

2.5-2.7GHz, 60W, 50V GaN Doherty PA Module

Description

The SMAV2527-60 is a 60-watt, integrated 2-stage Power Amplifier Module, designed for 5G massive MIMO applications, with frequencies from 2.5 to 2.7GHz. The module is 50 Ω input fully matched and output partially matched, and requires minimal external components. The module offers a much smaller footprint than traditional discrete component solutions, with much less sensitivity for production, housed in 10*6mm cost effective plastic open cavity package, and heat dissipated by copper flange.

The module incorporates advanced Doherty circuit delivering high power added efficiency for the entire module at 11 W average power according to normal 8 dB back off.

Innogration owns the patents for internal Doherty architecture, and related plastic open cavity.

•Typical Performance of Doherty Demo (On Innogration fixture with device soldered through grounding vias): VDS= **46**V, IDQ-main=70mA Vgs-main=-2.8V. Vgs-peak=-4.8V, Idq-driver=18mA, Vgs-Driver=-3.0V

Freq (GHz)	Pulse CW Signal(1)			Pavg=39.5dBm WCDMA Signal(2)		
	P1-Gain	P3	P3	Gp (dB)	Eff(%)	ACPR5M (dBc)
	(dB)	(dBm)	(W)	Gp (db)		
2.5	30.8	47.6	57.5	30	50	-30
2.6	31.9	47.8	60.2	30.9	50.5	-28
2.7	32	47.6	57.5	30.8	50	-28

Notes:

- (1) Pulse Width=100 us, Duty cycle=20%
- (2) WCDMA signal: 3GPP test model 1; 1 to 64 DPCH; Channel Bandwidth=3.84MHz,PAR =10.5 dB at 0.01 % probability on CCDF.

Features and Benefits

- · Adjustable drain bias to fit different power demand
- Extremely good VBW performance to enable the broadest IBW/OBW
- Industry leading RF performance for 5G MIMO AAU, for instance
- √ 64T:320W
- √ 32T:160W
- · Plastic open cavity without molding compound brings advantage compared to molded design
- ✓ Minimize the risk of high density thermal distribution in fanless system for longer life time
- ✓ Highly consistent RF performance for yield of volume production
- 50 Ω Input matched, output partially matched, effective PCB space smaller than 12*20mm
- · Integrated Doherty Final and driver Stage
- 6x10 mm Surface Mount Package, full copper flange underneath for grounding and heat dissipation, much more effective than LGA PCB based design

Document Number: SMAV2527-60 Preliminary Datasheet V1.1

Pin Configuration and Description

Pin No.	Symbol	Description
6	RF IN	RF Input
1	VDS-driver	Driver stage, Drain Bias
4	VGS-driver	Driver stage, Gate Bias
19,21	RF Out2	RF Output, Drain Bias of Main Amplifier
22,24	RF Out1	RF Output, Drain Bias of Peaking Amplifier
11	VGS-main	Main Amplifier, Gate Bias
32	VGS-peak	Peaking Amplifier, Gate Bias
3,8-10,14,15,16,17,26,27,28,29,33-35	NC	No connection
2,5,7,12,13,18,20,23,25,30,31,36	GND	Internal Grounding, recommend connecting to Epad ground
Package Base	GND	DC/RF Ground. Must be soldered to EVB ground plane over array of vias for thermal and RF performance. Solder voids under Pkg Base will result in excessive junction temperatures causing permanent damage.

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
DrainSource Voltage	V _{DSS}	200	Vdc
GateSource Voltage	V_{GS}	-8 to +0.6	Vdc
Operating Voltage	V _{DD}	+60	Vdc
Storage Temperature Range	Tstg	-65 to +150	°C
Case Operating Temperature	Tc	+150	°C
Operating Junction Temperature	T₃	+225	°C

Table 2. Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal Resistance@Average Power, Junction to Case	Do 10	6.5	°C/W
Tcase=+85℃, CW Test, , Pout=8W,	Rejc	6.5	-0/00

Notes:

- (1) The thermal resistance is acquired by our company's FEA model, which was calibrated by IR measurement, the value shall be applied to reliability.
- (2) The reference Tcase temperature 85°C is apply on the backside of package.
- (3) If the device soldering onto the 20mil Rogers PCB with 108 × Φ0.25mm via hole beneath the package backside and the reference temperature Tcase (85°C) apply on the groundside of the PCB, the total thermal resistance R θ JC (TBD)°C/W.
- (4) The power dissipation in the table is overall dissipation which includes Carrier PA, Peaking PA and driver PA.

Table 3. ESD Protection Characteristics

Test Methodology	Class Voltage		
Human Body Model(HBM) (JEDEC Standard JESD-A114)	TBD		
Charged Device Model (CDM) (JEDEC Standard JESD22-C101F)	±1000V		

Document Number: SMAV2527-60 Preliminary Datasheet V1.1

Table 4. Electrical Characteristics

Parameter	Condition	Min	Тур	Max	Unit
Frequency Range		2.5		2.7	GHz
Driver Quiescent Current (I _{DQ-driver)}			18		mA
Carrier Quiescent Current (I _{DQ-main})			70		mA
Peak PA Gate Quiescent Voltage (V _{PEAK})			-4.8		V
Power Gain @ Pout=39dBm	Freq=2.6GHz		29		dB
Efficiency @Pout=39dBm	Freq=2.6GHz		50		%
Ppeak by CCDF	Freq=2.6GHz	60			W

Load Mismatch of per Section (On Test Fixture, 50 ohm system): f = 2.6GHz

VSWR 10:1 at P3dB pulse CW Output Power	No Device Degradation
---	-----------------------

TYPICAL CHARACTERISTICS

Application board and its layout info based on request

Figure 1. Power Gain and Drain Efficiency as Function of Pulsed CW Output Power

VDS= 46V, IDQ-main=70mA Vgs-main=-2.8V. Vgs-peak=-4.8V, Idq-driver=18mA, Vgs-Driver=-3.0V

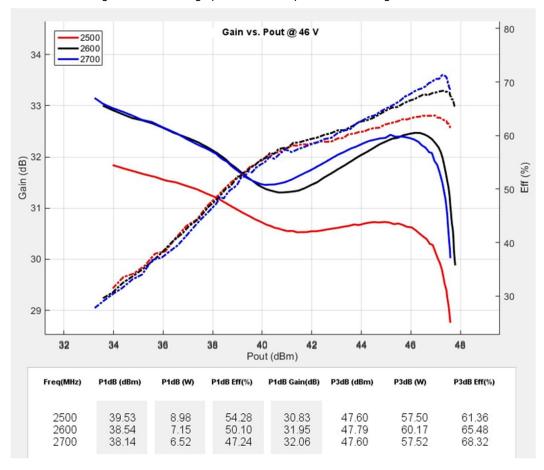


Figure 2. Network analyzer output S11/S21

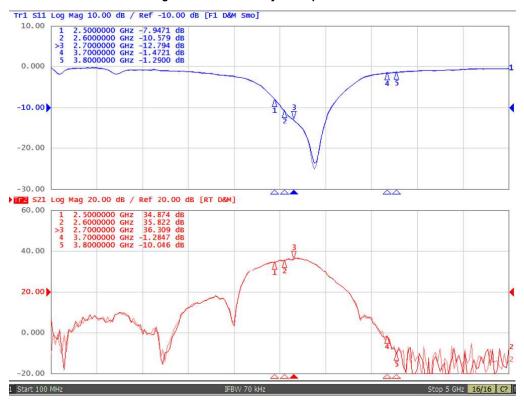
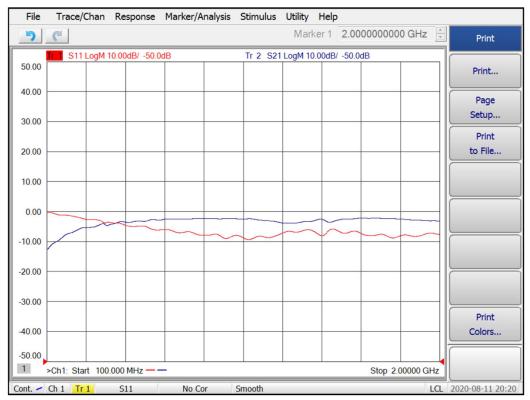
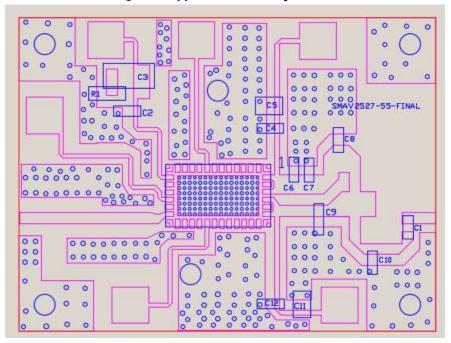
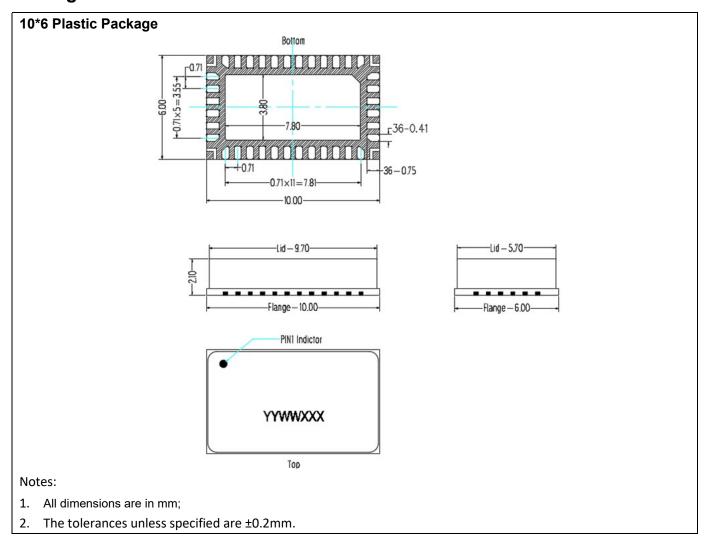
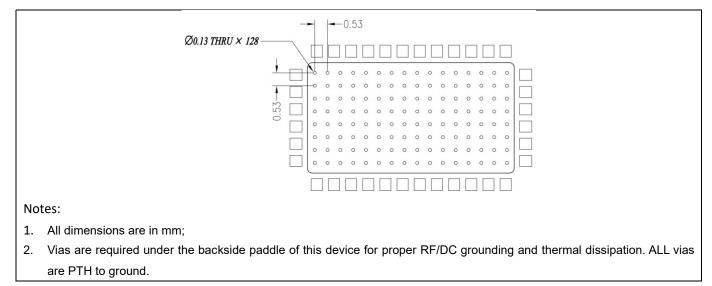


Figure 3. Video Impedance Test


Figure 4. Application board layout info


вом					
Part	Quantity	Description	Part Number	Manufacture	
C1,C2,C4,C12	4	10pFHigh Q	251SHS100BSE	TEMEX	
		Capacitor			
C6	1	2.0pFHigh Q	251SHS2R0BSE	TEMEX	
		Capacitor			
C7	1	0.4pFHigh Q	251SHSOR4BSE	TEMEX	
		Capacitor			
C8	1	0.7pFHigh Q	251SHSOR7BSE	TEMEX	
		Capacitor			
C3,C5,C11	3	10uF MLCC	RS80R2A106M	MARUWA	
C9,C10	2	1.0pFHigh Q	251SHS1R0BSE	TEMEX	
		Capacitor			
R1	1	10 Ω Power	ESR03EZPF100	ROHM	
		Resistor			

Document Number: SMAV2527-60 Preliminary Datasheet V1.1

Package Dimensions

Mounting Footprint Pattern

Document Number: SMAV2527-60 Preliminary Datasheet V1.1

Revision history

Table 5. Document revision history

Date	Revision	Datasheet Status
2021/11/24	Rev 1.0	Preliminary Datasheet
2022/3/30	Rev 1.1	Modified pins definition of drain bias for main and peak path

Application data based on LWH-21-12

Disclaimers

Specifications are subject to change without notice. Innogration believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Innogration for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Innogration . Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Innogration in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility. For any concerns or questions related to terms or conditions, pls check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.