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1 Introduction

This document is a report for the dCSE-funded project that introduces k-point parallelism into VASP
v5.2.2 on HECToR. In what follows I will briefly show why the performance of VASP is important on
HECToR, how it is parallelized, and then I shall discuss the introduction of k-point parallelism into
VASP and how I implemented what I will call k-point parallelized version of VASP. I shall then present
the results of the k-point parallelized code and finally discuss the improvements in VASP that my work
delivers.
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1.1 VASP

For many years ab inito electronic structure calculations have been one of the main stays of high perfor-
mance computing (HPC). Whilst the methods used for those calculations have changed, for many years
now the method introduced by Car and Parinello in 1985 [1] has been one of the most common to be em-
ployed. This is based upon density functional theory [2]; the Kohn-Sham [3] equations are solved within
a plane wave basis set by minimisation of the total energy functional, with the use of pseudopotentials
[4]-[5] to obviate the representation of core states. A review of the method can be found in [6]. Such
is the importance of these methods that over 30% of all the cycles used on the phase2b component of
HECToR [7], the UK’s high-end computing resource, in the period from December 2010 − August 2011
were for packages performing total energy pseudopotential calculations.
One of the best known and widely used packages for performing this type of calculation is VASP [8],
[9], [10], [11], the Vienna Ab initio Simulation Package. Indeed on HECToR it is the most extensively
used package of all, and thus maximising its performance is vital for researchers using this, and related,
machines. In this report I will describe my recent work on improving the parallel scalability of the code
for certain classes of common problems. I have achieved this by introducing a new level of parallelism
based upon the use of k-point sampling within VASP. Whilst this is common in similar codes, the latest
release of VASP when I started off the project, version 5.2.2, does not support it, and I will show that
through its use the scalability of calculations on small to mid-sized systems can be markedly improved.
This is a particularly important class of problems as often the total energy calculation is not the only
operation to be performed in the calculation. An important example is geometry optimisation. Here
very many total energy calculations may need to be performed one after another. Thus the total size of
the system under study is limited by time constraints, and so parallel scaling of the calculation on such
moderate sized systems must be good if many cores are to be exploited efficiently.

1.2 The Parallelisation of VASP

Details of how VASP is parallelised is covered in some detail elsewhere [12], and I shall only cover the
details which are relevant to the work here.
VASP 5.2.2 offers parallelisation (and data distribution) over bands and over plane wave coefficients,
and both may be used together. How this division occurs is controlled by the NPAR tag in the INCAR
file. In particular if there are a total of NPROC cores in the job, each band will be distributed over
NPROC/NPAR cores. Thus, if NPAR=1 all the bands will be distributed over all processors, while if
NPAR=NPROC the coefficients for a given band are all associated with one core.
NPAR reflects a tensioning between conflicting requirements. If bands are distributed across all proces-
sors, the communication costs for the parallel three dimensional Fast Fourier Transforms (FFTs) required
by the plane wave pseudopotential method are high, but the cost for linear algebra operations required
by the method, such as orthogonalisation and diagonalisation, are relatively low. On the other hand
if NPAR=1 the communication cost for the FFTs is non-existent, but it is high for the linear algebra
operations. Thus NPAR must be chosen carefully to obtain the best performance possible, and it will
depend upon the chemical system being studied, the hardware upon which the run is being performed
and the number of cores being used (amongst other possibilities).
Thus the use of NPAR allows a run to either stress the parallel FFT or parallel diagonalisation. Un-
fortunately neither of these operations scale well on distributed memory parallel architectures [13]-[14],
especially for the moderate size grids and matrices used in many VASP runs.
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1.3 Introducing k-point Parallelism

Parallelisation over bands and over plane waves are not the only possible ways that ab initio electronic
structure codes can exploit modern HPC resources. Many such codes, but not VASP, also exploit paralleli-
sation over k-points, examples being CASTEP [15],[16] and CRYSTAL [17],[18]. k-points are ultimately
due to the translational symmetry of the systems being studied [19]. This symmetry also results in many,
but not all, operations at a given k-point being independent from those at another k-point. This natu-
rally allows another level of parallelism, and it has been shown that exploitation of k-point parallelism
can greatly increase the scalability, a recent example being [20]. More generally this use of hierarchical
parallelism is one of the more common methods of scaling to very large numbers of cores [21].
The standard release of VASP does not, however, exploit this possibility. Therefore we have modified the
code from VASP 5.2.2 to add this extra level of parallelisation. The code is organised so that the cores
may be split into a number of groups, and each of these groups performs calculations on a subset of the
k-points. The number of such groups is specified by the new KPAR tag, which is set in the INCAR input
file. Thus if the run uses 10 k-points and KPAR is set to 2 there will be 2 k-point groups each performing
calculations on 5 k-points. Similarly if KPAR is set to 5 there will be 5 groups each with 2 k-points. It
can therefore be seen that KPAR has an analogous role to NPAR mentioned above, except that it applies
to k-point parallelism. Currently the value of KPAR is limited to values that divide exactly both the
total number of k-points and the total number of cores used by the job. It should be noted that NPAR
is also subject to the latter restriction.
This introduction of another level of parallelism through use of the k-points does potentially greatly
increase the scalability of the code. However it should not be viewed as a panacea. Not all operations
involve k-points, and thus Amdahl’s law [22] effects will place a limit on the scalability that can be
achieved. Further some quantities are not perfectly parallel across k-points, evaluation of the Fermi level
being an obvious example. And it should be noted that introduction of k-point parallelism does introduce
some extra communication and synchronization.
However probably the biggest limitation on the use of k-point parallelism is that due to system size. As
the size of the unit cell that the calculation uses is increased fewer k-points are required to converge the
calculation to a given precision, and in the limit only a single k-point may be sufficient to accurately
represent the system. This limits what can be achieved by k-point parallelism, but for many practising
computational scientists the calculations they require are not so large that they can be converged with
1 k-point, some recent examples being [23]-[26]. Therefore for many cases parallelisation over k-points is
a useful technique. This is especially true when the total energy calculation is only one part of a larger
calculation, for instance in a geometry optimisation.

1.4 Implementation of k-point parallelism

In the original code the tag NPAR is used to create intra-band and inter-band communicators. MPI
processes are bound to an intra-band communicator to work on specific bands and when information is
required about the other bands, MPI processes communicate through the inter-band communicators. To
exploit k-point parallelism, I constructed an extra layer of communication using the value of KPAR. KPAR
intra-k-point communicators (named COMM ) and MPI processes/KPAR inter-k-point communicators
(named COMM CHAIN K ) are created. Each COMM communicator has all the information needed
for the k-points it is assigned. Subsequently, as before the MPI processes in the COMM communicator
are divided into MPI processes bounded to inter- and intra-band communicators. When a loop over k-
points is encountered, the processes in each COMM communicator iterate through all the k-points they
are responsible for and as soon the loop exits the COMM CHAIN K communicators are used to gather
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together the results. This is the general design followed, although the main difficulties at the development
process arose at places where information from all k-points was required e.g., for implementing the linear
tetrahedron method in the evaluation of the Fermi level etc.

Also extra care was needed when a full, non-symmetrized k-grid was to be employed, as some particular
quantities have to be stored in all communicators, even when they are referring to k-points the communi-
cator is not responsible for. The cases where the Hartee-Fock exchange is used were further complicated
as they involve nested k-loops. Extra communication is needed there (compared to the non-Hartee Fock)
cases, but as seen in the test cases (2.4) and (2.5) this does not hinder the scaling of the code, at least
for the cases studied.

In regards with I/O, depending on the case I have chosen either to communicate all relevant information
on the master node, or have a ‘leader’ in each COMM communicator to do the writing (using a loop so
that information was written in orderly form).

2 Benchmarking

We have examined several test cases with the new code. Here we present five:

• Test 1: A hydrogen defect in 32 atoms of palladium. 10 k-points are used.

• Test 2: A unit cell of Litharge (α -PbO), a total of 4 atoms. 108 k-points are used.

• Test 3: A cell of PbO using 126 k-points.

• Test 4: Again α -PbO using 24 k-points.

• Test 5: A phonon calculation with 20 k-points.

In Tests 1-3 the PBE exchange correlation functional is used and the k-mesh is generated by the
Monkhorst-Pack method. Tests 4-5 involve Hartee-Fock calculations and the k-mesh is generated with
the Gamma centered method. All runs except for the phonon calculation are a single point energy
calculation.

All runs have been performed on the phase 2b component of the HECToR system, the UK’s national
supercomputing service. This is a large Cray XE6 system. The nodes are based upon AMD Magny-Cours
processors, and contain 24 cores each clocking at 2.1GHz. There is 32 Gbytes of memory associated with
each node, and inter-node communication is via Cray’s Gemini network. More details may be found at
the HECToR web site ([7]).

In Tables (1), (3), (5), (7) and (8) we compare the performance of VASP 5.2.2 with the new k-point
parallelized code and study the scaling of the new code. In each case the original code is compared with
the k-point code with increasing numbers of k-point groups. All times reported are total run times, i.e.
not just the time for the energy minimisation.
In Tables (2), (4), (6) and (9) we compare the performance of VASP 5.2.2 using the optimal NPAR
value with the performance of the k-point parallelized code, when the same number of cores is utilized.
We demonstrate that efficient use of large number of cores is now possible for cases with more than one
k-point.
It should be noted that the use of an appropriate NPAR value is imperative for the efficient running of
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VASP. The optimal value of NPAR in the original code depends on the total number of cores employed.
For the k-point parallelized code, the optimal value of NPAR depends on the number of cores in one
k-group. Hence the value of NPAR that was optimal for the original code on x cores, will be also the
most efficient choice for n k-groups on n× x cores, when using the k-points parallelized code.

2.1 Test Case 1

The system simulated is a hydrogen defect in 32 atoms of palladium. It uses 10 k-points and the PBE
exchange correlation functional ([27]-[28]).

Test Case 1 Cores Time (secs) Speedup
VASP 5.2.2 64 298.187 1
KPAR=2 128 159.982 1.863
KPAR=5 320 75.357 3.956
KPAR=10 640 47.795 6.239

Table 1: Scaling of Test Case 1.

Table (1) shows that the k-point parallelized code scales satisfactorily to 320 cores, where it is twice as
fast as the original code at the same number of cores (see Table (2)).

Test Case 1 Cores Time (secs) Speedup
VASP 5.2.2 128 206.517 1
KPAR=2 128 158.686 1.301
VASP 5.2.2 320 146.197 1
KPAR=5 320 75.201 1.944
VASP 5.2.2 640 147.606 1
KPAR=10 640 47.795 3.088

Table 2: The optimal NPAR for the original code is 4, 8, 32, and 32 for 64, 128, 320 and 640 cores
respectively. For the k-point parallelized code the optimal NPAR is 4 for any number of cores, provided
one k-group consists of 64 cores.

5



Figure 1: Speedup for Test Case 1 (where Speedup is taken to be 1 for 64 cores).

2.2 Test Case 2

The system simulated is a unit cell of Litharge (a-PbO), a total of 4 atoms. 108 k-points are used.

Test Case 2 Cores Time (secs) Speedup
VASP 5.2.2 144 2141.206 1
KPAR=2 288 1097.981 1.950
KPAR=3 432 766.196 2.794
KPAR=4 576 607.69 3.524
KPAR=6 864 410.018 5.222
KPAR=9 1296 278.585 7.686
KPAR=12 1728 215.757 9.924
KPAR=18 2592 150.177 14.258
KPAR=27 3888 105.563 20.284
KPAR=36 5184 87.569 24.452
KPAR=54 7776 65.332 32.774
KPAR=108 15552 41.055 52.154

Table 3: Scaling of Test Case 2.

Table (3) shows that the k-point parallelized code scales rather satisfactorily to 3888 cores, and at 1738
cores it is 7 times faster than the original code at the same number of cores (see Table (4)).
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Test Case 2 Cores Time (secs) Speedup
VASP 5.2.2 288 1530.244 1
KPAR=2 288 1097.981 1.394
VASP 5.2.2 432 1348.436 1
KPAR=3 432 766.196 1.76
VASP 5.2.2 576 1473.4 1
KPAR=4 576 607.69 2.425
VASP 5.2.2 864 1562.76 1
KPAR=6 864 410.018 3.811
VASP 5.2.2 1296 1899.499 1
KPAR=9 1296 278.585 6.818
VASP 5.2.2 1728 1532.32 1
KPAR=12 1728 215.757 7.1021

Table 4: The optimal NPAR for the original code is 18, 18, 18, 36, 36, 36 and 36 for 144, 288, 432, 576,
864, 1296 and 1728 cores respectively. For the k-point parallelized code the optimal NPAR is 18 for any
number of cores, provided one k-group consists of 144 cores.

Figure 2: Speedup for Test Case 2 (where Speedup is taken to be 1 for 144 cores).

2.3 Test Case 3

The simulated system is PbO using 126 k-points. The original code exhibits slowdown for over 144 cores
and the only way to employ more cores is to use the k-point parallelized code. The latter scales quite
satisfactorily up to 1008 cores.
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Test Case 3 Cores Time (secs) Speedup
VASP 5.2.2 144 120.388 1
KPAR=2 288 69.208 1.740
KPAR=3 432 48.315 2.492
KPAR=6 864 30.234 3.982
KPAR=7 1008 27.402 4.393
KPAR=9 1296 40.443 2.976

Table 5: Scaling of Test Case 3.

Test Case 3 Cores Time (secs) Speedup
VASP 5.2.2 288 130.688 1
KPAR=2 288 69.208 1.888
VASP 5.2.2 432 122.236 1
KPAR=3 432 48.315 2.530
VASP 5.2.2 864 320.196 1
KPAR=3 864 30.234 10.591
VASP 5.2.2 1008 318.516 1
KPAR=7 1008 27.402 11.624

Table 6: Here the optimal NPAR for the original code is 18, 12,18, 36 for 144, 288, 432, 1008 cores
respectively. For the k-point parallelized the optimal NPAR for any number of cores is 18, provided a
k-group consists of 144 cores.

Figure 3: Speedup for Test Case 3 (where Speedup is taken to be 1 for 144 cores.)
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2.4 Test Case 4

The system simulated is PbO with 24 k-points. This simulation involves Hartee-Fock exchange calcula-
tions. Optical properties are also examined.

Test Case 6 Cores Time (secs) Speedup
VASP 5.2.2 256 14674.49 1
KPAR=2 512 7578.614 1.936
KPAR=3 768 4979.435 2.947
KPAR=4 1024 3790.061 3.871
KPAR=6 1536 2552.615 5.749
KPAR=8 2048 1944.401 7.548
KPAR=12 3072 1399.796 10.953
KPAR=24 6144 1053.134 13.93411

Table 7: Scaling of Test Case 4.

The original code failed to run on 512 cores or more. Hence the only way to run efficiently this problem
is to employ the k-point parallelized version. This runs efficiently for this test case on up to 3072 cores.

Figure 4: Speedup of Test Case 4 (where Speedup is taken to be 1 for 256 cores.)

2.5 Test Case 5

The last test case is a phonon system with 20 k-points. This is a test case where NPAR has to be equal
to the total number of cores in the original code. This, according to the discussion in 1.2 means that the
linear algerbra operations cannot be parallelized and only the FFT calculations are performed in parallel.
For the k-parallelized code accordingly, NPAR should be equal to the number of cores in one k-group.
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Test Case 5 Cores Time (secs) Speedup
VASP 5.2.2 32 399.929 1
KPAR=2 64 221.94 1.802
KPAR=4 128 112.407 3.558

Table 8: Scaling of Test Case 5 (where Speedup is taken to be 1 for 32 cores).

Firstly, Table (9) shows that the original code does not scale at all over 32 cores. The FFT communications
cost becomes the bottleneck and it is not possible to perform the computation in less than 400 secs with
the original code.
Table (8) on the other hand shows that with the k-points parallelized code we can employ 4 times more
cores and we complete the simulation in 122 secs (3.6 speedup). The problem though is that we cannot
use more than 128 cores in this case, where potentially we could use 640 (number of k-points (20) × 32) for
this case. This is because during the specific calculation new k-point meshes are generated. When KPAR
is an exact divisor of the number of the k-points in the new mesh our k-points parallelized code performs
the calculation efficiently. When not, it exits. In this case the original k-mesh had 20 k-point, the second
k-mesh 52 and the third 68. Only the numbers 2 and 4 are common divisors of the aforementioned 3
numbers. Hence the biggest value that can be used for KPAR is 4.

Test Case 5 Cores Time (secs) Speedup
VASP 5.2.2 64 603.294 1
KPAR=2 64 221.94 2.718
VASP 5.2.2 128 2477.339 1
KPAR=4 128 112.407 22.039
VASP 5.2.2 160 4651.663 1
KPAR=5 160 64.96 71.608

Table 9: As seen above the original code does not scale at all.
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Figure 5: Speedup of Test Case 5 (where Speedup is taken to be 1 for 32 cores.)

3 Limitations/Constraints

At this point we should note some limitations that our k-point parallel code has.

• The number of k-groups (i.e the value of the KPAR tag) should be an exact divisor of the total
number of cores and an exact divisor of the number of k-points. If a new k-mesh is generated,then
the new number of k-points should be divided exactly by the value of KPAR (See 2.5).

• No vasprun.xml output file is produced.

• Non-collinear spin calculations are not available with the k-point parallelized code.

4 Applications

The code has been used by researchers in UCL to study more efficiently some systems. A relevant paper
by Maniopoulou A., Grau-Crespo R., Davidson E., Walsh A., Bush I.J., Woodley S.M., is in preparation.
Here we very briefly describe what was achieved using the k-point paralleized code for two of the three
systems studied provided by Dr Aron Walsh and Dr Ricardo Grau-Crespo respectively.1

4.1 Dielectric Function of Epitaxially Strained Indium Oxide.

Calculation of optical properties of semiconducting materials is a very slowly converging process with
respect to k-point sampling in the the Brillouin zone. Such a calculation of particular importance is the

1No results are available for the third system at the time of writing.
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change in optical response for ultra-thin epitaxially strained Indium Oxide, which is used as transparent
conducting oxide in optoelectronic devices. The convergence of the dielectric function is assessed through
the change in the high-frequency dielectric constant (ε∞) with respect to k-point sampling.
On the HECToR Phase 2b system, using a standard compilation of VASP 5.2, the maximum k-point
density possible within the queue limit of twelve hours is 2 × 2 × 2 using 96 cores, while using k-point
parallelism this can be increased to 6 × 6 × 6 and scale up to 1,536 cores. For the latter k-mesh the
convergence required is achieved, a result attainable on HECToR only with the k-point parallelized code.

4.2 Solution energies of tetravalent dopants in metallic V O2

The stability of three dopants has been examined for V O2. The room temperature phase is metallic and
hence a dense k-mesh is required for the calculations of pure and doped V O2.
Using k-point parallelism in VASP, Dr Grau-Crespo tested 4×4×4 (18 irreducible k-points) and 8×8×8
(75 irreducible k-points) meshes for pure V O2. The latter calculation was performed over 360 processors
in the HECToR Phase2b supercomputer, with a speedup factor of 13 compared to the standard version
running on 24 processors (ideal scaling would correspond to a speedup factor of 15). The calculations of
the doped cell were performed on 168 processors, with KPAR=7 groups (of 3 k-points each) running in
parallel, on 24 processors each. All geometries were optimised until the forces on the ions were all less
than 0.01 eV/Å.

5 Conclusions

The k-point parallelized codes can certainly provide more efficient use of computation cycles as it can be
demonstrated in tests cases (2.1)-(2.2) and application 4.1. There are also other cases, where either the
original code does not scale at all to larger number of cores -see test cases (2.3),(2.5) , or the original
code does not even work on large number of cores (see test case (2.4)) or exterior limitations such as
the 12 hour queue on HECToR in application (4.2) do not allow large simulations. In all these cases we
demonstrated the calculations could be achieved with the k-point parallelized code.
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