XD5

XDS SIGMA 2 INSTRUCTIONS

Instruction name	Mnemonic	Operation code			Page
Add	ADD	1010	RIXS	D	14
Logical AND	AND	1001	RIXS	D	15
Branch	B	0100	RIXS	D	15
Branch if Accumulator Negative	BAN	0110	1115	D	16
Branch if Accumulator Zero	BAZ	0110	0105	D	16
Branch if Extended Accumulator Negative	BEN	0110	1105	D	17
Branch on Incrementing Index	BIX	0110	0115	D	17
Branch if No Carry	BNC	0110	0015	D	17
Branch if No Overflow	BNO	0110	0005	D	17
Branch on Incrementing Index and No Carry	BXNC	0110	1015	D	17
Branch on Incrementing Index and No Overflow	$B \times N O$	0110	1005	D	17
Compare	CP	1101	RIXS	D	16
Divide (optional)	DIV	0101	RIXS	D	15
Increment Memory	IM	1111	RIXS	D	15
Load Accumulator	LDA	1000	RIXS	D	14
Load Index	LDX	1100	RIXS	D	14
Multiply (optional)	MUL	0011	RIXS	D	15
Register Add	RADD	0111	1100	0	18
Register Add and Carry	RADDC	0111	1110	0	19
Register Add and Increment	RADDI	0111	1101	0	19
Register AND	RAND	0111	0000	0	18
Register AND and Carry	RANDC	0111	0010	0	19
Register AND and Increment	RANDI	0111	0001	0	19
Register Copy	RCPY	0111	0100	1	18
Register Copy and Carry	RCPYC	0111	0110	1	19
Register Copy and Increment	RCPYI	0111	0101	1	18
Read Direct	RD	0001	RIXS	D	20
Register Exclusive OR	REOR	0111	1000	0	18
Register Exclusive OR and Carry	REORC	0111	1010	0	19
Register Exclusive OR and Increment	REORI	0111	1001	0	19
Register OR	ROR	0111	0100	0	18
Register OR and Carry	RORC	0111	0110	0	19
Register O R and Increment	RORI	0111	0101	0	19
Shift	S	0010	RIXS	D	15
Store Accumulator	STA	1110	RIXS	D	14
Subtract	SUB	1011	RIXS	D	15
Write Direct	WD	0000	RIXS	D	21

XDS SIGMA 2 COMPUTER REFERENCE MANUAL

XDS

REVISION

This publication, XDS 9009 64F, is a revision of the XDS Sigma 2 Computer Reference Manual, XDS 900964 E (dated May 1969). The primary revision is the addition of Appendix D describing the Watchdog Timer. A change in text from that of the previous manual is indicated by a vertical line in the margin of the page.

RELATED PUBLICATIONS

Title	Publication No.
XDS Sigma 2/3 Symbol Reference Manual	901051
XDS Sigma 2/3 Extended Symbol Reference Manual	901052
XDS Sigma 2/3 Basic FORTRAN/Basic FORTRAN IV Reference Manual	900967
XDS Sigma 2 Mathematical Routines Technical Manual	901036
XDS Sigma 2 Stand-Alone Systems Reference Manual	901047
XDS Sigma 2/3 Basic Control Monitor Reference Manual	901037
XDS Sigma 2/3 Real-Time Batch Monitor Reference Manual	901037
XDS Sigma Interface Design Manual	900973

1. SYSTEM DESIGN FEATURES 1
General Characteristics 2
Real-Time and Multiusage Features 3
2. SYSTEM ORGANIZATION 4
Information Format 4
Core Memories 4
Central Processing Unit 5
Register Block 5
Arithmetic and Control Unit 5
Instruction Format 7
Effective Address Computation 7
Instruction Timing 8
Interrupt System 8
Internal Interrupt Levels 8
External Interrupt Levels 10
Interrupt Level States 10
Interrupt System Control 11
Interrupt Priority Sequence 12
Interrupt Routine Entry and Exit 12
Counter Interrupt Processing 12
CPU Interrupt Recognition 13
Protection System 13
3. INSTRUCTION REPERTOIRE 14
Memory Reference Instructions 14
Conditional Branch Instructions 16
Copy Instruction 17
Direct Control Instructions 19
4. INPUT/OUTPUT OPERATIONS 22
Byte-Oriented I/O System 22
Device Number 22
I/O Control Doublewords 22
Operational Status Byte 23
Device Orders 24
I/O Tables 24
Device Interrupts 25
I/O Instructions 25
Device Status Byte 26
External Interface System 27
Direct-to-Memory Interface 28
5. OPERATOR CONTROLS 29
Control Panel 29
POWER 29
PHASE 29
PROTECT PROGR 29
INTERRUPT INHIBIT 29
O'FLOW 29
CARRY 29
PARITY ERROR 30
PROTECT 30
PROG ADD 30
Key-Operated Switch 30
DISPLAY 30
DATA 30
SELECT 31
REGISTER 31
MEMORY 31
INTERRUPT/INCREMENT ADDRESS 31
INITIALIZE 31
COMPUTE 31
Initial Loading Procedure 32
APPENDIXES
A. REFERENCE TABLES 33
XDS Standard Symbols and Codes 33
XDS Standard Character Sets 33
Control Codes 33
Special Code Properties 33
XDS Standard 8-Bit Computer Codes (EBCDIC) 34
XDS Standard 7-Bit Communication Codes (USASCII) 34
XDS Standard Symbol-Code Correspondences 35
Hexadecimal Arithmetic 39
Addition Table 39
Multiplication Table 39
Table of Powers of Sixteen 10 40
Table of Powers of Ten 16 40
Hexadecimal-Decimal Integer Conversion Table_- 41
Hexadecimal-Decimal Fraction Conversion Table_ 47
Table of Powers of Two 51
Mathematical Constants 51
B. INSTRUCTION EXECUTION CYCLE 52
C. MEMORY ADDRESSING
External Memory Adapter Model 1 54
External Memory Adapter Model 2 54
Continuous Addressing 54
D. WATCHDOG TIMER 55
INDEX 56
ILLUSTRATIONS
Frontispiece - SIGMA 2 Computer System iv
6. SIGMA 2 System Configuration 1
7. SIGMA 2 Central Processing Unit 6
8. Interrupt Level Operation 11
9. Interrupt Priority Chain 12
10. I/O Control Doublewords and I/O Tables 25
11. SIGMA 2 Processor Control Panel 29
12. SIGMA 2 Instruction Execution Diagram 53
TABLES
13. Effective Address Computation and Timing 8
14. Core Memory Allocation and Interrupt
Priority Groupings 9
15. READ DIRECT Internal Control Functions 20
16. WRITE DIRECT Internal Control Functions 21
17. Device Status Byte 27

1. SYSTEM DESIGN FEATURES

SIGMA 2, a third-generation computer system, is a totally integrated combination of high performance hardware and efficient software. The SIGMA 2 system makes full use of advanced design features first developed for SIGMA7, and it provides the user with a balanced system that offers advantages normally found only in large computer systems.

Large Capacity, Low-Cost Input/Output. SIGMA 2 uses XDS-designed monolithic integrated circuit registers. to provide four fully automatic, buffered input/output channels as standard equipment. Up to 16 additional automatic channels as well as direct input/output capability can be added at low cost. Maximum channel I/O transfer rate is 400,000 8 -bit bytes per second.

Concurrent Foreground/Background Processing. This multiprogramming capability permits the user to operate one or more fully-protected, real-time programs in the foreground while concurrently operating a general-purpose program in the background. Overhead in switching from one task to another is minimized because both hardware and software are specificially designed for rapid context switching. A hardware register permits the software to generate reentrant code efficiently. Thus, routines common to several programs, whether in foreground or background, need to be stored in memory only once.

Comprehensive, User-Oriented Software. SIGMA 2 programming systems increase user productivity by providing powerful, easy-to-use programming tools. As a result, user programs are written more quickly at lower cost. The availability of this comprehensive software package makes it possible to exploit the full potential of the hardware. The package includes two operating systems (Monitors), a FORTRAN compiler, two assemblers, and a variety of library and utility programs. To store these extensive software systems yet keep core memory costs at a minimum, XDS has developed its Rapid Access Data (RAD) files. RAD units offer the large capacity and low cost of ordinary disc files. In addition, by using one fixed read/write head for every track of data rather than sharing a movable head among a large group of tracks, the RAD eliminates the access delays associated with head movement. The RAD's fast access time and high data transfer rates produce greater overall system throughput. Forbasic computer configurations that do not have a RAD unit, a comprehensive group of stand-alone programming systems is provided. For use with larger computer configurations, SIGMA 2 programming systems are RAD-oriented to capitalize on the inherent benefits of this high-performance secondary storage.

Powerful, Multilevel Priority Interrupt System. The realtime oriented SIGMA 2 system provides for quick response to environmental conditions with up to 132 external interrupt levels. The source of each interrupt signal is automatically identified and responded to according to its priority. For further system flexibility, each interrupt level can be individually disarmed (so it stops accepting inputs) and/or disabled (so response is deferred), all under program
control. Use of the arm/disarm, enable/disable features makes programmed dynamic reassignment of priorities quick and convenient, even while a real-time process is occurring. In establishing a configuration for any system, each group of 16 interrupt levels can have its group priority assigned differently, to meet the specific needs of an application. The way interrupt levels are programmed is not affected by their priority assignments.

Direct-to-Memory Input/Output
(to external devices, including other processors)

Automatic Input/Output Channels (4 standard, up to 20 total - all operating simultaneously)

Figure 1. SIGMA 2 System Configuration

[^0]
GENERAL CHARACTERISTICS

In its field, the SIGMA 2 computer is unique in its ability to function efficiently in general-purpose, real-time, and multiusage computing environments. The advanced features and operating characteristics contributing to this capability are:

- both word and byte organization of memory for maximum efficiency (words are 16 bits plus parity; bytes are 8 bits.)
- 16 memory sizes available, 4096 to 65,536 words
- ability to connect to SIGMA 5 or SIGMA 7 memory systems
- an extensive instruction set that facilitates efficient programming; SIGMA 2 instruction characteristics include:
- only one word of storage required for each instruction
- two levels of indexing and indirect addressing may be invoked individually or simultaneously
- relative addressing (forward and backward)
- use of index register 2 as a base address register
- direct reference of up to 1024 addresses; 256 addresses beginning with location zero, 256 addresses beginning with the base address; 256 addresses beginning with the current instruction location (relative forward), 256 addresses backward from the current instruction (relative backward)
- eight general-purpose registers to control program operations; all are available to the program, providing:
- two hardware index registers for preindexing (base address), post-indexing, or both (double indexing)
- hardware register for subroutine linkages
- double-precision accumulator
- program address register
- zero register (for a source of zeros)
- temporary storage register
- rapid context switching, to preserve computer environment when switching from one program to another, including automatic status preservation on interrupt
- both word- and byte-oriented I/O systems, for maximum flexibility
- up to 20 fully automatic I/O channels operating simultaneously (4 channels are standard)
- I/O data chaining, for gather-read and scatter-write operations
- information transfer rate of approximately one million words per second for each external memory interface
- direct input/output of a full word without the use of an I/O channel (optional)
- a real-time priority interrupt system that features:
- 2 to 16 internal interrupt levels and up to 132 external interrupt levels that can be individually armed, enabled and triggered by program control
- automatic identification, customer-designated priority assignments, and extremely fast response time
- memory parity interrupt (optional)
- an optional power fail-safe feature, for automatic and safe shutdown in the event of a power failure, and unattended startup when power returns
- an optional system protection feature that includes both memory write protection and operation protection for foreground programs
- up to four real-time clocks (with a choice of resolutions)for independent time bases, available as an option
- a comprehensive array of modular software that expands in capability and speed as the system grows, with no reprogramming required
- Free-standing software for small systems includes Symbol and XDS Basic FORTRAN
- XDS Monitor for user convenience and increased capability in large systems
- Symbol, a basic symbolic assembler
- Extended Symbol for expanded features
- XDS Basic FORTRAN
- XDS FORTRAN IV
- General Debug for symbolic program troubleshooting
- Concordance program for documentation
- System Generation program for creating installation master
- Mathematics Library of standard functions
- Bootstrap Generator for producing self-loading object programs
The wide range of standard and special-purpose peripheral equipment, already proven in field operations, includes:
- Rapid-Access Data Files: Capacities for 750,000 to $24,000,000$ bytes per control unit; transfer rate of over 185,000 bytes $/$ second; average access time of 17 milliseconds. Fixed read/write head per track eliminates positioning time associated with movablearm storage devices
- Magnetic Tape Units: 9-track, IBM-compatible 60,000 or 120,000 bytes $/$ second transfer rate; 7 -track, IBM-compatible, $15,000 / 20,000 / 41,700 / 60,000$ characters/second transfer rates
- Paper Tape Readers and Punches: readers with speeds of 20 and 300 characters/second, punches with speeds of 10 and 120 characters/second, plus spoolers
- Keyboard Printers: available with or without a paper tape reader and paper tape punch
- Card Readers: read cards punched in binary or EBCDIC card code, 200 to 1500 cpm
- Card Punches: binary or EBCDIC card codes, 300 cpm
- Line Printers: fully buffered, with 132 print positions and carriage control, 600 or 1000 lpm
- Graph Plotter: for two-axis plotting of data under digital control, 300 increments/second
- Display Equipment: oscilloscope display units, light guns, and character and vector generators
- Data Communications Equipment: a complete line of character- and message-oriented equipment

REAL-TIME AND MULTIUSAGE FEATURES

Real-time applications are characterized by a need for hardware that provides quick response to an external environment, sufficient speed to keep up with the real-time process itself, and input/output flexibility to handle a wide variety oftypes of data at varying speeds.

Multiusage applications, as implemented in SIGMA 2, are defined as the combining of real-time and background processing techniques into one system. The most difficult general computing problem is the real-time application with its requirements for extreme speed and capacity. Because the SIGMA 2 system has been designed on a real-time base, it is well qualified for the mixture of applications in a multiusage environment. Many of its hardware features that prove valuable for real-time applications are equally useful in background processing, but in different ways.

The major features that make SIGMA 2 uniquely suitable for both real-time and multiusage applications are described in the following paragraphs.

Input/Output Facilities. Three distinct SIGMA 2 input/ output systems offer flexibility and capacity to meet the needs of both real-time and general-purpose users: the byte-oriented, the direct-to-CPU, and the direct-tomemory I/O systems.

In the byte-oriented I/O system, each automatic I/O channel has its own high-speed registers and operates independently without requiring attention from the program once it has been started. Data is transferred one byte (8 bits) at a time. For high-speed peripherals, bytes are assembled into words in the I/O section and only one memory reference is made for two bytes. For slow-speed peripherals, one reference is made for every byte, with a partial write operation performed by the memory. All I/O channels may operate concurrently and parity checking is performed automatically.

The optional direct-to-CPU input/output system uses only a single instruction to transfer a full 16-bit data word to and from the A register. The same instruction that transfers data also provides a 16-bit control field for external
control and selection, and accepts status information returned from the external device to permit rapid sensing of an external condition. The direct I / O system is generally used for short bursts of asynchronous data transfers to avoid tying up an automatic channel. Direct I/O is also useful when data is to be accepted at medium to high speeds and each input must be examined immediately when received.
The optional direct-to-memory input/output system provides an additional memory bus to each of four external memories. It is used for very high speed I/O transfers to and from external devices or other processors. Transfers proceed at full memory speed on a word-oriented basis, with overlapping of multiple I/O and compute occurring automatically when multiple memory modules are available.

Priority Interrupt System. In a multiusage environment, many elements are operating asynchronously with respect to each other. Thus, having a true priority interrupt system, as the SIGMA 2 does, is especially important. With it the computer system can respond quickly (and in proper order) to the many demands made upon it, without the high overhead cost of complicated programming, lengthy execution time, and extensive storage allocations. Programs that deal with interrupt signals from special equipment must sometimes be checked out before the equipment is actually available. To simulate special equipment, any external SIGMA 2 interrupt level can be triggered by the CPU itself through execution of a single instruction.

Context Switching. When responding to a new set of interrupt-initiated circumstances, a computer system must preserve the current operating environment while it sets up the new environment. In SIGMA 2, relevant information about the current environment is retained as a 32 -bit program status doubleword (PSD). When an interrupt occurs, the current PSD is automatically stored at an arbitrary location in memory and the interrupt-servicing routine begins, following the location into which the PSD is stored. At the end of the interrupt-servicing routine, the PSD is restored and the interrupt level cleared.

Protection System. Both real -time and background programs can be run concurrently in a SIGMA 2 system because the real-time program can be protected against alteration. The optional protection feature guarantees that protected areas of memory cannot be written into by a program residing in unprotected memory. The protection feature also prevents the execution of unprotected instructions that could change the I/O system or the protection system. The protection pattern can be changed very rapidly.

Real-Time Clocks. In real-time systems, timing informafion must be provided to cause certain operations to occur at specific instants. Other timing information is also necessary, such as elapsed time after a given event, or the current time of day. SIGMA 2 provides up to four real-time clocks, with varying degrees of resolution, to meet these needs. These clocks also facilitate handling of separate time bases and relative time priorities. Three of the clock counters can be driven from commercial a.c. line frequency (60 or 50 Hz), from $2-$ or $8-\mathrm{Hz}$ oscillators, or from an external input; the first (operational) counter is driven by a $500-\mathrm{Hz}$ source.

2. SYSTEM ORGANIZATION

INFORMATION FORMAT

The basic element of SIGMA 2 information is a 16-bit word in which the bit positions are numbered from 0 through 15 , as follows:

A SIGMA 2 word can also be divided into two 8-bit parts (called bytes) in which the bit positions of each byte are numbered from 0 through 7, as follows:

Two SIGMA 2 words can be combined to form a 32-bit element (called a doubleword) in which the bit positions are numbered from 0 through 31 , as follows:

Most significant word	Least significant word

A doubleword is always referred to by the address of its most significant word.
Binary information in SIGMA 2 computers is generally expressed in hexadecimal notation because four binary digits of information can be expressed by a single hexadecimal digit. Thus, a byte can be expressed with a string of 2 hexadecimal digits, a word with a string of 4 hexadecimal digits, and a doubleword with a string of 8 hexadecimal digits. The following table lists hexadecimal digits and their binary and decimal equivalents.

Hexadecimal	Binary	Decimal
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
A	1010	10
B	1011	11
C	1100	12
D	1101	13
E	1110	14
F	1111	15

In this reference manual, a hexadecimal number is displayed as a string of hexadecimal digits surrounded by single quotes and preceded by the letter "X". For example, the binary number 01011010 is expressed in hexadecimal notation as $X^{\prime} 5 A^{\prime}$. Hexadecimal numbers are generally used to denote
addresses and data values; however, there are many instances in which decimal numbers are more meaningful or are customary. Because the SIGMA assembler systems perform decimal/hexadecimal conversions, addresses and data values may be expressed as decimal numbers.

In SIGMA 2, fixed-point data consists of a 15-bit integer and a sign. Positive numbers are represented in true binary form, with a sign of zero. Negative numbers are represented in two's complement form, with a sign of one. All arithmetic operations assume that this format is used. Logical operations in SIGMA 2, on the other hand, assume that a logical data word format, consisting of 16 bits without sign, is used.

CORE MEMORIES

A SIGMA 2 computer can be equipped with either (or both) of two different types of core memory: integral and external.

A magnetic core memory can be provided as an integral part of the SIGMA 2 central processor configuration. This integral memory is available only to the SIGMA 2 central processor, and it provides a portion of the total SIGMA 2 system memory. In order to implement the maximum memory capacity (64 K words), external memory is required in addition to (or in place of) the integral memory.

The external memory provides independent access paths for other processors or special (customer designed) devices; thus, the SIGMA 2 central processor may share common storage with other SIGMA 2's, SIGMA 5's, SIGMA 7's, special I/O processors, or other devices. By using two SIGMA 7 memory modules (of 16 K words each) the external memory system may constitute a 64 K SIGMA 2 memory system. An external memory adaptor allows the SIGMA 2 computer to treat each 32-bit word of the SIGMA 7 memory system as two 16 -bit words. Special registers allow the programmer to establish a correspondence between any 4096-word portion of SIGMA 2 memory addresses and any 2048-word portion of SIGMA 5/7 memory addresses (32-bit word).

If integral memory is included in the system that also has external memory, the integral memory utilizes the lowernumbered memory locations. For example, if a 16 K integral memory and 16 K words of external memory are used, the integral memory contains locations 0 through $16 \mathrm{~K}-1$ and the external memory contains locations 16 K through $32 \mathrm{~K}-1$.

When the SIGMA 2 memory system is 64 K words, the memory is "wrap-around", or "circular", where the next location after $64 \mathrm{~K}-1$ is location 0 . If a system has less then 64 K words, any fetch operation from a nonexistent storage location causes zeros to be fetched, in which case a memory parity error also occurs. An attempt to store information in a nonexistent storage location essentially results in a "no operation".

See Appendix C for more information on memory addressing.

CENTRAL PROCESSING UNIT

The various elements in a SIGMA 2 system-memories, input/output devices, and device controllers-are organized around a central processing unit (CPU), which is the primary controlling element for most system functions. Not only does the CPU execute instructions, but it also controls all input/output for both the byte-oriented and the direct I/O systems. Basically, the SIGMA 2 CPU consists of a register block and an arithmetic and control unit (see Figure 2).

REGISTER BLOCK

The CPU register block consists of high-speed, integratedcircuit registers that are capable of communicating with the arithmetic and control unit simultaneous with the operation of the core memory. The register block is functionally divided into three parts: general registers, $1 / O$ channel registers, and memory protection system registers. Each register of the block is 16 bits in length and is identified by an address code in the range 0 through 7 for general registers, 8 through 47 for $1 / O$ channel registers, and 0 through 15 for protection system registers. Specific configurations of the READ DIRECT and WRITE DIRECT instructions are used to transfer information from the accumulator (general register 7) to other registers of the register block, and vice versa (see Chapter 3, "Direct Control Instructions").

General Registers

Eight registers of the register block are used mainly for storage of program control information. These registers are addressable by a COPY instruction (for register-toregister operations) and by certain configurations of the READ DIRECT and WRITE DIRECT instructions (for internal computer control operations). The functions of the general registers are as follows:

Address		Designation	
			Function
1		Z	
2			Source of zeros for copy
2	L		Program address
3		T	
4		Temporary address	
4	XI		Index 1 (post-index)
5	X 2		Index 2 (pre-index or base)
6	E		Extended accumulator
7	A		Accumulator

A reference to the Z register in a COPY instruction produces a value of zero. The P register contains the address of the next instruction which would be executed in normal sequence. The six remaining registers can be used for various purposes by a program.

I/O Channel Registers

The next eight registers of the register block are used to hold control information for the four standard SIGMA 2 I/O channels (two registers are used for each channel). Additional I/O channel registers can be added, in groups of eight (up to a maximum of 40 registers, or $20 \mathrm{I} / \mathrm{O}$ channels). The I/O channel registers are laaded with control
information from the accumulator by a specific configuration of the WRITE DIRECT instruction. The operation of I / O channel registers is described in Chapter 4, "I/O Control Doublewords".

Protection System Registers

Sixteen optional registers are available for both operation protection and memory write protection. Each bit in this 16-register group provides protection for a single 256-word "page" of core memory. (A complete discussion of this feature is given on page 13.)

ARITHMETIC AND CONTROL UNIT

The arithmetic and control unit contains the necessary registers and control circuitry to access general registers or core memory, to modify instruction addresses, to perform arithmetic and logical operations, to provide indications of computational results, and to preserve interrupt status information. Basically, the arithmetic and control unit consists of arithmetic and control registers and program status indicators.

Arithmetic and Control Registers

Three 16-bit registers (S, H, and D) and an adder are used to perform arithmetic and logical manipulations and to modify instruction addresses (see "Effective Address Computation").

Program Status Doubleword

When an interrupt occurs, the current state of the operating program is saved by the automatic storing of a program status doubleword (PSD), which is generated automatically from information in the program status indicators and general registers. When stored in memory, the PSD has the format

The first word of the PSD contains five status indicators: protected program (PP), internal interrupt inhibit (II), external interrupt inhibit (EI), overflow (O), and carry (C). The second word of the PSD is the current contents of the program address register (general register 1). (Use of the PSD in interrupt entry and exit is discussed on page 12.)

The protected program indicator bit is a 1 if the current program is located in an area of core memory that is protected by the memory protection option; otherwise, this bit is a 0.

The internal and external interrupt inhibits determine whether a program interruption can occur. If an interrupt inhibit is 0 , the respective interrupt levels are allowed to interrupt the program being executed. Conversely, if an interrupt inhibit is a 1 , the respective interrupt levels are inhibited from interrupting the program. Inhibiting interrupt levels also removes them from the interrupt system priority chain, allowing a lower-priority interrupt level to interrupt the program. (Note, however, that the optional override group of internal interrupt levels cannot be inhibited.)

Figure 2. SIGMA 2 Central Processing Unit

The overflow and carry indicators reflect the results of various operations. The overflow indicator is set to 1 if overflow occurs during an arithmetic operation. If, after an arithmetic operation, there is a carry from the most significant position (the sign position) of the adder, the carry indicator is set to 1 . This feature is useful in multipleprecision operations, where the entire 16 bits are considered to be the low-order part of an extended operation. Also, on a subtract operation, the carry indicator will be set to 1 if there is a "borrow" from the sign position of the adder. In arithmetic operations, the carry and overflow indicators operate as described above. Some instructions, however, use these indicators to record status information generated as a result of the operation.

INSTRUCTION FORMAT

Most instructions in SIGMA 2 are of the memory reference type and have the following format:

In this format, the operation code (OP) occupies the four most significant bits, followed by four address-control bits (R, I, X, and S) and an 8-bit displacement. The R, I, X and S bits control self-relative/nonrelative/base-relative addressing, indirect addressing, and indexing.

Two groups of SIGMA 2 instructions have formats somewhat different from the format of the memory reference type of instructions. The formats of the copy instruction (for register-to-register operations) and the conditional branch instructions (which always invoke self-relative addressing) are described in Chapter 3 (see "Copy Instruction" and "Conditional Branch Instructions").

EFFECTIVE ADDRESS COMPUTATION

The SIGMA 2 computer forms the effective address of a memory reference instruction in three basic steps as follows:

Step 1 (determine reference address)
a. If the R bit (bit 4 of the instruction word) and the S bit (bit 7 of the instruction word) are both 0 's, the reference address is equal to the value in the displacement field of the instruction. (This is referred to as "nonrelative" addressing.)
b. If the R bit is a 0 and the S bit is a I, the reference address is equal to the value in the displacement field in the instruction plus the 16-bit value (base address) in index register 2. (This is referred to as "pre-indexing", or "base-relative" addressing.)
c. If the R bit is a 1 , the reference address is equal to the 16-bit value in the H register (address of
the instruction) plus the value in the low-order 9 bits of the instruction, interpreted as a 9-bit two's complement integer (this is referred to as "self-relative" addressing).

Step 2 (determine direct address)
a. If the I bit (bit 5 of the instruction word) is a 0 , the direct address is equal to the value of the reference address (as determined in step 1).
b. If the bit is a 1, the reference address is treated as an indirect address; the direct address is the 16-bit value in the location whose address is equal to the reference address. In effect, the indirect address is replaced by the direct address value.

Step 3 (determine effective address)
a. If the X bit (bit 6 of the instruction word) is a 0 , the effective address is equal to the value of the direct address (as determined by step 2).
b. If the X bit is a 1, the effective address is equal to the value of the direct address plus the 16-bit value in index register 1. Note that indexing with $X 1$ is applied after indirect addressing. This is referred to as "post-indexing".

The effective address for an instruction, therefore, is the final 16 -bit address value developed for that instruction, starting with the displacement value in the instruction itself. The core memory location whose address equals the effective address value is referred to as the "effective location". Similarly, the contents of the effective location are referred to as the "effective word".

The process of effective address computation is summarized in Table 1. The symbols used in Table 1 are defined as follows:

R Bit 4 of the instruction
I Bit 5 of the instruction
X Bit 6 of the instruction
S Bit 7 of the instruction
D Bits 8 through 15 of the instruction (Displacement)
SD Sign extended displacement value
(D) Contents of location D
(X1) Contents of index register 1 (general register 4)
(X2) Contents of index register 2 (general register 5)
(H) Contents of the internal H register (the address of the instruction)

Table 1. Effective Address Computation and Timing

R	I	X	S	Effective Address	Additional Half-cycles
0	0	0	0	D	0
0	0	0	1	$D+(X 2)$	1
0	0	1	0	$D+(X 1)$	1
0	0	1	1	$D+(X 1)+(X 2)$	2
0	1	0	0	(D)	2
0	1	0	1	$(D+(X 2))$	3
0	1	1	0	$(D)+(X 1)$	2
0	1	1	1	$(D+(X 2))+(X 1)$	3
1	0	0		$(H)+S D$	0
1	0	1		$(H)+S D+(X 1)$	1
1	1	0		$(H)+S D)$	2
1	1	1		$((H)+S D)+(X 1)$	2

INSTRUCTION TIMING

Instruction timing is a function of the half-cycle time of the computer memory, because all operations are performed in some multiple of half cycles. A half cycle is one-half the average time required for the integral memory to perform a complete read/restore operation. When operations use only the integral memory, all half-cycles have approximately the same duration. The half-cycle time may be extended when references are made to external memory, because other pracessors may interfere with an access to an external memory. The minimal execution time for a memory reference instruction is five to eight half-cycles, depending on the instruction involved. This timing is based on an instruction that is coded either for self-relative or for nonrelative addressing.

For other cases, see Table 1 .

| A half-cycle is 460 nanoseconds ($\pm 3 \%$) when integral memory is involved. Each memory access to an external memory involves an additional amount of time from 40 nanoseconds to 1 microsecond, depending on such factors as memory cycle time and cable length involved.

INTERRUPT SYSTEM

The SIGMA 2 priority interrupt system is an improved version of the system used successfully in XDS 9300/900 Series Computers. Up to 148 interrupt levels are normally available, each with a unique location (see Table 2) assigned to core memory, each with a unique priority, and each (except for the override group of interrupt levels) capable
of being selectively armed and/or enabled by the CPU (see "Interrupt Level States").

Any interrupt level (except for the override group) can be "triggered" by the CPU; i.e., supplied with a signal at the same physical point where the signal from the external source would enter the interrupt level. The triggering of an interrupt level permits the testing of special systems programs before the special systems equipment is actually attached to the computer. It also permits an interrupt-servicing routine to defer a portion of the processing associated with an interrupt response by processing the urgent part of the interrupt response, triggering a lower-priority level (for a routine that handles the less-urgent part), then clearing the highpriority interrupt level so that other interrupts may be allowed to occur (before the less-urgent part is completed).

INTERNAL INTERRUPT LEVELS

Internal interrupt levels include those that are normally supplied with a SIGMA 2 system, as well as the optional counter (real-time clock), power fail-safe, memory parity, protection violation, and "counter-equals-zero" interrupt levels. The internal interrupt levels are arranged in three groups: the counter group, the override group, and the input/output group.

Counter (real-time clock) Group

These four optional interrupt levels are triggered by pulses from internal or external clock sources. Counter 1 has a constant frequency of 500 Hz ; counters 2,3 , and 4 can be individually set to any of four manually switchable frequencies - the commercial line frequency, 2 kHz , 8 kHz , and a user-supplied external signal - that may be different for each counter. (All counter frequencies are synchronous except for the line frequency and the signal supplied by the user.) When a clock pulse is received by one of the counter interrupt levels (and the level is armed and enabled), the value in the memory location associated with the level is incremented by 1 , and the level is cleared and armed. If the value in the affected memory location is zero after being incremented, the corresponding counter-equals-zero interrupt level in the input/output group of internal levels (see below) is then triggered. All other interrupt levels (including the counter-equals-zero interrupt levels) are processed by interruptservicing routines and are designated as "normal" interrupt levels. The counter interrupt levels can be armed, disarmed, enabled, disabled, or triggered by means of a specific configuration (interrupt control mode) of the WRITE DIRECT instruction; however, these levels cannot be inhibited. The priority of the counter interrupt levels is immediately below the priority of the power off interrupt level, but above the priority of the memory parity error interrupt level.

Override Group

The interrupt levels in this group are associated with independent, optional SIGMA 2 features.

Table 2. Core Memory Allocation and Interrupt Priority Groupings

Address		Priority Level within Group	WRITE DIRECT Register Bit^{\dagger}	Assignment	Availability	Group	WRITE DIRECT Group Code ${ }^{\text {tt }}$
Dec.	Hex.						
0 1 \vdots 63	0 1 \vdots 3 F			First record loaded into memory during a load operation			
64	40						
.	:			Unassigned			
251	FB						
252	FC	3	0	Counter 4	Optional	Counter (no inhibit)	$X^{\prime} 0^{\prime}$
253	FD	4	1	Counter 3	(as a set)		
254	FE	5	2	Counter 2	Optional (as a set)		
255	FF	6	3	Counter 1			
256	100	,	none	Power on	Optional (as a set)	Override (no inhibit)	none
257	101	2		Power off			
258	102	7	none	Memory parity error	Optional		
259	103	8		Protection violation			
260	104	9	none	Multiply exception Divide exception	Standard ${ }^{\text {ttt }}$		
261	105	10					
262	106		6	Input/output	Standard	Input/Output (inhibited by bit 10 of PSD)	$X^{\prime} 0^{\prime}$
263	107	2	7	Control panel			
264	108	3	8	$\text { Counter } 4=0$$\text { Counter } 3=0$	Optional (as a set)		
265	109	4	9				
266	10A	5	1011	$\text { Counter } 2=0$$\text { Counter } 1=0$	Optional (as a set)		
267	10B						
268	10 C	7	12	Integral 1 Integral 2	Optional (as a set)		
269	10D	8	13				
270	10 E	9	14	Integral 3 Integral 4	Optional (as a set)		
271	10F	10	15				
272	110	1	0	Designated by customer	Optional (inhibited by bit 11 of PSD)	External Group 5	X'5'
273	111	2	1				
:	:		:				
287	11F	16	15				
288	120	1	0				
289	121	2	1				
:	\vdots	:	15			Group 6	X'6'
303	12F						
	:	:	:			:	:
384	180	1	0			External Group 12	$X^{\prime} C^{\prime}$
385	181	2	1				
:		:	:				
399	18F	16	15				

${ }^{\dagger}$ When the WRITE DIRECT instruction is used in the interrupt control mode to operate on interrupt levels, the interrupt levels are selected by specific bit positions of the accumulator. The decimal numbers in this column indicate the bit positions in the accumulator that correspond to the various interrupt levels.
${ }^{\dagger \dagger}$ The hexadecimal numbers in this column indicate the group codes (for use with WRITE DIRECT) of the various interrupt levels.
${ }^{t+\dagger}$ The multiply exception and the divide exception interrupt levels are included only in computers that do not have the multiply/divide option.

The override interrupt levels are always armed (cannot be disarmed), always enabled (cannot be disabled), cannot be triggered by a WRITE DIRECT instruction, and cannot be inhibited.

Power Fail-Safe. The two optional power fail-safe interrupt levels are used to enter routines that save and restore volatile information in the event of a power failure. The power-off interrupt level is triggered whenever the power supply voltage falls below a safe limit; likewise, the poweron interrupt level is triggered whenever power returns to safe limits. The power fail-safe interrupt levels have a higher-priority than the counter interrupt levels.

Memory Parity Error. The memory parity interrupt option is used to inform the program (or the computer operator) that a parity error has occurred upon accessing memory for an instruction, direct address (in the case of indirect addressing), or an operand. If the option is installed and the PARITY ERROR switches on the control panel are in the INTERRUPT/NORMAL positions when a parity error occurs, the memory parity interrupt level is triggered.

Protection Violation. The protection option includes the protection violation interrupt level. (The protection option is described on page 13.) If the option is installed and the PROTECT switch on the processor control panel is in the ON position when a protection violation is encountered, the protection violation interrupt level is triggered.

Multiply/Divide Exception. The multiply/divide option includes the additionallogic required for executing the MULTIPLY and DIVIDE instructions. If the option is not installed, the multiply exception interrupt level and the divide exception interrupt levels are provided to allow for simulation of the unimplemented instructions. In this case, the appropriate exception interrupt level is triggered, whenever an attempt is made to execute a MULTIPLY or DIVIDE instruction.

Input/Output Group

This interrupt group includes two standard interrupt levels and eight optional levels. The I/O and control panel interrupt levels are standard; the four counter-equals-zero interrupt levels and the four integral interrupt levels are optional.

All interrupt levels in the input/output group can be inhibited by means of the internal interrupt inhibit bit 10 of the PSD), and can be armed, disarmed, enabled, disabled, and triggered by specific configurations of the WRITE DIRECT instruction.

I/O Interrupt Level. The I/O interrupt level accepts interrupt signals from the standard I/O system. An I/O routine must contain an ACKNOWLEDGE I/O INTERRUPT (AIO) instruction that identifies the source and cause of an I/O interrupt.

Control Panel Interrupt Level. The control panel interrupt level is connected to the INTERRUPT switch on the processor control panel. The control panel interrupt level can
thus be triggered by the computer operator, allowing him to initiate a specific routine.

Counter-equals-zero Interrupt Levels. The counter-equalszero interrupt levels are associated with the four optional real-time clocks. For each clock option installed, the CPU automatically increments one of four core memory (counter) locations as the clock pulses are received. When the value in a counter location equals zero, the corresponding counter-equals-zero interrupt level is triggered. Counting continues after the interrupt level is triggered; unless the counter interrupt level is disarmed or disabled, counting will continue until zero is reached again. (See "Counter Interrupt Processing".)

EXTERNAL INTERRUPT LEVELS

A SIGMA 2 system can contain up to 9 groups of optional interrupt levels, with up to 4 levels in the first integral group and up to 16 levels in each of the 8 external groups. The integral levels are controlled as part of the input/ output group of internal interrupt levels (i.e., inhibited with the internal interrupt inhibit), and have a lower priority than the other levels in the input/output group. All interrupts are controlled separately (i,e., inhibited with the external interrupt inhibit), and can be arranged in almost any priority sequence (see "Interrupt Priority Sequence").

INTERRUPT LEVEL STATES

A SIGMA 2 interrupt level is mechanized by means of three flip-flops. Two of the flip-flops are used to define any of four mutually exclusive states: disarmed, armed, waiting, and active. The third flip-flop is used to enable or disable the level. The various states and the condition causing changes in state (see Figure 3) are described in the following paragraphs.

Disarmed

When an interrupt level is in the disarmed state, no signal to that interrupt level is admitted; that is, no record is retained of the signal, nor is any program interrupt caused by it at any time.

Armed

When an interrupt level is in the armed state, it is capable of accepting and remembering an interrupt signal. The receipt of such a signal advances the interrupt level to the waiting state.

Waiting

When an interrupt level in the armed state receives an interrupt signal, it advances to the waiting state, and remains in the waiting state until it is allowed to advance to the active state.

If the level-enable flip-flop is off, the interrupt level can undergo all state changes except that of moving from the waiting to the active state. Furthermore, if this flip-flop is off, the interrupt level is completely removed from the chain that determines the priority of access to the CPU. Thus,
an interrupt level in the waiting state with its level-enable in the off condition does not prevent an enabled, uninhibited interrupt level of lower priority from moving to the active state.

When an interrupt level is in the waiting state, the following conditions must all exist simultaneously before the level advances to the active state.

1. The level is enabled (i.e., its level enable flip-flop is a 1).
2. The group inhibit (if applicable) is off (i.e., the appropriate inhibit is a 0).
3. No higher-priority interrupt level is in the active state (or is in the enabled, waiting state with its inhibit off).
4. The CPU is in an interruptible phase of operation.

Figure 3. Interrupt Level Operation

Active

When a normal interrupt level meets all of the conditions necessary to permit it to move from the waiting state to the active state, it is permitted to do so by being acknowledged by the computer which then stores the current PSD at the location specified by the contents of the location
associated with the level. The first instruction of the interrupt servicing routine is then taken from the location following the stored PSD. A new interrupt cannot occur until after the execution of this first instruction.

A normal interrupt level remains in the active state until it is removed from the active state by a specific configuration of the WRITE DIRECT (WD) instruction, followed by an LDX instruction. An interrupt-servicing routine can itself be interrupted (whenever a higher-priority interrupt level meets all of the conditions for becoming active) and then continued (after the higher-priority interrupt level is removed from the active state). However, an interrupt-servicing routine cannot be interrupted by a lower-priority interrupt level as long as its interrupt level remains in the active state. Normally, the interrupt-servicing routine returns its interrupt level to the armed state and transfers program control back to the paint of interrupt by means of an interrupt routine exit sequence (see "Interrupt Routine Entry and Exit").

INTERRUPT SYSTEM CONTROL

The SIGMA 2 system has two points of interrupt control. One point of control is achieved by means of the interrupt inhibits in the PSD. The interrupt inhibits can be changed by executing a WRITE DIRECT (WD) instruction or an interrupt routine exit sequence. The second point of interrupt control is at the individual interruptlevel. The WD instruction can be used to individually arm, disarm, enable, disable, or trigger any inter rupt level (except for the interrupt levels in the override group).

The WD instruction transmits its 16 -bit effective address to all receiving elements of the SIGMA 2 system (see Chapter 3, "Direct Control Instructions"). In the case of interrupt system control, the following configuration of a WD effective address is used to control the alteration of the various states of the individual interrupt levels within the interrupt system:

Bit positions $0-3$ must contain the value $X^{\prime} 11$, to specify the interrupt control mode. Bit positions 5-7 contain the code for the operation to be performed with the group of 16 interrupt levels (see Table 2) specified by bit positions 12-15. Bits 4 and $8-11$ must be zeros.

This instruction uses the contents of the accumulator (general register 7) to determine which of the interrupt levels in the specified group are to be operated upon. For example, if bit positions 12-15 of the WD effective address contain the value $X^{\prime} 0^{\prime}$, bit position 0 of the accumulator corresponds to the counter 4 interrupt level, bit position 1 corresponds to the counter 3 interrupt level, and so on through bit position 15, which corresponds to the integral 4 interrupt level.
Each interrupt level in the designated group is operated on according to the function code specified by bits 5 through 7 of the effective address of WD. The defined codes and their associated functions are as follows:

Code Function

001 Disarm all levels corresponding to a 1 in the accumulator; no other levels are affected.

010 Arm and enable all levels corresponding to a 1 in the accumulator; no other levels are affected.

011 Arm and disable all levels corresponding to al in the accumulator; no other levels are affected.
Enable all levels corresponding to a 1 in the accumulator; no other levels are affected.

Disable all levels corresponding to a 1 in the accumulator; no other levels are affected.

Enable all levels corresponding to a 1 in the accumulator and disable all other levels.

Trigger all levels corresponding to a 1 in the ac- cumulator. All such levels that are currently armed advance to the waiting state. Those levels currently disarmed are not altered, and all levels corresponding to a 0 in the accumulator are not affected. The interrupt trigger is applied at the same input point as that used by the device connected to the interrupt level.

The recommended method for producing the appropriate configuration of the WRITE DIRECT effective address is to indirectly address a memory location that contains the appropriate bit configuration for the desired effective address.

INTERRUPT PRIORITY SEQUENCE

SIGMA 2 interrupts are arranged ingroups so that they may be connected in a predetermined priority arrangement by groups of levels. The priority of each level within a group is fixed, with the first level having the highest-priority and the last level having the lowest-priority. The user has the option of ordering a machine with a priority chain starting with the override group and connecting all remaining groups in any sequence. This allows the user to establish external interrupts above and below the input/output group of internal interrupts. Figure 4 illustrates this with a configuration that a user might establish, where (after the override and counter groups) external interrupt group 5 is given second highest-priority followed by the input/output group and all succeeding groups of external interrupts.

INTERRUPT ROUTINE ENTRY AND EXIT

When a normal interrupt level becomes active, the computer automatically saves the program status doubleword (which contains the protected program indicator, the interrupt inhibits, the carry and overflow indicators, and the program address). The status information is stored in the location whose address is contained in the dedicated interrupt location.

The current value in the programaddress (P) register is stored in the location following the status information. The significance of the stored program address depends upon the particular interrupt level, as follows:
a. For the protection violation, multiply exception, and divide exception interrupt levels, the stored program address is the address of the instruction

After the program address is stored, the next instruction to be executed is then taken from the location following the stored program address. The first instruction of the interruptservicing routine is always executed before another interrupt can occur. Thus the interrupt-servicing routine may inhibit all other normal interrupt levels so that the routine itself will not be interrupted while in process.

At the end of an inferrupt-servicing routine, an exit sequence restores the program status that existed when the interrupt level became active. An exit sequence is a WRITE DIRECT (WD) instruction with an effective address of X^{\prime} OOD8' followed immediately by a LOAD INDEX (LDX) instruction with an effective address equal to the address value in the interrupt location for the routine (no interrupt is allowed to occur between these two instructions). Execution of LDX in an inferrupt routine exit sequence does not affect the contents of index register 1.

COUNTER INTERRUPT PROCESSING

The counter interrupt levels are not associated with interruptservicing routines as such. Instead, an active counter interrupt level is serviced by accessing the contents of the memory location assigned to the interrupt level, incrementing the value in the memory location by 1 , and restoring the new value in the same memory location. The processing of
an active counter interrupt level does not affect the overflow indicator or the carry indicator. Thus, the on-going program is not affected by a counter clock pulse (other than by the time required for processing) unless the result in the assigned memory location is all 0 's after being incremented; in that case, the corresponding counter-equals-zero interrupt level is triggered.

CPU INTERRUPT RECOGNITION

If all other conditions are met and an interrupt level is waiting and enabled, the CPU will recognize the interrupt following the completion of any instruction except:

1. WD X'00D8' (precedes LDX for inferrupt routine exit) 1
2. Between the storing of the PSD and the execution of the next instruction upon entering a normal interrupt subroutine.

PROTECTION SYSTEM

The primary purpose of the optional protection feature is to guarantee the integrity of a master or executive-mode (foreground) program while another (background) program is concurrently being executed. The SIGMA 2 protection system provides both operation protection and memory write protection by means of 16 words of register storage that are installed as part of the profection option. Each bit in these 16 words is associated with a specific block of core memory. A block of core memory is a region of 256 consecutive locations, whose lowest-numbered address is some integer multiple of 256 ; thus, bit 0 of protection register 0 is associated with core memory locations 0 through $X^{\prime} F^{\prime}$, bit 1 of protection register 0 is associated with core memory locations $X^{\prime} 100^{\prime}$ through $X^{\prime} 1 F^{\prime}$, and bit 15 of protection register $X^{\prime} F^{\prime}$ is associated with core memory locations $X^{\prime} F F 00^{\prime}$ through X'FFFF'. A protection bit of 0 designates an
unprotected memory block and a protection bit of 1 designates a protected block.

The protection registers can be individually loaded by executing a WRITE DIRECT instruction with an effective oddress of $X^{\prime} 8 r^{\prime}$, where r is a hexadecimal digit that designates which of the protection registers is to be loaded from the accumulator (A register). Thus, the protection bits for 16 memory pages (4096 words) can be set up by executing a single instruction.

Operation of the protection system is under control of the PROTECT switch and the key-operated lock on the processor control panel (see Chapter 5). If the protection system is operative, the following rules apply:

1. The privileged instructions (READ DIRECT and WRITE DIRECT) can be executed only if they are accessed from protected memory. If a privileged instruction is accessed from unprotected memory, the instruction is not executed; instead, the protection violation interrupt level is triggered.
2. An instruction accessed from unprotected memory can be immediately followed by an instruction accessed from protected memory only in response to an interrupt condition. If an instruction is accessed from protected memory and the immediately preceding instruction was accessed from unprotected memory, the instruction is not executed (unless it is in response to an interrupt condition); instead, the protection violation interrupt level is triggered. This rule applies to branching from unprotected memory to protected memory as well as to executing an instruction in protected memory as the next instruction in normal sequence after an instruction in unprotected memory.
3. A STORE ACCUMULATOR (STA) or an INCREMENT MEMORY (IM) instruction can be used to alter protected memory only if the instruction is accessed from protected memory. If an attempt is made to alter protected memory with an instruction accessed from unprotected memory, the operation is not performed; instead, the protection vialation interrupt level is triggered.

3. INSTRUCTION REPERTOIRE

This section contains descriptions of all SIGMA 2 instructions. With each description is a diagram showing the format of the instruction and its operation code (as a hexadecimal digit in the 4 high-order bit positions of the diagram). Some of the instruction diagrams are divided by a horizontal line, as in the SHIFT instruction on page 15. In these cases, the upper portion of the diagram represents the instruction format, while the lower portion represents the format of the instruction's effective address. Bit positions or fields that are shaded represent portions of the instruction's effective address that are ignored. However, these areas should always be coded with 0's to preclude conflict with features that may be implemented in the future.

Above each diagram are the mnemonic code and name of the instructions, sometimes followed by a parenthetic note about optional features or privileged operation. Under each diagram is a description of the instruction, followed by a list of the registers and indicators that can be affected by the instruction. The minimal execution time of the instruction is given in half-cycles (hc).

The following abbreviations are used in the descriptions:
A Accumulator (general register 7)
E Extended accumulator (general register 6)
Xl Index 1 (general register 4)
P Program address register (general register 1)
PP Protected program indicator (PSD bit 8)
II Internal interrupt inhibit (PSD bit 10)
EI External interrupt inhibit (PSD bit 11)
O Overflow indicator (PSD bit 14)
C Carry indicator (PSD bit 15)
EL Effective location
EW Effective word, or (EL)

MEMORY REFERENCE INSTRUCTIONS

LDA LOAD ACCUMULATOR

LOAD ACCUMULATOR loads the effective word into the accumulator (general register 7).
Affected: (A)
Time: 5 hc

STA STORE ACCUMULATOR

STORE ACCUMULATOR stores the contents of the accumulator into the effective location.
Affected: (EL)
Time: 5 hc

LDX LOAD INDEX

LOAD INDEX loads the effective word into index 1 (general register 4).

Affected: (XI) Time: 5 hc
When LOAD INDEX is executed as the next instruction in sequence after a WRITE DIRECT (WD) instruction with an effective address of $X^{\prime} 00 D 8$ ', index register 1 is not affected; instead, LOAD INDEX performs the following operations in order to restore the program environment that existed before the computer acknowledged an interrupt condition:

1. sets the protected program indicator equal to bit 8 of the effective doubleword
2. sets the internal interrupt inhibit equal to bit 10 of the effective doubleword
3. sets the external interrupt inhibit equal to bit 11 of the effective doubleword
4. sets the overflow indicator equal to bit 14 of the effective doubleword
5. sets the carry indicator equal to bit 15 of the effective doubleword
6. loads bits 16 through 31 of the effective doubleword into the program address register (general register 1)
7. clears the highest-priority active interrupt level and returns the interrupt level to the armed state
8. resets the exit condition that was set by the preceding WD instruction (that caused LDX to perform the above operations)
Bits 0 through 7, 12, and 13 of the effective doubleword are ignored.

Affected: PP, II, EI, O, C, (P), highest- Time: 6 hc
priority active interrupt level
ADD ADD

ADD adds the effective word to the contents of the accumulator and then loads the result into the accumulator. If the signs of the two operands are equal but the sign of the result is different, overflow has occurred, in which case the overflow indicator is set to 1 . If overflow does not occur, the overflow indicator is reset to 0 . The carry indicator is set to l if a carry occurs from the sign bit position of the adder; if such a carry does not occur, the carry indicator is reset to 0 .

Affected: (A), O, C
Time: 5 hc

SUBTRACT

SUBTRACT forms the two's complement of the effective word, adds this value to the contents of the accumulator, and then loads the result into the accumulator. If the sign of the result in the accumulator is equal to the sign of the effective word but the sign of the original oper and in the accumulator was different, overflow has occurred, in which case the overflow indicator is set to 1 . If overflow does not occur, the overflow indicator is reset to 0 . The carry indicator is set to 1 if a carry occurs from the sign bit position of the adder; if no carry occurs, the carry indicator is reset to 0 . (A carry occurs if the 16 -bit magnitude in the effective location is equal to or less than the 16-bit magnitude in A.)
Affected: (A), O, C
Time: 5 hc

MUL MULTIPLY (optional)

MULTIPLY multiplies the effective word by the contents of the accumulator, loads the 16 high-order bits of the doubleword product into the extended accumulator (general register 6), and loads the 16 low-order bits of the doubleword product into the accumulator. Neither overflow nor carry can occur; however, the carry indicator is set equal to the sign of the doubleword product.

If the multiply/divide option is not implemented and an attempt is made to execute the instruction, the multiply exception interrupt level is triggered instead. The program address stored in memory as a result of the interrupt level becoming active is the address of the MULTIPLY instruction.

```
Affected: ( \(\mathbf{E}, \mathrm{A}\) ), C
```

Time: 23 hc

DIV DIVIDE (oprional)

DIVIDE divides the contents of the extended accumblator and the accumulator by the effective word.

If the absolute value of the quotient is equal to or greater than $32,768\left(2^{15}\right)$, the overflow indicator is set to 1 and the instruction is terminated with the contents of the extended accumulator and the accumulator unchanged from their previous values, and the carry indicator set equal to the sign of the dividend.
If the absolute value of the quotient is less than 2^{15}, the overflow indicator is reset to 0 , the integer quotient is loaded into the accumulator, the integer remainder is loaded into the extended accumulator, and the carry indicator is set equal to the sign of the remainder. (The sign of the remainder is the same as the sign of the dividend.)

If the multiply/divide option is not implemented and an attempt is made to execute the DIVIDE instruction, the divide
exception interrupt level is triggered instead. The program address stored in memory as the result of the interrupt level becoming active is the address of the DIVIDE instruction.

```
Affected: (E), (A), O, C
```

\section*{AND LOGICALAND
 | ρ | R | I | $\times S$ | Displacement |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 12 | 34 | 5 | 6 |}

Time: 24 hc

LOGICAL AND forms the logical product of the effective word and the contents of the accumulator, and loads this product into the accumulator. The logical product contains a 1 in each bit position for which there is a corresponding 1 in both the accumulator and the effective word, the logical product contains a 0 in each bit position for which there is a 0 in the corresponding bit position of either operand.
Affected: (A)
Time: 5 hc

IM INCREMENT MEMORY

INCREMENT MEMORY adds 1 to the effective word and then stores the result in the effective location. Overflow occurs only if the resulting value of the effective word is $X^{\prime} 8000{ }^{\prime}$ $(32,768)$, in which case the overflow indicator is set to 1 ; otherwise, the overflow indicator is reset to 0 . Carry occurs only if the resulting value of the effective word is $\mathrm{X}^{\prime} 0000$ ', in which case the carry indicator is set to 1 ; otherwise, the carry indicator is reset to 0 .

Affected: (EL), O, C
Time: 6 ho

BRANCH loads the effective address into the program address register (general register 1). Thus, the next instruction is accessed from the location pointed to by the effective address of the BRANCH instruction.

Affected: (P)
Time: 2 hc

S SHIFT

	Displacement
	Type 1 N

SHIFT uses the 8 low-order bits of the effective address as a specification of the type of shift to be performed. The effective address is not used for a memory access; instead, bits 8,9 , and 10 of the effective address specify the type of shift and bits 11 through 15 of the effective address specify the number of bit positions to be shifted, as follows.

0 specifies a right shift.
1 specifies a left shift.
11-15 This value specifies the number of bit positions of the shift operation, which may be any number in the range 0 through $X^{\prime} 1 F^{\prime}$ (31).

Bits 0 through 7 of the effective address are ignored.

The overflow indicator is set to 1 only if any bit shifted into the sign bit position during an arithmetic left shift is different from that previously in the sign bit position; otherwise the overflow indicator is reset to 0 .

The carry indicator is reset to 0 at the beginning of the shift operation. If the shift is to the right, the carry indicator remains reset; however, if the shift is to the left, the carry indicator is inverted each time a 1 is shifted out of the sign bit position. Hence, the carry bit will represent even parity on the bits shifted out of the sign bit position.

Affected: (D), (A), O, C
Time: $7+N$ hc

COMPARE algebraically compares the contents of the accumulator and the effective word, with both operands treated as signed quantities. The overflow and carry indicators are set or reset, according to the result of the comparison, as follows:

OC Result of comparison

00 the operand in the accumulator is algebraically less than the effective word
10 the operand in the accumulator is algebraically greater than the effective word

11 the operand in the accumulator is equal to the effective word

Affected: O, C
Time: 5 hc

CONDITIONAL BRANCH INSTRUCTIONS

The eight conditional branch instructions specify conditional, relative branching. Each of the conditional branch instructions performs a test to determine whether the branch condition is "true".

If the branch condition is true, the instruction acts as a BRANCH instruction coded for self-relative addressing with neither indirect addressing nor indexing. (The conditional branch instructions automatically invoke self-relative addressing.) Thus, if the branch condition is true, the next instruction is accessed from the location pointed to by the effective address of the conditional branch instruction.

If the branch condition is not true, the instruction acts as a "no operation" instruction. Thus, if the branch condition is not true, the next instruction is accessed from the next location in ascending sequence after the conditional branch instruction.

BAN BRANCH IF ACCUMULATOR NEGATIVE

The branch condition is true only if bit 0 of the accumulator is 1 .

Affected: (P) Time: 2 hc (branch) 3 he (no branch)

BAZ BRANCH IF ACCUMULATOR ZERO

The branch condition is true only if the accumulator contains the value $X^{\prime} 0000{ }^{\prime}$.

Affected: (P)
Time: 4 hc

NEGATIVE

The branch condition is true only if bit 0 of the extended accumulator is 1 .

Affected: (P)
Time: 2 hc (branch)
3 he (no branch)

BNO BRANCH IF NO OVERFLOW

The branch condition is true only if the overflow indicator is reset (0). The overflow indicator is not affected.

Affected: (P)
Time: 2 hc (branch)
3 hc (no branch)

BNC BRANCH IF NO CARRY

The branch condition is true only if the carry indicator is reset (0). The carry indicator is not affected.
Affected: (P)
Time: 2 hc (branch)

3 hc (no branch)

BIX BRANCH ON INCREMENTING INDEX

BIX adds 1 to the current value in index 1 (general register 4) and loads the result into index 1 . The branch condition is true only if the result in index 1 is a nonzero value.
Affected: (X1), (P)
Time: 4 hc

BXND BRANCH ON INCREMENTING INDEX AND NO OVERFLOW

6	1	0	0	\pm	Displacement	
0	2	3	4	5	6	7

If the overflow indicator is set (1), no operation is performed and the computer executes the next instruction in sequence. However, if the overflow indicator is reset (0), BXNO adds 1 to the current value in index register 1 (general register 4) and loads the result into index 1 ; the branch condition is true only if the result in index 1 is a nonzero value. The overflow indicator is not affected by this instruction.

Affected: (XI), (P)
Time: 4 he (branch)
3 hc $(O=1$, no branch $)$
4 hc $(O=0$, no branch $)$

If the carry indicator is set (1), no operation is performed and the computer executes the next instruction in sequance. However, if the carry indicator is reset (0), BXNC adds 1 to the current value in index register 1 and loads the result into index 1 ; the branch condition is true only if the result in index 1 is a nonzero value. The carry indicator is not affected.

Affected: (XI), (P)

```
Time: 4 hc (branch)
3 hc ( \(C=1\), no branch)
4 hc ( \(C=0\), no branch)
```


COPY INSTRUCTION

The copy instruction specifies operations between any two general registers. The format of the copy instruction is:

Bit(s) Function
0-3 Bit positions $0-3$ are coded as $X^{\prime} 7$ ', to specify the copy instruction.
4-5 Bit positions 4-5 specify which of 4 operations is to
(Op) be performed. The operations are:
$\begin{array}{ll}4 & 5 \\ 0 & 0\end{array} \frac{\text { Operation }}{\text { logical AND }}$
01 logical inclusive $O R$
10 logical exclusive $O R$
overflow and carry indicators not affected

11 arithmetic add (overflow and carry indicators set as described for the instruction ADD)
6 Bit position 6 specifies whether the current value of
(AC) the carry indicator is to be added to the result. If this bit is a 1, the carry indicator is added to the low-order bit position of the result. If this bit is a 0 , the carry indicator is ignored.
$7 \quad$ Bit position 7 specifies whether the value $X^{\prime} 0001$ ' is to
(AI) be added to the result. If this bit is a $1, a l$ is added to the low-order bit position of the result. If bits 6 and 7 are both $I^{\prime} \mathrm{s}$, the value $\mathrm{X}^{\prime} 0001$ ' is added to the result (regardless of the current value of the carry indicator).
8 Bit position 8 specifies whether the destination reg-
(CD) ister (specified by bits 9-11) is to be cleared before the operation called for by bits 4-7 is performed. If bit 8 is a 1 , the destination register is initially cleared. If bit 8 is 0 , the initial contents of the destination register remain unchanged until the result is loaded into the destination register.

9-11 Bit positions 9-11 specify the general register that
(DR) is to contain the result of the instruction. A value of zero in this field specifies that the result is to be disregarded; however, the overflow and carry indicators may be affected.

Bit(s)	Function	
$\begin{aligned} & 12 \\ & \text { (IS) } \end{aligned}$	Bit position 12 specifies whether the sour operand (the value in the register specifi 13-15) is to be used as it appears in the ister, or is to be inverted (one's complem fore the operation is performed. If bit the inverse of the value in the source reg be used as the source register operand; how value in the source register is not changed 12 is a 0 , the value in the source registe the source register operand.	
$\begin{aligned} & 13-15 \\ & (S R) \end{aligned}$	Bit positions 13-15 specify the general r contains the value to be used (or inverte as the source register operand. A value field designates the value $X^{\prime} 0000^{\prime}$ as the of the source register.	
The general registers are identified as follows:		
Register	Function	Designatio
Z	Zero	0
P	Program address	1
L	Link address	2
T	Temporary storage	3
X1	Index 1	4
X2	Index 2 (base address)	5
E	Extended accumulator	6
A	Accumulator	7

The contents of the P register, at the time the execution of the copy instruction begins, are the address of the next location in sequence after the copy instruction.
Affected: (DR), O, C
Time: 5 hc

Examples:
Instruction Effect

$\mathrm{X}^{\prime} 74 \mathrm{FO}^{\prime}$	Clear the accumulator to all zeros
$X^{\prime} 74 F^{\prime}$	Invert (form the one's complement of) the contents of the accumulator
X'7DFF'	Negate (forms the two's complement of) the contents of the accumulator
X'7C78'	Subtract 1 from the contents of the accumulator
X'7D7B'	Subtract the contents of the T register from the contents of the accumulator
X'75AI'	Copy the contents of the P register plus 1 into the L register

The basic SIGMA 2 assembly language recognizes the following command mnemonics and generates the appropriate settings for bit positions $0-8$ of the copy instruction. The settings for bit positions $9-15$ are derived from the crgument field of the symbolic line in which the command mnemonic appears. The source register operand is the contents of the source register if the IS bit is 0, or is the inverse (one's complement) of the contents of the source register if the IS bit is 1 .

RCPY
 REGISTER COPY

RCPY copies the source register operand into the destination register. The overflow and carry indicators are not affected.

RADD REGISTERADD

7	C	0	DR		SR

RADD adds the source register operand to the contents of the destination register and loads the result into the destination register. The overflow and carry indicators are set as described for the instruction ADD, based on the register operands and the final result.

ROR REGISTER OR

7	4	0	DR	S	SR

ROR logically inclusive ORs the source register operand with the contents of the destination register and loads the result into the destination register. If the corresponding bits in the source register operand and the destination register are both 0 , a 0 remains in the corresponding bit position of the destination register; otherwise, the corresponding bit position of the destination register is set to 1 . The overflow and carry indicators are not affected.

REOR REGISTER EXCLUSIVE OR

REOR logically exclusive ORs the source register operand with the contents of the destination register and loads the result into the destination register. If the corresponding bits of the source register operand and the destination register are different, the corresponding bit position of the destination register is set to 1 ; otherwise, the corresponding bit position of the destination register is reset to 0 . The overflow and carry indicators are not affected.

RAND REGISTERAND

RAND logically ANDs the source register operand with the contents of the destination register and loads the result into the destination register. If the corresponding bits of the source register operand and the destination register are both 1, a 1 remains in the dest ination register; otherwise, the corresponding bit position of the destination register is reset to 0 . The overflow and carry indicators are not affected.

RCPYI REGISTER COPY AND INCREMENT

7	5	1	DR	${ }_{5}^{1}$	SR

RCPYI copies the source register operand into the destination register and then adds 1 to the new contents of the destination
register. The overflow and carry indicators are not affected.

RADDI REGISTER ADD AND INCREMENT

RADDI adds the source register operand to the contents of the destination register, increments the result by 1 , and loads the final result into the destination register. The overflow and carry indicators are set, as described for the instruction ADD, based on the register operands and the final result.

RORI REGISTER OR AND INCREMENT

7	5	0	$D R$	I	SR
0	12	3	5	6	7

RORI logically ORs the source register operand with the contents of the destination register, increments the result by 1 , and loads the final result into the destination register. The overflow and carry indicators are not affected.

REORI REGISTER EXCLUSIVE OR AND INCREMENT

7	9	0	DR	1	SR

REORI logically exclusive ORs the source register operand with the contents of the destination register, increments the result by 1 , and loads the final result into the destination register. The overflow and carry indicators are not affected.

RANDI REGISTER AND AND INCREMENT

RANDI logically ANDs the source register operand with the contents of the destination register, increments the result by 1, and loads the final result into the destination register. The overflow and carry indicators are not affected.

RCPYC REGISTER COPY AND CARRY

7	6	1	DR		SR

RCPYC copies the source register operand into the destination register and then adds the current value of the carry indicator to the result in the destination register. The overflow and carry indicators are not affected.

RADDC REGISTER ADD AND CARRY

RADDC adds the source register operand to the contents of the destination register, adds the current value of the carry indicator to the result and loads the final result into the destination register. The overflow and carry indicators are set, as described for the instruction ADD, based on the register operands and the final result.

RORC REGISTER OR AND CARRY

RORC logically inclusive ORs the source register operand with the contents of the destination register, adds the current value of the carry indicator to the result, and loads the result into the destination register. The overflow and carry indicators are not affected.

REORC REGISTER EXCLUSIVE OR AND CARRY

REORC logically exclusive ORs the source register operand with the contents of the destination register, adds the current value of the carry indicator to the result, and loads the final result into the destination register. The overflow and carry indicators are not affected.

RANDC REGISTER AND AND CARRY

7	2	0	DR	I	SR
0	123	4	56	7	9

RANDC logically ANDs the source register operand with the destination register, adds the current value of the carry indicator to the result and loads the final result into the destination register. The overflow and carry indicators are not affected.

DIRECT CONTROL INSTRUCTIONS

The two instructions READ DIRECT (RD) and WRITE DIRECT (WD) are used to perform a variety of operations, such as:

- transfer the contents of the accumulator into any general register or $1 / O$ channel register, and vice versa
- start an I/O operation, test an I/O operation, test an I/O device, halt an I/O operation, and acknowledge an I / O interrupt condition.
- preserve the current program status indicators in the accumulator, and conditionally alter the program status indicators
- load the optional protection system registers
- set a wait condition (stop computation)
- set an exit condition to prepare for a return to an interrupted program
- control the individual levels of the priority interrupt system
- perform asynchronous input/output (optional)
- control special systems equipment (optional)

The values of bits 0 through 3 of the effective address of the READ DIRECT and WRITE DIRECT instructions determine the mode of the instruction, as shown on the following page.

Bit Position				
0	1	2	3	Mode
0	0	0	0	
0	0	0	1	Interrupt control (WD only)
0	0	1	0	
		1	1	Assigned to various groups of standard SDS products
1	1	1	0	Special systems control (for customer use with specially designed equipment)
1	1	1	1	
RD		READ DIRECT (Privileged, partially optional)		
	1	RIIXXS ${ }^{\text {displacement }}$		
	ode	Function		

The effective address of the READ DIRECT instruction is used to specify the operation to be performed. In some operations, the contents of the accumulator are used as control or operand information for the specific operation to be performed. Data generated in response to such an operation mayreplace the previous contents of the accumulator. Two status bits, which may be generated as a result of the operation, are recorded in the overflow and carry indicators.

In the internal control mode, bits $8-15$ of the READ DIRECT effective address designate the assigned internal control functions, as shown in Table 3. In this mode, bits $0-7$ of the effective address must be zeros. Therfore, the displacement field (bits 8-15) of the instruction designates the control function if the R, I, X, and S bits of the instruction are all coded as zeros.

With the installation of the optional direct I/O feature, the READ DIRECT instruction may be used to communicate directly with an external device. When this feature is installed, the READ DIRECT instruction presents the 16-bit effective address on a connector and holds it there until it receives an acknowledgment from the device. With the response, the device sends 16 bits of data (which are loaded into the accumulator) as well as two status bits (which are recorded in the overflow and carry indicators).

Affected: determined by Time: Internal control mode operation

(except I/O instructions):

 5 hc1/O instructions and special systems control mode: 6 he plus possible wait caused by delayed response from external unit

Table 3. READ DIRECT Internal Control Functions

Effective address bits								Function
8	9	10	11	12	13	14	15	
0	0	n	n	n	n	n	n	Copy the contents of general (or 1/O channel) register nnnnnn into the accumulator (A).
0	1	0	0	0	0	0	1	SIO
0	1	0	0	0	0	1	0	TIO
0	1	0	0	0	1	0	0	TDV Input/output instructions (see page 25)
0	1	0	0	1	0	0	0	HIO
0	1	0	1	0	0	0	0	AIO
1	1	0	0	0	0	0	0	Save program status in the accumulator (set bit 8 of A equal to the protected program bit, set bit 10 of A equal to the internal inhibit, bit 11 equal to the external interrupt inhibit, bit 14 equal to the overflow indicator, and bit 15 equal to the carry indicator; reset remainder of accumulator to $\mathrm{O}^{\prime} \mathrm{s}$).
1	1	1	0	I	E	0	0	Save program status in the accumulator; then, if bit 12 of the effective address (I) is 1 , reset the internal interrupt inhibit to 0 ; (if I is 0 the internal interrupt inhibit is not affected); if bit 13 of the effective address (E) is 1 , reset the external interrupt inhibit to 0 (if E is 0 , the external interrupt inhibit is not affected).
1	1	1	1	I	E	0	0	Save program status in the accumulator; then, if bit 12 of the effective address (I) is 1 , set the internal interrupt inhibit to 1 (if I is 0 , the internal interrupt inhibit is not affected); if bit 13 of the effective address (\mathbf{E}) is 1 , set the external interrupt inhibit to 1 (if E is 0 , the external interrupt inhibit is not affected).
1	0	0	0	0	0	0	0	Set the bit positions of the accumulator equal to the states of the corresponding DATA switches on the operator control panel.

WD WRITE DIRECT (Privileged, partially optional)

| 0 | $R I X X$ | Displacement |
| :---: | :---: | :---: | :---: |
| Mode | Function | |
| 0 | 23 | 4567189101112131415 |

The effective address of the WRITE DIRECT instruction is used to specify the operation to be performed. For some operations, the contents of the accumulator are used as an operand to be transmitted to a receiving section within the central processor. The overflow and carry indicators are used to record two bits of status that may be generated as a result of the WRITE DIRECT instruction.

In the internal control mode, bits 8 - 15 of the WRITE DIRECT instruction designate the assigned internal control functions, as shown in Table 4. In this mode, bits $0-7$ of the effective address must be zeros. Therefore, the displacement field (bits 8-15) of the instruction designate the control function if the R, I, X, and S bits of the instruction are all coded as zeros.

In the interrupt control mode, the effective address of the instruction is used to provide control of the priority
interrupt system. (See Chapter 2, "Interrupt System Control".)

The WRITE DIRECT instruction may be used to transmit data directly to an external device. In this case, the optional direct I / O feature must be installed. When this feature is added, the 16 -bit effective address and the 16 -bit value in the accumulator are both presented in parallel on a connector and held there until the external device acknowledges. As the external unit acknowledges, it returns two bits of status information, which are recorded in the overflow and carry indicators.

Affected: determined by operation

Time: Internal control mode: 5 hc
Interrupt control mode: 8 hc

Special systems control mode: 6 he plus possible wait caused by delayed response from external unit

Table 4. WRITE DIRECT Internal Control Functions

Effective address bits								Function
8	9	10	11	12	13	14	15	
0	0	n	n	n	n	n	n	Copy the contents of the accumulator (A) into general (or $1 / O$ channel) register nnnnnn.
0	1	n	n	n	n	n	n	Copy bit 0 of general (or I/O channel) register nnnnnn into the overflow indicator and then reset bit 0 of register nnnnnn to 0 .
1	0	0	0	\times	x	\times	x	Copy the contents of the accumulator into protection register $\times x \times x$
1	1	0	0	0	0	0	0	Load program status from the accumulator (i.e., copy bit 8 of the accumulator into the protected program indicator, copy bit 10 of the accumulator into the internal interrupt inhibit, copy bit 11 of A into the external interrupt inhibit, copy bit 14 of A into the overflow indicator, and copy bit 15 of A into the carry indicator).
1	1	0	1	0	0	0	0	Set wait flip-flop to 1 ; this causes the central processor to stop computation. Wait ff is reset to 0 by any interrupt activation (including counter interrupts) or by moving COMPUTE switch to the IDLE position.
1	1	0	1	1	0	0	0	Set exit condition. This effective address configuration prepares the CPU to exit from an interrupt-servicing routine. All normal interrupt levels are inhibited until after the execution of the instruction following WD, which must be a LOAD INDEX (LDX) instruction whose effective address is identical to the address in the interrupt location for that interrupt-servicing routine. In this case, the LDX instruction does not affect index register 1; instead, it loads the PSD from the first two words of the interrupt routine, arms the highest-priority active interrupt level, and resets the exit condition.
1	1	1	0	I	E	0	0	If bit 12 of the effective address (1) is 1 , reset the internal interrupt inhibit to 0 ; (if I is 0 the internal interrupt inhibit is not affected); if bit 13 of the effective address (E) is 1 , reset the external interrupt inhibit to 0 (if E is 0 , the external interrupt inhibit is not affected).
1	1	1	1	I	E	0	0	If bit 12 of the effective address (I) is 1 , set the internal interrupt inhibit to 1 (if I is 0 , the internal interrupt inhibit is not affected); if bit 13 of the effective address (E) is 1 , set the external interrupt inhibit to 1 (if E is 0 , the external interrupt inhibit is not affected).

4. INPUT/OUTPUT OPERATIONS

The SIGMA 2 system utilizes three unique input/output systems. The standard, byte-oriented I/O system includes four byte-oriented I/O channels. This capability may be expanded to a total of 20 channels. The optional external interface system may be used in two ways: to send and receive 16 -bit data, and to generate control signals and sample status conditions. These two independent I/O systems incorporate sufficient flexibility to satisfy the different requirements of general-purpose and real-time environments, yet their inherent simplicity adds to SIGMA 2 system reliability, maintainability, and ease of use. In addition, a direct-to-memory interface is available for special applications.

BYTE-ORIENTED I/O SYSTEM

The SIGMA 2 central processor can operate several byteoriented devices simultaneously. The CPU multiplexes its I/O service among the operating devices in a manner that keeps all devices running concurrently. The central processor has two words of register storage (I/O channel registers) reserved for each operating device. These enable the CPU to indicate the location in memory the transmission is going to or coming from, and what action is to be taken at the conclusion of the operation.

The basic SIGMA 2 central processor contains I/O channel registers for $4 \mathrm{I} / \mathrm{O}$ channels; since 2 registers are required for each channel, $8 \mathrm{I} / \mathrm{O}$ channel registers are standard. Up to 32 additional I/O channel registers may be added to the CPU (in increments of 8) for use with a maximum of $20 \mathrm{I} / \mathrm{O}$ channels.

Once "started" by an SIO instruction, peripheral devices request service asynchronously from the byte I/O system. Each such I/O service request causes the CPU to enter an I/O mode of operation, during which instruction execution ceases. The amount of time taken from computation depends on the particular configuration (cable lengths, priority, etc.) as well as the particular device; this time varies from 4 microseconds for one byte to 10.5 microseconds for four bytes. When the combined I/O rate for all active devices reaches 350,000 to 400,000 bytes/second, the amount of time left for computation is effectively zero.

DEVICE NUMBER

Each peripheral device controller attached to the byte I/O system is assigned an 8-bit device number at installation time. This number is manually selected by switches within each device controller, based on the equipment configuration for the specific installation. The device number not only identifies the particular device (and, if appropriate, the control unit) but also designates which I/O channel controls the device. Devices are generally of two types: those that do not share a control unit with other devices (for example, card readers, card punches, or printers), and
those that do (for example, magnetic tape units or XDS RAD files). A device that does not share its control unit with other devices has a single-unit device controller number associated with it. A device controller that operates more than one device has a block of 16 device numbers assigned to it. The two forms of device numbers are:

Single devices

Multiunit devices

For single devices, the 5 low-order bits of the device number are the I/O channel number. Multiunit devices use a device controller number, specified in bits 9-11, which is also the I/O channel number. Therefore, only channels $0-7$ can accommodate multiunit device controllers (one controller on each channel).

The channel number of a given device determines which I/O channel registers are used to control the transmission to and/ or from the device.
l/O channel registers are numbered from 8 through 47 . The two 1/O channel registers associated with each channel number can be computed with the following formulas:

$$
\begin{aligned}
& \text { first register }=(2 \times \text { channel number })+8 \\
& \text { second register }=(2 \times \text { channel number })+9
\end{aligned}
$$

Thus, devices with device numbers from 0 through 19 use I/O channel registers 8 through 47. (Registers 8 and 9 are for channel 0 , registers 10 and 11 are for channel 1 , and so forth.) The SIGMA 2 system does not include device numbers from 20 through 31. However, devices with device numbers from 32 through 51 may be attached to these same channels and also use I/O channel registers $8-47$ respectively. The same is true for devices with numbers from 64-83 and 96-115. Thus, channels $0-7$ may accomodate four single devices; however, only one such device may operate at a given instant on a given channel.

Each channel in a SIGMA 2 system can have a device operating at the same time; the only limitation is the total data transfer rate of the system (approximately 350, 000 to 400,000 bytes per second).

I/O CONTROL DOUBLEWORDS

During an I/O operation, the I/O channel registers contain an I/O Control Doubleword (IOCD), which has the following format:

Word address	E ${ }_{\text {d }}$	Byte count

The doubleword is contained in the two registers associated with each I/O channel. The even-numbered register contains the word address of the I/O table being operated on. The odd-numbered register contains a count of the number of bytes involved in the I/O operations, as well as three flags. The first bit (E) is an error flag, which is set to 1 if any parity errors are detected on bytes received during an input operation, or if a memory parity error is detected during an output operation. The remaining two bits called the data chaining flag (DC) and the interrupt flag (I), specify actions to be taken by the I/O system when the transmission controlled by the IOCD is completed. A data chaining flag of 0 indicates that no further transmission is required after the current operation. When the byte count is reduced to zero, the device is told (via a signal called "count done") that the operation is over and that it should neither send nor receive more data but should terminate its operation. At the conclusion of an I/O operation, when all data has been transmitted and all checking associated with the data record has been performed, the device generates a "channel end" signal. At the time of channel end, the device transmits a byte of status information, called the operational status byte (explained later), that is loaded into the even-numbered I/O channel register associated with the device, replacing the word address in the IOCD. The device controller may also generate an "unusual end" signal in place of or in conjunction with "channel end". The actions caused in SIGMA 2 are the same as for "channel end", except that the Operational Status Byte (see below) contains different information. "Unusual end" may occur at any time during an I/O operation, and causes termination of all I/O operations for the device controller involved; the data chaining flag is ignored.

During normal operation, if data chaining is specified by the DC flag, then (instead of notifying the device, via the "count done" signal, that no further transmission is to take place when the byte count reaches zero) the $1 / O$ system automatically fetches a new IOCD from the doubleword location immediately following the current I/O table, and loads it into the I/O channel registers in place of the previous IOCD. Data transmission continues as before, but under control of the new IOCD (see Figure 5).

If the interrupt (I) flag is set (1), the SIGMA 2 I/O system will instruct the device controller to generate an interrupt request under the conditions listed below. This will cause an I / O interrupt. The proper program response must include an AIO instruction to determine which device controller is interrupting (with highest priority), and the reason for the interrupt. The two possible reasons are:

1. "Channel end" or "unusual end" is generated in the Operational Status Byte; or
2. The byte count reaches zero and the data chaining flag is set.

OPERATIONAL STATUS BYTE

At the conclusion of the I/O operation, the device transmits the operational status byte to the CPU, which loads the status byte into bit positions $0-7$ of the even-numbered

I/O channel register associated with the device and loads zeros into the remainder of the register. (The loading of the operational status byte occurs even if channel end is signalled in the middle of an I/O table transmission.) The operational status byte contains five flags, as shown in the following diagram.

Bit Function
0^{\dagger} The transmission error (TE) flag is set to 1 if the device or the device controller has detected any errors during the operation. This includes such errors as parity check. on magnetic tape, and the parity check at the end of a RAD sector.
1^{\dagger} The incorrect length (IL) flag indicates whether (1) or not (0) the input or output record contained the number of bytes specified by the controlling IOCD's byte count. Incorrect length may or may not be considered an error, depending on the type of operation performed. For example, during a card read operation, if a byte count of 80 is specified, then the length is correct, because only 80 bytes can be read from the card in the EBCDIC formar. If, however, a count of 75 bytes is specified, the card reader will receive a count done signal before it reaches the end of the card, which causes the incorrect length flag to be set to 1 . Similarly, if the reader detects the end of the card before it receives a count done signal, the incorrect length flag is set to 1.
2^{\dagger} The chaining modifier (CM) flag is set to 1 by some devices to indicate that a special condition has been encountered. For example, the unbuffered card punch requires the output image to be transmitted 12 times, once for each row. After the twelfth row is punched, the punch controller sets the chaining modifier flag to 1 to indicate that the last transmission has been received and that no further transmissions are required for the current card. The chaining modifier may be used in different ways by orher devices.
3 The channel end (CE) flag is set to 1 at the conclusion of every error free I/O operation, to indicate that all data involved in the operation have been transmitted and all checking associated with the data has been performed.

4 The unusual end (UE) flag is set to 1 if the operation terminated because of some unusual condition. The unusual condition may or may not be an erroneous or faulty condition; in any event, it is not a normal termination. For example, a magnetic tape Read operation that encountered an end-of-file record instead of a data record would produce an unusual end condition. A faulty operation such as a card jam in the middle of
${ }^{\dagger}$ These functions are not necessarily implemented in all peripheral device controllers. Refer to peripheral device reference manuals for more complete information.
a card-reading operation would also produce unusual end. If the UE flag is set, the state of the CE flag is not specified.

5-7 These bits are always loaded as zeros.

DEVICE ORDERS

When a device is started for an input/output operation, it first requests an order from the I / O system to determine what operation is to be performed. A device order is a byte transmitted to the device under control of the channel to which the device is attached. The orders that may be accepted by a device are: Write, Read, Read Backward, Control, Sense, and Stop. The code format for each order is shown in the following table. Bit positions marked " M " specify unique modifications that depend on the device to which the order is sent.

Order	Bit position of device order byte							
	0	1	2	3	4	5	6	7
Write	M	M	M	M	M	M	0	1
Read	M	M	M	M	M	M	1	0
Read Backward	M	M	M	M	1	1	0	0
Control	M	M	M	M	M	M	1	1
Sense	M	M	M	M	0	1	0	0
Stop	I	0	0	0	0	0	0	0

The device orders operate in the following manner:

1. Write. The Write order causes the device controller to initiate an output operation. The controller makes output requests to the I/O system and bytes are transmitted from memory, under control of the IOCD, to the device. The output operation normally continues until no further data chaining is to take place and the byte count of the last IOCD is reduced to zero. At this time, the channel signals count done and the device generates channel end. Channel end occurs when the device has received all information associated with the output operation, has generated all checking information, and (if possible) has performed all post-write checking. It is possible for some devices to generate channel end before count done is received.
2. Read. The Read order causes the device to initiate an input operation. Bytes are transmitted by the device, then stored in memory under control of the IOCD. The input operation continues until the device generates channel end or until the byte count is reduced to zero and count done is signalled to the device. In either case, the operation is eventually terminated by a channel end signal when all checking has been performed on the input record.
3. Read Backward. The Read Backward order can be executed only by certain peripheral devices. The Read Backward order causes the device that can execute it
to startoperation in a backward direction and to transmit bytes; however, the record appears in memory in reverse sequence from the way it was originaly written.
4. Control. The Control order is used to initiate special operations by the device. For some operations, the Control order itself may be sufficient to specify the entire operation to be performed. With magnetic tape operations, for example, the Control order initiates such operations as rewind, backspace record, backspace file, space record, etc. These orders can all be specified by the modifier (M) bits of the Control order. If, however, the controller requires additional information for a particular operation, it is provided by the same IOCD that controls the transmission of the Control order. When all data necessary for the operation have been transmitted (and, in some cases when the operation itself is complete), the device controller signals channel end.
5. Sense. The Sense order causes the device to transmit one or more bytes of information describing its current operational status. These bytes are stored in memory under control of the IOCD. The type of status information that may be transmifted is a function of each individual device.
6. Stop. The Stop order (interpreted by some devices) causes a device to terminate its operation immediately. The I modifier bit (in position 0 of the Stop order) indictates that the device is to trigger the I/O interrupt level at the time it receives the Stop order. Bit positions 1, 2, and 3 of the Stop order are ignored.

I/O TABLES

All I/O operations are performed to or from an I/O table, which may be in any arbitrary region of memory. An I/O table consists of two or three parts, depending on the type of operation to be performed. The IOCD controlling the first I/O table must be loaded into the $1 / O$ channel registers by the program. A specific configuration of the WRITE DIRECT instruction is used to transfer information from the accumulator to the I/O channel registers (see Chapter 3, "Direct Control Instructions").

The first 1/O table always contains an order byte in the first word of the table. If an even number of data bytes is to be transmitted for a given operation, then the order byte must appear in bit positions $8-15$ of the first word of the table (in which case bits 0-7 are ignored). If an odd number of bytes is involved in the operation, the order byte must appear in bit positions $0-7$ of the first word, and the first data byte in bit positions 8-15. In either case, the data bytes follow the order byte, as shown in Figure 5. The byte count in the first IOCD includes the order byte and all the data in the first I / O table. The data portion of an I/O table is always present for a data transmission operation, but may be absent for an operation initiated by a Control or Stop order.

Note that the interrupt bit should always be set (as shown) if an I/O inferrupt is desired in the event of unusual end.

In the example shown in Figure 5, an interrupt will occur when data chaining occurs. A TIO instruction will establish that the controller is still busy, and hence the interrupt is known to signal data chaining (zero byte count) rather than unusual end or channel end.

Figure 5. I/O Control Doublewords and I/O Tables

If data chaining is called for, then the I/O table is followed immediately by a second IOCD that specifies a new starting address, new byte count, and new data chaining and interrupt flags. The bytes of the second IOCD are not included in the byte count of the first IOCD. All I/O tables after the first begin with data and do not include an order byte. They may begin in the left-or right-hand byte positions, depending on whether the table contains an even or odd number of bytes, respectively. If data chaining is to take place again, then the second I / O table is assumed to be followed immediately by a new IOCD.

DEVICE INTERRUPTS

All device controllers (and in the case of multiunit devices, the devices themselves) can generate a device interrupt. Each device remembers that it has generated an interrupt so that when the instruction ACKNOWLEDGE I/O INTERRUPT (AIO) is executed, the device with the highest priority identifies itself to the program. Device interrupts are generated by the device at the time of data chaining or at
unusual end or channel end if the interrupt (I) flag in the controlling IOCD is set to 1. The interrupt flat is inspected by the I/O system at channel end time, unusual end time, and at data chaining time.

In addition to these normal times for interrupts, some devices can accept a Control order (or even a Read or Write order) that directs the device to interrupt after the transmission operation is completed. This type of interrupt generally occurs at device end (that time during the operation of the device when all mechanical motion associated with a previously initiated operation has been completed). For example, a magnetic tape unit can be directed (with a Control order) to rewind and to interrupt when the rewind is complete. The order is accepted and channel end is generated immediately after the rewind operation begins. The device remembers the necessity to interrupt and, when the load point is encountered, the tape stops, and device end occurs; at this time the device generates an interrupt (and holds the interrupt-pending status until it is acknowledged). In this case, the magnetic tape control unit may be busy controlling the operation of another device for a read or write function. The pending device interrupt is a status condition that can be read by I / O instructions.

I/O INSTRUCTIONS

The CPU initiates and controls $1 / O$ operations using five instructions:

- Start Input/Output (SIO)
- Test Input/Output (TIO)
- Test Device (TDV)
- Halt Input/Output (HIO)
- Acknowledge I/O Interrupt (AIO)

These instructions are internal control functions of the READ DIRECT instruction. All instructions except AIO require a device number in bit positions 8 - 15 of the accumulator when the instruction is executed.

SIO START INPUT/OUTPUT

SIO is used to initiate an input or output operation with the device selected by the device number contained in bit positions 8-15 of the accumulator. If a device recognizes the number, it returns its device status byte into positions 0-7 of the accumulator.

The overflow and carry indicators are set or reset, according to the result of the instruction, as follows:

O	C
0	0
0	1
1	1

Affected: $(\mathrm{A})_{0-7}, \mathrm{O}, \mathrm{C}$
$\frac{\text { Significance }}{\text { I/O address recognized and SIO accepted }}$
I/O address recognized and SIO accepted
I/O address recognized but SIO not accepted
I/O address not recognized
Time: 6 he plus wait for device response

1	0	4	2
0	123	56	6

TIO causes the device whose device number is in bit positions $8-15$ of the accumulator to make the same responses it would make to an SIO instruction, except that the device is not started nor is its state altered. If a device recognizes the device number, it returns its device status byte to positions $0-7$ of the accumulator.

The overflow and carry indicators are set or reset, according to the result of the instruction, as follows:

O	C	$\frac{\text { Significance }}{0}$
0	0	I/O address recognized and SIO can be accepted
0	1	I/O address recognized but SIO can not be aceepted
1	1	I/O address not recognized

Time: 6 he plus wait for device response

TDV TEST DEVICE

TDV is used to obtain specific information about the device whose device number is contained in bit positions $8-15$ of the accumulator. If a device recognizes the device number, it returns its device status byte to positions 0-7 of the accumulator.

The overflow and carry indicators are set or reset, according to the result of the instruction, as follows:

$\frac{O}{0}$	$\frac{C}{}$	$\frac{\text { Significance }}{}$
0	0	I/O address recognized
0	1	I/O address recognized and device-dependent condition is present
1	1	I/O address not recognized

Affected: (A) ${ }_{0-7}, O, C \quad$ Time: $\begin{aligned} & 6 \text { hc plus wait for } \\ & \text { device response }\end{aligned}$
HIO HALT INPUT/OUTPUT

1	0	4	8

HIO causes the device whose device number is in bit positions 8-15 of the accumulator to stop its current operation immediately. The HIO instruction may cause the device to terminate improperly. In the case of magnetic tape units, for example, the device is forced to stop whether it has reached an inter-record gap or not. A pending interrupt within the device will be reset. If a device recognizes the device number, it returns its device status byte to positions $0-7$ of the accumulator.

The overflow and carry indicators are set or reset, according to the result of the instruction, as follows:

O	$\frac{C}{}$	Significance
0	0	I/O address recognized and the device con- troller is not "busy".
0	1	I/O address recognized and the device con- troller was "busy" at the time of the halt
1	1	I/O address not recognized

Affected: (A) $0-\mathrm{O}, \mathrm{C} \quad$ Time: 6 he plus wait for
device response

AlO ACKNOWLEDGE $1 / O$ INTERRUPT

AIO is used to acknowledge an interrupt generated by an I/O device. It causes the highest-priority device to identify itself and return not only status, but its device number. If any devices have interrupts pending, the highest-priority device clears its pending interrupt and returns its status (which is loaded into positions 0-7 of the accumulator) and its device number (which is loaded into positions 8-15).

The overflow and carry indicators are set or reset, according to the result of the instruction as follows:

O	C	Significance
0	0	Normal interrupt recognition
0	1	Unusual interrupt recognition
1	1	No interrupt recognition

Affected: (A), O, C Time: 6 he plus wait for device response

DEVICE STATUS BYTE

As the result of executing an I/O instruction, if there is a device whose number corresponds to the number in the accumulator, its Device Status Byte is loaded into positions 0-7 of the accumulator. (The device number in bits $8-15$ is not altered.)

The AIO instruction does not require the device number, since one of its functions is to obtain the number of the device that triggered the I/O interrupt level.

The overflow and carry indicators are set to record the nature of the response to all I / O instructions. The I / O status loaded into the accumulator by the $1 / O$ instructions is summarized in Table 5.

For the instructions SIO, TIO, and HIO the status indicators have the following meaning:

Device Interrupt Pending. Bit 0 indicates whether (if it is a 1) or not (if it is a 0) the device has generated an interrupt signal that has not yet been acknowledged. A new $1 / O$ operation cannot be initiated on this device until the pending interrupt signal has been acknowledged by means of an AIO instruction.

Device Condition. ${ }^{\dagger}$ Bits 1 and 2 describe which of four possible conditions the device is currently in. The device conditions are:

00 Device ready. The device can accept and act upon an SIO instruction if no device interrupt is pending.

01 Device not operational. A nonoperational device does not accept an SIO instruction. It requires operator intervention before any action can be taken with regard to its operation.

10 Device unavailable.
11 Device busy. The device has accepted an SIO instruction and has not yet concluded the operation.

Device Mode. Bit 3, the mode status indicator, is a 1 if the operator has cleared the device for operation and has actuated the START switch, placing the device in the "automatic" mode. If the mode status indicator is a 0 , the device is in the "manual" mode and requires operator intervention before it can operate. A ready device in the "manual" mode can accept an SIO instruction even though it cannot begin to operate until it is placed in the "automatic" mode. Some devices are "permanently" in the automatic mode.

Unusual End Termination. Bit 4 is set to 1 if the previous operation on this device resulted in an unusual end; otherwise, bit 4 is reset to 0 .

[^1]Device Controller Condition. Bits 5 and 6 describe which of four possible conditions the device controller is currently in. These conditions are identical in meaning to the device conditions. The controller need not be in the same condition as the device, in the case of a multi-unit device controller. The device controller conditions are:

00 Device controller ready. If the controller is ready and the device is ready, an SIO instruction can be accepted.

01 Device controller not operational.
10 Device controller unavailable.
11 Device controller busy. The controller and the device connected to it (or one of the devices connected to it) have accepted an SIO instruction and the I/O operation thus initiated has not terminated.

Note that, in addition to the Device Status Byte in positions $0-7$, the instruction AIO also causes the device number to be loaded into positions 8-15 of the accumulator.

EXTERNAL INTERFACE SYSTEM

With the incorporation of the optional External Interface System, the READ DIRECT and WRITE DIRECT instructions can be used to communicate with special system devices. WRITE DIRECT can be used to transmit a control signal, along with 16 data bits, to a device. Similarly, READ DIRECT can be used to transmit a control signal and then accept 16 data bits from the external unit. Both instructions can be used to obtain a 2-bit status response from the device.

When the External Interface Feature is installed, the WRITE DIRECT instruction can set up the 16 control lines plus the 16 data lines; these remain stable until an acknowledgment
signal is received from the device. A delay by the device in responding to WRITE DIRECT does not have any adverse effect on the operation of the byte-oriented I/O system.
The READ DIRECT instruction operates in a similar fashion. The 16 control lines are held stable and the device responds with its acknowledge signal and 16 data bits. The interface is sometimes referred to as the Direct Input/Output (DIO) interface. XDS publication 900973 (Interface Design Manual) describes this interface in detail.

DIRECT-TO-MEMORY INTERFACE

With the addition of external memeory and the two-way access feature, another SIGMA 2 CPU or specially designed
external devices may directly access core memory without CPU intervention. The Direct-to-Memory Interface consists of 16 address lines, 16 time-shared bidirectional data lines, a parity bit, and various control signals. External devices may make memory requests at any time. If the CPU is not utilizing the same memory at the time of the external request, the request may be executed in 900 nanoseconds (total cycle time for read/restore). This is an $1 / O$ rate of greater than $1,000,000$ 16-bit words per second for each independent external memory bank, of which there may be a total of four.

For a detailed description of this interface, see the XDS Interface Design Manual.

5. OPERATOR CONTROLS

CONTROL PANEL

The operator control panel contains the controls and indicators necessary to display the current status of the computer, to change that status, and to make changes or insertions into registers and memory. Certain maintenance functions are also provided on the control panel, as shown in Figure 6.

POWER

The POWER switch is a push-on/push-off indicating switch, which controls primary $A C$ power to the system. When power is applied, the indicator is lighted. Protect violations are inhibited while power-on (or power-off) interrupts are waiting or active, to allow initial loading of the protect registers.

PHASE

The PHASE indicators display the phases of instruction executions, I/O operation, and control panel operations.

The PHASE indicator identified with "W" is lighted whenever the computer is in a "wait" condition as the result of a WRITE DIRECT instruction with an effective address of $X^{\prime} 00 D 0$ '. The PHASE indicator identified with "I/O" is lighted whenever the computer is in the I/O mode of operation. The PHASE indicators identified with "8". "4", "2", and " 1 " are primarily for use by maintenance personnel.

PROTECT PROGR

The PROTECT PROGR indicator displays the current state of the protected program (PP) bit, which is bit 8 of the program status doubleword. The PROTECT PROGR indicator is lighted only if the protected program bit is set to 1 . If the memory protection option is not installed, the protected program bit is always reset to 0 .

INTERRUPT INHIBIT

The INTERRUPT INHIBIT indicators display the current states of the interrupt inhibits. The INT indicator is lighted only if the internal interrupt (II) inhibit (bit 10 of the program status doubleword) is set to 1 . The EXT indicator is lighted only if the external interrupt (EI) inhibit (bit 11 of the program status doubleword) is set to 1 .

O'FLOW

The O'FLOW indicator displays the current state of bit 14 of the program status doubleword; the indicator is lighted only if bit 14 of the program status doubleword is set to 1 .

CARRY

The CARRY indicator displays the current state of bit 15 (C) of the program status doubleword; the indicator is lighted only if bit 15 of the program status doubleword is set to 1 .

Figure 6. SIGMA 2 Processor Control Panel

PROTECT

The two PARITY ERROR switches are both2-position switches that are latching in both positions. When the right switch is in the IGNORE position, all memory parity errors are ignored by the central processor. When the right switch is in the NORMAL position and the left switch is in the HALT position, the central processor performs the following actions whenever a parity error is detected during the fetching of an instruction, a direct address (in the case of indirect addressing), or an operand:

1. aborts execution of the current instruction
2. enters a "halt" phase, with the program address (P) register containing the address of the instruction which was in process, and the address of the location in which the error was found displayed. No other display can be selected until the parity halt is cleared.
3. turns the PARITY ERROR indicator on

In order to proceed from a memory parity halt condition, the operator must move the COMPUTE switch from the RUN to the IDLE position and move the INITIALIZE switch to the RESET position, or move the right PARITY ERROR switch to the IGNORE position (in which case program execution will immediately be resumed).

Note: Refer to the description of the INITIALIZE switch for the additional effects of the RESET position of the INITIALIZE switch.

In either action, the memory parity halt condition is cleared and the MEMORY PARITY indicator is turned off.

When the right PARITY ERROR switch is in the NORMAL position, the left switch is in the INTERRUPT position, and the memory parity error interrupt option is installed, the central processor performs the following actions whenever a memory parity error is detected:

1. aborts execution of the current instruction
2. enters "wait" phase, with the program address (P) register pointing to the aborted instruction
3. triggers the memory parity interrupt level
4. ignores any subsequent memory parity errors as long as the memory parity interrupt level is in the active state

If the memory parity error interrupt option is not installed and a memory parity error is detected while the PARITY ERROR switches are in the INTERRUPT/NORMAL positions, the central processor performs the following actions when a memory parity error is detected:

1. aborts execution of the current instruction
2. enters "wait" phase, with the program address (P) register pointing to the aborted instruction. The wait phase is terminated by an interrupt becoming active, or by moving the COMPUTE switch to the IDLE position.

The PROTECT switch controls the operation of the memory protection option. The protection system is operative only if the option is installed and the PROTECT switch is in the ON position (latching). If the PROTECT switch is in the OFF position (latching), the protection system is inoperative. The PROTECT switch does not affect the operation of the computer in any way if the protection option is not installed.

PROG ADD

The PROG ADD (program address) switch has two latching positions: HOLD and NORMAL. When the switch is in the HOLD position, the central processor does not increment the contents of the program address (P) register when an instruction is executed. When the switch is in the NORMAL position, the central processor increments the contents of the P register by 1 as each instruction is executed.

KEY-OPERATED SWITCH

The key-operated, 3-position locking switch can be moved from one position to the other only when the appropriate key is inserted. When the switch is in the unlocked position, all other switches on the control panel are operative. However, when the switch is in either the PROTECT ON or the PROTECT OFF position, the central processor ignores the physical positions of certain switches and, instead, operates as if the switches were in specific positions. The affected switches and the ir "locked" positions are:

Switch	Locked State
PARITY ERROR	INTERRUPT/NORMAL
PROG ADD	NORMAL
COMPUTE	RUN

When the key-operated switch is in the PROTECT ON position, the PROTECT switch is locked into the ON position; when the key-operated switch is in the PROTECT OFF position, the PROTECT switch is locked into the OFF position.

DISPL_AY

The DISPLAY indicators are used to display the contents of the register selected by the SELECT switch.

DATA

The DATA switches are 2-position switches that are latching in the 1 and 0 positions. These switches are used to alter the contents of the register selected by the SELECT switch, when used in conjunction with the ENTER position of the REGISTER switch. Also, the state of the DATA switches can be read into the accumulator (A register), under program control, with a specific configuration of the READ DIRECT instruction.

SELECT

The SELECT switch is used to select the register to be displayed in the DISPLAY indicators. This switch is operative only when the key-operated switch is in the UNLOCKED position and the COMPUTE switch is in the IDLE position. The registers that can be displayed are:

E Extended accumulator (general register 6)
A Accumulator (general register 7)
S Memory address register
D Memory data register
P Program address (general register 1)
L Link address (general register 2)
T Temporary storage (general register 3)
X1 Index 1 (general register 4)
X2 Index 2 (general register 5)

REGISTER

The REGISTER switch is used to alter the contents of the register selected by the SELECT switch. This switch is operative only if the key-operated switch is in the UNLOCKED position and the COMPUTE switch is in the IDLE position. When the REGISTER switch is moved to the CLEAR position (nonlatching), the register selected by the SELECT switch is cleared (reset to all 0^{\prime} s). When the REGISTER switch is moved to the ENTER position (nonlatching), the central processor performs a logical inclusive $O R$ between the state of the DATA switches and the contents of the selected register and loads the result into the selected register. The DISPLAY indicators reflect the changed contents of the selected register.

MEMORY

The MEMORY switch is used to store the contents of the D register in core memory and to load the D register from a location in core memory. This switch is operative only when the key-operated switch is in the UNLOCKED position and the COMPUTE switch is in the IDLE position. When the MEMORY switch is placed in the STORE position (nonlatching), the current contents of the D register are stored in the memory location whose address is currently in the S register. When the switch is placed in the FETCH position, the contents of the memory location (whose address is currently in the S register) are loaded into the D register, and the contents of S are transferred to P.

INTERRUPT/INCREMENT ADDRESS

To the right of the MEMORY switch is a dual-functionswitch that has two nonlatching positions: INTERRUPT and INCREMENT ADDRESS. When the switch is placed in the INTERRUPT position, the control panel interrupt level is triggered. If the interrupt level is armed (but not active) when it is triggered, it advances to the waiting state and cannot be triggered again until the level is cleared by the control panel interrupt-servicing routine. The INTERRUPT function is
always operative. The central processor performs the following operations each time the switch is placed in the INCREMENT ADDRESS position (nonlatching):

1. increments the current contents of the S register by 1 and loads the result back into the S and P registers
2. loads the contents of the memory location (whose address is equal to the new value in the S register) into the D register

The INCREMENT ADDRESS function is operative only when the key-operated switch is in the UNLOCKED position and the COMPUTE switch is in the IDLE position.

INITIALIZE

The INITIALIZE switch is used for initial central processor set-up, for subsequent reset operations, and for loading programs into core memory. This switch is operative only when the key-operated switch is in the UNLOCKED position and the COMPUTE switch is in the IDLE position. When the switch is placed in the RESET position (nonlatching), the central processor enters an initialized condition, which is defined by the following:

1. the PROTECT PROGR indicator, if operative, is turned on (set to 1)
2. the INHIBITS, O'FLOW, CARRY, and PARITY ERROR indicators are all turned off (reset to 0)
3. the S register is reset to 0
4. all interrupt levels are reset to the disarmed, disabled state (except for the override group of interrupt levels, if any are installed, which are reset to inactive).
5. all device controllers and all $1 / O$ status indicators are reset to the "ready" condition

The LOAD position of the INITIALIZE switch is used to load an initial program into core memory (see "Initial Loading Procedure").

COMPUTE

The COMPUTE switch controls instruction execution. The switch has two latching positions (RUN and IDLE) and a nonlatching position (STEP). When the switch is in the IDLE position, the central processor neither executes instructions nor performs any input/output operations; however, all other control panel switches are operative. When the COMPUTE switch is placed in the RUN position the central processor starts executing instructions. The contents of the D register are taken as the first instruction to be executed.

Subsequent instructions are accessed from core memory, under control of the program address (P) register. When the COMPUTE switch is in the RUN position (or the keyoperated switch is in either the PROTECT ON or the PROTECT OFF position), the following control panel switches are inoperative: SELECT, REGISTER, MEMORY, INCREMENT ADDRESS function, INITIALIZE, and COMPUTE.

If the COMPUTE switch is in the RUN position when the central processor executes a WRITE DIRECT instruction with an effective address of $X^{\prime} O O D O^{\prime}$, it enters a "wait" condition, in which case the Pregister contains the address of the next instruction in sequence. If an interrupt level advances to the active state while the central processor is in the "wait" condition, the condition is cleared, the interrupt-servicing routine is executed, and then instruction execution continues with the next instruction in sequence. The "wait" condition is also cleared when the COMPUTE switch is placed in the IDLE position (with the key-operated switch in the UNLOCKED position).

The central processor performs the following operations each time the COMPUTE switch is moved from the IDLE to the STEP position:

1. execute the instruction currently in the D register
2. if the instruction in D was not a Branch instruction, increment the value in the P register by 1 , so that it points to the instruction to be executed after the new instruction in the D register
3. access the next instruction from the location whose address is now in the P register (or from the effective address of the instruction in the D register, if the instruction causes a branch)

When the COMPUTE switch is moved to IDLE, P and S contain the address of the next instruction to be executed, which is displayed in D.

INITIAL LOADING PROCEDURE

The operator may cause an initial loading operation to be performed by the CPU in order to set up a new program in the machine. To do so, the operator performs the following actions:

1. Move the key-operated switch to UNLOCKED and the PROTECT switch to OFF.
2. Move the COMPUTE switch to IDLE. This action stops the computer from further execution of instructions.
3. Actuate the RESET position of the INITIALIZE switch. This action clears all internal CPU indicators, stops all peripheral devices, and causes devices such as mass memories or disc files to clear their starting address registers to zero.
4. Actuate the LOAD position of the INITIALIZE switch. This action clears the accumulator, and the program address register. In addition, a load condition indicator is set within the computer and an SIO instruction is set up in the D register.
5. Select the A register with the SELECT switch, set DATA switches $8-15$ to the number of the device from which the initial program is to be loaded, and then move the REGISTER switch to the ENTER position.
6. Move the COMPUTE switch to RUN. This action causes the computer to execute the SIO instruction in the D register and then enter the "wait" condition. The P and S registers are cleared. This SIO uses bits $8-15$ of the accumulator (general register A) as the device number, and then loads the $1 / O$ status information into the accumulator. No memory reference is made to fetch an order from an I/O table; instead, the central processor generates a read order ($\mathrm{X}^{\prime} 02$ ') and an input/output control doubleword (IOCD) of the form X'0000 0080' which specifies location 0 as a starting address and a byte count of $\mathrm{X}^{\prime} 80^{\prime}$ (128 bytes).
7. Wait for the first record to be read from the selected input device. While the operator waits for the irst record to be loaded, the following action takes place:

The device selected by the device number in the accumulator has started and has received its first order, which is a Read order. The device then transmits the initial record, which is stored in core memory beginning at location 0 and continuing through location $X^{\prime} 3 F^{\prime}$ (a total of 64 words, if the first record on the selected device is that long). When the first record has been read, the device generates channel end and stops. No data chaining occurs and the I/O interrupt level is not triggered; however, the operational status byte is loaded into the even-numbered I/O channel register associated with the device number and bit 0 of the oddnumbered $1 / O$ channel register is set to 1 if a parity error occurred during the input operation. When the operator observes the input device stop, he may then proceed to step 8.
8. Move the COMPUTE switch to IDLE and then back to RUN for execution of the loaded program, beginning with location 0 . From this point on, the computer is under control of the program just loaded into memory.

This appendix contains the following reference material:

Title	Page
XDS Standard Symbols and Codes	33
Standard 8-Bit Computer Codes (EBCDIC)	34
XDS Standard 7-Bit Communication Codes (USASCII)	34
XDS Standard Symbol-Code Correspondences	35
Hexadecimal Arithmetic	39
\quadAddition Table \quad Multiplication Table \quad Table of Powers of Sixteen 10 \quad Table of Powers of Ten 16	39
Hexadecimal-Decimal Integer Conversion Table	41
Hexadecimal-Decimal Fraction Conversion Table	47
Table of Powers of Two	40
Mathematical Constants	40

XDS STANDARD SYMBOLS AND CODES

The symbol and code standards described in this publication are applicable to all XDS products, both hardware and software. They may be expanded or altered from time to time to meet changing requirements.

The symbols listed here include two types: graphic symbols and control characters. Graphic symbols are displayable and printable; control characters are not. Hybrids are SP, the symbol for a blank space, and DEL, the delete code which is not considered a control command.

Three types of code are shown: (1) the 8-bit XDS Standard Computer Code, i.e., the XDS Extended Binary-CodedDecimal Interchange Code (EBCDIC); (2) the 7-bit United States of America Standard Code for Information Interchange (USASCII); and (3) the XDS standard card code.

XDS STANDARD CHARACTER SETS

1. EBCDIC

57-character set: uppercase letters, numerals, space, and \& - / . < > () + $1 \$ *: ;, \%$ \# @ 1 =

63-character set: same as above plus $\notin!$ " 7

89-character set: same as 63-character set plus lowercase letters
2. USASCII

95-character set: same as above plus lowercase letters and $\}: \sim$

CONTROL CODES

In addition to the standard character sets listed above, the XDS symbol repertoire includes 37 control codes and the hybrid code DEL (hybrid code SP is considered part of all character sets). These are listed in the table titled XDS Standard Symbol-Cade Correspondences.

SPECIAL CODE PROPERTIES

The following two properties of all XDS standard codes will be retained for future standard code extensions:

1. All control codes, and only the control codes, have their two high-order bits equal to "00". DEL is not considered a control code.
2. No two graphic EBCDIC codes have their seven loworder bits equal.

NOTES:
1 The characters ~ $\backslash\}$ [] are USASCII characters that do not appear in any of the XDSEBCDIC-based character sets, though they are shown in the EBCDIC toble.

2 The characters $\ell \mid$ appear in the XDS 63- and 89-character EBCDIC sets but not in either of the XDS USASCII-based sets, However, XDS software translates the characters $\varepsilon \mid \neg$ into USASCII characters as fallows:

EBCDIC	=	UASCII
¢		- (6-0)
\|		\| (7-12)
\sim		$\sim(7-14)$

3 The EBCDIC control codes in columns 0 and 1 and their binary representation are exactly the same as those in the USASCII table, except for two interchanges: LF/NL with NAK, ond HT with ENQ.

4 Characters enclosed in heavy lines are included only in the XDS standard 63and 89 -character EBCDIC sets.

5 These characters are included only in the XDS standard 89 -character EBCDIC set.

XDS STANDARD 7-BIT COMMUNICATION CODES (USASCII)

			Most Significant Digits							
	$\begin{array}{\|ll\|} \hline \text { Decimal } \\ \text { (rows) } & \left(\text { col's. }_{3}\right) \rightarrow \end{array}$		0	1	2	3	4	5	6	7
	\downarrow	Binary	$\times 000$	$\times 001$	$\times 010$	$\times 011$	$\times 100$	$\times 101$	$\times 110$	$\times 111$
苟	0	0000	NUL	DL.E	SP	0	@	P	,	P
	1	0001	SOH	DC1	1^{5}	1	A	Q	0	9
	2	0010	STX	DC2	${ }^{11}$	2	B	R	b	r
	3	0011	ETX	DC3	\#	3	C	S	c	5
	4	0100	EOT	DC4	\$	4	D	T	d	t
	5	0107	ENQ	NAK	\%	5	E	u	0	u
	6	0110	ACK	SYN	\&	6	F	V	f	\checkmark
	7	0111	BEL	ETB	1	7	G	w	9	w
	8	1000	BS	CAN	$($	8	H	X	h	\times
	9	1001	HT	EM)	9	I	Y	i	y
	10	1010	$\begin{aligned} & \mathrm{LF} \\ & \mathrm{NL} \end{aligned}$	SS	*	;	J	Z	j	z
	11	1011	VT	ESC	+	;	K	[5	k	1
	12	1100	FF	FS	,	$<$	L	\backslash	1	1
	13	1101	CR	GS	-	=	M	$]^{5}$	m	$\}$
	14	1110	50	RS	-	>	N	4-5	n	~ 4
	15	1111	SI	US	/	$?$	\bigcirc	- ${ }^{4}$	\bigcirc	DEL

NOTES:
1 Most significant bit, added for 8-bit format, is either 0 or an odd-parity bit for the remaining 7 bits.

2 Columns 0 - 1 are control codes.
3 Columns 2-5 correspond to the XDS 64-character USASCII set.
Columns 2-7 correspond to the XDS95-character USASCIl set.
4 On many current teletypes, the symbol

\sim	is	\dagger	$(5-14)$
\sim	is	-	$(5-15)$
\sim	is	ESC or ALTMODE control (7-14)	

and none of the symbols appearing in columns 6-7 are provided. Except for the three symbol differences noted above, therefore, such teletypes provide all the characters in the XDS 64 -character USASCII set. (The XDS 7015 Remote Keyboard Printer provides the 64 -character USASCII set also, but prints ${ }^{\sim}$ as \AA.)

5 On the XDS 7670 Remote Batch Terminal, the symbal

$!$	is	\mid	$(2-1)$
$[$	is	6	$(5-11)$
$]$	is	1	$(5-13)$
	is	\rightarrow	$(5-14)$

and none of the symbols appearing in calumns 6-7 are provided. Except for the four symbol differences noted above, therefore, this terminal provides an the characters in the XDS64character USASCII set.

XDS STANDARD SYMBOL-CODE CORRESPONDENCES

EBCDIC ${ }^{\dagger}$	Symbol	Card Code	USASCII ${ }^{+\dagger}$	Meaning	Remarks
00	NUL	12-0-9-8-1	0-0	null	00 through 23 and 2 F are control codes.
01	SOH	12-9-1	0-1	start of header	
02	STX	12-9-2	0-2	start of text	
03	ETX	12-9-3	0-3	end of text	
04	EOT	12-9-4	0-4	end of transmission	
05	HT	12-9-5	0-9	horizontal tab	
06	ACK	12-9-6	0-6	acknowledge (positive)	
07	BEL	12-9-7	0-7	bell	
08	BS or EOM	12-9-8	0-8	backspace or end of message	EOM is used only on XDS Keyboard/
09	ENQ	12-9-8-1	0-5	enquiry	Printers Models 7012, 7020, 8091,
OA	NAK	12-9-8-2	1-5	negative acknowledge	and 8092 .
OB	VT	12-9-8-3	0-11	vertical tab	
OC	FF	12-9-8-4	0-12	form feed	
OD	CR	12-9-8-5	0-13	carriage return	
OE	SO	12-9-8-6	0-14	shift out	
OF	SI	12-9-8-7	0-15	shift in	
10	DLE	12-11-9-8-1	1-0	data link escape	
11	DC1	11-9-1	1-1	device control 1	
12	DC2	11-9-2	1-2	device control 2	
13	DC3	11-9-3	1-3	device control 3	
14	DC4	11-9-4	1-4	device control 4	
15	LF or NL	11-9-5	0-10	line feed or new line	
16	SYN	11-9-6	1-6	sync	
17	ETB	11-9-7	1-7	end of transmission block	
18	CAN	11-9-8	1-8	cancel	
19	EM	11-9-8-1	1-9	end of medium	
1 A	SS	11-9-8-2	1-10	start of special sequence	
1 B	ESC	11-9-8-3	1-11	escape	
1 C	FS	11-9-8-4	1-12	file separator	
1 D	GS	11-9-8-5	1-13	group separator	
1 E	RS	11-9-8-6	1-14	record separator	
1 F	US	11-9-8-7	1-15	unit separator	
20	ds	11-0-9-8-1		digit selector	20 through 23 are used with
21	ss	0-9-1		significance start	SIGMA 7 EDIT BYTE STRING
22	fs	0-9-2		field separation	(EBS) instruction - not input/
23	si	0-9-3		immediate significance start	output control codes.
24		0-9-4			24 through 2 E are unassigned
25		0-9-5			
26		0-9-6			
27		0-9-7			
28		0-9-8			
29 29		$0-9-8-1$ $0-9-8-2$			
2 B		0-9-8-3			
2 C		0-9-8-4			
2 D		0-9-8-5			
2 E		$0-9-8-6$			
2F	PE	0-9-8-7		parity error	If parity checking is requested.
30		12-11-0-9-8-1			30 through 3 F are unassigned.
31		9-1			
32		9-2			
33		9-3			
34		9-4			
35		9-5			
36		9-6			
37		9-7			
38		9-8			
39		9-8-1			
3A		9-8-2			
3 B		9-8-3		.	
3 C		9-8-4			
3D		9-8-5			
3 E		9-8-6			
3 F		9-8-7			
${ }^{\dagger}$ Hexadecimal notation.					
${ }^{\text {tt }}$ Decimal notation (column-row).					

XDS STANDARD SYMBOL-CODE CORRESPONDENCES (cont.)

EBCDIC ${ }^{\dagger}$	Symbol	Card Code	USASCII ${ }^{\text {t+ }}$	Meanirg	Remarks
40	SP	blank	2-0	blank	
41		12-0-9-1			41 through 49 will not be assigned.
42		12-0-9-2			
43		12-0-9-3			
44		12-0-9-4			
45		12-0-9-5			
46		12-0-9-6			
47		12-0-9-7			
48		12-0-9-8			
49		12-8-1			
4A	for ${ }^{\text {a }}$	12-8-2	6-0	cent or occent grave	Accent grave used for left single
4 B	.	12-8-3	2-14	period	quote. On model 7670, ' not
4 C	$<$	12-8-4	3-12	less than	available, and $\phi=$ USASCII 5-11.
4 D	(12-8-5	2-8	left parenthesis	
4 E	+ 1	12-8-6	2-11	plus	
4F	1 or 1	12-8-7	7-12	vertical bar or broken bar	On Model 7670, and $1=$ ASASCII 2-1.
50	\&	12	2-6	ampersand	
51		12-11-9-1			51 through 59 will not be assigned.
52		12-11-9-2			
53		12-11-9-3			
54		12-11-9-4			
55		12-11-9-5			
56		12-11-9-6			
57		12-11-9-7			
58		12-11-9-8			
59		11-8-1			
5 A	$!$	11-8-2	2-1	exclamation paint	On Model 7670, 1 is 1.
5B	S	11-8-3	2-4	dollars	
5 C	*	11-8-4	2-10	asterisk	
5 D)	11-8-5	2-9	right parenthesis	
5E	;	11-8-6	3-11	semicolon	
5F	\sim or $ᄀ$	11-8-7	7-14	tilde or logical not	On Model 7670, ~is not available, and $\rightarrow=$ USASCII 5-14.
60	-	11		minus, dash, hyphen	
61	/	0-1	$2-15$	slash	
62		11-0-9-2			62 through 69 will not be assigned.
63		11-0-9-3			
64		11-0-9-4			
65		11-0-9-5			
66		11-0-9-6			
67		11-0-9-7			
68		11-0-9-8			
69		0-8-1			
6A	\sim	12-11	5-14	circumflex	On Model $7670{ }^{\text {- is }}$, On Model
6 B		0-8-3	2-12	comma	$7015{ }^{\text {^ is } \wedge \text { (caret). }}$
6 C	\%	0-8-4	2-5	percent	
60	,	0-8-5	5-15	underline	Underline is sometimes called "breck
6 E	$>$	0-8-6	3-14	greater than	character"; may be printed along
6 F	?	0-8-7	3-15	question mark	bottom of character line.
70		12-11-0			70 through 79 will not be ossigned.
71		12-11-0-9-1			
72		12-11-0-9-2			
73		12-11-0-9-3			
74		12-11-0-9-4			
75		12-11-0-9-5			
76		12-11-0-9-6			
77		12-11-0-9-7			
78		12-11-0-9-8			
79		8-1			
7A	:	8-2	3-10	colon	
7B	\#	8-3	2-3	number	
7 C	a	8-4	4-0	at	
7 D	1	8-5	2-7	apostrophe (right single quote)	
7 F	$=$	8-6	3-13	equals	
7F	"	8-7	2-2	quotation mark	
${ }^{\dagger}$ Hexadecimal notation ${ }^{\dagger \dagger}$ Decimal notation (column-row).					

XDS STANDARD SYMBOL-CODE CORRESPONDENCES (cont.)

EBCDIC ${ }^{\dagger}$	Symbol	Card Code	USASCII ${ }^{\text {t+ }}$	Meaning	Remarks
80		12-0-8-1			80 is unassigned.
81	a	12-0-1	6-1		81-89, 91-99, A2-A9 comprise the
82	b	12-0-2	6-2		lowercase alphabet. Available
83	c	12-0-3	6-3		only in XDS standard 89- and 95-
84	d	12-0-4	6-4		character sets.
85	e	12-0-5	6-5		
86	f	12-0-6	6-6		
87	g	12-0-7	6-7		
88	h	12-0-8	6-8		
89	i	12-0-9	6-9		
8A		12-0-8-2			8 A through 90 are unassigned.
${ }^{8 B}$		12-0-8-3			
8C		12-0-8-4			
8D		12-0-8-5			
8E		12-0-8-6			
8F		12-0-8-7			
90		12-11-8-1			
91	j	12-11-1	6-10		
92	k	12-11-2	6-11		
93	1	12-11-3	6-12		
94	m	12-11-4	6-13		
95	n	12-11-5	6-14		
96	-	12-11-6	$6-15$		
97	p	12-11-7	7-0		
98	q	12-11-8	7-1		
99	r	12-11-9	7-2		
9A		12-11-8-2			9 A through Al are unassigned.
9B		12-11-8-3			
9 C		12-11-8-4			
9 D		12-11-8-5			
9E		12-11-8-6			
9 F		12-11-8-7			
A0		11-0-8-1			
A1		11-0-1			
A2	s	11-0-2	7-3		
A3	\dagger	11-0-3	7-4		
A4	u	11-0-4	7-5		
A5	v	11-0-5	7-6		
A6	w	11-0-6	7-7		
A7	\times	11-0-7	7-8		
A8	y	11-0-8	7-9		
A9	z	11-0-9	7-10		
AA		11-0-8-2			AA through $B 0$ are unassigned.
AB		11-0-8-3			
$A C$		11-0-8-4			
AD		11-0-8-5			
$A E$		11-0-8-6			
AF		11-0-8-7			
B0		12-11-0-8-1			
BI	1	12-11-0-1	5-12	backslash	
B2	,	12-11-0-2	7-11	left brace	
B3	$\}$	12-11-0-3	7-13	right brace	
B4	-	12-11-0-4	5-11	left brocker	On Model 7670, [is ϕ.
B5]	12-11-0-5	5-13	right bracket	On Model 7670,] is!.
B6		$\begin{aligned} & 12-11-0-6 \\ & 12-11-0-7 \end{aligned}$			
B8		12-11-0-8			
89		12-11-0-9			
BA		12-11-0-8-2			
BB		12-11-0-8-3			
BC		12-11-0-8-4			
BD		12-11-0-8-5			
BE		12-11-0-8-6			
BF		12-11-0-8-7			
${ }^{\dagger}$ Hexadecimal notation. ${ }^{\text {tt }}$ Decimal notation (column-row).					

XDS STANDARD SYMBOL-CODE CORRESPONDENCES (cont.)

EBCDIC ${ }^{\text { }}$	Symbol	Card Code	USASCII ${ }^{\text {t+ }}$	Meaning	Remarks
co		12-0			CO is unassigned.
Cl	A	12-1	4-1		C1-C9, D1-D9, E2-E9 comprise the
C2	B	12-2	4-2		uppercase alphabet.
C3	C	12-3	4-3		
C4	D	12-4	4-4		
C5	E	12-5	4-5		
C6	F	12-6	4-6		
C7	G	12-7	4-7		
C8	H	12-8	4-8		
C9	1	12-9	4-9		
CA		12-0-9-8-2			CA through CF will not be assigned.
CB		12-0-9-8-3			
CC		12-0-9-8-4			
CD		12-0-9-8-5			
CE		12-0-9-8-6			
D0		11-0			D0 is unassigned.
D1	」	11-1	4-10		
D2	K	11-2	4-11		
D3	L	11-3	4-12		
D4	M	11-4	4-13		
D5	N	11-5	4-14		
D6	\bigcirc	11-6	4-15		
D7	P	11-7	5-0		
D8	Q	11-8	5-1		
D9	R	11-9	5-2		
DA		$\begin{aligned} & 12-11-9-8-2 \\ & 12-11-9-8-3 \end{aligned}$			DA through DF will not be assigned.
DC		12-11-9-8-4			
DD		12-11-9-8-5			
DE		12-11-9-8-6			
DF		12-11-9-8-7			
EO		0-8-2	11-0-9-1		EO, E1 are unassigned.
E1		11-0-9-1			
E2	s	0-2	5-3		
E3	T	0-3	5-4		
E4	U	0-4	5-5		
E5	v	0-5	5-6		
E6	w \times	0.6 $0-7$	5-7		
E7 E8	Y	$0-7$ $0-8$	$5-8$ $5-9$		
E9	z	0-9	5-10		
EA		11-0-9-8-2			EA through EF will not be assigned.
EB		11-0-9-8-3			
EC		11-0-9-8-4			
ED		11-0-9-8-5			
EE		11-0-9-8-6			
EF		11-0-9-8-7			
Fo	0	0	3-0		
FI	1	1	3-1		
F2	2	2	3-2		
F3	3	3	3-3		
F4	4	4	3-4		
F5	5	5	3-5		
F6	6	6	3-6		
F7	7	7	3-7		
F8	8	8	3-8		
F9	9	9	3-9		
FA		12-11-0-9-8-2			FA through FE will not be assigned.
FB		12-11-0-9-8-3			
FC FD		$12-11-0-9-8-4$			
FD FE		12-11-0-9-8-5			
FF	DEL	12-11-0-9-8-7		delete	
					trol symbol.
${ }^{\dagger}$ Hexadecimal notation. ${ }^{\text {tt }}$ Decimal notation (column-row).					

ADDITION TABLE

0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
1	02	03	04	05	06	07	08	09	OA	OB	0 C	OD	OE	OF	10
2	03	04	05	06	07	08	09	OA	OB	$0 C$	OD	OE	OF	10	11
3	04	05	06	07	08	09	OA	OB	$0 C$	OD	OE	OF	10	11	12
4	05	06	07	08	09	OA	OB	$0 C$	OD	OE	OF	10	11	12	13
5	06	07	08	09	0A	OB	0 C	OD	OE	OF	10	11	12	13	14
6	07	08	09	OA	OB	$0 C$	OD	OE	OF	10	11	12	13	14	15
7	08	09	OA	OB	0 C	OD	OE	OF	10	11	12	13	14	15	16
8	09	OA	OB	0	OD	OE	OF	10	11	12	13	14	15	16	17
9	OA	OB	OC	OD	OE	OF	10	11	12	13	14	15	16	17	18
A	OB	0 C	OD	OE	OF	10	11	12	13	14	15	16	17	18	19
B	0 C	OD	OE	OF	10	11	12	13	14	15	16	17	18	19	1A
C	OD	OE	OF	10	11	12	13	14	15	16	17	18	19	1A	1B
D	OE	OF	10	11	12	13	14	15	16	17	18	19	1A	1B	1C
E	OF	10	11	12	13	14	15	16	17	18	19	1A	1B	1 C	1D
F	10	11	12	13	14	15	16	17	18	19	1A	1B	1 C	1D	1E

MULTIPLICATION TABLE

1	2	3	4	5	6	7	8	9	A	B	c	D	E	F
2	04	06	08	OA	0 C	OE	10	12	14	16	18	1A	1 C	IE
3	06	09	OC	OF	12	15	18	1B	IE	21	24	27	2A	2 D
4	08	0 C	10	14	18	1 C	20	24	28	2 C	30	34	38	3 C
5	OA	OF	14	19	1E	23	28	2D	32	37	3 C	41	46	4 B
6	0 C	12	18	IE	24	2A	30	36	3 C	42	48	4E	54	5A
7	OE	15	1 C	23	2A	31	38	3 F	46	4D	54	5B	62	69
8	10	18	20	28	30	38	40	48	50	58	60	68	70	78
9	12	1B	24	2D	36	3F	48	51	5A	63	6 C	75	7E	87
A	14	1E	28	32	3 C	46	50	5A	64	6 E	78	82	8C	96
B	16	21	2 C	37	42	4D	58	63	6 E	79	84	8 F	9A	A5
C	18	24	30	3 C	48	54	60	6C	78	84	90	9 C	A8	B4
D	1A	27	34	41	4E	5B	68	75	82	8F	90	A9	B6	C3
E	1 C	2A	38	46	54	62	70	7E	8 C	9A	A8	B6	C4	D2
F	1E	2D	3 C	4B	5A	69	78	87	96	A5	B4	C3	D2	E1

TABLE OF POWERS OF SIXTEEN 10

					16^{n}	n			16^{-n}			
					1	0	0.10000	00000	00000	00000	x	10
					16	1	0.62500	00000	00000	00000	\times	10^{-1}
					256	2	0.39062	50000	00000	00000	\times	10^{-2}
				4	096	3	0.24414	06250	00000	00000	\times	10^{-3}
				65	536	4	0.15258	78906	25000	00000	\times	10^{-4}
			1	048	576	5	0.95367	43164	06250	00000	\times	10^{-6}
			16	777	216	6	0.59604	64477	53906	25000	\times	10^{-7}
			268	435	456	7	0.37252	90298	46191	40625	\times	10^{-8}
		4	294	967	296	8	0.23283	06436	53869	62891	\times	10^{-9}
		68	719	476	736	9	0.14551	91522	83668	51807	x	10^{-10}
	1	099	511	627	776	10	0.90949	47017	72928	23792	\times	10^{-12}
	17	592	186	044	416	11	0.56843	41886	08080	14870	\times	10^{-13}
	281	474	976	710	656	12	0.35527	13678	80050	09294	\times	10^{-14}
4	503	599	627	370	496	13	0.22204	46049	25031	30808	\times	10^{-15}
72	057	594	037	927	936	14	0.13877	78780	78144	56755	x	10^{-16}
1152	921	504	606	846	976	15	0.86736	17379	88403	54721	\times	10^{-18}

TABLE OF POWERS OF TEN

			10^{n}	n			10^{-n}			
			1	0	1.0000	0000	0000	0000		
			A	1	0.1999	9999	9999	999 A		
			64	2	0.28 F 5	C28F	5C28	F5C3	\times	16^{-1}
			3E 8	3	0.4189	374 B	C6A7	EF9E	\times	16^{-2}
			2710	4	0.68 DB	8 BAC	710 C	B 296	x	16^{-3}
		1	86 A0	5	$0 . A 7$ C5	AC47	$1 \mathrm{B47}$	8423	\times	16^{-4}
		F	4240	6	0.10 C 6	F7 A0	B 5ED	8 D37	\times	16^{-4}
		98	9680	7	0.1 AD7	F29A	BCAF	4858	\times	16^{-5}
		5F5	E 100	8	0.2 AF 3	1 DC4	6118	73 BF	\times	16^{-6}
		3B9A	CA00	9	0.44 B 8	2 FAO	9B5A	52 CC	x	16^{-7}
	2	540 B	E 400	10	0.6 DF 3	7F67	5EF6	E ADF	x	16^{-8}
	17	4876	E800	11	$0 . A F E B$	FFOB	CB 24	AAF F	\times	16^{-9}
	E 8	D4A5	1000	12	0.1197	9981	2 DEA	1119	x	16^{-9}
	918	4E72	A000	13	$0.1 C 25$	C268	4976	8162	\times	16^{-10}
	5 AF 3	107A	4000	14	0.2 D09	3700	4257	3604	\times	16^{-11}
3	8D7E	A4C6	8000	15	0.480 E	BE7B	9 D58	566 D	\times	16^{-12}
23	86F2	6 FCl	0000	16	0.734 A	CA5 F	6226	F0AE	\times	16^{-13}
163	4578	5 D 8 A	0000	17	$0 . \mathrm{B} 877$	AA32	36 A4	B449	\times	16^{-14}
DE 0	B6B3	A764	0000	18	0.1272	5 DDI	D243	ABA1	\times	16^{-14}
$8 \mathrm{AC7}$	2304	89E8	0000	19	0.1 D8 3	C9 4 F	B6D2	AC35	\times	16^{-15}

HEXADECIMAL-DECIMAL INTEGER CONVERSION TABLE

The table below provides for direct conversions between hexadecimal integers in the range 0 -FFF and decimal integers in the range 0-4095. For conversion of larger integers, the table values may be added to the following figures:

HEXADECIMAL - DECIMAL INTEGER CONVERSION TABLE (cont.)

	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
100	0256	0257	0258	0259	0260	0261	0262	0263	0264	0265	0266	0267	0268	0269	0270	0271
110	0272	0273	0274	0275	0276	0277	0278	0279	0280	0281	0282	0283	0284	0285	0286	0287
120	0288	0289	0290	0291	0292	0293	0294	0295	0296	0297	0298	0299	0300	0301	0302	0303
130	0304	0305	0306	0307	0308	0309	0310	0311	0312	0313	0314	0315	0316	0317	0318	0319
140	0320	0321	0322	0323	0324	0325	0326	0327	0328	0329	0330	0331	0332	0333	0334	0.335
150	0336	0337	0338	0339	0340	0341	0342	0343	0344	0345	0346	0347	0348	0349	0350	0.351
160	0352	0353	0354	0355	0356	0357	0358	0359	0360	0361	0362	0363	0364	0365	0366	0367
170	0368	0369	0370	0371	0372	0373	0374	0375	0376	0377	0378	0379	0380	0381	0382	0383
180	0384	0385	0386	0387	0388	0389	0390	0391	0392	0393	0394	0395	0396	0397	0398	0399
190	0400	0401	0402	0403	0404	0405	0406	0407	0408	0409	0410	0411	0412	0413	0414	0415
140	0416	0417	0418	0419	0420	0421	0422	0423	0424	0425	0426	0427	0428	0429	0430	0431
1B0	0432	0433	0434	0435	0436	0437	0438	0439	0440	0441	0442	0443	0444	0445	0446	0.447
1 CO	0448	0449	0450	0451	0452	0453	0454	0455	0456	0457	0458	0459	0460	0461	0462	0463
1 100	0464	0465	0466	0467	0468	0469	0470	0471	0472	0473	0474	0475	0476	0477	0478	0479
1E0	0480	0481	0482	0483	0484	0485	0486	0487	0488	0489	0490	0491	0492	0493	0494	0495
IFO	0496	0497	0498	0499	0500	0501	0502	0503	0504	0505	0506	0507	0508	0509	0510	0511
200	0512	0513	0514	0515	0516	0517	0518	0519	0520	0521	0522	0523	0524	0525	0526	0527
210	0528	0529	0530	0531	0532	0533	0534	0535	0536	0537	0538	0539	0540	0541	0542	0543
220	0544	0545	0546	0547	0548	0549	0550	0551	0552	0553	0554	0555	0556	0557	0558	0559
230	0560	0561	0562	0563	0564	0565	0566	0567	0568	0569	0570	0571	0572	0573	0574	0.575
240	0576	0577	0578	0579	0580	0581	0582	0583	0584	0585	0586	0587	0588	0589	0590	0591
250	0592	0593	0594	0595	0596	0597	0598	0599	0600	0601	0602	0603	0604	0605	0606	0607
260	0608	0609	0610	0611	0612	0613	0614	0615	0616	0617	0618	0619	0620	0621	0622	0623
270	0624	0625	0626	0627	0628	0629	0630	0631	0632	0633	0634	0635	0636	0637	0638	0639
280	0640	0641	0642	0643	0644	0645	0646	0647	0648	0649	0650	0651	0652	0653	0654	0655
290	0656	0657	0658	0659	0660	0661	0662	0663	0664	0665	0666	0667	0668	0669	0670	0671
2A0	0672	0673	0674	0675	0676	0677	0678	0679	0680	0681	0682	0683	0684	0685	0686	0687
2B0	0688	0689	0690	0691	0692	0693	0694	0695	0696	0697	0698	0699	0700	0701	0702	0703
2 Co	0704	0705	0706	0707	0708	0709	0710	0711	0712	0713	0714	0715	0716	0717	0718	0719
2D0	0720	0721	0722	0723	0724	0725	0726	0727	0728	0729	0730	0731	0732	0733	0734	0735
2E0	0736	0737	0738	0739	0740	0741	0742	0743	0744	0745	0746	0747	0748	0749	0750	0751
2F0	0752	0753	0754	0755	0756	0757	0758	0759	0760	0761	0762	0763	0764	0765	0766	0767
300	0768	0769	0770	0771	0772	0773	0774	0775	0776	0777	0778	0779	0780	0781	0782	0783
310	0784	0785	0786	0787	0788	0789	0790	0791	0792	0793	0794	0795	0796	0797	0798	0799
320	0800	0801	0802	0803	0804	0805	0806	0807	0808	0809	0810	0811	0812	0813	0814	0815
330	0816	0817	0818	0819	0820	0821	0822	0823	0824	0825	0826	0827	0828	0829	0830	0831
340	0832	0833	0834	0835	0836	0837	0838	0839	0840	0841	0842	0843	0844	0845	0846	0847
350	0848	0849	0850	0851	0852	0853	0854	0855	0856	0857	0858	0859	0860	0861	0862	0863
360	0864	0865	0866	0867	0868	0869	0870	0871	0872	0873	0874	0875	0876	0877	0878	0879
370	0880	0881	0882	0883	0884	0885	0886	0887	0888	0889	0890	0891	0892	0893	0894	0895
380	0896	0897	0898	0899	0900	0901	0902	0903	0904	0905	0906	0907	0908	0909	0910	0911
390	0912	0913	0914	0915	0916	0917	0918	0919	0920	0921	0922	0923	0924	0925	0926	0927
3A0	0928	0929	0930	0931	0932	0933	0934	0935	0936	0937	0938	0939	0940	0941	0942	0943
3B0	0944	0945	0946	0947	0948	0949	0950	0951	0952	0953	0954	0955	0956	0957	0958	0959
3C0	0960	0961	0962	0963	0964	0965	0966	0967	0968	0969	0970	0971	0972	0973	0974	0975
3D0	0976	0977	0978	0979	0980	0981	0982	0983	0984	0985	0986	0987	0988	0989	0990	0991
3E0	0992	0993	0994	0995	0996	0997	0998	0999	1000	1001	1002	1003	1004	1005	1006	1007
3 F 0	1008	1009	1010	1011	1012	1013	1014	1015	1016	1017	1018	1019	1020	1021	1022	1023

	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
400	1024	1025	1026	1027	1028	1029	1030	1031	1032	1033	1034	1035	1036	1037	1038	1039
410	1040	1041	1042	1043	1044	1045	1046	1047	1048	1049	1050	1051	1052	1053	1054	1055
420	1056	1057	1058	1059	1060	1061	1062	1063	1064	1065	1066	1067	1068	1069	1070	1071
430	1072	1073	1074	1075	1076	1077	1078	1079	1080	1081	1082	1083	1084	1085	1086	1087
440	1088	1089	1090	1091	1092	1093	1094	1095	1096	1097	1098	1099	1100	1101	1102	1103
450	1104	1105	1106	1107	1108	1109	1110	1111	1112	1113	1114	1115	1116	1117	1118	1119
460	1120	1121	1122	1123	1124	1125	1126	1127	1128	1129	1130	1131	1132	1133	1134	1135
470	1136	1137	1138	1139	1140	1141	1142	1143	1144	1145	1146	1147	1148	1149	1150	1151
480	1152	1153	1154	1155	1156	1157	1158	1159	1160	1161	1162	1163	1164	1165	1166	1167
490	1168	1169	1170	1171	1172	1173	1174	1175	1176	1177	1178	1179	1180	1181	1182	1183
4A0	1184	1185	1186	1187	1188	1189	1190	1191	1192	1193	1194	1195	1196	1197	1198	1199
4B0	1200	1201	1202	1203	1204	1205	1206	1207	1208	1209	1210	1211	1212	1213	1214	1215
4C0	1216	1217	1218	1219	1220	1221	1222	1223	1224	1225	1226	1227	1228	1229	1230	1231
4D0	1232	1233	1234	1235	1236	1237	1238	1239	1240	1241	1242	1243	1244	1245	1246	1247
4E0	1248	1249	1250	1251	1252	1253	1254	1255	1256	1257	1258	1259	1260	1261	1262	1263
4F0	1264	1265	1266	1267	1268	1269	1270	1271	1272	1273	1274	1275	1276	1277	1278	1279
500	1280	1281	1282	1283	1284	1285	1286	1287	1288	1289	1290	1291	1292	1293	1294	1295
510	1296	1297	1298	1299	1300	1301	1302	1303	1304	1305	1306	1307	1308	1309	1310	1311
520	1312	1313	1314	1315	1316	1317	1318	1319	1320	1321	1322	1323	1324	1325	1326	1327
530	1328	1329	1330	1331	1332	1333	1334	1335	1336	1337	1338	1339	1340	1341	1342	1343
540	1344	1345	1346	1347	1348	1349	1350	1351	1352	1353	1354	1355	1356	1357	1358	1359
550	1360	1361	1362	1363	1364	1365	1366	1367	1368	1369	1370	1371	1372	1373	1374	1375
560	1376	1377	1378	1379	1380	1381	1382	1383	1384	1385	1386	1387	1388	1389	1390	1391
570	1392	1393	1394	1395	1396	1397	1398	1399	1400	1401	1402	1403	1404	1405	1406	1407
580	1408	1409	1410	1411	1412	1413	1414	1415	1416	1417	1418	1419	1420	1421	1422	1423
590	1424	1425	1426	1427	1428	1429	1430	1431	1432	1433	1434	1435	1436	1437	1438	1439
5A0	1440	1441	1442	1443	1444	1445	1446	1447	1448	1449	1450	1451	1452	1453	1454	1455
5B0	1456	1457	1458	1459	1460	1461	1462	1463	1464	1465	1466	1467	1468	1469	1470	1471
5C0	1472	1473	1474	1475	1476	1477	1478	1479	1480	1481	1482	1483	1484	1485	1486	1487
5D0	1488	1489	1490	1491	1492	1493	1494	1495	1496	1497	1498	1499	1500	1501	1502	1503
5E0	1504	1505	1506	1507	1508	1509	1510	1511	1512	1513	1514	1515	1516	1517	1518	1519
5F0	1520	1521	1522	1523	1524	1525	1526	1527	1528	1529	1530	1531	1532	1533	1534	1535
600	1536	1537	1538	1539	1540	1541	1542	1543	1544	1545	1546	1547	1548	1549	1550	1551
610	1552	1553	1554	1555	1556	1557	1558	1559	1560	1561	1562	1563	1564	1565	1566	1567
620	1568	1569	1570	1571	1572	1573	1574	1575	1576	1577	1578	1579	1580	1581	1582	1583
630	1584	1585	1586	1587	1588	1589	1590	1591	1592	1593	1594	1595	1596	1597	1598	1599
640	1600	1601	1602	1603	1604	1605	1606	1607	1608	1609	1610	1611	1612	1613	1614	1615
650	1616	1617	1618	1619	1620	1621	1622	1623	1624	1625	1626	1627	1628	1629	1630	1631
660	1632	1633	1634	1635	1636	1637	1638	1639	1640	1641	1642	1643	1644	1645	1646	1647
670	1648	1649	1650	1651	1652	1653	1654	1655	1656	1657	1658	1659	1660	1661	1662	1663
680	1664	1665	1666	1667	1668	1669	1670	1671	1672	1673	1674	1675	1676	1677	1678	1679
690	1680	1681	1682	1683	1684	1685	1686	1687	1688	1689	1690	1691	1692	1693	1694	1695
6A0	1696	1697	1698	1699	1700	1701	1702	1703	1704	1705	1706	1707	1708	1709	1710	1711
6B0	1712	1713	1714	1715	1716	1717	1718	1719	1720	1721	1722	1723	1724	1725	1726	1727
6 CO	1728	1729	1730	1731	1732	1733	1734	1735	1736	1737	1738	1739	1740	1741	1742	1743
6D0	1744	1745	1746	1747	1748	1749	1750	1751	1752	1753	1754	1755	1756	1757	1758	1759
6 E0	1760	1761	1762	1763	1764	1765	1766	1767	1768	1769	1770	1771	1772	1773	1774	1775
6 F 0	1776	1777	1778	1779	1780	1781	1782	1783	1784	1785	1786	1787	1788	1789	1790	1791

	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
700	1792	1793	1794	1795	1796	1797	1798	1799	1800	1801	1802	1803	1804	1805	1806	1807
710	1808	1809	1810	1811	1812	1813	1814	1815	1816	1817	1818	1819	1820	1821	1822	1823
720	1824	1825	1826	1827	1828	1829	1830	1831	1832	1833	1834	1835	1836	1837	1838	1839
730	1840	1841	1842	1843	1844	1845	1846	1847	1848	1849	1850	1851	1852	1853	1854	1855
740	1856	1857	1858	1859	1860	1861	1862	1863	1864	1865	1866	1867	1868	1869	1870	1871
750	1872	1873	1874	1875	1876	1877	1878	1879	1880	1881	1882	1883	1884	1885	1886	1887
760	1888	1889	1890	1891	1892	1893	1894	1895	1896	1897	1898	1899	1900	1901	1902	1903
770	1904	1905	1906	1907	1908	1909	1910	1911	1912	1913	1914	1915	1916	1917	1918	1919
780	1920	1921	1922	1923	1924	1925	1926	1927	1928	1929	1930	1931	1932	1933	1934	1935
790	1936	1937	1938	1939	1940	1941	1942	1943	1944	1945	1946	1947	1948	1949	1950	1951
7A0	1952	1953	1954	1955	1956	1957	1958	1959	1960	1961	1962	1963	1964	1965	1966	1967
7B0	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983
7 CO	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
700	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
7E0	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031
7F0	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041	2042	2043	2044	2045	2046	2047
800	2048	2049	2050	2051	2052	2053	2054	2055	2056	2057	2058	2059	2060	2061	2062	2063
810	2064	2065	2066	2067	2068	2069	2070	2071	2072	2073	2074	2075	2076	2077	2078	2079
820	2080	2081	2082	2083	2084	2085	2086	2087	2088	2089	2090	2091	2092	2093	2094	2095
830	2096	2097	2098	2099	2100	2101	2102	2103	2104	2105	2106	2107	2108	2109	2110	2111
840	2112	2113	2114	2115	2116	2117	2118	2119	2120	2121	2122	2123	2124	2125	2126	2127
850	2128	2129	2130	2131	2132	2133	2134	2135	2136	2137	2138	2139	2140	2141	2142	2143
860	2144	2145	2146	2147	2148	2149	2150	2151	2152	2153	2154	2155	2156	2157	2158	2159
870	2160	2161	2162	2163	2164	2165	2166	2167	2168	2169	2170	2171	2172	2173	2174	2175
880	2176	2177	2178	2179	2180	2181	2182	2183	2184	2185	2186	2187	2188	2189	2190	2191
890	2192	2193	2194	2195	2196	2197	2198	2199	2200	2201	2202	2203	2204	2205	2206	2207
8A0	2208	2209	2210	2211	2212	2213	2214	2215	2216	2217	2218	2219	2220	2221	2222	2223
8B0	2224	2225	2226	2227	2228	2229	2230	2231	2232	2233	2234	2235	2236	2237	2238	2239
8C0	2240	2241	2242	2243	2244	2245	2246	2247	2248	2249	2250	2251	2252	2253	2254	2255
800	2256	2257	2258	2259	2260	2261	2262	2263	2264	2265	2266	2267	2268	2269	2270	2271
8E0	2272	2273	2274	2275	2276	2277	2278	2279	2280	2281	2282	2283	2284	2285	2286	2287
8F0	2288	2289	2290	2291	2292	2293	2294	2295	2296	2297	2298	2299	2300	2301	2302	2303
900	2304	2305	2306	2307	2308	2309	2310	2311	2312	2313	2314	2315	2316	2317	2318	2319
910	2320	2321	2322	2323	2324	2325	2326	2327	2328	2329	2330	2331	2332	2333	2334	2335
920	2336	2337	2338	2339	2340	2341	2342	2343	2344	2345	2346	2347	2348	2349	2350	2351
930	2352	2353	2354	2355	2356	2357	2358	2359	2360	2361	2362	2363	2364	2365	2366	2367
940	2368	2369	2370	2371	2372	2373	2374	2375	2376	2377	2378	2379	2380	2381	2382	2383
950	2384	2385	2386	2387	2388	2389	2390	2391	2392	2393	2394	2395	2396	2397	2398	2399
960	2400	2401	2402	2403	2404	2405	2406	2407	2408	2409	2410	2411	2412	2413	2414	2415
970	2416	2417	2418	2419	2420	2421	2422	2423	2424	2425	2426	2427	2428	2429	2430	2431
980	2432	2433	2434	2435	2436	2437	2438	2439	2440	2441	2442	2443	2444	2445	2446	2447
990	2448	2449	2450	2451	2452	2453	2454	2455	2456	2457	2458	2459	2460	2461	2462	2463
9 A 0	2464	2465	2466	2467	2468	2469	2470	2471	2472	2473	2474	2475	2476	2477	2478	2479
980	2480	2481	2482	2483	2484	2485	2486	2487	2488	2489	2490	2491	2492	2493	2494	2495
9 CO	2496	2497	2498	2499	2500	2501	2502	2503	2504	2505	2506	2507	2508	2509	2510	2511
900	2512	2513	2514	2515	2516	2517	2518	2519	2520	2521	2522	2523	2524	2525	2526	2527
9E0	2528	2529	2530	2531	2532	2533	2534	2535	2536	2537	2538	2539	2540	2541	2542	2543
9F0	2544	2545	2546	2547	2548	2549	2550	2551	2552	2553	2554	2555	2556	2557	2558	2559

	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
A00	256	2561	2562	2563	2564	2565	2566	2567	2568	256	2570	2571	2572	2573	2574	2575
A10	2576	2577	2578	2579	2580	2581	2582	2583	2584	2585	2586	2587	2588	2589	2590	2591
A20	2592	2593	2594	2595	2596	2597	2598	2599	2600	2601	2602	2603	2604	2605	2606	2607
A30	2608	2609	2610	2611	2612	2613	2614	2615	2616	2617	2618	2619	2620	2621	2622	2623
A40	2624	2625	2626	2627	2628	2629	2630	2631	2632	2633	2634	2635	2636	2637	2638	263
A50	2640	2641	2642	2643	2644	2645	2646	2647	2648	2649	2650	2651	2652	2653	2654	265
A60	2656	2657	2658	2659	2660	2661	2662	2663	2664	2665	2666	2667	2668	2669	2670	2671
A70	2672	2673	2674	2675	2676	2677	2678	2679	2680	2681	2682	2683	2684	2685	268	268
A80	2688	2689	2690	2691	2692	2693	2694	2695	2696	2697	2698	2699	2700	2701	2702	2703
A90	2704	2705	2706	2707	2708	2709	2710	271	2712	2713	2714	2715	2716	2717	2718	2719
AAO	2720	2721	2722	2723	2724	2725	2726	2727	2728	2729	2730	2731	2732	2733	273	2735
ABO	2736	2737	2738	2739	2740	2741	2742	2743	2744	2745	2746	2747	2748	2749	2750	2751
AC0	2752	2753	2754	2755	2756	2757	2758	2759	2760	2761	2762	2763	2764	2765	276	2767
AD0	2768	2769	2770	2771	2772	2773	2774	2775	2776	2777	2778	2779	2780	2781	2782	2783
AEO	2784	2785	2786	2787	2788	2789	2790	2791	2792	2793	2794	2795	2796	2797	2798	2799
AF0	2800	2801	2802	2803	2804	2805	2806	2807	2808	2809	2810	2811	2812	2813	2814	2815
B00	2816	2817	2818	2819	2820	2821	2822	2823	2824	2825	2826	2827	2828	2829	2830	2831
B10	2832	2833	2834	2835	2836	2837	2838	2839	2840	2841	2842	2843	2844	2845	284	2847
B20	2848	2849	2850	2851	2852	2853	2854	2855	2856	2857	2858	2859	2860	2861	2862	2863
B30	2864	2865	2866	2867	2868	2869	2870	2871	2872	2873	2874	2875	2876	2877	2878	2879
340	2880	2881	2882	2883	2884	2885	2886	2887	2888	2889	2890	2891	2892	2893	2894	2895
B50	2896	2897	2898	2899	2900	2901	2902	2903	2904	2905	2906	2907	2908	2909	2910	2911
B60	2912	2913	2914	2915	2916	2917	2918	2919	2920	2921	2922	2923	2924	2925	292	2927
B70	2928	2929	2930	2931	2932	2933	2934	2935	2936	2937	2938	2939	2940	2941	2942	2943
B80	2944	2945	2946	2947	2948	2949	2950	2951	2952	2953	2954	2955	2956	2957	2958	2959
B90	2960	2961	2962	2963	2964	2965	2966	2967	2968	2969	2970	2971	2972	2973	2974	2975
BAO	2976	2977	2978	2979	2980	2981	2982	2983	2984	2985	2986	2987	2988	2989	299	299
BB0	2992	2993	2994	2995	2996	2997	2998	2999	3000	3001	3002	3003	3004	3005	3006	3007
BC0	3008	3009	3010	3011	3012	3013	3014	3015	3016	3017	3018	3019	3020	3021	3022	3023
BDO	3024	3025	3026	3027	3028	3029	3030	3031	3032	3033	3034	3035	3036	3037	303	3039
BEO	3040	3041	3042	3043	3044	3045	3046	3047	3048	3049	3050	3051	3052	3053	305	3055
BFO	3056	3057	3058	3059	3060	3061	3062	3063	3064	3065	3066	3067	3068	3069	3070	307
C00	3072	3073	3074	3075	3076	3077	3078	3079	3080	3081	3082	3083	3084	3085	3086	3087
C10	3088	3089	3090	3091	3092	3093	3094	3095	3096	3097	3098	3099	3100	3101	3102	3103
C20	3104	3105	3106	3107	3108	3109	3110	3111	3112	3113	3114	3115	3116	3117	3118	3119
C30	3120	3121	3122	3123	3124	3125	3126	3127	3128	3129	3130	3131	3132	3133	3134	313
C40	3136	3137	3138	3139	3140	3141	3142	3143	3144	3145	3146	3147	3148	3149	3150	3151
C50	3152	3153	3154	3155	3156	3157	3158	3159	3160	3161	3162	3163	3164	3165	3166	3167
C60	3168	3169	3170	3171	3172	3173	3174	3175	3176	3177	3178	3179	3180	3181	3182	3183
C70	3184	3185	3186	3187	3188	3189	3190	3191	3192	3193	3194	3195	3196	3197	3198	3199
C80	3200	3201	3202	3203	3204	3205	3206	3207	3208	3209	3210	3211	3212	3213	3214	3215
C90	3216	3217	3218	3219	3220	3221	3222	3223	3224	3225	3226	3227	3228	3229	3230	3231
CAO	3232	3233	3234	3235	3236	3237	3238	3239	3240	3241	3242	3243	3244	3245	3246	3247
CB0	3248	3249	3250	3251	3252	3253	3254	3255	3256	3257	3258	3259	3260	3261	3262	3263
CCO	3264	3265	3266	3267	3268	3269	3270	3271	3272	3273	3274	3275	3276	3277	3278	3279
CDO	3280	3281	3282	3283	3284	3285	3286	3287	3288	3289	3290	3291	3292	3293	3294	3295
CEO	3296	3297	3298	3299	3300	3301	3302	3303	3304	3305	3306	3307	3309	3309	3310	3311
CFO	331	331	3314	3315	3316	331	3318	3319	3320	3	33	3323	3324	3325	,	3327

	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
D00	3328	3329	3330	3331	3332	3333	3334	3335	3336	3337	3338	3339	3340	3341	3342	3343
D10	3344	3345	3346	3347	3348	3349	3350	3351	3352	3353	3354	3355	3356	3357	3358	3359
D20	3360	3361	3362	3363	3364	3365	3366	3367	3368	3369	3370	3371	3372	3373	3374	3375
D30	3376	3377	3378	3379	3380	3381	3382	3383	3384	3385	3386	3387	3388	3389	3390	3391
D40	3392	3393	3394	3395	3396	3397	3398	3399	3400	3401	3402	3403	3404	3405	3406	3407
D50	3408	3409	3410	3411	3412	3413	3414	3415	3416	3417	3418	3419	3420	3421	3422	3423
D60	3424	3425	3426	3427	3428	3429	3430	3431	3432	3433	3434	3435	3436	3437	3438	3439
D70	3440	3441	3442	3443	3444	3445	3446	3447	3448	3449	3450	3451	3452	3453	3454	3455
D80	3456	3457	3458	3459	3460	3461	3462	3463	3464	3465	3466	3467	3468	3469	3470	3471
D90	3472	3473	3474	3475	3476	3477	3478	3479	3480	3481	3482	3483	3484	3485	3486	3487
DAO	3488	3489	3490	3491	3492	3493	3494	3495	3496	3497	3498	3499	3500	3501	3502	3503
DB0	3504	3505	3506	3507	3508	3509	3510	3511	3512	3513	3514	3515	3516	3517	3518	3519
DC0	3520	3521	3522	3523	3524	3525	3526	3527	3528	3529	3530	3531	3532	3533	3534	3535
DD0	3536	3537	3538	3539	3540	3541	3542	3543	3544	3545	3546	3547	3548	3549	3550	3551
DEO	3552	3553	3554	3555	3556	3557	3558	3559	3560	3561	3562	3563	3564	3565	3566	3567
DFO	3568	3569	3570	3571	3572	3573	3574	3575	3576	3577	3578	3579	3580	3581	3582	3583
E00	3584	3585	3586	3587	3588	3589	3590	3591	3592	3593	3594	3595	3596	3597	3598	3599
E10	3600	3601	3602	3603	3604	3605	3606	3607	3608	3609	3610	3611	3612	3613	3614	3615
E20	3616	3617	3618	3619	3620	3621	3622	3623	3624	3625	3626	3627	3628	3629	3630	3631
E30	3632	3633	3634	3635	3636	3637	3638	3639	3640	3641	3642	3643	3644	3645	3646	3647
E40	3648	3649	3650	3651	3652	3653	3654	3655	3656	3657	3658	3659	3660	3661	3662	3663
E50	3664	3665	3666	3667	3668	3669	3670	3671	3672	3673	3674	3675	3676	3677	3678	3679
E60	3680	3681	3682	3683	3684	3685	3686	3687	3688	3689	3690	3691	3692	3693	3694	3695
E70	3696	3697	3698	3699	3700	3701	3702	3703	3704	3705	3706	3707	3708	3709	3710	3711
E80	3712	3713	3714	3715	3716	3717	3718	3719	3720	3721	3722	3723	3724	3725	3726	3727
E90	3728	3729	3730	3731	3732	3733	3734	3735	3736	3737	3738	3739	3740	3741	3742	3743
EAO	3744	3745	3746	3747	3748	3749	3750	3751	3752	3753	3754	3755	3756	3757	3758	3759
EBO	3760	3761	3762	3763	3764	3765	3766	3767	3768	3769	3770	3771	3772	3773	3774	3775
EC0	3776	3777	3778	3779	3780	3781	3782	3783	3784	3785	3786	3787	3788	3789	3790	3791
EDO	3792	3793	3794	3795	3796	3797	3798	3799	3800	3801	3802	3803	3804	3805	3806	3807
EEO	3808	3809	3810	3811	3812	3813	3814	3815	3816	3817	3818	3819	3820	3821	3822	3823
EFO	3824	3825	3826	3827	3828	3829	3830	3831	3832	3833	3834	3835	3836	3837	3838	3839
F00	3840	3841	3842	3843	3844	3845	3846	3847	3848	3849	3850	3851	3852	3853	3854	3855
F10	3856	3857	3858	3859	3860	3861	3862	3863	3864	3865	3866	3867	3868	3869	3870	3871
F20	3872	3873	3874	3875	3876	3877	3878	3879	3880	3881	3882	3883	3884	3885	3886	3887
F30	3888	3889	3890	3891	3892	3893	3894	3895	3896	3897	3898	3899	3900	3901	3902	3903
F40	3904	3905	3906	3907	3908	3909	3910	3911	3912	3913	3914	3915	3916	3917	3918	3919
F50	3920	3921	3922	3923	3924	3925	3926	3927	3928	3929	3930	3931	3932	3933	3934	3935
F60	3936	3937	3938	3939	3940	3941	3942	3943	3944	3945	3946	3947	3948	3949	3950	3951
F70	3952	3953	3954	3955	3956	3957	3958	3959	3960	3961	3962	3963	3964	3965	3966	3967
F80	3968	3969	3970	3971	3972	3973	3974	3975	3976	3977	3978	3979	3980	3981	3982	3983
F90	3984	3985	3986	3987	3988	3989	3990	3991	3992	3993	3994	3995	3996	3997	3998	3999
FA. 0	4000	4001	4002	4003	4004	4005	4006	4007	4008	4009	4010	4011	4012	4013	4014	4015
FBO	4016	4017	4018	4019	4020	4021	4022	4023	4024	4025	4026	4027	4028	4029	4030	4031
FC0	4032	4033	4034	4035	4036	4037	4038	4039	4040	4041	4042	4043	4044	4045	4046	4047
FD0	4048	4049	4050	4051	4052	4053	4054	4055	4056	4057	4058	4059	4060	4061	4062	4063
FEO	4064	4065	4066	4067	4068	4069	4070	4071	4072	4073	4074	4075	4076	4077	4078	4079
FF0	4080	4081	4082	4083	4084	4085	4086	4087	4088	4089	4090	4091	4092	4093	4094	4095

Hexadecimal	Decimal	Hexadecimal	Decimal	Hexadecimal	Decimal	Hexadecimal	Decimal
.00000000	.0000000000 .	.00000040	.0000000149	. 00000080	. 0000000298	. 000000 CO	. 0000000447
.00000001	. 0000000002	.00000041	. 0000000151	. 00000081	. 0000000300	.000000 Cl	. 0000000449
. 00000002	. 0000000004	.00000042	. 0000000153	. 00000082	. 0000000302	.000000 C 2	. 0000000451
. 00000003	. 0000000006	.00000043	. 0000000155	. 00000083	. 0000000305	. 000000 C 3	. 00000000454
.00000004	.0000000009	.00000044	. 0000000158	. 00000084	. 0000000307	. 000000 C 4	. 00000000456
.00000005	.0000000011	.00000045	.0000000160	. 00000085	. 0000000309	. 000000 C 5	. 0000000458
. 00000006	.0000000013	.00000046	. 0000000162	. 00000086	. 0000000311	. $000000 \mathrm{C6}$. 0000000461
.00000007	.0000000016	.00000047	. 0000000165	. 00000087	. 0000000314	.000000 C 7	. 0000000463
. 00000008	. 0000000018	. 00000048	.0000000167	. 00000088	. 0000000316	. 000000 C 8	. 0000000465
.00000009	.0000000020	.00000049	.0000000169	. 00000089	. 0000000318	. 000000 C 9	. 0000000467
. 0000000 A	. 0000000023	.0000004 A	. 0000000172	. 0000008 A	. 0000000321	. 000000 CA	. 0000000470
. 0000000 B	.0000000025	. 0000004 B	.0000000174	. 0000008 B	. 0000000323	. 000000 CB	. 0000000472
. 0000000 C	. 0000000027	.0000004 C	. 0000000176	. 0000008 C	. 0000000325	.000000 CC	. 0000000474
. 00000000	. 0000000030	.0000004 D	. 0000000179	. 0000008 D	. 0000000328	.000000 CD	. 0000000477
. 0000000 O	. 0000000032	.0000004 E	.0000000181	. 0000008 E	. 0000000330	. 000000 CE	. 0000000479
. 0000000 F	.0000000034	. 0000004 F	.0000000183	. 0000008 F	. 0000000332	. 000000 CF	. 0000000481
. 00000010	.0000000037	. 00000050	.0000000186	. 00000090	. 0000000335	. 000000 D0	. 0000000484
. 00000011	.0000000039	. 00000051	.0000000188	.00000091	. 0000000337	. 000000 DI	. 0000000486
.00000012	.0000000041	. 00000052	. 0000000190	. 00000092	. 0000000339	. 000000 D 2	. 0000000488
. 00000013	.0000000044	. 00000053	.0000000193	. 00000093	. 0000000342	. 000000 D 3	. 0000000491
. 00000014	.0000000046	.00000054	. 0000000195	. 00000094	. 0000000344	. 000000 D 4	. 0000000493
.00000015	.0000000048	. 00000055	. 0000000197	. 00000095	. 0000000346	. 000000 D 5	. 0000000495
.00000016	.0000000051	. 00000056	. 0000000200	. 00000096	. 0000000349	. 000000 D6	. 0000000498
.00000017	.0000000053	. 00000057	. 0000000202	. 00000097	. 0000000351	. 000000 D 7	. 0000000500
. 00000018	. 0000000055	. 00000058	. 0000000204	. 00000098	. 0000000353	. 000000 D 8	. 0000000502
. 00000019	.0000000058	.00000059	.0000000207	. 00000099	. 0000000356	. 000000 D9	. 0000000505
. 000000 la	. 0000000060	.0000005 A	. 0000000209	. 0000009 A	. 0000000358	. 000000 DA	. 0000000507
. 000000 lB	. 0000000062	. 000000 5B	.0000000211	. 0000009 B	. 0000000360	. 000000 DB	. 0000000509
. 000000 1C	.0000000065	.0000005 C	.0000000214	. 0000009 C	. 0000000363	.000000 DC	. 0000000512
. 0000001 D	.0000000067	. 0000005 D	. 0000000216	. 0000009 D	. 0000000365	. 000000 DD	. 0000000514
. 0000001 E	.0000000069	. 0000005 E	.0000000218	. 0000009 E	. 0000000367	. 000000 DE	. 0000000516
. 000000 IF	.0000000072	. 0000005 F	.0000000221	. 0000009 F	.0000000370	. 000000 DF	. 0000000519
. 00000020	.0000000074	. 00000060	. 0000000223	. 000000 AO	. 0000000372	. 000000 EO	. 0000000521
.00000021	. 0000000076	. 00000061	.0000000225	.000000 Al	. 0000000374	. 000000 El	. 0000000523
. 00000022	.0000000079	.00000062	.0000000228	.000000 A 2	. 0000000377	. 000000 E 2	. 0000000526
.00000023	. 0000000081	.00000063	. 0000000230	. 000000 A 3	. 0000000379	. 000000 E 3	. 0000000528
.00000024	.0000000083	.00000064	.0000000232	. 000000 A 4	. 0000000381	. $000000 \mathrm{E4}$. 0000000530
.00000025	.0000000086	. 00000065	.0000000235	. 000000 A 5	. 0000000384	. 000000 E 5	. 0000000533
.00000026	.0000000088	. 00000066	. 0000000237	. 000000 A 6	. 0000000386	. 000000 E 6	. 0000000535
.00000027	.0000000090	. 00000067	. 0000000239	. 000000 A 7	. 0000000388	. $000000 \mathrm{E7}$. 0000000537
. 00000028	. 0000000093	. 00000068	. 0000000242	. 000000 A 8	. 0000000391	. $000000 \mathrm{E8}$. 0000000540
. 00000029	.0000000095	.00000069	. 0000000244	.000000 A 9	. 0000000393	. 000000 Eg	. 0000000542
. 0000002 A	. 0000000097	. 0000006 A	. 0000000246	. 000000 AA	. 0000000395	. 000000 EA	. 0000000544
. 0000002 C	. 0000000100	. 0000006 B	. 0000000249	. 000000 AB	. 0000000398	. 000000 EB	. 0000000547
. 0000002 C	.0000000102	. 0000006 C	.0000000251	.000000 AC	. 0000000400	. 000000 EC	. 0000000549
. 0000002 D	.0000000104	. 0000006 D	. 0000000253	. 000000 AD	. 0000000402	. 000000 ED	. 0000000551
. 0000002 E	.0000000107	. 0000006 E	. 0000000256	. 000000 AE	. 0000000405	. 000000 EE	. 0000000554
. 0000002 F	.0000000109	. 0000006 F	. 0000000258	. 000000 AF	. 0000000407	. 000000 EF	. 0000000556
. 00000030	.0000000111	. 00000070	. 0000000260	. 000000 BO	. 0000000409	. 000000 FO	. 0000000558
.00000031	. 0000000114	.00000071	. 0000000263	. 000000 Bl	. 0000000412	. 000000 Fl	. 0000000561
. 00000032	. 0000000116	.00000072	. 0000000265	. 000000 B 2	. 0000000414	. 000000 F 2	. 0000000563
. 00000033	. 0000000118	.00000073	.0000000267	. 000000 B 3	. 0000000416	. 000000 F 3	. 0000000565
. 00000034	. 0000000121	.00000074	. 0000000270	. $000000 \mathrm{B4}$. 0000000419	. $000000 \mathrm{F4}$. 0000000568
. 00000035	. 0000000123	. 00000075	. 0000000272	. $000000 \mathrm{B5}$. 0000000421	. 000000 F 5	. 0000000570
. 00000036	.0000000125	.00000076	. 0000000274	. $000000 \mathrm{B6}$. 0000000423	. 000000 F 6	. 0000000572
. 00000037	.0000000128	.00000077	. 0000000277	. $000000 \mathrm{B7}$. 0000000426	. $000000 \mathrm{F7}$. 0000000575
. 00000038	. 0000000130	. 00000078	.0000000279	. $000000 \mathrm{B8}$. 0000000428	. $000000 \mathrm{F8}$. 0000000577
.00000039	. 0000000132	.00000079	.0000000281	. 000000 B 9	. 0000000430	. $000000 \mathrm{F9}$. 0000000579
. 000000 3A	. 0000000135	. 0000007 A	. 0000000284	. 000000 BA	. 0000000433	.000000 FA	. 0000000582
. 0000003 B	.0000000137	$.0000007 B$. 0000000286	. 000000 BB	. 0000000435	. 000000 FB	. 0000000584
. 0000003 C	. 0000000139	. 0000007 C	. 0000000288	. 000000 BC	. 0000000437	. 000000 FC	. 00000000586
. 0000003 D	. 0000000142	. 0000007 D	. 0000000291	. 000000 BD	. 0000000440	. 000000 FD	. 0000000589
. 0000003 E	. 0000000144	. 0000007 E	. 0000000293	. 000000 BE	. 0000000442	. 000000 FE	. 0000000591
. 0000003 F	.0000000146	. 0000007 F	.0000000295	. 000000 BF	. 0000000444	. 000000 FF	. 0000000593

HEXADECIMAL - DECIMAL FRACTION CONVERSION TABLE (cont.)

Hexadecimal	Decimal	Hexadecimal	Decimal	Hexadecimal	Decimal	Hexadecimal	Decimal
. 00000000	. 0000000000	. 00004000	. 0000038146	. 00008000	. 0000076293	. 0000 CO 00	. 0000114440
. 00000100	. 0000000596	. 00004100	. 0000038743	. 00008100	. 0000076889	. 0000 Cl 00	. 0000115036
. 00000200	. 0000001192	. 00004200	. 0000039339	. 00008200	. 0000077486	. 0000 C 200	. 0000115633
. 00000300	. 0000001788	. 00004300	. 0000039935	. 00008300	. 0000078082	. 0000 C 300	. 0000116229
. 00000400	. 0000002384	. 00004400	. 0000040531	. 00008400	. 0000078678	. 0000 C 400	.00001 16825
. 00000500	. 0000002980	. 00004500	. 0000041127	. 00008500	. 0000079274	. 0000 C 500	. 0000117421
. 00000600	. 0000003576	. 00004600	. 0000041723	. 00008600	. 0000079870	. 0000 C 600	. 0000118017
. 00000700	. 0000004172	. 00004700	. 0000042319	. 00008700	. 0000080466	. 0000 C 700	. 0000118613
. 00000800	. 0000004768	. 00004800	. 0000042915	. 00008800	. 0000081062	. $0000 \mathrm{C8} 00$. 0000119209
. 00000900	. 0000005364	. 00004900	. 0000043511	. 00008900	. 0000081658	$.0000 \mathrm{C9} 00$. 0000119805
. 00000 OA 00	. 0000005960	. 0000 4A 00	. 0000044107	. 00008 BA 00	. 0000082254	. 0000 CA 00	. 0000120401
. 00000 OB 00	. 0000006556	. 00004 Cb	. 0000044703	. 00008800	. 0000082850	. 0000 CB 00	. 0000120997
. 00000000	. 0000007152	. 00004 C 00	. 0000045299	. 00008 CO	. 0000083446	. 0000 CC 00	. 0000121593
. 00000000	. 0000007748	. 00004 D 00	. 0000045895	. 00008000	. 0000084042	. 0000 CD 00	. 0000122189
. 0000 OE 00	. 0000008344	. 00004 E 00	. 0000046491	. 00008 BE 00	. 0000084638	. 0000 CE 00	. 0000122785
. 0000 OF 00	. 0000008940	. 00004 F 00	. 0000047087	. 00008 F 00	. 0000085234	. 0000 CF 00	. 0000123381
. 00001000	. 0000009536	. 00005000	. 0000047683	. 00009000	. 0000085830	. 0000 DO 00	. 0000123977
. 00001100	. 0000010132	. 00005100	. 0000048279	. 00009100	. 0000086426	. $0000 \mathrm{D1} 00$. 0000124573
. 00001200	. 0000010728	. 00005200	. 0000048875	. 00009200	. 0000087022	. 0000 D 200	. 0000125169
. 00001300	. 0000011324	. 00005300	. 0000049471	. 00009300	. 0000087618	. 0000 D3 00	. 0000125765
. 00001400	. 0000011920	. 00005400	. 0000050067	. 00009400	. 0000088214	. 00000000	. 0000126361
. 00001500	. 0000012516	. 00005500	. 0000050663	. 00009500	. 0000088810	. 0000 D5 00	. 0000126957
. 00001600	. 0000013113	. 00005600	. 0000051259	. 00009600	. 0000089406	. $0000 \mathrm{D6} 00$. 0000127553
. 00001700	. 0000013709	. 00005700	. 0000051856	. 00009700	. 0000090003	. 00000000	. 0000128149
. 00001800	. 0000014305	. 00005800	. 0000052452	. 00009800	. 0000090599	. 00000000	. 0000128746
. 00001900	. 0000014901	. 00005900	. 0000053048	. 00009900	. 0000091195	. 0000 D9 00	. 0000129342
. 0000 IA 00	. 0000015497	. 00005 A 00	. 0000053644	. 00009 A 00	. 0000091791	. 0000 DA 00	. 0000129938
. 0000 18 00	. 0000016093	. 00005 BB 00	. 0000054240	. 00009800	. 0000092387	. 0000 DB 00	. 0000130534
. 0000 IC 00	. 0000016689	. 00005 C 00	. 0000054836	. 00009000	. 0000092983	. 0000 DC 00	. 0000131130
. 00001000	. 0000017285	. 00005000	. 0000055432	. 00009000	. 0000093579	. 0000 DD 00	. 0000131726
. 0000 IE 00	. 0000017881	. $00005 \mathrm{5E} 00$. 0000056028	. 00009 E 00	. 0000094175	. 0000 DE 00	. 0000132322
. 0000 lF 00	. 0000018477	. 00005 F 00	. 0000056624	. 00009 F 00	. 0000094771	. 0000 DF 00	. 0000132918
. 00002000	. 0000019073	. 00006000	. 0000057220	. 0000 A 000	. 0000095367	. 0000 E0 00	. 0000133514
. 00002100	. 0000019669	. 00006100	. 0000057816	. 0000 Al 00	. 0000095963	. 0000 El 00	. 0000134110
. 00002200	. 0000020265	. 00006200	. 0000058412	. 0000 A2 00	. 0000096559	. 0000 E 200	. 0000134706
. 00002300	. 0000020861	. 00006300	. 0000059008	. 0000 A3 00	. 0000097155	. 0000 E 300	. 0000135302
. 00002400	. 0000021457	. 00006400	. 0000059604	. 0000 A 400	. 0000097751	. $0000 \mathrm{E4} 00$. 0000135898
. 00002500	. 0000022053	. 00006500	. 0000060200	. 0000 A5 00	. 0000098347	. 0000 E5 00	. 0000136494
. 00002600	. 0000022649	. 00006600	. 0000060796	. 0000 A6 00	. 0000098943	. 0000 EG 00	. 0000137090
. 00002700	. 0000023245	. 00006700	. 0000061392	. 0000 A7 00	. 0000099539	. 0000 E7 00	. 0000137686
. 00002800	. 0000023841	. 00006800	. 0000061988	. 0000 A8 00	. 0000100135	. $0000 \mathrm{E8} 00$. 0000138282
. 00002900	. 0000024437	. 00006900	. 0000062584	. 0000 A 900	. 0000100731	. $0000 \mathrm{E9} 00$. 0000138878
. $00002 \mathrm{2a} 00$. 0000025033	. 0000 6A 00	. 0000063180	. 0000 AA 00	. 0000101327	. 0000 EA 00	. 0000139474
. 00002800	. 0000025629	. 00006 BB 00	. 0000063776	. 0000 AB 00	. 0000101923	. 0000 EB 00	. 0000140070
. 00002 C 00	. 0000026226	. 00006 C 00	. 0000064373	. 0000 AC 00	. 0000102519	. 0000 EC 00	. 0000140666
. 00002 D 00	. 0000026822	. 00006000	. 0000064969	. 0000 AD 00	. 0000103116	. 0000 ED 00	. 0000141263
. 00002 EE 00	. 0000027418	. 00006 EE 00	. 0000065565	. 0000 AE 00	. 0000103712	. 0000 EE 00	. 0000141859
. 00002 F 00	. 0000028014	. 00006 FF 00	. 0000066161	. 0000 AF 00	. 0000104308	. 0000 EF 00	. 0000142455
. 00003000	. 0000028610	. 00007000	. 0000066757	. 0000 BO 00	. 0000104904	. 0000 FO 00	. 0000143051
. 00003100	. 0000029206	. 00007100	. 0000067353	. 0000 B 100	. 0000105500	. 0000 Fl 00	. 0000143647
. 00003200	. 0000029802	. 00007200	. 0000067949	. 0000 B2 00	. 0000106096	.0000 F2 00	. 0000144243
. 00003300	. 0000030398	. 00007300	. 0000068545	. 0000 B3 00	. 0000106692	. $0000 \mathrm{F3} 00$. 0000144839
. 00003400	. 0000030994	. 00007400	. 0000069141	. 0000 B4 00	. 0000107288	. $0000 \mathrm{F4} 00$. 0000145435
. 00003500	. 0000031590	. 00007500	. 0000069737	. $0000 \mathrm{B5} 00$. 0000107884	. $0000 \mathrm{F5} 00$. 0000146031
. 00003600	. 0000032186	. 00007600	. 0000070333	. $0000 \mathrm{B6} 00$. 0000108480	. $0000 \mathrm{F6} 00$. 0000146627
. 00003700	. 0000032782	. 00007700	. 0000070929	. $0000 \mathrm{B7} 00$. 0000109076	. $0000 \mathrm{F7} 00$. 0000147223
. 00003800	. 0000033378	. 00007800	. 0000071525	. $0000 \mathrm{B8} 00$. 0000109672	. $0000 \mathrm{F8} 00$. 0000147819
. 00003900	. 0000033974	. 00007900	. 0000072121	. $0000 \mathrm{B9} 00$. 0000110268	. $0000 \mathrm{F9} 00$. 0000148415
. 0000 3A 00	. 0000034570	. $00007 \mathrm{7a0}$. 0000072717	. 0000 BA 00	. 0000110864	. 0000 FA 00	. 0000149011
. 0000 3B 00	. 0000035166	. 00007 B 00	. 0000073313	. 0000 BB 00	. 0000111460	. 0000 FB 00	. 0000149607
. 00003 C 00	. 0000035762	. 00007 CO	. 0000073909	. 0000 BC 00	. 0000112056	. 0000 FC 00	. 0000150203
. 00003000	. 0000036358	. 00007000	. 0000074505	. 0000 BD 00	. 0000112652	. 0000 FD 00	. 0000150799
. 00003 E 00	. 0000036954	. 00007 E 00	. 0000075101	. 0000 BE 00	. 0000113248	. 0000 FE 00	. 0000151395
. 00003 F 00	. 0000037550	. 00007 F 00	. 0000075697	. 0000 BF 00	. 0000113844	. 0000 FF 00	. 0000151991

Hexadecimal	Decimal	Hexadecimal	Decimal	Hexadecimal	Decimal	Hexadecimal	Decimal
. 00000000	. 0000000000	. 00400000	. 0009765625	.00800000	. 0019531250	$.00 \subset 00000$. 0029296875
. 00010000	. 0000152587	.00410000	. 0009918212	. 00810000	. 0019683837	. $00 \cdot \mathrm{C} 10000$. 0029449462
.00020000	. 0000305175	. 00420000	. 0010070800	. 00820000	. 0019836425	.00 C 20000	. 0029602050
.00030000	. 0000457763	.00430000	. 0010223388	. 00830000	. 0019989013	. 00 C3 0000	. 0029754638
. 00040000	. 0000610351	. 00440000	. 0010375976	. 00840000	. 0020141601	. 00 C4 0000	. 0029907226
. 00050000	. 0000762939	.00450000	. 0010528564	. 00850000	. 0020294189	.00 C 50000	. 0030059814
. 00060000	. 0000915527	.00460000	. 0010681152	.00860000	. 0020446777	.00 C 60000	. 0030212402
. 00070000	. 0001068115	.00470000	. 0010833740	.00870000	. 0020599365	.00 C 70000	. 0030364990
. 00080000	. 0001220703	.00480000	. 0010986328	. 00880000	. 0020751953	$.00 \mathrm{C8} 0000$. 0030517578
. 00090000	.0001373291	.00490000	.0011138916	.00890000	. 0020904541	$.00 \mathrm{C9} 0000$. 0030670166
. 00 OA 0000	. 0001525878	. 00 4A 0000	. 0011291503	. 008 8A 0000	. 0021057128	. 00 CA 0000	. 0030822753
. 00 OB 0000	. 0001678466	.004 B 0000	.0011444091	. 00 8B 0000	. 0021209716	. 00 CB 0000	. 0030975341
. 00000000	. 0001831054	.004 C 0000	.0011596679	. 00880000	. 0021362304	.00 CC 0000	. 0031127929
. 00 OD 0000	. 0001983642	. 00 4D 0000	. 0011749267	. 008 D 0000	. 0021514892	. 00 CD 0000	. 0031280517
. 00 OE 0000	. 0002136230	.004 E 0000	.0011901855	. 008 EE 0000	. 0021667480	. 00 CE 0000	. 0031433105
. 00 OF 0000	. 0002288818	. 00 4F 0000	.0012054443	. 008 FF 0000	. 0021820068	. 00 CF 0000	. 0031585693
.00100000	. 0002441406	.00500000	. 0012207031	.00900000	. 0021972656	. 00 D0 0000	. 0031738281
.00110000	. 0002593994	.00510000	. 0012359619	.00910000	. 0022125244	$.00 \mathrm{D1} 0000$. 0031890869
.00120000	. 0002746582	.00520000	. 0012512207	. 00920000	. 0022277832	. 00 D2 0000	. 0032043457
.00130000	. 0002899169	.00530000	.0012664794	.00930000	. 0022430419	.00 D3 0000	. 0032196044
.00140000	. 0003051757	.00540000	. 0012817382	. 00940000	. 0022583007	. 00 D4 0000	. 0032348632
.00150000	. 0003204345	.00550000	. 0012969970	.00950000	. 0022735595	. 00 D5 0000	. 0032501220
.00160000	. 0003356933	. 00560000	. 0013122558	. 00960000	. 0022888183	. 00 D6 0000	. 0032653808
. 00170000	. 0003509521	.00570000	. 0013275146	.00970000	. 0023040771	. 00 D7 0000	. 0032806396
.00180000	. 0003662109	. 00580000	. 0013427734	.00980000	. 0023193359	.00 D8 0000	. 0032958984
. 00190000	. 0003814697	. 00590000	. 0013580322	.00990000	. 0023345947	.00 D9 0000	. 0033111572
. 00 1A 0000	. 0003967285	. 00 5A 0000	. 0013732910	.009 OA 000	. 0023498535	. 00 DA 0000	. 0033264160
.001 B 0000	. 0004119873	.005 B 0000	. 0013885498	. 009 9B 0000	. 0023651123	. 00 DB 0000	. 0033416748
. 001 C 0000	. 0004272460	.005 C 0000	. 0014038085	.009 C 0000	. 0023803710	. 00 DC 0000	. 0033569335
. 001 l 0000	. 0004425048	. 00 5D 0000	.0014190673	. 00900000	. 0023956298	. 00 DD 0000	. 0033721923
. 00 1E 0000	. 0004577636	.005 E 0000	.0014343261	. $009 \mathrm{9E} 0000$. 0024108886	. 00 DE 0000	. 0033874511
. 00 1F 0000	. 0004730224	. 005 FF 0000	.0014495849	. 00 9F 0000	. 0024261474	. 00 DF 0000	. 0034027099
. 00200000	. 0004882812	. 00600000	. 0014648437	. 00 A0 0000	. 0024414062	. 00 E0 0000	. 0034179687
. 00210000	. 0005035400	. 00610000	.0014801025	. 00 A1 0000	. 0024566650	. 00 El 0000	. 0034432275
. 00220000	. 0005187988	. 00620000	. 0014953613	. 00 A2 0000	. 0024719238	. 00 E2 0000	. 0034484863
. 00230000	. 0005340576	.00630000	.0015106201	.00 A3 0000	. 0024871826	. 00 E3 0000	. 0034637451
. 00240000	. 0005493164	. 00640000	. 0015258789	. 00 A4 0000	. 0025024414	. 00 E4 0000	. 0034790039
.00250000	. 0005645751	.00650000	. 0015411376	. 00 A5 0000	. 0025177001	. 00 E5 0000	. 0034942626
. 00260000	. 0005798339	. 00660000	. 0015563964	. 00 A6 0000	. 0025329589	. 00 E6 0000	. 0035095214
. 00270000	. 0005950927	.00670000	. 0015716552	. 00 A7 0000	. 0025482177	.00 E7 0000	. 0035247802
. 00280000	. 0006103515	.00680000	.0015869140	. 00 A8 0000	. 0025634765	.00 E 80000	. 0035400390
. 00290000	. 0006256103	.00690000	. 0016021728	.00 A9 0000	. 0025787353	.00 E9 0000	. 0035552978
. $002 \mathrm{2A} 0000$. 0006408691	. 00 6A 0000	.0016174316	. 00 AA 0000	. 0025939941	. 00 EA 0000	. 0035705566
. 00 2B 0000	.0006561279	. 00 6B 0000	. 0016326904	. 00 AB 0000	. 0026092529	. 00 EB 0000	. 0035858154
. 002 C 0000	. 0006713867	. 0066 C 0000	. 0016479492	. 00 AC 0000	. 0026245117	. 00 EC 0000	. 0036010742
. 002 D 0000	. 0006866455	. 00 6D 0000	. 0016632080	. 00 AD 0000	. 0026397705	. 00 ED 0000	. 0036163330
. $002 \mathrm{2E} 0000$. 0007019042	. 0066 O 000	. 0016784667	. 00 AE 0000	. 0026550292	. 00 EE 0000	. 0036315917
. 00 2F 0000	. 0007171630	. 006 FF 0000	. 0016937255	. 00 AF 0000	. 0026702880	. 00 EF 0000	. 0036468505
.00300000	. 0007324218	. 00700000	. 0017089843	. 00 B0 0000	. 0026855468	. 00 FO 0000	. 0036621093
.00310000	. 0007476806	. 00710000	.0017242431	. 00 Bl 0000	. 0027008056	.00 F1 0000	. 0036773681
. 00320000	. 0007629394	. 00720000	.0017395019	. 00 B2 0000	. 0027160644	. 00 F 20000	. 0036926269
. 00330000	. 0007781982	. 00730000	. 0017547607	. 00 B3 0000	. 0027313232	.00 F3 0000	. 0037078857
. 00340000	. 0007934570	. 00740000	.0017700195	. 00 B4 0000	. 0027465820	. 00 F4 0000	. 0037231445
.00350000	. 0008087158	. 00750000	. 0017852783	. 00 B5 0000	. 0027618408	.00 F5 0000	. 0037384033
.00360000	. 0008239746	. 00760000	. 0018005371	. 00 B6 0000	. 0027770996	. 00 F6 0000	. 0037536621
. 00370000	. 0008392333	. 00770000	. 0018157958	. 00 B7 0000	. 0027923583	.00 F7 0000	. 0037689208
.00380000	. 0008544921	.00780000	.0018310546	. 00 B8 0000	. 0028076171	.00 F8 0000	. 0037841796
. 00390000	. 0008697509	. 00790000	. 0018463134	. 00 B9 0000	. 0028228759	.00 F9 0000	. 0037994384
. 003 BA 0000	. 0008850097	. $007 \mathrm{7A} 0000$. 0018615722	. 00 BA 0000	. 0028381347	. 00 FA 0000	. 0038146972
. 003 BB 0000	. 0009002685	$.007 \mathrm{~B} \quad 0000$.0018768310	. 00 BB 0000	. 0028533935	. 00 FB 0000	. 0038299560
$.003 C 0000$. 0009155273	.007 C 0000	.0018920898	. 00 BC 0000	. 0028686523	. 00 FC 0000	. 0038452148
.00300000	. 0009307861	. 007 D 0000	. 0019073486	. 00 BD 0000	. 0028839111	. 00 FD 0000	. 0038604736
. 003 O 0000	. 0009460449	. 007 E 0000	. 0019226074	. 00 BE 0000	. 0028991699	. 00 FE 0000	. 0038757324
. 00 3F 0000	. 0009613037	. $007 \mathrm{~F} \quad 0000$. 0019378662	. 00 BF 0000	. 0029144287	. 00 FF 0000	. 0038909912

Hexadecimal	Decimal	Hexadecimal	Decimal	Hexadecimal	Decimal	Hexadecimal	Decimal
. 00000000	. 0000000000	. 40000000	. 2500000000	. 80000000	. 5000000000	.c0 000000	. 7500000000
. 01000000	. 0039062500	.41000000	. 2539062500	. 81000000	. 5039062500	.CI 000000	. 7539062500
. 02000000	. 0078125000	. 42000000	. 2578125000	. 82000000	. 5078125000	.C2 000000	. 7578125000
. 03000000	. 0117187500	. 43000000	. 2617187500	. 83000000	. 5117187500	.C3 000000	. 7617187500
. 04000000	. 0156250000	. 44000000	. 2656250000	. 84000000	. 5156250000	.C4 000000	. 7656250000
. 05000000	. 0195312500	. 45000000	. 2695312500	. 85000000	. 5195312500	.C5 000000	. 7695312500
. 06000000	. 0234375000	. 46000000	. 2734375000	. 86000000	. 5234375000	.C6000000	. 7734375000
. 07000000	. 0273437500	. 47000000	. 2773437500	. 87000000	. 5273437500	.C7 000000	. 7773437500
. 08000000	. 0312500000	. 48000000	. 2812500000	. 88000000	. 5312500000	.C8000000	. 7812500000
. 09000000	. 0351562500	. 49000000	. 2851562500	. 89000000	. 5351562500	.C9 000000	. 7851562500
. 0 A 000000	. 0390625000	.4A 000000	. 2890625000	.8A 000000	. 5390625000	.CA 000000	. 7890625000
. 08000000	. 0429687500	.4B 000000	. 2929687500	.8B 000000	. 5429687500	.CB 000000	. 7929687500
. 0 C 000000	. 0468750000	. 4 C 000000	. 2968750000	.8C 000000	. 5468750000	.CC 000000	. 7968750000
. 00000000	. 0507812500	.4D 000000	. 3007812500	.8D 000000	. 5507812500	.CD 000000	. 8007812500
. 0 E 000000	. 0546875000	.4E 000000	. 3046875000	.8E 000000	. 5546875000	.CE 000000	. 8046875000
. F F 000000	. 0585937500	. 4 F 000000	. 3085937500	.8F 000000	. 5585937500	.CF 000000	. 8085937500
. 10000000	. 0625000000	. 50000000	. 3125000000	. 90000000	. 5625000000	.D0 000000	. 8125000000
. 11000000	. 0664062500	. 51000000	. 3164062500	. 91000000	. 5664062500	.D1 000000	. 8164062500
. 12000000	. 0703125000	. 52000000	. 3203125000	. 92000000	. 5703125000	.D2 000000	. 8203125000
. 13000000	. 0742187500	. 53000000	. 3242187500	. 93000000	. 5742187500	.D3 000000	. 8242187500
. 14000000	. 0781250000	. 54000000	. 3281250000	. 94000000	. 5781250000	.D4 000000	. 8281250000
. 15000000	. 0820312500	. 55000000	. 3320312500	. 95000000	. 5820312500	.D5 000000	. 8320312500
. 16000000	. 0859375000	. 56000000	. 3359375000	. 96000000	. 5859375000	.D6 000000	. 8359375000
. 17000000	. 0898437500	. 57000000	. 3398437500	. 97000000	. 5898437500	.D7 000000	. 8398437500
. 18000000	. 0937500000	. 58000000	. 3437500000	. 98000000	. 5937500000	.D8 000000	. 8437500000
. 19000000	. 0976562500	. 59000000	. 3476562500	. 99000000	. 5976562500	.D9 000000	. 8476562500
.1A 000000	. 1015625000	.5A 000000	. 3515625000	.9A 000000	. 6015625000	.DA 000000	. 8515625000
.1B 000000	. 1054687500	.5B 000000	. 3554687500	. 98000000	. 6054687500	.DB 000000	. 8554687500
. 1 C 000000	. 1093750000	.5C 000000	. 3593750000	.9C 000000	. 6093750000	.DC 000000	. 8593750000
.1D 000000	. 1132812500	.50 000000	. 3632812500	.9D 000000	. 6132812500	.DD 000000	. 8632812500
.1E 000000	. 1171875000	. 5 E 000000	. 3671875000	.9E 000000	. 6171875000	.DE 000000	. 8671875000
.1F 000000	. 1210937500	.5F 000000	. 3710937500	.9F 000000	. 6210937500	.DF 000000	. 8710937500
. 20000000	. 1250000000	. 60000000	. 3750000000	.A0 000000	. 6250000000	.E0 000000	. 8750000000
.21000000	. 1289062500	. 61000000	. 3789062500	.A1 000000	. 6289062500	.E1 000000	. 8789062500
. 22000000	. 1328125000	. 62000000	. 3828125000	.A2 000000	. 6328125000	.E2 000000	. 8828125000
. 23000000	. 1367187500	. 63000000	. 3867187500	.A3 000000	. 6367187500	.E3 000000	. 8867187500
. 24000000	. 1406250000	. 64000000	. 3906250000	.A4 000000	. 6406250000	.E4 000000	. 8906250000
. 25000000	. 1445312500	. 65000000	. 3945312500	.A5 000000	. 6445312500	.E5 000000	. 8945312500
. 26000000	. 1484375000	. 66000000	. 3984375000	.A6 000000	. 6484375000	.E6 000000	. 8984375000
. 27000000	. 1523437500	. 67000000	. 4023437500	.A7 000000	. 6523437500	. $\mathrm{E7} 000000$. 9023437500
. 28000000	. 1562500000	. 68000000	. 4062500000	.A8 000000	. 6562500000	.E8 000000	. 9062500000
. 29000000	. 1601562500	. 69000000	. 4101562500	.A9 000000	. 6601562500	.E9 000000	. 9101562500
.2A 000000	. 1640625000	.6A 000000	. 4140625000	.AA 000000	. 6640625000	. EA 000000	. 9140625000
.2B 000000	. 1679687500	.6B 000000	. 4179687500	. AB 000000	. 6679687500	.EB 000000	. 9179687500
.2C 000000	. 1718750000	.6C 000000	. 4218750000	. AC 000000	. 6718750000	.EC 000000	. 9218750000
.20 000000	. 1757812500	.6D 000000	. 4257812500	.AD 000000	. 6757812500	.ED 000000	. 9257812500
.2E 000000	. 1796875000	.6E 000000	. 4296875000	.AE 000000	. 6796875000	.ee 000000	. 9296875000
.2F 000000	. 1835937500	.6F 000000	. 4335937500	.AF 000000	. 6835937500	.EF 000000	. 9335937500
. 30000000	. 1875000000	. 70000000	. 4375000000	.B0 000000	. 6875000000	.F0 000000	. 9375000000
. 31000000	. 1914062500	. 71000000	. 4414062500	.B1000000	. 6914062500	.F1 000000	. 9414062500
. 32000000	. 1953125000	. 72000000	. 4453125000	. 82000000	. 6953125000	.F2 000000	. 9453125000
. 33000000	. 1992187500	. 73000000	. 4492187500	. 33000000	. 6992187500	.F3 000000	. 9492187500
. 34000000	. 2031250000	. 74000000	. 4531250000	. 34000000	. 7031250000	.F4000000	. 9531250000
. 35000000	. 2070312500	. 75000000	. 4570312500	. 85000000	. 7070312500	.F5 000000	. 9570312500
. 36000000	. 2109375000	. 76000000	. 4609375000	. 86000000	. 7109375000	.F6 000000	. 9609375000
. 37000000	. 2148437500	. 77000000	. 4648437500	. 87000000	. 7148437500	.F7 000000	. 9648437500
. 38000000	. 2187500000	. 78000000	. 4687500000	. 88000000	. 7187500000	.F8 000000	. 9687500000
. 39000000	. 2226562500	. 79000000	. 4726562500	. 89000000	. 7226562500	.F9 000000	. 9726562500
.3A 000000	. 2265625000	.7A 000000	. 4765625000	. BA 000000	. 7265625000	.FA 000000	. 9765625000
. 3 B 000000	. 2304687500	.78000000	. 4804687500	. BB 000000	. 7304687500	.FB 000000	. 9804687500
.3C 000000	. 2343750000	.7C 000000	. 4843750000	.BC 000000	. 7343750000	.FC 000000	. 9843750000
.3D 000000	. 2382812500	.7D 000000	. 4882812500	.BD 000000	. 7382812500	.FD 000000	. 9882812500
. 3 E 000000	. 2421875000	.7E 000000	. 4921875000	.BE 000000	. 7421875000	.FE 000000	. 9921875000
.3F 000000	. 2460937500	.7F 000000	. 4960937500	.bF 000000	. 7460937500	.FF 000000	. 9960937500

```
            2n}n=\mp@subsup{2}{}{-n
                1 0 1.0
                2 1 0.5
                4 2 0.25
                8 3 0.125
                16 4}00.062
                32 5}00.031\quad2
                64 6}00.01562
                128 7 0.007 812 5
                    256 8 0.003 906 25
                512 9 0.001 953 125
            1024 10 0.000 976 562 5
            2 048 11 0.000488 281 25
            4096 12 0.000 244 140 625
```



```
            16}3841400.000061035156 2
            32}768\quad15 0.000 030 517 578 125
            65 536 16 0.000 015 258 789 062 5
            131}07217\quad0.000007629394 531 25
            262144 18 0.000 003 814 697 265 625
            524 288 19 0.000 001 907 348632 812 5
            1 048 576 20 0.000 000 953 674 316406 25
            2097 152 21 0.000 000 476 837 158 203 125
            4194 304 22 0.000 000 238 418 579 101 562 5
            8 388608 23 0.000 000 119 209 289 550 781 25
            16777 216 24 0.000 000 059 604 644 775 390 625
            33 554 432 25 0.000 000 029 802 322 387 695 312 5
            67}108864 26 0.000 000 014 901 161 193 847 656 25
            134}2177728\quad27 0.000000 007 450 580 596 923 828 125
            268435 456 28 0.000 000 003 725 290 298 461 914 062 5
            536 870 912 29 0.000 000 001 862 645 149 230 957 031 25
1 073 741 824 30 0.000 000 000 931 322 574 615 478 515 625
    2 147 483648 31 0.000000000 465 661 287 307 739 257 812 5
    4294967 296 32 0.000 000 000 232 830 643 653 869 628 906 25
    8589}934592 33 0.000 000 000 116 415 321 826 934 814 453 125
    17 179 869 184 34 0.000 000 000 058 207 660 913 467 407 226 562 5
    34 359}738368 35 0.000 000 000 029 103 830 456 733 703 613 281 25
    68719 476 736 36 0.000 000 000 014 551 915 228 366 851 806 640 625
    137438}9553472 37 0.000 000 000 007 275 957 614 183 425 903 320 312 5
    274 877 906 944 38 0.000000000003637 978 807 091 712 951 660 156 25
    549}755813888 39 0.000 000 000 001 818 989 403 545 856 475 830 078 125
    1 099 511 627 776 40 0.000 000 000 000 909 494 701 772 928 237 915 039 062 5
    2 199 023 255 552 41 0.000 000 000 000 454 747 350 886 464 118}9057[519 531 25
    4 398 046 511 104 42 0.000 000 000 000 227 373 675 443 232 059 478 759 765 625
    8796093022 208 43 0.000 000 000 000 113686 837 721 616029 739 379882 812 5
    17 592 186 044 416 44 0.000 000 000 000 056 843 418 860 808 014 869 689 941 406 25
    35}184372088 832 45 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125
    70 368 744 177 664 46 0.000 000 000 000 014 210 854 715 202 003 717 422 485 351 562 5
140737488}3553284470,000000000000007 105427 357 601 001 858711 242 675 781 25
281474 976 710 656 48 0.000 000 000 000 003 552 713 678 800 500 929 355 621 337 890 625
```

					n	2^{-n}											Constant		Decima	al Value		Hexadecimal Value	
				1	0	1.0										π	π		3.14159	26535	89793	3.243F	6 A89
				2	1	0.5											-1						
				4	2	0.25													0.31830	98861	83790	0.517 C	ClB7
				8	3	0.125											$\sqrt{\pi}$		1.77245	538509	05516	1.C5BF	891 C
				16	4	0.062	5										$\mathrm{n} \pi$		1.14472	298858	49400	1.250 D	048F
				32	5	0.031	25									e	-		2.71828	18284	59045	2.87E1	5163
				64	6	0.015	625										-1						
				128	7	0.007	8125	5									-		0.36787	94411	71442	0.5 E 2 D	58D9
																	\sqrt{e}		1.64872	212707	00128	$1 . \mathrm{A} 612$	98E2
				256	8	0.003	906	25											0.43429	944819	03252	0.6F2D	EC55
				512	9	0.001	953	125									${ }^{\circ}{ }_{10}{ }^{\text {e }}$		0.43429	44819	03252	0.6 F 2 D	ECs5
				024	10	0.000	976	5625	5								$\log _{2} \mathrm{e}$		1.44269	950408	88963	1.7154	7653
			2	2048	11	0.000	488	281	25										0.57721	156649	01533	0.93 C 4	67 E
				4096	12	0.000	244	140	625								$n \mathrm{Y}$		0.54953	393129	81645	-0.8CAE	98 Cl
			8	192	13	0.000	122	070	3125							$\sqrt{2}$	$\sqrt{2}$		1.41421	135623	73095	1.6409	E668
			16	384	14	0.000	061	035	156							$\sqrt{2}$			1.4142	35623	73095	1.6409	E668
			32	768	15	0.000	0305	5175	578	125							n 2		0.69314	471805	59945	0.8172	17F8
			65		16	0.000	015	258	789	0625	5						$\operatorname{og}_{10} 2$		0.30102	299956	63981	0.4 D 10	4D42
			131	072	17	0.000	007	629	394	531	25						$\sqrt{10}$		3.16227	776601	68379	3.298 B	075C
			262	144	18	0.000	0038	8146	697														
			524	288	19	0.000	001	907	348			5					n 10		2.30258	840929	94046	2.4 D 76	3777
		1	048	576	20	0.000	000	953	674	316	406	25											
		2	097	152	21	0.000	000	476	8371	158	203	125											
		4	194	304	22	0.000	000	238	418	579	101	562	5										
		8	388	608	23	0.000	000	1192	209	289	550	781	25										
		16	777	216	24	0.000	000	059	6046	6447	775	390	625										
		33	554	432	25	0.000	000	0298	802	322	387	695	312										
		67	108	864	26	0.000	000	014	901	161	193	847	656	25									
		134	217	728	27	0.000	000	007	450	580	596	923	828	125									
		268	435	456	28	0.000	000	003	725	290	298	461	914	062	5								
		536	870	912	29	0.000	000	001	862	6451	149	230	957	031	25								
	1	073	741	824	30	0.000	000	000	931	322	574	615	478	. 515	625								
	2	147	483	648	31	0.000	000	000	465	661	287	307	739	257	812	5							
	4	294	967	296	32	0.000	000	000	232	830	643	653	869	628	906	25							
	8	589	934	592	33	0.000	000	0001	116	415	321	826	934	814	453	125	25						
	17	179	869	184	34	0.000	000	000	058	207	660	913	467	407	226		525						
	34	359	738	368	35	0.000	000	000	0291	1038	830	456	733	703	613		125						
	68	719	476	736	36	0.000	000	000	014	551	915	228	366	851	806		40625						
	137	438	953	472	37	0.000	000	000	007	275	957	614	183	425	903	320	20 312	5					
	274	877	906	944	38	0.000	000	000	003	637	978	807	091	712	951	660	60156	25					
	549	755	813	388	39	0.000	000	000	0018	818	989	403	545	856	475	830	83078	125					
1	099	511	627	776	40	0.000	000	000	000	909	494	701	772	928	237	915	5039						
2	199	023	255	552	41	0.000	000	000	000	454	747	350	886	464	118	957	57519		125				
4	398	046	511	104	42	0.000	000	000	000	227	373	675	443	232	059	478	7597 7	765	5625				
8	796	093	022	208	43	0.000	000	000	0001	1136	686	837	721	616	029		393798	882	2812	5			
17	592	186	044	416	44	0.000	000	000	000	056	843	418	860	808	014	869	69689	941	1406	25			
35	184	372	088	832	45	0.000	000	000	000	028	421	709	430	404	007	434	34 844	970	0703	125			
70	368	744	177	664	46	0.000	000	000	000	014	210	854	715	202	003	717	7422	485	5351	5625			
140	737	488	355	328	47	0.000	000	000	000	0071	105	427	357	601	001		8587112	242	2675	78125			
281	474	976	710	656	48	0.000	0000	0000	0000	0035	552	713	678	800	500		93556	621	13378	890625			

APPENDIX B. INSTRUCTION EXECUTION CYCLE

A symbolic diagram of the SIGMA 2 instruction execution cycle is shown in Figure 7. The diagram illustrates the major operations involved during execution of instructions by the SIGMA 2 computer, including the effects of the COMPUTE switch, normal interrupt processing, effective address calculation, and protection system controls. The diagram does not in all cases precisely depict actual computer operations and sequences; however, insofar as the programmer is concerned, the diagram is a valid representation of the instruction execution process.

The symbolic notation used in the diagram is consistent with that used in other portions of this reference manual. The symbolic terms are defined as follows:

Term

Definition

C Carry indicator (bit 15 of the program status doubleword)

D The register that holds an instruction while it is being decoded
(D) $0-3$ The operation code of an instruction
(D) 4 Relative address bit
(D) 5 Indirect address bit
(D) 6 Index bit (for post-indexing)
(D) 7 For relative addressing, this bit is the sign of the displacement value; otherwise, it is used to invoke pre-indexing.
(D) 8-15 Displacement value

EI External interrupt inhibit (bit 11 of the program status doubleword)
H The register used to hold the memory address of on instruction while the instruction is being decoded and executed
The memory address of the instruction
II Internal interrupt inhibit (bit 10 of the program status doubleword)
O Overflow indicator (bit 14 of the program status doubleword)

P Program address register (general register 1)
(P) The memory address in the program address register

PP Protected program indicator (bit 8 of the program status doubleword)
(S) The memory address in the memory address register
((S)) The contents of the memory location whose address is in the memory address register
SE Sign extension - the sign of the displacement value is extended 7 bit positions to the left

Term
WFF
Definition
The "wait" flip-flop, which is set to 1 by a specific configuration of the WRITE DIRECT instruction, or by a memory parity error when the PARITY ERROR switches are in the INTERRUPT/NORMAL positions; the flip-flop is reset to 0 by an interrupt level becoming active, or by the COMPUTE switch being moved to the IDLE position

X1 Index 1 (general register 4)
X2
Index 2 (general register 5)

At the top of the diagram, reference point " A ", assume that the COMPUTE switch is in the IDLE position, the H and P registers both contain the address of the next instruction to be executed, the D register contains the next instruction, and the wait flip-flop is reset to 0 .

If the COMPUTE switch is moved to RUN, the computer proceeds to first increment the P register and then decode the instruction in the D register. Since this is the first instruction to be executed in RUN, no interrupt condition occurs at this time.

If the instruction references memory (i.e., is not a copy register-to-register instruction), the computer performs relative addressing, pre-indexing, indirect addressing, and postindexing, as specified by the R, I, X, and S bits of the instruction. In the case of the conditional branch instructions, relative addressing only is performed.
The protection system invokes restrictions upon programs operating in unprotected memory. If the protection system is operative, the protection bit for the instruction's memory address is examined. Then, if the bit is not set to 1 , the instruction is not executed if it is a READ DIRECT or WRITE DIRECT instruction or if it is a STORE A or INCREMENT MEMORY instruction that is attempting to alter protected memory. Also, the instruction is not executed if it has been accessed as the result of a branch from unprotected to protected memory. In the event of a protection violation, the computer triggers the protection violation interrupt level.
If the instruction is MULTIPLY or DIVIDE, and the multiply/ divide option is not implemented in the computer, the computer triggers the appropriate exception interrupt level.
After the instruction is executed, the computer determines whether an interrupt or wait condition is present. If all of the conditions are satisfied for acknowledging an interrupt condition, the computer stores the current program status doubleword in memory and fetches the next instruction from the following location. If a wait condition exists (i.e., as the result of WD X'DO'), the computer waits until an interrupt condition is present or until the COMPUTE switch is placed in IDLE. If no interrupt or wait condition is present, the computer stores the address of the next instruction (taken from P) in the H register, and fetches the next instruction to be executed, stores it in D, and then returns to reference point "A".

Figure 7. SIGMA 2 Instruction Execution Diagram

APPENDIX C. MEMORY ADDRESSING

This appendix describes the manner in which SIGMA 2 memory addresses can be assigned at installation time so that continuous addressing is possible, with no "gaps" between location zero and the highest addressable location in the system.

A minimum SIGMA 2 memory system consists of one integral memory module consisting of $4 \mathrm{~K} \quad 16$-bit words ($K=1024$). This basic memory system can be expanded by:

1. Attaching one to three integral SIGMA 24 K memory increments for a maximum storage capacity of 16 K .
2. Attaching up to three SIGMA 2 external memory banks of 16 K each for a maximum storage capacity of 64 K . Four external banks may be attached if integral memory is eliminated; with either configuration, 64 K is the maximum capcity.
3. Attaching external SIGMA 5/7 memory banks for maximum storage capacity of $316 \mathrm{~K}, 64 \mathrm{~K}$ of which are directly accessible to the SIGMA 2 at any given time.

It is possible to combine integral memory increments with SIGMA 2 and SIGMA 5/7 external memory banks in the same memory system; the total memory cannot exceed 316 K .

The External Memory Adapter Model 1 is used to attach SIGMA 2 memory banks; the Model 2 adapter is used for SIGMA 5/7 banks.

EXTERNAL MEMORY ADAPTER MODEL 1

The Model 1 adapter is used to attach SIGMA 2 external memory banks to a SIGMA 2 CPU. Each memory bank may consist of one $4 \mathrm{~K}, 16$-bit word memory module and from one to three memory increments of 4 K words each. Thus, one memory bank may contain $4 \mathrm{~K}, 8 \mathrm{~K}, 12 \mathrm{~K}$, or 16 K words of storage. As many as four such memory banks may be connected to a SIGMA 2 to provide a total memory capacity of 64 K words. If this is done, one bank may be connected integrally to the SIGMA 2 and each of the other banks connected to the SIGMA 2 via the Model 1; i.e., one adapter per additional bank. Alternatively all four banks may be connected to the SIGMA 2 as external memory.

EXTERNAL MEMORY ADAPTER MODEL 2

The Model 2 adapter is used to attach SIGMA 5/7 memory banks to a SIGMA 2. Each SIGMA 5/7 memory bank may consist of one $4 \mathrm{~K}, 32$-bit word memory module and from one to three memory increments of 4 K words each. As many as eight banks may be connected to a SIGMA 2, via a single Model 2 adapter, to provide a total memory capacity of $316 \mathrm{~K} \quad 16$-bit words (60 K of SIGMA 2 memory and 128K 32-bit words of SIGMA $5 / 7$ memory. Any random 4 K block of SIGMA 2 memory must be reserved for reading in 2K (32-bit word) of the SIGMA 5/7 memory; hence the limitation to 60 K in SIGMA 2 memory). The maximum addressable number of SIGMA 2 words is 64 K . This can
include words read into the SIGMA 2 memory from the SIGMA 5/7 memory.

Besides expanding basic SIGMA 2 memory capacity, external memory banks permit attachment of additional memory ports which allow another device or another SIGMA 2 CPU to access a memory bank and do so asynchronously. A memory port is an access path to the memory cells in a given bank. Each external memory bank that is to be accessed from outside the system must have an additional port. Using the Model 2 adapter, up to five additional ports may be added to each bank; using the Model 1, one additional port per bank is available.

CONTINUOUS ADDRESSING

All the memory cells in one memory bank share a common access port (or ports) and a common set of read/write circuits.

Each bank of SIGMA 2 memory contains two sets of toggle switches. One set defines the starting address (first location) of the memory bank with respect to the entire memory system. The second set of toggle switches defines the range, or number of locations implemented, for the memory bank (i.e., $4 \mathrm{~K}, 8 \mathrm{~K}, 12$, or 16 K). If the bank is an external unit with additional ports, the bank will have an additional set of toggle switches to define the starting address of each port.

A collection of ports on various memory banks that are cabled together is called a memory bus. If the starting address of a port is designated as SA and the range as R, the memory bank recognizes memory addresses $S A$ to $S A+R-1$, on the bus associated with the port. On any memory bus, no address may be recognized by more than a single port, or the system will not operate properly. There is one other rule for setting addresses and ranges at installation time:

The SA for each port on a memory bank must be an integral multiple of the range of the bank, except for a 12 K range. For this range, the SA must be a multiple of 16 K . The SA for a memory bank port must be one of the following:

Range	
Permissible Starting Address	
4 K	$0,4 \mathrm{~K}, 8 \mathrm{~K}, 12 \mathrm{~K}, 16 \mathrm{~K}, \ldots$
8 K	$0,8 \mathrm{~K}, 16 \mathrm{~K}, 24 \mathrm{~K}, 32 \mathrm{~K}, \ldots$
12 K	$0,16 \mathrm{~K}, 32 \mathrm{~K}, 48 \mathrm{~K}, 64 \mathrm{~K}, \ldots$
16 K	$0,16 \mathrm{~K}, 32 \mathrm{~K}, 48 \mathrm{~K}, 64 \mathrm{~K}, \ldots$

Integral memory attached directly to the SIGMA 2 has an implied, unalterable starting address of 0 .

Since XDS software does not handle discontinuous addresses, it is imperative to avoid memory configurations that do not permit memory addresses to be presented as a continuous spectrum from the programmer's point of view.

APPENDIX D. WATCHDOG TIMER

The optional Watchdog Timer (Model 8072) performs three functions:

1. System hangup monitoring.
2. Monitoring of power within the Watchdog Timer chassis.
3. Direct Input/Output (DIO) monitoring.

A typical use of the Watchdog Timer would be in a process control system, detecting and signaling malfunctions due either to program hangups or system failure to respond to a DIO signal. The system must include the optional DIO feature to implement the Watchdog Timer. In addition, if a CPU signal is desired for DIO response failure (no function strobe acknowledge), an optional priority interrupt must be installed.

To detect a system hangup, the Watchdog Timer monitors program continuation signals (see Reset Timer instruction) within predetermined time constraints. Failure to detect a continuation signal within the specified time causes a relay in the Watchdog Timer chassis to close and a system hangup signal to be produced. As an example, this relay may be connected to an audible alarm, so that an operator may take corrective action. The timing interval is selected by manual switch settings. These activate the Watchdog Timer to expect a Write Direct (WD) instruction within either 8 ms , 128 ms , or 1.024 seconds, according to the switch settings. The Watchdog Timer recognizes three WD instructions:

Enable

Disable

Reset Timer

0	R	I	X	S	Displacement		
0		3			0	D	0
0	34		78	11	12		

An Enable WD starts the Timer and must be followed by Reset Timer WDs within the selected time intervals to avoid the system hangup signal. The Disable WD disables and resets the Timer.

Power monitoring is accomplished through a hardware relay in the Watchdog Timer. The relay drops out in case of power failure. This relay, too, may be connected to an alarm or it may be wired in conjunction with the timing feature to provide a fail-safe capability.

DIO monitoring prevents excessive and indefinite delays in CPU operations due to delayed function strobe acknowledge (FSA) signals generated by the controlled device. If the Watchdog Timer fails to detect an FSA within approximately 64 microseconds of the function strobe, it generates an FSA enabling the CPU to continue operations. The DIO instruction associated with the missing FSA is aborted.

The Timer signal may be used to initiate an optional priority interrupt. This interrupt will occur after the system has completed the instruction following the aborted DIO instruction.

Active interrupt level, 11
Arithmetic and control unit, 5-7
Armed interrupt level, 10

Base address, 2,7
Bus, 51

C

Central processing unit, 5-7
Clocks, real-time, 2, 8
Conditional branch instructions, 16
Control panel, 29-32
interrupt level, 9, 10, 31
Copy instruction, 17
Core memory, 2, 4
Counter equals zero interrupt levels, 9, 10
Counter interrupt levels, 8,9

D

Data chaining, 2, 22, 23, 25
Data format, 4
Dedicated memory locations, 10
Device, input/output, condition, 26
interrupts, 25
number, 22
order, 23, 24
Disarmed interrupt level, 10

E

Effective address, 7, 8
Enabled interrupt level, 11

G

General characteristics, 2, 3

H

Hexadecimal arithmetic, 39,40
Hexadecimal-decimal conversion, 41-50

Index, 52
registers, $2,5,6,7,8,14,17,18,21$
Input/output
byte-oriented, 22-26
channels, 1, 22
control doublewords, 22, 23
data chaining, 2, 22, 23, 25
direct-to-memory, 22, 27
external direct, 22,27
instructions, 24, 25
interrupt level, 9, 10, 22, 25
status information, 26, 27

Input/output (cont.)
tables, 24, 25
conditional branch, 16, 17
copy, 17, 19
direct control, 20, 21
execution cycle, 52,53
format, 7
input/output, 25, 26
list, front cover
memory reference, 14-16
timing, 8
copt sysem, 1, 2, 8-13
counter group, 8,9
input/output group, 9, 10
integral groups, 9, 10
override group, 9,10
priority sequence, 12
routine entry and exit, 12, 14, 21
Watchdog Timer, 55

Loading procedure, 30
Memory,
bank, 54
core, 4
dedicated locations, 10
Memory reference instructions, 14-16
P
Parity errors, 2,9, 10
Peripheral equipment, 2,3
Port, 54
Power fail-safe, 2,9, 10
Privileged instructions, 13,20,21
Program status doubleword, 3,5,12
Protection system, 2, 13
Protection violation, 10,13
R
Real-time clocks, 2,8
Registers,
general-purpose, $2,5,18,20,21$
input/output, 3,5,20-28
input/output, 3,5,20-28
protection system, 5, 13, 21
S
Sequence, interrupt priority, 12
States, interrupt level, 10
Status information, input/output, 26
Watchdog Timer, 55

XDS SIGMA 2 OPERATION CODES

Operation code			Mnemonic	Instruction name	Page
0000	RIXS	D	WD	Write Direct	21
0001	RIXS	D	RD	Read Direct	20
0010	RIXS	D	S	Shift	15
0011	RIXS	D	MUL	Multiply (optional)	15
0100	RIXS	D	B	Branch	15
0101	RIXS	D	DIV	Divide (optional)	15
0110	000S	D	BNO	Branch if No Overflow	17
0110	0015	D	BNC	Branch if No Carry	17
0110	0.105	D	BAZ	Branch if Accumulator Zero	16
0110	0115	D	BIX	Branch on Incrementing Index	17
0110	100S	D	BXNO	Branch on Incrementing Index and No Overflow	17
0110	1015	D	BXNC	Branch on Incrementing Index and No Carry	17
0110	1105	D	BEN	Branch if Extended Accumulator Negative	17
0110	-111s	D	BAN	Branch if Accumulator Negative	16
0111	0000	0	RAND	Register AND	18
0111	0001	0	RANDI	Register AND and Increment	19
0111	0010	0	RANDC	Register AND and Carry	19
0111	0100	0	ROR	Register OR	18
0111	0100	1	RCPY	Register Copy	18
0111	0101	0	RORI	Register OR and Increment	19
0111	0101	1	RCPYI	Register Copy and Increment	18
0111	0110	. 0	RORC	Register OR and Carry	19
0111	0110	1	RCPYC	Register Copy and Carry	19
0111	1000	0	REOR	Register Exclusive OR	18
0111	1001	0	REORI	Register Exclusive OR and Increment	19
0111	1010	0	REORC	Register Exclusive OR and Carry	19
0111	1100	0	RADD	Register Add	18
0111	1101	0	RADDI	Register Add and Increment	19
0111	1110	0	RADDC	Register Add and Carry	19
1000	RIXS	D	LDA	Load Accumulator	14
1001	RIXS	D	AND	Logical AND	15
1010	RIXS	D	ADD	Add	14
1011	RIXS	D	SUB	Subtract	15
1100	RIXS	D	LDX	Load Index	14
1101	RIXS	D	CP	Compare	16
1110	RIXS	D	STA	Store Accumulator	14
1111	RIXS	D	IM	Increment Memory	15

[^0]: ${ }^{\dagger}$ Integral and/or external memories may be combined for capacities of $4 \mathrm{~K}-64 \mathrm{~K}$ words.

[^1]: ${ }^{\dagger}$ For single-device controllers, bits $1-2$ and $5-6$ are identical. Some devices only differentiate between the "ready" and "busy" states, rather than identifying four distinct states.

