CS 525: Advanced Database Organization O3: Disk Organization

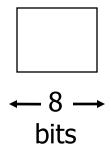
Boris Glavic

Slides: adapted from a <u>course</u> taught by <u>Hector Garcia-Molina</u>, Stanford InfoLab

Topics for today

- How to lay out data on disk
- How to move it to/from memory

What are the data items we want to store?


- a salary
- a name
- a date
- a picture

What are the data items we want to store?

- a salary
- a name
- a date
- a picture

• Integer (short): 2 bytes e.g., 35 is

0000000 00100011

Endian! Could as well be

00100011 00000000

Real, floating point
 n bits for mantissa, m for exponent....

Characters

→ various coding schemes suggested, most popular is ASCII (1 byte encoding)

Notes 3

Example:

A: 1000001

a: 1100001

5: 0110101

LF: 0001010

Boolean

```
e.g., TRUE 1111 1111 FALSE 0000 0000
```

Application specific

```
e.g., enumeration
```

RED
$$\rightarrow$$
 1 GREEN \rightarrow 3
BLUE \rightarrow 2 YELLOW \rightarrow 4 ...

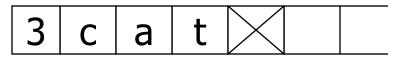
Boolean


Application specific

e.g., RED
$$\rightarrow$$
 1 GREEN \rightarrow 3 BLUE \rightarrow 2 YELLOW \rightarrow 4 ...

Can we use less than 1 byte/code?

Yes, but only if desperate...


- Dates
 - e.g.: Integer, # days since Jan 1, 1900
 - 8 characters, YYYYMMDD
 - 7 characters, YYYYDDD (not YYMMDD! Why?)
- Time
 - e.g. Integer, seconds since midnight
 - characters, HHMMSSFF

- String of characters
 - Null terminated

Length given

- Fixed length

Bag of bits

Length	Bits
--------	------

Key Point

- Fixed length items
- Variable length items
 - usually length given at beginning

Also

 Type of an item: Tells us how to interpret
 (plus size if fixed)

Overview

Data Items Records **Blocks Files** Memory

Record - Collection of related data items (called FIELDS)

```
E.g.: Employee record:
```

```
name field,
salary field,
date-of-hire field, ...
```

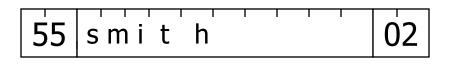

Types of records:

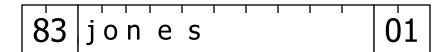
- Main choices:
 - FIXED vs VARIABLE FORMAT
 - FIXED vs VARIABLE LENGTH

Fixed format

A <u>SCHEMA</u> (not record) contains following information

- # fields
- type of each field
- order in record
- meaning of each field



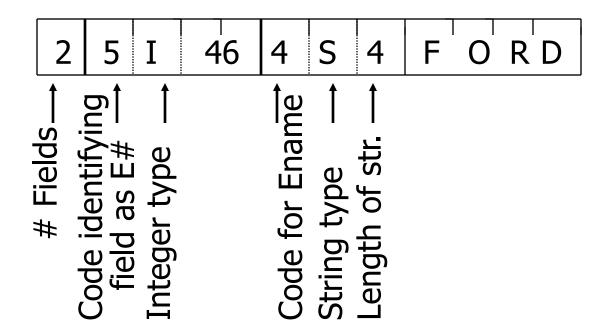

Example: fixed format and length

Employee record

- (1) E#, 2 byte integer
- (2) E.name, 10 char.
- (3) Dept, 2 byte code

Schema

Records


Variable format

 Record itself contains format "Self Describing"

Example: variable format and length

Field name codes could also be strings, i.e. TAGS

Variable format useful for:

- "sparse" records
- repeating fields
- evolving formats

But may waste space...

Additional indirection...

 EXAMPLE: var format record with repeating fields
 Employee → one or more → children

3 E_name: Fred | Child: Sally | Child: Tom

Note: Repeating fields does not imply

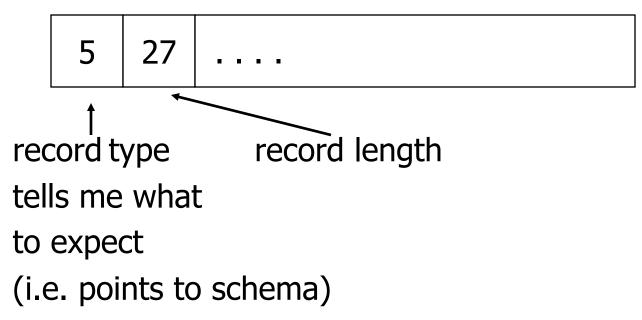
- variable format, nor
- variable size

John Sailing	Chess	
--------------	-------	--

Note: Repeating fields does not imply

- variable format, nor
- variable size

John Sailin	g Chess	
-------------	---------	--


 Key is to allocate maximum number of repeating fields (if not used → null)

Amy variants between fixed - variable format:

Example: Include record type in record

Record header - data at beginning that describes record

May contain:

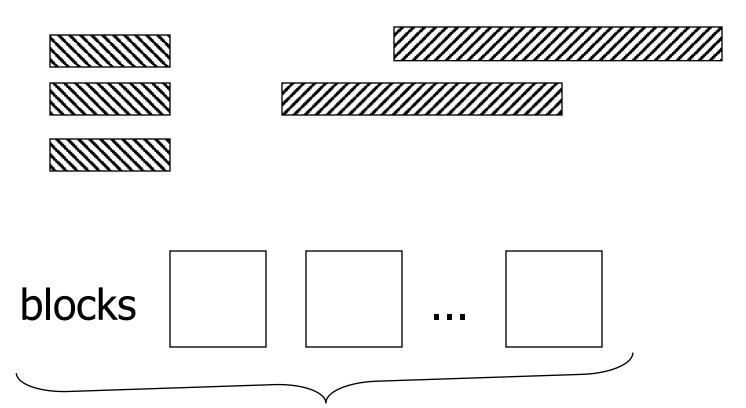
- record type
- record length
- time stamp
- null-value bitmap
- other stuff ...

Other interesting issues:

- Compression
 - within record e.g. code selection
 - collection of records e.g. find common patterns
- Encryption
- Splitting of large records
 - E.g., image field, store pointer

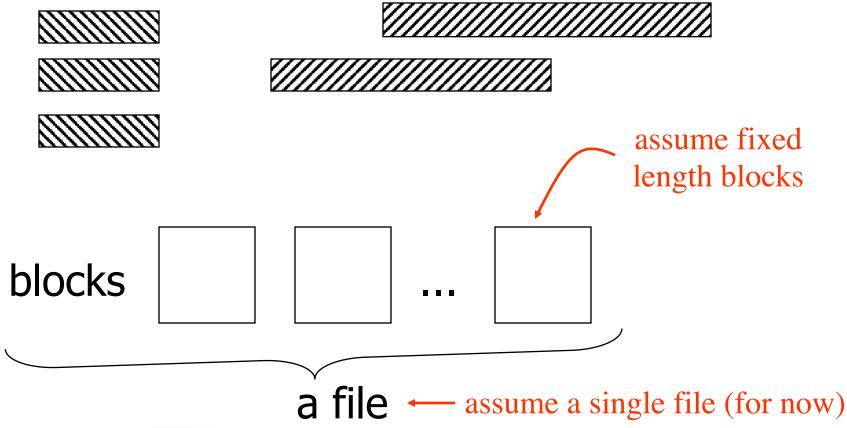
Record Header – null-map

- SQL: NULL is special value for every data type
 - Reserve one value for each data type as NULL?
- Easier solution
 - Record header has a bitmap to store whether field is NULL
 - Only store non-NULL fields in record



Separate Storage of Large Values

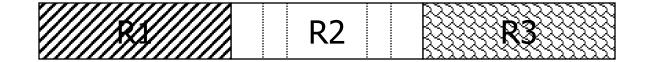
- Store fields with large values separately
 - E.g., image or binary document
 - Records have pointers to large field content
- Rationale
 - Large fields mostly not used in search conditions
 - Benefit from smaller records


Next: placing records into blocks

a file

Next: placing records into blocks

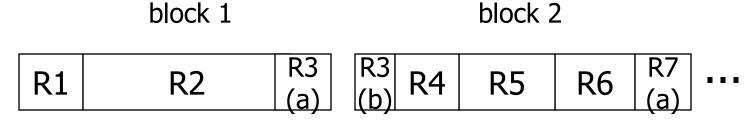
Options for storing records in blocks:


- (1) separating records
- (2) spanned vs. unspanned
- (3) sequencing
- (4) indirection

(1) Separating records

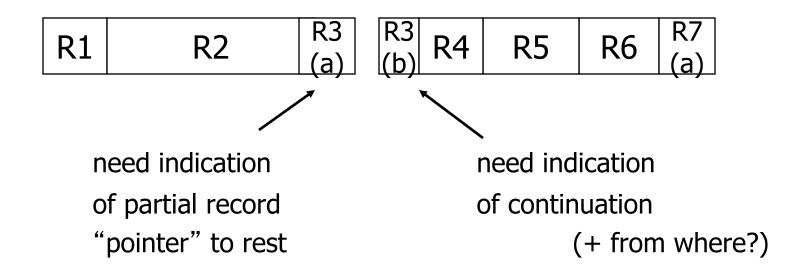
Block

- (a) no need to separate fixed size recs.
- (b) special marker
- (c) give record lengths (or offsets)
 - within each record
 - in block header



(2) Spanned vs. Unspanned

Unspanned: records must be within one block


Spanned

With spanned records:

Notes 3

Spanned vs. unspanned:

- Unspanned is <u>much</u> simpler, but may waste space...
- Spanned essential if record size > block size

(3) Sequencing

 Ordering records in file (and block) by some key value

Sequential file (\Rightarrow sequenced)

Why sequencing?

Typically to make it possible to efficiently read records in order

(e.g., to do a merge-join — discussed later)

Sequencing Options

(a) Next record physically contiguous

Next (R1) R1

(b) Linked Next (R1) R1

Sequencing Options

(c) Overflow area

Records in sequence

R1
R2
R3
R4
R5

Sequencing Options

(c) Overflow area

Records in sequence

header /	
R1	R2.1
R2	
R3	R1.3
	R4.7
R4	
R5	

(4) Indirection

How does one refer to records?

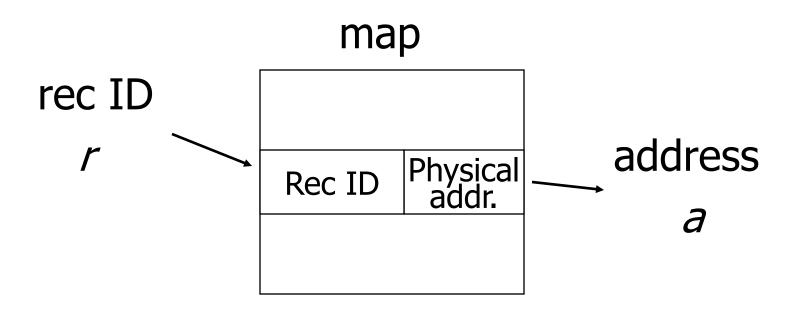
(4) Indirection

How does one refer to records?

Many options:

Physical -

Indirect


☆ Purely Physical

Record E.g., **Address** or ID

Device ID Cylinder # **Block ID** Track # Block # Offset in block

☆ Fully Indirect

E.g., Record ID is arbitrary bit string

Tradeoff

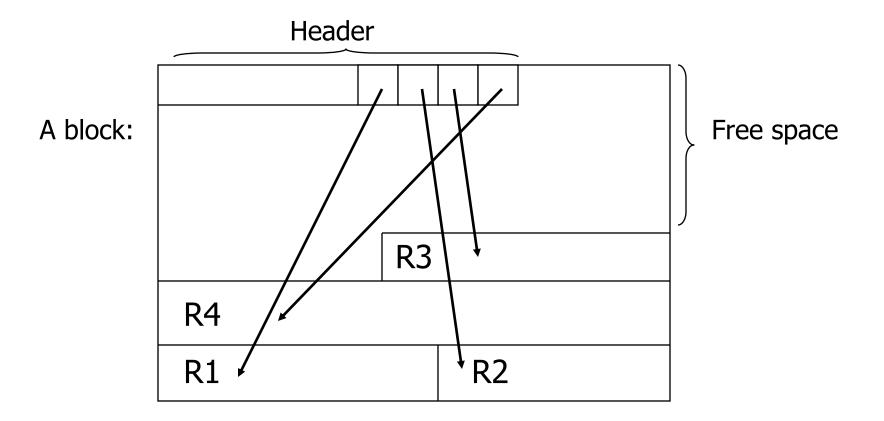
Flexibility --- Cost of indirection to move records

(for deletions, insertions)

Physical --- Indirect

1

Many options in between ...


Block header - data at beginning that describes block

May contain:

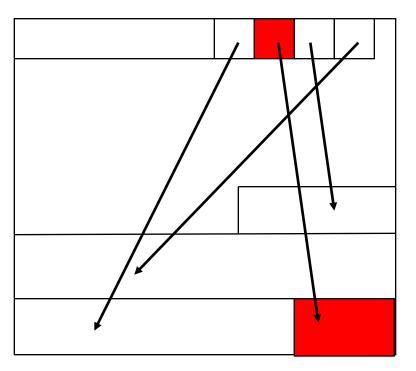
- File ID (or RELATION or DB ID)
- This block ID
- Record directory
- Pointer to free space
- Type of block (e.g. contains recs type 4;
 - is overflow, ...)
- Pointer to other blocks "like it"
- Timestamp ...

Example: Indirection in block

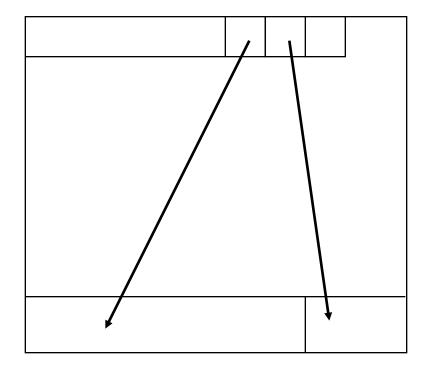
Tuple Identifier (TID)

- TID is
 - Page identifier
 - Slot number
- Slot stores either record or pointer (TID)
- TID of a record is fixed for all time

Notes 3

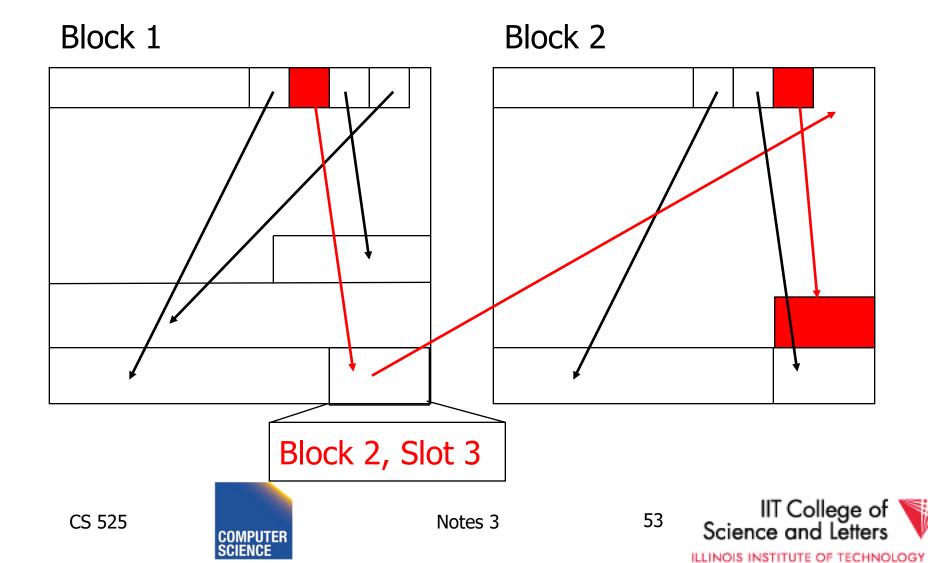

TID Operations

- Insertion
 - Set TID to record location (page, slot)
- Moving record
 - e.g., update variable-size or reorganization
 - Case 1: TID points to record
 - Replace record with pointer (new TID)
 - Case 2: TID points to pointer (TID)
 - Replace pointer with new pointer



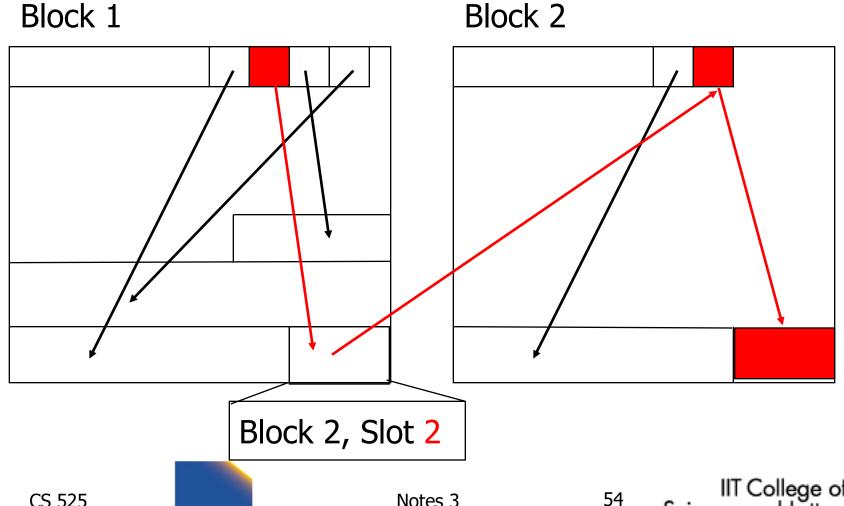
TID: Block 1, Slot 2

Block 1



Block 2

Move record to Block 2 slot 3 -> TID does not change!


TID: Block 1, Slot 2

Move record again to Block 2 slot 2

-> still one level of indirection

TID: Block 1, Slot 2

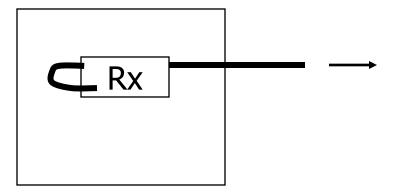
TID Properties

- TID of record never changes
 - Can be used safely as pointer to record (e.g., in index)
- At most one level of indirection
 - Relatively efficient
 - Changes to physical address changing max 2 pages

Options for storing records in blocks:

- (1) separating records
- (2) spanned vs. unspanned
- (3) sequencing
- (4) indirection

Other Topics


- (1) Insertion/Deletion
- (2) Buffer Management
- (3) Comparison of Schemes

Deletion

Block

Options:

- (a) Immediately reclaim space
- (b) Mark deleted

Options:

- (a) Immediately reclaim space
- (b) Mark deleted
 - May need chain of deleted records (for re-use)
 - Need a way to mark:
 - special characters
 - delete field
 - in map

- How expensive is it to move valid record to free space for immediate reclaim?
- How much space is wasted?
 - e.g., deleted records, delete fields, free space chains,...

Notes 3

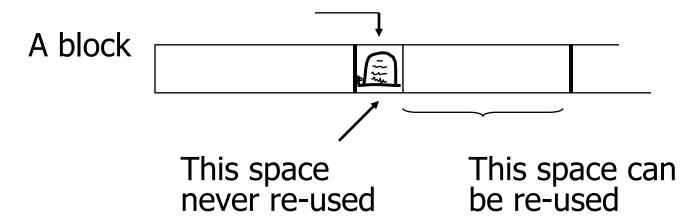
Concern with deletions

Dangling pointers

Solution #1: Do not worry

Solution #2: Tombstones

E.g., Leave "MARK" in map or old location



Solution #2: Tombstones

E.g., Leave "MARK" in map or old location

Physical IDs

Solution #2: Tombstones

E.g., Leave "MARK" in map or old location

Logical IDs

ID LOC
7788

Never reuse ID 7788 nor space in map...

Insert

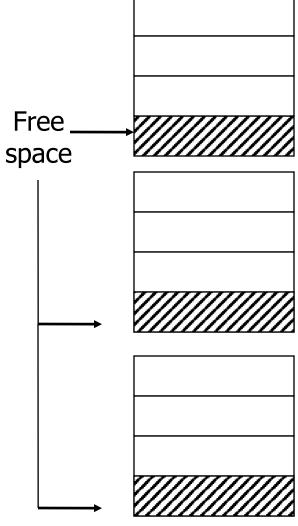
Easy case: records not in sequence

- → Insert new record at end of file or in deleted slot
- → If records are variable size, not as easy...

Insert

Hard case: records in sequence

- → If free space "close by", not too bad...
- → Or use overflow idea...



Interesting problems:

- How much free space to leave in each block, track, cylinder?
- How often do I reorganize file + overflow?

Buffer Management

- For Caching of Disk Blocks
- Buffer Replacement Strategies
 - E.g., LRU, clock
- Pinned blocks
- Forced output ---- in Notes02
- Double buffering
- Swizzling

Buffer Manager

- Manages blocks cached from disk in main memory
- Usually -> fixed size buffer (M pages)
- DB requests page from Buffer Manager
 - Case 1: page is in memory -> return address
 - Case 2: page is on disk -> load into memory, return address

Goals

- Reduce the amount of I/O
- Maximize the *hit rate*
 - Ratio of number of page accesses that are fulfilled without reading from disk
- -> Need strategy to decide when to

Buffer Manager Organization

- Bookkeeping
 - Need to map (hash table) page-ids to locations in buffer (page frames)
 - Per page store fix count, dirty bit, ...
 - Manage free space
- Replacement strategy
 - If page is requested but buffer is full
 - Which page to emit remove from buffer

FIFO

- First In, First Out
- Replace page that has been in the buffer for the longest time
- Implementation: E.g., pointer to oldest page (circular buffer)
 - Pointer->next = Pointer++ % M
- Simple, but not prioritizing frequently accessed pages

LRU

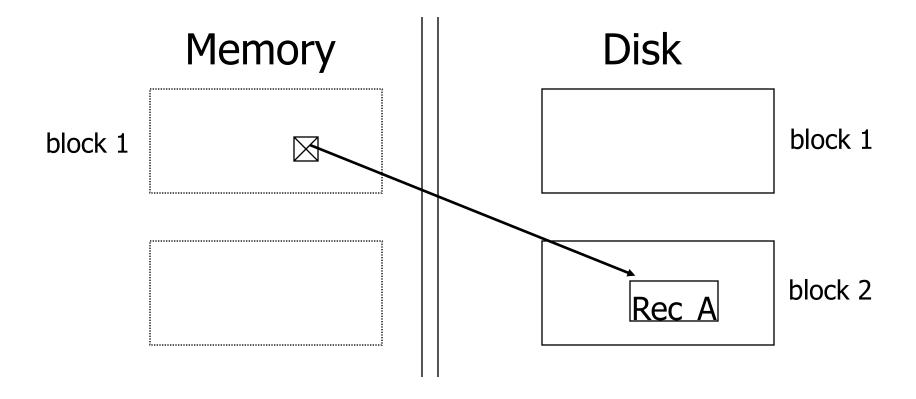
- Least Recently Used
- Replace page that has not been accessed for the longest time
- Implementation:
 - List, ordered by LRU
 - Access a page, move it to list tail
- Widely applied and reasonable performance

Clock

- Frames are organized clock-wise
- Pointer S to current frame
- Each frame has a reference bit
 - Page is loaded or accessed -> bit = 1
- Find page to replace (advance pointer)
 - Return first frame with bit = 0
 - On the way set all bits to 0

Clock Example

Reference bit	Y	
$S \longrightarrow$	0	Page 0
	1	Page 1
	1	Page 2
	0	Page 3
	1	Page 4


Other Replacement Strategies

- LRU-K
- GCLOCK
- Clock-Pro
- ARC
- LFU


Swizzling

Swizzling

Row vs Column Store

- So far we assumed that fields of a record are stored contiguously (row store)...
- Another option is to store all values of a field together (column store)

Row Store

- Example: Order consists of
 - id, cust, prod, store, price, date, qty

id1	cust1	prod1	store1	price1	date1	qty1
id2	cust2	prod2	store2	price2	date2	qty2
id3	cust3	prod3	store3	price3	date3	qty3

Column Store

- Example: Order consists of
 - id, cust, prod, store, price, date, qty

id1	cust1
id2	cust2
id3	cust3
id4	cust4

id1	prod1
id2	prod2
id3	prod3
id4	prod4

id1	price1	qty1
id2	price2	qty2
id3	price3	qty3
id4	price4	qty4

ids may or may not be stored explicitly

Row vs Column Store

- Advantages of Column Store
 - more compact storage (fields need not start at byte boundaries)
 - Efficient compression, e.g., RLE
 - efficient reads on data mining operations
- Advantages of Row Store
 - writes (multiple fields of one record)more efficient
 - efficient reads for record access (OLTP)

Compression

- When should I compress
 - Compression reduces storage size
 - Less space on disk
 - More "content" can be read/written with less I/O
 - (De-)Compression takes time
 - CPU occupied with compressing decompressing data -> not available for other operations

The Laws of Compression ;-)

- If I/O is the performance bottleneck then compression improves performance
- If CPU is the bottleneck then compression may hurt performance

Types of compression

- Dictionary compression
- Run-length encoding (more later)
- Deltacoding (more later)
- Bitpacking

• ...

Scope of compression

- Global
 - Global dictionary encoding for strings
 - Replace individual strings with integers using a invertible map
- Per table / column
 - Run-length encode the values of a column
- Per page (group of pages)
 - Compress pages before writing to disk

Processing compressed data

- Can we evaluate operations directly over compressed data?
- In some cases yes
- Example: dictionary compressed strings
 - WHERE name = 'Peter'
 - =>**WHERE** name = 1

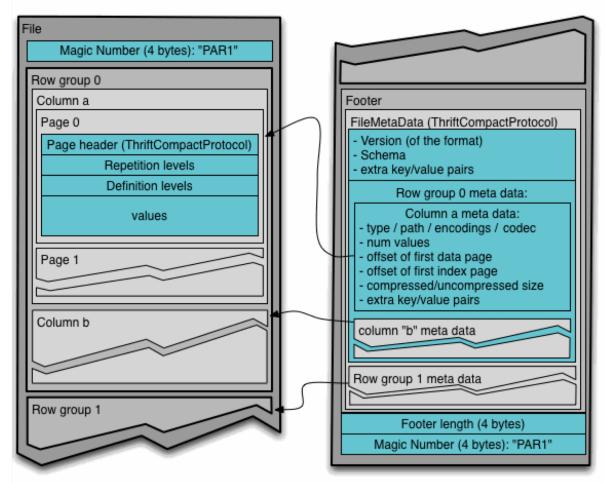
String	Code
Peter	1
Bob	2
Alice	3

Example: Apache Parquet

- Parquet is a columnar/compressed storage format developed in the context of the Hadoop ecosystem
- Supported by many big data systems like Spark or MR
- Support nested relational data (we ignore this here)

Parquet - Structure

- Row group: A logical horizontal partitioning of the data into rows
- Column chunk: A chunk of the data for a particular column.
 - Guaranteed to be contiguous in the file
- Page: Column chunks are divided up into pages, indivisible units for compression and coding


Parquet - Structure

- Row group: GBs in size
- Column chunk: typically 100s of MBs
- Page: recommended 8KB
 - Pages are compressed and maybe RLE

Parquet - Structure

Notes 3

<u>Parquet - Analysis</u>

- Columnar
- Hierarchical organization
- Metadata separable from data
- I/O granularity (chunks) different from compression/lookup granularity (pages)

Comparison

 There are 10,000,000 ways to organize my data on disk...

Which is right for me?

Issues:

Flexibility —— Space Utilization

Complexity —— Performance

To evaluate a given strategy, compute following parameters:

- -> space used for expected data
- -> expected time to
 - fetch record given key
 - fetch record with next key
 - insert record
 - append record
 - delete record
 - update record
 - read complete file
 - reorganize file

Example

How would you design Megatron 3000 storage system? (for a relational DB, low end)

- Variable length records?
- Spanned?
- What data types?
- Fixed format?
- Record IDs ?
- Sequencing?
- How to handle deletions?

Summary

How to lay out data on disk

Data Items Records **Blocks Files** Memory **DBMS**

Next

How to find a record quickly, given a key

