
FORTRAN
PROGRAMMEItS

REFERENCE MANUAL

January 1977

This document describes the language elements of the
FORTRAN-l0 compiler for the DECsystem-l0.

FORTRAN PROGRAMMER'S
REFERENCE MANUAL
Order No. AA-0944E-TB

SUPERSESSION/UPDATE INFORMATION:

OPERATING SYSTEM AND VERSION:

SOFTWARE VERSION:

This document supersedes the document of the
same name, Order No. DEC-l0-LFORA-D-D,
published June 1975.

Any Digital-supported operating system for the
DECsystem-l0.

FORTRAN-l0, Version 5

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754.

digital equipment corporation · maynard, massachusetts

First Printing,
Revised:

June
January
October

May
June

November
January

1973
1974
1974
1975
1975
1975
1977

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

Digital Equipment Corporation assumes no responsibility for the use
or reliability of its software on equipment that is not supplied by
DIGITAL.

Copyright © 1973, 1974, 1975, 1977 by Digital Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre­
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL
DEC
PDP
DECUS
UNIBUS
COMPUTER LABS
COMTEX
DDT
DECCOMM

DECsystem-lO
DEC tape
DIBOL
EDUSYSTEM
FLIP CHIP
FOCAL
INDAC
LAB-8
DECsystem-20

MASSBUS
OMNIBUS
OS/8
PHA
RSTS
RSX
TYPESET-8
TYPESET-IO
TYPESET-ll

PREFACE

This manual has two parts: PART I, Introduction to Using FORTRAN-IO
with SOS, and PART II, FORTRAN-IO Language Manual.

Part I is a short guide to using the DECsystem-lO Operating System.
It describes the minimum set of commands necessary to input, edit, and
execute FORTRAN programs. It assumes that the reader has a
rudimentary knowledge of or is presently learning FORTRAN programming.
It is a guide to implementing FORTRAN on the DECsystem-IO.

The complete set of Operating System commands is given in the
DECsystem-lO Operating Systems Commands Manual (DEC-IO-OSCMA-A-D).
T~h~e~S~O~S~t~e-=x~t--e~d~i~t~o~r~i~s~d~e~s~c~r~i~b~e~d~c-o~m~p~l~e7t~e~1~y~1~'n~~t~h~e SOS User's Guide
(DEC-IO-USOSA-A-D) •

Part II describes the FORTRAN language as implemented for the
FORTRAN-IO Language Processing System (referred to as FORTRAN-IO).
The language manual (PART II) is intended for reference purposes only.
The reader is expected to have some experience in writing FORTRAN
programs and to be familiar with the standard FORTRAN language set and
terminology as defined in the American National Standard FORTRAN,
X3.9-1966. Descriptions of FORTRAN-IO extensions and additions to the
standard FORTRAN language set are printed with ~ray shading.

Operating procedures and descriptions of the OECsystem-IO programming
environment are included in the appendixes.

iii

PART I

CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER

PART II

CHAPTER
CHAPTER
CHAPTER

CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX

MASTER TABLE OF CONTENTS

INTRODUCTION TO USING FORTRAN-I0 WITH SOS

1 LOGGING IN
2 TYPING IN YOUR PROGRAM
3 RUNNING YOUR PROGRAM
4 CHANGING YOUR PROGRAM
5 FORTRAN-I0 INPUT AND OUTPUT OF DATA
6 SOME HELPFUL COMMANDS
7 SAYING GOODBYE TO THE COMPUTER
8 EXAMPLES

FORTRAN-I0 LANGUAGE MANUAL

1 INTRODUCTION
2 CHARACTERS AND LINES
3 DATA TYPES, CONSTANTS, SYMBOLIC NAMES,

VARIABLES, AND ARRAYS
4 EXPRESSIONS
5 COMPILATION CONTROL STATEMENTS
6 SPECIFICATION STATEMENTS
7 DATA STATEMENT
8 ASSIGNMENT STATEMENTS
9 CONTROL STATEMENTS
10 I/O STATEMENTS
11 NAMELIST STATEMENTS
12 FILE CONTROL STATEMENTS
13 FORMAT STATEMENT
14 DEVICE CONTROL STATEMENTS
15 SUBPROGRAM STATEMENTS
16 BLOCK DATA SUBPROGRAMS
A ASCII-1968 CHARACTER CODE SET
B USING THE COMPILER
C WRITING USER PROGRAMS
D FOROTS
E FORDDT
F COMPILER MESSAGES
G FORTRAN-I0 REALTIME SOFTWARE
H FOROTS ERROR MESSAGES

v

Page

INTRO 1-1
INTRO 2-1
INTRO 3-1
INTRO 4-1
INTRO 5-1
INTRO 6-1
INTRO 7-1
INTRO a-I

1-1
2-1

3-1
4-1
5-1
6-1
7-1
8-1
9-1

10-1
11-1
12-1
13-1
14-1
15-1
16-1

A-1
B-1
C-1
D-1
E-1
F-1
G-1
H-1

PART I

Introduction to Using FORTRAN-10 with SOS

CHAPTER

CHAPTER

CHAPTER

CHAPTER

CHAPTER

CHAPTER

CONTENTS

1 LOGGING IN

2 TYPING IN YOUR PROGRAM
TO STOP ENTERING LINES INTO YOUR PROGRAM
ENDING OR STORING YOUR PROGRAM(E)
THE RUBOUT OR DELETE KEY (CORRECTING
TYPING MISTAKES)

3 RUNNING YOUR PROGRAM
THE EXECUTE COMMAND
CTRL/C (-C) (GETTING THE MONITOR'S
ATTENTION

Stopping Your program's Execution
Deleting a Command

CTRL/U (~U) (CHANGING A LINE)

4 CHANGING YOUR PROGRAM
THE R SOS COMMAND (CORRECTING MISTAKES IN
YOUR PROGRAM)
SOS COMl\1ANDS

I - Inserting Lines Into Your Program
D - Deleting Lines From Your Program
R - Replacing Lines In Your Program
P - Printing Lines Of Your Program On

The Terminal
N - Changing The Line Numbers
E - End (Ends Editing and Stores

the Program)
EQ - Returning To the Monitor Without

Storing Your Program
A FEW 30S CONVENTIONS
TAB (CTRL/I)
CORRECTING MISTAKES

5 FORTRAN-IO INPUT AND OUTPUT OF DATA
READ STATEMENT
WRITE STATEMENT
DEVICE UNIT NUMBERS
ACCEPT STATEMENT
TYPE STATEMENT
DATA FILES

Letting FORTRAN Use a Predefined
Filename
Using Your Own Filename

6 SOME HELPFUL COMMANDS
TYPE COMMAND (PRINTING OUT YOUR PROGRAM)
DIRECT COMMAND (LISTING ALL STORED
PROGRAMS AND FILES)
DELETE COMMAND (ERASING A PROGRAM
OR FILE)

ix

Page

INTRa 1-1

INTRa 2-1
INTRa 2-2
INTRa 2-2

INTRa 2-3

INTRa 3-1
INTRa 3-1

INTRa 3-3
INTRa 3-3
INTRa 3-3
INTRa 3-4

INTRa 4-1

INTRa 4-1
INTRa 4-1
INTRa 4-1
INTRa 4-3
INTRa 4-3

INTRa 4-4
INTRa 4-5

INTRa 4-5

INTRa 4-5
INTRa 4-6
INTRa 4-6
INTRa 4-6

INTRa 5-1
INTRa 5-1
INTRa 5-1
INTRa 5-2
INTRa 5-2
INTRa 5-2
INTRa 5-3

INTRa 5-3
INTRa 5-3

INTRa 6-1
INTRa 6-1

INTRa 6-1

INTRa 6-2

CHAPTER

CHAPTER

CONTENTS (CONT.)

RENAME COMMAND (GIVING A PROGRAM OR FILE
A NEW NAME)
CTRLIO (SUPPRESSNG PRINTED OUTPUT)
GRIPES

7 SAYING GOODBYE TO THE COMPUTER
KJOB COMMAND (LOGGING OUT)

KIF Command (Fast Logout)
HELP Command (Getting Assistance)

WHAT TO DO IF YOU ARE DISCONNECTED FROM
YOUR JOB (ATTACH)
FORGOT YOUR JOB NUMBER? (SYS)

8 EXAMPLES

x

Page

INTRO 6-2
INTRO 6-2
INTRO 6-2

INTRO 7-1
INTRO 7-1
INTRO 7-1
INTRO 7-1

INTRO 7-3
INTRO 7-4

INTRO 8-1

CHAPTER 1

LOGGING-IN

To begin programming on the DECsystem-10 Timesharing System,
you need an account number and a password. You may also
need to make a telephone connection to the computer; if so,
you need the computer's telephone number. Write this
information here:

Telephone Number: ____________________________ _
(if needed)

Account Number:

Password:

NOTE

Before logging-in, be sure to read Chapter 7 on KJOB
(logging-out) • If you do not log out, but merely
disconnect your terminal, the DECsystem-10
accounting system will not know you have finished
and WILL CONTINUE TO CHARGE YOU FOR TERMINAL TIME.

First, make sure that the terminal is turned on to LINE. If
you are to make a telephone connection to the computer, turn
on the acoustic coupler and then dial the telephone number
to make the connection to the DECsystem-10.

The computer now may print a few lines identifying itself
and will print:

PLEASE LOGIN OR ATTACH

followed by a line beginning with a period (.). This period
signifies the computer's re~diness to accept your LOGIN
command. If the computer does not print a period, type
CTRL/C (-C). The may appear as an t on some terminals.
The computer will respond with a period.

NOTE

To type CTRL/C, hold the Control (CTRL) key down
while typing C. This causes the computer to print
the characters ~C on the terminal. In this book,
the symbols ~C will mean that you are to type
CTRL/C. In order to signal the computer system
that you wish to give it a command, you can type
-C. This is your way of getting the computer's
attention so that you can give it your next
command.

INTRO-l-l

MONITOR

LOGGING-IN

Monitor: In what follows we shall often call the computer
system the monitor; this is the operating system or
executive program that directs the execution of all the
programs and performs the record-keeping duties for the
computer.

You may ~ow log in by typing:

.LOGIN account number <CR>
return.)

("<CR>" means carriage

Example: If your account number were 27,240 you would type

.LOGIN 27,240<CR>

NOTE

We shall use the symbol <CR> to show where you are
to press the RETURN key. This key may also be
labelled CR or CAR RET and is often referred to as a
"carriage return". To distinguish between
characters you type and those the computer prints,
uderlining will be used for the characters you, the
user, type.

The monitor will now respond with the lines:

JOB job number
PASSWORD:

system number TTY terminal line number

(The job number is assigned by the monitor.)

PASSWORD The monitor is now asking for your password. You should
respond by typing your password and pressing the RETURN key.
Since many users prefer to keep their passwords secret, the
password is not printed. If your password were the word
TROLL, and if everything you typed were printed, the output
would appear as:

PASSWORD: TROLL

But what actually appears is

F'ABBWOHD:

The monitor signals its acceptance of your account number
and password by typing the time, date, and perhaps a
message. Then it types a period (.) indicating that it is
ready to accept your command. What you now have on the page
will look something like this (remember that the underlined
passages are those that you have typed).

Example:

.LOGIN 27~240<CR>
JOB 25 R5725D SYS .40/2 TTY106
F'ASSWOHD: <CR>
1242 18-NOV-76 THUR

INTRO-1-2

CHAPTER 2

TYPING IN YOUR PROGRAM

To type in your program, you will use an editing program
called SOS. Call SOS by giving the monitor command:

• F< ~;(JS<CR>

SOS responds with:

FILEt

asking you for the name of your file. (The computer stores
your program on a disk.) You must give the file a name by
which you and the computer can refer to it - you may think
of this name as the name of your program. This name must be
from one to six letters or digits. Because the computer can
handle several different computer languages, you must also
declare that this file will be used to store a program
written in FORTRAN language. This is done by extending the
name of your file with the letters FOR. These letters will
be separated from the filename (or program name) by a
period. Some"examples of filenames in which you may store
programs written for FORTRAN are:

A3PEN.FOR
ASC123.FOR
INSPIR.FOR

Whenever you refer to your program, use its full name with
extension.

Now you should type in the name of your file/program.

Example: (Here the name of the file or program is
ASPEN. FOR.)

.1:;: SClB<CR>

FILE: ASPEN.FOR<CR>

SOS will now print:

INPUT: ABPEN.FOR
00100

and the carriage will move to the correct
1) for you to begin typing your program.
FORTRAN program, columns 1 through 5 are

INTRO-2-1

position (column
Remember that in a
reserved for the

ESCAPE

'rYPING IN YOUR PROGRAM

statement number, column 6 is the continuation field, and
columns 7 through 72 are for the FORTRAN statement. The
number 00100 that SOS has printed is not part of your
program, but is SOS's line number for the first statement of
your program. If this first statement is not a numbered or
comment statement, you must skip 6 spaces (to column 7)
before beginning to type in the statement. When you have
typed in the first line of your program, press the RETURN
key, and SOS will print the next line number (in increments
of 100): you may enter the next line of your program.
Thus, when SOS prints a line number, you know that it is
ready to accept a line of your program. (For a fast way of
skipping the label field, see the section on TAB, page INTRO
4-6.)

TO STOP ENTERING LINES INTO YOUR PROGRAM (ESCAPE)

When you wish to stop entering lines into your program, you
should press the ESCape key (on some terminals labeled ESC,
ALT, ALTMODE, or PREFIX). We shall refer to this key as
ESCape. Pressing the ESCape key causes a $ to be printed on
the terminal.

Example: (In this example, the first statement is a comment
statement: the character C is in column 1.)

• R SOS<CR)

FILE: ASPEN.FOR<CR)
INPUT: ASPEN. FOR
00100 C THIS IS AN EXAMPLE.<CR)
00200 TYPE 10<CR)
00300 10 FORMAT (' ASPEN IS A NICE PLACE TO SKI! ')<CR)
00400 END<CR)
00500 !

*

SOS Note that we have two programs that are already stored in
the computer - the system monitor program and SOS. As you
know, the monitor indicates its readiness to accept your
command by printing a period (.): sos indicates its
readiness to accept your command by printing an asterisk
(*). When you press the ESCape key, SOS returns with an
asterisk (*) showing that it is ready to accept a command.

E ENDING OR STORING YOUR PROGRAM (E)

It is very important, when you have finished
program, that you tell SOS you are done and
store your program until you are ready to use
respond to SOS's request for a command by
command (the letter E) and the RETURN key.

Example:

*E<CR)

[DSKC:ASPEN.FORJ

INTRO-2-2

wri ting your
that it should
it again. You
typing the End

RUBOUT

TYPING IN YOUR PROGRAM

In this example, SOS tells us that the program ASPEN.FOR has
been stored on the disk (named DSKC:). Then SOS turns
control over to the monitor, which signals its readiness to
accept your next command by printin~ a period.

NOTE

The SOS END command, E, is essential. If you don't
tell SOS to store your file before you return to the
monitor, your program will be lost.

THE RUBOUT OR DELETE KEY (CORRECTING TYPING MISTAKES)

If you make a mistake while typing a line, the RUBOUT
(DELETE or DEL) key allows you to correct your mistake
without having to retype the entire line. Press the RUBOUT
key once for each character you wish deleted. This causes
the deleted characters to be printed with a backslash (\)
before and after them. Then, type the correct characters.

Example:

FILE: ASPN\N\EN.FOR<CR>

In this example, the character 'N' has been rubbed out.

Example:

00300 10 FORMAT (' APE\EP\SPEN IS A NICE PLACE TO SKI!')<CR>

In this example, the RUBOUT key was pressed twice to erase
the unwanted characters PE. Note also that the deleted
characters are printed in reverse order.

Think of the RUBOUT key as a "backspace plus erasure" key!

INTRO-2-3

CHAPTER 3

RUNNING YOUR PROGRAM

THE EXECUTE COMMAND

EXECUTE
EX To execute or cause the computer to follow the instructions

given by the program, command the monitor to:

.EXECUTE filename.extension<CR>

Example:

.EXECUTE ASPEN.FOR<CR>
FORTRAN: ASPEN
MAIN.
LINK: LOADING
lLNKXCT ASPEN EXECUTION]
ASPEN IS A NICE PLACE TO SKI!

END OF EXECUTION
CPU TIME: 0.05 ELAPSED TIME: 0.15
EXIT

EXECUTE may be abbreviated to EX.

NOTE

You may have been puzzled at the occurrence of lines
written by the monitor before the actual execution
in the above example. They appear because before
your FORTRAN source program can be executed, it must
be translated or compiled into a machine language
program (the object program) that the computer can
execute. This is done during the step labeled
FORTRAN: filename. This object program, like the
original source program, is stored in a disk file.
Before the program can be executed, a copy of the
compiled or object program must be placed (loaded)
into the working memory of the computer - this copy
is often called a core image of the object program.
This is accomplished during the LINK: LOADING step.
Finally, the execution step is performed.

INTRO-3-1

RUNNING YOUR PROGRAM

Few programs will complete execution the very first time you
try to execute them. Do not be discouraged! Chances are
that the compiler will find at least one mistake in your
program. To help you find your mistake(s), it will type out
a message to you. For example, suppose that you have made
the following mistake in the program on page INTRO 2-2: in
the FORMAT statement in line 300 the closing quote has been
omitted. The program would look like this:

00100
00200
00300
00400

C THIS IS AN EXAMPLE.
TYPE 10

10 FORMAT (' ASPEN IS A NICE PLACE TO SKI!)
END

An attempt to EXECUTE it will cause the following:

• EX ASPEN. FOR(CR)
FORTRAN: ASPEN
00300 10 FORMAT (' ASPEN IS A NICE PLACE TO SKI!)
1FTNCQL LINE:00300 NO CLOSING QUOTE IN LITERAL
1FTNFWE LINE:00300 FOUND END OF STATEMENT WHEN EXPECTING A .) .
UNDEFINED LABELS

:1.0

?FTNFTL MAIN. 3 FATAL ERRORS AND NO WARNINGS
LIN',: LOADING
[LNKNSA NO START ADDRESS]

EXIT

If the compiler has found errors in your program that make
execution impossible, you will again have to calIon SOS to
help you correct your program. Do this by using the R SOS
command discussed in Chapter 4.

NOTE

The compiler will only print error messages for
cases where the program is not clearly understood.
It is possible to have a program that consists of
valid FORTRAN statements, but gives the wrong
answers. For example, suppose you intended to enter

TAX = RATE*AMOUNT

but by mistake typed

TAX = RATE+AMOUNT

INTRO-3-2

RUNNING YOUR PROGRAM

The compiler cannot detect this as an error because
both are possibly valid formulas. Errors of this
type (logic errors) are the most difficult to find.
The program will run, but the answers will be wrong.
Frequently the author of the program will read the
statement and see what he meant to write instead of
what he actually wrote. One extremely valuable
method of finding errors of this kind is to attempt
to explain to someone else why the program should
work. The act of explaining will often highlight
the error. Another method of locating errors is to
have another programmer ~proofread~ your code.

CTRL/C (ftC) (GETTING THE MONITOR'S ATTENTION)

CTRL/C informs the monitor that you wish to _give it a
command. The monitor interrupts whatever the computer is
doing and prints a period to indicate that it is ready to
accept your command. To type CTRL/C, hold the Control
(CTRL) key down while typing C.

Stopping Your Program's Execution

CTRL/C interrupts a program during execution, returning
control to the monitor. Sometimes it is necessary to type
CTRL/C twice to interrupt a program.

Example:

.EXECUTE ASPEN.FOR(CR)
FORTRAN: ASPEN

Deleting a Command

You may also use CTRL/C to delete the line you are presently
typing and return control to the monitor.

Example:

.EXECUTE ASPEN.FOR-C

Typing ~CONT~ in answer to a monitor prompt will return you
to your previous activity IF AND ONLY IF you have not:

tampered with the core image, OR
caused the FORTRAN compiler image in core to be
overwritten.

If, for instance, you interrupt the executing program to
send a message to someone on another terminal, you can

I~TRO-3-3

RUNNING YOUR PROGRAM

return. If you, say, request a directory activity, then the
FORTRAN compiler is overwritten and you cannot return to
your previous activity. When in doubt, wait until the
execution is complete, unless you want to restart the
execution anyway.

CTRL/U (~U) (CHANGING A LINE)

CTRL/U deletes the entire line you are typing and moves the
carriage to the beginning of the next line. You may then
retype the line. Note that CTRL/U only deletes that part of
the line you have typed and not the part the computer
prints, i.e., in the following example the line number is
not deleted. CTRL/U is typed by holding the Control (CTRL)
key down while typing U.

Example:

01800
40
01900

40 SROOT ~ SRT (DISC) ~U

SROOT = SQRT (DISC>(CR)

In this example, CTRL/U deletes your input line, which you
then reenter. CTRL/U does not delete the line number, 1800,
printed by sos.

If you wish to delete the line entirely, follow CTRL/U with
the RETURN key.

INTRO-3-4

I

INSERT

CHAPTER 4

CHANGING YOUR PROGRAM

THE R SOS COMMAND (CORRECTING MISTAKES IN YOUR PROGRAM)

To correct a mistake in a program, you must return to SOS.
As we saw on page INTRO 2-1, we turn control over to SOS by
commanding the monitor:

50S responds with:

FILE: QUAD.FOR<CR)

and we type the filename and extension, in this case
QUAD. FOR. But now SOS recognizes that this program already
exists and correctly assumes that, instead of inputting a
file, you wish to edit it. 50S thus types:

ED IT: UUAD. FClI:;:

*
The asterisk (*) indicates that SOS is at your command. The
remainder of this section lists SOS commands that are
essential for typing and editing simple FORTRAN programs.
Use the ESCape to terminate these commands.

SOS COMMANDS

I - Inserting Lines Into Your Program

To Insert lines into your program beginning with line 2700,
for instance, you give SOS the command:

*J:2?OO<CR)

50S types out each line number, and you respond by inserting
the line into the program. When you press the RETURN key
after typing each line, SOS will type the next line number.
(This is called HInsert Mode H.)

INTRO-4-1

CHANGING YOUR PROGRAM

Example:

*I:':.~/OO<CR>
027()O
()2BOO
()2(.~O()

40
IF (DIBC) 2()' ~5(), 40<CR>
ROOTl = (-8 + BQRT (DISC»/(2*AXCR>

Terminate the Insert
(ALTMODE/PREFIX) ; this
terminal.

command by typing ESCape
causes a $ to be printed on the

Example:

*I4000<CR>
04000
04l0()

*

WRITE (5, /O)<CR>

Note that in the above examples, SOS has numbered the lines
in increments of 100. The reason for providing this
increment is to allow you room to maneuver - suppose you
have accidentally omitted lines that must now be Inserted,
or suppose you now find it necessary to changes your
original program. If you have left out 2 lines that should
have gone between lines 3200 and 3300, you may Insert these
lines by changing the increment size, say, to 20, using the
command:

if<L52:LO y 20<CR>

This allows you to Insert lines 3210, 3230, 3250, 3270, and
3290 into your program. The size of the increment is of no
importance as long as it is small enough to accommodate all
additional lines. Each time you change the increment size,
the new size is kept until you change it.

Example:

*I32:1.0,20<CR>
()32:1.0 WIUTE C5, :5(» ~·WOT:L y FWOT2<CR>
()3230 50 FORMAT C' ROOTS ARE', Fl0.2, 'AND', Fl0.2)<CR>
032::50 1.
if<

If you try to insert a line whose line number is greater
than or equal to that of the next existing line, SOS will:

use a different line number, or
ignore the command entirely

INTRO-4-2

D

DELETE

R

REPLACE

CHANGING YOUR PROGRAM

D - Deleting Lines From Your Program

To delete line 500 from your program, type

Example:

*D~:'jOO(CR>
1 LINES (00500/1) DELETED

*
If you wish to delete lines 1400 through 1600 from your
program, use:

l1dH400: 1600(C R>

Example:

*D1400: :L600(CR>
3 LINES (01400/1t1600) DELETED

*

R - Replacing Lines in Your Program

The Replace command is a combination of a Delete command
followed by an Insert command. To instruct sos to delete
line 1700 and to begin inserting lines at line 1700, use the
Replace command:

*I:U 700(CR>

This is equivalent to the command D1700 followed by the
command 11700.

Example:

*I:U 700(CR>
01700 60 FORMAT (' ROOT IS'~ F10.2)(CR>
1 LINES (01700/1) DELETED

*

To replace lines 500 through 700 use:

This is equivalent to D500:700 commanding 50S to
lines 500 through 700, followed by the command
instructing SOS to begin inserting lines at 500.

INTRO-4-3

delete
1500

P

PRINT

CHANGING YOUR PROGRAM

Example:

*F~~50(): '700< CR>
00500 SO FORMAT ('OGIVE COEFFICIENTS')<CR>
0060 () .::....::.----:F::-:~ 1:'=-=" A-="" X,::,-):...:....:-(::::~)....:.y --.::-:I.-=.O'-"):....:..=.:A:'-,-"'-'r=-':! y=-:C:::-X:':C::::R::::>=:....:..:....:::~.....:....:::.=..:..:..
00'700 10 FORMAT (Fl0.2)<CR>
3 LINES (00500/1:00'700) DELETED

*

If you also wish to change the increment size to 10, use the
Replace command:

*Rl000:ll00,10<CR>

This is equivalent to the command D1000:llOO followed by the
command I1000,10.

Example:

*Rl000:1100,10<CR>
01000 40 SROOT
01010 DENOM
01020 ROOTI
01030 ROOT2 -
01040 .!

Slil:::T <IH Se)< CR>
2*A<CR>
("-B + SFWDT) 1 DENOM<CR>
(-B - SROOT) 1 DENOM<CR>

2 LINES (01000/1:01100) DELETED

*
As with the Insert command, to terminate the Replace
command, use the ESCape as in the above example.

P - Printing Lines of Your Program on the Terminal

If you wish to print line 1800 of your program, type

*P :1. ElOO< CR>

Example:

*P :1. BOO< CR>
OHlOO 40

*
SROOT - SQRT (DISC)

To print lines 2700 through 3000 of your program, use

*P2'700: :~OO()< CR>

INTRO-4-4

NUNBER

CHANGI~G YOUR PROGRAM

Example:

>l<P2?OO ~ 3000<CR>
02700 30 ROOT = -8 / (2*A)
02800 WRITE (5, 60) ROOT
02900 60 FORMAT (' ROOT IS " Fl0.2)
03000 GO TO 100
>I<

N - Changing the Line Numbers

The Number command instructs SOS to renumber your program
beginning at line 100 in increments of 100. SOS does not
print anything on the ter~inal. If you wish to see the
renumbered program, you must use the Print command.

Example:

E E - End (Ends Editing and Stores the Program)

END When you have completed editing your program, inform SOS
that it should now store your program on the disk by typing
E (end). If you do not instruct 50S to store your program,
the editing you have just completed will be lost.

EQ

QUl'r

Example:

[DSKC:QUAD.FORC27,240JJ

This indicates that the program named QUAD. FOR has
stored on DSKC:. The End command turns control over to
monitor, which prints a period to indicate its readiness
accept your next command.

been
the
to

EQ - Returning to the Monitor Without Storing Your Program

If you decide that the current editing session is worthless,
you may return to the monitor without storing your program
by using the Quit command.

INTRO-4-5

TAB

CHANGING YOUR PROGRAM

Example:

*EC~<CR>

This restores the original copy of the program as it was
when you last typed R 50S. If the program is a new one, it
is deleted since an original program did not exist.

A FEW 80S CONVENTIONS

1. A range of lines is indicated by a colon between the
first and last line numbers of the range, i.e., 500:700.

2. A period represents the current line. Thus, o.
delete the current line.

Tileans

3.

TAB

Example:

OO?()O
*D.<CR>
1 LINES

80 FORMAT ('OGIVE COEFFICIENTS')

(00700/1) DELETED

*
In the above example the current line is line 700 and it
is deleted.

An asterisk is
file. Thus,
file use:

*PO: *<CR>

(CTRL/I)

used to represent the last line of the
to instruct SOS to print out your entire

The TAB or Horizontal Tab (sometimes labeled HT or-\) is
handy when you are entering lines into your program. The
TAB, similar to that on a typewriter, is set at 8-character
intervals. It moves the carriage to the next column that is
a multiple of 8; no characters are output on the terminal.
As you know, a FORTRAN statement must be located within
columns 7 through 72, although it may appear at any point
within this range. Using the TAB to skip over all or part
of the label field will bring the carriage to column 8,
enabling you to begin your FORTRAN statement in that column.
If your terminal does not have a key labeled TAB, use CTRL/I
instead. To type CTRL/I, hold down the Control (CTRL) key
while typing I.

CORRECTING MISTAKES

To correct one or more characters use the RUBOUT key (see
page INTRO 2-3).

To change an entire line use CTRL/U (see page INTRO 3-4).

INTRO-4-6

CHANGING YOUR PROGRAM

Example:

*[I1~)()0 '~U<CR>

I2000<CR>
;!O()()

In the above example, CTRL/U ("U) allows you to change the
command "Delete line l500~ to an insert command.

Example:

.1::: SOS< C R>

FILE: ZELDA.FOR<CR>
INPUT: ZELDA.FOR
00100 C THIS PROGRAM DOES NOTHING.<CR>
00200 TYPE 10<CR>
00300 10 FORMAT (' IT"S WORKING!')<CR>
00400 TYE\E\PE 20<CR>
OOSOO :!
*P400<CR>
O()400
U::'iOO<CR>

TYPE ~!O

00500 20 FORMAT (' WHAT IS YOUR NAME?')<CR>
00600 ~------A~(~;E~_F~":·"~f~3~O~,~y7.0~"R~"·N~A~M~'~~U~~~~~~~

ACCEPT 30, YOI:;;NAM<CR>
00700 30 FORMAT (A5)<CR>
OOBOO TYPE 40, YORNAM<CR>
00900 ~4~O ______ F~"-C~"IR~"'M~A~"~f~(~'(~)'~'~'~H~I~,~'~,~A~5~", __ /~[~IO~Y~O~LJ~E~A~N~T_'~)<~C~R~>
01000 1
*R900<CR>
o 0900 ~4~0 ______ F=-" O;::;R~'M~A'-'c" ":::-f::-=-:(=--,' O::..;H..:..:I::...;'~'---,,~A~::'~j ' __ '---"'~[,-=IO~Y~O~U~/~)..o..< ~C~R>
01000 TYPE :50<CR>
01100 50 FORMAT C' WANT TO BE FRIENDS?')<CR>
01200
C)l300 ~

END<CR>

1 LINES (00900/1) DELETED
*F~900: 1 :l.OO<CR>
00900 4~0~ ____ ~F~""0~R~"'M~A~T~(~/~0~H~I~'~'~,~A~S~' __ '~,~W~A~N~T~T~O~B=E~F~R~I=EN~[~IS~""~~_'~)<~C~R=>
01000 $

3 LINES ~00900/1:01100) DELETED
*N<CR>
PO""f< C R>
00100 C THIS
00200
00300 10
00400
00500 20
00600
00700 30
008()0
00900 40
01000
*E<CR>

PROGRAM DOES NOTHING.
TYPE 10
FORMAT (' IT"S WORKING!')
TYPE 20
FORMAT (' WHAT IS YOUR NAME?')
ACCEPT 30, YORNAM
FORMAT (A5)
TYPE 40, YORNAM
FORMAT ('OHI, " AS, " WANT TO BE FRIENDS?')
END

[D8KC: ZELDA.FOR]

INTRO-4-7

CHANGING YOUR PROGRAM

Let us look at the above example in detail •

• R SOS(CR>

Commands the monitor to turn control over to the editor
program 50S.

FILE: ZELDA.FOF:(CR>

50S requests the name of the file you wish to
respond with the name of your file or program:

INPUT: ZEl..D('~ .Fcm
OOlOO C THIS PROGRAM DOES NOTHING.(CR>

edit. You
ZELDA.FOR.

When 50S fails to find a file by this name, it concludes
that you intend to create a new file. SOS then prints the
name of the file and the first line number. Now you are
ready to enter the first line of the program.

002()O TYPE :l.O(CR>

Each time you finish typing a line and press the RETURN key,
50S prints out the next line number so that you may input
that line. In typing line 200, the first character actually
typed was a TAB (CTRL/I), which caused the label field to be
skipped over; this avoids the necessity of counting spaces
so that our FORTRAN statement would begin in the proper
column. TAB is a non-printing character.

00300 lO FORMAT (' IT"S WORKING! ')(CR>

This statement is labeled. After typing the FORTRAN
statement label (10), you type the non-printing character
TAB (CTRL/I) to skip over the remainder of the label field.
Remember that the first character of a printing FORMAT
statement must be the carriage control (here a blank, which
means single space output). Notice that because apostrophes
are used to enclose literal fields, they are not allowable
characters within a literal field but must instead be
represented by two successive apostrophes. In other words,
although line 300 appears in the program with two successive
aoostrophes (IT" 5), in the execution it causes the word
IT'S to be printed (see the EXECUTION which follows).

00400 TYE\E\PE 20(CR>

Again, a non-printing TAB is used here to skip over the
label field. The RUBOUT key erases the E.

00500 $

The ESCape key terminates the input of lines into the
program.

*P40()(CR>

INTRO-4-8

CHANGING YOUR PROGRAM

SOS is now ready for a new command. You ask it to print
line 400.

00400 TYPE 20

SOS prints line 400.

Your next step is to insert lines into your program
beginning with line 500.

OO!:j()O 20 FORMAT (' WHAT IS YOUR NAME?')<CR>

You type line 500 into your program.

00600 ACEPT 30, YORNAM ~U

ACCEPT 3(), YORNAM<CR>

After typing in line 600 but before pressing the RETURN key,
you pause and notice that you have misspelled ACCEPT.
CTRL/~ (~U) deletes the line, which you then retype
beginning with the non-printing TAB.

OO?OO 30 FOF:MAT (A::5)<CR>
00800 TYPE 40, YORNAM<CR>
0()900 40 FORMAT ('0','HI,',A5,'DO YOU EANT')<CR>
01()()() ~;

You enter lines 700 through 900 into your program and
terminate the insert. The carr iage control '0 ' in the
FORMAT statement causes the output to be double spaced.

*F~9()0<CR>

At this point, you decide to replace line 900. The R900
command causes it to be deleted and initiates an Insert
command beginning with line 900.

00900
01000
O()100
0:1.200
onoo

40

50

$

FOF~MAT ('OHI,' ,AS, ' ,DO YOU')<CR>
TYPE 50<CR>
FORMAT (' WANT TO BE FRIENDS?')<CR>
END<CR>

1 LINES (00900/1) DELETED

When you use the ESCape key to terminate the insert command
(initiated by the replace command), SOS informs you that one
line (line 900) has been deleted.

*1:;:900: 11 O()< CR>

INTRO-4-9

CHANGING YOUR PROGRAM

You decide to replace lines 900 through 1100.

00900 40 FORMAT ('OHI,', A5,', WANT TO BE FRIENDS?')<CR>
() :1. () () 0 !I;
3 LINES (00900/1:01100) DELETED

Line 900 is replaced and the
confirms that three lines
deleted.

command is terminated. SOS
(900 through 1100) have been

30S is now asked to renumber the lines beginning with 100
and in steps of 100.

l«PO:*<CR>

You instruct SOS to print out your entire program.

*E<CR>

To conclude the editing session, instruct SOS to store your
program on the disk.

[DSKC:ZELDA.FORJ

Your program has been stored on DSKC:. The monitor is now
in control.

The EXECUTION of the above program:

.EX ZELDA.FOR<CR>
FORTRAN: ZELDA
MAIN.
LH"~;: LOADING
[LNKXCT ZELDA EXECUTIONJ
IT' S WfJF~IUNG!

WHAT IS YOUR NAME?
HAL<CR>

HI, HAL ,WANT TO BE FRIENDS?

END OF EXECUTION
CPU TIME: 0.10 ELAPSED TIME: 10.20
EXIT

INTRO-4-10

READ

WRITE

CHAPTER 5

FORTRAN-IO INPUT AND OUTPUT OF DATA

Although FORTRAN-IO is essentially the same as standard
FORTRAN, a few minor differences do arise in statements that
involve the input and output of data.

READ STATEMENT

The statement

READ (u,f)list

where u=device unit number and

f=FORMAT statement number

reads data from the device with unit number u (refer to the
section on Device unit Numbers, below) according to the
specifications given by FORMAT statement f.

Example:

0()800
OO(lOO 35

iVRITE STATEMENT

This has the form

WRITE (u,f) list

READ (5, 35) IGRADE
FOF<MAT (13)

where u=device unit number and

f=FORMAT statement number

Example:

01000
01100

WRITE (1, 30) (STUDNT(I),I=1,8), IGRADE
FORMAT (8A!'.'j, 1:3)

NOTE

The ERR option of the OPEN and CLOSE statements is
also applicable to the READ and WRITE statements.
Refer to Chapter 12

INTRO-5-1

ACCEPT

TYPE

FORTRAN-10 INPUT AND OUTPUT OF DATA

DEVICE UNIT NUMBERS

In READ and WRITE statements, we
device (Disk, Line Printer,
referring. For the DECsystem-10,
u, are uniform - they are the
The most commonly used are:

must specify to which
Terminal, etc.) we are

the device unit numbers,
same on all DECsystem-10s.

Device Device Unit Number,u

Disk 01

Card Reader 02

Line Printer 03

Terminal 05

(For a complete list see FORTRAN-10 Language Manual, Table
10-1.)

Thus, WRITE (5,7) causes output to be printed on your
terminal; READ (1,25) causes data to be read from the disk.

ACCEPT STATEMENT

To input data from the terminal you may use

ACCEPT f,list

where f=the FORMAT statement number.

Example:

O()~jOO

00600 20
ACCEPT 20, IGRADE
FOI:;:MAT (13)

Thus, ~ACCEPT f,list" is equivalent to ~READ (5,f) list".

TYPE STATEMENT

To have output typed on your terminal use

TYPE f,list

where f=the FORMAT statement number.

Example:

0020()
00300 to

TYPE :LO
FORMAT ('ASPEN IS A NICE PLACE TO SKI! ')

Thus, ~TYPE f,list" is equivalent to ~WRITE (5,f) list".

NOTE

To print something on your terminal, you must include a
carriage control character similar to the way you do for
a line prnter. For example, to print the word HELLO on
your terminal, use the format statement below:

00200
00300

TYPE :LOl
FORMAT (' HELLO')

INTRO-5-2

OPEN

FORTRAN-IO INPUT AND OUTPUT OF DATA

The space before HELLO tells the system to start on a
new line.

DATA FILES

You may use data files in one of two ways:

1. In the first method, you let FORTRAN use a predefined
filename.

2. In the second method, you choose the filename by using
the OPEN statement.

Letting FORTRAN Use A Predefined Filename

There are six Device Unit Numbers for disk files; whenever
you use one of them, FORTRAN uses a predetermined filename.
Te device numbers and their filenames are listed below.

Device Unit Number

1
20
21
22
23
24

NOTE

Filename

FOROl.DAT
FOR20.DAT
FOR21.DAT
FOR22.DAT
FOR23.DAT
FOR24.DAT

If you omit the filename from an OPEN statement,
FORTRAN uses the filename corresponding to the
device unit number.

Examples:

O()200 ~mITE (:1.,101) X Writes the value of X in
the file FOROl.DAT,
according to FORMAT
statement 101.

00:300 HEAD (23,1. (9) Y Reads the value of Y from
the file FOR23.DAT,
according to FORMAT
statement 109.

Using Your Own Filename

To use your own filename, place an OPEN statement before the
first READ or WRITE statement that accesses the file. The
OPEN statement has the format:

OPEN (UNIT=n, FILE='filename.ext')

n is the device unit number, and filename.ext is the name of
the file you want to use.

INTRO-5-3

CLOSE

FORTRAN-10 INPUT AND OUTPUT OF DATA

Example:

00200

00300

OPEN (UNIT=20, FILE='TEST.DAT')

READ (20,105) Y

Instructs FORTRAN to open
the file TEST. OAT on
logical unit number 20.

Reads Y from logical unit
number 20. (The file
name implied is the same
as the file name in the
OPEN statement with the
same logical unit
number.)

After the last READ or WRITE statement that accesses a file,
it is recommended (though not required) that you include a
CLOSE statement. The CLOSE statement has the format:

CLOSE (UNIT=n, FILE='filename.ext ')

n is the device unit number, and filename.ext is the name of
the file you are closing.

Example:

O()5()0 CLOSE (UNIT=20, FllE='TEST.DAT')

Closes the file TEST.DAT on logical unit number 20.

INTRO-5-4

TYPE

CHAPTER 6

SOME HELPFUL COMMANDS

TYPE COMMAND (PRINTING OUT YOUR PROGRAM)

Usually you will have made many changes in your program. If
you would like the monitor to TYPE out your program on your
terminal as it now stands, command it to:

.TYPE filename.extension<CR>

Example:

.TYPE
00100
00200
00300
00400

ASPEN. For';:<CR>
C THIS IS AN EXAMPLE.

TYPE 10
10 FORMAT (' ASPEN IS A NICE PLACE TO SKI!')

END

DIRECT COMMAND (LISTING ALL THE STORED PROGRAMS AND FILES)

DIR The DIRECT command causes the monitor to list all the
programs and files stored in disk files under your account
number. It also lists the length of each program or file in
terms of DECsystem-10 disk blocks (a disk block is 640
characters) and the data on which each was created. This
command may be abbreviated to DIR.

Example:

• DI~-;;<CR>

ASPEN REL 1 <055> 18-NOV--76 fiSKe: [27,240J
ASPEN OOR 1 <055> 18-NOV-76
ASPEN FOR 1 <055> 18-NOV-76
NEW OOR 2 <055> 18-NOV-76
OUAD r';:EL ~5 <055> 18-NOV-76
NEW FOF~ 2 <055> 18-NOV--76
nUAD nOR 2 <055> 18-NOV-76
BNOW FOR 1 <055> 18-NOV-76
(WAD FOR 2 <055> 18-NOV-76
TOTAL OF 15 BLOCKS IN 9 FILES ON DSKC: [27,240J

These files belong to the programmer(s) with account number
27,240.

INTRO-6-1

DELETE

RENAME

SOME HELPFUL COMMANDS

You may find that files you did not create are also listed.
These may be programs and files created by the computer in
editing and compiling your program. The compiled program is
contained in a file named ufilename.REL" where the filename
is the same one that you used. If you have edited your
program there will be a program whose name is identical to
yours except that it has a Q as the first letter of the
extension. This is a backup file containing your program as
it existed prior ~o your most recent editing of it. Each
time your program is edited, the program immediately before
editing becomes the backup, and the previous backup - if it
existed - is lost. In the foregoing example, the only files
explicitly created were ASPEN. FOR, NEW. FOR, SNOW. FOR, and
QUAD. FOR. The backups are ASPEN.QOR, NEW.QOR, and QUAD.QOR.
SNOW. FOR has not been edited, so it has no backup.

DELETE COMMAND (ERASING A PROGRAM OR FILE)

To erase a file from the disk, command the monitor to:

.DELETE filename.extension<CR)

Example:

.DELETE ASPEN.FOR<CR)
FILES DELETED:
ASPEN.FOR
01 BLOCKS FREED

RENAME COMMAND (GIVING A PROGRAM OR FILE A NEW NAME)

To rename a file use the command

.RENAME newfilename.extension

Example:

.RENAME EXAMP.FOR=SNOW.FO~CR)
FILES RENAMED:
SNOW.FOR

oldfilename.extension<CR)

This will cause the name of SNOW.FOR to be changed to
EXAMP.FOR

CTRL/O (SUPPRESSING PRINTED OUTPUT)

CTRL/O ("0) stops printed output on the terminal The program
sending the output CONTINUES TO RUN. Use CTRL/O, for
example, to stop the message of the day during LOGIN or to
stop the monitor as it TYPEs a program you have asked for.
CTRL/O is typed by holding the Control (CTRL) key down while
typing the letter o.

INTRO-6-2

GRIPE

SOME HELPFUL COMMANDS

Example:

.TYPE ASPEN.FOR<CR>
00100 C THIS IS AN EXAMPLE.
40200 TYPE 10
00300 ~O

Although CTRL/C also stops output on the terminal, it also
stops program execution.

Complaints to the Computer - the "Court of Last Resort"

When all else fails and you must gripe to someone, GRIPE to
the computer by commanding the monitor to:

.R GRIPE<CR>

The computer will respond with:

YES? (DEPRESS ESCAPE KEY WHEN THROUGH)

Now enter your gripe and press the ESCape key when you have
finishej. Remember that typing ESCape causes a $ to be
printed.

Example:

.R GRIPE<CR>

YES? (DEPRESS ESCAPE KEY WHEN THROUGH)
THIS CONSOLE IS ALMOST OUT OF PAPER.'
THANK YOU

INTRO-6-3

KJOB

KILL
PRESERVE
SAVE

CHAPTER 7

SAYING GOODBYE TO THE COMPUTER

KJOB COMMAND (LOGGING-OUT)

To say goodbye to the computer, command the monitor to KJOB
(KillJOB) :

,.I".JCJB<CR>

The monitor will respond with

CONFJF~M :

Should you now decide to abort the logout, type CTRL/C (ftC).
If you still wish to logout, you must instruct the monitor
to kill, preserve, or save each of your disk files. If a
file is killed, it is erased from the computer memory;
saved and preserved files, on the other hand, are retained
in the computer memory. Preserve and save are essentially
alike except in the matter of protection against inadvertent
loss or destruction. Preserve, unlike save, protects your
files from accidental destruction by another user who shares
your account number. This may occur if, for instance, the
other user fails to recognize the name of your program
during his logout and, failing to see any need for its
preservation, kills it. To take advantage of the protection
afforded by the preserve file status, it is best to respond
to the CONFIRM with the letter U:

CfJNFH~M: U <CR)

This will automatically preserve any files that have already
been preserved during a previous logout. After you have
typed in the letter U and pressed the RETURN key, the
monitor will list the name and storage information of each
unpreserved file stored in your disk area, pausing after
each name for your response. Following the name of each
file you must respond by typing one of the three commands:

(a) K if you wish to kill the file,
(b) P to preserve it, and
(c) S to save it.

Please remember the saved or preserved files occupy valuable
space on the disk.

In general, the only files you need preserved have the
extension FOR. If you have no further changes to make in
your program, you may preserve the compiled version this
will have the extension REL.

INTRO-7-1

SAYING GOODBYE TO THE COMPUTER

NOTE

The DECsystem-lO offers the option of detaching the
terminal from your job, thereby freeing the terminal
and the telephone line for another task while your
program is executing. (This option is, of course,
only used for programs with long execution times;
for details see the DECsystem-lO Operating System
Commands Manual.) Therefore, TURNING OFF THE
TERMINAL OR BREAKING THE TELEPHONE CONNECTION TO THE
COMPUTER DOES NOT END YOUR JOB, NOR DOES IT STOP THE
COMPUTER CLOCK; ONLY THE COMMAND KJOB WILL DO THIS.
If you should inadvertently hang up without using
KJOB, the computer clock, thinking that you have not
yet completed your job, will keep ticking and
CHARGING YOU FOR TERMINAL TIME. So please remember
to USE KJOB BEFORE LEAVING THE TERMINAL. If you
should be accidentally disconnected, always call
again and end your job properly. (See page INTRO
7-3.)

Example

.I'JDB<CR>
CONFIRM: U<CR>
DSI\A:
DSI\C:
ASPEN .REL
ASPEN .nOR
NEW .Qm~
QUAD .REL
EXAMf' .FOR
nUAD .QOR
SNOW .FOR
OUAD .FOR
NEW .FOR
ASPEN .FOR
nSI\B:

<055>
<055>
<055>
<055>
<055:::-
<0~:;5>

<055>
<055>
<055>
<055>

5.BLI\S
5.BLKS
5. BU,S
5.BLKS
5.BLKS
5.BLI\S
5.BLKS
~5. BU,S
5. BLI,S
5. BU,S

JOB 25, USER [27,240J LOGGED
DELETED 4 FILES (20 BLOCI\S)
SAVED FILES (30 BLOCI\S)
RUNTIME 32.34 SEC

KIF Command (Fast Logout)

OFF TTY106 1.430

KIF For a fast logout in which all programs and files are saved,
use

.I\/F<CR>

Although this form of the KJOB command has the advantage of
being fast, you cannot preserve the programs you wish to
keep nor kill those you no longer need.

INTRO-7-2

ATTACH

SAYING GOODBYE TO THE COMPUTER

Example:

.K/F<CR>
JOB 25yUSERC27,240J LOGGED OFF TTY106 1432 18-NDV-76
SAVED ALL FILES (30 BLOCKS)
RUNTIME 1.56 SEC

HELP Command (Getting Assistance)

To get assistance during logout, type H (for Help) and the
monitor will respond.

WHAT TO DO IF YOU ARE DISCONNECTED FROM YOUR JOB (ATTACH)

Although this can happen to anyone, it will
happen when the telephone lines connecting
computer break that connection. If necessary,
telephone number to the computer. Under normal
the computer will print:

PLEASE LOGIN OR ATTACH

most often
you and the
redial the
conditions,

You will wish to attach yourself to the job on which you ha~
been working. To do this you must know its job number.
This is given after your LOGIN command. For example, in the
LOGIN example on page INTRO 1-3, the job number is 25.

You may attach to a job by using your account number

.ATTACH job number [account number]

The programmer with account number 27,240 may attach to job
25 by typing:

.ATTACH 25 C27,240]<CR>

If the programmer with this account number is the owner or
originator of job 25, the monitor asks for his password.
Otherwise, access to the program is denied. As during
LOGIN, the password is not printed. If the password is
accepted, the monitor prints a period and the programmer now
is attached to his job.

Example:

.ATTACH 25 C27,240J<CR>
PASSWORD: <CR>

NOTE

Account numbers are often called Project-Programmer
Numbers (PPNs). In the ATTACH command, the account
number must be enclosed in square brackets []. If
your. terminal does not have keys labeled [and],
use SHIFT/K for the left square bracket, [, and
SHIFT/M for the right square bracket,].

INTRO-7-3

SYS

SAYING GOODBYE TO THE COMPUTER

FORGOT YOUR JOBNUMBER?(SYS)

Suppose you have forgotten your job number. You have thrown
away your LOGIN, or perhaps you are using a Visual Display
(CRT) terminal and the LOGIN has long since disappeared from
the screen. What now? You may find out which jobs are
being run under your account number by typing:

.SYS [account number)<CR>

Example:

.SYS C27?240]<CR>
25 DET 3

.I\,JO!i<CR>

.ATTACH 25 C27,240J<CR>
PASSWORD: <CR>

,.'C SW :1.

Here, the programmer with account number 27,240 wishes to
find out which jobs are logged in under his account number.
The monitor answers that job 25 is logged in under account
number 27,240 and that this job is DETached from a terminal.
Then the programmer ATTACHes to job 25.

The SYS command may be given whether or not the user is
logged in. If the user is not logged in, the SYS command
autoillatically ends with the KJOB command.

INTRO-7-4

CHAPTER 8

EXAMPLES

Example 1 (Executing a Program More than Once):

This program computes the roots of the quadratic equation ax +bx+c=O.
~ote that FORTRAN statement labels may be in any order and also that
carriage control characters are necessary for each of the printing
FORMAT statements .

• TYPE QUAD.FOR<CR>
00100 C THIS PROGRAM COMPUTES THE ROOTS OF A
00200 C QUADRATIC EQUATION OF THE FORM:
00300 C 2
00400 C AX + BX + C = o
OO~500 C
00600
00'700
00f300
00900
01000
O:I.lOO
()l200
01300
01400
01500
0:1.600

80

10
C
C

C
C

C
C
40

o J.'7 0 0
O:l.BOO
0:1.900
02000
02100
022()O
0230()
02400
()250()
0260()
()2'7()()
02BO()
02900
0300()
O~H 00
032()O
O:33()O
0:'540()
03500
03600

C
C
30

60

c
r
20
70
lOO

WRITE C5? 80)
FORMAT ('OGIVE COEFFICIENTS')
r~EAD (5, :1.0) A, II? C
FORMAT (FlO.2)

CALCULATE THE DISCRIMINANT
DISC = B*B - 4*A*C

DO THE RIGHT THING ACCORDING TO THE SIGN OF DISC
IF (DISC) 20, 30, 40

POSITIVE DISCRIMINANT
SROOT - SURT (DISC)
ItENOM :::: 2*A
ROOT:I. = (-B + SROOT) / DENOM
ROOT2 = (-B - SROOT) / DENOM
WRITE (5, 50) ROOT1, ROOT2
FORMAT (' ROOTS ARE', FlO.2,
GO TO lOO

ZERO DISCRIMINANT
ROOT = -B / (2*A)
WRITE (5, 60) ROOT
FORMAT (' ROOT IS', FIO.2)
GO TO 100

NEGATIVE DISCRIMINANT
WRITE (5, 70)
FORMAT (' ROOTS ARE COMPLEX')
STOP
END

, AND', FlO.2)

Below, this program is EXECUTEd twice. In the second execution the
words FORTRAN: QUAD are missing because the program has already been

INTRO-8-1

EXAMPLES

compiled, making it unnecessary for the compile step to be repeated.
The program is simply loaded into core and executed. (See page INTRO
3-1.)

.EXECUTE QUAD.FOR<CR>
FORTF~AN: l1UAD
MAIN.
L.INI\: LOADING
CL.NI\XCT QUAD EXECUTION]

GIVE COEFFICIENTS
2. <CR>
'---:1.0. <CR>
:1.2. <CR>
1:;;00T8 AF~E

BTOP
3.00 AND

END OF EXECUTION

2.()0

CPU TIME: 0.13 ELAPSED TIME: 18.95
EXIT

.EXECUTE QUAD.FOR<CR>
LINI\: L.OADING
[L.NKXCT QUAD EXECUTION]

GIVE COEFFICIENTS
~:i. <CR>
,-,2 (. <CR>
:L () • <CR>
ROOTS ARE COMPLEX
STOP

END OF EXECUTION
CPU TIME: 0.12 ELAPSED TIME: 18.30
EXIT

Example 2 (Reading A Disk File):

Student
record
3-digit
compute

grades are recorded on a disk file named STDGRA.DES. Each
has a student name (40 characters) and his numerical grade (a
integer). The following program will read the grades and
the mean and standard deviation.

• TYPE
00100
00200
00300
00400
00500
00600
00700
00800
00900
01000
01100
01200
01300
01400
01500
01600
01700

GRADE.FOR<CR>
C THIS PROGRAM COMPUTES THE MEAN AND
C STANDARD DEVIATION OF STUDENT GRADES
C

OPEN (UNIT~l, FILE='STDGRA.DES')
NUMBER == 0
SUM = 0
SUMSQR == 0

20 READ (1, 10, END=100) IGRADE
10 FORMAT C40X, 13)

NUMBER = NUMBER + 1
SUM = SUM + IGRADE
SUMSQR == SUMSQR + IGRADE*IGRADE
GO TO 20

100 AMEAN == SUM/NUMBER
VARIAN = CSUMSQR - (SUM*SUM) /NUMBER)
STDEV = SORT (VARIAN)
TYPE 30, NUMBER, AMEAN, BTDEV

INTRO-3-2

/ (NLJMBEJ=~-"l)

EXAMPLES

01800
01900
02000
02100
02200

30 FORMAT ('ONUMBER OF STUDENTS = 'y 13 /
l' MEAN GRADE = 'y F6.2 /
l' STANDARD DEVIATION = " F6.2)
CLOSE (UNIT =1y FILE='STDGRA.DES')
END

.EX GRADE.FOR<CR>
FORTRAN: GRADE
MAIN.
LINK: LOADING
[LNKXCT GRADE EXECUTION]

NUMBER OF STUDENTS = 17
MEAN GRADE = 80.29
STANDARD DEVIATION = 10.45

END OF EXECUTION
CPU TIME: 0.23 ELAPSED TIME: 1.00
EXIT

We are opening a disk file, reading the grades stored in it, and,
closing the file. (See lines 400 and 2100.) Note that the logical
unit number given in the OPEN and CLOSE statements (UNIT = 1) is the
same as that given in the READ statement (line 800) and refers to the
device disk.

Execution starts at statement 400 (the OPEN statement). There is a
controlled loop at statements 800 - 1300. The last statement executed
is the END statement at 2200.

CONTINUATION LINES

Lines 1300, 1900, and 2000 are one FORTRAN statement, lines 1900 and
2000 being continuations of line 1800. Since TABs have been used at
the beginning of each line to skip over all or part of the label
field, a way must be provided to inform the computer that the line is
a continuation line.

The rule is: If the first character (after the TAB) is any number
between 1 and 9, then the line is a continuation line.

Example 3 (Writing A Disk File) :

The following is the program that created the data file STDGRA.DES.
Notice that in the OPEN, WRITE, and CLOSE statements (lines 500, 1100,
and 1400) the device unit number is an integer variable, IUNIT. IUNIT
has been given the value 1 (line 400) before it is used .

• R SOS

FILE: WOE.FOR<CR>
EDIT: WOE.FOR
PO:<CR>
00100 C
00200 C
00300
00400
00500
00600
00700

40
10

THIS PROGRAM ENTERS STUDENT GRADES
ENTER GRADE OF -1 AFTER LAST STUDENT GRADE TO END

DIMENSION STUDNT (S)
IUNIT=l
OPEN (UNIT=IUNIT~ FILE='STDGRA.DES')
ACCEPT 10, (STUDNT(I),I=l,S)
FORMAT (BAS)

INTRO-8-3

EXAMPLES

00800
00900
01000
01100
01200
01300
01400
01500
01600

20
ACCEPT 20, IGRADE
FORMAT (13)
IF (IGRADE .EQ. -1) GO TO 100

30
WRITE (IUNIT, 30) (STUDNT(I),1=1,8), IGRADE
FORMAT (8A5, 13)
GO TO 40

100 CLOSE (UNIT~IUNIT, FILE='STDGRA.DES')
STOP 'THIS IS THE END'
END

*
After this ~rogram has been executed, the file STDGRA.DES will be
listed by the DIRECT command (see page INTRO 6-1) and during the KJOB
command (see page INTRO 7-1) .

• EX WOE.FOR<CR>
FORTRAN: WOE
MAIN.
LINK: LOADING
CLNKXCT WOE EXECUTION]
GEORGE CLINTON<CR>

83<CR>
ELBRIDGE GERRY<CR>

73<CR>
DANIEL D. TOMPKINS<CR>

S8<CR>
JOHN CALHOUN<CR>

80<CR>
RICHARD M. JOHNSON<CR>

79<CR>
GEORGE DALLAS<CR>

95<CR>
WILLIAM R. KING<CR>

69<CR>
JOHN BRECKINRIDGE<CR>

77<CR>
HANNIBAL HAMLIN<CR>

6S<CR>
SCHUYLER COLFAX<CR>

77<CR>
HENRY WILSON<CR>

77<CR>
WILLIAM WHEELER<CR>

96<CR>
CHESTER ARTHUR<CR>

88<CR>
LEVI P. MORTON<CR>

91<CR>
GARRET HOBART<CR>

89<CR>
CHARLES DAWES<CR>

93<CR>
CHARLES CURTIS<CR>

75<CR>
<CR>
=i<CR>
THIS IS THE END

END OF EXECUTION
CPU TIME: 0.92 ELAPSED TIME: 4:21.33
EXIT

INTRO-8-4

EXAMPLES

Example 4:

This program prepares grade reports for the students whose grades are
recorded on the disk file STDGRA.DES.

.TYPE REPORT.FOR<CR>
00100
00200
00300
00400
00500
00600
00700
00800
00900
01000
01100
01200
01300
01400

C PROGRAM TO PREPARE GRADE REPORT
DIMENSION ANAME(8)
OPEN (UNIT=l, FILE='STDGRA.DES')

C PRINT HEADINGS
WRITE (5, 10)

10 FORMAT ('0', 5X, 'STUDENT', 27X, 'GRADE')
30 READ (1, 20, END=50) (ANAME(I),I=1,8), IGRADE
20 FORMAT (8AS, 13)

WRITE (S, 40) (ANAME(I),I=1,8), IGRADE
40 FORMAT (' " 8AS, 13)

GO TO 30
50 CLOSE (UNIT=l), FILE='STDGRA.DES')

STOP' END OF GRADE REPORT'
END

.EX REPORT.FOR<CR>
FORTRAN: REPORT
MAIN.
LINK: LOADING
CLNKXCT REPORT EXECUTION]

STUDENT
GEORGE CLINTON
ELBRIDGE GERRY
DANIEL D. TOMPKINS
JOHN CALHOUN
RICHARD M. JOHNSON
GEORGE DALLAS
WILLIAM R. KING
JOHN BRECKINRIDGE
HANNIBAL HAMLIN
SCHUYLER COLFAX
HENRY WILSON
WILLIAM WHEELER
CHESTER ARTHUR
LEVI P. MORTON
GARRET HOBART
CHARLES DAWES
CHARLES CURTIS

END OF GRADE REPORT

END OF EXECUTION
CPU TIME: 0.68 ELAPSED TIME: 1:34.77
EXIT

INTRO-8-5

GRADE
83
73
58
80
79
95
69
77
65
77
77
96
88
91
89
93
75

EXAMPLES

Example 5 (Trying To Read A Non-Existent File):

Now DELETE the data file containing the students' grades, STDGRA.DES,
and then EXecute REPORT.FOR (the program in Example 4). The READ
statement in line 700 cannot be executed since the fiie to which it
refers does not exist. The execution is thus aborted .

• DELETE STDGRA.DES<CR>
FILES DELETED:
STDGRA.DES
01 BLOCKS FREED

.EX REPORT.FOR<CR>
LINK: LOADING
CLNKXCT REPORT EXECUTIONJ

STUDENT GRADE
XFRSDAT ATTEMPT TO READ BEYOND VALID INPUT
UNIT=1 DSKtSTDGRA.DES[2,240J(05S>/ACCESS=SEGINOU/MODE=ASCII

NAME (LOC) «--- CALLER (LOC) (IARGS> [ARG TYPES]
IN. (402703) «--- MAIN.tll(220) (IS> [UIUIUJ

? JOB ABORTED

END OF EXECUTION
CPU TIMEt 0.35 ELAPSED TIME: 1.22
EXIT

INTRO-8-6

PART II

FORTRAN-10 Language Manual

The FORTRAN-10 Language Manual reflects the software as of Version 5
of the FORTRAN-10 Compiler, Version 5 of the FORTRAN-10 Object Time
System (FOROTS), and Version 5 of the FORTRAN-10 Debugging Program
(FORDDT) •

CHAPTER

CHAPTER

CHAPTER

CHAPTER

1

1.1

2

2.1
2.2
2.2.1

2.2.2
2.2.3
2.2.4
2.3
2.3.1
2.3.2
2.3.3
2.3.4
2.3.5
2.3.6
2.4

3

3.1
3.2
3.2.1
3.2.2
3.2.3
3.2.4
3.2.5
3.2.6
3.2.7
3.2.8
3.3
3.4
3.5
3.5.1
3.5.2
3.5.3

4

4.1
4.1.1

4.2
4.2.1
4.3
4.3.1
4.3.2
4.3.3

CONTENTS

PROLOGUE

BACKGROUND

CHARACTERS AND LINES

CHARACTER SET
STATEMENT, DEFINITION, AND FORMAT

Statement Label Field and Statement
Numbers
Line Continuation Field
Statement Field
Remarks

LINE TYPES
Initial and Continuation Line Types
Multi-Statement Lines
Comment Lines and Remarks
Debug Lines
Blank Lines
Line-Sequenced Input

ORDERING OF FORTRAN-IO STATEMENTS

DATA TYPES, CONSTANTS, SYMBOLIC NAMES,
VARIABLES, AND ARRAYS

DATA TYPES
CONSTANTS

Integer Constants
Real Constants
Double-Precision Constants
Complex Constants
Octal Constants
Logical Constants
Literal Constants
Statement Label Constants

SYMBOLIC NAMES
VARIABLES
ARRAYS

Array Element Subscripts
Dimensioning Arrays
Order of Stored Array Elements

EXPRESSIONS

ARITHMETIC EXPRESSIONS
Rules for Writing Arithmetic
Expressions

LOGICAL EXPRESSIONS
Relational Expressions

EVALUATION OF EXPRESSIONS
Parenthesized Subexpressions
Hierarchy of Operators
Mixed Mode Expressions

i

Page

1-1

1-1

2-1

2-1
2-2

2-3
2-3
2-3
2-4
2-4
2-4
2-5
2-5
2-6
2-6
2-6
2-7

3-1

3-1
3-2
3-2
3-2
3-3
3-3
3-4
3-5
3-5
3-6
3-6
3-7
3-7
3-8
3-9
3-10

4-1

4-1

4-2
4-4
4-7
4-9
4-9
4-9
4-10

CHAPTER

CHAPTER

CHAPTER

CHAPTER

CHAPTER

CHAPTER

4.3.4

5

5.1
5.2
5.3
5.4

6

6.1
6.2
6.2.1
6.3
6.4
6.5
6.5.1

6.6
6.7
6.8

7

7.1

8

8.1
8.2
8.3
8.4

9

9.1
9.2
9.2.1
9.2.2
9.2.3
9.3
9.3.1
9.3.2
9.3.3
9.4
9.4.1
9.4.2
9.4.3
9.5
9.6
9.7
9.7.1

10

10.1
10.2
10.2.1
10.2.2

CONTENTS (CONT.)

Use of Logical Operands in Mixed Mode
Expressions

COMPILATION CONTROL STATEMENTS

INTRODUCTION
PROGRAM STATEMENT
INCLUDE STATEMENT
END STATEMENT

SPECIFICATION STATEMENTS

INTRODUCTION
DIMENSION STATEMENT

Adjustable Dimensions
TYPE SPECIFICATION STATEMENTS
IMPLICIT STATEMENTS
COMMON STATEMENTS

Dimensioning Arrays in COMMON
Statements

EQUIVALENCE STATEMENT
EXTERNAL STATEMENT
PARAMETER STATEMENT

DATA STATEMENT

INTRODUCTION

ASSIGNMENT STATEMENTS

INTRODUCTION
ARITHMETIC ASSIGNMENT STATEMENTS
LOGICAL ASSIGNMENT STATEMENTS
ASSIGN (STATEMENT LABEL) ASSIGNMENT
STATEMENT

CONTROL STATEMENTS

INTRODUCTION
GO TO CONTROL STATEMENTS

Unconditional GO TO Statements
Computed GO TO Statements
Assigned GO TO Statements

IF STATEMENTS
Arithmetic IF Statements
Logical IF Statements
Logical Two-Branch IF Statements

DO STATEMENT
Nested DO Statements
Extended Range
Permitted Transfer Operations

CONTINUE STATEMENT
STOP STATEMENT
PAUSE STATEMENT

T (TRACE) Option

I/O STATEMENTS

DATA TRANSFER OPERATIONS
TRANSFER MODES

Sequential Mode
Random Access Mode

ii

Page

4-11

5-1

5-1
5-1
5-1
5-1

6-1

6-1
6-1
6-2
6-3
6-5
6-5

6-7
6-7
6-8
6-9

7-1

7-1

8-1

8-1
8-1
8-4

8-4

9-1

9-1
9-1
9-1
9-2
9-2
9-3
9-3
9-4
9-4
9-5
9-6
9-8
9-9
9-10
9-10
9-11
9-12

10-1

10-1
10-1
10-1
10-1

CHAPTER

10.2.3
10.3

10.3.1
10.3.2
10.3.3
10.3.4
10.3.4.1
10.3.5

10.3.6
10.3.7
10.4

10.5
10.5.1
10.5.2

10.5.3

10.5.4

10.5.5
10.5.6

10.6
10.7
10.B
10.B.l
10.B.2
10.B.3
10.B.4

10.B.5
10.B.6

10.9
10.10
10.10.1
10.10.2
10.11
10.12
10.13
10.14
10.15
10.15.1
10.15.2
10.15.3
10.16

11

11.1
11. 2
11.2.1
11. 2.2

CONTENTS (CONT.)

Append Mode
I/O STATEMENTS, BASIC FORMATS AND
COMPONENTS

I/O Statement Keywords
FORTRAN-IO Logical Unit Numbers
FORMAT Statement References
I/O List
Implied DO Constructs
The Specification of Records for
Random Access
List-Directed I/O
NAME LIST I/O Lists

OPTIONAL READ/WRITE ERROR EXIT AND
END-OF-FILE ARGUMENTS
READ STATEMENTS

Sequential Formatted READ Transfers
Sequential Unformatted Binary READ
Transfers
Sequential List-Directed READ
Transfers
Sequential NAMELIST-Controlled READ
Transfers
Random Access Formatted READ Transfers
Random Access Unformatted READ
Transfers

SUMMARY OF READ STATEMENTS
REREAD STATEMENT
WRITE STATEMENTS

Sequential Formatted WRITE Transfers
Sequential Unformatted WRITE Transfer
Sequential List-Directed WRITE Transfers
Sequential NAMELIST-Control1ed WRITE
Transfers
Random Access Formatted WRITE Transfers
Random Access Unformatted WRITE
Transfers

SUMMARY OF WRITE STATEMENTS
ACCEPT STATEMENT

Formatted ACCEPT Transfers
ACCEPT Transfers Into FORMAT Statement

PRINT STATEMENT
PUNCH STATEMENT
TYPE STATEMENT
FIND STATEMENT
ENCODE AND DECODE STATEMENTS

ENCODE Statement
DECODE Statement
Example of ENCODE/DECODE Operations

SUMMARY OF I/O STATEMENTS

NAMELIST STATEMENTS

INTRODUCTION
NAMELIST STATEMENT

NAMELIST-Controlled Input Transfers
NAMELIST-Control1ed Output Transfers

iii

Page

10-2

10-2
10-3
10-3
10-3
10-6
10-6

10-7
10-B
10-10

10-10
10-11
10-11

10-12

10-12

10-13
10-13

10-13
10-14
10-14
10-16
10-16
10-16
10-17

10-17
10-17

10-17
10-lB
10-lB
10-lB
10-l9
10-l9
10-20
10-21
10-21
10-22
10-23
10-23
10-23
10-25

11-1

11-1
11-1
11-2
11-3

CHAPTER

CHAPTER

CHAPTER

CHAPTER

12

12.1
12.2
12.2.1
12.2.2

13

13.1
13.1.1
13.2
13.2.1
13.2.2

13.2.3
13.2.4
13.2.5
13.2.6
13.2.7
13.2.8
13.2.9
13.2.10
13.2.11
13.2.12
13.3

14

14.1
14.2
14.3
14.4
14.5
14.6
14.7
14.8
14.9

15

15.1
15.1.1
15.2
15.3

15.4
15.4.1

15.4.2
15.5
15.5.1
15.5.2
15.6
15.6.1

15.7

CONTENTS (CONT.)

FILE CONTROL STATEMENTS

INTRODUCTION
OPEN AND CLOSE STATEMENTS

Options for OPEN and CLOSE Statements
Summary of OPEN/CLOSE Statement Options

FORMAT STATEMENT

INTRODUCTION
FORMAT Statement, General Form

FORMAT DESCRIPTORS
Numeric Field Descriptors
Interaction of Field Descriptors
With I/O List Variables
G, General Numeric Conversion Code
Numeric Fields with Scale Factors
Logical Field Descriptors
Variable Numeric Field Widths
Alphanumeric Field Descriptors
Transferring Alphanumeric Data
Mixed Numeric and Alphanumeric Fields
Multiple Record Specifications
Record Formatting Field Descriptors
$ Format Descriptor

CARRIAGE CONTROL CHARACTERS FOR PRINTING
ASCII RECORDS

DEVICE CONTROL STATEMENTS

INTRODUCTION
REWIND STATEMENT
UNLOAD STATEMENT
BACKSPACE STATEMENT
END FILE STATEMENT
SKIP RECORD STATEMENT
SKIP FILE STATEMENT
BACKFILE STATEMENT
SUMMARY OF DEVICE CONTROL STATEMENTS

SUBPROGRAM STATEMENTS

INTRODUCTION
Dummy and Actual Arguments

STATEMENT FUNCTIONS
INTRINSIC FUNCTIONS (FORTRAN-I0 DEFINED
FUNCTIONS)
EXTERNAL FUNCTIONS

Basic External Functions (FORTRAN-I0
Defined Functions)
Generic Function Names

SUBROUTINE SUBPROGRAMS
Referencing Subroutines (CALL Statement)
FORTRAN-I0 Supplied Subroutines

RETURN STATEMENT AND MULTIPLE RETURNS
Referencing External FUNCTION
Subprograms

MULTIPLE SUBPROGRAM ENTRY POINTS (ENTRY
STATEMENT)

iv

Page

12-1

12-1
12-1
12-2
12-10

13-1

13-1
13-1
13-2
13-4

13-6
13-7
13-7
13-10
13-10
13-11
13-12
13-14
13-14
13-15
13-16

13-16

14-1

14-1
14-1
14-2
14-2
14-2
14-3
14-3
14-3
14-3

15-1

15-1
15-1
15-3

15-3
15-7

15-8
15-8
15-9
15-13
15-14
15-14

15-16

15-17

CHAPTER 16

16.1
16.2

APPENDIX A

APPENDIX B

B.l
B .1.1
B.1.1.l
B.1. 2
B.2
B.2.l
B.3
B.3.1
B.3.2
B.4

APPENDIX C

C.l
C .1.1

C.1. 2

C.1. 3
C.1. 4
C.1. 5
C.1. 6
C.1. 7
C.2
C.2.l
C.2.1.l
C.2.1.2
C.2.1.3

C.2.1.4
C.2.1.5
C.2.1.6
C.2.1.7
C.2.1.S
C.2.1.9
C.2.2
C.2.3

C.3

C.3.l
C.3.2
C.3.3
C.3.4
C.3.5
C.3.6

C.3.7

C.3.S
C.3.S.l

CONTENTS (CONT.)

BLOCK DATA SUBPROGRAMS

INTRODUCTION
BLOCK DATA STATEMENT

ASCII-196S CHARACTER CODE SET

USING THE COMPILER

RUNNING THE COMPILER
Switches Available with FORTRAN-IO
The /DEBUG Switch
COMPIL-Class Commands

READING A FORTRAN-IO LISTING
Compiler-Generated Variables

ERROR REPORTING
Fatal Errors and Warning Messages
Message Summary

CREATING A REENTRANT FORTRAN PROGRAl'1
WITH LINK-I0

WRITING USER PROGRAMS

GENERAL PROGRAMMING CONSIDERATIONS
Accuracy and Range of Double-Precision
Numbers
Writing FORTRAN-IO Programs for
Execution on Non-DEC Machines
Using Floating-Point DO Loops
Computation of DO Loop Iterations
Subroutines - Programming Considerations
Reordering of Computations
Dimensioning of Formal Arrays

FORTRAN-IO GLOBAL OPTIMIZATION
Optimization Techniques
Elimination of Redundant Computations
Reduction of Operator Strength
Removal of Constant Computation From
Loops
Constant Folding and Propagation
Removal of Inaccessible Code
Global Register Allocation
I/O Optimi za tion
Uninitialized Variable Detection
Test Replacement
Improper Function References
Programming Techniques for Effective
Optimization

INTERACTING WITH NON-FORTRAN-IO PROGRAMS
AND FILES

Calling Sequences
Accumulator Usage
Argument Lists
Argument Types
Description of Arguments
Converting Existing MACRO-IO Libraries
for use with FORTRAN-IO
Mixing FORTRAN-IO and F40 Compiled
Programs
Interaction with COBOL-IO
Calling FORTRAN-IO Subroutines from
COBOL-IO Programs

v

Page

16-1

16-1
16-1

A-I

B-1

B-1
B-1
B-3
B-4
B-5
B-6
B-17
B-17
B-lS

B-lS

C-l

C-l

C-l

C-l
C-2
C-2
C-2
C-3
C-4
C-4
C-5
C-5
C-5

C-6
C-7
C-7
C-7
C-S
C-S
C-S
C-S

C-9

C-9
C-9
C-lO
C-11
C-12
C-l3

C-14

C-20
C-20

C-2l

C.3.8.2

C.3.9
C.3.9.1
C.3.10
C.3.10.1
C.3.10.2

C.3.10.3

APPENDIX D

D.l
D.2
D.3
D.4
D.4.1

D.4.2
D.4.2.1
D.4.2.2
D.S

D.S.l
D.S.2
D.S.2.1
D.S.3
D.S.4
D.6
D.6.1
D.6.2
D.6.3
D.6.3.1

D.6.3.2

D.6.3.3
D.6.3.4

D.6.3.S

D.6.3.6

D.6.3.7
D.6.3.8
D.6.3.9

D.6.3.10
D.6.3.11

D.7
D.8

APPENDIX E

E.l
E.l.l
E.l. 2

CONTENTS (CONT.)

Calling COBOL-IO Subroutines from
FORTRAN-IO Programs
LINK-IO Overlay Facilities
Conventions
FOROTS/FORSE Compatibility
FORTRAN-IO/F40 Data File Compatibility
Converting FOROTS Data File to
FORSE-Accepable Form
General Restrictions

FOROTS

HARDWARE AND SOFTWARE REQUIREMENTS
FEATURES OF FOROTS
ERROR PROCESSING
INPUT/OUTPUT FACILITIES

Input/Output Channels Used Internally by
FOROTS
File Access Modes
Sequential Transfer Mode
Random Access Mode

ACCEPTABLE TYPES OF DATA FILES AND THEIR
FORMATS

ASCII Data Files
FORTRAN Binary Data Files
Format of Binary Files
Mixed Mode Data Files
Image Files

USING FOROTS
FOROTS Entry Points
Calling Sequences
MACRO Calls for FOROTS Functions
Formatted/Unformatted Transfer
Statements, Sequential Access Calling
Sequences
NAMELIST I/O Sequential Access Calling
Sequences
Array Offsets and Factoring
I/O Statements Random Access Calling
Sequences
Calling Sequences for Statements Which
Use Default Devices
Statements to Position Magnetic
Tape Units
List Directed Input/Output Statements
Input/Output Data Lists
OPEN and CLOSE Statements,
Calling Sequences
Memory Allocation Routines
Software Channel Allocation and
De-allocation Routines

FUNCTIONS TO FACILITATE OVERLAYS
LOGICAL/PHYSICAL DEVICE ASSIGNMENTS

FORDDT

INPUT FORMAT
Variables and Arrays
Numeric Conventions

vi

Page

C-22
C-22
C-23
C-23
C-23

C-2S
C-27

D-l

D-l
D-2
D-3
D-3

D-3
D-4
D-4
D-4

D-4
D-4
D-S
D-S
D-12
D-13
D-13
D-14
D-14
D-IS

D-16

D-17
D-18

D-20

D-20

D-22
D-22
D-23

D-26
D-27

D-28
D-29
D-32

E-l

E-2
E-2
E-3

E.1. 3
E.2
E.2.l
E.3
E.4
E.5
E.6
E.7
E.8
E.9

APPENDIX F

APPENDIX G

G.l
G.2
G.2.l
G.2.2
G.2.3
G.2.4
G.3
G.3.l
G.3.2
G.3.3
G.3.4
G.3.5
G.3.6
G.3.7
G.3.8
G.3.9
G.3.l0
G.3.11
G.3.l2
G.3.13
G.3.l4
G.3.l5

APPENDIX H

TABLE 1-1
2-1
3-1
3-2
4-1
4-2

4-3
4-4
4-5
4-6
4-7
8-1

10-1
10-2

CONTENTS (CONT.)

Statement Labels and Source Line Numbers
NEW USER TUTORIAL

Basic Commands
FORDDT AND THE FORTRAN-10 /DEBUG SWITCH
LOADING AND STARTING FORDDT
SCOPE OF NAME AND LABEL REFERENCES
FORDDT COMMANDS
ENVIRONMENT CONTROL
FORTRAN-10 /OPTIMIZE SWITCH
FORDDT MESSAGES

COMPILER MESSAGES

FORTRAN-10 REALTIME SOFTWARE

INTRODUCTION
USING FORRTF

Core
Modes
Priority Interrupt Levels
Masks

SUBROUTNES
LOCK
RTINIT
CONECT
RTSTRT
BLKRW
RTREAD
RTWRIT
STATO
STATI
RTSLP
RTWAKE
DISMIS
DISCON
UNLOCK
GETCOR, A Temporary Subroutine

FOROTS ERROR MESSAGES RETURNED BY ERRSNS

TABLES

FORTRAN-10 Statement Categories
FORTRAN-10 Character Set
Constants
Use of Symbolic Names
Arithmetic Operations and Operators
Type of the Result Obtained From
Mixed Mode Operations
Permitted Base/Exponent Type Combinations
Logical Operators
Logical Operations, Truth Table
Relational Operators and Operations
Hierarchy of FORTRAN-10 Operators
Rules for Conversion in Mixed Mode
Assignments
FORTRAN-10 Logical Device Assignments
Summary of READ Statements

vii

Page

E-3
E-3
E-3
E-7
E-7
E-8
E-8
E-17
E-17
E-17

F-l

G-l

G-l
G-2
G-2
G-2
G-2
G-3
G-3
G-3
G-3
G-4
G-4
G-5
G-5
G-5
G-5
G-5
G-6
G-6
G-6
G-6
G-6
G-7

H-l

1-2
2-1
3-1
3-6
4-1

4-3
4-4
4-5
4-6
4-7
4-10

8-2
10-4
10-25

10-3
10-4
12-1
13-1
13-2

13-3
13-4

13-5
14-1

15-1

15-2

15-3
B-1
B-2
C-l
C-2
C-3
D-l
D-2
E-l
G-l

H-l

H-2

CONTENTS (CONT.)

Summary of WRITE Statements
Summary of FORTRAN-IO I/O Statements
OPEN/CLOSE Statement Arguments
FORTRAN-IO Conversion Codes
Action of Field Descriptors On
Sample Data
Numeric Field Codes
Descriptor Conversion of Real and Double
Precision Data According to Magnitude
FORTRAN-IO Print Control Characters
Summary of FORTRAN-IO Device Control
Statements
Intrinsic Functions (FORTRAN-IO Defined
Functions)
Basic External Functions (FORTRAN-IO
Defined Functions)
FORTRAN-IO Library Subroutines
FORTRAN-IO Compiler Switches
Modifiers to /DEBUG Switch
Argument Types and Type Codes
Upward Compatibility (FORSE TO FOROTS)
Downward Compatibility (FOROTS TO FORSE)
Function Numbers and Function Codes
FORTRAN Device Table
Table of Commands
Error Messages, Code Format and Full
Message Format
FOROTS I/O Error Messages and ERRSNS
Returned Values
FOROTS Arithmetic and Library Error
Messages

viii

Page

10-17
10-24
12-11
13-3

13-5
13-6

13-8
13-17

14-4

15-4

15-10
15-19
B-2
B-3
C-12
C-24
C-26
D-30
D-33
E-l

G-7

B-2

H-5

CHAPTER 1

PROLOGUE

1.1 BACKGROUND

The FORTRAN-IO language set is compatible with and encompasses the
standard set described in "American National Standard FORTRAN,
X3.9-1966" (referred to as the 1966 ANSI standard). FORTRAN-IO also
provides many extensions and additions to the standard set that
greatly enhance the usefulness of FORTRAN-IO and increase its
compatibility with FORTRAN language sets implemented by other major
computer manufacturers. In this manual, the FORTRAN-IO extensions and
additions to the 1966 ANSI standard set are printed with gray shading.

A FORTRAN-IO source program consists of a set of statements
constructed using the language elements and the syntax described in
this manual. A given FORTRAN-IO statement will perform anyone of the
following functions:

1. It will cause operations such as multiplication, division,
and branching to be carried out.

2. It will specify the type and format of the data being
processed.

3. It will specify the characteristics of the source orogram.

FORTRAN-IO
recognized
constants,
FORTRAN-IO

statements are composed of keywords, i.e., words that are
by the compiler, used with elements of the language set:

variable, and expressions. There are two basic types of
statements: executable and nonexecutable.

executable statements specify the action of the program;
nonexecutable statements describe the characteristics and arrangement
of data, editing information, statement functions, and the kind of
subprograms that may be included in the program. The compilation of
executable statements results in the creation of executable code in
the object program. Nonexecutable statements provide information only
to the compiler; they do not create executable code.

In this manual, the FORTRAN-IO statements are grouped into 12
categories, each of which is described in a separate chapter. The
name, definition, and chapter reference for each statement category
are given in Table 1-1.

The basic FORTRAN-IO language elements, (constants, variables, and
expressions), the character set from which they may be formed, and the
rules that govern their construction and use are described in Chapters
2 through 4.

1-1

Chapter
Reference

5

6

7

>3

9

12

13

14

PROLOGUE

Table 1-1
FORTRAN-10 Statement Categories

Category
Name

Compilation Control
Statements

Specification
Statements

DATA
Statement

Assignment
Statements

Control
Statements

File Control
Statements

FORMAT
Statement

Device Control
Statements

Description

Statements in
identify programs
their beginning
points.

this
and

and

category
indicate

ending

Statements in this category
declare the properties of
variables, arrays, and functions.

This statement assigns initial
values to variables and array
elements.

Statements in this category cause
named variables and/or array
elements to be replaced by
specified (assigned) values.

Statements in this category
determine the order of execution
of the object program and
terminate its execution.

this category
and close files

for input and
between files

Statements in
identify, open,
and parameters
output operations
and the processor.

This statement is used with
certain input/output statements
to specify the form in which data
appears in a FORTRAN record on a
specified input/output medium.

Statements in this
enable the programmer to

category
control

the positioning of records or
files on certain peripheral
devices.

1-2

Chapter
Reference

15

16

PROLOGUE

Table 1-1 (Cont.)
FORTRAN-IO Statement Categories

Category
Name Description

Subprogram Statements in this category
Statements enable the programmer to define

functions and subroutines and
their entry points.

BLOCK DATA Statements in this category
Statements are used to declare data

specification subprogra:ns that
may initialize com'llon storage
areas.

1-3

CHAPTER 2

CHARACTERS AND LINES

2.1 CHARACTER SET

Table 2-1 lists the digits, letters, and symbols recognized by
FORTRAN-IO. The remainder of the ASCII-1968 character set (1), is
acceptable within literal constants or co~~ent text, but these
characters cause fatal errors in other contexts. ~n exception is
CONTROL-Z, which, when used in Teletype input, means end-of-file.

NOTE

Lower-case alphabet characters are
treated as upper-case outside the
context of Hollerith constants, literal
strings, and com~ents.

Table 2-1
FORTRAN-IO Character Set

Letters

A,a J , j S,s
B,b K,k T,t
C,c L,l U,u
D,d M,m V,v
E,e N,n W,w
F,f 0,0 X,x
G,g P,p Y,y
H,h Q,q Z,z
I,i R, r

Digits

0 5
1 6
2 7
3 8
4 9

1. The complete ASCII-1968 character set is defined in the X3.4-l968
version of the "American National Standard for Information
Interchange," and is given in Appendix A.

2-1

!
II

$
&
I

(
)

*
+

Exclamation

CHARACTERS AND LINES

Table 2-1 (Cont.)
FORTRAN-10 Character Set

Symbols

Point , Comma
Quotation Marks - Hyphen (Minus)
Number Sign . Period (Decimal
Dollar Sign / Slant (slash)
Ampersand : Colon
Apostrophe ; Semicolon
Opening Parenthesis < Less Than
Closing Parenthesis = Equals
Asterisk > Greater Than
Plus

~

Circumflex

Line Termination Characters

Line Feed
Form Feed
Vertical Tab

Line Formatting Characters

Carriage Return
Horizontal Tab
Blank

Point)

Note that horizontal tabs normally advance the character position
pointer to the next position that is an even multiple of 8. An
exception to this is the initial tab, which is defined as a tab that
includes or starts in character position 6. (Refer to Section 2.3.1
for a description of initial and sontinuation line types.) Tabs within
literal specifications count as one character even though they may
advance the character position as many as eight places.

2.2 STATEMENT, DEFINITION, AND FORMAT

Source program statements are divided into physical lines. A line is
defined as a string of adjacent character positions, terminated by the
first occurrence of a line termination character regardless of
context. Each line is divided into four fields:

Line Character Positions ------------------i~-.I

2 3 4 5 6 7 8 70 71 72 73. .
~----_y------~'~'~---------------v------------------~ ~

Statement
Label Field

Continuation
Field

Statement Field Remarks

2-2

CHARACTERS AND LINES

2.2.1 Statement Label Field and Statement Numb~rs

You may place a number ranging from 1 to 99999 in the statement label
field of an initial line to identify the statement. Any source
program statement that is referenced by another statement must have a
statement number. Leading zeroes and all blanks in the label field
are ignored, e.g., the numbers 00105 and 105 are both accepted as
statement number 105. You may assign the statement numbers in a
source program in any order~ however, each statement number must be
unique with respect to all other statements in the program or
subprogram. You cannot label non-executable statements other than
FORMAT and END statements.

A main program and a subroutine may contain identical statement
numbers. In this caSe, references to these numbers are understood to
mean the numbers in the same program unit in which the reference is
made. An example:

Assume that main module MAINMD
contain statement number 105.
instance, in MAINMD will refer to
NOT to 105 in SUBI. A GO TO in
to 105 in SUBI.

2.2.2 Line Continuation Field

and subprogram SUBI both
A GO TO statement, for

statement 105 in MAINMD,
SUB 1 will transfer control

Any alphanumeric character (except a blank or a zero) placed in
field (position 6) identifies the line as a continuation line.
Section 2.3.1 for description.)

2.2.3 Statement Field

this
(See

Any FORTRAN-IO statement may appear in this field. Blanks (spaces)
and tabs do not affect compilation of the statement and may be used
freely in this field for appearance purposes, with the exception of
textual data given within either a literal or Hollerith specification
where blanks and tabs are significant characters.

2-3

CHARACTERS AND LINES

2.2.4 Remarks

In lines consisting of 73 or more character positions, only the first
72 characters are interpreted by FORTRAN-IO. (Note that tabs
generally occupy more than one character position, usually advancing
the counter to the next character position that is an even multiple of
eight.) All other characters in the line (character positions 73, 74
..• etc.) are treated as remarks and do not affect compilation.

Note that remarks may also be added to a line in character_positions 7
through 72, provided the text of the remark is preceded by the symbol
"1" (Refer to Section 2.3.3.)

2.3 LINE TYPES

A line in a FORTRAN-IO source program may be:

1. An initial line,

2. A continuation line,

4. A comment line,

6. A b~ank line.

Each of these line types is described in the following paragraphs.

2.3.1 Initial and Continuation Line Types

A FORTRAN-IO statement may occupy the statement. fields of up to 20
consecutive lines. The first line in a mUlti-line statement group is
referred to as the initial line; the succeeding lines are referred to
as continuation lines.

Iriitial lines may be assigned a statement number and must have either
a blank or a zero in their contin~ation line field, i.e., character
position 6.

Continuation lines cannot be assigned statement numbers; they are
identified by any alphanumeric character (except for a blank or zero)
placed in character positiori 6 of the line, i.e., continuation line
field. The label field of a continuation line is treated as remark
text.

2-4

CHARACTERS AND LINES

Note that blank lines, comments, and debug lines that are treated like
comments, i.e., debug lines that are not compiled with the rest of the
program (refer to Section 2.3.4) terminate a continuation sequence.

Following is an example of a 4-line FORTRAN-lO FORMAT statement using
initial tabs:

105 FORMAT (lHl,17HINITIAL CHARGE = ,FlO.6,10H COULOMB,6X,
213HRESISTANCE = ,F9.3,6,H OHM/ISH CAPACITANCE = ,FlO.6,
38H FARAD,11X,13HINDUCTANCE = ,F7.3,8H HENRY///
42lH TIME CURRENT/7H MS,10X.2HMA///)

Continuation Line Characters, i.e., 2, 3, and 4

2.3.3 Comment Lines and Remarks

Lines that contain descriptive text only are referred to as comment
lines. Comment lines are commonly used to identify and introduce a
source program, to describe the purpose of a particular set of
statements, and to introduce subprograms.

To structure a comment line:

1. You must place one of the characters C (or c), $,/ , *, or
in character position 1 of the line to identify it as a
comment line.

2. You may write the text into character positions 2 through the
end of the line.

3. You may place comment lines anywhere in the source program,
but they cannot precede a continuation line because comments
terminate a continuation sequence.

4. You may write a large comment as a sequence of any number of
lines; however, each line must carry the identifying
character (C,$,/,*, or !) in its first character position.

2-5

CHARACTERS AND LINES

The following is an example of a comment that occupies more than one
line.

CSUBROUTINE - Al2
CTHE PURPOSE OF THIS SUBROUTINE IS
CTO FORMAT AND STORE THE RESULTS OF
CTEST PROGRAM HEAT TEST-IIOI

Comment lines are printed on all listings, but are otherwise ignored
by the compiler.

Note that characters appearing in character positions 73
are automatically treated as remarks, so that the symbol
be used. (Refer to Section 2.2.4.)

2.3.5 Blank Lines

and beyond
need not

You may insert lines consisting of only blanks, tabs, or no characters
anywhere in a FORTRAN-IO source program except immediately preceding a
continuation line, because blank lines are by definition initial lines
and as such terminate a continuation sequence. Blank lines are used
for formatting purposes only~ they cause blank lines to appear in
their corresponding positions in source program listings~ otherwise,
they are ignored by the compiler.

2-6

C3ARACTERS AND LINES

2.4 ORDERI~G OF FORTRAN-IO STATEMENTS

The order in which you place FORTRAN-IO Statements in a program unit
is important. That is, certain types of statements have to be
processed before others to guarantee that compilation takes place as
you expect. The proper sequence for FORTRAN-IO statements is
summarized by the following diagram.

PROGRAM, FUNCTION, SUBPROGRAM, or
BLOCK DATA Statements

IMPLICIT Statements

PARAMETER Statements

DIMENSION, COMMON,
Comment Lines FORMAT Statements EQUIVALENCE, EXTERNAL

NAMELIST, or Type
Specification Statements

Statement
Function
Definitions

DATA Statements

Executable
Statements

END Statement

Horizontal lines indicate the order in which FORTRAN-IO statements
must appear. That is, you cannot intersperse horizontal sections.
For example, all PARAMETER statements must appear after all IMPLICIT
statements and before any DATA statements, i.e., PARAMETER, IMPLICIT,
and DATA statements cannot be interspersed. Statement function
definitions must appear after IMPLICIT statements and before
executable statements.

vertical lines indicate the way in which certain types of statements
may be interspersed. For example, you may intersperse DATA statements
with statement function definitions and executable statements. you
may intersperse FORMAT statements with IMPLICIT statements, parameter
statements, other specification statements, DATA statements, statement
function definitions, and executable statements. The only restriction
on the placement of FORMAT statements is that they must appear after
any PROGRAM, FUNCTION, subprogram, and BLOCK DATA statements, and
before the END statement.

2-7

CHARACTERS AND LINES

Special Cases:

1. The placement of an INCLUDE statement is dictated by the
types of statements to be INCLUDEd.

2. The ENTRY statement is allowed only in functions or
subroutines. All executable references to any of the dummy
parameters must physically follow the ENTRY statement unless
the references appear in the function definition statement,
the subroutine, or in a preceding ENTRY statement.

3. BLOCK DATA subprograms cannot contain any executable
statements, statement functions, FORMAT statement3, EXTERNAL
statements, or NAMELIST statements. (Refer to Section 16.1.)

When statements are out of place, FORTRAN-10 issues messages, some of
which may indicate fatal errors.

2-8

CHAPTER 3

DATA TYPES, CONSTANTS, SYMBOLIC NAMES, VARIABLES, AND ARRAYS

3.1 DATA TYPES

The data types you may use in FORTRAN-10 source programs are:

1. integer,

2. real,

3. double-precision,

4. complex,

and

9. logical.

The use and format of each of the foregoing data types are
in the descriptions of the constant having the same
(Sections 3.2.1 through 3.2.8).

3.2 CONSTANTS

discussed
data type

Constants are quantities that ~o not change value during the execution
of the object program.

The constants you may use in FORTRAN-10 are listed in Table 3-1.

Category

Numeric

Table 3-1
Constants

Constant(s) Types

real, double-precision, complex, and

3-1

DATA TYPES, CONSTANTS, SYMBOLIC NAMES, VARIABLES, AND ARRAYS

3.2.1 Inteser Constants

An integer constant is a string of from one to eleven digits that
represents a whole decimal number (a number without a fractional
part). Integer constants must be within the range of (-2**35)-1 to
(+2**35)-1 (-34359738367 to +34359738367). positive integer constants
may optionally be signed; negative integer constants must be signed.
You cannot use decimal points, commas, or other symbols on integer
constants (except for a preceding sign, + or -). Examples of valid
integer constants are:

345
+345
-345

Examples of invalid integer constants are:

+345.
3,450
34.5

(use of decimal point)
(use of comma)
(use of decimal point; not a whole number)

3.2.2 Real Constants

A real constant may have any of the following forms:

1. A basic real constant: a string of decimal
immediately by a decimal point followed
decimal fraction, e.g., 1557.42.

digits followed
optionall y by a

2. A basic real constant followed immediately by a decimal
integer exponent written in E notation (exponential notation)
form, e.g., 1559.E2.

3. An integer constant (no decimal point) followed by a decimal
integer exponent written in E notation, e.g., 1559E2.

Real constants may be of any size; however, each will' be rounded to
fit the precision of 27 bits (7 to 9 decimal digits).

Precision for real constants is maintained to approximately eight
significant digits; the absolute precision depends upon the numbers
involved.

The exponent field of a real constant written in E
cannot be empty (blank); it must be either a zero
constant. The magnitude of the exponent must be greater
equal to or less than +38 (i.e., -38<n< + 38). The
examples of valid real constants.

-98.765
7.0E+0
.7E-3
5E+5
50115.
50.El

(7 •)
(.0007)
(500000.)

(500.)

The following are examples of invalid real constants.

72.6E75
.375E
500

(exponent is too large)
(exponent incorrectly written)
(no decimal point given)

3-2

notation form
or an integer
than -38 and
following are

DATA TYPES, CONSTANTS, SYMBOLIC NAMES, VARIABLES, AND ARRAYS

3.2.3 Double-Precision Constants

Constants of this type are similar to real constants written in E
notation form~ the direct differences between these two constants
are:

1. Double-precision constants, depending on their magnitude,
have precision to either 15 to 17 places (system with a KAlO
Processor) or 16 to 18 places (system with a KIlO or KLlO
Processor), rather than the 8-digit precision obtained for
real constants.

2. Each double-precision
locations.

constant occupies two storage

3. The letter 0, instead of E, is used in double-precision
constants to identify a decimal exponent.

You must use both the letter 0 and an exponent (even of zero) in
writing a double-precision constant. The exponent need only be signed
if it is negative~ its magnitude must be greater than -38 and equal
to or less than +38 (i.e., -38<n +38). The range of magnitude
permitted a double-precision constant depends on the type of processor
present in your system (on which the source program is to be compiled
and run). The permitted ranges are:

The

The

Processor Range

KAlO
KIlO or KLIO

1.97 X 10**(-31) to 3.4 X 10**(+38)
0.14 X 10**(-38) to 3.4 X 10**(+38)

following are valid examples of double-precision constants.

7.9003 (= 7900)
7.90+03 (= 7900)
7.90-3 (= .0079)
79003 (= 79000)
7900 (= 79)

following are invalid examples of double-precision constants.

7.9099 (exponent is too large)
7.9E5 ("E" denotes a single-precision constant)

3.2.4 Complex Constants

You can represent a complex constant by an ordered pair of integer,
real, or octal constants written within parentheses and separated by a
comma. For example, (.70712, -.70712) and (8.763E3, 2.297) are
complex constants.

In a complex constant the first (leftmost) real constant of the pair
represents the real part of the number~ the second real constant
represents the imaginary part of the number. Both the real and
imaginary parts of a complex constant can be signed.

The real constants that represent the real and imaginary parts of a
complex constant occupy two consecutive storage locations in the
object program.

3-3

DATA TYPES, CONSTANTS, SYMBOLIC NAMES, VARIABLES, AND ARRAYS

3-4

DATA TYPES, CONSTANTS, SYMBOLIC NAMES, VARIABLES, AND ARRAYS

3.2.6 Logical Constants

The Boolean values of truth and falsehood are represented in
FORTRAN-10 source programs as the logical constants .TRUE. and
.FALSE .• Always write logical constants enclosed by periods as in the
preceding sentence.

Logical quantities may be operated on in arithmetic and logical
statements. Only the sign bit of a numeric used in a logical IF
statement is tested to determine if it is true (sign is negative) or
false (sign is positive).

3.2.7 Literal Constants

A literal constant may be either of the following:

2. A Hollerith literal, which is written as a string of
alphanumeric and/or special characters preceded by nH (e.1.,
nHstring). In the prefix nB, the letter n represents a
number that specifies the exact number of characters
(including blanks) that follow the letter Hi the letter H
identifies the literal as a Hollerith literal. The following
are examples of Hollerith literals:

2HAB
l4HLOAD TEST #124
6H#124-A

3-5

DATA TYPES, CONSTANTS, SYMBOLIC NAMES, VARIABLES, AND ARRAYS

3.3 SYMBOLIC NAMES

Symbolic names may consist combination of from one
to six characters.

The first character 0
a symbolic name must be an alphabetic character.

The following are examples of legal symbolic names:

A12345
IAMBIC
ABLE

The following are examples of illegal symbolic names:

#AMBIC
lAB

(symbol used as first character)
(number used as first character)

You use symbolic names to identify specific items of a FORTRAN-IO
source program; Table 3-2 lists these items, together with an example
of a symbolic name and text refererice for each.

Table 3-2
Use of Symbolic Names

For a Detailed
Symbolic Names Description

Can Identify For Example See Section

l. Variables 1;'1, CONST, LIMIT 3.4
2. Arrays TAX 3.5
3. Array elements TAX (NAME, INCOME) 3.5.1
4. Functions MYFUNC, VAL FUN 15.2
5. Subroutines CALCSB, SUB2, LOOKUP 15.5
6. External library SIN, ATAN, COSH 15.4

functions
7. COMMON block names DATAR, COMDAT 6.5

3-6

DATA TYPES, CONSTANTS, SYMBOLIC NAMES, VARIABLES, AND ARRAYS

3.4 VARl,l\BLES

A variable is a datum (storage location) that is identified by a
symbolic name and is not a constant, an array or an array element.
Variables specify values that are assigned to them by either
arithmetic statements (Chapter 8), DATA statements (Chapter 7), or at
run time via I/O references (Chapter 10). Before you assign a value
to a variable, it is termed an undefined variable, and you should not
reference it except to assign a value to it.

If you reference an undefined variable, an unknown value (garbage)
will be obtained.

The value you assign to a variable may be either a constant or the
result of a calculation that is performed during the execution of the
object program. For example, the statement IAB=5 assigns the constant
5 to the variable IAB~ in the statement IAB=5+B, however, the value
of lAB at a given time will depend on the value of variable B at the
time the statement was last executed.

;rhe type of a variable i3 the type of the contents of the datum that
it identifies. variables may be:

l. integer

2. real

3 . logical

4. double-precision, or

5. complex.

You may declare the type of a variable by using either implicit or
explicit type declaration statements (Chapter 6). However, if you do
not use type declaration statements, FORTRAN-10 assumes the following
convention:

1. Variable names that begin with the letters I, J, K, L, M, or
N are normally integer variables.

2. Variable names that begin with any letter other than I, J, K,
L, M, or N are normally real variables.

Examples of determining the type of a variable according to the
foregoing convention are given in the following table:

Variable Beginning Letter Assumed Data Type

ITEMP I Integer
OTEMP 0 Real
KA123 K Integer
AABLE A Real

3.5 ARRAYS

An array is an ordered set of data identified by an array name. Array
names are symbolic names and must conform to the rules given in
Section 3.3 for writing symbolic names.

3-7

DATA TYPES, CONSTANTS, SYMBOLIC NAMES, VARIABLES, AND ARRAYS

Each datum within an array is called an array element. As with
variables, you may assign a value to an array element. Before you
assign a value to an array element it is considered to be undefined~
you should not reference it until you have assigned it a value. If
you reference an undefined array element, the value of the element
will be unknown and unpredictable (garbage).

Name each element of an array by using the array name together with a
subscript that describes the position of the element within the array.

3.5.1 Array Element Subscripts

Give the subscript of an array element identifier within parentheses,
as either one subscript quantity or a set of subscript quantities
delimited by commas. write the parenthesized subscript immediately
after the array name. The general form of an array element name is AN
(51, S2, ... Sn), where AN is the arr and 51 thr Sn r
n r of subscr ities.

equal the number
array.

for the

A subscript can be any compound expression (Chapter 4), for example:

1.

4.

Subscript quantities may contain arithmetic expressions
involve addition, subtraction, multiplicationr division,
exponentiation. For example, (A+B,C*5,D/2)
(A**3, (B/4+C) *E,3) are valid subscripts.

that
and
and

Subscripts may contain array
any level as subscripts.
(I(J(K(L))),A+B,C) the first
nested 3-level subscript.

element identifiers nested to
For example, in the subscript

subscript quantity given is a

Here are examples of valid array element subscripts:

1. lAB (l , 5 ,3)

2. ABLE(A)

3-8

DATA TYPES, CONSTANTS, SYMBOLIC NAMES, VARIABLES, .AND ARRAYS

3.5.2 Dimensioning Arrays

You must declare the size (number of elements) of an array in order to
enable FORTRAN-lO to reserve the needed amount of locations in which
to store the array. Arrays are stored as a series of sequential
storage locations. Arrays, however, are visualized and referenced as
if they were single or multi-dimensional rectilinear matrices,
dimensioned on a row, column, and plane basis. For example, the
following figure represents a 3-row, 3-column, 2-plane array.

3 ROWS

---------------.~ <;},
<;>-'"

<Iv
'l-

3 COLUMNS

10-1058

You specify the size of an array by an array declarator written as a
subscripted array name. In an array declarator, however, each
subscript quantity is a dimension of the array and must be either an
integer variable or an integer constant.

For example, TABLE(I,J,K)
declarators.

and MATRIX (10,7,3,4) are valid array

The total number of elements that comprise an array is the product of
the dimension quantities given in its array declarator. For example,
the array lAB dimensioned as lAB (2,3,4) has 24 elements (2 X 3 X 4
24) •

You use dimension arrays only in the specification statements
DIMENSION, COMMON, and type declaration (Chapter 6). Subscripted
array names appearing in any of the foregoing statements are array
declarators; subscripted array names appearing in any other
statements are always array element identifiers. In array declarators
the position of a given subscript quantity determines the particular
dimension of the array (e.g., row, column, or plane) that it

The first three subscript positions specify the number of
and tha t the named

3-9

DATA. TYPES, CONs'rA.NTS, SYMBOLIC NA.MES, VARIABLES, AND ARRAYS

The Dimension Declarator Specifies the Array(s)

TAB (2)

TAB (2,2)

NOT'E .

FORTRAN-IO permits any number of
dimensions in an array declarator.

3.5.3 Order of Stored Array Elements

The elements of an array are arranged in storage in ascending order.
The value of the first subscript quantity varies between its ffilnlmum
and maximum values most rapidly. The value of the last given
subscript quantity increases to its maximum value least rapidly. For
example, the elements of the array dimensioned as 1(2,3) are stored in
the following order:

1(1,1) 1(2,1) 1(1,2) (2,2) (1,3) (2,3)

In the following list, the elements of the three-dimensional array
(B(3,3,3» are stored row by rOw from left to right and from top to
bottom.

B (1,1,1) B (2,1,1) B (3,1,1) I

1 __ + B (1,2,1) B (2,2,1) . B (3,2,1) -,

c:: i36~3~) - - -B (2-:3Y) - - - Ii (3,3,1) -:. ~

,::.; i36:1-;2)"-- -B(£i;i) - - -Ii (3.ii)--=-~

c::; B6~2-:2)" - - -B (£2,2) - - - 13 (3,2,ii ~ ;
1--------------------
--+ B (1,3,2) B (2,3,2) B (3,3,2) -,

L';B6~1-:3)-- B(£i:3)-- - 13(3,1,3)"-:;
I---~----------------
--+ B (1,2,3) B (2,2,3) B (3,2,3) -,

C'; B (1,3-:3) - - -B (£3:3) - - - 13 (3,3,3) - -

Thus B(3,1,1) is stored before B(1,2,1), and so forth.

3-10

CHAPTER 4

EXPRESSIONS

4.1 ARITHMETIC EXPRESSIONS

Arithmetic expressions may be either simple or compound.
arithmetic expressions consist of an operand that may be:

1. a constant

2. a variable

3. an array element

Simple

4. a function reference (see Chapter 14 for description), or

5. an arithmetic
parentheses.

or logical expression written within

Operands may be of integer, real, double precision, complex,. I III •
III • II type.

The following are valid examples of simple arithmetic expressions:

105
lAB
TABLE(3,4,5)
SIN (X)
(A+B)

(integer constant)
(integer variable)
(array element)
(function reference)
(a parenthetical expression)

A compound arithmetic expression consists of
combined by arithmetic operators. Table
operations permitted in FORTRAN-IO and the
each.

two or more operands
4-1 lists the arithmetic

operator recognized for

Table 4-1
Ari thmetic Operations and Operators

Operation Operator Example

1- Exponentiation ** A**B or II1II
2. Multiplication * A*B
3. Division / A/B
4. Addition + A+B
5. Subtraction A-B

4-1

EXPRESSIONS

4.1.1 Rules for Writing Arithmetic Expressions

Observe the following rules in structuring compound
expressions:

arithmetic

1. The operands comprising a compound arithmetic expression may
be of different types. Table 4-2 illustrates all permitted
combinations of data types and the type assigned to the
result of each.

2. An expression cannot contain
operators. For example,
permitted.

NOTE

two adjacent and unseparated
the expression A*/B is not

3. All operators must be included; no operation is implied.
For example, the expression A(B) does not specify
multiplication although this is implied in standard algebraic
notation. The expression A* (B) is required to obtain a
multiplication of the elements.

4. When you use exponentiation, the base quantity and its
exponent may be of different types. For example, the
expression ABC** 13 involves a real base and an integer
exponent. The permitted base/exponent type combinations and
the type of the result of each combination are given in Table
4-3.

4-2

4-3

EXPRESSIONS

Table 4-3
Permitted Base/Exponent Type Combinations

Base Operand Exponent Operand

Integer Real Double Complex
Precision

Integer Integer Real Double Complex
Precision

Real Real Real Double Complex
Precision

Double Double Double Double
Precision Precision Precision Precision
Complex Complex Complex (Undefined) Complex

4.2 LOGICAL EXPRESSIONS

Logical expressions may be either simple or compound. Simple logical
expressions consist of a logical operand, which may be a logical type:

1. constant

2. variable

3. array element

4. function reference (see Chapter 15), or

5. another expression written within parentheses.

COlnpound logical expressions consist of two or more operands combined
by logical operators.

Table 4-4 gives the logical operators permitted by FORTRAN-IO and a
description of the operation each provides.

4-4

Operator

.AND.

.OR.

.NOT.

EXPRESSIONS

Table 4-4
Logical Operators

Description

AND operator. Both of the logical operands combined by
this operator must be true to produce a true result.

Inclusive OR operator.
operands combined by
true.

If either or both of the logical
.OR. are true, the result will be

Complementation operator. This operator is used as a
prefix that specifies complementation (inversion) of the
item (operand or expression) that it modifies. The
original item, if true by itself~ becomes false, and vice
versa~

Write logical expressions in the general form P .oP. Q, where P and
Q are logical operand and .oP. is any logical operator but ~.NOT.".
The .NOT. operator complements the value of a logical operand; you
must write it immediately before the operand that it modifies, e.g.,
.NOT.P. Table 4-5 is a truth table illustrating all possible logical
combinations of two logical operands (P and -Q) and the resultant of
each combination.

When an operand of a logical
complex, only the high-order

_ specified logical operation.

expression is double-precision or
word of the operand is used in the

The assignment of a.TRUE. or a .FALSE. value to a given operand is
based only on the sign of the numeric representation of the operand.

4-5

EXPRESSIONS

Table 4-5
Logical Operations, Truth Table

When P is And Q is: 'Then the Expression:

True .NOT.P

False .NOT.P

True True P .AND. Q

True False P .AND. Q

False True P .AND. Q

False False P .AND. Q

True True P .OR. Q

Tr.ue False P .OR. Q

False True P .OR. Q

False False P .OR. Q

Examples

Assume the following variables:

Variable

REAL, RUN
I,J,K
DP,D
L, A, B
CPX,C

Type

Real
Integer
Double Precision
Logical
Complex

Is:

False

True

True

False

False

False

True

True

True

False

Examples of valid logical expressions consisting of the foregoing
variables are:

L.AND.B
W t i i6.
L.AND.A.OR •• NOT. (I-K)

4-6

EXPRESSIONS

Logical functions are performed on the full 36-bit binary processor
representation of the operands involved. The result of a logical
operation is found by performing the specified function,
simultaneously, for each of the corresponding bits in each operand.
For example, consider the expression A=C.OR.D, where C="456 and
D=~201. The operation performed by the processor and the result is:

Word
Bi ts 0 I ------I .. ~ 24
Ope rand COO • 0
Operand D 0 0 .. 0
Resul tAO 0 ... 0

25 26 27
001
000
001

28
o
I
1

29 30 31
o I 0
o 0 0
o 1 0

32 33
1 1
o 0
1 I

34 35
1 0
o 1
1 1

Table 4-5 also illustrates all possible logical combinations of two
one-bit binary operands (P and Q) and gives the result of each
combination. Just read I for true and 0 for false.

4.2.1 Relational Expressions

. -Relational expressions consist of two expressions combined by a
relational operator. The relational operator permits the programmer
to test, quantitatively, the relationship between two arithmetic
expressions.

The result of a relational expression is always a logically true or
false value.

In FORTRAN-lO, you may write relational operators either as a 2-letter
- mnemonic enclosed -- within periods, e.g., .GT., or II II J i I
• : I. Table 4-6 li~ts both the mnemonic. ';Ind
symbollc forms of the FORTRAN-lO relatlonal operators and speclfles
the type of quantitative test performed by each operator.

Table 4-6
Relational Operators and Operations

Relation Tested

Mnemonic

.GT. Greater than

.GE. Greater than or equal to

.LT. Less than

.LE. Less than or equal to

.EQ. Equal to

.NE. Not equal to

4-7

EXPRESSIONS

write relational expressions in the general form A(l) .OP.A(2), where
A represents an arithmetic operand and .OP. is a relational operator.

You may mix arithmetic operands of type integer, real, and double
precision in relational expressions.

You may compare complex operands using only the operators .EQ. (==) and
.NE. (#). Complex quantities are equal if the corresponding parts of
both words are equal.

Examples

Assume the following variables:

Variables

REAL, RON
I,J,K
DP,D
L,A,B
CPX,C

Type

Real
Integer
Double Precision
Logical
Complex

Examples of valid relational expressions consisting of the foregoing
variables are:

(REAL) .GT.10
I == 5
C.EQ.CPX

Examples of invalid relational expressions consisting of the foregoing
variables are:

(REAL) .GT 10 (closing period missing from operator)

Examples of valid expressions that use both logical and relational
operators to combine the foregoing variables are:

(1. GT. 10
((I*RON)
(1. AND. K)
CICPX.OR.

• AND. ~ill!,tll
I/J) .OR.K
(REAL) .OR.(RON))

4-8

EXPRESSIONS

4.3 EVALUATION OF EXPRESSIONS

The following determine the order of computation of a FORTRAN-lO
expression:

1. the use of parentheses

2. an established hierarchy for the execution of arithmetic,
relational, and logical operations and

3. the location of operators within an expression.

4.3.1 Parenthetical Subexpressions

In an expression, all subexpressions written within parentheses are
evaluated first. When parenthetical subexpressions are nested (one
contained within another) the most deeply nested subexpression is
evaluated first, the next most deeply nested subexpression is
evaluated second, and so on, until the value of the final
parenthetical expression is computed. When more than one operator is
contained by a parenthetical subexpression, the required computations
are performed according to the hierarchy assigned operators by
FORTRAN-lO (Section 4.3.2).

Example:

The separate computations performed in evaluating the expression

A+B/((A/B)+C)-C are:

1. Rl=A/B

2. 2=Rl+C

3. R3=B/R2

4. R4=R3-C

5. RS=A+R4

WHERE: Rl THROUGH RS REPRESENT THE INTERIM AND FINAL RESULTS OF THE
COMPUTATIONS PERFORMED.

4.3.2 Hierarchy of Operators

The following hierarchy (order of execution) is assigned to the
classes of FORTRAN-lO operators:

first,
second,
third,

arithmetic operators,
relational operators, and

logical operators.

4-9

EXPRESSIONS

Table 4-7 specifies the precedence assigned to the
operators of the foregoing classes.

individual

with the exception of integer division and exponentiation, all
operations on expressions or sUbexpressions involving operators of
equal precedence are computed in any order that is algebraically
correct.

A subexpression of a given expression may be computed in any order.
For example, in the expression (F(X) + A*B), the function reference
may be computed either before or after A*B.

Class

EXPONENTIAL

ARITHMETIC

RELATIONAL

LOGICAL

Table 4-7
Hierarchy of FORTRAN-10 Operators

Level

First

Second
Third
Fourth

Fifth

Sixth
Seventh
E

Symbol or Mnemonic

**

-(unary minus) and + (unary plus)
'* ,I
+,-

. GT. , . GE. , . LT. , • LE. , . EQ. , . NE .

.NOT.

.AND.

Operations specifying integer division are evaluated from left to
right. For example, the expression I/J*K is evaluated as if it had
been written as (I/J)*K. But this left-to-right evaluation process
can be overridden by parentheses. I/J*K(evaluated as(I/J) *K) does
not equal I/(J*K) ,which is evaluated as written here.

When a series of ~xponentiation operations occurs in an expression, it
is evaluated in order from right to left. For example, the expression
A**2**B is evaluated in the following order:

first Rl = 2**B (intermediate result)
second R2 = A**Rl (final result).

Similarly, here too, parentheses alter
expression • (A**2) **B is evaluated in these

first Rl = A**2 (intermediate result)
second R2 = Rl**2 (final result)

4-10

the evaluation
two steps:

of the

EXPRESSIONS

4-11

CHAPTER 5

COMPILATION CONTROL STATEMENTS

5.1 INTRODUCTION

You use compilation control statements to identify FORTRAN-IO programs
and to specify their termination. Statements of this type do not
affect either the operations performed by the object program or the
manner in which the object program is executed. The three ilation

described in this chapter are:
and END statement.

5-1

COMPILATION CONTROL STA'rEMENTS

5.4 END STATEMENT

Use this statement to signal FORTRAN-IO that the physical end of a
source program or subprogram has been reached. END is a nonexecutable
statement. The general form of an END statement is:

END

The following rules govern the use of the END statement:

1. This statement must be the last physical statement of a
source program or subprogram.

3. You may label an END statement.

5-2

CHAPTER 6

SPECIFICATION STATEMENTS

6.1 INTRODUCTION

Use specification statements to specify the type characteristics,
storage allocations, and data arrangement. There are seven types of
specification statements:

1. DIMENSION

2. Statements that explicitly specify type, such as REAL or
INTEGER

4. COMMON

5. EQUIVALENCE

6. EXTERNAL

Specification statements are nonexecutable and conform to the ordering
guidelines described in Section 2.4.

6.2 DIMENSION STATEMENT

DIMENSION statements provide FORTRAN-IO with information needed to
identify and allocate the space required for source program arrays.
You may specify any number of subscripted array names as array
declarators in a DIMENSION statement. The general form of a DIMENSION
statement is

DIMENSION Sl, S2, .•• ,Sn

where Si is an array declarator. Array declarators are names of the
following form:

name(max, •.• ,max)

where name is the ic name of the array, and each min:max value
represents the 'J.~~.;Jlillupper bounds of an array dimension.

6-1

Examples

DIMENSION EDGE
DIMENSION TABL

SPECIFICATION STATEMENTS

(5,10,4), TABLE (567)
,,_ill

(where lAB, J, K, and M are of type integer).

6-2

SPECIFICATION STATEMENTS

6.3 TYPE SPECIFICATION STATEMENTS

Type specification statements declare explicitly the data type of
variable, array, or function symbolic names. You may give an array
name in a type statement either alone (unsubscripted) to declare the
type of all its elements or in a subscripted form to specify both its
type and dimensions.

write type specification statements in the following form:

type list

where type may be anyone of the following declarators:

1. INTEGER

2. REAL

3. DOUBLE PRECISION

4. COMPLEX

5. LOGICAL

NOTE

In order to be compatible with the type
statements used by other manufacturers,
the data type size modifier, *n, is
accepted by FORTRAN-10. You may append
this size modifier to the declarators,
causing some to elicit messages warning
users of the form of the variable
specified by FORTRAN-10:

6-3

SPECIFICATION STATEMENTS

Declarator Form of Variable Specified

INTEGER*2
INTEGER*4
LOGICAL*l
LOGICAL*4
REAL*4
REAL*8
COMPLEX*8
COMPLEX*16

Full word integer. with warning message
Full word integer
Full word logical with warning message
Full wrd log ical
Full word real
Double-precision real
Complex
Complex with warning message

In addition, you may append the data
type size modifier to individual
variables, arrays, or function names.
Its effect is to override, for the
particular element, the size modifier
(explicit or implicit) of the primary
type. For exampl~,

REAL*4 A, B*8, C*8(lO), D

A and D are single-precision (one full
word) real, and Band Care
double-precision (two full words) real.

The list consists of any number of variable, array, or function names
that are to be declared the specified type. The names listed must be
separated by commas and can appear in only one type statement within a
program unit.

Examples

INTEGER A, B, TABLAjEI'IiFU.N.CiII.
REAL R, M, ARRAY (I I !!'I, 5)

NOTE

Variables, arrays, and functions of a
source program, which are not typed
either implicitly or explicitly by a
specification statement, are typed by
FORTRAN-IO according to the following
conventions:

1. Variable names, array names, and
function names that begin with the
letters I, J, K, L, M, or N are type
integer.

2. Variable names, array names, and
function names that begin with any
letter other than I, J,K, L, M, or
N are type real.

If a name that is the same as a predefined FORTRAN-IO function name
appears in a conflicting type statement, it is assumed
refers to a user-defined routine of the given type. If
generic predefined FORTRAN-IO function name in an
statement, it loses its generic properties.

6-4

that the name
you place a
explici t type

SPECIFICATION STATEMENTS

6.5 COMMON STATEMENT

The COMMON statement enables you to establish storaJe that may be
shared by two or more programs and/or subprograms and to name the
variables and arrays that are to occupy the common storage. The use
of common storage conserves storage and provides a means to implicitly
transfer arguments between a calling program and a subprogram. write
COMMON statements in the following form:

COMMON/Al/Vl,V2, .•. ,Vn •.. /An/Vl,V2, ••• ,Vn

where the enclosed letters /AI/, ... , /An/ represent optional name
constructs (referred to as common block names when used) •

6-5

3?ECIFICATION S~kr8MENTS

The list (e.g., VI,V2 •.. ,Vn) appearing after each name construct lists
the names of the variables and arrays that are to occupy the common
area identified by the construct. The items specified for a common
area are ordered within the storage area as they are listed in the
COMMON statement.

Either label COMMON storage areas or leave them blank (unlabeled). If
the common area is to be labeled, give a symbolic name within slashes
immediately before the list of items that is to occupy the names area.
For example, the statement

COMMON/AREAI/A,B,C/AREA2/TAB(13,3,3)

establishes two labeled common areas (i.e., AREAl and AREA2). Common
block names bear no relation to internal variables or arrays that have
the same name.

If a common area is to be declared as unlabeled, give either nothing
or two sequential slashes (//) immediately before the list of items
that is to occupy blank common. For example, the statement

COMMON/AREAI/A,B,C//TAB(3,3,3)

establishes one labeled (AREAl) and one unlabeled common area.
Unlabeled common area is also called "blank common".

A given labeled common name may appear more than once in the same
COMMON statement and in more than one COMMON statement within the same
program or subprogram.

Each labeled common area is treated as a separate, specific storage
area. The contents of a common area, i.e., variables and arrays, may
be assigned initial values by DATA statements in BLOCK DATA
subprograms. Declarations of a given common area in different
subprograms must contain the same number, size, and order of variables
and arrays as the reference area.

Items to be placed in a blank common area may also be given in COMMON
statements throughout the source program.

During compilation of a source program, FORTRAN-IO will string
together all items listed for each labeled common area and for blank
common areas in the order in which they appear in the source program
statements. For example, the series of source program statements:

COMMON/STI/A,B,C/ST2/TAB(2,2)//C,O,E

COMMON/STI/TST(3,4)//M,N

COMMON/ST2/X,Y,Z//O,P,Q

has the same effect as the single statement

COMMON/STI/A,B,C,TST(3,4)/ST2/TAB(2,2) ,X,Y,Z//C,O,E,M,N,O,P,Q

All items specified for blank common are placed into one area. Items
within blank common are ordered as they are given throughout the
source program. Common block names must be unique with respect to all
subroutine, function, and entry point names.

The largest definition of a given common area must be loaded first.

6-6

SPECIFICATION STATEMENTS

6.5.1 Dimensioning Arrays in COMMON Statements

Subscripted array names may be given in COMMON statements
dimension declarators. However, variables cannot be used as
quantities in a declarator appearing in a COMMON statement;
dimensioning is not permitted in COMMON.

as array
subscript
variable

Each array name given in a COMMON statement must be dimensioned either
by the COMMON statement or by another dimensioning statement within
the program or subprogram that contains the COMMON statement but not
both.

Example

COMMON /A/B (100), C (10,10)
COMMON X(5,lS) ,Y(S)

6.6 EQUIVALENCE STATEMENT

The EQUIVALENCE statement enables you to control the allocation of
shared storage within a program or subprogram. This statement causes
specific storage locations to be shared by two or more variables of
either the same or different types. Write the EQUIVALENCE statement
in the following form:

EQUIVALENCE(Vl,V2, ••. ,Vn) , (Wl,W2, ••• ,Wn) , (Xl,X2, ••• ,Xn)

where each parenthetical list contains the names of variables and
array elements that are to share the same storage locations. For
example, the statements

EQUIVALENCE (A,B,C)
EQUIVALENCE (LOC,SHARE(l))

specify that the variables named A, B, and C are to share the same
storage location, and that the variable LOC and array element SHARE(l)
are to share the same location.

The relationship of equivalence is transitive; for example, the two
following statements have the same effect:

EQUIVALENCE (A,B), (B,C)
EQUIVALENCE (A,B,C)

When you use array elements in EQUIVALENCE statements, they must
either as many subscript quantities as dimensions of the array or
one subscript quantity. In either of the foregoing cases,
subscripts must be integer constants. Note that the single
treats the array as a one-dimensional array of the given type.

You may use the items given
EQUIVALENCE statement and
following rules are observed:

in
in

an EQUIVALENCE list
a COMMON statement

in both
providing

have
only

the
case

the
the

1. You cannot set two quantities declared in a COMMON statement
to be equivalent to one another.

6-7

SPECIFICATION STATEMENTS

2. Quantities placed in a common area by means of an EQUIVALENCE
statement are permitted to extend the end of the common area
forwards. For example, the statements

COMMON/R/X,y,Z
DIMENSION A(4)
EQUIVALENCE (A,Y)

cause the common block R to extend from Z to A(4) arranged as
follows:

x
Y A (1)
z A (2)

A (3)
A (4)

(shared location)
(shared location)

3. You cannot use EQUIVALENCE statements that cause the start of
a common block to be extended backwards. For example, the
invalid sequence

cm1MON/R/X, Y , Z
DIMENSION A(4)
EQUIVALENCE(X,A{3))

would require A(l) and A(2) to extend the starting location
of block R in a backwards direction as illustrated by the
following diagram:

t A (1)
A (2)

X A (3)
Y A (4)
z

6.7 EXTERNAL STATEMENT

Any subprogram name to be used as an argument
must appear in an EXTERNAL statement in the
EXTERNAL statement declares names to be
distinguish them from other variable or
EXTERNAL statement in the following form:

EXTERNAL namel,name2, ... ,namen

to another subprogram
calling subprogram. The

subprogram names to
array names. Write the

where each name listed is declared to be a sUbprogram name. If
desired, these subprogram names may be FORTRAN-IO defined functions.

You may also use FORTRAN-IO defined function names for your
subprograms by prefixing the names by an asterisk (*) or an ampersand
(&) within an EXTERNAL statement. For example,

EXTERNAL *SIN, &COS

6-8

SPECIFICATION STATEMENTS

declares SIN and COS to be user subprograms. (If a prefixed name is
not a FORTRAN-lO defined function, then the prefix is ignored.)

Note that specifying a predefined FORTRAN-lO function in an EXTERNAL
statement without a prefix, i.e., EXTERNAL SIN, has no effect upon the
usage of the function name outside of actual argument lists. If the
name has generic properties, they are retained outside of the actual
argument list. (The name has no generic properties within an argument
list.)

The names declared in a program EXTERNAL statement are reserved
throughout the compilation of the program and cannot be used in any
other declarator statemetit, with the exception of a type statement.

6-9

CHAPTER 7

DATA STATEMENT

7.1 INTRODUCTION

DATA statements are used to supply the initial values of variables,
arrays, array elements, and labeled common. (1) Write DATA statements
as follows:

DATA Listl/Datal/,List2/Data2/, ..• ,Listn/Datan/

where the List portion of each List/Data/ pair identifies a set of
items to be initialized and the /Data/ portion contains the list of
values to be assigned the items in the List. For example, the
statement

DATA IA/5/,IB/IO/,IC/15/

initializes variable IA to the value 5, variable IB to the value 10,
and the variable IC to the value 15. The number of storage locations
you specify in the list of variables must be less than or equal to the
number of storage locations you specify in its associated list of
values. If the list of variables is larger (specifies more storage
locations) than its associated value list, a warning message is
output. When the value list specifies more storage locations than the
variable list, the excess values are ignored.

The List portion of each List/Data/ set may contain the
or mote variables elements, or
variables.

The /Data/ portion
numeric, logical,
strings.

may contain one or more
constants and/or alphanumeric

1. Refer to Paragraph 6.5 for a description of labeled common.

7-1

DATA STATEMENT

You may specify literal data as either a Hollerith specification,
e.g., 5HABCDE, or a string enclosed in single quotes, e.g., 'ABCDE'.
Each ASCII datum is stored left-justified and is padded with blanks up
to the right boundary of the variable being initialized.

When you assign the same value to more than one item in List, a repeat
specification may be used. Write the repeat specification as N*D
where N is an integer that specifies how many times the value of item
D is to be used. For example, a /Data/ specification of /3*20/
specifies that the value 20 is to be assigned to the first three items
named in the preceding list. The statement

DATA M,N,L/3*20/

assigns the value 20 to the variables M, N, and L.

Sample Statement
DATA PRINT,I,O/'TEST ' ,30,1177/, (TAB(J) ,J=1,30)/30*5/

DATA ((A(I,J) ,1=1,5) ,J=1,6)/30*1.0/

DATA ((A(I,J) ,1=5,10) ,J=6,15)/EiO*2.0/

Use
The first
elements of
TAB
initialized
5.0.

30
array

are
to

No conversion
required.

No conversion
required.

When a literal string is specified that is longer than one variable
can hoLd, the string will be stored left-justified across as many
variables as are needed to hold it~ If necessary, the last variable
used will be padded with blanks up to its right boundary.

Example

Assuming that X, Y, and Z are single-precision, the statement

DATA X,y,Z/'ABCDEFGHIJKL'/

will cause

X to be initialized to I ABCDE I

Y to be initialized to 'FGHIJ '
Z to be initialized to 'KL161616 1

When a literal string is to be stored in double-precision and/or
complex variables and the specified string is only one word long, the
second word of the variable is padded with blanks.

7-2

DATA STATEMENT

Example

Assuming that the variable C is complex, the statement

DATA C/'ABCDE' ,'FGHIJ'/

will cause the first word of C to be initialized to 'ABCDE' and its
second word to be initialized to '~~~~~'. The string 'FGHIJ' is
ignored.

7-3

CHAPTER 8

ASSIGNMENT STATEMENTS

8.1 INTRODUCTION

Use assignment statements to assign a specific value to one or more
program variables. There are three kinds of assignment statements:

1. Arithmetic assignment statements

2. Logical assignment statements

3. Statement Label assignment (ASSIGN) statements.

8.2 ARITHMETIC ASSIGNMENT STATEMENT

You use statements of this type to assign specific numeric
variables and/or array elements. Write arithmetic
statements in the form

v=e

values to
assignment

where v is the name of the variable or array element that is to
receive the specified value and e is a simple or compound arithmetic
expression.

In assignment statements, the equal symbol (=) does not imply equality
as it would in algebraic expressions; it implies replacement. For
example, the expression v=e is correctly interpreted as "the current
contents of the location identified as v are to be replaced by the
final value of expression e; the current contents of v are lost."

8-1

ASSIGNMENT STATEMENTS

8-2

ASSIGNMENT STATEMENTS

8-3

ASSIGNMENT STATEMENTS

8.3 LOGICAL ASSIGNMENT STATEMENTS

Use this type of assignment statement to assign values to variables
and array elements of type logical. Write the logical assignment
statement in the form

v=e

where v is one or more variables and/or array element names, and e is
a logical expression.

Examples

Assuming that the variables L, F, M, and G are of type logical, the
following statements are valid:

Sample Statement

L=.TRUE.

F=.NOT.G

M=A.GT.T

L= ((1. GT • H) • AND

The contents of L is replaced by logical
truth.

The contents of L is replaced by the
logical complement of the contents of G.

If A is greater than T, the contents of
M is replaced by logical truth; if A is
less than or equal to T, the contents of
M is replaced by logical false. This
can also be read: If A is greatec than
T, then ~ is true, otherwise, M is
false.

The contents of L are replaced by either
the true or false resultant of the
expression.

8.4 ASSIGN (STATEMENT LABEL) ASSIGNMENT STATEMENT

Use the ASSIGN statement to assign a statement label constant, i.e., a
1- to 5-digit statement number, to a variable name. Write the ASSIGN
statement in the form

ASSIGN n TO I

where n represents the statement number and I is a variable name. For
example, the statement

ASSIGN 2000 TO LABEL

specifies that the variable LABEL represents the statement number
2000.

With the exception of complex and double-precision, you may use any
typ~ of variable in an ASSIGN statement.

Once a variable has been assigned a statement number, FORTRAN-10 will
consider it a label variable. If a label variable is used in an
arithmetic statement, the resuft will be unpredictable.

8-4

ASSIGNMENT STATEMENTS

Use the ASSIGN statement in conjunction with assigned GO TO control
statements (Chapter 9). The ASSIGN verb sets up statement label
variables that are then referenced in subsequent GO TO control
statements. The following sequence illustrates the use of the ASSIGN
statement:

555 TAX={A+B+C) *.05

ASSIGN 555 TO LABEL

GO TO LABEL

8-5

CHAPTER 9

CONTROL STATEMENTS

9.1 INTRODUCTION

FORTRAN-IO object programs normally execute statement-by-statement in
the order in which they were presented to the compiler. The following
source program control statements, however, enable you ~o alter the
normal sequence of statement execution:

l. GO TO

2. IF

3. DO

4. CONTINUE

5. STOP

6. PAUSE

9.2 GO TO CONTROL STATEMENTS

There are three kinds of GO TO statements:

1. Unconditional

2. Computed

3. Assigned

A GO TO control statement causes the statement that it identifies to
be executed next, regardless of its position within the program. The
following paragraphs describe each type of GO TO statement.

9.2.1 Unconditional GO TO Statements

Write GO TO statements of this type in the form

GO TO n

where n is the label, i.e., statement number, of an executable
statement, e.g., GO TO 555. When executed, an unconditional GO TO
statement transfers control of the program to the statement that it
specifies.

9-1

CONTROL STATEMENTS

You may position an unconditional GO TO statement anywhere in the
source program except as the terminating statement of a DO loop.

9.2.2 Computed GO TO Statements

Write GO TO statements of this type in the form

GO TO {Nl,N2, •.• ,Nk)E

where the parenthesized list is a list of statement numbers and E is
an arithmetic expression. You may include any number of statement
numbers in the list of this type of GO TO statement; however, each
number you give must be used as a label within the ~rogram or
subprogram containing the GO TO statement.

NOTE

A comma may optionally
parenthesized list.

follow the

The value of the expression E must be reducible to an integer value
that is greater than 0 and less than or equal to the number of
statement numbers given in the statement list. If the value of the
expression E does not compute within the foregoing range, the next
statement is executed.

When a computed GO TO statement is executed, the
expression, i.e., E, is computed first. The value of
position within the given list of statement numbers of
identifies the statement to be executed next. For
statement sequence

GO TO (20, 10, 5)K
CALL XRANGE{K)

value of its
E specifies the
the number that
example, in the

the variable K acts as a switch, causing a transfer to statement 20 if
K=l, to statement 10 if K=2, or to statement 5 if K=3. The subprogram
XRANGE is called if K is less than 1 or greater than 3.

9.2.3 Assigned GO TO Statements

Write GO TO statements of this type in either of the following forms:

GO TO K
GO TO K,{Ll,L2, ••• Ln)

where K is a variable name and the parenthesized list of the second
form contains a list of statement labels, i.e., statement numbers.
The statement numbers you give must be within the program or
subprogram containing the GO TO statement.

Assigned
preceded
variable
variable
which it

GO TO statements of either foregoing form must be logically
by an ASSIGN statement that assigns a statement label to the

name represented by K. The value of the assigned label
must be in the same program unit as the GO TO statement in

is used. In statements written in the form

GO TO K,{Ll,L2, ••• Ln)

9-2

CONTROL STATEMENTS

if K is not assigned one of the statement numbers given in the
statement list, the next sequential statement is executed.

Examples

GO TO STATl
GO TO STAT1,(177,207,777)

9.3 IF STATEMENTS

There are three kinds of IF statements:
logical two-branch.

arithmetic, logical, and

9.3.1 Arithmetic IF Statements

Write IF statements of this type in the form

IF(E)Ll,L2,L3

where (E) is an expression enclosed within parentheses and Ll, L2, L3
are the labels, i.e., statement numbers, of three executable
statements.

This type of IF statement transfers control of the program to one of
the given statements according to the computed value of the given
expressions. If the value of the expression is:

l. Less than 0, control is transferred to the statement
identified by Ll;

2. Equal to 0, control is transferred to the statement
identified by L2;

3. Greater than 0, control is transferred to the statement
identified by L3.

You must give all three statement numbers in arithmetic IF statements;
the expression given may not compute to a complex value.

Examples

Sample Statement

IF(ETA) 4, 7, 12

IF(KAPPA-L(10))20, 14, 14

Transfers control to statement 4 if
ETA is negative, to statement 7 if
ETA is 0, and to statement 12 if
ETA is greater than O.

Transfers control to statement 20
if KAPPA is less than the 10th
element of array L and to statement
14 if KAPPA is greater than or
equal to the 10th element of array
L.

9-3

CONTROL STATEMENTS

9.3.2 Logical IF Statements

Write IF statements of this type in the form

IF(E)S

where E is any expression enclosed in parentheses and S is a complete
executable statement.

Logical IF statements transfer control of the program either to the
next sequential executable statement or the statement given in the IF
statement, i.e., S, according to the computed logical value of the
given expression. If the value of the given logical expression is
true (negative), control is given to the executable statement within
the IF statement. If the value of the expression is false (positive
or zero), control is transferred to the next sequential executable
program statement.

The statement you give in a logical IF statement may be any FORTRAN~lO
executable statement except a DO statement or another logical IF
statement.

Examples

Sample Statement

IF (T.OR.S) X=Y+l

IF (Z.GT.X(K» CALL SWITCH(S,Y)

IF (K.EQ.INDEX) GO TO 15

9.3.3 Logical Two-Branch IF Statements

Performs an arithmetic
replacement operation if the
result of IF is true.

Performs a subroutine call if
the result of IF is true.

Performs
transfer
is true.

an unconditional
if the result of IF

Write IF statements of this type in the form

IF (E) Nl, N2

where E is any parenthetical expression, and Nl and N2 are statement
labels defined within the program unit.

Logical two-branch IF statements transfer control of the program to
either statement Nl or N2, depending on the computed value of the
given expression. If the value of the given logical expression is
true (negative), control is transferred to statement Nl. If the value
of the expression is false (positive or zero), control is transferred
to statement N2.

Note that you must number the statement immediately following the
logical two-branch IF so that control can later be transferred to the
portion of code that was skipped.

9-4

CONTROL STATEMENTS

Examples

Sample Statement

IF (LOG1) 10,20 Transfers control to statement 10
if LOGl is negative; otherwise
transfers control to statement 20.

IF (A.LT.B.AND.A.LT.C) 31,32 Transfers control to statement 31
if A is less than both Band C;
transfers control to statement 32
if A is greater than or equal to
either B or C.

9.4 DO STATEMENT

DO statements simplify the coding of iterative procedures; write them
in the following form:

where

Indexing Parameters

DO N I =

~f1 TERMINAL
STATEMENT
LABEL

INDEX
VARIABLE

~

Ml,M2,M3

\~
PARAMETER

TERMINAL
PARAMETER

INITIAL
PARAMETER

1. Terminal Statement Label N is the statement number of the
last statement of the DO statement range. The range of a DO
statement is defined as the series of statements that follows
the DO statements up to and including its specified terminal
statement.

2. Index Variable I is an unsubscripted variable whose value is
defined at the start of the DO statement operations. The
index variable is available for use throughout each execution
of the range of the DO statement, but its value should not be
altered within this range. It is also available for use in
the program when:

a. control is transferred outside the range of the DO loop
by a GO TO, arithmetic IF or RETURN statement located
within the DO range,

b. a CALL is executed from within the DO statement range
that uses the index variable as an argument, and

c. if an input-output statement with either or both the
options END= or ERR= (Chapter 10) appears within the DO
statement range.

9-5

3.

CONTROL STATEMENTS

Initial Parameter Ml assigns the
initial value. This parameter
element, or expression.

index variable, I, its
may be any variable, array

4. Terminal Parameter M2 provides the value that determines how
many repetitions of the DO statement range are performed.

5. Increment Parameter M3 specifies the value to be added
initial parameter (Ml) on completion of each cycle of
loop. If M3 and its preceding comma are omitted,
assumed to be equal to 1.

to the
the DO
M3 is

An indexing parameter may be any ; ii' I expression resulting in
either a positive or negative value. The values of the indexing
parameters are calculated only once, at the start of each DO-loop
operation. The number of times that a DO loop will execute is
specified by the formula:

MAX «M2-Ml)/M3+l,1)

Since the count is computed at the start of a DO loop operation,
changing the value of the loop index variable within the loop cannot
affect the number of times that the loop is executed. At the start of
a DO loop operation, the index value is set to the value of the
initial parameter (Ml), and a count variable (generated by the
compiler) is set to the negative of the calculated count. At the end
of each DO loop cycle, the value of the increment parameter (M3) is
added to the index variable, and the count variable is incremented.
If the number of specified iterations have not been performed, another
cycle of the loop is initiated.

One execution of a DO loop range is always performed regardless of the
initial values of the index variable and the indexing parameters.

Exit from a DO loop operation on completion of the number of
iterations specified by the loop count is referred to as a normal
exit. In a normal exit, control passes to the first executable
statement after the DO loop range terminal statement, and the value of
the DO statement index variable is considered undefined.

Exit from a DO loop may also be accomplished by a transfer of control
by . a statement within the DO loop range to a statement outside the
range of the DO statement (Paragraph 9.4.3) •

9.4.1 Nested DO Statements

One or more DO statements may be contained, i.e., nested, within the
range of another DO statement. The following rules govern the nesting
of DO statements.

9-6

CONTROL STATEMENTS

1. The range of each nested DO statement must be entirely within
the range of the containing DO statement.

Example

Valid Invalid

DO I DO I

~~ The range of
DO 2 is outside
that of DO 1.

2. The ranges of nested DO statements cannot overlap.

Example

Valid Invalid

DO I DO I

D02 D02

c=
~ D03 The ranges of

c= loop DO 2 and
DO 3 overlap.

3. More than one DO loop within a nest of DO loops may end on
the same statement. When this occurs, the terminal statement
is considered to belong to the innermost DO statement that
ends on that statement. The statement label 4 of the shared
terminal statement cannot be used in any GO TO or arithmetic
IF statement that occurs anywhere other than within the range
of the DO statement to which it belongs.

Example

D04

D04

D04

I
D04

I I

9-7

All the DO statements
share the same terminal
statement, however, it
belongs to DO 4.

CONTROL STATEMENTS

9.4.2 Extended Range

The extended range of a DO statement is defined as the set of
statements that execute between the transfers out of the innermost DO
statement of a set of nested DOS and the transfer back into the range
of this innermost DO statement. The extended range of a nested DO
statement is as follows:

DOl

002

D03

----•• (out)

•

Extended Range

The following rules govern the use of a DO statement extended range:

1. The transfer out statement for an extended range operation
must be contained by the most deeply nested DO statement that
contains the location to which the return transfer is to be
made.

2. A transfer into the range of a DO statement is permitted only
if the transfer is made from the extended range of that DO
statement.

3. The extended range of a DO statement must not contain another
DO statement.

9-8

CONTROL STATEMENTS

4. The extended range of a DO statement cannot change the index
variable or indexing parameters of the DO statement.

5. You may use and return from a subprogram within an extended
range.

9.4.3 Permitted Transfer Operations

The following rules govern the transfer of program control from within
a DO statement range or the ranges of nested DO statements:

1. A transfer out of the range of any DO loop is permitted at
any time. When such a transfer executes, the value of the
controlling DO statement's index variable is defined as the
current value.

2. A transfer into the range of a DO statement is permitted if
it is made from the extended range of the DO statement.

3. You may use and return from a subprogram from within the
range of any:

a. DO loop,
b. nested DO loop, or
c. extended range loop (in which you leave the loop via a GO

TO, execute statements elsewhere, and return to the
or ig inal loop).

The following examples illustrate the transfer operations permitted
from within the ranges of nested DO statements:

Valid Transfers

DJ

D2 [. .
extended range

~-.. ----"

Invalid Transfer

DJ
..

9-9

CONTROL STATEMENTS

9.5 CONTINUE STATEMENT

You may place CONTINUE statements anywhere in the source program
without affecting the program s~quence of execution. CONTINUE
statements are commonly used as the last statement of a DO statement
range in order to avoid ending with a GO TO, PAUSE, STOP, RETURN,
arithmetic IF, another DO statement, or a logical IF statement
containing any of the foregoing statements. Write this statement as

12 CONTINUE

Example

In the following sequence, the labeled CONTINUE statement provides a
legal termination for the range of the DO loop.

DO 45 ITEM=l,lOOO
STOCK=NVNTRY (ITEM)
CALL UPDATE (STOCK,TALLY)
IF(ITEM.EQ.LAST) GO TO 77

45 ~ONTINUE

77 PRINT 20, HEADING,PAGENO

9.6 STOP STATEMENT

Execution of the STOP statement causes the execution of the object
program to be terminated and returns control to the DECsystem-10
Monitor. A descriptive message may optionally be included in the STOP
statement to be output to your I/O terminal immediately before program
execution is terminated. Write this statement like this:

STOP
N "II

or

9-10

CONTROL STATEMENTS

9.7 PAUSE STATEMENT

Execution of a PAUSE statement suspends the execution of the object
program and gives you the option to:

1. Continue execution of the program

2. Exit

The permitted forms of the PAUSE statements are:

1. PAUSE

9-11

CONTROL STATEMENTS

9-12

CONTROL STATEMENTS

9-13

CHAPTER 10

I/O STATEMENTS

10.1 DATA TRANSFER OPERATIONS

FORTRAN-lO I/O statements permit the transfer of data between
processor storage (core) and peripheral devices ~nd/or between storage
locations. Data in the form of logical records may be transferred by
use of an a) sequential, Iii I II. • ,

LA ~ The areas in core from which data is to be taken during
output (write) operations and into which data is stored during input
(read) operations are specified by:

1. A list in the I/O statement that initiated the transfer

3. Between a specified FORMAT statement and the external medium.

The type and arrangement of transferred
format specifications located in either a i formatted I/O),. ,."
• II

data maY be specified by
FORMAT statement or an array

Ii I " ..

The following sections describe the statements and data format
required to initiate I/O transfer operations.

10.2 TRANSFER MODES

The characteristics and requirements of the a) sequential, ii' 1111
• Wi! 1::11 •• are descr ibed in the following
paragraphs.

10.2.1 Sequential Mode

Records are transferred during a sequential mode of operation in the
same order they appear in the external data file. Each I/O statement
executed in a sequential mode transfers the record immediately
following the last record transferred from the accessed source file.

10-1

I/O STATEMENTS

10.3 I/O STATEMENTS, BASIC FORMATS AND COMPONENTS

The majority of the I/O statements described in this chapter are
written in one of the following basic forms or in some modification of
these forms:

where

Basic Statement Forms Use

Keyword

u

f

list

the statement name (READ or WRITE)

FORTRAN-IO logical unit number

FORMAT statement number in the current program
unit or the name of an array that contains the
desired format specifications

= I/O list

The following paragraphs provide details of the foregoing components.

10-2

I/O STATEMENTS

10.3.1 I/O Statement Keywords

The keywords (names) of the FORTRAN-IO I/O statements described in
this chapter are:

1. READ o. WRITE
7. PRINT
8. PUNCH

10.3.3 FORMAT Statement References

A FORMAT statement contains a set of format specifications that
defines the structure of a record and the form of the data fields
comprising the record. Format specifications may also be stored in an
array rather than in a FORMAT statement. (Refer to Chapter 13 for a
complete description of the FORMAT statement.)

The execution of an I/O statement that includes either a FORMAT
statement number or the name of an array that contains format
specifications causes the structure and data of the transferred record
to assume the form specified in the referenced statement or array.
Records transferred under the control of a format specification are
referred to as ~formatted" records. Conversely, records transferred
by I/O statements that do not reference a format specification are
referred to as "unformatted~ records. During unformatted transfers,
data is transferred on a one-to-one correspondence between internal
(processor) and external (device) locations, with no conversion or
formatting operations.

Unformatted files are binary files divided into records by FORTRAN-IO
embedded control words; the control words are invisible to you. You
cannot prepare files of this type without using FOROTS. Unformatted
files are for use only within the FORTRAN-IO environment.

10-3

I/O STATEMENTS

10-4

I/O STATEMENTS

10-5

I/O STATEMENTS

10.3.4 I/O List

An I/O list specifies the names of variables, arrays, and array
elements to which input data is to be assigned or from which data is
to be output. Implied DO constructs (Paragraph 10.3.4.1), which
specify sets of array elements, may also be included in I/O lists.
The number of items in a statement list determines the amount of data
to be transferred during each execution of the statement.

10.3.4.1 Implied DO Constructs - When an array name is given in an
I/O list, all elements of the array are transferred in the order
described in Chapter 3 (Paragraph 3.5.3). If only a specific set of
array elements is involved, they may be specified in the I/O list
either individually or in the form of an implied DO construct.

Write implied DOs within parentheses in a format similar
statements. They may contain one or more variable,
array element names, delimited by commas and followed
parameters that are defined as for DO statements.

to that of DO
array, and/or

by indexing

The general form of an implied DO is

where

(name(3L) ,I=Ml,M2,M3)

name

SL

I

Ml,M2,M3

an array name

= the subscript list of an array or an array
element identifier

the index control variable that may represent a
subscript appearing in a preceding subscript list

the indexing parameters
respectively, the initial,
increment values that control the
M3 is omitted (with its preceding
of 1 is assumed.

that specify,
terminal, and
range of 1. If
comma), a value

Examples

(A(S) ,S=1,5)

(A(2,S) ,S=1,10,2)

(I,I=1,5)

Specifies the first five elements of the
one-dimension array A, Le., A(l), A(2),
A(3), A(4), A(5).

Specifies the elements A(2,1), A(2,3),
A(2,5), A(2,7), A(2,9) of array A.

Specifies the integers 1,2,3,4, and 5.

As stated previously, implied DO constructs may also contain one or
more variable names.

Example

I, J, B, and C must be integer variables.

((A(B,C) ,B=l,lO) ,C=l,lO) ,I,J Specifies a 10 X 10 set of elements
of array A, the location identified
by I, and the location identified
by J.

10-6

I/O STATEMENTS

You may also nest implied DO constructs. Nested implied DOs may share
one or more sets of indexing parameters.

Example

((A (J ,K) ,J=l, 5) ,0 (K) ,K=l, 10) Specifies a 5 X 10 set of
of array A and the
elements of array D.

elements
first 10

W.hen you specify an array or set of array elements as either a storage
or transmitting area for I/O purposes, the array elements involved are
accessed in ascending order with the value of the first subscript
quantity varying most rapidly and the value of the last given
subscript increasing to its maximum value least rapidly. For example,
the elements of an array dimensioned as TAB(2,3) are accessed in the
order:

TAB (1,1)
TAB (2,1)
TAB(l,2)
TAB(2,2)
TAB(l,3)
TAB(2,3)

10.3.4.2 Formatted Record Handling - Data is processed under format
control so that each item in the I/O list is matched with a field
descriptor in the FORMAT statement. If the end of the FORMAT
specification is reached and more items remain in the I/O list, a new
line or record is established and the data processing is restarted,
either:

1. at the first item in the FORMAT specification or,

2. (if parenthesized sets of FORMAT specifications exist within
the FORMAT specification) with the last set within the FORMAT
specification.

On input, if the record is exhausted before the data transfers are
completed, the remainder of the transfer is- completed as if the record
were extended with blanks. See Section 13.2.2 for more details.

10-7

I/O STATEMENTS

10-8

I/O STATEMENTS

10-9

I/O STATEMENTS

10-10

I/O STATEMENTS

10.5 READ STATEMENTS

R~AD statements transfer data from peripheral devices into specified
processor storage locations. The permitted forms of this type of
input statment permit READ statments to be used .on both sequential and
random access transfer modes for formatted, unformatted,
list-directed, and NAMELIST-controlled data transfers.

10.5.1 Sequential Formatted READ Transfers

Descriptions of the READ _statements that may be used for the
sequential transfer of formatted data follow:

1. Form:

Use:

Example:

2. Form:

Use:

Example:

READ (u,f)list

Input data from logical unit u, formatted
according to the specification given in f, into
the processor· storage locations identified in
input list.

READ (lO,555)TABLE(lO,2D) ,ABLE,BAKER,CHARL

READ (u, f)

Input the data from logical unit u directly into
either a Hollerith (H) field descriptor or a
literal field descriptor given within the format
specifications of the referenced FORMAT statement.
If .the referenced FORMAT statement does not
contain either of the foregoing types of format
field descriptors, the input record is skipped.
If a required field descriptor is present, its
contents are replaced by the input data.

READ(15,101)
10-11

3. Form:

Use:

Example:

4. Form:

Use:

Example:

I/O STATEMENTS

READ f

Input the data from the READ default device (card
reader) directly into either a Hollerith (H) field
descriptor or a literal field descriptor given
within the format specifications of the referenced
FORMAT statement. If the referenced FORMAT
statement does not contain either of the foregoing
types of format field descriptors, the input
record is skipped. If a required field descriptor
is present, its contents are replaced by the input
data.

READ 66

READ f,list

Input the data from the READ default device (card
reader) into the processor storage locations
identified in the input list. The input data is
formatted according to the specifications given in
f.

READ 15, ARRAY (20,30)

10.5.2 Sequential Unformatted Binary READ Transfer

You may use only the following form of the READ statement for the
sequential transfer of unformatted input FORTRAN binary data:

Form:

Use:

Example:

READ (u)list

Input one logical record of data from logical unit
u into processor storage as the value of the
location identified in list. You may read only
binary files output by a FORTRAN-10 unformatted
WRITE statement by this type of READ statement.

NOTE

If you use the form READ (u) , one
unformatted input record will be skipped.

READ (10) BINFIL (10,20,30)

I/O STATEMENTS

10-13

I/O STATEMENTS

10.6 SUMMARY OF READ STATEMENTS

Table 10-2 summarizes the various forms of the READ statements.

Type of Transfer

Formatted

Table 10-2
Summary of READ Statements

Sequential

READ(U,f)list
READ(u,f)
READ f,list
READ f

10-l4

I/O STATEMENTS

10-15

I/O STATEMENTS

10.8 WRITE STATEMENTS

WRITE statements transfer data from specified processor storage
locations to peripheral devices. The various forms of the WRITE

nt nabl it to be used in sequential,
modes for formatted, unformat

data transfers.

10.8.1 Sequential Formatted WRITE Transfers

You may use the following forms of the WRITE statement for the
sequential transfer of formatted data:

1. Form:

Use:

Example:

2. Form:

Use:

Example:

3. Form:

Use:

Example:

WRITE(U,f)list

Output the values of the processor storage
locations identified in list into the file
associated with logical unit u. Convert and
arrange the output data according to the
specifications given in f.

WRITE(06,500)OUT(lO,20) ,A,B

WRITE f, list

Output the values of the processor storage
locations identified in list to the default device
(line printer). Convert and arrange the output
data according to the specifications given in f.

WRITE 10,SEND(5,10) ,A,B,C

WRITE f

Output the contents of any Hollerith (H) or
literal (I I). field descriptor(s) contained by f to
the default device (line printer). If neither of
the foregoing types of field specifications is
found in f, no output transfer is performed.

WRITE 10

10.8.2 Sequential Unformatted Binary WRITE Transfer

You may use the following form of the WRITE statements for the
sequential transfer of unformatted data:

Form:

Use:

Example:

livRITE (u) list

Output the values of the processor storage
locations identified in list into the file
associated with logical unit u. No conversion or
arrangement of output data is performed.

WRITE(l2) ITAB(20,20) ,SUMS(lO,5,2)

10-16

I/O STATEMENTS

10-17

I/O STATEMENTS

10.9 SUMMARY OF WRITE STATEMENTS

Table 10-3 summarizes the various forms of the WRITE statements.

Table 10-3
Summary of WRITE Statements

Type of Transfer

Formatted

Sequential

WRITE(u,f)list
WRITE f,list
WRITE f

10-18

I/O STATEMENTS

10.11 PRINT STATEMENT

The PRINT
locations
Use this
operation;

statement causes data from specified processor storage
to be output on the standard output device (line printer).
statement only for sequential formatted data transfer
write it in either of the thtee following forms:

1. Form:

Use;

Example:

2. Form:

Use:

Example:

3. Form:

Use:

PRINT f,list

Output the values of the processor storage
locations identified by the contents of list to
the line printer. The values output are to be
formatted and arranged according to the format
specifications given in f~

PRINT 55,TABLE(10,20) ,I,J,K

PRINT *,list

Output the values of the processor storage
locations identified by the contents of list to
the line printer. The conversion of each datum
from internal to external form is performed
according to the type of the list variable from
which the datum is taken.

PRINT *,C,X)Y,ITAB(lO,lO)

PRINT f

Output the contents of the FORMAT statement
Hollerith (H) or literal field descriptors to the
line printer. If neither an H nor a literal field

10-19

Example:

1/0 STATEMENTS

descriptor is present in the referenced FORMAT
statement, no operation is performed.

PRINT 55

The second form of the PRINT statement is particularly useful when
employed with ACCEPT f statements to cause desired data (comments or
headings) to be inserted into reports at program execution time.

Example

The sequence

55 FORMAT(' END OF ROUTINE')

PRINT 55

results in the printing of the phrase ~END OF ROUTINE n on the line
printer.

10.12 PUNCH STATEMENT

The PUNCH statement causes data from specified processor storage
locations to be output to the system standard paper tape punch. Use
this statement only for sequential formatted data transfers; write it
in one of the three following forms:

1. Form:

Use:

Example:

2. Form:

Use:

Example:

3. Form:

Use:

PUNCH f,list

Output the values of the processor storage
locations identified by the contents of list to
the standard paper tape punch unit. The values
output are to be formatted and arranged according
to the format specifications given in f.

PUNCH 10,TABLE(10,20) ,I,J,K

PUNCH *,list

Output the values of the processor storage
locations identified by the contents of list to
the paper tape punch unit. The conversion of each
datum from internal to external form is performed
according to the type of the list variable from
which the datum is taken.

PUNCH *,I,A,B,M,TAB(5,10)

PUNCH f

Output the contents of the referenced FORMAT
statement Hollerith (H) or literal field
descriptors to the standard paper tape punch unit.
If neither an H nor a literal field descriptor is
present in the referenced FORMAT statement, no
operation is performed.

The third form of the PUNCH
employed in conjunction
user-entered data (comments
at program execution time.

statement is particularly useful when
with an ACCEPT f statement to cause

or headings) to be added to an output file

10-20

I/O STATEMENTS

10-21

I/O STATEMENTS

10-22

I/O STATEMENTS

10-23

I/O STATEMENTS

10-24

I/O STATEMENTS

10.16 SUMMARY OF I/O STATEMENTS

Table 10-4 on pages 10-26 and 10-27 presents a summary of all
permitted forms of the FORTRAN-10 I/O statement.

10-25

I-'
o
I

'" m

I/O Statements

READ
Sequential

Table 10-4
Summary of FORTRAN-10 I/O Statements

Formatted

READ (u,f)list
READ f,list
READ f

READ(u)list

H
.........
o
tll
~
:l='
~
t>l
:s:
t>l
Z
~
tll

I-'
o
I

N
,...J

I/O Statements

PRINT
Sequential only

PUNCH
Sequential only

Table 10-4 (Cont.)
Summary of FORTRAN-IO I/O Statements

Formatted

PRINT f#list
PRINT f

f,list
f

FORMAT

H
........
o
til
1-3
:.:-
1-3
t>:J
:s:
t>:J
z
1-3
til

11-1

NAMELIST STATEMENTS

11-2

NAMELIST STATEMENTS

11-3

12-1

FILE CONTROL STATEMENTS

12-2

FILE CONTROL STATEMENTS

12-3

FILE CONTROL STATEMENTS

12-4

FILE CONTROL STATEMENTS

12-5

FILE CONTROL STATEMENTS

12-6

FILE CONTROL STATEMENTS

12-7

FILE CONTROL STATEMENTS

12-8

FILE CONTROL STATEMENTS

12-9

FILE CONTROL STATEMENTS

12-10

FILE CONTROL STATEMENTS

12-11

CHAPTER 13

FORMAT STATEMENT

13.1 INTRODUCTION

Use FORMAT statements in conjunction with the I/O list of I/O
statements during formatted data transfer operations. The FORMAT
statements contain field descriptors that, together with the list
items of associated I/O statements, specify the forms of the data and
data fields that comprise each record.

FORMAT statements may appear almost anywhere in a FORTRAN-IO source
program. The only placement restrictions are that they follow
PROGRAM, FUNCTION, SUBPROGRAM, or BLOCK DATA statements; and that
they precede the END statement. (Refer to Section 2.4.)

You must label FORMAT statements so that I/O statements can reference
them.

13.1.1 FORMAT Statement, General Form

The general form of a FORMAT statement follows:

where

k FORMAT(SAl,SA2, ••. ,SAn/SBl,SB2, ••• ,SBn/ •••)

k = the required statement label (which can only
be referenced by I/O statements).

SAl through SAn = individual field descriptor sets
and

SBI through SBn

In the foregoing statement form, the individual field descriptors are
delimited by commas (,). Field descriptor sets and records are
delimited by slashes (/). For example, a FORMAT statement of the
form:

FORMAT(SAl,SA2/SBl,SB2/SCl,SC2)

contains format specifications for three records with each record
containing two field descriptor sets.

Adjacent slashes (//) in a FORMAT statement specify that a record is
to be skipped during input or is to consist of an empty record on
output. For example, a FORMAT statement of the form:

FORMAT(SAl,SA2///SBl,SB2)

13-1

FORMAT STATEMENT

specifies four records are to be processed; however, the second and
third records are to be skipped.

You may represent repeated field descriptors or groups of field
descriptors by using a repeat form. Indicate the repetition of a
single field descriptor by preceding the descriptor with an integer
constant that specifies how many times the descriptor is to be
repeated. For example, a FORMAT statement of the form:

FORMAT(SAl,SA2,SA3,SAl,SA2,SA3,SAl,SA2,SA3)

may be written as

FORMAT(3(SAl,SA2,SA3»

You may nest the repeat forms of field descriptors to any depth. For
example, a FORMAT statement of the form:

FORMAT(SAl,SA2,SA2,SA3,SAl,SA2,SA2,SA3)

may also be written in the form:

FORMAT(2(SAl,2SA2,SA3»

The following paragraphs discuss the manner in which you may use the
foregoing statement forms and the effect each has on ths data
involved.

13.2 FORMAT DESCRIPTORS

FORMAT statement descriptors describe the record structure of the
data, the format of fields within the record, and the conversion,
scaling, and editing of data within specific fields. The following
descriptors can be used with FORTRAN-lO:

Descriptors

rFw.d

I rEw.d
rDw.d
rGw.d

rIw

rLw

rAw } rRw

kHs } 'text' ... }
nP

/

Comments

Floating point numeric field descriptors

Integer field descriptor

Logical field descriptor

Alphanumeric data field descriptor

Alphanumeric data in a FORMAT statement field
descriptor

Field formatting descriptors

Numerical scale factor descriptor

Record delimiter

13-2

where

FORMAT STATEMENT

r an optional unsigned integer representing a repeat count.
This option enables a field descriptor to be repeated r
times.

w = an optional integer constant representing the width (total
number of characters contained) of the external form of
the field being described. All characters, including
digits, decimal points, signs, and blanks that are to
compri~e the external form of the field, must be included
in the value of w .

• d an optional unsigned integer specifying the number of
fractional digits that are to appear in the external
representation of the' field being described. Note that w
must be specified if.a is.included in the descriptor.

k = an unsigned integer specifying the number of characters to
be processed during the transfer of alphanumeric data.

s represents a string of ASCI! (alphanumeric) characters.

n = a signed integer constant (plus signs are optional) •

The characters A, D, E, F, G, H, I, L, 0, P, and R indicate the manner
of conversion and editing to be performed between the internal
(processor) and external representations of the data within a specific
field~ these characters are re~erred to as conversion codes. Table
13-1 gives the FORTRAN-IO.-conversion codes and a brief description of
the function of each.

Code

A
D
E
F
G
H
I
L

P
R

1. An

Table 13-1
FORTRAN-IO Conversion Codes

Function

Transfer alphanumeric data
Transfer real data with a D exponent(l)
Transfer real data with an E exponent(l)
Transfer real data without an exponent
Transfer integer, real, complex, or logical
Transfer literal data
Transfer integer data
Transfer loqical data

Numerical scaling factor
Transfer alphanumeric data

exponent of 0 is assumed if none is given.

data

The use of commas to delineate
specification is optional as
example,

format
long

descriptors within a format
as no ~mbiguity exists. For

FORMAT (3X ,A2)

can be written as

FORMAT (3XA2)

13-3

FORMAT STATEMENT

since interpretation of a format specification 'is left associative,
the specification

FORMAT(I22,I5)

can be written as

FORMAT(I22I5)

However, a comma is required when you wish to specify

FO RMAT (I 2 , 2 I 5)

The following paragraphs provide detaileddes~riptions of the various
types of format descriptors, the manner in which they are written and
employedi and their use in FORMAT statements~

13.2.1 Numeric Field Descriptors

The forms of the field descriptors used to specify the format and
conversion of numeric~data follow.

Description

Dw.d
Ew.d
Ew.d,Ew.d

Fw.d
Fw.d,Fw.d

Iw
iIJ
Gw.d
Gw
Gw.d,Gw.d

Type of Data Used For

Double-precision data with a-D exponent
Real data with an E exponent
For the real and imaginary parts of a complex
datum
Real or double-precision data without an exponent
For the real and imaginary parts of a complex
datum
Integer data
IJ II ,

Real or double-precision data.
For integer (or logical) data
For the real and imaginary parts of a complex
datum

NOTE

The G conversion code may be used for
all but octal numeri~ data types.

Examples

Consider the following program segmen~:

INTEGER II, 12
REAL Rl,R2,R3
DOUBLE PRECISION Dl,D2
II = 506
12 8
Rl = 506.0
R2 18.1
R3 506001. 0
Dl = 18.0
D2 = -504.0

FORMAT STATEMENT

Table 13-2
formatted
segment.

describes the actions performed by several types of
WRITE statements on the data given in the foregoing program

Table 13-2
Action of Field Descriptors On Sample Data

Item Descriptor
Form

Sample
Descriptor

WRITE
Statement
Using the
Sample
Descriptor

External
Form External

Appearance
of Sample
Da'ta

1 Dw.d DB.2 WRITE(-,-)Dl
2 Ew.d EB.2 WRITE(-,-)Rl
3 Fw.d FS.2 WRITE(-,-)R2
4 Iw IS WRITE(-,-)Il
S Iw I2 WRITE - - Il

7 Gw.d GB.2 WRITE(-,-)D2
B Gw.d GB.2 WRITE(-,-)R3
9 Gw.d GS.2 WRITE(-,-)R2

10 Gw GS WRITE(-,-)Il

of Sample
Field
Described

Z.nnD nn
Z.nnE nn
aa.nn
aaaan
an

Z.nnD nn
Z.nnE nn
aa.nn
aaan

0.lBD+02
0.SlE+03
18.10
}6}6S06
**
-.SOD+02
0.SlE+06

.}6}6}6lB . 1-0
l6J6506 - .

where: a. n represents a numeric character.

b. Z represents either a - or O. (Note that if n-d>6,
a negative number cannot be output.)

c. a represents a digit, leading 'blank (}6) or a minus
sign depending on the numeric output.

Notes:

1. In Item 1, the value Dl has only two significant digits and
d=2, so no rounding will occur on inp~t •

. " "'

2. In Item 2, since Rl has 3 significant digits, it is rounded
to fit into the specified field.

3. In Item S, the width (w) part
specifies an exact field that
contents. If the w specification
to be transferred, asterisks are
transfer was not made.

of a format descriptor
permits no rounding of its

is too small for the datum
output to indicate that the

S. In Items Band 9, the relationship between G and fixed and
floating real ~ata is discussed in Paragraph 13.2.3.

6. In Items 1, 2, 3, 7, and B, the D and E exponent prefixes are
optional in the external form of the floating point
constants. For example, 1.lE+3 may be. written as 1.1+3.

Table 13-3 summarizes the internal and external forms of the data
specified by the numeric format conversion code.

13-S

Internal Form

Binary floating-point
double-preclsion

Binary floating-point

Binary floating-point

Binary integer

One of the following:
single-precision
binary floating-point,
binary integer, binary
logical, or binary
complex

FORMAT STATEMENT

Table 13-3
Numeric Field Codes

Conversion
Code

D

E

F

I

G

External Form

Decimal floating-point with D
exponent

Decimal floating-point with E
exponent

Decimal fixed-point

Decimal integer

Single-precision decimal
floating-point, decimal
integer, logical (T or F), or
complex (two decimal
floating-point numbers) ,
depending upon the internal
form

Complex quantities transfer as two independent real quantities. The
format specification for complex quantities consists of either two
successive real field descriptors or one repeated real field
descriptor. For example, the statement

FORMAT(2E15.4,2(F8.3,F8.5»

may transfer up to three complex quantities.

The equivalent of the foregoing statement is

FORMAT(E15.4,E15.4,F8.3,F8.5,F8.3,F8.5)

13.2.2 Interaction of Field Descriptors With I/O Variables

The execution of an I/O statement that specifies a formatted data
transfer operation initiates format control~ . The actions performed by
format control depend on information provided by the elements of the
I/O statement1s list of variables and the field descriptors that
comprise the referenced FORMATstatement's format specifications.

In processing each FORMAT controlled I/O statement that has an I/O
list, FORTRAN-IO scans the contents of the list and the format
specifications in step. Each time another variable or array element
name is obtained from the list, the next field specification is
obtained from the format specification. If the end of the format
specification is reached and more items remain in the list, a new line
or record is established and the scan process is restarted, either at
the first item in the format specification or, if parenthesized, sets
of format specifications exist within the format specification, with
the last set within the format specification.

13-6

FORMAT STATEMENT

When the I/O list is exhausted, control proceeds to the next statement
in the program, but not before the FORMAT statement is scanned either
to ·its end or to the next variable transfer format descriptor. (That
is, the FORMAT statement is scanned past slashes, literal constants,
Hollerith field descriptors, and spacing descriptors, but not past
data field descriptors.)

A record is terminated by one of the following:

1. a slash in the FORMAT specification

2. the delimiting right parentheses,), of the FORMAT statement

3. a lack of items in the I/O list

4. a lack of Hollerith or literal field descriptors in the
FORMAT statement

On input, an additional record is read only when a single slash, /, is
encountered in the FORMAT statement. A record is skipped when two
slashes, //, are encountered or a slash is followed by the end of the
FORMAT statement. If the FORMAT statement finishes a record by a
slash or the end of the FORMAT statement, any data left in the input
record is ignored. If the input record is exhausted before the data
transfers are completed, the remainder of the transfer is completed as
if the record were extended with blanks.

On output, an additional record is written only when a
encountered in the FORMAT statement. If a pair
slashes, //, or a single slash followed by the end
statement is encountered, an empty record is written.

13.2.3 G, General Numeric Conversion Code

slash, /, is
of consecutive

of the FORMAT

You may use the G conversion code in field descriptors for the format
control of real, double-precision, integer, logical, or complex data.

with th~ exception of real and double-precision data, the type of
converSlon performed by a type G field descriptor depends on the type
of its corresponding I/O list variable. In the case of real and
double-precision data, the kind of conversion performed is a function
of the external magnitude of the datum being transferred. Table 13-4
illustrates the conversion performed for various ranges of magnitude
(external form) of real and double-precision data.

13.2.4 Numeric Fields with Scale Factors

You may add scale factors to D, E, F, and G conversion codes in field
descriptors. The scale factor has the form

nP

where n is a signed integer (+ is optional) and P identifies the
operation. When used, a scale factor is added as a prefix to field
descriptors.

13-7

Examples

-2PFIO.5
IPE8.2

FORMAT STATEMENT

When you add a scale factor to an type F field descriptor (or type G
if the external field is a fixed point decimal) a power of 10 is
specified so that

External Form of Number = (Internal Form)*lO**(scale factor)

For example, assuming the data invol~ed to be the real number 26.451,
the field descriptor

F8.3

produces the external field

1zS1zS26.451

Table 13-4
Descriptor Conversion of Real and Double-Precision

Data According to Magnitude

Magnitude of Data in
External Form (M)

Equivalent Method of
Conversion Performed

0.1 Mo;;;l
1 M~lO

F (w- 4) • d , 4 X
F (w- 4) • (d -1) ,4 X

10d-2 Mo;;;lOd-l
10d-l l<lo;;;lOd
ALL OTHERS

F(w-4) .1,4X
F (w- 4) • 0 ,4 X
Ew.d

NOTE

In all numeric field conversions, the
field width (w) you specify should be
large en~ugh to include the decimal
point, s~gn, and exponent character in
addition to the number of digits. If
the specified width is too small to
accommodate the converted number, the
field will be filled with asterisks (*).
If the number converted occupies fewer
character positions than specified by w,
it will be right-justified in the field
and leading blanks will be used to fill
the field.

13-8

FORMAT STATEMENT

The addition of the scale factor of -lP

-lPF8.3

produces the external field

~~~2.645 

When you add a scale factor to D, E, and G (external field not a 
decimal fixed-point) type field descriptors, it multiplies the number 
by the specified power of ten and the exponent is changed accordingly. 

In input operations, type F (and type G, if the external field is 
decimal fixed-point) conversions are the only ones affected by scale 
factors. 

When you specify no scale factor, it is understood to be zero. Once 
you specify a scale factor, however, it holds for all subsequent types 
D, E, F, and G field descriptors within the same format specification 
unless another scale factor is specified. A scale factor is reset to 
zero when you specify a scale factor of zero. Scale factors have no 
effect on I and 0 type field descriptors. 

When you add a scale factor to a D or E field descriptor, it specifies 
a power of 10 so that the external form of the number has its mantissa 
multiplied by the specified power of 10; its exponent is adjusted 
accordingly. 

For example, assuming the data involved to be the real number 12.493, 
the field descriptor 

Ell.3 

produces the external field 

~~0.125E+02 

The addition of the scale factor 2P 

2PEll.3 

produces the external field 

bb12.49E+00 

With a scale factor of zero, the number of significant digits printed 
by a format of the form 

Ew.d 

or 

Dw.d 

is the number of digits to the right of the decimal point. 

For a negative scale factor nP, for d<n<O, there will be ABS(n) 
leading zeros and d-ABS(n) significant digits after the decimal point, 
for a total of d digits after the decimal point. If n -d, there will 
be d insignificant digits (zeros) to the right of the decimal point. 

If the scale factor nP is positive, for 0<n<d+2 there 
significant digits to the left of the decimal point 
significant digits to the right of the decimal point (for a 

13-9 

will be n 
and d-n+l 
total of 



FORMAT STATEMENT 

d+l significant digits). If n~d+2, 
digits and n-d-l insignificant trailing 
decimal point. 

there will be d+l significant 
zeros on the left of the 

If the data to be printed is 12.493, these formats produce results as 
follows: 

FORMAT OUTPUT SIGNIFICANT REASON 
DIGITS 

E1S.3 bbbbbbO.12SE+02 3 n=O 
lPE1S.3 bbbbbbl.249E+Ol 4 n<d+2 
-lPE1S.3 bbbbbb.012E+03 3 -d<n 
2PE1S.3 bbbbbb12.49E+00 4 n<d+2 
-3PE1S.3 bbbbbbO.OOOE+OS 0 n -d 
4PE1S.3 bbbbbb1249.E-02 4 n<d+2 
6PE1S.3 bbbb124900.E-04 4 n d+2 

l3.2.S Logical Field Descriptors 

You may transfer logical data under format control in a manner similar 
to numeric data transfer by use of the field descriptor 

Lw 

where L is the control character and w is an integer specifying the 
field width. The data is transmitted as the value of a corresponding 
logical variable in the associated input/output list. 

On input, the first non-blank character in the logical data field must 
be T or F, the value of the logical variable is stored in the list 
variable as true or false, respectively. If the entire input data 
field is blank or empty, a value of false is stored. 

On output, w minus 1 blanks followed by T or F will be output if the 
value of the logical variable is true or false, respectively. 

13.2.6 Variable Numeric Field Widths 

Several of the conversion codes are acceptable 
without field width specifications, the 
specification so that can be omitted(l). 

in FORMAT statements 
w.d portion of the 

On input, the conversion codes 0, E, F, G, I, L, and 0 are acceptable 
without field width specifications. The field begins with the first 
non-blank character encountered and ends with the first illegal 
character in the given field. (Blanks and tabs also terminate a 
field.) Note that for conversion code L (logical data), all 
consecutive alphabetics following a T (true) or an F (false) are 
considered part of the field and are ignored. In succeeding fields 
the input stream is scanned until a non-blank character is 
encountered. If the character is a comma (,), the next field is 
skipped, and the following input field begins with the character 
following the comma. Any character other than a comma is assumed to 
be the first character in the next input field. Null fields are 

1. If d is given, w must also be specified. 

13-10 



FORMAT STATEMENT 

denoted by successive commas optionally separated by blanks or tabs. 
A null field is equivalent to a fixed-field input of blanks. For 
example, the source code 

READ 1, X, Y, Z, L, I, J 
1 FORMAT (3F, L, I, A3) 

with data as follows 

,1.OE+5"TRUEXXX1~~~~ABC 

results in 

X 0.0 
y 1.OE+5 
Z 0.0 
L TRUE 
I 1 
J 'ABC' 

Note that if a comma is included in the input data after the XXXl and 
before the blanks, i.e., the data is 

,1.OE+5 " TRUEXXX1,~~~~ABC 

then J = '~~W 

On output, the format codes A, 0, E, F, G, 
acceptable'without field width specifications. 
are assumed: 

I, L, 0, and Rare 
The following defaults 

Format Code Assumed Default 
for KA10 for KI10,KL10 

A single-precision AS AS 
A double-precision A10 A10 
0 025.16 025.18 
E E15.7 E15:7 
F F15.7 Fl5.7 
G single-precision G15.7 G15.7 
G double-precision G25.16 G25.18 
I 115 115 
L L15 L15 
0 015 015 
R single-precision R5 R5 
R double-precision R10 R10 

13.2.7 Alphanumeric Field Descriptors 

You may accomplish the formatted transfer of alphanumeric data in a 
manner similar to the formatted transfer of numeric data by use of the 
field descriptors Aw and Rw, where A and R are the control characters 
and w is the number of characters in the field. 

The A and R descriptors both transfer alphanumeric data into or from a 
variable in an input/output list depending on the I/O operation. A 
list variable may be of any type. For example, , 

READ (6,5) V 
5 FORMAT (A4) 

13-11 



FORMAT STATEMENT 

causes four alphanumeric characters to be read from unit 6 and stored 
in the var iabl'e V. 

The A descriptor deals with variables containing left-justified, 
blank-filled characters~ the R descriptor deals with variables 
containing right-justified, zero-filled characters. The following 
paragraphs summarize the result of alphanumeric data transfer (both 
internal and external representations) using the A and R descriptors. 
These paragraphs assume that w represents the field width and m 
represents the total number of characters possible in the variable. 
Double precision variables contain 10 characters (m=lO) ~ all other 
variables contain 5 (m=5). 

A Descriptor 

1. INPUT, where w ~ m -- The rightmost m characters of the field 
are read in and stored left-justified and blank-filled in the 
associated variable. 

2. INPUT, where w < mAll w characters are read in and stored 
left-justified and blank-filled in the associated variable. 

3. OUTPUT, where 
right-justified 
blank-filled. 

w ~ m m characters are output and 
in the field. The remaihder of the field is 

4. OUTPUT, where w < m -- The left most w characters of the 
associated variable are output. 

R Descriptor 

1. INPUT, where w~ m -- The right most m characters of the field 
are read in and stored right-justified, zero-filled in the 
associated variable. 

2. INPUT, where w < m -- All ~ characters are read in and stored 
right-justified, zero-filled in the associated variable. 

3. OUTPUT, where w ~ m -- m 
justified in the field. 
filled •. 

characters are output and right 
The remainder of the field is blank 

4. OUTPUT, -where w < m -- The right most w characters of the 
associated variable are output. 

13.2.8 Transferring Alphanumeric Data 

You may transmit alphanumeric data directly into or from the FORMAT 
statement b two' different methods:H-conversion, •••• "' •• -•• 11'11 

In H-conversion, the alphanumeric string is specified in the form nH, 
where H is the control character and n is the total number of 
characters (including blanks) in the string. For example, you may use 
the ,following statement sequence to print the words PROGRAM COMPLETE 
on the device LPT: 

PRINT 101 
101 FORMAT (17H~PROG~COMPLETE) 

13-12 



FORMAT STATEMENT 

Read and write operations of this type are initiated by I/O statements 
that reference a format statement and a logical device, but do not 
contain an I/O list (see preceding example). 

Write transfers from a FORMAT statement cause the contents of the 
statement field descriptor to be output to a specified logical device. 
The contents of the field descriptor, however, remain unchanged. 

Read transfers with a FORMAT statement cause the contents of the field 
descriptors involved to be replaced by the characters input from the 
specified logical device. 

Alphanumeric data is stored in a field descriptor left-justified. If 
the data input into a field has fewer characters than the field, 
trailing blanks are added to fill the field. If the data input is 
larger than the field of the descriptor, the excess rightmost 
characters are lost. 

Examples 

WRITE (1,101) 
101 FORMAT (17H~PROG~COMPLETE) 

cause the string PROGRAM COMPLETE to be output to the file on device 
1. 

Assuming the string START on device 1, the sequence 

READ (1,101) 
101 FORMAT (17H~PROGRA~COMPLETE) 

would change the contents of statement 101 to 

101 FORMAT (17HSTART~~~~~~~~~~~~) 

101 FORMAT (17H~PROG~COMPLETE) 

and 

in the same manner. 

13-13 



FORMAT STATEMENT 

13.2.9 Mixed Numeric and Alphanumeric Fields 

You may place an alphanumeric field descriptor among other fields of 
the format. For example, you may use the statement: 

FORMAT (I4,7H~FORCE=FIO.5) 

to output the line: 

~~22~FORCE=~~17.68901 

You may omit the separating comma after an alphanumeric format field, 
as shown in the foregoing statement. 

When you omit a comma delimiter from a format specification, format 
control associates as much information as possible with the leftmost 
of the two field descriptors. 

13.2.10 Multiple Record Specifications 

To handle a group of input/output records where different records have 
different field descriptors, use a slash to indicate a new record. 
For example, the statement 

FORMAT (308/I5,2F8.4) 

is equivalent to 

FORMAT (308) 

for the first record, and 

FORMAT (I5,2F8.4) 

for the second record. 

You may 
appear 
written 
middle 
records 

omit separating commas when you use a slash. When n slashes 
at the end or beginning of a format, n blank records will be 
on output or skipped on input. When n slashes appear in the 
of a format, n-l blank records are written on output or n-l 
skipped on input. 

Both the slash and the closing parenthesis at the end of the format 
indicate the termination of a record. If the list of an input/output 
statement dictates that the transmission of data is to continue after 
the closing parenthesis of the format is reached, the format is 
repeated, starting with: 

1. that group repeat specification terminated by the last right 
parenthesis of the next lower level group, or 

2. level zero if no higher level group exists. 

Thus, the statement 

FORMAT (F7.2,(2(El5.5,El5.4) ,I7)) 

leve'-:- / I/ov.! 0 
level 1 level 1 

level 2 

13-14 



FORMAT STATEMENT 

causes the format 

2(E15.5,E15.4) ,I? 

to be used after the first record. 

As a further example, consider the statement 

FORMAT (F7.2/(2(E15.5,E15.4) ,I?» 

The first record has the format 

F7.2 

and the next 5 records have the format 

2(E15.5,E15.4) ,I? 

13.2.11 Record Formatting Field Descriptors 

You may use two field descriptors, III and nX, to position data within 
a record. 

13-15 



FORMAT STATEMENT 

Example 

The statement 

FORMAT (5H~STEP,I5,lOX,2Hy=,F7.3) 

may be used to print the line 

13.2.12 $ Format Descriptor 

A $ format descriptor at the end of an output FORMAT is used to 
suppress the carriage return at the end of the current record. It is 
mainly used on terminal output but will work on non-terminal devices. 
A $ format descriptor is ignored in input FORMATs and has no effect if 
embedded in an output FORMAT. The $ format descriptor must be the 
next format descriptor to be processed when the corresponding output 
list is exhausted for the $ descriptor to have the defined effect. 

13 . 3 CA.RRIAGE CONTROL CHARACTERS FOR PRINTING ASCII RECORDS 

You may use the first character of an ASCII record to control the 
spacing operations of the line printer or Teletype terminal printer 
unit on which the record is being printed. Specify the control 
character desired by beginning the FORMAT field specification for the 
ASCII record to be output with IHa.~!where a is the desired control 
character. Table 13-5 describes the control char?cters permitted in 
FORTRAN-IO and the effect each has on the printing device. 

13-16 



FORMAT STATEMENT 

Table 13-5 
FORTRAN-IO Print Control Characters 

FORTRAN Character Printer Character Octal Value Effect 

space LF 012 

0 zero LF,LF 012 Skip a line 

1 one FF 014 Form feed - go 
to top of next 
page 

+ plus Suppress 
skipping -
overprint the 
line 

13-17 





CHAPTER 14 

DEVICE CONTROL STATEMENTS 

14.1 INTRODUCTION 

You may use the following device control statements in FORTRAN-IO 
source programs: 

1. REWIND 

3. BACKSPACE(l) 

4. ENDFILE 

The general form of the foregoing device control statements is 

where 

keyword u 
keyword (u) 

keyword 
u 

is the statement name 
is the FORTRAN-IO logical device number (Chapter 10, 
Table 10-1) 

The operations performed by the device control statement are normally 
used only for magnetic tape devices (MTA). In FORTRAN-IO, however, 
the device control operations are simulated for disk devices. 

The following paragraphs describe the form and use of the device 
control statements. 

14.2 REWIND STATEMENT 

Form: 

Use: 

REWIND u 

Move the file contained by device u to its initial 
(load) point. If the medium is already at its load 
point, this statement has no effect. Subsequent READ 

1. The results of these commands are unpredictable when used on list­
directed and NAMELIST-controlled data. 

14-1 



DEVICE CONTROL STATEMENTS 

or WRITE statements that reference device u will 
transfer data to or from the first record located on 
the medium mounted on device u. 

Example: REWIND 16 

14.4 BACKSPACE STATEMENT 

Form: 

Use: 

BACKSPACE u 

Move the medium contained on device u to the start of 
the record that precedes the current record. If the 
preceding record prior to execution of this statement 
was an endfile record, the endfile record becomes the 
next record after execution. If the current record is 
the first record of the file, this statement has no 
effect. 

NOTE 

You cannot use this statement for files 
set up for random access, list-directed,' 
or NAMELIST-controlled I/O operations. 

Example: BACKSPACE 16 

14.5 END FILE STATEMENT 

Form: END FILE u 

Use: Write an endfile record in the file located on device 
u. The endfile record defines the end of the file that 
contains it. If an endfile record is reached during an 
I/O operation initiated by a statement that does not 
contain an END~ option, the operation of the current 
program .is terminated. 

Example: END FILE 16 

14-2 



DEVICE CONTROL STATEMENTS 

14.9 SUMMARY OF DEVICE CONTROL STATEMENTS 

Table 14-1 summarizes the form and use of the FORTRAN-IO device 
control statements 

14-3 



DEVICE CONTROL STATEMENTS 

Table 14-1 
Summary of FORTRAN-IO Device Control Statements 

Statement Form Use 

14-4 



CHAPTER 15 

SUBPROGRAM STATEMENTS 

15.1 INTRODUCTION 

Procedures you use repeatedly in a program may be written once and 
then referenced each time you need the procedure. Procedures that may 
be referenced are either internal (written and contained within the 
program in which they are referenced) or external (self-contained 
executable procedures that may be compiled separately). The kinds of 
FORTRAN-IO procedures that may be referenced are: 

1. statement functions, 

2. intrinsic functions (FORTRAN-IO defined functions), 

3. external functions, and 

4. subroutines. 

The first three of the foregoing categories are referred to 
collectively as functions or function procedures; procedures of the 
last category are referred to as subroutines or subroutine procedures. 

15.1.1 Dummy and Actual Arguments 

Since you may reference subprograms at more than one point throughout 
a program, many of the values used by the subprogram may be changed 
each time it is used. Dummy arguments in subprograms represent the 
actual values to be used, which are passed to the subprogram when it 
is called. 

Functions and subroutines use dummy arguments to indicate the type of 
the actual arguments they represent. and whether the actual arguments 
are variables, array elements, arrays, subroutine names, or the names 
of external functions. Each dummy argument must be used within a 
function or subroutine as if it were a variable, array, array element, 
subroutine, or external function identifier. Dummy arguments are 
given in an argument list associated with the identifier assigned to 
the subprogram; actual arguments are normally given in an argument 
list associated with a call made to the desired subprogram. (Examples 
of argument lists are given in the following paragraphs.) 

The position, number, and type of each dummy argument in a subprogram 
list must agree with the position, number, and type of each argument 
list of the subprogram reference. 

15-1 



SUBPROGRAM STATEMENTS 

Dummy arguments may be: 

1. var iables, 

2. array names, 

3. subroutine identifiers, 

4. function identifiers, or 

When you reference a subprogram, its dummy arguments are replaced by 
the corresponding actual arguments supplied in the reference. All 
appearances of a dummy argument within a furtction or subroutine are 
related to the given actual arguments. Except for subroutine 
identifiers and literal constants, a valid association between dummy 
and actual arguments occurs only if both are of the same type; 
otherwise, the results of the subprogram computations will . be 
unpredictable. Argument as~ociation may-be carried through more than 
one leve~ of subprogram reference if a valid association is maintained 
through each level. The dummy/actual argument associations 
established when a subprogram is referenced are terminated when the 
desired subprogram operations are completed. 

The following rules govern the use and form of dummy arguments: 

1. The number and type of the dummy arguments of a procedure 
must be the same as the number and type of the actual 
arguments given each time the procedure is referenced. 

2. Dummy argument names may not appear in EQUIVALENCE, DATA, or 
COMMON statements. 

3. A variable dummy argument should have a variable, an array 
element identifier, an expression, or a constant as its 
corresponding argument. 

4. An array dummy argument should have either an array name or 
an array element identifier as its corresponding actual 
argument. If the actual argument is an array, the length of 
the dummy array should be less than or equal to that of the 
actual array. Each element of· a dummy array is associated 
directly with the corresponding elements of the actual array. 

5. A dummy argument representing a subroutine identifier should 
have a subroutine name as its actual argument. 

6. A dummy argument representing an external function must have 
an external function as its actual argument. 

7. A dummy argument may be defined or redefined in a referenced 
subprogram only if its corresponding actual argument is a 
variable. If dummy arguments are array names, then elements 
of the array may be redefined. 

Additional information regarding the use of dummy and actual arguments 
is given in the description of how subprograms are defined and 
referenced. 

15-2 



SUBPROGRAM STATEMENTS 

15.2 STATEMENT FUNCTIONS 

Statement functions define an internal subprogram in a 
statement. The general form of a statement function is: 

single 

where 

name(argl,arg2, ..• ,argn)=E 

name is a name you assign that consists of one to six 
characters. The name you use must conform to the 
rules for symbolic names given in Section 3.3. 

The type of a statement function is determined 
either by the first character of its name or by it 
being explicitly declared in a type statement. 

(argl ..• argn) represents a list of dummy arguments. 

E is an arbitrary expression. 

The expression E of a statement function may be any legitimate 
arithmetic expression that may use the given dummy arguments and 
indicates how they are combined to obtain the desired value. You may 
use the dummy arguments as variables or indirect function references; 
but you cannot use them as arrays. The dummy argument names bear no 
relation to their use outside the context of the statement function 
except for their data type. The expression may reference FORTRAN-lO 
defined functions (Paragraph 15.3) or any other defined statement 
function, or call an external function. It may not reference any 
function that directly or indirectly references the given statement 
function or any subprogram in the chain of references. That is, 
recursive references are not allowed. Statement functions produce 
only one value, the result of the expression that it contains. A 
statement function cannot reference itself. 

You must define all statement functions within a program unit before 
the first executable statement of the program unit. When used, the 
statement function name must be followed by an actual argument list 
enclosed within parentheses and may appear in any arithmetic or 
logical expression. 

Examples: 

SSQR(K)=(K*(K+l)*2*K+l)/6 
ACOSH(X)=(EXP(X/A)+EXP(-X/A»/2.0 

15.3 INTRINSIC FUNCTIONS (FORTRAN-IO DEFINED FUNCTIONS) 

Intrinsic functions are subprograms that are defined and supplied by 
FORTRAN-IO. You can reference an intrinsic function by using its 
assigned name as an operand in an arithmetic or logical expression. 
Table 15-1 describes the names of the FORTRAN-IO intrinsic functions, 
the type of the arguments that each accepts, and the function it 
performs. These names always refer to the intrinsic function unless 
they are preceded by an asterisk (*) or ampersand (&) in an EXTERNAL 
statement, declared in a conflicting explicit type statement, or are 
specified as a routine dummy parameter. 

15-3 



I-' 
U1 
I 
~ 

* 

NOTE 

Octal constants may only be used as 
actual input to an intrinsic function 
when the function expects octal 
arguments. 

Table 15-1 
Intrinsic Functions (FORTRAN-10 Defined Functions) 

Function Mnemonic Definition Number of 
Arguments 

Absolute value: 
Real ABS* arg 1 
Integer IABS* arg 1 
Double- precision DABS* arg 1 
Complex to real CABS c={x**2+Y**2)**{l/2) 1 

Conversion: 
Integer to real FLOAT** 1 
R,eal to integer IFIX** Sign of arg * 

largest integer 
1 

.;;;; larg I 
Double to real SNGL 1 
Real to double DBLE* 1 

In line functions. 

**In line £unctions on KIlO and KL1TI only. 

Type of 
Argument Functlon 

Real Real 
Integer Integer 
Double Double 
Complex Real 

Integer Real 
Real Integer 

Double Real 
Real Double 

I 
I 

I 

I 

, 

I 

(f) 

C 
to 
'0 

13 
Ci1 

.:;0 
:J>' :s: 
(f) 

'"" :J>' 

'"" .J:Il 
:s: 
J:Il z 

'"" (f) 



..... 
U'I 
I 

U'I 

* 

Table 15-1 (Cont.) 
Intrinsic Functions (FORTRAN-10 Defined Functions) 

Function Mnemonic Definition Number of 
Arguments 

Integer to double DFLOAT 1 
Complex to real REAL* 1 
(obtain real part) 
Complex to real AIMAG 1 
(obtain imaginary 
part) 
Real to complex CMPLX* c=Arg + i*Arg 2 

Truncation: 
Real to real AINT Sign of arg* 1 

largest integer 
..;; I argl 

Real to integer INT* 1 
Double to integer !DINT 1 

Remaindering: 
Real AMOD lThe remainder J 2 
Integer r'iOD* when Arg 1 is 2 
Double- precision DMOD divided by Jl..rg 2 

Maximum value: 
Ar-'lAXO 

tax {'<gl ,'<g2, •.. I} 
>1 

Ar-1AX1* >1 
MAXO* >1 
['lAX 1 >1 
DMAXl >1 

In line functions. 

Type of 
Argument Functl.on 

Integer Double 
Complex Real 

Complex Real 

Real Complex 

Real Real 

Real Integer 
Double Integer 

Real Real 
Integer Integer 
Double Double 

Integer Real 
Real Real 
Integer Integer 
Real Integer 
Double Double 

til 
C 
III 
'U 
:;t! 
o 
G) 
:;t! 
:to 
3: 

til 
>-:l 
:to 
>-:l 
t'l 
3: 
t'l 
Z 
>-:l 
til 



I-' 
U1 
I 

0'1 

* 
-

Table 15-1 (Cont.) 
Intrinsic Functions (FOFTRAN-IO Defined Functions) 

Function rinemonic Definition l~umber of 
Argunents 

r.1inimum Value: 
MUNO 

{Min(Argl'Arg2""~ 
>1 

AMINl* >l 
MINO* >1 
MINI >1 
DMINI >1 

Transfer of Sign: 
Real SIGN* 

{sgn (Arg 2) * IArg II} 
2 

Integer ISIGN 2 
Double precision DSIGN 2 

positive Difference: 
Real DH1* {Arg I-Min (Arg 1, Arg 2)} 2 
Integer IDU1 2 

In line functions. 
------ ------ - - - - ------ -------

Type of 
Argunent Function 

Integer Real 
Real Real 
Integer Integer 
'Real Integer 
Double Double 

Real Real 
Integer Integer 
Double Double 

Real Real 
Integer Integer 

(fl 

c 
tp 
'U 
~ o 
Gl 
~ 
~ :s: 
(fl 

1-3 
~ 
1-3 
M 
:s: 
t'l z 
1-3 
(fl 



SUBPROGRAM STATEMENTS 

15.4 EXTERNAL FUNCTIONS 

External functions are function subprograms that consist of a FUNCTION 
statement followed by a seguence of FORTRAN-IO statements that define 
one or more desired operations; subprograms of this type may contain 
one or more RETURN statements and must be terminated by an END 
statement. Function subprograms are independent programs that may be 
referenced by other programs. 

The FUNCTION statement that identifies an external function has the 
form: 

where 

type FUNCTION name (argl,arg2, •.• ,argn) 

type 

name 

(argl, ... ,argn) 

is an optional type specification as 
described ln Section 6.3. These include 
INTEGER, REAL, DOUBLE PRECISION, COMPLEX or 
LOGICAL (plus the optional size modifier, *n, 
for compatibility with other manufacturers.) 

you assign to the function. The 
consist of from one to six 
the first of which must be 

You may include the optional 
(*n) with the name if the type 

(Refer to Section 6.3.) 

is the name 
name may 
characters, 
alphabetic. 
size modifier 
is specified. 

is a list of dummy arguments. 

If you omit type in the FUNCTION statement, the type of the function 
may be assigned, by default, according to the first character of its 
name, or may be specified by an IMPLICIT statement or by an explicit 
statement given with the subprogram itself. 

Note that if you want to use the same name for a user-defined function 
as the name of a FORTRAN-IO defined function (library basic external 
function), the desired name must be declared in an EXTERNAL statement 
and prefixed by an asterisk (*) or ampersand (&) in the referencing 
routine. (Refer to Section 6.7 for a description of the EXTERNAL 
statement.) 

The following rules govern the structuring of a FUNCTION subprogram: 

1. You must use the symbolic name assigned a FUNCTION subprogram 
as a variable name in the subprogram. During each execution 
of the subprogram, this variable must be defined and, once 
defined, may be referenced or redefined. The value of the 
variable at the time of execution on any RETURN statement is 
the value of the subprogram. 

NOTE 

A RETURN statement returns control 
statement that initiated the 
subprogram. See Section 15.6 for 
this statement. 

15-7 

to the calling 
execution of the 
a description of 



SUBPROGRAM STATEMENTS 

2. You may not use the symbolic name of a FUNCTION subprogram in 
any nonexecutable statement in the subprogram except in the 
initial FUNCTION statement or a type statement. 

3. Dummy argument names may not appear in any EQUIVALENCE, 
COMMON, or DATA statement used within the subprogram. 

4. The function subprogram may define or redefine one or more of 
its arguments so as to effectively return results in addition 
to the value of the function. 

5. The function subprogram may contain any FORTRAN-IO statement 
except BLOCK DATA, SUBROUTINE PROGRAM, another FUNCTION 
statement, or any statement that directly or indirectly 
references the function being defined or any subprogram in 
the chain of subprograms leading to this function. 

6. The function subprogram should contain at least one RETURN 
statement and must be terminated by an END statement. The 
RETURN statement signifies a logical conclusion of the 
computation made by the subprogram and returns the computed 
function value and control to the calling program. A 
subprogram may have more than one RETURN statement. 

The END statement specifies the physical end 
subprogram and implies a return. 

of 

15.4.1 Basic External Functions (FORTRAN-IO Defined Functions) 

the 

FORTRAN-IO. contains a group of predefined external functions that are 
called basic functions. Table 15-2 describes each basic function, its 
name, and its use. These names always refer to the basic external 
functions unless declared in an EXTERNAL or conflicting explicit type 
statement. 

15.4.2 Generic Function Names 

The compiler generates 
function, depending on 
generic function names: 

ABS 
AMAXI 
AMINI 
ATAN 
ATAN2 
COS 
INT 
MOD 
SIGN 
SIN 
SQRT 
EXP 
ALOG 
ALOGIO 

In the following example 

K=ABS(I) 

a call to the proper FORTRAN-IO defined 
the type of the arguments, for the following 

15-8 



SUBPROGRAM STATEMEN'I'S 

the type of I dete~~ines which function 
integer, the compi~er generates a call to 
real, the compiler generates a call tp the 
double precision, the compiler generates a 

is called. If I is an 
the function lABS. If I is 
function ABS. If I is 

call to the function DABS. 

The function name loses its generic properties if it appears in an 
explicit type statement, if it is specified as a dummy routine 
parameter, or if it is prefixed by "*" or "&" in an EXTERNAL 
statement. When a generic function name that was specified unprefixed 
in an EXTERNAL statement is used as a routine parameter, it is assumed 
to reference a FORTRAN-IO defined function of the same name, or if 
none exists, a user-defined function. Note that IMPLICIT statements 
have no effect upon the data type of generic function names unless the 
name has been removed from its class by use of an EXTERNAL statement. 

15.5 SUBROUTINE SUBPROGRAMS 

A subroutine is an 
by a SUBROUTINE 
calling program. 
subprogram of this 

ext~~nal computational procedure that is identified 
statement and mayor may not return values to the 

The SUBROUTINE statement used to identify a 
type has the form: 

SUBROUTINE name(argl,arg2, .•. ,argn) 

where 

name 

(argl, ••. ,argn) 

is the symbolic name of the subroutine to be 
defined. 

is an optional list of dummy arguments. 

15-9 



I-' 
U1 
I 

I-' 
o 

Function 

Exponential: 
Real 
Double 
Complex 

Logarithm: 
Real 

Double 

Complex 

Square Root: 
Real 
Double 
Complex 

Sine: 
Real (radians) 

*Generic functions 

Table 15-2 
Basic External Functions (FORTRAN-IO Defined Functions) 

Mnemonic Definition Number of 
Arguments 

EXP 
lAr g } 

1 
DEXP 1 
CEXP 1 

ALOG In (Arg) 1 
ALOGIO log (Arg) 1 
DLOG In (Arg) 1 
DLOGIO log (Arg) 1 
CLOG In (Arg) 1 

SQRT* (Arg)**1/2 1 
DSQRT (Arg)**1/2 1 
CSQRT (Arg)**1/2 1 

SIN* 1 

--------- ~-

Type of 
Argument Function 

Real Real 
Double Double 
Complex Complex 

Real Real 
Real Real 
Double Double 
Double Double 
Complex Complex 

Real Real 
Double Double 
Complex Complex 

Real Real 
I 

! 

I 

til 
C 
III 
't1 

~ 
G'l 

~ 
til 
1-3 

~ 
trJ g; 
Z 
1-3 
til 



I-' 
U1 
I 

I-' 
I-' 

Function 

Real (degrees) 
Double (radians) 
Complex 

Cosine: 
Real (radians) 
Real (degrees) 
Double (radians) 
Complex 

Hyperbolic: 
Sine 
Cosine 
Tangent 

Arc sine 

Arc cosine 

Arc tangent 
Real 
Double 
Two REAL arguments 

*Generic functions 

Table 15-2 (Cont.) 
Basic External Functions (FORTRAN-IO Defined Functions) 

Mnemonic Definition Number of 
Arguments 

SIND 
{sin (Arg )} 

1 
DSIN 1 
CSIN 1 

COS* 

leos (Arg )! 
1 

COSD 1 
DCOS 1 
CCOS 1 

SINH sinh(Arg) 1 
COSH cosh(Arg) 1 
TANH tanh(Arg) 1 

ASIN asin(Arg) 1 

ACOS acos(Arg) 1 

ATAN* atan(Arg) 1 
DATAN datan(Arg) 1 
ATAN2* atan (Arg l/Arg 2) 2 

-----

Type of 
Argument Function 

Real Real 
Double Double 
Complex Complex 

Real Real 
Real Real 
Double Double 
Complex Complex 

Real Real 
Real Real 
Real Real 

Real Real 

Real Real 

Real Real 
Double Double 
Real Real 

m c:: 
III 
tel 

i3 
G'l 

~ 
m 

~ 
t:r:J 
[if 
Z 
t-3 
m 



I-' 
U1 
I 

I-' 
t-) 

Table 15-2 (Cont.) 
Basic External Functions (FORTRAN-IO Defined Functions) 

Function rvInemonic Definition Number of 
Arguments 

Two DOUBLE arguments DA'I'AN2 atan (Arg l/Arg 2) 2 

Complex Conjugate CONJG Arg=X+iY,CONJG=X-iY 1 

Random Number RAN Result is a random 
number in the range 1 Dummy 
of a to 1.0 Argument 

Remainder of time limit TIM2GO Remainder of time 1 Dummy 
limit for job in Argument 
seconds 

Type of 
Argument Function 

Double Double 

Complex Complex 

Integer, Real 
Real, 
Double, 
or 

Integer, Real 
Real, 
Double, 
or Complex 

m 
c::: 
tlI 
"d 
~ o 
G'l 

~ 
m 

~ 
I::tj 

[ii 
Z 
t-3 
m 



SUBPROGRAM STATEMENTS 

The following rules control the structuring 
subprogram: 

of a subroutine 

1. You may not use the symbolic name of the subprogram in any 
statement within the defined ~ubprOgram except the SUBROUTINE 
statement itself. 

2. You may not use the given dummy arguments in an EQUIVALENCE, 
COMMON, or DATA statement within the subprogram. 

3. The subroutine subprogram m~y define or redefine one or more 
of its argumertts so as to effectively return results. 

4. The subroutine subprogram may contain any FORTRAN-IO 
statement except BLOCK DATA, FUNCTION, another SUBROUTINE 
statement, or any st~tement that either directly or 
indirectly references the subroutine being defined or any of 
the subprograms in the chain of subprogram references leading 
to this subroutine. 

5. Dummy arguments that represent statement labels may be either 
an *, $, or &. 

6. The subprogram should contain at least one RETURN statement 
and must be terminated by an END statement. The RETURN 
statements indicate the logical end of a computational 
routine; the END statement signifies the physical end of the 
subroutine. . 

7. Subroutine subprograms may have as many entry points as 
desired (see description of ENTRY statement given in Section 
15.7). 

15.5.1 Referencing Subroutines (CALL Statement) 

You must reference subroutine subprograms by using a CALL statement of 
the following form: 

where 

CALL name(argl,atg2, ••. ,argn) 

name 

(aigl, ..• ,argn) 

is the symbolic name 
subroutine subprogram. 

of the desired 

is an optional list of actual ,arguments. If 
the list is included, the given actual 
arguments must agree in order, number, and 
type with the corresponding dummy arguments 
given in the defining SUBROUTINE statement. 

The use of literal constants is an exception to the rule 
agreement of type between dummy and actual arguments. 
argument in a CALL statement may be: 

requiring 
An actual 

1. a constant 

2. a variable name 

15-13 



SUBPROGRAM STATEMENTS 

3. an array element identifier 

4. an array name 

5. an expression 

6. the name of an external subroutine, or 

Example: 

The subroutine 

SUBROUTINE MATRIX(I,J,K,M 

END 

may be referenced by 

CALL MATRIX(lO,20,30,40 

15.5.2 FORTRAN-IO Supplied Subroutines 

FORTRAN-IO provides you 
subroutines. Table 15-3 
predefined subroutines. 

with an extensive group of predefined 
gives the descriptions and names of these 

15.6 RETURN STATEMENT AND MULTIPLE RETURNS 

The RETURN statement causes control to be returned from a subprogram 
to the calling program unit. This statement has the form: 

RETURN (standard return) 

or 

The 
(Le., 

standard return) causes control to be returned to the statement of the 
calling program that follows the statement that called the subprogram. 

15-14 



SUBPROGRAM STATEMENTS 

Example 

Assume the following statement sequence in a main program: 

10 

15 

20 

CALL EXAMP (1 I. I K ,., M,.) 
GO TO 101 

15-15 



SUBPROGRAM STATEMENTS 

Assume the following statement sequence in the called SUBROUTINE 
subprogram: 

SUBROUTINE EXAMP (L, *,M, *,N,*) 

RETURN 

RETURN 

END 

Each occurrence of RETURN returns control to the statement GO TO 101 
in the calling program. 

15.6.1 Referencing External FUNCTION Subprogram 

Reference an external function subprogram by using its assigned name 
as an operand in an arithmetic or logical expression in the calling 
program unit. The name must be followed by an actual argument list. 
The actual arguments in an external function reference may be: 

1. a variable name, 

2. an array element identifier, 

3. an array name, 

4. an expression, 

15-16 



SUBPROGRAM STATEMENTS 

6. the name of another 
SUBROUTINE) . 

external 

NOTE 

procedure 

Any subprogram name to be used as an 
argument to another subprogram must 
first appear in an EXTERNAL statement 
(Chapter 6) in the calling program unit. 

Example 

The subprogram defined as: 

INTEGER FUNCTION ICALC(IX,IY,IZ) 

RETURN 
END 

may be referenced in the following manner: 

TOTAL=ICALC(IAA,IAB,IAC)+500 

15-17 

FUNCTION or 



SUBPROGRAM STATEMENTS 

15-18 



SUBPROGRAM STATEMENTS 

15-19 



SUBPROGRAM STATEMENTS 

15-20 



SUBPROGRAM STATEMENTS 

15-21 



SUBPROGRAM STATEMENTS 

15-22 



SUBPROGRAM STATEMENTS 

15-23 



SUBPROGRAM STATEMENTS 

15-24 



SUBPROGRAM STATEMENTS 

15-25 





CHAPTER 16 

BLOCK DATA SUBPROGRAMS 

16.1 INTRODUCTION 

Use block data subprograms to initialize data to be stored in any 
common areas. You may use only specification and DATA statements, 
i.e., DATA, COMMON, DIMENSION, EQUIVALENCE, and TYPE, in BLOCK DATA 
subprograms. A subprogram of this type must start with a BLOCK DATA 
statement. 

You may enter initial values into more than one labeled common block 
in a single subprogram of this type. 

An executable program may contain more than one block data subprogram. 

16.2 BLOCK DATA STATEMENT 

The form of the BLOCK DATA statement is: 

BLOCK DATA name 

where 

name is a symbolic name given 
subprogram. 

16-1 

to ldentify the 





APPENDIX A 

ASCII-196B CHARACTER CODE SET 

The character code set defined 
American National Standard for 
given in the following matrix. 

in the X3.4-196B Version of the 
Information Interchange (ASCII) is 

1st 2 
octal 
digits 

00x 
01x 
02x 
03x 
04x 
OSx 
06x 
07x 
lOx 
llx 
12x 
13x 
14x 
ISx 
16x 
17x 

Last octal digit 
o I 2 3 4 S 6 7 

NUL SOH STX ETX EOT ENQ ACK BEL 
BS HT LF VT FF CR SO SI 
OLE DCI DC2 DC3 DC4 NAK SYN ETB 
CAN EM SUB ESC FS GS RS US 
~ ! " # $ % & 

, 

( ) * + - / , 
0 I 2 3 4 S 6 7 
8 9 : ; < = > ? 
@ A B C 0 E F G 
H I J K L M N a 
p Q R S T U V W 
x Y Z [ \ J I\(t) (+-) 

b d f -grave a c e g 
h i j k I m n 0 

p q r s t u v w 
x y z { I } -(ESC) DEL 

Characters inside parentheses are ASCII-1963 Standard. 

NUL Null OLE Data Link Escape 
SOH Start of Heading DCI Device Control 1 
STX Start of Text DC2 Device Control 2 
ETX End of Text DC3 Device Control 3 
EaT End of Transmission DC4 Device Control 4 
ENQ Enquiry NAK Negative Acknowledge 
ACK Acknowledge SYN Synchronous Idle 
BEL Bell ETB End of Transmission Block 
BS Backspace CAN Cancel 
HT Horizontal Tabulation EM End of Medium 
LF Line Feed SUB Substitute 
VT Vertical Tabulation ESC Escape 
FF Form Feed FS File Separator 
CR Carriage Return GS Group Separator 
SO Shift Out RS Record Separator 
SI Shift In US Unit Separator 

DEL Delete (Rubout) 

A-I 

Graphic 
subsets 
64 9S 





APPENDIX B 

USING THE COMPILER 

This appendix explains how to access FORTRAN-IO and how to make use of 
the information it provides. You should be familiar with the 
FORTRAN-IO language and the DECsystem-lO TOPS-IO monitor. 

B.l RUNNING THE COMPILER 

The command to run FORTRAN-IO is: 

.R FORTRA 

The compiler responds with an asterisk (*) and is then ready to accept 
a command string. A command is of the general form: 

object filename, listing filename=source filename(s) 

You are given the following options: 

1. The filenames can be fully specified SFD paths. 

2. You may specify more than one input file in the compilation 
command string. These files will be logically concatenated 
by the compiler and treated as one source file. 

3. Program units need not be terminated at file boundaries and 
may consist of more than one file. 

4. If no object filename is specified, no relocatable binary 
file is generated. 

5. If no listing filename is specified, no listing is generated. 

6. If no extension is given, the defaults 
.REL (relocatable binary), and .FOR 
respective files. 

B.l.l Switches Available with FORTRAN-IO 

are .LST 
(source) 

(listing) , 
for their 

Switches to FORTRAN-IO are accepted anywhere in the command string. 
They are totally position- and file-independent. Table B-1 lists the 
switches. 

B-1 



Switch 

CROSSREF 

DEBUG 

EXPAND 

INCLUDE 

KAlO 

KIlO 

LNMAP 

MACROCODE 

NOERRORS 

NOWARNINGS 

OPTIMIZE 

SYNTAX 

USING THE COMPILER 

Table B-1 
FORTRAN-IO Compiler Switches 

Meaning 

Generates a file that can be input to 
the CREF program 

(See Section B.l.l.l.) 

Defaults 

OFF 

OFF 

Includes the octal-formatted version of OFF 
the object file in the listing. 

Compiles a D in card column 1 as 
as space. 

Compiles code to run on a KAlO 
processor. 

Compiles code to run on a KIlO 
processor. 

Produces a line number/octal location 
map in the listing only if /MACROCODE 
was not specified. 

Adds the mnemonic translation of the 
object code to the listing file. 

Does not print error messages 
on the terminal. 

Does not output warning messages. 

Performs global optimization. 

Performs syntax check only. 

OFF 

Compilation 
processor 

Compilation 
processor 

OFF 

OFF 

OFF 

OFF 

OFF 

OFF 

Each switch must be preceded by a slash (/). Switch names need only 
contain those letters that are required to make the switch name 
unique. You are encouraged to use at least three letters to prevent 
conflict with switches in future implementations. 

Example 

.R FORTRA 
*OFILE,LFILE=SFILE/MAC,S2FILE 

The /MAC switch will cause the MACRO code equivalent of SFILE and 
S2FILE to appear in LFILE.LST. 

If you do not specify a processor (KAlO or KIlO switch), the code will 
be compiled for the processor type on which the compilation occurs. 
The processor type of the code in the object file and all switches, 
used or implied, are printed at the top of each listing page. 

B-2 



USING THE COMPILER 

B.l.l.l The !DEBUG Switch - The !DEBUG switch tells FORTRAN-10 to 
compile a series of debugging features into your program. Several of 
these features are specifically designed to be used with FORDDT. 
Refer to Appendix E for more information. By adding the modifiers 
listed in Table B-2, you can include specific debugging features. 

Modifiers 

:DIMENSIONS 

:TRACE 

:LABELS 

:INDEX 

:BOUNDS 

:NONE 

:ALL 

Table B-2 
Modifiers to !DEBUG Switch 

Meaning 

Generates dimension information in .REL file for 
FORDDT. 

Generates references to FORDDT required for its 
trace features (automatically activates :LABELS). 

Generates a label for each statement of the form 
"line-number L." (This option may be used without 
FORDDT. ) 

Forces DO LOOP indices to be stored at the 
beginning of each iteration rather than held in a 
register for the duration of the loop. 

Generates the bounds checking code for all array 
references. Bounds violations will produce 
run-time error messages. Note that the technique 
of specifying dimensions of 1 for subroutine 
arrays will cause bounds check errors. (You may 
use this option without FORDDT.) 

Do not include any debug features. 

Enable all debugging aids. 

The format of the !DEBUG switch and its modifiers is as follows: 

!DEBUG :mod if ier 

or 

!DEBUG: (modifier list) 

Options available with the !DEBUG modifiers are: 

1. No debug features - Either do not specify the !DEBUG switch 
or include !DEBUG:NONE. 

2. All debug features - Either !DEBUG or !DEBUG:ALL. 

3. Selected features - Either a series of modified switches; 
i. e. , 

!DEBUG:BOU!DEBUG:LAB 

or a list of modifiers 

!DEBUG: (BOU,LAB, ••. ) 

B-3 



USING THE COMPrLER 

4. Exclusion of features (if you wish all but one or two 
modifiers and do not wish to list them all, you lllay use the 
prefix "NO" before the switch you wish to exclude) • The 
exclusion of one or more £eatures implicitly includes all the 
others, i.e. , /DEBUG:NOBOU is the same as 
/DEBUG: (DIM,TRA,LAB,IND). 

If you include more than one statement on a single line, only the 
first statement will receive a label (/DEBUG:LABELS) or FORDDT 
reference (/DEBUG:TRACE). (The /DEBUG option and the /OPTIMIZE option 
cannot be used at the same time.) 

NOTE 

If a source file contains line sequence 
numbers that occur more than once in the 
same subprogram, the /DEBUG option 
cannot be used. 

The following formulas may be used to determine the increases in 
program size that will occur as a result of the addition of various 
/DEBUG options. 

:DIMENSIONS 

:TRACE 

: LABELS 

:INDEX 

:BOUNDS 

For each array, 3+3*N words where N is the number 
of dimensions, and up to three constants for each 
dimension. 

One instruction per executable statement. 

No increase. 

One instruction per 
instruction for some 
index of the loop. 

inner 
of the 

loop plus one 
references to the 

For each array, the formula is the same as 
DIMENSIONS:. 

For each reference to an array element, use 5+N 
words where N is the number of dimensions in the 
array. If you do not specify :BOUNDS, 
approximately 1+3*(N-l) words will be used. 

B.l.2 COMPIL-Class Commands 

You can invoke FORTRAN-l 0 by using COMPIL-class commands. These 
commands cause the monitor to run the COMPIL program, which interprets 
the command and constructs new command strings for the system program 
actually processing the command. When both FORTRAN-IO and F40 are 
present in your DECsystem-lO system, you can specify which compiler is 
to be use.d by adding the switches /FIO or /F40 to the following 
commands: 

COMPILE 
LOAD 
EXECUTE 
DEBUG 

B-4 



USING THE COMPILER 

Example 

.EXEC ROTOR/FlO 

The co~piler switches KA, KI, OPT, CREF, and DEBUG may be specified 
directly in COMPIL-class commands and may be used globally or locally. 

Example 

.EXECUTE/CREF/KA/FIO Pl.FOR,P2.FOR/DEBUG:NOBOU 

The other compiler switches must be passed in parentheses for each 
specific source file. 

Example 

.EXECUTE Pl.FOR(M,I) 

Refer to the DECsystem-lO Operating 
further information. 

System Commands Manual for 

B.2 READING A FORTRAN-IO LISTING 

When you request a listing from the FORTRAN-IO compiler, it contains 
the following information: 

1. A printout of the source program plus an internal sequence 
number assigned to each line by the compiler. This internal 
sequence number is referenced in any error or warning 
messages generated during the compilation. If the input file 
is line-sequenced, the number from the file is llsed. If code 
is added via the INCLUDE statement, all INCLUDEd lines will 
have an asterisk (*) appended to their line-sequence number. 

2. A summary of the names and relative 
octal) of scalars and arrays in 
compiler generated variables. 

program locations (in 
the source program plus 

3. All COMMON blocks and the relative locations (in octal) of 
the variables in each COMMON block. 

4. A listing of all equivalenced variables or arrays and their 
relative locations. 

5. A listing of the subprograms referenced (both user defined 
and FORTRAN-IO defined library functions). 

6. A summary of temporary locations generated by the compiler. 

7. A heading on each page of the listing containing the program 
unit name (MAIN., program, subroutine or function, principal 
entry), the input filename, the list of compiler switches, 
and the date and time of compilation. Whether a specific 
processor switch (/KAIO, /K~lO) was used and the processor 
for which the code was generated is also at the top of the 
listing page. 

8. If you used the /MACRO switch, a mnemonic printout of the 
generated code (in a format similar to MACRO-IO) is appended 
to the listing. This section has four fields: 

B-5 



USING THE COMPILER 

LINE: This column contains the internal sequence number 
of the line corresponding to the mnemonic code. It 
appears on the first of the code sequence dssociated 
with that internal sequence number. An asterisk 
indicates a compiler inserted line. 

LOC: The relative location in the object program of the 
instruction. 

LABEL: Any program or compiler generated label. 
Program labels have the letter "PH appended. Labels 
generated by the compiler are followed by the letter 
"M". Labels generated by the compiler and associated 
with the /DEBUG:LABELS switch consist of the internal 
sequence number followed by an "L". 

GENERATED CODE: The MACRO-10 mnemonic code. 

If you used the /LNMAP switch and did NOT use the /MACRO 
switch, a line number/octal location map is appended to the 
listing. This section lists the line numbers in increments 
of 10 on subsequent lines and each number from 0 through 9 
for each line in adjacent columns. The numbers appearing 
inside the matrix are the relative octal locations of the 
statements in the FORTRAN program unit. For example, to find 
the relative octal location of line number 001043, find the 
row marked 001040 and then column 3 on that line. The number 
in that place is the desired relative location. This listing 
can be very large and sparse for line-numbered files with 
large increments, such as those produced by SOS. 

NOTE 

One FORTRAN line can produce multiple octal 
locations. In this case the line number map lists 
only the first location. 

9. A list of all argument blocks generated by the compiler. A 
zero argument appears first followed by argument blocks for 
subroutine calls and function references (in order of their 
appearance in the program). Argument blocks for all I/O 
operations follow this. 

10. Format statement listings. 

11. A summary of errors detected or warning messages issued 
during compilations. 

B.2.1 Compiler Generated Variables 

In certain situations the compiler will generate internal variables. 
Knowing what these variables represent can help you read the macro 
expansion. The variables are of the form: 

.letter digit digit digit digit 

i.e., .SOOOl 

B-6 



USING THE COMPILER 

where: 

Letter Function of Variable 

A Register save area. 

F Arithmetic statement function formal parameters. 

I Result of a DO LOOP initial value expression or 
parameter of an adjustably dimensioned array. 

n Result of a common subexpression (see Section C.2.1.1) 
or constant computation (C.2.l.3). 

Q Temporary storage for expression values. 

R Result of 
(C.2.1.2) • 

reduced operator strength expression 

S Result of the DO LOOP step size expression of computed 
iteration count .for a loop. 

You may find these variables on the listing under SCALARS and ARRAYS. 

The following example shows a listing where all these features are 
pointed out. 

B-7 



Name of 
Program 

~ 
NAIN. 

00001 
00002 
00003 
00004 
00005 
00006 
00007 
00008 
00009 

tIl 00010 
I 00011 co 

00012 
00013 
00014 
00015 
00016 
00017 
00018 
00019 

Name of Compiler 
Source File Version 

+ TIMl.FOR 

100 
C 

10 

~ 
FOF.TRAN V. 5 (515) /KI/M 19-NOV-76 15:00 PAGE 1 

1 tacro Code equivalent included 
code was compiled for a KI processor 

IMPLICIT INTEGER (A-Z) 
DIMENSION A(100,200) ,8(100,200) 
SUNl=O 
SUM2=0 
DO 100 J=1,200 
DO 100 1=1,100 
Kl=I*J 
IF (Kl .LT. 500 .OR. Kl .GT. 1500) Kl=O 
A(I,J)=Kl 
K2=I+J 
IF (K2 .EQ. 100 .OR. K2 .EQ. 200 .OR. K2.EQ.300) K2=K2+1 
B(I,J)=K2 
SUHl=SUMl+Kl 
S UI'12=SUM 2+ K 2 
CONTINUE 

TYPE 10,SUMl,SUM2 
FORMAT(7H SUMl= ,I9,10H 
END 

SUM2= ,19) 

c 
Ul 
H 
Z 
G1 

>-3 
::r: 
trJ 

() 
o 
~ 
'U 
H 
t"' 
trJ 
~ 



til 
I 

\0 

SUBPROGRAMS CALLED 

The relative address of each variable is given 

SCALARS AND ARRAYS [ n*,. NO EXPLICIT DEFINITION - n%n NO REFERENCED 

*K1 1 B 2 *J 
116105 *1 

47042 A 

fcomPi1er generated variable 

47043 .SOOOI 116103 
.SOOOO 116104 *SUM2 116106 *K2 116107 *SUM1 116110 

Inrrnar 
LINE 

3 
4 
5 

6 

7 

8 

sequence number on first instruction that goes with this line 
octal displacement of instruction 

+ 
LOC LABEL GENERATED CODE 

0 JFCL 0,0 
1 JSP 16,RESET. 
2 0,0 
3 SETZB 2,SUM1 
4 MOVEM 2,SUM2 
5 MOVE 2, [777470000001] 
6 HLREM 2, .SOOOO 
7 2t1 : 

HRRZM 2,J 
10 3M: 

NOVE 2, [777634000001] 
11 4M: 

MOVE 3,J 
12 IMULI 3,0(2) 
13 MOVEM 3,K1 
14 CAIL 3,764 
15 CAlLE 3,2734 

C 
til 
H 
Z 
G) 

1-3 
::c 
t>:I 

(') 
o 
3: 
"0 
H 
t"' 
t>:I 
::0 



16 JRST O,6H 
17 JRST 0,5M 

8 20 6~1: .. compiler generated label 
SETZB 4,Kl 

MAIN. TI1"1l. FOR FORTRAN V. 5 ( 515) /KI/M 19-NOV-76 15:00 PAGE 1-1 

9 21 5M: 
NOVEl 3,144 

22 IMUL 3,J 
23 ADDI 3,0 (2) 
24 MOVE 4,Kl 
25 HOVEM 4,A-145(3) 

10 26 ~1OVE 3,J c 
27 ADDI 3,0 (2) til 

30 MOVE1.J. 3,K2 
H 
z 

11 31 MOVE 5,K2 Cl 

32 CAIE 5,144 t-3 

ttl 33 CAIN 5,310 ::c 
t'l 

I 34 JRST 0,8M t-' () 
0 35 9~1 : 0 

CAIN 5,454 ::=:: 
"d 

11 36 8~1 : H 
t"' 

AOS 3,K2 t'l 

12- 37 7r1: ::u 
MOVEI 3,144 

40 IMUL 3,J 
41 ADDI 3,0(2) 
42 MOVE 5,K2 
43 HOVEM 5,8-145(3) 

13 44 ADDH 4,SmIl 
14 45 ADDM 5, SUt42 
15 46 lOOP: .. program label 

AOBJN 2,4M 
47 AOS 2,J 
50 AOSGE O,.SOOOO 
51 JI<ST 0,3M 



IJ:! 
I 

...... 

...... 

17 52 MOVE I 16,101'1 
53 PUSHJ 17,OUT. 
54 HOVEl 16,111'1 
55 PUSHJ 17,IOLST. 

19 56 MOVE.I 16,11'1 
57 PUSHJ 17,EXIT. 

ARGUMENT BLOCKS: function and subroutine argument blocks 

60 0, ,0 
61 1M: 0, ,0 
62 777773, ,0 
63 10M: 0, ,777777 
64 0, ,0 
65 0, ,0 
66 340,,10P 
67 0, ,7 
70 0, ,0 
71 11M: 1100"SmH 
72 1100"SUM2 
73 4000,,0 

MAIN. 'I'll'll. FOR FORTRAN V. 5 ( 515) /KI/M 19-NOV-76 

FORMAT STATEMENTS (IN LOW SEGMENT): 

18 

HAIN. 

116111 lOP: 
116112 
116113 
116114 
116115 
116116 
116117 

(7H S 
UM1= 
,19,1 
OB 

SUM2 
,19 

[ NO ERRORS DETECTED 1 summary of detected errors 

15:00 

c 
til 
H 
z 
G'l 

1-3 
::c 
t'l 

() 

0 
::s: 

PAGE 1-2 'U 
H 
t"' 
t'l 
::0 



ttl 
I 

I-' 
N 

1'IAIN. TIMl.FOR FOF.TRAN V.5(515) /KI 19-NOV-76 15:01 PAGE 1 

00001 IMPLICIT INTEGER (A-Z) 
00002 DIMENSION A(100,200) ,8(100,200) 
00003 SUMl=O 
00004 SUM2=0 
00005 DO 100 J=1,200 
00006 DO 100 1=1,100 
00007 Kl=I*J 
00008 IF (Kl .LT. 500 .OR. Kl .GT. 1500) Kl=O 
00009 A(I,J)=Kl 
00010 K2=I+J 
00011 IF (K2 .EQ. 100 .OR. K2 .EQ. 200 .OR. K2.EQ.300) K2=K2+1 
00012 B(I,J)=K2 
00013 SUHl=SUMl+Kl 
00014 SUM2=SUM2+K2 
00015 100 CONTINUE 
00016 C 
00017 TYPE 10,SUMl,SUM2 
00018 10 FORMAT(7H SUMl= ,I9,10H SUM2= ,19) 
00019 END 

SUBPROGRAMS CALLED 

SCALARS AND ARRAYS [ "*" NO EXPLICIT DEFINITION - "%" NOT REFERENCED] 

*Kl 1 B 
.SOOOO 116104 *SUM2 

2 *J 
116105 * I 

47042 A 
116106 *K2 

47043 .SOOOI 116103 
116107 *SUMI 116110 

LINE NUMBER/OCTAL LOCATION MAP line number may request with /LNMAP switch 

C 
til 
H 
Z 
G) 

8 
::c 
tt:l 

(') 
o 
~ 
"d 
H 
t"' 
tt:l 
::0 



txJ 
I ..... 

w 

· 0 1 2 3 4 5 6 7 8 9 
-------.------------------------------------------------------------------------------

00000 
00010 

MAIN. 

HAIN. 

00001 
00002 
00003 
00004 
00005 
00006 
00007 
00008 
00009 
00010 
00011 
00012 
00013 
00014 
00015 
00016 
00017 
00018 
00019 

26 31 37 
3 
44 

4 
45 

5 
46 

10 11 
52 

[ NO ERRORS DETECTED 1 

line number 11 starts at octal location 31 (from the 
previous listing, notice that line 11 uses locations 
31 through 36 but only the first location is shown 
here) 

TINl.FOR FORTRAN V. 5 (515) /KI/OPT/M 19-NOV-76 15:00 

INPLICIT INTEGER (A-Z) 
DINENSION A (100,200) , B (100,200) 
SUMl=O 
SUN2=0 
DO 100 J=1,200 
DO 100 1=1,100 
Kl=I*J 
IF (Kl .LT. 500 .OR. Kl .GT. 1500) Kl=O 
A(I,J)=Kl 
K2=I+J 

14 

PAGE 1 

IF (K2 • EQ. 100 .OR. K2 .EQ. 200 .OR. K2.EQ.300) K2=K2+1 
B(I,J)=K2 
SUMl=SUMl+Kl 
SUr12=SUM2+K2 

100 CONTINUE 
C 

TYPE 10,SUMl,SUM2 
10 FORMAT(7H SUMl= .I9,10H Sut-12= ,19) 

CND 

21 
56 

c 
m 
H 
Z 
Gl 

>-3 
::c 
t'l 

() 
o :.: 
't1 
H 
t'" 
ttl 
~ 



t:Xl 
I 

I-' 
~ 

SUBPROGRAMS CALLED 

SCALARS AND ARRAYS [ "*" NO EXPLICIT DEFINITION "I" NOT REFERENCED] 

*Kl 1 E 2 
A 47045 .SOOOl 116105 
.00001 116111 *K2 116112 

t . . 
optImIzer created variables 

.RODOl 47042 

.SOOOO 116106 
*SUMl 116113 

LINE LOC LABEL GENERATED COCE 

0 JFCL 0,0 
1 JSP 16,RESET. 
2 0,0 

4 3 SETZB 10,11 
* 4 NOVEl 12,144 

5 HOVEM 12,.ROOOl 
5 6 MOVNI 7,1 

7 NOVEl 7,1 
10 MOVEM 12,.SOOOO 

optimizer created statement 

* 11 4M: 
MOVE 6,7 

6 12 MOVE 2, [777634000001] 
* 13 5M: 

MOVEI 4,0(2) 
14 ADD 4,.ROOOl 

7 15 HOVE 5,6 
8 16 CAIL 5,764 

17 CAILE 5,2734 

optimizer created variables 

+ .ROOOO 47043 *J 47044 
*SUM2 116107 *1 116110 

c:: 
(f) 

H 
Z 
G1 

t-3 
::r:: 
tr1 

(') 
0 
~ 
H 
t:-t 
tr1 
::0 



20 JRST 0,7M 
21 JF.ST 0,6M 

8 22 7M: 

MAIN. TIM1.FOR FORTRAN V. 5 (515) /KI/OPT/M 19-NOV-76 15:00 PAGE 1-1 

NOVEl 5,0 
9 23 6t'l : 

MOVEM 5,A-145(4) 
10 24 MOVE 3,7 

25 ADDI 3,0 (2) 
11 26 CAIE 3,144 

27 CAIN 3,310 
30 JRST 0,9M c:::: 
31 10M: til 

CAIN 3,454 H 
Z 

11 32 9M: G'l 

ADDI 3,1 ..;3 
lJj 12 33 81,IJ : ::t: 
I t"l 

I-' MOVEM 3,B-145(4) 
(') VI 13 34 ADD 11,5 0 

14 35 ADD 10,3 ~ 
* 36 ADD 6,7 H 

15 37 lOOP: 
t" 
t"l 

AOBJN 2,5M ~ 

* 40 HOVEl 12,144 
41 ADDf'i 12,.FOOOI 

* 42 1M: 
ADDI 7,1 

43 AOSGE O,.SOOOO 
44 JRST 0,4M 

* 45 MOVD1 11 ,Smll 

* 46 MOVE!>1 10,SUfvi2 

* 47 MOVEH 5,K1 

* 50 MOVEM 3,K2 
17 51 MOVEI 16,l1M 

52 PUSHJ 17,OUT. 



to 
I 

I-' 
CI'I 

* 53 HOVEl 16,12H 
54 PUSHJ 17,IOLST. 

19 55 2H: 
HOVEl 16,3H 

56 PUSHJ 17,EXIT. 

ARGUHENT BLOCKS: 

57 0, ,0 
60 3M: 0, ,0 
61 777773,,0 
62 11H: 0,,777777 
63 0, ,0 
64 0, ,0 
65 340,,10P 
66 0, ,7 
67 0, ,0 
70 12H: 1100"SUHl 
71 1100"SUH2 
72 4000,,0 

HAIN. TIHl.FOR FORTRAN V. 5 ( 515) 

FaRHAT STATEHENTS (IN LOW SEGHENT) : 

18 

MAIN. 

116114 lOP: 
116115 
116116 
116117 
116120 
116121 
116122 

(7H S 
UHl= 
,19,1 
OH 

SUH2 
,19 

[ NO ERRORS DETECTED 1 

/KI/OPT/M 19-NOV-76 15:00 PJI.GE 1-2 

c::: 
Ul 
H 
Z 
G) 

1-3 
gj 
() 

~ 
H 

~ 
:;0 



USING THE COMPILER 

B.3 ERROR REPORTING 

If an error occurs during the initial pass of the compiler (while the 
actual source code is being read and processed), an error message is 
printed on the listing immediately following the line in which the 
error occurred. Each error references the internal sequen~e number of 
the incorrect line. The error messages along with the statement in 
error are output to the user terminal. For example: 

.EXECUTE DAY.FOR 
FORTRAN: DAY 
01300 
?FTNNRC LINE:01300 
01500 100 
?FTNMSP LINE:01500 
01600 ? 
?FTNICL LINE:01600 

?FTNFTL MAIN. 
LINK: LOADING 
[LNKNSA NO START ADDRESS] 

EXIT 

Kl 
STATEMENT NOT RECOGNIZED 
CONTINE 
STATEMENT NAME MISSPELLED 

ILLEGAL CHARACTER C IN LABEL FIELD 

3 FATAL ERRORS AND NO WARNINGS 

If errors are detected after the initial pass of the compiler, they 
appear in the list file after the end of the source listing. They are 
output to your terminal without the statement in error, but they may 
reference its internal sequence number. 

B.3.l Fatal Errors and Warning Messages 

There are two levels of messages, warning and fatal error. Warning 
messages are preceded by "%" and indicate a possible problem. The 
compilation will continue, and the object program will probably be 
correct. Fatal errors are preceded by a "?". If a fatal error is 
encountered in any pass of the compiler, the remaining passes will not 
be called. Additional errors that would be detected in later compiler 
passes may not become apparen~ until the first errors are corrected. 
It is not possible to generate a cOrrect object program for a source 
program containing a fatal error. 

The format of messages is 

?FTNXXX LINE:n text 

or 

%FTNXXX LINE:n text 

where: 

? 
% 
FTN 
XXX 
LINE:n 
text 

fatal 
warning 
FORTRAN mnemonic 
3-letter mnemonic for the error message 
line number where error occurred 

= explanation of error 

B-17 



USING THE COMPILER 

The printing of fatal errors and warning messages on your terminal can 
be suppressed by the use of the /NOERRORS switch; however, messages 
will still appear on the listing. The /NOWARNINGS switch will 
suppress warning messages on both user terminal and listing. 

B.3.2 Message Summary 

At the end of the listing file and on the terminal, a message summary 
is printed after each program unit is compiled. This message has two 
forms: 

1. when one or more messages were issued 

{?FTNFTL} 
?FTNWRN name NO/number FATAL ERRORS AND NO/number WARNINGS 

or 

2. when no messages were issued 

name [NO ERRORS DETECTED] 

where name is the program or subprogram name. ([NO ERRORS DETECTED] 
appears on the listing only.) Appendix G is a complete list of fatal 
errors and warning messages. 

B.4 CREATING A REENTRANT FORTRAN PROGRAM WITH LINK-IO 

To produce a sharable program from the .REL file, such as MAIN.REL, 
give either one of the following commands to LINK-IO: 

1. /SEG:DEFAULT MAIN/G 

2. /OTS:NONSHAR MAIN/G 

The resulting core image can be SSAVEd or the /SSAVE switch can be 
used to produce a .SHR file. 

B-18 



APPENDIX C 

WRITING USER PROGRAMS 

This appendix is a guide for writing effective programs with 
FORTRAN-IO. It contains techniques for optimization, interaction with 
non-FORTRAN programs, mixing of FORTRAN-IO and F40 object programs, 
and other useful programming hints. 

C.l GENERAL PROGRAMMING CONSIDERATIONS 

The following 
should observe 
FORTRAN-IO. 

paragraphs describe programming considerations you 
when preparing a FORTRAN program to be compiled by 

C.l.l Accuracy and Range of Double-precision Numbers 

Floating-point and real numbers may consist of up to 16 digits in a 
double-precision mode. Their range is specified in Chapter 3, Section 
3.2 of this manual. You must be careful when testing the value of a 
number within the specified range since, although numbers up to 10**38 
may be represented, FORTRAN-IO can only test numbers of up to eight 
significant digits (REAL precision) and 16 significant digits (DOUBLE 
precision) . 

You must also be careful when testing the floating-point 
for a result of O. In most cases the anticipated result, 
be obtained; however, in some cases the result may be a 
number that approximates o. Such an approximation of 
tests within statements, i.e., an arithmetic IF, to fail. 

computation 
i.~., 0 will 
very small 

o will cause 

C.l.2 Writing FORTRAN-IO Programs for Execution On Non-DEC Machines 

If you prepare a program to run on both a DECsystem-lO computer and a 
non-DIGITAL machine, you should: 

1. Avoid using the non-ANSI standard features of FORTRAN-IO, and 

2. Consider the accuracy and size of the numbers that the 
non-DIGITAL machine is capable of handling. 

C-1 



WRITING USER PROGRAMS 

C.l.3 Using Floating-point DO Loops 

FORTRAN-IO permits you to employ non-integer single- or double­
precision numbers as the parameter variables in a DO statement. This 
enables you to generate a wider range of values for the DO loop index 
variables, which may, in turn, be used inside the loop for 
computations. Be sure to consider the loss of precision that may 
occur. 

C.l.4 Computation of DO Loop Iterations 

The number of times through a DO loop is computed outside the loop and 
is not affected by any changes to the DO index parameters within the 
loop. The formula for the number of times a DO loop is executed is: 

DO 10 I=Ml,M2,M3 

MAX (1, ((M2-M1)/M3)+1)=Number of cycles 

The values 
you must 
logicals. 
THE RESULT 

of the parameters Ml, M2, M3 may be of any type; however, 
consider the foregoing formula, particularly when using 
One pass through each DO loop is always performed EVEN IF 
OF THE FOREGOING CALCULATION IS LESS THAN OR EQUAL TO ZERO. 

C.l.S Subroutines - Programming Considerations 

Consider the following items when preparing and executing subroutines: 

1. During execution, no check is made to see if the proper 
number of parameters was passed. 

2. If the number of actual arguments passed to a subroutine is 
less than the number of dummy arguments specified, the values 
of the unspecified arguments are undefined. 

3. If the number of actual arguments passed to a subroutine is 
greater than the number of dummy arguments given, the excess 
arguments are ignored. 

4. If an actual parameter is a constant and 
dummy argument is set to another value, 
to the constant in the calling program may 
value of the dummy argument. 

its corresponding 
all references made 

be changed to the 

5. No check is made to see if the parameters passed are of the 
same type as the dummy parameters. If an actual parameter is 
a constant and the corresponding dummy is of type real, be 
sure to include the decimal point with the constant. If the 
dummy is double-precision, be sure to specify the constant 
with a "0". 

Examples 

If the function F(A) is called by inputting F(2) and A is 
type real, F interprets the integer 2 as an unnormalized 
floating-point number. In this instance, F(A) should be 
called with F(2.0). 

Similarly, if the function Fl(D) is 
Fl(2.S) and 0 is double-precision, 

C-2 

called by 
Fl assumes 

inputting 
that its 



WRITING USER PROGRAMS 

parameters have been specified with two words of precision 
and picks up whatever foliows the constant 2.5 in core. The 
proper method is to use Fl(2.5DOO). 

NOTE 

You are given no notice if any of the situations 
described in items 1,2,3,4, and 5 occur. 

C.l.6 Reordering of Computations 

Computations that are not enclosed within parentheses may be reordered 
by the compiler. Sometimes it is necessary to use parentheses to 
ensure proper results from a specific computation. 

For example, assuming that 

1. RLI represents a large number such that RLl*RL2 will cause an 
overflow condition, and 

2. RSI is a very small number, i.e., less than 1, the program 
sequence 

A=RSl*RLl*RL2 
B=RS2*RL2*RLI 

will not produce an overflow when evaluated left to 
since the first computation in each expression, i.e., 
and RS2*RL2, will produce an interim result that is 
than either large number (RLI or RL2). 

right, 
RSl*RLl 
smaller 

However, the compiler will recognize RLI*RL2 as a common subexpression 
(see Section C.2.1.1) and generate the following sequence: 

temp 
A 
B 

RLI*RL2 
RSI*temp 
RS2*temp 

The computation of temp will cause an overflow. 

You should write the program as follows to ensure that the desired 
results are obtained: 

A=(RSI*RLI)*RL2 
B=(RS2*RL2)*RLI 

Computations may be reordered even when global optimization is not 
selected. 

C-3 



WRITING USER PROGRAMS 

C.l.7 Dimensioning of Formal Arrays 

When you specify an array as a formal parameter to a subprogram unit, 
you must indicate to the compiler that the parameter is an array. 
Dimension the array in a specification statement. This is the only 
way the compiler is able to distinguish a reference to such an array 
from a function reference. Designating the array with a dimension of 
1 is a common practice. 

Example 

SUBROUTINE SUBl(A,B) 
DIMENSION A(l) 

There are disadvantages to using 
dimension information provided 
specifically: 

the above technique because the 
is not adequate in some cases, 

1. Reading or writing the array by name 

DIMENSION ARRAY (10) 
READ (1) ARRAY 

The above is a binary read that will read ten words into 
ARRAY. 

SUBROUTINE SUBl(A) 
DIMENSION A(l) 
READ(l)A 

This binary read will cause one word to be read into A. 

2. Reading the array as a format 

SUBROUTINE SUB2 (FMT) 
DIMENSION FMT(l) 
READ (l,FMT) 

This will cause one word of the array FMT to be written over 
with the characters read from the record on unit 1. 

When you use the /DEBUG:BOUNDS compilation switch, the dimension 
information used is that which is specified in the array declaration. 

SUBROUTINE DO IT(A) 
DIMENSION A(l) 
A(2)=0 

The reference to A(2) will cause the out-of-bounds warning message to 
be generated. 

C.2 FORTRAN-IO GLOBAL OPTIMIZATION 

You have the option of invoking the global optimizer during 
compilation. The optimizer treats groups of statements in the source 
program as a single entity. The purpose of the global optimizer is to 
prepare a more efficient object program that produces the same results 
as the original unoptimized program, but takes significantly less 
execution time. The output of the lexical and syntactic analysis 
phase of the compiler is developed into an optimized source program 
equivalent (in results) to the original. The optimized program is 
then processed by the standard compiler code generation phase. 

C-4 



WRITING USER PROGRAMS 

C.2.1 Optimization Techniques 

C.2.1.1 Elimination of Redundant Computations - Often the same 
subexpression will appear in more than one computation throughout a 
program. If the values of the operands of such a common expressIon 
are not changed between computations, the subexpression may be written 
as a separate arithmetic expression, and the variable representing its 
resultant may then be substituted where the subexpression appears. 
This eliminates unnecessary recomputation of the subexpression. For 
example, the instruction sequence: 

A=B*C+E*F 

H=A+G-B*C 

IF((B*C)-H) 10,20,30 

contains the subexpression B*C three times when it really needs to be 
computed only once. Rewriting the foregoing sequence as: 

T=B*C 
A=T+E*F 

H=A+G-T 

DIF((T)-H) 10,20,30 

eliminates two computations of the subexpression B*C from the overall 
sequence. 

Decreasing the number of arithmetic operations performed in a source 
program by the elimination of common subexpressions shortens the 
execution time of the resulting object program. 

C.2.1.2 Reduction of Operator Strength - The time required to execute 
arithmetic operations will vary according to the operator(s) involved. 
The hierarchy of arithmetic operations according to the amount of 
execution time required is: 

MOST TIME 

LEAST TIME 

OPERATOR 
** 
/ 
* 
+,-

During program optimization, the global optimizer replaces, where 
possible (1), some arithmetic operations that require the most time 
with operations that require less time. For example, consider the 
following DO loop that is used to create a table for the conversion of 
from 1 to 20 miles to their equivalents in feet. 

DO 10 MILES=1,20 
10 IFEET(MILES)=5280*MILES 

1. Numerical analysis considerations severely limit the number of 
cases where this is possible. 

C-5 



WRITING USER PROGRAMS 

The execution time of the foregoing loop would be shorter if the 
time-consuming multiply operation, i.e., 5280*MILES, could be replaced 
by a faster operation. Since you increment MILES on each pass, you 
can replace the multiply operation by an add and total operation. 

In its optimized form, the foregoing loop would be replaced by a 
sequence equivalent to: 

K=5280 
DO 10 MILES=1,20 
IFEET(MILES)=K 

10 K=K+5280 

In the optimized form of the loop, the value of K is set to 5280 for 
the first iteration of the loop and is increased by 5280 for each 
succeeding iteration of the loop. 

This foregoing situation occurs frequently in subscript calculations 
that implicitly contain multiplications whenever the size is two or 
greater. 

C.2.1.3 Removal of Constant Computation From Loops - The speed with 
which a given algorithm may be executed can be increased if 
instructions and/or computations are moved out of frequently traversed 
program sequences into less frequently traversed program sequences. 
Movement of code is possible only if none of the arguments in the 
items to be moved are redefined within the code sequences from which 
they are to be taken. Computations within a loop consisting of 
variables or constants that are not changed in value within the loop 
may be moved outside the loop. Decreasing the number of computations 
made within a loop greatly decreases the execution time required by 
the loop. 

For example, in the sequence: 

DO 10 1=1,100 
10 F=2.0*Q*A(I)+F 

the value of the computation 2.0*Q, once calculated on the first 
iterations, will remain unchanged during the remaining 99 iterations 
of the loop. Reforming the foregoing sequence to: 

QQ=2.0*Q 
DO 10 1=1,100 

10 F=QQ*A(I)+F 

moves the calculation 2.0*Q outside the scope of the loop. 
movement of code eliminates 99 multiply operations. 

This 

In addition, it is possible to remove entire assignment statements 
from loops. This action can be easily detected from the macro 
expanded listings. The internal sequence number remains with the 
statement and appears out of order in the leftmost column of the macro 
expanded listing (LINE). 

C-6 



WRITING USER PROGRAMS 

C.2.l.4 Constant Folding and Propagation - In this method of 
optimization, expressions containing determinate constant values are 
detected and the constants are replaced, at compile time, by their 
defined or calculated value. For example, assume that the constant PI 
is defined and used in the following manner: 

PI=3.l4lS9 

X=2*PI*Y 

At compile time, the optimizer will have used the defined value of PI 
to calculate the value of the subexpression 2*PI. The optimized 
sequence would then be: 

PI=3.l4lS9 

X=6.283l8*Y 

thereby eliminating a multiply operation from the object code program. 

The computation of determinate constant values at compile time is 
termed "folding"~ the use of the defined value of a constant for 
replacement purposes throughout a program sequence is termed 
"propagation of the constants." The execution time saved by the 
foregoing type of compile time optimization is particularly important 
when the modified instruction occurs in a loop. 

C.2.l.S Removal of Inaccessible Code - The optimizer detects and 
eliminates any code within the source program that cannot be accessed. 
In general, this will not happen since programmers do not normally 
include such code in their programs~ however, inaccessible code may 
appear in a program during the debugging process. The removal of 
inaccessible code by the optimizer will reduce the size of the object 
program. A warning message is generated for each inaccessible line 
removed. 

C.2.l.6 Global Register Allocation - During the compilation of a 
source program, the optimizer controls the allocation of registers to 
minimize computation time in the optimized object program. The 
allocation process is designed to minimize the number of MOVE and 
MOVEM machine instructions that will appear in the most frequently 
executed portions of the code. 

C-7 



WRITING USER PROGRAMS 

C.2.1.7 I/O Optimization - Every effort is made to minimize the 
number of required calls to the FOROTS system. This is done primarily 
through extensive analysis of implied DO loop constructs on READ, 
WRITE, ENCODE, DECODE, and REREAD statements. The formats of these 
special blocks are described in Appendix E. These optimizations 
reduce dthe size of the program (argument code plus argument block 
size is reduced) and greately improve the performance of programs that 
use implied DO loop I/O statements. 

C.2.l.B Uninitialized Variable Detection - A warning message is 
generated when a scalar variable is referenced before it has received 
a value. 

C.2.l.9 Test Replacement - If the only use of a DO loop index is to 
reduce operator strength (D.2.l.2) and the loop does not contain exits 
(GO TOs out of the loop), the DO loop index is not needed and can be 
replaced by the reduced variable. 

For example: 

DO 10 I=l,lO 
K=K+7*I 

10 CONTINUE 

Reduction of operator strength and test replacement together transform 
this loop into 

DO 10 I=7,70,7 
K=K+I 

10 CONTINUE 

This occurs frequently in subscript computation. 

C.2.2 Improper Function References 

Consider this statement: 

P = F (X) + Q (Y) 

If: 

I. the evaluation of F(X) defines or changes 
and C, and 

2. the evaluation of Q (Y) defines or changes 
and D, 

the variables A, B, 

the values of B, C, 

then it is possible that different values of P could result, depending 
on which function is evaluated first. Let's see how this works. 
Let's assign some values (to begin with) to A, B, C, and D and define 
the functions F(X) and Q(Y): 

Let: 
F (X) : Q (Y) : 

A = 2. A 6. B = 10. 
B = 3. B = 7. C II. 
C 4. C B. D 12. 
D 5. F D + 9. Q A + 13 • 

C-B 



WRITING USER PROGRAMS 

Now play computer and evaluate P, calling first F(X), then Q(Y). Now 
re-evaluate P, calling Q(Y) first, then F(X). Notice that you got 
different values for P because the variables A, B, C, and D changed 
value depending on the order in which the functions were called. (Our 
answers were 33 when F(X) was called first and 36 when Q(Y) was called 
first.) 

The ANSI FORTRAN standard prohibits this kind of situation. But the 
compiler won't catch it unless you mention the affected variables in 
the function call itself. The compiler depends on strict adherence to 
this rule. There's a strong possibility that you won't get the 
results you want if you don't look for situations of this type and 
avoid them. Your best bet is to define your variables OUTSIDE the 
function and not change them in the course of the evaluation of the 
function itself. 

C.2.3 Programming Techniques for Effective Optimization 

Observe the following recommendations during the coding of a FORTRAN 
source program. They will improve the effectiveness of the optimizer. 

1. Do not use DO loops with an extended range. 

2. Specify label lists when using assigned GO TOs. 

3. Nest loops so that the innermost index is the one with the 
largest range of values. 

4. Avoid the use of associated input/output variables. 

5. Avoid unnecessary use of COMMON and EQUIVALENCE. 

C.3 INTERACTING WITH NON-FORTRAN-lO PROGRAMS AND FILES 

C.3.l Calling Sequences 

The following paragraphs describe the standard procedures for writing 
DECsystem-lO subroutine calls. 

1. Procedure 

a. The calling program must load 
accumulator (AC) 16 with the 
argument in the argument list. 

the right 
address of 

b. The left half of AC 16 must be set to zero. 

half of 
the first 

c. The subroutine is then called by a PUSHJ instruction to 
AC 17. 

d. The return will be made to the instruction immediately 
after the PUSHJ 17 instruction. 

e. If you use the /DEBUG:BOUNDS option of the FOROTS trace 
facility, the calling sequence must be 

MOVEI 16,AP 
PUSHJ 17,F 

C-9 



WRITING USER PROGRAMS 

where AP is the pointer to the argument list. If you use 
the trace facility, the word preceding the first word of 
an entry point should have its name in SIXBIT. 

2. Restrictions 

a. Skip returns are not permitted. 

b. The contents of the pushdown stack located before the 
address specified by AC 17 belong to the calling program; 
they cannot be read by the called subprogram. 

c. FOROTS assumes that it has control 
therefore, you must not create your 
FOROTS stack is initialized by: 

JSP l6,RESET. 

or the library routine 

CALL RESET. 

C.3.2 Accumulator Usage 

of the stack; 
own stack. The 

The specific functions performed by accumulators (AC) 17,16,0, and 1 
are as follows: 

1. Pushdown Pointer - AC 17 is always maintained as a pushdown 
pointer. Its right half points to the last location in use 
on the stack, and its left half contains the negative of the 
number of (words-I) allocated to the unused remainder of the 
stack. (A trap occurs when something is pushed into the next 
to last location. The trap instruction may itself be a PUSHJ 
on the KIlO processor, which uses the last location.) A 
positive left half is not permitted. 

2. Argument List Pointer - AC 16 is used as the argument 
pointer. The called subprogram does not need to preserve its 
contents. The calling program cannot depend on getting back 
the address of the argument list passed to the callee. AC 16 
cannot point to the ACs or to the stack. 

3. Temporary and Value Return Registers - AC 0 and 1 are used as 
temporary registers and for returning values. The called 
subprogram does not need to preserve the contents of AC 0 or 
1 (even if not returning a value). The calling program must 
never depend on getting back the original contents of the 
data passed to the called subprogram. 

4. Returning Values - At the option of the designer of a called 
subprogram, a subroutine may pass back results by modifying 
the arguments, returning a single-precision value in AC 0 or 
a double-precision or complex value in AC 0 and 1. A 
combination of the above may be used. However, two 
single-precision values cannot be returned in AC 0 and 1, 
since FORTRAN would not be able to handle it. 

C-lO 



WRITING USER PROGRAMS 

5. Preserved ACs - FORTRAN-IO FUNCTION subprograms preserve ACs 
2 through 15; subroutine subprograms do not. 

The design of the called subprogram cannot depend on the 
contents of any of the ACs being set up by the calling 
subprogram, except for ACs 16 and 17. Passing information 
must be done explicitly by the argument list mechanism. 
Otherwise, the called subprograms cannot be written in either 
FORTRAN-IO or COBOL. 

C.3.3 Argument Lists 

The format of the argument list is as follows: 

Arg count word 
Arg list addr.---First arg entry 

Second arg entry 

Last arg entry 

The format of the arg count word is: 

bits 0-17 These contain -n, where n is the number of arg 
entries. 

bits 18-35 These are reserved and must be O. 

The format of an arg entry is as follows (each entry is a single 
word) : 

bits 0-8 

bits 9-12 
bit 13 
bits 14-17 
bits 18-35 

Reserved for future DEC development 
now) • 
Arg type code. 
Indirect bit if desired. 
Index field, must be 0 for present. 
Address of the argument. 

The following restrictions should be observed: 

(set to o for 

1. Neither the argument list nor the arguments themselves can be 
on the stack. This restriction is imposed so that the stack 
can be moved. The same restriction applies to any indirect 
argument pointers. 

2. The called program may not modify the argument list itself. 
The argument list may be in a write-protected segment. 

Note that the arg count word is at position -1 with respect 
to the contents of AC 16. This word is always required even 
if the subroutine does not handle a variable number of 
arguments. A subroutine that has no arguments must still 
provide an argument list consisting of two words, i.e., the 
argument count word with a 0 in it and a zero argument word. 

C-ll 



Example 

MOVEI 16,AP 
PUSHJ 17,SUB 

iARGUMENT LIST 
-3, ,0 

AP: A 
B 
C 

WRITING USER PROGRAMS 

iSET UP ARG POINTER 
iCALL SUBROUTINE 
iRETURN HERE 

iSUBROUTINE TO SET THIRD ARG TO SUM OF FIRST TWO ARGS 

SUB: MOVE 
ADD 
MOVEM 
POPJ 

C.3.4 Argument Types 

T,@0(16) 
T,@1(16) 
T,@2(16) 
17, 

Table C-l 

iGET FIRST ARG 
iADD SECOND ARG 
iSET THIRD ARG 
iRETURN TO CALLER 

Argument Types and Type Codes 

Type Code Description 

o 
1 
2 
3 
4 
5 
6 
7 

10 
11 
12 
13 
14 
15 
16 
17 

FORTRAN Use COBOL Use 

Unspecified 
FORTRAN Logical 
Integer 
Reserved 
Real 
Reserved 
Octal 
Label 
Double real 
Not applicable 
Double Octal 
Reserved 
Complex 
Not applicable 
Reserved 
ASCIZ string 

Unspecified 
Not applicable 
I-word COMP 
Reserved 
COMP-l 
Reserved 
Reserved 
Procedure address 
Not applicable 
2-word COMP 
Reserved 
Reserved 
Not applicable 
Byte string descriptor 
Reserved 
Not applicable 

Literal arguments are permitted, but they must reside in a writable 
segment. This is because the FORTRAN-IO compiler makes a local of all 
non-array elements and copies all formals back to the caller's 
arguments. All unused type codes are reserved for future DIGITAL 
development. 

C-12 



WRITING USER PROGRAMS 

C.3.5 Description of Arguments 

The types of the arguments that may be passed are: 

1. Type 0 - Unspecified 

The calling program has not specified the type. The called 
subprograms should assume that the argument is of the correct 
type if it is checking types. If several types are possible, 
the called subprogram should assume a default as part of its 
specification. If none of the above conditions is true, the 
called subprogram should handle the argument as an integer 
(type 2). 

2. Type 1 - FORTRAN logical 

A 36-bit binary value containing 0 or positive to specify 
.FALSE. and negative to specify .TRUE •. 

3. Type 2 - Integer and l-word-COMP 

A 36-bit 2's complement signed binary integer~ 

4. Type 4 - Real and COMP-l 

A 36-bit DECsystem-lO format floating-point number. 

sign bit 0 
bits 1-8 
bits 9-35 

excess 128 exponent 
mantissa 

5. Type 6 - Octal 

A 36-bit unsigned binary value. 

6. Type 7 - Label and procedure address 

A 23-bit memory address. 

bits 0-12 
bit 13 
bits 14-17 
bits 18-35 

always 0 
indirect flag 
o 
the address 

7. Type 10 - Double real 

A double-precision floating-point number for the CPU on which 
code is being executed, i.e., KA format on a KAIO processor 
and KI format on a KIlO processor. 

8. Type 11 - 2-word CaMP 

A 2-word (72-bit) 2's complement signed binary integer. 

word 1, bit 0 
word 1, bits 1-35 
word 2, bit 0 
word 2, bits 1-35 

9. Type 12 - Double octal 

sign 
high order 
same as word 1, bit 0 
low order 

A 72-bit unsigned binary value. 

C-13 



WRITING USER PROGRAMS 

10. Type 14 - Complex 

A complex number represented as an ordered pair of 36-bit 
floating-point numbers. The first represents the real part, 
and the second represents the imaginary part. 

11. Type 15 - Byte String Descriptor 

The format of the byte string descriptor is: 

word 1: ILDB-type pointer, i.e., aimed at the byte 
preceding the first byte of the string 

word 2: EXP byte count 

The byte descriptor may not be modified by the called 
program. The byte string itself must consist of a string of 
contiguous bytes of uniform size. The byte size may be any 
number of bits from 1 to 36. The byte count must be large 
enough to encompass 256K words of storage, i.e., 24 bits for 
I-bit bytes. (See COBOL Program Reference Manual.) 

12. Type 17 - ASCIZ string 

A string of contiguous 7-bit ASCII bytes left justified on 
the word boundary of the first word and terminated by a null 
byte in the last word. The length of the string may be from 
1 to 256K words. 

C.3.6 Converting Existing MACRO-IO Libraries for use with FORTRAN-IO 

The following simple example illustrates the FORTRAN-IO calling 
sequence. 

C-14 



(') 

I ..... 
111 

MAIN. EXl.FOR FORTRAN V.5(515) /KI/M 4-NOV-76 12:19 PAGE 1 

00001 
00002 
00003 
00004 
00005 
00006 
00007 
00008 
00009 
00010 
00011 
00012 
00013 
00014 
00015 
00016 
00017 

C AN EXAMPLE OF A CALL TO A SUBROU'rINE WITH A VARIETY OF ARGUMENTS 

C 
C 
C 
C 
C 
C 
C 
C 

DOUBLE PRECISION DP 
DIMENSION B (10) 

THE ARGUMENTS ARE: 
1. A REAL VARIABLE 
2. AN ARRAY NAME 
3. AN ARRAY ELEMENT 
4. AN INTEGER VARIABLE 
5. A DOUBLE PRECISION VARIABLE 
6. AN OCTAL CONSTANT 
7. A LITERAL 

CALL SUBI (A, B, B(I), K, DP, "777, 'ABC') 

END 

SUBPROGRAMS CALLED 

SUBI 

SCALARS AND ARRAYS [ "*,, NO EXPLICIT DEFINITION - "%" NOT REFERENCED 

DP 1 *K 3 B 4 *A 16 *I 

TEMPORARIES 

.QOOOO 20 

17 

::E: 
~ 
H 
8 
H 
Z 
Cl 

C 
til 
t'l 
~ 

'1:l 
~ o 
Cl 
~ ;r:.r 
::s: 
til 



() 
I 

...... 

'" 

LINE LOC LABEL GENERATED CODE 

0 JFCL 0,0 
1 JSP 16,RESET. 
2 0,0 

15 3 MOVE 2,1 
4 MOVEI 2,B-1 (2) 
? MOVEM 2,.QOOOO 
6 f.tOVEI 16,2M 
7 PUSHJ 17,SUB1 

17 10 MOVEI 16,lM 
11 PUSHJ 17,EXIT. 

ARGUMENT BLOCKS: 

MAIN. 

MAIN. 

MAIN. 

00001 
00002 
00003 

12 0, ,0 
13 1M: 0, ,0 
14 777771, ,0 
15 2M: 200, ,A 

EX1.FOR FORTRAN V.5(512) /KI/M 4-NOV-76 

16 
17 
20 
21 
22 
23 
[ NO ERRORS 

200"B 
220".QOOOO 
100"K 
400"DP 
300" [000000000777] 
740" [406050320100] 

DETEC'fED ] 

EX1.FOR FORTRAN V.5(512) /KI/M 4-NOV-76 

12:19 PAGE 1-1 

12:19 PAGE 1 

SUBROUTINE SUB1 (REALI, ARYNAM, ARYELM, INTI, DBLPRC, OCT, LIT) 
DOUBLE PRECISION DBLPRC 

~ 
~ 
H 
1-3 
H 
Z 
G') 

C 
til 
t<:I 
~ 

"tl 
~ o 
G') 

~ :s: 
til 



(') 
I ..... 

-.J 

DIMENSION ARYNAM (10) 00004 
00005 
00006 
00007 
00008 
00009 
00010 
00011 
00012 
00013 
00014 
00015 
00016 
00017 
00018 
00019 
00020 
00021 
00022 
00023 
00024 
00025 

C AN EXAMPLE OF THE USE AND MODIFICATION OF FORMAL PARAMETERS 

Xl REALI 
X2 ARYNAM (J) 
X3 ARYELt-1 
Il = INTI 
X4 = DBLPRC 
12 OCT 
13 LIT 

REALI = Xl 
ARYNAM (J) X2 
ARYELM = X3 
INTI = Il 
DBLPRC = CMPLX (X4, 0.0) 
OCT "55 
LIT = 'ZYXW' 

RETURN 
END 

SUBPROGRAMS CALLED 

COMPLX. 

SCALARS AND ARRAYS [ "*,, Nb EXPLICIT DEFINITION - "%" NOT REFERENCED 

*LIT 1 
DBLPRC 6 

*INTI 14 

TEMPORARIES 

.A0016 21 

*OCT 
*13 
*I2 

2 
10 
15 

*X4 3 
*REALI 11 
*Xl 16 

*ARYELM 4 
*J 12 
*Il 17 

*X3 5 
*X2 13 
ARYNAM 20 

:€ 
::0 
H 
>-'3 
H 
Z 
Gl 

C 
til 
tzl 
::0 

'U 
::0 o 
Gl 
::0 
:J>o :s: 
til 



LINE LOC LABEL GENERATED CODE 

0 636542,,210000 

SUBl: 
2 0 MOVEM 16,.AOO16 

1 MOVE O,@O, (16) 
2 MOVEM O,REALI 
3 MOVEI 1,@1(16) 
4 MOVEM 1,ARYNAM 
5 MOVE 1,@2(16) 

SUBI EXl.FOR FORTRAN V.5(512) /KI/M 4-NOV-76 12:19 PAGE 1-1 

~ 
::0 

6 MOVEM 1,ARYELM H 
'"'.l 

7 MOVE 2,@3(16) H 

10 MOVEM 2,INTI z 
G') 

11 DMOVE 4,@4(16) c::: 
() 12 DMOVEM 4,DBLPRC til 
I 

13 MOVE 3,@5(16) tEl ..... ::0 
(Xl 14 MOVEM 3,OCT 

I'd 
15 MOVE 6,@6(16) ::0 
16 MOVEM 6,LIT 0 

G') 

8 17 3M: ::0 
:J>o 

MOVEM O,Xl :s: 
9 20 MOVE 7,J til 

21 ADD 7,ARYNAM 
22 MOVE 7,777777(7) 
23 MOVEM 7,X2 

10 24 MOVEM 1,X3 
11 25 MOVEM 2,Il 
12 26 PUSHJ 17,SNG.4 

27 MOVEM 4,X4 
13 30 FIX 3,3 

31 MOVEM 3,I2 
14 32 MOVEM 6,I3 
16 33 MOVEM O,REALI 



17 34 MOVE 3,J 
35 ADD 3,ARYNAM 
36 MOVEM 7,777777 (3) 

18 37 MOVEM I,ARYELM 
19 40 MOVEM 2,INTI 
20 41 MOVEI 5,0 

42 MOVEI 5,0 
43 DMOVEM 4,DBLPRC 

21 44 MOVEI 2,55 
45 HOVEM 2,OCT 

22 46 MOVE 2, [552633053500] 
47 MOVEM 2,LIT 

25 50 2M: 
MOVE 16, .AOOI6 

51 MOVE O,REALI 
~ 52 MOVEM 0,@0(16) ::0 

53 MOVE O,ARYELM H 
>-3 

54 MOVEM 0,@2(16) H 
z 55 MOVE O,INTI Gl 

56 MOVEM 0,@3(16) c n 57 DMOVE O,DBLPRC Ul 
I 

60 DMOVEM 0,@4(16) t"l ...... ::0 
1.0 61 MOVE O,OCT 

'tl 62 MOVEM 0,@5(16) ::0 
0 63 MOVE O,LIT Gl 

64 MOVEM 0,@6(16) ::0 
:J>' 65 POPJ 17,0 :;:: 
Ul 

ARGUMENT BLOCKS: 

66 0, , ° 
67 1M: 0, , ° 

SUBI [ NO ERRORS DETECTED 



WRITING USER PROGRAMS 

To convert existing MACRO-IO programs conveniently so that they will 
still load and execute correctly when called from F40 or FORTRAN-IO: 

1. Transfer the initial entry sequence for a routine to 

entry: CAIA 
PUSH 17,CEXIT.## 

2. Change all returns to POPJ 17,0 

These are the 
These macros 
release) were 
with both F40 

functions performed by the HELLO and GOODBY macros. 
(available in the file FORPRM.MAC, part of the FOROTS 

successfully used to convert the library routines to run 
and FORTRAN-lO. 

In addition, since the FORTRAN-IO compiler uses the indirect bits on 
argument lists (note that this permits shared, pure code argument 
lists), it is essential for code that accesses parameters to take this 
into account. Specifically, sequences that obtained the values of 
parameters through use of operations such as 

HRRZ R,1(16) 

to pick up the address of the second argument should be changed to 

MOVEI R,@1(16) 

The latter operation will work when interfacing with either F40 or 
FORTRAN -10 . 

Refer to the previous example, which illustrates the code generated by 
the FORTRAN-IO compiler, for specific details of how each argument is 
accessed. Note that in the case of the formal array, it is the 
address of the array that is accessed. 

C.3.7 Mixing FORTRAN-IO and F40 Compiled Programs 

Starting with Version lA of LINK-IO, use of the 
permit loading FORTRAN-l 0 and F40 programs. 
modifying the code while it is loaded. 

switch /MIXFOR will 
This is achieved by 

This introduces extra code 
execution of programs so 
convenience for conversion. 
than conversion assistance. 

that results in a degradation of the 
loaded. This feature is provided as a 
It is not intended to be used for other 

C.3.8 Interaction with COBOL-IO 

The FORTRAN-IO programmer may call COBOL-IO programs as subprograms, 
and, conversely, the COBOL programmers may call FORTRAN-IO programs as 
subprograms. 

In either of the foregoing cases, I/O operation must not be performed 
in the called subprogram. 

C-20 



WRITING USER PROGRAMS 

C.3.S.l Calling FORTRAN-IO Subprograms from COBOL-IO Programs - COBOL 
programmers may write subprograms in FORTRAN-IO to use the 
conveniences and facilities provided by this language. The COBOL verb 
ENTER is used to call FORTRAN-IO subroutines. The form of ENTER is as 
follows: 

ENTER FORTRAN program name ~SING {if~~~!iierl I [, {if~~~!i~er2IJ ..• J L procedure namel procedure2 

The USING clause of the foregoing forms names the data within the 
COBOL program that is to be passed to the called FORTRAN-IO 
subprogram. The passed data must be in a form acceptable to 
FORTRAN-IO. 

The calling sequence used by COBOL in calling a FORTRAN-IO subprogram 
is: 

MOVEI 16, address of first entry in argument list 
PUSHJ 17, subprogram address 

If the USING clause appears in the ENTER statement, the compiler 
creates an argument list that contains an entry for each identifier or 
literal in tQe order of appearance in the USING clause. It is 
preceded by a word containing, in its left half, the negative number 
of the number of entries in the list. If no USING clause is present, 
the argument list contains an empty word, and the preceding word is 
set to O. Each entry in the list is one 36-bit word at the form: 

O-s 9-12 13-35 

o type address 

Bits O-S are always O. 

Bits 9-12 contain a type code that indicates the USAGE of the 
argument. 

Bits 13-35 contain the address of the argument of the first 
word of the argument: the address can be indexed or indirect. 

Following is a description of the types, their codes, how the codes 
appear in the argument list, and the locations specified by the 
addresses. 

1. For I-word COMPUTATIONAL items 

CODE: 2 
IN ARGUMENT LIST: XWD 100, address 
ADDRESS: that of the argument itself 

2. For 2-word COMPUTATIONAL items 

CODE: 
IN ARGUMENT LIST: 
ADDRESS: 

11 
XWD 440, address 
that of the high-order word of 
argument 

3. For COMPUTATIONAL-l items 

CODE: 4 
IN ARGUMENT LIST: XWD 200, address 
ADDRESS: that of the argument itself 

C-2l 

the 



WRITING USER PROGRAMS 

4. For DISPLAY-6 and DISPLAY-7 items 

CODE: 
IN ARGUMENT LIST: 
ADDRESS: 

WORDl: 

WORD2: 

15 
XWD 640, address 
that of a 2-word descriptor for the 

argument 
a byte pointer to the identifier or 

literal 
bit 0 is 1 if the item is numeric 
bit 1 is 1 if the item is signed 
bit 2 is 1 if the item is a figurative 

constant (including ALL) 
bit 3 is 1 if the item is a literal 
bits 4 through 11 are reserved for 

expansion 
bit 12 is 1 if the item has 

with one or more PS'just 
decimal point, e.g., 99PPV. 

bits 13 through 17 are the 
decimal places. If bit 12 
is the number of Ps. 

bits IS through 35 contain the 
the item in bytes. 

a PICTURE 
before the 

number of 
is 1, this 

size of 

5. For procedure names (which cannot be used for calls to COBOL 
subprograms) 

CODE: 7 
IN ARGUMENT LIST: XWD 340, address 
ADDRESS: that of the procedure 

The return from a subprogram (via POPJ 17,) is to the statement after 
the call. 

C.3.S.2 Calling COBOL-IO Subroutines from FORTRAN-IO Programs - To 
call COBOL subroutines use the standard subroutine calling mechanism: 

CALL CaBaLS (args ••. ) 
X=COBOLS (args .•• ) 

subroutine call 
function call 

You must have compiled the COBOL subroutine using the COBOL compiler 
described in the DECsystem-lO COBOL Programmer's Reference Manual. 

C.3.9 LINK-IO Overlay Facilities 

LINK-IO provides several routines that are accessible directly from a 
FORTRAN-IO program. These routines are presented here briefly, 
together with the FORTRAN-IO specification of their parameters. In 
general, LINK-IO performs these functions automatically. These 
routines are available only for your convenience. Full details of the 
use of the overlay facilities can be found in the LINK-IO Reference 
Manual. 

C-22 



WRITING USER PROGRAMS 

C.3.9.1 Conventions - The following terms are used to describe the 
parameters to LINK-10 overlay routines. 

File spec 

Name 

List of link names 

The routines available are: 

INIOVL 

GETOVL 

RUNOVL 

REMOVL 

LOGOVL 

A 1 iteral constant consisting of device: 
filename .ext [directory] 
A LINK name or number that is a 1 iteral 
constant or variable. 
A sequence of name items separated by 
commas. 

(File spec) Used to specify the overlay 
file to be found if the load time 
specification is to be overridden. 

(List of link names) Used to change the 
overlay structure in core. 

(Name) Loads the specified 
transfers to that LINK. 

LINK and 

(List of link names) Removes the specified 
LINKs from core. 

(File spec) Used to specify where the log 
file is to be written. If no arguments are 
given, the log file is closed. 

For a full description of these routines, refer to the LINK-10 
Reference Manual. 

C.3.10 FOROTS/FORSE Compatibility 

The information presented in Sections C.3.10.1 and C.3.10.2 is 
intended only for those users who have programs and data files that 
were developed using the F40 FORTRAN compiler and the FORSE object 
time system. The following sections describe the manner in which both 
upward and downward compatibility between the FORTRAN-10, FOROTS and 
F40, FORSE FORTRAN systems may be achieved. 

C.3.10.1 FORTRAN-10/F40 Data File Compatibility - Table C-2 describes 
upward compatibility of data files (FORSE TO FOROTS). Table C-3 
describes downward compatibility of data files (FOROTS TO FORSE). 

C-23 



WRITING USER PROGRAMS 

Table C-2 
Upward Compatibility {FORSE TO FOROTS) 

FORSE 
File Type 

1. Sequential ASCII 

2. Sequential Binary 

3. Sequential Mixed files 

4. Random Access ASCII Files 

5. Random Access Binary Files 

May Be 
read By 
FOROTS 

Yes 

Yes 

Yes 

No I 
No 

C-24 

In The Following 
Manner: 

May be read directly; 
record positioning 
operations, e.g., 
BACKSPACE, SKIP RECORD, 
may be used. 

May be read directly in 
a forward fashion only; 
record positioning 
operations are not 
permitted. 

May be read directly in 
a forward fashion only; 
record positioning 
operations not 
permitted. 

NOTE: We suggest that 
a random access file 
be read (using FORSE) 
and be rewritten as a 
sequential file that 
can be accepted by 
FOROTS. 



WRITING USER PROGRAMS 

C.3.10.2 Converting FOROTS Data Files to FORSE-Acceptable Form - The 
following paragraphs describe procedures that may be used to convert 
FOROTS sequential mixed, random access ASCII, and random access binary 
data files into a form that can be read by FORSE. 

Conversion of FOROTS Sequential Mixed Files - We suggest the following 
procedure to convert a FOROTS sequential mixed file into either a 
sequential ASCII or sequential binary file acceptable to FORSE. 

1. Prepare and run a FORTRAN-IO I/O program that will produce 
either a sequential ASCII or a sequenial binary output file. 

2. If a sequential ASCII file is produced, it must be 
line-blocked before it can be read by FORSE. Line-blocking 
is accomplished by copying the file using either the system 
COpy command (with an A switch) or PIP. The copy will be 
line blocked and will be acceptable to FORSE. The following 
is an example of the command sequence needed to line-block 
the data file FOROT.DAT: 

.COPY FOROT.DAT=FOROT.DATA/A 

3. If a sequential binary file is produced, it must be 
record-blocked before it can be read by FORSE. 
Record-blocking is accomplished using the /K feature of the 
program BAKWDS. The following is an example of the command 
sequence needed to record-block the data file FOROT.DAT: 

.R BAKWDS 
*FOROT.DAT=FOROT.DAT/K 

C-2S 



WRITING USER PROGRAMS 

Table C-3 
Downward Compatibility (FOROTS TO FORSE) 

FOROTS 
File Type 

1. Sequential ASCII File 

2. Sequential Binary File 

3. Sequential Mixed File 

4. Random Access ASCII File 

5. Random Access Binary File 

May Be 
Read By 
FORSE 

Yes 

Yes 

No 

No 

No 

C-26 

In The Following 
Manner: 

This operation is 
permitted if the file is 
line-blocked. This may 
be accomplished by making 
a copy of the file using 
either the system copy 
command (with an A 
switch) or the PIP 
program. The resulting 
copy will be 
line-blocked. 

command 
to line 

file, 

An example of the 
sequence needed 
block a FOROTS 
using PIP, follows: 

.R PIP 
*FOROTS.DAT=FOROTS.DAT/A 

This operation is 
permitted if the file is 
record-blocked. This 
type of blocking is 
accomplished by using the 
/K option of the program 
BAKWDS. The following is 
an example of a command 
sequence which 
record-blocks a file . 

• R BAKWDS 
*FORSE.DAT=FOROTS.DAT/K 

(See Section C.3.10.2 for 
suggested conversion 
procedure. ) 

(See Section C.3.10.2 for 
suggested conversion 
procedure.) 

(See Section C.3.10.2 for 
suggested conversion 
procedure. ) 



WRITING USER PROGRAMS 

Conversion of FOROTS Random Access ASCII Files - We suggest the 
following procedure to convert a FOROTS random access ASCII file into 
a form acceptable to FORSE. 

1. Prepare and run a FORTRAN-10 I/O program that will create a 
sequential ASCII file consisting of the records of the random 
access file. 

2. Line-block the sequential ASCII file using either the system 
COpy command (with an A switch) or the PIP program. The 
following is an example of the COpy command: 

.COPY LNBLK.DAT=SEQFL.DAT/A 

The foregoing command would produce a line-blocked copy 
(LNBLK.DAT) of the sequential file SEQFL.DAT. 

3. Prepare and run an F40 I/O program that will read the file 
produced in step 2 and will rewrite the file as a FORSE 
generated random access file. 

Conversion of FOROTS Random Access Binary Files - We suggest the 
following procedure to convert a FOROTS random access binary file into 
a form acceptable to FORSE. 

1. Prepare and run a FORTRAN-10 I/O program that will create a 
sequential binary file consisting of the records of the 
random access file. 

2. Record-block the sequential file. This is accomplished by 
using the /K feature of the program BAKWDS. The following 
example illustrates the command sequence required to convert 
the file FOROTS.DAT into the record-blocked file FORBLK.DAT . 

. R BAKWDS 
*FORBLK.DAT=FOROTS.DAT/K 

3. An F40 I/O program may then be written to convert the 
sequential record-blocked file into a FORSE generated random 
access file. 

C.3.l0.3 General Restrictions - Observe the following restriction 
during the preparation of FORTRAN-10 programs and data files: 

CHAIN functions (as implemented for the F40 compiler) are not 
implemented in FORTRAN-10. An overlay capability that is greatly 
superior to CHAIN is available with LINK-10 version 2. 

C-27 





APPENDIX D 

FOROTS 

This appendix describes the facilities that FOROTS provides for the 
FORTRAN user. FOROTS implements all standard FORTRAN I/O operations 
as set forth in the "American National Standard FORTRAN, ANSI 
X3.9-1966." In addition it provides the user with capabilities and 
programming features beyond those defined in the ANSI standard. 

The primary function of FOROTS is to act as a direct interface between 
user object programs and the DECsystem-lO monitor during input and 
output operations. Other capabilities include: 

1. Job initialization 

2. Channel and core management 

3. Error handling and reporting 

4. File management 

5. Formatting of data 

6. Mathematical library 

7. User library (non-mathematical) 

8. Specialized applications packages 

9. Overlay facilities 

10. F40 compatibility 

D.l HARDWARE AND SOFTWARE REQUIREMENTS 

You can run FOROTS on a DECsystem-lO KAIO, KIlO, or KLIO processor. 
FOROTS may interface with all DECsystem-lO peripheral devices. In 
addition to monitor or user program requirements, a minimum of 14 
pages of user core is needed to run FOROTS. 

D-1 



FOROTS 

The software required with FOROTS is the 5.06 monitor or a later 
version. Other software items that can be associated with FOROTS 
include: 

1. The MACRO-10 assembler (version 47 or later) 

2. The LINK-10 loader (version lA or later) 

3. The system program COMPIL (version 22 or later) and 

4. The FORTRAN-10 compiler (version 1 or later) 

D.2 FEATURES OF FOROTS 

The following list briefly describes many specific features; more 
detailed information concerning the implementation of these features 
is given later in this appendix. 

1. Your program may run in either batch or timesharing mode 
without requiring a program change. All differences between 
batch mode and timesharing mode operations are resolved by 
FOROTS. 

2. Your programs may access both directory and non-directory 
devices in the same manner. 

3. FOROTS helps provide complete data file compatibility between 
all DECsystem-10 devices. 

4. FOROTS does not require line-blocking (a requirement that 
each output buffer must contain only an integral number of 
lines). 

5. Up to 15 data files may 
number or all of the 
randomly. 

be accessed simultaneously. Any 
open data files may be accessed 

6. FOROTS treats devices located at remote stations similarly to 
local devices. 

7. Programs written for magnetic tape operations will run 
correctly on disk under FOROTS supervision. FOROTS simulates 
the commands needed for magnetic tape operations. 

8. You may change or specify object program device and file 
specifications via a FOROTS interactive dialogue mode. 

9. Non-FORTRAN binary data files may be read in image mode by 
FOROTS. 

10. FOROTS provides interactive 
processing routines. These 
execution of the program 
routines whenever designated 

program/operating system error 
routines permit you to route the 
to specific error processing 
types of errors are detected. 

11. An error traceback facility for fatal errors provides a 
history of all subprogram calls made back to the main program 
at the address of the point where the error occurred. 

D-2 



FOROTS 

12. FOROTS provides a trap handling system for arithmetic 
functions, including default values and error reports. 

13. You may mix ASCII and binary records in the same file, and 
both may be accessed in either sequential or random access 
mode. 

14. FOROTS permits your program to switch from READ to WRITE on 
the same I/O device without loss of data or buffering. 

15. Although primarily designed for use with 
compiler, you may also use FOROTS as an 
system, as an I/O system for MACRO-IO object 
for FORTRAN-IO and F40 object programs. 

0.3 ERROR PROCESSING 

the FORTRAN-IO 
independent I/O 
programs, and 

Whenever a run-time error is detected, the FOROTS error processing 
system takes control of program execution. This system determines the 
class of the error and either outputs an appropriate message at the 
controllinq terminal or branches the program to a predesignated 
processing-routine. 

0.4 INPUT/OUTPUT FACILITIES 

FOROTS uses monitor-buffered I/O during all modes of access except 
DUMP mode. Display devices are supported in dump mode; formatted 
text is handled in ASCII line mode; unformatted files are accessed as 
FORTRAN binary files. (Refer to DECsystem-lO Monitor Calls Manual.) 

The following paragraphs describe I/O data channel and access modes. 

0.4.1 Input/Output Channels Used Internally by FOROTS 

Fifteen software channels (1 through 15) are available in I/O 
operations. Software channel 0 is reserved for the following system 
functions: 

1. The printing of error messages, and 

2. The loading and initialization of FOROTS 
operations) 

(GETSEG UUO 

Software 
transfer 
table is 
channel 
assigned 
FOROTS. 

channels 1 through 15 are available for user program data 
operations. When a request is made for a data channel, a 

scanned until a free channel is found. The first free 
is assigned to the requesting program; on completion of the 
transfer, control of the software channel is returned to 

0-3 



FOROTS 

D.4.2 File Access Modes 

Data may be transferred between processor storage and peripheral 
devices in two major modes - sequential and random. 

D.4.2.l Sequential Transfer Mode - In sequential data transfer 
operations, the records involved are transferred in the same order as 
they appear in the source file. Each I/O statement executed in this 
mode transfers the record immediately following the last record 
transferred from the accessed source file. A special version of the 
sequential mode (referred to as APPEND) is available for output 
(write) operations. The special APPEND mode permits you to write a 
record immediately after the last logical record of the accessed file. 
During the APPEND operation, the records already in the accessed file 
remain unchanged; the only function performed is the appending of the 
transfY2red records to the end of the file. 

You must specify transfer modes (other than SEQINOUT) by setting the 
ACCESS option of a FORTRAN-10 OPEN statement to one of several 
possible arguments. For the sequential mode, the arguments are 

ACCESS='SEQIN' (sequential read-only mode) 
ACCESS='SEQOUT' (sequential write-only mode) 
ACCESS='SEQINOUT' (sequential read followed by a sequential 

write) 
ACCESS='APPEND' (sequential Append mode) 

D.4.2.2 Random Access Mode - This transfer mode permits records to be 
accessed and transferred from a source file in any desired order. 
Random access transfers must be made between processor core and a 
device (disk) that permits random addressing operations to files that 
have been set up for random access. Files for random access must 
contain a specified number of identically sized records that may be 
individually accessed by a record number. 

You may accomplish random access transfers in either a read/write mode 
or a special read-only mode. You must specify random transfer modes 
by setting the ACCESS option of an OPEN statement to one of several 
possible arguments. 

ACCESS= 'RANDOM , (random read/write mode) 
ACCESS='RANDIN' (random special read-only mode) 

D.5 ACCEPTABLE TYPES OF DATA FILES AND THEIR FORMATS 

The following paragraphs describe the types of data files that are 
acceptable to FOROTS. 

D,5.l ASCII Data Files 

Each record within an ASCII data file consists of a set of contiguous 
7-bit characters. A vertical paper-motion character, such as, a Form 
Feed, a Vertical Tab, or a Line Feed, terminates each set. All ASCII 
records start on a word boundary; the last word in a record is padded 
with nulls, if necessary, to ensure that the record also ends on a 
word boundary. Logical records may be split across physical blocks. 
There is no implied maximum length for logical records. 

D-4 



FOROTS 

NOTE 

On sequential input, FOROTS does not 
require conformation to word boundaries; 
it reads what it sees. Therefore, any 
file that is written by FOROTS will 
conform to the foregoing format 
requirements. 

D.5.2 FORTRAN Binary Data Files 

Each logical record in a FORTRAN binary data file contains data that 
the executing program may reference with either a READ or WRITE 
statement. A logical record is preceded by a control word and may 
have one or more control words embedded within it. In FORTRAN binary 
data files, there is no relationship between logical records and 
physical device block sizes. There is no implied maximum length for 
logical records. 

D.5.2.1 Format of Binary Files - A FOROTS binary file may contain 
three forms of Logical Segment Control Words (LSCW). These LSCWs give 
FOROTS the ability to distinguish ASCII files from binary files. 

LSCW 
START 001+ the number of words in the segment (exclusive of 

any "END" LSCWs) 
CONTINUE 002 indicates that the segment of a disk block 

boundary continues 
END 003+ number of words in the preceding segment including 

LSCWs. 

If the access you specify for a file (through the OPEN statement 
ACCESS = parameter) is 'SEQIN', 'SEQOUT', or 'SEQINOUT', all three 
LSCWs may appear in a record. If the access you specify is 'RANDIN', 
or 'RANDOM', all records are of the same length, and there are no 
CONTINUE LSCWs. 

The following examples illustrate the LSCW. The random access binary 
file contains only 001 and 003 LSCWs. 

C ~OOK AT A BINARY rI~E AND SEE THE ~O;leA~ SEGMENT 
C CONTROL WORDS. 

OP£N(UNIT=1,ACCESS='RANDOM',MOD£.;BINA~Y'. 
1 RECORO=1~a) 

1-5 
WRITE(1'~) (I. J=1,1ea) 

oJ:, 
WR1T£(1'2) (J,K=~,10~) 
END 

D-5 



FOROTS 

1210('000 0010210 00111145 -Number of words 000064 00!/'1""1IJ ;:," ""''' 5 
00~01Z11 :a0~1210121 210111121"5 in record counting 1210Nl65 0011JIZII'JIIJ ,,0 III 121 IIJ 5 
.11I0~002 1'J011!I2I!1l21 """12l1115 END LSCW or the 011H3"66 1Z101Z1IZ1IH!I ~OIll!1l11J5 
2121 ic: 0 1213 011J11J0212! 0011111105 number of words 00:H'I67 "",,0"'21 ~H'lI/lI'lJ"5 

following this 
I2I1Z1~004 0017JI2I~17J ~""005 word to the "0:~07121 01110012l11l iZJ t!l1II 12105 
002121"5 021e'0"21 1IJ~"~"5 END LSCW. 00~'071 o QH'J 0 21 21 :a~1/I12l"5 
"0 C 121(Il6 IH!l 0 21 0111 1ZI"""05 0Qn~1ZI72 01/11/1012l11J 0011112105 
1IJ0~007 2111"131210 "O21005 IIJIU073 211/1 U 2121 1/1 1Zl001/1 5 
1IJ00010 0000013 01211/1005 1!0~0H 01/1U01/l 00011J1IJ5 
210.::1011 00012100 21°001/15 IIlU075 0111U01/l 012101211/15 

1210~012 000210121 ,,00""5 "0 ,HJ7 6 00121"'021 ,,111111"05 
000013 0(21 " (21 0 IIJ ilj 1210 121 "5 12100077 000"~121 1/IV'!1II1Z111J5 
2121;;12114 12'(2I01Z112!" 11!1ZI001/15 000100 001Z10~1/I J"0e1135 
000015 130 Z·" 0~ 2]00131215 00J;Ul1 001Zl0"13 I2J "121 "05 
00,;016 1Zl001313~ 12102101215 0121,~ HI 2 i1lIH"'eI" 2100005 
00~017 rIl~12l00~ 121 l'!01H!I 5 0r1J:'l103 riJ01ZlrIJ021 2lt?l0"1215 
00/02121 000130~ 11!"1/I1305 000104 ~I2IZf2l0~ 002101215 
"0,:021 0001300 ~1/l12l0"5 00711215 2101211313(21 0011101215 
00;~022 0121131313121 0001305 00?106 0021000 000005 
130.: i1l 23 rIllIIl/ll2Jl/l13 130021 IIJ 5 00~~107 00212100 0000215 
"0:~1Il24 eiI2l0i2J2J0 12J0""05 130!t110 I1l III 1300121 2J"210215 
0r1JZ025 000211313 1311112101215 "00111 012100013 000011J5 
0,';'026 000ei013 ~""011J5 013;[,112 r1JI2I0r1llZl1Z1 12J1'J01305 
021,,;027 00 121 0 ii:HJ 12101210(215 1212113113 I1l11100U 0001/1"5 
0~,,~ 0 3121 rIJI2IIZlriJ011J 001210215 "0C114 121~0"11!21 0""0~5 
"0;]031 1210 rIl i1l 00 01110005 00~115 el0000~ 0"111121135 
0210032 121121 21 III 00 00012105 131210116 ""13 "12l 0 1300t?l,,5 
01212033 013013130 13"""(215 130\~117 00130021 el13~2!135 

1210/1334 13"131211/113 11!"0t?ll2l5 00~12121 ell2llZltZll2l11J 12J~0011J5 

"212035 "00212121 1/I~00!/l5 000121 11!0131D00 000211215 
0'H'036 011J IZIIZl 3121 I1J "'0 111 05 130CJ122 0nlll1/l0 ~~001215 

eJ2I0037 o I1J 00 11!121 ~0121011J5 000123 0210(2100 21021eJ05 
0liHl040 0000321 001110,,5 00~124 210011100 1IJ0111:2111J5 
O02'041 011J12!02!QJ 121"12101115 01/J~125 0"UU 0021005 
000042 00130021 o ° QHH'l , 001H26 !/l"UU 212:"11105 
00,,043 11100''''121 ril"'QJ1ZIIIJ5 1!J1/J0121 UUU 12112!1UI"5 
"0~044 0011!000 13111012105 BI/Jel131i1 01210"12121 121 0 IIJ2I " 5 
00;'045 000011!21 ~"0005 BU1:31 "02J000 rIl011111J11J5 
0~HH~46 ~2I0I1JelllJ 1111211111305 01/J~132 I1IQJUIZIIII 1i112!1UI1IJ5 
1IJ"?047 011J11l00111 11101110215 001Z1133 13001211110 I1JIZIUQJ5 
"""~2150 210 121 III 2121 0021211115 0"013" iIl000 12121 I1Ji2!U2l5 
00011J51 0U000 111 I'JQJ13 215 0IH'I13, 00 rlI011111J 1112100215 
000052 ""I2I(lJ1Il11J 13 0 21211215 21"1ZI136 0210131110 13 III lUI 1115 
00;j 05:3 0011Jl2liZl0 000005 000131 1112101112121 21 012111J11J 5 
00,~054 ~01/l021(21 1300005 11!0e140 132101212121 0"121005 
12!0?055 (?J012!l'l11l121 11! 0121 t'l05 1300141 rIl011!1/l011l 21 00 IZI 11J5 
000056 0001/J00 0011101215 "0~142 0121 o III IZI 121 0i:l11J~05 

00l)12I57 "(21111000 111"'1211211/15 01Z1:t.143 000121ell1J ~fl!QJQlIll5 

00ill2l60 011J13000 000005 01/J1~144 0000ell1J 12)0111005 
002061 2l Ii"!l 0 2l11J 001110k'15 001]145 12!030011J 0021146 -END LSCW 

00312162 12!(2I~"00 ~00"'fZJ5 00?146 2111J H'l 21" 0"0145 Containing the 

1210V1IJ63 II! \11[1';' 011J 0021005 210/147 21f2100ii'l1lJ 000"11!7 number of words 

130 (.1150 o IiHl0\?!1IJ 021021217 in the record 
including LSCW's. 

D-6 



FOROTS 

"r/H~151 rllell/J""IIJ ,,"U2I7 00;,233 i1lelUU el0U"7 
l!l~n152 111" Ill" ar/J 011JU"7 01/H!l234 " IIJ I/J0 0I1J ,,0Gl0Gl7 
"I/lZ153 0e1''''011J 0 1l1 ""'1IJ7 000235 "IIJUIIJIIJ 00""1IJ7 
"0~154 0"121"~0 lill1lel007 1!l1/l0236 i1l01/J0U 1210"""., 
i1l1il.1,155 II} " U 1110 ~00007 00~237 i1l0U0I1J Z"B0r2J7 
00;-156 0"""30 2II!JB~07 1!l0~240 "0UIi!It/J 0"1IJ1Il0' 
"1/J;~157 I1lf&H"H!lr2J 21 011J011J 7 00~241 fIl ell! 21 21 r2J "IIJ Ul!I 7 
"00160 0f1l Iil 0210 011lr2J1'Il07 0f1l il, 242 0f1l2lfZlfllllJ Qlflll/ll1!07 
1!l0,~161 ~fIlI2'02lPJ 011lU,,7 IIJ0ilJ243 00f1l0011J r2J011HH1J7 
0(1)<'.162 """"11J0 ~11J"1'Il"7 01/1~244 o 11HH' 21 " "fIl0"07 
01/1U63 "0""U 000007 "0~245 00Un ""0"07 
0O(1164 I1JfIl0"00 0"'111007 00~~246 00" 21 0I1J 0011""'7 
001165 ~0It'J000 12100007 "I/I'Z247 01lHHI'00 IIJ!!I0i1l"7 
00,~166 "0U"" 011l011J1'/l7 0" ?250 11J0000ilJ1/J0 ""IIJ I'll 07 002167 00 un ,,"Uel1 OO0251 0U"U 121"0"'07 
00 ;117O """"U ~"'U"7 "07.252 ""un 0011"11", 
1110~~171 ~"U00 000U1 00~253 

"" UI1J" ,,000"7 
00(172 "i1l I'll 0o" 12!0'H'I07 1110",254 0n0n ,,0U07 
i1l0Z17J ""~01210 021"012!7 0~"'255 rl'00"'21l1l "210007 
0'Wl74 001Z10~0 eJ00r1H" 00~'256 00111000 ,,01211'J07 
00~1175 "'''013''''' 0" "" 0 7 1II1Il?257 "0i1l000 0002'~17 
00t176 ~0~000 121"0007 01/l<12611l 1Z10 U0I/J 0""!!!07 
i21iHl77 2!01210~" 300~07 i210Z261 210UU "210007 
0I1L~20" ~0002!0 0!2!01/107 2I1Il~'262 00un QlIZI0007 
0O;'201 "i1l0021Ql 00000' 1II1Il3263 Z0UU QlVIQI007 
1210:2i1l2 "0 ,"1J 12!0 0"0o,,7 1210~;264 0012111"210 1ZI1Il011l0'1 
1210.:203 0000~0 0C'JU07 1110~~265 0"12101210 IZIIZJUrIl1 
I2Iru204 2!~HJ012!0 a021007 00v.i266 "021000 0fl10007 
00721215 fIl2l1ZJ000 ~001Z107 011h'267 00121fl1IZJ0 0"00"" 
00:!206 "0 12' 0 Ic'!I2I 0""00' 11112IV:270 ~"""00 ""0007 
0r1l::~207 00UI2!0 021"U7 I2I'H~271 0000f1H!1 0"011107 
0".I2U 00"000 1210000' 0121J272 " GU'" 12!0 " " "" 0 7 00n11 000121U 0r1l0007 I!lllll273 ""0000 a1l'012107 
1Il0~'212 "'00121121" 0121011107 lIl"l274 II"H'" 1210 ~00n' 
00.;213 "0 III III 30 0"012!1.'J7 "lIll275 0"2!2I210 o I!l QH'J "7 
007214 1ZI"00U " " 0 2IIIJ 7 1110J276 "00211210 I2JI2IU0' 
00,:215 2! 00011H'J 00012107 00,z277 rIIUIlJU 011'00"7 
"'In.~ 216 i2JIallJZU 000007 00;,J3121f1l Z000U 0"0007 
fIl0(~217 00121000 0QlI/Ji1lfa7 00XJ3i2J1 "n0U I2JrII"QI" , 
001220 i2Jfa00U ~i2J0I1J07 i1l0~3"2 01/H!!i2l0IIJ rIlrll0007 
rlllIJ::!221 00tl111l00 rIlrll0007 00Z3i2J3 i2JfaUU i2J11J0(11fa7 
1lJ0J222 UUU (lJfIlr/llll01 1Il0W;J12J4 011JQle00 fa 21 0 "" 7 
000223 I1lIUU 0Z0121e7 001~31215 011J""00 0210rzJi2J7 
i1l1lJ...,224 (11 I/J 0000 rIl1lJ0""7 IIlIIHl306 2I0121faU "rlI "I2J 07 
1Il02J225 rIl0 2!i2J I/lIIJ ,,0111001 00~3"7 000000 11l1'J01/11/J7 
1Il00226 IIlzun fa III IIIQl III 7 0003U 0faUU (IJ 000 0 7 
1IJ0~l227 i1l00000 rIl"n07 01110311 IlJI/JUI2I0 I1JZ0i2Jfa7 
1Il0~231Z1 i2lelQH'l1/lllJ 000"'" "00312 ""un 011l0"07 
000231 rIllIJUI/lIIJ a IlJIII "01 QlIHJ313 0UUB ra0111146 
00;;1232 i2J"rIli2J011J ,,00"0' 

D-7 



FOROTS 

In the sequential access binary file, the second record crosses the 
l28-word disk boundary and contains a 002 (CONTINUE) LSCW. 

C ~OOK AT A BINARY rt~£ ANO SEE THE ~O'tCA~ St;MENT 
C CONTROL WOROS. 

(II III .'1Il (II III 
flJIIlJ0f1l1 
1110,~0f1J2 
00;~flJ03 
1110;'0f1J4 
1Il0.J1Il05 
1Il0,~011l6 
00.~1II1Il7 
(110,'UfIJ 
111111-,'011 
1110 •. ·U2 
1Il0;~U3 
1Il1ll<~flJ14 
0rPlll15 
21 1211-1316 
2I1Il~017 
flJI/lllZl21/1 
o III Nli 21 
o III I: III 22 
011l,~1Il23 
flJr/j .~1Il24 
1Il0/f1J25 
(/10·'11126 
0111.~027 
(/I1Il.~ 121 3 III 
00'::(1131 
00;~flJ32 

IIllh~"33 
IIlllll~lIl34 
01/l~(II35 
121" ~H.l,J6 
00212137 
0~'H'" 4O 
01/lG!II41 
I2IfIJ :-~!II" 2 

OPENCUNIT_1,MOOE·'BINARY') 

1., 
WRIT£(1) (I, J=.'1e~) 

J." 
WRIT£(l) CJ,K=1,l~~) 
END 

0eU011l 2I"'U45 
~flJQI"U 00 IIJQ! fIJ 5 
2111J1IJ~0fIJ {J011J0f1J5 
IIlllJrll00fIJ 2!"'1IJ"215 
0f1JrzJ0~Jrll 21011JOfIJ5 
0"l1Iill~12I 0"'111",,5 
011lfll0f1l0 0l'lfIJ0215 

0"~0?J" fIlrzJe0f1J5 
IIlfIJtH'21fIJ 21 2! I/J2I illS 
IIlfIJ 021 ?J(IJ 011'1II(II~5 

lI(11"'''21e 1/lV'J1II0~5 

0000o" ""0005 
~fIJ~rl!2IfIJ rzJ"lIllZ'flJ5 
fIlfIJ000fIJ ill 0111 "1215 
0f1J00011l 0k'l1ll01/l5 
IIlllllllilll2lfIJ ~~flJ005 
:?lfIJe0 \!lQJ III "IZI 1211215 
21121f11I!l~fIJ i21"UflJ5 
2lfIJrIlill:'l0 1/l~0I2IflJ5 
2lfIJIIl00fIJ IIlQllZl2lfIJ5 
1Il(ll0iZl2lflJ 0f1!flJIIlfIJ5 
IIlfIJIIl0rllfIJ (,!l1ll1ll005 
IIlfIJ III 00fIJ I/llllfIJIIl05 
2lfIJ00~1/J ilIlIlfIJ0~5 
012112111l~1II i21lIll/llllfIJ5 
0"IIlIllU 011lQlL'lflJ5 
IIlfIJIIl011lfIJ flJIIlQll2l05 
"1110000 flJIIlllllllfIJ5 
IIll!llllrllQJfIJ flJIIlQll/li215 
IIIfIJ 02! 210 ~"'I2I21fIJ5 
ri!lfIJ1/J011lf1J ""1212J!1l5 
r1J fIJ 21121 2IfIJ r1J0f1J~"5 
ell2Il/12!ri!lfIJ ZI1'fIJ0f1J5 
I1J fIJ fIJ 121011l 121 (llflJ1i'l12!5 
IIJl/lfIJl2IlIlfIJ 21°""215 

D-8 

0l?h1043 111 fIJ 2' 2! 0rll I2l21U(IJ5 
flJlIl~'044 2lfIJrzJ(lJ0fIJ 01lJQllllfIJ5 
00~lfIJ45 I1JflJU00 IlJIZ!UflJ5 
III 1/,,:) 046 0f1JUrzJfIJ 0IIlQlel/l5 
flJ0J047 fIlfIJ0(11QJ0 21011J"""5 
01112105(11 III (110(IJ 00 21 ~ Qlr(J (II 5 
00.1051 IIIQlUQJ0 0"e~"5 
flJ0J(II52 flJlIJnu ~"lIJfIlfIJ5 
flJ02053 (/I1IJ1II03fIJ 011lllJrllfIJ5 
01/".:054 IIlfIJrlllll210 ~0~rlIflJ5 
(/100055 1Il~21"U flJrilUlZl5 
(/10. 1056 002HIl12l0 fIJ"UflJ5 
00·::057 0f1JfIJ(IIU 21f1lQllllfIJ5 
1110,'06121 2JflJI1'IIlU (2l0f1J01215 
2I0l061 ~flJl/l~U 121 0 111005 
01tH(II62 0f1JlIll:'!2lfIJ 21 III flJlIl 121 5 
011l?063 21(11 111111 IIlfIJ ~IIlIllQJflJ5 
1110-"1Il64 011111l0"'fIJ i1l1ll~12l1215 
flJlIl.11ll65 IIlfIJU0fIJ i/l11l12llll1/l5 
1II1Il~1Il66 0fIJ 121(11 IIlfIJ ~"1!J1Il11l5 
2I1Il?1Zl67 0f1JI2l1ll0fIJ 2l 0 1Z10f1J5 
1Il1/l;;;070 00 111111 QlfIJ """01115 
1Il1ll?071 0f1JI/l1/l0fIJ 0 0 f1J011l5 
"0;:'072 IIlfIJlIll2li'1/l III ""ill I/l 5 
IIllllt~~073 IIlfIJlIllIIllll/l ""!/J005 
IIII/ltlll74 III III I/l 121 00 2Hll 1IJU' 
01/l~(II75 13U III 21 III QlIIllll11JllJ5 
IIlrzJi'1Il76 IIlfIJ III III "" III1!llUflJ5 
01/l~11l77 I2lfIJ2'0011l 0t'!lIll1lfIJ5 
1II1/l.11"'121 fIlfIJ 2'111 0fIJ 2l"'1IlC1!12I5 
0111(11rtJ1 ?lfIJlII!II0fIJ ~0121i21I215 
"121::102 rlJfIJ"ri!l1lJ1/J 21"1210215 
11l0:'.Ul3 1IJ!2II/J021fIJ 21"flJ005 
1Il001r1l4 2lfIJ2!0~fIJ 21 0 0121(115 
1110;:)105 r1l!2lrl!2l0fIJ ~0012lfIJ5 



FOROTS 

01!1e106 21~HH'I",,, ,,0111005 1!l0Z173 00"""" 00001117 
11l0,ilU7 ",,"21"0 00111005 00;~174 "0"""" 000007 
I1II/l~lUJ 00000" 0011101115 00k"175 002121,," 00111"~1 
11I0~~111 0111000111 0"'02!05 00Z176 0111 0I.'J U ill 0"" 0 7 
11100112 {l''''i:10111 0"'0""5 I1I1/l~177 0012101210 00111007 
011H~113 "0"0,," o IHHH' 5 I1I1/l.1200 011l2~011l I2l r/l 0 114 -Continue LSCW. 
00.1114 00"00111 12100""5 01Cl~201 0001il011l ""'0 LlI 111 7 
002115 00001110 011!11l11J05 ""0~:202 C'J11I 021 1110 ill 0111"07 
000116 "" 21 Iil "0 000005 00e211lJ r,HHHH'l1ll 12l011l1ll07 
003117 "00000 21011111105 1111210204 "001ill1J1Il o "11121 III 7 
0r'cH!!120 0""1il"" 1lI0011105 :1!0l2215 2100000 ~11!1Il11J01 
"11I~l121 :1!0111Q!00 1iJ00005 1il1/l0206 0000011l 1110111007 
0~H"122 0000"0 21""005 01/l,~207 2100""0 0"'0""7 
00e123 eJeJ11I0"0 a"""05 00;'2U o !II " 000 o 011HlI 0 7 
00;,1124 "0"0"" (1l11!11I11l05 000211 011100011l 000007 
11103125 eJ0002'0 000005 002212 0111000111 00021211 
1Il0~126 00~000 ° "11I011l 5 000213 "0111021111 02'1Il007 
f1I0~127 un.., 02'11101115 00,321<4 00001'10 131li001117 
000130 00nu "Ill 11121 0 5 001215 0111 rlI0 1ZJ0 0"011107 
00~131 1II1!10000 0111"""5 00;:'216 "0 2":'l0 0 0210"'" 
000132 002!21011l 0111""05 002211 0000(Z1111 00"001 
11I0~133 0111111000 00012105 0riH' 2211 0"00013 13""007 
00~134 000000 01111110 0 5 000221 0U0210 01111/l2101 
00~135 000000 02'0005 000222 iJ"'"1iHll 000007 
01i:l'H36 o 111 11I0011l 000005 000223 01!1UI1IIIl 00U07 
000137 0000"0 0011100' 01210224 011100"0 0011101117 
00ii~14f/1 ""U00 ,,001ZJ05 0QH~225 ""000111 1/10111007 
01i:lr.141 111021121"0 00000' 000226 "0 r1l 0 r1l1ll ,H'l III 0 111 7 
001142 " 0 0 13 IiHll 00111005 003227 011l00011l 000007 
00~143 ""0000 00111005 0021230 00000111 1/100"07 
00?144 01110000 02'1110215 001:!231 01110030 Ql 0 111 k'! 01 
00n45 003"2121 00111146 002232 01111210210 Qlli:l1ll011l7 
00V'146 0010 \?J 111 00011132 - Number of 002:233 11111100011l 00011l~7 
00J147 000""0 0~0(11"7 words to 00i~234 00 \?J III 0111 ""11101117 
00.'150 eJ~00rzJ0 til"0"07 next LSCW. 002235 "000021 210001117 
01:'l0151 0~00rzJlIl 1')"0"217 01:'l.l236 el0,,0"0 00111007 
I2Il:'li~152 000~0111 1211'111112107 01:'lZ237 000000 1Z1011111l07 
0121~~153 'H~12I00111 21011l"07 QlI:'l<1240 0"""'''0 "","iZl'" 00(1154 0~rM1'0Z "~11I007 11I0C241 "~000121 ""~007 
I1Irihl 155 0~00"0 ~ " 111 ':'HIl7 00~242 ~11I"1:'l1'J0 00"12107 
eJ00156 0~H!0rzJ0 20111007 007243 0111001210 12101110137 
00~157 r;,00000 e~0"07 002244 12J1:'l~000 0"0007 
00,1,160 "0""0111 000007 00~245 0000111111 0"0"'07 
1110,-1161 ",!Ie) "0" ;:'00007 01:'ll246 000"0" """007 
00~1162 0001:'100 ~~0I1lel7 0121C247 00rzJ00111 o "'HH!l7 
01i:l:1 163 "000C'J0 ~0f1l"07 001'250 "0001'.1" i2H!J 111 0 111 7 
"0;:164 00"'''00 W:'l~012107 111012251 "02100" 0"'001111 
01!1l165 0~0"0" ~lZ!l1ItH!l7 00Q252 00,,000 0""007 
11102'166 00,,000 00111007 00;:1253 00 liHH'l III "~001117 
000167 ~0rzJ~"0 ~""0rzJ7 00,'254 1'J0!Z10~0 ~""Ql0' 
111121(1110 0021030 r;,00007 00~'255 flI021fl100 (1l00""7 
0riFn 71 00et000 11ll1!11l2lfil7 00J256 2)02121 12! 0 0"0"07 I/lI:'l,J172 12!0Q! 0 121 III 00111007 00;1257 00300111 0~11I31i!l1 

D-9 



FOROTS 

I'll 0 l" 261/1 "1/1 rll 0 I/J0 ,,2121007 00t:2n 0011l1/10l1l rII"000' 
1/l0~l261 1'3Q12! " rllrll 0021"07 1/l0~31'1l0 0000021 00210217 
l1liH~262 o ""!! 0 0IlI 0210007 00031111 21000021 0"Ql0217 
00Z263 11l000U O021"07 00~311l2 00000" 0"""'07 
111013264 "'Ql00rll21 000007 00l311l3 000"00 21~2111l07 
00~265 

0011J " " " 
0021007 00,;:304 0000021 0i11""07 

O00266 ""liHH'I0 000""7 0M~3"5 000"00 2Il1lrIH'l07 
11l0,~267 00U02I ,,0frH.'I2I7 "111.'.306 00"""" 21 I'll 21 li""7 
0":~271/1 0rll0"0111 ri""1II0rll7 rll0~31'1l7 0111 rll0 021 1/10111007 
"00271 o 'H'! " QJ2l 2101/121 1117 "0<:310 01110Ql021 012l2l1ll2l7 
(2I0i272 0111 2'0 Ql III 0021007 00.:1311 rll ':H?J 0 " " 01'l1ll0217 
1ll1lll273 01110000 o III ,,,,,,7 (2I1Il0312 021000111 00111""7 
11l1ll;:214 0"02'0111 0""01117 011l,{l313 011100021 III I1l 21 21"7 
1!!0Z275 0210000 1/I1ll0007 1!!0l314 0UlllIU 000147 
1!!0~j216 01/10000 "021,,,,7 

Image mode files contain no LSCWs. You cannot backspace this file. 

C ~OOK AT AN IMAGE MOO( Pl~( .ND SEE NO LOGICA~ SEGMENT 
C CONTROL WORDS. 

1110,HHl~ 
00~121"'1 
IIII/J 0 I!! 1/1 2 
IIIliHH''''3 
111121P!12!1/I4 
11I0<J1!I"'5 
130:'1111116 
12!1II.J,01117 
1210v.HlU 
11I0~fIl11 
111111 {) III 12 
11l0?1013 
I1IliH'1II14 
12!0~11115 
2101016 
012121017 
(21121011120 
11102112121 
1111212'022 
111021023 

OP£NCUNI TE 1,HODE8'IMAGE' ) 

1-5 
WRITE(1) (I, J=1,1"'" 

J=7 
WRl'TE(1) (J,K:1,1"~) 
END 

21 III I!! 1/1 00 0~01/11/15 
21U12!00 1/I~"005 
31/112!11101/1 2IIIIU05 
0U0"" e10~JrI!05 
o IZI2HZI 0 0 0"''''''1115 
e10012! " 1/1 001/1111"5 
01110121121111 0t:'1l/1l111/15 
ell/I~00111 W'l00"1/15 
21 " ° IZI(I' " 02!II!HI!05 
0"01/1U i}01/111105 
00 121111 eI I!I 1:l12I"C1ll2!5 
12'00000 01211/101115 
00001210 ei:?!I/II2!1II5 
0"l2!tl0" ;JJ~0'Hl5 
0"0000 11HZI " fIl0 5 
~0000Q! t-l0"~05 
001!!0~" elQl"11I05 
~0000Q! (l~"005 
00011121" 001/1005 
12I"012iQiI/l 00 "°1215 

D-IO 

1210.:112124 211/1011100 o ""121111 !5 
I!! 0 Q' III 25 211/112!1/I0" ~"'''1/I1/I5 
11100026 "'011100" 1/11211/1111,,5 
"0~021 0011l02!" 2I"012!05 
00il"31!1 12!"12! "11l 1/1 0"1!I005 
11I0~11131 01/1""0" 01211/112105 
000032 000111121" 1/11211/1111,,5 
11100033 1211/1 1/10 "11l 00"005 
1110~034 211/11/100111 0 0 001/15 
111021035 12!1!I11I012!" 001/111l"5 
"0;)11136 0U012!" 0Ql"111 1/1 5 
11100037 21" 1/10 01/1 0111111005 
11100041/1 O00000 00111005 
11100041 0000U 0210005 
1110("042 0001!!210 00001115 
0121312143 01210000 01!1U05 
11112Il:l044 0121000" 0210005 
1/10~045 0"121000 0121001215 
00~046 01110000 ~0"i1l05 
0121012147 0"0"00 "'''0005 



FOROTS 

111 rllliHlJ 5R1 I1InRlU ~"2II1I"~ 11100135 I1I"UU 0f112111J0' 
11J0i2J0!53, "UIiIIIJ" 12J1IJ2I0I!l5 IIJrllt',lJ6 U2I0U I2J"QJIIJ'" 
I1Ir11"'052 U011J011.1 0"""11.1' 00"'137 ri"~0I1Jf1IQJ ""QJ 2I1Z1 5 
00;'053 11I0UQJI!I I2J 11121 f1I1Z15 2Ie01421 I2l"U 011.1 0"'2111105 
12l0e!054 

III 0 "" "" "" 0 '" II" l1IeU41 I1IR1U 011.1 I1I"'IU'0' 
""~055 2!Uf1I1IJ0 ~"QJt2JIII5 11I0~142 ""UU o ilJlIl f1Il1.I 5 
12l0J056 011.10111"" f1I01Z1f1105 f1I0l14J 1Il0UU I2Jf1I~HI'1ZI5 
f1I0e!1IJ57 "1IJ00U 01/!QJIIl1Zl5 "01li44 l(I"UU 00QJI1I"7 
00~06" """f1IU 1IJ2I i"'" 5 

000.145 IZJ 1Z10f1I0IiJ IZI "0 IiJ ", 
1ZJ0llZJ61 ~H."H'U QlI1IQJ0"5 l1Ie·,146 ~""I2JU fc'J1ZJ2I1Il'" 
1ZJ0l062 0~1l!211!112l 0eiRll1lQJ5 12l011'147 I1II2lU021 l2J"U", 
1Il"~"63 I1IQJ III 02121 ~11I~IIlI1l' "021521 1ZJ0nU ,,01Z11Z1((J7 
"",~1ZJ64 ~1Il"e'0'I'" ~01Z1f111Z15 fIl00151 "" 1IJIZl0IiJ f1IrDU2I7 
1110 (HI 65 

Ill" "" 0IiJ JIZlIZIlll1.'J5 1/10(!!152 111" "" f1II/J ° rlIQ"!1 07 
12l" .1IZ16 6 11I12l2f11011J J3~0005 12l07,153 1111/1011100 r/lfll2l2l"7 
"I1W067 111 "QUI! I'JI1.I "r12lQl11.l5 00r:154 I2l000U f1I12I"1ZJ1IJ1 
11I0~11I70 1lJ""iZ''''' III ""t2l 1115 11I0~155 f210f11I11U 0rz1U07 
11J02071 ~ liHlH'I " " 01'1011J05 0"~156 021UI1J" ~0"0217 
t2l0;~ 0 72 "''''00~'' {J"011105 021\7.157 0"001Z121 0rz10111m7 
",P07J ~2I011J11J" "O0"05 00.')16" 00011JU 1210"0"7 
11J0,;~riJ74 11J1/I~0~" 0"0~1I/J5 00~161 000"U 0°"01217 
0012075 ""Ill I1J CHll 0000"5 IlII/IC162 11J011J0U 210"007 
11J0?riJ76 "'''1lI''11J0 11J00C!!05 003163 ""0"0" ~0210e17 

I1II1I~riJ77 11J0000IiJ 0012112105 C!!1/I>:'164 11J"0e'U 00111111"7 
11J0;11~11I ~'H'I0(1J0 0 iZ1 l1.12'1/l5 00J165 "01Z!0~11I 02'''C!!07 
01/1GU1 11J"~01111!l 011JRlfHJ5 002166 0"12100111 0 fZ1 Q1I11i217 
01/1~Ul2 0"000Q1 0011Jf111115 211/1 .. '167 11J011J011J0 01210007 
0~H~U3 000",,11.1 00"111"5 00~~110 0000021 001Z10217 
003U4 ~0Q!I1JQl0 2'°""05 011Hl11 I1Jf/I00U 001Z11'l0' 
00;~U5 11I"11J11J11J0 111t2l"005 01/1,'172 0011Ji2'00 ~(I!((JI1J07 

00f'U6 00nl1Jf/l k')0rn05 0e2173 11J0111012112l 000111"7 
00011117 21UI1J0IiJ 00001215 1Il0 ~174 0011J11l01/l 00"007 
00Z1U 210121000 I'HI!IZJI1j"5 1Il1/l~17' 11J002li21" 000007 
I1Jrl"~l11 I1J 0 III " 12HII ~01/l011.15 11100176 01110"00 ~11l1/ll1l07 

2102112 12HZl " " 0r/J 0000215 OO0177 el011J11J1Il11l 11J0rl1007 
Ql01113 0121212121" ~""0215 11l0~2211/J 11J2I00 121" 210210'" 
O1110114 ~"I1J~00 121 0 0""5 0002131 11121 21 0 I2II2l 210rl1rz11/J7 
11l1ll!l'!115 000121"-1" 21" eI2I rZJ 5 0002132 00001210 ~0"2IQl' 
0121~116 ~l2lrll1/J00 rIl0011l05 l1Je;'2~3 0012100" 12!01Z111lrZJ7 
"'0~117 0"lIllZlU rlI "'0 "rlI 5 11I0~2r214 0000al1.l ~lZIrlIr2IlZl7 

rIlrll~12r1l 00U"-I0 0"0111"5 00e.2rl15 21 0liJrIl 00 O0"0"7 
00U21 0"UIIll1l ~"0""5 01111206 111 " 21 IH'J " "'~rlI0I1.I7 
"1210122 rZJrlInu r/lt2l2lI2lrZJ5 000207 rZJ2IrlIell!lrll r21 rIJ ""'11.I7 
"'0J123 11JB00"-"/J 011l00rl15 0111~~211iJ 0001/J~0 0r1l1Z12l12l7 
fIllII~124 "0""00 011lI/J1Il05 11J1/J~211 I1If1111J0~21 0021007 
fIlefl12' r/lIIllIIJ00 21"0""5 000212 11I",,0\!If/J Ql00l1lrll7 
01210126 fIlI/J2IlZlU o III IZIU 5 fIl'HJ21J fIlrlletrllU QI 021 f!lrlI 1 
00k"127 I!II/Jun I/J1ZJI/J1/J2I5 00"'214 ~rlIraIiI00 ",000rl11 
"0~1311J 0011l11l1ll1Z1 QI~00215 I1lfll0215 rIlrlllll2l12ll2l QlI'lI"""7 
l1JeU31 1Z10000llJU 21 o I/J III 215 011lJ216 011112100111 0011l0rl17 
11l0"'lJ2 "rlI0121U " " QII/l2l5 

11l11ll!217 000"210 ~"lZIl1IrlI7 
rIlI2IU33 rIll1.l011JU I1Il21l/JlIlrll5 l1Ie~22rl1 21rl10e1011J r/lfllU11J1 
l1Ieill134 0011l W1J "" 

111 rIl "Ill 21 5 11J00221 rZlIIJU1/J1/J ~IZ!UI/J7 

O-ll 



flllIl"222 
illll~223 
11J1Il022~ 
"0~225 
"11JJ226 
"02227 
1Il1ll~230 
IIl"Z231 
1Il1ll~232 
",,1Z233 
""~234 
1Il00235 
"llh~236 
IIlllle237 
11J01~24" 
11J01241 
11J0~242 
1Il0n43 
1IJ0,'244 
11J0l245 
1IJ0"'246 
IIJI1Jl247 
11J0,~25" 
0121:'251 
11l0i'252 
11J0?253 
0121?25~ 

11J1QI1JI1lrIJ I1JrIlrIJ0r1J'1 
0r1JU00 011l01Z'rlJ7 
IZlrIJl1Jl1JI1JrIJ (2II1l0rlJrlJ7 
IIlrIJI1JrlJ0rIJ 0 11l rIJrlJrlJ7 
"0011ll1l11J i/l~rlJl1JrlJ7 
0r1J""0rIJ (2Il1lrIJl1JrIJ' 
"''''''011J "i2!UrIJ7 
i2!rlJI1J1Il0rIJ ~11l011lrIJ7 
12'I1l0"l1lrIJ 0 11J rlJ0r1J' 
0r1J0l1J~11J 00011l11J7 
0r1J011l1Zll1l "~0007 
011l1Zl12l0rIJ 12Ii1J1lI11l"7 
I1lrIJ011l'1l0 "k.'IrlJ0",7 
000r1JcHJ 121"001217 
i21l2IlZll1l00 00r1JI1l07 
0QHH'0121 0""0"7 
21 rlJ:illll 21 rIJ III 0 2JIZI " 7 
011l0t'i312! ~0121011J7 
0121e"0>!1121 ~011ll2!rlJ7 
2IILH112i00 21'2'rlJ0,,7 
1IJI1l00~0 ~~1lI01217 
01210000 ~~1lI007 
01110000 0"'1lI007 
1IJ12I0121QHIl 0 fl1 1l112l07 
i21I210~1IJ" 0"-'l/JI1107 
0001210121 Zlt1lrIJlIJrlJ7 
~rlJ2'~00 011l021e'7 

0.5.3 Mixed Mode Data Files 

FOROTS 

"02'255 
001256 
IIJ2IZ257 
00~26" 
1IJ0.7261 
11Jl/l'~262 
11I0~1263 
11I1/l~264 
0fi:l~]265 
01/l~1266 

111121:"'267 
IIJI/l,j27" 
00,' 2 71 
00.:>272 
11I0~273 
11J1/l;.,274 
00~'275 

00i1276 
"1/l'~277 
00030" 
1/l0Z31!l1 
lIl'h~302 
1/l1/l.~303 
01iP304 
01/l:"305 
01/l;1306 
00,1307 

002102121 3fl10~07 
000000 000007 
210210210 0i!l"'011l7 
Z'0i?1000 121"0007 
eJrlJ2Ifil2!'" 210000., 
00001210 12Ii:l0011l1 
0001210'" 0i!l0007 
21"'00021 02'00"1 
001,H'00 01'100",,, 
000021'" 0"'00"'7 
1'1000et0 2100111111T 
0'H~0011l 011l1ll~1Z'7 
i2112112l000 00"'''07 
0012100121 00 I:H"",7 
"02100121 00"""" 
"'rlJ1?I000 0"'0211217 
elrIl01210121 ~"21"07 
0000~'" 0000,,7 
00000121 21~210121" 
0r1l0i1J0121 IIl rl 0007 
0r1J00i/l1/l ~000"'1 
0021012121 ~"'0i/l0' 
12Ir1J"0210 0"'0007 
00121000 00000' 
0r1Ji2I0~rIJ 00"'0217 
00210121121 00"'''07 
000~121'" 0000"'7 

FOROTS permits files containing both ASCII and binary data records to 
be read. Mixed files may be accessed in either sequential or random 
access mode. Logical ASCII and binary records have the same format as 
described in the preceding paragraphs. In random access mode, the 
record size must be large enough to contain the largest record, either 
ASCII or binary. 

0-12 



FOROTS 

D.S.4 Image Files 

The image data transfer mode is a buffered mode in which data is 
transferred in a blocked format consisting of a word count located in 
the right half of the first data wurd of the buffer followed by the 
number of 36-bit data words. The devices that permit image data 
transfers and the form in which the data is read or written are: 

Device 

Card Punch 

Card Reader 

Disk 

Magnetic Tape 

Paper Tape Punch 

Paper Tape Reader 

Plotter 

D.6 USING FOROTS 

Data Forms 

In image mode, each buffer contains three l2-bit 
bytes. Each byte corresponds to one card column. 
Since there is room for 81 columns in the buffer 
(3 X 27) and there are only 80 columns on a card, 
the last word contains only 2 bytes of data; the 
third byte is thrown away. Image mode causes 
exactly one card to be punched for each output. 
The CLOSE punches the last partial card and then 
punches an EOF card. 

All 12 punches in all 80 columns are packed into 
the buffer as l2-bit bytes. The first l2-bit byte 
contains column 1. The last word of the buffer 
contains columns 79 and 80 as the left and middle 
bytes, respectively. Cards are not split between 
two buffers. 

Data is written on the disk exactly as it appears 
in the buffer. Data consists of 36-bit words. 

Data appears on magnetic tape exactly as it 
appears in the buffer. No processing or 
checksumming of any kind is performed by the 
service routine. The parity checking of the 
magnetic tape system is sufficient assurance that 
the data is correct. All data, both binary and 
ASCII, is written with odd parity and at 800 bits 
per inch unless changed by the installation. 

Binary words taken from the output buffer are 
split into six 6-bit bytes and punched with the 
eighth hole punched in each frame. No format 
control or checksumming is performed by the I/O 
routine. Data punched in this mode is read back 
by the paper tape reader in the same mode. 

Characters not ha~ing the eighth hole punched are 
ignored. Characters are truncated to six bits and 
packed six to the word without further processing. 
This mode is useful for reading binary tapes 
having arbitrary blocking format. 

Six 6-bit characters per word are transmitted to 
the plotter exactly as they appear in the buffer. 

FOROTS has been designed to lend itself for use as an I/O system for 
programs written in languages other than FORTRAN. Currently, MACRO 
programmers may employ FOROTS as a general I/O system by writing 

D-13 



FOROTS 

simple MACRO calls that simulate the calls made to FOROTS by a FORTRAN 
compiler. The calls made to FOROTS are to routines that implement 
FORTRAN I/O statements such as READ, WRITE, OPEN, CLOSE, RELEASE, etc. 

FOROTS will provide automatic memory allocation, data conversion, I/O 
buffering, and device interface operations to the MACRO user. 

D.6.l FOROTS Entry Points 

FOROTS provides the following entry points for calls from either a 
FORTRAN cowpiler or a non-FORTRAN program: 

Entry Point Function 

ALCHN. 
ALCOR. 
CLOSE. 
DBMS. 
DEC. 
DECHN. 
DECOR. 
ENC. 
EXIT. 
FIN. 
FIND. 
FORER. 
FUNCT. 
IN. 
IOLST. 
MTOP. 
NLI. 
NLO. 
OPEN. 
OUT. 
RELEA. 
RESET. 
RTB. 
TRACE. 
WTB. 

Allocate software channels 
Allocate dynamic core blocks 
Close a file 
DBMS interface 
DECODE routine 
De-allocate software channels 
De-allocate dynamic core blocks 
ENCODE routine 
Terminate program exeuction 
Input/Output list termination routine 
Position to the next record (RANDOM ACCESS) 
Error processor 
Overlay interface 
Formatted input routine 
Input/Output list routine 
File utility processing routine 
NAMELIST input routine 
NAMELIST output routine 
Open a file 
Formatted output routine 
Release a device (CLOSE implied) 
Job initialization entry 
Binary input routine 
Trace subroutine calls 
Binary output routine 

0.6.2 Calling Sequences 

You must use the following general form for all calls made to FOROTS: 

MOVE I 
PUSHJ 

where: 

l6,ARGBLK 
l7,Entry Point 
(control is returned here) 

1. ARGBLK is the address of a specifically formatted argument 
block that contains information needed by FOROTS to 
accomplish the desired operation. 

2. Entry Point is an entry point identifier (see list given in 
Paragraph D.6.l) that specifies the entry point of the 
desired FOROTS routine. 

0-14 



FOROTS 

with three exceptions, all returns from FOROTS will be made to the 
program instruction immediately following the call (PUSHJ 17, entry 
point instruction). The exceptions are: 

1. An error return to a specified statement number, i.e., READ 
or WRITE statement ERR=option, 

2. An end-of-file return to a statement number, i.e., READ or 
WRITE statement END=option, 

3. A fatal error that returns to the monitor or to a debug 
package. 

Paragraphs D.6.3.l through D.6.3.ll give the MACRO calls and required 
argument block formats needed to initialize FOROTS and FOROTS I/O 
operations. 

Argument blocks conform to the subprogram calling convention described 
in Appendix C. However, there is one exception in dealing with the 
first word of an I/O initialization call, i.e., WTB., ENC., RTW., 
etc., for a FORTRAN logical unit number. In previous versions of 
FOROTS and FORTRAN-la, if the indirect bit was not set, the argument 
was immediate; if it was set to 1 (one), the argument was the address 
of the variable. The type field was always a (zero). 

With Version 4 of FORTRAN-IO and Version 4 of FOROTS this convention 
has been changed. If the type field of the first word of an I/O 
initialization call for the FORTRAN logical unit number is 0 (zero), 
the argument is an immediate mode (18 bit) constant wherever possible. 
If the type field is integer, the argument is indirect (see Appendix 
C, Table C-l, Type 2). 

This exception should not cause any upward compatibility 
since all previously working programs will still function. 
feature with this convention is that it permits the 
construct to be correctly implemented: 

100 

N=-4 
READ (N, 100 ) I, J 
FORMAT(215) 

!SET FOR TERMINALS 

D.6.3 MACRO Calls for FOROTS Functions 

problems, 
An added 

following 

The following paragraphs describe the forms of the MACRO calls to 
FOROTS that are made by the FORTRAN-IO compiler. The calls described 
are identified according to the language statement that they 
implement. The following terms and abbreviations may be used in the 
description of the argument block (ARGBLK) of each call: 

- = pointer to the second word in the argument block. (This 
is the address pointed to by the argument ARGBLK in the 
calling sequence.) 

n count of ASCII characters, 

f FORMAT statement address, 

v the name of an array containing ASCII characters, 

list an Input/Output list, 

D-IS 



c 

d 

FOROTS 

the statement to which control is transferred on an "END 
OF FILE" condition, 

the statement to which control is transferred on an 
"ERROR" condition, 

name = a NAMELIST name, 

R 

* 
type 

a variable specifying the logical record number for 
random access mode, 

list directed I/O; the FORMAT statement is not used, 

type specification of a variable or constant, 

where ARGBLK is 

0-8 9-12 13 14-17 18-35 

-6 0 

-- Reserved type I X n 

7 I X c 

7 I X d 

type I X f 

type I X Format Size (in words) 

Reserved type I X 

D.6.3.1 I/O Statements, Sequential Access 
READ and WRITE statements for formatted 
operations and their calling sequences are: 

and 

READ{u,f,END=C, ERR=d) list 
MOVEI 16, ARGBLK 
PUSHJ 17, IN. 

WRITE{u,f,END=c, ERR=d) list 
MOVEI 16, ARGBLK 
PUSHJ 17, OUT. 

D-16 

v 

Calling Sequences - The 
sequential data transfer 



FOROTS 

where ARGBLK is 

0-8 9-12 13 14-17 18-35 

-5 0 

Reserved type I X u 

7 I X c 

7 I X d 

type I X f 

Reserved type I X Format Size (in words) 

The READ and WRITE statements for unformatted sequential data transfer 
operations and their calling sequences are: 

and 

READ(u,END=c, ERR=d) list 
MOVEI 16, ARGBLK 
PUSHJ 17, RTB. 

WRITE (u,END=c, ERR=d) list 
MOVEI 16, ARGBLK 
PUSHJ 17, WTB. 

where ARGBLK is 

0-8 9-12 13 

-3 

Reserved type I 

~ 7 I 

Reserved 7 I 

14-17 18-35 

0 

X u 

X c 

X d 

0.6.3.2 NAMELIST I/O, Sequential Access Calling Sequences - The READ 
and WRITE statements for NAMELIST-directed sequential data transfer 
operations and their calling sequences are: 

and 

READ (u,name) 
READ (u, name, END=c, ERR=d) 

MOVEI 16, ARGBLK 
PUSHJ 17, NLI. 

WRITE (u, name) 
WRITE (u, name, 

MOVEI 16, ARGBLK 
PUSHJ 17, NLO. 

END=c, ERR=d) 

0-17 



FOROTS 

where ARGBLK is 

0-8 9-12 13 14-17 18-35 

-4 0 

Reserved type I X u 

j 
7 I X c 

7 I X d 

Reserved type I X NAMELIST table address 

The NAMELIST table is generated from the FORTRAN NAMELIST. The first 
word of the table is the NAMELIST name; following that are a number 
of 2-word entries for scalar variables, and a number of (N+3)-word 
entries for array variables, where N is the dimensionality of the 
array. 

The names you specify in the NAMELIST statement are stored, in SIXBIT 
form, first in the table. Each name is followed by a list of 
arguments associated with the name; this argument list may be of any 
length and is terminated by a zero entry. The name argument list may 
be in either a scalar or an array form (refer to the following 
diagrams) . 

D.6.3.3 Array Offsets and Factoring - Address calculations used to 
reference a given array element involve factors and offs~ts. For 
example: 

Array A is dimensioned 

DIMENSION A (Ll/Ul,L2/U2,L3/U3, ..• Ln/Un) 

The size of each dimension is represented by 

Sl = UI-Ll+l 
S2 = U2-L2+1 
etc. 

In order to calculate the address of an element referenced by 

A (Il,I2,I3, ... In) 

the following formula is used: 

A+(II-Ll)+(I2-L2)*Sl+(I3-L3)*S2*Sl+ .•. +(In-Ln)*S[n-l)* ..• *S2*Sl 

The terms are factored out depending on the dimensions of the array 
and not on the element referenced to arrive at the formula 

A+(-L-L2*Sl-L3*S2*Sl ... )+Il+I2*Sl+I3*S2*Sl ... 

The parenthesized part of this formula is the offset for a single 
precision array and it is referred to as the Array Offset. 

D-18 



FOROTS 

For each dimension of a given array, there is a corresponding factor 
by which a subscript in that position will be multiplied. From the 
last expression, one can determine the factor for dimension n to be 

S[n-l]*S[n-2]* ••• *S2*Sl 

For double-precision and complex arrays, the expression becomes 

A+2*(II-Ll)+2*(I2-L2)*Sl+2*(I3-L3)*S2+S1+ ••• 

Therefore, the array offset for a double-precision array is 

2*(-LI-L2*Sl-L3*S2*Sl •.• ) 

and the factor for the nth dimension is 

2*S[n-l]*S[n-2]* ••• *S2*Sl 

The factor for the first dimension of a double-precision array is 
always 2. The factor for the first dimension of a single-precision 
array is always 1. 

SCALAR ENTRY in a NAME LIST Table 

o. . .8 9. . . 11 12. . .14 15. . .17 18 • . .35 

SIXBIT/SCALAR NAME/ 

0 0 I X Scalar addr 

ARRAY ENTRY in a NAME LIST Table 

0-8 9-11 12-14 15-17 18-35 

SIXBIT/ARRAY NAME/ 

jj:DIMS type I X 

ARRAY SIZE OFFSET 

I X Factor 1 

I X Factor 2 

I X Factor 3 

· · · I X Factor n 

D-19 



FOROTS 

0.6.3.4 I/O Statements, Random Access Calling Sequences - The READ 
and WRITE statements for random access data transfer operations and 
their calling sequences are: 

and 

READ (u#R,f,END=c, ERR=d) list 
READ (u#R,END=c, ERR=d) list 
MOVEI 16, ARGBLK 
PUSHJ 17, RTB. 

WRITE (U#R,f,END=C, ERR=d) list 
WRITE (u#R,END=c, ERR=d) list 
MOVEI 16, ARGBLK 
PUSHJ 17, WTB. 

where ARGBLK is 

0-8 9-12 13 14-17 

-6 

- Reserved type I X 

7 I X 

7 I X 

type I X 

type I X 

Reserved 2 I X 

18-35 

0 

u 

c 

d 

f 

format size (in words) 

address of 
Record Number 

f and the format size in words are 0 if the I/O statement is 
unformatted. 

0.6.3.5 Calling Sequences for Statements That Use Default Devices -
The FORTruu~-lO statements that require the use of a reserved system 
default device and their calling sequences are: 

ACCEPT f, list 
READ f, list 
REREAD f, list 

MOVEI 16, ARGBLK 
PUSHJ 17, IN. 

Default Device 

UNIT=-4 
UNIT=-5 
UNIT=-6 

0-20 

(TTY) 
(CDR) 
(REREAD) 



where ARGBLK is 

-

0-8 

-5 

Reserved 

Reserved 

PRINT f, list 
PUNCH f, list 
TYPE f, list 

9-12 

2 

7 

7 

type 

type 

MOVEI 16, ARGBLK 
PUSHJ 17, OUT. 

where ARGBLK is 

0-8 9-12 

-5 

Reserved 2 

7 

7 

type 

Reserved type 

FOROTS 

13 14-17 18-35 

0 

I X u 

I X c 

I X d 

I X f 

I X Format Size 
(in words) 

Default Device 

UNIT=-3 
UNIT=-2 
UNIT=-l 

13 

I 

I 

I 

I 

I 

14-17 

X 

X 

X 

X 

X 

D-21 

(LPT) 
(PTP) 
(TTY) 

18-35 

0 

u 

c 

d 

f 

format size (in words) 



FOROTS 

0.6.3.6 Statements to Position Magnetic Tape units - The formatted 
and unformatted FORTRAN-IO statements that may be used to control the 
pO$itioning of a magnetic tape device and their calling sequences are: 

CALL: 

Function 
(FORTRAN Statement) 

SKIPFILE (u) 
BACKFILE (u) 
BACKSPACE (u) 
ENDFILE (u) 
REWIND (u) 
SKIPRECORD (u) 
UNLOAD (u) 

MOVEI 16, ARGBLK 
PUSHJ 17, MTOP. 

where ARGBLK is 

0-8 9-12 13 14-17 

-4 

-- Reserved type I X 

j 
7 I X 

7 I X 

Reserved type I X 

FOROTS Code 

7 
3 
2 
4 
o 
5 
1 

18-35 

0 

u 

c 

d 

FOROTS code 

0.6.3.7 List Directed Input/Output Statements - You may write any 
form of a sequential Input/Output statement as a list-directed 
statement by replacing the referenced FORMAT statement number with an 
asterisk (*). The list-directed forms of the READ and WRITE 
statements and their calling sequences are: 

and 

READ (u, *, END=c, ERR=d) list 

MOVEI 16, ARGBLK 
PUSHJ 17, IN. 

WRITE (u, *, END=c, ERR=d) list 

MOVEI 16, ARGBLK 
PUSHJ 17, OUT. 

0-22 



FOROTS 

where ARGBLK is 

0-8 9-12 13 14-17 18-35 

-5 0 

Reserved 2 I X u 

7 I X c 

7 I X d 

0 0 0 0 

Reserved 0 0 0 0 

0.6.3.8 Input/Output Data Lists - The compiler generates a calling 
sequence to the runtIme system if an I/O list is defined for the READ 
or WRITE statement. The argument block associated with the calling 
sequence contains the addresses of the variables and arrays to be 
transferred to or from an I/O buffer. The general form of an I/O list 
calling sequence is: 

MOVEI 16, ARGBLK 
PUSHJ 17, IOLST. 

Any number of elements may be included in the ARGBLK. The end of the 
argument block is specified by a zero entry or a call to the FIN. 
entry. 

The 

Mnemonic Name FOROTS Value 

DATA 1 
SLIST 2 
ELIST 3 
FIN 4 

elements of an I/O list are: 

l. DATA 

The DATA element converts one single- or double-precision or 
complex item from external to internal form for a READ 
statement and from internal to external form for a WRITE 
statement. Each DATA element has the following format. 

0-8 9-12 13 14-17 18-35 

DATA type I X SCALAR ADDR 

0-23 



FOROTS 

2. SLIST 

The SLIST argument converts an entire array from internal to 
external form or vice versa, depending on the type of 
statement, i.e., READ or WRITE, involved. An SLIST table has 
the following form: 

0-8 9-12 

SLIST 

0 type 

For example, the sequence: 

DIMENSION A(lOO) ,8(100) 
READ(-,-)A 

or 

13 14-17 18-35 

I X #ELEMENTS 

I X INCREMENT 

I X BASE ADDR1. 

READ(-,-) (A(I) ,I=l,lOO) !only when the /OPT switch is used 

develops an SLIST argument of the form: 

0-8 9-12 13 14-17 18-35 

0 

2 0 0 0 144 
0 0 0 0 1 
0 2 0 0 A 
4 0 0 0 0 

More than one base address may appear in a SLIST as long as 
the increment is the same. The sequence 

DIMENSION A(lOO), B(lOO) 
WRITE (-,-) (A(I) ,B(I) ,I=lOO) ! only when the /OPT 

switch is used 

develops a SLIST argument of the form: 

0-8 9-12 13 14-17 18-35 

0 

2 0 0 0 144 
0 0 0 0 1 
0 2 0 0 A 
0 2 0 0 B 
4 0 0 0 0 

0-24 



FOROTS 

3. ELIST 

The SLIST format permits only a single increment for a number 
of arrays to be specified while the ELIST permits different 
increments to be specified for different arrays. 

The format of the ELIST is 

0-8 9-12 13 14-17 18-35 

ELIST No. Elements to 
transfer 
increment 1 

Base ADDR 1 
increment 2 

Base AD DR 2 
increment N 

Base ADDR N 

For example, the FORTRAN sequence 

DIMENSION IC(6,lOO), IB(lOO) 
WR I T E ( - , - ) ( I B ( I) , I C ( 1 , I) , 1= 1 , 1 00) 

produces the ELIST 

0-8 9-12 13 14-17 18-35 

3 0 0 0 144 
0 0 0 0 1 
0 2 0 0 IB 
0 0 0 0 12 
0 2 0 0 IC 
4 0 0 0 0 

The increment may be zero. This could be produced by the 
sequence 

DIMENSION A(lOO) 
WRITE(-,-) (K,I=lOO) !only when the IOPT switch is used 

The zero may not appear as an immediate constant in the 
argument block. The ELIST for the previous example would be 

0-8 9-12 13 14-17 18-35 

3 0 0 0 144 

0 2 0 0 Pointer to a word 
containing a zero 

0 type 0 0 K 

4 0 0 0 0 

D-25 



FOROTS 

4. FIN 

The end of an I/O list is indicated by a call to the FIN 
routine in the object time system. This call must be made 
after each I/O initialization call, including calls with a 
null I/O list. The FIN routine may be entered by an explicit 
call or by an argument in the I/O list argument block. If 
both calls are used, the explicit call has no meaning. The 
FIN element has the following format: 

EXPLICIT CALL: 

PUSHJ 17, FIN. 

D.6.3.9 OPEN and CLOSE Statements, Calling Sequences - The form and 
calling sequences for the OPEN and CLOSE FORTRAN-10 statements are: 

OPEN STATEMENT CALL 

MOVEI 16, ARGBLK 
PUSHJ 17, OPEN. 

CLOSE STATEMENT CALL 

MOVEI 16, ARGBLK 
PUSHJ 17, CLOSE. 

where ARGBLK is 

0-8 

Negative of 
the number 
of words in 
block not 
including 
this one. 

a 
a 
a 
G 
G 
G 

· · · · G 

9-12 13 14-17 18-35 

a 

2 I X u 
7 I X c 
7 I X d 

type I X H 
type I X H 
type I X H 

· · · · · · · · · · · · · · · · type I X H 

The G field (bits a through 8) contains a 2-digit numeric that defines 
the argument name; the H field (bits 18 through 35) contains an 
address which points to the value of the argument. 

D-26 



FOROTS 

The numeric codes that may appear in the G field and the argument that 
each identifies are: 

G Field Open Argument G Field Open Argument 

01 DIALOG 12 MODE 
02 ACCESS 13 FILE SIZE 
03 DEVICE 14 RECORD SIZE 
04 BUFFER COUNT 15 DISPOSE 
05 BLOCK SIZE 16 VERSION 
06 FILENAME 22 ASSOCIATE VARIABLE 
07 PROTECTION 23 PARITY 
10 DIRECTORY 24 DENSITY 

D.6.3.l0 Memory Allocation Routines - The memory management module is 
called to allocate or de-allocate core blocks. There are two entry 
points, ALCOR. and DECOR., that control memory allocation and 
de-allocation. 

Use the ALCOR. entry to allocate the number of words specified in the 
argument block variable. Upon return, AC 0 will contain either the 
address of the allocated core block or a -1 value, which indicates 
that core is not available. The calling sequence for ALCOR. call is: 

MOVEI 16, ARGBLK 
PUSHJ 17, ALCOR. 

where ARGBLK is 

0-8 9-12 

-1 

- Reserved type 

13 14-17 18-35 

0 

I X Address of 
Number of Words 

Use the DECOR. entry to de-allocate a previously allocated block of 
memory; the argument variable must be loaded with the address of the 
core block to be returned. Upon return AC 0 is set to O. 

If the number of desired words is N, ALCOR. actually removes N+l 
words from free storage. The pointer returned points to the second 
word (word 1 as opposed to word 0) removed from free storage. The 0 
word contains the negative value of N in its left half. This word is 
used by FOROTS to maintain linked lists of allocated (using ALCOR.) 
and free storage. 

The calling sequence for a DECOR. call is: 

MOVEI 16, ARGBLK 
PUSHJ 17, DECOR. 

D-27 



FOROTS 

where ARGBLK is 

0-8 9-12 13 14-17 18-35 

-1 0 

Pointer to word - Reserved type I X containing 
address of block 
to be returned 

0.6.3.11 Software Channel Allocation And De-allocation Routines - You 
may allocate software channels in MACRO programs via calls to the 
ALCHN. routine and de-allocate them by calls to the DECHN. routine. 
Values are returned in AC o. 

Use the ALCHN. entry to allocate a particular channel or the next 
available channel. The channel to be allocated is passed to ALCHN. 
in the argument block variable. Zero is passed in the argument block 
variable to allocate the next available channel. Allowed channels are 
1 through 17 (octal). If the channel requested is not available, or 
all channels are in use, ALCHN. returns with a -1 in AC O. In normal 
returns, AC 0 contains the assigned number. 

The calling sequence of an ALCHN. routine is: 

MOVEI 16, ARGBLK 
PUSHJ 17, ALCHN. 

where ARGBLK is 

0-8 9-12 

-1 

13 14-17 18-35 

0 

Pointer to a word - Reserved type I X containing 
the channel # 
or zero 

Use the DECHN. entry to de-allocate a previously 
The channel to be released is passed to DECHN. in 
variable. If the channel to be de-allocated was 
ALCHN. and thus cannot be de-assigned, AC 0 is set 

The calling sequence for a DECHN. routine is: 

MOVEI 16, ARGBLK 
PUSHJ 17, DECHN. 

0-28 

assigned channel. 
the argument block 
not assigned by 

to -1 on return. 



FOROTS 

where ARGBLK is 

0-8 9-12 13 14-17 18-35 

-1 0 

Pointer to a word - Reserved type I X containing 
the channel # 

I 
to be released 

D.7 FUNCTIONS TO FACILITATE OVERLAYS 

FOROTS provides a subroutine (FUNCT.) to serve as an interface with 
the LINK-IO overlay handler. This subroutine consists of a group of 
functions that allow the overlay handler to perform I/O, core 
management, and error message handling. These functions have only one 
entry point, FUNCT., and they are called by the sequence 

MOVEI 16, ARGBLK 
PUSHJ 17, FUNCT. 

The general form of the ARGBLK is 

where 

0-17 18-35 

Negative of the 0 
number of words 
in 

ARGBLK-

type 
function number 
error code 

status 

block 
type function number 
type error code 
type status 
type argument 1 
type argument 2 
type argument 3 . . . . 
type argument n 

the FORTRAN argument type (see Appendix C) 
the number of one of the required functions 

= the 3-letter mnemonic output by the object 
time system after ?, %, or [. (See Table 
D-l. ) 

= undefined on the call and set on the return 
with one of the values below. 

-1 Function not implemented 
o Successful return 
l •.•• n Specific error message 

D-29 



Function 
Number 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

FOROTS 

Table D-l 
Function Numbers and Function Codes 

Function 
Mnemonic 

ILL 
GAD 
COR 
RAD 
GCH 
RCH 
GOT 
ROT 
RNT 
IFS 

CBC 

Function Description 

Illegal function 
Allocates core from a specific address 
Allocates core from available core 
De-allocates core 
Gets or assigns an I/O channel 
Releases an I/O channel 
Allocates core from FOROTS 
De-allocates core from FOROTS 
Returns the initial runtime from FOROTS 
Returns initial runtime file spec. from 
FOROTS 
Cuts back core if possible 

FUNCTION 0 (ILL) - This function is illegal. The argument block is 
ignored, and the function alw~ys returns a status of -1. 

FUNCTION 1 (GAD) - This function allocates core from a specific 
address. The arguments are: 

arg 1 
arg 2 

address at which to begin core allocation 
number of words of core to allocate 

The return statuses are: 

o core allocated (arg 1 and 2 unchanged) 
1 not enough core available in system (arg 1 and arg 2 unchanged) 
2 cannot allocate core at specified address (arg 1 and arg 2 

unchanged) 
3 illegal arguments (i.e., address + size is greater than 256K) 

(arg 1 and arg 2 unchanged) 

FUNCTION 2 (COR) - This function allocates core from any address. The 
arguments are: 

arg 1 
arg 2 

undefined 
size of core to allocate 

The returned statuses are: 

o core allocated (arg 2 unchanged, arg 1 beginning address of the 
allocated core) 

1 not enough core available in system (arg 2 unchanged) 
3 illegal argument (i.e., size is greater than 256K) 

FUNCTION 3 (RAD) - This function de-allocates core at the specified 
address. The arguments are: 

arg 1 
arg 2 

address of core to be de-allocated 
number of words to be de-allocated 

The returned statuses are: 

o core de-allocated 
1 core cannot be de-allocated 
3 illegal argument (i.e., both the address and the size are 

greater than 256K) 

D-30 



FOROTS 

FUNCTION 4 (GCH) - This function assigns an I/O channel. The argument 
is: 

arg 1 undefined 

The returned statuses are: 

o I/O channel assigned (arg 1 channel number) 
1 no I/O channels available 

FUNCTION 5 (RCH) - This function releases an I/O channel. The 
argument is: 

arg 1 I/O channel number to be released 

The returned statuses are: 

o channel released 
1 invalid channel number 

FUNCTION 6 (GOT) - This function gets core from the object time system 
list. The arguments are: 

arg 1 
arg 2 

address at which to allocate core 
number of words of core to allocate 

The returned statuses are: 

o core allocated (arg 1 and arg 2 unchanged) 
1 not enough core available in system (arg 1 
2 cannot allocate core at specified address 

unchanged) 
3 illegal argument(s) 

and arg 2 unchanged) 
(arg 1 and arg 2 

This function differs from function 1 in that if the object time 
system has two free core lists, then function 1 is used to allocate 
space for links, and this function is used to allocate space for I/O 
buffers. Function 1 uses the free core list for LINK-IO, and function 
6 uses the list for the object time system. 

FUNCTION 7 (ROT) - This function returns core to the object time 
system. The arguments are: 

arg 1 
arg 2 

address of core to be de-allocated and returned 
size of core to be de-allocated and returned 

The returned statuses are: 

o core de-allocated 
1 core cannot be de-allocated 
3 illegal argument 

FUNCTION 8 (RNT) - This function returns the initial runtime from the 
object time system. The argument is: 

arg 1 undefined 

The returned status is: 

o always (arg 1 - runtime from the object time system) 

This function is used only if the user desires a log file. 

D-31 



FOROTS 

FUNCTION 9(IFS) - This function returns the initial runtime file 
specification from the object time system. The specification is 
obtained from accumulators 0, 7, and 11 after the initial RUN command. 
The arguments are: 

arg 1 
arg 2 
arg 3 

undefined 
undefined 
undefined 

The returned status is: 

o always (arg 1 - device from accumulator 11, arg 2 - filename 
from accumulator 0, and arg 3 - directory from accumulator 7) 

This function tells the overlay handler which file to read after the 
initial RUN command. 

FUNCTION 10 (CBC) - This function cuts back core if possible and is 
used to reduce the size of the user job. There are no arguments. 

The returned status is: 

o always 

D.8 LOGICAL/PHYSICAL DEVICE ASSIGNMENTS 

You make FORTRAN logical and physical device assignments at run time, 
or standard system assignments are made according to a FOROTS Device 
Table, i.e., DEVTB. Table D-2 shows the standard assignments 
contained by the Device Table. 

D-32 



Device/Function 

REREAD 
CDR 
TTY 
LPT 
PTP 
TTY 
o 
DSK 
CDR 
LPT 
CTY 
TTY 
PTR 
PTP 
DIS 
DTAl 
DTA2 
DTA3 
DTA4 
DTA5 
DTA6 
DTA7 
MTAO 
MTAl 
MTA2 
FORTR 
DSK 
DSK 
DSK 
DSK 
DSK 
DEVl 
DEV2 
DEV3 
DEV4 
DEV5 

DEV39 

FOROTS 

Table D-2 
FORTRAN Device Table 

FORTRAN Logical 
Unit Number Use 

-6 REREAD statement 
-5 READ statement 
-4 ACCEPT statement 
-3 PRINT statement 
-2 PUNCH statement 
-1 TYPE statement 
00 ILLEGAL 
01 DISK 
02 Card Reader 
03 Line Printer 
04 Console Teletype 
05 User's Teletype 
06 Paper Tape Reader 
07 Paper Tape Punch 
08 Display 
09 DECtape 
10 DECtape 
11 DECtape 
12 DECtape 
13 DEC tape 
14 DECtape 
15 DECtape 
16 Magnetic Tape 
17 Magnetic Tape 
18 Magnetic Tape 
19 Assignable Device 
20 DISK 
21 DISK 
22 DISK 
23 DISK 
24 DISK 
25 Assignable Devices 
26 
27 
28 
29 

63 

D-33 





APPENDIX E 

FORDDT 

FORDDT is an interactive program used to debug FORTRAN programs and 
control their execution. By using the symbols created by the FORTRAN 
compiler, FORDDT allows you to examine and modify the data and FORMAT 
statements in your program, set breakpoints at any executable 
statement or routine, trace your program statement-by-statement, and 
make use of many other debugging techniques described in this 
appendix. 

Table E-I lists all the commands available to the user of FORDDT. 

Command 

Data Access Commands 

ACCEPT 

TYPE 

Declarative Commands 

GROUP 

MODE 

OPEN 

PAUSE 

REMOVE 

DIMENSION 

DOUBLE 

Table E-I 
Table of Commands 

Purpose 

Modifies data locations. 

Displays data locations. 

Defines indirect lists for TYPE statements. 

Specifies format of typeout. 

Accesses program unit symbol table. 

Places pause requests. 

Removes pause requests. 

Defines dimensions 
references. 
/DEBUG:DIMENSIONS 
B-2. ) 

of arrays for 
(Unnecessary 

was used. See 

FORDDT 
if 

Table 

Defines dimensions of double-precision 
arrays for FORDDT references. (Unnecessary 
if /DEBUG: DIMENSIONS was used. See Table 
B-2. ) 

E-l 



Command 

Control Commands 

START 

CONTINUE 

GOTO 

NEXT 

STOP 

DDT 

Other Commands 

LOCATE 

STRACE 

WHAT 

E.l INPUT FORMAT 

FORDDT 

Table E-l (Cont.) 
Table of Commands 

Purpose 

Begins execution of FORTRAN program. 

Continues execution after a pause. 

Transfers control to some program statement 
within the open program unit. 

Traces execution of the program. 

Terminates program and returns to monitor 
mode. 

Enters DDT (if DDT is loaded). 

Lists program unit names in which a given 
symbol is defined. 

Displays routine backtrace 
program status. 

of current 

Displays current DIMENSION, GROUP, 
PAUSE information. 

and 

FORDDT commands are made up of alphabetic FORTRAN-like identifiers and 
need consist of only those characters required to make the command 
unique. If you wish to specify parameters, a space or tab is required 
following the command name. FORDDT expects a parameter if a delimiter 
(i.e., space or tab) is found. Comments may be appended to command 
lines by preceding the comment with an !. 

E.l.l Variables and Arrays 

FORDDT allows you to access and modify the data locations in your 
program by using standard FORTRAN-IO symbolic names. Variables are 
specified simply by name. Array elements are specified in the 
following format: 

name (Sl, .•. ,Sn) 

where 

name a FORTRAN variable or array name 
(Sl, ... ,Sn) the subscripts of the particular array. 

You may reference an entire array simply by its unsubscripted name; 
you may specify a range of array elements by inputting the first and 
last array elements of the desired range, separated by a dash(-). 

E-2 



Examples 

ALPHA 
ALPHA(7) 
ALPHA(PI) 
ALPHA(2)-ALPHA(5) 

E.l.2 Numeric Conventions 

FORDDT 

FORDDT accepts optionally signed numeric data in the 
FORTRAN-IO input formats: 

1. INTEGER - A string of decimal digits. 

standard 

2. FLOATING-POINT A string of decimal digits optionally 
including a decimal point. Standard engineering and 
double-precision exponent formats are also accepted. 

3. OCTAL - A string of octal digits optionally preceded by a 
double quote ("). 

4. COMPLEX - An ordered pair of integer or real constants 
separated by a comma and enclosed in parentheses. 

E.l.3 Statement Labels and Source Line Numbers 

FORTRAN statement labels are input and output by straightforward 
numeric reference, i.e., 1234. However, source line numbers must be 
input to FORDDT with a number sign (#) preceding them. This mandatory 
sign distinguishes statement labels from source line numbers. 

E.2 NEW USER TUTORIAL 

The new FORDDT user can rely on the commands described below as a 
basis for debugging FORTRAN programs. These commands are easy to 
understand and apply. 

E.2.l Basic Commands 

The easiest method of loading and starting FORDDT is: 

.DEBUG filename.ext (DEBUG)/FIO 

FORDDT will respond with 

ENTERING FORDDT 
» 

Just as an asterisk (*) 
angle brackets signify 
commands: 

signifies FORTRAN-lO's readiness, the two 
that FORDDT is awaiting one of the following 

OPEN Makes available to FORDDT the symbol names in a 
particular program unit of the FORTRAN program. When a 
program unit symbol table is opened, the previously 

E-3 



START 

STOP 

MODE 

TYPE 

FORDDT 

open program unit is automatically closed. When FORDDT 
is entered, the MAIN program is automatically opened. 
The command format is: 

OPEN name 

This will open the particular program unit named and 
allow all variables within that subprogram to be 
accessible to FORDDT. 

OPEN 

with no arguments will reopen the symbol table of the 
main program unit. 

Starts your program at the main program entry point. 
The command format is: 

START 

Terminates program execution, causes all files to be 
closed, and exits to the monitor. The command format 
is: 

STOP 

Defines the display format for succeeding FORDDT TYPE 
commands. You need type only the first character of 
the mode to identify it to FORDDT. The modes are: 

Mode Meaning 

A ASCII (left-justified) 
C COMPLEX 
D DOUBLE-PRECISION 
F FLOATING-POINT 
I INTEGER 
o OCTAL 
R RASCII (right-justified) 

Unless the MODE command is given, the default typeout 
mode is the floating-point format. 

The command format is: 

MODE list 

where list contains one or more of the mode identifiers 
separated by commas. The current setting can be 
changed by issuing another MODE command. If more than 
one mode is given, the values are typed out in the 
order: F,D,C,I,O,A,R 

MODE 

with no arguments will reset FORDDT to the original 
setting of floating-point format. 

Allows you to display the contents of one or more data 
locations. They are displayed on your terminal 
formatted according to the last MODE specification. 
The command format is: 

TYPE list 

E-4 



ACCEPT 

PAUSE 

FORDDT 

where list may contain one or more arrays, variables, 
array elements, or array element ranges separated by 
commas. For example: 

TYPE I, ALPHA, BETA(2) ,J(3)-J(5) 

Each item will be displayed in each of the currently 
active typeout modes as set by the last MODE command. 

Allows you to change the contents of a FORTRAN 
variable, array, array element, or array element range. 
The command format is: 

ACCEPT namelmode value 

where 

name 

mode 

value 

You need type 
to identify 
default mode 
available: 

the name of the variable, array, array 
element, or array element range to be 
moditied. If the field contains an 
unsubscripted array name or an element 
range, it causes all the elements to be 
set to the given value (see special case 
for ASCII in Section r.6). 

the format of the data value to be 
entered. If given, it must be preceded by 
a slash (I) and immediately follow the 
name. (Note that Imode does not apply to 
FORMAT modification.) 

the new value to be assigned. It must 
correspond in format to the given mode. 

Data Modes 

only the first character of a data mode 
it to FORDDT. If not specified, the 

is REAL. The following input modes are 

Mode Meaning Example 

A ASCII(left-justified) 
C COMPLEX 
D DOUBLE-PRECISION 
F REAL 
I INTEGER 
o OCTAL 
R RASCII(right-justified) 
S SYMBOLIC 

IFOOI 
(1.25,-78.E+9) 
123.4567890 
123.45678 
1234567890 
76543210 
\BAR\ 
PSI(2,4) 

An example of the ACCEPT command format is: 

ACCEPT ALPHA 100.6 

This changes the value of the variable ALPHA to 100.6 
with the default input mode of REAL, since mode was not 
specified. 

Allows you to set a breakpoint at any label, line 
number, or subroutine entry in your program. You may 
set up to ten pauses at one time. When one of these 
pauses is encountered, execution of the FORTRAN program 

E-5 



FORDDT 

is suspended and control is transferred to 
Also, when a pause is encountered, the symbol 
that subprogram is automatically opened. The 
Eo[];"[at is: 

PAUSE P 

FORDDT. 
table of 

command 

where P is a statement label number, line number, or 
routine entry point name; for example, 

PAUSE 100 

will cause a breakpoint at statement label 100 of the 
currently open program unit. 

Note that subprogram parameter values will be displayed 
when a pause is encountered at a subprogram entry 
point. 

CONTINUE Allows the program to resume execution after a FORDDT 
pause. After a CONTINUE is executed, the program 
either runs to completion, or it runs until another 
pause is encountered. If you include a value with this 
command, the program will run until the nth occurrence 
of the given pause or until a different pause is 
encountered. The command formats are: 

REMOVE 

WHAT 

CONTINUE 
or 

CONTINUE n 

Example 

CONTINUE 15 

will continue execution until the fifteenth occurrence 
of the pause. 

Used to remove those pauses from the program previously 
set up by the PAUSE command. The command format is 

REMOVE P 

where P is the number of the statement label where the 
pause was set, i.e., 

REMOVE 100 

will remove the pause at statement label 100. 

Note that REMOVE with no arguments will remove all 
pauses; therefore, no abbreviation of the command is 
allowed in this instance. This precaution prevents the 
accidental removal of all pauses. 

Displays on your terminal the 
open program unit and any 
settings. The command format 

WHAT 

E-6 

name of 
currently 

is: 

the currently 
active pause 



FORDDT 

E.3 FORDDT AND THE FORTRAN-IO/DEBUG SWITCH 

Most facilities of FORDDT are 
features; however, if you do 
a FORTRAN program, the trace 
available, and several of the 

available without the FORTRAN-IO /DEBUG 
not use the /DEBUG switch when compiling 
features (NEXT command) will not be 
other commands will be restricted. 

Using the /DEBUG switch tells FORTRAN-IO to compile extra information 
for FORDDT. (See Appendix D, Using the Compiler, for a complete 
description of each feature.) The additional features include: 

1. /DEBUG:DIMENSIONS, which will generate dimension information 
to the REL file for all arrays dimensioned in the subprogram. 
The dimension information will automatically be available to 
FORDDT if you wish to reference an array in a TYPE or ACCEPT 
command. This feature eliminates the need to specify 
dimension information for FORDDT by using the DIMENSION 
command. 

2. /DEBUG:LABELS, which will generate labels for every 
executable source line in the form "line-number L". If these 
labels are generated, they may be used as arguments with the 
FORDDT commands PAUSE and GOTO. 

This switch will also generate labels at the last location 
allocated for a FORMAT statement so that FORDDT can detect 
the end of the statement. These labels have the form 
"format-label F". If they are generated, you will be able to 
display and modify FORMAT statements via the TYPE and ACCEPT 
commands. 

Note that the :LABELS switch is automatically activated with 
the :TRACE switch, since labels are needed to accomplish the 
trace features. 

3. /DEBUG:TRACE, which will generate a reference to FORDDT 
before each executable statement. This switch is required 
for the trace command NEXT to function. 

Note that if more than one FORTRAN statement has been placed 
on a single input line, only the first statement will have a 
FORDDT reference and line-number label associated with it. 
This also applies to the :LABELS switch. 

4. /DEBUG:INDEX, which will force the compiler to store in its 
respective data location as well as a register the index 
variable of all DO loops at the beginning of each loop 
iteration. You will then be able to examine DO loops by 
using FORDDT. If you modify a DO loop index using FORDDT, it 
will not affect the number of loop iterations because a 
separate loop count is used. (See Section D.l.5.) 

Note that this switch has no direct affect on any of the 
commands in FORDDT. 

E.4 LOADING AND STARTING FORDDT 

1. The simplest method of loading and starting FORDDT is with 
the following command string: 

.DEBUG filename.ext(DEBUG)/FlO 

E-7 



FORDDT responds with 

ENTERING FORDDT 
» 

FORDDT 

The angle brackets indicate that FORDDT is ready to receive a 
command, just as an asterisk (*) signifies FORTRAN-IO's 
readiness. 

The DEBUG command to the monitor will also load DDT (standard 
system debugging program). DDT can be used or ignored, but 
it does require an extra 2K (octal) of core. 

2. You may wish to load your compiled program and FORDDT 
directly with the LINK-IO loader. (Loading with LINK-IO was 
accomplished implicitly in the previous command string.) The 
command sequence is as follows: 

.R LINK 
*filename.ext IDEB/G 
*filename.ext IDEB: FORDDT IG 

FORTRA 

*filename.ext IDEB: (DDT, FORDDT )/G 
FORTRA 

(loads DDT) 
(loads FORDDT) 

loads both DDT 
and FORDDT 

If the total FORTRAN program consists of many subroutines and 
insufficient core is available to complete loading with 
symbols, it is possible to load with symbols just those 
sections expected to give trouble. The remaining routines 
need not be loaded. 

E.5 SCOPE OF NAME AND LABEL REFERENCES 

Each program unit has its own symbol table. When you initially enter 
FORDDT, you automatically open the symbol table of the main program. 
All references to names or labels via FORDDT must be made with respect 
to the currently open symbol table. If you have given the main 
program a name other than MAIN by using the PROGRAM statement (see 
Chapter 5, Section 5.2), FORDDT will ask for the defined program name. 
After you enter the program name, FORDDT will open the appropriate 
symbol table. At this point, symbol tables in programs other than the 
main program can be opened by using the OPEN command. (See Section 
F.5.) 

References to statement labels, line numbers, FORMAT statements, 
variables, and arrays must have labels that are defined in the 
currently open symbol table. However, FORDDT will accept variable and 
array references outside the currently open symbol table, providing 
the name is unique with respect to all program units in the given load 
module. 

E.6 FORDDT COMMANDS 

This section gives a detailed description of all commands in FORDDT. 
The commands are given in alphabetical order. 

E-8 



ACCEPT 

FORDDT 

Allows you to change the contents of a FORTRAN 
array, array element, array element range, 
statement. The command format is: 

variable, 
or FORMAT 

ACCEPT name/mode value 

where 

name 

mode 

value 

the variable array, array element, array 
ele~nent range, or FORMAT statement to be 
modified. 

the format of the data value to be entered. 
The mode keyword must be preceded by a slash 
(/) and immediately follow the name. 
Intervening blanks are not allowed. (Note 
that /mode does not apply to FORMAT 
modification.) 

the new value to be assigned. The format of 
the input value must correspond to the 
specified mode. 

DATA LOCATION MODIFICATION 

Data l"lodes 

The following data modes are accepted: 

Mode 

A 
C 
D 
F 
I 
o 
R 
S 

Meaning 

ASCII (left-justified) 
COMPLEX 
DOUBLE-PRECISION 
REAL 
INTEGER 
OCTAL 
RASCII (right-justified) 
SYMBOLIC 

Example 

/FOO/ 
(1.25,-78.E+9) 
123.4567890 
123.45678 
1234567890 
76543210 
\BAR\ 
PSI(2,4) 

If not specified, the default mode is REAL. 

Two-Word Values 

For the data modes ASCII, RASCII, OCTAL, and SYMBOLIC, 
FORDDT will accept a "/LONG" modifier on the mode switch. 
This modifier indicates that the variable and the value 
are to be interpreted as two words long. 

Example 

ACCEPT VAR/RASCII/LONG '1234567890' 

will assume that VAR is two words long and store the given 
10-character literal into it. 

Initialization of Arrays 

If the name field of an ACCEPT contains an unsubscripted 
array name or a range of array elements, all elements of 
the array or the specified range will be set to the given 
value. 

E-9 



FORDDT 

Example 

ACCEPT ARRAY/F 1.0 
or 

ACCEPT ARRAY(5)-ARRAY(10)/F 1.0 

Note that this applies only to modes other than ASCII and 
RASCII. 

Long Literals 

When the value field of an ACCEPT contains an 
unsubscripted array name or range of array elements, and 
the specified data mode is ASCII or RASCII, the value 
field IS expected to contain a long literal string. 
ACCEPT will store the string linearly into the array or 
array range. If the array is not filled, the remainder of 
the array or range will be set to zero. If the literal is 
too long the remaining characters will be ignored. 

Example 

ACCEPT ARRAY/RASCII 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' 

FORMAT STATEMENT MODIFICATION 

When the name field of an ACCEPT contains a label, FORDDT 
expects this label to be a FORMAT statement label and that 
the value field contains d new FORMAT specification. 

Example 

ACCEPT 10 (lHO,FIO.2,3(I2)) 

The new specification 
originally allocated 
remainder of the area 
is shorter. 

cannot be longer than the space 
to the FORMAT by the compiler. The 

is cleared if the new specification 

Note that FOROTS performs some encoding of FORMAT 
statements when it processes them for the first time. If 
any I/O statement referencing the given FORMAT has been 
executed, the FORTRAN program has to be restarted 
(re-initializing FOROTS). 

CONTINUE Allows the program to resume execution after a FORDDT 
pause. After a CONTINUE is executed, the program either 
runs to completion or until another pause is encountered. 
The command format is: 

CONTINUE n 

where the n is optional and, if omitted, will be assumed 
to be one. If a value is provided, it may be a numeric 
constant or program variable, but it will be treated as an 
integer. When the value n is specified, the program will 
continue execution until the nth occurrence of this pause. 
For example, 

CONTINUE 20 

will continue execution after the 20th occurrence of the 
pause. 

E-IO 



DDT 

FORDDT 

Transfers control of the program to DDT, the standard 
system debugging program (if loaded). Any files currently 
opened by FOROTS are unaffected and return to PORDDT is 
possible so that program execution may be resumed . 

. FIO is the global symbol used to return control to 
FORDDT. The command format is: 

.FIO$G 

where $ represents altmode or escape. Your program will 
be in the same condition as before unless you have 
modified your core image with DDT. 

DIMENSION Sets the user-defined dimensions of an array for FORDDT 
access purposes. These dimensions need not agree with 
those declared to the compiler in the source code. FORDDT 
will allow you to redimension an array to have a larger 
scope than that of the source program. If this is done, a 
warning is given. The command format is: 

DIMENSION S 

where S is the name of the array specified. 

For example: 

DIMENSION ALPHA(7,5/6,lO) 

FORDDT will remember the dimensions of the array until it 
is redefined or removed. 

The command 

DIMENSION 

will give a full list of all the user-defined dimensions 
for all arrays. 

DIMENSION ALPHA 

will display the current information for the array ALPHA 
only. 

DIMENSION ALPHA/REMOVE 

will remove any user defined array information for the 
array ALPHA. 

Arrays, Array Elements, and Ranges 

Array elements are specified in the following format: 

name [dl/d2, ... ] (Sl, ..• ) 

where 

name 

[ ... ] 
the name of the array 

optional, and contains dimension information. 
This form is equivalent in effect to the 
DIMENSION statement. 

E-ll 



DOUBLE 

GOTO 

GROUP 

( ... ) 

FORDDT 

the subscripts of 
desired. 

the specific element 

The entire array is referenced simply by its unsubscripted 
name. A range of array elements is specified by inputting 
the first and last array elements of the desired range 
separated by a dash (-) (A(5)-A(lO)). 

Defines the dimensions of a double-precision array. The 
result of this command is the same as for the DIMENSION 
command except that the array so dimensioned is understood 
by FORDDT to be an array with word entries and, therefore, 
reserves twice the space. The command format is: 

DOUBLE arrayname 

Allows you to continue your program from a point other 
than the one at which it last paused. The GOTO allows you 
to continue at a statement label or code-generating source 
line number provided that the /DEBUG:LABELS switch has 
been used or the contents of a symbol previously ASSIGNed 
during the program execution. 

Note that the program must be STARTed before this command 
can be used, and also note that a GO TO is not allowed 
after the ~C~C REENTER sequence. (See F.6.) 

The command format is: 

GOTO n 

Sets up a string of text for input to a TYPE command. You 
can store TYPE statements as a list of variables 
identified by the numbers 1 through 8. This feature 
eliminates the need to retype the same list of variables 
each time you wish to examine the same group. Refer to 
the TYPE command for the proper format of the list. 

The command format is: 

GROUP n list 

where 

n 

list 

GROUP 

the group number 1-8 

a string of TYPE statements to be called in 
future accessing of the current group number. 

with no arguments will cause FORDDT to type out the 
current contents of all the groups 

GROUP n 

will type out the contents of the particular group 
requested. 

Note that one group may call another. 

E-12 



LOCATE 

MODE 

NEXT 

FORDDT 

Lists the program unit names in which a given symbol is 
defined. This is useful when the variable you wish to 
locate is not in the currently open program unit and is 
defined in more than one program unit. The command format 
is: 

LOCATE n 

where n may be any FORTRAN variable, array, label, line 
number, or FORMAT statement number. 

Defines the default formats of typeout from FORDDT. In 
initial default mode, variables will be typed in 
floating-point format. If you wish to change the typeout 
modes, the command format is: 

MODE list 

where list contains one or ~ore of the modes in the 
following table. (O~ly the first character of each mode 
need be typed to identify it to FORDDT.) 

Mode Meaning 

F FLOATING-POINT 
D DOUBLE-PRECISION 
C COMPLEX 
I INTEGER 
o OCTAL 
A ASCII (left-justified) 
R RASCII (right-justified) 

A typical command string might be: 

MODE A,I,OCTAL 

Allows you to cause FORDDT to trace source lines, 
statement labels, and entry point names during execution 
of your program. This command will only provide trace 
facilities if the program was compiled with the FORTRAN-IO 
IDE BUG switch. If this switch was not used, the NEXT 
command will act as a CONTINUE command. The command 
format is: 

NEXT nlsw 

where 

n a program variable or integer numeric value 
and 

sw one of the following switches 

IS= statement label 
IL= source line 
IE= entry point 

The default starting value of n is 1, a single statement 
trace. The default switch is IL. 

The command 

NEXT 20/L 

E-13 



OPEN 

PAUSE 

FORDDT 

will trace the execution of the next 20 source line 
numbers or until another pause is encountered. 

Note that if no argument is specified, the last argument 
given will be used. For example, 

NEXT /E 

will change the tracing mode to trace only subprogram 
entries using the numeric argument previously supplied. 

Allows you to open a particular program unit of the loaded 
program so that the variables will be accessible to 
FORDDT. Any previously opened program unit is closed 
automatically when a new one is opened. Only global 
symbols, symbols in the currently open unit, and unique 
locals are available at anyone time. Note that starting 
FORDDT automatically opens the MAIN program. The command 
format is: 

OPEN name 

where name is the subprogram name. OPEN with no arguments 
will reopen the MAIN program. 

If the PROGRAM statement was used in the FORTRAN program, 
the name supplied by you will be requested upon entering 
FORDDT. 

Allows you to place a pause request at a statement number, 
source line number, or subroutine entry point. Up to ten 
pauses may be set at anyone time. When a pause is 
encountered, execution is suspended at that point and 
control is returned to FORDDT. Also, when a pause is 
encountered, the symbol table of that subprogram is 
automatically opened. 

The command formats include: 

where 

PAUSE P 
PAUSE P AFTER n 
PAUSE P IF condition 
PAUSE P TYPING /g 
PAUSE P AFTER n TYPING /g 
PAUSE P IF condition TYPING /g 

P 
n 

the point where the pause 
an integer constant or 
element 

is requested, 
variable or array 

g a group number 

PAUSE 100 

will set a pause at statement label 100, cause 
to be suspended, and cause FORDDT to be 
reaching 100 in the program. 

PAUSE #245 AFTER MAX(5) 

execution 
entered on 

will cause a pause to occur at source line number 245 
after encountering this point the number of times 
specified by MAX(5). Note that AFTER may not be 
abbreviated. 

E-14 



REMOVE 

START 

STOP 

FORDDT 

PAUSE DELTA IF LIMIT(3,1) .GT.2.5E-3 

If the variable LIMIT(3,1) is greater than the value 
2.5E-3, the pause request will be granted. The IF ~ay not 
be abbreviated, but all the usual FORTRAN logical 
connectives are allowed. 

PAUSE 505 TYPING /5 

will request a pause to be made at the first occurrence of 
the label 505, and the variables in group 5 will be 
displayed. The TYPING specification may not be 
abbreviated. 

PAUSE LINE#24 AFTER 16 TYPING 3 

will place a request at source line number 24 after 16 
(octal) times through; however, the contents of group 3 
will be displayed every time. 

When the TYPING option is used with the PAUSE command, 
control can be transferred to FORDDT at the next typeout 
by typing any character on the terminal. 

Note that pause requests remain after a control C REENTER 
sequence, a START command, or a control C START sequence. 

Removes the previously requested pauses. 
format is: 

The command 

REMOVE P 

For example, 

REMOVE L#123 

will remove a pause at program source line number 123. 

REMOVE ALPHA 

will remove a pause at the subroutine entry to ALPHA. 

REMOVE with no arguments will remove all your pause 
requests, and, in this case, no abbreviation of REMOVE is 
allowed. This prevents the unintentional removal of 
pauses. 

Starts your program at the normal FORTRAN main program 
entry point. The command format is: 

START 

Terminates the program, requests FOROTS to close all open 
files, and causes an exit to the monitor. The usual 
command format is: 

STOP 

STOP/RETURN 

will allow a return to monitor mode without releasing 
devices or closing files so that a CONTINUE can be issued. 

E-15 



STRACE 

TYPE 

WHAT 

FORDDT 

Displays a subprogram level backtrace of the current state 
of the program. The command format is: 

STRACE 

Causes one or more FORTRAN defined variables, arrays, or 
array elements to be displayed on your terminal. The 
command format is: 

TYPE list 

where list may be one or more variable or array references 
and/or group numbers. These specifications must be 
separated by commas, and group numbers must be preceded by 
a slash (/). The command with no arguments will use the 
last argument list submitted to FORDDT. 

An array element range can also be specified. For 
example: 

TYPE PI(S)-PI(13) 

will display the values from PIeS) to PI(13) inclusive. 
If an unsubscripted array name is specified, the entire 
array will be typed. 

There are several methods of choosing the form of typeout 
in conjunction with the MODE command. 

1. If you do not specify a format, the defaultis 
floating-point form. 

2. You can specify a format via the MODE command 
described in this appendix. 

3. You can change the format previously designated 
by the MODE command by including print modifiers 
in the TYPE or GROUP string. The print modifiers 
are: 

/A,/C,/D,/F,/I,/O,/R 

The first print modifier specified in a string of 
variables determines the mode for the entire 
string unless another mode is placed directly to 
the right of a particular variable. For example, 
in 

TYPE /IK,L/O,M,N/A,/2 

the typeout mode is integer until another mode is 
specified. Therefore, 

K,M,and/2 = Integer 
L OCTAL 
N = ASCII 

Displays the information saved by FORDDT. 
format is: 

The command 

WHAT 

E-16 



FORDDT 

E.7 ENVIRONMENT CONTROL 

If a program enters an indefinite loop, you can recover by typing a 
~C~C REENTER sequence. This action will cause FORDDT to simulate a 
pause at the point of reentry and allow you to control your run-away 
program. 

Most commands can be used once the program has been reentered; 
however, GOTO, STRACE, TYPE, and ACCEPT cause transfer of control to 
routines external to FORDDT. No guarantee can be made to ensure that 
any of these commands following a ~C~C REENTER sequence will not 
destroy the user profile. The program must be returned to a stable 
state before any of these four commands can be issued. In order to 
restore program integrity, you should set a pause at the next label 
and then CONTINUE to it. If the /DEBUG:TRACE switch was used, a NEXT 
I command can be issued .to restore program integrity. 

E.B FORTRAN-IO/OPTIMIZE SWITCH 

You should never attempt to use FORDDT with a program that has been 
compiled with the /OPTIMIZE switch. The global optimizer causes 
variables to be kept in ACs. For this reason, attempts to examine or 
~odify variables in optimized programs will not work. Also, since the 
optimizer moves statements around in your program, attempts to trace 
program flow will lead to great confusion. 

E.g FORDDT MESSAGES 

FORDDT responds with two levels of messages - fatal error and warning. 
Fatal error messages indicate that the processing of a given command 
has been terminated. Warning messages provide helpful information. 
The format of these messages is: 

where 

?FDTXXX text 
or 

%FDTXXX text 

? fatal 
% 
FDT 
XXX 
text 

warning 
FORDDT mnemonic 
3-letter mnemonic for error message 
explanation of error 

Square brackets ([ ]) in this section signify variables and are not 
output on the terminal. 

Fatal Errors 

The fatal errors in the following list are each preceded by ?FDT on 
the user terminal and on listings. They are listed in alphabetical 
order. 

BDF [symbol] IS UNDEFINED OR IS MULTIPLY DEFINED 

BOI BAD OCTAL OUTPUT 

An illegal character was detected in an octal input value. 

E-17 



CCN 

FORDDT 

CANNOT CONTINUE 

Pause has been placed on some form of skip instruction 
causing FORDDT to loop; should never be encountered in 
FORTRAN-IO compiled programs. 

CFO CORE FILE OVERFLOW 

The storage area for GROUP text has been exhausted. 

CNU THE COMMAND [name] IS NOT UNIQUE 

More letters of the command are required to distinguish it 
from the other commands. 

CSH CANNOT START HERE 

The specified entry point is not an acceptable FORTRAN-I 0 
main program entry point. 

DTO DIMENSION TABLE OVERFLOW 

FCX 

FNI 

ffiR 

IAF 

IAT 

ICC 

FORDDT does not have the space to record any more array 
dimensions until some are removed. 

FORMAT CAPACITY EXCEEDED 

An attempt was made to specify a FORMAT statement requiring 
more space than was originally allocated by FORTRAN-IO. 

FORMAL NOT INITIALIZED 

Reference to a FORMAL parameter of some subprogram that was 
never executed. 

[array name] IS A FORMAL AND MAY NOT BE RE-DEFINED 

FORMAL parameters may not be DIMENSIONed. 

ILLEGAL ARGUMENT FORMAT 

The parameters to the given command were not specified 
properly. Refer to the documentation for correct format. 

ILLEGAL ARGUMENT TYPE = [number] 

An unrecognized subprogram argument type was detected. 
Submit an SPR if this message occurs. 

COMPARE TWO CONSTANTS IS NOT ALLOWED 

Conditional test involves two constants. 

IER E (number) 

Internal FORDDT error - please report via an SPR. 

IGN INVALID GROUP NUMBER 

Group numbers must be integral and in the range I through B. 

INV INVALID VALUE 

A syntax error was detected in the numeric parameter. 

E-IB 



ITM 

LGU 

LNF 

MLD 

MSN 

FORDDT 

ILLEGAL TYPE MODIFIER - S 

The mode S is only valid for ACCEPT statements. 

[array name] LOWER SUBSCRIPT.GE.UPPER 

The lower bound of any given dimension must be less than or 
equal to the upper bound. 

[label] IS NOT A FORMAT STATEMENT 

[array name] MULTI-LEVEL ARRAY DEFINITION NOT ALLOWED 

The same array cannot be dimensioned more than once (via the 
[dimensions] construct) in a single command. 

MORE SUBSCRIPTS NEEDED 

The array is defined to have more dimensions than were 
specified in the given reference. 

NAL NOT ALLOWED 

An attempt has been made to modify something other than data 
or a FORMAT. 

NAR NOT AFTER A RE-ENTER 

The given command is not allowed until program integrity has 
been restored via a CONTINUE or NEXT command. 

NDT DDT NOT LOADED 

NFS CANNOT FIND FORTRAN START ADDRESS FOR [program name] 

NFV 

Main program symbols are not loaded. 

[symbol] IS NOT A FORTRAN VARIABLE 

Names must be 6-character alphanumeric strings beginning 
with a letter. 

NGF CANNOT GOTO A FORMAT STATEMENT 

NPH CANNOT INSERT A PAUSE HERE 

NSP 

NUD 

An attempt has been made to place a pause at other than an 
executable statement or subprogram entry point. 

[symbol] NO SUCH PAUSE 

An attempt has been made to REMOVE a pause that was never 
set up. 

[symbol] NOT A USER DEFINED ARRAY 

An attempt has been made to remove dimension information for 
an array that was never defined. 

PAR PARENTHESES REQUIRED ( .. ) 

Parentheses are required for the specification of FORMAT 
statements and complex constants. 

E-19 



FORDDT 

PRO TOO MANY PAUSE REQVSSTS 

The PAUSE table has been exhausted. The maximum limit is 
10. 

SER SUBSCRIPT ERROR 

STL 

The subscript speciried is outside the range of its defined 
dimensions. 

[array name] SIZE TOO LARGE 

An attempt has been made to define an array larger than 
256K. 

TMS TOO MANY SUBSCRIPTS 

The array is defined to have fewer dimensions than are 
specified in the given element reference. 

URC UNRECOGNIZED COMMAND 

Warning Messages 

Each warning message in this list is preceded by .%FTN on your terminal 
and on listings. They are given here in alphabetical order. 

ABX 

CHI 

[array name] COMPILED ARRAY BOUNDS EXCEEDED 

FORDDT has detected another symbol defined in the specified 
range of the array. Note that this will occur in certain 
EQUIVALENCE cases and can be ignored at that time. 

CHARACTERS IGNORED: "[text]" 

The portion of the command string included in "text" was 
thought to be extraneous and was ignored. 

NAR [symbol] IS NOT AN ARRAY 

NSL NO SYMBOLS LOADED 

FORDDT cannot find the symbol table. 

NST NOT STARTED 

The specified command requires that a START be previously 
issued to ensure that the program is properly initialized. 

POV PROGRAM OVERLAYED 

The symbol table is different from the last time FORDDT had 
control. 

SFA SUPERSEDES FlO ARRAY 

The FORTRAN-IO generated dimension is being superseded for 
the given array. 

SPO VARIABLE IS SINGLE-PRECISION ONLY 

XPA ATTEMPT TO EXCEED PROGRAM AREA WITH [symbol name] 

An attempt has been made to access memory outside the 
currently defined program space. 

E-20 



APPENDIX F 

COMPILER MESSAGES 

FORTRAN-lO responds with two levels of messages fatal error and 
warning. If a warning message is received, the compilation will 
continue, but a fatal error will stop the program from being compiled. 
The format of messages is: 

where 

?FTNXXX LINE:n text 
or 

%FTNXXX LINE:n text 

? 
% 
FTN 
XXX 
LINE:n 
text 

fatal 
warning 
FORTRAN mnemonic 
3-letter mnemonic for the error message 
line number where error occurred 
explanation of error 

Square brackets ([ ]) in this appendix signify variables and are not 
output on the terminal. 

Fatal Errors 

Each fatal error in the following list is preceded by ?FTN on the user 
terminal and on listings. They are presented here in alphabetical 
order. 

ABD [symbolname] HAS ALREADY BEEN DEFINED [definition] 

The usage given conflicts with current information about the 
symbol. For example, a symbol defined in an EQUIVALENCE 
statement cannot be referenced as a subprogram name. 

ATL ARRAY [name] TOO LARGE 

The total amount of core necessary to accommodate this array 
is greater than S12P. 

AWN ARRAY REFERENCE [name] HAS WRONG NUMBER OF SUBSCRIPTS 

The array was defined to have more or fewer dimensions than 
the given reference. 

BOV STATEMENT TOO LARGE TO CLASSIFY 

To determine statement type, some portion of the statement 
must be examined by the compiler before actual semantic and 
syntactic analysis begins. During this classification the 
entire portion of the required statement must fit into the 

F-l 



COMPILER MESSAGES 

internal statement buffer (large enough for a normal 20-line 
statement) . This error message is issued when the portion 
of a given statement required for classification is too 
large to fit in the buffer. Once FORTRAN-IO has classified 
a statement, there is no explicit restriction on its length. 

CER COMPILER ERROR IN ROUTINE [name] 

Submit an SPR for any occurrence of this message. 

CFF CANNOT FIND FILE 

The file referenced in an INCLUDE statment was not found. 

CPE CHECKSUM OR PARITY ERROR IN [source/listing/object] FILE 
[name] 

CQL NO CLOSING QUOTE IN LITERAL 

CSF ILLEGAL STATEMENT FUNCTION REFERENCE IN CALL STATEMENT 

DDA [symbolname] IS DUPLICATE DUMMY ARGUMENT 

OFC VARIABLE DIMENSION [name] MUST BE SCALAR, DEFINED AS FORMAL 
OR IN COMMON 

DFD DOUBLE [type] NAME ILLEGAL 

Duplicate fields were encountered in an INCLUDE file 
specification. 

DIA DO INDEX VARIABLE [name] IS ALREADY ACTIVE 

In any nest of DO loops, a given index variable may not be 
defined for more than one loop. 

DID CANNOT INITIALIZE A DUMMY PARAMETER IN DATA 

DLN OPTIONAL DATA VALUE LIST NOT SUPPORTED 

The extended FORTRAN statement form that allows data values 
to be defined in type specification statements is not 
supported by FORTRAN-IO. 

DNL IMPLIED DO SPECIFICATION WITHOUT 
VARIABLES 

ASSOCIATED 

DPR DUMMY PARAMETER [name] REFERENCED BEFORE DEFINITION 

DSF ARGUMENT [name] IS SAME AS FUNCTION NAME 

LIST 

DTI THE DIMENSIONS OF [arrayname] MUST BE OF THE TYPE INTEGER 

DVE CANNOT USE DUMMY VARIABLE IN EQUIVALENCE 

DWL [source/listing/object] DEVICE [[device]] WRITE LOCKED 

ECT ATTEMPT TO ENTER [symbolname] INTO COMMON TWICE 

EDN EXPRESSION TOO DEEPLY NESTED TO COMPILE 

EID ENTRY STATEMENT ILLEGAL INSIDE A DO LOOP 

ElM ENTRY STATEMENT ILLEGAL IN MAIN PROGRAM 

F-2 

OF 



COMPILER MESSAG8S 

ENF LABEL [number] MUST REFER TO AN EXECUTABLE STATEMENT, NOT A 
FORMAT 

ETF ENTER FAILURE [filename] 

EXB EQUIVALENCE EXTENDS COMMON BLOCK [name] BACKWARD 

FEE FOUND [symbol] WHEN EXPECTING EITHER [symbol] OR A [symbol] 

General syntax error message. 

FNE LABEL [number] MUST REFER TO A FORMAT, NOT AN EXECUTABLE 
STATEr-1ENT 

FWE FOUND [symbol] WHEN EXPECTING [symbol] 

HDE HARDWARE DEVICE ERROR ON [source/listing/object] DEVICE 
[[device]] 

lAC ILLEGAL ASCII CHARACTER [character] IN SOURCE 

IAL INCORRECT ARGUMENT TYPE FOR LIBRARY ~UNCTION [name] 

IBK ILLEGAL STATEMENT IN BLOCKDATA SUBPROGRAM 

ICL ILLEGAL CHARACTER [character] IN LABEL FIELD 

IDN DO LOOP AT LINE: [number] IS ILLEGALLY NESTED 

You are attemping to terminate a DO loop before terminating 
one or more loops defined after the given one. 

IDS IMPLICIT DO INDICES MAY NOT BE SUBSCRIPTED 

ID'r ILLEGAL OR MISSPELLED DATA TYPE 

IDV IMPLIED DO INDEX IS NOT A VARIABLE 

lED INCONSISTENT EQUIVALENCE DECLARATION 

The given EQUIVALENCE declaration would cause some symbolic 
name to refer to more than one physical location. 

IFD INCLUDED FILES MUST RESIDE ON DISK 

110 NON-INTEGER IMPLIED DO INDEX 

lIP ILLEGAL IMPLICIT SPECIFICATION PARAMETER 

lIS INCORRECT INCLUDE SWITCH 

ILF ILLEGAL STATEMENT AFTER LOGICAL IF 

Refer to Section 9.3.2 for restrictions on logical IF object 
statements. 

INN INCLUDE STATEMENTS MAY NOT BE NESTED 

IOD ILLEGAL STATEMENT USED AS OBJECT OF DO 

ISD ILLEGAL SUBSCRIPT EXPRESSION IN DATA STATEMENT 

Subscript expressions may be formed only 
indices and constants combined with +, -

F-3 

with impl iei t 
*, or /. 

DO 



COMPILER MESSAGES 

ISN [symbolname] IS NOT [symbol type] 

The symbol cannot be used in the attempted manner. 

IUT PROGRAM UNITS MAY NOT BE TERMINATED WITHIN INCLUDED FILES 

IVP INVALID PPN 

IXM ILLEGAL MIXED MODE ARITHMETIC 

Complex and double-precision cannot appear in the same 
expression. 

IZM ILLEGAL [datatype] SIZE MODIFIER [number] 

Refer to Section 6.3. 

LAD LABEL [number] ALREADY DEFINED AT LINE: [number] 

LED ILLEGAL LIST DIRECTED [statement type] 

LFA LABEL ARGUMENTS ILLEGAL IN FUNCTION OR ARRAY REFERENCE 

LGB LOWER BOUND GREATER THAN UPPER BOUND FOR ARRAY [name] 

LLS LABEL TOO LARGE OR TOO SMALL 

Labels cannot be 0 or greater than 5 digits. 

LNI LIST DIRECTED I/O WITH NO I/O LIST 

LTL TOO MANY ITEMS IN LIST - REDUCE NUMBER OF ITEMS 

In rare instances, a combination of long lists in a single 
statement can exhaust the syntax stack. 

MCE MORE THAN I COMMON VARIABLE IN EQUIVALENCE GROUP 

MSP STATEMENT NAME MISSPELLED 

MWL ATTEMPT TO DEFINE MULTIPLE RETURN WITHOUT FORMAL LABEL 
ARGUMENTS 

NCF NOT ENOUGH CORE FOR FILE SPECS. TOTAL K NEEDED= [number] 

NEX NO EXPONENT AFTER D OR E CONSTANT 

NFS NO FILENAME SPECIFIED 

The INCLUDE statement requires a filename. 

NIO NAMELIST DIRECTED I/O WITH I/O LIST 

NGS CANNOT GET SEGMENT [name] - ERROR CODE: [number] 

Refer to Appendix E of the Monitor Calls Manual for full 
description of codes. 

NIR REPEAT COUNT MUST BE AN UNSIGNED INTEGER 

NIU NON-INTEGER UNIT IN I/O STATEMENT 

NLF WRONG NUMBER OF ARGUMENTS FOR LIBRARY FUNCTION [name] 

F-4 



COMPILER MESSAGES 

NNF NO STATEMENT NUMBER ON FORMAT 

NRC STATEMENT NOT RECOGNIZED 

NUO .NOT. IS A UNARY OPERATOR 

NWD INCORRECT USE OF * OR? IN [filename] 

OPW OPEN PARAMETER [name] IS OF WRONG TYPE 

PD6 FORTRAN WILL NOT RUN ON A PDP-6 

PIC THE DO PARAMETERS OF [index name] MUST BE INTEGER CONSTANTS 

PRF PROTECTION FAILURE [filename] 

PTL PROGRAM TOO LARGE 

The program takes up more than Sl2P 

QEF QUOTA EXCEEDED OR DISK FULL [filename] 

QEX BLOCK TOO LARGE OR QUOTA EXCEEDED FOR 
[source/listing/object] FILE [name] 

RDE RIB OR DIRECTORY ERROR [filename] 

RFC [function name] IS A RECURSIVE FUNCTION CALL 

RIC COMFLEX CONSTANT CANNOT BE USED TO REPRESENT THE REAL OR 
IMAGINARY PART OF A COMPLEX CONSTANT 

SAD ARRAY [name] - SIGNED DIMENSIONS MAY APPEAR ONLY AS CONSTANT 
RANGE LIMITS 

SNL [statement name] STATEMENTS MAY NOT BE LABELED 

SOR SUBSCRIPT OUT OF RANGE 

TFL TOO MANY FORMAT LABELS SPECIFIED 

TOF MORE THAN 2 OUTPUT FILES ARE NOT ALLOWED 

Only a listing and a relocatable binary file may be 
specified as output files. 

UCE USER CORE EXCEEDED 

UMP UNMATCHED PARENTHESES 

USI [symbol type] [symbol name] USED INCORRECTLY 

The given symbol cannot be used in this way. 

VNA SUBSCRIPTED VARIABLE IN EQUIVALENCE BUT NOT AN ARRAY 

VSE EQUIVALENCE SUBSCRIPTS MUST BE INTEGER CONSTANTS 

VSO VARIABLE DIMENSION ALLOWED IN SUBPROGRAMS ONLY 

F-S 



COMPILER MESSAGES 

Warning Messages 

Each warning message in the following list is preceded by %FTN on the 
user terminal and on listings. They are presented here in 
alphabetical order. 

AGA OPT - OBJECT VARIABLE, OF ASSIGNED GOTO WITHOUT OPTIONAL 
LIST, WAS NEVER ASSIGNED 

CAl COMPLEX EXPRESSION USED IN ARITHMETIC If 

CTR COMPLEX TERMS USED IN A RELATIONAL OTHER THAN EQ OR NE 

The result of the other relational operators with complex 
operands is undefined. 

CUO CONSTANT UNDERFLOW OR OVERFLOW 

This message is issued when overflow or underflow is 
detected as the result of building constants or evaluating 
constant expessions at compile time. 

DIM POSSIBLE DO INDEX MODIFIED INSIDE LOOP 

A program that does this may be incorrectly compiled by the 
optimizer, since it assumes that indices are never modified. 
Note that the number of iterations is calculated at the 
beginning of the loop and is never affected by modification 
of the index within the loop. 

DIS OPT - PROGRAM IS DISCONNECTED - OPTIMIZATION DISCONTINUED 

Submit an SPR if this message occurs. 

DXB DATA STATEMENT EXCEEDS BOUNDS OF ARRAY [name] 

FMR MULTIPLE RETURNS DEFINED IN A FUNCTION 

FNA A FUNCTION WITHOUT AN ARGUMENT LIST 

ICC ILLEGAL CHARACTER, CONTINUATION FIELD OF INITIAL LINE 

Continuation lines cannot follow comment lines. 

ICD INACCESSIBLE COO~. STATEMENT DELETED 

The optimizer will delete statements that cannot be reached 
during execution. 

ICS ILLEGAL CHARACTER IN LINE SEQ# 

IDN OPT - ILLEGAL DO NESTING - OPTIMIZATION DISCONTINUED 

A GO TO within a DO loop goes to the ending statement of an 
inner, nested DO loop. The line number printed out with the 
warning message is that of the OUTER DO. 

DO 

GO TO 

F-6 



COMPILER MESSAGES 

DO 

CONTINUE 

CONTINUE 

IFL OPT - INFINITE LOOP. OPTIMIZATION DISCONTINUED 

LID IDENTIFIER [name] MORE THAN SIX CHARACTERS 

The remaining characters are ignored. 

MVC NUMBER OF VARIABLES DOES NOT EQUAL THE NUMBERS OF CONSTANTS 
IN DATA STATEMENT 

NED NO END STATEMENT IN PROGRAM 

NOD GLOBAL OPTIMIZATION NOT SUPPORTED WITH IDEBUG - IOPT IGNORED 

NOF NO OUTPUT FILES GIVEN 

PPS PROGRAM STATEMENT PARAMETERS IGNORED 

For compatibility purposes. 

RDI ATTEMPT TO REDECLARE IMPLICIT TYPE 

SOD [name] STATEMENT OUT OF ORDER 

VAL [name] ALREADY INITIALIZED 

VND FUNCTION RETURN VALUE IS NEVER DEFINED 

VNI OPT - VARIABLE [name] IS NOT INITIALIZED 

The optimizer analysis determined that the given variable 
was never initialized prior to its use in a calculation. 

WOP OPT - WARNING GIVEN IN PHASE 1. OPTIMIZED CODE MAY NOT BE 
CORRECT 

One or more of the messages issued prior to this message 
resulted from situations that violate assumptions made by 
the optimizer and thus may cause it to generate code that 
does not execute as desired. 

XCR EXTRANEOUS CARRIAGE RETURN 

Carriage return was not immediately preceded or followed by 
a line termination character. 

ZMT SIZE MODIFIER [number] TREATED AS [data type] 

Message is issued when one of the data type size modifiers 
is used that is accepted only for compatibility. 

F-7 



Internal Compiler errors 

An internal compiler error 
monitor to document an 
occurrence of an internal 
wrong with the FORTRAN-IO 

COMPILER MESSAGES 

is either an attempt by the compiler or 
error inside the FORTRAN compiler. 

compiler error signifies that something 
compiler. 

Monitor-detected internal errors are of the form 

[message] AT LOCATION [address] IN PHASE [segment] 

WHILE PROCESSING STATEMENT [line-number] 

where [message] can be one of 

ILLEGAL MEMORY REFERENCE 

STACK EXHAUSTED 

MEMORY PROTECTION VIOLATION 

Compiler-detected errors are of the form 

? INTERNAL COMPILER ERROR PROCESSING STATEMENT NUMBER [line-number] 

? CALL TO [routine-name] FROM [address] 

Submit an SPR if you received an internal co~piler error. 

F-8 

the 
An 
is 



APPENDIX G 

FORTRAN-IO REALTIME SOFTWARE 

This appendix explains how to use the FORTRAN-IO realtime software. 

G.l INTRODUCTION 

The FORRTF library subroutines (LOCK, RTINIT, CONECT, RTSTRT, BLKRW, 
RTREAD, RTWRIT, STATO, STATI, RTSLP, RTWAKE, DISMIS, DISCON, UNLOCK, 
and temporary subroutine GETCOR (refer to Section G.3)) are designed 
to allow the timesharing FORTRAN user to do realtime programming. 
With these subroutines, the timesharing job can dynamically connect 
realtime devices to the priority interrupt (PI) system, respond to 
these devices at interrupt level, remove the devices from the PI 
system, and change their PI level. Use of these routines requires 
that you have realtime privileges and are able to lock your job in 
core. The privilege bits required are: 

JPORTT 
JPOLCK 

(BIT 13) - realtime privileges 
(BIT 14) - locking privileges 

The number of realtime devices that can be handled at one time is an 
assembly-time constant, RTDEVN, in the FORRTF source. The 
DIGITAL-distributed software has RTDEVN equal to 2 but it can be 
changed (up to 6) by editing the statement "RTDEVN==2" in FORRTF.MAC 
and reassembling. 

The error messages output by FORRTF can be in either full message 
format or coded format. (Refer to Table G-l.) Use of the code and 
format saves 165 words of run-time core. If core is limited, 
reassembly of FORRTF.MAC with the assembly-time constant SHORT changed 
from the DIGITAL-distributed 0 (full format) to -1 (coded format) 
accomplishes the core saving. 

On multiprocessor systems, the realtime traps apply only to the 
processor specified by the job's CPU specification. If the 
specification indicates more than one processor, the specification is 
changed to indicate CPUO. Note that the priority interrupt channel is 
only for the indicated cPU. 

G-l 



FORTRAN-lO REALTIME SOFTWARE 

G.2 USING FORRTF 

Users of FORTRAN-lO realtime software must consider the following: 

1. Use of core 

2. Device control in block or single mode 

3. Priority interrupt levels 

4. Masks 

G.2.l Core 

The job being executed must be locked in core with ~he LOCK 
subroutine. Any data being read into core can only be read into the 
low segment and above the protected job data area (the first 140 
locations) • The subroutine BLKRW tests the validity of the locations 
specified to receive data in block-reading to ensure that no 
overwritings occur. 

However, when in block mode, the block pointer must be reset before 
dismissing the end-of-block interrupt; otherwise, all memory could be 
overwritten. 

G.2.2 Modes 

Realtime jobs can control their devices in one of two ways: block 
mode or single mode. In block mode, an entire block of data is read 
or written before the user interrupt routine is run, whereas in single 
mode, the user interrupt program is run every time the device 
interrupts. There are two types of block mode; fast block mode and 
normal block mode. The response time to read a word of data is 6.S 
microseconds for fast mode and 14.6 microseconds for normal mode. 
(These are the times necessary to completely service the interrupts on 
a KIlO processor). In single mode, the response time measured from 
the receipt of a realtime device interrupt until the start of the user 
control program is 100 microseconds on a KIlO processor. A device in 
fast block mode requires that a PI channel be dedicated entirely to 
itself. 

G.2.3 Priority Interrupt Levels 

Priority interrupt levels 1 through 6 are legal depending on the 
system configuration. The lower the number of the level, the higher 
the priority of that level. Programs that execute for a long time 
should not be put on high-priority interrupt levels, since they could 
cause other realtime programs on lower levels to lose data. 
Specification of the PI level as zero for a particular device causes 
the device to be removed from the PI system. 

G-2 



FORTRAN-IO REALTIME SOFTWARE 

G.2.4 Masks 

For a description of the bits included in the startmsk and intmsk 
parameters of RTSTRT and the status word in STATO and STATI, see 
Chapters 3 through 8 of the DECsystem-lO System Reference Manual and 
Appendix C, IN-OUT DEVICE BIT ASSIGNMENTS of that manual. 

G.3 SUBROUTINES 

Each of the 15 subroutines associated with FORTRAN-IO realtime 
software is described briefly in this section. These subroutines have 
been programmed to be compatible with programs written according to 
the RTTRP: REAL TIME TRAPPING UUO specifications, edition 4 of 
12-Feb-73. 

G.3.1 LOCK 

LOCK locks the job in core and allocates and initializes the internal 
controlling tables for all realtime devices. LOCK must be called 
before any other of the realtime routines, except GETCOR (refer to 
Section G.3.15), and must be called exactly once. 

CALL LOCK 

G.3.2 RTINIT 

RTINIT initializes the internal tables controlling a realtime device. 
RTINIT must be called for each individual device being used. 

CALL RTINIT (unit, dev, pi, trpadr, intmsk) 

unit 

dev 

pi 

realtime device unit number (any number from 1 to 
RTDEVN) 
This number is not connected in any way with the 
FORTRAN logical unit number. 

device code for the realtime device (see Appendix 
A, DEVICE MNEMONICS in the DECsystem-lO System 
Reference Manual DEC-IO-XSRMA-A-D). 

priority interrupt level on which the realtime 
device is to be run. 
Each individual device in fast block mode must 
have a level dedicated to itself. If the level is 
equal to zero, the device will be removed from the 
priority interrupt system altogether. If it is 
necessary to connect one device to several levels 
simultaneously, a negative value for pi tells the 
system not to remove any other occurrences of the 
device from any other (or the same) PI level. 
(Note that this counts as another realtime 
device.) 

G-3 



trpadr 

intmsk 

G.3.3 CONECT 

FORTRAN-IO REALTIME SOFTWARE 

address of a FORTRAN entry to which realtime 
interrupts are to trap. This can be a FUNCTION or 
SUBROUTINE subprogram. Any variables that must be 
shared between the user level code and the 
interrupt level routine must be passed by means of 
COMMON. Passing them as parameters causes 
disastrous results. 

mask of all interrupting flags for the realtime 
device. This is actually set up by RTSTRT and 
should be zero whenever the realtime device is 
inactive, i.e., in a call to RTINIT, except in the 
case of fast block mode. In fast block mode, 
intmsk must be set to -1. 

CONECT tells the system to connect a realtime device to the proper PI 
level and sets up several elements of the device controlling tables. 
Every device must be CONECTed. 

CALL CONECT (unit, mode) 

unit realtime device unit number (see RTINIT) 

mode -2, write a block of data, fast ;node; then 
interrupt. 
-1, write a block of data, normal mode; then 
interrupt. 
0, interrupt every word 
+1, read a block of data, normal mode; then 
interrupt. 
+2, read a block of data, fast mode; then 
interrupt. 

G.3.4 RTSTRT 

RTSTRT can be used to start a realtime device as well as to stop it 
and zero its interrupt mask. A device must be started to be used and 
should be stopped before it is disconnected. 

CALL RTSTRT (unit, startmsk, intmsk) 

unit realtime device unit number (see RTINIT) 

startmsk - flags necessary to start the device (see the 
System Reference Manual, Appendix C). If the 
device is being stopped, this parameter should be 
zero. 

intmsk mask of all interrupting bits for the particular 
device (see the System Reference Manual Appendix 
C). If the device 1S 1n fast block mode and being 
started, intmsk should equal -1; if, however, the 
device in any mode is being stopped, the parameter 
must be O. 

G-4 



FORTRAN-IO REALTIME SOFTWARE 

G.3.S BLKRW 

BLKRW is used with either of the block modes. It sets up the size and 
starting address of the data block being handled. A new count and 
starting address must be set up each time the current one runs out. 

CALL BLKRW (unit, count, blkadr) 

unit 

count 

blkadr 

G.3.6 RTREAD 

realtime device unit number 

number of words to be read or written 

array into which the data is to be written or from 
which it is to be read. 

RTREAD, used with a device in single mode, reads from the device a 
single word of data. 

CALL RTREAD (unit, datadr) 

unit realtime device unit number (see RTINIT) 

datadr address of where to store the data read 

G.3.7 RTWRIT 

RTWRIT sends a single word of data to a realtime device in single 
mode. 

CALL RTWRIT (unit, datadr) 

unit realtime device unit number (see RTINIT) 

datadr location of the data word to be sent to the device 

G.3.8 STATO 

STATO sends the specified status word to the status register of a 
realtime device. (See Appendix C, In-Out Device Bit Assignments, in 
the DECsystem-IO System Reference Manual, DEC-IO-XSRMA-A-D.) 

CALL STATO (unit, statadr) 

unit 

statadr 

G.3.9 STATI 

realtime device unit number (see RTINIT) 

location of the word of status bits to be sent to 
the realtime device 

STATI reads the current device status bits into the location specified 
fr inspection by the FORTRAN program. (See Appendix C, "In-Out Device 
Bit Assignments", in the DECsystem-IO System Reference Manual, 
DEC-IO-XSRMA-A-D.) 

G-S 



FORTRAN-lO REALTIME SOFTWARE 

CALL STATI (unit, adr) 

unit 

adr 

G.3.10 RTSLP 

realtime device unit number (see RTINIT) 

location into which the device status bits are to 
be read. 

RTSLP is called from the timesharing level and causes the FORTRAN job 
to sleep until RTWAKE is called from interrupt level. The program 
goes to sleep for the specified number of seconds (up to 60). When it 
wakes up, it checks to see if RTWAKE has been called from interrupt 
level. If RTWAKE has been called, RTSLP returns to the calling 
program, otherwise the job goes back to sleep again. 

CALL RTSLP (time) 

length of sleep time in seconds 

G.3.1l RTWAKE 

RTWAKE is called at interrupt level to wake up the FORTRAN program. 

CALL RTWAKE 

G.3.12 OISMIS 

OISMIS dismisses the interrupt currently being processed. The user 
interrupt must be sure to dismiss the interrupt that causes its 
execution to begin. 

CALL OISMIS 

G.3.13 OISCON 

OISCON disconnects a realtime device from its PI level. All devices 
should be disconnected through calls to OISCON before the job is 
terminated. 

CALL OISCON (unit) 

unit realtime device unit number (see RTINIT) 

G.3.14 UNLOCK 

UNLOCK unlocks the job from core. When execution of a job is 
complete, the job is automatically unlocked before the return to the 
monitor. The UNLOCK subroutine provides a method to unlock a job 
before execution is complete. Note that all realtime device handling 
must be finished before the job is unlocked. 

CALL UNLOCK 

G-6 



FOR'rRAN-IO REALT11'1E SOFTi'lARE 

G.3.15 GETCOR, A Temporary Subroutine 

GETCOR is a routine that allocates a specified amount of core for 
FOROTS use. The design of FOROTS does not allow FORTRAN jobs to be 
locked in core due to its run-time core needs. Thus, you must 
allocate an amount of core sufficient to satisfy FOROTS for running 
the particular program being executed through a GETCOR call. The 
GETCOR call must precede the LOCK call (see G.3.2). Unfortun~tely, 
the only way to determine the core required for each program is by 
running the job with ever- increasing arguments to GETCOR. If the 
argument is too small, the following error message appears: 

?FRSSYS USER PROGRAM REQUESTED MORE CORE THAN IS AVAILABLE 

CALL GETCOR (wds) 

wds 

Code Format 

I . 

2 

3 

4 

5 

6 

number of words of storage to be allocated 

A 

A 

B 

Table G-I 
Error Messages 

Code Format and Full Message Format 

Full Message Format 

?ILLEGAL UNIT NUMBER. 
TO HANDLE MORE DEVICES, 
REASSEMBLE FORRTF WITH A 
LARGER 
?ERROR COMES FROM THE 
SUBROUTINE "subroutine name" 

?RTINIT MUST BE CALLED BEFORE 
CONECT 

?CONECT MUST BE CALLED BEFORE 
RTSTRT OR BLKRW 

?REAL TIME BLOCK OUT OF BOUNDS 
?END OF BLOCK TOO HIGH 
[i.e., overwrites some program 
or in high segment] 
?END OF BLOCK TOO LOW, 
i.e., start address less 
than 140 

?JOB CANNOT BE LOCKED IN 
CORE 

A ?JOB NOT PRIVILEGED 
B ?NOT ENOUGH CORE AVAILABLE 

FOR LOCKING 

A 
B 

?APR ERROR AT INTERRUPT 
LEVEL 
?PDL OVERFLOW 
?ILLEGAL 
r.mMORY 
REFERENCE 

G-7 

Subroutine in 
which message 
occurs 

"RTDEVN" 

CONECT 

RTSTRT,BLKRw 

BLKRW 

LOCK 



Code Format 

7 

A 

B 
C 

D 

E 

8 A 

B 

FORTRAN-lO REALTIME SOFTWARE 

Table G-l (Cont.) 
Error Messages 

Code Format and Full Message Format 

Full Message Format 

?RTTRP ERROR 
realtime trap error of the 
following sort 
?ILLEGAL PI NUMBER 
PI channel not available 
?TRAP ADDRESS OUT OF BOUNDS 
?SYSTEM LIMIT FOR R8~LTIME 

DEVICES EXCEEDED 
?JOB NOT LOCKED IN CORE OR NOT 
PRIVILEGED 
?DEVICE ALREADY IN USE BY 
ANOTHER JOB 

0 ?OCCURRED IN THE DISCON 
ROUTINE 

1 ?OCCURRED IN THE CONECT 
ROUTINE 

?NOT ENOUGH CORE AVAILABLE 
FOR THE CONTROL BLOCKS 
?NOT ENOUGH CORE AVAILABLE 
FOR THE GETCOR ROUTINE 

?FRSSYS USER PROGRAM REQUESTED 
MORE CORE THAN IS AVAILABLE 

G-8 

Subroutine in 
which message 
occurs 

DISCON 

CONECT 

LOCK 

GETCOR 

GET COR 



APPENDIX a 

FOROTS ERROR MESSAGES 

Errors detected at run-time by FOROTS fall into the followin~ 
categories: 

1. system errors (SYS) - errors internal to FOROTS 

2. open erros (OPN) - I/O errors that occur during file OPEN and 
CLOSE 

3. arithmetic fault 
calculations 

errors (APR) - errors in numeric 

4. library errors (LIB) - errors generated by FORLIB library 
routines 

5. data errors (DAT) - errors in data conversion on I/O 

6. device errors (DEV) - I/O hardware errors 

APR and LIB errors are usually reported as warnings and the. program 
continues. The number of APR and LIB errors listed on the user's 
terminal can be changed by the FORTRAN Library Subroutine ERRSET. See 
Table 15-3 for details. The I/O errors (SYS, OPN, DAT, and DEV) 
either cause messages to be printed on the terminal or can be trapped 
by an error exit argument (ERR=statement label) on OPEN, READ, WRITE, 
and CLOSE. 

Table H-l gives the text of the messages which can be printed for SYS, 
OPN, DAT, and DEV errors. The included footnotes give additional 
information. Table H-2 gives the text of the messages which can be 
printed for APR and LIB errors. 

The FORTRAN Library Subroutine ERRSNS allows you to find out which I/O 
error occurred. When called, ERRSNS returns one or two integer values 
that describe the status of the last I/O operation performed by 
FOROTS. (The second integer value is optional.) 

CALL ERRSNS (I,J) 

calls this subroutine. J is the second, optional integer value. 

H-l 



FOROTS ERROR MESSAGES 

Table B-1 
FOROTS I/O Error Messages and ERRSNS Returned Values 

First 
Value 

o 

1 

23 

24 

25 

26 

28 

29 

30 

Second 
Value 

o 
101 

243 
246 

312 

308 

302 

311 

252 

254 
262 
268 

250 

237 

238 
240 
242 
245 
248 
249 
251 

253 

Explanation 

No error detected 
Satisfactory completion (no error detected) 
Normal end of job (1) 
Invalid error call 
Unidentified entry in FORERR (3) 
Unidentified entry in FORERR (3) 
Backspace error 
BACKSPACE illegal for device (9) 
End-of-file during READ 
Attempt to READ beyond valid input (8) 
Invalid record number 

record or reading 
read unwritten ASCII 
or unwritten or 

LSCW illegal in binary 
ASCII; or attempt to 
RANDOM ACCESS record 
destroyed record number 
Direct access not specified 
Cannot RANDOM ACCESS a SEQUENIAL file 
CLOSE error 
DTA directory is full (2) or protection 
error 
Rename file already exists (2) 
No room or quota exceeded (2) 
Cannot delete or rename a non-empty 
directory (2) 
No such file 
File was not found 
OPEN failure 
DUMP mode RANDOM or APPEND access not 
implemented; try IMAGE MODE 
DIALOG file cannot be opened (3) 
Record length missing for RANDOM ACCESS 
Too many devices open: fifteen maximum 
Device not available (2) 
Illegal ACCESS for device (2) 
Illegal MODE or MODE switch (2) 
No directory for project, programmer 
number (2) 
File was being modified (2) 

1. Not currently implemented. 

2. OPEN errors 251 through 276 map directly onto error numbers 
returned by the OPEN UUO; see Appendix E, "Error Codes", in Software 
Notebook 4, "DEC-IO Monitor Calls". 

3. Error cannot currently occur. 

8. Occurs when simulating mag tape output; SKIP RECORD and SKIP FILE 
are illegal. Also occurs when a non-existent file is opened in MODE= 
SEQINOUT and the first op~ration on that file is a READ. 

9. Occurs if OPEN output with BACKSPACE is not a mag tape or disk. 

B-2 



FOROTS ERROR MESSAGES 

Table B-1 (Cont.) 
FOROTS I/O Error Messages and ERRSNS Returned Values 

First 
Value 

31 

32 

39 

42 

45 

47 

59 

62 

63 

Second 
Value 

Explanation 

255 Illegal sequence of Monitor Calls (11) 
256 Bad UFD or bad RIB (2) 
259 Device not available (2) 
265 Partial allocation only (2) 
266 Block not free on allocation (2) 
267 Cannot supersede an existin~ directory (2) 
269 SFD not found (2) 
270 Search list empty (2) 
271 SFD nested too deeply (2) 
272 No CREATE flag for specified UFD (2) 
274 File cannot be updated (2) 
277 LOOKUP ENTER or RENAME error (2) 

315 

239 

310 

244 
260 

241 

263 

313 

301 
306 
314 

305 

Mixed access modes 
Cannot do SEQUENTIAL ACCESS on a RANDOM 
file 
Invalid logical unit number 
Illegal FORTRAN unit number (2) 
Error during READ 
REREAD before first READ is illegal (1) 
Device handler not resident 
No such device (2) 
No such device (2) 
OPEN statement keyword error 
Switch error during DIALOG or OPEN 
statement scan (2) 
Write on read-only flle 
Write-lock error (2) 
List-directed I/O syntax error 
Illegal delimiter in LIST DIRECTED input 
Syntax error in FORMAT 
Illegal character in FORMAT statement (4) 
I/O list without data conversion in FORMAT 
Missing width field for A or R on input 
Output conversion error 
Optional * fill: unidentified entry in 
FORERR (7) 

1. Not currently implemented. 

2. OPEN errors 251 through 276 map directly onto error numbers 
returned by the OPEN UUO; see Appendix E, "Error Codes", in Software 
Notebook 4, "DEC-lO Monitor Calls". 

4. In runtime FORMAT. 

7. * fill controlled by compile-time variable ASTFIL. 

11. Can occur on OPEN (MODE= 'APPEND') when file is found in LIB: or 
on [1,4] when device specified was SYS: and /NEW was in your search 
list. 

B-3 



FOROTS ERROR MESSAGES 

Table H-l (Cont.) 
FOROTS I/O Error Messages and ERRSNS Returned Values 

First 
Value 

64 

67 

81 

699 

799 

899 

999 

Second 
Value 

303 
307 

304 

102 
261 

247 
257 
258 
264 
273 
275 
276 

309 

400 
401 
402 
403 

404 
407 

100 
103 
104 
105 

Explanation 

Input conversion error 
Checksum error reading binary records (5) 
Illegal character in data 
Record too small for I/O list 
I/O list greater than record size (6) 
Invalid argument 
Argument block not in correct format 
Argument block not in correct format (2) 
Unclassifiable error on OPEN 
FOROTS system error (2,3) 
FOROTS system er ror (2) 
FOROTS system error (2) 
Not enough monitor table space (2) 
FOROTS system er ror (2) 
FOROTS system error (2) 
FOROTS system error (2) 
Unclassifiable data error 
Variable cannot be found in NAMELIST block 
Unclassifiable device errors 
Write protected 
Device error 
Parity error 
Block too large, quota exceeded, or file 
structure full. Nonexistent CDR reader. 
Spooled CDR file does not exist. 
End-of-file (10) 
End-of-tape 
Unclassified system error 
FOROTS system error 
Monitor not build to support FOROTS 
Fatal error 
User program has requested more code than 
is available 

106 Run time memory management error 

2. OPEN errors 251 through 276 map directly onto error numbers 
returned by the OPEN UUO; see Appendix E, "Error Codes", in Software 
Notebook 4, "DEC-IO Monitor Calls". 

3. Error cannot currently occur. 

5. Checksumming controlled by compile-time variable CHKSUM. 

6. Occurs when a type 2 LSCW is found in a FORSE binary record. 

10. Trappable if there is no END= clause. 

H-4 



FOROTS ERROR MESSAGES 

Table B-2 
FOROTS Arithmetic and Library Error Messages 

APR LIB 

Integer Overflow Attempt to take DLOG of Negative Arg. 

Integer Divide Check Attempt to take DSQRT of Negative Arg. 

Illegal APR Trap ACOS of Arg. > 1.0 in Magnitude 

Floating Divide Check ASIN of Arg. > 1.0 in Magnitude 

Floating Underflow Attempt to take SQRT of Negative Arg. 

Attempt to take LOG of Negative Arg. 

H-5 





A format descriptor, 13-12 
ACCEPT, INTRO-5-2 
ACCEPT statement, 10-18 
ACCEPT transfer, 

formatted, 10-18 
into FORMAT statement, 10-19 

Account number, INTRO-5-2 
ACCESS in file control 

statement, 12-3 
Accumulator usage, C-10 
Accuracy of doub1e-

precision numbers, C-1 
ACOS function, 15-11 
Addition, 4-1 
Adjustable dimensions, 6-2 
ALL with DEBUG, B-3 
Allocation, 

register, C-7 
ALOG function, 15-10 
ALOG10 function, 15-10 
Alphanumeric data transfer, 

13-12 
Alphanumeric FORMAT field 

descriptor, 13-11 
.AND., 4-5 
ANSI standard, 1-1 
APPEND with ACCESS, 12-4 
Argument, 

subprogram, 15-1 
Argument type, 

COBOL/FORTRAN, C-12 
Arithmetic, 

mixed-mode, 4-2 
Arithmetic assignment 

statement, 8-1 
Arithmetic expression, 4-1 
Arithmetic IF statement, 9-3 
Arithmetic operator, 4-1 
Array, 3-7 

dimensioning, 3-9, C-4 
Array elements, 

storage of, 3-10 
Array subscript, 3-8 
ASCII with MODE, 12-4 
ASCIZ string, C-14 
ASIN function, 15-11 
ASSIGN statement, 8-4 
Assigned GOTO statement, 9-2 
Assignment statement, 

arithmetic, 8-1 
label, 8-4 
logical, 8-4 
mixed-mode, 8-1 

ASSOCIATE VARIABLE in file 
control statement, 12-8 

A'rTACH, INTRO-7-3 
ATAN function, 15-11 
ATAN2 function, 15-11 
AXIS subroutine, 15-19 

INDEX 

BACKFILE statement, 14-3 
BACKSPACE statement, 14-2 
BASIC, 

input from, 2-6 
Basic external function 

subprogram, 15-8 
Beginning a job, INTRO-1-1 
BINARY with MODE, 12-4 
Blank line, 2-6 
BLOCK DATA statement, 16-1 
BLOCK SIZE in file control 

statement, 12-8 
Block data subprogram, 16-1 
BOUNDS with DEBUG, B-3 
BUFFER COUNT in file control 

statement, 12-8 

tc, INTRO-1-1 
tc monitor call, INTRO-3-3 
Call, 

FUNCTION, 15-16 
subroutine, 15-13 

CALL statement, 15-13 
Carriage control character, 

13-16 
Carriage return key, INTRO-1-2 
Category, 

statement, 1-1 
CCOS function, 15-11 
CEXP function, 15-10 
Changing a line, INTRO-3-4 
Changing a program, INTRO-4-1 
Changing line numbers, INTRO-4-5 
Character code, A-I 
Character set, 2-1 
Character set with MODE, 12-4 
Characters, 

line formatting, 2-2 
line termination, 2-2 

CLOG function, 15-10 
CLOSE, INTRO-5-4 
CLOSE statement, 12-1 
CLOSE statement summary, 12-10 
CONFIRM, INTRO-7-1 
COBOL-10, 

interaction with, C-18 
COBOL/FORTRAN argument type, 

C-12 
Command, 

COMPILE, B-4 
DEBUG, B-4 
EXECUTE, B-4 
LOAD, B-4 

Comment line, 2-5 
Common block name, 6-5 
COMMON statement, 6-5 
COMPIL in FOROTS, D-2 

Index-1 



INDEX (CONT.) 

Compilation control statement, 
S-l 

COMPILE command, B-4 
Compiler commands, B-4 
Compiler generated variable, 

B-6 
Compiler switches, B-1 
Compiler version, B-8 
Complex constant, 3-3 
Complex format, 13-4 
COMPLEX statement, 6-3 
Computation, 

redundant, C-S 
reordering, C-3 

Computation in DO-loop, 
constant, C-6 

Computed GOTO statement, 9-2 
CONJG function, lS-12 
Constant, 3-1 

complex, 3-3 
double-precision, 3-3 
integer, 3-2 
label, 3-6 
literal, 3-S 
logical, 3-S 
octal, 3-4 
real, 3-2 

Constant computation in 
DO-loop, C-6 

Constant folding, C-7 
Constant propagation, C-7 
Continuation field, 

line, 2-3 
Continuation line, 2-4 
Continue (G) option after 

PAUSE, 9-11 
CONTINUE statement, 9-10 
Control statement, 9-1 

compilation, S-l 
Control Z, 2-1 
COS function, lS-ll 
COSD function, lS-ll 
COSH function, lS-ll 
<CR>, INTRO-1-2 
CROSSREF switch, B-2 
CSIN function, lS-ll 
CSQRT function, lS-lO 

D, INTRO-4-3 
D (double-precision notation) , 

3-3 
D format descriptor, 13-4 
.DAT extension, l2-S 
Data, 

input/output, INTRO-S-l 
Data file, INTRO-S-3 
Data files, 

FOROTS, D-4 

DATA statement, 7-1 
Data transfer operations, 

10-1 
Data type, 3-1 
DATAN function, lS-ll 
DATAN2 function, lS-12 
DATE subroutine, lS-19 
DCOS function, lS-ll 
DEBUG command, B-4 
Debug line, 2-6 
DEBUG switch, B-2, B-3 
Debugger, 

FORDDT, E-l 
Debugger code size, B-4 
DECODE statement, 10-22 
DEFAULT, B-1S 
DEFINE FILE subroutine, 

lS-17 
DELETE, INTRO-4-3, INTRO-6-2 
DELETE with DISPOSE, l2-S 
Deleting a file, INTRO-6-2 
Deleting ~ line, INTRO-4-3 
DENSITY in file control 

statement, 12-9 
Descriptor, 

G format, 13-7 
Device control statement, 

14-1 
Device control statement 

summary, 14-3 
DEVICE in file control state­

ment, 12-2 
Device number, 

logical, 10-3 
DEXP function, lS-lO 
DIALOG in file control 

statement, 12-9 
DIMENSION statement, 6-1 
Dimensioning, 

array in COMMON, 6-7 
Dimensioning array, 3-9, C-4 
Dimensions, 

adjustable, 6-2 
DIMENSIONS with DEBUG, B-3 
DIR, INTRO-6-l 
Directory, 

sub-file, 12-6 
user file, 12-6 

DIRECTORY, 
in file control statement, 

12-6 
Directory file, INTRO-6-l 
DISPOSE in file control 

statement, l2-S 
Division, 4-1 
DLOG function, lS-lO 
DLOG10 function, lS-lO 
DO statement, 9-S 
DO-loop, 

constant computation in, C-6 

Index-2 



INDEX (CONT.) 

DO-loop (Cont.), 
execution, 9-6 
extended range, 9-S 
floating-point, C-2 
implied in I/O list, 10-5 
nested, 9-6 
parameters, 9-6 
permitted transfers, 9-9 
range, 9-5 

DO-loop iteration, C-2 
DO-loop replacement, C-S 
DOUBLE PRECISION statement, 

6-3 
Double-precision constant, 

3-3 
Double-precision format, 

13-4 
Double-precision numbers, 

accuracy of, C-l 
range of, C-l 

DSIN function, 15-11 
DSQRT function, 15-10 
Dummy argument, 

subprogram, 15-1 
DUMP subroutine, 15-20 
DUMP with MODE, 12-4 

E, INTRO-2-2, INTRO-4-5 
E (exponential notation), 

3-2 
E format descriptor, 13-4 
EDIT, INTRO-4-1 
Editing source files, INTRO-4-1 
ENCODE statement, 10-22 
END, INTRO-4-5 
END argument in I/O statement, 

10-10 
END FILE statement, 14-2 
END statement, 5-2, 15-7 
Ending source input, INTRO-2-2 
ENTER in FOROTS, C-lS 
Entering a program, INTRO-2-1 
ENTRY statement, 15-17 
EQ, INTRO-4-5 
.EQ., 4-7 
EQUIVALENCE statement, 6-7 
.EQV., 4-5 
ERR argument in I/O statement, 

10-10 
ERR in file control statement, 

12-10 
Error, 

fatal, B-17 
Error processing, 

FOROTS, D-3 
Error reporting, B-17 
ERRSET subroutine, 15-21 
ERRSNS subroutine, 15-21 
ESCAPE, INTRO-2-2 

Evaluation of expression, 
4-9 

EVEN with PARITY, 12-9 
EX, INTRO-3-1 
Examples, 

SOS, INTRO-S-l 
Executable statement, 1-1 
EXECUTE, INTRO-3-1 
EXECUTE command, B-4 
Execution, 

interrupting, INTRO-3-3 
Execution on non-DEC 

machines, C-l 
Exit (X) option after PAUSE, 

9-11 
EXIT subroutine, 15-21 
EXP function, 15-10 
EXP&~D switch, B-2 
Exponential notation, 3-2 
Exponentiation, 4-1 

permitted, 4-4 
Expression, 

arithmetic, 4-1 
evaluation of, 4-9 
logical, 4-4 
mixed-mode, 4-10, 4-11 
nested, 4-9 
relational, 4-7 

Extension, 
.SHR, B-lS 

External function subprogram, 
15-7 

basic, 15-S 
EXTERNAL statement, 6-S 

F format descriptor, 13-4 
F40 compiled programs, C-18 
.FALSE., 3-5 
Fatal error, B-17 
Field, 

label, 2-3 
line continuation, 2-3 
remarks, 2-4 
statement, 2-3 

Field descriptor, 
alphanumeric FORMAT, 13-11 
FORMAT, 13-2 
logical FORMAT, 13-10 
numeric FORMAT, 13-4 

FILE, INTRO-2-1 
File, 

Index-3 

.FOR, INTRO-2-1 

.REL, INTRO-7-1 
data, INTRO-5-3 
deleting a, INTRO-6-2 
directory, INTRO-6-1 
directory subfile, 12-6 
editing, INTRO-4-l 



INDEX (CONT • ) 

File (Cont.), 
FOROTS data, D-4 
non-FORTRAN-10, C-9 
renaming a, INTRO-6-2 
source, INTRO-2-1 

File control statement, 12-1 
File directory, 

user, 12-6 
FILE in file control 

statement, 12-5 
FILE SIZE in file control 

statement, 12-8 
FIND statement, 10-21 
Floating-point DO-loop, C-2 
Folding, 

constant, C·-7 
.FOR extension, INTRO-2-1 
FORDDT debugger, E-l 
FORDDT messages, E-17 
FORMAT field descriptor, 

alphanumeric, 13-11 
logical, 13-10 
numeric, 13-4 
record formatting, 13-15 

FORMAT statement, 13-1 
ACCEPT transfer into, 10-19 
transfer into, 10-3 

FORMAT statement descriptor, 
13-2 

Formatted ACCEPT transfer, 
10-18 

Formatted READ transfer, 
random access, 10-13 
sequential, 10-11 

Formatted WRITE transfer, 
random access, 10-17 
sequential, 10-16 

FOROTS, 
using, D-13 

FOROTS data files, D-4 
FOROTS error processing, D-3 
FOROTS features, D-2 
FOROTS hardware requirements, 

D-l 
FOROTS input/output 

facility, D-3 
FOROTS messages, H-l 
FOROTS software requirements, 

D-l 
FOROTS/FORSE compatibility, 

C-21 
FOROTS/LINK interface, D-28 
FORSE/FOROTS compatibility, 

C-21 
FORTRAN-10 compiler, B-1 
FORTRAN-10 messages, F-l 
FUNCTION call, 15-16 
Function references, 

order, C-8 
FUNCTION statement, 15-7 

Function subprogram, 
basic external, 15-8 
external, 15-7 
intrinsic, 15-3 
statement, 15-3 

Function subprogram structure, 
15-7 

FUNCTION type, 15-7 

G (option after PAUSE), 9-11 
G format descriptor, 13-4, 

13-7 
• GE., 4-7 
General (G) numeric format, 

13-7 
GETOVL in LINK, C-20 
Global optimization, C-4 
GO TO statement, 9-1 

assigned, 9-2 
computed, 9-2 
unconditional, 9-1 

GRIPE, INTRO-6-3 
• GT., 4-7 

H (literal notation), 3-5 
H format descriptor, 13-12 
Hardware requirements, 

FOROTS, D-l 
Hierarchy of operators, 4-9 
Hollerith literal, 3-5 

I, INTRO-4-1 
I format descriptor, 13-4 
I/O list, 10-5 
IF statement, 9-3 

arithmetic, 9-3 
logical, 9-4 

ILL subroutine, 15-21 
IMAGE with MODE, 12-4 
IMPLICIT statement, 6-5 
In I/O list DO-loop, 

implied, 10-6 
Inaccessible code, C-7 
INCLUDE statement, 5-1 
INCLUDE switch, B-2 
INDEX with DEBUG, B-3 
INIOVL in LINK, C-20 
Initial line, 2-4 
INPUT, INTRO-2-1 
Input, 

line-sequence, 2-6 
Input from BASIC, 2-6 
Input from LINED, 2-6 
Input/output data, INTRO-5-1 

Index-4 



INDEX (CONT • ) 

Input/output facility, 
FOROTS, D-3 

Input/output list, 10-2 
NAMELIST, 10-10 

Input/output optimization, 
C-8 

Input/output statement, 10-1 
list-directed, 10-8 

Input/output statement 
format, 10-2 

Input/output statement 
summary, 10-24 

INSERT, INTRO-4-1 
Inserting a line, INTRO-4-1 
Integer constant, 3-2 
Integer format, 13-4 
INTEGER statement, 6-3 
Intrinsic function sub-

program, 15-3 
Iteration, 

DO-loop, C-2 
Interrupting execution, 

INTRO-3-3 

Job, 
beginning a, INTRO-l-l 
disconnected (attach), 

INTRO-7-3 
killing a, INTRO-7-1 
number forgotton, INTRO-7-4 

JOB number, INTRO-1-2 

K (kill file), INTRO-7-1 
KA10 switch, B-2 
Keyword, 1-1 
K/F fast logout, INTRO-7-2 
KIlO switch, B-2 
Killing a job, INTRO-7-1 
KJOB, INTRO-7-1 

L format descriptor, 13-10 
Label assignment statement, 8-4 
Label constant, 3-6 
Label field, 2-3 
LABELS with DEBUG, B-3 
. LE., 4-7 
LEGAL subroutine, 15-21 
Line, 

blank, 2-6 
comment, 2-5 
continuation, 2-4 
debug, 2-6 
definition, 2-2 
fields, 2-2 

Line (Cont.), 
initial, 2-4 
multi-statement, 2-5 

Line continuation field, 
2-3 

Line formatting characters, 
2-2 

Line sequence number, B-5 
LINE subroutine, 15-21 
LINE terminal setting, 

INTRO-l-l 
Line termination characters, 

2-2 
Line types, 2-4 
Line-sequence input, 2-6 
LINED, 

input from, 2-6 
LINK-10 overlay facility, 

C-20 
LINK/FOROTS interface, D-28 
List, 

input/output, 10-2 
NAMELIST input/output, 10-10 

LIST with DISPOSE, 12-5 
List-directed input/output 

statement, 10-8 
List-directed transfer, 

sequential READ, 10-12 
sequential WRITE, 10-17 

Listing, 
program, B-5 

Literal constant, 3-5 
Literal format conversion, 

13-13 
LNMAP switch, B-2 
LOAD command, B-4 
Location in object program, 

B-5 
Logging in, INTRO-l-l 
LOGIN, I:'ITRO-1-2 
Logical assignment statement, 

8-4 
Logical constant, 3-5 
Logical expression, 4-4 
Logical FORMAT field 

descriptor, 13-10 
Logical IF statement, 9-4 
Logical operator, 4-5 
LOGICAL statement, 6-3 
Logical unit number, 10-3 
LOGOVL in LINK, C-20 
.LT., 4-7 

MACRO in listing, B-5 
MACRO-10 libraries, C-14 
MACROCODE switch, B-2 

Index-5 



INDEX (CONT.) 

Messages, 
FORDDT, E-17 
FOROTS, H-l 
FORTRAN-l 0 , F-l 
realtime, G-7 

Mixed-mode arithmetic, 4-2 
Mixed-mode assignment 

statement, 8-1 
Mixed-mode expression, 4-10, 

4-11 
MKTBL subroutine, 15-22 
MODE in file control 

statement, 12-4 
MONITOR, INTRO-1-2 
Monitor, 

calling the, INTRO-3-3 
Multi-statement line, 2-5 
Multiple record transfer, 

13-14 
Multiplication, 4-1 

N, INTRO-4-5 
Name, 

symbolic, 3-6 
NAMELIST input/output list, 

10-10 
NAMELIST statement, 11-1 
NAMELIST-controlled transfer, 

input, 11-2 
output, 11-3 
sequential READ, 10-13 
sequential WRITE, 10-17 

.NE., 4-7 
Nested DO-loop, 9-6 
Nested expression, 4-9 
NOERRS switch, B-2 
NONE with DEBUG, B-3 
Nonexecutable statement,l-l 
Non-FORTRAN-IO files, C-9 
Non-FORTRAN-IO programs, C-9 
NONSHAR, B-18 
.NOT., 4-5 
NOWARNINGS switch, B-2 
NUMBER, INTRO-4-5 
NUMBER subroutine, 15-22 
Numeric, 

field width variable, 13-10 
Numeric format, 

general (G), 13-7 
Numeric FORMAT field 

descriptor, 13-4 

to, INTRO-6-2 
o format descriptor, 13-4 
Object program, INTRO-3-l 

Object program, 
location in, B-5 

Octal constant, 3-4 
ODD with PARITY, 12-9 
OPEN, I~JrrRO-5-3 

OPEN statement, 12-1 
OPEN statement summary, 12-10 
Operator, 

arithmetic, 4-1 
hierarchy, 4-9 
logical, 4-5 

Operator strength, C-5 
Optimization, 

global, C-4 
program, C-9 

OPTIMIZE switch, B-2 
.OR., 4-5 
Order of statements, 2-7 
OTS, B-18 
Output, 

suppressing printed, 
INTRO-6-2 

Overflow, C-3 
Overlay facility, 

LINK-lO, C-20 

P, INTRO-4-4 
P (preserve file), INTRO-7-l 
PARAMETER statement, 6-9 
PARITY in file control 

statement, 12-9 
PASSWORD, INTRO-1-2 
PATH with DIRECTORY, 12-7 
PAUSE statement, 9-11 
PDUMP subroutine, 15-22 
PLOT subroutine, 15-22 
PLOTS subroutine, 15-22 
PPN, INTRO-7-3 
Precision for real constant, 3-2 
PRINT, INTRO-4-4 
PRINT statement, 10-19 
PRINT with DISPOSE, 12-5 
Printed output, 

suppressing, INTRO-6-2 
printing lines of source, 

INTRO-4-4 
Program listing, B-5 
PROGRAM statement, 5-1 
Program, 

changing, INTRO-4-l 
entering, INTRO-2-l 
running, INTRO-3-l 
storing, INTRO-2-2 

Programs, 
non-FORTRAN-lO, C-9 
optimizing, C-9 
writing, C-l 

Index-6 



Propagation, 
constant, C-7 

PROTECTION in file control 
statement, 12-6 

PUNCH statement, 10-20 
PUNCH with DISPOSE, 12-S 

QUIT, INTRO-4-S 

R, INTRO-4-3 
R format descriptor, 13-12 
.RSOS, INTRO-2-1 
RAN function, lS-12 
RANDIN with ACCESS, 12-3 
Random access data transfer, 

10-1 
Random access record 

specification, 10-7 
Random access transfer, 

formatted READ, 10-13 
formatted WRITE, 10-17 
unformatted READ, 10-13 
unformatted WRITE, 10-17 

RANDOM with ACCESS, 12-3 
Range of double-precision 

numbers, C-l 
READ, INTRO-S-l 
READ statement, 10-11 
READ statement summary, 

10-l4 
READ transfer, 

random access, 10-13 
sequential, 10-11, 10-12, 

10-13 
Real constant, 3-2 
Real format, 13-4 
REAL statement, 6-3 
Realtime messages, G-7 
Realtime software, G-l 
Record formatting (T and X), 

13-lS 
RECORD SIZE in file control 

statement, 12-S 
Record specification, 

random access, 10-7 
Reentrant program, B-lS 
Register allocation, C-7 
.REL extension, INTRO-7-1 
Relational expression, 4-7 
RELEAS subroutine, lS-23 
Remarks field, 2-4 
REMOVL in LINK, C-20 
RENAME, INTRO-6-2 
RENAME with DISPOSE, 12-S 
Renaming a file, INTRO-6-2 

INDEX (CONT • ) 

Repeat for format 
descriptor, 13-3 

REPLACE, INTRO-4-3 
Replacement, 

DO-loop, C-S 
Replacing a line, INTRO-4-3 
Reporting, 

error, B-17 
REREAD statement, 10-14 
RESET in FOROTS, C-I0 
Return key, 

carriage, INTRO-1-2 
RETURN statement, lS-S, lS-14 
REWIND statement, 14-1 
RUBOUT key, INTRO-2-3 
Running a program, INTRO-3-1 
RUNOVL in LINK, C-20 

S (save file), INTRO-7-1 
SAVE with DISPOSE, 12-S 
SAVRAN subroutine, lS-23 
Scale factor in FORMAT 

statement, 13-7 
SCALE subroutine, lS-23 
SEG, B-lS 
SEQIN with ACCESS, 12-3 
SEQINOU~ with ACCESS, 12-3 
SEQOUT with ACCESS, 12-3 
Sequence number, 

line, B-S 
sequential data transfer, 

10-1 
Sequential transfer, 

READ, 10-11, 10-12, 10-13 
WRITE, 10-16, 10-17 

SET RECORD statement, 14-3 
SETABL subroutine, lS-23 
SETRAN subroutine, lS-23 
SFD, 12-6 
Sharable program, B-lS 
.SHR extension, B-lS 
SIN function, lS-10 
SIND function, IS-II 
SINH function, IS-II 
SKIP FILE statement, 14-3 
SLITE subroutine, lS-23 
SLITET subroutine, lS-23 
Software requirements, 

FOROTS, D-l 
SORT subroutine, lS-24 
SOS, INTRO-2-1 
SOS examples, INTRO-S-l 
Source file, INTRO-2-1 
Source program, INTRO-2-1 
Specification statement, 

6-1 
SQRT function, lS-10 

Index-7 



SSAVE switch, B-18 
SSWTCH subroutine, 15-23 
Statement, 

ACCEPT, 10-18 
Arithmetic assignment, 

8-1 
arithmetic IF, 9-3 
ASSIGN, 8-4 
assigned GOTO, 9-2 
BACKFILE, 14-3 
BACKSPACE, 14-2 
BLOCK DATA, 16-1 
CALL, 15-13 
CLOSE, 12-1 
COMMON, 6-5 
COMPLEX, 6-3 
computed GOTO, 9-2 
CONTINUE, 9-10 
control, 9-1 
DATA, 7-1 
DECODE, 10-22 
device control, 14-1 
DIMENSION, 6-1 
DO, 9-5 
DOUBLE PRECISION, 6-3 
ENCODE, 10-22 
END, 5-2, 15-7 
END FILE, 14-2 
ENTRY, 15-17 
EQUIVALENCE, 6-7 
executable, 1-1 
EXTERNAL, 6-8 
file control, 12-1 
FIND, 10-21 
FORMAT, 13-1 
FUNCTION, 15-7 
GOTO, 9-1 
IF, 9-3 
IMPLICIT, 6-5 
INCLUDE, 5-1 
input/output, 10-1 
INTEGER, 6-3 
label assiqnment, 8-4 
list-directed, 

input/output, 10-8 
LOGICAL, 6-3 
logical assignment, 8-4 
logical IF, 9-4 
mixed-mode assignment, 

8-1 
NAMELIST, 11-1 
nonexecutable, 1-1 
OPEN, 12-1 
PARAMETER, 6-9 
PAUSE, 9-11 
PRINT, 10-l9 
PROGRAM, 5-1 
PUNCH, 10-20 
READ, 10-11 

INDEX (CONT.) 

Statement (Cont.), 
REAL, 6-3 
REREAD, 10-14 
RETURN, 15-7, 15-14 
REtHND, 14-1 
SET RECORD, 14-3 
SKIP FILE, 14-3 
STOP, 9-10 
SUBROUTINE, 15-9 
TYPE, 10-21 
type specification, 6-3 
unconditional GOTO, 9-1 
UNLO.'-\D , 14 - 2 
WRITE, 10-16 

Statement category, 1-1 
Statement descriptor, 

FORMAT, 13-2 
Statement field, 2-3 
Stateme.nt format, 

input/output, 10-2 
Statement function 

subprogram, 15-3 
Statement label constant, 

3-6 
Statement numbers, 2-3 
Statement summary, 

CLOSE, 12-10 
device control, 14-3 
input/output, 10-24 
OPEN, 12-10 
READ, 10-14 
WRITE, 10-18 

Statements, 
order of, 2-7 

STOP statement, 9-10 
Storage of array elements, 

3-10 
Storing a program, INTRO-2-2 
Sub-file directory, 12-6 
Subprogram, 

basic external function, 
15-8 

block data, 16-1 
external function, 15-7 
intrinsic function, 15-3 
mUltiple entries to, 15-17 
multiple returns from, 15-14 
statement function, 15-3 
subroutine, 15-9 

Subprogram argument, 15-1 
Subprogram dummy argument, 

15-1 
Subprograms, 15-1 
Subroutine, 

Index-8 

DATE, 15-19 
ERRSET, 15-21 
ERRSNS, 15-21 
EXIT, 15-21 
FORTRAN supplied, 15-14 



Subroutine (Cont.), 
ILL, lS-21 
LEGAL, lS-21 
LINE, lS-21 
programming consideration, 

C-2 
Subroutine call, lS-13 
SUBROUTINE statement, lS-9 
Subroutine structure, lS-13 
Subroutine subprogram, lS-9 
Subscript, 

array, 3-8 
Subtraction, 4-1 
Suppressing printed output, 

INTRO-6-2 
Switches, 

compiler, B-1 
SYMBOL subroutine, lS-24 
Symbolic name, 3-6 
SYNTAX switch, B-2 
SYS, INTRO-7-4 

T (trace after PAUSE), 9-12 
T format descriptor, 13-lS 
TAB. INTRO-4-6 
TANH function, IS-II 
TIM2GO function, lS-12 
TIME subroutine, lS-24 
Trace (T) option after PAUSE, 

9-12 
TRACE function, 9-13 
TRACE subroutine, 9-13 
TRACE with DEBUG, B-3 
Transfer operations, 

data, 10-1 
.TRUE., 3-S 
TYPE, INTRO-S-2, INTRO-6-1 
Type, 

FUNCTION, lS-7 
Type specification statement, 

6-3 
TYPE statement, 10-21 

tu, INTRO-3-4 
UFD, 12-6 

INDEX (CONT . ) 

Unconditional GOTO statement, 
9-1 

Uninitialized variable, C-8 
UNIT in file control 

statement, 12-2 
Unit number, 

logical, 10-3 
Unformatted transfer, 

random access, 
READ, 10-13 
WRITE, 10-17 

sequential binary, 
READ, 10-12 
WRITE, 10-16 

UNLOAD statement, 14-2 
User file directory, 12-6 

Variable, 3-7 
compiler generated, B-6 
uninitialized, C-8 

VERSION in file control 
statement, 12-8 

Warning message, B-17 
WHERE subroutine, lS-2S 
WRITE, INTRO-S-J 
WRITE statement, 10-16 
WRITE statement summary, 

10-18 
WRITE transfer, 

random access, 10-16, 10-17 
sequential, 10-16, 10-17 

Writing programs, C-l 

X (option after PAUSE), 9-11 
X format descriptor, 13-1S 
.XOR., 4-S 

tz, 2-1 

Index-9 





READER'S COMMENTS 

DECsystem-10 
FORTRAN 
Programmer's 
Reference Manual 

AA-0944E-TB 

NOTE: This form is for document comments only. DIGITAL will 
use comments submitted on this form at the company's 
discretion. Problems with software should be reported 
on a Software Performance Report (SPR) form. If you 
require a written reply and are eligible to receive 
one under SPR service, submit your comments on an SPR 
form. 

Did you find errors in this manual? If so, specify by page. 

Did you find this manual understandable, usable, and well-organized? 
Please make suggestions for improvement. 

Is there sufficient documentation on associated system programs 
required for use of the software described in this manual? If not, 
what material is missing and where should it be placed? 

Please indicate the type of user/reader that you most nearly represent. 

[] Assembly language programmer 

[] Higher-level language programmer 

[] Occasional programmer (experienced) 

[] User with little programming experience 

[] Student programmer 

[] Non-programmer interested in computer concepts and capabilities 

Name Date ________________________ __ 

Organization ______________________________________________________________ _ 

Street __________________________________________________________________ _ 

City ___________________________ State _____________ Zip Code ____________ __ 

or 
Country 



- - - - -Do Not Tear - Fold Here and Tape - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

I II II I 

BUSINESS REPL V MAIL 
FIRST CLASS PERMIT NO.33 MAYNARD MASS. 

POSTAGE WILL BE PAID BY ADDRESSEE 

SOFTWARE PUBLICATIONS 
200 FOREST STREET MR1-2/E37 
MARLBOROUGH, MASSACHUSETTS 01752 

No Postage 

Necessary 

if Mailed in the 

United States 

---- Do Not Tear - Fold Here and Tape--------------------------------------------






	a_Page_001.tif
	a_Page_002.tif
	a_Page_003.tif
	a_Page_004.tif
	a_Page_005.tif
	a_Page_006.tif
	a_Page_007.tif
	a_Page_008.tif
	a_Page_009.tif
	a_Page_010.tif
	a_Page_011.tif
	a_Page_012.tif
	a_Page_013.tif
	a_Page_014.tif
	a_Page_015.tif
	a_Page_016.tif
	a_Page_017.tif
	a_Page_018.tif
	a_Page_019.tif
	a_Page_020.tif
	a_Page_021.tif
	a_Page_022.tif
	a_Page_023.tif
	a_Page_024.tif
	a_Page_025.tif
	a_Page_026.tif
	a_Page_027.tif
	a_Page_028.tif
	a_Page_029.tif
	a_Page_030.tif
	a_Page_031.tif
	a_Page_032.tif
	a_Page_033.tif
	a_Page_034.tif
	a_Page_035.tif
	a_Page_036.tif
	a_Page_037.tif
	a_Page_038.tif
	a_Page_039.tif
	a_Page_040.tif
	a_Page_041.tif
	a_Page_042.tif
	a_Page_043.tif
	a_Page_044.tif
	a_Page_045.tif
	a_Page_046.tif
	a_Page_047.tif
	a_Page_048.tif
	a_Page_049.tif
	a_Page_050.tif
	a_Page_051.tif
	a_Page_052.tif
	a_Page_053.tif
	a_Page_054.tif
	a_Page_055.tif
	a_Page_056.tif
	a_Page_057.tif
	a_Page_058.tif
	a_Page_059.tif
	a_Page_060.tif
	a_Page_061.tif
	a_Page_062.tif
	a_Page_063.tif
	a_Page_064.tif
	a_Page_065.tif
	a_Page_066.tif
	a_Page_067.tif
	a_Page_068.tif
	a_Page_069.tif
	a_Page_070.tif
	a_Page_071.tif
	a_Page_072.tif
	a_Page_073.tif
	a_Page_074.tif
	a_Page_075.tif
	a_Page_076.tif
	a_Page_077.tif
	a_Page_078.tif
	a_Page_079.tif
	a_Page_080.tif
	a_Page_081.tif
	a_Page_082.tif
	a_Page_083.tif
	a_Page_084.tif
	a_Page_085.tif
	a_Page_086.tif
	a_Page_087.tif
	a_Page_088.tif
	a_Page_089.tif
	a_Page_090.tif
	a_Page_091.tif
	a_Page_092.tif
	a_Page_093.tif
	a_Page_094.tif
	a_Page_095.tif
	a_Page_096.tif
	a_Page_097.tif
	a_Page_098.tif
	a_Page_099.tif
	a_Page_100.tif
	a_Page_101.tif
	a_Page_102.tif
	a_Page_103.tif
	a_Page_104.tif
	a_Page_105.tif
	a_Page_106.tif
	a_Page_107.tif
	a_Page_108.tif
	a_Page_109.tif
	a_Page_110.tif
	a_Page_111.tif
	a_Page_112.tif
	a_Page_113.tif
	a_Page_114.tif
	a_Page_115.tif
	a_Page_116.tif
	a_Page_117.tif
	a_Page_118.tif
	a_Page_119.tif
	a_Page_120.tif
	a_Page_121.tif
	a_Page_122.tif
	a_Page_123.tif
	a_Page_124.tif
	a_Page_125.tif
	a_Page_126.tif
	a_Page_127.tif
	a_Page_128.tif
	a_Page_129.tif
	a_Page_130.tif
	a_Page_131.tif
	a_Page_132.tif
	a_Page_133.tif
	a_Page_134.tif
	a_Page_135.tif
	a_Page_136.tif
	a_Page_137.tif
	a_Page_138.tif
	a_Page_139.tif
	a_Page_140.tif
	a_Page_141.tif
	a_Page_142.tif
	a_Page_143.tif
	a_Page_144.tif
	a_Page_145.tif
	a_Page_146.tif
	a_Page_147.tif
	a_Page_148.tif
	a_Page_149.tif
	a_Page_150.tif
	a_Page_151.tif
	a_Page_152.tif
	a_Page_153.tif
	a_Page_154.tif
	a_Page_155.tif
	a_Page_156.tif
	a_Page_157.tif
	a_Page_158.tif
	a_Page_159.tif
	a_Page_160.tif
	a_Page_161.tif
	a_Page_162.tif
	a_Page_163.tif
	a_Page_164.tif
	a_Page_165.tif
	a_Page_166.tif
	a_Page_167.tif
	a_Page_168.tif
	a_Page_169.tif
	a_Page_170.tif
	a_Page_171.tif
	a_Page_172.tif
	a_Page_173.tif
	a_Page_174.tif
	a_Page_175.tif
	a_Page_176.tif
	a_Page_177.tif
	a_Page_178.tif
	a_Page_179.tif
	a_Page_180.tif
	a_Page_181.tif
	a_Page_182.tif
	a_Page_183.tif
	a_Page_184.tif
	a_Page_185.tif
	a_Page_186.tif
	a_Page_187.tif
	a_Page_188.tif
	a_Page_189.tif
	a_Page_190.tif
	a_Page_191.tif
	a_Page_192.tif
	a_Page_193.tif
	a_Page_194.tif
	a_Page_195.tif
	a_Page_196.tif
	a_Page_197.tif
	a_Page_198.tif
	a_Page_199.tif
	a_Page_200.tif
	a_Page_201.tif
	a_Page_202.tif
	a_Page_203.tif
	a_Page_204.tif
	a_Page_205.tif
	a_Page_206.tif
	a_Page_207.tif
	a_Page_208.tif
	a_Page_209.tif
	a_Page_210.tif
	a_Page_211.tif
	a_Page_212.tif
	a_Page_213.tif
	a_Page_214.tif
	a_Page_215.tif
	a_Page_216.tif
	a_Page_217.tif
	a_Page_218.tif
	a_Page_219.tif
	a_Page_220.tif
	a_Page_221.tif
	a_Page_222.tif
	a_Page_223.tif
	a_Page_224.tif
	a_Page_225.tif
	a_Page_226.tif
	a_Page_227.tif
	a_Page_228.tif
	a_Page_229.tif
	a_Page_230.tif
	a_Page_231.tif
	a_Page_232.tif
	a_Page_233.tif
	a_Page_234.tif
	a_Page_235.tif
	a_Page_236.tif
	a_Page_237.tif
	a_Page_238.tif
	a_Page_239.tif
	a_Page_240.tif
	a_Page_241.tif
	a_Page_242.tif
	a_Page_243.tif
	a_Page_244.tif
	a_Page_245.tif
	a_Page_246.tif
	a_Page_247.tif
	a_Page_248.tif
	a_Page_249.tif
	a_Page_250.tif
	a_Page_251.tif
	a_Page_252.tif
	a_Page_253.tif
	a_Page_254.tif
	a_Page_255.tif
	a_Page_256.tif
	a_Page_257.tif
	a_Page_258.tif
	a_Page_259.tif
	a_Page_260.tif
	a_Page_261.tif
	a_Page_262.tif
	a_Page_263.tif
	a_Page_264.tif
	a_Page_265.tif
	a_Page_266.tif
	a_Page_267.tif
	a_Page_268.tif
	a_Page_269.tif
	a_Page_270.tif
	a_Page_271.tif
	a_Page_272.tif
	a_Page_273.tif
	a_Page_274.tif
	a_Page_275.tif
	a_Page_276.tif
	a_Page_277.tif
	a_Page_278.tif
	a_Page_279.tif
	a_Page_280.tif
	a_Page_281.tif
	a_Page_282.tif
	a_Page_283.tif
	a_Page_284.tif
	a_Page_285.tif
	a_Page_286.tif
	a_Page_287.tif
	a_Page_288.tif
	a_Page_289.tif
	a_Page_290.tif
	a_Page_291.tif
	a_Page_292.tif
	a_Page_293.tif
	a_Page_294.tif
	a_Page_295.tif
	a_Page_296.tif
	a_Page_297.tif
	a_Page_298.tif
	a_Page_299.tif
	a_Page_300.tif
	a_Page_301.tif
	a_Page_302.tif
	a_Page_303.tif
	a_Page_304.tif
	a_Page_305.tif
	a_Page_306.tif
	a_Page_307.tif
	a_Page_308.tif
	a_Page_309.tif
	a_Page_310.tif
	a_Page_311.tif
	a_Page_312.tif
	a_Page_313.tif
	a_Page_314.tif
	a_Page_315.tif
	a_Page_316.tif
	a_Page_317.tif
	a_Page_318.tif
	a_Page_319.tif
	a_Page_320.tif
	a_Page_321.tif
	a_Page_322.tif
	a_Page_323.tif
	a_Page_324.tif
	a_Page_325.tif
	a_Page_326.tif
	a_Page_327.tif
	a_Page_328.tif
	a_Page_329.tif
	a_Page_330.tif
	a_Page_331.tif
	a_Page_332.tif
	a_Page_333.tif
	a_Page_334.tif
	a_Page_335.tif
	a_Page_336.tif
	a_Page_337.tif
	a_Page_338.tif
	a_Page_339.tif
	a_Page_340.tif
	a_Page_341.tif
	a_Page_342.tif
	a_Page_343.tif
	a_Page_344.tif
	a_Page_345.tif
	a_Page_346.tif
	a_Page_347.tif
	a_Page_348.tif
	a_Page_349.tif
	a_Page_350.tif
	a_Page_351.tif
	a_Page_352.tif
	a_Page_353.tif
	a_Page_354.tif
	a_Page_355.tif
	a_Page_356.tif
	a_Page_357.tif
	a_Page_358.tif
	a_Page_359.tif
	a_Page_360.tif
	a_Page_361.tif
	a_Page_362.tif

