
 
Physics 100A, Homework 12-Chapter 11 (part 2) 

 
Torques on a Seesaw 
 
A) Marcel is helping his two children, Jacques and Gilles, to balance on a seesaw so that they will be able to 
make it tilt back and forth without the heavier child, Jacques, simply sinking to the ground. Given that Jacques, 
whose weight is W , is sitting at distance  to the left of the pivot, at what distance  should Marcel place Gilles, 
whose weight is , to the right of the pivot to balance the seesaw? 

L 1L
w
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B)Find the torque τ  about the pivot due to the weight  of Gilles on the seesaw. w
C)Determine the sum of the torques on the seesaw. 
 
The torque produced by Gilles weight       1G wLτ = −   
 
The torque produced by Jacques weight       J WLτ =   
 
The total torque about the pivot point must equal zero in equilibrium. 
 

1 0WL wL− =               1 /L WL w=
D) Gilles has an identical twin, Jean, also of weight . The two twins now sit on the same side of the seesaw, 
with Gilles at distance  from the pivot and Jean at distance . 

w
2L 3L

Where should Marcel position Jacques to balance the seesaw? 

2 3 0WL wL wL− − =              2 3( / )( )L w W L L= +
E) When Marcel finds the distance  from the previous part, it turns out to be greater than , the distance 
from the pivot to the end of the seesaw. Hence, even with Jacques at the very end of the seesaw, the twins Gilles 
and Jean exert more torque than Jacques does. Marcel now elects to balance the seesaw by pushing sideways 
on an ornament (shown in red) that is at height  above the pivot. 

L endL

h
 
 
 
 
 
 
 
 
 
 

2 3( )end xWL hF w L L− − + = 0
) / h

 

2 3( ( )x endF WL w L L= − +  
 
11.41) A hand-held shopping basket 62.0 cm long has a 1.81 kg carton of milk at one end, and a 0.722 kg box of 
cereal at the other end. 

Where should a 1.80 kg container of orange juice be placed so that the basket balances at its center?  
 
  Picture the Problem: The box of cereal is at the left end of the basket and 

the milk carton is at the right end. 
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Strategy: Place the origin at the center of the 0.620 mL =  basket. Write 
Newton’s Second Law for torque with the pivot axis at the center of the 
basket.  Set the net torque equal to zero and solve for the distance r of the 
orange juice from the center of the basket.   The orange juice will be placed 
on the cereal side of the basket because the cereal has less mass and exerts 
less torque than does the milk. 

 Solution:  Set  and  
solve for r: 

0τ =∑ ( ) ( )
( ) ( )( )

1 1
cereal juice milk2 2

1 1
cereal milk2 2

juice

0
0.620 m 0.722 1.81 kg

0.187 m 18.7 cm
1.80 kg

L m g r m g L m g
L m m

r
m

τ = + + − =
+ +

= = = =

∑

 

 Insight: Another way to solve this question is ensure that the center of mass of the basket is at its geometric center, in a 
manner similar to problem 46 in Chapter 9.  However, the balancing of the torques is actually a bit simpler in this case. 

 
 

11.44) Maximum Overhang Three identical, uniform books of length L are stacked one on top the other .Find the 
maximum overhang distance d in the figure such that the books do not fall over.  
 

 Picture the Problem: The books are arranged in a stack as depicted at 
right, with book 1 on the bottom and book 3 at the top of the stack. 

 Strategy: It is helpful to approach this problem from the top down.  The 
center of mass of each set of books must be above or to the left of the point 
of support.  Find the positions of the centers of mass for successive stacks 
of books to determine d. Measure the positions of the books from the right 
edge of book 3 (right hand dashed line in the figure).  If the center of mass 
of the books above an edge is to the right of that edge, there will be an 
unbalanced torque on the books and they’ll topple over.  Therefore we can 
solve the problem by forcing the center of mass to be above the point of 
support. 

 Solution: 1. The center of mass of book 3 
needs to be above the right end of book 2: 3 2

Ld =  

 2. The result of step 1 means that the center of mass of book 2 is located at 2 2 2d L L L= + = from the right edge of 
book 3. 

 3. The center of mass of books 3 and 2 
needs to be above the right end of book 1: 

( ) ( )
cm,32

2 3
2 4

m L m L
X L

m
+

= =  

 4. The result of step 3 means that the center of mass of book 1 is located at 1 3 4 2 5 4d L L L= + = . 

 5. The center of mass of books 3, 2, and 1 
needs to be above the right end of the table: 

( ) ( ) ( )
cm,321

2 5 4 11
3 1

m L m L m L
d X L

m
+ +

= = =
2

 

 Insight: As we learned in problem 87 of Chapter 9, if you add a fourth book the maximum overhang is ( )25 24 .L   If 

you examine the overhang of each book you find an interesting series: 25
2 4 6 8 24
L L L Ld = + + + = L .  The series gives you 

a hint about how to predict the overhang of even larger stacks of books. 
 
 
11.49) You pull downward with a force of 35 N on a rope that passes over a disk-shaped pulley of mass 1.5 kg 
and radius 0.075m. The other end of the rope is attached to a 0.87 kg mass. 
 
  Picture the Problem: You pull straight downward on a rope that passes over a disk-shaped pulley and then supports a 

weight on the other side.  The force of your pull rotates the pulley and accelerates the mass upward. 
 Strategy: Write Newton’s Second Law for the hanging mass and Newton’s Second Law for torque about the axis of the 

pulley, and solve the two expressions for the tension  at the other end of the rope.  We are given in the problem that 2T
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1 35 N.T =   Let m be the mass of the pulley, r be the radius of the pulley, and M be the hanging mass.  For the disk-

shaped pulley the moment of inertia is 21
2 .I mr= . 

 Solution: 1. (a) The tension in the rope is not the same in both sides of the pulley. The  tension in the rope on the other 
end of the rope accelerates the hanging mass, but the tension on your side both imparts angular acceleration to the 
pulley and accelerates the hanging mass.  Therefore, the rope on 
your side of the pulley has the greater tension. 

 2. (b)  As stated in the problem, 1 35 NT =  for the rope on your side of the pulley. 

 3. Set  for the hanging mass: m=∑F a 2yF T Mg Ma= − =∑  

 4. Set Iτ α=∑  for the pulley: ( )( ) ( )21
1 2 1 22     2rT rT I mr a r a T T mτ α= − = = ⇒ = −∑  

 5. Substitute the expression for a  
from step 4 into the one from step 3, 
and solve for  (the tension on the 
other side of the pulley from you): 

2T

( )

( )

( ) ( ) ( ) ( )
( )

2 1 2

2 1 2

1
2

2

2

2 2
2

2
0.87 kg 2 35 N 1.5 kg 9.81 m/s

23 N
2 0.87 kg 1.5 kg

T Mg M T T m

mT mMg MT MT
M T mg

T
M m

− = −⎡ ⎤⎣ ⎦
− = −

+
=

+
⎡ ⎤+⎣ ⎦= =

+

 

 Insight: The net force on the hanging mass is thus 2 23 (0.87)(9.81) 14.2 NT Mg− = − = , enough to accelerate it upward
at   m/s2.  The angular acceleration of the pulley is thus 14.2 / 0.87 16.3a = =

( ) ( )2 2217 rad/s .= =16.3 m/s 0.075 ma r  
 

11.50) You pull downward with a force of 35 N on a rope that passes over a disk-shaped pulley of mass 1.5 kg 
and radius 0.075 m. The other end of the rope is attached to a 0.87 kg mass. 

This is the same problem as 11.49. The answer for the acceleration is above. 

11.54) A 0.015 kg  record with a radius of 15 cm  rotates with an angular speed of 
133
3

 rpm. 

Find the angular momentum of the record. 
 
 Picture the Problem: The disk-shaped record rotates about its axis with a constant angular speed. 
 Strategy: Use equation 11-11 and the moment of inertia of a uniform disk rotating about its axis, 21

2I MR= , to find the 
angular momentum of the record.  

 Solution: Apply equation 11-11 directly: 

( ) ( ) ( )221 1 1
2 2 3

4 2

rev 2  rad 1 min0.015 kg 0.15 m 33  
min rev 60 s

5.9 10  kg m /s

L I

MR

L

ω
πω

−

=
⎛ ⎞⎛ ⎞⎛= = ⎜ ⎟⎜ ⎟⎜
⎝ ⎠⎝ ⎠⎝

= × ⋅

⎞
⎟
⎠

 

 Insight: The angular momentum of a compact disk rotating at 300 rev/min is about 7.5×10−4 kg·m2/s.  The compact disk 
(m = 13 g, r = 6.0 cm) is smaller than a record, but it spins faster, so the angular momenta are similar. 
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Spinning Situations.  
 
Suppose you are standing on the center of a merry-go-round that is at rest. You are holding a spinning bicycle 
wheel over your head so that its rotation axis is pointing upward. The wheel is rotating counterclockwise when 
observed from above. 
 
For this problem, neglect any air resistance or friction between the merry-go-round and its foundation. 

Suppose you now grab the edge of the wheel with your hand, stopping it from spinning. What happens? 
 
Consider yourself, the merry-go-round, and the bicycle wheel to be a single system. When you stop the 
wheel from spinning, the angular momentum of the system about the vertical axis remains unchanged.  
 
Then to conserve angular momentum the merry-go-round begins to rotate counterclockwise (as seen 
from above). 
 
Change in Angular Velocity Ranking Task 
 
A merry-go-round of radius R , shown in the figure, is rotating at constant angular speed. The friction in its 
bearings is so small that it can be ignored. A sandbag of mass m is dropped onto the merry-go-round, at a 
position designated by r. The sandbag does not slip or roll upon contact with the merry-go-round.  

 

 
 
 
 
 
 
 
 
Rank the following different combinations of m and r on the basis of the angular speed of the merry-go-round after 
the sandbag "sticks" to the merry-go-round. 
 
The guiding principle is that angular momentum is conserved. 
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ii mgrL I ω=  
2( )f mgr fL I mr ω= +  

f iL L=  

2( )
mgr i

f
mgr

I
I mr

ω
ω =

+
  The value of  fω  depends of the value of the moment of inertia of the sandbag   . 2mr

case m     (kg) r        (R) 2mr  
1 40 0.25 2.5
2 10 0.50 2.5
3 20 0.25 1.25
4 10 1.0 10
5 15 0.75 8.4375
6 10 0.25 0.625
 
In decreasing order of omega (increasing order of the moment of inertia):  6, 3, (1,2), 5, 4  
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11.65) As an ice skater begins a spin, his angular speed is 3.17 rad/s. After pulling in his arms, his angular speed 
increases to 5.46  rad/s. 

Find the ratio of the skater's final moment of inertia to his initial moment of inertia. 
 
  Picture the Problem: The skater pulls his arms in, decreasing his moment of inertia and increasing his angular speed. 
 Strategy: The angular momentum of the skater remains the same throughout the spin because there is assumed to be no 

torque of any kind acting on his body.  Use the conservation of angular momentum (equation 11-15) together with 
equation 11-11, to find the ratio f iI I . 

 
Solution: Set and solve for iL L= f f iI I : f i

i i f f
i f

3.17 rad/s   0.581
5.46 rad/s

I
I I

I
ω

ω ω
ω

= ⇒ = = =  

 Insight: By rearranging his mass, especially by bringing his arms and legs in close to his axis of rotation, the skater has 
reduced his moment of inertia by an impressive 42% and increased his angular speed by 72%. 

 
11.80) To prepare homemade ice cream, a crank must be turned with a torque of 3.95 N·m. 

How much work is required for each complete turn of the crank?  
 
 
.  Picture the Problem: The torque acting through an angular displacement does work on the ice cream crank. 

 Strategy: Use equation 11-17 to find the work done by the torque acting through the given angular displacement.  One 
complete turn corresponds to an angular displacement of 2π radians. 

 Solution: Apply equation 11-17 directly: ( )( )3.95 N m 2  rad 24.8 JW τ θ π= Δ = ⋅ =  

 Insight: The work done on the ice cream crank is dissipated as heat via friction in the viscous ice cream mixture. 
 
 
Introduction to Rotational Work and Power. 
 
Consider a motor that exerts a constant torque of 25.0 N·m to a horizontal platform whose moment of inertia is 
50.0 kg·m2. Assume that the platform is initially at rest and the torque is applied for 12.0 rotations.  
 

A) How much work does the motor do on the platform during this process? 
 

(25)(12rev)(2 rad/rev) 1,885W τ θ π= Δ = =  J 
 

B)What is the rotational kinetic energy of the platform  at the end of the process described above? ,rot jK
From the work energy theorem the total work is equal to the change in  kinetic energy. So if the platform 
is initially at rest, the final kinetic energy is equal to the work or 1,885 J. 
 
Now the slow approach: 
 

Iτ α=          / 25 / 50 0.5Iα τ= = =  rad/s 
 

2 2 2f iω ω α= + Δθ  

(0 2(0.5rad/s)(12rev)(2 rad/rev)) 8.68fω π= + =  rad/s 

2 2
,

1 1 (50)(868) 1,885
2 2rot f fK Iω= = =  J 

C) What is the angular velocity fω  of the platform at the end of this process? 

As found above 8.68fω =  rad/s 
 
Copyright © 2010 Pearson Education, Inc.  All rights reserved. This material is protected under all copyright laws as they currently exist. No 
portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

11 – 5 



Chapter 11: Rotational Dynamics and Static Equilibrium  James S. Walker, Physics, 4th Edition 
 

D) How long  does it take for the motor to do the work done on the platform calculated in Part A? 

f i tω ω α= +  

With 0iω =                            / 8.68 / 0.5 17.4ft ω α= = =  s 

E) What is the average power delivered by the motor in the situation above? 
/ 1,885 /17.4 108avgP W t= = =  Watts 

 
F) Note that the instantaneous power  delivered by the motor is directly proportional to P ω , so  increases as 
the platform spins faster and faster. How does the instantaneous power 

P
fP  being delivered by the motor at the 

time ft  compare to the average power  calculated in Part E? avgP
(25)(868) 217f fP τω= = =  Watts 

2f avgP P=
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81.  Picture the Problem: The drill spins the bit at a rapid rate while exerting a torque on the bit to keep it spinning. 
 Strategy: The power produced by the drill equals the torque it produces times its angular speed (equation 11-19). 

 
Solution: 1. Convert τ into units of : N m:⋅ 1 lb 4.45 N 1 m3.68 oz in 0.0260 N m

16 oz 1 lb 39.4 in
τ = ⋅ × × × = ⋅  

 
2. Convert ω  into units of rad/s: rev 2  rad 1 min42,500 4450 rad/s

min rev 60 s
πω = × × =   

 3. Apply equation 11-19 directly: ( )( )0.0260 N m 4450 rad/s 116 WP τω= = ⋅ =  

 Insight: The same torque applied at 425 rev/min requires only 1.16 W of power. 
 
 
 
 
82.  Picture the Problem: The object gains rotational kinetic energy from an 

applied torque acting through an angular displacement. 

 
Strategy: Find the kinetic energy that the L-shaped object has when it is 
rotated at 2.35 rad/s about the x, y, and z axes.  The work that must be done 
on the object to accelerate it from rest equals its final kinetic energy 
(equations 11-18 and 10-17).  From problem 15 we note that 

 and  2 2 29.0 kg m ,  10 kg m ,x yI I= ⋅ = ⋅ 19 kg m .zI = ⋅
 

 Solution: 1. (a) Find fK  for rotation about the x axis: ( )( )22 21 1
f 2 2 9.0 kg m 2.35 rad/s 25 Jx xW K I ω= = = ⋅ =  

 2. (b) Find fK  for rotation about the y axis: ( )( )22 21 1
f 2 2 10 kg m 2.35 rad/s 28 Jy yW K I ω= = = ⋅ =  

 3. (c) Find fK  for rotation about the z axis: ( )( )22 21 1
f 2 2 19 kg m 2.35 rad/s 52 Jz zW K I ω= = = ⋅ =  

 Insight: The larger the moment of inertia, the more work is required to obtain the same rotation rate. 
 
 
 
 
83.  Picture the Problem: The object gains rotational kinetic energy from an 

applied torque acting through an angular displacement. 

 Strategy: Find the kinetic energy that the rectangular object has when it is 
rotated at 2.5 rad/s about the x, y, and z axes.  The work that must be done 
on the object to accelerate it from rest equals its final kinetic energy 
(equations 11-18 and 10-17). The power required to accomplish this in  
6.4 s is the work divided by the time (equation 11-19). From problem 18 
we note that  and  2 21.8 kg m ,  2.5 kg m ,x yI I= ⋅ = ⋅ 24.3 kg m .zI = ⋅  

 
Solution: 1. (a) Find P for rotation about the x axis: 

( )( )22121
22

1.8 kg m 2.5 rad/s
0.88 W

6.4 s
x xIWP

t t
ω ⋅

= = = =  

 
2. (b) Find P for rotation about the y axis: 

( )( )222 11
22 2.5 kg m 2.5 rad/s

1.2 W
6.4 s

y yIWP
t t

ω ⋅
= = = =  

 
3. (c) Find P for rotation about the z axis: 

( )( )22121
22

4.3 kg m 2.5 rad/s
2.1 W

6.4 s
z zIWP

t t
ω ⋅

= = = =  

 Insight: The larger the moment of inertia, the more work is required to obtain the same rotation rate. 
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84.  Picture the Problem: The saw blade rotates on its axis and gains rotational kinetic energy due to the torque applied by 

the electric motor. 
 Strategy:  The torque applied through an angular displacement gives the blade its rotational kinetic energy.  Use 

equations 11-17 and 10-17 to relate the kinetic energy to the torque applied by the motor.  Then use equation 11-17 
again to find the kinetic energy and angular speed after the blade has completed half as many revolutions. 

 
Solution: 1. (a) Find fω  in units of rad/sec: f

rev 2  rad 1 min3620 379 rad/s
min rev 60 s

πω = × × =   

 2. Set W and solve forK= Δ τ : 

( )( ) ( )
( )

2 21 1
2 2

2 22 2 11
22

 and 
0.755 kg 0.152 m 379 rad/s

15.8 N m
2 2 6.30 rev  2  rad/rev

W I I mr

mr

τ θ ω

ω
τ

θ π

= Δ = =

= = =
Δ ×

⋅

 

 3. (b) The time to rotate the first 3.15 revolutions is greater than the time to rotate the last 3.15 revolutions because the 
blade is speeding up. So more than half the time is spent in the first 3.15 revolutions. Therefore, the angular speed has 
increased to more than half of its final value. After 3.15 revolutions, the angular speed is greater than 1810 rpm. 

 4. (d) Set W and solve forK= Δ ω : 

( )( )
( )( )

( )

2 2 21 1
2 4

2 2

4 15.8 N m 3.15 rev 2  rad/rev4
0.755 kg 0.152 m

60 s 1 rev268 rad/s 2560 rev/min
min 2  rad

I mr

mr

τ θ ω ω
πτ θω

π

Δ = =

⋅ ×Δ
= =

⎛ ⎞⎛ ⎞= =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

t

 

 Insight: The angular speed increases linearly upon time ( 0 tω ω α α= + = ) but depends upon the square root of the 

angular displacement: 2
0 2 2ω ω α θ α= + Δ = Δθ . 

 
85.  Picture the Problem: A uniform disk stands upright on its edge, and rests on a 

sheet of paper placed on a tabletop. The paper is pulled horizontally to the right. 
 Strategy:  Use Newton’s Second Law for linear motion and for torques to predict 

the behavior of the disk.  
 Solution: 1. (a) There are three forces that act upon the cylinder, the force of friction from the paper, the force of 

gravity on the center of mass, and the normal force from the tabletop. The paper force is the only one that exerts a 
torque about the cylinder’s center of mass, and it acts in the counterclockwise direction to rotate the disk. 

 2. (b)  The normal force and the force of gravity balance each other and do not produce any acceleration.  The paper 
force is unbalanced and produces an acceleration that will cause the center of the disk to move to the right.  

 Insight: When the paper is removed the disk is translating toward the right but is rolling toward the left.  What happens 
next depends upon the rotation and translation speeds as well as the magnitude of the friction force on the disk. 

 
86.  Picture the Problem: The two rotating systems shown at right each consists of a 

mass m attached to a rod of negligible mass pivoted at one end. On the left, the 
mass is attached at the midpoint of the rod; to the right, it is attached to the free end 
of the rod. The rods are released from rest in the horizontal position at the same 
time. 

 Strategy:  Use Newton’s Second Law for torques Iα=∑ τ to predict the behavior 
of the two rotating systems. 

 Solution:  The angular acceleration of each system is given by .Iα τ=   We can see that the right hand system 
experiences a larger torque due to its larger moment arm, but it also has a larger moment of inertia.  Quantifying the two 
systems, we find that ( )(1

left 2 L mgτ = )  and ( )2 21 1
left 2 4 ,I m L m L= =  so ( ) ( )21 1

left 2 4 2mg L m L g Lα = = ,  and 

right m g Lτ =  and 2
right ,I m L=  so ( ) ( )2

right .m g L m L g Lα = =  We can see that the left hand system has the larger 
angular acceleration, and we conclude that when the rod to the left reaches the vertical position, the rod to the right is 
not yet vertical (location A).  

 Insight: The greater effect is the moment of inertia, because it depends on the square of the distance from the axis of 
rotation, whereas the torque depends only on the first power of the distance. 
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87.  Picture the Problem: A disk and a bicycle wheel of equal radius and mass each 

have a string wrapped around their circumferences. Hanging from the strings, 
halfway between the disk and the hoop, is a block of mass m, as shown at right. The 
disk and the hoop are free to rotate about their centers. 

 Strategy:  Use Newton’s Second Law for torques Iα=∑ τ to predict the behavior 
of the two rotating systems. 

 Solution: 1. (a) Upon its release the mass exerts equal torques on the disk and the wheel.  However, the disk has a 
smaller moment of inertia than the wheel and experiences the larger angular acceleration .Iα τ=  The string on the 
disk will unravel faster than the string on the bicycle wheel, and we conclude that when the block is allowed to fall, it 
will move toward the left.  

 2. (b) The best explanation is II. The wheel has the greater moment of inertia and unwinds more slowly than the disk. 
Statement I is false, and statement III is true, but irrelevant.  

 Insight: Statement III is only true in terms of mass and radius.  In terms of moment of inertia, the system is not 
symmetric, and that fact is what leads to the observed behavior. 

 
 

88.  Picture the Problem: A beetle sits at the rim of a turntable that is at rest but is free to rotate about a vertical axis. 
 Strategy:  Use the conservation of angular momentum to answer the conceptual question. 
 Solution: 1. (a) As the beetle begins to walk, it exerts a force and a torque on the turntable. The turntable exerts an 

equal but opposite force and torque on the beetle. There are no torques on the beetle-turntable system, so there is no net 
change in its linear or angular momentum.  If the turntable is much more massive than the beetle, it will barely rotate 
backward as the beetle moves forward. The beetle, then, will begin to circle around the perimeter of the turntable 
almost the same as if it were on solid ground.  

 2. (b) If the turntable is virtually massless,  it will rotate backward with a linear speed at the rim that is almost equal to 
the forward linear speed of the beetle. The beetle will progress very slowly relative to the ground in this case—though 
as far as it is concerned, it is running with its usual speed. In the limit of a massless turntable, the beetle will remain in 
the same location relative to the ground.  

 Insight: In either case, massive turntable or nearly massless turntable, the angular momentum of the beetle in the 
laboratory frame of reference is balanced by the angular momentum of the turntable.  The angular momentum of the 
beetle-turntable system must remain zero because there are no external torques on the system. 

 
 

89.  Picture the Problem: A beetle sits at the rim of a turntable that is at rest but is free to rotate about a vertical axis. 
 Strategy:  Use the conservation of angular momentum to answer the conceptual question. 
 Solution:  The angular momentum L Iω= of the system must remain constant because there are no external torques 

acting on it. Thus, as the beetle walks toward the axis of rotation, which reduces the moment of inertia of the system, 
the angular speed of the turntable will increase.  

 Insight: The beetle must do work against the “centrifugal force,” or from another perspective the force of friction (that 
supplies the centripetal force to keep the beetle moving in a circle) does work on the beetle as it moves toward the 
center.  The kinetic energy of the beetle therefore increases.  A similar effect occurs when an ice skater does work to 
move her arms inward toward her body, and gains kinetic energy as she spins faster. 

 
 

90.  Picture the Problem: The Earth is imagined to magically expand, doubling its radius while keeping its mass the same. 
 Strategy:  Use the conservation of angular momentum to answer the conceptual question. 
 Solution:  The angular momentum L Iω= of the Earth must remain constant because there are no external torques 

acting on it. The moment of inertia 22
5I M R=  would increase after the expansion, so the angular speed ω would 

decrease and the length of a day would increase.  
 Insight: The moment of inertia of the Earth in this case would increase by a factor of four, producing a day that is four 

times longer, or 96 hours! 
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91.  Picture the Problem: The work the hamster does on the exercise wheel gives the wheel rotational kinetic energy. 

 Strategy: Find the rotational kinetic energy of the wheel to determine the work done by the hamster (equation 11-18).  
Use Table 10-1 to find the moment of inertia of a hoop, 2.I mr=  The hamster runs without slipping relative to the 
circumference of the exercise wheel, so that v rω = (equation 10-15) relates its linear speed with the angular speed of 
the wheel. 

 Solution: Set W  and  
substitute for I and 

K= Δ
ω : 

( )( ) ( )( )2 22 2 21 1 1 1
2 2 2 2

3

0.0065 kg 1.3 m/s

5.5 10 J 5.5 mJ

W K I mr v r mvω
−

= Δ = = = =

= × =
 

 Insight: Note that in this special case the rotational kinetic energy of the wheel in the laboratory frame of reference 
equals the linear kinetic energy the hamster has in the rotating frame of reference of the wheel. 

 
 
 
92.  Picture the Problem: The person’s weight is supported by the hinge and 

the wire in the manner shown in the figure at right. 

 Strategy: Set the sum of the torques about the hinge equal to zero and 
solve for the moment arm of the person relative to the hinge.  Let  
L = length of the rod,  mass of the rod, rm = pm =  mass of the person, and 

 = distance from the hinge to the person.  Let pr max 1400 NT T= = and use 
equation 11-6 to solve for . pr

 
 Solution: Set  and  

solve for : 
0τ =∑

pr
( ) ( ) ( )

( )( ) ( ) ( )( )( )
( )( )

1
r p p2

1
r2

p
p

21
2

2

sin 0
sin

4.25 m 1450 N sin 30.0 4.25 m 47.0 kg 9.81 m/s
3.15 m

68.0 kg 9.81 m/s

L T L m g r m g
LT Lm g

r
m g

τ θ
θ

= − − =
−

=

° −
= =

∑
 

 Insight: Note that when the person is 3.15 m from the hinge the tension in the cable (1450 N) is more than twice the 
weight of the person (667 N).  This is because about half the tension is pulling horizontally toward the hinge and not 
supporting the downward weight of the person and the rod. 
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93.  Picture the Problem: The puck travels in a circular path about the hole in 

the table, but the radius of the path can be adjusted by pulling on the string 
from underneath the table, as shown in the figure at right. 

 Strategy: Let the angular momentum of the puck remain constant, and use 
equation 11-12 to find the final speed of the puck. 

 Solution: 1. (a) The angular momentum of the puck does not change 
because the string exerts no torque on the puck, but its moment of inertia 
decreases as the radius of its path decreases.  Because L mvr= we 
conclude the linear speed of the puck must increase in order for L to 
remain the same while r decreases. 

 

 2. (b) Set  and solve for : iL L= f fv f f

f 1
f 2

2

mvr mv r
r rv v v v
r r

=
⎛ ⎞⎛ ⎞

= = =⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 Insight: The puck gains kinetic energy in this process because pulling on the string exerts a force in the same direction 
as the radial displacement and therefore does work on the puck. 

 

θ 

T

pm g

pr  

rm g  
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94.  Picture the Problem: The masseter muscle and the biting force each 

produce a torque about the joint in a manner depicted by the figure at 
right. 

 Strategy: Find the torques produced by the two forces by finding the 
portion of each force that is perpendicular to the horizontal moment arms 
shown in the figure (equation 11-3).  The torque from the biting force 
must be the same magnitude as the torque from the masseter muscle in 
order for the torques to be in equilibrium. Use the torque produced by the 
biting force together with the moment arm to find the magnitude of that 
force.  Finally, apply Newton’s Second Law in the horizontal and vertical 
directions to find the components of the force JF that the mandible exerts 
on the joint. 

 Solution: 1. (a) The vertical component of MF is the 
portion of the force that produces a torque about the 
moment arm . Mr D d= −

( )( )
( ) ( )

M cos

0.1085 0.0760 m 455 N cos 26.0 13.3 N m

r F D d Fτ θ⊥= = −

= − °⎡ ⎤⎣ ⎦ = ⋅
 

 2. (b) Use equation 11-3 again to find BF : B

B
13.3 N m 123 N
0.1085 m

r F DF

F
D

τ
τ
⊥= =

⋅
= = =

 

 3. (c) Set  to find 0xF =∑ J,xF : 

( )
x M, J,

J, M, M

0

sin 455 N sin 26.0 199 N
x x

x x

F F F

F F F θ

= − + =

= = = ° =

∑
 

 4. (d) Set  to find 0yF =∑ J,yF : 

( )

B M, J,

J, B M,

B M

0

cos 123 N 455 N cos 26.0 286 N

y y y

y x

F F F F

F F F

F F θ

= − + + =

= −

= − = − ° = −

∑
 

 Insight: While the biting force is large (123 N is equal to 27.6 lb) the 348-N total force on the joint is the same as  
78.3 lb, and is an indicator of how strong the joints and muscles must be in order for the jaw to work correctly! 

 
 
 
95.  Picture the Problem: The force from the elastic cord produces a torque about the 

elbow joint in the manner indicated by the figure at right. 

 Strategy: Use the geometry in the figure to determine the component of the 
moment arm that is perpendicular to the force F, and then use equation 11-3 to 
determine the F that will produce the desired torque.  Finally, use Hooke’s Law 
(equation 6-4) to find the spring constant from the force and the stretch distance.  
Let a be the 38-cm length of the person’s arm.  The perpendicular component of the 
moment arm is sin .r a θ⊥ =

22 .
  A careful analysis of the geometry reveals that 

61 39θ = °− ° = °   The stretch distance x is the difference between the 44-cm 
stretched length and the 31-cm unstretched length of the elastic cord. 

 
Solution: 1. Solve equation 11-3 for F: 

( )
81 N m 570 N

0.38 m sin 22
F

r
τ

⊥

⋅
= = =

°
 

 
2. Solve equation 6-4 for k: 570 N 4400 N/m 4.4 kN/m

0.44 0.31 m
Fk
x

= = = =
−

 

 Insight: The 570 N of force the elastic cord exerts on the hand is equivalent to 130 lb.  A good workout! 
 

Copyright © 2010 Pearson Education, Inc.  All rights reserved. This material is protected under all copyright laws as they currently exist. No 
portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

11 – 12 



Chapter 11: Rotational Dynamics and Static Equilibrium  James S. Walker, Physics, 4th Edition 
 
 
96.  Picture the Problem: This is a units conversion problem. 
 Strategy: The formula is a version of equation 11-19 but with non-metric units.  The constant C simply converts the 

units from rev/min to rad/s and from ft·lb/s to horsepower.  Use equation 11-19 to find the value of C, then use the given 
formula and the known value of C to find the engine torque in ft·lbs. 

 
Solution: 1. (a) Use equation 11-19 to find C: ( ) ( ) ( ) 2  rad 1 min 1 hphp ft lb rev/min

1 rev 60 s 550 ft lb/s
Torque RPM Torque RPMHP  hp 

5252 ft lb rpm/hp

5252 ft lb rev/min/hp 5250 ft lb rev/min/hp

P

C

C

πτ ω= ⋅ × × ×
⋅

⋅ ⋅
= =

⋅ ⋅

= ⋅ ⋅ = ⋅ ⋅

 

 
2. (b) Use the given formula to find τ : ( )( )

( )
5252 ft lb rpm/hp 320 hpHPTorque 259 ft lb

RPM 6500 rpm
C ⋅ ⋅×

= = = ⋅

T

 

 Insight: The constant C can be considered “unitless” because it is basically power divided by power, but we retained 
the units to indicate how to accomplish the conversion.  We bent the rules for significant figures for C a bit in step 2 to 
avoid rounding error. 

 

97.  Picture the Problem: The torque about the hip joint from the weight 
of the tail balances the torque from the weight of the upper torso of 
the dinosaur. 

 Strategy: Write Newton’s Second Law for torque about the hip joint 
and solve for the mass of the tail.  Let be the mass of the upper 
torso, let be the mass of the tail, and let 

Um

Tm UM m m= +  be the total 
mass of the T. rex. 

 Solution: 1. Set and 
substitute for : 

0τ =∑
Um ( )

T T U U

T T U T

0
0

r m g r m g
r m r M m

− =

− − =
 

 
2. Now solve for : Tm ( )( ) 3U

T
T U

1.4 m 5400 kg
2000 kg 2.0 10  kg

2.4 1.4 m
r M

m
r r

= = = = ×
+ +

 

 Insight: Such a massive tail would not be necessary if the creature stood upright like humans do, placing its mass over 
the point of support of its feet.  Other creatures like monkeys have large tails for better balance when doing acrobatics in 
the tree tops. 

 

98.  Picture the Problem: The weight of the pen, the thumb force, and the 
index finger force act on the pen in the manner indicated by the figure. 

 Strategy: Use Newton’s Second Law for torque and Newton’s Second Law 
for force in the vertical direction to determine the magnitudes of the forces.  
The forces and torques are each in equilibrium. The weight of the pen will 
act at the center of mass, 7.0 cm from the end of the pen.  

 Solution: 1. (a) The force from the index finger will be greater in 
magnitude than the force from the thumb, because the finger force has to 
counteract both the thumb’s force and the pen’s weight. 

 

 2. (b) Set and solve for 0τ =∑ fF : 

( )( )( )
f f cm

2
cm

f
f

0

7.0 cm 0.028 kg 9.81 m/s
0.55 N

3.5 cm

r F r mg

r mg
F

r

τ = − =

= = =

∑
 

 3. Set and solve for y 0F =∑ tF : 

( ) ( )( )
f t

2
t f

0

0.55 N 0.028 kg 9.81 m/s 0.27 N
yF F F mg

F F mg

= − − =

= − = − =

∑
 

 Insight: The largest force, 0.55 N, amounts to only 2.0 oz.  The 28 g pen weighs about 1.0 oz. 

3.5 cm tF

fF

mg

7.0 cm
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99.  Picture the Problem: The person stands on the 60.0-N ladder in the manner depicted by 

the figure at right. 

 Strategy: The problem can be solved by setting the vector sums of the forces and the 
torques equal to zero.  The only differences between this problem and Active Example 11-
3 are the addition of a vector  at the center of mass of the ladder, and the modification 

of the distance b.  The horizontal distance between the base of the ladder and the vector 

  is 

m g

m g ( ) ( )2 24.0 m 8 m 0.62 m.= × − × =1 1
2 2 3.c  

 Solution: 1. (a) Set and solve  
for 

0τ =∑
3f . Let b because the person is  

halfway up the ladder: 
c= ( )

3

3

0a f b mg c m g
c mg m gbmg cm g

f
a a

τ = − − =
++

= =

∑

 

 
2. Determine the numerical value of 3f : 

( ) ( )( )2

3

0.62 m 85kg 9.81 m/s 60.0 N

3.8m
146 N 0.15 kN

f
⎡ ⎤+⎣ ⎦=

= =

 

 3. Set  and solve for 0xF =∑ 2f : 2 3

2 3

0
0.15 kN

xF f f
f f
= − =

= =
∑

 

 4. Set  and solve for 0yF =∑ 1f : 

( )( )
1

2
1

0

85 kg 9.81 m/s 60.0 N

894 N 0.89 kN

yF f mg m g

f mg m g

= − − =

= + = +

= =

∑
 

 
5. (b) Set and solve for 0τ =∑ 3f . Let  

( )

    b 

( )2 23 3
4 4 3.8 m 0.94 m:b = × − × =4.0 m  ( )( )( ) ( )( )

3

2

3

0.94 m 85 kg 9.81 m/s 0.62 m 60.0 N

3.8 m
216 N 0.22 kN

bmg cm gf
a

f

+
=

+
=

= =  
 6. Let  as in step 3: 2f f= 3 2 3 0.22 kNf f= =  

 7. The force  is unchanged: 1f 1 894 N 0.89 kNf = =  

 Insight: As the person climbs higher on the ladder both  and  increase.  The ladder leans with more force  
against the wall and relies more heavily on the static friction force  to keep the base of the ladder from sliding out. 

3f 2f 3f

2f
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100.  Picture the Problem: The sign is supported by a rope as indicated in the 
figure at right. 

 
Strategy: Set the net torque about the bolt equal to zero and solve for the 
tension in the rope. The torque due to the rope is positive and the torque 
due to the weight is negative.  Then write Newton’s Second Law in the 
vertical and horizontal directions to find the vertical and horizontal 

components of the force exerted by the bolt on the sign. F
 

 Solution: 1. (a) Set  and solve for T: 0=∑ τ ( )( ) ( )( )
( )( )2

2 sin 0
16.0 kg 9.81 m/s

229 N
2sin 2sin 20

L T L mg

mgT

θ

θ

= − =

= = =
°

∑ τ

 

 2. (b) Let horizontal forces sum to zero and 
solve for xF : 

( )( )2

cos 0

cos cos
2sin 2 tan

16.0 kg 9.81 m/s
216 N

2 tan 20.0

x

x

F T
mg mgF T

θ

θ θ
θ θ

− =

⎛ ⎞= = =⎜ ⎟
⎝ ⎠

= =
°

 

 3. (c) Let vertical forces sum to zero and  
solve for yF : 

( )( )

1
2

21
2

sin 0

sin sin
2sin

16.0 kg 9.81 m/s 78.5 N

y

y

F mg T

mgF mg T mg mg

θ

θ θ
θ

− + =

⎛ ⎞= − = − =⎜ ⎟
⎝ ⎠

= =

 

 Insight: Note that the 229-N tension in the rope is almost 1.5 times larger than the 157-N weight of the sign because the 
rope is also pulling horizontally, and only the vertical portion is supporting the weight of the sign.  It would take an 
infinite force to support the sign with a rope that is horizontal (θ = 0.0°)! 

 
 
101.  Picture the Problem: The diver of mass m stands at the end of 

the diving board of negligible mass as shown at right.  The pillars 
are  
d = 1.10 m apart, the mass of the diver is 67.0 kg, and the 
magnitude of  1 828 N.F =

  

Strategy: Write Newton’s Second Law for rotation with the pivot 
point at the second pillar and solve for L.  Then write Newton’s 
Second Law in the vertical direction and solve for F2. 

 
 Solution: 1. (a) Set   

about pillar 2 and solve for L: 
0=∑ τ ( )

( ) ( ) ( ) ( )
( )( )

1

2
1

2

0

1.10 m 67.0 kg 9.81 m/s 828 N
2.49 m

67.0 kg 9.81 m/s

d F L d mg

d mg F
L

mg

= − + − =

⎡ ⎤++ ⎣ ⎦= = =

∑ τ  

 2. (b) Set  and solve for 0yF =∑ 2F : 

( )( )
1 2

2
2 1

0
67.0 kg 9.81 m/s 828 N 1490 N 1.49 kN

yF F F mg
F mg F

= − + − =

= + = + = =
∑

 

 Insight: Pillar 1 must exert a downward force in order to balance the torque produced by the diver’s weight.  Pillar 2 
must therefore exert a large force upward to balance the two downward forces 1F  and . mg
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102.  Picture the Problem: The diver of mass m = 90.0 kg stands at a 

distance x from the left end of the diving board of mass M = 85 kg and 
length L = 5.00 m as shown at right.  The pillars are d = 1.50 m apart.  

 Strategy: Write Newton’s Second Law in the vertical direction and 
Newton’s Second Law for rotation with the pivot point at the left end 
of the board.  The two equations can then be combined to find the two 
unknowns F1 and F2 as functions of x. 

 
 Solution: 1. Set   

and solve for 
0yF =∑

1F : 
1 2 diver board

1 diver board 2

0yF F F m g W
F m g W F
= + − − =
= + −

∑
 

 2. Set  and solve for 0=∑ τ 2F : ( ) ( ) ( )
( ) ( )

( ) ( )( )
( )
( )

1
1 2 diver board2

1 1
2 diver board diver board2 2

2
1
2

2

2

0 0
1

9.81 m/s 90.0 kg 85 kg 5.00 m
1.50 m
589 N/m 1390 N

ˆ0.589 kN/m 1.4 kN

F d F x m g L m g
gF m gx m gL m x m L

d d

x

F x

x

= + − − =

= + = +

= +⎡ ⎤⎣ ⎦

= +

= +⎡ ⎤⎣ ⎦

∑ τ

F y

 

 3. Use the value of 2F  in the  
equation from step 1 to find 1F : 

( )( ) ( )( ) ( )
( )
( )

2 2
1

1

90.0 kg 9.81 m/s 85 kg 9.81 m/s 589 N/m 1390 N

589 N/m 330 N

ˆ0.589 kN/m 0.33 kN

F x

x

x

= + − ⎡ ⎤⎣ ⎦
= − +

= − +⎡ ⎤⎣ ⎦F y

+

 Insight: As the diver moves toward the end of the board, x increases, 1F  becomes larger in the negative (downward) 
direction, and 2F  becomes larger in the upward direction, with maximum values of 1 2.6 kNF = −  and 2 4.3 kNF = . 

 
103.  Picture the Problem: The weight of the person is distributed between the heel and 

the toe in different ways because of the shape of the shoe as shown in the figure at 
right. 

 Strategy: Write Newton’s Second Law for torque about point A and solve for BF .  
Then write Newton’s Second Law in the vertical direction to find the force AF .  
Note that the forces A  and BF F  are upward forces on the foot exerted by the floor.  

 Solution: 1. (a) Set  and  
solve for 

0=∑ τ

BF : ( )

w B B

w
B

B

B

0
4.02 cm 279 N
13.5 cm

83.1 N

r w r F
r

F w
r

F

− =

= =

=

 

 2. Now set  and solve for 0yF =∑ AF : A B

A B

0

279 N 83.1 N 196 N

F F w

F w F

+ − =

= − = − =
 

 3. (b) Repeat step 1 for the high heel: 

( )

w B B

w
B

B

0
3.53 cm 279 N 95.6 N
10.3 cm

r w r F
r

F w
r

− =

= = =
 

 4. Repeat step 2 for the high heel: A B

A B

0

279 N 95.6 N 183 N

F F w

F w F

+ − =

= − = − =
 

 5. (c) The high heel has shifted more of the woman’s weight to her toes. 
 Insight: Note that even a flat shoe exerts more force on the heel than the toes because w is located closer to the heel . 
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104.  Picture the Problem: The quadriceps muscle exerts a force just 

below the knee that supports the lower leg in the manner indicated in 
the figure. 

 Strategy: Write Newton’s Second Law for torque about the knee 
joint and solve for QF .  Note that the moment arm for the quadriceps 

force is :  and for the weight of the leg 

it is: . 
( ) cm=

( )cos
,Q 12 sin 29 5.8 cmr⊥ ° =

35 cm 39 27 cm= ° =,Wr⊥

 Solution: Set  and solve for 0=∑ τ QF : 

( )( )
,Q Q ,W

,W 2
Q

,Q

0

27 cm 3.4 kg 9.81 m/s 155 N 0.16 kN
5.8 cm

r F r mg
r

F mg
r

⊥ ⊥

⊥

⊥

− =

= = = =
 

 Insight: Note that in order to produce the same torque as the leg’s weight, but with a much smaller moment arm, the 
muscle must exert a force that is 4.7 times greater than the weight of the leg. 

 
 
 
105.  Picture the Problem: The deltoid muscle exerts a force just below the 

shoulder that supports the weight of the upper and lower arms, hand, and 
stop sign in the manner indicated by the diagram at right. 

 Strategy: Write Newton’s Second Law for torque about the shoulder joint 
and solve for df .  Note that the moment arm for the deltoid force is: 

 and the moment arms for the weights are ( )sin,d 14 cm 18 4.3 cm,r⊥ = ° =
just those x components that are labeled in the diagram. Then write 
Newton’s Second Law in the horizontal and vertical directions to find the 
forces xf  and yf . 

 Solution: 1. (a) The magnitude of df  is greater than the magnitude of xf  because although xf  must equal the 
magnitude of the horizontal component of df (because they are the only two horizontal forces and the arm is in 
equilibrium), df  also has a vertical component. 

 2. (b) Set  and solve for 0=∑ τ df : ( )
( )

( )( ) ( )( ) ( )( )

,d d u u l l h h s

u u l l h h s
d

,d

d

0

18 cm 18 N 42 cm 11 N 65 cm 4.0 8.9 cm
4.3 cm

380 N 0.38 kN

r f r W rW r W W

r W rW r W W
f

r

f

⊥

⊥

− − − + =

+ + +
=

+ + +
=

= =

 

 3. (c) Set  and solve for x 0F =∑ xf : 

( )
x d

x d

cos18 0

cos18 0.38 kN cos18 0.36 kN

f f

f f

− ° =

= ° = ° =
 

 4. (d) Set  and solve for 0yF =∑ yf : 

( )

y d u l h s

y u l h d

sin18 0

sin18

18 11 4.0 8.9 N 380 N sin18 80 N 0.08 kN

f f W W W W

f W W W W f

+ °− − − − =

= + + + − °

= + + + − ° = − = −

 

 Insight: The negative value of yf  indicates it actually acts in the downward direction on the shoulder joint, not upward 
as indicated in the figure.  The rules of subtraction leave us with just one significant figure for the answer to part (d). 
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106.  Picture the Problem: The triceps muscle exerts an upward force on the 

ulna at a point just behind the elbow joint as indicated in the figure at right.

 Strategy: Write Newton’s Second Law for torque about the elbow joint 
and solve for TF . 

 Solution: 1. Set  and  
solve for 

0=∑ τ

TF : 
T T cm F

F cm
T

T

0r F r Mg r F
r F r Mg

F
r

− − + =
−

=
 

 
2. Insert the numerical values: ( )( ) ( )( )

T

18.6 2.78 17.0 cm 89.0 N 18.6 2.78 cm 15.6 N
962 N

2.78 cm
F

− + − −
= =  

 Insight: The 962-N (216-lb!) force exerted by the triceps muscle is much greater than the 89.0-N (20.0-lb) force exerted 
by the hand because the moment arm of the triceps force is much smaller than that of the hand. 

 
 
 
107.  Picture the Problem: The books are arranged in a stack as depicted at 

right, with book 1 on the bottom and book 4 at the top of the stack. 

 Strategy: It is helpful to approach this problem from the top down.  The 
center of mass of each set of books must be above or to the left of the point 
of support, otherwise there will be a net torque on the system and it will 
tip.  Find the positions of the centers of mass for successive stacks of 
books to determine d. Measure the positions of the books from the right 
edge of book 1 (right hand dashed line in the figure). 

 Solution: 1. (a) The center of mass of book 4  
needs to be above the right end of book 3. 3 2

Ld =  

 2. The result of step 1 means that the center of mass of book 3 is located at 2 2L L L+ = from the right edge of book 1.

 3. The center of mass of books 4 and 3 needs  
to be above the right end of book 2: 

( ) ( )
2 cm,43

2 3
2 4

m L m L
d X L

m
+

= = =  

 4. The result of step 3 means that the center of mass of book 2 is located at 3 4 2 5 4.L L L+ =  

 5. The center of mass of books 4, 3, and 2  
needs to be above the right end of book 1: 

( ) ( ) ( )
1 cm,432

2 5 4 11
3 1

m L m L m L
d X L

m
+ +

= = =
2

 

 6. The result of step 3 means that the center of mass of book 1 is located at 11 12 2 17 12.L L L+ =  

 7. The center of mass of all four books needs  
to be above the right edge of the table: 

( ) ( ) ( ) ( )
cm,4321

2 5 4 17 12 25
4 2

m L m L m L m L
d X L

m
+ + +

= = =
4

 

 8. (b) If the mass of each book is increased by the same amount, the answer to part (a) will stay the same because it 
only depends upon the assumption that each book has the same mass, irregardless of the value of that mass. 

 
Insight: If you examine the overhang of each book you find an interesting series: 25

2 4 6 8 24
L L L Ld L= + + + = .  The 

series gives you a hint about how to predict the overhang of even larger stacks of books! 
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108.  Picture the Problem: The Earth spins on its axis with a nearly constant angular speed. 

 Strategy: Because the melting of the polar ice caps redistributes the Earth’s mass a little bit but does not exert an 
external torque on the planet, the angular momentum of the Earth would remain constant.  Combine equations 10-5,  
11-11, and 11-15 to find the new rotation period for the Earth. 

 Solution: 1. (a) With conservation of angular momentum, an increase in the moment of inertia leads to a decrease in the 
speed of rotation. The length of a day would therefore increase. 

 2. (b) Set  and substitute iL L= f L Iω= : i i f fI Iω ω=  

 
3. Now let 2 Tω π=  and solve for : fT f f

i f f i i
i f i

2 2     
i

I I
I I T T T

T T I
π π⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞

= ⇒ = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠I

 

 
4. Find : f iT T TΔ = − ( )

2
f E E

f i i 2
i E E

0.332
1 1 86,400 s 261 s

0.331
I M R

T T T T
I M R

⎛ ⎞⎛ ⎞
Δ = − = − = − =⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

 Insight: The longer day would be noticeable over time, as 261 s is equivalent to 4.35 min.  The longer day would cause 
grief for time-sensitive astronomical observations and would mean that geosynchronous satellites would be in the wrong 
orbits and would drift slowly across the sky (see Active Example 12-1). 

 
109.  Picture the Problem: The force F is applied to the axis of the wheel 

in order to lift it over the step as shown in the figure at right. 

 Strategy: In order to find the minimum force F that will lift the 
wheel over the step, we must balance the torques. The torque about 
the corner of the step that is produced by F must balance the torque 
produced by the downward force of gravity acting at the axle.  The 
moment arm for the force F is 1

,F 4r⊥ = R  and the moment arm for 

the weight is ,W cosr R θ⊥ = , where 
( )22 1

4 15cos
16

R R
R

θ
−

= = . 
 

 Solution: Set  and solve for 0=∑ τ minF : 

( )
,W ,F min

,W
min

,F

0

15 16
15

4

r Mg r F

R Mgr Mg
F Mg

r R

τ ⊥ ⊥

⊥

⊥

= − =

= = =

∑  

 Insight: Less force is required if the step is smaller.  For instance, a step height of 2R  would only require a force of 

min 12 .F Mg=  
 
110.  Picture the Problem: The yo-yo hangs in equilibrium under the influence of the two 

forces  and as indicated in the diagram at right. 1T 2T

 Strategy: Write Newton’s Second Law for torque about the axis of the yo-yo, and then 
Newton’s Second Law in the vertical direction for the yo-yo and for the hanging mass 
to obtain expressions for , , and m. The problem states that 1T 2T 5.60R r= . 

 Solution: 1.  Set  and solve for : 0=∑ τ 1T 1 1 2 2

2
1 2 2

1

2

1 2

0

5.60

5.60

r T r T
r RT T T
r r

rT
r

T T

⊥ ⊥

⊥

⊥

− =

= =

=

=
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 2. Set for the yo-yo and solve for : 0yF =∑ 1T

( )
( )( )

1 2

1 1

2

1

0
5.60

0.101 kg 9.81 m/s
1.21 N

1 1 5.60 1 1/ 5.60

T T Mg
T T Mg

MgT

− − =

− =

= = =
− −

 

 
3.  Use the expression from step 1 to find : 2T

( )
( )( )2

1
2

0.101 kg 9.81 m/s

5.60 1 1 5.60 5.60 4.60 4.60

0.215 N

T Mg MgT = = = =
−

=

 

 4. Set for the hanging mass and  
solve for m: 

0yF =∑ 2

2

0
0.101 kg 0.0220 kg 22.0 g

4.60 4.60 4.60

T mg
T Mg Mm
g g

− =

= = = = = =
 

 Insight: If the hanging mass were not there, the weight of the yo-yo would create a torque with moment arm r relative 
to the point where  contacts the axis, and the yo-yo would rotate counterclockwise and descend the string. 1T

 
 
 
111.  Picture the Problem: The various forces are applied to the rod, which is in 

equilibrium, as shown in the figure at right.  

 Strategy: Let L = the rod length and write Newton’s Second Law for 
torque about the bottom of the rod in order to determine the wire tension T. 
Then write Newton’s Second Law in the horizontal and vertical directions 
to determine the normal force N and the static friction force sf .  Then 

determine the maximum force F that can be applied to the rod without 
causing it to slip. 

 Solution: 1. (a) Set and  
solve for T: 

0τ =∑ ( ) ( )1
2cos 45 0

2
2cos 45

L T L F
FT F

τ = ° − =

= =
°

∑

 2. Set , substitute the 
expression for T from step 1, and  
solve for N: 

0yF =∑
1
2

sin 45 0

1sin 45
2 2

yF N Mg T

FN Mg T Mg Mg F

= − − ° =

⎛ ⎞⎛ ⎞
= + ° = + = +⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

∑
 

 3. Set  and substitute  

for 

0xF =∑
( )1

s s
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s 2N Mg F+μ μ= = : 

( ) ( )

s

1 1
s s2 2

cos 45 0
cos 45

1 1
2 2

x sF F f T
F N T

FMg F Mg F

μ

μ μ

= − − ° =

= + °

⎛ ⎞⎛ ⎞

f

sμ= + + = + +⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

∑
 

 4. Now solve for F: ( )

( ) ( )

1
s s2

s s s
1 1

s s2 2

1

2
1 1 1 1

F F Mg

s

Mg Mg M
F

μ μ

μ μ μ g
μ μ μ

− + =

= = =
− + − −

 

 Insight: The maximum force increases with sμ until it becomes infinite when s 1μ = .  If the coefficient of static friction 
is one or larger, it is impossible to pull the bottom of the rod out while applying the force at the midpoint; you would 
have to pull on a point below the midpoint. 
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112.  Picture the Problem: The various forces are applied to the rod, which is 

in equilibrium, as shown in the figure at right. 

 
Strategy: Let L = the rod length and write Newton’s Second Law for 
torque about the bottom of the rod in order to determine the wire tension 
T.  Then write Newton’s Second Law in the horizontal and vertical 
directions to determine the normal force N and the static friction force 

sf .  Then show the maximum force F can be infinitely large and the rod 
will still not slip. 

 Solution: 1. (a) Use the expression from problem  
96 to find the maximum F: 

( )( )( )21
7s

1
s 7

2 2.3 kg 9.81 m/s2
7.5 N

1 l
Mg

F
μ
μ

= = =
− −

 

 2. (b) Set and solve for T: 0τ =∑ ( ) ( )7
8

7
8

cos 45 0
7 2

cos 45 8

L T L F
F

T F

τ = ° − =

= =
°

∑

 
 3. Set , substitute the expression for T from 

step 1, and solve for N: 
0yF =∑

7
8

sin 45 0

7 2 1sin 45
8 2

yF N Mg T

FN Mg T Mg Mg F

= − − ° =

⎛ ⎞⎛ ⎞
= + ° = + = +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑
 

 4. Set  and substitute  

for 

0xF =∑
( )1

s s
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s 2N Mg F+μ μ= = : 

( ) ( )

s

7 7
s s8 8

cos 45 0
cos 45

7 2 1 1
8 2

x sF F f T
F N T

FMg F Mg F

μ

μ μ

= − − ° =

= + °

⎛ ⎞⎛ ⎞

f

sμ= + + = + +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑

 5. Now solve for F: ( )

( ) ( )

7
s s8

s s
7 1

s s8 8

1
8

1 1 1 7 1 7

F F Mg

s

s

Mg Mg
F

μ μ
μ μ μ Mg
μ μ μ

− + =

= = =
− + − −

 

 6. Now if we insert s 1 7μ = into the above expression, the denominator becomes 1−1 = 0 and the force F becomes 
infinite.  Thus the bottom of the rod will not slip under these conditions, no matter how hard you pull! 

 Insight: On the other hand, if the surface were frictionless ( s 0μ = ) the rod would slip with the smallest force applied 
anywhere along the length of the rod. 
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113. Picture the Problem: The cylinder rotates and falls downward along the length of the string. 

 Strategy: Write Newton’s Second Law for torque about the center of the cylinder, then 
Newton’s Second Law in the vertical direction for the cylinder in order to find its linear 
acceleration.  From Table 10-1 the moment of inertia for a cylinder rotated about its axis is 

21
2I mr= . Let upward be the positive direction. 

 Solution: 1. Set Iτ α=∑  and solve for T: ( )( )21
2

1
2

r T I mr a r

T ma

α= =

=
 

 

 2. Let yF ma=∑  and solve for a: 
( )1

2

1 2
2 3    

T mg ma
ma mg ma

a a g a g

− = −

− = −

+ = ⇒ =

 

 Insight: Two ideas can help explain the slowing of the cylinder’s acceleration: (1) the string exerts an upward force on 
the cylinder, reducing the net force that is accelerating it downward; and (2) the rotation of the cylinder stores some of 
the gravitational potential energy in the form of rotational as opposed to translational kinetic energy. 

T

mg

 
 
 
114. Picture the Problem: The sphere rotates and falls downward along the length of the string. 

 Strategy: Write Newton’s Second Law for torque about the center of the sphere, then 
Newton’s Second Law in the vertical direction for the sphere in order to find its linear 
acceleration.  From Table 10-1 the moment of inertia for a sphere rotated about its axis is 

22
5I mr= . Let upward be the positive direction. 

 Solution: 1. Set Iτ α=∑  and solve for T: ( )( )22
5

2
5

r T I mr a r

T ma

α= =

=
 

 

 2. Let yF ma=∑  and solve for a: 
( )2

5

52
5 7    

T mg ma
ma mg ma

a a g a g

− = −

− = −

+ = ⇒ =

 

 Insight: Two ideas can help explain the slowing of the sphere’s acceleration: (1) the string exerts an upward force on 
the sphere, reducing the net force that is accelerating it downward; and (2) the rotation of the sphere stores some of the 
gravitational potential energy in the form of rotational as opposed to translational kinetic energy. 

T

mg
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115.  Picture the Problem: You pull straight downward on a rope that passes over a disk-shaped pulley and then supports a 

weight on the other side.  The force of your pull rotates the pulley and accelerates the mass upward. 

 Strategy: Write Newton’s Second Law for the hanging mass and Newton’s Second Law for torque about the axis of the 
pulley.  Let  be the tension on the right side of the pulley and  be the tension on the left side. Let m be the mass of 

the pulley, r be the radius of the pulley, and M be the hanging mass. The tension  on the right side must equal the 

pulling force F.  For the disk-shaped pulley the moment of inertia 

1T 2T

1T
21

2I mr=

a

(Table 10-1). 

 Solution 1. (a) Set  for the hanging mass: m=∑F

( )
2

2

yF T Mg Ma

T M g a

= − =

= +
∑  

 2. Set Iτ α=∑  for the pulley: ( ) ( )
( )

21
1 2 2

1 22

r T r T I mr a r

a T T m

τ α= − = =

= −

∑  

 
3. Substitute the expression for from step 1  
into the one from step 2, and solve for a: 

2T
( ) ( ) ( )

( ) ( )
( )
( )

( )

1 2

1
2

22 2 2

1 2 2

2 2
1 2 2

F M g aT T F Mg Ma a
m m m

a M m F Mg m

F Mg F Mg

m

F Mga
m M m M m M m

− +⎡ ⎤− −⎣ ⎦= = = −

+ = −

− − −
= = =

+ + +

 

 4. (b) The tension on the right side of the pulley is 1T F= because there can only be one tension along the rope. 

 
5. (c) Substitute for a in the expression from step 1: 

( )

2 1
2

1 2
2

1 1
2 2

2 21
2

2 1
2

2
2

F MgT Mg Ma Mg M
M m

Mg M m MF M g
M m M m

M g mMg MF M g MF mMgT
M m M m

⎛ ⎞−
= + = + ⎜ ⎟+⎝ ⎠

+ −
= +

+ +

+ + − +
= =

+ +

 

 6. (d) As 20,   and m a F M g T→ → − → F .  These are the expected results for a massless, frictionless pulley.  As 

2
2,  0  and  0

2 2
FM Mgm a T Mg Mg

M M
∞

→∞ → → + = + =
+∞ +∞

.  These are the expected results for a pulley that is too 

massive to rotate, so that the hanging mass is in equilibrium at rest. 

 Insight: The tension in the rope on the left side accelerates the hanging mass, but the tension on the right side both 
imparts angular acceleration to the pulley and accelerates the hanging mass.  Therefore, the right hand rope has the 
greater tension . 1T

 
 
 
116.  Picture the Problem: The bricks are stacked in the manner indicated 

by the figure at right. 

 Strategy: Concentrate on the brick farthest to the right.  The sum of 
the torques about the pivot point at the right edge of the bottom brick 
must be zero.  There are two torques to consider, one caused by half 
the weight of the top brick acting on the upper-left corner, and one 
caused by the weight of the brick itself acting on the center of mass.  
An examination of the diagram reveals that a L x= − and 1

2b x L= − . 
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 Solution: Set and solve for x: 0τ =∑ ( ) ( )

( )( ) ( )

1
2

1 1
2 2

2
3

0

2

2 3     

a mg b mg

L x mg bmg x L mg

L x x L

L x x L

− =

− = = −

− = −

= ⇒ =

 

 Insight: The answer is independent of the mass of the bricks.  It only assumes that the bricks all have the same mass 
and are placed symmetrically so that the weight of the top brick is evenly distributed between the two middle bricks. 

 

117.  Picture the Problem: A tooth is both moved and rotated by the 
application of two forces. The graph at right shows the values of 
the two forces necessary to produce a given torque, where the 
torque is measured about the center of the tooth. 

 Strategy:  A counterclockwise torque is desired to correct the 
clockwise rotation of the tooth.  This means that the force 2F  
must be larger than 1 .F  

 Solution: Requiring that 2 1F F>  means that graph I corresponds 
to 2F  and graph II corresponds to 1 .F  

 Insight: The forces as drawn do not have any x component, but if they did, the magnitudes of the two x components 
would need to cancel in order to avoid shifting the tooth in the x direction. 

 

118.  Picture the Problem: A tooth is both moved and rotated by the 
application of two forces. The graph at right shows the values of 
the two forces necessary to produce a given torque, where the 
torque is measured about the center of the tooth. 

 Strategy: Inspect the graph of line II to determine the value of the 
torque that corresponds to one of the forces being equal to zero. 

 Solution: Line II, corresponding to force 1 ,F  crosses the zero 
force mark at a torque of 0.0023 N·m. 

 Insight: Although this arrangement puts less stress on the tooth, the torque is insufficient to rotate the tooth properly.  
We could also use equations to find the torque.  Let 1 2 21.8 N    1.8 NyF F F F= + = ⇒ =∑  if F1 = 0.  Then the torque 

on the tooth is ( ) ( )( )1.8 N 0.0023 N m.= ⋅20 4.5 3.2 mmD d F= + − = −τ∑  
 

119.  Picture the Problem: A tooth is both moved and rotated by the application of the 
two forces indicated in the figure at right.  

 Strategy: Set the torque about the center of the tooth equal to zero and the sum of 
the forces equal to 1.8 N in order to determine the magnitudes of the forces. 

 Solution: 1. Set  and  
substitute 

0=∑ τ

2 total 1 :F F F= −  
( )

( )( )
1 2

total 1 1

0d F D d F

D d F F d F

= − + − =

− − =
∑ τ

 

 2. Now rearrange and solve for F1: ( ) ( )
( ) ( ) ( )

total 1

total 1

4.5 3.2 mm
1.8 N 0.52 N

4.5 mm

D d F d D d F

D d
F F

D

⎡ ⎤− = + −⎣ ⎦
− −

= = =
 

 3. Solve for  2 total 1 :F F F= −  
2 1.8 N 0.52 N 1.3 NF = − =  

 Insight: Although this arrangement puts the correct force on the tooth, there is no torque to rotate the tooth properly. 
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120.  Picture the Problem: A tooth is both moved and rotated by the application of the 

two forces indicated in the figure at right.  

 Strategy: Set the torque about the center of the tooth equal to 0.0099 N·m and the 
sum of the forces equal to 1.8 N in order to determine the magnitudes of the forces.

 Solution: 1. Set  and  
substitute 

0=∑ τ

2 total 1 :F F F= −  
( )

( )( )
1 2 total

total 1 total 1

d F D d F

D d F F d F

τ

τ

= − + − =

− − − =
∑ τ

 

 2. Now rearrange and solve for F1: ( ) ( )
( ) ( ) ( )

total total 1

total total
1

0.0045 0.0032 m 1.8 N 0.0099 N m
0.0045 m

1.7 N

D d F d D d F

D d F
F

D

τ

τ

⎡ ⎤− − = + −⎣ ⎦
− − − −

= =

= −

⋅

 3. Solve for  2 total 1 :F F F= −  ( )2 1.8 N 1.7 N 3.5 NF = − − =  

 Insight: Although this arrangement puts the correct force on the tooth, there is no torque to rotate the tooth properly. 
 
 
 
121.  Picture the Problem: The cart slides along a frictionless track because of 

a constant force exerted by a string that is passed over a pulley.  As in 
Example 11-7, the cart has a mass of 0.31 kg, the pulling force is 1.1 N, 
and the pulley radius is 0.012 m.  However, the pulley mass is doubled to 
0.16 kg. 

 Strategy: Apply Newton’s Second Law independently to the pulley and to 
the cart and solve for .  The pulley is a disk with moment of inertia 2T

21
2I mr=  (Table 10-1). 

 Solution: 1. (a) The value of  will decrease when the mass of the pulley is doubled because a larger net torque will 2T
be required to rotate the pulley, forcing  to decrease if  remains the same. 2T 1T

 2. (b) Set F ma=∑   
for the cart and solve for a: 

2
2     

T
T Ma a

M
= ⇒ =  

 3. Set Iτ α=∑  and solve for : 2T ( )( )21
1 2 2

1
2 1 2

rT rT I mr a r

T T ma

α− = =

= −
 

 4. Now substitute for a using  
the expression from step 2: 

( )
( )

( ) ( )

1
2 1 22

1
2 12

1
2 1 1

2 2

1

1.1 N 0.87 N
1 1+ 0.16 kg 0.31 kg

T T m T M

T m M T

T
T

m M

= −

+ =

= = =
+

 

 Insight: As predicted, the tension  decreased from 0.97 N to 0.87 N when the mass of the pulley was doubled.  If the 
mass of the pulley were infinitely large the tension  would be zero and so would the acceleration of the system. 

2T

2T
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122.  Picture the Problem: The cart slides along a frictionless track because of 

a constant force exerted by a string that is passed over a pulley.  As in 
Example 11-7, the pulley has a mass of 0.080 kg, the pulling force is  
1.1 N, and the pulley radius is 0.012 m.  However, the cart mass is doubled 
to 0.62 kg. 

 Strategy: Apply Newton’s Second Law independently to the pulley and to 
the cart and solve for .  The pulley is a disk with moment of inertia 2T

21
2I mr=  (Table 10-1). 

 Solution: 1. (a) The value of  will increase when the mass of the cart is doubled because a larger net force will be 2T
required to accelerate the cart, forcing  to increase if  remains the same. 2T 1T

 
2. (b) Set F ma=∑  for the cart and solve for a: 2

2     
T

T Ma a
M

= ⇒ =  

 3. Set Iτ α=∑  and solve for : 2T ( )( )21
1 2 2

1
2 1 2

rT rT I mr a r

T T ma

α− = =

= −
 

 4. Now substitute for a using the expression  
from step 2: 

( )
( )

( ) ( )

1
2 1 22

1
2 12

1
2 1 1

2 2

1

1.1 N 1.0 N
1 1+ 0.080 kg 0.62 kg

T T m T M

T m M T

T
T

m M

= −

+ =

= = =
+

 

 Insight: As predicted, the tension  increased from 0.97 N to 1.0 N when the mass of the cart was doubled.  If the 
mass were infinitely large, the tension  would be 1.1 N, and the acceleration would be zero because there would be 
no net torque on the pulley (and the cart is just too massive to accelerate). 

2T

2T

 
123.  Picture the Problem: The child runs tangentially to the merry-go-round 

and hops on.  As in Active Example 11-5, the child has a mass of 34.0 kg, 
the merry-go-round has a moment of inertia of 512 kg·m2 and a radius of 
2.31 m, but the child’s initial speed is different than 2.80 m/s. 

  
 

Strategy: Use equation 11-15 together with equation 11-11 to conserve 
angular momentum before and after the child jumps on the merry-go-
round.  Solve the resulting expression for the initial speed v of the child. 

 
 Solution: Set  and  

solve for the initial speed v: 
iL L= f ( )

( ) ( )( ) ( )
( )( )

2
f f

2 22

0

512 34.0 2.31  kg m 0.425 rad/s
3.75 m/s

2.31 m 34.0 kg

rmv I I mr

I mr
v

rm

ω ω

ω

+ = = +

⎡ ⎤+ ⋅+ ⎣ ⎦= = =
 

 Insight: As we would expect, the child needs to run faster in order to get the merry-go-round spinning faster.  The 34% 
increase in linear speed of the child results in a 34% increase in the angular speed of the merry-go-round because the 
initial and final angular momentum of the system depends linearly upon the speed of the child. 
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124.  Picture the Problem: The child runs at an angle to the merry-go-round 

and hops on.  As in Active Example 11-5 the child has a mass of 34.0 kg, 
the merry-go-round has a moment of inertia of 512 kg·m2 and a radius of 
2.31 m, and the child’s initial speed is 2.80 m/s. 

  

Strategy: Use equation 11-15 together with equation 11-11 to conserve 
angular momentum before and after the child jumps on the merry-go-
round.  The moment arm of the child’s angular momentum is sinr r θ⊥ = . 
Solve the resulting expression for the approach angle θ of the child. 

 Solution: 1. Set  and solve for iL L= f sinθ : ( )
( )

2
f f

2

0 sin

sin

rmv I I mr

I mr

rmv

θ ω ω

ω
θ

+ = = +

+
=

 

 
2. Solve for θ , keeping in mind that the calcu-
lator will return an angle equal to 180 θ° − : 

( ) ( ) ( )
( )( )( )

2 2

1
512 34.0 2.31  kg m 0.272 rad/s

180 sin
2.31 m 34.0 kg 2.80 m/s

180 59.1 121

θ −
⎧ ⎫⎡ ⎤+ ⋅⎪ ⎪⎣ ⎦= ° − ⎨ ⎬
⎪ ⎪⎩ ⎭

= ° − ° = °

 

 Insight: If the child approaches at an angle θ  that is greater than 90°, his initial angular momentum is smaller and the 
merry-go-round ends up spinning at a slower rate.  If θ = 180°, the initial angular momentum would be zero and the 
merry-go-round would not rotate at all; in this case the child approaches the merry-go-round along the radial direction. 
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