
MWX-ICE Debugger
User's Manual
SuperT AP™ Emulator for Motorola® MPCSXX

Windows Version
PIN 924-00101-00

ilm Applied icrosystems Corporation

lllllll
Applied
Microsystems
Corporation

MWX-ICE Debugger
User's Manual
SuperTAP™ Emulator for Motorola® MPCSXX

Wnlows Version

February 1997
Copyright© 1997 Applied ~rosystems Corporation.
All rights reserved.

p~ 924-00101-00

Information in this document is subject to change without
notice. Applied Microsystems Corporation reserves the right to
make changes to improve the performance and usability of the
products described herein.

Applied Microsystems Corporation's CodeTAP and SuperTAP
products are protected under U.S. Patents 5,228,039 and
5,581,695. Additional patents pending.

Trademarks
CodeTAP is a registered trademark of Applied Microsystems
Corporation.
SuperTAP, CodelCE, RTOS-Link, CPU Browser,
CodeCONNECT, CodeTEST, NSE, Transparent Breakpoints,
VSP!I'AP, and NetROM are trademarks of Applied
Microsystems Corporation.
Other product names are trademarks or registered trademarks
of their respective owners.

I Contents

Preface

Chapter 1
Introducing MWX·ICE

Documentation overview xvi

MWX-ICE User's Manual .. xvi

Using Help .. xvii

Installation and emulator setup xviii

Conventions ... xix

Support services xx

The Supei:'I'AP system integration tool 1-2

Run control, memory and register support 1-3

Run control ... 1-3

Basic breakpoints'... 1-4

Operations during run 1-4

Servicing interrupts during pause 1-5

Overlay memory

Register support

1-5

1-6

Session logging ... 1-6

Trace system 1-7

Event system 1-7

DPI mode .. 1-8

Flash programming ... 1-9

File formats and converters .. 1-9

Built-in network support ... 1-10

iii

Chapter2
Getting Started

iv

Installing MWX-ICE for Windows 2-2

System requirements for MWX-ICE 2-2

Setting up environment variables 2-2

Search order 2-3

Setting XRAYMASTER ... 2-3

Starting MWX-ICE .. 2-3

Using the Startup Options Editor 2-4

Connecting to an emulator 2-7

Configuring the emulator 2-12

Other things to do at startup .. 2-18

Isolation mode .. 2-19

What happens at power on, reset, and restart 2-20

Emulator power-on sequence 2-20

Emulator control program startup 2-21

Debugger reset ... 2-21

Program restart 2-22

Emulator reset .. 2-22

Software watchdog timer ... 2-23

Important operational notes ... 2-24

Support for target power loss 2-24

Isolation mode 2-24

Peek and pokes during pause or run 2-25

Various display characteristics 2-26

Show cycles 2-26

AC timing 2-26

Alternate bus master 2-27

Recoverable interrupts 2-27

MWX-ICE User's Manual (Windows)

Support for the :MMU and logical addressing 2-28

Chapter3
Using Overlay Memory

How overlay is used in debugging 3-2

Typical process ... 3-2

Features and important characteristics of overlay 3-3

How memory mapping is handled 3-6

Characterizing additional attributes 3-7

Basic procedures for mapping overlay 3-7

Qualifying mappings for addressing mode 3-7

Adding an overlay mapping 3-8

Modifying an existing overlay mapping 3-8

Restoring memory to target 3-8

Displaying/saving/restoring memory map 3-9

Mapping physical memory .. 3-10

Mapping overlay using logical addresses 3-12

Required target configuration 3-12

Understanding and using the maplist displays 3-13

Warnings and error messages .. 3-14

Loading code and copying memory 3-15

Downloading code in ELF/DWARF format 3-15

Downloading other formats 3-15

Stopping a download .. 3-16

Copying memory contents
between target and overlay 3-16

Saving overlay to a file .. 3-17

Controlling the source of accesses 3-18

Additional information .. 3-19

Super TAP SXX v

Chapter4
Programming Flash Memory

Chapters

Overview

Example of a target system using flash

How to program your flash memory

Basic procedure

Including the flash programming macros

Configuring flash memory components

Downloading code to flash memory

Programming flash that
has already been configured

4-2

4-2

4-5

4-5

4-6

4-8

4-9

4-9

Programming another flash component 4-11

Flash memory support 4-11

AMD flash memory components 4-12

Intel flash memory components 4-12

Flash memory macros ... 4-14

Tracing Program Execution

vi

What is trace?

How you can use trace .. .

Preparing to capture trace

Starting with an empty trace buffer

5-2

5-3

5-4

5-5

Setting the trace capture variables 5-5

Choosing the trace display interface 5-12

Using the Emulator Trace window 5-14

Configuring the trace display 5-16

Emulator Trace status ... 5-21

Using the Command window trace display 5-21

MWX-ICE User's Manual (Windows)

Chapter6
Using Basic Breakpoints

Displaying raw trace 5-22

Displaying disassembled trace 5-25

Searching for patterns in
Command window trace .. 5-28

Saving trace to a file 5-28

Clearing the trace buffer 5-29

Notes on using trace 5-30

Logical addressing 5-30

Trace compression 5-31

Some common problems disassembling trace 5-32

Disassembled trace display description 5-33

Raw trace display description 5-35

How can you use break.points 6-2

Break.point types 6-3

Access break.points 6-3

Instruction break.points

Basic breakpoint commands

6-4

6-5

Setting breakpoints 6-5

Displaying breakpoints 6-6

Clearing break.points 6-6

Attaching macros to basic break.points 6-6

Access break.points (ba, br, bw) 6-7

Setting an access breakpoint 6-7

Memory qualifiers 6-8

Examples 6-8

What happens when an access break occurs 6-10

Super TAP 8XX vii

Working within the limits 6-11

Instruction breakpoints (bi) .. 6-12

Setting an instruction breakpoint 6-12

Setting temporary breakpoints 6-14

Memory qualifiers .. 6-14

Examples .. 6-14

What happens when a software
instruction break occurs 6-16

Working within the limits 6-17

Chapter7
Using the Event System

Feature overview 7-2

Event system structure ... 7-3

Event system commands ... 7-5

Setting event system options 7-5

Event system statements .. 7-7

Setting µp when/then statements 7-8

Qualifying event system memory accesses 7-12

Using the event system 7-13

Displaying and saving when/then statements 7-13

Enabling and disabling when/then statements 7-14

Clearing when/then statements 7-14

Groups ... 7-15

States 7-18

Counters 7 -18

Memory and registers .. 7-20

External triggers 7-20

Attaching macros to event system breakpoints 7-21

viii MWX·ICE User's Manual (Windows)

Event system operation ... 7-23

Break action latency 7-23

Real-time operation ... 7-23

Address events for code accesses 7-25

On-chip caches ... 7-25

Event system resources 7-26

Resource allocation .. 7-26

Additional information .. 7-28

Chapters
Support for MPCSXX Registers

Using the set of initialization registers 8-2

Why do I need to set up the initregs? 8-2

How do I turn the initregs feature on or off? 8-3

How do I see the current
"state" of the initregs feature? 8-3

Where are the initregs values stored? 8-3

How do I set up the initregs? 8-4

Using the initregs command 8-7

Support for MPC8X.X family registers 8-9

Setting up the register sets 8-9

Viewing and modifying MPC8X.X family registers 8-10

Viewing registers ... 8-10

Modifying registers during operation 8-11

Chapter9
MWX·ICE Command Quick Reference

Help .. 9-2

Command groups ... 9-3

SuperTAP 8XX ix

Chapter 10
MWX-ICE Tutorial

x

Entering commands .. .

Session control

Window control .. .

9-3

9-4

9-5

Memory and file handling 9-6

Controlling execution and using breakpoints 9-11

Capturing and displaying trace 9-13

Programming the conditional event system 9-15

Displaying status or information 9-17

Emulator configuration 9-19

Diagnostics ... 9-20

Using macros .. 9-21

Symbol and expression commands 9-22

Simulating port I/O and interrupts 9-23

Utility commands 9-24

Connection and configuration commands 9-25

XRAY commands not supported in MWX-ICE 9-26

How to use this tutorial ... 10-2

Tutorial program 10-2

User-entered commands .. 10-2

MWX-ICE debugger ... 10-3

General description 10-3

What you need to run the tutorial 10-3

Starting the debugger 10-4

Debugger basics 10-5

General description 10-5

Navigating the user interface 10-5

MWX-ICE User's Manual (Windows)

Window terms and objects 10-7

Executing debugger commands 10-8

Working in pause mode or run mode 10-10

Exiting the debugger ... 10-11

Getting debugger Help .. 10-11

Typical debugging operations ... 10-12

About the demonstration code 10-12

Viewing source-level and
assembly code simultaneously 10-13

Displaying configuration information 10-15

Modifying and saving debugger
startup options and windows 10-16

Recording and replaying a debug session 10-18

Convenience features ... 10-19

Getting oriented with the code 10-20

Checking the state of the debugger and emulator . 10-22

Controlling the processor and the emulator 10-24

Memory control .. 10-25

Using overlay memory ... 10-28

Basic breakpoints ... 10-31

Program execution and related commands 10-40

Capturing and displaying
execution trace history 10-42

Executing MWX-ICE commands
in run mode (dynamic run mode - drun) 10-47

Timestamp .. 10-48

Debugger macros .. 10-48

Using the event system ... 10-52

Scope loops and diagnostics 10-55

Using the SuperTAP - practical examples 10-57

SuperT AP 8XX xi

Appendix A
ModHying the Startup Files

AppendixB
Troubleshooting

AppendixC

How MWX-ICE uses the startup files A-2

About the startup file (STARTUP.INC) A-4

About the startup options file (MWX.CFG) A-7

Selecting startup options A-9

Common startup problems .. B-2

Insufficient memory ... B-2

An MWX-ICE support file was not found B-2

MWX-ICE reports it cannot
find the necessary shell file B-2

Error while opening a connection
to the emulator B-3

Download errors B-5

Virtual memory simulator failure B-5

Lack of symbol space B-5

Miscellaneous errors B-5

MWX-ICE reports the shell is newer
or older than expected B-5

MWX-ICE reports "type errors"
or "mismatched variables" B-6

Calling Customer Support .. B-7

Cdemon Demonstration Program
initial() C-2

step() ... C-2

xii MWX-ICE User's Manual (Windows}

AppendixD

data()

run()

C-3

C-5

Updating the SuperTAP Flash ROM
Part 1: Determine the current core version (optional) .. D-2

Part 2: Activate the SuperTAP's core loader D-2

Part 3: Program the emulator's firmware D-5

Part 4: Remove outdated shells and pointers D-7

Index

SuperTAP SXX xiii

xiv MWX-ICE User's Manual {Windows)

I Preface
The MWX-ICE debugger is an integrated debugger for use with
the Applied Microsystems Superl'AP™ SXX systems
integration tool.

The manuals for this product are revised only at major releases
of hardware or software. Changes that occur between major
releases are noted only in the Help, readme, or release notes.
Therefore, any differences between the Help and this document
are because the Help is more current.

xv

Documentation overview
This manual provides information that is specific to using
MWX-ICE with the SuperTAP emulator for the Motorola
MPCSXX processors. MWX-ICE is based on XRAY for
Windows from Microtec. While MWX-ICE does not support
every XRAY feature, it includes many additional features that
support debugging with Applied Microsystems in-circuit
emulators. For information on compatibility, see the readme
file provided with this release.

For information on installing the Supetl'AP hardware, see the
Emulator Installation Guide.

MWX-ICE User's Manual

For information on See

Conventions, support services. This chapter

Key emulation features. Chapter 1

Installing and starting MWX-ICE, and Chapter 2
Supetl'AP operational characteristics.

Using overlay memory. Chapter 3

Programming flash memory. Chapter 4

Using trace capture and display. Chapter 5

Using standard breakpoints. Chapter 6

Using the event system. Chapter 7

Register support for MPCS:XX family. Chapter 8

Command syntax and groupings, Chapter 9
unsupported XRAY commands, using
Help for detailed command descriptions.

xvi MWX-ICE User's Manual (Windows)

Using Help

SuperTAP axx

For information on

A tutorial and examples of how to use
MWX-ICE features.

Modifying the startup files.

Common startup problems and error
messages.

How the cdemon tutorial code works.

Updating the emulator's firmware.

Finding information in this manual.

See

Chapter 10

Appendix A

Appendix B

Appendix C

AppendixD

Index

The Help for MWX-ICE also covers all the emulator-specific
and core debugger features:

a Detailed command descriptions.
a Using windows, menus, and notebooks.
a Using MWX-ICE features (for example, breakpoints, event

system, overlay memory, trace memory, symbol
management, macros).

To get Help
From the Help menu, choose Contents, or choose Help on the
currently active window. You can also search the Help file for
keywords or command names. To get help on MWX-ICE
debugger notebooks, click the question mark button (?) in the
notebook.

For help on using Windows Help, press Fl in the Help window,
or choose How to Use Help from the Help menu.

xvii

Installation and emulator setup

xviii

For information on

Installing the debugger

Starting the debugger

See

Chapter 2 ofthis manual.

Chapter 2 of this manual

Setting up the emulator SuperTAP Emulator Installation
Guide

MWX-ICE User's Manual (Windows)

Conventions

SuperTAP 8XX

This manual uses the following conventions:

When you see

bold type

italics

<F7>

[l

{}

run

This means

The name of a control software
configuration or executable file, a
keyword or command.

A command variable or a file name that
you need to type. Italics are also used
for emphasis the first time a key word
or concept is introduced.

Press the F7 function key.

Optional item. You do not have to select
the option. You do not type the
brackets.

A choice between two or more options.
Do not type the vertical bar.

The curly braces indicate that must
choose one item. Do not type the braces.

You may select one or more of the
items. Do not type the ellipsis.

Screen output or example code.

xix

Support services

xx

Applied Microsystems provides a full range of support services.
New software is covered by a 90-day warranty. Support
agreements are available that provide additional services.

If you encounter trouble installing or using your software,
consult your manuals to verify that you are using appropriate
procedures. For answers to common troubleshooting problems,
see Appendix B. It covers the most frequently encountered
operational problems.

If the problem persists, call Customer Support.

When you contact Customer Support, please have the ASI
(Applied System Identifier) number of your system. The ASI
number is printed on a label located on the bottom of the
SuperTAP.

Phone
(800) ASK-4AMC (275-4262)
(206) 882-2000 (in Washington State and Canada)

See inside back page for addresses and phone numbers of
worldwide offices.

Internet address
If you have access to the Internet, you can contact Applied
Microsystems Customer Support using the following email
address:

support@amc.com

You can also browse the Applied Microsystems World Wide
Web page using the following URL:

http://www.amc.com

FAX
(206) 883-3049

MWX-ICE User's Manual (Windows}

I Chapter 1

Introducing MWX-ICE
This chapter covers key features of the Applied Microsystems
MWX-ICE debugger for the Motorola MPC8XX processors. The
MWX-ICE debugger is used in conjunction with the Applied
Microsystems SuperTAP system integration tool.

The following sections provide a quick overview of key features
and characteristics of the SuperTAP emulator and MWX-ICE
debugger. It includes pointers to additional information,
required setup, and procedures.

Contents

The SuperTAP system integration tool

Run control, memory and register support

Trace system

Event system

DPimode

Flash programming

File formats and converters

File formats and converters

Built-in network support

Page

1-3

1-3

1-7

1-7

1-8

1-9

1-9

1-9

1-10

1·1

..

The SuperTAP system integration tool

1-2

The SuperTAP is your one complete tool for system debugging
and integration. You can use the SuperTAP and MWX-ICE in
full in-circuit emulation (ICE) mode, where the SuperTAP
replaces the target processor, or in DPI-only mode, where the
SuperTAP connects to the DPI port on the target. In DPI-only
mode you can access the built-in debug mode of the MPCSXX
processor.

You can use SuperTAP and the MWX-ICE in full in-circuit
emulation mode to bring up your target hardware, program
fl.ash memory, or to execute code from the emulator's overlay
memory. The SuperTAP also supports external bus masters in
multi-processor target systems.

SuperTAP provides the following features:

a Run control, memory and register visibility.
a Trace system to record processor activity.
a Event system to track and isolate deeply nested bugs.
a Overlay memory to use in place of target memory.
a Program flash memory.
a Built-in Ethernet Communications.

These features are described on the following pages.

MWX-ICE User's Manual (Windows)

Program flash memory

Connect to the target in
full ICE or DPl-only mode

Trace system

\
Run control, memory and
register visil:>ility

/ Use overlay memory in
place of target memory

~~~~ _Full del:>ug support for ELF 
ol:>ject modules with 
DWARF or stal:>s del:>ug 
irrformation 

Built-in Ethernet network 

- capal:>ility 

Run control, memory and register support 

Run control 

SuperTAP axx 

Using the Supe:rTAP and MWX-ICE you can control target 
execution, examine and modify memory and registers. 

You can use the run control system to single-step through your 
application code at the source or assembly-level. You can step 
into or over function calls. You can set instruction or access 
breakpoints in target RAM or ROM. 

1-3 

.. 



Basic breakpoints 
Basic breakpoints are tools for interrupting emulation or 
simulation in order to inspect trace for insight into code 
execution and target function. Breakpoints interrupt 
emulation after memory accesses or before executing an 
instruction. 

You use a breakpoint to examine behavior of the target under 
certain controlled conditions. This is very helpful in isolating 
bugs when troubleshooting hardware and software in the 
target environment. 

Typically, they take two forms: access breakpoints and 
instruction breakpoints. You can use up to 10 single-address 
access breakpoints or five ranges, or some combination of both 
types. You can set up to 50 software instruction breakpoints. 

See the breakaccess, breakinstruction, breakread, and 
breakwrite command descriptions in the Help. Chapter 6 
provides a detailed explanation of the basic breakpoint system. 
The tutorial in Chapter 10 offers some practical examples of 
procedures and applications. 

Operations during run 

1-4 

In the standard operating mode, MWX.-ICE does not permit 
additional operations while the emulator is running. 
MWX-ICE for the MPCSXX family has a special dynamic run 
mode. 

The drun (dynamic run) command executes the target 
program and continues execution until it is stopped by the 
dstop command, a breakpoint, or an error. The purpose of this 
mode is to allow you to interact with the emulator and 
debugger dynamically, while the emulator is running. 

In dynamic run mode you can examine and qualify trace, set 
and change events and breakpoints, examine and change 
memory and perform most other interactive emulation 
functions. 

MWX·ICE User's Manual (Windows} 



You can use the dupdate command to poll the emulator 
periodically and update the windows during dynamic run 
mode. However, dynamic commands are no longer accepted. 

The drun, dstop, dupdate commands provide this additional 
functionality. Help describes each command in detail. The 
tutorial in Chapter 10 includes a simple application. 

Servicing interrupts during pause 

Overlay memory 

SuperTAP 8XX 

Normally, a breakpoint causes the emulator to stop running in 
target. Using the sitstate command, you can enable 
Stop-in-Target (SIT) mode and have the emulator loop in target 
and service interrupts while paused, or jump to your own 
interrupt service routine. When sitstate is set for ice 
(in-circuit emulator mode), the sit command specifies the 
beginning of a minimum 4-byte block of memory at which it 
installs the loop routine. A branch instruction is placed at the 
loop address. When an interrupt request is detected, the 
processor services the interrupt, then returns to the branch 
loop. 

When sitstate is set to user, the sit command specifies the 
beginning of your own interrupt service routine. 

The default address for the emulator's loop or your own 
interrupt service routine is set by the sit command. This 
setting must be changed, either from the command line or in 
the Execution dialog of the Emulator Configuration window, 
before setting sitstate to ice or user. 

Help provides complete descriptions of the sit and sitstate 
commands and explains setup. 

You can configure the SuperTAP with up to 8 MB of overlay 
memory. Overlay is RAM that can be mapped into the target 
system's memory space, either in place of memory or in 
addition to target system memory. Overlay is useful for 

1-5 

.. 



Register support 

Session logging 

1-6 

replacing target ROM for debugging purposes, or as a stable 
environment when target memory is unreliable, or to 
temporarily expand target memory for test routines. 

In addition, you can configure the SuperTAP to allow external 
bus masters to access overlay memory. 

The map, copy, and overlay commands are the primary 
MWX-ICE commands used to map overlay and copy contents to 
and from target and overlay. These are described in Help. A 
description of overlay features, operation, and mapping is 
provided in Chapter 3. 

MWX-ICE supports all registers of the MPC8XX family 
processors. Register values can be viewed, modified, and used 
within the conditional event system. 

The SuperTAP provides: 

CJ Windowed display and modification of all MPCSXX 
registers. 

CJ Current value and descriptions of each bit in the register 
sets using the CPU Browser. 

CJ Monitoring and manipulation of MPCSXX family registers 
during run using the event system. 

Chapter 8 describes the features provided for viewing and 
modifying the MPCSXX registers, and lists all supported 
registers with the mnemonics used by the debugger. 

You can use the log and journal commands to record all 
session activity, including commands issued, error messages, 
and data returned. The log file can be used as an include file to 
replicate an earlier session. Help describes both commands. 

MWX-ICE User's Manual (Windows) 



Trace system 

Event system 

Super TAP SXX 

You can use the emulator's trace system to capture and record 
the execution history of the processor as the emulator executes 
the target program. Information captured includes CPU 
address, data, and status signals and timestamp information, 
as well as several optional fields such as interrupt activity. 
Using trace history, you can verify the correct performance of 
the software and find errors that may occur in the program's 
execution. 

The emulator's trace buffer can store approximately 32,000 
frames of trace. Each trace frame contains 128 bits of 
information. Using emulator trace capture variables and the 
event system, you can selectively filter the kinds of processor 
activity you wish to capture. Once trace has been captured, you 
can use trace display variables to view the contents of the trace 
buffer in several different ways. You can display raw bus or 
clock cycles, full source-level, assembly-level, or mixed source
and assembly-level trace information. 

Chapter 5 explains and illustrates trace use. Help also 
provides complete information about trace setup, capture, and 
display. 

The basic break.points feature and the event system can both be 
used to control emulation for insight into code execution and 
target function. Compared to basic break.points, the SuperTAP 
event system provides additional flexibility both in what can 
cause the emulator to intervene in code execution and in what 
actions can occur. 

The emulator's event system is combined with the MPC8XX 
on-chip event system to provide a powerful state machine that 
monitors the processor bus and the event system counters, 

1-7 

.. 



DPI mode 

1-8 

groups, and state flags. The system can track deeply nested 
sets of conditions, including recursive and reentrant code 
sections. It allows you to monitor for a predefined series of 
conditions, called events, and then perform emulator actions 
based on those conditions. It monitors target information at the 
bus-cycle level, including every read or write cycle that the 
microprocessor executes. 

These features provide powerful debugging capabilities for 
software debugging and for hardware/software integration. 

r:i Up to 32 when/then statements can be defined at any time. 
r:i Four event groups and two event states provide the logical 

structure necessary for tracking deeply nested bugs. 
r:i The event system includes 4 counters that can be monitored 

and controlled. 
r:i Trace collection can be selectively controlled. 
r:i Memory and register values can be monitored and modified. 
r:i Emulation can be stopped before or after instruction 

execution. 
r:i The event system can respond to or produce an external 

trigger signal. 

Chapter 7 provides a detailed explanation of event system 
applications and procedures. The when command is the 
primary MWX-ICE event system command. It, and the many 
associated commands, are described in Help. Help also 
provides extensive description of event system use. 

The tutorial in Chapter 10 offers some practical examples of 
procedures and applications. 

You can use one tool for different kinds of debug problems. The 
SuperTAP can operate as a full-featured emulator and replace 
the processor in the target system, or it can connect to the 

MWX-ICE User's Manual (Windows) 



target system using just the Development Port Interface (DPI) 
cable and provide simple run control, plus memory and register 
control. MWX-ICE automatically detects the mode of 
operation, and configures itself accordingly. Procedures for 
connecting the SuperTAP to your target system are described 
in the Emulator Installation Guide. 

Flash programming 
Flash memory is widely used in embedded system designs 
because of its non-volatility, high-performance, and low-cost. 
MWX-ICE and the SuperTAP provide a fast and efficient 
means of programming and erasing flash memory devices in 
your target system. The SuperTAP supports most popular flash 
memory devices from AMD and Intel. For information about 
using MWX-ICE to program flash memory, see Chapter 4 and 
Help. 

File formats and converters 

SuperTAP 8XX: 

MWX-ICE requires ELF object format with DWARF debug 
information to enable symbolic debugging. You can also use the 
Gnu G++ compiler with the -gstabs+ option. 

Support for other formats is built into MWX-ICE and 
additional converters are available. 

In addition to ELF, the following formats are also recognized: 

Format 

INTEL 

Description 

Intel hex format. Extended segment 
address records and extended linear 
address records are supported. 

1-9 

.. 



Format 

SREC 
(default) 

XTEK 

Description 

Motorola S3-records with Microtec 
extensions. 

Extended Tektronics hex format. 

Symbols are not supported for these formats. 

See the descriptions of upl, dnl, uplfmt, and dnlfmt in Help 
for supported formats, procedures, and limitations. Contact 
your Applied Microsystems representative for information 
about additional converters. 

Built-in network support 

1-10 

With built-in Ethernet communications support, the 
SuperTAP is network ready. Engineers can share access to the 
SuperTAP and the target system without having to add 
additional hardware to the target. The SuperTAP supports the 
widely-used TCP/IP network protocol. If your network uses 
RARP or BOOTP servers, the SuperTAP can automatically 
configure its IP address and netmask using your network 
database. Procedures for connecting the debugger to a 
networked SuperTAP are described in Chapter 2 of this 
manual. 

For information about configuring the SuperTAP hardware for 
Ethernet communications, see the Emulator Installation 
Guide. 

MWX-ICE User's Manual (Windows) 



I Chapter 2 

Getting Started 
This chapter explains how to install and start the debugger and • 
provides important information about characteristics of the 
emulator and debugger. Before you begin debugging, you 
should familiarize yourself with this information. 

Contents Page 

Installing MWX-ICE for Windows 2-2 

Setting up environment variables 2-2 

Starting MWX-ICE 2-3 

What happens at power on, reset, and restart 2-20 

Important operational notes 2-24 

2-1 



Installing MWX-ICE for Windows 
These instructions describe how to install the Applied 
Microsystems MWX-ICE debugger on a PC or compatible 
computer that is running Microsoft Windows 95 or Windows 
NT version 4.0. 

o Install the MWX-ICE software by following the instructions 
included with the CD-ROM 

o Configure the emulator for communications as described in 
the Emulator Installation Guwe. 

o Set the environment variables as described in "Setting up 
environment variables" on page 2-2. 

System requirements for MWX-ICE 
The Applied Microsystems MWX-ICE debugger runs on a PC or 
compatible computer that is running Microsoft Windows 95 or 
Windows NT version 4.0. 

For information on the specific host, network, and emulator 
requirements for this release of MWX-ICE, see the release 
letter and readme shipped with your order. 

MWX-ICE uses the Transmission Control Protocol/Internet 
Protocol (TCP/IP) to communicate with the SuperTAP. Support 
for TCP/IP is built into Windows NT. If you are using Windows 
95, you need to add the Microsoft TCP/IP communications 
protocol. 

Setting up environment variables 

2-2 

The default installation directory for MWX-ICE is C: \STSXX. 
If you use this directory, you do not need to set up the 
XRAYMASTER environment variable, and you can skip this 
step. 

MWX-ICE User's Manual (Windows) 



Search order 
MWX-ICE searches for STARTUP.INC and other MWX-ICE 
support files in the following order: 

1. current_directory \STARTUP.INC 

2. current_directory \AMC\ STSXX \fil,ename 

3. XRAYMASTER\AMC\STSXX\filename 

4. C: \STSXX\AMC \STSXX:\filename 

Setting XRA VMASTER 
If you have installed the MWX-ICE debugger in a directory 
different from the default, you need to set up the 
XRA.YMASTER environment variable in your 
AUTOEXEC.BAT file. 

The syntax is: 

set XRAYMASTER=install_dir 

Starting MWX·ICE 

SuperTAP axx 

To start MWX-ICE, you must have met the following 
requirements: 

a MWX-ICE must be installed, and environment variables 
must be set. 

a The Supetl'AP must be configured for Ethernet 
communications as described in the SuperT AP Emulator 
Installation Guide. 

o A TCP/IP protocol stack must be running on your host 
computer, and your network must have some means of 
performing address resolution. 

This following section summarizes startup procedures for 
MWX-ICE. 

2-3 

• 



0 .D.OCll!Wris 

&~elti'lgs 

<i:I fr.cl 

• Help 

f!l a ....... 

rt;:, lo1WX ICE Supe•TAP 860 > 

- M'l!IX-ICE 
C=t 5tmtup Options Ed"llor 

14--- To start MWX-ICE, 
click here. 

To select the processor type 
and other options, click here. 

Figure 2-1 MWX-ICE group in the Windows Start menu 

Using the Startup Options Editor 

2-4 

To make selecting startup options easier, you can use the 
MWX-ICE Startup Options Editor. The editor creates a startup 
options file (MWX.CFG) that is automatically included when 
you start the debugger. 

>- To use the Startup Options Editor 

1. Click the Start button, and point to Applied Microsystems, 
then point to MWX-ICE Supe:r'l'AP 8XX, and click the 
Startup Options Editor. 

The Startup Options Editor dialog appears. 

2. Select the processor variant you want to emulate. 

You must change this selection each time you change the 
processor you are emulating. 

3. Select other options as needed. 

For information on the available options, choose Help. 

4. Choose OK. 

MWX-ICE User's Manual (Windows) 



SuperTAP SXX 

The options editor saves your choices to a file (the default is 
MWX.CFG). 

>- To start MWX-ICE 

• Click the Start button, and point to Applied Microsystems, 
then point to MWX-ICE SuperTAP SXX, then click • 
MWX-ICE. 

The debugger automatically looks for the file MWX.CFG, 
and uses those options at startup. If you save the options to 
a different file, you need to add a new program icon to the 
Start or Programs menu. For information, click Help from 
the Startup Options Editor, and see the "Add a new pro
gram" topic. 

If you want to use the same startup options the next time 
you start MWX-ICE,just double-click the appropriate 
MWX-ICE icon. 

The first time you start up MWX-ICE, the debugger comes 
up in the unconnected state. For information on defining a 
connection, see "Connecting to an emulator" on page 2-7. 

2-5 



2-6 

For more information about the startup options file, see "About 
the startup options file (MWx.CFG)" on page A-7. 

• mwx cfq M .,1/X ... ICF Startup Options E ... fill~ 

fie Ii~ 

f'locessar. IMPC860 3 Advonced ••• I 

Figure 2-2 MWX-ICE Startup Options Editor 

MWX-ICE User's Manual (Windows) 



Connecting to an emulator 

SuperT AP SXX 

When you start up MWX-ICE you won't automatically connect 
to an emulator unless you have saved your configuration to a 
startup file. IfMWX-ICE is unable to locate a startup file 
(STARTUP.INC) the Connections window appears along with • 
the Code and Command windows. You can use the Connections 
window to define and connect to an emulator. Once you have 
connected to an emulator, you can save the configuration. 

The section describes the steps needed to connect to an 
emulator. Before you can connect to an emulator, you must 
first configure the emulator for Ethernet communications as 
described in the Emulator Installation Guide. 

Starting the emulator 
The SuperTAP has special buffering to protect the emulation 
circuitry. To function, emulator power must be on. Use the 
following sequence when powering on the emulator and target. 

If you do not have a target, the emulator goes into isolation 
mode. For information about using isolation mode, see 
"Isolation mode" on page 2-24. 

The first time you start MWX-ICE, do not have the target 
connected. This will allow you to come up in isolation mode and 
configure MWX-ICE for your target requirements. Save the 
configuration so that MWX-ICE will be configured correctly at 
startup when your target is connected. 

> To start the emulator 

1. Tum on power to the emulator. 

2. Tum on power to the target. 

2-7 



Connection status ------..\ 

~i!t9MWXST860(Nol Connected]- Code 

~ Co'"""""3d MPC860 Module: NONE 

Figure 2-3 Connections window [Not Connected] 

2-8 MWX-ICE User's Manual (Windows) 



SuperT AP 8XX 

Defining a connection 
Before you can connect to an emulator, you must define an 
emulator connection. You can define as many connections as 
you like, but you can only connect to one emulator at a time . 

>- To define a connection 

1. From the Displays menu, select Connections. 

The Connections window appears. The Connections window 
automatically appears ifMWX-ICE is unable to locate a 
startup include file. 

2. From the Actions menu, choose Define Ethernet Connection. 

The Define dialog box appears. 

3. In the Host Name box, type the name of the emulator as it is 
known on your network. 

4. In the Symbolic Name box, type a name you can use to 
identify the emulator. 

Note that the Symbolic Name is used by the connect com
mand. The Symbolic Name provides easy way to label the 
different communications configurations. For example, for 
Ethernet communications, you can use the host name of the 
emulator as the Symbolic Name. 

5. Click.OK 

2-9 

• 



Making a connection 
The emulator you connect to must support the connection type 
you have selected. Be sure the emulator is on and is configured 
properly. If you disconnect from one emulator during a debug 
session and connect to another, the emulators must have the 
same type of processor, the processor you selected using the 
Startup Options Editor. 

:> To connect to an emulator 

1. In the Connections window, double-click to select an 
emulator. 

2. Click the Connect button. 

An asterisk (*) appears in the CON column when you are 
connected to the emulator. The name of the connection ap
pears in the title bar of the Command window. Status infor
mation appears in the Command window. 

Connection status -----\ 

Conne~ 

Disconn~ 

2-10 

'ft).e Dlrl'.lll!DS vcU.ues :b4ve been reod £~ the file 
"C:\st860\aac\st860\iregs860.d.o.t•. 
Initi4liz$tion Finished ... 

> 

Figure 2-4 Command window showing connection [frazzle] 

TIP: You can drag and drop the Connect button from the tool 
bar on an emulator in the Connections window. 

MWX:-ICE User's Manual (Windows) 



SuperTAP SXX 

Configuring the emulator and debugger 
Once you've connected to an emulator, you can configure the 
debugger and emulator options. For a brief description of the 
options you can set, see "Configuring the emulator" on 
page 2-12. 

Saving a connection 
Once you have defined and connected to an emulator, you can 
save the connection and configuration to a startup include file. 
When you have a startup include file (STARTUP.INC), 
MWX-ICE automatically connects to the emulator and 
configures the emulator options you have set. 

~ To save a configuration to STARTUP.INC 

1. From the Displays menu, choose Emulator Configuration. 

2. In the Emulator Configuration window, choose Save to 
Startup from the File menu. 

By default, your connection and configuration data are 
saved to C: \STSXX\STARTUP.INC. 

3. If the file exists, a prompt appears asking if you want to 
overwrite the existing file, or replace the configuration 
section of the existing file. 

• Choose replace if you have added commands to an 
existing startup file. (See "Adding commands to the 
startup file" on page A-5 for procedures to add 
non-configuration commands to a startup file.) 

• Choose overwrite if you don't want to keep the existing file 
or any commands you've added. 

The Save to Startup command saves the configuration to 
whatever file you specified at start up. If no file was specified, 
MWX-ICE uses the default STARTUP.INC file. If this file 
doesn't exist, MWX-ICE asks if you want to create it. 

2-11 

• 



>- To save a configuration to another file 

1. Switch to the Emulator Configuration window. 

2. From the File menu, choose Save to File. 

3. Specify the path and filename. 

4. Save your configuration to a new startup file. 

Configuring the emulator 

2-12 

Once you've connected to an emulator, you can configure the 
debugger and emulator options. To set the options, open the 
Emulator Configuration window and click the button for the 
group of options you wish to set. 

The configuration dialogs show the current settings for the 
options. Use the menus or text boxes to change the settings, 
and then choose the Apply button. For information about the 
options in the configuration dialogs, click Help. 

r··----------··:··:··--·-:··--··:··---------~---Ci··;;c·· 

;: ··················--------··--·--------·--···········-
~ 1 Connections • 

~ · Tro.ce I r·----~;;ti~~- .. --···--·-----. 
~ ~ Meaoz:y Re<od/Write 
~ :····················-································ 
>. : Meaoz:y ~ 
~ ; .................................................... . 
~: Event 
~ ,..................................................... . 
< ; File B.:mdling · I i·········r;;~;··c;ti~~~---·---··: : 
~ 

h.rJ!£ID.W1ltm .... -: ,_ ~ : ~ A 

Figure 2-5 Emulator Configuration window 

MWX-ICE User's Manual (Windows} 



You can use the Emulator Configuration window to view and 
modify the options that control the state of the debugger and 
emulator. 

Connections 
The Connections button brings up the Connections window . 
Use this window to define and connect to emulators, and to 
reload the emulator operating system. The Connections 
window is shown on page 2-10. 

Execution 
The Execution button opens the Execution configuration dialog 
box. Use this dialog box to set the emulator execution options, 
such as instruction show cycles, isolation mode, and real-time 
operation. 

liii Execuhon- - -- ---- - ------- - -- - -EJ I 
CPU CJ.oc:ll buffered to earqee (BCLOCK): 

lxec:ueion/Access BreUpoinc Type (BPTYPK): 

Clock ~nquonc:y in Hz (CLOCK!: 

DPI Clock (l)PICLK) : 

Iso.Lation !lode ( ISO!IOl>I) : 

Realtia9: lnforciut.ene CRTI): 

Runtiae (secs> CllUB_TI!D): 

1-l•d 3 
ICBOosz::J 
1-l•d'3 

[2sOOoOoO 
I us -3 
1-l•d::J 
11)1Hl>led3 
r
rs--

Control ser:i.alizaeion of CPO core (SIRI.LL_COU>: JOii"3 
Instru.ce.ion show cyc:l.e D> (SHOWDJST): IDll>I:UCT 3 
Stop in Tarqet scratch buffer ad.dress (SIT>: r-
Stop-in-tarqe:t ~ate (SITSTAT:I): rm3 
Tarqet cozmec:eion a.ode (TGTJ!ODI>: lrnL_m3 

Figure 2-6 Execution configuration dialog box 

SuperTAP 8XX 2-13 

• 



Trace 
The Trace button opens the Trace configuration dialog box. Use 
this dialog box to set emulator trace collection and display 
options. For information about capturing and viewing trace, 
see Chapter 5. 

liilTr<l;;;- - - -- ------- - - - - --- --El 

------------ COUICTIDlf ------------

SyR- CTRSTS): 

Col.l.eCO>:l.011 CTJl.LCll): 

Col.lect.icm kat• ae ltuD (TRIJIIT): 

Cl.Hr BuUer .,, - (TllllllllCLll.): 

c.,.11re PHlcs/Polces CPPrl: 

Tiaa se- cl.oclc t:Lclr CTillCLK): 

l~•:naal crace c:yc:les CTRCmct): 

----------- DISPLAY ------------

Displ.q Spec:LU.ed Data (DP.TD.LT.LI : 

l-l.•d13 

1-l.ed 13 
1-- :in c..ne= k&• ::I 
IAc:c:mmlac• crac:e :::J 
I C,CJ.es •••de:ll for Disuseably 13 
ID:Lsllbl.ed 13 
140nS13 

1-l.•d13 

r-

Displ.q SpocU:Lod Piel.ds !Dll.Tl'ULL): l.Ll.l. Ual.ds 

Displ.q of bunch l.llbel.s :l.n disasseabl.ed trace !DXL.IBILSI: 1-l.•d 1£1 
------ COlllUlll> WDIDOll 01JTP1'T CmrTll.OL ------

D:Lspl.q !lode CTIDISP): 

Intorl.eave a- :l.n Disasseabl.y (DXDISBll.TI: 

loffsR froa Base Jr-3 
I .Appl.y II lie.eon Val.ue 11 C-.cd 11 Bol.p I 

Figure 2-7 Trace configuration dialog box 

2-14 MWX-ICE User's Manual (Windows) 



SuperTAP BXX 

Memory 
The Memory Read/Write button opens the Memory Read/Write 
dialog box. Use this dialog box to enable overlay memory, and 
to control access to overlay by external bus masters (Isolation 
of overlay read/write). 

The Memory button opens the Memory configuration dialog 
box. Use this dialog box set memory access attributes. For 
information about using the emulator's overlay memory, see 
Chapter 3. 

~ 11eaory verity: ~ R•qist•r verity: l~~~El 

! c.verJ.ay syseea: l~~~.~ .. EJ 
~ Xsol.ae:Lon of over.lay: Reads: 1.~ .. a Vr:i.ees: 1~.a 

lr~-c_;;;·;_~;-_·_~~;;_:.Ts_~---_·_·_-_._._._._._-_·_-_-_·_·_-_·_·_-_-_._._-_·_·_-_·_·_-_-_·_·_·_·_·_-_-_·_·_·_·_·_·_-_-_-_·_·_-_·_·-_-_-_._-_._-_-_-_-_. 

Figure 2-8 Memory Read/Write configuration dialog box 

2-15 

• 



! 

~ kc•ss: 1~--~~~EJ [~-~-<;~ ...... El 
~Asa: b .. ~~a 1~~:-~ ....... B 
! Awe: 1~-~~a L~~-~.:~ ....... EI 
~ Code: h .. ~-~~a 1~~~~-------B 
~ C-l.: b .. ~~.!El L~.~.7~ ...... EI 
~ C-Z: k~.~!a 1~~:.~ ....... EJ 
~ conJtr:oa: 1~.~~~a L~~-~-c:~ ...... EI 
! coneo: h .. ~.~:"a 1~~:.~ ....... EJ 
~ Mq: 1~-~!!El r~-~-:~ ...... EI 
! -= L~--~-~!a 1~~:-~ ....... a 
~ •m= b .. ~!!El r~-~-:~ ...... EI 
~ Hl.l.: r~ .. ~-'!:"a 1~~:-~ ....... a 
! !lead: b .. ~!!El L!~-~.:~ ....... EI 
~ Search: r~ .. ~-~!a 1~~:.~ ....... EJ 
~Stack: b .. ~!!El r~.~.:~ ...... EI 
~ Test: r~ .. ~-~!a 1~~:.~ ....... a 
i Vri1'e: 1~ .. ~!!El [~.~.:~ ....... El 
! XI.au: r~ .. ~-~:"a 1~~!1;~~-.!:~-~a 
~ r·-··-·-·····---······-··········-····-··-··--···-·--···--·····-··-·-·--·-··-··-···········-··-· r .ipp~'J' I! Rolston Val...e If canc.i l!11.ip I 

Figure 2-9 Memory configuration dialog box 

2-16 MWX-ICE User's Manual (Windows) 



SuperTAP SXX 

Event 
The Event button opens the Event configuration dialog box. 
Use this dialog box to set the emulator event system options. 
For information about using the event system, see Chapter 7 . 

~ m--icest860 - Event 

Group: 

Sip! group A oux selection: ! IR!! C0:1:7J Cl I 
Sipl group B oux selection: I IR!! [2-6] 1:1 I 

State: II:EJ 
Coo.rlter • 

1: 

2: 

Value Ini tlal Value 

I 0 I I Use Clrrent Value at Ro.n Cl I 

cr::::J I Use Clrrent Value at Ru. Cl I 

~ip Coollter • Value 

A: cr::::J 
B: ca:::::::::J 

IL ~ !Restore Value! !eancell liii!) 

Figure 2-10 Event configuration dialog box 

File Handling 
The File Handling button opens the File Handling 
configuration dialog box. Use this dialog box to specify the 
upload and download format for non-ELF object files, and to 
other download options. 

J:,[ m-lcest860 - File Handling 

ttax Bytes Bet-. Dowlloed Bloc:b: .,Io __ 
I Sreccrd ci I 

l.Ploed Fanoat: I Sreccrd Cl I 
~ !Restore Value! !Cancel! liii!] 

Figure 2-11 File Handling dialog box 

2-17 

• 



Debugger Options 
The Debugger Options button opens the Debugger options 
configuration dialog box. Use this dialog box to set input and 
output radix and other debugger options. 

~ mwx-icest860 - Debugger Options 

Align Instruction llreokpoints: ~ 

CPUT-: ~ 
Input ~ix: I Ilecil••I Cl I 
IMput. ~ix: I Dec1 .. 1 c::i I 
Soorce Lines In Asseiobly: ~ 

Echo Include File c-ds: ~ 

Show Syobols in Asseiobly: ~ 

T- Oieeking: I Off Cl I 
D...and Loading: ~ 

Use ~l..ated Cu-sor: ~ 

Load Options: I <none> I 
~ !Restore Value! !Cancel I ~ 

Figure 2-12 Debugger Options dialog box 

Other things to do at startup 

2-18 

a Map any overlay memory needed. See Chapter 3 or Help for 
procedures. 

a Download target code to overlay, if needed. See Chapter 3. 
You can use the Startup Options Editor to enter the name of 
the absolute file to load. 

a Once you've started the emulator and debugger, you need to 
initialize the processor using the reset command, then you 
can begin emulation. 

a Set up the initialization registers. These registers provide a 
way of decoding the multiplexed control pins, disabling the 
software watchdog timer, and making MWX-ICE memory 
operations possible immediately after a processor reset. See 
"Using the set of initialization registers" on page 8-2. 

MWX-ICE User's Manual (Windows) 



Isolation mode 

SuperTAP SXX 

The debugger provides two operational modes: in-target and 
isolation mode. If you have no target to connect to or the target 
is unreliable, you can run in isolation mode using the probetip 
processor and downloading target code to overlay memory (if II 
installed). The system automatically enters isolation mode at 
startup if no target V cc is found; so no special setup is required. 

Special procedures do apply if target V cc is lost and isolation 
mode is entered after startup. See "Support for target power 
loss" on page 2-24. 

You can enter isolation mode by enabling the isolation mode 
option in the Execution Configuration dialog. To enable this 
mode, open the Execution Configuration dialog from the 
Emulator Configuration window. You can also use the 
isomode softswitch in the Command window. 

The isomode softswitch controls the operational mode. The 
internal default is in-target mode (isomode off). Use of the 
isomode softswitch is described in Help. 

If you use isolation mode, you need to consider the following: 

o Whenever isolation mode is enabled, the emulator does not 
use the target, even if one is connected. If the emulator fails 
to find a connected target, check the setting of the Isolation 
mode option in the Execution Configuration dialog. Make 
sure that it is disabled, and then save your configuration to 
the STARTUP.INC file. If the target still is not found, or if 
the emulator shifts to isolation mode, check target power. 

o When connected to a target with isomode on, all signals 
between the target and probetip float. If your target cannot 
tolerate floating lines, disconnect it from the probetip when 
isomode is on, or always keep isomode off. 

o During times when you wish to emulate and debug in a 
targetless environment, it is a good idea to enable the 
Isolation Mode option, and then save your configuration to 
the STARTUP.INC file. 

2-19 



What happens at power on, reset, and restart 
When you turn power on to the SupetrAP emulator and start 
the MWX-ICE debugger, two parallel processes begin. On the 
emulator side, the controller runs PROM-based diagnostic and 
boot code. During this process, the hardware installed in the 
emulator is polled and its hardware configuration stored for 
future reference. 

On the host side, the Applied Microsystems debugger queries 
the SupetrAP for its state and configuration. If the emulator 
reports itself in a power-up state, the program checks for the 
presence of the emulator control shell and downloads it, if 
necessary. 

When the control software completes its configuration and is 
running, the emulator's state changes to "Ready," and the 
control software is ready to run. 

The following describes each portion of the process in detail. 

Emulator power-on sequence 

2-20 

The following sequence of events occurs when you tum on 
power to your SupetI'AP emulator: 

a The emulator controller runs PROM-based diagnostic and 
boot code. 

a The controller board is initialized. 
a The configuration stored in the SupetI'AP's flash memory is 

read. 
a The emulator starts the emulator control software, if it is 

loaded into flash memory. 
a The emulator is reset to a known state. 
a The breakpoint, event, trace, and overlay systems are 

cleared and initialized. 

MWX-ICE User's Manual (Windows) 



Emulator control program startup 

Debugger reset 

SuperTAP BXX 

When you start MWX-ICE, the following events occur: 

o The host opens the startup.inc file (if it exists) and loads the 
connection and configuration parameters. 

o The host screen and search paths are initialized, the • 
emulcfg.dat database is opened, and the host-emulator link 
is initialized. 

o The emulator interface layers are initialized and opened. 
o The emulator is reset to a known state. 
o The breakpoint, event, trace, and overlay systems are 

cleared and initialized. 

The reset command allows you to regain control of your target 
and re-synch the emulator with it. It is required to recover from 
timeout errors. 

What happens when you use the reset command 
When you execute reset from the command line, the emulator 
performs the following: 

o Asserts HRESET to reset the processor on the SuperTAP. 
o Restores the SuperTAP logic to a known state. 
o Preserves memory mappings and other emulation settings. 
o Processes the initialization registers (ifinitregs is enabled). 

The reset command does not re-initialize memory; variables 
are not reset to original values. Use the load or reload 
commands to restore variables. 

If this command is issued while the emulator is in drun mode, 
emulation stops before execution of the command. 

2-21 



Program restart 

Emulator reset 

2-22 

If the symbol table is loaded, restart resets the program 
counter and stack pointer to the original starting address from 
the absolute file. The next time you go into run, execution 
restarts at the beginning of the program. Breakpoints are not 
cleared, variables are not reset, and any declared JJO ports still 
exist as originally specified. 

In rare situations, you may have to reset the SuperTAP to 
restore the system to a known state. 

>- To reset the SuperTAP 

1. Exit the debugger. 

2. Push the toggle switch on the back of the emulator to the 
reset position. 

3. Restart the debugger. 

What happens when you press reset 
When you press the reset switch, or cycle power, the following 
sequence of events occurs in the emulator: 

o Startup diagnostics are performed. 
o Communication parameters are loaded from the system 

core, and the appropriate Ethernet protocol is used to 
establish communications across the network. 

o The SuperTAP's flash memory is checked for the presence of 
a transaction shell. 

If no shell is found, the transaction shell is downloaded from 
the host to the SuperTAP. 

If a shell is found, it is started, the target processor is reset, 
and the emulator enters pause mode and waits for connec
tion with the debugger. 

MWX-ICE User's Manual (Windows) 



During the reset process, the Super'!' AP enters isolation 
mode if the emulator is not connected to a target, or if no tar
get power is detected. 

During the reset process, DPI-only or full emulation mode is 
selected based on whether power comes from the DPI cable, • 
or the target. From MWX-ICE, the tgtmode command 
shows which mode is selected. 

Software watchdog timer 

SuperTAP SXX 

The MPCSXX. has a software watchdog timer (SWT) that is 
enabled after a system reset to cause a system reset when it 
times out. If you don't plan to use the SWT, you must clear the 
software watchdog enable bit (SWE) in the system protection 
control register (SYPCR) to disable the timer. 

Because the SWT is enabled after a reset, you can use the 
Super'l'AP's initialization registers (initregs), to 
automatically disable (or configure) the timer after reset. This 
way you won't have to run your boot code or manually configure 
register after each reset operation. If you are not using 
initregs, the SWT times out every four seconds and resets the 
processor. 

To avoid this problem, you must enable the initialization 
registers (initregs on), and save then initialization registers 
to a file. 

For information about setting up the initialization registers, 
see "Using the set of initialization registers" on page 8-2. 

2-23 



Important operational notes 
This section presents various characteristics of the emulator 
and debugger that you should be aware of during emulation. It 
includes: 

Contents Page 

Support for target power loss 2-24 

Isolation mode 2-24 

Peek and pokes during pause or run 2-25 

Show cycles 2-26 

AC timing 2-26 

Alternate bus master 2-27 

Recoverable interrupts 2-27 

Support for the MMU and logical addressing 2-28 

Support for target power loss 

Isolation mode 

2·24 

Target power is monitored. Anytime an operation is attempted 
when VDDH, VDDL, or KAPWR not present, an error is 
generated. 

With the emulator installed, only approximately 1 mA is drawn 
from target VCC through the CPU socket. Note that this is 
substantially less than the current drawn by an actual CPU. 

An emulator softswitch (isomode) enables selection of an 
internal clock when target power is lost. 

MWX·ICE User's Manual (Windows) 



I search I 
Keywords: 
ISOMODE 
Vee 

When the SuperTAP is connected to a target and isomode is 
on, the bus, clock, and power signals are isolated, and all CPM 
signals are connected to the target. You should always 
disconnect the SuperTAP from the target when isomode is on, 
or always keep isomode off. 

Loss of power during run 
If target power is lost while the emulator is running, MWX-ICE 
issues a warning message. Whether power remains off or is 
restored, the emulator remains in run and maintains 
emulation unless the Stop button is clicked. Stopping while 
power is lost may cause corruption of code, even in overlay, 
because breapoints can't be removed. 

Loss of power while in pause 
If target power is lost while the emulator is paused, MWX-ICE 
issues a warning message when you next enter a debugger 
command. 

A target reset is forced whenever target power is restored 

Peek and pokes during pause or run 

SuperT AP BXX 

Peeks are reads, and pokes are writes performed during pause. 
These may occur as a result of event system activity (reading a 
register, incrementing a variable, etc.) or when you look at or 
modify memory while emulation is paused. The tracing of peek/ 
poke cycles is controlled by the ppt command. 

2-25 



Various display characteristics 

Show cycles 

AC timing 

2-26 

Several characteristics ofMWX-ICE windowing and display 
could cause confusion unless understood: 

o During high-level single-stepping. the highlight bar seems 
to jump randomly from line to line in the Code window. This 
is correct behavior usually resulting from highly optimized 
code. 

o Error dialog boxes are scrollable. Occasionally, it is 
necessary to scroll up or over to view the entire message. 

The SuperTAP is designed to operate even when you are using 
the processor instruction and data caches. The Supe:rTAP trace 
system requires that the processor instruction show cycles are 
enabled. In most cases, you only need to generate show cycles 
for indirect branching. The MWX-ICE showinst command 
controls processor show cycles. The default setting is for 
showinst is indirect. Enabling show cycles for indirect 
branching only adds a minor performance penalty to the 
processor execution. But this is hundreds of times better than 
the performance hit you take for disabling caches. The 
serial_ core command controls processor serialization. In most 
cases, you won't need to serialize the core to be able to trace 
execution or use the event system. For more information on the 
showinst and serial_core commands see Help. 

The SuperTAP AC signal timing is exceptionally close to the 
emulated processor. In most cases, it adds only 1to2 
nanoseconds to published Motorola timing for external signals 
and should operate well within Motorola worst-case timing. It 
can add 1.8 to 3.0 nanoseconds to the CLKOUT signal, 
depending upon whether you need to add additional buffering. 

Exhaustive measurements to verify calculated worst case 
numbers have not been made. All calculated values assume 
worst-case timing at 40 °C ambient. Target signals are 

MWX-ICE User's Manual (Windows) 



Alternate bus master 

expected to be properly terminated to avoid reflections. For 
more information about AC timing, see the SuperTAP 
Emulator Installation Guide. 

AC timing specifications are provided by Applied Microsystems 
as general guidelines for customers using our products. These 
specifications are calculated and measured under the 
conditions specified. Because of variations in target loading, 
temperature and device timings, Applied Microsystems does 
not guarantee these specifications. Applied Microsystems 
reserves the right to make changes to these specifications at 
any time without notice. 

The emulation logic is designed so that the monitored address, 
data, and status signals remain valid even when the processor 
has lost the bus to an alternate bus master. This allows the 
trace and event systems to continue to operate during alternate 
bus master cycles. To enable tracing of external bus cycles, 
configure the emulator's trcext variable to on. 

Recoverable interrupts 

SuperTAP SXX 

The MPCSXX has a bit in the machine state register (MSR) 
called the recoverable interrupt bit (MSRRI). The MSRRI 
indicates whether the interrupt is restartable. If this bit is not 
set, the target CPU may not respond to breakpoints. To the 
processor, a normal, maskable break looks just like any other 
interrupt/exception. 

For example, if you want to set a breakpoint at the beginning 
of an interrupt service routine, you need to ensure that the 
recoverable interrupts are enabled, and that the machine 
status save/restore registers (SSRO/SSRl) are correctly 
written. 

2-27 



To handle exceptions, your interrupt service routine must do 
the following: 

1. Save the SSRO and SSR1 registers to memory. 

2. Set the MSRru bit. 

3. Execute any exception processing. 

4. Clear the MSRru bit. 

5. Restore the SSRO and SSR1 registers. 

6. Execute the rfi system call. 

For more information on recoverable interrupts, see the 
Motorola MPCBXX User's Manual. 

Support for the MMU and logical addressing 

2-28 

The Supe:rTAP provides support for the memory management 
unit of the MPCSXX. Prior to any emulator action, a valid 
translation table must be loaded into memory before the 
instruction or data M1vfCJ is enabled. 

All logically addressed user input (breakpoints, overlay maps, 
etc.) is translated to the corresponding physical addresses 
before being applied. During run, the system uses the 
translation tables to perform logical-to-physical translation 
dynamically. 

Address translation 
Every function of the emulator and debugger supports logical 
code, logical data, and physical addressing. As long as valid 
translation tables are loaded into memory, the Supe:rTAP 
emulator can automatically translate logical addresses to 
physical. The xlate utility provides the means for manual 
logical-to-physical translations. 

To indicate whether the default addressing mode is logical or 
physical for the many key functions of the debugger, use the 
Memory Configuration dialog box (see Figure 2-1), or the 
matrix provided by the address command. Each row identifies 
a type of memory activity performed using a specific command 

MWX-ICE User's Manual (Windows) 



SuperTAP BXX 

or feature of the debugger. The setting for each specifies how 
the debugger should interpret subsequent address input it 
receives. If incorrectly set to logical, these settings may cause 
commands or features affected by them to function 
unpredictably or cause exceptions. 

In some cases these defaults can be overridden individually. • 
For example, the event system field (event) is applied only if 
no overriding qualifiers are specified in the when inputs. In all 
other cases (ba, bi, etc.), you can toggle the setting prior to 
individual command input to change the addressing mode for 
the following entry. The startup.inc file can be used to set 
defaults at startup. 

Regardless of the mode of user input, the system uses physical 
addressing during operation. 

2-29 



~ 

·1 .. 
: Access: 
~ 

1:: 
$ Code: 

~ 
$ Compl: 
~ 
$ 

~ Com.p2: 

I 
~ 
j Diag: 

Bvent: 

Bxec: 

Fill: 

P.ead: 

Search: 

Stack: 

Test: 

~ Write: 

~ Xl&Le: 

i 

Size Address Overlay 

1~],iY.5.~: ... 1 ...... a 
l~Y.~~:.8..1. ......... El 
1~!::!~~:.':':: ........ El 
1~¥.5.~:.a.: ...... . El 
1.~Y..si.~ll~ ... .... EJ 
[P.l-l!~.~.: .. ~ ......... El 
[P.~!.~.~: .. ~ ......... El 
[P.~!-~.~: .. ~ ......... EJ 
1~Y.5.~:·i. .. .... a 
l~Y.5.~:.8.1. ......... El 
1~!5.~:.':':: ........ El 
l_P],i¥.5.~.c.8.1.... El 
l~l-lY!;i.~ .. l .. .... a 
[P.l-l!>;.~: .. ~ ......... El 
fr~Y.-~.~.: .. ~ ......... El 
(~!.s.~:ll~ ......... EJ 
1~],iY.5.~:.8.1 .. ..... El 
'~-~-~~~~---~~~-~a 

$ #'•••••••••••••••••••••••••••••••••••••••••••••••••••••••••H•••••oououooo••••••••••••••••••••H•••••••••••••H•-•••••••••••ouooo•o••••••••••-••••••oono•••••••••••• 

~ l f Appl.y I[ Restore Val.;..e JI Cancel H Heip l ,. 

Figure 2-1 Memory configuration dialog box 

2-30 MWX-ICE User's Manual (Windows) 



Table 2-1 Address matrix of memory qualifiers 

Label Sets Default Addressing Mode for 

Access breakpoints set using ha, hr, bw. • ACCESS 

Entries using the asm line assembler. ASM 

AUX SIT loop location. 

CODE Downloads (load, dnl) and code display refreshes. 

COMPl First argument of compare. 

COMPl Second argument of compare. 

COPYFROM Source of copy action. 

COPYTO Destination of copy action. 

DIAG Memory tested by diagnostic routines (requires physical) and ere. 

EVENT Any event system address entries. 

EXEC Execution breakpoints set with bi, high-level step and Break!. 

FILL Memory to be modified by fill. 

READ Reads using dump, upl, disassemble. 

SEARCH Memory locations specified in search. 

STACK Stack display and refresh. 

TEST Memory accessed by test. 

WRITE Writes using setmem. 

XLATE Address translations using xlate. 

Super TAP 8XX 2-31 



2-32 

Mapping logically addressed memory in overlay 
When you map a logically addressed range to overlay memory, 
the following occurs: 

i:i The system translates the start addresses to a physical 
address. 

i:i Using the length specified in the map range, it maps overlay 
memory as a continuous block. 

For this reason, the logical and physical memory must map to 
contiguous physical addresses. Chapter 3 explains overlay use 
and describes procedures and limitations when using logical 
addressing. Overlay addresses are always displayed as 
physical values. 

Copying using logical addresses 
One special consideration applies when you request a copy 
within target or overlay memory, rather than between target 
and overlay. 

The copy function of the debugger relies on the assumption that 
source and destination logical memory translates to contiguous 
blocks of physical memory. In the unlikely event that this is not 
the case, there is a chance that the source range can be 
overwritten before all necessary reads are performed. 

Once it translates the source and destination start addresses, 
the debugger requests new translations during the copy only at 
large boundaries. If the underlying physical memory for the 
range is not contiguous, it is possible to overwrite the source 
range before it has been read, and then copy this incorrect data 
to the destination range. 

Addresses in displays 
Except for disassembled trace and any logical address showing 
in the raw trace for the Instruction Pointer, the debugger 
displays addresses in physical addressing mode, regardless of 
the addressing mode used for address entry. Consequently, you 
should understand the logical-to-physical mappings for the 
memory you are debugging. 

MWX-ICE User's Manual (Windows) 



SuperTAP SXX 

Raw trace This trace shows any logical address for the IP 
and uses physical addressing in the remaining display. This 
includes raw trace interleaved with disassembled trace. 

Overlay map The listings of mapped memory use physical 
addresses. 

Operational considerations 
If you plan to attempt workarounds for table and paging 
methods not supported during run, there are several 
considerations to bear in mind: 

IJ If during operation your code changes memory translation, 
you must structure your debugging session to deal with one 
translation table at a time. The emulator cannot 
automatically disable breakpoint, event, and other 
address-dependent configurations that would no longer 
apply when a new translation takes effect. For example, any 
overlay mapping must be adjusted and appropriate code 
loaded into memory. 

IJ If two or more logically addressed elements share the same 
physical address, there is the chance of unpredictable 
emulation behavior. The emulator converts all logical 
addressing to the corresponding physical address. The 
possibility exists that a breakpoint or event comparator 
would cause a break or other action at an unintended point 
during operation. 

2-33 

• 





I Chapter3 

Using Overlay Memory 
During development and integration, you often need stable 
memory to replace or extend actual target memory. The 
optional overlay features of the SuperTAP emulation system 
provide these capabilities. 

This chapter provides information about overlay procedures, 
use, and related topics. 

Contents Page 

How overlay is used in debugging 3-2 

Features and important characteristics of overlay 3-3 

How memory mapping is handled 3-6 

Basic procedures for mapping overlay 3-7 

Mapping physical memory 3-10 

Mapping overlay using logical addresses 3-12 

W amings and error messages 3-14 

Loading code and copying memory 3-15 

Controlling the source of accesses 3-18 

Additional information 3-19 

Using Help 
The information presented here supplements the related 
overlay topics found in the Help. You may wish to have Help 
running while you read this chapter. Where applicable, the 
relevant keyword search term is included in a marginal 
callout !Search I . 

3-1 



How overlay is used in debugging 

Typical process 

3-2 

Overlay has four typical purposes: 

o Provide a substitute for target memory during early 
integration when target memory is not operational. 

o Offer a stable substitute into which to load code and test 
against target operation. 

o Replace the ROM on the target, enabling you to patch on the 
fly without recompiling, rather than continually burning 
newPROMs. 

o Extend target memory temporarily to hold test routines and 
code expansion beyond ROM and RAM limits. 

1. Set memory configuration or use the INITREGS feature. 

2. Map the memory regions to overlay. 

3. Copy the PROM contents or load code into overlay. 

4. Run to a breakpoint or event condition. 

5. Examine trace. 

6. Use the line assembler to patch and retest without 
recompiling, even in ROM space. 

7. Upload patched object code to host for re-use. 

MWX-ICE User's Manual (Windows) 



Features and important characteristics of overlay 

SuperTAP 8XX 

Overlay memory is physical memory provided by the emulation 
system. It can be mapped into the target system's memory 
space and programmed to respond as if it were target system 
memory. This means you can replace high-speed target 
memory subsystems with comparable overlay during 
debugging. 

The custom features provided by the SuperTAP emulator are 
summarized below. 

Overlay options 
The SuperTAP can be equipped with up to 8 MB of overlay 
memory. Overlay memory is available in 1 MB, 4 MB, or 8 MB 
modules. Contact Applied Microsystems if you want to increase 
the amount of overlay in your system. 

Wait states 
Overlay responds to accesses with the following speed 
characteristics: 

o 0 wait states for 25 MHz bus speeds 
o 1 wait state 50 Mhz bus speeds. 

Overlay functions correctly in regions configured with 32-, 16-, 
or 8-bit port sizes. 

Termination 
When a memory bank is configured for external TA generation, 
(the SETA bit in the chip-select option register), the target 
must assert the TA signal even if the memory bank has been 
mapped to overlay memory. In the case of isolation mode 
(isomode on), the SuperTAP overlay system will supply one 
wait state TA 

3-3 



(Search I Keywords: 
MAP 

128K minimum granularity 
Overlay memory can be mapped anywhere in logical or 
physical memory in ranges as small as 128K The mapper 
automatically adjusts non-conforming ranges to match grain 
requirements and aligns ranges on 128K boundaries. This is 
explained in "How memory mapping is handled" on page 3-6. 

Qualification by access type 
Each mapped range can be qualified as read-write, read-only, 
write-only, or restored to target memory. 

Address translation 
Overlay can be mapped using physical or logical code or logical 
data addresses. The mapper performs a logical-to-physical 
translation and uses physical addresses for all subsequent 
operation. Listings of overlay mappings are presented as 
physical ranges. · 

User Programmable Machine (UPM) A and B 
Because of the complexity of address multiplexing, the 
SuperTAP is not able to map overlay memory to target memory 
that uses the UPM. The UPM is typically used to access target 
DRAM. If you want to map overlay memory to those regions 
where target DRAM is not functioning, you can reconfigure the 
UPM regions to use the general purpose chip-select machine 
(GPCM) instead. The GPCM is normally designed to be used 
with EPROM, ROM, and SRAM type devices. But you can 
switch the UPM regions to GPCM by changing the machine 
select (MS) bits in the chip-select BRx registers. 

Parity 
Overlay memory does not support parity. 

External bus master 
Overlay supports accesses by both synchronous and 
asynchronous external bus masters. When you want an 
external bus master to access overlay you must set two overlay 
options that control whether reads or writes go to target as well 
as overlay. The commands are ovwritethru on and 

MWX-ICE User's Manual (Windows) 



Target processor 

MPC8XX 

ISearchl Keywords: 
Map list 
Include 

SuperTAP 8XX 

ovreadthru on. To prevent contention, you must also make 
sure that any target ROM device that is overlayed is 
deactivated. 

Super TAP 
Overlay 

MPC8XX 

Deactivate 
target ROM 

External 
bus master 

Figure 3-1 Overlay memory configured for external bus master 

Saving and restoring overlay maps 
To enable recreation of debugging conditions, the maplist 
command saves current mappings as a command file that can 
be restored using include. 

Note that overlay memory retains its content even if target 
power is lost. 

3-5 

• 



How memory mapping is handled 

3-6 

This section summarizes the rules governing overlay function 
and use. To make effective use of overlay you should 
understand these basic principles. 

If you want a more extensive explanation, these principles are 
fully illustrated in the three extended examples later in this 
chapter: 

a Mapping physical memory 
a Mapping logical memory 

Mapping overlay is the process ofrequesting an overlay 
location for memory address ranges and their attributes. You 
use the map command to make these assignments, and 
mapclr and maplist to clear or display the current mappings. 

Page allocation is the process the overlay system goes through 
to assign overlay mapping requests to one of the eight pages 
and maintain the integrity of memory accesses. Page allocation 
is determined by the physical address range of the map 
request. 

Page addressing 
Page starting and ending addresses are automatically aligned 
to boundaries corresponding to the page size. For example, the 
following command: 

map Ox30000 .. Ox31fff 

will cause the overlay mapper to display a warning message, 
and then allocate a page of overlay to the 128K range 
Ox20000 .. Ox3ffti. 

maplist 
MAP Ox00020000 .. 0x0003FFFF=RW 

MWX-ICE User's Manual (Windows) 



Each mapping that falls outside a previously established range 
causes allocation of new overlay pages until the overlay 
resources are exhausted. 

This processes is illustrated in detail in "Adding ranges to 
overlay" on page 3-10. 

Characterizing additional attributes 
Iflogical addressing is used, the logical range is converted to a 
physical range using the translation tables present in target or 
overlay memory. Full procedures and an illustration of 
mapping to logical addresses are provided in "Mapping overlay 
using logical addresses" on page 3-12. 

Each individual range can be qualified to respond as read-write 
(rw), read-only (ro), or returned to target (target). Different II 
access types can be located in the same bank of overlay. 

Overlay is designed to block target writes to read-only overlay 
during run. It does not halt emulation. To break on such illegal 
writes, set an access breakpoint over the range in question. 

Basic procedures for mapping overlay 
This section summarizes the procedures for typical overlay use. 
Extended examples follow and highlight special considerations 
and operational characteristics. Command descriptions and 
many of the procedures are also provided in Help. 

Qualifying mappings for addressing mode 
lSearchl Keywords: The debugger defaults to physical addressing mode. Use the 

Space mode option of the map command to override the defaults for 
Address a single mapping. 

SuperTAP BXX 3-7 



This procedure is covered in detail in the extended examples of 
mapping with logical addresses. 

Adding an overlay mapping 
Overlay mappings are entered from the command line using 
the map command line to enter either logical or physical 
address ranges: 

~ • Enter the address range and attributes of the mapping: 
~Keywords: 

MAP map start .. end I start .. +length [,.mode] 
Addl'&ssing mode [=type] 
0Ver1ay access 
types For full procedures and command line options, see Help. 

Modifying an existing overlay mapping 
Overlay mappings are modified by re-mapping the existing 
range with its new attributes. In all cases, the new mapping 
replaces the previous one. If they overlap, the portion of overlap 
takes on the new attributes, but the overlay contents are 
maintained 

Restoring memory to target 
Convert overlay mappings to target memory using the map 
command with the =target option. 

> To restore memory to target 

1. Use maplist to select the mapping to restore to target. 

2. On the command line, enter the listed range or base plus 
length, and assign it to target: 

map {start .. +length I start .. end}=target 

3. Click Enter Command, or press <Return>. 

MMC-ICE User's Manual (Windows) 



(Search! Keywords: 
MAP 
MA PC LR 
Target memory 

If you use logical addressing, you can also enter the original 
logical range. The mapper will translate it to physical and 
restore control of the appropriate physical range to target. 

Displaying/saving/restoring memory map 

!Search I Keywords: 
MAPLIST 
Include 

(Search I Keywords: 
MAPCLR 

SuperT AP SXX 

Use the maplist command to display the current mapped 
memory or to save that listing for future use. 

>- To display the current memory mappings 

• From the Command window, type maplist 

The current mappings display in the Command window. All • 
mappings originally entered as logical ranges are displayed as 
their physical equivalents. 

>- To save current mappings to a file 

• Type maplist filename 

If you plan to use the file as a command file, give it an .inc 
extension. The current listing of physical ranges is saved to the 
named file in the current working directory. Provide a full path 
if you want to save it elsewhere. 

>- To restore a previously saved map file 

• Use the include command to reload filename.inc 

-or-

• At MWX-ICE startup, use the include option in the 
MWX-ICE Startup Options Editor to load filename.inc. 

This restores the physical memory map. 

Clearing the overlay memory map 
Use the mapclr command to clear all memory mappings and 
return memory control to the target. 

3-9 



Mapping physical memory 

3-10 

Many target designs employ physical addressing, rather than 
logical. This section illustrates how overlay is enabled for such 
a system and how memory resources are allocated. 

Scenario 
An example region of target memory has a physical base 
address of0x8000 and a length of32K(Ox8000). Of the several 
modules located in this region, the module you are interested 
in starts at Ox90c4 and ends at Ox9fdf. 

Procedures 
• Map the range: 

map Ox90c4 .. Ox9fdf 

The following occurs when you enter this mapping in a 1 MB 
overlay system: 

a An entire 128K bank of overlay is allocated, starting at OxO. 
a Because neither the start nor the endpoint falls on a 128K 

boundary, the overlay mapper adjusts the range to 
OxOOOOOOOO .. OxOOOlFFFF and warns that it has done so. 
Problem found while configuring overlay memory. 
The overlay Map request starting and/or ending ad
dresses were adjusted to a 128K byte boundary. over
lay can only be mapped to 128K byte regions. Display 
current overlay mapping to see the adjustments made. 

a The 128K range is enabled to respond to read-write accesses 
(the default). 

Adding ranges to overlay 
Although one 128K bank of overlay is allocated, you still have 
896K of overlay memory available. You can add additional 
address ranges to overlay. Both read-only, write-only, and 
read-write mappings can co-exist within overlay memory. 

MWX-ICE User's Manual (Windows) 



Super TAP 8XX 

For example, if you wanted to map over target ROM, located at 
Ox100000 .. 0x00103CDO, you could add the following command: 

map OxlOOOOO .. +Oxlffff=ro 

The new mapping would be adjusted for boundaries, and 
enabled adjacent to the initial one in the same bank. A maplist 
display of mappings would show: 

maplist 
MAP OxOOOOOOOO .. OxOOOlFFFF=RW 
MAP Ox00100000 .. 0x0011FFFF=RO 

Overlapping requests 
The mapper constantly re-evaluates mapping requests, 
consolidates overlapping or adjacent mappings. and adjusts • 
boundaries. When a new mapping overlaps an existing range, 
the portion within the overlap takes on the attributes of the 
new mappings. 

For example, a routine might be located from Ox10000 to Ox2ffff 
in read-only memory. If you add this new mapping 
(map Ox10000 •. 0x2ffff=ro) to the ones above, the maplist 
shows the following: 

maplist 
MAP Ox00000000 .. 0x0003FFFF=RO 
MAP Ox00100000 .. 0x0017FFFF=RO 

Because the new overlay segment overlaps an existing one, and 
also cuts across the 128K minimum map size, two 128K 
segments are mapped as read-only (Ox0 .. 0x0003FFFF). 

Now, if you map the lowest 128K as read-write memory, notice 
how the attributes change again. 

map OxO .. Oxlffff=rw 

maplist 
MAP OxOOOOOOOO .. OxOOOlFFFF=RW 
MAP Ox00020000 .. 0x0003FFFF=RO 
MAP Ox00100000 .. 0x0017FFFF=RO 

3-11 



Mapping overlay using logical addresses 
This section explains and illustrates how overlay is allocated 
and enabled for a target system that use the memory 
management unit and logical addressing of the processor. 

For a system-level discussion oflogical addressing and MMU 
support, see "Support for the :.MMU and logical addressing' on 
page 2-28. Relevant portions of that chapter are expanded here 
for their application to overlay use. 

Required target configuration 

3-12 

Before requesting overlay mapping using logical addressing, 
the target must meet certain requirements: 

Cl Valid translation tables must be in memory before the 
instruction or data MMU is enabled 

Cl The MMU must be initialized. 

Valid translation tables 
Tables must be in memory before mapping can begin. 

Initialized MMU 
During mapping, the memory management unit must be 
initialized and translation tables must be loaded into memory 
before the mapper can perform logical-to-physical translation 
and enable regions of physical memory. The MSRm or MSRnR 
bits must be configured to enable MMU translation. 

MWX-ICE User's Manual (Windows) 



Note ~ 

Memory map 
The mapper uses the following method during translation: 

I 

Q The l\fMU is queried for the physical location of the logical 
starting address. 

Q The length of the mapping is inferred from the logical range 
entered. 

Q The request is adjusted to meet overlay granularity and 
alignment requirements. 

Q A continuous block of overlay is enabled beginning at the 
physical starting address and extending for the length of the 
range. 

If you don't know whether logical ranges translate to 
contiguous physical ones, or iflogical to physical translations 
are readily available, use physical ranges when mapping 
overlay. 

Understanding and using the maplist displays 

SuperT AP 8.XX 

The maplist displays the physical ranges created when the 
mapper translates the logical input. Consequently, you should 
understand the logical-to-physical mappings for the memory 
you are overlaying. 

To keep track of how the mapper translates and adjusts the 
logical ranges to fit overlay granularity requirements, you can 
activate the log utility and capture the maplist reports as you 
make each entry: 

1. Tum on the log utility, configured to log output to a file: 

log /a on="ovlrnap" 

The /a filter appends successive output to the file. 

2. Enter a map request. 

3. Enter maplist. 

3-13 



4. Repeat 2 and 3 until all memory is mapped. 

5. Open a new shell and display the file, or print it. 

Like maplist files, log files can be edited and used as 
command files to re-map overlay. 

Warnings and error messages 

3-14 

The overlay mapper automatically adjusts the start/end points 
of each map request to force them onto 256-byte boundaries 
and to adjust the bank's start/end points to make most efficient 
use of overlay resources. 

The mapper prompts you when a mapping cannot be completed 
as requested and warns you when it makes changes to the map 
request you have entered: 

"Irworrect syntax . • ./Symbol not found": You have 
mis-keyed the entry or used illegal syntax. 

"Overlay request endpoints adjusted": Each overlay 
mapping is adjusted to begin and end on a 128K boundary (OxO 
and Oxl:ffff) and to span an appropriate multiple of 128K 
ranges. 

MWX-ICE User's Manual (Windows) 



Loading code and copying memory 
The map command simply defines where memory accesses 
take place (target is the default) and assigns access type 
attributes to the memory region. You use load or dnl to load 
code into target or overlay memory, and upl to save the 
contents of target or overlay to a named file on the host. The 
overlay and copy commands enable you to copy the contents 
of memory between target and overlay. 

Downloading code in ELF/DWARF format 

!Search I Keywords: 
LOAD 
File fonnat 

If your object code is in ELF/DWARF format, choose Load from 
the File menu, or use the load command with the Command 
window to download to target and overlay: • 

load demo\cdemon.elf 

Depending on any overlay mapped, this routes code to 
appropriate overlay and target memory locations. Filters are 
provided to select whether to load symbols, set the program 
counter, append to exiting code, etc. 

Downloading other formats 

jSearchl Keywords: 

DNL 
Filefonnat 
DNLFMT 

SuperT AP 8XX 

If code is not in ELF/DWARF format, use the dnl command to 
download. You can use the dnl command to download a hex file 
from the host to the target in the format specified by the 
dnlfmt command. Before downloading, memory must be 
qualified using the code field of the address and space 
commands. 

For example, to download an S-record :file named main.srec 
using physical addressing: 

address code physical 
dnlfmt srec 
dnl "main. srec" 

3-15 



Note ~ 

Stopping a download 

When dnl and upl are used, the file being transferred acquires 
the object format specified by dnlfmt or uplfmt 
CS-Record is the default). Debugging with symbols is supported 
only for ELF/DWARF format. 

If for any reason you decide to stop a download while it is in 
progress, click the Stop button. 

Copying memory contents between target and overlay 

!Search! Keywords: 

OVERLAY 
Command 
Copying memory 
COPYTO, 

The contents of overlay and target memory may be copied in 
either direction to identical or different memory locations. The 
following procedures are most useful when you need to copy the 
contents of your target ROM or PROM into overlay memory for 
patching, to avoid having to burn a new ROM. 

Specifying source and destination 
Two settings in the overlay matrix, copyfrom and copyto, 
specify source and destination, respectively. The on option 
chooses overlay; off selects target. 

>- To prepare to copy from target to overlay 

3-16 

1. Select target as the copyfrom source: 

overlay copyfrom off 

2. Select overlay as the copyto destination: 

overlay copyto on 

MWX-ICE User's Manual (Windows) 



/ 

Performing the Copy operation 
If you want point-and-click access to the MWX-ICE copy 
functions, use the Copy page of the Memory Commands 
notebook.. Otherwise use the copy command from the 
command line of the command window. 

map OxO .. Oxlffff=ro Enables overlay memory to 
respond to the specified range as 
read-only memory. 

overlay copyfrom off Specifies target as source of copy. 

over lay copyto on Specifies overlay as destination of 
copy. 

copy OxO .. Oxlfff,OxO Specifies target range to copy to 
overlay and overlay starting • 
address. 

Saving overlay to a file 

!Search! Keywords: 
UPL 
UPLFMT 
Memory access 
qualification 

SuperTAP SXX 

You can save a portion or all overlay or target memory to a 
nained hex file using the upl command. The format of the files 
depends on the setting of the uplfmt command. Symbols are 
not supported. 

Before uploading the file, set the memory characteristics using 
the address and overlay commands. Overlay memory does 
not qualify accesses for size. 

For example, suppose the contents of overlay memory from 
Ox .. Oxffff have the address mode, physical. Enter the following: 

overlay read on 
address read physical 
upl •myfile.hex•, OxO .. Oxffff 

3-17 



Controlling the source of accesses 

3-18 

Norm.allywhen overlay is mapped, you want all accesses to the 
mapped region to occur in overlay. To refine and occasionally 
override the memory mappings, use the overlay command. 
For the 14 types of access listed, you can toggle the source of 
access individually from overlay to target. 

ASM Destination of line assembly using ASM 
AUX Location of SIT mode 
CODE Code window display and accesses using LOAD 

and DNL 
COMPl Source of first argument of COMPARE 
COMP2 Source of second argument of COMPARE 
COPYFROMSource memory for a COPY 
COPYTO Destination memory for a COPY 
DIAG Memory for use with DIAG 
FILL Destination of FILL 
READ Generic reads using DUMP, CRC, UPL, DISASSEMBLE 
SEARCH Memory for use with SEARCH 
STACK Memory accesses for the stack display 
TEST Memory for use with TEST 
WRITE Memory for generic writes (SETMEM) 

The default for each type is overlay (on), unless changed from 
the command line or in the Memory dialog of the Emulator 
Configuration window. If the debugger find no overlay mapped 
for the type of access, it reverts to target. However, if a type is 
set to target (off), the debugger does not access overlay, even if 
it is mapped. 

For example, if you want all diagnostics to run in target 
memory, set overlay as follows: 

overlay diag off 

MWX-ICE User's Manual (Windows) 



Additional information 

SuperTAP SXX 

Cl The tutorial in Chapter 10 offers additional practical 
examples. 

Cl Help provides detailed descriptions of all the commands 
mentioned in this chapter, as well as structured "browse 
sequences" that organize the Help topics by subject. 

3-19 





I Chapter4 

ProgrammmgFrashMemory 
This chapter describes how you can use MWX-ICE and the 
SuperTAP to program, lock, and erase the flash memory in 
your target system. 

Contents 

Overview 

How to program your flash memory 

Flash memory macros 

Page 

4-2 

4-5 

4-14 

• 

4·1 



Overview 
Flash memory is widely used in embedded system designs 
because of its non-volatility, high-performance, low-cost. 
MWX-ICE and the SuperTAP provide a fast and efficient 
means of programing and erasing flash memory devices in your 
target system. When you use the Supetl'AP, there is no need to 
use separate flash programing tools, and no need to connect 
additional hardware to your target system. You can prototype 
and debug your system design all within the MWX-ICE 
environment. 

Using special flash memory commands, you can configure, 
erase, program, and lock and unlock flash memory devices. 

To avoid inadvertently writing to flash memory, you can only 
program, erase, or lock one flash memory device at a time. If 
you are programming more than one device, you need to remove 
the existing device, before you can configure the next. 
Removing the device only disables the capability of 
programming the device. The actual device and its memory 
contents are not changed in any way. 

Example of a target system using flash 

4-2 

The example shown in Figure 4-1 shows a target system that 
uses three flash memory components. These are 512K by 8-bit 
devices. Two of the flash memory components are linked in 
parallel, and are accessed by chip select 0 (CSO), which uses a 
16-bit port. The base address is OxO. The third flash memory 
chip is located at address Ox80000000. This address is accessed 
by chip select 1 (CSl), using an 8-bit port. 

Programming the flash for this target system requires two 
separate steps. First, you configure and program the devices at 
address OxO. The two AMD29F040 memory chips are 
configured and programed together. The command to configure 
the device is amd29t'040{0x0, 16). This tells the debugger the 

MWX-ICE User's Manual (Windows) 



SuperTAP 8XX 

type of device (29f040), the base address (OxO), and the width 
for memory access (16). Next you erase the device and then 
program it by downloading code. 

Once you've programmed the flash at address OxO, you need to 
remove that device from the configuration table using the 
RemoveDevice() command. You need to remove the existing 
device, so you can configure the flash memory that starts at 
address Ox80000000. The command to configure the remaining 
flash chip is amd29f'040(0x80000000, 8). This tells the 
debugger the address of the next device, and that the access is 
now 8-bit. 

Using MWX.-ICE and the SuperTAP, you can expect to 
program a 512K flash component in less than five minutes. 

4-3 

II 



Ox80000000 

OxO 

Ox80000000 

' 
i---F_la_sh_(8_-b_it_x 2_)--1\ '•,,, 

' ' 1-------- \ '•,, 
' ' \ '•,, 

', 
' \ ',' Flash (8-bit) 

__ ,,,---·1 ', 
' \ ', 

', 
',, 

.~::::: ........ / 
512Kx8-bit 

AMD29f040 
(#3) 

8-bit width (CS1) 

OxO 

\ .•.••••••••.....•..•........ ::~~-
2 (512K x 8-bit) 

AMD29f040 

I (#1) 

AMD29f040 
(#2) 

16-bit width (CSO) 

Command: amd29f040(0x80000000, 8) Command: amd29f040(0x0, 16) 

Figure 4-1 Example showing commands to configure flash memory devices 

4-4 MWX-ICE User's Manual (Windows) 



How to program your flash memory 

Basic procedure 

SuperTAP 8XX 

Programming flash memory is easy using MWX-ICE macros 
and commands. Once you run the macros, you can program 
fl.ash using the MWX-ICE load and dnl commands. 

Using MWX-ICE and the SuperTAP to program the flash 
memory components in your target is relatively straight 
forward. The basic procedure includes the following steps: 

o Including the flash programming macros. 
o Configuring the device. 
o Erasing the contents of the component. 
o Programming the device by downloading code. 
o Locking the device to prevent accidental writes. 

These steps are described on the following pages . 

4-5 

• 



Include Flash.inc 

No 

Configure device 
specifications 

Yes Yes 

No 

i.-----1 Remove Device 

Eraseflash ~------1 Unlock device ..,. ___ _, 

Download code/data 

Lock device 

Figure 4-2 Flow chart showing MWX-ICE flash programming procedure 

Including the flash programming macros 
Before you can program, erase, or lock the flash memory in 
your target, you need to set up the programming macros. These 
macros are in a file called Flash.inc. To set up the macros, you 
must direct MWX-ICE to process the file containing the 
macros. You need to have this file included whenever you wish 
to program flash, so you may want to include as part of your 
startup configuration. 

MWX-ICE User's Manual (Windows) 



SuperTAP 8XX 

The macros are in a file called Flash.inc, which is located in the 
installdir \ amc \ st8xx directory. 

>- To setup the flash memory macros: 

1. StartMWX-ICE. 

2. From the File menu, choose Include Commands. 

3. In the Windows file browser, click the amc directory, and 
then click the st8xx directory. 

4. Select Flash.inc and click OK 

The Command window displays the macros as they are read. 
It may take awhile for the file to be processed. When the in
clude file is finished, the Command window stops scrolling. 

For information about including command files at startup, 
click Help from the Startup Options Editor. 

4-7 

• 



Configuring flash memory components 

4-8 

The first time you program flash using MWX-ICE, you need to 
configure the device specifications. MWX-ICE needs to know 
the type of device, the base address, configuration, and virtual 
width of the flash memory device. Note that you can only 
configure and program one device at a time. If you have already 
configured a flash memory component, you need to unlock it so 
you can program it again, or you need to remove it, if you want 
to program a different device. 

>- To configure the flash device 

1. Be sure to include the flash programming macros. See 
page 4-6. 

2. Specify the base address, configuration, and virtual width of 
the flash memory device, using the AMD or Intel macro 
provided for your device. 

For the list of supported components and their configuration 
commands see page 4-12. 

For example, for an Am29F040 with a base address of OxO 
and a width of 16, enter: 

Amd29f040(0x0,16) 

For some components, such as the Intel 28F200, which can 
be configured as either an 128Kx 16, or 256Kx 8 device, you 
enter the base address, and the input/output architecture (8 
or 16), as well as the width for memory access. 

Intel28f200(0x0, 16, 16) 

3. Once you've configured the device, you need to erase the 
contents: 

EraseDevice () 

MWX-ICE User's Manual (Windows} 



Once write protection to the flash device has been disabled (by 
using the Amddevice, Inteldevice, or UnlockDevice() macros, all 
writes in the device address range are programmed. To avoid 
inadvertently writing to your flash devices, be sure to disable 
flash programming by using the LockDevice() macro once 
programming is complete. 

Downloading code to flash memory 
You program the flash by downloading code to target. It may 
take several minutes to download the code to flash. Once the 
device has been configured, all writes in the address range of 
the device go to the flash component. For this reason, you need 
to lock the device when you are finished programming. 

>- To program the flash device 

1. Program memory using the load or dnl commands. 

For example, to load the Intel hex file, myfile, enter: 

dnlfmt intel 
dnl "myfile" 

Note: You may need to change to your working directory. 

2. Once you've programmed the flash, you need to disable the • 
flash-programming feature so that flash memory is not 
inadvertently programmed: 

LockDevice () 

Programming flash that has already been configured 

SuperTAP 8XX 

If you want to program flash that has already been configured, 
and you are programming the same device with the same base 
address and width, you don't have to configure it again. You 
just need to unlock it and clear the memory contents. 

4-9 



4-10 

If you have already included the flash support file and are 
programming the same device with the same base address and 
width 

> To open the device for program.ming 

1. Enable flash programming: 

UnlockDevice () 

2. Erase the device: 

EraseDevice () 

3. Program memory using the load or dnl commands. 

For example, to load the Intel hex file, myfile, enter: 

dnlfmt intel 
dnl "myfile" 

Note: You may need to change to your working directory. 

4. Once you've programmed the flash, you need to disable the 
flash-programming feature so that flash memory is not 
inadvertently programmed: 

LockDevice () 

MWX-ICE User's Manual (Windows) 



Programming another flash component 
If you have already included the flash support file and are 
programming a different device or the same device type with a 
different base address or width, you first need to remove the 
existing configuration. 

>- To remove a device 

• Use the following command. 
RemoveDevice () 

Once you've removed the existing device specification, you can 
configure another one, see 

o "Configuring flash memory components" on page 4-8. 

o "Downloading code to flash memory" on page 4-9. 

Flash memory support 

SuperTAP SXX 

The following flash memory devices can be programmed using 
Supetl'AP and MWX-ICE. The following tables show the name 
of the component, and the syntax of the command used to 
specify the flash memory configuration. 

4-11 



AMO flash memory components 

Component 

29£010 

29£016 

29£040 

29£080 

29f100 

29£200 

29f400 

29£800 

Intel flash memory components 

4-12 

Component 

28£001 

28£002 

28£004 

28f008SA 

28f400 

28f200 

28f016SA 

28f032SA 

Configuration command 

Am.d29f010(base_address, w'idth) 

Am.d29f016(base_address, width) 

Am.d29f040(base_address, w'idth) 

Am.d29f080(base_address, w'idth) 

Am.d29fl.OO(base_address, by8or16, width) 

Am.d29f200(base_address, by8or16, width) 

Am.d29f400(base_address, by8or16, width) 

Am.d29f800(base_address, by8or16, width) 

Configuration command 

Intel28f001(base_address, w'idth) 

lntel28f002(base_address, w'idth) 

Intel28f004(base_address, w'idth) 

Intel28f008SA(base_address, width) 

Intel28f400(base_address, by8or16, width) 

Intel28f200(base_address, by8or16, width) 

Intel28f016SA(base_address, by8or16, width) 

Intel28f032SA(base_address, by8or16, width) 

MWX-ICE User's Manual (Windows) 



SuperTAP SXX 

Configuration command syntax 

Argument 

base_address 

by8or16 

width 

Description 

The address where the flash 
component is located. The address 
must be expressed in hexadecimal. 

Used for those components that 
provide user selectable 8- or 16-bit 
operation. 
Use: For: 
8 x8 devices. 
16 x16 devices. 

The width of the memory access. 
For example, four x8 devices can 
be linked in parallel to create a 
region of 32-bit memory. This 
region could then be accessed by a 
chip-select using a 32-bit port. 
Use: For: 
8 8-bit width. 
16 16-bit width. 
32 32-bit width. 

4-13 

• 



Flash memory macros 

Macro 

The macros for programming flash memory are listed in the 
following table. The macros are also described in Help. Just 
like MWX-ICE commands, you invoke the macros in the 
Command window. Note, however, that macros behave a little 
differently from MWX-ICE commands: 

o Macros are case-sensitive. 
o You must type the opening and closing parentheses () even 

if the macro takes no arguments. 
o The Flash programming macros are only available if you've 

included the Flash.inc file. 

Description 

Am.ddevice(base_addr, width) Specifies the base address and width of flash 
memory to be programmed. 

Am.ddevice(base_addr, by8or16, width) 

lnteldevice(base_addr, width) Specifies the base address, configuration, and 
width of flash memory to be programmed. 

lnteldevice(base_addr, by8or16, width) 

EraseDevice() 

LockDevice() 

RemoveDevice() 

UnlockDevice() 

4-14 

Macro names 

Erases the device specified by Am.ddevice or 
Inteldevice. 

Disables flash programming. 

Removes existing flash device specification, 
allowing new devices to be specified. 

Enables flash programming. 

If you want to rename the macros, edit the Flash.inc file, after 
first making a backup copy. 

Note: The emulator variables in the Flash.inc file are intended 
to be used only by the macros. 

MWX-ICE User's Manual (Windows) 



I Chapters 

Tracing Program Execution 

Nole ~ 

Using the trace features of MWX-ICE, you can capture and 
record, in real time, the execution history of the processor as 
SuperTAP executes the target program. Using trace history, 
you can verify the correct performance of the software and 
hardware, and find errors that may occur in the program's 
execution. 

Contents 

What is trace? 

How you can use trace 

Preparing to capture trace 

Using the Emulator Trace window 

Using the Command window trace display 

Notes on using trace 

Page 

5-2 

5-3 

5-4 

5-14 

5-21 

5-30 

All of the commands mentioned in this chapter are fully 
explained in the command reference provided in Help . 

5-1 

• 



What is trace? 

5-2 

The SuperTAP emulator uses a sophisticated system to record 
the bus activity and execution history of the target application 
in realtime. This information is stored in the emulator's trace 
buffer. Trace accumulates on every clock cycle and is pipelined 
to qualify cycles for retention and to synchronize timing with 
the emulator's event system. 

The emulator's trace buffer can store approximately 32,000 
frames of trace. A trace frame is like a frame from a motion 
picture film: the frame shows the state of the processor activity 
at each clock cycle. When you view the trace frames together, 
you get a complete history of program execution. 

Each trace frame contains 128 bits of information. Using 
emulator trace capture variables and the event system, you can 
selectively filter the kinds of processor activity you wish to 
capture. Once trace has been captured, you can use trace 
display variables to view the contents of the trace buffer in 
several different ways. You can view trace in either the 
Emulator Trace window or in the Command window. 

MWX-ICE User's Manual (Windows) 



How you can use trace 

SuperTAP axx 

The tutorial in Chapter 10 includes several expanded examples 
of trace capture and display. You may wish to work through 
one or all of them to familiarize yourself with the features at 
your disposal. The following section describes some of the more 
typical uses of the emulator's trace features. 

Qualify trace using the event system 
Trace can be captured so that only the activity of interest is 
retained. This qualified trace capture maximizes the available 
trace buffer and saves you time. 

Execute and trace power-up or reset sequences 
You can a execute a target power-up or reset sequence while 
collecting trace history. With this you can more easily debug 
startup code. 

View trace while running 
The SupetrAP emulator allows you to view and upload trace 
history without stopping or even pausing emulation. This 
means you can view your program's activity without disturbing 
its real-time operation. 

Analyze timing 
Timestamp information provides a quick, accurate way to 
measure time spent during specified portions of target 
execution. 

Save trace history for analysis 
You can easily store trace history in a file. You can specify a 
journal or log file in an MWX-ICE notebook, then simply 
display trace. You can even log trace to a file without stopping 
emulation. After trace is saved, you can edit the file to add 
comments for future reference. For example, comments may be • 
added to aid in documenting failure conditions. 

You can use either the log or journal commands or the guided 
configuration provided by the Debugger Files Notebook. 

5.3 



View trace while running 
SuperT AP allows you to view and upload trace history without 
stopping or even pausing emulation. This means you can view 
your program's activity without disturbing its real-time 
operation. 

Preparing to capture trace 

5-4 

When enabled, the trace system uses the captured raw bus or 
clock cycles as the basis for trace display. Several configuration 
variables are provided to specify when to enable and disable 
trace and which cycles to collect in the trace buffer. 

The following sections provide standard switch settings for 
each of the most common types of trace capture. Settings are 
expressed in a manner suitable for use as command files. A 
command file is simply a file containing debugger commands 
that will be executed when the file is loaded using the 
debugger's include command. Such files can be very useful in 
eliminating frequently duplicated keystrokes and actions. 

The settings shown are by no means the only possible 
combinations. In many cases, these basic settings can be 
combined; for example, those for trace disassembly and 
continuous tracing during run. 

Each switch is a separate command. See the Help for a 
complete description of each command syntax, options, and 
limitations. 

MWX-ICE User's Manual (Windows} 



Starting with an empty trace buffer 
The contents of the trace buffer are retained between sessions 
unless the emulator is powered down or reset. In a multi-user 
environment or when starting a new debugging session, always 
clear the trace buffer before beginning to capture new trace. In 
addition, a change to trqual (see below) alters the trace 
capture criteria. Anytime you change trqual, you should clear 
trace before proceeding. 

>- To clear the trace 

• Switch to the Command window. In the Enter Command 
box, type trclr and click Enter Command. 

---Or-

Switch to the Emulator Trace window. From the Actions 
menu, choose Clear Trace. 

Setting the trace capture variables 

fSearchl Keywords: 
TR SYS 
TRACE 
TRQUAL 
SIGA_MUX 
SIGB_MUX 
TIMCLK 
TRINIT 
TRRUNCLR 
TRCEXT 
PPT 

SuperTAP SXX 

Ten trace variables govern whether and how trace is captured. 
They must be set before you begin.You can set these variables 
in the Trace configuration dialog box or from the Command 
window. 

To open the Trace dialog box 

1. From the Displays window, choose Emulator Configuration. 

2. In the Emulator Configuration window, click Trace. 

Because the Supetl'AP multiplexes some signals to the event 
and trace systems, you need to select which of these signals to 
record in trace. You can open the Event configuration dialog 
box, or use the siga_mux and sigb_mux commands to select 
the signals. 

5-5 

• 



Trace Capture Options 
Set these before running 
code. 

Trace Display Options 
These options control 
the display of trace in 
the Emulator Trace 
Window and in the 
Command window. 

Trace Display Options 
These options control 
the display of trace in 
the Command window 
only. 

5-6 

ii Tia~- ---------------------- -----------Ef 

------------ COLLICTIOR ------------

Syse.a ( TltSYS) : 

Collection (TRACI): 

Collec:ei.cm State at :Run (T:D.IJl"IT): 

Collection Qualification (TAQUAL): 

Tlld: st~ clock eick (TJJICLK) : 

ln.ernal trace cycles CTllCIXT): 

Fraaes in Buffer (TDU!llS): 

------------ DISPLAY ------------

l-i.d3 
1-1ed::J 
IR.aain in ew:ru:Lt seat• 3 
l.1.c:CUllLU.late trace 3 

ICycl.es Reeded for Disass..m1y0'3 

j»isebled0'3 

140nS13 
l-l•d3 
r-

Displ.ay Specified Dae.a (l>RTDATA) : l.Byt.es Used ::J 
:Displ.ay SpeciU.ed Pi.e1ds (DllTrtn.L): llll :U.el.ds 

Display of branch 1.be.ls in disasseabled trace CDXLABILS): Jlnabled :::J 
------ COllllUll> WDl])OV OUTPUT CORTJl.OL ------

Display !lode (TltDISP) : 

Inter.leav. ».av in Di.sass.ably CDXIRSIRT): 

T:Ulestaap Base J'rm (?RB.I.SI): 

Hov Tiaeseaaps are Displayed CTRST.IJ!P): 

Figure 5-1 The Trace dialog box. 

> To set trace options 

• In the Trace dialog box, select the settings for each option, 
then click the Apply button. 

You can leave the Trace dialog box open while you create 
your event system statements. 

-or-

• From the Command window, type the name of the command 
and press return. 

The following tables lists the trace capture commands. 

MWX-ICE User's Manual (Windows) 



Command Description 

trsys Enables the trace subsystem. It should be on 
at all times. 

trace Enables trace capture. It should be on unless 
you are using the event system's trace control 
actions to qualify trace. 

trinit Selects the initial state of trace capture at 
run. It should be on unless you are using the 
event system's trace control actions to qualify 
trace. 

trrunclr Clears (on) or appends (off) trace to the 
current trace buffer at each run. 

trqual Determines whether bus or clock cycles-or 
only enough cycles for disassembly-are 
captured. For disassembly, trqual must be 
set to dx:qual. 
You should always clear the trace buffer after 
changing the trqual value. 

siga_mux Selects which multiplexed signals to record 
in trace (irq[O, 1, 7] or lsa[O, 1, 7]). 

sigb_mux Selects which multiplexed signals to record 
in trace (irq[2:6], lsa[2:6], wp, pcmcia, dp, 
rsv). 

trcext Enables capture of external bus cycles. 

ppt Enables capture of peeks and pokes during 
pause. Typically left off. Peek/poke cycles are 
not shown in disassembled trace . 

timclk. Selects timestamp clock resolution (40ns, • 200ns, lus, lOus, lOOus, lms,lOms,or 
lOOms). 

SuperTAP 8XX 5-7 



!search I Keywords: 
Raw trace 

f Search I Keywords: 
Trace clearing 

5-8 

See "Capturing trace suitable for disassembly" on page 5-10 for 
additional variables that must be set for trace disassembly. 
Each of these variables is described in detail in Help. 

Capturing continuous raw trace during run 
The most common configuration for trace capture is to capture 
enough cycles for trace disassembly at all times during run. 
This way, you can look at raw trace as well as disasssembled 
trace. As the trace buffer becomes full, newly captured trace 
frames overwrite the oldest frames. At each pause to run 
transition, new trace is appended to the trace buffer. 

Set 
trsys on 

trace on 

trinit on 

trqual dxqual 

trrunclr off 

To do this ... 

Turn trace system on. 

Turn trace capture on. 

Select initial trace state at run. 

Capture enough cycles for disassembly. 

Append to buffer at return to run. 

You may want to toggle trqual to clock to capture a frame of 
trace for each processor clock cycle. 

Clearing raw trace at each return to run 
If you want to capture raw trace and start fresh at each return 
to run mode, use the trrunclr switch. You can also clear trace 
manually during drun or pause mode using trclr. 

Set 
trsys on 

trace on 

trinit on 

trqual dxqual 

trrunclr on 

To do this .•• 

Tum trace system on. 

Tum trace capture on. 

Select initial trace state at run. 

Capture enough cycles for disassembly. 

Clear buffer at return to run. 

MWX-ICE User's Manual (Windows) 



I Search I Keywords: 
Trace control 

!Search I Keywords: 
Tracing peeks/ 
pokes 

SuperTAP SXX 

Stopping trace when the trace buffer is full 
If you want to prevent overwriting trace, configure the switches 
to turn off trace when the buffer isfull. This setup requires that 
you save or clear trace at each pause, and restore the trace 
switch to its on setting. 

Set To do this ... 

trsys on Turn trace system on. 

trace on Turn trace capture on. 

trinit current Use previous state at return to run. 

trqual dxqual Capture enough cycles for disassembly. 

trrunclr off Clear buffer at return to run. 

when tr full then Turn off trace when buffer is full. 
troff 

Options include adding a break action to troff so that 
emulation stops when the buffer is full. If you know that you 
will preserve any needed trace at each pause, you might change 
trinit and trrunclr to on. This empties the trace buffer and 
turns on trace each time the emulator returns to run. 

Capturing peek/poke activity 
Peeks and pokes are reads and writes that you or the emulator 
performs in memory during pause or emulation. 

Set 

trsys on 

trace on 

trinit on 

trqual bus 

trrunclr off 

ppt on 

To do this ... 

Turn trace system on. 

Turn trace capture on. 

Select initial trace state at run. 

Capture bus cycles. When you use 
dxqual, only non-peek/poke trace will 
is disassembled. 

Clear buffer at return to run. 

Include peek/poke activity. 

5-9 

• 



!Search I Keywords: 
Trace 
qualification 

!Search! Keywords: 

5-10 

Disassembly 
setup 

Qualifying trace using the event system 
Certainly the most efficient use of trace is to qualify it using the 
event system. This ensures that only the activity associated 
with specified events is preserved. 

Set 
trsys on 

trace off 

trinit current 

trqual bus 

trrunclr off 

when add==addr 
then tron 

when add==addr 
then troff 

when event 
then trone 

To do this ... 

Tum trace system on. 

Tum trace capture off. 

Select initial trace state at run. 

Capture bus cycles. Use dxqual if 
trace will be disassembled. 

Clear buffer at return to run. 

Tum on trace with selected event. 

Tum off trace with selected event. 

--or-

Capture single cycle of interest. 

If you plan to disassemble trace qualified by the event system, 
use the settings shown below for disassembly. Combine the 
trace control event statements with the trace system control 
settings. 

Capturing trace suitable for disassembly 
To disassemble the raw trace cycles, the trace system requires 
a certain continuity of execution flow. Without it, the 
disassembler cannot reconstruct program execution. 

MWX-ICE User's Manual (Windows) 



SuperT AP axx 

To be able to disassemble trace, you must ensure that the 
processor show cycles are enabled so that disassembler can 
follow indirect branch instructions In addition, trqual must be 
set to dxqual to ensure that the cycles needed for disassembly 
are captured. 

Set To do this ... 

showinst indirect Enable show cycles for indirect change 
of flow. 

trsys on 

trace on 

trinit current 

trqual &equal 

trrunclr off 

ruclabels on 

Turn trace system on. 

Turn trace capture on. 

Select initial trace state at run. 

Capture enough cycles to allow 
disassembly. 

Clear buffer at return to run. 

Show symbols for branch destinations 
(only effective if MMU performs 1:1 
logical-to-physical translation, or if the 
MMU is disabled). 

5-11 

• 



Choosing the trace display interface 

5-12 

You can use one or both of the system's trace interfaces: 

o The Emulator Trace window is designed for interactive, 
point-and-click use of the information in the trace buffer. 

o Trace can also be displayed in the Command window. 
Command window display enables you to combine trace 
display with command-line controls, macro routines, and the 
system's log and journal utilities. 

Both interfaces are described in the following sections. 

MWX-ICE User's Manual (Windows) 



Executable Code Source Code 

... 

UBTSlt QV C 
TRDUCllil/HE FF 0 

Raw E ///PSI R 0 A VF VF LL N 

Trace Buffer 

--... u.oi.a- ...................... Wloool.w ..... 

-·--------------·-------=:~~ 

"- = ! ,... 0 

... ,.. 
oe>•••%A ....... . • ..If••••••""'"' ...... . 

S'llll'r'l'llSl.CDlo•a••IaT•'l'll "----------

9Co--IC• 

JO. ·--· 

Raw 
Frmne Acldress Data. A ~SM TP S W K CNT ~G S S T Timestamp 

15 Beginning of Trace 
14 Trace Cleared 
13 0010003C 7C0802A6 RCS I . BIT 1 -1.2us 
12 00100040 9001000C RCS I SEQ -1. Ous 
11 00100044 818D8010 RCS I SEQ -920ns 
10 001J'FFAC 00100E8C WDS I -840ns 

9 00100048 2COCOOOO RCS I l -760ns 
8 00104014 00000000 RDS I SEQ -640ns 
7 0010004C 41820008 RCS I -560ns 
6 0010005.& 00000000 RCS I BOT -400ns 
5 00100058 48000071 RCS I SEQ -280ns 
4 0010005C 480007BD RCS I -160ns 
3 INT -80ns 
2 00002F2C 480007BD RCS I . ' Ons 
1 Execution Breakpoint IP; 00100054 
o End of Tra~ 

Figure 5-2 The emulato~s dual-interface trace system 

SuperTAP 8XX 

• 
5-13 



Using the Emulator Trace window 

5-14 

Use the Emulator Trace window as your primary interface to 
the trace system. With simple mouse clicks, you can 

a Scroll through the trace buffer. 
a Change the trace display configuration. 
a Change the timestamp format and offset base frame. 
a Set breakpoints using trace information. 
a Set the current scope based on the trace frame. 
a Search for any string pattern in trace. 
a Clear trace. 

> To open the Emulator Trace window 

• From the Displays menu, choose Emulator Trace. 

The Emulator Trace window opens and displays the most re
cent screen of trace. 

The Emulator Trace window displays a continuous buffer that 
is updated each time the emulator enters pause or when you 
perform actions that affect trace. To navigate trace, you can 
scroll the buffer or use the controls described in the next 
sections. 

When the Emulator Trace window's display option is set only 
to Raw, the window may take some time to refresh. The trace 
system is scanning backwards through the entire trace buffer 
and discarding invalid cycles. You can interrupt this processing 
by clicking the Stop button. If the trace buffer contents are 
complex, use the Command window for a faster trace display. 

MWX-ICE User's Manual (Windows) 



-I MWX_.CE Deb!!llll..er ... I ... 
file fdit Qisplays l!lotebooks Actions :!flew '.lt'lllndow Help 

~~~~~~~~~~~~~~~~~~ 
llladulo: I U..:j 1---F-=r ~
·I Emulator Trace 1

24 0000- 00000004 W4 A SI) 0 A 0 RBQIR -2.50us •
23 00004754 241P'<IE5E R4 A SC 0 A 0 BQIR -2.40us
22 0000- 00000004 R4 A SI) 0 A 0 RBQIR -2.25us
20 00004666 io:zs: R4 A SC 0 A 0 BQIR -2.15us

00019 00004754 241P' llCIVE. L (A7)+,D2 11.7 > 000071:De
000071:De > 00000000
11.7 < 00001l'llC
1).2 < 00000000

00019 00004756 - llllUt. L JUI JUI> OOOO'llD
11.7 < 0000'7PBB
00007Fll8 > 0000711F4
11.7 < 0000'7FBC
Ml < 0000711F4 t-i

19 00004754 241P'<IE5E R4 A SC 0 A 0 BQIR -1.95us
00018 00004758 41:'75 R'l'S 11.7 > 0000'7FBC

0000'71BC > 00004~
11.7 < 0000711FO
IC< 00004~

18 00004758 41:'754848 R4 A SC 0 A 0 RBQIR -1.75us
17 000071:De 00000000 R4 A SI) 0 A 0 RBQIR -1.60us
15 0000475<: nl!'842B9 R4 A SC 0 A 0 RBQIR -1.50us
14 0000'7PBB 0000711F4 R4 A SI) 0 A 0 RBQIR -1.40us
12 00004760 00004928 R4 A SC 0 A 0 BQIR -1.25us
11 0000'7FBC 00004~ M A SI) 0 A 0 RBQIR -1.15us

9 00004764 2D7COOOO R4 A SC 0 A 0 BQIR -1.00us t+I I 00008 00004~ 41EB90000 JSR lbouselJ.. ..Ji!!Ll:..0000~

ftJ -r•
lj ~ ~
v- Scuce ConrNnl

ll

Rgure 5-3 Emulator Trace window showing mixed with raw and assembly trace

•
SuperTAP axx 5-15

Configuring the trace display

~ j41 MWXST86' ',. ~ ~
~·············-··········1
::: 64 ~
j 65 VO~

5-16

You can configure the trace display using the View and Actions
menus and on the settings of several trace display variables.

View menu commands
The View menu provides options to control the primary display
features. You can select the current display format to be any
combination of raw trace, assembly, or source code.

Show raw trace This option displays bus or clock cycles and
provides a header that identifies the address, data, and control
signals. If assembly or source trace is also selected, the header
information does not appear.

Show assembly trace Shows assembly language
instructions. The raw trace frames are converted to their
corresponding assembly-level instructions.

Show source trace Shows C or C++ source code. If it is
available, the source code matching the raw trace frames is
shown.

ti Displav tiinestamp as Offset
Display limedamp as Interval

Show preceding aource coraents
!':'A: 11 ITJ !:T 'Ji'.7. 'R7: l!TC 'R 0 II la Vii' Vii'

Figure 5-4 View menu display options
T. T.

MWX-ICE User's Manual (Windows)

!Search I Keywords:
Raw trace
Disassembled
trace

SuperTAP BXX

When the Emulator Trace window is active (open or
minimized), its display settings must be compatible with the
setting of trqual. Insertion of assembly and source information
is a feature of the trace disassembler and requires that trace
has been captured with trqual set to dx:qual or clock.
Incompatible settings result in an error message.

For detailed information about the components of raw,
disassembled, or source trace, see the tables beginning on
page 5-33.

Display tim.estamp as Offset If offset mode is enabled,
timing is offset from the base frame selected with the
Timestamp Frame button (see page 5-19). When you change
the timestamp display format, the time display is recomputed.

Display tim.estamp as Interval In interval mode, the time
between trace frames is displayed. When you change the
timestamp display format, the time display is recomputed.

You can choose to display timestamp in alternate modes in the
Emulator Trace and Command windows.

Show preceding source comments This option, when
enabled, shows up to 10 lines of source code that precede the
line that generated the current code being displayed, if these
lines did not generate any code themselves. With this option
disabled, only the line that is indicated in the debugging
information as generating the code is displayed in source
interleave mode.

Whenever this option is changed, the display is cleared and
redrawn with the new information.

5-17

•

5-18

Actions menu commands
Six options provide easy access to operations.

Scope

Search. ..
View Frame .•.

Figure 5-5 Emulator Trace window Actions menu

Clear Trace The Clear Trace option clears the emulator's
trace buffer and updates the display. Note that a trace buffer
contains two or three trace frames after it has been cleared.
These trace frames are labeled Beginning of Trace and End of
Trace.

Break The Break option attempts to set a break.point at the
currently highlighted frame of trace. The frame must have a
module name and a line number associated with it in the
Module and Line status fields. Without a module or line
number, a break.point cannot be set, and an appropriate error
message is displayed.

Scope The Scope option makes the currently highlighted
trace frame the scope, both for symbol accesses and in the Code
window. The current trace line must have a module associated
with it with it in the Module status field. If there is a source line
number as well, this is used. Without a module or line number,
the scope cannot be determined, and an appropriate error
message is displayed.

MWX-ICE User's Manual (Windows)

SuperTAP BXX

Timestamp Frame This option makes the currently
highlighted trace frame the base frame for offset timestamp
measurement. It represents time zero, and all timing is
relative to it. Selecting a new base frame clears the time values
and displays the new timestamp measurements.

Search The Search option opens a dialog box that you use to
perform a string search of the trace buffer.

mr1dceSe'-uch l:l
Search. pcc•rn.: IDIT

1111·-= ,._ds:--------1
••-r 0 Older

Figure 5-6 Trace Search dialog

> To enter a search pattern

1. Enter the exact string; the search is case-sensitive.

2. Select whether to search back.ward through the buffer
(older) or forward (newer).

3. Click Apply.

To stop a lengthy search, click Stop [i].
If a matching pattern is found, the frame containing the
requested pattern is placed in the top line of the trace window.
If the pattern is not found, a message appears.

To identify all instances of a pattern in the buffer, use the
tsrch utility in the Command window.

5-19

Note ~

!search I Keywords:
DRTDATA

5-20

When searching for a data pattern or address, use the byte
order as it would appear in a raw trace display with drtdata
set to all.

View Frame The View Frame option opens a dialog box that
prompts you for a frame number. If the value entered is a
number, trace will be positioned to the requested frame. If the
number is greater than the number of frames in trace, trace
will be positioned to the oldest frame. If the value entered is not
a number, an error box is displayed, and you are asked to enter
anew value.

Trace display variables
There are three trace variables that provide additional control
over elements of the trace display. You enter these commands
in the Command window. For detailed information about these
display variables, see Help.

Variable

drtdata

drtfull

dxlabels

Description

Controls whether the DATA column in raw
trace displays only the bytes that are valid in a
given transfer (drtdata notall), or all four
bytes that are on the data bus at the time
(drtdata all).

Controls whether all signals are displayed in
raw trace.

Controls whether symbols are shown for
branch destinations in disassembled trace. Use
dxlabels on when you are using the :MMU and
address translation is transparent, or when the
instruction MMU is not enabled. That is, use
dxlabels on when the physical (effective)
address is exactly same as the physical (real)
address.

MWX-ICE User's Manual (Windows)

Emulator Trace status
When the Emulator Trace window is active, status boxes show
the current trace mode being displayed, as well as other
information about the trace buffer.

Module Displays the source module (if any) associated with
the currently highlighted trace line.

Line Displays the source line number (if any) associated with
the currently highlighted trace line.

Timestam.p base frame Shows the frame number that is
used as the starting point (time zero) when the offset format is
selected.

Using the Command window trace display

SuperTAP 8XX

Use the Command window as your trace interface when you
need command-driven control of the trace system. Using
keyboard commands, macros, or include files, you can

a Select the portion of the buffer to display.
a Change trace display configuration.
a Change timestamp format and offset base frame.
a Search for address, data, and status patterns in trace.
o Save trace to a file.
a Clear trace.

See "Preparing to capture trace" on page 5-4 to set up the trace
system for capturing trace.

5-21

•

Displaying raw trace

5-22

Raw trace always displays the trace frame number, address,
data, timestamp, and certain signal type identifiers.

>- To display raw trace

• Use the drt command:

Type To do this ...

drt Display the most recent screen of trace.

drt nnnn . . nmunm Print the range of trace frames to the
command window as a scrolling display
from oldest to latest.

drt nnnn Display a screen of trace containing the
specified frame number.

The header for each page of trace identifies the address, data,
and control signals displayed. See Help or "Raw trace display
description" on page 5-35 for a description of display fields and
symbols.

>- To specify raw trace display fields

• Use these commands:

Type

drtf ull

drtdata notall

drtdata all

To do this •.•

Control whether all signals are
displayed in raw trace.

Display only the valid data bytes in a
bus cycle.
Display all four bytes of the data bus.

Determining the number of trace frames
To determine the number of frames in the buffer, use the
trframes command. The most recent frame is frame 0. The
oldest frame is the value returned by the trframes command.

MWX-ICE User's Manual (Windows)

[Search I Keywords:
Raw trace

SuperT AP 8XX

~
' ~ :& Ull XS PS CR T S R C IIIIIIII
: ~ tJT RDOC RD FI OI XI I B E 0 llRRRRRRR
·~ SE ///PSI EZ RZ CR R 0 A If VF VF LL QQQQQQQQ
~ V- Adclress Do.to. VA WCSM TP RE TE IR S W IC T Clrl' MSG S S 01234567 Tiaesta.p
~ ---

' ~ 24 aooll'F84 FFF021DC v RDS a2 a2
~ 2a aooll'F88 FFFD21DC RDS I a2 a2 :&IT

: ~ 22 Pn"021DC aBl!nn'.F v RCS I a2 a2
~ 21 FFF021EO 4BnPF6C v RCS I &2 &2 1
~ 20 FFF0214C 2C1F0000 RCS I a2 a2 llt:II'
>- 19 Pn"0214C 2ClFOOoo v RCS I 32 a2 -1. Bus

: ~ 18 Pn'02150 41820094 v RCS I a2 &2 1 -1. 4us

~ ~! ::~:: ::~~~ v :~ I :~ :~ llt:II' :~6:: 1 15 ft'F021E8 80010014 v RCS I S2 a.2 1 -600ns ~
i 14 aooll'F8C 00000001 v RDS I 32 a2 1 -400ns
~ 1S P'll'F02:1BJ: 7C080SA6 v RCS I &2 3.2 Ons ! 12 8001n'!l4 FFF020BC v RDS I &2 32 1 200..S
i 11 nF021FD as210010 v RCS I a2 a2 520ns
i 10 nF0211!'4 4!!:800020 v RCS I a2 a2 1 960..S
l 9 nF020BC 48000949 RCS I a2 a2 :&IT 1.1us

. ~ e l"PF020BC 4800084:9 v RCS I 3.2 3.2 1_ 4us

l

'.i,!: 7 FFF02904 00000000 RCS

1

1

1
a2 a2 llt:II' 1. 5us

~ 6 Pn'02904 00000000 V RCS 32 32 1. Bus
S Pn'02908 7C0802A6 RCS 3.2 3.2 1 1 2. Dus ~
4 Pl'702908 7C0802A6 RCS 32 a2 IllT 2.1us

! a Pl'702908 7C0802A6 v RCS I 32 32 a 2. 2us
i 2 oooo2F2C 7C0802A6 v RCS I 32 a2 • ' a 2. aus W I ~ =c::~;:..~int IP, FFF02904 ~
i.

Figure 5-7 Raw trace showing all signals (drtfull on /trqual dxqual).

Displaying all signals in raw trace
The drtfull command controls whether all the signals are
displayed in raw trace. If you find the trace display to be too
cluttered, you can suppress the display of some signals.

The drtfull command does not determine what is captured. It •
simply selects whether to display all signals that have been
captured in trace. The trace capture variable trqual controls

5-23

isearchl Keywords:
Timestamp

5-24

which signals are captured. There are two basic groups of
signals: the group of signals captured in clock mode, and the
group of signals captured in dxqual and bus modes.

Once the trace is captured, you can use the drtfull option to
switch back and forth between a full display of all signals, or a
filtered display.

Limiting the data display
When fewer than 32 bits of data are accessed in a bus cycle, the
most useful display is as the processor sees the data on the bus.
The drtdata softswitch allows you to select whether to show
only the data bytes active for the current bus cycle (notall) or
all 32 bits (all), even if some bits were ignored by the processor.

To determine where a byte occurs so you can mask it in an
event statement, simply switch from notall to all, and
re-display the trace.

>DRTDATA NOTALL
Frame Address Data
0472 00100008 4FF9
0471 OOlOOOOA OFOO
0470 OOlOOOOC FFFC41F9

>DRTDATA ALL
Frame Address Data
0472 00100008 4FF90FOO
0471 OOlOOOOA 4FF90FOO
0470 OOlOOOOC FFFC41F9

Excluding non-bus frames from raw trace
You can restrict raw trace to bus cycles. Use the trqual bus
command to exclude non-bus cycles during capture.

Configuring the timestamp display
You can use the emulator's timestamp to perform a variety of
timing measurements automatically during run and to display
those values in raw trace. There are two timestamp modes:

a Interval: times the intervals between cycles.
a Offset: sets time relative to a specified frame in trace.

MWX·ICE User's Manual {Windows)

To configure the timestamp information, use the following
commands:

Set
trstamp interval

-or-

trstarnp offset

trbase nnnn

To do this ...

Configure display to show time
between cycles.

Configure display to show time
relative to trace frame specified by
trbase.
Trace frame that is time zero.

For example, to see the intervals between interrupt 5 requests,
enter the following commands:

trace off
trinit off
when status==irqS then trone

Then open the Emulator Trace window and select Interval as
the Timestamp format.

Displaying disassembled trace

(Search I Keywords:
Disassembled
trace

SuperTAP SXX

Disassembled trace can be displayed as assembly instructions,
C-source instructions, or source, assembly and raw trace
interleaved. Several variables control what is displayed, and
three commands enable navigation within the display.

Disassembled display is possible only if you have used the
proper setup prior to trace capture. This must include setting
trqual to dxqual. See "Preparing to capture trace" on page 5-4
for procedures. •

5-25

5-26

>- To display disassembled trace

• Use these commands:

Type
dt number

dtb

dtf

To do this •..

Display most recent screen of trace or
specified range.

Display trace going backward (from
current frame toward earliest).

Display trace going forward (from current
frame toward most recent).

>- To select what is displayed

• Use these commands:

Type
trdisp type

dxinsert on

drtfull

To do this ...

Display assembly (asm), source (src), or
both (both).

Interleave raw trace (optional).

Show all signals available (on), or filter
the display (off).

Figure 5-8 shows a typical example of disassembled trace that
includes interleaved raw trace. For an explanation of each raw
trace field, see page 5-35.

>- To display symbols for branch destinations

• Use this command:

Type
dxlabels on

To do this ...

Display symbols in branch destinations
(on), or show relative address (off). The
disassembler looks in the symbol table for
branch destination (MMU must translate
1:1, or be disabled).

MWX-ICE User's Manual (Windows)

>- To include raw trace cycles

• Use this command:

Type To do this •••

dxinsert on Include relevant raw trace cycles in the
disassembled display.

Frame number

>> ~ay(fine, coarse);/ >>~=~le(coarse--);
00044 fff023d4: 3bde ffff addi

Source lines

/
Arguments

44 FPF023D8 399E0001 RCS I
00043 fff023d8: 399e 0001 addi

43 FPF023DC 2COC0000 RCS

Address

Object code

Instructions

r30,r30,0xffffffff
1

rl2,r30,0xl
1

ip > FFF023EO
ip < FFF023D4

Register
Flow Control

-13.2us
-13.2us
-12.Sus
-12.Sus
-12.4us
-12.4us
-12.2us

-12.2us
-11. 9us

lime stamp

Figure 5-8 Source and assembly display of disassembled trace interleaved
with raw trace

Super TAP BXX 5-27

Searching for patterns in Command window trace

!search I Keywords:
TSRCH
Trace, searching

lsearctil Keywords:
Status
mnemonics

Saving trace to a file

5-28

The tsrch command is a command-line utility for searching
trace. Unlike the Search facility in the Emulator Trace
window, tsrch is capable oflocating and indexing multiple
instances of a pattern in trace.

You can specify a range of frames for the search or use the
default to search the entire buffer. Search patterns are entered
as address, data, or status, or combinations of these elements.
Output reports the trace frame numbers and shows all frames
with the matching pattern in raw trace format. Using drt or
dt frame_number, you can display each frame in the context of
its execution history.

For example, to search the entire buffer for all reads of the data
value OxC453 at address Ox789f, enter the following:

tsrch addr==Ox789f && data==OxC453 && status==rd

The address and data values can be a simple value (OxlOOO) or
a value with a "care" mask (0x1000&=0xf000). Both can be
expressed as an equivalency (=)or as an inequality(!=).

Status comparator values are entered mnemonically using the
same mnemonics recognized by the event system. Mnemonics
can be logically ANDed using the vertical bar (I):
status=mnemonic I mnemonic. See the Help description of
tsrch for valid status mnemonics.

Trace displayed in the Command window can be printed to file
and reviewed.

The journal and log commands (or the associated Debugger
Files notebook pages) let you easily store trace history in a file.
You can even create this file without stopping emulation. After
trace is saved, you can edit the file to add comments for future
reference. For example, comments may be added to aid in
documenting failure conditions.

MWX-ICE User's Manual (Windows)

o Log files are formatted such that the commands issued to the
debugger can be re-run by loading the file. Data printed to
the command window, such as trace, are recorded as
comments.

o Journal files present trace in a form that closely
approximates actual screen display. Journals record your
command input, the data printed to the Command window,
and any error or warning messages.

You can use either the log or journal commands or the guided
configuration provided by the Debugger Files notebook. Select
the "File Loading/Execution" topic in the main contents
window of Help for procedures.

Clearing the trace buffer
>- To clear the trace buffer

• Use the trclr command.

Super TAP SXX 5-29

•

Notes on using trace

Logical addressing

5-30

This section includes a variety of topics that apply to capturing
and displaying trace in the Emulator Trace window, and in the
Command windows.

Topic Page

Logical addressing 5-30

Trace compression 5-31

Some common problems disassembling trace 5-32

Disassembled trace display description 5-33

Raw trace display description 5-35

If the target uses the MMU of the MPC8XX, the disassembler
can use trace information to display addresses as long as the
logical (effective) and physical (real) addresses are the same. In
other words, if address translation is transparent, the address
and symbol information shown in trace will be correct.

If you are using the MMU, and your address translation is
transparent, you should set an emulator trace variable
(d:xlabels on). The dxlabels variable controls whether symbol
table lookups are performed. As long as the MMU doesn't
change the address, the correct symbols will be shown for
branch destinations.

If you use the MMU and the logical and physical addressing is
identical, keep dxlabels on.

If you are not using the MMU at all, the default (dxlabels on)
will still be applied. But if you turn dxlabels off, and then
later disable the MMU, you must turn dxlabels on again.

MWX-ICE User's Manual {Windows)

Trace compression

SuperT AP axx

When trqual is set to dxqual, the SuperTAP's trace system
uses two ways of reducing the number of trace frames produced
by executing a given segment of code. This allows longer code
segments to be traced without loss of information. This
compression of the trace is done by synthesizing a couple of
artificial signals from the processor's raw signals.

The VF CNT signal is synthesized by simply counting the
number of successive sequential instruction messages received
on the VF pins, to a maximum of 15 instructions. This number
is reset whenever any other VF message appears, and every
time a trace frame is written.

Additional saving of trace frames is achieved with the IQFLS
signal. As outlined in Section 18.1.1.1 of the MPC860 User's
Manual, when instructions are flushed from the processor's
pref etch queue, the number of flushed instructions is reported
on the next clock cycle after the fetch report of the instruction
that caused the flush. To avoid writing two trace frames in this
case, the trace system combines them into one frame by saving
the VF output from the first frame as the VF MSG and the
second as the IQFLS. A complication of combining the two
trace frames occurs when the first frame must be written
anyway because a valid bus transfer occurred on that clock. In
this case, the trace system writes both frames, repeating the
VF MSG on the second frame. For this reason reports of the
VF=4-7 messages (such as BIT and BDT) are sometimes
repeated in a second trace frame for a single branch.

Using these techniques, we only have to save trace frames in
dxqual mode when a valid bus cycle (including show cycles)
occurs, when the sequential instruction count reaches 15 and
rolls over, or when a non-sequential VF report is made. All
other clock cycles are discarded in this trace mode.

A consequence of this compression is that many instructions •
may be reported on a single trace frame, with a single
timestamp. The timestamp corresponds to the time of the final
clock cycle for this series of instructions. Keep in mind that for

5-31

all instructions on the MPC8XX processor, the time reported
shows when the instruction was fetched; the exact time that
the instruction executed cannot be determined in this
architecture.

Some common problems disassembling trace

5-32

The emulator captures the processor activity on each bus cycle.
From this raw data, the emulator is usually able to reconstruct
the assembly instructions. However, there are times when the
disassembler may be unable to reconstruct instructions from
trace memory. The following sections describe some conditions
when this could occur.

Unable to disassemble trace frames
The following are the most common reasons that the trace
disassembler is unable to complete disassembly:

o The trqual variable is set to bus or clock.
o The trqual variable is changed from an unsupported mode

(bus, clock) to the supported mode (d.xqual) without
clearing the trace buffer.

o Trace was collected while processor show cycles were
disabled (showinst none).

o Clock-doubling is turned on. Clock-doubling is enabled by
setting bits EBDF ofregister SCCR to 01 [see the Motorola
MPC860 User's Manual, Section 5.8].

o Visibility functions are disabled (bits DBGC of register
SIUMCR are not set to 11 [Motorola UM, Section 12.4.1.1]).

o The event system setup turned trace on and off before
acquiring sufficient information for disassembly. No
instructions can be displayed. This also occurs with peek/
poke trace (ppt). However, you can still display raw trace
(drt).

o The application code runs a long loop before breaking, and
showinst is set to indirect and the instruction cache is
enabled. In this case the direct branch instruction is cached,
and the disassembler may not be able to reconstruct
execution. Setting showinst to flow may correct this

MWX-ICE User's Manual (Windows)

problem, by enabling show cycles for all direct and indirect
branching. In cases like this, there is no performance
penalty. While there is usually a loss of CPU performance if
flow is selected, in this case there is no performance
degradation.

Disassembled trace display description

C source code

SuperTAP SXX

When displaying both C source and assembly instructions, C
source lines begin with >> and precede the assembly
instructions associated with them.

Assembly instructions
Assembly instructions are decoded and displayed as follows:

Column

Frame number

Address

Object code

Instruction

Arguments

Flow
Control

Description

An index of the bus cycle in the trace
buffer. The most recently traced cycle is
the lowest number.

Address of instruction in memory.

Numeric representation of assembly
code.

Processor instruction and operand. Where
possible, on branch and trap
instructions, the simplified Motorola
PowerPC mnemonics are used.

Instruction arguments.

Shows non-sequential changes to the IP.
For each change, the old IP is shown as
IP > address.
The new IP is shown as IP< address .

5-33

•

5-34

Time stamp Timestamps only appear for trace frames
representing a bus cycle. If the
timestamp format is interval (trdisp
interval), the timestamp information is
recorded as the interval between
successive bus cycles. If the timestamp
format is offset (trdisp offset), the
timsestamp is shown relative to the
specified trace frame number (trbase).

If symbol information can't be found
If symbol information can't be found, the cause may be l\1MU
translation. If the l\1MU changes the address during
translation, only the address will be displayed in trace, and not
the symbol. For example, the following example shows a
branch instruction to a relative address.

b .+OB4c

As long a the MMU doesn't change the address during
translation, the symbol information should be available and
will appear in trace.

You also need to make sure the trace option dxlabels is on.
This option tells the disassembler to check the symbol table for
branch destinations.

Note that if the l\1MU changes the address during translation
(that is, if the logical to physical address does not correspond
1: 1), the disassembler may display incorrect symbol
information. In this case, make sure that dxlabels is off.

Flushed instructions
Instructions that are fetched, but not executed--or only
partially executed--are indicated by the FLSH mark. The
FLSH appears just before the timestamp in the trace
disassembly.

MWX-ICE User's Manual (Windows)

00021
00020
00019
00018
00017
00016
00015

Invalid instructions
An instruction followed by two exclamation points(!!) indicates
that instruction is invalid. An invalid instruction is always
followed by an interrupt. For example, a PowerPC floating
point instruction would be invalid because floating point
instructions are not implemented in the MPC860;

stfdu! ! rlO, OxOOOa(rlO)

A common cause for an invalid instruction is a bug in the
application code that causes the processor to try to execute code
in a section of memory where there aren't any instructions. In
this case, the "instruction" fetched would not likely contain a
valid opcode.

Questionable instructions
An instruction followed by two question marks (??) indicates
that the instruction may or may not have been architecturally
executed. In other words, it's status is questionable.
Questionable instructions only appear shortly before a
discontinuity in trace. This discontinuity occurred before the
disassembler could determine if the instruction was executed
or not. All the disassembler knows is that it was fetched, but
it's status is unknown.

00080000: 3d40 1234 addis r10,0,0xl234
00080004: 394a 5678 addi rl0,r10,0x5678
00080008: 3d60 acac addis?? rll,O,Oxffffacac
0008000c: 396b fefe addi?? rll,rll,Oxfffffefe
00080010: 3d80 elel addis?? r12,0,0xffffelel
00080014: 398c beef addi?? r12,r12,0xffffbeef
00080018: 3de0 0007 addis?? rl5,0,0x7

-------End of Contiguous Section of Qualified Trace----

Raw trace display description

SuperTAP 8XX

The following table describes the raw trace fields that can be
captured and displayed. The type of trace captured depends
upon the setting of the trqual command. The drtfull

5-35

•

Column

FRAME

ADDRESS

DATA

WW

XFERSIZE

STS

TS

AS

TA

TEA

BI

BURST

BDIP

BR

BG

5-36

comm.and filters the captured trace data for display purposes.
For information on setting the trqual options and displaying
the raw trace signals, see Help.

Description

The decimal count of the line in the trace buffer. Line 0
corresponds to the most recently traced cycle.

The hex value of the address bus.

The hex value of the data bus.

R read

w write

The transfer size in bits (8, 16, or 32), translated from the
TSIZO: 1 codes.

S Special transfer start (STS*) asserted.

T Transfer start (TS*) asserted.

@ Address strobe (AS*)

A Transfer acknowledge (TA) asserted.

E Transfer error acknowledge (TEA) asserted.

> Burst inhibit (BI*) asserted.

Burst transaction (BURST*)

$ Asserted

I Negated

< Burst data in progress (BDIP*).

R Bus request (BR*) asserted.

G Bus grant (BG*) asserted.

MWX-ICE User's Manual (Windows)

Column

BB

IRQO, 1, 7

IRQ2:6

LSAO, 1, 7

LSA2:6

DPn

SuperT AP 8X.X

Description

B Bus busy (BB*) asserted.

These signals are multiplexed with LSAO, LSAl, LSA7. See
the siga_mux command.

• negated

n asserted (where n=O, 1, 7)

These signals are multiplexed with LSA2:6, RSV*/CR/KR,
WP, PCMCIA_B, DPx. See the sigb_mux command .

• negated

n asserted (where n=2, 3, 4, 5, 6).

Logic State Analysis Signal (LSAO, 1, 7). These signals are
multiplexed with IRQO, IRQl, IRQ7. See the siga_mux
command. Use this option when you have an LSA probe
connected to your target system.

+ The LSA signal is a physical "l."

- The LSA signal is a physical "O."

Logic State Analysis Signal (LSA2:6). These signals are
multiplexed with IRQ2:6, RSV*/CR/KR, WP, PCMCIA_B,
DPx. See the sigb_mux command. Use this option when you
have an LSA probe connected to your target system.

+ The LSA signal is a physical "l."

- The LSA signal is a physical "O."

Data parity (DP0:3). These signals are multiplexed with
IRQ2:6, RSV*/CR/KR, WP, PCMCIA_B, LSA2:6. See the
sigb_mux command.

+ The DP signal is a physical "l."

- The DP signal is a physical "O."

5-37

•

Column

IWPn

LWPn

CHIPSEL

WEn

BS

GPLA0:3, 5

UAGA$

UBGB4

RSV

5-38

Description

Instruction watchpoint signals (IW0:2).

+ The IW signal is a physical "1."

- The IW signal is a physical "O."

Load/Store watchpoint signals(LWO:l)

+ The LWP signal is a physical "1."

- The LWP signal is a physical "O."

Chip select lines 0:7.

• negated.

n asserted (where n=0:7).

W Write enable asserted (WE0:3*).

S Byte selects asserted (BS_B0:3, BS_A).

General purpose lines (GPL_A0:3, GPL_A5)

• negated.

n asserted (where n=0:3, 5).

UPWAITA/GPLA4*

+ This multiplexed signal is a physical "l."

- The multiplexed signal is a physical "O."

UPW AITB/GPLB4*

+ This multiplexed signal is a physical "1."

- The multiplexed signal is a physical "O."

Reservation (RSV) This signal is multiplexed with LSA2:6,
WP, PCMCIA_B, DPx. See the sigb_mux command.

R asserted.

MWX-ICE User's Manual (Windows)

Column

CR/KR

BUSV

DIC

UIS

CPM

PCM CI

PT/RS

VFCNT

SuperTAP 8XX

Description

X Either Cancel reservation asserted CCR*), or Kill
reservation asserted (KR*), which means in either case that
a reservation has been cancelled.

V Address bus, data bus, and transfer attributes are valid.
The SuperT AP synthesizes this signal.
Only displayed when trqual is set for bus or dxqual, and
drtfull is on.

D Data.

C Code.

U User.

S Supervisor.

The bus is driven by the MPCSXX Communications
Processor module (CPM) instead of the Core.

P The bus is driven by the MPCSXX PCMCIA adapter
module.

Program trace or Reservation depending upon the value of
the DIC column in trace.

* Program trace if DIC column is code (C).

* Reservation if DIC column is data (D).

The SuperTAP creates this signal which tracks sequential
instructions only. It is the count of the number of
consecutive sequential instructions reported on this frame .

5-39

•

Column

VF MSG

IQFLS

VFLS

DCONT

BREAK

SftRst

TIMESTAMP

5-40

Description

Reports the value of the VF pins [0 .. 2) on the current clock
cycle.

Message

SEQ
BNT
VSNC
INT
BIT
BDT
BNTF

VF
0
1
2
3
4
5
6
7

Meaning
None
Sequential
Branch not taken
VSYNC signal (disabled in hardware)
Interrupt
Branch indirect taken
Branch direct taken
Branch not taken, flush follows

The value of the VF pins [0 .• 2) on a clock where no
instruction fetches occurred. This is when the preceding VF
had the value 4-7. IQFLS shows the number of instructions
flushed from the "prefetch" queue.

The value of the VFLS pins [0 .. 1). Shows the number of
instructions flushed from the history buffer on the current
clock cycle. A value of 3 indicates that the emulator is
paused (the processor is in Debug mode).

D Discontinuous trace frames.

B Asynchronous break request.

Rst SRESET* asserted.

If the timestamp format is interval (trdisp interval), the
timestamp information is recorded as the interval between
successive bus cycles. If the timestamp format is offset
(trdisp offset), the timsestamp is shown relative to the
specified trace frame number (trbase).

MWX-ICE User's Manual (Windows)

SuperTAP axx

Why do some of the trace frames appear empty?
When drtfull is off and trqual is set to either bus or dxqual,
you may see trace frames that appear to be empty except for
the trace frame number and timestamp. These empty frames
appear when the bus valid signal is not asserted (BUSV). In
these frames, the only signals that are valid are DCONT and
BREAK, the visibility signals (VF ONT, VF MSG, IQFLS), and
the timestamp. All of the other signals (including address and
data) may not show valid values, and their display is
suppressed. The pins for these signals are not actively driven
at these times. When drtfull is off, the display of the visibility
signals is also suppressed.

When drtfull is on, you can see that the empty trace frames
contain valid visibility information (VF CNT, VF MSG,
IQFLS).

5-41

11

I Chapter6

Using Basic Breakpoints
This chapter covers the breakpoint features ofMWX-ICE.
Basic breakpoints are tools for interrupting emulation for
insight into code execution and target function. Breakpoints
interrupt emulation after memory accesses or before executing
an instruction.

Contents

How can you use breakpoints

Breakpoint types

Basic breakpoint commands

Access breakpoints (ba, br, bw)

Instruction breakpoints (bi)

Page

6-2

6-3

6-5

6-7

6-12

6-1

How can you use breakpoints

6-2

Once you have run your program and discovered a problem, the
next step is typically to decide where to break program
execution so that you can find the source of the problem.

You use a breakpoint to examine behavior of the target under
certain controlled conditions. This is very helpful in isolating
bugs when troubleshooting hardware and software in the
target environment.

Use the event system to monitor compound conditions and
perform various emulator actions based on those conditions.
The same emulator resources are used to support both
breakpoints and the event system. See the section "Working
within the limits" for each breakpoint type for information on
resources.

MWX-ICE User's Manual (Windows)

Breakpoint types

Access breakpoints

SuperT AP axx

You can set two types of break.points: access break.points and
instruction break.points. In addition, you can specify how the
emulator and on-chip resources are used to implement
break.points. However, in most cases it is best to let the
SuperTAP manage the break.point resources (bptype choose).

Access break.points break on reads or writes to data and
program locations. You can limit an access break.point to break
exclusively on read or write accesses by using the applicable
command (breakread, breakwrite).

An access break.point is set for a single address or an address
range. You can use up to 10 single-address access break.points
or five ranges, or some combination of both types. You can set
up to 10 access break.points when the bptype is set to choose.
This is the default setting.

On-chip access breakpoints There are two on-chip access
break.points available. When you select on-chip break.points
(bptype onchip), the break.point occurs immediately after the
data is accessed. Unlike hardware access break.points, on-chip
access break.points only break on data accesses, not on
instruction accesses.

Hardware access breakpoints You can set up to eight
emulator hardware access break.points (bptype hw). When
you select hardware break.points, the break.point actually
occurs some cycles after the data is accessed. This is known as
skid. However, it is easy to locate the exact bus or clock cycle
where the break occurred when you examine raw trace. The
trace frame where the break.point occurred is marked with a B.
Note that when you explicitly select hardware break.points
(bptype hw), instruction break.points (bi) and temporary

6-3

-

breakpoints (go address), and step commands do not work.
Again, in most cases it is best to let the SuperTAP manage the
breakpoint resources (bptype choose).

Instruction breakpoints

6-4

Instruction breakpoints break just before executing the
selected instruction.

When bptype is set to choose or sw, up to 50 instruction
breakpoints can be set in writable memory. Instruction
breakpoints work by replacing the actual instruction in
memory with a illegal instruction opcode.

When bptype is set to onchip, you can set four instruction
breakpoints. These on-chip instruction breakpoints can be set
in ROM or RAM. When bptype is set to choose, the SuperTAP
automatically uses on-chip breakpoints for instructions in
ROM.

When bptype is set to hw, instruction breakpoints and
temporary breakpoints (go address) do not work. Note that the
step commands also use temporary breakpoints.

MWX-ICE User's Manual (Windows)

Basic breakpoint commands
Control breakpoints with the following commands. For
complete command descriptions see Help.

To Use Abbreviation

Set a breakpoint to break before execution of a breakinstruction bi
specified instruction or range.

Select among hardware, software, or on-chip bptype
instruction breakpoints.

Set a breakpoint on access to specified address breakaccess
or range.

Set a breakpoint on a read at specified address breakread
or range.

Set a breakpoint on a write at specified address breakwrite
or range.

Clear all breakpoints or a breakpoint by
number.

Setting breakpoints

clear

none

ba

hr

bw

cl

See the sections "Access breakpoints (ha, br, bw)" on page 6-7
and "Instruction breakpoints (bi)" on page 6-12 for information
on using the ba, br, bw, and bi commands.

SuperTAP SXX

You can set breakpoints by entering commands in the
Command window, or by using the Breakpoint page of the
Execution Controls Notebook, or by using the Breakl button.

6-5

Displaying breakpoints

Clearing breakpoints

The debugger assigns a number to each breakpoint for
reference and displays them in the Breakpoints window. If the
breakpoint numbers are not displayed select "Show Break #"
from the View menu.

Breakpoints may be cleared using the clear (cl) command. You
can clear an individual breakpoint by giving its number or
clear all breakpoints by not specifying a number.

Example Description

c 1 3 .. 5 Clears breakpoints numbered 3 through 5.

cl 4 Clears breakpoint number 4.

c 1 Clears all breakpoints.

Breakpoints can also be cleared with the Clear button:
double-cliclt the breakpoint and choose the Clear button.

Attaching macros to basic breakpoints
The breakaccess, breakread, breakwrite, and
breakinstruction commands can all be set to invoke a macro
when program execution is broken. For example, to invoke
my _macro after a breakread at line #20, enter

br #20 ;my_macro()

MWX-ICE User's Manual (Windows)

Access breakpoints {ba, br, bw}
Access breakpoints break on reads or writes to data and
program locations. You can limit an access breakpoint to break
exclusively on read or write accesses by using the applicable
command.

You can use up to 10 single-address access breakpoints or five
ranges, or some combination of both types. You can set up to 10
access breakpoints when the bptype is set to choose. This is
the default setting.

Setting an access breakpoint

!Search I Keywords:
Breakpoints window

Super TAP SXX

> To select memory access attributes

• Set the address command for the addressing mode
appropriate for your target. For example,
address access physical

For settings, see Help for the address command.

> To enter breakpoint commands

• For access breakpoints use the following syntax:
{ba I br I bw} address I address_range [;macro_name()]

Determine which type of access breakpoint you need, the
address you want to break on, and the name of any macro you
want to invoke when program execution is broken.

Enter the breakpoint command on the command line. For
example,

br 20h .. 30h ; foo ()

Breakpoints can also be set using the Breakpoint page of the
Execution Controls Notebook.

6-7

Memory qualifiers

Examples

Address values
Single addresses and address range expressions can contain
actual memory locations, symbols, constants, line numbers,
and operators. You can specify an address range by separating
two addresses with two periods (address1 .. address2). A byte
offset can also be specified for a range using +n. For more
information on expressions and symbolic referencing, see Help.

The settings for the address command affect how addresses
are qualified for access breakpoints. The settings for these
commands for the access memory type determine the
addressing mode for a breakpoint address. Note that when
bptype is set for onchip, the ba, br, and bw commands
always use logical addressing.

For syntax, see the "Memory and File Handling' command
groupings in Chapter 9; for detailed information, see Help for
the address command.

Example Description

BR Ox3 O O Sets a read access breakpoint at
address 300 (hexadecimal).

BW @CDEMON\ \ led_port Sets a write access breakpoint at
the address of the array
led_port in the root named
@CDEMON.

BA flags .. flags+lO Sets read/write access
breakpoint starting at the
address of the array flags and
ending 10 bytes after the address
of flags.

6-8 MWX-ICE User's Manual (Windows)

SuperT AP axx

Example

BR 20h .. 30h;FOO ()

BR &flags[O]

BA &count;
when (k<30)

BA prime

Description

Sets read access breakpoints
from address 20h (hexadecimal)
to 30h and executes the macro
FOO on every breakpoint
between these addresses.

Sets a read access breakpoint at
the address of array element
flags[O].

Sets a read/write access
breakpoint at the address of
count and only stops when the
macro evaluates k to be less than
30.

Sets a read/write access
breakpoint at the address
referred to by the value in
variable prime.

This command is correct if prime
is a pointer. The breakpoint is set
at the value of the variable
prime. For example, if the value
of prime is Ox0123, a breakpoint
is set at the address Ox0123.

This command may not be
correct if prime is a scalar, since
the value in prime is treated as
an address and the breakpoint is
set at that address rather than at
the address of the variable
prime.

6-9

Example

BW &prime

Description

Sets a write access breakpoint at
the address of the variable prime
regardless of its type.

This command is correct if prime
is a scalar; it sets a breakpoint at
the address of the variable
prime.

If prime is a pointer, the
breakpoint is set at the address
of the pointer rather than at the
address it is pointing to (i.e.,
prime).

What happens when an access break occurs

6-10

An access breakpoint stops execution after the access occurs.
Depending upon the type of access (instruction or data), the
breakpoint will occur either immediately after the access, or
some cycles past it. This discrepancy is a function of how the
breakpoint is implemented. When bptype is set to choose, the
emulator allocates the breakpoint resources (on-chip and in
emulator hardware). In some cases, there may be a skid.

o When bptype is set for onchip, execution stops
immediately following the access, so there is no skid. The
SuperTAP automatically uses this type of breakpoint when
the access is for data.

o When bptype is set for hw, the breakpoint skids. But you
can still look in raw trace to locate the exact access that
caused the break. This is the first trace frame where the
break bit (B) is set. The SuperTAP automatically uses this
type when the access is on an instruction, or when on-chip
resources are depleted.

MWX-ICE User's Manual (Windows)

MWX-ICE performs the following functions when it encounters
an access breakpoint:

1. Completes execution of the instruction at that location.

2. Suspends program execution.

3. Executes a macro (if one was specified when the breakpoint
was set). Depending on the macro, the debugger will do one
of the following:

If the macro return value is true (nonzero), the debugger re
sumes execution at the instruction immediately after the
breakpoint.

If the macro return value is false (zero), the debugger re
turns to command mode and displays breakpoint informa
tion.

4. If a macro was not specified, MWX-ICE returns to command
mode and displays updated breakpoint information.

Working within the limits

SuperTAP..SXX

Access breakpoints consume system resources. In general, the
emulator manages these resources and warns you when it
makes adjustments and presents an error when resources are
exhausted or when you attempt something that creates a
conflict. So you need not concern yourself with more than the
following general guidelines.

a Up to 10 access breakpoints are possible (8 hardware, 2
on-chip). You can have ten single-address breakpoints or five
ranges, or some combination of both types.

a Use of access breakpoints reduces the resources available for
the event system.

a On-chip access breakpoints only work for data accesses.
a Hardware access breakpoints have significant skid.

On-chip caches
When the processor on-chip instruction and data caches are
used, you must make sure that instruction or data show cycles
enabled, or the instruction/data caches will cause the access

6-11

break.points to be missed when cache hits occur. If copy back
caching is enabled for the data cache, access breakpoints may
break in sections of code having nothing to do with the access;
it is just where the processor decided to copy back the cached
data to memory. In MWX-ICE, you can use the showinst
command to enable instruction show cycles (showinst
indirect). The data show cycles are enabled by setting the
DSHW bit in the processor's SIUMCR register.

Instruction breakpoints (bi)
When you want to stop program execution on a particular
instruction in your code, you use an instruction breakpoint (bi).
With instruction breakpoints, the break initiates and
completes before the instruction at the specified address is
executed.

Up to 50 instruction breakpoints can be set (4 on-chip, and 46
software instruction breakpoints). They can be set from the
command line or a one-time temporary breakpoint can be
attached to the current MWX-ICE go instruction. The step
commands also use temporary breakpoints.

Setting an instruction breakpoint

6-12

Some setup is necessary before initial use of instruction
breakpoints and temporary breakpoints.

>- To perform initial setup

1. Set the address command for the addressing mode
appropriate for your target. For example,

address exec physical

For valid settings see the Help for the address command.

2. Make sure that bptype is set to choose or onchip.

MWX-ICE User's Manual (Windows)

SuperTAP 8XX

If your code resides in ROM You can set up to four access
breakpoints in ROM. If you have already used up the four
on-chip breakpoints, you must map the ROM to emulator
overlay memory. See "Copying memory contents between
target and overlay" on page 3-16. In emulator overlay ROM,
the area remains protected from target writes during program
execution, but can be modified by MWX-ICE for breakpoint
operations.

> To enter breakpoint commands

• For instruction breakpoints, use the following syntax:
bi address I address_range [; macro_name ()]

Determine the address you want to break on. Enter the
breakpoint command on the command line. For example,

bi step ;when (i=3)

You can also set instruction breakpoints from the Breakpoint
page of the Execution Controls Notebook., with the Breakl
button, and by using the mouse shortcuts in the Code window.

Address values
Single addresses and address range expressions can contain
actual memory locations, symbols, constants, line numbers,
and operators. You can specify an address range by separating
two addresses with two periods (address1 .. address2). A byte
offset can also be specified for a range using +n. For more
information on expressions and symbolic referencing, see Help.

a Ensure the address falls on an instruction boundary.
a Ensure the instruction resides in writable memory.
a Ensure that bptype is set to choose.

6-13

-

Setting temporary breakpoints

Memory qualifiers

Examples

A temporary or one-time breakpoint is an instruction
breakpoint attached to the current MWX-ICE go instruction.
Temporary breakpoints are commonly used to skip over a
section of code or a subroutine.

>- To set one-time breakpoints

1. Perform the initial setup as described on page 6-12.

2. Determine a valid address you want to break on and the
name of any macro you want to invoke when program
execution is broken. Enter the go command. For example,

go Ox1234

Temporary breakpoints can also be set with the Go Until
button or with options on the Go To notebook page.

The settings for the address command affects how addresses
are qualified for access breakpoints. The settings for these
commands for the exec memory type determine the addressing
mode used for a breakpoint address.

For syntax, see the "Memory and File Handling" command
groupings in Chapter 9; for detailed information, see Help for
address.

Example Description

BI #20 Sets a breakpoint at line number
20. Source-level mode only.

BI Ox2210 .. Ox2216 Sets breakpoints starting at
address 2210 and ending at
address 2216 (hexadecimal),
assembly-level mode only.

6-14 MWX-ICE User's Manual (Windows)

Example

BREAKI #1 .. #4

Description

Sets breakpoints starting at line
number 1 and ending at line
number 4. May require module
name.

BI SIEVE\#28 Sets a breakpoint at line number
28 in the module SIEVE.

BI # 15 •. # 18 ; FOO () Sets breakpoints starting at line
number 15 and ending at line
number 18. Executes macro FOO
after each line.

BI #10 ;when (i==3) Sets a breakpoint at line number
10 and stops only if variable i is
equal to 3.

BI Ox93 Sets a breakpoint at address 93
(hexadecimal), assembly-level
mode only.

BI step Sets a breakpoint at the address of
step.

SuperT AP 8XX 6-15

What happens when a software instruction break occurs

6-16

When a software instruction break.point is set, the specified
target instruction is replaced with an illegal instruction;
therefore, they can be set only in writable memory.

MWX-ICE performs the following functions when it encounters
an instruction break.point:

1. Suspends program execution before the instruction at the
break.point address is executed.

2. Replaces the illegal instruction with the original instruction
at the break.point address.

3. Executes a macro (if one was specified when the break.point
was set). Depending on the macro, the debugger will do one
of the following:

If the macro return value is true (nonzero), the debugger re
sumes execution starting at the instruction where the break
occurred and displays break information.

If the macro return value is false (zero), the debugger re
turns to command mode without executing the instruction
where the break occurred.

4. If a macro was not specified, MWX-ICE returns to command
mode without executing the instruction where the break
occurred.

Software breakpoints and trace.
Trace memory shows the processor fetches and execution from
the address a software instruction break.point is set to. It is the
illegal instruction that is fetched and executed, not the
instruction in your code. Also, the raw trace display may show
extra fetches that result from filling the CPU pipeline. The
break has occurred at the specified point, as is shown by the
instruction pointer.

MWX-ICE User's Manual (Windows)

Working within the limits

SuperTAP BXX

Instruction breakpoints consume system resources. In general,
the emulator manages these resources, warns you when it
makes adjustments, and presents an error when resources are
exhausted or when you attempt something that creates a
conflict. So you need not concern yourself with more than the
following general guidelines.

a The system can manage up to 10 access breakpoints (ba, hr,
bw). System resource are shared with the event system so
the actual number of breakpoints available may vary.

a An instruction breakpoint resource is used for each
instruction in an address range.

a Software breakpoints must occur in writable memory, either
target RAM or emulator overlay RAM or ROM.

a Instruction breakpoint addresses must fall on instruction
boundaries. Misaligned addresses will cause code
corruption. Use the printsym.bols or disassemble
commands to evaluate instruction addresses.

a If you are setting instruction breakpoints or temporary
breakpoints, the bptype option must be set to choose.

a There are four on-chip instruction breakpoints. The on-chip
breakpoints can be set in target ROM.

6-17

-

I Chapter 7

Using the Event System
This chapter covers the conditional control features of
MWX-ICE when used with the SuperTAP event system.

The basic breakpoints feature and the event system can both be
used to control emulation for insight into code execution and
target function. Compared to basic breakpoints, the SuperTAP
event system provides additional flexibility both in what can
cause the emulator to intervene in code execution and in what
actions can occur.

Contents Page

Feature overview 7-2

Event system structure 7-3

Event system statements 7-7

Using the event system 7-13

Event system operation 7-23

Event system resources 7-26

Additional information 7-28

7-1

Feature overview

7-2

The emulator provides a powerful state machine that monitors
the processor bus and the emulator's own counters, groups, and
states. The system can track deeply nested sets of conditions,
including recursive and reentrant code sections. These features
provide powerful debugging capabilities for software debug
ging and for hardware/software integration.

o Up to 32 when/then statements can be defined at any time.
o Four event groups and four states provide the logical

structure necessary for tracking deeply nested bugs.
o The event system includes four counters that can be

monitored and controlled. Two of the counters are the
processor's on-chip counters.

o Trace collection can be selectively controlled.
o Memory and register values can be monitored and modified.
o Emulation can be stopped before or after instruction

execution.
o The event system can respond to or produce an external

trigger signal, which can be used to trigger external devices
such as logic analyzers or daisy-chained emulators.

MWX-ICE User's Manual (Windows)

Event system structure

SuperTAP SXX

The event system provides access and execution break control.
It allows you to monitor a predefined set of conditions, called •
events, and then perform emulator actions based on those
conditions by forming "when/then" statements.

The event system monitors emulator functions and target
information at the bus cycle level, including every read or write
cycle that the microprocessor executes, until the defined
condition is encountered. When a defined condition in any
active when/then statement is encountered, the emulator takes
the specified action.

Up to 32 when/then statements are supported. When/then
statements are active in all four event groups unless tied to a
specific group when the statement is defined. Commands are
provided to manage which group and which statements are
active at any given time. Additional commands are provided to
manage features used by the event system, such as the
counters, and trace capture system.

7-3

EVENTS comparisons
(inputs) ACTIONS

(outputs)

Address

Data

Status

Memory

Register

Trace

II routine
Trigger-in

Counter#

State

Group

Figure 7-1 Event system structure

7-4 MWX-ICE User's Manual (Windows)

Event system commands
The following commands are used to define, control, or display
event system statements.

To Command Abbreviation

Define when/then when wh
statement.

Disable when/then whendisable whend
statement.

Enable when/then whenenable whene
statement.

Display or save event whenlist whenl
system setup.

Clear when/then statement whenclr whenc
or setup.

Display/specify event group group
active at run.

Attach a named macro to a breakcomplex be
when/then break action
statement.

Set/clear event system state
state flags.

The commands above are documented in Help.

Setting event system options

SuperT AP BXX

You can configure event system options using the either the
Command window or the Event configuration dialog box. These
options are used to control or display the state of event system
counters, display or set the current active group or state, or
select the multiplexed signals that can be used as inputs to the
trace and event systems.

7-5

7-6

:> To open the Event dialog box

1. From the Windows menu, choose Emulator Configuration.

2. In the Emulator Configuration window, click Event.

LvJ mwx-icest860 - Event

Signal gra.p B lllUX selection: ._I _..-IRO-...r2 -s.-1 _ _...c...,!

State:

Couiter •

1:

2:

Value Initial Value

I 0 I I Use Cirrent Value at R1"1 Cl I

~ I Use Cirrent Value at Rl"1 Cl I

Gichip Couiter • Value

A: ~

B: ~
~!Restore Value! leance!I ~

Figure 7-2 The Event dialog box.

:> To set event options

• In the Event dialog box, select items from the option menus
or enter values, then click the Apply button.

You can leave the Event dialog box open while you create
your event system statements.

--or-

• From the Command window, type the name of the command
and press return.

MWX-!CE User's Manual (Windows)

The following table lists the event system options.

To Command

Display counter n value. ctrn

Set the initial value of counter n. Only ctrnival
applies to the emulator counters (1, 2).

Display all event state variables. evtvars

Selects which multiplexed signals to use siga_mux
as inputs to the event system (irq[O, 1, 7]
or lsa[O, 1, 7]).

Select which multiplexed signals to use as sigb_mux
inputs to the event system (irq[2:6],
lsa[2:6], wp, pcmcia, dp, rsv).

Display/specify event group active at run. group

Set/clear event system state. state

Event system statements

SuperTAP SXX

The basic event system "when/then" statement is of the form:

when event_expression(s) then action(s)

When the event_expression occurs, the specified actions are
taken. Event expressions and actions may include several
logically related events.

7-7

•

Setting up when/then statements

7-8

The following sections provide an overview of event and action
options. See the Help command descriptions for when, when
events, and then actions for detailed information on when/then
statement syntax and definition.

When event_expression(s)
An event expression is a logical combination of one or more
events. Events can be combined or negated in the event
expression. The following events can be used in an event
expression.

To test when: Use:

An address of the specified value appears on address
the address bus.

The specified counter value is reached in the ctrn
numbered counter. Only applies to the
em~lator counters (1, 2).

The specified data value appears on the data data
bus.

The instruction at the specified address is execaddr
about to be executed.

The specified group is active. groupn

The data at the memory address is as specified memory
and another event condition has been met.

The specified value appears in the register and register
another event condition has been met.

The specified status condition(s) appear on the status
bus.

The 32K trace buffer is full. trfull

MWX-ICE User's Manual (Windows)

To test when: Use:

A TTL trigger input of at least one bus cycle trigin
duration is received via the BNC trigger input
connector on the back of the emulator.

Then action(s)
The emulator performs actions when the defined events are
encountered while running the target system program.
Multiple actions may be listed, separated by commas (,). The
following actions can be used in the when/then statement.

When the event condition is true, to:

Stop program execution either just following
an access or just prior to instruction
execution. You can also specify whether you
want to use on-chip, emulator hardware, or
software breakpoints.

Zero, set to a specific value, increment or
decrement the specified counter.
Note: You can only set, increment, or reset
the emulator counters (1, 2). The on-chip
counters (A, B) can only be decremented.

Change to the specified group.

Zero, set to a specific value, or increment the
specified memory location.

Zero, set to a specific value, or increment the
specified register.

Use:

break
ocbrk
hwbrk
swbrk

ctrnrst
ctrnset
ctrninc
ctradec
ctrbdec

groupn

memrst
memset
meminc

regrst
regset
reginc

Generate a TTL-level signal on the emulator trigout
trigger-out BNC connector.

Call and execute the specified target routine call

SuperTAP SXX 7-9

•

7-10

When the event condition is true, to: Use:

Turn trace capture on or off, or capture a tron/
single cycle. troft7

trone

Examples of when/then statements
Below are examples demonstrating event system when/then
statements. These examples cover commonly used event/action
combinations. Refer to the two tables above for other events
and actions.

a Break emulation when address OxlOO appears on the bus.
when address==OxlOO then break

a Trace only the write cycles to the memory mapped port,
led_port[O].
when ad==(&led_port[O]) && status==wr then trone

a Trace only the write cycles to the memory mapped port,
led_port[O], when written to by a subroutine (outdot in the
example).
when execaddr==outdot then group2
when execaddr==outdot_end then groupl
when group2 && ad==(&led_port[O]) && status==wr then
trone

MWX-ICE User's Manual (Windows}

Valid event/action combinations
Most actions and events can be used alone or in combination.
The exceptions are shown below:

Invalid combinations

when address && execaddr

when event && execaddr then trone
when event && memory then trone
when event && register then trone

when ctrn && ctrn then ...

when execaddr && status
when execaddr && data

when execaddr==start . . end

when groupn then .. .
when memory then .. .
when register then .. .

when groupn 11 groupn

when status mnemonic && mnemonic

superTAP axx

Rules

Do not combine address and execaddr in
the same statement using the AND (&&)
operator. You can OR (11) the two events.

With execaddr, memory, or register
events, do not use trone, tron, troff,
groupn, staten, ctrninc. ctrndec, or
trigout actions.

A statement can include only one counter
event.

Do not combine the execaddr event with
status or data events.

Do not use an address range with the
execaddr event unless you are using on
chip breakpoints (bptype onchip).

The group, memory, and register events
must be combined with another event
using the AND operator(&&). Valid events
are address/execaddr/data/status/
staten/trigin/trfull.

Multiple group events cannot be combined
in the same statement.

Use a vertical bar (I) as the AND operator
when you combine status :mnemonics (do
not use&&):
when status mnemonic I mnemonic ...

7-11

•

Qualifying event system memory accesses

7-12

All address comparisons must specify the transfer size and
addressing mode appropriate for your target.

Address-based comparisons or actions can be qualified using
the address and size commands with the event memory
access type.

ADDRESS EVENT mode Determines whether an address is
interpreted as logical or physical.

Note that this does not apply to on-chip events, which always
use logical addresses. On-chip events are statements that use
ctrxdec or ocbrk actions.

The execaddr and memory events and memory actions can
override the address command setting within their syntax.

To override the address variable setting for the address
event, use the AND operator (&&) to combine it with the
status event.

The following table shows which qualifiers must be set for each
event/action.

Event/ In when/then In command
Action statements, use: settings, use:

address address event physical

execaddr mode: address event mode

memory mode: address event mode
data_grain

where the memory qualifiers have one of these values:

mode logical_ code
logical_ data
physical

logical_ code
logical_data
physical

MWX-ICE User's Manual (Windows)

Event/ In when/then In command
Action statements, use: settings, use:

data_grain /1 /1
12 /2
14 14

Example
Change the value at logical address (logical_code:) OxffeO to
FF (byte= /1) after counter 1is10:

when ctrl==lO then memset logical_code OxffeO=Oxff/1

This could also be done the following way:

address event logical_code
size event 1
when ctrl==lO then memset Oxf f eO=Oxf f

Using the event system

Displaying and saving when/then statements

SuperT AP SXX

The current when/then statements can be displayed or saved
using the whenlist command. To display the statements, use
whenlist with no argument. A numbered list of statements is
displayed.

To save the current when/then statements in a file use
whenlist with the desired filename as an argument. For
example, to save the current when/then statements to a file
named my_events.inc, enter:

whenlist my_events.inc

7-13

•

To use the when/then statements you saved with whenlist,
choose Include Commands from the File menu, and select the
name of the command file. You could also enter the include
command in the Command window:

inc rnyevents.inc

If you want to include a command file each time you start the
debugger, use the Startup Options Editor.

Enabling and disabling when/then statements
When/then statements are automatically enabled when they
are created. They may be temporarily disabled and re-enabled.

Enter: To:

whendisable 3 Disable statement 3.

whendisable 2 .. 4 Disable statements 2, 3, and 4.

whendisable 1, 3, 4 Disable statements 1, 3, and 4.

whendisable all Disables all when/then statements.

whenenable 3 Enable statement 3.

whenenable 2 .. 4 Enable statements 2, 3, and 4.

whenenable l, 3 , 4 Enable statements 1, 3, and 4.

whenenable all Enables all when/then statements.

Clearing when/then statements

7-14

When/then statements can be cleared using the whenclr
command. When an event is cleared, it is removed from MWX
ICE.

Enter:

whenclr 3

whenclr 2 .. 4

whenclr 1,3,4

whenclr all

To:

Clear statement 3.

Clear statements 2, 3, and 4.

Clear statements 1, 3, and 4.

Clear all statements.

MWX-ICE User's Manual (Windows)

Groups

SuperT AP SXX

A group is an exclusive state within the event system defined
by when groupn events and enabled by then groupn actions.
When a group is current, only associated when/then
statements (and any global statements) can cause event
system actions.

Changing groups activates the alternate set of events. Use the
group command during pause to determine which group is
currently active or to change the active group. At each go, the
group specified by group becomes the current group. Other
event groups become current dynamically by switching groups
as a groupn action of the event system.

Figure 7-3 illustrates the relationship between statements and
groups. Statement #6 belongs to all four groups because no
group was included in the statement definition.

#1 when address==end_init && groupl then group2
#2 when group2 && address==conveyer2 then group3
#3 when group3 && address==checkbelts && data==Ox0004

&=Ox4 && status==rd then group4
#4 when group4 && address==be1tjam .. +Ox400 &&

status==rd then ctrlinc
#5 when group4 && ctrl==lOO then break
#6 when trigin then break

7-15

GROUP command

WHEN eventTHEN GROUP2

Figure 7~ Event system groups

7-16 MWX-ICE User's Manual (Windows)

SuperTAP 8XX

Example
As an example of the common use of two groups, you may wish
to trace a subroutine after it has been called by module A or
module B, but not if it has been called from modules C, D, or E.
In this case, you would define a set of when/then statements to
the address ranges of modules A and B. When either of these •
modules is encountered, switch to group2 and look for the
subroutine. After tracing the subroutine, switch back to
groupl.
trsys on
trace off
trinit current
when address==A .. +100 I I address==B .. +80 && group1
then group2
when add.ress==subroutine && group2 then tron
when address!=subroutine && group2 then groupl,troff

General characteristics
a Statements are global (active in all groups) unless tied to a

specific group in the when clause. Notice in Figure 7-3 that
statement #6 appears in all groups.

a Among the four groups, no more than 32 when/then
statements can be defined at one time.

a A group event must be paired with another event to be valid:
when ad==Ox100 .. 0xlff && group3 then tron

-not-

when group3 then tron

a Once a group change occurs, the system remains in that
group until explicitly changed to a new group, even if the
condition causing the group change is no longer true.

a Multiple group events cannot be combined in the same
statement; for example,
when groupl 11 group4

is invalid.

a If you change to a group in which states are also defined, but
do not specify a state as part of the group change action, the
system defaults to state 1.

7-17

States

Counters

7-18

States can be used globally or within groups to create a second
level of comparison. Like groups, states must be associated
with other events to limit application of the event conditions to
those times when the state is active. Unlike groups, states are
only present as an active system resource when defined.

Care must be taken to prevent ambiguous states. This occurs
most frequently when two events can appear on the bus
simultaneously. Consider this example:

when addr==OxlOOO then statel
when status==irqO then state2

If the status comparison and the address comparison ever
occur on the bus simultaneously, the state action is ambiguous.
In such a case, the state actually applied is the one specified in
the latter event statement.

In addition, if you change to a group in which states are also
defined, but do not specify a state as part of the group change
action, the system defaults to state 1.

There are two types of event system counters: emulator, and
on-chip.

Emulator event counters
The 32-bit emulator event counters, counter 1 counter 2, are
used to detect when events have occurred a certain number of
times. The ctrn event tests for a counter value. The counters
can be set (ctrnset), incremented (ctminc), and reset
(ctrnrst) by when/then statement actions.

On-chip counters
The on-chip counters, counter A and counter B, cannot be used
to directly define counter events. Instead, they are defined in
event actions, where they count-down from a preset 16-bit
value (ctradec, ctrbdec). To use these counters you must first

MWX·ICE User's Manual (Windows)

SuperT AP SXX

load the counter with a value. When you use the on-chip
counter action in an event statement, execution breaks when
the counter equals zero. If you do not load the counter with a
starting value, the counter counts down from zero, rolling over
to Oxffff. From there it counts down to zero.

You can only use the on-chip counter action with an address
event, an execaddress event, or an address and data event.

Examples
a In the following when/then statement, counter 1 is

incremented whenever address is OxlOOO:
when ad==OxlOOO then ctrlinc

a In the following when/then statement, emulation stops
when counter 1 reaches OxlO:
when ctrl==OxlO then break

a In the following commands, emulation stops when counter A
is zero.
ctra 10
when ad==Oxfc then ctradec

Related commands
For counter 1 and 2, the ctrnival command sets the initial
state of a counter from the command line. At pause to run
transitions the counter can be reset to zero or it can retain its
current value. The ctrn command displays the current counter
value. You can use the ctrn command to load the on-chip
counters A and B.

General characteristics
a A when/then statement cannot contain two different counter

actions. Use separate statements for the counter events.
a If you use the on-chip counter action with an execaddress

event, then execution breaks when the counter value is one.

7-19

•

Memory and registers

External triggers

7-20

The event system can monitor and change memory and register
values.

Memory and register events are always used in combination
with other events. Valid events are address/data/status/
staten/trigin/trfull. This allows you to check for the value of
a memory location or variable, or a register after another set of
conditions has been met.

Memory and register values can be changed as an event system
action.

To:

set a memory value to zero

increment a memory value

set a memory value to a new value

set a register value to zero

increment a register value

set a register value to a new value

Use:

memrst

meminc

memset

regrst

reginc

regset

Each read or write to a memory location or a register requires
a run-pause-run transition. For th.is reason, associating these
events or actions with frequent events affects real-time
operation. See page 7-23 for an discussion of real-time
operation.

Trigger input
Event system trigger events are true when a TTL-level trigger
input of at least one bus cycle duration is received via the BNC
trigger input connector on the back of the emulator.

MWX~ICE User's Manual (Windows)

Trigger output
The event system provides one TTL-level trigger output to
generate a pulse at an external BNC connector when an event
becomes true. The BNC connection may be used to trigger
another emulator, an external scope or a logic analyzer on an
emulator event. Normally, the voltage level on this connector
will be high (+5V); an active trigger will drive the voltage low
for a minimum of one CPU bus cycle.

Examples
a To program the event system to output a trigger signal when

address Ox34 is on the bus, enter the following:
when address==Ox34 then trigout

a To program the event system to trace once cycle when a
trigger input is detected, enter the following:
when trigin then trone

Attaching macros to event system breakpoints

SuperTAP 8XX

The breakcomplex (be) command associates a macro with an
when/then statement that uses the break action, creating a
'complex' breakpoint.

Examples
Determine the when/then statement number by entering
whenlist to display the numbered list of when/then
statements:

1. when ad==OxO .. 3ff then group2
2. when ad==Ox9000 && status=wr then break
3. when ad==Ox9000 && data==Oxfffe then break

a To invoke my_macro after the break action in when/then
statement #2, enter:
breakcomplex 2 ;my_macro()

a To execute a trace-dumping macro, dumptrc(), after the
event system access break on the address plus data value in
statement #3, enter:
breakcomplex 3 ;dumptrc()

7-21

•

7-'22.

Complex breakpoint process
With a complex breakpoint, each time the specified event
system break is encountered, the debugger:

1. Completes the execution of the instruction at that location.

2. Suspends program execution.

3. Executes the macro. Depending on the macro, the debugger
will do one of the following:

If the macro return value is true (non-zero), the debugger re
sumes execution at the instruction immediately after the
break.

If the macro return value is false (zero), the debugger re
turns to command mode and displays break information.

MWX-ICE User's Manual (Windows)

Event system operation

Break action latency

Real-time operation

SuperT AP axx

Several factors determine the number of cycles beyond a break
action that the processor may run before it stops. Processor
speed, the complexity of the instruction being executed at the
time a breakpoint is detected, the DPI clock frequency, and the
type of memory being used can all affect how great this latency
maybe.

For a break action caused by an execaddr event, the break
occurs before the instruction is executed.

For a break action caused by all other events, the break is
initiated in the next bus cycle after the event occurs. Several
additional bus cycles may occur and show in raw trace as a few
additional frames of trace beyond the break condition.

The break signal appears in trace memory where the break is
initiated. The bus cycles occurring prior to completion of the
break action follow the break request, and are marked with
the letter B in raw trace.

On-chip access breaks (ocbrk) occur immediately after the
load/store instruction has been executed.

Many event system statements are processed in real time. For
certain event and action combinations, the emulator requires a
run-pause-run transition to test the event or perform the action
specified by a when/then statement. During this time, real
time execution is affected.

The rte command controls whether real-time operation is
enforced. When rte is on, when/then statements that impact
real-time execution cannot be defined. If any non-real-time
events are enabled, rte cannot be set to on. Disable or clear any

7-23

•

7-24

non-real-time events before turning rte on. During dynamic
run mode (drun), when/then statements may be entered and
processed.

The following table shows which event/action combinations re
sult in real-time or non-real-time operation. Not all combina
tions are valid; see "Valid event/action combinations" on
page 7-11 for exceptions.

these
events

address
data
status
groupn
staten
tr full
trigin

execaddr

memory
register
ctrn

all

execaddr

combined with
these actions result in

trigout real-time
trone/tron/troff operation
break/ocbrk/hwbrk/swbrk
groupn
ctrnrst/ctrnset/ctrninc

break

trigout
trone/tron/troff
break/ocbrk/hwbrk
ctradec/ctrbdec

memrst/memset/meminc
regrst/regset/reginc
call

all actions EXCEPT
break

real-time
operation

non-real-time
operation

non-real-time
operation

non-real-time
operation

Memory and register events, which must be paired with
another event, are not evaluated until the other event is true.
To extend real-time operation, avoid pairing memory and
register events with events that are always true or with other
non-real-time events.

MWX-ICE User's Manual (Windows)

Address events for code accesses

On-chip caches

SuperTAP SXX

When using an address event for a code address that is in a
cached region, the address will appear on the bus during a
pref etch. When this occurs, the specified actions will begin.
This occurs prior to execution of the code. Actions will occur
even if the code at address is never executed.

When the processor on-chip instruction and data caches are
used, you must make sure that instruction or data show cycles
enabled, or the instruction/data caches will cause some access
(address and data) events to be missed when cache hits occur.
If copy back caching is enabled for the data cache, access events
may trigger in sections of code having nothing to do with the
access; it is just where the processor decided to copy back the
cached data to memory. In MWX-ICE, you can use the
showinst command to enable instruction show cycles
(showinst indirect). The data show cycles are enabled by
setting the DSHW bit in the processor's SIUMCR register.

7-25

Event system resources

Resource allocation

7-26

The event system uses both hardware, software, and on-chip
resources to test for and act on the events you define. The same
emulator resources are used to support both breakpoints and
the event system.

MWX-ICE allows up to 32 when/then statements to be defined.
Depending on the events and actions specified, different
numbers of emulator resources are required by each when/then
statement.

In general the emulator manages these resources, wams you
when it makes adjustments, and presents an error when
resources are exhausted or when you attempt something that
creates a conflict. Only if you are frequently exhausting
resources do you need to review the information in this section.

Definitions
The following terms are used to explain hardware resource
allocation. The term ads.event stands for an address, data,
status event.
ads.event

Any event expression that uses the AND operator(&&) to
combine address, data, or status events. Event expressions
that are combined using the OR operator (I I) are considered
to be separate ads.events. For example, four ads.events are
shown below:
when ads.eventl I I ads.event2
when ads.event3
when ads.event4

simple ads.event
An ads.event with no address/data ranges or negations. For
example:
when ad==Ox0034 &=OxOOff
when status==rd

MWX-ICE User's Manual (Windows)

SuperTAP BXX

when ad==OxfeOO && status==rd
when ad==OxfeOO && data==Ox5555 && status==rd

complex ads.event
An ads.event with address ranges or negations. For example:

when ad!=OxfeOO .. Oxfeff && status==rd •

hardware event comparator
Hardware comparators in the emulator used for detecting
when/then statement address, data, and status events and
access breakpoints.

Resource allocation
a The system makes available 16 hardware event

comparators.
a Simple ads.events use one event comparator.
a Complex ads.events that include only ranges, use two event

comparators.
a Complex ads.events that include address/data negations

with no mask and a status event, use four event
comparators.

a Complex ads.events that include address/data negations
with a mask and a status event, use multiple event
comparators, depending on the mask value.

a Only enabled when/then statements, whether global (no
group in the when clause) or associated with a single group,
use hardware event comparators.

a Access breakpoints (ba, br, bw) consume an event
comparator, limiting the comparators available for event
system use.

a A total of 50 breakpoints or events can be defined.
a Up to 10 access breakpoints can be defined.
a Up to 32 event statements can be defined.
a Up to 16 actions can be included in a single when/then

statement.

7-27

Using resources wisely
Cl When/then statements are automatically enabled when

defined. Use whendisable to disable any when/then
statement that does not apply to the current portion of the
debugging session. Use whenenable to re-enable when/
then statements.

Cl If event resources run short, save (whenlist filename) and
clear (whenclr) any when/then statement that does not
apply to the current portion of the debugging session. This
frees its allocated resources for other events.

Additional information

7-28

Cl The tutorial in Chapter 10 offers additional practical
examples.

Cl Help provides detailed descriptions of all the commands
mentioned in this chapter, as well as structured "browse
sequences" that organize the Help topics by subject.

MWX-ICE User's Manual (Windows)

I Chapters

Support for MPCBXX Registers
The SuperTAP system enables display and modification of all
MPC8XX family registers.

Contents Page

Using the set of initialization registers 8-2

Support for MPC8XX family registers 8-9

Viewing and modifying MPC8XX family registers 8-10

8-1

Using the set of initialization registers
The Supe:rTAP maintains a copy of the values stored in some of
the processor's chip-select and pin assignment registers. This
copy is called the set of initialization registers, or INrrREGS,
because it is used whenever you resume operation after a
target-generated or MWX-ICE command-driven processor
reset. The INITREGS must match the values that the processor
chip-select and pin-assignment registers have after you run
your initialization code.

Why do I need to set up the INITREGS?

8-2

The INITREGS feature provides a way of decoding the
multiplexed control pins, disabling the software watchdog
timer, and malting MWX-ICE memory operations possible
immediately after a processor reset. For these reasons, you
must specify the INITREGS at the beginning of each session as
described in the following sections.

Because the processor multiplexes several control signals on
the same pin, it is difficult to determine what functions the pins
have been programmed for. The processor's chip-select and
pin-assignment registers provide the information needed to
decode the control pins and address lines, but they are
unavailable while the processor is running. In addition, these
registers are cleared whenever the processor is reset.

Note that, when discussing the initial registers, there are two
items which are being saved: the list of registers to manage,
and the list of the values of those registers. In most contexts
below, the discussion will focus on manipulating the list of
values, except where noted. Unless you specify a different list
of registers, the system-default list will be used.

MWX-ICE User's Manual (Windows)

How do I turn the INITREGS feature on or off?
In the command window, type the command initregs on to
enable this feature (the default is on). Once you have set up the
INITREGS for your target, you should leave this feature on
except when you are debugging the boot code itself. The
command initregs off disables this feature.

How do I see the current "state" of the INITREGS feature?
Enter the command initregs (without an argument) to show
the current state of this feature.

Where are the INITREGS values stored?

SuperTAP 8XX

When you use the initregs save command, MWX-ICE reads
the processor registers and creates an internal copy of the •·
registers and then saves the register values to the file specified,
or to the default file, if no file was specified. You can edit this
file to change values, or to add or remove registers from the list.
You should use care when editing this file, however, as some of
the registers can only be written once, and the order the
registers appear in the file can be important. For example, the
UPMx registers should be initialized before the MxMR is
written to turn on DRAM refresh, which immediately uses
UPMx values.

When you save or restore the register values without specifying
a path and filename, MWX-ICE looks in specific directories for
a data file. The name of the file is iregsxxx.dat (where the xxx
is replaced by your processor type: 860, 821, and so forth).
When the INITREGS feature is enabled (on), MWX-ICE
automatically uses the registers and values from this file.

MWX-ICE searches the directories for the INITREGS data file in
the following order:

a current_directory \ amc \ ST8XX \ iregsxxx.dat
a $XRAYMASTER \amc \ST8XX\ iregs.xxx.dat
a C:\ST8XX\amc\ST8XX\iregsxxx.dat

8-3

How do I set up the initregs?
There are two ways to set up the INITR.EGS:

a Run boot code that sets up the chip-select and
pin-assignment registers, and then copy the processor's
registers into the 1NITREGS.

o Edit a copy of the iregs.ux.dat file to have the correct
values for your target. You can then restore the INITREGS

from this file.

Running boot code in ROM
If you have startup code in your target ROM, you can run this
code to set up the chip-select and pin-assignment registers.
Once you've run your initialization code, you can then copy the
processor's registers into the INITREGS.

(Note that the following commands work with the
system-default list of registers).

> To set up the initial registers:

1. Set up your environment and start MWX-ICE as described
in Chapter 2. Be sure to read the section "Software watchdog
timer" on page 2-23.

2. Run your initialization code: type go in the Command
window or click the Go button.

3. Click the Stop button.

4. Type initregs on (unless this has already been done).

5. Type initregs save Lfilename] to make a permanent copy of
the initregs in a file.

The file saved is an initregs data file. It can be edited to change
either the list of registers or their values. If you don't specify a
filename, the name iregs.ux.dat is used (where the xx:r is
replaced by your processor type: 860, 821, and so forth). This
file is created in one of the directories listed in "Where are the
initregs values stored?" on page 8-3.

MWX-ICE User's Manual (Windows)

Note ~

SuperTAP 8XX

Editing a copy of the iregsxxx.dat file
If you don't have boot code in ROM to run, you can edit the
initregs file to match your target system. Making a copy of the
default initregs data file is a versatile way to manage your chip
select and pin assignment registers if you need to change them
frequently. Using several initregs data files, you can change
the values for these registers without having to type in a
complete register set each time you want to change them.

The default file is called iregsxxx.dat.def (where the xxx is
replaced by your processor type: 860, 821, and so forth). The
default file is located in install_dir \ amc \ STSXX. The original
.def file should never be modified. This file sets up the registers
for isolation mode. In isolation mode the SuperTAP is not
connected to a target. In the same directory, there are three II·
other initregs files: iregs860.dat.ads and iregs860.dat.amc.
These files set up the registers for use with the Motorola ADS
board and the Applied Microsystems test target. To use those
files, just make a copy of them with the name iregs860.dat.
The third file is iregs860.dat.all; it lists almost every
configuration register for the MPC860. To use this file, read the
comments in the file and edit it as necessary. Then make a copy
with the name iregs860.dat.

Use the following steps to edit the .dat files.

>- To edit the INITREGS data file:

1. Copy the default iregsxxx.dat.def file and save it as
iregs.ux.dat in the install_dir\amc\STSXX directory.

2. Edit the iregsxxx.dat file as plain (ASCII) text with any
text editor or word processor.

3. Define each register on a separate line.

8-5

8-6

Choose the registers and values appropriate for your system.
To add comments, begin a line with the pound sign(#).

MPC860 Initregs file
Isolation mode setup.
Customize for a specific target

Turn off the MPC860 internal
software watchdog timer
SYPCR=Oxffffff80
Set the Recoverable Interrupt
so that maskable breaks work
MSR=Ox42

4. Save the file as plain ASCII text.

With the initial-register feature enabled (initregs on), the
file iregsx.xx.dat is automatically loaded following a reset.
You can also save the file using a different filename. If you
use a different filename, you need to reload the register val
ues explicitly using the initregs restore command.

Restoring the initial-register values
If you've set up and saved the INITREGS for your target using
the default filename for your processor (iregsxxx.dat), you
won't need to explicitly restore the values from the file as long
you've set initregs on and saved your configuration using
consave or the Emulator Configuration window.

If you've used a filename or path that is different from the
default you'll need to restore the values from the file using the
initregs restore command. Once restored, those registers and
values are used following a processor reset.

>- To restore the initregs:

1. If you haven't already done so, enable the initregs feature.
From the Command window, type initregs on

2. Type initregs restore filename

3. Reset the processor, type reset in the Command window.

MWX-ICE User's Manual (Windows)

Be sure to use initregs restore command instead of the
include command to restore lNITREGS.

Using the initregs command

SuperTAP BXX

The initregs command controls the updating of the system
interface unit (SIU) registers, and others, from the lNITREGS

after an MWX-ICE reset command or a target-generated
processor reset. Once you have initialized your INITREGS, leave
the feature enabled (initregs on) unless you are debugging the
boot code itself.

Syntax

initregs [option]

The options to the command are as follows:

Option

off

on

<none>

save

restore

Description

After a processor reset, the registers come up
in their default reset state. No attempt is
made to reprogram them.

Loads the lNITREGS values into the processor
upon a processor reset. This is the default.

Shows whether or not the feature is enabled.

Writes the INITREGS to a file. Does not affect
the processor's register values.

Reads INITREGS from a file. Does not affect
the processor's register values. This option is
the only way to change the list of registers
from the default list.

8-7

•

8-8

Enabling the INlmEGS feature
You can enable the initregs feature from the command line
while MWX-ICE is running.

>- To enable INITREGS

1. Set up and initialize the initial registers as described in
previous sections.

2. From the Command window, type initregs on

3. If you want to program the processor registers with the
INITREGS values, reset the processor by typing reset in the
Command window.

What happens when the INITREGS feature is enabled?
At power up and after an MWX-ICE or target-generated
processor reset, the chip-select information in the processor's
register set is reprogrammed.

With initregs on, the reset sequence is as follows:

1. Reset the processor.

2. Copy all initial registers, if initialized, to the corresponding
processor registers, which enables chip-selects, etc.

Disabling the INlmEGS feature
You can disable the INITREGS feature from the command line
while MWX-ICE is running. To start MWX-ICE with INITREGS
disabled, save the configuration to startup.inc.

>- To disable INITREGS:

• From the Command window, type initregs off

What happens when the INITREGS feature is disabled?
The command initregs off allows the target software to
configure the chip selects rather than having them
pre-configured at reset. This is useful when debugging boot
code.

MWX-ICE User's Manual (Windows)

Support for MPCSXX family registers
MWX-ICE provides direct, point-and-click access to all
registers of the supported processors.

Setting up the register sets

SuperT AP SXX

Before emulating, you must configure the emulator and
debugger for the processor to be used. This also controls which
registers can be accessed.

To begin emulation, you must select the correct processor at
MWX-ICE startup using the MWX-ICE Startup Options
Editor. The Startup Editor saves your selections to a file
(MWX.CFG is the default file). The debugger looks for this file ••
at startup.

> To configure the processor

1. Click the Start Menu, point to Applied Microsystems, then
point to MWX-ICE SuperTAP, then click, the MWX-ICE
Startup Options Editor.

2. Select the type of processor being emulated from the
Processor list.

3. Specify additional startup options, if needed.

4. Choose OK

8-9

Viewing and modifying MPCSXX family registers

Viewing registers

fSearctil Keywords:

8-10

Register window
Register mnemonics
SETREG

Once a MWX-ICE is configured for the correct processor, you
can use a variety of tools to access the registers.

There are three methods to view registers:

a From the Displays menu, use the Registers menu to bring up
a window displaying the group of registers of interest.
Depending on the processor, you can select among general,
memory control, system control, CPM, MMU, PCMIA, UPM,
and other groups.

a Use the CPU Browser to get error-protected, point-and-click
display and control of all specialized register bits. From the
Displays menu, select CPU Browser; then select the
register(s) of interest.

!J Use the cexpression command to display individual
registers.

Modifying registers during pause
There are three methods for modifying registers:

!J Click the register in the Registers window to bring up a
dialog box that accepts new values.

-or-

!J Within the CPU Browser windows, use the bit-configuration
menus to select options for the registers.

-or-

!J From the command line, use the setreg command to enter a
new value:
setreg @register_name=value

For detailed explanations, see Help for descriptions of the
Registers and CPU Browser window and the setreg command.

MWX-ICE User's Manual (Windows)

Note ~
When the CPU Browser window is open, all entries made using
any register controls are checked for errors. If the new values
are entered using setreg or the registers windows, the value is
applied before the error dialog is presented. If the change is
made using the CPU Browser, the new value is not applied
until you respond to the warning dialog. The exception is an
invalid value that is corrected by the processor core itself.
Invalid entries in some registers do not trigger an warning
because the processor ignores the invalid bits. With rgverify
on, a warning is generated when the value written is not
applied to the register.

Modifying registers during operation

SuperT AP SXX

The event system provides means to test for register values and
to set, increment, or clear registers as the result of specified
conditions. Chapter 7 covers event system features and use.

8-11

•

I Chapter 9

MWX-ICE Command Quick Reference
MWX.-ICE is based upon the Microtec Research XRAY
simulator (XHS). MWX-ICE supports most XRAY commands
and adds commands to support emulation. This chapter lists
the commands by function and indicates which of these
commands are supported by both MWX.-ICE and XRAY and
which simulator commands are not valid in MWX-ICE.

Contents Page

Help 9-2

Session control 9-4

Window control 9-5

Memory and file handling 9-6

Controlling execution and using breakpoints 9-11

Capturing and displaying trace 9-13

Programming the conditional event system 9-15

Displaying status or information 9-17

Emulator configuration 9-19

Diagnostics 9-20

Using macros 9-21

Symbol and expression commands 9-22

Simulating port IJO and interrupts 9-23

Utility commands 9-24

Connection and configuration commands 9-25

XRAY commands not supported in MWX.-ICE 9-26

Check the index if you are unsure of the category for a specific
command. See the following section on Help for information on
how access to complete command descriptions.

9-1

Help

9-2

Complete command descriptions are provided in the online
help system. Command descriptions may be found several
ways:

If you... Do this ...

Don't know the Click Contents
command name Click Keyboard Commands (Functional

Groups)
Locate appropriate functional group
Click command_name
--or-

Click Search
Search for topic, functional name
--or-

Click Contents
Click on appropriate feature/function
Look for commands mentioned within text

Know the Click Contents
command name Click Keyboard Commands (Alphabetical

Listing)
Click command_name
--or-

Click Search
Enter command_name in the Search box
Click Find Topics button
Click command_name
Click Go To button

See Chapter 2 for an overview and for information on starting
Help without starting MWX-ICE.

MWX-ICE User's Manual (Windows)

Command groups

Entering commands

SuperTAP axx

Each category begins with a brief description of the functions
of that group. The full command name is bulleted at the left.
The description and syntax column provides a brief
explanation of the commands function and a full expression of
all syntactical elements. If an abbreviation exists for the
command, it is used in the syntax example. Because not all
commands can be used with MWX-ICE or the XHS simulator,
identifiers (•) are placed in the columns that apply.

From the Command window, you type MWX-ICE commands in
the Enter Command box and then click the Enter Command
button or press <Return>. Any combination of upper-case and
lower-case letters can be used in commands. Some functions
can also be performed in specialized windows or menus .

9-3

•

Session control

Command

journal

log

mode

option

quit

setstatus dir

setstatus environment

9-4

These commands provide session-level functions.

Description/Syntax

Records a debugger session in a file.
j [/a] [off I on=" filename"]

Records debugger commands and errors in a file.
log [/a] [off I on=" filename"]

Selects debugger mode (high or assembly).
m [high I assembly]

Sets debugger options for this session.
OP [option_name = {value!symbol}]
Options and arguments:
ALIGN={ONIOFF}
ANIMATE={ONIOFF}
CPU=Read-only display of processor
DEMANDLOAD={ONIOFF}
EMULATOR=Read-only display of boot option
FRAMESTOP={ONIOFF}
INCECHO={ON!OFF}
LINES={ONIOFF}
LOADDEFAULTS={LOAD command options string}
RADIX={HEXIDECIMAL}
SYMBOLS={ON!OFF}
TYPECHECK={ONIOFF}

Terminates a debugging session.
Q [y]

Sets the current directory.
ss dir [=new_local_dir]

Overrides the XRAY environment variable.
ss env [= "pathl :path2 :path3"]

MWX-ICE
andXHS

•
•

•

•

•

•

•

MWX-ICE User's Manual (Windows)

Window control

Command

mode

vactive

vclear

vclose

vmacro

vopen

vsetc

SuperTAP SXX

These commands enable configuring, calling up, and
customizing the debugger windows.

Description/Syntax

Selects debugger and display mode (high or
assembly) for active window.
m [high I assembly]

Activates a window.
va {window_number}

Clears data from a window.
ve [window_number]

Removes a user-defined window.
velo [window_number]

Attaches a macro to a window.
vm window_number [, macro_name ()]

Creates a window or changes sizes.
vo [window_number, screen_number,
tr, le, br, re]

Sets the cursor position for a window.
vse window_number, line, column

MWX-ICE XHS

• •

• •
• •

• •

• •

• •

• •

9-5

Memory and file handling

Command

Amddevice

address

asm

compare

copy

ere

disassemble

dnl

dnlfmt

9-6

These commands enable configuration, display and
modification of target and emulator memory and uploading
and downloading of files.

Description/Syntax

Specifies the flash memory to be programmed.
(case-sensitive)
Amddevicel (base_addr, "space", width)
Amddevice2 (base_addr, "space",
by8or16, width)

Specifies logical or physical addresses for
memory accesses.
ADDRESS access_type
[logical_codellogical_datal
physical]

Single line assembler.
asm [org address]
asm [mnemonic [operand][,
operand] ... J

Compares two blocks of memory.
COM [/R] [address_range, address]

Copies a memory block.
COP address_range, target_address

Calculates a CRC for a range of memory.
CRC address_range [/memory_space]

Displays disassembled memory (assembly
mode).
disa [address]

Downloads non-DWARF/ELF hex file to
target.
dnl "filename" [,offset]

Specifies download format.
dnlfmt format

MWX-ICE XHS

•

•

•

• •

• •
•

• •

•

•

MWX-ICE User's Manual (Windows)

Command

dnl_gap

dump

EraseDevice

error

expand

fill

fopen

fprintf

include

initregs

SuperTAP BXX

Description/Syntax

Specifies maximum bytes between contiguous
blocks in downloads.
dnl_gap [0-1024]

Displays memory contents.
du [/b I /w I /l] [address
address_range]

Erases the device identified by Amddevice or
Inteldevice. (case-sensitive)
EraseDevice (J

Sets include file error handling.
er = {quit I abort I continue}

Displays all local variables of a procedure.
exp [stack_level] [, window_number]

Fills a memory block with values.
fil [/b I /w I /l] address_range
[= {expression I
expression_string}]

Opens a file or device for writing.
fo [/a] [Ir] window_number,
"filename"

Prints formatted output to a window or file.
f window_number, "format_string"
[,argument] ...

Reads in and processes a command file.
inc "filename"

Initializes processor chip-select and pin
assignment registers.
INITREGS [ON I OFF]
INITREGS [SAVE [filename]]
INITREGS [RESTORE [filename]]

MWX-ICE XHS

•

• •

•

• •

• •

• •

• •

• •

• •

•

9-7

Command

Inteldevice

list

load

LockDevice

map

mapclr

map list

memvars

overlay

ovreadthru

ovwritethru

Description/Syntax

Specifies the flash memory to be programmed.
(case-sensitive)
Inteldevicel(base_addr,"space",
width)
Inteldevice2 (base_addr, "space•,
by8or16 , width)

Displays source code.
1 [line_number I procedure_name
@stack_level]

Loads an object module for debugging.
loa [/a] [le] [lni] [/np I /sp] [/ns]
absolute_filename [,root]
[&base_addr] [;section
[,section] ...]

Disables flash programming (case-sensitive).
LockDevice ()

Defines a region of overlay or target memory.
MAP address_range I start . . +length
[,mode] [=type]

Clears overlay memory map.
MA PC LR

Displays or saves current memory mappings.
MAPLIST [filename]

Displays memory access variable values.
MEMVARS

Selects target or overlay as memory for
various actions.
OVERLAY access_type [ONIOFF]

Controls whether reads to overlay also go to
target memory.
ovreadthru [ONIOFF]

Controls whether writes to overlay also go to
target memory.
ovwritethru [ONIOFF]

MMC-ICE XHS

•

• •

• •

•
•

•
•

•

•

•

•

MWX-ICE User's Manual (Windows)

Command

reload

RemoveDevice

restart

restore

rgverify

save

setmem

setreg

size

test

UnlockDevice

SuperTAP SXX

Description/Syntax

Reloads absolut.e file image.
rel [/cl [/d] [fr] [root]

Removes flash device specification.
(case-sensitive)
RemoveDevice ()

Resets program counter to the program
starting address.
rest

Restore memory QaIS) and registers CMWX
ICE and XHS) from a file.
resto [save_filename]

Enables verification of writes to registers.
rgver [on I off]

Saves current memory OOiS) and registers
CMWX-ICE and XHS) to file.
sa [save_filename]

Changes the values of memory locations.
sm [/b I /w I /l] address
[={expressionlexpression_string}
[, {expression I expression_string}]
... l l

Changes the contents of a register.
sr @register_name =value

Sets the size for memory accesses.
size [memory_access_type [ll2l4ll

Examines memory area for invalid values.
te [/b I /w I /l] [fr]
[address_range [= {expression
expression_string}]]

Enables flash programming.
(case-sensitive)
UnlockDevice ()

MWX-ICE XHS

• •
•

• •

• •

• •
• •

• •

• • • •

• •

•

9-9

Command

upl

uplfm.t

verify

when

xlate

9-10

Description/Syntax

Uploads non-DWARF/ELF hex file to host.
upl •.filename•, address_range

Specifies upload format: Intel, SREC, XTEK
(extended Tektronics hex).
uplfmt format

Memory read-after-write verify swit.ch.
verify [on I off]

Breaks on memory or register values; alters
memory or register values as an event system
action.
WHEN event && memory address=value
then
WHEN event && register=value then

WHEN event then
memrstlmeminclmemset
address [=value]
WHEN event then
regrstireginclregset
register_name [=value]

Converts logical address to physical address.
XLATE address

MWX-ICE XHS

•

•

•

•

•

MWX-ICE User's Manual (Windows)

Controlling execution and using breakpoints

Command

hp type

breakaccess

breakcomplex

breakinstruction

breakread

breakwrite

clear

drun

dstop

dupdate

SuperTAP SXX

These commands provide basic execution control and access
and instruction breakpoints for initial debugging.

Description/Syntax

Specifies the type of breakpoint
(software, on-chip, or emulator hardware).
bptype [hwlswlonchiplchoose]

Sets an access breakpoint.
BA [address I address_range]
[; macro_name () J

Attaches a macro to an event system break.
BC n ; macro_name ()

Sets an instruction breakpoint.
bi [address I address_range]
[;macro_name () J

Sets a read access breakpoint.
BR [address I address_range]
[; macro_name () J

Sets a write access breakpoint.
BW [address I address_range]
[; macro_name () J

Clears a breakpoint.
cl [breakpoint_number
breakpoint_number_range]

Starts executing and enter dynamic run mode.
DRUN

Exits dynamic run mode.
DSTOP

Starts polling and sets frequency in dynamic
run.
DUPDATE [n]

MWX-ICE XHS

•

• •

• •

• •

• •

• •

• •

•

•

•

9-11

•

Command

go

gostep

pause

poreset

reset

restart

serial_ core

sit

sitstate

step

stepover

9-12

Description/Syntax

Starts or continues program execution.
g [=start_address[,]] [te.np_break
[%%passcount[,]] ...] [;macro_name()]

Executes macro after each instruction step.
gos macro_name ()

Pauses simulation or emulation for specified
seconds.
pa [n]

Resets the processor with a power-on reset.
poreset

Resets PC and synchronizes with target reset.
reset

Resets the program starting address.
restart

Controls serialization of CPU Core.
serial_core [ONjOFF]

Stops in target loop address.
sit [address]

Selects emulation stop method.
sitstate [ONjOFF]

Executes a specified number of instructions or
lines.
s [=start_addr [,value] I value]

Steps, but executes through procedures.
so [=start addr [,value] I value]

MW>C-ICE XHS

• •

• •

• •

•

• •

• •

•

•
•

• •

• •

MWX-ICE User's Manual (Windows)

Capturing and displaying trace
These commands capture bus conditions and display them in
assembly, C-source or mixed source-assembly.

Command Description/Syntax MWX-ICE XHS

drt Displays raw trace. •
DRT [start_line I start . . end_line]

drtdata Limits display of the data bus. •
DRTDATA [NOTALLIALLl

drtfull Displays all fields in trace frames. •
DRTFULL [ONIOFF]

dt Displays disassembled trace. •
DT [startlstart .. end]

dtb Displays disassembled trace from latest to •
earlier.
DTB

dtf Displays disassembled trace from earlier to •
later.
DTF

dxinsert Interleaves raw and disassembled trace. •
DXINSERT[ONIOFF]

• dxlabels Shows symbols for branch destinations. •
DXLABELS [ONIOFF]

ppt Traces peeks and pokes. •
PPT [ONIOFF]

showinst Provides show cycle control. •
SHOWINST [NONEIINDIRECTIFLOWIALL]

siga_mux Selects mQ (O, 1, 7) or External LSA Bits (0, 1, • 7).
SIGA_MtJX [IRQ I LSA]

si.gb_mux Selects ffiQ (2:6), RVS*, DP(0:3), LSAbits (2:6), •
or WP.
SIGB_MUX [LSAIWPIPCMCIAIDPIRSVIIRQ]

SuperTAP SXX 9-13

Command Description/Syntax MWX-ICE XHS

timclk Sets the timestamp resolution. •
TIMCLK
[40nsl200nsllusllOusllOOusllmsllOmsl
lOOms]

trace Dynamically enables/disables trace capture. •
TRACE [ONI OFF]

tr base Specifies offset timestamp base frame. •
TRBASE frame_number

trclr Clears trace buffer. •
TRCLR

trdisp Sets trace display to assembly, source, or both. •
TRDISP [ASMI SRCI BOTH]

trcext Enables external trace cycles •
TRCEXT [ON I OFF]

trframes Displays number of trace frames in buffer. •
TRFRAMES

trinit Selects trace initial state at run. •
TRINIT [ONIOFFICURRENT]

trqual Selects bus or clock cycle capture. •
TRQUAL [BUSICLKIDXQUAL]

trrunclr Enables/disables trace clear-on-run. •
TRRUNCLR [ONIOFF]

trstamp Controls timestamp display in trace. •
TRSTAMP [INTERVAL I OFFSET]

trsys Provides dynamic control of trace subsystem. •
TRSYS [ONI OFF]

tsrch Search trace memory for patterns. •
TSRCH [trace_range] ,
[addr=value[&=mask]]
[&& data=value[&=mask]] [&&

stat=mnemonic]

9-14 MWX-ICE User's Manual (Windows)

Programming the conditional event system

Command

breakcomplex

ctmival

evtvars

group

siga_mux

sigb_mux

state

when

whenclr

SuperTAP SXX

These commands provide the setup and control functions for
the conditional event system provided by the SuperTAP. With
these you can specify nested sequences of possible target
conditions and then trigger various responses.

Description/Syntax

Executes a macro following an event system
break.
BC n ; macro_name ()

Displays counter n value.
CTRn

Specifies initial value of counter n at run.
CTRnIVAL [CURRENTiRELOAD]

Displays internal debugger variable values.
EVTVARS

Displays/selects active event group.
GROUP [n]

Selects IRQ (O, 1, 7) or External LSA Bits (O, 1,
7).
SIGA_MUX [IRQ I LSA]

Selects IRQ (2:6), RVS*, DP(0:3), LSA bits (2:6),
or WP.
SIGB_MUX [LSAiWPiPCMCIAIDPIRSVIIRQ]

Displays/selects active event group.
STATE [n]

Defines a when/then statement.
when event_expression(s) then action
[,action]

Clears when/then statements.
WHENCLR [number [,number
number .. number I ALL]

MWX-ICE XHS

•

•
•

•

•

•

•

•
•

•

9-15

•

Command Description/Syntax MWX-ICE XHS

whendisable Disables when/then statements. •
WHENDISABLE [number [, number
number . . number I ALL]

whenenable Enables when/then statements. •
WHENDISABLE [number ['number
number . . number I ALL]

whenlist Displays when/then statements. •
WHENLIST [filename]

9-16 MWX-ICE User's Manual (Windows)

Displaying status or information

Command

disassemble

down

dump

emuvars

evtvars

expand

fopen

fpri.ntf

hwconfig

list

memvars

SuperT AP SXX

These commands write information to a window or file to
monitor the status of the various features of the program,
emulator, or debugger.

Description/Syntax MWX-ICE XHS

Displays disassembled memory (assembly
mode).
DISA [address]

Moves down specified number of stack levels.
DOW [levels]

Displays memory contents.
DU [/B I /W I /L] [address
address_range]

Displays emulator variable values.
EMUVARS

Displays event system variable values.
EVTVARS

Displays all local variables of a procedure.
EXP [stack_level] [,window_number]

Opens a file or device for writing.
FO [/A] [/R] window_number,
"filename"

Prints formatted output to a window or file.
F window_number, "format_string"
[,argument] ...

Displays hardware name and version.
HWCONFIG

Displays source code.
L [line_number I procedure_name
@stack_level]

Displays memory access variable values.
MEMVARS

• •

• •
• •

•

•
• •
• •

• •

•

• •

•

9-17

•

Command

mode

monitor

nomonitor

printf

printsymbols

printtype

printvalue

status

tgtmode

up

xicevars

xlate

9-18

Description/Syntax

Selects debugger mode (high or assembly).
M [HIGHIASSEMBLYJ

Monitors variables.
MON [/H I /S I /TJ {expression I
expression_range}
[;display_line I ;display_line_range
[, display_line_range] ... J

Discontinues monitoring variables.
NOMO [number I number_range]

Prints formatted output to Command window.
PRINTF • format_string" [,argument]

Displays symbol information.
PS [/Cj /DI /El /Fj /Ml /RI /Tl /W]
[name [* J J [\ I \ \ I * J

Displays symbol type.
PT symbol_name

Prints the value of a variable.
P [/H I /S I /Tl {expression
expression_range}

Shows the status of the debugger or target.
STAT [ALL I XRAY I HELP I SEARCH]

Displays target connection mode.
TGTMODE

Moves up stack specified number of levels.
UP [levels]

Displays internal debugger variable values.
XICEVARS

Converts logical address to physical
address.
XLATE address

MW>C-ICE XHS

• •

• •

• •

• •
• •

• •
• •

• •
• •
• •
•

•

MWX-ICE User's Manual (Windows)

Emulator configuration
These commands control the basic operation of the emulator.

Command Description/Syntax MWX-ICE XHS

be lock Enables the buffering of CLKOUT. •
bclock [onloff]

bte Enables/disables emulator bus timeout. •
BTE [ONIOFF]

emuvars Displays emulator variable values. •
EMUVARS

isomode Enables/disables isolation mode. •
ISOMODE [ONIOFF]

po reset Resets the processor with a power-on reset. •
pores et

reset Resets PC and synchronizes with target RESET. • •
RESET

rte Enables/disables realtime enforcement. •
RTE CONIOFF]

ran_poll Sets number of polls per second during run. • • RUN_POLL [n]

ran_ time Sets maximum run time before forcing a break. •
RUN_TIME [n]

sit Stops in target loop address. •
SIT [address]

sitstate Selects emulation stop method. •
SITSTATE [ONIOFF]

SuperTAP BXX 9-19

Diagnostics

Command

diagO

diagl

diag2

diag3

diag4

diag5

diag6

diag7

diag8

9-20

These commands provide a variety of diagnostic routines for
target testing.

Description/Syntax MWX-ICE XHS

Simple target ram test. •
DIAG 0,address_range [#count]

Complex target ram test. •
DIAG 1,address_range [#count]

Continuous reads from target memory. •
DIAG 2 , address_range

Continuous writes to target memory. •
DIAG 3,address_range=data

Writes alternating pattern to target memory. •
DIAG 4,address_range=data [=alt_data]

Continuous writes of rotating data value to •
target memory.
DIAG 5,address_range=data

Continuous writes with read-after-write. •
DIAG 6,address_range=data

Writes incrementing value to target memory.
DIAG 7 , address_range

Sends continuous stream of reset pulses.
DIAG 8

•

•

MWX-ICE User's Manual (Windows)

Using macros

Command

breakaccess

breakcomplex

breakinstru.ction

breakread

breakwrite

define

error

include

show

vmacro

SuperT AP 8XX

The macro commands define and display macros.

Description/Syntax

Sets an access breakpoint.
BA [address I address_range]
[; macro_name () J

Attaches a macro to an event system break.
BC n ; macro_name ()

Sets an instruction breakpoint.
BI [address I address_range]
[; macro_name () J

Sets a read access breakpoint.
BR [address I address_range]
[; macro_name () J

Sets a write access breakpoint.
BW [address I address_range]
[; macro_name () J

Creates a macro.
def [macro_type] macro name
([parameter_list])
[param_defini ti ons]
{

macro_body
}

Sets command file error handling.
error=[quit I abort I continue]

Reads in and processes a command file.
include "filename"

Displays the macro source.
show macro_name () [, window_number]

Attaches a macro to a user-defined window.
vmacro window_number [, macro_name () J

MWX-ICE XHS

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

9-21

•

Symbol and expression commands

Command

add

browse

cexpression

context

delete

expand

printsym.bols

printtype

printvalue

scope

9-22

These commands add, remove, and display symbols and
expressions.

Description/Syntax MW>C-ICE XHS

Creates a symbol.
ADD [type] symbol_name [&address]
[=value [,value] ...]

Displays class inheritance information.
BROWSE symbol_name

Calculates the value of an expression.
C expression

Shows current context.
CONT [/F]

Deletes a symbol from the symbol table.
DEL { symbol_name I \ \ I \ } [, y]

Displays all local variables of a procedure.
EXP [stack_level] [, window_number]

Displays symbol, type, and address.
PS [!Cl !DI /El /Fl /Ml /RI /Tl /WJ
[name[*]] [\l\\l*J

Displays high-level symbol information.
PT symbol_name

Prints the value of a variable.
P [/H I IS I /Tl {expression
expression_range)

Specifies current module and procedure scope.
SCOPE [/F I root_name\\ I
[root_name\\] module_name I
[[root_name\ \] module_name\]
{procedure_name I (expression)
@stack_level I #line_number)]

• •

• •

• •

• •
• •

• •

• •

• •
• •

• •

MWX-ICE User's Manual (Windows)

Simulating port 110 and interrupts

Command

din

dout

in port

outport

pause

rin

rout

SuperT AP BXX

These commands enable simulation of interrupts and of input
and output to and from port.

Description/Syntax MWX-ICE XHS

Displays input port buffer values. • •
DIN [port_addr I port_addr_range]

Displays output port buffer values. • •
DO [port_address I
port_address_range J

Sets or alters input port status. • •
INP [/B I /W I /L] port_address
[, input_source]

Sets or alters output port status. • •
OU [/B I /W I /L] port_address
[, output_destination]

Pauses simulation for specified seconds. • •
PA [n]

Rewinds input file associated with input port. • •
RI port_address

Rewinds output file associated with output port. • •
ROU port_address

9-23

II

Utility commands ·
The utility commands perform miscellaneous operations.

Command Description/Syntax MWX-ICE XHS

alias Substitutes XRAY command name with • •
another.
AL [alias_name [= [definition]]]

status Shows the status of the debugger or target. • •
STAT [ALL I XRAY I HELP I SEARCH]

:date Converts logical address to physical address. •
XLATE address

9-24 MWX-ICE User's Manual (Windows}

Connection and configuration commands

Command

conclear

condelete

config

conlist

connect

consave

disconnect

SuperTAP 8XX

These commands provide an alternative way of defining and
saving emulator connections and configurations.

Description/Syntax

Clears all defined connections.
CONC

Deletes a defined connection.
COND symbolic_name

Configures a connection.
CONF [symboli c_name, ETHERNET,

hostname]

Lists all defined connections.
CONL

Connects to the specified emulator connection.
CONN [/FO] symbolic_name

Saves the emulator connection and
configuration.
CONS [/A I /O] [filename]

Disconnects from the emulator.
DISC

MWX-ICE XHS

•

•

•

•

•

•

•

9-25

•

XRAY commands not supported in MWX-ICE
The following commands are not supported in MWX-ICE.

9-26

Command

analyze

find

history

host

ice

interrupt

next

no ice

no interrupt

nomemaccess

printanalysi.s

printprofile

profile

ram.access

romaccess

setstatus event

setstatus qualify

setstatus read

setstatus trace

setstatus trigger

setstatus verify

setstatus write

MWX-ICE User's Manual (Windows)

Super TAP SXX

Command

startup

status buffer

status event

status qualify

status trace

status trigger

•

9-27

I Chapter 10

MWX-ICE Tutorial
This chapter introduces you to the MWX-ICE debugger
interface, demonstrates the use of many commands commonly
used in a debug session, and provides practical examples for
using the emulator in common debugging situations.

The last part of the tutorial covers the basics needed to prepare
code for an embedded system application.

It is assumed that you have already set up the emulator
(Emulator Installation Guide), installed the MWX-ICE
software, and set up your environment (Chapter 2 of this
manual).

Contents Page

How to use this tutorial 10-2

MWX-ICE debugger 10-3

Debugger basics 10-5

Typical debugging operations 10-12

Using the SupetrAP - practical examples 10-57

Before starting the tutorial, make sure that MWX-ICE is
properly installed, with all its default settings, in the
installation directory on your local hard disk.

10-1

•

How to use this tutorial

Tutorial program
The program CDEMON.ELF is used throughout the tutorial.
This file was built on a Sun host, but it can be used without
problems by the MWX-ICE debugger for Windows.

User-entered commands

10-2

Throughout the tutorial, an arrow in the margin indicates a
procedure that you need to follow. For example, the following
procedure asks you to enter the context command. Note that
when you are asked to enter a command, you need to switch to
(activate) to the Command window.

> Example of a command for you to enter

• In the Enter Command box, enter:
context

MWX-ICE allows most commands to be abbreviated. The
abbreviated command is used whenever possible.

> An example of the abbreviated form of the
"context (cont)" command

• In the Enter Command box, enter:
cont

Many of the commands used in the tutorial can also be
executed by activating debugger command buttons, menus,
and notebooks. These alternate methods will be noted in
brackets following the command line syntax.

All the MWX-ICE commands used in the tutorial are covered in
depth in Help. A command quick reference is included in
Chapter 9 of this manual.

MWX-ICE User's Manual (Windows)

MWX-ICE debugger

General description
The MWX-ICE debugger has a windowed user interface.
Commands can be entered in a variety of ways: by typing the
command in a Command window, by clicking a button that
activates the command, by choosing a command from the menu
bar, or by choosing a command from the shortcut menus that
appear in specific windows. You can also use the MWX-ICE
notebooks. The notebooks provide a convenient way of entering
commands: choose the notebook page for the task you want to
accomplish, and fill in the blanks.

Users may find the more intuitive buttons easier to use while
learning the debugger. If a button has a command line
associated with it, that line will be printed in the Command
window when the button is clicked. This shortens the learning
curve for users who may ultimately prefer the speed of the
command line by providing learning reinforcement with each
button click.

Information about navigating the user interface can be found
in Help.

What you need to run the tutorial

SuperT AP SXX

Before you can run this tutorial, you need to follow the
procedures in Chapter 2. You need to define an emulator
connection, connect to it, and then save your configuration.
Also, the first time you connect to the emulator be sure to select
the Force OS Download option (Connections window). This
ensures the emulator control software is correct for the version
of the debugger you are using.

Environment variables
If your software was installed in any directory other than
C: \STS:XX, make sure the XRAYMASTER environment
variable has been set up before you begin this tutorial. To check

10-3

•

Starting the debugger

the path and the environment variables you can type set from
the DOS prompt. If XRAYMASTER has not been set up or you
are not sure it is correct, please refer to Chapter 2 and set it
now.

>- To start MWX-ICE

• See Chapter 2 for startup procedures.

(Inter Cmm.and: J 1.. .. 8

Figure 10·1 MWX-ICE successfully connected to the SuperTAP emulator

10-4 MWX-ICE User's Manual (Windows)

Debugger basics

General description

The following sections demonstrate how to:

a Navigate the user interface.
a Execute commands.
a Shift between Run mode and Pause mode.
a Exit the debugger.

The MWX-ICE debugger has a windowed user interface.
Commands can be entered in a variety of ways: by typing the
command in a Command window, by clicking a button that
activates the command, by choosing a command from the menu
bar, or by choosing a command from the shortcut menus that
appear in specific windows. Also available for command
execution and data entry are interactive debugger Windows
and Notebooks accessed through pull-down menus.

Users may find the more intuitive buttons easier to use while
learning the debugger. If a button has a command line
associated with it, that line will be printed in the Command
window when the button is clicked. This shortens the learning
curve for users who may ultimately prefer the speed of the
command line by providing learning reinforcement with each
button click.

Information about navigating the user interface can be found
in Help.

Navigating the user interface

SuperTAP 8XX

The MWX-ICE debugger has a multi-windowed graphical user
interface (GUI). The main window can display several other
windows at once - such as Command, Code, or Registers - •
but only one window at a time can be active.

10-5

Using the mouse
Left mouse button-Activates windows, selects text (point and
drag), and invokes commands and global menus. Select items
such as file names and directories by double-clicking them.

Right mouse button-Activates pop-up menus for the current
window.

Selecting windows
A window becomes active when you move the mouse cursor into
it and left click once. After that, any time the cursor enters the
window it will become active and a region of the window that
accepts keyboard input will be highlighted.

Resizing windows
You can resize a window by moving the mouse to a comer of the
window, then dragging the comer until the window is the
desired size.

To make a window full-size, click the Maximize button in the
upper-right comer, or click the Control menu button and
choose :Maximize.

Scrolling windows
You can scroll up and down in an active window by left-clicking
the scroll bar's up or down arrows or by clicking the scroll bar's
slider then dragging it to the desired position.

If you are new to :Microsoft Windows 95, please run Microsoft's
excellent tutorial on using Windows standard time-saving
features before you continue this chapter. It takes only a few
minutes, and it will make you productive much faster. In the
Program :Manager menu bar, click Help and then click
Windows Tutorial.

MWX-ICE User's Manual (Windows)

Window tenns and objects

Menus

Go button

Super TAP SXX

Menus are lists of commands or other items you can choose.
Menus are displayed by clicking on the menu name with the
left mouse button. Pull-down menus always display the menu
name. Option menus display the current selection.

Buttons
A command button is a small box with a word or graphic inside
of it on a window. Clicking on the button performs a command.

Text fields
A text field is a long, rectangular box in which you can type
text. To enter text in a field, click the left mouse button inside
the field. A black border should surround the field, and a cursor
should appear inside of it. If a cursor does not appear, then this
field is not an input field.

Icons
An icon is a graphical representation of minimized element.
Clicking on an icon displays the element.

Dialogs
A dialog is a screen that displays options for you to select. It
contains command buttons that let you perform actions as well
A dialog usually opens as a result of a command, performs one
specific function, and closes. For example, the box that appears
when you select Open from the File menu is a dialog.

Dialogs such as the one that appears when you select Open
from the File menu require an action before you can return to
the window. Dialogs such as the File Chooser (described in the
following section) may remain open while you perform a
different task in the window.

Shortcut menus
Context-sensitive shortcut menus appear at the position of the
pointer when you right-click the client area of certain windows.
The commands available on a shortcut menu are duplicates of

10-7

•

[Q]
File Chooser button

the commands on menu bar menus. Which ones appear
depends on where the pointer is when you right-click. The
exercises in this tutorial point you to frequently used shortcut
menus.

Notebooks
Notebooks are sets of options grouped into "pages." The pages
contain options that you can select from; some options require
only a click on or off and others require that you enter a file
name, a symbol name, or value. Each page in a notebook acts
separately and must be "applied" for the selections made on
that page. The pages retain your modifications as you browse
through the notebook, but the options are not added to the
project or tool until you click apply for each page.

Notebooks are really separate programs. Therefore, if you
have a notebook open and then you click anywhere in the
debugger client area, the notebook seems to disappear. When it
does, it is actually still open and running behind the debugger
main window. To display the notebook again, press ALT-TAB.

File/Directory Chooser
The File Chooser button appears whenever you need to enter a
file name or directory. To open the File Chooser, click the File
Chooser button and select an option from the menu that
appears. Previous choices given for the file name or directory
appear at the bottom of this menu in addition to the File
Chooser option.

Executing debugger commands

10-8

Debugger commands can be entered in a variety of ways. You
can:

a Click a toolbar button that activates the command.
a Choose a command from a menu on the menu bar.
a Enter commands and options in a notebook.

MWX-ICE User's Manual (Windows)

SuperTAP SXX

o Choose a command from one of the shortcut menus that
appear in specific windows.

o Type the command in the info bar Enter Command box (but
only when the Command window is active).

The contents of menu bar menus, shortcut menus, and the info
bar are context sensitive; they change, depending on which
window is active. For example, the Enter Command edit box is
visible only when the Command window is active.

Some users naturally gravitate to the menus in the beginning.
To use the menus to enter a command, click the menu you want
and then click the command you want.

You might also find the buttons on the tool bar easy to use
while learning the debugger. Notice that, if a button has a
command line associated with it, that line is printed in
Command window when the button is clicked. Although using
the tool bar can shorten your learning curve, you might later
prefer the speed of the Enter Command box. If you have noted
the commands associate with the buttons, you will be better
prepared to use the command entry box.

>- To enter a command through a notebook

1. From the Notebooks menu, choose the notebook for the task
you want to accomplish.

2. Click a tab on the notebook to select a page.

3. Fill in the blanks and select the options you want.

4. Click the command button for that page.

>- To enter a command from a shortcut menu

1. Click the cursor in a window, a dialog box, or on a field.

2. Click the alternate (usually the right) mouse button.

A small menu pops up, displaying commands that relate to
the object you are working with in the window.

10-9

Most of the exercises in this tutorial suggest you enter
commands through the Enter Command box. Look for the
Enter Command box in the info box, just below the tool bar in
the MWX-ICE window. The Command window needs to be
active for the Enter Command box to be displayed.

> To execute a command using the Enter Command box

1. With the insertion point in the box, type the command.

-or-
Click the button to the right of the box. A dropdown list of
most recently used commands appears. Select the command
you want.

2. Press Enter.

-or-

Click the Enter Command button, to the left of the entry box.

Working in pause mode or run mode

Go button

Stop button

10-10

The SuperTAP emulator operates in one of two modes: run
mode, when the emulator is executing target code, and pause
mode, when the emulator is not executing target code. In run
mode the cursor turns into an animated icon-a "running
man."

> To start run mode

• On the toolbar, click Go.

-or-

• In the Enter Command box, type:
go

> To return to pause mode

• On the toolbar, click Stop.

MWX-ICE User's Manual (Windows)

Exiting the debugger
You can exit the debugger at any time. There are two ways to
exit MWX-ICE:

o From the Command window, type q yin the Enter
Command box.

-or-

o From the File menu, choose Exit Debugger.

Getting debugger Help

SuperTAP SXX

MWX-ICE Help feature is a context-sensitive, hypertext linked
compilation of procedures, reference, and practical tips. It can
be started from any debugger window.

Leave Help running while you go through the demonstration.
You can minimize the application to conserve screen space and
restore it when needed.

~ To start MWX-ICE Help

• From the menu bar, choose Help.

10-11

Typical debugging operations

About the demonstration code

10-12

Cdemon is the Applied Microsystems standard C-language
demonstration program, providing examples of many code and
data constructions used by C programmers. Cdemon is
composed of four major functions running in main(): initial(),
step(), data(), and run(). An Inspector window can be used to
see the output of some of the functions.

The demonstration program is designed to be used without a
target. The SuperTAP emulator runs in isolation mode, and the
program uses the emulator's overlay memory. The Cdemon
include file described below maps overlay memory for you, and
the emulator automatically enters isolation mode when it is not
connected to a target.

For a detailed explanation of the Cdemon demonstration
program, see Appendix C of this manual.

Loading the demonstration code
An include file is simply a file containing debugger commands
that will be executed when the file is loaded by the debugger.
The supplied include file, CDEMON.INC, maps overlay then
loads the Cdemon absolute file from the DEMO subdirectory.

>- Load the demonstration file

1. From the File menu, choose Change Directory.

2. Select the installation demo directory (C:\ST8XX\DEMO)
and click OK

3. From the File menu, choose Include Commands.

4. Select CDEMON.INC, and choose OK

Observe the Command window for SuperTAP status and ex
ecuted commands. As MWX-ICE reads the include file, the
commands are executed. The overlay memory map is dis
played in the View Window. The Cdemon program is down-

MWX-ICE User's Manual (Windows)

!

loaded to the emulator's overlay memory. After the file is
downloaded, the Code window displays the source module,
shown in Figure 10-2. Once the code is downloaded, you can
go ahead and close the View window.

~~~~~~~~~-~~~~~~E~~~~ 
llodo: ~Source 0 .lss.m>iy a 

!r-----::--;;=~~~=s:~~~~;.0=5~~~'--~~~--1-11 
~· V• Cdeaon for ncs•o vers::um 1. o •/I 

I s4 ~= Fil·= oa..on_ cc ~ 
, ** Description, um. .... .....i S4l.os - BliJ>lciDg LED DeaonstMta 
i! 5 ** 

6 •• 'I'he purpose of 'this progroa is to provide o. deaonstro.ti 
~- 7 •• saaple to use with VGrious types of d.buggers. Tb.is pr 
$ 8 •• exercises the: LEDs of the Applied Hicrosysteas Soles De t • 
i~•·.··~F-4 

~ a.aMWXST860(frazzle) .. Command ~n.wNJ\NV' i:.::tEilOO: 
~ ~ section • .sbss' located o.t O.d0000&'74 .• oxeooooact;:"':' 
~ ~ section • .bss • loca.ted at o.x..eooooace .. exeoooo5l:>8 ~ ... 

i~~ra~~ra~ra~WJJA 
~v.;;--'T~IEil@l 
r····························-·--·-··-·-······----·····---·-··-·-· .. ---··-·······--··········-············--·························-·-······-

Figure 10-2 Cdemon demonstration file successfully loaded 

Viewing source-level and assembly code simultaneously 

SuperT AP SXX 

You can choose the Copy This Window command from the 
Displays menu to open multiple instances of a window. In the 
following example, you open two code windows: one window 
displaying source-level and the other displaying assembly. The 
two windows will stay synchronized during all emulator 
operations such as single-stepping, running to breakpoints, 
and restarting the code. 

10-13 

• 



>- Open another Code window and display assembly 

1. Switch to the Code window. 

1. From the Displays menu, choose Copy This Window. 

2. In Mode box of the new Code window, choose Assembly. 

You can arrange the two Code windows for the best viewing, 

shown side-by-side in Figure 10-3. 

.................................................... 
:Uot 
->n1:Uot. char •111 
{ 

if I ..niah_deao l 
.1 .... _..;,.11. 

initiall) 1 

step1l1 
a1:a11, 
"""II• 
re:tuzn O;: 

I• Im. tialize Variclbles • / 
!• S:i.nsrle Step Loop •/ 

,. :C.1:4 ~=---· 
I• - BJ.inkizlg Lecls • / 

, ....•....••..•.......................•............ 
•• Initialise Static VU"iUles ...................................................... 
static ,..,;,a initial (...,id) 

( 

02004: 
fff02008: 
fff0200o: 
fff02010: 
fff02014: 
fff02018: 
fff0201c: 
fff02020: 
fffo2024, 
fff02028, 
fff0202c: 
fff02080: 
fff020&4: 
fff02088: 
fff0208c: 
fff02040: 
fff02044: 
fff02048: 
fff0204c: 
fff02050: 
fff020'-4: 
fff020'-8: 

GD!il 
llPCHO llo<IW.e, c:i-. l'ile: -:• 

08002 s r11 O 
882Wff0 oclii r1, r11, Oxf 
aa.oeoo1 ocliis ru. o. Dxff 
89a'188H oclii r18,r18,Qa 
S.o40fff1 ..a.lis z-2,0,0afff 
8842fd90 oclii r2,r2,0xff 
aeoooooo ..aai r0.o.o..o 
9401ffc0 swu rD. -0..0040 
aeooooo12 dda:i. z0,o,Oa42 
70000124 atasr rD 
a.1200220 ocliis r9,0,0a220: 
e1290000 ori r9,Z"9,0aO 
7dae9Ja..6 •Up>' >-r.r9 
aoeoffff ocliis r4,0,Dxfff 
f084ffOO ori r4,r4,0xff 
90890004 st:w r4, 0..00041 
8o80fff0 ocliis r4,0,0xfff 
88840001 - r4,r4,0a1 
90890100 st:w r4. oxo100 I 
8c80fffO ocliis r4,0,0xfff 

Figure 1().3 Displaying source-level and assembly code 

10-14 MWX-ICE User's Manual (Windows} 



Displaying configuration information 

SuperT AP 8XX 

If you ever need to call Customer Support for assistance, the 
information displayed in the Command window during startup 
and the data returned by two debugger commands can help 
them resolve your call 

If you cannot get past startup, record any messages that 
appear in the Command window. 

> To display operating environment information 

1. In the Enter Command box of the Command window, enter: 

stat all 

The View window lists details about the current operating 
environment, as shown in Figure 10-4. If you have the View 
window minimized as an icon, you'll need to double-click it. 

2. When you are done, close the View window (CTRL + F4). 

j• 

4 •n !~t~tf:i~t.~l~~ilim~~~S~~1~~1~~~~~w.;m1m~%m~·l~ .. t:W~lff~~~~f:m~~~J~l~ • 

Figure 10-4 The "stat air View window 

10-15 

• 



>- To display emulator and debugger configuration 
information 

• In the Enter Command box of the Command window, enter: 
hwconfig 

This lists emulator component, firmware, and software revi
sion levels and installed options in the Command window. 

Modifying and saving debugger startup options and windows 

10-16 

You can change your MWX-ICE and emulator configuration 
options and then save them to the startup include file 
(STARTUP.INC). MWX-ICE uses the startup include file as 
the default configuration each time you start the debugger. 

STARTUP.INC contains definitions of valid devices, a 
connection command, and an include-file set of configuration 
commands derived from the emulator configuration windows. 
You can have several, uniquely named startup files to 
configure the debugger for specific situations. 

Configuration dialogs are provided for 

o Defining emulator connections 
o Execution control 
o Trace system 
o Memory configuration 
o Event system setup 
o File handling 
o MWX-ICE interface options 

MWX-ICE User's Manual (Windows) 



SuperTAP 8XX 

r·····Fi1;·a;;;;n~·-·········· 
r00000000000000000000000000HOH0000000000 

l ~r()ptions 

Figure 10-S Emulator Configuration window 

Displaying current configuration 
>- To display the current MWX-ICE settings 

• Open all the configuration windows. 

--or-

• Execute emuvars, memvars, xicevars, evtvars, and 
options from the Command window. 

Saving the current configuration 
>- To save the current debugger options 

• In the Enter Command box, enter 
cons ave 

--or-

• From the File menu of the Emulator Configuration window. 
choose Save to File. 

This saves the emulator's current configuration either to 
STARTUP.INC or to the file name that you specify. 

For detailed descriptions of all the configuration options, see • 
Help. 

10-17 



Saving window position and fonts 
> To save the startup position of any MWX-ICE window 

• Use the Save Configuration command from the File menu. 

The Save Configuration command saves the window position to 
a file called MASTER.IN!. You can edit this file by using any 
text editor. 

To modify window color, fonts, or mouse configuration, use the 
Windows Control panel. 

Recording and replaying a debug session 

10-18 

Sometimes it may be useful to record the commands used 
during a debug session. 

Recording commands 
Sometimes it may be useful to record the commands used 
during a debug session. The log command (the Log page in the 
Debugger Files notebook) opens a file and saves the command 
line input into the named file. 

> To record commands and save them to a file 

• In the Enter Command box, enter: 
log on=filename.log 

where FILENAME.LOG is the name of the file you want to 
create. 

> To stop recording 

• In the Enter Command box, enter: 
log off 

The debugger stops recording and closes the log file. 

Replaying commands 
You can use the log file as an include file, which the debugger 
loads and executes to recreate a previous debugging session. 
You can load and execute a log file several ways: 

MWX-ICE User's Manual (Windows) 



>- To use the command line 

• In the Enter Command box, type: 
include filename.log 

>- To use the notebook 

1. In the Debugger File notebook, Include page, Filename box, 
type: 

filename.log 

--or-

Click the File Chooser button and choose a file from the box. 

2. In the Specify Handling Mode group box, select one of the 
three handling modes. 

3. Click the Include button. 

Recording commands and their output 
The journal command [Journal page in Debugger Files 
notebook] records both the commands and their output into a 
file. This will be demonstrated later in the tutorial where we 
use the command to save the contents of the emulator's "bus 
cycle trace" memory. 

Convenience features 

SuperTAP SXX 

Command history 
You can display a list of executed commands or recall a specific 
command from the list by clicking on the history icon located 
directly to the right of the Enter Command text box. 

Command aliasing 
The alias command [Alias page in the Symbol Management 
notebook] lets you to assign a different name to a debugger 
command. Preferred aliases can be placed in an "include" file 
and loaded at the start of your debug session 

10-19 

• 



For example, the following command creates the alias Id for 
the load command. 

alias load=ld 

Getting oriented with the code 

10-20 

When starting a debug session you will want to get oriented 
with the code, particularly if the code is not your own. The 
following commands will help you do this. 

Displaying available modules 
A quick display of the names of the source modules available 
for debugging is a good place to start. The printsymbols [Info 
page in the Symbol Management notebook] is an important 
and versatile command with many options for displaying 
symbols and subsets of symbols. Use the printsymbols (ps) 
command with the Im flag and * argument to display all 
module names. Of course with very large programs containing 
many modules, this may be impractical. 

The command will display the names of Cdemon's modules 
along with "type" and address information for each module. 
You can resize the Command window so all the options are 
viewable. 

>- To display module names 

• In the Enter Command box, enter: 
ps /m * 

Current viewing (scope) and execution context 
The debugger is capable of viewing a module that is not the 
current execution module. The current execution module is the 
module that the program counter (PC) is focused on. If you 
were to execute a step command the debugger would execute 
the source line pointed to by the PC. Use the context (cont) 
command to display the current "viewing" and "execution" 
modules. 

MWX-ICE User's Manual (Windows) 



SuperTAP SXX 

> To display context (current viewing and execution 
modules) 

• In the Enter Command box, enter: 
cont 

Note the current viewing module line, CDEMON, will have 
"(view)" at the end of it, while the current execution module 
line, ALIB, will end in "(PC)". 

Changing scope 
The viewing context can be changed by using the scope (sc) 
command [Scope button in the Code window]. This will cause 
the source for the module to be displayed in the Code window. 
It also allows access to the module's symbols and line numbers 
without having to type the qualifying module or procedure 
name, saving a considerable amount of typing. 

The scope command is case sensitive. 

> To change the current scope to the module DATA 

• In the Enter Command box, enter: 
sc DATA 

> To display the current context 

• In the Enter Command box, enter: 
cont 

Notice the current viewing module is now DATA, while ALIB 
remains the current execution module address. 

> To return to scoping the current execution module 
CD EM ON 

• In the Enter Command box, enter: 
SC 

10-21 

• 



Other C source operations 
There are other debugger commands that display source 
without changing scope: 

Source code operation 

Display source without 
changing scope. 

Evaluate expressions. 

Display parameters 
passed to procedures. 

Command 

list [List page in the Debugger 
Files notebook] 

cexpression 

expand [Stack page in the 
Memory Command notebook] 

These commands are covered in Help. 

Checking the state of the debugger and emulator 

10-22 

When starting a debug session you should take a quick look at 
the state of the debugger and emulator. This is particularly 
true if someone else has used the emulator between your 
sessions. Also, you should examine the state of the debugger 
and emulator any time you get unexpected results from 
breakpoints or event system setups. 

The following commands will allow you to view and modify the 
parameters that control the state of the debugger and 
emulator. 

MWX-ICE User's Manual (Windows) 



SuperTAP SXX 

>- To view the emulator configuration 

• From the Displays menu, choose Emulator Configuration. 

The Emulator Configuration window appears. 

Tro.c:e 
r---·-------------l Execution 

l!!el!lory Reed/Write 
r········~·;;;······················••.oo 

Figure 1 o-6 Emulator Configuration window 

You can use the Emulator Configuration window to view and 
modify the options that control the state of the debugger and 
emulator: 

Connections The Connections button brings up the 
Connections window. Use this window to define and connect to 
emulators. 

Event The Event button opens the Event configuration 
dialog box. Use this dialog box to set the emulator event system 
options. 

Execution The Execution button opens the Execution 
configuration dialog box. Use this dialog box to set the 
emulator execution options. 

File Handling The File Handling button opens the File • 
Handling dialog box. Use this dialog box to specify the upload I 
and download format for non-IEEE-695 object files, and to 
other download options. 

10-23 



Memory Read/Write The Memory Read/Write button opens 
the Memory Read/Write dialog box. Use this dialog box to 
enable overlay memory, and to conrol access to overlay by 
external bus masters (Isolation of overlay read/write). 

Memory The Memory button opens the Memory 
configuration dialog box. Use this dialog box to set memory 
access attributes. 

Trace The Trace button opens the Trace configuration dialog 
box. Use this dialog box to set emulator trace collection and 
display options. 

Debugger Options The Debugger Options button opens the 
Debugger configuration dialog box. Use this dialog box to set 
input and output radix and other debugger options 

Controlling the processor and the emulator 

10-24 

Changing the contents of a CPU register 
While debugging your code, you may find a register holding a 
different value than what you expected. The Register window 
allows you to directly modify the contents of a CPU register. 
This lets you replace the questionable value with the expected 
value and test the results. 

>- To change the contents of a CPU register 

1. From the Displays menu, choose Register. 

2. From the Register menu, choose General registers. 

The General registers window appears. 

3. Click the IP (instruction pointer) button. 

The Prompt Dialog box appears and shows the current value 
of the counter. 

4. Delete the current value; type OxlOO in the dialog box, and 
choose Set. 

Note the IP register value displayed in the Register window 
has changed to 00000100. 

MWX-ICE User's Manual (Windows) 



Memory control 

SuperTAP BXX 

5. Now, set the contents of the IP back to 0xfff02004. 

You can also use the setreg command in the Command 
window to change the contents ofregisters. For example, you 
could use the commands: setreg@ip=OxlOO and setreg 
@ip=Oxfff02004 to change the contents of the IP to OxlOO and 
back again. 

Other emulator controls 
There are commands that control the handling of bus time-outs 
(bte), show cycles (showcycle), timestamp resolution 
(timclk), and real-time emulation (rte). For more information 
about these controls, see Help for the Emulator Configuration 
window. These commands are also described in Help. 

Displaying memory addresses and variables 
The dump (du) command [Memory window] displays the 
contents of memory at a given address or range of addresses in 
both hexadecimal and ASCII format. 

As do most MWX-ICE commands, dump also accepts a symbol 
name as an address argument. This allows us to dump the 
contents of the tutorial's memory mapped output port, led_port, 
without recalling the port's numerical address. (Note: you can 
also find the address ofled_port with the printsymbols 
command.) 

>- To dump the contents of led_port 

• In the Enter Command box, enter: 
du &led_port 

Another way of viewing the contents ofled_port is to use the 
printvalue (p) command [Print button in the Code and 
Command windows]. The printvalue (p) command displays 

10-25 

• 



10-26 

the values of expressions according to their type. The 
printsymbols (ps) command will show led_port is an array of 
signed char, so printvalue will display character values found 
at led_port. 

> To display symbol information about led_port 

• In the Enter Command box, enter: 
ps led_port 

> To print the value at led_port 

• In the Enter Command box, enter: 
p led_port 

You may want to keep a continuous display of a variable's value 
on the screen. The monitor (mon) command creates a Data 
window and displays the selected variable. The display is 
updated during every run-to-pause transition. 

> Monitor the variable led_port 

• In the Enter Command box, enter: 
mon led_port 

Modifying memory 
Modify memory with the setmem command [Memory window]. 
Setmem has a switch for byte, word, and longword data 
arguments. We will use setmem with the longword switch, /1, 
to modify the contents ofled_port, and then view led_port with 
the dump and printvalue commands. 

> Set memory at led_port, then display the new contents 

• In the Enter Command box, enter: 
setmem/l &led_port="MWX-ICE" 
du/l &led_port 
p led_port 

MWX-ICE User's Manual (Windows) 



SuperTAP SXX 

Using the single line assembler 
There may be times when you need to make a small change to 
an assembly module, perhaps just to try something out. Use the 
debugger's built in line assembler to make your patch and 
avoid a time consuming "exit debugger, edit code, assemble and 
link, download, and try-it-out" debugging cycle. The line 
assembler is invoked with the asm command. 

:>- To assemble a "nop" loop beginning at address 
Ox80000100 

• In the Enter Command box, enter the following commands: 
asm org Ox80000100 
asm nop 
asm nop 
asm b Ox80000100 

Using the memory disassembler 
Disassemble the "nop" loop at Ox80000100. The disassembled 
memory is displayed in the assembly mode Code window. 

:>- To disassemble memory at Ox80000100 

1. In the Enter Command box, enter: 

disa Ox80000100 

2. Switch to the Code window and select the Assembly Mode 
option. 

You should see code similar to the following: 

80000100: 60000000 
80000104: 60000000 
80000108: 4bfffff8 

ori rO,rO,OxO 
ori ro, rO , OxO 

b . -0x8 

3. When you are done, select Source mode to return to the 
source code view. 

10.27 



Other memory operations 
There are other memory operations that you can perform.: 

Memory 
Command Commands 

Description Line Notebook 

Fill memory with a given 
value 

fill Fill page 

Copy the contents of one block copy 
of memory to another 

Compare the contents of two compare 
memory blocks 

Search through memory search 
for a pattern 

These commands are covered in Help. 

Copy page 

Comp page 

Search page 

Using overlay memory 

10-28 

Overlay memory is emulator memory that can replace target 
memory by overlaying it, or be used where target memory 
resources do not exist. Assigning overlay memory to address 
ranges and access types chosen by the user is called mapping 
overlay. The memory map can be permanently stored in an 
MWX-ICE include file. 

Overlay has a minimum granularity of 128K If a mapping does 
not begin and end on a 128K boundary, the emulator 
automatically adjusts the mapping in both directions to the 
next 128K boundary and issues a warning that it has adjusted 
the original mapping. 

MWX-ICE User's Manual (Windows) 



SuperT AP SXX 

Displaying the memory map 
Use the map command without arguments to display the 
current overlay vs. target memory map. 

>- To display current overlay vs. target memory map 

1. Switch to the Command window. 

2. In the Enter Command box, enter: 

map 

In the View window, you should see a display of the type of 
memory (RW, RO, or WO), its address range, and how much 
emulator overlay memory remains. The types of memory are 
read-only (RO), write-only (WO), or read-write (WR). 

3. Close the View window (CTRL + F4). 

Mapping overlay memory as RAM 
You use the map command with a range argument to map 
overlay memory as read/write memory (RAM). Memory 
mapped as RAM is fully accessible to the executing program 
and to the user. 

For example, the following commands map overlay from 
OxlOOO to Ox2000 as RAM: 

map OxlOOO .. Ox2000 

Mapping overlay memory as ROM 
You use the map command with a range argument followed by 
=ro to map overlay memory as read only memory (ROM). 

If the executing program writes to memory mapped as ROM, 
the writes are blocked by the emulator. However, you can still 
write to this memory using any debugger memory write 
command such as setmem or fill. 

For example, the following commands map overlay from 0 to • 
Oxfff as ROM: 

map OxO .. Oxfff=ro 

10-29 



10-30 

Mapping overlay memory as write only 
You use the map command with a range argument followed by 
=wo to map overlay memory as write only memory. 

If the executing program reads memory mapped as write only, 
the reads are blocked by the emulator. However, the user can 
still read this memory using any debugger memory read 
command such a8 dump or disassemble. 

For example, the following commands map overlay from 0 to 
Oxfff as write only: 

map OxO .. Oxfff=Wo 

Mapping overlay memory back to target memory 
If you have target memory, you can use the map command 
with the =target argument to reassign memory to the target. 

For example, the following commands return overlay memory 
from OxlOOO to Ox2000 to target: 

map OxlOOO .. Oxlfff=target 

Copying target memory contents to overlay memory 
Use the following procedure when you need to copy the 
contents of your target ROM or PROM into overlay memory for 
patching, to avoid having to bum a new ROM. 

Map overlay memory over the range of the ROM. Next, set up 
the overlay access types: copyfrom off (use target as the 
source) and copyto on (use overlay as the destination). Set 
ovwritethru off to block any write operation directed at the 
ROM to avoid contention on the address bus. Use the copy 
command to copy the contents of target memory into overlay 
memory starting at the same address as the target ROM's first 
address. 

For example, the following commands copy the contents of 
target memory into overlay: 

map Ox9000 .. 0x9fff 
overlay copyfrom off 

MWX-ICE User's Manual (Windows) 



Basic breakpoints 

SuperTAP 8XX 

overlay copyto on 
ovwritethru off 
copy Ox9000 .. 0x9fff,Ox9000 

Note that unless you have target memory in the address range 
this example uses (Ox9000 .. 0x9fff), the copy command will 
cause a machine check exception. 

When debugging code, the ability to stop code execution at any 
desired place is absolutely necessary. To provide this ability 
SuperTAP supports four types of breakpoints: 

a Asynchronous breakpoint 
a External breakpoints 
a Software instruction-execution breakpoints 
a Hardware-implemented access breakpoints 

When breakpoint conditions are met, SuperTAP can perform 
any of the following actions: 

a Stop emulation (break). 
a Execute a C expression. 
a Log the value of an expression in a file. 
a Execute a debugger macro. 

Asynchronous breakpoint capability lets you stop code 
execution at any time clicking any of the MWX-ICE Stop 
buttons. 

External breakpoints allow an external trigger-in signal from 
the target or from a piece of test equipment, such as a logic 
analyzer, to cause the SuperTAP to "break" out of emulation. 
Or, the SuperTAP can generate a trigger-out signal to trigger a 
logic analyzer or storage scope. SuperTAP provides one BNC 
trigger input and one BNC trigger output pin to support both 
types of external breakpoints. 

10-31 



10-32 

Setting and clearing instruction breakpoints 
Software breakpoints replace the instructions in the target 
program with a special opcode that forces a specific behavior in 
the microprocessor. When the breakpoint occurs, SuperTAP 
halts execution and places the original instruction back into 
memory. 

Software breakpoints must be located in RAM, so that the 
special opcode may be written to target memory.This poses no 
problem, since SuperTAP overlay memory can easily be used 
for setting breakpoints where no target RAM exists. 

MWX-ICE offers a variety of methods to set and clear 
breakpoints. Below, you sample the various methods including: 

a Using the Execution Control notebook 
a Choosing the Break! button with a source line selected 
a Using the shortcut menu in the Code window 
a Using the Breakpoints window 

>- To set a breakpoint using a notebook 

1. From the File menu, choose Restart. 

This restarts the Cdemon program. 

2. From the Notebooks menu, choose Execution Control. 

3. From the Execution Control menu, choose Set and clear 
breakpoints. 

4. In the Start Address box, enter: 

main 

5. Choose the Set Break button, to set the breakpoint. 

Notice that "Breaklnstruction main" is echoed in the Com
mand window. By observing and remembering the com
mands generated while using notebooks and buttons, you 
can quickly start using the command line interface. 

6. In the tool bar, choose the Go button I :K. I to run to the 
breakpoint. .. ........ 

MWX-ICE User's Manual (Windows) 



SuperTAP 8XX 

Notice that the Code window box indicating the current exe
cution line has moved to the beginning of main(). Also notice 
the breakpoint icon (a small stop sign) in the left side of the 
current execution line, shown in Figure 10~7. 

7. In the Execution Control notebook, choose Close, to close the 
window (ALT + F4). 

MWX ICE Debugger !1[3 £l ~ 

• fie idit J!.isplaJoa ftaleboab ~ l!li=•Mlaw=~H""'"'""'==~~=====~=--.1 
·~~~~~~~~~ .~~~~~~~~~~~ 
• 1· i.i.:;.r;··co..-d:·· it .................................................................................................. EJ 

55 int 
56 ~tint, ch=•[]) 
57 HJ 

59 if t wbicb_doao ) 
60 olov_-in(), 
61 
62 
63 
64 
65 

initio.l.I); 
step(), 
do.to.()' 
nm(); 

66 return 01 

I• Ini. tiGJ.ize Variobles • / 
I* Si2lqlo Step Loop */ 
I* Dc>to. 11<mipql4ticm 0..0, Cord CQao •/ 
, • Run P.l.inlcing !Ads • / 

Figure 10-7 Breakpoint at beginning of main() 

10-33 

• 



Note w 

10-34 

> To set a breakpoint using the Breakl button 

1. In the Code window, select the source line containing the 
step() function by double-clicking anywhere in that line. 

When selected, there will be at least one character of the line 
highlighted. 

2. To set the breakpoint, choose the Break! button '!1 from 
the tool bar. l ... ~J 
Notice the breakpoint icon now displayed left of the step() 
source line. 

3. Choose the Go button LZ.,::J to run to the breakpoint. 

> To set a breakpoint using the shortcut menu 

1. In the Code window, click the to the left of the line number 
for the run() function using the right mouse button. 

The shortcut menu appears. Shortcut menus contain com
mands related to the window and to the current context. 

2. Choose Set Break [double click] from the shortcut menu. 

Notice the breakpoint icon now displayed left of the run() 
source line. You can also set a breakpoint by double-clicking 
to the left of the line number. 

3. Choose Go, to run to the breakpoint. 

You can also choose Set Break. .. from the shortcut menu to 
open the Define a Breakpoint dialog box. 

MWX-ICE User's Manual (Windows) 



SuperTAP SXX 

, MWX ICE Debugqe1 l!if8£J 

I* Prograa St..rts Be"" •/ 
!=:> 57 

58 

i 
~-

59 
60 

if ( wbic:h...doao ) 
olev_..uno, 

61 
i 62 initi410' ! ! 63 •11, 
$ 64 dot.a.() 1 

~- ..... ~ ....... -~lt~. 

~: :4· :·~ 60 To Here 
t,,,_.,; S.,.eToHere 

~-~ Seta..-. .. i > bj Bieak Info. •• 

I• Ini tiellizt V4Z'iahl.es ,,, I 
I• s#ile Stee Looe *Ji 
I• Doo.to llolnipoilo.tion Deao, C4rd Cl<uu • / 

. • . /• - BlinkiDg lAds ., 

Figure 10-8 Setting a breakpoint using the shortcut menu 

>- View the breakpoints 

• From the Displays menu, choose Breakpoints. 

--or-

• Select Break Info from the shortcut menu. To open the 
shortcut menu, use the right mouse button and click to the 
left of the line numbers in the Code window. 

Notice the three breakpoints displayed in the window. The 
first one was set at main() using the Execution Control note- ~ 
book. The second one was set at step() by choosing the lmll 

10-35 



10-36 

Breakl button with a line selected. The third was set at run() 
using the shortcut menu. The Breakpoints window is shown 
in Figure 10-9. 

i Pl"F02098 instr \CIIElllOll\-U\157 
Pl"F020B8 instr \CIIElllOll\-U\ 168 
Pl"F020C:O instr \CIIElllOll\-U\le5 

lllliD 
\Clll!Xlll\163, 4 
\Clll!Xlll\fe5, 0 

Figure 10-9 Displaying information about a breakpoint 

~ Clear the breakpoints 

1. In the Breakpoints window, select the top line by double
clicking in that line. 

2. Choose the Clear button 1...2.J from the tool bar. 

3. Repeat steps 1 and 2 until the remaining breakpoints are 
cleared. 

MWX-ICE User's Manual (Windows) 



From the ... 

Breakpoints window 

Code window 

Command window 

SuperT AP 8XX 

Other ways of clearing breakpoints 
There are several ways you can clear breakpoints in addition to 
the way you cleared them from the Breakpoints window in the 
previous step. 

Do the following ... 

Use the shortcut menu to clear breakpoints. Right-click on 
the breakpoint and choose Clear Break, or right-click in the 
Breakpoint window and choose Clear All. 

Select the breakpoint, and choose Clear Break from the View 
menu. 

Select the source lines where the breakpoints are set, then 
click the Clear button. 

Use the shortcut menu to clear breakpoints. To open the 
shortcut menu, right-click to the left of the line number 
where the breakpoint is set. Choose Clear Break from the 
menu. 

Double-click the right mouse button to the left of the line 
number where the breakpoint is set. 

Use the clear command. 
Syntax: clear [n] 
n is the breakpoint number as it is shown in the Breakpoints 
window. To clear all breakpoints type clear without a 
number. 

Setting temporary breakpoints 
Another kind of instruction breakpoint you can set is a 
temporary breakpoint. You can use temporary break.points 
when you want to run to a specific place in your code. These 
breakpoints do not appear in the Breakpoint window. You can 
set these breakpoints by selecting the source line you want to 11f1 
break on, and then clicking the Go Until button I :*ti in the -
tool bar. . ......... 

10-37 



Access 

Read access 

Write access 

Read or write 

10-38 

You can also set temporary breakpoints by using the Execution 
Control notebook, or by using the shortcut menu in the Code 
window. 

Setting and clearing access breakpoints 
Hardware access breakpoints use the SuperTAP's hardware 
and do not consume any target resources. When a memory 
access occurs that matches the breakpoint condition, 
microprocessor execution stops. Access breakpoints can be set 
over target RAM or ROM. 

Access breakpoints are set to break on an address with the 
following status options: 

Command Notebook 

br Break page in Execution Control 
notebook 

bw Break page in Execution Control 
notebook 

ba Break page in Execution Control 
notebook 

Access breakpoints are useful for detecting errant accesses to 
memory locations. For example, you may want to break 
emulation if your code writes to a read-only port address. 

Macros can be attached to access breakpoints. You may have 
multiple ba, br, and bw breakpoints set, each with its own 
macro attached. 

In the next example, you set a write access breakpoint (bw) at 
address OxAOOOOOO (the address of the LEDs. The pointer 
dot_port holds this address. Read access (br) and read-or-write 
access (ha) breakpoints are set similarly. 

MWX-ICE User's Manual (Windows) 



SuperTAP 8XX 

>- To set a write access breakpoint 

1. Switch to the Command window. 

2. In the Enter Command box, enter: 

restart 

This positions the program counter at the start of the Cde
mon program. 

3. In the Enter Command box, enter: 

bw dot_port 

4. Choose Go l .. ~.I to run to the break.point. 

SuperTAP breaks emulation in the outled() function at the 
write to the memory-mapped address of the display dots. 

10-39 



> Clear the write access breakpoint 

1. Open the Breakpoints window. 

2. From the View menu, choose Show Break#. 

3. Switch to the Command window, and in the Enter Command 
box, enter: 

clear 1 

Note: Because this was the only break.point set, it was num
ber one. If it was the second of two break.points, you would 
use the command clear 2 instead, third use clear 3, and so 
on. Use clear without a number to clear all breakpoints at 
once. 

4. Close the Breakpoints window. 

Program execution and related commands 

10-40 

The following commands control resetting the CPU, restoring 
the program start address, and executing the program in real
time or in steps at a time. 

Resetting the processor 
Use the reset (rese) command to restore the processor to its 
initial reset state. 

> To reset the CPU 

• In the Enter Command box, enter: 
rese 

Restoring the program start address 
Use the restart (rest) command to reset the program counter 
to the program's starting address. For CDEMON.ELF this 
returns us to address Oxffro2004. 

> To restore the program start address 

• In the Enter Command box, enter: 
rest 

MWX-ICE User's Manual (Windows) 



SuperTAP SXX 

Starting and stopping program execution 
Use the go (g) command (or the Go button) to start or continue 
program execution. The program runs until a breakpoint is 
reached, an error occurs, or the you stop emulation by clicking 
the Stop button l..IJ from the tool bar. 

Use the go command with an address and a passcount to 
execute until the address is seen "passcount" number of times. 
The command sets a temporary breakpoint at the address and 
counts each occurrence of the breakpoint. The cursor will turn 
into a running man indicator while the program executes. 

>- To execute until outled() is seen four times 

1. In the Enter Command box, enter: 

g outledtt4 

After the fourth occurrence of outled(), the emulator will 
break and display the current instruction address at the 
time execution stopped. 

2. Switch to the Code window and select Assembly Mode. 

After the fourth occurrence of outled(), the emulator will 
break and display the current instruction address at the 
time execution stopped. 

Stepping through the program 
Stepping refers to executing code a number of instructions or 
lines at a time. Single stepping executes either one assembly 
line or one source line of code at a time. To single step use the 
step (s) command (Steplnstr or StepLine button from the tool 
bar) without a number argument. 

For example, the following command executes five lines of code: 

s 5 

Use the stepover (so) command (StepOver or StepO Instr • 
button in all windows) if you want to single step but do not I 
want to step through called routines. This command will 
execute the entire called routine then stop. 

1().41 



Use the gostep (gos) command if you want to step 
continuously until a specific condition is met. The condition is 
defined by a macro you attach to the gostep instruction. For 
instance, gostep can be used to step until a register holds a 
particular value. 

For example, the following command single-step until a 
condition defined in my _macro is met: 

gos my _macro ( ) 

Capturing and displaying execution trace history 

1042 

The trace capture feature lets the user observe exactly how the 
code executed. Raw trace consists of CPU bus level information 
including address, data, status, and timestamp information. 
Disassembled trace is displayed as assembly, source, or a 
mixture of both. Raw and disassembled trace are both 
displayed in the Command window. 

Clearing trace memory 
You may want to clear the trace memory buffer of previous 
trace information before running your code. This ensures all 
information in the trace buffer will be newly acquired. Use the 
trclr command to clear the trace memory buffer. 

> To clear the trace memory buffer 

• In the Enter Command box, enter: 
trclr 

You can also clear trace memory from the Emulator Trace 
window. From the Displays menu, choose Emulator Trace. 
From the Actions menu, choose Clear Trace. 

Capturing trace in run mode 
Two emulator commands, trsys and trace, control the capture 
of program execution trace history. With trsys and trace on, 
every time you use go or step, the bus information generated 
is captured in the trace buffer. To find out if these variables are 
on or off, execute the emuvars command and observe their 

MWX-ICE User's Manual (Windows) 



SuperTAP BXX 

status displayed in the list of emulator variables. If either 
variable is off, you turn it on by entering the appropriate 
command, trsys on or trace on. 

>- To enable the trace capture system 

1. In the Enter Command box, enter: 

trsys on 

2. In the Enter Command box, enter: 

trace on 

The SuperTAP is designed to operate even when you are using 
the processor instruction and data caches. The SuperTAP trace 
system requires that the processor instruction show cycles are 
enabled. In most cases, you only need to generate show cycles 
for indirect branching. The MWX-ICE showinst command 
controls processor show cycles. 

10-43 

• 



10-44 

> To enable instruction show cycles 

• In the Enter Command box, enter: 
showinst indirect 

Leave the show cycles enabled for the remainder of the tuto
rial. 

To collect trace information, you restart and then go to the 
Cdemon function house(). 

> To restart, then go to house() 

• In the Enter Command box, enter: 
rest 
g DATA\house 

Displaying raw trace history in the Command window 
Use drt for displaying raw bus cycle information and optional 
logic state and timestamp information. 

> To display the captured raw trace information 

• Maximize the Command window and in the enter the 
following command: 
drt 

-or-

From the Displays menu, choose Emulator Trace. 

The Frame numbers on the far left of the trace are used to 
reference when in trace history the information occurred. 
Frame 0 is the end of trace. The smaller Frame numbers are 
the last cycles captured prior to a "break" in emulation. 

The other raw trace columns show the address (Address), data 
(Data), status of various CPU signals, and timestamp 
information for each bus cycle captured. 

MWX-ICE User's Manual (Windows) 



SuperT AP BXX 

Searching trace history for a pattern 
To search trace memory for patterns, use the tsrch (ts) 
command, or the Search button from the Emulator trace 
window. 

Using the tsrch command, you can qualify the search with 
combinations of address, data, statue, and logic state analysis 
patterns. You can also specify a starting line number in trace 
history. 

In the Emulator Trace window, you can use the Search button 
to search trace for specific text strings. 

> To search trace history for an access to address 
Ox80000430 

• In the Enter Command box, enter: 
tsrch addr=Ox80000430 && stat=wr 

Displaying disassembled trace history 
Use dtb (display trace backwards) for displaying the trace 
buffer information formatted in assembly or high-level mode, 
or as an interleaving of both modes. The dtf (display trace 
forwards) command performs the same trace display function, 
but in a different direction. Use the dt command with a start 
address to begin disassembling at a particular line in trace. 

The trdisp MWX-ICE variable controls the disassembled trace 
display mode. The variable's default (both) causes an 
interleaving of assembly and source. 

> To display the trace information in disassembled format 

• In the Enter Command box, enter: 
dtb 

The numbers on the far left of the disassembled trace 
correspond directly to the Frame numbers on the far left of the 
raw trace display. They are useful when correlating a line of 
disassembled trace to its bus cycle equivalent line in raw trace. 

10-45 



10-46 

Observe the call to house(). Notice the branch and link (bl) 
instruction in the disassembled trace display, which also shows 
the non-sequential changes to the IP. The previous IP is shown 
in the form address> IP. The new IP is shown in the form 
IP< address. If you look at the Code window in Assembly mode, 
you can see that the new IP address matches the current 
execution address in the Code window. 

Saving trace to a file 
You may need a hardcopy of trace or a copy of trace on disk for 
later referencing. Or, you may have a problem that requires 
factory support. The Applications department might request a 
hardcopy of trace memory to assist in solving the problem. 

Earlier we discussed the journal (jou) command [Journal 
page in Debugger Files notebook], which records both the 
commands and their output into a file. You can use the journal 
command to save a partial or entire trace disassembly into a 
file. The example below shows how to save a trace memory 
display to a file. 

For example, the following commands save part of a raw trace 
to a file named trace.raw: 

jou on="trace.raw" 
drt 0 .. 42 
jou off 

The command jou on="trace.raw" creates a file named 
trace.raw as the journal file. The command drt 0 .. 42 displays 
raw traces lines 0 through 42. This display goes to both the 
Command window and the journal file. The command jou off 
stops recording and closes the journal file. 

Using the /a option with jou allows you reopen and append to 
an existing file. 

Capturing trace in pause mode 
An emulator softswitch, ppt, controls the capture of additional 
information. With ppt on you can capture bus cycle 
information generated by MWX-ICE memory read and write 

MWX-ICE User's Manual (Windows} 



commands such as setmem, fill, copy, diag, and others. This 
trace information can assist you in diagnosing general memory 
problems or memory errors that may have shown up in one of 
MWX-ICE's RAM diagnostic tests (diag). 

Also, with ppt on, cycles generated by MWX-ICE memory 
commands or by downloading code with the load command are 
included in trace memory. The load command cycles can be a 
valuable source of troubleshooting information when a 
download fails for some reason. You can examine the last cycle 
in trace memory and determine if the download went to valid 
RAM memory, nonexistent memory, or ROM, for example. 

Executing MWX-ICE commands in run mode {dynamic run mode - drun) 

SuperT AP 8XX 

The drun command lets you use MWX-ICE commands without 
stopping program execution (run mode). 

For instance, you may want to examine trace history (drt or 
dtb) while executing your program. If you enter run mode 
using drun instead of go, you can use the drt command to 
display the trace history, gathered up to the point where you 
entered the drt command, while the target program continues 
to run. 

To exit dynamic run mode use the dstop command . 

10-47 

• 



Timestamp 

Debugger macros 

10-48 

>- To restart, enter dynamic run mode, then display raw 
trace history 

1. In the Enter Command box, enter: 

rest 
drun 
drt 

Examine trace. 

2. Restore the Command window to its previous size. 

>- To exit dynamic run mode (dstop) 

• In the Enter Command box, enter: 
dstop 

In raw trace, the timestamp information shows either the time 
between successive bus cycles, or the time relative to a 
specified trace frame number. The following MWX-ICE 
variables control capturing and displaying timestamp 
information. 

timclk 

trstamp 

tr base 

Selects timestamp clock resolution (40ns, 
200ns, lus, lOus, lOOus, 1InS,10ms,or 
lOOms). 

Display timestamp interval/offset when trace 
is displayed in the Command window. 

Selects trace frame to use as timestamp base 
frame when trace is displayed in the 
Command window. 

Macros provide an efficient means of executing repetitive tasks 
or generalizing a task that originally acted on only a specific 
item. MWX-ICE uses the same C-like sequence of expressions, 

MWX-ICE User's Manual (Windows) 



SuperTAP 8XX 

statements, and debugger commands as XRAY to define and 
invoke macros. See the XRAY Debugger for Windows Reference 
Manual for an explanation on how to generate your own 
macros and how to use the predefined macros that come with 
MWX-ICE. The following section demonstrates briefly how to 
create a macro and then save it into an "include" file that can 
be executed by the debugger. 

Creating a macro 
Use the Macro page of the Symbol Management notebook to 
create a macro. This puts MWX-ICE in the macro define mode. 

When you use a keyboard command in a macro you must 
precede and follow the command with a dollar sign ($). 

Below, you create a macro demonstrating using the aliased 
command drt. 

>- Define a macro named dmp_trc 

1. From the Notebooks menu, choose Symbol Management. 

2. From the Symbol Management menu, choose Create or edit 
a debugger macro. 

The Symbol Management notebook opens to the Edit Debug
ger Macro page. 

3. In the Specify Macro Name field type: 

dmp_trc 

4. Choose Edit. 

5. Edit the file in the File Editor window to match the following 
by adding the lines shown in bold type: 

define dn\P_trc() 
{ 

$ 
drt 
$ 
; 

10-49 

• 



10-50 

6. From the File menu of the File Editor, choose Save, to save 
the macro. 

7. From the Debugger Macros menu of the File Editor, choose 
Send Macro to Debugger. 

8. From the File menu, choose Save and Exit. 

9. Close the Symbol Management notebook (ALT+ F4). 

Displaying a macro 
Use the show command to display an active macro in the 
Command window. The macro is displayed in the Command 
window. You may need to enlarge the window to view it. (To 
edit a macro, enter its name in the field of the Macro page of the 
Symbol Management notebook, and choose Edit.) 

> To display the macro dmp_trc 

• In the Enter Command box, type sh dmp_trc 

Assigning a macro to a breakpoint 
A macro can be assigned to a breakpoint by setting a 
breakpoint and following it with"; your_macroO". The macro is 
executed when the breakpoint occurs. 

> To assign macro "dmp_trc" to a write access breakpoint 
at "led_port" 

• In the Enter Command box, enter: 
bw led_port;dl!p_trc() 

> Restart, then go until the breakpoint is reached 

• In the Enter Command box, enter: 
rest 
g 

When the breakpoint at "led_port" occurs, emulation stops, and 
raw trace information is immediately displayed in the 
Command window. 

MWX-ICE User's Manual (Windows) 



SuperTAP 8XX 

>- To clear write breakpoint number 1 

• In the Enter Command box, enter: 
cl 1 

Deleting a macro 
Use the delete command to delete a macro. For example, the 
following command deletes a macro called big_mac: 

del big_mac 

Saving a macro to an "include" file 
After you determine that your macro works, you may want to 
save it to a file for later use. The resulting file can be used as 
an include file that recreates the macro. 

>- To save a macro to a file 

1. From the Notebooks menu, choose Symbol Management. 

2. From the Symbol Management menu, choose Create or edit 
a debugger macro. 

The Symbol Management notebook opens to the Edit Debug
ger Macro page. 

3. In the Specify Macro Name field, select the name of the 
macro that you've created, then click the Edit button. 

4. From the File menu of the File Editor, choose Save As: 

5. In the dialog box, type: 

dmp_trc.inc 

6. In the dialog box, choose Save, to write the macro into the 
file DMP _TRC.INC. 

If a macro is no longer present in the Edit window but has been 
loaded into the debugger, you can still save it to a file. 

For example, the following commands save and invoke a macro 
using the command line. 

fopen 60, "dmp_trc.inc" 
show dmp_trc,60 

10-51 



vclose 60 

The command fopen 60 creates a file named DMP _TRC.INC in 
the current directory; include a path if you want it saved 
elsewhere. (The number afterfopen used must be greater than 
50.) The file contains the commands necessary to create the 
macro dmp_trc, placed there by the show command. The 
command vclose 60 saves the file. To enable the macro in 
future sessions, you must first invoke the include file: 

inc dmp_trc.inc 

Then you can use the macro. 

You can also define a macro in a text file, and include that file 
from the command line of the Command window. For correct 
syntax, see the examples provided for the define command in 
Help. 

Using the event system 

10-52 

Sometimes running to a basic break.point and examining trace 
history does not provide information specific enough to debug 
your target's code or hardware. Also, you may want the 
emulator to perform some action other than breaking when the 
conditions become true. You may need to trigger an oscilloscope 
after a complex set of CPU bus cycle conditions become true, or 
to trace only certain types of bus cycle information under 
certain conditions. For example, the conditions might be the 
fifth write that a specific subroutine makes to a certain YO 
location. 

The event system can be useful when implemented as a built
in bounds checker for the executing program. Simply set up the 
event system to cause a break in areas of memory that nothing 
should access. 

MWX-ICE User's Manual (Windows) 



SuperTAP SXX 

The event system supplies the mechanism to define conditions 
and execute actions through user defined "when event/then 
action" statements. This mechanism allows the emulator to 
perform various actions based on events of complexity far 
surpassing that of simple breakpoints. 

This section will help you get started using the event system. 
Comprehensive user information and descriptions of all 
available conditions and actions are in Chapter 7, "Using the 
Event System." 

General information 
The event system is implemented with emulator hardware and 
can be used in both RAM and ROM regions. 

Setting up when/then event statements 
The first step in setting up a when/then statement is deciding 
what condition(s) you need to include. For most simple address 
and status conditions you probably need only an access 
breakpoint. We begin with those conditions however, to keep 
the first event statement simple. 

>- To define a when/then statement to cause a break on 
any write to "led_port" 

• In the Enter Command box, enter: 
when addr==&led_port && status== wr then break 

The command is made up of the following elements: 

Cl addr==cled_port defines the address of"led_port" as the 
address of interest. 

Cl status==wr defines the access to "led_port" as a write. 
Cl cc is the logical AND operator. 
Cl break stops emulation. 

10-53 

II 



10-54 

The event is assigned event number 1 and is displayed in the 
View window, shown in Figure 10-10. If you have minimized 
the View window as an icon, you need to open it. 

~ 1: wemr addr==~ed~rt r.r. sto.tus== wz- th.a break 

~ 
~ ; 
~ 

Ir~---~~-= .. 
Figure 10-10 View window for viewing event system setup 

>- To run the program until the event occurs 

• In the Enter Command box, enter: 
rest 
g 

The Command window displays a message that an "Event 
break occurred", caused by "When statement #1." In the Code 
window you should see a highlighted source line indicating 
where the break occurred. You can scroll up to see where the 
write to led_port occurred. 

Assigning a macro to an event system "break'' action 
(breakcomplex) 
You can use the breakcomplex (be) command to tie a macro 
to an event system "break" action. 

In general, to set up for a breakcomplex: 

1. Set up the event statement. 

2. Tie the macro to the event statement number using the be 
command. 

MWX-ICE User's Manual (Windows) 



For example, the following commands attach the macro 
dmp_trc() to an event system trigger. This example assumes 
the event is event number one. 

when addr==&led_port && stat==wr then break 
be 1; dnp_trc () 

Additional event system features 
In addition to the simple conditions and actions illustrated 
here, the event system possesses many advanced features such 
as groups, counters, timer, flags, conditional tracing, trigger 
generation, and others. These features are covered in 
Chapter 7 of this manual. 

Scope loops and diagnostics 
Built in scope loops and memory diagnostic programs are 
included with the debugger in the form of diag commands. 
These programs save you from writing your own routines to 
test memory or to stimulate memory for "scoping" or logic 
analysis. 

Another diagnostic, named ere, calculates the CRC-16 (cyclic 
redundancy check) over the desired range. 

Memory and 10 read/write scope loops 
Diagnostics 2 through 7 are used to perform reads and/or 
writes of selected memory with patterns chosen by the user. 

>- To perform a continuous read 

1. In the Enter Command box, enter: 

diag 2,0xSOOOOOOO .. Ox80000100 

2. Press the Stop button to stop the test. 

Memory diagnostics, simple and complex • 
Diagnostic numbers 0 and 1 perform simple and complex I 
diagnostics on the selected memory. 

SuperTAP SXX 10-55 



10-56 

>- To perform a complex memory test 

1. In the Enter Command box, enter: 

diag O,OxSOOOOlOO .. Ox80000200 

2. Press the Stop button to stop the test. 

Cyclic redundancy check 
Use the ere command with a range argument to perform a 
CRC-16 of the specified range. The command will return a hex 
value for the CRC. 

>- To perform a cyclic redundancy check 

• In the Enter Command box, enter: 
ere Ox80000100 .. Ox80000200 

MWX-ICE User's Manual (Windows) 



Using the SuperTAP - practical examples 

SuperTAP 8XX 

This section contains practical examples demonstrating using 
the emulator in common debugging situations including: 

a Tracing a particular subroutine 
a Capturing "qualified" trace history 
a Capturing and viewing trace while running 
a Displaying structures 
a Browsing the CPU registers 
a Displaying and modifying memory 
a Monitoring and modifying variables while running 

10-57 

• 



Example 1 - Tracing a particular subroutine 

10-58 

In the example, you set up trace triggering so that only the 
cycles within a certain subroutine run() are traced. To do this, 
you define a dual-event trace trigger that starts trace capture 
when run() is entered, and stops trace capture when run() 
transfers program execution. 

>- To restart the Cdemon program 

• In the Enter Command box of the Command window, enter: 
restart 

>- To set up initial trace conditions 

1. In the Enter Command box, enter: 

trinit off 

This keeps trace capture turned off unless enabled by the 
event system or the trace on command. 

2. In the Enter Command box, enter: 

trqual dxqual 

This ensures that sufficient information is captured for the 
most accurate disassembly of trace. 

3. In the Enter Command box, enter: 

trrunclr on 

This clears the trace buffer when the emulator enters run 
mode. 

>- To set up event statements to start and stop tracing 

1. In the Enter Command box, enter: 

ps outled 

MWX-ICE User's Manual (Windows) 



Super TAP BXX 

From the output of the printsymbols (ps) command, we can 
easily determine the beginning and end address of the func
tion outled(). 

Figure 10-11 Printsymbols output for outledO 

2. In the Enter Command box, enter: 

when addr==OxFFF023BO then tron 

This event statement turns tracing on at the start address of 
the function outled(). Notice a View window is opened when 
you enter the command. 

3. In the Enter Command box of the Command window, enter: 

when addr==OxFFF024CC then troff,break 

This turns tracing off at the final address of the function 
outled(), then breaks emulation. 

4. In the View window, examine both event system statements. 
See Figure 10-12. 

Figure 10-12 Event system "tum trace on" and "tum trace off" event statements 

1~59 

• 



10-60 

>- To run until the break condition is met 

• Click the Go button. 

>- To view mixed source and assembly level disassembled 
program execution history 

1. From the Displays menu, choose Emulator Trace. 

The Emulator Trace window is displayed. It may take a few 
moments before the raw trace appears. See Figure 10-13. 

2. From the View menu, choose Show source trace and clear 
Show raw trace. 

A check mark appears next to the Show option selected. No
tice that only the source lines for the subroutine outled() are 
displayed in the trace. See Figure 10-14. 

3. From the View menu, select Show assembly trace. 

Notice that only the source lines and their associated assem
bly code for the subroutine outled() are displayed in the trace 
buffer window, shown in Figure 10-15. 

>- To clear the event system 

• In the Enter Command box, enter: 
whenclr all 

MWX-ICE User's Manual (Windows) 



SuperT AP SXX 

)!lindow.H~ 

5-aourcebace 

" Diopla, ~as Olhet 
Diopla, ~as lnlelval 

!$ 

,1, !r RllOC : 5- preceding aource-. 
- SE //IP SI EZ RZ CJ: R 0 Alf VF VF LL QQQQQQQQ 
i Freme Address Dc.:t.4 V1'. WCSM: TP RE 'l'E IR S W JC T CIG'l' MSQ S S 01284'-'7 Tiaestaap 

i---~~-E~E-~-~--E------;~-~~--------------:----------------------~~~~~ 
" 18 Fn'02458 2C1ll0010 RCS 32 32 WI' -5.16us i 1 7 Fn'02458 2C1D0010 V RCS 32 32 -4 Hus I !~§~~i §! ~~ t =~::~ 
;;: 10 Fn'024B8 BIM1000C V RCS 32 32 1 -2. 4us 

!$ : =~~ 800100~: ~ 3~ !~ 1 =~:= ,i, .., soo111F74 BaA787U' v RJ>S a2 a2 1 -1. 6us 
6 Fn'024CO "1C0803M V RCS 32 32 -1. Sus 

~i;ti:! ~ § § ~ § ;~2 ;~2 : ~~~~ 
1 eooinao eooooa5C v RDS " " ans 
O End of Trc.ce 

L ,. .. 

Figure 10-13 Raw trace display of the subroutine outled() 

.x 

1Q-61 



-~~~ ... M~ .......................... r===------""" 
Showr-bace 
Show........,bace 

,4 Show preceding source -

" ~ > t = 1~ 1 1 < 1 ' t <<= 1 

96 $ >> (-ubit:1, 0 ' i < 161 -.Jcbi t «= 1) 

" ~ >> lod_port Ii++ J , I'> !• stort with o. fraae •I 
,8 j>> lod_port Ii++ J {do.ta s. -ubit) ? ' 

.•. ; 
" ~ >> lod_port Ii++ J (do.ta s. -ubit) ? ' 

.•. ; 
100 ~ >:> for (-ubit:1, i = 0 ' i < 16; JM:lSkbit <<= 1) 

101 ~>> for (-ubit= 1, = 0 ' i < 161 -.Jcbi t «= 1) 

102 ~» lod_port[i++J 'I'• I• stGrt with o. f raae •/ 
lOS ~ >> lod_port Ii++ J (do.ta s. -ubit) ? ' 

.•. , 
104 $ >> lod_port[i++J (do.ta s. ...... kbit) ? ' ·•· 1 

10, ~>> for (-ubit:l, i = 0 ' i < 16~ -.Jcbi t «= 1) 

106 $ >> for (-ubit=l, i = 0 ' i < 16; ......icbit «= 1) 
lod_port[i) = 'I'• !• finish with ...,. Lost f,,_. •/ 

.. I 

Figure 10-14 Source trace display of the subroutine outledQ 

1Q-62 MWX-ICE User's Manual (Windows) 



Super TAP BXX 

" 97 
98 
99 >> for !...icloit = 1, i = o , i < 1&1 ...icJoit «= 1) 

100 00016 fff02458: 2c1d 0010 ._,;, r29, Oal.O 
101 0006' fff0245c: 4080 004c lop • +0..4c 

ip > n7024A4 
ip < n7024!18 

102 » l~rtli++J = ·I ·, 1• start with .. f- •1 
10a oooea fff02410: weo eooo ..wis r12,o,o..ffffeooo 

00012 ff£02414: a98c 0000 ..a.ii r12, r12, 0..0 
00011 fff024H: a960 007c ..a.ii r11, O, Oa7c 
00010 fff0241c: 'Idec .,_ stb< r11, r12. r29 
00059 fff02470: aw.I 0001 ..a.ii r29, r29, Oa1 
» l~rt[i++J = !clcato Co ...icJoit) ? ' ' ••• ., 

!§iiia:d!~ ::! ~~~::~=~ 1£- £oae -a rio. ru. rao 

0005' fff0247c: 

Figure 10-15 Mixed source and assembly trace display of the subroutine 
outledO 

• 
10-63 



Example 2 - Capturing qualified trace history 

1o-64 

Quite often there will be only a few cycles of interest out of the 
millions of cycles executed in a real-time run of the code. There 
are two ways of dealing with this: 

1. Capturing, in real-time, a trace of only the cycles of interest. 
This is a qualified trace. 

2. Post-processing (filtering out unwanted cycles) a large and 
expensive trace RAM buffer full of all executed and pre-
f etched instructions. 

The first is by far a quicker and more accurate method than the 
second. With SuperTAP's four-level event system architecture 
and trace control actions, you can capture a qualified trace 
based on a complex set of conditions, includingprogram events, 
target hardware events, and the CPU bus state. 

The example demonstrates this ability by capturing only the 
first ten memory write cycles directed to the memory-mapped 
LED port (address OxAOOOOOOO). 

>- Tracing 10 writes to the LEDs 

1. Restart the Cdemon program. 

In the Enter Command box of the Command window, enter: 

restart 

2. Set up the qualified trace capture: 

In the Enter Command box, enter: 

trinit off 

This keeps trace capture turned off unless enabled by the 
event system. 

3. In the Enter Command box, enter: 

trrunclr on 

MWX-ICE User's Manual (Windows) 



SuperTAP 8XX 

This clears the trace buffer when the emulator enters run 
mode. 

4. In the Enter Command box, enter: 

trqual dxqual 

This configures trace for bus qualified capture. 

5. In the Enter Command box, enter: 

ctrlival reload 

This resets the counter to zero when entering run mode. 

6. In the Enter Command box, enter: 

when addr==dot_port && status==wr then trone,ctrlinc 

Note: dot_port holds the base address of the LEDs 
(OxAOOOOOOO). 

7. In the Enter Command box, enter: 

when ctrl==lO then break 

> To run the target code 

• Click the Go button. 

SuperTAP breaks emulation after tracing the first 10 writes 
to the memory-mapped UO address. 

> To display trace 

1. From the Displays menu, choose Emulator Trace. 

2. From the View menu, select Show raw trace. 

You may need to scroll to see all of the trace. Only the 10 
write cycles have been captured (Figure 10-16). 

> To clear the event system 

• In the Enter Command box, enter: 
whenclr all 

• 



B llC p BD I :• 
B DB XSPSCR.TSRC QV IIIIJ:III 
OT RDUC RD J!'IOIM//HEO FF -SE ///P SI EZRZCKROARVF VF LL QQQQQQQQ 

: FroJU Address Il<Lto. WI. W:::SM TP RE'l'EIRSWRTC!n'llS<:S S 01.234567 Tiaesto.ap 

1.2 0 Trace 
1.1 Trc>c:e Cl-.-.d 
1.0 AOOOOOOO F800001.C V WDS a2 a2 D 1.3 -768. 72us 

' AOOOOOOO 1.0000000 V WDS 32 32 D 6 -676.l.6us 
8 AOOOOOOO 08000000 V WDS a2 32 D 1.8 -5,1.,2us 
7 AOOOOOOO 80000000 V WDS 32 32 D 1.3 -507. 72us 
6 AOOOOOOO 40000000 v WDS 32 32 D 13 -428.56us 
5 AOOOOOOO 20000000 v WDS 82 82 D 18 -a3,.4us 
4 AOOOOOOO 0000001.0 v WDS 82 32 D 1S -255.l.us 
3 AOOOOOOO 00000008 v WDS 32 82 D 13 -1.71..0us 
2 AOOOOOOO 00000004 V WDS 82 32 D 13 -86. 76us 
1 AOOOOOOO F800001C V WDS 82 32 D 4 Ons 
0 Er.:l of Tra.ce 

Figure 10-16 Qualified trace capture of 1 O writes to the LEDs 

1Q-66 MWX-ICE User's Manual (Windows) 



Example 3 - Capturing and viewing trace while running 

SuperTAP SXX 

In this example, Supe:rTAP emulates in dynamic mode; you can 
display trace while still emulating. You capture the run() 
function in trace using the event system, then view the trace in 
raw and disassembled formats. 

>- To restart the Cdemon program 

• In the Enter Command box of the Command window, enter: 
restart 

>- To set up the initial trace condition 

1. In the Enter Command box, enter: 

trinit off 

This keeps trace capture turned off unless enabled by the 
event system or the trace on command. 

2. In the Enter Command box, enter: 

trrunclr on 

This clears the trace buffer when the emulator enters run. 

3. In the Enter Command box, enter: 

trqual dxqual 

This configures trace for disassembly qualified capture. 

>- To set up event system 

1. In the Enter Command box, enter: 

when add==OxFFF02204 then tron 

2. In the Enter Command box, enter: 

when add==OxFFF02284 then troff 

The Command window should display the two event system • 
statements shown in Figure 10-17. 

10-67 



10-68 

Figure 10-17 Event system statements to tum trace capture on and off 

>- To enter dynamic run mode 

• In the Enter Command box, enter: 
drun 

>- To display a "snapshot" of trace while still running 
target code 

1. In the Enter Command box, enter: 

drt 

This displays trace history in raw format in the Command 
window. 

2. In the Enter Command box, enter: 

dtb 

This displays trace in mixed source and assembly mode 
(trdisp both is the default mode). Assembly and source-lev
el only modes are also available using the trdisp command. 

MWX-ICE User's Manual (Windows) 



: ~ ,. .. 
5 .. 
6 
7 

10 .. 
11 
12 
u 
14 .. 

SuperT AP SXX 

~,,._·.I'. ov.N'.l'.t'N.l'J'if'J'.N.Y.I'. ~.l'N.l' .. .rJ'JVVV'.r; 

3990 0001 ocldi r12, r30, Oxl 
2cOc 0000 _..,;. r12,0><0 
4082 f££4 loce .-Oxc ip > FFF022DO 

ip < FFF022C4 
» do lay If ino, COClrS•) 1 

» Wile ( coo.rs•-- ) ; 
00027 ff£022c4: llb<io ffff ocldi r30, r30, ll><ffffffff 
00026 fff022c8: 3'9e 0001 ocldi r12,r!.O,OJC.1 
00025 fff022cc: 2c0c 0000 _..,;. r12,~ 

00024 ff f022do: 4082 fff4 - .-Oxc ip > li'FF022DO 
c 

ip < ntr022C4 
» do lay ( f ino. cocarse) 1 

» vhile f CO«Z'Se-- ) 1 

00022 fff022c4: llb<io ffff ocldi r30,r30,ll><ffffffff 
00021 fff022c8: 3.9'9• 0001 ocldi r12,raO,Oxl 
00020 fff022cc: 2c0c 0000 _..,;. r12,0AO 
00019 fff022do: 4082 fff4 - .-Oxc ip > FFF022DO 

ip < l'Fl"022C4 
» do lay ( f ino, COClrSe) r 
» vhile ( coarse-- ) 1 

00017 fff022c4: llb<io ffff ocldi r30, r30, ll><ffffffff 
00016 fff022c8: 399• 0001 ocldi r12, rao, 0x1 
00015 fff022cc: 2c0c 0000 _..n. r12,0><0 
00014 fff022do: 4082 fff4 - .-oxc ip > li'FF022DO 

ip < li'FF022C4 
» dolay(f ino. CCkU'Se) 1 

» while( coo.rs•-- ); 
00012 fff022c4: llb<io ffff ocldi r30,r30,ll><ffffffff 
00011 f ff022c8: 399• 0001 ocldi r12, rao, Ox1 
00010 fff022cc: 2c0c 0000 _..,;. r12,0><0 

"'.r;" 

Figure 10-18 Dynamic trace display-disassembled source and assembly 

~ To exit dynamic run mode and clear the event system 

1. In the Enter Command box, enter: 

dstop 

2. In the Enter Command box, enter: 

whenclr all 

This clears all event system statements. 

10-69 

• 



Example 4 - Displaying data structures 

10-70 

Symbols include arrays, structures, static variables, register
based, and stack-based variables. Symbols can be displayed or 
changed by name, as declared in your program. You can display 
the type and scope of each symbol, and its value in binary, hex, 
ASCII, or decimal format. 

>- To restart the Cdemon program 

• In the Enter Command box of the Command window, enter: 
restart 

>- To run to house(), a function in data() 

• In the Enter Command box, enter: 
g DATA\house 

Emulation breaks at the beginning of house(), a function 
within data(). At this point, all of the cards have been dealt. 

>- To display the structure players 

1. From the Displays menu, choose Inspector. 

2. In the Inspect Symbol or Expression box, enter the following: 

players 

The Inspector window displays a break down of players. You 
can scroll or resize the Inspecting window for the best dis
play of the structure. 

3. From the View menu, choose Show [char*] as String. 

4. In the Inspector window, choose S>> for player[02]. 

The Inspector window displays a break down of player[02], 
the third element of players. 

In Figure 10-19, you can see playerl busted, having been 
dealt 5 cards for a total of 23 points. Too bad. 

5. Close the Inspector window. 

MWX-ICE User's Manual (Windows) 



, lnspecto1 flEJ EJ: 

Figure 10-19 Displaying the structure players 

SuperT AP SXX 10-71 



Example 5 - Browsing the CPU registers 

10-72 

MWX-ICE includes a register utility called the CPU Browser, 
to save you time you might otherwise spend referencing a 
technical manual for register bit meanings. 

~ To browse the SR register 

1. From the Displays Menu, choose CPU Browser. 

2. From the CPU Browser window, click the MSR button 

The CPU Browser displays the current MSR register 
settings. 

3. Close the CPU Browser window. 

MWX-ICE User's Manual (Windows) 



pr!!lllll•I ~ 
** Qae.,..J. J:IUzp>H a.gis1 

~ ···-·-····-·-·-···············-----·---·-
l 

- - -

[] liii MSFl Machine State Hegister 

llBR lfaohine s~"" Rei 
St.&• Register: looODDDDDDDDDDDDDDDDDDDDDDlDDOOlD ~ •• -zy c:-Uc>l a.gis~ llSllllllclWlll C DxDDDDDD42) 

1···--········----·----··-··---·--···--· Iii lrror-c:heck value on .Apply i BRO Bue :ii.gis"'°r D 

:: JllU. Bue Register 1 ,.,...r --- -1•: ll>islll>l•cl:::J 

1 ··-·····:··::·:::::·:·· :blpl-at:l.on Specific llm=:l.on: la:1.~ is nae s.c:::J 

i ·····-··;;~·;;;;·;;;;;;;;;;·~-- Im:.er:rupt:. I,ittl.• lndi..a lloda: is it is not s.e :::J 

a 8R5 .... Register 5 
IRenaal. Interrupt lnable: IDisUled:::J I :~~-~~~~;.-.-;;~;·;_;_·:;.~.- Pru.lea Stea: 1•1.t. is noe s.e ::J 
1loat1Dg-Poizat. Avail.Ula: ls:Lt is not set :::J 

14J""]'.l lt•l1i llKh:l.ae Check -l•: 11>:1.slll>l•cl:::J 

r10-.1Dg-Jllo:int Jlode 0: l•it. :Ls DOC, ... 3 
Sing.le St.-i> Trace llaable: IDisabled :::J 

BrllDCb TZ"ac:• lnable: ID:Lsllbl.ed 3 
FloaeiDg-Point. !lode l: isit :Ls~ sR:::J 

Interrupt:. Prefiz: ioxrrrn_mmn:::J 

Inst~:Lon hlocat.e: Js:1.t :Ls nae s.e ::::J 
J>aa bloc::iat•: is:1.c. is noc. s.e :::J 

bconrU.le Im:.errupc: f s1t is sK 3 
Litt.le bd:i.an llod.e: fs1t is not se ::::J 
llSll :Ls al.so - u Slllll 

lb .Appi:..!I llesc.ore Value II cw:e1 ! 

Figure 10-20 The CPU Browser view of the Status register 

• 
SuperT AP 8XX 10-73 



Example 6 - Displaying and modifying memory 

10-74 

MWX-ICE provides means for acting on a block of memory. 
Using either the command line or the Memory Commands 
notebook, you can clear, move, set, read, write, or log a block of 
memory. 

>- To restart the Cdemon program 

• In the Enter Command box of the Command window, enter: 
restart 

>- To display memory 

• In the Enter Command box, enter: 
dump &led_port 

This displays a block of memory in the Command window 
beginning with the address ofled_port. (Note: You can also 
use the Memory window. To open this window, choose Mem
ory from the Displays menu.) 

>- To manipulate a block of memory 

1. From the Notebooks menu, choose Memory Commands. 

2. The Memory Commands menu, choose one of five 
commands. 

The Memory commands notebook is displayed. You can select 
notebook pages by clicking the notebook tabs. The notebook 
pages control memory commands: 

a Fill-fill memory with a given value. 
a Copy-copy the contents of one block of memory to another. 
a Compare--compare the contents of two memory blocks. 
a Search-search through memory for a pattern. 
a Stack-display values from a particular stack level. 

The Fill page is shown in Figure 10-21. 

MWX-ICE User's Manual (Windows) 



Super TAP SXX 

AllMemaiy 

elec:c. lxpressioa co Seore in llaoq: 

• S:Ulpl• :lxprusicm 

Os_. of vai .... 
0 ~ring lxprusicm 

lspressioa: •1-----3-... -r 
Se lace -..Ory Sise: 

c-

Figure 10-21 Memory Commands notebook - Fill memory page 

• 
10-75 



Example 7 - Monitoring and modifying variables 

10-76 

MWX-ICE provides three windows for working with program 
variables. The Data window is used for monitoring variables, 
the Inspector window for viewing and modifying variables, and 
the Register window for viewing and modifying register-based 
variables. In static mode, they are updated only at each single
step, breakpoint, or program halt. In dynamic mode, emulation 
periodically pauses then re-starts, updating each window when 
emulation is re-entered. 

>- To dynamically monitor the variable led_port 

1. In the Enter Command box of the Command window, enter: 

g outled 

2. From a Displays menu, choose Data. 

3. In the Data window Expression box, type led_port, and 
then click the Display button: 

This places the variable led_port in the Data window. 

>- To restart the Cdemon program 

• In the Enter Command box of the Command window, enter: 
restart 

>- To enter dynamic run mode 

• In the Enter Command box, enter: 
drun 

>- To enter dynamic update mode 

• In the Enter Command box, enter: 
dupdate 1000 

This causes MWX-ICE to poll the emulator approximately 
1000 times a minute. The response is actually slower due to 
the time spent updating the debugger's windows. 

MWX-ICE User's Manual (Windows) 



SuperTAP SXX 

Observe the variable led_port in the Data window as it 
changes. 

> To exit dynamic update mode 

• Choose Stop from the tool bar. 

> To dynamically modify the variable direct 

1. From the Displays menu, choose Inspector. 

2. In the Inspector window Symbol Name box, enter the 
following: 

direct 

The variable direct controls the direction of the LED's count
ing, either left or right. 

3. In the Inspector window, choose the long button to the left of 
the value left. 

This opens up a dialog box used to change the value of the 
inspected variable, shown in Figure 10-23. 

4. In the Enter new value field of the dialog box, type: 

right 

5. In the dialog box, choose Set to accept the new value. 

The Inspector window for direct now reflects the new value. 

6. Enter dynamic update mode again: 

dupdate 1000 

Observe the motion of the asterisks displayed in the Data 
window. 

7. Choose Stop from the tool bar to exit dynamic update mode. 

> To exit dynamic run mode and return to pause mode 

• In the Enter Comm.and box, enter: 
dstop 

This forces SuperTAP from dynamic run mode back into 
pause mode. 

10-77 

• 



. , Data !1@£1~ 

Figure 10-22 Dynamic mode - Monitoring the variable led_port 

Figure 10-23 Dynamic mode - Entering a variable's new value 

10-78 MWX-ICE User's Manual (Windows) 



I Appendix A 

Modifying the Startup Files 
To save you time in setup and configuration of MWX-ICE, you • 
can save your emulator connection and configuration 
information, and your startup command-line arguments. 
MWX-ICE saves this information in two separate files. This 
appendix describes how these two startup files interact, and 
describes the process used by MWX-ICE at startup. 

Contents Page 

How MWX-ICE uses the startup files A-2 

About the startup file (STARTUP.INC) A-4 

About the startup options file (MWX.CFG) A-7 

A-1 



How MWX-ICE uses the startup files 

A-2 

When you start MWX-ICE, the debugger automatically looks 
for the MWX.CFG file to obtain the command-line or startup 
options. The MWX.CFG file is created by the Startup Options 
Editor. When you first use MWX-ICE, you need to run the 
Startup Options Editor to select the correct processor type. 
Using the Editor, you can also specify an absolute file to 
download, select journal or log files to record your debugging 
session, include command files. You can also specify a Startup 
Settings file to use, which then overrides the default file 
(STARTUP.INC). 

After MWX-ICE has obtained the command-line arguments, it 
looks for the STARTUP.INC file, or for a Startup Settings file 
if you specified one using the Startup Options Editor. This file 
contains the emulator configuration and connection 
commands, and is processed before any other include files. 
MWX-ICE automatically looks for this file at startup. The 
STARTUP.INC file is created when you save your 
configuration. 

After all the commands in the STARTUP.INC file have been 
executed, MWX-ICE finishes processing the rest of the 
command-line options. 

For an illustration of how MWX-ICE uses the startup files, see 
FigureA-1. 

MWX-ICE User's Manual (Windows) 



Start ... 

MWX-ICE 

MWX.CFG 
Get proce&50r tYPe. 
Reael command-line 
option&. 

Yes 

Read configuration 
and connection 
command& from 
file. 

No 

Start ... 

Startup 
Options 
Editor 

Select proce&&0r type, 
and o1;her command
line option&. 

Yes 

STARTUP.INC 
Read configuration 
and connection 
command&. -----

No 

Process each option. 

Yes 

Process all 
command& in 
5tartup file. No 

MWX-ICE starts 
up, but is not 
connected to an 
emulator. 

MWX-ICE startup 
is complete. 
Enter normal 
command mode. 

Rgure A-1 How MWX-ICE uses the STARTUP.INC and MWX.CFG files. 

SuperT AP 8XX A-3 



About the startup file {STARTUP .INC) 

Defines connections---i 

~onnects to emulator-

A-4 

Configuration
commands 

The startup file is a special kind of include file that is processed 
before any other include files. This file has a configuration 
section that is composed of three parts: the first part contains 
the definitions of emulator connections (using the config 
command); the second part connects to a specific emulator 
(using the connect command); the third part contains the 
configuration commands. Do not edit the configuration section 
of the startup file. The configuration commands cannot be 
processed ifMWX-ICE is not connected to an emulator. 

; ; ; TOP OF SECTION 
;;; DO NOT MODIFY COMMANDS IN THE FOLLOWING SECTION. 
config prodsupt, ETHERNET, prodsupt 
config bubba, ETHERNET, bubba 
connect prodsupt 
option LINES = OFF 
option SYMBOL = ON 

DNLFMT SREC 
RUN_POLL 5 
RUN_TIME 0 
UPLFMT SREC 
VERIFY ON 
DNL_GAP 0 
BERRS OFF 
BTE ON 

DO NOT MODIFY COMMANDS ABOVE THIS LINE. 
END OF SECTION 

Figure A-2 The configuration section of an example of a STARTUP.INC file 

MWX-ICE User's Manual (Windows) 



SuperT AP SXX 

Where MWX·ICE looks for the STARTUP.INC file 
MWX-ICE searches the following directories for the 
STARTUP.INC file: (note that XRAYMASTER is the directory 
pointed to by the XRAYMASTER environment variable): 

a current_directory 
a current_directory\AMC\ST8XX 
a XRAYMASTER\AMC\ST8XX 
a C:\ST8XX\AMC\ST8XX 

XRAYMASTER is the directory pointed to by the 
XRAYMASTER environment variable. If the STARTUP.INC 
file isn't found, MWX-ICE comes up in an unconnected state. 
By default, when you save a configuration to the startup file, 
you are prompted to save the connection and the configurations 
to the STARTUP.INC file in your C:\ST8XX\AMC\ST8:XX 
directory. 

Adding commands to the startup file 
You can add commands not normally saved as part of 
configuration. Using a text editor, place such commands after 
the configuration section of the startup file. This section ends 
with: 

;;; DO NOT MODIFY COMMANDS ABOVE THIS LINE. 
; ; ; END OF SECTION 

For example, you could call an additional include file: 

;;; DO NOT MODIFY COMMANDS ABOVE THIS LINE. 
; ; ; END OF SECTION 
inc myregs.inc 

To preserve such additions to the file, always use Replace, 
rather than Overwrite, when saving new configuration data to 
the file. 

To process the commands at startup, MWX-ICE must be 
connected to an emulator. For a list of all the commands and 
their descriptions, see MWX-ICE Help. 

A-5 

• 



Including a specific startup file 
By default, MWX-ICE searches for the STARTUP .INC file. You 
can override an existing startup file by specifying another file 
to use. 

> To include a specific startup file 

• From the Startup Options Editor, select a Startup Settings 
file. 

Changing connections during a debug session 
Once MWX-ICE is running, you can run a startup include file 
as long as you are not connected to an emulator. Just make 
sure you are connecting to an emulator that matches the 
processor type you selected using the Startup Options Editor. 

> To include a startup file from MWX-ICE 

• From the Connections window File menu, choose Run 
Include. This opens the Include page of the Debugger Files 
notebook. Type the name of the file, or use the File Chooser, 
and then click Include. 

-or-

• Use the include command from MWX-ICE Command 
window. 

Restoring emulator defauH settings 
Once you create a startup include file, MWX-ICE uses the 
definitions and configuration in that file. If you want to reset 
the emulator to its default state, follow these steps. · 

> To restore default settings 

1. Exit MWX-ICE. 

2. Turn off power to the target and emulator. 

3. Rename or delete the existing STARTUP.INC file(s). 

MWX-ICE User's Manual (Windows) 



Note that MWX-ICE looks for the STARTUP.INC file in sev
eral locations. See ''Where MWX-ICE looks for the START
UP.INC file" on page A-5. 

4. Start MWX-ICE. 

5. Turn on power to the emulator and target. 

6. Define a connection, and connect to an emulator. 

About the startup options file (MWX.CFG) 

SuperT AP SXX 

To make selecting startup options easier, you can use the 
MWX-ICE Startup Options Editor. The editor creates a startup 
options file (MWX.CFG) that is automatically included when 
you start the debugger. 

The debugger automatically looks for the file MWX.CFG, and 
uses those options at startup. If you save the options to a 
different file, you need to specify the name of the file in the 
command line at startup. 

~ IMPC860 3 

l..oadAbsm.e Fie: • 

r l.oodS)lllbilsO,._ 

Advanced ••• 1 

Figure A-3 MWX-ICE Startup Options Editor 

A-7 

• 



A-8 

Figure A-4 MWX·ICE Startup Options Editor Advanced Options 

Specifying which startup option file to use 
The debugger automatically looks for the file MWXCFG, and 
uses those options at startup. 

If you save the options to a different file, you need to add a new 
program icon to the Start or Programs menu. For information, 
click Help from the Startup Options Editor, and see the "Add a 
new program" topic. 

MWX-ICE User's Manual (Windows) 



Selecting startup options 

Options 

Processor 

Load Symbols Only 

Load Absolute File 

Options 

Load Include File 

SuperTAP SXX 

You can select the following startup options. For more 
information about each option, choose Help from the Help 
menu, click the Help button, or press Fl. 

Table A-1 Basic options provided by the Startup Options Editor 

Definition 

When more than one, selects the processor variant that you 
want. This is the only change necessary to switch variants. 

Loads only the symbols of the file specified in the Load 
Absolute File field. 

The name of an absolute object module that is loaded into the 
debugger's simulated target memory. The default extension 
is .ABS. Use an absolute pathname, ifthe file is not in the 
directory from which MWX-ICE was started; or set the XRAY 
environment variable to point to source locations. 

Only one absolute object module may be loaded into MWX
ICE via the startup editor. To load multiple absolute object 
modules, use the load command after starting the debugger. 

Table A-2 Advanced options provided by the Startup Options Editor 

Definition 

The name of an included command file that is read before 
any debugger commands are entered. The default file 
extension is .INC. Use an absolute pathname, if the file is not 
in the directory from which MWX-ICE was started; for 
example, \PROJECT\JOHN\SWITCHES.INC. 

A-9 



Options 

Specify Journal File 

Specify Log File 

A-10 

Table A-2 Advanced options provided by the Startup Options Editor 

Definition 

Command output and window information is saved in the 
specifiedjournal_file. The default extension is .JOU. This file 
is placed in the directory from which MWX-ICE was started, 
unless you specify a complete path; for example, 
\PROJECT \AD MIN\ TESTS.JOU. 

User commands and a record of any errors are placed in the 
specified log_file. The default extension is .LOG. This file is 
placed in the directory from which MWX-ICE was started, 
unless you specify a complete path; for example, 
\PROJECT\ADMIN\ TESTS.LOG. 

MWX-ICE User's Manual (Windows) 



I AppendixB 

Troubleshooting 
The following list covers the most common problems that occur 
during installation and using MWX-ICE. They are grouped 
according to when the failure typically occurs: 

a During startup. 
a During normal operation. 

Each group consists of one or more problems. Locate the 
problem that suits your situation, and check the causes and 
solutions listed. Where problems are specific to a particular 
host or communications type, it is noted. 

B-1 

• 



Common startup problems 

Insufficient memory 

Here are some common problems that you might encounter 
when you try to run the MWX-ICE debugger. 

IfMWX-ICE fails to start, or exits suddenly, check the 
following possible causes. 

To use MWX-ICE you must have a 386-class personal computer 
(or better) running MS Windows 95 or Windows NT. You need 
at least 16 MB of RAM and 20 MB of free swap space (Virtual 
Memory). 

An MWX-ICE support file was not found 
An MWX-ICE support file is missing or not in the search path. 
MWX-ICE searches the directories in the following order: 

o current_directory \STARTUP.INC 
o current_directory\AMC\STSXX\ 
o XRAYMASTER1\AMC\ST8XX\ 
o C:\ST8XX\AMC\ST8XX\ 

The default installation directory for MWX-ICE is C: \STSXX. 
If you use this directory, you do not need to set up the 
XRAYMASTER environment variable. 

If you have installed the MWX-ICE debugger in different 
directory, you need to set up the XRAYMASTER environment 
variable in your AUTOEXEC.BAT file. The syntax is: 

set XRAYMASTER=install_dir 

MWX-ICE reports it cannot find the necessary shell file 
The emulator control file is missing or not in the search path. 

1. Directory pointed to by the XRA.YMASTER environment variable. 

B-2 MWX-ICE User's Manual (Windows) 



The search order that MWX-ICE uses is shown on page B-2 

Check these locations for the .ep file. If you are not using the 
default installation directory ( C: \ ST8XX), be sure to set the 
XRAYMASTER environment variable to point to your 
installation directory. 

Error while opening a connection to the emulator 

SuperTAP SXX 

MWX-ICE reports that the debug server is initializing, but 
nothing happens. 

Check the following: 

1J Is the emulator is connected to a power and is the power 
switch is on? 

IJ Is the emulator connected properly to the host computer or Ill· 
network? 

IJ Is STARTUP.INC file set up correctly for the type of 
communications you are using? 

1J Is the emulator properly installed on your network? 

Check the communications type 
Check that the Connection Type for the defined connection 
matches the switch settings on the emulator. For information 
about communications setup, see "Defining a connection" on 
page 2-9. 

Check emulator connections 
If you are using Ethernet communications, tighten the 
Ethernet cable connection between the emulator and network. 

Check the host name for the emulator 
The host name you are using for the emulator and the host 
name specified in the Connections window must match. 

If your TCP/IP application provides the PING program, you 
can use it to test the connection to the emulator. PING sends 
ICMP _ECHO_REQUEST packets to a remote host. From your 
computer you can ping the emulator to determine if it is 

B-3 



B-4 

accessible. The PING command should report the emulator to 
be alive. If not, the emulator has been installed incorrectly, and 
you might need the assistance of your network administrator to 
correct it. Verify each step of the Ethernet installation given in 
the hardware manual. Check your network HOSTS files or 
domain name system services, and your TCP/IP setup. 

If the PING works, shut the emulator off and try again. You 
want to make sure that you are indeed talking to the emulator. 
With the emulator off, the ping should fail. If this happens, you 
have the correct address of the emulator, so turn it back on. 

Check WINSOCK.DLL 
The file WINSOCKDLL must be Windows Sockets version 1. 2 
compliant. Make sure this file is in your Windows directory, or 
in your environment path. Without a version 1.2 compliant 
WINSOCKDLL, you won't be able to connect to the emulator. 

If you get the error message "Error while opening a connection 
to the emulator," and you have the PING utility, try to verify 
that the emulator is on the network. If the emulator is on the 
network and you've used the correct host name for the 
emulator, you might need a newer version of WINSOCKDLL. 

Does your network use IEEE 802.3 frames? 
The emulator communicates with the host using the standard 
IEEE 802.3 packets. Be sure your network supports the IEEE 
802.3 format. 

MWX-ICE User's Manual (Windows) 



Download errors 
The following section lists some common errors that may occur 
during downloads to the target or to the emulator's overlay 
memory. 

Virtual memory simulator failure 
MWX-ICE swaps symbols to disk and needs more disk space to 
continue. Clear disk space and try again. 

Lack of symbol space 
Not enough extended memory. 

MWX-ICE is storing symbols in extended memory, and has run • 
out of space. You need at least as much memory available as 
the size of the object file being loaded, and usually you need 
about 25% more. So, if you are loading a 4 MB object file, you 
will need at least 16 MB of memory in your PC ( 12 for 
MWX-ICE, and 4 for the symbolic information). 

Miscellaneous errors 

MWX·ICE reports the shell is newer or older than expected 

SuperTAP 8XX 

When you first run a new version ofMWX-ICE, it is a good idea 
to select the Foree OS Download in the Connections window, so 
the operating system in the emulator can be updated with the 
latest version provided on the distribution. 

Note that after you cycle power to the emulator, the emulator 
OS is automatically downloaded when you start the MWX-ICE 
debugger. 

B·S 



Check paths and the XRA YMASTER variable 
You are encouraged to keep only the most current version of 
MWX-ICE on your system. If you choose to keep earlier 
versions available, be sure to modify all path statements, 
environment variables, and user files containing file pointers 
(includes, start-up file etc.) to search the appropriate new 
paths. 

The search order that MWX-ICE uses is shown on page B-2. 

Check these locations for the .EP file. Remove any obsolete .EP 
from those locations, or reset your XRAYMASTER 
environment variable. 

Corrupted file 
If you suspect the .EP file is corrupted for some reason, try 
reinstalling MWX-ICE. After you install the debugger, select 
the Force OS Download in the Connections window, so the 
operating system in the emulator can be updated when you 
start the debugger. 

IfMWX-ICE still reports a version error, please call Customer 
Support at 1-800-ASK-4-AMC. 

MMC·ICE reports "type errors" or "mismatched variables" 
A function or variable has been declared as more than one type 
in different modules. Symbols for a module load only when that 
module comes in scope. When one of these warnings occurs, use 
ps /elf to print the mismatch. You might need to use the scope 
module \symbol command in conjunction with the ps command 
to see the additional declarations of the symbol. 

If you want to see all mismatches at startup, set option 
demandload=off; then load your code. A ps /elf command 
prints all known mismatches. Note that with demandload 
off, downloads can take considerable time, and you might run 
out of symbol space. 

MWX·ICE User's Manual (Windows) 



Calling Customer Support 

SuperT AP axx 

If none of the suggested solutions works, please contact the 
Applied Microsystems Customer Support department (US and 
Canada) or your nearest Applied Microsystems sales office 
(overseas). 

When you contact Customer Support, please have the following 
information available: 

o The ASI number of your system. The ASI number is printed 
on a label located on the bottom of the SuperTAP. 

o Your Support Agreement number (if applicable). 
o The emulation device you are connected to (68040 emulator, 

68332 CodeTAP, etc.). 
o The available conventional and extended RAM in your PC. 
o The version ofMWX-ICE you are using, as well as the 

information reported by the hwconfig command in the 
debugger (assuming you can get this). 

o The exact sequence of operations and commands that 
immediately preceded your problem. 

Phone 

(800) ASK-4AMC (275-4262) 

(206) 882-2000 (in Washington or from Canada) 

See inside back page for addresses and phone numbers of 
worldwide offices. 

B-7 



Internet 
If you have access to the Internet, you can contact Applied 
Microsystems Customer Support using the following address: 

support@amc.com 

If you have access to the World Wide Web, check out the 
Applied Microsystems home page: 

http://www.amc.com 

FAX 
If you prefer, you can fax your problem description to us. Be 
sure to include the information requested above. 

(206) 883-3049 

MWX-ICE User's Manual (Windows) 



I AppendixC 

Cdemon Demonstration Program 

Cdemon is the Applied Microsystems standard C-language II 
demonstration program, providing examples of many code and 
data constructions used by C programmers. An in-memory 
representation of the LEDs (led_port) may be used to see the 
output of some of the functions. 

Cdemon is composed of two discrete demonstration programs. 
The default C-language program writes to the LEDs and plays 
a simple hand of blackjack.. The other, a C++-language 
program, simulates an elevator. A variable named which_demo 
determines which of the two demonstration programs is 
executed. The card game program runs by default. If 
which_demo is set to 1, then the elevator program is executed. 

A functional block of the LED-lighting/blackjack game is shown 
in Figure C-1. 

C·1 



initialO 

stepO 

C-2 

START 

INITIAL 
Initialize data 

STEP 
Sim le control of the LED 

DATA 

RUN 
Scroll the attem on the LED 

Figure C-1 Flowchart of Cdemon 

The function initial() initializes the three global LED-control 
variables, pattern, speed, and direct. These variables control 
the byte pattern, the speed, and the direction of LED pattern 
rotation, respectively. 

After initializing the global variables, initial() passes control to 
step(). 

The function step() performs five loops of a simple LED control 
process, and passes control to data(). 

MWX-ICE User's Manual (Windows) 



dataO 

SuperTAP SXX 

Step() declares the loop-control variable loops. In each of its five 
loops, step() calls outled() 17 times, each time passing outled() 
a one-byte argument which represents the pattern displayed 
on the demonstration board LEDs. 

Outled() then writes the LED control byte to the LEDs and to • 
an in-memory representation of the LEDs (symbolically named 
led_port). Each of the 17 arguments passed to outled() by each 
loop in step() represents one LED pattern. 

While the execution of step() can be observed with the trace 
function, the purpose of step() is to demonstrate, in a 1 

single-stepped fashion, the relationship between the code and 
the LEDs. 

The most basic control of step() comes from single-stepping 
while observing and modifying the loop-control variable loops. 
Loops may be observed with the Data window, and observed or 
changed with the Inspector window. Setting loops to a high 
value will lengthen the time spent in step(), while setting loops 
to zero will very quickly cause program control to be passed to 
data(). 

Because step() produces a repeating cycle of data on the bus, 
predictable data-value conditions are available to the event 
system. 

The function data() plays a five-handed game of blackjack with 
four players and a dealer. When the game is won, data() passes 
control to run(). Data() requires no input and generates no 
output, and is simply a code environment with interesting data 
structures. 

The primary data structures are: 

1. card, a structure defining the value and suite of each card. 

2. player, a structure containing each player's name, a hand 
(array) of five cards, a point total, and a card count. 

C-3 



C-4 

3. card_deck, a union with various array types describing the 
cards in the four suits, the cards in the two sub-decks for 
shuftling, and the cards in the shuffled deck. 

After the declarations, data() initializes player names and sets 
cards ,dealt and points for each player to zero, then executes the 
following functions. 

init() 
This function initializes players and dealer structures. 

sort() 
This function sets up a 52-word block of memory as a deck of 
cards. 

shuffle{) 
This function divides the deck into two 26-word blocks and 
interleaves them, simulating the shuftling process. 

deal() 
This function deals one card to each player, including the 
dealer. 

hit() 
This function deals cards to each player until points >= 18, or 
cards dealt = 5. 

house() 
This function deals cards to the dealer until points >= 17, or 
cards dealt = 5. 

The players each draw for cards while they have less than 21 
points and more than 18 points. The dealer uses a similar 
routine to draw cards until his hand contains more than 17 
points. The game concludes after one round. 

The data() function only executes once. To replay the game, 
reset the program to return to the beginning of the code, and 
run the code until it reaches a temporary break.point set at the 
beginning of the data() function. 

MWX-ICE User's Manual (Windows) 



runO 

SuperT AP 8XX 

The function run() writes a string from left to right (or right to 
left, depending on the value of the variable direct) to the LED's 
endlessly. Rather than using separate statements like step(), 
run() uses a "while" control structure under the direction of the ms 
speed and direct variables from initial(). Program control stays mil 
with run(). 

Run() declares external functions outled() and wait(), declares 
the byte maskbit, the integercputype, the loop-control variable 
i, and the constant forever = 1. 

outled() 
This function writes an 8-bit value to led_port, the in memory 
representation of LEDs. 

wait() 
This function sets the actual delay according to the value of two 
arguments, cputype and speed. 

The mechanics ofrun() can be observed by changing the values 
of direct and speed, and then running without breakpoints. The 
effects of changed variables in the LED-control task can be 
observed directly at the LEDs or at the Data window while 
monitoring led_port. 

C-5 





I AppendixD 

Updating the SuperTAP Flash ROM 

At some point you may be required to update the emulator 
firmware stored in the SuperTAP's flash memory. Typically 
this occurs when you are installing an update to existing 
software, and the release letter specifies a required higher level 
of emulator core software. 

This appendix describes the steps in the upgrade process. 

Contents Page 

Part 1: Determine the current core version (optional) D-2 

Part 2: Activate the SuperTAP's core loader D-2 

Part 3: Program the emulator's firmware D-5 

Part 4: Remove outdated shells and pointers D-7 

D-1 



Part 1: Determine the current core version (optional) 
To determine the current level of the emulator core software, 
you can use an MWX-ICE command. 

> To check the core version 

1. Start MWX-ICE. 

Note that the most recently installed version of MWX-ICE 
may be incompatible with the core currently on the Super
T AP and fail to start. If this occurs, either start an earlier 
version ofMWX-ICE, or skip this part and go directly to 
Part2. 

2. Connect to the SuperTAP. 

3. Enter hwconfig on the command line. 

4. Compare the Core System and Core Loader versions 
displayed with those required by the latest release of MWX
ICE. If an upgrade is required, proceed with the remainder 
of the procedures in this appendix. 

Part 2: Activate the SuperTAP's core loader 

D-2 

> To activate the loader 

1. Turn off power to the SuperTAP. 

2. Using the RJ-11 adapter provided (PIN 210-12502 or PIN 
210-12503), connect the serial cable (600-12511) to the RS-
232 port on your PC to the CONFIG port on the SuperTAP. 

3. Start HyperTerminal or another terminal emulation 
program and connect to the COM port that is directly 
connected to the emulator. 

Specify the following configuration parameters: 

• 9600baud 

MWX-ICE User's Manual (Windows) 



SuperTAP 8XX 

• 8 data bits 
• no parity 
• one stop bit 
• hardware flow control 

4. Apply power to the SuperTAP, and then watch the terminal 
screen. 

5. As the SuperTAP starts up, it displays information about 
the current loader and test engine, as soon as you see the 
message, "hit a key within 2 seconds to force flash loader," 
quickly press a key. 

6. When you successfully activate the flash loader, you should 
see the following message in the terminal window: 

waiting for floader connection 
console now disabled 

If you didn't press a key quickly enough, cycle power to the 
emulator, and try it again. 

7. Once you see the message that the emulator is waiting for 
the floader connection, exit the terminal emulation program 
and disconnect from the emulator. 

When the core loader is activated both LEDs on the Super
TAP flash rapidly. Be sure to leave the SuperTAP power on. 

0-3 



D-4 

~ 
Test Engine: Version 
Diagnostics: Version 

Z.3 - Mon Nov 4 10:18:57 PST 1996 
1.1 - Tue NOV 26 10:22:38 PST 1996 

~ Core Loader: Version 1.1 - Mon Nov ZS 12:25:28 PST 1996 
~ hit a key within Z seconds to force flash loader 

waiting for £loader connection 
! console now disabled 

I 
~ 
~ 

Figure D-1 Hyper Terminal (core loader activated) 

MWX-ICE User's Manual (Windows) 



Part 3: Program the emulator's firmware 

SuperT AP BXX 

Once you've activated the core loader, you can run the 
FLOADER utility that is included with MWX-ICE. 

>- To run the FLOADER utility 

1. Using Windows Explorer, change directories to: 

install_clrive: \install_dir\UTILS 

The default is C: \STSXX\ UTILS. 

2. Start the FLOADER.EXE utility. 

3. Choose Settings from the Edit menu. 

4. In the Communications Settings dialog box, select the 
communications port the emulator is connected to, and 
select the fastest baud rate that your PC can handle, and 
then click OK 

5. Choose Open from the File menu to open the fl.ash file: 
CORE_PKG.LDR 

Information about the loader file is displayed in the main 
window. 

6. From the File menu, choose Download. 

The SuperTAP automatically configures itself to the baud 
rate selected. This should only take a moment or two. If the 
autobaud is unsuccessful, try using a slower baud rate. 

FLO ADER reports on the progress of the download. When 
the process is complete, you should see the message: File 
Successfully downloaded. 

7. Press the reset button. 

The upgrade is complete. You can exit FLOADER.EXE and re
connect the Ethernet cable to the SuperTAP. 

D-5 



D-6 

.o\ddress Size Type 
OxOOOlDOOO Ox00008000 SECTOR_ERASE 
OxOOOOcOOO OxOOOOOlfO ERASE_AREA 
Ox00040000 Ox000,0000 SECTOR_ERASE 
Ox00080000 Ox00040000 SECTOR_ERASE 

Download Slalus 

Figure D-2 FLOADER utility (firmware successfully updated) 

These procedures must be performed on each emulator that 
you plan to use with the current version of MWX-ICE. 

MWX-ICE User's Manual (Windows) 



Part 4: Remove outdated shells and pointers 

SuperTAP BXX 

Before you start MWX-ICE 
Before you start MWX-ICE for the first time after 
reprogramming the emulator's firmware, be sure you remove 
any old shell files (*.EP) or EMULCFG.DAT files that point to 
earlier shell files. To load the latest shell file when you connect 
to the emulator, select the Force OS Download option in the 
Connections dialog box. 

What's next? 
Once you have completed the upgrade, return to the MWX-ICE 
startup procedures in Chapter 2. 

D-7 

• 





I Index 
A 
Absolute object module 

loading A-9 
Absolute timestamp 5-24 
AC signal timing 2-26 
Access breakpoints 6-3, 10-38 

setting 6-7 
ADD 9-22 
ADDRESS 2-28, 9-6 
Address alignment 7-25 
Address translation 2-28 
Advanced event system 10-52 
ALIAS 9-24 
Alternate registers 

how set up 8-4 
Amddevice 4-12, 9-6 
ANAL 'YZE 9-26 
Applied Microsystems 

test target 8-5 
ASM 9-6, 10-27 

B 
Basic breakpoints 6-1, 10-31 
BCLOCK 9-19 
BPTYPE 9-11 
Break 6-1 

action 7-23 
latency 7-23 

BREAKACCESS 9-11, 9-21 
BREAKCOMPLEX 9-11, 9-15, 9-21 
Breaking emulation 6-1 
BREAKINSTRUCTION 9-11, 9-21 
Breakpoints 1-7, 7-1 

access 6-3, 6-7, 10-38 
access,process 6-10 
assigning macros 6-6 

asynchronous 10-31 
basic 10-31 
BPTYPE 9-11 
BREAKACCESS 9-11 
BREAK.COMPLEX 9-11 
BREAKINSTRUCTION 9-11 
BREAKREAD 9-11 
BREAKWRITE 9-11 
caches 6-11 
CLEAR 9-11 
clearing 6-6 
commands 6-5 
complex 10-54 
deleting 10-36 
displaying 6-6 
event system 10-53 
execution 6-4, 6-12 
external 10-31 
features 6-1 
hardware execution 10-38 
hardware, example 10-39 
instruction 6-4, 6-12, 10-32 
instruction,process 6-16 
instruction,setup 6-12 
latency 6-10 
memory access 6-8, 6-14 
memory access type 6-7 
resources 6-11, 6-17 
setting 10-38 
setting BREAKACCESS 6-8 
setting BREAKINSTRUCTION 6-14 
setting BREAKREAD 6-8 
setting BREAKWRITE 6-8 
show cycles 6-11 
software 10-32 
STEPOVER 9-12 
temporary 6-14 
temporary,example 10-35 

lndex-1 



BREAKREAD 9-11, 9-21 
BREAKWRITE 9-11, 9-21 
BROWSE 9-22 
BTE 9-19 
Bus master 2-27 
Bus masters and overlay 3-4 
Buttons 10-7 

c 
Caches 

break.point system 6-11 
event system 7-25 

Cdemon 
data() C-3 
detailed description C-1 
direct variable 10-77 
initial() C-2 
led_port C-3 
led_port variable 10-76 
loading 10-12 
outled() C-5 
primary data structures C-3 
run() C-5 
step() C-2 
wait() C-5 

CEXPRESSION 9-22 
CLEAR 9-11 
Code accesses 7-25 
Code patching 10-27 
Command 

aliasing 10-19 
history 10-19 

Commands 9-1 
supported 9-1 
unsupported 9-26 

Companion mode 
view/modify registers 8-10 

COMPARE 9-6 
Complex breakpoints 7-21 
CONCLEAR 9-25 
CONDELETE 9-25 
CONFIG 9-25 

lndex-2 

Configuration 
emulator 2-11 
file A-4 
MWX-ICE 2-11 
restoring default A-6 
saving 2-11 
window 2-11 

Configuration registers 8-5 
Configuring fl.ash 4-8 
CONLIST 9-25 
CONNECT 9-25 
Connecting to the emulator 2-10 
Connection commands 

CONCLEAR 9-25 
CONDELETE 9-25 
CONFIG 9-25 
CONLIST 9-25 
CONNECT 9-25 
CONSAVE 9-25 
DISCONNECT 9-25 

Connections 
emulator 2-10 

CONSA VE 9-25 
CONTEXT 9-22 
Conventions xix 
COPY 9-6 
Copying between target and overlay 3-16 
Copying memory 3-15 
Counters 7-18 
CPU Browser 

error checking 8-11 
CRC 9-6 
CTRn 9-15 
CTRnIVAL 9-15 
Customer Support xx 

D 
Data display in trace 5-24 
Debugger 

exiting 10-11 
installation xviii 

DEFINE 9-21 

MWX-ICE User's Manual (Windows) 



Defining 
emulator connections 2-9 

DELETE 9-22 
Demonstration code 

detailed description C-1 
loading 10-12 

DIAG 0-8 9-20 
Diagnostic commands 

DIAG 0-8 9-20 
Dialogs 10-7 
DIN 9-23 
Directory Chooser 10-8 
DISASSEMBLE 9-6, 9-17, 10-27 
Disassembled trace 

capture 5-10 
common problems 5-32 
display 5-25 

DISCONNECT 9-25 
Display 9-17 
Display commands 

DISASSEMBLE 9-17 
DOWN 9-17 
DUMP 9-17 
EMUVARS 9-17 
EVTVARS 9-17 
EXPAND 9-7, 9-17 
FOPEN 9-17 
FPRINTF 9-17 
HWCONFIG 9-17 
LIST 9-17 
MEMVARS 9-17 
MODE 9-18 
MONITOR 9-18 
NOMONITOR 9-18 
PRINTF 9-18 
PRINTSYMBOLS 9-18 
PRINTTYPE 9-18 
PRINTVALUE 9-18 
STATUS 9-18 
TGTMODE 9-18 
UP 9-18 
XICEVARS 9-18 
XLATE 9-18 

DNL 3-15, 9-6 

SuperTAP 8XX 

DNL_GAP 9-7 
DNLFMT 9-6 
DOUT 9-23 
DOWN 9-17 
Downloading IEEE-695 files 3-15 
Downloading object code 3-15 
Downloads, stopping 3-16 
DRT 9-13 
DRTDATA 5-24, 9-13 
DRTFULL 9-13 
DRTOPTn 5-23 
DRUN 1-4, 9-11 
DSTOP 9-11 
DT 9-13 
DTB 5-25, 9-13 
DTF 9-13 
DUMP 9-7, 9-17 
DUPDATE 9-11 
DXINSERT 9-13 
DXLABELS 5-34, 9-13 
DXMMU 5-30 
Dynamic mode 

monitoring variables, example 10-76 
Dynamic operations 1-4 
Dynamic run 1-4 
Dynamic trace 5-3, 5-4 

E 
Embedded systems considerations 10-3 
Emulator 

connecting to 2-10 
defining a connection 2-9 
operational notes 2-24 
restoring defaults A-6 
updating D-1 

Emulator control commands 9-19 
BCLOCK 9-19 
BTE 9-19 
EMUVARS 9-19 
ISOMODE 9-19 
RESET 9-19 
RTE 9-19 
RUN_POLL 9-19 

lndex-3 



RUN_TIME 9-19 
SIT 9-19 
SITSTATE 9-19 

Emulator variables 9-19 
EMUVARS 9-17, 9-19 
Environment variables 

XRA.YMASTER 2-2, B-2 
EraseDevice 4-8, 9-7 
ERROR 9-7 
Event system 1-7, 7-1 

actions 7-9 
caches 7-25 
clear 7-14 
clearing 7-14 
commands 7-5 
counters 7-18 
display 7-13 
enable 7-14 
events 7-8 
features 7-2 
groups 7-15 
macros 7-21 
memory 7-20 
memory accesses 7-12 
qualifying trace 5-10 
realtime operation 7-23 
registers 7-20 
resources 7-26 
statements 7-8 
states 7-18 
structure 7-3 
syntax 7-7 
triggers 7-20 
valid statements 7-11 

Event system commands 9-15 
BREAK.COMPLEX 9-15 
CTRn 9-15 
CTRnlVAL 9-15 
EVTV ARS 9-15 
GROUP 9-15 
STATE 9-15 
WHEN 9-15 
WHENCLR 9-15 
WHENDISABLE 9-16 

lndex-4 

WHENENABLE 9-16 
WHENLIST 9-16 

Event system tutorial 10-52 
EVTV ARS 9-15, 9-17 
Execution breakpoint 6-4, 6-12 
Execution control 

BPTYPE 9-11 
BREAKACCESS 9-11 
BREAK.COMPLEX 9-11 
BREAKINSTRUCTION 9-11 
BREAKREAD 9-11 
BREAKWRITE 9-11 
CLEAR 9-11 
DRUN 9-11 
DSTOP 9-11 
DUPDATE 9-11 
GO 9-12 
GOSTEP 9-12 
PAUSE 9-12 
PORESET 9-12, 9-19 
RESET 9-12 
REST.ART 9-12 
SERIAL_CORE 9-12 
SIT 9-12 
SITSTATE 9-12 
STEP 9-12 
STEPOVER 9-12 

EXPAND 9-7, 9-17, 9-22 
Expressions 9-22 
Extended Tekhex 3-15 

F 
File Chooser 10-8 
File comm.ands 9-6 
File formats 1-9 
FILL 9-7 
FIND 9-26 
Firmware 

updating D-1 
Flash memory 

configuring 4-8 
devices supported 4-11 
macros 4-14 

MWX-ICE User's Manual (Windows) 



programming target 4-1 
updating emulator D-1 

Flash programming 
macros 4-6 

Flashlnc 4-6 
FOPEN 9-7, 9-17 
Formats supported 1-9, 3-15 
FPRINTF 9-7, 9-17 

G 
Getting help xvii 
GO 9-12 
GOSTEP 9-12 
GROUP 9-15 
Groups 

event system 7-15 

H 
Hardware installation xviii 
Help xvii 

command line 10-11 
stand-alone 9-2 

HISTORY 9-26 
HOST 9-26 
HWCONFIG 9-17 

I 
YO simulation commands 9-23 
ICE 9-26 
Icons 10-7 
IEEE-695 3-15 
INCLUDE 3-9, 9-7, 9-21 
Include file A-9 
INITREGS 9-7 

command 8-7 
whyneeded 8-2 

Initregs 
.def file 8-5 
default file 8-5 

INPORT 9-23 

SuperTAP 8XX 

Installation 
hardware xviii 
software xviii 

Instruction breakpoint 6-4, 6-12, 10-32 
setup 6-12 

Intel format 3-15 
Inteldevice 4-12, 9-8 
INTERRUPT 9-26 
Interrupt simulation 9-23 
Interrupts 1-5 
Interval timestamp 5-24 
Invocation 2-3 
IQFLS 5-31 
iregs860.dat.ads 8-5 
iregs860.dat.all 8-5 
iregs860.dat.amc 8-5 
iregs860.dat.def 8-5 
Isolation mode 2-19, 2-24 
ISOMODE 2-19, 2-24, 9-19 

J 
JOURNAL 5-3, 9-4 
Journal file A-10 

L 
LIST 9-8, 9-17 
LOAD 3-15, 9-8 
Loading code 3-15 
LockDevice 4-9, 4-10, 9-8 
LOG 5-3, 9-4 
Log file A-10 
Logical addressing 2-28, 5-30 

in displays 2-32 
Loss of power 2-19 
LSA 

use in the event system 7-7 

M 
Macro 

assigning to a breakpoint 6-6, 10-50, 

lndex-5 



10-54 
creating 10-49 
deleting 10-51 
displaying 10-50 
event system 7-21 
saving to a file 10-51 

Macro commands 
BREAKACCESS 9-21 
BREAKCOMPLEX 9-21 
BREAKINSTRUCTION 9-21 
BREAKREAD 9-21 
BREAKWRITE 9-21 
DEFINE 9-21 
INCLUDE 9-21 
SHOW 9-21 
VMACRO 9-21 

MAP 3-8, 9-8 
MAPCLR 3-8, 9-8 
MAPLIST 3-9, 3-13, 9-8 
Mapping overlay 10-29 

RAM 10-29 
ROM 10-29, 10-30 

Mapping overlay memory 3-6 
Memory 

displaying and modifying, example 10-74 
event system 7-20 
flash programming macros 4-14 
programming flash 4-1 

Memory access 
event system 7-12 

Memory access type 
breakpoints 6-7 

Memory commands 9-6 
ADDRESS 9-6 
Amddevice 9-6 
ASM 9-6 
COMPARE 9-6 
COPY 9-6 
CRC 9-6 
DISASSEMBLE 9-6 
DNL 9-6 
DNL_GAP 9-7 
DUMP 9-7 
EraseDevice 9-7 

lndex-6 

ERROR 9-7 
FILL 9-7 
FOPEN 9-7 
FPRINTF 9-7 
INCLUDE 9-7 
INITREGS 9-7 
Inteldevice 9-8 
LIST 9-8 
LOAD 9-8 
LockDevice 9-8 
MAP 9-8 
MAPCLR 9-8 
MAPLIST 9-8 
MEMVARS 9-8 
OVERLAY 9-8 
OVREADTHRU 9-8 
OVWRITETHRU 9-8 
RELOAD 9-9 
RemoveDevice 9-9 
RESTART 9-9 
RESTORE 9-9 
RGVERIFY 9-9 
SAVE 9-9 
SETMEM 9-9 
SETREG 9-9 
SIZE 9-9 
TEST 9-9 
UPL 9-10 
UPLFMT 9-10 
VERIFY 9-10 
WHEN 9-10 
XLATE 9-10 

Memory control 
disassembling 10-27 
displaying 10-25 
modifying 10-26 

Memory examination 9-9 
MEMV ARS 9-8, 9-17 
Menus 10-7 
MMU 

in trace 5-30 
MMU support 2-28, 3-12 
MODE 9-4, 9-5, 9-18 
MONITOR 9-18 

MWX-ICE User's Manual (Windows) 



Motorola ADS board 8-5 
MWX-ICE 

N 

command listing 9-1 
initialization sequence 2-21 
startup 2-4 
startup options A-9 
startup requirements 2-3 

NEXT 9-26 
No Target Vee 2-24 
NOICE 9-26 
NOINTERRUPI' 9-26 
NOMEMACCESS 9-26 
NOMONITOR 9-18 
Notebooks 10-8 
Notes on operation 2-24 

0 
Object format 1-9 
Offset timestamp 5-24 
Online Help xvii 
Operational notes 2-24 
Operations during run 1-4 
OPTION 9-4 
Options 

debugger 10-16 
OUTPORT 9-23 
OVERLAY 3-16, 3-18, 9-8 
Overlay memory 1-5 

access qualification 3-7 
automatic adjustments 3-11 
bank addressing 3-6 
copying memory to 3-16 
copying target memory 3-16 
copying target to overlay 3-15, 10-30 
displaying 10-29 
downloading to 3-15 
errors and warnings 3-14 
external bus master 3-4 
features 3-3 

SuperT AP 8XX 

granularity 3-4 
limits 3-6 
listing and saving map 3-9 
logical addresses 3-7 
logical addressing 2-32 
logical addressing example 3-12 
mapping 3-6, 3-8, 3-11, 10-29 
MMU initialization 3-12 
replacing ROM 3-2 
required termination 3-3 
restoring mappings 3-9 
returning to target 3-8 
sizes available 3-3 
specifying access source 3-18 
speed 3-3 
standard example 3-10 
summaryofprocedures 3-7 
theory of operations 3-6 
topics in help 3-1 
translation tables and 3-12 
typical uses 3-2 

Overlay .. endpoints adjusted 3-14 
OVREADTHRU 3-4, 9-8 
OVWRITETHRU 3-4, 9-8 

p 
Patching code 10-27 
PAUSE 9-12, 9-23 
Pause mode 

definition 10-10 
Peeks./Pokes 

tracing 5-9 
Phone support xx 
Physical address 5-30 
PORESET 9-12, 9-19 
Port I/O and interrupt commands 

DIN 9-23 
DOUT 9-23 
INPORT 9-23 
OUTPORT 9-23 
PAUSE 9-23 
RIN 9-23 
ROUT 9-23 

lndex-7 



Port I/O simulation 9-23 
Power loss, target 2-24 
Pov.rer-on 

control program initialization 2-21 
emulator initialization 2-20 
sequence 2-7 
tracing during target power-on 5-3 

PPT 2-25, 9-13 
PRINTANAL YSIS 9-26 
PRINTF 9-18 
PRINTPROFILE 9-26 
PRINTSYMBOLS 9-18, 9-22 
PRINTTYPE 9-18, 9-22 
PRINTVALUE 9-18, 9-22 
PROFILE 9-26 
Programming flash 4-1 

macros 4-6 

Q 
Qualifying trace 5-10 
QUICC registers 8-10 
QUIT 9-4 

R 
RAMACCESS 9-26 
Raw trace display 5-35 
Realtime operation 

event system 7-23 
Recording a debug session 10-18 
Register (CPU) 10-24 
Register support 1-6 
Registers 

configuring 8-9 
event system 7-20 
initregs command 8-7 
setting 8-10 
view/modify 8-10 

RELOAD 9-9 
RemoveDevice 4-11, 9-9 
RESET 2-21, 2-22, 9-12, 9-19 

lndex-8 

Reset 
button 2-22 
emulator 2-22 
hardware 2-22 
software 2-21 
tracing during reset 5-3 

Resources 
access break.points 6-11 
breakpoints and event system 6-2 
event system 7-26 
instruction break.points 6-17 

RESTART 2-22, 9-9, 9-12 
RESTORE 9-9 
RGVERIFY 9-9 
RIN 9-23 
ROM, replacing with overlay 3-2 
ROMACCESS 9-26 
ROUT 9-23 
RTE 9-19 
RUN_POLL 9-19 
RUN_TIME 9-19 

s 
SAVE 9-9 
Saving configuration 2-11 
SCOPE 9-22 
Scope 10-20 
Scope Loops 10-55 
Scrollingwindows 10-6 
SERIAL_CORE 9-12 
Session control 9-4 

JOURNAL 9-4 
LOG 9-4 
MODE 9-4 
OPTION 9-4 
QUIT 9-4 
SETSTATUS DIR 9-4 
SETSTATUS ENVIRONMENT 9-4 

SETMEM 9-9 
SETREG 8-10, 8-11, 9-9 
SETSTATUS DIR 9-4 
SETSTATUS ENVIRONMENT 9-4 
SETSTATUS EVENT 9-26 

MWX-ICE User's Manual (Windows) 



SETSTATUS QUALIFY 9-26 
SETSTATUS READ 9-26 
SETSTATUS TRACE 9-26 
SETSTATUS TRIGGER 9-26 
SETSTATUS VERIFY 9-26 
SETSTATUS WRITE 9-26 
SHOW 9-21 
Show cycles 6-11 
SHOWINST 9-13 
SIGA_MUX 7-7, 9-13, 9-15 
SIGB_MUX 7-7, 9-13, 9-15 
Signal timing 2-26 
Simulating 

i/o 9-23 
interrupts 9-23 

Single line assembler 10-27 
Single-stepping 2-26, 9-12 
SIT 9-12, 9-19 
SITmode 1-5 
SITSTATE 9-12, 9-19 
SIZE 9-9 
Softswitches 9-19 
Software breakpoint 6-4, 6-12 
Software installation xviii 
SREC format 3-15 
Starting 

emulator and target 2-7 
MWX.-ICE 2-3 
target code 2-22 

STARTUP 9-27 
Startup 

file,creating 2-11 
options A-9 
requirements 2-3 

Startup include file A-4 
startup.inc A-4 
STATE 9-15 
States 

event system 7-18 
STATUS 9-18, 9-24 
Status 

bus master 2-27 
STATUS BUFFER 9-27 
Status commands 9-17 

SuperTAP axx 

STATUS EVENT 9-27 
STATUS QUALIFY 9-27 
STATUS TRACE 9-27 
STATUS TRIGGER 9-27 
STEP 9-12 
STEPOVER 9-12 
Stop-in-target mode 1-5 
Structures 

displaying, example 10-70 
SuperTAP 

configuration information 10-15 
SuperTAPFlash ROM 

updating D-1 
Support xx 
Symbol commands 

ADD 9-22 
BROWSE 9-22 
CEXPRESSION 9-22 
CONTEXT 9-22 
DELETE 9-22 
EXPAND 9-22 
PRINTSYMBOLS 9-22 
PRINTTYPE 9-22 
PRINTV ALUE 9-22 
SCOPE 9-22 

Symbols in trace 5-34 

T 
TA/l'EA 3-3 
Target isolation mode 2-19, 2-24 
Target Vee Not Found 2-19, 2-24 
Technical support xx 
Temporary breakpoints 6-14 
Termination in overlay 3-3 
TEST 9-9 
Test target 8-5 
Text fields 10-7 
TGTMODE 9-18 
TIMCLK 5-25, 9-14 
Timestamp 5-3, 5-24 
Timing 5-3 
Timing, AC signal 2-26 
TRACE 5-8, 9-14 

lndex-9 



Trace 1-7 
assembly instruction in 5-33 
C source in 5-33 
capturing 10-42 
clearing 10-42 
clearing at run 5-8 
compression 5-31 
configuring 5-8-?? 
continuous raw 5-8, 5-22 
data display 5-24 
disassembled 5-10, 5-25 
disasseinbling 10-45 
disasseinbly problems 5-32 
displaying ??-5-32, 10-44 
dynamic 5-3, 5-4 
peek/poke 5-9 
power-up cycles 5-3 
preventing overwriting 5-9 
qualified 5-3, 5-10 
raw field descriptions 5-35 
reset sequences 5-3 
saving to a file 5-3, 10-46 
selecting display fields 5-23 
symbols 5-34 
timestanip 5-3 
using MMU 5-30 
view while running 5-3, 5-4 
view while running, example 10-67 

Trace commands 5-8-5-11, 5-25, 9-13 
DRT 9-13 
DRTDATA 5-22, 5-24, 9-13 
DRTFULL 5-22, 9-13 
DRTOP'fu 5-23 
DT 5-25, 9-13 
DTB 9-13 
DTF 5-25, 9-13 
DXINSERT 5-25, 9-13 
DXLABELS 9-13 
DXMMU 5-25 
PPT 9-13 
SHOWINST 9-13 
SIGA_MUX 9-13, 9-15 
SIGB_MUX 9-13, 9-15 
TIMCLK 9-14 

lndex-10 

TRACE 9-14 
TRBASE 9-14 
TRCEXT 9-14 
TRCINT 9-14 
TRCLR 9-14 
TRDISP 5-25, 9-14 
TRFRAMES 9-14 
TRQUAL 9-14 
TRRUNCLR 9-14 
TRSYS 9-14 
TSRCH 9-14 
TSTAMP 9-14 

Trace compression 5-31 
Trace history 

clearing 10-65 
Translation tables 2-28, 3-12 
TRBASE 5-25, 9-14 
TRCEXT 9-14 
TRCINT 9-14 
TRCLR 9-14 
TRDISP 9-14 
TRFRAMES 9-14 
Triggers 

external 7-20 
TRINIT 5-8 
Troubleshooting B-1 
TRQUAL 5-8, 9-14 
TRRUNCLR 5-8, 9-14 
TRSTAMP 5-25 
TRSYS 5-8, 9-14 
TSRCH 9-14 
TSTAMP 9-14 
Tutorial 

MWX-ICE debugger 10-1 

u 
UnlockDevice 4-10, 9-9 
Unsupported commands 9-26 
UP 9-18 
Updating 

firmware D-1 
UPL 3-17, 9-10 
UPLFMT 9-10 

MWX-ICE User's Manual (Windows) 



Uploading object code 3-17 
Utility commands 

ALIAS 9-24 
STATUS 9-24 
XLATE 9-24 

v 
VACTIVE 9-5 
Variables 

dynamically monitoring, example 10-76 
Vee 2-24 
VCLEAR 9-5 
VCLOSE 9-5 
VERIFY 9-10 
VF CNT 5-31 
VFMSG 5-31 
VMACRO 9-5, 9-21 
VOPEN 9-5 
VSETC 9-5 

w 
WaJTanty xx 
Wat.ches window 

dynamically updating 10-76 
WHEN 9-10, 9-15 
When/then 

actions 7-9 
clear 7-14 
clearing 7-14 
commands 7-5 
counters 7-18 
display 7-13 
enable 7-14 
events 7-8 
features 7-2 
groups 7-15 
macros 7-21 
memory 7-20 
memory accesses 7-12 
realtime operation 7-23 
registers 7-20 

SuperTAP axx 

resources 7-26 
statements 7-8 
states 7-18 
structure 7-3 
syntax 7-7 
triggers 7-20 
valid statements 7-11 

WHENCLR 9-15 
WHENDISABLE 9-16 
WHENENABLE 9-16 
WHENLIST 9-16 
Window Control 

MODE 9-5 
Window control 9-5 

VACTIVE 9-5 
VCLEAR 9-5 
VCLOSE 9-5 
VMACRO 9-5 
VOPEN 9-5 
VSETC 9-5 

WWW :xx 

X-Y-Z 
XICEVARS 9-18 
XLATE 9-10, 9-18, 9-24 
XRAY commands 9-1 
XRAYMASTER 2-2, B-2 

lndex-11 





The Master Index contains the indexes for the three manuals that make up the documen
tation for the SuperTAP emulator and MWX-ICE debugger. The document set to which 
the manual belongs appears in parentheses following the page number reference. The 
following abbreviations are used: 

Abbr. 
(RXRY) 
(UXRY) 
(XUM) 

XRA Y Debugger for Windows 
XRA Y Debugger for Windows 

Manual Title 
XRAY Reference Manual 
XRAY User's Guide 
MWX-ICE User's Manual 

I SuperTAP MPCBXXX System Integration 
Tool 
Symbols 
% Oine continuation) 6-4(RXRY) 
@(nesting) 4-13(RXRY) 
@(path) 3-6(RXRY) 
@(root) 4-lO(RXRY) 
@(symbol) 

nesting 4-13(RXRY) 
path 3-6(RXRY) 
root 4-lO(RXRY) 

@addr pseudo-register A-l(SXRY), 
B-l(SXRY),B-4(SXRY) 

@as pseudo-register A-l(SXRY), B-l(SXRY) 
@chip pseudo-register A-l(SXRY), B-l(SXRY) 
@cycles pseudo-register A-l(SXRY), 

B-l(SXRY) 
@entry pseudo-register A-l(SXRY), 

B-l(SXRY) 
@exc pseudo-register A-l(SXRY), B-2(SXRY) 
@file pseudo-register A-l(SXRY), B-2(SXRY) 
@fpfpseudo-register A-l(SXRY), B-2(SXRY) 
@fpupseudo-register A-l(SXRY), B-2(SXRY), 

B-5(SXRY), B-lO(SXRY) 
@hlpc pseudo-register 4-ll(RXRY), 

A-l(SXRY), B-3(SXRY) 
@line_range pseudo-register A-l(SXRY), 

B-3(SXRY) 

@module pseudo-register 4-ll(RXRY), 
A-l(SXRY), B-3(SXRY) 

@pi pseudo-register A-l(SXRY), B-3(SXRY) 
@pisize pseudo-register A-l(SXRY), 

B-3(SXRY) 
@port_addr pseudo-register A-l(SXRY), 

B-3(SXRY) 
@port_size pseudo-register A-l(SXRY), 

B-3(SXRY) 
@port_ value pseudo-register A-2(SXRY), 

B-4(SXRY) 
@procedure pseudo-register 4-ll(RXRY), 

A-2(SXRY), B-4(SXRY) 
@root pseudo-register 4-lO(RXRY), 

A-2(SXRY), B-4(SXRY) 
@wait_state pseudo-register A-2(SXRY), 

B-4(SXRY) 

Numerics 
68030 support B-9(SXRY) 
68040 support B-lO(SXRY) 
68881 support B-ll(SXRY) 
68EC030 support B-lO(SXRY) 
68EC040 support B-ll(SXRY) 

Master lndex-1 



A 
About Box 1-15(UXRY)-1-16(UXRY) 

in File Editor 7-2(UXRY) 
About menu 

File Editor 7-2(UXRY) 
Absolute files, errors 3-7(RXRY) 
Absolute object module 

loading A-9(.XUM) 
Absolute ti.mestamp 5-24(XUM) 
AC signal timing 2-26(.XUM) 
Access breakpoints 6-3(.XUM) 

setting 6-7(XUM) 
ADD 9-22(.XUM) 
Adding tools to a project 5-9(UXRY)-

5-10(UXRY) 
@addr pseudo-register A-l(SXRY), 

B-l(SXRY) 
ADDRESS 2-28(.XUM), 9-6(.XUM) 
Address (definition) 6-2(RXRY) 
Address alignment 7-25(.XUM) 
Address translation 2-28(.XUM) 
Address_range (definition) 6-2(RXRY) 
Addresses 

line numbers 4-2(RXRY) 
Advanced feature commands 

performance profiling 
PRINTPROFILE 6-14(RXRY) 
PROFILE 6-14(RXRY) 

test coverage analysis 
ANALY'ZE 6-14(RXRY) 
PRINTANAL YSIS 6-14(RXRY) 

trace 
SETSTATUS EVENT 6-14(RXRY) 
SETSTATUS QUALIFY 6-14(RXRY) 
SETSTATUS TRACE 6-14(RXRY) 
SETSTATUS 

TRIGGER 6-14(RXRY) 
STATUS BUFFER 6-14(RXRY) 

Abbr. 
(RXRY) 
(UXRY) 
(XUM) 

Master lndex-2 

XRA Y Debugger for Windows 
XRA Y Debugger for Windows 

STATUS EVENT 6-14(RXRY) 
STATUS QUALIFY 6-14(RXRY) 
STATUS TRACE 6-14(R.XRY) 
STATUS TRIGGER 6-15(RXRY) 
TRACE 6-15(RXRY) 

ALIAS 9-24(.XUM) 
Alias page (Symbol Management 

notebook) 6-ll(RXRY) 
Alignment 

instructions B-4(SXRY) 
Alternate registers 

how set up 8-4(.XUM) 
Amddevice 4-12(.XUM), 9-6(.XUM) 
ANALYZE 9-26(.XUM) 
Annotate command (help) 4-8(UXRY)-

4-9(UXRY) 
Annotating help items 4-8(UXRY)-

4-9(UXRY) 
Applied Microsystems 

test target 8-5(.XUM) 
Arrow keys in File Editor 7-5(UXRY) 
@as pseudo-register A-l(SXRY), B-l(SXRY) 
ASM 9-6(.XUM) 
Assembler 

related documents P-3(UXRY) 
Assembly-level mode debugging 2-l(RXRY), 

2-7(RXRY) 

B 
Back button 

help 4-2(UXRY), 4-5(UXRY), 4-6(UXRY) 
Backspace key in File Editor 7-6(UXRY) 
Base directory for XRAY 

MasterWorks 2-4(UXRY) 
Basic breakpoints 6-l(XUM) 
Batch commands 3-4(RXRY) 
Batch mode support 3-4(RXRY) 

MaouaJ Title 
XRAY Reference Manual 
XRAY User's Guide 
MWX-ICE User's Manual 

MWX-ICE User's Manual (Windows) 



BCLOCK 9-19(XUM) 
Bookmark menu (help) 4-2(UXRY), 

4-7(UXRY)-4-8(UXRY) 
Bookmarks (help) 4-7(UXRY)-4-8(UXRY) 
BPTYPE 9-U(XUM) 
Break 6-l(XUM) 

action 7-23(XUM) 
latency 7-23(XUM) 

Break page (Execution Control 
notebook) 6-6(RXRY), 6-12(RXRY) 

BREAK statement in macros 6-4(RXRY) 
BREAKACCESS 9-U(XUM), 9-21(XUM) 
BREAKCOMPLEX 9-U(XUM), 9-15(XUM), 

9-21(XUM) 
Break.I button 6-6(RXRY) 
Breaking emulation 6-l(XUM) 
BREAKINSTRUCTION 9-U(XUM), 

9-21(XUM) 
Breakpoints 1-7(XUM), 7-l(XUM), 

3-3(RXRY) 
access 6-3(XUM),6-7(XUM) 
access,process 6-1 O(XUM) 
assigning macros 6-6(XUM) 
associating with macro 6-2(RXRY) 
BPTYPE 9-U(XUM) 
BREAKACCESS 9-ll(XUM) 
BREAKCOMPLEX 9-U(XUM) 
BREAKINSTRUCTION 9-ll(XUM) 
BREAKREAD 9-U(XUM) 
BREAKWRITE 9-U(XUM) 
caches 6-ll(XUM) 
CLEAR 9-U(XUM) 
clearing 6-6(XUM) 
comm.ands 6-5(XUM) 
displaying 6-6(XUM) 
execution 6-4(XUM), 6-12(XUM) 
features 6-l(XUM) 
instruction 6-4(XUM), 6-12(XUM), 

B-7(SXRY) 
instruction,process 6-16(XUM) 
instruction,setup 6-12(XUM) 
latency 6-lO(XUM) 
memory access 6-S(XUM), 6-14(XUM) 
memory access type 6-7(XUM) 
recursive functions 4-13(RXRY) 

SuperTAP SXX 

resources 6-ll(XUM), 6-17(XUM) 
setting BREAKACCESS 6-S(XUM) 
setting 

BREAKINSTRUCTION 6-14(X 
UM) 

setting BREAKREAD 6-S(XUM) 
setting BREAKWRITE 6-S(XUM) 
show cycles 6-ll(XUM) 
STEPOVER 9-12(XUM) 
temporary 6-14(XUM), 3-3(RXRY) 

Breakpoints window 6-6(RXRY), 6-7<RXRY) 
BREAKREAD 9-ll(XUM), 9-21(XUM) 
BREAKWRITE 9-ll(XUM), 9-21(XUM) 
BROWSE 9-22(XUM) 
Browse button (Source Explorer) 7-lO(UXRY) 
Browse buttons (help) 4-2{UXRY), 4-6(UXRY) 
Browse sequences 4-5(UXRY)-4-6(UXRY) 
BTE 9-19(XUM) 
Build button (XRAYMake) 7-9{UXRY) 
Building applications 1-17(UXRY) 

tools for 1-7(UXRY)-1-10(UXRY) 
Bus master 2-27(XUM) 
Bus masters and overlay 3-4(XUM) 
Button commands 

(see Buttons) 
Buttons 

Break.I 6-6(RXRY) 
Clear 6-6(RXRY) 
Defaults Editor 6-2(UXRY)-6-3(UXRY) 
definition 3-12(UXRY) 
Down 6-U(RXRY) 
figure 3-7(UXRY) 
Go 6-6(RXRY) 
help 4-2(UXRY) 

Back 4-2(UXRY), 4-5(UXRY), 
4-6(UXRY) 

Browse 4-2(UXRY), 4-6{UXRY) 
Contents 4-2(UXRY), 4-4(UXRY)-

4-5(UXRY) 
Search 4-2(UXRY), 4-6(UXRY)-

4-7(UXRY) 
Inspect 6-7(RXRY) 
parameters 3-7(UXRY) 
Print 6-S(RXRY) 
Recall 6-ll(RXRY) 

Master lndex-3 



c 

Scope 6-lO(RXRY) 
Source Explorer 

Browse 7-lO(UXRY) 
Steplnstr 6-7(RXRY) 
StepLine 6-7(RXRY) 
StepOver 6-7(RXRY) 
Up 6-12(RXRY) 
using 3-7(UXRY) 
XRAYMake 

Build 7-9(UXRY) 
Error 7-9(UXRY) 

Ccompiler 
related documents P-3(UXRY) 

C++ compiler 
related documents P-2(UXRY) 

Caches 
breakpoint system 6-ll(XUM) 
event system 7-25(XUM) 

Cancel command in File Editor 7-5(UXRY) 
Cd em on 

data() C-3(XUM) 
detailed description C-l(XUM) 
initial() C-2QCUM) 
led_port C-3QCUM) 
outled() C-5(XUM) 
primary data structures C-3(XUM) 
run() C-5(XUM) 
step() C-2(XUM) 
wait() C-5(XUM) 

CEXPRESSION 9-22(XUM) 
CEXPRESSION command 3-9<RXRY), 

3-lO(RXRY) 
Change Directory command (File 

Editor) 7-3(UXRY) 
Changing a defaults file 6-2(UXRY)-

Abbr. 
(RXRY) 
(UXRY) 
(XUM) 

Master lndex-4 

XRA Y Debugger for Windows 
XRA Y Debugger for Windows 

6-8(UXRY) 
Changing directories in File 

Editor 7-3(UXRY) 
Changing projects 5-7(UXRY)-5-10(UXRY) 
Changing the target processor for a 

project 5-9(UXRY) 
Check boxes 3-8(UXRY) 

definition 3-12(UXRY) 
figure 3-S(UXRY) 
Read-Only (File Editor) 7-3(UXRY) 

@chip pseudo-register A-l(SXRY), B-l(SXRY) 
CLEAR 9-ll(XUM) 
Clear button 6-6(RXRY) 
Closing File Editor 7-4(UXRY)-7-5(UXRY) 
Closing the Defaults Editor 6-9{UXRY) 
Closing windows 3-4(UXRYM3-5(UXRY) 
Code accesses 7-25(XUM) 
Code browser 

(see Source Explorer) 
Code window 6-6(RXRY), 6-7(RXRY), 

6-8(RXRY), 6-lO(RXRY), 6-U{RXRY), 
6-12(RXRY) 

Command files 
comments 6-3(RXRY) 

Command options 3-8(UXRY) 
Command window 6-7(RXRY), 6-8(RXRY), 

6-U{RXRY), 6-13(RXRY) 
Commands 9-l(XUM) 

supported 9-l(XUM) 
unsupported 9-26(XUM) 

Comments 
command files 6-3(RXRY) 
include files 6-3(RXRY) 
macros 6-3(RXRY) 

Common defaults 6-3(UXRY) 
Communication between tools 1-16(UXRY)-

1-17(UXRY) 
File Editor and debugger 7-ll{UXRY)-

Manual Title 
XRAY Reference Manual 
XRAY User's Guide 
MWX-ICE User's Manual 

MWX-ICE User's Manual (Windows) 



7-12(UXRY) 
File Editor and other tools 1-16(UXRY), 

7-9<UXRY)-7-12(UXRY) 
File Editor and Source 

Explorer 7-lO(UXRY)-
7-ll(UXRY) 

File Editor andXRAYMake 1-16(UXRY), 
7-9(UXRY)-7-10(UXRY) 

prerequisite 5-4(UXRY) 
Source Explorer and 

debugger 1-17(UXRY) 
XRAY Make and debugger l-17(UXRY) 
XRAY Make and Explorer 1-17(UXRY) 

Comp page (Memory Command 
notebook) 6-S(RXRY) 

Companion mode 
view/modify registers 8-lO(XUM) 

COMPARE 9-6<XUM) 
Compiler 

related documents P-3(UXRY) 
Complex breakpoints 7-21(XUM) 
Components ofXRAYMasterWorks 

(see XRAY MasterWorks, tools included) 
(see XRAY MasterWorks, tools) 

CONCLEAR 9-25(XUM) 
CONDELETE 9-25(XUM) 
CONFIG 9-25(XUM) 
Configuration 

emulator 2-ll(XUM) 
file A-4(XUM) 
MWX-ICE 2-ll(XUM) 
restoring default A-6(XUM) 
saving 2-ll<XUM) 
window 2-ll(XUM) 

Configuration registers 8-5(XUM) 
Configuring flash 4-S(XUM) 
Configuring XRAY Master Works 

tools 1-4(UXRY)-1-7(UXRY) 
CONLIST 9-25<XUM) 
CONNECT 9-25(XUM) 
Connecting to the emulator 2-lO(XUM) 
Connection commands 

CONCLEAR 9-25(XUM) 
CONDELETE 9-25(XUM) 
CONFIG 9-25(XUM) 

SuperTAP BXX 

CONLIST 9-25(XUM) 
CONNECT 9-25(XUM) 
CONSA VE 9-25(XUM) 
DISCONNECT 9-25(XUM) 

Connections 
emulator 2-lO(XUM) 

CONSA VE 9-25(XUM) 
Constant (definition) 6-2(R.XRY) 
Contents button 

help 4-2(UXRY), 4-4(UXRY)-4-5(UXRY) 
Contents item 4-4(UXRY}-4-5(UXRY) 
CONTEXT 9-22(XUM) 
Continuation character (%) 6-4(R.XRY) 
CONTINUE statement in macros 6-4(RXRY) 
Control Panel 1-2(UXRY), 1-3(UXRY), 

5-1CUXRY)-5-7(UXRY), 1-2<RXRY) 
creating projects 5-5(UXRY)-5-6(UXRY) 
Delete command 5-9(UXRY), 

5-lO(UXRY) 
differences between two types 5-3(UXRY) 
Duplicate command 5-5(UXRY), 

5-6(UXRY), 5-9(UXRY) 
Edit command 5-7(UXRY), 5-9(UXRY) 
File menu 5-5(UXRY), 5-6(UXRY) 
files 5-ll(UXRY) 
Load command 5-6(UXRY) 
modes 1-5(UXRY), 5-2(UXRY) 
modifying projects 5-7(UXRY)-

5-10(UXRY) 
New command 5-5(UXRY), 5-7(UXRY) 
notebook 1-13(UXRY), 5-7(UXRY)-

5-8(UXRY), 5-9(UXRY)-
5-10(UXRY) 

Open command 5-6(UXRY) 
opening projects 5-6(UXRY) 
overview l-4(UXRY)-1-5(UXRY) 
project 5-l(UXRY), 5-2(UXRY)-

5-3(UXRY) 
adding/deleting tools 5-9(UXRY)-

5-10(UXRY) 
creating 5-5(UXRY)-5-6(UXRY) 
default 5-S(UXRY) 
definition 1-5(UXRY) 
deleting 5-lO(UXRY) 
modifying 5-7(UXRY}-5-10(UXRY) 

Master lndex-5 



opening 5-6(UXRY) 
Project menu 5-5(UXRY), 5-6(UXRY), 

5-7(UXRY), 5-9(UXRY), 
5-lO(UXRY) 

Rename command 5-7(UXRY), 
5-9(UXRY) 

XRA.Y MasterWorks 5-l(UXRY), 
5-l(UXRYHl-2(UXRY) 

definition 1-5(UXRY) 
Conventions :xix(XUM) 
Conventions, notational P-4(UXRY), 

P-3(RXRY) 
help 4-3(UXRY) 

COPY 9-6(XUM) 
Copy command (File Editor) 7-6(UXRY) 
Copy command (help) 4-lO(UXRY) 
Copy page (Memory Command 

notebook) 6-8(RXRY) 
Copying a help item 4-lO(UXRY) 
Copying between target and 

overlay 3-16(XUM) 
Copying memory 3-15(XUM) 
Copyingtext 3-U(UXRY) 

File Editor 7-6(UXRY) 
Counters 7-18(XUM) 
CPU Browser 

error checking 8-ll(XUM) 
CPU simulation B-l(SXRY) 

68030 support B-9(SXRY) 
68851 instruction support B-ll(SXRY) 
68881 floating-point support B-ll(SXRY) 
BKPT instruction B-7(SXRY) . 
CALLMandRTM 

instructions B-S(SXRY) 
CPU space references B-7(SXRY) 
cycle times B-5(SXRY) 

@cycles pseudo-register B-5(SXRY) 
@wait_state pseudo-

Abbr. 
(RXRY) 
(UXRY) 
(XUM) 

Master lndex-6 

XRA Y Debugger for Windows 
XRA Y Debugger for Windows 

register B-5(SXRY), 
B-6(SXRY) 

exception handling B-5(SXRY) 
@exc pseudo-register B-5(SXRY) 

instruction alignment B-4(SXRY) 
memory initialization B-6(SXRY) 
trace bits B-7(SXRY) 

CPU space and coprocessor 
communication B-7(SXRY) 

CPU32 support B-lO(SXRY) 
CRC 9-6(XUM) 
Create page (Symbol Management 

notebook) 6-lO(RXRY), 6-7(RXRY) 
Creating projects 5-5(UXR°YH}-6(UXRY) 
CTRn 9-15(XUM) 
CTRnIVAL 9-15(XUM) 
Cursor 

moving in File Editor 7-5(UXRY) 
Customer Support xx(XUM) 
Cut command (File Editor) 7-6(UXRY) 
@cycles pseudo-register A-l(SXRY), 

B-l(SXRY) 

D 
Data display in trace 5-24(XUM) 
Data type conversion 4-7(RXRY) 
Data types 

(see Symbolic references, data types) 
Debugger 

(see XRAY Debugger) 
Editmenu 7-l(UXRY), 7-ll(UXRY) 
File Editor in 7-ll(UXRY)-7-12(UXRY) 
installation xvili(XUM) 
notebooks 1-14(UXRY) 

macro page 7-12(UXRY) 
overview l-U(UXRY)-1-12(UXRY) 
Simple Editor command 7-U(UXRY) 

Manual Tide 
XRAY Reference Manual 
XRAY User's Guide 
MWX-ICE User's Manual 

MW>C-ICE User's Manual (Windows) 



Source Explorer, communicating 
with 1-17(UXRY) 

XRAY Make, communicating 
with 1-17(UXRY) 

Debugger commands 
command file comments 6-3(RXRY) 
command syntax 6-l(RXRY) 

command parameters 6-2(RXRY) 
command qualifiers 6-l(RXRY) 
size qualifiers 6-2(RXRY) 

entering 6-l(RXRY) 
Debugger Defaults 6-7(UXRY) 
Debugger Files notebook 

Incl page 6-U(RXRY), 6-7(RXRY), 
6-9(RXRY) 

Journal page 6-U(RXRY) 
List page 6-7(RXRY) 
Load page 6-5(RXRY) 
Log page 6-U(RXRY) 
Scope page 6-lO(RXRY) 

Debugger macros 
comments 6-3(RXRY) 
conditional statements 

BREAK 6-4(RXRY) 
CONTINUE 6-4(RXRY) 
DO-WHILE 6-4(RXRY) 
FOR 6-4(RXRY) 
IF 6-6(RXRY) 
IF-ELSE 6-6(RXRY) 
RETURN 6-6(RXRY) 
WHILE 6-7(RXRY) 

keywords as names 6-lO(RXRY) 
macro definition 6-7(RXRY) 

comments 6-3(RXRY) 
file 6-9(RXRY) 
INCLUDE command 6-9(RXRY) 
interactive 6-7(RXRY) 
local symbols 6-7(RXRY) 
macro body 6-3(RXRY) 
saving macros 6-9(RXRY) 

macro invocation 6-9(RXRY) 
properties 6-U(RXRY) 
return values 6-lO(RXRY) 
saving 6-9(RXRY) 
source patches 6-U(RXRY) 

SuperTAP BXX 

stop execution 6-lO(RXRY) 
use with breakpoints 6-2(RXRY) 

Debugger Macros menu 
File Editor 7-2(UXRY), 7-12(UXRY) 

Debugging applications 1-17(UXRY) 
rebuilding 1-l 7(UXRY) 
tools for 1-10(UXRY}-1-12(UXRY) 

Debugging in assembly-level 
mode 2-l(RXRY), 2-7(RXRY) 

Debugging in high-level mode 2-2(RXRY), 
2-9(RXRY) 

C expressions and statements 2-2<RXRY) 
STEP command 2-8(RXRY) 
STEPOVER command 2-8(RXRY) 

Debugging in low-level mode 2-l(RXRY), 
2-7(RXRY) 

Default projects 5-S(UXRY) 
file 2-5(UXRY) 

Defaults Editor 1-2(UXRY), 1-3(UXRY), 
6-l(UXRY}-6-9(UXRY), 1-2(RXRY) 

buttons 6-2{UXRY}-6-3(UXRY) 
closing 6-9(UXRY) 
common defaults 6-3(UXRY) 
debugger defaults 6-7(UXRY) 
editing a file 6-2(UXRY}-6-8(UXRY) 
Exit command 6-9(UXRY) 
exiting 6-9(UXRY) 
file editor defaults 6-8(UXRY) 
File menu 6-2(UXRY), 6-8(UXRY), 

6-9(UXRY) 
notebooks 1-14(UXRY), 6-2(UXRY)-

6-8(UXRY) 
Open command 6-2(UXRY) 
opening a file 6-2(UXRY) 
overview 1-5(UXRY}-1-6(UXRY) 
position defaults 6-5(UXRY) 
Save As command 6-9(UXRY) 
Save command 6-8(UXRY) 
saving a defaults file 6-S(UXRY) 
SCMI defaults 6-8(UXRY) 

Defaults files 2-5(UXRY), 6-l(UXRY) 
editing 6-2(UXRY)-6-8(UXRY) 
opening 6-2(UXRY) 
saving 6-S(UXRY) 

DEFINE 9-21(XUM) 

Master lndex-7 



Defining 
emulator connections 2-9(XUM) 

Definitions 
address 6-2(RXRY) 
address_range 6-2(RXRY) 
constant 6-2(RXRY) 
expression 6-2(RXRY) 
expression_range 6-8(RXRY) 
expression_string 6-8(RXRY) 
line_number 6-3(RXRY) 
port_address 6-8(RXRY) 
symbol 6-8(RXRY) 

DELETE 9-22(XUM) 
Delete command (Control Panel) 5-9CUXRY), 

5-lO(UXRY) 
Delete key in File Editor 7-6(UXRY) 
Deleting projects 5-lO(UXRY) 
Deleting text (File Editor) 7-6(UXRY) 
Deleting tools from a project 5-9(UXRY}-

5-10(UXRY) 
Demonstration code 

detailed description C-l<XUM) 
Dereferenced variable 4-12(RXRY) 
DIAG 0-8 9-20(XUM) 
Diagnostic commands 

DIAG 0-8 9-20(XUM) 
Dialog boxes 

(see Dialogs) 
Dialogs 3-8(UXRY}-3-9(UXRY) 

definition 3-12(UXRY) 
figure 3-9(UXRY) 
keyword search (help) 4-7(UXRY) 
Routine Information (Source 

Explorer) 7-lO(UXRY) 
DIN 9-23(XUM) 
Directories 

.hh 4-8(UXRY), 4-9(UXRY) 
base directory 2-4(UXRY) 

Abbr. 
(RXRY) 
(UXRY) 
(XUM) 

Master lndex-8 

XRA Y Debugger for Windows 
XRA Y Debugger for Windows 

changing in File Edit.or 7-8(UXRY) 
home 2-4(UXRY) 

DISASSEMBLE 9-6(XUM), 9-17(XUM) 
Disassembled trace 

capture 5-lO(XUM) 
common problems 5-32(XUM) 
display 5-25(XUM) 

DISCONNECT 9-25(XUM) 
Display 9-17(XUM) 
Display commands 6-7(RXRY) 

DISASSEMBLE 9-17(XUM), 6-7{RXRY) 
DOWN 9-17(XUM) 
DUMP 9-1700JM), 6-7(RXRY) 
EMUVARS 9-17(XUM) 
EVTVARS 9-17(XUM) 
EXPAND 9-7(XUM), 9-17(XUM), 

6-7(RXRY) 
FIND 6-7(RXRY) 
FOPEN 9-17(XUM), 6-7CRXRY) 
FPRINTF 9-17(XUM), 6-7(RXRY) 
HWCONFIG 9-l 7(XUM) 
LIST 9-17(XUM), 6-7(RXRY) 
MEMVARS 9-17(XUM) 
MODE 9-18(XUM) 
MONITOR 9-18(XUM) 
NEXT 6-B(RXRY) 
NOMONITOR 9-18(XUM) 
PRINTF 9-18(XUM), 6-S(RXRY) 
PRINTSYMBOLS 9-18(XUM) 
PRINTTYPE 9-18(XUM) 
PRINTVALUE 9-18QCT.JM), 6-S(RXRY) 
STATUS 9-18(XUM) 
TGTMODE 9-18(XUM) 
UP 9-18(XUM) 
XICEVARS 9-18(XUM) 
XLATE 9-18(XUM) 

Displaying status (File Editor) 7-9(UXRY) 
DNL 3-15(XUM), 9-6(XUM) 

Mannal Title 
XRAY Reference Manual 
XRAY User's Guide 
MWX-ICE User's Manual 

MWX-ICE User's Manual (Windows) 



DNL_GAP 9-7<XUM) 
DNLFMT 9-6(XUM) 
Documents 

XRAYMasterWorks Master P-2(UXRY) 
Dotted underlines in help 4-5(UXRY) 
DOUT 9-23(XUM) 
DO-WHILE statement in macros 6-4(RXRY) 
DOWN 9-17(XUM) 
Down butt.on 6-ll(RXRY) 
Downloading IEEE-695 files 3-15(XUM) 
Downloading object code 3-15(XUM) 
Downloads, st.opping 3-16(XUM) 
DRT 9-13(XUM) 
DRTDATA 5-24(XUM), 9-13(XUM) 
DRTFULL 9-13(XUM) 
DRTOPTn 5-23(XUM) 
DRUN 1-4(XUM), 9-U(XUM) 
DSTOP 9-ll(XUM) 
DT 9-13(XUM) 
DTB 5-25(XUM), 9-13(XUM) 
DTF 9-13(XUM) 
DUMP 9-7(XUM), 9-17(XUM) 
DUMP command 

size qualifiers 6-2(RXRY) 
DUPDATE 9-U(XUM) 
Duplicate command (Control 

Panel) 5-5(UXRY), 5-6<UXRY), 
5-9(lJXRY) 

DXINSERT 9-13(XUM) 
DXLABELS 5-34(XUM), 9-13(XUM) 
DXMMU 5-30(XUM) 
Dynamic operations 1-4(XUM) 
Dynamic run 1-4(XUM) 
Dynamic trace 5-3(XUM), 5-4(XUM) 

E 
Echo include files 

INCECHO option 3-S(RXRY) 
Echo macros 

INCECHO option 3-S(RXRY) 
Edit command (Control Panel) 5-7(lJXRY), 

5-9(UXRY) 

SuperTAP 8XX 

Edit menu 
debugger 7-l(UXRY), 7-U(lJXRY) 
File Editor 7-2(UXRY), 7-4(UXRY), 

7-5(UXRY), 7-6(UXRY), 
7-7(UXRY) 

help 4-2(UXRY), 4-8(UXRY)-
4-9(UXRY), 4-lO(lJXRY) 

EDIT_C:MD environment 
variable 1-S(UXRY), 7-4(UXRY) 

Editing a defaults file 6-2(UXRY)--6-8(UXRY) 
Editing a project 5-7(UXRY)-5-10(UXRY) 
Editing files 7-3(UXRY)-7-12(UXRY) 
Editor 

(see File Editor) 
EDITOR environment variable 1-S(UXRY), 

7-4(UXRY) 
Empty command (File Editor) 7-6(UXRY) 
Emulator 

connecting to 2-lO(XUM) 
defining a connection 2-9(XUM) 
operational notes 2-24(XUM) 
restoring defaults A-6(XUM) 
updating D-l(XUM) 

Emulator control commands 9-19(XUM) 
BCLOCK 9-19(XUM) 
BTE 9-19(XUM) 
EMUVARS 9-19(XUM) 
ISOMODE 9-19(XUM) 
RESET 9-19(XUM) 
RTE 9-19(XUM) 
RUN_POLL 9-19(XUM) 
RUN_TIME 9-19(XUM) 
SIT 9-19(XUM) 
SITSTATE 9-19(XUM) 

Emulator variables 9-19(XUM) 
EMUVARS 9-17(XUM), 9-19(XUM) 
Entering text 3-ll(UXRY) 
@entry pseudo-register A-l(SXRY), 

B-l(SXRY) 
Environment variable 

XRAYMASTER 6-2(UXRY) 
Environment variables 2-l(UXRY)-

2-5(UXRY) 
EDIT_CMD 1-S(UXRY), 7-4(UXRY) 
EDITOR 1-S(UXRY), 7-4(UXRY) 

Master lndex-9 



LD_LIBRARY_PATH 2-2(UXRY), 
2-5(UXRY) 

USR_MRI 2-2(UXRY), 2-4(UXRY), 
6-2(UXRY), 3-6(RXRY) 

VISUAL 1-S(UXRY), 7-4(UXRY) 
XRAY 2-2(UXRY), 3-6(RXRY) 
XRAYMASTER 2-2(XUM), B-2<XUM), 

2-l(UXRY), 2-4(UXRY) 
XRAYMASTER_HOME 2-2(UXRY), 

6-2(UXRY) 
XRAYMASTER_TMP 2-2<UXRY), 

2-4(UXRY) 
EraseDevice 4-8(XUM), 9-7(XUM) 
Erasing projects 5-lO(UXRY) 
Erasing text (File Editor) 7-6(UXRY) 
ERROR 9-7(XUM) 
Error button (XRAY Make) 7-9(UXRY) 
Errors reading absolute files 3-7(RXRY) 
Errors, locating 1-16(UXRY), 7-9(UXRY)-

7-12(UXRY) 
Event system 1-7(XUM), 7-l(XUM) 

actions 7-9(XUM) 
caches 7-25(XUM) 
clear 7-14(XUM) 
clearing 7-14(XUM) 
commands 7-5(XUM) 
counters 7-18(XUM) 
display 7-13(XUM) 
enable 7-14(XUM) 
events 7-S(XUM) 
features 7-2<XUM) 
groups 7-15(XUM) 
macros 7-21(XUM) 
memory 7-20(XUM) 
memory accesses 7-12(XUM) 
qualifying trace 5-1 O(XUM) 
realtime operation 7-23(XUM) 
registers 7-20(XUM) 

Abbr. 
(RXRY) 
(UXRY) 
(XUM) 

Master lndex-10 

XRA Y Debugger for Windows 
XRA Y Debugger for Windows 

resources 7-26(XUM) 
statements 7-8(XUM) 
states 7-18(XUM) 
structure 7-3(XUM) 
syntax 7-7(XUM) 
triggers 7-20(XUM) 
valid statements 7-ll<XUM) 

Event system commands 9-15(XUM) 
BREAK.COMPLEX 9-15(XUM) 
CTRn 9-15(XUM) 
CTRnIVAL 9-15(XUM) 
EVTV ARS 9-15(XUM) 
GROUP 9-1500JM) 
STATE 9-15(XUM) 
WHEN 9-15(XUM) 
WHENCLR 9-15(XUM) 
WHENDISABLE 9-16(XUM) 
WHENENABLE 9-16(XUM) 
WHENLIST 9-16(XUM) 

EVTVARS 9-15(XUM), 9-17(XUM) 
@exc pseudo-register A-l(SXRY), B-2(SXRY) 
Exception handling B-2(SXRY), B-5(SXRY) 
Executing multiple commands 3-4(RXRY) 
Execution and breakpoint 

commands 6-6(RXRY) 
BREAKACCESS 6-6(RXRY) 
BREAK.INSTRUCTION 6-6(RXRY) 
BREAKREAD 6-6(RXRY) 
BREAKWRITE 6-6(RXRY) 
CLEAR 6-6(RXRY) 
GO 6"6(RXRY) 
GOSTEP 6-6(RXRY) 
STEP 6-7(RXRY) 
STEPOVER 6-7(RXRY) 

Execution breakpoint 6-4(XUM), 6-12(XUM) 
Execution control 

BPTYPE 9-ll(XUM) 
BREAKACCESS 9-ll(XUM) 

Manual Tide 
XRAY Reference Manual 
XRAY User's Guide 
MWX-ICE User's Manual 

MWX-ICE User's Manual (Windows) 



BREAKCOMPLEX 9-ll(XUM) 
BREAKINSTRUCTION 9-ll(XUM) 
BREAKREAD 9-ll(XUM) 
BREAKWRITE 9-ll(XUM) 
CLEAR 9-ll<XUM) 
DRUN 9-ll<XUM) 
DSTOP 9-ll(XUM) 
DUPDATE 9-ll{XUM) 
GO 9-12(XUM) 
GOSTEP 9-12(XUM) 
PAUSE 9-12(XUM) 
PORESET 9-12{XUM), 9-19(XUM) 
RESET 9-12(XUM) 
RESTART 9-12{XUM) 
SERIAL_CORE 9-12(XUM) 
SIT 9-12(XUM) 
SITSTATE 9-12(XUM) 
STEP 9-12<XUM) 
STEPOVER 9-12(XUM) 

Execution Control not.ebook 6-lO(R.XRY) 
Break page 3-3(RXRY), 6-6(R.XRY), 

6-12(R.XRY) 
Go To page 6-6(RXRY) 
GoSt.ep page 6-6(RXRY), 6-ll(R.XRY) 
St.ep page 6-7(RXRY) 

Exit command (Defaults Editor) 6-9(UXRY) 
Exit command (File Editor) 7-4(UXRY) 
Exit Program command (File 

Editor) 7-4(UXRY) 
Exiting File Editor 7-4(UXRY}-7-5(UXRY) 
Exiting the Defaults Editor 6-9(UXRY) 
Exiting windows 3-4(UXRY)-3-5(UXRY) 
EXPAND 9-7{XUM), 9-17(XUM), 9-22(XUM) 
Explorer 

(see Source Explorer) 
Expression (definition) 6-2(R.XRY) 
Expression elements 4-l(R.XRY) 

addresses 4-l(R.XRY) 
line numbers 4-2(R.XRY) 

Expression_range (definition) 6-3(R.XRY) 
Expression_ string 

(definition) 6-3(RXRY) 
Expressions 9-22(XUM) 

assembly language 4-2(R.XRY) 
expression string 4-3(R.XRY) 

SuperT AP SXX 

source language 4-2(RXRY) 
Extended Tekhex 3-15(XUM) 

F 
File commands 9-6(XUM) 
File Editor 1-2(UXRY), 1-3(UXRY), 

7-l(UXRY}-7-13(UXRY), 1-2(RXRY), 
6-S(R.XRY) 

About menu 7-2(UXRY) 
cancel action 7-5(UXRY) 
Change Directory command 7-3(UXRY) 
closing 7-4(UXRY}-7-5(UXRY) 
copy 7-6(UXRY) 
Copy command 7-6(UXRY) 
cursor, moving 7-5(UXRY) 
Cut command 7-6(UXRY) 
Debugger Macros menu 7-2(UXRY), 

7-12(UXRY) 
deleting text 7-6(UXRY) 
Edit menu 7-2(UXRY), 7-4(UXRY), 

7-5(UXRY), 7-6(UXRY), 
7-7(UXRY) 

Empty command 7-6(UXRY) 
erasing text 7-6(UXRY) 
Exit command 7-4(UXRY) 
Exit Program command 7-4(UXRY) 
File field 7 -3(UXRY) 
File menu 7-2(UXRY), 7-3(UXRY), 

7-4(UXRY), 7-5(UXRY), 
7-6(UXRY), 7-12(UXRY) 

Find and Replace command 7-S(UXRY) 
Find command 7-7(UXRY) 
Find from Selection 

command 7-S(UXRY) 
Find menu 7-2(UXRY), 7-7(UXRY), 

7-S(UXRY) 
Find Next command 7-S(UXRY) 
Format command 7-6(UXRY), 

7-7(UXRY) 
formatting 7-6(UXRY)-7-7(UXRY) 
Help menu 7-2(UXRY) 
in debugger 7-ll(UXRY)-7-12(UXRY) 
in other tools 1-16(UXRY) 

Master lndex-11 



in Source Explorer 7-lO(U:XRY)-
7-ll(UXRY) 

inXRAYMake l-16(UXRY), 7-9(UXRY)-
7-10(UXRY) 

Include comm.and 7-6(UXRY) 
Insensitive Searches 

comm.and 7-8(UXRY) 
inserting text 7-6(UXRY) 
Jump To Function command 7-S(UXRY) 
Line field 7-3(UXRY), 7-5(UXRY) 
Locate menu 7-2(UXRY), 7-lO(UXRY) 
menus 7-2(UXRY) 
mouse 7-5(UXRY), 7-6(UXRY) 
moving window 7-5(UXRY) 
New Editor Copy command 7-4(UXRY) 
New Editor Empty comm.and 7-4(UXRY) 
Next Error command 7-lO(UXRY) 
Open command 7-3(UXRY) 
opening a file 7-3(UXRY)-7-4(UXRY) 
overview 1-7(UXRY)-1-8(UXRY) 
Pair Matching command 7-S(UXRY) 
Paste command 7-6(UXRY) 
Personal Editor command 7-4(UXRY) 
Previous Error command 7-lO(UXRY) 
Print command 7-4(UXRY) 
printing a file 7-4(UXRY) 
quitting 7-4(UXRY)-7-5(UXRY) 
Read-Only field 7-3(UXRY) 
removing text 7-6(UXRY) 
ReOpen command 7-5(UXRY) 
Save As command 7-4(UXRY) 
Save command 7-4(UXRY), 7-12(UXRY) 
saving a file 7-4(UXRY) 
search 7-7(UXRY)-7-8(UXRY) 
Search Backward command 7-7(UXRY) 
selecting text 7-6(UXRY) 
Send macro to Debugger 

Abbr. 
(RXRY) 
(UXRY) 
(XUM) 

Master lndex-12 

command 7-12(UXRY) 

XRA Y Debugger for Windows 
XRA Y Debugger for Windows 

Show Insert Cursor command 7-5(UXRY) 
Show Last Changed Line 

command 7-5(UXRY) 
status line 7-3(UXRY) 

File 7-3(UXRY) 
Line 7-3(UXRY), 7-5(UXRY) 
Read-Only 7-3(UXRY) 

status, displaying 7-9(UXRY) 
Stop at top/bottom command 7-7(UXRY) 
typing text 7-6(UXRY) 
Undo command 7-5(UXRY) 
using 7-3(UXRY)-7-12(UXRY) 
using in other tools 7-9(UXRY)-

7-12(UXRY) 
View menu 7-2(UXRY), 7-5(UXRY), 

7-9(UXRY) 
Where am I command 7-9(UXRY) 

File Editor Defaults 6-S(UXRY) 
File Editor in SCMI 7-12(UXRY) 
File field (File Editor status line) 7-3(UXRY) 
File formats 1-9(XUM) 
File menu 

Change Directory 6-12(RXR.Y) 
Control Panel 5-5(UXRY), 5-6(UXRY) 
Defaults Editor 6-2(UXRY), 6-S(UXRY), 

6-9(UXRY) 
Exit Debugger 6-5(RXRY) 
File Editor 7-2(UXRY), 7-3(UXRY), 

7-4(UXRY), 7-5(UXRY), 
7-6(UXRY), 7-12(UXRY) 

help 4-2(UXRY), 4-9(UXRY), 
4-lO(UXRY) 

Load 6-5(RXRY) 
Make and Load 6-5(RXRY) 
Reload 6-5(RXRY) 
Remake and Reload 6-5(RXRY) 
Restart 6-12(RXRY) 
Scope 6-lO(RXRY) 

Manual Title 
XRAY Reference Manual 
XRAY User's Guide 
MWX.-ICE User's Manual 

MWX-ICE User's Manual (Windows) 



@file pseudo-register A-l(SXRY), B-2(SXRY) 
Files 2-4(UXRY)-2-6(UXRY) 

.master.def 2-5(UXRY), 6-2(UXRY) 

.Xdefaults 4-lO(UXRY) 
absolut.e 3-7(RXRY) 
command 6-3(RXRY) 
Control Panel 5-ll(UXRY) 
default projects 2-5(UXRY) 
defaults 2-5{UXRY), 6-l(UXRY) 
editing 7-3(UXRY)-7-12(UXRY) 
help 2-5(UXRY), 4-l(UXRY), 4-S(UXRY), 

4-9(UXRY) 
include 3-4(RXRY) 
journal 3-4(RXRY) 
loading 3-7(RXRY) 
notebook definition (.dia) 2-5(UXRY) 
opening in File Editor 7-3(UXRY)-

7-4(UXRY) 
printing in File Editor 7-4(UXRY) 
project 2-5(UXRY), 5-4(UXRY) 

deleting 5-lO(UXRY) 
saving in File Editor 7-4(UXRY) 
semi layout 2-5(UXRY) 
set-up file 2-5(UXRY) 
source 3-6(RXRY) 
temporary 2-2{UXRY) 
tools.xcp 2-5(UXRY) 

FILL 9-7(XlJl'd) 
FILL command 3-lO(RXRY) 

size qualifiers 6-2(RXRY) 
Fill page (Memory Command 

not.ebook) 6-S(RXRY) 
FIND 9-26(XUM) 
Find and Replace command (File 

Editor) 7-S(UXRY) 
Find command (File Editor) 7-7(UXRY) 
Find from Selection command (File 

Editor) 7-S(UXRY) 
Find menu 

File Editor 7-2(UXRY), 7-7(UXRY), 
7-S(UXRY) 

Find Next command (File Editor) 7-S(UXRY) 
Firmware 

updating D-l(XUM) 

SuperT AP BXX 

Flash memory 
configuring 4-S(XUM) 
devices supported 4-ll(XUM) 
macros 4-14(XUM) 
programming target 4-l(XUM) 
updating emulator D-l{XUM) 

Flash programming 
macros 4-6(XUM) 

Flash.inc 4-6{XUM) 
Flexible License Manager 

related documents P-2(UXRY) 
FOPEN 9-7(XUM), 9-17(XUM) 
FOR statement in macros 6-4(RXRY) 
Format command (File Editor) 7-6(UXRY), 

7-7(UXRY) 
Formats supported 1-9(XUM), 3-15(XUM) 
Formatting text (File Editor) 7-6(UXRY)-

7-7(UXRY) 
@fpfpseudo-register A-l(SX.RY), B-2(SXRY) 
FPRINTF 9-7{XUM), 9-17(XUM) 
FPRINTF command 3-9(RXRY) 
@fpu pseudo-register A-l(SXRY), B-2(SX.RY) 
Functions, target 4-4(RX.RY) 

G 
Getting help xvii(XUM) 
Global variables, referencing 4-5(RXRY) 
Glossary of user interface 

terms 3-12(UXRY)-3-13(UXRY) 
GO 9-12(XUM) 
Go button 6-6(RX.RY) 
GO command 3-3(RXRY), 4-13(RX.RY) 
Go To page (Execution Control 

notebook) 6-6(RX.RY) 
GOSTEP 9-12(XUM) 
GOSTEP command 3-3(RX.RY) 
GoStep page (Execution Control 

notebook) 6-6(RX.RY), 6-ll<RXRY) 
Graphical user interface 2-3(RX.RY) 

(see also Notebooks) 
(see Interface) 

GROUP 9-15(XUM) 

Master lndex-13 



Groups 
event system 7-15(XUM) 

H 
Hardware installation xviii(XUM) 
Help xvii(XUM), 4-l(UXRY}-4-IO(UXRY), 

3-l(RXRY) 
Annotat.e command 4-8(UXRY)-

4-9(UXRY) 
Back button 4-2(UXRY), 4-5(UXRY), 

4-6(UXRY) 
Bookmark menu 4-2(UXRY), 

4-7(UXRY)-4..S(UXRY) 
bookmarks 4-7Cl.JXRY}-4-8(UXRY) 
Browse buttons 4-2(UXRY), 4-6(UXRY) 
browse sequences 4-5(UXRY)-

4-6(UXRY) 
buttons 4-2(UXRY) 
Contents button 4-2(UXRY), 4-4{UXRY)-

4-5(UXRY) 
cont.ents it.em 4-4(UXRY}-4-5(UXRY) 
Copy command 4-lO(UXRY) 
Edit menu 4-2(UXRY), 4-8(UXRY)-

4-9(UXRY), 4-lO(UXRY) 
File menu 4-2(UXRY), 4-9(UXRY), 

4-lO(UXRY) 
files 2-5(UXRY), 4-l(UXRY), 4-S(UXRY), 

4-9(UXRY) 
Help menu 4-2(UXRY), 4-5(UXRY) 
items 4-l(UXRY) 

copying 4-lO(UXRY) 
printing 4-9(UXRY}-4-IO(UXRY) 
up 4-6(UXRY) 

keyword search dialog 4-7(UXRY) 
keyword searches 4-6(UXRY)-

4-7(UXRY) 
menu in File Editor 7-2Cl.JXRY) 

Abbr. 
(RXRY) 
(UXRY) 
(XUM) 

Master lndex-14 

XRA Y Debugger for Windows 
XRA Y Debugger for Windows 

menus 4-2(UXRY) 
moving in 4-4(UXRY)-4-8(UXRY) 
notational conventions 4-3(UXRY) 
not.es 4-8(UXRY}--4-9(UXRY) 
overview 1-14(UXRY}-1-15(UXRY) 
placeholders 4-7(UXRY)-4-8(UXRY) 
PrinterSetup command 4-lO(UXRY) 
PrintTopic command 4-9(UXRY)-

4-10(UXRY) 
Search button 4-2(UXRY), 4-6(UXRY)-

4-7(UXRY) 
searching 4-6(UXRY}--4-7(UXRY) 
stand-alone 9-2(XUM) 
title line 4-6(UXRY) 
up item 4-6(UXRY) 
window 4-l(UXRY}-4-2(UXRY) 

HELP command 3-l(RXRY) 
Help facility 2-6(RXRY) 
Help file 3-6CRXRY) 

location 3-6(RXRY) 
Help it.ems 4-l(UXRY) 

copying 4-lO(UXRY) 
printing 4-9(UXRY}--4-IO(UXRY) 

Help menu 
File Editor 7-2(UXRY) 
help 4-2(UXRY);4-5(UXRY) 

High-level mode debugging 2-2(RXRY), 
2-9(RXRY) 

C expressions and statements 2-2(RXRY) 
STEP command 2-S(RXRY) 
STEPOVER command 2-S(RXRY) 

IIlSTORY 9-26(XUM) 
@hlpc pseudo-register 4-ll(RXRY), 

A-l(SXRY), B-3(SXRY) 
Home direct.ory for XRAY 

MasterWorks 2-4(UXRY) 
HOST 9-26(XUM) 
HWCONFIG 9-17(XUM) 

Manual Tide 
XRAY Reference Manual 
XRAY User's Guide 
MWX-ICE User's Manual 

MWX-ICE User's Manual (Windows) 



Hyperlink 4-5(UXRY) 

I 
1/0 simulation commands 9-23(XUM) 
110, simulated 3-5(RXRY) 
ICE 9-26(XUM) 
lconifying windows 3-4(UXRY) 
Icons 

definition 3-12(UXRY) 
moving 3-3CUXRY) 
question mark 4-l(UXRY) 

IEEE-695 3-15(XUM) 
IF stat.ement in macros 6-6(RXRY) 
IF-ELSE statement in macros 6-6(RXRY) 
In-circuit debugger monitor 

related documents P-2(UXRY) 
In-circuit emulator commands 6-13(RXRY) 

BREAKCOMPLEX 6-13(RXRY) 
ICE 6-13(RXRY) 
NOICE 6-13(RXRY) 

Incl page (Debugger Files 
notebook) 6-ll(RXRY), 6-7(RXRY), 
6-9(RXRY) 

INCLUDE 3-9(XUM), 9-7(XUM), 9-21(XUM) 
INCLUDE command 3-4(RXRY) 
Include command (File Editor) 7-6(UXRY) 
Include file A-9(XUM) 
Include files 3-4(RXRY) 

comments 6-3(RXRY) 
no echo 

INCECHO option 3-S(RXRY) 
Info page (Symbol Management 

notebook) 6-lO(RXRY) 
INITREGS 9-7(XUM) 

command 8-7(XUM) 
why needed 8-2(XUM) 

lnitregs 
.deffile 8-5(XUM) 
default file 8-5(XUM) 

INPORT 9-23(XUM) 
INPORT command 3-5(RXRY) 

size qualifiers 6-2(RXRY) 
inport macro 3-5(R.XRY) 

Super TAP SXX 

Input page (Utility Commands 
notebook) 6-9(RXRY) 

Insensitive Searches command (File 
Editor) 7-S(UXRY) 

Inserting text (File Editor) 7-6(UXRY) 
Inspect button 6-7(RXRY) 
Inspector window 6-7(RXRY), 6-S(RXRY) 
Installation 

hardware xviii(XUM) 
software xviii(XUM) 

Instruction alignment B-4(SXRY) 
Instruction breakpoint 6-4(XUM), 6-12(XUM) 

setup 6-12(XUM) 
Intel format 3-15(XUM) 
lnteldevice 4-12(XUM), 9-8(XUM) 
Interface 1-13(UXRY}-1-15(UXRY), 

3-l(UXRY}--3-13(UXRY) 
(see Graphical User Interface) 

INTERRUPT 9-26(XUM) 
Interrupt simulation 9-23(XUM) 
Interrupts 1-5(XUM) 
Interval timestamp 5-24(XUM) 
Intrpt page (Utility Commands 

notebook) 6-9(RXRY) 
Invocation 2-3(XUM), 2-4{UXRY) 

requirements 2-l(UXRY) 
Invoking tools in XRAY 

MasterWorks 5-3(UXRY)-
5-4(UXRY) 

auto start 5-lO(UXRY) 
IO Dis page (Utility Commands 

notebook) 6-9(RXRY) 
IO Rew page (Utility Commands 

notebook) 6-lO(RXRY) 
IQFLS 5-31(XUM) 
iregs860.dat.ads 8-5(XUM) 
iregs860.dat.all 8-5{XUM) 
iregs860.dat.amc 8-5(XUM) 
iregs860.dat.def 8-5(XUM) 
Isolation mode 2-19(XUM), 2-24(XUM) 
ISOMODE 2-19(XUM), 2-24(XUM), 

9-19(XUM) 
Items, help 4-l(UXRY) 

copying 4-lO(UXRY) 
printing 4-9(UXRY}-4-10(UXRY) 

Master lndex-15 



up 4-6(UXRY) 

J 
JOURNAL 5-3(XUM), 9-4CXUM) 
JOURNAL command 3-4(RXRY) 
Journal file A-lO(XUM), 3-4(RXRY) 
Journal page (Debugger Files 

notebook) 6-ll(RXRY) 
Jump hyperlink 4-5(UXRY) 
Jump To Function command (File 

Editor) 7-S(UXRY) 
Jumping stack levels in execution 3-2(RXRY) 

K 
Keyboard shortcuts for menu 

commands 3-12(UXRY) 
Keys 

arrow (File Editor) 7-5(UXRY) 
backspace (File Editor) 7-6(UXRY) 
Delete (File Editor) 7-6(UXRY) 

Keyword search dialog (help) 4-7(UXRY) 
Keyword searches in help 4-6(UXRY)-

4-7(UXRY) 

L 
LD_LIBRARY_PATH environment 

variable 2-2(UXRY), 2-5(UXRY) 
Legal expressions 4-2(RXRY) 

examples 4-3(RXRY) 
expression strings 4-3(RXRY) 

Length of line 6-4(R.XRY) 
Librarian 

related documents P-3(UXRY) 
Libraries, shared 2-2(UXRY), 2-5(UXRY) 

Abbr. 
(RXRY) 
(UXRY) 
(XUM) 

Master lndex-16 

XRA Y Debugger for Windows 
XRA Y Debugger for Windows 

Library icon on notebooks 3-lO(UXRY) 
Licensing 

related documents P-2(UXRY) 
Line continuation character(%) 6-4(RXRY) 
Line field (File Editor status line) 7-3(UXRY), 

7-5{UXRY) 
Line length 6-4(RXRY) 
Line numbers 4-2CRXRY) 
Line_number (definition) 6-3(RXRY) 
@line_range pseudo-register A-l(SXRY), 

B-3(SXRY) 
Linker 

related documents P-3(UXRY) 
LIST 9-SCXUM), 9-17(XUM) 
LIST command 3-lCRXRY) 
List page (Debugger Files 

notebook) 6-7(RXRY) 
LOAD 3-15(XUM), 9-8(XUM) 
LOAD command 

IA option 3-7(RXRY) 
/NS option 3-7(RXRY) 

Load command (Control Panel) 5-6(UXRY) 
Load page (Debugger Files 

notebook) 6-5(RXRY) 
Loading code 3-15(XUM) 
Loading files 3-7(R.XRY) 

application 3-7(RXRY) 
ROM support routines 3-7(R.XRY) 

Local symbols 
in macro definition 6-7(RXRY) 
referencing 4-5(R.XRY) 
register 4-5(RXRY) 

Locate menu 
File Editor 7-2(UXRY), 7-lO(UXRY) 

Locating errors 1-16(UXRY), 7-9(UXRY)-
7-12(UXRY) 

LockDevice 4-9CXUM), 4-lOCXUM), 9-SCXUM) 
LOG 5-3CXUM), 9-4CXUM) 

Manual Title 
XRAY Reference Manual 
XRAY User's Guide 
MWX-JCE User's Manual 

MWX-ICE User's Manual (Windows) 



Log file A-IO(XUM) 
Log page (Debugger Files 

notebook) 6-ll(RXRY) 
Logging commands 3-4(RXRY) 
Logical addressing 2-28(XUM), 5-30(XUM) 

in displays 2-32(XUM) 
Loss of power 2-19(XUM) 
Low-level mode debugging 2-l(RXRY), 

2-7(RXRY) 
LSA 

use in the event system 7-7(XUM) 

M 
Macro 

assigning to a breakpoint 6-6(XUM) 
event system 7-21(XUM) 

Macro commands 6-12(RXRY) 
BREAKACCESS 9-21(XUM) 
BREAKCOMPLEX 9-21(XUM) 
BREAKINSTRUCTION 9-21(XUM) 
BREAKREAD 9-21(XUM) 
BREAKWRITE 9-21(XUM) 
DEFINE 9-21(XUM), 6-12(RXRY) 
INCLUDE 9-21(XUM) 
MACRO 6-lO(RXRY) 
SHOW 9-21(XUM), 6-12(RXRY) 
VMACRO 9-21(XUM) 

macro keyword 6-lO(RXRY) 
Macro notebook page (debugger) 7-12(UXRY) 
Macro page (Symbol Management 

notebook) 6-12(RXRY), 6-7(RXRY), 
6-8(RXRY), 6-9(RXRY) 

Macros 2-5(RXRY) 
inport 3-5(RXRY) 
no echo 

INCECHO option 3-8(RXRY) 
outport 3-5(RXRY) 
until 3-3(RXRY) 
when 3-3(RXRY) 

make utility 1-8(UXRY) 
MAP 3-8(XUM), 9-8(XUM) 
Map page (Memory Command 

notebook) 6-8(RXRY), 6-9(RXRY) 

SuperTAP 8XX 

MAPCLR 3-8(XUM), 9-8(XUM) 
MAPLIST 3-9(XUM), 3-13(XUM), 9-8(XUM) 
Mapping overlay memory 3-6(XUM) 
.master.def file 2-5(UXRY), 6-2(UXRY) 
MasterWorks 

(see XRAY MasterWorks) 
Memory 

event system 7-20(XUM) 
flash programming macros 4-14(XUM) 
initialization B-6(SXRY) 
programming flash 4-l(XUM) 

Memory access 
event system 7-12(XUM) 

Memory access type 
breakpoints 6-7(XUM) 

Memory Command notebook 
Comp page 6-8(RXRY) 
Copy page 6-8(RXRY) 
Fill page 6-8(RXRY) 
Map page 6-8(RXRY), 6-9(RXRY) 
Search page 6-9(RXRY) 
Stack page 6-7(RXRY), 6-ll(RXRY), 

6-12(RXRY) 
Memory commands 9-6(XUM), 6-8(RXRY) 

ADDRESS 9-6(XUM) 
Amddevice 9-6(XUM) 
ASM 9-6(XUM) 
COMPARE 9-6(XUM), 6-8(RXRY) 
COPY 9-6(XUM), 6-8(RXRY) 
CRC 9-6(XUM) 
DISASSEMBLE 9-6(XUM) 
DNL 9-6(XUM) 
DNL_GAP 9-7(XUM) 
DUMP 9-7(XUM) 
EraseDevice 9-7(XUM) 
ERROR 9-7(XUM) 
FILL 9-7(XUM), 6-8(RXRY) 
FOPEN 9-7(XUM) 
FPRINTF 9-7(XUM) 
INCLUDE 9-7(XUM) 
INITREGS 9-7(XUM) 
Inteldevice 9-8(XUM) 
LIST 9-8(XUM) 
LOAD 9-8(XUM) 
LockDevice 9-8(XUM) 

Master lndex-17 



MAP 9-8(XUM) 
MAPCLR 9-8(XUM) 
MAPLIST 9-8(XUM) 
MEMV ARS 9-8(XUM) 
NOMEMACCESS 6-8(RXRY) 
OVERLAY 9-8(XUM) 
OVREADTHRU 9-8(XUM) 
OVWRITETHRU 9-8(XUM) 
RAMACCESS 6-8(RXRY) 
RELOAD 9-9(XUM) 
RemoveDevice 9-9(XUM) 
RESTART 9-9(XUM) 
RESTORE 9-9<XUM) 
RGVERIFY 9-9(XUM) 
ROMACCESS 6-9(RXRY) 
SA VE 9-9(XUM) 
SEARCH 6-9(RXRY) 
SETMEM 9-9(XUM), 6-9<RXRY) 
SETREG 9-9(XUM), 6-9(RXRY) 
SIZE 9-9(XUM) 
TEST 9-9(XUM), 6-9(RXRY) 
UPL 9-lO(XUM) 
UPLFMT 9-lO(XUM) 
VERIFY 9-lO(XUM) 
WHEN 9-lO(XUM) 
XLATE 9-lO(XUM) 

Memory examination 9-9(XUM) 
Memory window 6-7(RXRY), 6-9(R.XRY) 
MEMVARS 9-8(XUM), 9-17(XUM) 
Menu bar 3-13(UXRY) 
Menus 

Control Panel 
File 5-5(UXRY), 5-6(UXRY) 
Project 5-5(UXRY), 5-6(UXRY), 

5-7(UXRY), 5-9(UXRY), 
5-lO(UXRY) 

debugger 
Edit 7-l(UXRY), 7-ll(UXRY) 

Abbr. 
(RXRY) 
(UXRY) 
(XUM) 

Master lndex-18 

XRA Y Debugger for Windows 
XRA Y Debugger for Windows 

Defaults Editor 
File 6-2(UXRY), 6-8(UXRY), 

6-9(UXRY) 
definition 3-13(UXRY) 
File 

Change Directory 6-12(RXRY) 
Exit Debugger 6-5(RXRY) 
Load 6-5(RXRY) 
Make and Load 6-5(RXRY) 
Reload 6-5(RXRY) 
Remake and Reload 6-5(RXRY) 
Restart 6-12(RXRY) 
Scope 6-lO(RXRY) 

File Editor 7-2(UXRY) 
About 7-2(UXRY) 
Debugger Macros 7-2(UXRY), 

7-12(UXRY) 
Edit 7-2(UXRY), 7-4(UXRY), 

7-5(UXRY), 7-6(UXRY), 
7-7(UXRY) 

File 7-2CUXRY), 7-3(UXRY), 
7-4(UXRY), 7-5(UXRY), 
7-6(UXRY), 7-12(UXRY) 

Find 7-2(UXRY), 7-7(UXRY), 
7-8(UXRY) 

Help 7-2(UXRY) 
Locate 7-2(UXRY), 7-lO(UXRY) 
View 7-2(UXRY), 7-5(UXRY), 

7-9{UXRY) 
help 4-2(UXRY) 

Bookmark 4-2(UXRY), 4-7(UXRY)-
4-8(UXRY) 

Edit 4-2(UXRY), 4-8(UXRY)-
4-9(UXRY), 4-lO(UXRY) 

File 4-2(UXRY), 4-9(UXRY), 
4-lO(UXRY) 

Help 4-2(UXRY), 4-5(UXRY) 
keyboard shortcuts 3-12(UXRY) 

Manual Title 
XRAY Reference Manual 
XRAY User's Guide 
MWX.-ICE User's Manual 

MWX-ICE User's Manual (Windows) 



paper clip icon 3-12(UXRY) 
root 2-3(UXRY) 
using 3-ll(UXRY>-3-12(UXRY) 
View 

Clear Window 6-13(RXRY) 
Scope to PC 6-lO(RXRY) 

Microtec Research toolkit 1-2(RXRY) 
Migration 

related documents P-2(UXRY) 
MMU 

in trace 5-30(XUM) 
MMU support 2-28(XUM), 3-12(XUM) 
MODE 9-4(XUM), 9-500JM), 9-18(XUM) 
Modes of Control Panel 1-5(UXRY), 

5-2(UXRY) 
Modifying a defaults file 6-2(UXRY)-

6-8(UXRY) 
Modifying projects 5-7(UXRY}-5-10(UXRY) 
Module (@module) 4-ll(RXRY) 
@module pseudo-register A-l(SXRY), 

B-3CSXRY) 
MONITOR 9-18(XUM) 
Monitor 

related documents P-2(UXRY) 
Motif window frame 3-2(UXRY) 
Motorola ADS board 8-5(XUM) 
Mouse 3-2(UXRY) 

executing commands with 3-7(UXRY)-
3-8(UXRY) 

File Editor 7-5(UXRY), 7-6(UXRY) 
scroll bars 3-5{UXRY}-3-6(UXRY) 
windows 3-3(UXRY}-3-5(UXRY) 

Mouse buttons 3-13(UXRY) 
Moving icons 3-3(UXRY) 
Moving in help system 4-4(UXRY)-

4-8(UXRY) 
Moving the cursor (File Editor) 7-5(UXRY) 
Moving windows 3-3(UXRY) 

File Editor 7-5(UXRY) 
mwedit 

(see File Editor) 
MWX-ICE 

command listing 9-l(XUM) 
initialization sequence 2-21(XUM) 
startup 2-4(XUM) 

SuperT AP SXX 

startup options A-9(XUM) 
startup requirements 2-3(XUM) 

MWX-ICE debugger 1-2(RXRY) 

N 
Naming projects 5-5(UXRY) 
Nested procedure 4-12(RXRY) 
Nesting(@) 4-13(RXRY) 
New command (Control Panel) 5-5(UXRY), 

5-7(UXRY) 
New Editor Copy command (File 

Edit.or) 7-4(UXRY) 
New Editor Empty command (File 

Edit.or) 7-4(UXRY) 
NEXT 9-26(XUM) 
Next Error command (File 

Edit.or) 7-lO(UXRY) 
No Target Vee 2-24(XUM) 
NOICE 9-26(XUM) 
NOINTERRUPI' 9-26(XUM) 
NOMEMACCESS 9-26(XUM) 
NOMONITOR 9-18(XUM) 
Notational conventions P-4(UXRY), 

P-3(RXRY) 
help 4-3(UXRY) 

Notebooks 3-9(UXRY}-3-10(UXRY), 
2-3(RXRY) 

applying options 3-9(UXRY) 
debugger 

macro page 7-12(UXRY) 
Debugger Files 

Incl page 6-ll(RXRY), 6-7(RXRY), 
6-9(RXRY) 

Journal page 6-ll(RXRY) 
List page 6-7CRXRY) 
Load page 6-5CRXRY) 
Log page 6-ll(RXRY) 
Scope page 6-lO(RXRY) 

Defaults Edit.or 6-2(UXRY}-6-8(UXRY) 
definition 3-13(UXRY) 
definition files (.dia) 2-5{UXRY) 
Execution Control 6-lO(RXRY) 

Break page 6-6(RXRY), 6-12(RXRY) 

Master lndex-19 



Go To page 6-6(RXRY) 
GoStep page 6-6(RXRY), 

6-ll(RXRY) 
Step page 6-7(RXRY) 

figure 3-lO(UXRY) 
library icon 3-lO(UXRY) 
Memory Command 

Comp page 6-8(RXRY) 
Copy page 6-S(RXRY) 
Fill page 6-S(RXRY) 
Map page 6-S(RXRY), 6-9(RXRY) 
Search page 6-9(RXRY) 
Stack page 6-7(RXRY), 6-ll(RXRY), 

6-12(RXRY) 
opening 3-9(UXRY) 
overview 1-13(UXR~l-14(UXRY) 
project definition 5-7(UXR~ 

5-S(UXRY), 5-9(UXR~ 
5-lO(UXRY) 

Symbol Management 
Alias page 6-ll(RXRY) 
Create page 6-lO(RXRY), 6-7(RXRY) 
Info page 6-lO(RXRY) 
Macro page 6-12(RXRY), 6-7(RXRY), 

6-S(RXRY), 6-9(RXRY) 
Value page 6-S(RXRY) 

tab 3-lO(UXRY) 
Utility Commands 

Input page 6-9(RXRY) 
Intrpt page 6-9(RXRY) 
IO Dis page 6-9(RXRY) 
IO Rew page 6-lO(RXRY) 
Output page 6-lO(RXRY) 
Save page 6-6(RXRY) 

Notes on operation 2-24(XUM) 
Notes, making on help 4-S(UXR~ 

4-9(UXRY) 
Numbers, specifying 3-lO(RXRY) 

Abbr. 
(RXRY) 
(UXRY) 
(XUM) 

Master lndex·20 

XRA Y Debugger for Windows 
XRA Y Debugger for Windows 

0 
Object format 1-9(XUM} 
Offset timestamp 5-24(XUM) 
Online Help xvii(XUM) 
On-line help 2-6(RXRY) 

(see Help) 
Open command (Control Panel) 5-6(UXRY) 
Open command (Defaults Editor) 6-2(UXRY) 
Open command (File Editor) 7-3(UXRY) 
Opening a defaults file 6-2(UXRY) 
Opening a file (File Editor) 7-3(UXR~ 

7-4(UXRY) 
Opening projects 5-6(UXRY) 
Operational notes 2-24(XUM) 
Operations during run 1-4(XUM) 
OPTION 9-4(XUM) 
Options 3-S(UXRY) 
OUTPORT 9-23(XUM) 
OUTPORT command 3-5(RXRY) 

size qualifiers 6-2(RXRY) 
outport macro 3-5(RXRY) 
Output page (Utility Commands 

notebook) 6-lO(RXRY) 
OVERLAY 3-16(XUM), 3-18(XUM), 

9-8(XUM) 
Overlay memory 1-5(XUM) 

access qualification 3-7(XUM) 
automatic adjustments 3-ll(XUM) 
bank addressing 3-6(XUM) 
copying memory to 3-16(XUM) 
copying target memory 3-16(XUM) 
copying target to overlay 3-15(XUM) 
downloading to 3-15(XUM) 
errors and warnings 3-14(XUM) 
external bus master 3-4(XUM) 
features 3-3(XUM) 
granularity 3-4(XUM) 
limits 3-6(XUM) 

Manual Title 
XRAY Reference Manual 
XRAY User's Gui.de 
MWX-JCE User's Manual 

MWX-ICE User's Manual (Windows) 



listing and saving map 3-9(XUM) 
logical addresses 3-7(XUM) 
logical addressing 2-32(XUM) 
logical addressing example 3-12(XUM) 
mapping 3-6{XUM), 3-S(XUM), 

3-ll{XUM) 
MMU initialization 3-12(XUM) 
replacing ROM 3-2{XUM) 
required termination 3-3(XUM) 
restoring mappings 3-9(XUM) 
returning to target 3-S(XUM) 
sizes available 3-3(XUM) 
specifying access source 3-18(XUM) 
speed 3-3(XUM) 
standard ex.ample 3-lO(XUM) 
summary of procedures 3-7{XUM) 
theory of operations 3-6(XUM) 
topics in help 3-l(XUM) 
translation tables and 3-12(XUM) 
typical uses 3-2{XUM) 

Overlay .. endpoints adjusted 3-14(XUM) 
OVREADTHRU 3-4(XUM), 9-S(XUM) 
OVWRITETHRU 3-4{XUM), 9-S(XUM) 

p 
Pair Matching command (File 

Editor) 7-S(UXRY) 
Paper clip icon on menus 3-12(UXRY) 
Paste command (File Editor) 7-6(UXRY) 
Pasting text 3-ll(UXRY) 
Patching source 6-ll{R.XRY) 
Path 2-2(UXRY) 
PAUSE 9-12(XUM), 9-23(XUM) 
Peeks/Pok.es 

tracing 5-9(XUM) 
Personal Editor command (File 

Editor) 7-4(UXRY) 
Phone support x:x:(XUM) 
Physical address 5-30(XUM) 
@pi pseudo-register A-l(SXRY), B-3(SXRY) 
@pisize pseudo-register A-l(SXRY), 

B-3(SXRY) 
Placeholders (help) 4-7<UXRYH-8(UXRY) 

SuperTAP SXX 

Pop-up hyperlink 4-5(UXRY) 
PORESET 9-12(XUM), 9-19(XUM) 
Port 1/0 and interrupt commands 6-9(RXRY) 

DIN 9-23(XUM), 6-9(RXRY) 
DOUT 9-23(XUM), 6-9(RXRY) 
INPORT 9-23(XUM), 6-9(RXRY) 
INTERRUPT 6-9(RXRY) 
NOINTERRUPT 6-9(RXRY) 
OUTPORT 9-23(XUM), 6-lO(RXRY) 
PAUSE 9-23(XUM) 
RIN 9-23(XUM), 6-lO(RXRY) 
ROUT 9-23(XUM), 6-lO(RXRY) 

Port 1/0 simulation 9-23(XUM) 
@port_addr pseudo-register A-l(SXRY), 

B-3(SXRY) 
Port_address (definition) 6-3(RXRY) 
@port_size pseudo-register A-l(SXRY), 

B-3(SXRY) 
@port_ value pseudo-register A-2(SXRY), 

B-4(SXRY) 
Position Defaults 6-5(UXRY) 
Power loss, target 2-24(XUM) 
Power-on 

control program 
initialization 2-21(XUM) 

emulator initialization 2-20(XUM) 
sequence 2-7(XUM) 
tracing during target power-on 5-3(XUM) 

PPT 2-25(XUM), 9-13(XUM) 
Preparing programs for debugging 

command files 2-3(RXRY) 
Previous Error command (File 

Editor) 7-lO(UXRY) 
Print button 6-S(RXRY) 
Print command (File Editor) 7-4(UXRY) 
PRINTANAL YSIS 9-26(XUM) 
PrinterSetup command (help) 4-lO(UXRY) 
PRINTF 9-18(XUM) 
PRINTF command 3-9(RXRY) 
Printing a file (File Editor) 7-4(UXRY) 
Printing a help item 4-9(UXRYH-10(UXRY) 
PRINTPROFILE 9-26(XUM) 
PRINTSYMBOLS 9-18(XUM), 9-22(XUM) 
PRINTSYMBOLS command 3-9(RXRY) 

errors 3-S(RXRY) 

Master lndex-21 



PrintTopic command (help) 4-9(UXRY)-
4-10(UXRY) 

PRINTTYPE 9-lS(XUM), 9-22(XUM) 
PRINTVALUE 9-lS(XUM), 9-22(XUM) 
Procedure (@procedure) 4-ll(RXRY) 
@procedure pseudo-register A-2(SXRY), 

B-4(SXRY) 
Procedure, nested 4-12(RXRY) 
Processor 

changing for a project 5-9(UXRY) 
Product development cycle 1-4(UXRY)-

1-12(UXRY) 
PROFILE 9-26(XUM) 
Program stack references 4-12(RXRY) 
Programming flash 4-l(XUM) 

macros 4-6(XUM) 
Project Control Panel 

(see Control Panel) 
Project menu 

Control Panel 5-5(UXRY), 5-6(UXRY), 
5-7(UXRY), 5-9(UXRY), 
5-lO(UXRY) 

Projects 5-4(UXRY)-5-10(UXRY) 
adding/deleting tools 5-9(UXRY)-

5-10(UXRY) 
control panel for 

(see Control Panel, project) 
creating 5-5(UXRY)-5-6(UXRY) 
default projects 5-S(UXRY) 

files 2-5(UXRY) 
definition 1-3(UXRY), 5-4(UXRY) 
deleting 5-lO(UXRY) 
files 2-5(UXRY), 5-4(UXRY) 

deleting 5-lO(UXRY) 
modifying 5-7(UXRY)-5-10(UXRY) 
naming 5-5(UXRY) 
notebook 5-7(UXRY)-5-8(UXRY), 

5-9(lJXRY)-5-lO(lJXRY) 

Abbr. 
(RXRY) 
(UXRY) 
(XUM) 

Master lndex-22 

XRA Y Debugger for Windows 
XRA Y Debugger for Windows 

opening 5-6(UXRY) 
target processor 

changing 5-9(UXRY) 
Pseudo-registers A-l(SXRY) 

@addr A-l(SXRY), B-l(SXRY), 

Q 

B-4(SXRY) 
@as A-l(SXRY), B-l(SXRY) 
@chip A-l(SXRY), B-l(SXRY) 
@cycles A-l(SXRY), B-l(SXRY), 

B-5(SXRY) 
@entry A-l(SXRY), B-l(SXRY) 
@exc A-l(SXRY), B-2(SXRY), B-5(SXRY) 
@file A-l(SXRY), B-2(SXRY) 
@fpf A-l(SXRY), B-2(SXRY) 
@fpu A-l(SXRY), B-2(SXRY), B-5(SXRY), 

B-lO(SXRY) 
@hlpc 4-U(RXRY), A-l(SXRY), 

B-3(SXRY) 
@line_range A-l(SXRY), B-3(SXRY) 
@module 4-U(RXRY), A-l(SXRY), 

B-3(SXRY) 
@pi A-l(SXRY), B-3(SXRY) 
@pisize A-l(SXRY), B-3(SXRY) 
@port_addr A-l(SXRY), B-3(SXRY) 
@port_size A-l(SXRY), B-3(SXRY) 
@port_ value A-2(SXRY), B-4(SXRY) 
@procedure 4-U(RXRY), A-2(SXRY), 

B-4(SXRY) 
@root 4-lO(RXRY), A-2(SXRY), 

B-4(SXRY) 
@wait_state A-2(SXRY), B-4(SXRY), 

B-6(SXRY) 

Qualified reference 4-9(RXRY) 
Qualifying trace 5-lO(XUM) 
Question mark icon 4-l(UXRY) 

Manual Title 
XRAY Reference Manual 
XRAY User's Guide 
MWX-ICE User's Manual 

MWX-ICE User's Manual (Windows) 



Questions and answers 
learning to use XRAY 3-l(RXRY) 
managing XRAY files 3-6CRXRY) 
using XRAY variables 3-S(RXRY) 

QUICC registers 8-lO(XUM) 
QUIT 9-4(XUM) 
Quitting File Edit.or 7-4(UXRY)-7-5(UXRY) 
Quitting windows 3-4CUXRY)-3-5(UXR.Y) 

R 
Radio buttons 3-S(UXRY) 

definition 3-13(UXRY) 
figure 3-S(UXRY) 

RAMACCESS 9-2600JM) 
Raw trace display 5-35(.XUM) 
Read-Only check box (File Edit.or status 

line) 7-3(UXRY) 
Realtime operation 

event system 7-23(XUM) 
Rebuilding applications 1-17(UXRY) 
Recall button 6-U(RXRY) 
Recursive functions 

setting breakpoints 4-13(RXRY) 
using GO command 4-13(RXRY) 

Reference 4-12(RXRY) 
qualified 4-9(RXRY) 

Register support 1-6(XUM) 
Register window 6-9(RXRY) 
Registers 

configuring 8-9(XUM) 
event system 7-20(XUM) 
initregs command 8-7(XUM) 
setting 8-lO(XUM) 
view/modify 8-lO(XUM) 

RELOAD 9-9(XUM) 
RemoveDevice 4-ll(XUM), 9-9CXUM) 
Removing projects 5-lO(UXRY) 
Removing text (File Edit.or) 7-6(UXRY) 
Rename command (Control 

Panel) 5-7(UXRY), 5-9(UXRY) 
ReOpen command (File Editor) 7-5(UXRY) 
Replacing strings (File Edit.or) 7-S(UXRY) 
Reserved symbols A-l(SXRY) 

SuperT AP BXX 

Reserved words A-l(SXRY) 
RESET 2-21(XUM), 2-22(XUM), 9-12(XUM), 

9-19(XUM) 
Reset 

button 2-22(XUM) 
emulator 2-22(XUM) 
hardware 2-22(XUM) 
software 2-21(XUM) 
tracing during reset 5-3(XUM) 

Resizing viewports 3-4(RXRY) 
Resizing windows 3-3(UXR.Y)-3-4(UXRY) 
Resources 

access breakpoints 6-U(XUM) 
breakpoints and event system 6-2(XUM) 
event system 7-26(XUM) 
instruction breakpoints 6-17(XUM) 

RESTART 2-22(XUM), 9-9(XUM), 9-12(XUM) 
RESTORE 9-9(XUM) 
RETURN statement in macros 6-6(RXRY) 
RGVERIFY 9-9(XUM) 
RIN 9-23(XUM) 
ROM, replacing with overlay 3-2(XUM) 
ROMACCESS 9-26(XUM) 
Root (@) 4-lO(RXRY) 
Root menu 2-3(UXRY) 
Root names 4-lO(RXRY) 
@root pseudo-register 4-lO(RXRY), 

A-2(SXRY), B-4(SXRY) 
ROUT 9-23(XUM) 
Routine Information dialog (Source 

Explorer) 7-lO(UXRY) 
RTE 9-1900JM) 
Rule field (XRAY Make) 7-9(UXRY) 
RUN_POLL 9-19(XUM) 
RUN_TIME 9-1900JM) 

s 
SA VE 9-9(XUM) 
Save As command (Defaults 

Edit.or) 6-9(UXRY) 
Save As command (File Editor) 7-4(UXRY) 
Save command (Defaults Editor) 6-S(UXRY) 
Save command (File Edit.or) 7-4(UXRY), 

Master lndex-23 



7-12(UXRY) 
Save page (Utility Commands 

notebook) 6-6(RXRY) 
Saving 

macros 6-9(RXRY) 
Saving a defaults file 6-S(UXRY) 
Saving a file (File Editor) 7-4(UXRY) 
Saving commands 3-4{RXRY) 

JOURNAL command 3-4(RXRY) 
LOG command 3-4(RXR.Y) 

Saving configuration 2-ll(XUM) 
SCMI 

(see Source Control Management Inter
face) 

SCMI Defaults 6-S(UXRY) 
SCMILayout 

files 2-5(1J}{R.Y) 
SCOPE 9-22(XUM) 
Scope button 6-lO(RXRY) 
SCOPE command 3-l{RXRY), 3-9(RXRY) 
Scope page (Debugger Files 

notebook) 6-lO(RXRY) 
Scoping rules 4-8(RXRY) 
Scroll bars 3-5(1J}{R.Y)-3-6(UXRY) 

definition 3-13(1J}{R.Y) 
figure 3-5(UXRY) 
infinite 3-6(1J}{R.Y) 

Search and replace in File Editor 7-8(UXRY) 
Search Backward command (File 

Editor) 7-7(UXRY) 
Search button 

help 4-2(UXRY), 4-6(1J}{R.Y)-4-7(UXRY) 
SEARCH command 

size qualifiers 6-2(RXRY) 
Search page (Memory Command 

notebook) 6-9(RXRY) 
Search paths 2-4(UXRY}-2-5(UXRY) 
Searching for string in File 

Abbr. 
(RXRY) 
(UXRY) 
(XUM) 

Master lndex-24 

XRA Y Debugger for Windows 
XRA Y Debugger for Windows 

Editor 7-7(UXRY}-7-8(UXRY) 
Searching in help system 4-6(UXRY)-

4-7(UXRY) 
Selecting text (File Editor) 7-6(UXRY) 
Send macro t.o Debugger comm.and (File 

Editor) 7-12(UXRY) 
Sequences, browse 4-5(1J}{R.Y}-4-6(UXRY) 
SERIAL_CORE 9-12{XUM) 
Session control 9-4(XUM) 

JOURNAL 9-4(XUM) 
LOG 9-4(XUM) 
MODE 9-4(XUM) 
OPTION 9-4(XUM) 
QUIT 9-4(XUM) 
SETSTATUS DIR 9-4{XUM) 
SETSTATUS 

ENVIRONMENT 9-4(XUM) 
Session control commands 6-5(RXRY) 

HOST 6-5(RXRY) 
LOAD 6-5{RXRY) 
QUIT 6-5(RXRY) 
RELOAD 6-5(RXRY) 
RESTORE 6-6(RXRY) 
SA VE 6-6{RXRY) 

SETMEM 9-9{XUM) 
SETMEM command 3-lO(RXRY) 

size qualifiers 6-2{RXRY) 
SETREG 8-lO(XUM), 8-U{XUM), 9-9{XUM) 
SETSTATUS DIR 9-4{XUM) 
SETSTATUS ENVIRONMENT 9-4(XUM) 
SETSTATUS EVENT 9-26(XUM) 
SETSTATUS QUALIFY 9-26(XUM) 
SETSTATUS READ 9-26(XUM) 
SETSTATUS TRACE 9-26(XUM) 
SETSTATUS TRIGGER 9-26(XUM) 
SETSTATUS VERIFY 9-26(XUM) 
SETSTATUS WRITE 9-26(XUM) 

Manual Title 
XRAY Reference Manual 
XRAY User's Guide 
MWX-ICE User's Manual 

MWX-ICE User's Manual (Windows) 



Setting breakpoints 
(see Breakpoints) 

Setting up XRAY MasterWorks 
tools 1-4(UXRY}-1-7(UXRY) 

Setting your path 2-2(UXRY) 
Set-up file 2-5(UXRY) 
Shared libraries 2-2(UXRY), 2-5(UXRY) 
SHOW 9-21(XUM) 
Show cycles 6-ll(XUM) 
Show Insert Cursor command (File 

Editor) 7-5(UXRY) 
Show Last Change Line command (File 

Editor) 7-5(UXRY) 
SHOWINST 9-13(XUM) 
SIGA_MUX 7-7(XUM), 9-13(XUM), 

9-15(XUM) 
SIGB_MUX 7-7(XUM), 9-13(XUM), 

9-15(XUM) 
Signal timing 2-26(XUM) 
Simple Editor command 

(debugger) 7-ll(UXRY) 
Simulated J/O 3-5(RXRY) 
Simulating 

i/o 9-23(XUM) 
interrupts 9-23(XUM) 

Single-stepping 2-26(XUM), 9-12(XUM), 
2-8(RXRY) 

SIT 9-12(XUM), 9-19(XUM) 
SIT mode 1-5(XUM) 
SITSTATE 9-12(.XUM), 9-19(XUM) 
SIZE 9-9(XUM) 
Softswitches 9-19(XUM) 
Software breakpoint 6-4(.XUM), 6-12(.XUM) 
Software installation xviii(XUM) 
Software performance report 1-15(UXRY)

l-16(UXRY) 
Source Control Management 

Interface 1-3(UXRY) 
overview 1-6(UXRY}-1-7(UXRY) 

Source Explorer 1-3(UXRY), 1-2(RXRY) 
Browse button 7-lO(UXRY) 
debugger, communicating 

with 1-17(UXRY) 
File Editor in 7-lO(UXRY)-7-ll(UXRY) 
notebooks 1-14(UXRY) 

SuperTAP axx 

overview 1-lO(UXRY}-1-ll(UXRY) 
XRAY Make, communicating 

with 1-17(UXRY) 
Source file 

assembly 3-l(:R.:XliY) 
high-level 3-l(RXRY) 
location 3-6(RXRY) 

Source patching 6-ll(RXRY) 
SREC format 3-15(XUM) 
Stack 

explicit references to 4-13(RXRY) 
implicit references to 4-12(RXRY) 

Stack levels 
displaying 3-2(RXRY) 
jumping 3-2(:R.:XliY) 

Stack page (Memory Command 

Starting 

notebook) 6-7(RXRY), 6-ll(RXRY), 
6-12(RXRY) 

emulator and target 2-7(XUM) 
MWX-ICE 2-3(XUM) 
target code 2-22(XUM) 

STARTUP 9-27(.XUM) 
Startup 

file,creating 2-ll(XUM) 
options A-9(XUM) 
requirements 2-3(XUM) 

STARTUP command 3-4(RXRY) 
Startup include file A-4(.XUM) 
startup.inc A-4(XUM) 
startup.xry file 3-4(RXRY) 
STATE 9-15(.XUM) 
States 

event system 7-18(XUM) 
STATUS 9-18(XUM), 9-24(.XUM) 
Status 

bus master 2-27(.XUM) 
displaying in File Editor 7-9(UXRY) 

STATUS BUFFER 9-27(XUM) 
Status commands 9-17(XUM) 
STATUS EVENT 9-27(XUM) 
Status line in File Editor 7-3(UXRY) 

File 7-3(UXRY) 
Line 7-3(UXRY), 7-5(UXRY) 
Read-Only 7-3(UXRY) 

Master lndex-25 



STATUS QUALIFY 9-27(XUM) 
STATUS TRACE 9-27(XUM) 
STATUS TRIGGER 9-27(XUM) 
STEP 9-12(XUM) 
STEP command 2-8(RXRY), 3-2(RXRY) 
Step page (Execution Control 

notebook) 6-7(RXRY) 
Steplnstr button 6-7(RXRY) 
StepLine button 6-7(RXRY) 
STEPOVER 9-12(XUM) 
StepOver button 6-7(RXRY) 
STEPOVER command 2-8(RXRY), 

3-2<RXRY) 
Stepping 3-2(RXRY) 

(see also Single-stepping, STEP command, 
STEPOVER command) 

Stop at top/bottom command (File 
Editor) 7-7<UXRY) 

Stop execution 3-3(RXRY) 
Stop-in-target mode 1-5(XUM) 
Storage classes 4-5(RXRY) 

(see also Symbolic references, storage 
classes) 

SuperTAP Flash ROM 
updating D-l(XUM) 

Support :xx:(XUM) 
Symbol (definition) 6-3(RXRY) 
Symbol commands 6-lO(RXRY) 

ADD 9-22(XUM), 6-lO(RXRY) 
BROWSE 9-22(XUM) 
CEXPRESSION 9-22(XUM) 
CONTEXT 9-22(XUM), 6-lO(RXRY) 
DELETE 9-22(XUM), 6-lO(RXRY) 
EXPAND 9-22(XUM) 
PRINTSYMBOLS 9-22(XUM), 

6-lO<RXRY) 
PRINTTYPE 9-22(XUM), 6-lO(RXRY) 
PRINTV ALUE 9-22(XUM) 

Abbr. 
(RXRY) 
(UXRY) 
(XUM) 

Master lndex-26 

XRA Y Debugger for Windows 
XRA Y Debugger for Windows 

SCOPE 9-22(XUM), 6-lO(RXR.Y) 
Symbol Management notebook 

Alias page 6-ll(RXRY) 
Create page 6-lO(RXRY), 6-7(RXR.Y) 
Info page 6-lO(RXRY) 
Macro page 6-12(RXRY), 6-7(RXR.Y), 

6-8(RXRY),6-9(RXRY) 
Value page 6-8(RXR.Y) 

Symbolic references 3-S(RXRY), 4-5(RXRY) 
data types 4-6(RXRY) 

type casting 4-7(RXRY) 
type conversion 4-7(RXRY) 
variable references 4-U(RXRY) 

program stack 4-12(RXRY) 
explicit references 4-13(RXR.Y) 
implicit references 4-12(RXRY) 

qualified reference 4-9(RXRY) 
scoping rules 4-S(RXRY) 
storage classes 

local 4-5(RXRY) 
register 4-5(RXRY) 

Symbols 
address 4-l(RXRY) 
as command parameters 6-3(RXRY) 
debug information 3-8(RXRY) 
local 6-7(RXRY) 
PRINTSYMBOLS cannot 

find 3-8(RXRY) 
qualified 6-3(RXRY) 
reserved A-l(SXRY) 
XRAY cannot find 3-8(RXRY) 

Symbols in trace 5-34(XUM) 

T 
T.All'EA 3-3(XUM) 
Target functions 4-4(RXRY) 
Target isolation mode 2-19(XUM), 

Manual Title 
XRAY Reference Manual 
XRAY User's Gui.de 
MWX-ICE User's Manual 

MWX-ICE User's Manual (Windows) 



2-24(XUM) 
Target processor 

project 5-9{UXRY) 
Target Vee Not Found 2-19(XUM), 

2-24(XUM) 
Technical support x:x(XUM) 
Temporary break.points 6-14(XUM), 

3-3(RXRY) 
Temporary file 2-2{UXRY) 
Termination in overlay 3-3(XUM) 
TEST 9-9(XUM) 
TEST command 

size qualifiers 6-2(RXRY) 
Test target 8-5(XUM) 
Text 

copying 3-ll(UXRY) 
copying in File Editor 7-6(UXRY) 
deleting in File Editor 7-6(UXRY) 
entering 3-ll(UXRY) 
formatting in File Editor 7-6(UXRY}-

7-7(UXRY) 
inserting in File Editor 7-6(UXRY) 
pasting 3-ll{UXRY) 
selecting in File Editor 7-6(UXRY) 
typing 3-ll(UXRY) 

Text editor 
(see File Editor) 
(see File Editor)' 

Text fields 
definition 3-13(UXRY) 

Text viewer 
moving in File Editor 7-5(UXRY) 

TGTMODE 9-lS(XUM) 
TIMCLK 5-25(XUM), 9-14(XUM) 
Timestamp 5-3(XUM), 5-24(XUM) 
Timing 5-3(XUM) 
Timing, AC signal 2-26(XUM) 
Title line in help 4-6(UXR.Y) 
Tool Output area (XR.AYMake) 7-9(UXRY) 
Toolkit 1-2(RXRY) 
Tools in XRAY MasterWorks 1-2(UXRY}-

1-3(UXRY) 
(see also under specific name) 
adding/deleting in projects 5-9(UXRY}-

5-10(UXRY) 

SuperTAP BXX 

building 1-7(UXRY}-1-10(UXRY) 
configuration 1-4(UXRY}-1-7(UXRY) 
debugging 1-10(UXRY}-1-12(UXRY) 
invoking 5-3(UXRY}-5-4(UXRY) 

auto start 5-lO(UXRY) 
overviews 1-4(UXRY}-1-12(UXRY) 

tools.xcp file 2-5(UXRY) 
TRACE 5-S(XUM), 9-14(XUM) 
Trace 1-7(XUM) 

assembly instruction in 5-33(XUM) 
C source in 5-33(XUM) 
clearing at run 5-S(XUM) 
compression 5-31(XUM) 
configuring 5-S(XUM)-?? 
continuous raw 5-S(XUM), 5-22(XUM) 
data display 5-24(XUM) 
disassembled 5-lO(XUM), 5-25(XUM) 
disassembly problems 5-32(XUM) 
displaying ??-5-32(XUM) 
dynamic 5-3(XUM), 5-4(XUM) 
peek/poke 5-9(XUM) 
power-up cycles 5-3(XUM) 
preventing overwriting 5-9(XUM) 
qualified 5-3(XUM), 5-lO(XUM) 
raw field descriptions 5-35(XUM) 
reset sequences 5-3(XUM) 
saving to a file 5-3(XUM) 
selecting display fields 5-23(XUM) 
symbols 5-34(XUM) 
timestamp 5-3(XUM) 
using MMU 5-30(XUM) 
view while running 5-3(XUM), 5-4(XUM) 

Trace Back window 3-2<RXRY) 
Trace commands 5-S(XUM}-5-ll(XUM), 

5-25(XUM), 9-13(XUM) 
DRT 9-13(XUM) 
DRTDATA 5-22(XUM), 5-24CXUM), 

9-13(XUM) 
DRTFULL 5-22(XUM), 9-13(XUM) 
DRTOPTn 5-23(XUM) 
DT 5-25(XUM), 9-13(XUM) 
DTB 9-13(XUM) 
DTF 5-25(XUM), 9-13(XUM) 
DXINSERT 5-25(XUM), 9-13(XUM) 
DXLABELS 9-13(XUM) 

Master lndex-27 



DXMMU 5-25(XUM) 
PP!' 9-13(XUM) 
SHOWINST 9-13(XUM) 
SIGA_MUX 9-13(XUM), 9-15(XUM) 
SIGB_MUX 9-13(XUM), 9-15(XUM) 
TIMCLK 9-14(XUM) 
TRACE 9-14(XUM) 
TRBASE 9-14(XUM) 
TRCEXT 9-14CXUM) 
TRCINT 9-14(XUM) 
TRCLR 9-14(XUM) 
TRDISP 5-25(XUM), 9-14(XUM) 
TRFRAMES 9-14(XUM) 
TRQUAL 9-14(XUM) 
TRRUNCLR 9-14(XUM) 
TRSYS 9-14(XUM) 
TSRCH 9-14CXUM) 
TSTAMP 9-14(XUM) 

Trace compression 5-31(XUM) 
Tracing B-7(SXRY) 
Translation tables 2-28(XUM), 3-12(XUM) 
TRBASE 5-25(XUM), 9-14(XUM) 
TRCEXT 9-14(XUM) 
TRCINT 9-14(XUM) 
TRCLR 9-14(XUM) 
TRDISP 9-14(XUM) 
TRFRAMES 9-14(XUM) 
Triggers 

extern.al 7-20(XUM) 
TRINIT 5-S(XUM) 
Troubleshooting B-l(XUM), 1-15(UXRY}-

1-16(UXRY) 
TRQUAL 5-S<XUM), 9-14(XUM) 
TRRUNCLR 5-S(XUM), 9-14(XUM) 
TRSTAMP 5-25(XUM) 
TRSYS 5-S(XUM), 9-14(XUM) 
TSRCH 9-14(XUM) 
TSTAMP 9-14(XUM) 

Abbr. 
(RXRY) 
(UXRY) 
(XUM) 

Master lndex-28 

XRA Y Debugger for Windows 
XRA Y Debugger for Windows 

Tutorial P-l(UXRY) 
Type casting 4-7(RXRY) 
Type conversions 4-7(RXRY) 
Types, data 4-6(RXRY) 
Typing text 3-ll(UXRY) 
Typing text (File Edit.or) 7-G(UXRY) 

u 
Underlined words in help 4-5(UXRY) 
Undo command (File Edit.or) 7-5(UXRY) 
UNIX system environment 

variables 2-l(UXRY) 
UNKNOWN TYPE 3-9(RXRY) 
UnlockDevice 4-lO(XUM), 9-9(XUM) 
Unreferenced variable 4-12(RXRY) 
Unsupported commands 9-26(XUM) 
until macro 3-3(RXRY) 
UP 9-lS(XUM) 
Up butt.on 6-12(RXRY) 
Up item in help 4-6(UXRY) 
Updating 

firm.ware D-l(XUM) 
UPL 3-17(XUM), 9-lO(XUM) 
UPLFMT 9-lO(XUM) 
Uploading object code 3-17(XUM) 
User Interface 

(see Graphical User Interface) 
User interface 

(see Interface) 
Using debugger macros 2-5(RXRY) 
Using the File Editor 7-3(UXRY}-

7-12(UXRY) 
in other tools 7-9(UXRY}-7-12(UXRY) 

USR MRI environment variable 2-2(UXRY), 
- 2-4(UXRY), 6-2(UXRY), 3-6(RXRY) 

Utility commands 6-ll(RXRY) 
ALIAS 9-24(XUM), 6-ll(RXRY) 

Manual Title 
XRAY Reference Manual 
XRAY User's Guide 
MWX-ICE User's Manual 

MWX-ICE User's Manual (Windows) 



CEXPRESSION 6-ll(RXRY) 
DOWN 6-ll(RXRY) 
ERROR 6-ll(RXRY) 
HELP 6-ll(RXRY) 
HISTORY 6-ll(RXRY) 
INCLUDE 6-ll(RXRY) 
JOURNAL 6-ll(RXRY) 
LOG 6-ll(RXRY) 
MODE 6-ll(RXRY) 
OPTION 6-ll(RXRY) 
PAUSE 6-ll<RXRY) 
RESET 6-ll(RXRY) 
RESTART 6-12(RXRY) 
SETSTATUS om 6-12(RXRY) 
SETSTATUS 

ENVIRONMENT 6-12(RXRY) 
SETSTATUS READ 6-12(RXRY) 
SETSTATUS VERIFY 6-12(RXRY) 
SETSTATUS WRITE 6-12(R.XRY) 
STARTUP 6-12(RXRY) 
STATUS 9-24(XUM), 6-12(RXRY) 
UP 6-12(RXRY) 
XI.ATE 9-24(XUM) 

Utility Commands notebook 
Input page 6-9(RXRY) 
Intrpt page 6-9(RXRY) 
IO Dis page 6-9(RXRY) 
IO Rew page 6-lO(RXRY) 
Output page 6-lO(RXRY) 
Save page 6-6(RXRY) 

v 
VACTIVE 9-5(XUM) 
Value page (Symbol Management 

notebook) 6-S(RXRY) 
Variables 

assigning value to 3-lO(RXRY) 
debug information 3-S(RXRY) 
FILL command 3-lO(RXRY) 
format 3-9(RXRY) 
monitoring 

scalar 3-lO(RXRY) 
SETMEM command 3-lO(RXRY) 

SuperTAP 8XX 

setting breakpoints at access 
to 3-3(RXRY) 

UNKNOWN TYPE 3-9(RXRY) 
Vee 2-24(XUM) 
VCLEAR 9-5(XUM) 
VCLOSE 9-5(XUM) 
VERIFY 9-lO(XUM) 
VF CNT 5-31(XUM) 
VF MSG 5-31(XUM) 
View menu 

Clear Window 6-13(RXRY) 
File Editor 7-2(UXRY), 7-5(UXRY), 

7-9(UXRY) 
Scope to PC 6-lO(RXRY) 

Viewer 
moving in File Editor 7-5(UXRY) 

Viewports 
resizing 3-4(RXRY) 

VISUAL environment variable 1-S(UXRY), 
7-4(UXRY) 

VMACRO 9-5(XUM), 9-21(XUM) 
VOPEN 9-5(XUM) 
VSETC 9-5(XUM) 

w 
@wait_state pseudo-register A-2(SXRY), 

B-4(SXRY) 
Warranty :x:x(XUM) 
WHEN 9-lO(XUM), 9-15(XUM) 
when macro 3-3(RXRY) 
When/then 

actions 7-9(XUM) 
clear 7-14(XUM) 
clearing 7-14(XUM) 
commands 7-5(XUM) 
counters 7-18(XUM) 
display 7-13(XUM) 
enable 7-14(XUM) 
events 7-S(XUM) 
features 7-2(XUM) 
groups 7-15(XUM) 
macros 7-21(XUM) 
memory 7-20(XUM) 

Master lndex-29 



memory accesses 7-12(XUM) 
realtime operation 7-23(XUM) 
registers 7-20(XUM) 
resources 7-26(XUM) 
statements 7-S(XUM) 
states 7-lS(XUM) 
structure 7-3(XUM) 
syntax 7-7(XUM) 
triggers 7-20(XUM) 
valid statements 7-ll(XUM) 

WHENCLR 9-15(XUM) 
WHENDISABLE 9-16(XUM) 
WHENENABLE 9-16(XUM) 
WHENLIST 9-16(XUM) 
Where am I command (File 

Editor) 7-9(UXRY) 
WHILE statement in macros 6-7(RXRY) 
Window Control 

MODE 9-5(XUM) 
Window control 9-5(XUM) 

VACTIVE 9-5(XUM) 
VCLEAR 9-5(XUM) 
VCLOSE 9-5(XUM) 
VMACRO 9-5(XUM) 
VOPEN 9-5(XUM) 
VSETC 9-5(XUM) 

Windows 
Breakpoints 6-6(RXRY), 6-7(RXRY) 
closing 3-4(UXRY)-3-5(UXRY) 
Code 6-6(RXRY), 6-7(RXRY), 6-S(RXRY), 

6-lO(RXRY), 6-ll(RXRY), 
6-12(RXRY) 

Command 6-7(RXRY), 6-S(RXRY), 
6-ll(RXRY), 6-13(RXRY) 

definition 3-13(UXRY) 
help 4-l<UXRY)-4-2(UXRY) 
iconifying 3-4(UXRY) 
Inspector 6-7(RXRY), 6-S(RXRY) 

Abbr. 
(RXRY) 
(UXRY) 
(XUM) 

Master lndex-30 

XRA Y Debugger for Windows 
XRA Y Debugger for Windows 

Memory 6-7(RXRY), 6-9(RXRY) 
Motif window frame 3-2(UXRY) 
moving 3-3(UXRY) 

File Editor 7-5(UXRY) 
Register 6-9(RXRY) 
resizing 3-3(UXRY)..-3-4(UXRY) 
Trace Back 3-2(RXRY) 

WWW xx(XUM) 

X-Y-Z 
.Xdefaults file 4-lO(UXRY) 
XICEVARS 9-18(XUM) 
XLATE 9-lO(XUM), 9-lS(XUM), 9-24(XUM) 
XRAY comm.ands 9-l(XUM) 
XRAY Control Panel 

(see Control Panel) 
XRAY Debugger 1-3(UXRY) 

related documents P-2(UXRY) 
XRAY environment variable 2-2(UXRY), 

3-6(RXRY) 
XRAY Make 1-3(UXRY), 1-2(RXRY) 

Build button 7-9(UXRY) 
debugger, communicating 

with 1-17(UXRY) 
Error button 7-9(UXRY) 
File Editor in 1-16(UXRY), 7-9(UXRY)-

7-10(UXRY) 
notebooks 1-14(UXRY) 
overview 1-S(UXRY}-1-lO(UXRY) 
Rule field 7-9(UXRY) 
Source Explorer, communicating 

with 1-17(UXRY) 
Tool Output area 7-9(UXRY) 

XRAYMaster 
related documents P-2(UXRY) 

XRAY MasterWorks 1-l<UXRY)-1-17(UXRY) 
About Box 1-15(UXRY}-1-16(UXRY) 

Manual Title 
XRAY Reference Manual 
XRAY User's Guide 
MWJC-ICE User's Manual 

MWX-ICE User's Manual (Windows) 



communication between 
tools 1-16(UXRY}-1-17(UXRY) 

File Editor and 
debugger 7-ll(UXRY}-
7-12(UXRY) 

File Editor and other 
tools 1-16(UXRY), 
7-9(UXRY}-7-12(UXRY) 

File Editor and Source 
Explorer 7-lO(UXRY}-
7-ll(UXRY) 

Fi.le Editor and XRAY 
Make 1-16(UXRY), 
7-9(UXRY}-7-10(UXRY) 

prerequisite 5-4(UXRY) 
Source Explorer and 

debugger 1-17(UXRY) 
XRAY Make and 

debugger 1-17(UXRY) 
XRAY Make and 

Explorer 1-17(UXRY) 
configuration 1-4(UXRY}-1-7(UXRY) 
figure 1-2(UXRY) 
help 

(see Help) 
interface 

(see Interface) 
invocation 2-4(UXRY) 
product development cycle 1-4(UXRY}-

1-12(UXRY) 
related documents P-l(UXRY) 
root menu, including in 2-3(UXRY) 
set-up file 2-5{UXRY) 
tools included 1-2(UXRY}-1-3(UXRY) 

auto start 5-lO(UXRY) 
invoking 5-3(UXRY)-5-4(UXRY) 
overviews 1-4(UXRY}-1-12(UXRY) 

XRAYMasterWorks base 
directory 2-4(UXRY) 

XRAY MasterWorks Control Panel 
(see Control Panel) 

XRAY MasterWorks Debugger 
(see Debugger) 

XRAYMasterWorks Defaults Editor 
(see Defaults Editor) 

SuperTAP 8XX 

XRAY MasterWorks File Editor 
(see File Editor) 

XRAY MasterWorks home 
directory 2-4(UXRY) 

XRAY MasterWorks Source Control Manage
ment Interface 

(see Source Control Management Inter
face) 

XRAY MasterWorks Source Explorer 
(see Source Explorer) 

XRAY MasterWorks XRAY Debugger 
(see XRAY Debugger) 

XRAY MasterWorks XRAY Make 
(see XRAY Make) 

XRAYMASTER 2-2(XUM), B-2(XUM) 
XRAYMASTER environment 

variable 2-l(UXRY), 2-4(UXRY), 
6-2{UXRY) 

XRAYMASTER_HOME environment 
variable 2-2(UXRY), 6-2(UXRY) 

XRAYMASTER_TMP environment 
variable 2-2(UXRY), 2-4(UXRY) 

Master lndex-31 





!111111 
Applied 
Microsystems 
Corporation 
Applied Microsystems Corporation maintains a worldwide network of direct offices committed to quality 
service and support. For information on products, pricing, or delivery, please call the nearest office listed . 
below. In the United States, for the number of the nearest local office, call 1-800-426-3925. 

CORPORATE OFFICE 
Applied Microsystems Corporation 
5020 148th Avenue Northeast 
P.O. Box 97002 
Redmond, WA 98073-9702 
(206) 882-2000 
1-800-426-3925 
Customer Support 
1-800-ASK-4AMC (1-800-275-4262) 
TRT TELEX 185196 
FAX (206) 883-3049 
Internet Home Page: http://www.amc.com 

EUROPE 
Applied Microsystems Corporation Ltd. 
AMC House 
South Street 
Wendover 
Buckinghamshire 
HP22 6EF United Kingdom 
44 (0) 296-625462 
Telex 265871 REF WOT 004 
FAX 44 (0) 296-623460 

JAPAN 
Applied Microsystems Japan, Ltd. 
Arco Tower 13 F 
1-8-1 Shimomeguro 
Meguro-ku 
Tokyo 153, Japan 
81-3-3493-0770 
FAX 81-3-3493-7270 



Part No. Revision History Dale 

924-00101-00 Initial release of the MWX-ICE Debugger tor 
Windows (SuperTAP MPCSXX). 

2/97 

PIN 924-00101-<JO 
February 1997 



II 

II 

-----
II 

• • 
II 

II 

• 




