| University of South Alabama Journal of <br> Double Star Observations |  |
| :---: | :---: |
| VOLUME 5 NUMBER 1 | NTER 2009 |
| $\beta$ Phe 2008.740 a 2008.724 <br>    <br>    <br> Image from "On the Accuracy Measurements from "Lucky" Image | ouble Star by Rainer |
|  |  |
| Inside this issue: |  |
| Divinus Lux Observatory Bulletin: Report \#16 <br> Dave Arnold |  |
| An Investigation on the Relative Proper Motion of some Optical Double Stars <br> Joerg S. Schlimmer |  |
| CCD Double-Star Measurements at Observatorio Astronómico Camino de Palomares (OACP)First Series <br> Edgardo Rubén Masa Martín |  |
| Measurement of Neglected Double Stars with a Mintron Video Camera Rafael Benavides Palencia |  |
| Double Star Measures Using a DSLR Camera \#2 <br> Ernõ Berkó |  |
| A Comparison of the Astrometric Precision and Accuracy of Double Star Observations with Two Telescopes <br> Pablo Alvarez Amos E. Fishbein, Michael W. Hyland, Cheyne L. Kight, Hairold Lopez, Tanya Navarro, Carlos A. Rosas, Aubrey E. Schachter, Molly A. Summers, Eric D. Weise, Megan A. Hoffman, Robert C. Mires, Jolyon M. Johnson, Russell M. Genet, and Robin White |  |
| On the Accuracy of Double Star Measurements from "Lucky" Images, a Case Study of Zeta Aqr and Beta Phe <br> Rainer Anton |  |

# Divinus Lux Observatory: Report \#16 

Dave Arnold<br>Program Manager for Double Star Research<br>2728 North Fox Fun Drive<br>Flagstaff, AZ 86004

E-Mail: dvdarn!@aol.com


#### Abstract

This report contains theta/rho measurements from 97 different double star systems. The time period spans from 2008.432 to 2008.721. Measurements were obtained using a $20-\mathrm{cm}$ SchmidtCassegrain telescope and an illuminated reticle micrometer. This report represents a portion of the work that is currently being conducted in double star astronomy at Divinus Lux Observatory in Flagstaff, Arizona.


Occasionally, when the researcher is making rho measurements of known visual binary stars, the desire may emerge to convert the arc second measurements into astronomical units, so that the apparent separation of the binary can be visualized. Fortunately, if the distance to the binary is known with a fair amount of certainty, some algebraic equations exist that can serve as conversion tools, thereby allowing one to obtain a good approximation. As an example of this process, the apparent separation in astronomical units, for STF 1321 AB (09144+5241), will be calculated using a 20.32 cm aperture telescope.

To begin with, the formula Aau $\approx 15 \mathrm{r} / \mathrm{D}$ (Couteau 1981) is applied, in which $r=$ the distance to the system in parsecs and $\mathrm{D}=$ the aperture of the telescope in centimeters. Performing the calculation using the value of 6.19 parsecs from the Hipparcos catalog, and 20.32 centimeters for the aperture, a value of 4.57 astronomical units is obtained. This value represents an approximation of the resolving power of the telescope at the distance of 6.19 parsecs.

Tanguay (1998) states that the true resolving power of a telescope is actually represented when the edges of the two Airy disks are in contact, which yields a resolving power value of .75 " for a 20 cm telescope. Hence, if one applies the formula $\mathrm{AU}=\rho / \mathrm{R} \times$ Aau to the current WDS catalog rho value of 17.1 " for STF 1321 AB , a value of 104.2 au will be obtained. In this formula, $\rho=$ the rho value (17.1"), $R$
$=$ the resolving power of the telescope (.75"), and Aau = 4.57.

If the researcher substitutes the semi major axis value of 16.73 " as presented in Sky Catalog 2000.0 in place of the listed 17.1 " rho value, the calculation yields a value of 101.9 au . By utilizing this semi major axis value, along with the listed period of 975 years, and inserting these into the well known formula $\mathrm{M}_{1}+$ $\mathrm{M} 2=\mathrm{a}^{3} / \mathrm{p}^{2}$ (Newton's form of Kepler's third law), the combined masses of STF 1321 AB can be calculated as 1.11 solar masses. For the sake of comparison, www. solstation.com lists a mass range for this pair at 1.03 to 1.33 solar masses.

In essence, by making some basic calculations like those presented above, the researcher is able to add depth to the data that is being worked with. Even though the researcher could probably locate this information in a publication without having to make the above calculations, this could be one way for making binary star research more fun and interesting. By working through such calculations as these for oneself, a greater appreciation can be gained for some of the methodology that is employed when this type of information does appear in published form.

As has been done in previous articles, the selected double star systems, which appear in this report, have been taken from the 2001.0 version of the Washington Double Star (WDS) Catalog, with published measure-

## Divinus Lux Observatory: Report \#16

ments that are no more recent than ten years ago. Several systems are included from the 2006.5 version of the WDS Catalog as well. While almost all of the theta/rho measurements, in this report, were right in line with catalog values, there were 2 double stars
that displayed noteworthy shifts, which appear in the following table.

First of all, disparate proper motions, by both components of HJ 931, are responsible for decreases of $4 \%$ in the rho value and almost 2 degrees for the theta
(Continued on page 9)

| NAME | RA DEC | MAGS | PA | SEP | DATE | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| STF2336 | $18328+1349$ | 9.110 .2 | 8.1 | 6.91 | 2008.432 | 1 |
| STF 37 AB-CD | $18443+3940$ | 5.05 .2 | 173.5 | 209.35 | 2008.432 | 2 |
| STF 37 AI | $18443+3940$ | $5.0 \quad 10.4$ | 137.9 | 150.10 | 2008.432 | 2 |
| STF 39 AB | $18501+3322$ | $3.6 \quad 6.7$ | 149.9 | 45.43 | 2008.432 | 3 |
| BU 293 AE | $18501+3322$ | 3.610 .1 | 317.4 | 67.15 | 2008.432 | 3 |
| BU 293 AF | $18501+3322$ | 3.610 .6 | 18.3 | 85.91 | 2008.432 | 3 |
| BU 52 AB | $19038+2602$ | 7.810 .2 | 297.8 | 51.35 | 2008.432 | 4 |
| STF2522 | $19258+2846$ | 7.78 .8 | 339.0 | 4.44 | 2008.432 | 5 |
| AG 231 | $19296+1800$ | 9.910 .0 | 242.0 | 4.44 | 2008.489 | 6 |
| STF2619 AB | $20011+4816$ | $8.8 \quad 8.8$ | 239.0 | 3.95 | 2008.432 | 7 |
| STF 50 Aa-C | $20136+4644$ | 3.87 .0 | 174.1 | 106.65 | 2008.432 | 8 |
| STF 50 Aa-D | $20136+4644$ | 3.84 .8 | 324.6 | 333.78 | 2008.432 | 8 |
| AG 255 | $20263+3728$ | $10.0 \quad 10.5$ | 286.0 | 4.94 | 2008.489 | 9 |
| STF2697 | 20344-0029 | 7.69 .8 | 356.8 | 29.63 | 2008.489 | 10 |
| STF2705 AB | $20377+3322$ | 7.48 .0 | 262.0 | 2.96 | 2008.432 | 11 |
| HJ 1601 | $20596+3703$ | $10.0 \quad 10.4$ | 143.2 | 6.42 | 2008.489 | 12 |
| STF2753 | $21050+3526$ | 7.410 .7 | 335.6 | 29.63 | 2008.454 | 13 |
| HJ 275 | $21072+1524$ | 8.210 .5 | 337.4 | 22.22 | 2008.454 | 14 |
| H 47 | 21124-1500 | 8.2 8.2 | 309.5 | 3.95 | 2008. 587 | 15 |
| HJ 931 | $21174+3203$ | 9.410 .6 | 358.3 | 9.88 | 2008. 587 | 16 |
| STF 433 AC | $21179+3454$ | 4.410 .0 | 183.8 | 21.73 | 2008.454 | 17 |
| FOX 259 | $21195+4253$ | 9.910 .5 | 305.9 | 12.34 | 2008.587 | 18 |
| S 786 | $21197+5303$ | 6.89 .1 | 299.5 | 47.89 | 2008.454 | 19 |
| STF2789 AB | $21200+5259$ | 7.67 .9 | 113.9 | 6.42 | 2008.587 | 20 |

Table continued on next page.

## Divinus Lux Observatory: Report \#16

| NAME | RA DEC | MAGS |  | PA | SEP | DATE | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| STF2793 AB-C | $21251+0923$ | 7.4 | 9.0 | 241.7 | 26.66 | 2005.454 | 21 |
| WAL 139 AC | $21290+3224$ | 9.5 | 10.3 | 250.9 | 41.48 | 2008.454 | 22 |
| A $770 \mathrm{AB}-\mathrm{E}$ | $21308+4827$ | 8.7 | 10.6 | 14.4 | 98.26 | 2008.454 | 23 |
| KU 132 Aa-B | $21334+3058$ | 10.1 | 10.6 | 256.7 | 53.82 | 2008.454 | 24 |
| HO 164 AB | $21410+3504$ | 9.4 | 9.7 | 70.0 | 4.44 | 2008.587 | 25 |
| SCA 92 AC | 21464-0505 | 10.7 | 10.7 | 252.8 | 82.46 | 2008.454 | 26 |
| STT 455 | $21567+1607$ | 8.5 | 10.2 | 270.9 | 9.88 | 2008.454 | 27 |
| STF2872 A-BC | $22086+5917$ | 7.2 | 8.0 | 315.5 | 21.73 | 2008.508 | 28 |
| STF2867 AB | $22100+0757$ | 8.2 | 9.3 | 208.6 | 10.37 | 2008.508 | 29 |
| HJ 1741 AB | $22112+5049$ | 5.4 | 10.4 | 285.6 | 36.04 | 2008.587 | 30 |
| HJ 1741 AD | $22112+5049$ | 5.4 | 9.9 | 270.9 | 73.57 | 2008.587 | 30 |
| SCA 125 | 22206-0031 | 9.4 | 10.7 | 70.9 | 103.43 | 2008.495 | 31 |
| SCA 126 | 22218-0150 | 9.7 | 10.6 | 331.3 | 83.44 | 2008.495 | 32 |
| HJ 965 | $22290+3432$ | 8.9 | 10.1 | 146.2 | 34.07 | 2008.587 | 33 |
| FRK 11 | $22301+4921$ | 6.4 | 10.6 | 90.1 | 66.66 | 2008.495 | 34 |
| STF2917 AB | $22306+5332$ | 8.2 | 8.5 | 70.0 | 4.44 | 2008.508 | 35 |
| ES 1468 | $22342+4341$ | 9.2 | 10.5 | 327.6 | 5.93 | 2008.495 | 36 |
| AG 284 | $22387+3718$ | 9.8 | 9.9 | 230.1 | 26.17 | 2008.495 | 37 |
| CHE 366 | $22416+2947$ | 10.0 | 10.2 | 6.9 | 21.73 | 2008.495 | 38 |
| HJ 1806 | $22451+4449$ | 9.2 | 10.3 | 334.7 | 6.91 | 2008.495 | 39 |
| HDS3229 | $22451+3841$ | 8.6 | 10.6 | 330.3 | 20.24 | 2008.495 | 40 |
| HJ 969 | $22459+3358$ | 9.7 | 10.6 | 25.6 | 5.93 | 2008.508 | 41 |
| STT 480 | $22461+5804$ | 7.6 | 8.6 | 116.5 | 30.61 | 2008.508 | 42 |
| BU 1518 | 22496-1059 | 10.3 | 10.4 | 204.0 | 6.42 | 2008.587 | 43 |
| STT 597 AB | $22514+1358$ | 8.3 | 10.6 | 327.7 | 201.45 | 2008.508 | 44 |
| STF2949 | $22519+3002$ | 9.6 | 10.6 | 182.9 | 11.36 | 2008.508 | 45 |
| HJ 972 | $22530+3140$ | 9.6 | 10.7 | 207.0 | 28.14 | 2008.508 | 46 |
| STF2696 | $23010+2646$ | 8.4 | 9.7 | 36.0 | 3.95 | 2008.585 | 47 |
| HDS3286 | $23035+4123$ | 9.2 | 10.4 | 353.0 | 17.78 | 2008.585 | 48 |

## Divinus Lux Observatory: Report \#16

| NAME | RA DEC | MAGS |  | PA | SEP | DATE | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| STT 242 | $23065+4655$ | 7.8 | 8.6 | 31.0 | 79.99 | 2008.585 | 49 |
| HJ 979 | $23083+2207$ | 8.8 | 10.7 | 217.3 | 18.27 | 2008.585 | 50 |
| BU 717 AC | $23177+4901$ | 4.8 | 10.7 | 131.4 | 217.25 | 2008.585 | 51 |
| STT 498 AB | $23313+5225$ | 7.6 | 10.2 | 244.1 | 17.28 | 2008.587 | 52 |
| STF3024 | $23320+4349$ | 8.6 | 9.3 | 309.0 | 4.94 | 2008.587 | 53 |
| BGH 72 | 23323-1337 | 8.6 | 9.1 | 154.5 | 120.97 | 2008.585 | 54 |
| HJ 1892 | $23341+5947$ | 9.6 | 10.4 | 94.7 | 6.91 | 2008.585 | 55 |
| HJ 1893 | $23350+4731$ | 9.6 | 9.9 | 249.2 | 4.94 | 2008.585 | 56 |
| ES 859 AB | $23375+4832$ | 8.3 | 10.6 | 217.5 | 88.88 | 2008.585 | 57 |
| AG 429 | $23527+2920$ | 9.4 | 10.3 | 270.5 | 6.42 | 2008.587 | 58 |
| AG 296 | $23557+3830$ | 10.1 | 10.2 | 55.2 | 5.93 | 2008.585 | 59 |
| HJ 5435 AB | 23574-1606 | 9.4 | 10.7 | 8.2 | 14.81 | 2008.585 | 60 |
| STF3049 AC | $23590+5545$ | 5.0 | 10.3 | 66.1 | 106.16 | 2008.585 | 61 |
| HJ 1929 AB-C | 00039+2759 | 8.7 | 9.5 | 287.4 | 5.43 | 2008.607 | 62 |
| STF3056 AB-C | $00047+3416$ | 7.1 | 9.5 | 3.3 | 25.68 | 2008.607 | 63 |
| STF3056 AB-D | 00047+3416 | 7.1 | 10.5 | 238.2 | 95.29 | 2008.607 | 63 |
| STF 4 | 00099+0827 | 9.4 | 9.5 | 275.5 | 5.43 | 2008.607 | 64 |
| STF 3 | $00100+4623$ | 7.8 | 9.0 | 83.0 | 4.94 | 2008.607 | 65 |
| STF $22 \mathrm{AB}-\mathrm{C}$ | $00174+0853$ | 7.1 | 7.6 | 234.4 | 3.95 | 2008.607 | 66 |
| STF 78 | $00591+0523$ | 10.2 | 10.4 | 243.1 | 4.94 | 2008.607 | 67 |
| STT $11 \mathrm{AB}-\mathrm{C}$ | $01072+3839$ | 7.6 | 8.7 | 164.1 | 59.74 | 2008.609 | 68 |
| STF 101 | 01139-0737 | 7.5 | 10.2 | 346.5 | 20.74 | 2008.607 | 69 |
| ES 119 AC | 01180+5355 | 8.2 | 10.7 | 276.8 | 44.44 | 2008.607 | 70 |
| STI1560 | $01192+5821$ | 9.9 | 10.2 | 324.8 | 13.83 | 2008.609 | 71 |
| BU $1102 \mathrm{~A}-\mathrm{BC}$ | $01274+6017$ | 7.9 | 10.6 | 264.9 | 63.20 | 2008.609 | 72 |
| EGB 1 | $01397+4602$ | 9.5 | 10.4 | 144.6 | 5.93 | 2008.609 | 73 |
| STF 155 AB | $01443+0929$ | 7.8 | 8.0 | 326.0 | 4.94 | 2008.609 | 74 |
| KPR 1 AC | $01443+0929$ | 7.8 | 8.4 | 283.9 | 191.58 | 2008.609 | 74 |
| STF 180 AB | $01535+1918$ | 4.5 | 4.6 | 0.4 | 7.41 | 2008.609 | 75 |

## Divinus Lux Observatory: Report \#16

| NAME | RA DEC | MAGS | PA | SEP | DATE | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| STF 180 AC | 01535+1918 | 4.58 .5 | 81.6 | 216.26 | 2008.609 | 75 |
| HDS 259 | 01545+5954 | 8.310 .1 | 211.8 | 16.79 | 2008.609 | 76 |
| ES 2144 | 01567+3505 | 10.110 .6 | 143.2 | 6.42 | 2008.609 | 77 |
| STI1786 | 02088+5823 | $9.9 \quad 10.7$ | 321.4 | 15.80 | 2008.626 | 78 |
| STF 225 AC | $02132+5412$ | 8.110 .4 | 160.5 | 152.57 | 2008.626 | 79 |
| ES 764 AB | 02249+5153 | 9.610 .6 | 62.6 | 35.55 | 2008.626 | 80 |
| STF 293 AD | 02443+5704 | 9.3 8.7* | 343.6 | 187.63 | 2008.626 | 81 |
| HJ 655 | $02476+1014$ | 9.110 .2 | 308.5 | 23.70 | 2008.626 | 82 |
| STF 304 | $02488+4911$ | 7.510 .7 | 289.2 | 26.17 | 2008.626 | 83 |
| AG $55 \mathrm{AB}-\mathrm{C}$ | $02502+0641$ | 9.910 .3 | 178.1 | 45.92 | 2008.626 | 84 |
| A 2341 AD | $02544+0946$ | 9.610 .6 | 308.3 | 126.40 | 2008.626 | 85 |
| HJ 2162 AB | $02548+4332$ | 10.510 .7 | 39.5 | 12.84 | 2008.626 | 86 |
| ES 464 | $03213+4743$ | 10.110 .6 | 67.4 | 6.91 | 2008.626 | 87 |
| ARG 55 AB | $03247+4417$ | 9.410 .7 | 199.2 | 26.17 | 2008.721 | 88 |
| SMA 38 | $03348+4408$ | 10.210 .7 | 68.3 | 21.67 | 2008.721 | 89 |
| STF $400 \mathrm{AB}-\mathrm{C}$ | $03350+6002$ | $6.8 \quad 10.7$ | 235.8 | 92.33 | 2008.721 | 90 |
| A 1707 AC | $03419+4331$ | 7.610 .4 | 144.9 | 64.68 | 2008.721 | 91 |
| AG 72 | 03428+3016 | $10.4 \quad 10.7$ | 281.5 | 6.42 | 2008.721 | 92 |
| $\mathrm{HL} \quad 7 \mathrm{AE}$ | $03449+2407$ | 3.710 .6 | 345.5 | 186.14 | 2008.721 | 93 |
| ES 770 AB | 03494+5214 | 10.210 .4 | 232.5 | 69.62 | 2008.721 | 94 |
| HDS 486 | $03530+4557$ | 8.510 .2 | 311.1 | 16.75 | 2008.721 | 95 |
| S 440 AB | $03566+5042$ | 5.310 .5 | 30.7 | 75.54 | 2008.721 | 96 |
| STT 68 AB | 03597+4809 | 7.89 .2 | 176.1 | 39.00 | 2008.721 | 97 |

* Companion star is the brighter component.


## Table Notes

1. In Hercules. Separation slightly increasing. Spect. F0.
2. Epsilon Lyrae. AB-CD = sep. inc.; common proper mot. Spect. FIV, A4V.
3. Beta Lyrae. $A B, A E, A F=$ relatively fixed. Spect. $A B=B 7 V, B 3$.
4. In Lyra. Sep. increasing; p.a. decreasing. Spect. A0.
5. In Cygnus. Relatively fixed. Spect. A0, A0.
6. In Sagitta. Sep. \& p.a. increasing. Spect. F8.
7. In Cygnus. Common proper motion; p.a. decreasing. Spect. G5, G5.

## Divinus Lux Observatory: Report \#16

8. 31 Cygni. Aa-C = relatively fixed. Aa-D = p.a. inc. Spect. K0, B9, A2.
9. In Cygnus. Separation slightly decreasing.
10. In Aquila. Sep. \& p.a. decreasing. Spect. K2.
11. In Cygnus. Relatively fixed. Common proper motion. Spect. K0.
12. In Cygnus. Separation decreasing. Spect. A2.
13. In Cygnus. Sep. \& p.a. decreasing. Spect. FO.
14. In Delphinus. Sep. \& p.a. decreasing. Spect. F2II.
15. In Capricornus. Sep. increasing; p.a. decreasing. Spect. G3IV, G3V.
16. In Cygnus. Sep. \& p.a. decreasing. Spect. GO, G0.
17. Nu or 66 Cygni. Sep. \& p.a. increasing. Spect. B2V
18. In Cygnus. Relatively fixed.
19. In Cygnus. Sep. \& p.a. slightly decreasing. Spect. K2, A0.
20. In Cygnus. Common proper motion; separation increasing. Spect. F8V, G5.
21. In Equuleus. Relatively fixed. Common proper motion. Spect. A5IV, F0.
22. In Cygnus. Separation slightly increasing. Spect. A2.
23. In Cygnus. Sep. increasing; p.a. decreasing. Spect. K0.
24. In Cygnus. Relatively fixed. Common proper motion. Spect. F8, G0.
25. In Cygnus. Sep. \& p.a. increasing. Spect. K0.
26. In Aquarius. Separation increasing.
27. In Pegasus. Relatively fixed. Common proper motion. Spect. F8, F8.
28. In Cepheus. Relatively fixed. Common proper motion. Spect. B9.5V, A0.
29. In Pegasus. Relatively fixed. Common proper motion. Spect. G5III, G0.
30. In Lacerta. $A B \& A D=$ sep. increasing; p.a. decreasing. Spect. $A D=A 5 V, K 0$.
31. In Aquarius. Position angle decreasing. Spect. K2.
32. In Aquarius. Relatively fixed. Common proper motion.
33. In Pegasus. Sep. \& p.a. increasing. Spect. G5.
34. In Lacerta. Sep. increasing; p.a. decreasing. Spect. K2III.
35. In Lacerta. Relatively fixed. Common proper motion. Spect. FOIV, FOIV.
36. In Lacerta. Separation increasing. Spect. A3.
37. In Lacerta. Relatively fixed. Spect. A0, A0.
38. In Pegasus. Position angle decreasing. Spect. G5, F8.
39. In Lacerta. Common proper motion; p.a. decreasing. Spect. F8.
40. In Lacerta. Common proper motion; p.a. decreasing. Spect. A2V, A2V.
41. In Pegasus. Relatively fixed. Common proper motion.
42. In Cepheus. Relatively fixed. Common proper motion. Spect. F8, G0.
43. In Aquarius. Relatively fixed. Spect. F8.
44. In Pegasus. Sep. increasing; p.a. decreasing. Spect. K0.
45. In Pegasus. Relatively fixed. Common proper motion. Spect. F8.
46. In Pegasus. Sep. \& p.a. increasing. Spect. F8.
47. In Pegasus. Relatively fixed. Common proper motion. Spect. A5, A5.
48. In Andromeda. Relatively fixed. Common proper motion. Spect. A2, A2.
49. In Andromeda. Relatively fixed. Spect. B3, B9.
50. In Pegasus. Relatively fixed. Common proper motion. Spect. K0, G.
51. 8 Andromedae. Separation slightly decreasing. Spect. M2III.
52. In Cassiopeia. Relatively fixed. Spect. F6V.

## Divinus Lux Observatory: Report \#16

53. In Andromeda. Common proper motion; p.a. decreasing. Spect. A0, A0.
54. In Aquarius. Relatively fixed. Common proper motion. Spect. G5, G0.
55. In Cassiopeia. Separation slightly increasing. Spect. A4I.
56. In Andromeda. Common proper motion; sep. \& p.a. increasing. Spect. F0.
57. In Andromeda. Separation slightly decreasing. Spect. K0.
58. In Pegasus. Separation slightly increasing. Spect. F0.
59. In Andromeda. Common proper motion; separation slightly increasing.
60. In Cetus. Relatively fixed. Common proper motion. Spect. GOV.
61. Sigma or 8 Cassiopeiae. Separation decreasing. Spect. BIV.
62. In Pegasus. Sep. increasing; p.a. decreasing. Spect. F8.
63. In Andromeda. $\mathrm{AB}-\mathrm{C}=$ sep. \& p.a. inc. $\mathrm{AB}-\mathrm{D}=$ sep. dec. Spect. K0.
64. In Pisces. Common proper motion. Sep. dec.; p.a. inc. Spect. G5, G5.
65. In Andromeda. Sep. increasing; p.a. decreasing. Spect. A4V, A3+.
66. In Pisces. Sep. \& p.a. slightly decreasing. Spect. F5, F5.
67. In Pisces. Common proper motion; p.a. decreasing. Spect. F8, F8.
68. In Andromeda. Sep. decreasing; p.a. increasing. Spect. F8, A5.
69. In Cetus. Common proper motion; p.a. increasing. Spect. G5.
70. In Cassiopeia. Separation increasing. Spect. A2.
71. In NGC 457 star cluster in Cassiopeia. Increasing p.a. Spect. B2.
72. In Cassiopeia. Separation increasing. Spect. B3I.
73. In Andromeda. Relatively fixed.
74. In Pisces. $A B=$ p.a. dec.; c.p.m. $A C=$ sep. inc. Spect. F2, F5, F0.
75. 5 or $\gamma$ Arietis. $A B=$ p.a. inc.; sep. dec; c.p.m. $A C=$ sep. dec. Spect. $A, B 9 V, K$.
76. In Cassiopeia. Separation increasing. Spect. B9IV, B9IV.
77. In Triangulum. Relatively fixed. Common proper motion.
78. In Perseus. Sep. \& p.a. increasing. Spect. B6V.
79. In Perseus. Separation increasing. Spect. AO, GO.
80. In Perseus. Separation slightly decreasing. Spect. B8.
81. In Perseus. Sep. decreasing; p.a. increasing. Spect. K0, A2.
82. In Cetus. Relatively fixed. Common proper motion. Spect. F5.
83. In Perseus. Separation increasing. Spect. AOV.
84. In Cetus. Sep. decreasing; p.a. increasing. Spect. G0.
85. In Cetus. Separation slightly increasing. Spect. G5.
86. In Perseus. Position angle increasing.
87. In Perseus. Relatively fixed. Common proper motion.
88. In Perseus. Relatively fixed. Common proper motion. Spect. F5.
89. In Perseus. Relatively fixed. Common proper motion.
90. In Camelopardus. Relatively fixed. Spect. F3V.
91. In Perseus. Separation decreasing. Spect. G5.
92. In Taurus. Common proper motion; p.a. decreasing. Spect. F8.
93. $\quad 17$ Tauri. Separation increasing. Spect. B5.
94. In Perseus. Position angle increasing.
95. In Perseus. Sep. increasing; p.a. decreasing. Spect. B9, B9.
96. 43 Persei. Relatively fixed. Common proper motion. Spect. F5IV.
97. In Perseus. Relatively fixed. Common proper motion. Spect. B9.

## Divinus Lux Observatory: Report \#16

(Continued from page 3)
value during the past 10 years. Secondly, a decrease in the theta value is also being noted for HJ 1741 AB . Since 1998, a 2.4 degrees shift has occurred because of proper motion by the "A" component.

## References

Couteau, Paul, Observing Visual Double Stars, (Cambridge: The MIT Press, 1981) p. 179.
Sky Catalogue 2000.0, Volume 2, Hirshfeld \& Sinnott eds. (Cambridge: Sky Publishing Corporation, 1999) p. 178.

Tanguay, Ronald C., The Double Star Observer's
Handbook, (Saugus, MA: The Double Star Observer, 1998) p. 62.


# An Investigation on the Relative Proper Motion of Some Optical Double Stars 

Joerg S. Schlimmer<br>Seeheim-Jugenheim, Hessen, Germany<br>Email: js@epsilon-lyrae.de


#### Abstract

I report on the measurements of some well known and neglected optical double stars. From measurements listed in the WDS catalog the relative proper motion were calculated and compared with Hipparcos or WDS data. Two historical measurements of STF1424AC (Algieba/AD Leo) which not listed in the WDS catalog are introduced. The quality of these measurements will be point out.


For my observations, I use a small 8 inch Newtonian telescope with a standard webcam described in my reports of 2007 and 2008 (Schlimmer 2007a, Schlimmer 2008b). In 2008 my attention applies more and more to the double stars from the neglected list. Some of these double stars are not physically attached by gravitation. In some cases there is a proper motion of one or both of the components. Because this relative motion is linear, it is easy to calculate a linear fit, residuals and ephemeris.

To calculate the relative proper motion, normally the complete data set of the measurements from the WDS (Mason et al., 2008) and the current measurement of the author are used. The different measurements will not be weighted. Mavericks will be eliminated before calculation. For plotting the relative proper motion the measurements will be transformed from polar to Cartesian coordinates by following formula:

$$
\begin{aligned}
& x=d \sin (P A) \\
& y=d \cos (P A)
\end{aligned}
$$

in which $d$ is the distance or separation in arc seconds and PA is the position angle. A linear fit will be calculated with the Gaussian method of least squares. The x value of the proper motion, which represents the motion in right ascension, will be taken directly from Cartesian coordinates. To calculate the y value of the proper motion, which represents the motion in decli-
nation, the $y$ value from linear fit ( $\mathrm{y}=\mathrm{mx}+\mathrm{b}$ ) will be used. The calculation of the residuals (for example observed separation - calculated separation) is at least a good method to check the quality of one's own and also other astronomer's observations.

## 1. WDS 05284-0330, (BUP 80, HIP 25623)

WDS 05284-0330, (BUP 80, HIP 25623) is a double star from the neglected list. Since its discovery in 1907 just 4 measurements were made. With a proper motion of - 306.66 mas in right ascension and 797.19 mas in declination BUP 80 is a high proper motion star. Its parallax is 77.03 mas and its distance is about 550 light years. Its brightness is 7.64 and 10.1 (WDS) or fainter. In my opinion the brightness is about magnitude 11.0. I observed BUP 80 in three different nights in February 2008. The values of distance and position angle in Table 1 are averaged. The signal to noise ratio of a single frame is too low to determine the companion. Therefore 50 up to 100 frames of the video record were stacked automatically. As result we get a frame with a very uniform noise that could be analyzed.

Because of the high quality of the measurements, a linear fit can be calculated with low residuals, which are given in Table 1. Figure 1 shows the linear fit and Table 2 gives the ephemeris for the pair.

## An Investigation on the Relative Proper Motion of Some Optical Double Stars

| Discoverer <br> Code | Date | PA <br> Observed | PA <br> Calculated | Pistance <br> Residuals | Distance <br> Observed | Distance <br> Calculated |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: |
| Ru_1913 | 1907.178 | 202.1 | 202.2 | -0.08 | 134.29 | 133.95 | 0.44 |
| Bu_1913 | 1911.13 | 202.2 | 202.2 | -0.02 | 131.18 | 131.06 | 0.12 |
| Hsw2004 | 1984.897 | 205 | 204.2 | 0.81 | 67.2 | 69.31 | -2.11 |
| Schlimmer | 2008.102 | 205.28 | 204.2 | -0.90 | 48.546 | 47.00 | 1.55 |

Table 1: Measurements, linear fit and residuals (observed-calculated)

## Results

Polar coordinates for closest approach:
s = 5.04"
$\mathrm{pa}=290.0^{\circ}$
Time of closest approach:
$\mathrm{T}_{0}=2061.96$
Proper motion:

| Date | Distance | PA |
| :---: | :---: | :---: |
| 2020 | 38.28 | 206.7 |
| 2040 | 21.14 | 212.2 |
| 2060 | 5.55 | 253.3 |
| 2080 | 14.72 | 357.6 |
| 2100 | 31.70 | 11.9 |

Table 2: Ephemeris for BUP 80
$\mu \mathrm{x}=-297.0 \mathrm{mas} / \mathrm{yr} \quad$ [HIP -306.7 mas, WDS $-309 \mathrm{mas}]$ $\mu y=-815.1$ mas $/ \mathrm{yr}$ [HIP -797.2 mas, WDS -806 mas $\mu=-867.6 \mathrm{mas} / \mathrm{yr}$


Figure 1: Measurements and linear fit of BUP 80 (WDS 05284-0330)

## An Investigation on the Relative Proper Motion of Some Optical Double Stars

## WDS 10200+1950 (STF1424AC) Algieba / AD Leo

Algieba is a famous double star. Its physical B companion is well known and often observed. Algieba has two further optical components C and D . The companion C was first discovered by John Flamsteed in 1690 (Mayer, 1779) and also often observed by the astronomer Christian Mayer in 1777/1778 (Mayer 1778, Mayer 1779) and William Herschel in 1782 (Herschel 1785). C is also known as AD Leo. Mayer described C as a star of $6^{\text {th }}$ magnitude Herschel described only its relative position to the primary component A. Currently the magnitude is 9.64 . This is a big difference to Mayer's estimation and Mayer wouldn't able to observe a star of this magnitude with his 3inch telescope. Because of this fact, we may assume that AD Leo was much brighter in the $17^{\text {th }}$ and $18^{\text {th }}$ century as today. The measurements and the residuals of Mayer's and Herschel's observations are shown in Table 3.

Because of the high values of the residuals of Mayer's and Herschel's results, both measurements weren't used to calculate a linear fit. The linear fit in Figure 2 is extrapolated to Mayer's and Herschel's measurements. Below the results of the relative proper motion are shown. In WDS catalog the proper motion for primary and secondary component is given. Because both components have a proper motion in different directions, the relative proper motion is the sum of the differences.
$\mu \mathrm{x}=-794.5 \mathrm{mas} / \mathrm{yr}[\mathrm{WDS}+311-502 \mathrm{mas}$, result -813 mas]
$\mu \mathrm{y}=-121.5 \mathrm{mas} / \mathrm{yr}[\mathrm{WDS}-153 \quad-43 \mathrm{mas}$, result -110
mas]
$\mu=-803.8 \mathrm{mas} / \mathrm{yr}$

| Astronomer | Date | PA <br> Observed | PA <br> Calculated | PA <br> Residuals | Distance <br> Observed | Distance <br> Calculated | Distance <br> Residuals |
| :---: | :---: | :--- | :--- | :--- | :--- | :---: | :---: |
| Christian Mayer | 1778 | 316.7 | 314.43 | 2.27 | 97.8 | 93.9 | 3.9 |
| William Herschel | 1782 | 301 | 306.36 | -5.36 | 121 | 118.2 | -7.2 |

Table. 3: Historical measurements of STF1424AC (AD Leo)


Figure 2: Plot of the measurements of STF1424 AC. Two historical observations of Christian Mayer and William Herschel which are not listed in WDS are marked in red.

## An Investigation on the Relative Proper Motion of Some Optical Double Stars

## WDS 13149-1122 (SHJ 162Aa-B)

WDS 13149-1122 in the constellation Virgo was first observed in 1777 by Christian Mayer. He added this star to his double star catalog of 1779 at position 36 (Schlimmer, 2007b). The relative proper motion of this star is easy to observe and well known. The plot of the measurements point out that Mayer's observation results were very good. Figure 3 shows the measurements of this pair. Below are the results of the proper motion from the measurement from the WDS:
$\mu \mathrm{x}=-211 \mathrm{mas} / \mathrm{yr}$ [Hip -208 mas]
$\mu \mathrm{y}=-313 \mathrm{mas} / \mathrm{yr}$ [Hip -316 mas] $\mu=-378 \mathrm{mas} / \mathrm{yr}$ [HIP -378 mas]


Figure 3: Plot of the measurements of SHJ 162Aa-B

## An Investigation on the Relative Proper Motion of Some Optical Double Stars

## WDS 14463+0939 (STF1879)

WDS 14463+0939 (STF1879) was discovered in 1827. The orbit of AB is well determined. A further component, D, is an optical companion. Only four measurements are listed in the WDS catalog (Table 4). With these values and an additional $5^{\text {th }}$ measurement made by the author it is easy to calculate a linear fit with low residuals (Figure 4). The residuals are listed in Table 4. Table 5 gives the ephemeris for STF1879.

## Results:

Polar coordinates for closest approach:
$\mathrm{s}=109.85$ "
$\mathrm{pa}=252.4^{\circ}$
Time of closest approach:
$\mathrm{T}_{0}=2204.8$
Proper motion:
$\mu \mathrm{x}=77.6 \mathrm{mas} / \mathrm{yr}$ [WDS 71 mas$]$
$\mu y=-245.1 \mathrm{mas} / \mathrm{yr}$ [WDS -266 mas]
$\mu=257.0$ mas $/ \mathrm{yr}$

| Discoverer <br> Code | Date | PA <br> Observed | PA <br> Calculated | PA <br> Residuals | Distance <br> Observed | Distance <br> Calculated | Distance <br> Residuals |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Bu_1913 | 1910.360 | 218.10 | 218.57 | -0.47 | 133.670 | 133.324 | 0.35 |
| WFC1998 | 1923.430 | 219.10 | 219.07 | 0.03 | 131.434 | 131.456 | -0.02 |
| Opi1927 | 1925.260 | 219.40 | 218.91 | 0.49 | 130.390 | 130.745 | -0.36 |
| TMA2003 | 2000.310 | 227.20 | 227.48 | -0.28 | 121.700 | 121.515 | 0.19 |
| Schlimmer | 2008.363 | 227.99 | 227.74 | 0.25 | 120.430 | 120.594 | -0.16 |

Table 4: Measurements, linear fit and residues (observed-calculated)


| Date | Distance | PA |
| :---: | :---: | :---: |
| 2050 | 116.8 | 227.7 |
| 2100 | 113.1 | 238.7 |
| 2150 | 110.8 | 245.1 |
| 2200 | 109.9 | 251.8 |
| 2250 | 110.5 | 258.5 |

Table 5: Ephemeris for STF1879AB-D

Figure 4: Plot of the measurements and linear fit of STF1879AB-D (WDS 14463+0939)

## An Investigation on the Relative Proper Motion of Some Optical Double Stars

## WDS 18369+3846 (Vega)

Vega is the brightest star in summer. There are two optical companions. AB was discovered by William Herschel in 1781 (Herschel, 1782) and is known as H 539 AB . AE was discovered by John Herschel in 1831 and is known as STFB 9AE. Both companions can be easily observed with an 8 -inch Newtonian telescope. While AB was often observed (69 times), AE was only observed 12 times. Because time of closest approach for AB is past, we discussed only the relative proper motion between AE. Figure 5 shows a plot of these measurements. The calculation of the linear fit points out, that Vega moves directly to companion E.

Ephemeris for Vega is in Table 6.

## Results

Polar coordinates for closest approach:
$\mathrm{s}=2.16^{\prime \prime}$
$\mathrm{pa}=310.3^{\circ}$
Time of closest approach:
$\mathrm{T} 0=2261.2$
Proper motion:
$\mu \mathrm{x}=227 \mathrm{mas} / \mathrm{yr}$ [HIP 201 mas ]
$\mu y=268 \mathrm{mas} / \mathrm{yr}$ [HIP 287 mas ]
$\mu=351 \mathrm{mas} / \mathrm{yr}$

| Date | Distance | PA |
| :---: | :---: | :---: |
| 2050 | 74.2 | 38.7 |
| 2100 | 56.7 | 38.2 |
| 2150 | 39.1 | 37.2 |
| 2200 | 21.6 | 34.6 |
| 2250 | 4.5 | 11.6 |
| 2300 | 13.8 | 220.6 |

Table 6: Vega


Figure 5: Plot of the measurements and linear fit of STFB 9AE

## An Investigation on the Relative Proper Motion of Some Optical Double Stars

## WDS 18073+1557 (LDS1005 AB)

WDS 18073+1557 has two components, LDS1005
AB and TOB 271 AC . Because of its brightness of $6.82,8.70$ for AB and $6.82,8.31$ for AC all components are easy to observe. Since its discovery in 1896 LDS1005 AB was observed 12 times. The relative proper motion is mostly in declination (Figure 6).

Proper motion:
$\mu \mathrm{x}=-9 \mathrm{mas} / \mathrm{yr}$ [WDS $-7 \mathrm{mas}]$
$\mu y=-146 \mathrm{mas} / \mathrm{yr}$ [WDS -144 mas ]
$\mu=-147 \mathrm{mas} / \mathrm{yr}$


Figure 6: Plot of the measurements and linear fit of LDS1005 AB

## An Investigation on the Relative Proper Motion of Some Optical Double Stars

## WDS 14527+0746 (HLD 120AB)

HLD 120AB was described in detail by the author (Schlimmer, 2008a). In springtime, a new measurement was done. A further calculation with that new value shows no significant changes in the calculation results.

Polar coordinates for closest approach:
$\mathrm{s}=1.384^{\prime \prime}$
$\mathrm{pa}=309.5^{\circ}$
Time of closest approach:
$\mathrm{T}_{0}=2232.8$
Proper motion:
$\mu \mathrm{x}=-45.21 \mathrm{mas} / \mathrm{yr}$ [Schlimmer 2008a: : $-45.71 \mathrm{mas} / \mathrm{yr}$ ]
$\mu y=-54.94$ mas $/ \mathrm{yr}$ [Schlimmer 2008a : -55.98 mas/yr]
$\mu=-71.15 \mathrm{mas} / \mathrm{yr}$ [Schlimmer 2008a : -72.27 mas/yr]

## Summary

The comparison of the relative proper motion, calculated by the author, with values from the Hipparcos or WDS catalogs shows differences in most cases. There are two major reasons for these differences. First, the result depends on the selected measurements. Residuals are used to check the quality of the measurements. For calculation, measurements with low residuals will be taken. Different datasets provide different results. Second, Hipparcos values point out only the proper motion of the primary companion not the relative motion between both components.

Measurements made by the author of the doubles stars discussed in this paper are given in Table 7.

## References

Christian Mayer, "Gründliche Vertheidigung neuer Beobachtungen von Fixsterntrabanten welche zu Mannheim auf der kurfürstlichen Sternwarte entdeckt worden sind" [Defense of new Observations of Fixed Star Satellites], Mannheim 1778
Christian Mayer, "De novis in coelo sidereo phaenomenis in miris stellarum fixarum comitibus", Mannheim 1779
William Herschel, "Catalog of Double Stars", Philosophical transactions of the Royal society of London, 1782 Vol. 72

William Herschel, "Catalog of Double Stars", Philosophical transactions of the Royal society of London, 1785 Vol. 75

Centre de Données astronomiques de Strasbourg, SIMBAD Astronomical Database, http://simbad.ustrasbg.fr/simbad/
Brian D. Mason, Gary L. Wycoff, and William I. Hartkopf, The Washington Double Star Catalog, http://ad.usno.navy.mil/wds/
Schlimmer 2007a, "Double Star Measurements Using a Webcam", Journal of Double Star Observations, Vol. 3 No. 3, 131-134

Schlimmer 2007b, "Christian Mayer’s Double Star Catalog of 1779", Journal of Double Star Observations, Vol. 3 No. 4, 151-158

Schlimmer 2008a, "The Relative Proper Motion of HLD 120AB (WDS14527+0746)", Journal of Double Star Observations, Vol. 4 No. 2, 56-58
Schlimmer 2008b, "Double Star Measurements Using a Webcam: Annual Report of 2007", Journal of Double Star Observations, Vol. 4 No. 2, 81-83

| NAME | RA+DEC | MAGS |  | PA | SEP | DATE | N |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BUP 80 | $05284-0330$ | $7.64 \quad 10.1$ | 205.3 | 48.55 | 2008.102 | 3 |  |
| STF1424 AC | $10200+1950$ | 2.37 | 9.64 | 288.5 | 332.61 | 2008.319 | 78 |
| SHJ 162 Aa-B | $13149-1122$ | 7.11 | 8.18 | 44.2 | 109.34 | 2008.319 | 39 |
| STF1879 AB-D | $14463+0939$ | 7.32 | 10.8 | 228.0 | 120.43 | 2008.363 | 1 |
| HLD 120 AB | $14527+0746$ | 8.3 | 9.9 | 224.2 | 16.09 | 2008.357 | 20 |
| LDS1005 AB | $18073+1557$ | 6.82 | 8.31 | 16.4 | 151.95 | 2008.653 | 45 |
| STFB 9 AE | $18369+3846$ | 0.02 | 9.5 | 39.2 | 88.27 | 2008.497 | 1 |

Table 7: Measurements made by the author

# CCD Double-Star Measurements at Observatorio Astronómico Camino de Palomares (OACP): First Series 

Edgardo Rubén Masa Martín<br>Double Star Section Coordinator Syrma Astronomical Society (Syrma-MED) Valladolid, Spain<br>Email: ermasa_dsa@orange.es<br>http://www.med.syrma.net/


#### Abstract

In this paper we present the results of CCD Theta/Rho measurements for 116 double and multiple stars (223 pairs) in 2007. The residuals in angular separation and position angle are computed for binaries with known orbit. Also, studies about the nature of three new pairs are reported. This first series of measurements is integrated in the observational programs that Syrma-MED is developing at present.


## Introduction

The measurements reported in this work were carried out by CCD imaging at the Observatorio Astronómico Camino de Palomares (hereafter OACP, Latitude: $41^{\circ} 39^{\prime} 59.53296 \mathrm{~N}$; Longitude: $4^{\circ} 41^{\prime}$ 42.15818 W; Altitude: 694.651 m, Valladolid, Spain), during the months July, August and September, 2007. The observation period was of 27 nights on the whole. The measurements reported here were made by using a CCD for the first time, and it is expected that there will be more of them in the future. Because of the experimental nature of this first series, the selections of the pairs that are measured have not followed a specific criterion. The main interest of the work is to calibrate the Meade DSI Pro CCD camera. Our intention is to verify the response of the equipment in the measurement of visual double stars. This is the reason why pairs of all kinds were chosen: close and wide pairs (the angular separation measured ranging from 2.5 " to 421 "), systems with great Delta-M, and others of equal magnitudes. The residuals in angular separation and position angle are computed for three binaries with known orbit. In addition to this, fixed and relatively fixed systems were measured for cali-
bration purposes. We include pairs measured recently (2006), others relatively neglected (last measurement in the 1990's) as well as a few others with a unique official measure, so they have been, finally, confirmed. During the data reduction process, we found three uncataloged pairs near well-known ones. They have been evaluated for binarity with regular methods which were used before in previous articles (Masa, 2007) and we propose they be included in WDS.

No filter was used for the observations.

## The Telescope

The main instrument of the OACP is a Newtonian telescope ( $\mathrm{D}=200 \mathrm{~mm} ; \mathrm{F}=1,000 \mathrm{~mm}$ ) mounted equatorially. It has been used at the prime focus as well as by attaching Barlow lens: Takahashi $2 x$ and Meade Telenegative $3 x$. The mounting of the telescope does not have a GOTO system. For this reason, the pairs were located by using the settings circles. A refractor telescope ( $\mathrm{D}=70$ $\mathrm{mm} ; \mathrm{F}=700 \mathrm{~mm}$ ) in parallel with the reflector and an illuminated reticle eyepiece were used to help in centering the desired object. This auxiliary element made locating tasks on the computer screen easier. At the same time, the software Guide 8.0 showed the expected stellar

## CCD Double-Star Measurements at Observatorio Astronómico Camino de Palomares ...



Figure 1: The OACP Observatory is operative since October 2002.
field of the target area. Figure 1 shows the observatory building and the main telescope.

## The Camera and the Image Acquisition Software

The camera, a Meade DSI Pro, incorporates the CCD monochrome image sensor, the Sony ICX254AL with EXview HAD CCD ${ }^{\text {тм }}$ technology (Hole Accumulation Diode). The geometrical features of this sensor are shown in Table 1.

The raw frames have a resolution of $508 \times 489$ pixels. Nevertheless, this format was not used for the measurements. The image acquisition software provided by Meade (Envisage) allows resampling the raw image in real time. The geometrical correction is made internally by Envisage and gives a definitive image of $648 \times 488$ pixels, emulating square pixels of $7.5 \times 7.5$ $\mu \mathrm{m}$ size.

Envisage is powerful and versatile software capable of integrating hundreds of images into only one

| Image size | Diagonal 6 mm (Type $1 / 3)$ |
| :--- | :--- |
| No. of effective pixels | $510 \quad$ (H) $\times 492 \quad(\mathrm{~V}) \quad \approx 250 \mathrm{~K}$ pixels |
| Total number of pixels | $537 \quad$ (H) $\times 505 \quad(\mathrm{~V}) \quad \approx 270 \mathrm{~K}$ pixels |
| Chip size | $6.00 \mathrm{~mm} \quad(\mathrm{H}) \times 4.96 \mathrm{~mm} \quad(\mathrm{~V})$ |
| Image area size | $4.8 \mathrm{~mm} \quad$ (H) $\times 3.6 \mathrm{~mm} \mathrm{(V)}$ |
| Unit cell size | $9.6 \mu \mathrm{~m}$ |

Table 1: Geometry of the Sony ICX254AL CCD sensor
final image in real time. Generally, this composite image has a good signal to noise ratio. The real power of this algorithm, similar to Lucky Imaging techniques, consists of the addition of many shortexposure images. By doing this, the effects of the atmospheric turbulence are worked out, by means of "freezing" the seeing practically. We have been able to obtain good results on especially turbulent nights under very poor seeing conditions. Despite the live image continuously "dancing", the software could make a final composite image which was perfectly measurable. To obtain this digital frame, the main requirement is that the exposure times be as short as possible. The typical exposure times ranked from 0.02 to 1 second, depending on the stellar magnitudes and the quality of the sky. To align and to combine the images of the series, it is useful to select a star from the field (the main component, normally) which can serve as the reference. Only the images of high enough quality are used. They are evaluated continuously by Envisage in every partial frame. In general,
the combined image was the result of adding at least 50 partial images and the total exposure time was around 25 seconds. The eventual polar misalignments and/or tracking errors are not critical factors and this is another advantage of this technique. Finally, another interesting feature of the software is that it allows the images to be pre-processed automatically beforehand. In this way, if the exposure time is set to one second, then the software will subtract the dark frames (which are taken at the

## CCD Double-Star Measurements at Observatorio Astronómico Camino de Palomares ...

beginning of the session). The image obtained after this action is the definitive one and, ordinarily, will be used to in making the measurements.

For the correct focusing of the stars we used a Hartman's mask with three triangular holes.

## Instrumental constants

For each optical train, the "instrumental constants", that is, the image scale in arsec/pixel and the orientation of the CCD sensor with regard to the sky's cardinal points, was determined by several methods:
i) The Astrometrica software (version 4.4.2.366) by Herbert Raab was used (when the images contained enough number of reference stars) jointly with the UCAC2 as reference star catalog. We obtained the scale and the orientation with this early reduction.
ii) We have measured several calibration pairs. They have been extracted from a list compiled by three members of The Double Star Commission of the French Astronomical Society (SAF): Guy Morlet and Florence and Pascal Mauroy (available for downloading at http://saf.etoilesdoubles.free.fr/). Thirty-two stable pairs made up this list and it is based on the results of the Hipparcos satellite. Whenever possible, two different reference pairs were registered every night; one at the beginning and another at the end of the observation.
iii) The new Catalog of Rectilinear Elements (http://ad.usno.navy.mil/wds/lin1.html) was used. Many systems in the Washington Double Star Catalog have shown significant relative motion since their discovery. The Catalog of Rectilinear Elements provides linear fits for those systems whose motion does not appear to be Keplerian. While a few of these may in fact be very long-period physical pairs whose orbital motion is not yet apparent, most are probably optical pairs. These linear fits, then, describe the relative proper motions between these pairs of stars and this property is very useful for CCD calibration. The predicted positions for the observation date were calculated by using a linear regression over the ephemerides of the catalog. Those values were compared to our measurements.
analysis is then carried out by reduction software after knowing the theoretical orientation of the transit frame (i.e., where the North/East cardinal points were). As a rule, four-trail measurements give an average final value of the sensor orientation. This procedure has yielded excellent results so far. Typically, the values of rotation of the sensor in relation to the sky never exceeded $\pm 1^{\circ}$. This was feasible because the camera was oriented as exactly as possible with the East/West line at the beginning of the observation.

The figures obtained by these four methods were equivalent for the same field. The calibration results for each different optical configuration are shown in Table 2.

## Reduction Software

Florent Losse's Reduc software (version 3.80) was used to measure theta and rho from the CCD images. Lately, this software has spread impressively at an international level. More and more followers are using this tool in double star astronomy. It is undoubtedly, a fundamental piece, as well as an irreplaceable tool for relative astrometry tasks. The software has many features. Perhaps the most important feature is that Reduc is developed especially to measure double stars from images from webcams and CCD imagers. Reduc has an intuitive and friendly interface. The calculations are mostly made in an automatic way and it has an excellent set of tools. Among its special features, its power is the most noteworthy one: it is able to measure correctly over images with very saturated stars and over pairs with defective signal to noise ratio. Reduc can make a successful measurement for pairs whose magnitudes are very different. In such cases, almost unfailingly, it is necessary to either saturate or overexpose the main component so the dim component of the pair can be registered. This is one of the most important handicaps that appear while working with CCD images. We have been able to use observations made on the systems whose main star appears so saturated that even a "cross" is visible. These four orthogonal spikes (in our case) are produced by the diffraction of the spider vanes supporting the small
iv) Another auxiliary method was used for the orientation of the CCD chip. It made use of a function implemented in Reduc (the software of reduction; see next section), which was specifically designed for this purpose. First, with tracking turned off, a series of star trails in right ascension were recorded. Drift

| Optical <br> train | Escale <br> (a.s./pixel) | Effective Focal <br> Length (mm) | Focal Ratio <br> $(\mathbf{f} /$ ) | FOV <br> (arcminutes) |
| :---: | :---: | :---: | :---: | :---: |
| Prime focus | 1.55 | 1,000 | 5 | $12.6 \times 16.7$ |
| Barlow 2 x <br> $(2.26)$ | 0.68 | 2,260 | 11.3 | $5.6 \times 7.4$ |
| Barlow 3 x <br> $(3.48)$ | 0.44 | 3,480 | 17.4 | $3.6 \times 4.8$ |

Table 2. Instrumental constants

## CCD Double-Star Measurements at Observatorio Astronómico Camino de Palomares ...

secondary mirror, whereas the weak component disguised by the principal's glare is hardly seen. Even in such extreme cases the algorithms of Reduc are able to find the centroids successfully.

Reduc is developed continuously by its author. In the last version (3.82) Florent Losse has introduced new and interesting functions. Among them, reading FITS images of 8,16 and 32 bit integers; FITS 32 bit real, BMP, AVI-BMP conversion; darks and bias preprocessing; crop images; drift calibration; shift and add features; binning x2; Multilanguage platform (French, English, Spanish, and Italian).

Reduc, also includes Surface which is another powerful measurement algorithm, based in the adjustment of a three-dimensional surface. This feature uses the surface algorithm especially designed to measure very tight stars. Developed by Guy Morlet and Pierre Bacchus to measure the images acquired on the 50 cm refractor at the Nice Observatory, it was reserved for the private usage of the members of the SAF. Now, it is integrated in Reduc with the authorization and by courtesy of the authors.

Finally, Reduc works well under Windows, Linux and Wine, and the author provides the latest version for free at florent_losse@yahoo.fr.

To obtain further information about Reduc visit http://www.astrosurf.com/hfosaf/

## The Measures

The results of measurements are presented in Table 3. A total of 223 measurements are listed. They belong to 116 double or multiple systems. The data structure in the table is as follows:

Columns 1 and 2: Identifier of the WDS catalog and name of the system. Note: the new pairs are
labeled in Column 1 as "uncat". The precise coordinates (J2000) for the main star are reported in the section Discoveries.

Columns 3 and 4: Magnitudes for each component, given in WDS catalog. Note: the V magnitudes that we have calculated in this work are highlighted with boldface type.

Column 5: The epoch of the observation, given in fractional Besselian year.

Column 6: Position Angle.
Column 7: Angular Separation.
Column 8: Number of composite images measured for each pair.

Column 9: Number of nights.
Column 10: Notes.
The mean internal uncertainties for Theta and Rho (given as the average of standard deviation of all measurements) were $0.12^{\circ}$ and $0.08^{\prime \prime}$ respectively (Figures 2 and 3).

Three reference patterns were used in order to evaluate the accuracy of our measurements: three orbital pairs, 10 stable pairs based upon the results of Hipparcos mission and 10 pairs included in the Catalog of Rectilinear Elements. In all the cases the residuals (O-C) were calculated between the observed positions and the calculated ones. Two of the three orbital systems measured are of grade 5, so that (due to the imprecision of the orbit solution) the residuals are more marked. The residuals are shown in Tables 4,5 and 6 .

A comparative review of the residuals in Tables 5 and 6 was made. We calculated the Root Mean Square (RMS) of the residuals or Quadratic Mean by using Theta/Rho residuals of the two former tables. The
(Continued on page 30)


Figure 3: Internal errors in Separation.

CCD Double-Star Measurements at Observatorio Astronómico Camino de Palomares ...

| WDS Id. | Discoverer | WDS <br> Mag. 1 | WDS <br> Mag. 2 | Epoch | Theta (deg) | $\begin{gathered} \text { Rho } \\ (\text { a.s. }) \end{gathered}$ | N img. | Nights | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $00013+6021$ | STTA254AB | 7.40 | 8.33 | 2007.6386 | 89.67 | 56.991 | 4 | 1 | 1 |
| 00013+6021 | STTA254AC | 7.40 | 9.56 | 2007.6386 | 323.87 | 155.535 | 3 | 1 | 1 |
| 00013+6021 | STTA254AD | 7.40 | 10.35 | 2007.6386 | 118.07 | 181.467 | 4 | 1 | 1 |
| 00013+6021 | STTA 254 BD | 8.33 | 10.35 | 2007.6386 | 129.71 | 134.153 | 4 | 1 | 1 |
| Uncat | MRI 4 | 11.99 | 12.31 | 2007.6386 | 359.78 | 21.375 | 2 | 1 | 2 |
| 00056+7617 | HJ 3237 | 8.93 | 12.15 | 2007.6688 | 308.89 | 48.982 | 2 | 1 | 3 |
| 00084+2905 | H 5 32Aa-B | 2.22 | 11.11 | 2007.5703 | 283.86 | 90.625 | 1 | 1 | 4 |
| 00116+5945 | BU 254AB | 8.00 | 12.00 | 2007.6426 | 239.34 | 7.714 | 7 | 2 | 5 |
| 00116+5945 | BU 254AC | 8.00 | 12.70 | 2007.6426 | 240.78 | 37.240 | 5 | 2 | 5 |
| 00141+7601 | STTA 1 | 7.39 | 7.81 | 2007.6688 | 103.86 | 73.430 | 3 | 1 | 6 |
| 00152+5947 | HJ 1008AB | 8.12 | 11.31 | 2007.6385 | 125.29 | 21.698 | 3 | 1 | 7 |
| 00152+5947 | ABH 2AD | 8.06 | 13.08 | 2007.6385 | 147.07 | 78.852 | 3 | 1 | 7 |
| 00152+5947 | ABH 2AE | 8.06 | 14.20 | 2007.6385 | 58.27 | 106.226 | 4 | 1 | 7 |
| 00152+5947 | ABH 2AF | 8.06 | 14.10 | 2007.6385 | 340.60 | 58.698 | 3 | 1 | 7 |
| $00152+5947$ | ES 1BC | 11.60 | 13.30 | 2007.6385 | 226.52 | 10.140 | 4 | 1 | 7 |
| $00152+7801$ | STF 11 | 8.48 | 10.14 | 2007.6689 | 192.84 | 8.155 | 3 | 1 | 8 |
| $00170+6132$ | BU 392 | 5.73 | 12.48 | 2007.6659 | 71.07 | 19.450 | 2 | 1 | 9 |
| $00327+2312$ | BU 1310AC | 6.80 | 12.50 | 2007.6880 | 276.26 | 27.217 | 6 | 1 | 10 |
| $00327+2312$ | BU 1310AD | 7.10 | 9.20 | 2007.6880 | 154.83 | 94.376 | 5 | 1 | 10 |
| 00355+5841 | STF 38 | 8.66 | 8.97 | 2007.6740 | 144.53 | 17.045 | 5 | 1 | 11 |
| $00362+2402$ | HO 623 | 7.30 | 12.30 | 2007.6880 | 155.24 | 9.067 | 4 | 1 | 12 |
| 00393+3052 | BU 491AB | 3.25 | 12.44 | 2007.6878 | 298.04 | 28.936 | 4 | 1 | 13 |
| $00399+2126$ | STF 46 | 5.56 | 8.49 | 2007.6881 | 194.98 | 6.568 | 5 | 1 | 14 |
| $00400+7652$ | STTA 5 | 6.86 | 8.78 | 2007.6689 | 141.90 | 118.027 | 3 | 1 | 15 |
| $00403+2403$ | STF 47AB | 7.25 | 8.82 | 2007.6879 | 205.37 | 16.650 | 7 | 1 | 16 |
| $00403+2403$ | BU 1348AC | 7.21 | 11.10 | 2007.6879 | 232.84 | 46.706 | 4 | 1 | 16 |
| $00403+2403$ | BU 1348BC | 9.51 | 11.10 | 2007.6879 | 246.48 | 32.924 | 3 | 1 | 16 |
| 00405+5632 | H 518 AD | 2.35 | 8.98 | 2007.6795 | 282.23 | 70.490 | 3 | 1 | 17 |
| 00444+7713 | STF 50 | 8.01 | 10.62 | 2007.6690 | 95.74 | 22.104 | 3 | 1 | 18 |

Table 3: Relative astrometry of the observed pairs.

CCD Double-Star Measurements at Observatorio Astronómico Camino de Palomares ...

| WDS Id. | Discoverer | WDS <br> Mag. 1 | WDS Mag. 2 | Epoch | Theta (deg) | $\begin{gathered} \text { Rho } \\ (\mathrm{a} . \mathrm{s} .) \end{gathered}$ | N img. | Nights | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00464+3057 | STFA 1 | 7.25 | 7.43 | 2007.6879 | 46.79 | 47.594 | 4 | 1 | 19 |
| 00491+5749 | STF 60AB | 3.52 | 7.36 | 2007.6768 | 320.39 | 12.965 | 6 | 2 | 20 |
| 01170+3828 | STF 104 | 8.03 | 9.83 | 2007.6851 | 322.87 | 13.822 | 4 | 1 | 21 |
| 01188+3724 | STF 108 | 6.52 | 9.57 | 2007.6850 | 63.75 | 6.350 | 3 | 1 | 22 |
| 01201+3639 | WEI 3 | 8.93 | 9.82 | 2007.6850 | 187.29 | 4.912 | 4 | 1 | 23 |
| 01317+6103 | STF 128 | 7.80 | 9.50 | 2007.6414 | 309.17 | 11.283 | 3 | 1 | 24 |
| 01317+6101 | STI 228 | 12.60 | 13.50 | 2007.6414 | 333.43 | 5.970 | 3 | 1 | 25 |
| 01321+1657 | STF 132AB | 6.88 | 10.61 | 2007.6304 | 342.12 | 61.993 | 8 | 1 | 26 |
| 01321+1657 | STF 132AC | 6.80 | 10.90 | 2007.6304 | 247.87 | 67.752 | 4 | 1 | 26 |
| 01321+1657 | STF 132AD | 6.90 | 10.00 | 2007.6304 | 109.42 | 115.662 | 3 | 1 | 26 |
| 01321+1657 | STF 132DF | 10.00 | 10.60 | 2007.6304 | 288.87 | 5.053 | 2 | 1 | 26 |
| 01332+6041 | STF 131AB | 7.30 | 9.90 | 2007.6415 | 143.15 | 13.870 | 2 | 1 | 27 |
| 01332+6041 | STF 131AC | 7.23 | 11.80 | 2007.6415 | 145.42 | 28.030 | 3 | 1 | 27 |
| 01332+6041 | STF 131BC | 9.90 | 11.80 | 2007.6415 | 147.63 | 14.181 | 2 | 1 | 27 |
| 01332+6041 | FLE 2AD | 7.23 | 11.74 | 2007.6415 | 120.90 | 46.300 | 2 | 1 | 27 |
| 01332+6041 | FLE 2AE | 7.30 | 10.62 | 2007.6415 | 135.97 | 82.161 | 2 | 1 | 27 |
| $01349+1234$ | STF 136AB | 7.33 | 8.33 | 2007.6306 | 77.30 | 15.510 | 4 | 1 | 28 |
| 01535+1918 | STF 180AB | 4.52 | 4.58 | 2007.6374 | 0.20 | 7.423 | 9 | 2 | 29 |
| 01535+1918 | STF 180AC | 4.52 | 8.63 | 2007.6374 | 80.63 | 217.590 | 3 | 2 | 29 |
| 01535+1918 | STF 180BC | 4.58 | 8.63 | 2007.6374 | 82.49 | 216.512 | 3 | 2 | 29 |
| 01581+4123 | S 404 AB | 7.64 | 7.64 | 2007.6307 | 83.67 | 28.992 | 2 | 1 | 30 |
| 01581+4123 | S 404BC | 9.60 | 12.50 | 2007.6307 | 100.92 | 83.471 | 4 | 1 | 30 |
| 02011+3518 | STF 197AB | 8.21 | 9.30 | 2007.6184 | 232.68 | 36.943 | 2 | 1 | 31 |
| 02011+3518 | STF 197AC | 8.10 | 14.00 | 2007.6184 | 73.71 | 40.749 | 2 | 1 | 31 |
| 02039+4220 | STF 205A-BC | 2.31 | 5.02 | 2007.6442 | 62.48 | 9.107 | 6 | 2 | 32 |
| 02103+3322 | STF 219 | 8.03 | 8.89 | 2007.6183 | 183.09 | 11.582 | 3 | 1 | 33 |
| 02109+3902 | STF 222 | 6.05 | 6.71 | 2007.6442 | 36.00 | 16.692 | 7 | 2 | 34 |
| 02187+3429 | STF 246 | 7.82 | 9.26 | 2007.6447 | 123.33 | 9.825 | 9 | 3 | 35 |
| 02336+3125 | HJ 653 | 7.40 | 11.10 | 2007.6416 | 42.67 | 23.142 | 2 | 1 | 36 |

CCD Double-Star Measurements at Observatorio Astronómico Camino de Palomares ...

| WDS Id. | Discoverer | WDS <br> Mag. 1 | WDS Mag. 2 | Epoch | Theta (deg) | $\begin{gathered} \text { Rho } \\ (\mathrm{a} . \mathrm{s} .) \end{gathered}$ | N img. | Nights | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 02390+6235 | STTA 28 | 6.65 | 7.56 | 2007.666 | 147.71 | 67.887 | 3 | 1 | 37 |
| $02420+4248$ | HJ 1123 | 8.39 | 8.46 | 2007.6199 | 248.67 | 20.059 | 3 | 1 | 38 |
| 02425+4016 | STF 292 | 7.56 | 8.23 | 2007.6252 | 211.92 | 23.121 | 3 | 1 | 39 |
| 02451+5708 | STI1936 | 8.20 | 12.80 | 2007.6253 | 217.85 | 9.927 | 2 | 1 | 40 |
| 02454+5634 | STF 297Aa-B | 8.55 | 8.87 | 2007.6553 | 278.28 | 15.884 | 10 | 2 | 41 |
| 02454+5634 | STF 297Aa-C | 7.80 | 10.40 | 2007.6553 | 108.01 | 28.779 | 10 | 2 | 41 |
| 02454+5634 | STF 297BC | 7.80 | 10.40 | 2007.6553 | 104.48 | 44.503 | 10 | 2 | 41 |
| 02456+5709 | STI1937 | 12.20 | 12.80 | 2007.6253 | 30.51 | 5.813 | 4 | 1 | 42 |
| 02476+5357 | STF 301 | 7.85 | 8.70 | 2007.6854 | 16.38 | 8.278 | 3 | 1 | 43 |
| 02507+5554 | STF 307AB | 3.76 | 8.50 | 2007.6471 | 300.46 | 28.750 | 8 | 2 | 44 |
| 02507+5554 | STF 307AC | 3.76 | 9.90 | 2007.6471 | 270.22 | 68.877 | 8 | 2 | 44 |
| 02507+5554 | WAL 19AF | 3.76 | 11.44 | 2007.6471 | 24.72 | 57.473 | 6 | 2 | 44 |
| 02507+5554 | WAR 1CD | 9.90 | 10.40 | 2007.6089 | 116.01 | 5.139 | 3 | 1 | 44 |
| 02507+6249 | STI 396AB | 8.70 | 10.80 | 2007.6661 | 148.22 | 11.504 | 5 | 1 | 45 |
| 02507+6249 | SIN 5AD | 8.70 | 13.00 | 2007.6661 | 95.01 | 39.365 | 4 | 1 | 45 |
| 02507+6249 | SIN 5AF | 8.70 | 12.80 | 2007.6661 | 267.15 | 92.169 | 4 | 1 | 45 |
| 02507+6249 | SIN 5AG | 8.70 | 14.40 | 2007.6661 | 262.18 | 128.845 | 2 | 1 | 45 |
| 03068+4545 | ES 558 | 7.65 | 10.62 | 2007.6363 | 0.12 | 8.252 | 4 | 1 | 46 |
| 03136+3909 | STF 364 | 8.73 | 8.92 | 2007.6293 | 310.82 | 11.742 | 2 | 1 | 47 |
| $03215+4523$ | HO 319AB | 7.50 | 11.80 | 2007.6362 | 47.42 | 11.574 | 2 | 1 | 48 |
| $03215+4523$ | HO 319AC | 7.50 | 14.50 | 2007.6362 | 302.92 | 9.994 | 2 | 1 | 48 |
| Uncat | MRI 3AD | 7.50 | 12.01 | 2007.6362 | 267.10 | 155.649 | 3 | 1 | 48 |
| $03293+4503$ | STF 391 | 7.60 | 8.32 | 2007.6362 | 95.04 | 4.312 | 2 | 1 | 49 |
| $03294+4656$ | STT 55AB | 6.24 | 10.80 | 2007.6361 | 295.38 | 31.053 | 3 | 1 | 50 |
| $03294+4656$ | A 982 BC | 10.80 | 13.80 | 2007.6361 | 238.67 | 3.651 | 3 | 1 | 50 |
| $03294+4656$ | A 982 BD | 10.80 | 14.50 | 2007.6361 | 301.98 | 21.187 | 2 | 1 | 50 |
| 03294+4656 | A 982BE | 10.80 | 14.00 | 2007.6361 | 273.80 | 44.724 | 2 | 1 | 50 |
| $03294+4656$ | A 982EF | 14.00 | 14.70 | 2007.6361 | 307.77 | 2.632 | 2 | 1 | 50 |
| 03316+4752 | STT 56AB | 6.76 | 10.67 | 2007.6361 | 352.43 | 32.675 | 2 | 1 | 51 |

CCD Double-Star Measurements at Observatorio Astronómico Camino de Palomares ...

| WDS Id. | Discoverer | WDS <br> Mag. 1 | WDS Mag. 2 | Epoch | Theta (deg) | $\begin{gathered} \text { Rho } \\ (\mathrm{a} . \mathrm{s} .) \end{gathered}$ | N img. | Nights | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $03316+4752$ | WAL 23AC | 6.76 | 12.51 | 2007.6361 | 47.29 | 45.824 | 4 | 1 | 51 |
| $03332+4615$ | ES 560 | 8.33 | 11.29 | 2007.6362 | 142.45 | 9.633 | 3 | 1 | 52 |
| 03541+3153 | STF 464AB | 2.85 | 9.16 | 2007.6171 | 208.03 | 12.818 | 2 | 1 | 53 |
| $03541+3153$ | STF 464AC | 2.85 | 11.24 | 2007.6171 | 287.07 | 32.713 | 4 | 1 | 53 |
| $03541+3153$ | STF 464AD | 2.86 | 10.44 | 2007.6171 | 195.41 | 98.317 | 2 | 1 | 53 |
| 03541+3153 | STF 464 AE | 2.86 | 9.96 | 2007.6171 | 185.61 | 119.972 | 2 | 1 | 53 |
| 03541+3153 | STF 464CD | 11.24 | 9.90 | 2007.6171 | 177.16 | 104.450 | 2 | 1 | 53 |
| 03541+3153 | STF 464 CE | 11.24 | 9.90 | 2007.6171 | 171.38 | 130.454 | 2 | 1 | 53 |
| 03541+3153 | STF 464DE | 10.44 | 9.96 | 2007.6171 | 149.67 | 28.518 | 2 | 1 | 53 |
| 03541+3153 | SLV 2BC | 9.16 | 11.24 | 2007.6171 | 309.61 | 32.775 | 2 | 1 | 53 |
| 03541+3153 | SLV 2BD | 9.16 | 10.44 | 2007.6171 | 193.54 | 85.855 | 2 | 1 | 53 |
| $03573+4153$ | STF 469 | 6.90 | 9.92 | 2007.6389 | 145.57 | 9.060 | 4 | 1 | 54 |
| 04009+2312 | STF 479AB | 6.92 | 7.76 | 2007.6855 | 127.02 | 7.510 | 4 | 1 | 55 |
| $04009+2312$ | STF 479AC | 6.92 | 9.45 | 2007.6855 | 241.31 | 58.320 | 5 | 1 | 55 |
| 04078+6220 | STF 485AC | 6.91 | 10.39 | 2007.6664 | 0.03 | 11.032 | 3 | 1 | 56 |
| $04078+6220$ | STF 485AD | 6.91 | 14.10 | 2007.6664 | 132.05 | 14.398 | 2 | 1 | 56 |
| $04078+6220$ | STF 485AE | 6.91 | 6.94 | 2007.6664 | 305.01 | 17.871 | 2 | 1 | 56 |
| $04078+6220$ | STF 485AF | 6.91 | 12.20 | 2007.6664 | 320.05 | 36.294 | 4 | 1 | 56 |
| $04078+6220$ | STF 484AG | 6.91 | 9.63 | 2007.6664 | 260.59 | 60.142 | 2 | 1 | 56 |
| 04078+6220 | STF 484AH | 6.91 | 10.50 | 2007.6664 | 256.71 | 57.120 | 3 | 1 | 56 |
| $04078+6220$ | STF 484AI | 6.91 | 9.81 | 2007.6664 | 278.94 | 69.564 | 3 | 1 | 56 |
| $04078+6220$ | STF 485AL | 6.91 | 10.40 | 2007.6664 | 71.47 | 98.401 | 2 | 1 | 56 |
| $04078+6220$ | STF 485AO | 6.91 | 9.40 | 2007.6664 | 77.81 | 138.788 | 2 | 1 | 56 |
| 04078+6220 | HZG 2AN | 6.91 | 9.62 | 2007.6664 | 206.22 | 116.186 | 2 | 1 | 56 |
| $04078+6220$ | WSI 20AQ | 6.91 | 13.20 | 2007.6664 | 324.56 | 45.623 | 3 | 1 | 56 |
| $04078+6220$ | STF 485EC | 6.94 | 11.70 | 2007.6664 | 87.13 | 14.642 | 2 | 1 | 56 |
| $04078+6220$ | STF 485EF | 6.94 | 11.90 | 2007.6664 | 333.78 | 19.581 | 2 | 1 | 56 |
| $04078+6220$ | STF 485EG | 6.94 | 9.63 | 2007.6664 | 245.79 | 49.004 | 2 | 1 | 56 |
| 04078+6220 | STF 484EH | 6.94 | 10.50 | 2007.6664 | 240.23 | 47.165 | 3 | 1 | 56 |

CCD Double-Star Measurements at Observatorio Astronómico Camino de Palomares ...

| WDS Id. | Discoverer | WDS <br> Mag. 1 | WDS Mag. 2 | Epoch | Theta (deg) | $\begin{gathered} \text { Rho } \\ (\mathrm{a} . \mathrm{s} .) \end{gathered}$ | N img. | Nights | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $04078+6220$ | STF 484EI | 6.94 | 9.81 | 2007.6664 | 270.62 | 54.062 | 3 | 1 | 56 |
| $04078+6220$ | WSI 20EQ | 6.94 | --- | 2007.6664 | 336.4 | 29.407 | 4 | 1 | 56 |
| $04078+6220$ | WSI 20FQ | 12.20 | 13.20 | 2007.6664 | 342.12 | 9.842 | 2 | 1 | 56 |
| $04078+6220$ | STF 484GH | 9.63 | 10.50 | 2007.6664 | 131.88 | 5.494 | 2 | 1 | 56 |
| $04078+6220$ | STF 484GI | 9.63 | 9.81 | 2007.6664 | 335.73 | 22.688 | 2 | 1 | 56 |
| $04078+6220$ | STF 484 HI | 10.50 | 9.81 | 2007.6664 | 331.25 | 27.371 | 5 | 1 | 56 |
| $04078+6220$ | HZG 2IJ | 9.81 | 12.00 | 2007.6664 | 155.89 | 60.388 | 2 | 1 | 56 |
| $04078+6220$ | HLM 3LM | 10.40 | 11.40 | 2007.6664 | 215.55 | 5.401 | 4 | 1 | 56 |
| $04078+6220$ | HZG 2LO | 10.40 | 9.40 | 2007.6664 | 92.64 | 42.425 | 5 | 1 | 56 |
| $04078+6220$ | HZG 20P | 9.40 | --- | 2007.6664 | 228.79 | 17.292 | 5 | 1 | 56 |
| 04089+2306 | STF 494 | 7.53 | 7.65 | 2007.6855 | 188.65 | 5.321 | 2 | 1 | 57 |
| $04198+2344$ | STF 523AB | 7.58 | 9.86 | 2007.6854 | 163.30 | 10.471 | 6 | 1 | 58 |
| $04198+2344$ | STF 523AC | 7.58 | 8.92 | 2007.6854 | 49.83 | 109.427 | 4 | 1 | 58 |
| $04240+2418$ | STF 534AB | 6.36 | 7.94 | 2007.6854 | 290.56 | 29.213 | 5 | 1 | 59 |
| $04335+1801$ | STF 559 | 6.97 | 7.02 | 2007.6692 | 277.02 | 2.812 | 2 | 1 | 60 |
| $04588+4408$ | STF 613AB | 8.59 | 9.58 | 2007.6445 | 99.65 | 11.859 | 3 | 1 | 61 |
| 04588+4408 | STF 613AC | 8.59 | 10.90 | 2007.6445 | 51.62 | 21.158 | 3 | 1 | 61 |
| $04588+4408$ | STF 613BC | 9.90 | 10.90 | 2007.6445 | 17.67 | 15.872 | 2 | 1 | 61 |
| 05003+3924 | STT 92AB | 6.02 | 9.50 | 2007.6691 | 281.64 | 4.045 | 3 | 1 | 62 |
| 05091+4907 | STT 96 | 6.67 | 11.10 | 2007.6554 | 105.11 | 21.171 | 8 | 2 | 63 |
| $05138+4658$ | STT 101 | 7.59 | 10.64 | 2007.6663 | 184.02 | 5.961 | 3 | 1 | 64 |
| $05167+1826$ | STF 670A-Bb | 7.72 | 8.28 | 2007.6883 | 165.28 | 2.499 | 3 | 1 | 65 |
| 05175+2008 | STF 674 | 6.82 | 9.68 | 2007.6882 | 148.33 | 10.081 | 4 | 1 | 66 |
| 05185+1800 | J 1818 | 9.00 | 10.50 | 2007.6883 | 354.02 | 6.121 | 5 | 1 | 67 |
| 05189+4515 | STF 669 | 8.44 | 8.97 | 2007.6445 | 278.38 | 9.878 | 3 | 1 | 68 |
| 05192+2008 | STF 680 | 6.22 | 9.66 | 2007.6882 | 203.82 | 9.107 | 6 | 1 | 69 |
| 05207+4658 | STF 681 | 6.61 | 9.21 | 2007.6553 | 182.34 | 23.325 | 7 | 2 | 70 |
| 05232+4701 | STT 104 | 7.10 | 11.10 | 2007.6554 | 190.15 | 21.092 | 10 | 2 | 71 |
| $05243+2008$ | HU 447 | 8.40 | 12.90 | 2007.6882 | 210.60 | 4.944 | 7 | 1 | 72 |

CCD Double-Star Measurements at Observatorio Astronómico Camino de Palomares ...

| WDS Id. | Discoverer | WDS <br> Mag. 1 | WDS Mag. 2 | Epoch | Theta (deg) | $\begin{gathered} \text { Rho } \\ (\mathrm{a} . \mathrm{s} .) \end{gathered}$ | N img. | Nights | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 05323+4924 | STF 718AB | 7.47 | 7.54 | 2007.6444 | 73.45 | 7.785 | 2 | 1 | 73 |
| $05323+4924$ | STF 718AC | 7.47 | 11.22 | 2007.6444 | 186.41 | 117.867 | 3 | 1 | 73 |
| 05351+0956 | STF 738AB | 3.51 | 5.45 | 2007.6882 | 43.97 | 4.206 | 3 | 1 | 74 |
| 05364+2200 | STF 742 | 7.09 | 7.47 | 2007.6884 | 274.04 | 4.056 | 6 | 1 | 75 |
| $05413+2929$ | STF 764 | 6.38 | 7.08 | 2007.6856 | 14.01 | 26.071 | 4 | 1 | 76 |
| 05425+2951 | BU 14 | 7.30 | 10.50 | 2007.6856 | 192.26 | 5.025 | 7 | 1 | 77 |
| $12492+8325$ | STF1694AB | 5.29 | 5.74 | 2007.5729 | 326.31 | 21.397 | 1 | 1 | 78 |
| $12492+8325$ | WAL 63AC | 5.29 | 11.50 | 2007.5729 | 222.67 | 73.323 | 1 | 1 | 78 |
| $13126+5827$ | STF1732AB | 8.68 | 10.42 | 2007.6303 | 127.16 | 25.845 | 2 | 1 | 79 |
| $13239+5456$ | STF1744AB | 2.23 | 3.88 | 2007.6167 | 152.96 | 14.419 | 8 | 2 | 80 |
| $14286+2817$ | STF1850 | 7.11 | 7.56 | 2007.6068 | 261.78 | 25.440 | 4 | 1 | 81 |
| $14318+3022$ | HJ 2728 | 3.58 | 11.50 | 2007.6084 | 345.10 | 35.045 | 2 | 1 | 82 |
| $14596+5352$ | SHJ 191 | 6.86 | 7.57 | 2007.6031 | 341.55 | 40.311 | 4 | 1 | 83 |
| $16460+8202$ | HDO 143 | 4.23 | 11.20 | 2007.6029 | 0.89 | 77.410 | 2 | 1 | 84 |
| Uncat | MRI 2 | 13.74 | 13.93 | 2007.6032 | 177.44 | 17.715 | 5 | 1 | 85 |
| $17322+5511$ | STFA 35 | 4.87 | 4.90 | 2007.6032 | 311.11 | 62.175 | 2 | 1 | 86 |
| $18448+3736$ | STFA 38AD | 4.34 | 5.62 | 2007.6155 | 149.88 | 43.705 | 2 | 1 | 87 |
| $18448+3736$ | BU 968AC | 4.30 | 13.30 | 2007.6155 | 270.18 | 48.460 | 3 | 1 | 87 |
| $18448+3736$ | BU 968AE | 4.30 | 11.50 | 2007.6155 | 298.30 | 62.026 | 3 | 1 | 87 |
| $18501+3322$ | STFA 39AB | 3.63 | 6.69 | 2007.6006 | 148.03 | 45.615 | 5 | 1 | 88 |
| $18501+3322$ | BU 293AE | 3.63 | 10.14 | 2007.6006 | 317.84 | 67.372 | 4 | 1 | 88 |
| $18501+3322$ | BU 293AF | 3.63 | 10.62 | 2007.6006 | 18.43 | 86.516 | 5 | 1 | 88 |
| $18501+3322$ | BU 293BE | 6.69 | 10.14 | 2007.6006 | 321.97 | 112.500 | 5 | 1 | 88 |
| $18501+3322$ | BU 293BF | 6.69 | 10.62 | 2007.6006 | 1.53 | 120.776 | 4 | 1 | 88 |
| $18501+3322$ | BU 293EF | 10.14 | 10.62 | 2007.6006 | 66.08 | 79.349 | 5 | 1 | 88 |
| $18562+0412$ | STF2417AB | 4.59 | 4.93 | 2007.6686 | 103.59 | 22.411 | 6 | 1 | 89 |
| $18562+0412$ | STF2417AC | 4.59 | 6.78 | 2007.6686 | 58.10 | 420.965 | 3 | 1 | 89 |
| $18562+0412$ | STF2417BC | 4.93 | 6.78 | 2007.6686 | 55.84 | 405.583 | 4 | 1 | 89 |
| 19171+0920 | STT 370AB | 8.34 | 8.71 | 2007.6687 | 14.07 | 19.686 | 7 | 1 | 90 |

CCD Double-Star Measurements at Observatorio Astronómico Camino de Palomares ...

| WDS Id. | Discoverer | WDS <br> Mag. 1 | WDS Mag. 2 | Epoch | Theta (deg) | $\begin{gathered} \text { Rho } \\ (\mathrm{a} . \mathrm{s} .) \end{gathered}$ | N img. | Nights | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $19171+0920$ | STT 370AC | 8.34 | ---- | 2007.6687 | 77.45 | 22.653 | 6 | 1 | 90 |
| $19171+0920$ | STT 370BC | 9.10 | ---- | 2007.6687 | 129.43 | 22.406 | 5 | 1 | 90 |
| $19307+2758$ | STFA 43Aa-B | 3.19 | 4.68 | 2007.5895 | 54.30 | 34.546 | 5 | 1 | 91 |
| $19307+2758$ | WAL 114Aa-C | 3.19 | 10.99 | 2007.5950 | 340.25 | 65.030 | 7 | 2 | 91 |
| $19369+1116$ | J 133AB | 6.07 | 14.00 | 2007.6359 | 57.58 | 14.802 | 2 | 1 | 92 |
| $19369+1116$ | J 133AC | 6.07 | 12.50 | 2007.6359 | 310.27 | 20.389 | 2 | 1 | 92 |
| $19369+1116$ | WAL 115AD | 6.07 | 11.25 | 2007.6359 | 51.09 | 63.884 | 3 | 1 | 92 |
| 19411+1041 | STF2558 | 8.00 | 10.50 | 2007.6358 | 307.16 | 27.793 | 2 | 1 | 93 |
| $19441+1222$ | STF2567 | 7.93 | 9.96 | 2007.6344 | 309.96 | 17.902 | 5 | 1 | 94 |
| $19487+1149$ | STF2583AC | 5.70 | 12.20 | 2007.6357 | 296.56 | 36.092 | 3 | 1 | 95 |
| 19523+1021 | STF2590AB | 6.50 | 10.31 | 2007.6058 | 308.54 | 13.517 | 3 | 1 | 96 |
| 19523+1021 | STF2590CD | 11.60 | 12.20 | 2007.6058 | 271.94 | 8.279 | 5 | 1 | 96 |
| $19533+1150$ | STF2593AB | 8.70 | 10.10 | 2007.6358 | 242.99 | 12.182 | 3 | 1 | 97 |
| $19533+1150$ | STF2593BC | 10.10 | 11.40 | 2007.6358 | 309.38 | 3.550 | 3 | 1 | 97 |
| $20391+1550$ | BU 288AC | 5.90 | 10.80 | 2007.5923 | 123.80 | 39.956 | 3 | 1 | 98 |
| 20391+1550 | BU 288AD | 5.90 | 14.30 | 2007.5923 | 147.11 | 29.268 | 2 | 1 | 98 |
| $20391+1550$ | BU 288AE | 5.90 | 14.30 | 2007.5923 | 32.51 | 21.661 | 2 | 1 | 98 |
| $21287+7034$ | STF2806Aa-B | 3.17 | 8.63 | 2007.6440 | 249.10 | 13.131 | 3 | 1 | 99 |
| $22106+7008$ | STF2883 | 5.56 | 8.56 | 2007.6440 | 252.06 | 14.489 | 5 | 1 | 100 |
| $22284+5825$ | H 4 31AB | 8.54 | 10.52 | 2007.6468 | 3.74 | 25.082 | 4 | 1 | 101 |
| $22284+5825$ | ARN 79AC | 8.54 | 9.46 | 2007.6468 | 320.21 | 78.747 | 3 | 1 | 101 |
| $22292+5825$ | BU 702AB | 4.21 | 13.00 | 2007.6467 | 284.24 | 20.918 | 2 | 1 | 102 |
| $22292+5825$ | STFA 58AC | 4.21 | 6.11 | 2007.6467 | 191.37 | 40.798 | 5 | 1 | 102 |
| $22330+6955$ | STF2924AB-C | 6.00 | 10.50 | 2007.6441 | 196.73 | 124.403 | 3 | 1 | 103 |
| $22330+6955$ | STF2924AB-D | 6.00 | 10.20 | 2007.6441 | 196.90 | 187.828 | 3 | 1 | 103 |
| $22331+6830$ | BU 706AC | 7.77 | 10.98 | 2007.6441 | 251.03 | 31.069 | 3 | 1 | 104 |
| $22332+7022$ | STF2923AB | 6.32 | 9.24 | 2007.6440 | 47.45 | 9.681 | 3 | 1 | 105 |
| $22332+7022$ | STF2923AC | 6.30 | 11.30 | 2007.6440 | 148.22 | 96.243 | 3 | 1 | 105 |
| $22403+6830$ | BU 845AB | 8.10 | 12.10 | 2007.6442 | 203.36 | 6.743 | 2 | 1 | 106 |

CCD Double-Star Measurements at Observatorio Astronómico Camino de Palomares ...

| WDS Id. | Discoverer | WDS <br> Mag. 1 | WDS <br> Mag. 2 | Epoch | Theta <br> (deg) | $\begin{gathered} \text { Rho } \\ (\mathrm{a} . \mathrm{s} .) \end{gathered}$ | N img. | Nights | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $22403+6830$ | BU 845AC | 8.10 | 13.20 | 2007.6442 | 16.36 | 16.495 | 2 | 1 | 106 |
| $22403+6830$ | FOX 269AD | 8.10 | 13.30 | 2007.6442 | 96.78 | 44.754 | 3 | 1 | 106 |
| $22450+6808$ | STT 529AB | 9.08 | 9.89 | 2007.6445 | 200.42 | 3.765 | 2 | 1 | 107 |
| $22450+6808$ | STT 529AC | 9.08 | 10.81 | 2007.6445 | 219.21 | 20.467 | 3 | 1 | 107 |
| $23100+4758$ | STF2985 | 7.21 | 8.02 | 2007.6808 | 256.07 | 15.804 | 5 | 1 | 108 |
| $23104+4901$ | STF2987 | 7.42 | 10.41 | 2007.6823 | 150.03 | 4.374 | 1 | 1 | 109 |
| $23144+2943$ | HJ 1858 | 8.68 | 11.09 | 2007.6085 | 81.90 | 20.401 | 2 | 1 | 110 |
| $23144+2946$ | HJ 1859 | 6.41 | 9.90 | 2007.6085 | 122.23 | 33.923 | 2 | 1 | 111 |
| $23144+2946$ | ARN 26AC | 6.45 | 8.68 | 2007.6085 | 181.30 | 190.888 | 3 | 1 | 111 |
| $23177+4901$ | FOX 273AD | 5.01 | 11.60 | 2007.6823 | 233.06 | 58.569 | 4 | 1 | 112 |
| $23461+6028$ | STF3037AC | 7.39 | 9.53 | 2007.6388 | 188.71 | 29.146 | 3 | 1 | 113 |
| $23461+6028$ | STF3037AD | 7.35 | 10.86 | 2007.6388 | 232.76 | 52.585 | 3 | 1 | 113 |
| $23461+6028$ | STF3037AE | 7.35 | 9.70 | 2007.6388 | 62.85 | 109.943 | 2 | 1 | 113 |
| $23461+6028$ | STF3037AF | 7.35 | 11.13 | 2007.6388 | 147.20 | 123.461 | 2 | 1 | 113 |
| $23496+6052$ | STI1222 | 9.16 | 9.57 | 2007.6373 | 21.56 | 11.975 | 5 | 1 | 114 |
| $23527+6042$ | BU 1153AB-C | 11.14 | 12.25 | 2007.6387 | 336.24 | 14.004 | 4 | 1 | 115 |
| $23527+6042$ | BU 1153AB-D | 11.14 | 6.89 | 2007.6387 | 66.09 | 176.945 | 2 | 1 | 115 |
| $23531+6042$ | STT 511AB | 6.89 | 10.58 | 2007.6387 | 34.24 | 9.819 | 4 | 1 | 116 |
| $23531+6042$ | STT 511AC | 6.90 | 14.10 | 2007.6387 | 39.71 | 35.788 | 3 | 1 | 116 |
| $23531+6042$ | STT 511AD | 6.90 | 10.34 | 2007.6387 | 130.52 | 68.322 | 3 | 1 | 116 |

Table 3 concluded. Notes begin on page 36

| WDS Id. | Discoverer | Grade | Reference |  | Residual (O-C) |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Theta ( ${ }^{\circ}$ ) | Rho (") |  |
| $00491+5749$ | STF 60AB | 3 | Str1969a | -0.08 | -0.155 |  |
| $05003+3924$ | STT 92AB | 5 | Cve2006e | +0.76 | -0.022 |  |
| $05364+2200$ | STF 742 | 5 | Hop1973b | -0.57 | -0.064 |  |

Table 4. Residuals of orbital systems measures in this series

## CCD Double-Star Measurements at Observatorio Astronómico Camino de Palomares ...

| WDS Id. | Discoverer | Epoch | Observation (0) |  | Ephemerides (C) |  | Residual ( $0-\mathrm{C}$ ) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Theta | Rho | Theta | Rho | Theta | Rho |
| 00355+5841 | STF 38 | 2007.6740 | 144.53 | 17.045 | 144.26 | 16.93 | +0.27 | +0.115 |
| 01349+1234 | STF 136AB | 2007.6306 | 77.30 | 15.510 | 77.10 | 15.54 | +0.20 | -0.030 |
| 02109+3902 | STF 222 | 2007.6442 | 36.00 | 16.692 | 35.90 | 16.69 | +0.10 | +0.002 |
| 02425+4016 | STF 292 | 2007.6252 | 211.92 | 23.121 | 211.57 | 23.05 | +0.35 | +0.071 |
| 02454+5634 | STF 297Aa-B | 2007.6553 | 278.28 | 15.884 | 278.64 | 15.81 | -0.36 | +0.074 |
| 04078+6220 | STF 485AE | 2007.6664 | 305.01 | 17.871 | 304.73 | 17.91 | +0.28 | -0.039 |
| $04240+2418$ | STF 534AB | 2007.6854 | 290.56 | 29.213 | 290.74 | 29.08 | -0.18 | +0.133 |
| 05413+2929 | STF 764 | 2007.6856 | 14.01 | 26.071 | 13.96 | 26.01 | +0.05 | +0.061 |
| 19171+0920 | STT 370AB | 2007.6687 | 14.07 | 19.686 | 13.56 | 19.52 | +0.51 | +0.166 |
| $23100+4758$ | STF2985 | 2007.6808 | 256.07 | 15.804 | 256.51 | 15.61 | -0.44 | +0.194 |

Table 5: Residuals of the stable pairs based upon the results of Hipparcos mission (extracted from Morlet-Mauroy's list) of

| WDS Id. | Discoverer | Epoch | Observation (0) |  | Ephemerides (C) |  | Residual (0-C) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Theta | Rho | Theta | Rho | Theta | Rho |
| 00084+2905 | H 5 32Aa-B | 2007.5703 | 283.86 | 90.625 | 284.078 | 90.278 | -0.218 | +0.347 |
| 00444+7713 | STF 50 | 2007.6690 | 95.74 | 22.104 | 95.541 | 21.937 | +0.199 | +0.167 |
| $00464+3057$ | STFA 1 | 2007.6879 | 46.79 | 47.594 | 46.636 | 47.288 | +0.154 | +0.306 |
| 01321+1657 | STF 132AB | 2007.6304 | 342.12 | 61.993 | 341.939 | 62.157 | +0.181 | -0.164 |
| 01581+4123 | S 404AB | 2007.6307 | 83.67 | 28.992 | 83.358 | 28.872 | +0.312 | +0.120 |
| 02011+3518 | STF 197AB | 2007.6184 | 232.68 | 36.943 | 232.556 | 37.461 | +0.124 | -0.518 |
| $03316+4752$ | STT 56AB | 2007.6361 | 352.43 | 32.675 | 352.300 | 32.716 | +0.130 | -0.041 |
| 04588+4408 | STF 613AB | 2007.6445 | 99.65 | 11.859 | 99.286 | 11.931 | +0.364 | -0.072 |
| 05232+4701 | STT 104 | 2007.6554 | 190.15 | 21.092 | 189.194 | 21.015 | +0.956 | +0.077 |
| 23144+2943 | HJ 1858 | 2007.6085 | 81.90 | 20.401 | 81.776 | 20.128 | +0.124 | +0.273 |

Table 6: Residuals of the pairs included in the Catalog of Rectilinear Elements
(Continued from page 21)
results (Table 7) showed a great coherency. The RMS values are very similar, either in Theta or in Rho, demonstrating two important statements: 1) the reliability of the ephemerides in both samples, in spite of being small ones and chosen at random; and 2) the regularity and linearity of our procedure of measurement.

## Discoveries

Three new pairs were found. These pairs are uncataloged as well as likely true binary systems. One
them is a new companion for a known system. They are listed in order of increasing right ascension.

Because all the new components are located near the galactic plane, we have derived the interstellar reddening for each of them. The total line-of-sight interstellar reddening (hereafter denoted by the suffix " $\propto$ ") was obtained from the Schlegel et al. (1998) maps, using the NED database extinction calculator. This tool is available on-line at the web site http:// nedwww.ipac.caltech.edu/forms/calculator.html

This previous reddening was reduced by the expo-

## CCD Double-Star Measurements at Observatorio Astronómico Camino de Palomares ...

| Sample | RMS Theta | RMS Rho |
| :--- | :---: | :---: |
| Stable pairs Hipparcos <br> (Morlet-Mauroy) | 0.30692019 | 0.10619275 |
| Catalog of Rectilinear <br> Elements | 0.36538062 | 0.25276016 |

Table 7: RMS residuals for the two samples
nential law derived by Anthony-Twarog \& Twarog (1994), which takes into account the galactic latitude and the distance. The reduction fraction $(f)$ is given by the expression:

$$
f=1-\exp (-H r \sin b)
$$

where $r$ is the star's distance, $b$ is the galactic latitude, and $H$ is an observational constant equal to $0.008 \mathrm{pc}^{-1}$.

Using the same methods as used previously (Masa, 2007) in order to analyze data found in the literature, the following conclusions were drawn:
MRI 4
This uncataloged pair is located in the vicinity of STTA254. The main star is in position (J2000) RA = 00 h 00 m 51.56 s and $\mathrm{Dec}=+60^{\circ} 23^{\prime} 06.6^{\prime \prime}$. The optical photometry in the literature is not reliable. The Tycho-2 catalog only gives VT magnitude for the principal star, so our study is based on the NIR photometry of 2MASS. For both components, the 2MASS`s quality flag, labeled "AAA", indicates the best quality grade of the JHK magnitudes. First, working with the reddened JHK magnitudes, we derived the preliminary spectral types, those derived by energy distribution, and a crude estimation of the photometric distances, as well. Several standard tables to assign intrinsic V magnitudes and $(\mathrm{B}-\mathrm{V})$ and ( $\mathrm{V}-\mathrm{I}$ ) color indexes were consulted. The $\mathrm{M}_{\mathrm{Ks}}$ absolute magnitude of each component by means (V $\mathrm{K}_{\mathrm{s}}$ ) color, according to the procedure of Henry et al. (2004) was derived (see below). The $\mathrm{Mv}_{\mathrm{v}}$ absolute magnitude came from $\mathrm{M}_{\mathrm{V}}=\mathrm{M}_{\mathrm{Ks}}+\left(\mathrm{V}-\mathrm{K}_{\mathrm{S}}\right)$. In the next step, using the preliminary distances, we corrected the NIR photometry by reddening and extinction (the components are placed near the galactic plane (A: $b$ $=-1.875^{\circ} ; \mathrm{B}: b=-1.869^{\circ}$ ). The new set of distance
values was used to calculate a more reliable value of reddening. Lastly, in this second iteration of the recursive method, the definitive color excess values are $\mathrm{E}(\mathrm{B}-\mathrm{V})_{0}=0.025$ and $\mathrm{E}(\mathrm{B}-\mathrm{V})_{0}=0.023$ for A and B components respectively. The total absorption for the 2MASS magnitudes came from the equations of Fiorucci \& Munari (2003):

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{J}}=0.887 \mathrm{E}(\mathrm{~B}-\mathrm{V}) \\
& \mathrm{A}_{\mathrm{H}}=0.565 \mathrm{E}(\mathrm{~B}-\mathrm{V}) \\
& \mathrm{A}_{\mathrm{Ks}}=0.382 \mathrm{E}(\mathrm{~B}-\mathrm{V})
\end{aligned}
$$

We present the results of our reddening study in Table 8.

With the corrected JHK magnitudes, the dereddened optical magnitudes and the colors in the BVRI Johnson-Cousins photometric system were obtained. We used the color transformations presented by Bilir et al. (2008) in a recent work. The (B $\mathrm{V})_{0}$ and $\left(\mathrm{R}-\mathrm{I}_{\mathrm{C}}\right)_{0}$ colors are calculated as a function of $(\mathrm{J}-\mathrm{H})_{0}$ and $\left(\mathrm{H}-\mathrm{K}_{\mathrm{S}}\right)_{0}$ by the equations:

$$
\begin{aligned}
& (\mathrm{B}-\mathrm{V})_{0}=1.622(\mathrm{~J}-\mathrm{H})_{0}+0.912\left(\mathrm{H}-\mathrm{K}_{\mathrm{S}}\right)_{0}+0.044 \\
& (\mathrm{R}-\mathrm{I})_{0}=0.954(\mathrm{~J}-\mathrm{H})_{0}+0.593\left(\mathrm{H}-\mathrm{K}_{\mathrm{S}}\right)_{0}+0.025
\end{aligned}
$$

The average of the results obtained with the following formulae give us the standard V magnitude:

$$
\begin{aligned}
& (\mathrm{V}-\mathrm{J})_{0}=1.210(\mathrm{~B}-\mathrm{V})_{0}+1.295(\mathrm{R}-\mathrm{I})_{0}-0.046 \\
& (\mathrm{~V}-\mathrm{H})_{0}=1.816(\mathrm{~B}-\mathrm{V})_{0}+1.035(\mathrm{R}-\mathrm{I})_{0}+0.016 \\
& \left(\mathrm{~V}-\mathrm{K}_{\mathrm{S}}\right)_{0}=1.896(\mathrm{~B}-\mathrm{V})_{0}+1.131(\mathrm{R}-\mathrm{I})_{0}-0.004
\end{aligned}
$$

Note: the numerical values of the coefficients of the above five transformations are related with the total sample of stars studied by Bilir et al., without taking into account the metallicity.

Next, the $\left(\mathrm{V}-\mathrm{I}_{\mathrm{C}}\right)_{0}$ color index is derived by means of the Dough West's transformation as a function of the (J - Ks) ${ }_{0}$ color index (http://members.aol.com/ dwest61506/page72.html). This formula assumes an error of 0.05 mag . and is valid in the range $[-0.1<(\mathrm{J}-$ $\left.\left.\mathrm{K}_{\mathrm{S}}\right)<0.8\right]$ :

|  | 2MASS original data |  |  | Colour excess and total absorption |  |  |  |  |  |  | De-reddened 2MASS photometry |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Star | $J$ | H | $K_{S}$ | $b$ | $E$ $(B-V){ }_{\infty}$ | $\begin{gathered} E \\ (B-V)_{0} \end{gathered}$ | $\boldsymbol{A}_{V}$ | $\boldsymbol{A}_{\boldsymbol{J}}$ | $\boldsymbol{A}_{H}$ | $A_{K s}$ | $J_{0}$ | $H_{0}$ | $\left(K_{S}\right)_{0}$ |
| A | 9.950 | 9.410 | 9.227 | +1.875 | 1.076 | 0.025 | 0.079 | 0.022 | 0.014 | 0.010 | 9.928 | 9.396 | 9.217 |
| B | 10.037 | 9.447 | 9.227 | +1.869 | 1.084 | 0.023 | 0.071 | 0.020 | 0.013 | 0.009 | 10.017 | 9.434 | 9.218 |

Table 8: Colour excess and total absorption for MRI 4

## CCD Double-Star Measurements at Observatorio Astronómico Camino de Palomares ...

| Star | $(B-V)_{0}$ | $(R-I)_{0}$ | $\left(V-I_{C}\right)_{0}$ | $(J-H)_{0}$ | $\left(H-K_{S}\right)_{0}$ | $\left(J-K_{S}\right)_{0}$ | $V_{0}$ | $B_{0}$ | $\left(I_{C}\right)_{0}$ | $M_{K s}$ | $M_{V}$ | $V-M_{V}$ | d | SpT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A | 1.070 | 0.638 | 1.210 | 0.532 | 0.178 | 0.710 | 11.994 | 13.063 | 13.204 | 4.419 | 7.199 | 4.745 | 91 | K4V |
| B | 1.186 | 0.709 | 1.351 | 0.583 | 0.216 | 0.798 | 12.308 | 13.494 | 13.660 | 4.679 | 7.769 | 4.539 | 81 | K6V |

Table 9: Results of the photometric study of MRI 4

$$
\left(\mathrm{V}-\mathrm{I}_{\mathrm{C}}\right)_{0}=1.6032\left(\mathrm{~J}-\mathrm{K}_{\mathrm{S}}\right)_{0}+0.0715
$$

Lastly, we calculate the absolute magnitude, $\mathrm{M}_{\mathrm{KS}}$, according to the equation of Henry et al. (2004), which is useful for an ( $\mathrm{V}-\mathrm{K}_{\mathrm{s}}$ ) applicable range of 2.24-9.27:

$$
\begin{gathered}
\mathrm{M}_{\mathrm{KS}}=0.00959\left(\mathrm{~V}-\mathrm{K}_{\mathrm{S}}\right)^{4}-0.23953\left(\mathrm{~V}-\mathrm{K}_{\mathrm{S}}\right)^{3}+ \\
2.05071\left(\mathrm{~V}-\mathrm{K}_{\mathrm{S}}\right)^{2}-5.9823\left(\mathrm{~V}-\mathrm{K}_{\mathrm{S}}\right)+9.77683
\end{gathered}
$$

In a last step, the definitive photometric distances and the spectral types (spectral distribution of energy in BVIJHK bands) are derived. We have summarized the photometric results of our study in Table 9.

Because no proper motions were found in the literature, a preliminary estimation was carried out. Using old positions measured over a DSS plate (epoch 1954.747) and those from the Two Micron All Sky Survey (2MASS) (epoch 1999.737), the proper motions of the components were estimated. The DSS plate was measured using the $f v$ software provided by HEARSAC. The temporal baseline between the two positions expands 44.9901 years on the whole and the results are very similar for both components. The values we have obtained are listed in Table 10. In addition, the joint shift of the two components in the expected position angle was corroborated visually by means of the blink feature provided by Aladin. According to this, if our estimation is correct, the applied charac-
terization criteria indicates that MRI 4 has a $73 \%$ probability of being a physical pair.

## MRI 3AD

This is a star of magnitude $\mathrm{V}=12.011$ that could be a new distant component for the HO 319 triple system. Its position (J2000) is RA $=03 \mathrm{~h} 21 \mathrm{~m} 15.04 \mathrm{~s}$ and Dec $=+45^{\circ} 23^{\prime} 05.5 "$ and is separated $155 "$ from the A component $(\mathrm{V}=7.41)$. Aladin seemed to indicate the D component has a proper motion very similar to that of the main star. Fortunately, values of proper motions appear in the literature. These values are all very similar. They are also within the range of the errors (Table 11). The AD pair, as can be gathered from the other three sets of relative astrometric measurements for several epochs (along a baseline of 111.56 years) has remained stable (Table 12). This is as expected for a common proper motion pair. The system is very close to the galactic plane (A: $b=-$ 9.857; B: $b=-9.883^{\circ}$ ) so the photometry of the components was corrected by reddening and extinction [A component: $\mathrm{E}(\mathrm{B}-\mathrm{V})_{\mathrm{o}}=0.115$ and $\mathrm{Av}=0.36 ; \mathrm{D}$ component: $\mathrm{E}(\mathrm{B}-\mathrm{V})_{o}=0.108$ and $\left.\mathrm{Av}=0.33\right]$.

After this step, we obtained spectral types B9III and F 4 V for A and D components by means of the spectral distribution of energy in BVIJHK bands. In accordance with several sources in literature, the A component is a B8 star. Other more modern refer-

| Sourc e | Epoch |  | RA ( ${ }^{\circ}$ ) | Dec ( ${ }^{\circ}$ ) | $\begin{gathered} \mu \alpha \\ \left(\text { mas } \cdot \mathrm{yr}^{-1}\right) \end{gathered}$ | $\begin{gathered} \mu \delta \\ \left(\text { mas } \cdot \mathrm{yr}^{-1}\right) \end{gathered}$ | $\theta$ | $\rho$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DSS | 1954.747 | A | 0.21402 | 60.3856819 | +64 | -42 | 0.400 | 21.251 |
|  |  | B | 0.2141 | 60.3915847 |  |  |  |  |
| 2MASS | 1999.737 | A | 0.214822 | 60.385159 | +57 | -40 | $\begin{gathered} 359.97 \\ 5 \end{gathered}$ | 21.352 |
|  |  |  | 0.214817 | 60.391090 |  |  |  |  |
| OACP | 2007.6386 | CCD measures |  |  |  |  | 359.78 | 21.375 |

Table 10: Proper motions and relative astrometry of MRI 4

## CCD Double-Star Measurements at Observatorio Astronómico Camino de Palomares ...

| Source / Compo- <br> nent | $\boldsymbol{\mu \alpha}$ <br> $\left(\mathbf{m a s} \cdot \mathbf{y r}^{-1}\right)$ | $\boldsymbol{\sigma}(\boldsymbol{\mu} \boldsymbol{\alpha})$ <br> $\mathbf{\pm}$ | $\boldsymbol{\mu \boldsymbol { \delta }}$ <br> $\left(\mathbf{m a s} \cdot \mathbf{y r}^{-1}\right)$ | $\boldsymbol{\sigma}(\boldsymbol{\mu \boldsymbol { \delta } )}$ <br> $\mathbf{\pm}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | A | -4.1 | 0.9 | -1.5 | 0.9 |
|  | D | -4.3 | 3.1 | -1.9 | 2.9 |
| USNOB-1.0 | A | -6 | -- | -2 | -- |
|  | D | -6 | -- | -2 | -- |
| ASCC-2.5 | A | -3.62 | 1.16 | -1.22 | 0.98 |
|  | D | -4.31 | 3 | -1.79 | 2.89 |
| UCAC-2 | A | -4.33 | 0.89 | -2.52 | 0.8 |
|  | D | -5.1 | 0.7 | -1.5 | 0.7 |

Table 11: Proper motions of MRI 3AD from the literature
ences indicate A is a B9.5 Ib-II star (Abt, 1985; Reed, 2005; Skiff, 2007), though. In any case its giant character is confirmed.

Hipparcos recorded a parallax of moderate precision for HO 319A, $\pi=2.29 \pm 1.05$ mas, placing it at a distance of about 440 parsec. Within the errors, this value is consistent with the 517.6 parsec obtained photometrically in our study. For the D component, we have found a photometric distance of about 487.5 parsecs. Judging from the distance modulus, the probability for the two stars to be at the same distance from us rises to $99 \%$. Though not definite, our results indicate there could be a high probability of a physical relation between the new component and the main system.
MRI 2
MRI 2 was found near STT 312 (eta Dra). The
main component is in position (J2000) RA $=16 \mathrm{~h}$ 23 m 30.84 s and $\mathrm{Dec}=+61^{\circ} 31^{\prime} 37.8^{\prime \prime}$. The V magnitudes of the components were extracted from the NOMAD database (source Yb6, which is not yet published by USNO). They are 13.660 and 13.940 for A and B respectively. NOMAD also offers photometric data in the B and R bands (USNOB1.0). The infrared photometry measured by 2MASS gives magnitudes A: J-H-K $=12.754-$ 12.458-12.449 and B: J-H-K $=12.968$-12.69812.645. Nevertheless, we decided to use the same procedure carried out with MRI 4, that is, to calculate the visual photometry on the basis of the NIR photometry of 2MASS.

The same reddening $\left[\mathrm{E}(\mathrm{B}-\mathrm{V})_{o}=0.019\right.$ and $\mathrm{Av}=$ $0.06]$ for the two stars was obtained. An identical spectrum F7V was derived for both stars. The luminosity classes were verified by means of $\mathrm{JH} / \mathrm{HK}$ dou-ble-color diagrams as well as Reduced-Proper-Motion diagrams.

According to the procedure given by Reid \& Murray (1992), the absolute visual magnitudes (Mv) were derived:

$$
\mathrm{M}_{\mathrm{v}}=0.427+8.121(\mathrm{~B}-\mathrm{V})-1.777(\mathrm{~B}-\mathrm{V})^{2}
$$

The results obtained are consistent with the theoretical value ( $\mathrm{Mv}_{v}=3.8$ ) for an F 7 V spectrum found in the standard conversion tables for spectrummagnitude. Our values are: A component, $\mathrm{M}_{\mathrm{V}}=4.17$

| Source | Epoch |  | $\begin{gathered} \text { RA } \\ \text { HH MM SS.S } \end{gathered}$ | $\begin{aligned} & \text { RA } \\ & \left(^{\circ}\right) \end{aligned}$ | $\begin{gathered} \text { Dec } \\ \circ \end{gathered}$ | $\begin{gathered} \text { Dec } \\ \left({ }^{\circ}\right) \end{gathered}$ | $\theta$ | $\rho$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AC2000. 2 | 1896.0745 | A | 032129.838 | 50.37433 | +45 2313.44 | +45.380667 | 267.263 | 155.422 |
|  |  | D | 032115.102 | 50.31293 | +45 2305.96 | +45.3849889 |  |  |
| ASCC-2 . 5 | 1991.25 | A | 032129.80431 | 50.37418461 | +45 $23 \quad 13.40272$ | +45.38705631 | 267.177 | 155.467 |
|  |  | D | 032115.06522 | 50.31277176 | +45 $23 \quad 05.68673$ | +45.38491298 |  |  |
| 2MASS | 1999.8740 | A | 032129.79336 | 50.374139 | +45 2313.2576 | +45.387016 | 267.165 | 155.631 |
|  |  | D | 032115.03888 | 50.312662 | +45 $23 \quad 05.4996$ | +45.384861 |  |  |
| OACP | 2007.6362 | CCD measures |  |  |  |  | 267.100 | 155.649 |

Table 12. Additional relative astrometry of MRI 3AD.

## CCD Double-Star Measurements at Observatorio Astronómico Camino de Palomares ...

|  | 2MASS original data |  |  | Colour excess and total absorption |  |  |  |  |  |  | De-reddened 2MASS photometry |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Star | $J$ | H | $K_{S}$ | b | $E(B-V)_{\infty}$ | $E(B-V)_{0}$ | $\boldsymbol{A}_{V}$ | $\boldsymbol{A}_{J}$ | $\boldsymbol{A}_{H}$ | $A_{\text {Ks }}$ | $J_{0}$ | $\mathrm{H}_{0}$ | $\left(K_{S}\right)_{0}$ |
| A | 12.754 | 12.458 | 12.449 | +41.0004 | 0.019 | 0.018 | 0.06 | 0.017 | 0.011 | 0.007 | 12.737 | 12.447 | 12.442 |
| B | 12.968 | 12.698 | 12.645 | +41.0018 | 0.019 | 0.018 | 0.06 | 0.017 | 0.011 | 0.011 | 12.951 | 12.687 | 12.638 |

Table 13: Colour excess and total absorption for MRI 2

| Star | $(B-V)_{0}$ | $(R-I)_{0}$ | $\left(V-I_{C}\right)_{0}$ | $(J-H)_{0}$ | $\left(H-K_{S}\right)_{0}$ | $\left(J-K_{S}\right)_{0}$ | $V_{0}$ | $B_{0}$ | $\left(I_{C}\right)_{0}$ | $M_{K s}$ | $M_{V}$ | $V-M_{V}$ | d | SpT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A | 0.519 | 0.308 | 0.552 | 0.290 | 0.005 | 0.295 | 13.74 | 14.26 | 13.19 | 2.872 | 4.17 | 9.57 | 591.6 | K7V |
| B | 0.511 | 0.302 | 0.568 | 0.264 | 0.049 | 0.313 | 13.93 | 14.44 | 13.36 | 2.818 | 4.11 | 9.82 | 619.4 | K7V |

Table 14: Results of the photometric study of MRI 2
and B component, $\mathrm{M}_{\mathrm{v}}=4.11$. These figures place both stars at practically the same distance from the Sun: 591.6 pc and 619.4 pc , in that order, for A and B components. See Tables 13 and 14 for details.

Another two pairs of theta/rho measurements were obtained by using the positions of APM and 2MASS catalogs for epochs 1954.491 and 1999.3182 (Table 15). These measurements are congruent with the one we have carried out in the OACP and show the pair has been stable during the 52 years that have passed. This fact seems to indicate the components are moving together in the space and may have a common origin.

The annual relative proper motion of the B component with regard to the primary star was calculated by means of these three sets of Theta/Rho. The result
of this calculation was 6 mas $\cdot$ year $^{-1}$. In addition to this, the proper motions of both components were estimated by using the positions of 1954 and 1999 (A: $\mu \alpha=16$ mas $\cdot$ year $^{-1}$ and $\mu \delta=-4$ mas $\cdot$ year $^{-1}$; B: $\mu \alpha=9$ mas year ${ }^{-1}$ and $\mu \delta=-0.001$ mas year ${ }^{-1}$ ). The small motions in RA and Dec (in the same order of magnitude for both components) show they move together in the same direction and at comparable speeds. Moreover, the relative motion of this system is also consistent with these values, being within the margins of error, thus showing how good the estimation is.

Finally, the characterization criteria indicate a moderate probability of $50 \%$ of physical relation due to the small differences in the estimated proper motions. Nevertheless, other empirical criteria cause us to consider the system as physical. In order to check

| Sourc e | Epoch |  | $\begin{gathered} \text { RA } \\ \text { HH MM SS.S } \end{gathered}$ | $\begin{aligned} & \text { RA } \\ & \left(^{\circ}\right) \end{aligned}$ | Dec | Dec $\left(^{\circ}\right)$ | $\theta$ | $\rho$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| APM | 1954.4910 | A | 162330.789 | 245.878287 | +61 3138.4 | +61.527234 | 177.176 | $\begin{gathered} 18.00 \\ 2 \end{gathered}$ |
|  |  | B | $1623 \quad 30.913$ | 245.878806 | +61 3120.06 | +61.522239 |  |  |
| 2MASS | 1999.3182 | A | 162330.83808 | 245.878492 | +61 3137.848 | +61.527180 | 177.675 | $\begin{gathered} 17.85 \\ 6 \end{gathered}$ |
|  |  | B | 162330.93936 | 245.878914 | +61 3120.0064 | +61.522224 |  |  |
| OACP | 2007.6032 | CCD measures |  |  |  |  | 177.440 | $\begin{gathered} 17.71 \\ 5 \end{gathered}$ |

Table 15: Additional relative astrometry for MRI

## CCD Double-Star Measurements at Observatorio Astronómico Camino de Palomares ...

the evolution of this system in the future, more measures of relative astrometry are needed.

The three new pairs are shown in Figures 4,5 and 6.


Figure 4. MRI 4. New pair in the vicinity of STTA254. As a curiosity, the superimposed diagram from a DSS plate shows the variability of STTA254A (at minimum).


Figure 5. MRI 3AD. A new distant CPM companion for the triple system HO 319. The superimposed diagram represents the proper motion vectors for 10,000 years. Note: also, the pair located at the right top corner has been studied by us and it is optical.

$\begin{array}{ll}\text { Figure 6. MRI } & \text { 2. New pair located nearby of STT } 321 \mathrm{AB} \text {. }\end{array}$

Journal of Double Star Observations

## CCD Double-Star Measurements at Observatorio Astronómico Camino de Palomares ...

## Notes

In the following, the acronyms "CPM" and "Relfix" mean Common Proper Motion and Relatively Fixed.

1. STTA254AB. In Cas. Similar proper motions. Relfix. A component (WZ Cas) is a semiregular variable type $\mathrm{SRb}, \mathrm{P}=186$ days.
STTA254AC: Similar proper motions. Relfix. STTA254AD: Incompatible proper motions. Optical pair.
STTA254BD: Incompatible proper motions. Optical pair.
2. MRI 4. In Cas. New pair. Nearby of STTA254. See "Discoveries" and Figure 4.
3. HJ 3237. In Cep. Incompatible proper motions. Optical pair.
4. H 5 32Aa-B. In And (alpha And). A is a spectroscopic binary, P = 96.7 days. Incompatible proper motions. Optical pair. Included in the Catalog of Rectilinear Elements.
5. BU 254 AB . In Cas. Theta: dispersion in the historical measures but the tendency is stable. Rho stable.
BU 254AC: Theta and Rho slightly decreasing.
6. STTA 1. In Cep. Incompatible proper motions. Optical pair.
7. HJ 1008AB. In Cas. Relfix.

ABH 2AD: Theta slightly decreasing. Rho slightly increasing.
ABH 2AE: Only three official measures. Relfix. ABH 2AF: Only three official measures. Relfix. ES 1BC: Relfix.
8. STF 11. In Cep. CPM. Stable pair.
9. BU 392. In Cas. Relfix.
10. BU 1310AC. In And. High proper motion of A component. Theta decreasing. Rho increasing.
BU 1310AD: Theta increasing. Rho decreasing.
11. STF 38. In Cas. CPM. Calibration pair.
12. HO 623. In And. Relfix. Rho slightly decreasing.
13. BU 491AB. In And (delta And). A is a spectroscopic binary.
14. STF 46. In Psc ( 55 Psc). CPM.
15. STTA 5. In Cas. Incompatible proper motions. Optical pair.
16. STF 47AB. In And. CPM.

BU 1348AC: Theta and Rho increasing. BU 1348BC: Theta and Rho increasing.
17. H5 18AD. In Cas. Subsystem of BU 1349 (alpha Cas). Also HJ 1993. Theta and Rho increasing. Incompatible proper motions. Optical pair.
18. STF 50. In Cas. Incompatible proper motions. Optical pair. Included in the Catalog of Rectilinear

Elements.
19. STFA 1. In And. Optical pair. Included in the Catalog of Rectilinear Elements.
20. STF60AB. In Cas. (eta Cas). Orbital pair. See Table 4 for residuals.
21. STF 104. In And. Similar proper motions. Relfix. Rho slowly increasing.
22. STF 108. In And. Similar proper motions. Relfix. A is a spectroscopic binary.
23. WEI 3. In And. High CPM. Relfix. Theta and Rho slightly increasing.
24. STF 128. In Cas. Also STI 227. Theta increasing. Rho decreasing.
25. STI 228. In Cas. Only three official measures. Relfix.
26. STF 132AB. In Psc. High proper motion of A component. A is a spectroscopic binary, $\mathrm{P}=36.6$ days. Optical pair. Included in the Catalog of Rectilinear Elements.
STF 132AC: Theta increasing. Rho decreasing. Optical pair.
STF 132AD: Theta and Rho decreasing. Optical pair.
STF 132DF: Only four official measures. Relfix.
27. STF 131AB. In Cas. Inside of M 103. CPM. Fixed.

STF 131AC: Theta stable. Rho very slightly decreasing.
STF 131BC: Theta increasing and Rho decreasing.
FLE 2AD: Only three official measures. The first measure by the discoverer disagrees. Since 1996 the pair appears to be stable.
FLE 2AE: Fixed.
28. STF 136AB. In Psc. Similar proper motions. Calibration pair. Relfix.
29. STF 180AB. In Ari (gamma Ari). CPM. A is a variable of the Alpha CVn type.
STF 180AC: Incompatible proper motions. Optical pair.
STF 180BC: Incompatible proper motions. Optical pair.
30. S 404AB. In And. Incompatible proper motions.

Optical pair. Included in the Catalog of Rectilinear Elements.
S 404BC: Only two official measures. Rho increasing.
31. STF 197AB. In Tri. Incompatible proper motions. Optical pair. Included in the Catalog of Rectilinear Elements.
STF 197AC: only one official measure (1909).
Confirmed. Due to de high proper motion of A component Theta and Rho increasing ( $6^{\circ}$ and $10^{\prime \prime}$ ).

Journal of Double Star Observations

## CCD Double-Star Measurements at Observatorio Astronómico Camino de Palomares ...

Optical pair.
32. STF 205 A-BC. In And (gamma And). CPM. BC pair is the orbital system STT 38BC, not split by our instrument. Also, B is a spectroscopic binary.
33. STF 219. In tri. CPM.
34. STF 222. In And (55 And). Calibration pair. Stable.
35. STF 246. In Tri. High CPM.
36. HJ 653. In Tri. Rho increasing.
37. STTA28. In Cas. CPM.
38. HJ 1123. In Per. Inside of M34. Theta decreasing. Rho increasing.
39. STF 292. In Per. CPM. Calibration pair.
40. STI1936. In Per. Theta increasing. Rho decreasing.
41. STF 297Aa-B. In Per. Calibration pair.

STF 297Aa-C: Relfix.
STF 297BC: Relfix.
42. STI1937. In Per. Only two official measures. Relfix. In the same field of STI1936.
43. STF301. In Per. CPM. A is a long-period spectroscopic binary, $\mathrm{P}=675$ days.
44. STF 307AB. In Per (eta Per). CPM. A is a spectroscopic binary.
STF 307AC: Relfix.
WAL 19AF: only one official measure. Confirmed?
The most probable candidate for F component is located at (J2000) $025044.71+555435.8$ (Vmag 10.82 from NOMAD). According to this, Theta has decreased $15.3^{\circ}$ since the first measure by Wallenquist in 1944. Our Rho measure is very similar to the original one. A blink with Aladin by using DSS and 2MASS plates do not confirm this great shift of Theta. We have not consulted the catalog where the author published his measure; because of it we think that is a mistake of the discoverer or of transcription.
WAR 1CD: Relfix.
45. STI 396AB. In Cas. Relfix.

SIN 5AD: Only two official measures. Stable.
SIN 5AF: Only one official measure. Confirmed.
Our Rho measure is 13 " smaller than the original one. Theta is stable.
SIN 5AG: Only two official measures. Stable pair.
46. ES 558. In Per. CPM. Stable pair.
47. STF 364. In Per. CPM. Physical pair.
48. HO 319AB. In Per. Relfix.

HO 319AC: Only one official measure (1914). Confirmed. Change in angle (decreasing): $5^{\circ}$. Change in distance (decreasing): 8".

MRI 3AD: New component. See "Discoveries" and Figure 5. D is TYC 33112401.
49. STF 391. In Per. Relfix.
50. STT 55AB. In Per. Theta and Rho increasing. A 982BC: Difficult. Elongated shape. Our Theta measure is about $6^{\circ}$ greater than the last official measure from 2MASS (1999)! Rho matches well.
A 982BD: Only two official measures. Relfix.
A 982BE: Only one official measure (1916).
Confirmed. Relfix.
A 982EF: Only one official measure (1916).
Confirmed. Relfix.
51. STT 56AB. In Per. Incompatible proper motions. Optical pair. Included in Catalog of Rectilinear Elements.
WAL 23AC: Only two official measures. Discrepancy between the three measures. By means of Aladin, our conclusion is that the last measure (1999) corresponds surely to a weak star ( $\mathrm{V}=16.76$, GSG 2.3 NCC8056318) nearby to the real C component. According UCAC-2 catalog, the proper motion of C component is $\mathrm{pmRA}=44.1$ and pmDec $=-3.5$ (mas). These values are incompatible with those of the primary, so the AC pair may be optical, too.
52. ES 560. In Per. CPM. Physical pair.
53. STF 464AB. In Per (zeta Per). A is a spectroscopic binary. Relfix.
STF 464AC: Relfix.
STF 464AD: Rho increasing.
STF 464AE: Relfix.
STF 464 CD : Rho increasing.
STF 464CE: Relfix.
STF 464DE: High proper motion of D component: the stars are approaching.
SLV 2BC: Slow approximation.
SLV 2BD: Theta decreasing. Rho increasing.
54. STF 469. In Per. CPM.
55. STF479AB. In Tau. CPM.

STF 479AC: Incompatible proper motions. Optical pair.
56. STF 485(*). In Cam. Inside NGC 1502. A complex multiple system with many historical errors. See WDS Notes for details. There are 28 pairs with the same WDS identifier. We reported measures for 25 pairs on the whole. The others three unreported pairs are: ES 2603 AB , great Delta-M, overlapping; CHR 209Aa, too close and HZG 2 JK , the K component not have been identified in our images. This pair has only two official measures. The last of them came from 2MASS (1999).

## CCD Double-Star Measurements at Observatorio Astronómico Camino de Palomares ...

Our image of the field in Aladin does not show any possible candidate around the $J$ star. We think the measure of 2MASS is erroneous and the K component is not identified. See image below for identification of the components (Figure 7).


Figure 7. In this OACP image are labeled all the components of this complex multiple system. An exception: we have not found the component K in the surroundings of the J component.

The comments about our measures are the following:
STF 485AC: Relfix.
STF 485AD: Theta increasing. Rho stable.
STF 485AE: Calibration pair. Twins BOIII. Stable with slightly increasing of Theta.
STF 485AF: Relfix.
STF 484AG: Relfix.
STF 484AH: Neglected. Not measured since 1908.
Rho decreasing. Theta increasing.
STF 484AI: Rho slightly decreasing. Theta slightly increasing.
STF 485AL: Only one official measure (1902).
Confirmed. Rho increasing (8.5").
STF 485AO: Stable.
HZG 2AN: Relfix.
WSI 20AQ: Only three official measures. Relfix.
STF 485EC: Theta and Rho slightly increasing.
STF 485EF: Relfix.
STF 485EG: Relfix.
STF 484EH: Relfix.
STF 484EI: Relfix.
WSI 20EQ: Only three official measures. Relfix.
WSI 20FQ: Only three official measures. Relfix.

STF 484GH: Relfix.
STF 484GI: Theta slightly increasing.
STF 484HI: Theta stable. Rho decreasing. Great dispersion in the historical measures.
HZG 2IJ: Only two official measures. Stable since 1999 (measure of 2MASS).
HLM 3LM: Theta slightly increasing.
HZG 2LO: Relfix.
HZG 2OP: Relfix.
57. STF 494. In Tau. Twins A8IV. Stable.
58. STF 523AB. In Tau. Relfix.

STF 523AC: Incompatible proper motions. Optical pair.
59. STF 534AB. In Tau ( 62 Tau). CPM. Calibration pair. B is the close double BAG $13 \mathrm{Ba}, \mathrm{Bb}$.
60. STF 559. In Tau. Incompatible proper motions but the system is stable.
61. STF 613AB. In Aur. Incompatible proper motions. Optical pair. Included in the Catalog of Rectilinear Elements.
STF 613AC: Theta and Rho decreasing.
STF 613BC: Relfix.
62. STT 92AB. In Aur. Orbital. See Table 4 for residuals.
63. STT 96. In Aur. Only five measures but appear to be stable.
64. STT 101. In Aur. Difficult, great Delta-M. Relfix.
65. STF 670Aa-Bb. In Tau. Difficult. Relfix.
66. STF 674. In Tau. CPM. A is the Algol-type binary CD Tau, $\mathrm{P}=3.44$ days.
67. J 1818. In Tau. Relfix.
68. STF 669. In Aur. Similar proper motions. Relfix.
69. STF 680. In Aur. CPM. WDS Note: Spectrum composite; G8II-III+G1IV-V (BSC).
70. STF 681. In Aur. The system is stable. The proper motion of B is surely erroneous. More details about this system coming soon.
71. STT 104. In Aur. Optical pair. Included in the Catalog of Rectilinear Elements.
72. HU 447. In Tau. Great dispersion in Theta (historical measures). Rho slowly increasing.
73. STF 718. In Aur. CPM. STF 718AC: Probably optical.
74. STF 738AB. In Ori (lambda Ori). CPM.
75. STF 742. In Tau. Orbital. See Table 4 for residuals.
76. STF 764. In Aur. CPM. Calibration pair. A is a spectroscopic binary.
77. BU 14. In Aur. Difficult, great Delta-M. Theta decreasing.
78. STF1694AB. In Cam. Similar proper motions.

Journal of Double Star Observations

## CCD Double-Star Measurements at Observatorio Astronómico Camino de Palomares ...

Relfix. B is a spectroscopic binary, spectrum A0V+A2V.
WAL 63AC: Only two official measures. Theta and Rho decreasing.
79. STF 1732AB. In UMa. CPM. B is the close double BU 1434BC.
80. STF1744AB. In UMa (Mizar). CPM.
81. STF1850. In Boo. CPM. B is a spectroscopic binary.
82. HJ 2728. In Boo (rho Boo). Theta increasing. Rho decreasing. Incompatible proper motions. Optical pair. Included in the Catalog of Rectilinear Elements.
83. SHJ 191. In Boo. CPM. Physical.
84. HDO 143. In UMi (epsilon UMi). A is an Algoltype system. Neglected pair (last measure 1959). Theta decreasing.
85. MRI 2. In Dra. New pair. See "Discoveries" and Figure 6.
86. STFA 35. In Dra (nu Dra). High CPM. Physical pair.
87. STFA 38AD. In Lyr (zeta 2 Lyr). Similar proper motions. Fixed. Physical.
BU 968AC: Theta decreasing. Rho increasing. BU 968AE: Theta Decreasing. Rho slowly increasing.
88. STFA 39AB. In Lyr (beta Lyr). A is the prototype variable of its class. Relfix.
BU 293AE: Relfix.
BU 293AF: Relfix.
BU 293BE: Relfix.
BU 293BF: Theta very slowly decreasing. Rho relfix.
BU 293EF: Only one official measure (without data for Theta). Confirmed.
89. STF2417AB. In Ser (theta Ser). Similar proper motions. Relfix.
STF2417AC: Relfix. Surely Physical.
STF2417BC: Relfix.
90. STT 370AB. In Aql. Similar proper motions.

Calibration pair. B is the Algol-type system V342 Aql. Surely Physical.
STT 370AC: Only two official measures. Relfix.
STT 370BC: Only two official measures. Relfix.
91. STFA 43Aa-B. In Cyg (Albireo). Similar proper motions. Surely physical.
WAL 114Aa-C: Only one official measure (1944). Confirmed. Theta stable. Rho increasing (15").
92. J 133AB. In Aql. Neglected pair (last measure 1959). Poor signal in our images. Rho decreasing. J 133AC: Theta and Rho decreasing.

WAL 115AD: Only one official measure. Confirmed. Incompatible proper motions. Theta increasing and Rho notably decreasing. Optical pair. Note: B component is KUI 92BE. (E component mag 14.5). This pair has only one official measure (1934) and it is registered in the OACP's images with a bad resolution and poor signal. Hence the pair not was measured. Confirmed visually but not measured.
93. STF2558. In Aql. Relfix.
94. STF2567. In Aql. CPM. Same as STF2568. Rho decreasing.
95. STF2583AC. In Aql. The close pair AB is pi Aql. We have measured the AB-C pair. Theta decreasing. Rho increasing.
96. STF2590AB. In Aql. CPM. Relfix. A is variable of BE type.
STF2590CD: Only one official measure (1909).
Confirmed. Rho increasing. Our measure is congruent with other one derived by means of the astrometry from CMC14 (epoch 2001.4816): $271.903^{\circ}$ and 8.348".
97. STF2593AB. In Aql. Theta increasing.

STF2593BC: Relfix. Our Theta measure is uncertain and discordant. Rho is congruent.
98. BU 288AC. In Del. Theta and Rho decreasing.

BU 288AD: Relfix with only three official measures.
BU 288AE: Relfix with only three official measures.
99. STF2806Aa-B. In Cep (beta Cep). A is a close double. Rho decreasing.
100. STF2883. In Cep. CPM. Physical.
101. H 4 31AB. In Cep. Incompatible proper motions. Optical pair.
ARN 79AC: CPM.
102. BU 702AB. In Cep (delta Cep). Prototype of the Cepheid variables $\mathrm{P}=5.36$ days. Neglected pair (last measure 1961). Great Delta-M: 7.3 in our images. Stable.
STFA 58AC: CPM. Physical.
103. STF2924AB-C. In Cep. AB close double of high CPM and orbital. Only two official measures. Theta and Rho increasing. Optical pair.
STF2924AB-D: Theta and Rho increasing. Optical pair.
104. BU 706AC. In Cep. Theta decreasing. Rho increasing.
105. STF2923AB. In Cep. CPM. Relfix.

STF2923AC: Only two official measures. Relfix.
106. BU 845AB. In Cep. Theta and Rho increasing.

## CCD Double-Star Measurements at Observatorio Astronómico Camino de Palomares ...

BU 845AC: Theta and Rho increasing.
FOX 269AD: Only two official measures. Rho decreasing.
107. STT 529AB. In Cep. A is the Algol-type system ZZ Cep. Incompatible proper motions. Optical pair.
STT 529AC: CPM. Fixed.
108. STF2985. In And. Calibration pair. B is a BY Dra-type variable, and a double-lined spectroscopic binary, $\mathrm{P}=3.03$ days. Physical.
109. STF2987. In And. High CPM. Difficult, great Delta-M. Physical.
110. HJ 1858. In Peg. Incompatible proper motions. Optical pair. Included in the Catalog of Rectilinear Elements.
111. HJ 1859. In Peg. Relfix.

ARN 26AC: Relfix but incompatible proper motions. Optical pair. A curious case: two systems have been merged. The C component of ARN 26 is the A component of HJ 1858 which is located in the vicinity of HJ 1859. See image below (Figure 8).


Figure 8. Merged systems: the C component of ARN 26 is the A component of HJ 1858
112. FOX 273AD. In And. Subsystem of BU 717 (8 And). Only two official measures. Theta stable. Rho increasing.
113. STF3037AC. In Cas. Because de AB pair in not split by our instrument the measure reported correspond to AB-C. Similar proper motions. Relfix.
STF3037AD: Theta increasing. Rho slowly increasing.

STF3037AE: Relfix.
STF3037AF: Theta slowly increasing. Rho slowly decreasing.
114. STI1222. In Cas CPM. Fixed.
115. BU 1153AB-C. In Cas. In the same field of STT511. The A component is a close double. Theta fastly decreasing.
BU 1153AD. D component is the A component of STT 511. Fixed.
116. STT 511AB. In Cas. Relfix.

STT 511AC. Only two official measures. Fixed.
STT 511AD: Only five official measures. Relfix.

## Conclusions

The results obtained in this first series of Theta/ Rho measurements show that the equipment and the techniques used are suitable for this task. We have verified that our measurements match very well with those from 2MASS (1999) as well as those of Tycho-2 (1991) (logically in the case of pairs fixed or relfix). This fact is a clear indication of the reliability of our procedure.

We have confirmed the existence of 12 pairs that previously had only the discovery measurement. In addition, we have reported measures for 16 pairs with two official measures and for others nine pairs with three official measures, which will serve to check the tendency of the components. Also, a number of neglected pairs have been included.

## Acknowledgements

This research has made use of the Washington Double Star Catalog (WDS), the Catalog of Rectilinear Elements, the Sixth Catalog of Orbits of Visual Binary Stars, the USNO-B1.0 and the UCAC2 maintained at the U.S. Naval Observatory.

This research has made use of The Naval Observatory Merged Astrometric Dataset (NOMAD) at http://www.nofs.navy.mil/nomad/. NOMAD is a simple merge of data from the Hipparcos, Tycho-2, UCAC-2 and USNO-B1 catalogs, supplemented by photometric information from the 2MASS final release point source catalog. The primary aim of NOMAD is to help users retrieve the best currently available astrometric data for any star in the sky by providing these data in one place.

This research has made use of The APMNorth Catalog. http://www.ast.cam.ac.uk/~apmcat/.

This research has made use of the All-sky Compiled Catalog of 2.5 million stars (ASCC-2.5, 2nd version) at http://webviz.u-strasbg.fr/viz-bin/VizieR?source $=I / 280 \mathrm{~A}$.

## CCD Double-Star Measurements at Observatorio Astronómico Camino de Palomares ...

This research has made use of the AC 2000.2: The Astrographic Catalogue on The Hipparcos System. Catalogue of Positions Derived from the Astrographic Catalogue Measures. Positions are from the Hipparcos System (HCRS, J2000.0) at the Mean Epochs of Observation. (http://webviz.u-strasbg.fr/viz-bin/ VizieR?-source=I/275).

This research has made use of the Carlsberg Meridian Catalog 14 (CMC14) (http://vizier.u-strasbg. fr/viz-bin/VizieR?-source=I/304).

This research has made use of the Astrophysics Data System (ADS) in order to consult several professional works. Web Site: http://adswww.harvard.edu/ index.html

This research has made use of data products from the Two Micron All Sky Survey (2MASS), which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/ California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation.

This research has made use of DSS. The Digitized Sky Survey was produced at the Space Telescope Science Institute under U.S. Government grant NAG W-2166. The images of these surveys are based on photographic data obtained using the Oschin Schmidt Telescope on Palomar Mountain and the UK Schmidt Telescope. The plates were processed into the present compressed digital form with the permission of these institutions.

This research has made use of Aladin, an interactive software sky atlas allowing the user to visualize digitized images of any part of the sky, to superimpose entries from astronomical catalogs or personal user data files, and to interactively access related data and information from the SIMBAD, NED, VizieR, or other archives for all known objects in the field. Aladin is particularly useful for multi-spectral crossidentifications of astronomical sources, observation preparation and quality control of new data sets (by comparison with standard catalogues covering the same region of sky). Available at http://aladin.ustrasbg.fr/

This research has made use of the $f v$ software, a tool for viewing and editing any FITS format image or table. It is provided by the High Energy Astrophysics Science Archive Research Center (HEARSAC) at NASA/GSFC. The package is available in: http:// heasarc.gsfc.nasa.gov/docs/software/ftools/fv/

This research has made use of Guide 8.0 astronomical software of Project Pluto. Internet site: http://
www.projectpluto.com/
This research has made use of Astrometrica, an interactive software tool for scientific grade astrometric data reduction of CCD images. The author: Herbert Raab. Internet site: http.//www.astrometrica.at/

Special thanks to Dr. Brian D. Mason for supplying the historical data of many systems discussed in this paper.

Finally, the author is very grateful to Mrs. Teresa Herranz Yuste for the preliminary translation (Spanish-English) of this work.

## References

Abt, H. A., 1985, Visual multiples. VIII - 1000 MK types, Astrophysical Journal Supplement Series (ISSN 0067-0049), vol. 59, p. 95-112

Anthony-Twarog B. J., Twarog B. A., 1994, Reddening estimation for halo red giants using UVBY photometry, Astronomical Journal, 107, No 4, 15771590

Bidelman, W. P., G. P., 1985, Kuiper's spectral classifications of proper-motion stars, Astrophysical Journal Supplement Series (ISSN 0067-0049), vol. 59, p. 197-227

Bilir, S. et al, 2008, Transformations between 2MASS, SDSS and BVRI photometric systems: bridging the near-infrared and optical, Monthly Notices of the Royal Astronomical Society, Vol. 384, Issue 3, pp. 1178-1188

Fiorucci M., Munari U., 2003, The Asiago Database on Photometric Systems (ADPS). II. Band and reddening parameters, Astronomy \& Astrophysics, 401, 781-796

Henry, T.J. et al, 2004, The Solar Neighborhood. X. New Nearby Stars in the Southern Sky and Accurate Photometric Distance Estimates for Red Dwarfs, Astronomical Journal, 128, 2460

Masa, E. R., 2007, SDSS J001708.1-102649.5 \& SDSS J001707.99-102647.3:Serendipitous Discovery of a New Binary System Candidate, Journal of Double Star Observations, Vol.3, No. 1, 34

Reed, S., 2005, Photometry and Spectroscopy for Luminous Stars, http://vizier.cfa.harvard.edu/viz-bin/VizieR?-source=V/125
Leggett, S. K., 1992, Infrared Colors of Low-Mass Stars, Astrophysical Journal Supplement Series, 82, 351-394

CCD Double-Star Measurements at Observatorio Astronómico Camino de Palomares ...

Reid, Neill; Murray, C. A., 1992, High-velocity stars toward the South Galactic CAP, Astrophysical Journal, 103, 514

Schlegel. D. J. et al., 1998, Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds, Astrophysical Journal, v.500, p.525-533
Skiff, B. A., 2007, Catalogue of Stellar Spectral Classifications, On-line data:
http://vizier.cfa.harvard.edu/viz-bin/VizieR?-source=B/mk


# Measurement of Neglected Double Stars with a Mintron Video Camera 

Rafael Benavides Palencia

Obs. Posadas MPC J53
14730 Posadas (Córdoba), Spain
E-mail: rafaelbenpal@gmail.com


#### Abstract

This report contains the theta/rho measurements from 60 neglected double stars systems. For this I used a $28-\mathrm{cm}$ Schmidt-Cassegrain telescope and a Mintron video camera. To use this camera for astronomical intentions first it was necessary to adapt the software to the special size of his detector.


At the beginning of 2007 I decided to do a specific program of doubles that needed updates. To do this, I downloaded the latest version of the Washington Double Star catalog (WDS) and filtered it to show systems with an angular separation greater than 1 " and less than 15 ", that had not been measured since 1991; that is, they had been studied neither by the Hipparcos mission nor by Tycho. A little over fourteen thousand entries were selected; that would be my new observational program.

I used an $\mathrm{f} / 10$ Schmidt-Cassegrain telescope with a 28 cm aperture and a Mintron video camera. The video camera uses a Sony ICX249AL monochrome (black-and-white) sensor, and is very sensitive. The maximum exposure time was 2.56 seconds, though depending on the magnitude of each system, shorter exposure times were sometimes used. A video capture (frame grabber) card was used with the camera to produce $768 \times 576$ pixel still images. Unfortunately, this combination of the $795 \times 596$ pixel sensor and the $768 \times 576$ pixel frame - grabber produces a rescaled image This rescaling must be corrected for using post processing in order for measurements to be correct.

The capture of images was first produced at the primary focus, which yielded a resolution of 0.65 as/ pixel. Also, in most of the cases, images were taken with a 2X Barlow. This configuration resulted in a focal length of 5870 mm at a resolution of .30 arcseconds/pixel.

For the reduction of information I primarily used

Astrometrica version 4.4. With this program, using the UCAC2 catalog when possible, I calculated the absolute astrometry of each star. Later, the program Dobles, developed by Julio Castellano, calculated theta and rho depending on the absolute astrometry. In addition, Astrometrica also calculated the resolution per pixel and the orientation of the image, both necessary in order to perform measurements with the Reduc software. Due to the fact that there were not always sufficient stars to refer to, not all the systems were measured using this method. In these cases, Reduc turned out to be a fundamental tool. However, when possible, every system was measured using both types of software. I want to express my gratitude for the work Florent Losse carried out to make Reduc work despite the re-scaling previously mentioned.

## Description of the Table

When the magnitude appears with two decimals, it is extracted from catalogs, principally from the Tycho-2 Catalog, although I have also used Nomad Catalog, and on occasions I have transformed the aerial map-making of the photometry of the USNOB1.0 to magnitude V. The others, included only for orientation, are calculated by Astrometrica according to the images measured on the basis of the USNOA2.0 catalog in $R$ band without any filter.

The number of the Tycho catalog or GSC is given, as well as the coordinates in J2000.0 epoch, calculated with Astrometrica for the main star.

The spectral classes were calculated primarily on

## Measurement of Neglected Double Stars with a Mintron Video Camera

the basis of JHK photometry of the 2MASS catalog, according to a routine developed by Francisco M. Rica. In many cases, the spectrum is given depending on whether the stars are presumed to be giants or on the main sequence.

All the systems were observed on one single night.

## Acknowledgments

I thank Florent Losse for his work on the Reduc software. Thanks also to Francisco M. Rica Romero for
his help. I also want to thank Juan Luis González Carballo for his help in the translation of this article and his constant encouragement.

## References

Mason, B.D. et al., The Washington Double Star Catalog (WDS) 2006.5, U.S. Naval Observatory.
www.projectpluto.com
http://webviz.u-strasbg.fr/viz-bin/VizieR

| WDS | $\begin{gathered} \text { Designa- } \\ \text { tion } \end{gathered}$ | Mag A | Mag B | Tycho/GSC A | Tycho/GSC B | PA | Sep | Epoch | Coordinates |  |  |  |  |  | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00016+3714 | ALI 472 | 12.2 | 12.2 | 22711913 |  | 249.6 | 9.04 | 2007.764 |  |  | 37.01 | +37 | 14 | 40.7 | 1 |
| $00118+3608$ | BU 1340 | 10.22 | 13.5 | 227215361 |  | 232.7 | 5.06 | 2007.764 | 001 | 11 | 56.47 | +36 | 08 | 54.8 | 2 |
| 00139+6023 | STI 25 | 13.0 | 13.9 | 40141173 |  | 218.8 | 3.42 | 2007.737 | 001 | 13 | 54.73 | +60 | 23 | 19.3 |  |
| 00156+5910 | STI1308 | 11.41 | 12.9 | 36653261 |  | 223.6 | 3.41 | 2007.737 |  |  | 40.13 | +59 | 10 | 15.6 | 3 |
| 00163+1537 | J 1321 | 11.02 |  | 117917311 |  | 105.8 | 2.63 | 2007.795 |  |  |  |  |  |  | 4 |
| 00214+6135 | ES 1937 | 9.90 | 16 | 4015321 |  | 314.0 | 5.52 | 2007.737 | 002 |  | 21.43 | +61 | 33 | 30.1 | 5 |
| 00248+6114 | STI 53 | 13.0 | 12.9 | 40151342 |  | 119.5 | 6.07 | 2007.737 | 002 | 24 | 50.19 | +61 | 14 | 25.3 | 6 |
| 00530+6358 | STI 135 | 11.00 | 14.8 | 402514661 |  | 162.0 | 4.13 | 2007.740 |  | 53 | 00.32 | +63 | 57 | 33.2 | 7 |
| 00581+3944 | MLB 972 | 13.3 | 14.5 | 28021074 |  | 286.2 | 5.41 | 2007.732 | 0058 | 58 | 03.05 | +39 | 44 | 55.4 | 8 |
| 01013+3704 | TDS1720 | 11.55 | 11.63 | 22893421 |  | 244.9 | 2.48 | 2007.732 |  |  |  |  |  |  | 9 |
| 01024+3958 | MLB 811 | 12.52 | 13.3 | 28031842 |  | 202.1 | 7.18 | 2007.732 |  |  |  |  |  |  | 10 |
| 01040+6325 | STI 170 | 11.87 | 13.9 | 40219891 |  | 184.9 | 7.72 | 2007.740 | 01 | 03 | 56.32 | +63 | 25 | 17.5 | 11 |
| 01051+3814 | J 1804 | 11.06 | 12.8 | 279910181 |  | 309.7 | 5.22 | 2007.732 |  | 05 | 05.95 | +38 | 14 | 27.4 | 12 |
| 01076+2354 | POU 102AB | 11.85 |  | 1747648 |  | 110.8 | 4.37 | 2007.833 |  |  |  |  |  |  | 13 |
| 01185+4018 | MLB 736 | 12.95 | 14.2 | 28041875 |  | 65.6 | 8.10 | 2007.923 |  | 18 | 31.28 | +40 | 17 | 46.0 | 14 |
| 01248+6222 | STI 211 | 12.2 | 12.24 |  | 403414441 | 279.0 | 13.13 | 2007.740 |  |  | 42.15 | +62 | 22 | 27.4 | 15 |
| 01254+3938 | MLB 812AB | 12.64 | 13 | 28171107 |  | 237.5 | 5.34 | 2007.923 | 012 | 25 | 25.29 | +39 | 37 | 37.9 | 16 |
| 01270+3742 | ES 2449 | 11.74 | 13 | 28131132 |  | 186.1 | 6.56 | 2007.923 | 01 | 27 | 02.72 | +37 | 43 | 06.7 | 17 |
| 01288+6318 | MLB 328 | 11.94 | 13.5 | 40357851 |  | 109.0 | 2.94 | 2007.740 | 012 | 28 | 48.08 | +63 | 18 | 22.6 | 18 |
| 01295+6317 | MLB 329AB | 11.46 | 12.5 | 4035571 |  | 347.1 | 3.10 | 2007.740 | 012 | 29 | 23.04 | +63 | 16 | 58.8 |  |
| 02045+3137 | SEI 23 | 12.78 | 13.15 | 23081511 |  | 255.8 | 28.08 | 2007.765 | 02 | 04 | 40.50 | +31 | 38 | 09.9 | 19 |
| 02115+3102 | MLB1034 | 10.80 | 13.7 | 230910931 |  | 285.2 | 11.56 | 2007.765 |  |  | 28.98 | +31 | 02 | 37.7 | 20 |

Measurement of Neglected Double Stars with a Mintron Video Camera

| WDS | Designation | Mag A | Mag B | Tycho/GSC A | Tycho/GSC B | PA | Sep | Epoch | Coordinates |  |  |  |  | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 02157+2957 | MLB 738 | 11.56 | 13.8 | 17774471 |  | 274.1 | 8.83 | 2007.765 | $02 \quad 15$ | 40.91 | +29 | 57 | 00.0 | 21 |
| $02160+2940$ | MLB 740 | 11.71 | 14.0 | 177714581 |  | 338.3 | 6.39 | 2007.765 | 0216 | 01.65 | +29 | 40 | 06.7 | 22 |
| 02160+3044 | MLB 739 | 11.58 | 13.1 | 231013541 |  | 129.7 | 15.36 | 2007.765 | 0216 | 01.64 | +30 | 44 | 06.6 | 23 |
| $03068+3918$ | MLB 818 | 12.70 | 14.5 | 2847450 |  | 328.6 | 6.71 | 2007.926 | 0306 | 47.24 | +39 | 18 | 37.1 | 24 |
| $03074+4004$ | MLB1027 | 11.63 | 14.5 | 2851534 |  | 14.0 | 7.35 | 2007.926 | 0307 | 21.98 | $+40$ | 04 | 45.0 | 25 |
| $03084+4020$ | BRT2204 | 12.07 |  | 28511928 |  | 190.5 | 3.86 | 2007.926 | 0308 | 22.83 | +40 | 19 | 53.8 | 26 |
| $03381+2503$ | POU 299 | 11.88 |  | 1803226 |  | 69.8 | 6.72 | 2007.937 | $03 \quad 38$ | 03.17 | +25 | 02 | 27.7 | 27 |
| $03482+2235$ | LOH 1 | 10.97 | 12.49 | 18002103 |  | 131.8 | 9.33 | 2007.937 | 0348 | 08.10 | +22 | 33 | 31.9 | 28 |
| $03562+2415$ | POU 323 | 12.3 | 13.2 | 181335 |  | 346.7 | 4.41 | 2007.803 | $03 \quad 56$ | 11.29 | +24 | 14 | 22.6 | 29 |
| $03570+2359$ | POU 326 | 13.0 | 13.3 | 1813309 |  | 153.6 | 5.73 | 2007.803 | $03 \quad 57$ | 00.43 | +23 | 59 | 10.8 | 30 |
| $03579+2322$ | POU 333 | 13.13 | 14.6 | 1813871 |  | 230.2 | 3.99 | 2007.803 | $03 \quad 57$ | 59.31 | +23 | 22 | 09.2 | 31 |
| $04015+2443$ | POU 345 | 12.74 | 13.26 | 1817527 | 1817497 | 214.4 | 14.48 | 2007.929 | 0401 | 33.14 | +24 | 42 | 26.9 | 32 |
| 04019+2358 | POU 350 | 13.96 | 14.6 | 1813173 | 1813220 | 31.8 | 3.86 | 2007.929 | 0401 | 53.69 | +23 | 57 | 50.3 | 33 |
| $05350+3648$ | SEI 338 |  | 12.39 | 24161034 | 24161111 | 62.5 | 7.07 | 2007.943 | 0534 | 59.04 | +36 | 47 | 39.9 | 34 |
| $05464+3659$ | MLB 824 | 13.08 | 14.44 | 24171102 |  | 15.8 | 9.29 | 2007.937 | 0546 | 27.21 | +36 | 59 | 25.6 | 35 |
| $05468+3606$ | COU1730 | 11.53 |  | 2417771 |  | 174.6 | 1.84 | 2007.937 |  |  |  |  |  | 36 |
| $05468+3658$ | MLB 825 | 11.64 | 13.6 | 2417726 |  | 97.6 | 6.16 | 2007.937 | 0546 | 45.50 | +36 | 57 | 46.0 | 37 |
| $18463+3745$ | ES 2484 | 13.1 | 12.7 |  |  | 332.4 | 6.65 | 2007.663 | 1846 | 17.10 | +37 | 45 | 40.9 | 38 |
| $18466+3853$ | ES 2021AB | 11.22 | 12.6 | 311817771 |  | 253.94 | 20.49 | 2007.663 | 1846 | 37.26 | +38 | 52 | 24.2 | 39 |
| $18466+3853$ | ES 2021BC | 12.7 | 13.8 | 31181743 |  | 297.9 | 3.66 | 2007.663 | 1846 | 35.58 | +38 | 52 | 18.6 | 40 |
| $18477+4159$ | ES 1560 | 10.46 | 12.9 | 312610881 |  | 346 | 9.88 | 2007.663 | 1847 | 03.01 | +41 | 55 | 24.1 | 41 |
| $18484+3612$ | ES 2023 | 8.64 | 12.5 | 26501010 |  | 244.4 | 6.17 | 2007.663 | 1848 | 24.10 | +36 | 11 | 41.9 |  |
| $18546+3656$ | ELS 7AB | 13.0 | 13.1 |  |  | 338.9 | 8.51 | 2007.663 | 1854 | 37.56 | +36 | 55 | 48.5 |  |
| $18546+3656$ | ELS 7AC | 13.0 | 15.5 |  |  | 120.1 | 10.09 | 2007.663 | $18 \quad 54$ | 37.56 | +36 | 55 | 48.5 |  |
| $20212+3304$ | MLB 772 | 12.71 | 14.17 | 2676865 |  | 133.3 | 8.32 | 2007.671 | $20 \quad 21$ | 12.00 | +33 | 04 | 06.7 | 42 |
| $20242+3456$ | POP 94 | 11.81 |  | 26939941 |  | 150.4 | 2.69 | 2007.671 | $20 \quad 24$ | 12.18 | +34 | 56 | 58.4 |  |
| $20243+3507$ | POP 80 | 12.6 | 13.8 | 2693702 |  | 328.3 | 2.81 | 2007.671 | $20 \quad 24$ | 16.37 | +35 | 08 | 08.0 | 43 |
| $21285+3636$ | ALI 443 | 11.40 | 13.0 | 27161139 |  | 298.1 | 4.27 | 2007.642 | 2128 | 31.74 | +36 | 36 | 29.0 | 44 |
| $21296+3625$ | ES 258AB | 10.84 | 11.08 | 271626561 | 271610171 | 33.7 | 10.94 | 2007.643 | $21 \quad 29$ | 35.76 | +36 | 26 | 09.0 | 45 |
| $21296+3625$ | ES 258BC | 11.08 | 12.3 | 271610171 |  | 9.7 | 18.44 | 2007.643 | $21 \quad 29$ | 36.26 | +36 | 26 | 18.0 | 46 |

Table continued on next page.

Measurement of Neglected Double Stars with a Mintron Video Camera

| WDS | Desig- | Mag A | Mag B | Tycho/GSC A | Tycho/GSC B | PA | Sep | Epoch | Coordinates |  |  |  |  | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $21400+3605$ | ES 2129 | 12 | 11.60 | 27291268 |  | 311.2 | 5.14 | 2007.643 | 2140 | 18.97 | +36 | 02 | 53.5 | 47 |
| $21407+3612$ | ES 2130 | 12.5 | 13.5 | 27291208 |  | 120 | 3.17 | 2007.643 | 2140 | 42.99 | +36 | 12 | 48.3 | 48 |
| $22156+3811$ | ES 2530 | 11.09 | 12.1 | 31993641 |  | 304.7 | 5.22 | 2007.732 | 2215 | 34.15 | +38 | 10 | 58.7 | 49 |
| $22178+3857$ | MLB 795 | 11.48 | 13.1 | 3199629 |  | 81.1 | 6.72 | 2007.732 | 2217 | 46.89 | +38 | 57 | 07.5 | 50 |
| $22189+3807$ | ALI 701 | 11.6 | 11.27 | 31991581 | 319921671 | 13.7 | 14.13 | 2007.732 | 2218 | 48.57 | +38 | 06 | 51.2 | 51 |
| $23298+2451$ | POU5816 | 12.59 |  | 2250154 |  | 209.9 | 3.22 | 2007.923 |  |  |  |  |  | 52 |
| $23358+2432$ | POU5828 | 13.42 | 13.79 | 2250824 | 2250560 | 55.3 | 11.02 | 2007.828 | $23 \quad 35$ | 46.07 | +24 | 32 | 27.8 | 53 |
| $23583+0132$ | BVD 10 | 12.29 | 12.40 | 587699 |  | 249.5 | 7.58 | 2007.836 | 2358 | 20.43 | +01 | 32 | 07.0 | 54 |

Table Notes

1. Spect. G7 V/G1 III and A7 V. Different proper motion of each component. Optical double star.
2. A-component Spect. F7 V.
3. A-component Spect. F1 V.
4. Only measured with Reduc. Primary, with F7 V Spect., has proper motion in RA: $40.3 \mathrm{mas} / \mathrm{yr}$ and in Dec: -43.3 mas/yr. Practically without movement in all the $20^{\text {th }}$ century, so they must have some physical relation.
5. Spect. G5 V and G1 V/F9 III. Small proper motions.
6. Spect. A6 V and G6 V. I see slightly bright the B component.
7. Spect. A9 V and F4 V. Sep. increasing.
8. Spect. F9 V and G3 V.
9. Only measured with Reduc. A-component Spect. K3 V/ K0 III and it has a proper motion in RA: -10.9 mas/yr and in DEC: -21.7 mas/yr.
10. A-component have Spect. M4 III and it has a proper motion in RA: 21.8 mas/yr and in Dec: $2.7 \mathrm{mas} /$ yr. B component is F9 V. Sep. increasing.
11. Very similar Spect., both G7 V/G1 III. Sep. decreasing.
12. A-component's Spect. G1 V/ F9 III and it has a proper motion in RA: -20.6 mas/yr and in Dec: -13.4 mas/yr. B component's Spect. G9 V/ G3 III.
13. Only measured with Reduc. A-component's Spect. K1 V/G5 III and it has a proper motion in RA: 0.0 mas/yr and in Dec: -9.5 mas/yr.
14. Spect.: A-component K3 V / G9 III and B component G5 V/ F9 III.
15. Spect. F3 V and F1 V. In this case Theta should have an inverse character, B component must be brighter.
16. Red stars, Spect. M4 III and K2 V/G9 III respectively.
17. Optical system. Spect. G6 V and F8 V respectively.
18. A-component has the next proper motion: -8.8 mas/yr and in Dec: -5.4 mas/yr.
19. Evident optical system. In UCAC2 catalogue proper motion of A-component in RA is $-11.4 \mathrm{mas} / \mathrm{yr}$ and in Dec $-7.8 \mathrm{mas} / \mathrm{yr}$. B component has proper motion in RA $-3.1 \mathrm{mas} / \mathrm{yr}$ and in Dec $-3.8 \mathrm{mas} / \mathrm{yr}$. Spect. F9 V/ F8 III and G7 V/G0 III respectively.
20. Optical couple, they split each other. A-component has a proper motion in RA $21.2 \mathrm{mas} / \mathrm{yr}$ and in Dec -7.9 mas/yr. Spect. K4 V/ K1 III and G1 V/F8 III respectively.
21. Optical double star. A-component has a proper motion in RA $26.6 \mathrm{mas} / \mathrm{yr}$ and in Dec $-34.9 \mathrm{mas} / \mathrm{yr}$. Spect. G5 V/ F9 III and K1 V/ G4 III respectively.
22. Spect. F6 V and G6 V.

## Measurement of Neglected Double Stars with a Mintron Video Camera

23. Optical pair, the split each other quickly. A-component has a proper motion in RA 14.4 mas $/ \mathrm{yr}$ and in Dec -0.3 mas/y and Spect. F3 V. Deducing: B component, a red star (Spect. M3 V/ K4 III), presents a bigger proper motion.
24. Spect. G5 V/ F9 III and G0 V /F8 III.
25. Spect. K3 V/ K0 III and F6 V.
26. Spect. F9 V and F8 V.
27. Similar Spect.: G7 V / G1 III.
28. Proper motions according to the UCAC2 catalogue: A-component in RA: -33.6 mas/yr and in Dec: $18.4 \mathrm{mas} / \mathrm{yr}$, and B: in RA: -35.1 mas/yr and in Dec: -19.9 mas/yr. Common proper motion stars. Spect. F7 V and G6 V.
29. Proper motion of A-component according UCAC2: RA: $11.7 \mathrm{mas} / \mathrm{yr}$ and Dec: -63.1 mas/yr. Spect.: G9 V/ G2 III and K1 V/ G5 III.
30. Spect.: G8 V/ G2 III and K1 V/ G5 III.
31. Proper motion of A-component according to UCAC2: RA 32.7 mas/yr and Dec: $24.5 \mathrm{mas} / \mathrm{yr}$. Spect.: G5 V/ F9 III and K0 V/ G3 III.
32. Optical pair, probably. Spect.: G7 V/ G1 III and K6 V/ K2 III.
33. Spect.: F8 V and G3 V. Insignificant proper motions.
34. Spect.: F6 V and F4 V. Different proper motions. Optical pair.
35. Spect.: F6 V and M0 V/ K4 III.
36. According to Tycho-2, proper motion of A-component: RA: -20.1 mas/yr and Dec: -67.8 mas/yr. Spect.: K0 V. Physical system.
37. The A-component has the next proper motion: RA: $6.8 \mathrm{mas} / \mathrm{yr}$ and en Dec: - $10.6 \mathrm{mas} / \mathrm{yr}$. Spect.: G3 V/ F9 III.
38. AP should be invert. According Nomad Catalog the proper motion of B component is: RA: -45.8 mas/ yr and Dec: 85.1 mas/yr.; Spect.: G9 V/ G2 III. A-component Spect.: G0 V/ F8 III.
39. Proper motions very different, optical double star. Spect.: F6 V and F9 V.
40. According to UCAC2 catalogue, proper motion of A-component is $32.4 \mathrm{mas} / \mathrm{yr}$ and Dec: $-2.7 \mathrm{mas} / \mathrm{yr}$, Spect. F9 V.
41. Main component Spect.: K9 V with the next proper motion: RA $1.2 \mathrm{mas} / \mathrm{yr}$ and Dec: -11.3 (Tycho 2). B component Spect.: G5 V/ G0 III.
42. A-component Spect.: G4 V/ F9 III and has the next proper motion: RA: -4.5 mas/yr and Dec: -6.1 mas/ yr. B component Spect.: K1 V/G5 III.
43. A-component has proper motion: RA: -0.2 mas/yr and Dec: -9.2 mas/yr.
44. Spect.: K1 III and F3 V respectively. A-component proper motion: RA $51.1 \mathrm{mas} / \mathrm{yr}$ and Dec: -32.8 mas/yr. The B component should have the same p.m. Probably physical system.
45. Spect.: F1 V and K0 V. Optical couple.
46. Proper motion of A-component: RA: -36.0 mas/yr and Dec: - 157.3 mas/yr. Proper motion of B component: RA: $5.1 \mathrm{mas} / \mathrm{yr}$ and en Dec: $87.4 \mathrm{mas} / \mathrm{yr}$. Optical double star with high displacement. Spect.: K0 V and G3 V respectively.
47. AP should be invert. Spect.: K and K5 III. Proper motion of B component: RA: 3.6 mas/yr and Dec: 12 mas/yr.
48. Proper motion: RA: 20.8 mas/yr and Dec: 1.2 mas/yr.
49. Spect.: F3 V and G5 V. Proper motion of A-component: RA: $9.7 \mathrm{mas} / \mathrm{yr}$ and Dec: -10.3 mas $/ \mathrm{yr}$.
50. Spect.: F7 V and G2 V. A-component has the next p.m.: RA: -10.2 mas/yr and Dec: -1.2 mas $/ \mathrm{yr}$.
51. Different proper motions, optical double star. A-component = RA: $4.5 \mathrm{mas} / \mathrm{yr}$ and Dec: $-1.7 \mathrm{mas} / \mathrm{yr}$. Bcomponent: RA: 9.6 mas/yr and en Dec: -5.7 mas/yr. AP should be invert.
52. A-component Spect. K has proper motion: RA: 20.4 mas/yr and Dec: $29.1 \mathrm{mas} / \mathrm{yr}$.

## Measurement of Neglected Double Stars with a Mintron Video Camera

53. Optical pair. A-component Spect. G and has p.m.: RA: -8.2 mas/yr and Dec: -31.1 mas/yr. B component has Spect.: K.
54. Not cataloged in WDS. Spect. G6 V (both). Possibility that it's a physical system.

The author is an active observer of double stars, comets and asteroids who is working from home in Spain. He is also a member of the LIADA's Double Star Section.


# Double Star Measures Using a DSLR Camera \#2 

Ernõ Berkó<br>3188-Ludányhalászi, Bercsényi u. 3. Hungary<br>E-mail: berko@is.hu


#### Abstract

This article contains measures made with a DSLR camera. The images used for the measures were taken in the period between 2007.249-2007.268. The result is 190 positive and 3 negative measures.


Continuing the measures of my photos taken in 2007, the next results to come are from the measuring period between 1 Apr - 8 Apr 2007. The photographic equipment used and the processing and measuring methods are the same as those detailed in my previous article (Berko, 2008). Therefore, I would only like to note that I was working with a Canon 350D digital camera with a 35.5 cm Newtonian telescope at a focal length of 4200 mm . The pictures were measured with Florent Losse's program (Reduc 3.62). I used approximately 1424 photos for the present publication. My results include the data of 2022 independent measures of 193 pairs.

A table contains the results of the measures, followed by the notes. In the first three columns of the table, the WDS coordinates and names of the doubles as well as the components' brightness can be found. I determined the brightness of the components on the basis of WDS, although it seems contradictory sometimes. When there is an Anon. component, I gave the GSC or USNO "R" brightness or, if not available, I provided the brightness I estimated on the basis of the photo.

This is followed by the position angle (PA) and the separation (Sep) measured and calculated by me. In both cases, the value of the standard deviation is also indicated ( $+/$-).The column (epoch) gives the times the images were taken. Finally, in every row, the number of individual measures ( $n$.), the reference number to the description (notes), and the reference number of
the image belonging to the measures (img) can be seen.

In the descriptions (notes), is found the GSC number of the primary star of those doubles I measured; in case it appears in the GSC catalogue. Also, my personal notes about the given double starts can be read here. One problem encountered was the $10-$ character identification coordinates of WDS. In many cases it is different from the real position of the double. Although WDS contains more precise coordinates for most of the pairs, at times the double cannot be found at these locations. For the doubles measured by me, I give suggestions regarding these closest coordinates in the form of (xxxxx+xxxx!).

I have also attached images of some of the doubles I measured, with captions provided. The complete image archive of the article and the table referring to the photos can be accessed at
http://csillag.bacska.hu/dcam/JDSO/2009_1/.

## Acknowledgements

I would especially like to thank Ágnes Kiricsi, who has helped a lot in this publication with the English translations and the correspondence.

## References

Berko, Erno, "Double Star Measures Using a DSLR Camera", JDSO, 4, 144-155, 2008.

Double Star Measures Using a DSLR Camera \#2

| WDS | Discoverer | m1 | m2 | PA | +/- | Sep | +/- | Epoch | n | Notes | Image |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 05136+3542 | DOO 32 | 8.36 | 12.17 | 173.67 | 0.05 | 22.05 | 0.02 | 2007.249 | 12 | 1 | 1 |
| 05175+3630 | SEI 153 | 11.0 | 11.0 | 54.76 | 0.12 | 27.9 | 0.04 | 2007.249 | 12 | 2 |  |
| 05176+3629 | SEI 157 | 10.0 | 11.0 | 320.85 | 0.26 | 7.38 | 0.05 | 2007.249 | 12 | 3 |  |
| 05177+3628 | Anon. 1 | 13.0 | 13.5 | 105.86 | 0.13 | 8.68 | 0.1 | 2007.249 | 4 | 4 |  |
| 05182+3602 | SEI 166 | 11.46 | 12.13 | 156.47 | 0.09 | 27.94 | 0.05 | 2007.249 | 15 | 5 |  |
| 05187+3624 | SEI 175 | 11.0 | 11.0 | 91.63 | 0.11 | 27.23 | 0.06 | 2007.249 | 10 | 6 |  |
| 05189+3612 | SEI 178 | 8.3 | 11.7 | 199.34 | 0.2 | 25.59 | 0.04 | 2007.249 | 10 | 7 |  |
| 05192+3549 | Anon. 2 | 12.0 | 12.5 | 334.11 | 0.34 | 6.25 | 0.05 | 2007.249 | 12 | 8 |  |
| 05192+3548 | SEI 179 | 9.20 | 9.2 | 222.49 | 0.11 | 24.74 | 0.05 | 2007.249 | 11 | 9 |  |
| 05194+3550 | Anon. 3 | 11.9 | 13.0 | 233.85 | 0.27 | 12.68 | 0.06 | 2007.249 | 10 | 10 |  |
| 05198+3546 | SEI 191 | 10.3 | 12.0 | 65.79 | 0.11 | 22.73 | 0.06 | 2007.249 | 5 | 11 |  |
| 05199+3624 | SEI 192 | 10.5 | 11.0 | 145.04 | 0.24 | 28.4 | 0.09 | 2007.249 | 5 | 12 |  |
| 05199+3545 | Anon. 4 | 12.7 | 13.1 | 143.54 | 0.37 | 8.89 | 0.05 | 2007.249 | 7 | 13 |  |
| 05210+3620 | SEI 204 | 10.4 | 10.8 | 65.91 | 0.13 | 14.77 | 0.05 | 2007.249 | 12 | 14 |  |
| 05219+3416 | TOB 29 | 11.8 | 11.9 | 226.42 | 0.17 | 18.65 | 0.05 | 2007.249 | 12 | 15 |  |
| 05375+3147 | WZ 10 | 9.75 | 11.04 | 255.66 | 0.27 | 9.45 | 0.03 | 2007.254 | 11 | 16 | 2 |
| 05380+3145 | SEI 359 | 10.5 | 11.0 | 42.87 | 0.18 | 17.3 | 0.06 | 2007.254 | 15 | 17 |  |
| 05387+3229 | ARA2323 | 8.02 | 10.80 | 260.59 | 0.15 | 51.68 | 0.07 | 2007.254 | 11 | 18 |  |
| 05391+3239 | SEI 365 | 10.71 | 10.88 | 322.45 | 0.12 | 30.58 | 0.04 | 2007.254 | 14 | 19 |  |
| 05401+3722 | Anon. 5 | 12.8 | 13.6 | 120.56 | 0.34 | 9.74 | 0.06 | 2007.268 | 10 | 20 |  |
| 05403+3721 | SEI 366 AB | 10.5 | 11.0 | 228.27 | 0.14 | 28.38 | 0.08 | 2007.268 | 16 | 21 |  |
| 05403+3721 | Anon. 6 Ax | 10.5 | 14.0 | 71.38 | 0.28 | 6.9 | 0.06 | 2007.268 | 5 | 21 |  |
| 05406+3544 | SEI 368 | 10.4 | 12.1 | 284.61 | 0.38 | 16.52 | 0.06 | 2007.268 | 10 | 22 |  |
| 05409+3734 | SEI 369 | 11.8 | 12.3 | 69.43 | 0.37 | 5.75 | 0.07 | 2007.268 | 11 | 23 |  |
| 05413+2929 | STF 764 | 6.38 | 7.08 | 13.93 | 0.11 | 26.04 | 0.05 | 2007.254 | 18 | 24 |  |
| $05414+3223$ | SEI 372 | 11.90 | 11.73 | 112.47 | 0.21 | 15.18 | 0.05 | 2007.254 | 13 | 25 |  |
| 05418+3727 | SEI 373 | 11.3 | 11.6 | 179.48 | 0.15 | 5.28 | 0.06 | 2007.268 | 12 | 26 |  |
| 05421+3245 | HJ 369 | 10.5 | 12.0 | 326.37 | 0.32 | 15.44 | 0.06 | 2007.254 | 13 | 27 | 2 |
| 05423+3247 | HJ 370 | 11.08 | 11.74 | 258.95 | 0.19 | 12.88 | 0.05 | 2007.254 | 14 | 28 | 2 |
| 05427+3735 | SEI 379 | 11.0 | 11.0 | 46.95 | 0.14 | 24.16 | 0.05 | 2007.268 | 16 | 29 |  |
| 05428+3322 | STF 773 AB | 9.2 | 10.7 | 219.47 | 0.06 | 27.17 | 0.02 | 2007.254 | 10 | 30 |  |
| $05428+3322$ | STF 773 AC | 9.2 | 12.4 | 256.39 | 0.31 | 18.83 | 0.07 | 2007.254 | 7 | 30 |  |
| $05430+3319$ | HO 509 | 6.8 | 11.8 | 203.78 | 0.65 | 8.22 | 0.06 | 2007.254 | 3 | 31 |  |
| 05434+3334 | SEI 380 | 8.8 | 11.3 | 51.99 | 0.21 | 28.92 | 0.07 | 2007.254 | 10 | 32 |  |
| $05446+3234$ | SEI 381 | 10.5 | 11.0 | 53.6 | 0.08 | 28.05 | 0.05 | 2007.268 | 20 | 33 |  |
| 05450+3618 | SEI 382 | 11.0 | 11.0 | 134.25 | 0.35 | 7.03 | 0.03 | 2007.268 | 17 | 34 |  |
| 05453+3224 | STF 781 | 9.23 | 10.4 | 121.38 | 0.16 | 15.23 | 0.07 | 2007.268 | 13 | 35 |  |
| 05458+3149 | Anon. 7 AB | 13.2 | 13.3 | 258.88 | 0.31 | 14.91 | 0.06 | 2007.254 | 8 | 36 |  |
| 05458+3149 | Anon. 7 BC | 13.3 | 13.3 | 317.84 | 0.44 | 5.23 | 0.05 | 2007.254 | 6 | 37 |  |

Double Star Measures Using a DSLR Camera \#2

| WDS | Discoverer | m1 | m2 | PA | +/- | Sep | +/- | Epoch | n | Notes | Image |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 05459+3726 | SEI 383 | 8.95 | 12.29 | 241.32 | 0.18 | 24.83 | 0.06 | 2007.268 | 17 | 38 |  |
| 05460+3717 | BLL 16 | 7.36 | 11.0 | 89.82 | 0.11 | 72.24 | 0.04 | 2007.268 | 6 | 39 | 4 |
| $05463+3152$ | SEI 384 | 10.0 | 10.7 | 354.42 | 0.28 | 13.92 | 0.06 | 2007.254 | 12 | 40 |  |
| 05464+3659 | MLB 824 | 10.0 | 11.0 | 14.68 | 0.23 | 9.15 | 0.06 | 2007.268 | 13 | 41 |  |
| 05467+3153 | Anon. 8 | 11.2 | 12.0 | 317.71 | 0.16 | 16.51 | 0.05 | 2007.254 | 11 | 42 |  |
| 05468+3700 | ALI 309 | 11.7 | 11.8 | 338.71 | 0.25 | 6.7 | 0.02 | 2007.268 | 16 | 43 |  |
| 05468+3658 | MLB 825 | 11.69 | 11.8 | 97.31 | 0.25 | 5.63 | 0.1 | 2007.268 | 8 | 44 |  |
| 05476+2155 | Anon. 9 | 13.2 | 13.5 | 224.37 | 0.39 | 5.36 | 0.06 | 2007.263 | 9 | 45 |  |
| 05476+2155 | Anon. 10 | 14.0 | 14.2 | 103.73 |  | 3.21 |  | 2007.263 | 1 | 46 |  |
| 05477+2157 | SLE 280 | 10.8 | 11.9 | 231.4 | 0.15 | 11.85 | 0.06 | 2007.263 | 14 | 47 |  |
| 05478+2156 | Anon. 11 | 13.5 | 14.1 | 157.31 | 0.28 | 10.49 | 0.07 | 2007.263 | 10 | 48 |  |
| 05496+3128 | Anon. 12 | 10.5 | 11.5 | 154.64 | 0.42 | 9.12 | 0.07 | 2007.254 | 11 | 49 |  |
| 05497+3146 | SEI 390 AB | 9.0 | 9.8 | 224.25 | 0.31 | 5.52 | 0.06 | 2007.254 | 14 | 50 |  |
| 05497+3146 | SEI 391 AC | 9.0 | 10.2 | 140.56 | 0.08 | 27.53 | 0.04 | 2007.254 | 18 | 50 |  |
| 05498+3258 | S 500 | 8.57 | 8.85 | 90.26 | 0.05 | 60.18 | 0.05 | 2007.254 | 13 | 51 |  |
| 05498+3127 | SEI 392 | 9.2 | 10.5 | 308.19 | 0.27 | 8.77 | 0.06 | 2007.254 | 13 | 52 |  |
| 05499+3147 | STF 796 AB | 7.24 | 8.23 |  |  |  |  | 2007.254 |  | 53 |  |
| 05499+3147 | STF 796 AC | 7.24 | 10.20 | 324.91 | 0.07 | 209.93 | 0.06 | 2007.254 | 9 | 54 |  |
| 05501+3258 | Anon. 13 | 11.5 | 12.0 | 202.64 |  | 4.12 |  | 2007.254 | 1 | 55 |  |
| 05514+3306 | SEI 395 | 10.20 | 11.16 | 167.48 | 0.24 | 19.09 | 0.05 | 2007.254 | 10 | 56 |  |
| 05518+2827 | STF 805 | 8.41 | 8.87 | 49.41 | 0.13 | 12.13 | 0.06 | 2007.268 | 16 | 57 |  |
| 05520+3750 | SEI 397 | 8.1 | 10.6 | 120.24 | 0.04 | 9.29 | 0.07 | 2007.268 | 2 | 58 | 5 |
| 05520+3137 | SEI 400 AB | 11.24 | 11.86 | 10.66 | 0.17 | 12.81 | 0.02 | 2007.254 | 15 | 59 |  |
| 05520+3137 | SEI 400 AC | 11.24 | 12.16 | 30.17 | 0.07 | 29.48 | 0.03 | 2007.254 | 15 | 59 |  |
| 05520+3137 | ABH 32 AD | 11.61 | 12.29 | 44.78 | 0.04 | 49.51 | 0.03 | 2007.254 | 15 | 59 |  |
| 05520+3137 | ABH 32 AE | 11.61 | 13.87 | 254.85 | 0.05 | 44.54 | 0.07 | 2007.254 | 13 | 59 |  |
| 05520+3137 | ABH 32 AF | 11.61 | 12.16 | 178.66 | 0.03 | 97.96 | 0.04 | 2007.254 | 15 | 60 |  |
| 05520+3137 | SEI 400 BC | 11.86 | 12.16 | 43.98 | 0.1 | 17.93 | 0.03 | 2007.254 | 15 | 59 |  |
| 05520+3136 | Anon. 14 | 11.25 | 11.9 | 297.42 | 0.03 | 83.43 | 0.04 | 2007.254 | 15 | 61 |  |
| 05524+3752 | SEI 402 | 11.3 | 12.0 | 180.37 | 0.1 | 7.03 | 0.06 | 2007.268 | 5 | 62 | 5 |
| 05535+3217 | SEI 431 AB | 9.3 | 10.5 | 199.29 | 0.15 | 20.79 | 0.05 | 2007.254 | 15 | 63 |  |
| 05535+3217 | Anon. 15 Bx | 11.0 | 12.0 | 156.21 | 0.23 | 19.99 | 0.07 | 2007.254 | 15 | 64 |  |
| 05539+3027 | TOB 41 AB | 10.22 | 11.34 | 102.4 | 0.07 | 18.23 | 0.03 | 2007.263 | 14 | 65 |  |
| 05539+3027 | TOB 41 AC | 10.22 | 11.06 | 66.67 | 0.06 | 33.29 | 0.04 | 2007.263 | 14 | 65 |  |
| 05542+3029 | STF 811 | 8.0 | 9.3 | 234.05 | 0.23 | 4.7 | 0.05 | 2007.263 | 12 | 66 |  |
| 05558+3708 | SEI 438 | 10.5 | 11.0 | 118.55 | 0.28 | 13.05 | 0.06 | 2007.268 | 15 | 67 |  |
| 05559+3104 | SEI 442 | 9.5 | 10.5 | 186.24 | 0.1 | 25.21 | 0.04 | 2007.263 | 14 | 68 |  |
| 05561+3719 | SEI 441 | 11.0 | 12.37 | 213.03 | 0.25 | 11.15 | 0.04 | 2007.268 | 17 | 69 |  |
| 05565+3707 | SEI 443 | 11.0 | 11.0 | 74.69 | 0.19 | 26.19 | 0.07 | 2007.268 | 14 | 70 |  |

Double Star Measures Using a DSLR Camera \#2

| WDS | Discoverer | m1 | m2 | PA | +/- | Sep | +/- | Epoch | n | Notes | Image |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 05567+3711 | Anon. 16 | 14.3 | 14.9 | 185.97 | 0.28 | 9.64 | 0.08 | 2007.268 | 6 | 71 |  |
| 05568+3710 | SEI 446 | 10.5 | 11.0 | 123.4 | 0.25 | 15.69 | 0.05 | 2007.268 | 14 | 72 |  |
| 06046+3014 | STF 834 | 8.61 | 9.38 | 308.65 | 0.11 | 22.88 | 0.03 | 2007.249 | 15 | 73 |  |
| 06051+3016 | Anon. 17 | 12.0 | 12.5 | 176.39 |  | 11.77 |  | 2007.249 | 1 | 74 |  |
| 06064+2931 | STT 129 | 6.24 | 10.49 | 208.7 | 1.24 | 9.4 | 0.44 | 2007.249 | 10 | 75 | 6 |
| $06592+1843$ | BU 899 AB | 9.03 | 9.85 |  |  |  |  | 2007.268 |  | 76 |  |
| $06592+1843$ | BU 899 AC | 8.7 | 9.7 | 175.41 | 0.14 | 24.18 | 0.06 | 2007.268 | 17 | 77 |  |
| $06592+1843$ | BU 899 AD | 8.76 | 9.21 | 45.77 | 0.06 | 41.75 | 0.06 | 2007.268 | 17 | 77 |  |
| 06592+1843 | ABH 55 AE | 8.55 | 13.83 | 92.25 | 0.06 | 109.34 | 0.08 | 2007.268 | 7 | 77 |  |
| 07039+2122 | SLE 395 | 10.72 | 11.02 | 343.55 | 0.32 | 11.27 | 0.05 | 2007.265 | 12 | 78 |  |
| 07043+2102 | SLE 397 | 10.9 | 11.8 | 15.83 | 0.24 | 13.67 | 0.07 | 2007.265 | 12 | 79 |  |
| $07045+2122$ | SMA 71 |  |  |  |  |  |  | 2007.265 |  | 80 |  |
| $07046+2117$ | J 1989 AB | 11.4 | 11.6 | 256.02 | 0.23 | 38.56 | 0.05 | 2007.265 | 11 | 81 |  |
| $07046+2117$ | BRT2368 BC | 11.6 | 11.6 | 106.2 |  | 4.3 |  | 2007.265 | 1 | 81 |  |
| 07053+2102 | SLE 399 | 10.8 | 12.0 | 231.56 | 0.26 | 11.88 | 0.06 | 2007.265 | 8 | 82 |  |
| 07072+1650 | STF1017 | 9.32 | 10.25 | 254.15 | 0.26 | 12.72 | 0.04 | 2007.268 | 15 | 83 |  |
| 07081+2016 | SLE 401 | 11.0 | 11.9 | 212.51 | 0.17 | 11.23 | 0.1 | 2007.268 | 6 | 84 |  |
| 07081-0146 | BAL 408 | 9.0 | 11.2 | 339.16 | 0.92 | 5.72 | 0.09 | 2007.265 | 3 | 85 |  |
| 07082-0151 | J 2781 AB | 10.0 | 10.2 | 9.1 | 0.2 | 25.79 | 0.07 | 2007.265 | 3 | 86 |  |
| 07082-0151 | BAL 409 BC | 10.3 | 10.9 | 267.01 | 0.29 | 5.08 | 0.15 | 2007.265 | 3 | 86 |  |
| 07083-0120 | BAL 410 | 11.2 | 11.2 | 166 | 0.32 | 10.88 | 0.07 | 2007.263 | 9 | 87 |  |
| 07084-0119 | BAL 411 | 11.2 | 11.5 | 252.87 | 0.19 | 17.78 | 0.06 | 2007.263 | 10 | 88 |  |
| 07084-0119 | BAL 412 AB | 13.54 | 12.9 | 198.62 | 0.22 | 15.59 | 0.07 | 2007.263 | 9 | 89 |  |
| 07084-0119 | BKO 23 AC | 13.54 | 13.84 | 227.84 | 0.14 | 29.73 | 0.06 | 2007.263 | 8 | 89 |  |
| 07085-0125 | BAL 414 | 11.2 | 11.4 | 7.3 | 0.3 | 13.09 | 0.06 | 2007.263 | 8 | 90 | 7 |
| 07085-0144 | BAL 413 | 12.2 | 14.0 | 82.52 | 0.29 | 18.96 | 0.06 | 2007.265 | 8 | 91 |  |
| 07088+1655 | STF1027 | 8.47 | 8.69 | 356.02 | 0.33 | 6.5 | 0.08 | 2007.265 | 10 | 92 |  |
| 07092-0142 | BAL 415 AB | 11.2 | 11.5 | 165.09 | 0.32 | 17.1 | 0.07 | 2007.263 | 12 | 93 |  |
| 07092-0142 | Anon. 18 Bx | 11.5 | 13.5 | 90.56 |  | 5.03 |  | 2007.263 | 1 | 94 |  |
| 07095-0139 | BAL 416 | 11.1 | 11.5 | 81.56 | 0.26 | 15.93 | 0.06 | 2007.263 | 12 | 95 |  |
| 07095-0140 | Anon. 19 | 13.7 | 15.0 | 85.67 | 0.45 | 10.5 | 0.07 | 2007.263 | 11 | 96 |  |
| 07096-0132 | BAL 418 | 11.3 | 11.4 | 295.6 | 0.37 | 10.33 | 0.05 | 2007.263 | 12 | 97 |  |
| 07096-0137 | BAL 417 | 8.9 | 11.5 | 247.96 | 0.2 | 20.63 | 0.05 | 2007.263 | 12 | 98 |  |
| 07098-0127 | BAL 419 | 11.0 | 11.0 | 132.7 | 0.25 | 15.88 | 0.04 | 2007.263 | 16 | 99 |  |
| 07098-0135 | BAL 420 | 11.3 | 11.4 | 60.16 | 0.23 | 16.93 | 0.05 | 2007.263 | 11 | 100 |  |
| 07108-0135 | BAL 427 | 10.6 | 11.4 | 161.71 | 0.37 | 10.65 | 0.08 | 2007.265 | 8 | 101 |  |

Double Star Measures Using a DSLR Camera \#2

| WDS | Discoverer | m1 | m2 | PA | +/- | Sep | +/- | Epoch | n | Notes | Image |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 07108-0144 | BAL 428 | 11.4 | 11.4 | 150.66 | 0.35 | 9.52 | 0.04 | 2007.265 | 10 | 102 |  |
| 07109-0027 | BAL 771 | 11.2 | 11.5 | 357.93 | 0.31 | 8.89 | 0.06 | 2007.263 | 7 | 103 |  |
| 07109-0201 | BAL 430 | 12.83 | 12.84 | 99.65 | 0.34 | 8.14 | 0.07 | 2007.265 | 9 | 104 | 8 |
| 07110-0200 | BAL 431 | 9.8 | 11.4 | 132.86 | 0.3 | 16.16 | 0.05 | 2007.265 | 11 | 105 | 8 |
| $07111+2132$ | FAL 19 | 9.08 | 12.38 | 218.18 | 0.21 | 10.5 | 0.08 | 2007.268 | 8 | 106 |  |
| 07111-0139 | BAL 432 | 11.2 | 11.3 | 54.88 | 0.47 | 4.09 | 0.07 | 2007.265 | 3 | 107 |  |
| 07111-0207 | BAL 434 | 11.1 | 11.5 | 21.87 | 0.35 | 17.59 | 0.06 | 2007.263 | 8 | 108 |  |
| 07112-0136 | BAL 433 | 10.7 | 11.5 | 58.77 | 0.12 | 15.28 | 0.05 | 2007.265 | 13 | 109 |  |
| 07112-0208 | BAL 436 | 11.4 | 11.5 | 33.38 | 0.24 | 18.19 | 0.07 | 2007.263 | 11 | 110 |  |
| 07112-0209 | BAL 435 | 9.96 | 11.15 | 302.93 | 0.15 | 20.79 | 0.03 | 2007.263 | 14 | 111 |  |
| 07114-0035 | BAL 773 | 11.3 | 11.3 | 155.65 | 0.16 | 16.59 | 0.03 | 2007.263 | 12 | 112 |  |
| 07115-0025 | BAL 774 | 10.0 | 11.3 | 252.41 | 0.34 | 9.69 | 0.06 | 2007.263 | 10 | 113 |  |
| 07116-0132 | BAL 439 | 11.4 | 11.5 | 288.95 | 0.29 | 19.1 | 0.04 | 2007.265 | 5 | 114 |  |
| 07116-0158 | BAL 438 | 9.74 | 11.15 | 74.91 | 0.35 | 11.29 | 0.07 | 2007.265 | 5 | 115 |  |
| 07116-0211 | BAL 153 | 11.3 | 11.4 | 254.49 | 0.32 | 17.29 | 0.07 | 2007.263 | 9 | 116 |  |
| 07117-0206 | BAL 440 | 10.4 | 10.8 | 195.56 | 0.14 | 15.64 | 0.05 | 2007.263 | 14 | 117 |  |
| 07118-0130 | Anon. 20 | 13.9 | 14.0 | 106.16 | 0.29 | 9.44 | 0.04 | 2007.265 | 6 | 118 |  |
| 07119-0130 | BAL 441 | 8.8 | 9.5 | 33.44 | 0.12 | 14.34 | 0.04 | 2007.265 | 16 | 119 |  |
| 07119-0132 | Anon. 21 | 14.0 | 14.4 | 171.27 | 0.42 | 5.87 | 0.05 | 2007.265 | 4 | 120 |  |
| 07119-0207 | BAL 443 | 10.0 | 11.2 | 227.8 | 0.2 | 16.55 | 0.04 | 2007.263 | 4 | 121 |  |
| 07122-0205 | BAL 444 | 9.6 | 11.2 | 299.43 | 0.18 | 14.08 | 0.05 | 2007.263 | 14 | 122 |  |
| 07123-0029 | BAL 776 AB | 10.8 | 11.3 | 236.08 | 0.11 | 17.25 | 0.04 | 2007.263 | 12 | 123 |  |
| 07123-0029 | BKO 24 AC | 10.8 | 11.0 | 203.78 | 0.02 | 110.55 | 0.05 | 2007.263 | 12 | 123 |  |
| 07123-0029 | BKO 24 CD | 11.0 | 11.5 | 72.58 | 0.32 | 8.45 | 0.05 | 2007.263 | 12 | 123 |  |
| 07124-0139 | Anon. 22 | 13.6 | 13.8 | 273.97 | 0.37 | 8.48 | 0.07 | 2007.265 | 10 | 124 |  |
| 07125-0141 | BAL 445 | 10.6 | 11.5 | 41.7 | 0.21 | 20.37 | 0.07 | 2007.265 | 13 | 125 |  |
| 07125-0204 | BAL 446 | 11.2 | 11.3 | 126.06 | 0.15 | 17.37 | 0.04 | 2007.263 | 15 | 126 |  |
| 07126-0147 | BAL 448 | 10.8 | 11.0 | 224.6 |  | 3.84 |  | 2007.265 | 1 | 127 |  |
| 07128-0204 | BAL 450 | 11.2 | 11.3 | 98.83 | 0.35 | 12.66 | 0.04 | 2007.263 | 6 | 128 |  |
| $07138+1746$ | STF1041 | 9.1 | 12.1 | 266.26 | 0.08 | 25.92 | 0.04 | 2007.268 | 12 | 129 |  |
| $07160+1644$ | DUF 2 | 9.24 | 9.34 | 112.51 | 0.11 | 41.39 | 0.05 | 2007.265 | 14 | 130 |  |
| 07247+2019 | Anon. 23 AB | 10.85 | 12.0 | 27.64 | 0.32 | 13.33 | 0.04 | 2007.263 | 16 | 131 |  |
| 07247+2019 | Anon. 23 BC | 12.0 | 13.0 | 294.8 |  | 3.12 |  | 2007.263 | 1 | 131 |  |
| 07247+2008 | Anon. 24 | 13.5 | 14.5 | 155.09 | 0.24 | 9.52 | 0.06 | 2007.263 | 7 | 132 |  |
| $07248+2003$ | Anon. 25 | 12.5 | 12.6 | 241.37 | 0.16 | 10.34 | 0.05 | 2007.263 | 17 | 133 |  |
| 07255+2016 | Anon. 26 | 12.7 | 12.9 | 159.78 | 0.27 | 7.14 | 0.06 | 2007.263 | 14 | 134 |  |

Double Star Measures Using a DSLR Camera \#2

| WDS | Discoverer | m1 | m2 | PA | +/- | Sep | +/- | Epoch | n | Notes | Image |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 07256+2030 | STF1083 | 7.32 | 8.13 | 45.01 | 0.2 | 6.34 | 0.05 | 2007.263 | 14 | 135 |  |
| 07265+1831 | STF1090 AB | 7.27 | 8.17 | 97.84 | 0.07 | 60.88 | 0.05 | 2007.263 | 16 | 136 |  |
| 07265+1831 | STF1090 AC | 7.27 | 9.48 | 79.22 | 0.12 | 49.96 | 0.05 | 2007.263 | 14 | 136 |  |
| 07266+1834 | XMI 62 AB | 11.53 | 12.15 | 273.68 | 0.2 | 14.62 | 0.04 | 2007.263 | 16 | 137 |  |
| 07266+1834 | Anon. 27 Ax | 11.53 | 14.0 | 73.86 | 0.17 | 13.44 | 0.08 | 2007.263 | 8 | 137 |  |
| 07273+2017 | GRV 734 | 10.33 | 11.39 | 48.12 | 0.05 | 36.39 | 0.03 | 2007.263 | 16 | 138 |  |
| 07375+1728 | SLE 431 | 11.8 | 12.1 | 54.76 | 0.3 | 11.89 | 0.06 | 2007.263 | 11 | 139 |  |
| 07382+1752 | HJ 2404 AB | 10.0 | 11.0 | 56.48 | 0.36 | 15.09 | 0.08 | 2007.263 | 6 | 140 |  |
| 07382+1752 | HJ 2404 AC | 9.82 | 9.36 | 186.9 | 0.06 | 48.67 | 0.03 | 2007.263 | 9 | 140 |  |
| 07382+1752 | HJ 2404 AD | 10.0 | 13.5 | 56.94 | 0.04 | 41.98 | 0.01 | 2007.263 | 2 | 140 |  |
| 07382+1752 | SLE 433 AE | 10.0 | 11.8 | 318.35 | 0.09 | 143.73 | 0.04 | 2007.263 | 4 | 141 |  |
| 07585+3215 | SEI 484 | 10.4 | 11.7 | 257.11 | 0.17 | 26.53 | 0.04 | 2007.265 | 7 | 142 |  |
| 07596+3211 | SEI 485 | 10.71 | 11.07 | 88.7 | 0.1 | 20.7 | 0.02 | 2007.265 | 16 | 143 |  |
| 08097+2533 | WRH 27 | 7.61 | 8.69 | 97.41 | 0.09 | 29.06 | 0.06 | 2007.265 | 15 | 144 |  |
| 08100+3017 | Anon. 28 | 11.0 | 11.6 | 86.42 | 0.16 | 18.99 | 0.05 | 2007.263 | 14 | 145 |  |
| 08102+2551 | BUP 111 AB | 6.58 | 9.32 | 48.47 | 0.04 | 81.13 | 0.07 | 2007.265 | 8 | 146 |  |
| 08102+2551 | ARN 2 AC | 6.6 | 8.0 | 21.67 | 0.04 | 188.68 | 0.05 | 2007.265 | 9 | 147 |  |
| 08511+1153 | BKO 35 | 12.0 | 13.5 | 144.24 | 0.31 | 6.97 | 0.05 | 2007.265 | 6 | 148 | 9 |
| 08512+1149 | CHE 118 AB | 9.80 | 10.52 | 62.09 | 0.35 | 23.84 | 0.07 | 2007.265 | 13 | 149 |  |
| 08512+1149 | BKO 36 AC | 9.8 | 14.2 | 29.66 | 0.06 | 32.6 | 0.05 | 2007.265 | 8 | 149 |  |
| 08513+1151 | BKO 37 | 11.0 | 13.0 | 206.13 | 0.22 | 8.1 | 0.06 | 2007.265 | 4 | 150 |  |
| 08513+1149 | BKO 38 | 12.2 | 14.5 | 74.52 | 0.16 | 10.37 | 0.1 | 2007.265 | 5 | 151 |  |
| 08513+1148 | BKO 39 | 11.9 | 13.2 | 233.77 | 0.19 | 12.62 | 0.04 | 2007.265 | 8 | 152 |  |
| 08513+1146 | CHE 119 AB | 9.45 | 10.48 | 300.61 | 0.23 | 13.38 | 0.03 | 2007.265 | 13 | 153 |  |
| 08513+1146 | CHE 119 AC | 9.45 | 10.65 | 13.47 | 0.07 | 32.54 | 0.1 | 2007.265 | 10 | 153 |  |
| 08513+1146 | BKO 40 AD | 9.45 | 14.9 | 334.61 | 0.14 | 21.61 | 0.05 | 2007.265 | 6 | 153 |  |
| 08514+1147 | BKO 41 A-BC | 13.0 | 13.0 | 144.52 | 0.23 | 7.24 | 0.04 | 2007.265 | 6 | 154 |  |
| 08515+1154 | CHE 120 | 9.70 | 10.56 | 144.65 | 0.23 | 31.41 | 0.06 | 2007.265 | 10 | 155 |  |
| 08515+1152 | CHE 121 AB | 9.33 | 10.54 | 37.39 | 0.05 | 31.17 | 0.07 | 2007.265 | 17 | 156 |  |
| 08515+1152 | CHE 121 AC | 9.3 | 11.0 | 74.69 | 0.09 | 27.23 | 0.07 | 2007.265 | 16 | 156 |  |
| 08515+1152 | BKO 42 AD | 9.3 | 13.0 | 118.77 | 0.21 | 14.29 | 0.06 | 2007.265 | 4 | 156 |  |
| 08515+1149 | BKO 43 | 11.0 | 11.0 | 95.39 | 0.13 | 9.24 | 0.05 | 2007.265 | 8 | 157 |  |
| 08515+1149 | BKO 44 | 11.5 | 13.0 | 155.43 |  | 3.88 |  | 2007.265 | 1 | 158 |  |
| 08515+1148 | BKO 45 | 12.0 | 12.0 | 355.77 | 0.21 | 8.8 | 0.05 | 2007.265 | 8 | 159 |  |
| 08516+1152 | CHE 123 AB | 9.59 | 10.48 | 220.61 | 0.04 | 39.45 | 0.03 | 2007.265 | 12 | 160 |  |
| $08516+1152$ | BKO 46 AC | 9.59 | 12.5 | 183.79 | 0.13 | 16.24 | 0.08 | 2007.265 | 7 | 160 |  |

## Double Star Measures Using a DSLR Camera \#2

| WDS | Discoverer | m1 | m2 | PA | +/- | Sep | +/- | Epoch | n | Notes | Image |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $08517+1151$ | CHE 124 | 10.43 | 10.67 | 273.09 | 0.13 | 26.91 | 0.05 | 2007.265 | 19 | 161 |  |
| 08517+1151 | CHE 125 | 10.37 | 10.68 | 174.34 | 0.25 | 15.84 | 0.07 | 2007.265 | 16 | 162 |  |
| $08517+1147$ | CHE 126 AB | 10.39 | 10.83 | 121.67 | 0.19 | 22.95 | 0.07 | 2007.265 | 15 | 163 |  |
| $08517+1147$ | BKO 47 AC | 10.39 | 10.70 | 72.74 | 0.08 | 31.75 | 0.05 | 2007.265 | 14 | 163 |  |
| $08518+1150$ | CHE 127 AB | 9.31 | 10.45 | 51.17 | 0.15 | 24.65 | 0.08 | 2007.265 | 11 | 164 |  |
| $08518+1150$ | CHE 127 AC | 9.31 | 10.70 | 14.74 | 0.12 | 28.84 | 0.07 | 2007.265 | 15 | 164 |  |
| 10285+1309 | STF1438 AB | 9.5 | 11.1 | 244.84 | 0.32 | 9.81 | 0.05 | 2007.263 | 18 | 165 |  |

Table Notes

1. A=GSC 24011002 ( $05141+3541$ !). Far from the specified location (6,5'). Only GSC shows it in the given location, DSS does not.
2. $A=G S C 2402646$
3. $A=G S C 2402474$ ( $05177+3628!)$.
4. (051742+362731), A, B do appear in USNO.
5. $A=G S C 24021162$ ( $05182+3601$ !).
6. $A=G S C 24021266$
7. $A=G S C 240294$
8. $A B=G S C 2402992$ non star.
9. $A=G S C 2402756$
10. A=GSC 24021336
11. A=GSC 24021094
12. $A=G S C 2402868$
13. A=GSC 2402766 non star.
14. A=GSC 2402690 (05211+3620!).
15. A=GSC 23981490
16. A=GSC 24047751
17. A=GSC 2404695
18. $A=G S C 24081103$. The difference is significant compared to the previous measure.
19. A=GSC 2408875
20. A, B do appear in USNO. (054009+372211).
21. Ax=GSC 2416218 non star ( $05402+3721$ !).
22. $A=G S C 2416857$ ( $05407+3550$ !). Far from the specified location ( 6 ').
23. $A B=G S C 29111626$ non star.
24. A=GSC 1873934
25. A=GSC 2408585
26. A=GSC 2416468
27. A=GSC 24091003
28. A=GSC 2409792 (05422+3247!).
29. A=GSC 29111592
30. A=GSC 24091637 (05435+3317!). Far from the specified location (10').
31. A=GSC 2409 1929. Uncertain measures due to DM.
32. A=GSC 24091645
33. A=GSC 240591 (05446+3133!).

## Double Star Measures Using a DSLR Camera \#2

34. $A=G S C 2417409$ non star ( $05446+3623$ !). Far from the specified location ( 7 ').
35. A=GSC 24091327
36. A=GSC 24051793
37. BC=GSC 2405645 non star.
38. A=GSC 24171044
39. $\mathrm{A}=\mathrm{GSC} 2417368$ The primary star has significant proper motion according to the Hipparcos catalog: pmRA: 488,1 mas/y; pmD: -509,5 mas/y. At my request, György Vaskúti made calculations on the basis of the double's available measures (1880; 1908; 1954; 1991; 2007). He determined there's a systematic difference between the calculated and the measured values, therefore it can be supposed that the $B$ component has its own proper motion. On the basis of the first and the last measures, its value is pmRA: -11 mas/y; pmD: -33 mas/y.
40. GSC 2405179
41. A=GSC 24171102 non star (05465+3659!).
42. $A=G S C 2409425$
43. $A B=G S C 2417854$ non star.
44. $A B=G S C 2417726$ non star.
45. $A=G S C 13111823$ non star.
46. $A=G S C 13111761$ non star.
47. $A=G S C 131151$ non star. The difference is significant compared to the previous measure.
48. $A=G S C 13112030$ non star.
49. $A B=G S C 24051889$ non star.
50. $A=G S C 2405471$ ( $05497+3147$ !).
51. A=GSC 2409154
52. $A B=G S C 2405417$ non star.
53. $A=G S C 240519051$. AB is visible but cannot be measured.
54. A=GSC 240519051
55. $A B=G S C 2409110$ non star.
56. A=GSC 2410157
57. A=GSC 18752587
58. A=GSC 29121185 . Uncertain measures. Significant difference compared to the previous measures and GSC. Measuring the DSS image also showed different values.
59. A=GSC 24061020 (05520+3136!).
60. A=GSC 24061020 ( $05520+3136$ !). Only this star can be found in the given direction. The difference from the values indicated is significant.
61. $A=G S C 2406$ 1020. Similar parameters to ABH 32 AF, but with a 90 degree difference.
62. A=GSC 29121667
63. $A=G S C 2410719$
64. $B=G S C 24101722$ non star. Could this be the original SEI 431 AB ?
65. A=GSC 24062086
66. $A=G S C 240618641$ (05542+3030!).
67. $A=G S C 2418520$ (05558+3707!).
68. A=GSC 24061175
69. $A=G S C 2418773$ non star (05562+3719!).
70. $A=G S C 2418562$
71. A=GSC 2418808
72. A=GSC 24181004

## Double Star Measures Using a DSLR Camera \#2

73. A=GSC 24191293
74. A=GSC 24191127
75. $A=G S C 1876$ 1774. Uncertain measures due to $D M$.
76. $A B=G S C 13483$. $A B$ are not separated.
77. AB=GSC 13483
78. A=GSC 13561898
79. $A=G S C 1357467$
80. According to its data, it is the same as BRT 2368. There is no other similar double in the vicinity.
81. A=GSC 13571093
82. A=GSC 13571859
83. A=GSC 13451966
84. A=GSC 1353127 ( $07084+2013!$ ). The difference is significant, but there is nothing else nearby.
85. A=GSC 48152707 (07080-0146!).
86. A=GSC 48152431 (07082-0152!).
87. A=GSC 48153231 non star (07083-0121!).
88. A=GSC 48153235 (07084-0120!). = BAL 412 BC.
89. A=GSC 48153111 (07084-0120!).
90. A=GSC 48153750
91. A=GSC 48153019 non star (07086-0145!).
92. A=GSC 13494881
93. A=GSC 48152777 (07091-0141!).
94. $x=$ GSC 48152211 blended object.
95. A=GSC 48152521
96. A=GSC 48152929
97. $A=$ GSC 48152911 non star.
98. A=GSC 48152885
99. A=GSC 48152467 non star (07097-0127!).
100.A=GSC 48153025 (07097-0134!).
101.A=GSC 48151208 non star (07108-0134!).
102.A=GSC 48151740 non star.
103.A=GSC 48151561 blended object.
104.A=GSC 48193768 blended object.
105.A=GSC 48193487
106.A=GSC 13572052
107.AB=GSC 4815982 non star (07110-0139!).
108.A=GSC 48192738
109.A=GSC 4815889 (07111-0136!).
$110 . A=G S C 48193250$ (07113-0208!). Could the 1998 measure be BAL 434?
111.A=GSC 48192836
112.A=GSC 48151389 (07114-0034!).
113.A=GSC 4815182 blended object.
114.A=GSC 48152345 non star.
115.A=GSC 48193734 (07115-0158!).
116.A=GSC 48193472
117.A=GSC 48192876

## Double Star Measures Using a DSLR Camera \#2

118.A=GSC 48151464 non star.
119.A=GSC 4815988 non star (07119-0129!).
120.AB=GSC 48151536
121.A=GSC 48193526
122.A=GSC 48192776 non star.
123.A=GSC 4815419 (07123-0030!).
124.A=GSC 4815970 non star.
125.A=GSC 4815568 (07124-0141!).
126.A=GSC 48193172 non star.
127.A=GSC 48151612
128.A=GSC 48193038
129.A=GSC 1350740
130.A=GSC 1346253
131.A=GSC 13551102
132.(072442+200750), A does appear in USNO.
133.A=GSC 1355 836. Since the beginning of the 1980s, amateur astronomer György Vaskúti has been taking notes on all the doubles he visually observes and which do not appear in public catalogs. His list contains nearly 300 double stars. In the meantime, a greater portion of these doubles has been catalogued in WDS on the basis of other astronomers' measures. This double star cannot be found in WDS yet; György Vaskúti found it in 1990, and it appears in his list by his own "VGY 215 " marking.
134.A=GSC 1355444 non star.
135.A=GSC 13551621
136.A=GSC 13511053
137.A=GSC 1351238
138.A=GSC 1355744
139.A=GSC 1365960 non star.
140.A=GSC 1365968
141.A=GSC 1365968 . Very different data, but there is no better star in the vicinity.
142.A=GSC 2472393 ( $07585+3214$ !).
143.A=GSC 2472538 (07596+3210!).
144.A=GSC 1931841 (08097+2543!).
145.A=GSC 2469 550. This double star cannot be found in WDS yet; György Vaskúti found it in 1990, and it appears in his list by his own "VGY 88" marking.
146.A=GSC 19311927
147.A=GSC 1931 1927. The difference is significant, the DSS image shows a PA of about 21 degrees, too.
148. $A B=G S C 8141351$ non star.
149.A=GSC 8141769 (08511+1148!).
150.A=GSC 8141763
151.A=GSC 8141323
152.A=GSC 8141647 non star.
153.A=GSC 8142331 (08513+1145!).
154.A=GSC 8141527 non star. BC is visible but cannot be measured.
155.A=GSC 8141025 (08514+1154!).
156.A=GSC 8141205
157.A=GSC 8142089
158.A=GSC 8142079

## Double Star Measures Using a DSLR Camera \#2

159.A=GSC 8141537 non star.
160.A=GSC 8141315 (08516+1151!).
161.A=GSC 8141981 (08517+1150!).
162.A=GSC 8141007 (08517+1150!).
163.A=GSC 8141737
164.A=GSC 8142047 (08518+1149!)
165.A=GSC 844681 (10292+1309!). Far from the specified location (10,6').


Figure 1: DOO 32


Figure 4: BLL 16


Figure 7: BAL 414


Figure 2: WZ 10


Figure 5: SEI 402 and SEI 397


Figure 8: BAL 431 and BAL 430


Figure 3: HJ 370 and HJ 369


Aur

Figure 6: STT 129


Figure 9: BKO 35

# A Comparison of the Astrometric Precision and Accuracy of Double Star Observations with Two Telescopes 

Pablo Alvarez ${ }^{1}$, Amos E. Fishbein¹, Michael W. Hyland ${ }^{1}$, Cheyne L. Kight ${ }^{1}$, Hairold Lopez', Tanya Navarro ${ }^{1}$, Carlos A. Rosas¹, Aubrey E. Schachter¹, Molly A. Summers ${ }^{1}$, Eric D. Weise ${ }^{1}$, Megan A. Hoffman², Robert C. Mires², Jolyon M. Johnson ${ }^{2,3}$, Russell M. Genet ${ }^{2,3,4}$, and Robin White ${ }^{2}$<br>1. Arroyo Grande High School, CA 93420<br>2. Cuesta College, Physics Dept., San Luis Obispo, CA 93403<br>3. Orion Observatory, Santa Margarita, CA 93453<br>4. California Polytechnic State University, San Luis Obispo, CA 93407


#### Abstract

Using a manual Meade 6" Newtonian telescope and a computerized Meade 10" Schmidt-Cassegrain telescope, students from Arroyo Grande High School measured the well-known separation and position angle of the bright visual double star Albireo. The precision and accuracy of the observations from the two telescopes were compared to each other and to published values of Albireo taken as the standard. It was hypothesized that the larger, computerized telescope would be both more precise and more accurate.


## Introduction

The objective of this project was to compare the precision and accuracy of visual astrometric observations of a double star made with two different telescopes. Precision is the repeatability (reliability) of the observations, i.e. how well the observers agree among themselves. Accuracy, on the other hand, is agreement with some already well-established value. Highly precise and accurate astrometric measurements are desired because they will be more strongly weighted in later analyses of a binary system. Since our objective was to evaluate both the precision and accuracy of our astrometric observations, as opposed to obtaining new values on a neglected or rapidly changing double star, we chose the double star Albireo because it has a well established separation and position angle that change only slowly over time.

This project was part of the Fall 2008 Physics Research Seminar at Cuesta College's South Campus in Arroyo Grande, California. As suggested by Johnson (2007), visual observations of double stars are well
suited to one semester research seminars. Ten student first time observers attending Arroyo Grande High School met with experienced observers Genet, Johnson, and White on September 19 th, 2008 (B2008.718) at the Marble residence in Arroyo Grande to observe Albireo (Marble et al, 2008).

The observers were divided into two teams: Alvarez, Kight, Navarro, Schachter, Summers, Weise, Mires and Genet used a manual 6", f/6 Newtonian telescope with a clock drive; Fishbein, Hyland, Lopez, Rosas, Johnson, and White used a computer controlled 10", f/10 Meade LX200 Schmidt-Cassegrain telescope. A 12 mm Meade astrometric eyepiece was used with the 6 " telescope while a 12.5 mm Celestron Micro Guide eyepiece was used with the 10 " telescope. Stopwatches that read out to the nearest 0.01 second were used in the calibration of the linear scales of both eyepieces.

Prior to the observations, the authors hypothesized that with a longer focal length ( 100 " versus 36 ") and larger aperture ( 10 " versus $6 "$ ), the separations

## A Comparison of the Astrometric Precision and Accuracy of Double Star Observations ...



Figure 1: Aubrey Schachter (right) watches Vega drift across the field of view of the 6 " Newtonian telescope, while Molly Summers (center) times the drift with a stopwatch, and Cheyne Kight (left) records the time.
and position angles would be easier to see through the larger 10 " telescope and hence would be more precisely and accurately recorded. Furthermore, the 10 " telescope was on a much sturdier mount, computer controlled, and operated by an experienced operator, all factors which could lead to greater precision and accuracy. Specifically, we hypothesized that the variance of both the separation and position angle measurements would be significantly greater for the 6 " than for the 10 " telescope while the accuracy would be significantly higher on the 10 " than the 6 ".

Mathematically, our hypothesis for precision was $\mathrm{H}_{1}:{\mathrm{S} 10^{2}}^{2}<\mathrm{S}_{6}{ }^{2}$ (statistically significant at $95 \%$ ), while the null hypothesis was $\mathrm{H}_{0}: \mathrm{S}_{10}{ }^{2}=\mathrm{S}_{6}{ }^{2}$ (not statistically significant at $95 \%$ ); where $\mathrm{H}_{1}$ was our hypothesis, $\mathrm{H}_{0}$ was the null hypothesis, S was the standard deviation, and $\mathrm{S}^{2}$ was the variance of the data set. Our hypothesis for accuracy was $H_{1}: \delta_{10}<\delta_{6}$, while the null hypothesis was $\mathrm{H}_{0}: \delta_{10}=\delta_{6}$; where $\mathrm{H}_{1}$ was our hypothesis, $\mathrm{H}_{\mathrm{o}}$ was the null hypothesis, and $\delta$ was the accuracy of the data set.

## Calibrations

To calculate the scale constants for the two telescopes in arc seconds per division, the observers determined the time it took for stars with a known declination to drift across the linear scale of each eyepiece (Teague, 2004). Each star was aligned so the linear scale passed through the center of the calibration star. The eyepiece was then rotated until the star followed the ruler with minimal deviation as the telescope was slewed east and west. The star was then placed on the outer protractor and the right ascension motor turned off. When the star passed over the beginning of the ruler, the stopwatch was started, and then stopped as the star crossed the other end of the
ruler. The displayed time was recorded to the nearest 0.01 second. This procedure was repeated five times on the 6 " and nine times on the 10 ". The observers on the 6 " telescope did not make as many observations because their telescope was not computerized, so realigning the star before each drift was more time consuming. One random outlier from the 10 " observations was not included in the final analysis.

The mean drift time for each telescope was used to calculate the scale constant for each eyepiece using the following equation (Teague, 2004):

$$
Z=\frac{15.0411 t \cos (d)}{D}
$$

where $Z$ is the scale constant in arc seconds per division; 15.0411 is the number of arc seconds per second that the Earth rotates; $t$ is the average drift time; $d$ is the declination of the star; and $D$ is the number of divisions on the linear scale ( 50 for the Meade eyepiece and 60 for the Celestron eyepiece).

Each team observed a different star for calibration, Vega for the 6 " and Beta Andromeda for the 10 ". Using the calibration equation above, the 6 " team determined their scale constant to be $32.0 \pm 0.06$ "/ division. The 10 " team calculated a scale constant of $7.07 \pm 0.01$ "/division. Table 1 shows the declinations of both stars (Epoch 2000), the number of observations, mean drift times, standard deviations, and standard errors of the mean.

|  | $6 \prime$ Telescope | $10^{\prime \prime}$ Telescope |  |
| :--- | :--- | :--- | :--- |
| Star Observed | Vega | Beta And |  |
| Star Declination | $+38^{\circ} 47^{\prime} \quad 01^{\prime \prime}$ | $+35^{\circ} 47^{\prime} 14^{\prime \prime}$ |  |
| Number of Observation | 5 | 8 |  |
| Mean Drift Time | 136.47 s | 34.74 s |  |
| Standard Deviation | 0.55 s | 0.41 s |  |
| Standard Error of the Mean | 0.25 s | 0.14 s |  |

Table 1: Comparison of Calibration Drift Times

## Separation and Position Angle Observations

The distance between the two stars was estimated by each observer to the nearest 0.1 division. The double star was moved between each observation to different parts of the linear scale to avoid observational bias. The angular separation in arc seconds for each telescope was then determined by multiplying the average number of divisions separating the two stars on the linear scale by the appropriate scale constant.

## A Comparison of the Astrometric Precision and Accuracy of Double Star Observations ...

The position angle was determined by placing the brighter star at the center of the eyepiece and rotating the eyepiece so that the linear scale bisected both stars. The right ascension motor was then turned off. The position angle was determined by estimating which degree marking the star crossed the outer protractor of the eyepiece (Teague, 2004). This step was repeated three times on the 6 " and four times on the $10^{\prime \prime}$. Atmospheric conditions and the rising moon did not allow for further observations. For each measurement, team members privately recorded their results to avoid influencing the other observers.

To compare the astrometric precision of the two telescopes, the students aimed both telescopes at the well documented, slowly revolving double star, Albireo. Each team measured its separation and position angle. Table 2 shows the means, standard deviations, and standard errors of the mean for both telescopes' measurements of separation and position angle. The students used Microsoft Excel for the calculations.

|  | Separation |  | Position Angle |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $6^{\prime \prime}$ <br> Telescope | $10^{\prime \prime}$ <br> Telescope | $6^{\prime \prime}$ <br> Telescope | 10" <br> Telescope |
| Mean | $37.12^{\prime \prime}$ | $32.45^{\prime \prime}$ | $56.3^{\circ}$ | $54.0^{\circ}$ |
| St. Dev. | $6.08^{\prime \prime}$ | $1.2^{\prime \prime}$ | $0.6^{\circ}$ | $0.8^{\circ}$ |
| St. Err. | $0.64^{\prime \prime}$ | $0.14^{\prime \prime}$ | $0.1^{\circ}$ | $0.2^{\circ}$ |

Table 2: Comparison of Separation and Position Angle of Albireo

## Analysis

Were the 10 " separation and position angle observations more precise than the 6 " observations as the authors hypothesized? Table 3 shows the separation variance for both telescopes.

|  | \# of Obs. | St. Dev. | Variance |
| :---: | :---: | :---: | :---: |
| $\mathbf{6 "}^{\prime \prime}$ Telescope | 5 | $6.8^{\prime \prime}$ | 46.2 |
| $10^{\prime \prime}$ Telescope | 8 | $1.2^{\prime \prime}$ | 1.4 |

Table 3: Separation Variance for two telescopes
The critical f-ratio (95\%) was 4.12 from tables for 4 degrees of freedom for the numerator $(5-1=4)$ and 7 degrees of freedom for the denominator $(8-1=7)$. The observed variance ratio of 33 (46.2/1.4) was 8 times the critical F ratio value from the table, so the null hypothesis was rejected while the hypothesis that the 10 " observations of the separation would be more
precise was accepted.
Table 4 shows the position angle variance comparison for the precision of both telescopes.

|  | \# of Obs. | St. Dev. | Variance |
| :---: | :---: | :---: | :---: |
| $6^{\prime \prime}$ Telescope | 3 | $0.6^{\circ}$ | 0.36 |
| $10^{\prime \prime}$ Telescope | 5 | $0.8^{\circ}$ | 0.64 |

Table 4: Data for Position Angle Variance Comparison
The critical f-ratio (95\%) was 19.2 from tables for 4 degrees of freedom for the numerator $(5-1=4)$ and 2 degrees of freedom for the denominator ( $3-1=2$ ). The variance ratio of $1.8(0.64 / 0.36)$ was more than 10.7 times less than the critical F ratio from the table, so the null hypothesis could not be rejected and the hypothesis that the 10 " position angle observations would be more precise was not accepted.

Were observations made on the 10 " more accurate than those on the $6 "$ ? Table 5 compares the observed separations and position angles for both telescopes to literature values of Albireo (STFA 43Aa-B) from the Washington Double Star (WDS) Catalog (Mason, 2006).

While the separation measured on the $6^{\prime \prime}$ was approximately $3 \%$ more accurate than on the $10^{\prime \prime}$, the position angle measured on the 10 " was identical to the literature value. According to Ron Tanguay (1998), who is highly experienced in astrometry with eyepiece reticle micrometers, "With a well calibrated reticle micrometer, we may expect measurements to average about $+/-1$ degree in the position angle and $+/-2 \%$ in separation from the data listed in the WDS Catalog."

Based on Tanguay's criteria, observations on both telescopes were reasonably accurate in their separation and position angle measurements. However, neither set of observations were definitively more accurate than the other. Therefore, the hypothesis that the larger telescope would make more accurate measurements could not be accepted.

## Discussions and Conclusions

The students concluded that the larger telescope was more precise than the smaller one when measuring the angular separation of a double star because the separation measurements made with the 10 " telescope were about five times more precise than those made with the 6 " telescope. A likely cause is that the stars were separated by about one division in the 6 " while they were separated by several divisions

## A Comparison of the Astrometric Precision and Accuracy of Double Star Observations ...

|  | Separation |  |  |  | Position Angle |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Obs. | Lit. | Diff. | $\%$ Diff. | Obs. | Lit. | Diff. | \% Diff. |
| $6^{\prime \prime}$ telescope | $37.12^{\prime \prime}$ | $35.3^{\prime \prime}$ | $1.82^{\prime \prime}$ | $5 \%$ | $56.3^{\circ}$ | $54.0^{\circ}$ | $2.3^{\circ}$ | $4 \%$ |
| $10^{\prime \prime}$ telescope | $32.45^{\prime \prime}$ | $35.3^{\prime \prime}$ | $2.85^{\prime \prime}$ | $8 \%$ | $54.0^{\circ}$ | $54.0^{\circ}$ | $0.0^{\circ}$ | $0 \%$ |

Table 5: Comparison of Observed Values for Albireo on the 6 " and 10 " Telescopes to Literature Values
in the larger telescope. Thus the stars didn't appear to blur together.

It was suggested by a reviewer that the apparent difference in precision could also have been due to the different eyepieces used in each telescope. The Celestron Micro Guide eyepiece has 60 divisions on its linear scale while the Meade Astrometric eyepiece has only 50 . With more divisions on the linear scale, one might expect a more precise result from the Celestron eyepiece regardless of the telescope used. However, our difference in precision was probably not primarily due to the different eyepieces alone since the observed variance ratio was 8 times the critical f-ratio. Perhaps it was a combination of a larger telescope and an eyepiece with more linear scale divisions that produced the more precise result on the 10 " telescope.

Future evaluations, however, might consider controlling this variable by using the same eyepiece in both telescopes.

It was suggested by another reviewer that the observers who used the 10 " telescope might have made more precise measurements because they were either more organized or more careful and meticulous than those who used the 6 " telescope. This reviewer suggested that this possibility could be evaluated in any future assessments by having teams exchange telescopes and make a second set of observations.

The most surprising result from the comparison, however, was that the position angle measurements were no more precise on the 10 " than on the 6 ". In fact, the 10 " observations were slightly less precise (although the difference was not statistically signifi-


Figure 2: Several of the students analyzed the data with Russ Genet and Jo Johnson at the Marbles' home in Arroyo Grande, California. Left to right: Hairold Lopez, Jolyon Johnson, Mike Hyland, Carlos Rosas, Amos Fishbein, Aubrey Schachter, Molly Summers, and Russ Genet.

## A Comparison of the Astrometric Precision and Accuracy of Double Star Observations ...

cant). This lack of difference may be because it does not matter how magnified an object was in the eyepiece when making position angle measurements. The authors suggest that since the protractor itself was not magnified, it could not be viewed more precisely. Furthermore, with the longer focal length of the 10 " telescope and correspondingly smaller field of view, the star drifted faster across its field of view, including the protractor, and thus may actually have been more difficult to observe. On the other hand, with twice the magnification and brighter stars on the 10 ", one would have expected that the ruler could have been set to more accurately bisect the two stars prior to commencing the positional angle drift.

It might be noted that Darrell Grisham (2008), an experienced astronomer in California Valley, made very accurate measurements of bright visual double stars during the fall 2007 research seminar with a three inch Tasco telescope. His separation measurements were approximately $0.8 \%$ different from the literature values (ours were $5 \%$ for the 6 " and $8 \%$ for the 10 ") and his position angle measurements were approximately $3 \%$ different (ours were $4 \%$ for the 6 " and $0 \%$ for the $10 "$ ). For smaller telescopes, accuracy might be more dependent upon the experience of the observer than telescope aperture or focal length.

## Acknowledgments

The authors thank John and Chrissie Marble for the use of their home for the observations. We also thank the now retired Arroyo Grande High School physics teacher, John Baxter, for recommending the
research seminar to the students. The authors also thank the Central Coast Astronomical Society for loaning us the 6" Equatorial Newtonian telescope. Lastly, the authors thank external reviewers David Arnold, Robert Buchheim, Tom Smith, and Vera Wallen for their helpful suggestions.

## References

Grisham, D. et al. "Double Star Measurements with a Three Inch Tasco Telescope." (2008). Journal of Double Star Observations, 4, 10.

Johnson, Jolyon. "Double Star Research as a Form of Education for Community College and High School Students" in Proceedings for the $27^{\text {th }}$ Annual Conference for the Society for Astronomical Sciences, Ed. Brian Warner, Jerry Foote, David Kenyon, and Dale Mais. (2008).

Marble, S. et al. "High School Observations of the Visual Double Star 3 Pegasi." (2008). Journal of Double Star Observations, 4, 24.

Mason, Brian. The Washington Double Star Catalog. October 2008. Astrometry Department, U.S. Naval Observatory. http://ad.usno.navy.mil/wds/ wds.html.

Tanguay, Ronald. The Double Star Observer's Handbook. Saugus, MA: Double Star Observer (1998).

Teague, Tom. "Simple Techniques of Measurement." Observing and Measuring Visual Double Stars. Ed. Bob Argyle. London: Springer (2004).

> Pablo Alvarez, Amos E. Fishbein, Michael W. Hyland, Cheyne L. Kight, Hairold Lopez, Tanya Navarro, Carlos A. Rosas, Aubrey E. Schachter, Molly A. Summers, and Eric D. Weise are students at Arroyo Grande High School and were members of the fall 2008 Physics $193 A$ Research Seminar at Cuesta College. Megan A. Hoffman and Robert C. Mires were also members of the research seminar and are students at Cuesta College. Jolyon M. Johnson is a student at Cuesta College and the Science Advisor for the research seminar and the Orion Observatory, www.OrionObservatory.org. Russell M. Genet is a Professor of Astronomy at Cuesta College and led the research seminar. He is also a Research Scholar in Residence at California Polytechnic State University and Director of the Orion Observatory. Robin White, the Observatory Assistant at Cuesta College, is a highly experienced observer and provided the 10" telescope.

# On the Accuracy of Double Star Measurements from "Lucky" Images, a Case Study of Zeta Aqr and Beta Phe 

Rainer Anton<br>Altenholz/Kiel, Germany<br>e-mail: rainer.anton"at"ki.comcity.de


#### Abstract

The accuracy and reproducibility of measuring double stars from "lucky" images was tested by repeated recordings at consecutive nights of two systems, zeta Aquarii (STF 2909) and beta Phoenicis (SLR1 AB), with current separations of about 2 arcsec and 0.4 arcsec, respectively, using a fast CCD camera at two telescopes ( 40 cm and 50 cm Cassegrain). By careful selection and superposition of only the best images out of longer sequences, error margins of position measurements were significantly reduced. Standard deviations for the separation of the order of $+/-0.01$ arcsec were obtained, even under nonoptimum seeing conditions.


## Introduction

High-resolution imaging of celestial objects is limited by seeing effects. Even under good seeing conditions, the size of the seeing disc is rarely smaller than 1 arcsec, which is larger than the Airy diffraction disc of modest amateur telescopes. The theoretical resolution is usually referred to as Rayleigh or Dawes limits, which only depend, besides the wavelength, on aperture. Both are somewhat arbitrary, as they are calculated under the assumption that two overlapping Airy peaks can be split, when the drop of the light intensity in between is $25 \%$, or $3 \%$, respectively, which may or may not be detected by visual observers. As an example, an aperture of 50 cm would produce an Airy disc with total diameter 0.55 arcsec, with a full-width at half-maximum (FWHM) of 0.23 arcsec, at a wavelength of 550 nm , and the resolution limits are 0.28 or 0.23 arcsec, respectively. In reality, when observing close double stars, blurring of the Airy discs by seeing effects, if not optical or other defects, reduces the resolution accordingly, in particular, when taking images with long exposure times.

While these limits are of interest for estimating the splitting power of a telescope, angular resolution is not the only criterion for the accuracy of double star measurements. In fact, most important is the accu-
racy of determining the positions of the centroids of the seeing discs of the components. Provided that both are symmetric or at least similar, this is a matter of resolution of the image itself, i.e. the size of the pixels of the CCD camera in relation to the focal length of the telescope. In this respect, relatively long exposure times help in averaging image distortions by seeing effects. The improvement by using lucky imaging techniques, which means using exposure times down to the order of milliseconds and registering and stacking only the best images out of longer sequences, consists in a significant reduction of the effective size of the seeing disc, with particular benefit for splitting and measuring close pairs. In the following, the reproducibility and accuracy of this technique is evaluated for two representative systems, zeta Aqr (STF 2909, WDS 22288-0001) and beta Phoenicis (SLR1 AB, WDS 01061-4643), with current separations of 2 and 0.4 arcsec, respectively. These were mainly selected because of their brightness ( 4 mag), with about equal values of the components, which allows for short exposure times. They are also interesting for other reasons. Both are binaries with assumed periods of 587 and 195 years, respectively, but recent measurements, also by other authors, deviate from published orbits. Closer looks appear to be worthwhile.

# On the Accuracy of Double Star Measurements from "Lucky" Images, a Case Study ... 

## Instrumental

Recordings were done during several nights during one week in September 2008 with two telescopes at the International Amateur Sternwarte (IAS) in Namibia [1]. Seeing conditions are generally good at this location. The telescopes were of Cassegrain type with apertures 40 cm and 50 cm , and focal lengths of 6.3 m and 4.5 m , respectively. In most cases, the latter were effectively doubled with a Barlow lens, which, however, required insertion of a band filter to reduce chromatic aberrations of the lens. A red filter was used (Edmund Scientific Co.), which, combined with the spectral sensitivity of the camera chip, resulted in maximum response at wavelengths between 600 and 750 nm .

Digital images were recorded at high frequencies with a b/w-CCD camera (DMK21AF04, The Imaging Source) via a firewire interface as bitmaps into a computer. The chip contains 640 x 480 square pixels with a size of $5.6 \mu \mathrm{~m}$, which results in image scales of nominally 0.18 arcsecond/pixel for the 40 cm telescope, and 0.26 arcsecond/pixel for the 50 cm . These values are halved when using the Barlow lens. More exact calibrations were obtained in an iterative way by measuring systems with well known and predictable separations. This procedure was the same as was described in earlier articles [2,3]. The results are listed in Table 1. Error limits are estimated to $+/-1$

| telescope | without Barlow | with Barlow |
| :---: | :---: | :---: |
| 40 cm Cass. | 0.187 | 0.097 |
| 50 cm Cass. | $\mathrm{n} / \mathrm{a}$ | 0.132 |

Table 1: Calibration factors in arcsec/pixel as determined from reference systems
percent.
Exposure times were chosen to obtain decent signal-to-noise ratios, but to avoid saturation of pixels, and ranged from 0.25 milliseconds per frame (beta Phe, 40 cm without Barlow) up to 12 milliseconds (zeta Aqr, 50 cm with Barlow and red filter). Seeing conditions varied between mean and very good, partly due to different zenith distances of the stars ranging from 20 to about 60 degrees.

Sequences of about 2000 frames were recorded within a couple of minutes, out of which the best were later selected by visual inspection for further evaluation. However, even under good seeing, the so called
lucky image is virtually never perfect. Moreover, it is sometimes difficult to decide whether an image is useful or not, especially, when anisoplanatic effects occur. For the close pairs investigated here, this was luckily rarely the case. A simple estimate of image quality by measuring the Strehl ratio is often not sufficient. Rather, the more or less distorted profile of the star image, including the diffraction rings, which may fluctuate in shape and intensity, has to be taken into account. A good strategy is to select good images when they come in bunches, although not necessarily consecutively, at moments of steadier seeing than average. The yield of useful images was generally of the order of only a few percent. These were resampled, i.e. the images were recalculated by doubling the number of pixels in $x$ - and $y$-direction, up to three times, and stacked with sub-pixel accuracy, referred to the original pixel size. This procedure results in rather smooth intensity profiles and in an accordingly more accurate definition of the peak centroids. For measuring the position angle, the east-west direction was determined from superposed images recorded while the telescope drive was temporarily switched off. This was done for each individual recording of any system, resulting in an average error margin of $+/-0.2$ degrees.

## Results

## A) Zeta Aquarii

Figure 1 shows images of $\zeta$ Aqr (WDS 22288-0001) produced from recordings with both telescopes at different nights, under different conditions, as indicated in the images and in the caption. While the seeing varied (qualitative estimates are listed in Table 2 below), the Airy diffraction rings could be resolved in all cases. Slightly asymmetrical brightness may be caused by minor changes of telescope collimation, possibly by varying tilt angles and/or temperature. Collimation was not re-adjusted, as such variations are not thought to influence the accuracy of position measurements. The image of date 2008.732 suffers most from only mediocre seeing, which resulted in somewhat enlarged seeing discs and in an inhomogeneous background. Moreover, as it was obtained without Barlow, it had to be enlarged by a factor of two to adapt to the scale of the images with Barlow. Nevertheless, the image quality is sufficient to determine the peak centroids with sub-pixel accuracy, as in all other cases.

A representative line scan of the peak profiles is shown in Figure 2. A full-width at half-height

On the Accuracy of Double Star Measurements from "Lucky" Images, a Case Study ...


Figure 1: Images of zeta Aquarii, obtained with a 40 cm scope (upper row), and with a 50 cm scope (bottom row) at the indicated dates, with partly varying f-settings. Recording at 2008.732 (upper left) was done without Barlow and filter, all others with Barlow and with red filter. Recordings at 2008.727 a and $b$ were consecutively made and only differ by exposure time. At bottom right, the numbers of superposed frames and exposure times are indicated
(FWHM) of 0.39 arcsec was obtained, which is much smaller than the blurred seeing disc ( $\sim 1$ arcsec) resulting from longer exposures, although it does not reach the theoretical value of 0.23 arcsec for a 50 cm scope. This may have two reasons. First, the theoretical limit is derived for a non-obstructed light path, which does not apply here, and second, seeing effects can not completely be eliminated. It should be noted that in any case no further smoothing or non-linear stretching of the grey levels had been applied during image processing. It is also noteworthy that relatively small numbers of superposed frames already lead to rather well defined profiles. This is a consequence of carefully selecting "lucky" images.

In Table 2, the results of position measurements are listed, together with measurements of the brightness differences of the components, and with qualitative estimates of the seeing. The mean value of the position angle is 170.5 degrees, with range 1.5 degrees, and standard deviation $+/-0.55$ degrees. The mean of separation is 2.094 arcsec, with range 0.037 arcsec, and standard deviation $+/-0.014$ arcsec.


Figure 2: Line scan of the intensity profiles in fig. 1, top right ( 40 cm Cass.). A full-width at half-height (FWHM) of 0.39 arcsec was obtained. While the Airy diffraction rings are clearly visible, although not quite symmetrical, the relatively increased background at and around the peaks is caused by residual seeing effects.

# On the Accuracy of Double Star Measurements from "Lucky" Images, a Case Study ... 

| telescope | date | P.A./degrees | rho/arcsec | $\mathrm{I}_{\mathrm{A}} / \mathrm{I}_{\mathrm{B}}$ ** | $\Delta$ mag ** | seeing |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 40 cm Cass. $\mathrm{f} / 16$ * | 2008.732 | 171.3 | 2.085 | 1.031 | -0.033 | mean |
| " f/32 | 2008.735 | 170.9 | 2.076 | 1.196 | -0.194 | mean |
| " " | 2008.738 | 170.2 | 2.113 | 1.192 | -0.191 | fair |
| 50 cm Cass. f/9 | 2008.727 a | 170.5 | 2.089 | 1.192 | -0.191 | good |
| " | 2008.727 b | 170.1 | 2.108 | 1.203 | -0.201 | good |
| " | 2008.749 | 169.8 | 2.090 | 1.171 | -0.171 | very good |
|  | mean: | 170.5 | 2.094 | 1.191 | -0.190 |  |
|  | std.dev.: | +/-0.55 | +/-0.014 | 0.012 | 0.011 |  |

Table 2: Measurements of position angles (P.A.), separations (rho), intensity ratios ( $I_{A} / I_{B}$ ), and magnitude differences ( $\Delta \mathrm{mag}$ ) of the components in the system zeta Aquarii, obtained with two telescopes and at different nights. Qualitative estimates of the seeing are also listed. The total mean values of position and intensity data, as well as their standard deviations are given in the last two lines.
*: Recording without Barlow and filter, all others were made with Barlow and red filter.
**: For statistical analysis of the intensity data, the measurement without Barlow and filter

Measurements of the intensity ratios $\mathrm{I}_{\mathrm{A}} / \mathrm{I}_{\mathrm{B}}$ of the components were done for testing the reproducibility with regard to variable seeing. From the ratios, the differences in magnitude were calculated according to $\Delta \mathrm{mag}=-2.5 \log \left(\mathrm{I}_{A} / \mathrm{I}_{\mathrm{B}}\right)$. Intensities were measured by integrating the pixel values in the peaks, and subtraction of the background in the surroundings. Although the DMK camera is not particularly suited for intensity measurements, as the output only delivers 256 grey levels (although the internal resolution is 10 bits), standard deviations of $\mathrm{I}_{\mathrm{A}} / \mathrm{I}_{\mathrm{B}}$ and of $\Delta \mathrm{mag}$ were in the range of only one percent. The mean value of $\Delta \mathrm{mag}=-0.19$ is slightly greater than expected from the visual magnitudes, which are listed as $4 . \mathrm{m} 34$ and 4. ${ }^{\text {m }} 49$ (difference $-0 . \mathrm{m}^{\mathrm{m}} 15$ ) in the Washington Double Star Catalog [4]. With a standard deviation of my own measurement of the order of $0 . \mathrm{m}^{\mathrm{m}} 01$, the difference of 0 . m04 with respect to the WDS entry appears to be real, and may be due to the different wavelengths at which the measurements were done (red filter - visual), although the spectra of the components, F3IV - F3V, do not seem to be very different.

The position measurements were compared with literature data. For doing this, an additional error of the image scale of +/- 1 percent has to be taken into account, which leads to a total error margin of the separation of about +/- 0.03 arcsec. In Table 3, data from other authors, as well as from my own, which I had obtained with my 10 -inch Newtonian at home, are listed. The last row contains the actual entry in the WDS, which probably is the rounded version of the
data from refs. [6] and [7]. My present data seem to fit rather well into this trend.

The data in Table 3 reflect orbital motion in that the position angle decreases, while the separation increases. However, deviations from the currently assumed orbit have increased in the last few years beyond the error margins. Figure 3 is adopted from the $6^{\text {th }}$ Catalog of Orbits of Binary Stars (USNO, [5]) and shows the orbit with markings of own recent measurements. Some more or less obvious, and apparently periodic deviations had also been observed earlier, and led to the assumption of distortions by a third, unseen component with period of about 25

| author | date | P.A./ <br> degrees | rho/arcsec |
| :---: | :--- | :--- | :--- |
| own * | 2004.751 | 177.5 | 1.88 |
| A. Alzner [6] | 2006.79 | 172.4 | 1.95 |
| own * | 2006.792 | 171.2 | 1.91 |
| R. Argyle [7] | 2006.810 | 171.6 | 2.04 |
| own * | 2007.753 | 171.3 | 2.05 |
| own * | 2007.764 | 170.6 | 2.06 |
| R. Argyle [8] | 2007.835 | 170.4 | 2.11 |
| WDS [4] | 2007 | 172 | 2.0 |

Table 3: List of other recent measurements of zeta Aqr.
*: own measurements with a 10 -inch Newton at $f / 12$ at home, unpublished.

On the Accuracy of Double Star Measurements from "Lucky" Images, a Case Study ...


Figure 3: Orbit of zeta Aqr, adopted from the $6^{\text {th }}$ Catalog of Orbits of Binary Stars (USNO). Own measurements are marked with dates. Dates 2008.7xx range from $x x=27$ to 49. Error margins are of the order of the symbol size. Deviations from the calculated orbit, as were also seen by other authors, have increased in the last few years.


Fig. 4: Images of beta Phe, obtained with the 40 cm Cassegrain, and with the 50 cm Cassegrain at the indicated dates, with partly varying f-settings. Recording at 2008.740 (upper left) was done without Barlow and filter, all others with Barlow and with red filter. Figures at bottom right indicate numbers of superposed frames and exposure times.

On the Accuracy of Double Star Measurements from "Lucky" Images, a Case Study ...



Figure 5: Line scan of the pixel values along the line crossing the peak centroids of both components (black line and data points), taken from the image in fig. 4 , bottom right ( 50 cm telescope). The profile dotted in red is from a superposition of 500 unselected frames (exposure time 0.67 milliseconds), and represents an exposure of $1 / 3$ second.
peaks and diffraction rings are completely smeared out. In Table 4, the results of the individual measurements are listed and analyzed. The range of position angles is 3.3 degrees, with a mean value of 119.4 degrees, and a standard deviation of +/- 1.1 degrees. The range of separation values of 0.014 arcsec , at a mean value of 0.390 arcsec, and the standard deviation of +/- 0.007 arcsec are surprisingly low. However,
the total error margin may be somewhat greater for two reasons. First, the error of the calibration constant of about 1 percent has to be added. Second, the peak profiles are slightly distorted by partly overlapping. This effect was analyzed by decomposition and revealed an apparent inward shift of the centroids by about 0.01 arcsec in an average. Thus, the end result of the separation is shifted to 0.40 arcsec, with an estimated total error limit of +/- 0.02 arcsec. These profiles were also analyzed with regard to the resolution limit under the actual seeing conditions. It turned out that Rayleigh's limit would be reached at separations of about 0.35 arcsec, which is determined by the seeing, not by the telescope.

Unfortunately, no recent data of this system are available in the literature to compare with [10]. An orbit has been calculated in 2001, and the interpolated ephemeris for the date 2008.74 would be 147.7 degrees and $0.420 \operatorname{arcsec}$ [5]. An image of the orbit, adopted from the 6th Catalog of Orbits of Binary Stars, is shown in fig. 6 [5]. The deviation of my measurements is greater than the error limits. The last entry in the 4th Catalog of Interferometric Measurements of Binary Stars with date 2001.862 only gives an upper limit of separation of 0.266 arcsec, but no value for the position angle [11]. While the orbit is of grade 5, more measurements in the near future, becoming more feasible with further increasing separation, should reduce ambiguities.

## Summary

The technique of so called lucky imaging with

| telescope | date | P.A./degrees | rho/arcsec | seeing |
| :---: | :---: | :---: | :---: | :---: |
| 40 cm Cass. f/16* | 2008.740a | 117.4 | 0.398 | good |
| " f/32 | 2008.740b | 119.2 | 0.387 | very good |
| 50 cm Cass. f/9 | 2008.724 | 119.4 | 0.385 | mean |
| " | 2008.728 | 119.8 | 0.392 | very good |
| " | 2008.743 | 120.7 | 0.381 | mean |
| " | 2008.746 | 119.7 | 0.399 | very good |
|  | mean: | 119.4 | 0.390 |  |
|  | std.dev. : | +/-1.09 | $+/-0.007$ |  |

Table 4: Measurements of position angles (P.A.) and separations (rho) of the system beta Phoenicis. Qualitative characterizations of the seeing conditions are also listed. The total mean values, as well as their standard deviations are given in the bottom two lines.
*: without Barlow, all other recordings were made with Barlow.

## On the Accuracy of Double Star Measurements from "Lucky" Images, a Case Study ...



Figure 6: Orbit of beta Phe, adopted from the $6^{\text {th }}$ Catalog of Orbits of Binary Stars, USNO. The expected position, as interpolated from the ephemeris, and my own measurements are marked with dates.
careful selection of only the best images was shown to significantly reduce the size of the seeing disk, and to obtain diffraction limited images almost routinely. However, seeing effects could not completely be eliminated, and the theoretical values of the angular resolution could not quite be reached. Nevertheless, the system beta Phe, with separation 0.40 arcsec, was clearly resolved with both telesopes, and resolution limits according to Rayleigh's criterion, but affected by the seeing, were estimated to about 0.35 arcsec.

On the other hand, the reproducibility and accuracy of determining peak centroids with standard deviations of the order of $+/-0.01$ arcsec is much better than would be expected from the theoretical resolution limits. This scatter is expected to virtually not depend on separation, if not seeing effects like anisoplanatic variations play a role. The total error margin, however, has to include that of the scaling factor of about one percent. In addition, a correction had to be applied in the case of beta Phe, due to partly overlapping peaks, which resulted in the value given
above. Clearly, the error margins of the position angle, i.e. +/- 1.1 degrees for beta Phe, and +/- 0.6 degrees for zeta Aqr, with separation 2.09 arcsec, depend on separation, because the resolution in the image is fixed by the pixel size.

The results were compared with literature data, as far as possible. In the case of zeta Aqr, deviations from the currently assumed orbit, which have also been observed by other authors, support the assumption of the existence of a third component, which produces a periodic wobble on the orbit, not only recently. The system beta Phe seems to have been neglected in recent years, and no actual data exist to compare with. My own measurements deviate from the currently assumed orbit by more than the error limits. Provided that this will be confirmed in the future, the ephemeris could possibly be upgraded.

## References

[1] Internationale Amateursternwarte, IAS, www.iasobservatory.org.
[2] Anton, R., 2004, The Double Star Observer, 10 (1) 2-10.
[3] Anton, R., 2008, Journal of Double Star Observations, 4 (2) 40-51.
[4] Mason, B.D. et al., The Washington Double Star Catalog (WDS), online version, U.S. Naval Observatory.
[5] Hartkopf, W. I. et al., Sixth Catalog of Orbits of Visual Binary Stars, 2006.5, U.S. Naval Observatory.
[6] Alzner, R., www.webbdeepsky.com/dssc/dssc16.pdf.
[7] Argyle, R., www.webbdeepsky.com/dssc/dssc15.pdf.
[8] Argyle, R., www.webbdeepsky.com/dssc/dssc16.pdf.
[9] Burnham's Celestial Handbook, R. Burnham, Jr., Dover Publ., New York 1978.
[10] Mason, B.D., USNO, private communication.
[11] Hartkopf, W. I. et al., Fourth Catalog of Interferometric Measurements of Binary Stars, online version, U.S. Naval Observatory.

# Journal of Double Star Observations 

## Winter 2009

Volume 5, Number 1

## Editors

R. Kent Clark

Rod Mollise
Editorial Board
Justin Sanders
Michael Boleman
Advisory Editor
Brian D. Mason

The Journal of Double Star Observations is an electronic journal published quarterly by the University of South Alabama. Copies can be freely downloaded from http://www.jdso.org.

No part of this issue may be sold or used in commercial products without written permission of the University of South Alabama.
©2009 University of South Alabama

Questions, comments, or submissions may be directed to rkentclark@jaguar1.usouthal.edu or to rmollise@bellsouth.net

The Journal of Double Star Observations (JDSO) publishes articles on any and all aspects of astronomy involving double and binary stars. The JDSO is especially interested in observations made by amateur astronomers. Submitted articles announcing measurements, discoveries, or conclusions about double or binary stars may undergo a peer review. This means that a paper submitted by an amateur astronomer will be reviewed by other amateur astronomers doing similar work.

Not all articles will undergo a peer-review. Articles that are of more general interest but that have little new scientific content such as articles generally describing double stars, observing sessions, star parties, etc. will not be refereed.

Submitted manuscripts must be original, unpublished material and written in English. They should contain an abstract and a short description or biography ( 2 or 3 sentences) of the author(s). For more information about format of submitted articles, please see our web site at www.jdso.org

Submissions should be made electronically via e-mail to rclark@jaguar1.usouthal.edu or to rmollise@bellsouth.net. Articles should be attached to the email in Microsoft Word, Word Perfect, Open Office, or text format. All images should be in jpg or fits format.


## We're on the web!

http://www.jdso.org

