.5. Actually, we can say more about the relation between the topologies of
f
�1(±�) \ B✏ and f

�1(±�) \ B✏ \ {v
⇤ = 0}. As mentionned in the proof of Theorem

4.12, the critical points of v⇤ restricted to f
�1(±�)\S✏ lie in {v

⇤
6= 0} and are outwards-

pointing (resp. inwards-pointing) in {v
⇤
> 0} (resp. {v

⇤
< 0}). So we can apply the

arguments of the proof of Theorem 6.3 in [13] to get that f�1(±�)\B✏ is homeomorphic
to f

�1(±�) \B✏ \ {v
⇤ = 0}⇥ [�1, 1].

5. One dimensional critical locus and a real Lê-Iomdine formula

In this section, we apply the results of Section 4 to the case of a one-dimensional singular set,
in order to establish a real version of the Lê-Iomdine formula.

Let f : (Rn
, 0) ! (R, 0) be a definable function-germ of class C

r, 2  r. We assume that
dim ⌃f = 1. In a neighborhood of the origin, the partition

�
f
�1(0) \ ⌃f ,⌃f \ {0}, {0}

�

gives a Whitney stratification of f�1(0) which satisfies the Thom (af )-condition, because the
points where the Whitney conditions and the Thom (af )-condition may fail form a 0-dimensional
definable set of ⌃f \ {0}. Let C be the set of half-branches of ⌃f , i.e., the set of connected
components of ⌃f \ {0}.

Lemma 5.1. There exists a definable set ⌃3 ⇢ S
n�1 of positive codimension such that if v /2 ⌃3,

v
⇤ does not vanish on ⌃f \ {0} in a neighborhood of the origin.

Proof. Let c 2 C. If v⇤ vanishes on c in a neighborhood of the origin then, if u 6= 0 is on C0c
(the tangent cone at c at the origin) then v

⇤(u) = 0 and so v 2 u
?. So if v /2 [c2C(C0c)? then

v
⇤ does not vanish on ⌃f \ {0}. But ([c2C(C0c)?) \ S

n�1 has dimension less than or equal to
n� 2. ⇤
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From now on, we assume that e1 2 S
n�1 is generic, i.e., e1 /2 ⌃1[⌃2[⌃3. Since e1 /2 ⌃3, there

exists a1 > 0 such that for 0 < a  a1, x
�1
1 (±a) intersects ⌃f\{0} transversally and so, the points

in x
�1
1 (±a) \ (⌃f \ {0}) are isolated critical points of f|{x1=±a}. For q 2 x

�1
1 (±a) \ (⌃f \ {0}),

we denote by degqrf|x�1
1 (±a) the topological degree of the mapping

rf|x�1
1 (±a)

|rf|x�1
1 (±a)|

: x�1
1 (±a) \ S✏0(q) ! S

n�2
,

where S✏0(q) is the sphere centered at q of radius ✏0 with 0 < ✏
0
⌧ 1.

Let us write C = C
+
tC

� where C+ (resp. C�) is the set of half-branches of C on which x1 > 0
(resp. x1 < 0).

Lemma 5.2. Let c 2 C
+. There exists ac > 0 such that the function a 7! degqrf|x�1

1 (a), where

{q} = c \ {x1 = a}, is constant on ]0, ac].

Proof. It is enough to prove that there exists an interval ]0, ac] on which the function
a 7! degqrf|x�1

1 (a) is locally constant. Let d : Rn
! R be the distance function to c. It is

a continuous definable function and there exists an open definable neighbourhood U of c such
that d is smooth on U \ c. Moreover we can assume that d is a (stratified) submersion on
{f  0} \ (U \ c).

Let ⇡ : {f  0}\ (U \c) ! R2 be the mapping defined by ⇡(p) = (x1(p), d(p)) and let � ⇢ R2

be its (stratified) discriminant. It is a definable curve included in R⇥ R⇤ and so �̄ \ (R⇥ {0})
is a finite number of points. Let us choose ac > 0 such that

ac < min
�
x1(u) | u 2 �̄ \ (R⇤

⇥ {0})
 
.

If 0 < a  ac, then there exists t > 0 and ✏ > 0 such that ]a � t, a + t[⇥]0, ✏[ does not meet �.
Hence the function

]a� t, a+ t[⇥]0, ✏[ ! R
(a0, ✏0) 7! �

�
{f  0} \ {x1 = a

0
} \ {d = ✏

0
}
�

is constant. Therefore by Corollary 2.4, the function a
0
7! degq0rf|x�1

1 (a0) is constant on

]a� t, a+ t[. ⇤

Of course, a similar result is valid for c 2 C
�. If c 2 C, let us denote by ⌧(c) the value that

the function a 7! degqrf|x�1
1 (a), {q} = c \ {x1 = a}, takes close to the origin.

Definition 5.3. We set �+ =
P

c2C+ ⌧(c) and �
� =

P
c2C� ⌧(c).

In this setting, Theorem 4.12 admits the following formulation.

Theorem 5.4. Assume that e1 /2 ⌃1 [ ⌃2 [ ⌃3. For 0 < � ⌧ ✏ ⌧ 1, we have

�
�
f
�1(��) \B✏

�
= 1� �

�
� �

� = 1� �
+
� �

+
,

�
�
f
�1(�) \B✏

�
= 1� (�1)n(�+

� �
�) = 1� (�1)n(��

� �
+).

Proof. Since �x1 \ f
�1(0) = ;, the critical points of f|{x1=±a} in f

�1([�↵,↵]), 0 < ↵ ⌧ � ⌧ ✏,
are exactly the points in ⌃f \{x1 = ±a}. An easy adaptation of the proof of the Khimshiashvili
formula (Theorem 2.3) gives that

�
�,� = �

�
, �

�,+ = �
+
, �

+,+ = (�1)n�1
�
+ and �

+,� = (�1)n�1
�
�
.

⇤
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We remark that �� + �
� = �

+ + �
+. Moreover, if n is even, we have

�
�
f
�1(�) \B✏

�
� �

�
f
�1(��) \B✏

�
= �

+ + �
�
,

�
�
f
�1(�) \B✏

�
+ �

�
f
�1(��) \B✏

�
= 2� (�+ + �

�),

and if n is odd, we have

�
�
f
�1(�) \B✏

�
� �

�
f
�1(��) \B✏

�
= �

+ + �
�
,

�
�
f
�1(�) \B✏

�
+ �

�
f
�1(��) \B✏

�
= 2� (�+ + �

�).

Therefore the two sums
P

b2B �(b) and
P

c2C ⌧(c) do not depend on the generic choice of linear
function that we used to define them. Moreover, applying Lemma 2.5, we get that if n is even,
�(Lk({f = 0})) = 2� (�+ + �

�) and if n is odd, �(Lk({f = 0})) = �
+ + �

�.
Let us give an example. Let f(x, y, z) = y

2
� zx

b, b > 1 (see [26], Example 2.2). This
polynomial is weighted-homogeneous but we cannot apply Corollary 2.7, for b may be arbitrary
large. Then ⌃f = {(0, 0, z) | z 2 R}.

Let v = (1, 1, 1) so that v⇤(x, y, z) = x+y+z. We have to check that v satisfies the conclusions
of Lemma 4.1, Lemma 4.4 and Corollary 4.5, and Lemma 5.1. A straightforward computation
shows that

�v =

⇢
(x,�

x
b

2
,
x

b
) | x 6= 0

�
.

Since �v \ {v
⇤ = 0} = ;, we see that {v⇤ = 0} intersects the stratum f

�1(0) \ ⌃f transversally.
Moreover, since v

⇤ does not vanish on ⌃f \ {0}, {v
⇤ = 0} intersects the stratum ⌃f \ {0}

transversally and so v satisfies the conclusion of Lemma 4.1 (and of Lemma 5.1 as well). It is
clear that �v is a curve in the neighborhood of the origin. In order to check that the conclusion
of Corollary 4.5 holds, thanks to the computations of Lemmas 4.6 and 4.7, it is enough to check
that det[rfx,rfy,rfz] does not vanish on �v. But

det[rfx,rfy,rfz](x, y, z) = �2b2x2b�2
,

and so the conclusion of Corollary 4.5 holds. Moreover, since

@f

@v
(x, y, z) = �bx

b�1
z + 2y � x

b
,

we easily compute that �+ = �
� = �1 if b is odd and that �+ = 0 and �

� = �2 if b is even.
It remains to compute �

+ and �
�. But �

+ is the local topological degree at (0, 0) of the
function f(x, y, a� x� y), a > 0, that is the local topological degree at (0, 0) of the function

(x, y) 7! y
2
� ax

b + x
b+1 + yx

b
.

Then it is not di�cult to see that �+ = �1 if b is even and �
+ = 0 if b is odd. Similarly �

� = 1
if b is even and �

� = 0 if b is odd. Therefore, applying Theorem 5.4 and Lemma 2.5, we obtain
that

�
�
f
�1(�1)

�
= 2, �

�
f
�1(1)

�
= 0 and �(Lk({f = 0})) = 0.

In the rest of the section, we will apply Theorem 5.4 to establish a real version of the Lê-
Iomdine formula. From now on, we assume that the structure is polynomially bounded.

Lemma 5.5. There exists n0 2 N such that

|fx1(p)| > |x1(p)|
n0 and |f(p)| > |x1(p)|

n0 ,

for p 2 �x1 close to the origin.
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Proof. For u > 0 small, we define �(u) by

�(u) = inf
�
|fx1(p)| | p 2 �x1 \ {|x1| = u}

 
.

It is well defined because �x1 \ {|x1| = u} is finite and �(u) > 0. The function � is definable
and so is the function ↵(R) = �( 1

R ), defined for R > 0 su�ciently big. Then there exists n0 2 N
such that 1

↵(R) < R
n0 for R > 0 su�ciently big. This implies that �( 1

R ) > 1
Rn0

, i.e., �(u) > u
n0

for u > 0 su�ciently small. Hence for p 2 �x1 su�ciently close to the origin, we have

|fx1(p)| > |x1(p)|
n0 .

A similar proof works for the second equality because f and x1 do not vanish on �x1 . ⇤
Let us fix k 2 N with k > n0 + 1 and let us set g(x) = f(x) + x

k
1 .

Lemma 5.6. The function g has an isolated critical point at the origin.

Proof. A point p belongs to (rg)�1(0) if and only if

@f

@x1
(p) + kx

k�1
1 (p) = 0 and

@f

@xi
(p) = 0 for i � 2.

Let us suppose first that p 2 ⌃f \ {0}. This implies that x1(p) = 0. Since x1 does not vanish
on ⌃f \ {0} close to the origin, this case is not possible. Let us suppose now that p /2 ⌃f . Then
p belongs to �x1 and so x1(p) 6= 0 and fx1(p) 6= 0. By the previous lemma, |fx1(p)| > |x1(p)|n0

which implies that k|x1(p)|k�1
> |x1(p)|n0 , and so |x1(p)|k�n0�1

>
1
k in the neighborhood of the

origin. This is impossible by the choice of k. The only possible case is when p is the origin. ⇤
The previous lemma unables us to use the Khimshiashvili formula to compute the Euler

characteristic of the Milnor fibre of g. We will relate deg0rg to the indices �+, ��, �+ and �
�.

Before that we need some auxiliary results. Let

�x1(g) = {x 2 Rn
\ ⌃g | rank(rg(x), e1) < 2} .

Lemma 5.7. We have �x1(g) \ {g = 0} = ;.

Proof. If it is not the case this implies that the following set

{g = 0} \ {gx2 = . . . = gxn = 0} \ {x1 = 0} \ {0}

is not empty in the neighbourhood of the origin. Therefore the set

{f = 0} \ {fx2 = . . . = fxn = 0} \ {x1 = 0} \ {0}

is not empty in the neighbourhood of the origin. But this is not possible because

{f = 0} \ {fx2 = . . . = fxn} = ⌃f

and {x1 = 0} \ {0} \ ⌃f = ;. ⇤
Lemma 5.8. The set �x1(g) admits the following decomposition:

�x1(g) = �x1 t (⌃f \ {0}).

Proof. We see that p 2 �x1(g) if and only if gx2(p) = . . . = gxn(p) = 0 and gx1(p) 6= 0. Since
gxi(p) = fxi(p), i = 2, . . . , n, it is clear that �x1 t (⌃f \ {0}) ⇢ �x1(g). If p 2 �x1(g) then
fx2(p) = . . . = fxn(p) = 0 and fx1(p) + kx1(p)k�1

6= 0. If fx1(p) 6= 0 then p 2 �x1 . If fx1(p) = 0
then p 2 ⌃f \ {0}. ⇤
Lemma 5.9. If p 2 �x1 , then det

⇥
rgx1(p), . . . ,rgxn(p)

⇤
6= 0 and

sign det
⇥
rgx1(p), . . . ,rgxn(p)

⇤
= sign det

⇥
rfx1(p), . . . ,rfxn(p)

⇤
.
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Proof. Let p 2 �x1 . We have gx1(p) = fx1(p) + kx
k�1
1 . By the choice of k, this implies that

sign gx1(p) = sign fx1(p). Using the computations of Lemmas 4.6 and 4.7, we see that

sign det
⇥
rfx1(p), . . . ,rfxn(p)

⇤
= sign

✓
x1(p)fx1(p)

@(x1, fx2 , . . . , fxn)

@(x1, . . . , xn)
(p)

◆
.

But
@(x1, fx2 , . . . , fxn)

@(x1, . . . , xn)
(p) =

@(x1, gx2 . . . , gxn)

@(x1, . . . , xn)
(p)

so
@(x1,gx2 ,...,gxn )

@(x1,...,xn)
(p) 6= 0. Since x1(p)gx1(p) 6= 0, we obtain that

det
⇥
rgx1(p), . . . ,rgxn(p)

⇤
6= 0

and since sign gx1(p) = sign fx1(p), we conclude that

sign det
⇥
rgx1(p), . . . ,rgxn(p)

⇤
= sign det

⇥
rfx1(p), . . . ,rfxn(p)

⇤
.

⇤

Lemma 5.10. Assume that k is even. If q 2 ⌃f \ {0} is close enough to the origin and
x1(q) = a, then degqrf|{x1=a} is equal to degq(rg � rg(q)), where degq(rg � rg(q)) is the
topological degree of the mapping

rg �rg(q)

|rg �rg(q)|
: S✏0(q) ! S

n�1

with 0 < ✏
0
⌧ 1.

Proof. We have that degqrf|{x1=a} is equal to the topological degree of the mapping
W
|W | : S✏0(q) ! S

n�1 where W = (x1 � a, fx2 , . . . , fxn). But

rg �rg(q) = (fx1 + kx
k�1
1 � ka

k�1
, fx2 , . . . , fxn)

and so, since fx1(q) = 0 and k � 1 is odd, there exists a small neighborhood of q on which
fx1 + kx

k�1
1 � ka

k�1 and x1 � a have the same sign. If ✏0 is small enough, then the mappings
rg�rg(q)
|rg�rg(q)| and

W
|W | are homotopic on S✏0(q). Hence the two topological degrees are equal. ⇤

Proposition 5.11. If k is odd, then

deg0rg = �
� = �

+ + �
+
� �

�
.

If k is even, then
deg0rg = �

� + �
� = �

+ + �
+
.

Proof. Let ⌘ > 0 be a small real number. The set (rg)�1(�⌘, 0, . . . , 0) is finite because �x1(g)
is one-dimensional. Let us write

(rg)�1(�⌘, 0, . . . , 0) = {p1, . . . , ps} [ {q1, . . . , qr},

where
{p1, . . . , ps} = (rg)�1(�⌘, 0, . . . , 0) \ �x1

and
{q1, . . . , qr} = (rg)�1(�⌘, 0, . . . , 0) \ (⌃f \ {0}).

Therefore we have

deg0rg =
sX

i=1

degpi
(rg �rg(pi)) +

rX

j=1

degqj (rg �rg(qj)).
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If k is odd, (rg)�1(�⌘, 0, . . . , 0) \ (⌃f \ {0}) is empty and, by the choice of k,

(rg)�1(�⌘, 0, . . . , 0) \ �x1 = (rg)�1(�⌘, 0, . . . , 0) \ [[b2B�b] .

Using Lemma 5.9, we conclude that

deg0rg = �
� = �

+ + �
+
� �

�
.

If k is even then

(rg)�1(�⌘, 0, . . . , 0) \ (⌃f \ {0}) = (rg)�1(�⌘, 0, . . . , 0) \ [[c2C�c] .

Using Lemma 5.10, we conclude that deg0rg = �
� + �

� = �
+ + �

+. ⇤
Now we are in position to formulate the real version of the Lê-Iomdine formula.

Theorem 5.12. Assume that e1 /2 ⌃1 [ ⌃2 [ ⌃3 and that k > n0 + 1. For 0 < � ⌧ ✏ ⌧ 1, we
have

- if k is odd,
�
�
g
�1(��) \B✏

�
= �

�
f
�1(��) \B✏

�
+ �

�
,

�
�
g
�1(�) \B✏

�
= �

�
f
�1(�) \B✏

�
+ (�1)n�1

�
+
,

- if k is even,
�
�
g
�1(��) \B✏

�
= �

�
f
�1(��) \B✏

�
,

�
�
g
�1(�) \B✏

�
= �

�
f
�1(�) \B✏

�
+ (�1)n�1(�+ + �

�).

Proof. We know that �
�
g
�1(��) \B✏

�
= 1� deg0rg. If k is odd, this gives

�
�
g
�1(��) \B✏

�
= 1� �

� = �
�
f
�1(��) \B✏

�
+ �

�
.

If k is even, this gives

�
�
g
�1(��) \B✏

�
= 1� �

�
� �

� = �
�
f
�1(��) \B✏

�
.

We know that �
�
g
�1(�) \B✏

�
= 1� (�1)ndeg0rg. So if k is odd, then

�
�
g
�1(�) \B✏

�
= 1� (�1)n�� = �

�
f
�1(�) \B✏

�
� (�1)n�+

.

If k is even, we get that

�
�
g
�1(�) \B✏

�
= 1� (�1)n(�� + �

�)

= 1� (�1)n(��
� �

+)� (�1)n(�+ + �
�)

= �
�
f
�1(�) \B✏

�
� (�1)n(�+ + �

�).

⇤
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A GEOMETRIC DESCRIPTION OF THE MONODROMY OF

BRIESKORN-PHAM POLYNOMIALS

AURÉLIO MENEGON

Abstract. We give an explicit construction of Lê’s vanishing polyhedra for a Brieskorn-

Pham polynomial f . Then we use it to give a geometric description of the monodromy

associated to f . It allows us to write the matrix that determines the induced algebraic

monodromy. In particular, this provides another proof for the Brieskorn-Pham theorem,

which says that the characteristic polynomial associated to the monodromy of f is given by

�(t) = ⇧(t� !1!2 . . .!n), where each !j ranges over all aj -th roots of unity other than 1.

1. Introduction

Let f : Cn ! C be the polynomial map given by

f(z1, . . . , zn) = z
a1
1

+ · · ·+ z
an
n ,

with aj 2 N and aj � 2, for j = 1, . . . , n.
Pham [8] constructed a polyhedron P in the Milnor fiber Ff of f which is a deformation

retract of Ff . Moreover, he showed that P (and hence Ff ) has the homotopy type of a wedge
of µ(f)-many spheres Sn�1, with

µ(f) = (a1 � 1)(a2 � 1) . . . (an � 1) .

Afterwards, Brieskorn [2] studied the topology of the complex variety f
�1(0), so now the poly-

nomials above are known as Brieskorn-Pham polynomials.
They also studied the algebraic monodromy

h
⇤ : Hn�1(Ff ;C) ! Hn�1(Ff ;C)

associated to the Milnor fibration of f . They showed that the characteristic roots of the linear
transformation h

⇤ are the products !1!2 . . .!n, where each !j ranges over all the aj-th roots of
unity other than 1. So the characteristic polynomial of h⇤ is given by

�(t) = ⇧(t� !1!2 . . .!n) .

Later, many other mathematicians have studied the monodromy associated to singularities.
See [3] for a survey on this subject.

In this paper, we use Lê’s construction ([4] and [5]) of the vanishing polyhedron P in Ff to
give a geometric description of the induced monodromy h : P ! P . It allows us to explicitly
construct the matrix defined by the induced geometric monodromy h

⇤ with respect to a given
basis for Hn�1(P) (compare to [7], page 75). In particular, it provides another proof for the
Brieskorn-Pham theorem.

The approach suggested by this paper could be useful to study the monodromy associated to
real analytic map-germs with an isolated critical point.

On the other hand, the explicit construction of a Lê’s vanishing polyhedron for this family
of complex functions is a quite interesting example illustrating Lê’s construction in a concrete
case.

http://dx.doi.org/10.5427/jsing.2020.22k
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There is another way of describing the geometric monodromy of certain classes of singularities,
which have recently been developed by A’Campo. In the last section of his very interesting
preprint [1] he explains the so-called tête-à-tête monodromy for Brieskorn-Pham polynomials in
three variables.

The author thanks José Luis Cisneros-Molina for encouraging him to write this article. He
also thanks the referee for his good suggestions towards the improvement of the format of this
manuscript.

2. Lê’s vanishing polyhedron

In [4] D.T. Lê sketched a proof of the following theorem, whose complete proof was given
later in [5] by the author and himself.

Theorem 2.1. Let X ⇢ CN be a reduced equidimensional complex analytic space and let
S = (S↵)↵2A be a Whitney stratification of X. Let f : (X,x) ! (C, 0) be a germ of com-
plex analytic function at a point x 2 X. If f has an isolated singularity at x relatively to S and
if ✏ and ⌘ are su�ciently small positive real numbers as above, then for each t 2 D⇤

⌘ there exist:

(i) a polyhedron Pt of real dimension dimC Xt in the Milnor fiber Xt, compatible with the
Whitney stratification S, and a continuous simplicial map:

⇠̃t : @Xt ! Pt

compatible with S, such that Xt is homeomorphic to the mapping cylinder of ⇠̃t;
(ii) a continuous map  t : Xt ! X0 that sends Pt to {0} and that restricts to a homeomor-

phism Xt\Pt ! X0\{0}.

In this section, we review the general lines of Lê’s construction of such a vanishing polyhedron
in the case of a complex function-germ f : (Cn

, 0) ! (C, 0) with n � 2 and with isolated critical
point.

Let ` : (Cn
, 0) ! (C, 0) be the germ of a linear form and consider the map-germ

�` : (Cn
, 0) ! (C2

, 0)

defined by �`(z) := (`(z), f(z)).
For a generic choice of ` the critical set of �` is either empty or a smooth reduced complex

curve, whose closure � has image by �` a complex curve � in C2 (Lemma 21 of [5]). We say
that � is the polar curve of f relatively to ` and that � is the polar discriminant of f relatively
to `.

Then the map �` induces a locally trivial fibration

�| : �
�1

` (D⌘1 ⇥ D⌘2 \�) \ B✏ ! D⌘1 ⇥ D⌘2 \� ,

where ⌘1 and ⌘2 are small enough real numbers, with 0 < ⌘2 ⌧ ⌘1 ⌧ ✏ (Proposition 22 of
[5]). The Milnor fiber f

�1(t) \ B✏ of f is homeomorphic to the set Ft := �
�1

` (Dt) \ B✏ (see
Theorem 2.3.1 of [6]) for t 2 D⌘2 \ {0}, where

Dt := D⌘1 ⇥ {t} .

Notice that for each t 2 D⌘2 \ {0} fixed, the restriction of �` induces a locally trivial fibration

`t : (Ft \ {y1(t), . . . , yk(t)}) \ B✏ ! Dt \ {y1(t), . . . , yk(t)} ,

where

{y1(t), . . . , yk(t)} := � \Dt .



182 A. MENEGON NETO

We can suppose that �t := (0, t) is in Dt \{y1(t), . . . , yk(t)}. For each j = 1, . . . , k, let �(yj(t))
be a simple path in Dt starting at �t and ending at yj(t). We can choose �t in such a way that
these paths are disjoint away from �t. Finally, set

Qt :=
k[

j=1

�(yj(t)) .

With this notation, we can now construct the Lê’s vanishing polyhedron. This is done by
induction on n.

For n = 2 we just set
Pt := `

�1

t (Qt)

and the lifting of a suitable vector field on Dt that deformation retracts it onto Qt gives a
deformation retraction of Ft onto Pt (see Lemma 25 and Proposition 27 of [5]).

Actually, the constructions above can be made simultaneously for every t in a simple path �
in D⌘2 joining 0 and some t0 2 @D⌘2 . The resulting polyhedron P� is called a collapsing cone
along �.

Now suppose n > 2. By the induction hypothesis we have a vanishing polyhedron P
0
t in the

local Milnor fiber F 0
t of the hyperplane section

f
0 : Cn \ {` = 0} ! C .

For each point yj(t) 2 � \ Dt let xj(t) be a point in the intersection of the polar curve �
with `�1

t

�
yj(t)

�
. Without losing generality, we can assume that xj(t) is the only point in such

intersection. Also by the induction hypothesis, there is a collapsing cone Pj for the restriction
of the map `t to a small neighborhood of xj(t). The “basis” of a such cone is the polyhedron
Pj(aj) := Pj \ `�1

t (aj), where aj is a point in �(yj(t))\yj(t) close to yj(t).
Since `t is a locally trivial fiber bundle over �(yj(t))\yj(t), we can “extend” the cone Pj

until it reaches the “central” polyhedron P
0
t . This gives a polyhedron Cj . The union of all the

polyhedra Cj together with P
0
t gives our vanishing polyhedron Pt.

Figure 1.

3. Vanishing polyhedron for Brieskorn-Pham polynomials

In this section, we will follow the steps pointed in Section 2 above to construct a Lê’s vanishing
polyhedron for a Brieskorn-Pham polynomial

f(z1, . . . , zn) = z
a1
1

+ · · ·+ z
an
n ,
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with aj 2 N and aj � 2, for j = 1, . . . , n.

3.1. The two-dimensional case. Since the construction of a Lê’s vanishing polyhedron is
made by induction on the dimension of the domain of the complex function f , we start with the
two-dimensional case. That is, we consider a Brieskorn-Pham polynomial f : C2 ! C given by

f(x, y) = x
a + y

b
,

with a, b 2 N and a, b � 2.
Define the linear form `(x, y) = x and consider � : C2 ! C2 given by � := (`, f), that is

�(x, y) = (x, xa + y
b) .

Its critical set is the curve � = {y = 0}, which we call the polar curve of f relatively to the
form `. We say that its image � = f(�) is the polar discriminant of f relatively to `. It is the
complex curve in C2 given by

� = {(u, v) 2 C2; u
a � v = 0} .

One can consider small real numbers 0 < ⌘2 ⌧ ⌘1 ⌧ ✏⌧ 1 such that the restriction

�| : �
�1

�
(D⌘1 ⇥ D⌘2) \�

�
\ B✏ ! (D⌘1 ⇥ D⌘2) \�

is a topological locally trivial fibration (see Proposition 22 of [5]).
For any t 2 D⌘2 set

Dt := D⌘ ⇥ {t} .
If t 6= 0, the local Milnor fiber f�1(t) \ B✏ of f at 0 2 C2 is homeomorphic to

Ft := f
�1(t) \ `�1(D⌘) \ B✏

(see Theorem 2.3.1 of [6]).
Now, for any t 2 D⌘2 the map � induces a map

`t : Ft ! Dt

which is a locally trivial fibration over Dt \ (� \Dt).
Notice that

� \Dt = {(t 1
a!

↵
a , t) 2 C2; 0  ↵  a� 1} ,

where !a := exp( 2⇡ia ). Moreover, notice that for each ↵ = 0, . . . , a� 1 one has that

(`t)
�1

�
(t

1
a!

↵
a , t)

�
= {(t 1

a!
↵
a , 0)} .

Now, for each ↵ = 0, . . . , a� 1 fixed, consider the path �t,↵ in Dt given by

�t,↵(r) := (rt
1
a!

↵
a , t) ; 0  r  1

Notice that

(`t)
�1

�
(rt

1
a!

↵
a , t)

�
= {(rt 1

a!
↵
a , (1� r

a)
1
b t

1
b!

�
b ) 2 C2; 0  �  b� 1} .

Hence (`t)�1(�t,↵) is the union of the b-many paths p↵,� in Ft given by

p↵,�(r) := (rt
1
a!

↵
a , (1� r

a)
1
b t

1
b!

�
b ) ; 0  r  1

with � = 0, . . . , b�1. Each path p↵,� start at the corresponding point (0, t
1
b!

�
b ) 2 (`t)�1

�
(0, t)

�
.

All the paths p↵,� end at the point (t
1
a!

↵
a , 0) = (`t)�1

�
(t

1
a!

↵
a , t)

�
.

So the vanishing polyhedron Pt is given by

Pt :=
[

0↵a�1
0�b�1

tr(p↵,�)
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where tr(p↵,�) denotes the trace of the path p↵,�(r), with 0  r  1.
Following [5] we have that Pt is a deformation retract of Ft. It is easy to see that Pt is

homeomorphic to the join of (`t)�1
�
(0, t)

�
and (`t)�1

�
� \Dt

�
. The first one is a set of b-many

points and the second one is a set of a-many points. Hence the Milnor number of f is given by
µ(f) = (a� 1)(b� 1).

3.2. The general case. Now, given n > 2, consider a Brieskorn-Pham polynomial

f(z1, . . . , zn) = z
a1
1

+ · · ·+ z
an
n ,

with aj 2 N and aj � 2, for j = 1, . . . , n.
Define the linear form `(z1, . . . , zn) = zn and consider � : Cn ! C2 given by � := (`, f). Its

critical set is the polar curve
� = {z1 = · · · = zn�1 = 0} ,

and its image
� = {(u, v) 2 C2; u

an � v = 0} .
is the polar discriminant of f relatively to `.

As before, one can consider small real numbers 0 < ⌘2 ⌧ ⌘1 ⌧ ✏⌧ 1 such that the restriction

�| : �
�1

�
(D⌘1 ⇥ D⌘2) \�

�
\ B✏ ! (D⌘1 ⇥ D⌘2) \�

is a topological locally trivial fibration, so that for any t 2 D⌘2 the map � induces a map

`t : Ft ! Dt

which is a locally trivial fibration over Dt \ (� \Dt), where Dt := D⌘1 ⇥ {t} and

Ft := f
�1(t) \ `�1(D⌘) \ B✏

is homeomorphic to the local Milnor fiber of f at 0 2 Cn.
Notice that

� \Dt = {(t1/an!
↵n
an

, t) 2 C2; 0  ↵n  an � 1} ,
where !an := exp( 2⇡ian

).

Let f 0 be the restriction of f to `�1(0). That is

f
0(z1, . . . , zn�1, 0) := z

a1
1

+ · · ·+ z
an�1

n�1
.

By induction on n, we have a Lê’s polyhedron P
0
t in F

0
t := Ft \ {zn = 0} such that

P
0
t =

[

0↵jaj�1

1jn�1

tr(p↵1,...,↵n�1)

where each p↵1,...,↵n�1 :
�
[0, 1]

�n�2 ! F
0
t is a parametrized space.

Example 3.1. For n = 3 we have

p↵1,↵2(r) = (rt
1
a1 !

↵1
a1
, (1� r

a1)
1
a2 t

1
a2 !

↵2
a2
) ; 0  r  1 .

⇤

Now, for each point y↵n := (t1/an!
↵n
an

, t) in (� \Dt), with 0  ↵n  an � 1, set

x↵n := (`t)
�1(y↵n) \ � = (0, . . . , 0, t1/an!

↵n
an

) .

Then consider the map-germ
˜̀
↵n : (Ft, x↵n) ! (C, y↵n)

given by the restriction of ` to Ft. As in Section 2 above, we can use the induction hypothesis
to construct a collapsing cone P↵n of ˜̀↵n , for each ↵n = 0, . . . , an � 1 fixed, so that:
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(i) Each P↵n is the union of parametrized spaces

q
↵n
↵1,...,↵n�1

:
�
[0, 1]

�n�1 ! Ft ; and

(ii) Any two of them intersect exactly at P 0
t .

So
Pt =

[

0↵jaj�1

1jn

tr(q↵n
↵1,...,↵n�1

) .

Example 3.2. In the case n = 3 we have the map-germ

�̃↵3 : (Ft, x↵3) ! (C2
, ỹ↵3)

given by �̃↵3(z1, z2, z3) := (z1, z3), where ỹ↵3 := (0, t1/a3!
↵3
a3
). Its critical points are the points

in Ft at which

det

0

@
@f
@z1

@f
@z2

@f
@z3

1 0 0
0 0 1

1

A = 0

Hence the relative polar curve of ˜̀↵3 is the curve

�̃↵3 := Ft \ {z2 = 0}
and its polar discriminant is the curve

�̃↵3 = {ua1 + v
a3 = t} .

Setting D⌧ := D⌘̃1 ⇥ {⌧} for ⌘̃1 su�ciently small, we have that

�̃↵3 \D⌧ = {((t� ⌧
a3)1/a1!

↵1
a1
, ⌧) 2 C2; 0  ↵1  a1 � 1} .

So for each ↵1 = 0, . . . , a1 � 1 fixed, consider the path �↵3
⌧,↵1

in D⌧ given by

�
↵3
⌧,↵1

(r) := (r(t� ⌧
↵3)1/a1!

↵1
a1
, ⌧) ; 0  r  1 .

Then (�̃↵3)
�1

�
�
↵3
⌧,↵1

(r)
�
is the set of points (z1, z2, ⌧) 2 C3 such that

z
a1
1

+ z
a2
2

+ ⌧
a3 = t and z1 = r(t� ⌧

↵3)1/a1!
↵1
a1

.

Since
r
a1(t� ⌧

a3) + z
a2
2

+ ⌧
a3 = t , z2 = (t� ⌧

a3)
1
a2 (1� r

a1)
1
a2 !

↵2
a2

,

with ↵2 = 0, . . . , a2 � 1, it follows that (�̃↵3)
�1

�
�
↵3
⌧,↵1

�
is the union of the a2-many paths

q
↵3
↵1,↵2

(r) :=
�
r(t� ⌧

a3)
1
a1 !

↵1
a1
, (1� r

a1)
1
a2 (t� ⌧

a3)
1
a2 !

↵2
a2
, ⌧
�
; 0  r  1 .

Now make ⌧ move along the semi-line that passes through t
1
a3 !

↵3
a3
, that is, consider:

⌧↵3(k) := (1� k)t
1
a3 !

↵3
a3

; 0  k  1 .

Then the collapsing cone P↵3 of ˜̀↵3 , for each ↵3 = 0, . . . , a3 � 1, is given by

P↵3 :=
[

0↵1a1�1
0↵2a2�1

q
↵3
↵1,↵2

�
[0, 1]⇥ [0, 1]

�
,

where q
↵3
↵1,↵2

is the parametrized surface in Pt given by

q
↵3
↵1,↵2

(r, k) =
�
rt

1
a1 (1� (1� k)a3)

1
a1 !

↵1
a1
, (1� r

a1)
1
a2 t

1
a2 (1� (1� k)a3)

1
a2 !

↵2
a2
, (1� k)t

1
a3 !

↵3
a3

�
.

Notice that q↵3
↵1,↵2

(r, 1) = p↵1,↵2(r), so any two collapsing cones of the type P↵3 as above intersect
at P 0

t .
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So we finally have that

Pt =
[

0↵3a3�1

P↵3

and hence
Pt =

[

0↵1a1�1

0↵2a2�1

0↵3a3�1

q
↵3
↵1,↵2

�
[0, 1]⇥ [0, 1]

�

is the Lê’s vanishing polyhedron for f .
Since P

0
t has the homotopy type of a wedge of (a1 � 1)(a2 � 1)-many circles, it follows that

Pt has the homotopy type of a wedge of (a1 � 1)(a2 � 1)(a3 � 1)-many spheres S2. ⇤

4. The monodromy of the Brieskorn-Pham polynomial

Consider the characteristic homeomorphism ht : Ft ! Ft given by

ht(z1, . . . , zn) := (e2⇡i/a1z1, . . . , e
2⇡i/anzn) .

Identifying ai ⇠ 0 for each i = 1, . . . , n one can check that the characteristic homeomorphism
ht takes each q

↵n
↵1,...,↵n�1

onto q
↵n+1

↵1+1,...,↵n�1+1
. This gives a geometric view of the monodromy of

f (see the examples below).
Notice that the homology group Hn�1(Pt) is generated by (n�1)-cycles �(↵1, . . . ,↵n), where

each one of them is a sum (with signals) of 2n-many parametrized spaces q↵n
↵1,...,↵n�1

.
Moreover, one can check that

ht

�
�(↵1, . . . ,↵n)

�
= �(↵1 + 1, . . . ,↵n + 1)

if 0  ↵i  ai � 3 for any i = 1, . . . , n; and that ht

�
�(↵1, . . . ,↵n)

�
equals

(�1)k
ai1�2+1X

i1=0

· · ·
aik

�2X

ik=0

�(↵1 + 1, . . . , i1, . . . , i2, . . . , ik, . . . ,↵n + 1)

if ↵ij = aij � 2 for j = 1, . . . , k and ↵i < ai � 2 for i /2 {i1, . . . , ik}. This gives a homological
view of the monodromy of f .

Next we consider the two and the three dimensional cases, so the reader can actually see this
geometric description of the monodromy of a Brieskorn-Pham polynomial.

4.1. Two-dimensional case.

Consider f(x, y) = x
a + y

b and let ht : Ft ! Ft be the characteristic homeomorphism, given
by

ht(x, y) := (e2⇡i/ax, e2⇡i/by) .

Notice that

ht

�
p↵,�(r)

�
= ht

�
(rt

1
a!

↵
a , (1� r

a)
1
b t

1
b!

�
b )
�
= (rt

1
a!

↵+1

a , (1� r
a)

1
b t

1
b!

�+1

b )

for any 0  r  1, 0  ↵  a� 1 and 0  �  b� 1. So if we identify a ⇠ 0 and b ⇠ 0 we have
that

ht

�
p↵,�(r)

�
= p↵+1,�+1(r) .

In particular, ht(Pt) = Pt.
Now observe that the homology group H1(Pt) is generated by the cycles

�(↵,�) := p↵,� � p↵,�+1 � p↵+1,� + p↵+1,�+1
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with 0  ↵  a� 2 and 0  �  b� 2. So we have that

ht

�
�(↵,�)

�
= p↵+1,�+1 � p↵+1,�+2 � p↵+2,�+1 + p↵+2,�+2 .

We have some cases:

(i) If 0  ↵  a� 3 and 0  �  b� 3 then one clearly has

ht

�
�(↵,�)

�
= �(↵+ 1,� + 1) .

(ii) If 0  ↵  a� 3 and � = b� 2 then

ht

�
�(↵, b� 2)

�
= �p↵+1,0 + p↵+1,b�1 + p↵+2,0 � p↵+2,b�1

= ��(↵+ 1, 0)� �(↵+ 1, 1)� · · ·� �(↵+ 1, b� 1) .

(iii) Analogously, if ↵ = a� 2 and 0  �  b� 3 we have that

ht

�
�(a� 2,�)

�
= ��(0,� + 1)� �(1,� + 1)� · · ·� �(a� 1,� + 1) .

(iv) If ↵ = a� 2 and � = b� 2 then

ht

�
�(a� 2, b� 2)

�
= p0,0 � p0,b�1 � pa�1,0 + pa�1,b�1

=
Pa�2

i=0

Pb�2

j=0
�(i, j) .

So we have showed that

ht

�
�(↵,�)

�
=

8
>>><

>>>:

�(↵+ 1,� + 1) if 0  ↵  a� 3 and 0  �  b� 3

�
Pb�2

j=0
�(↵+ 1, j) if 0  ↵  a� 3 and � = b� 2

�
Pa�2

i=0
�(i,� + 1) if ↵ = a� 2 and 0  �  b� 3

Pa�2

i=0

Pb�2

j=0
�(i, j) if ↵ = a� 2 and � = b� 2

Notice that since H1(Pt) has a finite basis, then h
⇤
t has finite order. So, by a theorem from

Linear Algebra, we know that the minimal polynomial of h⇤
t is a product of distinct cyclotomic

polynomials. In particular, the roots of the characteristic polynomial of ht are products of roots
of the unity !k

a!
l
b.

Example 4.1. Consider f(x, y) = x
3 + y

3. Then a = b = 3 and we have the following basis for
H1(Pt):

B = {�(0, 0),�(0, 1),�(1, 0),�(1, 1)} .
So the matrix of the homomorphism h

⇤
t : H1(Pt) ! H1(Pt) in the basis B is given by:

[h⇤
t ]

B
B =

0

BB@

0 0 0 1
0 0 �1 1
0 �1 0 1
1 �1 �1 1

1

CCA .

A simple calculation shows that the characteristic polynomial is

p(�) = (�� 1)(�3 + 1) .

Example 4.2. Consider f(x, y) = x
3 + y

4 and consider the following basis for H1(Pt):

B = {�(0, 0),�(0, 1),�(0, 2),�(1, 0),�(1, 1),�(1, 2)} .
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So the matrix of the homomorphism h
⇤
t : H1(Pt) ! H1(Pt) in the basis B is given by:

[h⇤
t ]

B
B =

0

BBBBBB@

0 0 0 0 0 1
0 0 0 �1 0 1
0 0 0 0 �1 1
0 0 �1 0 0 1
1 0 �1 �1 0 1
0 1 �1 0 �1 1

1

CCCCCCA
.

4.2. Three-dimensional case. Consider

f(z1, z2, z3) = z
a1
1

+ z
a2
2

+ z
a3
3

.

The characteristic homeomorphism ht : Ft ! Ft is given by

ht(z1, z2, z3) := (e2⇡i/a1z1, e
2⇡i/a2z2, e

2⇡i/a3z3) .

So if we identify ai ⇠ 0, i = 1, 2, 3, we have that

ht

�
q
↵3
↵1,↵2

(r, k)
�
= q

↵3+1

↵1+1,↵2+1
(r, k) ,

for any (r, k) 2 [0, 1]⇥ [0, 1]. In particular, ht(Pt) = Pt.
Now observe that the homology group H2(Pt) is generated by the 2-cycles given by

�(↵1,↵2,↵3) := q
↵3
↵1,↵2

� q
↵3
↵1+1,↵2

� q
↵3
↵1,↵2+1

� q
↵3+1

↵1,↵2

+ q
↵3
↵1+1,↵2+1

+ q
↵3+1

↵1+1,↵2
+ q

↵3+1

↵1,↵2+1
� q

↵3+1

↵1+1,↵2+1

with 0  ↵i  ai � 2 for i = 1, 2, 3.
Then some calculations as before give that ht

�
�(↵1,↵2,↵3)

�
equals to:

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

�(↵1 + 1,↵2 + 1,↵3 + 1) if 0  ↵i  ai � 3, for i = 1, 2, 3

�
Pa1�2

i=0
�(i,↵2 + 1,↵3 + 1) if ↵1 = a1 � 2, 0  ↵2  a2 � 3 and 0  ↵3  a3 � 3

�
Pa2�2

j=0
�(↵1 + 1, j,↵3 + 1) if 0  ↵1  a1 � 3, ↵2 = a2 � 2 and 0  ↵3  a3 � 3

�
Pa3�2

k=0
�(↵1 + 1,↵2 + 1, k) if 0  ↵1  a1 � 3, 0  ↵2  a2 � 3 and ↵3 = a3 � 2

Pa1�2

i=0

Pa2�2

j=0
�(i, j,↵3 + 1) if ↵1 = a1 � 2, ↵2 = a2 � 2 and 0  ↵3  a3 � 3

Pa1�2

i=0

Pa3�2

k=0
�(i,↵2 + 1, k) if ↵1 = a1 � 2, 0  ↵2  a2 � 3 and ↵3 = a3 � 2

Pa2�2

j=0

Pa3�2

k=0
�(↵1 + 1, j, k) if 0  ↵1  a1 � 3, ↵2 = a2 � 2 and ↵3 = a3 � 2

�
Pa1�2

i=0

Pa2�2

j=0

Pa3�2

k=0
�(i, j, k) if ↵1 = a1 � 2, ↵2 = a2 � 2 and ↵3 = a3 � 2

Example 4.3. Consider f(x, y) = z
2
1
+ z

3
2
+ z

3
3
and consider the following basis for H2(Pt):

B = {�(0, 0, 0),�(0, 0, 1),�(0, 1, 0),�(0, 1, 1)} .

So the matrix of the homomorphism h
⇤
t : H2(Pt) ! H2(Pt) in the basis B is given by:

[h⇤
t ]

B
B =

0

BB@

0 0 0 �1
0 0 1 �1
0 1 0 �1
�1 1 1 �1

1

CCA .
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[1] N. A’Campo, Tête-à-tête twists and geometric monodromy, Preprint.
[2] E. Brieskorn, Beispiele zur Di↵erentialtopologie von Singularitäten, Invent. Math., 2: 1–14, 1966.
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BOUQUET DECOMPOSITION FOR DETERMINANTAL MILNOR FIBERS

MATTHIAS ZACH

Abstract. We provide a bouquet decomposition for the determinantal Milnor fiber of an
Essentially Isolated Determinantal Singularity (EIDS) of arbitrary type. The building blocks
of the decomposition are (suspensions of) hyperplane sections in general position o↵ the origin
of the generic determinantal varieties. For the special case of 2 ⇥ n-matrices we give a full
description of the homotopy types of the determinantal Milnor fibers as a wedge of spheres.

1. Results

In this note we will apply a general Bouquet Decomposition Theorem by M. Tibăr [13] in the
case of an Essentially Isolated Determinantal Singularity (EIDS, see [4]) to prove the following:

Theorem 1.1. Let (X0, 0) = (A�1(M t
m,n), 0) ⇢ (CN , 0) be an EIDS of type (m,n, t) and di-

mension d = dim(X0, 0) = N � (m� t+ 1)(n� t+ 1) > 0 given by a holomorphic map germ

A : (CN , 0) ! (Mat(m,n;C), 0).
Suppose Au is a stabilization of A and Xu = A�1

u (M t
m,n) the determinantal Milnor fiber. Define

s0 := min{s 2 N : (m� s+ 1)(n� s+ 1)  N}.

Then Xu is homotopy equivalent to the bouquet

(1) Lt,N
m,n _

_

s0st

r(s)_

i=1

SN�(m�s+1)(n�s+1)+1(Lt�s+1,(m�s+1)(n�s+1)�1
m�s+1,n�s+1 )

for some numbers r(s) with s0  s  t.

The spaces M t
m,n and Lt,k

m,n appearing in this theorem are defined as follows. For any triple
(m,n, t) of non-negative integers we set

M t
m,n := {M 2 Mat(m,n;C) : rankM < t},

the generic determinantal variety. We define the space Lt,k
m,n to be the interior of the determi-

nantal Milnor fiber of a linear EIDS of type (m,n, t), i.e. the singularity obtained from a generic
linear map germ

� : (Ck, 0) ! (Mat(m,n;C), 0).
Note that for the particular case k = m · n� 1 the space Lt,k

m,n is the complex link of M t
m,n.

In Formula (1) we denote by Sr(X) the r-fold repeated suspension of a topological space
X. We use the same convention as in [13] and set S1(;) = S0, the sphere of dimension 0, and
S0(X) = X for any X.

Theorem 1.1 is a major reduction step in the understanding of the vanishing topology of
essentially isolated determinantal singularities. In particular it implies the known results for the
Milnor fiber of an isolated complete intersection singularity (X0, 0) = (f�1({0}), 0) ⇢ (CN , 0)
given by a holomorphic map germ

f : (CN , 0) ! (Cd, 0)

http://dx.doi.org/10.5427/jsing.2020.22m
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which can naturally be regarded as EIDS of type (d, 1, 1). In this particular case one has
Lt,N
m,n

⇠=ht {pt}, s0 = t = 1, and r(s) = µ is the classical Milnor number of (X0, 0). Formula (1)
therefore reads

Xu
⇠=ht {pt} _

r(1)_

i=1

SN�d+1(;)

⇠=ht

µ_

i=1

SN�d

In fact, it has already been shown in [13, Corollary 4.2] how to apply the Handlebody Theorem
to reprove the known results [8] on isolated complete intersection singularities and we will follow
the ideas presented there to obtain our generalization for EIDS.

While for ICIS the Milnor fiber is always homotopy equivalent to a bouquet of spheres of the
same dimension, this is no longer the case for determinantal Milnor fibers of EIDS, see e.g. [3],
[5], and Section 4. Several groups have studied the vanishing Euler characteristic for EIDS, see
e.g. [4], [6], and [12]. One approach is to study the behavior of a generic hyperplane equation h
in a determinantal deformation of a given EIDS (X0, 0). The determinantal Milnor fiber Xu is
then obtained from its hyperplane section Xu \ {h = 0} by attaching cells, or, more generally
in the context of stratified Morse theory, so-called “thimbles1”, at Morse critical points of h on
Xu. This way, one obtains nice formulas for the vanishing Euler characteristic in terms of the
polar multiplicities of the singularity (X0, 0). However, it is hardly possible to describe the loci
in the hyperplane section Xu \ {h = 0} at which the attachments take place. This fact destroys
any hope to arrive at a precise description of the homotopy type of Xu.

It is the Carrousel by Lê which sits at the heart of the proof of the Handlebody Theorem
(stated as Theorem 2.4 below) from [13] and which allows us to understand the attachments of
the thimbles. As we will see, however, the setup for the application of the Handlebody Theorem
is quite di↵erent from the viewpoint of EIDS. We will describe the transformation of any EIDS
(X0, 0) = (A�1(M t

m,n) ⇢ (CN , 0) to an isolated relative complete intersection singularity (IRCIS,
see Definition 3.2)

(X0, 0) = ({f1,1 = · · · = fm,n = 0}, 0) ⇢ (Z, 0)

on a controlled Whitney stratified ambient space

(Z, 0) ⇠= (CN , 0)⇥ (M t
m,n, 0)

in Section 3.1. Then, rather than doing an induction argument by cutting down with generic
hyperplanes, we proceed by an inductive argument where we always trade one equation fi,j
defining (X0, 0) in (Z, 0) for a generic hyperplane equation and eventually end up with the space
Lt,N
m,n – a generic linear section of M t

m,n o↵ the origin. During this process, the Handlebody
Theorem allows us to really keep track of the involved attachment processes.

The homotopy type of the spaces Lt,k
m,n has been studied in a few particular cases, see e.g. [5].

The Euler obstructions of the generic determinantal varieties M t
m,n, which are closely related

to their hyperplane sections Lt,m·n�1
m,n , can be found in [6] and the Chern-Schwartz-MacPherson

classes of their projectivizations P(M t
m,n) have been studied in [16]. However, there is – at least

to the knowledge of the author – no complete understanding of the homotopy and homology
groups of Lt,k

m,n for arbitrary values of m,n, t, and k.

1By a thimble we mean the pair of topological spaces given by the product of the tangential and the normal
Morse data at a given critical point. This might di↵er from the cell (D�, @D�) occurring in classical Morse theory,
see [7].
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2. Preliminaries

2.1. Notations and Background. In this article we will make use of the common terms of
stratified Morse theory. The reader may consult the standard textbook reference [7]. Suppose we
are given a manifold N and a closed subspace Z ⇢ N with a Whitney stratification ⌃ = (S↵)↵2A.
For any point p 2 Z we will write

TpZ := TpS↵

for the tangent space of the stratum S↵ containing p. Furthermore, we say that a smooth map

f : M ! N � Z

from a manifold M to N is transverse to Z if f is transverse to all the strata.
Consider the set X = f�1(Z). It naturally decomposes into the sets ⌃↵ = f�1(S↵) given

by the preimages of the strata of Z. Whenever f : M ! N � Z is transverse to Z in M , the
⌃↵ form a Whitney stratification for X and we also say that X inherits the stratification of Z.
In particular, this applies to the case of a closed embedding such as for example the fiber of a
stratified submersion on Z induced from a map on N .

Throughout this article we usually consider closed Milnor balls B for singularities. This
convention always assures that one automatically keeps track of the boundary behavior in de-
formations which can be a particularly tricky task in the setting of non-isolated singularities.
Moreover, the resulting Milnor fibers are always compact stratified spaces which simplifies their
treatment by Morse theory.

Since this note is merely an application of methods which had been developed before, we
will restrict ourselves to the description of how the techniques can be used on determinantal
singularities. To this end, we will review the cornerstones of the proofs of e.g. the Handlebody
Theorem by Tibăr and other ideas behind it. However, the reader who is unfamiliar with the
mathematical rigor on singularity theory on Whitney stratified spaces is strongly encouraged to
consult the articles [13], [11], the references given there, and the standard textbook on stratified
Morse theory [7].

2.2. Essentially Isolated Determinantal Singularities. Let (M t
m,n, 0) ⇢ (Mat(m,n;C), 0)

be the generic determinantal variety of type (m,n, t):

M t
m,n = {M 2 Mat(m,n;C) : rankM < t}.

The canonical rank stratification by

Ss
m,n = Ms

m,n \Ms�1
m,n

for 0 < s  min{m,n}+1 is a Whitney stratification of Mat(m,n;C) and M t
m,n. This can easily

be deduced by induction from the observation that at any point p 2 Ss
m,n one has a product

(2) (M t
m,n, p) ⇠= (M t�s+1

m�s+1,n�s+1, 0)⇥ (C(m+n)·(s�1)�(s�1)2 , 0)

of analytic spaces. Consequently, the complex link of M t
m,n along the stratum Ss

m,n is

Lt�s+1,(m�s+1)(n�s+1)�1
m�s+1,n�s+1 .
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The complex links play a central role in the stratified Morse theory on complex analytic varieties
because they determine the normal Morse data, see [7]. In the case of the generic determinantal
variety M t

m,n we find from (2) that the normal Morse data along the stratum Ss
m,n for s  t is

given by the pair of spaces

(3)
⇣
C(Lt�s+1,(m�s+1)(n�s+1)�1

m�s+1,n�s+1 ), Lt�s+1,(m�s+1)(n�s+1)�1
m�s+1,n�s+1

⌘
,

where C(X) denotes the real cone over a given topological space X. We adopt the convention
that C(;) = {pt} is just one point.

Definition 2.1 ([4]). A determinantal singularity of type (m,n, t) is given by a holomorphic
map germ

A : (CN , 0) ! (Mat(m,n;C), 0)
such that the space

(X0, 0) := (A�1(M t
m,n), 0) ⇢ (CN , 0)

has expected codimension codim(X0, 0) = codimM t
m,n = (m� t+ 1)(n� t+ 1).

A determinantal singularity (X0, 0) given by a matrix A is called essentially isolated, if the
map A is transverse to the rank stratification of Mat(m,n;C) in a punctured neighborhood of
the origin.

It follows directly from this definition that, away from the origin, X0 inherits a canonical
stratification by the strata

⌃s := A�1(Ss
m,n).

Counting dimensions yields that these strata are nonempty if and only if

(4) min{r 2 N : (m� r + 1)(n� r + 1) < N}  s  t.

and that
dim⌃s = N � (m� s+ 1)(n� s+ 1) > 0.

We supplement this stratification with the one-point stratum {0} ⇢ X0 at the origin.
An essential smoothing of (X0, 0) is a family

X0
� � //

✏✏

X

u

✏✏
{0} // C

coming from a stabilization

A : (CN , 0)⇥ (C, 0) ! (Mat(m,n;C), 0)⇥ (C, 0)
of the map A. That is A = A(x, u) = (Au(x), u) with A0 = A and Au transversal to M t

m,n for all
u 6= 0 su�ciently small. Then, the total space of the family above appears asX = A�1(M t

m,n⇥C)
and u is the map given by the deformation parameter.

From a stabilization we can construct the determinantal Milnor fiber as follows. Choose a
representative

A : W ⇥ U ! Mat(m,n;C)⇥ U

of the stabilization A for some open sets W ⇢ CN and U ⇢ C and let B ⇢ CN be a Milnor ball
for (X0, 0) in W . By this we mean a closed ball around the origin such that X0 := X0 \ B is
closed, the boundary @B intersects X0 transversally, and

X0
⇠= C(@X0)
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is homeomorphic to the real cone over its boundary @X0 = @B \X0. We can then consider the
family u : X \ (B ⇥ U) ! U . It may be deduced from Thom’s first Isotopy Lemma that u is a
trivial topological fibration along the boundary X \ (@B ⇥ U) over U and that

u : (X \ (B ⇥ U)) \X0 ! U \ {0}

is a topological fiber bundle for U small enough.

Definition 2.2. It is the fiber of this bundle

Xu
⇠= A�1

u (M t
m,n) \B

that we call the determinantal Milnor fiber.

Using the theory of versal unfoldings, one can show that in fact for any given EIDS (X0, 0)
the determinantal Milnor fiber is unique up to homeomorphism, see [2] or [15].

Example 2.3. Consider the EIDS (X0, 0) ⇢ (C5, 0) of type (2, 3, 2) given by the matrix

A =

✓
x y z
v w x

◆

together with the essential smoothing induced by the perturbation with
✓
u 0 0
0 0 �u

◆
.

It is easily seen that indeed the total space (X, 0) ⇢ (C5+1, 0) is isomorphic to the generic
determinantal variety M2

2,3 ⇢ Mat(2, 3;C) ⇠= C6 and the map u is a generic linear form on it.
Hence, the determinantal Milnor fiber of (X0, 0) is nothing but the (closure of the) complex link
L2,5
2,3 of (M2

2,3, 0). It is known that L2,5
2,3 is homotopy equivalent to the 2-sphere S2, see [5].

2.3. The Handlebody Theorem. In [13], M. Tibăr proofs the following theorem for the Milnor
fiber F of an isolated hypersurface singularity

f : (Z, 0) ! (C, 0)
on a complex analytic, Whitney stratified space (Z, 0) of dimension dim(Z, 0) � 2 and the
complex link L of (Z, 0):

Theorem 2.4 ([13], Handlebody Theorem). The Milnor fiber F is obtained from the complex
link L to which one attaches cones over local Milnor fibers of stratified Morse singularities. The
image of each such attaching map retracts within L to a point.

We give a rough outline of the idea of the proof. We may assume (Z, 0) ⇢ (CN , 0) to be
embedded in some smooth ambient space. Let h be the linear equation on CN defining the link
L of (Z, 0) and consider

(5) � = (h, f) : B \ Z \ ��1(D ⇥D0) ! D ⇥D0

for a su�ciently small, closed ball B and discs D,D0
⇢ C around the origin. In [11], Lê has

shown the following. There exists a Zariski open set ⌦ ⇢
�
CN
�_

of linear forms on the ambient
space such that for h 2 ⌦ the polar variety

�(h, f) := {z 2 Z \ f�1({0}) : 9a 2 C : dh(z)|TzZ = a · df(z)|TzZ},

i.e. the critical locus of h on Z relative to f , is a curve which is branched over its image

� = �(h, f) = �(�(h, f)) ⇢ D ⇥D0,

the so-called Cerf-diagram. The proof for the set ⌦ of admissible hyperplane equations to be
Zariski open can be found in [9]. Moreover, one can choose D0 small enough such that the
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intersection �\ (@D⇥D0) is empty. Then � is a topological fibration away from � and one has
homeomorphisms

F ⇠= ��1(D ⇥ {�})

and

L ⇠= ��1({⌘}⇥D0)

for 0 6= �, resp. 0 6= ⌘, su�ciently small. It is also shown in [9] that ⌦ can be chosen such that
the restriction of h 2 ⌦ to any fixed fiber ��1(D ⇥ {�}) has only Morse singularities over the
intersection points � \D ⇥ {�} for 0 6= � 2 D0.

At this point the so-called “carrousel” is furnished by the geometric monodromy of F along
the boundary of D0, i.e. by the variation of the value � of f . But contrary to the classical
viewpoint on monodromy one does not only construct a lifting of the unit tangent vector field
along @D0 to ��1(D ⇥ @D0), but one also keeps track of the monodromy induced on the disc
D⇥ {�}, the intersection points C = �(h, f)\D⇥ {�}, and the corresponding critical points of
h on the Milnor fiber ��1(D ⇥ {�}) over them.

Let F 0 = ��1({(⌘, �)}). Then up to homotopy the Milnor fiber F is obtained from F 0 by
attaching thimbles along suitably chosen paths in D ⇥ {�} from (⌘, �) to the critical values of
the stratified Morse points of h on F . The topology of each of these attachments is governed by
the Morse data. In the situations we will encounter in the context of EIDS, the Morse data will
always be of the following form:

Proposition 2.5. Let (X, p) ⇠= (Ms
m,n, 0)⇥ (Ck, 0) and h : (X, p) ! (C, 0) a holomorphic map

germ with a stratified Morse singularity at p. Then the thimble corresponding to this critical
point is

(C(Sk(Ls,m·n�1
m,n )), Sk(Ls,m·n�1

m,n )),

i.e. one attaches the real cone C(Sk(Ls,m·n�1
m,n )) along its boundary Sk(Ls,m·n�1

m,n ).

The key observation from the Carrousel is that keeping track of the relative critical points
of the hyperplane equation h on F allows one to determine exactly at which loci on F 0 these
attachments take place.

As a final step, one constructs another homeomorphism L ⇠= ��1(W ) ⇢ F on a certain
subspace ��1(W ) of F by “sliding along �”. The space W is chosen such that F 0

⇢ ��1(W )
and one can use the carrousel monodromy to show that for each thimble e one has to attach
to ��1(W ) to complete it – up to homotopy – to F , there is already one thimble e0 that had
been attached to F 0 in the same spot as e to complete it to ��1(W ). This explains, why each
attaching map in the statement of the Handlebody Theorem 2.4 retracts within L to a point.

3. Proof of the Main Theorem

3.1. The Graph Transformation. Let (X0, 0) ⇢ (CN , 0) be a determinantal singularity of
type (m,n, t) given by a matrix A. In this section we will explain how to transform (X0, 0) into
a relative complete intersection singularity on a canonical ambient space

(Z, 0) ⇠= (CN , 0)⇥ (M t
m,n, 0),

see Definition 3.2.
Let Y = Mat(m,n;C) ⇠= Cm·n, C[y] = C[yi,j |1  i  m, 1  j  n] the associated coordinate

ring and Om·n = C{y} the local ring of (Y, 0). By abuse of notation, we will also write y for the
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tautological matrix y 2 Mat(m,n;C) with entries yi,j :

y =

0

B@
y1,1 · · · y1,n
...

...
ym,1 · · · ym,n

1

CA .

Choose a representative A : U ! Y of the matrix A defining (X0, 0) and let

�A = {(x, y) : y = A(x)} ⇢ U ⇥ Y

be the graph of A. Set Z := U ⇥M t
m,n. Then, by construction, X0

⇠= �A \ Z.
We define two maps

p : U ⇥ Y ! Y, (x, y) 7! y �A(x),

q : U ⇥ Y ! U, (x, y) 7! x

and form the commutative diagram

(6) Xy
� � //

✏✏

Z

p

✏✏

q // U

{y} �
�

// Y.

While q is the projection to the first factor, the map p can be considered as the “projection to Y
along the graph �A”. Clearly, for every point y 2 Y the space Xy is the determinantal variety

Xy = (A� y)�1 (M t
m,n) = q

�
p�1({y})

�

defined by the perturbation of A by the constant matrix y and we can consider Xy as a deter-
minantal deformation of the EIDS (X0, 0).

Note that (Z, 0) enjoys a canonical Whitney stratification by the strata

(S̃s
m,n, 0) = (Ss

m,n, 0)⇥ (CN , 0)

inherited from the rank stratification on M t
m,n. Whenever A is defining an EIDS, i.e. A is

transverse to the rank stratification in a punctured neighborhood of the origin in CN , the above
construction turns (X0, 0) into the fiber of a map p|(Z, 0) which is a stratified submersion along
X0 ⇢ Z on a punctured neighborhood of the origin in CN

⇥ Cm·n:

Lemma 3.1. Let (x,A(x)) be a point in the graph �A of A. The restriction p|Z is a stratified
submersion on Z at (x,A(x)) if and only if the map A : U ! Y is transverse to the rank
stratification at x 2 U .

Proof. Let (v1, . . . , vd) be local coordinates at y = A(x) of the stratum Ss
m,n containing y.

Together with the standard coordinates of U , they form a coordinate system (x, v) of the stratum
S̃s
m,n of Z at (x,A(x)). Now note that on the one hand the jacobian matrix of p|Z at this point

is of block form ⇣
@p(x,v)

@x
@p(x,v)

@v

⌘
=
⇣
�

@A(x)
@x

@y(v)
@v

⌘

and p is a stratified submersion at (x,A(x)) if and only if this matrix has full rank m · n. On
the other hand, the map A is transverse to the rank stratification of Y at x, if and only if the
tangent space TyY of the ambient space Y at y = A(x) can be generated by both the image of
the di↵erential of A – i.e. the span of the columns of the matrix @A

@x – and the tangent space

TySs
m,n of the stratum Ss

m,n. Since TySs
m,n is by definition the span of the second block @y

@v in
the jacobian matrix of p, the claim follows. ⇤
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The components of the map p define the graph �A via

pi,j(x, y) = yi,j � ai,j(x) = 0

and clearly, �A is a complete intersection in U ⇥Y . The determinantal singularity X0
⇠= Z \�A

appears as the intersection of �A with Z = CN
⇥M t

m,n. WhileM t
m,n is not a complete intersection

in general, it is nevertheless always a Cohen-Macaulay space, see [10]. Since (X0, 0) has expected
dimension and

OX0,(x,y)
⇠= OZ,(x,y)/hp1,1, . . . , pm,ni,

the components pi,j(x, y) of p must also form a regular sequence on OZ , the structure sheaf of
Z; cf. [1, Theorem 2.1.2 c)]. We give a general definition of the object we just encountered.

Definition 3.2. Let (Z, 0) ⇢ (Cr, 0) be a germ of a complex analytic space and

f : (Cr, 0) ! (Cc, 0)

a holomorphic map.
We say that the restriction f |(Z, 0) is a complete intersection morphism, if the components

f1, . . . , fc form a regular sequence on OZ,0.
If, moreover, (Z, 0) is endowed with a Whitney stratification, we say that f |(Z, 0) has an

isolated relative complete intersection singularity (IRCIS) on (Z, 0) whenever there exists a
punctured neighborhood U of 0 in Cr such that at every point z 2 U \ Z \ f�1({0}) in the
central fiber, the restriction f |(Z, 0) is a stratified submersion at z.

We have just verified:

Proposition 3.3. The restriction p|(Z, 0) is a complete intersection morphism which realizes
(X0, 0) = p�1({0}) \ (Z, 0) as an IRCIS of p on (Z, 0).

We will refer to the above construction as the graph transformation of the EIDS
(X0, 0) = (A�1(M t

m,n), 0). This transformation allows us to study (X0, 0) with the classical
methods for complete intersections. To this end, we will fix some notation. Let

W = ({0} = W0 ( W1 ( W2 ( · · · ( Wm·n�1 ( Wm·n = Cm·n)

be a maximal ascending flag in Y = Mat(m,n;C) and

V =
�
CN

⇥Mat(m,n;C) = V0 ) V1 ) · · · ) Vm·n�1 ) Vm·n
�

a descending flag in CN
⇥Mat(m,n;C) with dimVi/Vi+1 = 1 for each i.

For each k > 0 we set

(7) Zk := Z \ p�1(Wk) \ Vk�1.

The two projections p and q induce natural maps

(8) Zk

fk

zz

hk

$$
Wk/Wk�1 Vk�1/Vk.

Proposition 3.4. If the flags W and V are in general position, then the following holds.

(1) Each of the spaces Zk inherits the canonical Whitney stratification from (Z, 0) outside
the origin.

(2) Each fk defines an isolated hypersurface singularity on (Zk, 0) relative to the given strati-
fication.
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(3) The function hk is a linear equation on (Zk, 0), which can be used to define the complex
link and the carrousel.

Proof. We do induction on k. Let k = 1. By definition Vk�1 = V0 = CN
⇥ Mat(m,n;C).

Consider the map

Pp : Z \X0 ! Pm·n�1, (x, y) 7! (p1,1(x, y) : · · · : pm,n(x, y))

and let [W1] 2 Pm·n�1 be a regular value of this map. Choose a splitting Cm·n ⇠= (Cm·n/W1)�W1

and write p = (p̃, f1) with

p̃ : z 7! p(z) +W1 2 Cm·n/W1
⇠= Cm·n�1.

Then Z1 = p�1(W1) = p̃�1({0}) does not have critical points of p̃ outsideX0 = {f1 = 0} ⇢ Z1.
Suppose (x, y) 2 X0, x 6= 0 was a critical point of p̃ on Z1 inX0 and S the stratum of Z containing
it. Then the di↵erential d(p̃|S)(x, y) does not have full rank and, hence, also d(p|S)(x, y) can
not have full rank – a contradiction to X0 being an IRCIS. We conclude that p̃ is a stratified
submersion on Z at all points of Z1 except the origin. Therefore, Z1 inherits the Whitney
stratification from (Z, 0) and f1 : (Z1, 0) ! C defines an IRCIS on (Z1, 0).

For a given isolated singularity f1 : (Z1, 0) ! (C, 0) the condition on a linear equation h1

to be su�ciently general to define the carrousel is Zariski open; cf. [13]. We may choose h1

accordingly and set V1 = {h1 = 0}.
For the induction step we start by projectivizing the map p̃:

Pp̃ : Z \ Vk \ p�1(Wk�1) ! P(Cm·n/Wk�1), (x, y) 7! [p(x, y) +Wk�1].

Choose a subspace Wk ⇢ Cm·n such that [Wk/Wk�1] is a regular value of this map. The rest of
the induction step is merely a repetition of the above said and left to the reader. ⇤

In what follows, we will from now on assume that the flags V and W have been chosen to
fulfill Proposition 3.4. For any k > 0 let

(9) Fk = f�1
k ({�}) \ Zk \B

be the Milnor fiber of fk on Zk for a suitable choice of a Milnor ball B and � 2 C \ {0} small
enough. We denote the complex link of Zk by

(10) Lk = h�1
k ({⌘}) \ Zk \B,

⌘ 2 C \ {0} small enough.

3.2. The induction argument. We can apply the Handlebody Theorem of Tibăr at each step
k in the setup of the previous section to obtain our Main Theorem. The key lemma for this
induction can already be extracted from [13, Corollary 4.2]:

Lemma 3.5. In the final setup of the standard transformation we have for each 0 < k < m · n
a (non-canonical) homeomorphism

(11) Lk
⇠= Fk+1.
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Proof. One has homeomorphisms

Fk+1 = Zk+1 \ f�1
k+1({�}) \B

= Z \ Vk \ p�1(Wk+1) \ f�1
k+1({�}) \B

= Z \ Vk�1 \ p�1(Wk+1) \ h�1
k ({0}) \ f�1

k+1({�}) \B

⇠= Z \ Vk�1 \ p�1(Wk+1) \ h�1
k ({⌘}) \ f�1

k+1({�}) \B

⇠= Z \ Vk�1 \ p�1(Wk+1) \ h�1
k ({⌘}) \ f�1

k+1({0}) \B

⇠= Z \ Vk�1 \ p�1(Wk) \ h�1
k ({⌘}) \B

⇠= Lk

for a Milnor ball B and su�ciently small values for � and ⌘. The homeomorphisms are induced
from the parallel transport in the fibration given by

� = (hk, fk+1) : Z \ Vk�1 \ p�1(Wk+1) \B ! C⇥ C

as in (5) over suitably chosen paths connecting (0, �), (⌘, �), and (⌘, 0). ⇤

Proof. (of Theorem 1.1) After applying the graph transformation we obtain for k = 1:

Xu = f�1
1 ({�}) \ Z1 \B = F1,

because W1 was in general position. This space is naturally stratified by the strata ⌃s of
dimension

dim⌃s = N � (m� s+ 1)(n� s+ 1)

for s0  s  t with s0 = min{r 2 N0 : (m � r + 1)(n � r + 1)  N} and the complex link

along ⌃s is Lt�s+1,(m�s+1)(n�s+1)�1
m�s+1,n�s+1 . We may apply Proposition 2.5 to determine the thimbles

associated to Morse critical points on the strata. It is the pair of spaces consisting of

SN�(m�s+1)(n�s+1)(Lt�s+1,(m�s+1)(n�s+1)�1
m�s+1,n�s+1 )

and the cone over it. According to the Handlebody Theorem [13], the space F1 then has a
bouquet decomposition

F1
⇠=ht L1 _

_

s0st

r1(s)_

i=1

SN�(m�s+1)(n�s+1)+1(Lt�s+1,(m�s+1)(n�s+1)�1
m�s+1,n�s+1 ).

Note that, since the image of the attaching maps in L1 retract to a point, we obtain one more
suspension compared to the formula for the thimble.

We may now proceed inductively and replace Lk by Fk+1 in this formula according to Lemma
3.5. At each step we attach a certain number rk(s) of thimbles and we may add them up to
r(s) =

Pm·n�1
k=1 rk(s). This finishes the proof. ⇤

Corollary 3.6. If the singularity (X0, 0) in the setting of Theorem 1.1 is smoothable (i.e. if
N < (m� t+ 2)(n� t+ 2)), then

(12) Xu
⇠=ht L

t,N
m,n _

r_

i=1

Sd,

with d = N � (m� t+ 1)(n� t+ 1) = dim(X0, 0).
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4. EIDS of type (2, n, 2)

In this section we will be concerned with arbitrary EIDS (X0, 0) ⇢ (CN , 0) of type (2, n, 2).
The requirement on (X0, 0) to have expected dimension relates N and the dimension
d = dim(X0, 0) via

d = N � (2� 2 + 1)(n� 2 + 1) = N � n+ 1.

In particular, we always have n� 1  N . Note that Theorem 1.1 is only applicable if n  N .
If we require (X0, 0) to be smoothable, we also obtain an upper bound on N given by

N < (2� 2 + 2)(n� 2 + 2) = 2n.

4.1. The homotopy type of L2,N
2,n . We shall first determine the homotopy type of all the

spaces L2,N
2,n , see (13), (15), (17), and (18).

Whenever N � 2n, any generic linear map

� : (CN , 0) ! (Mat(2, n;C), 0)

is a submersion and in particular stable. The interior of the determinantal Milnor fiber of � is
therefore given by

(13) L2,N
2,n

⇠= CN�2n
⇥M2

2,n
⇠=ht {pt}.

Suppose N < 2n. Let M = M2
2,n be the generic determinantal variety and

W

⇡

✏✏

� � // Mat(2, n;C)⇥ P1

✏✏

// P1

M �
�

// Mat(2, n;C)

its Tjurina transform (see e.g. [14], or [15]) resulting from the blowup of the rational map

 : M 99K P1, y 7! [ker(y)].

If we let yi,j be the canonical coordinates of Mat(2, n;C) and (s1 : s2) the homogeneous coordi-
nates of P1 then the equations for W are

(14) s1 · y2,j � s2 · y1,j = 0 for j = 1, . . . , n.

We may consider y1,j and y2,j as linear fiber coordinates in local trivializations of the tautological
bundle OP1(�1) for every j. Thus, W is a smooth complex manifold isomorphic to the total
space of the vector bundle (OP1(�1))n.

Instead of describing an embedding

� : CN
! Mat(2, n;C)

of a linear subspace defining an EIDS (X0, 0) = (��1(M2
2,n), 0), we may also choose a linear

form

l = (l1, . . . , l2n�N ) 2 HomC(Mat(2, n;C),C2n�N )

such that �(CN ) = ker(l). Since all equations involved in this process are either linear or
homogeneous, we may neglect the choice of Milnor balls. We obtain an extension of the above
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diagram to the left:

X̃0
� � //

✏✏

W

⇡

✏✏

� � // Mat(2, n;C)⇥ P1

✏✏

// P1

X0
� � //

✏✏

M �
�

//

l
✏✏

Mat(2, n;C)

{0} �
�

// C2n�N ,

with X̃0 := ⇡�1(X0). The interior of the determinantal Milnor fiber L2,N
2,n of � is then given by

L2,N
2,n = M \ l�1({u})

for some regular value u of l on M .
Utilizing the trace pairing (see e.g. [4])

Mat(2, n;C)⇥Mat(2, n;C) ! C, (A,B) 7! trace(AT
·B),

we may write the components of l in the form

lk =

✓
lk1,1 lk1,2 · · · lk1,n
lk2,1 lk2,2 · · · lk2,n

◆

for constant entries lki,j 2 C. We leave it to the reader to verify that in the range n  N < 2n, a

su�ciently general choice for l is given by choosing the 2n�N components lk from the following
n matrices:

✓
1 0 0 0 · · · 0
0 1 0 0 · · · 0

◆
,

✓
0 1 0 0 · · · 0
0 0 1 0 · · · 0

◆
, · · ·

· · · ,

✓
0 · · · 0 1 0 0
0 · · · 0 0 1 0

◆
,

✓
0 · · · 0 0 1 0
0 · · · 0 0 0 1

◆
,

✓
0 0 · · · 0 1
1 0 · · · 0 0

◆
.

Fix one value n  N < 2n and the linear form l : Mat(2, n;C) ! C2n�N as above and consider
the algebraic sets

W � ⇡�1 ({l = 0}) = X̃0
⇡

�! X0 = M \ l�1({0}).

Using the above equations (14) for W and ⇡⇤lk, k = 1, . . . , 2n � N we see that X̃0 is a local
complete intersection in Mat(2, n;C)⇥ P1.

Moreover, whenever N > n – i.e. whenever d = dim(X0, 0) > 1 – X̃0 is isomorphic to the
total space of the vector bundle

OP1(�(2n�N + 1))� (OP1(�1))N�n�1

and in particular smooth of dimension d = N�n+1. Passing from l = 0 to a regular value l = u
therefore results in a flat deformation of X̃0 which is topologically trivial due to Ehresmann’s
theorem. Since the set Xu = M \ {l = u} does not meet the locus M1

2,n = {0} where  is not

defined, the projection ⇡ : X̃u ! Xu is an isomorphism and we obtain homotopy equivalences

(15) S2 ⇠= P1 ⇠=ht X̃0
⇠=ht X̃u

⇠=ht Xu
⇠=ht L

2,N
2,n for n < N < 2n.

In the particular case where N = n – i.e. when X0 is a curve and the components of l comprise
all of the above listed linear forms – we find the following system of equations for X̃0 in the chart
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{s1 6= 0}:

y2,j =
s2
s1

y1,j , j = 1, . . . , n,

y1,j =

✓
�
s2
s1

◆
y1,j+1, j = 1, . . . , n� 1,

y1,n + y2,1 = 0.

We may eliminate the variables y2,j for all j and express all y1,j in terms of y1,n for j < n.
Substituting this into the last equation yields

y1,n

✓
1�

✓
�
s2
s1

◆n◆
= 0.

Thus,

X̃0 = L̃1 [ L̃2 [ · · · [ L̃n [ E
⇡

�! L1 [ L2 [ · · · [ Ln = X0 ⇢ CN(16)

consists of exactly n lines L̃1, . . . , L̃n meeting the exceptional set E = {0}⇥P1 of ⇡ transversally
in the points (s1 : s2) = (1 : �⇣kn), k = 0, . . . , n with ⇣n a primitive n-th root of unity. Since
the projection ⇡ is an isomorphism outside E, the L̃i are taken to a set of lines Li ⇢ CN , which
meet pairwise at the origin.

The situation is depicted in Figure 1 for the case n = 3. Note that X0 is drawn as three cones
touching each other at their vertices. This is intrinsically homeomorphic to three complex lines
meeting at the origin, but drawn as embedded in real 3-space. In fact, all the pictures really
capture the described objects up to homeomorphism.

Figure 1. Deformation of a space curve and its Tjurina transform for n = 3

It is not clear a priori how the topology of Xu changes compared to X0 when passing to a
regular value u of l. For X̃0, however, the induced deformation must be a smoothing of the n
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distinct singularities of X̃ at the points (1 : ⇣kn), because again ⇡ : X̃u ! Xu is an isomorphism
and Xu is smooth. Locally and up to homotopy, the smoothing replaces a neighborhood Dk[ L̃k

of the line L̃k in X0 by a punctured disc D⇤
k at every such point. Thus X̃u has the homotopy

type of a punctured 2-sphere with n points missing:

(17) X̃u
⇠=ht L

2,n
2,n

⇠=ht S
2
\ {n points} ⇠=ht

n�1_

i=1

S1.

For the last admissible value N = n � 1 of N observe that the space L2,n�1
2,n is given by the

intersection of

X0 = L1 [ L2 [ · · · [ Ln

in (16) from the previous considerations with a further codimension one hyperplane in general
position o↵ the origin. Clearly, this intersection consists of precisely n points and therefore

(18) L2,n�1
2,n = {n points}.

4.2. Arbitrary EIDS of type (2, n, 2). Suppose that

A : (CN , 0) ! (Mat(2, n;C), 0)

defines an arbitrary EIDS (X0, 0) = (A�1(M2
2,n), 0) ⇢ (CN , 0) of type (2, n, 2). We will describe

the homotopy type of its determinantal Milnor fiber in all cases (19), (20), (21), and (22).

Whenever N = n � 1, i.e. if dim(X0, 0) = 0 and (X0, 0) is a fat point, the determinantal
Milnor fiber will consist of a finite number of distinct, regular points

(19) Xu = {k points} if N = n� 1.

Since (X0, 0) is Cohen-Macaulay, we may use the principle of conservation of number and com-
pute this number k directly from the local algebra:

k = dimC OX0,0.

Now let (X0, 0) = (A�1(M2
2,n), 0) be a curve, i.e. d = 1 , N = n. Theorem 1.1 is applicable

and we have s0 = t = 2. Hence, there is only one number r = r(2) which is relevant in the
bouquet decomposition (1). The homotopy type of the determinantal Milnor fiber Xu is

(20) Xu
⇠=ht

 
n�1_

i=1

S1

!
_

 
r_

i=1

S1

!
if N = n.

Suppose d = dim(X0, 0) > 1 and (X0, 0) is smoothable. This allows a range n < N < 2n for
N and according to the computations in the previous section we find

(21) Xu
⇠=ht S

2
_

r_

i=1

SN�n+1 if n < N < 2n.

Note that whenever d � 3, there is still a 2-sphere in the decomposition! This is a striking
di↵erence to any behavior which can be observed for ICIS.

Finally, for values N � 2n, a determinantal singularity (X0, 0) of type (2, n, 2) does not admit
a determinantal smoothing. Nevertheless, the determinantal Milnor fiber X̃u is defined up to
homeomorphism. In this case we find s0 = 1  s  t = 2 and we have di↵erent contributions
in the bouquet decomposition. The complex link L2,N

2,n is homotopically trivial. But the thimble
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which is being attached to L2,N
2,n at a Morse critical point for s = 1 has a nontrivial normal Morse

datum ⇣
C(L2,2n�1

2,n ), L2,2n�1
2,n

⌘
.

Thus, according to (15) we find

(22) Xu
⇠=ht {pt} _

0

@
r(1)_

i=1

S3

1

A _

0

@
r(2)_

i=1

SN�n+1

1

A for N � 2n.

Remark 4.1. The decomposition (1) in Theorem 1.1 reduces the question about the homotopy
type of a determinantal Milnor fiber to the question about the topology of the spaces Lt,k

m,n ap-

pearing in the formula. In those cases, where all these Lt,k
m,n themselves are homotopy equivalent

to a bouquet of spheres, the same holds for the determinantal Milnor fiber.
Moreover, the generalized Milnor numbers r(s) measuring the contributions from critical

points on the di↵erent strata are invariants of the singularity. Using computer algebra systems
like Singular, one can compute these numbers for any given singularity from the Cerf-diagrams
� in the carrousel [13, Section 1.4] at each induction step in the proof of Theorem 1.1. However,
these computations involve random choices of linear equations and it would be appealing to have
a concise formula relating the numbers r(s) to analytic invariants of the singularity itself.
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ON A SINGULARITY APPEARING IN THE MULTIPLICATION OF

POLYNOMIALS

SANTIAGO LÓPEZ DE MEDRANO AND ENRIQUE VEGA CASTILLO

To Cidinha, on her 70th birthday

Abstract. The multiplication of monic polynomials of degrees n and m defines a mapping

Rn+m ! Rn+m
. Singularities of this mapping at a point corresponding to two polynomials

(P,Q) appear when the two polynomials have a common root. In [Ch-LdM] it was shown

that, when every such common root is simple in one of the polynomials, the singularity type

can be described using swallowtail singularities whose geometry is well understood. In this

paper we consider the case where there are common double roots. We start with the minimal

possible situation where both polynomials are of degree 2, and give a normal form for the

singularity that allows us to describe its geometry quite thoroughly. This normal form is then

extended to other polynomial pairs with only one common multiple root which is a double

root in one of them. Finally we give a general statement for pairs whose greater common

divisor has only single or double roots.

Introduction.

Let MP(K, n) be the space of monic polynomials of degree n with coe�cients in a field K.
We will consider only cases where K is either the real or the complex field. A polynomial in
MP(K, n) is given by n coe�cients, so the space MP(K, n) can be identified with Kn.

Multiplication of polynomials gives a mapping:

Mult : MP(K, n)⇥MP(K,m) ! MP(K, n+m),

which can then be identified as a mapping from Kn+m to itself.
We are interested in understanding the properties of this di↵erentiable map: at which pairs

(P,Q) of polynomials is it a local di↵eomorphism? When it is not so, can we describe the type
of singularities that may appear, starting with the most simple situations?

In [Ch-LdM] these questions were given some first answers (which were then applied to the
theory of deformations of linear operators):

(i) The points (P,Q) where the mapping Mult is a local di↵eomorphism are characterized as

those where the two polynomials are relatively prime.

(ii) The singularity type is given at the pairs where the greatest common divisor of them has

only simple roots (see Theorem 1 below).

(iii) A general normal form for every type of singularity appearing in Mult.
It is the purpose of this article to study the singularity type of Mult when P and Q have

a common double root. First, we give a new normal form for the simplest case that allows us
to describe the geometry of its singularity type in the real and complex cases. Surprisingly, in
the real case the critical set is not equivalent to, but still related to a well-known swallowtail
singularity, typical of the cases where the greatest common divisor has only simple roots.

In the interesting paper [L-W] the Thom-Boardman symbol of the singularities of the mapping
Mult at all points (P,Q) is computed. Our approach, following [Ch-LdM], is di↵erent: we search

http://dx.doi.org/10.5427/jsing.2020.22n
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for a simple normal form and a complete topological description of the singularity. This objective
looks di�cult to achieve except in the simplest cases.

1. Known results.

The main result of [Ch-LdM] is the following:
Theorem 1. For (P0, Q0) 2 MP(K, n)⇥MP(K,m):

(i) The corank of the di↵erential DMult(P0, Q0) is the degree of gcd(P0, Q0).
(ii) In particular, Mult is a local di↵eomorphism at (P0, Q0) if and only if gcd(P0, Q0) = 1.
(iii) The mapping Mult is a (k + 1)–swallowtail at (P0, Q0) for some positive integer k if,

and only if, deg gcd(P0, Q0) = 1, the integer k being the maximum of the multiplicities

in P0 and Q0 of their common root.

(iv) If K = R, the mapping Mult is a complex (k + 1)–swallowtail at (P0, Q0) for some

positive integer k if, and only if, gcd(P0, Q0) is an irreducible polynomial of degree 2, k
being the maximum of the multiplicities in P0 and Q0 of their complex conjugate common

roots.

The proof consists in giving a simple normal form for such mappings. All these mappings
are well-known and so is the general description of their singular and critical sets. A reduction
lemma shows that the singularity type of Mult at a point (P0, Q0) splits into a product of the
singularity types of the factors of the polynomials corresponding to the di↵erent roots:

Lemma 1. The singularity type of Mult at a pair of polynomials with several common roots

is the set-theoretical product of the singularity types ot Mult at each of the pairs consisting of

the factors of the polynomials involving only one of those roots.

This is because the multiplication of factors involving di↵erent roots is locally invertible by
(ii) and so the product can be factored, multiplied separately and then multiplied together again,
all the complementary multiplications being local bijections.

Another argument given in [Ch-LdM] can be formulated in general as follows:
Lemma 2. Assume P0 2 MP(R, 2k) has no real roots and let P0 = P01P̄01 be a decom-

position of P0 such that P01 and P̄01 have no common roots. Then the mapping P1 7! P1P̄1

is a di↵eomorphism between a neighborhood of P01 in MP(C, k) and a neighborhood of P0 in

MP(R, 2k).
This is because in a neighborhood of P0 in MP(C, 2k) every polynomial P can be written

in a unique way as P1P2 with P1, P2 in neighborhoods of P01 and P̄01, respectively. When
P 2 MP(2k,R) then P = P̄ = P̄1P̄2. The uniqueness of the decomposition implies that P2 = P̄1

and P = P1P̄1 so the mapping P 7! P1 is a local inverse of P1 7! P1P̄1.
Also, in [Ch-LdM], Proposition 2, there are normal forms for all possible singularity types

of Mult at pairs with only one root which is common. We still do not know how to use these
normal forms to obtain a geometric description of the singularity types, so we looked for new
normal forms in the cases we study.

2. Polynomials with common double roots.

We will start by describing the minimal case: two polynomials of degree 2 with one single root
which is common and double in both of them. We will give a new normal form of the mapping
Mult in the neighborhood of such a pair and a detailed description of its singularity type in the
case K = R. Section 2.4 treats the case of two real polynomials with a double common complex
root.

In section 2.5 we give a new normal form for the case of two polynomials with only one root
which is common, double in one of them and of multiplicity k � 2 in the other one.
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In section 2.6 we will combine all the cases known to give a statement about pairs of polyno-
mials whose greater common divisor has only simple and double roots.

2.1. The minimal case for general K. We consider now the case where both polynomials
are of degree 2 with a common double root ↵ which is in K.

A change of variable x = y + ↵ in those polynomials is an automorphism of MP (K, 2) that
preserves the multiplication and gives us two polynomials in y whose common double root is
zero. So we can assume that both P0(x) and Q0(x) are equal to x2 and Mult(P0, Q0) = x4.
A variation of the pair (P0, Q0) is given by the pair (P,Q) where P (x) = x2 + sx + t and
Q(x) = x2 + ux+ v. Their product is then

P (x)Q(x) = x4 + ux3 + sx3 + vx2 + sux2 + tx2 + svx+ tux+ tv.

In terms of the parameters s, t, u, v the mapping is

F (s, t, u, v) = (u+ s, v + su+ t, sv + tu, tv).

This is a simple mapping of degree 2, but this fact does not give us an idea of its geometry.
In several steps we will simplify this map through invertible changes of variables, obtaining a
map of degree 4 that can be much better understood.

We begin by taking the first two components of F as new independent variables, through
changes of coordinates:

s = s1 � u, t = t1 � s1u� v + u2

to obtain the equivalent map

F1(s1, t1, u, v)
�
s1, t1, vs1 � 2vu+ ut1 � s1u

2 + u3, (t1 � s1u� v + u2)v
�
.

To simplify the third component we use the changes of coordinates:

v =
t1
2
� s1u

2
+

u2

2
� v1

2
, u = u1 +

s1
2

giving the new equivalent function

F2(s1, t1, u1, v1) =

✓
s1, t1,

�s31 + (4u2
1 + 4t1)s1
8

+ u1v1,
(s21 � 4u2

1 � 4t1 � 4v1)2

64

◆
.

Now we operate on the target space by substracting two functions of the first two components:

� s31
8 + s1t1

2 from the third component and (� s21
8 + t1

2 )
2 from the fourth one.

Another change of variables finishes the simplification of the third coordinate:

v1 = v2 �
s1u1

2
,

F3(s1, t1, u1, v2) =

✓
s1, t1, u1v2,

u4
1 + s1u1v2 � v22

4
+

(�3s21 + 8t1)u2
1

16

◆
.

Now it is time to simplify the fourth coordinate through the substitutions

t1 =
t2
2
+

3s21
8

, s1 = 4s2,

F4(s2, t2, u1, v2) =

✓
4s2,

t2
2
+ 6s22, u1v2,

1

4
u4
1 + s2u1v2 +

1

4
t2u

2
1 �

1

4
v22

◆
.

We have messed with the first two components, but we can fix them back easily by acting on
the target: divide the first component by 4 and then substract from the second one the function
6s22 of the first one. Then multiply the second component by 2 to make it again equal to t2.
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Finally, one can substract the product of the first and third components from the last one to
obtain a remarkable simplification of the original mapping1:

F5(s2, t2, u1, v2) =

✓
s2, t2, u1v2,

1

4
(u4

1 + t2u
2
1 � v22)

◆
.

Seen as an unfolding, we observe that the coordinate s2 plays no role in the deformation of the
mapping, so we can omit it from both sides and need only study the one-parameter unfolding,
which in new coordinates can be written as:

f(a, x, y) =
�
a, xy, x4 + ax2 � y2

�
.

So Mult at (P0, P0) is equivalent to the suspension of f .

f is an unfolding of the mapping

f0(x, y) = (xy, x4 � y2),

which for K = R reminds us of the square of a complex variable mapping (x, y) 7! (x2�y2, 2xy)
and, actually, the two mappings are topologically equivalent (see section 2.3).

The unfolding f(a, x, y) is based on the deformation

fa(x, y) =
�
xy, x4 + ax2 � y2

�
.

To obtain the singular points of f we compute its Jacobian matrix:
0

@
1 0 0
0 y x
x2 4x3 + 2ax �2y

1

A

so the singular set is given by:

J = �4x4 � 2ax2 � 2y2 = 0,

which gives also the singular set of fa for each fixed a.

2.2. The minimal case for K = C. When K = C it turns out that for all a 6= 0, the
deformations fa are equivalent: the substitutions x =

p
aX, y = aY , followed by multiplication

of the components by adequate constants, gives
�
XY,X4 +X2 � Y 2

�
, which is the case a = 1.

However, f0 is not equivalent to fa for a 6= 0. The jacobian determinant of fa is in general
�4x4 � 2ax2 � 2y2, so the origin is always a zero and a singular point of J . Under those
circumstances, equivalent maps must have jacobians with equivalent 2-jets, but for a = 0 the
2-jet of the jacobian determinant is degenerate, which is not the case for a 6= 0. Also, the singular
sets are not equivalent.

In this case fa is, for all a, surjective and, generically, four-to-one, since the corresponding
equations have always a solution and generically four di↵erent ones (cf. the computations in the
next section).

1
For the record, it will be useful for section 2.5 to take note now of the global substitution su↵ered by the

coordinates s, t:

s = 2s2 � u1, t = s22 � s2u1 +
1

2
u2

1 +
1

4
t2 +

1

2
v2.
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2.3. The minimal case for K = R. In the case K = R at polynomials of degree 2 with two
common double real roots, the computation in section 2.1 gives again that Mult is equivalent to
the suspension of the mapping

f(a, x, y) =
�
a, xy, x4 + ax2 � y2

�
,

which is an unfolding of
f0(x, y) =

�
xy, x4 � y2

�
.

The mapping f0 appears in Mather’s classification of stable germs as being of the type II2,4
with algebra R[[x, y]]/(xy, x2 � y4). See [M], p. 240. Its jacobian determinant is �4x4 � 2y2; so
the origin is the only critical point of f0.

Consider now f0 as a (non-holomorphic) function of the complex variable z = x + iy. Since
this function takes the same values for z and �z, it can be written as a function of z2; so we can
express f0 as a composition

f0(x, y) = g0(x
2 � y2, 2xy),

where g0 is a di↵erentiable function outside the origin. It follows from the computations below
that g0 is a homeomorphism of R2 which is a di↵eomorphism outside the origin.

As for fa, its di↵erentiable type now depends on the sign of a: For a > 0, the substitutions
in the previous section show that fa is equivalent to f1. For a < 0 we have to use instead the
substitutions x =

p
�aX, y = aY to obtain in the same way that fa is equivalent to f�1.

By the same argument as in the case K = C we obtain that f0 is not equivalent to fa for any
a 6= 0.

We shall prove now that fa is 2 to 1 outside the origin for a � 0 and surjective for all a:

If a � 0, take a point (x, y) and another point (x1, y1) with the same image:

fa(x, y) = fa(x1, y1);

so
xy = x1y1, x4 + ax2 � y2 = x4

1 + ax2
1 � y21 .

If x = 0 then one of x1, y1 is zero.

If x1 = 0 then y1 = ±y and there is only one more point with the same image as (x, y).

If x = 0 and y1 = 0 then the second equation gives

�y2 = x4
1 + ax2

1,

which is only possible for y = x1 = 0 and there is no other point with the same image as (x, y).

If x 6= 0 we can solve for y in the first equation and substitute its value in the second one.
After multiplying by x2 and factoring the resulting polynomial we get

(x� x1)(x+ x1)(x
4 + x2

1x
2 + ax2 + y21) = 0.

The third factor must be positive since x 6= 0 and a � 0 so we must have x1 = ±x and
therefore y1 = ±y, with the same sign. So there is only one more point with the same image as
(x, y). So fa is 2-to-1 outside the origin.

To see that fa is surjective for every a, we need to solve the equations

xy = �, x4 + ax2 � y2 = ⌘

for a given (�, ⌘) 2 R2.

If � = 0 there is always a solution: x = 0, y =
p
�⌘ for ⌘  0; y = 0 and x a solution

x4 + ax2 = ⌘ for ⌘ > 0.
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If � 6= 0 then x and y are non-zero. Then we can proceed as before: solve for y in the first
equation, substitute its value in the second one and multiply by x2. We obtain:

x6 + ax4 � ⌘x2 � �2 = 0.

For x = 0 this polynomial is negative, while it tends to +1 when x tends to +1. Therefore
there is a positive solution of this equation (and a negative one, too).

So we have shown that fa is surjective for all a.

For a > 0 the jacobian determinant is again 0 only at the origin.

For a < 0 we can see the singular set as follows: Substituting X = x2 and Y = y2 in the
jacobian determinant we obtain a parabola:

4X2 � 2aX � 2Y = 0

The singular set is then the pre-image of the part of this parabola in the first quadrant under
the mapping (x, y) 7! (x2, y2) so it is the lemniscate:

This lemniscate is actually, up to linear changes of coordinates, the variant known as Geromo’s

lemniscate:

x4 � x2 + y2 = 0.

A parametrization of this lemniscate is known (see [Wik]), which adapted to ours becomes

�(�) = (
p
�a/2 cos(�), a sin(�) cos(�)/

p
2)

as can be directly verified. We will use this parametrization to obtain the image of the singular
set:

�(�) = (a
p
�a cos(�)2 sin(�)/2, a2 cos(�)4/4� a2 cos(�)2/2� a2 sin(�)2 cos(�)2/2)
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This figure has three singular points, two simple cusps (as can easily verified) at the lower
level and a strange angle at the origin.

Let us call U, V the coordinates in the target plane containing this critical set. One can find
the equations satisfied by the critical set by using the parameters X = x2, Y = y2 as before
and eliminating the variables X,Y from the components of the mapping and the equation of the
singular set. Alternatively, one can parametrize algebraically the intersections of the lemniscate
with the four quadrants to carry out this elimination.

In any case, it can be verified directly that the points in the critical set satisfy the following
equation:

108 a3U2 � 729U4 + 486 aU2V + 27 a2V 2 + 108V 3 = 0

Drawing the zero set of this polynomial for a negative value of a, one obtains the following
figure:

So the critical set of our mapping is just a semi-algebraic subset of this well-known swallowtail
curve! (And this explains the angle).

We can also draw the unfolding of the critical set by considering all values of a: for negative
values of a it is the previous figure, where the triangular lower part shrinks to a single point
when a approaches 0 and continues to be a single point when a is positive (we have highlighted
the a axis):
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Again, this is only the lower part of the swallowtail unfolding:

It is a curious fact that the complementary upper part of the swallowtail:

appears also as the singularity of a minimax solution of a Hamilton-Jacobi partial di↵erential
equation. See [Ch2] section 2.5 for the theory and [Ch1], appendix, for a specific example (the
explicit figure appears in page 431).

2.4. The minimal case of two real polynomials with a double complex root. In this
case we will have actually two conjugate double roots ↵, ↵̄.

Here we apply Lemma 2 of section 1 to obtain that at such point Mult is equivalent to the
suspension of the complex mapping

f : C2 ! C2,

f(a, x, y) =
�
a, xy, x4 + ax2 � y2

�
.

This is an unfolding of the mapping, in real variables:

f(x1, x2, y1, y2) = (x1y1 � x2y2, x1y2 + x2y1, x
4
1 � 6x2

1x
2
2 + x4

2 � y21 + y22 , 4x
3
1x2 � 4x1x

3
2 � 2y1y2).
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2.5. The case P0(x) = (x� a)2, Q0(x) = (x� a)k. We give now a formula for the general case
of two polynomials with a single root which is common, double in one of them and of degree
k � 2 in the other one. So we can assume as before that P0(x) = x2, Q0(x) = xk. The method
consists in applying the same changes of variables as in the minimal case k = 2 and is valid for
any field K. This gives a reasonable closed normal form, while other methods we have tried do
not seem to produce one.

First, we illustrate it with small values of k. For k = 3 the mapping is given by the coe�cients
of (x2+ sx+ t)(x3+ux2+ vx+w). After applying the sequence of changes of variable of section
2.1, adjusting factors and renaming the variables, one obtains the following normal form:

(a, b, x, y, w) 7!
�
a, b, xy + w, x4 + bx2 � y2 + (2a� x)w, (4a2 � 4ax+ 2x2 + b+ 2y)w

�
.

One could also linearize the third component by using the coordinate w1 = xy + w, thus
obtaining a normal form which would be an unfolding of f0. This would, however, increase the
complexity of the expressions of the following components (without much hope of simplification).

Observe that here both parameters a, b appear in the formula, so there are no mute parameters.
Also, that the new coordinate w appears only with degree 1 multiplied by factors of degrees 0
to 2 and increasing complexity. It does not seem easy to simplify them with new changes of
coordinates.

The good news is that for greater values of k the coe�cients of the new coordinates not only
do not increase in complexity, but are actually exactly the same as for k = 3. It will be therefore
convenient to use a short notation for them:

�(a, x) = 2a� x, ⌧(a, b, x, y) = 4a2 � 4ax+ 2x2 + b+ 2y.

Then, for k = 4 we get by the same method the following map:

(a, b, x, y, w3, w4) 7! (a, b, xy + w3, x
4 + bx2 � y2 + �w3 + w4, ⌧w3 + �w4, ⌧w4).

For w = 0 we obtain essentially the normal form for k = 2. This shows that this mapping is
a deformation of the mapping f0 we studied before, and is the basis of the proof by induction of
the general normal form for every k:

Let P (x) = x2+sx+t and Qk(x) = xk+uxk�1+vxk�2+⌃k
i=3wixk�i and Fk(x) = P (x)Qk(x).

Then, clearly
Fk+1(x) = xFk(x) + P (x)wk+1.

In terms of the coordinates (s, t, u, v, w3, . . . , wk, wk+1), this is expressed as

Fk+1(s, t, u, v, w3, . . . , wk, wk+1) = (Fk(s, t, u, v, w3, . . . , wk), 0) + (0, . . . , 0, wk+1, wk+1s, wk+1t).

Passing to the coordinates (s2, t2, u1, v2) as in section 2.1, we obtain

Fk+1(s2, t2, u1, v2, w3, . . . , wk, wk+1) =�
Fk(s2, t2, u1, v2, w3, . . . , wk), 0

�
+⇣

0, . . . , 0, wk+1, (2s2 � u1)wk+1,
⇣
s22 � s2u1 +

1
2u

2
1 +

1
4 t2 +

1
2v2

⌘
wk+1

⌘
,

since the coe�cients of wk+1 are precisely the results of applying the coordinate changes of
section 2.1 to the variables s, t (cf. footnote 1).

Starting with k = 2 this gives the inductive proof that the mapping Mult at P, Pk is equivalent
to the mapping (in new coordinates):

Gk(a, b, x, y, w3, . . . , wk) =

(a, b, xy, x4 + bx2 � y2, 0, . . . , 0)+

(0, 0, ⌧(a, b, x, y)w1 + �(a, x)w2 + w3, . . . , ⌧(a, b, x, y)wk + �(a, x)wk+1 + wk+2),
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where � and ⌧ are as above and it is understood that w1 = w2 = wk+1 = wk+2 = 0.
As before, the components ⌧(a, b, x, y)wi + �(a, x)wi+1 +wi+2 can, in principle, be linearized

for i = 3 to k � 2 to present G as an unfolding of f0(x, y) = (xy, x4 � y2) with k parameters.

2.6. The general result. Putting together the previous results we can conclude that:

If P0 2 MP(K, n) and Q0 2 MP(K,m) are two polynomials such that their greatest common

divisor has only simple and double roots then:

1)If K = C then at (P0, Q0), Mult is equivalent to the suspension of a product of complex

swallowtails and complex mappings Gk.

2)If K = R then at (P0, Q0), Mult is equivalent to the suspension of a product of real complex

swallowtails and real and complex mappings Gk.
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tions Fontenay-Saint Cloud (1994), pp. 419-438.

[Ch2] M. Chaperon, Singularities in contact geometry, in Geometry and topology of caustics-

Caustics ’02, Banach Center Publications 62 (2004), pp. 39-55. DOI: 10.4064/bc62-0-3
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REAL AND COMPLEX INTEGRAL CLOSURE, LIPSCHITZ
EQUISINGULARITY AND APPLICATIONS ON SQUARE MATRICES

THIAGO F. DA SILVA, NIVALDO G. GRULHA JR., AND MIRIAM S. PEREIRA

Dedicated to Terence Gaffney and Maria Ruas, on the occasion of their 70th birthday, and to Marcelo Saia, on
the occasion of his 60th birthday.

Abstract. Recently the authors investigated the Lipschitz triviality of simple germs of ma-
trices. In this work, we improve some previous results and we present an extension of an
integral closure result for the real setting. These tools are applied to investigate classes of
square matrices singularities classified by Bruce and Tari.

Introduction

The study of Lipschitz equisingularity has risen from works of Zariski [25], Pham [22] and
Teissier [23] and further developed by Parusiński ([18, 19]), Gaffney ([15, 12, 13]), Fernandes,
Ruas ([11]) and others.

In [17], Mostowski introduced a new technique for the study of this subject from the existence
of Lipschitz vector fields. In general, these vector fields are not canonical from the varieties.
Nevertheless, Gaffney [12] presented conditions to find a canonical Lipschitz vector field in the
context of a family of irreducible curves using the double structure, defined for ideals in [13] and
generalized for modules in [15].

Families of square matrices were first studied by Arnold in [2], where the parametrised invert-
ible matrices act by conjugation. Recently, many authors have presented a series of interesting
results about determinacy and classification using parametrised families or smooth changes of
coordinates in the source of the germ ([3], [4], [9], [10] and [21]).

More recently, Gaffney’s result was extended in [8], where the authors presented conditions
which ensure the canonical vector field is Lipschitz in the context of 1-unfoldings of singularities
of matrices, following the approach of Pereira and Ruas [24].

In this work we prove a real version of the result proved in [8] in order to investigate the
Lipschitz triviality in the real case. Finally, we study some deformations of simple singularities
classified by Bruce and Tari [3, 4] in the real and complex cases, using a similar approach as
that in [8].
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1. Notation and Background

We start with some notation. Let K be a field which is R or C and let R be the group of
diffeomorphisms Kr, 0 ! Kr, 0. Let H denote the set of germs of smooth mappings

Kr, 0 ! GLn(V )⇥GLp(W ),

and M the set of germs F : Kr, 0 ! Hom(V ;W ). The set H can be endowed with a group
structure inherited from the product group in the target.

We define a notion of bi-Lipschitz equivalence between two matrices as in [20].

Definition 1.1. Let G = RnH be the semi-direct product of R and H. We say that two germs

F1, F2 : Kr, 0 ! Hom(V ;W )

are G-Lipschitz equivalent if there exist a germ � : (Kr, 0) ! (Kr, 0) of a bi-Lipschitz homeo-

morphism and germs of continuous mappings X : (Kr, 0) ! GLn(V ), Y : (Kr, 0) ! GLp(W )
such that F1 = X�1(F2 � ��1)Y .

An element of M can also be considered as a map Kr, 0 ! KN , where we identify Hom(V ;W )
with the n⇥ p matrices, and N = np.

It is not difficult to see that G is one of Damon’s geometric subgroups of K. As a consequence
of Damon’s result we can use the techniques of singularity theory, for instance, those concerning
finite determinacy (see [6], [21] and [4]).

It is possible to determine the tangent space to the orbit for the action of the group G on M .

Given a matrix F , we write Fx(i) for the matrix
@F

@xi
and we denote Er for the ring of smooth

functions Kr, 0 ! K. So the tangent space could be viewed as an Er-submodule of EN spanned
by the set of matrices Ril (respectively Cjm) with lth row (respectively mth th column) the ith

row of F (respectively jth column) and with zeros elsewhere, for 1  i, l  n and 1  j, m  p
(see [6], [21] and [4]).

2. Real integral closure and Lipschitz Equisingularity

For the complex case, in [8] the authors obtained conditions so that the canonical vector field
defined in a family of simple germs of matrices is Lipschitz, depending of a specific inclusion of
ideals, involving the integral closure and the double of an ideal.

A new comprehension of the integral closure in the real case plays a key role in the proof of
Theorem 2.4. Let us recall this notion.

Let (An,mn) be the local ring of real analytic functions germs at the origin in Rn, and let
Ap

n be the An-free module of rank p. For a germ of a real analytic set (X,x), denote by AX,x

the local ring of real analytic function germs at (X,x).

Definition 2.1. Let I be an ideal of AX,x. An element h 2 AX,x is in the real integral closure
of I, denoted I, if h � � 2 �⇤(I)A1, for all real analytic path � : (R, 0) ! (X,x).

For an algebraic definition of the real integral closure of an ideal one can see [5].
The key step to obtain the main results of [8] for the real case is the fact that the definition

of the real integral closure of an ideal is equivalent to the following formulation using analytic
inequalities.

Theorem 2.2 ([14]). Let I be an ideal of AX,x and h 2 AX,x. Then: h 2 I if and only if for

each choice of generators {fi} there exist a positive constant C and a neighborhood U of x such

that k h(z) k Cmax
i

k fi(z) k for all z 2 U .
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Let us recall some definitions and fix some notations.
Here we work with one parameter deformations and unfoldings. The parameter space is

denoted by Y = R ⌘ R⇥ 0.

Definition 2.3. Let h 2 AN . The double of h is the element denoted by hD 2 A2N defined by

the equation hD(z, z0) := h(z)� h(z0).
If h = (h1, ..., hr) is a map, with hi 2 AN , for all i, then we define ID(h) as the the ideal of

A2N generated by {(h1)D, ..., (hr)D}.
We obtain a relation between the real integral closure of the double and the canonical vector

field induced by a one parameter unfolding to be Lipschitz.
Let F̃ : R ⇥ Rq �! R ⇥ Rn be an analytic map, which is a homeomorphism onto its image,

and such that we can write F̃ (y, x) = (y, f̃(y, x)), with f̃(y, x) = (f̃1(y, x), ..., f̃n(y, x)). Let us
denote by

@

@y
+

nX

j=1

@ efj
@y

· @

@zj

the vector field v : F̃ (R⇥ Rq) �! R⇥ Rn given by

v(y, z) =

 
1,

@f̃1
@y

(F̃�1(y, z)), ...,
@f̃n
@y

(F̃�1(y, z))

!
.

Theorem 2.4. The vector field
@
@y +

nP
j=1

@ ef
@y · @

@zj
is Lipschitz if and only if

ID
⇣@F̃
@y

⌘
✓ ID(F̃ ).

Proof. Since we are working in a finite dimensional R-vector space then all the norms are equiv-
alent. To simplify the argument, we use the notation k.k for the maximum norm on R⇥Rq and
R⇥ Rn, i.e., k(x1, ..., xn+1)k = maxn+1

i=1 {kxik}.
Suppose the canonical vector field is Lipschitz. By hypothesis there exists a constant c > 0

such that k v(y, z) � v(y0, z0) k c k (y, z) � (y0, z0) k for all (y, z), (y0, z0) 2 U , where U is an
open subset of F̃ (R⇥ Rq).

Thus, given (y, x), (y0, x0) 2 F̃�1(U), and applying the above inequality on these points, we
get

���
���(
@f̃j
@y

)D(y, x, y0, x0)
���
���  c k F̃ (y, x)� F̃ (y0, x0) k

for all j = 1, ...n. By the previous theorem, each generator of ID(@F̃@y ) belongs to ID(F̃ ).

Now suppose that ID(@F̃@y ) ⇢ ID(F̃ ). Using the hypothesis and Theorem 2.2, for each
j 2 {1, ...n} there exists a constant cj > 0 and an open subset Uj ⇢ R⇥ Rq such that

���
���(
@f̃j
@y

)D(y, x, y0, x0)
���
���  cj k F̃ (y, x)� F̃ (y0, x0)

���
���

for all (y, x), (y0, x0) 2 Uj . Take U :=
nT

j=1
Uj , c := max{cj}nj=1 and V := F̃ (U), which is an open

subset of F̃ (R⇥ Rq), since F̃ is a homeomorphism onto its image. Hence,
k v(y, z)� v(y0, z0) k c k (y, z)� (y0, z0) k
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for all (y, z), (y0, z0) 2 V .

Therefore, the vector field @
@y +

nP
j=1

@f̃j
@y · @

@zj
is Lipschitz. ⇤

Corollary 2.5. Suppose that F̃ : R ⇥ Rq �! R ⇥ Hom(Rm,Rn) is an analytic map and a

homeomorphism onto its image, and suppose we can write F̃ (y, x) = (y, F (x) + y✓(x)).

a) The vector field
@
@y +

nP
j=1

@ ef
@y · @

@zj
is Lipschitz if, and only if, ID(✓) ✓ ID(F̃ ).

b) If ✓ is constant then the vector field
@
@y +

nP
j=1

@ ef
@y · @

@zj
is Lipschitz.

3. Applications in some classes of square matrices

In this section we study if the Lipschitz condition is satisfied on the canonical vector field
naturally associated to the 1-unfolding of a G-simple square matrices singularities classified
in [3, 4]. Our goal is to obtain a better understanding of its behaviour. In [8] we consider
versal deformation of determinantal singularities of codimension 2 and we showed this behaviour
depends on the type of the normal form.

The next result presents a part of the classification of G-simple symmetric matrices obtained
by Bruce on Theorem 1.1 of [3].

Proposition 3.1. The G-simple germs F : C2 ! Sym2 of rank 0 at the origin are given in the

following table.

Normal Form Discriminant

1.
✓
yk x
x y`

◆
k � 1, ` � 2 Ak+`+1

2.
✓
x 0
0 y2 + xk

◆
k � 2 Dk+2

3.
✓
x 0
0 xy + yk

◆
k � 2 D2k

4.
✓
x yk

yk xy

◆
k � 2 D2k+1

5.
✓
x y2

y2 x2

◆
E6

6.
✓
x 0
0 x2 + y3

◆
E7

In the following result we establish conditions for the Lipschitz triviality of the canonical
vector field associated to the normal forms introduced in the above proposition. Differently
from the cases exhibited on [8], here we present examples with a different nature. Taking the
versal deformation of a normal formal we can find directions that produce Lipschitz trivial
deformations, Lipschitz deformations off the origin or non-Lipschitz.
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Proposition 3.2. Following the table of normal forms of G-simple germs F : C2 ! Sym2

of rank 0 at the origin, the canonical vector field associated to the 1-parameter deformation F̃

induced by ✓ 2 Sym2

TGeF
is Lipschitz in the following conditions:

1. For the normal form 1 of the table, if the canonical vector field associated to F̃ is Lipschitz

then ✓ can be written in the form

✓ =

0

BB@
a0 +

k�1P
i=r

aiyi 0

0 b0 +
`�2P
j=r

bjyj

1

CCA

with ai, bj 2 C and r = min{k, `}.

2. For the normal form 2 of the table, the canonical vector field associated to F̃ is Lipschitz

if and only of ✓ can be written in the form

✓ =

0

@
a b

b
k�2P
i=0

dixi

1

A ,

with a, b, di 2 C.

3. For the normal form 3 of the table, the canonical vector field associated to F̃ is Lipschitz

if and only of ✓ is constant.

4. For the normal form 4 of the table,the canonical vector field associated to F̃ is Lipschitz

if and only of
@F̃
@y = @F

@y , i.e., ✓ can be written in the form

✓ =

0

@
a b

b
k�1P
j=0

bjxj

1

A ,

with a, b, bj 2 C.

5. For the normal form 5 of the table, the canonical vector field associated to the 1-parameter

deformation F̃ induced by ✓ 2 Sym2

TGeF
is Lipschitz if and only if the 1-jet type of F̃ and F

agree.

6. For the normal form 6 of the table, the canonical vector field associated to F̃ is Lipschitz

if and only of ✓ is constant.

The proof follows from the following lemmas.

Lemma 3.3. Let F : (C2, 0) ! Sym2 be a G-simple germ of rank 0 at the origin whose dis-

criminant of type Ak+`�1. Let F̃ be a deformation induced by ✓ 2 Sym2

TGeF
. If the canonical vector

field associated to F̃ is Lipschitz then ✓ can be written in the form

✓ =

0

BB@
a0 +

k�1P
i=r

aiyi 0

0 b0 +
`�2P
j=r

bjyj

1

CCA ,

with ai, bj 2 C and r = min{k, `}.
In particular, in the case ` = k, the canonical vector field associated to F̃ is Lipschitz if and

only if ✓ is constant.
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Proof. The normal form of F is ✓
yk x
x y`

◆
.

Then, the normal space
Sym2

TGeF
is generated by

⇢✓
1 0
0 0

◆
,

✓
0 0
0 1

◆
,

✓
y 0
0 0

◆
, ...,

✓
yk�1 0
0 0

◆
,

✓
0 0
0 y

◆
, ...,

✓
0 0
0 y`�2

◆�
.

If ✓ 2 Sym2

TGeF
then ✓ is a C-linear combination of the above elements, i.e., there exist ai, bj 2 C

such that

✓ =

0

BB@

k�1P
i=0

aiyi 0

0
`�2P
j=0

bjyj

1

CCA .

Thus,

F̃ =

0

BB@
yk + t

k�1P
i=0

aiyi x

x yk + t
k�2P
j=0

bjyj

1

CCA .

Notice that ID(F̃ ) is generated by

{x� x0, yk � y0k + t
k�1X

i=1

ai(y
i � y0i), y` � y0` + t

`�2X

j=1

bj(y
j � y0j)}

and ID(✓) is generated by

(
k�1P
i=1

ai(yi � y0i),
`�2P
j=1

bj(yj � y0j)

)
.

Consider the curve �(s) = (sk+`, 2sk+`, 2s, sk+`, sk+`, s). Thus,

�⇤(ID(F̃ )) = hsk+`, (2k � 1)sk + sk+`
k�1X

i=1

ai(2
i � 1)si, (2` � 1)s` + sk+`

`�2X

j=1

bj(2
j � 1)sji,

which is contained in hsri. Since ID(✓) ✓ ID(F̃ ), then
*

k�1X

i=1

ai(2
i � 1)si,

`�2X

j=1

bj(2
j � 1)sj

+
✓ hsri,

which finishes the proof. ⇤

Lemma 3.4. Let F : (C2, 0) ! Sym2 be a G-simple germ of rank 0 at the origin whose discrim-

inant of type Dk+2, k � 2. Let F̃ be a deformation induced by ✓ 2 Sym2

TGeF
. Then the canonical

vector field associated to F̃ is Lipschitz if and only of ✓ can be written in the form

✓ =

0

@
a b

b
k�2P
i=0

dixi

1

A ,

with a, b, di 2 C.
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Proof. The normal form of F is ✓
x 0
0 y2 + xk

◆
.

Then, the normal space
Sym2

TGeF
is generated by

⇢✓
1 0
0 0

◆
,

✓
0 1
1 0

◆
,

✓
0 y
y 0

◆
,

✓
0 0
0 1

◆
,

✓
0 0
0 x

◆
, ...,

✓
0 0
0 xk�2

◆�
.

Thus, we can write

✓ =

0

@
a b+ cy

b+ cy
k�2P
i=0

dixi

1

A ,

with a, b, c, di 2 C,

ID(✓) = hc(y � y0),
k�2X

i=1

di(x
i � x0i)i

and

ID(F̃ ) = hx� x0, tc(y � y0), y2 � y02 + xk � x0k + t
k�2X

i=1

(xi � x0i)i.

Consider the curve �(s) = (s, 2s2, 2s, s, s2, s). Notice that

�⇤(ID(F̃ )) = hs2, cs2, 3s2 + (2k � 1)s2k + s
k�2X

i=1

di(2
i � 1)sii ✓ hs2i.

Suppose the canonical vector field is Lipschitz, i.e., ID(✓) ✓ ID(F̃ ). Then,

cs = �⇤(c(y � y0)) 2 hs2i
and so c = 0.

Conversely, if c = 0 then ID(✓) = h
k�2P
i=1

di(xi � x0i)i ✓ hx� x0i ✓ ID(F̃ ). ⇤

Lemma 3.5. Let F : (C2, 0) ! Sym2 be a G-simple germ of rank 0 at the origin whose dis-

criminant of type D2k, k � 2. Let F̃ be a deformation induced by ✓ 2 Sym2

TGeF
. Then the canonical

vector field associated to F̃ is Lipschitz if and only of ✓ is constant.

Proof. The normal form of F is ✓
x 0
0 xy + yk

◆
.

Then, the normal space
Sym2

TGeF
is generated by

⇢✓
1 0
0 0

◆
,

✓
0 0
0 1

◆✓
0 1
1 0

◆
,

✓
y 0
0 0

◆
, ...,

✓
yk�2 0
0 0

◆
,

✓
0 0
0 y

◆
, ...,

✓
0 0
0 yk�1

◆�
.

So we can write

✓ =

0

BB@

k�2P
i=0

aiyi a

a
k�1P
j=0

bjyj

1

CCA ,



222 THIAGO F. DA SILVA, NIVALDO G. GRULHA JR., AND MIRIAM S. PEREIRA

for some a, ai, bj 2 C, ID(✓) = h
k�2P
i=1

ai(yi � y0i),
k�1P
j=1

bj(yj � y0j)i and

ID(F̃ ) = hx� x0 + t
k�2X

i=1

ai(y
i � y0i), xy � x0y0 + yk � y0k + t

k�1X

j=1

bj(y
j � y0j)i.

Consider the curve �(s) = (sk, 2sk, 2s, sk, sk, s). Then

�⇤(ID(F̃ )) = hsk + sk
k�2X

i=1

ai(2
i � 1)si, 3sk+1 + (2k � 1)sk + sk

k�1X

j=1

bj(2
j � 1)sji ✓ hski.

If the canonical vector field is Lipschitz then
k�2P
i=1

ai(2i � 1)si and
k�1P
j=1

bj(2j � 1)sj belong to

hski. Hence, ai = 0 and bj = 0 for all i and j. Therefore, ✓ is constant.
⇤

Lemma 3.6. Let F : (C2, 0) ! Sym2 be a G-simple germ of rank 0 at the origin whose discrim-

inant of type D2k+1, k � 2. Let F̃ be a deformation induced by ✓ 2 Sym2

TGeF
. Then the canonical

vector field associated to F̃ is Lipschitz if and only of
@F̃

@y
=

@F

@y
, i.e., ✓ can be written in the

form

✓ =

0

@
a b

b
k�1P
j=0

bjxj

1

A ,

with a, b, bj 2 C.

Proof. The normal form of F is ✓
x yk

yk xy

◆
.

Then, the normal space
Sym2

TGeF
is generated by

⇢✓
1 0
0 0

◆
,

✓
0 1
1 0

◆
,

✓
0 0
0 1

◆
,

✓
y 0
0 0

◆
, ...,

✓
yk�1 0
0 0

◆
,

✓
0 0
0 x

◆
, ...,

✓
0 0
0 xk�1

◆�
.

Thus, we can write

✓ =

0

BB@
a+

k�1P
i=1

aiyi b

b
k�1P
j=0

bjxj

1

CCA ,

with a, ai, b, bj 2 C,

ID(✓) = h
k�1X

i=1

ai(y
i � y0i),

k�1X

j=1

bj(x
j � x0j)i

and

ID(F̃ ) = hx� x0 + t
k�1X

i=1

ai(y
i � y0i), yk � y0k, xy � x0y0 + t

k�1X

j=1

bj(x
j � x0j)i.
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Consider the curve �(s) = (sk, 2sk, 2s, sk, sk, s). Then

�⇤(ID(F̃ )) = hsk + sk
k�1X

i=1

ai(2
i � 1)si, (2k � 1)sk, 3sk+1 + sk

k�1X

j=1

bj(2
j � 1)skji ✓ hski.

If ID(✓) ✓ ID(F̃ ) then
k�1P
i=1

ai(2i�1)si 2 hski, hence ai = 0 for all i 2 {1, ..., k�1}. Conversely,

if ai = 0, for all i 2 {1, ..., k � 1} then ID(✓) = h
k�1P
j=1

bj(xj � x0j)i ✓ hx� x0i ✓ ID(F̃ ). ⇤

Lemma 3.7. Let F : (C2, 0) ! Sym2 be a G-simple germ of rank 0 at the origin with discrimi-

nant of type E6. Then the canonical vector field associated to the 1-parameter deformation F̃

induced by ✓ 2 Sym2

TGeF
is Lipschitz if and only if the 1-jet type of F̃ and F agree.

Proof. The normal form of F is ✓
x y2

y2 x2

◆
.

Then, the normal space
Sym2

TGeF
is generated by

⇢✓
1 0
0 0

◆
,

✓
0 0
0 1

◆
,

✓
0 1
1 0

◆
,

✓
y 0
0 0

◆
,

✓
0 0
0 y

◆
,

✓
0 0
0 y2

◆�
.

If ✓ 2 Sym2

TGeF
induces a non-trivial deformation F̃ then we can write

✓(x, y) =

✓
a1 + a3y + a4y2 0

0 a2 + a5y + a6y2

◆
.

Thus
F̃ =

✓
x+ t(a1 + a3y + a4y2) y2

y2 x2 + t(a2 + a5y + a6y2)

◆
.

Notice that ID(✓) = ha3(y � y0) + a4(y2 � y02), a5(y � y0) + a6(y2 � y02)i.
Suppose the 1-jet type of F̃ and F agree. Then a3 = a5 = 0 and in this case

ID(✓) = ha4(y2 � y02), a6(y
2 � y02)i.

Since y2 � y02 2 ID(F̃ ) then ID(✓) ✓ ID(F̃ ) and the canonical vector field is Lipschitz.
Conversely, if the canonical vector field is Lipschitz then a3 = a5 = 0. In fact, we are assuming

that ID(✓) ✓ ID(F̃ ).
We have ID(F̃ ) is generated by

{y2 � y02, x� x0 + t(a3(y � y0) + a4(y
2 � y02)), x2 � x02 + t(a5(y � y0) + a6(y

2 � y02))}.
Consider the curve �(s) = (s, 2s3, 2s2, s, s3, s2). Then we have that

�⇤(ID(F̃ )) = h3s4, s3 + s(a3s
2 + 3a4s

4), 3s6 + s(a5s
2 + 3a6s

4)i ✓ hs3i.

Since �⇤(ID(✓)) ✓ �⇤(ID(F̃ )) ✓ hs3i then �⇤(a3(y � y0) + a4(y2 � y02)) = a3s2 + 3a4s4 2 hs3i
which implies that a3s2 2 hs3i, hence a3 = 0. Analogously, using the same curve, we prove that
a5 = 0. ⇤
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Lemma 3.8. Let F : (C2, 0) ! Sym2 be a G-simple germ of rank 0 at the origin whose dis-

criminant of type E7. Let F̃ be a deformation induced by ✓ 2 Sym2

TGeF
. Then the canonical vector

field associated to F̃ is Lipschitz if and only of ✓ is constant.

Proof. The normal form of F is ✓
x 0
0 x2 + y3

◆
.

Then, the normal space
Sym2

TGeF
is generated by

⇢✓
1 0
0 0

◆
,

✓
0 0
0 1

◆✓
0 1
1 0

◆
,

✓
0 0
0 y

◆
,

✓
y 0
0 0

◆
,

✓
0 y
y 0

◆
,

✓
0 y2

y2 0

◆�
.

So we can write
✓ =

✓
a1 + a5y a3 + a6y + a7y2

a3 + a6y + a7y2 a2 + a4y

◆
,

for some ai 2 C,

ID(✓) = ha5(y � y0), a4(y � y0), a6(y � y0) + a7(y
2 � y02)i

and

ID(F̃ ) = hx� x0 + ta5(y � y0), t(a6(y � y0) + a7(y
2 � y02)), x2 � x02 + y3 � y03 + ta4(y � y0)i.

Consider the curve �(s) = (s2, 2s3, 2s, s2, s3, s). Thus,

�⇤(ID(F̃ )) = hs3 + a5s
3, a6s

3 + 3a7s
4, 3s6 + 7s3 + a4s

3i ✓ hs3i.
If the canonical vector field is Lipschitz then a5s, a4s, a6s + 3a7s2 2 hs3i which implies that

a4 = a5 = a6 = a7 = 0. Therefore, ✓ is constant. ⇤
As in [8], the canonical vector field associated to the 1-parameter deformation F̃ of the normal

forms presented in [3] induced by ✓ 2 Sym3

TGeF
is Lipschitz if and only if the 1-jet type of F̃ and F

agree. The proof of the next result is analogous to the proof of the main result of [8].

Proposition 3.9. For all G-simple germs F : Cr ! Sym3 of rank 0 at the origin we have that

the canonical vector field associated to the 1-parameter deformation F̃ induced by ✓ 2 Sym3

TGeF
is

Lipschitz.

Proof. Suppose that F is of 1-jet-type of the form in the tables in items (5) and (6) of Theorem 1.1

from [5]. Since ✓ 2
Mat(3)(Or)

TGF , the r order 1 entries of the matrix F stay unperturbed, thus the

differences of the monomial generators of the maximal ideal are in ID(F̃ ). In particular the ideal
I� from the diagonal satisfies the inclusion I� ✓ ID(F̃ ). Let ✓i, i 2 {1, ..., 6} be the components
of ✓. Notice that every (✓i)D vanishes on the diagonal � which implies that all the generators
of ID(✓) belong to I�. Therefore, ID(✓) ✓ I� ✓ ID(F̃ ) and Proposition 3.4 of [8] ensures the
canonical vector field is Lipschitz.

⇤
Remark 3.10 ([3], Remark 1.2.). In the cases when r = 2 and n = 2, 3 the G-codimension of

the germs and the Milnor number of the discriminant coincide.

The next result is an application of the results of the previous section for the real case. The
proof follows the same steps of Theorem 2.8 of [8].
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Theorem 3.11. Consider the G-simple germs F : Rr ! Hom(Rn,Rn) of rank 0 at the origin,

classified in Theorem 1.1 of [4], and consider the semi-universal unfolding

F̃ : R⇥ Rn ! R⇥ Hom(Rn,Rn),

where ✓ 2 Matn(Ar)

TGeF
.

If the ideal of 1-minors of F defines a reduced point then the canonical vector field is Lipschitz.

Proof. Since the ideal of 1-minors of F defines a reduced point and ✓ 2 Matn(Ar)

TGeF
, then the r

order 1 entries of F stay unperturbed, thus the differences of the monomial generators of the
maximal ideal are in ID(F̃ ). Consequentely, I� ✓ ID(F̃ ). Let ✓ij be the components of ✓,
i, j 2 {1, . . . , n}. Clearly all (✓ij)D vanish on �. Hence, ID(✓) ✓ I� and the proof is done by
Corollary 2.5. ⇤

Remark 3.12. In [20], the author obtained sufficient conditions for topological triviality of

1-parameter deformations of weighted homogeneous matrix M (see Proposition 6.1 and

Proposition 6.2). Considering the action defined in the Definition 1.1, the triviality condition

is related to the tangent space to the G-orbit of M . These conditions ensure that the canonical

vector field is integrable.

At this point, one way to continue our study is to show that the homeomorphism obtained

by integration of the canonical Lipschitz vector fields gives the bi-Lipschitz equivalence of the

members of the respective family of square matrix map-germs according to Definition 1.1.
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CHAOS IN PERIODICALLY FORCED REVERSIBLE VECTOR FIELDS

ISABEL S. LABOURIAU AND ELISA SOVRANO

Abstract. We discuss the appearance of chaos in time-periodic perturbations of reversible
vector fields in the plane. We use the normal forms of codimension 1 reversible vector fields
and discuss the ways a time-dependent periodic forcing term of pulse form may be added to
them to yield topological chaotic behaviour. Chaos here means that the resulting dynamics is
semiconjugate to a shift in a finite alphabet. The results rely on the classification of reversible
vector fields and on the theory of topological horseshoes. This work is part of a project of
studying periodic forcing of symmetric vector fields.

1. Introduction

A standard classification of continuous dynamical systems defined by a set of first order ordi-
nary di�erential equations distinguishes between conservative systems and dissipative ones [9].
On the one hand, conservative systems can be described by a Hamiltonian function. By varying
the initial conditions, these systems can exhibit regions of regular motions surrounded by a sea
of chaotic ones. Instead, dealing with dissipative systems, conserved quantities are no longer
guaranteed, and chaotic regions could coexist with stable equilibria, limit cycles, and strange
attractors.

In between conservative and dissipative systems, there are systems with reversing symmetries.
By reversible dynamical systems we mean those admitting an involution in phase space which
reverses the direction of time (see [1, 4, 10, 13]). It is shown that these systems despite having
similar features to Hamiltonian ones (e.g., at an elliptic equilibrium can possess the same struc-
ture), yet they are di�erent because they can also have attractors and repellers. The additional
structure given by reversing symmetries allows exhibiting complex behaviors for codimension
one bifurcations, and so, it can be responsible for chaotic dynamics.

The goal of this paper is to find chaos for a class of planar periodically perturbed reversible
systems whose normal form analysis is studied in [13]. We take into account the local bifurcations
of low codimension by arguing what dynamical behaviors we can expect. Our main result is the
following.

Theorem 1.1. Let X⁄(x, y) be a fixed type of normal form for a one-parameter family of codi-
mension 1 reversible vector fields, of either saddle type or of cusp type. Let ⁄1 and ⁄2 be two
real distinct values. Suppose that the dynamical system Ẋ = X(x, y) switches in a T -periodic
manner between

Ẋ = X⁄1(x, y) for t œ [0, ·1) and Ẋ = X⁄2(x, y) for t œ [·1, ·1 + ·2)

with ·1 + ·2 = T . Then for open sets of the parameters (⁄1, ⁄2) and for ·1 and ·2 in open
intervals there exist infinitely many T -periodic solutions as well as chaotic-like dynamics for the
problem Ẋ = X(x, y).

2010 Mathematics Subject Classification. 34C28, 37G05, 37G40, 54H20.
Key words and phrases. Reversible fields, Symbolic dynamics, Topological horseshoes.
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The paper is organized as follows. In Section 2 we discuss the classification of plane reversible
vector fields of codimension 0 and 1. In Section 3 we give a review of the concept of symbolic
dynamics and topological horseshoes. We collect preliminary topological results in the phase-
plane that can produce chaotic dynamics. In Section 4 we prove Theorem 1.1 for the two of the
four normal forms of codimension 1 reversible vector fields: i) saddle type and ii) cusp type. We
conjecture that the other two possible normal forms, namely iii) nodal type and iv) focal type,
may also be amenable to the same treatment.

2. Planar reversible systems

In [13], M. A. Teixeira has provided a local classification of 2D reversible systems of codimen-
sion less than or equal to two. A dynamical system Ẋ = V (X) is called reversible if there is a
phase space involution h (i.e., h2 = Id) such that Dh(p)V (p) = ≠V (h(p)) for p œ R2. We deal
with reversible planar systems where the involution is h(x, y) = (x, ≠y). Hence, we consider a
dynamical system of the following form

(2.1)
I

ẋ = yf(x, y2),
ẏ = g(x, y2),

where the functions f and g are smooth. We consider the behaviour of (2.1) near the origin,
often making the assumption that it has an equilibrium at the origin. In the half-plane y > 0,
by using the transformation u = x and v = y2, we can write system (2.1) equivalently as follows

I
u̇ =

Ô
v f(u, v),

v̇ = 2
Ô

v g(u, v).

Through the symmetry properties of the vector field X(x, y) associated with (2.1), the behavior
of X near (0, 0) may be described by the analysis in the half-plane {(u, v) œ R2 : v Ø 0} of the
vector field Y (u, v) = (f(u, v), g(u, v)).

2.1. Normal forms. Following the work in [13], the generic equilibria of reversible ODEs near
the origin are either centers and saddles on the line of symmetry or a couple of repellers and
attractors, as in Figure 1.

Figure 1. Phase-portraits of equilibria occurring in generic 2D reversible fields.
The local geometry may be of a center (left), a saddle (middle), or a pair of
attractor and repeller (right).

Let S be the line {(x, 0) : x œ R}, the set of fixed points for h. An equilibrium point of V that
lies on S is called a symmetric equilibrium.
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Theorem 2.1 ([13]). The normal forms around a symmetric equilibrium at (0, 0) of a struc-
turally stable reversible vector field X are:

• X(x, y) = (y, x),
• X(x, y) = (y, ≠x).

In the first case the origin is a center, and in the second one it is a saddle. The next result
classifies one parameter families X⁄ of reversible vector fields such that X0 has a symmetric
equilibrium at the origin.

Theorem 2.2 ([13]). The normal forms of one-parameter families of structurally stable re-
versible vector fields X⁄ near a symmetric equilibrium at (0, 0) are:

i) saddle type: X⁄(x, y) = (xy, x ≠ y2 + ⁄),
ii) cusp type: X⁄(x, y) = (y, x2 + ⁄),

iii) nodal type: X⁄(x, y) = (xy, x + 2y2 + ⁄) or X⁄(x, y) = (≠xy, x ≠ 2y2 + ⁄),
iv) focal type: X⁄(x, y) = (xy + y3, ≠x + y2 + ⁄).
Depending on ⁄, the phase-portraits of the above normal forms can be described as follows.

x x x

y y y

λ<0 λ=0 λ>0

Figure 2. Phase-portraits reversible vector fields of saddle type.

Figure 2 shows the phase portraits of the saddle type. When ⁄ Æ 0 there is an equilibrium at
(≠⁄, 0) which is a saddle. When ⁄ > 0 there are three equilibria: a center and two saddles at
(≠⁄, 0), (0, ≠

Ô
⁄) and (0,

Ô
⁄), respectively. The saddle points are connected through heteroclinic

trajectories which surround periodic orbits.

x x x

y y y

λ<0 λ=0 λ>0

Figure 3. Phase-portraits reversible vector fields of cusp type.

Concerning the cusp type when ⁄ < 0 there are two equilibria: a center and a saddle which
are at (≠

Ô
≠⁄, 0) and (

Ô
≠⁄, 0), respectively. Due to the reversibility, the only periodic orbits

are the ones that meet the points (x, 0) with ≠2
Ô

≠⁄ < x <
Ô

≠⁄, as in Figure 3. Moreover,
these orbits are located inside the homoclinic trajectory that passes through (≠2

Ô
≠⁄, 0). When
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⁄ = 0 there is only an equilibrium which is a degenerate saddle at (0, 0) and all the orbits are
unbounded. When ⁄ > 0 there are no equilibria.

x x x

y y y

λ<0 λ=0 λ>0

Figure 4. Phase-portraits reversible vector fields of nodal type (first case).

For the nodal type (first case, shown in Figure 4) when ⁄ < 0 there are three equilibria: an
attractor, a repeller and a saddle, located respectively at (0, ≠


≠⁄/2), (0,


≠⁄/2) and (≠⁄, 0).

When ⁄ = 0 there is only an equilibrium at (0, 0). When ⁄ > 0 there is only an equilibrium at
(≠⁄, 0) which is a center and in the half-plane x < 0 all the orbits are periodic. In the second
case there is always an equilibrium at (≠⁄, 0) and for ⁄ > 0 there is also a pair of equilibria at
(0, ±


⁄/2).

x x x

y y y

λ<0 λ=0 λ>0

Figure 5. Phase-portraits reversible vector fields of focal type.

For the focal type when ⁄ < 0 there are three equilibria: a saddle and two foci at (⁄, 0),
(⁄/2, ≠


≠⁄/2) and (⁄/2,


≠⁄/2), respectively. When ⁄ Ø 0 there is only an equilibrium at

(⁄, 0) which is a center and all the orbits are periodic as in Figure 5.

3. Background on chaotic dynamics and preliminary results

3.1. Symbolic dynamics and chaos. To review the topological approach exploited through-
out the paper, we start by introducing some notation and definitions of symbolic dynamics.
General information on the subject may be found in the book by Guckenheimer and Holmes [2],
with examples in Chapter 2 and a more general case in Chapter 5. A more detailed treatment
is given by Wiggins and Ottino [14]. The point of view used here is similar to that of Kennedy
and Yorke in [3] of Margheri et al in [5] and of Medio et al in [6].

Let �m := {0, . . . , m ≠ 1}Z be the set of all two-sided sequences S = (si)iœZ with
si œ {0, . . . , m ≠ 1} for each i œ Z endowed with a standard metric that makes �m a compact
space with the product topology. We define the shift map ‡ : �m æ �m by ‡(S) = SÕ = (sÕ

i)iœZ
with sÕ

i = si+1 for all i œ Z. We say that a map h on a metric space is semiconjugate (respectively,
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conjugate) to the shift map on m symbols if there exists a compact invariant set � and a con-
tinuous and surjective (respectively, bijective) map � : � æ �m such that � ¶ h(w) = ‡ ¶ �(w),
for all w œ �.

The deterministic chaos is usually associated with the possibility to reproduce all the possible
outcomes of a coin-tossing experiment, by varying the initial conditions within the dynamical
system. We can express this concept using the symbolic dynamics of the shift map on the
sets of two-sided sequences of 2 symbols. However, by considering a finite alphabet made by m
symbols the possible dynamics can be more complex. Hence, in the sequel we adopt the following
definition of chaos (cf., [5, 6]).

Definition 3.1 (Symbolic dynamics). Let h : dom h ™ R2 æ R2 be a map and let D ™ dom h be
a nonempty set. We say that h induces chaotic dynamics on m Ø 2 symbols on a set D if there
exist m nonempty pairwise disjoint compact sets K0, . . . , Km≠1 ™ D such that for each two-sided
sequence (si)iœZ œ �m there exists a corresponding sequence (wi)iœZ œ DZ such that
(3.1) wi œ Ksi and wi+1 = h(wi) for all i œ Z,

and, whenever (si)iœZ œ �m is a k-periodic sequence for some k Ø 1 there exists a k-periodic
sequence (wi)iœZ œ DZ satisfying (3.1).

For a one-to-one map h, Definition 3.1 ensures the existence of a nonempty compact invariant
set � ™ fim≠1

i=0 Ki ™ D and a continuous surjection � such that h|� is semiconjugate to the
Bernoulli shift map on m Ø 2 symbols. Moreover, it guarantees that the set of the periodic
points of h is dense in � and, for all two-sided periodic sequences S œ �m, the preimage �≠1(S)
contains a periodic point of h with the same period (cf. [6, Th. 2.2]). In this respect Definition 3.1
is related, by means of [6, Th. 2.3], to the concept of topological horseshoe introduced in [3].
This is a weaker notion of chaos than the Smale’s horseshoe (see [2, ch. 5]) because the latter
requires the full conjugacy between h|� and the shift map on m symbols.

We introduce the notion of an oriented topological rectangle and the stretching along the
path property by borrowing the notations and definitions from [5, 7]. The pair ‚R := (R, R≠)
is called oriented topological rectangle if R ™ R2 is a set homeomorphic to [0, 1] ◊ [0, 1], and
R≠ = R≠

l fi R≠
r , where R≠

l and R≠
r are two disjoint compact arcs contained in ˆR.

Definition 3.2 (SAP property). Given two topological oriented rectangles ‚R1 := (R1, R≠
1 ),

‚R2 := (R2, R≠
2 ) and a continuous map h : dom h ™ R2 æ R2, we say that h stretches ‚R1 to ‚R2

along the paths if there exists a compact subset K of R1 fldom h and for each path “ : [0, 1] æ R1
such that “(0) œ R≠

1,l and “(1) œ R≠
1,r (or vice-versa), there exists [t0, t1] ™ [0, 1] such that

• “(t) œ K for all t œ [t0, t1],
• h(“(t)) œ R2 for all t œ [t0, t1],
• h(“(t0)) and h(“(t1)) belong to di�erent components of R≠

2 .
In this case, we write

(K, h) : ‚R1 m≠æ ‚R2.

Given a positive integer m, we say that h stretches ‚R1 to ‚R2 along the paths with crossing
number m and we write

h : ‚R1 m≠æm ‚R2

if there exist m pairwise disjoint compact sets
K0, . . . , Km≠1 ™ R1 fl dom h

such that (Ki, h) : ‚R1 m≠æ ‚R2 for each i œ {0, . . . , m ≠ 1}.
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Finally, in order to detect chaos, a useful topological tool is the Stretching Along the Paths
(SAP) method introduced in [6]. In our framework, it can be stated as follows (cf., [5, Th. 2.1]).

Theorem 3.1 (SAP method). Let h1 : dom ‹ ™ R2 æ R2 and h2 : dom ÷ ™ R2 æ R2 be
continuous maps. Let ‚R1 = (R1, R≠

1 ) and ‚R2 = (R2, R≠
2 ) be two oriented rectangles in R2.

Suppose that
• there exist n Ø 1 pairwise disjoint compact subsets of R1 fl dom ‹, Q0, . . . , Qn≠1, such

that (Qi, h1) : ‚R1 m≠æ ‚R2 for i = 0, . . . , n ≠ 1,
• there exist m Ø 1 pairwise disjoint compact subsets of R2 fl dom ÷, K0, . . . , Km≠1, such

that (Ki, h2) : ‚R2 m≠æ ‚R1 for i = 0, . . . , m ≠ 1.
If at least one between n and m is greater than or equal to 2, then the map h = h2 ¶ h1 induces
chaotic dynamics on n ◊ m symbols on

Qú =
€

i=0,...,n≠1
j=0,...,m≠1

Qi fl ‹≠1(Kj).

For the proof of Theorem 3.1 we refer to [5, Th. 2.1].

3.2. Topological tools in the phase-plane. The geometry associated to the phase-portrait
of (2.1) exhibits unbounded solutions and periodic trajectories. These configurations guarantee
the existence of two types of invariant regions: topological strips and topological annuli confined
between unbounded and bounded solutions, respectively. In this section we will give some pre-
liminary topological results on the phase-plane (x, y) needed to establish the dynamics induced
by (2.1).

By a topological strip S we mean the image of a straight strip of finite width
S := {(x, y) œ R2 : x1 < x < x2, ≠1 Æ y Æ 1}

through a locally defined homeomorphism
hS : (x1, x2) ◊ [≠1, 1] æ S.

Let a bridge in S be the image by hS of any simple continuous curve “ : [a, b] æ S such that
“(a) = (x̂, ≠1) and “(b) = (x̌, 1) for some x̂, x̌ œ (x1, x2) or, viceversa, “(a) = (x̌, 1) and
“(b) = (x̂, ≠1).

A topological annulus A is defined as the image of a rectangular region
A := {(x, y) œ R2 : 1 Æ x Æ 2, ≠1 Æ y Æ 1}

through a continuous map
hA : [1, 2] ◊ [≠1, 1] æ A,

such that the restriction of hA to (1, 2) ◊ [≠1, 1] is a homeomorphism and hA(1, y) = hA(2, y).
We notice that the restriction to (1, 2) ◊ [≠1, 1] yields a strip. Moreover, the boundary of the
topological annulus ˆA is the union of two Jordan curves ˆiA := hA(x, ≠1) and ˆeA := hA(x, 1).
We denote the portion of the plane outside a generic Jordan curve � by out(�) and the one
inside by in(�). For identification purposes, let ˆiA µ in(ˆeA). In this manner, we can identify
two connected sets, one bounded and another one unbounded given by in(ˆiA) and out(ˆeA),
respectively. Let a ray in A be any simple continuous curve “ : [a, b] æ A such that “(a) œ ˆiA
and “(b) œ ˆeA or, viceversa, “(a) œ ˆeA and “(b) œ ˆiA.

We are interested in crossing configurations between either an annulus and a strip or two
annuli. In particular we are looking for similarities with the geometry of the linked-twist maps
(see [8, 14]). Hence, we introduce the following definition and in Figure 6 we provide a visual
representation of the linkage condition between an annulus and a strip.
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Definition 3.3 (Linkage condition). Let A be a topological annulus and S be a topological strip.
We say that A is linked with S if there exist a bridge “1 in S, a ray “2 in A, and a topological
ball B containing A such that:

• “1 µ in(ˆiA);
• “2 fl S = ÿ;
• (S \ “1) fl ˆB consists of exactly two disjoint bridges.

From Definition 3.3 we observe that when A is linked with S, then the topological ball B is
cut into two connected components B+ and B≠.

A
S

“1

“2

B

Figure 6. Linkage condition. The figure represents an example of a topological
annulus (red) linked with a topological strip (blue) through the existence of a
bridge (black) and a ray (green).

Notice that Definition 3.3 involves only the geometry inside a topological ball B. Therefore it
could include the case when the strip S is the intersection of an annulus A2 with the ball B. In
this manner we are generalizing the definition of the linkage between two annuli A1, A2 given in
[7, Definition 3.2]. In the following proposition we also recover some of the properties collected
in [7, Proposition 3.1] for the linkage of two annuli.

From the third requirement of Definition 3.3 it follows that the set B \ S has two connected
components that will be denoted B+ and B≠.

Proposition 3.2. If the topological strip S is linked with the topological annulus A, then
there exists a topological ball B containing A, a bridge “3 in S and a ray “4 in A such that
“3 µ B \ in(ˆeA), and denoting by B+ the component of B \ S that contains “2 µ B+, then
“4 µ B≠.
Proof. First of all we observe that the existence of a bridge “3 µ B\in(ˆeA) follows immediately
from Definition 3.3. Indeed, we can choose “3 between one of the two components of (S \“1)flˆB
and one of the bridges in (S \ “1) fl ˆB.

The proof of the existence of the ray “4 is entirely analogous to that of [7, Proposition 3.1]
and is omitted. ⇤
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In the sequel, we deal with the study of the dynamics in a strip S and in an annulus A. If
they are linked, then there exist two disjoint topological rectangular regions R1 µ A fl S fl B
and R2 µ A fl S fl B.

Firstly, we consider the following continuous map
(3.2) „S : S æ S.

Without loss of generality, we can assume that R1, R2 are homeomorphic to
R1 = [≠2, ≠1] ◊ [≠1, 1] and R2 = [1, 2] ◊ [≠1, 1],

respectively. We suppose that the map „S in (3.2) admits a lift Â„S to the covering space
[a, b] ◊ [≠1, 1], with a < ≠2 and b > 2, defined as

Â„S : (x, y) ‘æ (x + �(x, y), ’(x, y))
where ’, � are continuous functions.

Definition 3.4 (Strip boundary invariance condition). The condition holds for the map „S if
the second coordinate of its lift Â„S satisfies ’(x, ≠1) © ≠1 and ’(x, 1) © 1.

-2 -1 1 2 ba

R1 R2

(a) Image of [1, 2] ◊ {≠1} and [1, 2] ◊ {1} under a twist condition with

respect to the rectangle R1.

-2 -1 1 2 ba

R1 R2R2R1

(b) Image of the rectangle R2 under a twist condition with respect to

the rectangle R1.

Figure 7. Example of strip twist condition.

Definition 3.5 (Strip twist condition). The condition holds with respect to R1 for x œ [1, 2] if
either

�(x, ≠1) Æ ≠4 and �(x, 1) Ø ≠2,

or
�(x, ≠1) Ø ≠2 and �(x, 1) Æ ≠4.

The condition holds with respect to R2 for x œ [≠2, ≠1] if either
�(x, ≠1) Æ 2 and �(x, 1) Ø 4,
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or
�(x, ≠1) Ø 4 and �(x, 1) Æ 2.

Secondly, we consider the following continuous map

(3.3) „A : A æ A.

We suppose that the map „A in (3.3) admits a lift Â„A to the covering space R ◊ [≠1, 1] defined
as

Â„A : (◊, fl) ‘æ (◊ + �(◊, fl), Ê(◊, fl)),

where ◊, fl are generalized polar coordinates, and �, Ê are continuous functions 1-periodic in
the ◊-variable. Without loss of generality, we can assume that R1 and R2 are represented in the
covering by R1 = [2k, 2k + 1

2 ] ◊ [≠1, 1] and R2 = [2k + 1, 2k + 3
2 ] ◊ [≠1, 1], respectively.

-1 -1/2 0 1/2 1 3/2 3/22

R2 R1 R2 R1

(a) Image of [1, 1/2] ◊ {≠1} and [1, 1/2] ◊ {1} under a twist condition

with respect to the rectangle R1.

R2 R1 R2 R1

-1 -1/2 0 1/2 1 3/2 3/22

(b) Image of the rectangle R1 under a twist condition it goes across a

copy of R2. Here j≠1 = j1 = 0.

Figure 8. Example of an annular twist condition.

Definition 3.6 (Annular boundary invariance condition). The condition holds for the map „A
if the second coordinate of its lift Â„A satisfies Ê(◊, ≠1) © ≠1 and Ê(◊, 1) © 1.

Definition 3.7 (Annular twist condition). There exist integers j≠1 and j1 such that the condition
holds with respect to R1 for ◊ œ [0, 1/2] if either

�(◊, ≠1) Æ 2j≠1 + 1
2 and �(◊, 1) Ø 2j1 + 3

2 , with j1 + 1 ≠ j≠1 > 0

or
�(◊, ≠1) Ø 2j≠1 + 3

2 and �(◊, 1) Æ 2j1 + 1
2 , with j≠1 + 1 ≠ j1 > 0

hold.

We notice that when the annular twist condition holds with respect to R1 then the rectangle
R1 is stretched across R2 a number of times which is given by |j≠1 ≠ j1| + 1.
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Theorem 3.3. Let A be a topological annulus linked with a topological strip S. Let Ri for
i = 1, 2 be two disjoint oriented topological rectangles given through the linkage. Let „A : A æ A
and „S : S æ S, be two continuous maps that satisfy the boundary invariance conditions, and
the twist conditions. Then,

„A ¶ „S : ‚Rj m≠æm≠1 ‚Rj and „S ¶ „A : ‚Rj+1 m≠æm≠1 ‚Rj+1

for some j (mod 2) with m = |j≠1 ≠ j1| + 1.

We notice that [7, Theorem 3.1] becomes a corollary of Theorem 3.3. For the proof we use
the following lemma.

Lemma 3.4. Consider
K¸ = „̃A ([2¸ + 1, 2¸ + 3/2] ◊ [≠1, 1]) fl R1,0, ¸ œ Z

where R1,0 = [0, 1/2] ◊ [≠1, 1]. If „A satisfies the annular twist condition then at least m ≠ 1 of
the K¸ are non empty with m = |j1 ≠ j≠1| + 1.

Proof. We will prove the lemma in the case of the first annular strip condition, the proof for the
second condition being similar.

Let ◊0 œ [0, 1/2] be fixed. The vertical segment (◊0, fl), fl œ [≠1, 1] is mapped by „̃A in to a
curve. Its end points satisfy

„̃A(◊0, ≠1) = (◊≠1, ≠1) where ◊≠1 Æ ◊0 + 2j≠1 + 1
2 ,

„̃A(◊0, 1) = (◊1, 1) where ◊1 Ø ◊0 + 2j≠1 + 1
2 + 2m ≠ 1.

Hence, |◊≠1 ≠ ◊1| Ø 2m ≠ 1| and K¸ ”= ÿ for ¸ = j≠1, . . . , j≠1 + m ≠ 1. ⇤

Proof of Theorem 3.3. First of all without loss of generality we assume that „S maps R2 across
R1 thanks to the strip twist condition. Hence we prove that „S ¶ „A : ‚R1 m≠æm ‚R1. The other
situations are just an adaptation of this proof.

We want to find disjoint compact subsets K1, . . . , Km≠1 µ R1 such that for any continuous
path “ across R1 with “(0), “(1) in di�erent components of ˆR1, the restriction „A(“(t))|K¸

goes
across R2. In order to do this we work on the covering space, where the K¸ will be represented by
the K¸ of Lemma 3.4. The K¸ are pairwise disjoint because the K¸ lie in a single representative
R1,0 of R1.

The arguments used in the proof of Lemma 3.4 ensure that the curve “̃(t) in the covering,
satisfying “̃(0) = (◊0, ≠1), and “̃(1) = (◊1, 1) with ◊0, ◊1 œ [0, 1/2] goes across all the K¸, and
that the restriction of “̃ to each K¸ goes across some copy, [2¸ + 1, 2¸ + 3/2] ◊ [≠1, 1], of R2. ⇤

4. Application to codimension 1 reversible vector fields

To detect chaotic dynamics, we apply the topological results of the previous section to some
periodically forced reversible ODEs. In particular, we consider a T -periodic step-wise forcing
term p(t) that switches between two di�erent values as follows

p(t) :=
I

⁄1 for t œ [0, ·1),
⁄2 for t œ [·1, ·1 + ·2),

where ⁄1 ”= ⁄2 and 0 < ·1 < ·2 < T with ·1 + ·2 = T . We investigate the T -periodic problem
associated with the system

(4.1)
I

ẋ = yf(x, y2),
ẏ = g(x, y2) + p(t),
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where f and g are smooth functions that identify the normal forms of codimension 1 reversible
systems introduced in [13].

Our goal is to prove the existence of chaotic dynamics for system (4.1). First, we look at
the flow of the vector field X(x, y) associated with (4.1) which is given by the unique solution
(x(t), y(t)) = Ï(t, x0, y0) of Ẋ = X(x, y) satisfying x(0) = x0 and y(0) = y0. We study the
Poincaré map � : R2 æ R2 defined by �(x0, y0) = Ï(T, x0, y0) for every point (x0, y0) œ R2.
Second, we notice that the full dynamics of the problem can be broken into two sub-systems

(4.2)
I

ẋ = yf(x, y2),
ẏ = g(x, y2) + ⁄1,

and

(4.3)
I

ẋ = yf(x, y2),
ẏ = g(x, y2) + ⁄2.

Hence, we have that the Poincaré map � may be decomposed as � = �⁄2 ¶ �⁄1 , where, for any
(x0, y0) œ R2, �⁄1(x0, y0) = Ï⁄1(·1, x0, y0) and �⁄2(x0, y0) = Ï⁄2(·2, x0, y0) are the Poincaré
maps associated with (4.2) and (4.3), respectively. We outline here the structure of the proof
for the saddle case, done by applying Theorem 3.3.

1) Locate a flow invariant line �1,ú for, say ⁄1 and a closed flow invariant line �2,ú for ⁄2,
making sure they intersect in at least two points. Then �2,ú is going to be ˆeA and �1,ú
will be of one component of ˆS.

2) Take ·1 to be the time it takes for Ï⁄1 to move one intersection point to the next one.
3) Look at a curve “1 ending at the first intersection point as a candidate for a bridge and

make sure �⁄1 maps it to in (�2,ú). Take P to be the other end point of “1.
4) Take the Ï⁄1 trajectory through P to be the other component of ˆS and take the

(closed) Ï⁄2 trajectory through P to be ˆiA. This ensures that the strip twist condition
(Definition 3.5) holds.

5) Obtain the time ·2 for the annular-strip condition (Definition 3.7).
In this way we can prove that the dynamics of (4.1) is semiconjugate to a shift in a finite alphabet.

4.1. Saddle case. We assume that system (4.1) has a saddle structure by considering

(4.4)
I

ẋ = xy,

ẏ = x ≠ y2 + p(t).

Depending on p(t), the phase-portrait of system (4.4) switches between di�erent configurations
as described in Section 2.

Theorem 4.1. Let � be the Poincaré map associated with system (4.4). Then for each ⁄1 > 0
and each ⁄2 with ⁄1 > ⁄2 and for an open set of values of ·1 and ·2 the map � induces chaotic
dynamics on m symbols, for some m Ø 2.

Proof. First of all we notice that the following two cases can occur: ⁄1 > ⁄2 > 0 or ⁄1 > 0 Ø ⁄2.
Let us suppose that ⁄1 and ⁄2 are two fixed positive values satisfying the first case. Then for

both systems (4.2) and (4.3) there exist three equilibria. In particular, there exists a heteroclinic
cycle around the center (≠⁄i, 0) which joins the two saddles (0, ≠

Ô
⁄i) and (0,

Ô
⁄i), for i = 1, 2.

Let (xú, 0) be the point where the heteroclinic cycle of system (4.3) crosses the negative part
of the x-axis. Then two configurations are possible: ≠⁄1 < xú < ≠⁄2 or xú < ≠⁄1. It will be not
restrictive to consider the first configuration since the other situation can be treated similarly.
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−λ2−λ1

y

R1

R2

−λ1

Figure 9. Construction of the annulus A and the strip S in the saddle case.
Left: 0 < ⁄2 < ⁄1; right: ⁄2 Æ 0 < ⁄1.

We proceed with the construction of an annulus A and a strip S which satisfy the topological
conditions required to apply Theorem 3.3.

For any (x, y) œ R2, we call �1(x, y) and �2(x, y) the trajectories through the point (x, y) of
system (4.2) and (4.3), respectively. Let �2(xú, 0) be the heteroclinic trajectory through (xú, 0),
then we define the outer component of ˆA as

ˆeA := �2(xú, 0) fi {(0, ≠


⁄2)} fi �2(0, 0) fi {(0,


⁄2)}.

Let – < 0 with ≠⁄2 < – be any number so the trajectory �1(–, 0) through (–, 0) will cross the
heteroclinic connection �2(xú, 0). We take �1(–, 0) fl {xú Æ x Æ 0} to be one of the components
of ˆS, and we construct the other two boundary pieces of the annulus and the strip so as to
satisfy the linkage condition and the twist conditions.

Let ·1 be the minimum positive time such that, if r(t) is a solution of (4.2) through (–, 0)
with r(0) œ �2(xú, 0) fl {y < 0}, then r(·1) œ �2(xú, 0) fl {y > 0}. For any point

(x, y) œ �2(xú, 0) fl {y < 0}
close to r(0) the points Ï⁄1(·1, x, y) form a curve through r(·1). Generically this curve goes across
�2(xú, 0) (otherwise, make a small change in –). Suppose that the curve is below �2(xú, 0) to
the left of r(·1) (otherwise the arguments are similar). Take — < 0 with ≠⁄2 < — < – < 0 such
that the points in the trajectory �1(—, 0) of system (4.2) through (—, 0) satisfy the condition on
the curve. Then we take the other component of ˆS as �1(—, 0) fl {xú Æ x Æ 0}. It remains to
obtain the inner component of ˆA.

Let � : R2 æ R2 be the projection on the second component, namely �(x, y) = y. For any
(x, y) œ R2 let Â(x, y) = �(Ï⁄1(·1, x, y)) and let Â(x, y) = Â(x, y)+�(x, y), so Â(x, y) compares
the height of Ï⁄1(·1, x, y) to that of the symmetric point of (x, y).

Let q(t) be the solution of (4.2) through (—, 0) with q(0) œ �2(xú, 0) fl {y < 0}. Then
Â(q(0)) < 0. Also there exists a ‡ > 0 such that q(‡) œ �2(xú, 0) fl {y > 0}. By construction,
Â(q(‡)) > 0. Therefore, there exists ‚‡ œ (0, ‡) such that Â(q(‚‡)) = 0. This means that
Ï⁄1(·1, q(·1)) is symmetric to q(·1). The trajectory �2(q(‚‡)) will go through both q(‚‡) and
Ï⁄1(·1, q(‚‡)). We define the inner component of ˆA as ˆiA := �2(q(‚‡)).

In this manner, the topological annulus A and the topological strip S are linked by construc-
tion (see Figure 9). The linkage condition gives two symmetric topological rectangles R1 and
R2 (in the lower and upper half-plane, respectively) that satisfy the twist conditions. Indeed,
a strip-twist condition holds for �⁄1 : S æ S because the rectangle R1 µ A fl S fl {y < 0} is
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stretched across R2 µ A fl S fl {y > 0}. Since �2(xú, 0) is a heteroclinic connection then for
every m Ø 2 there exists ·2 large enough such that an annulus-twist condition also holds for
�⁄2 : A æ A because R2 is stretched across R1 m-times (depending on ·2). The result follows
by an application of Theorem 3.3 to the Poincaré map � = �⁄2 ¶ �⁄1 . This concludes the first
case.

The proof above holds for a fixed value of ·1 and for su�ciently large ·2. However, we may
obtain the result for ·1 in an open interval by taking di�erent values of –.

The arguments above yield a proof for the case ⁄1 > 0 Ø ⁄2, we just indicate where it needs
to be adapted. The outer component of ˆA may be taken as

ˆeA := �1(xú, 0) fi {(0, ≠


⁄1)} fi �1(0, 0) fi {(0,


⁄1)},

where �1(xú, 0) is the heteroclinic trajectory of Ï⁄1 going through (xú, 0). One of the components
of ˆS will be �2(–, 0) with ≠⁄1 < – < 0.

Then take ·2 to be the least positive time to go from �2(–, 0) fl �1(xú, 0) fl {y > 0} to
�1(xú, 0) fl {y < 0}. Apply the arguments above to obtain the other component of ˆS as a
Ï⁄2 trajectory that starting at �1(xú, 0) fl {y > 0} arrives above �1(xú, 0) fl {y < 0} in time ·2.
Then find a point q in this trajectory and in the upper half-plane, such that �⁄2 maps q to its
symmetric h(q). Take ˆiA := �2(q) to complete the construction. ⇤

In the case when both ⁄1 and ⁄2 are negative there are no annular invariant regions, so the
results cannot be applied. Moreover, in this case there are no non-trivial periodic orbits, so we
do not expect periodic forcing to yield chaos. The same holds for the cusp case below, when
both ⁄1 and ⁄2 are positive.

4.2. Cusp case. When system (4.1) has the following form

(4.5)
I

ẋ = y,

ẏ = x2 + p(t).

then its phase-portrait is of cusp type. We notice that system (4.5) has also a Hamiltonian
structure, and at this juncture, when ⁄1 < 0 and ⁄2 Æ 0 the geometry is similar to the one
investigated in [11, 12]. Hence, we expect that chaotic dynamics occurs for ·1 and ·2 large
enough. For Theorem 4.1 we have used a heteroclinic connection to obtain an annulus twist
condition. Here the existing homoclinic connection may be used for the same purpose and, by
applying the procedure exploited for Theorem 4.1, we can prove what follows.

Theorem 4.2. Let � be the Poincaré map associated with system (4.5). Then for each ⁄1 Æ 0
and each ⁄2 with ⁄1 < ⁄2 and for an open set of values of ·1 and ·2 the map � induces chaotic
dynamics on m Ø 2 symbols.

The case ⁄1 < ⁄2 < 0 of Theorem 4.2 may also be obtained as a corollary to [5, Theorem 4.1].
Our methods provide an alternative proof and extend the result to the case ⁄1 < 0, ⁄2 > 0. In
the latter case there is no invariant annulus for ⁄2 > 0 and for the proof we need to use a strip
condition.
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CONLEY THEORY FOR GUTIERREZ-SOTOMAYOR FIELDS

H. MONTÚFAR AND K. A. DE REZENDE

Abstract. In [6], a characterization and genericity theorem for C1-structurally stable vector
fields tangent to a 2-dimensional compact subset M of Rk are established. Also in [6], new
types of structurally stable singularities and periodic orbits are presented. In this work we
study the continuous flows associated to these vector fields, which we refer to as the Gutierrez-
Sotomayor flows on manifolds M with simple singularities, GS flows, by using Conley Index
Theory. The Conley indices of all simple singularities are computed and an Euler characteristic
formula is obtained. By considering a stratification of M which decomposes it into a union
of its regular and singular strata, certain Euler type formulas which relate the topology of M
and the dynamics on the strata are obtained. The existence of a Lyapunov function for GS
flows without periodic orbits and singular cycles is established. Using long exact sequence
analysis of index pairs we determine necessary and su�cient conditions for a GS flow to be
defined on an isolating block. We organize this information combinatorially with the aid of
Lyapunov graphs and using a Poincaré-Hopf equality we construct isolating blocks for all
simple singularities.

1. Introduction

In [6], C. Gutierrez and J. Sotomayor generalize characterization and genericity theorems
obtained by M. Peixoto [8] for structurally stable vector fields tangent to smooth compact two-
manifolds. The following definitions 1.1, 1.2 and 1.3 were introduced in [6] and the reader is
referred to the original paper for more details.

Definition 1.1. A subset M ⇢ Rl is called a two-dimensional manifold with simple singularities
if for every point p 2 M there is a neighborhood Vp of p in M and a C

1-di↵eomorphism
 : Vp ! G such that  (p) = 0, where G is one of the following subsets of R3:

R = {(x, y, z); z = 0}, plane;

C = {(x, y, z); z2 � y
2
� x

2 = 0}, cone;

D = {(x, y, z);xy = 0}, double crossing;

W = {(x, y, z); zx2
� y

2 = 0}, Whitney’s umbrella;

T = {(x, y, z);xyz = 0}, triple crossing.

 is called a local chart at p.

These local charts are essential in order to define the stratified set M in the sense of Thom
[10], endowed with the partition {M(G),G} where G = R, C, D, W or T and M(G) is the set of
points p 2 M such that  (p) = 0 for  : Vp ! G. Note that M(R) is a smooth two-dimensional
manifold called the regular part of M , M(D) is a one-dimensional smooth manifold, while M(C),
M(W) and M(T ) are discrete sets.

Definition 1.2. A vector field X of class Cr on Rl is said to be tangent to a manifold M ⇢ Rl

with simple singularities if it is tangent to the smooth submanifolds M(G), for all G. The space
of such vector fields is denoted by Xr(M).

Supported by CNPq Grant 305649/2018-3 and by Fapesp Grant 2018/13481-0.
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In [6], C. Gutierrez and J. Sotomayor determine conditions of stability for fixed points, periodic
orbits and singular cycles.

c2 c3c1

a1 a2

b1 b2

d1 d2

e1 e2

Figure 1. Local types of hyperbolic fixed points

Definition 1.3. Let M ⇢ Rl be a two-manifold with simple singularities. We call ⌃r(M) the
set of vector fields X 2 Xr(M) such that:

(1) X has finitely many fixed points and periodic orbits, all hyperbolic.
(2) The singular limit cycles of X are simple and X has no saddle connection.
(3) The ↵�limit set and !�limit set of every trajectory of X is either a fixed point, a periodic

orbit or a singular cycle.

In this work, we refer to the flow Xt associated with the field X 2 ⌃r(M) as the Gutierrez-
Sotomayor flow.

In [6], C. Gutierrez and J. Sotomayor proved the following formidable theorem.

Theorem 1.4. Under either of the following hypotheses on Xr(M):
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• r = 1, or
• r = 2, 3, . . . ,1 and each connected component of M(R) is either an orientable two-
manifold or an open subset of P 2

[K
2
[ (T 2

]P
2),

we have that:

(1) ⌃r(M) is open and dense in Xr(M), and
(2) X 2 Xr(M) is structurally stable if and only if X 2 ⌃r(M).

In this article, we study Gutierrez-Sotomayor flows from a topological perspective, using
Conley index theory. In Section 2 we define a Lyapunov function and in this Gutierrez-Sotomayor
context we show its existence for flows without periodic orbits and singular cycles. In proving
the existence of Lyapunov functions, we also prove that there is a neighborhood, N of p, in M

and a function f on N such that f is continuous and decreases along the orbits of Xt on N � p.
In Section 3, we develop the classical Conley theory. In Theorem 3.2, the homotopical index

of singularities of a Gutierrez-Sotomayor flow, Xt, on M are obtained. Therefore, by calculating
the ranks of the homology of the Conley index of a singularity p 2 M , denoted by (h0, h1, h2),
we present several Euler characteristic type formulas in Section 3.2 which relate the topology of
M to the dynamics of the flow Xt.

In Section 4, a more general handle theory is introduced in order to establish a procedure
for constructing special isolating neighborhoods of simple singularities of a Gutierrez-Sotomayor
flow. GS handles are defined. In Theorem 4.2, a Poincaré-Hopf equality is presented, which
relates the first Betti number of the branched one-manifolds which makeup the boundary of the
isolating block (N1, N0) of the singularity p 2 M with the number of boundary components in
N0 and the numerical Conley index (h0, h1, h2) of p. This theorem will guide our constructions
of isolating blocks.

In Section 5 we adopt a combinatorial approach, by associating a Lyapunov graph L to a GS
flow Xt and a Lyapunov function f , by identifying to a point each connected component of a
level set of f .

In Theorem 5.3, through a long exact homological sequence analysis of index pairs we deter-
mine properties that a Lyapunov graph must satisfy in order to be associated to a GS-flow. The
main results herein generalize results of K. de Rezende and R. Franzosa [3] where Morse-Smale
flows and more generally continuous flows are classified on smooth surfaces.

2. Lyapunov function

A Lyapunov function on M is a collection of Lyapunov functions on the strata of M ⇢ Rl.
Note, however, that we do not require the function to be smooth, only continuous.

Definition 2.1. Let M be a two-manifold with simple singularities. If Xt is a Gutierrez-
Sotomayor flow on M then a function f : M ! R is called a Lyapunov function if:

(1) For each stratum M(G) of M :
(a) f |M(G) is a smooth function and f is continuous on M .
(b) The critical points of f |M(G) are nondegenerate and coincide with the singularities

of Xt.

(c)
d

dt
(f |M(G) (Xtx)) < 0, if x is not a singularity of Xt.

(2) If p and q are singularities of Xt, then f(p) 6= f(q).

In Section 2.1, we will construct a Lyapunov function f locally on a neighborhood of a GS
singularity. In Section 2.2 we extend this construction to isolating blocks and subsequently to
GS two-manifolds.
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2.1. Local Construction. Throughout this work, for simplicity, a two dimensional disk will
be referred to as disk D and a one dimensional disk as a segment I.

Theorem 2.2. Let M be a 2-dimensional manifold with simple singularities. If p 2 M is a
singularity of a Gutierrez-Sotomayor flow Xt on M then there exists a neighborhood, N of p on
M , su�ciently small, and a function f on N such that f is a Lyapunov function on N .

Proof.

Case 1:: If p 2 M(R) then a neighborhood N of p on M is a disk. Without loss of
generality, we can assume the disk N as in Figure 1 (a1) and (a2). If p is of type (a1)
then in local coordinates its dynamics in R2 is given by:

⇢
ẋ = �2x
ẏ = �2y

Define a function f on N given by f(x, y) = x
2 + y

2. Since df
dt = �4(x2 + y

2) < 0 then
f is a Lyapunov function on N . If p is as in (a2) then in these local coordinates its
dynamics are given by:

⇢
ẋ = �y

ẏ = �x

Define a function f on N given by f(x, y) = xy. Since df
dt = �(y2 + x

2) < 0 then f

is a Lyapunov function on N . If p is as in (a1) with the reverse dynamics then consider
�f .

In any case, we can summarize this by writing X in local coordinates as ẋ = Ax+�(x)
where �(0) = d�(0) = 0 and the eigenvalues of A have real part di↵erent from zero. This
condition is equivalent to the existence of symmetric matrices Q and C with C positive
definite and Q non-singular such that the Lyapunov equation A

T
Q +QA = �C holds,

where the superscript T denotes the transpose of the matrix. Define a function f given
by f(x) = x

T
Qx. Since

df

dt
= ẋ

T
Qx+ x

T
Qẋ

df

dt
= (Ax+ �(x))TQx+ x

T
Q(Ax+ �(x))

df

dt
= x

T (AT
Q+QA)x+ 2xT

Q�(x)

df

dt
= �x

T
Cx+ 2xT

Q�(x)

where 2xT
Q�(x) has higher order terms. For N su�ciently small, f is a Lyapunov

function on N .
Case 2:: If p 2 M(C) then a neighborhood N of p in M is formed by two disks D1 and

D2 identified at the singularity p, see Figure 1 (b1) and (b2). We can assume without
loss of generality that the disks Di, i = 1, 2, in R2 are as in Figure 2.

If the disks are as in (a) and (b) then we are in the previous case. If Di is as in (c)
then in local coordinates its dynamics are given by:

⇢
ẋ = 0
ẏ = �x

2
� y

2
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(a) (b) (c)

Figure 2. Disks Di in N

Let fi be a function on Di given by fi(x, y) = y. As dfi
dt = �x

2
� y

2
< 0 then fi

decreases along orbits of Xt on Di. Define the function f on N :

f(x) =

⇢
f1(x) if x 2 D1

f2(x) if x 2 D2

Then f|N\{p} is a Lyapunov function, hence f is a Lyapunov function on N .
Case 3:: If p 2 M(D) then a neighborhood N of p in M is formed by two disks Di, i = 1, 2,

that intersect transversally along diameters d1 and d2 on D1 and D2 respectively, see
Figure 1 (c1), (c2) and (c3). Let d = D1 \D2. On each disk Di the dynamics are the
same as defined for p 2 M(R), hence a Lyapunov function fi is defined as in Case 1. By
adding appropriate constants we can assume f1(p) = f2(p).

Let � be the orbit on d. By using a di↵eomorphism h : f1(�) ! f2(�), redefine
f1 := h�f1 so that f1(x) = f2(x) for x 2 d. Thus, the transversal intersection of the disks
Di is attained via homeomorphisms on the orbit � on d given by x ! (f2|�1

� � f1|�)(x)
we have that for x 2 D1 \D2 then f1(x) = f2(x). Hence, f : N ! R is given by

f(x) =

⇢
f1(x) if x 2 D1

f2(x) if x 2 D2

is a Lyapunov function on N . Indeed for each stratum M(G) ⇢ N , with G = R or D,
we have that f |M(G) is a Lyapunov function on M(G).

Case 4:: If p 2 M(W) then a neighborhood N of p in M can be formed by identifying
two distinct rays r1 and r2 on a disk D. See Figure 1 (d1) and (d2). On the disk D the
dynamics are defined as in the case p 2 M(R), hence, a Lyapunov function f is defined.
Define f on N = D/⇠ where ⇠ is given by:

x ⇠ y , x = y or f(x) = f(y) with x 2 r1 ⇢ W
s(p), y 2 r2 ⇢ W

s(p).

Hence, f : N ! R given by f(x) = f(x) is a Lyapunov function on N . Indeed for each
stratum M(G) ⇢ N with G = R or D, we have that f |M(G) is a Lyapunov function on
M(G). Similarly, when considering the reverse flow the equivalence relation ⇠ is taken
in W

u(p).
Case 5:: If p 2 M(T ) then a neighborhood N of p in M is formed by three disks Di,

i = 1, 2, 3, that intersect transversally in pairwise distinct diameters that intersect at
the point p. See Figure 1 (e1) and (e2). On the disks Di the dynamics are as in
p 2 M(R), hence a Lyapunov function fi is defined on each disk Di. If eN is formed by
disks Di and Dj , intersecting transversally, with p a double crossing in eN then define
ef on eN , decreasing along the orbits of Xt, as in p 2 M(D).

Denote by dki ⇢ Dk and dkj ⇢ Dk the lines where eN and Dk intersect transversally.

By adding appropriate constants we assume ef(p) = fk(p) and by using a di↵eomorphism

h : fk(�) ! ef(�), redefine fk := h�fk on the orbits � of dki[dkj such that ef(x) = fk(x).
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Thus, the transversal intersection of the disk Dk with eN is obtained and via the
homeomorphisms defined on the orbits � on dki [ dkj

given by x ! ( ef |�1
� � fk|�)(x) we obtain:
8
<

:

if x 2 D1 \D2 then f1(x) = f2(x)
if x 2 D1 \D3 then f1(x) = f3(x)
if x 2 D2 \D3 then f2(x) = f3(x)

since ef |Di = fi and ef |Dj = fj . Thus f : N ! R given by

f(x) =

8
<

:

f1(x) if x 2 D1

f2(x) if x 2 D2

f3(x) if x 2 D3

is a Lyapunov function on N . Indeed, for each stratum M(G) ⇢ N , with G = R or
D, we have that f |M(G) is a Lyapunov function on M(G).

⇤

We now prove the existence of a continuous real valued function on a neighborhood of a saddle
cone singularity, see Proposition 2.3, as well as, in a neighborhood of a periodic orbit or cycle,
see Theorem 2.4 that decreases along orbits of the local flow defined on that neighborhood.

Proposition 2.3. Let M be a two-manifold with simple singularities. If p 2 M(C) is a saddle
cone type singularity of a Gutierrez-Sotomayor flow Xt on M then there exists a su�ciently small
neighborhood N of p, in M , and a function f on N such that f is continuous and decreases along
orbits of Xt on N � {p}.

Proof. If p 2 M(C) is a saddle cone type singularity in M then a neighborhood N of p in M is
formed by a union of two discs D1 and D2 identified at the singularity p, D1 _p D2, see Figure
1.1 (b1). We can assume, without loss of generality, that via a homeomorphism, the discs Di,
i = 1, 2, are on the plane R2, see Figure 2 (c). In these local coordinates, the dynamics are given
by:

⇢
ẋ = 0
ẏ = �x

2
� y

2

Let fi be the function on Di given by fi(x, y) = y. Since dfi
dt = �x

2
� y

2
< 0 then fi decreases

along the orbits of Xt on Di. Now let the function f on N be such that:

f(x) =

⇢
f1(x) se x 2 D1

f2(x) se x 2 D2

Then f |N\{p} is a continuous function that decreases along the orbits of Xt on N � {p}. ⇤

Theorem 2.4. Let M be a two manifold with simple singularities. If � ⇢ M(R) is a periodic
orbit of a Gutierrez-Sotomayor flow Xt on M then there exists a neighborhood, su�ciently small,
N of �, on M , and a function f on N such that f decreases along orbits of Xt on N\� and is
constant on �.

Proof. If � ⇢ M(R) then a neighborhood N of � in M is an annulus.
In local coordinates, the dynamics are given by:

⇢
ẋ = x� y � x(x2 + y

2)
ẏ = x+ y � y(x2 + y

2)
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Define a function f on N by f(x, y) = 1
4 ln

2(x2 + y
2). Since

df

dt
=

x

x2 + y2
(ln(x2 + y

2))(x� y � x(x2 + y
2)) +

y

x2 + y2
(ln(x2 + y

2))(x+ y � y(x2 + y
2))

= (ln(x2 + y
2))(1� (x2 + y

2)) < 0,

we have that f decreases along orbits of Xt on N\� and is constant on �. ⇤
2.2. Lyapunov functions - global construction.

In this section, we study Gutierrez-Sotomayor flows, Xt, with no periodic orbits and no
singular cycles on a compact two-manifold with boundary @M (which maybe empty). We assume
Xt has only GS simple singularities and is transversal to @M . Denote by @M

� the boundary on
which the flow exits and @M

+ = @M\@M
� the boundary on which the flow enters. In general,

@M is not connected, however there are some attractors as well as repellers defined on manifolds
M with boundary where @M connected.

If a point p is on the stratum S of M then the tangent space TpS is well defined. But if
M is singular on S then there are possibly infinitely many ”tangent spaces” on M at p and we
denote them by generalized tangent spaces. Formally, a generalized tangent space at p 2 S is
any plane Qp of the form Qp = limpi!p TpiS

0 where pi is a sequence of points in a stratum S
0

whose limit is p. See [5] for more details. The generalized tangent bundle Q of M is the set of
all pairs (x, v) such that x 2 M and v 2 Qp. Given a Riemannian metric on Rl, for each p 2 S,
the inner product on the space Qp splits it in a direct sum Qp = TpS � (TpS)? where (TpS)? is
the orthogonal complement of TpS in Qp. This means that, locally, the part of the generalized
tangent bundle Q that projects on S splits in a tangent bundle TS and a generalized normal
bundle TS

?.

Lemma 2.5. Let M be a two-manifold with simple singularities. If Xt is a Gutierrez-Sotomayor
flow on M then there exists a collection of disjoint branched one-submanifolds Bi of M ,
i = 0, 1, . . . ,m, with the following properties:

(1) B0 = @M
�, Bm = @M

+

(2) the flow Xt is transversal to each Bi

(3) each Bk, k 6= 0,m, splits M in two regions whose closures are denoted by Gk and Hk

with Gk � Gk�1, Hk � Hk+1 and Gk contains exactly k singularities. Define G0 = B0,
H0 = M , Gm = M and Hm = Bm. Hence, for i = 0, . . . ,m, Gi \ Hi = Bi and
Gi [Hi = M .

(4) Bk is the entering boundary of the flow Xt on Gk.

Proof. By induction on k, let B0 = @M
� and assume we constructed Bk�1 with

M = Gk�1 [Hk�1, Gk�1 \Hk�1 = Bk�1,

Gk�1 contains k � 1 singularities and the entering boundary of the flow Xt in Gk�1 is Bk�1.
Now we will construct Bk.

Let Bk�1⇥[�1, 1] be a product neighborhood1 of Bk�1 (in the case k = 1 consider Bk�1⇥[0, 1])
with Bk�1 = Bk�1 ⇥ 0, Bk�1 ⇥ [0, 1] ⇢ Hk�1 and the flow Xt is transversal to Bk�1 ⇥ t for each
t.

(1) Let p 2 M(G), with G = R, C, D, W or T , be an attracting simple singularity of Xt.

By Theorem 2.2 we can choose a neighborhood N of p such that Xt is transversal
to the boundary. Consider the disjoint union of N with G

0
k to obtain Gk where G

0
k is

obtained by gluing to Gk�1 the collar of Bk�1 (contained in Hk�1), see Figure 3.

1Bicollar of Bk�1 and a collar in the case k = 1.
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Hk�1

Bk�1

Gk�1

Bk

Gk

Hk

N

Gk

Figure 3. Construction of Bk

Hence, Bk = @Gk is a disjoint union of branched one-manifolds with one more compo-
nent than Bk�1 if p 2 M(G) where G = R, D, W or T , and with two more components
than Bk�1 if p 2 M(C).

(2) Let p 2 M(G), with G = R, C, D, W or T , be a singularity of Xt which is not an
attractor or repeller. We first construct S✏ for each singularity p 2 M(G) as the image
of the exponential map Exp : U ⇢ TM ! M .
(a) If p 2 M(R)[M(C) then by Theorem 2.2 we can choose a neighborhood N of p, a

real valued function f on N and � > 0 such that the disk bounded by

f
�1(�) \W

s(p) = fW
is contained in N . Let E✏ be the normal bundle of W s(p)\{p} in M(R) restricted

to fW with vectors of magnitude  ✏. Denote by S✏ the image of E✏ under the
exponential map.

(b) If p 2 M(W) then by Theorem 2.2 we can choose a neighborhood N of p, a real
valued function f on N and � > 0 such that the disks bounded by

f
�1(�) \W

s(p) = fW
are in N . Let E✏ be the generalized normal bundle of W s(p)\{p} in M restricted

to fW with vectors of magnitude  ✏. Denote by S✏ the image of E✏ under the
exponential map restricted to each Qp.

(c) If p 2 M(D) then by Theorem 2.2 we can choose a neighborhood N of p, a real
valued function f on N and � > 0 such that the disks bounded by

f
�1(�) \W

s(p) \N\W s(p) = fW

are in N . Let E✏ be the generalized normal bundle ofW s(p)\N\W s(p) in N\W s(p)

restricted to fW with vectors of magnitude  ✏. Denote by S✏ the image of E✏ under
the exponential map restricted to each Qp.

(d) if p 2 M(T ) then by Theorem 2.2 we can choose a neighborhood N of p, a real
valued function f on N and � > 0 such that the disks bounded by

f
�1(�) \W

s(p) \N\W s(p) = fW

are in N . Let E✏ be the generalized normal bundle ofW s(p)\N\W s(p) in N\W s(p)

restricted to fW with vectors of magnitude  ✏. Denote by S✏ the image of E✏ under
the exponential map restricted to each Qp.
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Choose ✏ su�ciently small such that S✏ is transversal to X. By the continuity of the
flow Xt of X we can define T : S✏\

fW ! eV which maps x 2 S✏\
fW to the point on the

orbit of x which intersects eV .
Now, define a C

1 embedding F : @S✏⇥ [�1, 1] ! M by F (x,�1) = x, F (x, 1) = T (x)
and F (x, t) is on the orbit that joins x to T (x) and the distance from x to F (x, t) is
proportional to t. Extend F to a C

1 embedding of @S✏⇥ [�2, 2] that sends x⇥ [�2, 2] to
a regular orbit, for each x.Fix a Riemannian metric on M(R) and let v(p, t) be the unit
normal vector field on the image of F with orientation given by (induced by) the vectors

on @S✏ pointing outwards on fW . Let ⌘ > 0, be a small constant and F⌘(p, t) be the
point at a distance ⌘t of F (p, t) along the geodesic determined by v(p, t), see Figure 4.

S✏

ImT

F (x,�1)

v(x, t)

ImF

F (x, 0)

ImF⌘
F (x, 1)

Figure 4. Construction of F⌘

Choose small ⌘ such that the image of F⌘, imF⌘, is disjoint from the image of T , imT .

Also, we have that Xt is transversal to imF⌘, and imF⌘\S✏, imF⌘\
eV are di↵eomorphic

to imF \ S✏, imF \ eV , respectively.
In this way, we obtain a one-dimensional singular submanifold B

0
k of M made up of:

• the part of S✏ bounded by imF⌘ \ S✏;

• eV except for regions bounded by imF⌘ \
eV that contains Wu(p) \ eV ;

• the part of imF⌘ bounded by imF⌘ \ S✏ and imF⌘ \
eV .

Thus, we have that Xt is transversal to B
0
k. We verify that M\B

0
k = G

0
k [ H

0
k

with G
0
k containing Gk�1 and the singular point p. Moreover, G0

k di↵ers from Gk since
B

0
k = @G

0
k is not a di↵erentiable submanifold, i.e., di↵erentiability fails along imF⌘ \S✏

and imF⌘ \ eV . This can be smoothened easily in order to obtain the desired Gk and
Bk. See Figure 5.

(3) Finally, if p 2 M(G), with G = R, C, D, W or T , is a repeller singularity of Xt then by
Theorem 2.2 choose a neighborhood N of p whose boundary is transversal to Xt. Thus,
Gk = Gk�1 [Bk�1 ⇥ [0, 1] [N .

⇤

Lemma 2.6. Let M be a two-manifold with simple singularities. If Xt is a Gutierrez-Sotomayor
flow with only one singularity p then there is a Lyapunov function f on M such that f has value
c�

1
2 on @M

�, c+ 1
2 on @M

+ and f(p) = c.
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Figure 5. Smoothening B
0
k to obtain Bk on a Whitney block

Proof. First define a function in a neighborhood of W s(p) [W
u(p). Let N be a neighborhood

of p and f a function on N as in Theorem 2.2 and assume f(p) = c by adding appropriate
constants. Then let f�1(c+�)\N = R

+, f�1(c��)\N = R
�, with � chosen as in the previous

lemma2, R+
✏ = {(u, v) 2 R; kvk  ✏} and R

�
✏ = {(u, v) 2 R

�; kuk  ✏}.
Fix a Riemannian metric on Rl and take ✏ = 1

10 . For x 2 R
+
✏ redefine f on Xt(x), t  0,

such that f(X0(x)) = c + �, f(y) = c + 1
2 where y is the point of Xt(x) that intersects @M

+.
Define f proportional to the arclength of the points on the orbit that connect X0(x) and y. In
this way, we obtain a function f in a neighborhood of W s(p) satisfying the required conditions
on the boundary, although non-di↵erentiable on f

�1(c+ �). We can smoothen f , see [7], so that
it is C1 on f

�1(c+ �).
In a similar fashion, using R

�
✏ , we obtain a real-valued function f defined in a neighborhood

Q of Wu(p) as well as in a neighborhood of W s(p), satisfying f(Q \ @M
�) = c�

1
2 . Hence, we

obtain the desired function f in an open neighborhood P of W s(p) [ W
u(p). Without loss of

generality, we can assume that if x 2 P then Xt(x) 2 P , 8t.
Now extend f to M . Choose U ⇢ @M

�
\ P a compact neighborhood of Wu(p) \ @M

�. Let
� be a C

1 real valued function on @M
� satisfying 0  �  1 with � = 1 on U and � = 0 on

@M
�
\P \@M

�. For x 2 M\(W s(p)[W
u(p)) let l(x) be the length of the orbit passing through

x, v(x) arclength of the orbit joining {Xt(x)} \ @M
� to x and g(x) = c�

1
2 + v(x)

l(x) . Hence, the

function �f + (1 � �)g on M is the desired function where �(x) = �(Xt(x) \ @M
�) or equals

one if Xt(x) does not intersect @M�. ⇤
Theorem 2.7. Let M be a compact two-manifold with simple singularities. If Xt is a Gutierrez-
Sotomayor flow on M then there exists a Lyapunov function f on M .

Proof. Consider Gk � Gk�1, 8k, defined in Lemma 2.5. Let fk be the function in Lemma 2.6
defined on the closure of Gk �Gk�1. Juxtaposing the fk we obtain a function f well defined on
M and smooth 3 in a neighborhood of B1, . . . , Bm�1. Therefore, the desired Lyapunov function
is obtained. ⇤

3. The Conley Index

In this section, we compute the Conley homotopy index and homology index of simple singu-
larities of a Gutierrez-Sotomayor flow Xt on M . We also prove a result relating the singularities
on the regular and singular parts of Xt with the homology of M .

2The disk bounded by f�1(c+ �) \W s(p) is in N .
3As in the proof of Lemma 2.6.
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A compact set N ⇢ M is an isolating neighborhood if

Inv(N) := {x 2 N ;Xt(x) ⇢ N, 8t} ⇢ int(N),

where int(N) denotes the interior of N . ⇤ is an isolated invariant set if ⇤ = Inv(N) for some
isolating neighborhood N .

If ⇤ is an isolated invariant set, a topological pair of spaces4 (N,L) is an index pair for ⇤ if:

(1) ⇤ = Inv(cl(N\L)) and N\L is an isolating neighborhood for ⇤.

(2) L is positively invariant in N , i.e., given x 2 L and Xt(x) ⇢ N for t 2 [0, t0] then
Xt(x) ⇢ L for t 2 [0, t0].

(3) L is an exit set for N ; i.e., given x 2 N and t1 > 0 such that Xt1(x) /2 N then there
exists t0 2 [0, t1] such that Xt(x) ⇢ N , for t 2 [0, t0], and Xt0(x) 2 L.

In [2], Conley proves the existence of an index pair (N,L) for an isolated invariant set ⇤.
Furthermore, if (N,L) and (N 0

, L
0) are index pairs for an isolated invariant set ⇤ then (N/L, [L])

has the same homotopy type as (N 0
/L

0
, [L0]).

In what follows we define, the homotopy index as the homotopy type of the pointed space
(N/L, [L]). Since homology is an invariant of homotopic spaces thus the homology index is well
defined.

Definition 3.1. We define:

(1) The Conley homotopic index of ⇤, h(⇤), is the homotopy type of the pointed space
(N/L, [L]) where (N,L) is an index pair for ⇤.

(2) The Conley homology index of ⇤ is defined by CH⇤(⇤) := H⇤(h(⇤)) where H⇤ denotes
the homology on Z.

(3) The numerical Conley indices of ⇤ are defined as the ranks of the Conley homology
indices of ⇤, h⇤ = rankCH⇤(⇤).

In order to compute the Conley homology indices we make use of the isomorphism:

eHn(X _ Y ) ⇡ eHn(X)� eHn(Y )

if the base points of X and Y which are identified in X _ Y are deformation retracts of neigh-
borhoods U ⇢ X and V ⇢ Y .

If p 2 M is a singularity of a Gutierrez-Sotomayor flow Xt and N a su�ciently small neigh-
borhood, as in the proof of Lemma 2.2. We say that p is of:

• type a if p 2 M(G), where G = R, C, D, W or T , is an attracting singularity.

• type s if p 2 M(R) [M(C) is neither an attracting or repelling singularity.

• type r if p 2 M(G), where G = R, C, D, W or T , is a repelling singularity.

• type su if p 2 M(W) is a saddle singularity on a bidimensional disc with the unstable
manifold identified to the fold.

• type ss if p 2 M(W) is a saddle singularity on a bidimensional disc with the stable
manifold identified to the fold.

• type sa if p 2 M(D) and N is formed by a sink and a saddle.

• type sr if p 2 M(D) and N is formed by a source and a saddle identified at the fold.

• type ssu if p 2 M(D) and N is formed by two saddles with their unstable manifolds
identified to the fold.

• type sss if p 2 M(D) and N is formed by two saddles with their stable manifolds
identified to the fold.

4A topological pair of spaces is an ordered pair (N,L) of spaces such that L is a closed subspace of N .
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• type ssa if p 2 M(T ) and N is formed by a sink and two saddles.

• type ssr if p 2 M(T ) and N is formed by a source and two saddles.

3.1. Conley index of GS Singularities. In the next theorem we compute the Conley homo-
topy index, as well as, the ranks of the homology indices.

Theorem 3.2. Let M be a two-manifold with simple singularities and Xt a Gutierrez-Sotomayor
flow on M . Let p be a singularity of Xt with type specified in the table below. Then, the numerical
Conley index of each type of singularity is as given in the table.

Type p 2 M(R) p 2 M(C) p 2 M(W) p 2 M(D) p 2 M(T )

a S
0

S
0

S
0

S
0

S
0

(1, 0, 0)R (1, 0, 0)C (1, 0, 0)W (1, 0, 0)D (1, 0, 0)T
s S

1
S
1 — — —

(1, 0, 0)R (0, 1, 0)C — — —
su — — 0̄ — —

— — (0, 0, 0)W — —
ss — — S

1 — —
— — (0, 1, 0)W — —

sa — — — S
1 —

— — — (0, 1, 0)D —
sr — — — S

2 —
— — — (0, 0, 1)D —

ssu — — — S
1 —

— — — (0, 1, 0)D —
sss — — — _

3
i=1S

1 —
— — — (0, 3, 0)D —

ssa — — — — S
1

— — — — (0, 1, 0)T
ssr — — — — S

2

— — — — (0, 0, 1)T
r S

2
S
2
_ S

2
_ S

1
S
2
_ S

2
_
3
i=1S

2
_
7
i=1S

2

(0, 0, 1)R (0, 1, 2)C (0, 0, 2)W (0, 0, 3)D (0, 0, 7)T

Proof. If p is a singularity of Xt, we choose an index pair (N,L) for p in M and calculate
the Conley homotopic index h(p). The homology CHi(p) has a factor Z for each S

i of the
homotopical index, thus the Conley numerical index (h0, h1, h2) in each case of Theorem 3.2 is
obtained. See Figures 6 through 22.

(1) If p 2 M(R), let N be a closed disk and L = @N
� the exiting set of N . Thus, the

Conley homotopy index of p is S
0 (S1 or S

2) if p is an attractor (saddle or repeller)
singularity.

(2) If p 2 M(C), a neighborhood N of p in M is formed by two disks D1 and D2 centered
at p such that D1 \D2 = {p}.
(a) If p is of type a then L = ; and thus is identified to a point. On the other hand, it

is easy to see that the double cone, when retracted along the stable manifold of N ,
has the homotopy type of a point. Hence, h(p) = S

0. See Figure 6.
(b) If p is of type s then w

u(p) \ @N = {x1, x2} where xi 2 @Di, i = 1, 2. Let
Ci ⇢ @Di, i = 1, 2, be the two arcs from which the flow exits, then xi 2 Ci, i = 1, 2
and L = C1 [C2 is the exit set for N . Collapsing L to a point and retracting along
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N

h(p)

L = ;

Figure 6. Conley index of a singularity of type a in M(C)

the stable manifold of N we conclude that N/L has the homotopy type of S1, i.e.,
h(p) = S

1. See Figure 7.

N

C1

C2

h(p)

Figure 7. Conley index of a singularity of type s in M(C)

(c) If p is of type r then L = @N = @D1 [ @D2. Collapsing L to a point we conclude
that N/L has the homotopy type of S2

_ S
2
_ S

1, i.e., h(p) = S
2
_ S

2
_ S

1. See
Figure 8.

N

h(p)

@D1

@D2

Figure 8. Conley index of a singularity of type r in M(C)

(3) If p 2 M(D), a neighborhood N of p in M is formed by two disks Di, i = 1, 2, that
intersect transversally along two diameters d1 and d2 in D1 and D2 respectively.
(a) If p is of type a then L = ; and hence is identified to a point. On the other hand,

it is easy to see that by retracting the stable manifold on N it has the homotopy
type of a point, hence, h(p) = S

0. See Figure 9.
(b) If p is of type r then L = @N = @D1 [ @D2 where @D1 and @D2 intersect transver-

sally at two points. Collapsing L to a point we conclude that N/L has the homotopy
type of S2

_ S
2
_ S

2, i.e., h(p) = S
2
_ S

2
_ S

2. See Figure 10.
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N

L = ;

h(p)

Figure 9. Conley index of a singularity of type a in M(D)

N

h(p)

Figure 10. Conley index of a singularity of type r in M(D)

(c) If p is of type sa then w
u(p)\@N = {x1, x2} where x1, x2 2 @Di and Di is the disk

that contains the saddle. Let C1, C2 ⇢ @Di be the two arcs from which the flow
exits N hence xi 2 Ci, i = 1, 2 and L = C1 [ C2 is the exit set for N . Collapsing
L to a point and retracting along the stable manifold of N we conclude that N/L

has the homotopy type of S1, i.e., h(p) = S
1. See Figure 11.

h(p)

Figure 11. Conley index of a singularity of type sa in M(D)

(d) If p is of type sr then w
u(p) \ @N = @Di where Di is the disk that contains the

repeller. Let C1, C2 ⇢ @Dj , j 6= i, be the two transversal arcs to @Di from where
the flow exits hence L = @Di [ C1 [ C2 is the exit set for N . Collapsing L to a
point and retracting along the stable manifold of N we conclude that N/L has the
homotopy type of S2, i.e., h(p) = S

2. See Figure 12.

h(p)

Figure 12. Conley index of a singularity of type sr in M(D)
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(e) If p is of type ssu then

w
u(p) \ @N = {x1, x2},

where x1, x2 2 @D1 and x1, x2 2 @D2. Let B1, B2 ⇢ @D1 and C1, C2 ⇢ @D2 be the
arcs from where the flow exits, Bi t Ci = {xi} and L = (B1 [ C1) t (B2 [ C2) is
the exit set for N . Collapsing L to a point and retracting along the stable manifold
of N we conclude that N/L has the homotopy type of S1, i.e., h(p) = S

1. See
Figure 13.

h(p)

Figure 13. Conley index of a singularity of type ssu in M(D)

(f) If p is of the type sss then w
u(p) \ @N = {x1, x2, y1, y2} where x1, x2 2 @D1 and

y1, y2 2 @D2. Let B1, B2 ⇢ @D1 and C1, C2 ⇢ @D2 be the arcs from where the flow
exits, xi 2 Bi, i = 1, 2, yi 2 Ci, i = 1, 2, and L = B1 tB2 t C1 t C2 is the exit set
for N . Collapsing L to a point and retracting along the stable manifold of N we
conclude that N/L has the homotopy type of S1

_ S
1
_ S

1, i.e., h(p) =
W3

i=1 S
1.

See Figure 14.

h(p)

Figure 14. Conley index of a singularity of type sss in M(D)

(4) If p 2 M(W), a neighborhood N of p in M is a disk D with two distinct rays r1 and r2

identified.
(a) If p is of type a then L = ; and hence is identified to a point. On the other hand,

it is easy to see that by retracting the stable manifold of N , it has the homotopy
type of a point, hence, h(p) = S

0.
(b) If p is of type r then L = @N is homeomorphic to a figure “eight”. Collapsing L to a

point we conclude that N/L has the homotopy type of S2
_S

2, i.e., h(p) = S
2
_S

2.
See Figure 16.

(c) If p is of type su then w
u(p) \ @N = {x}. Let C1, C2 ⇢ @N be the arcs from

where the flow exits, hence, C1 t C2 = {x} and L = C1 [ C2 is the exit set for N .
Collapsing L to a point and retracting along the stable manifold of N we conclude
that N/L has the homotopy type of a point, i.e., h(p) = 0. See Figure 17.
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N

L = ;
h(p)

Figure 15. Conley index of a singularity of type a in M(W)

h(p)

Figure 16. Conley index of a singularity of type r in M(W)

h(p)

Figure 17. Conley index of a singularity of type su in M(W)

(d) If p is of type ss then w
u(p) \ @N = {x1, x2}. Let Ci ⇢ @N , i = 1, 2, be the arcs

from where the flow exits, hence, xi 2 Ci, i = 1, 2 and L = C1 [ C2 is the exit set
for N . Collapsing L to a point and retracting along the stable manifold of N we
conclude that N/L has the homotopy type of S1, i.e., h(p) = S

1. See Figure 18.

h(p)

Figure 18. Conley index of a singularity of type ss in M(W)

(5) If p 2 M(T ), a neighborhood N of p in M is formed by three disks Di, i = 1, 2, 3, that
intersect transversally in pairwise disjoint diagonals that go through the point p.
(a) If p is of the type a then L = ; and thus is identified to a point. On the other hand,it

is easy to see that by retracting the stable manifold of N , it has the homotopy type
of a point, hence, h(p) = S

0.
(b) If p is of type r then L = @N = @D1 [ @D2 [ @D3 where @D1, @D2 and @D3

intersect transversally pairwise at two points. Collapsing L to a point we conclude
that N/L has the homotopy type of _7

i=1S
2, i.e., h(p) = _

7
i=1S

2. See Figure 20.
(c) If p is of type ssa then w

u(p)\@N = {x1, x2} where x1, x2 2 @D2 and x1, x2 2 @D3.
Let B1, B2 ⇢ @D2 and C1, C2 ⇢ @D3 be the arcs from where the flow exits, hence,
Bi t Ci = {xi} and L = (B1 [ C1) t (B2 [ C2) is the exit set for N . Collapsing L
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N

L = ;

h(p)

Figure 19. Conley index of a singularity of type a in M(T )

h(p)

Figure 20. Conley index of a singularity of type r in M(T )

to a point and retracting along the stable manifold of N we conclude that N/L has
the homotopy type of S1, i.e., h(p) = S

1. See Figure 21.

h(p)

Figure 21. Conley index of a singularity of type ssa in M(T )

(d) If p is of type ssr then w
u(p)\ @N = @D1 where D1 is the disk which contains the

repeller. Let B1, B2 ⇢ @D2 and C1, C2 ⇢ @D3 transversal arcs to @D1 from where
the flow exits, hence, L = @D1 [B1 [B2 [C1 [C2 is the exit set for N . Collapsing
L to a point and retracting along the stable manifold of N we conclude that N/L

has the homotopy type of S2, i.e., h(p) = S
2. See Figure 22.

h(p)

Figure 22. Conley index of a singularity of type ssr in M(T )
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It is straightforward to compute the homology of the Conley indices CH⇤(⇤) and its ranks
h⇤ = rank CH⇤(⇤) in each case of ⇤ = {p} within this proof. Thus, this numerical Conley index
appears in the table as

(h0, h1, h2) = (rank CH0(⇤), rank CH1(⇤), rank CH2(⇤)).

⇤
3.2. Euler type Characteristic Formulas for GS manifolds. Let X = |K| be a topological
space of dimension n. Define ↵j as the number of j-simplices of K. The Poincaré Theorem

asserts that the sum
nX

j=0

(�1)j↵j is independent of the simplicial complex K, such that X = |K|.

This number is the Euler-Poincaré Characteristic and is denoted by �(X). Also, Poincaré asserts
the equality

�(X) =
nX

j=0

(�1)j�j ,

where �j where the rank of Hj(K) is the j-th Betti number of K.

For example, �(S2) = 2, �(pinched sphere) = 3, �(pinched torus) = 1,

�(sine torus or torus with a fold) = 1

and �(crosscap) = 2. See Figure 24 and Figure 25.

We next present the Morse-Conley inequalities for manifolds with simple singularities. We
make use of the ranks of the homology indices computed in Theorem 3.2.

Proposition 3.3. Let M be a two-manifold with simple singularities and Xt a Gutierrez-
Sotomayor flow on M with limit set L =

Sm
i=1 Li. If (hi

0, h
i
1, h

i
2) is the numerical Conley index

of Li then

(1)
mX

i=1

(hi
0 � h

i
1 + h

i
2) = �(M)

where �(M) is the Euler characteristic of M .

Proof. Let f be a Lyapunov function associated to Xt and Gk ⇢ M as in the proof of Theo-
rem 2.7. Hence, G0 ⇢ G1 ⇢ · · · ⇢ Gm such that (Gi, Gi�1) is an index pair for Li. Consider the
long exact sequence of the pair (Gi, Gi�1)

· · ·
pj
! Hj (Gi, Gi�1)

@j
! Hj�1 (Gi�1)

i⇤
! Hj�1 (Gi)

pj�1
! Hj�1 (Gi, Gi�1)

@j�1
! · · ·

By exactness,

dim im (pj) = dim ker (@j) = dim Hj (Gi, Gi�1)� dim im (@j)

= dim Hj (Gi, Gi�1)� dim ker (i⇤)

dim im (pj�1) = �dim ker (pj�1) + dim Hj�1(Gi)

= �dim im (i⇤) + dim Hj�1(Gi).

Thus,

dim im (pj) + dim im (pj�1) =

dim Hj (Gi, Gi�1)� dim ker (i⇤)� dim im (i⇤) + dim Hj�1(Gi) =

dim Hj (Gi, Gi�1)� dim Hj�1(Gi�1) + dim Hj�1(Gi).
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Since CH⇤(Li) ⇠= H⇤(Gi, Gi�1), then hj(Li) = dim Hj (Gi, Gi�1). Thus,

dim im (pj) + dim im (pj�1) = hj(Li)� �j�1(Gi�1) + �j�1(Gi).

For fixed i, consider the alternated sum over j:
2X

j=0

(�1)jhj(Li) +
3X

j=0

(�1)j(�j�1(Gi)� �j�1(Gi�1)) = 0.

Now, consider the sum of the above expression for i = 1, . . . ,m

X

i,j

(�1)jhj(Li) +
3X

j=0

(�1)j(�j�1(Gm)) = 0.

Since Gm = M , we obtain the desired result �(M) =
P

i,j(�1)jhi
j , for i = 1, . . . ,m and

j = 0, 1, 2. ⇤
3.3. Conley Index restricted to the Strata. The calculations in the previous section were
realized considering isolating neighborhoods of a simple singularity in M . However, one may
also compute the Conley indices of the simple singularities of Xt with respect to subspaces of
M . In particular, with respect to the singular part of a stratification of M .

A two-manifold with simple singularitiesM equipped with a partition {M(G),G} is a stratified
manifold. One can define a partition, by distinguishing the regular part from the singular part,
as follows:

• R is the union of the strata of dimension 2.
• S = M\R is the union of the strata of dimension 0 and 1.

Figure 23. Stratification of the sine torus.

A stratification for M = RtS, where t is a disjoint union. Hence, all points in S are singular
points of the stratification. Observe that p 2 S is not necessarily a singular point of the manifold
nor of the flow. In the same way, a singular point of the manifold is not necessarily a singular
point of the flow.

Consider the example in Figure 23. The points p, q, r, s are singularities of the flow. All points
in S are singular points of the stratification as well as singular points of the manifold. In the
example in Figure 24 (left), S is the figure “eight” and on it there are 5 singularities of the flow
and on R there are an additional 4 singularities of the flow. All points on the figure “eight” are
singular points of the stratification but only the cone point is a singular point of the manifold.
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Consider the polar flow on S
2, one repeller and one attractor. Define the singular part, S, to

be a great circle C that contains these two singularities. The flow has two singularities, north
and south pole. All points in C are singular points of the stratification and there are no singular
points of the manifold.

Note that in this last example, a neighborhood U of S, contains orbits of the flow that are
both entering and exiting U . We will not consider this type of stratification. We will require
that a neighborhood U of S is either an attracting or repelling basin.

Definition 3.4. Let E be a stratification of M and US a tubular neighborhood of S, the singular
part of the stratification E, of M . We define the distinguished class ⌃E of the stable vector
fields, as

⌃E = {X 2 ⌃(M): X either points inward i.e., @US is the incoming
set, or points outward i.e., @US is the exit set, but not both}

The pair (X, E) is called a distinguished field on M if X 2 ⌃E and in the case of a flow (Xt, E)
is called a distinguished flow.

In what follows we will compute the Conley indices of a GS flow with respect to the stratifi-
cation E of M = R t S, i.e., if p 2 R is a singularity of Xt the Conley index will be computed
with respect to R and if p 2 S it will be computed with respect to S. In order to compute the
Conley index relative to the singular strata, choose an index pair (N,L) in S. Then the Conley
numerical index

(s0, s1) = (rank H0(N/L), rank H1(N/L)),

of p 2 S.
We establish the following notation:

• R0 =
P

p2R h0(p), R1 =
P

p2R h1(p) and R2 =
P

p2R h2(p), where hi(p) is the i-th
Conley numerical index of p.

• S0 =
P

p2S s0(p) and S1 =
P

p2S s1(p).

Note that in Proposition 3.3, we did not take into account a stratification on M . Hence, if
we do not take into account a stratification, the above notation implies that equation (1) in
Proposition 3.3 can be rewritten as:

(2) R2 �R1 +R0 = �(M).

Let us consider an example of this calculation restricted to the strata.

Example 3.5. Consider the pinched torus in Figure 24, where the singular part is a circle.
The two dimensional stratum is the complement of this circle, a disk and is the regular part.
Although the circle itself is not singular, the cone singularity on that circle is a singular point
of the manifold and of the flow. This cone singularity is a zero-dimensional stratum and its
complement on the circle is the one-dimensional stratum. This flow has three singularities, a
repeller in the regular part and two singularities in the singular part.

Hence, the Conley index of this repeller is h(p) = S
2 and its homology index,

CHi(p) =

⇢
Z if i = 2
0 otherwise.

Hence, the Conley numerical index of the regular part is (h0, h1, h2) = (0, 0, 1).
The singularities of the singular part S, are in S a repeller and an attractor. The repeller in

S has Conley index h(p) = S
1 and homological index:

CHi(p) =

⇢
Z if i = 1
0 otherwise.
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Hence, the numerical Conley index is (s0, s1) = (0, 1). The attractor in S has Conley index
h(p) = S

0 and homology index:

CHi(p) =

⇢
Z se i = 0
0 otherwise.

Hence, the numerical Conley index is (s0, s1) = (1, 0).

Theorem 3.7 relates the Euler characteristic of the regular part and the Euler characteristic
of the singular part of Gutierrez-Sotomayor flows Xt on M , both expressed in terms of the
numerical Conley indices to the Euler characteristic of M .

We first prove a lemma that shows that the numerical Conley indices of the singular part S
of M is the same if computed with respect to M or with respect to S.

Lemma 3.6. Let M be a two-manifold with simple singularities and Xt the Gutierrez-Sotomayor
flow on M . If M admits a stratification E such that (Xt, E) is a distinguished flow then for the
singularities {p1, p2, . . . , pn} ⇢ S the following holds:

(3) R0 �R1 +R2 = S0 � S1

Proof.
R2 �R1 +R0 = �(US) = �(S) = �S1 + S0

The first equality follows from Proposition 3.3, the second equality follows from the fact that US
is a deformation retract of S. Finally the third equality follows from Proposition 3.3 adjusted
to the one dimensional setting. ⇤
Theorem 3.7. Let M be a two-manifold with simple singularities and Xt a Gutierrez-Sotomayor
flow on M . If M admits a stratification E such that (Xt, E) is a distinguished flow then

(4) (R2 �R1 +R0)|M\S = S1 � S0 + �(M)

Proof. Consider a su�ciently small tubular neighborhood, US of the singular part S of M which
contains no other singularities apart from the ones in S. Suppose that on @US , X points inward
to US and denote by M̃ = M � US . Then by Proposition 3.3 we have that:

(5) (R2 �R1 +R0)|M̃ = �(M̃, @M̃
�)

On the other hand, M is a CW-complex formed by the union of subcomplexes M̃ and US hence,
�(M) = �(M̃) + �(US) � �(@M̃�) since M̃ \ US = @M̃ = @M̃

�. Using the exact sequence of
the pair (M̃, @M̃

�) we have that �(M̃, @M̃
�) = �(M̃)� �(@M̃�). Thus,

�(M̃) + �(US)� �(@M̃�) = �(M)

�(M̃, @M̃
�) + �(US) = �(M)

(R2 �R1 +R0)|M̃ + �(S) = �(M)

Since X 2 ⌃E in US \ S has no fixed points then (R2 �R1 +R0)|US\S = 0, thus from the above
equality we have that:

(R2 �R1 +R0)|M\S + S0 � S1 = �(M)

(R2 �R1 +R0)|M\S = S1 � S0 + �(M)

⇤
Corollary 3.8. Let M be a two-manifold with simple singularities and Xt a Gutierrez-Sotomayor
flow on M . If M admits a stratification E such that (Xt, E) is a distinguished flow then

(6) (R2 �R1 +R0)|M\S = �(M)� �(S)

Proof. Follows directly from Theorem 3.7. ⇤
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3.3.1. Examples. Fix a stratification E on a a two-manifold with simple singularities of Xt, a
Gutierrez-Sotomayor flow on M . Let (Xt, E) be a distinguished flow.

Example 3.9. Let M be a two manifold with cone singularities (e.g. a pinched sphere or a
pinched torus) with stratification E.

(0, 0, 1) (0, 0, 1)

(1, 0)
(1, 0)

(0, 0, 1) (0, 0, 1)

(0, 1)
(0, 1)

(0, 1)

(0, 0, 1)

(1, 0)

(0, 1)

Figure 24. Flows on the pinched sphere and the pinched torus

(1) Let Xt be Gutierrez-Sotomayor flow on the pinched sphere with 9 singularities: two
attractors, three saddles and four repellers on M , see Figure 24(left).

With respect to the stratification E, R has four components homeomorphic to disks
with one repelling singularity in the center of each disk. Hence, each singularity has
numerical Conley indices equal to (h0, h1, h2) = (0, 0, 1) and thus,

R0 = 0 + 0 + 0 + 0 = 0, R1 = 0 + 0 + 0 + 0 = 0 e R2 = 1 + 1 + 1 + 1 = 4.

In the singular part of M one has 5 singularities of Xt two of which are attractors and
three repellers. Hence, the numerical Conley indices are (s0, s1) equal to (1, 0) and (0, 1)
respectively. Hence,

S0 = 1 + 1 + 0 + 0 + 0 = 2 and S1 = 0 + 0 + 1 + 1 + 1 = 3.

Substituting these values in equation (4): 4� 0 + 0 = 3� 2 + �(M). Thus, �(M) = 3.
(2) Let Xt be Gutierrez-Sotomayor flow on the pinched torus with 3 singularities: one at-

tractor, one saddle and one repeller on M , see Figure 24(right). In Example 3.5 we
computed on the regular part

R0 = 0, R1 = 0 and R2 = 1.

and on the singular part

S0 = 1 + 0 = 1 and S1 = 0 + 1 = 1.

Substituting these values in equation (4): 1� 0 + 0 = 1� 1 + �(M). Thus, �(M) = 1.

Example 3.10. Let M be a manifold with Whitney umbrella singularity (e.g. a crosscap or a
torus with a fold) with stratification E.

(1) Let Xt be a Gutierrez-Sotomayor flow on a crosscap with 3 singularities: one attractor,
one saddle and one repeller on M , see Figure 25(a).

With respect to the stratification E, R has one component homeomorphic to a disk
with an attracting singularity at its center. Hence, (h0, h1, h2) = (1, 0, 0) and thus,

R0 = 1, R1 = 0 e R2 = 0.
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(a) (b)

Figure 25. Flows on a crosscap and on a torus with a fold.

In the singular part of M there are two singularities of Xt one of which is an attractor
and the other a repeller. Hence the numerical Conley indices (s0, s1) are equal to (1, 0)
and (0, 0) respectively. Thus,

S0 = 1 + 0 = 1 and S1 = 0 + 0 = 0.

Substituting these values in equation (4):

0� 0 + 1 = 0� 1 + �(M).

Thus, �(M) = 2.
(2) Let Xt be a Gutierrez-Sotomayor flow on a torus with a fold with 4 singularities: an

attractor, two saddles and one repeller on M , see Figure 25(b).
With respect to the stratification E, R has one component homeomorphic to a cylinder

with two singularities in its interior a saddle and an attractor. The numerical Conley in-
dices are (h0, h1, h2) = (0, 1, 0) for the saddle and (h0, h1, h2) = (1, 0, 0) for the attractor.
Hence,

R0 = 0 + 1 = 1, R1 = 1 + 0 = 1 and R2 = 0 + 0 = 0.

On the singular part of M there are two singularities of Xt one of which is an attractor
and the other a repeller with numerical Conley indices equal to (s0, s1) = (1, 0) for the
attractor and (s0, s1) = (0, 0) for the repeller. Hence,

S0 = 0 + 1 = 1 and S1 = 0 + 0 = 0.

Substituting these values in equation (4):

0� 1 + 1 = 0� 1 + �(M).

Thus, �(M) = 1.

4. Isolating Blocks

In this section we will develop a theory of generalized handles to present a procedure of
constructing special isolating neighborhoods for a simple singularity of a Gutierrez-Sotomayor
flow. These isolating neighborhoods have the property that the flow is transversal to their
boundary. Furthermore, we require that:

Definition 4.1. An isolating block is an isolating neighborhood N for an isolated invariant set
⇤ of the flow ' such that

N
� = {x 2 N |'([0, T ), x) * N, 8T > 0}
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is closed.

A similar condition is required for the entering boundary N
+ for T < 0.

The existence of isolating blocks is an immediate consequence of the existence of Lyapunov
functions f for Gutierrez-Sotomayor flows with simple singularities. If p is a singular point
with f(p) = c and ✏ > 0 such that in [c � ✏, c + ✏] there are no critical values then define an
isolating block, N , for p as the connected component f

�1([c � ✏, c + ✏]) that contains p and
N

� = f
�1(c� ✏) \N . Moreover, (N,N

�) is an index pair for Inv(N) = {p}.

4.1. The Poincaré-Hopf Condition. The following theorem establishes a relation between
the first Betti number of the branched one-manifolds which make up the boundary N0 of an
isolating block N1 for the singularity p, the number of boundary components of N0 and the
numerical Conley indices of p, (h0, h1, h2).

Theorem 4.2. Let (N1, N0) be an index pair where N1 is an isolating block for a singularity p

in a two dimensional manifold with simple singularities M . Let X 2 ⌃r(M) and (h0, h1, h2) be
the numerical Conley indices for p. Then

(7) (h2 � h1 + h0)� (h2 � h1 + h0)
⇤ = e

+
� B

+
� e

� + B
�

where ⇤ indicates the index of the time-reversed flow, e+(e�) is the number of entering (exiting)

boundary components of N1 and B
+ =

Pe+

k=1 b
+
k (B� =

Pe�

k=1 b
�
k ) where b

+
k (b

�
k ) is the first Betti

number of the kth entering (exiting) boundary components of N1.

Proof. Proposition 3.3 asserts that h2 �h1 +h0 = �(N1, N0). By the long exact sequence of the
pair (N1, N0) we have that �(N1, N0) = �(N1)� �(N0). But N0 = @N

�
1 hence,

h2 � h1 + h0 + �(@N�
1 ) = �(N1)

Using the same arguments for the reverse flow, we obtain

(h2 � h1 + h0)
⇤ + �(@N+

1 ) = �(N1).

Subtracting these two equations, one concludes that

(h2 � h1 + h0)� (h2 � h1 + h0)
⇤ = �(@N+

1 )� �(@N�
1 )

(h2 � h1 + h0)� (h2 � h1 + h0)
⇤ =

e+X

k=1

(1� b
+
k )�

e�X

k=1

(1� b
�
k )

(h2 � h1 + h0)� (h2 � h1 + h0)
⇤ = e

+
� B

+
� e

� + B
�

⇤
4.2. The Gutierrez-Sotomayor Handle Theory. In this section we will define a notion
of generalized handles and specify their attaching regions. As in classical handle theory, the
attaching regions produce di↵erent topological spaces depending on how the handle is glued.

Since the fixed points of X 2 ⌃r(M) are in M(G), with G = R, C, D, W or T , one must
consider di↵erent types of handles which we refer to as two dimensional Gutierrez-Sotomayor
handles, GS handles for short.

A GS handle H
G
x is a subspace of R3 with well defined dynamics where a fixed point is on

M(G), i.e., it may be on the regular part, on the cone, on the Whitney fold, on double crossings
or triple crossings. Hence, we will denote them by regular handles, cone handles, Whitney
handles, double handles or triple handles respectively.

In order to specify the dynamics on the handles we consider the following vector fields defined
on disks in R2 :

(a) X(x, y) = (�2x,�2y) (b) X(x, y) = (x,�y)
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(c) X(x, y) = (2x, 2y) (d) X(x, y) = (0,�x
2
� y

2)
Equivalently, one can consider the respective singularities on the handles and their local flow.

We will now proceed to define the handles in each case above.

Definition 4.3. A regular handle is formed by a disk D centered at p with a flow defined as in
the cases below: See Figure 26.

(1) A regular handle H
R
a has a flow defined by the vector field in (a). The attaching region

of the handle is the empty set.
(2) A regular handle H

R
s has a flow defined by the vector field in (b). The attaching region

of the handle is homeomorphic to two disjoint segments from where the flow exits.
(3) A regular handle H

R
r has a flow defined by the vector field in (c). The attaching region

of the handle is homeomorphic to a circle from where the flow exits.

Figure 26. Regular handles HR
a , HR

s and H
R
r .

Definition 4.4. A cone handle is formed by two disks D1 and D2 centered at p such that
D1 \D2={p} with a flow defined as in the cases below. See Figure 27.

(1) A cone handle H
C
a has a flow defined on both disks by the vector field in (a). The

attaching region of the handle is the empty set.
(2) A cone handle HC

s has a flow defined on both disks by the vector field in (d). The attaching
region of the handle is the disjoint union of two arcs in @D1 and @D2 respectively, from
where the flow exits.

(3) A cone handle HC
r has a flow defined on both disks by the vector field in (c). The attaching

region of the handle are the two circles that correspond to @Di, from where the flow exits.

Definition 4.5. A Whitney handle is formed by a disk D with two regular orbits identified as
in the cases below. See Figure 28.

(1) A Whitney handle HW
a has a flow defined on D by the vector field in (a), with two regular

orbits identified to a ray of D. The attaching region of the handle is the empty set.
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Figure 27. Cone handles HC
a , H

C
s and H

C
r .

(2) A Whitney handle H
W
ss has a flow defined on D by the vector field in (b), with two regular

orbits on the stable manifold identified to a ray of D. The attaching region of the handle
is the disjoint union of two arcs in @D, from where the flow exits.

(3) A Whitney handle H
W
su has a flow defined on D by the vector field in (b), with two

regular orbits on the unstable manifold identified to a ray of D. The attaching region of
the handle is a transversal intersection of two arcs from where the flow exits.

(4) A Whitney handle HW
r has a flow defined on D by the vector field in (c), with two regular

orbits identified to a ray of D. The attaching region of the handle is the boundary @D

which after the identification is homeomorphic to a figure “eight” from where the flow
exits.

Definition 4.6. A double handle is formed by two disks D1 and D2 centered at p and intersecting
transversally along diameters d1 and d2 of D1 and D2 respectively. These diameters are formed
by a union of orbits as described below. See Figure 29.

(1) A double handle H
D
a has a flow defined on D1 and D2 by the vector field in (a). The

attaching region of the handle is the empty set.

(2) A double handle H
D
sa has a flow defined on D1 by the vector field in (a) and defined on

D2 by the vector field in (b) where d2 is the stable manifold in D2. The attaching region
of the handle is homeomorphic to two disjoint segments from where the flow exits.

(3) A double handle H
D
ssu has a flow defined on D1 and D2 by the vector field in (b) where

d1 and d2 are the unstable manifolds on the respective disks. The attaching region of the
handle is homeomorphic to two copies of two segments that intersect transversally and
from where the flow exits.

(4) A double handle H
D
sss has a flow defined on D1 and D2 by the vector field in (b) where

d1 and d2 are the stable manifolds on the respective disks. The attaching region of the
handle is homeomorphic to two copies of two segments from where the flow exits.

(5) A double handle H
D
sr has a flow defined on D1 by the vector field in (c) and has a flow

defined on D2 by the vector field in (b) where d2 is the unstable manifold in D2. The
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Figure 28. Whitney handles HW
a , HW

ss , H
W
su and H

W
r .

attaching region of the handle is homeomorphic to @D2 on which two segments intersect
transversally and from where the flow exits.

(6) A double handle H
D
r has a flow defined on D1 and D2 by the vector field in (c). The at-

taching region of the handle is homeomorphic to @D1 and @D2 intersecting transversally
at two distinct points and from where the flow exits.

Definition 4.7. A triple handle is formed by three disks D1, D2 and D3 centered at p with
diameters d1 ⇢ D1, d2 ⇢ D2 and d3 ⇢ D3 intersecting transversally at p and pairwise disjoint.
These diameters are formed by a union of orbits as described below. See Figure 30.

(1) A triple handle H
T
a has a flow defined on D1, D2 and D3 by the vector field in (a). The

attaching region of the handle is the empty set.

(2) A triple handle H
T
ssa has a flow defined on D1 by the vector field in (a) and has a flow

defined on D2 and D3 by the vector field in (b) where d2 and d3 are stable manifolds
of D2 and D3 respectively. The attaching region of the handle is homeomorphic to two
copies of two segments that intersect transversally from where the flow exits.

(3) A triple handle H
T
ssr has a flow defined on D1 by the vector field in (c) and has a flow

defined on D2 and D3 by the vector field in (b) where d2 and d3 are unstable manifolds
of D2 and D3 respectively. The attaching region of the handle is homeomorphic to @D2

from where the flow exits with four segments intersecting @D2 transversally and also
from where the flow exits.

(4) A triple handle H
T
r has a flow defined on D1, D2 and D3 by the vector field in (c). The

attaching region of the handle is homeomorphic to three circles, all from which the flow
exits and that pairwise intersect transversally at two points.

4.3. Constructing Isolating Blocks. In this section, we construct an isolating block by gluing
a GS handle H

G
x to a collar of a distinguished branched one manifold N

�
⇥ [0, 1].
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Figure 29. Double handles HD
a , H

D
sa, H

D
ssu , H

D
sss , H

D
sr and H

D
r .

Definition 4.8. A distinguished branched one manifold is a topological space, having at most
four connected components, locally constructed from a finite number of branched charts. Each
branched chart is the transversal intersection of two arcs in the plane.

In Figure 31, we present examples of distinguished branched 1-manifolds.
It is interesting to note that the di↵erent attachments of a given GS handle HG

x produces non-
homeomorphic isolating blocks (N,N

�). However, all isolating blocks have the same Conley
index, i.e., the homotopy type of N/N

� is the same and independent of the block.

Theorem 4.9. Let p be a simple singularity of a Gutierrez-Sotomayor flow Xt on M . Suppose
that p satisfies the Poincaré-Hopf condition for the positive numbers e

+ , e
�, {b

+
k }

e+

k=1 and

{b
�
k }

e�

k=1. Then there exists an isolating block N for p with @N = @N
+
[ @N

� such that the
following holds:

(1) e
+ (respectively e

�) is the number of connected components of @N+ (respectively @N
�),

corresponding to the entering (respectively exiting) boundary components of the flow. In
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Figure 30. Triple handles HT
a , H

T
ssa, H

T
ssr e H

T
r .

Figure 31. Distinguished branched one-manifolds.

other words, we have a disjoint union

@N
+ =

e+[

k=1

@N
+
k

�
respectively @N

� =
e�[

k=1

@N
�
k

�
.

(2) the rank H1(@N
+
k ) = b

+
k with k = 1, ..., e+ and the rankH1(@N

�
k ) = b

�
k with

k = 1, ..., e�.

(3) the rank H⇤(N/@N
�) = h⇤ where (h0, h1, h2) is the numerical Conley index of p.

Proof. For each attractor and repeller, the GS handle HG
a where G = R, C, D, W or T is always

an isolating block. For saddle handles there are di↵erent topological types of isolating blocks
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depending on the distinguished branched one manifolds and the attaching maps to their collars.

Consider a distinguished branched one manifold N
� =

Se�

k=1 N
�
k with e

� components and each
N

�
k with b

�
k as its first Betti number. Let HG

x be a GS handle with attaching region Ak and the

collar
Se�

k=1(N
�
k ⇥ I) of N�

k . Attach the handle to the distinguished branched one manifold via
an embedding

f : Ak !

e�[

k=1

(N�
k ⇥ 1).

⇤
See Figures 32, 33, 34, 35, 36 and 37, where we present constructions for specific cases of

saddle type isolating blocks for a simple singularity of a Gutierrez-Sotomayor flow Xt.

N
� N N

+

Figure 32. Isolating blocks containing a regular handle H
R
s .

Other blocks can be constructed from these by adding cylinders where the flow is trivial. See
Figure 38.
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N
� N N

+

Figure 33. Isolating blocks containing a cone handle H
C
s .

N
� N N

+

Figure 34. Isolating blocks containing a Whitney handle H
W
ss .
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N
� N N

+

Figure 35. Isolating blocks containing a Whitney handle H
W
su .

N
� N N

+

Figure 36. Isolating blocks containing a double handle H
D
sa.

5. Lyapunov Graphs

Let f be a Lyapunov function associated to the Gutierrez-Sotomayor flow Xt on the two-
manifold M with simple singularities. We define the following equivalence relation on M : x ⇠f y

, x and y belong to the same connected component of a level set of f .
We call M/⇠f the Lyapunov graph associated to Xt and f .
On M/⇠f each connected component of a level set f�1(c) collapses to a point, thus f�1(c)/⇠f

is a finite set of distinct points on M/⇠f . A point on M/⇠f is a vertex if by the equivalence
relation it corresponds to a component of a level set containing a unique singularity. All other
points are edge points. The vertices v of M/⇠f can be labelled with the type of singularity
and we denote by e

+
v the number of positively incident edges and e

�
v the number of negatively

incident edges to v.
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Figure 37. Isolating blocks containing a double handle H
D
sss .

Figure 38. Isolating blocks containing a regular handle.

Theorem 5.1. Supose that Xt : M ! M is a Gutierrez-Sotomayor flow with Lyapunov function
f : M ! R. Let L = M/⇠f , then L is a finite directed graph without oriented cycles.

Proof. By the definition of a Lyapunov function we have that the critical points of f correspond
to the singularities of Xt. Since Xt has a finite number of singularities then there exists a finite
number of critical values of f , c1, c2, . . . , cn. Thus, f�1(ci, ci+1) is di↵eomorphic to N ⇥ (0, 1)
where N = f

�1(c) with c 2 (ci, ci+1). Hence by Lemma 2.5, N is a branched one manifold with
a finite number of components.

Also, f�1(ci) has a finite number of components since if this were not the case f
�1(ci + ✏)

would have infinite components for any ✏ > 0. Only one of these components, denoted by Xi,
contains the critical point of f since by definition a Lyapunov function f separates critical points.

Now ifN0 ⇢ f
�1(ci) does not contain critical points of f then the component of f�1(ci�1, ci+1)

that containsN0 is di↵eomorphic toN0⇥(0, 1). Indeed, M�
S

i Xi is di↵eomorphic to the disjoint
union of Nj ⇥ (0, 1) where each Nj is a connected compact branched one-manifold of M . Thus,
if P : M ! L is the quotient mapping that identifies each component of a level set of f to a
point and xi = P (Xi) then it follows that L� {xi} is a finite set of open intervals. Hence, since
L is compact, it is a graph.

Since f decreases along orbits of Xt then the Lyapunov graph L associated to Xt and f has
no oriented cycle. ⇤

On the other hand, to construct a flow that satisfies a given dynamics, a great combinatorial
tool is an abstract Lyapunov graph which can aggregate topological and dynamical information.

Definition 5.2. An abstract Lyapunov graph is a finite connected oriented graph L which pos-
sesses no oriented cycles and with each vertex labelled with the numerical Conley indices. Each
edge a that is incoming (resp. outgoing) i.e., positively incident to v (resp. negatively incident
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to v) will be labelled with a nonnegative integer b
+
a (resp. b

�
a ) where a 2 {1, . . . , e+} (resp.

a 2 {1, . . . , e�}), which we refer to as the weight on an edge.

The question becomes: once necessary conditions on Lyapunov graphs are found, are they
su�cient to realize an abstract graph as a GS flow on a manifold?

Theorem 5.3. A Lyapunov graph L of a Gutierrez-Sotomayor flow Xt with simple singularities
on M , satisfies the following conditions:

(1) If a vertex v is labelled with a repelling (attracting) singularity then:
(a) If p 2 M(R) then e

�
v = 1 and b

�
1 = 1 (e+v = 1 and b

+
1 = 1).

(b) If p 2 M(C) then e
�
v = 2 and b

�
1 = b

�
2 = 1 (e+v = 2 and b

+
1 = b

+
2 = 1).

(c) If p 2 M(W) then e
�
v = 1 and b

�
1 = 2 (e+v = 1 and b

+
1 = 2).

(d) If p 2 M(D) then e
�
v = 1 and b

�
1 = 3 (e+v = 1 and b

+
1 = 3).

(e) If p 2 M(T ) then e
�
v = 1 and b

�
1 = 7 (e+v = 1 and b

+
1 = 7).

(2) If a vertex v is labelled with a saddle singularity p then:
(a) If p 2 M(R) then 1  e

�
v  2 and 1  e

+
v  2.

(b) If p 2 M(C) then 1  e
�
v  2 and 1  e

+
v  2.

(c) If p 2 M(W) then
(i) If p is of type si then e

�
v = 1 and 1  e

+
v  2.

(ii) If p is of type se then 1  e
�
v  2 and e

+
v = 1.

(d) If p 2 M(D) then
(i) If p is of type as then 1  e

�
v  2 and e

+
v = 1.

(ii) If p is of type rs then e
�
v = 1 and 1  e

+
v  2.

(iii) If p is of type si then 1  e
�
v  2 and 1  e

+
v  4.

(iv) If p is of type se then 1  e
�
v  4 and 1  e

+
v  2.

(e) If p 2 M(T ) then
(i) If p is of type ssa then 1  e

�
v  2 and e

+
v = 1.

(ii) If p is of type ssr then e
�
v = 1 and 1  e

+
v  2.

All weights on the entering and exiting edges of v must satisfy the table.

M(G) type e
�
v e

+
v weights

p 2 M(R) a 0 1 b
+
1 = 1

s 1 1 b
�
1 = b

+
1

s 1 2 b
�
1 = b

+
1 + b

+
2 � 1

s 2 1 b
+
1 = b

�
1 + b

�
2 � 1

r 1 0 b
�
1 = 1

p 2 M(C) a 0 2 b
+
1 = b

+
2 = 1

s 1 1 b
�
1 = b

+
1

s 2 2 b
�
1 + b

�
2 = b

+
1 + b

+
2

r 2 0 b
�
1 = b

�
2 = 1
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p 2 M(W) a 0 1 b
+
1 = 2

su 1 1 b
�
1 = b

+
1 + 1

su 1 2 b
�
1 = b

+
1 + b

+
2

ss 1 1 b
+
1 = b

�
1 + 1

ss 2 1 b
+
1 = b

�
1 + b

�
2

r 1 0 b
�
1 = 2

p 2 M(D) a 0 1 b
+
1 = 3

sa 1 1 b
+
1 = b

�
1 + 2

sa 2 1 b
+
1 = b

�
1 + b

�
2 + 1

sr 1 1 b
�
1 = b

+
1 + 2

sr 1 2 b
�
1 = b

+
1 + b

+
2 + 1

ssu 1 1 b
�
1 = b

+
1 + 2

ssu 1 2 b
�
1 = b

+
1 + b

+
2 + 1

ssu 1 3 b
�
1 = b

+
1 + b

+
2 + b

+
3

ssu 1 4 b
�
1 = b

+
1 + b

+
2 + b

+
3 + b

+
4 � 1

ssu 2 1 b
+
1 = b

�
1 + b

�
2 � 3

ssu 2 2 b
�
1 + b

�
2 = b

+
1 + b

+
2 + 2

ssu 2 3 b
�
1 + b

�
2 = b

+
1 + b

+
2 + b

+
3 + 1

ssu 2 4 b
�
1 + b

�
2 = b

+
1 + b

+
2 + b

+
3 + b

+
4

sss 1 1 b
+
1 = b

�
1 + 2

sss 1 2 b
�
1 = b

+
1 + b

+
2 � 3

sss 2 1 b
+
1 = b

�
1 + b

�
2 + 1

sss 2 2 b
+
1 + b

+
2 = b

�
1 + b

�
2 + 2

sss 3 1 b
+
1 = b

�
1 + b

�
2 + b

�
3

sss 3 2 b
+
1 + b

+
2 = b

�
1 + b

�
2 + b

�
3 + 1

sss 4 1 b
+
1 = b

�
1 + b

�
2 + b

�
3 + b

�
4 � 1

sss 4 2 b
+
1 + b

+
2 = b

�
1 + b

�
2 + b

�
3 + b

�
4

r 1 0 b
�
1 = 3

p 2 M(T ) a 0 1 b
+
1 = 7

ssa 1 1 b
+
1 = b

�
1 + 2

ssa 2 1 b
+
1 = b

�
1 + b

�
2 + 1

ssr 1 1 b
�
1 = b

+
1 + 2

ssr 1 2 b
�
1 = b

+
1 + b

+
2 + 1

r 1 0 b
�
1 = 7

Proof. First, we prove the inequalities on the degree of the vertices v in L.
Let L be a Lyapunov graph associated to a Gutierrez-Sotomayor flow Xt and f a Lyapunov

function on a two-manifold with simple singularities M . If p is a singularity such that f(p) = c,
denote by N1 the component of f�1([c�✏, c+✏]), with ✏ > 0 su�ciently small so that it contains
only one singular point p. Let N0 = N1 \ f

�1(c� ✏). Then (N1, N0) is an index pair for p.
Since p is a singularity then @N1 6= ;, thus, H2(N1) = 0. Also, N1 is connected, thus

eH0(N1) = 0. Let v be the vertex of L labelled with p then dim H0(N0) = e
�
v and if N0 6= ; then

dim eH0(N0) = e
�
v � 1.

Hence, for N0 we have the following long exact sequence:

0 �! CH2(p)
@2
�! H1(N0)

i1
�! H1(N1)

p1
�! CH1(p)

@1
�! eH0(N0) �! 0.

Secondly, we prove the conditions on the weights of the edges incident to v.
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The Theorem 4.2 relates the first Betti number of the boundary components that are entering
sets and exiting sets for the flow, @N+

1 and @N
�
1 , the isolating block (N1, N0) of a singularity,

p 2 M , of Xt with the number of boundary components of N1 and the numerical Conley indices
of p 2 M . Since the fixed point p 2 M corresponds to a vertex v on the Lyapunov graph, @N+

1

(@N�
1 ) corresponds to edges positively (negatively) incident to v then Theorem 4.2 relates the

degree (of the entering and exiting edges) of v, to the weights on the edges (entering and exiting)
incidents to v and the numerical Conley index with which v was labelled.

(8) (h2 � h1 + h0)� (h2 � h1 + h0)
⇤ = e

+
v � B

+
� e

�
v + B

�

where B
+ =

Pe+v
k=1 b

+
k and B

� =
Pe�v

k=1 b
�
k .

Considering all the possibilities for e
+, e� in the inequalities involving the degree of v and

using the above equations, we obtain the weights on the table and the result follows.
⇤

Example 5.4. Gluing the isolating blocks to obtain a Gutierrez-Sotomayor flow.

3

2

1 1

(0, 0, 0)W

(0, 0, 0)W

(1, 0, 0)D

(0, 0, 1)R
(0, 0, 1)R

Figure 39. An abstract Lyapunov graph and its realization as a GS flow.

We conclude this paper with a couple of remarks. Example 5.4 suggests that one may be able
to find su�cient conditions on abstract Lyapunov graphs in order to check their realizability.
See Figure 39. This has not yet been done and remains an open question.

Also, one would like to include in a study similar to this one, the inclusion of periodic orbits
and singular cycles.
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MORIN SINGULARITIES OF COLLECTIONS OF ONE-FORMS AND

VECTOR FIELDS

CAMILA M. RUIZ

Abstract. Inspired by the properties of a collection of n gradient vector fields ∇f1, . . . ,∇fn
from a Morin map f = (f1, . . . , fn) ∶ M → Rn, with dimM ≥ n, we introduce the notion of
Morin singularities in the context of collections of one-forms and collections of vector fields. We
also study the singularities of generic one-forms which are related to specific collections (Morin
collections) and we generalize a result of T. Fukuda on Euler characteristic ([5, Theorem 1])
for the case of collections of one-forms and vector fields.

1. Introduction

Morin maps are those which admit only Morin singularities. It is well known that these
singularities are stable, and conversely, that corank one stable map-germs are Morin singularities.
Thereby, Morin singularities are fundamental and frequently arise as singularities of maps from
one manifold to another, as observed by K. Saji in [15]. These singularities have been studied
by many authors in different contexts as [9, 1, 5, 12, 13], and more recently [7, 18, 21, 6, 3, 8,
2, 15, 16, 14, 11]. In particular, J.M. Èliašberg [4], J.R. Quine [10], T. Fukuda [5], O. Saeki [12]
and N. Dutertre and T. Fukui [3] investigate relations between the topology of a manifold and
the topology of the critical locus of maps with Morin singularities.

In this work, we introduce the notion of Morin singularities in the context of collections of one-
forms that are not necessarily differential (Definition 2.26) and collections of vector fields that
are not necessarily gradient (Definition 2.28). Our main result (Theorem 4.13) is a generalization
of Fukuda’s Theorem on Euler characteristic [5, Theorem 1] for the case of Morin collections of
smooth one-forms: we show that if ! = {!i}1≤i≤n is a Morin collection (Definition 2.26) defined
on an m-dimensional compact manifold M then

�(M) ≡ n�
k=1

�(Ak(!)) mod 2,

where �(M) denotes the Euler characteristic of M and Ak(!) is the set given by the Ak-type
singular points of !.

Our original inspiration was provided by the following properties of a collection {∇f1, . . . ,∇fn}
of n gradient vector fields from a Morin map f = (f1, . . . , fn).

Let f ∶Mm → Rn be a smooth Morin map defined on an m-dimensional Riemannian manifold
M , with m ≥ n. The singular points of f = (f1, . . . , fn) are the points x ∈M where the rank of the
derivative df(x) is equal to n− 1. By taking the gradient of each coordinate function f1, . . . , fn,
we obtain a “singular collection” of n vector fields {∇f1, . . . ,∇fn} defined on M whose singular
locus ⌃ is given by

⌃ = {x ∈M � rank(∇f1(x), . . . ,∇fn(x)) = n − 1}.
2010 Mathematics Subject Classification. Primary 57R45; Secondary 57R70, 58K45.
Key words and phrases. Morin singularities, collections of vector fields, collections of one-forms, critical locus.
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For any k = 1, . . . , n, it is known that the sets Ak(f) and Ak(f), given by the Ak-type singular
points of f and its topological closure, respectively, are (n−k)-dimensional smooth submanifolds
of M satisfying
(i) ⌃ = A1(f);
(ii) Ak(f) = n�

i=kAi(f);
(iii) For each x ∈ ⌃,

rankdf�
Ak(f)(x) = � n − k, if x ∈ Ak(f),

n − k − 1, if x ∈ Ak+1(f);
(see [5], [9], [12] for Morin singularities). By item (iii), the intersection of the vector space
spanned by ∇f1(x), . . . ,∇fn(x) and the normal vector space to Ak(f) at x is a vector subspace
whose dimension is given by

dim(�∇f1(x), . . . ,∇fn(x)� ∩NxAk(f)) = � k − 1, if x ∈ Ak(f),
k, if x ∈ Ak+1(f).

Then, �∇f1(x), . . . ,∇fn(x)� and NxAk(f) intersect transversally at x if and only if x ∈ Ak(f).
Otherwise, if x ∈ Ak+1(f) and {z1(x), . . . , zn−k−1(x)} is a basis of a vector subspace complemen-
tary to �∇f1(x), . . . ,∇fn(x)� ∩NxAk(f) in �∇f1(x), . . . ,∇fn(x)� then

dim(�z1(x), . . . , zn−k−1(x)� ∩NxAk+1(f)) = � 0, if x ∈ Ak+1(f),
1, if x ∈ Ak+2(f).

Therefore �z1(x), . . . , zn−k−1(x)� and NxAk+1(f) intersect transversally at x if and only if
x ∈ Ak+1(f), and Ak+1-type singular points of f can be distinguished from Ak+2(f) by this
transversality or, equivalently, by the dimension of such intersection. We will follow this idea to
define Morin singularities of collections.

This paper is organized as follows. In Section 2, we consider a non-degenerate collection of
smooth one-forms ! = {!i}1≤i≤n (Definition 2.2) defined on a smooth m-dimensional manifold
M , with m ≥ n. Then, we define the Ak-type singularities of !, for k = 1, . . . , n, in order to
decompose the singular set ⌃1(!) of ! into disjoint submanifolds according to the type of each
singular point. To do that, we give an inductive definition of the singular subsets ⌃k(!) and
Ak(!), in which we take successive transversality conditions (Definitions 2.3, 2.9, 2.10, 2.11,
2.18, 2.19, 2.25 and Remark 2.14). In particular, if the required transversality conditions hold,
we show that the singular subsets Ak(!) and ⌃k(!) = Ak(!) are (n − k)-dimensional smooth
submanifolds of M (Lemmas 2.4, 2.12, 2.20 and Theorem 2.22) such that Ak(!) = ∪i≥kAi(f)
(Remark 2.24). Furthermore, in Proposition 2.23 (a) and Lemma 4.5 we provide equations that
define the singular sets ⌃k(!) locally.

We will say that ! = {!i}1≤i≤n is a Morin collection of one-forms (Definition 2.26) if it admits
only Morin Ak-type singular points, for k = 1, . . . , n (see Remark 2.27).

The definition of Morin singularities for collections of n one-forms can be analogously adapted
to collections of n vector fields as follows. When considering a smooth manifold M , differential
one-forms are naturally dual to vector fields, more specifically, if we fix a Riemannian metric on
M then there exists an isomorphism between the tangent and cotangent bundles of M , such that
vector fields and one-forms can be identified. To illustrate this notion, we give some examples
of Morin collections of vector fields in the end of Section 2.

We remark that in the maximal case, that is, when we have a Morin collection of m vector
fields defined on an m-dimensional manifold, our definition of Ak-type singularities is equivalent
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to that Ak-type singularities presented by Saji et al. [17].

Let L ∈ RPn−1 be a straight line in Rn and let ⇡L ∶ Rn → L be the orthogonal projection to L.
In [5], T. Fukuda applied Morse theory and well known properties of the singular sets Ak(f) of a
Morin map f ∶M → Rn to study critical points of mappings ⇡L ○f ∶M → L and their restrictions
to singular sets ⇡L ○ f �Ak(f) and ⇡L ○ f �Ak(f). Similarly, in Sections 3 and 4, we investigate the
zeros of a generic one-form

⇠(x) = n�
i=1

ai!i(x)
associated to a Morin collection of n smooth one-forms ! = {!i}1≤i≤n. We verify that ⇠, ⇠�Ak(!)
and ⇠�

Ak(!) have properties that are similar to that of generic orthogonal projections ⇡L ○ f(x)
associated to Morin maps f .

More precisely, let a = (a1, . . . , an) ∈ Rn � {�0} and let ! = {!i}1≤i≤n be a Morin collection
of smooth one-forms on M , in Section 3 we prove that the zero set of ⇠(x) = ∑n

i=1 ai!i(x) is
contained in ⌃1(!) (Lemma 3.1) and, for almost every a ∈ Rn�{�0}, the zero set of ⇠�⌃k(!) does not
intercept ⌃k+2(!), for k = 0, . . . , n−2 (Lemmas 3.6 and 3.7). Moreover, we present necessary and
sufficient conditions for a zero of ⇠�⌃k+1(!) to be a zero of ⇠�⌃k(!) , for k = 0, . . . , n−1 (Lemmas 3.2
and 3.3). In Section 4, we prove that generically the one-form ⇠(x) and its restrictions ⇠�⌃k(!)
and ⇠�Ak(!) admit only non-degenerate zeros (Lemmas 4.6, 4.7, 4.8 and 4.12). In Lemmas 4.9,
4.10 and 4.11, we give conditions for a non-degenerate zero of ⇠�⌃k+1(!) to be a non-degenerate
zero of ⇠�⌃k(!) , for k = 0, . . . , n − 1.

As a consequence of these results, we end the paper with Theorem 4.13 whose proof uses the
classical Poincaré-Hopf Theorem for one-forms.

2. Morin singularities of collections of one-forms

Let 0 < n ≤ m be integer numbers and let M be an m-dimensional smooth manifold with
cotangent space at x ∈M denoted by T ∗xM . We define the “n-cotangent bundle” of M by

T ∗Mn = {(x,'1, . . . ,'n) � x ∈M ; 'i ∈ T ∗xM, i = 1, . . . , n},
which is an m(n+1)-dimensional smooth manifold locally diffeomorphic to U ×Mm,n(R), where
U ⊂ Rm is an open set and Mm,n(R) denotes the set of real matrices of size m × n.

Lemma 2.1. Let T ∗Mn,n−1 ⊂ T ∗Mn be defined by

T ∗Mn,n−1 = {(x,'1, . . . ,'n) ∈ T ∗Mn � rank('1, . . . ,'n) = n − 1} .
Then T ∗Mn,n−1 is smooth a submanifold of T ∗Mn of dimension n(m + 1) − 1.
Proof. Let Mn−1

m,n(R) be the smooth submanifold of Mm,n(R) of codimension m−n+1 consisting of
the matrices with rank equal to n−1. The set T ∗Mn,n−1 is locally diffeomorphic to U×Mn−1

m,n(R),
where U ⊂ Rm is an open subset. Thus, T ∗Mn,n−1 is a smooth submanifold of T ∗Mn of dimension
n(m + 1) − 1. ⇤

Let ! = {!i}1≤i≤n be a collection of n smooth one-forms on M , we will consider the smooth
map ! ∶M → T ∗Mn defined by

!(x) = (x,!1(x), . . . ,!n(x)).
Definition 2.2. We say that ! = {!i}1≤i≤n is a non-degenerate collection if the map
! ∶M → T ∗Mn as above satisfies the following conditions:
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(a) ! � T ∗Mn,n−1 in T ∗Mn,(b) !−1(T ∗Mn,≤n−2) = �,
where T ∗Mn,≤n−2 = {(x,'1, . . . ,'n) ∈ T ∗Mn � rank('1, . . . ,'n) ≤ n − 2}.

Notice that this definition implies that if ! = {!i}1≤i≤n is a non-degenerate collection on M ,
then for each x ∈M the rank of !1(x), . . . ,!n(x) is either equal to n or equal to n − 1.
Definition 2.3. Let ! = {!i}1≤i≤n be a non-degenerate collection on M . We define the singular
set of the collection ! as the set ⌃1(!) of points x ∈M where the rank of ! is not maximal, that
is

⌃1(!) = {x ∈M � rank(!1(x), . . . ,!n(x)) = n − 1}.
Lemma 2.4. Let ! = {!i}1≤i≤n be a non-degenerate collection on M . Then ⌃1(!) is either the
empty set or an (n − 1)-dimensional smooth submanifold of M .

Proof. Notice that ⌃1(!) = !−1(T ∗Mn,n−1) and that ! � T ∗Mn,n−1. Thus, if ⌃1(!) ≠ � then
⌃1(!) is a smooth submanifold of M of codimension m − n + 1 and the result follows. ⇤

Let ! = {!i}1≤i≤n be a non-degenerate collection of smooth one-forms defined on an m-
dimensional smooth manifold M . If ! satisfies some transversality conditions, we will define
the Ak-type singularities of !, for k = 1, . . . , n, in order to decompose the singular set ⌃1(!)
into disjoint submanifolds according to the type of each singular point. Firstly, we define the
A1-type singular points in ⌃1(!). We will denote by ⌃2(!) the subset of ⌃1(!) given by all
singular points of ! that are not A1-type. For each k = 2, . . . , n, we repeat this process defining
the Ak-type singular points in ⌃k(!) and denoting by ⌃k+1(!) the subset of ⌃k(!) given by all
singular points of ! that are not Ak-type. To do that, we present in this section an inductive
definition of Ak-type Morin singularities of !.

Remark 2.5. Let S ⊂M be a smooth submanifold of M . We will adopt the following notation

N∗xS = { ∈ T ∗xM � (TxS) = 0}.
Definition 2.6. Let ! = {!i}1≤i≤n be a non-degenerate collection on M . Given

(x,') = (x,'1, . . . ,'n−1),
we define the sets

T ∗⌃1Mn−1 = {(x,') � x ∈ ⌃1(!);'1, . . . ,'n−1 ∈ T ∗xM}
and

N∗⌃1Mn−1 = {(x,') ∈ T ∗⌃1Mn−1 � rank('1, . . . ,'n−1) = n − 1,
dim(�'1, . . . ,'n−1� ∩N∗x⌃1(!)) = 1},

where �'1, . . . ,'n−1� denotes the subspace of T ∗xM spanned by {'1, . . . ,'n−1}.
Lemma 2.7. T ∗⌃1Mn−1 is a smooth manifold of dimension m(n − 1) + n − 1.
Proof. For a non-degenerate collection !, we know that ⌃1(!) is an (n−1)-dimensional smooth
submanifold of M . Then, for each (x,') ∈ T ∗⌃1Mn−1 there exists an open subset V ⊂ Rn−1 such
that T ∗⌃1Mn−1 is locally diffeomorphic to V ×Mm,n−1(R) near (x,') and the result follows. ⇤

Lemma 2.8. N∗⌃1Mn−1 is a smooth hypersurface of T ∗⌃1Mn−1, that is, a smooth submanifold of
dimension m(n − 1) + n − 2.
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Proof. Since ! is non-degenerate, it follows from Lemma 2.4 that ⌃1(!) is a smooth submanifold
of codimension m−n+ 1 of M . Then, for each p ∈ ⌃1(!) there exist an open neighborhood U of
p in M and smooth functions F1, . . . , Fm−n+1 ∶ U → R such that

U ∩⌃1(!) = {x ∈ U � F1(x) = . . . = Fm−n+1(x) = 0}
with rank(dF1(x), . . . , dFm−n+1(x)) =m − n + 1, for each x ∈ U ∩⌃1(!), and

N∗p⌃1(!) = �dF1(p), . . . , dFm−n+1(p)�.
If (p, '̃) = (p, '̃1, . . . , '̃n−1) ∈ N∗⌃1Mn−1 then

rank('̃1, . . . , '̃n−1, dF1(p), . . . , dFm−n+1(p)) =m − 1,
since by the definition of N∗⌃1Mn−1, rank('̃1, . . . , '̃n−1) = n − 1 and

dim(�'̃1, . . . , '̃n−1� ∩N∗p⌃1(!)) = 1.
In this way,

det(dF1(p), . . . , dFm−n+1(p), '̃1, . . . , '̃n−1) = 0
and fixing the notation '̃i = ('̃1

i , . . . , '̃
m
i ) for i = 1, . . . , n − 1, we can assume that the minor

����������������������������

@F1

@x1
(p) � @Fm−n+1

@x1
(p) '̃1

1 � '̃1
n−2

⋮ � ⋮ ⋮ � ⋮
@F1

@xm−1 (p) �
@Fm−n+1
@xm−1 (p) '̃m−1

1 � '̃m−1
n−2

����������������������������
does not vanish and consequently, that

(1)

����������������������������

@F1

@x1
(x) � @Fm−n+1

@x1
(x) '1

1 � '1
n−2

⋮ � ⋮ ⋮ � ⋮
@F1

@xm−1 (x) �
@Fm−n+1
@xm−1 (x) 'm−1

1 � 'm−1
n−2

����������������������������
≠ 0

for all (x,') ∈ (⌃1(!)∩U)×V, where V ⊂ Rm(n−1) is an open neighborhood of '̃. Thus, N∗⌃1Mn−1
can be locally given by

N∗⌃1Mn−1 = {(x,') ∈ U × V � F1 = . . . = Fm−n+1 =� = 0},
where �(x,') = det(dF1(x), . . . , dFm−n+1(x),'1, . . . ,'n−1). Let B(x,') be the square matrix
of order m whose columns are given by the coefficients of the one-forms dF1(x), . . ., dFm−n+1(x),
'1, . . ., 'n−1:

B(x,') = � dF1(x) � dFm−n+1(x) '1 � 'n−1 � .
By Laplace expansion along the last column of B(x,'), we have

�(x,') = m�
i=1
'i
n−1 cof('i

n−1,B),
where cof('i

n−1,B) denotes the cofactor of 'i
n−1 in the matrix B(x,'). Thus

@�

@'m
n−1
(x,') = m�

i=1
cof('i

n−1,B)@'i
n−1

@'m
n−1
+'i

n−1 @ cof('i
n−1,B)

@'m
n−1
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and since cof('i
n−1,B) does not depend on the variable 'm

n−1, we have

@ cof('i
n−1,B)

@'m
n−1

= 0, for i = 1, . . . ,m.

Then,
@�

@'m
n−1
(x,') = cof('m

n−1,B) (1)≠ 0,

and the derivative of �(x,') with respect to ', denoted by d'�(x,'), does not vanish. This
implies that the matrix

���������������

dF1(x)
⋮

dFm−n+1(x)
d�(x,')

���������������

=
�����������

dxF1(x) ⋮⋮ ⋮ O(m−n+1)×(n−1)
dxFm−n+1(x) ⋮� � � � � ⋮ � � � � � �
dx�(x,') ⋮ d'�(x,')

�����������
has rank m − n + 2, where O(m−n+1)×(n−1) denotes a null matrix. Hence,

rank(dF1(x), . . . , dFm−n+1(x), d�(x,')) =m − n + 2,
for each (x,') ∈ N∗⌃1Mn−1 ∩ (U ×V). Therefore, N∗⌃1Mn−1 is a smooth submanifold of T ∗⌃1Mn−1
of dimension m +m(n − 1) − (m − n + 2) =m(n − 1) + n − 2. ⇤

Let ! = {!i}1≤i≤n be a non-degenerate collection on M and �!1(x), . . . ,!n(x)� the subspace
of T ∗xM spanned by {!1(x), . . . ,!n(x)}. Then for each p ∈ ⌃1(!), dim�!1(p), . . . ,!n(p)� = n−1,
and there exist an open neighborhood Up of p in M and a collection {⌦1, . . . ,⌦n−1} of n − 1
smooth one-forms on Up such that {⌦1(x), . . . ,⌦n−1(x)} is a basis of �!1(x), . . . ,!n(x)� for each
x ∈ Up ∩⌃1(!). Let ⌦1 ∶ Up ∩⌃1(!)→ T ∗⌃1Mn−1 be the map given by

⌦1(x) = (x,⌦1(x), . . . ,⌦n−1(x));
we define:

Definition 2.9. We say that collection ! = {!i}1≤i≤n satisfies the “condition I1” if for each
p ∈ ⌃1(!) there exist an open neighborhood Up of p in M and a map ⌦1 ∶ Up ∩⌃1(!)→ T ∗⌃1Mn−1
as defined above, such that on Up the following properties hold:
(a) ⌦1 � N∗⌃1Mn−1 in T ∗⌃1Mn−1,(b) (⌦1)−1(N∗⌃1Mn−1,≥2) = �,
where

N∗⌃1Mn−1,≥2 = {(x,') ∈ T ∗⌃1Mn−1 � rank('1, . . . ,'n−1) = n−1,dim(�'1, . . . ,'n−1�∩N∗x⌃1(!)) ≥ 2}.
Notice that if ! satisfies the condition I1, then for each x ∈ ⌃1(!) ∩ Up,

dim(�⌦1(x), . . . ,⌦n−1(x)� ∩N∗x⌃1(!))
is either equal to 0 or equal to 1. We will prove in Proposition 2.23 that this dimension and the
condition I1 do not depend on the choice of the basis {⌦1, . . . ,⌦n−1}.
Definition 2.10. Let ! = {!i}1≤i≤n be a non-degenerate collection that satisfies the condition
I1. Given p ∈ ⌃1(!), consider an open neighborhood Up of p in M and a map

⌦1(x) = (x,⌦1(x), . . . ,⌦n−1(x))
as in Definition 2.9. We define the sets A1(!) and ⌃2(!) as follows:
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(a) We say that x ∈ Up belongs to A1(!) if x ∈ ⌃1(!) and

dim(�⌦1(x), . . . ,⌦n−1(x)� ∩N∗x⌃1(!)) = 0.
(b) We say that x ∈ Up belongs to ⌃2(!) if x ∈ ⌃1(!) �A1(!), that is, if x ∈ ⌃1(!) and

dim(�⌦1(x), . . . ,⌦n−1(x)� ∩N∗x⌃1(!)) = 1.
Then, for each p ∈ ⌃1(!) we may write

A1(!) ∩ Up = {x ∈ ⌃1(!) ∩ Up � dim(�⌦1(x), . . . ,⌦n−1(x)� ∩N∗x⌃1(!)) = 0};
⌃2(!) ∩ Up = {x ∈ ⌃1(!) ∩ Up � dim(�⌦1(x), . . . ,⌦n−1(x)� ∩N∗x⌃1(!)) = 1};

and we have

A1(!) = �
p∈⌃1(!)

(A1(!) ∩ Up) and ⌃2(!) = �
p∈⌃1(!)

�⌃2(!) ∩ Up� .
Definition 2.11. Let ! = {!i}1≤i≤n be a non-degenerate collection on M that satisfies the
condition I1. We say that x ∈M is an A1-type Morin singularity of ! if x ∈ A1(!).
Lemma 2.12. Let ! = {!i}1≤i≤n be a non-degenerate collection on M that satisfies the condition
I1. Then ⌃2(!) ⊂ ⌃1(!) and ⌃2(!) is either the empty set or an (n − 2)-dimensional smooth
submanifold of M .

Proof. Notice that, locally, ⌃2(!) = (⌦1)−1(N∗⌃1Mn−1) and ⌦1 � N∗⌃1Mn−1. Thus, if ⌃2(!) ≠ �
then ⌃2(!) is a smooth submanifold of ⌃1(!) of codimension 1 and the result follows. ⇤

Lemma 2.13. Let ! = {!i}1≤i≤n be a non-degenerate collection on M that satisfies the condition
I1. For each p ∈ ⌃1(!),

p ∈ ⌃2(!)⇔ dim(�!1(p), . . . ,!n(p)� ∩N∗p⌃1(!)) = 1.
Proof. Given p ∈ ⌃1(!), we can consider a neighborhood Up of p in M and a map

⌦1(x) = (x,⌦1(x), . . . ,⌦n−1(x)),
as in Definition 2.9, such that �⌦1(p), . . . ,⌦n−1(p)� = �!1(p), . . . ,!n(p)�. By Definition 2.10 (b),
p ∈ ⌃2(!) if and only if dim(�⌦1(p), . . . ,⌦n−1(p)� ∩N∗p⌃1(!)) = 1. Thus, p ∈ ⌃2(!) if and only
if dim(�!1(p), . . . ,!n(p)� ∩N∗p⌃1(!)) = 1. ⇤

Remark 2.14. The following results are used in the formulation of an inductive definition of
Ak-type Morin singularities of ! = {!i}1≤i≤n, for k = 2, . . . , n.

Let 3 ≤ k ≤ n be an integer number and ! = {!i}1≤i≤n a non-degenerate collection on M with
singular set ⌃1(!). Let us suppose that, for every i = 2, . . . , k−1, ⌃i(!) is a smooth submanifold
of M such that:
(a) ⌃i(!) ⊂ ⌃i−1(!) ⊂ . . . ⊂ ⌃1(!);(b) ⌃i(!) is the empty set or an (n − i)-dimensional smooth submanifold of M ;(c) For each p ∈ ⌃i−1(!), we have

p ∈ ⌃i(!)⇔ dim(�!1(p), . . . ,!n(p)� ∩N∗p⌃i−1(!)) = i − 1.
Notice that in Lemmas 2.12 and 2.13 we have already proved that if ! = {!i}1≤i≤n satisfies the
condition I1, then the above hypothesis holds for k = 3, that is, ⌃2(!) is a smooth submanifold of
M satisfying (a), (b) and (c). Now, we assume that this hypothesis holds for every i = 2, . . . , k−1,
with k > 3, and we will prove that it also holds for i = k if ! = {!i}1≤i≤n satisfies the “condition
Ik−1” that will be given in Definition 2.18.
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Definition 2.15. Let r = n − k + 1 and (x,') = (x,'1, . . . ,'r), we define the sets

T ∗⌃k−1Mr = {(x,') � x ∈ ⌃k−1(!);'1, . . . ,'r ∈ T ∗xM}
and

N∗⌃k−1Mr = {(x,') ∈ T ∗⌃k−1Mr � rank('1, . . . ,'r) = r,
dim(�'1, . . . ,'r� ∩N∗x⌃k−1(!)) = 1},

where �'1, . . . ,'r� denotes the subspace of T ∗xM spanned by {'1, . . . ,'r}.
Lemma 2.16. T ∗⌃k−1Mr is a smooth manifold of dimension mr + r.
Proof. Analogously to the proof of Lemma 2.7. ⇤
Lemma 2.17. N∗⌃k−1Mr is a smooth hypersurface of T ∗⌃k−1Mr, that is, a smooth submanifold
of dimension mr + r − 1.
Proof. Analogously to the proof of Lemma 2.8. ⇤

By hypothesis, for each p ∈ ⌃k−1(!), we have that

dim(�!1(p), . . . ,!n(p)� ∩N∗p⌃k−2(!)) = k − 2
and dim�!1(p), . . . ,!n(p)� = n−1. Then, there exist an open neighborhood Up of p in M and a col-
lection {⌦1, . . . ,⌦r} of r = n−k+1 smooth one-forms on Up such that {⌦1(x), . . . ,⌦r(x)} is a basis
of a vector subspace complementary to �!1(x), . . . ,!n(x)� ∩N∗x⌃k−2(!) in �!1(x), . . . ,!n(x)�
for each x ∈ Up ∩⌃k−1(!). That is, for each x ∈ Up ∩⌃k−1(!) we have that

�⌦1(x), . . . ,⌦r(x)�⊕ ��!1(x), . . . ,!n(x)� ∩N∗x⌃k−2(!)�
is equal to �!1(x), . . . ,!n(x)�. Let ⌦k−1 ∶ Up ∩⌃k−1(!)→ T ∗⌃k−1Mr be the map given by

⌦k−1(x) = (x,⌦1(x), . . . ,⌦r(x)),
we define:

Definition 2.18. We say that collection ! = {!i}1≤i≤n satisfies the “condition Ik−1”, if for each
p ∈ ⌃k−1(!) there exist an open neighborhood Up of p in M and a map

⌦k−1 ∶ Up ∩⌃k−1(!)→ T ∗⌃k−1Mr

as defined above, such that on Up the following properties hold:
(a) ⌦k−1 � N∗⌃k−1Mr in T ∗⌃k−1Mr;(b) (⌦k−1)−1(N∗⌃k−1Mr,≥2) = �;
where

N∗⌃k−1Mr,≥2 = {(x,') ∈ T ∗⌃k−1Mr � rank('1, . . . ,'r) = r,dim(�'1, . . . ,'r� ∩N∗x⌃k−1(!)) ≥ 2}.
Notice that if ! satisfies the condition Ik−1, then for each x ∈ ⌃k−1(!) ∩ Up,

dim(�⌦1(x), . . . ,⌦r(x)� ∩N∗x⌃k−1(!))
is either equal to 0 or equal to 1. We will prove in Proposition 2.23 that this dimension and the
condition Ik−1 do not depend on the choice of the basis {⌦1, . . . ,⌦r}.
Definition 2.19. Let ! = {!i}1≤i≤n be a non-degenerate collection that satisfies the condition
Ik−1. Given p ∈ ⌃k−1(!), consider an open neighborhood Up of p in M and a map

⌦k−1(x) = (x,⌦1(x), . . . ,⌦r(x))
as in Definition 2.18. We define the sets Ak−1(!) and ⌃k(!) as follows:
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(a) We say that x ∈ Up belongs to Ak−1(!) if x ∈ ⌃k−1(!) and

dim(�⌦1(x), . . . ,⌦r(x)� ∩N∗x⌃k−1(!)) = 0.
(b) We say that x ∈ Up belongs to ⌃k(!) if x ∈ ⌃k−1(!) �Ak−1(!), that is, if x ∈ ⌃k−1(!) and

dim(�⌦1(x), . . . ,⌦r(x)� ∩N∗x⌃k−1(!)) = 1.
Then, for each p ∈ ⌃k−1(!) we may write

Ak−1(!) ∩ Up = {x ∈ ⌃k−1(!) ∩ Up � dim(�⌦1(x), . . . ,⌦r(x)� ∩N∗x⌃k−1(!)) = 0};
⌃k(!) ∩ Up = {x ∈ ⌃k−1(!) ∩ Up � dim(�⌦1(x), . . . ,⌦r(x)� ∩N∗x⌃k−1(!)) = 1};

and we have

Ak−1(!) = �
p∈⌃k−1(!)

(Ak−1(!) ∩ Up) and ⌃k(!) = �
p∈⌃k−1(!)

�⌃k(!) ∩ Up� .
Lemma 2.20. Under the hypothesis of Remark 2.14, let ! = {!i}1≤i≤n be a non-degenerate
collection on M that satisfies the condition Ik−1. Then ⌃k(!) ⊂ ⌃k−1(!) and ⌃k(!) is either
the empty set or an (n − k)-dimensional smooth submanifold of M .

Proof. Analogously to the proof of Lemma 2.12. ⇤
Lemma 2.21. Under the hypothesis of Remark 2.14, let ! = {!i}1≤i≤n be a non-degenerate
collection on M that satisfies the condition Ik−1. For each p ∈ ⌃k−1(!),

p ∈ ⌃k(!)⇔ dim(�!1(p), . . . ,!n(p)� ∩N∗p⌃k−1(!)) = k − 1.
Proof. We have that ⌃k−1(!) ⊂ ⌃k−2(!) and for each p ∈ ⌃k−1(!):
(i) N∗p⌃k−2(!) ⊂ N∗p⌃k−1(!) (see Remark 2.5);(ii) dim(�!1(p), . . . ,!n(p)� ∩N∗p⌃k−2(!)) = k − 2;(iii) There exist an open neighborhood Up of p in M and a collection {⌦1(x), . . . ,⌦r(x)} of

r = n−k+1 smooth one-forms on Up such that, for each x ∈ Up∩⌃k−1(!), �!1(x), . . . ,!n(x)�
is equal to

�⌦1(x), . . . ,⌦r(x)�⊕ ��!1(x), . . . ,!n(x)� ∩N∗x⌃k−2(!)� .
For clearer notations, let us denote

�!̄(x)� = �!1(x), . . . ,!n(x)� and �⌦̄k−1(x)� = �⌦1(x), . . . ,⌦r(x)�.
Then,

p ∈ ⌃k(!) (Def. 2.19)⇔ dim ��⌦̄k−1(p)� ∩N∗p⌃k−1(!)� = 1
(i),(iii)⇔ dim ��!̄(p)� ∩N∗p⌃k−1(!)� − dim ��!̄(p)� ∩N∗p⌃k−2(!)� = 1
(ii)⇔ dim ��!̄(p)� ∩N∗p⌃k−1(!)� − (k − 2) = 1⇔ dim ��!̄(p)� ∩N∗p⌃k−1(!)� = k − 1.

⇤
According to Lemmas 2.20 and 2.21, if the hypothesis of Remark 2.14 holds for every

i = 2, . . . , k − 1 and ! = {!i}1≤i≤n satisfies the condition Ik−1, then this hypothesis will hold
for i = 2, . . . , k. In other words, we can state the following result.

Theorem 2.22. Let ! = {!i}1≤i≤n be a non-degenerate collection on M . If ! satisfies the
conditions Ij, for j = 1, . . . , n − 1, then for every k = 1, . . . , n we have that
(a) ⌃k(!) ⊂ ⌃k−1(!) ⊂ . . . ⊂ ⌃2(!) ⊂ ⌃1(!);
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(b) ⌃k(!) is the empty set or an (n − k)-dimensional smooth submanifold of M ;(c) Let k > 1. For each p ∈ ⌃k−1(!),
p ∈ ⌃k(!)⇔ dim(�!1(p), . . . ,!n(p)� ∩N∗p⌃k−1(!)) = k − 1.

The following proposition shows that Definitions 2.9, 2.10, 2.18 and 2.19 do not depend
on the choice of the bases {⌦1(x), . . . ,⌦n−1(x)} and {⌦1(x), . . . ,⌦r(x)}. The first part (a)
provides equations that define the submanifolds ⌃k(!) locally. We use these local equations to
demonstrate part (b). The proof can be found in Appendix A.

Proposition 2.23.

(a) Let p ∈ ⌃k−1(!). There are an open neighborhood U of p in M and smooth functions
Fi ∶ U → R, i = 1, . . . ,m − r, such that

U ∩⌃k−1(!) = {x ∈ U �F1(x) = . . . = Fm−r(x) = 0}
with rank(dF1(x), . . . , dFm−r(x)) = m − r for x ∈ U ∩ ⌃k−1(!), and there is a collection{⌦1(x), . . . ,⌦r(x)} of r smooth one-forms defined on U which is a basis of a vector subspace
complementary to �!̄(x)� ∩N∗x⌃k−2(!) in �!̄(x)� for each x ∈ U ∩⌃k−1(!). Let

�k(x) = det(dF1, . . . , dFm−r,⌦1, . . . ,⌦r)(x).
Then ! satisfies the condition Ik−1 on U if and only if the following properties hold for each
x ∈ U ∩⌃k−1(!):(i) dim�⌦1(x), . . . ,⌦r(x)� ∩N∗x⌃k−1(!) = 0 or 1;

(ii) if dim�⌦1(x), . . . ,⌦r(x)� ∩N∗x⌃k−1(!) = 1 (or equivalently �k(x) = 0), then

rank(dF1(x), . . . , dFm−r(x), d�k(x)) =m − r + 1.
In this case, ⌃k(!) can be locally defined as

U ∩⌃k(!) = {x ∈ U �F1(x) = . . . = Fm−r(x) =�k(x) = 0}.
(b) The definitions of ⌃1(!), ⌃k(!) and Ak−1(!) do not depend on the choice of the basis{⌦1, . . . ,⌦n−k+1}, for every k = 2, . . . , n.

Remark 2.24. It is not difficult to see that, for every k = 1, . . . , n, ⌃k(!) is a closed submanifold
of M such that

⌃k(!) = Ak(!) ∪⌃k+1(!) = n�
i=kAi(!).

Furthermore, Ak(!) = ⌃k(!)�⌃k+1(!). Then, the singular sets Ak(!) are (n− k)-dimensional
submanifolds of M such that Ak(!) = ⌃k(!).

Finally, based on the previous considerations, we define:

Definition 2.25. Let ! = {!i}1≤i≤n be a non-degenerate collection on M that satisfies the
condition Ij, for j = 1, . . . , n−1. For each k ∈ {1, . . . , n}, we say that x ∈M is an Ak-type Morin
singularity of ! if x ∈ Ak(!).
Definition 2.26. Let ! = {!i}1≤i≤n be a collection of n smooth one-forms on M , with
0 < n ≤m. We call ! a Morin collection if ! is non-degenerate and it satisfies the condition Ij,
for j = 1, . . . , n − 1.
Remark 2.27. By Definition 2.26, if ! = {!i}1≤i≤n is a Morin collection then ! admits only
Ak-type singular points for k = 1, . . . , n.
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As we mentioned in Section 1, fixed a Riemannian metric on M , we can consider vector fields
instead of one-forms and define the notion of Morin collection of n vector fields analogously to
the definition of Morin collection of n one-forms:

Definition 2.28. Let V = {Vi}1≤i≤n be a collection of n smooth vector fields on M , with
0 < n ≤m. We call V a Morin collection if V is non-degenerate and it satisfies the condition Ij,
for j = 1, . . . , n − 1.

Next, we present some examples of Morin collections of vector fields.

Example 2.29. Let f ∶ Mm → Rn be a smooth Morin map defined on an m-dimensional Rie-
mannian manifold M , with m ≥ n. The collection of n vector fields V (x) = {∇f1(x), . . . ,∇fn(x)}
given by the gradients of the coordinate functions of f is, clearly, a Morin collection of vector
fields whose singular points are the same as the singular points of f . That is, Ak(V ) = Ak(f),
for k = 1, . . . , n.

Example 2.30. Let a ∈ R be a regular value of a C2 mapping f ∶ R3 → R. Suppose that
M = f−1(a) and consider V = {V1, V2} be a collection of 2 vector fields on M , given by

V1(x) = (−fx2(x), fx1(x),0);
V2(x) = (−fx3(x),0, fx1(x)).

Since a is a regular value of f , we have that ∇f(x) = (fx1(x), fx2(x), fx3(x)) ≠ �0, ∀x ∈M . Thus,
rank(V1(x), V2(x)) is either equal to 2 or equal to 1 . The singular points of V are the points
x ∈M where rank(V1(x), V2(x)) = 1, that is,

⌃1(V ) = {x ∈M � fx1(x) = 0}
and V = {V1, V2} is non-degenerate if and only if rank(∇f(x),∇fx1(x)) = 2 for each x ∈ ⌃1(V ).
In this case, ⌃1(V ) is a submanifold of M of dimension 1. Let x ∈ ⌃1(V ) be a singular point
of V , then the space �V1(x), V2(x)� is spanned by the vector e1 = (1,0,0) and x ∈ A2(V ) if and
only if

rank(∇f(x),∇fx1(x), e1) < 3,
that is, if and only if �2 ∶= fx2fx1x3 −fx3fx1x2 vanishes at x. Moreover, V satisfies the condition
I1 if and only if rank(∇f(x),∇fx1(x),∇�2(x)) = 3 for x ∈ A2(V ). In this case, A2(V ) is a
submanifold of M of dimension 0. Therefore, V = {V1, V2} is a Morin collection of 2 vector
fields if and only if rank(∇f(x),∇fx1(x)) = 2 on the singular set ⌃1(V ) = {x ∈M � fx1(x) = 0}
and det(∇f(x),∇fx1(x),∇�2(x)) ≠ 0 on A2(V ) = {x ∈M � fx1(x) = 0,�2(x) = 0}.
Example 2.31. Let us apply Example 2.30 to the collection of 2 vector fields V = {V1, V2}
defined on the torus T ∶= f−1(R2), where R2 is a regular value of

f(x1, x2, x3) = (�x2
2 + x2

3 − a)2 + (x1 + x2)2,
with a > R. Then, one can verify that ⌃1(V ) = {x ∈ T �x1 + x2 = 0}, that is,

⌃1(V ) = {(x1, x2, x3) ∈ R3 � �x2
2 + x2

3 − a)2 = R2}
and rank(∇f(x),∇fx1(x)) is equal to

rank

��������
0

2x2(�x2
2 + x2

3 − a)�
x2
2 + x2

3

2x3(�x2
2 + x2

3 − a)�
x2
2 + x2

3
1 1 0

��������
,
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which is 2 for all x ∈ T ∩⌃1(V ). Moreover,

�2(x) = −4x3(�x2
2 + x2

3 − a)�
x2
2 + x2

3

,

such that
A2(V ) = {x ∈ T �x1 + x2 = 0;x3 = 0},

which is the set given by the points (−a −R,a +R,0), (a +R,−a −R,0), (−a +R,a −R,0) and(a−R,−a+R,0). It is not difficult to see that rank(∇f(x),∇fx1(x),∇�2(x)) = 3,∀x ∈ T∩A2(V ).
Therefore, the collection V = {V1, V2} given by

V1(x) = �−2x2(�x2
2+x2

3−a)�
x2
2+x2

3

− 2(x1 + x2),2(x1 + x2),0� ;
V2(x) = �−2x3(�x2

2+x2
3−a)�

x2
2+x2

3

,0,2(x1 + x2)� ,
is a Morin collection of 2 vector fields defined on the torus T which admits singular points of
type A1 and A2.

Example 2.32. Let a ∈ R be a regular value of a C2 mapping f ∶ R3 → R. Suppose that
M = f−1(a) and consider W1 and W2 be the orthogonal projections of e2 = (0,1,0) and
e3 = (0,0,1) over TxM given by

W1 = e2 − �e2, ∇f�∇f �� ∇f�∇f � ;
W2 = e3 − �e3, ∇f�∇f �� ∇f�∇f � .

Let W = {W1,W2} be the collection of 2 vector fields defined by W1 = �∇f�2W1 and
W2 = �∇f�2W2, that is,

W1 = (−fx1fx2 , f
2
x1
+ f2

x3
,−fx2fx3);

W2 = (−fx1fx3 ,−fx2fx3 , f
2
x1
+ f2

x2
).

In this case, W1 and W2 are gradients vector fields, that is, W is a collection of 2 gradient
vector fields. It is not difficult to see that rank(W1(x),W2(x)) is either equal to 2 or equal
to 1, and the singular set of W is ⌃1(W ) = {x ∈ M � fx1(x) = 0}. Let x ∈ ⌃1(W ) be a
singular point of W , then the space �W1(x),W2(x)� is spanned by the vector (0, fx3 ,−fx2),
such that A2(W ) = {x ∈ M � fx1(x) = 0, fx1x1(x) = 0}. Therefore, W = {W1,W2} is a Morin
collection of 2 vector fields if and only if rank(∇f(x),∇fx1(x)) = 2 on the singular set ⌃1(W )
and det(∇f(x),∇fx1(x),∇fx1x1(x)) ≠ 0 on A2(W ).
Example 2.33. Let us apply Example 2.32 to the collection of vector fields W = {W1,W2}
defined on the torus T ∶= f−1(R2) of Example 2.31. In this situation, one can verify that ⌃1(W )
is the same singular set as ⌃1(V ) in the Example 2.31. Moreover, rank(∇f(x),∇fx1(x)) = 2
for every x ∈ ⌃1(W ). However, since fx1x1(x) = 2 for every x ∈ ⌃1(W ), W does not admits
singular points of type A2. That is, W is Morin collection of 2 vector fields on T which admits
only Morin singularities of type A1.

Example 2.34. Let us consider the collections V = {V1, V2} and W = {W1,W2} from Examples
2.30 and 2.32 defined on the unit sphere M ∶= f−1(1), where f(x1, x2, x3) = x2

1 + x2
2 + x2

3. We
know that the singular sets of V and W are the same, that is, ⌃1(V ) = ⌃1(W ) = {x ∈M �x1 = 0}
and rank(∇f(x),∇fx1(x)) = 2 for all singular point x. However, �2(x) = 0,∀x ∈ ⌃1(V ), such
that ∇�2 ≡ �0. On the other hand, fx1x1(x) ≠ 0,∀x ∈ ⌃1(W ), such that A2(W ) = �. Therefore,
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V is not a Morin collection and W is a Morin collection that admits only Morin singularities of
type A1.

Example 2.35. In the Example 2.34, if we consider f(x1, x2, x3) = x2
1 − x1x2 + x2

3 then one
can verify that V and W are both Morin collections of 2 vector fields that admits only Morin
singularities of type A1. Let us consider the case where V of Example 2.30 is defined on
M ∶= f−1(−1) and f(x1, x2, x3) = x2

1 − x1x2 + x2
3. It is easy to see that −1 is a regular value

of f and ⌃1(V ) = {x ∈M �2x1 − x2 = 0}. That is,

⌃1(V ) = {(x1, x2, x3) ∈ R3 �x2
1 − x1x2 + x2

3 + 1 = 0; 2x1 − x2 = 0}
and rank(∇f(x),∇fx1(x)) is equal to

rank � (2x1 − x2) −x1 2x3

2 −1 0
�

which is 2, for all x ∈M ∩⌃1(V ). Moreover, �2(x) = 2x3 and

A2(V ) = {(x1, x2, x3) ∈ R3 �x2
1 − x1x2 + x2

3 + 1 = 0; 2x1 − x2 = 0;x3 = 0}
which is the set given by the points (1,2,0) and (−1,−2,0). We also have that

det(∇f(x),∇fx1(x),∇�2(x))
is equal to

det

�������
(2x1 − x2) −x1 2x3

2 −1 0
0 0 2

�������
= 4x1

which is equal to ±4 for each x ∈ A2(V ). That is, rank(∇f(x),∇fx1(x),∇�2(x)) = 3, for all
x ∈M ∩A2(V ). Therefore, the collection V = {V1, V2} given by

V1(x) = (x1,2x1 − x2,0) ;
V2(x) = (−2x3,0,2x1 − x2) .

is a Morin collection of 2 vector fields defined on M which admits singular points of type A1 and
A2.

3. Zeros of a generic one-form ⇠(x) associated to a Morin collection of
one-forms

Let a = (a1, . . . , an) ∈ Rn � {�0} and let ! = {!i}1≤i≤n be a Morin collection of n smooth one-
forms defined on an m-dimensional manifold M . In this section, we will consider the one-form

⇠(x) = n�
i=1

ai!i(x) defined on M and we will prove some properties of the zeros of ⇠ and its

restrictions to the singular sets of !. We will consider the notation �!̄(x)� = �!1(x), . . . ,!n(x)�.
Lemma 3.1. If p is a zero of the one-form ⇠ then p ∈ ⌃1(!) and p is a zero of ⇠�⌃1(!) .

Proof. Suppose that ⇠(p) = 0. So rank(!1(p), . . . ,!n(p)) ≤ n − 1, since a ≠ �0. However, the
collection ! is non-degenerate, thus rank(!1(p), . . . ,!n(p)) = n−1. That is, p ∈ ⌃1(!). Moreover,
⇠(p) = 0 implies that TpM ⊂ ker(⇠(p)) and since Tp⌃1(!) ⊂ TpM , we conclude that p is a zero
of ⇠�⌃1(!) = 0. ⇤

Lemma 3.2. If p ∈ Ak+1(!), then for each k = 0, . . . , n − 2, p is a zero of ⇠�⌃k+1(!) if and only if
p is a zero of ⇠�⌃k(!) .
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Proof. Suppose that p ∈ Ak+1(!) and that, locally, we have:

U ∩⌃k(!) = {x ∈ U �F1(x) = . . . = Fm−n+1(x) =�2(x) = . . . =�k(x) = 0};U ∩⌃k+1(!) = {x ∈ U �F1(x) = . . . = Fm−n+1(x) =�2(x) = . . . =�k+1(x) = 0};
for an open neighborhood U of p in M . If p is a zero of the restriction ⇠�⌃k(!) then
⇠(p) ∈ N∗p⌃k(!) = �dF1(p), . . . , dFm−n+1(p), d�2(p), . . . , d�k(p)�. In particular, ⇠(p) ∈ N∗p⌃k+1(!),
therefore p is a zero of ⇠�⌃k+1(!) .

On the other hand, if p is a zero of ⇠�⌃k+1(!) then ⇠(p) ∈ N∗p⌃k+1(!) ∩ �!̄(p)�.
Since p ∈ Ak+1(!), we have that p ∈ ⌃k+1(!) �⌃k+2(!), thus

� dim(�!̄(p)� ∩N∗p⌃k(!)) = k;
dim(�⌦̄k+1(p)� ∩N∗p⌃k+1(!)) = 0;

where ⌦̄k+1(p) represents a smooth basis for a vector subspace complementary to�!̄(p)�∩N∗p⌃k(!) in �!̄(p)�. Since dim(N∗p⌃k(!)) =m−n+ k, dim(N∗p⌃k+1(!)) =m−n+ k + 1
and N∗p⌃k(!) ⊂ N∗p⌃k+1(!), we have

dim(�!̄(p)� ∩N∗p⌃k+1(!)) = dim(�!̄(p)� ∩N∗p⌃k(!)) = k.
Thus, �!̄(p)� ∩N∗p⌃k(!) = �!̄(p)� ∩N∗p⌃k+1(!). Therefore, ⇠(p) ∈ N∗p⌃k(!), that is, p is a zero
of ⇠�⌃k(!) . ⇤

Lemma 3.3. If p ∈ An(!) then p is a zero of the restriction ⇠�⌃n−1(!) .

Proof. Analogously to Lemma 3.2, we consider local equations of ⌃n(!):
U ∩⌃n(!) = {x ∈ U �F1(x) = . . . = Fm−n+1(x) =�2(x) = . . . =�n(x) = 0},

with N∗x⌃n(!) = �dF1(x), . . . , dFm−n+1(x), d�2(x), . . . , d�n(x)�. Since An(!) = ⌃n(!), if
p ∈ An(!) then

dim(�!̄(p)� ∩N∗p⌃n−1(!)) = n − 1.
Thus, �!̄(p)� ⊂ N∗p⌃n−1(!) and consequently, ⇠(p) ∈ N∗p⌃n−1(!). Therefore, p is a zero of
⇠�⌃n−1(!) . ⇤

Remark 3.4. If p ∈ ⌃1(!) then rank(!1(p), . . . ,!n(p)) = n − 1 and, writing !i = (!1
i , . . . ,!

m
i ),

we can assume that

(2) M(x) =
���������������������������

!1
1(x) !1

2(x) � !1
n−1(x)

⋮ ⋮ � ⋮
!n−1
1 (x) !n−1

2 (x) � !n−1
n−1(x)

���������������������������
≠ 0,

for all x in an open neighborhood U of p in M . In particular, if p ∈ U is a singular point of ⇠
then an ≠ 0, otherwise, we would have a1 = . . . = an−1 = an = 0. We will use this fact in next
results.

Lemma 3.5. Let p ∈ ⌃1(!) such that M(p) ≠ 0. Then ⇠(p) = 0 if and only if
n�
i=1

ai!
j
i (p) = 0,

for every j = 1, . . . , n − 1.
Proof. It follows easily from the definition of ⌃1(!) and ⇠. ⇤
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Lemma 3.6. Let Z(⇠) be the zero set of the one-form ⇠. Then for almost every a ∈ Rn � {�0},
Z(⇠) ∩⌃2(!) = �.

Proof. Let U be an open subset of M on which M(x) ≠ 0 and

U ∩⌃2(!) = {x ∈ U �F1(x) = . . . = Fm−n+1(x) =�2(x) = 0},
with rank(dF1(x), . . . , dFm−n+1(x), d�2(x)) =m−n+ 2, for each x ∈ ⌃2(!)∩U . Let us consider
F ∶ U ×Rn � {�0}→ Rm+1 the mapping defined by

F (x, a) = (F1(x), . . . , Fm−n+1(x),�2(x), n�
i=1

ai!
1
i (x), . . . , n�

i=1
ai!

n−1
i (x)).

By Lemma 3.5, if x ∈ ⌃1(!) then
n�
i=1

ai!i(x) = 0⇔ n�
i=1

ai!
j
i (x) = 0,∀j = 1, . . . , n − 1.

Thus, if (x, a) ∈ F −1(�0) we have that x ∈ Z(⇠) ∩⌃2(!). Furthermore, the Jacobian matrix of F
at a point (x, a) ∈ F −1(�0):

��������������������

dF1(x) ⋮⋮ ⋮
O(m−n+2)×ndFm−n+1(x) ⋮

d�2(x) ⋮� � � � ⋮ � � � � � � � � �⋮ !1
1(x) � !1

n−1(x) !1
n(x)

(∗) ⋮ !2
1(x) � !2

n−1(x) !2
n(x)⋮ ⋮ � ⋮ ⋮⋮ !n−1

1 (x) � !n−1
n−1(x) !n−1

n (x)

��������������������
has rank m + 1. That is, �0 is regular value of F and F −1(�0) is a submanifold of dimension
n − 1. Let ⇡ ∶ F −1(�0)→ Rn � {�0} be the projection over Rn � {�0} given by ⇡(x, a) = a, by Sard’s
Theorem, a is regular value of ⇡ for almost every a ∈ Rn � {�0}. Therefore, ⇡−1(a) ∩ F −1(�0) = �
for almost every a ∈ Rn � {�0}. However, ⇡−1(a) ∩ F −1(�0) = {(x, a) ∈ U × {a} ∶ x ∈ Z(⇠) ∩⌃2(!)}.
Thus, Z(⇠) ∩⌃2(!) = � for almost every a ∈ Rn � {�0}. ⇤

Lemma 3.7. Let Z(⇠�⌃k(!)) be the zero set of the restriction of the one-form ⇠ to ⌃k(!), with
k ≥ 1. Then for almost every a ∈ Rn � {�0}, Z(⇠�⌃k(!)) ∩⌃k+2(!) = �.

Proof. For each k = 1, . . . , n − 2, let U be an open subset of M on which

U ∩⌃k(!) = {x ∈ U �F1(x) = . . . = Fm−n+k(x) = 0},
with rank(dF1(x), . . . , dFm−n+k(x)) =m − n + k, for all x ∈ U ∩⌃k(!) and

U ∩⌃k+2(!) = {x ∈ U �F1(x) = . . . = Fm−n+k+2(x) = 0},
with rank(dF1(x), . . . , dFm−n+k+2(x)) =m − n + k + 2, for all x ∈ U ∩⌃k+2(!).

By Szafraniec’s characterization (see [19, p. 196]) adapted to one-forms, x is a zero of the
restriction ⇠�⌃k(!) if and only if there exists (�1, . . . ,�m−n+k) ∈ Rm−n+k such that

⇠(x) = m−n+k�
j=1

�jdFj(x).
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Let us write ⇠(x) = (⇠1(x), . . . , ⇠m(x)), where ⇠s(x) = n�
i=1

ai!
s
i (x), s = 1, . . . ,m, we define

Ns(x, a,�) ∶= ⇠s(x) −m−n+k�
j=1

�j
@Fj

@xs
(x),

such that ⇠�⌃k(!)(x) = 0 if and only if Ns(x, a,�) = 0, for all s = 1, . . . ,m.
Let F ∶ U ×Rn � {�0} ×Rm−n+k → R2m−n+k+2 be the mapping defined by

F (x, a,�) = (F1, . . . , Fm−n+k+2,N1, . . . ,Nm),
if (x, a,�) ∈ F −1(�0) then x ∈ Z(⇠�⌃k(!)) ∩⌃k+2(!) and the Jacobian matrix of F at (x, a,�):

����������������

dF1(x) ⋮⋮ ⋮ O(m−n+k+2)×(m+k)
dFm−n+k+2(x) ⋮� � � � � ⋮ � � � � � � � � �
dxN1(x, a,�) ⋮ ⋮⋮ ⋮ Bm×n ⋮ Cm×(m−n+k)
dxNm(x, a,�) ⋮ ⋮

����������������
has rank 2m−n+k+1, where O(m−n+k+2)×(m+k) is a null matrix, Bm×n is a matrix whose columns
vectors are given by the coefficients of the one-forms !1(x), . . . ,!n(x) of the collection !:

Bm×n =
�������
!1
1(x) � !1

n(x)⋮ � ⋮
!m
1 (x) � !m

n (x)
�������

and Cm×(m−n+k) is the matrix whose columns vectors are, up to sign, the coefficients of the
derivatives dF1, . . . , dFm−n+k with respect to x:

Cm×(m−n+k) =
����������

−@F1

@x1
(x) � −@Fm−n+k

@x1
(x)

⋮ � ⋮
− @F1

@xm
(x) � −@Fm−n+k

@xm
(x)

����������
.

Notice that, if (x, a,�) ∈ F −1(�0) then x ∈ ⌃k+1(!) and, by Lemma 2.21,

dim(�!̄(x)� ∩N∗x⌃k(!)) = k.
Thus, dim(�!̄(x)� +N∗x⌃k(!)) =m − 1. Therefore,

rank � Bm×n ⋮ Cm×(m−n+k) � =m − 1
and the Jacobian matrix of F at (x, a,�) has rank 2m−n+k+1. That is, F −1(�0) has dimension
less or equal to n − 1. Let ⇡ ∶ F −1(�0) → Rn � {�0} be the projection over Rn � {�0}, that is,
⇡(x, a,�) = a. By Sard’s Theorem, a is regular value of ⇡ for almost every a ∈ Rn�{�0}. Therefore,
⇡−1(a) ∩ F −1(�0) = � for almost every a ∈ Rn � {�0}. However,

⇡−1(a) ∩ F −1(�0) = {(x, a,�) ∈ U × {a} ×Rm−n+k �x ∈ Z(⇠�⌃k(!)) ∩⌃k+2(!)}.
Thus, Z(⇠�⌃k(!)) ∩⌃k+2(!) = � for almost every a ∈ Rn � {�0}. ⇤
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4. Non-degenerate zeros of a generic one-form ⇠(x) associated to a Morin
collection of one-forms

In this section we will verify that, generically, the one-form ⇠(x) and its restrictions ⇠�⌃k(!) ,
⇠�Ak(!) admit only non-degenerate zeros. Furthermore, we will see how these non-degenerate
zeros can be related. Then, we end the paper with our main result (Theorem 4.13).

We start with some technical lemmas.

Lemma 4.1. Let A be a square matrix of order m given by:

A =
���������

a11 � a1m
a21 � a2m⋮ � ⋮
am1 � amm

���������
.

If there exist (�1, . . . ,�m) ∈ Rm � {�0} such that
m�
j=1

�jaij = 0, i = 1, . . . ,m, then

�j cof(aik) − �k cof(aij) = 0, ∀j, k = 1, . . . ,m.

Lemma 4.2. Let us consider the matrix

Mi(x) =

������������������

!1
1(x) � !1

n−1(x) !1
n(x)

⋮ � ⋮ ⋮
!n−1
1 (x) � !n−1

n−1(x) !n−1
n (x)

!i
1(x) � !i

n−1(x) !i
n(x)

������������������

.

If x is a zero of ⇠ then for ` ∈ {1, . . . , n − 1}, j ∈ {1, . . . , n − 1, i} and i ∈ {n, . . . ,m}, we have

an cof(!j
` ,Mi) = a` cof(!j

n,Mi).
Proof. This result is a consequence of Lemma 4.1 applied to the matrix A = Mi(x), where
a`j = !`

j(x), for j = 1, . . . , n and ` = 1, . . . , n−1, i. It is enough to take (�1, . . . ,�n) = (a1, . . . , an).
⇤

Lemma 4.3. Let U ⊂ Rm be an open set and let H ∶ U ×Rn � {�0} → Rm be a smooth mapping
given by H(x, a) = (h1(x, a), . . . , hm(x, a)). If

rank(dh1(x, a), . . . , dhm(x, a)) =m,∀(x, a) ∈H−1(�0)
then rank(dxh1(x, a), . . . , dxhm(x, a)) =m for almost every a ∈ Rn � {�0}.

In the previous section we proved that every zero of ⇠ belongs to ⌃1(!). Next, we will show
that, generically, such zeros belong to A1(!) and they are non-degenerate. To do that, we must
find explicit equations that define the manifolds T ∗Mn,n−1 and ⌃1(!) locally.

Lemma 4.4. Let (p, '̃) ∈ T ∗Mn,n−1, it is possible to exhibit, explicitly, functions
mi(x,') ∶ Ũ → R, i = n, . . . ,m, defined on an open neighborhood Ũ of (p, '̃) in T ∗Mn, such
that, locally

T ∗Mn,n−1 = �(x,') ∈ Ũ � mn = . . . =mm = 0�
with rank (dmn, . . . , dmm) =m − n + 1, for all (x,') ∈ T ∗Mn,n−1 ∩ Ũ .
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Proof. Let (p, '̃) ∈ T ∗Mn,n−1, we may assume that

m(') =
�������������

'1
1 '1

2 � '1
n−1⋮ ⋮ � ⋮

'n−1
1 'n−1

2 � 'n−1
n−1

�������������
≠ 0

for (x,') in an open neighborhood Ũ of (p, '̃) in T ∗Mn. In this situation, T ∗Mn,n−1 can be
locally defined as

T ∗Mn,n−1 = �(x,') ∈ Ũ � mn = . . . =mm = 0� ,
where mi ∶=mi(') is the determinant

mi(') =
������������������

'1
1 '1

2 � '1
n−1 '1

n⋮ ⋮ � ⋮ ⋮
'n−1
1 'n−1

2 � 'n−1
n−1 'n−1

n

'i
1 'i

2 � 'i
n−1 'i

n

������������������
, i = n, . . . ,m.

Let us verify that rank (dmn, . . . , dmm) =m − n + 1 in (T ∗Mn,n−1) ∩ Ũ .
For clearer notations, consider I = {1, . . . , n} and Ii = {1, . . . , n − 1, i} for each i ∈ {n, . . . ,m}.

Then

(3) dmi(') = �
j∈I,`∈Ii

cof('`
j ,mi)d'`

j ,

where cof('`
j ,mi) is the cofactor of '`

j in the matrix
���������

'1
1 '1

2 � '1
n−1 '1

n⋮ ⋮ � ⋮ ⋮
'n−1
1 'n−1

2 � 'n−1
n−1 'n−1

n

'i
1 'i

2 � 'i
n−1 'i

n

���������
and

d'`
j = ��

@'`
j

@'1
1

, . . . ,
@'`

j

@'m
1

,
@'`

j

@'1
2

, . . . ,
@'`

j

@'m
2

, . . . ,
@'`

j

@'1
n

, . . . ,
@'`

j

@'m
n

�
�

is the vector whose coordinate at the position (j − 1)m + ` is equal to 1 and all the others are
zero. In particular, since i ∈ {n, . . . ,m},

d'i
n = (0, . . . ,0,0, . . . , i1, . . . ,0���������������������������������������������������������������������

m−n+1
) ∈ (Rm)∗ × . . . × (Rm)∗����������������������������������������������������������������������������������������������������������������������������

n times

and the m − n + 1 last coordinates of d'`
j are zero for all j ≠ n or ` ≠ i. Moreover,

cof('i
n,mi) =m(') ≠ 0, for i = n, . . . ,m.

Thus,

@(mn, . . . ,mm)
@('n

n, . . . ,'
m
n ) =

�������������
cof('n

n,mn) � 0⋮ � ⋮
0 � cof('m

n ,mm)
�������������
.

That is, for all (x,') ∈ (T ∗Mn,n−1) ∩ Ũ , we have

(4)
@(mn, . . . ,mm)
@('n

n, . . . ,'
m
n ) =m(')(m−n+1)

�������������
1 � 0⋮ � ⋮
0 � 1

�������������
≠ 0.

Therefore, rank(mn, . . . ,mm) =m − n + 1 for all (x,') ∈ (T ∗Mn,n−1) ∩ Ũ . ⇤
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Lemma 4.5. Let p ∈ ⌃1(!) be a singular point of !, it is possible to exhibit, explicitly, functions
Mi(x) ∶ U → R, i = n, . . . ,m, defined on an open neighborhood U of p in M , such that, locally

U ∩⌃1(!) = {x ∈ U � Mn(x) = . . . =Mm(x) = 0}
with rank (dMn(x), . . . , dMm(x)) =m − n + 1, for all x ∈ ⌃1(!) ∩ U .

Proof. Let ! = {!i}1≤i≤n be a Morin collection of one-forms and let p ∈ ⌃1(!). By Remark 3.4,
we can consider U an open neighborhood of p in M , where M(x) ≠ 0. Thus, in this neighborhood
the set ⌃1(!) can be defined as

U ∩⌃1(!) = {x ∈ U � Mn = . . . =Mm = 0},
where Mi ∶=Mi(x) is the determinant

(5) Mi(x) =

�������������������������������������

!1
1(x) !1

2(x) � !1
n−1(x) !1

n(x)
⋮ ⋮ � ⋮ ⋮

!n−1
1 (x) !n−1

2 (x) � !n−1
n−1(x) !n−1

n (x)
!i
1(x) !i

2(x) � !i
n−1(x) !i

n(x)

�������������������������������������
for i = n, . . . ,m.

Let G(!) = {(x,!1(x), . . . ,!n(x)) � x ∈ M} be the graph of the collection !. For each
x ∈ ⌃1(!) ∩ U , we have that G(!) � T ∗Mn,n−1 at (x,!(x)). Then, the equations that define
G(!) and T ∗Mn,n−1 locally are independent at (x,!(x)). By similar arguments to that used in
the proof of Lemma 4.4, it follows that the functions Mn(x), . . . ,Mm(x) are independent at x,
that is, for all x ∈ ⌃1(!) ∩ U , rank (dMn(x), . . . , dMm(x)) =m − n + 1. ⇤

Lemma 4.6. For almost every a ∈ Rn � {�0}, the one-form ⇠(x) = n�
i=1

ai!i(x) admits only non-

degenerate zeros. Moreover, such zeros belong to A1(!).
Proof. Suppose that p ∈ M is a zero of ⇠. Then, by Lemmas 3.1 and 3.6, for almost every
a ∈ Rn � {�0} we have that p ∈ ⌃1(!) �⌃2(!), that is, p ∈ A1(!). Assume that M(x) ≠ 0 in an
open neighborhood U of p in M (see Remark 3.4) such that

U ∩⌃1(!) = {x ∈ U ∶Mn(x) = . . . =Mm(x) = 0}.
Let us write

⇠s(x) = n�
i=1

ai!
s
i (x), s = 1, . . . ,m

and let us consider the mapping F ∶ U ×Rn � {�0}→ Rm defined by
F (x, a) = (Mn(x), . . . ,Mm(x), ⇠1(x), . . . , ⇠n−1(x)).

Its Jacobian matrix at a point (x, a) is given by:

JacF (x, a) =

����������������

dxMn(x) ⋮⋮ ⋮ O(m−n)×n
dxMm(x) ⋮� � � ⋮ � � � � � � � �
dx⇠1(x) ⋮ !1

1(x) � !1
n−1(x) !1

n(x)⋮ ⋮ ⋮ � ⋮ ⋮
dx⇠n−1(x) ⋮ !n−1

1 (x) � !n−1
n−1(x) !n−1

n (x)

����������������

.
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Notice that, by Lemma 3.5, F −1(�0) corresponds to the zeros of ⇠ on ⌃1(!)∩U . Since M(x) ≠ 0
and rank(dMn(x), . . . , dMm(x)) = m − n + 1 for all x ∈ ⌃1(!) ∩ U , then rank(JacF (x, a)) = m
for all (x, a) ∈ F −1(�0). Thus, dimF −1(�0) = n.

Let ⇡ ∶ F −1(�0) → Rn � {�0} be the projection ⇡(x, a) = a, by Sard’s Theorem, almost every
a ∈ Rn � {�0} is a regular value of ⇡ and dim(⇡−1(a) ∩ F −1(�0)) = 0. That is, for almost every a,
the zeros of ⇠ are isolated in ⌃1(!). Let us proof that, moreover, these zeros are non-degenerate.

Since rank(JacF (x, a)) =m, for all (x, a) ∈ F −1(�0), then by Lemma 4.3 we have that

rank(dxMn(p), . . . , dxMm(p), dx⇠1(p), . . . , dx⇠n−1(p)) =m,

which happens if and only if rank(B) =m, where B is the matrix

B =
�������������

dx⇠1(p)⋮
dx⇠n−1(p)
andxMn(p)⋮
andxMm(p)

�������������
whose row vectors we will denote by Ri, i = 1, . . . ,m (by Remark 3.4, an ≠ 0).

Let us denote I = {1, . . . , n} and Ii = {1, . . . , n− 1, i} for each i ∈ {n, . . . ,m}. By Equation (5),
we can write

dMi(x) = �
`∈I,j∈Ii

cof(!j
`(x),Mi)d!j

`(x)
and by Lemma 4.2,

dMi(p) = �
`∈I,j∈Ii

a`
an

cof(!j
n(p),Mi)d!j

`(p).
Thus,

andMi(p) = �
`∈I,j∈Ii

a` cof(!j
n(p),Mi)d!j

`(p)
= �

j∈Ii
cof(!j

n(p),Mi) ��̀∈I a`d!
j
`(p)�

= �
j∈Ii

cof(!j
n(p),Mi) [dx⇠j(p)]

= cof(!i
n(p),Mi) [dx⇠i(p)] + �

j∈Ii�{i}
cof(!j

n(p),Mi) [dx⇠j(p)].
Notice that, cof(!i

n(p),Mi) = M(p) ≠ 0, for all i = n, . . . ,m. Then, for each i = n, . . . ,m, we
replace the ith row Ri of matrix B by

1

cof(!i
n(p),Mi)

�
�Ri − n−1�

j=1
cof(!j

n(p),Mi)Rj
�
�

such that we obtain the matrix of maximal rank:�������������

dx⇠1(p)⋮
dx⇠n−1(p)
dx⇠n(p)⋮
dx⇠m(p)

�������������
.
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Therefore, the zeros of ⇠(x) are non-degenerate. ⇤

Lemma 4.7. For almost every a ∈ Rn � {�0}, the one-form ⇠�Ak(!) admits only non-degenerate
zeros, k ≥ 2.
Proof. Suppose that ⇠�Ak(!)(p) = 0. By Proposition 2.23 (a) and Lemma 4.5, we can considerU an open neighborhood of p in M where M(x) ≠ 0 and on which the respective singular sets(k = 2, . . . , n) can be locally defined as

U ∩⌃k(!) = {x ∈ U ∶Mn(x) = . . . =Mm(x) =�2(x) = . . . =�k(x) = 0},
with rank(dMn, . . . , dMm, d�2, . . . , d�k) =m − n + k, ∀x ∈ ⌃k(!) ∩ U .

Analogously to the proof of Lemma 3.7, by Szafraniec’s characterization (see [19, p. 196]),
x is a zero of the restriction ⇠�⌃k(!) if and only if there exists (�n, . . . ,�m,�2, . . . ,�k) ∈ Rm−n+k
such that

⇠(x) = m�
j=n

�jdMj(x) + k�̀=2�`d�`(x).
Let us consider the functions

Ns(x, a,�,�) ∶= ⇠s(x) − m�
j=n

�j
@Mj

@xs
(x) − k�̀=2�`

@�`

@xs
(x), s = 1, . . . ,m,

and let G ∶ U � {�k+1 = 0} ×Rn � {�0} ×Rm−n+k → R2m−n+k be the mapping given by

G(x, a,�,�) = (Mn, . . . ,Mm,�2, . . . ,�k,N1, . . . ,Nm).
Analogously to the proof of Lemma 4.6, if (x, a,�,�) ∈ G−1(�0) then x ∈ Ak(!) ∩ Z(⇠�⌃k(!)).

On the other hand, if x ∈ Ak(!) then

dim(�!̄(x)� ∩N∗x⌃k−1(!)) = k − 1
and dim(�!̄(x)� ∩N∗x⌃k(!)) = k − 1, such that dim(�!̄(x)� +N∗x⌃k(!)) = m. This implies that
the Jacobian matrix of G has maximal rank at every (x, a,�,�) ∈ G−1(�0). Thus dimG−1(�0) = n.

Let ⇡ ∶ G−1(�0) → Rn � {�0} be the projection ⇡(x, a,�,�) = a, then for almost every
a ∈ Rn � {�0}, dim(⇡−1(a) ∩ G−1(�0)) = 0 and ⇡−1(a) � G−1(�0). Therefore, the zeros of ⇠�Ak(!)
are non-degenerate. ⇤

Lemma 4.8. For almost every a ∈ Rn � {�0}, the one-form ⇠�A1(!) admits only non-degenerate
zeros.

Proof. This proof follows analogously the proof of Lemma 4.7. ⇤

By Lemma 3.2, if p ∈ Ak+1(!), then p is a zero of ⇠�⌃k+1(!) if and only if p is a zero of ⇠�⌃k(!) .
The next results state that this relation also holds for non-degenerate zeros.

Lemma 4.9. Let p ∈ A1(!) be a zero of ⇠�⌃1(!) , then p is a non-degenerate zero of ⇠�⌃1(!) if and
only if p is a non-degenerate zero of ⇠.

Proof. Let p ∈ A1(!) be a zero of the restriction ⇠�⌃1(!) and let U be an open neighborhood of
p in M at which M(x) ≠ 0, ∀x ∈ U and U ∩ ⌃1(!) = {x ∈ U ∶Mn(x) = . . . =Mm(x) = 0}. By
Szafraniec’s characterization ([19, p. 196]), ∃!(�n, . . . ,�m) ∈ Rm−n+1, such that

⇠(p) + m�
i=n

�idMi(p) = 0.
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Furthermore, p is a non-degenerate zero of ⇠�⌃1(!) if and only if the matrix

(6)

�����������������������������

⋮ @Mn

@x1
(p) � @Mm

@x1
(p)

Jac�⇠ + m�
i=n

�idMi� (p) ⋮ ⋮ � ⋮
⋮ @Mn

@xm
(p) � @Mm

@xm
(p)

� � � � � � ⋮ � � � � � �
dxMn(p) ⋮
⋮ ⋮ O(m−n+1)

dxMm(p) ⋮

�����������������������������
is non-singular. Since ⇠(p) = 0, then p ∈ ⌃1(!) ∩ U and ∑m

i=n �idMi(p) = �0. Thus,

�n = . . . = �m = 0,
and writing ⇠ = (⇠1, . . . , ⇠m) we have that the Matrix (6) is non-singular if and only if the matrix

(7)

��������������������������

dx⇠1(p) ⋮ @Mn

@x1
(p) � @Mm

@x1
(p)

⋮ ⋮ ⋮ � ⋮
dx⇠m(p) ⋮ @Mn

@xm
(p) � @Mm

@xm
(p)

� � � � ⋮ � � � � � �
andxMn(p) ⋮

⋮ ⋮ O(m−n+1)
andxMm(p) ⋮

��������������������������
is non-singular (by Remark 3.4, an ≠ 0). Moreover, by Equation (5) and Lemma 4.2, we can
write

andxMi(p) = an �
`∈I,j∈Ii

cof(!j
`(p),Mi)d!j

`(p)
= �

`∈I,j∈Ii
a` cof(!j

n(p),Mi)d!j
`(p)

= �
j∈Ii

cof(!j
n(p),Mi) ��̀∈I a`d!

j
`(p)�

= �
j∈Ii

cof(!j
n(p),Mi) [dx⇠j(p)].
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Let us denote the m first row vectors of Matrix (7) by Lj , j = 1, . . . ,m, and let us denote the
m − n + 1 last row vectors of Matrix (7) by Ri, i = n, . . . ,m:

Lj = �dx⇠j(p), @Mn

@xj
(p), . . . , @Mm

@xj
(p)� ;

Ri = �an @Mi

@x1
(p), . . . , an @Mi

@xm
(p),�0� .

Then, replacing each row vector Ri, i = n, . . . ,m, by Ri −∑j∈Ii cof(!j
n,Mi)Lj , we obtain

Ri =
����0, . . . 0��������������������
m times

,−�
j∈Ii

cof(!j
n,Mi)@Mn

@xj
, . . . ,−�

j∈Ii
cof(!j

n,Mi)@Mm

@xj

����
and the Matrix (7) becomes:

(8)

��������������������

dx⇠1(p) ⋮ @Mn

@x1
(p) � @Mm

@x1
(p)

⋮ ⋮ ⋮ � ⋮
dx⇠m(p) ⋮ @Mn

@xm
(p) � @Mm

@xm
(p)

� � � ⋮ � � � � � �⋮
O(m−n+1)×m ⋮ M

′(m−n+1)⋮

��������������������
where M

′(m−n+1) = − � mij �n≤i,j≤m is the matrix given by

(9) mij = �
k∈Ii

cof(!k
n,Mi)@Mj

@xk
, i, j = n, . . . ,m.

Next, we will verify that the matrix M
′ is non-singular. Since p ∈ A1(!), then

dim(�!̄(p)� ∩N∗p⌃1(!)) = 0
and dim(�!̄(p)� ⊕N∗p⌃1(!)) = m. Since M(p) ≠ 0, {!1(p), . . . ,!n−1(p)} is a basis of the space�!̄(p)� and, consequently, the matrix

(10)

����������������������������

!1
1(p) � !n−1

1 (p) !n
1 (p) � !m

1 (p)
⋮ � ⋮ ⋮ � ⋮

!1
n−1(p) � !n−1

n−1(p) !n
n−1(p) � !m

n−1(p)
@Mn

@x1
(p) � @Mn

@xn−1 (p)
@Mn

@xn
(p) � @Mn

@xm
(p)

⋮ � ⋮ ⋮ � ⋮
@Mm

@x1
(p) � @Mm

@xn−1 (p)
@Mm

@xn
(p) � @Mm

@xm
(p)

����������������������������
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has maximal rank. Let us denote the row vectors of Matrix (10) by L′j , j = 1, . . . ,m. Then, for
j = 1, . . . , n − 1, we replace L′j by

(11)
n−1�
k=1

cof(!j
k,M)L′k = �n−1�

k=1
cof(!j

k,M)!1
k, . . . ,

n−1�
k=1

cof(!j
k,M)!m

k � .
It is not difficult to verify that

n−1�
k=1

cof(!j
k,M)!`

k =
���������

M, ` = j;
0 ` = 1, . . . , n − 1 and ` ≠ j;− cof(!j

n,M`), ` = n, . . . ,m.

Thus, Matrix (10) becomes

(12)

��������������������

M � 0 ⋮ − cof(!1
n,Mn) � − cof(!1

n,Mm)⋮ � ⋮ ⋮ ⋮ � ⋮
0 � M ⋮ − cof(!n−1

n ,Mn) � − cof(!n−1
n ,Mm)� � � ⋮ � � � � � � �

@Mn

@x1
� @Mn

@xn−1 ⋮ @Mn

@xp
� @Mn

@xm⋮ � ⋮ ⋮ ⋮ � ⋮
@Mm

@x1
� @Mm

@xn−1 ⋮ @Mm

@xp
� @Mm

@xm

��������������������
that still has maximal rank. Now, let us denote the first n− 1 row vectors of Matrix (12) by L′′j ,
for j = 1, . . . , n − 1, and let us consider the following expression for j = n, . . . ,m,

ML
′
j − n−1�

k=1
@Mj

@xk
L
′′
k

=M�@Mj

@x1
, . . . ,

@Mj

@xn−1 ,
@Mj

@xn
, . . . ,

@Mj

@xm
�

+�−M@Mj

@x1
, . . . ,−M @Mj

@xn−1 ,
n−1�
k=1

@Mj

@xk
cof(!k

n,Mn), . . . ,n−1�
k=1

@Mj

@xk
cof(!k

n,Mm)�

= �0, . . . ,0,n−1�
k=1

@Mj

@xk
cof(!k

n,Mn) +M
@Mj

@xn
, . . . ,

n−1�
k=1

@Mj

@xk
cof(!k

n,Mm) +M
@Mj

@xm
� .

Notice that M = cof(!i
n,Mi), for i = n, . . . ,m. Then the expression

(13) ML′j − n−1�
k=1

@Mj

@xk
L′′k

is equal to

�
�0, . . . ,0, �k∈In

@Mj

@xk
cof(!k

n,Mn), . . . , �
k∈Im

@Mj

@xk
cof(!k

n,Mm)�� .
Thus, by Equation (9), we obtain

ML′j − n−1�
k=1

@Mj

@xk
L′′k = (0, . . . ,0,mnj , . . . ,mmj).
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In this way, we replace the row L′j in Matrix (12) by (13) for j = n, . . . ,m, and the matrix
obtained

(14)

����������������

M � 0 ⋮ − cof(!1
n,Mn) � − cof(!1

n,Mm)⋮ � ⋮ ⋮ ⋮ � ⋮
0 � M ⋮ − cof(!n−1

n ,Mn) � − cof(!n−1
n ,Mm)� � � ⋮ � � � � � � �⋮

O(n−1) ⋮ (−M′)t⋮

����������������
also is non-singular. Then, since M ≠ 0, we have that detM′ ≠ 0. Thus, we can conclude that
Matrix (7) is non-singular if and only if Matrix (8) is non-singular, which occurs if and only if

det

�������
dx⇠1(p)⋮
dx⇠m(p)

�������
≠ 0.

In other words, p will be a non-degenerate zero of ⇠�⌃1(!) if and only if p is a non-degenerate zero
of ⇠. ⇤

Lemma 4.10. Let p ∈ Ak+1(!) be a zero of ⇠�⌃k+1(!) . Then, for almost every a ∈ Rn � {�0}, p is
a non-degenerate zero of ⇠�⌃k+1(!) if and only if p is a non-degenerate zero of ⇠�⌃k(!) .

Proof. Let p ∈ Ak+1(!) be a zero of ⇠�⌃k+1(!) and let U be an open neighborhood of p in
M at which M(x) ≠ 0, ∀x ∈ U and the singular sets ⌃k(!) (k = 2, . . . , n) are defined byU ∩ ⌃k(!) = {x ∈ U ∶ Mn(x) = . . . = Mm(x) = �2(x) = . . . = �k(x) = 0}. By Szafraniec’s
characterization ([19, p. 196]), p is a zero of the restriction ⇠�⌃k+1(!) if and only if there exists a
unique (�n, . . . ,�m,�2, . . . ,�k+1) ∈ Rm−n+k+1 such that

(15) ⇠(p) + m�
i=n

�idMi(p) + k+1�
j=2

�jd�j(p) = 0.
Since p is a zero of ⇠�⌃k(!) , we have �k+1 = 0. Moreover, also by Szafraniec’s characterization, for
` = k, k + 1, p is a non-degenerate zero of ⇠�⌃`(!) if and only if the determinant of the following
matrix does not vanish at p:

(16) J` =

�������������������������������

⋮ @Mn

@x1
� @Mm

@x1

@�2

@x1
� @�`

@x1

Jacx
�
�⇠ +

m�
i=n�idMi + k�

j=2�jd�j
�
� ⋮ ⋮ � ⋮ ⋮ � ⋮
⋮ @Mn

@xm
� @Mm

@xm

@�2

@xm
� @�`

@xm� � � � � � � � ⋮ � � � � � � �
dxMn ⋮⋮ ⋮
dxMm ⋮
dx�2 ⋮ O(m−n+`)⋮ ⋮
dx�` ⋮

�������������������������������

.

Thus, to prove the lemma it is enough to show that the Matrix Jk+1 is non-singular at p if and
only if the Matrix Jk is non-singular at p.
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Notice that the Jacobian matrix with respect to x

(17) Jacx
�
�⇠ +

m�
i=n

�idMi + k�
j=2

�jd�j
�
�

is a submatrix of both Matrices Jk+1 and Jk, and recall that, for x in an open neighborhood
of p, �k+1 = det(dMn, . . . , dMm, d�2, . . . , d�k,⌦1, . . . ,⌦n−k), where {⌦1(x), . . . ,⌦n−k(x)} is a
basis of a vector subspace complementary to �!̄(x)� ∩N∗x⌃k−1(!) in �!̄(x)�. That is,

�!̄(x)� = �⌦1(x), . . . ,⌦n−k(x)�⊕ (�!̄(x)� ∩N∗x⌃k−1(!)).
Since, for almost every a, ⇠�⌃k−1(!)(p) ≠ 0 then ⇠(p) ∈ �!̄(p)� �N∗p⌃k−1(!) and there exists

(µ1, . . . , µn−k) ∈ Rn−k � {�0} such that ⇠(p) = n−k�
i=1

µi⌦i(p) + '(p), for some '(p) ∈ N∗p⌃k−1(!),
where '(p) = m�

i=n
�̃idMi(p) + k−1�

j=2
�̃jd�j(p). Then, equation (15) can be written as:

(18)
n−k�
i=1

µi⌦i(p) + m�
i=n
(�i + �̃i)dMi(p) + k−1�

j=2
(�j + �̃j)d�j(p) + �kd�k(p) = 0.

Let us consider the mapping

H(x) = n−k�
i=1

µi⌦i(x) + m�
i=n
(�i + �̃i)dMi(x) + k−1�

j=2
(�j + �̃j)d�j(x) + �kd�k(x),

defined on U . The Jacobian matrix of H(x) is given by:

(19)

�������������

n−k�
i=1 µidx⌦

1
i + m�

i=n (�i + �̃i)dx @Mi

@x1
+ k−1�

j=2 (�j + �̃j)dx @�j

@x1
+ �kdx

@�k

@x1⋮
n−k�
i=1 µidx⌦

m
i + m�

i=n (�i + �̃i)dx @Mi

@xm
+ k−1�

j=2 (�j + �̃j)dx @�j

@xm
+ �kdx

@�k

@xm

�������������
.

To apply Lemma 4.1, fix the notation: Ai(x) = (a1i(x), . . . , ami(x)), where

Ai(x) ∶= � ⌦i(x), i = 1, . . . , n − k;
dMi(x), i = n, . . . ,m;

An−k+j−1(x) ∶= d�j(x), j = 2, . . . , k;
↵i ∶= � µi, i = 1, . . . , n − k; (we can suppose ↵1 ≠ 0, since ⇠(p) ≠ '(p))(�i + �̃i), i = n, . . . ,m;

↵n−k+j−1 ∶= (�j + �̃j), j = 2, . . . , k; (�̃k = 0).
In this way, equation (18) can be written as

m�
i=1
↵iAi(p) = 0 which implies that

m�
i=1
↵iaji(p) = 0, ∀j = 1, . . . ,m.

We also have that
�k+1 = det (An, . . . ,Am,An−k+1, . . . ,An−1,A1, . . . ,An−k)= (−1)" det (A1, . . . ,Am)
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where " is either equal to zero or equal to 1, depending on the number of required permutations
between the columns of the matrix A to obtain �k+1. Thus, by Lemma 4.1,

(20)

↵1(−1)"d�k+1 ↵1≠0= ↵1

m�
i,j=1

cof(aij)daij
= m�

i=1
�
�↵1 cof(ai1)dai1 + m�

j=2
↵j cof(ai1)daij��

= m�
i=1

cof(ai1)�����
m�
j=1

↵jdaij
�����

= m�
i=1

cof(ai1)Li

where Li, i = 1, . . . ,m, denote the rows of the Jacobian matrix (19) at p. If we denote by
L̃i, i = 1, . . . ,m, the row vectors of Jacobian matrix (17) at p, then we can verify that

(21)
m�
i=1

cof(ai1)Li = m�
i=1

cof(ai1)L̃i.

Let us denote the first m row vectors of Matrix Jk+1 in (16) by Li, i = 1, . . . ,m, and its last
row vector by L�k+1 . By equations (20) at p and (21), if we replace L�k+1 by

(22) (−1)"↵1L�k+1 − m�
i=1

cof(ai1)Li,

we obtain

(23)

������������������������������������

⋮ @Mn

@x1
� @Mm

@x1

@�2

@x1
� @�k

@x1
⋮ @�k+1

@x1

Jac
�
�⇠ +

m�
i=n�idMi + k�

j=2�jd�j
�
� ⋮ ⋮ � ⋮ ⋮ � ⋮ ⋮ ⋮
⋮ @Mn

@xm
� @Mm

@xm

@�2

@xm
� @�k

@xm
⋮ @�k+1

@xm� � � � � � � � ⋮ � � � � � � � ⋮ � �
dxMn ⋮ ⋮ 0⋮ ⋮ ⋮ ⋮
dxMm ⋮ ⋮ 0
dx�2 ⋮ O(m−n+k) ⋮ 0⋮ ⋮ ⋮ ⋮
dx�k ⋮ ⋮ 0� � � � � � � � ⋮ � � � � � � � ⋮ � ��0 ⋮ �0 ⋮ ˜�k+1

������������������������������������

.

Let us show that ˜�k+1(p) ≠ 0. We have

˜�k+1 (22)= − m�
i=1

cof(ai1)@�k+1
@xi

= −det(d�k+1,A2, . . . ,Am)
= −det(d�k+1,⌦2, . . . ,⌦n−k, d�2, . . . , d�k, dMn, . . . , dMm).

Suppose that ˜�k+1 = 0. Since each one of the sets {⌦2(p), . . . ,⌦n−k(p)} and

{d�k+1(p), d�2(p), . . . , d�k(p), dMn(p), . . . , dMm(p)}
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consist of linearly independent vectors, there exists j ∈ {2, . . . , n−k} such that ⌦j(p) ∈ N∗p⌃k+1(!).
Suppose that j = n − k, that is,

⌦n−k(p) ∈ N∗p⌃k+1(!) = �dMn, . . . , dMm, d�2, . . . , d�k, d�k+1�.
Since ⇠�⌃k+1 (p) = 0, we have ⇠(p) ∈ N∗p⌃k+1(!). Then,

n−k�
i=1

µi⌦i + m�
i=n

�̃idMi + k−1�
j=2

�̃jd�j

���������������������������������������������������������������������������������������������������������������������������������������∈N∗p⌃k+1(!)

∈ N∗p⌃k+1(!)

⇒ n−k−1�
i=1

µi⌦i = n−k�
i=1

µi⌦i − µn−k⌦n−k ∈ N∗p⌃k+1(!).
Thus,

n−k−1�
i=1

µi⌦i and µn−k⌦n−k are linearly independent vectors in the vector subspace

�⌦1, . . . ,⌦n−k� ∩N∗p⌃k+1(!),
which implies that

dim ��⌦1(p), . . . ,⌦n−k(p)� ∩N∗p⌃k+1(!)� ≥ 2.
Consequently, since �!̄� = �⌦1, . . . ,⌦n−k�⊕ ��!̄� ∩N∗p⌃k−1(!)� we have that

dim ��!̄(p)� ∩N∗p⌃k+1(!)� ≥ 2 + (k − 1) = k + 1,
which means that p ∈ ⌃k+2(!). But this contradicts the hypothesis that p ∈ Ak+1(!), since as
we know ⌃k+2(!) = ⌃k+1(!)�Ak+1(!). Therefore ˜�k+1(p) ≠ 0, and we conclude that the Matrix
Jk+1 is non-singular at p if and only if the Matrix (23) is non-singular at p, which occurs if and
only if the Matrix Jk is non-singular at the point p.

⇤
Lemma 4.11. For almost every a ∈ Rn � {�0}, if p ∈ An(!) then p is a non-degenerate zero of
⇠�⌃n−1(!) .

Proof. We know that if p ∈ An(!) then ⇠�⌃n−1(!)(p) = 0. By Szafraniec’s characterization [20,
p.149-151], p is a non-degenerate zero of ⇠�⌃n−1(!) if and only if the following conditions hold:
(i) �(p) = det(dMn, . . . , dMm, d�2, . . . , d�n−1, ⇠)(p) = 0;
(ii) det(dMn, . . . , dMm, d�2, . . . , d�n−1, d�)(p) ≠ 0.

Condition (i) is clearly satisfied, since ⇠�⌃n−1(!)(p) = 0. Let us verify that condition (ii) also
holds.

For each x ∈ ⌃n−1(!) in an open neighborhood U of p in M , let {⌦′(x)} be a smooth basis
for a vector subspace complementary to �!̄(x)� ∩N∗x⌃n−2(!) in the vector space �!̄(x)�. Since
⇠(x) ∈ �!̄(x)�, we have

⇠(x) = �(x)⌦′(x) +'(x),
where �(x) ∈ R and '(x) ∈ �!̄(x)� ∩N∗x⌃n−2(!), ∀x ∈ U ∩⌃n−1(!).

In particular, if x ∈ An(!), we know that, for almost every a ∈ Rn � {�0}, ⇠�⌃n−2(!)(x) ≠ 0 and,
consequently, ⇠(x) ∉ N∗x⌃n−2(!). Thus �(p) ≠ 0. For all x ∈ U ∩⌃n−1(!), we obtain

�(x) = det(dMn, . . . , dMm, d�2, . . . , d�n−1,�⌦′ +')(x)= �(x)det(dMn, . . . , dMm, d�2, . . . , d�n−1,⌦′)(x)= �(x)�n(x),
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with �n(p) = 0 and �(p) ≠ 0. Then, we have
�dMn(p), . . . , dMm(p), d�2(p), . . . , d�n−1(p), d�(p)�= �dMn(p), . . . , dMm(p), d�2(p), . . . , d�n−1(p), d(��n)(p)�

(see Lemma A.1). However, d(��n)(x) = d�(x)�n(x) + �(x)d�n(x), �n(p) = 0 and �(p) ≠ 0.
Thus, �dMn(p), . . . , dMm(p), d�2(p), . . . , d�n−1(p), d�(p)�= �dMn(p), . . . , dMm(p), d�2(p), . . . , d�n−1(p), d�n(p)�.
Therefore, det(dMn(p), . . . , dMm(p), d�2(p), . . . , d�n−1(p), d�(p)) ≠ 0. ⇤
Lemma 4.12. For almost every a ∈ Rn � {�0}, the one-form ⇠�⌃k(!) admits only non-degenerate
zeros, k ≥ 1.
Proof. Suppose that ⇠�⌃k(!)(p) = 0. Then, for almost every a ∈ Rn � {�0}, p ∈ Ak(!) ∪ Ak+1(!)
since Z(⇠�⌃k(!)) ∩⌃k+2(!) = � by Lemma 3.7 and ⌃k(!) = Ak(!) ∪Ak+1(!) ∪⌃k+2(!).

If p ∈ Ak(!) then ⇠�Ak(!)(p) = 0. Since ⇠�Ak(!) admits only non-degenerate zeros and
Ak(!) ⊂ ⌃k(!) is an open subset, we conclude that p is a non-degenerate zero of ⇠�⌃k(!) .

If p ∈ Ak+1(!) and k < n−1 then ⇠�⌃k+1(!)(p) = 0. In particular, since Ak+1(!) ⊂ ⌃k+1(!) is an
open subset then ⇠�Ak+1(!)(p) = 0. By Lemmas 4.8 and 4.7, ⇠�Ak+1(!) admits only non-degenerate
zeros, and since Ak+1(!) is an open set of ⌃k+1(!), we conclude that p is a non-degenerate zero
of ⇠�⌃k+1(!) . Therefore, by Lemma 4.10, p is non-degenerate zero of ⇠�⌃k(!) . Finally, if p ∈ An(!),
by Lemma 4.11, p is a non-degenerate zero of ⇠�⌃n−1(!) .

⇤
Theorem 4.13. Let ! = {!i}1≤i≤n be a Morin collection of smooth one-forms defined on an
m-dimensional compact manifold M . Then,

�(M) ≡ n�
k=1

�(Ak(!)) mod 2.

Proof. Let us denote by Z(') the set of zeros of a one-form ' and let us denote by #Z(') the
number of elements of this set, whenever Z(') is finite. Let

⇠(x) = n�
i=1

ai!i(x)
be a one-form with a = (a1, . . . , an) ∈ Rn � {�0} satisfying the generic conditions of the previous
lemmas of Sections 3 and 4.

Since M is compact and the submanifolds ⌃k(!) are closed in M , by the Poincaré-Hopf
Theorem for one-forms we obtain

● �(M) ≡#Z(⇠) mod 2;● �(Ak(!)) = �(⌃k(!)) ≡#Z(⇠�⌃k(!)) mod 2, for k = 1, . . . , n − 1;
● �(An(!)) = �(⌃n(!)) ≡#Z(⇠�⌃n(!)) mod 2.

By Lemma 3.1, if p ∈ Z(⇠) then p ∈ ⌃1(!) and ⇠�⌃1(!)(p) = 0. Moreover, by Lemma 3.6,
Z(⇠) ∩⌃2(!) = �. Thus p ∈ A1(!). On the other hand, Lemma 3.2 shows that if

p ∈ Z(⇠�⌃1(!)) ∩A1(!),
then p is also a zero of the one-form ⇠. Thus,

#Z(⇠) ≡#Z(⇠�⌃1(!) ∩A1(!)) mod 2.
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By Lemma 3.7, if p ∈ Z(⇠�⌃k(!)) then p ∉ ⌃k+2(!). Thus, p ∈ Ak(!) ∪ Ak+1(!) and, for
k = 1, . . . , n − 1, we have

#Z(⇠�⌃k(!)) ≡#Z(⇠�⌃k(!) ∩Ak(!)) +#Z(⇠�⌃k(!) ∩Ak+1(!)) mod 2.

By Lemma 3.2, we also have

#Z(⇠�⌃k(!) ∩Ak+1(!)) =#Z(⇠�⌃k+1(!) ∩Ak+1(!))
and by Lemma 3.3,

#An(!) =#Z(⇠�⌃n−1(!) ∩An(!)).
Then,
● �(M) ≡#Z(⇠�⌃1(!) ∩A1(!)) mod 2;● For k = 1, . . . , n − 1,

�(Ak(!)) ≡#Z(⇠�⌃k(!) ∩Ak(!)) +#Z(⇠�⌃k+1(!) ∩Ak+1(!)) mod 2;

● �(An(!)) =#Z(⇠�⌃n−1(!) ∩An(!)).
Therefore,

�(M) + n�
k=1

�(Ak(!)) ≡ 2#Z(⇠�⌃1(!) ∩A1(!))
+ 2#Z(⇠�⌃2(!) ∩A2(!)) + . . .
+ 2#Z(⇠�⌃n−1(!) ∩An−1(!))
+ 2#Z(⇠�⌃n−1(!) ∩An(!)) mod 2

≡ 0 mod 2.

⇤

As for the definition of Morin collection of n one-forms, the results presented in Sections 3
and 4 of this paper also can be naturally adapted to the context of collections of n vector fields.
In particular, the main theorems that have been used, as the Poincaré-Hopf Theorem and the
Szafraniec’s characterizations, have their respective versions for vector fields.

Finally, we end the paper with a very simple example. Let us verify that Theorem 4.13
indeed holds for the Morin collection of 2 vector fields V = {V1, V2} presented in the Example
2.31. To do that, it is enough to see that the torus T is a compact manifold with �(T) = 0.
Moreover, A1(V ) = ⌃1(V ) is given by two circles in R3 and A2(V ) consists of four points, such
that �(A1(V )) = 0 and �(A2(V )) = 4. Therefore,

�(T) ≡ �(A1(V )) + �(A2(V )) mod 2.
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Appendix

A. Proof of Preposition 2.23

Proof of Proposition 2.23, part (a). Firstly, let us show that if x̄ ∈ U ∩ ⌃k−1(!) such that
⌦k−1(x̄) ∈ N∗⌃k−1Mr, then the following conditions are equivalent:

(I) rank (dF1(x̄), . . . , dFm−r(x̄), d�k(x̄)) =m − r + 1;
(II) ⌦k−1 � N∗⌃k−1Mr in T ∗⌃k−1Mr at x̄.

Let ⌦k−1(x̄) ∈ U ×V. By the proof of Lemma 2.17, N∗⌃k−1Mr can be locally given by indepen-
dent equations as follows

N∗⌃k−1Mr = {(x,') ∈ U × V � F1 = . . . = Fm−r =� = 0},
where �(x,') = det(dF1(x), . . . , dFm−r(x),'1, . . . ,'r)and V ⊂ Rmr is an open set. Let

G(⌦k−1) = {(x,⌦1(x), . . . ,⌦r(x)) � x ∈ U ∩⌃k−1(!)}
be the restriction of the graph of (⌦1(x), . . . ,⌦r(x)) to U ∩ ⌃k−1(!), G(⌦k−1) can be locally
given by

G(⌦k−1) = {(x,') ∈ T ∗Mr � F1(x) = . . . = Fm−r(x) = 0;
⌦j

i (x) −'j
i = 0, i = 1, . . . , r and j = 1, . . . ,m},

where T ∗Mr denotes the r-cotangent bundle of M , ⌦i(x) = (⌦1
i (x), . . . ,⌦m

i (x)) and
'i = ('1

i , . . . ,'
m
i ) for i = 1, . . . , r. In particular, the local equations of G(⌦k−1) are clearly inde-

pendent and dimG(⌦k−1) = r. Let (x,') be local coordinates in T ∗Mr, with x = (x1, . . . , xm)
and

' = ('1
1, . . . ,'

m
1 ,'1

2, . . . ,'
m
2 , . . . ,'1

r, . . . ,'
m
r ),

let us consider the derivatives of the local equations of N∗⌃k−1Mr and G(⌦k−1) with respect to(x,'). We will denote the derivative with respect to x by dx and the derivative with respect to
' by d', then we have

(24) d �⌦j
i (x) −'j

i� = �dx⌦j
i (x) ,−d''j

i� ,
for i = 1, . . . , r and j = 1, . . . ,m, where d''j

i = (0, . . . ,0,1,0, . . . ,0) is the vector whose m(i−1)+jth
entry is equal to 1 and the others are zero. By Lagrange’s rules the determinant

�(x,') = det(dF1(x), . . . , dFm−r(x),'1, . . . ,'r)
can be written as

�(x,') =�
I

FI(x)NI(')
for I = {i1, . . . , ir} ⊂ {1, . . . ,m}, where

(25) NI(') =
��������������
'i1
1 . . . 'i1

r⋮ � ⋮
'ir
1 . . . 'ir

r

��������������
is the minor obtained from the matrix�������

'1
1 . . . '1

r⋮ � ⋮
'm
1 . . . 'm

r

�������
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taking the lines i1, . . . , ir, and

(26) FI(x) = ±
����������������������

@F1

@xk1

(x) . . .
@Fm−r
@xk1

(x)
⋮ � ⋮

@F1

@xkm−r
(x) . . .

@Fm−r
@xkm−r

(x)

����������������������
is, up to sign, the minor obtained from the matrix (dF1(x) . . . dFm−r(x)) removing the lines
i1, . . . , ir, that is, {k1, . . . , km−r} = {1, . . . ,m} � I. Therefore,

d�(x,') = ( �
I

NI(')dxFI(x) , �
I

FI(x)d'NI(') ).
Notice that ⌦k−1 � N∗⌃k−1Mr in T ∗⌃k−1Mr at the point x ∈ U ∩⌃k−1(!) if and only if

G(⌦k−1) � N∗⌃k−1Mr in T ∗⌃k−1Mr at (x,⌦1(x), . . . ,⌦r(x)).
Let ⇡1 be the projection of the cotangent space of T ∗Mr over the cotangent space of T ∗⌃k−1Mr:

⇡1 ∶ T ∗(x,')(T ∗Mr) �→ T ∗(x,')(T ∗⌃k−1Mr)( (x),'1, . . . ,'r) �→ (⇡( (x)),'1, . . . ,'r)
where ⇡ denotes the restriction to Tx⌃

k−1(!), that is, ⇡( (x)) =  (x)�Tx⌃k−1(!) . By Equation (24),

⇡1 �d(⌦j
i (x) −'j

i )� = �⇡(dx⌦j
i (x)) ,−d''j

i� ,
for i = 1, . . . , r and j = 1, . . . ,m. We also have that

⇡1 (d�(x,')) = � ⇡ ��
I

NI(')dxFI(x)� , �
I

FI(x)d'NI(') � .
Then, G(⌦k−1) � N∗⌃k−1Mr in T ∗⌃k−1Mr at (x,⌦1(x), . . . ,⌦r(x)) such that

(x,⌦1(x), . . . ,⌦r(x)) ∈ N∗⌃k−1Mr

if and only if the matrix

(27)

������������������

⇡(dx⌦1
1(x)) ⋮⋮ ⋮

⇡(dx⌦m
1 (x)) ⋮ −Idmr⋮ ⋮

⇡(dx⌦m
r (x)) ⋮� � � � � � � ⋮ � � � � � �

⇡ ��
I

NI(')dxFI(x)� ⋮ �
I

FI(x)d'NI(')

������������������
has maximal rank at x. By the expression of NI(') in (25), we have

(28) d'NI(') =�
i,j

cof('j
i )d''j

i ,

for i = 1, . . . , r, j ∈ I and cof('j
i ) denoting the cofactor of 'j

i in the matrix
�������
'i1
1 . . . 'i1

r⋮ � ⋮
'ir
1 . . . 'ir

r

�������
.
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Let d = Cm,r = m!

r!(m − r)! , we will denote by I1, . . . , Id the subsets of {1, . . . ,m} containing

exactly r elements. By equation (28),

�
I

FI(x)d'NI(') = d�̀=1FI`(x)��
r�

i=1 �j∈I` cof('
j
i )d''j

i

�
�

and,

d�̀=1FI`(x)��
r�

i=1 �j∈I` cof('
j
i )d''j

i

�
�

= r�
i=1
������FI1(x)���j∈I1 cof('

j
i )d''j

i

�
� + . . . + FId(x)���j∈Id cof('

j
i )d''j

i

�
�
������

= r�
i=1
�� �

I ∶1∈I
FI(x)� cof('1

i )d''1
i + . . . + � �

I ∶m∈I
FI(x)� cof('m

i )d''m
i �

= r�
i=1
������

m�
j=1
�
� �I ∶ j∈I FI(x)�� cof('j

i )d''j
i

������ .
Thus, for i = 1, . . . , r and j = 1, . . . ,m, we can write

(29) �
I

FI(x)d'NI(') =�
i,j

�j
i (x,')d''j

i ,

where

�j
i (x,') = �� �I ∶ j∈I FI(x)�� cof('j

i ).
We will denote the rows of the Matrix (27) by Rj

i = �⇡(dx⌦j
i (x)) ,−d''j

i�, for i = 1, . . . , r and
j = 1, . . . ,m, and we denote the last row of the Matrix (27) by R�. Replacing the row R� by

R� +�
i,j

�j
i (x,')Rj

i

for i = 1, . . . , r and j = 1, . . . ,m, we obtain a new matrix

(30)

�����������

⇡(dx⌦1
1(x)) ⋮⋮ ⋮ −Idmr

⇡(dx⌦m
r (x)) ⋮� � � � � � ⋮ � � � � �

R′� ⋮ R′′�

�����������
which has rank equal to the rank of the Matrix (27), where

R′′� =�
I

FI(x)d'NI(') +�
i,j

�j
i (x,')(−d''j

i ) (29)= �0
and

R′� = ⇡ ��
I

NI(')dxFI(x)� +�
i,j

�j
i (x,')⇡ �dx⌦j

i (x)�
= ⇡ ���I NI(')dxFI(x) +�

i,j

�j
i (x,')dx⌦j

i (x)�� .
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Notice that for each x̄ ∈ U ∩ ⌃k−1(!), we have ⌦j
i (x̄) = 'j

i . In this case, Equation (29) implies
that

�
i,j

�j
i (x̄,')dx⌦j

i (x̄) =�
i,j

�j
i (x̄,⌦k−1(x̄))dx⌦j

i (x̄) =�
I

FI(x̄)dxNI(⌦k−1(x̄)).
Thus, at x̄

R′� = ⇡ ��
I

NI(⌦k−1(x̄))dxFI(x̄) +�
I

FI(x̄)dxNI(⌦k−1(x̄))� = ⇡(d�k(x̄))
and the Matrix (30) is equal to

�����������

⇡(dx⌦1
1(x̄)) ⋮⋮ ⋮ −Idmr

⇡(dx⌦m
r (x̄)) ⋮� � � � � � ⋮ � � � � �

⇡(d�k(x̄)) ⋮ �0

�����������
.

Thus, for each x̄ ∈ U ∩⌃k−1(!) such that ⌦k−1(x̄) ∈ N∗⌃k−1Mr, ⌦k−1 � N∗⌃k−1Mr in T ∗⌃k−1Mr at x̄
if and only if ⇡(d�k(x̄)) ≠ 0, that is, the restriction of d�k(x̄) to Tx̄⌃

k−1(!) is not zero, which
means that d�k(x̄) ∉ �dF1(x̄), . . . , dFm−r(x̄)�, or equivalently

rank (dF1(x̄), . . . , dFm−r(x̄), d�k(x̄)) =m − r + 1.
Now suppose that ! satisfies the condition Ik−1 on U . By property (b) of Definition 2.18,

we have that dim�⌦1(x), . . . ,⌦r(x)� ∩ N∗x⌃k−1(!) is either equal to 0 or equal to 1 for each
x ∈ U ∩⌃k−1(!). If dim�⌦1(x), . . . ,⌦r(x)� ∩N∗x⌃k−1(!) = 1, then x ∈ U ∩⌃k(!) and �k(x) = 0.
In this case, the transversality given by property (a) of Definition 2.18 implies that

rank (dF1(x), . . . , dFm−r(x), d�k(x)) =m − r + 1.
On the other hand, we assume that properties (i) and (ii) hold for each x ∈ U ∩⌃k−1(!). By

property (i), the property (b) of Definition 2.18 holds on U . If

dim�⌦1(x), . . . ,⌦r(x)� ∩N∗x⌃k−1(!) = 0,
then ⌦k−1(x) does not intersect N∗⌃k−1Mr, thus ⌦k−1 � N∗⌃k−1Mr in T ∗⌃k−1Mr at x. If

dim�⌦1(x), . . . ,⌦r(x)� ∩N∗x⌃k−1(!) = 1,
then x ∈ U ∩⌃k(!) by Definition 2.19 and rank (dF1(x), . . . , dFm−r(x), d�k(x)) = m − r + 1 by
property (ii). Thus ⌦k−1 � N∗⌃k−1Mr in T ∗⌃k−1Mr at x and ! satisfies the condition Ik−1 on U .

By the previous arguments and Definition 2.19, if ! satisfies the condition Ik−1 on U thenU ∩⌃k(!) = {x ∈ U � F1(x) = . . . = Fm−r(x) =�k(x) = 0}. ⇤

The following technical lemma will be used in the proof of Proposition 2.23, part (b).
Lemma A.1. Let fi ∶ V ⊂ R` → R, i = 1, . . . , s be smooth functions defined on an open subset
of R`. Let M ⊂ R` be a manifold locally given by M = {x ∈ V � f1(x) = . . . = fs(x) = 0}, with
rank(df1(x), . . . , dfs(x)) = s, for all x ∈ M ∩ V. If g, h ∶ V ⊂ R` → R are smooth functions such
that g(x) = �(x)h(x), for all x ∈M ∩ V and some smooth function � ∶ V → R, then:
(i) If �(x) ≠ 0 and x ∈M then g(x) = 0⇔ h(x) = 0.(ii) If �(x) ≠ 0, x ∈M and h(x) = 0 then

�df1(x), . . . , dfs(x), dg(x)� = �df1(x), . . . , dfs(x), dh(x)�.
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Proof of Proposition 2.23, part (b). Firstly, notice that the definition of ⌃1(!) does not depend
on the choice of any basis. Then, assume that the definition of ⌃i(!) does not depend on the
choice of the basis {⌦1(x), . . . ,⌦n−i+1(x)} for every i = 2, . . . , k − 1. As considered in part (a),
for each p ∈ ⌃k−1(!), there is an open neighborhood U of p in M such that

U ∩⌃1(!) = {x ∈ U ∶ F1(x) = . . . = Fm−n+1(x) = 0},U ∩⌃k−1(!) = {x ∈ U ∶ F1(x) = . . . = Fm−n+1(x) =�2(x) = . . . =�k−1(x) = 0},U ∩⌃k(!) = {x ∈ U ∶ F1(x) = . . . = Fm−n+1(x) =�2(x) = . . . =�k(x) = 0},
with rank(dF1(x), . . . , dFm−n+1(x), d�2(x), . . . , d�k−1(x)) = m − n + k − 1, for x ∈ U ∩ ⌃k−1(!)
and rank(dF1(x), . . . , dFm−n+1(x), d�2(x), . . . , d�k(x)) = m − n + k, for x ∈ U ∩ ⌃k(!). Let us
recall that

�k(x) = det(dF1, . . . , dFm−n+1, d�2, . . . , d�k−1,⌦1, . . . ,⌦n−k+1)(x),
where {⌦1(x), . . . ,⌦n−k+1(x)} is a collection of n − k + 1 smooth one-forms defined on U which
is a basis of a vector subspace complementary to �!̄(x)� ∩ N∗x⌃k−2(!) in �!̄(x)� for each
x ∈ U ∩⌃k−1(!).

Let us consider {⌦̃1(x), . . . , ⌦̃n−k+1(x)} a collection of n−k+1 smooth one-forms defined on U
such that for each x ∈ U ∩⌃k−1(!), {⌦̃1(x), . . . , ⌦̃n−k+1(x)} is another basis of a vector subspace
complementary to �!̄(x)� ∩N∗x⌃k−2(!) in �!̄(x)�. Then,

�!̄(x)� = ��!̄(x)� ∩N∗x⌃k−2(!)�⊕ �⌦̃1(x), . . . , ⌦̃n−k+1(x)�
and

dim(�⌦̃1(x), . . . , ⌦̃n−k+1(x)� ∩N∗x⌃k−1(!))
is either equal to 0 or equal to 1, for x ∈ U ∩⌃k−1(!). Moreover,

���������������������������������������������

⌦̃1(x) = n−k+1�̀=1 a`1(x)⌦`(x) +'1(x)
⌦̃2(x) = n−k+1�̀=1 a`2(x)⌦`(x) +'2(x)
⋮
⌦̃n−k+1(x) = n−k+1�̀=1 a`(n−k+1)(x)⌦`(x) +'n−k+1(x)

where aij(x) ∈ R and 'j(x) ∈ �!̄(x)�∩N∗x⌃k−2(!), for j = 1, . . . , n− k + 1. We will show that for
each x ∈ U ∩⌃k−1(!),

det(A(x)) =
�������������

a11(x) a12(x) � a1(n−k+1)(x)⋮ ⋮ � ⋮
a(n−k+1)1(x) a(n−k+1)2(x) � a(n−k+1)(n−k+1)(x)

�������������
≠ 0.

Suppose that the statement is false, that is, det(A(x)) = 0. This means that the columns of
matrix A(x) are linearly dependent. So we can suppose without loss of generality that the first
column of A(x) can be written as a linear combination of the others columns:

(a11(x), . . . , a(n−k+1)1(x)) = n−k+1�
s=2 �s(a1s(x), . . . , a(n−k+1)s(x)),

where �s ∈ R, for s = 2, . . . , n − k + 1. Thus, removing x in the notation, we have
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⌦̃1 = n−k+1�̀=1 a`1⌦` +'1 ⇒ ⌦̃1 = n−k+1�̀=1 �
n−k+1�
s=2 �sa`s�⌦` +'1

⇒ ⌦̃1 = n−k+1�
s=2 �s �n−k+1�̀=1 a`s⌦`� +'1

then

⌦̃1 − n−k+1�
s=2 �s⌦̃s = �n−k+1�

s=2 �s �n−k+1�̀=1 a`s⌦`� +'1� − n−k+1�
s=2 �s �n−k+1�̀=1 a`s⌦` +'s�

= '1 − n−k+1�
s=2 �s's.

This means that

⌦̃1 − n−k+1�
s=2 �s⌦̃s ∈ ��!̄� ∩N∗x⌃k−2(!)� ∩ �⌦̃1, . . . , ⌦̃n−k+1� = {0},

that is, ⌦̃1(x), . . . , ⌦̃n−k+1(x) are linearly dependent. However, this contradicts the initial as-
sumption that {⌦̃1(x), . . . , ⌦̃n−k+1(x)} is a basis of a vector subspace for each x in U ∩⌃k−1(!).
Therefore, det(A(x)) ≠ 0.

Let tA(x) be the transpose of matrix A(x). For each x ∈ U ∩ ⌃k−1(!), we have
det(tA(x)) = det(A(x)) ≠ 0 and, removing x in the notation,

(31)

det(dF1, . . . , dFm−n+1, d�2, . . . , d�k−1, ⌦̃1, . . . , ⌦̃n−k+1)
= det(dF1, . . . , dFm−n+1, d�2, . . . , d�k−1,

n−k+1�̀=1 a`1⌦`, . . . ,
n−k+1�̀=1 a`(n−k+1)⌦`)

= det(tA)det(dF1, . . . , dFm−n+1, d�2, . . . , d�k−1,⌦1, . . . ,⌦n−k+1).
Thus, for x ∈ U ∩ ⌃k−1(!) we have that dim(�⌦̃1(x), . . . , ⌦̃n−k+1(x)� ∩N∗x⌃k−1(!)) is equal to
dim(�⌦1(x), . . . ,⌦n−k+1(x)� ∩N∗x⌃k−1(!)). In particular, if x ∈ U ∩⌃k(!) then �k(x) = 0 and

�̃k(x) = det(dF1, . . . , dFm−n+1, d�2, . . . , d�k−1, ⌦̃1, . . . , ⌦̃n−k+1) = 0
such that, by statement (ii) of Lemma A.1,

�dF1(x), . . . , dFm−n+1(x), d�2(x), . . . , d�k−1(x), d�k(x)�
= �dF1(x), . . . , dFm−n+1(x), d�2(x), . . . , d�k−1(x), d�̃k(x)�,

which implies that

rank(dF1(x), . . . , dFm−n+1(x), d�2(x), . . . , d�k−1(x), d�̃k(x))
is equal to m − n + k. Therefore, the condition Ik−1 and the definition of ⌃k(!) do not depend
on the choice of the basis {⌦1(x), . . . ,⌦n−k+1(x)}.

Since Ak(!) = ⌃k(!)�⌃k+1(!) for k = 1, . . . , n, we conclude that Ak(!) also does not depend
on the choice of the basis. ⇤
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DEFORMATION RETRACTS TO INTERSECTIONS OF WHITNEY

STRATIFICATIONS

SAURABH TRIVEDI AND DAVID TROTMAN

Abstract. We give a counterexample to a conjecture of Eyral on the existence of deformation
retracts to intersections of Whitney stratifications embedded in a smooth manifold. We then
prove that the conjecture holds if the stratifications are definable in some o-minimal structure
without assuming any regularity conditions. Moreover, we also show that the conjecture holds
for Whitney stratifications if they intersect transversally.

1. Introduction

In [2] Eyral proved the existence of deformation retracts to intersections of Whitney stratifi-
cations sitting inside a compact real analytic manifold, and used the result to prove connectivity
properties of such intersections. He later used these results to find examples of global rectified
homotopical depths and proved a conjecture of Grothendieck on homotopical depth; see [3].

In proving his results Eyral exploits the triangulability properties of compact real analytic
manifolds. He then conjectures the existence of deformation retracts to intersections of Whitney
stratifications embedded in any non-compact smooth manifold. More precisely, he conjectures
the following statement:

Conjecture 5.2 in [2]. Let M be a smooth manifold, A and B be two closed subsets of M
and C a closed subset of B. Suppose that there exist a Whitney stratification of B adapted to
C (i.e. C is a union of strata of B) and a Whitney stratification of A whose strata intersect the
strata of C transversally. Then, there exists a neighbourhood W of A \ B in B such that the
couple (A\B, (A\B)\(A\B\C)) is a strong deformation retract of the couple (W,W \(W\C)).

He further conjectures that certain pairs of intersection of Whitney stratifications embedded
in any smooth manifold (not necessarily compact) are highly connected and claims that this can
be proved using the above conjecture; see Conjecture 5.1 in [2].

We show by a simple counterexample that Conjecture 5.2 is false in general; see Figure 1.
Let M = R2, B = x-axis. Let A be the graph of

y =

(
x3 sin(1/x) x 6= 0

0 x = 0

in R2. Choose C such that A\C is empty. Then A\B is an infinite (double) sequence of points.
Any neighbourhood W of A\B will have a component containing the origin and infinitely many
points of A \B. There exists no retraction of W onto A \B since the image of a connected set
under a continuous map is also connected. Thus A \B is not a (strong deformation) retract of
any such W .

We remark that though the function y above is not smooth, a smooth counterexample can
easily be given. For example we can take A to be the graph of

y =

(
e�1/x2

sin(1/x) x 6= 0

0 x = 0
.

http://dx.doi.org/10.5427/jsing.2020.22s
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Figure 1.

In this article we show that the conjecture holds without the hypothesis of Whitney regu-
larity of stratifications if the strata are assumed to be definable in some o-minimal structure.
Furthermore, the conjecture also holds with the extra assumption of transverse intersection of
the Whitney stratifications of A and B.

2. Triangulations of definable sets and Whitney stratifications

In this section we recall the definition of triangulations and present some of the results about
triangulability of stratifications and definable sets in o-minimal structures. For definitions of
definable sets and o-minimal structures we refer the reader to van den Dries [16]. For definitions
of stratifications and the regularity conditions (a) and (b) of Whitney we refer to the Ph.D.
thesis of the second author [15]. In addition, we assume that the stratifications are locally
compact to avoid pathologies. For definitions of simplices, open simplices, simplicial complexes
and polytopes we refer to Munkres [10].

Recall that a topological set X is said to be triangulable if there exists a simplicial complex
K and a homeomorphism � : |K| ! X, where |K| is the polytope of K. The simplicial complex
K is then said to be a triangulation of X. We remark that we allow K to be a simplicial
complex with an infinite number of simplices and recall that if K is finite then the polytope |K|
is compact and conversely if A ⇢ |K| is compact, then A ⇢ |K0| for some finite subcomplex K0

of K; see Lemma 2.5 in Munkres [10]. This implies that if a triangulable set X is compact then
its triangulation is finite. It is well known that any smooth manifold is triangulable; see Part 2
of Munkres [9].

We know that the definable sets in any o-minimal structure can be triangulated. Let us recall
the precise statement on triangulations of definable sets; a proof of this result can be found in
Coste [1] or van den Dries [16].

In what follows by a definable set we mean a set definable in an o-minimal structure D over R.
Let us mention that definable sets admit definable Whitney stratifications, i.e. every definable
set can be stratified into finitely many connected definable submanifolds called strata, such that
every pair of adjacent strata satisfies Whitney (b)-regularity; see [11] for a proof.

Theorem 2.1. Let A ⇢ Rn be a compact definable set and {B1, . . . , Bk} be definable subsets of
A. Then, there exists a definable homeomorphism � : |K| ! A from a finite simplicial complex
K onto A such that each Bi is a union of images of open simplices of K under �.

From this it immediately follows that:

Theorem 2.2. Let ⌃ be a definable stratification of a definable subset V of a compact definable
set A in Rn, then there exists a definable triangulation � : |K| ! A of A such that every stratum
of ⌃ is a union of images of open simplices of K under �.
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In short, every definable stratification can be triangulated.
Although the results are stated for compact definable subsets of Rn, non-compact definable

subsets can also be triangulated. This can be seen as follows:
Let A be a definable subset (non-necessarily compact) of Rn and B1, . . . , Bk be definable

subsets of B. Take the compactification Pn of Rn and consider A as an embedded subset of Pn.
We know that A considered as an embedded subset of Pn is still a definable subset of some RN

where Pn embeds. We remark here that such an embedding of a non-definable set might not
be triangulable, a typical example is the embedding of the graph of sin(x) in P2. We can then
apply the above results to Pn and obtain a triangulation of A.

Thus, we have:

Theorem 2.3. Let ⌃ be a definable stratification of a definable subset V of a definable set (not
necessarily compact) A in Rn, then there exists a triangulation � : |K| ! A of A such that every
stratum of ⌃ is a union of images of open simplices of K under �.

Furthermore, any abstract stratified set can be embedded as a Whitney regular stratified
subanalytic set (semialgebraic if the set is compact) in a Euclidean space, see Noirel [12]. Also,
Shiota [14] showed that every locally compact Whitney stratified set is homeomorphic to a
subanalytic set. Then, one can use the theorem of Hironaka [6] or alternatively Hardt [5] to
triangulate the subanalytic set and pull it back to obtain a triangulation of a given abstract
stratified set. Also, Mather [8] proved that every Whitney stratified set admits the structure of
an abstract stratified set. It follows from this that Whitney stratified sets in Rn are triangulable.
Let us mention this result in the following theorem:

Theorem 2.4. Let M be a smooth manifold and A be a closed subset of M admitting a Whitney
(b) regular stratification. Then, there exists a simplicial complex K whose polytope is homeo-
morphic to M and such that every stratum of A is a union of images of open simplices of K
under the homeomorphism.

At this point we would like to mention that Goresky [4] also proved that any abstract stratified
set in the sense of Mather [8] is triangulable. But, it is not clear whether Goresky’s idea works
for non-compact stratified sets, for Goresky uses Hudson’s [7] notion of “Euclidean polyhedra”
to define a triangulation and polyhedra of Hudson only have finitely many simplices and so are
compact. Hironaka’s or Hardt’s triangulation works for non-compact sets too.

We give an example of a Whitney (a)-regular stratification which is not triangulable; see
Figure 2. Consider the set X given by the closure of the graph of sin(1/x) for x > 0 in R2.
Stratify it with three strata, the limiting points of the interval in the y-axis, the open interval in
the y-axis and the graph of sin(1/x) for x > 0. This is a Whitney (a)-regular stratification, but
is not triangulable since it is not path-connected. The set is not a definable set. Furthermore,
the intersection U of the x-axis, which is a transverse intersection with the set X, does not have
any open set in the x-axis that retracts to the set U .

3. Existence of neighbourhoods of subcomplexes

In this section we will show how to use barycentric subdivisions of a simplicial complex
to obtain neighbourhoods of subcomplexes. These neighbourhoods will be used to construct
deformation retracts in the next section. The construction of the neighbourhoods is standard
but we describe it here for the sake of clarity.

We first of all recall the definition of the ‘join’ of two simplicial complexes. Let K1 and K2 be
two simplicial complexes. The join of K1 and K2, denoted by K1 ⇤K2 is the simplicial complex
spanned by the vertices of K1 and K2 together.
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Figure 2.

Let K be a simplicial complex and L be a subcomplex of K. Denote by |K| the polytope of K
and that of L by |L|. Let K 0 be the first barycentric subdivision of K. Since L is a subcomplex
this subdivision induces a subdivision of L. Recall that the polytope does not change after the
subdivision. Denote by K ÷ L the subcomplex of K 0 generated by the vertices of K 0 that are
not in L0. Then, there is a natural embedding of |K| onto |L ⇤K ÷ L|. This embedding allows
us to write elements of |K| as tuples (x, t, y) where t 2 [0, 1], x 2 |K ÷ L| and y 2 |L|. Define

N (L) = {p = (x, t, y) 2 |K||t 2 [0, 1), x 2 |K ÷ L| and y 2 |L|}.
It is then easy to see that N (L) is an open neighbourhood in |K| of |L|. For example, see the
picture below.

�!

Figure 3.

In the picture above the complex |K| is the full triangle while |L| consists of the simplex spanned
by the white vertices on the left side of the picture above. The constructed neighbourhood of |L|
is the shaded region. It is clear that |K ÷ L| is what remains after deleting the shaded region.

Moreover, for t0 2 (0, 1] the set

N (L, t0) = {p = (x, t, y) 2 |K||t 2 [0, t0), x 2 |K ÷ L| and y 2 |L|}.
also defines a neighbourhood of L in K. By varying t0 we get a system of neighbourhoods of
L in K. Notice that we can also construct neighbourhood of an open subcomplex of K. Here,
by an open subcomplex we mean a union of open simplices of K. More precisely, given an open
subcomplex, we can first take the union of its open simplices with their boundaries to get a
subcomplex of K. We can then follow the steps to find a neighbourhood of this subcomplex
which also works as a neighbourhood of the open subcomplex we started with.

Finally, if � : |K| ! X is a triangulation of a topological space X such that a subspace
Y ⇢ X is the image of a subcomplex L of K under �, then the image of N (L, t0) under � is a
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neighbourhood of Y in X. The closure of N(L, t0) in |K| is said to be a closed neighbourhood
of L in K. In the rest of the article, by a neighbourhood N (Y ) of a subspace of a triangulable
space X we mean the image of N (L, t0) (for some t0 2 [0, 1) )under the homeomorphism of the
triangulation of X. It is then easy to see that Y is a deformation retract of N (Y ). Moreover
every neighbourhood of Y in X contains a neighbourhood of type N (Y ); see Proposition 1.4
and 1.5 of Eyral [2].

4. Construction of deformation retracts

In this section we prove the main results. We first need the following lemma whose proof
closely follows the proof of Proposition 1.6 in Eyral [2] and is left to the reader:

Lemma 4.1. Let X be a triangulable space, Y and Z be two subspaces of X that are images
of some open simplices of the triangulation of X and N (Y ) the neighbourhood of Y in X, then
there exists a system of neighbourhoods {V↵} of Y in X such that, for every ↵, (V↵, V↵ \ Z) is
a deformation retract of (N (Y ),N (Y ) \ Z).

We prove that:

Theorem 4.2. Let M be a definable submanifold of Rn and A, B and C ⇢ B be closed definable
subsets in M . Then, there exists a neighbourhood W of A \B in B such that the couple

(A \B, (A \B) \ (A \B \ C))

is a strong deformation retract of the couple (W,W \ (W \ C)).

Proof. By Theorem 2.3, we can choose a triangulation � : |K| ! M of M such that A and B
are union of images of some open simplices of K. Furthermore, K can be chosen in such a way
that C is also a union of the image of open simplices of a sub-complex of the complex K 0 that
triangulates B, i.e. �(K 0) = B.

Since finite intersections of definable sets are definable, we can choose a triangulation, a
subdivision of K if necessary, of M adapted to A, B, C, A \ B and A \ B \ C. Moreover,
(A \ B) \ (A \ B \ C) is also a definable set. Thus, subdividing K if necessary, we can assume
that all these definable sets are unions of images of some open simplices of K under �. Now
consider the neighbourhood of W = N (A\B) of A\B and constructed in the previous section.
By Lemma 4.1, it is then clear that (A \ B, (A \ B) \ (A \ B \ C)) is a deformation retract of
(W,W \ (W \ C)). This concludes the proof of the theorem. ⇤

Moreover,

Theorem 4.3. Let M be a smooth manifold and A, B and C ⇢ B be closed subsets of M .
Suppose there exist a Whitney stratification of B adapted to C (i.e. C is a union of strata of
B) and a Whitney stratification of A whose strata intersect the strata of B transversally. Then,
there exists a neighbourhood W of A\B in B such that the couple (A\B, (A\B)\ (A\B\C))
is a strong deformation retract to the couple (W,W \ (W \ C)).

Proof. Since A and B are Whitney stratifications and they intersect transversally, the intersec-
tion A \ B is also a Whitney stratification; see Orro and Trotman [13]. Thus, the union A [ B
admits a Whitney stratification by the strata of A\B and their complements in the correspond-
ing strata of A and B. By Theorem 2.4, we can choose a triangulation � : |K| ! M of M such
that the strata of A[B are union of images of open simplices of K under �. Furthermore, since
C is a union of strata of B, K can be chosen in such a way that C is also the image of open
simplices of a sub-complex of the complex K 0 that triangulates B, i.e. �(K 0) = B.
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Therefore, we can suitably choose a triangulation, refinement of K if necessary, of M adapted
to the strata of A, B, C, A\B and A\B \C. That is, every stratum of the five stratifications
is a union of images of open simplices of K under �. Now consider the neighbourhood

W = N (A \B)

of A \B constructed in the previous section. By Lemma 4.1, it is then clear that

(A \B, (A \B) \ (A \B \ C))

is a deformation retract of (W,W \ (W \ C)). This concludes the proof of the theorem. ⇤
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COMPARISON OF STRATIFIED-ALGEBRAIC

AND TOPOLOGICAL K-THEORY

WOJCIECH KUCHARZ AND KRZYSZTOF KURDYKA

Abstract. Stratified-algebraic vector bundles on real algebraic varieties have many desirable
features of algebraic vector bundles but are more flexible. We give a characterization of the
compact real algebraic varieties X having the following property: There exists a positive
integer r such that for any constant rank topological vector bundle ⇠ on X, the direct sum of
r copies of ⇠ is isomorphic to a stratified-algebraic vector bundle. In particular, each compact
real algebraic variety of dimension at most 8 has this property. Our results are expressed in
terms of K-theory.

1. Introduction and main results

In the recent paper [30], we introduced and investigated stratified-algebraic vector bundles on
real algebraic varieties. They occupy an intermediate position between algebraic and topological
vector bundles. Here we continue the line of research undertaken in [30, 28] and look for new
relationships between stratified-algebraic and topological vector bundles. In a broader context,
the present paper is also closely related to [5, 16, 23, 24, 26, 27, 29]. All results announced in
this section are proved in Section 2.

Throughout this paper the term real algebraic variety designates a locally ringed space iso-
morphic to an algebraic subset of RN , for some N , endowed with the Zariski topology and the
sheaf of real-valued regular functions (such an object is called an a�ne real algebraic variety
in [7]). The class of real algebraic varieties is identical with the class of quasi-projective real
varieties, cf. [7, Proposition 3.2.10, Theorem 3.4.4]. Morphisms of real algebraic varieties are
called regular maps. Each real algebraic variety carries also the Euclidean topology, which is
induced by the usual metric on R. Unless explicitly stated otherwise, all topological notions
relating to real algebraic varieties refer to the Euclidean topology.

Let F stand for R, C or H (the quaternions). All F-vector spaces will be left F-vector spaces.
When convenient, F will be identified with R

d(F), where d(F) = dimR F.
LetX be a real algebraic variety. For any nonnegative integer n, let "nX(F) denote the standard

trivial F-vector bundle on X with total space X⇥F
n, where X⇥F

n is regarded as a real algebraic
variety. An algebraic F-vector bundle on X is an algebraic F-vector subbundle of "nX(F) for some
n (cf. [7, Chapters 12 and 13] for various characterizations of algebraic F-vector bundles).

We now recall the fundamental notion introduced in [30]. By a stratification of X we mean
a finite collection S of pairwise disjoint Zariski locally closed subvarieties whose union is X.
Each subvariety in S is called a stratum of S. A stratified-algebraic F-vector bundle on X is a
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topological F-vector subbundle ⇠ of "nX(F), for some n, such that for some stratification S of X,
the restriction ⇠|S of ⇠ to each stratum S of S is an algebraic F-vector subbundle of "nS(F).

A topological F-vector bundle ⇠ on X is said to admit an algebraic structure if it is isomorphic
to an algebraic F-vector bundle on X. Similarly, ⇠ is said to admit a stratified-algebraic structure
if it is isomorphic to a stratified-algebraic F-vector bundle on X. These two types of F-vector
bundles have been extensively investigated in [3, 4, 6, 7, 9, 10, 11, 13] and [30, 28], respectively.
In general, their behaviors are quite di↵erent, cf. [30, Example 1.11]. Here we further develop
the direction of research initiated in [30, 28]. It is convenient to bring into play Grothendieck
groups.

Denote by KF(X) the Grothendieck group of topological F-vector bundles on X. For any
topological F-vector bundle ⇠ on X, let J⇠K denote its class in KF(X). Since X has the homotopy
type of a compact polyhedron [7, pp. 217, 225], it follows that the abelian group KF(X) is
finitely generated (cf. [21, Exercise III.7.5] or the spectral sequence in [2, 15]). Let KF-str(X) be
the subgroup of KF(X) generated by the classes of all F-vector bundles admitting a stratified-
algebraic structure.

If the variety X is compact, then the group KF-str(X) contains complete information on F-
vector bundles on X admitting a stratified-algebraic structure. More precisely, we have the
following.

Theorem 1.1 ([30, Corollary 3.14]). Let X be a compact real algebraic variety. A topological
F-vector bundle ⇠ on X admits a stratified-algebraic structure if and only if the class J⇠K is in
KF-str(X).

In other words, with notation as in Theorem 1.1, ⇠ admits a stratified-algebraic structure if
and only if there exists a stratified-algebraic F-vector bundle ⌘ on X such that the direct sum
⇠ � ⌘ admits a stratified-algebraic structure.

For our purposes it is convenient to distinguish some vector bundles by imposing a suitable
condition on their rank. For any topological F-vector bundle ⇠ on X, we regard rank ⇠ (the rank
of ⇠) as a function rank ⇠ : X ! Z, which assigns to every point x in X the dimension of the
fiber of ⇠ over x. Clearly, rank ⇠ is a constant function on each connected component of X.

We say that ⇠ has property (rk) if for every integer d, the set {x 2 X | (rank ⇠)(x) = d} is
algebraically constructible. Recall that a subset of X is said to be algebraically constructible if
it belongs to the Boolean algebra generated by the Zariski closed subsets of X. It readily follows
that each stratified-algebraic F-vector bundle on X has property (rk). Thus property (rk) is a
necessary condition for ⇠ to admit a stratified-algebraic structure.

We now give a simple example to illustrate the role of property (rk). The real algebraic curve

C = {(x, y) 2 R
2 : x2(x2 � 1)(x2 � 4) + y

2 = 0}

is irreducible with singular locus {(0,0)}. It has three connected components, the singleton
{(0,0)} and two ovals. Clearly, every algebraic F-vector bundle on C has constant rank, while
the rank function of a topological F-vector bundle on C may take three distinct values. On the
other hand, the rank function of a stratified-algebraic vector bundle on C need not be constant,
but must be constant on C \ {(0, 0)}.

Returning to the general case, denote by K
(rk)
F

(X) the subgroup of KF(X) generated by the
classes of all topological F-vector bundles having property (rk). By construction,

KF-str(X) ✓ K
(rk)
F

(X).

Since the group KF(X) is finitely generated, so is the quotient group

�F(X) := K
(rk)
F

(X)/KF-str(X).
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Thus the group �F(X) is finite if and only if r�F(X) = 0 for some positive integer r. In the
present paper the group �F(X) is the main object of investigation.

For any F-vector bundle ⇠ on X and any positive integer r, we denote by

⇠(r) = ⇠ � · · ·� ⇠

the r-fold direct sum. The following preliminary result shows that our approach here is consistent
with that of [28].

Proposition 1.2. Let X be a compact real algebraic variety. For a positive integer r, the
following conditions are equivalent:

(a) The group �F(X) is finite and r�F(X) = 0.
(b) For each topological F-vector bundle ⇠ on X having property (rk), the F-vector bundle

⇠(r) admits a stratified-algebraic structure.
(c) For each topological F-vector bundle ⌘ on X having constant rank, the F-vector bundle

⌘(r) admits a stratified-algebraic structure.

In [28, Conjecture C], it is suggested that the group �F(X) is always finite (for X compact).
We show here that the finiteness of the group �F(X) is equivalent to a certain condition involv-
ing cohomology classes of a special kind. For any nonnegative integer k, we defined in [30] a
subgroup H

2k
C-str(X;Z) of the cohomology group H

2k(X;Z). For the convenience of the reader,
the definition and basic properties of H2k

C-str(X;Z) are recalled in Section 2.

Theorem 1.3. For any compact real algebraic variety X, the following conditions are equivalent:

(a) The group �F(X) is finite.
(b) The quotient group H

4k(X;Z)/H4k
C-str(X;Z) is finite for every positive integer k satisfying

8k � 2 < dimX.

Since the groupsH2k
C-str(�;Z) are hard to compute, it is worthwhile to give a simple topological

criterion for the finiteness of the group �F(X). To this end some preparation is required.
For any positive integer d, let Sd denote the unit d-sphere

S
d = {(u0, . . . , ud) 2 R

d+1 | u2
0 + · · ·+ u

2
d = 1}.

Let sd be a generator of the cohomology group H
d(Sd;Z) ⇠= Z. A cohomology class u in

H
d(⌦;Z), where ⌦ is an arbitrary topological space, is said to be spherical if u = h

⇤(sd) for
some continuous map h : ⌦ ! S

d. Denote by H
d
sph(⌦;Z) the subgroup of Hd(⌦;Z) generated

by all spherical cohomology classes. In general a cohomology class in H
d
sph(⌦;Z) need not be

spherical.

Theorem 1.4. Let X be a compact real algebraic variety. If the quotient group

H
4k(X;Z)/H4k

sph(X;Z)

is finite for every positive integer k satisfying 8k � 2 < dimX, then the group �F(X) is finite.

As a consequence we obtain the following.

Corollary 1.5. Let X be a compact real algebraic variety. If each connected component of X is
homotopically equivalent to S

d1 ⇥ · · ·⇥ S
dn for some positive integers d1, . . . , dn, then the group

�F(X) is finite.

Proof. Since H
l
sph(X;Z) = H

l(X;Z) for every positive integer l, it su�ces to make use of
Theorem 1.4. ⇤
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It is interesting to compare Corollary 1.5 with related, previously known, results. If

X = X1 ⇥ · · ·⇥Xn,

where each Xi is a compact real algebraic variety homotopically equivalent to S
di for 1  i  n,

then �F(X) = 0 for F = C and F = H, and 2�R(X) = 0, cf. [30, Theorem 1.10]. On the other
hand, there exists a nonsingular real algebraic variety X di↵eomorphic to the n-fold product
S
1 ⇥ · · ·⇥ S

1, n > d(F), such that �F(X) 6= 0, cf. [30, Example 7.10].
For any compact real algebraic variety X, the equality H

l(X;Z) = 0 holds if l > dimX,
cf. [7, p. 217]. Hence, in view of either Theorem 1.3 or Theorem 1.4, the group �F(X) is finite
for dimX  6. This is extended below to dimX  8. Actually, we obtain a result containing
additional information.

Denote by e(F) the integer satisfying d(F) = 2e(F), that is,

e(F) =

8
><

>:

0 if F = R

1 if F = C

2 if F = H.

Given a nonnegative integer n, set

a(n) = min{l 2 Z | l � 0, 2l � n},
a(n,F) = max{0, a(n)� e(F)}.

It is conjectured in [28] that 2a(dimX,F)�F(X) = 0 for every compact real algebraic variety X.
This conjecture is confirmed in [28] for varieties of dimension not exceeding 5. Using di↵erent
methods, we get the following.

Theorem 1.6. For any compact real algebraic variety X of dimension at most 8, the group
�F(X) is finite and

2a(dimX,F)+a(X)�F(X) = 0,

where a(X) = 0 if dimX  7 and a(X) = 2 if dimX = 8.

We are not able to decide whether Theorem 1.6 holds with a(X) = 0 for dimX = 8.

In Section 2 we establish relationships between the groups H
2k
sph(�;Z) and H

2k
C-str(�;Z) for

k � 1. This leads to the proofs of Theorems 1.3 and 1.4. Along the way we obtain closely
related results, Theorems 2.14, 2.15 and 2.16, which are of independent interest. Noteworthy
is also Theorem 2.13, which plays a key role in the proof of Theorem 1.6. In Section 3 we
investigate topological C-line bundles admitting a stratified-algebraic structure.

Notation. Given two F-vector bundles ⇠ and ⌘ on the same topological space, we will write
⇠ ⇠= ⌘ to indicate that they are isomorphic.

2. Stratified-algebraic versus topological vector bundles

To begin with we establish a connection between vector bundles having property (rk) and
those of constant rank.

Lemma 2.1. Let X be a real algebraic variety and let ⇠ be a topological F-vector bundle on X.
If ⇠ has property (rk), then there exists a stratified-algebraic F-vector bundle ⌘ on X such that
the direct sum ⇠ � ⌘ is of constant rank.
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Proof. Since X has the homotopy type of a compact polyhedron [7, pp. 217, 225], we may assume
that ⇠ is a topological F-vector subbundle of "nX(F) for some positive integer n. Assume that ⇠
has property (rk). By definition, for each integer d satisfying 0  d  n, the set

R(d) = {x 2 X | (rank ⇠)(x) = d}

is algebraically constructible. Thus R(d) is the union of a finite collection of pairwise disjoint
Zariski locally closed subvarieties of X. In particular, there exists a stratification S of X such
that each set R(d) is the union of some strata of S. Furthermore, each nonempty set R(d) is the
union of some connected components of X. It follows that we can find a topological F-vector
subbundle ⌘ of "nX(F) whose restriction ⌘|R(d) is the trivial F-vector subbundle of "nR(d)(F) with

total space R(d) ⇥ (Fn�d ⇥ {0}), where F
n�d ⇥ {0} ✓ F

n. By construction, ⌘ is a stratified-
algebraic F-vector bundle and the direct sum ⇠ � ⌘ is of rank n. ⇤

In particular, if K(crk)
F

(X) is the subgroup of KF(X) generated by the classes of all topological
F-vector bundles of constant rank, then

KF-str(X) +K
(crk)
F

(X) = K
(rk)
F

(X).

Hence the group �F(X) is isomorphic to the quotient group

K
(crk)
F

(X)/KF-str(X) \K
(crk)
F

(X).

Proof of Proposition 1.2. Obviously, (b) implies (a). According to Theorem 1.1, (a) implies (b).
Hence, in view of Lemma 2.1, (a) and (c) are equivalent. ⇤

Let X be a real algebraic variety. Let K be a subfield of F, where K (as F) stands for R, C
or H. Any F-vector bundle ⇠ on X can be regarded as a K-vector bundle, which is indicated by
⇠K. In particular, ⇠K = ⇠ if K = F. Furthermore, ⇠R = (⇠K)R. If the F-vector bundle ⇠ admits a
stratified-algebraic structure, then so does the K-vector bundle ⇠K.

The following result will be frequently referred to.

Theorem 2.2. Let X be a compact real algebraic variety. A topological F-vector bundle ⇠ on X

admits a stratified-algebraic structure if and only if the K-vector bundle ⇠K admits a stratified-
algebraic structure.

Proof. The proof for K = R, rather involved, is given in [30, Theorem 1.7]. The general case
follows since ⇠R = (⇠K)R. ⇤

We will also make use of the extension of scalars construction. LetX be a real algebraic variety.
Any K-vector bundle ⇠ on X gives rise to the F-vector bundle F ⌦ ⇠ on X. Here F⌦ ⇠ = ⇠ if
K = F, C ⌦ ⇠ is the complexification of ⇠ if K = R, and H ⌦ ⇠ is the quaternionization of ⇠ if
K = R or K = C. If the K-vector bundle ⇠ admits a stratified-algebraic structure, then so does
the F-vector bundle F⌦ ⇠.

For any C-vector bundle ⇠, let ⇠̄ denote the conjugate bundle, cf. [31]. Note that ⇠̄R ⇠= ⇠R.
Furthermore, for the H-vector bundle H⌦ ⇠, we have

(H⌦ ⇠)C ⇠= ⇠ � ⇠̄.

Lemma 2.3. Let X be a compact real algebraic variety and let ⇠ be a topological C-vector bundle
on X. For any positive integer q, the H-vector bundle (H ⌦ ⇠)(q) admits a stratified-algebraic
structure if and only if so does the C-vector bundle ⇠(2q).



326 WOJCIECH KUCHARZ AND KRZYSZTOF KURDYKA

Proof. Since
((H⌦ ⇠)(q))C ⇠= (H⌦ ⇠)C(q) ⇠= (⇠ � ⇠̄)(q)

and
((⇠ � ⇠̄)(q))R ⇠= (⇠R � ⇠̄R)(q) ⇠= (⇠R � ⇠R)(q) ⇠= (⇠(2q))R,

we get
((H⌦ ⇠)(q))R ⇠= ⇠(2q))R.

The proof is complete in view of Theorem 2.2. ⇤
For any R-vector bundle ⇠, we have (C⌦ ⇠)R ⇠= ⇠ � ⇠.

Lemma 2.4. Let X be a compact real algebraic variety and let ⇠ be a topological R-vector bundle
on X. For any positive integer q, the C-vector bundle (C ⌦ ⇠)(q) admits a stratified-algebraic
structure if and only if so does the R-vector bundle ⇠(2q).

Proof. Since
((C⌦ ⇠)(q))R ⇠= (C⌦ ⇠)R(q) ⇠= (⇠ � ⇠)(q) ⇠= ⇠(2q),

the proof is complete in view of Theorem 2.2. ⇤
For the convenience of the reader we recall the definition and basic properties of stratified-C-

algebraic cohomology classes, introduced and investigated in [30].
Let V be a compact nonsingular real algebraic variety. A nonsingular projective complexifi-

cation of V is a pair (V, ◆), where V is a nonsingular projective scheme over R and ◆ : V ! V(C)
is an injective map such that V(R) is Zariski dense in V, ◆(V ) = V(R) and ◆ induces a biregular
isomorphism between V and V(R). Here the set V(R) of real points of V is regarded as a subset
of the set V(C) of complex points of V. The existence of (V, ◆) follows form Hironaka’s theorem
on resolution of singularities [19] (cf. also [22] for a very readable exposition). We identify
V(C) with the set of complex points of the scheme VC := V ⇥SpecR SpecC over C. For any
nonnegative integer k, denote by H

2k
alg(V(C);Z) the subgroup of H2k(V(C);Z) that consists of

the cohomology classes corresponding to algebraic cycles (defined over C) on VC of codimension
k, cf. [14] or [17, Chapter 19]. The subgroup

H
2k
C-alg(V ;Z) := ◆

⇤(H2k
alg(V(C);Z))

of H2k(V ;Z) does not depend on the choice of (V; ◆), cf. [6]. Cohomology classes in H
2k
C-alg(V ;Z)

are called C-algebraic. The groupsH2k
C-alg(�;Z) are subtle invariants with numerous applications,

cf. [6, 8, 11, 13, 25].
Let X and Y be real algebraic varieties. A map f : X ! Y is said to be stratified-regular if it

is continuous and for some stratification S of X, the restriction f |S : S ! Y of f to each stratum
S of S is a regular map. A cohomology class u in H

2k(X;Z) is said to be stratified-C-algebraic if
there exists a stratified-regular map ' : X ! V , into a compact nonsingular real algebraic variety
V , such that u = '

⇤(v) for some cohomology class v in H
2k
C-alg(V ;Z). The set H2k

C-str(X;Z) of all

stratified-C-algebraic cohomology classes in H
2k(X;Z) forms a subgroup. The direct sum

H
even
C-str(X;Z) :=

M

k�0

H
2k
C-str(X;Z)

is a subring of the ring

H
even(X;Z) :=

M

k�0

H
2k(X;Z).

If ⇠ is a stratified-algebraic C-vector bundle on X, then the kth Chern class ck(⇠) of ⇠ is in
H

2k
C-str(X;Z) for every nonnegative integer k. The reader can find proofs of these facts in [30].
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For any topological F-vector bundle ⇠ on X, one can interpret rank ⇠ as an element of
H

0(X;Z). Then the following holds.

Lemma 2.5. Let X be a real algebraic variety and let ⇠ be a topological F-vector bundle on X.
If ⇠ has property (rk), then rank ⇠ is in H

0
C-str(X;Z).

Proof. Assume that the F-vector bundle ⇠ has property (rk). We make use of the notation
introduced in the proof of Lemma 2.1. Furthermore, we regard V = {0, . . . , n} as a real algebraic
variety and rank ⇠ as a map rank ⇠ : X ! V . Then rank ⇠ is a stratified-regular map. Note that
rank ⇠ interpreted as a cohomology class in H

0(X;Z) coincides with (rank ⇠)⇤(v), where v is the
cohomology class in H

0(V ;Z) whose restriction to the singleton {i} is equal to 1 in H
0({i};Z) for

every i in V . SinceH0
C-alg(V ;Z) = H

0(V ;Z), the cohomology class (rank ⇠)⇤(v) is inH
0
C-str(X;Z),

as required. ⇤

The following observation will prove to be useful.

Proposition 2.6. Let X be a compact real algebraic variety. For a topological C-vector bundle
⇠ on X, the following conditions are equivalent:

(a) There exists a positive integer r such that the C-vector bundle ⇠(r) admits a stratified-
algebraic structure.

(b) The C-vector bundle ⇠ has property (rk) and for every positive integer j, there exists a
positive integer bj such that the cohomology class bjcj(⇠) is in H

2j
C-str(X;Z).

Proof. Assume that condition (a) is satisfied. Then ⇠(r) has property (rk) and hence ⇠ has it as
well. Furthermore, the total Chern class c(⇠(r)) is in H

even
C-str(X;Z). We have

c(⇠(r)) = c(⇠)^ · · ·^ c(⇠),

where the right-hand-side is the r-fold cup product. In particular, c1(⇠(r)) = rc1(⇠) is in
H

2
C-str(X;Z). By induction, for every positive integer j, we can find a positive integer bj such

that the cohomology class bjcj(⇠) is in H
2j
C-str(X;Z). Thus (a) implies (b).

Now assume that condition (b) is satisfied. Since ⇠ has property (rk), by Lemma 2.5, rank ⇠
is in H

0
C-str(X;Z). Hence (b) implies that the Chern character ch(⇠) is in H

even
C-str(X;Z)⌦Z Q.

Consequently, for some positive integer r, the class rJ⇠K = J⇠(r)K is in KC-str(X), cf. [30, Propo-
sition 8.9]. According to Theorem 1.1, the C-vector bundle ⇠(r) admits a stratified-algebraic
structure. Thus (b) implies (a), which completes the proof. ⇤

We now collect some results on spherical cohomology classes. Every compact real algebraic
variety is triangulable [7, p. 217] and hence a result due to Serre can be stated as follows.

Proposition 2.7 ([32, p. 289, Propoposition 20]). Let X be a compact real algebraic variety.
Then there exists a positive integer a such that for every positive integer d satisfying

dimX  2d� 2

and every cohomology class u in H
d(X;Z), the cohomology class au is spherical. In particular,

the inclusion
aH

d(X;Z) ✓ H
d
sph(X;Z)

holds for such a and d.

Let X and Y be real algebraic varieties. A map f : X ! Y is said to be continuous rational
if it is continuous and its restriction to some Zariski open and dense subvariety of X is a regular
map. Assuming that the variety X is nonsingular, the map f is continuous rational if and only
if it is stratified-regular, cf. [23, Proposition 8] and [30, Remark 2.3].
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Lemma 2.8. Let X be a compact nonsingular real algebraic variety and let d be a positive integer.
For any continuous map h : X ! S

d and any continuous map ' : Sd ! S
d of (topological) degree

2, the composite map ' � h : X ! S
d is homotopic to a stratified-regular map.

Proof. We may assume without loss of generality that h is a C1 map. By Sard’s theorem, h
is transverse to each point in some open subset U of Sd di↵eomorphic to R

d. Let y and z be
distinct points in U , and let A be a C1 arc in U joining y and z. Then

M := h
�1(y) [ h

�1(z)

is a compact C1 submanifold of X. Furthermore, B := h
�1(A) is a compact C1 manifold with

boundary @B = M , embedded in X with trivial normal bundle.
Hence, according to [12, Theorem 1.12], there exists a C1 map F : X ! R

d transverse to 0 in
R

d and such that M = F
�1(0). By the Weierstrass approximation theorem, the C1 map F can

be approximated, in the C1 topology, by a regular map G : X ! R
d. If G is su�ciently close to

F , then G is transverse to 0 and V := G
�1(0) is a nonsingular Zariski closed subvariety of X.

Furthermore, V is isotopic to M in X, cf. [1, Theorem 20.2].
We can choose a C1 map  : Sd ! S

d of degree 2 that is transverse to y and satisfies
 
�1(y) = {y, z}. By Hopf’s theorem,  is homotopic to '. Consequently, the maps ' � h and

 � h are homotopic. It su�ces to prove that  � h is homotopic to a stratified-regular map. By
construction, the map  � h is transverse to y and

( � h)�1(y) = h
�1( �1(y)) = h

�1(y) [ h
�1(z) = M.

Since M is isotopic to V , according to [24, Theorem 2.4], the map  � h is homotopic to a
continuous rational map f : X ! S

d. The map f is stratified-regular, the variety X being
nonsingular. ⇤

As a consequence, we obtain the following observation.

Remark 2.9. For any compact nonsingular real algebraic variety X, the inclusion

2H2k
sph(X;Z) ✓ H

2k
C-str(X;Z)

holds for every positive integer k. Indeed, it su�ces to prove that for any spherical cohomology
class u in H

2k(X;Z), the cohomology class 2u is in H
2k
C-str(X;Z). To this end, let h : X ! S

2k

be a continuous map with h
⇤(s2k) = u and let ' : S2k ! S

2k be a continuous map of degree 2.
Then

(' � h)⇤(s2k) = h
⇤('⇤(s2k)) = h

⇤(2s2k) = 2u.

Recall that H
2k
C-alg(S

2k;Z) = H
2k(S2k;Z), cf. [6, Proposition 4.8]. Since, according to Lem-

ma 2.8, the map ' � h is homotopic to a stratified-regular map, it follows that the cohomology
class 2u is in H

2k
C-str(X;Z).

It would be interesting to decide whether the nonsingularity of X in Remark 2.9 is essen-
tial. Dropping the nonsingularity assumption, we obtain below a weaker but useful result,
Lemma 2.12. First some preparation is necessary.

By a multiblowup of a real algebraic variety X we mean a regular map ⇡ : X 0 ! X which is
the composition of a finite collection of blowups with nonsingular centers. If C is a Zariski closed
subvariety of X and the restriction ⇡C : X 0 \ ⇡�1(C) ! X \ C of ⇡ is a biregular isomorphism,
then we say that the multiblowup ⇡ is over C.

A filtration of X is a finite sequence F = (X�1, X0, . . . , Xm) of Zariski closed subvarieties
satisfying

? = X�1 ✓ X0 ✓ · · · ✓ Xm = X.

We will make use of the following result.
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Theorem 2.10 ([30, Theorem 5.4]). Let X be a compact real algebraic variety. For a topological
F-vector bundle ⇠ on X, the following conditions are equivalent:

(a) The F-vector bundle ⇠ admits a stratified-algebraic structure.
(b) There exists a filtration F = (X�1, X0, . . . , Xm) of X, and for each i = 0, . . . ,m, there

exists a multiblowup ⇡i : X 0
i ! Xi over Xi�1 such that the pullback F-vector bundle

⇡
⇤
i (⇠|Xi) on X

0
i admits a stratified-algebraic structure.

We now derive the following.

Lemma 2.11. Let X be a compact real algebraic variety. Let d be a positive integer and let ✓ be a
topological F-vector bundle on S

d. For any continuous map h : X ! S
d and any continuous map

' : Sd ! S
d of degree 2, the pullback F-vector bundle (' �h)⇤✓ on X admits a stratified-algebraic

structure.

Proof. Let F = (X�1, X0, . . . , Xm) be a filtration of X such that the variety Xi \ Xi�1 is
nonsingular for 0  i  m. According to Hironaka’s theorem on resolution of singularities
[19, 22], for each i = 0, . . . ,m, there exists a multiblowup ⇡i : X 0

i ! Xi over Xi�1 with X
0
i

nonsingular. In view of Theorem 2.10, the F-vector bundle ⇠ := (' � h)⇤✓ on X admits a
stratified-algebraic structure if and only if the F-vector bundle ⇠i := ⇡

⇤
i (⇠|Xi) on X

0
i admits a

stratified-algebraic structure for 0  i  m. If ei : Xi ,! X is the inclusion map, then

⇠i = ⇡
⇤
i (e

⇤
i ⇠) = ⇡

⇤
i (e

⇤
i ((' � h)⇤✓)) = (' � h � ei � ⇡i)⇤✓.

Since the variety X
0
i is nonsingular and the map h � ei � ⇡i : X 0

i ! S
d is continuous, according

to Lemma 2.8, the map ' � h � ei � ⇡i is homotopic to a stratified-regular map fi : X 0
i ! S

d.
In particular, ⇠i ⇠= f

⇤
i ✓. We may assume that the F-vector bundle ✓ is algebraic since each

topological F-vector bundle on S
d admits an algebraic structure, cf. [34, Theorem 11.1] and

[7, Proposition 12.1.12; pp. 325, 326, 352]. Thus f⇤
i ✓ is a stratified-algebraic F-vector bundle on

X
0
i. Consequently, the F-vector bundle ⇠i admits a stratified-algebraic structure, as required. ⇤

Here is the result we have already alluded to in the comment following Remark 2.9.

Lemma 2.12. For any compact real algebraic variety X, the inclusion

2(k � 1)!H2k
sph(X;Z) ✓ H

2k
C-str(X;Z).

holds for every positive integer k.

Proof. Let k be a positive integer. It su�ces to prove that for every spherical cohomology class
u in H

2k(X;Z), the cohomology class 2(k� 1)!u is in H
2k
C-str(X;Z). To this end, let h : X ! S

2k

be a continuous map with h
⇤(s2k) = u and let ' : S2k ! S

2k be a continuous map of degree 2.
Then

(' � h)⇤(s2k) = h
⇤('⇤(s2k)) = h

⇤(2s2k) = 2u.

Now we choose a topological C-vector bundle ✓ on S
2k with ck(✓) = (k � 1)!s2k, cf. [2, p. 19]

or [18, p. 155]. Then

ck((' � h)⇤✓) = (' � ✓)⇤(ck(✓)) = (' � h)⇤((k � 1)!s2k) = 2(k � 1)!u.

According to Lemma 2.11, the C-vector bundle ('�h)⇤✓ on X admits a stratified-algebraic struc-
ture, and hence the cohomology class 2(k � 1)!u is in H

2k
C-str(X;Z). The proof is

complete. ⇤

The following result will be used in the proof of Theorem 1.6 and is also of independent
interest.
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Theorem 2.13. Let X be a compact real algebraic variety. Let k be a positive integer and let
✓ be a topological F-vector bundle on S

2k, where F = C or F = H. For any continuous map
h : X ! S

2k, the F-vector bundle h
⇤
✓ � h

⇤
✓ on X admits a stratified-algebraic structure.

Proof. Let ' : S2k ! S
2k be a continuous map of degree 2. Then

ck('
⇤
✓C) = '

⇤(ck(✓C)) = 2ck(✓C) = ck(✓C � ✓C),

and hence the C-vector bundles '⇤
✓C and ✓C � ✓C on S

2k are stably equivalent, cf. [2, p. 19] or
[18, p. 155]. Consequently, the C-vector bundles

h
⇤('⇤

✓C) = (' � h)⇤✓C and h
⇤(✓C � ✓C) = (h⇤

✓ � h
⇤
✓)C

on X are stably equivalent as well. By Lemma 2.11, the C-vector bundle (' � h)⇤✓C admits a
stratified-algebraic structure. Hence, according to Theorem 1.1, the C-vector bundle (h⇤

✓�h
⇤
✓)C

admits a stratified-algebraic structure. Now the proof is complete in view of Theorem 2.2. ⇤

The next three theorems are crucial for the proof of Theorem 1.3. We first consider H-vector
bundles. Note that for any H-vector bundle ⇠, we have cl(⇠C) = 0 for every odd positive integer
l.

Theorem 2.14. Let X be a compact real algebraic variety. For a topological H-vector bundle ⇠
on X, the following conditions are equivalent:

(a) There exists a positive integer r such that the H-vector bundle ⇠(r) admits a stratified-
algebraic structure.

(b) The H-vector bundle ⇠ has property (rk) and there exists a positive integer a such that
the cohomology class ac2k(⇠C) is in H

4k
C-str(X;Z) for every positive integer k satisfying

8k � 2 < dimX.

Proof. If condition (a) is satisfied, then the C-vector bundle ⇠C(r) admits a stratified-algebraic
structure, being isomorphic to (⇠(r))C. Thus condition (b) holds in view of Proposition 2.6.

Now assume that condition (b) is satisfied. By Proposition 2.7 and Lemma 2.12, there exists
a positive integer b such that the cohomology class bc2k(⇠C) is in H

4k
C-str(X;Z) for every posi-

tive integer k. Furthermore, cl(⇠C) = 0 for every odd positive integer l. Hence, according to
Proposition 2.6, there exists a positive integer r such that the C-vector bundle ⇠C(r) admits a
stratified-algebraic structure. Since the C-vector bundles ⇠C(r) and (⇠(r))C are isomorphic, by
Theorem 2.2, the H-vector bundle ⇠(r) admits a stratified-algebraic structure. Thus (b) implies
(a). The proof is complete. ⇤

Recall that for any topological C-vector bundle ⇠, the equality ck(⇠̄) = (�1)kck(⇠) holds for
every nonnegative integer k, cf. [31, p. 168].

Theorem 2.15. Let X be a compact real algebraic variety. For a topological C-vector bundle ⇠
on X, the following conditions are equivalent:

(a) There exists a positive integer r such that the C-vector bundle ⇠(r) admits a stratified-
algebraic structure.

(b) The C-vector bundle ⇠ has property (rk) and there exists a positive integer a such that
the cohomology class ac2k(⇠� ⇠̄) is in H

4k
C-str(X;Z) for every positive integer k satisfying

8k � 2 < dimX.

Proof. Since (H⌦ ⇠)C ⇠= ⇠ � ⇠̄, the equality cl((H⌦ ⇠)C) = cl(⇠ � ⇠̄) holds for every nonnegative
integer l. Furthermore, the C-vector bundle ⇠ has property (rk) if and only if the H-vector
bundle H⌦ ⇠ has it. Hence the proof is complete in view of Lemma 2.3 and Theorem 2.14. ⇤
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Let ⇠ be an R-vector bundle. Recall that for any nonnegative integer k, the kth Pontryagin
class of ⇠ is defined by pk(⇠) = (�1)kc2k(C⌦ ⇠).

Theorem 2.16. Let X be a compact real algebraic variety. For a topological R-vector bundle ⇠
on X, the following conditions are equivalent:

(a) There exists a positive integer r such that the R-vector bundle ⇠(r) admits a stratified-
algebraic structure.

(b) The R-vector bundle ⇠ has property (rk) and there exists a positive integer a such that
the cohomology class apk(⇠) is in H

4k
C-str(X;Z) for every positive integer k satisfying

8k � 2 < dimX.

Proof. Assume that condition (a) is satisfied. Then the R-vector bundle ⇠(r) has property (rk)
and hence ⇠ has it as well. Furthermore, the C-vector bundle (C ⌦ ⇠)(r) admits a stratified-
algebraic structure, being isomorphic to C ⌦ ⇠(r). According to Proposition 2.6, for every
positive integer j, there exists a positive integer bj such that the cohomology class bjcj(C ⌦ ⇠)

is in H
2j
C-str(X;Z). In particular, (a) implies (b) in view of the definition of pk(⇠).

Now assume that condition (b) is satisfied. By Proposition 2.7 and Lemma 2.12, there exists
a positive integer b such that the cohomology class bc2k(C ⌦ ⇠) is in H

4k
C-str(X;Z) for every

positive integer k. Recall that 2cl(C ⌦ ⇠) = 0 for every odd positive integer l, cf. [31, p. 174].
Hence, according to Proposition 2.6, the C-vector bundle (C⌦ ⇠)(q) admits a stratified-algebraic
structure for some positive integer q. In view of Lemma 2.4, the R-vector bundle ⇠(2q) admits
a stratified-algebraic structure. Thus (b) implies (a). The proof is complete. ⇤

We need one more technical result.

Lemma 2.17. Let X be a compact real algebraic variety. If the group �C(X) is finite, then the
quotient group H

2j(X;Z)/H2j
C-str(X;Z) is finite for every positive integer j. If the group �F(X)

is finite, where F = R or F = H, then the quotient group H
4k(X;Z)/H4k

C-str(X;Z) is finite for
every positive integer k.

Proof. Recall that the cohomology group H
⇤(X;Z) is finitely generated, the variety X being

triangulable.
There exists a positive integer b such that for every positive integer j and every cohomology

class u in H
2j(X;Z), one can find a topological C-vector bundle ⇠ on X with

ci(⇠) = 0 for 1  i  j � 1 and cj(⇠) = bu,

cf. [2, p. 19] or [18, p. 155, Theorem A]. We can choose such a C-vector bundle ⇠ of constant
rank.

Assume that the group �C(X) is finite and r�C(X) = 0 for some positive integer r. Then the
C-vector bundle ⇠(r) admits a stratified-algebraic structure, and hence the cohomology class

cj(⇠(r)) = rcj(⇠) = rbu

is in H
2j
C-str(X;Z). Thus the quotient group H

2j(X;Z)/H2j
C-str(X;Z) is finite, as asserted.

Note that the complexification C⌦ ⇠R of the R-vector bundle ⇠R satisfies

C⌦ ⇠R
⇠= ⇠ � ⇠̄.

Similarly, for the quaternionization H⌦ ⇠ of the C-vector bundle ⇠, we have

(H⌦ ⇠)C ⇠= ⇠ � ⇠̄.

If the group �R(X) is finite and q�R(X) = 0 for some positive integer q, then the R-vector
bundle ⇠R(q) admits a stratified-algebraic structure, and hence so do the C-vector bundles

C⌦ ⇠R(q) ⇠= (C⌦ ⇠R)(q) ⇠= (⇠ � ⇠̄)(q).
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If the group �H(X) is finite and q�H(X) = 0, then the H-vector bundle (H ⌦ ⇠)(q) admits a
stratified-algebraic structure, and hence so do the C-vector bundles

((H⌦ ⇠)(q))C ⇠= (H⌦ ⇠)C(q) ⇠= (⇠ � ⇠̄)(q).

Consequently, if q�F(X) = 0, where F = R or F = H, then the Chern class cj((⇠� ⇠̄)(q)) is in

H
2j
C-str(X;Z). Now suppose that j = 2k, where k is a positive integer. Then

ci(⇠ � ⇠̄) = 0 for 1  i  2k � 1 and c2k(⇠ � ⇠̄) = 2c2k(⇠) = 2bu,

which implies the equality

c2k((⇠ � ⇠̄)(q)) = qc2k(⇠ � ⇠̄) = 2qbu.

Thus the cohomology class 2qbu is in H
4k
C-str(X;Z). In conclusion, the quotient group

H
4k(X;Z)/H4k

C-str(X;Z)

is finite. The proof is complete. ⇤
We are now ready to prove the theorems announced in Section 1.

Proof of Theorem 1.3. In view of Lemma 2.17, condition (a) implies (b). By combining Theo-
rems 2.14, 2.15 and 2.16, we conclude that (b) implies (a). ⇤
Proof of Theorem 1.4. It su�ces to make use of Theorem 1.3 and Lemma 2.12. ⇤
Proof of Theorem 1.6. Let n = dimX. According to Proposition 1.2, it su�ces to prove that
for any topological F-vector bundle ⇠ of constant positive rank on X, the F-vector bundle ⇠(r)
admits a stratified-algebraic structure, where

r =

(
2a(n,F) if n  7

2a(n,F)+2 if n = 8.

If n  d(F), then a(n,F) = 1 and the F-vector bundle ⇠(1) = ⇠ admits a stratified-algebraic
structure, cf. [30, Corollary 3.6].

Henceforth we assume that n � d(F) + 1.

The rest of the proof is divided into three steps.

Case 1. Suppose that F = H.

The 4-sphere S
4 can be identified (as a topological space) with the quaternionic projective

line P
1(H). Let ✓ be the H-line bundle on S

4 corresponding to the tautological H-line bundle on
P
1(H). Since 5  n  8, we have a(n,H) = 1.
First suppose that 5  n  7. Then ⇠ can be expressed as ⇠ = � � ", where � and "

are topological H-vector bundles, rank� = 1 and " is trivial, cf. [20, p. 99]. For the same
reason, the H-vector bundle �� � has a nowhere vanishing continuous section. Thus the H-line
bundle � is generated by two continuous sections. It follows that we can find a continuous map
h : X ! S

4 with � ⇠= h
⇤
✓. According to Theorem 2.13, the H-vector bundle ��� = �(2) admits

a stratified-algebraic structure. Since ⇠(2) ⇠= �(2) � "(2), the H-vector bundle ⇠(2) admits a
stratified-algebraic structure, as required.

Now suppose that n = 8. It remains to prove that the H-vector bundle ⇠(8) admits a stratified-
algebraic structure. This can be done as follows. Let F = (X�1, X0, . . . , Xm) be a filtration of
X such that the variety Xi \Xi�1 is nonsingular of pure dimension for 0  i  m. According
to Hironaka’s theorem on resolution of singularities [19, 22], for each i = 0, . . . ,m, there exists
a multiblowup ⇡i : X 0

i ! Xi over Xi�1 with X
0
i nonsingular of pure dimension. Consider the
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pullback H-vector bundle ⇠i := ⇡
⇤
i (⇠|Xi) on X

0
i. According to Theorem 2.10, it su�ces to prove

that the H-vector bundle ⇠i(8) admits a stratified-algebraic structure. If dimX
0
i  7, we already

established a stronger result, namely, ⇠i(2) admits a stratified-algebraic structure. If dimX
0
i = 8,

we choose a finite subset Ai of X 0
i whose intersection with each connected component of X 0

i

consists of one point. Let �i : X 00
i ! X

0
i be the blowup of X 0

i with center Ai. We can replace
⇡i : X 0

i ! Xi by the composite map �i � ⇡i : X 00
i ! Xi and replace the H-vector bundle ⇠i on

X
0
i by the H-vector bundle (�i � ⇡i)⇤(⇠|Xi) on X

00
i . Note that X 00

i is a compact nonsingular real
algebraic variety of pure dimension 8, and each connected component of X 00

i is nonorientable
as a C1 manifold. Thus in order to simplify notation we may assume that the variety X is
nonsingular of pure dimension 8, and each connected component of X is nonorientable as a C1

manifold. The last condition implies the equality 2H8(X;Z) = 0. Since cl(⇠C) = 0 for every odd
positive integer l, we get

c4((⇠(4))C) = c4(⇠C(4)) = 4c4(⇠C) + 6c2(⇠C)^ c2(⇠C) = 0

in H
8(X;Z). The H-vector bundle ⇠(4) can be expressed as the direct sum of a topological

H-vector bundle ⌘ of rank 2 and a trivial H-vector bundle, cf. [20, p. 99]. Then

c4(⌘C) = c4((⇠(4))C) = 0.

Recall that c4(⌘C) is the Euler class e(⌘R) of the oriented R-vector bundle ⌘R = (⌘C)R,
cf. [31, p. 159]. Interpreting e(⌘R) as an obstruction, we conclude that the H-vector bundle
⌘ has a nowhere vanishing continuous section, cf. [31, pp. 139, 140, 147] and [33]. Consequently,
the H-vector bundle ⇠(4) can be expressed as ⇠(4) = µ��, where µ and � are topological H-vector
bundles, rankµ = 1 and � is trivial.

Since ⇠(8) ⇠= µ(2)��(2), it su�ces to prove that the H-vector bundle µ(2) admits a stratified-
algebraic structure. Note that

c4((µ(2))C) = c4((⇠(8))C) = 8c4(⇠C) + 28c2(⇠C)^ c2(⇠C) = 0

in H
8(X;Z). Now, interpreting c4(µ(2)) = e((µ(2))R) as an obstruction, we get a nowhere

vanishing continuous section of µ(2). In other words, the H-line bundle µ is generated by two
continuous sections. It follows that we can find a continuous map g : X ! S

4 with µ ⇠= g
⇤
✓.

According to Theorem 2.13, the H-vector bundle µ � µ = µ(2) admits a stratified-algebraic
structure. The proof of Case 1 is complete.

Case 2. Suppose that F = C.

Since n � 3, we have a(n,C) = a(n,H) + 1. Hence it su�ces to apply Case 1 and Lemma 2.3
to the H-vector bundle H⌦ ⇠.

Case 3. Suppose that F = R.

Since n � 2, we have a(n,R) = a(n,C) + 1. Hence it su�ces to apply Case 2 and Lemma 2.4
to the C-vector bundle C⌦ ⇠.

The proof is complete. ⇤

3. Line bundles

In this short section we concentrate our attention on C-line bundles. For any real algebraic
variety X, let VB1

C
(X) denote the group of isomorphism classes of topological C-line bundles on

X (with operation induced by tensor product). Let VB1
C-str(X) be the subgroup of VB1

C
(X) con-

sisting of the isomorphism classes of all C-line bundles admitting a stratified-algebraic structure.
Since X has the homotopy type of a compact polyhedron [7, pp. 217, 225], the group VB1

C
(X)
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is finitely generated, being isomorphic to the cohomology group H
2(X;Z). In particular, the

quotient group

�1
C
(X) := VB1

C
(X)/VB1

C-str(X)

is finitely generated. Thus the group �1
C
(X) is finite if and only if r�1

C
(X) = 0 for some positive

integer r. Furthermore, the latter condition holds if and only if for every topological C-line
bundle � on X its rth tensor power �⌦r admits a stratified-algebraic structure.

Proposition 3.1. Let X be a real algebraic variety. For any topological C-line bundle � on X

and positive integer r, if �(r) admits a stratified-algebraic structure, then so does �⌦r.

Proof. If the C-vector bundle �(r) admits a stratified-algebraic structure, then so does the C-line
bundle det�(r), cf. [30, Proposition 3.15]. Here det�(r) stands for the rth exterior power of
�(r). The proof is complete since the C-line bundles det�(r) and �⌦r are isomorphic. ⇤

As a consequence, we obtain the following.

Corollary 3.2. Let X be a compact real algebraic variety. If r is a positive integer and
r�C(X) = 0, then r�1

C
(X) = 0.

Proof. It su�ces to make use of Propositions 1.2 and 3.1. ⇤

Corollary 3.3. For any compact real algebraic variety X of dimension at most 8, the group
�1
C
(X) is finite and

2a(dimX,C)+a(X)�1
C
(X) = 0,

where a(X) = 0 if dimX  7 and a(X) = 2 if dimX = 8.

Proof. This follows from Theorem 1.6 and Corollary 3.2. ⇤

A di↵erent proof of Corollary 3.3 for varieties of dimension at most 5 is given in [28]. It is
plausible that 2�1

C
(X) = 0 for every compact real algebraic variety X, cf. [28, Conjecture B,

Proposition 1.5]. This is confirmed by Corollary 3.3 for dimX  4. Without restrictions on the
dimension of X we have the following.

Theorem 3.4. Let X be a compact real algebraic variety with H
2
sph(X;Z) = H

2(X;Z). Then

the group �1
C
(X) is finite and 2�1

C
(X) = 0.

Proof. According to Lemma 2.12, 2H2(X;Z) ✓ H
2
C-str(X;Z). Hence for any topological C-line

bundle � on X, the Chern class c1(�⌦2) = 2c1(�) is in H
2
C-str(X;Z).

In view of [30, Proposition 8.6], the C-line bundle �⌦2 admits a stratified-algebraic structure.
Thus 2�1

C
(X) = 0, as asserted. ⇤

The following special case is of interest.

Corollary 3.5. Let X be a compact real algebraic variety. If each connected component of X is
homotopically equivalent to S

d1 ⇥ · · ·⇥ S
dn for some positive integers d1, . . . , dn, then the group

�1
C
(X) is finite and 2�1

C
(X) = 0.

Proof. Since H
2
sph(X;Z) = H

2(X;Z), it su�ces to apply Theorem 3.4. ⇤

According to [30, Example 7.10], there exists a nonsingular real algebraic variety X di↵eo-
morphic to the n-fold product S1 ⇥ · · ·⇥ S

1, n � 3, with �1
C
(X) 6= 0.
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THE EMBEDDED NASH PROBLEM OF BIRATIONAL MODELS OF

RATIONAL TRIPLE SINGULARITIES

B. KARADENIZ, H. MOURTADA, C. PLÉNAT, AND M. TOSUN

1. Introduction

Given a variety X defined over an algebraically closed field of characteristic 0, we are often not
able to exhibit an explicit resolution of its singularities; on the other hand there are infinitely
many resolutions of singularities of X giving extra information which is not intrinsic to the
singularity. The need for understanding the information which is common to all the resolutions
of singularities of a given space X led Nash (in [22]) to study the arc space of X. See also [6, 24]
for more details. This paper follows this line of thoughts. The di↵erence here is that we are
interested in the embedded resolutions of singularities of X ⇢ An

.

For this purpose, we replace the arc space X1 of X with the jet schemes of X: the arc space
X1 ofX is the space of germs of formal curves drawn onX. The jet schemes are a family of finite
dimensional schemes indexed by integers which approximate the infinite dimensional arc space;
for m 2 N, the m-th jet scheme Xm of X, can be thought of as the space of arcs in the ambient
space An whose “contact” with X is greater or equal to m + 1; this gives the intuition why
these schemes should detect information about embedded resolutions of singularities. The main
question considered in this paper is: can we construct an embedded resolution of singularities
from the jet schemes of X ⇢ An? More precisely, we ask the following much less optimistic
question:

(?) Can one construct an embedded resolution of singularities of X ⇢ An from the irreducible
components of the space X

Sing
m of jets centered at the singular locus of X ⇢ An?

This question is studied in [18, 17, 15, 20]. In [20], the authors proved that the irreducible
components of the jet schemes centered at the singular locus of a rational double point surface
singularity (known also as “simple singularities” in the literature) give a minimal embedded
resolution by a birational toric modification of the ambient space. Equivalently, a certain natural
family of the irreducible components of the jet schemes ofX centered at the singular point 0X0

m is
in bijection with the divisorial valuations whose center is a toric divisor on every toric embedded
resolution; this bijection is actually a conceptual correspondence since one can associate with
any irreducible component of X0

m a divisorial valuation centered at the origin of An (see [5]).
In general, such a statement is hopeless: indeed, even for an irreducible plane curve singularity

(say, for the cusp {y
2
�x

3 = 0} ⇢ A2), the irreducible components of the jet schemes centered at
the origin give divisorial valuations which do not appear in the minimal embedded resolution of
the curve singularity (in that case, the minimal embedded resolution makes sense and is unique).
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The answer to (?) is no in general. Indeed, consider the three-dimensional variety defined by

X = {x
2 + y

2 + z
2 + w

5 = 0} ⇢ A4
.

It has an isolated singularity at the origin 0. On the one hand, by a direct computation, we
see that the jet schemes X0

m centered at 0 are irreducible for every m � 1. On the other hand,
we have two exceptional (irreducible) divisors that appear on every embedded resolution of the
singularity (at least those which correspond to the two essential divisors appearing in the abstract
resolution of the origin 0 ) of X; these are the divisors associated with the monomial valuations
on k[x, y, z, w] defined by the vectors (1, 1, 1, 1) and (2, 2, 2, 1). The valuation associated with
the vector (2, 2, 2, 1) does not correspond to any of the schemes X0

m with m � 1. Note that this
example is one of the counterexamples to the Nash problem given in [12]; note also that the
Nash correspondence is bijective in dimension 2 [8, 9] but there are many counter-examples in
higher dimension ([11, 7]). This suggests that a reasonable frame to study the question (?) is
the surface singularities.

In this paper we study the question (?) for a family of hypersurface singularities whose normal-
izations are rational triple point singularities (RTP-singularities, for short). These hypersurfaces
are classified in [1] and are called the non-isolated forms of RTP-singularities. We prove that,
for this class of singularities, the answer to (?) is positive. When X is of that type, we determine
again a natural family of irreducible components of XSing

m , m � 1 whose associated divisorial
valuations are monomial, hence defined by some vectors in N3. For all of the non-isolated forms
of RTP-singularities except when X is of type Bk�1,2l�1, we show that these vectors give a
regular subdivision ⌃ of the dual Newton fan of X and hence a nonsingular toric variety Z⌃;
since our singularities are Newton non-degenerate [27, 2, 1], this gives a birational toric mor-
phism Z⌃ �! A3 which is an embedded resolution of X ⇢ A3; the irreducible components of
the exceptional divisor correspond to the natural set of irreducible components of XSing

m .

When X is of type Bk�1,2l�1, we again build a toric embedded resolution from the irreducible
components of the jet schemes which does not factor through the toric map associated with the
dual Newton fan (such resolutions of non-degenerate singularities also appear when one consid-
ers an embedded resolution in family [14]). This again shows mysteriously that the jet schemes
tell us something about the “minimality” of the embedded resolution, as in the case of rational
double point singularities.

The paper is organized as follows: Section 2 present a reminder on RTP-singularities. Section
3 is devoted to jet schemes and how one can associate a divisorial valuation with a component
of the jet schemes; it also contains a summary of the approach to the embedded resolutions
which will be constructed in the sequel. Each of the remaining sections is devoted to a class of
RTP-singularities (given in the table of contents above): we compute each of the jet schemes and
present the results in the jet graph (see Section 3). We then give the toric embedded resolution
which comes from the jet schemes. We give the explicit computations with all details for the
classes E6,0 and Ak�1,l�1,m�1. For the other classes, except a subclass of the type B, we proceed
similarly, so we present here only the results of the computations. The case Bk�1,2l�1 with k � l

is treated in detail as its behavior is completely di↵erent from the other cases. This is related
to the fact that the abstract toric resolution of Bk�1,2l�1 which is obtained from a subdivision
of the two dimensional cones of the dual Newton fan is not minimal [1].

Acknowledgements. We are grateful to the two referees for their comments and corrections
which greatly improved the article. The third author would like also to thank the UMI fibonacci
(Pisa) and the Lama (University of Savoie-Montblanc (Chambéry)) for their hospitality during
the preparation of this work.
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2. RTP-singularities

Let X denote a germ of a surface (X, 0) ⇢ (CN
, 0) having a singularity at 0. We say that the

singularity of X is rational if H
1(X̃,OX̃) = 0 where ⇡ : X̃ �! X is a resolution of X. This

definition does not depend on the resolution ⇡. It is well known that the rational singularities of
complex surfaces have nice combinatorial properties which can be computed via their resolutions.
In [3], the rational singularities of multiplicity 3 are classified by their dual graphs associated
with the irreducible components of the minimal resolutions. For short, we call RTP-singularities
this class of rational singularities. They are among the surface singularities defined in C4 and,
each of which is defined by three equations given in [26]. The classification problem of rational
singularities of multiplicity m � 3 is well studied in [13] and [25].

In [1], the authors obtain the equations of a class of hypersurfaces in C3 having nonisolated
singularities obtained by projecting the equations of RTP-singularities to a generic hyperplane
in C4 and, they call them the non-isolated forms of RTP-singularities since the normalizations
of these hypersurfaces in C3 are exactly the RTP-singularities. They also show that:

Theorem 2.1. The RTP-singularities are non-degenerate with respect to their Newton polyhe-
dron. In particular, they can be resolved by a toric birational map Z �! C4

.

In [1], the dual graph of the minimal resolution for all RTP-singularities, except those of
type Bk�1,2l�1 for k � l (see Section 6) are constructed by refining the dual Newton fan of
the corresponding non-isolated forms of RTP-singularity (see also [23, 27]). In the case of the
nonisolated form of a rational singularity of type Bk�1,2l�1 with k � l, the resolution obtained
by the subdivision of the corresponding dual Newton fan is not minimal: consider the vectors
R := (2l�2, 2, 2k+1), Q := (2k�l+2, 1, 2k�l+2), P := (l�1, 1, l�1), V := (2k�l, 1, 2k�l+1)
and U := (l � 1, 1, l) coming out in the subdivision of the dual Newton fan of that singularity:

−2

Q R

P

Q R

−1 −3−2 −2

−2

−2

V

PU

−2−2 −2 −2−2−2−2

−2

Figure 1. Dual Newton fan of a Bk�1,2l�1 singularity (with k � l), and its
dual (abstract) resolution graph

Using [23], one can compute the self-intersections of the irreducible components of the ex-
ceptional divisors corresponding to these vectors; they are given by the number decorating the
dual graph given on the right-hand side. We omit the genus decorations which are all 0 in this
case. The exceptional component corresponding to the vector Q has self-intersection (�1); by
Castelnuovo’s criterion, (cf. for example [10], chapter V), that component can be contracted to
a nonsingular point without creating singularities. If we continue to contract each (�1)-curve
and neighboring components accordingly we obtain a (�3)-curve on the segment [QR] and the
dual graph of the minimal resolution of the RTP-singularity of type Bk�1,2l�1, k � l.
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3. Jet schemes

Let k be an algebraically closed field of arbitrary characteristic and X be a k-algebraic variety.
For m 2 N, the jet scheme Xm is the scheme representing the functor

Fm :
k-Schemes ! Sets

Spec(A) 7! Homk

�
Spec

�
A[t]/(tm+1)

�
, X

�

where A is a k-algebra. The closed points of Xm are in bijection with the k[t]/(tm+1) points of
X. By definition, we have X0 = X. Moreover, for m, p 2 N with m > p, we have a canonical
projection ⇡m,p : Xm �! Xp which is induced by the surjection A[t]/(tm+1) �! A[t]/(tp+1).
These morphisms are a�ne and verify ⇡m,p �⇡q,m = ⇡q,p for p < m < q; they define a projective
system whose limit is a scheme that we denote X1 and which is called the arc space of X.
Let us denote the canonical projection ⇡m,0 : Xm �! X0 by ⇡m and, the canonical morphisms
X1 �! Xm by  m.

We show here for a surface X = {f = 0} ⇢ k
3 (since the varieties that we are considering are

defined this way) that the functor of the jet schemes is representable; this explains also how one
determines jet schemes. We have

X = Spec
k[x, y, z]

(f)
.

For a k�algebra A, an element � in Fm(Spec(A)) corresponds to a k�algebra homomorphism

�
⇤ :

k[x, y, z]

(f)
�!

A[t]

(tm+1)
.

The data of such a � is equivalent to the data of

�
⇤(x) = x(t) = x0 + x1t+ · · ·+ xmt

m
2 A[t]/(tm+1),

�
⇤(y) = y(t) = y0 + y1t+ · · ·+ ymt

m
2 A[t]/(tm+1),

�
⇤(z) = z(t) = z0 + z1t+ · · ·+ zmt

m
2 A[t]/(tm+1);

such that
f(x(t), y(t), z(t)) = F0 + F1t+ · · ·+ Fmt

m + · · · = 0 mod (tm+1).

Here, for i � 0, Fi is simply the coe�cient of ti in the expanding of f(x(t), y(t), z(t)).

Hence, the data of such a � is equivalent to the data of xj , yj , zj 2 A with j = 0, . . . ,m
such that Fi(x0, y0, z0, . . . , xi, yi, zi) = 0 with i = 0, . . . ,m. This is equivalent to determining an
A-point of the scheme

Xm := Spec
K[xi, yi, zi; i = 0, . . . ,m]

(F0, . . . , Fm)
,

which then represents the functor Fm and, is by definition the m-th jet scheme of X.

From now on, we assume that X is a surface in C3 defined by {f(x, y, z) = 0} and Y is a
subvariety of X. Let m 2 N We denote by X

Y
m := ⇡

�1
m (Y ). We consider a special type of the

irreducible components of XY
m,m 2 N where Y is the singular locus of X or Y ⇢ X is a curve

contained in a coordinate hyperplane of C3. To such Y, we associate a divisorial valuation over
C3 with an irreducible component Cm ⇢ X

Y
m in the following way.

Let  a
m : C3

1 �! C3
m be the truncation morphism associated with the ambient space C3,

here the exponent “a” stands for ambient map . The morphism  
a
m is a trivial fibration, hence

 
a
m

�1(Cm) is an irreducible cylinder in C3
1. Let ⌘ be the generic point of  a

m
�1(Cm). By
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Corollary 2.6 in [5], the map ⌫Cm : C[x, y, z] �! N defined by ⌫Cm(h) = ordth � ⌘ is a divisorial
valuation on C3

.

To each irreducible component Cm of XY
m, let us associate a vector, called the weight vector,

in the following way:
v(Cm) := (⌫Cm(x), ⌫Cm(y), ⌫Cm(z)) 2 N3

.

Now, we want to characterize the irreducible components of XY
m that will allow us to construct

an embedded resolution of X: For p 2 N, we consider the following cylinder in the arc space:

Cont
p(f) = {� 2 C3

1; ordtf � � = p}.

Definition 3.1. Let X : {f = 0} be a surface in C3 and let Y be a subvariety of X.
(i) The elements of the set:

EC(X) := {Irreducible components Cm of XY
m such that  a

m
�1(Cm) \ Cont

m+1
f 6= ;

and v(Cm) 6= v(Cm�1) for any component Cm�1 verifying ⇡m,m�1(Cm) ⇢ Cm�1,m > 1}

are called the essential components for X.
(ii) the elements of the set of associated valuations:

EV (X) := {⌫Cm , Cm 2 EC(X)},

are called embedded-valuations for X.

This means that the elements of EV (X) appear in the embedded toric resolution of X. We
will be interested in a subset of EV (X), which gives us an embedded resolution. In the following
sections, in order to determine such a subset whenX is a non-isolated form of an RTP-singularity,
we will study the m-th jet schemes of X, for m  l with l large enough. We will encode the
structure of these jet schemes by a levelled graph whose vertices correspond to the irreducible
components of XY

m for an integer m; two vertices at the level m and m� 1 are joined by an edge
if the transition morphism ⇡m,m�1 sends the corresponding components one into the other [16].
An element of EV (X) corresponding to a component Cm 2 EC(X) is actually a monomial (or
toric) valuation (see proposition 2.3 in [20]) and is defined by the vector v(Cm) = (a, b, c): this
means that, for h =

P
{(i,j,k)} a(i,j,k)x

i
y
j
z
k
2 C[x, y, z] we have:

⌫Cm(h) = min{(i,j,k)|a(i,j,k) 6=0}{ai+ bj + ck}.

By subdividing the first quadrant of R3 using the vectors v(Cm) for some Cm 2 EC(X), we
obtain a fan ⌃ whose support is the first quadrant of R3 and whose one dimensional cones are
generated by these v(Cm)’s. Note that one can obtain di↵erent fans from a set of vectors in R3,
depending on the way one relies the vertices and, some of them may not be regular, but here we
are interested in finding a regular fan. Hence we have a proper birational map µ⌃ : Z⌃ �! C3

where Z⌃ is smooth and the irreducible components of the exceptional divisor of µ⌃ correspond
to the vectors v(Cm) that we consider. More precisely, the divisorial valuations corresponding to
the irreducible components of the exceptional divisor of µ⌃ are exactly the ⌫Cm associated with
the components Cm that we consider.

We will find such a regular fan ⌃ for a non-isolated form X of an RTP-singularity which is
not of the type Bk�1,2l�1 (i.e we will construct ⌃ using the vectors of type v(Cm)) that refines
the dual Newton fan of X ⇢ C3. Thanks to Varchenko’s theorem [27], this gives that µ⌃ is
an embedded resolution of X ⇢ C3

. On the other hand, for a Bk�1,2l�1-singularity, we cannot
apply Varchenko’s theorem because there is no ⌃ refining the dual Newton fan as described
above; nevertheless we build a regular fan ⌃ satisfying the properties above and, we prove by
studying the total transform of our singularity by µ⌃ that µ⌃ : Z⌃ �! C3 is an embedded
resolution of the Bk�1,2l�1 singularity.
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4. RTP-singularities of type E6,0

The singularity of X ⇢ C3 defined by the equation:

f(x, y, z) = z
3 + y

3
z + x

2
y
2 = 0

is called E6,0-type singularity. Its dual Newton fan is given in Figure 2.

In this section, we compute explicitly the m-th jet schemes (for m  18) and we determine
a subset of EV (X) which gives a regular subdivision of the dual Newton fan as explained in
the previous section. We represent the irreducible components as a graph in Figure 3, where
we also weight the vertex associated with a component Cm by the vector v(Cm) also defined in
the previous section. For a component Cm which projects by the maps ⇡m,m�1 given in Section
3 on a monomial component (i.e. a component whose associated valuation is monomial) Cm�1,

which is not itself monomial; we also weight the associated vertex by the unique non-monomial
equation which, together with the hyperplane coordinates Cm�1, defines Cm. That helps for the
computations of the irreducible components in the process. Here we do not pay much attention to
the edges since they are not relevant for the problem at hand. The arrows in Figure 3 correspond
to a component Cm such that the inverse image of a dense open set in it gives an irreducible
component for every n � m. First let us fix some notations:

(1,0,2)

(5,4,6)

(0,3,2)

Figure 2. Dual Newton fan of E6,0 singularity

Notation: Let

(⇤) f

⇣ mX

i=0

xit
i
,

mX

i=0

yit
i
,

mX

i=0

zit
i
⌘
=

i=mX

i=0

Fit
i mod(tm+1).

We know that (e.g. [20]) the m-th jet scheme Xm is defined by the ideal

Im = (F0, F1, . . . , Fm) ⇢ C[xi, yi, zi; i = 0, . . . ,m].

4.1. Jet Schemes of E6,0. For m � 1, we will determine the irreducible components of the
space of m�jets that projects on the singular locus of X, i.e. the irreducible components of
X

Sing
m := ⇡

�1
m,0(V (y0, z0)) ⇢ Xm ⇢ Spec(C[xi, yi, zi; i = 0, . . . ,m]) = C3

m; here V (I) denotes the
variety defined by an ideal I and C3

m is the m-th jet scheme of the a�ne three dimensional space
C3; we insist here that when considering X

Sing
m for a given m, the symbol V (I) designates the

variety defined by an ideal I in C3
m. Recall that ⇡m0 : Xm �! X0 = X. We also insist on the
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fact that we consider only the reduced structure of these schemes.

For m = 1, we have X
Sing
1 = V (y0, z0) ⇢ Spec(C[xi, yi, zi; i = 0, 1]) because, if we put

y0 = z0 = 0 in the equation (⇤) we get F0 = F1 = 0 modulo the ideal (y0, z0). Hence, XSing
1

consists of a unique irreducible component, denoted by C1,1. The weight vector of C1,1 is (0, 1, 1).

For m = 2, we have XSing
2 = ⇡

�1
2,1(C1,1); this uses the fact ⇡2,0 = ⇡1,0�⇡2,1. A direct computation

using the equation (⇤) gives:

F2 = x
2
0y

2
1 mod (y0, z0).

Hence X
Sing
2 = V (y0, z0, x2

0y
2
1) ⇢ Spec(C[xi, yi, zi; i = 0, 1, 2]) = C3

2. We deduce that XSing
2 has

two irreducible components C2,1 := V (y0, z0, x0) and C2,2 := V (y0, z0, y1) both are sent via ⇡2,1
into C1,1; there weight vectors are respectively (1, 1, 1) and (0, 2, 1). These vectors are represented
in Figure 3 at the levels m = 1 and m = 2.

For m = 3, using the fact ⇡3,0 = ⇡2,0 � ⇡3,2, it is su�cient to study ⇡�1
3,2(C2,j) with j = 1, 2 to

understand X
Sing
3 .

• To find ⇡�1
3,2(C2,1), we compute F3 modulo the ideal (x0, y0, z0) and we obtain:

F3 = z
3
1 mod(x0, y0, z0);

Hence we obtain that C3,1 := ⇡
�1
3,2(C2,1) = V (x0, y0, z0, z1) is irreducible.

• Similarly, we obtain that C3,2 := ⇡
�1
3,2(C2,2) = V (y0, y1, z0, z1) is irreducible.

So we have X
Sing
3 = C3,1 [ C3,2 where C3,1 and C3,2 are both irreducible and clearly there is no

inclusions between them: indeed, C3,1 is included in V (x0) but C3,2 is not and, C3,2 is included in

V (y1) but C3,1 is not. We conclude that C3,1 and C3,2 are the irreducible components of XSing
3 .

Their associated weight vectors are respectively (1, 1, 2) and (0, 2, 2).

For m = 4, as in the previous case, it is su�cient to consider ⇡�1
4,3(C3,j), with j = 1, 2. As the

computations go almost in the same way, we just announce what we obtain:

• To determine ⇡�1
4,3(C3,1) we compute F4 modulo the ideal (x0, y0, z0, z1). We have

F4 = x
2
1y

2
1 mod (x0, y0, z0, z1).

Hence, ⇡�1
4,3(C3,1) has 2 irreducible components

C4,1 = V (x0, y0, y1, z0, z1) and C4,2 = V (x0, y0, x1, z0, z1).

• Similarly we have ⇡�1
4,3(C3,2) = C4,1 [ C4,3 where C4,3 = V (y0, y1, y2, z1, z0).

Then we get

X
Sing
4 = C4,1 [ C4,2 [ C4,3

which is a decomposition into irreducible varieties. Using a similar argument as in the case of
m = 3, we conclude that there are no mutual inclusions between these components; hence this
is the decomposition into irreducible components. The corresponding weight vectors of C4,1, C4,2
and C4,3 are respectively (1, 2, 2), (2, 1, 2) and (0, 3, 2). Figure 3 encodes also this information.

For m = 5, we have

X
Sing
5 = ⇡

�1
5,4(C4,1) [ ⇡

�1
5,4(C4,2) [ ⇡

�1
5,4(C4,3) ⇢ C3

5.
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• To determine ⇡�1
5,4(C4,1), we compute F5 modulo (x0, y0, y1, z0, z1) that we find to be 0.

We deduce, that C5,1 := ⇡
�1
5,4(C4,1) = V (x0, y0, y1, z0, z1) is irreducible. A small attention

here is needed: The varieties C4,1 and C5,1 are not the same; they are defined by the
same equations but in di↵erent rings; they actually define the same valuation on C3 (see
Proposition 2.3 in [20]).

• Computing F5 modulo the ideal (x0, x1, y0, z0, z1), we find F5 = y
3
1z2 = 0. So ⇡�1

5,4(C4,2)
is the union of V (x0, x1, y0, y1, z0, z1) and C5,2 := V (x0, x1, y0, z1, z0, z2).

• As for ⇡�1
5,4(C4,1), computing F5 modulo (y0, y1, y2, z0, z1) we find zero. This gives that

C5,3 := ⇡
�1
5,4(C4,3) = V (y0, y1, z0, z1, z2)is irreducible.

Hence we obtain
X

Sing
5 = C5,1 [ C5,2 [ V (x0, x1, y0, y1, z0, z1) [ C5,3.

Since V (x0, x1, y0, y1, z0, z1) is included in C5,1, the decomposition

X
Sing
5 = C5,1 [ C5,2 [ C5,3

is the decomposition into the irreducible components. Moreover, the weight vectors of C5,j for
j = 1, 2, 3 are (1, 2, 2), (2, 1, 3) and (0, 3, 2) respectively.

For m = 6, we have

X
Sing
6 = ⇡

�1
6,5(C5,1) [ ⇡

�1
6,5(C5,2) [ ⇡

�1
6,5(C5,3) ⇢ C3

6.

• To determine ⇡�1
6,5(C5,1), we compute F6 modulo the ideal (x0, y0, y1, z0, z1) and we find

C6,1 := ⇡
�1
6,5(C5,1) = V (x0, y0, y1, z0, z1, z

3
2 + x

2
1y

2
2) ⇢ C3

6.

Notice that C6,1 is isomorphic to the product of an a�ne space and the hypersurface
defined by {z

3
2 + x

2
1y

2
2 = 0}; this hypersurface is a Hirzebruch-Jung singularity which

is well known to be an irreducible quasi-ordinary singularity [4]; in particular C6,1 is
irreducible. Actually, we will see that C6,1 will give rise to an irreducible component of

X
Sing
6 whose weight vector is same as the weight vector associated with C5,1, so it is not

an essential component (see definition above): the divisorial valuation associated with it
is not monomial while a divisorial valuation associated with an essential component is
monomial. Before we continue to study on X

Sing
6 , let us consider ⇡�1

m,6(C6,1) for m � 7:
For this, we will stratify C6,1 into its regular locus and its singular locus which are

defined respectively by x1 = z2 = 0 and y2 = z2 = 0. The inverse images

⇡
�1
7,6(C6,1 \ {x1 = z2 = 0}) and ⇡

�1
7,6(C6,1 \ {y2 = z2 = 0})

will give the irreducible components of XSing
7 looking like the irreducible components

that we have studied before which are the essential components, so give the new weight
vectors. The inverse image of the regular part of C6,1 with respect to ⇡m,6, with m � 7
is equal to ⇡�1

m,6(C6,1 \ {z2 6= 0}); this latter is defined in C3
m \ {z2 6= 0} by the ideal

generated by x0, y0, y1, z0, z1, z
3
2 + x

2
1y

2
2 and

Fj = cjz3zj�3 +Hj(x1, . . . , xj�5, y2, . . . , yj�4, z3, . . . , zj�3), cj 2 C⇤

for 7  j  m. The functions Fj are linear as we can invert cjz3 6= 0. Then the Zariski

closure ⇡�1
m,6(C6,1 \ {z2 6= 0}) is irreducible and, is actually an irreducible component of

X
Sing
m for every m  7. Note that the weight vector of ⇡�1

m,6(C6,1 \ {z2 6= 0}) is (1, 2, 2)
which is same as the one for C6,1 and for C5,1; hence they don’t give an essential component.
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They are encoded in Figure 3 by the dashed arrow which starts at the vertex weighted
by the vector (1, 2, 2) and the equation z

3
2 + x

2
1y

2
2 = 0.

• To determine ⇡�1
6,5(C5,2), we compute F6 modulo the ideal (x0, x1, y0, z0, z1, z2) and we find

that F6 = y
2
1(z2y1 + x

2
2). So ⇡

�1
6,5(C5,2) is the union of C6,2 := V (x0, x1, y0, y1, z0, z1, z2)

and C6,3 := V (x0, x1, y0, z1, z0, z2, z3y1 + x
2
2) which are both irreducible. We note that

⇡
�1
m,6(C6,3) is irreducible for every m � 7 and gives rise to an irreducible component of

X
Sing
m for every m � 7. The irreducibility of the inverse image results from the fact that

C6,3 is the product of an a�ne space and an A1-singularity and the jet schemes of such
singularity are irreducible [21, 19] (what applies here for A1 is also true for any rational
singularity). The components of ⇡�1

m,6(C6,3) are not the essential components, they are
associated with non-monomial valuations and they have the same weight vector, namely
(2, 1, 3). They are encoded in Figure 3 (to the most right of the graph) by the dashed arrow
which starts at the vertex weighted by the vector (2, 1, 3) and the equation x

2
2+ z3y1 = 0.

• To determine ⇡�1
6,5(C5,3), we compute F6 modulo the ideal (y0, y1, y2, z0, z1) and we find

that F6 = z
3
2 + x

2
0y

3
3 . Hence

C6,4 := ⇡
�1
6,5(C5,3) = V (y0, y1, y2, z0, z1, z

3
2 + x

2
0y

2
3)

is irreducible. By the same argument as in the case of ⇡�1
m,6(C6,1), the inverse images

⇡
�1
7,6(C6,4 \ {x0 = z2 = 0}) and ⇡�1

7,6(C6,4 \ {y3 = z2 = 0}) will give rise to the irreducible

components of XSing
7 ; the Zariski closure ⇡�1

m,6(C6,4 \ {z2 6= 0}) is irreducible and is actu-

ally an irreducible component of XSing
m for every m � 7. This is encoded in Figure 3 by

the dashed arrow starting at the vertex weighted by the vector (0, 3, 2) and the equation
z
3
2 + x

2
0y

2
3 .

To summarize, we obtain X
Sing
6 = C6,1 [ C6,2 [ C6,3 [ C6,4 where each C6,j for j = 1 . . . , 4

is irreducible. Obviously, C6,2 ⇢ C6,1 and, using the same argument as in the case of m = 3,
we verify that there is no inclusion among the remaining C6,j ’s. Hence we get the irreducible
decomposition

X
Sing
6 = C6,1 [ C6,3 [ C6,4

with the respective weight vectors (1, 2, 2), (2, 1, 3) and (0, 3, 2).

For m = 7, by the above discussions, we have a stratification

X
Sing
7 = ⇡

�1
7,6(C6,1 \ {x1 = z2 = 0}) [ ⇡�1

7,6(C6,1 \ {y2 = z2 = 0}) [ ⇡�1
7,6(C6,1 \ {z2 6= 0})[

⇡
�1
7,6(C6,3) [ ⇡

�1
7,6(C6,4 \ {y3 = z2 = 0}) [ ⇡�1

m,6(C6,4 \ {z2 6= 0})

which is the decomposition into irreducible components; indeed, on the one hand using the same
argument as for m = 3, there is no inclusions between ⇡

�1
7,6(C6,3) and the other components;

on the other hand, the other components are clearly not equal, this means that there are no
inclusions between them because they are irreducible and they have the same dimension (actually
codimension 7 in C3

7).
Note that the codimension is easy to compute since the equations are either hyperplane

coordinates in C3
7 or we consider the closure of a constructible set which is defined by hyper-

plane coordinates and by linear equations. The weight vectors are respectively (2, 2, 3), (1, 3, 3),
(1, 2, 2), (2, 1, 3), (0, 4, 3), and (0, 3, 3). Moreover we have

⇡
�1
7,6(C6,4 \ {x0 = z2 = 0}) = ⇡

�1
7,6(C6,1 \ {y2 = z2 = 0}).



346 B. KARADENIZ, H. MOURTADA, C. PLÉNAT, AND M. TOSUN

We should also note that although C6,2 is not an irreducible component, its inverse image
⇡
�1
7,6(C6,2) which is equal to ⇡�1

7,6(C6,1 \ {y2 = z2 = 0}) gives an irreducible component.

We have gone through the arguments which allow to determine all the irreducible compo-
nents of XSing

m for m  18. This is encoded in Figure 3. Note that 18 is the quasi-degree of the
weighted homogeneous polynomial defining our singularity.
One last important thing is that the axis Y = {x = z = 0} is drawn on our singularity.
We determine the essential components of X

Y
m,m � 0, we find V (x0, z0) ⇢ X0 ⇢ C3

0 and
V (x0, z0, z1) ⇢ X1 ⇢ C3

1 whose weight vectors are respectively (1, 0, 1), (1, 0, 2).

To conclude, the essential components are the irreducible components of XZ
m (where Z is the

singular locus of X or Z = Y is the y-axis) whose defining equations are hyperplane coordinates
and, their associated valuations are monomial and determined with their weight vectors. Hence
we get the graph in Figure 3 for the jet schemes.

Proposition 4.1. For an E6,0-singularity, the monomial valuations associated with the vec-
tors (0, 1, 1), (0, 2, 1), (1, 1, 1), (0, 3, 2), (1, 1, 2), (1, 2, 2), (2, 1, 2), (2, 1, 3), (2, 2, 3), (3, 2, 3), (3, 2, 4),
(3, 3, 4), (4, 3, 5), (5, 4, 6) belong to EV (X).

(0,1,1)

(1,1,1)

(1,1,2)

(2,1,2)

(0,2,2)

(0,3,2)

(0,3,2) (1,2,2)

(2,2,3)

(3,2,3)
(3,2,4)

(3,3,4)

(3,3,4)

(4,3,5)

(5,4,6)

(4,4,6)(3,5,6)(2,2,6)(0,8,6)

(0,4,3)

(0,5,4)
(1,4,3)

(2,4,4)

(2,5,5)

(1,5,4)

(1,0,1)

(1,0,2)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

(2,1,3)

(0,2,1)

z3 + y3z + y2x2 = 0

x2 + yz = 0

x2y2 = 0

z3 = 0

z � iy = 0

z + iy = 0

z3 + x2y2 = 0

(1,2,2)

Figure 3. Jets schemes of E6,0

4.2. Toric Embedded Resolution of E6,0. Now we are ready to announce the main result
for the surface X of type E6,0-singularity.
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Theorem 4.2. There exists a toric birational map µ⌃ : Z⌃ �! C3 which is an embedded
resolution of X ⇢ C3 such that the components of the exceptional divisor of µ⌃ correspond to
the irreducible components of the m-th jet schemes of X (centered at the singular locus and
the intersection of X with the coordinate hyperplane). Moreover this yields a construction (not
canonical) of µ⌃.

Proof. By [27, 23, 1] (see also [20] for a summary), an embedded resolution of X ⇢ C3 can be
obtained by constructing a regular subdivision of the dual Newton fan of X ⇢ C3. The dual
Newton fan ⌃ for E6,0 is presented in Figure 2 .

(0,0,1)

(5,4,6)

(0,3,2)

(0,1,0)

(1,0,1)

(3,2,3)

(3,3,5)

(2,2,3)(1,1,2)

(0,2,1)

(0,1,1)

(2,1,2)

(1,0,0)

(2,1,3)

(1,0,2) (3,2,4)

(4,3,6)

(1,1,1)

(1,2,2)

Figure 4. An embedded resolution of E6,0

In Figure 4, we give a regular subdivision ⌃ where the rays (cones of dimension 1) are the
lines supported by the vectors given in proposition 4.1. To see that this is a regular subdivision,
it is su�cient to show that each cone is regular (means that the determinant of the matrix whose
columns are any three vectors generating a cone of ⌃ equals 1). Moreover the 1-dimensional
cones (rays) are in bijective correspondence with the components of the exceptional divisors.

⇤

5. RTP-singularities of type Ak�1,l�1,m�1

The singularity of X ⇢ C3 defined by the equations:

• k � ` � m,
z
3 + xz

2
� (x+ y

k + y
` + y

m)ykz + y
2k+` = 0,

• k = ` < m,
z
3 + (x� y

k)z2 � (x+ y
k + y

m)ykz + y
2k+m = 0.

is called Ak�1,l�1,m�1-type singularity where k, `,m � 1.

5.1. Jet Schemes and toric Embedded resolution of Ak�1,l�1,m�1 when k = l  m. The
singular locus is {y = z = 0}. So we compute the jets schemes over {y = z = 0}. The graph
representing the irreducible components of the jet schemes of Ak�1,l�1,m�1 is in Figure 5

Theorem 5.1. With the preceding notation, the monomial valuations associated with the vectors

• (0, 1, 1), (0, 1, 2), . . . (0, 1, k +m)
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• (s, 1, s), . . . , (s, 1,m+ k � s) 1  s  k � 1

• (k, 1, k), . . . , (k, 1,m)

belong to EV (X). Moreover, these vectors give a toric birational map µ⌃ : Z⌃ �! C3 which is
an embedded resolution of X ⇢ C3 (in the neighborhood of the origin) such that the components
of the exceptional divisor of µ⌃ correspond to the monomial valuations defined by them; hence
they correspond to the irreducible components of the m-th jet schemes of X (centered at the
singular locus and the intersection of X with the coordinate hyperplanes).

(0,1,2)

(0,1,1)

(0,1,1)

(1,1,1)

(1,1,2)

(2,1,2)

(0,1,2)

(0,1,3)

(0,1,k-1)

(0,1,k-1)

(0,1,k)

(0,2,k+1)

(0,2,k+2)

(0,2,k+2)(2,2,k+1)

(1,2,k+1)

(k+1,2,k+1)

(0,1,2k-1)

(1,1,2k-1)
(0,1,2k)

(0,1,k+m)(k,1,m)

(k,1,k)

(k-l,1,k-l)

(1,1,k-1)

(2,1,k-1)

0

1

2

3

4

5

2k-2

2k-1

2k

2k+1

2k+2

2k+3

3k-2

3k-1

3k

2k+m

xz2 � xykz = 0

xykz = 0

z3 + xz2 = 0

y2k+m � xykz = 0

xykz + y2kz = 0

y2k+m + xykz + y2kz = 0

z3 + xz2 � ykz2 � xykz + y2kz = 0

xz2 = 0

Legend

(0,1,k)

(0, 2, k + 2 + [
m�3

2
])

Figure 5. Jets schemes of Ak�1,k�1,m�1
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Proof. The first part of the theorem results from the jet graph. Before showing that the given
vectors give a simplicial regular decomposition of the dual Newton fan of Ak�1,k�1,m�1, let us
study their positions in the fan:

• for all 0  s  k, we have (s, 1, k) 2 [(0, 1, k), (k, 1, k)]

• for all 0  s  k, we have (s, 1, k +m� s) 2 [(0, 1, k +m), (k, 1,m)]:

�������

k 0 s

1 1 1

m k +m k +m� s

�������
=

�������

k 0 s

0 1 1

�k k +m �s

�������
= 0

• the vectors (↵, 1, l + ↵+ 1) for all 0  ↵  k are aligned, for each 0  l  k.

C2

C3

C4

C1

C5

(0,1,k+m)

(0,1,k)

(k,1,m)

(k,1,k)

(0,1,7)

(0,1,3)

(3,1,3)

(3,1,4)

Figure 6. Dual Newton fan of Ak�1,k�1,m�1 and an embedded resolution for A2,2,3

Now let us decompose each subcone Ci into regular cones:

Decomposition of C1: The cone C1 contains the vectors (k, 1,�) for k  �  m� 1. They are

on the skeleton of the fan. For k  �  m� 1, we have:

�������

k k 1

1 1 0

� � + 1 0

�������
= 1.

Decomposition of C2: The cone C2 contains the vectors (1, 1, 1), . . . , (k, 1, k) which are on the

skeleton. For 0  ↵  k � 1 we have:

�������

1 ↵ ↵+ 1

0 1 1

0 ↵ ↵+ 1

�������
= 1.

Decomposition of C3: To decompose the cone C3, we first add successively an edge between
the vectors (k� 1, 1, k), (k� 2, 1, k� 2), (k� 3, 1, k), . . . with the last vector being (0, 1, k) if k is
odd and with (0, 1, 0) if k is even. Then we obtain that the vectors (↵, 1,↵), . . . , (↵, 1, k) are in
the same triangles (see Figure 7). Now let us add those vectors and the vectors on the associated
edges successively.
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(1,1,k)

(2,1,k)

(s,1,k)

(k,1,k)

(2,1,2)(1,1,1)(0,1,0) (s+1,1,s+1) (s,1,s) (s-1,1,s-1)

(s-1,1,k) (s,1,k) (s+1,1,k)

(s,1,s)

(0,1,k)

Figure 7. Decomposition of the cone C3 and of its two types of subcones

Each new subcone will be regular as we only have one of the following two cases:

• Case 1: for ↵  �  k � 1 we have
�������

↵� 1 ↵ ↵

1 1 1

k � � + 1

�������
= 1 and

�������

↵+ 1 ↵ ↵

1 1 1

k � � + 1

�������
= 1

• Case 2:
�������

↵+ 1 ↵ ↵

1 1 1

↵+ 1 � � + 1

�������
= 1 and

�������

↵� 1 ↵ ↵

1 1 1

↵� 1 � � + 1

�������
= �1

Decomposition of C4: The cone C4 is decomposed by adding successively the edges between
the vectors (k, 1,m), (k � 1, 1, k), (k � 2, 1,m + 2), . . . with the last vector being (1, 1, k) if k is
odd and with (1, 1, k + m � 1) if k is even. Then let us add successively the vectors and the
associated edges (s, 1,↵) for k  ↵  k +m� s.

(k,1,m)

(k-1,1,m+1)

(0,1,k+m)

(k,1,k)
(k-1,1,k) (0,1,k) (s+1,1,k) (s,1,k) (s-1,1,k) (s,1,k)

(s,1,k+m-s) (s+1,k,k+m-s-1) (s,1,k+m-s) (s-1,1,k+m-s+1)

Figure 8. Decomposition of the cone C4 and of its two types of subcones
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Each new subcone will be regular as we have: for 0  s  k � 1 and for k  �  k +m� s,

�������

s� 1 s s

1 1 1

k � � + 1

�������
= 1 and

�������

s+ 1 s s

1 1 1

k � � + 1

�������
= 1

or

�������

s+ 1 s s

1 1 1

k +m� s� 1 � � + 1

�������
= 1 and

�������

s� 1 s s

1 1 1

k +m� s+ 1 � � + 1

�������
= 1

Decomposition of C5: The cone C5 contains the vectors (s, 1, k +m� s) for 0  s  k which
are on the skeleton. For 0  ↵  k, we have:

�������

0 ↵ ↵+ 1

0 1 1

1 k +m� ↵ k +m� 1� ↵

�������
= 1,

�������

k 1 0

1 0 0

m 0 1

�������
= 1.

⇤

5.2. Jet Schemes and toric Embedded resolution of Ak�1,l�1,m�1 when k � l � m. The
graph representing the irreducible components of the jet schemes of Ak�1,l�1,m�1 projecting on
the singular locus {y = z = 0} is given by Figure 9 below.

Theorem 5.2. Let X ⇢ C3 be a surface of type Ak�1,l�1,m�1 with k � l � m. The monomial
valuations associated with the vectors:

• (0, 1, 1), (0, 1, 2), . . . (0, 1, k + l)

• (s, 1, s), . . . , (s, 1, l + k � s) 1  s  m� 1

• (m, 1,m), . . . , (m, 1, k + l �m)

• (m+ r, 1,m+ r), . . . , (m+ r, 1, k � r) with 1  r  E(k�m
2 )

belong to EV (X). Moreover, these vectors give a toric birational map µ⌃ : Z⌃ �! C3 which is
an embedded resolution of X ⇢ C3 (in the neighborhood of the origin) such that the components
of the exceptional divisor of µ⌃ correspond to the monomial valuations defined by the vectors;
hence they correspond to irreducible components of the m-th jet schemes of X (centered at the
singular locus and the intersection of X with the coordinate hyperplanes).
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(0,1,2)

(0,1,1)

(0,1,1)

(1,1,1)

(1,1,2)

(2,1,2)

(0,1,2)

(0,1,3)

(0,1,k-1)

(0,1,k-1)

(0,1,k)

(0,2,k+1)

(0,2,k+2)

(0,2,k+2)(2,2,k+1)

(1,2,k+1)

(1,1,k-1)

(2,1,k-1)

0

1

2

3

4

5

2k-2

2k-1

2k

2k+1

2k+2

2k+3

xz2 � xykz = 0

xykz = 0

z3 + xz2 = 0

Legend

y2k+1 � xykz = 0

ym+k � xykz = 0

y2k+1 + ym+kz � xykz = 0

z3 + xz2 + ym+kz = 0

xz2 = 0

(0,1,k+1)

(m+1,1,k-1)

(m,1,k)

(m,1,k+1)

(0,1,k+l)

(m+k,2,m+k) (if m+k odd)

(0,1,,k+m-1)

(1,1,k+m-1)

(m-3,2,k+1)

2k+1

2k+m-2

2k+m-1

2k+m

(0, 2, k + 2 + [
m�2

2
] + [

1�m
2

])

(
k+m

2
, 1,

k+m
2

)if k + m even

([
k+m

2
, 1, [

k+m
2

)if k + m odd

(m, 1, k + ` � m) (` � 1, 2, k + 1)

Figure 9. Jets schemes of Ak�1,l�1,m�1

Proof. As above, we first study the positions of the vectors given in theorem 5.2:
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• (m+ r, 1, k � r) 2 [(m+ k, 2,m+ k), (m, 1, k)]:
�������

m+ k m+ k m

1 2 1

k + r m+ k k

�������
=

�������

r k m

0 1 1

�r m k

�������
=

�������

r k m

0 1 1

0 m+ k k +m

�������
= 0

• (↵, 1, k + l � ↵) 2 [(m, 1, k + l �m), (0, 1, k + l)] for 0  ↵  m :
�������

m 0 ↵

1 1 1

k + l �m k + l k + l � ↵

�������
=

�������

m 0 ↵

0 1 0

�m k + l �↵

�������
= 0

If m+k
2 2 Z, then the dual fan can be decomposed in the same way as for the caseAk�1,k�1,m�1.

Otherwise, we have to show the subcones containing the vector (m+ k, 2,m+ k) are regular. In
this case E(k�m

2 ) = k�m�1
2 and (m+E(k�m

2 ), 1,m+E(k�m
2 )) = (k+m�1

2 , 1, k+m�1
2 ). We have

:�������

k+m�1
2

k+m�1
2 m+ k

1 1 2
k+m+1

2
k+m�1

2 m+ k

�������
=

�������

0 k+m�1
2 m+ k

0 1 2

1 k+m�1
2 m+ k

�������
= 1 and

�������

1 k+m�1
2 m+ k

0 1 2

0 k+m�1
2 m+ k

�������
= 1.

⇤

(0,1,k)

(0,1,k+l)

(m,1,k)

(m+k,2,m+k)

(0,1,11)

(0,1,6)

(3,1,8)(4,1,6)

(9,2,9)

(m,1,k+l-m)

Figure 10. Dual Newton fan of Ak�1,l�1,m�1 with k � l � m, and a resolution
of A5,4,2

6. Jet Schemes and Toric Embedded Resolution of Bk�1,m

The singularity of X ⇢ C3 defined by the equations:

• m = 2`,
z
3 + xz

2
� (yk+1 + y

`)ykz � xy
2k+1 = 0,

• m = 2`� 1,
z
3 + (x� y

`�1)z2 � y
2k+1

z � xy
2k+1 = 0.

is called Bk�1,m-type singularity with k � 2 and m � 3.
In the case where m = 2l, the jet schemes and the toric embedded resolution behaves as in the
case of Am,k,l; so, let’s just present the jet graph presenting the irreducible components of the
jets schemes projecting over the singular locus {y = z = 0} and the axis {x = z = 0} included
in X:
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(1,0,1)
(0,1,1)

(0,1,1)

(0,1,2)

(0,1,2)

(1,1,1)

(2,1,2)

(1,1,2)

if k even

(0,1,k)

(0,1,k)

(0,1,k+1)

(0,2,k+1)

(1,1,k)

(2,1,k)

(0,2,2k+1)

(0,3,2k+3)

l < k + 1 l � k + 1

(2k+1,2,2k+1)

(0,2,2k+1)
(1,2,2k+1)

(1,2,2k+1)

(0,1,1)

(0,1,1)

(0,1,2)

(0,1,2)

(1,0,1)

(1,1,1)

(2,1,2)

(1,1,2)

(0,1,k)

(0,1,k)

(0,1,k+1)

(0,2,k+1)

(1,1,k)

(k,1,k)

(k+1,1,k+1)

(0,2,2k+1)(0,2,2k+1)

([
k+1
2

], 1, [
k+1
2

])if k odd

([
k+1
2

], 1, [
k+1
2

] + 1)

(l, 1, k)

(l, 1, k + 1)
(l, 2, k + 1)

(2l � 1, 2, 2k + 1)

Figure 11. Jets schemes of Bk�1,m when m = 2l

Theorem 6.1. Let X ⇢ C3 be a surface of type Bk�1,2l. The monomial valuations associated
with the vectors:

• (0, 1, 1), (0, 1, 2), . . . , (0, 1, k + 1)

• (1, 1, 1), . . . , (1, 1, k + 1)

• . . .

• (l, 1, l), . . . , (l, 1, k + 1)

• (l + 1, 1, l + 1), . . . , (l + 1, 1, k � 1)

• (l + 2, 1, l + 2), . . . , (l + 1, 1, k � 2)

• . . .



THE EMBEDDED NASH PROBLEM OF BIRATIONAL MODELS 355

• (E((l + k)/2), 1, E((l + k)/2)), and (E((l + k)/2), 1, E((l + k)/2) + 1) if k + l is odd.

• (0, 2, 2k + 1) . . . (2l � l, 2, 2k + 1)

belong to EV (X). Moreover, these vectors give a toric birational map µ⌃ : Z⌃ �! C3 which is
an embedded resolution of X ⇢ C3 (in the neighborhood of the origin) such that the components
of the exceptional divisor of µ⌃ correspond to the monomial valuations defined by them; hence
they correspond to the irreducible components of the m-th jet schemes of X (centered at the
singular locus and the intersection of X with the coordinate hyperplanes).

The vectors given in the theorem allows us to decompose the corresponding dual Newton fan
into regular subcones and find an embedded resolution of the singularity.

(1,0,1)

(k+l,1,k+l)

(2l−2,2,2k+1)

(0,2,2k+1)

(2k+1,2,2k+1)(1,0,1)

(0,2,2k+1)

l � k + 1l < k + 1

Figure 12. Dual Newton fans of Bk�1,m when m = 2l

Two embedded resolutions for two special cases look as the following:

(0,2,11)

(5,2,11)

(1,0,1)

(4,1,4)

(1,0,1)

(7,2,7)

(0,2,7)

Figure 13. Embedded resolution of B4,6 and of B2,10

In the case of Bk�1,2l�1, there is an amazing subclass (see Section 2 below) for which the
jet schemes give a resolution which is not a subdivision of the dual Newton fan of the singularity.
So this case needs to be treated in details. There are two sub-cases to be considered which are
the cases k + 1  l and k � l.
Let us first treat the case k + 1  l: we start by computing the irreducible components of
the jet schemes projecting on the singular locus {y = z = 0} and the axis {x = z = 0} included
in X. And, by computing the associated vectors we obtain Figure 14:



356 B. KARADENIZ, H. MOURTADA, C. PLÉNAT, AND M. TOSUN

Theorem 6.2. Let X be of type Bk�1,2l�1 with k + 1  l. The monomial valuations associated
with the vectors:

• (0, 1, 1), (0, 1, 2), . . . , (0, 1, k + 1)

• (1, 1, 1), . . . , (1, 1, k + 1)

• . . .

• (k, 1, k), (k, 1, k + 1)

• (k + 1, 1, k + 1)

• (0, 2, 2k + 1) . . . (2k + 1, 2, 2k + 1)

belong to EV (X). Moreover there exists a toric birational map µ⌃ : Z⌃ �! C3 which is an em-
bedded resolution of X ⇢ C3 such that the irreducible components of the exceptional divisor of µ⌃

correspond to the irreducible components of the m-th jet schemes of X (centered at the singular
locus and the intersection of X with the coordinate hyperplane). This yields a construction of
µ⌃ (not canonical).

(0,1,1)
(0,1,1)
(0,1,2)
(0,1,2)

(1,0,1)

(2,0,1) (1,1,1)

(1,1,2)
(2,1,2)

(0,1,k)
(0,1,k)
(0,1,k+1)
(0,2,k+1)

(1,1,k)

(2,1,k)

(0,2,2k+1)
(0,2,2k+1)
(0,3,2k+1)

l < k + 1 l � l + 1

(2k+1,2,2k+1)

(1,2,2k+1)

(1,2,2k+1)

(0,1,k)
(0,1,k)
(0,1,k+1)
(0,2,k+1)

(0,2,2k+1)

(0,2,2k+1)

(0,1,1)
(0,1,1)
(0,1,2)
(0,1,2)

(2,0,1)

(1,0,1)

(1,1,1)

(1,1,2)

(2,1,2)

(k,1,k)

(k,1,k+1)

(k,2,k+1)
(k+1,1,k+1)

y2k+1(x+ z) = 0

z3 � xz2 � yl�1z2 = 0

xz2 + yl�1z2 = 0

xz2 = 0

z3 � xz2 = 0

xy2k+1 = 0

xz2 + xy2k+1 = 0

(2l � 2, 2, 2k + 1)

(l � 1, 1, k)

(l � 1, 1, k + 1)(l, 1, k + 1)

(l � 1, 1, l � 1)

(l � 1, 1, l)

Figure 14. Jets schemes of Bk�1,2l�1
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The computations are similar to the case Bk�1,2l; the associated vectors with the jet schemes
give a subdivision of the dual Newton fan, thus an embedded resolution, of the singularity.

Theorem 6.3. Let X be of type Bk�1,2l�1 for l  k. The monomial valuations associated with
the vectors

• (0, 1, 1), (0, 1, 2), . . . , (0, 1, k + 1)

• (1, 1, 1), . . . , (1, 1, k + 1)

• . . .

• (l � 1, 1, l � 1), . . . , (l � 1, 1, k + 1)

• (l, 1, k + 1)

• (0, 2, 2k + 1) . . . (2l � 2, 2, 2k + 1)

belong to EV (X). Moreover there exists a toric birational map µ⌃ : Z⌃ �! C3 which is an em-
bedded resolution of X ⇢ C3 such that the irreducible components of the exceptional divisor of µ⌃

correspond to the irreducible components of the m-th jet schemes of X (centered at the singular
locus and the intersection of X with the coordinate hyperplane). This yields a construction of
µ⌃ (not canonical).

l > k + 1 l = k + 1

Figure 15. Dual Newton fan of Bk�1,2l�1 for l > k + 1 (resp. l = k + 1) and
an embedded resolution

In the case where X is of type Bk�1,2l�1 with l  k, the corresponding dual Newton fan
of the singularity is given with the right-hand figure of Figure 16.
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(0,2,2k+1)

(0,1,1)

(1,0,0) (0,1,0)

(1,0,1)

(l-1,1,l-1)

(2l-2,2,2k+1)

(0,0,1)

(0,2,2k+1)

(1,0,0) (0,1,0)

(1,0,1)

(2l-2,2,2k+1)

(l-1,1,l-1)

Q
Q

(0,0,1)

Figure 16. Dual Newton fan of Bk�1,2l�1 with l  k and it is with the vectors
of Theorem 6.3

Remark 6.4. The set of vectors above does not contain the vector Q = (2k� l+2, 1, 2k� l+2),
thus the decomposition obtained by these vectors will not be a regular decomposition of the dual
Newton fan of the singularity.

Proof. Consider the polygons

J = [(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 0, 1), (l, 1, k + 1), (2l � 2, 2, 2k + 1), (l � 1, 1, l � 1)]

and

K = [(1, 0, 0), (1, 0, 1), (l, 1, k + 1), (2l � 2, 2, 2k + 1), (l � 1, 1, l � 1)]

in the dual Newton fan of the singularity. In J , the vectors obtained from the jet schemes
give a regular subdivision of this polygon (following the computations of Bk�1,2l). As J is a
sub-polygon of the fan, the strict transform of X is regular on these charts. In K, we find a
subdivision by adding an edge from (1, 0, 0) to (l, 1, k+1), another edge from (1, 0, 0) to (l�1, 1, s)
for l � 1  s  k and another edge from (l, 1, k + 1) to (l � 1, 1, k). In this way, we obtain a
regular subdivision of K.

Since K is not compatible with the dual Newton fan, we cannot use Varchenko’s
theorem to deduce the smoothness of the strict transform of X in the charts cor-
responding to the subdivision of K by the toric map. So, we should prove this
fact:

• For this, let us first consider the cone [(1, 0, 0), (l�1, 1, s), (l�1, 1, s+1)] for l�1  s < k;
the monoidal transformation corresponding to it is:

8
><

>:

x = x1y
l�1
1 z

l�1
1

y = y1z1

z = y
s
1z

s+1
1

Then the total transform of Bk�1,2l�1 is defined by:

{y
2s+l�1
1 z

2s+l+1
1 (ys�l+1

1 z
s�l+2
1 � x1 � y

2k�s�l+2
1 z

2k�s�l+1
1 � x1y

2k�2s+1
1 z

2k+2s�1
1 ) = 0}

The strict transform is smooth and transversal to the exceptional divisors defined by
y1 = 0 and z1 = 0.
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• Now let us consider the cone [(1, 0, 0), (l�1, 1, k), (l, 1, k+1)]; the monoidal transformation
corresponding to it is: 8

><

>:

x = x1y
l�1
1 z

l
1

y = y1z1

z = y
k
1z

k+1
1

Then the total transform of Bk�1,2l�1 is :

{y
2k+l�1
1 z

2k+l+1
1 (yk�l+1

1 z
k�l
1 � x1z1 � 1� y

k�l+2
1 z

k�l+1
1 � x1y1) = 0}.

The strict transform is smooth and transversal to the exceptional divisors defined by
y1 = 0 and z1 = 0.

• Finally let us consider the cone [(1, 0, 0), (1, 0, 1), (l, 1, k+1)]; the monoidal transformation
corresponding to it is: 8

><

>:

x = x1y1z
l
1

y = z1

z = y1z
k+1
1

Then the total transform of Bk�1,2l�1 is :

{y1z
2k+l+1
1 (y21z

k+2�l
1 � x1y

2
1z1 � y1 � z

k�l+1
1 � x1) = 0}.

The strict transform is smooth and transversal to the exceptional divisors defined by
y1 = 0 and z1 = 0.

(l,1,k+1)

(1,0,1)

(0,2,2k+1)

(0,1,1)

(0,1,0)

(1,0,1)

(l-1,1,l-1)

(0,0,1)

K

K

(2l-2,2,2k+1)

Q

(1,0,0)(1,0,0)

(l-1,1,l-1)

(2l-2,2,2k+1)

Figure 17. The polygon K and an embedded resolution of Bk�1,2l�1 with l  k

⇤

7. Jet Schemes and Toric Embedded Resolution of Ck�1,l+1

The singularity of X ⇢ C3 defined by the equation:

z
3 + xz

2
� `x

`�1
y
2k
z � (x` + y

2)y2k = 0

is called Ck�1,l+1-type singularity where k � 1 and ` � 2. For k = 3q�1, we obtain the jet graph
given in Figure 18 which represents the irreducible components of the jet schemes of Ck�1,l+1

projecting on the singular locus {y = z = 0}.
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6

2k-1

2k+1

2k

0

1

2

3

4

5

2k+2

4k+3

4k+4

4k+5

2p+1+2kp+2k

(2k+2)(p+1)

2(2k+2)=

(2k+2)(2p+1)=(2k+2)l

(2,l,(k+1)l-1)

(2,p+2,p+k+kp+1)

(2,p+1,k+p+kp)

(1,p+1,k+p+kp)

(1,2,2k+1)

(1,2,2k+2)

(1,3,2k+2)

(2,2,2k+1)

(0,1,k)
(1,1,k)

(1,1,k+1)

(1,2,k+1)

(1,2,k+2)

(2,2,k+1)

(2,1,k)(4,1,k-1)

(0,1,1)

(0,1,1)

(0,1,2)(1,1,1)

(2,1,2) (0,1,3)

(3,1,3)

(0,1,1)

(0,1,1)

(1,1,1)

(0,1,2)

(0,1,3)(2,1,2)

(3,1,3)

(0,1,k)

(0,2,k+1)

(1,1,k)

(2,1,k)

(1,1,k+1)

(1,2,k+1)

(2,2,k+1)

(0,2,2k)

(0,3,2k+1)

(1,2,2k+1) (1,2,2k)

(4,1,2k)

(3,2,2k+2) (2,3,2k+2)

(0,3,2k+2)

(0,p,kp)

(1,p,kp)

(1,p,(k+1)p-2)

(1,p,(k+1)p-1)

(1,p,(k+1)p-1)
(1,p,(k+1)p)

(2,p,(k+1)p-1)

(2,p+1,(k+1)p)
(1,p+1,(k+1)p)

0

2

1

3

4

2k-1

2k

2k+1

2k+2

(2k+2)2+1

(2k+2)2

(2k+2)2-1

2kp-1

2kp

(2k+2)p-2

(2k+2)p-1

(2k+2)p

Ck�1,2p+1 Ck�1,2p+2

(2,p+1,k+p+kp)

(0,2,2k)

(0,k,kp)

(4,1,2k) (2,2,2k+1)

(4,1,k-1) (2,1,k)

(0,1,k)

(2,1,k)

Figure 18. Jet schemes of Ck�1,2p+2 with k = 3q � 1

Theorem 7.1. Let X be a surface singularity of type Ck�1,l+1. The monomial valuations
associated with the vectors:

• for k = 3q � 1 and l = 2p

– (0, 1, 1), (0, 1, 2)...(0, 1, k)

– (1, 1, 1), ..., (1, 1, k), (1, 1, k + 1)

– (2, 1, 2), ..., (2, 1, k)

– (3, 1, 3), ..., (3, 1, k � 1)

– (4, 1, 4), ..., (4, 1, k � 1)

– . . .
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– (2q � 1, 1, 2q � 1), (2q � 1, 1, 2q)

– (2q, 1, 2q)

– (1, 1, k), (1, 2, 2(k + 1)� 1), . . . , (1, p, (k + 1)p� 1)

– (2, 1, k), (2, 2, 2(k + 1)� 1), (2, 3, 3(k + 1)� 1), . . . , (2, l, (k + 1)l � 1)

– (1, 1, k + 1), (1, 2, 2(k + 1)), . . . , (1, p, (k + 1)p)

• for k = 3q � 1 and l = 2p+ 1

– (0, 1, 1), (0, 1, 2)...(0, 1, k)

– (1, 1, 1), ..., (1, 1, k), (1, 1, k + 1)

– (2, 1, 2), ..., (2, 1, k)

– (3, 1, 3), ..., (3, 1, k � 1)

– (4, 1, 4), ..., (4, 1, k � 1)

– . . .

– (2q � 1, 1, 2q � 1), (2q � 1, 1, 2q)

– (2q, 1, 2q)

– (1, 1, k), (1, 2, 2(k + 1)� 1), . . . , (1, p, (k + 1)p� 1), (1, p, (k + 1)(p+ 1)� 1)

– (2, 1, k), (2, 2, 2(k + 1)� 1), (2, 3, 3(k + 1)� 1), . . . , (2, l, (k + 1)l � 1)

– (1, 1, k + 1), (1, 2, 2(k + 1)), . . . , (1, p, (k + 1)p)

belong to EV (X). Moreover there exists a toric birational map µ⌃ : Z⌃ �! C3 which is an em-
bedded resolution of X ⇢ C3 such that the irreducible components of the exceptional divisor of µ⌃

correspond to the irreducible components of the m-th jet schemes of X (centered at the singular
locus and the intersection of X with the coordinate hyperplane). This yields a construction (not
canonical) of µ⌃.

The embedded resolutions are represented on the figure below.

(1,1,k+1)

(2,l,(k+1)l-1)

(1,p,(k+1)(p+1)-1)

(0,1,k)

(0,1,1)

(2, 2, 2k + 1)

(1, 1, 1)
(1, 1, 1)

(2, 1, k)

(2, 2, 2k + 1)

(1,1,k+1) (1,p,(k+1)p)

(2,l,(k+1)l-1)

(0,1,k)

(0,1,1)

k = 3q � 1, l = 2p k = 3q � 1, l = 2p+ 1

(2k+2,3,2k+2)=(2q,1,2q)(2k+2,3,2k+2) =(2q,1,2q)

Figure 19. An embedded resolution of Ck�1,l+1 when k = 3q � 1 and l = 2p
or l = 2p+ 1
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8. Jet Schemes and Toric Embedded Resolution of Dk�1

The singularity of X ⇢ C3 defined by the equation:

z
3 + (x+ y

2k)z2 + (2xyk � y
2)ykz + x

2
y
2k = 0

is called Dk�1-type singularity with k � 1. The jet graph is given in Figure 20 where the
irreducible components of the jet schemes of Dk�1 projecting on the singular locus {y = z = 0}
and the axis {x = z = 0} included in X:

(1,0,1)

(1,0,2)

(0,1,1)

(0,1,1)

(0,1,2)

(0,1,2)

(0,1,3)

(0,1,3)

(0,1,4)

(0,1,4)

(1,1,1)

(1,1,2)

(2,1,2)

(1,1,3)

(2,1,3)

(3,1,3)(1,1,4)

(0,1,k-1)
(1,1,k-1)

(2,1,k-1)

(3,1,k-1)

(0,1,k)

(0,1,k)

(0,2,k+1)

(0,2,k+2)

(0,2,k+2)

(0,2,k+3)

(1,1,k)

(2,1,k)

(1,2,k+1)(2,2,k+1)

(2,1,k+1)

(2,1,k+2)

(0,2,2k-1)

(0,2,2k)

(0,2,2k)

(0,3,2k+1)

(0,3,2k+3)

(0,3,2k+2)

(0,2,2k+2)

(1,2,2k-1)

(5,2,2k-1)

(1,2,2k)

(2,2,2k)

(3,2,2k)

(4,2,2k)

(1,2,2k+1)

(1,3,2k+1) (2,2,2k+1)

(3,2,2k+1)

(3,2,2k+2)

(0,3,3k-1)

(0,3,3k)

(4,3,3k+2)

0

1

2

3

4

5

6

7

8

2k-2

2k-1

2k

2k+1

2k+6

4k-2

4k-1

4k

6k+6

(0,2,2k)

(2,2,2k+1)

(0,3,3k)

(0,1,k)

Figure 20. Jet schemes of Dk�1
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Theorem 8.1. Let X be a surface singularity of type Dk�1. The monomial valuations associ-
ated with the following vectors belong to EV (X). Moreover there exists a toric birational map
µ⌃ : Z⌃ �! C3 which is an embedded resolution of X ⇢ C3 such that the irreducible components
of the exceptional divisor of µ⌃ correspond to the irreducible components of the m-th jet schemes
of X (centered at the singular locus and the intersection of X with the coordinate hyperplane).
This yields a construction (not canonical) of µ⌃.

• (1, 0, 1), (1, 0, 2)
• (0, 1, 1), (0, 1, 2)...(0, 1, k)
• (1, 1, 1), ..., (1, 1, k), (2, 2, 2k + 1)), (1, 1, k + 1)
• (2, 1, 2), ..., (2, 1, k + 2)
• (3, 1, 3), ..., (3, 1, k � 1)
• . . .
• (m, 1,m), (m, 1,m+ 1), (m, 1,m+ 2)
• (m+ 1, 1,m+ 1)
• (3, 2, 2k + 1), (3, 2, 2k + 2)

When k is odd, we should add two more vectors: (m + 1, 1,m + 2), (k + 2, 2, k + 2), where
m = E(k2 ).

These vectors placed in the dual Newton fan give the regular subdivision:

(1,1,1)

(0,1,1)

(0,1,2)

(0,1,m) if k even

(0,1,m+1) if k odd

(0,1,k)
(2,2,2k+1)

(3,2,2k+1)

(1,1,k+1)

(1,0,1)

(0,1,0)(1,0,0)

(1,0,2)

(m+1,1,m+1) if k even

(k+2,2,k+2) if k odd

(3,2,2k+2)

(2,1,k+1)

(2,1,k)

(2,1,k+2)

(4,3,3k+2)
(0,0,1)

Figure 21. Embedded resolutions of Dk�1 for k = 2m and k = 2m+ 1

9. Jet Schemes and Toric Embedded Resolution of E7,0

The singularity of X ⇢ C3 defined by the equation z
3 + x

2
yz + y

4 = 0 is called an E7,0-type
singularity. The singular locus is {y = z = 0}.

Theorem 9.1. Let X be a surface singularity of type E7,0. The monomial valuations associated
with the vectors: {(0, 1, 1), (0, 2, 1), (0, 1, 2), (0, 1, 3), (1, 1, 1), (1, 1, 2), (1, 2, 2), (1, 2, 3), (1, 2, 4),
(2, 2, 3), (2, 3, 4), (2, 3, 5), (3, 3, 4), (3, 4, 5), (3, 4, 6), (4, 5, 7), (5, 6, 8)} belong to EV (X). There
exists a toric birational map µ⌃ : Z⌃ �! C3 which is an embedded resolution of X ⇢ C3 such
that the irreducible components of the exceptional divisor of µ⌃ correspond to the irreducible
components of the m-th jet schemes of X (centered at the singular locus and the intersection of
X with the coordinate hyperplane). Moreover this yields a construction (not canonical) of µ⌃.

Following almost the same process as in the case of E6,0, we continue until m = 22 to obtain
the following jet graph:
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(1,2,3)

(2,2,3)

(2,3,4)

(3,4,5)

(3,3,4)

(3,3,4)

(3,4,5)

(3,4,6)

(3,4,6)

(4,5,6)

(4,5,7)

(4,5,7)

(3,4,5)

(5,6,8)

(4,6,8)

(4,6,7) (4,5,7)

(3,5,6)

(2,3,5)

(2,4,4)

(1,2,4)

(1,2,4)
(2,3,3)

(2,3,4)

(1,2,2)

(1,3,3)

(1,2,2)

(1,2,2)

(1,1,1)

(1,1,2)

(0,1,1)

(0,1,1)

(0,1,2)

(0,1,3)

(0,1,3)

(0,2,1)

Figure 22. Jet schemes of E7,0

The vectors corresponding to the irreducible jet schemes give the following subdivision, which
is an embedded resolution of X:

(0,1,2)

(1,1,2)

(1,1,1)

(1,2,2)

(0,1,1)

(1,2,3)

(1,2,4)

(2,2,3)

(0,0,1)

(0,1,0)

(3,3,4)

(3,4,5)

(3,4,6)

(2,3,5)

(2,3,4)

(5,6,8)

(0,2,1)

(0,1,3)

(1,0,0)

Figure 23. An embedded resolution of E7,0
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10. Jet Schemes and Toric Embedded Resolution of E0,7

The singularity of X ⇢ C3 defined by the equation:

z
3 + y

5 + x
2
y
2 = 0

is called E0,7-type singularity. The singular locus is {y = z = 0}. The jet graph representing
the irreducible jet schemes is obtained as:

(0,1,1)

(1,1,1)(0,2,1)

(0,3,2) (2,1,2)
(1,2,2)

(2,2,3)

(3,2,3)

(3,2,4)

(3,3,4)

(4,3,5)

(5,3,5)

(5,4,6)

(6,4,7)

(7,5,8)

(9,6,10)

(0,2,2)

(0,3,2)

(0,4,3)

(0,5,3)

(0,5,4)

(0,6,4)

(0,7,5)

(1,4,3)
(2,3,3)

(1,5,4) (2,4,4)

(1,3,2)

Figure 24. Jet schemes of E0,7

Theorem 10.1. Let X be a surface of type E0,7. The monomial valuations associated with the
vectors {(0, 1, 1), (0, 2, 1), (1, 1, 1), (0, 3, 2), (1, 1, 2), (1, 2, 2), (2, 1, 2), (2, 2, 3), (3, 2, 3), (3, 2, 4),
(3, 3, 4), (4, 3, 5), (5, 3, 5)) (5, 4, 6), (6, 4, 7), (7, 5, 8), (9, 6, 10)} belong to EV (X). There exists a
toric birational map µ⌃ : Z⌃ �! C3 which is an embedded resolution of X ⇢ C3 such that the
irreducible components of the exceptional divisor of µ⌃ correspond to the irreducible components
of the m-th jet schemes of X (centered at the singular locus and the intersection of X with the
coordinate hyperplane). Moreover this yields a construction (not canonical) of µ⌃.
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(3,2,4)

(6,4,7)

(9,6,10)

(2,1,2)

(5,3,5)

(3,2,3)

(7,5,8)
(5,4,6)

(1,1,1)

(1,2,2)

(3,3,4)

(2,2,3)

(1,1,2)

(4,3,5)

(0,1,1)

(0,3,2)

(0,2,1)

(0,0,1)

(0,1,0)
(1,0,0)

Figure 25. An embedded resolution of E0,7

11. Jet Schemes and Toric Embedded Resolution of Fk�1

The singularity of X ⇢ C3 defined by the equation:

z
3 + (x+ y

2k)z2 + 2xy2kz + (x2 + y
3)y2k = 0

is called Fk�1-type singularity. The singular locus is {y = z = 0}.

Theorem 11.1. Let X be a surface singularity of type Fk�1. The monomial valuations associ-
ated with the vectors:

• (0, 1, 1), . . . , (0, 1, k)

• (1, 1, 1), . . . , (1, 1, k + 1)

• (2, 1, 2), . . . , (2, 1, k + 1)

• (3, 1, 3), . . . , (3, 1, k)

• . . .

• (a, 1, b)

• (2, 2, 2k + 1), (3, 2, 2k + 2), (4, 2, 2k + 1), (6, 2, 2k) . . . (c, 2, d)

• (4, 3, 3k + 2), (5, 3, 3k + 2), (7, 3, 3k + 1), (9, 3, 3k) . . . (2k + 3, 3, 2k + 3)

• (3k + 2, 3, 3k + 2) if k = 3m+ 1

with

• (a, 1, b) = ( 2k+3
3 , 1, 2k+3

3 ) and (c, 2, d) = ( 4k+6
3 , 2, 4k+6

3 ) if k = 3m for m 2 N;

• (a, 1, b) = ( 2k+1
3 , 1, 2k+4

3 ) and (c, 2, d) = ( 4k+2
3 , 2, 4k+8

3 ) if k = 3m+ 1 for m 2 N

• (a, 1, b) = ( 2k�1
3 , 1, 2k+5

3 ) and (c, 2, d) = ( 4k+4
3 , 2, 4k+7

3 ) if k = 3m+ 2 for m 2 N⇤
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belong to EV (X). Moreover there exists a birational map µ⌃ : Z⌃ �! C3 which is an embedded
resolution of X ⇢ C3 such that the irreducible components of the exceptional divisor of µ⌃ corre-
spond to the irreducible components of the m-th jet schemes of X (centered at the singular locus
and the intersection of X with the coordinate hyperplane). Moreover this yields a construction
(not canonical) of µ⌃.

The jet graph representing the irreducible components of the jet schemes projecting on the
singular locus is given by:

(0,1,1)

(0,1,1)

(0,1,2)

(0,1,2)

(0,1,3)

(1,1,1)

(2,1,2)

(1,1,2)

(a,1,b)

(0,1,k-2)

(0,1,k-2)

(0,1,k-1)

(0,1,k-1)

(0,1,k)

(0,1,k)

(0,1,k)

(0,2,k+1)

(1,1,k-2)

(7,1,k-2) (5,1,k-1) (3,1,k)

(2,2,k+1)

(3,2,k+1)

(c,2,d)

(0,2,2k)

(0,2,2k+1)

(0,2,2k+2)

(2,2,2k+1)

(3,2,2k+2)

(3,2,2k+1)

(4,2,2k+1)

(6,4,4k+3)

(9,3,3k) (7,3,3k+1)(3k+2,1,3k+2)

(4,3,3k+2)

Figure 26. Jet schemes of Fk�1
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(0,0,1)

(0,1,0)
(1,0,0)

(1,1,5)

(3,2,10)

(6,4,19)

(2,1,5)

(5,3,14)

(4,2,9)

(7,3,13)

(3,1,4)

(11,3,11)

(4,3,14)

(2,2,9)

(1,1,4)

(3,2,9)

(1,1,1)

(2,1,2)

(3,1,3)
(7,2,7)

(0,1,4)

(0,1,3)

(0,1,2)

(0,1,1)

(1,1,2)

(1,1,3)

(2,1,3)

(2,1,4)

Figure 27. An embedded resolution of F3

12. Jet Schemes and Toric Embedded Resolution of Hn

The singularity of X ⇢ C3 defined by the equation:

• z
3 + x

2
y(x+ y

k�1) = 0 where n = 3k � 1

• z
3 + xy

k
z + x

3
y = 0 where n = 3k

• z
3 + xy

k+1
z + x

3
y
2 = 0 where n = 3k + 1

is called Hn-type singularity.

Theorem 12.1. Let X be a surface of type Hn. The monomial valuations associated with the
vectors:

1. n = 3k � 1

• (2, 0, 1), (3, 0, 2)

• (0, 1, 1), (1, 1, 2), . . . (k � 1, 1, k)

• (0, 2, 1), (1, 2, 2), . . . (2k � 2, 2, 2k � 1)

• (0, 3, 1), (1, 3, 2), . . . (3k � 3, 3, 3k � 2)

• (1, 0, 1), (1, 1, 1), (2, 1, 2), . . . (k, 1, k)

2. n = 3k

• (2, 0, 1))

• (0, 1, 1), (1, 1, 2), . . . (k, 1, k + 1)

• (0, 2, 1), (1, 2, 2), . . . (2k � 1, 2, 2k)

• (0, 3, 1), (1, 3, 2), . . . (3k � 2, 3, 3k � 1)

• (1, 0, 1), (1, 1, 1), (2, 1, 2), . . . (k, 1, k)

3. n = 3k � 1

• (0, 1, 1), (1, 1, 2), . . . (k, 1, k + 1)

• (0, 2, 1), (1, 2, 2), . . . (2k, 2, 2k + 1)
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• (0, 3, 2), (1, 3, 3), . . . (3k � 1, 3, 3k + 1)

• (1, 0, 1), (1, 0, 2), (2, 0, 1)

• (1, 1, 1), (2, 1, 2), . . . (k, 1, k)

belong to EV (X). Moreover there exists a toric birational map µ⌃ : Z⌃ �! C3 which is an em-
bedded resolution of X ⇢ C3 such that the irreducible components of the exceptional divisor of µ⌃

correspond to the irreducible components of the m-th jet schemes of X (centered at the singular
locus and the intersection of X with the coordinate hyperplane). This yields a construction (not
canonical) of µ⌃.

The tree representing the irreducible components of the jets schemes projecting on the singular
locus {x = z = 0} and the axis {y = z = 0} included in X is the following:

n = 3kn = 3k � 1 n = 3k + 1

(0,1,1)

(0,2,1)

(0,3,1)

(0,3,1)

(1,0,1)

(1,1,1)

(1,1,2)

(1,2,2)

(1,3,2)

(1,3,2)

(2,0,1)

(2,0,2)

(1,0,1)

(3,0,2)

(3,0,2)

(2,1,2)

(2,1,3)

(2,2,3)

(2,2,3)

(2,2,3)

(3,1,3)

(3,1,4)

(3,3,4)

(4,0,3)

(5,0,3)

(4,1,4)

(4,1,5)

(4,2,5)

(4,3,5)

(k,1,k)

(k,1,k)

(k,2,k+1)

(k,3,k+1)

(k,3,k+1)

(k+1,1,k+1)

(k+2,1,k+1)

(3k-5,2,3k-5)
(3k-5,3,3k-4)

(3k-5,3,3k-4)

(3k-5,3,3k-4)

(3k-5,3,3k-3)

(3k-5,3,3k-3)

(3k-5,3,3k-3)

(3k-5,2,3k-2)

(0,1,1)

(0,2,1)

(0,3,1)

(0,3,1)

(1,0,1)

(1,0,1)

(1,1,1)

(1,1,2)
(1,2,2)

(1,3,2)

(1,3,2)

(2,0,1)

(2,0,1)(1,0,2)

(2,1,3)
(2,2,3)

(2,3,3)

(2,3,3) (3,1,4)

(3,1,3)

(3,2,4)

(3,3,4)

(3,3,4)

(4,1,4)

(4,1,5)

(4,2,5)

(k,1,k)

(k,1,k)

(k,1,k)

(k+1,1,k+1)

(k+1,1,k+2)

(k+1,1,k+3)

(k,1,k+1)

(k,2,k+1)

((k,3,k+1)

(k,3,k+1) (k+1,2,k+1)

(k+1,2,k+2)

(k+1,3,k+2)

(k+1,3,k+2)

(2k-1,2,2k)

(2k,2,2k)

(2k,2,2k+1)

(2k+1,2,2k+1)

(2k,2,2k)

(2k,3,2k+1)

(2k,3,2k+1)

(2k-1,3,2k)

(2k-1,3,2k)

(2k,2,2k+1)

(2k,2,2k+2)

(2k,2,2k+2)
(2k+1,2,2k+2)

(2k,2,2k+1)

(k,1,k)

(k,1,k+1)
(k+1,1,k+1)

(k+1,1,k+2)

(k+1,1,k+1)

(k+1,2,k+3)

(k,2,k+1)

(k,2,k+2)

(k,3,k+2)

(k,3,k+2)

(k,3,k+2)

(k+1,3,k+3)

(0,1,1)

(0,1,1)

(0,2,1)

(0,2,2)

(0,3,2)

(0,3,2)

(1,3,3)

(1,2,3)

(1,2,2)

(1,1,2)

(1,1,1)

(1,0,1)

(1,0,1)

(2,0,1)(1,0,2)

(2,0,2)

(3,0,2)

(4,0,2)

(4,0,2)

(2,0,3)

(1,3,3)

(2,2,3)

(2,1,3)

(2,2,4)
(2,3,4)

(2,3,4)

(3,1,3)

(3,1,4)

(4,1,4)

(3,3,5)

Figure 28. Jets schemes of Hn
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An embedded resolution for each case is represented on the figure below:

C2

C3C1

(2,0,1)

(1,0,1)

(1,0,2)

(3k-2,3,3k+1)

(2k-1,2,2k)

(k,1,k-1)

(3k-2,3,3k+1)

(3k-2,3,3k+1)

(2,0,1)
(2,0,1)

(2,0,1)

(3k-2,3,3k+1)

(1,0,2)

(1,0,1)

(1,0,0)

(1,0,0)

(0,0,1)

(0,1,1)

(0,2,1)

(0,3,1)

(0,1,0)

(0,1,0)

(0,3,1)

(0,3,1)

(0,0,1)

(k,1,k-1)

(2k-1,2,2k)

n=3k

n=3k-1

(3,0,2)

(1,0,1)

(0,0,1)

(k-1,1,k)

(2k-2,2,2k-1)

(3k-3,3,3k-2)
(k,1,k) (3k-3,3,3k-2)

(2k-2,2,2k-1)

(k-1,1,k)

(0,0,1)
(3k-3,3,3k-2)

(k,1,k)

(3k-3,3,3k-2)

(2k-2,2,2k-1)

(k-1,1,k)

(3,0,2)

(0,1,1)

(0,2,1)

(0,3,1)

(k,1,k)

(1,1,1)

(1,1,2)

(1,2,2)

(0,3,1)

(0,2,1)

(0,1,1)(1,1,2)

(1,3,2)

(0,3,1)

(0,1,0)

(3,0,2)

(1,0,0)

Figure 29. Embedded resolutions of Hn
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n = 3k + 1

(3k-1,3,3k+1)

(3k-1,3,3k+1)

(3k-1,3,3k+1)

(3k-1,3,3k+1)

(k,1,k+1)

(k,1,k)

(k,1,k)

(k,1,k+1)

(2k,2,2k+1)

(2k,2,2k+1)

(2,0,1)

(2,0,1)

(2,0,1)

(1,0,0)

(1,0,0)

(0,0,1)

(0,0,1)

(1,0,1)

(1,0,2)

(1,0,2)

(1,0,1)

(1,0,2)

(0,3,2)

(0,1,1)

(0,3,2)

(0,2,1)

(0,1,0)

(0,3,2)

Figure 30. Embedded resolutions of H3k+1
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TOPOLOGY OF COMPLEMENTS TO REAL AFFINE SPACE LINE ARRANGEMENTS

GOO ISHIKAWA AND MOTOKI OYAMA

ABSTRACT. It is shown that the diffeomorphism type of the complement to a real space line arrangement
in any dimensional affine ambient space is determined only by the number of lines and the data on multiple
points.

1. INTRODUCTION

Let A = {`1,`2, . . . ,`d} be a real space line arrangement, or a configuration, consisting of affine
d-lines in R3. The different lines `i,` j(i 6= j) may intersect, so that the union [d

i=1`i is an affine real
algebraic curve of degree d in R3 possibly with multiple points. In this paper we determine the topological
type of the complement M(A ) :=R3 \ ([d

i=1`i) of A , which is an open 3-manifold. We observe that the
topological type M(A ) is determined only by the number of lines and the data on multiple points of A .
Moreover we determine the diffeomorphism type of M(A ).

Set Dn := {x 2 Rn | kxk  1}, the n-dimensional closed disk. The pair (Di ⇥D j,Di ⇥ ∂ (D j)) with
i+ j = n, 0  i,0  j, is called an n-dimensional handle of index j (see [17][1] for instance).

Now take one D3 and, for any non-negative integer g, attach to it g-number of 3-dimensional handles
(D2

k ⇥D1
k ,D

2
k ⇥∂ (D1

k)) of index 1 (1  k  g), by an attaching embedding

j :
gG

k=1
(D2

k ⇥∂ (D1
k))! ∂ (D3) = S2

such that the obtained 3-manifold

Bg := D3S
j(
Fg

k=1(D
2
k ⇥D1

k))

is orientable. We call Bg the 3-ball with trivial g-handles of index 1 (Figure 1.)

...g
...g~~

FIGURE 1. 3-ball with trivial g-handles of index 1.

Note that the topological type of Bg does not depend on the attaching map j and is uniquely deter-
mined only by the number g. The boundary of Bg is the orientable closed surface Sg of genus g.
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Let A be any d-line arrangement in R3. Let ti = ti(A ) denote the number of multiple points with
multiplicity i, i = 2, . . . ,d. The vector (td , td�1, . . . , t2) provides a degree of degeneration of the line
arrangement A . Set g := d +Âd

i=2(i�1)ti. In this paper we show the following result:

Theorem 1.1. The complement M(A ) is homeomorphic to the interior of 3-ball with trivial g-handles
of index 1.

Corollary 1.2. M(A ) is homotopy equivalent to the bouquet
Wg

k=1 S1.

The above results are naturally generalised to any line arrangements in Rn(n � 3).
Let A = {`1,`2, . . . ,`d} be a line arrangement in Rn and set M(A ) := Rn \ ([d

i=1`i). Again let ti
denote the number of multiple points of A of multiplicity i, i = 2, . . . ,d. Set g := d+Âd

i=2(i�1)ti. Then
we have

Theorem 1.3. M(A ) is homeomorphic to the interior of n-ball Bg with trivially attached g-handles of
index n�2.

Thus we see that the topology of complements of real space line arrangements is completely de-
termined by the combinational data, the intersection poset in particular. Recall that the intersection
poset P = P(A ) is the partially ordered set which consists of all multiple points, the lines themselves
`1,`2, . . . ,`d and T =Rn as elements, endowed with the inclusion order. Then the number ti is recovered
as the number of minimal points x such that #{y 2 P | x < y,y 6= T}= i and d as the number of maximal
points of P\{T}.

Corollary 1.4. M(A ) is homotopy equivalent to the bouquet
Wg

k=1 Sn�2.

In particular M(A ) is a minimal space, i.e. it is homotopy equivalent to a CW complex such that the
number of i-cells is equal to its i-th Betti number for all i � 0.

Even for semi-algebraic open subsets in Rn, homotopical equivalence does not imply topological
equivalence in general. However we see this is the case for complements of real affine line arrangements,
as a result of Theorem 1.3 and Corollary 1.4.

By the uniqueness of smoothing of corners, and by careful arguments at all steps of the proof of
Theorem 1.3, we see that Theorem 1.3 can be proved in differentiable category.

Theorem 1.5. M(A ) is diffeomorphic to the interior of n-ball Bg with trivially attached g-handles of
index n�2.

Note that the relative classification problem of line arrangements (Rn,[d
i=1`i) is classical but far from

being solved ([6] for instance). Moreover there is a big difference in differentiable category and topo-
logical category. In fact even the local classification near multiple points of high multiplicity i, i � n+2
has moduli in differentiable category while it has no moduli in topological category. The classification
of complements turns to be easier and simpler as we observe in this paper.

The real line arrangements on the plane R2 is one of classical and interesting subjects to study. It is
known or easy to show that the number of connected components of the complement to a real plane line
arrangement is given exactly by 1+g using the number g = d +Âd

i=2(i�1)ti. This can be derived from
Corollary 1.4 by just setting n = 2. For example, it can be shown from known combinatorial results for
line arrangements on projective plane (see [4] for instance). In fact we prove it using our method in the
process of the proof of Theorem 1.3. Therefore Theorem 1.3 and Corollary 1.4 are regarded as a natural
generalisation of the classical fact.

Though our object in this paper is the class of real affine line arrangements, it is natural to consider
also real projective line arrangements consisting of projective lines in the projective space RPn, or corre-
sponding real linear plane arrangements consisting of 2-dimensional linear subspaces in Rn+1. However
the topology of complements in both cases are not determined, in general, by the intersection posets,
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which are defined similarly to the affine case. In fact there exists an example of pairwise transversal lin-
ear plane arrangements B and B0 in R4 with d = 4 such that the complements M(B) and M(B0) have
non-isomorphic cohomology algebras and therefore they are not homotopy equivalent, so, not homeo-
morphic to each other ([19], Theorem 2.1).

A linear plane arrangement in R4 is pairwise transverse if and only if the corresponding projective
line arrangement is non-singular (without multiple points) in RP3. Non-singular line arrangements in
RP3, which are called skew line configurations, are studied in details (see [6, 13, 15, 16] for instance).
Moreover, the topology of non-singular real algebraic curves in RP3 is studied, related to Hilbert’s 16th
problem, by many authors (see [8] for instance). Also refer to the surveys on the study of real algebraic
varieties ([5, 14]).

It is natural to consider also complex line arrangements in Cn = R2n. The topology of complex
subspace arrangements in Cn, in particular, homotopy types of them is studied in detail (see [10, 19] for
instance). Then it is known that the intersection poset turns to have more information in complex cases
than in real cases. Refer to [12, 20], for instance, on the theory on the homotopy types of complements
for general subspace arrangements.

In §2, we define the notion of trivial handle attachments clearly. In §3, we show Theorem 1.3 and
Theorem 1.5 in parallel, using an idea of stratified Morse theory ([3]) in a simple situation. We then
realize a difference of topological features between the complements to line arrangements and to knots,
links, tangles or general space graphs (Remark 3.8). In the last section, related to our results, we discuss
briefly the topology of real projective line arrangements and real linear plane arrangements.

The authors thank Professor Masahiko Yoshinaga for his valuable suggestion to turn authors’ attention
to real space line arrangements. They thank also an anonymous referee for his/her valuable comments.

2. TRIVIAL HANDLE ATTACHMENTS

First we introduce the local model of trivial handle attachments.

Let j < n. Let S j ⇢ Rn be the sphere defined by x2
1 + · · ·+ x2

j + x2
n = 1,x j+1 = 0, . . . ,xn�1 = 0, and

∂ (D j) = S j�1 = S j\{xn = 0}. Let e` 2Rn be the vector defined by (e`)i = d`i. Then define an embedding
eF : Dn� j ⇥S j ! Rn by

eF(t1, . . . , tn� j�1, tn� j,x) := x+ t1en�1 + · · ·+ tn� j�1e j+1 + tn� jx,

which gives a tubular neighbourhood of S j in Rn. Set

jst := eF|Dn� j⇥∂ (D j) : Dn� j ⇥S j�1 ! Rn�1 ⇢ Rn,

which gives a tubular neighbourhood of S j�1 in Rn�1 = {xn = 0}. We call jst the standard attaching map
of the handle of index j. Note that the embedding jst extends to the standard handle F : Dn� j⇥D j !Rn,
which is defined by

F(t1, . . . , tn� j�1, tn� j,x1, . . . ,x j) := eF
✓

t1, . . . , tn� j�1, tn� j,x1, . . . ,x j,0, . . . ,0,
q

1�Â j
i=1 x2

i

◆
,

attached to {xn  0} along jst.
Let M be a topological (resp. differentiable) n-manifold with a connected boundary ∂M.
Let p 2 ∂M. A coordinate neighbourhood (U,y), y : U ! y(U) ⇢ Rn�1 ⇥R around p in M is

called adapted if y : U ! Rn is a homeomorphism of U and y(U)\{xn  0} which maps U \∂M into
Rn�1 = {xn = 0}.

Now we consider an attaching of several handles of index j to M along ∂M. We call a handle attaching
map j :

F`
k=1(D

n� j
k ⇥ ∂ (D j

k)) ! ∂M trivial if there exist disjoint adapted coordinate neighbourhoods
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(U1,y1), . . . ,(U`,y`) on M such that j(Dn� j
k ⇥∂ (D j

k)) ⇢Uk and yk �j : Dn� j
k ⇥ ∂ (D j

k)! Rn�1 ⇥R is
the standard attachment for k = 1, . . . ,`. (Figure 2)

FIGURE 2. Trivial handle attachments: the cases n = 3, j = 1,`= 1 and n = 4, j = 2,`= 2.

Then M[j
⇣F`

k=1(D
n� j
k ⇥D j

k)
⌘

is called the manifold obtained from M by attaching standard handles
and the topological type of M does not depend on the attaching map j but depends only on j and `.
Moreover if M is a differentiable manifold, then the diffeomorphism type of the attached manifold is
uniquely determined by the smoothing or straightening of corners (see Proposition 2.6.2 of [17] for
instance). Note that the diffeomorphism type of the interior does not change by the smoothing.

Note that, if j is a trivial handle attaching map, then j|0⇥∂ (D j
k)

: 0⇥ ∂ (D j
k)! ∂M is unknotted and

j|F`
k=1(0⇥∂ (D j

k))
:
F`

k=1(0⇥ ∂ (D j
k)) ! ∂M is unlinked (see Figure 4). Therefore we can slide the trivial

attachment mapping
F`

k=1(D
n� j
k ⇥ ∂ (D j

k)) to an embedding into a disjoint union to an arbitrarily small
neighbourhoods of any disjoint ` number points on ∂M up to isotopy (cf. Homogeneity Lemma [9]).

Remark 2.1. The assumption that ∂M is connected is essential. For example, let

M = {x 2 Rn |�1  xn  1}.

Then we have at least two non-homeomorphic spaces by different attachments of two trivial handles of
index 1 (Figure 3).

FIGURE 3. Non-homeomorphic attachments of trivial handles n = 3, j = 1,`= 2.

We see that iterative trivial attachments gives a homeomorphic (resp. differentiable) manifold to the
manifold obtained by the simultaneous trivial attachments.

Lemma 2.2. Let M0 be a topological (resp. differentiable) n-manifold with connected boundary ∂M0.
Suppose M0 is homeomorphic (diffeomorphic) to a space M1 := M [j

⇣F`
k=1(D

n� j
k ⇥D j

k)
⌘

obtained,
from a topological (differentiable) manifold M with connected boundary, by attaching k number of trivial
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handles of index j. Then the space M2 := M0 [j 0

⇣F`+m
k=`+1(D

n� j
k ⇥D j

k)
⌘

obtained from M0 by attaching
m number of trivial handles of index j is homeomorphic (diffeomorphic) to the space

M3 := M[j 00

 
`+mG

k=1
(Dn� j

k ⇥D j
k)

!

obtained from M by attaching `+m number of trivial handles of index j.

See Figure 4 for the case j = 1.

FIGURE 4. Sliding of trivial handle attachments.

Proof of Lemma 2.2. Let f : M1 ! M0 be a homeomorphism (resp. a diffeomorphism). Then

f
� G̀

k=1
(Dn� j

k ⇥D j
k)
�

is not contained in ∂M0. Then we slide, up to isotopy, the attaching map j 0 :
F`+m

k=`+1(D
n� j
k ⇥∂D j

k)! ∂M0

to j 000 :
F`+m

k=`+1(D
n� j
k ⇥∂D j

k)! ∂M0 such that

f

 
j

 
G̀

k=1

⇣
Dn� j

k ⇥∂D j
k

⌘!!
\j 000

 
`+mG

k=`+1

⇣
Dn� j

k ⇥∂D j
k

⌘!
= /0.

Consider j 00 := j
F

f�1 �j 000 :
F`+m

k=1 (D
n� j
k ⇥∂D j

k)! ∂M. Then M2 is homeomorphic (resp. diffeomor-
phic) to M3. 2

3. AFFINE LINE ARRANGEMENTS

Let n � 2.
We consider line arrangements in Rn or more generally consider a subset X in Rn which is a union

of finite number of closed line segments and half lines. Then X may be regarded as a finite graph (with
compact and non-compact edges) embedded as a closed set in Rn (Figure 5). Here we admit vertices of
valency 1.

FIGURE 5. A line arrangement and a space graph
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Take a unit vector v 2 Sn�1 ⇢ Rn and define the height function h : Rn ! R by h(x) := x · v using
Euclidean inner product. Choose v so that

(i) v is neither perpendicular to any line segments nor half lines in X .
(ii) For each c, the hyperplane h(x) = c of level c contains at most one vertex of X .
Note that there exists a union S of finite number of great hyperspheres such that any unit vector in

Sn�1 \S satisfies the conditions (i) and (ii).
After a rotation of Rn, we may suppose h(x) = xn. We write x = (x0,xn), where x0 = (x1, . . . ,xn�1).

Set M = Rn \X and, for any c 2 R,

Mc := {x 2 M | xn  c}, M<c := {x 2 M | xn < c}.

Let V ⇢ X be the set of vertices of X . Set V = {u1,u2, . . . ,ur},ci = h(ui) and C = h(V ) = {c1,c2, . . . ,cr}
with c1 < c2 < · · ·< cr.

Though the following lemma is clear intuitively, we give a proof to make sure.

Lemma 3.1. The topological (resp. diffeomorphism) type of Mc is constant on ci < c < ci+1 and the
topological (diffeomorphism) type of M<c is constant on ci < c  ci+1, i = 0,1, . . . ,r, with
c0 =�•,cr+1 = •. Here M<• means M itself.

Proof : First we treat the case i < r. Take a sufficiently large R > 0 such that

{x 2 X | ci < xn < ci+1,kx0k> R/2}= /0.

Consider the cylinder
C := {x 2 Rn | ci < xn < ci+1,kx0k  R}.

Then C := {IntC \ X ,X \C,∂C} is a Whitney stratification of C. The function h : C ! (ci,ci+1) is
proper and the restriction of h to each stratum is a submersion. Now we follow the standard method (the
proof of Thom’s first isotopy lemma [11, 7]) to show differentiable triviality of mappings. Note that the
flow used in the proof of isotopy lemma is differentiable in each stratum. For any e > 0, take a vector
field h over (ci,ci+1) such that h = 0 on (ci,ci + e/2) and h = ∂/∂y on (ci + e,ci+1), where y is the
coordinate on R. Then h lifts to a controlled vector field x over C such that x tangents to each stratum.
We extend x |∂c to {x 2Rn | ci < xn < ci+1,kx0k � R} via the retraction x = (x0,xn) 7! ( 1

kx0kRx0,xn) and to
{x2Rn | xn < ci+e/2} by letting it 0, and we have an integrable vector field x on {x2Rn | xn < ci+1}. By
integrating x , we have a homeomorphism of Mc and Mc0 for any c,c0 2 (ci,ci+1) and a diffeomorphism
of M<c and M<c0 for any c,c0 2 (ci,ci+1]. Note that the differentiable flow of the vector field may not be
defined through xn = ci+1 but it gives a diffeomorphism of M<c and M<ci+1 .

Second we treat the case i = r. Consider the quadratic cone kx0k2 � Rx2
n = 0 in Rn. Supposing

cr+1 > 0 after a translation along xn-axis in necessary, and taking R sufficiently large, we have that
X \{x 2 Rn | cr+1 < xn} lies inside of the cone kx0k2 �Rx2

n < 0. Now set

D := {x 2 Rn | cr+1 < xn,kx0k2 �Rx2
n  0},

and consider the proper map h : D ! (cr+1,•) with the Whitney stratification

D := {IntD\X ,X \D,∂D}.

For any e > 0, take a (non-complete) vector field h over (cr+1,•) such that h = 0 on (cr+1,cr+1 + e/2)
and h = (1+ y2)∂/∂y on (cr+1,•). We lift h to a controlled vector filed x over D and then over Rn.
Then, using the integration of x , we have a diffeomorphism of Mc and Mc0 for any c,c0 2 (ci,ci+1), and
a diffeomorphism of M<c and M<c0 for any c,c0 2 (ci,ci+1]. In particular we have that M<c for cr+1 < c
is diffeomorphic to M itself. 2
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Remark 3.2. The topological (resp. diffeomorphism) type of Mc (resp. h�1(c) \X) is not necessarily
constant at c = ci+1.

We observe the topological change of M<c when c moves across a critical value ci as follows:

Lemma 3.3. Let u be a vertex of X and let c = h(u). Let s = s(u) denote the number of edges of X which
are adjacent to u from above with respect to h.

Then, for a sufficiently small e > 0, the open set M<c+e is diffeomorphic to the interior of

Mc�e
[

j
(

s�1G

i=1
(D2

i ⇥Dn�2
i )),

obtained by an attaching map

j :
s�1G

i=1
D2 ⇥∂ (Dn�2)�! h�1(c� e)\X = ∂ (Mc�e)⇢ Mc�e ,

of (s�1) number of trivial handles of index n�2, provided s � 1.
In particular M<c+e is diffeomorphic to M<c�e if s = 1.
If s = 0 then M<c+e is diffeomorphic to the interior of Mc�e

S
j(D1 ⇥Dn�1) obtained by an at-

taching map j : D1 ⇥ ∂ (Dn�1) ! h�1(c� e) \X of a (not necessarily trivial) handle of index n� 1.
(See Figure 6.)

s

r

FIGURE 6. Topological bifurcations.

Remark 3.4. In the case s = 0, the handle attachment is not necessarily trivial since the core of the
attachment does not necessarily bounds a disk. (See Figure 13.)

Remark 3.5. Note that if r = r(u) denotes the number of edges of X which are adjacent to p from below
with respect to h, then the intersection X \ h�1(c� e) consists of r-points in the hyperplane h�1(c� e)
and thus h�1(c� e)\X is a punctured hyperplane by r-points.

Remark 3.6. Note that locally in a neighbourhood of each vertex u of X , the topological equivalence
class of the germ of a generic height function h : (Rn,X ,u)! (R,c) is determined only by s and r, the
numbers of branches. This can be shown by using Thom’s isotopy lemma ([7]).

Proof of Lemma 3.3. For sufficiently small 0 < e < e 0, M<c�e \Mc�e 0 is a space

{x 2 Rn | c� e 0 < h(x)< c� e}
deleted r-half-lines. We may suppose the intersection X \ h�1(c� e) lies on a line, up to a diffeomor-
phism of Mc�e . We delete r-small tubular neighbourhoods of the half-lines from the half space, then
still we have a diffeomorphic space to M<c�e \Mc�e 0 . Then we connect the r-holes by boring a se-
quence of canals without changing the diffeomorphism type of complements. See Figures 7 and 8. The
boring a canal means, in general dimension, to delete D1 ⇥Dn�1 along the line segment connecting the
holes.
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~~ ~~ ~~

FIGURE 7. No topological changes of complements occur when s = 1.

~~

FIGURE 8. Boring a canal does not change the topology of ground.

First let s = 1. Then the resulting space is diffeomorphic to M<c+e \Mc�e 0 . The diffeomorphism is
taken to be the identity on Mc�e 0 and it extends to a diffeomorphism between M<c�e and M<c+e . This
shows Lemma 3.3 in the case s = 1.

Next we teat the case s = 2,r = 0. The topological change from Mc�e to Mc+e is give by digging
a tunnel, which is, equivalently, given by a handle attaching of index n� 2. In fact, we examine the
topological change of the complement to

t= {(0,xn�1,xn) 2 Rn | (�2  xn�1  2,xn = 0) or (xn�1 =�2,xn � 0) or (xn�1 = 2,xn � 0)},
in Rn when xn goes across xn = c = 0. Take the closed tube T of radius 1 of t. Then for the complement
M = Rn \T , M<e is diffeomorphic to the interior of the half space {xn  0} attached the handle

H = {x 2 Rn |�1  xn�1  1,
1
2
 x2

1 + · · ·+ x2
n�2 + x2

n  2, xn � 0}.

along

H \{xn  0}= {x 2 Rn |�1  xn�1  1,
1
2
 x2

1 + · · ·+ x2
n�2  2}.

The pair (H,H \ {xn  0}) is diffeomorphic to the pair (D2 ⇥ Dn�2,D2 ⇥ ∂Dn�2), where the core
(0⇥Dn�2,∂Dn�2) corresponds to

{x2
1 + · · ·+ x2

n�2 + x2
n = 1,xn�1 = 0,xn � 0} and {x2

1 + · · ·+ x2
n�2 = 1,xn�1 = 0,xn = 0}.

Note that the latter bounds an n�1-dimensional disk {x2
1 + · · ·+x2

n�2  1,xn�1 = 0,xn = 0}, which does
not touch the boundary ∂M<e . See Figures 9 and 10.

~~

FIGURE 9. Digging a tunnel is same as bridging for the topology of ground.
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The same argument works for any r. See Figure 10 for the case s = 2,r = 2. Note that complements
to “X” and “H” are diffeomorphic. See Figures 10, 11 and 12.

~~ ~~

FIGURE 10. The case s = 2,r = 2.

~~ ~~

FIGURE 11. Trivial handle attachment and topological bifurcation.

In general, for any s � 2, the topological change is obtained by attaching trivial s�1 handles of index
n�2. See Figure 12.

~~ ~~

s

r

s 1

FIGURE 12. The case s = 3,r = 2.

In the case s = 0, contrarily to above, the change of diffeomorphism type is obtained by an attaching
not necessarily trivial handle. See Figure 13.

FIGURE 13. Topological change in the case s = 0.

When n = 2, the topological bifurcation occurs just as putting s�1 number of disjoint open disks.
Thus we have Lemma 3.3. 2
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First let us apply Lemma 3.1 and Lemma 3.3 to the case n = 2.
For a c 2 R of sufficiently large |c|, supposing a generic height function is given by h = x2 as above.

Then Mc (resp. M<c) is diffeomorphic to the half plane {x2  c} (resp. {xn < c} deleted d number
of half lines. The number of connected components is equal to 1+ d. By passing a multiple point of
multiplicity i, then by Lemma 3.3, we see that the number of connected components of Mc (resp. M<c)
increases exactly by (i�1). Thus, after passing all multiple points, the number of connected components
of M<c, which is homeomorphic to M(A ), is given by 1+d +Âd

i=2(i�1)ti.

Proof of Theorem 1.5. For a c 2 R with c ⌧ 0, the space Mc (resp. M<c) is diffeomorphic to the half
space {xn  c} (resp. {xn < c} deleted d number of half lines. By passing a multiple point of multiplicity
i, for a sufficiently large c, the space Mc is obtained by attaching i�1 number of trivial handles of index
n� 2, by Lemma 3.3. After passing all multiple points, the space Mc is diffeomorphic to the space
obtained by attaching Âd

i=2(i� 1)ti number of trivial handles of index n� 2 to the half space deleted d
number of half lines. Then M<c is diffeomorphic to the interior of Bg with g = d +Âd

i=2(i� 1)ti. By
Lemma 3.1, for c 2 R with 0 ⌧ c, M<c is diffeomorphic to M(A ). Hence we have Theorem 1.5. 2

Proofs of Theorem 1.3 and Theorem 1.1. Theorem 1.3 follows from Theorem 1.5 and Theorem 1.1
follows from Theorem 1.3 by setting n = 3. 2

Remark 3.7. Let X be a subset of Rn which is a union of finite number of closed line segments and half
lines. Then similarly to the proof of Theorem 1.1 using Lemma 3.3, we see that, if there exists a height
function h : Rn !R satisfying (i)(ii) such that h|X : X !R has no local maximum, then the complement
Rn \X is diffeomorphic to the interior of n-ball with trivially attached g-handles of index n�2, for some
g. If X ⇢Rn is compact, then any height function has a maximum, so non-trivial attachments may occur.

Remark 3.8. The knot complements have more information than line arrangement complements. For
example, it is known that, for knots K,K0 ⇢ S3, if S3 \K and S3 \K0 are homeomorphic, then the pairs
(S3,K) and (S3,K0) are homeomorphic ([2]). Taking account of it, consider (R3,X) for a line arrangement
A = {`1, . . . ,`d} in R3 and X :=

Sd
i=1 `i ⇢ R3 and its one-point compactification (S3,X). Then the

complement S3 \X is homeomorphic to M(A ) and to Bg, which depends only on the number

g = d +
d

Â
i=1

(i�1)ti,

while g does not determine the topological type of the pair (S3,X) in general.

4. PROJECTIVE LINE AND LINEAR PLANE ARRANGEMENTS

Let fA = { è1, . . . , è2, . . . , èd} be a real projective line arrangement in the projective space RPn and
let B = {L1,L2, . . . ,Ld} be the real linear plane arrangement in Rn+2 corresponding to fA . Then the
complement M(B) of B is homeomorphic to the link complement Sn \M(B) times R>0, where Sn

is a sphere in Rn+1 centred at the origin. Moreover Sn \M(B) is a double cover of M( fA ) for the
corresponding projective line arrangement fA in RPn.

Take a projective hyperplane H ⇢RPn such that H intersects transversely to all lines èi,1  i  d, and
that H does not pass through any multiple point of fA . Then identify RPn \H with the affine space Rn

and the affine line arrangement A obtained by setting `i := èi \H ⇢ Rn. Take a ball

Dn = {x 2 Rn | kxk  r}⇢ Rn

for a sufficiently large radius r such that interior of Dn contains all multiple points of A and the boundary
∂ (Dn) = Sn�1 intersects transversally to all lines `i,1  i  d. Then the closure U of U := RPn \Dn
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is regarded as a tubular neighbourhood of H in RPn. The closure U is homeomorphic to the space
(Sn�1 ⇥ [�1,1])/⇠, where (x, t)⇠ (�x,�t). Let a1, . . . ,a2d be disjoint 2d points in Sn�1.

Let W n�1
k ⇢ Sn�1 be a sufficiently small open disk neighbourhood of ak,(1  k  2d). Set

N := Sn�1 \W n�1
k and eN := (N ⇥ [�1,1])/⇠ (⇢ (Sn�1 ⇥ [�1,1])/⇠).

Then eN is an n-dimensional manifold with boundary N, which is doubly covered by a “punctured shell”
N ⇥ [�1,1] (see Figure 14).

...

...

d

d

FIGURE 14. Punctured shell.

Thus we observe

Proposition 4.1. The intersection U \M( fA ) is homeomorphic to the interior of eN. The complement
M( fA ) ⇢ RPn is homeomorphic to the interior of Bg

S
j eN for an attaching embedding j : N ! ∂ (Bg).

The homeomorphism class of M( fA ) is determined by the isotopy class of the embedding j . The em-
bedding j is determined by the intersection of M(A ) and a hypersphere of sufficiently large radius in
Rn.

Proof : We see that the intersection of M(A ) and a hypersphere of sufficiently large radius in Rn is
homeomorphic to the sphere deleted 2d-points. Then we have Proposition 4.1 by Theorem 1.3. 2
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