aecsyUscemio

FORTRAN
PROGRAMMERS
REFERENCE MANUAL

January 1977

This document describes the language elements of the
FORTRAN-10 compiler for the DECsystem-10.

decsysctenmo

FORTRAN PROGRAMMER'S
REFERENCE MANUAL

Order No. AA-0944E-TB

SUPERSESSION/UPDATE INFORMATION: This document supersedes the document of the

same name, Order No. DEC-10-LFORA-D-D,
published June 1975.

OPERATING SYSTEM AND VERSION: Any Digital-supported operating system for the
DECsystem-10.

SOFTWARE VERSION: FORTRAN-10, Version 5

To order additional ccpies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754,

digital equipment corporation - maynard, massachusetts

First Printing, June 1973
Revised: January 1974
October 1974

May 1975

June 1975

November 1975

January 1977

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such

license.

Digital Equipment Corporation assumes no responsibility for the use
or reliability of its software on equipment that is not supplied by
DIGITAL.

Copyright C) 1973, 1974, 1975, 1977 by Digital Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre-
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-10 MASSBUS
DEC DECtape OMNIBUS
PDP DIBOL 0s/8

DECUS EDUSYSTEM PHA
UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX
COMTEX INDAC TYPESET-8
DDT LAB-8 TYPESET-10

DECCOMM DECsystem-20 TYPESET-11

PREFACE

This manual has two parts: PART I, Introduction to Using FORTRAN-10
with SOS, and PART II, FORTRAN-10 Language Manual.

Part I is a short guide to using the DECsystem-10 Operating System.
It describes the minimum set of commands necessary to input, edit, and
execute FORTRAN programs. It assumes that the reader has a
rudimentary knowledge of or is presently learning FORTRAN programming.
It is a guide to implementing FORTRAN on the DECsystem-10.

The complete set of Operating System commands 1is given in the
DECsystem—-10 Operating Systems <Commands Manual (DEC-10-OSCMA-A-D).
The SOS text editor is described completely in the SOS User's Guide
(DEC-10-USOSA-A-D) .

Part II describes the FORTRAN language as 1implemented for the
FORTRAN-10 Language Processing System (referred to as FORTRAN-10).
The language manual (PART II) is intended for reference purposes only.
The reader 1is expected to have some experience in writing FORTRAN
programs and to be familiar with the standard FORTRAN language set and
terminology as defined in the American National Standard FORTRAN,
X3.9-1966. Descriptions of FORTRAN-10 extensions and additions to the
standard FORTRAN language set are printed with gray shading.

Operating procedures and descriptions of the DECsystem-10 programming
environment are included in the appendixes. '

iii

PART I

CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER

PART II

CHAPTER
CHAPTER
CHAPTER

CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX

MASTER TABLE OF CONTENTS

INTRODUCTION TO USING FORTRAN-10 WITH SOS

O JOY WU W

LOGGING IN

TYPING IN YOUR PROGRAM

RUNNING YOUR PROGRAM

CHANGING YOUR PROGRAM

FORTRAN-10 INPUT AND OUTPUT OF DATA
SOME HELPFUL COMMANDS

SAYING GOODBYE TO THE COMPUTER
EXAMPLES

FORTRAN-10 LANGUAGE MANUAL

INTRODUCTION

CHARACTERS AND LINES

DATA TYPES, CONSTANTS, SYMBOLIC NAMES,
VARIABLES, AND ARRAYS
EXPRESSIONS

COMPILATION CONTROL STATEMENTS
SPECIFICATION STATEMENTS

DATA STATEMENT

ASSIGNMENT STATEMENTS

CONTROL STATEMENTS

I/0 STATEMENTS

NAMELIST STATEMENTS

FILE CONTROL STATEMENTS
FORMAT STATEMENT

DEVICE CONTROL STATEMENTS
SUBPROGRAM STATEMENTS

BLOCK DATA SUBPROGRAMS
ASCII-1968 CHARACTER CODE SET
USING THE COMPILER

WRITING USER PROGRAMS

FOROTS

FORDDT

COMPILER MESSAGES

FORTRAN-10 REALTIME SOFTWARE
FOROTS ERROR MESSAGES

INTRO
INTRO
INTRO
INTRO
INTRO
INTRO
INTRO
INTRO

Page

W@ J U S W
| N T T N R B |
[

[\]
|

OCWVWwWJO Ul bW
1

1
HEHERRHERREH B

|
~
[

1

E:O'?Fic
e]

PART I

Introduction to Using FORTRAN-10 with SOS

CHAPTER

CHAPTER

CHAPTER

CHAPTER

CHAPTER

CHAPTER

5

6

CONTENTS

LOGGING IN

TYPING IN YOUR PROGRAM

TO STOP ENTERING LINES INTO YOUR PROGRAM
ENDING OR STORING YOUR PROGRAM(E)

THE RUBOUT OR DELETE KEY (CORRECTING
TYPING MISTAKES)

RUNNING YOUR PROGRAM
THE EXECUTE COMMAND
CTRL/C ("C) (GETTING THE MONITOR'S
ATTENTION
Stopping Your Program's Execution
Deleting a Command
CTRL/U ("U) (CHANGING A LINE)

CHANGING YOUR PROGRAM

THE R SOS COMMAND (CORRECTING MISTAKES IN

YOUR PROGRAM)
SOS COMMANDS

I - Inserting Lines Into Your Program
D - Deleting Lines From Your Program

R - Replacing Lines In Your Program
P

- Printing Lines Of Your Program On

The Terminal

Changing The Line Numbers

- End (Ends Editing and Stores
the Program)

o2
|

EQ - Returning To the Monitor Without

Storing Your Program
A FEW 50S CONVENTIONS
TAB (CTRL/I)
CORRECTING MISTAKES

FORTRAN-10 INPUT AND OUTPUT OF DATA
READ STATEMENT
WRITE STATEMENT
DEVICE UNIT NUMBERS
ACCEPT STATEMENT
TYPE STATEMENT
DATA FILES
Letting FORTRAN Use a Predefined
Filename
Using Your Own Filename

SOME HELPFUL COMMANDS

TYPE COMMAND (PRINTING OUT YOUR PROGRAM)
DIRECT COMMAND (LISTING ALL STORED
PROGRAMS AND FILES)

DELETE COMMAND (ERASING A PROGRAM

OR FILE)

ix

INTRO

INTRO
INTRO
INTRO

INTRO

INTRO
INTRO

INTRO
INTRO
INTRO
INTRO

INTRO

INTRO
INTRO
INTRO
INTRO
INTRO

INTRO
INTRO

INTRO

INTRO
INTRO
INTRO
INTRO

INTRO
INTRO
INTRO
INTRO
INTRO
INTRO
INTRO

INTRO
INTRO

INTRO
INTRO

INTRO

INTRO

CHAPTER

CHAPTER

7

8

CONTENTS (CONT.)

RENAME COMMAND (GIVING A PROGRAM OR FILE
A NEW NAME)

CTRL/O (SUPPRESSNG PRINTED OUTPUT)
GRIPES

SAYING GOODBYE TO THE COMPUTER
KJOB COMMAND (LOGGING OUT)

K/F Command (Fast Logout)

HELP Command (Getting Assistance)
WHAT TO DO IF YOU ARE DISCONNECTED FROM
YOUR JOB (ATTACH)
FORGOT YOUR JOB NUMBER? (SYS)

EXAMPLES

INTRO
INTRO
INTRO

INTRO
INTRO
INTRO
INTRO

INTRO
INTRO

INTRO

le

CHAPTER 1

LOGGING-IN

To begin programming on the DECsystem-10 Timesharing System,
you need an account number and a password. You may also
need to make a telephone connection to the computer; 1if so,
you need the computer's telephone number. Write this
information here:

Telephone Number:
(if needed)

Account Number:

Password:

NOTE

Before logging-in, be sure to read Chapter 7 on KJOB
(logging-out). If you do not log out, but merely
disconnect your terminal, the DECsystem-10
accounting system will not know you have finished
and WILL CONTINUE TO CHARGE YOU FOR TERMINAL TIME.

First, make sure that the terminal is turned on to LINE. 1If
you are to make a telephone connection to the computer, turn
on the acoustic coupler and then dial the telephone number
to make the connection to the DECsystem-10.

The computer now may print a few 1lines 1identifying itself
and will print:

FLEASE LOGIN OR ATTACH -

followed by a line beginning with a period (.). This period
signifies the computer's readiness to accept your LOGIN
command. If the computer does not orint a period, type
CTRL/C ("C). The may appear as an 4 on some terminals.
The computer will respond with a period.

NOTE

To type CTRL/C, hold the Control (CTRL) key down
while typing C. This causes the computer to print
the characters "C on the terminal. In this book,
the symbols “C will mean that you are to type
CTRL/C. 1In order to signal the <computer system
that you wish to give it a command, you can type
“C. This is your way of getting the computer's
attention so that you can give it your next
command.
INTRO-1-1

MONITOR

PASSWORD

LOGGING-IN

Monitor: 1In what follows we shall often call the computer
system the monitor; this 1is the operating system or
executive program that directs the execution of all the
programs and performs the record-keeping duties for the
computer.

You may now log in by typing:

.LOGIN account number <CR> ("<CR>" means carriage
return.)

Example: If your account number were 27,240 you would type

AOGIN 275 240<CR>

NOTE

We shall use the symbol <CR> to show where you are
to press the RETURN key. This key may also be
labelled CR or CAR RET and is often referred to as a
"carriage return". To distinguish between
characters you type and those the computer prints,
uderlining will be used for the characters you, the
user, type.

The monitor will now respond with the lines:

JOB job number system number TTY terminal 1line number
PASSWORD:

(The job number is assigned by the monitor.)

The monitor is now asking for your password. You should
respond by typing your password and pressing the RETURN key.
Since many users prefer to keep their passwords secret, the
password 1is not printed. If your password were the word
TROLL, and if everything you typed were printed, the output
would appear as:

PASSWORD: TROLL
But what actually appears is

FAGSWORD
The monitor signals its acceptance of your account number
and password by typing the time, date, and perhaps a
message. Then it types a period (.) indicating that it 1is
ready to accept your command. What you now have on the page
will look something like this (remember that the underlined
passages are those that you have typed).

Example:

LOGIN 270 240<CR>

SO 25 RE72G0 8Y8S #4072 TTYL06
FASSWORD ¢ <CR>
1242 18-NOV-76 THUR

INTRO-1-2

CHAPTER 2

TYPING IN YOUR PROGRAM

To type in your program, you will wuse an editing program
called SOS. Call SOS by giving the monitor command:

O SO8<CR>
S05 responds with:
FILES

asking you for the name of your file. (The computer stores
your program on a disk.) You must give the file a name by
which you and the computer can refer to it - you may think
of this name as the name of your program. This name must be
from one to six letters or digits. Because the computer can
handle several different computer languages, you must also
declare that this file will be wused to store a program
written in FORTRAN language. This is done by extending the
name of your file with the letters FOR. These letters will
be separated from the filename (or program name) by a
period. Some examples of filenames in which you may store
programs written for FORTRAN are:

ASPEN.FOR
ASC123.FOR
INSPIR.FOR

Whenever you refer to your program, use its full name with
extension.

Now you should type in the name of your file/program.

Example: (Here the name of the file or program is
ASPEN.FOR.)

+R_BOS<CR>

FILES ASFEN.FORKCR>

SOS will now print:
INFUTE ASPEN.FOR
00100

and the carriage will move to the correct position (column
1) for you to begin typing your program. Remember that in a
FORTRAN program, columns 1 through 5 are reserved for the

INTRO-2-1

ESCAPE

SOs

jm

TYPING IN YOUR PROGRAM

statement number, column 6 is the continuation field, and
columns 7 through 72 are for the FORTRAN statement. The
number 00100 that S0S has printed 1is not part of your
program, but is SOS's line number for the first statement of
your program. If this first statement is not a numbered or
comment statement, you must skip 6 spaces (to column 7)
before beginning to type in the statement. When you have
typed in the first line of your program, press the RETURN
key, and SOS will print the next line number (in increments
of 100); vyou may enter the next 1line of vyour program.
Thus, when SOS prints a line number, you know that it is
ready to accept a line of your program. (For a fast way of
skipping the label field, see the section on TAB, page INTRO
4"6-)

TO STOP ENTERING LINES INTO YOUR PROGRAM (ESCAPE)

When you wish to stop entering lines into your program, you
should press the ESCape key (on some terminals labeled ESC,
ALT, ALTMODE, or PREFIX). We shall refer to this key as
ESCape. Pressing the ESCape key causes a $ to be printed on
the terminal.

Example: (In this example, the first statement is a comment
statement: the character C is in column 1.)

~C

+R_BS08<CR>

FILE: ASFEN.FORCCR>
INFUT? ASFEN.FOR
00100 C THIS IS8 AN EXAMFLE.CR>

00200 TYFE_10<CR>

00300 10 FORMAT (' ASFEN IS A NICE FLACE TO SKI!’)XCR>
00400 ENIKCR>

00500 %

b 4

Note that we have two programs that are already stored in
the computer - the system monitor program and SOS. As you
know, the monitor indicates its readiness to accept vyour
command by printing a period (.); SOS indicates 1its
readiness to accept your command by printing an asterisk
(*). When you press the ESCape key, SOS returns with an
asterisk (*) showing that it is ready to accept a command.

ENDING OR STORING YOUR PROGRAM (E)

It is very important, when you have finished writing your
program, that vyou tell SOS you are done and that it should
store your program until you are ready to use it again. You
respond to SOS's request for a command by typing the End
command (the letter E) and the RETURN key.
Example:

XE<CR>

COSKC:ASFEN.FOR1]

INTRO-2-2

RUBOUT

TYPING IN YOUR PROGRAM

In this example, SOS tells us that the program ASPEN.FOR has
been stored on the disk (named DSKC:). Then SOS turns
control over to the monitor, which signals its readiness to
accept your next command by printing a period.

NOTE
The SOS END command, E, is essential. 1If you don't

tell SOS to store your file before you return to the
monitor, your program will be lost.

THE RUBOUT OR DELETE KEY (CORRECTING TYPING MISTAKES)

If you make a mistake while typing a 1line, the RUBOUT
(DELETE or DEL) key allows vyou to correct your mistake
without having to retype the entire line. Press the RUBOUT
key once for each character you wish deleted. This causes
the deleted characters to be printed with a backslash (\)
before and after them. Then, type the correct characters.

Example:

FILES ASPFNNNMNENFORCKCR>

In this example, the character 'N' has been rubbed out.

Example:

00300 10 FORMAT 7 AFEMNEPNSFEN IS A NICE FLACE TO SKI!‘)<CR>

In this example, the RUBOUT key was pressed twice to erase
the unwanted characters PE. Note also that the deleted
characters are printed in reverse order.

Think of the RUBOUT key as a "backspace plus erasure" key!

INTRO-2-3

CHAPTER 3

RUNNING YOUR PROGRAM

THE EXECUTE COMMAND

EXECUTE
EX To execute or cause the computer to follow the instructions
given by the program, command the monitor to:

.EXECUTE filename.extension<CR>
Example:

LEXECUTE ASFENFORKCR>
FORTRAMNS ASFEN

MATN.

LINKS LUOADING

CLNKXCT ASFEN EXECUTIONI
ASFEN 16 A NICE FLACE TO 8KI!

ENG QF EXECUTION
CRU TIMES 0,00 ELAFSED TIME?! 0.135
EXTT

EXECUTE may be abbreviated to EX.

NOTE

You may have been puzzled at the occurrence of lines
written by the monitor before the actual execution
in the above example. They appear because before
your FORTRAN source program can be executed, it must
be translated or compiled into a machine language
program (the object program) that the computer can
execute. This 1is done during the step 1labeled
FORTRAN: filename. This object program, like the
original source program, is stored in a disk file.
Before the program can be executed, a copy of the
compiled or object program must be placed (loaded)
into the working memory of the computer - this copy
is often called a core image of the object wprogram.
This 1is accomplished during the LINK: LOADING step.
Finally, the execution step is performed.

INTRO-3-1

RUNNING YOUR PROGRAM

Few programs will complete execution the very first time you
try to execute them. Do not be discouraged! Chances are
that the compiler will find at least one mistake in vyour
program. To help you find your mistake(s), it will type out
a message to you. For example, suppose that you have made
the following mistake in the program on page INTRO 2-2: in
the FORMAT statement in line 300 the closing quote has been
omitted. The program would look like this:

00100 C THIS IS AN EXAMPLE.

00200 TYPE 10
00300 10 FORMAT (7 ASPFEN I8 A NICE FLACE TO 8SKI!)
00400 END

An attempt to EXECUTE it will cause the following:

EX ASFEN.FORCCR>

FORTRAN? ASFEN

00300 10 FORMAT ¢’/ ASFEN IS A NICE FLACE T0 8SKI!)
PFTNCAL LINE?OO300 NO CLOSING QUOTE IN LITERAL

PTEFTNFWE LINE2OO300 FOUND END OF STATEMENT WHEN EXFECTING A
n)u

UNDEFINED LARELS
10
PTEFTMFTL MAIN. 3 FATAL ERRORS AND NO WARNINGS
LINK? LOADING
CLNKNSA NO START ANDRESS]

EXTT

If the compiler has found errors in your vorogram that make
execution impossible, you will again have to call on SOS to
help you correct your program. Do this by using the R SOS
command discussed in Chapter 4.

NOTE
The compiler will only print error messages for
cases where the program is not clearly understood.
It is possible to have a program that consists of
valid FORTRAN statements, but gives the wrong
answers. For example, suppose you intended to enter
TAX = RATE*AMOUNT
but by mistake typed

TAX = RATE+AMOUNT

INTRO-3-2

(@}

RUNNING YOUR PROGRAM

The compiler cannot detect this as an error because
both are possibly valid formulas. Errors of this
type (logic errors) are the most difficult to find.
The program will run, but the answers will be wrong.
Frequently the author of the program will read the
statement and see what he meant to write instead of
what he actually wrote. One extremely valuable
method of finding errors of this kind is to attempt
to explain to someone else why the program should
work. The act of explaining will often highlight
the error. Another method of locating errors is to
have another programmer "proofread" your code.

CTRL/C ("C) (GETTING THE MONITOR'S ATTENTION)

CTRL/C informs the monitor that you wish to give it a
command. The monitor interrupts whatever the computer is
doing and prints a period to indicate that it is ready to
accept your command. To type CTRL/C, hold the Control
(CTRL) key down while typing C.

Stopping Your Program's Execution

CTRL/C interrupts a program during execution, returning
control to the monitor. Sometimes it is necessary to type
CTRL/C twice to interrupt a program.

Example:

CEXECUTE ASFEN.FORKCR>
FORTRAN? ASFEN

“CmC

Deleting a Command

You may also use CTRL/C to delete the line you are presently
typing and return control to the monitor.

Example:

JEXECUTE ASFEN.FOR™C

Typing "CONT" in answer to a monitor prompt will return you
to your previous activity IF AND ONLY IF you have not:

. tampered with the core image, OR
. caused the FORTRAN compiler image in core to be
overwritten.
If, for instance, you interrupt the executing program to
send a message to someone on another terminal, you can

INTRO-3-3

le

RUNNING YOUR PROGRAM

return. If you, say, request a directory activity, then the
FORTRAN compiler 1is overwritten and you cannot return to
your previous activity. When in doubt, wait wuntil the
execution 1is complete, unless vyou want to restart the
execution anyway.

CTRL/U ("U) (CHANGING A LINE)

CTRL/U deletes the entire line you are typing and moves the
carriage to the beginning of the next line. You may then
retype the line. Note that CTRL/U only deletes that part of
the 1line you have typed and not the part the computer
prints, i.e., in the following example the 1line number |is
not deleted. CTRL/U is typed by holding the Control (CTRL)
key down while typing U.

Example:
01800 40 SROOT = SRT (NISCY U
40 SROOT = SQRT (LISCIKCR>
01900

In this example, CTRL/U deletes your input line, which vyou
then reenter. CTRL/U does not delete the line number, 1800,
printed by SOS.

If you wish to delete the line entirely, follow CTRL/U with
the RETURN key.

INTRO-3-4

INSERT

CHAPTER 4

CHANGING YOUR PROGRAM

THE R SOS COMMAND (CORRECTING MISTAKES IN YOUR PROGRAM)

To correct a mistake in a program, you must return to SOS.
As we saw on page INTRO 2-1, we turn control over to SOS by
commanding the monitor:

Jr BOEKCR>
SOS responds with:
FILES QUAD.FORCCR>

and we type the filename and extension, in this case
QUAD.FOR. But now SOS recognizes that this program already
exists and correctly assumes that, instead of inputting a
file, you wish to edit it. SOS thus types:

EOLTE QUADFOR
X

The asterisk (*) indicates that SOS is at your command. The
remainder of this section 1lists S0S commands that are
essential for typing and editing simple FORTRAN programs.
Use the ESCape to terminate these commands.

SOS COMMANDS

I - Inserting Lines Into Your Program

To Insert lines into your program beginning with line 2700,
for instance, you give SOS the command:

*IL2700<CR>

SOS types out each line number, and you respond by inserting
the 1line into the program. When you press the RETURN key
after typing each line, SOS will type the next line number.
(This is called "Insert Mode".)

INTRO-4-1

CHANGING YOUR PROGRAM

Example:

E 70K CR>

TF sty 20y 30y 4AXCR>
45 ROQTL = (~R 4+ SORT (NISC))/ (2¥ACR>
Q200
Terminate the Insert command by typing ESCape

(ALTMODE/PREFIX) ; this causes a $ to be printed on the
terminal.

Example:
KL A4D0OKCR>
4000 20 WELTE (5s 701<KCR>

04100 #
E

Note that in the above examples, SOS has numbered the lines
in increments of 100. The reason for providing this
increment is to allow you room tO maneuver - suppose you
have accidentally omitted lines that must now be Inserted,
or suppose you now find it necessary to changes vyour
original program. If you have left out 2 lines that should
have gone between lines 3200 and 3300, you may Insert these
lines by changing the increment size, say, to 20, using the
command:

*IZ210220KCR>

This allows you to Insert lines 3210, 3230, 3250, 3270, and
3290 into your program. The size of the increment is of no
importance as long as it is small enough to accommodate all
additional 1lines. Each time you change the increment size,
the new size is kept until you change it.

Example:

X¥I3210920<CR>

03210 WEITE (5, 50) ROOTL» ROOTXCR>

323G 50 FORMAT (7 ROQTS ARE sy F10.2y “ANI’y F10.2)XCR>
032GE0 B

X

If you try to insert a line whose 1line number 1is greater
than or equal to that of the next existing line, SOS will:

. use a different line number, or
. ignore the command entirely

INTRO-4-2

1=

DELETE

R

REPLACE

CHANGING YOUR PROGRAM

D - Deleting Lines From Your Program

To delete line 500 from your program, type
Example:

*NEO00<KCR>
L LINES (005001 DELETED
¥

If you wish to delete lines 1400 through 1600 from vyour
program, use:

*¥0140021600<CR>

Example:

k014002 1600<CR>
I OLINES (014007181600 DELETED
X

R - Replacing Lines in Your Program

The Replace command is a combination of a Delete command
followed by an 1Insert command. To instruct SOS to delete
line 1700 and to begin inserting lines at line 1700, use the
Replace command:

¥R1700<CR>

This is equivalent to the command D1700 followed by the
command I1700.

Example:
¥R1700<CR>
01700 60 FORMAT (7 ROOT 1872 F10.2)XCR>
1 LINES (01700/1) DELETED
X

To replace lines 500 through 700 use:

*¥RE00:700<CR>

This is equivalent to D500:700 commanding SOS to delete
lines 500 through 700, followed by the command 1I500
instructing SOS to begin inserting lines at 500.

INTRO-4-3

|

PRINT

CHANGING YOUR PROGRAM

Example:

¥REDO L ZO0KCR>
QOGO &0

=
o

COETVE COEFFICTENTS”)<CR>

QCGHO0 i (e 10) Ay Re KCRD
Q0700 14 FORMAT (F10.23<CR>
FIOLINES (0G0 C00700) NELETED

X

If you also wish to change the increment size to 10, use the
Replace command:

KRIOOD: 1100 1OKCR>

This is equivalent to the command D1000:1100 followed by the
command I11000,10.

Example:

¥R1000:1100 LOKCR>

01000 40 SROOT = SQRT (DISEIKCR>

01010 DENOM = 2¥A<CR>

01020 ROOTL = (B + SROOT) 7/ DENOMCCR>
01030 ROOTZ = (~k ~ SROOT) 7/ DENOM<CR>
01040 %

2 LINES (0100018011000 DELETED

¥

As with the 1Insert command, to terminate the Replace
command, use the ESCape as in the above example.

P - Printing Lines of Your Program on the Terminal

If you wish to print line 1800 of your program, type

*FLBOOKCR>

Example:

¥ 1L B8IOQKCR>
01800 40 GROOT = SART (NISC)
*
To print lines 2700 through 3000 of your program, use

¥FE70013000KCR>

INTRO-4-4

NUMBER

| =

END

QUIT

CHANGING YOUR PROGRAM

Example:

ROQT = R/ (2%A)

WRITE (352 &60) ROOT

FQRMAT (7 ROOT I8 7"y F10.2)
GO TO 100

N - Changing the Line Numbers

The Nuinber command instructs SOS to renumber your ©vrogram
beginning at 1line 100 in increments of 100. SOS does not
print anything on the terminal. If you wish to see the
renumbered program, you must use the Print command.

Example:

#N<CR>
%

E - End (Ends Editing and Stores the Program)

Wwhen you have completed editing your program, inform 350S
that it should now store your program on the disk by typing
E (end). 1If you do not instruct 50S to store your program,
the editing you have just completed will be lost.

Example:

¥ELCR>

CUSKCIAUALL FORLZ27 » 24011

This indicates that the program named QUAD.FOR has been
stored on DSKC:. The End command turns control over to the
monitor, which prints a period to indicate its readiness to
accept your next command.

EQ - Returning to the Monitor Without Storing Your Program

If you decide that the current editing session is worthless,
you may return to the monitor without storing your program
by using the Quit command.

INTRO-4-5

TAB

CHANGING YOUR PROGRAM

Example:
*EQLCR>

«

This restores the original copy of the program as it was
when vyou last typed R SOS. If the program is a new one, it
is deleted since an original program did not exist.

A FEW SOS CONVENTIONS

1. A range of lines is indicated by a <colon between the
first and last line numbers of the range, i.e., 500:700.

2. A period represents the current line. Thus, D. means
delete the current line.

Example:

DO7O0 80 FORMAT (70GIVE COEFFICIENTS?)
X1, <CR>

1 LINES (00700/1) DELETED

X

In the above example the current line is line 700 and it
is deleted.

3. An asterisk is used to represent the last 1line of the
file. Thus, to instruct SOS to print out your entire
file use:

X0 ¢ k<CR>
TAB (CTRL/I)

The TAB or Horizontal Tab (sometimes labeled HT or-—) is
handy when vyou are entering lines into your program. The
TAB, similar to that on a typewriter, is set at 8-character
intervals. It moves the carriage to the next column that is
a multiple of 8; no characters are output on the terminal.
As you know, a FORTRAN statement must be located within
columns 7 through 72, although it may appear at any point
within this range. Using the TAB to skip over all or part
of the label field will bring the carriage to column 8,
enabling you to begin your FORTRAN statement in that column.
If your terminal does not have a key labeled TAB, use CTRL/I
instead. To type CTRL/I, hold down the Control (CTRL) key
while typing I.

CORRECTING MISTAKES

To correct one or more characters use the RUBOUT key (see
page INTRO 2-3).

To change an entire line use CTRL/U (see page INTRO 3-4).

INTRO-4-6

CHANGING YOUR PROGRAM

Example:

K¥IOLEOO TUCCRY
L2000<KCR>
2000

In the above example, CTRL/U ("U) allows you to change the
command "Delete line 1500" to an insert command.
Example:
i SO8<CR>
FILE? ZELUA.FORKCR>
INFUT? ZELDAFOR
00100 C THIS PROGRAM DOES NOTHING .<CR>
00200 TYFE 10<CR>
00300 10 FORMAT (7 IT7’8 WORKING!)I<CR>
00400 TYENENFE 20<CR>
00500 4
*F400<CR>
00400 TYFE 20
KISOOKCR>
00500 20 FORMAT (7 WHAT I8 YOUR NAME?’)XCR>
00600 ACEFT 30y YORNAM U
ACCEFTYT 30y YORMAMCCR>
00700 30 FORMAT (ASIKCR>
00800 TYFE 40y YORNAMCCR>
00900 40 FORMAT (707y “HIy’» A%y ‘10 YOU EANTZXCR>
01000 %
*KRPOOLCR>
00900 40 FORMAT (‘OHIs’ » A%y 7 s00 YOU’)I)<CR>
01000 TYFE SO0<KCR>
01100 a0 FORMAT ¢~ WANT TO RE FRIENDS?)IKCR>
01200 ENIKCR>
01300 %
1 LINES (00900/1) DELETED
*¥RP00$1100KCRY
00900 40 FORMAT (“OHIy ‘y ASy ‘y WANT TO RE FRIENDS?Z)KCR>
01000 $
3 LINES (00900/1:01100) DELETED
KNSCR>
XFO ¢ ¥<CR>
00100 C THIS FROGRAM YOES NOTHING.
00200 TYFE 10
00300 10 FORMAT (7 IT’’S WORKING!)
00400 TYFE 20
00500 20 FORMAT (7 WHAT IS YOUR NAME?’)
00600 ACCEFT 30y YORNAM
00700 30 FORMAT (AS)
00800 TYFE 40y YORNAM
00900 40 FORMAT (70HIy ‘y ASy ‘y WANT TO RBE FRIENDST’)
01000 END
¥E<CR>

CRSKCE ZELDALFORI

INTRO-4-7

CHANGING YOUR PROGRAM
Let us look at the above example in detail.
HOBOS<KCR>
Commands the monitor to turn control over to the editor

program SOS.

FILES ZELDA.FORCCR>

SOS requests the name of the file you wish to edit. You
respond with the name of your file or program: ZELDA.FOR.

INFUTE: ZELDAFOR
00100 C THIS FROGRAM DOES NOTHING.<KCR>

When SOS fails to find a file by this name, it concludes
that you intend to create a new file. SOS then prints the
name of the file and the first line number. Now you are
ready to enter the first line of the program. '

00200 TYFE 10<CR>

Each time you finish typing a line and press the RETURN key,
SOS prints out the next line number so that you may input
that line. In typing line 200, the first character actually
typed was a TAB (CTRL/I), which caused the label field to be
skipped over; this avoids the necessity of counting spaces
so that our FORTRAN statement would begin in the proper
column. TAB is a non-printing character.

00300 10 FORMAT ¢ IT’’8 WORKING!Z)<CR>

This statement 1is labeled. After typing the FORTRAN
statement label (10), vyou type the non-printing character
TAB (CTRL/I) to skip over the remainder of the label field.
Remember that the first character of a printing FORMAT
statement must be the carriage control (here a blank, which
means single space output). Notice that because apostrophes
are used to enclose literal fields, they are not allowable
characters within a 1literal field but must instead be
represented by two successive apostrophes. 1In other words,
although line 300 appears in the program with two successive
avostrophes (IT''S), in the execution it causes the word
IT'S to be printed (see the EXECUTION which follows).

00400 TYENENFE 20<CR>

Again, a non-printing TAB is used here to skip over the
label field. The RUBOUT key erases the E.

00500 ¢
The ESCape key terminates the input of 1lines into the
program.

*F400<CR>

INTRO-4-8

CHANGING YOUR PROGRAM

SOS is now ready for a new command. You ask it to print
line 400.

03400 TYFE 20
SOS prints line 400.
¥EGOOKCR>
Your next step 1is to insert 1lines into vyour ©program

beginning with line 500.

D0G00 20 FORMAT (7 WHAT IS YOUR NAMET’)<CR>

You type line 500 into your program.

00600 ACEFT 30y YORNAM U
ACCEFT 30y YORNAMCCR>

After typing in line 600 but before pressing the RETURN key,
you pause and notice that vyou have misspelled ACCEPT.
CTRL/U ("U) deletes the 1line, which vyou then retype
beginning with the non-printing TAB.

00700 30 FORMAT (ASIKCR>
Q0800 TYFE 40» YORNAMCCR>
00900 49 FORMAT (/07 ‘HIy“sA%» ‘10 YOU EANTZI)KCR>

01000 k4
You enter lines 700 through 900 into vyour program and
terminate the insert. The carriage control '0' in the
FORMAT statement causes the output to be double spaced.

XRPOOKCR>
At this point, you decide to replace 1line 900. The R900

command causes it to be deleted and initiates an Insert
command beginning with line 900.

00900 40 FORMAT (“OHIys” s A%y ‘- s10 YOUZ)KCR>
01000 TYFE SOKCR>

00100 a0 FORMAT (~ WANT TO RE FRIENDS?’)KCR>
01200 ENIKCR>

01300 $

1 LINES (00900/1) DELETED
When you use the ESCape key to terminate the insert command
(initiated by the replace command), SOS informs you that one
line (line 900) has been deleted.

XRPOO:L1O0O0KCR>

INTRO-4-9

CHANGING YOUR PROGRAM

You decide to replace lines 900 through 1100.

00900 40 FORMAT (“OHTy 7y A%y 7y WANT TO RE FRIENIST’)IKCR>
01000 *
3 LINES (009200/1:01100) DELETEDR

Line 900 is replaced and the command 1is terminated. S0S
confirms that three 1lines (900 through 1100) have been
deleted.

*¥M<CR>
530S is now asked to renumber the lines beginning with 100

and in steps of 100.

O HSCR>

You instruct SOS to print out your entire program.

*E<SCR>

To conclude the editing session, instruct SOS to store vyour
program on the disk.

[OSKCTZELDAFORT

Your program has been stored on DSKC:. The monitor 1is now
in control.

The EXECUTION of the above program:

cEX ZELDAFORCCRY
FORTRAN? ZELDA

MAIN.

LINKS LOADING

CLNKXCT ZELDA EXECUTIONI
IT’S WORKING!

WHAT T8 YOUR NAME?
HAL<LCR>

HI» HAL v WANT TO RE FRIENDS?
END OF EXECUTION

CFU TIME: 0.10 ELAFSED TIME: 10.20
EXIT

INTRO-4-10

CHAPTER 5

FORTRAN-10 INPUT AND OUTPUT OF DATA

Although FORTRAN-10 is essentially the same as standard
FORTRAN, a few minor differences do arise in statements that
involve the input and output of data.

READ STATEMENT

READ The statement
READ (u,f)list
where u=device unit number and
f=FORMAT statement number
reads data from the device with unit number u (refer to the

section on Device Unit Numbers, below) according to the
specifications given by FORMAT statement f.

Example:
00800 READ (Hy 335) IGRALE
00900 35 FORMAT (13D

WRITE STATEMENT

WRITE This has the form
WRITE (u,f) list
where u=device unit number and

f=FORMAT statement number

Example:
01000 WRITE (1s 30) (STUONTC(I)»I=1+8)s IGRADNE
01100 30 FORMAT (8A5Gy 13)

NOTE
The ERR option of the OPEN and CLOSE statements is

also applicable to the READ and WRITE statements.
Refer to Chapter 12

INTRO-5-1

ACCEPT

TYPE

FORTRAN-10 INPUT AND OUTPUT OF DATA

DEVICE UNIT NUMBERS

In READ and WRITE statements, we must specify to which
device (Disk, Line Printer, Terminal, etc.) we are
referring. For the DECsystem-10, the device unit numbers,
u, are uniform - they are the same on all DECsystem-10s.
The most commonly used are:

Device Device Unit Number,u
Disk 01
Card Reader 02
Line Printer 03
Terminal 05

(For a complete list see FORTRAN-10 Language Manual, Table
10-1.)

Thus, WRITE (5,7) causes output to be printed on vyour
terminal; READ (1,25) causes data to be read from the disk.

ACCEPT STATEMENT

To input data from the terminal you may use
ACCEPT f,list

where f=the FORMAT statement number.

Example:
00500 ACCERFT 20 TGRADE
004600 20 FORMAT (13)

Thus, "ACCEPT f,list" is equivalent to "READ (5,f) list".

TYPE STATEMENT

To have output typed on your terminal use
TYPE f,list

where f=the FORMAT statement number.

Example:
00200 TYFE 10
Q0300 10 FORMAT (7ASFEN IS A NICE FLACE TO SKI!’)

Thus, "TYPE f,list" is equivalent to "WRITE (5,f) 1list".

NOTE

To print something on your terminal, you must include a
carriage control character similar to the way you do for
a line prnter. For example, to print the word HELLO on
your terminal, use the format statement below:

Q0200 TYFE 101
00300 101 FORMAT (7 HELLQO’)

INTRO-5-2

OPEN

FORTRAN-10 INPUT AND OUTPUT OF DATA

The space before HELLO tells the system to start on a
new line.

DATA FILES

You may use data files in one of two ways:

1. In the first method, you let FORTRAN use a wpredefined
filename.

2. In the second method, you choose the filename by using
the OPEN statement.

Letting FORTRAN Use A Predefined Filename

There are six Device Unit Numbers for disk files; whenever
you use one of them, FORTRAN uses a predetermined filename.
Te device numbers and their filenames are listed below.

Device Unit Number Filename
1 FORO1.DAT
20 FOR20.DAT
21 FOR21 .DAT
22 FOR22.DAT
23 FOR23.DAT
24 FOR24 .DAT
NOTE

If you omit the filename from an OPEN statement,
FORTRAN uses the filename <corresponding to the
device unit number.

Examples:

D200 WEITE (1y101) X Writes the value of X 1in
the file FORO1.DAT,
according to FORMAT
statement 101.

00300 READ (234109) Y Reads the value of Y from
the file FOR23.DAT,
according to FORMAT

statement 109.

Using Your Own Filename

To use your own filename, place an OPEN statement before the
first READ or WRITE statement that accesses the file. The
OPEN statement has the format:

OPEN (UNIT=n, FILE='filename.ext')

n is the device unit number, and filename.ext is the name of
the file you want to use.

INTRO-5-3

CLOSE

FORTRAN-10 INPUT AND OUTPUT OF DATA

Example:
Q0200 OFEN CUNIT=20y FILE=TEST.DAT)
Instructs FORTRAN to open
the file TEST.DAT on
logical unit number 20.
QO300 READ (209108 Y Reads Y from logical unit

number 20. (The file
name implied is the same
as the file name in the
OPEN statement with the
same logical unit
number.)

After the last READ or WRITE statement that accesses a file,
it 1is recommended (though not required) that you include a
CLOSE statement. The CLOSE statement has the format:

CLOSE (UNIT=n, FILE='filename.ext')

n is the device unit number, and filename.ext is the name of
the file you are closing.

Example:
QOGHO0 CLOSE (UNIT=20s FILE=/TEST.DAT?)

Closes the file TEST.DAT on logical unit number 20.

INTRO-5-4

TYPE

DIR

CHAPTER 6

SOME HELPFUL COMMANDS

TYPE COMMAND (PRINTING OUT YOUR PROGRAM)

Usually you will have made many changes in your program. If
you would like the monitor to TYPE out your program on your
terminal as it now stands, command it to:

.TYPE filename.extension<CR>
Example:

+TYPE ASFEN.FOR<KCR>
00100 C THIS I8 AN EXAMFLE.

00200 TYFE 10
00300 10 FORMAT (7 ASFEN IS A NICE FLACE TO SKI!’)
00400 END

+

DIRECT COMMAND (LISTING ALL THE STORED PROGRAMS AND FILES)

The DIRECT command causes the monitor to 1list all the
programs and files stored in disk files under your account
number. It also lists the length of each program or file in
terms of DECsystem-10 disk blocks (a disk block is 640
characters) and the data on which each was created. This
command may be abbreviated to DIR.

Example:

I F\'<CR>

ASFEN REL 1 <055 18-NOV-76 LSKC [2792401]
ASFEN Q0R 1 <055 18-NOV~-76
ASFEN FOR 1 055> 18~NOV-76
NEW QOR 2 055 18~NOV-76
Qauan REL 3 QGG 18-NOV-76
NEW FOR 2 055 18-~-NOV--76
AUATD QROR 2 055 18-NQV-76
SNOW FOR 1 =055 18-NOQVU-76
QAUAD FOR 2 055 18~NOV-76

TOTAL OF 15 BLOCKS fN 9 FILES ON DSKC: L[2752401

*

These files belong to the programmer (s) with account number
27,240.

INTRO-6-1

SOME HELPFUL COMMANDS

You may find that files you did not create are also listed.
These may be programs and files created by the computer in
editing and compiling your program. The compiled program is
contained in a file named "filename.REL" where the filename
is the same one that you used. If you have edited vyour
program there will be a program whose name is identical to
yours except that it has a Q as the first 1letter of the
extension. This is a backup file containing your program as
it existed prior to your most recent editing of it. Each
time your program is edited, the program immediately before
editing becomes the backup, and the previous backup - if it
existed - is lost. 1In the foregoing example, the only files
explicitly created were ASPEN.FOR, NEW.FOR, SNOW.FOR, and
QUAD.FOR. The backups are ASPEN.QOR, NEW.QOR, and QUAD.QOR.
SNOW.FOR has not been edited, so it has no backup.

DELETE COMMAND (ERASING A PROGRAM OR FILE)

DELETE To erase a file from the disk, command the monitor to:
.DELETE filename.extension<CR>
Example:
JOELETE ASFEN.FORCCR>
FILES DELETEIDG

ASFEN . FOR
01 RLOCKS FREED

RENAME COMMAND (GIVING A PROGRAM OR FILE A NEW NAME)

RENAME To rename a file use the command
.RENAME newfilename.extension = oldfilename.extension<CR>
Example:
« RENAME EXAMF . FOR=5NOW.FORKCR>

FILES RENAMEL:
SNOW . FOR

This will cause the name of SNOW.FOR to be changed to
EXAMP.FOR

CTRL/O (SUPPRESSING PRINTED OUTPUT)

lo

CTRL/O ("0) stops printed output on the terminal The program
sending the output CONTINUES TO RUN. Use CTRL/O, for
example, to stop the message of the day during LOGIN or to
stop the monitor as it TYPEs a program you have asked for.
CTRL/O is typed by holding the Control (CTRL) key down while
typing the letter O.

INTRO-6-2

GRIPE

SOME HELPFUL COMMANDS

Example:

cTYFE ASFEN.FORCCR>

00100 C THIS IS AN EXAMFLE .
40200 TYFE 10

Q0300 ~0

3

Although CTRL/C also stops output on the terminal, it also
stops program execution.

Complaints to the Computer - the "Court of Last Resort"

When all else fails and you must gripe to someone, GRIPE to
the computer by commanding the monitor to:

o GRIFECCR>
The computer will respond with:

YE&ST (UEFRESS ESCAFE KEY WHEN THROUGH)
Now enter your gripe and press the ESCape key when you have
finished. Remember that typing ESCape causes a $ to be
printed.
Example:

FOGRIFECCR>

YEST (DEFRESS ESCAFE KEY WHEN THROUGH)

THIS CONSOLE IS ALMOSYT OUT OF FAFER.$
THANK YOU

INTRO-6-3

KJOB

KILL
PRESERVE
SAVE

CHAPTER 7

SAYING GOODBYE TO THE COMPUTER

KJOB COMMAND (LOGGING-OUT)

To say goodbye to the computer, command the monitor to KJOB
(KillJosB) :

«KJOBR<CR>
The monitor will respond with

CONFIRM2

Should you now decide to abort the logout, type CTRL/C ("C).
If you still wish to logout, you must instruct the monitor
to kill, preserve, or save each of your disk files. If a
file 1is killed, it 1is erased from the computer memory;
saved and preserved files, on the other hand, are retained
in the <computer memory. Preserve and save are essentially
alike except in the matter of protection against inadvertent
loss or destruction. Preserve, unlike save, protects your
files from accidental destruction by another user who shares
your account number. This may occur if, for instance, the
other user fails to recognize the name of your ©program
during his logout and, failing to see any need for its
preservation, kills it. To take advantage of the protection
afforded by the preserve file status, it is best to respond
to the CONFIRM with the letter U:

CONFIREM: U <CR>

This will automatically preserve any files that have already
been preserved during a ©previous logout. After you have
typed in the letter U and pressed the RETURN key, the
monitor will 1list the name and storage information of each
unpreserved file stored in your disk area, pausing after
each name for vyour response. Following the name of each
file you must respond by typing one of the three commands:

(a) K if you wish to kill the file,
(b) P to preserve it, and
(c) S to save it.

Please remember the saved or preserved files occupy valuable
space on the disk.

In general, the only files you need preserved have the
extension FOR. If you have no further changes to make in
your program, you may preserve the compiled version - this
will have the extension REL.

INTRO-7-1

SAYING GOODBYE TO THE COMPUTER

NOTE

The DECsystem-10 offers the option of detaching the
terminal from your job, thereby freeing the terminal
and the telephone line for another task while your
oprogram 1is executing. (This option is, of course,
only used for programs with 1long execution times;
for details see the DECsystem-10 Operating System
Commands Manual.) Therefore, TURNING OFF THE
TERMINAL OR BREAKING THE TELEPHONE CONNECTION TO THE
COMPUTER DOES NOT END YOUR JOB, NOR DOES IT STOP THE
COMPUTER CLOCK; ONLY THE COMMAND XJOB WILL DO THIS.
If you should inadvertently hang up without using
KJOB, the computer clock, thinking that you have not
yet completed your Jjob, will keep ticking and
CHARGING YOU FOR TERMINAL TIME. So please remember
to USE KJOB BEFORE LEAVING THE TERMINAL. If vyou
should be accidentally disconnected, always call
again and end your job properly. (See page INTRO

7_30)

Example
+RJOB<CR>
CONFIRM: U<CR>
NSKAL
newe:
ASFEN +REL SRLKS ¢ 8<CR>
AGFEN +QOR S.BLKS t K<CR>
NEW «QOR 9 RLKS ¢ K<CR>
QUAD .REL 5BLKS t 8<CR>
EXAMF JFOR e BLKS ¢t S<CR>
QUAD . QOR S RLKRS ¢ K<CR>
SNOW FOR S.RLKS t F<CR>
QUAD JFOR S RLKS t F<CR>
NEW +FOR S RLKS i K<CR>
AGFEN +FOR G RBLKS ¢t P<CR>
NSKE?

JOR 28y USER 127,2401 LOGGED QFF TTY106 1430 18-NOQV-76
DELETED 4 FILES (20 BLOCUKS)

SAVED FILES (30 RLOCKS)

RUNTIME 32.34 SEC

K/F Command (Fast Logout)

K/F For a fast logout in which all programs and files are saved,
use

+ K/F<CR>
Although this form of the KJOB command has the advantage of

being fast, vyou cannot ©preserve the programs you wish to
keep nor kill those you no longer need.

INTRO-7-2

ATTACH

SAYING GOODBYE TO THE COMPUTER

Example:

«KZF<CR>

JOR 2EVUSEREZ27 2400 LOGGED OFF TTY106 1432 18-NOV-76
SAVED ALL FILES (30 RLOCKS)

RUNTIME 1.35&8 SEC

HELP Command (Getting Assistance)

To get assistance during logout, type H (for Help) and the
monitor will respond.

WHAT TO DO IF YOU ARE DISCONNECTED FROM YOUR JOB (ATTACH)

Although this can happen to anyone, it will most often
happen when the telephone 1lines connecting you and the
computer break that connection. If necessary, redial the
telephone number to the computer. Under normal conditions,
the computer will print:

FLEASE LOGIN OR ATTACH
You will wish to attach yourself to the job on which you had
been working. To do this you must know its job number.
This is given after your LOGIN command. For example, in the
LOGIN example on page INTRO 1-3, the job number is 25.
You may attach to a job by using your account number

.ATTACH job number [account number]

The programmer with account number 27,240 may attach to job
25 by typing:

CATTACH 2% L27y2401<CR>

If the programmer with this account number is the owner or
originator of job 25, the monitor asks for his password.
Otherwise, access to the program 1is denied. As during
LOGIN, the password is not printed. 1If the password is
accepted, the monitor prints a period and the programmer now
is attached to his job.

Example:

ATTACH 2% [2752401<CR>
FASSWORIS <CR>

NOTE

Account numbers are often called Project-Programmer
Numbers (PPNs). In the ATTACH command, the account
number must be enclosed in square brackets []. If
your terminal does not have keys labeled [and 1,
use SHIFT/K for the 1left square bracket, [, and
SHIFT/M for the right square bracket,].

INTRO-7-3

SAYING GOODBYE TO THE COMPUTER

FORGOT YOUR JOBNUMBER? (3YS)

Suppose you have forgotten your job number. You have thrown
away your LOGIN, or perhaps you are using a Visual Display
(CRT) terminal and the LOGIN has long since disappeared from
the screen. What now? You may find out which jobs are
being run under your account number by typing:

.5YS [account number]<CR>
Example:

cBYR [2722407<CR>

idw] DEY 3 “CoSW 1
¢ BJOR<CR>

SATTACH 28 £2742401<CR>

FaESWORIE <CR>

Here, the orogrammer with account number 27,240 wishes to
find out which jobs are logged in under his account number.
The monitor answers that job 25 is logged in under account
number 27,240 and that this job is DETached from a terminal.
Then the programmer ATTACHes to job 25.

The SYS command may be given whether or not the user is

logged in. If the user is not logged in, the SYS command
automatically ends with the KJOB command.

INTRO-7-4

CHAPTER 8

EXAMPLES

Example 1 (Executing a Program More than Once):

This program computes the roots of the quadratic equation ax +bx+c=0.
Note that FORTRAN statement labels may be in any order and also that
carriage control characters are necessary for each of the printing
FORMAT statements.

< TYFE QUAD . FOR<CR>

00100 C THIS FROGRAM COMFUTES THE ROOTS OF A
Q0200 C QUADRATIC EQUATION OF THE FORM:?

00300 C 2

00400 C AX + BX + C = 0
QOH00D C

00600 WRITE (5 80)

00700 80 FORMAT (/0GIVE COEFFICIENTS’)

Q0800 READ (Sy 10) Ay Ry C

00900 10 FORMAT (F10.2)

01000 C

01100 C CALCULATE THE DISCRIMINANT
01200 DISC = R¥B - 4%AXC

01300 C

01400 (» no THE RIGHT THING ACCORDING TO THE SIGN OF nIsC

013500 IF (nIsc) 20s 30y 40

01600 c

01700 C FOSITIVE DISCRIMINANT

01800 40 SROOT = SQRT (DISC)

01900 NENOM = 2X%A

02000 ROOT1L = (=R + SROOT) / DENOM
02100 ROOT2 = (~R - SROOT) / DENOM
2200 WRITE (3, 90) ROOT1s ROOT2
02300 50 FORMAT ¢/ ROOTS ARE’» F10.2s 7 AND‘y F10.2)
02400 GO 1O 100

02500 C

02600 C ZERD DISCRIMINANT

02700 30 ROOT = =B / (2%A)

02800 WRITE (3., 60) ROOT

02900 60 FORMAT (7 ROOT IS8’y F10.2)
03000 GO TO 100

03100 C

03200 G NEGATIVE DISCRIMINANT

03300 20 WRITE (5 70)

03400 70 FORMAT (/ ROOTS ARE COMFLEX’)

03500 100 STOF

03600 END

*

Below, this program is EXECUTEd twice. 1In the second execution the
words FORTRAN: QUAD are missing because the program has already been

INTRO-8-1

EXAMPLES

compiled, making it unnecessary for the compile step to be repeated.
The program is simply loaded into core and executed. (See page INTRO
3-1.)

CEXECUTE QUAD, FOR<CR>
FORTRAND QUAR

MAIN.

LINK? LOADING

CLNKXCT Qual EXECUTIONI

GIVE COEFFICTENTS

2+ <CR>

~10.<CR>

12+ <CR>

ROOTS ARE 3,00 AND 2.00
STOR

END OF EXECUTION
CFPU TIME?: 0.13 ELAFPSED TIME? 18.95
EXIT

EXECUTE QUAD. FOR<CR>
LINKS LOADING
CLNKXCT QUAD EXECUTIONI

GIVE COEFFICIENTS
Ui« <CR>

=3« <CR>

10.<CR>

ROQTS ARE COMPLEX
STOF

END OF EXECUTION

CFU TIMES: 0.12 ELAFSED TIME: 18.30
EXIT

Example 2 (Reading A Disk File):

Student grades are recorded on a disk file named STDGRA.DES. Each
record has a student name (40 characters) and his numerical grade (a
3-digit integer). The following program will read the grades and
compute the mean and standard deviation.

VIYEE GEALE . FOR<CR>
00100 C THIS PROGRAM COMFUTES THE MEAN AND

00200 C STANDARD DEVIATION OF STUDENT GRADES

00300 C

00400 OFEN (UNIT=1, FILE='STOGRA.DES’)

00500 NUMBRER =

00600 UM = 0

00700 SUMSQR = 0

00800 20 READ (1y 10y END=100) IGRADE

00900 10 FORMAT (40Xy 1I3)

01000 NUMEBER = NUMBER + 1

01100 UM = SUM + IGRADE

01200 SUMSQAR = SUMSAR + IGRAUEXIGRADE

01300 GO TO 20

01400 100 AMEAN = SUM/NUMERER

01300 VARIAN = (SUMSQR - (SUMXSUM) /NUMEER) / (NUMBER-1)
01600 8THEV = SQRT (VARIAN)

01700 TYFE 30y NUMRERs AMEANy STREV

INTRO-8-2

EXAMPLES

01800 30 FORMAT (7ONUMRER OF STUDENTS = ‘v 13 /
01900 17 MEAN GRADE = ‘» Fé6.2 7/

02000 17 STANDARD DEVIATION = ‘y Fé&.2)

2100 CLOSE (UNIT =1y FILE=/STOGRA.DES’)
02200 END ’

LEX GRADE . FOR<CR>
FORTRANG GRADE

MATM.

LINK? LOADING

CLNREXCT GRADE EXECUTIONI

NUMRER OF STUDENTS = 17
MEAN GRALE = 80.29
STANDARD DEVIATION = 10,45

ENUO OF EXECUTION
CPU TIME? 0.23 ELAFSED TIME: 1.00
EXIT

<«

We are opening a disk file, reading the grades stored in 1it, and,
closing the file. (See lines 400 and 2100.) Note that the logical
unit number given in the OPEN and CLOSE statements (UNIT = 1) is the
same as that given in the READ statement (line 800) and refers to the
device disk.

Execution starts at statement 400 (the OPEN statement). There is a

controlled loop at statements 800 - 1300. The last statement executed
is the END statement at 2200.

CONTINUATION LINES

Lines 1300, 1900, and 2000 are one FORTRAN statement, lines 1900 and
2000 being continuations of line 1800. Since TABs have been used at
the beginning of each line to skip over all or part of the 1label
field, a way must be provided to inform the computer that the line is
a continuation line.

The rule is: If the first character (after the TAB) 1is any number
between 1 and 9, then the line is a continuation line.

Example 3 (Writing A Disk File):

The following is the program that created the data file STDGRA.DES.
Notice that in the OPEN, WRITE, and CLOSE statements (lines 500, 1100,
and 1400) the device unit number is an integer variable, IUNIT. IUNIT
has been given the value 1 (line 400) before it is used.

+R 808

FILE: WOE.FOR<CR>

EDIT?: WOE.FOR

KO L k<CR>

00100 C THIS FROGRAM ENTERS STUDENT GRADES

00200 C ENTER GRADLE OF -1 AFTER LAST STUDENT GRADE TO END

00300 DIMENSION STUDONT (8)

00400 TUNTT=1

00500 OFEN (UNIT=IUNITy FILE=’STOGRA.DES’)
00600 40 ACCEFT 10y (STUDNT(I)s»I=1,8)

00700 10 FORMAT (8A3)

INTRO-8-3

EXAMPLES

00800 T 20y IGRADE

Q0900 20 F (L3

01000 IF (IGRADE +EQ. ~1) GO TO 100

01100 WRITE (IUNITy 30) (STUDNTC(I),I=1+8)y IGRADE
01200 30 FORMAT (8AGy T3)

OLEOO GO TO 40

21400 100 CLOSE (UNIT=IUNITs FILE=’'STOGRA.DIES’)

01500 STOF “THIS IS THE ENDC

01400 END

X

After this program has been executed, the file STDGRA.DES will be
listed by the DIRECT command (see page INTRO 6-1) and during the KJOB
command (see page INTRO 7-1).

EXWOE FOR<CR>
FORTRANT WOE

MATMN .

LINK S LOATIING
CLNKXCT WOE EXECUTITONI
WGE CLINTON<CR>

ELRBEIDGE GERRY<CR>
73<CR>

DANTEL I, TOMPRINS<CR>
H8R<CR>

JOHN CALHOUN<CR>
BO<CR>

RICHARD M. JOHNSON<CR>
79<CR>

GEORGE DALLAS<CR>
Y5<CR>

WILLIAM K. KING<CR>
&9 <CR>

JOHM BRECKINRIDGE<CR>
77<CR>

HANNIEAL HAMILLIN<CR>
&5 <CR>

SUHUYLER COLFAX<CR>
77<CR>

HENRY WILSON<CR>
77<CR>

WILLIAM WHEELER<CR>
Y& <CR>

CHESTER ARTHUR<CR>
B8H8<CR>

LEVT F. MORTON<CR>
91 <CR>

GARRET HOBART<CR>
89 <CR>

CHARLES DAWES<CR>
P3<CR>

CHARLES CURTIS<CR>
75 <CR>

<CR>

~1<CR>

THIS IS THE END

END OF EXECUTION
CFPU TIMES: 0.92 ELAFSED TIME? 4:21.33
EXIT

INTRO-8-4

EXAMPLES

Example 4:

This program prepares grade reports for the students whose grades are
recorded on the disk file STDGRA.DES.

CTYPE REFORT . FOR<CR>
00100 C FROGRAM T0 FREFARE GRANE REFORT

00200 DIMENGSTION ANAME(8)

00300 IFEN (UNIT=1y FILE=/STOGRA.DES’)

00400 G OPRINT NINGS

0G0 WRITE (5y 102

004600 10 FORMAT (707 3Xy ‘STULENT » 27Xy ‘GRADE’)
00700 30 REAL (1ly 20y END=F50) (ANAME(I)syI=1+8)s IGRALE
00800 20 FORMAT (8A%, 13)

00900 WRITE (Sy 40) (ANAME(I)»I=1+8)y IGRARE
01000 40 FORMAT (7 ‘s BAIy 13)

01100 GO TO 30

01200 a0 CLOSE (UNIT=1)y FILE=’STNGRA.DES’)

01300 sToF ENI OF GRADE REFORT-

01400 ENI

CEX REFORT . FOR<CR>
FORTRANS REFORT

MATIN.

LINKS LOADING

CLNEXCT REFORT EXECUTIONI

STURENT GRAIE
GEORGE CLINTON 83
ELRRIDGE GERRY 73
NANIEL I, TOMPKINS 58
JOHN CALHOUN 80
RICHARD M. JOHNSON 79
GEORGE DALLAS E4v]
WILLIAM R+ KING 69
JOHN RRECKINRIDGE 77
HANNIRAL HAMLIN 65
SCHUYLER COLFAX 77
HENRY WILSON 77
WILLIAM WHEELER P6
CHESTER ARTHUR 88
LEVI F+ MORTON ?1
GARRET HORART 8¢9
CHARLES DAWES ?3
CHARLES CURTIS 75

ENI' OF GRADE REFORT
END OF EXECUTION

CFU TIME: 0.68 ELAFSED TIME: 13134.77
EXIT

INTRO-8-5

EXAMPLES

Example 5 (Trying To Read A Non-Existent File):

Now DELETE the data file containing the students' grades, STDGRA.DES,
and then EXecute REPORT.FOR (the program in Example 4). The READ
statement in line 700 cannot be executed since the file to which it
refers does not exist. The execution is thus aborted.

+OELETE STHOGRA.DES<CR>
FILES DELETED?
STHGRA.DES

01 RILLOCKS FREED

+EX REFORT,.FOR<CR>
LINK? LOADING
FLNKXCT REFORT EXECUTIONI

STUDRENT GRADE
AFRSOAT ATTEMFT TO READ REYOND VALID INFUT
UNIT=1 DSKISTOGRAUESL2y 2401055 /ACCESS=SEQINOU/MOUE=ASCTT

NAME (Loc)
IN. (402703)

Sl CALLER (LOC) “EARGS> ARG TYFESI
MAIN.+1L(220) <45k CUIUIUl

? JOR ARORTED
END' OF EXECUTION

CFU TIME? 0.35 ELAFSED TIME?! 1.22
EXIT

INTRO-8-6

PART II

FORTRAN-10 Language Manual

The FORTRAN-10 Language Manual reflects the software as of Version 5
of the FORTRAN-10 Compiler, Version 5 of the FORTRAN-10 Object Time

System (FOROTS), and Version 5 of the FORTRAN-10 Debugging Program
(FORDDT) .

CONTENTS

Page
CHAPTER 1 PROLOGUE 1-1
1.1 BACKGROUND 1-1
CHAPTER 2 CHARACTERS AND LINES 2-1
2.1 CHARACTER SET 2-1
2.2 STATEMENT, DEFINITION, AND FORMAT 2-2
2.2.1 Statement Label Field and Statement
Numbers 2-3
2.2.2 Line Continuation Field 2-3
2.2.3 Statement Field 2-3
2.2.4 Remarks 2-4
2.3 LINE TYPES 2-4
2.3.1 Initial and Continuation Line Types 2-4
2.3.2 Multi-Statement Lines 2-5
2.3.3 Comment Lines and Remarks 2-5
2.3.4 Debug Lines 2-6
2.3.5 Blank Lines 2-6
2.3.6 Line-Sequenced Input 2-6
2.4 ORDERING OF FORTRAN-10 STATEMENTS 2-7
CHAPTER 3 DATA TYPES, CONSTANTS, SYMBOLIC NAMES,
VARIABLES, AND ARRAYS 3-1
3.1 DATA TYPES 3-1
3.2 CONSTANTS 3-2
3.2.1 Integer Constants 3-2
3.2.2 Real Constants 3-2
3.2.3 Double-Precision Constants 3-3
3.2.4 Complex Constants 3-3
3.2.5 Octal Constants 3-4
3.2.6 Logical Constants 3-5
3.2.7 Literal Constants 3-5
3.2.8 Statement Label Constants 3-6
3.3 SYMBOLIC NAMES 3-6
3.4 VARIABLES 3-7
3.5 ARRAYS 3-7
3.5.1 Array Element Subscripts 3-8
3.5.2 Dimensioning Arrays 3-9
3.5.3 Order of Stored Array Elements 3-10
CHAPTER 4 EXPRESSIONS 4-1
4.1 ARITHMETIC EXPRESSIONS 4-1
4.1.1 Rules for Writing Arithmetic
Expressions 4-2
4.2 LOGICAL EXPRESSIONS 4-4
4.2.1 Relational Expressions 4-7
4.3 EVALUATION OF EXPRESSIONS 4-9
4.3.1 Parenthesized Subexpressions 4-9
4.3.2 Hierarchy of Operators 4-9
4.3.3 Mixed Mode Expressions 4-10

CHAPTER

CHAPTER

CHAPTER

CHAPTER

CHAPTER

CHAPTER

(SO, O N0, |
« o o o
W N =

(o)}

AAOYOYOYOYOY O

o o o .
U W N -
. .

o O OV
o o o
o J o

(¥ o 00 O e}
* o e o
S w N
w N = w N =

O WO WO WWWWILWWWILWYLWWOWYOWYWOY
e o o o o o e o o o o o o
w N -

NN e R bBbWWWWNDNODNODND -
e o o « o e « o e

—

—
o

10.1
10.2
10.2.1
10.2.2

CONTENTS (CONT.)

Use of Logical Operands in Mixed Mode
Expressions

COMPILATION CONTROL STATEMENTS

INTRODUCTION
PROGRAM STATEMENT
INCLUDE STATEMENT
END STATEMENT

SPECIFICATION STATEMENTS

INTRODUCTION

DIMENSION STATEMENT
Adjustable Dimensions

TYPE SPECIFICATION STATEMENTS

IMPLICIT STATEMENTS

COMMON STATEMENTS
Dimensioning Arrays in COMMON
Statements

EQUIVALENCE STATEMENT

EXTERNAL STATEMENT

PARAMETER STATEMENT

DATA STATEMENT
INTRODUCTION
ASSIGNMENT STATEMENTS

INTRODUCTION

ARITHMETIC ASSIGNMENT STATEMENTS
LOGICAL ASSIGNMENT STATEMENTS
ASSIGN (STATEMENT LABEL) ASSIGNMENT
STATEMENT

CONTROL STATEMENTS

INTRODUCTION
GO TO CONTROL STATEMENTS
Unconditional GO TO Statements
Computed GO TO Statements
Assigned GO TO Statements
IF STATEMENTS
Arithmetic IF Statements
Logical IF Statements
Logical Two-Branch IF Statements
DO STATEMENT
Nested DO Statements
Extended Range
Permitted Transfer Operations
CONTINUE STATEMENT
STOP STATEMENT
PAUSE STATEMENT
T (TRACE) Option

I/0 STATEMENTS
DATA TRANSFER OPERATIONS
TRANSFER MODES

Sequential Mode
Random Access Mode

ii

A OO O
[}
oUW =

Oy OV OY
[

|
[Nele o LN REN]

(O O O O WO WO WY W W W WLWLWLWY LW
1
= HWOOAUT DD WWRN N

—
o
|
—

10-1
10-1
10-1
10-1

CHAPTER

10.3.1
10.3.2
10.3.3
10.3.4
10.3.4.
10.3.5

10.3.6
10.3.7
10.4

10.5
10.5.1
10.5.2

10.5.3

10.5.4

11.1
11.2
11.2.1
11.2.2

1

CONTENTS (CONT.)

Append Mode
I/0 STATEMENTS, BASIC FORMATS AND
COMPONENTS
I/0 Statement Keywords
FORTRAN-10 Logical Unit Numbers
FORMAT Statement References
I/0 List
Implied DO Constructs
The Specification of Records for
Random Access
List-Directed I/0
NAMELIST I/0 Lists
OPTIONAL READ/WRITE ERROR EXIT AND
END-OF-FILE ARGUMENTS
READ STATEMENTS
Sequential Formatted READ Transfers
Sequential Unformatted Binary READ
Transfers
Sequential List-Directed READ
Transfers
Sequential NAMELIST-Controlled READ
Transfers

Random Access Formatted READ Transfers

Random Access Unformatted READ
Transfers

SUMMARY OF READ STATEMENTS

REREAD STATEMENT

WRITE STATEMENTS
Sequential Formatted WRITE Transfers
Sequential Unformatted WRITE Transfer

Sequential List-Directed WRITE Transfers

Sequential NAMELIST-Controlled WRITE
Transfers

Random Access Formatted WRITE Transfers

Random Access Unformatted WRITE
Transfers
SUMMARY OF WRITE STATEMENTS
ACCEPT STATEMENT
Formatted ACCEPT Transfers

ACCEPT Transfers Into FORMAT Statement

PRINT STATEMENT
PUNCH STATEMENT
TYPE STATEMENT
FIND STATEMENT
ENCODE AND DECODE STATEMENTS
ENCODE Statement
DECODE Statement
Example of ENCODE/DECODE Operations
SUMMARY OF I/0O STATEMENTS

NAMELIST STATEMENTS
INTRODUCTION
NAMELIST STATEMENT

NAMELIST-Controlled Input Transfers
NAMELIST-Controlled Output Transfers

iii

Page
10-2

10-2
10-3
10-3
10-3
10-6
10-6

10-7
10-8
10-10

10-10
10-11
10-11

10-12
10-12

10-13
10-13

10-13
10-14
10-14
10-16
10-16
10-16
10-17

10-17
10-17

10-17
10-18
10-18
10-18
10-19
10-19
10-20
10-21
10-21
10-22
10-23
10-23
10-23
10-25

11-1

11-1
11-1
11-2
11-3

CHAPTER

CHAPTER

CHAPTER

CHAPTER

12

12.1
12.2
12.2.1
12.2.2

13

13.1
13.1.1
13.2
13.2.1
13.2.2

13.2.3
13.2.4
13.2.5
13.2.6
13.2.7
13.2.8
13.2.9
13.2.10
13.2.11
13.2.12
13.3

14

14.1
14.2

15.4.2
15.5
15.5.1
15.5.2
15.6
15.6.1

15.7

CONTENTS (CONT.)

FILE CONTROL STATEMENTS

INTRODUCTION

OPEN AND CLOSE STATEMENTS
Options for OPEN and CLOSE Statements
Summary of OPEN/CLOSE Statement Options

FORMAT STATEMENT

INTRODUCTION
FORMAT Statement, General Form
FORMAT DESCRIPTORS
Numeric Field Descriptors
Interaction of Field Descriptors
With I/O List Variables
G, General Numeric Conversion Code
Numeric Fields with Scale Factors
Logical Field Descriptors
Variable Numeric Field Widths
Alphanumeric Field Descriptors
Transferring Alphanumeric Data
Mixed Numeric and Alphanumeric Fields
Multiple Record Specifications
Record Formatting Field Descriptors
$ Format Descriptor
CARRIAGE CONTROL CHARACTERS FOR PRINTING
ASCII RECORDS

DEVICE CONTROL STATEMENTS

INTRODUCTION

REWIND STATEMENT

UNLOAD STATEMENT

BACKSPACE STATEMENT

END FILE STATEMENT

SKIP RECORD STATEMENT

SKIP FILE STATEMENT

BACKFILE STATEMENT

SUMMARY OF DEVICE CONTROL STATEMENTS

SUBPROGRAM STATEMENTS

INTRODUCTION
Dummy and Actual Arguments
STATEMENT FUNCTIONS
INTRINSIC FUNCTIONS (FORTRAN-10 DEFINED
FUNCTIONS)
EXTERNAL FUNCTIONS
Basic External Functions (FORTRAN-10
Defined Functions)
Generic Function Names
SUBROUTINE SUBPROGRAMS
Referencing Subroutines (CALL Statement)
FORTRAN-10 Supplied Subroutines
RETURN STATEMENT AND MULTIPLE RETURNS
Referencing External FUNCTION
Subprograms
MULTIPLE SUBPROGRAM ENTRY POINTS (ENTRY
STATEMENT)

iv

15-8
15-9
15-13
15-14
15-14
15-16

15-17

CHAPTER

APPENDIX

APPENDIX

APPENDIX

CONTENTS (CONT.)

16 BLOCK DATA SUBPROGRAMS

16.1 INTRODUCTION
16.2 BLOCK DATA STATEMENT

A ASCII-1968 CHARACTER CODE SET

w

USING THE COMPILER
RUNNING THE COMPILER

The /DEBUG Switch
COMPIL-Class Commands

N
—

ERROR REPORTING

[N

Message Summary

DWW wwwwww
B W W W NN
b

WITH LINK-10

@]

WRITING USER PROGRAMS

a0
=
[

Numbers

(@]
=
[\S]

Switches Available with FORTRAN-10
READING A FORTRAN-10 LISTING

Compiler-Generated Variables

Fatal Errors and Warning Messages

CREATING A REENTRANT FORTRAN PROGRAM

GENERAL PROGRAMMING CONSIDERATIONS
Accuracy and Range of Double-Precision

Writing FORTRAN-10 Programs for
Execution on Non-DEC Machines

CJUJUJW?UJUJWUJ
Hi OO S W

o w
| 1 1
L
© o~

|
—

| N Y T I I B
LUUes WM+

|

OOO(POOOO 0OOO0O0O0O000000n0 0O 0O
I
00 0000 00 ~J ~J~J O

c.1.3 Using Floating-Point DO Loops

C.1.4 Computation of DO Loop Iterations

C.1l.5 Subroutines - Programming Considerations

C.1l.6 Reordering of Computations

c.1.7 Dimensioning of Formal Arrays

C.2 FORTRAN-10 GLOBAL OPTIMIZATION

c.2.1 Optimization Techniques

c.2.1.1 Elimination of Redundant Computations

C.2.1.2 Reduction of Operator Strength

Cc.2.1.3 Removal of Constant Computation From
Loops

C.2.1.4 Constant Folding and Propagation

C.2.1.5 Removal of Inaccessible Code

C.2.1.6 Global Register Allocation

C.2.1.7 I/0 Optimization

c.2.1.8 Uninitialized Variable Detection

c.2.1.9 Test Replacement

C.2.2 Improper Function References

C.2.3 Programming Techniques for Effective
Optimization

c.3 INTERACTING WITH NON-FORTRAN-10 PROGRAMS

AND FILES

Cc.3.1 Calling Sequences

C.3.2 Accumulator Usage

C.3.3 Argument Lists

C.3.4 Argument Types

C.3.5 Description of Arguments

C.3.6 Converting Existing MACRO-10 Libraries
for use with FORTRAN-10

C.3.7 Mixing FORTRAN-10 and F40 Compiled
Programs

C.3.8 Interaction with COBOL-10

c.3.8.1 Calling FORTRAN-10 Subroutines from

COBOL-10 Programs

v

CONTENTS (CONT.)

Page
C.3.8.2 Calling COBOL-10 Subroutines from
FORTRAN-10 Programs C-22
c.3.9 LINK-10 Overlay Facilities C-22
C.3.9.1 Conventions Cc-23
C.3.10 FOROTS/FORSE Compatibility C-23
Cc.3.10.1 FORTRAN-10/F40 Data File Compatibility C-23
C.3.10.2 Converting FOROTS Data File to
FORSE-Accepable Form C-25
C.3.10.3 General Restrictions C-27
APPENDIX D FOROTS D-1
D.1 HARDWARE AND SOFTWARE REQUIREMENTS D-1
D.2 FEATURES OF FOROTS D-2
D.3 ERROR PROCESSING D-3
D.4 INPUT/OUTPUT FACILITIES D-3
D.4.1 Input/Output Channels Used Internally by
FOROTS D-3
D.4.2 File Access Modes D-4
D.4.2.1 Sequential Transfer Mode D-4
D.4.2.2 Random Access Mode D-4
D.5 ACCEPTABLE TYPES OF DATA FILES AND THEIR
FORMATS D-4
D.5.1 ASCII Data Files D-4
D.5.2 FORTRAN Binary Data Files D-5
D.5.2.1 Format of Binary Files D-5
D.5.3 Mixed Mode Data Files D-12
D.5.4 Image Files D-13
D.6 USING FOROTS D-13
D.6.1 FOROTS Entry Points D-14
D.6.2 Calling Sequences D-14
D.6.3 MACRO Calls for FOROTS Functions D-15
D.6.3.1 Formatted/Unformatted Transfer
Statements, Sequential Access Calling
Sequences D-16
D.6.3.2 NAMELIST I/O Sequential Access Calling
Sequences D-17
D.6.3.3 Array Offsets and Factoring D-18
D.6.3.4 I/0O Statements Random Access Calling
Sequences D-20
D.6.3.5 Calling Sequences for Statements Which
Use Default Devices D-20
D.6.3.6 Statements to Position Magnetic
Tape Units D-22
D.6.3.7 List Directed Input/Output Statements D-22
D.6.3.8 Input/Output Data Lists D-23
D.6.3.9 OPEN and CLOSE Statements,
Calling Sequences D-26
D.6.3.10 Memory Allocation Routines D-27
D.6.3.11 Software Channel Allocation and
De-allocation Routines D-28
D.7 FUNCTIONS TO FACILITATE OVERLAYS D-29
D.8 LOGICAL/PHYSICAL DEVICE ASSIGNMENTS D-32
APPENDIX E FORDDT E-1
E.1l INPUT FORMAT E-2
E.l.1 Variables and Arrays E-2
E.1.2 Numeric Conventions E-3

vi

APPENDIX

APPENDIX

APPENDIX

TABLE

v .
[l w

mOoooDEHEoHmmm
P e o o o o e
WO IO WD N

m

(]

“« o ¢« o o o .
o o ¢« o o e o o o
=W+

... .
Hi OO0 U B W -

VWO

2K E N NN NI RSN NANANANANANANPNANANA NN
WWWWWWWWWWWWWWWWRNNNDNN -

e e o o o
« o

jas}

CONTENTS (CONT.)

Statement Labels and Source Line Numbers

NEW USER TUTORIAL
Basic Commands
FORDDT AND THE FORTRAN-10 /DEBUG SWITCH
LOADING AND STARTING FORDDT
SCOPE OF NAME AND LABEL REFERENCES
FORDDT COMMANDS
ENVIRONMENT CONTROL
FORTRAN-10 /CPTIMIZE SWITCH
FORDDT MESSAGES

COMPILER MESSAGES
FORTRAN-10 REALTIME SOFTWARE

INTRODUCTION

USING FORRTF
Core
Modes
Priority Interrupt Levels
Masks

SUBROUTNES
LOCK
RTINIT
CONECT
RTSTRT
BLKRW
RTREAD
RTWRIT
STATO
STATI
RTSLP
RTWAKE
DISMIS
DISCON
UNLOCK
GETCOR, A Temporary Subroutine

FOROTS ERROR MESSAGES RETURNED BY ERRSNS

TABLES

FORTRAN-10 Statement Categories
FORTRAN-10 Character Set

Constants

Use of Symbolic Names

Arithmetic Operations and Operators
Type of the Result Obtained From
Mixed Mode Operations

Permitted Base/Exponent Type Combinations

Logical Operators

Logical Operations, Truth Table
Relational Operators and Operations
Hierarchy of FORTRAN-10 Operators
Rules for Conversion in Mixed Mode
Assignments

FORTRAN-10 Logical Device Assignments
Summary of READ Statements

vii

A/
1]
«Q
1]

oo Oo@EEmm,

|
0000w ww
N

GI-) T
|
— b

[|
NV UTUIULE BRWWWWNNNN -

OOOOOOOOOC)GI')OOOOOOOC)OOO

jas]
!
—

v

OL".‘UU(;)OO[:DUJP—‘
HENHWND N

jas)
[!
=

o]
|
N

CONTENTS (CONT.)

Summary of WRITE Statements

Summary of FORTRAN-10 I/O Statements
OPEN/CLOSE Statement Arguments
FORTRAN-10 Conversion Codes

Action of Field Descriptors On

Sample Data

Numeric Field Codes

Descriptor Conversion of Real and Double
Precision Data According to Magnitude
FORTRAN-10 Print Control Characters
Summary of FORTRAN-10 Device Control
Statements

Intrinsic Functions (FORTRAN-10 Defined
Functions)

Basic External Functions (FORTRAN-10
Defined Functions)

FORTRAN-10 Library Subroutines
FORTRAN-10 Compiler Switches
Modifiers to /DEBUG Switch

Argument Types and Type Codes

Upward Compatibility (FORSE TO FOROTS)
Downward Compatibility (FOROTS TO FORSE)
Function Numbers and Function Codes
FORTRAN Device Table

Table of Commands

Error Messages, Code Format and Full
Message Format

FOROTS I/O Error Messages and ERRSNS
Returned Values

FOROTS Arithmetic and Library Error
Messages

viii

15-4

15-10
15-19
B-2
B-3
C-12
C-24
C-26
D-30
D-33
E-1

CHAPTER 1

PROLOGUE

1.1 BACKGROUND

The FORTRAN-10 language set is compatible with and encompasses the
standard set described in "American National Standard FORTRAN,
X3.9-1966" (referred to as the 19656 ANSI standard). FORTRAN-10 also
provides many extensions and additions to the standard set that
greatly enhance the wusefulness of FORTRAN-10 and increase its
compatibility with FORTRAN language sets implemented by other major
computer manufacturers. In this manual, the FORTRAN-10 extensions and
additions to the 1966 ANSI standard set are printed with gray shading.

A FORTRAN-10 source program consists of a set of statements
constructed wusing the language elements and the syntax described in
this manual. A given FORTRAN-10 statement will perform any one of the
following functions:

1. It will cause operations such as multiplication, division,
and branching to be carried out.

2. It will specify the type and format of the data being
processed.

3. It will specify the characteristics of the source vrogram.

FORTRAN-10 statements are composed of keywords, i.e., words that are
recognized Dby the compiler, used with elements of the language set:
constants, variable, and expressions. There are two basic types of
FORTRAN-10 statements: executable and nonexecutable.

Executable statements specify the action of the program;
nonexecutable statements describe the characteristics and arrangement
of data, editing information, statement functions, and the kind of
subprograms that may be included in the program. The compilation of
executable statements results in the creation of executable code in
the object program. Nonexecutable statements provide information only
to the compiler; they do not create executable code.

In this manual, the FORTRAN-10 statements are grouped 1into 12
categories, each of which 1is described in a separate chapter. The
name, definition, and chapter reference for each statement category
are given in Table 1-1.

The basic FORTRAN-10 language elements, (constants, variables, and
expressions), the character set from which they may be formed, and the
rules that govern their construction and use are described in Chapters
2 through 4.

PROLOGUE

Table 1-1
FORTRAN-10 Statement Categories
Chapter Category
Reference Name Description
5 Compilation Control | Statements in this category
Statements identify programs and indicate
their beginning and ending
points.
6 Specification Statements in this category
Statements declare the properties of
variables, arrays, and functions.
7 DATA This statement assigns initial
Statement values to variables and array
elements.
3 Assignment Statements in this category cause
Statements named variables and/or array
elements to be replaced by
specified (assigned) values.
9 Control Statements in this category
Statements determine the order of execution
of the object program and
terminate its execution.

-

12 File Control Statements in this category
Statements identify, open, and close files
and parameters for input and
output operations between files
and the processor.

13 FORMAT ; This statement is used with
Statement certain input/output statements
to specify the form in which data
appears in a FORTRAN record on a
specified input/output medium.

14 Device Control Statements in this category
Statements enable the programmer to control
the positioning of records or
files on certain peripheral
devices.

PROLOGUE

Table 1-1 (Cont.)
FORTRAN-10 Statement Categories

Chapter Category
Reference Name Description
15 Subprogram Statements in this category
Statements enable the programmer to define
functions and subroutines and
their entry points.
16 BLOCK DATA Statements in this category
Statements are used to declare data
specification subprograms that
may initialize common storage
areas.

1-3

CHAPTER 2

CHARACTERS AND LINES

2.1 CHARACTER SET

Table 2-1 1lists the digits, 1letters, and symbols recognized by
FORTRAN-10. The remainder of the ASCII-1968 character set(l), is
acceptable within 1literal constants or comment text, but these
characters cause fatal errors in other contexts. An exception is
CONTROL-Z, which, when used in Teletype input, means end-of-file.

NOTE

Lower-case alphabet characters are
treated as upper-case outside the
context of Hollerith constants, 1literal
strings, and comments.

Table 2-1
FORTRAN-10 Character Set
Letters
A,a J,3 3,s
B,b K,k T,t
Cc,c L,1 U,u
D,d M,m v,v
E,e N,n W,w
F,f 0,0 X, X
G,9 P,p Y,y
H,h Q,q Z,2
I,1 R,r
Digits
0 5
1 5
2 7
3 8
4 9

1. The complete ASCII-1968 character set is defined in the X3.4-19%68
version of the "American National Standard for Information
Interchange," and is given in Appendix A.

2-1

CHARACTERS AND LINES

Table 2-1 (Cont.)
FORTRAN-10 Character Set

Symbols
! Exclamation Point , Comma
" Quotation Marks - Hyphen (Minus)
Number Sign . Period (Decimal Point)
$ Dollar Sign / Slant (slash)
& Ampersand : Colon
' Apostrophe ; Semicolon
(Opening Parenthesis < Less Than
) Closing Parenthesis = Equals
* Asterisk > Greater Than
+ Plus " Circumflex

Line Termination Characters

Line Feed
Form Feed
Vertical Tab

Line Formatting Characters

Carriage Return
Horizontal Tab
Blank

Note that horizontal tabs normally advance the character position
pointer to the next position that is an even multiple of 8. An
exception to this is the initial tab, which is defined as a tab that
includes or starts in character position 6. (Refer to Section 2.3.1
for a description of initial and continuation line types.) Tabs within
literal specifications count as one character even though they may
advance the character position as many as eight places.

2.2 STATEMENT, DEFINITION, AND FORMAT

Source program statements are divided into physical lines. A line is
defined as a string of adjacent character positions, terminated by the
first occurrence of a 1line termination character regardless of
context. Each line is divided into four fields:

l|= Line Character Positions =||
1 2 3 4 5 6 7 8 70 71 72 3. .
~ v J\ﬂ_/\ e -/ -« v J
Statement Continuation Statement Field Remarks
Label Field Field

CHARACTERS AND LINES

2.2.1 Statement Label Field and Statement Numbers

You may place a number ranging from 1 to 99999 in the statement label
field of an initial 1line to identify the statement. Any source
program statement that is referenced by another statement must have a
statement number. Leading =zeroes and all blanks in the label field
are ignored, e.g., the numbers 00105 and 105 are both accepted as
statement number 105. You may assign the statement numbers in a
source program in any order; however, each statement number must be
unique with respect to all other statements 1in the ©program or
subprogram. You cannot label non-executable statements other than.
FORMAT and END statements. -

A main program and a subroutine may contain identical statement
numbers. In this case, references to these numbers are understood to
mean the numbers in the same program unit in which the reference is
made. An example: '

‘Assume that main module MAINMD and subprogram SUBl1 both
contain statement number 105. A GO TO statement, for
instance, in MAINMD will refer to statement 105 in MAINMD,
NOT to 105 in SUBl1. A GO TO in SUBl will transfer control
to 105 in SUBI.

2.2.2 Line Continuation Field

Any alphanumeric character (except a blank or a zero) placed in this
field (position 6) identifies the line as a continuation line. (See
Section 2.3.1 for description.)) i

2.2.3 Statement Field

Any FORTRAN-10 statement may appear in this field. Blanks (spaces)
and tabs do not affect compilation of the statement and may be used
freely in this field for appearance purposes, with the exception of
textual data given within either a literal or Hollerith specification
where blanks and tabs are significant characters.

CHARACTERS AND LINES

2.2.4 Remarks

In lines consisting of 73 or more character positions, only the first
72 characters are interpreted by FORTRAN-10. (Note that tabs
generally occupy more than one character position, wusually advancing
the counter to the next character position that is an even multiple of
eight.) All other characters in the line (character positions 73, 74
...etc.) are treated as remarks and do not affect compilation.

Note that remarks may also be added to a line in character. positions 7

through 72, provided the text of the remark is preceded by the symbol
"1 (Refer to Section 2.3.3.)

2.3 LINE TYPES
A line in a FORTRAN-10 source program may be:

1. An initial line,

6. A blank line.

Each of these line types is described in the following paragraphs.

2.3.1 1Initial and Continuation Line Types

A FORTRAN-10 statement may occupy the statement fields. of wup to 20
consecutive 1lines. The first line in a multi-line statement group is
referred to as the initial line; the succeeding lines are referred to
as continuation lines.

Initial lines may be assigned a statement number and must have either
a blank or a zero in their continuation line field, i.e., character
position 6.

A

Continuation lines cannot be assigned statement numbers; they are
identified by any alphanumeric character (except for a blank or zero)
placed in character position 6 of the line, 1i.e., continuation 1line
field. The label field of a continuation line is treated as remark
text.

CHARACTERS AND LINES

Note that blank lines, comments, and debug lines that are treated like
comments, i.e., debug lines that are not compiled with the rest of the
program (refer to Section 2.3.4) terminate a continuation sequence.

Following is an example of a 4-line FORTRAN-10 FORMAT statement using
initial tabs:

105 FORMAT (1H1,17HINITIAL CHARGE = ,F10.6,10H COULOMB,6X,
213HRESISTANCE = ,F9.3,6H OHM/15H CAPACITANCE = ,F10.6,
384 FARAD,11X,13HINDUCTANCE = ,F7.3,8H HENRY///
4211 TIME CURRENT/ 7H MS,10X.2HMA///)

Continuation Line Characters, i.e., 2, 3, and 4

2.3.3 Comment Lines and Remarks

Lines that contain descriptive text only are referred to as comment
lines. Comment ‘lines are commonly used to identify and introduce a
source program, to describe the purpose of a particular set of
statements, and to introduce subprograms.

To structure a comment line:

1. You must place one of the characters C (or ¢), $,/,*, or !
in character position 1 of the 1line to identify it as a
comment line.

2. You may write the text into character positions 2 through the
end of the line.

3. You may place comment lines anywhere in the source program,
but they cannot precede a continuation line because comments
terminate a continuation sequence. '

4. You may write a large comment as a sequence of any number of
lines; however, each 1line must carry the identifying
character (C,$,/,*, or !) in its first character position.

CHARACTERS AND LINES

The following is an example of a comment that occupies more than one
line.

CSUBROUTINE - Al2

CTHE PURPOSE OF THIS SUBROUTINE IS
CTO0 FORMAT AND STORE THE RESULTS OF
CTEST PROGRAM HEAT TEST-1101

Comment lines are printed on all listings, but are otherwise ignored
by the compiler.

Note that characters appearing in character positions 73 and beyond
are automatically treated as remarks, so that the symbol ! need not
be used. (Refer to Section 2.2.4.)

2.3.5 Blank Lines

You may insert lines consisting of only blanks, tabs, or no characters
anywhere in a FORTRAN-10 source program except immediately preceding a
continuation line, because blank lines are by definition initial lines
and as such terminate a continuation sequence. Blank lines are used
for formatting purvoses only; they cause blank 1lines to appear in
their corresponding positions in source program listings; otherwise,
they are ignored by the compiler.

CH4ARACTERS AND LINES

2.4 ORDERING OF FORTRAN-10 STATEMENTS

The order in which you place FORTRAN-10 Statements in a program unit
is important. That 1is, certain types of statements have to be
processed before others to guarantee that compilation takes wplace as
you expect. The proper sequence for FORTRAN-10 statements 1is
summarized by the following diagram.

PROGRAM, FUNCTION, SUBPROGRAM, or
BLOCK DATA Statements

IMPLICIT Statements

PARAMETER Statements

DIMENSION, COMMON,
Comment Lines FORMAT Statements EQUIVALENCE, EXTERNAL
NAMELIST, or Type
Specification Statements

Statement
Function
Definitions
DATA Statements

Executable
Statements

END Statement

Horizontal lines indicate the order in which FORTRAN-10 statements
must appear. That 1is, vyou cannot intersperse horizontal sections.
For example, all PARAMETER statements must appear after all IMPLICIT
statements and before any DATA statements, i.e., PARAMETER, IMPLICIT,
and DATA statements cannot be interspersed. Statement function
definitions must appear after IMPLICIT statements and before
executable statements.

Vertical lines indicate the way in which certain types of statements
may be interspersed. For example, you may intersperse DATA statements
with statement function definitions and executable statements. you
may intersperse FORMAT statements with IMPLICIT statements, parameter
statements, other specification statements, DATA statements, statement
function definitions, and executable statements. The only restriction
on the placement of FORMAT statements is that they must appear after
any PROGRAM, FUNCTION, subprogram, and BLOCK DATA statements, and
before the END statement.

Special

1.

2.

CHARACTERS AND LINES

Cases:

The placement of an INCLUDE statement 1is dictated by the
types of statements to be INCLUDEd.

The ENTRY statement 1is allowed only in functions or
suproutines. All executable references to any of the dummy
parameters must physically follow the ENTRY statement unless
the references appear in the function definition statement,
the subroutine, or in a preceding ENTRY statement.

BLOCK DATA subprograms cannot contain any executable

statements, statement functions, FORMAT statements, EXTERNAL
statements, or NAMELIST statements. (Refer to Section 15.1.)

When statements are out of place, FORTRAN-10 issues messages, some of
which may indicate fatal errors.

CHAPTER 3

DATA TYPES, CONSTANTS, SYMBOLIC NAMES, VARIABLES, AND ARRAYS

3.1 DATA TYPES

The data types you may use in FORTRAN-10 source programs are:
1. integer,
2. real,

3. double-precision,

4. complex,

9. 1logical.

The use and format of each of the foregoing data types are discussed
in the descriptions of the -constant having the same data type

(Sections 3.2.1 through 3.2.8).

3.2 CONSTANTS

Constants are quantities that do not change value during the execution
of the object program.

The constants you may use in FORTRAN-10 are listed in Table 3-1.

Table 3-1
Constants
Category Constant(s) Types
Numeric Integer, real, double-precision, complex, and
octal
Truth Values Logical

DATA TYPES, CONSTANTS, SYMBOLIC NAMES, VARIABLES, AND ARRAYS

3.2.1 1Integer Constants

An integer constant is a string of from one to eleven digits that
represents a whole decimal number (a number without a fractional
part). Integer constants must be within the range of (-2**35)-1 to
(+2**35)-1 (-34359738357 to +34359738367). Positive integer constants
may optionally be signed; negative integer constants must be signed.
You cannot use decimal points, commas, or other symbols on integer
constants (except for a preceding sign, + or -). Examples of wvalid
integer constants are:

345
+345
-345

Examples of invalid integer constants are:

+345. (use of decimal point)
3,450 (use of comma)
34.5 (use of decimal point; not a whole number)

3.2.2 Real Constants

A real constant may have any of the following forms:

1. A basic real constant: a string of decimal digits followed
immediately by a decimal point followed optionally by a
decimal fraction, e.g., 1557.42.

2. A basic real constant followed immediately by a decimal
integer exponent written in E notation (exponential notation)
form, e.g., 1559.E2.

3. An integer constant (no decimal point) followed by a decimal
integer exponent written in E notation, e.g., 1559E2.

Real constants may be of any size; however, each will be rounded to
fit the precision of 27 bits (7 to 9 decimal digits).

Precision for real constants is maintained to approximately eight
significant digits; the absolute precision depends upon the numbers
involved.

The exponent field of a real constant written in E notation form
cannot be empty (blank); it must be either a zero or an integer
constant. The magnitude of the exponent must be greater than -38 and
equal to or 1less than +38 (i.e., =38<n< + 38). The following are
examples of valid real constants. -

-98.765

7.0E+0 (7.)
.7E-3 (.0007)
5E+5 (500000.)
50115.

50.E1 (500.)

The following are examples of invalid real constants.

72.6E75 (exponent is too large)
.375E (exponent incorrectly written)
500 (no decimal point given)

DATA TYPES, CONSTANTS, SYMBOLIC NAMES, VARIABLES, AND ARRAYS

3.2.3 Double-Precision Constants

Constants of this type are similar to real constants written in E
notation form; the direct differences between these two constants
are:

1. DOouble-precision constants, depending on their magnitude,
have precision to either 15 to 17 places (system with a KAl0
Processor) or 16 to 18 places (system with a KI10 or KL10
Processor), rather than the 8-digit precision obtained for
real constants.

2. Each double-precision constant occupies two storage
locations.

3. The letter D, instead of E, 1is wused in double-precision
constants to identify a decimal exponent.

You must use both the letter D and an exponent (even of =zero) in
writing a double-precision constant. The exponent need only be signed
if it is negative; its magnitude must be greater than -38 and equal
to or less than +38 (i.e., -38<n +38). The range of magnitude
permitted a double-precision constant depends on the type of processor
opresent in your system (on which the source program is to be compiled
and run). The permitted ranges are:

Processor Range
KAl0 1.97 X 10**(-31) to 2.4 X 10**(+38)
KI10 or KL10 0.14 X 10**(-38) to 3.4 X 10**(+38)

The following are valid examples of double-precision constants.

7.9D03 (= 7900)
7.9D+03 (= 7900)
7.9D-3 (= .0079)
79D03 (= 79000)
79D0 (= 79)

The following are invalid examples of double-precision constants.

7.9D99 (exponent is too large)
7.9E5 ("E" denotes a single-precision constant)

3.2.4 Complex Constants

You can represent a complex constant by an ordered pair of integer,
real, or octal constants written within parentheses and separated by a
comma. For example, (.70712, -.70712) and (8.763E3, 2.297) are
complex constants.

In a complex constant the first (leftmost) real constant of the pair
represents the real vpart of the number; the second real constant
represents the imaginary part of the number. Both the real and
imaginary parts of a complex constant can be signed.

The real constants that represent the real and imaginary parts of a
complex constant occupy two consecutive storage 1locations in the
object program.

DATA TYPES, CONSTANTS, SYMBOLIC NAMES, VARIABLES, AND ARRAYS

DATA TYPES, CONSTANTS, SYMBOLIC NAMES, VARIABLES, AND ARRAYS

3.2.6 Logical Constants

The Boolean values of truth and falsehood are represented in
FORTRAN-10 source programs as the logical constants .TRUE. and
.FALSE.. Always write logical constants enclosed oy periods as in the
preceding sentence.

Logical quantities may be operated on in arithmetic and logical
statements. Only the sign bit of a numeric used in a logical IF
statement is tested to determine if it is true (sign is negative) or
false (sign is positive).

3.2.7 Literal Constants

A literal constant may be elther of the following:

2. A Hollerith 1literal, which 1is written as a string of
alphanumeric and/or special characters preceded by nH (e.3.,
nHstring). 1In the prefix n#H, the letter n represents a
number that specifies the exact number of characters
(including blanks) that follow the letter H; the 1letter H
identifies the literal as a Hollerith 11tera1. The following
are examples of Hollerith 11terals.

2HAB
14HLOAD TEST #124
6H#124-A

DATA TYPES, CONSTANTS, SYMBOLIC NAMES, VARIABLES, AND ARRAYS

3.3 SYMBOLIC NAMES

Symbolic names may consist of an
to six characters. ¥
> G ,

sympbolic name must be an alphabetic

The following are examples of legal symbolic names:
Al12345

IAMBIC

ABLE

The following are examples of illegal symbolic names:

#AMBIC (symbol used as first character)
1AB (number used as first character)

FORTRAN-10
Table 3-2 lists these items, together with an example
of a symbolic name and text reference for each.

You use symbolic¢ names to identify items of a

source program;

specific

Table 3-2
Use of Symbolic Names

For a Detailed
Description
See Section

Symbolic Names

Can Identify For Example

1. Variables PI, CONST, LIMIT 3.4
2. Arrays TAX 3.5
3. Array elements TAX (NAME, INCOME) 3.5.1
4. Functions MYFUNC, VALFUN 15.2
5. Subroutines CALCSB, SUB2, LOOKUP 15.5
6. External library SIN, ATAN, COSH 15.4
functions
7. COMMON block names DATAR, COMDAT 6.5

3-6

DATA TYPES, CONSTANTS, SYMBOLIC NAMES, VARIABLES, AND ARRAYS

3.4 VARIABLES

A variable is a datum (storage location) that 1is identified by a
symbolic name and 1is not a constant, an array or an array element.
Variables specify values that are assigned to them by either
arithmetic statements (Chapter 8), DATA statements (Chapter 7), or at
run time via I/O references (Chapter 10). Before you assign a value
to a variable, it is termed an undefined variable, and you should not
reference it except to assign a value to it.

If you reference an undefined variable, an unknown value (garbage)
will be obtained. :

The value you assign to a variable may be either a constant or the
result of a calculation that is performed during the execution of the
object program. For example, the statement IAB=5 assigns the constant
5 to the variable IAB; in the statement IAB=5+B, however, the value
of IAB at a given time will depend on the value of variable B at the
time the statement was last executed.

The type of a variable is the type of the contents of the datum that
it identifies. Variables may be:

1. 1integer

2. real

3. logical

4. double-precision, or

5. complex.
You may declare the type of a variable by wusing either implicit or
explicit type declaration statements (Chapter 6). However, if you do
not use type declaration statements, FORTRAN-10 assumes the following

convention:

1. Variable names that begin with the letters I, J, K, L, M, or
N are normally integer variables.

2. Variable names that begin with any letter other than I, J, K,
L, M, or N are normally real variables.

Examples of determining the type of a variable according to the
foregoing convention are given in the following table:

Variable ’ Beginning Letter Assumed Data Type
ITEMP I Integer

OTEMP 0 Real

KA123 K Integer

AABLE A Real

3.5 ARRAYS

An array is an ordered set of data identified by an array name. Array
names are symbolic names and must conform to the rules given in
Section 3.3 for writing symbolic names.

DATA TYPES, CONSTANTS, SYMBOLIC NAMES, VARIABLES, AND ARRAYS

Each datum within an array is <called "an array element. As with
variables, you may assign a value to an array element. Before you
assign a value to an array element it is considered to be undefined;
you should not reference it until you have assigned it a value. If
you reference an undefined array element, the value of the element
will be unknown and unpredictable (garbage).

Name each element of an array by using the array name together with a
subscript that describes the position of the element within the array.

3.5.1 Array Element Subscripts

Give the subscript of an array element identifier within wvparentheses,
as either one subscript gquantity or a set of subscript quantities
delimited by commas. Write the parenthesized subscript immediately
after the array name. The general form of an array element name is AN
(s1, S$2,...8n), where AN is the array name and S1 through Sn represent
b f subscript tities. ¥

‘ ' ‘ however, the number used must always
dimensions (Section 3.5.2) specified for the

equal the number of

A subscript can be any compound expression (Chapter 4), for example:

1. Subscript quantities may contain arithmetic expressions that
involve addition, subtraction, multiplication, division, and
exponentiation. For example, (A+B,C*5,D/2) and
(A**3,(B/4+4C) *E,3) are valid subscripts.

4. Subscripts may contain array element identifiers nested to
any level as subscripts. For example, in the subscript
(I(J(K(L))) ,A+B,C) the first subscript quantity given is a
nested 3-level subscript.

Here are examples of valid array element subscripts:
1. 1IAB(1,5,3)

2. ABLE(A)

DATA TYPES, CONSTANTS, SYMBOLIC NAMES, VARIABLES, AND ARRAYS

3.5.2 Dimensioning Arrays

You must declare the size (number of elements) of an array in order to
enable FORTRAN-10 to reserve the needed amount of locations in which
to store the array. Arrays are stored as a series of sequential
storage 1locations. Arrays, however, are visualized and referenced as
if they were single or multi-dimensional rectilinear matrices,
dimensioned on a row, column, and "plane basis. For example, the
following figure represents a 3-row, 3-column, 2-plane array.

3 ROWS 4

S
\Z
D
\}~

3 COLUMNS

10-1058

You specify the size of an array by an array declarator written as a
subscripted array name. In an array declarator, however, each
subscript quantity is a dimension of the array and must be either an
integer variable or an integer constant.

For example, TABLE(I,J,K) and MATRIX (10,7,3,4) are wvalid array
declarators.

The total number of elements that comprise an array is the product - of
the dimension quantities given in its array declarator. For example,
the array IAB dimensioned as IAB (2,3,4) has 24 elements (2 X 3 X 4 =
24) .

You use dimension arrays only in the specification statements
DIMENSION, COMMON, and type declaration (Chapter 6). Subscripted
array names appearing in any of the foregoing statements are array
declarators; subscripted array names appearing in any other
statements are always array element identifiers. In array declarators
the position of a given subscript quantity determines the particular
dimension of the array (e.g., row, column, or plane) that it
represents. The first three subscript positions specify the number of
rows, columns and vplanes that comprise, the named array;

DATA TYPES, CONSTANTS, SYMBOLIC NAMES, VARIABLES, AND ARRAYS

The Dimension Declarator Specifies the Array(s)
180
TAB (2,2) L,1]1,2

2,11 22

NOTE

FORTRAN-10 permits any number of
dimensions in an array declarator.

3.5.3 Order of Stored Array Elements

The elements of an array are arranged in storage in ascending order.
The value of the first subscript quantity varies between its minimum
and maximum values most rapidly. The value of the 1last given
subscript quantity increases to its maximum value least rapidly. For
example, the elements of the array dimensioned as I(2,3) are stored in
the following order:

I(1,1) 1I(2,1) 1I(1,2) (2,2) (1,3) (2,3)

In the following list, the elements of the three-dimensional array
(8(3,3,3)) are stored row by row from left to right and from top to
bottom.

B(1,1,1) B(2,1,1) B(3,1,1) ——
L-+B(1,2,1) B(2,2,1) B(3,21) -+
—-+B(13,1) B(23.,1) B(33,1) —~
L+B(1,12) B(212 BGLY) —-
L-+B(1,2,2) B(2,2,2) B(3,22) -~
L-+B(1,3,2) B(23,2) B(332) --
L-+>B(1,1,3) B(2,1,3) B(3,13) -~
L-+B(1,2,3) B(2,2,3) B(3.23) -~
L-+B(1,3,3) B(2,3,3) B(3,3,3)

Thus B(3,1,1) is stored before B(1,2,1), and so forth.

CHAPTER 4

EXPRESSIONS

4.1 ARITHMETIC EXPRESSIONS

Arithmetic expressions may be either simple or compound. Simple
arithmetic expressions consist of an operand that may be:

l. a constant

2. a variable

3. an array element

4. a function reference (see Chapter 14 for description), or

5. an arithmetic or logical expression written within
parentheses.

perands may be of integer, real, double precision, complex,
i teral type.

The following are valid examples of simple arithmetic expressions:

105 (integer constant)

IAB (integer variable)
TABLE(3,4,5) (array element)

SIN (X) (function reference)

(A+B) (a parenthetical expression)

A compound arithmetic expression consists of two or more operands
combined by arithmetic operators. Table 4-1 lists the arithmetic
operations permitted in FORTRAN-10 and the operator recognized for
each.

Table 4-1
Arithmetic Operations and Operators

Operation Operator Example

1. Exponentiation
2. Multiplication

A**B or Z
A*B

3. Division A/B
4., Addition A+B
5. Subtraction A-B

4.1.1

Observe

EXPRESSIONS

Rules for Writing Arithmetic Expressions

the following rules in structuring compound arithmetic

expressions:

1.

The operands comprising a compound arithmetic expression may
be of different types. Table 4-2 illustrates all permitted
combinations of data types and the type assigned to the
result of each.

An expression cannot contain two adjacent and unseparated
operators. For example, the expression A*/B is not
permitted.

All operators must be included; no operation is implied.
For example, the expression A(B) does not specify
multiplication although this is implied in standard algebraic
notation. The expression- A* (B) 1is required to obtain a
multiplication of the elements.

When you use exponentiation, the base quantity and its
exponent may be of different types. For example, the
expression ABC** 13 involves a real base and an integer
exponent. The permitted base/exponent type combinations and
the type of the result of each combination are given in Table

L

i

ik

= 8

° 7

3

4-3

EXPRESSIONS

Table 4-3
Permitted Base/Exponent Type Combinations
Base Operand Exponent Operand
Integer Real Double Complex

Precision

Integer Integer Real Double Complex
Precision

Real Real Real Double Complex
Precision

Double Double Double Double

Precision Precision|Precision|Precision

Complex Complex Complex (Undefined) Complex

4.2 LOGICAL EXPRESSIONS

Lojical expressions may be either simple or compound. Simple 1logical
expressions consist of a logical operand, which may be a logical type:

1. constant

2. variable

3. array element

4. function reference (see Chapter 15), or

5. another expression written within parentheses.

Compound logical expressions consist of two or more omerands combined
by logical operators.

Table 4-4 gives the logical opverators permitted by FORTRAN-10 and a
description of the operation each provides.

EXPRESSIONS

Table 4-4
Logical Operators

Operator _ Description

.AND. AND operator. Both of the logical operands combined by
this operator must be true to produce a true result.

.OR. Inclusive OR operator. If either or both of the 1logical
operands combined by .OR. are true, the result will be
true.

.NOT. Complementation operator. This operator is wused as a
prefix that specifies complementation (inversion) of the
item (operand or expression) that it modifies. The
original item, if true by itself, becomes false, and vice
versa.

Write logical expressions in the general form P .0OP. Q, where P and
Q are logical operand and .OP. 1is any logical overator but ".NOT.".
The .NOT. operator complements the value of a logical operand; you
inust write it immediately before the operand that it modifies, e.g.,
.NOT,P. Table 4-5 is a truth table illustrating all possible 1logical
combinations of two 1logical operands (P and -Q) and the resultant of
each combination.

When an operand of a 1logical expression is double-precision or
complex, only the high-order word of the operand is used in the
.specified logical operation.

The assignment of a .TRUE. or a .FALSE. value to a given operand is
based only on the sign of the numeric representation of the operand.

EXPRESSIONS

Table 4-5
Logical Operations, Truth Table

When P is And Q is: | Then the Expression: - Is:
True -~ | =-===- ' -NOT.P False -
False ————= | .NOT.P True
True ' : True‘ : P .ANb. Q True
True A False P .AND. Q False
False | _ True ' | P .AND. Q False
Ealse . False P .AND. Q - False
True o True P .OR. Q True
True False _ P .OR. Q ' - True
False | i True ‘ P .OR. 9 True
False | ~ False ' ’ P .OR. Q | - False

Examples

Assume the following variables:

Variable Type
REAL, RUN Real
1,3,K Integer
DP,D '~ Double Precision
L, A, B o Logical
CPX,C Complex

Examples of valid logical expressions consisting' of the foregoing
variables are:

L.AND.

L.AND.A.OR. .NOT. (I-K)

Logical functions are performed on the full

representation of
operation is
simultaneously,

For example, cons

found
for

EXPRESSIONS

36-bit binary processor
operands involved. The result of a logical
by performing the specified function,
each of the corresponding bits in each operand.

the expression A=C.OR.D, where <C="456 and

the

ider

D="201. The operation performed by the processor and the result is:
word
Bits 0 1—24 25 25 27 28 29 30 31 32 33 34 35
Operand C 0 0Q—— 0 0 0 1 0 0 1 0 1 1 1 0
Operand DO Q0— 0 0 0 0 1 0 0 0 0 0 0 1
Result A 0 0Q— 0 0 o0 1 1 0 1 0 1 1 1 1
Table 4-5 also illustrates all possible logical combinations of two

one-bit
combination.

binary
Just

4.2.1 Relational

operands

(P and Q) and gives the result of each

read 1 for true and 0 for false.

Expressions

‘~“Relational express
relational operat
to test, dgquantita
expressions.

The result of a re
false value.

In FORTRAN-10, you
mnemonic enclosed

ymbo
the type of quantl

consist of- two expressions combined by a
The relational operator permits the programmer
the relationship between two arithmetic

ions
or.
tively,

lational expression is always a logically true or

may write relational operators either as a 2 letter
w1th;n perlods,'e dg., .GT., or |
k. Table 4-6 lists both

o
o
b

and

i mnemonic
ORTRAN 10 relatlonal operators and specifies
tative test performed by each operator.

the

Table 4-6

Relational Operators and Operations

Operators Relation Tested

Mnemonic

.GT.
.GE.
.LT.
.LE.
.EQ.
.NE.

Greater than

Greater than or equal to
Less than

Less than or equal to
Equal to

Not equal to

4-7

EXPRESSIONS
Write relational expressions in the general form A(l) .OP.A(2), where
A represents an arithmetic operand and .0OP. 1is a relational operator.

You may mix arithmetic operands of type integer, real, and double
precision in relational expressions.

You may compare complex operands using only the operators .EQ. (==) and
.NE. (#). Complex quantities are equal if the corresponding parts of
both words are equal.

Examples

Assume the following variables:

Variables Type

REAL, RON Real

I1,J,K Integer

DP,D Double Precision
L,A,B Logical

CPX,C Complex

Examples of valid relational expressions consisting of the foregoing
variables are:

(REAL) .GT.10
I ==25
C.EQ.CPX

Examples of invalid relational expressions consisting of the foregoing
variables are: .

(REAL) .GT 10 (closing period missing from operator)

Examples of valid expressions that use both 1logical and relational
operators to combine the foregoing variables are:

(I.GT. 10) .AND.
((I*RON)==(1/J)).
(I1.AND.K) % ((REAL) .OR. (RON))
C#CPX.OR.RON

EXPRESSIONS

4.3 EVALUATION OF EXPRESSIONS

The following determine the order of computation of a FORTRAN-10
expression:

1. the use of parentheses

2. an established hierarchy for the execution of arithmetic,
relational, and logical operations and

3. the location of operators within an expression.

4.3.1 Parenthetical Subexpressions

In an expression, all subexpressions written within parentheses are
evaluated first. When parenthetical subexpressions are nested (one
contained within another) the most deeply nested subexpression is
evaluated first, the next most deeply nested subexpression is
evaluated second, and so on, until the value of the final
parenthetical expression is computed. When more than one operator is
contained by a parenthetical subexpression, the required computations
are performed according to the hierarchy assigned operators by
FORTRAN-10 (Section 4.3.2).

Example:
The separate computations performed in evaluating the expression

A+B/((A/B)+C)-C are:

1. R1l=A/B
2. 2=R1+C
3. R3=B/R2
4. R4=R3-C

5. R5=A+R4

WHERE: Rl THROUGH R5 REPRESENT THE INTERIM AND FINAL RESULTS OF THE
COMPUTATIONS PERFORMED.

4.3.2 Hierarchy of Operators

The following hierarchy (order of execution) 1is assigned to the
classes of FORTRAN-10 operators:

first, arithmetic operators,
second, relational operators, and
third, 1logical operators.

EXPRESSIONS

Table 4-7 specifies the precedence assigned to the individual
operators of the foregoing classes.

With the exception of integer division and exponentiation, all
operations on expressions or subexpressions involving operators of
equal precedence are computed in any order that is algebraically
correct.

A subexpression of a given expression may be computed in any order.
For example, 1in the expression (F(X) + A*B), the function reference
may be computed either before or after A*B.

Table 4-7
Hierarchy of FORTRAN-10 Operators

Class Level Symbol or Mnemonic
EXPONENTIAL | First * %
Second - (unary minus) and + (unary plus)
ARITHMETIC Third *,/
Fourth +,-

RELATIONAL Fifth

.LE.,.EQ.,.NE.

Sixth .NOT.
Seventh . .AND.
LOGICAL ’Eighth

1

Operations specifying integer division are evaluated from 1left to
right. For example, the expression I/J*K is evaluated as if it had
been written as (I/J)*K. But this 1left-to-right evaluation process
can be overridden by parentheses. I/J*K(evaluated as(I/J) *K) does
not equal I/(J*K),which is evaluated as written here.

When a series of exponentiation operations occurs in an expression, it
is evaluated in order from right to left. For example, the expression
A**2%*B isg evaluated in the following order:

first Rl = 2**B (intermediate result)
second R2 = A**R]1 (final result).

Similarly, here too, parentheses alter the evaluation of the
expression . (A**2)**B is evaluated in these two steps:

first Rl = A**2 (intermediate result)

second R2 = R1**2 (final result)

EXPRESSIONS

4-11

CHAPTER 5

COMPILATION CONTROL STATEMENTS

5.1 INTRODUCTION

You use compilation control statements to identify FORTRAN-10 programs
and to specify their termination. Statements of this type do not
affect either the operations performed by the object program or the
manner in which the object program is executed. The three compilation
control statements described in this chapter are:. PROI

COMPILATION CONTROL STATEMENTS

5.4 END STATEMENT

Use this statement to signal FORTRAN-10 that the vphysical end of a
source program or subprogram has been reached. END is a nonexecutable
statement. The general form of an END statement is

END

The following rules govern the use of the END statement:

1. This statement must be the last physical statement of a
source program Oor subprogram. '

3. You may label an END statement.

CHAPTER 6

SPECIFICATION STATEMENTS

6.1 INTRODUCTION

Use specification statements to specify the type characteristics,
storage allocations, and data arrangement. There are seven types of
specification statements:

1. DIMENSION

2. Statements that explicitly specify type, such as REAL or
INTEGER

4. COMMON

5. EQUIVALENCE

6. EXTERNAL

Specification statements are nonexecutable and conform to the ordering
guidelines described in Section 2.4.

6.2 DIMENSION STATEMENT

DIMENSION statements provide FORTRAN-10 with information needed to
identify and allocate the space required for source program arrays.
You may specify any number of subscripted array names as array
declarators in a DIMENSION statement. The general form of a DIMENSION
statement is

DIMENSION S1, S2, ...,Sn

where Si is an array declarator. Array declarators are names of the
following form:

name (max,...,max)

where name is the symbolic name of the array, and each min:max value
represents the upper bounds of an array dimension.

SPECIFICATION STATEMENTS

DIMENSION EDGE |

f TABLE (567)
DIMENSION TABLE

(where IAB, J, K, and

SPECIFICATION STATEMENTS

6.3 TYPE SPECIFICATION STATEMENTS

Type specification statements declare explicitly the data type of
variable, array, or function symbolic names. You may give an array
name in a type statement either alone (unsubscripted) to declare the
type of all its elements or in a subscripted form to specify both its
type and dimensions.

Write type specification statements in the following form:
typé list
where type may be any one of the following declarators:
1. INTEGER
2. REAL
3. DOUBLE PRECISION -
4, COMPLEX

5. LOGICAL

NOTE

In order to be compatible with the type
statements wused by other manufacturers,
the data type size modifier, *n, Iis
accepted by FORTRAN-10. You may append
this size modifier to the declarators,
causing some to elicit messages warning
users of the form of the variable
specified by FORTRAN-10:

[=))
|
w

SPECIFICATION STATEMENTS

Declarator Form of Variable Specified

INTEGER*2 Full word integer with warning message
INTEGER*4 Full word integer

LOGICAL*1 Full word logical with warning message
LOGICAL*4 Full wrd logical

REAL*4 Full word real

REAL*8 Double-precision real

COMPLEX*8 Complex

COMPLEX*16 Complex with warning message

In addition, you may append the data
type size modifier to individual
variables, arrays, or function names.
Its effect 1is to override, for the
particular element, the size modifier
(explicit or implicit) of the primary
type. For example,

REAL*4 A, B*8, C*8(10), D

A and D are single-precision . (one full
word) real, and B . and C are
double-precision (two full words) real.

The list consists of any number of variable, array, or function names
that are to be declared the specified type. The names listed must be
separated by commas and can appear in only one type statement within a
program unit.

Examples

INTEGER A, B, TABLE
REAL R, M, ARRAY (5

NOTE

Variables, arrays, and functions of a
source program, which are not typed
either implicitly or explicitly by a
specification statement, are typed by
FORTRAN-10 according to the following
conventions:

1. Variable names, array names, and
function names that begin with the
letters 1, J, K, L, M, or N are type
integer.

2. Variable names, array names, and
function names that begin with any
letter other than I, J, K, L, M, or
N are type real.

If a name that is the same as a predefined FORTRAN-10 function name
appears in a conflicting type statement, it is assumed that the name
refers to a user-defined routine of the given type. If vyou place a
generic predefined FORTRAN-10 function name in an explicit type
statement, it loses its generic properties.

SPECIFICATION STATEMENTS

6.5 COMMON STATEMENT

The COMMON statement enables you to establish storage that may be
shared by two or more programs and/or subprograms and to name the
variables and arrays that are to occupy the common storage. The use
of common storage conserves storage and provides a means to implicitly
transfer arguments between a calling program and a subprogram. Write
COMMON statements in the following form:

COMMON/Al/V1,V2,...,Vn.../An/V1,V2,...,Vn

where the enclosed letters /Al/, ..., /An/ represent optional name
constructs (referred to as common block names when used).

SPECIFICATION STATHMENTS

The list (e.g., V1,V2...,Vn) appearing after each name construct lists
the names of the variables and arrays that are to occupy the common
area identified by the construct. The items specified for a common
area are ordered within the storage area as they are listed in the
COMMON statement.

Either label COMMON storage areas or leave them blank (unlabeled). 1If
the common area is to be labeled, give a symbolic name within slashes
immediately before the list of items that is to occupy the names area.
For example, the statement

COMMON/AREAl/A,B,C/AREA2/TAB(13,3,3)

establishes two labeled common areas (i.e., AREAl and AREA2). Common
block names bear no relation to internal variables or arrays that have
the same name.

If a common area is to be declared as unlabeled, give either nothing

or two sequential slashes (//) immediately before the list of items

that is to occupy blank common. For example, the statement
COMMON/AREAl1/A,B,C//TAB(3,3,3)

establishes one 1labeled (AREAl) and one unlabeled common area.
Unlabeled common area is also called "blank common".

A given labeled common name may appear more than once in the same
COMMON statement and in more than one COMMON statement within the same
program or subprogram.

Each labeled common area is treated as a separate, specific storage

area. The contents of a common area, i.e., variables and arrays, may
be assigned initial values by DATA statements 1in BLOCK DATA
subprograms. Declarations of a given common area in different

subprograms must contain the same number, size, and order of variables
and arrays as the reference area.

Items to be placed in a blank common area may also be given in COMMON
statements throughout the source program.

During compilation of a source program, FORTRAN-10 will string
together all items listed for each labeled common area and for blank
common areas in the order in which they appear in the source program
statements. For example, the series of source program statements:

COMMON/ST1/A,B,C/ST2/TAB(2,2)//C,D,E

COMMON/S5T1/TST(3,4)//M,N

COMMON/3T2/X,Y,%2//0,P,Q
has the same effect as the single statement
COMMON/ST1/A,B,C,TST(3,4)/ST2/TAB(2,2) ,X,Y,2//C,D,E,M,N,0,P,Q
All items specified for blank common are placed into one area. Items
within blank common are ordered as they are given throughout the
source program. Common block names must be unique with respect to all

subroutine, function, and entry point names.

The largest definition of a given common area must be loaded first.

SPECIFICATION STATEMENTS

6.5.1 Dimensioning Arrays in COMMON Statements

Subscripted array names may be given in COMMON statements as array
dimension declarators. However, variables cannot be used as subscript
quantities in a declarator appearing in a COMMON statement; variable
dimensioning is not permitted in COMMON.

Each array name given in a COMMON statement must be dimensioned either
by the COMMON statement or by another dimensioning statement within
the program or subprogram that contains the COMMON statement but not
both.

Example

COMMON /A/B(100), C(10,10)
COMMON X(5,15) ,Y(5)

6.6 EQUIVALENCE STATEMENT

The EQUIVALENCE statement enables you to control the allocation of
shared storage within a program or subprogram. This statement causes
specific storage locations to be shared by two or more variables of
either the same or different types. Write the EQUIVALENCE statement
in the following form:

EQUIVALENCE(V1,V2,...,Vn), (Wl,W2,...,Wn),(X1,%X2,...,Xn)

where each parenthetical list contains the names of variables and
array elements that are to share the same storage locations. For
example, the statements

EQUIVALENCE (A,B,C)
EQUIVALENCE (LOC,SHARE(1))

specify that the variables named A, B, and C are to share the same
storage location, and that the variable LOC and array element SHARE (1)
are to share the same location.

The relationship of equivalence is transitive; for example, the two
following statements have the same effect:

EQUIVALENCE (A,B), (B,C)
EQUIVALENCE (A,B,C)

When you use array elements in EQUIVALENCE statements, they must have
either as many subscript quantities as dimensions of the array or only
one subscript gquantity. In either of the foregoing cases, the
subscripts must be integer constants. Note that the single case
treats the array as a one-dimensional array of the given type.

You may use the items given in an EQUIVALENCE 1list in both the
EQUIVALENCE statement and in a COMMON statement providing the
following rules are observed:

1. You cannot set two quantities declared in a COMMON statement
to be equivalent to one another.

SPECIFICATION STATEMENTS

2. Quantities placed in a common area by means of an EQUIVALENCE
statement are permitted to extend the end of the common area
forwards. For example, the statements

COMMON/R/X,Y,Z
DIMENSION A (4)
EQUIVALENCE (A,Y)

cause the common block R to extend from Z to A(4) arranged as
follows:

X
Y A(l) (shared location)
Z A(2) (shared location)

3. You cannot use EQUIVALENCE statements that cause the start of
a common block to be extended backwards. For example, the
invalid sequence

COMMON/R/X,Y,Z
DIMENSION A(4)
EQUIVALENCE (X,A{(3))

would require A(1l) and A(2) to extend the starting 1location
of Dblock R in a backwards direction as illustrated by the
following diagram:

N KX —
>
S W N

6.7 EXTERNAL STATEMENT

Any subprogram name to be used as -an argument to another subprogram
must appear in an EXTERNAL statement in the calling subprogram. The
EXTERNAL statement declares names to be subprogram names to
distinguish them from other wvariable or array names. Write the
EXTERNAL statement in the following form:

EXTERNAL namel,name2,...,namen

where each name listed is declared to be a subprogram name. If
desired, these subprogram names may be FORTRAN-10 defined functions.

You may also use FORTRAN-10 defined function names for your

subprograms by prefixing the names by an asterisk (*) or an ampersand
(&) within an EXTERNAL statement. For example,

EXTERNAL *SIN, &COS

SPECIFICATION STATEMENTS

declares SIN and COS to be user subprograms. (If a prefixed name is
not a FORTRAN-10 defined function, then the prefix is ignored.)

Note that specifying a predefined FORTRAN-10 function in an EXTERNAL
statement without a prefix, i.e., EXTERNAL SIN, has no effect upon the
usage of the function name outside of actual argument lists. If the
name has generic properties, they are retained outside of the actual
argument list. (The name has no generic properties within an argument
list.)

The names declared in a program EXTERNAL statement are reserved
throughout the compilation of the program and cannot be used in any
other declarator statement, with the exception of a type statement.

CHAPTER 7

DATA STATEMENT

7.1 INTRODUCTION

DATA statements are used to supply the initial values of variables,
arrays, array elements, and labeled common.(l) Write DATA statements
as follows:

DATA Listl/Datal/,List2/Data2/,...,Listn/Datan/

where the List portion of each List/Data/ pair identifies a set of
items to be initialized and the /Data/ portion contains the list of
values to be assigned the items in the List. For example, the
statement

DATA IA/5/,1B/10/,1C/15/

initializes variable IA to the value 5, variable IB to the wvalue. 10,
and the variable IC to the value 15. The number of storage locations
you specify in the list of variables must be less than or equal to the
nuinber of storage 1locations you specify in its associated list of
values. If the list of variables is larger (specifies more storage
locations) than its associated value 1list, a warning message is
output. When the value list specifies more storage locations than the
variable list, the excess values are ignored.

The List portion of each List/Data/ set may contain the names of one

or more variables array names array elements, or labeled common

variables.
=

may contain one or more

The /Data/ portion of
11 constants and/or alphanumeric

numeric, logical,
strings.

1. Refer to Paragraph 6.5 for a description of labeled common.

7-1

DATA STATEMENT

You may specify literal data as either a Hollerith specification,
e.g., OHABCDE, or a string enclosed in single quotes, e.g., 'ABCDE'.
Each ASCII datum is stored left-justified and is padded with blanks up
to the right boundary of the variable being initialized.

When you assign the same value to more than one item in List, a repeat
specification may be used. Write the repeat specification as N*D
where N 1s an integer that specifies how many times the value of item
D is to be used. For example, a /Data/ specification of /3*20/
specifies that the value 20 is to be assigned to the first three items
named in the preceding list. The statement

DATA M,N,L/3*20/

assigns the value 20 to the variables M, N, and L.

e . 5 s i s

—

Sample Statement Use

DATA PRINT,I,O/'TEST',30,"77/,(TAB(J),J=1,30)/30*5/ The first 30
elements of array
TAB are
initialized to
5.0.

DATA((A(I,J),I=1,5),d=1,6)/30*%1.0/ No conversion
required.

DATA((A(I,J),I=5,10),J=6,15)/60*2.0/ No conversion
required.

When a literal string is specified that is longer than one variable
can hold, the string will be stored left-justified across as many
variables as are needed to hold it. 1If necessary, the 1last variable
used will be padded with blanks up to its right boundary.

Example
Assuming that X, Y, and Z are single-precision, the statement
DATA X,Y,%Z/'ABCDEFGHIJKL'/
will cause
X to be initialized to 'ABCDE'
Y to be initialized to 'FGHIJ'
Z to be initialized to 'KLPPYE'
When a literal string is to be stored in double-precision and/or

complex variables and the specified string is only one word long, the
second word of the variable is padded with blanks.

DATA STATEMENT

Example
Assuming that the variable C is complex, the statement
DATA C/'ABCDE','FGHIJ'/
will cause the first word of C to be initialized to 'ABCDE' and its

second word to be initialized to 'BPPPPB'. The string 'FGHIJ' is
ignored.

CHAPTER 8

ASSIGNMENT STATEMENTS

8.1 INTRODUCTION

Use assignment statements to assign a specific value to one or more
program variables. There are three kinds of assignment statements:

1. Arithmetic assignment statements
2. Logical assignment statements

3. Statement Label assignment (ASSIGN) statements.

8.2 ARITHMETIC ASSIGNMENT STATEMENT

You use statements of this type to assign specific numeric values to
variables and/or array elements. Write arithmetic assignment
statements in the form

v=e
where v is the name of the wvariable or array element that 1is to

receive the specified value and e is a simple or compound arithmetic
expression.

In assignment statements, the equal symbol (=) does not imply equality
as it would in algebraic expressions; it implies replacement. For
example, the expression v=e is correctly interpreted as "the current
contents of the location identified as v are to be replaced by the
final value of expression e; the current contents of v are lost."

STATEMENTS

ASSIGNMENT

ASSIGNMENT STATEMENTS

ASSIGNMENT STATEMENTS

8.3 LOGICAL ASSIGNMENT STATEMENTS

Use this type of assignment statement to assign values to variables
and array elements of type logical. Write the logical assignment
statement in the form

v=e

where v is one or more variables and/or array element names, and e |is
a logical expression.

Examples

o~

Assuming that the variables L, F, M, and G are of type 1logical, the
following statements are valid:

Sample Statement

L=.TRUE. The contents of L is replaced by logical
truth.
F=.NOT.G The contents of L is replaced by the

logical complement of the contents of G.

.

M=A.GT.T ©

If A is greater than T, the contents of
M is replaced by logical truth; if A is
less than or equal to T, the contents of
M is replaced by logical false. This
can also be read: If A is greater than
T, then M 1is true, otherwise, M is
false.

L=((I.GT.H) .AND. (J The contents of L are replaced by either
the true or false resultant of the

expression.

8.4 ASSIGN (STATEMENT LABEL) ASSIGNMENT STATEMENT

Use the ASSIGN statement to assign a statement label constant, i.e., a
1- to 5-digit statement number, to a variable name. Write the ASSIGN
statement in the form

ASSIGN n TO I

where n represents the statement number and I is a variable name. For
example, the statement

ASSIGN 2000 TO LABEL

specifies that the variable LABEL represents the statement number
2000.

With the exception of complex and double-precision, you may use any
type of variable in an ASSIGN statement.

Once a variable has been assigned a statement number, FORTRAN-10 will
consider it a 1label wvariable. If a label variable is used in an
arithmetic statement, the result will be unpredictable.

ASSIGNMENT STATEMENTS

Use the ASSIGN statement in conjunction with assigned GO TO
statements (Chapter 9). The ASSIGN
variables that are then referenced in
statements.
statement:

control
verb sets up statement label

subsequent GO TO control
The following sequence illustrates the use of the ASSIGN

555 TAX=(A+B+C) *.05

ASSIGN 555 TO LABEL

GO TO LABEL

CHAPTER 9

CONTROL STATEMENTS

9.1 INTRODUCTION

FORTRAR-10 object programs normally execute statement-by-statement in
the order in which they were presented to the compiler. The following
source program control statements, however, enable you to alter the
normal sequence of statement execution:

1. GO TO
2. 1IF
3. DO

4. CONTINUE
5. STOP

6. PAUSE

9.2 GO TO CONTROL STATEMENTS

There are three kinds of GO TO statements:
1. Unconditional
2. Computed
3. Assigned
A GO TO control statement causes the statement that it identifies to

be executed next, regardless of its position within the program. The
following paragraphs describe each type of GO TO statement.

9.2.1 Unconditional GO TO Statements

Write GO TO statements of this type in the form
GO TO n

where n is the 1label, 1i.e., statement number, of an executable
statement, e.g., GO TO 555. When executed, an unconditional GO TO
statement transfers control of the program to the statement that it
specifies.

CONTROL STATEMENTS

You may position an unconditional GO TO statement anywhere in the
source program except as the terminating statement of a DO loop.

9.2.2 Computed GO TO Statements

Write GO TO statements of this type in the form
GO TO (N1,N2,...,NK)E

where the parenthesized list is a list of statement numbers and E is
an arithmetic expression. You may include any number of statement
numbers in the list of this type of GO TO statement; however, each
number you dgive must be used as a label within the program or
subprogram containing the GO TO statement.

NOTE

A comma may optionally follow the
parenthesized list.

The value of the expression E must be reducible to an integer value
that 1is greater than 0 and 1less than or equal to the number of
statement numbers given in the statement list. If the wvalue of the
expression E does not compute within the foregoing range, the next
statement is executed.

When a computed GO TO statement 1is executed, the wvalue of its
expression, 1i.e., E, is computed first. The value of E specifies the
position within the given list of statement numbers of the number that
identifies the statement to be executed next. For example, in the
statement sequence

GO TO (20, 10, 5)K
CALL XRANGE (K)

the variable K acts as a switch, causing a transfer to statement 20 if

K=1, to statement 10 if K=2, or to statement 5 if K=3. The subprogram
XRANGE is called if K is less than 1 or greater than 3.

9.2.3 Assigned GO TO Statements

Write GO TO statements of this type in either of the following forms:

GO TO K
GO TO K, (L1,L2,...Ln)

where K is a variable name and the parenthesized list of the second
form contains a 1list of statement labels, i.e., statement numbers.
The statement numbers you give must be within the program or
subprogram containing the GO TO statement.

Assigned GO TO statements of either foregoing form must be logically
preceded by an ASSIGN statement that assigns a statement label to the
variable name represented by K. The value of the assigned 1label
variable must be 1in the same program unit as the GO TO statement in
which it is used. 1In statements written in the form

GO TO K,(Ll1,L2,...Ln)

CONTROL STATEMENTS

if K is not assigned one of the statement numbers given 1in the
statement list, the next sequential statement is executed.
Examples

GO TO STAT1
GO TO STAT1,(177,207,777)

9.3 IF STATEMENTS

There are three kinds of IF statements: arithmetic, 1logical, and
logical two-branch.

9.3.1 Arithmetic IF Statements

Write IF statements of this type in the form
IF(E)L1,L2,L3

where (E) is an expression enclosed within parentheses and L1, L2, L3
are the labels, 1i.e., statement numbers, of three executable
statements.

This type of IF statement transfers control of the program to one of
the given statements according to the computed value of the given
expressions. If the value of the expression is:

1. Less than 0, <control 1is transferred to the statement
identified by L1;

2. Equal to 0, control 1is transferred to the statement
identified by L2;

3. Greater than 0, control 1is transferred to the statement
identified by L3.

You must give all three statement numbers in arithmetic IF statements;
the expression given may not compute to a complex value.

Examples
Sample Statement
IF(ETA)4, 7, 12 Transfers control to statement 4 if
ETA 1is negative, to statement 7 if
ETA is 0, and to statement 12 if
ETA is greater than 0.
IF (KAPPA-L(10))20, 14, 14 Transfers control to statement 20

if KAPPA 1is 1less than the 10th
element of array L and to statement
14 if KAPPA is greater than or
equal to the 10th element of array
L.

CONTROL STATEMENTS

9.3.2 Logical IF Statements

Write IF statements of this type in the form
IF(E)S

where E is any expression enclosed in parentheses and S is a complete
executable statement.

Logical IF statements transfer control of the program either to the
next sequential executable statement or the statement given in the IF
statement, i.e., S, according to the computed 1logical wvalue of the
given expression. If the wvalue of the given logical expression is
true (negative), control is given to the executable statement within
the IF statement. If the value of the expression is false (positive
or zero), control is transferred to the next sequential executable
program statement.

The statement you give in a logical IF statement may be any FORTRAN-=10
executable statement except a DO statement or another logical IF
statement.

Examples
Sample Statement

IF (T.OR.S) X=Y+1 Performs an arithmetic
replacement operation 1if the
result of IF is true.

IF (Z.GT.X(K)) CALL SWITCH(S,Y) Performs a subroutine call if
the result of IF is true.

IF (K.EQ.INDEX) GO TO 15 Performs an unconditional
transfer 1if the result of IF
is true.

9.3.3 Logical Two-Branch IF Statements

Write IF statements of this type in the form
IF (E) N1, N2

where E is any parenthetical expression, and N1 and N2 are statement
labels defined within the program unit.

Logical two-branch IF statements transfer control of the program to
either statement N1 or N2, depending on the computed value of the
given expression. If the value of the given 1logical expression is
true (negative), control is transferred to statement N1l. 1If the value
of the expression is false (positive or zero), control is transferred
to statement N2.

Note that you must number the statement immediately following the
logical two-branch IF so that control can later be transferred to the
portion of code that was skipped.

Examples

9.4

IF

IF

CONTROL STATEMENTS

Sample Statement
(LOG1) 10,20 Transfers control to statement 10
if LOGl 1is negative; otherwise
transfers control to statement 20.
(A.LT.B.AND.A.LT.C) 31,32 Transfers control to statement 31

if A 1is 1less than both B and C;
transfers control to statement 32
if A 1is greater than or equal to
either B or C.

DO STATEMENT

DO statements simplify the coding of iterative procedures; write them
in the following form:

where

Indexing Parameters

——
DO NI = M1,M2,M3

__Z_._

TERMINAL INCREMENT
STATEMENT PARAMETER
LABEL TERMINAL
INDEX PARAMETER
VARIABLE
INITIAL
PARAMETER

Terminal Statement Label N is the statement number of the
last statement of the DO statement range. The range of a DO
statement is defined as the series of statements that follows
the DO statements up to and including its specified terminal
statement.

Index Variable I is an unsubscripted variable whose value is
defined at the start of the DO statement operations. The
index variable is available for use throughout each execution
of the range of the DO statement, but its value should not be
altered within this range. It is also available for wuse 1in
the program when:

a. control is transferred outside the range of the DO 1loop
by a GO TO, arithmetic IF or RETURN statement located
within the DO range,

b. a CALL is executed from within the DO statement range
that uses the index variable as an argument, and

c. if an input-output statement with either or both the
options END= or ERR= (Chapter 10) appears within the DO
statement range.

CONTROL STATEMENTS

3. Initial Parameter M1l assigns the index wvariable, I, its
initial wvalue. This parameter may be any variable, array
element, or expression.

4. Terminal Parameter M2 provides the value that determines how
many repetitions of the DO statement range are performed.

5. Increment Parameter M3 specifies the value to be added to the
initial parameter (M1l) on completion of each cycle of the DO
loop. If M3 and its preceding comma are omitted, M3 is
assumed to be equal to 1.

An indexing parameter may be any arithmetic expression resulting in
either a positive or negative wvalue. The values of the indexing
parameters are calculated only once, at the start of each DO-loop
operation. The number of times that a DO loop will execute is
specified by the formula:

MAX ((M2-M1)/M3+1,1)

Since the count is computed at the start of a DO 1loop operation,
changing the value of the loop index variable within the loop cannot
affect the number of times that the loop is executed. At the start of
a DO 1loop operation, the index value 1is set to the value of the
initial parameter (Ml), and a count variable (generated by the
compiler) 1is set to the negative of the calculated count. At the end
of each DO loop cycle, the value of the increment parameter (M3) is
added to the index variable, and the count variable is incremented.
If the number of specified iterations have not been performed, another
cycle of the loop is initiated.

One execution of a DO loop range is always performed regardless of the
initial values of the index variable and the indexing parameters.

Exit from a DO 1loop operation on completion of the number of
iterations specified by the 1loop count is referred to as a normal
exit. In a normal exit, control passes to the first executable
statement after the DO loop range terminal statement, and the value of
the DO statement index variable is considered undefined.

Exit from a DO loop may also be accomplished by a transfer of control

by a statement within the DO loop range to a statement outside the
range of the DO statement (Paragraph 9.4.3).

9.4.1 Nested DO Statements

One or more DO statements may be contained, i.e., nested, within the
range of another DO statement. The following rules govern the nesting
of DO statements. '

1.

2.

CONTROL STATEMENTS

The range of each nested DO statement must be entirely within
the range of the containing DO statement.

Example

valid Invalid
DO 1 DO 1
DO 2 DO 2
The range of

L DO 2 is outside
that of DO 1.

The ranges of nested DO statements cannot overlap.

Example

valid Invalid
DO 1 DO 1
DO 2 DO 2

[

DO 3 3 The ranges of
—— LE loop DO 2 and

— DO 3 overlap.

8

More than one DO loop within a nest of DO loops may end on
the same statement. When this occurs, the terminal statement
is considered to belong to the innermost DO statement that
ends on that statement. The statement label 4 of the shared
terminal statement cannot be used in any GO TO or arithmetic
IF statement that occurs anywhere other than within the range
of the DO statement to which it belongs.

Example

DO 4
DO 4 All the DO statements
share the same terminal
DO 4 statement, however, it

belongs to DO 4.

CONTROL STATEMENTS

9.4.2 Extended Range

The extended range of a DO statement 1is defined as the set of
statements that execute between the transfers out of the innermost DO
statement of a set of nested DOs and the transfer back into the range
of this innermost DO statement. The extended range of a nested DO
statement is as follows:

DO 1
DO 2

DO 3

(out)

~— (in)

Extended Range

The following rules govern the use of a DO statement extended range:

1. The transfer out statement for an extended range operation
must be contained by the most deeply nested DO statement that
contains the location to which the return transfer is to be
made.

2. A transfer into the range of a DO statement is permitted only
if the transfer 1is made from the extended range of that DO
statement.

3. The extended range of a DO statement must not contain another
DO statement.

CONTROL STATEMENTS

4. The extended range of a DO statement cannot change the index
variable or indexing parameters of the DO statement.

5. You may use and return from a subprogram within an extended
range.

9.4.3 Permitted Transfer Operations

The following rules govern the transfer of program control from within
a DO statement range or the ranges of nested DO statements:

1. A transfer out of the range of any DO loop 1is permitted at
any time. When such a transfer executes, the value of the
controlling DO statement's index variable is defined as the
current value.

2. A transfer into the range of a DO statement is permitted if
it is made from the extended range of the DO statement.

3. You may use and return from a subprogram from within the
range of any:

a. DO loop,

b. nested DO loop, or

c. extended range loop (in which you leave the loop via a GO
TO, execute statements elsewhere, and return to the
original 1loop).

The following examples illustrate the transfer operations permitted
from within the ranges of nested DO statements:

valid Transfers

D1

D2

B ——_—

extended range

—)

Invalid Transfer

D1
D2

D3

CONTROL STATEMENTS

9.5 CONTINUE STATEMENT

You may place CONTINUE statements anywhere in the source program
without affecting the program sequence of execution. CONTINUE
statements are commonly used as the last statement of a DO statement
range 1in order to avoid ending with a GO TO, PAUSE, STOP, RETURN,
arithmetic IF, another DO statement, or a logical 1IF statement
containing any of the foregoing statements. Write this statement as

12 CONTINUE
Example

In the following sequence, the labeled CONTINUE statement provides a
legal termination for the range of the DO loop.

DO 45 ITEM=1,1000

STOCK=NVNTRY (ITEM)

CALL UPDATE (STOCK,TALLY)

IF(ITEM.EQ.LAST) GO TO 77
45 CONTINUE

77 PRINT 20, HEADING,PAGENO

9.6 STOP STATEMENT

Execution of the STOP statement causes the execution of the object
program to be terminated and returns control to the DECsystem-10
Monitor. A descriptive message may optionally be included in the STOP
statement to be output to your I/O terminal immediately before program
execution is terminated. Write this statement like this:

CONTROL STATEMENTS

9.7 PAUSE STATEMENT

Execution of a PAUSE statement suspends the execution of the object
program and gives you the option to:

1. Continue execution of the program

The permitted forms of the PAUSE statements are:

1. PAUSE

CONTROL STATEMENTS

'CONTROL STATEMENTS

CHAPTER 10

I/0 STATEMENTS

10.1 DATA TRANSFER OPERATIONS

FORTRAN-10 I/O statements permit the transfer of data between
processor storage (core) and peripheral devices and/or between storage
locations. Data in the form of logical records‘may be transferred by
_use of an a) sequential, . c ppend . RS
. The areas in core from which data is to be taken during
output (write) operations and into which data is stored during input
(read) operations are specified by:

1. A list in the I/0 statement that initiated the transfer

3. Between a specified FORMAT statement and the external medium.

The type and arrangement of transferred data may be specified by
format specifications located in either a FORMAT statement or an arr

The following sections describe the statements and data format

required to initiate I/O transfer operations.

10.2 TRANSFER MODES

The characteristics and requirements of the a) sequentlal b ;
Lacc , are <described in the follow1ng
paragraphs.

10.2.1 Sequential Mode

Records are transferred during a sequential mode of operation in the
same order they appear in the external data file. Each I/O statement
executed 1in a sequential mode transfers the record immediately
following the last record transferred from the accessed source file.

I/0 STATEMENTS

10.3 I/O STATEMENTS, BASIC FORMATS AND COMPONENTS

The majority of the I/O statements described " in this chapter are
written in one of the following basic forms or in some modification of
these forms:

Basic Statement Forms Use

Transfer

Keyword = the statement name (READ or WRITE)
u . = FORTRAN-10 logical unit number
f = FORMAT statement number in the current program

unit or the name of an array that contains the
desired format specifications

list = I/0 list

” -

The following paragraphs provide details of the foregoing components.

10-2

I/0 STATEMENTS

10.3.1 I/O Statement Keywords

The keywords (names) of the FORTRAN-10 I/O statements described in
this chapter are:

10.3.3 FORMAT Statement References

A FORMAT statement contains a set of format specifications that
defines the structure of a record and the form of the data fields
comprising the record. Format specifications may also be stored in an
array rather than in a FORMAT statement. (Refer to Chapter 13 for a
complete description of the FORMAT statement.)

The execution of an I/O statement that includes either a FORMAT
statement number or the name of an array that contains format
specifications causes the structure and data of the transferred record
to assume the form specified in the referenced statement or array.
Records transferred under the control of a format specification are
referred to as "formatted" records. Conversely, records transferred
by I/0 statements that do not reference a format specification are
referred to as "unformatted" records. During unformatted transfers,
data is transferred on a one-to-one correspondence between internal
(processor) and external (device) 1locations, with no conversion or
formatting operations.

Unformatted files are binary files divided into records by FORTRAN-10
embedded control words; the control words are invisible to you. You
cannot prepare files of this type without using FOROTS. Unformatted
files are for use only within the FORTRAN-10 environment.

10-3

I/0 STATEMENTS

10-4

I/0 STATEMENTS

I/0 STATEMENTS

10.3.4 I/0 List

An I/0 list specifies the names of variables, arrays, and array
elements to which input data is to be assigned or from which data is
to be output. Implied DO constructs (Paragraph 10.3.4.1), which
specify sets of array elements, may also be included in I/0 lists.
The number of items in a statement list determines the amount of data
to be transferred during each execution of the statement.

10.3.4.1 1Implied DO Constructs - When an array name is given in an
I/0 1list, all elements of the array are transferred in the order
described in Chapter 3 (Paragraph 3.5.3). If only a specific set of
array elements 1is 1involved, they may be specified in the I/O list
either individually or in the form of an implied DO construct.

Write implied DOs within parentheses in a format similar to that of DO
statements. They may contain one or more variable, array, and/or
array element names, delimited by commas and followed by indexing
parameters that are defined as for DO statements.

The general form of an implied DO is

(name (3L) ,I=M1,M2,M3)

where
name = an array name
SL = the subscript 1list of an array or an array
element identifier
I = the index control variable that may represent a
subscript appearing in a preceding subscript list
M1,M2,M3 = the indexing parameters that specify,
respectively, the initial, terminal, and
increment values that control the range of I. 1If
M3 is omitted (with its preceding comma), a value
of 1 is assumed.
Examples

(a(S),S=1,5) Specifies the first five elements of the
one-dimension array A, i.e., A(l), A(2),
A(3), A(4), A(5).

(A(2,S),5=1,10,2) Specifies the elements A(2,1), A(2,3),
A(2,5), A(2,7), A(2,9) of array A.

(1,I=1,5) Specifies the integers 1,2,3,4, and 5.

As stated previously, implied DO constructs may also contain one or
more variable names.

Example
I, J, B, and C must be integer variables.
((A(B,C),B=1,10) ,C=1,10) ,I1,J Specifies a 10 X 10 set of elements
of array A, the location identified

by I, and the 1location identified
by J.

10-6

I/0 STATEMENTS

You may also nest implied DO constructs. Nested implied DOs may share
one or more sets of indexing parameters.

Example

((A(J,K),J=1,5),D(K) ,K=1,10) Specifies a 5 X 10 set of elements
of array A and the first 10
elements of array D.

When you specify an array or set of array elements as either a storage
or transmitting area for I/O purposes, the array elements involved are
accessed in ascending order with the value of the first subscript
quantity varying most rapidly and the value of the 1last given
subscript increasing to its maximum value least rapidly. For example,
the elements of an array dimensioned as TAB(2,3) are accessed in the
order:

TAB(1,1)
TAB(2,1)
TAB(1,2)
TAB(2,2)
TAB(1,3)
TAB(2,3)

10.3.4.2 Formatted Record Handling - Data is processed under format
control so that each item 1in the I/0O list is matched with a field
descriptor in the FORMAT statement. If the end of the FORMAT
specification 1is reached and more items remain in the I/O list, a new
line or record is established and the data processing 1is restarted,
either:

1. at the first item in the FORMAT specification or,

2. (if parenthesized sets of FORMAT specifications exist within
the FORMAT specification) with the last set within the FORMAT
specification.

On input, if the record is exhausted before the data transfers are
completed, the remainder of the transfer is completed as if the record
were extended with blanks. See Section 13.2.2 for more details.

10-7

I/0 STATEMENTS

10-8

I/0 STATEMENTS

10-9

I/0 STATEMENTS

10-10

I/0 STATEMENTS

10.5 READ STATEMENTS

READ statements transfer data from peripheral devices into specified
processor storage locations. The permitted forms of this type of
input statment permit READ statments to be used on both sequential and
random access transfer modes for formatted, unformatted,
list-directed, and NAMELIST-controlled data transfers.

10.5.1 Sequential Formatted READ Transfers

Descriptions of the READ statements that may be wused for the
sequential transfer of formatted data follow:

1. Form: READ (u,f)list

Use: Input data from 1logical unit u, formatted
according to the specification given in £, into
the ©processor storage locations identified in
input list.

Example: READ (10,555)TABLE(10,20) ,ABLE,BAKER,CHARL
2. Form: READ(u, £f) »

Use: Input the data from logical unit u directly into
either a Hollerith (H) field descriptor or a
literal field descriptor given within the format
specifications of the referenced FORMAT statement.
If the referenced FORMAT statement does not
contain either of the foregoing types of format
field descriptors, the input record is skipped.
If a required field descriptor is present, its
contents are replaced by the input data.

Example: READ(15,101)
10-11

3. Form:

Use:

Example:
4, Form:

Use:

Example:

I/0 STATEMENTS

READ £

Input the data from the READ default device (card
reader) directly into either a Hollerith (H) field
descriptor or a literal field descriptor given
within the format specifications of the referenced
FORMAT statement. If the referenced FORMAT
statement does not contain either of the foregoing
types of format field descriptors, the input
record is skipped. If a required field descriptor
is present, its contents are replaced by the input
data.

READ 66

READ f,list

Input the data from the READ default device (card
reader) into the processor storage locations
identified in the input list. The input data is
formatted according to the specifications given in
f.)

READ 15, ARRAY (20,30)

10.5.2 Sequential Unformatted Binary READ Transfer

You may use only the following form of the READ statement for the
sequential transfer of unformatted input FORTRAN binary data:

Form:

Use:

Example:

READ (u)list

Input one logical record of data from logical unit
u into processor storage as the value of the
location identified in list. You may read only
binary files output Dby a FORTRAN-10 unformatted
WRITE statement by this type of READ statement.

NOTE
If you use the form READ (u), one

unformatted input record will be skipped.

READ (10) BINFIL (10,20,30)

10-12

I/0 STATEMENTS

G .

.
.

10-13

I/0 STATEMENTS

10.6 SUMMARY OF READ STATEMENTS

Table 10-2 summarizes the various forms of the READ statements.

Table 10-2
Summary of READ Statements

Tyoe of Transfer Transfer Mode

Sequential

Formatted READ(u,f)list
READ(u, f)
READ f,list

10-14

I/0 STATEMENTS

10-15

I/0 STATEMENTS

10.8 WRITE STATEMENTS

WRITE statements transfer data from specified processor storage
locations to peripheral devices. The various f f the WRITE
it to be wused in sequential, | ?
. modes for formatted, unformatted, list-dir
d data transfers.

10.8.1 Sequential Formatted WRITE Transfers

You may use the following forms of the WRITE statement for the
sequential transfer of formatted data:

1. Form: WRITE(u,f)list
Use: Output the values of the Processor storage
locations identified in 1list into the file
associated with 1logical unit u. Convert and

arrange the output data according to the
specifications given in f.

Example: WRITE(06,500)0UT(10,20) ,A,B
2. Form: WRITE f,list

Use: Output the wvalues of the processor storage
locations identified in list to the default device
(line printer). Convert and arrange the output
data according to the specifications given in f.

Example: WRITE 10,SEND(5,10) ,A,B,C
3. Form: WRITE £
Use: Output the contents of any Hollerith (H) or
literal (''). field descriptor(s) contained by f to
the default device (line printer). If neither of
the foregoing types of field specifications is
found in £, no output transfer is performed.

Example: WRITE 10

10.83.2 Sequential Unformatted Binary WRITE Transfer

You may use the following form of the WRITE statements for the
sequential transfer of unformatted data:

Form: WRITE (u)list

Use: Output the values of the processor storage
locations identified in 1list into the file
associated with logical unit u. No conversion or
arrangement of output data is performed.

Example: WRITE(12)1ITAB(20,20) ,5UMS(10,5,2)

10-16

I/0 STATEMENTS

I/0 STATEMENTS

10.9 SUMMARY OF WRITE STATEMENTS

Table 10-3 summarizes the various forms of the WRITE statements.

Table 10-3
Summary of WRITE Statements

Type of Transfer

Transfer Mode
Sequential . Ran Ac

Formatted WRITE(u,f)list
WRITE f,1list
WRITE £

10-18

I/0 STATEMENTS

10.11 PRINT STATEMENT

The PRINT statement causes data from specified processor storage
locations to Dbe output on the standard output device (line printer).
Use this statement only for sequential formatted data transfer
operation; write it in either of the three following forms:

1. Form: PRINT ﬁ,list

Use: Output the wvalues of the processor storage
locations identified by the contents of list to
the line printer. The values output are to be
formatted and arranged according to the format
specifications given in f.

Example: PRINT 55,TABLE(10,20),1,J,K
2. Form: PRINT *,list
Use: Output the values of the processor storage
locations 1identified by the contents of list to
the line printer. The conversion of each datum
from internal to external form is performed
according to the type of the 1list wvariable from
which the datum is taken.
Example: PRINT *,C,X,Y,ITAB(10,10)
3. Form: PRINT £

Use: Output the contents of the FORMAT statement
Hollerith (H) or literal field descriptors to the
line printer. 1If neither an H nor a literal field

10-19

I/0 STATEMENTS
descriptor 1is present in the referenced FORMAT
statement, no operation is performed.
Example: PRINT 55

The second form of the PRINT statement is particularly useful when
employed with ACCEPT f statements to cause desired data (comments or
headings) to be inserted into reports at program execution time.
Example

The sequence

55 FORMAT(' END OF ROUTINE')

PRINT 55

results in the printing of the phrase "END OF ROUTINE" on the 1line
printer.

10.12 PUNCH STATEMENT

The PUNCH statement causes data from specified processor storage
locations to be output to the system standard paper tape punch. Use
this statement only for sequential formatted data transfers; write it
in one of the three following forms:

1. Form: PUNCH f,list

Use: ’ Output the wvalues of the processor storage
locations identified by the contents of list to
the standard paper tape punch unit. The values
output -are to be formatted and arranged according
to the format specifications given in f.

Example: PUNCH 10,TABLE(10,20),I,J,K
2. Form: PUNCH *,list

Use: Output the values of = the processor storage
locations identified by the contents of list to
the paper tape punch unit. The conversion of each
datum from internal to external form is performed
according to the type of the 1list variable from
which the datum is taken.

Example: PUNCH *,I,A,B,M,TAB(5,10)

3. 'Form: PUNCH £
Use: Output the contents of the referenced FORMAT
statement Hollerith (H) or literal field

descriptors to the standard paper tape punch unit.
If neither an H nor a literal field descriptor is
present in the referenced FORMAT statement, no
operation is performed.

The third form of the PUNCH statement 1is particularly wuseful when
employed in conjunction with an ACCEPT f statement to cause
user-entered data (comments or headings) to be added to an output file
at program execution time.

10-20

I/0 STATEMENTS

m

I/0 STATEMENTS

10-22

I/0 STATEMENTS

I/0 STATEMENTS

10-24

I/0 STATEMENTS

10.16 SUMMARY OF I/O STATEMENTS

Table 10-4 on pages 10-26 and 10-27 presents a summary of all
permitted forms of the FORTRAN-10 I/O statement.

10-25

Table 10-4
Summary of FORTRAN-10 I/O Statements

I/0 Statements Transfer Format Control
Formatted Unformatted

READ
Sequential READ (u,f)list READ(u)list
READ f,list

WRITE (u,f)list
WRITE f,list
WRITE f

9¢-01

SINIWAIVIS 0O/1I

LZ-0T

Table 10-4 (Cont.)
Summary of FORTRAN-1C I/O Statements

I/0 Statements Transfer Format Control
Formatted Unformatted

PRINT
Sequential only PRINT f,list
PRINT £
PUNCH
Sequential only PUNCH f,1list
PUNCH f

logical unit number
f statement number of FORMAT
statement or name of array

SINIWIILVYIS O/I

11-1

NAMELIST STATEMENTS

s

D

AT

NAMELIST STATEMENTS

FILE CONTROL STATEMENTS

-

s
'%%;%@

12-2

FILE CONTROL STATEMENTS

FILE CONTROL STATEMENTS

FILE CONTROL STATEMENTS

FILE CONTROL STATEMENTS

FILE CONTROL STATEMENTS

12-7

FILE CONTROL STATEMENTS

12-8

FILE CONTROL STATEMENTS

FILE CONTROL STATEMENTS

12-10

FILE CONTROL STATEMENTS

12-11

CHAPTER 13

FORMAT STATEMENT

13.1 INTRODUCTION

Use FORMAT statements 1in conjunction with the 1I/0 1list of 1I/0
statements during formatted data transfer operations. The FORMAT
statements contain field descriptors that, together with the 1list
items of associated I/0 statements, specify the forms of the data and
data fields that comprise each record.

FORMAT statements may appear almost anywhere in a FORTRAN-10 source
program. The only placement restrictions are that they follow
PROGRAM, FUNCTION, SUBPROGRAM, or BLOCK DATA statements; and that
they precede the END statement. (Refer to Section 2.4.)

You must label FORMAT statements so that I/O statements can reference
them.

13.1.1 FORMAT Statement, General Form

The general form of a FORMAT statement follows:

k FORMAT(SAl,SA2,...,SAn/SBl1,SB2,...,SBn/...)

where
k = the required statement label (which <can only
be referenced by I/0 statements).
SAl through SAn = individual field descriptor sets

and
SB1 through SBn

In the foregoing statement form, the individual field descriptors are
delimited by commas (,). Field descriptor sets and records are
delimited by slashes (/). For example, a FORMAT statement of the
form:

FORMAT (SAl1,SA2/SB1,S82/3C1,SC2)

contains format specifications for three records with each record
containing two field descriptor sets.

Adjacent slashes (//) in a FORMAT statement specify that a record is
to be skipped during input or is to consist of an empty record on
output. For example, a FORMAT statement of the form:

FORMAT (SAl1,SA2///SB1,SB2)

13-1

FORMAT STATEMENT

specifies four records are to be processed; however, the second and
third records are to be skipped.
You may represent repeated field descriptors or groups of field
descriptors by using a repeat form. 1Indicate the repetition of a
single field descriptor by preceding the descriptor with an integer
constant that specifies how many times the descriptor 1is to be
repeated. For example, a FORMAT statement of the form:

FORMAT (SAl1,SA2,SA3,5A1,SA2,SA3,5A1,SA2,5A3)
may be written as

FORMAT (3 (SAl1,SA2,SA3))

You may nest the repeat forms of field descriptors to any depth. For
example, a FORMAT statement of the form:

FORMAT(SAl,SA2,SA2,SA3,SA1,SA2,SA2,SA3)
may also be written in the form:
FORMAT (2 (SAl1,25A2,5A3))
The following pafagraphs discuss the manner in which you may use the

foregoing statement forms and the effect each has on the data
involved.

13.2 FORMAT DESCRIPTORS

FORMAT statement descriptors describe the record structure of the
data, the format of fields within the record, and the conversion,
scaling, and editing of data within specific fields. The following
descriptors can be used with FORTRAN-10:

Descriptors Comments
rFw.d
rEw.d Floating point numeric field descriptors
rDw.d
rGw.d
rIiw Integer field descriptor
rLw Logical field descriptor
rAw } Alphanumeric data field descriptor
rRw
kHs } Alphanumeric data in a FORMAT statement field
'text' descriptor
} Field formatting descriptors
nP Numerical scale factor desériptor
/ Record delimiter

13-2

FORMAT STATEMENT

where

r = an optional unsigned integer representing a repeat count.
This option enables a field descriptor to be repeated r
times. .

w = an optional integer constant representing the width (total
number of characters contained) of the external form of
the field being described. All characters, including
digits, decimal ©points, signs, and blanks that are to
comprise the external form of the field, must be included
in the value of w.

.d = an optional unsigned integer specifying the number of
fractional digits that are to appear in the external
representation of the field being described. "Note that w
must be specified if .d is . included in the descriptor.

k = an unsigned integer specifying the number of characters to
be processed during the transfer of alphanumeric data.

s = represents a string of ASCII (alphanumeric) characters.

n a signed integer constant (plus signs are optional).

The characters A, D, E, F, G, H, I, L, O, P, and R indicate the manner
of conversion and editing to be performed between the internal
(processor) and external representations of the data within a specific
field; these characters are referred to as conversion codes. Table
13-1 gives the FORTRAN-10.conversion codes and a brief description of
the function of each.

Table 13-1 .
FORTRAN-10 Conversion Codes

Code Function

Transfer alphanumeric data

Transfer real data with a D exponent(1l)

Transfer real data with an E exponent(1l)
Transfer real data without an exponent

Transfer integer, real, complex, or logical data
Transfer literal data

Transfer integer data

-) _Transfer logical data

P Numerical scaling factor

R Transfer alphanumeric data

CHITO™WEO P

1. An exponent of 0 is assumed if none is given.

The use of commas to delineate format descriptors within a format
specification ‘is optional as 1long as no ambiguity exists. For
example,

FORMAT (3X,A2)

can be written as

FORMAT (3XA2)

13-3

FORMAT STATEMENT

Since interpretation of a format specification 'is 1left associative,
the specification

FORMAT (122,15)
can be written. as
FORMAT (12215)
However, a coﬁma is ‘required when you wish.-to specify
FORMAT (I2,21I5)
The following paragraphs provide detailed descriptions of the wvarious

types of format descriptors, the manner in which they are written and
employed, and their use in FORMAT statements.

13.2.1 Numeric Field Descriptors

The forms of the field descriptors used to specify the format and
conversion of numeric-data follow.

Description Type of Data Used For
Dw.d Double-precision data with a D exponent
Ew.d v Real data with an E exponent
Ew.d,Ew.d For the real and imaginary parts of a complex
datum -
Fw.d Real or double-precision data without an exponent
Fw.d,Fw.d For the real and imaginary parts of a complex
datum
Iw Integer data
? a
Gw.d Real or double-precision data -
Gw For integer (or logical) data
Gw.d,Gw.d For the real and imaginary parts of a complex
datum ') ‘)
NOTE

The G conversion code may be.- used for
all but octal numeric data types.
Examples
Consider the following program segment:
INTEGER I1,I2

REAL R1,R2,R3 :
DOUBLE PRECISION D1,D2

I1 = 506

12 = 8

Rl = 506.0

R2 = 13.1

R3 = 506001.0
Dl = 13.0

D2 = -504.0

13-4

FORMAT STATEMENT

Table 13-2 describes the actions performed by several types of
formatted WRITE statements on the data given in the foregoing program
segment.
Table 13-2
Action of Field Descriptors On Sample Data
Item|Descriptor | Sample WRITE External
Form Descriptor Statement Form External
Using the of Sample | Appearance
Sample Field of Sample
Descriptor Described | Data
1 Dw.d D8.2 WRITE(-,-)D1| Z.nnD nn| 0.18D+02
2 Ew.d E8.2 WRITE(-,-)Rl1| Z.nnE nn| 0.51E+03
3 Fw.d F5.2 WRITE(-,-)R2| aa.nn 18.10
4 Iw I5 WRITE(-,-)Il| aaaan BB506
5 Iw I2 WRITE(-,-) I1| an **
6 ; 001
7 Gw.d G8.2 WRITE(-,-)D2| Z.nn nn| -.50D+02
8 Gw.d G8.2 WRITE(-,-)R3] Z.nnE nn| 0.51E+06
9 |Gw.d G8.2 WRITE(-,-)R2| aa.nn ¥PBL8.10
10 Gw G5 WRITE(-,-)I1l| aaan BB506
where: a. n represents a numeric character.
b. 7% represents either a - or 0. (Note that if n-d>6,
o a negative number cannot be output.)
C. a represents a digit, leading blank (B) or a minus
sign depending on the numeric output.
Notes:

1. In Item 1, the value D1 has only two significant digits and
d=2, so no rounding will occur on input.

2. In Item 2, since Rl has 3 significant'digité, it 1s rounded
to fit into the specified field.

3. In Item 5, the width (w) part of a format descriptor
specifies an exact field that permits no rounding of its
contents. If the w specification is too small for the datum
to be transferred, asterisks are output to indicate that the
transfer was not made. -

5. In Items 8 and 9, the relationship between G and fixed and
floating real data is discussed in Paragraph 13.2.3.

6. In Items 1, 2, 3, 7, and 8, the D and E exponent prefixes are
optional in the external form of the floating point
constants. For example, 1.1E+3 may be written as 1.1+3.

Table 13-3 summarizes the internal and external forms of the data

specified by the numeric format conversion' code.

13-5

FORMAT STATEMENT

Table 13-3
Numeric Field Codes

Internal Form Conversion External Form
Code
Binary floating-point D Decimal floating-point with D
double-precision exponent :
Binary floating-point E Decimal floating-point with E
: exponent
Binary floating-point F Decimal fixed-point
Binary integer I Decimal integer

One of the following: G Single-precision decimal

single-precision - | floating-point, decimal

binary floating-point, integer, logical (T or F), or

binary integer, binary complex (two decimal

logical, or binary floating-point numbers),

complex depending upon the internal
form

Complex quantities transfer as two independent real quantities. The
format specification for complex quantities consists of either two
successive real field descriptors or one repeated real field
descriptor. For example, the statement

FORMAT (2E15.4,2(F8.3,F8.5))
may transfer up to three complex quantities.
The equivalent of the foregoing statement is

FORMAT (E15.4,E15.4,F8.3,F8.5,F8.3,F8.5)

13.2.2 Interaction of Field Descriptors With I/0 Variables

The execution of an I/0 statement that specifies a formatted data
transfer operation initiates format control. . The actions performed by
format control depend on information provided by the elements of the
I/0 statement's 1list of wvariables and the field descriptors that
comprise the referenced FORMAT statement's format specifications.

In processing each FORMAT controlled I/O statement that has an 1I/0
list, FORTRAN-10 scans the contents of the list and the format
specifications in s