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 SEMIPARAMETRIC ESTIMATION OF MONOTONE AND

 CONCAVE UTILITY FUNCTIONS FOR POLYCHOTOMOUS

 CHOICE MODELS

 BY ROSA L. MATZKIN1

 This paper introduces a semiparametric estimation method for polychotomous choice
 models. The method does not require a parametric structure for the systematic subutility
 of observable exogenous variables. The distribution of the random terms is assumed to be
 known up to a finite-dimensional parameter vector. In contrast, previous semiparametric
 methods of estimating discrete choice models have concentrated on relaxing parametric
 assumptions on the distribution of the random terms while leaving the systematic
 subutility parametrically specified.

 The systematic subutility is assumed to possess properties, such as monotonicity and
 concavity, that are typically assumed in microeconomic theory. The estimator for the
 systematic subutility and the parameter vector of the distribution is shown to be strongly
 consistent. A computational technique to calculate the estimators is developed.

 KEYWORDS: Semiparametric, discrete choice, concavity, monotonicity, maximum likeli-
 hood, strong consistency.

 1. INTRODUCTION

 THIS PAPER INTRODUCES a semiparametric method of estimating polychotomous
 choice models that does not require a parametric specification for the system-
 atic subutility function. Instead of positing a parametric structure, I assume that
 the subutility possesses properties, such as concavity and monotonicity, that are
 consistent with assumptions typically made in microeconomic theory. The distri-
 bution of the random terms, which may depend on the exogenous variables, is

 assumed to be known up to a finite-dimensional parameter vector.2 As long as
 the assumptions are satisfied, the local behavior of the systematic subutility is
 likely to be better uncovered by this method than by methods that impose a

 parametric structure on this function.

 The estimator is obtained by maximizing the likelihood function over a set of
 nonparametric functions W and a finite dimensional parameter set &. The
 functions in W possess the same properties that the systematic function is

 assumed to possess. The set e is assumed to contain the value of the parameter

 of the distribution of the random terms. To compute the maximum likelihood

 estimator, the maximization over the function space is transformed into a large

 lI am indebted to Lung-Fei Lee, Marcel K. Richter, and Christopher Sims for their advice. I also
 thank Philip Dybvig, Vassilis Hajivassiliou, Alvin Klevorick, three anonymous referees, and a
 co-editor, for their useful comments and suggestions. The support of NSF through Grants SES-
 8720596 and SES-8900291 is gratefully acknowledged.

 2The estimation of discrete choice models in which the distribution of the random terms is
 nonparametric but the systematic subutility is parametric has been studied by Manski (1975, 1985),
 Cosslett (1983), Stoker (1986), Han (1987), Ichimura (1988), and Klein and Spady (1988), among
 others. The estimation of discrete choice models in which neither the systematic function nor the
 distribution of the random term is parametric has been recently studied by Matzkin (1990, 1992).

 1315

This content downloaded from 198.44.214.49 on Sat, 29 Aug 2020 04:12:02 UTC
All use subject to https://about.jstor.org/terms



 1316 ROSA L. MATZKIN

 linearly-constrained maximization problem. The estimator is shown to be strongly
 consistent by adapting the consistency result of Wald (1949).

 The model and the estimator are presented in Section 2. Section 3 shows the
 strong consistency result, and Section 4 describes the technique to compute the
 estimator. Section 5 summarizes the conclusions. The proofs of the theorems
 and lemmas are presented in the Appendix.

 2. THE POLYCHOTOMOUS CHOICE MODEL

 In this model, a typical consumer chooses a single alternative from a finite set
 A of J alternatives. The consumer is assumed to choose the alternative that
 maximizes his utility. The utility of each alternative j in A is the sum of a

 subutility function Vj*(.) and an unobservable random term ei. For each
 alternative j, Vj*(-) is a function of observable socioeconomic characteristics s
 of the consumer and observable attributes zj,.. ., zj of the 1, ..., Jth alterna-
 tive.

 The random vector (s, z) = (s, zl,.. ., zj) will be assumed to possess a proba-
 bility density g(Q) whose support will be denoted by S x Z, where Z = HJ 1Z1.
 The probability measure of (s, z) will be denoted by G(Q). The vector E =

 (el, ... , ej) will be assumed to possess, conditional on (s, z), a Lebesgue density
 q(e; s, z, 0*) that is known up to the finite dimensional parameter vector 0*. The
 probability that, given observable characteristics (s, z), a consumer will choose
 an alternative t eA, will be denoted by P(t Is, z; V*, 0*). Our assumptions imply
 that

 (1) P(tls, z; V*, 0*) =Prob (Vt*(s, z) + Et

 > Vk (S, Z) + 8k; k t, k= 1,.. ., J}

 - 0 j Vcf*-V* +E

 ?t= -? ?~ + ?

 t| q (-,1 -2, 9.. 9 *,J; S, Z, 0*) de, .. de * EJ
 ? cJ= -oc

 where Vj* = Vj*(s, z) ( = 1, ... . J).
 This paper is concerned with the problem of estimating the subutility function

 V* and the parameter vector 0* from n independent observations. Each
 observation x consists of a vector (s, z) and a chosen alternative denoted by a

 vector d = (d1, ... , dj), where for each j di equals one if the alternative j was
 chosen and equals zero otherwise. The conditional log-likelihood function for
 the n independent observations tXil}n1L is then

 n J

 (2) L({xil V, 0) = dlog P(jlsi, zi; V, 0).
 i=1 j=1

 We define our maximum likelihood estimator of (V*, 0*) to be the pair
 (J/ML 0ML) that maximizes (2) over a set (W x 0), where e is a subset of a
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 SEMIPARAMETRIC ESTIMATION 1317

 Euclidean space and W is a set of nonparametric functions V: S x Z -* RJ such
 that (V*, 0*) E (W x &).

 The Fourier flexible form of Gallant (1981, 1982) and Gallant and Golub
 (1984) could also be employed to estimate, by a maximum likelihood method, a
 nonparametric systematic function. These estimators can be restricted to be
 monotone, concave, or linearly homogeneous. In particular, the computation of
 the unconstrained estimators is, at the present moment, simpler than ours.
 Their consistency has been shown under stronger conditions than those re-
 quired by our maximum likelihood estimator.3

 3. CONSISTENCY OF THE MAXIMUM-LIKELIHOOD ESTIMATOR

 The following assumptions will be made:

 Let m: Wx W-* R+ be a metric on W and define the metric d on (Wx &)
 by d[(V', 0'), (V", 0")] = 110' - O"II + m(V', V"), where II denotes the Euclidean
 metric.

 ASSUMPTION 1.1: e is a compact subset, with respect to |, of RL (L < oo).

 ASSUMPTION 1.2: 0* E &.

 ASSUMPTION 2.1: W is a set of functions V: S x Z -* Rj that is compact with
 respect to m.

 ASSUMPTION 2.2: V* E W.

 ASSUMPTION 2.3: If {VnJ c W, VE W, and m(VnJ, V) -O0, then for all (s, z) E
 S X Z IJVn(s, z) - V(s, Z)II - * 0.

 ASSUMPTION 2.4: VV E W, V is continuous on S x Z.

 ASSUMPTION 2.5: VVE W, V(s, z) E S X Z, and Vk # 1, V1(s, z) does not
 depend on Zk and Vk(s, z) does not depend on z1.

 ASSUMPTION 3.1: The support of G is S x Z.

 ASSUMPTION 3.2: The probability density g is uniformly bounded.

 ASSUMPTION 4.1: Conditional on (s, z) E S x Z, for each 0 E 0, E possesses a
 conditional Lebesgue density q(e; s, z, 0).

 3 Also relevant in this context is the statistics literature about estimation subject to shape
 restrictions. For a review of this literature, see Prakasa Rao (1983) and Robertson, Wright, and
 Dykstra (1988).
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 1318 ROSA L. MATZKIN

 ASSUMPTION 4.2: There exists a Lebesgue integrable function +(E) such that,
 for all (s, z, 0)eS x Z x &, iq(e; s, z, 0)< (e) a.e. in 8.

 ASSUMPTION 4.3: For a.e. e, q(e; s, z, 0) is continuous in (s, z, 0).

 ASSUMPTION 4.4: Conditional on (s, z) E S x Z, for all 0 E &, the support of
 the conditional density q(e; s, z, 0*) is RJ.

 ASSUMPTION 5: There exist (ai,. .., aj) E RJ and (s, z) E S x Z such that the
 following assumptions hold.

 ASSUMPTION 5.1: VVVe W and Vs E S, V1(s, z) = a,.

 ASSUMPTION 5.2: VVVe Wand Vj EA, Vj(, z) = aj.

 ASSUMPTION 5.3: V0 E- such that 0 = 0* there exists j eA such that
 Pf jjgq z; V*, 0*) 0 P( jjgq z; V*, 0).

 Assumptions 1.1 and 2.1 are employed as a substitute for the assumption
 made in Wald (1949) that the probability density of the observations converges
 to zero as the norm of the parameters tends to infinity. They are also employed
 to prove the measurability of some auxiliary functions. The compactness of W
 guarantees that for any E > 0 there exists a finite number of elements of W such
 that any function in W belongs to the e-neighborhood of one of these elements
 of W.

 Assumption 2.3 states that convergence with respect to m implies pointwise
 convergence. This is necessary, together with Assumption 4.1, to prove the

 continuity of the choice probabilities P(tls,z:V,0) on W. Assumption 2.4 is
 employed, together with Assumptions 4.1-4.3, to prove the continuity of the
 choice probabilities in (s, z, 0).

 Assumption 2.5 is necessary to guarantee the identification of (V*, 0*) within
 (W x &). It is weaker than the commonly made assumption that the subutility
 V * of each alternative j is independent of the attributes of alternatives other
 than j. Assumption 2.5 allows the subutility functions of alternatives other than
 the first to depend on the attributes of all alternatives other than the first. This
 weakening is important, for example, when preferences incorporate considera-
 tions of regret.4

 Assumption 3.1 is needed to prove the identification of (V*, 0*). Assumption
 3.2 is a regularity condition that is used to prove the integrability of several
 functions in the consistency proof.

 Assumptions 4.1-4.3 are used to prove the continuity of the choice probabili-
 ties in (s, z, 0). Assumption 4.1 also guarantees that the probability of ties in (1)

 4 This example was given by one of the referees.
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 be zero. In a probit model, for example, Assumption 4.2 imposes restrictions on

 the covariance matrix of the random terms. Assumption 4.4 implies that the

 choice probabilities are strictly increasing in the subutility-differences that

 determine the upper limits of the integral in (1). It also implies that the choice

 probabilities are strictly positive. Both of these properties are employed in the

 proof of the identification of (V*, 0*).
 Assumptions 5.1-5.3 are made, together with Assumption 2.5, to guarantee

 the identification of (V*, 0*) within (W x &). The proof of identification also

 uses the continuity of P(jis, z; V, 0) in (s, z, 0) and in the values of V at (s, z),
 the strict monotonicity of P(jIs, z; V, 0) in the utility differences Vj(s, z) -
 Vk(s, z) (k = 1,... , J, k #j), the strict positivity of P(jis, z; V, 0), and Assump-
 tion 3.1.

 Assumption 5.1 implies that the values of the subutilities of the first alterna-
 tive are independent of the vector of socioeconomic characteristics, when z = z.
 This is analogous to the location normalization, made in linear-in-parameters

 specifications, which sets to zero all the coefficients of the socioeconomic
 characteristics in the subutility of the first alternative. The choice of the first

 alternative as the normalizing alternative is, of course, arbitrary. In the proof of
 Lemma 8 in the Appendix, we show that Assumptions 5.1 and 2.5 imply that we

 can recover the function V* from the choice probabilities P(lIs, z; V*, 0*), ...,
 P(JIs, z; V*, 0*). An alternative explanation for this recoverability result is that
 Assumptions 5.1 and 2.5 allow us to recover the values of the vectors

 (V1*(S, z), . . . , VJ7*(S, z)) from the values of the vectors of the subutility differ-

 ences (V2*(s, z) - V*(s, z), . . ., VJ*(s, z) - V1*(s, Z)). Hence, since as shown in
 Hotz and Miller (1989), these subutility differences can be recovered from the

 choice probabilities P(lIs, z; V*, 0*),..., P(Jls, z; V*, 0*), Assumption 5.1 and

 2.5 allow us to recover the values of the vectors (V,*(s, z), ... , VJ*(s, z)) from the
 choice probabilities.

 Assumption 5.2, which states that the value of all functions in W are equal
 and known at some point (s, 2) E S x Z, is made to normalize the scale. This
 and Assumption 5.3 substitute the standard scale normalization assumptions
 that fix the values of some coordinates of 0*. When Assumptions 5.2 and 5.3 are

 used, it is not necessary to fix these values. Consider, for example, the well

 known example where P(lIs, z; V*, 0*) = [1 + exp[(V2*(s, z) - Vl*(s, z))/0*L-1
 for 0* E [8, y], 8, y > 0. In this case, Assumption 5.3 is satisfied when al # a2
 since the partial derivative of P(lIs, z; V*, 0) with respect to 0 when (s, z) =
 (s, 2) is different from zero for all values of 0 E [8, y]. Hence, the value of 0* is
 identified.

 The above assumptions can be imposed, for example, in some multinomial
 logit, nested logit, multinomial probit, and ordered choice models.

 The strong consistency of the estimator is stated in the next theorem, which is
 proved in the Appendix.

 THEOREM 1: Suppose that the model described in Section 2 satisfies Assump-
 tions 1-5. If, for each n = 1,2,... , (2VMLq, OML) E (W X (9) maximize the likeli-
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 hood for n independent observations {x1. .., xn) on the set (W x 0), then

 Pr( lim d [(J7nML,I9 L) (V*,9 0*)] = 0} = 1.

 4. COMPUTATION OF THE MAXIMUM LIKELIHOOD ESTIMATOR

 In this section we present a method to characterize, for each finite number of

 observations, the set of maximum likelihood estimators of (V*, 0*). The method
 assumes that the functions in the set W are concave. Additional properties, such
 as monotonicity, linear homogeneity, and either weak or additive separability
 can also be incorporated.

 The estimator can be computed by transforming the maximization of (2) over

 (W x &) into a constrained maximization problem over a Euclidean space.5 This
 transformation is obtained by using the following facts:

 (a) the value of the likelihood function in (2) depends on V only through the
 values that V attains at the finite number of observed vectors (s1, z1), ... , (Sn, zn)
 and

 (b) the set of values that can be attained by a function in W at a finite number
 of points can be characterized by a finite number of linear inequalities.

 Fact (a) follows from (1). Fact (b) is formally established in Lemma 1, for a
 particular set of functions W that satisfies Assumptions 2.5' and 2.6-2.8 below.

 ASSUMPTION 2.5: VVVe W, V(s, z) E S x Z, Vj, Vj(s, z) does not depend on Zk
 for k 1j.

 ASSUMPTION 2.6: VV E W V is concave and monotone increasing.

 ASSUMPTION 2.7: VjE] {1, ..., )J there exists Bj = (Bj,1, Bj z) such that VVe W
 and V(s, z) E S x Z there exists a subgradient Tj(s, z) of Vj(s, z) such that
 -Bj < Tj(s, z) < Bj.

 ASSUMPTION 2.8: The set S is bounded below.

 Let W be a set of functions that satisfies Assumptions 2.5', 2.6-2.8, and
 5.1-5.2. Let {(s1, z'),... , (sn, zn)) be elements of S x Z. Let s be such that for

 all seSs s. Denote ao by Vjo (]=1,...,J), s by so, s by s n+1 by z P
 ( = 2, ..., J), and f, by z? and zn+ 1. For all i = 0,1,.. ., n, j= 1, . . ., J, and for
 (i, j) = (n + 1,1) let 77 = (~Tjl, Tj'z) have the same dimensionality as (sW, zj).

 LEMMA 1: The set of all vectors (Vl, ..., VJ1; * ; .Vjn) E- RJn for which
 there exists a function V in W such that, for all i = 1, ... , n and all j = 1, .. . , J,
 V1/= VJ/(s', z) is the set of all vectors (V11,... . VJ1; ... ;Vln... . Vjn) . RJ that

 S For calculation methods, see Matzkin (1991).
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 SEMIPARAMETRIC ESTIMATION 1321

 satisfy the following set of linear inequalities:

 (L1.1) Vi<Vr + Trs(sisr) + Tjr (zi zr)
 (i, r = , 19, . . . ,n ;j = 29 . .. , J) ,

 (L1.2) V Vlr + TlrV (si-Sr) + Tr z(zi-zr) (i, r = O, 1,.. ., n, n + 1)

 for some (T1?, ... ., TJ?, T1, ..., Tj , T1 +) satisfying

 (L1.3) Bj > Tj' > 0 (i=0, 1, ... , n; j= 19 . . . , J),9

 (L1.4) T1' + = O and Bj > Tln+' > O.

 The inequalities in (L1.1)-(L1.2) are modifications of the revealed preference
 conditions, for classical demand data, developed by Afriat (1967a), Diewert
 (1973), and Varian (1982). Several variations are possible. For example, if the
 functions in W are assumed to be convex instead of concave in Assumption 2.6,
 then Lemma 1 will hold with s being an upper bound of S instead of a lower
 bound and with the inequality signs in (L1.1) and (L1.2) reversed. If the
 functions are not assumed to be monotone increasing, the 0 vectors in the

 inequalities of (L1.3) and (L1.4) must be substituted, respectively, by -Bj and
 -B1 , . If a kth coordinate (k > 2) of the functions in W is assumed to be
 linearly homogeneous, the following constraints must be added:

 (L1.5) Vk' = Tk s55i + Tk" z z (i = 09 1S. ..., n ,n + 2 ),
 (L1.6) sn+2 = 0 zn+2 = 0

 and the constraints in (L1.1) corresponding to j = k must be satisfied for
 i, r = O, ... , n + 1, n + 2. The equalities in (L1.5) are modifications of the re-
 vealed preference conditions developed by Afriat (1972) and Varian (1983).
 Additional properties can be incorporated in a similar way (see Matzkin
 (1987)).6

 By statement (a) and Lemma 1 it follows that when the hypotheses of Lemma
 1 are satisfied, the set of estimates of V* is the set of all functions in W that

 interpolate between the values (V1l*,. .., VJ1*; * ; Vtn*, . . ., VJn*) and
 (T1o*,..., TJ?*, Tl*,... , Tj"*, Ty?+l*) that solve the maximization of (2) subject to
 V(si, zi) = VJ/ (i = 1 ... , n; j = 1, ..., J) and the constraints (L1.1)-(L1.4). One
 such interpolation is given by the function V = (V1,. .., VJ) defined by

 V1(s, z) = min {1Vr* + Tls(s - sjr)

 +1Z(zj-zfr)lr =O 19 ... n,n + 1}, and

 Vj(s, z) = min{J/* + T'f(s-s[) + Tjr(z -zlr)=O1,... ,n},
 for j = 2, ..., J (see the proof of Lemma 1).

 6See also Afriat (1967b, 1973, 1981), Chiappori and Rochet (1987), and Matzkin and Richter
 (1991) for other revealed preference conditions. Varian (1985) and Epstein and Yatchew (1985)
 employed revealed preference conditions in statistical tests.
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 1322 ROSA L. MATZKIN

 The next Lemma shows that, when Assumption 2.8' holds, the set W in
 Lemma 1 satisfies the requirements needed for the consistency result.

 ASSUMPTION 2.8': S x Z is compact.

 LEMMA 2: Suppose that Wsatisfies Assumptions 2.2, 2.5', 2.6, 2.7, and 2.8'. Let

 m: W x W -> R + be the metric determined by the essential supremum norm with

 respect to G(0), i.e., for all V, V' E W

 m( V, V') = ess sup IIV(s, z) - V'(s, z)II

 = inf(tIG[{(s, z) E S x ZI IIV(s, z) - V'(s, z)II>t}] = 0).

 Then, Wsatisfies Assumptions 2.1-2.4 and 5.1-5.2.

 5. CONCLUSION

 This paper has introduced a strongly consistent semiparametric estimator for

 polychotomous choice models. The method does not require a parametric
 structure for the systematic subutility. Instead, it is assumed that this function
 possesses properties, such as concavity and monotonicity, that are typically
 assumed in microeconomic theory. The distribution of the unobservable random
 terms must be specified parametrically.

 The estimator is computed by maximizing the likelihood function over a

 subset of a Euclidean space. The subset is constrained by a finite number of
 linear inequalities, which are determined by the properties that the nonpara-

 metric function is assumed to possess. Some of these properties may reduce
 considerably the number of variables over which the maximization takes place
 as well as reduce the number of constraints (see, for example, the concavity
 constraints in Hildreth (1954) for the case in which the domain of the function
 lies in the real line).

 Although this paper has concentrated on polychotomous choice models,

 similar estimation techniques can be applied to other limited dependent vari-
 able models.

 Cowles Foundation for Research in Economics, Department of Economics, Yale
 University, New Haven, CT 06520-2125, U.S.A.

 Manuscript received May, 1987; final revision received September, 1990.

 APPENDIX

 PROOF OF LEMMA 1: Let V be a function in W. Let zn+1 be any vector in Z whose first

 coordinate is z1 +1 For all i = 0,1. n,n + 1 and j= 1,...,J let Tj7 be a subgradient of VJ at
 (Si, z) such that -Bj 6 Tj' 6 Bj. Then, since V is monotone increasing and satisfies Assumption 5.1,
 the T7 vectors satisfy (L1.3)-(L1.4), and since V is concave and satisfies Assumption 5.2, the vector
 v= (V(s1, zl)).v (51 z1); * *n* V{n(S', Zn).Vj(S, zn)) satisfies (L1.1)-(L1.2).
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 Conversely, suppose that (V1. VJ; . * VI ..... Vj) satisfies (L1.2)-(L1.3), with a vector
 (T?,..., TJo,.T.. , T 1n , TTn+1) that satisfies (L1.3)-(L1.4). Define the functions V1, V] (j =
 2,..., J), and V by

 VI(s, z) = min {J ' + Tl",( s-sjr) + Tlr z( zj-zjr) Ir = 0, . n,n+ 1),

 Vj(sz)= min VJr +Trs(S 5-Sjr) + Tjrz( zj -zjr) Ir = O,1 0 , n}i, Jj;(s, z) = min{Jj+ Tf( -s)+If( I z)r=01

 for j = 2,..., J and V(s, z) = (V1(s, z),..., VJ(s, z)). Then, V satisfies Assumptions 2.5 and 2.7. By
 (L1.3)-(L1.4) and the definition of V, V is concave and monotone increasing. By the definitions of

 the Vj functions and (L1.1)-(L1.2), V(sI, z?) = (VI ..j., Vj1) (i = 0, 1, . . ., n) and V(S n + 1, Z) = a,. In
 particular, V satisfies Assumption 5.2. Finally, since V1(Sn + 1, 2) = a,, (L1.3)-(L1.4) and the fact that
 5nl ? <5 s for all s E S imply, by the definition of VI(-), that V1(s, )= a. Hence, V satisfies
 Assumption 5.1. Q.E.D.

 PROOF OF LEMMA 2: Assumption 2.4 follows from the equicontinuity of the functions in W,
 which is implied by Assumption 2.7. Assumption 2.3 follows from Assumptions 2.4 and 3.1. By
 Assumptions 2.3 and 2.7, W is closed with respect to m. Hence, the equicontinuity of the functions
 in W and Assumptions 5.1 and 5.2 imply by Arzela-Ascoli Theorem (Dunford and Schwartz (1988,
 pp. 266)) that W is compact with respect to m. Q.E.D.

 To prove Theorem 1, let f(x; V, 6) denote the probability density of x when (V*, 0*) = (V, 0).
 Then,

 f(X; V, 0) = g(s, z) 1 [P(jIS, Z; V, 6)]d,.
 j=1

 The probability measure of f(x; V*, 0*) will be denoted by P*, the set {(d1,...,dJ)ld 0, 1},
 EJ- ldj = 1} will be denoted by D, and the set D x S x Z will be denoted by X. Some lemmas are
 proved next.

 LEMMA 3 (Continuity of the Choice Probabilities on S X Z): For all]j A and all (V, 0) c (W x eJ),
 P(i1s, z; V, 0) is continuous on S x Z.

 PROOF: Since, conditional on (s, z) for all 0 E 0, q(c; s, z, V, 0) is a Lebesgue density and there
 exists a Lebesgue integrable function O(E) such that for all (s, z, 0) E S X Z X 6 Iq(c; s, z, 0)1 < O(?)
 a.e., it follows by (1), the assumption that any V E W is continuous on S X Z, and Lebesgue
 Dominated Convergence Theorem that P(jIs, z; V, 0) is continuous on S X Z. Q.E.D.

 LEMMA 4 (Continuity of Probability Densities on (W X 0)): For all x c X, f(x; V, 6) is continuous
 on (Wx (9).

 PROOF: Let (s, z) and E> O be given. Suppose that limn <,0od[(Vn, 6n),(V, 0)] = 0 where
 {(Vn, 6n)}= 1 c (W X () and (V, 6) c (W X 0). Then, from the definition of d and Assumption 2.3,
 VJn(S, Z) -V> ( z) for all - cA. Hence, by (1) and Assumption 4.1 it follows that for all large
 enough n,

 (L4.1) If(X; Vn, 6) -f(x; V, 0)1 < E/2.

 Moreover, by (1), Assumptions 4.1-4.3, Lebesgue Dominated Convergence Theorem, and the
 hypothesis that lIon - 611 -S 0, it follows that

 (L4.2) If (X; Vn, on) -f(x; vn, 0)1 < ?/2

 for all large enough n. From (L4.1) and (L4.2) it follows that for all large enough n, If(x; Vns, 6) _
 f(X; V, 0)I < E. Q.E.D.
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 1324 ROSA L. MATZKIN

 LEMMA 5 (Measurability): Define the function f': (Xx Wx 6 x R ++) -- R by f'(x, V, 0, E)=
 sUP(v ,)E(WX&){f(x, V', 6')d[(V, 6) (V, 6')] <c?}. Then, for all (V, 0) and for small enough ? > 0, f'
 is measurable in x.

 PROOF: By the definition of d and Assumptions 1.1 and 2.1, there exists a countable dense subset
 Q of (Wx 6) and by Lemma 4

 f '(x; V, 0, ) = SUp {f (x; Vn On)6Id [(V, 0), (Vn Oan)] <?}.
 (Vn,7 )EQ

 Hence, by the measurability of g, the result follows. Q.E.D.

 LEMMA 6: fxIlog f(x; V*, 6*)I dP*(x) < 0.

 PROOF: Immediate from the definition of f, the fact that for all t and all (s, z) c S x Z
 0 < P(tls,z; V, 0) < 1, Assumption 3.2, and the fact that the value of Ilog(w)Iw over {wIK > w > 0} is
 bounded when K < oo.

 LEMMA 7: Define the function f *: (Xx WX 6 x R++) --R by

 f *(x, V, , E) = /f'(x,V,6,c) iffA(x,)V,,?)>1,
 1 otherwise.

 Then, for any (V, 0) E (W x 6) and for sufficiently small E > 0

 fxlogf*(x,V,0,E)dP*(x)

 is finite.

 PROOF: Immediate from the definitions of f' and f *, Lemma 5, and Assumption 3.2.

 LEMMA 8 (Identification): If (V, 0) E (Wx 6) and (V, 0) # (V*, 0*), then for some set E cX with

 P*(E) > 0, JEf(x; V, 0) dx # JEf(x; V*, 6*) dx.

 PROOF: Suppose that (V, 0) E (Wx 0) is such that (V, 0) # (V*, 0*). We will show that then
 there exists j EA and (s*, z*) c S x Z such that

 (L8.1) P(iIs*, z*; V, 0) P(iIs*, z*; V*, 6*).

 We distinguish between three different cases.

 Case 1: 0 0 6*(V= V* or V=# V*). In this case (L8.1) follows directly from (1) and Assumptions
 5.1-5.3.

 Case 2: 0 = 6*, V, = Vt* for all t EA such that t # 1, and VI # VI*. In this case there exists
 (s, z) E S x Z such that V1(s, z) # Vi*(s, z) and VJ(s, z) = Vt*(s, z) for t = 2,..., J. Denote Vk(s, z)
 by Vk and Vk*(s, z) by Vk*. Then, either VI - V, > Vj* - Vt* for all t > 2 or VI - V, < Vj* - Vt* for
 all t > 2. Since 0 = 6* it follows by (1) and Assumption 4.4 that P(lIs, z; V, 0) # P(lIs, z; V*, 0*).

 Case 3: 0 = 0* and VJ # Vt* for some t EA such that t # 1. Let (s, z) E S x Z be such that

 V,(s, z) # Vt*(s, z). By Assumption 5.1, V1(s, ) = Vl*(s, z). Let z* c Z be such that z* = and
 4z = z (t # 1). Assumption 2.5 then implies that V1(s, z*) = VI*(s, z*) and VJ(s, z*) V J/*(s, z*). For
 each k EA denote Vk(s, z*) by Vk and Vk*(s, z*) by Vk*.

 Suppose that Vt > Vt*. (The case in which Vt < Vt* can be treated in a similar way.) Let
 B = {k EAIVk > Vk*} and D = {k eAIVk < Vk*}. Note that since t EB and 1 ED, B # 0 and
 D + 0. We show that for some j E B and all k E B

 V- Vk > V- Vk*.

 Suppose such j does not exist; then for all k in B there exists k' in B with Vk - Vk, < Vk* - Vk*.
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 Since the number of elements in B is finite, this implies that there is a cycle kl,..., kr such that

 Vk I-k2 < Vk k2'

 Vk2-Vk3 < Vk2 k3'

 Vk -Vkl < Vk Vkl.

 Adding up the right-hand side of these inequalities and their left-hand side, we obtain 0 < 0, which

 is a contradiction. Hence, since B 0 0, there exists j in B such that for all k in B, V, - Vk > VJ* -
 Vk*. Moreover, the definitions of B and D imply that for all k in D,

 V- Vk > Vi - Vk*.

 In particular, since D + 0, V - Vk > VJ' - Vk for some k' eA. Since 0 = 6* it follows by Assump-
 tion 4.4 that P( iIs*, z*; V, 0) > P( jlst, z*; V*, 0*). This completes the proof of (L8.1).

 Let now (s*, z*) and j satisfy (L8.1). Then, by Lemma 3 there exists a neighborhood N of
 (s*, z*) such that for all (s, z) E N, P(jis, z; V, 0) # P(jls, z; V*, 6*). By Assumption 4.4
 P( iIs, z; V*, 0*) > 0 and by Assumption 3.1 G(N n (S x Z)) > 0. Let E = {(d, s, z) e D x S x ZI
 dj = 1, (s, z) c N}. It then follows that P*(E) > 0 and

 JEf (x; V, 0) dx = Nn(Sxz)P(ils, z, V, 0) dG(s, z)

 f f f(x; V* ,6) dx = f P(jls, z, V*, 6*) dG(s, z). Q.E.D. E fNn(SxZ)

 PROOF OF THEOREM 1: The proof follows by modifying Wald's (1949) result. We sketch the
 proof.7 By Lemmas 6, 7, and 8, for all (V, 0) E (Wx 6) such that (V, 0) # (V*, 0*)E log f(x; V, 6) <
 Elogf(x;V*,6*) (Lemma 1 in Wald (1949)); and by Lemmas 4 and 7, for all (V,6)e(Wx
 &)lim 0 Elogf'(x;V,6,E)=Elogf(x;V,0) (Lemma 2 in Wald (1949)). Hence, for all (V,60)
 (Wx 6) such that (V, 0) # (V*, 0*), there exists E(V, 0) > 0 such that

 (T1.1) E log f'(x; V, H, c(V, 0)) < E log f(x; V*, *)

 Let Y be any closed subset of (W x 6) which does not contain (V*, 0*). By Assumptions 1.1 and
 2.1, Y is compact. Hence, there exist {(V1, 6k), (V2,62),. -(VH, OH)} in Y, and positive numbers
 l,E2, * Eh such that Y C U HlS(Vk6k, Ek) and Ek=E(Vk,6 k) where S(Vk,6k,ck)={(v,6)C
 (Wx 6)Id[(Vk, Ok), (V, 6)] < Ek}. Thus,

 n H n

 (T1.2) sup Hf(x ;V,60)< E H1f'(x';Vk,6k,ck).
 (V,6)eYi=1 k=1 i=1

 Hence,

 n H n

 sup rH f(x ;V,O) E rH f'(x ;Vk,ok,Ek)

 (T1.3) n n k=11l

 7 f(XI;V*,6*)7 H7 f(xI;V*,6*)
 i=1 i=1

 By Kolmogorov's Strong Law of Large Numbers and (T1.1), for each k = 1. H,

 (T ) Pb n (

 (T1.4) Probt Jim 10 [of '(X';Vk k, k 10 -of('; V *, 0*) >=
 n i=+ 1J

 7See Kiefer and Wolfowitz (1956) for a similar result.
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 so that, for each k = 1. H

 n

 J7If'(Xi;Vk,Ok,Ek)
 (T1.5) Prob limn = O I =1.

 n r tn.oo Hf(xi;V* ,*) l
 \ i=l

 By (T1.3) and (T1.5) it follows that

 / Fln

 ~Im sup FHf(xi;v,O)
 (T1.6) Prob lim (V )eYil =0 1.

 H rf(xL;V*,oa*) }
 1=1J

 By Theorem 2 in Wald (1949), this implies that

 Prob lim d[(7Vn,,On),(V*,6*)] =O) = 1. Q.E.D.
 n -+o
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