BRD8009/D Rev. 1, Apr-2001

Transient Voltage Suppression Devices

ON Semiconductor[™]

ON Semiconductor Transient Voltage Suppression Devices

BRD8009/D Rev. 1, Apr-2001

© SCILLC, 2001 Previous Edition © 1999 "All Rights Reserved"

ON Semiconductor[™]

ON Semiconductor and without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

NORTH AMERICA Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: ONlit@hibbertco.com Fax Response Line: 303–675–2167 or 800–344–3810 Toll Free USA/Canada

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor – European Support

- German Phone: (+1) 303–308–7140 (Mon–Fri 2:30pm to 7:00pm CET) Email: ONlit–german@hibbertco.com French Phone: (+1) 303–308–7141 (Mon–Fri 2:00pm to 7:00pm CET)
- Email: ONlit-french@hibberto.com
- English Phone: (+1) 303–308–7142 (Mon–Fri 12:00pm to 5:00pm GMT) Email: ONlit@hibbertco.com

EUROPEAN TOLL-FREE ACCESS*: 00-800-4422-3781 *Available from Germany, France, Italy, UK, Ireland

CENTRAL/SOUTH AMERICA:

Spanish Phone: 303–308–7143 (Mon–Fri 8:00am to 5:00pm MST) Email: ONlit–spanish@hibbertco.com Toll–Free from Mexico: Dial 01–800–288–2872 for Access –

then Dial 866–297–9322

ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support Phone: 1–303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time) Toll Free from Hong Kong & Singapore: 001–800–4422–3781 Email: ONlit–asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031 Phone: 81–3–5740–2700 Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.

1SMB10CAT3 Series 67
P6SMB6.8AT3 Series
P6SMB11CAT3 Series77
1.5SMC6.8AT3 Series 82
1SMC5.0AT3 Series 87
MSQA6V1W5T2 92
1PMT5.0AT3 Series 95
SMS05T1 99
NZMM7V0T4 102
NZF220TT1 105
NZF220DFT1 108
MMT05A230T3 111
MMT05B230T3 117
MMT10B230T3 122
Case Outlines 127
Sales Offices 135
Document Definitions 136

Summary of Axial Leaded TVS

Power (Watts)	Working Peak Reverse Voltage	Package and Description	Part Number Series	Page
500	5 V–170 V	Mini-Mosorb (Unidirectional)	SA5.0A	7
500	5 V–170 V	Mini–Mosorb (Bidirectional)	SA5.0CA	12
600	5.8 V–171 V	Surmetic 40 (Unidirectional)	P6KE6.8A	16
600	5.8 V–171 V	Surmetic 40 (Bidirectional)	P6KE6.8CA	22
1500	5.8 V–214 V	Mosorb (Unidirectional)	1.5KE6.8A	28
1500	5.8 V–171 V	Mosorb (Unidirectional)	1N6267A	28
1500	5.8 V–214 V	Mosorb (Bidirectional)	1.5KE6.8CA	34

Summary of Surface Mounted TVS

Power (Watts)	Working Peak Reverse Voltage	Package and Description	Part Number Series	Page
24	5.6 V–33 V *	SOT–23, Dual Diode, Common Anode	MMBZ5V6	40
24	15 V, 17 V *	SOT-23, Dual Diode, Common Cathode	MMBZ15VD	46
150	6.1 V *	SC-88A/SOT-353, C = 90 pF, Quad Diode	MSQA6V1	92
150	5.6 V–33 V	SC–59, C = 280 pF, Quad Diode	MMQA	-
400	5 V–78 V	SMA	1SMA5.0A	55
400	10 V–78 V	SMA (Bidirectional)	1SMA10CA	58
600	5 V–170 V	SMB	1SMB5.0A	61
600	10 V–78 V	SMB (Bidirectional)	1SMB10CA	67
600	5.8 V–171 V	SMB	P6SMB6.8A	72
600	9.4 V–77.8 V	SMB (Bidirectional)	P6SMB11CA	77
1500	5.8 V–77.8 V	SMC	1.5SMC6.8A	82
1500	5 V–78 V	SMC	1SMC5.0A	87

*Nominal Breakdown Voltage

TVS Definition of Voltage Terms

Custom TVS Designs

For large volume specials, ON Semiconductors has design capability covering a wide range of voltage, capacitance, package, power surge, and transient surge.

Surge Specs

- IEC-4-2 Contact Discharge
- MIL STD 883 Method 3015–6 (Human Body Model)
- 10 µs/1000 µs Pulse
- $8 \,\mu\text{s}/20 \,\mu\text{s}$ Pulse

Capacitance Specs

Capacitance	Application
280 pF	Low Speed (RS 232)
90 pF	Medium Speed
5 pF	High Speed (USB, Fire Wire)

Voltage Specs

• 6 Volts–200 Volts

Discrete Packages from ON Semiconductor for TVS

SOT-23

Micro-8

SOD-323

SOD-123

TSOP-6

SMA

SC-59

SC-70

SC-88/SOT-363 (5 or 6 Leads)

SOT-223

Powermite

SMB

SMC

Axial Leaded Packages

500 Watt Peak Power MiniMOSORB[™] Zener Transient Voltage Suppressors

Unidirectional*

The SA5.0A series is designed to protect voltage sensitive components from high voltage, high energy transients. They have excellent clamping capability, high surge capability, low zener impedance and fast response time. The SA5.0A series is supplied in ON Semiconductor's exclusive, cost-effective, highly reliable Surmetic[™] axial leaded package and is ideally-suited for use in communication systems, numerical controls, process controls, medical equipment, business machines, power supplies and many other industrial/consumer applications.

Specification Features:

- Working Peak Reverse Voltage Range 5 to 170 V
- Peak Power 500 Watts @ 1 ms
- ESD Rating of Class 3 (>16 KV) per Human Body Model
- Maximum Clamp Voltage @ Peak Pulse Current
- Low Leakage $< 1 \mu A$ above 8.5 V
- UL 497B for Isolated Loop Circuit Protection
- Maximum Temperature Coefficient Specified
- Response Time is typically < 1 ns

Mechanical Characteristics:

CASE: Void-free, Transfer-molded, Thermosetting plastic

FINISH: All external surfaces are corrosion resistant and leads are readily solderable

MAXIMUM LEAD TEMPERATURE FOR SOLDERING: 230° C, 1/16'' from the case for 10 seconds

POLARITY: Cathode indicated by polarity band. **MOUNTING POSITION:** Any

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Peak Power Dissipation (Note 1.) @ $T_L \le 25^{\circ}C$	P _{PK}	500	Watts
Steady State Power Dissipation @ $T_L \le 75^{\circ}$ C, Lead Length = 3/8"	PD	3.0	Watts
Derated above $T_L = 75^{\circ}C$		30	mW/°C
Thermal Resistance, Junction-to-Lead	R_{\thetaJL}	33.3	°C/W
Forward Surge Current (Note 2.) @ $T_A = 25^{\circ}C$	I _{FSM}	70	Amps
Operating and Storage Temperature Range	T _J , T _{stg}	– 55 to +175	°C

1. Nonrepetitive current pulse per Figure 4 and derated above $T_A = 25^{\circ}C$ per Figure 2.

 1/2 sine wave (or equivalent square wave), PW = 8.3 ms, duty cycle = 4 pulses per minute

*Please see SA5.0CA – SA170CA for Bidirectional devices.

ON Semiconductor™

http://onsemi.com

L = Assembly Location SAxxA = ON Device Code YY = Year WW = Work Week

ORDERING INFORMATION

Device Package		Shipping
SAxxxA	Axial Lead	1000 Units/Box
SAxxxARL	Axial Lead	5000/Tape & Reel

Devices listed in *bold, italic* are ON Semiconductor **Preferred** devices. **Preferred** devices are recommended choices for future use and best overall value.

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted, V_F = 3.5 V Max. @ I_F (Note 6.) = 35 A)

Symbol	Parameter
I _{PP}	Maximum Reverse Peak Pulse Current
V _C	Clamping Voltage @ IPP
V _{RWM}	Working Peak Reverse Voltage
I _R	Maximum Reverse Leakage Current @ V_{RWM}
V _{BR}	Breakdown Voltage @ I _T
Ι _Τ	Test Current
ΘV_{BR}	Maximum Temperature Variation of V_{BR}
١ _F	Forward Current
V _F	Forward Voltage @ I _F

		v			Breakdow	n Voltage		V _C @ I _{PP}	(Note 5.)	
	Device	VRWM (Note 3.)	I _R @ V _{RWM}	V _{BR}	(Note 4.) (N	/olts)	@ ተ	٧ _c	I _{PP}	ΘV _{BR}
Device	Marking	Volts	μ A	Min	Nom	Max	mA	Volts	А	mV/°C
SA5.0A	SA5.0A	5	600	6.4	6.7	7	10	9.2	54.3	5
SA6.0A	SA6.0A	6	600	6.67	7.02	7.37	10	10.3	48.5	5
SA7.0A	SA7.0A	7	150	7.78	8.19	8.6	10	12	41.7	6
SA7.5A	SA7.5A	7.5	50	8.33	8.77	9.21	1	12.9	38.8	7
SA8.0A	SA8.0A	8	25	8.89	9.36	9.83	1	13.6	36.7	7
SA8.5A	SA8.5A	8.5	5	9.44	9.92	10.4	1	14.4	34.7	8
SA9.0A	SA9.0A	9	1	10	10.55	11.1	1	15.4	32.5	9
SA10A	SA10A	10	1	11.1	11.7	12.3	1	17	29.4	10
SA11A	SA11A	11	1	12.2	12.85	13.5	1	18.2	27.4	11
SA12A	SA12A	12	1	13.3	14	14.7	1	19.9	25.1	12
SA13A	SA13A	13	1	14.4	15.15	15.9	1	21.5	23.2	13
SA14A	SA14A	14	1	15.6	16.4	17.2	1	23.2	21.5	14
SA15A	SA15A	15	1	16.7	17.6	18.5	1	24.4	20.6	16
SA16A	SA16A	16	1	17.8	18.75	19.7	1	26	19.2	17
SA17A	SA17A	17	1	18.9	19.9	20.9	1	27.6	18.1	19
SA18A	SA18A	18	1	20	21.05	22.1	1	29.2	17.2	20
SA20A	SA20A	20	1	22.2	23.35	24.5	1	32.4	15.4	23
SA22A	SA22A	22	1	24.4	25.65	26.9	1	35.5	14.1	25
SA24A	SA24A	24	1	26.7	28.1	29.5	1	38.9	12.8	28
SA26A	SA26A	26	1	28.9	30.4	31.9	1	42.1	11.9	30
SA28A	SA28A	28	1	31.1	32.75	34.4	1	45.4	11	31
SA30A	SA30A	30	1	33.3	35.05	36.8	1	48.4	10.3	36
SA33A	SA33A	33	1	36.7	38.65	40.6	1	53.3	9.4	39
SA36A	SA36A	36	1	40	42.1	44.2	1	58.1	8.6	41
SA40A	SA40A	40	1	44.4	46.55	49.1	1	64.5	7.8	46
SA43A	SA43A	43	1	47.8	50.3	52.8	1	69.4	7.2	50
SA45A	SA45A	45	1	50	52.65	55.3	1	72.7	6.9	52
SA48A	SA48A	48	1	53.3	56.1	58.9	1	77.4	6.5	56
SA51A	SA51A	51	1	56.7	59.7	62.7	1	82.4	6.1	61
SA58A	SA58A	58	1	64.4	67.8	71.2	1	93.6	5.3	70
SA60A	SA60A	60	1	66.7	70.2	73.7	1	96.8	5.2	71
SA64A	SA64A	64	1	71.1	74.85	78.6	1	103	4.9	76
SA70A	SA70A	70	1	77.8	81.9	86	1	113	4.4	85
SA78A	SA78A	78	1	86.7	91.25	95.8	1	126	4.0	95
SA90A	SA90A	90	1	100	105.5	111	1	146	3.4	110
SA100A	SA100A	100	1	111	117	123	1	162	3.1	123
SA110A	SA110A	110	1	122	128.5	135	1	177	2.8	133
SA120A	SA120A	120	1	133	140	147	1	193	2.5	146
SA130A	SA130A	130	1	144	151.5	159	1	209	2.4	158
SA150A	SA150A	150	1	167	176	185	1	243	2.1	184
SA160A	SA160A	160	1	178	187.5	197	1	259	1.9	196
SA170A	SA170A	170	1	189	199	209	1	275	1.8	208

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted, V_F = 3.5 V Max. @ I_F (Note 6.) = 35 A)

NOTES:

3. MiniMOSORB[™] transients suppressor is normally selected according to the maximum working peak reverse voltage (V_{RWM}), which should be equal to or greater than the dc or continuous peak operating voltage level.

4. V_{BR} measured at pulse test current I_T at an ambient temperature of 25°C.

5. Surge current waveform per Figure 4 and derate per Figures 1 and 2.

6. 1/2 sine wave (or equivalent square wave), PW = 8.3 ms, duty cycle = 4 pulses per minute

UL RECOGNITION*

The entire series including the bidirectional CA suffix has *Underwriters Laboratory Recognition* for the classification of protectors (QVGV2) under the UL standard for safety 497B and File #E 116110. Many competitors only have one or two devices recognized or have recognition in a non-protective category. Some competitors have no recognition at all. With the UL497B recognition, our parts successfully passed several tests including Strike Voltage

Breakdown test, Endurance Conditioning, Temperature test, Dielectric Voltage-Withstand test, Discharge test and several more.

Whereas, some competitors have only passed a flammability test for the package material, we have been recognized for much more to be included in their protector category.

*Applies to SA5.0A, CA – SA170A, CA.

500 Watt Peak Power MiniMOSORB™ Zener Transient Voltage Suppressors

Bidirectional*

The SA5.0CA series is designed to protect voltage sensitive components from high voltage, high–energy transients. They have excellent clamping capability, high surge capability, low zener impedance and fast response time. The SA5.0CA series is supplied in ON Semiconductor's exclusive, cost-effective, highly reliable Surmetic[™] axial leaded package and is ideally-suited for use in communication systems, numerical controls, process controls, medical equipment, business machines, power supplies and many other industrial/consumer applications.

Specification Features:

- Working Peak Reverse Voltage Range 5.0 to 170 V
- Peak Power 500 Watts @ 1 ms
- ESD Rating of Class 3 (>16 KV) per Human Body Model
- Maximum Clamp Voltage @ Peak Pulse Current
- Low Leakage $< 1 \mu A$ above 8.5 V
- UL 497B for Isolated Loop Circuit Protection
- Maximum Temperature Coefficient Specified
- Response Time is typically < 1 ns

Mechanical Characteristics:

CASE: Void-free, Transfer-molded, Thermosetting plastic **FINISH:** All external surfaces are corrosion resistant and leads are readily solderable

MAXIMUM LEAD TEMPERATURE FOR SOLDERING PURPOSES: 230°C, 1/16" from the case for 10 seconds POLARITY: Cathode band does not imply polarity MOUNTING POSITION: Any

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Peak Power Dissipation (Note 1.) @ $T_L \le 25^{\circ}C$	P _{PK}	500	Watts
Steady State Power Dissipation @ $T_L \le 75^{\circ}C$, Lead Length = 3/8" Derated above $T_L = 75^{\circ}C$	P _D	3.0 30	Watts mW/°C
Thermal Resistance, Junction–to–Lead	$R_{ heta JL}$	33.3	°C/W
Operating and Storage Temperature Range	T _J , T _{stg}	– 55 to +175	°C

1. Nonrepetitive current pulse per Figure 3 and derated above $T_A = 25^{\circ}C$ per Figure 2.

*Please see SA5.0A to SA170A for Unidirectional devices.

ON Semiconductor™

http://onsemi.com

L = Assembly Location SAxxxCA = ON Device Code YY = Year WW = Work Week

ORDERING INFORMATION

Device	Package	Shipping
SAxxxCA	Axial Lead	1000 Units/Box
SAxxxCARL	Axial Lead	5000/Tape & Reel

Devices listed in *bold, italic* are ON Semiconductor **Preferred** devices. **Preferred** devices are recommended choices for future use and best overall value.

ELECTRICAL CHARACTERISTICS

 $(T_A = 25^{\circ}C \text{ unless otherwise noted})$

Symbol	Parameter
I _{PP}	Maximum Reverse Peak Pulse Current
V _C	Clamping Voltage @ I _{PP}
V _{RWM}	Working Peak Reverse Voltage
I _R	Maximum Reverse Leakage Current @ V _{RWM}
V _{BR}	Breakdown Voltage @ I _T
Ι _Τ	Test Current
ΘV_{BR}	Maximum Temperature Variation of V _{BR}

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

		Vaura		Breakdown Voltage				V _C @ I _{PP} ((Note 4.)	
	Device	(Note 2.)	I _R @ V _{RWM}	V _{BR}	(Note 3.) (/olts)	@ ե	٧ _C	IPP	ΘV _{BR}
Device	Marking	(Volts)	(μA)	Min	Nom	Max	(mA)	(Volts)	(A)	(mV/°C)
SA5.0CA	SA5.0CA	5	600	6.4	6.7	7	10	9.2	54.3	5
SA6.0CA	SA6.0CA	6	600	6.67	7.02	7.37	10	10.3	48.5	5
SA6.5CA	SA6.5CA	6.5	400	7.22	7.60	7.98	10	11.2	44.7	5
SA7.0CA	SA7.0CA	7	150	7.78	8.19	8.6	10	12	41.7	6
SA7.5CA	SA7.5CA	7.5	50	8.33	8.77	9.21	1	12.9	38.8	7
SA8.0CA	SA8.0CA	8	25	8.89	9.36	9.83	1	13.6	36.7	7
SA8.5CA	SA8.5CA	8.5	5	9.44	9.92	10.4	1	14.4	34.7	8
SA9.0CA	SA9.0CA	9	1	10	10.55	11.1	1	15.4	32.5	9
SA10CA	SA10CA	10	1	11.1	11.7	12.3	1	17	29.4	10
SA11CA	SA11CA	11	1	12.2	12.85	13.5	1	18.2	27.4	11
SA12CA	SA12CA	12	1	13.3	14	14.7	1	19.9	25.1	12
SA13CA	SA13CA	13	1	14.4	15.15	15.9	1	21.5	23.2	13
SA14CA	SA14CA	14	1	15.6	16.4	17.2	1	23.2	21.5	14
SA15CA	SA15CA	15	1	16.7	17.6	18.5	1	24.4	20.6	16
SA16CA	SA16CA	16	1	17.8	18.75	19.7	1	26	19.2	17
SA17CA	SA17CA	17	1	18.9	19.9	20.9	1	27.6	18.1	19
SA18CA	SA18CA	18	1	20	21.05	22.1	1	29.2	17.2	20
SA20CA	SA20CA	20	1	22.2	23.35	24.5	1	32.4	15.4	23
SA22CA	SA22CA	22	1	24.4	25.65	26.9	1	35.5	14.1	25
SA24CA	SA24CA	24	1	26.7	28.1	29.5	1	38.9	12.8	28
SA26CA	SA26CA	26	1	28.9	30.4	31.9	1	42.1	11.9	30
SA28CA	SA28CA	28	1	31.1	32.75	34.4	1	454	11	31
SA30CA	SA30CA	30	1	33.3	35.05	36.8	1	48.4	10.3	36
SA33CA	SA33CA	33	1	36.7	38.65	40.6	1	53.3	9.4	39
SA36CA	SA36CA	36	1	40	42.1	44.2	1	58.1	8.6	41
SA40CA	SA40CA	40	1	44.4	46.55	49.1	1	64.5	7.8	46
SA43CA	SA43CA	43	1	47.8	50.3	52.8	1	69.4	7.2	50
SA45CA	SA45CA	45	1	50	52.65	55.3	1	72.7	6.9	52
SA48CA	SA48CA	48	1	53.3	56.1	58.9	1	77.4	6.5	56
SA51CA	SA51CA	51	1	56.7	59.7	62.7	1	82.4	6.1	61
SA58CA	SA58CA	58	1	64.4	67.8	71.2	1	93.6	5.3	70
SA60CA	SA60CA	60	1	66.7	70.2	73.7	1	96.8	5.2	71

NOTES:

2. MiniMOSORB[™] transient suppressors are normally selected according to the maximum working peak reverse voltage (V_{RWM}), which should be equal to or greater than the dc or continuous peak operating voltage level.

3. V_{BR} measured at pulse test current I_T at an ambient temperature of 25°C.

4. Surge current waveform per Figure 3 and derate per Figures 1 and 2.

		Vowa			Breakdow	n Voltage		V _C @ I _{PP} (Note 4.)	
	Device	(Note 2.)	I _R @ V _{RWM}	V _{BR}	(Note 3.) (N	/olts)	@ կ	٧ _c	I _{PP}	ΘV _{BR}
Device	Marking	(Volts)	(μ A)	Min	Nom	Max	(mA)	(Volts)	(A)	(mV/°C)
SA64CA	SA64CA	64	1	71.1	74.85	78.6	1	103	4.9	76
SA70CA	SA70CA	70	1	77.8	81.9	86	1	113	4.4	85
SA78CA	SA78CA	78	1	86.7	91.25	95.8	1	126	4.0	95
SA85CA	SA85CA	85	1	94.4	99.2	104	1	137	3.6	103
SA90CA	SA90CA	90	1	100	105.5	111	1	146	3.4	110
SA100CA	SA100CA	100	1	111	117	123	1	162	3.1	123
SA110CA	SA110CA	110	1	122	128.5	135	1	177	2.8	133
SA120CA	SA120CA	120	1	133	140	147	1	193	2.5	146
SA130CA	SA130CA	130	1	144	151.5	159	1	209	2.4	158
SA150CA	SA150CA	150	1	167	176	185	1	243	2.1	184
SA160CA	SA160CA	160	1	178	187.5	197	1	259	1.9	196
SA170CA	SA170CA	170	1	189	199	209	1	275	1.8	208

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

NOTES:

2. MiniMOSORB[™] transient suppressors are normally selected according to the maximum working peak reverse voltage (V_{RWM}), which should be equal to or greater than the dc or continuous peak operating voltage level.

3. V_{BR} measured at pulse test current I_T at an ambient temperature of 25°C.

4. Surge current waveform per Figure 3 and derate per Figures 1 and 2.

Figure 4. Steady State Power Derating

UL RECOGNITION*

The entire series including the bidirectional CA suffix has *Underwriters Laboratory Recognition* for the classification of protectors (QVGV2) under the UL standard for safety 497B and File #E 116110. Many competitors only have one or two devices recognized or have recognition in a non-protective category. Some competitors have no recognition at all. With the UL497B recognition, our parts successfully passed several tests including Strike Voltage

Breakdown test, Endurance Conditioning, Temperature test, Dielectric Voltage-Withstand test, Discharge test and several more.

Whereas, some competitors have only passed a flammability test for the package material, we have been recognized for much more to be included in their protector category.

*Applies to SA5.0A, CA – SA170A, CA.

600 Watt Peak Power Surmetic[™] -40 Zener Transient Voltage Suppressors

Unidirectional*

The P6KE6.8A series is designed to protect voltage sensitive components from high voltage, high energy transients. They have excellent clamping capability, high surge capability, low zener impedance and fast response time. These devices are ON Semiconductor's exclusive, cost-effective, highly reliable Surmetic[™] axial leaded package and is ideally-suited for use in communication systems, numerical controls, process controls, medical equipment, business machines, power supplies and many other industrial/consumer applications.

Specification Features:

- Working Peak Reverse Voltage Range 5.8 to 171 V
- Peak Power 600 Watts @ 1 ms
- ESD Rating of Class 3 (>16 KV) per Human Body Model
- Maximum Clamp Voltage @ Peak Pulse Current
- Low Leakage $< 5 \mu A$ above 10 V
- Maximum Temperature Coefficient Specified
- UL 497B for Isolated Loop Circuit Protection
- Response Time is typically < 1 ns

Mechanical Characteristics:

CASE: Void-free, Transfer-molded, Thermosetting plastic **FINISH:** All external surfaces are corrosion resistant and leads are readily solderable

MAXIMUM LEAD TEMPERATURE FOR SOLDERING: 230°C, 1/16" from the case for 10 seconds POLARITY: Cathode indicated by polarity band MOUNTING POSITION: Any

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Peak Power Dissipation (Note 1.) @ $T_L \le 25^{\circ}C$	P _{PK}	600	Watts
Steady State Power Dissipation @ $T_L \le 75^{\circ}C$, Lead Length = 3/8"	PD	5.0	Watts
Derated above T _L = 75°C		50	mW/°C
Thermal Resistance, Junction-to-Lead	R_{\thetaJL}	15	°C/W
Forward Surge Current (Note 2.) @ $T_A = 25^{\circ}C$	I _{FSM}	100	Amps
Operating and Storage Temperature Range	T _J , T _{stg}	– 55 to +150	°C

1. Nonrepetitive current pulse per Figure 4 and derated above T_A = 25°C per Figure 2.

 1/2 sine wave (or equivalent square wave), PW = 8.3 ms, duty cycle = 4 pulses per minute maximum.

*Please see P6KE6.8CA – P6KE200CA for Bidirectional devices.

WW = Work Week

ORDERING INFORMATION

Device	Package	Shipping		
P6KExxxA	Axial Lead	1000 Units/Box		
P6KExxxARL	Axial Lead	4000/Tape & Reel		

ELECTRICAL CHARACTERISTICS (T_A = 25° C unless otherwise noted, V_F = 3.5 V Max. @ I_F (Note 6.) = 50 A)

Symbol	Parameter
I _{PP}	Maximum Reverse Peak Pulse Current
V _C	Clamping Voltage @ IPP
V _{RWM}	Working Peak Reverse Voltage
I _R	Maximum Reverse Leakage Current @ V _{RWM}
V _{BR}	Breakdown Voltage @ IT
Ι _Τ	Test Current
ΘV_{BR}	Maximum Temperature Coefficient of VBR
١ _F	Forward Current
V _F	Forward Voltage @ I _F

		V		Breakdown Voltage				V _C @ I _{PP}	(Note 5.)	
	Device	(Note 3.)	I _R @ V _{RWM}	V _{BR}	(Note 4.)	Volts)	@ կ	v _c	I _{PP}	ΘV _{BR}
Device	Marking	Volts	μ Α	Min	Nom	Max	mA	Volts	Α	%/°C
P6KE6.8A	P6KE6.8A	5.8	1000	6.45	6.80	7.14	10	10.5	57	0.057
P6KE7.5A	P6KE7.5A	6.4	500	7.13	7.51	7.88	10	11.3	53	0.061
P6KE8.2A	P6KE8.2A	7.02	200	7.79	8.2	8.61	10	12.1	50	0.065
P6KE9.1A	P6KE9.1A	7.78	50	8.65	9.1	9.55	1	13.4	45	0.068
P6KE10A	P6KE10A	8.55	10	9.5	10	10.5	1	14.5	41	0.073
P6KE11A	P6KE11A	9.4	5	10.5	11.05	11.6	1	15.6	38	0.075
P6KE12A	P6KE12A	10.2	5	11.4	12	12.6	1	16.7	36	0.078
P6KE13A	P6KE13A	11.1	5	12.4	13.05	13.7	1	18.2	33	0.081
P6KE15A	P6KE15A	12.8	5	14.3	15.05	15.8	1	21.2	28	0.084
P6KE16A	P6KE16A	13.6	5	15.2	16	16.8	1	22.5	27	0.086
P6KE18A	P6KE18A	15.3	5	17.1	18	18.9	1	25.2	24	0.088
P6KE20A	P6KE20A	17.1	5	19	20	21	1	27.7	22	0.09
P6KE22A	P6KE22A	18.8	5	20.9	22	23.1	1	30.6	20	0.092
P6KE24A	P6KE24A	20.5	5	22.8	24	25.2	1	33.2	18	0.094
P6KE27A	P6KE27A	23.1	5	25.7	27.05	28.4	1	37.5	16	0.096
P6KE30A	P6KE30A	25.6	5	28.5	30	31.5	1	41.4	14.4	0.097
P6KE33A	P6KE33A	28.2	5	31.4	33.05	34.7	1	45.7	13.2	0.098
P6KE36A	P6KE36A	30.8	5	34.2	36	37.8	1	49.9	12	0.099
P6KE39A	P6KE39A	33.3	5	37.1	39.05	41	1	53.9	11.2	0.1
P6KE43A	P6KE43A	36.8	5	40.9	43.05	45.2	1	59.3	10.1	0.101
P6KE47A	P6KE47A	40.2	5	44.7	47.05	49.4	1	64.8	9.3	0.101
P6KE51A	P6KE51A	43.6	5	48.5	51.05	53.6	1	70.1	8.6	0.102
P6KE56A	P6KE56A	47.8	5	53.2	56	58.8	1	77	7.8	0.103
P6KE62A	P6KE62A	53	5	58.9	62	65.1	1	85	7.1	0.104
P6KE68A	P6KE68A	58.1	5	64.6	68	71.4	1	92	6.5	0.104
P6KE75A	P6KE75A	64.1	5	71.3	75.05	78.8	1	103	5.8	0.105
P6KE82A	P6KE82A	70.1	5	77.9	82	86.1	1	113	5.3	0.105
P6KE91A	P6KE91A	77.8	5	86.5	91	95.5	1	125	4.8	0.106
P6KE100A	P6KE100A	85.5	5	95	100	105	1	137	4.4	0.106
P6KE110A	P6KE110A	94	5	105	110.5	116	1	152	4	0.107
P6KE120A	P6KE120A	102	5	114	120	126	1	165	3.6	0.107
P6KE130A	P6KE130A	111	5	124	130.5	137	1	179	3.3	0.107
P6KE150A	P6KE150A	128	5	143	150.5	158	1	207	2.9	0.108
P6KE160A	P6KE160A	136	5	152	160	168	1	219	2.7	0.108
P6KE170A	P6KE170A	145	5	162	170.5	179	1	234	2.6	0.108
P6KE180A	P6KE180A	154	5	171	180	189	1	246	2.4	0.108
P6KE200A	P6KE200A	171	5	190	200	210	1	274	2.2	0.108

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted, V_F = 3.5 V Max. @ I_F (Note 6.) = 50 A)

3. A transient suppressor is normally selected according to the maximum working peak reverse voltage (V_{RWM}), which should be equal to or greater than the dc or continuous peak operating voltage level.

4. V_{BR} measured at pulse test current I_T at an ambient temperature of $25^\circ C$

5. Surge current waveform per Figure 4 and derate per Figures 1 and 2.

6. 1/2 sine wave (or equivalent square wave), PW = 8.3 ms, duty cycle = 4 pulses per minute maximum.

5

D, DUTY CYCLE (%)

1

2

1 ms

100[′]μsٰ

50 100

20

10 µs

10

APPLICATION NOTES

RESPONSE TIME

In most applications, the transient suppressor device is placed in parallel with the equipment or component to be protected. In this situation, there is a time delay associated with the capacitance of the device and an overshoot condition associated with the inductance of the device and the inductance of the connection method. The capacitance effect is of minor importance in the parallel protection scheme because it only produces a time delay in the transition from the operating voltage to the clamp voltage as shown in Figure 7.

The inductive effects in the device are due to actual turn-on time (time required for the device to go from zero current to full current) and lead inductance. This inductive effect produces an overshoot in the voltage across the equipment or component being protected as shown in Figure 8. Minimizing this overshoot is very important in the application, since the main purpose for adding a transient suppressor is to clamp voltage spikes. The P6KE6.8A series has very good response time, typically < 1 ns and negligible inductance. However, external inductive effects could produce unacceptable overshoot. Proper circuit layout,

minimum lead lengths and placing the suppressor device as close as possible to the equipment or components to be protected will minimize this overshoot.

Some input impedance represented by Z_{in} is essential to prevent overstress of the protection device. This impedance should be as high as possible, without restricting the circuit operation.

DUTY CYCLE DERATING

The data of Figure 1 applies for non-repetitive conditions and at a lead temperature of 25°C. If the duty cycle increases, the peak power must be reduced as indicated by the curves of Figure 6. Average power must be derated as the lead or ambient temperature rises above 25°C. The average power derating curve normally given on data sheets may be normalized and used for this purpose.

At first glance the derating curves of Figure 6 appear to be in error as the 10 ms pulse has a higher derating factor than the 10 μ s pulse. However, when the derating factor for a given pulse of Figure 6 is multiplied by the peak power value of Figure 1 for the same pulse, the results follow the expected trend.

TYPICAL PROTECTION CIRCUIT

UL RECOGNITION*

The entire series including the bidirectional CA suffix has *Underwriters Laboratory Recognition* for the classification of protectors (QVGV2) under the UL standard for safety 497B and File #E 116110. Many competitors only have one or two devices recognized or have recognition in a non-protective category. Some competitors have no recognition at all. With the UL497B recognition, our parts successfully passed several tests including Strike Voltage

Breakdown test, Endurance Conditioning, Temperature test, Dielectric Voltage-Withstand test, Discharge test and several more.

Whereas, some competitors have only passed a flammability test for the package material, we have been recognized for much more to be included in their protector category.

*Applies to P6KE6.8A, CA – P6KE200A, CA.

600 Watt Peak Power Surmetic[™] -40 Zener Transient Voltage Suppressors

Bidirectional*

The P6KE6.8CA series is designed to protect voltage sensitive components from high voltage, high energy transients. They have excellent clamping capability, high surge capability, low zener impedance and fast response time. These devices are ON Semiconductor's exclusive, cost-effective, highly reliable Surmetic axial leaded package and is ideally-suited for use in communication systems, numerical controls, process controls, medical equipment, business machines, power supplies and many other industrial/consumer applications.

Specification Features:

- Working Peak Reverse Voltage Range 5.8 to 171 V
- Peak Power 600 Watts @ 1 ms
- ESD Rating of class 3 (>16 KV) per Human Body Model
- Maximum Clamp Voltage @ Peak Pulse Current
- Low Leakage $< 5 \mu A$ above 10 V
- Maximum Temperature Coefficient Specified
- UL 497B for Isolated Loop Circuit Protection
- Response Time is Typically < 1 ns

Mechanical Characteristics:

CASE: Void-free, Transfer-molded, Thermosetting plastic **FINISH:** All external surfaces are corrosion resistant and leads are readily solderable

MAXIMUM LEAD TEMPERATURE FOR SOLDERING PURPOSES: 230°C, 1/16" from the case for 10 seconds POLARITY: Cathode band does not imply polarity MOUNTING POSITION: Any

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Peak Power Dissipation (Note 1.) @ $T_L \le 25^{\circ}C$	P _{PK}	600	Watts
Steady State Power Dissipation @ $T_L \le 75^{\circ}$ C, Lead Length = 3/8" Derated above $T_L = 75^{\circ}$ C	P _D	5 50	Watts mW/°C
Thermal Resistance, Junction-to-Lead	$R_{ extsf{ heta}JL}$	15	°C/W
Operating and Storage Temperature Range	T _J , T _{stg}	- 55 to +150	°C

1. Nonrepetitive current pulse per Figure 3 and derated above T_A = 25°C per Figure 2.

*Please see P6KE6.8A – P6KE200A for Unidirectional devices.

ORDERING INFORMATION

Device	Package	Shipping		
P6KExxxCA	Axial Lead	1000 Units/Box		
P6KExxxCARL	Axial Lead	4000/Tape & Reel		

ELECTRICAL CHARACTERISTICS

 $(T_A = 25^{\circ}C \text{ unless otherwise noted})$

Symbol	Parameter					
I _{PP}	Maximum Reverse Peak Pulse Current					
V _C	V _C Clamping Voltage @ I _{PP}					
V _{RWM}	Working Peak Reverse Voltage					
I _R	Maximum Reverse Leakage Current @ V _{RWM}					
V _{BR}	Breakdown Voltage @ I _T					
Ι _Τ	Test Current					
ΘV_{BR}	Maximum Temperature Variation of V _{BR}					

		Vaura			Breakdow	n Voltage		V _C @ I _{PP}	(Note 4.)	
	Device	(Note 2.)	I _R @ V _{RWM}	V _{BR}	(Note 3.) (Volts)	@ հ	v _c	I _{PP}	ΘV _{BR}
Device	Marking	(Volts)	(μ A)	Min	Nom	Max	(mA)	(Volts)	(A)	(%/°C)
P6KE6.8CA	P6KE6.8CA	5.8	1000	6.45	6.80	7.14	10	10.5	57	0.057
P6KE7.5CA	P6KE7.5CA	6.4	500	7.13	7.51	7.88	10	11.3	53	0.061
P6KE8.2CA	P6KE8.2CA	7.02	200	7.79	8.2	8.61	10	12.1	50	0.065
P6KE9.1CA	P6KE9.1CA	7.78	50	8.65	9.1	9.55	1	13.4	45	0.068
P6KE10CA	P6KE10CA	8.55	10	9.5	10	10.5	1	14.5	41	0.073
P6KE11CA	P6KE11CA	9.4	5	10.5	11.05	11.6	1	15.6	38	0.075
P6KE12CA	P6KE12CA	10.2	5	11.4	12	12.6	1	16.7	36	0.078
P6KE13CA	P6KE13CA	11.1	5	12.4	13.05	13.7	1	18.2	33	0.081
P6KE15CA	P6KE15CA	12.8	5	14.3	15.05	15.8	1	21.2	28	0.084
P6KE16CA	P6KE16CA	13.6	5	15.2	16	16.8	1	22.5	27	0.086
P6KE18CA	P6KE18CA	15.3	5	17.1	18	18.9	1	25.2	24	0.088
P6KE20CA	P6KE20CA	17.1	5	19	20	21	1	27.7	22	0.09
P6KE22CA	P6KE22CA	18.8	5	20.9	22	23.1	1	30.6	20	0.092
P6KE24CA	P6KE24CA	20.5	5	22.8	24	25.2	1	33.2	18	0.094
P6KE27CA	P6KE27CA	23.1	5	25.7	27.05	28.4	1	37.5	16	0.096
P6KE30CA	P6KE30CA	25.6	5	28.5	30	31.5	1	41.4	14.4	0.097
P6KE33CA	P6KE33CA	28.2	5	31.4	33.05	34.7	1	45.7	13.2	0.098
P6KE36CA	P6KE36CA	30.8	5	34.2	36	37.8	1	49.9	12	0.099
P6KE39CA	P6KE39CA	33.3	5	37.1	39.05	41	1	53.9	11.2	0.1
P6KE43CA	P6KE43CA	36.8	5	40.9	43.05	45.2	1	59.3	10.1	0.101
P6KE47CA	P6KE47CA	40.2	5	44.7	47.05	49.4	1	64.8	9.3	0.101
P6KE51CA	P6KE51CA	43.6	5	48.5	51.05	53.6	1	70.1	8.6	0.102
P6KE56CA	P6KE56CA	47.8	5	53.2	56	58.8	1	77	7.8	0.103
P6KE62CA	P6KE62CA	53	5	58.9	62	65.1	1	85	7.1	0.104
P6KE68CA	P6KE68CA	58.1	5	64.6	68	71.4	1	92	6.5	0.104
P6KE75CA	P6KE75CA	64.1	5	71.3	75.05	78.8	1	103	5.8	0.105
P6KE82CA	P6KE82CA	70.1	5	77.9	82	86.1	1	113	5.3	0.105
P6KE91CA	P6KE91CA	77.8	5	86.5	91	95.5	1	125	4.8	0.106
P6KE100CA	P6KE100CA	85.5	5	95	100	105	1	137	4.4	0.106
P6KE110CA	P6KE110CA	94	5	105	110.5	116	1	152	4	0.107
P6KE120CA	P6KE120CA	102	5	114	120	126	1	165	3.6	0.107
P6KE130CA	P6KE130CA	111	5	124	130.5	137	1	179	3.3	0.107
P6KE150CA	P6KE150CA	128	5	143	150.5	158	1	207	2.9	0.108
P6KE160CA	P6KE160CA	136	5	152	160	168	1	219	2.7	0.108
P6KE170CA	P6KE170CA	145	5	162	170.5	179	1	234	2.6	0.108
P6KE180CA	P6KE180CA	154	5	171	180	189	1	246	2.4	0.108
P6KE200CA	P6KE200CA	171	5	190	200	210	1	274	2.2	0.108

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

2. A transient suppressor is normally selected according to the maximum working peak reverse voltage (V_{RWM}), which should be equal to or greater than the dc or continuous peak operating voltage level.

3. V_{BR} measured at pulse test current I_T at an ambient temperature of 25°C. 4. Surge current waveform per Figure 3 and derate per Figures 1 and 2.

APPLICATION NOTES

RESPONSE TIME

In most applications, the transient suppressor device is placed in parallel with the equipment or component to be protected. In this situation, there is a time delay associated with the capacitance of the device and an overshoot condition associated with the inductance of the device and the inductance of the connection method. The capacitance effect is of minor importance in the parallel protection scheme because it only produces a time delay in the transition from the operating voltage to the clamp voltage as shown in Figure 6.

The inductive effects in the device are due to actual turn-on time (time required for the device to go from zero current to full current) and lead inductance. This inductive effect produces an overshoot in the voltage across the equipment or component being protected as shown in Figure 7. Minimizing this overshoot is very important in the application, since the main purpose for adding a transient suppressor is to clamp voltage spikes. The P6KE6.8A series has very good response time, typically < 1 ns and negligible inductance. However, external inductive effects could produce unacceptable overshoot. Proper circuit layout,

minimum lead lengths and placing the suppressor device as close as possible to the equipment or components to be protected will minimize this overshoot.

Some input impedance represented by Z_{in} is essential to prevent overstress of the protection device. This impedance should be as high as possible, without restricting the circuit operation.

DUTY CYCLE DERATING

The data of Figure 1 applies for non-repetitive conditions and at a lead temperature of 25°C. If the duty cycle increases, the peak power must be reduced as indicated by the curves of Figure 5. Average power must be derated as the lead or ambient temperature rises above 25°C. The average power derating curve normally given on data sheets may be normalized and used for this purpose.

At first glance the derating curves of Figure 5 appear to be in error as the 10 ms pulse has a higher derating factor than the 10 μ s pulse. However, when the derating factor for a given pulse of Figure 5 is multiplied by the peak power value of Figure 1 for the same pulse, the results follow the expected trend.

TYPICAL PROTECTION CIRCUIT

UL RECOGNITION*

The entire series including the bidirectional CA suffix has *Underwriters Laboratory Recognition* for the classification of protectors (QVGV2) under the UL standard for safety 497B and File #E 116110. Many competitors only have one or two devices recognized or have recognition in a non-protective category. Some competitors have no recognition at all. With the UL497B recognition, our parts successfully passed several tests including Strike Voltage

Breakdown test, Endurance Conditioning, Temperature test, Dielectric Voltage-Withstand test, Discharge test and several more.

Whereas, some competitors have only passed a flammability test for the package material, we have been recognized for much more to be included in their protector category.

*Applies to P6KE6.8A, CA – P6KE200A, CA.

1N6267A Series

1500 Watt Mosorb™ Zener Transient Voltage Suppressors

Unidirectional*

Mosorb devices are designed to protect voltage sensitive components from high voltage, high–energy transients. They have excellent clamping capability, high surge capability, low zener impedance and fast response time. These devices are ON Semiconductor's exclusive, cost-effective, highly reliable Surmetic[™] axial leaded package and are ideally-suited for use in communication systems, numerical controls, process controls, medical equipment, business machines, power supplies and many other industrial/consumer applications, to protect CMOS, MOS and Bipolar integrated circuits.

Specification Features:

- Working Peak Reverse Voltage Range 5.8 V to 214 V
- Peak Power 1500 Watts @ 1 ms
- ESD Rating of Class 3 (>16 KV) per Human Body Model
- Maximum Clamp Voltage @ Peak Pulse Current
- Low Leakage < 5 µA Above 10 V
- UL 497B for Isolated Loop Circuit Protection
- Response Time is Typically < 1 ns

Mechanical Characteristics:

CASE: Void-free, transfer-molded, thermosetting plastic **FINISH:** All external surfaces are corrosion resistant and leads are readily solderable

MAXIMUM LEAD TEMPERATURE FOR SOLDERING PURPOSES:

230°C, 1/16" from the case for 10 seconds **POLARITY:** Cathode indicated by polarity band **MOUNTING POSITION:** Any

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Peak Power Dissipation (Note 1.) @ $T_L \le 25^{\circ}C$	P _{PK}	1500	Watts
Steady State Power Dissipation @ $T_L \le 75^{\circ}C$, Lead Length = 3/8"	PD	5.0	Watts
Derated above $T_L = 75^{\circ}C$		20	mW/°C
Thermal Resistance, Junction-to-Lead	$R_{\theta JL}$	20	°C/W
Forward Surge Current (Note 2.) @ $T_A = 25^{\circ}C$	I _{FSM}	200	Amps
Operating and Storage Temperature Range	T _J , T _{stg}	– 65 to +175	°C

1. Nonrepetitive current pulse per Figure 5 and derated above T_A = 25°C per Figure 2.

 1/2 sine wave (or equivalent square wave), PW = 8.3 ms, duty cycle = 4 pulses per minute maximum.

*Please see 1.5KE6.8CA to 1.5KE250CA for Bidirectional Devices

ON Semiconductor[™]

http://onsemi.com

L = Assembly Location 1N6xxxA = JEDEC Device Code 1.5KExxxA = ON Device Code YY = Year WW = Work Week

ORDERING INFORMATION

Device	Package	Shipping		
1.5KExxxA	Axial Lead	500 Units/Box		
1.5KExxxARL4	Axial Lead	1500/Tape & Reel		
1N6xxxA	Axial Lead	500 Units/Box		
1N6xxxARL4	Axial Lead	1500/Tape & Reel		

Devices listed in *bold, italic* are ON Semiconductor **Preferred** devices. **Preferred** devices are recommended choices for future use and best overall value.

ELECTRICAL CHARACTERISTICS (T_A = 25° C unless otherwise noted, V_F = 3.5 V Max., I_F (Note 3.) = 100 A)

Symbol	Parameter
I _{PP}	Maximum Reverse Peak Pulse Current
V _C	Clamping Voltage @ IPP
V _{RWM}	Working Peak Reverse Voltage
I _R	Maximum Reverse Leakage Current @ V _{RWM}
V _{BR}	Breakdown Voltage @ I _T
Ι _Τ	Test Current
ΘV_{BR}	Maximum Temperature Coefficient of V_{BR}
١ _F	Forward Current
V _F	Forward Voltage @ I _F

1N6267A Series

				Breakdown Voltage						
	JEDEC	V _{RWM}							014	
	Device	(Note 5.)	I _R @ V _{RWM}	v _{BR}	(NOLE 6.) (voits)	ΨT	vc	IPP	⊌v _{BR}
Device	(Note 4.)	(Volts)	(μΑ)	Min	Nom	Max	(mA)	(Volts)	(A)	(%/°C)
1.5KE6.8A	1N6267A	5.8	1000	6.45	6.8	7.14	10	10.5	143	0.057
1.5KE7.5A	1N6268A	6.4	500	7.13	7.5	7.88	10	11.3	132	0.061
1.5KE8.2A	1N6269A	7.02	200	7.79	8.2	8.61	10	12.1	124	0.065
1.5KE9.1A	1N6270A	7.78	50	8.65	9.1	9.55	1	13.4	112	0.068
1.5KE10A	1N6271A	8.55	10	9.5	10	10.5	1	14.5	103	0.073
1.5KE11A	1N6272A	9.4	5	10.5	11	11.6	1	15.6	96	0.075
1.5KE12A	1N6273A	10.2	5	11.4	12	12.6	1	16.7	90	0.078
1.5KE13A	1N6274A	11.1	5	12.4	13	13.7	1	18.2	82	0.081
1.5KE15A	1N6275A	12.8	5	14.3	15	15.8	1	21.2	71	0.084
1.5KE16A	1N6276A	13.6	5	15.2	16	16.8	1	22.5	67	0.086
1.5KE18A	1N6277A	15.3	5	17.1	18	18.9	1	25.2	59.5	0.088
1.5KE20A	1N6278A	17.1	5	19	20	21	1	27.7	54	0.09
1.5KE22A	1N6279A	18.8	5	20.9	22	23.1	1	30.6	49	0.092
1.5KE24A	1N6280A	20.5	5	22.8	24	25.2	1	33.2	45	0.094
1.5KE27A	1N6281A	23.1	5	25.7	27	28.4	1	37.5	40	0.096
1.5KE30A	1N6282A	25.6	5	28.5	30	31.5	1	41.4	36	0.097
1.5KE33A	1N6283A	28.2	5	31.4	33	34.7	1	45.7	33	0.098
1.5KE36A	1N6284A	30.8	5	34.2	36	37.8	1	49.9	30	0.099
1.5KE39A	1N6285A	33.3	5	37.1	39	41	1	53.9	28	0.1
1.5KE43A	1N6286A	36.8	5	40.9	43	45.2	1	59.3	25.3	0.101
1.5KE47A	1N6287A	40.2	5	44.7	47	49.4	1	64.8	23.2	0.101
1.5KE51A	1N6288A	43.6	5	48.5	51	53.6	1	70.1	21.4	0.102
1.5KE56A	1N6289	47.8	5	<i>53.2</i>	56	58.8	1	77	19.5	0.103
1.5KE62A	1N6290A	53	5	58.9	62	65.1	1	85	17.7	0.104
1.5KE68A	1N6291A	58.1	5	64.6	68	71.4	1	92	16.3	0.104
1.5KE75A	1N6292A	64.1	5	71.3	75	78.8	1	103	14.6	0.105
1.5KE82A	1N6293A	70.1	5	77.9	82	86.1	1	113	13.3	0.105
1.5KE91A	1N6294A	77.8	5	86.5	91	95.5	1	125	12	0.106
1.5KE100A	1N6295A	85.5	5	95	100	105	1	137	11	0.106
1.5KE110A	1N6296A	94	5	105	110	116	1	152	9.9	0.107
1.5KE120A	1N6297A	102	5	114	120	126	1	165	9.1	0.107
1.5KE130A	1N6298A	111	5	124	130	137	1	179	8.4	0.107
1.5KE150A	1N6299A	128	5	143	150	158	1	207	7.2	0.108
1.5KE160A	1N6300A	136	5	152	160	168	1	219	6.8	0.108
1.5KE170A	1N6301A	145	5	162	170	179	1	234	6.4	0.108
1.5KE180A	1N6302A	154	5	171	180	189	1	246	6.1	0.108
1.5KE200A	1N6303A	171	5	190	200	210	1	274	5.5	0.108
1.5KE220A		185	5	209	220	231	1	328	4.6	0.109
1.5KE250A		214	5	237	250	263	1	344	5	0.109

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted, V_F = 3.5 V Max. @ I_F (Note 3.) = 100 A)

3. 1/2 sine wave (or equivalent square wave), PW = 8.3 ms, duty cycle = 4 pulses per minute maximum.

4. Indicates JEDEC registered data

5. A transient suppressor is normally selected according to the maximum working peak reverse voltage (V_{RWM}), which should be equal to or greater than the dc or continuous peak operating voltage level.

6. V_{BR} measured at pulse test current I_T at an ambient temperature of $25^\circ C$

7. Surge current waveform per Figure 5 and derate per Figures 1 and 2.

1N6267A Series

VBR, BREAKDOWN VOLTAGE (VOLTS)

Figure 3. Capacitance versus Breakdown Voltage

VBR, BREAKDOWN VOLTAGE (VOLTS)

Figure 6. Dynamic Impedance

APPLICATION NOTES

RESPONSE TIME

In most applications, the transient suppressor device is placed in parallel with the equipment or component to be protected. In this situation, there is a time delay associated with the capacitance of the device and an overshoot condition associated with the inductance of the device and the inductance of the connection method. The capacitance effect is of minor importance in the parallel protection scheme because it only produces a time delay in the transition from the operating voltage to the clamp voltage as shown in Figure 8.

The inductive effects in the device are due to actual turn-on time (time required for the device to go from zero current to full current) and lead inductance. This inductive effect produces an overshoot in the voltage across the equipment or component being protected as shown in Figure 9. Minimizing this overshoot is very important in the application, since the main purpose for adding a transient suppressor is to clamp voltage spikes. These devices have excellent response time, typically in the picosecond range and negligible inductance. However, external inductive effects could produce unacceptable overshoot. Proper circuit layout, minimum lead lengths and placing the suppressor device as close as possible to the equipment or components to be protected will minimize this overshoot.

Some input impedance represented by Z_{in} is essential to prevent overstress of the protection device. This impedance should be as high as possible, without restricting the circuit operation.

DUTY CYCLE DERATING

The data of Figure 1 applies for non-repetitive conditions and at a lead temperature of 25°C. If the duty cycle increases, the peak power must be reduced as indicated by the curves of Figure 7. Average power must be derated as the lead or ambient temperature rises above 25°C. The average power derating curve normally given on data sheets may be normalized and used for this purpose.

At first glance the derating curves of Figure 7 appear to be in error as the 10 ms pulse has a higher derating factor than the 10 μ s pulse. However, when the derating factor for a given pulse of Figure 7 is multiplied by the peak power value of Figure 1 for the same pulse, the results follow the expected trend.

TYPICAL PROTECTION CIRCUIT

The entire series has *Underwriters Laboratory Recognition* for the classification of protectors (QVGV2) under the UL standard for safety 497B and File #116110. Many competitors only have one or two devices recognized or have recognition in a non-protective category. Some competitors have no recognition at all. With the UL497B recognition, our parts successfully passed several tests including Strike Voltage Breakdown test, Endurance Conditioning, Temperature test, Dielectric Voltage-Withstand test, Discharge test and several more.

Whereas, some competitors have only passed a flammability test for the package material, we have been recognized for much more to be included in their Protector category.

*Applies to 1.5KE6.8A, CA thru 1.5KE250A, CA

CLIPPER BIDIRECTIONAL DEVICES

- 1. Clipper-bidirectional devices are available in the 1.5KEXXA series and are designated with a "CA" suffix; for example, 1.5KE18CA. Contact your nearest ON Semiconductor representative.
- Clipper-bidirectional part numbers are tested in both directions to electrical parameters in preceeding table (except for V_F which does not apply).

3. The 1N6267A through 1N6303A series are JEDEC registered devices and the registration does not include a "CA" suffix. To order clipper-bidirectional devices one must add CA to the 1.5KE device title.

1.5KE6.8CA Series

1500 Watt Mosorb™ Zener Transient Voltage Suppressors

Bidirectional*

Mosorb devices are designed to protect voltage sensitive components from high voltage, high-energy transients. They have excellent clamping capability, high surge capability, low zener impedance and fast response time. These devices are ON Semiconductor's exclusive, cost-effective, highly reliable Surmetic axial leaded package and are ideally-suited for use in communication systems, numerical controls, process controls, medical equipment, business machines, power supplies and many other industrial/ consumer applications, to protect CMOS, MOS and Bipolar integrated circuits.

Specification Features:

- Working Peak Reverse Voltage Range 5.8 V to 214 V
- Peak Power 1500 Watts @ 1 ms
- ESD Rating of Class 3 (>16 KV) per Human Body Model
- Maximum Clamp Voltage @ Peak Pulse Current
- Low Leakage $< 5 \mu A$ above 10 V
- UL 497B for Isolated Loop Circuit Protection
- Response Time is typically < 1 ns

Mechanical Characteristics:

CASE: Void-free, transfer-molded, thermosetting plastic **FINISH:** All external surfaces are corrosion resistant and leads are readily solderable

MAXIMUM LEAD TEMPERATURE FOR SOLDERING PURPOSES:

230°C, 1/16" from the case for 10 seconds **POLARITY:** Cathode band does not imply polarity **MOUNTING POSITION:** Any

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Peak Power Dissipation (Note 1.) @ $T_L \le 25^{\circ}C$	P _{PK}	1500	Watts
Steady State Power Dissipation @ $T_L \le 75^{\circ}C$, Lead Length = 3/8" Derated above $T_L = 75^{\circ}C$	P _D	5.0 20	Watts mW/°C
Thermal Resistance, Junction-to-Lead	R_{\thetaJL}	20	°C/W
Operating and Storage Temperature Range	T _J , T _{stg}	– 65 to +175	°C

1. Nonrepetitive current pulse per Figure 4 and derated above T_A = 25°C per Figure 2.

*Please see 1N6267A to 1N6306A (1.5KE6.8A – 1.5KE250A) for Unidirectional Devices

ON Semiconductor[™]

http://onsemi.com

AXIAL LEAD CASE 41A PLASTIC

L = Assembly Location 1N6xxxCA = JEDEC Device Code 1.5KExxxCA = ON Device Code YY = Year WW = Work Week

ORDERING INFORMATION

Device	Packaging	Shipping		
1.5KExxCA	Axial Lead	500 Units/Box		
1.5KExxCARL4	Axial Lead	1500/Tape & Reel		

ELECTRICAL CHARACTERISTICS

 $(T_A = 25^{\circ}C \text{ unless otherwise noted})$

Symbol	Parameter		
I _{PP}	Maximum Reverse Peak Pulse Current		
V _C	Clamping Voltage @ I _{PP}		
V _{RWM}	Working Peak Reverse Voltage		
I _R	Maximum Reverse Leakage Current @ V _{RWM}		
V _{BR}	Breakdown Voltage @ I _T		
Ι _Τ	Test Current		
ΘV_{BR}	Maximum Temperature Coefficient of VBR		

	V			Breakdo	wn Voltage	•	V _C @ I _{PP}	(Note 4.)	
	(Note 2.)	I _R @ V _{RWM}	V _{BR}	(Note 3.) (Volts)	@ կ	Vc	I _{PP}	ΘV _{BR}
Device	(Volts)	(μA)	Min	Nom	Max	(mA)	(Volts)	(A)	(%/°C)
1.5KE6.8CA	5.8	1000	6.45	6.8	7.14	10	10.5	143	0.057
1.5KE7.5CA	6.4	500	7.13	7.5	7.88	10	11.3	132	0.061
1.5KE8.2CA	7.02	200	7.79	8.2	8.61	10	12.1	124	0.065
1.5KE9.1CA	7.78	50	8.65	9.1	9.55	1	13.4	112	0.068
1.5KE10CA	8.55	10	9.5	10	10.5	1	14.5	103	0.073
1.5KE11CA	9.4	5	10.5	11	11.6	1	15.6	96	0.075
1.5KE12CA	10.2	5	11.4	12	12.6	1	16.7	90	0.078
1.5KE13CA	11.1	5	12.4	13	13.7	1	18.2	82	0.081
1.5KE15CA	12.8	5	14.3	15	15.8	1	21.2	71	0.084
1.5KE16CA	13.6	5	15.2	16	16.8	1	22.5	67	0.086
1.5KE18CA	15.3	5	17.1	18	18.9	1	25.2	59.5	0.088
1.5KE20CA	17.1	5	19	20	21	1	27.7	54	0.09
1.5KE22CA	18.8	5	20.9	22	23.1	1	30.6	49	0.092
1.5KE24CA	20.5	5	22.8	24	25.2	1	33.2	45	0.094
1.5KE27CA	23.1	5	25.7	27	28.4	1	37.5	40	0.096
1.5KE30CA	25.6	5	28.5	30	31.5	1	41.4	36	0.097
1.5KE33CA	28.2	5	31.4	33	34.7	1	45.7	33	0.098
1.5KE36CA	30.8	5	34.2	36	37.8	1	49.9	30	0.099
1.5KE39CA	33.3	5	37.1	39	41	1	53.9	28	0.1
1.5KE43CA	36.8	5	40.9	43	45.2	1	59.3	25.3	0.101
1.5KE47CA	40.2	5	44.7	47	49.4	1	64.8	23.2	0.101
1.5KE51CA	43.6	5	48.5	51	53.6	1	70.1	21.4	0.102
1.5KE56CA	47.8	5	53.2	56	58.8	1	77	19.5	0.103
1.5KE62CA	53	5	58.9	62	65.1	1	85	17.7	0.104
1.5KE68CA	58.1	5	64.6	68	71.4	1	92	16.3	0.104
1.5KE75CA	64.1	5	71.3	75	78.8	1	103	14.6	0.105
1.5KE82CA	70.1	5	77.9	82	86.1	1	113	13.3	0.105
1.5KE91CA	77.8	5	86.5	91	95.5	1	125	12	0.106
1.5KE100CA	85.5	5	95	100	105	1	137	11	0.106
1.5KE110CA	94	5	105	110	116	1	152	9.9	0.107
1.5KE120CA	102	5	114	120	126	1	165	9.1	0.107
1.5KE130CA	111	5	124	130	137	1	179	8.4	0.107
1.5KE150CA	128	5	143	150	158	1	207	7.2	0.108
1.5KE160CA	136	5	152	160	168	1	219	6.8	0.108
1.5KE170CA	145	5	162	170	179	1	234	6.4	0.108
1.5KE180CA	154	5	171	180	189	1	246	6.1	0.108
1.5KE200CA	171	5	190	200	210	1	274	5.5	0.108
1.5KE220CA	185	5	209	220	231	1	328	4.6	0.109
1.5KE250CA	214	5	237	250	263	1	344	5	0.109

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

 A transient suppressor is normally selected according to the maximum working peak reverse voltage (V_{RWM}), which should be equal to or greater than the dc or continuous peak operating voltage level.

3. V_{BR} measured at pulse test current I_{T} at an ambient temperature of 25°C.

4. Surge current waveform per Figure 4 and derate per Figures 1 and 2.

Figure 6. Typical Derating Factor for Duty Cycle

APPLICATION NOTES

RESPONSE TIME

In most applications, the transient suppressor device is placed in parallel with the equipment or component to be protected. In this situation, there is a time delay associated with the capacitance of the device and an overshoot condition associated with the inductance of the device and the inductance of the connection method. The capacitance effect is of minor importance in the parallel protection scheme because it only produces a time delay in the transition from the operating voltage to the clamp voltage as shown in Figure 7.

The inductive effects in the device are due to actual turn-on time (time required for the device to go from zero current to full current) and lead inductance. This inductive effect produces an overshoot in the voltage across the equipment or component being protected as shown in Figure 8. Minimizing this overshoot is very important in the application, since the main purpose for adding a transient suppressor is to clamp voltage spikes. These devices have excellent response time, typically in the picosecond range and negligible inductance. However, external inductive effects could produce unacceptable overshoot. Proper circuit layout, minimum lead lengths and placing the suppressor device as close as possible to the equipment or components to be protected will minimize this overshoot.

Some input impedance represented by Z_{in} is essential to prevent overstress of the protection device. This impedance should be as high as possible, without restricting the circuit operation.

DUTY CYCLE DERATING

The data of Figure 1 applies for non-repetitive conditions and at a lead temperature of 25°C. If the duty cycle increases, the peak power must be reduced as indicated by the curves of Figure 6. Average power must be derated as the lead or ambient temperature rises above 25°C. The average power derating curve normally given on data sheets may be normalized and used for this purpose.

At first glance the derating curves of Figure 6 appear to be in error as the 10 ms pulse has a higher derating factor than the 10 μ s pulse. However, when the derating factor for a given pulse of Figure 6 is multiplied by the peak power value of Figure 1 for the same pulse, the results follow the expected trend.

TYPICAL PROTECTION CIRCUIT

Figure 7.

UL RECOGNITION*

The entire series has *Underwriters Laboratory Recognition* for the classification of protectors (QVGV2) under the UL standard for safety 497B and File #116110. Many competitors only have one or two devices recognized or have recognition in a non-protective category. Some competitors have no recognition at all. With the UL497B recognition, our parts successfully passed several tests including Strike Voltage Breakdown test, Endurance

CLIPPER BIDIREC 1. Clipper-bidirectional devices are available in the 1.5KEXXA series and are designated with a "CA" sufficient for example, 15KE18CA, Contact your processes

- 1.5KEXXA series and are designated with a "CA suffix; for example, 1.5KE18CA. Contact your nearest ON Semiconductor representative.
- 2. Clipper-bidirectional part numbers are tested in both directions to electrical parameters in preceeding table (except for V_F which does not apply).

Conditioning, Temperature test, Dielectric Voltage-Withstand test, Discharge test and several more.

Whereas, some competitors have only passed a flammability test for the package material, we have been recognized for much more to be included in their Protector category.

*Applies to 1.5KE6.8CA - 1.5KE250CA

CLIPPER BIDIRECTIONAL DEVICES

3. The 1N6267A through 1N6303A series are JEDEC registered devices and the registration does not include a "CA" suffix. To order clipper-bidirectional devices one must add CA to the 1.5KE device title.

Preferred Devices

24 and 40 Watt Peak Power Zener Transient Voltage Suppressors

SOT-23 Dual Common Anode Zeners for ESD Protection

These dual monolithic silicon zener diodes are designed for applications requiring transient overvoltage protection capability. They are intended for use in voltage and ESD sensitive equipment such as computers, printers, business machines, communication systems, medical equipment and other applications. Their dual junction common anode design protects two separate lines using only one package. These devices are ideal for situations where board space is at a premium.

Specification Features:

- SOT-23 Package Allows Either Two Separate Unidirectional Configurations or a Single Bidirectional Configuration
- Working Peak Reverse Voltage Range 3 V to 26 V
- Standard Zener Breakdown Voltage Range 5.6 V to 33 V
- Peak Power 24 or 40 Watts @ 1.0 ms (Unidirectional), per Figure 5. Waveform
- ESD Rating of Class N (exceeding 16 kV) per the Human Body Model
- Maximum Clamping Voltage @ Peak Pulse Current
- Low Leakage < 5.0 μA
- Flammability Rating UL 94V–O

Mechanical Characteristics:

CASE: Void-free, transfer-molded, thermosetting plastic case FINISH: Corrosion resistant finish, easily solderable MAXIMUM CASE TEMPERATURE FOR SOLDERING PURPOSES:

260°C for 10 Seconds

Package designed for optimal automated board assembly Small package size for high density applications Available in 8 mm Tape and Reel

Use the Device Number to order the 7 inch/3,000 unit reel. Replace the "T1" with "T3" in the Device Number to order the 13 inch/10,000 unit reel.

ON Semiconductor**

http://onsemi.com

ORDERING INFORMATION

Device	Package	Shipping
MMBZ5V6ALT1	SOT-23	3000/Tape & Reel
MMBZ6V2ALT1	SOT-23	3000/Tape & Reel
MMBZ6V8ALT1	SOT-23	3000/Tape & Reel
MMBZ9V1ALT1	SOT-23	3000/Tape & Reel
MMBZ10VALT1	SOT–23	3000/Tape & Reel
MMBZ12VALT1	SOT-23	3000/Tape & Reel
MMBZ15VALT1	SOT–23	3000/Tape & Reel
MMBZ18VALT1	SOT-23	3000/Tape & Reel
MMBZ20VALT1	SOT-23	3000/Tape & Reel
MMBZ27VALT1	SOT-23	3000/Tape & Reel
MMBZ33VALT1	SOT–23	3000/Tape & Reel

Preferred devices are recommended choices for future use and best overall value.

DEVICE MARKING INFORMATION

See specific marking information in the device marking column of the table on page 42 of this data sheet.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Peak Power Dissipation @ 1.0 ms (Note 1.)MMBZ5V6ALT1 thru MMBZ10VALT1@ $T_L \le 25^{\circ}C$ MMBZ12VALT1 thru MMBZ33VALT1	P _{pk}	24 40	Watts
Total Power Dissipation on FR–5 Board (Note 2.) @ T _A = 25°C Derate above 25°C	P _D	225 1.8	mW mW/°C
Thermal Resistance Junction to Ambient	R_{\thetaJA}	556	°C/W
Total Power Dissipation on Alumina Substrate (Note 3.) @ T _A = 25°C Derate above 25°C	P _D	300 2.4	mW mW/°C
Thermal Resistance Junction to Ambient	R_{\thetaJA}	417	°C/W
Junction and Storage Temperature Range	T _J , T _{stg}	– 55 to +150	°C
Lead Solder Temperature – Maximum (10 Second Duration)	ΤL	260	°C

1. Non–repetitive current pulse per Figure 5. and derate above T_A = 25°C per Figure 6.

2. FR-5 = 1.0 x 0.75 x 0.62 in.

3. Alumina = 0.4 x 0.3 x 0.024 in., 99.5% alumina

*Other voltages may be available upon request

ELECTRICAL CHARACTERISTICS

 $(T_A = 25^{\circ}C \text{ unless otherwise noted})$

UNIDIRECTIONAL	(Circuit tied to Pins 1 and 3 or 2 and 3)
----------------	---

Symbol	Parameter
I _{PP}	Maximum Reverse Peak Pulse Current
V _C	Clamping Voltage @ I _{PP}
V _{RWM}	Working Peak Reverse Voltage
I _R	Maximum Reverse Leakage Current @ V _{RWM}
V _{BR}	Breakdown Voltage @ I _T
Ι _Τ	Test Current
ΘV_{BR}	Maximum Temperature Coefficient of V_{BR}
١ _F	Forward Current
V _F	Forward Voltage @ I _F
Z _{ZT}	Maximum Zener Impedance @ I _{ZT}
I _{ZK}	Reverse Current
Z _{ZK}	Maximum Zener Impedance @ I _{ZK}

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted)

UNIDIRECTIONAL (Circuit tied to Pins 1 and 3 or Pins 2 and 3)

24 WATTS $(V_F = 0.9 V Max @ I_F = 10 mA)$ Max Zener V_C @ I_{PP} Impedance (Note 5.) (Note 6.) **Breakdown Voltage** I_R @ ΘV_{BR} VBR (Note 4.) (V) @ <mark></mark> Z_{ZT} @ I_{ZT} Z_{ZK} @ І_{ZK} ٧c V_{RWM} V_{RWM} IPP Device Volts v mV/°C Marking μA Min Nom Max mΑ Ω Ω mΑ Α Device MMBZ5V6ALT1 5A6 5.0 5.32 5.88 1600 0.25 8.0 3.0 3.0 5.6 20 11 1.26 MMBZ6V2ALT1 6A2 3.0 0.5 5.89 6.2 6.51 1.0 _ _ _ 8.7 2.76 2.80

(V_F = 1.1 V Max @ I_F = 200 mA)

					Breakdown Voltage				(Note 6.)	
	Device	V _{RWM}	I _R @ V _{RWM}	V _{BR} (Note 4.) (V)			@ հ	Vc	I _{PP}	ΘV_{BR}
Device	Marking	Volts	μA	Min	Nom	Max	mA	v	Α	mV/°C
MMBZ6V8ALT1	6A8	4.5	0.5	6.46	6.8	7.14	1.0	9.6	2.5	3.4
MMBZ9V1ALT1	9A1	6.0	0.3	8.65	9.1	9.56	1.0	14	1.7	7.5
MMBZ10VALT1	10A	6.5	0.3	9.50	10	10.5	1.0	14.2	1.7	7.5

(V_F = 1.1 V Max @ I_F = 200 mA)

40 WATTS

				Breakdown Voltage				V _C @ I _{PP}	(Note 6.)	
	Device	V _{RWM}	I _R @ V _{RWM}	VBF	(Note 4.)	(V)	@	Vc	I _{PP}	ΘV_{BR}
Device	Marking	Volts	nA	Min	Nom	Max	mA	v	Α	mV/°C
MMBZ12VALT1	12A	8.5	200	11.40	12	12.60	1.0	17	2.35	7.5
MMBZ15VALT1	15A	12	50	14.25	15	15.75	1.0	21	1.9	12.3
MMBZ18VALT1	18A	14.5	50	17.10	18	18.90	1.0	25	1.6	15.3
MMBZ20VALT1	20A	17	50	19.00	20	21.00	1.0	28	1.4	17.2
MMBZ27VALT1	27A	22	50	25.65	27	28.35	1.0	40	1.0	24.3
MMBZ33VALT1	33A	26	50	31.35	33	34.65	1.0	46	0.87	30.4

4. V_{BR} measured at pulse test current I_T at an ambient temperature of 25°C.

5. Z_{ZT} and Z_{ZK} are measured by dividing the AC voltage drop across the device by the AC current applied. The specified limits are for $I_{Z(AC)}$ = 0.1 $I_{Z(DC)}$, with the AC frequency = 1.0 kHz.

6. Surge current waveform per Figure 5. and derate per Figure 6.

TYPICAL CHARACTERISTICS

Figure 4. Steady State Power Derating Curve

TYPICAL CHARACTERISTICS

90

80

70

MMBZ5V6ALT1

Figure 7. Maximum Non-repetitive Surge Power, Ppk versus PW

Power is defined as $V_{RSM} \, x \, I_Z(pk)$ where V_{RSM} is the clamping voltage at I_Z(pk).

Figure 8. Maximum Non-repetitive Surge Power, Ppk(NOM) versus PW

Power is defined as V_Z(NOM) x I_Z(pk) where $V_Z(NOM)$ is the nominal zener voltage measured at the low test current used for voltage classification.

TYPICAL COMMON ANODE APPLICATIONS

A quad junction common anode design in a SOT–23 package protects four separate lines using only one package. This adds flexibility and creativity to PCB design especially

when board space is at a premium. Two simplified examples of TVS applications are illustrated below.

MMBZ15VDLT1, MMBZ27VCLT1

Preferred Devices

40 Watt Peak Power Zener Transient Voltage Suppressors

SOT–23 Dual Common Cathode Zeners for ESD Protection

These dual monolithic silicon zener diodes are designed for applications requiring transient overvoltage protection capability. They are intended for use in voltage and ESD sensitive equipment such as computers, printers, business machines, communication systems, medical equipment and other applications. Their dual junction common cathode design protects two separate lines using only one package. These devices are ideal for situations where board space is at a premium.

Specification Features:

- SOT-23 Package Allows Either Two Separate Unidirectional Configurations or a Single Bidirectional Configuration
- Working Peak Reverse Voltage Range 12.8 V, 22 V
- Standard Zener Breakdown Voltage Range 15 V, 27 V
- Peak Power 40 Watts @ 1.0 ms (Bidirectional), per Figure 5. Waveform
- ESD Rating of Class N (exceeding 16 kV) per the Human Body Model
- Maximum Clamping Voltage @ Peak Pulse Current
- Low Leakage < 100 nA
- Flammability Rating UL 94V-O

Mechanical Characteristics:

CASE: Void-free, transfer-molded, thermosetting plastic case FINISH: Corrosion resistant finish, easily solderable MAXIMUM CASE TEMPERATURE FOR SOLDERING PURPOSES:

260°C for 10 Seconds

Package designed for optimal automated board assembly Small package size for high density applications Available in 8 mm Tape and Reel

Use the Device Number to order the 7 inch/3,000 unit reel. Replace the "T1" with "T3" in the Device Number to order the 13 inch/10,000 unit reel.

ON Semiconductor™

http://onsemi.com

PIN 1. ANODE 2. ANODE 3. CATHODE

SOT-23 CASE 318 STYLE 9

ORDERING INFORMATION

Device	Package	Shipping
MMBZ15VDLT1	SOT-23	3000/Tape & Reel
MMBZ15VDLT3	SOT–23	10,000/Tape & Reel
MMBZ27VCLT1	SOT-23	3000/Tape & Reel

Preferred devices are recommended choices for future use and best overall value.

MMBZ15VDLT1, MMBZ27VCLT1

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Peak Power Dissipation @ 1.0 ms (Note 1.) @ $T_L \le 25^\circ C$	P _{pk}	40	Watts
Total Power Dissipation on FR–5 Board (Note 2.) @ $T_A = 25^{\circ}C$ Derate above 25°C	PD	225 1.8	mW mW/°C
Thermal Resistance Junction to Ambient	R_{\thetaJA}	556	°C/W
Total Power Dissipation on Alumina Substrate (Note 3.) @ T _A = 25°C Derate above 25°C	P _D	300 2.4	mW mW/°C
Thermal Resistance Junction to Ambient	R_{\thetaJA}	417	°C/W
Junction and Storage Temperature Range	T _J , T _{stg}	– 55 to +150	°C
Lead Solder Temperature – Maximum (10 Second Duration)	ΤL	230	°C

1. Non–repetitive current pulse per Figure 5. and derate above T_A = 25°C per Figure 6.

2. FR-5 = 1.0 x 0.75 x 0.62 in.

3. Alumina = 0.4 x 0.3 x 0.024 in., 99.5% alumina

ELECTRICAL CHARACTERISTICS

 $(T_A = 25^{\circ}C \text{ unless otherwise noted})$

UNIDIRECTIONAL (Circuit tied to Pins 1 and 3 or 2 and 3)

Symbol	Parameter
I _{PP}	Maximum Reverse Peak Pulse Current
V _C	Clamping Voltage @ IPP
V _{RWM}	Working Peak Reverse Voltage
I _R	Maximum Reverse Leakage Current @ V _{RWM}
V _{BR}	Breakdown Voltage @ I _T
Ι _Τ	Test Current
ΘV_{BR}	Maximum Temperature Coefficient of V_{BR}
١ _F	Forward Current
V _F	Forward Voltage @ I _F

MMBZ15VDLT1, MMBZ27VCLT1

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted) **UNIDIRECTIONAL** (Circuit tied to Pins 1 and 3 or Pins 2 and 3)

 $(V_F = 0.9 V Max @ I_F = 10 mA)$

				Breakdown Voltage				V _C @ I _{PP}	(Note 5.)	
	Device	V _{RWM}	I _R @ V _{RWM}	VBF	V _{BR} (Note 4.) (V)		@ կ	Vc	I _{PP}	ΘV_{BR}
Device	Marking	Volts	nA	Min	Nom	Max	mA	v	Α	mV/°C
MMBZ15VDLT1	15D	12.8	100	14.3	15	15.8	1.0	21.2	1.9	12

(V_F = 1.1 V Max @ I_F = 200 mA)

				Breakdown Voltage				V _C @ I _{PP}	(Note 5.)	
	Device	V _{RWM}	I _R @ V _{RWM}	V _{BR} (Note 4.) (V)		@ կ	Vc	I _{PP}	ΘV _{BR}	
Device	Marking	Volts	nA	Min Nom Max		mA	v	Α	mV/°C	
MMBZ27VCLT1	27C	22	50	25.65	27	28.35	1.0	38	1.0	26

4. V_{BR} measured at pulse test current I_T at an ambient temperature of 25°C.

5. Surge current waveform per Figure 5. and derate per Figure 6.

TYPICAL CHARACTERISTICS

Figure 1. Typical Breakdown Voltage versus Temperature

Figure 2. Typical Breakdown Voltage versus Temperature

MMBZ15VDLT1, MMBZ27VCLT1

Figure 5. Pulse Waveform

SOLDERING PRECAUTIONS

24 Watt Peak Power Zener **Transient Voltage Suppressors**

SC–59 Quad Common Anode for Zeners **ESD** Protection

These quad monolithic silicon voltage suppressors are designed for applications requiring transient voltage protection capability. They are intended for use in voltage and ESD sensitive equipment such as computers, printers, business machines, communication systems, medical equipment, and other applications. Their quad junction common anode design protects four separate lines using only one package. These devices are ideal for situations where board space is at a premium.

Specification Features:

- SC-59 Package Allows Four Separate Unidirectional Configurations
- Working Peak Reverse Voltage Range 3.0 V to 2.5 V
- Standard Zener Breakdown Voltage Range 5.6 V to 33 V
- Peak Power Minimum 24 W @ 1 ms (Unidirectional), per Figure 5
- Peak Power Minimum 150 W @ 20 µs (Unidirectional), per Figure 6
- ESD Rating of Class 3 (> 16 KV) per Human Body Model
- Maximum Clamp Voltage @ Peak Pulse Current
- Package Designed for Optimal Automated Board Assembly
- Small Package Size for High Density Applications
- Low Leakage < 2.0 μA

Mechanical Characteristics:

CASE: Void-free, transfer-molded, thermosetting plastic FINISH: All external surfaces are corrosion resistant and leads are

readily solderable

MAXIMUM CASE TEMPERATURE FOR SOLDERING PURPOSES: 260°C for 10 Seconds

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Peak Power Dissipation (Note 1.) @ 1.0 ms @ T _L ≤ 25°C	P _{PK}	24	W
Peak Power Dissipation (Note 2.) @ 20 μ s @ T _L \leq 25°C	P _{PK}	150	W
Total Power Dissipation (Note 3.) @ T _A = 25°C Derate Above 25°C Thermal Resistance – Junction to Ambient	Ρ _D R _{θJA}	225 1.8 556	mW mW/°C °C/W
Total Power Dissipation (Note 4.) @ T _A = 25°C Derate Above 25°C Thermal Resistance – Junction to Ambient	Ρ _D R _{θJA}	300 2.4 417	mW mW/°C °C/W
Junction and Storage Temperature Range	T _J , T _{stg}	–55 to +150	°C

1. Nonrepetitive current pulse per Figure 5 and derated above $T_A = 25^{\circ}C$ per Figure 4

2. Nonrepetitive current pulse per Figure 6 and derated above $T_A = 25^{\circ}C$ per Figure 4

3. FR-5 board = 1.0 X 0.75 X 0.62 in.

4. Alumina substrate = 0.4 X 0.3 X 0.024 in., 99.5% alumina

ON Semiconductor[™]

http://onsemi.com

PIN ASSIGNMENT

SC-59 CASE 318F STYLE 1

1	\mathbf{k}	A	6
2			5
3	₩	A	4
		`	

PIN 1. CATHODE 2. ANODE 3. CATHODE 4. CATHODE 5. ANODE 6. CATHODE

MARKING DIAGRAM

= Device Code XXX (See Table Next Page) M = Date Code

ORDERING INFORMATION

Device [†]	Package	Shipping
MMQAxxxT1	SC–59	3000/Tape & Reel
MMQAxxxT3	SC–59	10,000/Tape & Reel

†The "T1" suffix refers to an 8 mm, 7 inch reel. The "T3" suffix refers to an 8 mm, 13 inch reel. **ELECTRICAL CHARACTERISTICS** (T_A = 25°C unless otherwise noted, $V_F = 0.9 V Max. @ I_F (Note 5.) = 10 mA)$ Unidirectional (Circuit tied to Pins 1, 2 and 5; Pins 2, 3 and 5; or 2, 4 and 6; or Pins 2, 5 and 6)

Symbol	Parameter
I _{PP}	Maximum Reverse Peak Pulse Current
V _C	Clamping Voltage @ I _{PP}
V _{RWM}	Working Peak Reverse Voltage
I _R	Maximum Reverse Leakage Current @ V _{RWM}
Z _{ZT}	Maximum Zener Impedance @ I _{ZT}
V _{BR}	Breakdown Voltage @ IT
Ι _Τ	Test Current
ΘV_{BR}	Maximum Temperature Coefficient of VBR
١ _F	Forward Current
V _F	Forward Voltage @ I _F

ELECTRICAL CHARACTERISTICS

			In @	E	Breakdow	n Voltag	e	7 (Note 6.)		V _C @ I _{PP} (Note 7.)		
	Device	V _{RWM}	V _{RWM}	V _{BR} (I	Note 5.) (Volts)	@ կ	-21 (N	ою 0.) І ст	٧c	I _{PP}	ΘV _{BR}
Device	Marking	Volts	nA	Min	Nom	Max	mA	Ω	mA	Volts	Amps	mW/°C
MMQA5V6T1	5A6	3.0	2000	5.32	5.6	5.88	1.0	400	1.0	8.0	3.0	1.26
MMQA6V2T1	6A2	4.0	700	5.89	6.2	6.51	1.0	300	1.0	9.0	2.66	10.6
MMQA6V8T1	6A8	4.3	500	6.46	6.8	7.14	1.0	300	1.0	9.8	2.45	10.9
MMQA12VT1	12A	9.1	75	11.4	12	12.6	1.0	80	1.0	17.3	1.39	14
MMQA13VT1	13A	9.8	75	12.35	13	13.65	1.0	80	1.0	18.6	1.29	15
MMQA15VT1	15A	11	75	14.25	15	15.75	1.0	80	1.0	21.7	1.1	16
MMQA18VT1	18A	14	75	17.1	18	18.9	1.0	80	1.0	26	0.923	19
MMQA20VT1	20A	15	75	19.0	20	21.0	1.0	80	1.0	28.6	0.84	20.1
MMQA21VT1	21A	16	75	19.95	21	22.05	1.0	80	1.0	30.3	0.792	21
MMQA22VT1	22A	17	75	20.9	22	23.1	1.0	80	1.0	31.7	0.758	22
MMQA24VT1	24A	18	75	22.8	24	25.2	1.0	100	1.0	34.6	0.694	25
MMQA27VT1	27A	21	75	25.65	27	28.35	1.0	125	1.0	39.0	0.615	28
MMQA30VT1	30A	23	75	28.5	30	31.5	1.0	150	1.0	43.3	0.554	32
MMQA33VT1	33A	25	75	31.35	33	34.65	1.0	200	1.0	48.6	0.504	37

5. V_{BR} measured at pulse test current I_T at an ambient temperature of 25°C 6. Z_{ZT} is measured by dividing the AC voltage drop across the device by the AC current supplied. The specified limits are I_Z(ac) = 0.1 I_Z(dc) with the AC frequency = 1.0 kHz

7. Surge current waveform per Figure 5 and derate per Figure 4

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

Figure 7. Maximum Non–Repetitive Surge Power, Ppk versus PW

Power is defined as $V_{RSM} \times I_Z(pk)$ where V_{RSM} is the clamping voltage at $I_Z(pk)$.

Figure 8. Typical Maximum Non–Repetitive Surge Power, Ppk versus V_{BR}

TYPICAL COMMON ANODE APPLICATIONS

A quad junction common anode design in a SC-74 package protects four separate lines using only one package. This adds flexibility and creativity to PCB design especially

when board space is at a premium. A simplified example of MMQA Series Device applications is illustrated below.

Computer Interface Protection

400 Watt Peak Power Zener Transient Voltage Suppressors

Unidirectional*

The SMA series is designed to protect voltage sensitive components from high voltage, high energy transients. They have excellent clamping capability, high surge capability, low zener impedance and fast response time. The SMA series is supplied in ON Semiconductor's exclusive, cost-effective, highly reliable Surmetic[™] package and is ideally suited for use in communication systems, automotive, numerical controls, process controls, medical equipment, business machines, power supplies and many other industrial/consumer applications.

Specification Features:

- Working Peak Reverse Voltage Range 5.0 V to 78 V
- Standard Zener Breakdown Voltage Range 6.7 V to 91.25 V
- Peak Power 400 Watts @ 1 ms
- ESD Rating of Class 3 (> 16 KV) per Human Body Model
- Response Time is Typically < 1 ns
- Flat Handling Surface for Accurate Placement
- Package Design for Top Slide or Bottom Circuit Board Mounting
- Low Profile Package

Mechanical Characteristics:

CASE: Void-free, transfer-molded plastic

FINISH: All external surfaces are corrosion resistant and leads are readily solderable

MAXIMUM CASE TEMPERATURE FOR SOLDERING PURPOSES: 260°C for 10 Seconds

POLARITY: Cathode indicated by molded polarity notch or polarity

band

MOUNTING POSITION: Any

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Peak Power Dissipation (Note 1.) @ T _L = 25°C, Pulse Width = 1 ms	P _{PK}	400	W
DC Power Dissipation @ T _L = 75°C Measured Zero Lead Length (Note 2.)	PD	1.5	W
Derate Above 75°C		20	mW/⁰C
Thermal Resistance from Junction to Lead	R_{\thetaJL}	50	°C/W
DC Power Dissipation (Note 3.) @ T _A = 25°C Derate Above 25°C	PD	0.5	W
Thermal Resistance from Junction		4.0	mW/°C
to Ambient	R_{\thetaJA}	250	°C/W
Operating and Storage Temperature Range	T _J , T _{stg}	-65 to +150	°C

1. 10 X 1000 μ s, non-repetitive

2. 1" square copper pad, FR-4 board

3. FR-4 board, using ON Semiconductor minimum recommended footprint, as shown in 403B case outline dimensions spec.

ON Semiconductor"

http://onsemi.com

PLASTIC SURFACE MOUNT ZENER OVERVOLTAGE TRANSIENT SUPPRESSORS 5.0–78 VOLTS V_R 400 WATTS PEAK POWER

Device †	Package	Shipping
1SMAxxAT3	SMA	5000/Tape & Reel

*Please see 1SMA10CAT3 to 1SMA78CAT3 for Bidirectional devices.

†The "T3" suffix refers to a 13 inch reel.

ELECTRICAL CHARACTERISTICS (T_A = 25° C unless otherwise noted, V_F = 3.5 V Max. @ I_F = 40 A for all types)

Symbol	Parameter
I _{PP}	Maximum Reverse Peak Pulse Current
V _C	Clamping Voltage @ IPP
V _{RWM}	Working Peak Reverse Voltage
I _R	Maximum Reverse Leakage Current @ V _{RWM}
V _{BR}	Breakdown Voltage @ I _T
Ι _Τ	Test Current
١ _F	Forward Current
VF	Forward Voltage @ I _F

ELECTRICAL CHARACTERISTICS

				Breakdown Voltage		9	V _C @	[⊉] IPP	
	Device	V _{RWM}	I _R @ V _{RWM}	١	/ _{BR} (Volts	5)	@ ե	Vc	I _{PP}
Device	Marking	Volts	μΑ	Min	Nom	Max	mA	Volts	Amps
1SMA5.0AT3	QE	5.0	400	6.4	6.7	7.0	10	9.2	43.5
1SMA6.0AT3	QG	6.0	400	6.67	7.02	7.37	10	10.3	38.8
1SMA6.5AT3	QK	6.5	250	7.22	7.6	7.98	10	11.2	35.7
1SMA7.0AT3	QM	7.0	250	7.78	8.19	8.6	10	12.0	33.3
1SMA7.5AT3	QP	7.5	50	8.33	8.77	9.21	1	12.9	31.0
1SMA8.0AT3	QR	8.0	25	8.89	9.36	9.83	1	13.6	29.4
1SMA8.5AT3	QT	8.5	5.0	9.44	9.92	10.4	1	14.4	27.8
1SMA9.0AT3	QV	9.0	2.5	10	10.55	11.1	1	15.4	26.0
1SMA10AT3	QX	10	2.5	11.1	11.7	12.3	1	17.0	23.5
1SMA11AT3	QZ	11	2.5	12.2	12.85	13.5	1	18.2	22.0
1SMA12AT3	RE	12	2.5	13.3	14.0	14.7	1	19.9	20.1
1SMA13AT3	RG	13	2.5	14.4	15.15	15.9	1	21.5	18.6
1SMA14AT3	RK	14	2.5	15.6	16.4	17.2	1	23.2	17.2
1SMA15AT3	RM	15	2.5	16.7	17.6	18.5	1	24.4	16.4
1SMA16AT3	RP	16	2.5	17.8	18.75	19.7	1	26.0	15.4
1SMA17AT3	RR	17	2.5	18.9	19.9	20.9	1	27.6	14.5
1SMA18AT3	RT	18	2.5	20	21.05	22.1	1	29.2	13.7
1SMA20AT3	RV	20	2.5	22.2	23.35	24.5	1	32.4	12.3
1SMA22AT3	RX	22	2.5	24.4	25.65	26.9	1	35.5	11.3
1SMA24AT3	RZ	24	2.5	26.7	28.1	29.5	1	38.9	10.3
1SMA26AT3	SE	26	2.5	28.9	30.4	31.9	1	42.1	9.5
1SMA28AT3	SG	28	2.5	31.1	32.75	34.4	1	45.4	8.8
1SMA30AT3	SK	30	2.5	33.3	35.05	36.8	1	48.4	8.3
1SMA33AT3	SM	33	2.5	36.7	38.65	40.6	1	53.3	7.5
1SMA36AT3	SP	36	2.5	40	42.1	44.2	1	58.1	6.9
1SMA40AT3	SR	40	2.5	44.4	46.75	49.1	1	64.5	6.2
1SMA43AT3	ST	43	2.5	47.8	50.3	52.8	1	69.4	5.8
1SMA45AT3	SV	45	2.5	50	52.65	55.3	1	72.2	5.5
1SMA48AT3	SX	48	2.5	53.3	56.1	58.9	1	77.4	5.2
1SMA51AT3	SZ	51	2.5	56.7	59.7	62.7	1	82.4	4.9
1SMA54AT3	TE	54	2.5	60	63.15	66.3	1	87.1	4.6
1SMA58AT3	TG	58	2.5	64.4	67.8	71.5	1	93.6	4.3
1SMA60AT3	TK	60	2.5	66.7	70.2	73.7	1	96.8	4.1
1SMA64AT3	TM	64	2.5	71.1	74.85	78.6	1	103	3.9
1SMA70AT3	TP	70	2.5	77.8	81.9	86.0	1	113	3.5
1SMA75AT3	TR	75	2.5	83.3	87.7	92.1	1	121	3.3
1SMA78AT3	TS	78	2.5	86.7	91.25	95.8	1	126	3.2

RATING AND TYPICAL CHARACTERISTIC CURVES

Figure 3. Pulse Derating Curve

Figure 4. Typical Junction Capacitance

Figure 5. Steady State Power Derating

400 Watt Peak Power Zener Transient Voltage Suppressors

Bidirectional*

The SMA series is designed to protect voltage sensitive components from high voltage, high energy transients. They have excellent clamping capability, high surge capability, low zener impedance and fast response time. The SMA series is supplied in ON Semiconductor's exclusive, cost-effective, highly reliable Surmetic[™] package and is ideally suited for use in communication systems, automotive, numerical controls, process controls, medical equipment, business machines, power supplies and many other industrial/consumer applications.

Specification Features:

- Working Peak Reverse Voltage Range 10 V to 78 V
- Standard Zener Breakdown Voltage Range 11.7 V to 91.3 V
- Peak Power 400 Watts @ 1 ms
- ESD Rating of Class 3 (> 16 KV) per Human Body Model
- Response Time is Typically < 1 ns
- Flat Handling Surface for Accurate Placement
- Package Design for Top Slide or Bottom Circuit Board Mounting
- Low Profile Package

Mechanical Characteristics:

CASE: Void-free, transfer-molded plastic

FINISH: All external surfaces are corrosion resistant and leads are readily solderable

MAXIMUM CASE TEMPERATURE FOR SOLDERING PURPOSES:

260°C for 10 Seconds

POLARITY: Cathode polarity notch does not indicate polarity **MOUNTING POSITION:** Any

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Peak Power Dissipation (Note 1.) @ T _L = 25°C, Pulse Width = 1 ms	P _{PK}	400	W
DC Power Dissipation @ T _L = 75°C Measured Zero Lead Length (Note 2.)	P _D	1.5	W
Derate Above 75°C		20	mW/°C
Thermal Resistance from Junction to Lead	R_{\thetaJL}	50	°C/W
DC Power Dissipation (Note 3.) @ T _A = 25°C Derate Above 25°C	PD	0.5	W
Thermal Resistance from Junction		4.0	mW/°C
to Ambient	$R_{\theta JA}$	250	°C/W
Operating and Storage Temperature Range	T _J , T _{stg}	-65 to +150	°C

ON Semiconductor[™]

http://onsemi.com

PLASTIC SURFACE MOUNT ZENER OVERVOLTAGE TRANSIENT SUPPRESSORS 10–78 VOLTS V_R 400 WATTS PEAK POWER

SMA CASE 403B PLASTIC

MARKING DIAGRAM

ORDERING INFORMATION

Device †	Package	Shipping
1SMAxxCAT3	SMA	5000/Tape & Reel

†The "T3" suffix refers to a 13 inch reel.

1. 10 X 1000 μs, non-repetitive

2. 1" square copper pad, FR-4 board

3. FR-4 board, using ON Semiconductor minimum recommended footprint, as shown in 403B case outline dimensions spec.

*Please see 1SMA5.0AT3 to 1SMA78AT3 for Unidirectional devices.

ELECTRICAL CHARACTERISTICS

 $(T_A = 25^{\circ}C \text{ unless otherwise noted})$

Symbol	Parameter
I _{PP}	Maximum Reverse Peak Pulse Current
V _C	Clamping Voltage @ IPP
V _{RWM}	Working Peak Reverse Voltage
I _R	Maximum Reverse Leakage Current @ V _{RWM}
V _{BR}	Breakdown Voltage @ I _T
Ι _Τ	Test Current

ELECTRICAL CHARACTERISTICS

				Breakdown Voltage			V _С @ І _{РР}		
	Device	V _{RWM}	I _R @ V _{RWM}	١	V _{BR} (Volts)		@ կ	V _C	I _{PP}
Device	Marking	Volts	μΑ	Min	Nom	Max	mA	Volts	Amps
1SMA10CAT3	QXC	10	2.5	11.1	11.69	12.27	1.0	17.0	23.5
1SMA11CAT3	QZC	11	2.5	12.2	12.84	13.48	1.0	18.2	22.0
1SMA12CAT3	REC	12	2.5	13.3	14.00	14.70	1.0	19.9	20.1
1SMA13CAT3	RGC	13	2.5	14.4	15.16	15.92	1.0	21.5	18.6
1SMA14CAT3	RKC	14	2.5	15.6	16.42	17.24	1.0	23.2	17.2
1SMA15CAT3	RMC	15	2.5	16.7	17.58	18.46	1.0	24.4	16.4
1SMA16CAT3	RPC	16	2.5	17.8	18.74	19.67	1.0	26.0	15.4
1SMA17CAT3	RRC	17	2.5	18.9	19.90	20.89	1.0	27.6	14.5
1SMA18CAT3	RTC	18	2.5	20	21.06	22.11	1.0	29.2	13.7
1SMA20CAT3	RVC	20	2.5	22.2	23.37	24.54	1.0	32.4	12.3
1SMA22CAT3	RXC	22	2.5	24.4	25.69	26.97	1.0	35.5	11.3
1SMA24CAT3	RZC	24	2.5	26.7	28.11	29.51	1.0	38.9	10.3
1SMA26CAT3	SEC	26	2.5	28.9	30.42	31.94	1.0	42.1	9.5
1SMA28CAT3	SGC	28	2.5	31.1	32.74	34.37	1.0	45.4	8.8
1SMA30CAT3	SKC	30	2.5	33.3	35.06	36.81	1.0	48.4	8.3
1SMA33CAT3	SMC	33	2.5	36.7	38.63	40.56	1.0	53.3	7.5
1SMA36CAT3	SPC	36	2.5	40	42.11	44.21	1.0	58.1	6.9
1SMA40CAT3	SRC	40	2.5	44.4	46.74	49.07	1.0	64.5	6.2
1SMA43CAT3	STC	43	2.5	47.8	50.32	52.83	1.0	69.4	5.8
1SMA45CAT3	SVC	45	2.5	50	52.63	55.26	1.0	72.2	5.5
1SMA48CAT3	SXC	48	2.5	53.3	56.11	58.91	1.0	77.4	5.2
1SMA51CAT3	SZC	51	2.5	56.7	59.69	62.67	1.0	82.4	4.9
1SMA54CAT3	TEC	54	2.5	60	63.16	66.32	1.0	87.1	4.6
1SMA58CAT3	TGC	58	2.5	64.4	67.79	71.18	1.0	93.6	4.3
1SMA60CAT3	TKC	60	2.5	66.7	70.21	73.72	1.0	96.8	4.1
1SMA64CAT3	TMC	64	2.5	71.1	74.84	78.58	1.0	103	3.9
1SMA70CAT3	TPC	70	2.5	77.8	81.90	85.99	1.0	113	3.5
1SMA75CAT3	TRC	75	2.5	83.3	87.69	92.07	1.0	121	3.3
1SMA78CAT3	TTC	78	2.5	86.7	91.27	95.83	1.0	126	3.2

RATING AND TYPICAL CHARACTERISTIC CURVES

Figure 1. Pulse Rating Curve

Figure 2. Pulse Waveform

Figure 3. Pulse Derating Curve

600 Watt Peak Power Zener Transient Voltage Suppressors

Unidirectional*

The SMB series is designed to protect voltage sensitive components from high voltage, high energy transients. They have excellent clamping capability, high surge capability, low zener impedance and fast response time. The SMB series is supplied in ON Semiconductor's exclusive, cost-effective, highly reliable Surmetic[™] package and is ideally suited for use in communication systems, automotive, numerical controls, process controls, medical equipment, business machines, power supplies and many other industrial/consumer applications.

Specification Features:

- Working Peak Reverse Voltage Range 5.0 V to 170 V
- Standard Zener Breakdown Voltage Range 6.7 V to 199 V
- Peak Power 600 Watts @ 1 ms
- ESD Rating of Class 3 (>16 KV) per Human Body Model
- Maximum Clamp Voltage @ Peak Pulse Current
- Low Leakage $< 5 \mu A$ Above 10 V
- UL 497B for Isolated Loop Circuit Protection
- Response Time is Typically < 1 ns

Mechanical Characteristics:

CASE: Void-free, transfer-molded, thermosetting plastic

FINISH: All external surfaces are corrosion resistant and leads are readily solderable

MAXIMUM CASE TEMPERATURE FOR SOLDERING PURPOSES:

260°C for 10 Seconds

LEADS: Modified L–Bend providing more contact area to bond pads **POLARITY:** Cathode indicated by polarity band **MOUNTING POSITION:** Any

MAXIMUM RATINGS

			1
Rating	Symbol	Value	Unit
Peak Power Dissipation (Note 1.) @ T _L = 25°C, Pulse Width = 1 ms	P _{PK}	600	W
DC Power Dissipation @ T _L = 75°C Measured Zero Lead Length (Note 2.)	PD	3.0	W
Derate Above 75°C		40	mW/°C
Thermal Resistance from Junction to Lead	$R_{\theta JL}$	25	°C/W
DC Power Dissipation (Note 3.) @ T _A = 25°C Derate Above 25°C	PD	0.55	W
Thermal Resistance from Junction		4.4	mW/°C
to Ambient	R_{\thetaJA}	226	°C/W
Operating and Storage Temperature Range	T _J , T _{stg}	-65 to +150	°C

1. 10 X 1000 μs, non-repetitive

2. 1" square copper pad, FR-4 board

3. FR-4 board, using ON Semiconductor minimum recommended footprint, as shown in 403B case outline dimensions spec.

*Please see 1SMB10CAT3 to 1SMB78CAT3 for Bidirectional devices.

ON Semiconductor[™]

http://onsemi.com

PLASTIC SURFACE MOUNT ZENER OVERVOLTAGE TRANSIENT SUPPRESSORS 5.0–170 VOLTS 600 WATT PEAK POWER

(See Table Page 63)

ORDERING INFORMATION

Device †	Package	Shipping		
1SMBxxxAT3	SMB	2500/Tape & Reel		

Devices listed in *bold, italic* are ON Semiconductor **Preferred** devices. **Preferred** devices are recommended choices for future use and best overall value.

†The "T3" suffix refers to a 13 inch reel.

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted, V_F = 3.5 V Max. @ I_F (Note 4.) = 30 A)

Symbol	Parameter
I _{PP}	Maximum Reverse Peak Pulse Current
V _C	Clamping Voltage @ IPP
V _{RWM}	Working Peak Reverse Voltage
I _R	Maximum Reverse Leakage Current @ V _{RWM}
V _{BR}	Breakdown Voltage @ I _T
Ι _Τ	Test Current
١ _F	Forward Current
V _F	Forward Voltage @ I _F

 1/2 sine wave (or equivalent square wave), PW = 8.3 ms, duty cycle = 4 pulses per minute maximum.

ELECTRICAL CHARACTERISTICS	(Devices listed in bold	, italic are ON Semiconductor Preferred devices.)
-----------------------------------	-------------------------	---

	Breakdown Voltage)	V _C @ I _{PP}	(Note 7.)				
	Device	(Note 5.)	I _R @ V _{RWM}	V _{BR}	(Note 6.)	Volts	@ կ	vc	I _{PP}
Device	Marking	Volts	μΑ	Min	Nom	Мах	mA	Volts	Amps
1SMB5.0AT3	КЕ	5.0	800	6.40	6.7	7.0	10	9.2	65.2
1SMB6.0AT3	КС	6.0	800	6.67	7.02	7.37	10	10.3	58.3
1SMB6.5AT3	КК	6.5	500	7.22	7.6	7.98	10	11.2	53.6
1SMB7.0AT3	КМ	7.0	500	7.78	8.19	8.6	10	12.0	50.0
1SMB7.5AT3	KP	7.5	100	8.33	8.77	9.21	1.0	12.9	46.5
1SMB8.0AT3	KR	8.0	50	8.89	9.36	9.83	1.0	13.6	44.1
1SMB8.5AT3	KT	8.5	10	9.44	9.92	10.4	1.0	14.4	41.7
1SMB9.0AT3	KV	9.0	5.0	10.0	10.55	11.1	1.0	15.4	39.0
1SMB10AT3	KX	10	5.0	11.1	11.7	12.3	1.0	17.0	35.3
1SMB11AT3	KZ	11	5.0	12.2	12.85	13.5	1.0	18.2	33.0
1SMB12AT3	LE	12	5.0	13.3	14	14.7	1.0	19.9	30.2
1SMB13AT3	LG	13	5.0	14.4	15.15	15.9	1.0	21.5	27.9
1SMB14AT3	LK	14	5.0	15.6	16.4	17.2	1.0	23.2	25.8
1SMB15AT3	LM	15	5.0	16.7	17.6	18.5	1.0	24.4	24.0
1SMB16AT3	LP	16	5.0	17.8	18.75	19.7	1.0	26.0	23.1
1SMB17AT3	LR	17	5.0	18.9	19.9	20.9	1.0	27.6	21.7
1SMB18AT3	LT	18	5.0	20.0	21.05	22.1	1.0	29.2	20.5
1SMB20AT3	LV	20	5.0	22.2	23.35	24.5	1.0	32.4	18.5
1SMB22AT3	<i>LX</i>	22	5.0	24.4	25.65	26.9	1.0	35.5	16.9
1SMB24AT3	LZ	24	5.0	26.7	28.1	29.5	1.0	38.9	15.4
1SMB26AT3	ME	26	5.0	28.9	30.4	31.9	1.0	42.1	14.2
1SMB28AT3	MG	28	5.0	31.1	32.75	34.4	1.0	45.4	13.2
1SMB30AT3	MK	30	5.0	33.3	35.05	36.8	1.0	48.4	12.4
1SMB33AT3	MM	33	5.0	36.7	38.65	40.6	1.0	53.3	11.3
1SMB36AT3	MP	36	5.0	40.0	42.1	44.2	1.0	58.1	10.3
1SMB40AT3	MR	40	5.0	44.4	46.75	49.1	1.0	64.5	9.3
1SMB43AT3	MT	43	5.0	47.8	50.3	52.8	1.0	69.4	8.6
1SMB45AT3	MV	45	5.0	50.0	52.65	55.3	1.0	72.7	8.3
1SMB48AT3	MX	48	5.0	53.3	56.1	58.9	1.0	77.4	7.7
1SMB51AT3	MZ	51	5.0	56.7	59.7	62.7	1.0	82.4	7.3
1SMB54AT3	NE	54	5.0	60.0	63.15	66.3	1.0	87.1	6.9
1SMB58AT3	NG	58	5.0	64.4	67.8	71.2	1.0	93.6	6.4
1SMB60AT3	NK	60	5.0	66.7	70.2	73.7	1.0	96.8	6.2
1SMB64AT3	NM	64	5.0	71.1	74.85	78.6	1.0	103	5.8
1SMB70AT3	NP	70	5.0	77.8	81.9	86	1.0	113	5.3
1SMB75AT3	NR	75	5.0	83.3	87.7	92.1	1.0	121	4.9
1SMB78AT3	NT	78	5.0	86.7	91.25	95.8	1.0	126	4.7
1SMB85AT3	NV	85	5.0	94.4	99.2	104	1.0	137	4.4
1SMB90AT3	NX	90	5.0	100	105.5	111	1.0	146	4.1
1SMB100AT3	NZ	100	5.0	111	117	123	1.0	162	3.7
1SMB110AT3	PE	110	5.0	122	128.5	135	1.0	177	3.4
1SMB120AT3	PG	120	5.0	133	140	147	1.0	193	3.1
1SMB130AT3	PK	130	5.0	144	151.5	159	1.0	209	2.9
1SMB150AT3	PM	150	5.0	167	176	185	1.0	243	2.5
1SMB160AT3	PP	160	5.0	178	187.5	197	1.0	259	2.3
1SMB170AT3	PR	170	5.0	189	199	209	1.0	275	2.2

 A transient suppressor is normally selected according to the maximum working peak reverse voltage (V_{RWM}), which should be equal to or greater than the DC or continuous peak operating voltage level.

6. V_{BR} measured at pulse test current I_T at an ambient temperature of 25°C.

7. Surge current waveform per Figure 2 and derate per Figure 3 of the General Data – 600 W at the beginning of this group.

Figure 3. Pulse Derating Curve

Voltage

TYPICAL PROTECTION CIRCUIT

APPLICATION NOTES

RESPONSE TIME

In most applications, the transient suppressor device is placed in parallel with the equipment or component to be protected. In this situation, there is a time delay associated with the capacitance of the device and an overshoot condition associated with the inductance of the device and the inductance of the connection method. The capacitive effect is of minor importance in the parallel protection scheme because it only produces a time delay in the transition from the operating voltage to the clamp voltage as shown in Figure 5.

The inductive effects in the device are due to actual turn-on time (time required for the device to go from zero current to full current) and lead inductance. This inductive effect produces an overshoot in the voltage across the equipment or component being protected as shown in Figure 6. Minimizing this overshoot is very important in the application, since the main purpose for adding a transient suppressor is to clamp voltage spikes. The SMB series have a very good response time, typically < 1 ns and negligible inductance. However, external inductive effects could produce unacceptable overshoot. Proper circuit layout,

minimum lead lengths and placing the suppressor device as close as possible to the equipment or components to be protected will minimize this overshoot.

Some input impedance represented by Z_{in} is essential to prevent overstress of the protection device. This impedance should be as high as possible, without restricting the circuit operation.

DUTY CYCLE DERATING

The data of Figure 1 applies for non-repetitive conditions and at a lead temperature of 25°C. If the duty cycle increases, the peak power must be reduced as indicated by the curves of Figure 7. Average power must be derated as the lead or ambient temperature rises above 25°C. The average power derating curve normally given on data sheets may be normalized and used for this purpose.

At first glance the derating curves of Figure 7 appear to be in error as the 10 ms pulse has a higher derating factor than the 10 μ s pulse. However, when the derating factor for a given pulse of Figure 7 is multiplied by the peak power value of Figure 1 for the same pulse, the results follow the expected trend.

Figure 5.

Figure 7. Typical Derating Factor for Duty Cycle

UL RECOGNITION

The entire series has *Underwriters Laboratory Recognition* for the classification of protectors (QVGV2) under the UL standard for safety 497B and File #116110. Many competitors only have one or two devices recognized or have recognition in a non-protective category. Some competitors have no recognition at all. With the UL497B recognition, our parts successfully passed several tests including Strike Voltage Breakdown test, Endurance Conditioning, Temperature test, Dielectric Voltage-Withstand test, Discharge test and several more.

Whereas, some competitors have only passed a flammability test for the package material, we have been recognized for much more to be included in their Protector category.

600 Watt Peak Power Zener Transient Voltage Suppressors

Bidirectional*

The SMB series is designed to protect voltage sensitive components from high voltage, high energy transients. They have excellent clamping capability, high surge capability, low zener impedance and fast response time. The SMB series is supplied in ON Semiconductor's exclusive, cost-effective, highly reliable Surmetic[™] package and is ideally suited for use in communication systems, automotive, numerical controls, process controls, medical equipment, business machines, power supplies and many other industrial/consumer applications.

Specification Features:

- Working Peak Reverse Voltage Range 10 V to 78 V
- Standard Zener Breakdown Voltage Range 11.7 V to 91.3 V
- Peak Power 600 Watts @ 1 ms
- ESD Rating of Class 3 (> 16 KV) per Human Body Model
- Maximum Clamp Voltage @ Peak Pulse Current
- Low Leakage < 5 µA Above 10 V
- UL 497B for Isolated Loop Circuit Protection
- Response Time is Typically < 1 ns

Mechanical Characteristics:

CASE: Void-free, transfer-molded, thermosetting plastic

FINISH: All external surfaces are corrosion resistant and leads are readily solderable

MAXIMUM CASE TEMPERATURE FOR SOLDERING PURPOSES:

260°C for 10 Seconds

LEADS: Modified L–Bend providing more contact area to bond pads **POLARITY:** Polarity band will not be indicated **MOUNTING POSITION:** Any

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Peak Power Dissipation (Note 1.) @ T _L = 25°C, Pulse Width = 1 ms	P _{PK}	600	W
DC Power Dissipation @ T _L = 75°C Measured Zero Lead Length (Note 2.)	PD	3.0	W
Derate Above 75°C		40	mW/°C
Thermal Resistance from Junction to Lead	R_{\thetaJL}	25	°C/W
DC Power Dissipation (Note 3.) @ T _A = 25°C Derate Above 25°C	PD	0.55	W
Thermal Resistance from Junction		4.4	mW/⁰C
to Ambient	R_{\thetaJA}	226	°C/W
Operating and Storage Temperature Range	T _J , T _{stg}	-65 to +150	°C

1. 10 X 1000 µs, non-repetitive

2. 1" square copper pad, FR-4 board

3. FR-4 board, using ON Semiconductor minimum recommended footprint, as shown in 403B case outline dimensions spec.

*Please see 1SMB5.0AT3 to 1SMB170AT3 for Unidirectional devices.

ON Semiconductor[™]

http://onsemi.com

PLASTIC SURFACE MOUNT ZENER OVERVOLTAGE TRANSIENT SUPPRESSORS 10–78 VOLTS 600 WATT PEAK POWER

SMB CASE 403A PLASTIC

MARKING DIAGRAM

ORDERING INFORMATION

Device †	Package	Shipping		
1SMBxxCAT3	SMB	2500/Tape & Reel		

Devices listed in *bold, italic* are ON Semiconductor **Preferred** devices. **Preferred** devices are recommended choices for future use and best overall value.

†The "T3" suffix refers to a 13 inch reel.

ELECTRICAL CHARACTERISTICS

 $(T_A = 25^{\circ}C \text{ unless otherwise noted})$

Symbol	Parameter
I _{PP}	Maximum Reverse Peak Pulse Current
V _C	Clamping Voltage @ IPP
V _{RWM}	Working Peak Reverse Voltage
I _R Maximum Reverse Leakage Current @ V _R	
V _{BR}	Breakdown Voltage @ I _T
Ι _Τ	Test Current

ELECTRICAL CHARACTERISTICS	(Devices listed in bold, italic are ON Semiconductor Preferred devices.)
----------------------------	--

		Vouu		Breakdown Voltage			V _C @ I _{PP}	- I_{PP} (Note 6.)	
	Device		(Note 4.) I _R @ V _{RWM}		V _{BR} (Note 5.) Volts			vc	I _{PP}
Device	Marking	Volts	μΑ	Min	Nom	Мах	mA	Volts	Amps
1SMB10CAT3 1SMB11CAT3 1SMB12CAT3 1SMB13CAT3	KXC KZC LEC LGC	10 11 12 13	5.0 5.0 5.0 5.0	11.1 12.2 13.3 14.4	11.69 12.84 14.00 15.16	12.27 13.5 14.7 15.9	1.0 1.0 1.0 1.0	17.0 18.2 19.9 21.5	35.3 33.0 30.2 27.9
1SMB14CAT3 1SMB15CAT3 1SMB16CAT3 1SMB17CAT3	LKC <i>LMC</i> LPC LRC	14 15 16 17	5.0 5.0 5.0 5.0	15.6 16.7 17.8 18.9	16.42 17.58 18.74 19.90	17.2 18.5 19.7 20.9	1.0 1.0 1.0 1.0	23.2 24.4 26.0 27.6	25.8 24.0 23.1 21.7
1SMB18CAT3 1SMB20CAT3 1SMB22CAT3 1SMB24CAT3	LTC LVC LXC LZC	18 20 22 24	5.0 5.0 5.0 5.0 5.0	20.0 22.2 24.4 26.7	21.06 23.37 25.69 28.11	22.1 24.5 27.0 29.5	1.0 1.0 1.0 1.0	29.2 32.4 35.5 38.9	20.5 18.5 16.9 15.4
1SMB26CAT3 1SMB28CAT3 1SMB30CAT3 1SMB33CAT3	MEC MGC MKC MMC	26 28 30 33	5.0 5.0 5.0 5.0 5.0	28.9 31.1 33.3 36.7	30.42 32.74 35.06 38.63	31.9 34.4 36.8 40.6	1.0 1.0 1.0 1.0	42.1 45.4 48.4 53.3	14.2 13.2 12.4 11.3
1SMB36CAT3 1SMB40CAT3 1SMB43CAT3 1SMB45CAT3	MPC MRC MTC MVC	36 40 43 45	5.0 5.0 5.0 5.0	40.0 44.4 47.8 50.0	42.11 46.74 50.32 52.63	44.2 49.1 52.8 55.3	1.0 1.0 1.0 1.0	58.1 64.5 69.4 72.2	10.3 9.3 8.6 8.3
1SMB48CAT3 1SMB51CAT3 1SMB54CAT3 1SMB58CAT3	MXC MZC NEC NGC	48 51 54 58	5.0 5.0 5.0 5.0	53.3 56.7 60.0 64.4	56.11 59.69 63.16 67.79	58.9 62.7 66.32 71.18	1.0 1.0 1.0 1.0	77.4 82.4 87.1 93.6	7.7 7.3 6.9 6.4
1SMB60CAT3 1SMB64CAT3 1SMB70CAT3 1SMB75CAT3	NKC NMC NPC NRC	60 64 70 75	5.0 5.0 5.0 5.0 5.0	66.7 71.1 77.8 83.3	70.21 74.84 81.90 91.65	73.72 78.58 85.99 92.07	1.0 1.0 1.0 1.0	96.8 103 113 121	6.2 5.8 5.3 4.9
1SMB78CAT3	NTC	78	5.0	86.7	91.26	95.83	1.0	126	4.7

4. A transient suppressor is normally selected according to the maximum working peak reverse voltage (V_{RWM}), which should be equal to or greater than the DC or continuous peak operating voltage level.

5. V_{BR} measured at pulse test current I_T at an ambient temperature of 25°C.

6. Surge current waveform per Figure 2 and derate per Figure 3 of the General Data - 600 Watt at the beginning of this group.

Figure 3. Pulse Derating Curve

APPLICATION NOTES

RESPONSE TIME

In most applications, the transient suppressor device is placed in parallel with the equipment or component to be protected. In this situation, there is a time delay associated with the capacitance of the device and an overshoot condition associated with the inductance of the device and the inductance of the connection method. The capacitive effect is of minor importance in the parallel protection scheme because it only produces a time delay in the transition from the operating voltage to the clamp voltage as shown in Figure 4.

The inductive effects in the device are due to actual turn-on time (time required for the device to go from zero current to full current) and lead inductance. This inductive effect produces an overshoot in the voltage across the equipment or component being protected as shown in Figure 5. Minimizing this overshoot is very important in the application, since the main purpose for adding a transient suppressor is to clamp voltage spikes. The SMB series have a very good response time, typically < 1 ns and negligible inductance. However, external inductive effects could produce unacceptable overshoot. Proper circuit layout,

minimum lead lengths and placing the suppressor device as close as possible to the equipment or components to be protected will minimize this overshoot.

Some input impedance represented by Z_{in} is essential to prevent overstress of the protection device. This impedance should be as high as possible, without restricting the circuit operation.

DUTY CYCLE DERATING

The data of Figure 1 applies for non-repetitive conditions and at a lead temperature of 25°C. If the duty cycle increases, the peak power must be reduced as indicated by the curves of Figure 6. Average power must be derated as the lead or ambient temperature rises above 25°C. The average power derating curve normally given on data sheets may be normalized and used for this purpose.

At first glance the derating curves of Figure 6 appear to be in error as the 10 ms pulse has a higher derating factor than the 10 μ s pulse. However, when the derating factor for a given pulse of Figure 6 is multiplied by the peak power value of Figure 1 for the same pulse, the results follow the expected trend.

Figure 4.

Figure 6. Typical Derating Factor for Duty Cycle

UL RECOGNITION

The entire series has *Underwriters Laboratory Recognition* for the classification of protectors (QVGV2) under the UL standard for safety 497B and File #116110. Many competitors only have one or two devices recognized or have recognition in a non-protective category. Some competitors have no recognition at all. With the UL497B recognition, our parts successfully passed several tests including Strike Voltage Breakdown test, Endurance Conditioning, Temperature test, Dielectric Voltage-Withstand test, Discharge test and several more.

Whereas, some competitors have only passed a flammability test for the package material, we have been recognized for much more to be included in their Protector category.
600 Watt Peak Power Zener Transient Voltage Suppressors

Unidirectional*

The SMB series is designed to protect voltage sensitive components from high voltage, high energy transients. They have excellent clamping capability, high surge capability, low zener impedance and fast response time. The SMB series is supplied in ON Semiconductor's exclusive, cost-effective, highly reliable Surmetic[™] package and is ideally suited for use in communication systems, automotive, numerical controls, process controls, medical equipment, business machines, power supplies and many other industrial/consumer applications.

Specification Features:

- Working Peak Reverse Voltage Range 5.8 to 171 V
- Standard Zener Breakdown Voltage Range 6.8 to 200 V
- Peak Power 600 Watts @ 1 ms
- ESD Rating of Class 3 (>16 KV) per Human Body Model
- Maximum Clamp Voltage @ Peak Pulse Current
- Low Leakage $< 5 \mu A$ Above 10 V
- UL 497B for Isolated Loop Circuit Protection
- Response Time is Typically < 1 ns

Mechanical Characteristics:

CASE: Void-free, transfer-molded, thermosetting plastic

FINISH: All external surfaces are corrosion resistant and leads are readily solderable

MAXIMUM CASE TEMPERATURE FOR SOLDERING PURPOSES:

260°C for 10 Seconds

LEADS: Modified L–Bend providing more contact area to bond pads **POLARITY:** Cathode indicated by polarity band **MOUNTING POSITION:** Any

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Peak Power Dissipation (Note 1.) @ T _L = 25°C, Pulse Width = 1 ms	P _{PK}	600	W
DC Power Dissipation @ T _L = 75°C Measured Zero Lead Length (Note 2.)	PD	3.0	W
Derate Above 75°C		40	mW/°C
Thermal Resistance from Junction to Lead	$R_{ extsf{ heta}JL}$	25	°C/W
DC Power Dissipation (Note 3.) @ T _A = 25°C Derate Above 25°C	PD	0.55	W
Thermal Resistance from Junction		4.4	mW/°C
to Ambient	R_{\thetaJA}	226	°C/W
Operating and Storage Temperature Range	T _J , T _{stg}	-65 to +150	°C

1. 10 X 1000 μs, non-repetitive

2. 1" square copper pad, FR-4 board

3. FR-4 board, using ON Semiconductor minimum recommended footprint, as shown in 403B case outline dimensions spec.

*Please see P6SMB11CAT3 to P6SMB91CAT3 for Bidirectional devices.

ON Semiconductor[™]

http://onsemi.com

PLASTIC SURFACE MOUNT ZENER OVERVOLTAGE TRANSIENT SUPPRESSORS 6.8–200 VOLTS 600 WATT PEAK POWER

Y = Year WW = Work Week

xxxA = Specific Device Code

(See Table Next Page)

ORDERING INFORMATION

Device †	Package	Shipping				
P6SMBxxxAT3	SMB	2500/Tape & Reel				

Devices listed in *bold, italic* are ON Semiconductor **Preferred** devices. **Preferred** devices are recommended choices for future use and best overall value.

†The "T3" suffix refers to a 13 inch reel.

ELECTRICAL CHARACTERISTICS (T_A = 25° C unless otherwise noted, $V_F = 3.5 \vee Max$. @ I_F (Note 4) = 50 A)

Symbol	Parameter
I _{PP}	Maximum Reverse Peak Pulse Current
V _C	Clamping Voltage @ I _{PP}
V _{RWM}	Working Peak Reverse Voltage
Ι _R	Maximum Reverse Leakage Current @ V _{RWM}
V _{BR}	Breakdown Voltage @ I _T
Ι _Τ	Test Current
ΘV_{BR}	Maximum Temperature Coefficient of VBR
١ _F	Forward Current
V _F	Forward Voltage @ I _F

ELECTRICAL CHARACTERISTICS (Devices listed in bold, italic are ON Semiconductor Preferred devices.)

				Breakdown Voltage		V _C @ I _{PP} (Note 6.)				
	Device	V _{RWM}	I _R @ V _{RWM}	V _{BR}	(Note 5)	Volts	@ կ	٧ _C	I _{PP}	ΘV _{BR}
Device	Marking	Volts	μΑ	Min	Nom	Max	mA	Volts	Amps	%/°C
P6SMB6.8AT3	6V8A	5.8	1000	6.45	6.8	7.14	10	10.5	57	0.057
P6SMB7.5AT3	7V5A	6.4	500	7.13	7.51	7.88	10	11.3	53	0.061
P6SMB8.2AT3	8V2A	7.02	200	7.79	8.2	8.61	10	12.1	50	0.065
P6SMB9.1AT3	9V1A	7.78	50	8.65	9.1	9.55	1	13.4	45	0.068
P6SMB10AT3	10A	8.55	10	9.5	10	10.5	1	14.5	41	0.073
P6SMB11AT3	11A	9.4	5	10.5	11.05	11.6	1	15.6	38	0.075
P6SMB12AT3	12A	10.2	5	11.4	12	12.6	1	16.7	36	0.078
P6SMB13AT3	13A	11.1	5	12.4	13.05	13.7	1	18.2	33	0.081
P6SMB15AT3	15A	12.8	5	14.3	15.05	15.8	1	21.2	28	0.084
P6SMB16AT3	16A	13.6	5	15.2	16	16.8	1	22.5	27	0.086
P6SMB18AT3	18A	15.3	5	17.1	18	18.9	1	25.2	24	0.088
P6SMB20AT3	20A	17.1	5	19	20	21	1	27.7	22	0.09
P6SMB22AT3	22A	18.8	5	20.9	22	23.1	1	30.6	20	0.092
P6SMB24AT3	24A	20.5	5	22.8	24	25.2	1	33.2	18	0.094
P6SMB27AT3	27A	23.1	5	25.7	27.05	28.4	1	37.5	16	0.096
P6SMB30AT3	30A	25.6	5	28.5	30	31.5	1	41.4	14.4	0.097
P6SMB33AT3	33A	28.2	5	31.4	33.05	34.7	1	45.7	13.2	0.098
P6SMB36AT3	36A	30.8	5	34.2	36	37.8	1	49.9	12	0.099
P6SMB39AT3	39A	33.3	5	37.1	39.05	41	1	53.9	11.2	0.1
P6SMB43AT3	43A	36.8	5	40.9	43.05	45.2	1	59.3	10.1	0.101
P6SMB47AT3	47A	40.2	5	44.7	47.05	49.4	1	64.8	9.3	0.101
P6SMB51AT3	51A	43.6	5	48.5	51.05	53.6	1	70.1	8.6	0.102
P6SMB56AT3	56A	47.8	5	53.2	56	58.8	1	77	7.8	0.103
P6SMB62AT3	62A	53	5	58.9	62	65.1	1	85	7.1	0.104
P6SMB68AT3	68A	58.1	5	64.6	68	71.4	1	92	6.5	0.104
P6SMB75AT3	75A	64.1	5	71.3	75.05	78.8	1	103	5.8	0.105
P6SMB82AT3	82A	70.1	5	77.9	82	86.1	1	113	5.3	0.105
P6SMB91AT3	91A	77.8	5	86.5	91	95.5	1	125	4.8	0.106
P6SMB100AT3	100A	85.5	5	95	100	105	1	137	4.4	0.106
P6SMB110AT3	110A	94	5	105	110.5	116	1	152	4.0	0.107
P6SMB120AT3	120A	102	5	114	120	126	1	165	3.6	0.107
P6SMB130AT3	130A	111	5	124	130.5	137	1	179	3.3	0.107
P6SMB150AT3	150A	128	5	143	150.5	158	1	207	2.9	0.108
P6SMB160AT3	160A	136	5	152	160	168	1	219	2.7	0.108
P6SMB170AT3	170A	145	5	162	170	179	1	234	2.6	0.108
P6SMB180AT3	180A	154	5	171	180	189	1	246	2.4	0.108
P6SMB200AT3	200A	171	5	190	200	210	1	274	2.2	0.108

4. 1/2 sine wave (or equivalent square wave), PW = 8.3 ms, duty cycle = 4 pulses per minute maximum.

5. V_{BR} measured at pulse test current I_T at an ambient temperature of 25°C. 6. Surge current waveform per Figure 2 and derate per Figure 3.

Figure 3. Pulse Derating Curve

Voltage

TYPICAL PROTECTION CIRCUIT

APPLICATION NOTES

RESPONSE TIME

In most applications, the transient suppressor device is placed in parallel with the equipment or component to be protected. In this situation, there is a time delay associated with the capacitance of the device and an overshoot condition associated with the inductance of the device and the inductance of the connection method. The capacitive effect is of minor importance in the parallel protection scheme because it only produces a time delay in the transition from the operating voltage to the clamp voltage as shown in Figure 5.

The inductive effects in the device are due to actual turn-on time (time required for the device to go from zero current to full current) and lead inductance. This inductive effect produces an overshoot in the voltage across the equipment or component being protected as shown in Figure 6. Minimizing this overshoot is very important in the application, since the main purpose for adding a transient suppressor is to clamp voltage spikes. The SMB series have a very good response time, typically < 1 ns and negligible inductance. However, external inductive effects could produce unacceptable overshoot. Proper circuit layout,

minimum lead lengths and placing the suppressor device as close as possible to the equipment or components to be protected will minimize this overshoot.

Some input impedance represented by Z_{in} is essential to prevent overstress of the protection device. This impedance should be as high as possible, without restricting the circuit operation.

DUTY CYCLE DERATING

The data of Figure 1 applies for non-repetitive conditions and at a lead temperature of 25°C. If the duty cycle increases, the peak power must be reduced as indicated by the curves of Figure 7. Average power must be derated as the lead or ambient temperature rises above 25°C. The average power derating curve normally given on data sheets may be normalized and used for this purpose.

At first glance the derating curves of Figure 7 appear to be in error as the 10 ms pulse has a higher derating factor than the 10 μ s pulse. However, when the derating factor for a given pulse of Figure 7 is multiplied by the peak power value of Figure 1 for the same pulse, the results follow the expected trend.

Figure 5.

Vin (TRANSIENT)

 V_L

Figure 7. Typical Derating Factor for Duty Cycle

UL RECOGNITION

The entire series has *Underwriters Laboratory Recognition* for the classification of protectors (QVGV2) under the UL standard for safety 497B and File #116110. Many competitors only have one or two devices recognized or have recognition in a non-protective category. Some competitors have no recognition at all. With the UL497B recognition, our parts successfully passed several tests including Strike Voltage Breakdown test, Endurance Conditioning, Temperature test, Dielectric Voltage-Withstand test, Discharge test and several more.

Whereas, some competitors have only passed a flammability test for the package material, we have been recognized for much more to be included in their Protector category.

600 Watt Peak Power Zener Transient Voltage Suppressors

Bidirectional*

The SMB series is designed to protect voltage sensitive components from high voltage, high energy transients. They have excellent clamping capability, high surge capability, low zener impedance and fast response time. The SMB series is supplied in ON Semiconductor's exclusive, cost-effective, highly reliable Surmetic[™] package and is ideally suited for use in communication systems, automotive, numerical controls, process controls, medical equipment, business machines, power supplies and many other industrial/consumer applications.

Specification Features:

- Working Peak Reverse Voltage Range 9.4 to 77.8 V
- Standard Zener Breakdown Voltage Range 11 to 91 V
- Peak Power 600 Watts @ 1 ms
- ESD Rating of Class 3 (>16 KV) per Human Body Model
- Maximum Clamp Voltage @ Peak Pulse Current
- Low Leakage $< 5 \mu A$ Above 10 V
- UL 497B for Isolated Loop Circuit Protection
- Response Time is Typically < 1 ns

Mechanical Characteristics:

CASE: Void-free, transfer-molded, thermosetting plastic

FINISH: All external surfaces are corrosion resistant and leads are readily solderable

MAXIMUM CASE TEMPERATURE FOR SOLDERING PURPOSES:

260°C for 10 Seconds

LEADS: Modified L–Bend providing more contact area to bond pads **POLARITY:** Polarity band will not be indicated **MOUNTING POSITION:** Any

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Peak Power Dissipation (Note 1.) @ T _L = 25°C, Pulse Width = 1 ms	P _{PK}	600	W
DC Power Dissipation @ T _L = 75°C Measured Zero Lead Length (Note 2.)	PD	3.0	W
Derate Above 75°C		40	mW/°C
Thermal Resistance from Junction to Lead	$R_{\theta JL}$	25	°C/W
DC Power Dissipation (Note 3.) @ T _A = 25°C Derate Above 25°C	PD	0.55	W
Thermal Resistance from Junction		4.4	mW/°C
to Ambient	R_{\thetaJA}	226	°C/W
Operating and Storage Temperature Range	T _J , T _{stg}	-65 to +150	°C

1. 10 X 1000 μs, non-repetitive

2. 1" square copper pad, FR-4 board

3. FR-4 board, using ON Semiconductor minimum recommended footprint, as shown in 403B case outline dimensions spec.

*Please see P6SMB6.8AT3 to P6SMB200AT3 for Unidirectional devices.

ON Semiconductor[™]

http://onsemi.com

PLASTIC SURFACE MOUNT ZENER OVERVOLTAGE TRANSIENT SUPPRESSORS 11–91 VOLTS 600 WATT PEAK POWER

SMB CASE 403A PLASTIC

MARKING DIAGRAM

(See Table Next Page)

ORDERING INFORMATION

Device †	Package	Shipping				
P6SMBxxCAT3	SMB	2500/Tape & Reel				

Devices listed in *bold, italic* are ON Semiconductor **Preferred** devices. **Preferred** devices are recommended choices for future use and best overall value.

†The "T3" suffix refers to a 13 inch reel.

ELECTRICAL CHARACTERISTICS

 $(T_A = 25^{\circ}C \text{ unless otherwise noted})$

	,
Symbol	Parameter
I _{PP}	Maximum Reverse Peak Pulse Current
V _C	Clamping Voltage @ I _{PP}
V _{RWM}	Working Peak Reverse Voltage
I _R	Maximum Reverse Leakage Current @ V _{RWM}
V _{BR}	Breakdown Voltage @ I _T
Ι _Τ	Test Current
ΘV_{BR}	Maximum Temperature Coefficient of V _{BR}

ELECTRICAL CHARACTERISTICS (Devices listed in bold, italic are ON Semiconductor Preferred devices.)

				Breakdown Voltage		V _C @ I _{PP} (Note 5.)				
	Device	V _{RWM}	I _R @ V _{RWM}	V _{BR}	(Note 4.)	Volts	@ ተ	٧ _c	I _{PP}	ΘV _{BR}
Device	Marking	Volts	μΑ	Min	Nom	Max	mA	Volts	Amps	%/°C
P6SMB11CAT3 P6SMB12CAT3	11C 12C	9.4 10.2	5	10.5 11 4	11.05	11.6 12.6	1	15.6 16.7	38 36	0.075
P6SMB13CAT3	13C	11.1	5	12.4	13.05	13.7	1	18.2	33	0.081
P6SMB15CAT3 P6SMB16CAT3	15C 16C	12.8 13.6	5 5	14.3 15.2	15.05 16	15.8 16.8	1 1	21.2 22.5	28 27	0.084 0.086
P6SMB18CAT3 P6SMB20CAT3	18C 20C	15.3 17.1	5	17.1 19	18 20	18.9 21	1	25.2 27.7	24 22	0.088 0.09
P6SMB22CAT3 P6SMB24CAT3 P6SMB27CAT3 P6SMB30CAT3	22C 24C 27C 30C	18.8 20.5 23.1 25.6	5 5 5 5	20.9 22.8 25.7 28.5	22 24 27.05 30	23.1 25.2 28.4 31.5	1 1 1 1	30.6 33.2 37.5 41.4	20 18 16 14.4	0.09 0.094 0.096 0.097
P6SMB33CAT3 P6SMB36CAT3 P6SMB39CAT3 P6SMB43CAT3	33C 36C 39C 43C	28.2 30.8 33.3 36.8	5 5 5 5	31.4 34.2 37.1 40.9	33.05 36 39.05 43.05	34.7 37.8 41 45.2	1 1 1 1	45.7 49.9 53.9 59.3	13.2 12 11.2 10.1	<i>0.098</i> 0.099 0.1 0.101
P6SMB47CAT3 P6SMB51CAT3 P6SMB56CAT3 P6SMB62CAT3	47C 51C 56C 62C	40.2 43.6 47.8 53	5 5 5 5	44.7 48.5 53.2 58.9	47.05 51.05 56 62	49.4 53.6 58.8 65.1	1 1 1 1	64.8 70.1 77 85	9.3 8.6 7.8 7.1	0.101 0.102 0.103 0.104
P6SMB68CAT3 P6SMB75CAT3 P6SMB82CAT3 P6SMB91CAT3	68C 75C 82C 91C	58.1 64.1 70.1 77.8	5 5 5 5	64.6 71.3 77.9 86.5	68 75.05 82 91	71.4 78.8 86.1 95.5	1 1 1 1	92 103 113 125	6.5 5.8 5.3 4.8	0.104 0.105 0.105 0.106

V_{BR} measured at pulse test current I_T at an ambient temperature of 25°C.
 Surge current waveform per Figure 2 and derate per Figure 3 of the General Data – 600 Watt at the beginning of this group.

Figure 3. Pulse Derating Curve

TYPICAL PROTECTION CIRCUIT

APPLICATION NOTES

RESPONSE TIME

In most applications, the transient suppressor device is placed in parallel with the equipment or component to be protected. In this situation, there is a time delay associated with the capacitance of the device and an overshoot condition associated with the inductance of the device and the inductance of the connection method. The capacitive effect is of minor importance in the parallel protection scheme because it only produces a time delay in the transition from the operating voltage to the clamp voltage as shown in Figure 4.

The inductive effects in the device are due to actual turn-on time (time required for the device to go from zero current to full current) and lead inductance. This inductive effect produces an overshoot in the voltage across the equipment or component being protected as shown in Figure 5. Minimizing this overshoot is very important in the application, since the main purpose for adding a transient suppressor is to clamp voltage spikes. The SMB series have a very good response time, typically < 1 ns and negligible inductance. However, external inductive effects could produce unacceptable overshoot. Proper circuit layout,

minimum lead lengths and placing the suppressor device as close as possible to the equipment or components to be protected will minimize this overshoot.

Some input impedance represented by Z_{in} is essential to prevent overstress of the protection device. This impedance should be as high as possible, without restricting the circuit operation.

DUTY CYCLE DERATING

The data of Figure 1 applies for non-repetitive conditions and at a lead temperature of 25°C. If the duty cycle increases, the peak power must be reduced as indicated by the curves of Figure 6. Average power must be derated as the lead or ambient temperature rises above 25°C. The average power derating curve normally given on data sheets may be normalized and used for this purpose.

At first glance the derating curves of Figure 6 appear to be in error as the 10 ms pulse has a higher derating factor than the 10 μ s pulse. However, when the derating factor for a given pulse of Figure 6 is multiplied by the peak power value of Figure 1 for the same pulse, the results follow the expected trend.

Figure 4.

Vin (TRANSIENT)

 V_L

Figure 6. Typical Derating Factor for Duty Cycle

UL RECOGNITION

The entire series has *Underwriters Laboratory Recognition* for the classification of protectors (QVGV2) under the UL standard for safety 497B and File #116110. Many competitors only have one or two devices recognized or have recognition in a non-protective category. Some competitors have no recognition at all. With the UL497B recognition, our parts successfully passed several tests including Strike Voltage Breakdown test, Endurance Conditioning, Temperature test, Dielectric Voltage-Withstand test, Discharge test and several more.

Whereas, some competitors have only passed a flammability test for the package material, we have been recognized for much more to be included in their Protector category.

1500 Watt Peak Power Zener Transient Voltage Suppressors

Unidirectional*

The SMC series is designed to protect voltage sensitive components from high voltage, high energy transients. They have excellent clamping capability, high surge capability, low zener impedance and fast response time. The SMC series is supplied in ON Semiconductor's exclusive, cost-effective, highly reliable Surmetic[™] package and is ideally suited for use in communication systems, automotive, numerical controls, process controls, medical equipment, business machines, power supplies and many other industrial/consumer applications.

Specification Features:

- Working Peak Reverse Voltage Range 5.8 to 77.8 V
- Standard Zener Breakdown Voltage Range 6.8 to 91 V
- Peak Power 1500 Watts @ 1 ms
- ESD Rating of Class 3 (>16 KV) per Human Body Model
- Maximum Clamp Voltage @ Peak Pulse Current
- Low Leakage $< 5 \mu A$ Above 10 V
- UL 497B for Isolated Loop Circuit Protection
- Maximum Temperature Coefficient Specified
- Response Time is Typically < 1 ns

Mechanical Characteristics:

CASE: Void-free, transfer-molded, thermosetting plastic

FINISH: All external surfaces are corrosion resistant and leads are readily solderable

MAXIMUM CASE TEMPERATURE FOR SOLDERING PURPOSES:

260°C for 10 Seconds

LEADS: Modified L–Bend providing more contact area to bond pads **POLARITY:** Cathode indicated by molded polarity notch **MOUNTING POSITION:** Any

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Peak Power Dissipation (Note 1.) @ T _L = 25°C, Pulse Width = 1 ms	P _{PK}	1500	W
DC Power Dissipation @ T _L = 75°C Measured Zero Lead Length (Note 2.)	PD	4.0	W
Derate Above 75°C		54.6	mW/°C
Thermal Resistance from Junction to Lead	R_{\thetaJL}	18.3	°C/W
DC Power Dissipation (Note 3.) @ T _A = 25°C Derate Above 25°C	PD	0.75	W
Thermal Resistance from Junction		6.1	mW/°C
to Ambient	R_{\thetaJA}	165	°C/W
Operating and Storage Temperature Range	T _J , T _{stg}	-65 to +150	°C

1. 10 X 1000 μ s, non-repetitive

2. 1" square copper pad, FR-4 board

 FR-4 board, using ON Semiconductor minimum recommended footprint, as shown in 403B case outline dimensions spec.

ON Semiconductor[™]

http://onsemi.com

PLASTIC SURFACE MOUNT ZENER OVERVOLTAGE TRANSIENT SUPPRESSORS 5.8–78 VOLTS 1500 WATT PEAK POWER

ORDERING INFORMATION

Device †	Package	Shipping				
1.5SMCxxxAT3	SMC	2500/Tape & Reel				

Devices listed in *bold, italic* are ON Semiconductor **Preferred** devices. **Preferred** devices are recommended choices for future use and best overall value.

*Bidirectional devices will not be available in this series.

†The "T3" suffix refers to a 13 inch reel.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted, $V_F = 3.5 \vee Max$. @ I_F (Note 4.) = 100 A)

Symbol	Parameter
I _{PP}	Maximum Reverse Peak Pulse Current
V _C	Clamping Voltage @ IPP
V _{RWM}	Working Peak Reverse Voltage
I _R	Maximum Reverse Leakage Current @ V _{RWM}
V _{BR}	Breakdown Voltage @ I _T
Ι _Τ	Test Current
ΘV_{BR}	Maximum Temperature Coefficient of V_{BR}
١ _F	Forward Current
V _F	Forward Voltage @ I _F

ELECTRICAL CHARACTERISTICS (Devices listed in bold, italic are ON Semiconductor Preferred devices.)

				Breakdown Voltage		V _C @ I _{PP} (Note 6.)				
	Device	V _{RWM}	I _R @ V _{RWM}	V _{BR}	(Note 5.)	Volts	@ կ	٧ _c	I _{PP}	ΘV _{BR}
Device	Marking	Volts	μΑ	Min	Nom	Max	mA	Volts	Amps	%/°C
1.5SMC6.8AT3	6V8A	5.8	1000	6.45	6.8	7.14	10	10.5	143	0.057
1.5SMC7.5AT3	7V5A	6.4	500	7.13	7.5	7.88	10	11.3	132	0.061
1.5SMC8.2AT3	8V2A	7.02	200	7.79	8.2	8.61	10	12.1	124	0.065
1.5SMC9.1AT3	9V1A	7.78	50	8.65	9.1	9.55	1	13.4	112	0.068
1.5SMC10AT3 1.5SMC11AT3 1.5SMC12AT3 1.5SMC12AT3 1.5SMC13AT3	10A 11A 12A 13A	8.55 9.4 10.2 11.1	10 5 5 5	9.5 10.5 11.4 12.4	10 11 12 13	10.5 11.6 12.6 13.7	1 1 1 1	14.5 15.6 16.7 18.2	103 96 90 82	0.073 0.075 0.078 0.081
1.5SMC15AT3	15A	12.8	5	14.3	15	15.8	1	21.2	71	0.084
1.5SMC16AT3	16A	13.6	5	15.2	16	16.8	1	22.5	67	0.086
1.5SMC18AT3	18A	15.3	5	17.1	18	18.9	1	25.2	59.5	0.088
1.5SMC20AT3	20A	17.1	5	19	20	21	1	27.7	54	0.09
1.5SMC22AT3	22A	18.8	5	20.9	22	23.1	1	30.6	49	0.092
1.5SMC24AT3	24A	20.5	5	22.8	24	25.2	1	33.2	45	0.094
1.5SMC27AT3	27A	23.1	5	25.7	27	28.4	1	37.5	40	0.096
1.5SMC30AT3	30A	25.6	5	28.5	30	31.5	1	41.4	36	0.097
1.5SMC33AT3	33A	28.2	5	31.4	33	34.7	1	45.7	33	0.098
1.5SMC36AT3	36A	30.8	5	34.2	36	37.8	1	49.9	30	0.099
1.5SMC39AT3	39A	33.3	5	37.1	39	41	1	53.9	28	0.1
1.5SMC43AT3	43A	36.8	5	40.9	43	45.2	1	59.3	25.3	0.101
1.5SMC47AT3	47A	40.2	5	44.7	47	49.4	1	64.8	23.2	0.101
1.5SMC51AT3	51A	43.6	5	48.5	51	53.6	1	70.1	21.4	0.102
1.5SMC56AT3	56A	47.8	5	53.2	56	58.8	1	77	19.5	0.103
1.5SMC62AT3	62A	53	5	58.9	62	65.1	1	85	17.7	0.104
1.5SMC68AT3	68A	58.1	5	64.6	68	71.4	1	92	16.3	0.104
1.5SMC75AT3	75A	64.1	5	71.3	75	78.8	1	103	14.6	0.105
1.5SMC82AT3	82A	70.1	5	77.9	82	86.1	1	113	13.3	0.105
1.5SMC91AT3	91A	77.8	5	86.5	91	95.5	1	125	12	0.106

4. 1/2 sine wave (or equivalent square wave), PW = 8.3 ms, duty cycle = 4 pulses per minute maximum.

5. V_{BR} measured at pulse test current I_T at an ambient temperature of 25°C.

6. Surge current waveform per Figure 2 and derate per Figure 3 of the General Data - 1500 Watt at the beginning of this group.

UL RECOGNITION

The entire series has *Underwriters Laboratory Recognition* for the classification of protectors (QVGV2) under the UL standard for safety 497B and File #116110. Many competitors only have one or two devices recognized or have recognition in a non-protective category. Some competitors have no recognition at all. With the UL497B recognition, our parts successfully passed several tests including Strike Voltage Breakdown test, Endurance Conditioning, Temperature test, Dielectric Voltage-Withstand test, Discharge test and several more.

Whereas, some competitors have only passed a flammability test for the package material, we have been recognized for much more to be included in their Protector category.

APPLICATION NOTES

RESPONSE TIME

In most applications, the transient suppressor device is placed in parallel with the equipment or component to be protected. In this situation, there is a time delay associated with the capacitance of the device and an overshoot condition associated with the inductance of the device and the inductance of the connection method. The capacitive effect is of minor importance in the parallel protection scheme because it only produces a time delay in the transition from the operating voltage to the clamp voltage as shown in Figure 5.

The inductive effects in the device are due to actual turn-on time (time required for the device to go from zero current to full current) and lead inductance. This inductive effect produces an overshoot in the voltage across the equipment or component being protected as shown in Figure 6. Minimizing this overshoot is very important in the application, since the main purpose for adding a transient suppressor is to clamp voltage spikes. The SMC series have a very good response time, typically < 1 ns and negligible inductance. However, external inductive effects could produce unacceptable overshoot. Proper circuit layout,

minimum lead lengths and placing the suppressor device as close as possible to the equipment or components to be protected will minimize this overshoot.

Some input impedance represented by Z_{in} is essential to prevent overstress of the protection device. This impedance should be as high as possible, without restricting the circuit operation.

DUTY CYCLE DERATING

The data of Figure 1 applies for non-repetitive conditions and at a lead temperature of 25°C. If the duty cycle increases, the peak power must be reduced as indicated by the curves of Figure 7. Average power must be derated as the lead or ambient temperature rises above 25°C. The average power derating curve normally given on data sheets may be normalized and used for this purpose.

At first glance the derating curves of Figure 7 appear to be in error as the 10 ms pulse has a higher derating factor than the 10 μ s pulse. However, when the derating factor for a given pulse of Figure 7 is multiplied by the peak power value of Figure 1 for the same pulse, the results follow the expected trend.

TYPICAL PROTECTION CIRCUIT

Figure 5.

1500 Watt Peak Power Zener Transient Voltage Suppressors

Unidirectional*

The SMC series is designed to protect voltage sensitive components from high voltage, high energy transients. They have excellent clamping capability, high surge capability, low zener impedance and fast response time. The SMC series is supplied in ON Semiconductor's exclusive, cost-effective, highly reliable Surmetic[™] package and is ideally suited for use in communication systems, automotive, numerical controls, process controls, medical equipment, business machines, power supplies and many other industrial/consumer applications.

Specification Features:

- Working Peak Reverse Voltage Range 5.0 V to 78 V
- Standard Zener Breakdown Voltage Range 6.7 V to 91.25 V
- Peak Power 1500 Watts @ 1 ms
- ESD Rating of Class 3 (>16 KV) per Human Body Model
- Maximum Clamp Voltage @ Peak Pulse Current
- Low Leakage $< 5 \mu A$ Above 10 V
- UL 497B for Isolated Loop Circuit Protection
- Maximum Temperature Coefficient Specified
- Response Time is Typically < 1 ns

Mechanical Characteristics:

CASE: Void-free, transfer-molded, thermosetting plastic

FINISH: All external surfaces are corrosion resistant and leads are readily solderable

MAXIMUM CASE TEMPERATURE FOR SOLDERING PURPOSES:

260°C for 10 Seconds

LEADS: Modified L–Bend providing more contact area to bond pads **POLARITY:** Cathode indicated by molded polarity notch **MOUNTING POSITION:** Any

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Peak Power Dissipation (Note 1.) @ T _L = 25°C, Pulse Width = 1 ms	P _{PK}	1500	W
DC Power Dissipation @ T _L = 75°C Measured Zero Lead Length (Note 2.)	PD	4.0	W
Derate Above 75°C		54.6	mW/°C
Thermal Resistance from Junction to Lead	$R_{ hetaJL}$	18.3	°C/W
DC Power Dissipation (Note 3.) @ $T_A = 25^{\circ}C$	PD	0.75	W
Derate Above 25°C		6.1	mW/°C
Thermal Resistance from Junction			
to Ambient	$R_{ hetaJA}$	165	°C/W
Operating and Storage	T _J , T _{stq}	-65 to	°C
Temperature Range	- 5	+150	

1. 10 X 1000 μ s, non-repetitive

2. 1" square copper pad, FR-4 board

 FR-4 board, using ON Semiconductor minimum recommended footprint, as shown in 403B case outline dimensions spec.

ON Semiconductor"

http://onsemi.com

PLASTIC SURFACE MOUNT ZENER TRANSIENT VOLTAGE SUPPRESSORS 5.0–78 VOLTS 1500 WATT PEAK POWER

Y = Year

- WW = Work Week Gxx = Specific Dev
 - = Specific Device Code

(See Table Next Page)

ORDERING INFORMATION

Device †	Package	Shipping
1SMCxxxAT3	SMC	2500/Tape & Reel

Devices listed in *bold, italic* are ON Semiconductor **Preferred** devices. **Preferred** devices are recommended choices for future use and best overall value.

*Bidirectional devices will not be available in this series.

†The "T3" suffix refers to a 13 inch reel.

ELECTRICAL CHARACTERISTICS

 $(T_A = 25^{\circ}C \text{ unless otherwise noted})$

Symbol	Parameter
I _{PP}	Maximum Reverse Peak Pulse Current
V _C	Clamping Voltage @ IPP
V _{RWM}	Working Peak Reverse Voltage
I _R	Maximum Reverse Leakage Current @ V _{RWM}
V _{BR}	Breakdown Voltage @ I _T
Ι _Τ	Test Current
١ _F	Forward Current
V _F	Forward Voltage @ I _F

Uni–Directional TVS

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted)

		Vaura		Breakdown Voltage			9	V _C @ I _{PP}	(Note 6.)
	Device	(Note 4.)	I _R @ V _{RWM}	V _{BR}	(Note 5.)	Volts	@ կ	Vc	I _{PP}
Device	Marking	Volts	μΑ	Min	Nom	Max	mA	Volts	Amps
1SMC5.0AT3	GDE	5.0	1000	6.4	6.7	7.0	10	9.2	163
1SMC6.0AT3	GDG	6.0	1000	6.67	7.02	7.37	10	10.3	145.6
1SMC6.5AT3	GDK	6.5	500	7.22	7.6	7.98	10	11.2	133.9
1SMC7.0AT3	GDM	7.0	200	7.78	8.19	8.6	10	12	125
1SMC7.5AT3	GDP	7.5	100	8.33	8.77	9.21	1	12.9	116.3
1SMC8.0AT3	GDR	8.0	50	8.89	9.36	9.83	1	13.6	110.3
1SMC8.5AT3	GDT	8.5	25	9.44	9.92	10.4	1	14.4	104.2
1SMC9.0AT3	GDV	9.0	10	10	10.55	11.1	1	15.4	97.4
1SMC10AT3	GDX	10	5	11.1	11.7	12.3	1	17	88.2
1SMC11AT3	GDZ	11	5	12.2	12.85	13.5	1	18.2	82.4
1SMC12AT3	GEE	12	5	13.3	14	14.7	1	19.9	75.3
1SMC13AT3	GEG	13	5	14.4	15.15	15.9	1	21.5	69.7
1SMC14AT3	GEK	14	5	15.6	16.4	17.2	1	23.2	64.7
1SMC15AT3	GEM	15	5	16.7	17.6	18.5	1	24.4	61.5
1SMC16AT3	GEP	16	5	17.8	18.75	19.7	1	26	57.7
1SMC17AT3	GER	17	5	18.9	19.9	20.9	1	27.6	53.3
1SMC18AT3	GET	18	5	20	21.05	22.1	1	29.2	51.4
1SMC20AT3	GEV	20	5	22.2	23.35	24.5	1	32.4	46.3
1SMC22AT3	GEX	22	5	24.4	25.65	26.9	1	35.5	42.2
1SMC24AT3	GEZ	24	5	26.7	28.1	29.5	1	38.9	38.6
1SMC26AT3	GFE	26	5	28.9	30.4	31.9	1	42.1	35.6
1SMC28AT3	GFG	28	5	31.1	32.75	34.4	1	45.4	33
1SMC30AT3	GFK	30	5	33.3	35.05	36.8	1	48.4	31
1SMC33AT3	GFM	33	5	36.7	38.65	40.6	1	53.3	28.1
1SMC36AT3	GFP	36	5	40	42.1	44.2	1	58.1	25.8
1SMC40AT3	GFR	40	5	44.4	46.75	49.1	1	64.5	32.2
1SMC43AT3	GFT	43	5	47.8	50.3	52.8	1	69.4	21.6
1SMC45AT3	GFV	45	5	50	52.65	55.3	1	72.2	20.6
1SMC48AT3	GFX	48	5	53.3	56.1	58.9	1	77.4	19.4
1SMC51AT3	GFZ	51	5	56.7	59.7	62.7	1	82.4	18.2
1SMC54AT3	GGE	54	5	60	63.15	66.3	1	87.1	17.2
1SMC58AT3	GGG	58	5	64.4	67.8	71.2	1	93.6	16
1SMC60AT3	GGK	60	5	66.7	70.2	73.7	1	96.8	15.5
1SMC64AT3	GGM	64	5	71.1	74.85	78.6	1	103	14.6
1SMC70AT3	GGP	70	5	77.8	81.9	86	1	113	13.3
1SMC75AT3	GGR	75	5	83.3	87.7	92.1	1	121	12.4
1SMC78AT3	GGT	78	5	86.7	91.25	95.8	1	126	11.4

4. A transient suppressor is normally selected according to the maximum working peak reverse voltage (V_{RWM}), which should be equal to or greater than the DC or continuous peak operating voltage level.

V_{BR} measured at pulse test current I_T at an ambient temperature of 25°C.
 Surge current waveform per Figure 2 and derate per Figure 3 of the General Data – 1500 Watt at the beginning of this group.

UL RECOGNITION

The entire series has *Underwriters Laboratory Recognition* for the classification of protectors (QVGV2) under the UL standard for safety 497B and File #116110. Many competitors only have one or two devices recognized or have recognition in a non-protective category. Some competitors have no recognition at all. With the UL497B recognition, our parts successfully passed several tests including Strike Voltage Breakdown test, Endurance Conditioning, Temperature test, Dielectric Voltage-Withstand test, Discharge test and several more.

Whereas, some competitors have only passed a flammability test for the package material, we have been recognized for much more to be included in their Protector category.

APPLICATION NOTES

RESPONSE TIME

In most applications, the transient suppressor device is placed in parallel with the equipment or component to be protected. In this situation, there is a time delay associated with the capacitance of the device and an overshoot condition associated with the inductance of the device and the inductance of the connection method. The capacitive effect is of minor importance in the parallel protection scheme because it only produces a time delay in the transition from the operating voltage to the clamp voltage as shown in Figure 5.

The inductive effects in the device are due to actual turn-on time (time required for the device to go from zero current to full current) and lead inductance. This inductive effect produces an overshoot in the voltage across the equipment or component being protected as shown in Figure 6. Minimizing this overshoot is very important in the application, since the main purpose for adding a transient suppressor is to clamp voltage spikes. The SMC series have a very good response time, typically < 1 ns and negligible inductance. However, external inductive effects could produce unacceptable overshoot. Proper circuit layout,

minimum lead lengths and placing the suppressor device as close as possible to the equipment or components to be protected will minimize this overshoot.

Some input impedance represented by Z_{in} is essential to prevent overstress of the protection device. This impedance should be as high as possible, without restricting the circuit operation.

DUTY CYCLE DERATING

The data of Figure 1 applies for non-repetitive conditions and at a lead temperature of 25°C. If the duty cycle increases, the peak power must be reduced as indicated by the curves of Figure 7. Average power must be derated as the lead or ambient temperature rises above 25°C. The average power derating curve normally given on data sheets may be normalized and used for this purpose.

At first glance the derating curves of Figure 7 appear to be in error as the 10 ms pulse has a higher derating factor than the 10 μ s pulse. However, when the derating factor for a given pulse of Figure 7 is multiplied by the peak power value of Figure 1 for the same pulse, the results follow the expected trend.

TYPICAL PROTECTION CIRCUIT

Figure 5.

MSQA6V1W5T2

Quad Array for ESD Protection

This quad monolithic silicon voltage suppressor is designed for applications requiring transient overvoltage protection capability. It is intended for use in voltage and ESD sensitive equipment such as computers, printers, business machines, communication systems, medical equipment, and other applications. Its quad junction common anode design protects four separate lines using only one package. These devices are ideal for situations where board space is at a premium.

Specification Features

- SC88A Package Allows Four Separate Unidirectional Configurations
- Low Leakage $< 1 \mu A @ 3$ Volt
- Breakdown Voltage: 6.1 Volt 7.2 Volt @ 1 mA
- Low Capacitance (90 pF typical)
- ESD Protection Meeting IEC1000–4–2

Mechanical Characteristics

- Void Free, Transfer–Molded, Thermosetting Plastic Case
- Corrosion Resistant Finish, Easily Solderable
- Package Designed for Optimal Automated Board Assembly
- Small Package Size for High Density Applications

ON Semiconductor**

http://onsemi.com

61 = Device Marking D = One Digit Date Code

ORDERING INFORMATION

Device	Package	Shipping		
MSQA6V1W5T2	SC-88A	3000/Tape & Reel		

NOTE: T2 Suffix Devices are Packaged with Pin 1 Opposing Sprocket Hole.

MSQA6V1W5T2

MAXIMUM RATINGS ($T_A = 25^{\circ}C$ unless otherwise noted)

	Characteristic	Symbol	Value	Unit
Peak Power Dissipation	@ 20 μs @T_A $\leq 25^{\circ}C$ (Note 1.)	P _{pk}	150	Watts
Steady State Power – 1	Diode (Note 2.)	PD	385	mW
Thermal Resistance Above 25°C, Derate	Junction to Ambient	$R_{ hetaJA}$	JA 325 3.1	
Maximum Junction Temp	perature	T _{Jmax}	150	°C
Operating Junction and	Storage Temperature Range	T _J T _{stg}	-55 to +150	°C
ESD Discharge	MIL STD 883C – Method 3015–6 IEC1000–4–2, Air Discharge IEC1000–4–2, Contact Discharge	V _{PP}	16 16 9	kV
Lead Solder Temperatur	re (10 seconds duration)	ΤL	260	°C

ELECTRICAL CHARACTERISTICS

	Breakdown Voltage V _{BR} @ 1 mA (Volts)		Leakage Current I _{RM} @ V _{RM} = 3 V	Capacitance @ 0 V Bias	Max V _F @ I _F = 200 mA	
Device	Min	Nom	Max	(μA)	(pF)	(V)
MSQA6V1W5	6.1	6.6	7.2	1.0	90	1.25

1. Non-repetitive current per Figure 1. Derate per Figure 2.

2. Only 1 diode under power. For all 4 diodes under power, P_D will be 25%. Mounted on FR-4 board with min pad.

Figure 1. Pulse Width

Figure 2. 8 \times 20 μs Pulse Waveform

MSQA6V1W5T2

1PMT5.0AT3 Series

Zener Transient Voltage Suppressor POWERMITE[®] Package

The 1PMT5.0AT3 Series is designed to protect voltage sensitive components from high voltage, high energy transients. Excellent clamping capability, high surge capability, low zener impedance and fast response time. The advanced packaging technique provides for a highly efficient micro miniature, space saving surface mount with its unique heat sink design. The POWERMITE has the same thermal performance as the SMA while being 50% smaller in footprint area, and delivering one of the lowest height profiles (1.1 mm) in the industry. Because of its small size, it is ideal for use in cellular phones, portable devices, business machines, power supplies and many other industrial/consumer applications.

Specification Features:

- Stand–off Voltage: 5 58 Volts
- Peak Power 175 Watts @ 1 ms
- Maximum Clamp Voltage @ Peak Pulse Current
- Low Leakage
- Response Time is Typically < 1 ns
- ESD Rating of Class 3 (> 16 kV) per Human Body Model
- Low Profile Maximum Height of 1.1 mm
- Integral Heat Sink/Locking Tabs
- Full Metallic Bottom Eliminates Flux Entrapment
- Small Footprint Footprint Area of 8.45 mm²
- Supplied in 12 mm Tape and Reel 12,000 Units per Reel
- POWERMITE is JEDEC Registered as DO-216AA

Mechanical Characteristics:

CASE: Void-free, transfer-molded, thermosetting plastic

FINISH: All external surfaces are corrosion resistant and leads are readily solderable

MOUNTING POSITION: Any

MAXIMUM CASE TEMPERATURE FOR SOLDERING PURPOSES:

260°C for 10 Seconds

http://onsemi.com

PLASTIC SURFACE MOUNT ZENER OVERVOLTAGE TRANSIENT SUPPRESSOR 5 – 58 VOLTS 175 WATT PEAK POWER

POWERMITE CASE 457 PLASTIC

MARKING DIAGRAM

Mxx = Specific Device Code xx = 5 - 58

(See Table Next Page)

= Date Code

ORDERING INFORMATION

Device	Package	Shipping
1PMTxxAT3	POWERMITE	12,000/Tape & Reel

LEAD ORIENTATION IN TAPE:

р

Cathode (Short) Lead to Sprocket Holes

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Maximum P _{pk} Dissipation @ $T_A = 25^{\circ}C$, (PW–10/1000 µs) (Note 1.)	P _{pk}	175	W
Maximum P _{pk} Dissipation @ $T_A = 25^{\circ}C$, (PW-8/20 µs) (Note 1.)	P _{pk}	1000	W
DC Power Dissipation @ T _A = 25°C (Note 2.) Derate above 25°C Thermal Resistance from Junction to Ambient	Ρ _D R _{θJA}	500 4.0 248	mW mW/°C °C/W
Thermal Resistance from Junction to Lead (Anode)	$R_{\theta Janode}$	35	°C/W
Maximum DC Power Dissipation (Note 3.) Thermal Resistance from Junction to Tab (Cathode)	P_D $R_{ heta Jcathode}$	3.2 23	W °C/W
Operating and Storage Temperature Range	T _{.I} , T _{sto}	-55 to +150	°C

1. Non-repetitive current pulse at $T_A = 25^{\circ}C$.

2. Mounted with recommended minimum pad size, DC board FR-4.

3. At Tab (Cathode) temperature, $T_{tab} = 75^{\circ}C$

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted, V_F = 3.5 V Max. @ I_F (Note 4.) = 35 A)

Symbol	Parameter
I _{PP}	Maximum Reverse Peak Pulse Current
V _C	Clamping Voltage @ IPP
V _{RWM}	Working Peak Reverse Voltage
I _R	Maximum Reverse Leakage Current @ V _{RWM}
V_{BR}	Breakdown Voltage @ I _T
Ι _Τ	Test Current
١ _F	Forward Current
V _F	Forward Voltage @ I _F

Uni–Directional TVS

ELECTRICAL CHARACTERISTICS ($T_L = 30^{\circ}C$ unless otherwise noted, $V_F = 1.25$ Volts @ 200 mA)

		V _R (V)	V _{BR}	V _{BR} @ H (V) (Note 6.)		Ι _Τ	I _R @ V _{RWM}	V _C @ I _{PP}	I _{PP} (A)
Device	Marking	(Note 5.)	Min	Nom	Max	(mA)	(μΑ)	(V)	(Note 7.)
1PMT5.0AT3	MKE	5.0	6.4	6.7	7.0	10	800	9.2	19
1PMT7.0AT3	MKM	7.0	7.78	8.2	8.6	10	500	12	14.6
1PMT12AT3	MLE	12	13.3	14.0	14.7	1.0	5.0	19.9	8.8
1PMT16AT3	MLP	16	17.8	18.75	19.7	1.0	5.0	26	7.0
1PMT18AT3	MLT	18	20.0	21.0	22.1	1.0	5.0	29.2	6.0
1PMT22AT3	MLX	22	24.4	25.6	26.9	1.0	5.0	35.5	4.9
1PMT24AT3	MLZ	24	26.7	28.1	29.5	1.0	5.0	38.9	4.5
1PMT26AT3	MME	26	28.9	30.4	31.9	1.0	5.0	42.1	4.2
1PMT28AT3	MMG	28	31.1	32.8	34.4	1.0	5.0	45.4	3.9
1PMT30AT3	MMK	30	33.3	35.1	36.8	1.0	5.0	48.4	3.6
1PMT33AT3	MMM	33	36.7	38.7	40.6	1.0	5.0	53.3	3.3
1PMT36AT3	MMP	36	40.0	42.1	44.2	1.0	5.0	58.1	3.0
1PMT40AT3	MMR	40	44.4	46.8	49.1	1.0	5.0	64.5	2.7
1PMT48AT3	MMX	48	53.3	56.1	58.9	1.0	5.0	77.4	2.3
1PMT51AT3	MMZ	51	56.7	59.7	62.7	1.0	5.0	82.4	2.1
1PMT58AT3	MNG	58	64.4	67.8	71.2	1.0	5.0	93.6	1.9

4. 1/2 sine wave (or equivalent square wave), PW = 8.3 ms, duty cycle = 4 pulses per minute maximum.

 A transient suppressor is normally selected according to the Working Peak Reverse Voltage (V_{RWM}) which should be equal to or greater than the DC or continuous peak operating voltage level.

6. V_{BR} measured at pulse test current I_{T} at ambient temperature of 25°C.

7. Surge current waveform per Figure 2 and derate per Figure 4.

1PMT5.0AT3 Series

TYPICAL PROTECTION CIRCUIT

Figure 1. Pulse Rating Curve

Figure 2. 10 X 1000 μs Pulse Waveform

1PMT5.0AT3 Series

Figure 5. Typical Derating Factor for Duty Cycle

Figure 6. Steady State Power Derating

Reverse Voltage

SMS05T1

Advance Information SC-74 Quad Transient Voltage Suppressor

for ESD Protection

This quad monolithic silicon voltage suppressor is designed for applications requiring transient overvoltage protection capability. It is intended for use in voltage and ESD sensitive equipment such as computers, printers, business machines, communication systems and other applications. This quad device provides superior surge protection over current quad Zener MMQA series by providing up to 350 watts peak power.

Features:

- SC-74 Package Allows Four Separate Unidirectional Configurations
- Peak Power 350 Watts 8 x 20 µS
- ESD Rating of Class N (Exceeding 25 kV) per the Human Body Model
- ESD Rating: IEC 61000-4-2 (ESD) 15 kV (air) 8 kV (contact) IEC 61000-4-4 (EFT) 40 A (5/50 ns) IEC 61000-4-5 (lighting) 23 (8/20 μs)
- UL Flammability Rating of 94V–0

Typical Applications:

• Hand Held Portable Applications such as Cell Phones, Pagers, Notebooks and Notebook Computers

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Peak Power Dissipation 8 x 20 μ S @ T _A = 25°C (Note 1.)	P _{pk}	350	W
Total Power Dissipation on FR–5 Board @ $T_A = 25^{\circ}C$ (Note 2.) Derate Above 25°C	PD	225 1.8	mW m₩/ºC
		1.0	
Thermal Resistance, Junction-to-Ambient	R _{θJA}	556	°C/W
Junction and Storage Temperature Range	T _J , T _{stg}	–55 to +150	°C
Lead Solder Temperature – Maximum 10 Seconds Duration	ΤL	260	°C

1. Non–repetitive current pulse 8 x 20 μ S exponential decay waveform

2. FR–5 = 1.0 x 0.75 x 0.62 in.

This document contains information on a new product. Specifications and information herein are subject to change without notice.

ON Semiconductor[™]

http://onsemi.com

SC-74 QUAD TRANSIENT VOLTAGE SUPPRESSOR 350 WATTS PEAK POWER 5 VOLTS

SC-74 CASE 318F STYLE 1 2 3 4 PIN 1. CATHODE 2. ANODE

6

PIN ASSIGNMENT

2. ANODE 3. CATHODE 4. CATHODE 5. ANODE

6. CATHODE

MARKING DIAGRAM

ORDERING INFORMATION

Device	Package	Shipping		
SMS05T1	SC-74	3000/Tape & Reel		
SMS05T3	SC-74	10,000/Tape & Reel		

ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	Min	Тур	Max	Unit
Reverse Breakdown Voltage @ $I_t = 1.0 \text{ mA}$	V _{BR}	6.0	-	7.2	V
Reverse Leakage Current @ V _{RWN} = 5.0 Volts	I _R	N/A	-	20	μΑ
Maximum Clamping Voltage @ I_{PP} = 5.0 A, 8 x 20 μS	V _C	N/A	-	9.8	V
Maximum Clamping Voltage @ IPP = 23 A, 8 x 20 μ S	V _C	N/A	-	15.5	V
Between I/O Pins and Ground @ V _R = 0 Volts, 1.0 MHz	Capacitance	250	300	400	pF

Figure 1. Non–Repetitive Peak Pulse Power versus Pulse Time

Figure 2. Power Derating Curve

NZMM7V0T4

EMI Filter with ESD Protection

This device is scheduled for availability in Q4 2000. Please contact your nearest ON Semiconductor sales representative for further information.

Features:

- 4 × 4 mm Lead Less MLF Surface Mount Package
- 9 EMI/RFI Bi-directional "Pi" Low-Pass Filters
- ESD Protection Meets IEC6000–4–2
- 50 Watt Peak Pulse Power, $8 \times 20 \ \mu s$ (all diodes under power)
- Diode Capacitance: 7 10 pF
- "Pi" Filter Line Capacitance: 22 ±20% pF
- Low Zener Diode Leakage: 1 µA Maximum
- Zener Breakdown Voltage; 6 8 Volts
- Moisture Sensitivity Level 1

Benefits:

- Suppresses EMI/RFI Noise in Systems Subjected to Electromagnetic Interference
- Small Package Size Minimizes Parasitic Inductance, Thus a More "Ideal" Low Pass Filtering Response

Typical Applications:

- Cellular Phones
- Communication Systems
- Computers
- Portable Products with Input/Output Conductors

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Peak Power Dissipation (Note 1.) $8 \times 20 \ \mu s$ Pulse	P _{PK}	50	Watts
IEC6000–4–2 Air Discharge	ESD	±25	kV
Contact Discharge		±8.0	
MIL STD 883C Method 3015-6		±16	
Maximum Junction Temperature	ТJ	150	°C

1. All diodes under power

ON Semiconductor™

http://onsemi.com

24 PIN MLF CASE 488 PLASTIC

MARKING DIAGRAM

ZMM7V = Specific Device Code ABC = Date Code

CIRCUIT DESCRIPTION

ORDERING INFORMATION

Device	Package	Shipping
NZMM7V0T4	24 PIN	4000/Tape & Reel

NZMM7V0T4

ELECTRICAL CHARACTERISTICS

Symbol	Characteristic	Min	Тур	Мах	Unit
Vz	Zener Breakdown Voltage, @ I _{ZT} = 1 mA	6.0	-	8.0	V
l _r	Zener Leakage Current, @ V _R = 3 V	N/A	-	1.0	μΑ
V _F	Zener Forward Voltage, @ I _F = 50 mA	N/A	-	1.25	V
Capacitance	Zener Internal Capacitance, @ 0 V Bias	7.0	-	10	pF
Capacitance	Zener/Resistor Array Line Capacitance	17.6	-	26.4	pF
Resistor	Resistance	90	-	110	Ω
F _C (Note 2.)	Cutoff Frequency	_	220	-	MHz

2. 50 Ω Source and 50 Ω Lead Termination per Figure 2

Frequency Response Specification

http://onsemi.com 103

NZMM7V0T4

Detailed Device Schematic

Applications Information

Suppressing Noise at the Source

- Filter all I/O signals leaving the noisy environment
- Locate I/O driver circuits close to the connector
- Use the longest rise/fall times possible for all digital signals

Reducing Noise at the Receiver

- Filter all I/O signals entering the unit
- Locate the I/O filters as close as possible to the connector

Minimizing Noise Coupling

- Use multilayer PCBs to minimize power and ground inductance
- Keep clock circuits away from the I/O connector
- Ground planes should be used whenever possible
- Minimize the loop area for all high speed signals
- Provide for adequate power decoupling

ESD Protection

- Locate the suppression devices as close to the I/O connector as possible
- Minimize the PCB trace length to the suppression device
- Minimize the PCB trace length for the ground return for the suppression device

NZF220TT1

Advance Information EMI Filter with ESD Protection

Features:

- EMI/RFI Bi-directional "Pi" Low-Pass Filters
- ESD Protection Meets IEC6000–4–2, up to 15 kV Air Discharge, or 8 kV Contact Discharge
- Diode Capacitance: 7 10 pF
- Zener/Resistor Line Capacitance: 22 ±20% pF
- Low Zener Diode Leakage: 1 µA Maximum
- Zener Breakdown Voltage; 6 8 Volts

Benefits:

- Designed to suppress EMI/RFI Noise in Systems Subjected to Electromagnetic Interference
- Small Package Size Minimizes Parasitic Inductance, Thus a More "Ideal" Low Pass Filtering Response

Typical Applications:

- Cellular Phones
- Communication Systems
- Computers
- Portable Products with Input/Output Conductors

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Peak Power Dissipation (Note 1.) $8 \times 20 \ \mu s$ Pulse	P _{PK}	TBD	Watts
IEC6000–4–2 Air Discharge	ESD	±25	kV
IEC6000402 Contact Discharge		±8.0	
MIL STD 883C Method 3015-6		±16	
Maximum Junction Temperature	TJ	150	°C

1. All diodes under power

This document contains information on a new product. Specifications and information herein are subject to change without notice.

ON Semiconductor[™]

http://onsemi.com

SC-75 CASE 463 PLASTIC

MARKING DIAGRAM

CIRCUIT DESCRIPTION

ORDERING INFORMATION

Device	Package	Shipping
NZF220TT1	SC-75	TBD

NZF220TT1

ELECTRICAL CHARACTERISTICS

Symbol	Characteristic	Min	Тур	Max	Unit
VZ	Zener Breakdown Voltage, @ I _{ZT} = 1 mA	6.0	-	8.0	V
l _r	Zener Leakage Current, @ V _R = 3 V	N/A	-	1.0	μΑ
V _F	Zener Forward Voltage, @ I _F = 50 mA	N/A	-	1.25	V
Capacitance	Zener Internal Capacitance, @ 0 V Bias	7.0	-	10	pF
Capacitance	Zener/Resistor Array Line Capacitance	17.6	-	26.4	pF
Resistor	Resistance	90	-	110	Ω
F _C (Note 2.)	Cutoff Frequency	-	220	-	MHz

2. 50 Ω Source and 50 Ω Lead Termination per Figure 2

Applications Information

Suppressing Noise at the Source

- Filter all I/O signals leaving the noisy environment
- Locate I/O driver circuits close to the connector
- Use the longest rise/fall times possible for all digital signals

Reducing Noise at the Receiver

- Filter all I/O signals entering the unit
- Locate the I/O filters as close as possible to the connector

Minimizing Noise Coupling

- Use multilayer PCBs to minimize power and ground inductance
- Keep clock circuits away from the I/O connector
- Ground planes should be used whenever possible
- Minimize the loop area for all high speed signals
- Provide for adequate power decoupling

ESD Protection

- Locate the suppression devices as close to the I/O connector as possible
- Minimize the PCB trace length to the suppression device
- Minimize the PCB trace length for the ground return for the suppression device

NZF220TT1

Frequency Response Specification

NZF220DFT1

Advance Information EMI Filter with ESD Protection

Features:

- 2 EMI/RFI Bi-directional "Pi" Low-Pass Filters
- ESD Protection Meets IEC6000–4–2, up to 15 kV Air Discharge, or 8 kV Contact Discharge
- Diode Capacitance: 7 10 pF
- Zener/Resistor Line Capacitance: 22 ±20% pF
- Low Zener Diode Leakage: 1 µA Maximum
- Zener Breakdown Voltage; 6 8 Volts

Benefits:

- Designed to suppress EMI/RFI Noise in Systems Subjected to Electromagnetic Interference
- Nominal Cutoff Frequency of 220 MHz (per Figure 2)
- Small Package Size Minimizes Parasitic Inductance, Thus a More "Ideal" Low Pass Filtering Response

Typical Applications:

- Cellular Phones
- Communication Systems
- Computers
- Portable Products with Input/Output Conductors

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Peak Power Dissipation (Note 1.) $8 \times 20 \ \mu s$ Pulse	P _{PK}	TBD	Watts
IEC6000-4-2 Air Discharge	ESD	±15	kV
IEC6000402 Contact Discharge		±8.0	
Maximum Junction Temperature	TJ	150	°C

1. All diodes under power

This document contains information on a new product. Specifications and information herein are subject to change without notice.

ON Semiconductor[™]

http://onsemi.com

SC-88A CASE 419A DF SUFFIX

MARKING DIAGRAM

ORDERING INFORMATION

	Device	Package	Shipping
١	NZF220DFT1	SC88A	3000/Tape & Reel

NZF220DFT1

ELECTRICAL CHARACTERISTICS

Symbol	Characteristic	Min	Тур	Мах	Unit
VZ	Zener Breakdown Voltage, @ I _{ZT} = 1 mA	6.0	-	8.0	V
l _r	Zener Leakage Current, @ V _R = 3 V	N/A	-	1.0	μΑ
V _F	Zener Forward Voltage, @ $I_F = 50 \text{ mA}$	N/A	-	1.5	V
Capacitance	Zener Internal Capacitance, @ 0 V Bias	7.0	-	10	pF
Capacitance	Zener/Resistor Array Line Capacitance	17.6	-	26.4	pF
Resistor	Resistance	90	-	110	Ω
F _C (Note 2.)	Cutoff Frequency	-	220	-	MHz

2. 50 Ω Source and 50 Ω Lead Termination per Figure 2

Applications Information

Suppressing Noise at the Source

- Filter all I/O signals leaving the noisy environment
- Locate I/O driver circuits close to the connector
- Use the longest rise/fall times possible for all digital signals

Reducing Noise at the Receiver

- Filter all I/O signals entering the unit
- Locate the I/O filters as close as possible to the connector

Minimizing Noise Coupling

- Use multilayer PCBs to minimize power and ground inductance
- Keep clock circuits away from the I/O connector
- Ground planes should be used whenever possible
- Minimize the loop area for all high speed signals
- Provide for adequate power decoupling

ESD Protection

- Locate the suppression devices as close to the I/O connector as possible
- Minimize the PCB trace length to the suppression device
- Minimize the PCB trace length for the ground return for the suppression device

Frequency Response Specification

Figure 1. Measurement Conditions

NZF220DFT1

Footprint

Preferred Devices

Advance Information Thyristor Surge Protectors

High Voltage Bidirectional TSPD

These Thyristor Surge Protective devices (TSPD) prevent overvoltage damage to sensitive circuits by lightning, induction and power line crossings. They are breakover-triggered crowbar protectors. Turn-off occurs when the surge current falls below the holding current value.

Secondary protection applications for electronic telecom equipment at customer premises.

- High Surge Current Capability: **50 Amps** 10 x 1000 µsec; Guaranteed at the extended temp range of -20°C to 65°C in the SMA package
- The MMT05A230T3 Series is used to help equipment meet various regulatory requirements including: Telcordia 1089, ITU K.20 & K.21, IEC 950 and FCC Part 68.
- Bidirectional Protection in a Single Device
- Little Change of Voltage Limit with Transient Amplitude or Rate
- Freedom from Wearout Mechanisms Present in Non–Semiconductor Devices
- Fail–Safe, Shorts When Overstressed, Preventing Continued Unprotected Operation.
- Surface Mount Technology (SMT)
- Device Marking: MMT05A230T3: TBD; MMT05A260T3: TBD; MMT05A310T3: TBD

MAXIMUM RATINGS (T_J = 25° C unless otherwise noted)

Rating	Symbol	Value	Unit
Off–State Voltage – Maximum MMT05A230T3 MMT05A260T3 MMT05A310T3	V _{DM}	± 170 ± 200 ± 270	Volts
Maximum Pulse Surge Short Circuit Current Non–Repetitive Double Exponential Decay Waveform (Notes 1. and 2.) 10 x 1000 μsec (–20°C to +65°C) 8 x 20 μsec 10 x 160 μsec 10 x 560 μsec	IPPS1 IPPS2 IPPS3 IPPS4	±50 ±150 ±100 ±70	A(pk)
Maximum Non–Repetitive Rate of Change of On–State Current Double Exponential Waveform, R = 1.0, L = 1.5 μ H, C = 1.67 μ F, I _{pk} = 110A	di/dt	± 150	A/µs

1. Allow cooling before testing second polarity.

2. Measured under pulse conditions to reduce heating.

This document contains information on a new product. Specifications and information herein are subject to change without notice.

ON Semiconductor**

http://onsemi.com

BIDIRECTIONAL TSPD 50 AMP SURGE 265 thru 365 VOLTS

SMA (No Polarity) CASE 403D

MARKING DIAGRAM

ORDERING INFORMATION

Device	Package	Shipping
MMT05A230T3	SMA	12mm Tape and Reel (2.5K/Reel)
MMT05A260T3	SMA	12mm Tape and Reel (2.5K/Reel)
MMT05A310T3	SMA	12mm Tape and Reel (2.5K/Reel)

Preferred devices are recommended choices for future use and best overall value.

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Operating Temperature Range Blocking or Conducting State	T _{J1}	-40 to +125	°C
Overload Junction Temperature – Maximum Conducting State Only	T _{J2}	+175	°C
Instantaneous Peak Power Dissipation (Ipk = 50A, 10x1000 µsec @ 25°C)	P _{PK}	2000	W
Maximum Lead Temperature for Soldering Purposes 1/8" from Case for 10 Seconds	TL	260	°C

ELECTRICAL CHARACTERISTICS (T_J = $25^{\circ}C$ unless otherwise noted)

Devices are bidirectional. All electrical parameters apply to forward and reverse polarities.

Characteristics		Symbol	Min	Тур	Max	Unit
Breakover Voltage (Both polarities) (dv/dt = 100 V/μs, I _{SC} = 1.0 A, Vdc = 1000 V) (+65°C)	MMT05A230T3 MMT05A260T3 MMT05A310T3 MMT05A230T3 MMT05A260T3	V _(BO)			265 320 365 280 340	Volts
Proskover Veltage (Deth palarities)	MMT05A310T3		-	-	400	Valta
	MMT05A230T3 MMT05A260T3 MMT05A310T3	V (BO)			265 320 365 280	VOItS
	MMT05A250T3 MMT05A260T3 MMT05A310T3		-	-	340 400	
Breakover Voltage Temperature Coefficient		$dV_{(BO)}/dT_J$	-	0.08	-	%/°C
Breakdown Voltage (I _(BR) = 1.0 mA) Both polarities	MMT05A230T3 MMT05A260T3 MMT05A310T3	V _(BR)		190 240 280		Volts
Off State Current (V_{D1} = 50 V) Both polarities (V_{D2} = V_{DM}) Both polarities		I _{D1} I _{D2}			2.0 5.0	μΑ
On–State Voltage (I _T = 1.0 A) (PW \leq 300 μ s, Duty Cycle \leq 2%) (Note 3.)		V _T	-	1.53	3.0	Volts
Breakover Current (f = 60 Hz, V _{DM} = 1000 V(rms), R _S = Both polarities	= 1.0 kΩ)	I _{BO}	-	230	-	mA
Holding Current (Both polarities) $V_S = 500$ Volts; I _T (Initiating Current) = ± 1.0 Amp	(Note 3.) (+65°C)	Ι _Η	175 130	340 -	-	mA
Critical Rate of Rise of Off–State Voltage (Linear waveform, V_D = Rated V_{BR} , T_J = 25°C)		dv/dt	2000	_	_	V/µs
Capacitance (f = 1.0 MHz, 50 Vdc, 1.0 V rms Signal) (f = 1.0 MHz, 2.0 Vdc, 15 mV rms Signal)		Co		22 53	- 75	pF

3. Measured under pulse conditions to reduce heating.

Voltage Current Characteristic of TSPD (Bidirectional Device)

Symbol	Parameter
I _{D1} , I _{D2}	Off State Leakage Current
V_{D1}, V_{D2}	Off State Blocking Voltage
V _{BR}	Breakdown Voltage
V _{BO}	Breakover Voltage
I _{BO}	Breakover Current
I _H	Holding Current
V _{TM}	On State Voltage

Figure 1. Off-State Current versus Temperature

Figure 2. Breakdown Voltage versus Temperature

-50

-25

Figure 3. Breakover Voltage versus Temperature

Figure 5. Exponential Decay Pulse Waveform

Figure 6. Peak Surge On–State Current versus Surge Current Duration, Sinusoidal Waveform

*Polymeric PTC (positive temperature coefficient) overcurrent protection device

MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS

SMA

Preferred Devices

Thyristor Surge Protectors

High Voltage Bidirectional TSPD

These Thyristor Surge Protective devices (TSPD) prevent overvoltage damage to sensitive circuits by lightning, induction and power line crossings. They are breakover-triggered crowbar protectors. Turn-off occurs when the surge current falls below the holding current value.

Secondary protection applications for electronic telecom equipment at customer premises.

- High Surge Current Capability: 50 Amps 10 x 1000 µsec Guaranteed at the extended temp range of -20°C to 65°C
- The MMT05B230T3 Series is used to help equipment meet various regulatory requirements including: Bellcore 1089, ITU K.20 & K.21, IEC 950, UL 1459 & 1950 and FCC Part 68.
- Bidirectional Protection in a Single Device
- Little Change of Voltage Limit with Transient Amplitude or Rate
- Freedom from Wearout Mechanisms Present in Non–Semiconductor Devices
- Fail–Safe, Shorts When Overstressed, Preventing Continued Unprotected Operation.
- Surface Mount Technology (SMT)
- **%** Indicates UL Registered File #E116110
- Device Marking: MMT05B230T3: RPBF; MMT05B260T3: RPBG; MMT05B310T3: RPBJ, and Date Code

MAXIMUM RATINGS (T_J = 25° C unless otherwise noted)

Rating	Symbol	Value	Unit
Off–State Voltage – Maximum MMT05B230T3 MMT05B260T3 MMT05B310T3	V _{DM}	± 170 ± 200 ± 270	Volts
Maximum Pulse Surge Short Circuit Current Non–Repetitive Double Exponential Decay Waveform (Notes 1. and 2.) 10 x 1000 µsec (–20°C to +65°C) 8 x 20 µsec 10 x 160 µsec 10 x 560 µsec	I _{PPS1} I _{PPS2} I _{PPS3} I _{PPS4}	±50 ±150 ±100 ±70	A(pk)
Maximum Non–Repetitive Rate of Change of On–State Current Double Exponential Waveform, $R = 1.0$, $L = 1.5 \mu$ H, $C = 1.67 \mu$ F, $I_{pk} = 110A$	di/dt	±150	A/μs

1. Allow cooling before testing second polarity.

2. Measured under pulse conditions to reduce heating.

ON Semiconductor[™]

http://onsemi.com

BIDIRECTIONAL TSPD (%) 50 AMP SURGE 265 thru 365 VOLTS

SMB (No Polarity) (Essentially JEDEC DO-214AA) CASE 403C

MARKING DIAGRAMS

 RPBx
 = Specific Device Code

 x
 = F, G or J

 Y
 = Year

 WW
 = Work Week

ORDERING INFORMATION

Device	Package	Shipping
MMT05B230T3	SMB	12mm Tape and Reel (2.5K/Reel)
MMT05B260T3	SMB	12mm Tape and Reel (2.5K/Reel)
MMT05B310T3	SMB	12mm Tape and Reel (2.5K/Reel)

Preferred devices are recommended choices for future use and best overall value.

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Operating Temperature Range Blocking or Conducting State	T _{J1}	-40 to +125	°C
Overload Junction Temperature – Maximum Conducting State Only	T _{J2}	+175	°C
Instantaneous Peak Power Dissipation (I _{pk} = 50 A, 10x1000 μsec @ 25°C)	P _{PK}	2000	W
Maximum Lead Temperature for Soldering Purposes 1/8" from Case for 10 Seconds	TL	260	°C

ELECTRICAL CHARACTERISTICS (T_J = $25^{\circ}C$ unless otherwise noted)

Devices are bidirectional. All electrical parameters apply to forward and reverse polarities.

Characteristics		Symbol	Min	Тур	Max	Unit
Breakover Voltage (Both polarities) (dv/dt = 100 V/μs, I _{SC} = 1.0 A, Vdc = 1000 V) (+65°C)	MMT05B230T3 MMT05B260T3 MMT05B310T3 MMT05B230T3	V _(BO)	- - -		265 320 365 280	Volts
	MMT05B260T3 MMT05B310T3		-	-	340 400	
Breakover Voltage (Both polarities) (f = 60 Hz, I_{SC} = 1.0 A(rms), V_{OC} = 1000 V(rms), R _I = 1.0 kΩ, t = 0.5 cycle) (Note 3.) (+65°C)	MMT05B230T3 MMT05B260T3 MMT05B310T3 MMT05B230T3 MMT05B260T3	V _(BO)	- - - -	- - - -	265 320 365 280 340	Volts
	MMT05B310T3		-	-	400	
Breakover Voltage Temperature Coefficient		dV _(BO) /dT _J	-	0.08	-	%/°C
Breakdown Voltage (I _(BR) = 1.0 mA) Both polarities	MMT05B230T3 MMT05B260T3 MMT05B310T3	V _(BR)	- - -	190 240 280	- - -	Volts
Off State Current (V_{D1} = 50 V) Both polarities (V_{D2} = V_{DM}) Both polarities		I _{D1} I _{D2}	_ _	_ _	2.0 5.0	μA
On–State Voltage (I _T = 1.0 A) (PW \leq 300 µs, Duty Cycle \leq 2%) (Note 3.)		V _T	-	1.53	3.0	Volts
Breakover Current (f = 60 Hz, V _{DM} = 1000 V(rms), R _S = Both polarities	= 1.0 kΩ)	I _{BO}	-	230	-	mA
Holding Current (Both polarities) $V_S = 500$ Volts; I _T (Initiating Current) = ± 1.0 Amp	(Note 3.) (+65°C)	I _Н	175 130	340 _		mA
Critical Rate of Rise of Off–State Voltage (Linear waveform, V_D = Rated V_{BR} , T_J = 25°C)		dv/dt	2000	_	_	V/µs
Capacitance (f = 1.0 MHz, 50 Vdc, 1.0 V rms Signal) (f = 1.0 MHz, 2.0 Vdc, 15 mV rms Signal)		Co		22 53	- 75	pF

3. Measured under pulse conditions to reduce heating.

Voltage Current Characteristic of TSPD (Bidirectional Device)

Symbol	Parameter			
I _{D1} , I _{D2}	Off State Leakage Current			
V _{D1} , V _{D2}	Off State Blocking Voltage			
V _{BR}	Breakdown Voltage			
V _{BO}	Breakover Voltage			
I _{BO}	Breakover Current			
Ι _Η	Holding Current			
V _{TM}	On State Voltage			

Figure 1. Off-State Current versus Temperature

Figure 2. Breakdown Voltage versus Temperature

-50

-25

Figure 3. Breakover Voltage versus Temperature

Figure 5. Exponential Decay Pulse Waveform

Figure 6. Peak Surge On–State Current versus Surge Current Duration, Sinusoidal Waveform

*Polymeric PTC (positive temperature coefficient) overcurrent protection device

Preferred Device

Thyristor Surge Protectors

High Voltage Bidirectional TSPD

These Thyristor Surge Protective devices (TSPD) prevent overvoltage damage to sensitive circuits by lightning, induction and power line crossings. They are breakover-triggered crowbar protectors. Turn-off occurs when the surge current falls below the holding current value.

Secondary protection applications for electronic telecom equipment at customer premises.

- Outstanding High Surge Current Capability: 100 Amps 10x1000 μsec Guaranteed at the extended temp range of -20°C to 65°C
- The MMT10B230T3 Series is used to help equipment meet various regulatory requirements including: Bellcore 1089, ITU K.20 & K.21, IEC 950, UL 1459 & 1950 and FCC Part 68.
- Bidirectional Protection in a Single Device
- Little Change of Voltage Limit with Transient Amplitude or Rate
- Freedom from Wearout Mechanisms Present in Non–Semiconductor Devices
- Fail–Safe, Shorts When Overstressed, Preventing Continued Unprotected Operation.
- Surface Mount Technology (SMT)
- Complies with GR1089 Second Level Surge Spec at 500 Amps 2x10 µsec Waveforms
- **%** Indicates UL Registered File #E116110
- Device Marking: MMT10B230T3: RPDF; MMT10B260T3: RPDG; MMT10B310T3: RPDJ, and Date Code

MAXIMUM RATINGS (T_J = 25° C unless otherwise noted)

Rating	Symbol	Value	Unit
Off-State Voltage - Maximum	V _{DM}		Volts
MMT10B230T3		±170	
MMT10B260T3		± 200	
MMT10B310T3		±270	
Maximum Pulse Surge Short Circuit			A(pk)
Current Non–Repetitive			
Double Exponential Decay Waveform			
(Notes 1. and 2.)			
10 x 1000 µsec (–20°C to +65°C)	I _{PPS1}	±100	
2 x 10 µsec	I _{PPS2}	± 500	
10 x 700 μsec	I _{PPS3}	±180	
Maximum Non–Repetitive Rate of Change of On–State Current	di/dt	±100	A/μs
Double Exponential Waveform,			
R = 2.0, L = 1.5 μH, C = 1.67 μF,			
I _{pk} = 110A			
E.:.			

1. Allow cooling before testing second polarity.

2. Measured under pulse conditions to reduce heating.

ON Semiconductor™

http://onsemi.com

BIDIRECTIONAL TSPD (9) 100 AMP SURGE 265 thru 365 VOLTS

SMB (No Polarity) (Essentially JEDEC DO-214AA) CASE 403C

MARKING DIAGRAMS

RPDx = Specific Device Coo x = F, G or J Y = Year

WW = Work Week

ORDERING INFORMATION

Device	Package	Shipping
MMT10B230T3	SMB	12mm Tape and Reel (2.5K/Reel)
MMT10B260T3	SMB	12mm Tape and Reel (2.5K/Reel)
MMT10B310T3	SMB	12mm Tape and Reel (2.5K/Reel)

Preferred devices are recommended choices for future use and best overall value.

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Operating Temperature Range Blocking or Conducting State	T _{J1}	-40 to +125	°C
Overload Junction Temperature – Maximum Conducting State Only	T _{J2}	+175	°C
Instantaneous Peak Power Dissipation (I _{pk} = 100 A, 10x1000 μsec @ 25°C)	P _{PK}	4000	W
Maximum Lead Temperature for Soldering Purposes 1/8" from Case for 10 Seconds	ΤL	260	°C

ELECTRICAL CHARACTERISTICS (T_J = $25^{\circ}C$ unless otherwise noted)

Devices are bidirectional. All electrical parameters apply to forward and reverse polarities.

Characteristic		Symbol	Min	Тур	Max	Unit
Breakover Voltage (Both polarities) (dv/dt = 100 V/μs, I _{SC} = 1.0 A, Vdc = 1000 V) (+65°C)	MMT10B230T3 MMT10B260T3 MMT10B310T3 MMT10B230T3	V _(BO)		- - -	265 320 365 290	Volts
	MMT10B260T3 MMT10B310T3				340 400	
Breakover Voltage (Both polarities) (f = 60 Hz, I_{SC} = 1.0 A(rms), V_{OC} = 1000 V(rms), R _I = 1.0 k Ω , t = 0.5 cycle) (Note 3.) (+65°C)	MMT10B230T3 MMT10B260T3 MMT10B310T3 MMT10B230T3 MMT10B260T3	V _(BO)	- - - -	- - - -	265 320 365 290 340	Volts
Prockover Veltago Temperaturo Coofficient	MMT10B310T3		-	-	400	0/ /0
Breakdown Voltage (I _(BR) = 1.0 mA) Both polarities	MMT10B230T3 MMT10B260T3 MMT10B310T3	V _(BR)	_ _ _ _	190 240 280	_ _ _ _	Volts
Off State Current ($V_{D1} = 50 \text{ V}$) Both polarities ($V_{D2} = V_{DM}$) Both polarities		I _{D1} I _{D2}	_ _		2.0 5.0	μΑ
On–State Voltage (I _T = 1.0 A) (PW \leq 300 µs, Duty Cycle \leq 2%) (Note 3.)		V _T	-	1.53	5.0	Volts
Breakover Current (f = 60 Hz, V _{DM} = 1000 V(rms), I Both polarities	R _S = 1.0 kΩ)	I _{BO}	-	260	-	mA
Holding Current (Both polarities) V _S = 500 Volts; I _T (Initiating Current) = \pm 1.0 A	(Note 3.) (+65°C)	I _Н	175 130	270 -	-	mA
Critical Rate of Rise of Off–State Voltage (Linear waveform, V_D = Rated V_{BR} , T_J = 25°C)		dv/dt	2000	-	-	V/µs
Capacitance (f = 1.0 MHz, 50 Vdc, 1.0 V rms Signal (f = 1.0 MHz, 2.0 Vdc, 15 mV rms Sign	l) nal)	Co		65 160	_ 200	pF

3. Measured under pulse conditions to reduce heating.

Voltage Current Characteristic of TSPD (Bidirectional Device)

Symbol	Parameter			
I _{D1} , I _{D2}	Off State Leakage Current			
V _{D1} , V _{D2}	Off State Blocking Voltage			
V _{BR}	Breakdown Voltage			
V _{BO}	Breakover Voltage			
I _{BO}	Breakover Current			
I _H	Holding Current			
V _{TM}	On State Voltage			

Figure 1. Off-State Current versus Temperature

Figure 2. Breakdown Voltage versus Temperature

Figure 3. Breakover Voltage versus Temperature

Figure 5. Exponential Decay Pulse Waveform

Figure 6. Peak Surge On–State Current versus Surge Current Duration, Sinusoidal Waveform

*Polymeric PTC (positive temperature coefficient) overcurrent protection device

Package Outline Dimensions

SURMETIC 40 CASE 17-02 ISSUE C

NOTE: 1. LEAD DIAMETER & FINISH NOT CONTROLLED WITHIN DIM F.

	INCHES		MILLIM	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.330	0.350	8.38	8.89
В	0.130	0.145	3.30	3.68
D	0.037	0.043	0.94	1.09
F	-	0.050	_	1.27
K	1.000	1.250	25.40	31.75

STYLE 1: PIN 1. ANODE 2. CATHODE

MOSORB CASE 41A-02

ISSUE A

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. LEAD FINISH AND DIAMETER UNCONTROLLED IN DIMENSION P.

	INC	HES	MILLIM	ETERS
DIM	MIN	MAX	MIN	MAX
Α	0.360	0.375	9.14	9.52
В	0.190	0.205	4.83	5.21
D	0.038	0.042	0.97	1.07
K	1.00		25.40	
Ρ		0.050		1.27

κ

- B

- D

Α

κ

- NOTES: 1. ALL RULES AND NOTES ASSOCIATED WITH JEDEC DO-41 OUTLINE SHALL APPLY. 2. POLARITY DENOTED BY CATHODE BAND. 3. LEAD DIAMETER NOT CONTROLLED WITHIN F DIMENSION.

	MILLIM	ETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
A	5.97	6.60	0.235	0.260
В	2.79	3.05	0.110	0.120
D	0.76	0.86	0.030	0.034
K	27.94	_	1.100	_

SOT-23 CASE 318-08 **ISSUE AF**

NOTES:

- NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL

	INC	HES	MILLIN	IETERS		
DIM	MIN	MAX	MIN	MAX		
Α	0.1102	0.1197	2.80	3.04		
В	0.0472	0.0551	1.20	1.40		
C	0.0350	0.0440	0.89	1.11		
D	0.0150	0.0200	0.37	0.50		
G	0.0701	0.0807	1.78	2.04		
Н	0.0005	0.0040	0.013	0.100		
J	0.0034	0.0070	0.085	0.177		
K	0.0140	0.0285	0.35	0.69		
L	0.0350	0.0401	0.89	1.02		
S	0.0830	0.1039	2.10	2.64		
V	0.0177	0.0236	0.45	0.60		
STYLE	STYLE 9: STYLE 12:					
PIN	I1. ANO	DE	PIN 1.	CATHODE		
	2. ANO	DE	2.	CATHODE		
	3. CAT	HODE	3.	ANODE		

SC-74 CASE 318F-02 **ISSUE C**

NOTES:

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.

	INC	HES	MILLIM	ETERS
DIM	MIN	MAX	MIN	MAX
Α	0.1063	0.1220	2.70	3.10
В	0.0512	0.0669	1.30	1.70
C	0.0394	0.0511	1.00	1.30
D	0.0098	0.0157	0.25	0.40
G	0.0335	0.0413	0.85	1.05
н	0.0005	0.0040	0.013	0.100
J	0.0040	0.0102	0.10	0.26
K	0.0079	0.0236	0.20	0.60
L	0.0493	0.0649	1.25	1.65
M	0 °	10 °	0 °	10 °
S	0.0985	0.1181	2.50	3.00

STYLE 1: PIN 1. CATHODE 2. ANODE CATHODE
 ANODE
 CATHODE
 CATHODE
 CATHODE
 ANODE
 CATHODE

S Α D В

SMC CASE 403-03 **ISSUE B**

NOTES:

VUIES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. D DIMENSION SHALL BE MEASURED WITHIN DIMENSION P.

	INC	HES	MILLIN	ETERS
DIM	MIN	MAX	MIN	MAX
Α	0.260	0.280	6.60	7.11
В	0.220	0.240	5.59	6.10
С	0.075	0.095	1.90	2.41
D	0.115	0.121	2.92	3.07
Н	0.0020	0.0060	0.051	0.152
J	0.006	0.012	0.15	0.30
K	0.030	0.050	0.76	1.27
Ρ	0.020	REF	0.51	REF
S	0.305	0.320	7.75	8.13

SMA CASE 403B-01 ISSUE O

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH.

inches

mm

	INCHES		MILLIM	ETERS
DIM	MIN	MAX	MIN	MAX
Α	0.160	0.180	4.06	4.57
В	0.090	0.115	2.29	2.92
С	0.075	0.105	1.91	2.67
D	0.050	0.064	1.27	1.63
Н	0.004	0.008	0.10	0.20
J	0.006	0.016	0.15	0.41
K	0.030	0.060	0.76	1.52
S	0.190	0.220	4.83	5.59

κ

CASE 403C-01 ISSUE O **S** -Α ¥ D в ¥ С Å

▶ н

SMB

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. D DIMENSION SHALL BE MEASURED WITHIN DIMENSION P.

	INCHES		MILLIN	ETERS
DIM	MIN	MAX	MIN	MAX
Α	0.160	0.180	4.06	4.57
В	0.130	0.150	3.30	3.81
C	0.075	0.095	1.90	2.41
D	0.077	0.083	1.96	2.11
н	0.0020	0.0060	0.051	0.152
J	0.006	0.012	0.15	0.30
K	0.030	0.050	0.76	1.27
P	0.020 REF		0.51	REF
S	0.205	0.220	5.21	5.59

SC-88A (SOT-323) CASE 419A-01 ISSUE E

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH.

	INCHES		MILLIM	ETERS
DIM	MIN	MAX	MIN	MAX
Α	0.071	0.087	1.80	2.20
В	0.045	0.053	1.15	1.35
С	0.031	0.043	0.80	1.10
D	0.004	0.012	0.10	0.30
G	0.026	BSC	0.65	BSC
Н		0.004		0.10
J	0.004	0.010	0.10	0.25
K	0.004	0.012	0.10	0.30
N	0.008	REF	0.20	REF
S	0.079	0.087	2.00	2.20
V	0.012	0.016	0.30	0.40

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER.

2. 3. CUNING DIMENSION: MILLIMETER. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.

	MILLIMETERS		INC	HES
DIM	MIN	MAX	MIN	MAX
Α	1.75	2.05	0.069	0.081
В	1.75	2.18	0.069	0.086
C	0.85	1.15	0.033	0.045
D	0.40	0.69	0.016	0.027
F	0.70	1.00	0.028	0.039
Н	-0.05	+0.10	-0.002	+0.004
J	0.10	0.25	0.004	0.010
K	3.60	3.90	0.142	0.154
L	0.50	0.80	0.020	0.031
R	1.20	1.50	0.047	0.059
S	0.50 REF		0.019	REF

SC-75/SOT-416 CASE 463-01 **ISSUE B**

POWERMITE CASE 457-04

STYLE 1: PIN 1. BASE 2. EMITTER 3. COLLECTOR

STYLE 2: PIN 1. ANODE 2. N/C 3. CATHODE 2. ANODE 3. CATHODE

STYLE 4: PIN 1. CATHODE 2. CATHODE 3. ANODE

STYLE 3: PIN 1. ANODE

http://onsemi.com 133

NOTES:

DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.

	MILLIMETERS		INC	HES
DIM	MIN	MAX	MIN	MAX
Α	0.70	0.80	0.028	0.031
В	1.40	1.80	0.055	0.071
C	0.60	0.90	0.024	0.035
D	0.15	0.30	0.006	0.012
G	1.00 BSC		0.039 BSC	
Н		0.10		0.004
J	0.10	0.25	0.004	0.010
K	1.45	1.75	0.057	0.069
L	0.10	0.20	0.004	0.008
S	0.50 BSC		0.020	BSC

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETERS
- DIE THICKNEY MILLING HERSON
 DIE THICKNESS ALLOWABLE IS 0.305 MM MAXIMUM (0.012 INCHES MAXIMUM).
 DIMENSION D APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.20 AND 0.25 MM EDUM TERMINAL
- AND IS MEASURED BE I WEEN U.2U AND U.29 MIW FROM TERMINAL 5. THE PIN #1 IDENTIFIER MUST BE ON THE TOP SURFACE OF THE PACKAGE BY USING IDENTIFICATION MARK OR OTHER FEATURE OF
- PACKAGE BODY. 6. EXACT SHAPE AND SIZE OF THIS FEATURE IS
- CAACI SHAPE AND SIZE OF THIS PEATURE IS OPTIONAL.
 THE SHAPE SHOWN ON FOUR CORNERS ARE NOT ACTUAL I/O.
 PACKAGE WARPAGE MAX 0.05 MM.

	MILLIMETERS		INC	HES	
DIM	MIN	MAX	MIN	MAX	
Α	4.00	BSC	0.157 BSC		
В	4.00	BSC	0.157	BSC	
C		1.00		0.039	
D	0.18	0.30	0.007	0.012	
E	3.75	BSC	0.148	3 BSC	
F	3.75	BSC	0.148	3 BSC	
G	0.50	BSC	0.020) BSC	
Н	2.00 BSC		0.79	BSC	
K	0.01	0.05	0.000	0.002	
L	0.30	0.55	0.012	0.022	
М		12 °		12 °	
N	2.00 BSC		0.07	9 BSC	
P	1.88 BSC		0.07	4 BSC	
Q	0.50	0.50 DIA		0.020 DIA	
R	1.88	BSC	0.07	9 BSC	
V	2.50	BSC	0.098 BSC		
W	1.30	BSC	0.051 BSC		
Z	2.50	2.50 BSC		3 BSC	
AA	0.65	0.80	0.026	0.031	
AB	0.20 REF		0.008 REF		
AD	1.30 BSC		0.05	1 BSC	
AE	0.13	0.23	0.005	0.009	
AF	0.24	0.60	0.009	0.024	
AG	0.30	0.45	0.012	0.018	

24 PIN MLF

ON SEMICONDUCTOR MAJOR WORLDWIDE SALES OFFICES

UNITED STATES

Huntsville	256-774-1000
CALIFORNIA	
Irvine	949-623-8485
San Jose	408-350-4800
Encino	818-654-9040
COLORADO	
Littleton	303-256-5884
FLORIDA	
Татра	813-286-6181
GEORGIA	
Atlanta	888-793-3435
ILLINOIS	
Chicago	847-413-2500
INDIANA	
Carmel	317-848-9958
MASSACHUSETTS	
Boston	781–376–4223
MICHIGAN	
	734-953-6704
MINNESOTA	700 040 0000
Plymouth	763-249-2360
NORTH CAROLINA	040 705 5005
	919-785-5025
PENNS I LVANIA	245 007 4240
	210-997-4340
	072 633 0991
	912-033-0001
Drapor	801 572 4010
Diapei	001-072-4010

CANADA

ONTARIO Ottawa	613–226–3491
QUEBEC St. Laurent	514–333–2125

INTERNATIONAL

BRAZIL	
Sao Paulo	55–011–3030–5244
CHINA	
Beijing	86-10-6564-2288
Shenzhen	86-75-5209-1128
Shanghai	86-21-6390-7468
CZECH REPUBLIC	
Roznov	420-651-667-141
FINLAND	
Vantaa 3	358-9-85-666-460
FRANCE	
Paris 3	33-1-39-26-41-00
GERMANY	
Munich	49-89-92103-0
HONG KONG	
Hong Kong	852–2689–0088
INDIA	
Bangalore	91–80–5598615
ISRAEL	
Herzelia	. 972–9–9609–111

INTERNATIONAL (continued)

ITALY	
Milan	
JAPAN	
Токуо	83–3–5740–2700
KOREA	
Seoul	82–2–528–2700
MALAYSIA	
Penang	60–4–226–9368
MEXICO	
Guadalaiara	
PHILIPPINES	
Manila	63-2-808-3801
San Juan	787_641_4100
SINGAPORE	65 209 1769
Singapore	
SPAIN	
	34–91–745–6817
SWEDEN	
Stockholm	46–8–5090–4680
TAIWAN	
Taipei	886–2–2718–9961
THAILAND	
Bangkok	66–2–653–5031
UNITED KINGDOM	
Aylesbury	44–1–296–610400

ON SEMICONDUCTOR STANDARD DOCUMENT TYPE DEFINITIONS

DATA SHEET CLASSIFICATIONS

A Data Sheet is the fundamental publication for each individual product/device, or series of products/devices, containing detailed parametric information and any other key information needed in using, designing–in or purchasing of the product(s)/device(s) it describes. Below are the three classifications of Data Sheet: Product Preview; Advance Information; and Fully Released Technical Data

PRODUCT PREVIEW

A Product Preview is a summary document for a product/device under consideration or in the early stages of development. The Product Preview exists only until an "Advance Information" document is published that replaces it. The Product Preview is often used as the first section or chapter in a corresponding reference manual. The Product Preview displays the following disclaimer at the bottom of the first page: "This document contains information on a product under development. ON Semiconductor reserves the right to change or discontinue this product without notice."

ADVANCE INFORMATION

The Advance Information document is for a device that is NOT fully qualified, but is in the final stages of the release process, and for which production is eminent. While the commitment has been made to produce the device, final characterization and qualification may not be complete. The Advance Information document is replaced with the "Fully Released Technical Data" document once the device/part becomes fully qualified. The Advance Information document displays the following disclaimer at the bottom of the first page: "This document contains information on a new product. Specifications and information herein are subject to change without notice."

FULLY RELEASED TECHNICAL DATA

The Fully Released Technical Data document is for a product/device that is in full production (i.e., fully released). It replaces the Advance Information document and represents a part that is fully qualified. The Fully Released Technical Data document is virtually the same document as the Product Preview and the Advance Information document with the exception that it provides information that is unavailable for a product in the early phases of development, such as complete parametric characterization data. The Fully Released Technical Data document is also a more comprehensive document than either of its earlier incarnations. This document displays no disclaimer, and while it may be informally referred to as a "data sheet," it is not labeled as such.

DATA BOOK

A Data Book is a publication that contains primarily a collection of Data Sheets, general family and/or parametric information, Application Notes and any other information needed as reference or support material for the Data Sheets. It may also contain cross reference or selector guide information, detailed quality and reliability information, packaging and case outline information, etc.

APPLICATION NOTE

An Application Note is a document that contains real-world application information about how a specific ON Semiconductor device/product is used, or information that is pertinent to its use. It is designed to address a particular technical issue. Parts and/or software must already exist and be available.

SELECTOR GUIDE

A Selector Guide is a document published, generally at set intervals, that contains key line–item, device–specific information for particular products or families. The Selector Guide is designed to be a quick reference tool that will assist a customer in determining the availability of a particular device, along with its key parameters and available packaging options. In essence, it allows a customer to quickly "select" a device. For detailed design and parametric information, the customer would then refer to the device's Data Sheet. The *Master Components Selector Guide* (SG388/D) is a listing of **ALL** currently available ON Semiconductor devices.

REFERENCE MANUAL

A Reference Manual is a publication that contains a comprehensive system or device–specific descriptions of the structure and function (operation) of a particular part/system; used overwhelmingly to describe the functionality or application of a device, series of devices or device category. Procedural information in a Reference Manual is limited to less than 40 percent (usually much less).

HANDBOOK

A Handbook is a publication that contains a collection of information on almost any give subject which does not fall into the Reference Manual definition. The subject matter can consist of information ranging from a device specific design information, to system design, to quality and reliability information.

ADDENDUM

A documentation Addendum is a supplemental publication that contains missing information or replaces preliminary information in the primary publication it supports. Individual addendum items are published cumulatively. The Addendum is destroyed upon the next revision of the primary document.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application to convey any license under its patent rights or others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application, have representation, which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products hard or unauthorized application, Buyer shall indemnify and hold SCILLC and is officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part.

PUBLICATION ORDERING INFORMATION

NORTH AMERICA Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: ONlit@hibbertco.com Fax Response Line: 303-675-2167 or 800-344-3810 Toll Free USA/Canada

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor - European Support

German Phone: (+1) 303-308-7140 (Mon-Fri 2:30pm to 7:00pm CET) Email: ONlit.german@hibbertco.com

- French Phone: (+1) 303-308-7141 (Mon-Fri 2:00pm to 7:00pm CET) Email: ONlit-french@hibbertco.com
- English Phone: (+1) 303-308-7142 (Mon-Fri 12:00pm to 5:00pm GMT) Email: ONlit@hibbertco.com

EUROPEAN TOLL-FREE ACCESS*: 00-800-4422-3781

*Available from Germany, France, Italy, UK, Ireland

CENTRAL/SOUTH AMERICA:

Spanish Phone: 303-308-7143 (Mon-Fri 8:00am to 5:00pm MST) Email: 0Nlit-spanish@hibbertco.com Toll-Free from Mexico: Dial 01-800-288-2872 for Access -

then Dial 866-297-9322

ASIA/PACIFIC: LDC for ON Semiconductor - Asia Support Phone: 303-675-2121 (T-F 9:00am to 1:00pm Hong Kong Time) Toll Free from Hong Kong & Singapore: 001-800-4422-3781 Email: ONlit-asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center 4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan 141-0031 Phone: 81-3-5740-2700

Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative