
--...- ----- - ------- ---- - - ------ ------., -

File No S360~30
GY2k2i)jo -.:

Program Logic

Version 8.1

IBM System/3S0 Time Sharing System

Access Methods

This publ.lcation describes thtc intevnal logic of the
nonres.ldent access metnods used in TSS/3bO. (The
facil.lty which controls most conversational input/output
.In TSS/360, tne resident terminal access method (RThM) is
t>d rt. of t.he resident supervisor and is descr ibed in IBM
systeml360 Time Sharing Syst"m: Resident supervisor-­
~rogram Lo~ic Manual, GY28-2012.)

The nonresident access metnods are:

• The virtual access methods (VAM), used to storE' and
retrieve page-organized data located on direct access
devlces, and including thf virtual sequential (VSAM),
virtual index sequential (VIShM), and virtual
partitioned (VPhM) access methods.

• The sequential access methods (SAM), used to access
OS/360-oriented data sets on t.ape or direct access
deVices, and inclUding the basic sequential (BSAM)
and queued sequential CQSAM) access methods.

• The multiple sequential access method (~~AM), used
for efficient input/olltput with unit record
pquiFment.

• A facility, 10~F~. whic~ allows a user to provide his
own access methoi with, pr:vate device.

• The terminal access method (ThM). which allows
input/output with specific terminals.

• A Terminal Task Control module which provides task
control for multiterminal task (MTT) application:>.

For each access method, an overview, routine
descriptions, and flowcharts are provided.

This material is intended for persons involved in
program maintenance, and system programmers who are
altering the program desiyn. It can be used t,o locatf~

specific areas of the program, and it enables the reader
to relate these areas to the corresponding program
listings. Program logic information is not necessary for
the use and operation of the program.

Ttas publlCdt ion j1'5ccil:ies the access
m(>thoos in TS,,;FH'.O (except tel' the rp~ldent
tprmlnal aeee:;;, ;DPLhod*). It Cdn fl<' read
,->plpctlv€ly for d general understanding of
.1 part.leular access method, or It Cdn he
u!jec1 dS a guide to more oet.dih'l
l.nformation in iHl Object proqrdffi 1 isting of
d pa![ticular access mpt.hoJ object olOOIJlp.

hOW THIS BOOr I,; ORGANIZED

The aeees:; methods d["f' groupf'J in thi:;
book into tour Pi>rts:

• Basic Se'luent ia1 Accpss I"etho,j (BSAM).
Multiple Sequpntial Access ~ethod
(MSAM). Tenr.inal Access Method (T.a.M),
and lORE,,.) •

.. Virttlal AcceSS M('thod,; (VAI~). includ.ing
Virtual :~equential IVSAM), Virtual
Index Sequential (VISA,M), and Virtual
PartItioned (VPI\M) Access Methods.

• Clueu(->d Sequential Access Method I QS,i\Ml •

• Terminal Task Control Ca facility which
controls tasks that have ~ulti-Terminal
Task (MTT) applica tions).

For each accf.'SS method, an overview dnd
lndividual routine descriptions are
f,rovided. Fl~chdrts for all access
n~thods are grouped in one section.

TO USE ThIS BOOK, YOU NECD:

*See Resident Supervisor Program Logic
~anual. GY28-2012.

This is a minor revis.ion of GY28·20164
incorp<ll'ltint: TNL GN28-3212.

Tt",is 'Pdlt_lon tS current: vith Version S, Modltlcdtion 1,
ot the IHM ~)y~t€"m.I ,60 Tlnlf" 1;}hdriny: Syst_t.:·m (TS::::.,/360J f

.-lnd remain~:t In effect foe dll subsequent versions ·.)r
n.odlficdtions ot TSS/]60 unless ot.herw1.sP nuted.
Significant. change::; nr ddditlons to thiS publicat Ion
will bp prov~ded in tleW ~dltlons or Technicdl
New~l€'ttt:'rs. Before uoJinq this publu=-dtlon, rpt.pr to
the ldt('st (;'.htion of IB!Il! SysteJ]'l:/J~_~~~~~~_r_~~q
~stpm~ Adde~~~, GC28-2043, ~h1ch mar contdln
lntormation pt'rtlnent: too tht' topics covere-d In thl~;

'L~jltic-.n. Tht-- AddenJum also list5 the t'd.lt.lons of all
TSS/160 publicdtions that are dp~llcdble and current.

General funl idrity with 'l"SS/3t10
a,,;semblf'r lanquaqp and the main eoncE>pts ,-,t
T,;:~/ lbu.

GENERAL BOu~:S TO REFER TO:

ISM Syst('ml360 Principles of Opf'ration,
(;A22-6821.

I_B.!LSystem/360 Tune Sharlnq Syst.>m:
<.,:oncepts and f'acilitie", GC28-2001,

BO:JKS RELATED TO A.CCESS METHODS:

Access methoas are usually invoked as
tht> result of USE:or- or system-initiCitt:d
Illdcro ino;t.ructions describ<>d in:

IBM Syst em/ 360 TiJTIf' ~har in'L Sys tem:
Ass.;::mbler Us f'r Mac,ro Inst ruct Ions.
GC28- 2004.

A complete explanation of data
manaqemen~ in TSS/360 from the user [~int
of view is provided in:

~~l'12ystem/360 Ti~,-~hi'lring System:
Cata Management Facilities,
GC28-2056.

TO FIND AN ACCESS METHOD:

See the Table of contents.

TO F!ND A PARTICULAR ROUTINE (~ODULE):

See Appendix C, Access Methods ~odule
Directory.

iH"ll.lest"i for copi<"s of IBM publlcat.ions Should t .. made to your ISM
H_}>t·-e-~:f-'nt:.ativ~ .(;r to top IBM branch offiCe- servinq your locality.

A for. is provided dt thf> back of this ~Iut;licdtion for reddpr's
cOfflDent.s.. If t.hlt' form has bt?€n removed, cotM.ents fT\ay teo addre:;spd t.o
1 BM Corporat lon, Oepoactment. b43" Nt:' ighborhood Road f hi ng::.t.on. N. Y.
J2~O\

"Copyright Int.t::'rnational Business Mdchin~s Corporation 1961, 1968,
1969, 1910, 1911

PART I: I\CCE!~:, Mi:TilO[) F'Ok 8:;,\1'\, ~~:;AM. TA~" lINU lO}lE(J

:;t,(l'lUN 1: INT,{OllllCTION •

Ll nkchj€' t uti" Acct':'~; r-;.'t hocJ~j Rout inl'c;
ACCIc'~j~ M, t lloei PhdSt'c,
~:dcro In:,truct ion:-,
Cunt rol l\lock~;

BSAM OVERVIEW .
M.C;AM Ovprview .

Datd :-;et~;, rl1lftt'r,;, dnu Blocking Fdctors
Scherratlc Df'~'cri,ltioll
MSAM (; 1 0 ~;:~d r '(

RTAI'l OVUiVIEW .
TAl" Overviplol
lORE\) Overv 1 <>101

SECTION 2: OPEN PROCESSING
Common Processlnq ..

Open Corrunon Routlne (ClCLA)
SAM Open Processing .

SAM Open Mdinllne Routine (CZCWO)
Tape Open Routine (CZCWT) •
DA Open Routine (CZCWD> .

DEB PROCESSING
Build Common DEB Routine (CZCWB)
Build DA DEB Routine (CZCWL)

DSCB Processing .
Read Format-] DSCBs Routine (CZCWR)
Set DSCB Routine (CZCXS)

MSAM Processing . • • • .
MSAM Open Routine (CZCMC)
SETUR Routine (CZCMD)

TAM Processing
TAM Open Routine (CZCYA)

lOR Processing
lOR Open Routine (CZCSC)

SECTION 3: READ/WRIT~ •
Read/Write Processing ••

BSAM Read/Write Routine (CZCRA) •
DOMSAM Routine (CZCME)
MSAM Read/Write Routine (CZCMF)
TAM Read/Write Routine (CZCYM)
IOREQ Routine (CZCSB)

SECTION 4: POSTING AND CHECK
Posting and Check Processing

SAM Posting and Error Retry Rout.ine (CZCRP)
DA Error Retry Routine (CZCRH)
MSAM pO~jting and Error Retry Routine (CZCMG)

Central Installation Devices
Remote Job Entry Devices

TAM Posting Routine (CZCZAl
IOREQ Posting Routine (CZC~E)

Check Routine (CZCRC) •

SECTION 5: CLOSE
Close Processing

Close Common Routine (CZCLB)
SAM Close ~outine (CZCWC) •
MSAM Finish Routine (CZCMlD
MSAM Close Routine (CZCMI)

4

7

E
J

1 (}
1 ()
1
1 L

14
14
14
1')

· 1 ')
• 16
• 17

17
17
\8

• 1 q
• 19

19
19
19
21
24
24

• 26
26

28
28
28
.30
34

• 3',
41

• I~ 6

• 46
• 46

c) 0
• c) 4

• '~4
Cj 9
60
6 c)

66

6B
08
68
6R
69
71

.i i 1

'lAM clu:;,' ;,out ifl!' (ClCYG)
lOR (' iu:;" ""I.)\' ~n,-' {('ZCSD)

~:c.CTION 6: fW:ITINl-;.:; SPECIFICALLY DJ:::CjIGNEU F'OH E:lSAM
Lat><.·l Proce:":;or:;

'I'If'" \/olum" Ldlx'l Rout irll' (CZCWX)
Td~e [)dtd ,;et wbel l<outin" (CZCwY)
fiA 1npll1: L.lbel Routin" (CZCXN)
fll'. i)ut!,llt Lah'l Routine (CZeX!) •

tOV Proce:;:;oL,
Fore., End of VOlllffif> kout,lnt' (CZCLiJ)
~alnlln~ hOV RoutIne (CZCXE)
Tapf ["put Fe;; Rout ine (CZCXT)
Ta!A' (jut,put EOV Routine (CZCXO)
DA Input, £oV Routine (CZeXI)
LA Outt,ut rDV Routl ne (CZCXO)
Concat~~dtion Routin~ (CZCXX)

RSAM User Rautinp~
Note Routine (CZCRN)
Point RoutIne (CZCH~)

8ackspace Routine (CZCRGJ
Control Routine (CZCkS)
ASCII 'Iransldtion and ConverSl0n Rout~ne (CZCWA)

Bufferiny ~ervicps
GETPOOL Rout ine (CZCMB)
(,E"TI:lUF Rout,in" (CZCMJI)
FREEBUF Routine (eZeNA)
FREEPOUL Routine (CZeNS)

BSi,J'l Int{>rnal Control Routines
Tape Posit1oning Routine (CZCWP)
Volume 3E'quecflce convert Routine (CZCWV)
Mes~age Writer Routine (CZCWM)
Find Records per Track Routine (eZCHQ)
RELFUL Routine (CZeRR)
FULREL Routine (CZCRS)

PART II: VIRTUAL ACCESS METHOD (VAM)

SECTION 1: INTRODUCTION
Virtual Data Set Organization

Movepage Routine (C2COC)
The Access Methods
Faci lit ies Provided by VN<1

VAM ERROR RfCOVERY TECHNIQUES
VMlER Routine (CZCEI)
VOMEP Routine (CZCQK)

VAM Interfdces
~odule AttriDutes
Linkage convent ions
CONTROL BLOCKS

Interruption Storage Area (ISA) -- (CHAISAJ
Task. Data Definition Table (TOT) -- (CHATDT)
Relative External Storage Corres~ondence Table (RESTBL)
Shared Oatrl Set Table (50ST)

5DST MaintE:nance
Search SDST Routine (CZCQE)

SECTION 2: V~ VOLUME FDRMAT AND DATA
The Data Set Control Block. (DSCS)
Building and Maintaining a Data Set •

Insert/Delete Page RoutinE: (C'lCOO)
Insert Routlne (CZCOFJ
Expand REST3L Routine (CZCQI)
~equest Page Routine (CZCOE)
Reclaim koutine (CZCOG)
DELVAfr, Rout,ine (CZCFT)

SECTION 3: DATA SET ::;HARING

iv

SET MAINTENANCE •

12
73

74
74
74
74
78
78
79

• 79
79
80

• 81
82
82
83
83
83
84
85
86

• 86
• 87

87
89
90
90
90
91

• 92
93

• • 94
95

• 95

97

99
99
99

.102

.102

.103

.103
• .105

.101
· .107
• .107
• .108

.108

.108

.110

.112

.112

.112

.118
· .118
• .119

.119
· .120
• .121
· .122
• .123

. .. 124

· .127

Control Table Interlocks • . • •
Interlock Routine (CZCOH) • • • •
Release Interlock Routine (CZCOI) •

SECTION 4: OPEN AND CLOSE PROCESSING
OPEN PROCESSING • • . • • • •

OPENVAM RoutinE, tCZCGA) .
DUPOPEN Routin€' (CZCEY) .
VSAM Open Routine (CZCOP) •
VISAM Open Routine (CZCPZ)

Close Processing •• • • • •
CLOSEVAM Routine (CZCOB) • • • •
DUPCLOSE Routine (CZCEZ) ••••••••
VSAM Close Routine (CZCOQ)
VISAM Close Routine (CZCQA) • • • • • • • • •
VAM ABEND Inte~lock Release Routine (CZCQQ) •

SECTION 5: VIRTUAL SBQUENTIAL ACCESS METHOD (VSAM)
Routines in VSAM .••••••

VSAM Get Routine (CZCOR)
V SAt-I PUT Routine (CZCOS)
SETL Routine (CZCOT)
PUTX Routine (CZCOU)
FLUSHBUF Routine (CZCOV) ••.•

SBCTION 6: VIRTUAL INDEXED SEQUENTIAL ACCESS METHOD (VISAM) •
VISfuV, Overview ••••••

VISAM Page Formats
VISAM Routines • • • •

VISAM Put Routine (CZCPA) •
VISAM Get Routine (CZCPB) • • • •
SETL Routine (CZCPC) • • • • • • • •
Read/Write, DELREC Routine (CZCPE) ••••
GETPAGE Routine (CZCPI) • • • • • • •
Add Directory Entry Routine (CZCPL) •

SECTION 7: VIRTUAL PARTITIONED ACCESS METHOD (VPAM)
VPAM Overview • • . • • • • • • • . • • • • •
VPAM Control Blocks • • • • . • • • • • • • .

Partitioned Organizat.ion Directory (POD)
Use of Member Headers in RESTBL •

VPAM Routines • • . • • • • • • • • • • •
Find Routine (CZCOJ) •••• ••••••
Stow Routine (CZCOK)
Search Routine (CZCOL)
Extend POD Routine (CZCOM)
Relocate Members Routine (CZCON)
GETNUMBR Routine (CZCOO) ••••

PART III: QUEUED SEQUENTIAL ACCESS METHOD (QSAM)

SECTION 1: GENERAL DESCRIPTION
QSAM Macro Instructions
Work Area and Buffers •
Control Blocks .•••••

• .128
.129

• • .130

• .132
.132
.132
.136

• .131
• .138
• .139
• .139

.141
• .142
• .142

.142

.144

.144

.144
• .147

.148
• .150

.150

.152
• .152
• .153

• • • .154
• .155
• .157
• .157

.159

.160
• .162

• .164
•••• 164
••• 164

• .161.&
••• 165

• .165
.165

• .168
• .171

.172
• .112

.173

.175

.177
• .177

.178

.178

SECTION 2: INTERFACE RULES AND MODULE DESCRIPTION
QSAM Routine (CZCSA) ••••

• • • • • .179

SECTION 3: INTERNAL LOGIC.
Common processing • • . • •

SYNAD Subroutine
Read/Write Subroutine •
Control Subroutine
Backspace Subroutine
Point Subroutine
Check Subroutine
Flush Subroutine

• • • • • • • • • .179

.186

.186
• •• 186

• .186
• .186
• .186
· .186

••• 186
• • • • .186

v

GETIO Subroutine
PUTIC Subroutine
PUTXIO Subroutine

u)qic of Macro Services
G1:.T Macro Processing
POT Macro Processing
P!ITX Macro Processing
TKUNe ~~cro Processing
RELSE Macro Processing
SETL Macro Processing .
C1'£)S1:. and FEOV Functions Pelcformed by QSAM

PART IV: RTAM/MT'I ACCESS METHODS SUPPORT

SECTION 1: MTT TERMINAL TASK CONTROL
Terminal Task control Routine (CZCTC)
I"TT Enable . . • •
FIND\., Macro . • • • •

• .187
•••• 187

• .187
• .187

•••. 187
· .188

. 189
• .189

.169
• • .190

.191

• .193

.195
• .195

• • • • • • .19 '}
.196

R.E.AI:IV Macro . • • • • • • • • • .196
WRITEQ Macro • .197
CLEARQ Macro • .197
FREEQ Macro • .197

FLOWCHARTS .199

APPENDIX A: CO~TROL BLOCKS USED BY ACCESS METHODS MODULES • .440

APPENDIX B: MODULES CALLED BY ACCESS METHODS MODULES • .444

APPENDIX C: ACCESS METHODS MODULE DIRECTORY

APPENDIX D: QWY-AR [)SECT AND DESCRIPTION • • .453

APPENDIX E: DESCRIPTION OF' FIELDS IN QSAM PORTION OF DeB • .454

INDEX • • • • .456

vi

E~I'!JSTRATIONS

Figure 1- Access Method Phases fOl: BSAM, MSAM, TAM, and IOREQ · II
Figure 2. DEB Page Layout · · · · · · · · · · · · · · 20
Figure 3. DEB Work Page Layout · · · · · · · · · · · · · · · 20
Figure 4. TAM Open: DEB and TOS Storage Allocation and Pointers · · 25
Figure S. lOR OPEt>' : Basic Pointers and Data Moved from JFCB to
DEB · · · · · · · · · · . · · · · · · 27
Figure 6. TAM Read/Write: CPG L "ation Sequence · · . · · · · · · 37
Figure 7. TAM Posting: Normal Cu..:,.Jletion and Exception Analysis
Paths · 61
Figure 8. Obtain]{eys and Label I/O Areas · · · · · · 78
Figure 9. Retain Keys and Label I/O Areas · · · · 79
Figure 10. How TSS/360 Handles ASCII Record Input · 88
Figure 11. How TSS/360 Handles ASCII Record Output · 89
Figure 12. Tape Positions · 91
Figure 13. Data Positioning · · · · · · · · · 91
Figure 14. Skipping Files 0'1 Tape · · · · · · · · · 92
Figure 15. Entry for Single/Multiple Phase Message · · 94
Figure 16. DCB Format for VAM · .110
Figure 17. RESTBL Format . · · · · · · .111
Figure 18. RESTBL External Page Entry - CHAEPE · .111
Figure 19. Shared Data Set Table (SDST) Format .114
Figure 20. Linkage Relationships Among Control Blocks Used with VAM.l1S
Figure 21. Deleting Pages from the "In Use" List in RESTBL · .124
Figure 22. Module Interaction in VAM Open Processing · · • 133
Figure 23. Module Interaction in VAM Close Processing .133
Figure 24. DCBHEADER Interlock Summary · · · .143
Figure 25. VSAM Data Record and Page Formats · · · .145
Figure 26. VISAM Record Relationship · · · · · · · · .155
Figure 27. Partitioned Organization Directory (POD} .16 II

vli

TABLES

Table 1. BSAM, ~1SAM, TAM and I')REQ READ/WRITE and GET/PUT Level
l',acro Instructions . • . . • •••••••. " 5
Table 2. BSAM, MSAM, TAM, and rOREQ I/O Macro Instructions
Required for I/O operations • • . • • 6
Table 3. BSAM, M.SAM, TAM, and rOREQ Macro Instructions 6
Table 4. DeB Table Fields and Flags (MSAM Section) •• 11
Table 5. Some DSP Table Fields • • • • • 11
Table 6. Some DECB Table Fields (CHADEC) 11
Table 7. Some DEB Table Fields . • • • • • 11
Table 8. TAM Read/Write: Terminal Information from SDAT • • • 38
Table 9. TAM Read/Write: Type Option (Hex and Mnemonic) Codes and
Description •••••••••••.••.•••••••. • 39
Table 10. TAM ReadIWrite: Unit Type Table Format •••• 40
Table 11. TAM Read/Write: Terminal Library Table Format (for 2702 -
TLT) . . . • • • • • . . • • • • • • • • • • • • • • • •
Table 12. TAM ReadIWrite: Terminal Control program Format
Table 13. TAM Read/Write: Selected Terminal Control Information

40
• • 41

Table Entries . . • . • • • • . • • • • • • • • • • • • • • • • • • • 41
Table 14. TAM Read/Write: Channel command Word Generator Section •• 42
Table 15. TAM Read/Write: Channel Command Word Generator Format •• 42
Table 16. TAM Read/Write: Buffer Allocation Flag Bits of CCWG ••• 43
Table 17. TAM Posting: Terminal Length Statistics •• 61
Table 18. TAM Posting: Specification of User Buffer • • •• 62
Table 19. TAM Posting: Expected EOL Sequence. • • • •• 62
Table 20. TAM Posting: CSW Status and Sense Data Typical Maximum -
Exception Retry Counts (Extracted from CHASDT) • • • • • • • • 65
Table 21. Labell Fill Table. • • . • • 77
Table 22. Label 2 Fill Table. • • • • • • • • • . • 77
Table 23. Decisions for Setting Block • • • • • 84
Table 24. Abbrevlations Used in Control Block Descriptions. • •• 108
Table 25. Selected helds of the Interrupt Storage Area .109
Table 26. Selected Fields of a JFCB •• • • • • • .109
Table 27. Selected Fields of the DCB Common ••• 110
Table 28. Description of the Fields Comprising the VAM Organization -
Independent Worki ng Star age • • . • • • • • • . • • • 111
Table 29. Field Descriptions for the RESTBL Header -- (CHARHD). .113
Table 30. Field Descriptions for the OCB Header -- (CHADHD) .114
Table 31. Field Description of the SDST Header -- (CHASOS) . .115
Table 32. Field Description of a Member Entry -- (CBASDM) .115
Table 33. Field Description of a Data Set Entry -- (CHASDE) .116
Table 34. Effect of OPEN Option on Member Interlocks in Member
Header •• • • . . . • • . • . . . • • • • • • • • • • .'. •. .128
Table 35. Effect of OPEN Options on Data Set Interlocks in SDST .128
Table 36. Effect of OPEN Option of VISAM Page Level Interlock _ .128
Table 37. Description of DCB Working Storage Used by VSAM Rout.ines .144
Table 38. FLUSHBlJF Decisions to Control Buffer Allocations ..••• 151
Table 39. Descri1)tion of DeB Working Storage Used by VISAM Routines 152
Table 40. Fields and Codes of the DECB Referenced by VISAM Routines
(CHADEB) ••••••••••••••••••••••• _ • • • • • .153
Table 41. Organi~ation of a VISAM Data Set ••••••••••••• 153
Table 42. VISAM :'age Formats Super Indexed Sequential Directory .154
Table 43. VISAM page Formats -- Data or Overflow. • ••• 154
Table 44. VISAM Page Formats -- Directory • .154
Table 45. POD Fo::-mat . • • • • • • _ • • • • • .165
Table 46. POD Member Descriptor . • • • • .166
Table 47. POD Allas Descriptor. . • • • • .161
Table 48. RESTBL Member Headers (CHAMHD) • • • • • .167
Table 49. Usage of BSAM Modul es • • • • • • • • •171
Table 50. Subsection Interface • • • • • • • • • • • • • • .180
Table 51. Parameters and Return Codes of BSAM Modules •• 181
Table 52. Subroutine Functions •••••••••••• , ••••• 182

viii

CHARTS

Chart M. Open Comnon - CZ,CLA · · · · · · · · · · .200
Chart AB. BSM Open - CZCWO · · · · .202
Chart AC. OPENTAPE - CZCWT · .206
Chart AD. DAOPEN - CZCWD · · · · · .208
Chart AE. Build Common DEB - CZCWB · · · · .210
Chart AF. Build DA DEB - CZCWL .211
Chart AG. Read Format-3 DSCB - CZCWP .212
Chart AH. SETDSB - CZCXS · · · · · · · · .213
Chart AI. MSAM Open - CZCMC · · · · · · .214
Chart AJ. SETUR - CZCMD . · .216
Chart AK. TAM Open - CZCYA · · · · · · · · · · · .221
Chart AL. lOR Open - CZCSC · · · · .222
Chart BA. BSAM Read/Write - CZCRA · · · · .223
Chart BB. DONSAM - CZCME · · · · · · · .227
Chart BC. MSAM Read/Write - CZCMF · · · · .237
Chart BD. TAl-I Read/Write - CZCYM · .2113
Chart BE. IOREQ - CZCSB . · · · · · .244
Chart CA. SAl-1 Posting f- Error Retry - CZCRP · · · · · · · · · .245
Chart CB. DA Error Retry - CZCRH · · · · · · .257
Chart CC. MSAM Posting - CZCMG · · · · .264
Chart CD. TAl-i Posting - CZCZA · · · .275
Chart CEo lOREQ Posting - CZCSE · · .277
Chart CF. BSAM Check - CZCRC · · · · .278
Chart DA. Close Common - CZCLB · .281
Chart DB. SM'i Close - CZCWC · · · · · · · · · · .282
Chart DC. MSAM Finish - CZCMH · · · · · · · · · · .284
Chart Du. MSAM Close - CZCMI · · · · · · · · · · · · · .289
Chart DE. TAt-, Close - CZCYG .291
Chart DF. lOR Close - CZCSD · · · · · · · .293
Chart EA. Tape Volume Label Processor - CZCWX .294
Chart ED. Tape Data Set Label Processing - CZCWy · .298
Chart EG. Direct Access Input Label Processor - CZCXN · .301
Chart ER. Direct Access Output Label Processor - CZCXU · · · · · · .308
Chart FA. Force EOV - CZCLD · · · · · · · · · · · · · .309
Chart FB. Mainline EOV- CZCXE · · · · · · · .310
Chart FC. Tape Input EOV Processor - CZCXT · · · · · · · · · .311
Chart FD. Tape Output IDV - CZCXO · · · · · .312
Chart FE. DA Input EOV Processor - CZCXI · .313
Chart FF. DA Output EOV Processor - CZCXD · · · · .314
Chart FG. Concatenation Processor - CZCXX .316
Chart GA. Note - CZCRN .317
Chart GB. Point - CZCRM · · · · · .318
Chart GC. Backspace - CZCRG · · · · · · · · · .319
Chart GD. Tape Control - CZCRB · · · .320
Chart GE. ASCII Translation (, Conversion - CZCWA .321
Chart BA. GETPOOL - CZCMB · · · · · · .324
Chart HB. GETBUF - CZCMA .325
Chart HC. FREEBUF - CZCNA · · .326
Chart HD. FREEPOOL - CZCNB · · · · · .327
Chart IA. Tape Positioning - CZCWF · · · · · · .328
Chart lB. Volume Sequence Convert - CZCWV .331
Chart IC. Message Writer - CZCWM · · · · .332
Chart ID. FINDR - CZCRQ · · .333
Chart IE. RELFULL - CZCRR · · · .334
Chart IF. FULREL - CZCRS · .335
Chart JA. MOVEPAGE - CZCOC · · · · · .336
Chart JB. VMIER - CZCEI · · · · .340
Chart JC. VDMEP - CZCQK · · · · · · · · · .343
Chart JD. Search SDST - CZCQE · .348
Chart KA. Insert/Delete Page - CZCOD .351
Chart KB. INSERT - CZCOF · · · · · · · · · .352
Chart KC. Expand RI:;STBL - CZCQl · · · · · · · · · · · · .353

ix

Chart KD. Request Page - CZCOE · · · · · .354
Chart I<L Reclaim - CZCOG · .355
Chart I<F. DELVAM - CZCFT · · · · · · · · .356
Chart LA. Interlock - CZCOH · · · .359
Chart LB. Release Interlock - CZCOI · · · · · .360
Chart MA. OPENVAM - CZCOA · · .361
Chart MD. DUPOPEN - CZCEY · · · .366
Chart MC. VSAM Open - CZ-COP .361
Chart I"J) • VISAM Open - CZCPZ · · · · · · · · .368
Chart i'lL. CLOSEVAA - CZeOB · · · · .369
Chart MF • DUPCLOSE - CZCEZ · .374
Chart MG. VSAM Close - CZCOQ · · · · · .375
Chart MH. VI SAM Close - CZCQA · · · · · .376
Chart MI. VAM ABEND Interlock Release - CZCQQ .371
Chart NA. VSAM GET - CZCOR · · · · · · .379
Chart Nil. VSAl-l PUT - CZCOS · · · · · .381
Chart NC. VSAM Set. Location - C4';COT · · · · .383
Chart ND. VSAM PUT Exchange - CZCOU · · · · · · · · .38S
Chart NE. Flush Buffer ". CZCOV · · · · · .386
Chart OA. VISAM PUT - CZCPA · · · · · .387
Chart OB. VISAM GET - CZCPB · · · · · · .390
Chart OC. VISAM Set Location - CZCPC .392
Chart Ou. ReadIWrite - CZCPE · · · · · .394
Chart OE. GETPAGE - CZCPI · · · · .396
Chart OF. Add Directory Entry - CZCPL · · · · .398
Chart PA. Find - CZCOJ · .400
Chart PB. STOW - CZCOI< . · · .404
Chart PC. Search - CZCOL · · · · · · · · · · .412
Chart PD. Extend POD - CZCOH · · · · · · · · · .413
Chart PEe Relocate Members - C'lCON · · · · · · · · .414
Chart PF. GETNUMBR - CZCOO · · · · .415
Chart QA. QSAM - CZCSA . · · · · · · · · .417
Chart RA. Terminal Task Control - CZCTC · · · · · · · · · .433

x

PART I

ACCESS METHOD FOR dSAM, MSAM. TAM AND IOREQ

J'he data management access me1:hods for
1t31-1 Time Sharing System/360 (TSS/360)
inc~ude the routines, control blocks, and
worJ< areas that receive or transmit data
f rom or to I/O devices. Part I describes
dat..!. management access methoas:

1. Basi c seLjuE-ntial Access Metnod (BSAlIll)

2. MUltiple Sequential Access Method
(MSAX)

3. Hesident Terminal Access MEthod (RTAM)
- Overview only

4. Terminal Access Method (TAM)

5. I/O Request (IOREQ)

The routines in eacn of the access
methods, although similar in operat~ion,
differ in these ways:

• BSAM routines enable the user to access
data at the READ/WRITE macro instruc­
tion level. BSAM processes sequential
data sets that reside on magnetic-tape
or dlrect access devices. BSAr-l oata
sets are cOlnpatible (except for the two
limitations indicated in the BSAM over­
view) whether created under IBI-l System/
36D operating System, referred to as
Operating System/360 (08/360), or under
TSS/360. Both data sets can De pro­
cessed by OS/360 BSAM and TSS/360 BSAM.

• MSAM routines allow the user to process
logical recurds at the GET/PUT macro
lnstruction level for the 2540 card
reader/punch and 1403 printer. MSAM
differs from BSAM in that the channel
command words (CCws) used to perform
the I/O operations on the above men­
tioned devices are command chained,
significantly reducing the interruption
processing overhead. ~~AM can be emp­
loyed by any user; however, device
management restricts tne use of unit
record equipment to privileged users.

• RTAJ.i routines, as the name suggests,
are located mainly in the resident
supervisor. For the logic flow and
detailed descriptions of the major por­
tion of RTAl ... >, see the System Logic Sum­
mary PIJ.!j, GC28-2009 and the Resident
supervisor FLM, GY28-2012. This publi­
cation describes Terminal Task Control,
the virtual storage routine, analogous
to other access methods routines, Which
initiates multi-terminal tasks (MTT)
and sets up read, write, and polling

SECTION 1: I NTROD UC'rI ON

contr,)l blocks for kl:AD\.l, wklTE~,
FINDU, FREI:.Q, anJ CLEAl\Q mdcro~ issued
by the MTT user.

• Tru~ routines restrict nonprivileged
user programs to accessing data using
the GATE macro instructions, and allow
privil eged programs to access data at
the RI,AD/WRITE macro instruction level.
TAt'1 plocesses sequential data sets that
reside on specif ied communication
terminals.

• 10REQ routines permit the user to
access data, from any device, at the
channel command word (CCW) level. The
user must, however, be pr'ivilegEd to
have access to these IOREQ routines for
unit record equipment.

This section provides an introduction to
the access met hods, t.he us er • sIl'O macro
instructions, the common control blocks,
and contains an overview of BSAM, MSAM,
'rAM, ana IOREQ. Sections 2, 3, 4, eclnd 5
discuss details of the access methoG rou­
tines' Open, ~ead/Write, Posting and Close
phases. Section 6 discusses routinE's pri­
marily designed for use with BSAM.

LinKage to the Access Methods rioutines

Problem programs, as well as IBM-writtem
:3yst.em program~~. may. directly or indirect­
ly, use the four access methods (BSAM,
.'1SAM, TAM, and IOREQ), therefore pri vi leged
.l.na nonprivileged programs may link t_o
these access methods. The access routines
are called upon by I/O macro instructions
tnat. are in source programs. During lan­
guage processing, the I/O macro inst.ruc­
tions are expanded into code that links to
dna passes ~ararr,eters to appropriate access
method routiDe~5. The DCB, DFTRMEi:U, and
JCBD macro instructions do not link to
access methods routines but. compl ete their
function during assembly. Expansion of the
DCB ana DFTRMENT macro instructions only
build control block tables. The DcnD macro
instruction inserts a dummy control section
at the place the macro instruction is
encountered.

c'rivileged programs use Type-l linkages
to the privileged access method routines;
nonprivileged programs use tne ENTEh
mechanism. See IBM System/360 Time Sharinq
System: Task Mom tor Program LOQic Manual,
GY-28-2041, for an explanation of ENTER.

Section 1: Introduction 3

o~"]
Routin ..

U,er', I/O
/-J,Qcro Instruction~ 8 I O""n

Doto
N'tonag ement o

t--

o
Read/Write

and/or G .. ,/Put

Reod'Write] Routines

+

Cia ...
Rout;".

+
Task
N\onogel"!'ient o 1 Task IY'on~tor and S;Jpe-fvi~or

I Dote
Manage",,,,,!

POlting

Routine!.

t
I/O Slot'"

+
Dolo f.en!

Control Block

0

I--

I

(0 !
I

l"terTv!>!
Signel

10RCS

I Ch>nn .. 1 I
Not", Numbered bo refer to the accorr.ponying d,,<criptian und", Ace"", Method P\'OSI!S-

Figure 1. Access Method l'hases for BSAl'J, [<!SAM, TAM, and 10REQ

Access ~ethod Phases

Each of the BSM, MSAJ.;, T ~ or IOREQ
access methojs may bt ~resented in four
phases, illustrated in Figure 1.

Here are sorr.e preliminary notes on each
of the four ~hases. The nurr~ers in paren­
theses correspond to tnose circled in
Flgure 1.

Open Phase: Details are l-'resented in Sec­
t~on 2 of this 0art.

(1) If a user desires transITQssion of
data to or from an I/O device, he must ini­
t~ally use the OPEN macro instruction in
£.is program.

(2) The OP~N macro instruction calls the
open routines that prepare the I/O devices,
control blocks, and the data set for fUrth­
t~l processIng.

~~ad/Write Phase: Details are presented in
Section 3.

(3) After completion of the OPEN rou­
tines, nata may be transmitted by using the
READ/WRITL macro instructions.

(4) These call the READ/WRITI:; routines
that build CCWs in the IOReB.

(5) Tne resident supervisor is requested
to execute the channel commands via an IOC-­
Ai, SVC.

Note: The reaa/write phase is initiated by
READ/,..IRITE or GET/PUT level macro instruc-­
tions where the specific access method
READ/WRITE or GET/PUT level macro instruc­
tions are listed in Table 1. READ or GET
macro instructions read data fro~ an 1/0
jevice. WRITE or PUT macro instructions
either: write data to an I/O device or send
control information to the control unit.

Postinc; Phase: Details are presented in
Section 4.

(6) After an I/O operation has been com­
pleted, an I/O interruption occurs which
results in the storage of, I/O status infor­
mation and the 10RCB at fixed locations in
the interruption storage area (ISA).

(1) The posting routines obtain control,
via the task monitor, after the resident
supervisor receives the interruption. with
all other task interruptions masked off.

4 Part I: Access M.ethod for BSAf-" J15M, TAM and IOREQ

Table 1. BSAM, M..SA.M, TAM and IOREQ
READ/WRITE and GET/PUT Level
Macro Instructions

~----------------r-- T 1
I I READ Macro I WRITE Macro I
I Access Method IInstruction I Instruction I
t--. ---+-----+-----~
I BSAM I READ I WRITE I
I I I I
iMSAM I GET I PUT I
I I I
I TAM tREAD I WRITE
I (privileged) I I
I I I
I TAM I GATRD I GATWR
I {nonprivi~egeG}1 I
I I I
I IOREQ IVCCW, IOREQ IVCCW, IOREQI L-______________ ~ ____________ L_ __________ J

(8) These posting routines record whetn­
er the I/O operation had a normal or
abnormal completion.

(9) The posting routines post the
results in a DEB and a DECB.

Note: Error retry and recovery is
attempted by the system, if the I/O comple­
tion was abnormal. (IOREQ POSTING does not
have error retry or recovery routines.)
The posting routines return control to the
task monitor which returns control to the
interrupted program by loading the old I/O
VPS~. Consequently, the posting proceSSing
is transparent to data management routines
except for the altered DEB and DECB. The
CHECK macro instruction in the user's pro­
gram waits for and checks completion of the
I/O operation that is posted in the DECB.
(MSAM does not have a CHECK macro instruc­
tion. OOMSAM performs the functions of the
CHECK macro for MSAM. GET/PUT provides
return codes which indicate the completion
status of the requested operation.>

Close Phase: Details are presented in Sec­
tion 5.

(10) When the user has completed proces­
sing his data set he issues a CLOSE macro
instruction.

Note: When the MSAM user has completed
proceSSing his data group he may issue a
FINISH macro instruction prior to the CLOSE
macro instruction to empty or truncate the
last buffet' and test the result of all out­
standing I/O. This is preferable to simply
issuing CLOSE since the task is permitted
to continue as the I/O operation queue.

(11) CLOSE calls the close routines
which will reset/release control blocks and
complete data set processing.

Macro Instructions ----

To communicate with the access methods,
specific I/O macro instructions in the
user's program are required for BSAM. MSAM,
TAM and IOREQ (see Table 2).

All I/O macro instructions available for
each of the access methods are in Table J.
For more details, see Assembler User Macro
Instructions.

Control Blocks

The list below indicates the control
blocks that are within the user's program
dnd access method storage; BSAM, ~SAM, TAM,
and IOREQ require that all these control
blocks be generated if the access methods
are to function. Additional control blocks
are described later, under the access
methods to which they are related.

Assembly Generated
Control Blocks

OCB
*DECB

Dynamically Built or
SYSGEN Generated System
Control Blocks

SDAT
SOT
JFCB
DEB
IORCB

*In MSAM the DEeB is generated at open
time.

Control blocks are generated either in
the user's program area or in the access
method area.

USER'S PROGRAM AREA: The following control
blocks are generated in the user's program
area.

Data Control Block (OCB): The OCB is
generated during assembly by a OCB macro
instrUction and serves as a basic communi­
cations area for I/O operations. It is
u.sed to maintain information such as data
set organization, attributes of data set
bUf f er ing information (used in data set
processing>, and addresses of special exit
routines.

Data EVent ContI·ol Block (DECB): The DECB
is generated during assembly by a HEAD/
WRITE macro instruction (except for ~S~~)
and serves as an I/O status-reference block
for I/O operations. It is used to s't.ore
information such as: state of completion
of an I/O operation, type of operation pre­
viously issued, csw information, and c~jes
that indicate, to the user program, condi­
tions on ending the I/O operation.

ACCESS METHOD AREA: The following tables
and control blocks are generated in the
access methods area.

Section 1: Introduction 5

Table 2. BSAM, MEAl'" TAM, and lORE!,) I/O
Macro Instructions Required for
I/O Operations

,- ."'""T'T--- --------,
I I/O Macro I I
!Instruction! Explanation I
r-------f--------------·-----t
iOCB IRequired prior to open phase; I
I Ireserves space in user's I
I I prog'ram for L'le data control i
i Iblock (DeB). which is r~sic I
I icommunication area. for I/O I
I I operations. I
I I I
jOPF.N jRequired to start open phase. I
I llinks to open routines to I
I lopen the DeB. I
! I
1 GET/PUT IRequired to initiate
I ltransmission of data.
I ! Applicable only to MSAM.
! !
i READ/WRITE* I Hequired to i fii tiat.E'
I [transmission of data;
! I resel·VE,S space fOl the data
I ! event. control block (DECB).

lCBECK

I
I CLOSE
!

jDCBD

I
i

Iwhich contains status of I/O
! op~,rat.ions; 1 inl,s t.o
I read/wri t:e rout.ine::; that.
j build CL"WS in the lORCB. and
I causes the commands to be I
I executed by issuing the lOCAL!
I~)VC. I
i I
I Require<.' .mder PSAM. TAM, and I
! lORE/;;! to test I/O opel·ation I
!associated with the DEeD; I
! waits fOl and checks I
jcompletion of I/O operations I
Ithat al.e iX:Jsted in the DEeB; I
! for I/O normal completion I
I returns to problem pro<]ram, I
ifor exception I/O completion I
iexits to the routines I
I specified in the DCB. I
! I
\Required to disconnect data I
iset from user's program; I
Ilinks to close routines that I
Icomplete control blocks. I
I I
IRequi.red if user accesses thel
IOCB fields; it provides the I
Idummy control section (DSECT)I
lwhich contains all symbolic I
I names used to reference I
jinformation in a DCB. I r _" _______ ..L ____ . ________________________ ~

I-Refer to Table 1 for listing of specificl
I HEADrwRI'TE ,Mero instructions. I
I READ/WRITE macro instructions at I
I assembly time either generate space for I
I a DECB (5 and L form) or refer to an I
I existing DECB (E form). MSAM has no I
I READ/WRITE macro. I L ___ J

Table 3. BSAM, MSAM, TAM, and rOREQ MdCI"t'

Instructions
r-------r--------"T .. -----,--------T---~-l
I Used in I I I I ,
I Common I BSAM I MSAM I TAM IIOREQi
I---------f-------+------t-----+-----~
I DeB I READ I GET I READ· I IOREQ I
I I I I I!
I neBD I WRITi: I PUT I T,o/R ITE* I vee.. I
I I CHECK I SETUR i CHEC](I CHECK I
I I I I I I
I OPEN I GET POOL IF INISH I DFTRMENT I I
I I I I I I
I CLOSE I GETBUF I ! I
I IFREEBUF I i I
i I FREEPOOL I ! I
I I NO?£. I I I
I I POINT ! I I
I IBSP Iii
I IFEOV! I I
I ICNTRL I I I
I jCLOSE I I
I I (TYPE=T) I I
I I DQDECB I I I'
t---------..L---------.L----..I.-·-_____ .L ______ ·~
*In TAM, only privileged programs may i
! issue the READ/wRITE macro instructions. I
I Nonprivileged programs issue GATRD/GATWRi
I macro instructions. ! l-------________ . ____________________ J

~bolic_Device Allocation Table (SDATl.:
The SDAT which is initialized by device
management resides in public virtual
storage and provides information on the
status and characteristics of each allocat­
able I/O device in the system. The SDAT
contains intormation on the symbolic device
address, model code, device code, device
class and unit type.

Job File Control Block (JFCB): The JFCB i;;;
constructed for a data set by the DDEF rou­
tine from information in a DDEF command or
macro instruction. The information in the
JFCB is used to complete the DeB during
execution of the OPEN macro instruction.
The JFCB contains information defining the
data set attrihutes, information on where
the data set is located. and pointers to
other JFCBs in the task.

Note: The data set organization must be
specified in the DDEF command for IOREQ.

Data Extent Block (DEB): The DEB is con­
structed at OPEN time for a given datei set
and serves as a data set reference block
for I/O operations. The DEB is used to
store information such as volume locations,
device and data set attributes. pOinters to
other control blOCKS associated with the
data set. and pointers to DECBs that have
not been checked.

6 Part I: Access Method for BSAM MSAM, TAM and IOREQ

I/O Request Control Block (IORCB): The
IORCB is constructed at READ/WRITE time and
serves as a control reference block for I/O
operations. It contains the CCws that con­
trol the I/O operation and may contain
either thf' I/O date! buffer, or a pointer tu
the I/O data buffer.

I/O 3tat_istlcal Data Table <SDT): For each
devlce the SOT con-tains maximum retry thre­
sholds which are used in certain error
processing.

BSAM OVERVIEW

bSAM comprises those instructions, con­
trol blocks dnd data areas which allow for
limited data set interchange between TSS/
360 and OS/360. CTSS/360 BSAM will not
support the OS/360 direct access split
cylinder format and will not deblock reco­
rds provided by OS/360 QSAM.)

Wito tape input. and output, BSAM sup­
ports either EBCDIC symbols and the stan­
dard IBM label and record formats or the
print symbols and label and record formats
of the American National Standard Insti­
tute. The latter print symbols standard is
officially the American National Standard
Code for Information Interchange X3.4-1968,
and is referred to herein as ASCII. The
latter label and record formats standard is
officially the American National Standard
l'Jagnetic Tape Labels for Information Inter­
change, X3.27-1969. and the format is
referred to herein as American National
Standard. TSS/360 processing is in EBCDIC
and standard IBM format; when the user spe­
cifies the ASCII option as a parameter of
the DDEF command, BSAM provides a conver­
sion interface between ASCII and EBCDIC
symbols and American National Standard and
standard IBM formats.

The access methods descriptions pre­
sented in this manual do not include the
DDEF command, which performs some preli­
minary open functions for BSAM. The Open
Common and Open BSAM routines oversee thE'
completion of the necessary open fUnctions.

The DDEF commana contains such informa­
tion about the data set as its name, volume
residence, organization, and type of device
Clsed. The DDEF command causes the building
of the job file control block (JFCB). over­
sees initial device allocation and mounting
and allocates space for data sets on direct
access storage devices.

By macro instruction, the user will be
linked to the Open Common routine. This
routine performs those open functions which
are common to all the TSS/360 access
methods. These functions basically are:

• Fln~ing the JFCB in the system.

• Filling in the data control Dlnck (0Cb.
with information from the JFCB. The
u~;er i~·· thu:; dhle to :ifH'cify, i(./' d
partiClllar rUII, !TIdilY ddt,! orgdflil.dtion
dnd h,nciliJl9 01'1 lC)J1!; which lTld'i not Df'
known at d.!>semhly time.

• Ew>uring that only privileged ~.r<.XJ'£ams
use privileged data sets.

• Checking for conflicts between user
indicated options and control block
dat_a.

.. \;pt.tinq a page of storage to be used
later for input/o1ltput request control
blocks (IORCBs).

For BSAM, Open Common links to BSAM
Open. At this point, the JFCB and DCB hdve
been constructed, a data extent block
(DEB), the primary control block used by
the Read/Write routines for such informa­
tion as the device type, error statistics,
outstanding IORCBs, and the queue of
unchecked I/O requests, is still required.
BSAM open's main function is the building
of this DEB in protected storage so that it
cannot be destroyed or' changed by the user
program. To build the DEB, linkage is made
to the Build Common DEB routine or to the
Build OA DEB routine; the choice depends on
device type.

DA Open is used to complete open proces­
Sing for direct access devices while Tape
Open is used to complete the open process
for tape. 80th DA Open and Tape Open call
the appropriate label processing routines
to process user and data set labels. Label
inforrnat.ion such as record length can be
used t.o modify the DCB.

The labeling routines available in BSAM
are 'I'ape Label Processor, which has separ­
ate entry points for input header, output
header, input trailer, and output trailer
labels, DA Input User Label Processor, and
D1\ Out. put User Label Processor.

Where ASCII-encoded tapes have been spe··
cified, the &SCII Translation and Conver­
sion routine provides ASCII-ta-EBCDIC tran­
slation on tape input and EBCDIC-to-ASCII
translation on tape output.

Four macro instructions are provided to
obtain buffer sF~ce: GETPOOL, GETBUFF,
FREEPOOL, and FREEBUFF.

Aft.er his data sets have been openec.,
the user will normally access data by me·ins
of a READ or WRITE macro instruction, fOl.­

lowed (not necessarily immediately) by a
CHECK instruction to ensure compleLe and
correct I/O termination. The actu?.l ter·-

Section 1:

nund~ion of the I/O operatlon ~ill cause an
lnterruptlon, at which point the Supervisor
'011.11 link to the SAM Posting and Error
/-if'try (;;Pl:~R) rout.inE' whien runs wil:h all
lnterruptions dlsabled. Here the I/O com­
pletion code is ~X)st~d into the DECB. Thi:.;
rout lnE' also performs various l:X)::;t-I/O
functions, such as adjusting magnetic tape
block counts. In addition, the error retry
routines are incorporat.ed into t.h(~ SPER
rout.ine. The CHECK macro instruct,ion,
issued by the user at somp point. after his
READ or WRITE., will test the imHeators spt
by SPERo

If the DECB .lnctlcated U!ut eXCE pt.ion,
the Check routine invokes Nainlin.:-, EOV,
which in turn uses Tape Input EOV, Tape
Output EOV. DA InfJUt EOV. or DA Our_put EO\'
to complete EOV processi.ng .for tape or DA
devices. When End of volume is in fact dn
",nd of data set. condition, processing ..,ill
involve set.ting an end at data set indica­
tion in the DCB. At this point ChecK. is
used to set up linkage to the user's end ot
data set routines if specified.

For DA output devices at EOV but not end
of data set, the Extend rout).ne is called
to try to get UIDre space on the current
volume. If and ""hen anot hex' DA output
volume is necess.:u: 'I, Bump is Cd lled to
rroount/clismount 'the next volume and, in
turn, Ext.end is tl...~ed aq'(). in to obtain spac(~
on t,hat volume.

The concatenation routine is used to
link concatenated data sets.

EOV processing is transparent to the
user; when end of volume but: not end of
data set- occur:.::; on input-" outst.anding reads
will be aut:omaticdlly reissued by the Check
routine upell) ret.urn from EOV.

The end of data seL indicator is reco­
c;nized in the Check routine. dnd linkage is
made to the user' s end of da ta set couti ne.
if specified.

In addition to Check, several a the:!:' con­
trol routines are available and used in
BSAM: Note, Point, Backspace, Control, and
Force End of Volume.

To close his files, the user employs the
CLOSE macro instruction which will link to
Close COlIUDOn. This routine resets fields
~n the DCB filled in by the access methods.
For nonshared data sets, it does the neces­
sary recataloging for volume extents.

Close Common ..,il1 link to SAM Close.
EOV is called to complete closing output
tape or DA data sets. The Tape Output EOV
routine will in turn utilize the label
handling routines after it waits for out­
standing I/O to quiesce. The SAM Close

rOlltlrlt' "'111 relpds., unuc;ed st(lrag(' unIes"
the u~pr dirpcts otherwise.

Anothf'[tHsic BSAM modul ..).s the Message
Writpr, whiCh is called by the Open, Closp
,lnti EOV r()ut~inp~; to handle most messages
and con:;olp communication, and do most
ABEND rroc:essing.

See ,-~pct ion 6 of thi,' PLM for routines
';peclfically de:C:lqned fot RSAM_

:,A}l Communication Block: The SAM cOffiIl1uni--_.---- ---,-,-------~- ------- -~----.~.-.---.- ---~~-

,~at lOll block ie' d tdble ,~red used heavl.ly
[''i ~:i'1l'1 Op~n, Close dOO LOV rOlltine~; for
['<is'; l nq pa ramet PI :,; • S Pf> ~Y'2..t_~m Cor:. t rclJ:
l~J.2.S,-kS2-~~ tor a detailed dericription Gt
t;tlis table.

1'15/1 ... "1 OV ERV I E\<I
"~--'-------~-------

The Multipip Sequential Access Method
(~BAM) provides a fast and efficient
rnf>chanism for simultaneously driving S'2ver­
al card readers. card punches, and prtnt.ers
under t.he control of a single user's task.
Several dat.a sets may be grouped together
on anyone device, allowing the user to
process all of t.hem under the same Dat.a
Cont.rol Block wi thout openinq and clo..sing
t.he LeR each time i! data set ..,jt.h different
characteristics is to be processed. Each
at the ~eparate data sets ~s referred to as
a dz.t...a group. Input dat.a groups may he
sepClrat:ed by control cards which consist cf
invalid EBCDIC characters in the first four
columnc~ and as many valid EBCDIC chat·actey.',,;
as required tor cont.rol purposes. l",s}V.j
will recogniz~ these control cards and
notify the user that a control card has
be'''n read, allowinq him to takE' whatever
d(>Lion is necessary. Output_ dat.a group::~ "'Jt1

the card punch may be separated with spe­
cial cards from the reader by specifyinq
the COMBIN opt ion in the DC8 macrOlnst_T'U;­
tion, or t:hey may be removed from the rcad­
er by the operator, who IDay be instructed
to do so when a FINISH macro instruction is
i,~sued,

MSAM differs from other sequential
access methods in that each MSAM I/O requ-­
est of the system process~s a buffer group
of logical records, while each request
issued by the other sequential access
methods pror:esses only a singl., physical
record. Physical rpcords are buffered ~y
pages of virtual !'".toraqe. MSAM p::ocesses a
number of buffer pages based on an
installation-provided parameter which i~
set in the symbolic device allocation table
(SDAT), and ..,hich may vary for each device.
Its value may be adjusted to provide opti­
mum device utilization when the number of
records ..,hich can be contained on N pages

8 Part I: Access Method for BSAM, MSAM, TAM and IOREQ

will drive the device full speed for the
maximum length of time bet ... 'een the two con­
secutive time sl~ces.

The first 32 byter; of each buffer page
are reserved for control information used
by MSAM. The remaining portl.on of the page
is packed with format-F or format-V logical
records. Format-F logical records are
packed in the buffer starting with the 33rd
byte in the bufter. Format-V logical reco­
rds are packed in the buffer starting with
the 37th byte in the buffer, since four
bytes must be reserved as control bytes
(LLBB) , as is the case with blocked,
variable-length records.

Tbe nu!Ilber of rf'coras pE,r buffer page is
restricted to a maximum of 100 on input and
200 on output. Depending on the size of
the records, there may be fewer.

The size of an input buffer will be com­
puted by adding to the 32 control bytes the
smaller product of (a) 100 times the logic­
al record length, or (b) multiplying by t.he
logical record length the integral part of
the result of dividing 4064 by the logical
record l~ngth.

The size of an output buffer will be
regUlated by the following rules.

1. For fixed-length records, the number
of bytes used for data will be the
lower of (a) 200 times the logical
record length, or (b) the product of
multiplying by the logical record
length the integral part of the resul t
of dividing 4064 by ~he logical recora
length.

2. For variable-length records, the last
record will have been placed in the
buffer when (a) the record count
reaches 200, or (b) the sum of the
user-provided control bytes (LL) of
each record in the buffer plus the
next expected logical record length
plus four is greater than 4064.

3. The buffer will be ended when form
type-F is mounted on a printer, and a
FORTRAN!. control character is found
indicating a skip to channell.

Schematic Description

The user's problem program initializes
for an MSAM I/O operation by defining a
data control block with the DCB macro

1.Control characters defined by American
National Standard FORTR~, ANSI X3.9 -
1966, hereinafter referred to as FORTRAN
control characters (previously known as
ASA or USASI control characters).

instruction, which generates a COllUl1on fX)"·­
t.ion and an MSAM portion of the DCB. The
user then issues an OPEN macro instruction
which links to the Open Common routine.

Open Common completes thp common port Lon
of the DCB f rom the TDT JFCI3, and then
invokes MSAM Open to build a DEB and pro­
vide N buffer pages (where N is a constant
in the SDAT set at system generation time).
MSAM Open also provides N half-pages for
IORCBs and a DBP page, which is used 3S a
work area by MSAM Read/Write and DOM.SAM. A
DEB work page is also obtained to use as d

save area for DOMSAM and to hold the N+l
DECBs. MSAM Open formats N IORCBs dnd N
DECBs, and it checks the SDA'f and tne DCB
for agreement and for valid options.

To set up online output devices, the
user may issue a SETUP macro instruction.
In t_he case of a print file, the SETUR rou­
tine may read the two system VIP data sets,
SYSURS and SYSUCS, to obtain the parameters
m?cessary for setting Ill' the printer.
SETUR \oIill issue WTO macro instructions and
pOSsibly IOCAL SVCs to the I/O supervisor
to achieve the desired setup of the device.

The User issues a GET macro instruction
to obtain each card read from the card
reader. Each GET macro i nst.ructi on invoke,.;
the DOMSAM rout.ine via type-l linkage. If
there are any records already in the buff­
er, DOMSAM passes the next sequential reco­
rd to the user. If the buffer is empty. or
if all the records in the buffer have
already been processed, DOMSAM invokes MSAM
Read/Write.

The user issues a PUT macro instruction
to print each line on the on-line printer
or punch each card on the on-line punch.
Each PUT will cause a record to be placeci
in a succeedinG location of a buffer page.
DOMSAM kee[£ account of these records to
determl.ne when the last record has been
placed in the buffer. At that time, it
invokes MSAM Read/Write.

The t-ISAM Read/Writf" routine build~~ an
lORCS and invokes the I/O Supervl.sor {lOS)
via an lOCAL SVC. Each IORCB contains a
list of CCWs for each record to be read or
writt.en. Each record read has a read cei,
and a distinct feed, stacker select ccw
associated with it. Each record written
has essentially one CCW associated with it,
for example, a punch, feed, select stacker
ccw, or a print and space cew. Additional
control CCWs may be generated by MSAM at
the beginning of t_he CCW list, such as sKip
to channel 1 on the printer. The IORCBs
specify command and .lORCB chaining and pro­
vide the address of the MSAM Posting
routine.

Sect.ion 1: Introduction 9

When the CCWs in an IORCB complete their
execution, the currently running task pro­
gram is interrupted, and MSAM Posting is
given control from task monitor so that the
necessary information may be stored in the
DEB and in the DECR to inform DOMS~ of the
I/O progress. If an I/O error has
occurred, Posting will attempt the error
retry procedures.

It intervention is required by the
operator, Posting will record, in the DEB
page, information about the IORCB returned
by lOS in the ISA, and specify to the task
monitor an asynchronous interruption rou­
tine to be given control when the device is
transf~'rred from the not-ready state to the
r~ady state. A WTO macro instruction is
is,:ued indi.cating the required action, and
control is returned to the task monitor,
which returns contxol to t.he routine which
was ~nterrupted for the posting operation.
The asynchronous routine is part of the
MSAM Post.lng routine, but it has a separate
entry point. When given control, it will
reissue. from the point of failure, the
CCWs in the IORCE which was posted by MSAM
Posting.

By testing the return code from his GET
or PDT macro instruction, the user can
determine whether or nol'.: his operation has
been complet.ed. Before reissuing his
incomplet.e GET or PUT, he is free to do
ot.her processing. Prior to reissuing a GET
which returned an i.ncomplete,the user
should test the DECB pointed to by OCBCDE
for completion; prior to reissuing a PUT
which provides an incomplete return the
user should test the DECB pointed to by
DCBTDE for completion. If these DECBs are
not_ complete and no further processing can
be performed, the user mdy' execute t_he
AWAIT SVC in the DECB pointed t.o by DCBCDE
or DCBTDE.

When the processing for the current data
qroup is completed, the user may issue the
l"INISH macro instruction, which will invoke
thE' MSAM Finish routine. On output, this
routine will initiate type-l linkage to
OOMSAM, which may in turn invoke MShM Readl
Write for writing the last l:mffelC on an
output data group, and it will test the
results of the write. It will \,Mit for
completion of all outstanding I/O requests
for an input_ data group. Then it wi 11
r,ot_i fy the op€'rator to r€'movE' the input or
out:pllt da ta group from the device by a WTO.
unless the user has indicated that such
messages are to be suppressed.

If the operator has been requested to
respond to the message by readying the
deVice, the Finish routine notifies the
task monitor to recognize an interruption
whpn the affected device is changed from
the not-ready to ready state. This inter-

ruption will give control to the Finish
routine at its second entry point. The
next time the Finish macro instruction is
issued after this interruption i.s received,
a return code other than incompletE' 1S

returned by the Finish routine to the user.

When no more data groups are to be pro­
cessed by the task. on the device at the
present time, the CL<~3E macro instruct ion
is issued. The Close Common routine is
invoked and clears all fields of the DCB
completed by Open Common. It the0 inVOKes
MSAM Close, which issues a FINISH macro
instruction, waits for completion, dnd
releases the storage areas obtained by MSAM
Open.

Tables 4, 5. 6. and 7 contain fields
and/or flags used by MSAM which are fre­
quently mentioned in the sections of this
publication devoted to MS1IJ.1.

RTAM OVERVIEW

ActiVation of a terminal will cause an
asynchronous interrupt.ion to be generated.
The interruption will be fielded by the I/O
Int.erruption Stacker routine in the resi­
dent supervisor and placed on the channel
interruption processor queue. The Channel
Interruption Processor determines that this
is a terminal I/O interruption and passcci
it to the Terminal COl1lJT!unications Subprc­
cessor. which is also resident.

This terminal control is all taking
place in the resident. supervisor, as the
RTAM abbreviation suggests. For details cr
an overview of t_he RTAM access method, S("','

the Resident Supervisor PLM. GY28-2012 or
the System IJQgic Summa~~!,!, GC28-20'H.

The Terminal 'I'ask Control routine, wbS_c!:
describes internals for some of the l<'TT
user commands and macros, is described in
this PLM.

Privileged programs are the only ones
that may issue READ/WRITE rndcro instruc­
tions to directly call TAM Read/Write.
Nonprivileged programs may only use the
GATE 1/0 macro instructions that call an
intermediate system's GATE rout.ine that in
turn calls TAM routines. The COIrliT[iind sys­
tem also invokes those GATE routines that
link to TAM. All programs that use TAM
routines either by a direct call or by thD
intermediate system's GATE routine are
restricted in that they may only be userl
with specific communication terminals.

10 Part I: Access Method for BSAM. MSAM, TAM and IOREQ

Table 4. DCB Table Fields and Flags (MSAM
Section>

r--~-----T------T---------------------------------------,
I rl~ld I flag (Meaning I

~--------+------+--------------------------------------~
I[,CRINHMSIOCI'INHllnhiblt mesnaq .. to operator to rell10ve I
! I I data 'lx-aup I

I I I
[,('\-lCO""]I [l<:BCt-!IlICombin~ d rpader on ''',.,,' 25~O as punch I

I I !
I [)cBler I I Address of ICB named in SIR «() = none) I
i I I I
iDCBLXMA:q (Maximum allowable logical record length I
I I ! I
IDCBLRC IAddress of current logical record in I

J

I
I DCREAP

Ibuffer tor input records, or next I
lavailable buffer locatiOn for output I
I records
I
I Address nf end of cuterent buffer
I

jDCBPPT {Address of current buffer page
; I
I~CB~CX Ilntprnal return code
I I
I DCBCNT ILogicdl record count
i I
I:JCSCDE IAddress of current PECR
I I
!DCBFDE IAddr~ss of first DECS 1n list
I I
i DCBLDE ! Address of last PECB in 1 ist
I I
!DCBTDE IAddress of DECB to be tested for
I Icompletion on a PUT
I I
I DCBUDE IAddress of user' s copy of errinq OECB
I I I
I DCBFRMTP t I SYSURS for", type for printing
I I I
I DCBSTRI¥ I lues str Ike out code
I I I
IDCBMSFl IDCBEOPIEnd-of-buffer processing needed
i I I
\ (MSAM IDCB1OCIRead/Write already invoked
I flags! I I
I ! I

IDCBENTlbuffe~ priming to be performed
t 1
t DCBOVF I Format F new print page
I I
\DCBELPILdst PUT issued was in locate mode
I I
IDCBNLPIPrpvious locate mode PUT being
I lprocessed

I I I
iDCBMSF2 IDCBPURIPurge all I/O at CLOS~

I I
i (MSAM IDCBSURISETUR in process
i flags) I I
i I I
I I DCBFIN I FINISH lust issued
I I I
I IDCBFIPIFINISH In progress
i I t
I IDCBPT tFirst Gc~ or PUT on a data group i l ________ L ______ ~ _______________________________________ ~

Table 5. Some DBP Table Fields
r----------T------------------------------
I Field I Meaning
r---------t----------------------------"-
I DBPPRTRY I Printer retry counter
I I
I DBPPRDC I Printer data check counter

I
DBPFRMTP I SYSURS form type code

I
DEPFOL0 I SYSURS UCS folding code

I
\ DBPSTRK2 I SYS~RS ucs strike out code I l __________ L ______________________________ J

Table 6. Some DECB Table Fields (CHADEC)
r--·-~------T------T---------------------l

I Fleld I Flag I Meaning I
~------------+------+---------------------.-~
IDECECB IDECECOli«'"d/Write requt"cH
I(compll'tion I In"!,,
I code) I I
I t I
I IDECECIINormdl Completion
I I!
I IDECEC21Complete with error
I I I
I
I
I
I
I DECLEN
i

IDECEC31Intercepted
I I
I DECEC4 I 'I'lai t
I I
I !Data area length
I I

IDECCSW I iChannel status word I l ____________ ~ ______ L _____________________ J

Table 7. Some DEB Table Fields
r-----------T------T---------------------,
I FieldS I Flag I Meaning i
~------------+------t---------------------~
i DEBlOC t I Number of outstanding I
I I IIORCBs I
t I I
IDEBNF IDEBNFljUnrecoverable I/O
I I I error
I I I
I IDEBNF21Permanent I/O error
I I I
I DEBCLS I I Storage protection
I I Iclass of DCB I l ____________ L-_____ L _____________________ J

During execution the OPEN macro instruc­
tion provides linkage to the Open Common
routine. Open Common locates the corres­
ponding JFCB for the dat.a set. Open Common
links to Thll Open to cont.inue special open
functions, and then TAM OpEn returns to
Open Common which sets bits in the DCB and
the JFCB to say that the DCB is open. A
counter in the JFCB is updated to indica1:'"
the number of DeBs that are open.

During TAM Open, one page of storage is
allocated a!".d pointers are set up between
this page and other control blocks. Part
of this page is reserved for t.he DEB, which
is partially completed during TAM open with
t.erminal information thi'lt was stored in the
the symbolic device allocation table
<SDAT). The remainder of t.his page is
reserved for t.he terminal operational std­
tu" t.able (TOS) which includes the lORCB.
The 'rOS is used as a work area during TAM
Read/Write in order to complete the lORCE.
Since the SDAT contalns current information
about the terminals, TAM Open increments
the SDAT DCB open count for this terminal
by one.

Section 1: Introduction 11

To accomplish a read/write function, the
corresponding TAM GATRD/GATWR .aero
1nstruction is required in the nonprivi­
leqed program while READIWRITE macro
1nstructions rnay be used in a privl).eged
program. OUring assembly this generates a
DECB that will be used to store the 1/0
status of this operation. During e.:{ecution
from the termina 1 inforrna tion (terml na 1
t}p£: and model code stored in the DEB dur­
.H1'J TAM Open), and from the type op-:ion
(stored in the DECB). TAM Read/Writ,e begins
a table search. This search is through
three internal tables (Unit type, terminal
library. and terminal control program) to
locate a. prestored channel program genera·'
tor (cPG) for the terminal. This CPG is
made up of channel command word generators
(CCWGs) that use t.he work alea in t:he TOS
to build channel command words (CCWs) and
then move them into the 10ReB. The 1/0
buffer area is also completed in the IORCB.
Th,,~ CCW list is executed by issuing an
lOCAL SVC. This passes the IOReB to the
I/O supervisor to execute the CCWs. At t.he
completion of the 1/0 operation an inter­
nlption occurs. The 10RCB and the complete
I/O status information are stored in the
int.erruption storage area (ISA located at a
fixed location of segment 0, page 0).

TAM Posting processes this I/O interrup··
tion by decoding the interruption data.
The CCW list:. t.hat. was executed during TAM
Read/Write is traced through again to loc­
ate read CCWs. The Data In processor
assures that the user read area is avail­
able and translates and moves the data to
t.his area. TAM Posting does not issue an
AREND upon noting exception or error condi­
tions, but only posts this exception infol"'
mation in the DEeD. It is the user's
responsibility to verify correct operations
~th a CHF~ macro instruction so the
user's program may continue. However, if
error conditions occu.r. the use!" s SYNAD
routine may be entered where the address of
tnis routine is pointed to b;r' the DeB.

wnen the user"s I/O operations with the
terminal are completed and a close is
issued, the CLOSE macro instruction 1iok.5
to the Close COIIIIOCIn routine. Close Common
closes the DCB by restoring it to the ori­
ginal status. Close Common then links to
TAM Close to continue the special close
functions and then TAM Close returns to
Close Common to reset bit.s in the DeB and
the JFCB to indicate a closed DCB.

'rAM Close frees the storage page allo­
cated during TAM Open and resets the
required pointers.

The SDAT DeB open count for this termin­
al is decremented by 1. For LOGOFF at all
terminals, the disable/enable logoff func­
tion imbedded in CLOSE is also required. A

recurs1ve call flag prevents a recursive
loop betwpen TAM Close and ABEND.

Privileged programs are the only one,;
that may llse the IOREQ routines for unit
record equipm:"nt_ or usinq SDAT. 1'he IORE'Q
proqrams access data from any private 1/0
dev1ce. The data is accessed at the chan­
nel comrr~nd word level. A data set organi­
zation of RX (IOREQ facility being used)
must be specified in the DDEF' command.

~hen OPEN is issued, the Open Common
rout_ioe open,; tilt' DCB and locat.es the
corresponding JFCB for the data set. Open
Common links to lOR Open to continue spe­
cial open fUnctions and then lOR Open
ret_urns to Open Common which sets bits in
t.he DC!J and the JFCBto indicate the DeB is
open.

During this lOR OPEN, tests are made to
verify that.: (1) the user's privilege
class 1S E for unit record equipment, (2)
IOREQ is specified in the DDEF command, (3)

IOREQ is allowed on the device, and (4}
this device is a private volume. Storagr"
is allocated for the DEB and the lORCB con­
trol blocks with data type code information
moved from the JFCB to the DEB. A final
check assures that the user is privileged,
if acce"s t_o the volume is privileged.

To accomplish a read/write, the IOREQ
macro instruction is requi red in the user'~;
program. This generates, during assembly.
a DECD table that will be us<?d '1:_0 store tt1'.°
1/0 stat_us of this operation. The I/O
operation is specified by VCCw rr.acro
instructions specified in t_he user' s pro­
gram. ,!'hese VCCW macro instruct ions are
used by IOR;;:Q to generdt.e a list of CCWs tJ)

control the 1/0 activity. IOREQ places
thh' LL;t of CCWs in the IOReB. If buffer
ing is requested by the user, space is
allocated in the IORCB for the buffer ar'_'2l"
If buffering is not requested by the user.
sPdce ..LS allocated in the IORCB for pa'.j""
Ust. en+:ries to connect the CCWs to the 1/('
Jreas. The CCWs are executed by issuing 2~
lOCAL SVC. This passes the lORe? to the
I/O supervisor (lOS) to execute the CC;'!:".
At the complet ion of the IOREQ 1/0 opera ,­
tion an interruption occurs, and the lORCB
and the complete I/O status information are
stored in the interruption storaae area
(ISA, located at a fixed location of seg­
ment 0, page 0).

IOREQ Posting processes this I/O inter­
ruption by analyzing t_he interruption data
with all other task interruptions masked
off. It then posts the normal or abnormal
completion code in the DECB allowing the
Check routine to later take action based cn

12 Part I: Access Method for BSAM. MSAM, TAM and IOREQ

these codes. IOREQ Posting does not con­
tain any error recovery routines. The
CHECK macro instruction must be used to
ensure the completion of the I/O operation
and to detect errors or exception condi­
tions. If the I/O operat ion i!'; successful,
the program resumes execution a,t the
inst.ruction after the CHECK macro instruc­
tion. If the I/O operation results in an
unusual condition, the check of t.he DECB
associated with this IOREQ causes contrcl
to be given to the user's SYNAD routine
specified in his DCB. If mUltiple IOREQs
are issued before a check of the first
10REQ is made, and one of these 10REQs
generates an error, the sUbsequent IOREQs
will be intercepted by lOS. It is the
user's responsibility to reissue any IOREQ
following the error-causing IOHEQ.

The CHECK macro instructions mUSt. also
be issued in the same ordez· in which the
associated IOREQ macro instructions wer''';
issued.

When the user's I/O operations with the
device are completed. the CLOSE macro
instruction links to t.he Close Cormnon rou­
tine. Close Common then links to lOR Close
to continue the special close function. and
then LOR Close returns to Close Common to
reset bits in the DCB and the JFCB to ind­
icate a closed DCB.

This lOR Close wait.s until all outstand­
ing DECB:s have been completed and then
frees the st.orage allocated during lOR
Open.

Section 1: Introduction 13

SECTION 2: OPEN PROCESSING

COMMON PROCESSING

ThE' following routine is common to all
access methods OPEN processing.

The Oppn Common routine, callpd by the
OPEN macro instruction, periornlS those open
functions common to all access methotis:

.. It cheCKS for [X:B error conditions, and
ABENDs if any exist.

" It: u,,;es the GETM}\IN macro instruction
to iv;quixE' a o!H?~paqe work area, and
pass~,s the address of the work area as
part Gf a parameter list when it links
tottle access-'dependent ope.,n routines.

" It places the open options in the DeB
for reference by the access-dependent
open routines.

'* If nece:;s it. iSSUf]$ a. 0111 to
FINuJFCB to ind the ,}FCB ds"ociat.ed
with t_he dat:;; definition f1aJne (ddname)
of t~hp DC'E ..

.. It fl.l1s in ct-?:rtdin d(:!.taultf',d L~B
fit=:lds '<#~ith int<.:t'mati.on from the corre~N

~;pon<li.ng tie1.d~< 1.;) -the JF'CD.. lL keeps
t_rclck of the DCB fields so modifIed, so
that at CI.t0SE t itn(-: tbe I)c~J can bt:
z.~f:;s-tored t,o .i~:~: r)~'e-OP£N :[~t.",'itus ..

ons common
to all d<;:cess methods JI OF,en Cc,mrnon automat­
tcally cat,)loqs all VAM data sets.

Open /~c·mr[ic'n links 0 the apprcpr-ia-te
:t(;,ut.~ine f "(:-1cc·~~ss->d€'f_·~'nden-t r.)pl;~n F'loce<":i­
~".u~g (Chdrt_ "A).

Reentran~-: 1 resident ,in virt.:ual
• rea~-only. privileged rou-

tine, public.

En~E'y~_Poir~-~_~ C:ZCL\O ~~ ~ Eni'eI~,::-.d t;y lpe -rl
or type-2 linkage.

,:!:..~et,: RE:qist.er 1 contai the addrp"", of
tJ.''''~ CHl''I.(~~~~l'''; t~jblp~ CBAGSM (the gent:'ral seI--
v~c~s macro table). built by the expansion
01 thp OPEN macro instruction, consists of
C'i'''' i!oubl,,'word entry for each OCB to be
open~:d ~

Data References: CHllliCB, CHATDT, CHAGSM,
CHAISA.

!-mdules Called:
FINDJFCB (CZAEB) -,- Find JFCB.

SAM Open (CZCWO'\ SAM Open.

TAM Open (CZCYA> TAM Open.

MSAM Open (CZCH.':::) -- MSAM Open.

Open VAM (CZCOA) VAM Open.

lOR Open (CZCSC) lOR Open.

VMA (CZCGA) -- Get virtual storage.

Addcat (CZCFA) -- Cataloqs all VAM data
sets.

Search SDST (CZCQE) -- Search shared data
set table.

Readrwrite (CZCPE) -- Index sequential
read/write.

Exits:
Normal -- Return to c~lling program.

Error -- ABEND macro inst.ruct_ion.

9peration: Open Common provides DCB
addressability and checks for valid OCB
identifier and nonzero ddname. If an error.
condition exists, the task will }'I.BEND •

One of the primary functions of open is
to find the .}FCB tor the dat.a set: being
opened. If the data set is concatenated.
the address of t.he ,JFCB is picked up from
DeaCON; otheI1tflSe, the routine examine.s the
'roT for the SPCS address. If st,i 11 not:
found, ·the address of t_he J'l"CB is obtained
through a call to the FINDJF'CB routine.

Following the call t.o FINDJFCB, VAM da'ta
sets are automatically cataloged by calling
Addcat.

A user with read-only acces~ is allowed
t_o open a VA.M data set even though he has
specif.led it as modifiable for his purpos~~3
(OUTPUT f EDIT. or other opt ion~; J. This
allows him 1',0 USE' t_he data set. locking fe;'3-

ture; he will be prevented from modifying
the data set by t.he VAM output routines.
An e:xistinq read-only data set not of Vl'.M
organization and specified by the user with
other than the INPUT option will rE'suli in
an ABEND.

Open Common wi 11 turn on the conca'­
tenated system flag in t.he DeB if the ,;l'<'CB
describes a concatenated data set.

The zero OCB fields are filled in with
corresponding entries from the JFCB, enabl­
ing the user to specify many data set
characteristics and handling options for

14 Part I: Access Method for BSAM, MSAM, TAM and IOREQ

this run that were not specified during
assembly_

Open Common gets a page of storage which
is used by the BSAM for IORCBS, and by
fence straddlers and VAM for save areas,
tnpn links to tne appropriate access­
dependent open routines.

LJ pon return from the access dependent
routine, Open Common tests for other DeBs
to be opened. The entire procedure is
repeated for each DCB and when all DCBs
have been opened, control is returned to
the calling routine.

SAM OP&~ PROCESSING

The following routines are common to SAM
processing.

SAM Open Ma1nline Routine (CZCWO>

This routine performs opening funct.ions
common to sequential access methods. It
branches to the Open Tape or Open DA rou­
tines to have the open processing completed
tor magnetic tape or direct access devices
respectively (Chart AB).

Attributes: Reentrant, resident in virtual
storage, closed, privileged.

Entry Point: CZCWOl -- Entered only by
type-1 linkage.

Input: When this routine is entered,
register 1 contains the address of the fol­
lowing three word parameter list:

Word 1 Address of DCB being opened.

Word 2 Address of associated JFCB.

Word 3 Address of work area for bui.lding
IORCBS.

The PSECT of CZCWO contains the SAM com­
munication block (CHASCB), three temporary
control blocks - a DCB, a DEB and a DECB
which are used by the label processors for
reading or writing tape labels, and a para­
meter area for reading and writing format-l
DSCBs.

Data References: CHAnCB, CRAnEB, CHASCB,
CHATDT, CHADEC.

Modules Called:
DA Open (CZCWDl) -- Open direct access.

Tape Open (CZCWT1) -- Open tape.

Mainline EOV (CZCXE1) -- Write EOV trailer
and header labels when EOV encountered
during header label processing.

User Prompter (CZATJ1) -- Write a warning
message.

VMA (CZCGA2, CZCHA2) -- Get virtual
storage.

VMA (CZCHA3) Free virtual storage.

Volume Sequlmce Convert (CZCWV1) -- Volume
address conversion.

EXJ.ts:
Nurmal -- RetUrn to calling program.

Error -- Issue ABEND.

Operation: The SM-I Open Mainline routi ne
initializes the SAM communication block
(CHASCB). If a DCB is currently opened on
the JFCB, the task is abnormally ter­
minated. Open opt ions are checked against
the JFCB disposition parameter to see if a
data set with a disposition of NEW is
opened for input. If it is, and the task
is nonconversational, the task is abnormal­
ly terminated; for conversational mode
tasks. the routine gives the user a warning
and the option to continue.

SAM Open checks to make sure that the
data set has a mounted volume, and that the
proper volume is mounted. The routine also
checks to make sure no reading will be per­
formed on output data sets, or writing on
input data sets.

The main function performed by SAM Open
is the building of the data extent block in
privileged storage so that it cannot be
destroyed or changed by the user program.

If the device assigned to the data set
is a magnetic tape or direct access device,
control is given to Tape Open or DA Open
respectively. These routines. in turn,
call the proper DEB building routine.

If Tape Open or DA Open had been given
control, any storage dynamically obtained
by either routine is released by calling
FREEMAIN. and normal ret.urn is made to the
Uf:er.

Whenever Tape Open or DA open encounters
errors, it posts an abnormal condition code
in t.he SCB and terminates via ABEND.

In case an end-of-volume condition
occurs while Tape Open is writing the head­
er, SAM Mainline will call Mainline EOV to
end the present tape with an EOV trailer
label and write the header on a new tape.

The block size of ASCII format tapes is
checked for minimum (18 bytes) and maximum
(2048 bytes) length.

Section 2: OPEN Processing 15

QOPEN is bypassed if neither GET nor PUT
is indicated in the macro field of the DCB.
If the data ~~t being opened is 6 QSAM data
spt, then <,.lOPEN, a tlPC1"_ion of ~AM Oppn
Mainline, is enteled to perform thoet' func­
tions unique to a QSAM data set. If
blocked records were indicated 1.0 the DCB
and the blocKsize is zero, an ABEND exit is
taken. Otherwise, the block size is set
equal to the maximum logical record length.
Then, the number of buffers to be obtained
for the data set must be determined. If
the data set is opened for UPDATE, and
CNTRL is specified in thE DeB, only one
buffer is needed. If t.he data set is
opened for ROBACK, and if the record format
is variable, three buffers must be
obtained. Otherwise, tvo buffers must be
obt~ained. The storage for buffers is
obtained by issuing a GETMAIN macro
instruction which returns the address of
the ar'ea obtained in register 1. 'I'his
address is saved in the DCB. If two or
three buffers are needed, t.heir addresses
are calculated and stored in the OCB. The
protection class of the area will be the
same as that of the DeB. F'or data sets
USing only one buffer, the DCB field indi­
cating the maximum number of reads or
wri t.es which may be done before a check is
set to one, and for all others it is set to
two. Then the sa.me procedure described
arove is followed to obtain storage for
QSAM' 5 QWl< '<Kirk area. (See the Q..SAM sec­
tion of this publication for a description
of the OWK worK area.)

The V-cons for tne entry points CZCSAA,
CZCSAB. CZCSAX. and CZCSAS are set into the
DeB. If the dat.a set is opened for output.
the GET V-con field in the DeB (DeBGTV) is
set to one. Otherwise, the PUT V-con field
(OCBPTV) is set to one. This is to insure
that no GETs are issued on an output data
set, and no PUTs issued on an input data
set.

Tape Open Routine <CZCWT)

'I'he Tape Open routine completes t.he open
processing for a sequentially organized
data set_ on magnetic tape. It bui ids a
data extent block (DEB), use~ the appropri­
ate label processor to process tape labels,
and completes the tape recording informa­
tion fields in the DCB. (See Chart AC.)

Attributes: Reentrant, resident in virtual
storage, closed, read-only. privileged.

Entry Poin1:s: CZCWI'l -- Entered .. ith type-
1 linkage.

Input: Register 1 contains the address of
the SAM communication block <CHASCB). Note
that the SCB contains pointers to a DCB,
DEB, and a DECB in the SAM Open PSECT which
are used for reading or writing tape

labels, as well as pointers to the actual
DeB being openf'<i ilnd i ts aS~lOciilted JFCB.

12~'-ttt\. l'-d!tt.~<;"~.H: CHADCEl, CHATOT, CHASCR,
CHADEH, CKAIUA.

Module13 Called:
Control (C:z.CRB) -- Magnetic tap"

pOSitioning.

Bump (CZCAB) -- Request and verify mount of
new volume.

VMA (CZCGA) -- Get virtual storage.

LVPRV (CZCJL) -- Leave privileged state.

Build Common DEB (CZCWB) -- Build the com­
mon portion of a DEB.

Tape Data Set. Label (CZCW'.O -- Tape label
processor.

Tape Positioning (CZCWP) -- Position tape.

User Prompter (C:z.CTJ) -- Inform user of
error.

Exits:
Normal -- Return to calling program.

Error -- Via ABEND macro instruction.

9pe~ation: If the ta.pe is labeled, GETMAlN
is called to get an area of virtual storage
for label buffers. If the routine det:el'­
mines from the seB that the cor"rect volume
for the data set is not mounted, the Bump
routine is called to mount the proper
volume.

The Bu.ild Common DEB routinf" is called
to build the common portion of the DEB for
the dat.a set. being opened. This port_ion of
t.he DEB l£i copied into the "temporary" DEE
pointed to by the SAM communication block
for use in processing labels.

The tape volume is positioned by calling
the Tape Positioning routine; the volQme
labels are then written or read via Tape
Data Set Label. If the OPEN option is
INPUT, INOUT, or RDBACK, or if the Ji"CB
indicates MOD, t_he data set label~3 are pro­
cessed as input; ot.herwise the label is
[rocessed as output.

'rhe labEls are processed unless the aFCB
indicates no labels. If the user r2quests
it, he is given control at this time,
through the OCB exit, to modify the DeB.

The tape recording f:lelds in the user's
DeB are corr.pleted. The User Prompter rou­
tine is called to request directions from
the user if there are incompatibilities in
the user's specifications for tane record­
ing in his DCB; for example, recording

16 Part. I: Access Method for BSAM. MSAM, TAM and IOREQ

density of 200 bits per inch is incompat­
ible with 9-track magnetic tape. Should
the user not supply a satisfactory solution
to the problem, Tape Open will effect an
abnormal end with an ABEND.

DA Open Routine (CZCWD)

The DA Open (Direct Access Open) routine
completes the open processing for a SAM
data set on a direct access device. It.
builds a data extent block (DEB), process'.
OSCBs and user labels, sets necessary
fields in the DEB, and makes sure the prop­
er data set volume is mounted. (See Chart
AD.)

Attributes: Reentrant .• resides l.n virtual.
storage, closed, read-only, privileged.

Entry Point: CZCWDl -- Entered by type-l
linkage.

Input: Register 1 contains the address of
the SAM communication block (CHASCB).

Data References: CHATDT, CHADSC, CHADCB,
CHADEB, CHASDA, CHASCB, CHAISA.

Modules Called:
Bump (CZCAB) -- Request and verify mounting

of new volume.

Obtain/retain (CZCFO) -- Obtain DA user
label and retain DA user label.

VHA (CZCGA) - Get virtual storage.

LVPRV (CZCJL) -- Leave privileged state.

Build DA DEB (CZCWL) -.- Build direct access
DEB.

User Prompter (CZCTJ) -- Inform user of
error.

Read Format-3 DSCBs (CZCWR) -- Read and
chain format-3 DSCBs.

DA Input Label (CZCXN) -- Direct access
input label processor.

DA Output Label (CZCXU) -- Direct access
output label processor.

Exits:
Normal -- Return to the calling routine.

Error -- Via ABEND.

Operation: If the volume to be processed
is not the one which is mounted, DA Open
calls the Bump routine to mount the proper
volume.

The Obtain routine is called to get the
format-l DSCB for the data set. If the
integrity bit is on in the DSCB, a PRMPT

macro is issued to ask the user if he wants
to continue. The integrity bit is set on
when the data set is opened, and set off at
EOV or CLOSE by Set OSCB. Therefore, if
the integrity bit is already on during the
open process, the data set was previously
opened but never closed.

If thE' data is being opened for output
and has a disposition of OLD, and the
expiration date in the DSCB has not been
reached, a PRMPT macro is issued to ask the
user if he wants to write on the unexpired
data set. The Retain routine is used to
write the format-l DseB on the volume. For
old data sets. zero OCB fields are com­
pleted with fields from the format-l OSCB,
and the expiration date is stored in the
JFCB from the DSCB field.

Should the data set have format-3 DSCBS,
they are read by calling the Read Format-3
oseB routine. Then since all extents are
known, the Build OA DEB routine is called
to build a direct access DEB.

If the user labels are specified, GET­
MAIN is used to get buffer space for label
processing.

DA Open sets on the integrity bit in the
format-l oseB when processing a volume with
a data set opened for OUTPUT, OUTIN, or
INOUT. As processing of each volume is
completed, the integrity bit is reset by
other BSAM routines.

The DEB is set to point to ·the first
data record except for a data set with dis­
pOSition MOD. In the latter case, the DEB
is set to point to the end of the last data
record as indicated in the format-l OSCB.

The user labels are then read ox written
using either the DA Input User Label pro­
cessor or the DA Output User r..abe 1
Processor.

DEB PROCESSING

The follOwing routines are used to build
or modify the data ext.ent. blocks.

Build Common DEB Routine (CZCWB)

The Build Common DEB routine may be
entered to perform either of two funct.ions.
It can obtain virtual storage to create a
DEB and initialize the DEB' s common po.r-­
tiona Alternatively, Build Common DEB may
be called to modify the common portion of
an existing DEB. (See Chart AE.)

Attributes: Reentrant, resident in virtual
storage, closed. privileged.

Section 2: OPEN Processing 17

Entry Point: CZCWBI -- Entered by type-l
linkage.

Input: Reqi:;tet" 1 contains the addr·:?ss of
the SAM communication block (CHASCB).

Data References: CHASCB, CHADCB, CHADEB,
CHATDT, CHASDA.

Modules Called:
VMA (CZCGA) -- Get virtual storage.

User Prompter (CZCTJ) -- Issue message to
user.

Exits:
Normal -_. Rpturn t.O calling routine.

~rror -- Via ABEND.

Operation: When the routine is called to
build the corr~on portions of the DEB,
storaqe is obtained via GETMAIN and all the
fields in the common portions of the CHADEB
which can be filled from the CHADCE, CRAS­
DA, and CHAses are initialized. The
remaining fields of t.he CHADEB are zeros.

If the routine is called to reinitialize
fields for the appropriate CHA5DA, Build
Common DEB n'init.ial izes, in both the CRA­
DER and the temporary access met.hod CRADER,
those fields originally obtained from the
CHASDA and DEVOL.

This routine abnormally terminates if
the size of the CHADEB equals zero.

The Build DA DEB routi.ne creates a data
extent block (DEB) for the first volume of
a data set on a direct access device.
Additionally, it can add extents to an
existi.ng DEB, or bUJ.ld a new DEB for a mul­
tivolume data set when the extents indi­
cated in the old DEB are obsolete. (See
Chart AF.)

Attributes: Reentrant., resident in virtual
storage, clo~ed. privileged.

Entry Point: CZCWLl -- Entered ty type-l
linkage.

.~'::".E:!!: RegistPr 1 contains the address of
UiE: SAM communication block (CHASCB). The
c.HASCB will contain a pointer to the cur­
rent DEB, a pointer to a chain or format-l
and/or format-3 DSCBs, and an indication of
whether the routine is to construct or
extend a DA DEB. The routine assumes that
the chained DSCBs are in virtual storage.

Data References: CHASCB, CHADEB, CHADSC,
CHADCB, CHATDT, CHASDA.

Modules Called:
VMA (CZCGA) -- Get virt.ual storage, free

virtual storage.

Point (CZCRM) --- Loqi".dly I'Ppnuitinn ddtrl
set.

Build Cornmon DEB (CZew!') Build ,lnd modi-
fy the conuron portion of the DEB.

User Prompter (CZCTJ) -- Issue message to
user.

Exits:
Normal -- Return to caller.

Error -- Via ABEND.

Operation: This routine first calculates
the actual size (in bytes) of the DEB. The
size is the sum of: the number of bytes in
the common portion of the DEB, four t.imes
the number of channel programs (DCBNCP)
less one, the number of bytes in the fixed
length direct access portion of the DEB,
dnd six·teen times the number of extents t.O
be contained in the DEB. The number of
extents is determined by searching the
DSCBs until either a null extent type code
or a null CCHHR chain address is found.

It the data set has .,ot. been opened, the
Build Common DEB rout.ine is called to con­
struct and initialize the common portion of
a DEB. The extents (addresses) are then
stored in the DEB from the indication of
extents in the DSCB chain. Control is then
returned to the calling routine.

If the data set is open, this routine
has been entered with a DEB already in
existence. Therefore, a new DEB must be
generated and the present extents entered
in it.

GETMAIN is called to obtain virtual
storage for the new DEB. If the next
extent to be proces~~ed is zero, T.lle fized
portion of the old DEB is moved into the
new DEB, and the Build Cammon DEB routi~e
is called to modify the volume and deVice
fields in the DEB. Should the next extent
to be processed be non-zero, the common a~"j
fixed direct access portions of the old DEE
are copied into the new DEB, and Build Com­
mon DEB is called for the volume and device
field modifications of the new DEB. The
DEB fields for next I/O, last I/O, and last
write addresses are initialized. If the
JFCB indicates DISP=MOD, Point is called t.O
position logically to the end of the data
set. In ei ther case FREEMAIN is call"d to
release the storage of the old DEB, aI~
extents are added to the new DEB on the
basis of those extents currently indicated
in the DSCB chain. Control is returned to
the calling routine.

18 Part I: Access Method for BSAM, MSAM, TAM and IOREQ

This routine abnormally terminates if:

1. The DSCB extents are not equal to the
number of calculated extents.

2. The DSeB extents are not numbered in
consecutive order.

Q: ;CB PROCESSING

The following routines concern SAM DSCE
processing.

Read Format-) DSCBs Routine (CZCWR)

The Read Format-) DSCBs routine causes
all format-) DSCBs associated with one
volume of a data set to be read into virtu­
al storage and chained together. (See
Chart AG.)

Attributes: Reentrant, resident in virtual
storage, privileged.

?ntry Point: CZCWRl -,- Entered by type-1
linkage.

Input: Register 1 contains the address of
the SAM communication block (CHASCB).

Data References: CHASCB, CHADSC. CHADEB.

/I1odules Called:
Obtain/Retain (CZCFO) -- Obtain DA user

label.

VMA (CZCGA) -- Get virtual storage.

User Prompter (CZCTJ) -- Issue message to
user.

Exi ts:
Normal -- Return to the calling routine

Error -- Via ABEND.

Operation: It is necessary to compute the
amount of virtual storage needed for read­
ing the format-) DSCBs. The correct number
of bytes is calculated and stored in
SCBF3Z. GETMAIN is called to get that cal­
culated number of bytes of virtual storage.

The OSCBs are then read into the storage
wtlich GETMAIN supplied. The Obtain routine
is used to read each DSCB. The OSCBs are
chained together. Where there are no more
DSCBs to be read, control is returned to
the calling routine.

Set OSCB Routine (CZCXS)

The Set OSCB routine updates the infor­
mation in forrnat-1 DSCBs, turns off the
integrity bit in the format-l OSCB, and
writes a file mark on the DA output volume.
(See Chart Ali.)

Attributes: Reentrant, resident in virtual
storage, closed, read-only, privileged.

Entry Point: CZCXSl -- Entered by type-l
linkage.

~: Register 1 contains the address of
the SAM cOITrounication block (CHASCB).

Da'ta References: CHADEB, CHi\DCB. CHADSC,
CHASCB, CHASDA, CHATDT, CHAD}X.

Modules Called:
Read/Write (CZCRA) B::;AM read/write.

Obtain/Re~,in ICZCFO) -- Obtain DA user
label and retain DA user label.

FULREL (CZCRS) -- Convert full DA address
to relative address.

User Prompter (CZCTJ) -- Communicate with
user.

Exits:
Normal -- Return to calling program.

Error -- Via ABEND.

~~~ration: If the SCBRFI flag is on, the 
format-l OSCB is read, the integrity bit is 
set off, and the DSCB is written. 

Otherwise, the format-l OSCB is read via 
OBTAIN, and the DCB type fields in the 
format-1 DSCB, volume sequence number, and 
the last volume bit are written. The Last 
Record pointer is set to point to the last 
record written, the bytes left on the track 
are stored in DSCLRO, the integrity bit is 
set off. and the forfll<'1t-l DSCB is rewritten 
via RETAIN to reflect the above. A file 
mark is placed following the last record 
that was writ.ten on the volume and the 
SCBFLG, which contains the SCBRFl flag, is 
set. to zero. 

MSAM PROCESSING 

The following routines are used with 
MSAM processiwl_ 

The MSAM Open routi ne edits the DCB and 
SDA'l' for valid options and combinat.ions of 
options. and const.ructs control tables 
(DEB, IORCBS, and DECBs) and work areas 
(DEB page and buffer pages) in virtual 
storage for use by the multiple sequential 
access method. (See Chart AI.) 

Attributes: 
privileged, 

Reentrant. read-only, public, 
system, nonrecursive. 

Section 2: OPEN Processing 19 



Entry Point: CZCMCl -- Entered by type-l 
iinkdge from Open Common when the DSORG 
field of the DCB specifies MS. 

lnpu~: When this routine is entered, 
register 1 contains the address of the fol­
lowing parameter list: 

Word 1 Address of the DeB. 

Word 2 Address of the TDT JFCB. 

Data Refere~ces: CHAnCB, CHASDA, CHATDT, 
CRAnEB, CHADEC. CBAIOR, CHAlCB, CHADBP. 

Modules Called: 
VMA (CZCGA) -- Get virt.ual storage. 

CKCLS (CEAQ4) -- Check storage protection 
class • 

.Exits: 
Normal -- Ret UX'D to Open Common. 

Error -- Via A-BEND. 

Ope!at!.~: When MSAA Open is entered, 
register 1 contains the address of a para­
meter list which contains a full word 
f>oini~ing to the DCB and a full word point­
ing to the TnT JFCB. MSAM Open ac!cesses 
these two addresses, and obtains the 
address of the SDA'!' from t.he TDT. If a DeB 
tid:"; been opened previously for this data 
set. the task is abnormally terminated 
unless i.t is a remote job entry (RJE) task. 
If .i t is RJE, the task is abno.rmally ter­
minated if more than one previous DCE has 
been opened. (The JFCB indicates a pre­
viously opf'~ed DeB.) 

There are two tables (TEDDiE and TBDD2B) 
in MSAM Open for each of the device depen­
dent parameter fields in the DCB. These 
tables contain the allowable parameters and 
the default parameters for the particular 
device dependent fields. If the value of a 
device dependent: field does not match any 
of the allowable parameters, the default 
parameter is stored in the field. Checks 
are made on fields of the DCB and SDAT for 
valid options and comb.inat_ions of options. 
Any invalid condit.ion causes abnormal ter­
mination of the task with the appropriate 
message displayed on SYSOUT via the ABEND 
mac.ro instruction. 

The value of N, the maxilnum number of 
allowable IORCBS. is obtained from the SDAT 
and il check. is made to determine the 
s;~orage protection class of the DCB. If 
the DCB is Class A (user read-write), a 
GE1'~~IN macro instruction is issued to 
obtain (N+3)/2 contiguous pages of Class B 
(user read-only) virtual storage. These 
pages will be used for the DEB page and the 
(N+l)/2 IORCB pages which cannot be of 
Class A storage. (See Figure 2 and Figure 
3.) A pointer to the first page obtained 

°r-------------------------------------, 
I DEB I 

80~-------------------------------------~ 
I IORCS I 

2008~-------------------------------------~ 
I work area fields used by MSAM I 

2392t-------------------------------------~ 
I ICB ! 

2440 ~------·---------------------------i 
! Corununications area + 4 bytes I 

2456t-------------------------------------~ 
I Fixed area of IORCB I 

2536r-------------------------------------1 
I SYSURS i 

2808~-------------------------------------~ 
I SYSUCS ! 3148 l ______ . ____________________________ -l 

Figure 2. DEB Page Layout 

o r-------------------.. ---------------, 
! Save Area (19 words) ! 

76~-------------------------------------i 
I DOMSAM work area (5 words) I 

96 t-------------------------------·-·---1 
I N+l DECBs 
I (48 bytes in length. each) I l _____________________________________ J 

Figure 3. DEB Work Page Layout 

is st~ored in the DCB. A second GETMAIN is 
then issued to obtain 1'1+1 contiguous pages 
of Class A virtual storage for the DEB work 
page and t:he N buffer p.:iqes smich must be 
of the same protection class as t.he DCB. 

If lche DeB is Class B (user read-only) 
or Class C (user inaccessibl",,). a single 
GETMAIN is issued for (3N+~}/2 contiguous 
pages of virtual storage of the same pro­
tection class as the DCB. In both cases the 
same number of pages are obtained, a1 though 
in the first case the two groups of pages 
will not. necessarily be contiguous. Except 
for the case where the DEB and IORCB pagE's 
cannot be Class A, all pages obtained are 
of t.he same class as the OCB. 

Fields in the DEB may now be init.ia­
lized, and pointers set to the other con­
trol t:dDles. FO.lC an RJE task., DEB poi.nters 
in the TDT JFCB are enchained if a previous 
DEB has been created during the task. A 
skeleton ICB is built to specify an 
attention-type interruption, with pointers 
to the DCB and associated communication 
area. The fixed area of an lORCB is built, 
and additional fields in the DEB page are 
initialized for use by the other MSAM 
modules. If RJE, flags are set in the 
IORCB and the DEB. 

Next, N skeleton DECBs are built in the 
DEB work page following the 19 word save 
area of DOMSAM, and a ~JOinter to the first 
DECB is set into the DCB. To initialize 

20 Part!: Access Method for BSAM, MSAM, TAM and IOREQ 



for looping. the DCB pointer to the current 
DECB is initialized to the address of the 
first DECB. 

For fixed record format, the number of 
logical records in the buffer is then com­
puted as the buffer size divided by the 
logical record length, where the buffer 
size is equal to 4096 minus the number of 
control bytes (currently 32). If this 
count of logical records is greater than 
100 on input, it is set to 100, and if i 
is greater than 200 on output. it is set to 
200. For variable record format., th_ nu. L 
er of logical records in the b\lffer is 
initialized at zero. If RJE. logical reco­
rd size is stored in the DEB work page 
area. The following fields are calculated 
dnd saved: the maximum record count for 
RJE PUT (4048/ U.RECL+2+1S) }/2.2i the maxi­
mum record count. for the RJE first PUT of 
the first IORCB with machine control chara­
cters (4040/(LRECL+2+1S»/2.2; and the 
maximum size of the PUT logical record 
(LRECL+l+lS)/S.8. After calculation of 
logical record size and count limit, a loop 
is performed to initialize N skeleton 
DEeBs. 

Now the N IORCBs are initialized in 
their half pages. The fixed area of the 
first IORCB (at the beginning of the first 
full page beyond the DEB page) is built. 
Since each of the other N-l IORCBs is to be 
built in the same manner as the first, the 
fixed area of the first IORCB is moved to 
these other N-l IORCBs, which are located 
at successive half-page boundaries follow­
ing the first IORCB. 

Next, the fields in the MSAM portion of 
the DeB are initialized. The DeB pointers 
to the last, the current, and the user's 
DECBs are set, and the fields indicating 
the number of logical records and the 
return code are both set to zero. A flag 
is set in the DeB to indicate that the next 
GET or PUT issued will be the first on this 
data group. 

The DeB macro field is then tested. If 
it specifies PUT, the OOMSAM PUT VCON and 
RCON are set into their respective fields 
in the DCB, and unused VCONs in the DCb dr e 
set to full words of hexadecimal .Fs. I: 
the records are fixed length, the address 
of the current logical record is computed 
as the beginning-of-buffer address plus the 
number of control bytes. If the records 
are variable length, a test is made for an 
RJE task. If RJE, the address ot the cur­
rent logical record is set to the 
beginning-ot-buffer address plus the number 
of control bytes plus 9. If not RJE, it is 
set to the beginning-of-buffer address plus 
the number of control bytes plus 4, and the 
block control bytes (LLBB) are initialized 
to X'OOOq'C'bb'. 

Ii the DeB nBC!" field sr.el~ifl.€D (;l:.-i', 
the OOMSAM GET \iCDN ilnd RCON are ~"'t L,t-.o 
thel.r respective fields in the DCi],. and 
unused VCONs are Si\:'t to full words of hexo-· 
decimal Fs. 

Control is ·t.he;. retu;::ned t.o O~Jt;n Common. 
There is no return coot', 

The Set. Unit Re::0rd (SE:l'URJ _1:1:>1.:,\: i He spe·­
cities the unit record configul:·ation h)r a 
local or remote printer or a card punch. 
It is called as the result of a user­
initiated SETUR maero instruction, indicat'" 
lng how a device is to be set up tor a job. 
If the device is not already co:ccectly set 
up, the SETUR routine requests an 0pEl:atol;­
to set the device as specified by the Olden, 
and sends the user return codes indicating 
the results. (See Chart AJ.) 

Attributes: Privileged, reen\:rar.t_, Lead-­
only. public, system, nonrEccursive, 

E:ntry Points: 
CZCMDI -- Primary entry point er.tel:ed.dU:. 

type-lor type-2 linkage. 

CZCMD2 -- Asynchronous entry pOint entered 
with type-2 linkage. 

CZCMD3 -- Synchronous entry point entered 
with type--l linkage. 

Input: 
For entry at CZCMD1. register 0 contains 

the address of the unit record device 
setup parameter and register 1 contains 
the DCB address. 

For entry at CZCMD2, register 1 contains 
the ICB address. 

For entry at CZCMD3, the ISA contilins the 
lORCB. 

Odt .. d_References: CHADCB. CBASDA. CilADEB. 
CHAIOR. CHAICB. CHAISA, CHADBP. 

Modules Cd lIed: 
Woro (CZABQ)-::--= W.t:i te message to 0p!2~atoI 0,; 

console typewriter. 

SIR (CZCJS) 
routine. 

Specify inter~uption 

DIR (CZCJD) -- Delete internlption rO'ltine. 

Open (CZCLA) 

Find (CZCOJ) 
data set. 

Open a data control block. 

Find a member of a VPAl1 

Read (CZCPE) .-- Read a VIS AM record. 

Section 2: OPEN Processing 21 



Close (CZCLB) -- Close a data control 
block.. 

ReSet (CEAAH) -- Reenable a device after 
I/O error. 

Exits: 
Normal --. For ret.urn from CZCMDl reg i ster 

15 contains one of the following c::>des: 

"00 II completed successfully. 

'04" Incomplete. 

'OS' Unrecoverable I/O error. 

'oc' 

'10' 

'14' 

Bad parameter for s'tsuru:, k.ey. 

Invalid SYSUCS k.ey specified 
by SYSURS. 

Intervention required on RJE 
devicE'. 

For retnrn fron; CZCMD2 or CZCMD3 regist­
er 1S contains • 00' • 

Error Abnormal termination via the ABEND 
macro inst.ruction. 

Q2~rati_on: The operation at the three 
ent.ry points is: 

~~IN~J3L_b.:LSZ~~I?.1: SETU'i{ abnormally 
t.ermindt.~'s it the DEB or DeB is invalid, or 
if the DeB has not been opened. 

Sirv::e t.he S.ITUR. ;'{I3CrO instruction is 
issued repetively the user until he 
receives a ret:urn code other thdn .. (incom­
plete), the SE'I'UR routine must determine 
condit.ions existing each time it is 
invoked. The internal return code in 
DCBBCX. in combination with t.he SETUR-in­
prc;,gress switch (DCBSUR). detennines the 
line ot processing to be followed upon 
entry. DCBSUR is set on when SETUR is 
fir'st called for a device; it is set off 
when SETUR has completed its proceSSing, or 
when the invoking routine wishes to notify 
SETUR to stDP its proceSSing when it is 
next qiven control. Processing for the 
various DCBSUR. DCBRCX cow~inations is as 
follows: 

,DCBS{~R 0:tL~DCBRC)Ll:es? than lO_Q.: If the 
device is other than a card punch or a 
~r.inter (or, if an R.}E task, other than a 
> ru;ter). SETUR exits to the caller with a 
:,·'tuxn code of normal completion. 

Fer. a car_9 __ I'...UPch: (DCBSUR off, OCBRCX 
less than 100). If the setup parameter 
card form number is the same as the SDAT 
form number, normal ending procedures are 
followed. The return code is set for norm­
al completion, OCBSUR is set off, and con­
trol returns to the calling routine. 

If the numbers are not equal, a message 
is sent to the operator via WTO requesting 
him to mount the desired form, CZCM02 is 
specified as the asynchronous entry point. 
and SETUR returns to the caller with a 
return code for incomplete while opprator 
response is awaited. 

For a printer (or, if RJE, remot .. print­
er); (DCBSUR c,ff, DCBRCX less than 100). 
lithe setup parameter key is the same as 
the SOAT URS key, the desired confiquration 
is already set, so normal ending procedures 
are followed as with the card punch. 

Otherwise, the DCB for the VPAM'iata set 
containing the member $SYSURS is opened, 
and the four-line SYSURS record is read 
according to tne key given in the setup 
parameter. If an error occurs on a READ, 
SETUR saves the error information in the 
MSAM DCB, closes the SYSURS file. turns 
OCBSUR off, and exits to the caller with a 
return code indicating either "invalid SYS­
URS key· or ·unrecoverable error-. When 
the SYSURS record has been read successful­
ly, the SYSURS DCB is closed and checks are 
made for appropriate printing specifica­
tions and valid SYSURS parameters. SETUR 
abnormally terminates if the conditions 
checked for are not met. 

SETUR now checks that the required print 
form, carriage t.ape, print chain/train and 
density are now being used. If any of these 
need to be changed, an appropriate message 
is sent to the operator via the WTO macro 
instruction, or, if an RJE Task. to the re­
mote operator via an lOCAL macro instruc­
tion, after buildin9 a special lOReB. 
CZCMD2 is specified as the asynchronous en­
try point by a SIR macro instrllction unlesf; 
the task is RJE, in which case t:his entry 
point ..,ill have been specified as part of 
BULKIO initialization. SETUR returns an 
'incomplete' indication while local or re­
mote operator response is awaited. 

If no such changes are necessary. the 
SYSURS form type value is saved in the DCB, 
and SETUR tests for use of the Universal 
Character Set (UCS) feature. 

For ues printing, SETUR abnormally t,er­
I'Itinat.es if the folding code is invalid. If 
the SDAT and SYSURS values for the IJCS Key 
do not match, the DCB for the VPAM data set 
containing the VIP member $SYSUCS is 
opened, and the 5-1ine SYSOCS record 1s 
READ according to the key given in SYSURS. 
If no error occurred on the read opera­
tions, the SYSUCS DCB is closed, an IORCB 
is built to load the UCS buffer and is 
executed with CZCMD3 specified as its post­
ing entry point. SETUR then exits to the 
caller with a return code for incomplete. 
If an error occurred when reading the SYS­
ues record. the sysues file is closed, 

22 Part I: Access Method for BSAM, MSAM, TAM and IOREQ 



OCBSUR is set off, and SETUR returns to the 
caller with d return code for an invalid 
SYSUCS key or data set. VAM error return 
information may be found in t.he MSAM DeB. 

If the SDAT and SYSURS valu"'!', for the 
UC:; K"Y Hldtch, the UC, buffer dOf>f; not helve 
to be loaded. If t.he ues s1'rik(out. 
character is to be used, it is tested for 
validity (ABEND results if 1 t i". lnvalid) 
and converted and saved in the DeB. The 
SYSURS folding code is saved in the SDAT, 
and SETUR proceeds tc; test for printer ali­
gnment (see below). 

If the ues feature is not in use, loading 
the ues buffer is not necessary, so testing 
for print alignment occurs immediately. 

If print alignment is necessary (unless 
an RJE task), an IOReB specifying CZCMD3 as 
its posting entry point is built to print 
50 lines on the printer for purposes of 
alignment. A message is sent to the opera­
t.or via 'rITO requesting him to align the 
printer, and SETUR returns an incomplete 
while operator response is awaited. CZCMD2 
is specified as the asynchronous entry 
point. 

If no alignment is necessary, or if the 
task is RJE (in which case alignment is not 
possible). processing is completed. The 
URS key from the setup parameter is stored 
in SDAT, DCBSUR is set off, any active 
interruption is deleted, (not necessary if 
the task is RJE), and control returns to 
the caller with the return code in register 
15 set to ·completed successfully· or ·com­
pleted with unrecoverable I/O error.-

DCBSUR on. DCBRCX not in the range 100 
through 136: SETUR abnormally terminates 
when this invalid condition occurs. 

OCBSUR on, DCBRCX = 100: ~he operator has 
not yet mounted the requ('sted form on the 
card punch. Until he do('s, control is 
returned to the caller with a return code 
for incomplete, 

OCBSUR on, DCBRCX :0 104: The operator has 
mounted the specified form OIl the card 
punch as requested. The punch form number 
from the setup parameter is therefore moved 
into the corresponding field in the SDAT, 
and normal ending procedures (see above) 
are followed. 

DCBSUR on, DCBRCX = 108: The operator has 
not yet mounted or set the SYSURS-specified 
form, carriage tape, chain/train or density 
on the printer as requested. Control 
returns to the user with a return code for 
incomplete. 

DCBSUR on, DCBRCX = 112: The operator has 
mounted or set the requested form, carriage 

tape, chain/train, and density for the 
printer. The corresponding four SDAT 
tlelds are therefore set from the SYSURS­
~;pecif led va lues, and processing conti nues 
.IS if toe four SDAT fipld:; were alredrly 
.. orr "c"1 y set (set' abovp). 

,(...:.=_::=.._(~ __ DCPRC~":~: [;ETUf,: i~; in ttl" 
.'oces~] of loadinq the UC::; buffer. If the 
0ffer loading operation is not yet com-

plete, control returns to the caller with a 
return code for incomplete. If the loading 
is complete, but the DEB indicates an 
<'rror, DCBSUR is turned off and SETUR exits 
t~ its caller with a message to the opera­
tor and rE'turn codes for "unrecoverable 
Frr01-". If intervent.ion is required, a 
message is sent to the operator with a 
return code indicating incomplete. If 
there is no error, an lORCB specifyinq 
CZCMD3 as its post ing entry p(.)int is built 
and executed, to print the llCS buffer along 
with the ues form of the verification mes­
sage, and control returns to the caller 
with a return code for incomplete. 

DCBSUR on, DCBRCX :~20: SETUR is in the 
process of printing the UCS buffer and 
verification message. If the printing is 
not yet complpte, cont,rol .returns to the 
caller with a return code for incomplete. 
If the printing is complete. but the DEB 
indicates an error, DCBSUR is turned off 
dnd SETUR exits to the caller with a mf'S­
sage to the oI,erator and return codes for 
"unrecoverablf error", If intervention is 
required. the message is sent to the opera­
tor with return code indicating incomplete. 
If there is nc error, a WTO is issued to 
write the EBCDIC form of the verification 
message on the operator's console, and to 
request that the operator verify that this 
verification message matches t.he one pre­
viously printed on the printer. CZCMD2 is 
specified as t.he asynchronous entry pOint, 
and SETUR returns to the caller with a 
return code for incomplete while operator 
response is awaited. 

DCBSUR on. DCHRCX '" 124: The operator hac, 
t yet verified that the print line 
?eared identical on the printer and the 
.sole. Control is returned to t.he caller 

"ith at r"'turn code for incomplete. 

DCR:':::JR on t , DCIRC~= 128: The operator has 
verified the vcs crintinq. The DCS key is 
stored in the SDAT and t,he universal­
character-set bit is turned on in the DCB. 
Processing then continues as if the SDAT 
and SYSURS values for the UCS key matched 
(see above). 

[leBSUR on, DCBRCX = 132: The alignment 
lines are being printed and the operator is 
checking print:er alignment. If the DEB 
j ndicates an error, any active .:Lnterruption 
is deleted; DCBSUR is turned off, and con-

Section 2: OPEN Processing 23 



t! (,1 ret urns tu th.' callf'c with a message 
j t ii; '~'!'Frat(;.r dnd [pturn cu<le tor -unrp-
cuv"Idt11,· error~. It no error j::.. .l.ndi-
('at ed, control returns to the caller w1th a 
I, turn code for incomplete. 

r);~ ,;,~tJR on , DCBRCX "" 130: The operator has 
:;'lccf'ssfully dllgned his print for:n. It d 

[ r lijt IOkeS i(~ c;ti 11 Qutstanoi ng. control 
j'; tt't.l.1nHd tc the caller with a rpturn 
co~e tnr incomplete. It there lS no out­
,:cm·,ling lORCH, processing continue!'-~ as if 
1>0 dligrullent were necessary (see above>. 

LK'i:\:.:UK on DCBRCX '" 140: A start 1/0 error ......... ~.-.-~~ 
10try has failed and DCBRCX is set to 140 
[;;·fo[p Icturnlng from the SE:TUR synchronouE 
, .. ,terruF'tion routine entered dt CZCloID3. At 
t t'f' f)'c'xt. ~;ETUR rr .. acro instruction, the SETUR 
rout.ine, entc'red 'it its main entry flOint, 
w111 detect thi~ condition, set a return 
code of 8 (unrecoverable I/O error) in 
f!'qist.er 15, and return. 

I.J5;E'~l,LF off, DCBRCX rl2,!...1,~.than 100: The 
cal} er has tl.rrned off t.he DeB SETUR-in­
progres", bit in order t.O prematurely t.er­
mlnate the SETUR processing. In this case. 
the ~3DAT carriage tape, chain/train, fold­
ing option, Des key, URS key, and density 
fields are zeroed if the device is a 
t'rinter. 

,\:c;'tNCHRONOUS INTERRUPT ENTRY' AT CZCMD 2: 
SfTt.H';-Ts 'gTven corltrol- at its asynchronous 
em: ry poi nt.. CZCMD2, when an operator 
response Ian attention interruption caused 
by changing the state of a device from Rnot 
I~ady· to -ready·) is received. 

If. rwit her printer alignment nor 
l.ntervention· .. required retry is in progress, 
IA:::BJ.iCX 1.$ incremented by 4. Otherwise, un­
If'~'s then" is an outstanding lOReB or error 
indicated, d RESET will be issued and an 
HX.'AL svc executed. Then, unless pri nte r 
alignment:~ is in progress or the task is 
«.lE, the llit_erruption routine wi 11 be 
deleted. In all cases, control returns to 
~!1e caller with a return code of 0 in 
I'('qisteI' }'). 

SYNCHRONOUS INTERRUPTION ENTRY AT CZCMD3: 
The !C;ynchr-:-onous ent.ry point of SETUR is 
qiven cont .. rol by the task monitor when the 
J /0 act i vi t.y associat,ed with an IORCB 
term~nates .. 

Errors occurring during the I/O acti vi ty 
~;111 remit in either no retry or limited 
retry, depending upon the type of error. 
Any t inal error is recorded in the DEB. 

If a unit check or unit exception is 
Jr,dicated when alignment is in progress, 
but no intervention is required and no 
,~rrors are indicat ed, DCBRCX is incremented 
by 4 to indicate completion of alignment, 
and the number of outstanding IORCBs is 
reduced to zero. Then, as in all cases. 

control returns to thf" task monitor with d 

fPt urn code of 0 in_,egister 15. 

In an RJE task, if a unit chec~ with 
int~ervention required is detect.ed, a return 
code of 20 will be placed in the DECB for 
reference by BULKIO. If, for an RJE task, 
a unit check is not detected but a unit 
('x(,ppti on or incorrect length is detected, 
"pt -uf' for ret.ry after continuation is spe­
cit ip(j and return is made to the Task Mon­
it"l. ITh .... n~lT'ote operator must feed in a 
CO:,TINUE card for t_he Job to cont inue; thi::o 
will cause the next entry to be dt the 
asynchronous entry roint. CZCMD2.) 

TAM PROC£~,SING -- -,,------_. 

The follo\oiing routine is used with T<'r­
lrinal Access Mpthod CTAJlJ) proces~:ing. 

In continuing the open proces!;ing from 
Open Common, TAM Open is called 1:0 perform 
additioT2l opening functions for terminals. 
This includes buildim control blocks and 
providing buffer areas for initi.lting com­
munications wi th a termina1. TAN Open then 
returns to open Common except wh'~n an 
abnormal end is required, in whi<::h case it 
goes to ABEND. <See Chart AK.} 

Attributes: Reentrant. resident in virtua 1 
~torage. closed, read-only, privileged. 

Entry Point: CZCYAI -- Entered by type-l 
linkage. 

Inpu~: When this routine is entered, 
register 1 contains the address of the fol­
lowing parameter list: 

Word 1 -- Address of the current DCB being 
opened. 

Word 2 -- Address of the associated JFCB. 

pata References: CHADCB, CHATDT. CHASDA, 
CHADEB, CHATOS. 

Modules Called: 
Write (CZCYM) TAM write. 

Chp~k (CZCRCJ Check. 

VMA (CZCGA) -- Get virtual storage. 

LVPRV (CZCJL) -- Leave privilege mode. 

WTO (CZABQ) -- Write to operator. 

ABEND (CZACP) Abnormal task termination. 

ADDEV (CEAAC> Add device to task device 
list. 

RMDEV (CEAAD) Remove device from task 
device list. 

24 Part: I: Access Method for SSM. MSAM. TAM and IOREQ 



Exits: 
Normal -- Normal RETURN to calling routine. 

Error -- ABEND macro instruction. 

Operation: TAM Open initially saves the 
general registers, gets the TO~ page and 
examines the numoer of DCBs that were 
opened for a given terminal. 

• If this number is equal to 0, the ter­
minal definition is checked. 

• If this number is greater than 0 and 
less than or equal to 255, TAM Open 
continues the processing by updatin9 
the count at DeBs in the SDAT. 

• If this number is greater than 255 (the 
maximum number of opened DeBs allowed 
for a terminal>, TAM Open branches to 
ABEND. 

The terminal is checked for definition 
and type when the first DCB is opened for 
this terminal. 

• If the terminal is defined, TAM Open 
continues the processing by updating 
the count of DCBs in the SDAT. 

• If the terminal is not defined this 
rout.ine branches to ABEND. 

• If the terminal is defined and is eith­
er a 2741 or a 1050, the system must 
determine which of the two terminal 
types is involved. This determination 
is made by issuing the LCD macro 
instruction. 

TAM Open issues a GETtJ'AIN. macro instruc­
tion to obtain one page of virtual storage 
for the data ext.ent block (DEB), and the 
terminal operational status table (TOS) 
which includes the I/O request control 
block (IOReB). Pointers are set up between 
these blocks and blocks that were created 
befon' TAM Open, and are illustrated in 
Figun· 4. The purpose of these pointers 
between TAM Open allocated blocks and pre­
viously existing blocks is to facilitate 
their use by all TAM routines under normal 
and abnormal conditions. 

DEB virtual storage, after being ini­
tially allocated during TAM open, has the 
following pointers set and data moved: 

(A) The DEB is pointed to by the DCB. 

CB) The DEB points to the DCB and the 
fDAT. 

(e) The DEB points to the SDAT terminal 
information. This SDAT terminal 
information pointer is moved from the 
J FeB. 

(Q' DCB 

~ ____ ..J(A) 

'IORCS 

,-----1 • DE B t-__ ...J B 

Terminal 

L-__ ~ Informolior 

I 
I 

~~'~_~_JF_C_B ____ ~t-~ 

(Q) Blocks creoled before TAM OPEN 

----... 
Blocks for which TAM OPEN allocotes 'poee 

Pointel"S existing before TAM OPEN 

Pointe" set up during TAM OPEN 

Doto moved during TAM OPEN 

Parameter I is! pointel"S 

Figure 4. TAM Open: DEB and TOS St.orage 
Allocation and Point.erc3 

(D) The SDAT terminal infonna t ion j s 
loaded into the DEB. This tern·inal 
information is loaded into the DEB. 
This tenQinal information is u~ed by 
t.he TAM Read/Write and TAM routines 
and includes t.he b,rminal type, cen­
trol unit type, data adapter and model 
code of the terminal. 

TOS virtual stora'Je is allocated by Ti\'M 
OPEN and is point.ed t.o by the DCB. TAM 
Read/Write uses the TOG area to build the 
channel command words. It is also used by 
TAM Read/Write, TAM Post:ing, and TAM Open 
for cOllUnunication of common informat ion. 

Processing ends with t.he terminal DeB 
open count in SOAT incremented by 1 for 
this current DCB and a ret. urn to OjJen 
Common. 

Section 2: OPEN Processing 25 



!,_:.,;i"~ .~H0CESSING 
-~--,.--~---

r~ following routine is used with 
I /Out_put Request (lOR) processing. 

in continuing the open processing from 
--';;Hrur;on. lOR Open is called to allocat.e 

,"',TO;: To for cont: rol blocks and compl e1:e the 
r,.qu);: eli fields in the DEB to allow t.he 

I)cessin] of the IOREQ macro instruction. 

~CH ~)p0'n t.hen Ltc'turns to Open common 
:cp;-_ :';ncn an abnormal end is required, in 

\.,. '._Gn~a:;e it goes to ABEND. (See Chart 

REentrant, resident in virtual 
l()c;<:'d, nonrecursive, read-only, 

.: ':t\llletJt~:d <-

czeSCI -- Entered with type-l 

When this routine is entered, 
er 1 contains the address of the fol­

':' i,,,r<Hueter list: 

Address of DCB being opened. 

Address of associated JFCB. 

Addn~,.;s (of workpage obtained by 

CHAceB, CHATDT, CHASDA, 

<'FC'_"" (CEAQ/j) -- ChecK protection class. 

;.", "",'1 '''- Return to calling routine. 

El~-U!.' -- ABEND macro instruction. 

lOR OPEN sav€s the general 
~2~~st2rs. Tests are then made to check 

D 'The lORE'.! facility is allowed on the 
device, by check.ing t.hat the SDAIOR 
field in SDAT is equal to one. 

" The DCB ~dentification is valid, by 
checking that the DeBID identifier is 
eq ual to .%.~. 

.. The TD'!' indicates that the IOREQ faci­
lity is specified in the DO command 
fTDTDSV=RX). The DCB was previously 
checlH,d in Open Common (DCBDSO=R.X) 
which called for lOR Open. The data 

,> 
set organization requirements must be 
specified at data definition time only. 

• The user-supplied NCP parameter, in the 
DCB macro instruction, is not greater 
than the maximum (DCBNCP=99). If the 
user did no't set a value, or set a 
value of zero, d value of 1 is 
inserted. 

• The volume is not public, as ~ndicated 
by the volume public flag (TDTV1=O) not 
being set. IOREQ can only be used on 
PI' i vate volumes. 

An ABEND exit is taken if any of the 
above error conditions occur. Processing 
continues by caluclating the area needed 
for the DEB plus addit.ional cont.iguous 
bytes for the lORCB. The length of the DEB 
is set to contain a common area plus ext.ra 
st.orage for each NCP specified. This 
amount is rounded to a multiple of eight so 
that the contiguous bytes to build the 
IORCB originate on a doubleword boundary. 

lOR Open then requests, with a GETMAIN 
macro instruction, one page of virtual 
storage for DEB and IORCB to be used by 
IOREQ and IOREQ Posting. This area is ini­
tially zeroed. 

DEB virtual storage, after being ini­
tially allocated during lOR Open. has the 
following pointers set and data moved 
(refer to Figure 5): 

(A) The DEB is pointed to by the DeB and 
JFCB. 

(B> The DEB points to the DCB and JFCB. 

(C> The DEB points to the IORCS. 

(D) The DEB points to the SDAT address 
and device address information. 
These SDAT information pointers are 
contained in the JFCB. 

(E) The JFCB data type code information 
is moved to the DEB. 

Some other DEB fields listed below are 
also completed: 

~ The identification field (DEBID) is set 
to • (. 

• The size field (DEBSIZ) is set to DEB 
area size • 

• The IOREQ Posting VCON (DEBPSV) is set 
to IOREQ Posting entry point and the 
RCON (DEBPSR) is set to IOREQ Posting 
PSECT address. 

26 Part I: Access Method for BSAM, MSAM, TAM and IOREQ 



(E 

(B) 

DCBDEB 

- DElmC8 

)~ OE8eLl (Data Type Code) 

~ 
~ 

(0),--------- DEBSDT (SOAT Add') 

I (0) r - - - - - - .. DE6SYM (Sy"" Dev. Add.) 

~ I I 
(S) I OEB.'FC 

~ I I 
(Cl 

I I DE!jWRK 

~ ! I I ~ I I L ~ I ! 
I 1 

~ I I TDTDfB 

I L _______ 
I 

TOTtO,I Un SOAT) ~ 
~ 

L _______ -:- ____ 
TOTIOI +2 (To SOAT) 

~ 

~ 'V . 

----.. 

TDTDEV 

Porometer list point" ... 

OEB point"I'S, ta o!,d from DCB and JFCB, and to IORCB 

SOA T poinfers from JFCa moved to OEB 

0..10 Type Code informotionmoved from JFCB to DEB 

DCB ~ --r-----l ~ 
DE8 ". (A) 

~ l .... __ w_
o
_'''_PO_9''_---' 

.ORCS 

JFC6 ~ 

~ 

Figure 5. lOR OPEN: Basic Pointers and Data Moved from JFCB to DEB 

• The number of chilnnel programs (NCP) 
field in DEB (DEBNP) is set to the 
value in the DCB field (DCBNP). 

• The DEBDVC field is set with a hex code 
indicating the device (magnetic tape, 
direct access, unit record). 

• The DEBUNT field is set with a hex code 
indicating the unit type (2400, 2311, .... ) . 

• The maximum number of IORCBs allowed 
field in the DEB (DEBIO> is set to the 
maximum in the SOAT field (SDAMRB). 

• The DCB protection class field in the 
DEB (DEBCLS) is set to the appropriate 
value. It is as obtained as a result 
of an SVC. generated by a CKCLS macro 
instruction. A final check on this 
value within lOR Open assures that the 
user is privileged if the access to the 
volume is p~ivileged. 

• A pointer to the DECB field in the DEB 
(DEBOEL) is not completed during lOR 
Open but during IOREQ. However, the 
address of DEBDEL is stored in a DeB 
field (DCBDEC) durinq lOR Open. 

A final check is made of both the DeB 
protection class and the type of access to 
the device. Then, 

.. If the DCB protect.ion class is not pri­
vileged (DEBCLS+l) and the type of 
access to the device is privileged 
(TDTVPY=l). an ABEND exit occurs. 

• If no DCB protection class can be 
determin,~d, an ABEND exit occur~i. 

• If neither of the above criterla are 
met, a return to Open Common occ-urs. 

Section 2: OPEN Processing 27 



SECTION 3: READ/WRITE 

Kl:.AD/'.-iRITE PROCESSING 
~----~.-

:'l1i5 se(.~ ion describes the aSAM Read and 
Writ~e, MSJ\M Get, Put, Read and Write, TAM 
Read clnd Wnte, and IOREQ rOll,tines. 

';'ne Read/Write routine creates an laReS 
which contains the appropriate channel com­
mands to perform the I/O operation ",hich is 
U!qu;:':c;ted by the BSAM READ or WRITE macro 
instruct,l.on. The IOReB is passed to the 
I/O supervisor so the channel commands may 
be expcuted. (See Chart B.A.) 

Attributes: Reentrant. resident in virtual 
~torage. closed, read-only. privileged, 
nonrecursive. 

CZCR.'\S -- fI.ain entry point to the Read/ 
Write routine; ent.ered 't:rj t.ype-l or 
type-2 linkage. 

CZCRDS -- Entry point for building an IORCB 
i Bui Id subrout~ ine); entered by type-l 
linkage. 

CZCRE:S «- Entry point for adding the chan­
nel program (Construct subroutine); 
entexed by type-l linkage. 

lnput: Register 1 contains the address of 
a DECB containing all information which was 
coded as parameters of a Read or Write 
instruction. 

Data References: CHASDA, CHAIOR. CHADCS, 
CHADEB, CHADEC, CHAVPS. 

Modules Called: 
AWI\IT (CEAP7) Await an interruption. 

IOCl>.L (CEAAO) 1/0 call. 

CKCl,.;" (CEAQ4) Check protection class. 

ASCII Translation and Conversion (CZCWA) 
When an ASCII Write request is 
encountered. 

E1f:.ij:S: 
Normal _.- Ret.urn to the calling routine. 

Error -- Abnormal termination of task by 
ABEND macro instruction. 

Operation: The main entry point processing 
at CZCRAS is as f0110ws: 

During open processinq, a queue (f 
zeroed DECB pc-inters is established in the 
DEB for the data set. The main routine 
stores the address of the input DECIl point­
ers in the reserved pointer area. 

When this routine is entered, 1f the 
passed DECB is the same as the first DECE 
in the queue, it is the Check rOllt_ill€ that 
has ent.ered the Main rout}.ne to havp a read 
or write request reissued. 

If entry was not by Check, the IH'W DECB 
is inserted into the queue if there is 
room. The "in use" and "intercepted'" flags 
are set on in the new DECB. Should the 
-number of IORCBs allowed 8 count permit 
another 10RCS to be given to the I/O super­
visor, a search of the queue of DECBs is 
initiated to find the first request to be 
fulfilled. If that particular DECB is 
associated with an ASCII Write request that 
",as intercepted by the I/O supervisor, a 
call to the ASCII Translation and Conver­
sion routine (CZCWA) is made to put. the 
record back in EBCDIC format. Then the 
main rout.ine proceeds to have the lOReB 
built by the Build routine and filled in by 
the construct routine. Successful c<m­
struction of an lORCS will then permit the 
main routine to execute the lOCAL SVC which 
requests the 1.10 supervisor to perform the 
I/O operation. 

The build entry point processing at 
CZCRDS is as follows: The Build routine 
generates a skeleton IORCS and stOles sev­
eral parameters in it. 

Build returns to the Main routine ",hich 
stores the address of the SAM Posting rou­
tine in the IOReB, and branches to the Con·' 
suuet routine to complete the IORes by 
constructing a channel program in it. 

The construct entry point processing at 
CZCRES is as follOWS: The construct rou­
tine is passed a pointer to the sk.~leton 
IORCB which was generated by Build The 
Construct routine must comp1ete th,~ lOReE 
so that it may be used by lOCAL. Fami­
liarit.y with lOCAL as presented in .:?'yste..!!l 
Programmer's Guide, Ge2S-200S, is re~lired 
to understand the logic of construct • 

The first decision construct mn::;t maKe 
is whether to use the lORCS as a b'lffer or 
to build a page list which points 'W the 
user's data pages. If the data exceeds 
1800 bytes, the IORCB cannot be used as a 
buffer, and a page list must be 
constructed. 

28 Part I: Access Method for BSAM, MSAM, TAM and IOREQ 



For 7-track tape the channel program 
which is generated consists of two CCWs. 
The first CCW is a Mode Set command which 
sets the density, data converter, and tran­
slator as specified in the tape option 
field in the DeB. The second CCW is the 
read or write command. For 9-track tape, 
Just the one CCW for the read or write is 
required. 

For an ASCII write request, ASCII Trans­
lation and Conversion is called to transl­
ate the data to be written from EBCDIC to 
ASCII and convert variable-length records 
from V to D format <standard IB"] to Ameri.­
can National Standard). ASCII output may 
occur only to 9-track tape. 

For direct access, the channel program 
is more complex. The generated channel 
program depends on whether the requested 
operation is a read or write, whether track 
overflow is specified, and what the record 
format is. 

The channel pIogram for a DA read is 
generated as follows. A full DA device 
address is in the form bbCCHHR, where bb is 
two bytes which indicate bin number (data 
cell), CC is two bytes which indicate 
cylinder number. HH is two bytes which ind­
icate track (or head> number, and R is the 
record number on the track. The first CCws 
are two Seek commands to the next I/O 
address (bbCCHH) which is found in the DEB. 
The first Seek command is software chained 
because a seek takes a relatively long time 
to execute (arm movement may be necessary). 
and hardware chaining of commands makes the 
channel unavailable to other tasks. There­
fore, software chaining will cause the two 
seeks to be executed without locking other 
users out of the channel. The second seek 
command is command chained to tbe rest of 
the CCws in the channel program, so execu­
tion of the second seek gives the task 
exclusive control of the channel until the 
execution of the channel program is con­
cluded. The next CCW is a search for the 
identifier CCHHR, which will position the 
DA device to the key field of the record. 
A TIC command follows the search to cause 
the channel program to loop until the reco­
rd is found. The Read command (read key 
and data) is next in the channel program 
and it is followed by a NOP command. 

When reading format-U or V records, it 
is not known where the next record to be 
read is. This is because the number of 
bytes in the current record is not known. 
If the end of the current record cannot be 
calculated, the beginning of the next reco­
rd is not known. So when reading format-U 
records, the search command is directed to 
the last I/O address. Then three CCWs are 
generated: read-no transmit. read. and 
NOP. The READ-no transmit causes the last 

record to be passed by the reading head, 
and the read key and data causes the 
correct record to be read. 

The channel program for a DA write is 
generated as follows. Using the last write 
address from the DEB, t_he first four chan­
nel command..s are generated: seek, seek, 
search, TIC. The reason for using the last 
I/O address is that it is known where the 
last record was written, but if format-U 
records are being written, it is not known 
where the next record should go. Then a 
read-no transmit, followed by a write­
count, key. data is generated. The Read-no 
transmi t brings the head past the last 
record which was written and then the WRITE 
puts the new record on the volu.me sequen­
tially following the previous record. If 
track overflow is specified and the record 
to be written is larger than the room 
remaining on the current track, the record 
is begun on the current track and continues 
on the next sequential track. However, no 
record can be split between cylinders on a 
DA volume. 

As in the channel proqram for a DA read, 
the write channel program is ended by a NOP. 

The Constl:uct. routine uses closed sub­
routines to help in the completion of the 
IORCB. They are: 

ENTCCW 

SCHCCW 

SETPAG 

NXTIO 

Enters a COW into the lORCB. 

(;enerates SEEK, SEARCH, and TIC 
CCWs, and puts them in the lORCB. 

!jets up a page list in the 10RCB. 

computes the MBBCCHHR of the nex.t 
record t.O be written on a DA 
volume. 

InterceptiH~ Read or Write Reguest: The 
DECB which is passed to the SAM Read/Write 
routine contains an int_ercept flag set by 
~;AM Read/Write when the I/O request. is not 
actually initiated. (lOCAL is not given 
the lORCE built for the DECB). 

There are several reasons why the I/O 
request of a particular DECB may not be 
initiated. For example, if a read request 
is given and the current volume was used up 
on the preceding read, the DECB is set as 
iptercepted and the E)V request flag in the 
DEeB is set on. 1 f a wr i te reques1: is 
given and there is no more room in the cur·­
rently allocated extents, the same flags 
are set. If. the DECBs request I/O on the 
same devices anu the first one encounters a 
hardware error condition, the intercept 
flags in the remaining DECBs are set on sc 
the I/O will not be initiated lIDless the 
hardware error is cleared up. If this were 
not done, each DEeB I/O request could run 

Section 3: ReadFwrite 29 



into the same hardware problem and a per­
nldnent ex·rOT would be found. not once, but 
IIld ny times_ 

When a DECB is operated upon by the 
Check routine, the intercepted flag is 
tested. Should there be no serious error 
condit.ions posted in the DECB, the Check. 
routine, in addition to performing other 
services, will reinitiate the I/O request 
by passing the DECB back to the Read/Write 
routine. This I/O request is given immedi­
ate attention by Read/Write because it is 
the first entry in the queue. 

DOMSAM blocks and deblocks logical reco­
rds int.o system buffers when GETs or PUTs 
are issued. invokes MSAM READ/WRITE to 
bnild and execute the IORCB necessary for 
I/O, and provides t,he user with a return 
code describing the outcome of his GET or 
PUT request. The routine runs in the same 
privileqe as its caller. (See Chart BB.) 

Attribut.es: Read-only. public, reentrant. 
nonrecursive, assumes privilege of caller. 

Ent!:L!'oints: 
CZCMEl ~~ Entered upon issuance of a GET 

macro inst.z:u(.'1::ion which generates type-l 
linkage. 

·':ZCME2 ... , Entered !lpon issuance of a. PUT 
macro instruction wnich generates type-l 
Li.nxage. 

Inout-
~te)'( 0 -- Address of user-specified 

area for move mode GET or PUT. 

Register 1 -_. Address of the DeB. 

pata Ref erences = CHADCB. CliADEB. CHADEC, 
CHADBP, CHAISA. 

Modules Calleq: MSAM Read/Write (CZCMF) -­
To read or write records. 

Exits: 
Normal -- Followi~ G~r. register 15 con­

tains one of the fallowing return codes: 

'00' Normal completion. Register 1 points 
to record obtained in buffer if loc­
ate mode, user area if move mode. 

'04' Request incomplete. 

'OS' Unrecovexable I/O error. Register 1 
points to (failing) record in buffer 
if locate mode, in user area if move 
mode register 0 points to user DECB. 

'oct End of data set reading. (NO record 
obtained). Register 0 points to user 
DECB. 

'10' Control card sensed rPdd.l.nq. Reqist­
er 1 points to cont.rol (',H'd in huffc>r 
if locate mode, user dreCl if mov., 
mode. Register 0 points to user DECB 

'14' Intervention is required in an RJE 
task. because the line is discon­
nected. (No record is obtained.) 

Normal -- Follc,winq a PUT, register 15 con­
tains one of the following return code~,: 

• 00' Normal completion. Register 1 point.s 
to next available location in buffer 
if locate mode, to user area if IHWP 

mode. 

'Ol~' Request incomplete. 

'OS' Unrecoverable I/O error. Register 1 
points to buffer of record that 
failed to be written. Register 0 
points to user DECB. 

'OC' Intervention is required in an RJE 
task because the line is discon­
nected. (No record is written) 

Error -- ABEND macro instruction is used 
for abnormal end termination. 

Operation: . OOMSAM has no PSECT. It uses 
the first 19 fullwords of the DEB work page 
as its standard register save area, obtains 
adcons from the DEB page (CHADBP), and 
maintains switches and other variable 
information in the MSAM portion of the DeB. 
Its work areas are the DEB work page, w-hich 
contains DECBs, and the buffer pages. 

Upon entry to DOMSAM. a transfer point,er 
is set to indicate whether a GET or a PUT 
has been issued. CheCKS are then performed 
to be certain that the DeB and the DEB are 
valid. and that the DeB has been opened. If 
anyone of the three conditions is not met., 
execution is terminated by an ABEND macro 
instruction. If all conditions are met, 
processing is categorized as GET or PUT. 

GET Processing: If the GET macro instrnc­
tion is the first issued on the data group, 
or if the previous GET emptied a buffer, 
the end-of-buffer switch in the DeB will be 
on. In this case, MS~ Read/write must be 
invoked to either prime all the buffers or 
refill the buffer just processed. If prim­
ing is to be done, no IORCBs may be out.­
standing or the return code will be set tc 
indicate incomplete, and a return will be 
made to the caller. 

For each buffer to be filled, the cur­
rent DECB is marked in use (read/write 
requested) and initialized. and MSAM Read/ 
Write is invoked. Upon return from Read! 
Write, the current DECB is checked to see 
if it is the last in the list, and if so, 

30 Part I: Access Method for BSAM. MSAM, TAM and IOREQ 



its pointer is reset to point to the first 
DECB. If not, the DECB pointer is incre­
mented to point to the next DECD. 

A check is then made to see if all the 
buffers are to be primed, and if so, the 
next buffer is filled by setting up the 
DECB and invoking MSAM Read/Write as 
before, until the last DECB has been pro­
cessed. At that paint, the current. DECB 
address is reset to point to the ;first 
DECB. 

The OCB pointer to the current buffer. 
page is set to the address of the buffer 
associated with t.h.'> current DEeR. Then the 
DECB is tested for completion, dnd if the 
I/O is not yet complete, control is 
returned to the caller with a return code 
1ndicating that the GET has not been com­
pleted and must be reissued at a later 
time. In an RJE task, if the line to the 
remote device is not connected, the return 
code will indicate intervention is 
required. 

If the DECB is posted complete and indi­
cates normal completion with neither a unit 
check <indicating that a control card has 
been read) nor a unit exception (indicating 
end of data set), the normal completion 
code of zero is set into the DCB for even­
tual use as a return code. The pointer to 
the current logical record within the buff­
er is then set immediately beyond t.he 32 
control bytes in the buffer, and the end­
of-buffer address is computed by adding to 
that address the product of the logical 
record length and number of records that 
can fit in the buffer. Following a trans­
mission from a remote reader (RJE task), 
this end-of-buffer address is adjusted 
based on whether an odd or even number of 
logical records were read into the buffer. 

If the DECB is posted complete without 
errors, but unit check or unit exception is 
indicated, or if the DECB is pm;ted com­
plete with errors, the appropriate return 
code is set into the DeB, and a copy of the 
current DECB is moved to the user's DEeB 
area. In this case, the end-of-buffer 
address is computed as the byte immediately 
following the last normal input record by 
adding the displacement-to-error field of 
the DECB's modified CSW to the beginning­
of-buffer address. This displacement must 
be decremented by 84 if, in an RJE task, 
only one logical record was read in during 
the last transmission. The current logical 
record address is computed as 32 bytes 
beyond the beginning of the buffer. 

Following this, or if no buffer priming 
or refilling was necessary to begin with, a 
check is made to determine if the current 
logical record is valid by comparing the 
record address with the end-of-buffer 

address. If it is lower, normal steps will 
be taken to get the record for the user. 
Otherwise, one of the unusual conditions 
(end-of-data-set, control card, or record 
with error) exists, and the return code in 
the DeB is set into regio.ter 15 for the 
user. The end-of-buffer and buffer-priminq 
switches are set, the count of logical 
records within the buffer is set to zero, 
and the pointer t\) the current DECB is 
reset to point to the first DECB in the 
list so th2t the next GET issued will re­
prime all the buff"!:.··. If the unusual con­
di tion is an end -fJf -dd ta set, there is no 
record to be obt.ained for the user, and 
control is returned immediately. However, 
if there is a record beyond the buffer end 
address (either a control card or d record 
with an error), it is returned to the user 
as des cribed below. 

When the current logical record is 
valid, it must be returned to the user. If 
the GET is in locate mode, the current 
record address is set into register 1; if 
the GET is in move mode, the record is 
moved to the user-specified area whose 
address was supplied in register O. The 
current record address is then incremented 
by the logical record length to point to 
the next record, and the count of logical 
records already processed within the buffer 
is incremented by one. If the record 
address is no longer less than the end-of­
buffer address, or if the count of logical 
records is 100, t.he current buffer is com­
pletely processed. In that case, the end­
of-buffer switch in the DCB is set on to 
indicate that end-of-buffer processing is 
necessary before the next GET can be com­
pleted, and the count. of logical records is 
reinitialized to zero. Whether or not this 
GET emptied a buffer, the return code is 
set to zero, signifying normal completion 
of the GET, and control is returned to the 
caller. 

If. upon entry t.o DOMSAM, t.he end-of­
buffer swit.ch is on. and if a FINISH macro 
instruction was previously issued, edits 
and initialization largely of the type peL­
formed by MSAM Open are required before 
MSA.M Read/Write may be invoked to reprime 
all the buffers. If any permanent erron, 
have occurred. or if any IORCBs remain out­
standing, the t.ask is abnormally t.er­
minated; if not, a flag is set in the DeB 
to indicat,e that t.hic; is ttle first GET 
issued on the data group, the buffer­
priming switch is set on, and the FINlSH­
just-issued flag is turned off. 

The record format is checked to be cer­
tain it is not variable. If variable, the 
task is abno.t:mally t.erminated since vari­
able format records are not supported for 
the card reader. If not variable, the 
lIk'lximum allowable record length is cal cu-

Section 3: Read/Write 31 



lated, and compared with the value speci­
fied by the user. If the user-specified 
value is not greater than zero and less 
than or eq\~l to the computed maximum, the 
task is abno.rmally terminated. It the 
record length is acceptable, the count of 
logical records within the buffer :lS set to 
zero, and the maximum number of logical 
records per buffer is computed and stored 
i.n f>ach DEes. The current DECB po.!.nter is 
set to point to the first. OECB in the list, 
the <1ciUlowledgement (ACID switch is initia­
lized for RJE, and the routine proceeds 
with buffer priming as described above. 

PUT Processing: Initially, for both local 
dnd RJE JObs. if the PUT before th.e current 
one was not in locate mode, and if no end­
of--buffer processing is required, the fol­
lowing processing occurs. 

The h)ngth of t,he record to be PU'I' is 
obtained either from the DCB, or, if the 
Lecord is variable format and the PUT is in 
move mode, from t:he length control bytes in 
front of the record. If variahie. the 
length is checked for validity -- at least 
equal to the number of control bytes (0, 1, 
4. or S). but no greater than the maximum 
for records of its type. An invalid length 
causes abnormal termination of the task. 

For local devices, a record of the 
obtained length will not fit in the space 
remaining in the buffer, end-oi-buffer pro­
ceSSing must be done before the current 
record can be processed. and control is 
transferred to a section for invoking MSAM 
Read/Write. If the maximum size record 
will fit within the buffer, and if the PUT 
is in locate mode. the current record 
address is set into register 1, the return 
code is set to zero to indicate normal com­
pletion and control is returned to the 
user. If the PUT is in move mode. the 
record in the user-specified area whose 
address was supplied in register 0 is moved 
to the current buffer location. 

For RJE (which operates only in locate 
mode), buffering is handled differently 
than for local devices. Logical records 
are built into transmission control blocks 
(TCBs) aligned on halfword boundaries 
within the page buffer. The page buffer 
and DECD work page both contain appropriate 
pointers and flags (current TCD pointer, 
final TeD flag, etc.). The address pointer 
returned to the caller does not point to an 
area in the page buffer itself. but rather 
to a 144-byte area within the DECB work 
page. DOMSAM then processes the record 
from this location, moving it to the cur­
rent TCB in the page buffer after it has 
been processed. On norwal completion, the 
address of the record buffer in the DECB 
work page is returned to the user in 
register 1. 

Additional processing depends on whether 
or not the TCB is filled. whether it is the 
final TCB in the page buffer, and, if not, 
whether therE is sufficient spi'lce in the 
buffer for another· TeB ot maximum (404 
bytes) or minimum <278 bytes) length. 
Appropriate flags are set; if an end-of­
buffer condition is .reached, MSAM Readl 
Write is called. If the R.JE device has the 
multiple record feature (MRF). seven reco­
rds may be placed in a TCB; otherwise, two. 
I f necessary, the • Previous Put in Locate 
Mode' flag is set on before returning to 
the user. 

If for both local and RJE. the previous 
PUT was in locate mode, the record subse­
quently built in the buffer requires cheCK­
ing. If variable format records are being 
used, the length is checked for validity as 
above and also for being no greater than 
predicted. If the DCB indicates that this 
is a form-sensitive file for a local or re­
mote printer. the control character is 
tested. A machine code control character 
specifying "skip to Channel 1 after print­
will trigger the ending of the current 
buffer after this record. A FORTRAN CASAl 
control character specifying ·skip to chan­
nell before print e will result in the new 
page switch being set in the associated 
DECB as this is the first record in the 
buf.fer. or will trigger processing to end 
the wffer in front of this record if it is 
not. 

For RJE tasks, RJE transmission control 
characters are inserted into each record. 
and a dummy record is moved to the TeB 
where this is the first PUT after OPEN or 
FINISH, or if this is the first record in 
the buffer and it has FORTRAN (ASA) control 
characters. Trailing blanks are sup­
pressed: error characters are translated 
from the record; if tabbing is required. 
tabs are inserted in the record; and the 
FORTRAN (ASA) or machine control character 
is translated to a 2180 control character. 
The processed record is then moved from the 
1~4-byte record buffer in the work page to 
the current TCE in the page buffer and the 
TCB lengtb is adjusted. If FINISH is in 
progress, an end-of-transmission TeB is 
added to the buffer. 

In all cases, once the logical record is 
satisfactorily placed in the buffer, the 
current record address is incremented by 
the record length to point to the next 
available space in the buffer. If variable 
length records are being processed, the 
t.otal block length is also incremeented by 
the record length. The count of records 
within the block is incremented by one, and 
if it has reached the output buffer maximum 
of 200, the end-of-buffer switcb in the DCB 
is set on so that the next PUT processed 

32 Part I: Access Method for BSAM, MSAM, TAM and IOREQ 



wIll caw.t' ~'!ld-,)t llutt('[ [lr()CI':'~iin<J to 
occur. 

Then, if pro(:('ssing 01 a. movf'>-mode- PUT 
has just been completed. control is 
returned to the user with a return code of 
zero indicating normal complet_ion. If, 
however. the prf,vious processi ng has corn·· 
pleted checking of a previous lecate-mode 
POT, control is t_ransferred back to the 
beginning of the PUT routine. where the 
end-of-buffer switch is tested before pro· 
cessing the current PUT. 

When a buffer must be ended and written 
out. before the next record can be pro­
cessed, the appropriate switches are set, 
and control is transferrej to a section for 
invoking MSAM Read/Write. This section 
will check to see if Read/Write has already 
been invoked, and if so, will proceed to 
test the appropriate DECB for completion. 
If complete, control is returned immediate­
ly to the caller (MSAM FINISH). 

If Read/Write has not yet been invoked, 
and if a FINISH macro instruction was not 
issued just prior to this PUT, the current 
record count is set into the DECB and then 
reinitialized to zero. The DECB is marked 
read/write reque~ted, and ~$AM Read/Write 
is given control. Upon return from Read/ 
Write, the pointer to the current DECB is 
updated to point to the next. DECB, unless 
the current DECB is the last in t.he list, 
in which case the pointer is reset to point 
to the first DECB in the list. The DCB 
pointer to the current buffer page is set 
to the buffer address associated with the 
current DECB, and the pointer to the DECB 
to be tested for completion is set. In an 
rtJE task, TeB flags and pointers are 
initialized in the buffer and DECB work 
pages. 

Once MSAM Read/Write has been invoked, 
the DECB 1S tested for completion. If it 
is not marked complete, the next record may 
not be processed, and cont.rol is returned 
to the user with a return code indicating 
incomplete. Where incomplete because an 
RJE line is disconnected, before returning 
to the caller, a return code is set to ind­
icate RJE intervention is required. 

If the DECB is marked complete, a check 
is made for an unrecoverable I/O error, and 
if one is found, a test is made to deter­
mine if the error was non-permanent and 
already returned to the user. In that 
case. provided no lOR CBs are still out­
standing (in which case a code of incom­
plete will be returned to the caller), MSAM 
Read/Write will be called to output the 
records suppressed by the error, and the 
DECB will be tested again for completion. 
If the error was not already returned to 
the user, the DECB associated with the 

PIlOT is locdt.pd dnd mov~d to the user's 
Dt;CB dH'd. Th..-. add/'f's~; of thp faili.ng 
r"co!'l i~ comr,utpd, dnd contnJl is ret.'.Jn;ed 
to the user with a return code indicating 
unrecovecc;ble I/O error. If t.he proper 
OECB could not be found, it is assumed that 
error recovery is still in progress, and 
control if retur·ned to the user with a 
return code indicatl.nq incomplete. 

If no I/O error occurred and the finish­
in-progress flag is on, control returns to 
the Finish routine. Otherwise, if no I/O 
error occurred, a check is made to deter­
mine if the new buffer begins a new fonn­
sensitive print page. If so, and if FOR­
TRAN (ASAJ control characters are being 
used, the record which should start the new 
page is still tlai Ii ng after the la,;t reco­
rd in the buffer just writ.t.en and must be 
moved to the beginning of the current buff­
er. If the n<'w buffer does not begin a new 
form-sensi ti VE· print page or FORTRAN (ASA) 
control charact_ers are not used, the first 
available location in the buffer is set 
beyond the 32 control byt.'s. If the reco­
rds are variable forma t. ·chis address 
points to the block control bytes (LL) 
which are then initialized to four, and the 
f lrst avai lable locat_ion address is incre-· 
mented by four. For RJE, this address 
pointer is further incremented by 12 to 
allow space for the printer selection 
sequence and various bisynchronous charac­
ters. The address of the first available 
location is saved in the DeB as the current 
record address, and control is transferred 
bdck to the beginning of the Put routine to 
process thE' current PUT. 

If, upon entry to the Put routine, a 
FINISH macro instruction has just been 
issued and end-of-buffer processing is 
indicated, the following edits and initia­
lization, largely of the t.ype performed by 
MSAM Open, are required before t.he Put. can 
be processed. 

If any permanent I/O errors ha ve 
occurred, or if any IORCBs remain ou·tstand­
ing, the task is abnormally terminated. If 
none, a switch is set in the DCB to indic­
ate that this is the first PUT on tbis jata 
group. and the various processing switches 
in the DCB are reset. All DECBs are rein­
itialized. the point.er to the current DECB 
is set to point to the first DECB in the 
list_, and thp current buffer page add.ress 
is s'~t. from t.he current DECB. The record 
format is checked to be certain it 1.S eith­
er fixed or variable, and if it is neither. 
the task is abnormally terminated. The 
current record address is computed as 
described above. In an RJE task, TCB 
pointers and flags are reinitialized and 
maximum and minimum TeB size is set. 
Abnormal termination occurs if the device 
is nei t.her a card punch nor a pr inter. or 

Section 3: Read/Write 33 



it the logical record length specified in 
the DCB is invalid. Ot.herwise, conrol is 
transferred to the beginning of the PUT 
routine to process the first record of the 
new data group. 

?'!SAM Read/Write Routine (CZCMF) 

The MSAM Read/Write routine builds an 
ICmCB, which contains a channel program 
(CC~s) to process an entire buffer page of 
records. It invokes lOS by the lOCAL SVC 
to perform the actual input or output com­
mands. (See Chart BC.) 

.i\ttriJ:!utes: Privileged, read-only, public. 
reentrant, nonrecursive. 

E.J1try PoJnt.: CZG-lFl -- Entry from DOMSAM 
(GEl' or PUT) by type-lor type-2 linkage. 

~.Q£~.t.: Register 1 contains the address of 
the DECB. 

Data References: CHADEC, CHADCR, CHADEB, 
CHAIOR, CBAISA. 

Modules Called: 
DIR (CZC.JD) -- Delet(' interruption routine. 

lOCAL (CEAAO) -- Initial supervisor proces­
Sing of an IORCB. 

SYSER (CEAlS) System error processor. 

R(;set:. (CEAAH) Reset device suppression 
flaq- rout.ine. 

Exi t.S: 
Ncrmal -- No return codes used. 

Error -- Link to ABEND with condition code 
1 and appropriate error message. 

operation: When Read/Write is entered, the 
DCE address, t.he DEB address, and t.he 
address of the buffer page are obtained 
from the DECB. The location where the 
10HCB is to be built is obtained from t.he 
first system cont.rol word of the buffer 
page. Since this buffer page may be in 
Class A (user read-WY~te) virtual storagl', 
d ser1es of checks are made to verify that 
the IORCB address is still valid and has 
not been changed by the user. An incorr.:ct 
IOReB address causes an ABEND. 

If the DEeB passed to Read/Write indi­
cates complpt e with error rather than Read/ 
Write request, d"y outstanding asynChronous 
routine is deleted, the IORCB abnormally 
terminated is reissued immediately at a 
point beyond the command that failed. and 
any subsequent lOR CBs whose DBeBs are 
marked intercepted are reissued. Control 
then returns to the caller. 

If the DECB passed to Read/Write indi­
cates a READ.rwRITE re<]uest. the 10RCS is 
built and executed. The location ot the 
buffer page is placed in the s1ngle page 
list entry. All CCWs created w111 
reference this page list for the address of 
the buffer page. Pointers, counters, and 
the displacemer:.t are initialized. Each CCW 
contains a displacemnt field Which corres­
ponds to the displacement, in its buffer 
page, of the data to which this CCW refers. 
If the CCW does not reference data (for 
example. skip immediate or NOP) , the dis­
placement is the same as for the adjacent 
CCW. The device type 15 tested, and pro­
cessing diverges for local or remote 
devices, and for input or output . 

For local card readers, the data mode 
(EBCDIC or column binary) the stacker bin, 
and the record length are determined from 
the OCB. Two command-chained CCWs are 
generated for each record to be read; a 
read CCW followed by a feed and select 
stacker CCW. 

After the CCWs have been constructed for 
a buffer full of records (count is given in 
the DECB). a NOP wit.hout command chaining 
terminates the CCW list. The length of the 
CCW list and the total lengt.h of the lORcn 
are computed and set in the fixed area of 
the lORCB. 

If this is the first record of a data 
group, or on initial prinung after an 
error, the device is reset for I/O and 
exceptional condition flags are cleared. 
(If not the first record, and an exception­
al condition has been detected on the 
device, the DECB is marked ·posting reis­
sue" if error recovery is in progress, or, 
if not in progress, it is marked Winter­
cepted-, and control returns to the 
caller. ) 

Task interruptions are inhibited while 
the count of IORCBs outst.anding is incre­
mented by 1. Then this lORCB is issued to 
lOS by executing its lOCAL SVC. Control is 
returned to the calling program. 

For remote card readers, an IORCB is 
built consisting of alternating read ana 
",xite CCWs. Each read CCW brings in a 168-
byte tr<lnsmiss ion containing two card reco·­
rds_ With a remot.E' card readpr containing 
the multiple record feature, each read CCW 
will bring in four card records. Following 
each read CCW a t.wo-byt.e write CCW is built 
in the IORCB to transmit to thE' dev}ce ack­
nowledgement of the previous read. The 
write CCW transmi ts bisynchronous control 
characters (ACKO or ACK1) which must 
alternate for successful transmission. For 
purposes of error recovery, the first ccw 
built in the lORCB will be a one-byte write 
containing a negative acknowledgement 

:,4 Part I: Access Method for BSAM. MSAM, TAM and lOREQ 



character (NAK). This will be followed by 
a NOP command. then an initial write ccw 
with an acknowledgement character. The 
start ccw will follow dnd be the first of 
thf> al ternatinq n·ad and write CCWs built 
IO the laRCH. 

A paq" huffpr iii dn HJE: (;J::T opt·ration 
may coot.lin up to 24 transmissIons (48 cdrd 
records). When the maximum number of CCWs 
have been reached (or there arE no more 
records}, a NOP command will terminate the 
command chain. The lengths cf the ccw list 
and of the IORCE are computed and entered 
in the fixed area of the IORCB. 

If no errors ere outst.andio9. acknowled­
gement responses for the write CCHs are 
synchronized. task interrupt~ons are per­
mi tted if necessary, and the IORCB is 
executed via the lOCAL SVC. Control is 
returned to the caller. 

For card punches and local or remote 
p.r.-inters both FORTRAN (ASA) and M control 
characters are supported. The record 
length for fixed length records is deter­
mined from the DeB. Variable length reco­
rds specify their own lengt.h. The length 
field of a variable length record is never 
printed or punched nor is any control 
character printed or punched. Control 
bytes are examined in the buffer. 

If the device is a card punch, one 
punch, feed, and select stacker CCW will be 
generated for each record to be punched. 
If M control characters are being used the 
control character itself is used as the 
command code. It must be a write command, 
ot.herwise ABEND terminates the task. If 
FORTRAN (ASA) control characters are being 
used, the command code is determined by 
combining the DeB mode specification with 
the appropriate extended ASA stacker speci­
fication. If no control characters are in 
use, the mode and stacker specifications 
are obtained from the DCB and combined to 
create the comma.nd code. If COMBINE is 
specified, the stacker must be RP3, other­
wise ABEND terminates the task. 

If the device is a local printer and if 
universal character set CUCS} printing is 
to be done a reset block data check command 
is the first command of a data group. Pre­
ceding the first print command of a data 
group is a skip immediate to channell CCW. 
If neither FORTRAN nor M control characters 
are in use, each CCW created to print a 
line will be a write and space after writ­
ing. The number of lines to space is 
determined from the DCB. If M control 
characters are in use each control charact­
er will be used as the command code in the 
one CCW generated for each record. It must 
be a write command, otherwise ABEND will 
terminate the task. Since FORTRAN control 

charact2rs specify skipping or :spacu}(, 
before print.ing as opposed to thE' corrlTI,and 
codes which spf'cify only skipping and cipac­
inq alone. or skipp~nq or ~;pacinq aft EeL 

printing. the control actIon i~; d:Ci!;or:iaty(} 
wit_h t.h'! previous writ_e. or reyue:;ted ,don' 
if t hf'Te i,; nu prrvi()I}'; WI itJ·. Thu:;, 11 

FORTRAN conI roi ct." fdrt !·c. dee in US", the 
fir<;t record will CdUSt' t',yO CC'..Js to bE' con­
structed; one control CCW to skip or space 
bet are print inq and on e wr it e CCW. Ea cll 
subsequent record will cause the generatior 
of one CCW, whose writ-.f' cornrnano code i,i 
also determined by the next FORTRAN control 
character. The CCW for the last rec,)rd t{) 

be print'ed is a print and no space commanrJ. 
When the last punch or print CCW has been 
built, the list is terminated with a NOP, 
and the line of processing for the card 
reader is rejoined. 

If the device is a remote printer, the 
channel program will consist of alternatin 
wri te and read CCHs. Each write CC, will 
tr:ansnlit a transmis'Jion control blo-:k (TCB. 

of data containing up to 7 records Lf Ul<C 
device has t:he mult.Lpl,· record feat l! p and 
2 records if i t_ dop~> not. Each rea j CClrl 

will read in bisynchrOlious acknowle-j'1pn'(cnt 
byt.es for det.ermining ,;uccessful tr insmi:;­
sion {alternat.ing l,eKO ar,d ACK1}. rf this 
is the first PUT aft.er an OPEN or FINISH 
macro instruction, or if the IORCB is beine 
reissued for purposes of error rec(,very, 
the initial CCWs will consist of writp,-; an, 
reads of bisynchronous bytes t.O ascertain 
the state of The device and qet thE acknow 
ledgements (ACKO and ACKl> in synchroniza· 
tion and a selection record to selfct th~ 
printer. In addition, if the device helS 

the tabbing feature, CCWs will be <,oded t.c· 
writ.e thetabbinq n?cord, which wi) 1 set 
the tabs on the printer. (The 144- byte 
tabbing record is built. by Read/WI·.i t.t: in 
the IORCB preceding t_be pagC' list roi.ntcr; 
it is built only once for each IORrs.) ~h0 
'",rite/read CCW pairs will follow ur Lil dL 

end-of-transmission (EaT) TeB is II CO­

qnized. Then a write CCW iE; built forLhe 
EOT TCB and a NOP is added to term:inatr 
cOIT~and chaining. 

During the execution of a systec pro­
gram, where the programmer r.ad oric inally 
requested a read or write from or to a ter­
minal, a call is generated that lirks to 
TAM Read/Write. 

TA.'1 Read/Write functions are accomp-' 
lished by using the control blocks and 
buffer area allocated during TAM Open, ar,,: 
by using the tables internal to TAM Read/ 
Write. The terminal-computer communicatic: 
is accomplished througtl a buffer area urK,er 
control of the channel command words 
(CCWs), located in the IOReB. 

Sect.ion 3: Rea:l/Wrlt('· 



TAM Read/Write also issues control func­
tions (orders) to the transmission control 
unit (2702). (See Chart BD.) 

Attributes: Reentrant, resident in virtual 
storage, ~losed, read-only, privileged. 

Entry Points..: 
CZCYM1 -- Type-l linkage. Entered from 

systems routine. 

CZCYM2 -- Type-1 linkage. Entered from TA~ 
Posting. 

In£ut: Register 
the DECB. 

contains the address of 

Data Reference: CHADEC, eRADeE, CHA·')EB. 
CHAIOR, CHATOS, CRASDA. 

Modules Called; 
ABEND (CZACP) 
CKCLS (CEAQ4) 
lOCAL {CEAAO} 
TSEND (CEAP9) 

Exits: 

Abnormal task tel~ination. 
Check protection class. 
I/O call. 
Time slice end. 

Normal -- Return to calling routine. 

Error -- ABEND macro instruction. 

Oocration: TAM Read/Write initially saves 
t~e general registers. The general regis­
ters are then loaded with pOinters to 
referenced control blocKs, starting with 
the data event control block (DECBl: 

DEC8 

The DECB pointer to the DCB is included 
as one of the Read/Write macro instruction 
operands. The rest of the pointers are 
aescribed in T~ Open. 

AI! initial test is made to see if a non­
privileged user has called TAM Read/Write. 
An improper linkage will immediately ABEND 
the task. 

Any time the cotnmand system is used, it 
causes TAM Read/Write to be invoked oy way 
of the Gate routine. Nonprivileged pro­
grams should only use t.hose GATE macro 
instructions which link to the Gate rou­
tine. The system program Gate routine then 
links to TAM Read/Write. A nonprivileged 
program attempting to directly call TAM 
Read/Write is an abnormal condition that 
causes a branch to ABEND. Two areas of 
error testing are then made to assure that 
system parameters are properly set. If 
either area is not satisified, a return to 
the user occurs. If both areas are 
correct, TAM Read/Write continues. 

The tiClt area. tpstPd assures that in 
the- SDAT ttl,· number of acti ve IORCBs i~; 

zero. No busy CECB exists for this termin­
al. (A busy DEeR occurs after a TAM REAC/ 
WRITE is issued and ends during tnc ccrre~­
ponding TA~ Posting.) If the number of 
active IOi\U:ls 'S zf'ro, the lCRCH active 
count fipld in the TA~ Read/Write PSECT for 
thj:; tern inal ',5 ~;.;t to 1 (for this TAl-, 
Read/Write I"nt.:y) an'! triP ';<,canci an'a is 
tested. If thfc nurrJ)C'r of ;~ctivf' !\H'\..'Bs i~ 
not zero, then t.he in-use hit In the fla·~ 
field of the DECP is set ano a n'tur'l is 
made to the user. 

Thf? :::~pcond a:r-(-:.a tf?'~)t_{-'(! (j~~'~\.lr~'s t: hAt in 
the DECB, the type option code suecifieJ ~s 

within the range of all defined types for 
all terminal types, ani that the type 
option code specified is valid for the 
actual terminal type. 

It these conditions are met .• dat<l from 
referenced areas, including DE~' inforrna·­
t~on. are merged in TOS (terminal "CCE'S5 

operational status table) to reduce paqing 
time later. The type option is then 
decoded. 

If either of these conditions is not 
met, no further testing occurs. Instead, 
an error code is moved into the ECB of the 
DECR, the user error flag is set in the 
DECb and the 3YNAD request is sd. j L the 
DECl.>. 1\ ret.urn to t.he user occurs. 

The type option code in the DECB is then 
decoded to see if it is a control fUnction 
(order). If it is a control fUnction: 

• The corresponding CCW generator 
generates one appropriate CCW in the 
TOS nuild area. 

• The CCW is moved from the TOS build 
area into the IORCB CCW list area. 

• The IORCR fixe~ area is co~pleted. 

• An lOCAL is issued, which l~nks to IDS 
for this lORes to be executed. When 
the supervisor ret.urns control, 'rAY, 
Read/write restores the registers ana 
returns to its user. 

p,cceSS.lnq the ctlanm-), Pr03.Ian, (;e.l2~ratcr: 

If this is not a centrol f'met ~on. TAt-. 
ReadMritp bEgins processing to bUlld a CCvJ 
list appropriate to the c~t.lon rpqupstei 
for the particular terll'.i nal. 

TAM Read/Write begins processinq for 
this requested terminal computer I/O opera­
tion by fLest finding the proper channel 
program generator (CPG). To accomplish 
this a program search of internal tablps 
"'it.hin TAM Read/Wri te <illustrated in 
Figure 6) is required. These tabl(s are: 

36 Part I: Access Method for BSAM, MSAM, TAM and IOREQ 



UTT 
Terminal 

I TLT ADD. n TLT 

L Tep ADD. I--

Type 

Model 

Code 

Type 

(jpt\on 

. 

......... 

TC1' 

TCIT 

CPiT 

(PG 81 SP 

ePG - TID IR) 

CeNG 
CeNG 
eCNG 

(PG • Tl ~J (R] 

I 
j( 

'0" 

'-----II"" (eWG 
eCNG 
eCNG 

(PG - TIA 001) 

ceWG 
eONG 
CCNG 

Figure 6. TAM Read/write: CPG Location Sequence 

• The unit type table (UTI') 

• A terminal library table (TLT) 

• A terminal channel program (TCP) 

The procedure to find this CPG in TAM 
Read/Write requires as input: 

• Terminal information loaded in the DEB 
from the SDAT during TAM Open contain­
ing terminal type and model code (refer 
to Table 8). 

• Type option code specified in the DECB 
(refer to Table 9). 

The sequence (refer· to Figure 6) in 
finding this CPG is as follows: 

1. The code for the mechanism for joining 
the terminal to the system (that is, a 

2702 control unit. connection or a 
direct mUlt.iplex connection) detE'r­
mines the displacement in the UTT to 
obtain the address of the TLT (Table 
10), 

~. The model code (that is, 1050 or a 
2741) determines where in the TLT 
(refer to Table 11) the address of the 
TCP can be located. This address is 
then examined. 

a. If the entry in the rep is zero, 
it indicat.e~.i that. the library does 
not exist. 

b. If the TC? entry lS an address, 
TAM Read/write then calculates a 
displacement. from the TCP, which 
is used to get to the appropriate 
CCWG. 

section 3: Read/Write 37 



Table 8. TAM i{pad/Wrlt.'= Tprmirldiintor­
mation from ::>DAT 

r------T------T--------------------T------l 
IModel i Line i Terminal I SAD I 
I Cone I Type i Type IOrder i 
~------t------+----------T---------+------i 

! High-Orderl Low-order I I 
IByte l\Byte 2( Byte 3 I Byte 3 IByte 41 
~--_---L ___ ---~----------L---------L------~ 
IByte 1 -- rppresents a model code for I 
Iterminal units (1050, 2741, 35, 1052) I 
I ! 
IByte 2 -- represents a line type for I 
I connection (dial line or dedicated line) I 
I ! 
IHigh-order Byte 3 -- represents a 
It.erminal control unit t_ype (IBl-l tern,inal 
Icontrol unit; type I, type II. telegraph 
Iterminal control unit; type I, type II, 
jWorld Trade terminal control unit) 

I 
I 
! 
I 
I 

i 
I Low-Order Byte Cj -- represents 
I chanI1el connection type (2702, 
i Multiplexu:) 

I 
a terminal I 

I 
I 

i I 
IByte 4 -- represents d SAD order (0, 1. I 
12, 3) I l ______________________________ . __________ J 

3. In toe TCP (Table 12), TAM Read/Write 
locat.es the proper CPG from the type 
option code. The TCP is divided into 
three main fields which are: 

" Terminal control informat.ion table 
(TeIT) 

• Channel program index table (CPIT) 

• Channel program generator (CPG) 

The terminal control information table 
(TCIT) in the TCP contains data on addres­
Sing, polling, EOL sequence characters. 
etc., (Table 13). 

The channel program index table (CPIT) 
(refer to Table 12) determines from the 
Type option code (stripped of the repeat 
bit if any) where the corresponding CPG 
displacement is. 

The CPG is obtained from the displace­
rr,ent in the CPIT. Thi::.; displacement value 
is added to t.he TCP address to generate the 
address of the CPG (Figure 6). 

Makeup and processing of t~he Channel 
Program Generator: A CPG contains channel 
command word generators (CCWG) (refer to 
Table 11~). 

A breakdown of each of the CCWG sections 
is shown in Table 15. 

To process the CPG. each sequence cycle 
begins by sequent.ially testing the CCWG 

but ft·t: allocrlt ion t i.!q bj t,; :>!lown in Tabl .. 
16. For each flag that is on, TAM Read/ 
Write branches to the indicated associated 
rout.lne to perform the indicated require('i 
fUnction. These functions are used in 
generating a CCW or updating information 
needed to construct an IORCB. Overall 
these functions include allocating space in 
the IORCB buffer area ~nd moving into this 
buffer: 

• Begin and/or end control characters 

• Space for response characters 

• Output data 

• Data translation of output data 

• Space allocation of output data 

The last buffer allocation flag is an 
end flag. If it is not set_, the developed 
CCW is then moved (see note below) into the 
build area of 1~S where the corr®and code 
and flag fields are obtained frow the CCWG 
area and the count and relative displace­
ment address fields are obtained from regi­
sters. The logical function code is moved 
into the logical function area of TOS to be 
used later by TAM Postinq. The next 
sequence cycle in this CPG then repeats, by 
sequentially testing the next CCWG buffer 
allocation flags. 

lithe last buffer allocation flag is 
set, TAM Read/Write prepares to terminate • 

Not~: A developed CCW is not moved int.o 
the build area of 'ros and the logical func­
tion byte code is not moved into its respe­
cti ve location if t.he following conditions 
are present in the CCWG: 

• Command code field is zero 

• End allocation flag is set 

• Inhibit allocation flag is set 

TAM Read/Write then prepares t.o t_ermin­
ate since all the allocation flags in all 
the CCWGS in the ePG have been tested. To 
accomplish this termination: 

• The message in the buffer drea of the 
lORCB is translated to the tprminal 
character set code. for all write 
operations. 

• The cew list is moved from the TOS 
build area into the IORCB CCW list 
area. 

• The lORCn fixed area is completed. 

38 Part I: Access Method for BSAM, MSAM, TAM and IOREQ 



Table 9. TAM Read/Write: Type Option (Hex and Mnemonic) Codes and Description 
(Part 1 of 2) 

r------T--------T------------------------------------------------------_________________ , 
IOptionj~ncmonicl I 
I code I Option I I 
I (HEo'x) I Code I DP:;cription I 
~------+--------+------------------------------------------------------------------------~ 
I 02 I TID I Read Initial with Dial: This option indicates that an automatic dial I 

03 

04 

05 

06 

07 

08 

09 

OA 

DB 

OE 

OF 

I \connection is to be made with the terminal. The dialing digits are I 
i located in the terminal entry list IDFTRI1ENT). If the terminal type I 

I 
I 
I 
ITDR 
I 
ITIN 
I 
I 

I 
ITCN 
I , 
ITCR 
I 
ITID 
I 
I 
I 
I 
I 
ITOR 
I 
ITIN 
I 
I 
I 
ITNR 
I 
ITIA 
I 
I 
I 
I 
I 
I 
I 
ITAR 
I 
I 
I 
I 
I 
I 
I 

I requires polling, the necessary polling r;equence characters are I 
I generated. ! 
I I 
IRead initial with dialing/repeat. I 

" d .. I Rea Inltlal: It assumes that the line connection has been previously I 
Imade. If the terminal type requires polling. the necessary polling i 
!sequence charact~rs are generated. I 
I I 
I Read initial/rep'2!at. I 
t I 
IRead Continue: This option is specified when polling is not required. I 
lIt may be used for terminals previously polled and in a transmit state. I 
I I 
IRead continue/repeat. ! 
I I 
IWrite Initial with Dial: This option indicates that an automatic dial I 
Iconnection is to be made with the terminal. The dialing digits are I 
Ilocated in the terminal entry list (DFTRMENT). If the te1~inal type ! 
Irequires addressing, the necessary addressing sequence characters are I 
I generated. I 
I I 
!Write initial with dialing/repeat. I 
I I 
IWrite Initial: It assumes that the line connection has been previously I 
lmade. If the terminal type requires addressing, the necessary I 
laddressing sequence characters are generated. I 
! I 
,Write initial/repeat. I 
I I 
IWrite with Response: It assumes that the line connection has been I 
I previously made. If the terminal type requires polling and addressing. I 
Ithe necessary sequence characters are generated. This option provides I 
Ithe ability to output a message to a terminal and receive the I 
Iterminal's next input record or line. The maximum output message size I 
lis 1 to 32,767 characters. The maximum input message is one logical I 
I record or line as specified by terminal type. I 
I I 
IWrite with response/repeat. I 
! I 
IThe above types with the repeat option will automatically retransmit orl 
Irequest retransmission of messages in error if the terminal is equipped I 
Iwith error correction facilities. A predetermined number of retries asl 
Ispecified by terminal type will be attempted for each message I 
Itransmitted in error. The posting of uncorrectable errors will incllldel 
lappropriate error informatior. ! 

I I I 
64 IAUTOWRAP!On accepting this order, the Transmission Control Unit wraps the output I 

I lof the addressed line to the input of 1 ine O. The command within the I 
I I channel operates as, a writ_e. I 
I I I 

65 lDISABLE Ian accepting this control order, the Transmission Control Unit resets I 
I I the enable latch within the line adapter of the addressed I 
I !communications line. No data transfer occurs. I 
I I \ 

66 !ENBLASYNIOn accepting this control order, the Transmission Control Un~t s~ts the I 
Iii enable latch within the line adapter of the addressed communlc;ltl.On I 
I I \line. No data transfer occurs. I 1. ______ J. ________ J. _____________________ ~ ____________________ , _____________________________ .1 

Section 3: Read/Write 39 



Table 9. TAM Read/Write: Type Option (Hex and Mnemonic) Codes and Description 
(Part 2 of 2) 

r------T--------· T---- ------ - ---------------- - - --- - ----- - --- - - ---------------- - ------- - - --, 
I Opt ion I Mnemon ic I I 
Icode I Option I I 
I (Hex) I Code i DescrIption I 
f-------f--------+------------------ -------------------------------------------------------~ 
I 67 IENBLSYN IOn accepting this control order, the Transmission Control Unit sets thel 
I I lenable latch within t.he line adapter of the addressed commwlication I 
I I Iline. No data transfer occurs. I 
! I i I 
I 68 !PREPARE IThis order may be llsed in a contention type communication:.; system to I 
! I lindicate to the processor when data is arrlving. When a valid start I 
! I Ibit is detected by a line instructed to prepare, a charact.er is strobed! 
I I i off. If at st.op time the line is at mark, the prepare command is i 

I jterminated wit:h channel end and device end st.atus. The character I 
I !assembled is not transfern~d tc the multiplexor channel. If the line I 
I I is at space, a tiweout is started. If the line returns to mark before I 
! ithe timeout is complete, the prep.'">re command is tcrminate:::i with channell 
I ! end and device end. The prepare command is terminat.ed when the timeout I 
I loccurs, indicating an open line condition with channel end, device end. I 
I !and unit check status and intervention required in the sense byte. I 
I I I 

69 I SAOONE IOn accepting t.his control order t the Transmission control Unit sets the I 
I jterminal control (TC) field within the addressed LeW t.o one, so t.hat I 
! Ithe terminal control with the internal address equal to one is i 
I lassociated with the addressed communications line. No data transfer- ! 
I I occurs. I 
I I I 

6A !SADTWO IOn accepting this control order, the Transmission Control Unit sets thel 
! ITC field within the addressed LCW to two, so that the terminal control i 
I Iwith the internal address equal to two is associated with the addressedl 
I Icommunications line. No data transfer occurs. I 
I I I 

6B iSADTHREEIOn accepting this control order, the Transmission Control Unit sets thel 
I i TC field within the addressed LeW to three. so that the terminal I 
I Icontrol w).th the internal address equal to three is associated with thel 
I laddressed communications line. No data transfer occurs. I 
I I I 

6C iSADZER IOn acceptance, the Transmission Control Unit will set the TC field I 
I I within the addressed LeW to zero so that the terminal control with the I 
I linternal address equal to zero is associated with the addressed I 
I Icommunication line. No data transfer occurs. ! 
I I I 

6A I BREAK IOn accepting this order. the addressed line t.ransmi ts a continuous I 
I Ispace signal. Bytes transferred from the channel to the addressed unitl 
i Imust be all zeros. To provide control over the length of space signal, 1 

lila byte count must be sepecified by the program. I L ____ ~ ________ i _________________________________ ~ ____________________________________ J 

Table 10. TAM Read~~rite: Unit Type Table 
Format 

r-------·------------------- ------.-- --, 
12702 TERMINAL LIBRARY TABLE (TLT) ADDRI:SS I 
I I 
12701 TLT ADDRESS I 
I I 
i MULTIPLEXER TLT ADDRESS I 
I I 
I SELEC,!'OR TLT ADDRESS I 
I I 
12701 OR SELECTOR TLT ADDRESS ! 
t-----------------------------------------~ 
\Note: Unit Type Table (UTT) is specifiedl 
lin READ/WRITE. I L-________________________________________ J 

Table 11. TAM Read/Write: Terminal 
Library Table Format (fox- 2702 
TLT) 

r-----------------------------------------, 
11050 TERMINAL CHANNEL PROGRAM (Tep) I 
I ADDRESS I 
I I 
12741 'rep ADDRESS I 
I 35 TCP ADDRESS I l ____________________________________ J 

40 Part I: Access Method for BSAM, MSAM, TAM and IOREQ 



Table 12. TAM Read/Write: Terminal Con-
trol Program Format 

r-----------------------------------------, 
I I 
I :!'~RMINAL CONTROL.INFORMA1'ION TABLE I 
I I 
~-----------------------------------------~ 
I I 
I CHANNEL PROGRAM INUEX TABLE (CPIT) I 
I I 
I CPG DISPLACEMENT FOR TID. (R) I 
I I 
I CPG DISPLACEMENT FOR TIN. (R) I 
I I 
I CPG DISPLACEMENT FOR TCN· (R) I 
I I 
I CPG DISPLACEMENT FOR TID. (W) I 
I I 
I CPG DISPLACEMENT FOR TIN. (W) I 
I I 
i CPG DISPLACEMENT FOR TCN· (W) I 
I I 
I CPG DISPLACEMENT FOR TIA. (W) I 
I I 
~-----------------------------------------~ 
I I 
I CHANNEL PROGRAM GENERATOR for TID. (R) I 
! I 
I CPG FOR TIN· (R) i 
I t 
I CPG FOR TCN· (R) I 
I I 
I CPG FOR TID. nn I 
I I 
I CPG FOR TIN. (W) I 
! I 
I CPG FOR TCN· (W) I 
I 
I CPG FOR TIA. (W) 
I I 
t-----------------------------------------~ 
I.All CPG displacements need not be I 
I required for the terminal type. These I 
I displacement fields are zeroed and the I 
I corresponding CPG fields do not exist. I 
~ _________________________________________ J 

• An lOCAL is issued, which links to the 
supervisor to initiate the terminal 
computer communication, under control 
of the IORCB CCW llst and through the 
IORCB buffer area. 

when the supervisor returns control. TAM 
rlead/write restores the registers and 
issues a return to the user, if the posting 
flag is not on. 

If the IORCB buffer data area was not 
large enough to complete the TAM Read/Write 
operation, it is necessary for continuous 
IORCBs to be developed for one DECB. 
Although the initial TAM READ/WRITE was 
from the user. subsequent IOReB ent.ries 
would be from TAM Posting until the oper'a­
tion is complete. These TAM Posting calls 

Table 1}. TAM Read/Write: Select.ed Ter­
mina I control Information Tabl", 
Ent.ries 

r-----------------------------------------, 
IMaximum Option Amount; Begin Cant rol I 
ICharacter Count; Flf·qin Control Charact.er.1 
I I 
IMaximum Cnaracter ,;pt Amount; Polling I 
ICharacter Count; Pollinq Character::. I 
I I 
IPrefix Count; End Control Character I 
I Count; End Control Charact.ers. I 
I I 
I Read End Of Line Sequence Count; Redd End I 
10f Line Sequence Character. I 
I I 
IMaximum ~umber of CCW; Addressinq I 
ICharacter Count; Addressing Charactpr:~. I 
I I 
!TAM READ Data Set Length; Control I 
ICharacter Table Address. 
I 
\Write Error; Read Error; Read Error 
IPositive Response. 
I 
! Control Count.; Posi ti ve Response; 
\ Characters. 
I 
IMaximum Count Of Line Control Characters; I 
IRead Error Negative Response; Read Error i 
\Negative Response Characters. 
I 
I TAM WRITE Data Set Length. 
I 
IPolling Response; Addressing Response 
ICount; Addressing Response Characters. 
I 
IRepeat Option; End Of Line Sequence 
ICount; End of Line Sequence Characters 
I (20 Characters Maximum). 
I 
I Maximum Buffer E. CCW Si ze; End of Card 
iSequence Count; End of Card S~1uence 
ICharc.cters. 
I 

, 
I 

I 
I 
I 

ITerminal 
land Test 
I 

Character Set Address; Translatel 
Function Table Address. 

IContinue Count; Text Control Character 
\Count; Text control Charact.ers . 
I 
IFailure Count; End of Message Sequence I 

ICount; End of Message Sequence Characters I 
1(20 Characters Maximum}. i l __________________ ~ ______________________ J 

to this program cause a return to TAM Post­
ing unde:r· di.rect :wn of the posting entry 
flag in TOS. 

IOREQ Rout.ine iCZCSB) 

During the execution of a user's pro­
gram, where the programmer had originally 
issued an IOREQ macro instruction t.o gener­
ate an I/O operation on a device, a call is 

Section 3: Read/Wri~e 41 



Table 14. TAM Read/Write: Channel Command 
Word Generator Section 

r-------------T---------------------------, 
I Name! Comments I 
~-------------+---------------------------i 
ICorrmdnd Code !coIT.wand code for a part.icu- f 
IField Ilar operation. This byte I 
I I is moved into the command I 

Icode field of a CCw list I 
Ilocated in the build area I 
!of TOS. I 
I I 

! lJnu,-,ed !"ield lThis field is reserved for I 

iDisplacement 
IField 
! 
I 

I future expansion. I 
I I 
IDisplacement of endinq I 
I point to CCWG When I 
Icomrleting a CCW or a I 
ireg 0 neration of a I 
I~articular command i 
Iqenerator when mult.iple I 
IIGRCBs are required. I 
I I 

!Flaq Field [Flags requ1red for a parti-I 
I Log ical Func- I cular command generator. I 
l tiO'l Code IRequirE-"i for TAM Posting I 
iField Iroutine. The byte is moved I 
I I into the logica 1 function I 
I I area of TOS. I 
I I I 
IBuffer Allo- lriequired in building the I 
! cat ion Flag I CCrri. Allows additional I 
IField Iroutines to De called to I 
I I fill in t;le buffer area of I 
I Ithe IORCB when d CCWG is I 
I I proces3ed. I L _____________ ~ ___________________________ J 

generated that links to IOREQ. A system 
routine way also directly call IOREQ at a 
second entry point,. 

IOREQ uses control blocks and buffer 
areas that are allocated during lOR OPEN to 
build channel command words in the IORCB. 
(See Chart BE.) 

Attributes: Reentrant, resident in virtual 
storage, closed, nonrecursive, read-only, 
privileged. 

ent.ries; 
CZCSB1 -- Type-2 linkage. Entered from 

user IOREQ macro instruction. 

~ZCSE2 -- Type-l linkage. Entered call by 
sy-tem. 

Input: Rpgister 1 contains the address of 
a two-word parameter list; 

'",ord 1 Address of the DECB. 

Word 2 Address of main storage furnished 
by the privileged user for IOREQ portion 
of DCB and for IORCB. 

Table 15. TAM Read/Write: Channel Command 
Word Generator Format 

r-------------T---------------------------, 
I Command Code I Sep Table g. I 
I I I 
I Displacement ! Com~lc,ted by 10,';. I 
I I I 
IFlags IData chaining, command ! 
I \cha1nlng. sup~ress length 
I lindication, skip, proaram 
i Icontrol interruption. 
I I 
ILogical FUnc-IOial end control, data out, I 
Ition Code Idata in, lead error I 
I Iresponse, write error I 
I I r.::spons ':, "llores;;inc;, I 
I !f-!ollin:J, dldress r<'SDonse, I 
I Ipollir:':1 rEsr..on~;E. control, I 
I lend control, error TIC, I 
I !negative response, write I 
I lerror message. I 
I I I 
I Buffer ~~llo- I See Table 16. ! 
I cation F lag I I L _____________ ~ ___________________________ J 

The second parameter word is used only 
for entry at CZCSB2. 

Data Reference: CHADEC, CHADCB, CHADEB, 
CHAISA, CHAIOR. 

Modules Called: 
CKCLS (CEAQ4) Check protection class. 

lOCAL (CEAAO) I/O call. 

Exits: 
Normal -- Return to calling routine. 

Error -- ABEND macro instruction. 

Operation: A user originally issuing an 
IOREQ macro instruction enters IOREQ to 
edit the VCCW list. IOREQ initially saVES 
the general registers and then loads them 
with pointers to referenced controi blocks. 
This starts with the DECB. 

NCS I ·1 '" I .1 Of' 
I 

I H IOReB 

I \..1 ___ -' 

The DECB pointer to the DeB is included af, 
one of the IOREQ macro instruction 
operands, and the other pointers are 
described in lOR OPEN. IOREQ then performs 
the following fUnctions: 

• Validates user parameters. 

• Checks that the DCB identification is 
valid DCBID=*%*%. 

42 Part 1: Access Method for BSAM, MSAM, TAM and IOREQ 



Tdblp 16. 0uffer i\llocatioll f'ld'~ BltS 0t CCwc, 

-----------T---------------------------------"----------------------------------------------1 
1'-1 t ,; Ndmp I Comrner,t_s I 
1----+-------------------+--------------------------------------------------------------------------------f 
1 48 lfl;.u~~t;_.d jRI':,,;(·rv.:,(j tf)r future f'xPdnsion~ 
I I 
I 4'1 In"qln Cuntrol 10 - !'to rant tol (h(lfdctp{,"S r~'q\liled. 

1 I ]1 - B~'qln {"untr{Jl ('hd:ldt"tpt:-:; tf'qu;.rt'J ~t'tor~ pnlluvl 1'1 .tddrt-",:~l[lq \.:: I Tl 1 t 1 do ~ '" ,t. I 
itA I ,,1,. ! 

, 
.1 

I 

1 ~'i'r1L1{'tf'[' HI (,\Jt,tin{·d frem tht Tel" dnd Ill0v'-'.i tl\ Il',;tl, t dl"d In 

I i I 
',(' I En'i Control 10 - i~{) 1,'ontIDl ,--hilrat_~tpr~, cf:quirl> 1. 

·}1 ! ~·t.·xt Control 

<, 
" 

I 
I 
I 
'<~)dt~., Ollt 

I 

11 - r~nct contrel clirt.racters requirpj aft.·-:.".r pollin 1 or dddrt-';;slna ha~, bPf'>f, 
I lnitidt~J4 Chardcters acl?' obtdined fr-oTI' the Tel and movpd to Duftpr ,'l:rPd irlJ 
I CriAIOR. I 

I I 
!O - :'Hf r(!f"t [ 1 C'ldr-i",-t('n: rf>ql.l.irej~ \ 

11 - Tt-Jxt ,(":ll! chc'ral-tf-r:; r~;quirf' 1 ,i.ftyc pnri control char.-'ictf·r~·;. ChaIdctCrs 1 
1 <.lIP :_"t-)t .., fr'_T. itl"'· T:--:r and n,uv€·1 t(' bufft'I area In the- CHA10~. ! 
I I 
:0 - "J() llc'td tran~;1J.ttl·\i to tf'rmindl. I 
! 1 - Ddt d to hI( rroveJ f rom u~,pr ,1rt'(j (dd.jr,,=,s~-; i.n CriADEcn) to lJut t er dTf ,i 11'1 ! 
1 l'HAIOR ti.JtJ 1:, tl~~tf'd tor function control chdrdctpr~;). FUnctl"r ~'r-,ntrr;J. 

I Cllr1rdct('r~~ .-;;r:d r4'1~tl'd cndp:; which ,1rf' not rcc(;qn~zyrl L'1 diff~'l:Tf,t tf>rrnln.d 
r'nl~ .iH' jpll,tpo trnm tlF("-'~;!:dq" whpn m(lvpd to tht-' bllftf'I dr.-! If, l-flAU)iC 

'Irdn::Ltt i:HI ,i,tt.! to tptminri.l (~hd("dctr'r !'~et ,:0\!1" l.~; dnn .... dt com;)},·tlon ()t 

C!tA] !)h. 

1\:0 ·j,~tJ t rdrr;mit-tpo to cpu. 
~ 1 - Ddtd to lIt;- transmittea from tprmindl to CPU. A bdtft?r <":11:·' i~-: r· ~-I:::'rv(·j if 1 

I t.hp (,kAlOk to <:!ccept t.he mes~j.(jqe. Th,,-' nle5sdqf~ is not t.P~,tf-'d f(ir func! lun 
control ~tldr~cters. Translating data to EBCDIC is dccomplishpJ .n 'I'A~ 

l-'O:JTING routine. 

'",4 !W('dG Error YU;,ltlVeiU -.. ~o he'ad Error Positive kesl_KHiS€> Chitrdcters required .. 
I ResPJn~~1 t 1 - Head ~rror Positive Response characters required dtter transmission llf ddtd 

to cpo. Charact"ers are nbt_ained trom the TeT and moved to bufter arf'd cf 
the CHAIOR. 

I 
I 
I 

~5 I Head E.rror 
I R espanse 
I 
I 
I 

:'6 , .. rlt .• Error 
f K€;S fJOnsf'" 

q IAddress 1 nq 
I 
I 
I 
i 
i 

',H i~ollinq 

I 
i 
I 
I 
I 

'J q IAdd res,,, ng 
I 
I 
I 

:.f'gat i Ve 10 -
11 -
I 
I 
I 
10 -
Il­
I 
I 
I 

No t.:"'·drl Error :-.It.·qat ive KeslXlnse characters requir-ed. 
~.,.;;a-i t,crtJr ;-.ifl-g.ative Rf'sponse characters required dtter transmission of 
to ('PU~ charact-ers arf' obtaln£'d frorr, the Tel -and moved to buffer arPd 
the CHAIO'!. 

: ... 0 VJr i te errur cont rol chardC'"t_ers rf."quired. 
~rit~· ~rror control characters arp transmitted by the tpTwindl contr()l Ilnit. 
Th( cuunt ~s obtained from the Tel and :"'pdce dllocdted in the buffer area ot 
the CliAlOR. I 

I 
10 - No dddr<'ssing required for a terminal. 
t1 - P.ddreSS1!Y, r~quireJf obtain dddressing characters from the terminal (~ntry I 
I list (CITRMeNT-addrE-ss located ~n DECBI. If not present, dddres';ing I 
t C11.drdcter-.:..; dre obtained from the Tel ~ ("har;Jcter~, are placed into thp buff~r I 
I area of thee eHAlOR. I 
I I 
\(' - .'Jo ,Iollin'l r~quired for a tt:·rminal. ~ 

11 - Polling roF'quirf'ri, obtain addressing char-aeters from t_he tf'rminal entry llst \ 
I (Or"~~"'J:.:.'T-ajdress location in DEC!H. It not present, I'<>llinq characters arei 
I ~,bt~inei from the Tela. Chdracters are plac~d in th~ hufter arPd of the I 

'HA ~"r. I 
I I 

RE:Spon:-ie\ 0 - "Jo addressing response required ~ 
11 - A'idrf-'ssiny re-quired, obtain characters 1 rom the TCIB. C'tA£dct_f::-rs aIP moved 
I into tht buffer area of the CHAIOR. 
I 

60 I Polling Response 10 - "0 polling response requlred. 
I 11 - Polling require<i, ontain characters from ~he TC'IB. characten, are moved 

I I into th<' buffer area of the CHAIOR. 

t 
Ie - current cnannt·l cOnun;lnd wc.rd will bf' (h'vlI?loi~f>~i dnd plact-"'l1 Intn tt:e tnli ld 

I 
61 IInhiblt 

I I ar0.1 v~ the ~L~· ~. 

\1 - Inhiolt currer:' -~"\annel corrmand word from belnq df-'veloped~ 

1 
62 IContinue 10 - Follo~ normal ·.~encp of CCWG operdtion. 

I 11 - ,"Grmal sequence of CCWG is chanqf'd. It permit", return to a PH>v1cusly 
I I UXf'<'utPQ ceWG. 

I I 
b j I fnd 10 - Continu.' normal sequpnce of COl';. 

I I 11 - Terminatps the eCWG list. l ____ L ___________________ L ____________________________ ____________________________________________________ J 

SE'ction 3: F:",ad/Writ~, 4 .l 



• Checks that the DEB identification is 
valid DEBID=. (. 

• Stores address of DECB in DCBTMP (work 
area). 

• Clears the fixed portion of the IORCB. 

• Clears the outstanding IOREQ re<IuesL; 
(DECB Queue) if the DEB flag (DEBNF7) 
is set. This indicates that the pre­
vious CHECK macro instruction caused an 
exit to SYNAn. Therefore while execut­
ing the previous SYNAD routine the user 
must reissue desired purged DECBs. 

Note: If either the DCB or DEB identifica­
tion is not valid. an e~it to ABEND occurs. 

Pre-edi t checting now occurs and, if 
satisfactory, IOREQ begins the edit phase. 
This pre-edit checking includes the 
following: 

1. Check if the IORCB can be executed. 
If a previous operation set the DEB 
flag (DEBNF1) to indicate an inter­
cepted error, the IORCB is marked 
intercepted and a return occurs. The 
rORCB cannot be executed at this time, 
but the DECB is entered in the queue 
and the IOREQ should be reissued by 
the user. 

2. Check if the DECB is valid. A return 
occurs if the DECB has any of the fol­
lowing invalid conditions: 

• The DECB is in the wait state (DECB 
not ready>. 

• The DECB is in use (DECB active). 

• The queue of pointers in the DEB is 
full (DEBNPC is exceeded). 

IOREQ then begins the edit phase. This 
edit phase consists of a preliminary pass 
through the VCCW list pointed to by the 
IOREQ macro instruction to determine the 
validity of the VCCWs. In addition, the 
amount of space required for the buffer or 
page list entries and the VCCW list is 
determined. 

If buffering is requested by the IOREQ 
macro instruction, the following pointers 
and counters are also initialized: 

• A pointer to the lowest address of a 
read request VCCW, used to determine 
the low-order buffer address needed for 
the read request. 

• A pointer to the highest address of a 
read request VCCW, used to determine 
the high-order buffer address needed 
for the read request. 

• A counter cC:'.taining the amount of 
buffer SpilCP nt'f'clpd in ttl<' lORen tc)r 
redd requp<'t :,~. FOl' tht'~,f> 1 • «hi 
requests, the dmount ot butt",r :~}h~C'" i:; 
the contiquous difference betwpen the 
high and low-address buffer pOinters. 

Tests are llso made in this edit phase 
to assure that chaining rules are not vio­
lated. Chaining rules are listed in IOREQ: 
vccw section of Assembler User Macro 
InstructJ.ql1~. GC2B-2004:' If any rules are 
violated, a ret,urn to the user occurs. The 
user's program has been checked for validi­
ty within IOF:EQ but: a system program that 
calls IOREQ directly. ent,ers at this second 
point and therefore is assumed to have the 
VCCW list built correctly without the need 
of edi t.ing. However, on IOREQ recognizing 
a system program entrance, it branches to 
the previous phase only to set up buffer 
addresses and values or to build page list 
entries. During this build phase a dif­
ferent sequence is followed depending on 
whether or not buffering is specified. 

If buffering is requested: 

• The start address of the IORCB buffer 
is set. 

• The buffer total length is set. 

• The start of the CCW list is set. 

The ccw entries are generated in the 
IORCB using the VCCW list as input, and 
space is allocated in the buffer area. In 
addition, in write and control requests, 
data specified in the fields of the current 
vccw are moved into the buffer. If the CCW 
is a transfer-in-channel (TIC), the displa­
cement address of the CCW is set to point 
to the desired CCW (displacerr~nt is from 
CCW origin). 

If buffering is not requested by the 
user, the appropriate addresses in the 
IORCB are set from values calculated in the 
edit phase (the previous pass through the 
VCCW list). The number of page list 
entries is calculated for the privileged 
request by a special branch to the initial 
edit section. For read, write. and control 
requests, the linkage is made from the C~rl 
page list pointer to the appropriate page 
list entry, by searching through the page 
list for an address which has the same seg­
ment and page in the CCW. 

For bo~~ buffered and nonbuffered 
IORCBS, the following also occurs: 

• The length of the IORCB is obtained by 
adding to the fixed area, the buffer 
area (either buffer or page list 
entries), and the CCW list length. 

44 Part 1: Access Method for BSAM, MSAM, TAM and IOREQ 



.. The lenqt h 01 thf' IORCll, if gredter 
than t_he ma ximum allowed, causes lORE!) 
to return to the user with an error 
code in register 1~. 

.. This pass through the VCCW list moves 
the op-code count, and flag fields to 
the appropriate CCW list entry in the 
IORCB . 

.. The protection key and other flags are 
set in the lORCB. 

The system programmer that entered at 
the second entry point now returns with a 
return code of zero in register 15. Hence 
to execute his lORCB, the system programmer 
must update the required fields and issue 
his own lOCAL. The sequence IOREQ follows 
for the lOREQ macro instruction user is: 

.. Test the laC flag in the last vce". It 
set, this lORCB must be chdined to the 
next IORCB. 

.. Move the DECB address into the queue by 
updating pointers to this DECB as well 
as updating the number of IORCBs and 
DECBs that are outstanding. 

.. Dete.rmine if the IORCB is not to be 
executed so that the DECB can be placed 
in queue and marked intercepted. 

.. ISSUE! the lOCAL macro instruction. 

.. Return to the user. 

Section 3: Read/Write 45 



SESTIO~4: POSTING AND CHECK 

POSTING AND ~HECK PROCESSING 

The following routlnes describe plsting 
and error processing for SAM, SAM di:rect 
access, MSAM, TAM, and IOREQ. and the 
operation of the Check routine. 

This routine processes a synChronous I/O 
l.ntJ'rrupt ion cau~;ed by the termination of a 
:;AM I/O operat~ion. It_ post_s the completion 
code in the event control block CECB) of a 
data eV~"nt control block (DECR). In addi­
tion, depending upon tne device, this rou­
t_ine may perform ot.her post-I/O activities, 
r;uch as adjust.ing magnetic tape block 
counts. The retry/recovery operations are 
also incorporated into this routine; they 
are employed if the channel status word 
(CSW) returned at the most recent. interrup­
tion reveals an abnormal end condition. 
(See Chart CA.) 

Attribut.es: Reentrant. nonrecursive, resi­
dent in virtual storage, privileged. 

Entry Point: CZCRPl -- Main entry point 
via type-l linkage. 

J~ut: The channel status word (CSW) and 
sense information pertinent to the I/O 
operation are contained in the ISA. 

Data References: CHADEC, CHADEB, CHADCB, 
CHAIOR, CHAISA. CHASDA, CHASDT. 

Modules Ca.lled: 
VMER (CZRX2) -- Virtual memory error 

recording. 

VMSDR (CZCRYY) -- Virtual memory statistic­
al data recording. 

ABEND (CZACP1) -- Abnormal task 
termination. 

')1£ (CZCJTQ) 
mon it_or. 

Build queue in task 

WTO and WTOA (CZABQ1) -- Write message to 
operator. 

ASCII Translation (CZCWA1) -- Translate 
ASCII data to EBCDIC. 

DA Error Retry (CZCRH1) 
error retry routine. 

Direct_ access 

Reset (CEEAH> -- Permit task to access I/O 
device. 

SYSER (CF~IS) -- System error processor. 

Exits: 
Normal -- Return to task monitor. 

Error -- An ABEND is issued if the I/O 
device is not tape or disk. A SYSER is 
issued if: 

• A program check has occurred. 

• A protection check has occurred. 

• A specification error has occurred. 

• The CS~ has a status of X·OO'. 

• There was no entry for the SDA. 

• A command reject occurred because of 
an invalid op code. 

Operation: SAM Posting exarrtines the com­
pleted IORCB and either posts the DECB or 
passes control to a device-dependent error 
routine. 

completion of the requested I/O is sig­
nalled by the device via an I/O interrup­
tion that is associated with the lORCB by 
the Supervisor. 

The completion information, along with 
the lORCB, is passed back to the requesting 
task as a synchronous I/O interruption 
enqueued on the TSI. During the interval 
between request and response, the task 
could have generated other I/O requests, 
and possibly had its time slice ended. 

SAM Posting requires that all interrup­
tions be maSked. It will process a synch­
ronous I/O interruption to cc.mpletion, 
regardless of the interrupted operation. 
SAM Posting will process only one synch­
ronous I/O interruption at a time for a 
given task. 

The I/O Supervisor is expf'cted to return 
unexecuted lORCBs when there is an I/O 
interruption caused by hardware failure, a 
unit check, or a unit exception condition. 

SAM Posting expects the following fields 
of the CHADEC Table (DEeB) to be zeroed: 
ECB, BSJ, 581, Sa2, FLG, CSE. Under error 
conditions, it examines BSF to determine 
how many sense bytes from the ISA are to be 
saved for user reference. These are placed 

46 Part I: Access Method for BSAM, MSAM. TAM and IOREQ 



in the last field of the DECB (normally BSF 
will contain X'02', indicating all eight 
sense bytes are to be saved). 

For the Control routine (CNTRL). IORCE, 
Rewind, and Rewind and Unload, thE' DECB 
pointer in the IORCB wl11 equal Z!~r<). The 
Check routine will clear the Error flag in 
the DEB to zero upon return from the user' s 
SYNAn routine. 

In handling the I/O synchronoul: inter­
rUption, the task monitor performs short 
save to provide working registers, dnd 
executes a type-l call for the appropriat.e 
posting and error recovery routine. SAM 
Posting is the proper routine for SAM. 

SAM Posting first determines if the 
10RCB has been executed. An IORCB would 
not be executed if the preceding I/O opera­
tion for that device had resulted in an 
abnormal completion. (Such a check must be 
done to handle error conditions properly 
when multiple IORCBs can be outstanding for 
one device by one task.) If the lORCB was 
not executed, the 10RCB is reissued (via 
lOCAL), or the DECB is posted to indicate 
-Intercepted- status. The choice depends 
upon whether the preceding condition was a 
permanent error. 

NORMAL COMPLETION: If the lORCB was 
executed, a test for normal completion is 
made. If normal, the event control block 
of the DECB is posted to indicate normal 
completion. SAM Posting also performs 
other optional services which can only be 
done after completion of the I/O operation: 

• Data Movement - Movement of data from 
an lORCB buffer to the user area for an 
input operation can be requested by the 
user. 

• Magnetic Tape Block Counts and Unit 
Exception Flag - SAM Posting increments 
(for forward tape movement) or decre­
ments (for backward movement) the prop­
er counts. The routine also sets 
appropriate flags for unit exception 
conditions. 

• Direct Access Read Variable Length 
Record and Pending C.W.E. Flags - The 
routine will perform the appropriate 
address movement and flag setting. 

OTHER THAN NORMAL I/O COMPLETION: 105 will 
lock the device to further I/O by this 
task, until a Reset SVC is issued by SAM 
Posting. This Reset SVC. when issued. will 
set off the suppression flag so that the 
task may resume I/O activity on the device 
in question. 

If the 1/0 was not normally completed, 
further tests are made and control is 
passed, if necessary, to device dependent 
error recovery routines which, if possible, 
will issue a retry 1/0 request. Each of 
these device dependent error recovery rou­
tines subsequently returns to thE posting 
routine. 

UnrecoveraoJe (Hardware) Error Ccmpletion -
General (non-device-depenaent) Processing: 
If the CSW information associated with the 
executed IORCB does not indicate comple­
tion. the routine searches for an immediate 
hardware indication of unrecoverable error. 

If the error or condition is not yet. 
considered to be unrecoverable, the routine 
will issue a Reset SVC to 105. The purpose 
ot t.he Reset SVC is to "unlock" the device 
queue previously "locked- by the I/O 
Supervisor. 

If the error is unrecoverable, the 
appropriate flags, addresses and counts are 
set. 

Recoverable Error or Exceptional Condit.ion 
(non-Error) completion - General Proces­
sing: This condition is indicated by the 
Unit Check or Unit Exception flags. 

Recoverable Error or Exceptional condition 
Completion - Device-Dependent Processing: 
If possible. depending on the device, N 
retries over the original path and also N 
retries over 3 alternate paths will be 
made, until a successful retry or until the 
set maximum of retries is reached. In the 
latter case the failure is termed a -hard­
failure. The VMER routine is called to 
record data associated with this -hard­
failure. 

Appropriate flags are set, messages are 
put out, counters are incremented, informa­
tion is saved, and routine linkage is 
effected. 

pevice-Dependent Error Procedures: The 
following are general notes on the device 
dependent error procedures: 

Error indication: When certain malfUnc­
tions occur, the CSW will contain more than 
one error indicator. Generally, only one 
of these properly describes the malfUnction 
while the other(s) indicate secondary 
effects. Similarly, some devicelcontrol 
Unit errors can cause more than one sense 
bit to be present. 

9riginal and alternat.e path retries: For 
some error conditions, there are no origin­
al path retries. However, there are always 
alternate path retries. An original path 
retry utilizes the same channel and device 
as that used in the original erroneous 1/0 

Section 4: Posting and Check 47 



operation. An alternate path retry uses 
the same device, but goes through a dif­
ferent channel. 

Number of retries: The number of retries 
is dynamic; the installation, howevEr, not 
the user, determines the threshold number. 
In the descriptions of the error retry pro­
cedures, in most cases N == a + b where a is 
the threshold number, and b is a constant 
for that particular approach to recovery. 

User's SYNAn routine: If appropriate, SAM 
Posting will set the SYNAD flag in the 
user's DECS. The user's SYNAD routine is 
his own -error- routine. It does not, 
however, attempt error recovery on I/O 
devices, but rather determines if the user 
want.s to terminate or continue processing. 

Return codes from error recovery routines: 

00 - Retry in progress. 

04 - Permanent error encountered, no 
retry. 

08 - Normal completion. 

OC - complete with error without retry. 

10 - complete with error after retry. 

Rebuild of the lORCS: 

The IORCB will be in page O. segment 0 
of virtual storage (that is, within the 
interruption storage area). The issuance 
of an error retry IORCB will consist, in 
the main, of initializing certain fields 
automatically. conversion of the ccw list 
from real core to virtual storage 
addresses, appending of the CCW list if 
required, and initialization or modifica­
tion of other fields within the IORCB. The 
purpose of these actions is to provide lOS 
with an input lOReB, that is, an lORCB with 
no main storage references, and no past 
action flags set (such as start I/O 
failure) • 

The need for appending a channel program 
with additional CCWs is determined in 
accordance with error retry requirements. 
The appendage will be made to the end of 
the channel program. If additional CCWS 
are added to the lORCB, the following 
fields will require incrementing or other 
modification: 

1. lORLN -- lORCB length; calculate the 
new value in accordance with the numb­
er of additional CCWs in the appended 
list. 

2. IORCL -- CCW list length; increment by 
the number of additional CCWs 
appended. 

3. IORST -- Relative origin of ·start 
CCW W • Modify this field in accordance 
with the error retry procedure. 

4. lORSC -- lORCB Software Command Chain 
flag set if addition to the CCW list 
requires it. 

MAGNETIC TAPE - 2400 TAPE SERIES ERROR 
RETRY PROCEDURE: The device-dependent 
error procedure for the 2400 tape series is 
described as follows: 

Unit Check (CSW bit 38): The routine 
checks the sense byte information to deter­
mine the cause of the unit check condition. 
Sense byte information will be found in 
segment 0, page 0 of virtual storage. 
Next, the routine checks the corresponding 
bit position in the IMSK field of the DCB. 

Load Point Sense Bit Only: The rout.ine 
will set Complete With Error in the ECB, 
set on the Error flag, and move the CSW and 
the first two sense bytes from segment 0, 
page O. to the DECB. The tape block count 
will be decremented by 1 and DEBMSK in the 
DEB will be incremented by 1. 

Load Point and/or Other Sense Bits Set: 

1. Bus Out Check (Byte 0, bit 2) -- The 
retry will consist of repositioning 
the tape, if required, and a repeat of 
the failing CCW. If tape motion takes 
place and the failing operation is a 
forward or backward space of record or 
file the error will be deemed unrecov­
erable. The routine will set the Per·­
manent Error indication in DCBIFL. set 
the Permanent Error flag in the DEB, 
and provide a return code of '04'. 

2. Equipment Check <Byte 0, bit 3) -- Bit 
1 of sense byte 3, or one or more of 
the bits of byte 4. will also be set 
to give more detail about the hardware 
failure. There is no original path 
error retry. Since data transfer and 
tape motion are indeterminate for all 
equipment checks, there will be no 
alternate path error retry. The rou­
tine will set the Permanent Error 
indication in DCBIFL, set tht= Per­
manent Error flag in the DEB. provide 
a message to the operator, a~d provide 
a return code of '04' in gen~ral 
register 15. 

3. Intervention Required (Byte 0, bit 1) 
-- If the addressed tape unit is non­
existent, (indicated by sense byte 1, 

48 Part I: Access Method for BSAM, MSAM. TAM and IOREQ 



bit 2 equal to zero), the rout~ne will 
try an alternate path. 

The routine will also perfonn ABEND 
processing for a control rou1:ine IORCB 
when the operation is other '~han 
rewind and unload (RUN). If the 
operation is RUN then a retu)~n code of 
zero will cause a return to ~he task 
monitor. For a non-control routine 
rORCB, if the selected tape unit is in 
the end-of-tape area, the routine will 
set Request for Synad in the CECB and 
the Error flag in the DEB. It will 
also set Complete With Error in the 
ECB, move the csw to DECCSW, move the 
first two sense bytes to DECSBO and 
DECSBI, and all eight sense bytes to 
DECASB. The routine will then set a 
return code and a message will be sent. 
to the operat.or to demount the tape. 
If the selected tape unit is not in 
the end-of-tape area, execution of the 
CCW list will be resumed from the 
point of interruption. A message will 
be sent to the operator to ready the 
tape unit, and the routine will set a 
return code of zero after a return 
from the lOCAL routine. 

q. Overrun (byte 0, bit 5) -- Data 
transfer will be stopped. Retries 
over the original path will consist of 
repositioning the tape and re­
initiating the failing command. This 
error should not be associated with a 
control operation and, if such should 
be the case, the routine will request 
an abnormal termination of the task. 
If the error retries fail, the routine 
will send a message to the operator. 

5. Data Check (byte 0, bit 4) -- Bits 0 
through 3 of byte 3 will be set to 
give more specific detail regarding 
the data check. 

a. Control Operation -- If the fail­
ing operation is write tape mark 
(WTM), then original path error 
retry will be attempted N times. 
The error retry procedure will 
consist of backspacing the tape 
one block, followed by an erase 
gap command, and then a repeat of 
the failing write tape mark opera­
tion. If the error retries fail, 
the routine will send a message to 
the operator. 

If the failing operation is other 
than WTM, the original path error 
retry will be attempted N times by 
retrying the command which failed. 

b. Write Operation -- Same as first 
paragraph of a. 

c. Read Operation -- If the operation 
was a read backwards and if the 
tape is at load point, spurious 
noise was detected and the data 
check should be ignored. In this 
instance the routine will set on 
the DEB error flag, mark the ECB 
Complete With Error, and move the 
CSW into DECCSW and sense bytes 
into DECSBO and DECSBI. If this 
was an error retry IORCB, the rou­
tine will set off the Error Reco­
very In Progress indication and 
set a return code in general 
register 15. If this was not an 
error retry rORCB, the routine 
will set a return code in general 
register 15. If the tape is not 
at load point, or if it is at load 
pOint but the operation was not a 
read backward, then a test is made 
to see if the block meets minimum 
block length requirements. 

If this is a noise block, and the 
interruption occu~red on the last 
CCW, the routine will set a return 
code for Normal Completion ter­
mination processing in general 
register 15. If more CCWs remain, 
the routine will rebuild the 
IORCB, and will resume the channel 
program from the point of l.nter­
ruption. Whether the record was a 
noise record or not, the read will 
be retried N times. The error 
correction programming sequence 
consists of setting the correct 
mode, repositioning the tape, 
sending track-in-error information 
to the control unit, and then 
issuing a read or read backward 
command. An error that persists 
should cause the tape to be back­
spaced five blocks (if five are 
available), thus placing the tape 
past the tape cleaner. An attempt 
is again made to read the tape, 
using the procedure just described. 
This loop should be repeated until 
the error is corrected, up to a 
maximum of N reads. Should the err­
or still persist, the associated 
block is defined as a permanent 
read error. The routine sends a 
message to the operator indicating 
an unrecoverable error. 

6, Data Converter Check (byte O. bit 7) 
-- If the chaining check bit is on, 
the action in the subsection referring 
to CSW bit 47 below is performed. If 
the chaining check bit ts not on, the 
routine will abnormally terminate. 

7. Command Reject (byte 0, bit 0) -- If 
the tape is file protected and the 
channel command word was a write, 
write tape mark, or erase gap, the 

Section 4: Posting and Check 49 



DEClD is set to X·'O·. an unrecover­
able error indication is set, SYNAn 1s 
requested. the error is recorded 
through the VMER macro, and return is 
made. If the tape is not file pro­
tected, an exit is made via SY::;ER. 

£haining Check (CSW bit 41): If the fail­
ing operation is a read command. the ori­
ginal path error retry is attempted N 
times. The errOl: retry consists of reposi­
tioning the tape and reinitiating the com­
mand that failed. If the error persists, 
the routine provides a message to the 
operator indicating ·unrecoverable errore. 
The routine will also set on the ·Permanent 
Erro.r- flag, set on the "Permanent Error" 
indication. and move the channel status 
byte from the CSW to the lORCB. The rou­
tine will send a return code of '04' in 
general register 15. 

If the chaining check occurs on other 
than a read operation after N error retri­
es, the routine: 

(1) Sets the Error and Permanent Error 
flags on. 

(2) Sets DCBIFL to Permanent Error 
condition. 

(3) Sets DECECB to complete With Error. 

(4) Sets Synad Requested in the DECB. 

(S) Moves CSW from ISA to IORCB. 

(6) Interfaces with the VMER routine. 

Unit Exception (CSW bit 39): This bit is 
set to indicate a read of a tape mark, or a 
write in the end-of-tape area. If the CCW 
involved in this interruption is an erase 
gap (ERG) and there are remaining Ccws, the 
routine sets the IORUE flag on, rebuilds 
the lORCB, and resumes the CCW list with 
the remaining CCws. If this interruption 
occurred on an error retry within an 
appended CCW, the routine rebUilds the 
IORCB and restarts with the original fail­
ing Ccw. 

If this was not an error retry, or if 
t.he interruption did not occur on an 
appended CCW, or if the CCW involved was an 
ERG with no remaining CCWs, the routine 
will process as follows: 

(1) Set on the Error flag. 

(2) Set DECECB to Complete With Error. 

(3) Move the CSW to DECCSW. 

(') Mow. the first two sense bytes to 
DBC8BO .nd DECSBl and all eight sense 
data bytes to DECASB. 

Incorrect ~enqth (CSW bit 41): If the 
failing CCW i_ a read operation the routine 
will determine if the record length con­
forms to one of the following standards: 

For fixed block the record length equals 
a multiple of the block length. 

For variable length the CCW count equals 
the residual count plus LL. For an ASCII 
variable-length record the CCW count equals 
LL plua the buffer offset minus 4. 

An undefined length is automatically 
acceptable, and a -fixed standard- length 
is an automatic error. 

If acceptable, ·normal completion- is 
set and a return occurs. If in error, 
·SYNAn request- and ·complete with error­
are set in the DECB, ·unrecoverable error­
in the DEB~ the sense bytes and CSW bytes 
are sa ved in the DCB. and a return occurs. 

DA Error Retry Routine (CZCRH) 

DA Error Retry processes synchronous I/O 
interruptions originating from a SAM or an 
Obtain/Retain operation on a DA device. DA 
Error Retry modifies the channel program. 
rebuilds the IORCB, and reissues the 1/0 
request (see chart eBI. 

Attributes: Privileged, reentrant, closed, 
resides in virtual storage. 

Entry Point: CZCRBl -- Entered via type-l 
linkage. 

Input: When this routine is entered, the 
channel status word and sense information 
pertinent to the I/O operation are con­
tained in the ISA. 

Data References: CHASDT, CBAISA. CHAIOR, 
CHADEB. CHADCS. CHADEC. 

Modules Called: 
VMSDR (CZCRY) -- Virtual memory statistical 

data recording. 

VMER (CZCRX) -- Virtual memory error 
recording. 

VMA (CZCGA) Get work area. 

SIR (CZCJS) Select interruption request 
(handle asyncbronous I/O). 

OLE (CZCJT) Build queue in task monitor. 

wro (CZABQ) Send message to operator. 

50 Part I: Access Method for BSAM, MSAM, TAM and IOREQ 



,PATh (CEAAB) -- Mark the device, control 
unit, or channel, down or OK. 

<TRC'r (CEAH3) Get tdsk 10. 

SETAE (CEAA10 Set up interrupticn queue. 

l::Xits: 
Normal Return to SAM Posting with the 

return code in register 15. 

Error --

• Abnormal termination via the ABEND 
macro instruction. 

• SYSER. 

Operation: For general notes on device­
dependent error procedures, see the SAM 
Posting and Error Ret~ry routine, ·Opera­
tion- section, under -Device-Dependent 
Err'or Procedures.· 

For each error ret.ry attempt the DA 
Error Retry routine increments the appro­
priate error retry counter by 1, sets the 
Error Retry flag on in the IORCB, sets the 
Error flag on in the DEB and sets the Error 
Recovery in Progress indication in the DCB. 
The IORCB is rebuilt appropriately and 
executes the lOCAL SVC preparatory to re­
execution of the channel program. A return 
code of zero is set in general register 15 
prior to returning to the calling routine. 

For each unrecoverable (permanent) error 
the routine sends a message to the operator 
indicating unrecoverable error, sets on the 
Permanent Error flag, sets the Permanent 
Error indication in DCBlFL and moves the 
channel status byte from the CSW in the ISA 
to IORCSB. When the error source is indi­
cated by the channel status byte, this rou­
tine interfaces with the VM1~ routine, sets 
a return code of '04' in general register 
15, and returns to the calling routine. 

When the DCBIMK corresponding bit is 
zero (that is, the user does not wish to 
have a retry for this error), the x'outine 
will move the CSW from the ISA to DECCSW, 
move sense bytes 0 and 1 from ISA to DECSBO 
and DECSB1 respectively. and set return 
code of 'OC' in general register 15. 

The following shows termination proces­
Sing to be done by the SAM calling routine 
after the direct access retry routine sets 
a return code in general register 15 other 
than zero. For a return code of zero 
(which occurs when the error recovery pro­
cedure issued an Error Retry IORCB) the 
calling routine will exit to the task mon­
itor without any further processing. 

r-----------------------T---------------l 
I I Return C'lde in i 
I !G.R. 15 I 
I r--T--T--T--T---~ 
I Action I041 08 10CI10 114 I 
~---------------------+--+-+--t--+---~ 
I Set DECECB=X' 41 • =Coro- I" I I" I >/ I I 
Iplete With Error I I I I I I 
I I I I I I I 
I Set Synad REquested I >/ I I" I " I I 
! flag in the DECB I I I I I I 
I I I I I I I 
I Move csw to DECCSW l " I ,; I I I I 
I I I I I I I 
I Move sense bytes 0 and I,; I " I I I I 
11 to DECSBO and DECSBl I I I I I I 
I I I I ! I I 
ISet Error flag, I "I I" I" I I 
I DEBNF1. to 1 I I I I I I 
I I I I ! I I 
I Decrement DEBIOC by 1 I" I " I " I " I I 
I (Allowed IORCB o/s I I I I I I 
I Count) I I I I I I 
I I I I I I I 
I Move data from lORCB I" I v I v' I " ! I 
Ito user virtual stor- I I I I I I 
I age, if required I I I I I I 
I I I I I I ! 
I Device-dependent termi-I " i " I " I " I I 
Ination processing I I I I I ! 
I I I I ! I I 
I Normal Completion I I v I I I i 
1""7F' set in DECECB I I I I I I 
I I I I I I I 
I Link to VMSDR -- after I I" I I" I I 
Isuccessful error retry I I I I I 
I I 1 I I I 
I Link to VMER I I I" I " I >/ 
I I I I I I 
I Clear DEBNFl to zero I I" I I I 
lafter successful error I I I I I 
I retry I I I ! I 
I I I I I I 
I Set DCBIFL Error Re- I I" I I I 
Icovery in Progress in- I I I I I 
Idication=O after suc- I I I I I 
I cessful error ret.ry I I I I I I L _____________________ .L-..cJ. __ .l __ .l __ .l. ___ J 

CONTINGENT ADDITIONAL PROCESSING: In addi­
tion to that processing which occurs with 
each error retry attempt. the following 
contingencies may be encountered and the 
ensuing processing involved. 

Channel Data Check ()311. 2314, 2302) ~ 
Original path error retry is attempted. 
Each t.ime an alternate path is requested, 
the channel status byte of the CSW will be 
moved from (0, 0) to IORCSB in the IOReB to 
be used by the VMER rout ine. 

Unit Exception: The Error flag is set on 
and a test is made for a corresponding 
DEeB. 

1. If a corresponding DECB exists, DECECB 
is set to indicate complete With 

Section 4: Posting and Check 51 



Error, the CSW is moved from th~ ISA 
to DECCSW. and two bytes of sense 
information are moved from the ISA to 
DECSBO and DEeSE1. 

2. If a DECB does not exist and this is 
not a retry IORCB, a return code of 
'oct is set in general register 15 
before exit. Otherwise, when a DECB 
does not exist and this is a retry 
IORCB, a return code for VMSDR inter­
face is set prior to ex~t. 

Cha~l1j.ng Check: Thexe will be N original 
path error retry attempts consisting of 
repedting the original CCW list. 

Incorrect l.R.:..!l9:!J!: The aC1:.ion tal<.I?..Il in this 
case is contingent upon the format of the 
record being processed clS indicated in 
OCBREC. The possible logical paths and 
actions performed are: 

1. Unknown - normal completion is indi­
cated by a return code of 'OS'. 

2. Variable - if the residual count of 
CSW is equal to zero, Complete With 
Error is set in the DECB. the SYNAn 
Requested flag is set, the Error flag 
is set in t.he DEB, the CSW is moved 
from (0. 0) to the DECB, and the 
return code is set to • OC·. 

If the residual count of the CSW is not 
equal to zero, a comparison is made between 
zero, and the difference obtained by sub­
tracting the sum of the CSW residual count 
and the 'LL' count from the CCW count. 

If the result of subtraction is 0, the 
return code is set to 'OS'; and Normal Com­
pletion processing will take place. If the 
result of subtraction is not 0, ·Complete 
With Error- is set in the DECB. the SYNAD 
Requested flag is set, the error is indi­
cated in t.he DEB, the CSW is moved from (0, 
0) to the DEVE, and a return code of 'oct 
is set. 

Unit Check (2311. 2314, 2302): The number 
of retries over the original path is depen­
dent upon t."le type of error which caused 
the urut check condition. Examination of 
the sense byte data will. indicate the error 
cause. Prior to any diagnosis or error 
retry, the appropriate bit in the DCBIMK 
field of the DeB is tested against the 
f;orresponding bit set in the sense byte 
data. If the bit is off, further proces­
Sing will be that as contained above for 
DCBIMK corresponding bit equal to zero. If 
the bit is set on. diagnosis and retry con­
tinues as follows: 

EqUipment Check (byte 0, bit 3) -- There 
is no original path error retry. The 

alternate path error ret.ry wi 11 consist of 
repeating the original CCW list. 

No Record F'ound (byte 1, bit 4) -- When 
the Missing Address marx€'r (byte 1, bit 6) 
is also set, there are N orlginal path 
error retry attempts. For d 2311 t.he error 
retry prOCEdure consists of a Restore CCW 
followed by a TIC to seek the original 
address. 

If the Missing Address MarKer bit is not 
set, there are N original path error ret.ry 
attempts. Initially this error retry pro­
cedure consists of verification of the home 
address. This is done by comparing the 
CCHH of the home address stored in the 
IORCB against the CCHH of the search argu­
ment. If the comparison indicates equali·· 
ty, an ABEND sit.uation is encountered. The 
routine performs termination processing by 
setting on the Error and Permanent Error 
flags. setting ABEND Requested in the DECB , 
and setting the return code to 'Oct in gen­
eral register 15. 

If the CCHH comparison indicates an 
inequality, the error retry procedure will 
be as indicated when the MiSSing Address 
marker is set. 

Seek Check (byte 0« bit 7) ~- If Command 
Reject (byte O. bit 0) is also set. an 
ABEND situation is encountered, and a 
return code of X'12' is set before return. 
If Command Reject is not set, there are N 
original path error retry attempts. 

Intervention Required (byte 0 .. bit 1~ -­
A message will be sent to the operator to 
ready the device and execution of the COW 
list will be resumed from the point of 
interruption. 

Bus Out Check (byte 0, bit 2) -- The 
original path error retry attempt will con­
sist of repeating the original CCW list. 

Data Check (byte O. bit q) -- There will 
be N original path error retry attempts 
consisting of repeating the original CCW 
list. After unsuccessful retries, if there 
is a data check in the count area, the rou­
tine abnormally terminates. If there is a 
data check in the count area, and the Read 
Variable Length Records flag i55et, and 
the failing CCW is t.he last in tre CCW 
list. t.hen terminatcion processing will be 
in accordance with the ret urn cod e in gen­
eral reaister 15 set to ·Oq'. If the fore­
going • AND' situation does nat occur the 
Error and Permanent Error flags, DEBNF1 and 
DEBNF2. are set, and an ABEND is effected. 

When error retry has been exhausted for 
data check and there is no check in the 
count area, then overflow Incomplete (byte 
1, bit 7) is checked. If there is an 

52 Part 1: Access Method for BSAM. MSAM, TAM and IOREQ 



·Overflow Incomplete- condition, processing 
will be as follows: 

a. Add 1 to 'HH' of seek to seek to next 
consecutive track. 

b. Set R=l in search argument. 

c. Set 'CCHH' of search from 'CCHH' of 
seek argument. 

d. Append CCW list 'B' to origin<ll CCW 
list. 

e. Set start CCW to 1st seek of List 'B'. 

f. Bookkeep (IORCB) IORCL and IORLN 
fields. 

g. Adjust count. and data address of fail­
ing CCW. 

h. Execute lOCAL SVC after setting flags. 

When error retry has been exhausted for 
data check and there is no data check in 
the count area. and OVerflow Incomplete is 
not set then: 

1. If the Read Variable Length Records 
flag is set on: 

a. Subtract 1 from 'R' field of 
search argument. 

b. Append appropriate CCws to the 
original CCW list in order to 
ensure that the correct data area 
is being searched. 

c. Set Start CCW to first seek of the 
appended channel program. 

d. Bookkeep IORCL and IORLN fields. 

e. Execute lOCAL SVC after setting 
flags. 

2. If the Read Variable Length Records 
flag is not on: 

a. For a read set a return code of 
'04' in general register 15. 

h. Set DEBNF2 and a return code of 
'04' in general register 15 for a 
Write operation. 

Overrun (byte 0, bit 5) -- There will be 
N original path error retry attempts con­
sisting of repeating the original CCW list. 
When the retries are unsuccessful. an ABEND 
situation is encountered. 

Missing Address Markers (byte 1, bit 6) 
There will be N original path error 

retry attempts consisting of repeating the 
original CCW list. 

Command Reject (byte 0, bit 0) -- This 
is an ABEND situation. 

Track Condition Check (byte 0, bit 6) -­
An additional check is made on the Read RO 
Failed and Alternate Track Indicators. If 
the read RO failed, this is an ABEND 
situation. 

If the Alternate Track flag is set, the 
'CCRR' of th~ seek argument is set equal to 
the 'CCRH' of the defective track plus one, 
and one of the following will occur, 
depending upon conditions: 

1. If the Overflow Incomplete (byte 1. 
bit 7) bit is not set append CCW list 
-A" to original CCW list, set start 
cew to first seek or -Aft ccw list, 
bookkeep IORCL and IORLN, and Execute 
lOCAL SVC after setting flags. 

2. If the Overflow Incomplete bit is set 
on, set R=l in the search argument, 
set search argument 'ceHE' frOID seek 
argument 'ceHH', append ecw list -B W 

to original ecw list, set st.art ccw to 
first seek of list "B-, set the IORCL 
and IORLN fields of the IORCB, adjust 
the count and data address of the 
failing CCW. and execute the lOCAL SVC 
after setting flags. 

If the Track Condition Check is set and 
the Alternate Track flag is not set, the 
DEBATK and DEBETK 'MBB' are set frOID the 
seek argument • r-mB·. the DEBATK 'CCHHR' is 
set frOID the 'CCHHR' of the alternate 
track, the DEBETK 'CCHHR' is set from the 
'CCHHR' of the defective track, and the 
seek argument 'CCHE' is set from the 'CCRH' 
of the alternate track. If Overflow Incom­
plete is not set, process as in 1 under 
Track condition Check. If Overflow Incom­
plete is set, process as in 2 under Track 
Condition Check. 

Track Overrun (byte 1, bit 1) -- There 
will be no error retry. The routine will 
set a return code of '04' in general 
register 15 and will return to the calling 
prograrr,. 

Cylinder End (byte 1,_bit 2) -- If the 
Overflow Incemplet.e bit is set, or if Read 
Variable Length Records is not set, or if 
the failing CCW is not the last in the ori­
ginal CCW list. then the processor will set 
on the Error f lag and the Permanent Er1-
flag, set DECECB to Complete With Brrer, 
set on the DECB ABEND Required flag bit, 
and set DCBIFL to indicate Permanent ELrar 
condition. The CSW is moved to the DECCSW, 
sense bytes 0 and 1 to DECSBO and DECSB1, a 
message is provided to the operator inch­
eating a permanent error and there is d 

return to the calling program with a return 
code of 'OC' in general register 15. 

Section 4: Posting and Check 53 



If OVerflow Incomplete is not set and 
Read Variable Length Records is set and the 
failing CCW is the last of the CCW list, 
then the routine will set DEBNIO to all 1 
bits, set IORRV=O, set a return code of 
'08' in general register 15 and return to 
the calling program for Normal Completion 
processing. 

File Protect (byte 1, bit 5) -- The com­
mand reJect bit will also be set when this 
condition is detected. There will be no 
el·ror retry. This is an ABEND situation. 

~;AM Posting ~nd Error Retry Routine 
.iC-:ZCMG) 

This routine records the results of an 
1/0 operation from or to a unit record 
device and determines future processing. 
Jo!..SAM Postin9 is called by the task monitor 
as the result of a synchronous I/O inter­
ruption following the execution of an IORCB 
by the MSAM Read/Write routine, or as the 
result of an asynchronous I/O interruption, 
such as when the operator has reset a 
jammed device. If the I/O operation was 
completed normally. MSAM Posting records it 
so that further processing may continue. 
If an error or unusual condition occurred, 
~SAM Posting records the condition and may 
determine whether t.o retry the operation or 
notify the operator before returning to the 
task monitor. <See Cbart CC). 

Attributes: Read-only. privileged. reen­
trant, nonrecursive. 

Entry Poi nts : 
CZCMGl -- Primary entry point from the task 

monitor with interruptions masked off. 
Type-l linkage. 

CZCMG2 -- Entry point following aT. asynch­
ronous interruption. Type-1 linkage. 

Input: Register 1 contains the address of 
the ICB. 

Da.ta References: CHAISA. CHADCB, CHADEB. 
CHADEC, CHABDT, CHASDA. CHAIOR, CHArCS, 
(HADEP. 

Modules called: 
VMER (CZCRX) -- Informs the operator of the 

failing task I/O component and generates 
I/O error records. 

VMSDR (CZCRY) -- Accumulates error stat.is­
tics on task I/O devices. 

SIR (CZCJS) 
routine. 

Specify interruption 

DIR (CZCJD) -- Delete interruption routine. 

Reset (CEAAH) -- Reset Device suppression 
flag routine. 

SYSER (CEAIS) -- System prror proc~ssor. 

WTO or WTOA (CZABQ) -- Writt' m"tlll,\,!,' to 
operator on console tvpewrit~r. 

Ext ts: 
Normal -- Register 15 contains 00. 

Error -- Register 15 contains the return 
code passed from VMER or VMSDR. 

Operation: What happens in MSAM POSTING 
depends on the type of device (reader, 
punch, or printer) on which the 1/0 opera­
tion occurred, and on whether the device i.s 
central (locdted at thp central in~talla­
tion) or remote (located away from the 
central installation; remote job ent.ry). 
Although the general logic in MSAM Posting 
is similar for all unit record devices, the 
sequence of operation and special consi­
derations vary and require separate 
explanation. This description is divided 
into two parts. The first part explains 
MSAM Posting processing for central instal­
lation devices. The second part explains 
MSAM Posting proceSSing for remote job en­
try devices. 

CENTRAL INSTALlATION DEVICES 

NORMAL I/O COMPLETION: On entry to MSAM 
Posting. the number of outstanding IORCBs 
is decremented by one. After falling 
through a series of abnormal condition 
tests, the Retry in Progress flag is set 
off in the DECB, the DECB is marked Nonnal 
Completion, the remaining DECBs are checked 
for Posting Reissue flag on Cif 50, the 
associated IORCBs are reissued), and return 
is made to the task monitor. 

OTHER THAN NORMAL 1/0 COMPLETION: In gen­
eral. where some abnormal condition is dis­
covered, retry procedures are initiat.ed, 
depending upon the condition and the 
device. If recovery is possible and the 
number of retries for a given condition has 
not been exceeded, the 10RCB is reissued by 
MSAM Posting. If no recovery is pOSSible, 
or if all recovery procedures have failed, 
the DECB is marked complete with error, and 
flags are set for unrecoverable and, if 
applicable, permanent error. A modified 
form of the CSW and the ISA sense byte are 
moved to the DECB, a message is sent to the 
operator with the WTO instruction, all 
DECBs whose Posting Reissue flags are set. 
on are marked intercepted, the Posting 
Reissue flag is reset, and control is 
returned to tbe task monitor. 

Priori,ty of Checking I/O Results: The 
tests in MSAM Posting to determine results 
of the I/O operation are made in the fol­
lowing order for a card reader or card 
punch: 

54 Part I: Access Method for BSAM, MSAM, TAM and 10REQ 



1. No Path Available 

2. Purged I/O Operation 

3. CCWs Not Relocated (specification 
error) 

4. IORCB Intercepted 

5. Start I/O Failure 

6. CSW Status Zero 

7. Prior Error Check (on normal 
completion) 

8. Channel Control Check 

9. Interface Control Check 

10. Channel Data Check 

11. Invalid CSW Status Bits Set 

12. Unit Check - Sense Failure (invalid 
sense information) 

13. Unit Check - Intervention Required 

14. 

15. 

16. 

Unit Check Command Reject 

Unit Check - Bus Out Check (initial 
selection) 

Unit Check - Bus Out Check (data 
transfer) 

17 • Unit Check - Equipment Check 

18. Unit Check - Data Check 

1'1, Unit Check - Unusual Command Sequence 

20. Prior Error Check (not normal 
completion) 

21. Program Check 

22. Protection Check 

23. Unit Exception 

The priority for checking an I/O operation 
for a printer is: 

1 - 12. Same as for reader and punch 

13. Unit Check - Equipment Check 

14. Unit Check - Code Generation Storage 
Parity 

15. Unit Check - Intervention Required 

16. Unit Check - Bus Out Check (data 
transfer) 

17. Unit Check - Bus Out Check (initial 
selection) 

18. Unit Check - Channel 9 

19. Unit Check - Comrr~nd Reject 

20. Unit Check - Data Check (UCS option) 

21. Prior E;rror Check (not normal 
completion) 

22. Program Check 

23. Protection Check 

211. Unit Exception 

Description of Posting and Recovery 
Efforts: Posting and recovery efforts in 
the order in which they occur (based on the 
priority lists above) are described below. 

Name references appearing in parentheses 
at the end of paragraphs in the following 
descriptions correspond to block labels in 
flowchart CC and statement names (labels) 
in the listing of module CZCMG (MSAM 
POSTING) • 

No Path Available is set because no path 
is available and may be due to sett.ing all 
paths disabled during alternate path retry. 
The associated entry in the SDAT for the 
device will be marked ·phase out R by set­
ting SDACE. The SDA entry must be locked 
during this change. A.message is sent to 
the operator and permanent error post.ing is 
done (TESTLOCK). 

A Purged 1/0 Operation indicated by 
IORPG causes an unrecoverable error to be 
set and return is made to the task monitor. 
A permanent error will be set if purged I/O 
occurs recursively more than ten times 
(TSTPURGE-UNRERR2). 

If the CCws are not relocated (specifi­
cation error), an unrecoverable error is 
posted and a minor software.error is rec­
orded by issuing the SYSER macro instruc­
tion (CCWSPEC). 

10RCB Intercepted occurs when one or 
more IORCBs to be executed during an oper·a­
tion failed to be executed because of an 
interruption during an IORCB being executed 
earlier in the operation. .If no prior 
unrecoverable error has been recorded and 
retry is not already in progress, the lORCh 
is reissued (INCEPTED - PRIERR). 

Start I/O Failure indication occurs for 
busy or not operational conditions. An 
alternate path is requested by setting 
IOHAL, and a message is sent to the opera­
tor after requesting alternate path retry. 
If successful. normal posting occurs. If 

Section 4: Posting and Check 55 



unsuccessful. each alternate path is tried 
once and a message is sent to the operator. 
When all paths have been tried unsuccess­
fully. permanent error posting occurs 
(INCEPTED) • 

A Zero CSW should not occur dnd causes 
an unr-ecoverable error to be post(?d and a 
minor sott.ware SYSER (TSTCSW). 

Prior Error Check indicated wh,en CSW 
status bytes equal norllldl completion means 
some previous data may have been lost. The 
Error Ret_ry flag is set off and an unrecov­
erable error is posted unless the I/O 
operation involves Forrn-D print_in'] (that 
is, a dump). In that: case, the operation 
is not considered unrecoverable and normal 
completion posting occurs CTSTSTA,T). 

Channel Control Check is one of four 
error conditions that is retried and then 
posted as an unrecoverable error when suc­
cessful. This is because a record may have 
been lost or duplicated. These error con­
ditions (channel control check, interface 
control check. invalid status or sense con­
dition) set the error check flag. lOREe, to 
permiL correct postinq after retry occurs. 
If none of these error types occur after 
retry" then an unrecoverable error is post­
ed. ';.n exception is Form-D printing which 
is analyzed for a lower priority error or 
posted normal. After determining a channel 
c:ont.rol check condi tioD exists, the flags 
IORAL and IOREC are checked too see if a 
prior error condition caused alternate path 
retry to be requested or if a prior Error 
check condition occurred. If either flag 
is se':, VMER is called to record a hard 
inboard error, the Alternate Path Retry 
flag is set, and a message is sent to the 
operator prior to reissuing the IORCB. If 
a pri()r error condition does not exist, the 
Error Check flag is set and the IORCB is 
reissled along the same path. A successful 
retry results in an unrecoverable error 
being posted (unless Form-D printing is 
underlay). Unsuccessful retries result in 
one retry at each alternate path, with VMER 
being called and a message sent to the 
operator in each case (TESTCCC-ALTPATB1). 

Interface control check occurs if there 
are' channel or control unit problems. Pro­
cessing is the same as for channel control 
check above (TESTICC). 

Channel Data Check occurs when the chan­
nel detects a parity error in the informa­
tion transferred to or from main storage on 
rul I/O operation. VMER is called to record 
t-he error on each occurrence. Processing 
is as follows: Flags IORAL and IOREC are 
checked to determine if a prior error con­
dition caused alternate path retry to be 
requested or a prior Error Check condition 
occurred. It either flag is set, alternate 

path retry is :r-equested. VMER is called to 
record the error, and a message sent to the 
operator. If neither flag is set, the same 
path is retried according to the threshold 
values SDTCRO, SDTPUO, or SDTPRO for the 
card reader, punch or printer respectively. 
Normal posting is done for successful 
retry. An':llternate path is requested if 
the threshold value has been exceeded. A 
message is sent to the operator after requ­
esting retry at an alternate path 
(TESTCDC-ALTPATH2). 

lnv~i9 CS~Status Bits cause processing 
similar to that for channel control cheCK .. 
The invalid bits are 32 (attention), 33 
(status modifier), 34 (control unit end), 
47 (chaining check). and 41 (incorrect 
length); these bits should not be set for 
unit record devices. VMER is called to 
record the. error on each occurrance; a mes­
sage is sent to the operator after request­
ing retry at:. an alternate path (TESTINVL). 

ynit Check - Sense Failure is processed 
the same way as channel control check. A 
sense failure is caused by a sense command 
failure or invalid sense information. 
Sense bits 5 and 7 should not be set for: 
the card reader or card punch. Sense bit 6 
should not be set for the printer. Sense 
bits 4 and 5 may be set for the printer 
only if UCS is specified. All conditions 
can occur for either channel or control 
unit problems. VMSDR is called to record 
the error and a message is sent to the 
operator after requesting retry at an 
alternate path. Each alternate path is 
t.ried once (TESTUC). 

The follOWing unit check processing is 
dependent on the type of unit record 
device. 

• For the reader or punch: 

Unit check - intervention required 
occurs when the unit is not ready due to 
any of several conditions. Cards are not 
at each station (not EOF for reader). a 
stacker is full. the hopper is empty (not 
EOF for reader). the stop key is depressed 
the chip box is full or removed, or a card 
is jammed. A message to the operator is 
set up telling him t.hat: int.ervention is 
required. Asynchronous interruption proce 
dures follow. The messaqe previously set 
up is sent to the operator (WTO). The Spe 
city Interruption Routine (SIR) macro 
instruction is issued, the Error RecoverL 
in Progress flag set on in the DEB, and 
control is returned to the task monitor. 
The operator performs the required action. 
correcting the condition requiring inter­
vention or replaCing the card on the equip 
ment o_r data check, and makes the device 
ready. The asynchronous interruption 
occurs, control is transferred to the Post 

56 Part I: Access Method for BSAM, MSAM, TAM and IOREQ 



I. 
~ 

.lng (,l1t ry point. (~ZCM<.;). th(· vl[t.u.il 
!;tor,HjP IOI{CH t" Ipi,,~;ued, t:he number of 
out.ct.dlldinq IOHCB:j i~ incremented by one 
dnd return 1.:. mdde to thE' task monitor 
(INITSEL-lSINTV). 

A Command Rejec! occur!; when .) command 
is given which the device is una:ole to 
execute. Posting is done for an unrecover­
able error and if the DCB did not specify 
FORTRAN (formerly ASA) or machine control 
characters a minor soft.ware SYSER is rec­
orded (TESTCREJ). 

Unit Check - Bus Out for the reader or 
punch occurs when 3 parity error is 
detected on a bus out during either initial 
selection or command selection. Original 
path retry will be attempted the number of 
times specified in the SOT. A flag will be 
set in the DEB to indicate error recovery 
is in progress and the Error Retry 
Attempted flag set in the lORCB. The vir­
tual storage IORCB will be reissued and 
control returned to the task monitor. If 
all retries on one path fail, VMSDR will be 
called to record hard outboard error sta­
tistics, a message will be written to the 
operator, and the IORCB will be reissued on 
an alternate path tBUSOUT-ALTPATHS}. 

A Unit Check - EqUipment Check will 
cause retries on the same path to be 
attempted the number of times specified 
separately for reader and punch in the SDT. 
In each case, prior to returning to the 
t.ask monitor, the Error Recovery in Pro­
gress flag is set in the DEB, the Error 
Retry Attempted flag is set in the IORCB, a 
message is sent to the operator. and an 
interruption routine is specified with the 
SIR macro instruction. The message sent to 
the operator directs him to take appropri­
ate correctiVe action on the reader or 
punch. Such action creates an asynchronous 
interruption and MSAM Posting is entered at 
CZCMG2 where the Error Retry Attempted flag 
is set in the IORCB, the virtual storage 
IORCB reissued, and the number of outstand­
ing IORCBs incremented by one before 
returning to the task monitor. 

Where the maximum number of retries have 
been done, an alternate path is tried; a 
message is written to the operator request­
ing an alternate path, and again MSAM Post·· 
ing returns until entered as the result of 
operator action. In the event alternate 
path retry is performed, a hard outboard 
error is recorded via VMSDR for the failing 
path (ALTPATH3). 

Unit Check - Data Check occurs when an 
invalid card code is detected. This can 
occur only on a read command. If the card 
is a control card. two flags are set on in 
the DEB to indicate that a control card has 
been read. If the card is not a control 

card dnd tt\f' ret_ry option in'tlle [Jell :'1'('( 1-

fip:, no n~tr.i(;~~. the pocket op1 ion In ltH" 
Dcn is test.ed. This determine~; whf't.h,-r U,<' 
Feeder and St.acker Select comrn..md is 
changed t.o use the stacker specif ipd in trw 
pocket opt.ion or whethf'r the C.ll-.j i" 
stacked a~; if no ('rror ,,,:'curr.,'d. A f l.iq i!; 

set in t.hf' DEli to indic,lt ... th.1t ,11\ inv.dJd 
card has been redd dno dcceptf'd, a t ld(J l!; 

set in the virtual storage IORCH to indic­
ate error retry at..tempted, and the DEB 
Error Recovery in Progress flag is set on. 
The virtual storage IORCB is reissued at 
the next feed, select stacker command with 
command chaining suppressed, the number of 
outstanding IORCBs is incremented by one, 
and control is returned to the task monitor 
IRPBIT4-TESTPOCK-RETRY2). 

If the card is not a control card dnd 
the retry option in the DCB specifies an 
unlimited number of read retries, a message 
is issued (WTO) informinq the operat~or t.O 
replace the erroneous card for the retry 
attempt. Asynchronous pr0cedures are 
handled as in Intervention Required, except 
that a flag is set on in the IORCB to ind­
icate an error retry was attempted 
(CHKCOUNT-SETASYNC). 

Unit Check - Unusual Command Sequence is 
caused by a read following a read with no 
intervening feed. This condition is allow­
able only if an error retry is in progress. 
Processing continues with the next CCW. If 
unusual command sequence occurs when an 
error retry is not in progress, posting tor 
an unrecoverable error occurs (RPBIT6}. 

A Prior Error Check indicated when sta­
t.US bytes showed other than normal comple­
tion is treated as an unrecoverable error 
for a reader or punch (TESTEC - UNRERR2). 

If a Proqram Check or Protection Check 
occurs on the reader or punch, there is no 
recovery procedure. Unrecoverable error 
posting is done and, if a protection check, 
SYSER is invoked to record a minor software 
failure (TESTPGC - TESTPTC - UNRERR2 -­
MISERR4) • 

A Unit Exception on the punch should 
never occur. If it does, permanent error 
posting is done and a minor software SYSER 
recorded. A unit exception on the reader 
indicates end of file (data set) and normal 
completion posting is done. A flag is set 
on in the DEB to indicate end of file 
(TESTPTC) • 

• For the printer: 

A check is made for invalid sense bits 
as explained above under Unit Check - Sense 
Failure (PRUNITCK). 

Section 4: Posting and Check 57 



B!!_Uh*,,~~k_n=- r~gllipm~nt Check is pro­
C('8flP.d simildl:· to equipment check l'roc£'o­
Slog fOL· the redder and punch. Thi!. uni t 
checK can be caused for a printer by either 
a hammer check or a buffer parity eJ:ror 
(PRBIT3). 

Unit Check - Code Generator Parity Error 
causes orig1nal path retry to be done the 
nnmber of times specified in the SDT. It 
occurs only if the code generator storage 
is being reloaded for a printer with the 
universal character set (UCS> featu:re. If 
retry over the same path is unsuccessful. 
an alternate path is requested and a mes­
sage sent to the operator. The error is 
recorded as intermittent when successful or 
a~, solid when unsuccessful for a path. The 
error is processed the same for each path. 
~'xcept t-:ach alternate pat.h is tried once 
(PRBITS). 

If Unit Check - Intervent.ion Required is 
tht error, and the DeB for type is D or S 
(that is, form-sensitive), the operator 
will be sent a message to ready the print­
er. The SIR macro instruction will be 
issued to handle the expected asynchronous 
interruption. The error recovery in pro­
gress flag will be set on in the DEB and 
contI·ol wi 11 be returned to the task mon­
l.tor. When the operat.or signals correction 
of the error condition by hitting the stop 
button followed by the start button. the 
asynchronous inter~lption will occur. 
Posting will be entered at its second entry 
t~int (ClCMG2), which was specified in the 
Specify Asynchronous Entry Condition macro 
instruction ICB. The virtual storage IORCB 
will be reissued beginning wi th the failing 
ccw, the number of outstanding IORCBs 
incremented by one, and control returned to 
the calling program. For form type-F, a 
message is sent to the operator directing 
him to mark the error page. The fixed area 
of the IORCB is moved from the interruption 
storage area to the DEB page. The address 
of the ICB in the DEB page is stored in the 
OCB, and the V- and R-con for posting entry 
2 are stored in the ICB. The SIR macro 
instruction is issued to service the 
expected asynchronous interruption, the 
error recovery in progress flag is set on 
J.n t.he DEB, and control is returned t.o the 
t.ask monitor. After the asynchronous 
interruption occurs. processing is identic­
al to that done for error recovery on form 
type F for the printer after an equipment 
or data check (INITSEL - PRBITl - PTRINT -
SETASYN2 - SETASYNC). 

Unit C,-h~ck~s Out is caused by a 
parity error on a cormnand (initial selec­
t.ion) or data (data transfer) byte. Each 
path is retried the number of times speci­
fied in the SDT; when the maximum is 
reached, the failing path is recorded via 
VMSDR, a message is sent to the operator 

about- the failure. and tbe IORCB is rels-
1lUeo.:i <JIloll9 a new pat.h (PRBIT2 - PRBOUT -
RTRYBOUT) • 

If Unit Check - Channel 9 was sensed by 
the printer d1lring the previous carriage 
motion and no other status or sense bits 
are set, processing continues with the next 
CCW. If FORTRAN (formerly ASA) or machine 
control characters have not been speclfied 
and there was a uni t E'xcept_.ion, t.hf' fai ling 
CCW is changed to a skip to channel 1 and 
processing conti.nues. If any other sense 
bits are on, no special processing is done 
for the channel 9 indication (PREIT7 -
UEPRINT - NEXTLINE - RETRY3). 

Unit Check - Command Reject is processed 
for the printer as explained for the reader 
and punch above (PRBITO - CMDREJ). 

Unit Check - Data Check occurs only with 
a printer having the UCS feature when a 
code in data storage finds no match with 
any code in code generator storage. If 
SETUR had not been previously called by the 
user to load the buffer, a message is sent 
to the operator and an unrecoverable error 
is posted. Otherwise, the first time a 
data check occurs the buffer will be 
reloaded prior to the write retry. When 
the buffer has been successfully reloaded, 
the print retry counter is set to a number 
specified in the SDT and the failing CCW is 
changed to print without skipping, spacing, 
or command chaining. A flag is set in the 
IORCB to indicate error retry attempted, 
the IOkCB is reissued, the number of out­
standing IORCBs incremented by 1, and con­
trol returned to the task monitor. After 
the maximum number of retries have 
occurred, a message is sent to the operator 
indicating task ID and buffer arrangement. 
SIR macro instruction is issued to handle 
the possible asynchronous interruption from 
the operator. Posting is done for an unre­
coverable error and control is returned to 
the task monitor. 

If the operator wishes to accept the 
error and block further data checks, he 
will depress the stop and start buttons, 
thereby causing the asynchronous interrup­
tion. Posting invoked at its second entry 
point, CZCMG2. will proceed with the next 
line to be printed, except that the first 
CCW to be issued will be a block data com­
mand (UNRERR-RLDBFR-RETRY4-TSTCNT-ASKOPER). 

A Prior Error Check (not normal comple­
tion) is treated as an unrecoverable error 
unless Form-D printing (that is, a dump) is 
in progress. If Form-D printing is in pro­
gress, MSAM Posting assumes the user is 
willing to have the job continue; proces­
Sing continues to test for program check, 
protection check, or unit exception (TESTEC 
- UNRERR2). 

58 Part I: Access Method for BSAM, MSAM, TAM and IOREQ 



If a Program Check or a Protection Check 
on the printer occurs, there is no recovery 
procedure. Unrecoverable error posting is 
done and unless FORTRAN (formerly ASA) or 
machine characters were not specified on 
the program check. SYSER is invoke·j to 
record a minor software failure (T"ESTPGC -
TESTPTC - UNRERR2 - MISERR4). 

A Unit Exception on the printer indi­
cates the end of a page has been reached 
and a skip to the next page is required. 
If FORTRAN (formerly ASA) or machine con­
trol characters are in use (meaning the 
aser handles his own skipping). the current 
[ORCB will be reissued at the next CCW. 
The number of outstanding IORCBs is incre­
I1lented by one and control returned to the 
~ask monitor. If FORTRAN or machine con­
t::rol characters are not in use, a skip to 
channel 1 command will be inserted over the 
.last executed CCW, the virtual storage 
10RCB will be reissued beginning with the 
skip to channell, the number of outstand­
ing IORCBs is incremented by one and con­
trol is returned to the task monitor 
(UEPRINT - NEXTLINE - RETRY3). 

REMOTE JOB ENTRY DEVICES 

For remote job entry devices (reader or 
printer; a punch is not supported). normal 
I/O completion results in processing ident­
ical to that for central installation 
devices plus several additional processes. 
3uffer input received from a reader is 
<:hecked for the presence of an ETX charact­
,,=ri where found, it indicates end-of-data-
5et (end-of-file) and a flag is set. Where 
unissued IORCBs are to be reissued as the 
result of a prior unsuccessful completion, 
5ynchronization of ACK characters is 
assured for the reader before an lOCAL is 
issued (TESTRJE - SETENOF - REISSl -
CHECKACK) • 

In general, MSAM Posting performs only 
posting functions for remote job entry 
devices. Necessary error recovery proce­
dures are performed by the resident super­
visor. MSAM Posting error processing for 
both the remote reader and printer is 
explained below. 

Channel control check, interface control 
check, and channel data check errors are 
recorded via VMER, CHKINTM is called if 
intermittent errors are present, and a mes­
sage is written via WTO to the TSS operator 
informing him of the permanent channel 
error (NORMRJE - TESTICC - TSTCOC>. 

Unit check - sense failed error is rec­
orded via VMSDR, permanent error is posted, 
CHKINTM and WTO are called (TSTDUC). 

Unit check - time out error is recorded 
via VMSDR, permanent error is posted, 
CHKINTM and WTO are called if it is a 
'should not occur' error (IORJESN is on). 
If it is a 'should occur' error (IORJESN is 
off), then the operation is set up to be 
handled by an asynchronous interruption 
(TOCHK) • 

Unit check - intervention required 
results in the first byte of the DECB being 
set to hex 14 so that BULKIO may reinitia­
lize the job (IRCHK). 

Unit check - lost data, data check, or 
overrun errors are recorded via VMS DR, per­
manent, errOI- is posted, CHKINTM and WTO are 
called. If IORJESN is on, SUbsection 2 of 
the error counter tables is used for reco­
rding the error. If it is off, subsection 
1 is used (DATACHK) • 

Unit check - busout, equipment check, or 
command reject errors are recorded via 
VMSDR, permanent error posting is done, 
CHKINTM and WTO are called (BOCHK -
EQUIPCHK - COMMREJ). 

If no sense bits were found on, a minor 
software SYSER is called. 

Unit exception - first, intermittent 
errors are recorded using the CHKINTM sub­
routine. Then, if receive mode, the first 
byte of the buffer is checked for an EOT. 
(An EaT will be found if the operation was 
completed in the previous buffer but there 
was no room to write the EOT, or if a card 
jam occurred just as the buffer was being 
completed.) If there is an EOT. the 
DCBENOF flag is checked, and if on normal 
completion is posted. If off, it indicates 
either a card jam or the 'STOP' button was 
pushed. The operation will then be set up 
to be handled by an asynchronous interrup­
tion (SKPINTM - TSTEOF - CHKSAIN). 

If the first byte of the buffer does not 
contain an EaT, then the data buffer being 
read at the time of the interruption is 
checked for ETX or ETB. This check will be 
made at the middle of the buffer (byte 83) 
if IORJEOC is on, or at the end of the 
buffer (byte 167) if IORJEOC is off. If an 
ETX, the operation has completed normally, 
DCBENOF is set on, and normal completion is 
posted. If ETB is found, either a card jam 
has occurred or the STOP button has been 
pushed. Setup will be made for an asynch­
ronous interruption. If neither ETX or ETB 
is found, a minor software SYSER is posted 
{SETEOF - CHKSAIN - RJEMSERl>. 

For unit exception transmit mode, incor­
rect length is checked. If off, normal 
completion is posted. If on, either a 
paper jam exists or the printer was stopped 
by pushing the stop button. In either case 

Section 4: Posting and Check 59 



the operation is set up for an asynchronous 
interruption (CHKFORM). 

Incorrect length errors are recorded via 
VMER, any intermittent errors are recorded 
and a message is written to the operator 
Vl.a WTO infor-ming him of the permanent 
error (CHKIL>. 

Control unit end, program check. chain­
ing check. and protection c~eck errors are 
posted as permanent errors, intermittents 
are recorded, and a message is written to 
the operator via WTO (CUEND - CHAINCHK). 

Attention, status modifier, and busy 
errors are handled the same as incorrect 
length (09) (BUS¥CHK - ATTNCHK - STATMOD). 

If none of the status bits are found on 
a minor software SYSER is called 
(RJEMSER2) . 

TAM Posting Routine (CZCZA) 

After the termination of a TAM Read/ 
Write initiated I/O operation, control is 
passed by the task monitor to TAM Postino 
to process this I/O interruption. TAM 
Posting analyzes the interruption data to 
determine the action to be taken. It aL;o 
examines the input message content to 
determine the buffering technique to use 
and if user errors have occurred. When 
errors occur. both recovered and unrecover­
able error data is recorded. (See Chart 
CD. ) 

.Functions provided by TAM Posting are: 

• Posting of completed I/O actions. 

• Translation and movement of user dat;:, 
on read operations. 

• continuation of TAM Read/Write opera­
tions which involve multiple 10RCB 
generation. 

• Posting of attention signaling during 
input or output operations while the 
terminal is transmitting or receiving. 

• Detection of errors or exceptions ter­
minating the channel program. 

• Decoding of errors or exceptions and 
initiating possible recovery action. 

• Posting of error or exception data when 
recovery has not been requested or the 
error is nonrecoverable. 

Attributes: Reentrant, resident in virtual 
storage, closed, read--only, privileged. 

Entry Point: CZCZAl -- Entered via type-l 
linkage. 

Input: The IORes and the ISA contain 
information relative to the condition under 
which the I/O operation was terminated. 

Data Reference: CHAISA, CHAIOR, CHADEC, 
CHATOS, CHADCE, CHADEB, CHA SDA. 

Modules Called: 
GETBlJF (CZCl"A) -- Get a but fer area. 

WRITE (CZcn) -- TAM Read/Write. 

WTO (CZABQ -- Write to operator. 

RESET <CEAAH) -- Permit task to access I/O 
device. 

lOCAL (CEAAI.» -- I/O call. 

VMER (CZCRX) -- Virtual memory error 
recording. 

VMSDR (CZCRY) -- Virtual memory statistical 
data recording. 

SYSER (CEAIS) -- System error. 

Exits: 
Normal -- Return to the task monitor. 

Error -- S¥SER is called in the case of an 
undefined interruption, no SDAT entry, 
an undefined inboard error, or no sense 
data. 

Operation: TAM Post,ing is called by the 
supervisor as the result of an I/O com­
pleted interruption. It saves the general 
registers and then initializes them with 
pointers to the IDA, DECB, DCB. TOS. and 
IORCB buffer and CCW list. 

TAM Posting then decodes the reason for 
the interruption of the I/O operation (see 
Figure 7). On determining that the inter­
ruption does not reflect a normal comple­
tion, a branch is made within TAM Posting 
to initiate the appropriate recovery proce­
dure. If this is not possible, errors or 
exceptions are analyzed, and flags are set. 

The sequence t.o determine the interrup­
tion type follows: 

• IOReB flags - The flags in the IORCB 
are checked first to determine if ther 
was a HALT I/O or a START I/O failure. 
An exception condition detected by lOS 
is indicated by setting flags in the 
10RCB. 

• Inboard failures - The inboard (chan­
nel) type of failures are tested first 
as a group (incorrect length, program 
check, protection check, channel data 
check, interface control check, chain­
ing check). If anyone is found set, 
control is transferred to the inboard 
failure analyzer. 

60 Part I: Access Method for BSAM. MSAM, TAM and 10REQ 



Normal Completion 

((W leoc.. li'l 

Data-In ProcftSOr Of'! Dato-in 

logicof Function 

Buffe< """'y,;, 
Tron,late Read Dote 

Po~t Controi 

~ ",-" ,;.~,." 
Reocording of 
Solid Foilu, ... 

( 5 W Rellected 

With 
Sense 
Data 
Anolytis 

Recordi"9 of 
Temporary 
Foilurel 

IORC B Reflec.eO 

• ·9·, 
B1JHer 
Overrun 

Figure 7. TAM Posting: Normal Completion and Exception Analysis Paths 

• Outboard check or exception - The out­
board failures (unit check and unit 
exception) are tested individually. If 
either is set. control is given to the 
appropriate outboard failure analyzer. 

• Normal completion - The channel end 
(CE). device end (DE). and program con­
trolled interruption (PCI) bits are 
tested. The detection of any CEo DE. 
or PCl bit being set will transfer con­
trol directly to the ccw trace list. 

• Undefined operation - If there was no 
detected error or no nonnal condition. 
TAM Posting identifies t:his I/O inter­
ruption as an undefined operation and a 
SYSER is declared. 

The CCw trace list is then traced 
directly when normal completion was decoded 
from the interruption. TAM Posting per­
forms this CCW trace by processing each CCW 
~n the CCW list. This ccw list was just 
executed previously by lOS and is returned 
by lOS in the 10RCB area of the ISA. For 
dynamic buffering the length is obtained 
from TOS and is indicated in Table 17. 

Table 17. TAM Posting: Te.rminal Length 
Statistics 

r----------T--------.--'-------------------., 
I Terminal IStandardlMaxlrnum Single Input I 
I Type I Length I Record Buffer I 
I-.---------+.-------+--------------------~ 
IIBM 1050 I 130 I 260 I 
I I I 
! IBM 2741 I 130 I 260 
I I ! 
I IBM 1052-7 i 130 I 260 
I I I 
lTTY MOD 351 72 i 144 i l __________ ..I. _______ ..I.-____________________ J 

TAN Posting uses the logical fUnction 
list kept in TOS associated with t.his IORCl-i 
for determining necessary processing 
requirements for each CCW. in logical 
function list contains a one byte code for 
each CCW in 1: he channel program. Fur each 
CCW and its associated logical function 
code, the IORCB buffer pointer is stepped 
to the proper buffer location and the CCW 
list pointer is stepped to the next CCw. 
TAM Posting then processes the next logical 
function until the entire list has been 

Section 4: Posting and Check 61 



processed. Procf>Ssinq then continues with 
post control. If the Data-In logical func­
tion code is present it performs the pre­
vious action and also branches to the Data­
In processor. This Data-In assures that a 
user buffer area is available, and trans­
lates and moves data to this buffer area 
when required. It is the initial Dai:a-In 
ccw, in the CCW trace list, that detf'rmines 
the user buffer area requirements. 

The Data-In processor is entered if 
t.here is a Dat.a-In logical function '.n the 
CCW list. The Data-In processor codl.ng 
determines input bufter length, detemmines 
~nput bU£fe.r processing requirements, tran­
slates input data when required, moves data 
to user buffer area. and maintains input 
data bookkeeping. 

The user may supply the necessary buffer 
area, by specifying in the TAM Read/Write 
macro instruction, the address and length 
of this area. The user may also specify, 
in other parameters in this DECB or in the 
DeB, that dynamic buffering is requested. 
(See Table 18.) 

If TAM Posting issues the GETBUF macro 
instruction to obtain dyna.mic buffer areas, 
the user must return these buffer areas, 
when processing of the input data is 
complete. 

The input buffer length and processing 
requirements are determined by doing a 
translate and test of the input data. The 
dat.a in the translate and test table (ZAT­
DIT) contain" onlv one funct.ional charact­
;cr, at present, which senses the end of t.he 
input dat.a record. The ZATDIT functional 
character code is used to do a table lookup 
ior t.he processing routine to be called. 
The data in the processing control table 
(ZATDIC) is provided for this purpose and 
contains the location of the end-of-record 
processor. This end-ot-record processor 
det.ermines it translation of the input data 
is required and translates the data to 
EBCDIC when necessary. The translation 
t.able address is obtained from TOO. If the 
lield is zero, no translation is required. 

One error condition may be determined as 
a result of the translate and test. This 
is an input buffer overflow and exists when 
the tennl.nal operator inputs a single reco­
rd length greater than the specified length 
for the terminal. This condit.ion will 
cause the Master Exception flag in the 
Posting flag field of TOS to be set, and 
the Input Buffer Overflow flag bit to be 
set in the flag field of the DECB. When 
the translation requirements are completed 
the message is checked for the end of line 
(EOL) sequence of the input record (illus­
trated in Table 19). 

It is determined that the terminal has a 
specified EOL sequence when the EOL 
sequence count in TOS is other than zero. 

Table 18. TAM Postinq: Specifir:at1.on of 
IJser Buffer 

r---------T-------,.--------------------, 
I DCB i DEeB I Comment s I 
t----------+---------+--------------------~ 
IOption IIFC IConversational move, I 
I ignored I I dynamic buffering I 
I I I length is twice I 
! ! I standard termindl I 
I I Ilength. I 
t----------+---------+--------------------~ 
I Option IA=S I Jynamic buffering. I 
I ignored IL=N ILength is stated I 
I I Ivalue=N. ! 
t----------t---------t-·-------------------i 
!L=N IA=S IDynamic buffering. I 
I I LFS I Length is stated I 
I j I value""N (from OCB). ! 
i-----------+-.-------+-------------------~ 
IBUFTEK=DYNIIFS IDynamic buffering I 
I I 1 (f rom OCB). ! 
I L=N I I Length is stated I 
I I Ivalue=N (from DCB). I 
r---------+---------+ ------------------.-~ 
!BUFTEK=DYNI LFN IDynamic buffering i 
I I I (from DCB). 
iLength I ILength is stated I 
! ignored I I value=N. I 
t----------+---------+--------------------~ 
IOption IA=addresslBuffer address is I 
I ignored I I indicated. I 
I I L=N I Length is stated I 
I I Ivalue=N. I 
t----------.l---------.l--------------__ ~ 
I L - LENGTH I 
I I 
I L=S - implies length in OCB. I 
I I 
IDynamic Buffering - Buffer obtained by I 
I POSTING and address passed to user in I 
IDECB. A user is therefore responsible ! 
Ifor returning these dynamic buffers by I 
lusing a FREEBUF. I l __________________ .. ______________________ 1 

Table 19. TAM Posting: Expected EOL 
Sequence 

r--------------------------T--------------, 
I Terminal I sequence ! 
~------------.--------------+--------------~ 
IIBM 10~O ICR, B i 
I I f 
IIBM 2741 JCR, C 
! I 
(IBM 1052-1 INaNE 
i I 
lTTY MOD 35 ICx, L.F., XOFFI 
t---------------·-----------+-------------~ 
ICR - carriage Return I I 
I I I 
IB - End of Block I 
I ! 
IC - End of Transmissionl 
I I 
jL.F. - Line Feed I 
I I 
!XOFF - Transmitter Off i I l __________________________ ~ ______________ ~ 

62 Part I! Access Method for BSAM. MSAM, TAM and IOREQ 



--- When a successful comparison cannot be made 
the device type code is obtained from the 
TOS and used to do a table lookup for the 
abnormal EOL routine for that device. 

':'he IBt4 1050 and 27(11 use a cemmon 
Abnormal End of Line routine and it. is 
entered whenever the ending sequEnce is 
other than the expected. The routine will 
determine one of four possible conditions: 

1. B--EOB character only -- Normal allow­
able ending which may indicate card 
input of inter-line record formatting. 
Detection of this condition will inhi­
bit the placing of the New Line code 
character in the data record and will 
return to the normal program flow. 

2. Last character received is C--EOT -­
If this character is received the Unit 
Exception flag in the Post Flag field 
in the CHATOS is tested, and if set, 
the Message complete flag will be set 
and the return is to normal Data-In 
processing flow. If the Unit Excep­
tion flag is not set, the Attention on 
Read and Master Exception flag are set 
in the Posting flag field of the CHA­
TOS and the Attention flag bit in the 
Pre-Post Data field in the CHATOS is 
set. control is then returned to the 
normal Data-In processor flow. 

3. Neither B nor C -- The Master Excep­
tion flag in the Posting flag field of 
CHATOS is tested. If on, control is 
returned to the Input Data processor 
to allow the record in error to be 
moved to the user buffer area. 

4. If the Master Exception flag is not 
set, an undefined system error has 
occurred and control is given to the 
undefined error routine. Should the 
record length prove to be greater than 
the user the user buffer remaining 
count field, that portion of the reco­
rd equal t.o the user buffer re..maining 
count is moved to the user buffer 
areas, t.he User Buffer Overflow flag 
in the flag field of the DECB is set, 
and the master exception flag bit in 
the posting flag field of the TOS is 
set. Normal processing continues with 
control being returned to the CCW 
trace list as if no user buffer over­
flow had occurred. 

If the EOL sequence comparison is suc­
cessful the first character of the EOL 
sequence is overlaid with an EBCDIC new 
line (NL) character and the record length 
is adjusted to include the text plus the NL 
character. This record length is then com­
pared to the user buffer remaining count 
field of TOS. If it is equal or low, the 
Iecord is moved from the input buffer to 

the user buffer area. The user buffer 
pointer, user buffer remaining count, and 
input character count fields in the TOS are 
updated. Control is then returned to the 
CCW trace list. 

The CCW trace list coding continues for 
each logiccll function by~_e until the enti~e 
CCW list has been processed. When the last 
CCW is processed, we continue processing 
with the proper post control coding as 
determined by the option type-code 
reference in the post control table. 

The functions of the post control rou­
tine coding are to determine the proper 
posting and cont.rol for: 

• Read operation entry 

• Write operation entry 

• Write with response entry 

• Control order entry 

If a read request is complete within 
this IORCB, the area and length are moved 
to the DECB and cOIlUl1on DECB posting con­
tinues. If the read is not complete, TAM 
Read/Write is called. 

If a write is complete within this 
IORCB, common DECB posting continues. If 
the write is not complete, TAM Read/Write 
is entered as a subroutine. 

If the write with response is complete 
within this IORCB, the data in the buffer 
bit in the Posting flag field of TOS is 
tested. If set, the Message Complete flag 
is set in the Post flag field and control 
is transferred to post control read. If 
the data in buffer bit is not set, enter 
TAM Read/Write is entered as a subroutine. 

If write with response is not complete, 
TAM Read/Write is entered as a subroutine. 

If a control order entry. common DECB 
posting continues. Common DECB posting 
ends post control by making an initial test 
of the Master Exception flag in the Pm,ting 
flag field of TOS. If set, the ECB field 
of DEeB is posted complete with error and 
the synad request. is set in the DECB flag 
field. If the Master Exception flag is not 
set, the ECB field of DECB is posted COffi"­

plete without error and the pre post dat~a 
field is moved to the DECS flag field. 

Common DECB posting t.hen moves CSW and 
sense data from ISA to DEeB. If the Master 
Exception flag is set, TAM Posting does not_ 
allow entering TAM Read/Write as a subrou­
tine but continues with common DECB 
posting. 

Section q: Posting and Check 63 



After completing cornmon DECB posting the 
housekeeping completion routine coding is 
executed. The hou"eK:pepinq funct"ion 
incl ndes: 

.. kecordin'j unrec-uvprabl,' errDr data 

• Recording recovered prror delta 

• Clearing error counters and error data 
fields 

• Preparing line on abnormal end and 
return 

.. Issuing status of IORC8 and return 

" Setting up nonT..'!1 return to task 
monitor. 

Note that Tl,M Posting does not issue an 
ABEND. On determining any exception or 
exrOl: condition. the a ppropria te i nf orma­
'lion is posted in t.hf' DECB and at the prop­
er time a reLurn is made t.o Task Monitor. 

Only if TAM Post.ing camlOt determine a 
path to .follow will it issue a SYSER. 

TAM Posting provides exception analysis 
(-error decoding and recovery actions. The 
processing of all exceptions except atten­
tion inter~Jptior0 posts all data to the 
u::;er, whenever error· recovery is not indi­
cated or possible. The following flags may 
be set in TOS to communicate unrecoverable 
termtnation status to the user via the DECB: 

.. Unit Except.ion flag - set when a func­
tion is terminated by unit exception, 

.. Master Exception flag - set whenever an 
exception interruption has terminated 
t.he action. 

.. Abort flag - set whenever maximum error 
recovery at"t" empts have been 
unsuccessful. 

.. Attention flag - set. whenever attention 
signalling is detected during a read 
type operation. 

.. Recovery III Progress flag - set whenev­
er an error recovery action is 
initiated. 

An example of Start I/O (SIO) failure 
follows. The SIO Failure flag in the IORCB 
15 inLf'..rrogated hy the Define Interruption 
coutine. If the flag is found to be on, 
transfer is made to the SI0-HIO failure 
processor. 

The status in the CSW is then interro­
gated to see if a unit check or unit excep­
tion has occurred. If either bit is on, 
control is turned over to the proper pro-

cessor. If neither bit is on, a message LS 
sent to the system operator informing him 
of the Start I/O failure and the. associated 
:-;ymholir devicp . 

The ABEND Required and SYNAD Requf'sted 
flags ace set in the flag bytps of the 
DECB. The ECB f ipld of t.he DECB i::; set to 
indicate ·complete with error R • A branch 
to the Housekeep and Return subroutine 
occurs. 

The t.wo types of outboard failures are 
unit check and unit exception. Each has 
its own control routine coding whose pur­
pose is to determine the recovery action tee 
be ini tia ted. Each of the recovery rou­
tines is coded to operate for unique combi-­
nations of conditions. 

As an example of error recovery on unit 
check. TAl'; Posting starts with the int.er­
rupted CCW obtained t"hrough the data pro­
vided in the ISA and the IORCB located in 
the ISA. The sense byte bits in the ISA 
are then tested in a predetermined 
priority. 

When a test" is found to be positive. a 
counter located in TOS which represents 
that. sense condi tioD is stepped and tested 
for a maximum count. Refer to Table 20 for 
CSW status and sense data t.ypical 'l1laximu:r 
Except.ion retry' counts. 

When any sense condition retry counter 
is stepped to maximum, the Abort flag is 
set to indicate an unrecoverable condition, 
the failures are recorded, and TAM Posting 
branches to conclusion housekeeping. If it 
is a recoverable condition the internal 
recording saves pertinent error data in 
TOS. After this recording, the Unit Check 
Director routine coding is entered. to 
access the Unit check Recovery routine to 
be initiated as determined by the interrup­
tion conditions. 

The Reinitialize IORCB subroutine is 
provided to be used by all unit check 
action routines. Prior to entering. all 
altering of the channel program and buffer 
data is completed. This routine initia­
lizes all relative addresses in the IORCB, 
sets the necessary flags, and issues the 
IOCAL macro instruction. TAM Posting then 
sets up for a return to task monitor. 

The following describes typical unit 
check recovery routine coding provided: 

Ret. ry Full IORCB on System Error: This 
action is used where the channel program 
has been terminated in such a way as to 
require a retry ot the full program or 
posting of a system error which is unrecov­
erable. The routine will first test the 
Abort flag in TOS. If set, it will set a 

64 Part I: Access Method for BSAM, MSAM, TAM and IOREQ 



Table 20. TAM Posting: CSW Status and 
Sense Data Typical Maximum 
Exception Retry Counts 
(Extracted from CHASDT) 

r---------------------T-------T-----------l 
! CSW Sratus IBit No.IR<etry Count I 
r---------·----------+-------+-----------~ 
I Attention I 32 i N.A. I 
I Status Modifier I 33 IN. A. I 
IControl Unit End I 34 I N.A. t 
IBusy I 35 I N.A. ! 
iChannel End I 36 I N.A. I 
'Device End I 37 ! N.A. I 
IUnit Check I 38 I 3 I 
IUnit Exception I 39 I J 
IPCI I 40 i N.A. 
IIncorrect Length ! 41 I :1 
IProgram Check I 42 I :1 
IProtection Check I 43 I 3 
I Channel Data Check I 44 I 3 
IChannel Control I 45 I 3 
IInterface Control I 46 I 3 
IChaining ChecK I 47 I 3 
\Consecutive Errors I I 10 I 
r-- ------------------+-------+-----------~ 
I SENSE DATA I! I 
Icommand Reject I 0 I 3 ! 
I Intervention Required I 1 ! 3 I 
IBUS Out I 2 I 3 I 
IEquipment ChecK I 3 I 3 I 
IData Check I 4 I 3 I 
I Overrun I 5 ! 3 I 
I Receiving I 6 I 3 I 
I Time Out I 7 I 3 I l _____________________ ~ _______ ~ ___________ J 

System Error and ABEND Requested flag in 
the DECB and enter the CCW trace list rou­
tine. If the Abort flag is not set, the 
routine will set the Retry in Progress flag 
in TOS. The Reinitialize 10RCB routine is 
then entered. 

System Error Retry from Interrupted CCW: 
This action is used whenever a system error 
has occurred and it is necessary to restart 
the program from the interrupted CCW. The 
Abort flag in TOS is tested. If set, the 
routine will set an error condition in the 
DECB and enter the CCW Trace List routine. 
If abort is not set, the Retry in Progress 
flag will be set. The relative location of 
the interrupted CCW is saved and the Rein­
itialize 10RCB routine is entered. 

Record Only: This action is used when an 
error has occurred which will not effect 
channel program operation, but must be rec­
orded as a system history. It also may be 
used when the terminal is not equipped with 
error correction. A branch occurs to the 
CCW Trace List routine. 

Unit exception. for example, can be 
caused by a negative response from the 
1050, either during addressing or I~lling. 

IOREQ Posting Routine (CZCSE) 

After a system interruption which occurs 
at the completion of an IOREQ initiated I/O 
operation, control J.S pass.>,1 by tilt' T.ISk 

Monitor to IOREQ Po~;tiny to I'fOC.,,;!; t hi,~ 

I/O interruption. The addrpss ot 10REQ 
Postinq is specified by the posting addre~~!; 
constants in the IORCB. 

IOREQ fosting analyzes the interrupt.ion 
data to determine the action to be taken. 
It then posts the normal or abnormal com­
pletion code in the DECB, allowing the 
Check routine to later take action based on 
these codes. IOREQ Posting is executed in 
privileged mcx1e. with all other task inter­
ruptions masked off. (See Chart CEo 1 

Attributes: Reentrant, resident in virtual 
storage, closed, nonrecursive, read-only, 
privileged. 

Entry Point~: CZCSEI -- Entered via type-l 
linkage. 

Input: None. Information relative to the 
conditions under which the I/O operation 
was completed is in the lORCB and the ISA. 

Data References: CBAlSA, CHADEC, CHADEB, 
CRADCB, CBAIOR. 

Module Called: Reset (CEAAH) -- Resets 
error flag so that task can access I/O 
device. 

Exits: 
Normal -- Return to calling program. 

Error -- ABEND macro instruct_ion. 

Q£eration: 10REQ Postinq initially saves 
the general registers. A check is made to 
verify that the 10RCB has been executed 
(that is, the channel program has been 
attempted) • 

If the 10RCB was not executed, a check 
of the Error flag for the correspondiTlg DEt' 
(pOinted to by the lORCB) is made. If the 
error flag is set, an intercepted conditior 
is set in the ECB (pointed to by the JORCB) 
of the DECB. The allowed lORCB count field 
in the DEB is decremented by 1 an a return 
to task monitor occurs. If the error flag 
is not set, an exit to ABEND occurs. 

If the lORen was executed, the csw is 
moved to the DECB, the ISA sense informa­
tion is moved to the DECB, the allowed 
IOReB count in the DEB is decremented by 1, 
and the input dat.d in t.he IORCB data buffel 
area, if buffering is used, is moved to the 
data area in the user virtual storage 
pointed to by the DECB. 

Section Q: Posting and Check 65 



If START 1/0 failed 'Complete with 
Error' is posted, DECBSF is set to show SIO 
failure, SYNAD is requested. and the IORCB 
count decremented. The return code is set 
to zero and a return to the task monitor is 
effected. 

The CSW bits dre examined and. depending 
on their s('ttinq, normal or error complf>-· 
t.ion i!; post<:'(L If the CSW=O, ABEND i!; 
re<~uP!ltecj and el'ror and permanent error 
f lag;.; set in th .. DElL IOREQ Posting doe:; 
not perform dny error recovery. 

For normal completion, -norl'oal comple­
tion" is posted in the ECB of DECB, and a 
ret.urn to the task monitor occurs. 

For abnormal completion, ·complete with 
error- is posted in the ECB of DECB, a 
request is set for SYNAn in DECB, the error 
flag is set in DEB, and a return to the 
task monitor occurs. 

Check Routine (CZCRC) 

The Check routine is entered as the 
result of the CHECK macro instruction that 
a user issues to ensure the completion of a 
previous READ or WRITE macro instruction. 
To determine completion or other results, 
Check examines the DEeB. SAM Posting and 
Error Retry will have posted information in 
the DECB if the 1/0 operation is complete. 
If not complete. Check awaits completion. 
On completion (successful or otherwise), 
normal return, an ABEND, or set-up for en­
try to a user's SYNAn routine occurs, 
depending on switches set by SAM Posting 
dnd Error Retry. Check also calls SAM 
Mainline EOV for necessary end-of-volume 
processing. If end of data set is encoun­
tered, Check sets up entry to a user's 
EODAD routine before returning to the 
caller. 

Attributes: Reentrant, resident in virtual 
storage, closed, privileged, nonrecursive. 

Entry Point: CZCRCS -- Entered via type-1M 
or type-2 linkage. 

Input: Register 1 contains the address of 
the DECB to be checked. 

Data References: CHAnEC, CHADEB, CHASDA, 
CBADCB. 

Modules Called: 
SAM Mainline EOV (CZCXE) -- SAM EOV main­

line processing. 

SAM Read/Write (CZCRA) SAM Read/Write. 

AWAIT (CEAP7) Await an interruption. 

TWAIT (CEARO) Terminal 1/0 wait. 

Exi t.S: 
Normal -- Returns to the ca lli:1q Plv(lTdIT 

with zero in reqister 1S. 

other conditions --

• If a SYNAD condition, rpturns with: 

Register 0 - UECB dJdrps~ 
Rpql.,;tf'r 1 - 8 ··I-n t ;;'U~",lJ r,)d., 
Rf"llstf'T 1') - Ad<1[fd;:, (If !,,'!rd!1lpt "r 

list. contrllninq u~;"r',; SYNAD V-cor) 
dnd R-con addl'esses. 

• If an EO DAD (end of data set) condi­
tion, returns with: 

Register 1 - DCB address 
Register 15 - Address of parameter 

list containing user's EODAD V-con 
and R-con addresses. 

• ABEND occurs if EODAD or SYNAD exits 
needed but not provided. Requested by 
SAM Posting and Error Retry. I/O 
requests checked out of sequence. 

~ation: If the In-Use flag to the DECB 
is not on, Check has been entered to check 
a DECB for which no I/O is outstanding. 
Therefore, control is immediately returned 
to the calling routine. 

When the DECB is in use but the 110 
operation is not complete, the AWAIT macro 
instnlcticm is issued to wait for the 
expected 1/0 event to complete. 

When the I/O event has occurred; the 
DECB is checked for errors. The task will 
be abnormally terminated when the SYNAn or 
EODAD exit is to be given control and it h; 
not supplied. 

Note: When an intercepted DECB is checked 
and it has an end of volume request post.ed . 
in it, end-of-volume proceSSing is per­
formed as explained below. However, if the 
intercepted DECB has no end-of-volume requ­
est this means that the 1/0 associated w~th 
the DECB was never attempted. Therefore, 
Check links to the ReadlWrite routine to 
reissue the 1/0 request. Check waits until 
this request is complete before doing any 
other processing. 

If complete with errors is posted, and 
if there is a unit check caused by reading 
backwards into a load point, the end of 
volume processing is performed as explained 
below. 

If the DECB is marked complete with 
errors, and there was no read backward into 
load point, this means that an I/O error 
has occurred, and the system retry proce­
dures cannot correct it. The Check routine 
first tests the ABEND bit (in the DECB), if 

66 Part I: Access Method for BSAM, MSAM, TAM and IOREQ 



thE.' data :~,>t is s(~qupntiiilly orq.Jniz,>d. 11 
on, thi!; m"dTl!; t 11,lt t h .. ,'[ror I!; ,",It,I!;-­
trophic, and the ta!;k: cannot continu('. 
ABEND is then callpd. If the AB~ND bit is 
off, then the SYNAD requEst flag (in DECB) 
is tested, and the user's SYNAD exit is 
entered. If SYNAD is not on, a normal 
return is given to the user. 

If the data set. i3 not sequentially 
organized, the Check routine proceeds as 
df'scribed above for the case in which the 
ABEND bit is found off. 

~d-of-Volume Processlng: Check: calls the 
tvlainline EOV rout.i ne which performs various 
end of volume processes and will do volume 
switching if necessary. When control 
returns to Check, if t.he end of volume 
corresponded to end of data set, the user's 
BODAD exit is set up (if supplied). When 
the end of volume condition does not corre-

:;pond 10 end 01 ddtd set, t ht' read realle~~t 
Ut'.('J\ which Cdll~,,'d til<' ~:OV 1 (''lu('st i:; . 
rp~;t.drt ed. :;hould it be d wri t.E' rpt]lh',;t 

OECH which causes the EOV condition, d 

normal return is made to the calling rou­
tine with the DECB marked "Complete, No 
Errors". 

Note that. when condit.ions arise which 
require a branch to SYNAD or EODAD, the 
Check routine only sets a pointer to the 
R-con and V-con of that routine in register 
15, and returns to the calling program. 
The point returned to will be within the 
expansion of the CHECK macro instruction. 
If general register 15 is zero, the next 
sequential instruction after the expansion 
should be given control. If non-zero, the 
succeeding instructions of t.he expansion 
must set up a type-l linkage with the supp­
lied R- and V-type address constants. 

Section 4: Posting and Check 67 



SECTION 5: CLOSE 

CLOSE PROCESSING 

The following routines describe the 
CLOSE processors for SAM, MSAM, TAM, and 
lOR, as well as Close Common and MSAM 
Finish. 

close Common Routine (CZCLB) 

The Close Common routine will logically 
disconnect the data set from the rroblE'JIl 
program, close the data control block, and 
relinquish main storage. It then branches 
to the appropriate access dependent close 
routine to complet.e the closing. <See 
Chart DA.) 

Attributes: Reentrant. resident in virtual 
storage, closed, read-only. privileged rou­
tine, public. 

Ent.ry Point: CZCLBC -- Entered by type-l 
or type--2 linkage. 

Input: Register 1 contains the address of 
the CHAGSM table. The CHAGSM table is 
generat:ed by the expansion of the CLOSE 
macro i.nstruction and consists of one 
double ,",'Ord entry for each DCB (ana its 
associated dat.a set) to be closed. 

Data References: CHAGSM, CHADCB. CHATDT. 
CHADEB, CHADHD. 

Modules Called: 
SAM Close (CZCWC) SAM close. 

TAM Close (CZCYG) TAM close. 

MSAM Close (CZCMI) -- MSAM close. 

lOR Close (CZCSD) lOR close. 

VAM Close (CZCOB) VAM close. 

V~~ (CZCGA) - Free virtual storage. 

Exits: 
Normal Heturn to the calling program. 

Error - - ABEND macro instruction. 

Operation: This routine performs close 
processing only if the DeB to be closed is 
Op€!l. If thE close is temporary, the numb­
er of times the data set has been open is 
not decremented as is the case in a normal 
close. 

close Common then transfers control to 
the appropriate access dependent close rou­
tine. When the access dependent close rou-

tine returns, all storage assiqnea to the 
DCB is released via FREEMAIN, unless the 
close is tewporary in which case the 
aSSigned stc·rage is not released. The OCB 
is restored to its pre-open condition. If 
this is not the last DCB to be closed, 
CHAGSM points to the next DCB to be 
processed. 

SAM Close Routine (CZCWC) 

Called by Close Common, SAM Close posi­
tions the data set volume, releases storage 
allocated for the DEB, disconnects the DEB 
from the chain of DEBs, and returns unused 
DA extents to external storage (Chart DB). 

Attributes: Reentrant. resides in virtual 
st.orage. closed, read-only. privileged. 

Entry Point: CZCWCl - Entered by type-l 
linkage. 

Input: Register 1 contains the address of 
the DeB. The SAM communication block 
(CHASCB} is defined in the PSECT of SAM 
close and contains three temporary control 
blocks - DeB, DEB, and DEC - which an:! used 
during the closing process to perform label 
processing. 

Data References: CHASCB, CHADCB, CHADEB, 
CHATDT, CH&SDA, CHADEC. 

Modules Called: 
Tape POSitioning (CZCWP) -- Tape 

positioning. 

User Prompter (CZCTJ) -- Communicate with 
user. 

VOLCVT (CZCWV) -- Volume address convert. 

VMA (CZCGA) -- Free virtual storage. 

GIVEKS (CZCEG) -- Release unused SAM 
external storage. 

Control (CZCRB) -- Magnetic tape 
positioning. 

Mainline EOV (CZCXE) -- SAM mainline EOV 
processor. 

SETDSCB (CZCXS) Set DSCB. 

QSAM (CZCSA) -- To handle end-oi-volume 
condition. 

AWAIT (CEAP7) -- Await an interruption. 

68 Part I: Access Method for BSAM, MSAM, TAM and IOREQ 



En ts: 
Normal -- Return to calling routine. 

Error -- Via ABEND. 

Operation: It the device indicated in the 
OCB is direct. deees,;, the T-Close flag is 
turned off. DA datd sets rudy not be tem­
porarily closed. 

The SAM control block (CHASCB) is 
initialized by zeroing out the variable 
portion, storing pointers to the DCB, DEB, 
and JFCB into it, and initializing the tem­
porary DeB and DEB. 

The QCLOSE subroutine is bypassed if 
neither GET nor PUT is indicated in the 
DeB. If the data set being closed has been 
processed by QSAM, QCLOSE, an in-line sec­
tion of SAM Close, is entered to perform 
functions unique to the closing of a QSAM 
data set. Control is given to the TREOV 
section of QSAM, which checks for outstand­
ing read requests and flushes any which 
exist, or writes out any buffer which has 
Deen partially or completely filled. but 
not yet written out. (See the QSAM section 
of this publication for a description of 
TREOV.) A FREEMAIN macro instruction is 
next issued to release the storage obtained 
for the work area and buffers by QOPEN. At 
this pOint, QCLOSE processing is complete 
and normal processing of SAM Close 
continues. 

If the device is a magnetic tape drive, 
the common portion of the input DEB is 
copied into the common portion of the tem­
porary DEB, and a pointer to the temporary 
DeB is stored into the temporary DEB. 
Fields in the temporary DeB are set so it 
may be used for label processing. 

SAM Close uses the AWAIT macro instruc­
tion to make sure that all user I/O is com­
plete before the data set's close proces­
sing is continued. Incomplete input opera­
tions will be purged by SAM Close. 

Unused extents are released, via GIVBKS, 
if the following three conditions are met: 

a. device is direct access 

b. at least one full track is unused 

c. release of unused extents is specified 
in the JFCB. 

The Mainline EOV routine is then entered 
to complete end-of-volume processing if the 
last I/O operation was a write. When con­
trol is returned to SAM Close, and if the 
device is a magnetic tape drive, the tape 
volume is positioned as specified in the 
close options by use of the control 
routine. 

MSAM Finish Routine (CZCMH) 

MSAM Finish is used to complete proces­
sing for a data group mounted on a unit 
record device. ~;AM Finish can also be 
used to signal the end of the current data 
group without clo~;ing and reopening th€.' DeB 
for the ntxt data group. (Chart DC.) 

Attributes: Privileged, reentrant, read­
only, public, system, nonrecursive. 

Entry Points: 
CZCMHl -- Primary entry point via type-lor 

type-2 linkage. 

CZCMH2 -- Asynchronous interruption entry 
point via type-l linkage. 

CZCMH3 -- Synchronous interruption entry 
point via type-l linkage. 

Input: 
For entry at CZCMH1, register 1 contains 

the address of the DCB. 

For entry at CZCMH2, register 1 contains 
the address of the ICB. 

For entry at CZCMH3, the ISA contains the 
10RCB. 

Data References: CHAnCB, CHADEB, CHAnEC, 
CHAIOR, CHAISA, CHADBP. 

Modules Called: 
WTO (CZABQ) Write message to operator. 

SIR (CZCJS) Activate an interrupt.ion 
routine. 

DIR (CZCJD) -- Delete an active interrup­
tion routine. 

Reset (CEAAH) Reenable a device after 
I/O error. 

Exits: 
Normal -- For CZCMHl return, register 15 

contains one of the following return 
codes: 

'00' completed successfully. 

'04' Incomplet e. 

'OS' complete with I/O error; if PUT, 
register 1 points to failing reco­
rd, register 0 points to user 
DECB. 

For CZCMH2 and CZCMH3 return, register 
15 contains zero. 

Error -- Abnormal termination via ABEND 
macro. 

Section 5: Close 69 



Uf~rdtion: In order to avoid an automatic 
wait in MS~M close, the FINISH macro should 
be is~;ued and subsequently reissued by the 
user until its return code indicates com­
pletion. When the FINISH macro is issued 
by the user or by the MSAM Close, CZCMH1 is 
entered. Following an asynchronous inter­
ruption (caused by operator response to a 
message), CZCMH2 is entered; CZCMB3 is 
entered after a synchronous int.erruption 
(caused by completion of the card-read-and­
stack operat~on). 

The user can stop Finish processing by 
setting off the Finish in Progress bit in 
his DeB and calling Finish for the final 
time. This will cause any activated inter­
ruption routine to be deleted before a 
return code indicating ·complete R is given 
to the user. 

The user may also prevent the issuing of 
a data-group-end message by turning on the 
lnhibi t Message bit in his DeB. This will 
cause Finish to go directly to its comple­
tion routine at points where it would 
otherwise issue a message and wait for 
response. 

primary Entry Point (CZCMH1) Processing: 
If the DeB or DEB are not valid, the task 
is terminated via ABEND. 

When the input is complete without 
ex-ror, the message-defining loop is 
entered. (See DCBRCX=30, below.) If the 
input is incomplete. control returns to the 
user with general register 15 indicating 
.. incomplete". If t_he input is complete 
with error, the completion routine (see 
DCBRCX=80 below> is entered. 

When Finish is first entered on output, 
and an error was recorded by a user-issued 
PUT, no attempt will be made to flush the 
buffer. Otherwise, if no error occurred, 
the device type determines the line of 
processing. 

For a printer, a PUT is issued to write 
the last buffer page. If the PUT is not 
yet complete, the return code is set to 
-incomplete R and the routine returns to the 
caller. If the PUT is complete but an 
error On a Finish-issued PUT is indicated, 
the user will be provided with error point­
ers if this has not_ already been done 
(error recovery will be attempted if the 
error indicator is set off), and control 
returns to the caller with the Finish-Just­
Issued flag on, the Finish-in-Progress flag 
off, and a return code indicating "complete 
with error" in general register 15. 

Otherwise, the message -Remove output 
from printer XXXX, then ready printer" or 
-Remove output from punch XXXX, then ready 
punch" is sent and the routine awaits 

operator rpsponse. However, if the combine 
opt-ion is indicated, an IORCB for a card t_o 
be read and stacked in pocket 3 is built 
and executed before this message is issued. 

For a punch, a blank record is con­
structed and PUT in order to force the last 
card into the stacker. If this punching is 
incomplete, control returns to the user 
with general register 15 indicatinq -incom­
plete". If tne punching is complete with 
error, another PUT is issued to obtain 
error pointers for the user if this has not 
already been done (error recovery will De 
attempted if the error lndicator is set 
off) and control returns to the caller with 
the Finish-Jnst-Issued flaq on, the Finish­
in-Progress flag off, and a return code 
indicating "incomplete with error" in gen­
eral register 15. If nO error occurred in 
the punching, processing continues. as with 
the printer, at the PUT for flushing the 
last buffer. 

For subsequent entries to Finish, the 
path taken depends on the value of DCBRCX 
as set by the previous FINISH. 

DCBRCX=30: Completion of input is being 
awaited. If the input operation is not yet 
complete, the routine returns to the caller 
with the return code indicating "incom­
plete". If the input operation is complete 
with error, the completion routine (see 
DCBRCX=80 below) is entered. If the input 
operation is complete without error proces­
sing continue~, at. the message-defining 
loop. If any of the DECBs are marked corr~ 
plete with no errors and a unit check is 
indicated, the message wRemove output from 
reader XXXX, t_hen ready reader" is sent and 
operator response is awaited. If a unit 
exception is indicated, the message "Remove 
output from reader XXXX" is sent and Finish 
enters its completion routine. If there 
are no such DECBs, the message sent will 
instead be "Remove input/output from reader 
XXXX, then ready reader." 

DCBRCX=40: Finish is awaiting comple­
tion of the PUT. Processing continues as 
if Finish had just issued its PUT to write 
the last buffer page. 

DCBRCX=60: Awaiting an asynChronous 
interruption (operator response). The 
interrupt_ion has still not occurred, so the 
return code is again set to indicate 
"incomplete- and the routine returns to the 
caller. (Not~ applicable to RJE.) 

DCBRCX=80: End of wait for the asynch­
ronous interruption. This condition is 
caused by the occurrence of the interrup­
tion or by the user's turning off the 
FINISH-in-Progress bit before the interrup­
tion was received. The completion routine 
is entered, the FINISH-Just-Issued flag is 

70 Part I: Access Method for BSAM, MSAM, TAM and IOREQ 



set, the FINISH-in-Progress flag is turned 
off, the appropriate return code indicating 
·complete- is set in general register 15, 
and the routine returns to the caller. 
(Not applicable to RJE.) 

DCBRCX=50: A wait for a card to be 
stacked in pocket 3 when the device is a 
punch and the combine option is indicated. 
If there are any outstanding IORCBs, the 
card-read-and-stack operation is not yet 
complete so the R15 return code is set to 
-incomplete- and the routine returns to the 
caller. Otherwise, if no errors were rec­
orded on the card-read-and-stack operation, 
the message ·Remove output from punch XXXX, 
then ready pUnch- is sent and operator 
response is awaited. If an error was rec­
orded, the message sent instead will be 
-Feed card from reader YYYY, stack in poc­
ket 3, remove output from punch XXXX, then 
ready punch.- (Not applicable to RJE.) 

Asynchronous Interruption Entry Point 
(C2CMH2) Processing! This interruption is 
caused by the operator changing the device 
state from -not ready· to -ready·, the 
response required following the issuing of 
a message. (This routine is not entered 
~ ring an RJE task.) 

The DCBRCX field is set to indicate that 
the interruption has occurred. The DIR 
macro is used to delete the interruption 
routine and control is passed to the cal­
ling routine with a return code of zero in 
general register 15. 

Synchronous Int.erruption Entry Point 
(CZCMH3) Processing: This interruption is 
caused by the completion of a read, feed 
and stack in pocket 3 operation when the 
combine option is indicated. (This routine 
is not entered during an RJE task.) 

Errors occurring during the I/O activity 
may result in limited retry, depending upon 
the type of error. Any final error is rec­
orded in the DEB. 

Except when a retry is in progress, the 
number of outstanding IORCBs is reduced to 
zero and then. in all cases, a return code 
of zero is set in general register 15, and 
the routine returns to the task monitor. 

MSAM Close Routine (CZCMI) 

MSAM Close calls Finish to complete out­
put if necessary, to attempt recovery from 
an error on a previous PUT, or to indicate 
end of data group to the operator. MSAM 
Close frees pages of virtual storage 
obtained by MSAM Open. (Chart DO.) 

Attributes: Privileged, reentrant, read­
only. public, system, nonrecursive. 

Entry Point: CZCMIl -- Entered from Common 
Close via type-l linkage. 

Input: Register 1 contains the address of 
the DCB. 

Data References: CHAnCB, CHAnEB, CHADEC, 
CHATDT, CHASDA, CHAICB, CHADBP. 

Modules Called: 
MSAM Finish (CZCMH) -- Complete output and 

indicate end of data group. 

OIR (CZCJD) -- Delete an active interrup­
tion routine. 

FREEMAIN (CZCGA) -- Release virtual 
storage. 

INTINQ (CZCJI) -- Interruption inquiry. 

AWAIT (CEAP7) -- Await an interruption. 

RJELC (via SVC 232) -- Disconnect RJE line 
control. 

Exits: 
Normal -- Return t.O caller. 

Error -- ABEND macro used for abnormal 
termination. 

Operation: If the DEB is invalid, MSAM 
Close abnormally terminates. 

Finish is called to assure that I/O has 
been completed. If it. has not, the routine 
goes into the wait state (using AWAIT) 
until the I/O is complete. FINISH will 
then be reissued. This process will be 
repeated until all DECBs have been checked 
for I/O completion. If Finish is awaiting 
an asynchronous interruption the INTINQ 
macro will be issued. If Finish is in the 
process of stacking a blank card, Close 
will wait until that operation is complete. 
The interruption will then be dispatched 
and FINISH will be reissued unt.il a return 
code is received indicating that the opera­
tion is complete. In an RJE task, the 
INTINQ macro will not bp issued (Finish 
does not field an asynchronous interruption 
during an RJE task) and the test for a 
blank card being stacked is bypassed. If 
an unrecoverable error occurred on a PlIT, 
FINISH is reissued in order to attempt 
recovery before informing the user of the 
error. 

The SDAT malfunction flag is set on if a 
permanent error is indicated. The DEB 
pointer in the JFCB is Te.moved. and the DIR 
macro instruction is used to delete any 
active interruption routine. The DIR is 
bypassed in an RJE task (BULKIO specifies 
and deletes interruption routines for RJE). 
RJE line control will be disconnected if 
the device is a remote printer and the 

Section 5: Close 71 



installation operator will be notified at 
his console via a VITO macro. 

If the DEB indicates USer read-write 
protection class, two FREEMAIN macro 
lnstructions are issued to free the two 
noncontiguous groups of virtual storage 
pages obtained by MSAM Open. If user-read­
only or user-inaccessible protection is 
indicated, a si"91e FREEfllAlN is issued to 
free the contiguous pages of virtual 
storage obtained by MSAM 0f~n. 

The DEB pointer in t.he DCB is removed, 
and control returns to Close Common. 

'J'AM Close Routine (CZCYQL 

TAM Close is ca lIed by Close Common if a 
user desires to close a TAM DCB, because of 
ABEND requirements for a task to be closed. 
or as a result of a LOGOFF command. 

In continuing the close processing from 
Close Common, TAM Close is called to per­
form additonal closing functions unique to 
TAM terminals. This includes freeing the 
control blocks and buffer areas obtained 
during TAM Open and performing the disable/ 
enable function at logoff time. TAM Close 
then returns to Close Corr~on except when an 
abnormal end is required in which case it 
goes to ABEND or SYSER. (See Chart DE.) 

Attributes: Reentrant, resident in virtual 
storage, closed, read-only. privileged. 

Entry Point: CZCYGl -- Entered via type-l 
linkage. 

Input: Register 1 contains the address of 
a two-word parameter list: 

Word 1 Address of DCB being closed. 

Word 2 Address of associated JFCB. 

Data References: CHADCE, CHATDT. CHASDA, 
CHADEB, CHAISA. CHADEC. 

Modules Called: 
Write (CZCYM) TAM write. 

Check (CZCRC) Check. 

VMA (CZCGA) -- Free virtual storage. 

ABEND (CZACP) -- Abnormal task termination. 

WI'O (CZABQ) -- Write to operator. 

SETAE (CEAMO 

ADDEV (CEAAC) 
list. 

Set asynChronous entry. 

Add device to task device 

RMDEV (CEAAD) Remove device from task 
device list. 

XTRCT (CEAH3) Extract TSI field. 

SYSER (CEAIS) System f'rror. 

Exits: 
Normal -- Return to callinq routine. 

Error -- 1. 
2. 

ABEND macro instruction. 
SYSER. 

QFP::.!ati0ri: TAM Close initially saves the 
general registers. The Recursive Call flag 
is tested to prevent a recursive loop 
between TAM Close and ABEND. If t_he flag 
is set, it indicates that this is a recur­
sive call. This means that just prior to 
this entry 1:0 TAM Close (through Close Com­
mon) from ABEND, and exit from TAM Close to 
ABEND occurred. TAM Close therefore does 
not proceed but only clears the Recursive 
Call flag and branches to ABEND. 

If the Recursive call flag is not set, 
the opened DeB count in SDAT for this ter­
minal is decremented by 1 (for this DCB) 
and the number of opened DCBs that are 
still open for this terminal is examined. 

If the number is positiVe, the pages of 
virtual storage created for this DeB are 
freed, and the pointers that were set dur­
ing TAM Open are removed. (See TAM Open 
Figure 4.) A return is then made to Close 
Common. 

If the number is zero, processing con­
tinues. (This indicates there is now no 
opened DCB for this terminal.) 

If the number is negative, the recursive 
call flag is set, a count of zero replaces 
the negative number and processing con­
tinues as if there were a zero count. 

Processing continues with this terminal 
no longer having any opened DCB. A test is 
made to determine if the interruption 
storage area (ISA) flag is set with ABE~~ 
2. If it is not, TAM Close continues test.­
ing the terminal to determi.ne the type of 
close. 

If it is set, then TAM Close immediately 
goes to the final steps of a close. 

Note: ABEND=2 indicates that the entry to 
this closing came from ABEND and, after the 
closing, a return is made to ABEND. When 
this return is made, ABEND retains control 
of the terminal. 

Testing continues at this point to 
determine the type of close by verifying 
that the terminal is defined and, if so, if 
it is on a 2702. 

If it is defined and is not on a 2702, 
TAM Close proceeds with the final steps of 

72 Part I: Access Method for BSAM, MSAM. TAM and IOREQ 



a close. bypassing the disable/enable func­
tion. (The terminal defined in this manner 
is the operator's terminal; a 1052-1 direct 
connection to til., multiplp-xor channel.) 

If it is supported and is also on a 
2702, then the disable/enable function is 
required. Initially, after che,::king that 
the device has not, been phased out, proces­
sing takes place to provide a SYNAD address 
for the disable/enable function. The SYNAD 
address in the user's DeB is saved in a 
temporary area wi thin TAl'l Close and is 
replaced with a TAM Close SYNAD address. 
Should any I/O operation fail during the 
disable/enable function the SYNAD will 
either declare a minor SYSER software error 
or abnormally terminate the task. In all 
error cases the task is abnorm.:;,lly ter­
minated. At this point the terminal is 
disabled and TAM Close must then enable the 
line. In order to enable the line, TAM 
Close reopens the DCB (by setting the DCB 
open flag) that was previously closed in 
Close Common. After performing the follow­
ing functions, TAM Close closes the DCB 
again with the disable/enable function com­
pleted and the user's SYNAD address 
replaced. The following functions are 
required in order for TAM Close to enabl(? 
the line: 

• The disabled terminal must be added to 
the task. 

• Asynchronous interruptions must be 
ignored when the disabled terminal is 
connected to the task. 

• The terminal control unit must be 
restored to the initial SAD order. 

• The line is then enabled. 

• The terminal is removed from the task. 

If it is not defined, then the Recursive 
Call flag is set and TAM Close proceeds 
with the final steps of a close, bypassing 
the disable/enable function. 

In the final steps of a close, the pages 
of virtual storage created for this DCB are 
freed and the pointers that were set during 
TAM Open are removed (see Figure 4). 

A final test is then made of the Recur­
sive flag. If it is on, a message is 
issued to the operator and ABEND is 
l-nvoked. If it is not on, a return is made 
t.O close Conunon. 

lOR Close Routine (CZCSD) 

lOR Close is called by Close Common: 

• Due to normal completion of a task. 

• Due to ABEND requirements for a t.ask to 
be closed. 

In continuing the close processing from 
Close Common, lOR Close is called to per­
form additional functions for these 
devices. lOR Close waits until all out­
standing DECBs have been completed and then 
frees the lOREQ work area, DEB and IOReB. 
lOR Close then returns to Close Common. 
(See Chart OF.) 

Attributes: Reentrant, resident in virtual 
storage, closed, read-only, nonrecursive, 
privileged. 

Entry Point: CZCSDI -- Entered by t.ype-l 
linkage. 

Input: Register 1 contains the address of 
a two-word parameter list: 

Word 1 Address of DCB being closed. 

Word 2 Address of associated JFCB. 

Data Reference: CHADCB, CHADEC. CHADEB. 

Modules Called: 
VMA (CZCGA) -- Free virtual storage. 

AWAIT (CEAP7) -- Await an interruption. 

DIR (CZCJD) -- Delete asynchronous inter­
ruption requests pending. 

Exit: Normal return to calling program. 

Operation: lOR Close initially saves the 
general registers. The address of the DEB 
(DeBDEB) is obtained from the DCB. A test 
for any unchecked DECBs is made. 

• If there are no unchecked DECBs 
(DEBNPC=O>, processing continues by 
determining the area to be freed. 

• If any DECB is unchecked (DEBNPC~O)t 
the address of the last DECB in t,he 
queue is obtained (from DEBDEL). The 
AWAIT SVC is moved into this DECB and 
the lOR Close executes (EX> the AWAIT 
in this DECB. lOR Close then waits 
until this last DECB is posted complete 
(DECECB), and then processing continues 
by determining t:.he area to be freed. 

In determining the area to be freed the 
size of the DEB is added to the size of the 
IORCB and then a FREEMAIN macro instruction 
is issued to free the area. The final step 
of lOR Close is to return to Close Common. 

Section 5: Close 73 



SECTION 1>: ROUTINES ~;PECIFICALLY DESIGNED FOR 8SAM 

LABEL PROCESSORS 

The following routines describe tape and 
direct access input and output label 
processors. 

The Tape Volume Label routine is called 
by Device Miinagement to read a tape volume 
idbel, or to rewind and un~oad a tape. It 
may also be called by Device Manageroent or 
the LABEL command routoine to write a volume 
label (Chart EA). 

Entry Points: 
CZC'WXl Ent_erect too read the volume label. 

CZCWX2 
tape. 

Entered to rewind and unload a 

CZCWX3 -- Entoerect to write the volume 
label. 

1!1f:l!!: Regi~;ter 1 contains the address of 
the following parameter list: 

Word 1 Address of tne SDAT. 

Word' Address of an 80-character label 
buffer. 

Word 3 -- Address of a i-byte field con­
taining the density setting. 

Word 4 -- Address of a i-byte field con­
taining ASCII/EBCDIC indicator (X'20' 
ASCII; X·OO· = EBCDIC). 

Modules Called: 
Control (CZCRBS> -- Rewind, rewind and 

wlload, write Tape Mark, or backspace. 

GETMAIN (C2CGA2) Get a work page. 

Read/Write (CZCRAS) -- Read a block, write 
a label. 

Exits; 

Return Code 
00 

04 

08 

OC 

Condition 
Normal return, or in­
correct length on READ 
or WRITE. 

Intercepted more than 10 
times, or unit check with 
no file protect. 

Unit exception. 

Unit check with file 
protect. 

Operation: The text of the 'Operation' is 
keyed to the labelS of Chart EA. 

A Read is e:ltered at CZCWXi, a Write at 
CZCwX3. Tape Recording Technique, density, 
BPI are set <CAOOi), a temporary DEB built 
(CAOOiA) and the toap€' rewound (CA002). 

CZCRAS reads the label for a Read option 
and returns on normal completion or returns 
a code as described under 'Exits' (CA004C -
CA008A) . 

CZCRAS writes a number of tape marks if 
the first word of the buffer is blank, or 
writes a label. An American National Stan­
dard format label is written where ASCII is 
specified. The label write will be fol­
lowed by a write of tape marks. If CZCWX 
was called by pause, two tapemarks are 
written; otherwise, five tapemarks are 
written (via five calls to Control) {CA004 
- CA004A - CAOOa - CA005E). 

If CZCWX was called by PAUSE. the file 
is backspaced past the tape marks. If nat 
called by PAUSE, it is rewound and unloaded 
(CA005F - CA005ri). 

At CZCWX2. a temporary DEB is created 
dnd CZCRB is called to rewind and unload 
the tape. 

Various return codes reflect the possi­
ble READ/wRITF errors. (See 'Exits'.> 

Tap~_Ddta Set Label Routine (CZCWY) 

This routine reads and writes data set 
header and trai~er labels on magnetic tape 
volumes. , Error checking is provided after 
reading labels. User label routines are 
called if required. Provision is made for 
reading and writing labels in either stan­
dard IBM or American Nationa~ standard for­
mats. (See Chart_ EB.) 

Attributes: Reentrant_, resident in virtual 
storage, read only, public, privileged, 
system, nonrecursive. 

§Q:!:ry Points: 
CZCWYl -- Entry point for processing header 

labels for input data sets. 

CZCWY2 -- Entry point for processing trail­
er labels for input dat~ sets. 

CZCWY3 -- Entry point for processing header 
labels for output data sets. 

CZCWY4 -- Entry point for processing trail­
er labels for output data sets. 

14 Part I: Access Method for BSM, MSAM. TAM and IOREQ 



Input: Register 1 contains the address of 
a parameter list consisting of the address 
of thp SAM communication lIlock, CHASCB. 
CHASCR inclurlf>ll :;CHIOA, which p~)int!1 t.o ilTl 

60-byt~ butter a.rt'ltl. .l-'ieldH of .special 
l.ntereut. reached through CHASeS: 

DCGOFG (Open Flag - DCBO)M) which may 
contain: 
o Data set being opened or closed. 
1 Data set open, EOV proce.ss. 

DCBOFG (EDT Flag - DCB06M) which may 
contain: 
o Process on basis of open flag. 
1 EOT occurred while writing EOF 

labels - write EOV this time. 

DCBOPT (Option - DCBSU2) which may 
contain: 
o Standard IBM labels (EBCDIC 

user) . 
1 American,ational Standard labels 

(ASCII us cd . 

TDTLAB (Labels .- TDTSUM) which may 
contain: 
o No user labels. 
1 Process user labels. 

Data References: CHASCB, CRADeB, CRADEB, 
CHADEC, CHAISA, CHALBl, CHALB2, CHASDA, 
CHATDT. 

Modules Called: 
BSAM Read/Write (CZCRA) -- Read or write a 

physical record. 

Control <CZCRB) -- Provide non-data opera­
tions on the tape device. 

LVPRV (CZCJL) -- Proviae type-3 linkage to 
nonprivileged user label routines. 

User Prompter (CZCTJ) -- Communicate with 
user. 

Volume Sequence Convert (CZCWV) -- compute 
the address of the volume serial field 
of JFCB specified by relative volume 
sequence number in SCBRVS. 

Exits: 
Normal Return to calling program with 

return code 0 in register 15. 

Error -- Link to CZACP (ABEND) with regist­
er 1 pointing to message area, first 
byte of which contains the lengt.h of the 
message text. 

Operation: An initialization section used 
in common from all four entry points per­
forms standard linkage and save require­
ments and establishes addressability. A 
branch table containing the addresses of 
the four separate labeling routines is 
encountered. and the appropriate label pro-

cessor reached based on a code saved upon 
entering Tape Label Processor at one of the 
four pntry pOints. 

I'roct'8oing for ('dch of thf' lour labpling 
couLine9 iti discussed below sPparately. In 
addition, three subroutines, Build, a rou­
tine which actually olilds the tape label 
in a buffer for output, Check. which dete::::·· 
mines processing after a label I/O opera­
tion has occurred, and SUL, which handles 
user labels, are described. 

Input Header Label Processor (CZCWY1): The 
tape label is read and the read checked by 
a branch to the Check subroutine. If d 

read error has occurred, or a tape mark or 
th.> beginning of t.he tape is encountered, 
an abnormal end is made. If the label is a 
volume label, another read is issued. If 
the label is not a volume label, and is not 
a fiDRi, EOV1. or EOf'l label, an abnormal 
end is made. 

I f the label is l:lDR1, EOV1, or EOf'l, the 
block count is stored in the DCB. The 
DSNAM subroutine is entered to check the 17 
least Significant characters of the data 
set name against those in the JFCB. The 
user is notified through the PROMPT macro 
inst.ruction when the data set names in the 
label and the JFCB do not agree and given 
the option to continue or to terminate by 
an abnormal end. 

If t.he generation/ver,jion numbers are 
not correct, the user, as above, has the 
choice of terminating or continuing. 

The next label is read and the read is 
checked. An abnormal end termination is 
made if a read error occurs. If a tape 
mark is read during a read backward opera­
tion, the routine backspaces the tape to 
position it for a data set read. If the 
label was an HDR2. an EOF2, or an EOV2, and 
if the record format, record length, and/or 
block size in the CHADCB are zero, t.he r<y,j­

tine obtains the information from the 
label, converts it to binary, and stores it. 
in the DCB. If the user has indicated his 
data set is in ASCII. the HDR2 label will 
have a huffer offset field. Unless this 
field contains zero, it will also be con­
verted to binary and stored in an appropri­
ate field in the DCB. 

If standard user labels are not speci­
fie:'!, or if they are specified but the user 
input header label exit is not active, the 
tape is positioned to read the data set, 
and a normal return is made. 

With user labels specified, a branch is 
made to the SUL subroutine (explained 
below). On return to the Input Header rou­
t_ine, the tape is positioned to read the 
data set, and a normal return is made. 

section 6: Routines Specifically Designed for BSAM 75 



InEut Trailer Label Processor (CZCWY2): 
This routine processes standard IBM (EBCDIC 
us~rs) and American National Standard 
(~SC!I users) trailer labels for an input 
dsta p;et h~in'j r .. ad forward, and headex· 
laools for an input ddta set being read 
bacKwdrds. User labels are also plocessed. 

The routine first reads and checks the 
labeL If an error or tape mark is encoun­
t!:';xed du:r:ing the read operation, O~· if the 
label read was invalid, the abnorma.l end 
code is set in the Cf~SCB, and an abnormal 
end is effect.ed. 

If a volumf, label was read, the read is 
reissued. 

!f t.'1e block count of the CHADCB does 
not ,':qual that. in the label, the user is 
informed, and a reply is expected. The 
user ,nay elect. to t.enninate the task" 

If standard user labels are specified, 
<InO the exit. is act.i ve. another READ is 
iSSUf;Q and checked. Again, if a read error 
was elH .. "'Ountered. the abnormal end code is 
set; and an abnormal end is effected. The 
READ is reissued if an HDR, .EOF. or EOV 
label is encountered. Otherwise. the user 
is giv~~ the facility to process the label. 

USt~r labels i1r~ read and checked by the 
SUL subrout.ir,€. 

out:e..ut Header Label ProceSSOL CCZCWY3): 
'I'hi s routine checks the currently mounted 
output tape to see if the expiration date 
of any data set currently on the tape (and 
about to be oveIlaid) has been reached and 
oversees c.r<i!ation and writing of new output 
header. labels in either standard rBM or 
American National Standard (ASCII users) 
format. It sets up the mechanism for writ-
1.ng up to eight standard user labels, or an 
unlimited number of user labels when ASCII 
is specif i ed • 

On entry to this routine, the tape label 
is read and checked. If a volume label is 
encountered, the next label is read; this 
label should be either a HDRI label (from 
an old data set which we a:te overlaying) or 
at.ape mark (if the tape is clean). Whe.re 
neit.her is encountered, abn'brmal termina­
tion occurs. 

If HDRl was present. the expirat.ion date 
Clf that data set is checked and if it has 
not yet been reached, the user is prompted. 
He may choose to continue or request 
abnorn~l termination. 

The logical file (data set) sequence 
number is taken from the JFCB, the tape is 
repoSitioned to write the header labels. 
and the Build subroutine called to write 
both SDRl and HDR2 labels. 

If user labels have been requested, a 
branch is made upon return from Build to 
the SUL subroutine. 

On return from SUL, the Control subrou­
t inf' is ca lled to write a tape mar Ie follow­
ing th., head':!!: label group and po~;ition the 
tape to write the data set. NarI1ldl return 
is made to the caller. 

Output TraJ.ler Label Processor (CZCWY4): 
If CLOSE process ing is being done. -the­
cnaracter·s EOFl are placed in the first 
four bytes of the 80 character label buff­
er. Otherwise, this routine must have b'>t'll 

called for an end-of-tape condition, and an 
EOVl is placed there. The remainder of the 
label is created and written by a branch to 
the Build subroutine. Build writ.es the two 
trailer labels in <,;i ther standard IBM or 
American Nat.ional Standard label format. 

The SUL subroutine is called if user 
labels have been requested. Control ie.; 
called to write a tape mark and p08iticn 
the t.ape. Normal return is then made to 
the caller. 

Build Subroutine: This rout.ine builds 80-
byte out.put header and trailer labels f01 
tape volUJ1!e data sets and writes them by 
calling BSAM Read/Write. 

The routine expects the first four bytes 
of the aO-byte label buffer to already con­
tain HDRl (for header labels), or EOFl or 
EQV1. {for trailer labels}. Build .fill::;:r, 
t.he remaining bytes as shown in Table 21. 

Init.ially. after moving the 17 least: 
significant characters of the data set. {Jell,,,, 
1:.0 the label buffer. t.he Volume Sequence 
convert routine is called t.o compute the 
address c1' t.he volU1l!e serial field of UH~ 
JFCB. The data set serial number is 
obtained from this field if the voluroe is 
not mounted, or from the SDAT if it is, 

Then, in order, the relative volume 
sequence number, the data set sequence 
number, generation and version numbers, 
creation and expiration dates, block count:, 
and system code are moved into r.he label 
buffer. The data set. security number fieLi 
is made blank. for American National Stan­
dard (ASCII users) label format or a 
character zero for standard IBM format. 

Build t.hen branches t.o the Write subrou­
tine in Tape Data Set Label which calls 
BSAM Read/Write to wd. te the first label on 
the tape. The Check subroutine determines 
tape write errors or end of tape and passes 
that information back to Build. Build now 
sets the label number to two and makes up 
the second label. illustrated in Table 22. 
The standard IBM and the American National 
Standard second label formats are similar 

76 Part I: Access Method for BSAM, MSAM, TAM and IOREQ 



Table 21. Label 1 Fill Table 
,-------------T--------,.------T--------------------, 
I I Size In I "ill~ I 
I Label Field I Bytes I F<OOI I R ..... rk.s I 
.---------------t-------t--------t--------------------i 
} DAta. Set Ida'lt.lfier\ 1.7 I CHA1'OT 117 least s.lgnificant 1 
I I' CJFCBJ I charact.ers of •• I 
I t I , character Dat.a Set ! 
I I I I Name in th~ Job Fi le t 

Data Set. serial _r 
Vol\lallt" Sequence 
Nwai>er 

I I I Cont [01 Block I 
I I I I 
I I CIIASDA I F. lied hom Voluae lD I 
1 I or JFCBI held of CHASD" H I 
I I l va lume 1 ~i .aunt ed,. I 
t I I othennse fro. volUlDe I 
I I I 10 field of first I 
I I I Vol.,.., seci .. l field I 
I I lin the Job 1'i 1 e I 
I I I Control Block I 
I I I I 
! I CHASCB I I 
I i I \ 
I I I t 

DaU Set Sequence I I CHATl7I' I I 
PlUIIbe[ I I (JFCBl I I 

I I I I 
Generat.ion Humber I t CQATOT I 1 

Vers10ft of 
GeDerat.ioD 

CrHtion Dat.e 

Expiration OAt.e 

Det .. Set Se'curit.y -IAcc __ lbllhyl 

Sloc:::k Count 

I I (JFCBl I I 
I I I ! 
I I CIlATDT ! I 
I I IJP'C8) I I 
I I I • 
I 6 I CIIA'!'DT I 
I I IJFCBI I 
I I I 
I ,; I CIlATD'l' I 
I I (.JFCBl I 
I I I 
I I I HOt Iapleaented 
I I I (blan!< if ANS, "ero 
I I I H eUndard Il1ld 
I I I 
I 6 I ClIA!JCB I 
I I I 
I 13 I t 
I I I 

I R ........ ed I 7 I I hlled "itch blanks I 
1----------------'--------J.--------J.----------------------4 
I TOTAL 16 B~es I ,, _______________________________________ . ______________ J 

Table 22. Label 2 Fill Table 
r--------------------T--------~--------T---------------------__, 
I I Size In I Fill~d I I 
I Label held I Byt.es I Fe"" I R .... rks I 
t--------------------+---------+--------+-----------------------~ 
! Record For .... t I 1 I CIIAOCB I I 
I I I I I 
I Block x...nqtn I I CI\AlJCB I I 
I I I I I 
I Record Lenljth I I CIlAOCB I I 
I I I I I 
I Dend ty I I CI\AlJCB I I 
I I I I 1 
I Data Set Posit ion I I I Contains 0 if fint I 
I I I I 1101 ..... ...,unt_ed, I 
I I I I othervise contains 1 I 
I I I I I 
I Job/Step I 11 I I OS only I 
I Identification I I I I 
I I I I I 
I Tape Recordinq I I CIiAOCB I I 
I Technique I i I I 
I I I I I 
I P<int Control I I Cli1tOCB I I 
I Character I I I I 
1 I I I I 
I Reserved I 13 I I Contains Blanks I 
I I I I I 
I suffer Offset 1 I Cll.ADCS I ANS labels (ASCII) I 
! I I I only; otnerwisp I 
I 1 I I r~seryed 1 
I I I I I 
\ R~served I 28 l -- I Cont.ains blanks I 
t--------------------~--------~--------~-------------------------4 
I TOTAL 16 Bytes I l ____________________________ .. _______________________ J 

Section 6: 

except fcr the buffer offset field which 
must be filled in for the American Nat.ional 
Standard format. 

The rout ine eff ect_s an dbnormal end i 1 

there is a tape write error in writing 
ei t her lalcel. If, on at tempting to Wr:l t" d 

header lahel, an end-ot-tape lndication s 
detected, an EOV T.railer label is writ tell 
instE'ad and the header label is written ()n 
the next volume. 

A more detailed discussion, including 
tables, of both standard IBM and America" 
National Standard label formats, is con­
tained in Appendix A of Data Management 
Faci litie~~f GC28- 2056. 

SUL ~;ubroutine: This routine reads and 
writof's user labels. Standard IBM format 
user!; may have a maximum of eight user 
labels; ASCII users, who must conform to 
the American National Standard label for­
mat, are allowed in TSS/360 to have a numb­
er of user labels limited only by the phys­
ical extent of the tape volume. 

Initially, the routine calling c;UL will 
have placed UHLl (user header label) or 
UTLl (user trailer label) in the label 
buffer. SUL will then determine from a 
code passed in register 1 whether to read 
or write. If a user label is to be read, 
the Read subroutine will be branched to for 
reading and checking a user label. An 
abnormal termination will occur if the 
label read is neither a header or trailer 
label. The user's label processor will 
then be called. 

Wnere a label is to be written, the 
user's label processor will be called first 
to build the rest of the label in the la bel 
buffer. and then SUL will cause the label 
to be written and checked. 

If the user is nonprivileged, his USEr 
routine is not called directly; he gains 
control through the Leave Privilege 
routine. 

When thE user labels have all been read 
or written (a maximum of eight for EBCDIC 
users, no maximum for ASCII users), return 
is made to the routine which called SUL. 

Check Subroutine: This routine is entered 
following a return from BSAM Read/Write to 
check the I/O operation results and det.er­
mine further processing. 

Check inspects various fields and flags 
in the data event control block and sets 
the return code as follows: 

Routines Specifically Designed for BSAM 71 



,----------------------------------T-----' 
I OPERATION CHECKED I I 
t-------------------T-------------~Rtn. I 
! READ I WRITE I Code I 
~---------.-----------+---------------+----~ 
I Normal Complete I Normal Completel • 00' I 
I I I I 
jUnit Exception I I • 04' I 

I i I 
IError I Error I 'OS' I 
i I I I 
! Intercepted I Intercepted I • DC' I 
I I I I 
jUnit Check IUnit Exception /'10' I 
I (Beginning of I I 
I 'I'ape) I ! l ______________________ J.. ________________ .I. _____ J 

If the operation is intercepted, the 
routine sets a counter so that a maximum of 
50 interceptions on t.his operation is 
allowed before the return code is set to 
t.he error code. 

If the operation is not complete, the 
AWAIT macro instruction is used to allow 
the operation to complete. 

The Direct. Access Input Label processor 
reads standard direct access user header or 
trailer la.bels. and provides linkage to a 
user label processing routine as specified 
in the DCB exit lisL (See Chart EG.) 

Attributes: Reentrant. nonrecursive, resi­
dent in virtual storage, privileged. 

~ntry Point: CZCXNl -- Entered via type-l 
linkage. 

Input: Register 1 contains the address of 
the SAM communication block. 

Data References: CHASCB. CRADEB, CHADCB, 
CHAISA. 

Modules Called: 
Message Writer (CZCWM) -- Message proces­

sing and ABEND processing. 

Obtain/Retain (CZCFO) -- Obtain DA user 
labeL 

LVPRV (CZCJL) -- Leave privileged state. 

Exit: 
Normal -- Return to caller. 

Error -- Call Message Writer to do ABEND 
processing. 

Operation: Standard user labels are read 
via Obtain, and, if the user is non­
privileged, processing is provided for via 
the Leave Privilege routine (LVPRV). 
Figure 8 shows Obtain keys and Label IIO 

Figurp 8. Obtain Keys and Label I/O Areas 

area. When a file mark i~5 read, or the 
user returns a zero code from LVPRV, the 
routine places a zero code in general 
register 15 and returns control to the 
invoking program. 

If the exit type in SCBEXT is not for 
input user header or trailer labels, the 
routine sets a unique ABEND code in SCBABN, 
and links to the Message Writer for ABEND 
termination. 

If there was a hardware error while 
attempting to read a label, the message 
~XXXX LABEL UNREADABLE, ENTER N TO READ 
NEXT LliBEL, B 1'0 BYPASS LABELS OR E 'ro END 
THE TASK" is sent to tone Llser via the Mes-­
sage Write~ routine. If the user replies 
-N·, and there have not been eight attempts 
t.O read labels, reading of the next label 
is attempt_ed. 

If eight attempts have been made, or if 
the user replies RB", control is returned 
to the caller with a zero return code in 
general r~gister 15. If the user replies 
BE", the routine sets a unique ABEND code 
in SCBABN and calls the Message Writer rou­
tine to perform ABEND termination. 

DA_gut~bel Routine (CZCXU) 

The Direct Access Output. Label processor 
provides the user with the facility for 
building and writing standard user labels 
on a direct access device. (See Chart EH.) 

Attributes: Reentrant, nonrecursive, resi­
dent in virtual storage, privileged. 

Entry Point: CZCXUl -- Entered via type-l 
linkage. 

Input: Register 1 contains the address of 
the SAM communication block. 

78 Part I: Access ~ethod for BSAM, MSAM, TAM and IOREQ 



rvlodul~s Callpdl 
i.vPRV (CZC.IL)- LpdV(' p..-lvilc-Qf·(j :ltatt~. 

Obtain/Retain (CZCFO) -- Retain DA user 
label. 

Exits: 
Normal -- Return to caller with '00' in 

general register 15. 

Error -- Register 15 contains '04'. 

Operation: If there is a label track in 
the first extent of the data extent block, 
and an output label type is specified in 
the CHASCB, and the exit type is active, 
the user is given the facility to build 
labels via the Leave Privilege routine, and 
to write labels via Retain, until the user 
passes a zero return code in general 
register 15, or until eight labels are 
written. At that time, a file mark is 
written via Retain. (See Figure 9 for the 
RETAIN keys and the LABEL I/O area.) 

If the exit type specified in the CHASCB 
is not for output header or trailer labels, 
a unique ABEND code is set in the CHASCB, 
and control is returned to the caller with 
a return code of '04' in general register 
15. 

If Retain returns with a code other than 
zero in general register 15. a unique ABEND 
code is set in the CHASCB, and control is 
returned to the caller with a return code 
of '04' in general register 15. 

rov PROCESSORS 

End of volume processing consists of 
tape and direct access input and output EOV 
routines, mainline and 'forced' EOV rou­
tines, and concatenation and check proces­
sors. The EOV routines are entered as the 
result of one of two conditions: end of 
data set or end of volume. 

UHL (n) UHL (n + 1) CCHHROOO 

or or 

un (n) UTl (n + I) 

Retoin k .. y Use, 'obet key Miscellaneous Direct Ace .... 

User Data Address 

4 4 76 8 

Figure 9. Retain Keys and Label I/O Areas 

The }>'orce End of Volume rout.ine ter­
minates the processing of the current 
volume of a data set, and prepares for the 
processing of the next volump. It accomp­
lishes this by in1 t iot inq tht· r:nd of Volum .. 
(EOV) rout.int':;. (!~"t' Ch.ltt FA.) 

Attributes: Reentrant, I:t'sident in virtual 
storage, closed, privileqed, read-only, 
public. 

Entry Point: CZCLDF 
or type 11M linkage. 

Entered by type 1M 

Input: Register 1 contains the address of 
the OCB. 

Data References: CHADCB. CHADEB. 

Modules Called: 
SAM Mainline EOV (CZCXE)-- SA~ Mainline 

end of volume processor. 

QSAM FEOV (CZCSA) -- QSAM forced end of 
volume processor. 

Exits: 
Normal -- Return to calling routine. 

Error -- ABEND macro instruction. 

Operation: Force End of Volume abnormally 
terminates the task via the ABEND macro 
instruction for any of the follOWing 
reasons: 

• OCB identifier is not valid. 

• Data set is not physical sequential. 

• Data set is not on magnetic tape or DA. 

• Not all BSAM DECBs have been checked. 

Control is returned to the calling routine 
when the input DCB is not open. 

Should all of the above tests be passed 
and if QSAM. QSAM FEOV is entered. If not 
QSAM, or on return from QSAM FEOV, the FEOV 
flag is set on and the Mainline EOV routine 
is entered. When Mainline EOV returns to 
Force End of Volume, control is then 
returned to the calling routine. 

Note the function of this routine is 
mainly performed by Mainline EOV. 

Mainline EOV Routine (CZCXE) 

Mainline EOV performs as a control pro­
gram to End of Volume (EOV) processing. It 
oversees the modifying of the DEB, label 
processing, volume switching, determining 
end of data set. concatenation proceSSing, 

Section 6: Routines Specifically Designed for BSAM 19 



<'lnd pdut;ing contrul to uSPC label exit rou­
tine!;. (See chart Fll.) 

Attributes: Reentrant, resides in virtual 
storage, clospd, read-only. privileged. 

Entry Point: CZCXEl -- Entered by type-l 
linkage. 

!~.!: Register 1 contains the adjress of 
the DCB causing EOV involvement. The PSECT 
contains CHAses and three temporary control 
blocks for use in the I/O operations of 
label processing. 

2~ta References: CHAnCS, CHA~EB, Ca~SCB, 
CH.ATI1l'. CHADEC, CHAISA. 

l"iOdules Called: 
V/'f.J\ (CZCGA) -.- Get virtual storage, free 

virtual storage. 

Build Common DEB (CZCWB) -- Restore the 
common portion of the DEB. 

Volume Sequence Convert (CZCwv) 
address convert. 

Volume 

DA Input EOV (CZCXD> -- Direct access out­
put end of volume processing. 

DA Output EOV (CZCXI) -- Direct access 
input end of volume processing. 

Tape Output EOV (CZCXO) -- Tape output end 
of volume processing, 

Tape Input EOV (CZCXT) 
volume processing. 

Tape input end of 

User Prompter (CZCTJ) -- communicate with 
user. 

AWAIT (CEAP?) -- Await an interruption. 

Exits: 
Normal Return to calling program. 

Error --

• Call User Prompter to inform user. 

• Via ABEND. 

Operation: The SAM control block <CHASCS) 
is initialized by zeroing the variable 
fields, storing pointers to the input DCB, 
,JFCB f and DEB, and storing the volume 
address in the volume serial field of the 
SCB. The pointers to the JFCB and DEB are 
known because the input DCB contains a 
pointer to the DES, and the DEB points to 
the JFCB. 

Mainline EOV assures the DEB pointed to 
by the DeB has a valid DEB-id, and that the 
DEB points to the DeB passed. If not, the 
routine abnormally terminates. 

The rOlltine initiali~es the temporary 
DeB and DEB tor use by SAM routines called 
by SAM EOV. End of data set is indicated 
for non-concatenated unit-record data sets. 

If thp dt'VlcP l~; Llpt', th., tt:'l11p()r'lIY 
control block:; ar.' ddjustpd 1;0 t ap(' 1.'\bE'1:, 
may be read or written. For DA devicP5, 
th .. temporary DeB is set so user labels may 
be read or Ioiritten. In either case, t.ape 
or DA t if user labels are specified, GET­
MAIN is called to get unprotect.ed virtual 
storage for a label buffer. 

Depending on whether the device is tape 
or DA. and ,,,hether the last VO operation 
was input or output, Mainline EOV branches 
to Tape Output EOV, Tape Input EOV, DA out­
put EOV, or DA Input EOV routines. 

When the device-oriented EOV routine 
returns control to Mainline EOV, any 
storage which had been obtained for label 
buffers and format-3 DSCBs is released via 
FREEMAIN. 

If no abnormal conditions occurred dur­
ing EOV processing, control is returned to 
the calling routine. 

Tap~~ut EOV Routine (CZCXT) 

The Tape Input EOV routine executes the 
end-of-volume procedures for the mOlmted 
input magnetic tape volume. That is, it 
oversees label processing and final volume 
poSitioning. If the mounted volume is only 
one of a multivolume data set, Tape Input 
EOV Cd uses the next volume to be mount. ed, 
oversees poSitioning and label processing 
of the new volume, and updates the DEB to 
reflect the presence of the new volume. If 
the data set is a member of a concatenation 
of data sets, the Concatenation routine is 
used. (See Chart FC.) 

Attributes: Reentrant, resides in virtual 
storage, closed, read-only, privileged • 

Entry Point: CZCXTI -- Entered by type-l 
linkage • 

Input: Register 1 contains the address of 
the SAM communication block. 

Data References: CHADeB, CHADEB. CHASCB, 
CHATDT. 

Modules called: 
Control (CZCRB) -- Tape positioning. 

Bwnp (CZCAB) -- Request and verify mount of 
new volume. 

Build Common DEB (CZCWB) -- Modify the com­
mon portion of the DEB. 

80 Part I: Access Method for BSAM, MSAM, TAM and IOREQ 



.. ~ 

Tape Data Set Label (ClCWY) -- Tape label 
processor. 

BSAM Read/Write (CZCRA) -- Read ahead for 
tape mark. 

User Prompter (CZATJ) --, Send message to 
user. 

Tape POSitioning (CZCWP) -- Tape 
positioning. 

Volume Sequence convert (CZCWV) -- Volume 
address conversion. 

concatenation (CZC)O{) -- Concatenat_ion. 

:t.xits: 
Normal -- Return to calling program. 

Error -- Call Message Writer to do ABEND 
processing. 

operation: For forced end-of-volume condi­
tions, Tape Input EOV proceeds as if the 
EOV condition was encountered for unlabeled 
tape. 

The tape is properly positioned via the 
Control routine. 

When trailer labels are present. Tape 
Data Set Label is called at entry point 
CZCWY2 to process user trailer labels and 
standard trailer labels. 

Unless a read backward operation was 
performed, a READ is issued to check for a 
second tape mark, indicating end of tape. 
Otherwise, end of data set processing is 
required. The tape is repositioned via 
COtn'ROL. 

If this is the last volume, and there is 
no concatenation, the End of Data Set flag 
is set in the DCB and control is returned 
to the calling routine. 

The Concatenation routine is invoked if 
concatenation is indicated. For a non-end­
of-data-set condition. the Bump routine is 
used to mount the next volume. The DEB is 
updated via Build Cornmon DEB to reflect the 
new volume and the Tape Positioning routine 
is used to position the tape for proces­
sing. If the newly mounted tape has 
lables, the Tape Data Set Label is called 
at entry point CZCWYl to process standard 
labels and user header labels. Tape Input 
EOV then returns control to the calling 
routine. 

The routine abnormally terminates when 
Bump indicates that the requested volume 
has not been mounted, or when the relative 
volume sequence of the volume to be mounted 
is less than the volume sequence number of 
the current volume. 

:rape Output EOV Routine (CZCXO) 

When a data set is being closed, Tape 
Output EOV oversees the end-of-volume tape 
processing, including the writing of trail­
er labels. For multivolume output Jata 
sets, this routine oversees the mounting of 
t.he new volume and updating of the DEB. 
(See Chart FD.) 

Attributes: Reentrant, resides in virtual 
storage, closed, read-only, privileged. 

Entry Point: CZCXOl -- Entered by type-l 
linkage. 

Input: Register 1 contains the address of 
the SAM communication block which was 
generated in the PSECT of Mainline EOV. 

Data References: CHAnCB. CHASCB, CHATDT. 

Modules Called: 
Control (CZCRB) -- Tape positioning. 

Bump (CZCAB) -- Request and verify mount of 
new volume. 

Build Common DEB (CZCWB) -- Modify the com­
mon portion of the DEB. 

Volume Sequence Convert (CZCWV) -- Volume 
address conversion. 

Tape Data Set Label (CZCWY) -- Tape label 
processor. 

User Prompter (CZCTJ) -- Communicate with 
user. 

Exits: 
Normal -- Return to calling program. 

Error -- Via ABEND macro instruction. 

Operation: Tape Output EOV turns off the 
FEOV flag in the DEB and. via the Control 
routine, writes a tape mark on the tape. 
If labels are specified, the Tape Data Set 
Label is called at CZCWY4 to write user and 
standard volume trailer labels. Another 
tape mark is written and the volume posi­
tioned immediately before the tape mark. 

If the data set is being closed, normal 
return is made to the user. 

Otherwise, the address of the next 
volume is obtained by Volume Sequence Con-

Section 6: Routines Specifically Designed for BSAM 81 



vert, the volume just ended is rewound by 
ContI:ol, dnd tchp volump is mounted by the 
bump routine. The DEB is updated via Build 
CorrUllon DEB t.o indicate the presence of the 
~ew volum~ and if labels are specified, the 
user and standard header labels are pro­
cessed by the Tape Data Set Label. 

Where an end-ai-volume indication is 
received while the EOF trailer label is 
beinq written, the trailer label is rewrit­
ten to contain EOV instead. The EOF trail­
er label is then written by the Tape Data 
Set Label at the beginning of the newly 
mounted volume following its volum.: and 
header labels. 

This routine abnormally terminates when 
Bump returns an error code indicating that 
the requested volume was not mounted, or 
when there is an incorrect volume sequence 
number. 

WhE,n a data set is being closed, Direct 
Access Input EOV oversees the end-of-volume 
direct access device processing, including 
t_he reading of user t.railer labels. For 
multi volume input data sets, or da'ta set 
members of a concatenation, this routine 
oversees the end-·of-voluroe processing for 
the current volume, the mounting of the 
new, or next volume. and the updating of 
t.he DEB. (See Chart FE.) 

£:.ntry PO.int;.: CZCXIl -- Entered via type-l 
linkage. 

In£~t: Register 1 contains the address of 
the SAM communication block. 

Data References: CHASCB, CHATur, CHADSC. 
CHADEB, CdADCB. 

Modules Called: 
Bump (CZCAB) =- Request and verify mount of 

new volume. 

Obtain/Retain (CZCFO) -- Obtain DA user 
label and retain DA user label. 

Build DA DEB (CZCwL) -- Build direct. access 
DEB. 

User Prompter (CZATJ) -- Communicate with 
user .. 

SETDSCB (CZCXS) -- Update DSCB and write 
file mark. 

Volume Sequence convert (CZCWV) -- Volume 
addr'ess Conversion. 

DA Input Label (CZCXN) -- Direct access 
input user label processor. 

concatenation (CZCXX) -- Concatenation of 
data sets. 

Exits: 
Normal -- Return to ca ller. 

Error -- Call User Prompter or ABEND. 

Operation: If the intf'qrity bit is on, or 
if a write WilS previously executed 0n the 
volume on which t~e EOV condition WdS 
encountered, a call to SETDSCB is provided 
to rewrite the format-l DSCB with the inte­
grity bit off and also to write a file mark 
if this is indicated. 

Input user labels are processed by a 
call to the DA Input Label routine. 

If all volumes have been processed and 
concatenation is not specified, end of data 
set. is indicated. 

Otherwise, the Concatenation routine is 
called if concatenation is specified. If 
all volumes have not been processed, Bump 
is used to switch volumes. When the new 
volume is mount.ed, Obtain and Ret.a~n are 
called to read the DSCB and write the new 
DSCB respectively. The user is warned a.nd 
given the option to continue if the inte­
grity bit for the newly mounted volume is 
on. The new DEB is built by Build DA DEB. 

DA Outp!Jt. EOV Routine_--1.£ZCXD) 

When a data set is being closed, DireL~ 
Access Output EOV performs end-of-volume 
processing, including the writing of user 
labels and release of available unused 
storage. For multivolume output data sets, 
this routine oversees the acquisition of 
new extents and the updating of the DEB. 
(See Chart FF.) 

Attributes: Reentrant, resides in virtual 
storage, closed, read-only. privileged. 

Entry Point: CZCXDl -- Entered by type-l 
linkage. 

Inout.: Register 1 cent.ains the address of 
the SAM communication block. 

Data Reference~: CHADEB. CHADCB, CHATD'I', 
CHASCB, CHADSC. 

Modules Called: 
Bump (CZCAB) -- Request and verify mount of 

new volume. 

Extend (CZCEX) -- Allocate additional DA 
space for a data set._ 

Obtain/Retain (CZCFO) -- Obtain direct 
access user label and retain direct 
access user label. 

82 Part I: Access Method for BSAM, MSAM, TAM and IOREQ 



Build DA DEB (CZCWL) -- Build or modify a 
direct access DEB. 

Message Writer (CZCWM) -- Mpssage proces­
sing and ABEND processing. 

Read Format-3 DSCBs (CZCWR) -- Read and 
chain format-3 DSCBs. 

Volume Sequence convert (CZCWV) -- Volume 
address convert. 

Set DSCB (CZCXS) 
file mark. 

Update OSCB and write 

DA Output Label (CZCXU) -- Write user 
labels for DA output data sets. 

Exits: 
Normal -- Return to calling program. 

Error -- Call Message Writer to do ABEND 
processing. 

Operation: The integrity bit is set on. 
If the data set is being closed, a request 
is issued for space or a volume switch. 

DA Output EOV uses Set DSCB and DA out­
put Label to write a file mark on the 
volume, reset the integrity bit, and pro­
vide for user output label processing. 

Old data sets which exist on more than 
one volume and for which there is a suc­
ceeding volume, have space allocated to 
them on the succeeding volume. 

On a forced EOV, DA output EOV forces a 
volume switch. 

For new data sets, DA Output EOV 
attempts to get space on the currently 
mounted volume. If it cannot: 

• For private data sets - If the data set 
is OLD or new, and this is the last 
volume of the data set, a demount/mount 
is requested, and allocation on the 
newly-mounted volume is attempted. 

When space is denied on the current 
volume, Set DSCB is used to write a file 
mark on the volume and to reset the format-· 
1 DSCB integrity bit when volume SWitching 
is required. DA Output EOV uses the DA 
Output Label to allow user label 
processing. 

Build DA DEB is used to extend the DEB 
if space is allocated on the current 
volume; otherwise, when space is allocated 
on a new volume, Build DA DEB builds a new 
DEB. 

Section 6: 

Concatenation Routine (CZCXX) 

The Concatenation routine is called to 
make the next data set of a concatenated 
group ready for processing. (See Chart 
FG. ) 

Attributes: Reentrant, resident in virtual 
storage, clo3ed, read-only, privileged. 

Entry Point: CZCXXl -- Entered via type-l 
linkage. 

Input: Register 1 contains the address of 
the SAM communication block. 

Data References: CHASCB, CHAnCB, CHATDT, 
CHADEB. 

Modules Called: 
Bump (CZCAB) -- Request and verify mount of 

new volume. 

Open Common (CZCLA) -- Common open. 

Close Common (CZCLB) -- Common close. 

ABEND (CZACP) -- If bad return code from 
Bump. 

Exits: 
Normal -- Return to the calling routine. 

Error -- Call ABEND. 

Operation: The Bump routine is called to 
mount~ the first volume of the next data 
set. 

Close Common is called to close the cur­
rent data set and Open Common is called t.O 
open the next data set. A return code of 
four is provided in the calling program. 

The routine abnormally terminates when 
Bump returns an error code. 

BSAM USER ROUTINES 

The following routines provide user con­
trol of some aspects of direct access and 
tape devices. 

Note Routine (CZCRN) 

The Note routine provides the user with 
ident.ification of the last record read or 
written. A relative track and record numb­
er is returned, if the device is direct 
access, and a block count is returned for 
tape., All DECBs must be checked by the 
Check routine before Note is used. (See 
Chart GA.) 

Attributes: Reentrant, resident in virtual 
storage, closed routine, nonrecursive. 

Routines Specifically Designed for BSAM 83 



Entry Point: CZCRNA -- Entered via type-1M 
linkage. 

Input: Register 1 contains the address of 
the OCB. 

Da.!:.a References: CHAOCB, CHAnEB. 

tOOdules Called: 
FuLREL (CZCRS) Convert full DA address 

to relative address. 

User Prompter (CZATJ) -- Communicate with 
user. 

Exi ts: 
Normal -- Return to th'2 calling Ioutine. 

Error -- AB~~D termination. 

~rati0f!: Any data set which is not DA 
will be treated as if it were on magnetic 
tape. No er:r·or cCC'urs when the Note rou­
tine is entered for other t.han DA or mag­
netic tape, but, the address Note returns 
will not be meaningful for other devices. 

The routine ABENDs if the OCR is inva­
lid. If all I/O has not been checked, t.he 
user is prompted to see if he wishes t,Q 
continue. 

To obtain the relative address of the 
last record read or written on OAf the DA 
address of the last record is passed to the 
FU:U·U~L routine which converts the full DA 
address to a relat.ive address. The rela­
tive address is placed in register 1. and 
if the last. I/() operat,ion was a write, t.he 
numbe.r of bytes remaining on the current 
track is placed in register O. 

For magnetic tape the Note address 
returned to the calling routine is a rela­
tive block count. The block count is 'Zero 
when the data set is opened to write. The 
first block is block 0, the second blOCK is 
block 1, the third block is blOCK 2, etc. 
The relative block count is maintained (for 
the current record) in the DC8BLK. 

Table 23 indicat.€'s the block count which 
is set. into I'E9ister 1 for the calling pro­
gram. The flag DEBRSB indicates if the 
last block processed was read backwards 
(ON) or not (OFF). 

Note: For magnetic tape volumes, if the 
Note routine is entered after a Point macro 
instruction was executed and there is no 
READ or WRITE macro instruction between 
them, it returns the current relative block 
count plus one (if last I/O opeaation was a 
read backward). or minus one (if the last 
I/O operation was forward). The reason for 
this is that there is no change in the 
DCBBLK field since the last READ or WRITE. 
yet when Note is again entered it will per-

Table 23. Decision~ for Settinq Block 
count 

r-----------------------------------T-T-T-' 
I Last block read hackward I YIN I N I 
I I I I I 
I DCBBCK=O I \YINI 
t-----------------------------------+-t-+-~ 
I Add one to block count !XI I ! 
I I I I I 
I Subtract one from block count I IXI I 
I I I I I 
! Return with block COllnt in I I I I 
( register 1 iXIXIXI 
l __________________________________ .L_.L_.L-J 

form the c,llculation (adding or subtracting 
one) on the relative block count anyway. 

Point Routine (CZCRM) 

The Point routi ne performs certain 
oJ)t'rations which cause the next read or 
writ.e operation to be performed at a speci­
fied block in the current volume. The 
rela ti ve address of the block in (fUestloD 
is passed to this rout.ine as an input. para­
meter. The Point Iout.ine may be thought of 
as a logical repositioning of the data set .• 
(It is a real repositioning in the case of 
magnetic tape.) Point may only be used 
with DA and magnetic tape volumes. (See 
Chart GB.) 

Attributes: Reentrant, resident in virt.ua 
storage,closed rout.ine, privileged. 

Entry Po:i.nt: CZCRt>1A -- Entered via type-l 
linkage. 

Input: The fo110wi ng parameters are 
passed: 

Register 0 -- RelatiVe DA address, or rela­
tive magnetic tape block address. 

Register 1 -- Address of DeB. 

The relative block address should have 
been obtained .by use of the Note routine. 

Data References: CHADEB. CHADCB. 

Modules called: 
RELFUL (CZCRR) - convert a relative DA 

address to a full DA address. 

Control (CZCRB) -- Tape poSitioning. 

Exits: 
Normal -- Return to calling program. 

Error -- ABEND termination. 

Q£eration: Point does not apply to devices 
other than OA or magnetic tape. Therefore, 
for other devices, normal return to the 
calling routine is made immediately_ 

811 Part I: Access Method for 8SM, MSAM, TAM and IOREQ 



-

Note always returns the relative address 
of the las!, block read or writtpn. If the 
user wishes to point to that block, the Z 
byte should remain zero. 

When Point is entered for a DA device, 
the above mentioned flag (DEBIPT) is set if 
necessary, and the relative DA address is 
passed to the RELFUL routine. The RELFUL 
routine converts the relative add;~ess to a 
full DA address which is stored into the 
DEBNIO field. The DEBBP flag is set on to 
indicate to Read/Write that a Point opera­
tion has occurred. 

When Point is entered for magnet.ic tape, 
1f the tape volume is not currently at the 
requested postion, the Control routine is 
used to forward space or backward space the 
tape to the requested position. ~~he dif­
ference between the requested block count 
and the current block count i!> the number 
of blocks to be skipped. 

If errors occur during a point, DEBNF1 
is turned on so that subsequent reads or 
writes will be intercepted and SYNAD will 
be given control when those reads or writes 
are checked. 

Backspace Routine (CZCRG) 

The Backspace routine backspaces a phys­
ical record on the current magnetic tape or 
direct access volume. (See Chart GC.) 

Attributes: Reentrant, resident in virtual 
storage, closed routine, nonrecursive, 
privileged. 

Entry Point: CZCRGA -- Entered by type-1M 
or type-2 linkage. 

Input: Register 1 contains the address of 
the DCB. 

Data References: CHADCB, CHADEB, CHASDA. 

Kodules Called: 
Find Records per Track (CZCRQ) -- Find 

records per track. 

Control (CZCRB) -- Tape positioning. 

Exits: 
Normal -- Return to the calling routine. 

Error -- For unsuccessful completion, gen­
eral register 15 contains a return code 
:>f ·Oq·. 

I\.BEND is called under the following 
conditions: 

• Invalid DCB 

• Unchecked Read or Write outstanding 

• Illegal device or overflow records. 

Operation: For magn(>tic tape d bdckspac<.~ 

is much easif'r to perform sinc(' only th(' 
physical position of the tape need be esta­
blished. On the other hand, the records of 
a sequential data set on DA are not neces­
sarily packed on the volume, and are not 
necessarily on the same track. They must 
be on the same volume for backspace. 

For a ba~kspace on maqnetic tape, the 
Backspace routine links 1:"0 Control via a 
type-1 link~ge, with a backspace record 
request. If a backspace record goes over a 
tape mark, a forward space record commdnd 
is issued to Control, and an error return 
is given to the user. If an unrecoverable 
error occurs, a return code of • 04' i~; 

placed in general register 15 upon return 
to the user. 

The backspace operation for a direct 
access volume may be very easy or quite 
involved, depending on where (logically) 
the data set is positioned. The DEB con­
tains the DA address of the next record to 
be processed (DEBNIO). The Read/Write rou­
tine will operate upon that address when it 
is entered. Consequently, the DA backspace 
is accomplished if the DA address of the 
previous record can be stored into DEBNIO. 
A backspace is not performed on a data set 
which has track overflow specified. Neith­
er is a backspace performed if the track 
containing the user labels would be 
entered. 

If I/O operations have not been per-­
formed on the data set, no backspace is 
possible and control is returned to the 
calling routine with a non-zero return 
code. 

Should DEBBP be zero, no prior backspace 
has occurred since the last READ or WRITE. 
And if DEBLIOR contains some positiVE numb­
er, there is no possibility of backspacing 
into labels or out of extents. TherEfore, 
the backspace is accomplished by moving the 
last I/O address to the next I/O address. 

If a previous backspace operation 
resulted in an er.ror, control is returned 
to the calling routine (return code = 0) 
without any attempt to backspace. The pre­
vious error will be detected by the Check 
routine when the next I/O operation is 
checked. 

DEBBP is set to 1 when the first backs­
pace is made. If a previous backspace has 
occurred and cur cent position is not at the 
first record in current track, the backs­
pace is accomplished by subtracting from 
DEBNIOR which logically positions to the 

• previous record in the current track. 

Note 1: The Find Records per Track routine 
is used to count. the number of records in a 
track. To use it one stores the MBCCHH of 

Section 6: Routines Specifically Designed for BSAM 85 



interest in DCBRD and calls Find Records 
per Track. When Find Records per Track 
returns, the number of records in the track 
is in DCBRDR. If Find Records per Track is 
called by Backspace and it does not work 
properly, Backspace sets DEBNFl on so the 
DECB of the next read or write will be 
intercepted by the ReadlWrite routine and 
Check will transfer to SYNAD. 

Now, if Backspace is entered and 
DEBNIOR=l, the last record ot the previous 
track must be found to accomplish the back­
space. The important thing to determine is 
whether the previous track is just a track 
containing records or if it has the user 
label::;. DEBElIT set to one indicai.es that 
there are labels in the first track of the 
first extent. DEBNIO pointing to the first 
track of the first extent means a backspace 
would leavE' the extents. DEBNIO pOinting 
to the second track of the first extent 
means a backspace will get into t.he label 
track if there are labels. If the first 
ext.ent is only one track in length. it will 
contain labels if there are labels. When 
DEBNIO is in the first extent and neither 
the first nor the second track is pointed 
to by DEBNIO. then it is safe to backspace 
to the last record on the previous track. 

Note 2: The ReadF .. ri te routine wi 11 per­
form I/O from the DEBNIO address if DEBBP 
1.S on, and will t.hen turn DEBBP off. 

DEB13P is turned on by the Backspace rou­
tine and DEBNH is also turned on if Back­
space encounters error conditions. It is 
assumed that Read/Write will inte.rcept an 
1/0 request to the data set when both the 
above bits are on, and that Check will 
transfer to SYNAD when checking that DECB. 

Control Routine (CZCRB) 

The control routine performs magnetic 
tape positioning, card reader stacker 
selection andlor printer channel skipping. 
control builds an lORCH containing appro­
priate CCWs, and executes it via the lOCAL 
SVC which invokes t_he I/O Supervisor. (See 
Chart GD.) 

Attributes: Reentr-ant_, r:esident in virtual 
storag~losed routine, privileged, 
nonrecursive. 

l:.ntry Point: CZCRBS -- Entered via type-1M 
or type-2 linkage. 

Inpu~: The following parameters are 
passed: 

Register 0 -- Two-character operation code 
and count modifier. 

Register 1 -- Address of DCB idp~tifying 
I/O device. 

Data References: CHADCB. CHADEB, CHAIOR, 
CHADEC I CHASDA. 

Modules Called: 
AWAIT (CEAP7> Await an interruption. 

lOCAL (CEAAC) I/O call. 

Exits: 
Normal Return to calling routine. 

Error --

• Abnormal termination via ABEND macro 
instruction. 

• Exit to SYNAn routine. 

2£!Lration: [nit.ially. t.he lORCR is 
cleared. Then it is completely filled in 
with the appropriate CCW as well as the 
address of the SAM Posting routine. 

When t.he IORCB is complete, the lOCAL is 
executed. If the requested operation is 
HEW or RUN, control is then returned to the 
calling routine. However, for all other 
requested operations the DECB is tested to 
determine if the operation is complete. If 
not complete, the AWAIT macro instruction 
is executed to wait for completion of this 
event. When the initiated operation is 
completed. the DECB is tested for error 
indicators. 

Upon successful completion, control is 
returned to the calling routine. For 
unsuccessful completion, the user's SYNAD 
routine is given control. If there is no 
SYNAD routine and errors exist, the task is 
abnormally terminated. 

ASCII Translation and Conversion Routine 
(CZCWA) f 

Users may read or write physical sequen­
tial data sets encoded in ASCII with ANS 
(American National Standard) label and 
record formats provided the storage llledium 
is magnetic tape. Since TSS/360 processes 
internally in EBCDIC and standard IBM label 
and record formats, this routine is 
required to provide an interface for ASCII 
users. On input, this routine translates 
ASCII to EBCDIC and converts ANS formats to 
the standard IBM formats. On output, it 
translates EBCDIC to ASCII and converts 
standard IBM formats to ANS formats. (See 
Chart GE.) 

Attributes: Reentrant, resident in virtual 
storage, read-only, privileged, 
nonrecursive. 

Entry Point: CZCWAl -- Entered via type-l 
linkage. 

86 Part I: Access Method for BSAM, MSAM, TAM and IOREQ 



Input: Register 1 contains the address of 
d three-word parameter list: 

Word 1 - Byte 1 - X'Cl' for output 
X'CS' for input 

Byte 2 - X'OO' (unused) 

Bytes 3 and 4 - Length of record 
or block 

Word 2 - Address of buffer area 

Word 3 - Address of DCB 

Modules Called: None. 

bits: 
Normal 

• Return to caller via BR 14 with return 
code 0 in register 15. 

• On input only. register 1 on return 
will contain the number of bytes 
shifted to overlay any block prefix. 

Error -- Return to caller via BR 14 with 
one of the following return codes in 
register 15: 

X'04' - First byte of parameter list not 
X'C1' or X'CS' 

X'OS' - Buffer offset greater than 99 

Tables and Work Areas: CHADCB. CZCWZA 
(ASClI-to-EBCDIC translation table). CZCWZE 
fEBCDIC-to-ASCII translation table). 

Operation: On input. after reading a reco­
rd. where the user has defined his data set 
as ASCII, SAM Posting and Error Retry calls 
this routine to translate the record to 
EBCDIC. On output, before writing a reco­
rd, BSAM Read/Write calls this routine to 
translate from EBCDIC to ASCII. 

ASCII Translation and Conversion 
provides: 

1. A character-for-character translation 
interface between EBCDIC and ASCII. 

2. Conversion of values in block and 
record descriptor fields to unpacked 
decimal (ootput) or binary (input) 
where records are format-D 
(variable-length). 

3. On input, evaluation of block or reco­
rd format and resultant shifting of 
records to overlay any block prefix. 

4. On output, a block prefix of 4 bytes 
if specified by the user. 

American National Standard r~cord to 
mats provide for an opt_ional block ,.net x 
which may precede the first or only log ral 
record in eack block. Thi~; PITt ix Illay con­
tain user data and, for tormdt_-l) (v,lI:ldblp­
lengt'h) records, the block length in the 
block descriptor field. The ASCII user, 
entering data sets from tape, may tell the 
system (in either his DDEF command or hi" 
label) tc expect a block prefix; he may 
specify up to 99 bytes. Any data in the 
block prefix, other than the block lengt.h, 
will not be available to him, however. 
ASCII Translation and Conversion saves the 
value (tbe block length) in the block 
descriptor field (the last four bytes of 
the block prefix) and then shifts the first 
or only record left, overlaying the block 
prefix. The end of the record is zeroed 
out. On output. a user may specify only 0 
or 4 bytes of block prefix, and then only 
if format-D records are specified. When a 
4-byt.e block prefix is specified, it will 
contain a block descriptor. 

The length of the block prefix is speci­
fied by the buffer offset. The differences 
between American National Standard and 
standard IBM label formats are slight; one 
difference is the existence of a buffer 
offset field in the second header label 
(American National Standard). If the user 
specifies or defaults the buffer offset 
(BFOFF) parameter in the DDEF command, the 
buffer offset field in the label determines 
for ASCII Translation and Conversion the 
number of bytes of input block prefix to 
handle. 

The translation and conversion inter­
faces provided by this routine are illus­
trated in Figures 10 and 11. 

Additional information on label and 
record formats, both standard IBM and 
American National Standard, for magnetic 
tape volumes is contained in Appendix A of 
Data Management Facilities. GC28-2056. 

_BUFFERING SERVICES 

The following four routines are provided 
to allocate a pool of buffers and permit 
easy access and release of the buffers 
within the pool. 

G£TPOOL Routine (CZCMa) 

The GETPOOL (get a buffer pool) routine 
fills the buffer length and the number of 
buffers field in the DCB. (See Chart HA.) 

Attributes: Reentrant, resident in virtual 
storage. closed routine, read-only, public. 

Entry Point: CZCMBG equated to SYSMBG -­
Entered via type-l linkage. 

Section 6: Routines Specifically Designed for BSAM 87 



ON 
INPUT, 

A buffer offset (block prefix length) of 0-99 bytes is supported in all formof1. 
The usel specifies the buffer offset in either the tope label or the DOEF com!!lond. 

FORMAT F ,ecords-blocked and unblocked (blocked shown here) FORMAT U record. 

Doto (ASCI] 

is translated to EBCDIC ond the BSAM user READ, is Iranslated to EBCDIC and t,e BSAM user READ, ... 

the QSAM ')Ser GETs ... 

(three times) 

Data (EBCDIC) 

the QSAM user GETL .. 

[ooto (EBCDIC) 

FORMAT D (vorioble-!ength) records 

If the b0ffe, offset is specified as 0.. blocked or 
1mb ~ockeci r shown i ... 

Doto (ASCIi) 

becl.Jmes. 

~!_f_OO~~ _____ D_o_t_O_(_E_BC_D __ IC_-i ______ ~ 
If ~he buffer offset ;'1. spec.ified as 4 ... blocked 
(shown) or unblocked ... 

bec:;.mes ••• 

[LLOO! t{OO I Dota (EBCDIC) roo I }[J 
If the Duffer offset-is specified as olher than 0 or 
-4 ..• blccked or unb locked ... 

becomes. , . 

Zeroes 

1"\ of! Format D cases, whatever the 
buffer ofk., (0-99) .. _ 
unblocked, 
the BSAM user READs .. _ 

bladed and unblocked, 
rhe OSAM user -GETs .. ~ 

Dolo (EBCDIC) 

However, lLOO wi 11 exist 'in the 
sy'Stem buffer for each format D 
"nblocked record or block. 

"Doe'S not havp to contain ODDO; BSAM colculates and creates correct LlOO. 

Figure 10. 

dddd is- the record (length) descriptor in ASCII format; a 4-byte vo!ue in un-pocked declmol. 
froo;s the record (length) desc6ptor in EBCDIC formol; U co a vaiue in binary; 00 ~ Zeroes \unu",d). 
DDDD is the block (Iengthi descriptor in ASCII format; a 4-byte volue in unpacked decimal. 
llOO is the block (length) descriptor in EBCDIC format; LL ~ a value ;n binary; 00= Zeroes (unused). 

How TSS/360 Handles ASCII Record Input 

88 Part I: Access Method for BSAM, MSAM, TAM and IOREQ 

not 
present 

if 
buffer 
offse! 

4 or less 



---
-- "I ON 

OUTPUT 
For Format. Fond U, no buffer off,et (block prefix) is allowed. For Format 0, a buffe, off,et of 0 or 4 may be specified. I 

r 

FORMAT F and FORMAT U record, - blocked ond unblocked 

I Ooto (EBCDIC) I becomes r Dato (ASCII) I 
I 

------- 1 FORrAf,-~ (llorioble -I':.nglh) records - blocked or unblocked 

If a buffer offset of 0 is speci lied ... 
--

llOO ~~O Dolo floo Dolo 
(EBCDIC) (EBCDIC) 

becomes ... 

dddd 
Data 

dddd 
Dolo 

(ASCII) (ASCII) 

If a buffer offset of 4 is specified, the 
EBCDIC block above becomes ..• 

DDDC dddd 
Data dddd 

Data 
(ASCII) (ASCII) 

See Figure 10 for the meaning of dddd, etc. 

Notes: The BSAM user must calculate and supply his own LLOO and noo and specify buffer offset = 4 if he wonts a 

block descriptor on output. 
The QSAM user must specify buffer offset = 4 if he wonts a block descriptor even though he does not have 
to supply his own LLOO. 

Figure 11. How TSS/360 Handles ASCII Record Output 

Input: The following parameters are 
passed: 

Register 0: 
r--------------------T--------------------, 
I NN I LL I L __________________ .1. __________________ • __ J 

o 15 16 31 

where NN - number of buffers requested. 

LL - length of each buffer in the 
request. 

Register 1 -- Address of DCB. 

Data References: CHADCB, CRADEB, CHAISA, 
ChAVPS. 

r-r.odul,,~s Called: None. 

.Exits: 
Normal -- Return to caller. 

Section 6: 

Error -- ABEND macro instruction. 

Operation: The routine will ABEND if the 
DeSID is not valid. The routine also 
ABENDs if a buffer pool has been previously 
assigned, if the buffer length or block 
size exceeds 32,768 bytes, or if the number' 
of buffers exceeds 255. GETPOOL inserts 
buffer length and number of buffers into 
DeBBUF and DCBBUN respectively. The rou­
tine sets on bits corresponding to DCBBUF 
and DeBBUN in DCBMSK if the DCB is open. 

GETBUF Routine (CZCMA) 

The GETBUF (get a buffer) routine finds 
an available buffer in a buffer pool and 
rei:urns a pointer to it. When the GETEUf 
routine is entered for the first time, the 
buffer page list, which describes the .loca­
tion of all the buffers for this DCB, lS 
built, the buffer pool is allocated, and 
the first available buffer is obtained • 
(See Chart HB.) 

Routines Specifically Designed for BSAM 89 



Attributes: Read-only, re~;ident in virtual 
storage, closed routine, reentrant, public. 

E-lltry"'_poin_t:.: CZCMAG equated to SYSMAG -­
J:.nt.,rprt Vld tyl">-! link.HIP. 

Inpu!c: Rpql~t,,-'r conla1n" the addre"s of 
the DCB. 

Data References: CHAnCB, CHABPL, CHAnE-B, 
CHAISA, CHAVPS. 

Modules Called: 
VMA (CZCGA) -- Get virtual storage. 

CKCLS (CEAQ4) -- Check protection clas:;. 

Exits: 
Normal -- Return to calling program. 

Error -- ABEND macro instruction. 

operation: GETBUF will ABEND if the DCBID 
is not valid, or if the DCB is not open. 

If this is the first entry to GETBUF, a 
Duffer page list must be built. GETBUF 
ABENDs if the buffer length is too large or 
if buffer length and blocksize are both 
zero. When only buffer length is zero, and 
access is for other than QSAM, and the 
device is direct access, the actual size of 
the buffer is computed by GETBUF by adding 
the key length to the blocksize. GETBUF 
determines which cutoff constant is to be 
used and calculates the total number of 
pages needed for the buffers, and the buff­
er page list. 

GETMAIN is used to obtain the needed 
pages. GETBUF maintains the count of 
available buffers and enters the buffer 
addresses into the Buffer Page List. 

FREEaUF Routine (CZCNA) 

The FREEBUF (free a buffer) routine 
makes available a buffer which was pre­
viously obtained and made unavailable by 
the GETBUF routine. (See Chart HC.) 

Attributes: Reentrant, resides in virtual 
storage, closed routine, read-only, public. 

Entry Point: CZCNAF equated to SYSNAF -­
Entered via type-l linkage. 

Input: The following parameters are 
passed: 

Register 0 -- Address of buffer to be 
released. 

Register 1 -- Address of DCB. 

Data References: CHADCB, CHABPL, CHADEB, 
CHAVPS, CHAISA. 

Exits: 
Normal -- I<cturn '-0 c,)ll~n'j program. 

l:.rrol -- I\r.ENL> rTliiCr" i n"tructlon. 

Operation: The dddcesse~ of buffers in 
CHABPL are searched to find a watcr. for the 
address passed in register O. When a match 
is found, the In-Use flaq for that buffer 
is turned off in the CHABPL, and BPLNBF 
(numbpr of free buffers) is incrementeJ by 
one. 

FRI:EBUF exits to ABEND if the DCB iden­
tification is not villid, if GETBUF has not 
been called, if the buffer to be freed is 
not in the pool, or if the buffer to be 
freed is already free. 

FREEPOOL Routine {CZC'NB) 

The FREEPOOL (free a buffer pool) rou­
tine releases all virtual storage which w~s 
assigned to a DCB as a buffer pool. (See 
Chart HD.) 

Attributes: Reentrant, resident in v:trtual 
storage, clo3ed rout_inf:, neild-only, public. 

Entry Point: CZCNBC equated to SYSNBC -­
Entered via type-l linkage. 

Input: Register 1 contains t:he address of 
the DCB for the data set whiciJ last used 
pool. 

Data Reference~': CHADCB, Cru"-.BPL, CH.A.llEB, 
CHAVPS, CHAISA, 

Modul~ Called: VMA (CZCGA) -- Free virtual 
storage. 

Exitc' : 
NormCil -- Return to calling program. 

Error -- ABEND macro inst.ruction. 

Operation: FREEPOOL ABENDs if the DCBID is 
not valid, or if t_fJP access is QSAM and t.he 
DCB is open. 

Unless the Buffer Page List pointer is 
zero, the number of I~qes in the buff~r 
pool is determined from BPLNPG, dnd FRLE­
MAIN is called tv rpledse thosp ~dg~~. 

FREhPOOL z(;ros tne Buffer Pdq" Li:c:t 
pointer. and the but f: er length a nd nll!nt;~ r 
of buffers fields in the DCB. 

BSAM INTERNAl, CONTROL ROUTINES 

The internal control routines include 
the message writing, tape positioning, and 
volume serial field finding routines. 

90 Part I: Access Met_hod for BSAM, MSAM, TAM and IOREQ 



Tape Positioning Routine (CZCWP) 

The Tape Positioning routine positions a 
tape volume to any of three positions. The 
positions are shown in Figure 12. (See 
Chart lA.) 

Attributes: Reentrant, resides in ritual 
storage, subroutine. privileged. 

Entry Point: CZCWPl -- Entered via type-l 
linkage. 

Input: Register 1 contains the address of 
the SAM communication block. SCBPOS con­
tains the code which indicates ,,'hich tape 
posi t.ion is desired. 

Data References: CHADEB, CHASCB, CHASDA, 
CHATDT. 

Modules Called: 
Control (CZCRB) -- Tape positioning. 

Nessage Writer (CZOWM) -- ABEND processing. 

Build DEB (CZCWB) -- Update DEB after 
volume switch. 

Bump (CZCAB) -- Mount next volume. 

Volume Sequence convert (CZCWV) -- Deter­
mine if there is another volume. 

Exits: 
Normal -- Return to the calling routine. 

Error -- call Message Writer to do ABEND 
processing. 

operation: Positioning is always relative 
to the tape marks on a volume. It is 
assumed that unlabeled volumes contain data 
sets separated by single tape marks. and 
that labeled volumes contain data sets with 
a single tape mark separating header labels 
and data, and a single tape mark preceding 
trailer labels. 

lobe led Tape 

I Til 
R M R 
G G 

Troiler lebe!s 

POIition 2 

Ur"Il(JbelPd rope 

Doto 

Posi'ion J - Posit~on 2 

Figure 12. Tape Positions 

The l'lUinber of forward or baCkwdl'd 6f'c.ces 
to be made must first be calculated. The 
calculation is made from the position cude, 
the current tape mark count and the loqi:'aJ 
data set sequence number in the JFCB. 

The present position on the t.ape voluJ~I,,"; 
is known from the tape mark count. which 
indicates how many tape ffiarks are behind 
the preser,t posit-.ion. For example, in 
Figure 13 there are unlabeled data set.", (ill 

a tape volume (the current poSitioning is 
indicated); the tape mark count at this 
position would be two. 

Calculating the Position to Which t.he :i'ap~ 
is to be l'loved: A temporary data area. 
TFN, is St~t to the relative physical 
sequence number of the current data set of 
the current volume. This is calculated bv 
subtracting the f~rst loqical file (da·tc • 
set) sequence number on the mounted volume 
(TDTLFN - 1) from the loqical file sequence 
number (TDTPSQ) of the data set which the 
user requested (TDTFSQ - TDTLFN + 1). For 
example. in Figure 13 the TDTFSQ contains ii 

~ if this is the only volume, indicatii1g 
that current positioning is somewhere 
within the second data set on the volume, 

It should be noted now that one tape 
mark follows every data set on an unlabeled 
tape volume. Similarly, since there are 
three tape marks associated with each data 
set on labeled tape, multiplying the phys­
ical sequence number of the current data 
set (TFN) by three, then subtracting one. 
yields the exact number of tape marks pre'­
ceding the first TM of the current data 
set. 

Now that the number of tape marks 0.580·­

clated with the data set on which posi tion-­
ing is to occur is known, it only remains 
to determine how many tape marks beyond the 
previows data set are needed to find the 
desired new pOSition in terms of tape 
marks. 

Looking at Figure 12, it is clear that 
for labeled tape: zero additional tape 
marks yields poSition 1. three additional 
tape marks yields position 2. or two addi­
tional tape marks yields position 3. For 
unlabeled tape. zero additional tape marks 
yields poSition one, while one additional 
tape mark yields pOSition 2. position 3 

... Direction of Tope movement 

LOAD POINT 

Figure 13. Data Positioning 

Section 6: Routines Specifically DeSigned for BSAM 91 



cannot be found directly no~ because files 
(tape marks delimit files) are being coun­
ted in the for~ard tape direction. A back­
space file is necessary to obtain position 
3 on nonlabeled tapes after fo~ard space 
files are completed. 

The appropriate number of additiollal 
tape marks is put into a temporary data 
area TFA. 

Since all information necessary to find 
th,: ne~ posit.ion is known in terms of ta?e 
marks, the calculation can be made: 

labeleJ tape TFS = (TFN- U x3+TFA 

or 

unlabeled tape TFS = (TFN-1)+TFA 

TFS is a temporary data area ~hich con­
t.ain3 the desired new position in terms of 
number of tape marks from the beginning of 
the tape volume. 

The difference between TFS, the desired 
posit.ion, and SDATAP, the present position, 
is determined by subtraction. The result 
1.s the number of tiles (delimited by tape 
n.arks) to be forward or back~ard spaced. 
The direction to go is indicated by the 
sign of the above difference. 

The Control routine is used to forward 
or backward space the required number of 
files. 

The following situation may occur when 
skipping files forward or backward. The 
solut.ion is the same for either case. As 
in Figure 14 there is a requirement for 
forward spacing. 

When forward spacing to the correct 
position, the following procedure is fol­
lowed if Tape positioning was called by 
Tape Open: 

Labeled tapes - A forward space record 
is done to check for a tape mark. which 
would indicate the end of the tape. If 
a tape mark is encountered and another 
tape is not specified, an ABEND results. 
If a tape mark is not encountered. three 
fo~ard space files are done to position 
to the beginning of the next data set. 

z o 

( i I T I I T I I T I f 
~ I~ M R R M R R M R ) 

G G G G G 
) i 

'- DMirf!'d P01.it.ion "- Pos.ition Z 
• n 

Fiqure 14. Skipping Files on Tape 

This procedure is followed until the 
correct file (data set) is reached. 
Then another for~ard space record is 
done to check for an end-of-tape condi­
tion. If a tape mark is encountered, a 
check i:; made for another volume. If 
there i~ not another volume and the user 
is open for input and reading forward, 
his task is ended via ABEND. othe~ise, 
the tape is poSitioned correctly. 

Unlabeled tapes - The same procedure is 
followed as for labeled tapes. except 
only one fo~ard space file is done 
after the forward space record. 

Multivolum(;! Check - If the JFCB indi­
cates another volume on an end-of-volume 
condition, it is mounted, the DEB is 
updated, and the tape positioning values 
are updated for the newly-mounted 
volume. In addition, the log~cal file 
sequence nlmmer is placed in the volume 
entry (TDTFSQ) of the TOT. 

Forward motion of the tape can only 
result in position Z or D becaus~ spacing 
by files (delimited by tape marks) causes 
the tape to stop in the interrecord gap 
after the skipped file. Therefore. to 
reach the desired position in F~gur€ 14, 
files are skipped forward to reach poSition 
Z, and then there is a backwarj skip of one 
file position to the desired position. 

Volume Sequence Convert Routine (CZCWV) 

The Volume Sequence convert routine is 
called to determine the address of a volume 
serial field within the correct job file 
control block (JFCB) within the task 
definition table, based on a Relative 
Volume Sequence Number (RVS) stored in the 
SAM co~munication block (CHASCB). (See 
Chart 18.) 

Attributes: Reentrant. nonrecursive. resi­
dent in virtual storage. privileged. 

Entry Point: CZCWV1 -- Entered via type-l 
linkage. 

Input: Register 1 contains the address of 
the SAM co~~unication block. 

Data Referenc.~: CHASCB. 

Modules Called: None. 

Exits: 
Normal -- Register 15 contains one of the 

following return codes: 

'00' Address of t.he volume serial 
field requested is in SCBVCA and 
the field is valid. 

92 Part I: Access Method for BSAM. MSAM, TAM and IOREQ 



'04' SCBVCA contains the address of 
a null volume serial field, or 
a null chain field. 

'OS' Volume serial field considered 
out of range. 

Error -- None. 

Operation: The calling progran-. stores the 
address of a volume serial field within the 
JF'CB in t.he CHASCB, and places a return 
code in general register 15 indicating the 
result of the search. 

The return code setting indicates to the 
calling program whether the volume serial 
field has been located, and if it has, its 
address (stored in CHASCB>. Ot~herwise, the 
return code indicates whether the RVS 
stored in the CHASCB points to a null 
volume serial field and the address of tnis 
field is stored in the CHASeB; or whether 
the RVS points to a volume serial field 
which would begin the next chain of volume 
serial entries in the JFCB (in which case 
the CHASCB contains a pointer to the null 
chain field which will be used to point to 
the address of the field requested by the 
RVS) • The return code, on the other hand, 
may indicate that the RVS stored in the 
CHASCB points to a volume serial field 
which does not exist in the current JFCB 
(in which case a pointer to the terminating 
null chain field is stored in the CHASCB), 
or the return code may indicate that the 
RVS was zero upon entry, and the address of 
the volume serial field pointed to by RVS 
has been set. to zero. 

Note: The first volume serial field in the 
JFCB is assumed to be 1. 

The RVS stored in the CHASeB is not 
changed by VOLCVT. 

Message Writer Routine (CZCWM~ 

The Message Writer provide', for all the 
message handling required by -:he SAM Open. 
End-Of-Volume, and Close RoutLnes. This 
module contains all message tt~xt. It 
selects the proper method of transmitting 
the message to the user or to the operator. 
Some standard responses are processed and 
returned to the calling SAM modules in t.he 
form of return codes in general register 
15. 

The Message Writer also handles all 
ABEND processing for BSAM. (See Chart IC.) 

Attributes: Reentrant, nonrecursive. resi­
dent in virtual storage, privileged. 

Entry Point: CZCWMl -- Entered via type-l 
linkage. 

Input: Register 1 contains the address of 
CHASCB. The two-byte SCBMSG field of 
CHASCB is set as follows: 

byte 0 byte 1 
r-----------------T-----------------, 
I HAMROOOO I NNNNNNNN I l ___________________ .1. ___________________ J 

o 7 8 15 

where H o No header required 

1 Message requires header 

A o ABEND 

1 Prompting message 

M o User message 

1 Operator message 

R ::: 0 No response 

1 Response required 

and byte 1 is a messaqe ID consisting of 
a binary number. There is a unique 
number for each messaqe. 

The SCBABN field contains the SAM ABEND 
code, if the call is for an ABEND 
message. 

Data References: CHASCB, CHATDT, CHASDA, 
CBADEB, CHALB1. 

Modules called: 
WTO (CZABQ) -- Write message to operator. 

Gate (CZAAB) -- Print message on terminal 
or SYSOUT device. 

ABEND (CZACP) -- Abnormal termination of a 
task. 

Exits: 
Normal -- Return to caller. 

Error -- ABEND. 

9peration: This routine uses the message 
code placed in the CHASCB as an index to 
locate the desired entry in the message 
control table (MSGTS). A message is then 
formed in a buffer area in the PSECT of 
this routine. All messages begin with a 
prefix, contain a header if the message is 
for a user. and end wi th the mess age text. 

The prefix is built from information in 
the CHASCB. It contains the module name of 
the caller, the abend code, and the message 
code. This uniquely identifies each 
message. 

When the message is for a user, a header 
line is added. This provides the DDNAME 

Section 6: Routines Specifically Designed for BSAM 93 



and DSNAME to identify the data set being 
processed. 

The phrase or phrases forming the mes­
sage text dIP concatenated with the prefix 
and header in the buffer area. If neces­
c,,;HY, ~ modif ication routine is invokpd to 
complet.e va:n .. ble fields in the text. The 
c()mpleted messdge is t.hen transmit.ted <'H3 
incli ~;at.ed by flags in t.he message cmr:rol 
table. 

If the messclge contrel table flags ind­
icate ~hat a response is required. it is 
returned t.o t.he ;].ser by rlacing a pointIC'r 
tot-he l:esponse bufter in the CHASCS. If 
p';.)ssi.ble, the response will. be i nteq.reted 
dnd d l'E:turn c""Odp set to facilitate testing 
by tne caller" When the expect~ed re::;ponse 
is not obtained, a retry message is trans­
l'jt:ted 1;I3.t:h the s",me pretix used for the 
original ~essage. This cycle is then 
repeated urrt.i 1 t.lle proper xeply is obtained. 

The Message Writer routine is called to 
co ABEND processing when oo,r:; of t.he f 0110101-
.i nC! cond 1. t ions occurs: 

1. The from the 
an entry outsi'je the 

range of the message control table or 
<l.;:A entry within the table that. is no 
longer clcti.ve. 

2 ~ "'£tH:: mps~~dql~-' LS t.:-oo 10nq t,o be conca~ 
tenated in the buffer available. 

:1. The mo.jifi cd-tcion or response routine 
:LC; not available when indicated. 

4. No S;:;AT poi nt,er was available when 
required t.o complete the operator 
message. 

Ihe_r!~ssage S2Q!2t r_'?.LJ: .. i:lh1 ~: The message 
control table contains one entry of two 
words for each messaqe. Each entry. as 
illustrated in Figure 15. has the following 
format: 

LEN MftlOO. T •• , ] 

i ! l_ f :J I UN Menoge rut 

r Phro,.~ l;~1 / 
E.,try fot Mul.j f'ho)~ !v\~·u.oge [ LEN M'''''9'~ 

I 
V 

l I eh::, '" ~n'f;~ 
UN Mfllollge Tel(t 

Figure 15. Entry for Single/Multiple Phase 
~essage 

r---------T-------------------------------, 
IDC A(MSG} I Pointer to message text if PP I 
I lis zero. Pointer to Phrase I 
I IList of PP entries if PP is nat I 
I Izero. I 
I I 
IDC 'MM' !code for /lbdificat.ion routine 
I I (OQ=none). 
i I 
!DC 'RR' ICooe for Response rout.ine 
I I (OO=none). 
I i 
IDC 'PP' iNumber of entries in Phrase 
1 IList. 
I ! 
!DC 'FF' (Flay-s. , 
~---------.l.---.---------.--.-,-----------.-----.f 
I 01234567 
IDo not print header. 0 X X X X X X X 
! 
jPrint header. 1 X X X X X X X 
I 
I Abend text. X 0 X X X X X X 
I 
l:Prompt.ing Message text. X 1 X X X X X X 
I 
IMessage for User. X X 0 X X X X X ! 

! 
IMessage fOl: operator. X X 1 X X X X X 
I 
INo response required. X X X 0 X X X X 
I 
IResponse required. X X X 1 X X X X l ________________ . _________ . ________________ J 

Fi~Re£ords pe~ Track ~outine (CZCR~ 

The Find Records Per Track routi.ne com­
putes the number of records on a t.r-ac;; of a 
direct access device. For a data set of 
unknown or varying r·ecord length. an lORCH 
is set up to read the entire track in order 
to find the number of the last record. 
(See Chart ID.) 

Entry poiht: CZCRQA -- Entered via Type-j 
linkage. 

Input: Register 1 contains the address of 
t.he DCB. OCBRDB contains the address of 
the track concerned. 

l"odules Called: None. The AWAIT and lOCAL 
SVCS are issued. 

Return code 
00 

04 

Condition 
NorDBl return. 

I/O error other than 
defective track or 'No 
Record Found'. 

Operat ion: For fixed, st.andard format 
records. the record count is computed and 
stored in the DCBRDR field. A return to 
the calling routine is then effected. 

94 Part I: Access Method for BSAM. MSAM, TAM and IOREQ 



For record forllldts othpr than fixed, or 
iixpd but. not !·,tandarrl, an lORen i!; built., 
dnd an lOCAL issueo, which ret urw; the 
record count to a data arC'd in the> ['SECT. 
The count is then stored in the DCBRDR 
field of CHADCB. 

This count is a Is a stored in tile DCBRDR 
field if an error return of 'No Record 
Found' is detected after the lOCAL SVC. 

If the lOCAL return shows that the track 
was defective, the alternate Seek address 
is moved into the lORCB dnd the lOCAL 
1ssued again. 

Any ot her error return tram lOCAL causes 
Find Records per Track to return a code of 
X'04' in register 15. 

RELFUL Routine (CZCRR) 

This routine converts a relative direct 
access device addres~; - of the form TTRZ. 
to a full address - of the form RMBBCCHH. 
where R is the record number, M is the 
extent numoer, CC is the cylinder number, 
and HH is the head (track) number. (See 
Chart IE.) 

Entry Point! CZCRRA (SYSRRA equated) -­
via type-l linkage. 

Input: Register 1 contains the address of 
the OCB. DCBRDT contains the relative 
address to be converted. 

Modules Called: None. 

Return Code 
00 

04 

Condition 
Normal return. 

Track number is outside 
data set. 

Section 6: 

~ra! io.n: TIll' "X t <'lit n IIlnlll't (1'1) .t nd r pco­
rd llumbe, ,!!" 11\,;\1,-.1 11\ t /,>11. til<' nEI'. Tilt' 
track number 1~, '-OlC1~'lltt'li dlld it it i~; all 

the fir~;t cylindvr of til., pxtent., the 
cylinder and track (head) are placed 
directly int.o the DeB and a return to the 
calling modules effpcted. 

If the track is not on the first cylind­
er, the cylinder count is updated until the 
track is found, and the cylinder and track 
are computed and stored in the DeB. A 
rpturn t.O the calling module is effected. 

FOLREL conv"rt:"; d full DA device address 
in the form RMBB(,('HH to a relative address 
i l! the form TTll.Z. R is t.he record numbe r , 
M is the ext.ent IlumbpI, BB is the bin numb­
"r, CC is thp cjlind .. r number, and HH is 
tlw head (track) nurnrx;r. TTRZ represents 
the relativE' trdck and record numbers for 
the current V01UIl]("'. (See Chart. IF.) 

Entry Point: CZCHSA (SYSRRA equated) -­
via type-l linkage. 

Input: Register 1 contains the address of 
the DeB. 

Modules Called: None. 

Exits: Return to the calling routine. No 
return code. 

i 
Operation: The address is converted to the 
TTRZ form where the R of TTRZ is set t.o the 
R of RMBBCCHH minus one, the Z is set to 
zero, and the track is computed by adding 
the number of tracks in the extents. The 
remainfng fields of DeBRD are set to zer·o. 

Routines Specifically Designed for BSAM 95 





PART II 

VIRTUAL ACC&SS METHOD (VAM) 





The data management facility discussed 
l.n this section is the virtual dccesS 
method (VAM). There are three organiza­
tional methods: virtual sequential. virtu­
al indexed sequential, and virtual parti­
tioned, which are designed for use with 
TSS/360. All incoming and outgoing data 
processed by the virtual access methods is 
organized in units of pages which are 4096 
bytes in length and stored on direct access 
devices. 

TSS/360 VAM is designed to minimize the 
number of virtual storage pages associated 
with an open data set. VAM brings into 
virtual storage only those data set pages 
currently needed for user operation. 

In this section, the implementation of 
VAM is presented using seven subdivisions: 

• A general description of VAM including 
its unique characteristics and its spe­
cial capabilities. 

• A description of error recovery techni­
ques used for VAM data sets. 

• A description of the volume format and 
the manner in which data sets are main­
tained on such a volume. 

• Data set sharing - a detailed discus­
sion on one of VAM'S more important 
facilities. 

• Open and close processing - that part 
of VAM processing common to all the 
access methods. 

• The virtual sequential access method. 

• The virtual indexed sequential access 
method. 

• The virtual partitioned access method. 

Where practical, indiVidual routines 
will be presented immediately following the 
particular facility they support. The 
first of the above subdivisions, a general 
description of the virtual access methods, 
will occupy the remainder of this section. 

VIRTUAL DATA SET ORGANIZATION 

As metioned above, the data sets 
accessed by the virtual access methods all 
reside on direct access storage devices. 
The devices supported by TSS/360 are the 
2311 and 2314 direct access disk storage 

SECTION 1: INTRODUCTION 

dpvices. Each device i~j preforrnatted, 1.n d 

manner which will he described later, in 
uni ts of t~096 bytes called pages. Although 
records i:1 a data set may occupy less than 
a page, exactly one page, or more than one 
page, the access method deals in terms of 
page units. 

The general philosophy of the virtual 
access methods is closely tied to the con­
cept of relocation exceptions. When a user 
issues a request to get or read a record, 
the virtual access method merely adds the 
page or pages containing the record to the 
requesting task's page tables. This opera­
t_ion is performed by the Movepage routine 
(CZCOC). That is, the record is read into 
the task's virtual storage. When the task 
in execution makes a reference to the reco­
rd, a page relocation hardware interruption 
occurs. This interruption causes the resi­
dent supervisor to read the referenced page 
into main storage by means of its paging 
mechanism. 

A put or write operation, on the other 
hand, results in the actual writing out of 
the record as well as the updating of the 
page tables. The writing operation is per­
formed by the Movepage routine (CZCOC) 
which issues the PGOUT SVC. This SVC is 
also serviced by the resident supervisor 
and performs the actual writing operation. 

Movepage Routine (CZCOC) 

Movepage is called by OPENVAM (CZCOA), 
CLOSEVAM (CZCOB), VSAM Get (CZCOR), VSAM 
Put (CZCOS), SETL (CZCOT), FLUSHBUF 
(CZCoT), Getpage (CZCPI), and VISAM Close 
(CZCQA) to perform input or output and to 
control the use of shared pages by setting 
and releasing interlocks. (See Chart JA.) 

Attributes: Read-only. public, privileged. 

Entry Point: CZCOCl - Entered via type-l 
or type-2 linkage. 

Input: Register 1 contains a pointer to a 
two-word parameter list: 

Word 1 Address of DCB. 

Word 2 Address of first page of request. 

Field DCBN contains the relative page 
number of the first data set page of the 
request. 

Field DeBM contains the total number of 
contiguous pages involved in the request. 

Section 1: Introduction 99 



Field DCBOP contains the type of opera­
tion requested as follows: 

• 80' Input request. 

'20' Input request with exclu:;ive 
read. 

• 10' Output request. 

'02' Release read lock. 

• 01' Release write lock. 

Modules Called: 
GE:I'NUMBR (CZcool) -- Converts the pc.ge 

number of a partitioned data set rela­
tive to a member to the relative page 
number with respect to the start of the 
data set if part of the member has been 
moved to an overflow page. 

Interlock (CZCOHl) -- Interlocks the 
external page entry of a shared data 
page or interlocks the entire RESTBL. 

Release Interlock (CZCOI1) -- Releases the 
above interlocks. 

PGOUT (CEAAl) -- Causes the pages of an 
output request to be written to external 
storage. 

SETXP (CEAH7) -- Adds the pages of an input 
request to the task's external page 
table so that the supervisor can bring 
them into main storage when a reference 
to them causes a relocation exception. 

RELEXPG {ClCENl} -- Releases pages aSSigned 
to the jata set but not in use. 

FINDEXPG (CZCEL1) -- Assigns new pages to 
the data set. 

Exits: 
Normal RETURN macro instruction. 

Error --

1. Return with a code of X'04' in general 
register 15 if an attempt to perform 
an exclusive read failed because the 
page was already locked. 

2. ABEND is called under the following 
conditions: 

• An unrecoverable error occurs during 
the PGOUT operation. 

• The DCB in the parameter list is not 
the same as the one in the DCB 
header. 

• Illegal data set organization 
exists. 

100 Part II: Virtual Access Method (VAM) 

• An output operation is requested on 
a data set opened for input. This 
is not the case if the output opera­
tion is to output the POD of a par­
titioned data set. 

• The request is for input from beyond 
the data set limits. 

• The operation requested is invalid. 

• The DSORG is indexed, and DCBM * 1. 

• An error return is received from 
GETNUMBR. 

• An illegal buffer is passed to Move­
page for VI organized data sets. 

• The PGOUT buffer is not data or 
overflow. 

Operation: On entry, registers are saved 
and base registers are established in con­
formance with linkage conventions. If the 
data set is shared, the RESTBL is inter­
locked. If the address of the DCB is not 
in the DCB header, or if the data set is 
not partitioned and the request is for out­
put when the DCB was opened for input only, 
a call is made to ABEND. This latter 
operation is valid for partitioned data 
sets since the request may be from CLOSEVAM 
and be a request to write out the POD. 

If the data set is partitioned, the 
relative page number must be determined. 
The user reference is to a relative page 
number based on the start of the member; 
this relative page number must be converted 
to one based on the start of the data set. 
Where part of the member has been relocated 
to an overflow page, GETNUMBR is called to 
make the relative page number determina­
tion. 

After this calculation or if the data 
set was not partitioned, the request is 
examined further. If the request was for 
an output operation on a partitioned data 
set opened for input, and the request was 
not to output the POD, ABEND is called. If 
this error condition does not exist, pro­
cessing continues. The extent of the 
requested operation is tested to see if the 
pages involved are all within the limits of 
the pages currently assiqned to the data 
set. If the data set limits will be 
exceeded by the request, ABEND is called. 
If all is in order, the processing con­
tinues. From this paint on, the processing 
differs according to the type of request. 

Output Operation: In general, the output 
of data set pages is accomplished by means 
of the PGOUT SVC. The processing in Move­
page consists of building a parameter list 
and issuing the SVC. The parameter list 



fcr PGOUT contains the first page lnvol ved. 
the number of pages, and the virtual 
storage address of the first external page 
f~t_ry. The page entries must. be converted 
from the format used in the RESTBL (re·'.il 
ti'v€ volume number-relative external pcLl{' 
number), to a format suitable to the R";QUT 
p:':-ocessor (symbolic device address-external 
page number>. This conversion is accomp­
Jished by directly indexing into the volume 
L"ble and appending the SDA t.O the given 
e:..:t ~'rnal page number. This pa.rameter is 
then placed in the PGOUT list. This pro­
cess is repeated, page by page, until all 
pages involved have been placed in the 
parameter list or until the maximum of 8 
entries have been placed in the list. When 
either of these conditions is met, the 
PGOUT SVC is issued and the transfer of 
pages is accomplished. On return from 
PGOUT, the data set is tested to see if it 
is duplexed (see duplexing .later in this 
section). If it is, the same parameter 
list is used to write the pages to the 
secondary copy of the data set. When both 
copies have been written out, the procedure 
is :repeated, if necessary, for each suc­
ceeding group of 8 pages until the request 
has been satisfied. 

Once this has been done the exit proce­
dure is entered. This entails the release 
of RESTBL and page interlocks set on shared 
data set pages and RESTBLs, and a return to 
the calling routine. 

Non-output Operation: Operations which are 
not output may be simple input operations 
on a nonshared data set, input from a 
shared data set, a read exclusive request 
for a shared data set, or a request to 
release a read or write interlock on a 
shared data set page. If none of these 
operations is indicated, a call is made to 
ABEND. 

If the request is for a simple input 
operation on a nonshared data set, the vir­
tual storage address of the first page in 
the request is computed and placed in the 
parameter list for SETXP. As with the 
parameter list constructed for PGOUT, these 
page entries must be converted to a form 
acceptable to the SETXP processor. The 
conversion process is identical. Page 
entries are converted one by one and placed 
in t_he parameter list until the list maxi­
mum of 64 entries is completed or until the 
requested page entries are all in the list. 
The SETXP SVC is then issued. This action 
results in the placement of the pages 
involved in the external page table of the 
task. Any future reference to the pages 
will result in a relocation exception which 
can now be processed by the resident super­
visor. If there are more than 64 pages 
involved in the requests, this process is 

repeated until all requested pages have 
.been placed in the external page table. 

If this input rf'que~;t Wd~ not recei \ltd 
from Open, the number of Checked out_ paqt:~c> 
is updat ed. Aft "'J: that or if the request 
was froIr Open, cont-rol is returned to the 
call~ng rout.ine. 

The frocess .. ng of ~nput requests for 
shared data sets is basically the same as 
fOl: nonshared data sets. The only dif-­
ference is that page level interlocks must 
be set and released in ceLtain operations. 
If the data set organization is other thaH 
VISAM, no interlocks must be set, so the 
above input. processing is entered. The 
pardmeter list for the SETXP SVC is estab~ 
lished and the svc is issued. If the data 
set is VISAM but t.he request is for a di­
rectory page the same processing occurs. 

When the request is for a data page of a 
VISAM data set, one of two interlocks must_ 
be set on all pages involed in the request. 
.For data sets opened for input or for 
operations other than read exclusive, a 
read interlock is set on all pages; for a 
read exclusive request, a write interlock 
is set. The significance of these inter­
locks and the manner in which they are 
imposed is discussed in the section on 
sharing. 

Once the type of interlock has been 
determined. the pages are examined to see 
if an interlock is already set. This 
occurs when an exclusive read request is 
made for a page which is already in use. 
In such a case, a return is made to the 
caller with a return code of '04' to indic-­
ate that the page is not currently avail­
able. If the page is not already locked, d 

call is made to Interlock to impose the 
proper interlock on all pages. This inter-~ 

lock is not imposed if the call to Movepage 
is for a read request from the dynamic 
loader. Following the setting of appropri-' 
ate interlocks, the parameter list is built. 
and the SETXP SVC is issued as for non­
shared input requests. 

After the SVC has been processed and 
control has returned to Movepage, the numb-' 
er of pages checked out is updated for all 
requests except those from Open, the RESTBL 
interlock is released and control is 
returned to the calling routine. 

The remaining function performed by 
Movepage is the release of the page level 
interlOCKS set for input requests on the 
data pages of a VIS AM data set. The inter-­
locks set can be either read or write. The 
type of interlock is determined and passed 
to the Release Interlock routine as a para-­
meter. Once the interlOCKS on the pages 
have been released, the interlock on the 

Section 1: Introduction 101 



R£STBL i,: released by again call1ng Release 
Ir;terlocK, and control is returned to the 
calling routine. 

Associated with each of the organiz~­
~10nal methods is an access method by which 
the user may access records in his data 
E2t. These access met.hcx.is are: the virtu­
al sequential access method (VSAM), the 
vi.rtual indexed ser.;uential access method 
(VISN~). and the virtual partitioned access 
illiA.hcd (VPAM). This last. facility is not 
an. access method in the normal sense of the 
term. VPAM contains no routines for the 
actual reading or writing of records. A 
virtlldl partitioned data set is a collec­
tion of other data sets which a user has 
comhlnpd for ea~e of reference. These sub­
sidiary data ~;cts are called members and 
€acn rra?mber is itself organized as a virtu-­
al sequential or virtual indexed sequential 
data set.. It.i" by means of the other 
dcce;,s roet.hods that the records of a member 
are actnally read into the task's virtual 
stordgf~ .. 

VPA1'1 provides the additional control to 
perform the following functions on members: 

.. '20 crec;t<' or add to a virtual parti­
t.~oned dat.<1 set .. 

• To prepare any member of a virtual par­
titioned data set for processing. 

.. To add new members to, or delete exist­
lng memben; from an existing data set. 

.. To update pxi::,ting members in place. 

The virtual sequential access method 
provides the user with access to records 
that ace locatpd in logically sequential 
locations in his virtual storage. Because 
of the nature of the virtual storage con­
cept, these rpcnras lilay or may not. be in 
phySically sequential locations in main or 
pxt.tcrnaJ storilJje. but they may be conceived 
of dS being sequentially organized for pro-· 
ceSS.lng purposes. Tables maint<:tined by the 
dat~a management routines and by the resi­
dent supervisor make this type of proces­
sing possible. The manner in which this is 
done is desc:cibed in detail in the section 
on t~i1e v.Lrtual sequential access rnet.hod. 

'rlle virtual sequential access Inethod 
(VSfu~) processes virtual sequential data 
sets and virtUdl sequential members of par­
titioned data sets. It can be used for any 
of the follOwing functions: 

• To creat.e or extend a virtual sequen­
t.ial data set or virtual sequential 
member of a partitioned data set. 

102 Part II: Virtual Access Met.hod (VAM) 

• To delete all records in an existinq 
data set or member·, from il specified 
record to the end of tht, data Sf't. 

• To retrieve thE' loqic-d 1 n~cord~; ot til<' 
data set or member in a sequential 
manner. 

• To update ar existinq record of the 
da ta set or member i 11 place. 

The virt.ual indexE'd sequential access 
roethod provides the means by which a user 
can access records in a virtual indexed 
sequential data set. Such data sets con­
tain records which are not. sequent:ially 
located in virtual storaqe. Each record is 
associated with a key which is contained in 
the record in storage. The lowest record 
key in each data page, except the first 
data page, of a virtual indexed sequential 
data set is also entered in a directory 
Which is associated with e~ch such data 
set. By referencing the keys associated 
with the records in a sequential manner, 
the user may process his data set as a 
sequential data set. Optionally he may 
access records in a nonsequential manner, 
select lng the records he wishes in dny 
order by referencing the appropriate keys. 
This processing is detailed in the section 
on the virtual indexed sequential access 
method . 

The virtual indexed sequent_ial access 
met.hod (VISA-"'Il processes vi rtual indexed 
sequential data sets or indexed sequential 
members of partitioned data sets. It can 
be used for any of the following functions: 

.. To create a virt.ual indexed sequential 
data set or member in a sequential 
manner. 

• 'ro retrieve the logical records of the 
data s,et or mell1ber in a sequential or 
nonsequential manner. 

• To update records in a sequential or 
nonsequential manner. 

.. To in:::;ert records in logical sequence 
wit_hin r.he dat.a set or mernbf'-r. 

• To delete selected records from the 
da ta set or member. 

In addition to the restriction that th,'y 
reside only on direct access devices, VAM 
data sets are characterized by two facili" 
ties that they provide for the user. 

The first VAM facility is the sharing )f 
data sets. A user may elect to share his 
data set with other users. When he does 



t.his he is known as the data set owner dnd 
any user who shares the data set with him 
is known as the sharer. The extent to 
which the sharer may use the data set is 
determined by the owner when he permits the 
sharing. He may permit read only access, 
read-write access, or unlimited access. 

The sharing of data sets necessitates 
the use of interlocks which prevent two or 
more users from simultaneously accessing 
the data set. These interlocks and their 
use, as well as the rules for sharing data 
sets and the routines involved in the shar­
ing process. are discussed in the section 
on sharing. 

The second of these facilities is dup­
lexing. This facility provides t.he user 
with an error recovery capability by allow­
ing him to maintain two identical copies of 
his data set. The User specifies this 
option by opening his data set with the 
DUPOPEN macro instruction rather than with 
the OPEN macro instruction. The net effect 
of this is to link two identical DeBs 
together and to flag his data set RESTBL as 
duplexed. The duplicate copy is updated by 
the Movepage routine as previously 
described and, other than the DUPOPEN macro 
instruction, the user processes his data 
set as he normally would and does not con­
cern himself with the duplexing operation. 

VAM ERROR RECOVERY TECHNIQUES 

Two routines are used by data management 
to attempt error recovery, or to allow the 
user to make the decision to attempt reco­
very, rather than cause an ABEND to destroy 
the user's task. 

The Virtual Memory Input Error Recovery 
(VMIER) routine is invoked when an error is 
encountered on an input operation taking 
taking place on a direct access device. If 
the user has maintained a duplexed data 
set, the secondary copy is used to replace 
the error page in a newly assigned external 
location of the primary data set, and pro­
cessing continues. 

The VAM Data Management Error ProceSSing 
(VDMEP) routine is designed to process most 
errors occurring while manipulating data 
sets. The data set in question is closed 
out, appropriate diagnostics are generated, 
and control returned to the user. 

VMIER and VDMEP are not to be confused 
with VMER (Virtual Memory Error Recording) 
and VMSDR (Virtual Memory Statistical Data 
Recording); these modules are called by 
certain access methods posting routines and 
are described in System service Routines, 
GY28-2018. 

~I£~ Routine (~~CEI) 

The Virtual Memory Input Error Recovery 
routine is a public, read-only, privileged. 
system routine which is called by the Task 
Monitor to attempt recovery from an input 
error occuIring on a direct access device. 
(See Chart JB.) 

Entry Point: CZCEll - Entered via type-l 
linkage. 

Input: None. The ISA must contain: 

ISAORV -- Virtual storage address into 
which the error page was to have been 
read. 

ISAORE External page address from which 
the error page was to have been read. 

Modules Called: 
SETXP <CEAH1) -- Sets the task's external 

page table to point to the secondary 
copy of a duplexed data set so that a 
good copy of the error page may be 
obtained. 

PGOUT tCEM!) --- Causes the secondary copy 
of the error page to be written to a new 
primary copy location. 

FINDEXPG (CZCEL) --. Assiqns a new data page 
to the data set. This page will replace 
the error page and the secondary copy of 
the copy of the error page will be writ­
ten to it. 

Interlock (CZCOH) -- Places an interlock on 
the RESTBL and the external page of a 
shared data set. 

Release Interlock (CZCOI) -- Releases the 
aboye interlocks when appropriate. 

WTL (CZABQ) -- Writes a message to t.he sys­
tem log when a PAT page is in error. 

WTO (CZABQ) -- Informs the operator of a 
successful recovery. 

GATWR (CZATC) Wri tes a message to the 
task's SYSOUT when a PAT page of a priv­
ate volume is in error. 

ABEND (CZACP) Abnormally terminates a 
task under certain error conditions. 

DSCB/CAT Recovery (CZUFX) -- If the error 
page is in USERCAT or SYSCAT data sets. 

Exits: 
Normal -- Return to the task monitor. 

Error -- ABEND is called under the follow­
ing conditions: 

Section 1: Introduction 103 



.. The error occurred on an auxiliary 
paging volurr.e. 

.. An l.mrecoverable e.rro·" occurred on a 
data page {dat.d set nor duplexed}. 

" The device 0,1 which t.he error <>ccurred 
was not a ~irect access device. 

is outside the limits 

NO n'1ct,tchl.119 external page t~ntry is 
f0und ia any open ddta sel. 

• An error paye 15 found to be In the 
copy of d exed c,,,ta set. 

('7 Th(3 ei:r(}I.' ~:.::,;,q!~ is fcund. t::o l1.Ef'f'f.'t r;ejj.:.fi 

prevl.cu:::::ly m.al;·ki:~d in e:t.r·or", 

A~E~D Gonditions listed a~~ 
,:ls,~;,tflf:',ing v~ pX'opprly functi-()ning snpervi­
so>;. 'rtH'~i shD'21d be t.aker,to ll'.ean bad 
paXalIlet:e:!: £;. 

Vt-1.!l':R t.tI", pro("'lessing 
"r_he 3yE;t.€~m to o:Kt.ke use of t.l'~e 

~<::.~.~~jl :e:.';:j ~?4~; f~:f:;.;3_t.uJ:(: i1~ v irt, ual (Erqd11izati()11 
dat:a se-ts", When ~n input: error occu.rs on 0-

data. pagi2 for su.ch a dat.a set, the 
copy of ,,".he dat.,). page is read and 

re"fri"tt~n to a i.H;'~1ign('d [ll':l.m.lIry data 
i.J-,~q{~ locat.}.on in ext,,~rnal storage. 

when fil:St entered, VMIER saver;; the 
:UlP\~t. and 0stablishes r..ase regis-
;~_iecs f.::)x' the CSi.~;-T--r PSE{:T, and SDAT.. It. 
L,,'At iock;; Ule SDAT by mear.s of the Test. 
dad Set i:n::.ltx1!.l(:tion and locates the SDAT 
<filll:";[ 1m:: the device on ':ihich the error 
cccurTHL If' the erlCO.t: occurred on a 
dev.iee other than direct dcceHS or on an 
d'1.Kili;u:l' paqing device a (:'411 is made to 
A.B£:l'Ji). 'r'h;;: same call is made if the error 
j:-age is found to be outside the limits of 
t:he device. 

Tlle er:Z'or page is next classified a.s 
~,ei.ng '" :PAT page, a DSCB page. o.r a data 
",'H:;<? If it is a PAT page, the Illig€: is 
locked and all the page en.t~ries on the paqe 
are set. unavailable for assiq!h~",nt. by set­
t. i.ng the number of lisen, currently assigned 
-ti) the maximum of 127. This process 
;;"",'i.'ot'';f'B a call to PGOU'I' to write out the 
l1 cX;,lted PAT page. Those pages represen'l:ed 
';.yl:he PAT page in error. are SnOllfT1 

',,,,,,,,vailable for assignment in the SDAT en­
t,.::,y tor the device and the PAT page lock is 
released. l:.n:'.L (CZABQ) is called to make a 
note in 'the syst.em log concern.ing the 
erro!:. If the vol~ is private a message 
is written t.o the task' s SYSOlJT via G.I\Tr.lR 
(CZATC). After this, or if the volume was 
public. a return is made to the task 
monitor. 

104 Part II: Virtual Access Method (VAA) 

If the error page is not a PAT page, the 
PAT page is locxed and the error page is 
examined. If the p.ilqe ia alread.y ... rlled in 
error, an attempt, hAS be4In aad. to read an 
error page and ABEND is called (since other 
VAM routines, especially OPENVAM, will pre­
viollsly have relCK~dted all known error 
pages) • If this is not the case, the page 
is examined to determine if it is a DSCE 
page or a data page. 

For a DSCB page, the entry in the PAT is 
marked in error and the error page is 
rewritten to its original location. This 
should permit the page to be input correct­
ly (that. :is, without parity errorsl on sub·' 
S{'qIlEnt. H'ie:.'ences and prevent superfluous 
calls to 'lfMI:':':!!. The resulting data errors 
will bf' det.~ct.edvL~ checksum valida't~on by 
those VA.O!1 routines which z:ead eel: writ:€ DSCB 
pdges that, is. VAHOPEH, ArmOSCB, WRITDSCB, 
CA1'VAM. etc. Both of these operaticn:;; 
involve calls to th-e PGOU'l' prCKoessor. If 
the DSCE pag~ is determined to b-e for: t.he 
syst~..m. catalog dat:<, set is¥SCAT),, a call l.;: 
made to the OSCE/Catalog Recover'}' routi.ne 
to rebuild t.he catalor;; the e:r-ror page is 
not_ rewrit.tento its oriqinal lOGiJ.ticm. 
Following t.his. the SDAT lOCK is rel€!aSetl 
.,nil. control is returned. to the task 
t:!1onitoJ:. 

ii/he!! the error page is found t,c be 
l'1f!it.hex PAT nor ('.seB. the chain of .H'CBs in 
"t-hc lTIT ii."; searched in .~n -attempt tc~ l.{)(;.a-'.~~ 

the data set wbich contains the erro.t' 
'I'his is done by Bcamung the RESTELs 
open (that is, currently in use) VAM .. on 
direct access) data sets for a match. If 
the entire chain of JFCBs is checked 
without finding a match. ABEND is called 
since this irHjicatA.:S a possible VAA mal­
function (no page sho1.11.o. be input, which ~s 
not part of some VM data. set)., During the 
search all RESTBLs for shared data sets are 
locked while being checked and unlocked 
ait.erwarljs. If the secondary RESTBL is 
located first, the primary RESTBL is used 
to obtain header information needed for the 
scan (as this information is identical fen!: 
bot,h RESTBLs but is maintained only in ·;tnt'! 

primary RESTBL header). Both prim.ary -and 
secondary RESTBLs will eventually be 
searched for the proper external page en­
try. If the RESTBL does not contain the 
page. the next JFCB in the chain is retri~' 
eyed and the Search continues. 

Once t.be error page entry has been 
locat.ed in a RESTBL, i t.s entry in t,he Pl,T 
is set to indicate the :page is in er:lor. 
Since recovery is possible only for dup­
lexed data sets, if the set is nonduplexed. 
a call is mad.e to ABEND. This is also done 
if t.he data set is duplexed but the error 
occurred on t.he secondary copy since the 
secondary copy will only be read by ~ER 
when trying to recover from an error to the 



failing primary copy. Whether duplexed or 
not. the error f~ge is checked to see if it 
is in the USERCAT or SYSCAT data sets; if 
so, a call is made to CZUFX to rebuild the 
ciitalog and return is made to t_lle task mon­
.ltor. If the error page is in -the primary 
copy, recovery is possible so the secondary 
copy address is set in the external page 
table via a SETXP call. A call is then 
made t.O FINDEXPG to assign a new page to 
contain the primary copy, that is, the 
error page replacement in both the RESTBL 
and the DSCB for the data set. When the 
new page has been assiqned, PGOUT is called 
to write the s~condary copy to the new pri­
mary location. Write to Operator is then 
called to inforn-, the operator of a bad page 
on one of the system packs and, incidently. 
that VMIER was 1Dvoked successfully; all 
lnter-Iocks are then released and a return 
15 made to the task monitor. 

VD~~P Routine (CZCQK) 

The VAM Data Management Error Processing 
(VDMEP) routine processes all the errors 
detected while ma1nipulating a data set. 
VDMEP will close the data set which caused 
the error, release the interlocks set, and 
transmit diagnostic messages to the user's 
SYSOUT. VDMEP is called by the VDMER macro 
expansion or by ABEND <CZACP). 

If the task is conversational, control 
is returned to the terminal; otherwise the 
task is deleted. (See Chart JC.) 

Entry Points: 
CZCQKl -- Entered from expansion of the 

VDMER macro. 

CZCQK2 -- Entered from CZACP (ABEND) when 
ABEND receives a recursive call while 
processing a VDMEP request. 

CZCQK3 -- Entered from CZACP (ABEND) when 
ABEND has successfully completed a VDMEP 
request. 

Input: 
For entry at CZCQK2 and CZCQK3, there are 

no parameters passed. 

For entry at CZCQK1. register 1 contains 
the address of the following parameter 
list: 

~ord 1 -- Address of DCB for the data set 
in error. 

Word 2 -- Pointer to an 8-character Message 
ID, preceded by a i-byte count of point­
ers to variable data, and followed by 
the pointers. 

r-T---~----T---------~---------T----l 

ICIAAAAIAAAAI P1 P1 P 1 P1 I P 2 P 2 P2 P2 I Pn I L_L ___ ~ ___ ~ _________ ~ _________ ~ ___ J 

c i-byte count of pointers. 
zero. ) 

(May be 

8 charact,er messaqe ID. This doub­
leword is actually addressed by word 
2 of the parameter list. 

P2 •••• Pn 4- byte point.ers to var i­
able data, if any. 

~ord J Pointer to a 2-byte field: 

Byte 1 Condition 
'10' EODAD or SYNAn condition 

'20' clear Last Operation flag 

Byt~ Condition 
, OA' Called by one of the • OPEN' 

modules - CZCOA, CZCPZ. CZCOP 

'oct SDST error in CZCOA 

'OE' Non-VAM data set in CZCOA 

Modules Called: 
VAM ABEND Interlock Release (CZCQQI) -­

Release interlocks. 

FREEMAIN (CZCGA3) Free virtual storage. 

FINDJFCB (CZAEB1) Get JFCB address. 

RELEXPG (CZCENi) -- Release OSCB slot. 

DELCAT (CZCFD1) -- Delete catalog entry. 

Search SDST (CZCQE1) -- Close SDST entry. 

Interlock (CZCOH1) -- Set RESTBL lock. 

Close Common (CZCLBC) -- Close data set. 

Release Interlock (CZCOI1) -- Release 
RESTBL lock. 

Disconnect (CZCGAB) -- Disconnect from 
shared virtual storage. 

Prompt (CZATJl) -- Communicate with user 
terminal. 

Stow (CZCOKl) 

XWTO (CZABQ1) 
tern operator. 

Add or replace VP member. 

Communicate with the sys~ 

DUPCLOSE (CZCEZ1) -- Close duplexed data 
set. 

CZAWAi -- BULKIO ABEND recovery. 

ABEND (CZACPl) -- Abnormal task 
termination. 

ABEND (CZACP3} 
completion. 

Successful VDMEP 

Section 1: Introduct_ion 105 



~)pera:tion: This "t.ext is keyed to the f 10\0"­
chart for: CZC'QK (Chart JC) and a reference 

ldbe! will be included for each area. 
rou:!:.inf, "'ill <lI::;;semble &ppropriat.e dia.'· 

gnos'tic8: to thf' user SYSOUT informing t.he 
\I.SeI· of i:h~; error which caused the 

data set n""me of the 
d~J.ta :s.::;t~, f>.:) .. :: '1fhich the error was ciet.eG-tt::d:, 
,;;'L(1 a:\y <,<.ct:ion Lait.en en t~he dat~~l s~t." 

At-tel' !::1:andard li.(l,K-'­
~:=hcc~~ \siill _irr~ed:~dt(~Iy 

,'. If so, tbe recursiv~ count is incr~-
'::\-~:"rlt"e(l" x~·i:?qi~~-t!p..r:s r~(~stcr;i?d f:r'o~~ ~~hp Y-1~C1.1L'-

t:.h(' cec,,-~r!:t(:H1 ~rcut,J.ne~ 
:~:: <2-i~ t h -;.' ~ };I-'~;;~-Nr--

~,l r;. 1::4 ~c r)t~} i n:t €? :.<~ Y;~" :,~j 

.e!.nd ;;(;-e:~ to 

If ~~h(~ T':iD~~ ID ";;:, 2' (H'[~L...f\.I()) -the BU1J<IO 
}~a'i'l~i) I:r(->:~:('~yel'y l.'oUL_i is cal1{.·)'{1 too at3:~f'~t\'t-~t 

Fox d. T':":lSk ID ::-:: 1. _I c:r. pre ..... loqofi/post­
AB.kJ:~D .cS z'{;!quix;ed.. after 

(QKOQ4 - QM065 .-

DeBIl) and OCB Heade:;::' checks <He made and 
ciT,hel': a diagnostic or an in.format.ion mes­
sage lS insert.ed in the main messa.ge list 
(Q1<0100 - Ql<.O'!15}. 

F'or asyst"-;:!ln data set. en t i,,; via 
I.jKB500. Otherwise, the special 
ilag is clE~red and exit is via 
~~ntKy poin.t: to ADEND, eZACPJ. Normally. 
ABEND will t'eturn to V~EP ilit. CZ,C"GfCL 

r(~qu.€s-t,... ~lDMEP tt:llS t_ 
n;"'", operate OE the dat;a set. in e:c:ro%'.. En-' 
f- 7 i'it C'lCQ.!< 3 is from ABEND via an ent r1' in 

AIc!'. Table. 

of unopened data. sets is 
Shown from (QK301.10 - QK3100). 

If this is the secondary copy of a dup­
lexed data set, the primary copy is found 
and closed (QK3041 - QK301l~). 

If a new data set was being c.t'eated, the 
oseB slot and catalog entry are deleted 
(QK3055 - QK3100). 

1Q6 Part II: Virtual Access ~d (\tNt) 

Search SDST is ccdled to close ttl\' entry 
in t.he SOOT. if the data set is not. dup­
lexed andt.here are no OCBs open for the 
data set: by this task (Q1(3200 - QK3210). 

If th<ere arE' no ot,her DCB headers, the 
RESTBL pointer is cleared <QK3220 - QK35"10 
- QK3700); but: l.f other DeE headers exist, 
th~ RESTBL is locked if necessary. dnd any 
.e'St:.isting buffe:r~ ove::f-low and ind{~,xed 
sequential dir0ctory pages are fr~pd. The 
RESTH1, l()cK i!:;j 'if~leas(:\d and t:he E.E<_~TbL .ji~~ ... ,,­
c(mnected if nec~~$sary" If t,hez"" ''lif" ne 
ot.he1..' useKs" the RESTn.L pag(~s d:ce ixeed 
CQK3300 - QK3570J. 

n'O '':?}jen .DeBs;!, 
QK9510}, 

cpenE-d d-a"'ca S€t:~3 l.z:,; ;:;.~(}O"s¥!J. 
3~OO ~ Q!\t>70t)) $ 

\INfri },BY,til) It'ltf,"t"'L~'ck Release iii .:aLt""j 
rf?:lea~>e .int'eKle::ks:) a,nd l..f no S"'[¥.:JW Ls 
necessu&"y -OK d.ll()",detl, thf2 data ~~:t is 
clo~;~~_ ~'it.h t:_ithe!: CWSE ox DUPCl£JE:t;,} a.~~c 
t_h~ lXlfc'>S,;"'g€/!?'xH: phase ,.::,e th." J::Gutin~' h~ 
entered IQK3900 - QKqDSO - QK4500 - QK4100 
,- QK91 (0), 

If a S'1'OW .ts neC!.o;~;sa.t"y If a !;1~OW'-H is d<J:n~:.: 
on dn c~ld member (Ql(4050} and a SroW .... N d(H1~"; 

O:l .a n~~ maT'.l-~~I:- --- (:-1: (.):n t-h;,:.= 0-1 d me:mber if 
"the ST'()w-·R didn't. t.3ke fQ~4100 "Z" QK4J5C) \< 

If t.i", t_.ask .i S cOl1versatimli>l the U:H'X 
l.S prorop1' ·ed toe thf~ member name (QK4.250 ~ .. 
\'::,1(4270). 

If t.b", I"S~:.l:' bas hdO t(lur PRiMPTs or 
dtlfaults er if the task is l1onccnversation~ 
;:;1. a unique lIIemher name is created 
Vm'lEP and placed in '1 message to inform the 
user of the name. Tt',is S character member 
name will consist of 14 alph.atoetic cha.t~ac'­

ters and 1/ numeric characters; • JlJ\MNNNN' _ 
Initially 'N~~~' = 0000; if a return code 
froro CZCOK (STOW) indicates that this roemi)' 
l;'r name already (~'I1ist.s. 'NNNN' is incx'e-­
me.M:ed by 1 and till? c<'§.ll to f,TQW issued 
{(lK4JOO .-- QKq)SO). 

tldme is writt,en. in SYSLOG ;-~ !101'iCf:~n".;e·I-~ 

sational task IQ:!<;;L~5(,). and both conve"-},, 
tioDdl and nonconve:r:::a'tional tasks C.l.,();SI;/ 
DUJ>('LOSE the dat.a set~ and enter the 
message/exit. phase of the routine iQK!+500 -­
Q1<91(0) • 

There is a subroutine (also used 111-
line) which places the diagnost,ic/messdge 
and it.s inserts int.he messa,ge list (QY.9050 
- QK9090). 

Any messages fer SYSOU'l' that can be 
written <SYSOUT. SYSMLF are open - PROMPT 
can be called) are passed via CZATJ {QK9100 



- QK9150), and then written in SYSLOG via 
CZABQ (QK9200 - QK9250). 

ABEND is called if required at CZACP1, 
returned to normally if a previous call to 
CZACP3 was made from VDMEP, or called at 
CZACP3 if no previous call occurred (QK9500 
- QK9600). 

For entry at CZCQK2: CZCQK2 is entered 
from ABEND, when ABF~D receives a recursive 
call while processing a VDMEP request. The 
'ABEND Required' switch is set and the 
message/exit phase entered. 

VAM INTERFACES 

VAM effects the input/output of data by 
interfacing with the paging supervisor. 
External storage of a VAM data set is 
limited to direct access devices, whose 
records are in the page (4096 bytes) format 
used with that device. 

VAM data sets are organized by relative 
page number. Each page of a data set is 
assigned a page number which is relative to 
the beginning of the data set. 

These relative page numbers are trans­
lated to an input/output device address 
throuqh use of the relat,i ve external 
storage correspondence table (RESTBL). The 
content of the RESTBL is created from data 
set extents obtained from data set control 
blocks (DSCBs) and maintained within virtu­
al storage by VAM routines. External 
device addresses supplied by the RESTBL are 
passed to the paging supervisor, as 
required, to build the external page 
tables. In part, these are pointers to 
external storage areas associated with the 
acti ve pages of a VAM data set. 

One or more pages are required for the 
RESTBL. If a partitioned organization data 
set is opened, the partitioned organization 
directory (POD) will reside in virtual 
storage. For an index sequential data set, 
dir·ectory page(s), plus possibly an over­
flow page, will exist in virtual storage in 
addition to a one-page data buffer. With 
VSAM, a buffer in virtual storage is pro­
vided which is large enough to contain the 
largest record in the user's data set, with 
a maximum size of one segment (256 pages). 

VAM is designed to minimize the number 
of virtual storage pages associated with an 
open data set. Only those data set pages 
currently being operated on by the user's 
program are addressable as virtual storage. 

The virtual access methods routines 
interface with other routines in TSS/360 
including some in the command system, cata­
log services, and the resident supervisor. 

These external routines are referenced in 
the module descriptions of the access 
methods routines. 

MODULE ATTRIBUTES 

All modules of the VAM have the follow­
ing attributes: 

READ-ONLY 

REENTERABLE 

PRIVILEGED 

PUBLIC 

FIXED 

SYSTEM 

The storage protecti(JO key 
is set to prevent thf' usez: 
from pel~orming a store 
operation on any part of 
the CSECT. 

More than one task may 
concurrently execute the 
code embodied in the 
CSECT. 

The CSECT will be pro­
tected against any 
reference by nonprivileged 
routines! the CSECT. 
however, may reference any 
part of VM. 

Available to all tasks. 

The size aSSigned will not 
vary while in execution. 

User reference to t.he 
module is prohibited. 
except through SYS sym­
bols. SYS symbols are 
used to label entry points 
to nonprivileged system 
routines to which the user 
may transfer control by a 
standard CALL linkage. 

LINKAGE CONVENTIONS 

Seven modules of VA .... are considert:'d 
"fence sitters.- That is, they may be 
called via type-l linkage by either a pri­
vileged or a nonprivileged routine. calls 
from those modules to privileged modules 
will be type-2 if it is necessary to ·cross 
the fence." 

The "fence sitters· are: 

GET CZCOR 

I PUT CZCOS 
SETL CZCOT 
PUTX CZCOU 

VSAJIl routines 

GET CZCPA 

} PUT CZCPB 
SETL CZCPC 

VISAM routines 

The routines referenced by the above 
modules may sometimes be called by type-2 
linkage. In order to effect type-2 link-

Section 1: Introduction 107 



aqe, V-cons and R-cons fer the following 
modules a~e stored in the enter table 
{CHBETll. The code to access those modules 
if; also 'liven. 

,-----------·---T-------------T-------------, 
I Name I Entry point I ENTER Code I r----- ________ +_. ___________ H_+ _____________ ~ 
I MQVEPAGE I CZCOCl ! X'4C' ! 
I I! 
j INSPAGE czrom I X'IIS' I 
! 
! DEL PAGE CZCOD2 X' 49' 

I 
I POT CZC'OS3 X'lE' 

I FLUSHBUF 

! 
I 
I GETPAGE 
I 
I 

CZCOVl 

I CZ.CPI1 
( CZCP!2 
! CZCPB 

X'47' 
X' 4E' 
X'4F' 

I AOE ! CZCPLl I X'1i6' I l ____________ .L.. ____________ J. ______________ J 

Other VM modules may be called by c_tth­
er pr.ivileged or nonprivileqed routines but 
are always eXI?Cllt.ed in the pri vi leged 
state. Those modules are also listed in 
the enter table: 

r------------T---·------>---..,.----------··----l 
I Narue ! Ent.ry Point. i KNTER Code I 
1:-------·-----t--«·· .. ·------·~t---·-----·------1 
I FIND I CZCOJl j • 41i· I 
I ! I I 
! STOW ! CZroKl I • 45' ! 
I I i I 
I ESE.'TL I CZCI'Dl I • 41 • 
I I ! 
I READl'WRITE CZCPEl I • 40' 
! I 
I RELEX CZCPGl I • 42' 
I ! 
I DELREC I CZCPHl I • 43' I L ______ . ____ .L.. __________ ~ ____________ J 

CONTROk BLOCK~ 

Control block descriptions in this PLM 
provide ~he following ~nformation to assist 
in the understanding of the Virtual Access 
Method. 

~ SYMBOL - The assembly mnemonic as it 
appears inC-he assembly listing. DSECT 
listing, or module descriptions in this 
manual. 

• DATA - A code to indicate the format of 
the information stored in a field. The 
possible values are listed in Table 24. 

108 Part II: Virtual Access Method (VAM) 

Table 24. Abbreviations Used in Control 
Block Descriptions 

,--T--·--------------------------------, 
I A I Address of an area-control block. I 
I I subrout int', etc. I 
I I I 
I B I Relative byte position within an I 
I i area. ! 
I I t 
I C I EBCDIC data. 
I ! 
I D I Relative doubleword within a 
I I control block. 
I I 
I L I 
I I 
I I 
I I 
I I 

Lock byte to be referenced by Test 
and s€t (TS) instruction. See 
INTLi<. (CZcmn module description 
for more information. 

I N I Number -- count, limit, size. etc. 
I 1 
I R I R-con address of a PSECT. 
I I 
I V ! Ii-con address of an entry point 
I I to a CSECT. 
I I 
I W ! Relative word position within a 

control block. ! 
j 

I 

I X Code defined in hexadecimal. or a 
i group of fields. l ___ i _____________________________________ J 

• DESCRIPTION - A brief description of 
the contents and usage of a field. FO:i: 

code fields, a list of possible vaU~$ 
Is also given. 

Control blocks and tables common to al.! 
'JAM access methods are described in this 
section. Elements which are used only by a 
single VAM access method (such as VISAM) 
are presented with the discussion of the 
appropriate routine. 

Interruption Stora~fea (ISA) -- (CHAISA) 

The interruption storage area is locatec 
at virtual storage addresses 0 through 
4095. One copy exists for each task. It 
.lS used as a fixed communication region fo!: 
interruption processing between the task 
and the task monitor, and between the task 
and the resident supervisor (Table 25). 

Task Data Definition Table (TDT) -­
-CCHATDT) 

The TOT specifies the data set name, and 
supplies information about the external 
storage of the data set. This control 
block is generated p:lior t.o OPEN time by 
either a DDEF command or a DOEF macro 
instruction. It is updated at open time if 
necessary (Table 26). 



Table 25. Selected Fields of the Interrupt 
Storage Area 

r-------T----T----------------------------1 
I Symbol I Data I Descript ion I 
t-------+----+----------------------------~ 
IISAVMP I A IVirtual storage [deleing I 
I I I origin I 
I I I I 
! ISANAS I N !Ne..xt available sf-gment I 
I I I I 
I ISATDT*I A ITask Data Definition Table I 
I I lorigin I 
I I i I 
IISASPN I N iShdred Page Table number of I 
I I I the publlc segment I 
I I I I 
IISATDY I A IDynamic Loader Task I 
I I 1 Dictionary I 
I I I ! 
I ISASDS* \ A iShared Data Set Table (&DS1') I 
I I! I 
IISAVTn I X IAuthority code I 
I I I I 
I ISALCR* I L ITask Interruption Inhibit I 
I I Ilock: byte I 
I I I I 
IISACVP I X Icurrent VPSW I 
t-----__ .1._ -- - ~-- - ----------------------.--~ 
'*Used directly by VAM. I l _________________________________________ J 

Data Control Block (DCB - CHADCB): (Figure 
16 and Tables 21, 28, 34, and 35). 

The data control block, generated by a 
DCB macro instruction, is used to maintain 
information necessary for access method 
routines to process a data set. It con-' 
tains data set organization, record format, 
current page number, last operation, retri­
eval address of the current record. and 
V-cons and R-cons of the access method rou­
tines (macro transfer list) to process the 
data set or member. 

A DCB is generated at assembly time by 
the DCB macro instruction. Subsequently, 
both the programmer and the system may 
enter information into the data control 
block fields. The process of filling in 
the DCB is completed at execution time. 

Sources of information for DCB fie1ds 
are, the DCB macro instruction in the 
source program, the DDEF command or macro 
instruction in the job stream (or DDEF 
macro instruction executed by the user pro-· 
gram), and the DSCB. 

These sources are used in that order and 
only fields not yet specified can be filled 
from each source. For example, if a field 
is specified in both the DDEF command or 
macro instruction and the DSCB, only infor­
mation supplied by the DDEF command or 
macro instruction is used for the DCB; the 

Table 26. Selected Fields of a JFCB 
(-------T----T----------------------------
ISymbol IDatal Description 
t-------+----t----------------------------
ITDTDDN I C IDDEF name (ddname) 
I I I 
ITDTDS1,\ C IData Set name 
I TDTDS2\ I 
I 
ITDTDSV 
I 
I 
I 
I 
iTDTDSR 
I 
,'rn'fDSM 
I 
ITDTOPN 
i 
!TDTVPY 
I 
I 
ITDTAQL 
1 
I 
I 
I 
ITDTSHC 
I 
i 
ITDTDEB 
I 
\TDTDCB 
I 
ITDTVFl 
! 
ITDTIDl 
I 
ITDTDSC 
I 
!TDTDUP 
I 
! 
ITDTSDl 
i 
I 
ITDTID2 
I 
\ 

i 
x (Data Set Organization 

I X'04' VISAM 
I I X'05' VSAM 
I I X' 06' VPAM 
I t 
I C !Absolute generation number 
I I 
I C IMember name 
I I 
I N INumber of open DCBs 
I i 
I X !Privilege flag; X'Ol' ~ 
I I privileged 
I I 
I X IAccess Qualifier 
I I X'OO' unlimited 
I I X'Ol' read/write 
I I X'02' r~ad only 
I I 
I X ISharing qualifier; X'Ol' 
I I shared 
I I 
I A IPointer to RESTBL I 
I I I 
I X IFirst 32 bytes of DCB I 
I I I 
I X IVolume flaq I 
I I I 
I C IVolume serial number i 
I I ! 
I A IPointer to format E DSCB I 
I ! i 
I A IPointer to secondary JFCB of: 
I la duplexed set I 
I I 
I A ISymbolic Device Allocation 
I I table (SDAT pointer) 
I I 
I X 12nd and 3rd volumes; same 
I lformat as for TDTVF1. 
I ITDTID1, and TDTSDI, above 
I I 

ITDTAPN I X IChain flag 
I 1 I 
ITDTAPP I A IChain to JFCB appendage l ______ J.... __ -.L __________________________ .J 

correspona~ng field in the OSCB is ignored. 
The programmer can write routines that 
modify any data control block field. 

The DCB for VAM is composed of five 
parts. The first part. of the DCB is common 
to all access methods. The four remaining 
parts pertain to VAM only. Their relation'­
ship is shown i.o Figure 16. 

Section 1: Introduction 109 



(CHADCal --r --I 
I DC&C~n 

" u,,.,j by all ace.,., ", .. thod, 
120 I 

by' .... 1----------- -----

I 
Commt1n to all VAM Orgoni;zotion I 

, I ---f---r 
I i , I 

32 

I -t-
0 • .,"".0';0" ,,,,,,,,,,,,,,,,,---1 

Work ,r'g Slor09" I 
- l- .-

16 i [. ,ended 5~'quentTor ]8 I Se-quent;ot Work ing 

I 
b:i~e:. VJ(';fk ing Storage byte'!. 

___ L __ L. ______ -'-_St_o_'a_gt! ____ ---' ___ l._ 
Figure 16. DCB Format: for VAM 

Relative External Storage Correspondence 
Table (RESTBL) 

A control block used exclusively by VAM 
is the relative external storage correspon­
dence table (RESTBL). A RESTBL is asso­
ciated with each open data set using the 
virtual access method. It contains a list 
of external pages assigned to t.he data set. 
The KESTBL is used to convert page numbers 
:relative to the data set, to external 
storage addresses. It also maintains con­
trol over data set:. page sharing. The 
RESTBL is located in an area of virtual 
storage protected from the user. The area 
of virtual storage that contains the RESTBL 
has a read-only protection key assigned. 
In the case of d shareable data set, the 
RE~TBL pages are shared by user tasks, VAM 
sharing rules are discussed in the section 
on sharing. 

A RESTBL i:; composed of four subsections 
whose funct.ions are described below. The 
overall relationship is shown in Figure 17. 

The ~ESTBL header contains contl:01 
information for using t.he RESTBL. 

The second subsection, (Figure 18) < con-· 
O:U.:..its of a series of external page entries 
CEPE}. with the control block identifica­
tion CHAEPE. 

One entry exists for each page of the 
data set, and contains the relative volume 
number and relative external page number, 
plus the page status, defined as in use. 
not in use, or assigned but not yet 
written. 

110 Part II: Virt.ual Access Method (VAM) 

Table 27. Selected Fields of the DCB 
Common 

r-------T----T----------------------------, 
ISymbol IDatal Description I 
~-------+----+----------------------------~ 
IDCBOSO I X IData Set Organizdtlon I 
I I I I 
I I I",acro I 
I I lCode .£.aram Access Routines I 
I OCBDV11 IX'71' VIS VlSM 
I DCBOV2! iX'72' VS VSAM 
I DeBDV3 1 I X· 73' VIP VIS AM & VPAM 
I OCBDV41 IX'74' VSP VS~ ~ VPAM 
I DCBDV51 IX'1,)' VP VPAM t *' I 
I ! I I 
I I I·As determined by member i 
I I I organization I 
I I I I 
I DCRDDN ! C I DDEF nan ... (d:lname) I 
I i I I 
IOCnSyv,j V,RISynchronous E.rror txit I 
I DCBSYR I laddress (SYNAn) ! 
I I I I 
IDCBEOV.I V.R!End of Data exit address I 
i OCBEOR I I (EODAD) I 
I I I I 
I DCBREC I X ! Record fornat I 
I DCBRCFI I X'SO' Fixed I 
I OCBRCVI I X· 40' Variable I 
I DCBRClJ I i X' CO' Undefined I 
I I I I 
jDCBLRE I N !RtCord length I 
i I! I 
I DCBKEY I N I KEY h>ngt.h ! 
I i I I 
!DCBkKP ! N IRelative key position I 
I I I 
IDCBLPA I N IRetrieval address 
! I! 
IDCBEX1.1 X jSYNAD codes 
IOCBEX) I I 
I ! I 
IDCBOPI I X IOPEN options 
I I I 
I DCBID I C IDCB identifier: C··%.~· 

I I I 
IDCBDER I A IPointer to RESTB~ 
I I I 
IDCBLEN I N ILength of this OCB (in 
I I I doublewords) 
I I I 
I DCBGTV. I V I R IGET routim,$ 
! DCBGTR I I 
I I I 
I DCBPTV. I V, R I POT routine. 
IDCBPTR I I 
I I I 
IDCBPXV.! V,RIPUTX routine. 
i DCBPXR I ! 
I I I 
I DCBSLV • I V, R I SETX routine· 
jDCBSLR I I I 
.-------~----~----------------------------f 
,.R-cons .-- Pointer to save areas on a I 
I dynamically allocated page I t _________________________________________ J 



Table 2B. Description of the Fields Com­
prising the VAM Organization 
Independent Working Storage 

r-------T---~----------------------------, 
ISymbol IDatai Description I 
~-------t----+----------------------------~ 
IDCBVNA I A IVMA ot next record in buffer I 
I I I I 
IDCBCPB I N iCurrent paqe and byt,-; I 
I I I defi ned as follows: ! 
I I I I 
! [)CBDPN! N lcurrent data page number I 
I I I I 
I DCBCBPI N IByte position relative to I 
I I I current paqe I 
I I I I 
iDCBN I N IFirst page in request I 
I I I I 
IDCBM I N INumber of requested pages I 
I I I I 
I DCBOP I X IVAM General Services I 
I I !Operation: I 
I I I I 
I DCBOPO I I X' 8000' Input., set Read I 
i I I interlock I 
I I I I 
I DCBOP11 IX'1I000' Loader request I 
I I I I 
I DCBOP2t iX'2000' Input, set Write I 
t I I interlock I 
I I I I 
I DCBOP31 IX'1000' Output I 
I ., I I 
I DCBOPIII I X' 0800' Insert I 
I I I I 
I DCBOP51 IX'0400' Delete I 
\ I I I 
I DCBOP61 IX'0200' Release Read I 
I I I interlock I 
I I I I 
I DCBOP71 IX'0100' Release Write I 
Iii interlock 1 
1 t I I 
I DCBOP81 IX'OOBO' Replace blank pages I 
\ I I on ani nse rt I 
I I I I 
IDCBhv I N IHash value of member name (61 
I Ibits) i 
I I I 
IDCBNI N IFirst page in request. I 
I Irelative to data set - I 
I Icomp~ted by VPAM routine I 
! IGETNU~BR (CZCOO> I 
\ I I 
IDCBSHC C ITYPE of search request; see I 

iSEARCH (CZCOL} I 
I ! 
!C'A' Alias name I 
I i 
(C'E' Either alias or member I 
!name I 
I I 
IC'~' Member name I 
I I 

IDCBHD I A IDCB header in RESTBL I l _______ ~ ____ i ____________________________ J 

-r -----­
! 

RESTSL Heade, 

(CHARHD) 

~ize 1'\ 

262,144 

. ____ 1_ 

r----
E
::_ 

I Page En!' i '" l ((HAEPE) -----

Available Space 

(ZERO byte,) T 
----------~ 

DCB ond Member 

Head .. " 

(CHADHD & CHAMHD) 

Figure 17. RESTBL Fermat 

------ 4 by'''' - "1 
Rf!lotive Volumll!' Number External Page Number 

\4 - -·-;I ... ·~---- 16 ------1 

Figure lB. RESTBL External Page Entry -
CHAEPE 

For shared data sets, a 4-byte interlock 
word in each EPE controls sharing of the 
page. The interlock control word, and 
method of updating it, is discussed in 
detail in the sections on VAM sharing. 

The third and fourth subsections of the 
RESTBL"designated as DCB and member head­
ers (CBADHD and CHAMHD), are constructed at 
open time. Address pointers in th(" DCB 
header identify associat9d control blocks: 
DCB, JFCB, POD, RESTBL heaoer. The DCB 
header is linked to the RESTBL header or 
the member header (if partitioned organiza­
tion) Dy DHDLNK. 

The DCB header link, and compatible 
field design of the R~STBL and member head­
ers. make it pass ible to pl-oces~3 members of 
data sets identically. 

A RESTBL is created for d data set by 
t.he OPENVAM (CZCOA) routine, using informa­
tion ext ract.ed from the DSCY-·s of the 
volumes where the data set resides. Each 
volume contains all lata set control blocks 
(DSCBs) for the data sets contained on that 
volume. At open time, the external page 
ent ries (EPE) are built from extents found 
in the DSCB. As the data set is generated, 
additional extents are obtain(,d dynamically 

Section 1: Introduction 111 



by REQPAGE (CZCOE). Once d shared data set 
is open. no new RESTBL is generated by any 
subsequent OPi!.'N, that is, only one RESTBL 
ever exists at a time for a shared data 
set. However, for each DCB opened for a 
data set, one DCB header will exist in the 
.R~TBL. If this is a shared. nonf,arti­
'tioned data set, each user's DCB ",,,'ill have 
a DeB header. Each of these headers, in 
turn, is linked to the RESTBL header. 

Foz:- a partitioned data set, the DeB 
headers of each open DCB will be 1.inked to 
member headers. 

The basic purpose of the RESTB:! .. header 
or member header is to document three items 
of importance: 

• ORGANIZATION - Sequential or Index 
Sequential 

• RECORD FORMAT - Fixed. Variable or 
Undefined 

• CONTENT - Starting page position in the 
RESTBL, number of data, overflow, or 
directory pages 

The RESTBL header also accounts for 
pages assigned to the data set, but not yet 
in use, as well as available virtual 
storage in the RESTBL. 

ClOSing a DCB causes its DCB header to 
De deleted from the RESTBL. In a parti­
tioned data set, this also causes the memb­
er headpx to be deleted provided no other 
DeB headers exist for that member. The 
RESTBL header and external page entries 
will remain in virtual storage until the 
last DCB is closed. At that time. the CLO­
SEVAN (CZCOB) routine will return the con­
tents of the RESTBL to the DSCBs associated 
with the data set. 

Descriptions of fields for the RESTBL 
header (CHARHD) and for the DCB header 
(CHADHD) are provided in Table 29 and Table 
30, respectively_ 

Shared Data Set Table (SDST) 

The SDST, whose address is given in the 
interruption storage area (CHAISA) of each 
~ask. consists of a header (CHASDS> and a 
series of data set (CHASDE) and member 
{CHASDM) entries. The SDST format is illu­
strat.ed in Figure 19. Tables 31, 32, and 
33 provide field descriptions of the SDST 
header, a member entry and a data set en­
try. The data set entries are linked by 
forward and baCKward chain pointers, with 
the pointer to the first data set entry in 
the SDST header. Member entries are 
organized into 64 hash chains. The hash 
chain to which a member is linked is 
generated from the member name. A table of 

lt2 Part II: Virtual Access Method (VAM) 

64 words. part of the SOOT header, gives 
the address of the first member within each 
hash chain. In addition to the data set 
and member chains. two chains of deleted 
entries are maintained in order to recover 
space for building data set or member 
entries. Dcta set and member entries are 
linked to tIle appropriate deleteci. chain 
when their user count 1eaches zero. 

The information in the data set and 
member entries is used to control access to 
a data set, ~nd also to provide a common 
location to store the information (shared 
page table number and RESTBL address) 
necessary for multiple tasks to obtain 
access to an existing control block in 
shared virtual storage. This control block 
is updated by the VAM general services rou­
tine Search SDST (CZOQE) ~hich has the fol­
lowing capabilities: 

• Search the SDST for a specified data 
set entry and/or member entry. 

• Modify data set or member entries by 
incrementing or decrementing the user 
count. This capability also provides 
for creating or deleting such entries. 

The linkages between a user's DCB and 
the RESTBL. POD, and JFCB for a member of a 
partitioned data set, are shown in Figure 
20. DHDLNK is shown as linked to either a 
member header or the RESTBL header, since 
this field, when the data set is non­
partitioned, will point to the RESTBL head­
er. If t.his data set were shareable, the 
RESTBL and POD would be in shared virtual 
storage. 

SDST MAINTENANCE 

The following routine maintains the 
shared data set table (SDST). 

Search SDST Routine (CZCQE) 

The Search Shared Data Set Table routinE 
is called by OPENVAM (CZCOA), CLOSEVAM 
(CZCOB). Find (CZCOJ). Stow (CZCOK), and 
the dynamic loader, to ada, update or 
delete, data set or member entries in the 
shared data set table (SOOT), and establish 
correspondence to sflared virtual st_orage. 
(See Chart JD.) 

Entry Point: CZCQEl - Entered via type-l 
linkage. 

Input: Register 1 contains the address of 
a four-word parameter list: 

Word 1 Address of JFCB. 

Word 2 Address of DCB. 



Table 29. Field Descriptions for the RESTBL Header -- (CHARHD) 
r-------T----~---------------------------, 
ISymbol IDatal Description I 
~-------+----+----------------------------~ 
I I I The first Ii bytes of the I 
I I IRESTBL form a VAM interlock I 
I I lword which is updated by I 
I I IINTLK (CZCOH) and RUNTLK I 
I I I (CZCOI) I 
I I I I 
IRHDI~ I L \Write interlock I 
I I I I 
IRHDI~ I N tRead interlock I 
I I I I 
IRHDINN I N ICount of read interlocks set I 
I I I I 
IRHDINI I L IUpdate interlock I 
I I I I 
IRHDNAP I W INext available External Pagel 
I I I Entry (EPE) I 
I I I I 
IRHDNEP I N ICount of available EPE , 
I I I I 
IRHDFEP I w IFirst EPE of data set I 
I I I I 
IRHDDIR I N ISize (pages) of the Indexed I 
I I ISequential Directory or I 
I I IPartitioned Organization I 
I I (Directory (POD) , 
I I I , 
IRHDDAT I N IData set size (pages) I 
I I I I 
lRHDOVF' I N INumber of overflow pages I 
I I I I 
IRHDRPG I N IRESTBL size (pages) I 
I I I I 
IRHDTUD I w ILast header built from I 
I I lavailable space. This I 
I I Ifield, when decremented by I 
I I I the s iz e of t:he header to be I 
I I Ibuilt (DCB=48, member=32) I 
I I Igives the address where a I 
I I Inew header may be built I 
I I I I 
IRHDFLG I X IData set organization: I 
I I I X' 80' Shared I 
I I I X'qO' partitioned I 
I I I X'20' Index Sequential I 
I I I X'OS' ISO Integrity I 
I I I X' Oq' POD Integrity I 
I I I X'02' DSCB Integrity I 
I I I X'Ol' Recatalog Flag I L ________ J. ___ L.. __________________________ J 

r-----·--~---,.--------------------------l 

ISymbol IDatal Description I 
~-------+----t----------------------------~ 
I RUDIN I I L I Lock byte for the next 6 I 
I I Ifields I 
I I I I 
I RHDDCB I N I Number of DCBs t.hat are OPEN I 
I I I I 
I RHDODC I D I First DCB header I 
I I I I 
\RHDADC I D IFirst deleted (available) I 
I I IDCB header space I 
I I I I 
IRHDOMC I D IFirst member header I 
I I I I 
IRHDAMC I D I First deleted (available) I 
I I lmember header space I 
I I I l 
IRHDPOD I A I POD I 
I I I I 
IRHDTID I D ITask ID which set RESTBL I 
1 I I interlock I 
I I I I 
IRHDVTA I A IAddress of the volume table I 
I I I I 
IRHDSPT I X IPointer to the format E DSCBl 
I I I i 
IRHDCPO I N IData set cumulative pageout I 
I I I count I 
I I I I 
IRHDSAL I A ISecondary allocation (ESA) ! 
I I I I 
IRHDRFM I X IRecord format I 
I I I I 
IRHDKYL I X IKey length I 
I I I I 
IRHDPAD I X IVI pad factor I 
I I I I 
IRHDRKP I B IRelative key position I 
I I I I 
IRHDRCL I N IRecord length I 
I I I I 
IREDDSO I X I DSORG I 
I I I I 
IRHDCRD I X IChange/Reference Date flags I 
I I I I 
IRHDOPC I X \Option codes I L _______ J. ____ J. __________________________ J 

Section 1: Introduction 113 



Table 30. Field Descriptions for the DCB 
Header -- (CHADHD) (Part 1 of 2) 

r-------T----T----------------------------~ 
j Symbol I Data, Description I 
~-------+----+----------------------------~ 
I DHDL>CH I A I(Jed ds!;ociated with t.his I 
I I Iheader I 
I I I I 
I DHD.JFC I A IJFCB (TDT) for the dat~ set I 
! ! I 
jDEuTSK I N ITask identification , 
I I I I 
I DdDiiES I A I RESTBL address I 
I I i I 
IDHDPOD I A IPOD address ! 
I I I 
IDHDLNK A ILinkage to either the RESTBLI 
! !header or to the membf'r I 
i Iheader if this is a I 

i partitioned data set and a I 

i 
I 
!Dt-iDOPN 
i 
I 
I DHDPRO 
I 

I 
I 
lDHDINT 
I 

I 
! 
I X 
I 
I 
I X 
I 
I 
I 
I 
I 

imember is active (FIND has I 
Ibeen done) I 
I I 
!OPEN options - SdIllt; as I 
jDCBOPI I 
i I 
IProtection class of the I 
Ivirtual storage in which thei 
IDCB resides I 
I I 
I X'03' Read only I 
I X'Ol' Read/Write I 
I X'O}' Private privileged I 
I I 

X IInterlock summary. This I 
Ifield is updated by INTLK I 
ICCZCOH), RLINTLK (CZCOl). I 
land VAMABIR (CZCQQ) I 
I I 
IThe following reflect I 
linterlocks set in the I 
jindicated control blocks: I 
I I 
IX'OOOl' Data Set Entry in I 
I SDST I 
IX'0002' RESTBL header I 
IX'0004' Member descriptor in\ 
I POD I 
IX'OOOS' POD I 
IX'OOIO' BPF that are checked I 
I out to this DCB I 
!X'0020' Member heaaer in I 
I RESTBL I 
IX'0040' SDST centrol entry I 
IX'OOSO' ~ESTBL header I 
I partial interlock I 
I set (RHDINI) I 
IX'OlOO' SPT number in SDST I 
! Data Set Entry I 
I locked I 
I I 
ISome of the above interlocksl 
lindicate eitner a read or a I 
Iwrite interlock. The next 51 
!mask values indicate which I 
lof the control blocks are I 

I I Iwrite interlocked. I l _______ ~ ____ .J.. ___________________________ J 

114 Part II: Virtual Access Method (VAt-D 

Table 30. Field Descriptions for the DCB 
H •• der -- (CHADHD) (Pa.rt 2 of 2) 

r-----~---T--------------------------~ 
I Symbol IData I Description I 
~-------t----t----------------------------~ 
I I I X' 0200' SDST data set entry I 
I I IX'0400' HESTBL header I 
I I IX'Oaoo' "'ember descriptor inl 
I I I POD I 
I I IX'lOOO' POD I 
I I IX'2000' External Paqe I 
I I i Entries I 
I I I I 
I I 1'I'he following 4 fields are I 
I I' used with VSAM organization: I 
I I j I 
IDHOF3P I A :Buff~r address I 
I I I I 
IDHDNBP I N IBuffer size (pages) I 
I I I I 
IDHDFDP I N IFirst data page checked out I 
I I I to thi s DeB I 
I I I I 
/DHDPCO I N INumb~r of pages checked out I 
I I It.o this DCB I 
I I I I 
IDHDCOP I A IOverflow buffer I 
I I I I 
jDHDISD I A IVISAM directory location I 
I I I I 
IDHDeDP I N lcurrent data page I 
I I I I 
IDHDNOP I N ICurrent overflow page I 
I I I , 
IDHDMRL I N IMaximu~ record length I 
I I I I 
IDHDNDH.I W IForward and reverse DeB I 
IDHDPDH I Iheader pointers I 
I I I I 
IDHDDUP I A IAddress of duplex copy of I 
I I I the RESTBL I 
f I I I 
IDHDDXP I A ICUrrent External Page I 
I I I Address I 
I I, I I 
IDHDOXP I A IOverflow External Page I 
I I! Address I L _______ i-___ ~ ____________________________ J 

Co""o' ';~~:~:'" ToO" I 

Ui _______ ~ __ ~ __ to_s~_t_an_d_M_em_b_er_-En_t(_i~ __ ~i I (CHA50E, CHASOM) T 

1 Segment 
Iv\ox imum 

Figure 19. Shared Data Set Table (SDST) 
Format 



Table 31. Field Description of the SDST 
Header -- (CHASDS) 

r------T----T-----------------------------, 
\SymbollDatal Descript~on I 
~------+----t-----------------------------~ 
ISDSICIT/ L ISLJc;T interlock byt~e. If set. I 
I I jaccpss is not ~~rmittpd I 
I ! I I 
j SDSLPNI N I Last page numb€r dssiqned to I 

lithe SDST I 
I I I I 
ISDSSPTI N ILast assigned Shared Page I 
I I ITable (SPT) numb€r I 
I I I I 
!SDSAVAI A INext byte of available space I 
t I I in the BDST I 
! I I I 
IBDSDE I A IFirst deleted Data Set Entry I 
I I I I 
ISDSD1"lEj A IFirst deleted member entry j 
j I I I 
ISDSSDEI A IFirst Data Set Entry I 
i I I I 
! SDSHAS I A I First mc-mber ent.ry for each j 
I I lof the possible 64 hash I 
I I I values of member names I 
I I I I 
ISDSPLKI L IV~A lock on SDSPS~ I 
I I I I 
I SDSPSN I:~ ! public segment numoers I L ______ .L ____ . .L ___ . _________________________ J 

ISA 

(CHAISA) 

IOATDT 

ISASDS 

Table 32. Field Description of a Member 
Entry -- (CHASDM) 

r------T----T-----------------------------, 
ISymbol\Dat,lt Description I 
~------+----+-----------------------------~ 
j SDI'lCIN j A I N,'xt memrH'r pnt r y ill t hio; I 
I Ihd:;h <111d'; c:ldin I 
1 ! I I 
!SDMNUR! N IN~mDerof users i~ this 
I l ! mer.lb'3r 
I I I i 
!SDMSPTI N IShared Page Table (SPT) I 
I I !number assianed to this I 
I I I melT,DEr 1 
I I I I 
ISDMNSPI N INumoer of shared pagt's I 
i I I I 
ISD~WSPI N !Number of the first shared I 
I I I page I 
I I i I 
ISDl'lLSD I A I Data Set Entry corresponding ! 
I I I to t.his member I 
I I I I 
I SDMNAl-l I C I Merrber na:ne I L ______ .L ____ .L _____________________________ J 

SDST 

(e HASDSl 

((HASDM) 

(CHASDE) 

( SDES?T, 

t SOEFSP 

RES fBl DC8 

,CHAi\HO. 
f-----\C HAfPE; 
f----

((HADCS) 

'---- TOTDES 

~ TOT 

(CHATDT) 

JFCB] 

(TOTODN) 

JFCB 
n 

~~r--.---------------------
~~ (( HAMHOl __ OCBDEB 

DHDlNK DHDOC B ex: BSP 

DHORES (CHADHD) 
DHD.lfC DHDPOD I--

DCSHD 
DCBS( 

POD 

IC HAPOD) 

~----'------'--l I C (CHAPOf) 

(C HAPOM)2 I-------------.-----j 

(CHAPOM)l 

~------------

ICHAPOM'n 

Figure 20. Linkage Relationships Among Control Blocks Used with VAM 

Section 1: Introduction 115 



Table 33. Field Description of a Data Set 
Entry -- (CHASDE) 

r------T----T-------------------------------, 
I ! I I 
\SymbolIData! Description I 
1--- --- -+ ---+-------------- ----------------i 
!SDECHNI A iNext data set entry I 
I i I I 

I I The next 4 bytes form a \TAM I 
I linterlock word which is I I 

I 

! 
I 
I I 
jSDEINW! 

I SDEINH i 
I I 

lupdated by INTLK (CZCOH), and! 
I RLINTLK <CZCOr> I 
I I 

L IWrite interlock I 
I I 

L jRead interlock I 
I I 

I SDEINN I N ICount of read interlocks set I 
I I 
\SDEINI I 
! I 
!SDENURI 

i I 
iSDESPTI 
I I 
!SDENSPI 
I I 
!SDl:;FSP I 
i ! 
I I 

I ! 
L I Update interlock I 

I I 
N !Number of users I 

I I 
N I SPT number I 

I I 
N INumber of shared pages ! 

I I 
N lNumber of the first shared I 

I page entry I 
I I 

ISDENAMi C IData S~t name I 
l ______ J. ___ J. _____ . _________________________ J 

Word 3 -- Address of 8-byte member name, 
zero if no member. 

Word 4 -- Address of 1-byte type code: 

C - close 

o - open 

U - user count only 

lo-JOdules Called: 
Interlock (CZOoH1) -- set write (W) inter­

lock on a shared data set ent.ry (SDSE). 

Release Interlock (CZCOI1) -- Release write 
(W) interlock on an SDSE. 

ABEND (CZACP) 
task. 

Exits: 

Abnormal termination of 

Normal -- For Open option: 

'00' Entry existed. 

'08' New entry built. 

'10' Data set does not exist. 

For Close option: 

'00' Entry closed, users still exist. 

116 Part II: Virtual Access Method (V AM) 

'04' Entry cLospd, no mure users. 

'10' D'-Ita set dl','s not .'xist. 

Error -- ABEND 1,; ,-,Ill,'j Wh"ll <'lit' ,-,t t h., 
following conch t ion:; .'Xl ,;t : 

• No pOlntPr to tht, Den. 

• SDST or shared page tablE' alrf'ady 
locked by this task. 

• The data set is non-YAM. 

• Current pC'inter is higher than the 
"1 d "t P,HT('- poi ntf'r. 

• Ther~' is insufficient sPdce for the 
m('mbE'.1: entry or data set entry. 

• An attempt is made to clnse an unknown 
member or an unknown dat.l set. 

• An attempt is made to access a non­
shared data set by two different 
tasks. 

operation: OVerall operation of this 
module consisits of entry linkage. data set 
name search, member name search. analysis 
of user requirements, updating of data set 
entries and member entries, and either a 
normal return, an error return, or an 
ABEND. 

After completion of linkage and loading 
base registers from the parameter list, 
this module checks that the DeB code is 
present in the field DCBID. If unequal, 
ABEND is invoked. 

By use of test and set (TS) and time 
slice end (TSEND), execution of this task 
will be delayed until the SDST interlock 
byte is found in the reset state. At that 
time, this task has exclusive control of 
the SDST, and a search through the chain of 
data set entries is made beginning with the 
SDSE specified in SDSDSE, by comparing the 
44 byte data set name in the JFCB with the 
data set name in each SDSE in the chain. 

If the end of the SDSE chain is reached 
before a matching data set name is found, 
or i.f no chain exists, an SDSE for that 
data set name does not exist--subsequent 
action depends on the option requested by 
the calling routine in the parameter list. 
When a matching name is found, this task 
will delay execution until the shared page 
table number (SDESPT) is not equal to 
X'FFFF' (SPT lock condition). If the lock 
condition is present, and this module was 
not called by ABEND for release of inter­
locks, the portion of the SDSE search for 
the specified data set name which follows 
interlocking the SDST, will be repeated. 
Then if a member name was specified in the 



list of input pdrameters, a search for that 
n~n~er name entry will be perforrued. 

The 8 byte member name is hashed to 6 
bits using the logical operation -exclusive 
or". That hash value is used to pick one 
of the 64 member entry chains,. and the 
selected chain is searched for the speci­
tied member name. Each member name entry 
in the sEelected chain is compdred against 
t.he member name specified in the parameter 
list. If equal, the data set name in the 
SDSE addressed by the member entry is com­
pared. If both arf~ equal, the proper memb­
er entry has been found and will be pro­
cessed by this routine. If no member entry 
chain exists or no matching member name is 
found or matching member names do not point 
back to the SDSE previously found. then no 
mE'mber entry exists. Continued processing 
de~nds on options specified in the par~­
meter list. 

The following describes processing fol­
lowing data set and member name searches. 

If the SDSE was not present, and a memb­
er name was specified, an error return is 
made. If a member name was not specified, 
and the option was CLOSE, an error return 
is made. Otherwise, a new SDSE is built, 
whether from the chain of deleted SDSEs or 
from available storage, and linked to the 
active SDSE chain with the user count set 
to one. Insufficient storage will cause 
ABEND. For VSAM or VISAM organization, 
Interlock (CZCOHl) is called to impose a 
write interlock on the SDSE if the OPEN 
option is non-Input. A return is then made 
to the user with a normal completion code 
and the address of the found SDSE in gener­
al register 1. 

If the SDSE was present and a member 
name was not specified, thf' organization 
and operation will be cheCKed prior to 
updating the SDSE. If thi:; is not a VAM 
organization, ABEND occurs. If this is 
either a VSAM or VISAM data set (but not 
VPAM) to be opened, for OUTPUT, OUTIN, or 
UPDATE, the presence of an SDSE indicates 
that this data set has at least one user 
and is therefore not availdble to this 
task. If a VSAf-l or VISAM data set is to be 
opened for INPUT and a write interlock 
exists, the data set is not available. For 

either of thesf' two cases, the interlock on 
the SDST will be released, and TSEND will 
be used to delay processing of this task 
until the other tasks have ceased to pro­
cess that data set. Each time the task is 
reinitialized. the procedure to search for 
the SDSE will he started at the point 
(described above) where an interlock on the 
SDST is established by use of a TS. 

Where a VSAM or a VISAM data set is to 
be opened for input and a write interlock 
does not presently exist, Interlock is 
called to impose a write interlock on the 
SDSE if the open option is other than 
INPUT. It is not necessary to impose a 
read interlock, since the presence of an 
SDST entry without a write interlock 
implies a read interlock condition. Thtc, 
last operations to be performed are, to 
increment the user count, in the SDSE. place 
the normal return code in register 15, t,he 
address of the SDSE in register 1 and 
return to the calling routine. This is 
done for VSAM or VISAM opened for input, 
and for any VPAM open. 

When the specified operation is CLOSE 
and no SDSE exists, the interlock on the 
SDST is released, and an error return is 
made to the calling program. 

When the specified operation is CLOSE 
and the SDSE was found and a member name 
was specified, the count of users will be 
reduced. If this count reached zero, the 
member entry will be deleted from the memb­
er chain and its space appended to the 
deleted member chain. A return will be 
made to the user with a normal completion 
code. 

When the operation is CLOSE, the SDSE 
was found and no member name was specified; 
if the data set organization is VSAM or 
VISAM, Release Interlock is called to 
release the interlock that had been set on 
the data set-R read or write according to 
the OPEN option in the DCB. Following 
that, the user count in the SDSE is reduced 
by 1. If the count reaches zero, that SDSE 
is deleted from the chain of active SDSEs, 
and its space dPpended to the chain of 
deleted SDSE. A normal return is then made 
to the user. 

Section 1: Introduction 117 



All direct access devices (2311 or 
2314), on 'Which 'lAM data sets reside, "re 
initialized and maint.ained in a st.andax·d 
format. All space on these volumes, w:, t.h 
the exception of cylinder 0, track I, ,wd 
possibly cylinder 0, track 1, is tr-"atpd in 
units of 4096 bytes (one page). As:;ociated 
with each volume is a page assignmentt.able 
(PAT) which contains entries for all of the 
f .• ages on the volume. The lengt h of the PAT 
depends on the type of device and currently 
occupies one page on the 2311 volu""", and 
two pages on the 2314 volume. This tabl", 
i,,; {-,olnted to by a field in the volume 
label. 

Each pntry in the PAT is 1 byte long. 
If the first hit of the entry is zero, the 
page represented by the entry is either 
available for assignment to a data set or 
15 already assignE'd. The remainirg 7 bits 
provide a binary count of the number of 
data sets sharing the page. When this 
count is zero, the page is available for 
assigmnent. 

If the first bit of the entry is 1, t.he 
lJage it represents is either a oseB page or 
an error page. If the second bit of such 
an entry is 0, the entry represents a DSCB 
page, that is, the page contains data set 
control block~3 (DSCBs). F.ach DSCB page can 
contain up to 16 DSeBs and is, accordingly. 
divided into slots. When only 4 of these 
slots remain available on a page, one of 
two flag bits is set to one. This indi­
cates that the page is only to be used for 
nsCBs which further describe data sets 
already included in that DSCB page. The 
second of these flags is set to 1 when all 
16 slots on the page are in use. The func­
tion and format of the DSCBs will be dis­
cussed further below. 

The third type of entry which can be 
found in the PAT is the error page entry. 
This entry represents a page which is 
unsuitable for use due to surface errors 
discovered by the RESTORE utility and is 
.. icat.ed by a 1 in bits 0 and 1. Follow­
ill'] }~h€ Fdge entries .in the PAT, t.here are 
:0"".I><a1 unused bytes of space. Thf' last 97 
"",:,r1s ':>f this ~;pace are used for relocation 
entries. The last word in the table is a 
relocation control entry, which maintains a 
half-word count of the number of relocation 
entries which precede it, and a half word 
(X'FFFF') if there are any entries. The 
other 96 words may be occupied by reloca­
tion entries. These entries contain the 
relative page number of the error page, and 

118 Part II: Virtual Access Method (VAM) 

the relative paq" number of the n location 
page. 

Associatec. wit:h ('dch data set .s one or 
more DSCBs. The first of these centrol 
blocks is callec a form"-It-E DSCB; if addi­
tional space is required t-.O descr;be the 
data set., fonna t-F DSCBs an' buill and 
chained to the format-E DSCE. A data set 
and tnf" DSCB!; which describe it mily be on 
more t.hun on': volume. Because of this, the 
chaining procedure used qives the relative 
volume number and the relative paqe number 
on t.hat volume ""here the next DSCR is 
located. Also. sincp each DSCB ~ige con­
tains up to 16 DSCBs. the slot number of 
the DSCB is included. F.ach format:-E DseR 
contains the data set name and properties 
and possibly t.-he extf~rnal page entries 
which give the location of the ddta set 
paqes on external storaqe. Thes.- entries 
contain the relative volume and relative 
paqe number on the volume where the data 
sM~ paqe is located. 

The concept of relative volume numbers, 
introduced above, arises from the possibi­
lit.y of a data set occupying more than one 
volume. For public data sets, this rela­
tive volume number provides an indexing 
factor into the public volume table. This 
table consists of a 16 byte header, which 
contains a count of tile maximum number of 
public volumes allowed. and the count of 
public volumes actually in use. Following 
the header is a series of 16 byte entries 
representi'ng each volume assigned to public 
storage. The entry contains the volume 10, 
the device code, and the symbolic device 
address of the volume. This information, 
in conjunction with the pathfinding t<ibles 
and the pathfinding routine of the resident 
supervisor. make it possible to locate all 
volumes which contain a qiven data set. 

The public volume table is a ~;eparately 
assembled CSECT which is a part of initial 
virtual storaqe and is initialized by Star­
tup. In order to maintain similarity in 
the processing of public and private data 
sets, a table, called the private volume 
table, is built for private volumes. The 
address of the volume table is placed in 
the RESTBI. header by OPENVAM. 

The content of the DSCBs for a data set 
also vary according to whether the data set 
is public or private. Within t.he field of 
data set properties is a count of the numb-



~r of volumes which the data set occupies. 
For public data sets this count is zero 
since the list of volumes is contained in 
the public volume table. In this case, the 
data set name and properties field is fol­
lowed illUTlediately by a list of external 
page entries. Lach of these entries con­
sists of a relative volume number which 
provides an index into the public volume 
table and a relative external page number, 
which provides an index into the page assi­
ynment table on that volume. For private 
data sets residing on one volume, this 
field is also zero since the volume 10 is 
contained in the data set descriptor. For 
multivolume private data sets, the data set 
name and properties field is followed by a 
list of the volume IDS on which the data 
set resides. This list is used! by MOUNTVOL 
when it builds -the private volume table. 
The format-E DSCB may contain up to 25 
volume IDs each 6 bytes long. Following 
the list of volume IDS, is the list of 
external page entries which are the same as 
for public data sets. 

BUILDING AND MAINTAINING A DATA SET 

When a user is building or updating a 
data set, he conceives of it as being a 
group of contiguous pages of records. 
ActUally, because of the virtual storage 
concept, the pages of any data set may be 
physically located in several external 
areas known as extents. In order to allow 
the user to continue to think of the data 
set in terms of contiguous pages, it is 
necessary to construct a relative page/ 
external page correspondence table 
(RESTBL). This table is built by OPENVAM 
when a data set is first opened for use. 
The RESTBL consists of a header which con­
tains information such as the number of 
pages available for assignment to the task, 
the number of pages currently in use by the 
task, and the relative location of the 
first unused page which can be assigned to 
the task. The balance of the RESTBL con­
sists of a series of external page entries 
which are identical in format to the 
external page entries in the DSCB described 
above. This parallel cons~ruction of 
external page entries enables the system to 
assign and delete pages in a data set, and 
to update the availability of the pages on 
the volume, without the use of conversion 
routines. 

The external pages assigned to a task 
are also placed in the user's external page 
table or shared page table so that a 
reference to a virtual storage address is 
translated to thE' correct main storage 
address during e>ecution. 

During execution, a data set may be 
aynamically increased or diminished in size 

or deletEd compl<'t.piy. Wcwn this occurs, 
the affected pages must be added to or 
deleted from the data set and the task's 
RESTBL. For this purpose, six service rou­
tines are provided with the virtual access 
[!let hod: 

Insert/DElete Pdge (C2CO[;) -- Effects t.he 
addition or deletion of pages in a data 
set and performs error checks to deter­
mine the validity of the operation. 

Insert (CZCOF) -- hdds external page 
ent ries represent. ing the new pages to 
the task's RESTBL. 

Request Page (CZCOE) -- Provides Insert 
with a list of available pages for ins­
ertion into the RESTBL. It also marks 
t.he pages in use and unavailable for 
assignment. 

Expand RESTBL (CZCQI> -- Increases the SiZf' 

of the RESTBL for nonshared data sets 
when the addition of new page entries 
causes an overflow conditcion. 

Reclaim (CZCOG) -- Deletes page entrieG 
from a task's RESTBL and adds them to 
the available list for future assignment 
or release at the time the data set is 
closed. 

DELVAM (CZCFT) _.- Deletes a virtual organi­
zation data set by deleting its catalog 
entry and freeing the external pages and 
DSCB slots which it occupies. 

Insert/Delete Page Routine (CZCOD) 

The Insert/Delete Page routine is called 
by FLUSHBUF (CZCOV), GETPAGE (CZCPI), and 
Add Directory Entry (CZCPL) to check and 
perform insertion or deletion of pages 
wit.hin 'd data set. The validity of the 
request is checked, based on the specific 
request and on parameters in the DCB and 
RESTBL. (See Chart KA.) 

Entry Points: 
CZCOD1 -- Insert pages, entered via type-1 

or type-2 linkage. 

CZCOD2 -- Delete pages, entered via type-1 
or type-2 linkage. 

Input: Register 1 contains the address of 
the DCB. Two fields which must be set in 
the DCB are: 

DCBN -- Page number, relative t.o the data 
set or member, at which the operation is 
to take place. 

DCBM -- Number of pages to oe inserted or 
deleted. 

Section 2: VAM Volume Format and Data Set Maintenanc~ 119 



Modules Called: 
Insert (CZCOF1) -- Insert additional pages 

at a specified position within a data 
set and move all other active pages 
upward. 

Reclaim (CZCOG1) -- Delete specified pages. 

Interlock (CZCOH1) -- Set a write interlock 
in the RESTBL external page entry. 

Release Interlock (CZCOI1) -- Release write 
information on RESTBL. 

GETNUMBR (CZCOO1) -- Validate and perform 
insertion or deletion on a partitioned 
data set. 

TSEND (CEAH19) -- Force end of time slice 
for this task, to wait for interlocks in 
shared pages to be released by the tasK 
that had set them_ 

VOMEP (CZCQR1) -- output a diagnostic mes­
sage and terminate the function (but not 
the task). 

Exits: 
Normal -- Return to the calling routine 

with one of the following return codes: 

• 00' Normal. 

'04' No storage space available. 

'OS' Storage ration exceeded. 

'oc' No secondary storage allocation 
specified. 

'10' Shared data set RESTBL cannot be 
expanded. 

'lU' Maximum data set/or member size 
exceeded. 

'1S' Insertion beyond end of data set. 

'lC' Deletion beyond end of data set. 

Error -- VDMEP is called and the function 
(not the t.asJd terminated if an invalid 
return code is received from Reclaim, 
Insert, or GETNUMBR. 

s-~peration: Calls to CZCOD are for the log­
~cal insert. ion or deletion of data pages 
wi 'Chin a data set. If the routine is 
entered at the primary entry pOint 
(CZCOD1), the Insert flag in the DCB opera­
tion field (OCBOP) is set to insert 
(OCBOP4). If entry is made at the secon-· 
dary entry point (CZCOD2) in the case of a 
deletion, no indication is set at this 
time. The code from these two types of 
entries converges to perform module 
initialization. 

120 Part II: Virtual Access Method (VAM) 

Initialization and general register 
storag~ is executed in conformance with 
linkage conventions. Base registers are 
declared for the calling program's save 
area. CZCOD CSECT and PSECT, DCB, DCB 
header and RESTBL. 

Insertions (,r de let ions m"y not b.' .loop 
on data sets which are oj.wnt'd t or input 
only. If the DCB open option indicates 
input, ABEND is called immediately. The 
RESTBL is interlocked for shared data sets. 

If the data set is partitioned, GETNUMB­
ER (CZCOO) must be called. The requested 
operation is tested. If the Insert flag is 
not set as descrbied in the entry proce­
dure, the Delete flag (DCBOPS) is set and 
GETNUMBR called. Upon a successful return 
from GETNUMBR, control is returned to the 
user by the RETURN macro, since GETNUMBR 
has already accomplished the desired inser­
tion or deletion. 

For nonpartitioned data sets, CZCOD per­
forms a great deal of the consistency and 
validity check required for the insertion 
or deletion. 

The extent of a deletion, that is, the 
first page plus the number of pages being 
deleted, must be contained within the data 
set. If any of the pages to be deleted 
falls outside of the range of the data set, 
ABEND is called. 

Reclaim (CZCOG) is called to accomplish 
the deletion. The return code from Reclaim 
is tested for errors. If general errors 
exist or the deletion was requested on 
pages of a shared data set that were inter­
locked, an appropriate return code is set 
and control returned to the caller. Upon 
successful deletion, control is returned to 
the caller by the RETURN macro. If the 
data set is shared, the RESTBL interlock is 
released before returning. 

An insertion must be made within the 
range of the data set or contiguous to the 
last page. If the insertion is requested 
outside or not adjacent to the data set, an 
appropriate return code is set and control 
returned to the caller. The actual inser­
tion of the data page is performed by 
Insert (CZCOF). The return code from 
Insert is tested for errors. If they 
exist, VDMEP is called. Control is 
returned to the caller by the RETURN macro. 
For shared data sets the RESTBL interlock 
is released before returning. 

Insert Routine (CZCOF) 

Insert is called by Insert Page (CZCOD), 
Extend POD (CZCOM), and GETNUMBR (CZCOO) to 
insert additional -in useR pages in the 



RESTBL of th~ data set involved 1n the 
reque~;t. (See Chdrt KB.) 

Attributp~;: Redd-only. reentrant. 
fJrivileged. 

Entry Point: CZCOFl -- Entered via type-l 
linkage. 

_!nput: Register 1 cant a i os t.1"€ address of 
the DCB. Fields used 1n the DCB are: 

OCBN -- First page of data set involved in 
request (nonpartitioned). 

OCBNI -- First page of data set involved in 
request (part_it_ioned). 

DCB~ -- Number of pages involved in 
request_. 

OCBOP -- Type of operation requested. 

Modules Called: 
Request Page (CZCOE1) -- Flags additional 

external page entries "in use" in the 
available page chain in the RESTBL. 
Request Page will also atte~pt to 
increase the number of pages available 
to the task. by calling FINDEXPG, when a 
SUfficient number of pages is not avail­
able to fill the request. 

VDMEP (CZCQK1) -- Output a diagnostic mes­
sage and terminate the function (but not 
the task). 

Exits: 
Normal -- Return to the calling routine. 

Error -- A valid error code returned from 
REQPAGE is passed back to the calling 
routine in register 15. An invalid 
error code returned from REQPAGE results 
in VDMEP being called. 

Operation: When Insert is first entered, 
registers are saved and base registers 
established for the CSECT, PSECT, DCB, DCB 
header, and RESTBL header. Insert then 
retrieves the number of the first page to 
be inserted and the total number of pages 
to be inserted from the DCR. Next, the 
virtual storage addresses of the next 
available page and of the location of the 
insertion are computed. and a call is made 
to Request Page (CZCOE). Request Page will 
flag the requested number of pages -in use­
by setting the flag in the external page 
entries in the RESTBL. If a sufficient 
number of pages are not available to fill 
the request, an attempt is made to add 
pages to the available list from external 
storage. If Request Page is unable to fill 
the request, an error return is made to the 
calling routine by the RETURN macro 
instruction. 

Insert may be called to insert pages 
between existing pages of the data set or 
to simply add pages to the end of the data 
set. In the latter case, Request Page will 
have added the new pages at the end of the 
list of "in use" pages and no additional 
IoIcrk is requiJ:-ed of Insert. If pages are 
being added between existing pages, it is 
necessary to create a gap in the list of 
Win use" pages in the RESTBL. For this 
purpose, a 64-word work area is provided in 
the PSECT. This area will hold 32 shared 
or 64 nonshared external page entries. The 
new entries are moved into this work area 
starting from the beginning of the avail­
able list. All l."Urrent -in use" entries 
follow1ng the point of insertion are moved 
back in the RESTBL an equal number of words 
to create a gap. The new page entries are 
then moved from the work area to the gap 
thus created. This procedure is repeated 
until all new entries have been inserted. 

In the case of duplexed data sets, this 
process is repeated for the secondary copy. 
after which the DSCB integrity bit is set 
and a normal return is made to the calling 
routine. The setting of the integrity bit 
will cause CLOSEVAM to call Write DSCB to 
update DSCBs on the volumes. In this mann­
er, pages dynamically added to the data set 
are made unavailable for future allocation. 

Note that this routine does not inter­
lock the RESTBL for shared data sets. This 
is so because Insert assumes that the cal­
ling routine had done so before calling it. 
Also, Request Page is responsible for 
updating the counts of external pages in 
use, available pages, and the relative 
location of the first available page. 

Expand RESTBL Routine (CZCQI) 

Expand Relative External Storage Corres­
pondence Table is called by OPENVAM 
(CZCOA). MOVEPAGE (CZCOC), Request page 
(CZCOE), and Find (CZCOJ) to increase the 
size of the RESTBL by one page. The addi­
tional space appears between the external 
page entry words. and the DCB and member 
header control blocks. Note that a RESTBL 
which resides in shared virtual storage 
cannot be expanded. <See Chart KC.) 

Attributes: Read-only, reenterable. 
privileged. 

Entry Point: CZCQIl -- Via type-l linkage. 

Input: Register 1 contains the address of 
the RESTBL to be expanded. 

~odules Called: VMA (CZCG4) To increase 
the size of a specified virtual storage 
area. 

Section 2: VAM Volume Format and Data Set Maintenance 121 



Normal -- Execution of the calling prografil 
is resumed by use of RETURN. No special 
return code is given. 

]:'[:.:-or .. - None. 

o;:}';~;a!:Jon; In1.t1.alizat.ion and generdl 
Iegi~3t.er c>tOL.1q(' is executed i.n contorlranee 
with 1 inl<age convent ion. Base register s 
2-XC' c.f2clared for the CSECT and PSEC'T f a. 
save area, RESTBL, DeB header and JFCB. 

Expand RES'I'BL calls Expand (CZCG4) :Jy 
the CALL macro to eX'~and the virtual 
stora':je of tne RES'IBL by 1 page. Afte:c the 
expans.lon, the RESTBL pointers, are upjated 
1.0 the JFCB if the RESTBL was relocated in 
the expansion. RESTBL point.ers (VM 
addresses) on thin the DCB dIld member hea d­
ers dre updated if the RESTBL has been 
reloc'l.ted. 

T':", DCB and member headers are moved on 
\:0 the new page up to the top header; this 
creates space between the external page 
entries and headers, for the insertion of 
new information. The relative pointers 
within the headers, and the DCB and member 
headers are updated by 4096 to reflect 
their new position. 

When thf' new virtual memory space has 
been obt.dined, and all point.ers and 
addresses which need to be adjusted have 
been updated, Expand RESTBL returns to the 
calling module by th~> RETURN macro. 

Not_(:, t.hat a RESTBL which resides in 
shared virtual storage cannot be expanded. 

Request External Pages is called by 
Insert (C'lCOD) and OPENVAM (CZCOA) for the 
purpose of assigning available external 
pages to a data set. If sufficient pages 
are not available to fill the request, an 
attempt is made to increase the size of the 
aata set by calling FINDEXPG (CZCEI,). The 
newly assigned pages are added to the 
t.dsk·s RESTBL or, in the case of a shared 
data set, t.O the shared RESTBL. If this 
addition results in an overflow of the 
RESTEL, it. is expanded to accommodate the 
extra pages in Lhe case of nonshared data 
:''''~:~'' Since a shared RESTBL cannot be 
('xpdnded. thi.s condit.ion results in a call 
t.O VDlIj':P (CZCQKl). (See Chart KD.) 

Attributes: Read-only, reentrant, 
privileged. 

Entry Point: CZCOEI -- Entered via type-l 
linkage. 

Input: Register 1 contains the address of 
the DeB. Fields used in the DCB are: 

122 Part II: Virt_ual Access Method (VA.I<,O 

DCtlM 

DCBN Relative number of the first page 
affect.ed. 

Modules called: 
Expand RESTBL (CZCQll) Increases the 

size of tne RESTSI for a nonshared data 
set. when the jnclusion of the newly 
assigned p.:'g~!s causes overf low of the 
c'"Ur:::ent R~;TBL. 

FINDEXPG (CZCEL1) -- ASSigns additional 
external pages to the task from the 
storage allocated to the task. 

VD~£P (CZCQKl) -- Output a diagnostic mes­
sage and teruQnate the function (but not 
the task). 

Exits: 
Normal -- RETURN to the calling routine if 

successful or if the request is for zero 
pages with one of the following return 
codes in register 15: 

'00' Normal. 

'04' No external storage available. 

'OS' Storage ration exceeded. 

'OC' No secondary storage allocation. 

'10' Shared data set RESTBL cannot be 
expanded. 

Error -- VDMEP is called if an invalid 
return code is received from FINDEXPG 
(CZCELU. 

Operation: Initialization and general 
register storage is performed in confor­
mance with standard link.age a:>nventions and 
base registers are established for the 
CSECT, PS,CT, DCB, DCB header, and the 
RESTBL. The number of pages involved in 
the request (DeBM) is checked and, if the 
request is for no pages. a normal return is 
made to the user. 

The function of Request Page is to 
assign external pages to a task's data Sel: 
from external storage which has been pre­
viously allocated. These pages may be 
assigned from either the primary or the 
secondary allocation if it ie be assigned 
from either the primary or the secondary 
alocation if it exists. Additionally. the 
page entries in the RESTBL are flagged -in 
use- and any pages which have been assigned 
are added to the RESTBL. 

These operations differ in two ways for 
shared or nonshared data sets. In the case 
of shared data sets, two words of RESTBL 
space are required for each page entry; the 
additional word is occupied by the page 



~nterlock required for shared data sets. 
The other difference is t.hat the rtESTBL 
cannot be expanded for shared data sets. 

Following the initidlization process, 
the data set is ~xamined to detErmine 1£ it 
l~o shared. Wit.h th<:> f'xception c·f the aboVE 
noted diff~rences. tn~ processing 1S the 
same; t.he exception; ' .. 111 al~;o be ment.ionec. 
in the follo",nnq (je;;cripl~ion. In each cas.' 
the RESTEL is teste,j (RHDNEP) to ciet~ermine 

1f suff1cient pages are already assigned. 
If they are, the pages are flagged -in use W 

in the RESTEL external page entries, and 
the count of available pages (RHDNEP) anj 
the locat10n of the next available page 
(RHDNAP) dre updated 1n the "ESTBL. A test 
le; made to determine if this is a duplexed 
oata set dnd if the secondary RESTBL must 
0till be processed. If both dre true, 
REQUEST PAGE lODIX; back to the point of the 
t.est for "no pages requested", above. and 
repeats the procedure. If the data set is 
not duplexed or if the secondary copy has 
Deen processed, a normal return is made to 
the caller. 

If Request Page finds that. there are not 
sufficient pages assigned, it attempts to 
assign sufficient pages from the secondary 
space allocation (the user may have 
requested up to 256 pages). It no such 
allocation was made, a call is made to 
ABEND. If such allocation was made, the 
RESTBL is examined to see if there is 
enough available space in the RESTBL to 
hold the new external page entries. This 
space exists in the RESTBL between the 
existing entries and the headers which are 
at the end of the RESTBL. If the RESTBL 
does not contain enough space and the data 
Set is shared, a return is made to the 
caller with an error return code. If the 
data set is not shared, a call is made to 
the Expand RESTBL routine to provide the 
space required. Following t.his call or if 
the RESTBL contained suff icient free space, 
a call is made to Find External Page 
(CZCEL). Find External Page will return 
t.he addresses of 256 pagE's to be assigned, 
or the remainder of the secondary alloca­
tion if it is less than 256 pages. If the 
data set is not shared, t:lis list is moved 
directly to the RESTBL following the last 
previous entry. If the data set is shared, 
the entries are moved, one by one, from the 
return area to the RESTBL, and each entry 
is preceded by a full word of zeros which 
serves as the interlock word for the page. 
For both types of data set a switch is set 
to indicate that the DSCE should be 
updat.ed, and the number of available pages 
is updated in the RESTBL (RHDNEP). Request 
Page then returns to check if enough pages 
have been assigned. This procedure is 
rE'oeated until enough pages are made avail­
abie to the task or until the secondary 

space allocation is depleted. In the latt­
er case a call l.S Illdde t.o ABEND. 

When the request for pagP~; is satisfied, 
each page entry i~; flagged" Hi use" and Uv' 
next avaL.ablp paqe location (RHDNAP) 15 
dd Justed. Finally. t hfc: check:; for duplexPJ 
dd til set. ,nO s"conddry H~,-;TPL update ar..­
ri:Teated. If a ~,:pcondary Pr;::TBL Dust l:w 
processed, COiH roJ is returnEd to tne ;Joint 
of check for no paqes; ot.herwisp, a retllrn 
IS made to the call~r w1th a normal return 
code. 

Reclai~ is called by Delete Page 
(CZCOD), GETNUMBR (eZeOO). and Stow (eZect') 
to delete external ~age entries from the 
"in use- list in t.he RE,sTBL and place them 
in the available list. This has the effec~ 
of removing the pages from the data set, 
but the pages remain allocated to the task 
and may be reassigned at some future time. 
(See Chart KE.) 

Att.'!"l:putes: Read-only, public, privileged. 

Entry Point: CZCOGl -- Entered v;.C\ type-l 
linkage. 

~ut: Register 1 contains the address of 
the DCB. Fields used in the DCB are: 

DCBNI -- First page to be deleted (par:­
tioned data set). 

DCBN -- First page to De deleted (nonparti­
tioned data set). 

DeBM -- Number of pages to be deleted. 

Module called: ABEND (CZACP1) -- Abnormal 
task termination. 

Exits: ' 
Normal -- Return to the calling routine. 

Error -- A return code of '04' is set in 
register 15 if the request is to delete 
shared pages which are interlocked. 
ABEND is called if the data set organi­
zation is VPAM. 

Ql~!~ation: The operation cf Reclaim is 
essentially the same for shared and non­
shared data sets. In the case of duplexed 
data sets, the process is repeated for thp 
secondary RESTBL .}.n order t.O maintain sym­
metry between t;he copies. 

The funct_ion of Reclaim is t.O mark the 
deleted pages not in use and to add them to 
the available list. in the RESTBL. This is 
accorr.plished by set:t ing the proper flags in 
the ext.ernal page entries in the RESTBL, 
and by mOVing the external pages entries 
from the chain of ftin use- entries to the 

Section 2: VAM Volume Format and Data Set Maintenance 123 



cnain of available entriec. This creates a 
(~>;(p :~) tJ-.e cha i n uf all entr .les t'as~igned to 
trjf' t.il!.lk, !Hj H(c'cLn.m moves the entries up 
~/l the RESTbL to CLO'lP the gap \:iee Fiqure 
2;)~ In f'iddition>, tt)e .i.:nt.egrity tilt in !:he 
[<:::STBL hedck,;:: 15 set.. Tilis causes CLOSEVAM 
(CZCC~) to call Wrlte osce which w~ites out 

·C:{le entr:.e~; fro;;; ttle RESTBL to the DseE on 
Lhe volurr~e.. t"rhe effect is to make all 
d2ieted pages whiCh a=e not reassigned to 
the ta3~, available for allocation to some 
othe~ task after the data set is closed. 

~~en keclaim is entered, registers are 
5:::"'/(:C in conformance wi t.ll 1 inkage comren­
~lons &nd base registers are established 
f 0: t.;.';.e CSECT, l? SECT, DCB, DeB header, aDd 
t ;-",2 RESTBL header. The number of. pages to 
0e deleted is checked and, if zero, control 
:;'3 re"tt.:rned to the user. If there are 

to be df,leted, the address of t..'1e 
iIS~ external page entry to be deleted is 

c~mputed, together with L~e amount and 
addl.""ess of unused space in the RESTBL . 

./',;:. 't.his point, t.he process~n9" for shared 
~~d nonsnared data sets diverges. The dis­
tu;ction arises from the difference in the 
size of L~e external page entries (8 bytes 
fo: shared, ~ bytes for nonshared). The 
2rQc~SS~n9 is log1cally identical for both 
and the following description applies to 

The amount of available space in the 
,U~S'l'!';r, is compared to the amount of space 
=equired to hold the deleted entries. If 
the space is large enough, the deleted 
e::lt.ries are moved from the .. in use" chain 
~o that area, the entries are flagged as 
r.;:ct: in · ... se, and the entries following the 
S&~ left by the deletion are moved up to 
close t11e gap. 

If the amount of available space is not 
L .. rge enough, a 64-word work area in the 
PSECT is used for intermediate storage of 
the entries. Up to 32 shared or 64 non-

1----\ '\ AY~;labie 
,} Pages 

:;-;'77.'='?! ) 
~1 

\ Available 

( Space 

~~J 

1?7J=~, 

1""'''""""''"1 ) Go P 

IJ in use 
I----l Pog'" 

~~I 

1----4 

\n::r."'7'77,..,.,j 

Poge, JI Available 

1 Available 

? Space 

~="'4J 

Figure 21. Deleting Pages from the "In 
Use" List in RESTBL 

124 Part II: Virtual Access Method (VAM) 

sha:;:-ed entrles are moved from the "in use" 
chalfl to t..he work area, and are flagged 
not ~n usc. The gap ieft by this dele­
tior, ocs cl()sect and th{. deleted entries 
are ddQC'd ":0 the end cf ti1e crlain of 
avallatle entrlCS. Th1S process is re­
peated until all deletlon entrles have 
been processed_ 

Following the movement and flagging of 
entrles, L~e data set is checked to see Lt 
it is duplexed and if the secondary RESTBL 
remains to be process~d. If both condi­
tions are ".et, the entire process is 
repeated for the secondary RESTBL. When 
all entries for all copies of the data set 
h~ve been handled. the DSCB integrity bit 
(REDFLG) in the RESTBL header is set, to 
cause t..~e updating of the DSCBs on the 
volume or volUlnes, and control is returned 
to the caller. 

DELVfu~ Routine (CZCFT) 

Delete a VA."! Data Set is callecl by Erase 
(CZAEJ), ADDCAT (CZCFA), and Recreate Pub­
lic Storage (CZAXX) to delete a VAM data 
set by deleting its catalog entry and mark­
ing all its DSCB and data page entries 
"available" in the page assignment table. 
If tlle data set is private, the volume or 
volumes on which it resides are demounted. 
Optionally, the associated JFCB may be de­
leted. (See Chart KF.) 

Attributes: Read-only, public, privileged. 

Entry Points: 
CZCFT1 -- Main entry, entered via type-l 

linkage. 

CZCFT2 -- For generation data groups only, 
entered via type-l linkage. 

In~ut: On entry, register 1 contains a 
p01nter to a three-word parameter list: 

Word ,.-- If entered at CZCFT1, a pointer 
to a 3S-character (without userid) data 
set name. If entered at CZCFT2, a 
pointer to a Q4-character (includes 
userid) data set name. 

Word 2 -- A pointer to the JFCB to be 
deleted if that option is chosen. 

Word 3 -- A pointer to the JFCB deletion 
indicator. This indicator is a one byte 
flag which is set to X'OO' if no dele­
tion is to be done or to X'80' if the 
JFCB is to be deleted. 

Modules Called: 
FINDDS (cZAEcl or CZAEC2) -- Locates or 

creates a JFCB for the data set when a 
pointer to one is not provided by the 
calling routine. 



LOCFQN (CZCFL2) -- G~t T-block to see if 
BULK I/O pending. 

SETXP (CEAH7) -- Prepares the eKternal page 
tdble to allow a virtual storage page to 
be read in. 

Search SDST (CZCQEl) -- Provides a count of 
users currently sharing the data set. 

RELEXPG (CZCENl) -- Called to release all 
data pages and DSCB slots used by the 
data set and allocates them for future 
assignment on the volume. 

DELCAT (CZCFDl) --- Deletes the catalog en­
try for the data set. 

FREEMAIN (CZCi-lA3) -- Frees 1:he space occu·· 
piea by the private volume table. 

RELEASE (CZAFJ3 or CZAFJ6) -- Release the 
JFCB when that option has been 
specified. 

READWRIT (CZCEM) Read in DSCE page. 

DSCBREC (CZCEFl) 
read DSCB error. 

Attempt recovery on a 

WTL (CZABQl) -- Send message to operator 
and record it in the system log. 

Exits: 
Normal -- Return to the calling routine 

with one of the following codes in 
register 15: 

'00' 

'04' 

'OS' 

'oct 

'10' 

'14' 

'lC' 

Data set deleted. 

Deletion not made due to open 
DCBs. 

No deletion due to active 
sharer. 

No parameter list passed or FQN 
not indicated by Word 1. 

Shared dat.a set not owned, not 
unlimited access. 

DSORG not VAll.. 

Delete option specified. with 
JFCB pointer O. 

Error -- Before continuing, a message is 
written to the system operator and sys­
tem log via WTL under any of the follow­
ing conditions: 

• When a good return code is not 
received from RELEXPG. 

• When an attempt to recover a DSCB with 
a bad checksum is unsuccessful. 

• When end-of-DSCBs occurs before end­
of-volume fields. 

Qperatio!!: On main or secondary entry, 
DELVAM saves input registers and estab­
lishes base registers tor the CSECT an'l 
PSECT in conformance wi t.h linkage conven'" 
tions. The secondary entry, at CZCr'T2, 
allows a gener'ation dat.a group flag to be 
turned on, and then joins the main log~c" 
The input parameter list is now checked for 
the presence of fully qualified name. If 
none is present, an error return is made tn 
the calli ng rout.ine. If the FQN is pre­
sent, a test 1S made tor the presence of a 
JFCB address. If no such address is given, 
a call is made to PINDDS, to find a JFCB or 
to create one. For a generation of a 
generation data group data set, FINDDS is 
called at a secondary ent.ry point, CZAEC2. 
using the userid specifled in the input 
parameter list. {)therwise, PINDDS i'; 
called at CZAECI and task common will De 
referenced for the userid. Once the JFCB 
has been located or created, tests are made 
to determine if only one DCB is open and if 
the data set is VAM organization. If ,'ith­
er test fails an error return is made to 
the calling routine. 

If DELVAM was called by LOGOFF, ,\BEem, 
or Close, a call to LOCFQN is made to-::heck 
for Bulk I/O pending. If it is pending, 
normal return is immediately made to the 
caller. 

Next the dat.a set must be tested fo c 
sharing. This is determined by a ca~,l to 
Search SDST. If the data set is share:i, 
only one user may be currently accessi~g 
the data set and the user deleting the dat& 
set must be e1ther the owner or a shar'C'r 
with unlimited access. If eit.her of t."!eS2 

conditions is not met., an error return is 
made to the caller. 

Once this testing is complete or if tne 
data set is not shared, DELVA.."l checks '.0 

see If a RESTBL eXlsts. If one does e <:ist f 

the data set is still open and it must be 
closed. calling Release at CZAFT6. ·~)n·:e 
the DCB is closed or if it. was closed '0 

begin with, a test is made to see if there 
l.S d. DSCB. If none exists, there are ;]0 

pages in the data set and processing w,ll 
continue with the JFCB release de~,;crih.'d 
below. 

Gata Set PaGe RelE.·as e: Wl'1en the data :;et 
IS deleted,- all external pages occupied by 
the data set are freed for future alloca­
tion to another task. If the dat.a set is 
private, a private volume table pointer is 
st.ored in the caller's PSECT. A£t.er tnis 
or if the data set is on public storage, a 
dummy RESTBL 1.5 constructed. This i," 
necessary since the prio:c close of tn, DCB 
caused the deletion of the RESTBL. Ed~h 

Section 2: YAM Volume Format and Data Set Maintenance 125 



DSCB is ther. read in turn. For private 
vol~mes there may be several volumes in the 
volume list. These entries are skipped 
over not.il the ext.ernal page €ntries are 
loun,:). TheBP external page entries are 
UH'fI moved u) a parameter list area in pre-
[)aration for: a call to RELEXPG. Whfn the 
p,Hdmeter Ih;t is full or when all ('xternal 
L)i:i<)e entries have been moved to the list. 
;·;'LF.oXPG is called to perform the re:ease. 
The pages are marked available for assign­
".21~t in the page assignment. table. This 
r.;roced:rre i,; repeated until all external 
'f',22qes t;2.'Je been released. If, in the pro­
ce~~lS Df releasing pages, an entire uSCB 
P2C,<' is cleared of DSCBS, the OSCB page is 
also a.dded to the parameter list and it is 
·c,:iea.sed. Any errors encountered in 
;:;::::LEXPG result in messages t.O the system 
operator and log. 

Following the release of 
pages, the pointer to the dummy 

RE.3TBI, is cleared. Then, or if the data 
set: had ;-,0 pages, the JFCB deletion indica­
tor is tested. If no deletion is 

126 Part II: Virtual Access Method (VAM) 

requested. proceSSing continues With Cata­
log Deletion below. The JFCB is released 
by calling Release. An error return from 
that routine results in messages to the 
system operator and log. 

l2atalo'OL..P~.let:-"oTl: If the catalog entry ;;'5 

to be dele-::ed, a call is made to DEi.CAT to 
perform the deletion. If an error return 
is received from DELCAT. the operator is 
notified and it is recorded on the system 
log via WTL. The cataloq entry will not be 
deleted if t.he data set had no external 
pages, if DEl,VAM was ent.erect by the Recre­
ate Public Storage routine, or if t.he data 
set is USERCAT or SYSC;'.T. Followina the 
deletion of the ent.ry or if no deletion is 
performed, the exit. procedure is entered < 

This process involves testing to see if the 
data set is public or private. For privat"" 
data sets. a call is made to FREEMAIN to 
release the virtual storage occupied by the 
private volwne table. DELVAM then returns 
to the calling routine ~{ means of the 
RETURN macro instruction. 



The data set sharing facility provided 
in TSS/)60 requires that th~' dat", sets to 
be shared be organ~zed for acceSE by one of 
the virtual access methods. The coharing 
concept also relies on a system cf inter­
locks which prevent the simultar..eous read­
ing and/or writing of one 1~cord by more 
than one authorized user. Two types of 
interlock are provided a read interlock 
and a write interlock. 

A read interlock prevents a UEer from 
writing to a data set, data set member, or 
data set page. A read interlock is never 
actually placed on a data set. The inter­
lock is implied by the presence of an entry 
for the data set in the shared data set 
table. When a user attempts to open a data 
set, the shared data set table is searched. 
If there is an entry in the table for the 
data set, the write interlock is tested. 
If that interlock is set, no other task may 
access the data set. If the write inter­
lock is not set, a read interlock is 
assumed and a second task may open the data 
set for any operation which would impose a 
read interlock. Several users may there­
fore have simultaneous read access to a 
data set but if only one user has write 
access to it, no other user's task is 
allowed any access. Read interlocks are 
set on pages of a shared indexed sequential 
data set. This interlock prevents other 
users from writing to the interlocked page 
but permits them to read from it. 

A write interlock prevent.s read or write 
access to shared data by any user other 
than the one who caused the interlock to be 
set. Only one write interlock can be set 
on a given data set at a time and once set, 
it precludes the setting of read interlocks 
on the data set. Additionally, if a read 
interlock is in effect on a unit of data, a 
write interlock cannot be set. 

Interlocks are maintained in various 
tables depending on the data set organiza­
tion. Regardless of the table which con­
tains the interlock it is maintained in a 
four byte field called the interlock word. 
This field is aligned on a word boundary 
and has this format: 

r--T---T~--' 

IW I R IN II I l __ J.. ___ J.. __ J.. __ J 

W - Write interlock 

R - Read interlock 

SECTION 3: DATA SET SEARn~G 

N - Number of interlnck~ currently set 

A virtual partitJ.oned data ~;i't is inter­
lockl?:d at t.he memoer' 1'''1''1. The interlock 
word for each rnembe::, of d partitioned data 
set is contained ii> t.hc.' member header I!, 
the HESTBL (CH.l'l."1'W). The interlock is "et 
according l~O the organi zation of the men,ber 
and the op1~ion sp"ciried in the OPEN macro 
instruction. The interlock is set. when th,> 
FIND macro instrurtlon is issued, and 
released when the STOW macro instructio~ is 
issued or when the dat.a set is closed. 
Table 34 11sts the open options, and the 
type of interlock which is set for each. 
Shared access for members depends on the 
organization of thp lnember as dlscussed 
below. 

Virtual sequent ial data set.s are intE:'r­
locked at the data set level. The inter­
lock word for these data sets is ~~cated in 
the data set entry of the shared data set 
Lable (CHASDE). The type of interlock 
imposed depends on the option specified in 
the OPEN macro instruct.ion. Table 35 lists 
these options and the applicable interlock. 
'I'he data set is interlocked when it is 
opened and the interlock is relf'ased when 
the data set is closed. Since :c:everal 
users may have simultaneous read access to 
a data set, a count is maintained of the 
number of users currently accessing the 
data set,. As each user op,~ns the data set, 
the count of users is incremented. As each 
user issues the CLOSE macro instruction, 
t.he count is decremented and only when it 
reaches zero is write access permitted. 

A virtual indexed sequential data set or 
member is interlocked at the page level as 
well as at the data set level. T~at is to 
say, while one user is reading from one 
page of a data set, other users are 
restricted in their access to that page, 
but may access other pages in the data set 
as:o;uming that the type of access attemptfcd 
does not violate the data set or member 
level interlock. The paqe level interlock 
words for virtual index sequential data 
sets are contained in the external page 
entries (CHAEPE) in the RESTBL. One word 
of interlocks exists for each page of the 
data set and the locks are set and reset by 
the Movepage routine (CZCOC). Table 36 
lists the effects of various open options 
on page level interlocks. 

A page level read interlock is placed on 
a page when a GET or type-KY READ macro 

Section 3: Data Set Sharing 127 



Tdble :i4. LtreCL of OPEN Uption on Member 
interlock~; in M,emner Header 

r------------r-----------------------------, 
lOPEN Optioni IntE'rlock Type (Set by FIND) I 
----------+-----------------------------~ 

rr.;PUT ! READ I 
--M--------t---------------------- ----- --~ 

!OUTPUT !WRITE i 
~-----------t-----------------------------i 
i r NC.;? I WRITE (VSAA me..rnber) I 
; CUTIN ; READ (VrSAM member) I 
(UP;)ATE ; I 
L_.M __________ i. ____________________________ J 

Table 35. Effect of OPEN Options c'n Datd. 
Set Interlocks in SDST 

r---------------r-------------T---··----------, 
i O"EN Option I vs~ I VISAM i 
~-----------+------------t-------------~ 
ilNPUT IIm!Jlied READllmphed READ! 
r-------------+------------+-------------1 
! OlTPUT I WRITE ! WR ITE I 
~------------+------------t------------~ 
,INOUT I I 
.OU'fIN !"lUTE I Implied READ I 
!~D~E I I I 
------·-------·l.------------J.------------i 
: t\'ote: No interlocks are set on VPAM I 
. datci sets at OPEN time. I 
~ __________________________________ J 

Cable 36. Ef feet of OPEN option of VISAM 
page Level Interlock 

r-----------T---------y------------------, 
[Interlockl I 

iOPEN Optionj Type I When Set I 
.-----------+---------+------------------f 
I INPUT I READ t When page is read i 
~-----------+---------t------------------~ 
jUPDATE !WRITE JREAD Exclusive, I 
t I IWrite by new key, I 
; INOUT! IWRITE replace by I 
i I I key, DELRAC I 
\ OUTIN i READ tREAD by key and I 

I lall other opera- I 
Itions causing a I 

I I Ipage to be read I 
t-----------t---------t------------------~ 
I OUTPUT I None I I l ___________ ~ _________ L __________________ J 

l.nstruction is issued. A page level wirte 
interlock is set by the type-KX READ macro 
instruction which also releases a page 
level read interlock set by that task. 
Other macro instructions which release a 
page level read interlock when issued by 
t.he task which set it are WRITE, ESETL, 
DELREC, RELEX or CLOSE. If the task issues 
any macro instruction which references 
an~t.her page, t.he read interlock: is 
released. A page level write interlock is 
released by the GET, type-KY READ, RELEX, 
WRITE, DELREC, or CLOSE macro instruction 
or by any macro instruction which 

128 Part II: Virtual Access Method (VAM) 

references ii paqe ot.her than the one in 
which the write interlock is set. 

CONTROL TABLE INTERLOCKS 

VAM has t~o control tables which reside 
in shared virtual storage - the RESTBL and 
the SDST. Rcutines which manipulate these 
tables must interlock t_hemto prevent them 
from being changed while in use. These 
interlocks do not have the (~nventional VAM 
interlock word format. 

The SDST interlock is a one byte field 
at the beginning of the SDST control entry. 
~hile that lock is set, no other task may 
access the SDST. Within t:he SDST, data set 
and merr,ber ent r ies are made t.O record the 
allocation of shared storage. The Search 
SDST routine, which makes the SDST entry, 
does not allocate the shared storage, but 
simply reserves space in the SDST for the 
allocation to be recorded. The reserved 
space must be interlocked to prevent system 
usage of the SDST entry before the alloca­
tion is actually completed. This is done 
by setting the SPT number to X'FFFF', which 
is an invalid SPT number. After allocation 
of shared storage. the routine obtaining 
the shared virtual storage will store the 
actual SPT number in the SDST, thus releas­
ing the pseudo-lock. 

The RESTBL interlock must be set by 
those routines manipulating the RESTBL of 
shared data sets. This includes most of 
the VAM modules. The RESTBL interlock i:3 
the first byte of the RESTBL header, and 
has the same effect as a conventional write 
interlock. Most VAM routines can be called 
at a variety of levels; that is, when a 
routine is called that may manipulate t:he 
RESTBL, the interlock mayor may not alrea­
dy be set. For this reason, each routine 
attempts to set the lock. If the lock is 
already set, the tasks must wait until it 
is reset, unless it was set by the current 
task against the current DeB. This infor­
mation is in the RESTBL. The ID of the 
task imposing the RESTBL lock is recorded 
in the RESTBL header (RHDTID), and the 
interlocks charged against a DeB are rec­
orded in the DeB header. 

As with setting the RESTBL lock, each 
routine which attempted to set the lock 
must attempt to reset it, but only the rou­
tine which actually set the lock will 
effect its release. This is accomplished 
by storing, in the RESTBL header, the PSECT 
location of the routine which caused the 
lock to be set. When backing out of a nest 
of calls, each routine will attempt to 
reset the RESTHL lock, but if it did Dot 
set it, a return is made to the next higher 
level with the interlock still in force. 



ShaIln<] ot viLt Ud l organi zatiOJl data 
c;ets is dppendent_ urx)n the owner pennitting 
the sharing hy means of the PERMIT command 
and the user declaring his intention to 
share thp ddt.a set by means of th.> SHARE 
eommanri. The command syst.em rout.lnes and 
ccltalog serviC('~ routines set. indi':ators in 
the owner"s catalog which indicate his wil­
lingness to share t.he data :,et. the users 
with whom he is willing to share ~t, and 
the access to the data set he wishes each 
to have. These routines also set indica­
tors in the user's catalog which associate 
the data set name he is using with the 
owner's data set. 

Three routines in the acce~;s methods 
provide the additional proces~;ing required 
to facilitate the sharing of data sets. 
The first two of these routines, Interlock 
(CZCOH) and Release Interlock (CZCOI), 
maintain interlocks in various tables ir. 
the system. These interlocks prevent two 
users from simultaneously updating a data 
set. 

The third of these routines is the 
Search SDST routine (CZCQE). This routine 
searches the shared data set table in an 
effort to locate the name of a shared data 
set or member of a shared partitioned data 
set. This table consists of a group of 
chained data set or member entries, which 
correlate opened data sets or roembers with 
their respective shared page tables. These 
shared page tables, in turn, specify the 
location of each page of the data set in 
main storage. and are followed by the 
external shared page tables, which list the 
external storage addresses of the data set 
pages. 

If a data set is not already listed, 
this routine will create an entry for it; 
if the data set is listed, the count of 
users sharing it is incremented. This rou­
tine is also used to delete entries or 
decrement the count of users sharing the 
data set, as each user closes his DCB asso­
ciated with the data set. A description of 
Search SDST is included in the preceding 
section. 

Interlock Routine (CZCOH) 

Interlock is called by other system rou­
tines to impose read (R) or write (W) 
interlocks on an interlock control word. 
The type of interlock set depends upon the 
OPEN option. Tables 34, 35, and 36 sum­
marize the effects of these options on the 
operation of Interlock. The interlock con­
trol words are used to control shared 
access to the POD, RESTBL (header or 
external page entries), member headers, and 
SDST data set entries. When a write inter­
lock is imposed, no additional read inter­
locks may be set. If a read interlock is 

set, the task attempting to set a writ.e 
interlock will wait unt.il all read inter­
locks have been removed by the tasks that 
set them. No additional read interlOCKS 
will be set duri ng this wai t . (See Cha rt 
LA. ) 

Restrict ions: It is impossible to imPOl'" 
more tha.n 255 read interlocks with this 
routine. 

Attributes: Read-only, reenterable, privi­
leged. public, system. 

Entry Point: czeOHl -- Entered via type-l 
linkage. 

Input: Register 1 contains the address of 
the following parameter list: 

Word 1 -- Address of the interlock control 
word. 

Word 2 Address of the type code specify-
ing the interlock to be set. 

Word 3 -- Address of the DCB associated 
with the data set on which the lock is 
being imposed. 

The type code pointed to by word 2 is a 
2-byte field described as follows: 

Byte 1 specifies the type of interlock to 
be reset: 

C'R' = Read 
C'W' = Write 

Byte 2 specifies the table in which the 
interlock is to be reset: 

X'OO· = SDST 
X· 04' = RESTBL 
X'OS' == POD 
x'oe' Member Header 
X'10' '" External Page 

The DCB address normally specified in 
word 3 may be set to zero if it is not 
known. However, during the time that an 
interlock remains imposed after no DeB 
address was specified, it must be assured 
that the system will not ABEND. 

Modules Called: 
TSEND (CEAP9) -- End this task's time slice 

while waiting for a lock to be reset by 
another task. 

SYSER <CEAlS2) 
as input. 

Report invalid parameters 

ABEND (CZACP1) -- Terminate task after 
SYSER .• 

XTRCT (CEABO 3) 
header area. 

Get task 10 for RESTBL 

Section 3: Data Set Sharing 129 



t_xi t ,; 
NOrmd _ .. LXlt 1S ;'0 the c.>lling routine 

Wl h the specified interlock set. No 
cornpletion code i~; given. 

Errccs -- Th" tYl-"~ cndes supplied art 
checked fin validity dnd a SYSER c.nd 
ABEND dre given if either is invalid. 

S:.:.Ep:cat ion: Initiali zat.ion and gener,.l 
register storage is executed in conformance 
';.Ii th linkage conventions. Base registers 
aLe declared for the CSECT and PSECT, para­
rreter list, DCB, DCB header, interlock word 
and type codes. 

The interlock type and the table type 
Wh-eT e t.he interlock is to be imposed are 
tested for validity. 

The write interlock byte of the inter­
loci< word is tested to determine if a write 
inttrlock is already in force. If the 
write interlock is on and the request is 
not. for d RESTBL lock, time slice end is 
forced by calling TSEND. This allows other 
tasks to continue processing and eventually 
H"lease the intl?rlock that the current task 
was attempting to set. 

The RESTBL lock is handled slightly dif­
ferent from other interlOCKS. Each routine 
which manipulates the RESTBL attempts to 
set a write interlock on the RESTBL. which 
i:-~ accounted for 00 a OCB wi. thin task 
uasis. A call tothtO interlock routine may 
De execut.ed for a RESTBL interlock and the 
i{ESTBL may already bt: locked. If t.his con­
dition occurs and the same task which set 
the initial lock is attempting to set 
another against the same DCB, control is 
returned to the caller, as if the lock had 
just be61 set. Otherwise, TSEND is called. 

If the write interlock byte of the 
interlock is not set, interlocks may be set 
as desired. The locks will be recorded in 
the interlock summary word of the asso­
ciated DCB header. In addition, if the 
lock is set on the RESTBL, the virtual 
storage address of the PSECT of the calling 
routine is saved in the interlOCK word, and 
is used in the interlock reset process. 

The interlock to be set is either read 
01: write. The write lock which is already 
set is recorded in the DCB header. and con­
trol is returned to the caller by the 
RETURN macro instruction if no read locks 
are currently set. Otherwise, TSEND is 
called to wait for the read locks to be 
released. 

Read locks are set cumulatively. The 
read interlock is set and the read inter­
lock counter is incremented to indicate the 
presence of one or more read interlocks. 
This read interlock process is controlled 

130 Part II: Virtual Access Method (VAM) 

by an additional lock oyte within t.he 
interlock word it.sPlf. Tht' writ.,. lC'C-K i" 
reset, the re.:id lOC-K is Accounted tor In 
the DeB header, and cont rol i tI 1 t't \l[ 00',1 t ,\ 

thf' caller by th(' Rr:'1"llHN """(-lll im;t lllct H'll. 

Release Int'~rlock (RLINTLK) is called by 
system routines to release read (R) and 
write (W) interlocks on an interlock con­
trol word. (See eha rt LB.) 

Attributes: Read-only. reenterable, privi­
leged, public, system. 

Entry Point: CZCOIl -- Entered via type-l 
linkage. 

Input: Register 1 contains the address of 
a 3-word parameter list as follows: 

Word 1 Address of interlock word. 

Word 2 Address of the type interlock. 

Word 3 Address of DCB being processed. 

The type of interlOCk pointed to by word 
2 of the parameter list is a 2-byte field 
described as follows: 

Byte 1 specifies the type of interlock to 
be reset. 

C'R' Read 
C'W' == Write 

Byte 2 specifies the table in which the 
interlock is to be reset: 

X'OO' 
X'04' 
X'OS" == 

SOOT 
RESTBL 
POD 

x 'oct =I Member Header 
X'lO' External Page 

The DCB address normally specified in 
word 3 of the parameter list may be set to 
zero, if it is not known. It should be 
known, if it was known at the time the lock 
was set. If it is not specified the inter­
lock summary bits in the DCB header will 
not be reset. 

Modules called: 
TSEND (CEAP9) -- End time slice while wait.­

ing for a lock to be reset by another 
task. 

SYSER (CEAlS2) 

ABEND (CZACP1) 
SYSER. 

Invalid input to CZCOI. 

Terminate task after 

VDMEP (CZCQK) -- When desired lock to be 
set is not set. 



Exits: 
Normal -- Exit is to the calling 

the RETURN macro instruction. 
pletion code is given. 

routine by 
No com-

Error -- The type codes are checked for 
validi ty and SYSER and ABEND are called 
if either is invalid. 

VDMEP is called if an attempt is made to 
release a lock that is not set. 

Operation: Initialization and general 
register storage is executed in conformance 
with linkage conventions. Base registers 
are declared for CSECT and PSECT, parameter 
list, DeB, DeB header, interlock word and 
type codes. 

If the table type code specified is 
invalid, SYSER is called. Also. if the DeB 
is specified, and the summary bit in the 
DeB header corresponding to the interlock 
intended to be released does not indicate 
that the lock is on, VDMEP is called. 

A release request may be for a read or a 
write interlock. A special case of this is 
the RESTB!. interlock. The RESTBL interlock 
must be set and must be released by the 

same routine that set it. The PSECT 
address of the routine requesting reset l~; 
compared to the PSECT address ,~tored in the 
interlock word. If they are the sam.", the 
lock is reset and control is returned to 
the caller by the return macro instruction. 
Otherwise the lock is not reset before 
returning. 

A request to release a write interlock 
will cause the interlock to be reset. If 
the DeB is specified and the summary dces 
not indicate that the requestea lock is 
set, SYSER is called. If the summary does 
include the requested lock, the bit is 
cleared and control is returned to the 
caller by the RETURN macro instruction. 

Read interlocks arp releaspd by decrp­
menting the read interlock counter. When 
the count_er goes to zero, the physical and 
read interlock is cleared. 

The manipulation of the read interlock 
and the read interlock counter are con­
trolled by an additional lock in the inter­
lock word. The control lock is reset and 
the summary bits are reset if a DeB was 
specified. 

Section 3: Data Set Sharing 131 



SECTION 4: OPEN AND CLOSE PROCESSING 

This section describes the routines 
which prepare d ddt.d set and its related 
control blocks for processlng (OPEN) dnd 
.y-out ioes .... hi ch remove d task's refe! ences 
1:0 d data set. and release unneeded ~. pace 
whpn a task no longer wishes to reference 
;hc: (ldtca set (CLO:;E:). The routines in this 
section can be enter~d as a result of one 
at seven macro instructions being issued: 

1.." OPEN -- a user wishes to aeces!; or 
create a data set. 

2. DUPOPEN -- a user wishes to access or 
create a duplexed data set. 

3. FI~~ -- a user wishes to access a 
me~~er of a partitioned data set. 

/{. CLOSE -- a user has finished using a 
data Set. 

S. DUPCLCSE -- a user has finished using 
a duplexed data set. 

6. STOW --3 use:: has finished using a 
member of a partitioned data set. 

7. ABEND -- a task is being abnormally 
terminat.ed and its data sets must be 
closed. 

Figures 22 and 23 depict the interaction 
among the various modules involved in open­
),;-1<; and closing a data set. 1'he routines 
Open Common (CZCLA) and Close Common 
(CZCLB) contain the initial point of link­
age from the OPEN and CLOSE macro instruc­
tions for d.l ... access methods and have been 
described earlier in this manual. 

Also included in this section is a 
description of the Vl~ ABEND Interlock 
Release routine. When a task is abnormally 
terminated because of some error condition, 
the close processing is performed to close 
any data sets that the task may have been 
using. The V,~ ABEND Interlock Release 
routine is called to locate and t.o release 
any interlOCKS which were set when the 
ABEND was issued. 

OPEN PROCESSING 

The routines associated with Open pro­
cessing include CPENVAM, DUPOPEN. VSAM 
Open, and VISAM Open. 

132 Part II: Virt.ual Access Method (VAM) 

OPENVAM Routine (CZCOA) 

OPENVAM ~s called by Open Common (C2CLA) 
to perform DCII and aata set initialization 
common to all of the virtual access 
methods. (See Chart MA.) 

Att ributes: closed, reentrant, privileged. 

:?nt ry Point: CZCOAl -- Entered via type-l 
linkage. 

Input: Register 1 contains a pointer to il 

four word parameter list as follows: 

Word 1 Address of the DCB. 

Word 2 Address of the JFCB. 

Word 3 Address of -Fence StraddlerR save 
area. 

Word 4 -- Address of the public or private 
volume table (PVT). 

Modules Called: 
Connect (CZCG7) -- Connect task to shared 

RESTBL 

ESA Lock (CZCEJ1) -- Lock PAT. (CZCEJ2) --
Unlock PAT. 

REQPAGh (CZCOE1) -- Assign directory page 
(VPAM) • 

RELEXPG (CZCEN1) -- Release pages. 

DELCAT (CZCFD1) -- Release catalog entry. 

FREEMAIN (CZCGA3) -- Free virtual storage. 

Search SDST (CZCQE1) -- Creates a shared 
data set table entry for a newly opened 
data set or increments the count of 
users for the data set if it is already 
open. 

Interlock (CZCOH1) -- Interlocks the RESTBL 
of a shared data set when the routine is 
operating on it. 

Release Interlock (CZCOI1) -- Releases the 
RESTBL interlocks placed on shared 
RESTBLs. 

OSCB READ/WRIT (CZCEM1) -- Request a PAT 
write. 

VDMEP (CZCQK1) -- Issue diagnostic message 
and terminate function but not task. 



FIND ) ( OPEN ) 
f 

find Common fo-----
(CZCO]) ()peo 

(CZCLA) 

I 

OPENVAM 
(CZCOA) 

~ ~ 
Open Open 

Sequential Indexed 

(CZCOP) Sequential 
(CZCrZ) 

Figure 22. Module Interaction in VAM Open Processing 

STOW ( ABEND CLOSE ) 

Common 
STO':,' ABEND Clo,e 

(CZCOK) (CZAC?) (CZCLB) 

ch 
ClOSEVAM 

(CZCOB) 

~~ 
Clase 

Close 

Sequential Indexed 
Sequential· 

(CZCOO) 
(CZCOK) 

I 
Figure 23. Module Interaction in VAM C10se Processing 

DUPOPEt-J \ 
(CZCEy) 

DUPCLOSE 

DUPCLOSE 
(CZCEZ) 

~ 

Section 4: Open and Close Processing 133 



[)..::-;c£:, HECOV:;~:":".'i {C::t~LI~'lj -- Atte.::.·;pts to reco­
V(:1'" from t~l~~\ er:.:or when tht- DSCd is read4t 

GETKAIN \CZCG2:, -- Ok;tdins virtual storage 
:for nonsnarh1 ;o,ES'l'BLs and for required 
direct.ory page": for ncnshared data sets. 

Gi':Tsr-t\IN (CZCG6} -"- Obtains shared virtual 
storage for shared RESTBLs. 

Flc~DF:'{,PG (CZCELl) --- Assigns ext,ernal 
storage space to a new data set. 

WRI'~'DSCB (CZCEW1) -- WI' i tes out updated 
DSCBs to the volume. 

CKCLS (CEAH24) -- Obtains t.he protection 
class of the t,ask_ 

XTRCT ICEAH03) -- Obtains the ID of the 
task" 

~xpand RESTBL (C2CQIl) -- Increases the 
, s_ ze of the nonshared RESTBL .... hen neces­

sary to contain new headers. 

x-;OVEPA •. ;E (CZCDCl i --- Reads in t,he directory 
paqes of a partitioned or indexed 
seq:uential data set. 

VSAI-l OPEN (CZCO?l) -- Performs open proces­
sing unique to sequentlal data sets. 

VIS,l\M OPEN (CZCPZ1) _.- Performs open pro­
ceSSing uni.quE to indexed sequential 
data sets. 

Exits: 
Normal -- Return to caLling routine. 

Srror -- VDMEP i,; called under the follow­
ing conditions: 

~ Error encountered trying to PGOUT 
updated DSCB. 

~ DSCB haS invalid chain field. 

.. At'tempt to expand shared data set. 

.. JReiative volume number is out of 
volume table limit. 

~ Bad return code from CZCEM; failure to 
read DseE. 

.. A,ll att,empt to open a non-VAM data set. 

.. Search SDST could not link to shared 
VM. 

.. Should be E-type OSCB but is not . 

• Total pages used by data set. in error. 

• External page request exceeds amount 
available. 

134 Part II: Virtual Access Method {VAM) 

• Attempt to o~>n ne~ data set for 
read-only. 

• T~ active users using private shared 
data fiet, 

• Unrecovf':1able DSCB ,'reor. 

• OSCB does not contdin CO{x.'ct nlulIb,·[ 
of ext_ent ~ . 

Operation: On entry, OPE'NVA!'<l save~; all 
input registers and establishes base regis­
ters for the CSEC'I'. PSECT, RESTBL, OCB, and 
JFCB. The user's authorization to open the 
data se't and the data set organizat.ion are 
checked. If the user is not authorized to 
open the data set or if the data set is not 
VAM. VDMEP is called. 

Two types of data sets are processed by 
OPENVAM, shared and nonshared. While the 
objective of OPENVAM is functionally simi­
lar for both types, that is, to prepare 
data sets for access, they are handled dif­
ferently. The logic flow of OPENVAM 
diverges at specific points to accomplish 
processing for shared or nonshared data 
sets. 

One of the functions performed by OPEN­
VAM is to build a RESTBL for a new data 
set,. Tests are made to see if the data set 
has al.ready been opened. If the data set 
has been opened, a RESTBL already exists 
and this processing can be skipped. The 
tests for opened DeBs differ for shared and 
nonshared data sets. If the data set is 
shared, the task currently opening the data 
set may have opened it,. In this case, the 
count of open DCBs in the JFCB is nonzero. 
If another task has opened the data set, an 
entry will exist in the shared data set 
table. 

A call ~s made to Search SDST (CZCQE) to 
locate or to create an entry. Two return 
codes from CZCQE are acceptable. One code 
indicates that an entry existed. In this 
case, a call is made to connect (CZCG7) to 
connect the task to the shared RESTBL ~hich 
exists. The second code indicates t.hat no 
entry existed but one was created. In this 
case, the RESTBL must be created since the 
data set is newly opened. Any return code 
other than these two is considered an error 
and VOMEP is called • 

If the task currently opening the data 
set had DCBs already open for it or if the 
task was connected to the shared RESTBL, 
the following processing to create the 
RESTBL is skipped • 

For nonshared data sets, the test 
involves a check of the JFCB to see if the 
count of open DeBs is nonzero. The same 
criteria apply to nonshared data sets as to 



shared. 
buU t. 

If DeBs are open, no new RESTBL is 

l~:J~J:din'L __ tJl'c: ___ Kl'~~1~f!I.,: (-'or d 11 new} y opt:'ned 
old ,lat .. spt:j, t_h€' tormat-E DSCH ;~; reiid 
into virtual storage. 'rhi:. i:; decampli ,;hed 
uy meiHl'; 01 th. SETXP milcro instr1lction 
which ci impl y adds the ext ernal Pdq!" numlll~r 
to the ext_erna] page table tor th,' task. 
Any reference to the OSCB page will result 
in a paging operat.ion by thp resident 
supervisor. Once the OSCE pagE. i:; in vir­
tual storage it is checked for errors. A 
cnecksum error results in a call to OSCB 
Recovery (CZCEF) to attempt recov'~ry. A 
bad volume pointer, a pointer t~o d non-DSCB 
page, a bad relative page number tor a 
device, or the case where data set: names in 
the JFCB and the oseB do not miltch, result 
in a VOMLP call. 

Once the format-E DSCB has been read in, 
the number of pages required to contain the 
RESTBL is computed. For new data sets, 
this number is a function of the primary 
space allocation as indicated in the JFCB. 
For existing data sets it is a function of 
the size of the data set as it exists. If 
the data set is shared, this RESTBL size is 
increased by 2 pages. If the data set is 
SYSLIB, 10 pages are added; for SYSCAT, 5 
~ages are added. This increment is used 
because a shared RESTBL cannot be expanded 
and the value 2 represents a -best guess~ 
at the ultimate size of the RESTBL. The 
value should be adjusted as installation 
needs dictate. If the shared data set is 
also index sequential, an additional 2 
pages are used. 

After the RESTBL size has been computed, 
a call is made to GETMAIN or to GETSMAIN to 
obtain virtual storage for the RESTBL. 
When virtual storage has been obtained for 
the RESTBL, it is interlocked, if shared, 
and the RESTBL is filled in. This process 
starts with the building .of the RESTBL 
header. The total number of pages is 
stored; if the data set is not new the 
counts of overflow, directory, and data 
pages are stored, and, for all data sets, 
the number of assigned pages is compared to 
the number of -in use W pages. If more 
pages are in use than are aSSigned, VDMEP 
is called. If no error exists, the RESTBL 
is chained to the JFCB and pointers to the 
format-E DSCB and the volume table are 
placed in the RESTBL. 

Next, the data Set is checked to See if 
it is neW. If so, a call is made to FIN­
DEXPG (CZCEL) to get external pages for 
assignment to the data set, and the pages 
returned are placed in the RESTBL and 
marked assigned but not in use. A call is 
later made to WRITDSCB (CZCEW) to place the 
updated entries in the DSCB chain. If an 
error return is received from FINDEXPG, 

VDMEP is called. For t-~xisting data sets, d 

test is made to see if the volume is public 
or priVate. In the case of private 
volumes, a list of privatf' volumes is con­
tdined in the DSCOs before the page 
'·'ntrie!;; the:;p volume IDs mm;t be skipped 
dnci aT<' not_ ['ldc~:d .in the REST8L. For 
(.'xistinq ddta ,;pt:;. thp calls to FINDEXPG 
and WRIT[~CB are not required. 

When the ext ("rndl pdge entr ie;; f rom th~ 
OSCB, or for new data sets from the FIN­
DEXPG routine, dre placed in the RESTBL, a 
distinction is made between shared and non­
shared data sets. For nonshared, the 
entries are simply moved into the RESTBL. 
For shared data sets, an interlock word 
must be provided before each page entry. 
This interlock word is inserted and set to 
zero as each entry is placed in the RESTBL. 

When the RE~~TBL has been built, the DCB 
header must be built and added to the chaiD 
of headers in the RESTBL. This last step 
is performed first. The available space in 
the RESTBL is checked to see if there is 
space to contain the new header. If no 
space is available, a call is made to 
Expand RESTBL to increase the size of the 
RESTBL. This is only done for nonshared 
data sets. If the condition occurs for a 
shared data set, a call is made to VDMEP. 
When space has been found to contain the 
header, it is chained to the list of head­
ers in the RESTBL and the OCB header is 
then built. 

Building the DCB header involves chain­
inq it to the DCB, the RESTBL, the RESTBL 
header, and the JFCB. The protection class 
of the task is determined by a call to 
CKCLS (CEAQ4), and the task 10 by a call to 
XTRCT <CEAH2); these values are stored in 
the DCB header. The VAM read-only flag In 
the JFCB, if turned on by Common Open, will 
be tur~ed off and the read-only access flag 
turned on in the DCB header. Finally, the 
address of the directory or the POD is 
placed in the DCB header. 

If the data set is shared, there are no 
other DCBs open, and the data set is either 
partitioned or index sequential, it may be 
necessary to assign directory pages. If no 
directory pages exist for the data set, a 
call is made to Request Page (CZCOE) to 
assign the first page as a directory page. 
After this or if directory pages existed, b 

call is made to MOVEPAGE to read the dirEC­
tory pages into virtual storage, and the 
number of directory pages is placed in the 
RESTBL. Next, or if the data set was par­
titioned or sequential, or if the data set 
was already opened, the access dependent 
open routine is called as described below. 

For nonshared data sets the processing 
is essentially the same with two excep-

Section 4: Open and Close Processing 135 



1'ion5. F.l!"st, a call is made to GETMAIN 
tor v.lrtual st.orage space prior to the call 
t.o MOVEPAGE. This is done to provide space 
for the directory pages. Second. the count 
of directory pages is not updated in the 
I:<,E:jTI;L dnd the dccess dependent open rou­
tines are called. 

~,cce:;s-Dependent Open Processing: The data 
s.ot i.s now tested to determine its (.rg3n1-
zatl.on. If the data set is sequential, 
VSAM OPEN (CZCOP) is called; if it is index 
sequential. VISA~ OPEN (CZCPZ) is called. 
'i'11~S(' routines perform open processing 
'.mique to the data set organization. If 
t.he dat.a set is partitioned, a member head­
er i;, bui It and added to the chain of memb­
er headers in the RESTBL. This is done in 
trw same manner as the adding of the OCB 
neader with the call to Expand RESTBL for 
nonshared data sets, when necessary, and 
the call to ABEND when the RESTBL cannot 
contain the header for a shared data set. 
(Yr.ce the member header has been built, it 
lS linked to the DCB header, the RESTBL 
ir:t.erlock is released, if the data set is 
shared, and cont.rol is returned to the cal­
ll.ng routine. 

DUPOPEN Routine (CZCEY) 

T.ne function of DUPOPEN is to open dupl­
~cate data control blocks for a duplexed 
data set residing on public volumes. One 
copy of the data se·t is the prunary copy. 
The secondary copy resides on a separate 
public device and is, at all times, an 
exact copy of the primary copy. As such, 
the secondary copy can be used for recovery 
purposes when a read error occurs on the 
primary copy. 

DUPOPEN flags the JFCBs (TDTDCU to ind­
~cate the primary dnd secondary copies, and 
chains the two JFCBs by placing, in each 
JFCB, a pointer to the other (TDTDUP). By 
calling Open Cornman and, subsequently, 
()f'ENVAM. DUPOPEN builds a RESTBL for each 
copy of the data set and opens the DCBs. 
The address of each RESTBL is placed in its 
corresponding DCB and the field DHDDUP of 
pacll DeB headf'J is set to po1nt to the 
(;thf'r RESTEL. (See Chart ME.) 

Attr'ihutes: Closed, fetch protected, pri­
vil.,ged, reent.rant, nonrecursive, and 
reslding in public vlrtual storage. 

.l:;ntry Point: CZCEYl -- DUPOPEN is entered 
by a t,ype-l or type-2 linkage generated by 
the expansion of the DUPOPEN macro 
instruction. 

~: Register 1 contains the address of 
the following parameter list: 

Went 1 -- Addn:ss of the primary OCB. 

136 Part II: Virtual Access Method (VAM) 

Word 2 Address of the secondary DCB. 

Word 3 Address of an option byte which 
contains: 

bits 0-3 
bits 4-7: 

0000 
1111 
0001 
0011 
0111 
0100 

Modules Called: 

Input 
Output, 
Read Back 
Inout 
Outin 
Update 

Not used 

OPEN COMMON (CZCLAO) -- A single call is 
made to open both the primary and secon­
dary CCBs. 

SYSER (CEAIS2) -- Minor system error with 
message. 

ABEND (CZACP1) -- Abnormal task termina­
tion. 

FINDJFCB (CZAEB) -- To create a JFCB when 
one is not found for the DCB being dup­
licated OPEN. 

Exits: 
Normal -- Return to the calling routine. 

Error -- ABEND is called under the follow­
ing conditions: 

• No JFCB could be found or created for 
the primary or secondary DCBs. 

• Data set not public. 

• DCBs not compatible. 

• Data set not VAM orqanization. 

• Same JFCB specified for both DCBs. 

• JFCB specified has been found in 
JOBUB. 

SYSER is called before each ABEND. 

Operation: When DUPOPEN is entered, 
register 1 contains a pointer to a paramet­
er list which, in turn, contains pointers 
to the primary and secondary DCBs. DUPO­
PEN, after performing the usual register 
save and base register' iIU tiali zation, 
saves the addresses of these DCBs and the 
open option in its own PSECT. DUPOPEN then 
begins to scan the list of JFCBS in the TDT 
beginning with the last .JFCB created and 
working nack toward the first. 

For each JFCB it encounters, it compares 
the data set name in the JFCB wlth that in 
the DCB. If no matching JFCB is found in 
the entire list of JFCBS, FINDJFCB is 



called to help create one. When the JFCB 
for the first DCB is found, i1;S address is 
saved and the same procedure :_s repeated 
for the second DCB. 

When both JFCBs have been .Located and 
tested to ensure they are not the same 
JFCB, they are examined to ensure that the 
corresponding data sets are on public 
storage and are VAM organization. If eith­
er data set fails either test, the task is 
terminated and is sent t_he appropriate 
error message. 

A test is made to ensure that the DCB is 
not already in the user's JOBLIB. 

Next. a test is made to see if any DCBs 
have been opened for the data set. If none 
has, the JFCBs are chained together and a 
flag is set in each to indicate which is 
the primary and which is the secondary. 
When this is done or if some DCB had alrea­
dy been opened for this data set, a para­
meter list is constructed for OPEN COMMON. 
This parameter list contains the addresses 
of both DCBs and the open option indicator. 
OPEN COMMON is then called to open both 
DeBs and is passed the address of the para­
meter list. 

On return, the two new DCBS are compared 
to ensure that they match. If they do not 
match, ABEND is called and a message is 
sent to the task. If the DCBs do match, 
DUPOPEN links the corresponding RESTBLs and 
returns to the caller. 

VSAM Open Routine (CZCOP) 

VSAM Open is called by OPENVAM (CZCOA) 
and by FIND (CZCOJ) to initialize the data 
set buffers and the DCB to allow processing 
of a virtual sequential access method 
(VSAM) data set (See Chart MC.) 

Attributes: Read-only. reenterable, privi­
leged, public. 

Entry Point: CZCOPl -- Entered via type-- 1 
linkage. 

Input: Register 1 contains the address of 
the DCB to be opened. 

Modules Called: 
GETMAIN (CZCG2) -- Obtain virtual storage 

space for the sequential buffer to be 
associated with this DCB. 

SETL (CZCOT1) -- Initialize data set to 
begin processing at beginning or end. 

Exits: 
Normal -- Return to the calling routine. 

Error -- VDMEP is called under the follow­
ing conditions: 

• Record length is specified greater 
th;ln 1 segment (1,048,576 bytes). 

• Re=ord format code is in error, that 
is, not 'V', 'E' or 'u'. 

• Record format is undefined, and record 
length is not a mUltiple of 4096 
bytes. 

QEeration: General registers are stored in 
conformance with linkage conventions and 
base registers are declared for the PSECT 
and CSECT. a DCR, DCB header and a RESTBL. 

The V-cons for the sequential user 
macros GET, PUT, PUTX. and SETL are stored 
in the DCB. These sequential routines are 
-fence sitters." Their PSECTS cannot. be 
used for storage (save areas). therefore, 
save areas are allocated dynamically. Open 
COR~n gets a ·scratch W page for this pur­
pose and its location is stored in the GET 
R-con location in the DCB by OPENVAM. VSAM 
Open takes that value, computes save area 
locations for the other ~cros and stores 
the computed values in the respective R-con 
locations in the DCB. 

VSAM Open is responsible for establish­
ing input/output areas in virtual storage 
for the sequential access method. The 
space requirement is computed from the log­
ical record length declared in the DCB 
(DCBLRE) at OPEN time. The maximum allow­
able record length is 1,048,576 bytes (1 
segment); if this value is exceeded, ABEND 
is called to terminate the task. 

The sequential access method processes 
three types of record format - fixed, vari­
able and undefined. Special considerations 
are applied to each format in the alloca­
tion of I/O space. 

Undefined records must have page­
multiple record length. ABEND is called if 
the record length (DCBLRE) is not in page 
multiples. 

Variable-length records have eight bytes 
of space control information appended to 
each record (four bytes preceding the reco­
rd, provided by the user, and four bytes 
following, provided by VSAM). This 
adjusted value record length plus control 
bytes is used to compute the actual amount 
of storage required. 

For fixed-length records whose record 
length is a page, only one I/O page is 
needed. 

For variable-length and fixed-length 
records other than page multiples, a mini­
mum of two I/O pages is required. GETMAIN 
is called by the GETMAIN macro to obtain 
the virtual storage to be used as I/O 

Section 4: Open and Close Processing 137 



areas. The vlrtUdl storage iocation of 
this area is stored in the OCB and the DCB 
header. 

The record length (DCBLRE) is saved 1n 
the DCB header (DliDMRL) as the maximum log­
ical record length. If this value is ever 
exceeded, and the condition can be 
detected, ABEr."D will be called. This could 
happEn '«hile processing undefined or 
varlable-length records where the record 
length is defined dynamically by the J.ser. 

VSAM Open is also responsible for the 
~nitial positioning of the data set. A 
cali is made to SETL {czcO'r) to set: DCBLPA 
to the appropriate value. The DCB oren 
ontion mCBOPl) is used to determine what 
that value should be. For input, upc:ate, 
or INOtlT. tJ .. , dat,a set is logically posi­
tioned to the beginning. For output or 
OUTIN the data set is positioned to the 
logi.cal end. 

Control is returned to the caller by the 
RETURN macro. 

VIS~~ Open Routine (CZCPZ) 

VISAM Open is called by VAM general ser­
vices Open and by Find, to initialize DCB 
and page buffers. (See Chart MD.) 

Attributes: Read-only. reenterable, publ­
ic, privi.leged. 

f:ntry Point: CZCPZl -- Entry to VISAM Open 
is by type-l linkage (privileged to 
privileged) • 

Input: Register 1 contains the address of 
the DCB. 

Modules Called: 
GETMAIN (CZCGA2) -- Obtain page buffers for 

data and overflow pages. 

Sc~L (CZCPC2) -- Position data set accord­
ing to OPEN option. 

!~x~ts: 
Normal -- Return to the calling routine. 

Error --- ABEND is ca.lled if key offset + 
key length is greater than record 
length. VDMEP is called under any of 
the following conditions: 

• Key length is less than the minimum. 

• Record length exceeds maximum. 

• Key offset goes beyond record. 

• Overflow pages greater than 2QO, or 
directory pages greater than 255. 

138 Part II: Virtual Access Method (VAM) 

• Data set opened for Input or Inout and 
no data pages. 

Operation: General registers are stored in 
conformance "dth linkage conventions, and 
base registers are declared for the CSECT 
and PSECT. a DCB, DCB header and a RESTBL. 

The V-cons f:n t.he index sequential user 
macros GET, PUT, and SETL are stored in the 
DCB. These index sequential routines are 
wfence sitters.- Their PSECTS cannot be 
used for storage (save areas), therefore, 
save dreas are allocated dynamically on a 
DCB basis. Open Cornman gets a "scrat.ch" 
page for this purpose, and its location ifi 

stored in the GET R-con location by OPEN­
VAM. VISAM Open takes that value. computes 
save area locai:ions for the other macros 
and stores the computed values in the 
respective R-con locations in the DCB. The 
PUTX macro is not used by VISAM Open. Its 
R-cons and V-cons are zeroed to prevent any 
erroneous usage. 

Legality checks are made on DCB 
information-key length (OCBKEY). record 
length (DCBLRE). and relative key position 
(DCBRKP) • 

The minimum key length is one byte. 

The maximum logical record length of a 
VISAM data set is 4000 bytes. 

The origin of the relative key position 
must be within the range of the logical 
record length. Also, the relative key 
position plus the key length must not 
exceed the logical record length. 

DeB fields peculiar to VISAM are 
initialized. 

Data records may never cross page boun­
daries in'index sequential organization, 
therefore, only one virtual storage page is 
required as an I/O buffer. This is 
obtained by the GETMAIN macro. 

Where this is not the first DCB open for 
a nonshared data set within the same task, 
the DCB will be linked to the existing page 
buffer, and no call to GETMAIN is 
necessary. 

If overflow pages exist, a virtual 
storage page is also needed as an overflow 
page I/O puffer. The maximum number of 
overflow pages is 240. 

Having obtained all necessary virtual 
storage space, VIS AM Open will logically 
position existing data sets (that is. 
RHDDAT~O). A nonexistent data set may not 
be opened for input, update or inout OPEN 
options. If there are no data pages, VISAM 
Open returns to the caller by the RETURN 



macro. If thE' data set has data pdges, a 
SETL (CZCPC) i" ('xecuted as defined by the 
OPEN option. Inpllt, update and inout cause 
a SETL to the beginning of the data set. 
output and outin cause a SETL to the end of 
the data set. Control is then returned to 
the caller by the R~~URN macro. 

CLOSE PROCESSING 

The Close routines consist ()f CLOSEVAl'i, 
DUPCLOSE. VSAM Close, VISAM Close, and VAM 
ABEND Interlock Release. 

CLOSEVAM Routine (CZCOB) 

CLOSEVAM is called by Close Common or by 
OOPCLOSE to perform close processing for a 
given DCB. It may also be called by ABEND 
to close the DeB for a task which is being 
abnormally terminated or by VDMEP if a 
function (but not the task) is being ter­
minated. The major functions of CLOSEVAM 
are to: 

• Delete only the DCB header for data 
sets which have other DeBs open. 

• Release assigned but not used external 
pages of the data set by calling 
RELEXPG. This step is omitted if the 
HOLD option has been specified. 

• Update the DSCBs on the volume by cal­
ling WRITDSCB. 

• On the close of the last DCB open for 
the data set, the RESTBL and, if the 
data is partitioned, the POD are 
deleted by calling FREEMAIN. 

• Delete the data set, its catalog entry, 
and its JFCB if Wdelete at close- is 
specified. This is accomplished by 
calling DELVAM. 

• If the data set resides on a private 
volume and the last open DCB is being 
closed, the volume table is deleted by 
calling FREEMAIN. (See Chart ME.) 

Restrictions: CLOSEVAM may not be called 
if the specified DCB is not open. 

Entry Points: 
CZCOBl Normal entry via type-l linkage. 

CZCOB2 Direct entry from close command. 

Input: Register 1 contains the address of 
the DCB being closed. 

Modules Called: 
Interlock (CZCOH) -- Interlocks the RESTBL 

for shared data sets. 

Search SDST (CZCQE) -- Deletes the shared 
data set table entry for the task clos­
ing the DCB. 

VSAM Close (CZCOQ) -- Performs close func­
tions unique to sequentially organized 
data sets. 

VISAM CI:>se (CZCQA> Performs close fUnc-
tion-s unique t_o indexed sequentially 
organized data sets. 

Stow (CZCOK) -- Stows a member of a parti­
tioned data set and calls the appropri­
ate access dependent close routine. 

MOVEPAGE (CZCOC) -- Writes out the POD when 
rf'quired. 

RELEXPG (CZC~~) -- Releases unused data set 
pages when the data set is closed. 

DSCB READ/WRIT (CZCEM) 
out a format-E DSCB. 

Read in and write 

ESA I~CK (CZCEJ) -- Lock and unlock the 
PAT. 

DELVAM (CZCFT) -- Deletes a data set, its 
catalog entry, and the associated JFCB 
when the Wdelete at close- option is 
specified and the DCB being closed is 
the last one open for the data set. 

WRITDSCB (CZCEW) -- Updates the DSCBs on 
the volume when required. 

FREEMAIN (CZCGA) -- Releases virtual 
storage occupied by the RESTBL, directo­
ry pages, and buffer pages. 

Release Interlock (CZCOI) -- Releases the 
interlock on the RESTBL for shared data 
sets which still have DeBs open against 
them. 

Di~;connect (CZCG8l -- Disconnects the task 
from the shared RESTBL. 

SYSER (CEAIS) -- Declares system errors as 
listed under -Exits·, 

ABEND (CZACP) -- Abnormally terminates a 
task under the same error conditions as 
for SYSER. 

Exits: 
Normal -- Return t.o the calling rout.ine. 

Error -- SYSER, then ABEND is called under 
any of t.he following conditions: 

• Search SDST cannot find data set 
entry. 

• Data set being closed is neither 
sequential, indexed sequential, nor 
partitioned. 

Section 4: Open and Close Processing 139 



• Erro~ return from stow. 

~ MOVEPAGE unable to write out updated 
POD. 

• DELVAM unable t.o delete a data set and 
its catalog entry. 

~ DSCB Read/Writ unable to read or write 
DseB. 

S.)l2~~F~!ion: For entry .It CZCOB1: On entry, 
CLOSEVAM saves the input registers and 
establishes base regi,st.ers for the CSEC'l', 
PSEC?, JFCB. DeB, RESTBL, DeB header, and 
!l1einb€r header. I f the da ta set is shared. 
t~he RESTBL is interlocked by calling 
Interlock. 

When CLOSe (TYPE "" or) is specif ied for a 
VAM data set, only data pages, directory 
pages and DSCES, where requized, are writ­
tpn to external storage. The data set will 
rer.ain open and in the same condition as 
would follow a normal OPEN. 

Nonpartitioned data sets are positioned 
(SETL) according to the original OPEN 
option and data set organization prior to 
thE completion of the CLOSE (TYPE = T). 
When partitioned data sets are processed, a 
STOW-R is issued against the Checked out 
memL~rs. as during a normal CLOSE. A FIND 
must be issued by the user if the member is 
to be reprocessed. 

If not a TYPE = T. when the data set is 
sequential or index sequential, the corres­
ponding access dependent close routine is 
calle-d. If the data set is partitioned and 
the:ce is a member still checked out. a call 
is made to STOW to update the POD and to 
close the member by calling the appropriate 
access dependent close routine. If an 
error return is received from STOW. SYSER 
and ABEND are called. 

Following the above processing or if the 
data set is partitioned but has no members 
checked out, a test is conducted to deter­
mine if 'the POD must be written out. Four 
conditions must exist for this to occur: 

1. The data set must be partitioned. 

2. There must be directory pages to 
output. 

3. Either the DSCB integrity bit or the 
POD integrity bit must be set. 

4. The DeB being closed must not repre­
sent the secondary copy of a duplexed 
data set. 

If all these conditions are met, a call 
is made to MOVEPAGE to output the directo­
ry. During the testing for these condi-

140 Part II: Virtual Access Method (VAM) 

tions, a further error test is conducted • 
If the data set do~s not prove to be 
sequential. indexed sequential, or part~­
tioned, SYSER and ABEND are called. This 
same error exit is taken if MOVEPAGE is not 
successful. 

Closing the l.ast Q~DC13: Followinq a 
s\~ccessful cdll to p..,QVEPAGE or if no ca.ll 
is required, it is determined if this is 
the last DeB open for the data set. For 
nonshared data sets this is indicated by a 
zero count of open DeBs in the JFCB. For 
shared data sets this same count must be 
zero and. also, the count of open DCBs for 
all tasks must be zero. If one of these 
conditions is met (that is. this is the 
last open DeB for the data set) j,1:. may be 
necessary to delete the data set or to free 
unused space. If there are available 
unused pages and the HOLD option has not 
been specified, a call is made to RELEXPG 
to release the pages. The parameter list 
to RELEXPG includes the RESTBL external 
page entries representing the unused pages. 
For a shared data set the interlock words 
must be removed from the RESTBL before the 
parameter list can be built .• 

Following the call to RELEXPG or if no 
release is performed, the DseB integrity 
bit is checked to see if the DSCBs must b0 
updated. If so, a call is made to WRITDSCB 
to perform the update. After a successful 
call to WRITDSCB or if the DSCBs were not 
updated, buffer space area may be freed as 
described below. 

Final Close Processing: In this case, t.he 
closing of the last DeB for a data set, the 
final close processing involves the release 
of any buffer or overflow pages and the 
release of directory or POD pages. These 
releases are accomplished by calls to FREE­
MAIN. FREEMAIN is also called to release 
any existing RESTBL pages. Lastly. the 
RES T BJ. pointer is cleared from the JFCB, 
the DeB and DeB header are unchained, the 
macro transfer list is cleared from the 
DeB, and then a check of last close for a 
DELVAM call is performed. If the Delete <it 
Close flag is set, a call is made to DELV.AM 
to delete the data set, its catalog entry, 
and the associated JFCB. If DELVAM retur~s 
an error code. SYSER and ABEND are called. 

If t_he Delete flag is not set or delete 
has been performed, the control will now 
return to the caller. 

Other Open DCBs: When other OCBs are open 
for the data set. either for this task or 
for another task sharing the data set, the 
data set cannot be deleted nor can unused 
data set pages be released. 

If the data set is partitioned and 
linked to a member, the number of users 



dcces:;ing tilt' mpmbpc; i:; decrernent.ed. If 
t_his number rCdches zero, the member header 
1S deleted from the chain, the chain is 
updated to account_ for t he del etion, and 
the deleted header space 1S added to the 
list of available RESTBL space. Following 
this, the DCB header is checked. If it is 
chained, the header chain is updated to 
account for the deletion of Lhe DCB header. 
If the header is not chained. the In Use 
indicator is cleared. Following either of 
these actions, the DCB address is removed 
from the DCB header. 

Next. the ~;pace occupied by the OCB 
header is added to the cha1n of available 
~;pace in the RESTBL and the ClSCB integrity 
cit is tested. If tnis bit is set, 
WRITDSCB is called to update the DSCBs on 
the volume. After this the final close 
processing is performed. 

For data sets for which there are still 
o~:n DCBs, the final close processing is 
abbreViated. Any existing buffer pages or 
overflow pages are released by calling 
FREEMAIN and the macro transfer list is 
cleared in the DCB. Lastly, for shared 
data sets, DISCONNECT is called to discon­
nect the task from the shared RESTBL. 
After this or if the data set was not 
shared, control is returned to the caller. 

for entry at CZCOB2: This entry is from 
the CLOSE command, and is provided to per­
form cleanup of virtual memory associated 
with a data set and occurs when an unavail­
able (already unloaded or erroneous) OCB 
cannot itself be closed. The address of 
the DCB header is pointed to in register 1 
on entering CLOSl:,VAM. CZCOB2 decrements 
the TDTOPN count and normal proceSSing fol­
lows -- but at no time will a DCB be 
pointed to, and no attempt will be made to 
perform a STOW, output buffers or direc­
tories, or rewrite DSCBs. 

DU?CLOSE Routine CCZCEZ) 

The function of DUPCLOSE is to close the 
DCBs associated with a duplexed data set by 
medns of a call to Close Common. In addi­
tion, DUPCLOSE unlinks the RESTBLs for the 
data sets and, for the last DCB open for 
the data set, unlinks the TOTs and clears 
tne duplicate copy indicator. (See Chart 
M.l". ) 

Attributes: Privileged, fetch protected, 
closed, read only, reentrant, residing in 
public virtual storage. 

_Entry Point: 
a type-lor a 
the expansion 
1nstruction. 

CZCEZl Entered by means of 
type-2 linkage generated by 
of the DUPCLOSE macro 

l!!lLu_t, : On ent. ry, register one contains the 
address of a two word parameter list: 

Word 1 Address of t.he primary DCB. 

Word 2 Address of the secondary DCB. 

MOQ~1~5alled: 
Close ::-ommon (CZCLB) -- A ,~ingle call i~, 

madp to close the DCBs and to return the 
virtual storage they occupied. 

SYSER (CEAIS) -- called by means of the 
SYSER svc when one of the DCBs indicat_es 
a CSORG other than VAM. 

ABEND (CZACP) -.- Called to issue a message 
ano terminate the task. 

_t:_xi ts: 
Normal -- Return to the calling routine. 

Error _ .... Termination via A.BEND macro 
instruction. SYSER before ABEND if one 
of the data sets is not of VA!-l 
org<:.mization. 

~2E.eration: DUPCLOSE ;c;aves the callinq rou­
tine's registers and establishes ~1se-regi­
sters for its CSECT and PSECT. It then 
retrieves the address of the DCBs, uses 
them to establish base registers for opera­
·tions on the DCBs, and places them in the 
parameter list it will pass to Close 
Common. 

DUPOPEN next tests both OCBs to ensure 
that the data set organization for each is 
VAM. If eit.her DCB fails this test., a 
minor SYSER is declared, the address of an 
error message is loaded, and ABEND is 
called. If bot.h OCBs pass the test, the 
RESTBLs for both dat.a sets are found and 
base registers are set up. The addresses 
of both JFCBs are saved for later reference 
and Close Common is called with the addres~; 
of the parameter list in register 1. 

The close operation ..lS assumed to be 
successful so no error test is made on 
return. DUPCLOSE beqins searching for t.hE:: 
JFCB associated with the primary DCB. It 
begins its c,earch at t,he last JFCB and 
works its way backward through the TDT. As 
each JFCB is checked, its DD name is com­
pared with the DD name in the DCB until a 
match 1S found. If no match is round tht" 
procedure is repeated for the secondary 
J}<'CB. When the primary JFCB is found, J 

test is If.ade to see if any other DeBs dn' 
opened for the data set. If none is, the 
duplicate JFCB pointer and the duplicate 
copy indicator are cleared. Following this 
or if another DCB is open, the TDT is 
searched again looking for the seccndary 
DCB. The search is conducted in tLe same 
manner, the same tests are perform<d. and 

Section 4: Open and Close Proces~ing 141 



t.tle same .)rocessing occurs as in the case 
of the primary JFCH. 

When both JFCBs have been processed as 
above. DUPCLOSE returns to the calling 
routine. 

VSAM Close .is called by CLOSEVAM (C'ZCOB) 
ar,j ~:;taw (CZcmO to perform terminal pro­
cessing which is unique to VSAM data sets. 
(See Chart MG.) 

Entry Point: CZCOQl -- Entry is by type-l 
li nkage. 

_!.I!r~t:: Register 1 contains the address of 
the DeB. 

Modules Called: 
FLUSHBUF (CZCOVl) -- Output contents of 

Duffer pages, if necessary. 

PUT (CZCOS2) -- complete the proceSSing of 
the preceding locate mode PUT. 

Normal return to calling program. 

Operat.ion: Inir.ializat.ion and general 
register storage is executed in conformance 
~ith linkage conventions. Base registers 
are declared for VSAM close PSECT and 
CSECT, DeB, DCB header and RESTEL. 

VSAM close is called to do terminal pro­
cessing of a data set with respect to a 
DeB. The last operation field of the DCB 
(OCBLOF) is test.ed to determine if work 
rerr~ins to be done due to an outstanding 
locate mode PUT. If the last operation was 
a locate mode PUT, the user was given a 
pointer to the output buffer where tne next 
logical record is placed. It is assumed by 
the seque~tial access method that if a 
locate mode PUT is called, the user has 
actually placed a record in the space pre­
sented. The outstanding PUT must be ter­
minated to include the last logical record 
in the data set. A call to a secondary en­
try point (CZCOS2) is done to accomplish 
that funct.ion. 

The Last Operation and Hold Last Buffer 
flags (OCBLOF' and DCBHLB) are cleared. 

The last reeo -d of a data sel:. has logic­
ally been includ·~d in the data set, that 
lS, data ~;et JJQinters updated. That record 
must now Jt' physically included in the data 
set. If '.lie last record has not been writ­
ten from virtual storage, a call to 
FLUSHBUF :CZCOV) is made. An exception to 
this is undefined format records. Since 
they occur in page increments, they are 
written out at PUT time, and VSAM Close 
need not call FLUSHBUF. 

142 Part II: Virtual Access Method (VJ\M) 

If any discrepancies exist, final house­
keeping is performed to adjust the recorded 
data set length to the physical data set 
length. 

Control is returned to the caller by the 
RETURN macro. 

VISAM Close is called by Close and Stow 
to terminate processing of a data set. 
{member) and output any existing directory 
pages. (See Chart MH.) 

Entry Point: C7.CQAl -- Entry by type-l 
linkage <privileged to privileged). 

Input: Register 1 contains the address of 
the DCB to be closed. 

Modules called: 
PUT (CZCPJ\2) -- Complete previous PUT if 

still active. 

MOVEPAGE (CZCOC1) 
page(s). 

Output directory 

Exits: Normal return is made to the caller 
via the RETURN macro. 

Operation: Initialization and general 
register storage is executed in conformanCE' 
with linkage conventions. Base registers 
are declared for VISAM Close CSECT and 
PSECT, DCB, DCB header, and RESTBL. 

If the last operation was a PUT, PUT is 
entered at the secondary entry point to 
complete any function left outstanding from 
the previous PUT. 

If index sequential directories exist, 
and if the ISD Integrity flag in the RESTBL 
is set, MOVEPAGE (CZCOC) is called to out­
put them. 

Control is returned to the caller by the 
RETURN macro. 

VAM ABEND Interlock Release Routine (CZCQQl 

VAM ABEND Interlock Release is used by 
VAM to release interlocks that have been 
set within a tasK in which ABEND has been 
invoked. (See Chart MI.) 

.Entry· Points: 
CZCQQl -- To release only RESTBL interlocks 

that may be set. Via type-l linkage. 

CZCQQ2 To release all interlOCKS that 
may be set. Via type-l linkage. 

Input: Register 1 contains the address of 
a half word field containing the ID of the 
task involving ABEND. 



~:oduleo; Cdllpd: 
~jE:a-rch SD~;TCCZCGE) -- '";"'0 uf date or delete 

data set or merr~er entrle~ in the shared 
daLj set tabl.' (SLiST). 

lnt_erlocy_ (CZC()f!) --- To "cet road or write 
interlock on d shared data set entry. 

Release Interlock (CZCOI) -- To release 
read or write interlock on d shared data 
set f:'nt_ry. 

Exiu:;: 
Normal -- The calling frog ram receives con­

trol by use of the RE'lURN macro, with 
the T opt.ion set and no special return 
code. 

Error -- May ABEND if unable to release the 
SDST interlocks. 

Operation: The normal release crocess con­
sists of analyzing the DCBHEADER interlock 
surrsnarie:3 (Figure 24) onf' at a time, and 
releasing the approprlate interlocks by 
calling the existent Search SDST, Inter­
lock, and Release Interlock routines. The 
DCBHEADER interlock summaries d.re updated 
to indicate such release. 

Examining DCBhEADERs: VA."" ABEND Interlock 
Release examines the task ID in each DCB 
neader to determine if the data set is used 
by the task that has invoked ABEND. On 
finding a DCB header pertinent to the task, 
the interlock summary is checked and per­
tinent interlocks are released as stated 
below. If the comparison between the task 
ID in the DCB header and that invoking 
ABEND is unequal, a link is made to the 
next_ DCBrlEADER within the chain, and the 
comparison on task ID repeated. When the 

chain of DCB header:c: is exhausted (that is, 
the pointt'r to U-IE' nf'xt DeB header is 
zero) I the link to the next ,JFCB is macle 
and the process repPdtpd until all JFCH3 
have been eXdmined (that is, the pointer to 
t_hfc' next JFCB is z('rr)i. 

!.<!':l~~<'l_c:l.!.!.::L!h~.-1_1'1!:!=:~.lcUct::,: ThE' i nt,er loc k 
r:urrunary in t:he DeB heaopr i.~; continuously 
updat:ed d~; inborlocks dre set and reset by 
Inl.erlock and Release Interlock, with the 
excf>pt ion of the s ha red j::age ta bl e n Ulnber 
interloc~. The OCR header will reflect the 
conditl0n of this interlock ana it will be 
released as requiCE'o. The DHDDIT fieL.1 in 
the DCB header contains the interlock sum­
mary shown in Figure 2Q. 

If an interlock is recorded in the DCB 
header interlock summary as being imposed 
on the SDST control, all other interlocks 
within the SD3T are released before releas­
ing the SDST control interlock. If no 
interlock on SDST control byte is recorded 
in the interlock summary, and if such '" 
lock is found to be in effect, either the 
int~erlock was set by the task which invoke~ 
ABEND dnd is recorded in a DCB header 
interlock summary that has not yet been 
examined, or the interlock was set by 
another task. Since it is not known at a 
given moment which case exists, the first 
case is assumed, and t_he DCB headers are 
scanned for that particular lock. On 
release of the SDST control lock all other 
interlocks are released. While the scan is 
being executed, the SDST control byte is 
repeatedly checked for release. If release 
occurs (the second case is indicated) the 
scan is discont_inued and the general 
release process is executed. 

Fullword 

Bit 0 

if brf is 1 ~ Write- interlock 't;;_'T1Po~ed 
If bit i, 0, Read interlock ;, imposed 

__ - -> 16 

-;------------""-.---------.~ 

DHDINT ] 
"--

'-
If bit 1S 1. c('rresponrling interlock i~ set 
If b;t IS 0, ir'tedock :" not set 

r""'::::..--.----.----.,.I---,..' ----,.---1"", ----.---r----r----r---""T--'--rl--·-, I 

I· "I I 1 Pi'D iO.F<;T.Bl ,Extemal,lv,emberi POD IRESTBL, SDST Not Not t~ot Pag" IMemberl ~ ___ Date 

Bit 16 17 

DHDINT 

Figure 24. 

I Page ! Header : 1 'Entry Used Used Used ~et 
jEntry : I ! 
Ii,' 
I I 
I ' I 

DHDINT +, 

DCBHEADER Interlock Summary 

27 28 30 

Entry 
With." 
SDST 

31 

Section 4: Open and Close Processing 143 



VI H'['IJI\L CiE<lUI::NTIII.L AC'CE:;;; METHOD (VSAM) 
- -- - --.------~-~----~~-------------

.:~"'(luentlal organizdtJOn is il subfunctlon 
of t.h"3 VAt!, user macro instruct.iollS. Thp 
pri;;cipal ddvantagE' or VSAM is that the 
maximum record SlZf' 1S one segment (2,)6 

~dges or 1,048,576 bytes). 

The following contribute to VSAM: 

User Coded Macro Instructlons 
---.-,---.'---'-.-~---------~--------.-----

OCB :~upply p<"l.rarneters to define 

OPEtj, CLOSE 

?tJT 

3ETL 

PUTX 

Cont. rol Blocks 
RESTBL 

';SAM Routines 
----~-

CLOSr~EQ 

PUT 

SFTL 

PUTX 

<'Iat a ~;et structure. Also 
provide work. space for the 
access method modules. 

Activate/deactivate access 
to a data set. 

Request a record. 

Specify generation of a 
record. 

Specify access to ct parti­
cular record or portion of 
the data set. 

Update a record in place. 

Relative external storage 
corresJlondence table. 

Access dependent initiali­
zation to begin processing 
of a VSAM data set. 

Termindte sequential 
proce,; sing. 

Sequer.tial access to a 
recor,j of a VSAM data set. 

Sequential generation of a 
record and truncation of a 
data set. 

Specify the record within 
the data set at which 
access is required. 

Update a record without 
deletion of subsequent 
records as with PUT. 

Process the page buffer 
cont,ents. 

Record format.s witl the VSAM may be 
t lxpd (F), variable ("). or undefined iU} 
(f;ee Figure 25). The"e records may span 
page boundaries, but ormat-U records must 

104 Part II: Virtua Access Method (VAM) 

beqin dnd pnd ,·"1 [',1'1" t ..... 'tlnd,lI 1<',:. T" ["'n-· 
trol th~" p1Cu .. "t';::;1Ihj l't !",'I'm .. f.t-V tt~~·,'I!'!:·I.t 

Ipnqth ('on!' •. >\ t \,' Li \" 1>1 .1<','<1 I t\ til<' t \ I :,1 

t CUL Dyt t_-'~~ i.~1 t ~H< r ('\"\)1,1 t',y t ht' \L~t'l" Th .. ' 
ilCCt:-->0~; m('trH]I! qt. ... nt'rd.tt'~~ ttl" .. ·~'ntt(,)l ILitd ill 
the tirst iJytp and dl,;o pl,lCC .J copy <;1 the' 
control field at the end of the record. 
The pair of control fiplds (8 bytes) will 
never span a page boundary. 

A description of OCB working storage 
used by VSAM routines is provided in Table 
17. 

HOUTINES IN VSAM 

VSAM Get Routine (CZCOR) 

VSAM Get is called, by expansion of the 
GET macro instruction, to obtain a data 
record from d VSAM data set or member. The 
record obtained may be explicitly identi­
fied by a SETL or may simply be the record 
which sequentially follows Lhat record 
accessed by the precedinq PllTX or GET. 
(See Chart NA.) 

Table 37. De:ocription of DCB Working 
Storage Used by VSAM Routines 

r---------~------T-----------------------1 
I Symbol I Data I Description I 
~----------t------t-----------------------1 
I DCBNPO I N I Number of pages to I 
I I I out. put I 
I I I I 
I DCBFPO I N I First page to output ! 
I I I I 
I DCBBPU I N INumber of buffer pages I 
I ! I in use 
I I! 
I DCBHLB I X IHoid Last Buffer flag 
I I I 
I DCBLOF I X ILast Operation flag 
I I I 
I DCBLOl I IX·O)' SETL 
I I I 
I DCBL02 I IX'OC' PUTX 
I I I 
I DCBL03 I I X 'CC· GET - move 
I I I 
I DCBL04 I IX'C3' GET - locate 
I I I 
I DCBL05 I IX'3e' PUT - move 
I I I 
I DCBL06 I IX'33' PUT - locate 
I I I 
I DCBPRL I N.X iPreviolls record length 
I I! ! 
I DCBBP j A Icurrent buffer position! l __________ .L ______ .L ______________________ ._J 



The USER 
specifies. 

RECFM ~ F 

LRECL -

RECFM u 

\.RECL -
RECFM V 

LRECL 0 

and ,upplies a 4-byte field 
precedi ng each record in which 
he places the record length. 

VSAM organizes 
data set records like this 

1----· Poge- ·1" Page ---- ----__ .- -~ Page ---- ~---...-.--- Page -----"4 
I i 

I ! I 
j 

I ! I ! 
~--- Record 1 

I 
Record 2 .-.--J..--- Record 3--- --.-~------- Record 4 

I -+- .~ 

In this example, LRECL 00 I.ss than 4096. 

r-----Poge- --. .. "'1"'·>---- Page "I" Page---.----;----Pog.---~ 

L._..--..J--_---L--i _ 
l----------- Record 1-- -- .----.-.--.--. ...+..----. Record '2 

In this exomple, LRECL 

f4------Poge ----l+---
I . 

Page --- ·--0 .. '11 .... ---- Page -·---·----7·-·- -.- Page --.~ 

Record 1 Record 2 Record 4 

o 0 

The user '''pptie, leoding ___ <--1 Byte 0 1-3 
record length de.criptor. -_wr----' 

VSAM odds troi ling record 
length descriptor, which 
include. this control field. 

I 
Sit 0 1-3 

A o o o o 

4-7 

i 

Reserved for other use. 

Figure 25. VSAM Data Record and Page Formats 

Section <",: 

Alignment> the nurnoer of bytes left 
at the end of a poge (1 to 7) if it h 
necessary to s.kip to next page (if both 
e 3 and t4 would not fit on ,,,me page 
following record 3). 

Thi. flag bit is set to 1 if record 3 is complete on 0 single poge. 

Virtual sequential Access Method (VSAM) 145 



At t:;:- ityJ'C'-s: ReaG-only, reE2ntrant, public, 
nonprlvIIeged, syst.em. 

E.YLI.Y_ ,)oin~: CZCORl -- Ct't is called by 
type-llinkiH1P. 

lTiuut: Parameters are passed in genEral 
registers as follows: 

~egister 0 -- If move mode, address cf the 
users area. 

Register 1 -- Address of the DCB. 

vhthin the vCE, the macro code fh·ld 
~DCBi·1CD) has been set to indicate move or 
Ioca te mode. 

1'1odul es Ca 11 ed: 
MOVEPAGE (CZCOcl) Perform page input. 

FLUSHBUF (CZCOVl) Purge buffer of data 
remaining in the buffer since the last 
operation. 

Exits: 
Nonnal Exit is made t_o the user via the 

RETllRN macro. 

Error -- ABEND is called under the follow­
ing conditions: 

• The DCB header does not pOint back to 
the DCB. 

• Record length zero. 

• Record length longer than maximum. 

• End of data set and missing EODAD. 

.. Format U record not multip1.e of a page 
in length. 

e User area not same protection class as 
the DCB. 

OperatioE: Initialization and general 
register storage is executed in conformance 
with linkage conventions. Base registers 
are declared for VSAM Get CSECT. DCB, SAVE 
area, DCB header, RESTBL, and ISA. 

VSA.'l' Get is a "f ence sitter" and has no 
:2SECT. It is always called by type-l link-
2..(~e and assumes 'the same privilege as the 
c.o.lleT. The VSJ\.M Get save area is obtained 
dyr.am.icaily by Open ConID10n on a oeD basis. 
Get has to access the interruption storage 
area fISAj to determine its c~rrent privi­
lege s'cate before ca 11ing privileged rou­
t1. x;.t.,s (Mo-,V'S'PAGE, ABEND and FLUSHBUF). Get 
will execute type-lor tYp€-2 CAlif; depend­
;;.ng on its privilege state. 

Tne DeB point er in the DCB head~~r is 
tested to insure that it points to the DCB 

146 Part II: Virtual Access Method (VAM) 

being processed. If 1t does not AHENDis 
called. 

The last operation field (DCBLOF) is 
test_ed to !~ee if the last operation was a 
PUT. If tne last operation was a PUT, it 
means that the data set is positioned at 
end of data and the current Get would cause 
an End of Data condition. The End of Data 
exit in the DCB is taken if the user supp­
lied one; if not ABEND is called. 

If the last operation was a Get, a call 
is made to FLUSHBUF (CZCOV) to clear the 
I/O buffer bef:>re reading in the next 
record. 

The following is common to all other 
previous operation conditions (SETL, PUTX, 
Get-move mode Get-locate mode where not 
more than one buffer page was retained) and 
to the preceding: If the current record 
position (page and byte) is beyond the end 
of data defined in the RESTBL (or member) 
header. call the user's EODAD routine as 
described above for PUT. 

The retrieval address of the current 
record and its successor are generated. 
FollOWing this one of three procedures is 
executed depending on the record format. 

Undefined Record Format (U): ABEND will be 
executed if the requested record is too 
large, or if it would not end on a page 
boundary. The user's EODAD routine will be 
executed if the end of the record is beyond 
the end of the data set. In this case 
ABEND may be executed if no EODAe was 
specified • 

The number of pages to input is com­
puted. If in move mode and the users area 
begins on a page boundary, MOVEPAGE 
(CZCOC1) is called to input the record 
directly into the user area. The last 
operation is set to GET-move mode. The 
current relative position is updated and a 
return is made to the caller. 

If in locate mode, or move mode where 
the user area does not begin on a page 
boundary, MOVEPAGE (CZCOCl) is ca1led to 
read the record into the buffE'r assigned to 
the DCB. The number of pages in use is set 
equal to the number of pages input, and the 
Hold Last Buffer flag is set off. If in 
locate mode, the buffer address is placed 
in general register 1, the Last Operation 
flag is set to GET-locate mode, and a 
RETURN is made to the caller. If in move 
mode, the contents of the buffer are moved 
to the user specified area and the Last 
Operation flag is set to GET-move mode and 
a return is made to the caller. 



Fixed F'ormat (F): A computation is made to 
determine if the next. record is completely 
within the buffer. If (~ZCOCl) is called 
to input enough pages to complete the reco­
rd, starting at the page following the last 
fJage in use. The remainder of::>rocessing 
of fixed format records is comm::>n to both 
fixed and variable and is described below, 
under "Fixed or Variable Format (Common 
Processin']) ... 

Variable Format IV): If the buEfer is 
empty, MOVEPAGE (CZCOCl) is called to read 
the next page of the data set into the 
buffer. The number of buffer pages in use 
is set t.O one. 

The record length of the record in the 
buffer is checked to determine if the pre­
SEnt contents of the buffer cor.tain the 
record. If not, MOVEPAGE <CZCOCl) is 
called to read the additional pages into 
the buffer at a point following the last 
page in use. The number of buffer pages is 
incremented by the number of pages read. 
The retrieval address of the current record 
is generated. 

Fixed or Variable Format (Common Proces­
sing): The record address of the following 
address is generated. The Hold Last Buffer 
flag is set on or off depending on whether 
the current record ends on a page boundary. 

If locate mode was requested, the 
address of tne record is placed into gener­
al register 1 and a return is made to the 
caller. If in move mode, the current reco­
rd is moved to the user area. If more than 
one page is in use in the buffer, or if the 
Hold Last Buffer flag is off, FLUSHBUF 
(CZCOVl) is called to purge t.he buffer area 
of the unneeded data. 

The Last Operation flag is set to GET­
move mode, the current record poSition is 
updated and a return is made to the caller. 

VSAM PUT Routine (CZCOS) 

VSAM PUT is called by the user through 
the DCB or by CLOSESEQ (CZCOQ), or SETL 
(CZCOT) to concatenate a record onto the 
data set and define a new end of data set. 
When called by the user, the function may 
De to obtain the address of some buffer 
space into which the user may construct a 
record. Any subsequent operation on that 
data set will result in a call to the 
secondary entry of this module (CZCOS2) to 
complete the operation. (See Chart NB.) 

Attributes: Read-only, reentrant, public, 
nonprivileged, system. 

Entry Points: 
CZCOSl -- Entered via type-l linkage. 

Normal entry point. 

CZCOS2 -- Entered viii type-l linkag,> to 
terminate an outstanding locate-mode 
PUT. 

CZCOS3 -- Entered via Lype-2 linkage to 
permit privileged table storage. PUT 
enters itself to "jump the fence", 
become privileged, and update the 
RESTBL. 

Input: 
For CZCOS1, register 0 contains the user 

buffer area (move-mode r(~quc:st). 
Register 1 contains the address of the 
DCB. 

For CZCO~j2, register 1 contains the addres:'; 
of the DCB. 

For CZCOS3 -- None. 

Modules Called: Calls as follows: 
VDMEP (CZCQK1) -- Output a diagnostic mes­

sage and terminate the function without 
terminating the task. 

FLUSHBUF (CZCOVl) -- Purqe data remaining 
from a previous operation, from the 
buffer. 

Exits: 
Normal -- Return to the calling rout_ine. 

Error -- VDMEP is called under the follow­
ing conditions: 

• User has READONLY access to data set .. 

• DCB specified by caller is not 
addressed by DCB header. 

• Record length greater than maximum 
specified in DCB header (note that 
this error will not be detected until 
the following operation is performed 
when it is caused by a locate mode 
PUT) • 

• Undefined (U) format record whose 
length is not in page multiples. 

• Variable format logical record length 
is too small (less than 4 bytes). 

~ration: This module's operation can be 
summarized as entry; initialization; com­
pleting processing of the previous opera­
tion; establishing the buffer position for 
the current operation; if move mode, 
transferring the data from the user's area 
to the buffer area; and writing the data on 
external storage if more than one buffer 
page is left in use. 

At entry C'ZCOS1, t..he ent.ry indicator (',,)) 
is set to zero; at entry CZCOS2, ~ is set 
to one. Initialization and general regist­
er storage is executed in conformance 'Kith 

Section 5: Virtual Sequential Access Method (VSAM) 147 



llnkdcJf> cOnV<pnllOn:;. tid!~e regl::,t.~r:; dre 
,jE'clared tor the C:;ECT. Defl. ~,<lve ,H:ea, DCB 
hh:l.deI·. RESTflL ,,"d l:,:A. 

VSl\j'i! PUT is d • fenc" sitter-, and has no 
PSECT. It is always called by type-l link­
dqE' and aSSUfl,es the same privilege as the 
caller. The VSA1', Put save area is obtained 
dynamically by Open Common on a DeB basis. 
VS.I\M PUT has to access the interruption 
storage area USA) to determine its current 
privilege state before calling privileged 
routines. It will execute type-lor type-2 
CALLs depending on its privilege state. 

Last Operation Not PUT: Data may still 
exist in the buffer and must be released. 
If the last operation was a locate mode 
GET, and more than one page is in use, 
FLUSHBUF (CZCOV1) is called to release the 
pages. If the last operation was not a 
locate mode GET, FLUSHBUF is called if the 
present position is not at end of data set, 
and this is not the first PUT. Processing 
continues at the point, below, BLast Opera­
t.';'on PuT Locat.e Mode." 

Last Operation PUT Locate Mode: The record 
length is obtained from the DCB or from the 
buffer if the buffer is format-V. If the 
record length is greater than the maximum. 
VDMEP is called. 

Common Processing to update Buffer Posi­
tion: If not format-V, the buffer position 
is incremented oythe record length from 
the DeB. 

If format-V, the current buffer position 
is updated by the length indication field 
in the record. A flag is set in the record 
length control field to indicate that the 
rpO::lrd is or is not. complete within one 
page. If the nu~~er of bytes on this page 
and following the record is between zero 
and 7, the control field will be placed on 
the next page with a gap of between zero 
and 7 bytes. This gap, the alignment. 
bytes. is accounted for in the record 
length control fields at the beginning of 
the lCecord. and in the field between this 
record and the follOWing record. The con­
trol field is then placed following the 
record and the buffer position is updated 
by 4. 

For either of the above, the Hold Last 
Buffer flag is set on. 

Common ProceSSing to Output Data: The 
munber of buffer pages in use is computed, 
oased on the size of toe current record 
plus t.he number of bytes in the buffer pre­
cedIng this record including those in the 
flrst page on which it is stored. If the 
low 12 bits of this number are zeros and 
this is not a format-V record, the Hold 
Last Buffer flag off is turned off. 

148 Part II: Virtual Access Method (VAM) 

The number ot pages which the rtcord 
occupier; is stored as the number of pages 
to output and also as the number of buffer 
pages in use. If the Hold Last Buffer flag 
is off or, if on and more than 1 page is to 
be output, FLUSHBUF (CZCOV1) is called to 
empty t.he hufff'r. The end of data set 
parameter in tl;e RF.-STBL is incremented by 
the number of l'ytes in the record Just 
processed. 

If the rec01d is format-U the operation 
is move, and S~ITCH is off, the end of data 
set value is moved from the RESTBL to the 
DCB. If either the Q or X (move mode) 
flags are on, the last operation is set to 
PUT-move mode, and return is made to the 
caller. This completes processing for the 
preceding locate mode PUT operation and 
also certain move mode PUT operations. The 
processing of the current call is described 
below. 

Processing Current Record: If locate mode, 
the last operation is set to PUT-locate 
mode, the current buffer position is placed 
into generc.l rf'gister 1 and, if format-V, 
the record length of the previous record is 
placed in the buffer and general register 1 
is incremented by 4. Then a return is made 
to the caller. 

If move mod{', the X switch is set on. 
If the record length exceeds the ~3ximum, 
VDMEP is called. 

If records are not format-U or are 
format-U hut the user's area does ~ot begin 
on a page boundary, the record is moved to 
the buffer and complete processing with the 
same procedure described above at ·Common 
Processing to ;jpdate Buffer Position­
occurs. This also sets the SWITCH field to 
on for format-lJ records. 

If format-U and the user area is on a 
page boundary, the Hold .Last Buffer flag is 
turned off, the current buffer position is 
updated, FLUSHBUF is called to release tne 
pages, and processing is concluded as 
described above, at ·Common Processing to 
Output Data.· 

SETL Routine (CZOOT) 

SETL is called by VSAM Open (C7COP), 
Find (CZCOJ), and by the SETL maCIO using 
the V-con and r<.-cons stored in thE DCB t.o 
specify access to a particular record 
within the VSAM data set. (See Chart NC.) 

Attributes: Read-only, reentrant, publiC, 
nonprivileged, system. 

Restrictions: Cannot use SETL B with unde­
fined (U) tor~lt records. 



Entry Point: CZ.COTl -- This module is 
called by type-l linkage. 

Input: The following parameters are 
passed: 

Register 0 The retrieval acujress field. 

Register 1 Address of the [CB. 

Retrieval address is specified only when 
the type code is R. In addition, a type 
code is preset in the macro field (DCBMCD) 
to indicate: 

B - Beginning of data set. 

E - End of data set. 

P - Previous record. 

R - Retrieval address. 

Modules Called: 
HOVE PAGE (CZCOC1) Input a page into the 

buffer associated with the DCB. 

VSAM Put (CZCOS2) -- Complete preceding 
locate mode PUT. 

FLUSHBUF (CZCOVl) -- Pur'Je buffer of 
unstored data from pr.~ceding operation. 

Exits: 
Normal -- Return to the calling routine. 

Error -- ABEND is called under the follow­
ing conditions: 

• DCB header does not point to DCB. 

• Invalid record format in DCB. 

• Backspace request for undefined 
record. 

• Attempt to SETL outside limits of data 
set, with no EODAD exit supplied. 

• Request code not defined (not a SETL 
type code). 

operation: Initialization and general 
register storage is executed in conformance 
with linkage standards. Base registers are 
declared for the CSECT, save area, DCB. DCB 
header, RESTBL and ISA. 

SETL is a -fence sitter" and has no 
PSECT. It is always called by type-l link­
age and assumes the same privilege as the 
caller. The SETL save area is obtained 
dynamically by Open Common on a DCB basis. 
SETL has to access the interruption storage 
area (ISA) to determine its current privi­
lege state before calling privileged rou­
tines. SETL will execute type-lor type-2 
CALLs depending on its privilege state. If 

thr address of the DCB in the DCB header is 
not equil J t.o the DCB address passed in the 
parameter list, or the record format field 
in the DCB is unspecified, ABEND is used to 
terminate the task. 

If the preceding operation .. as a locate' 
mode PU~~, it will be completed by calling 
VSAM PUT at entry point CZCOS2. 

If the last ope ra ti on was a locate mode 
GET and if the Hold Lost Buffer flag is on, 
or more than one buffer page is in use, 
FLUSHBUF (CZCOVll is called to release the 
buffer and, if necessary, return data to 
external storage. Upon return from 
FLUSHBU?, the current record pcsition will 
be updated. 

The last operation field is set to indi­
cate SETL and a series of tests is then 
made to select the proper method of 
genera ting a retrieval address in the DCB 
(DCBLPA) • 

.. Backspace (P): If this is a format-U 
data set, the task is terminated via 
ABEND. For variable format records, if 
the current position is at a page bO\m­
dary, and this is not the first page of 
the data set, MOVEPAGE is called 
(CZCOC1) to read the next page. Then 
the length control field is obtained 
for the preceding record and adjust it 
by the alignment byte count. For fixed 
format, the record length is subtracted 
from the current retrieval address 
(this is done separately on page number 
and byte position). A negative result 
causes an exit t.o the EODAD routine, if 
one is supplied; otherwise the task is 
abnormally ended. 

• Beginning (B): The retrieval address 
is set. to zero. 

• Retrieval address (R): If the retriev­
al address specified by the caller is 
beyond the end of t_he dat_a set, exit io; 
made to the EODAD routine if one is 
supplied. If there is no EODAD routine 
an ABEND is issued. If the address is 
within limits that value is saved in 
the DCB. 

• End of Data Set. (E): The end-of-data­
set field in the RESTBL (or member) 
header is moved int~o the retrieval 
address field in the DeB. 

After the retrieval address has been 
generated as indicated above, if any buffer 
pages are in use and the page number of the 
current page is not equal to t.hat of the 
retrieval address, the Hold Last Buffer 
flag is reset and FLUSHBUF (CZCQV1) is 
called to remove that data froIl' the buffer. 
If the retrieval address is not beyond the 

Section 5: Virtual sequential Access Method (VSAM) 149 



end of the data set, MOVEPAGE (CZCOC1) is 
called to read the first page of the speci­
fied record into the first page of the 
buffer. The number of buffer pages in use 
is set to 1. 

The fields in the DCB which defi~e the 
current record are then set up and a return 
is made to the caller. 

PUTX Routine (CZCOU) 

PUTX RewTit.e a Logical Record is called 
by a PUTX macro instruction in the user's 
program to perform the rewriting of a log­
~cdl record ir. a VSAM data set. In:.tially 
PUTX checks thp validity of the request, 
and If satisfactory, the buffer pagf'! (or 
pag~s) containing the record is (are) 
returned to the dat.a set by linking to the 
FLUSHBUF (CZCOV) routine. (See Chart ND.) 

Attributes: Read-only, reentrant, non­
privileged, public, system. 

Restrictions: The previous 1/0 macro 
instruction for this data set must be a 
locat.e mode GET. After manipulating the 
data, the user may not change the size of 
the logical record when it is inserted in 
the buffer. 

Entry Point: CZCOUI -- Entered via type-l 
linkage. 

Input: Register 1 contains the address of 
the DCB. 

Modules Called: 
FLUSHBUF (CZCOVl) --- Writes buffer page (or 

pages) t.o data set. 

VDMEP (C:Z;CQK1) -- Terminates the function 
and outputs message if user has read­
only access. 

Exits: 
Normal -- Return to the calling routine. 

Error -- ABEND is called under the follow­
ing conditions: 

~ The DCB header in the RESTBL does not 
point to the DCB indicated in the PUTX 
macro instruction . 

• The previous I/O operation for this 
data set was not a locate-mode GET. 

VD!1EP is called if t.he read-only access 
flag is on in the DCB header. flag is 
on in the DCB header. 

2.2§'rat ion! I nit. iali zat ion and general 
register storage is executed in conformance 
with linkage convention. Base registers 
are declared for the CSECT, SAVE area, DCB, 
DCB header, and ISA. 

150 Part II: Virtual Access Method (VAM) 

l'UTX is a -fenet> si ttA'r- dnd ha~; no 
PSEcT. It i~; always called by typ\:'- I link­
age and aSSUlDes the same privilege il3 the 
cal:.er. The PUTX save area is obtained 
dyn,'mically by Open Comroon on d DCB uasis. 
PUT:: accesses the interruption storcqe ared 
(IS;\) to det.ermine its current privi lege 
stal e before calling a privileged rcutine. 
PUT:{ will execute type-lor type-2 CALLs 
dep.:nding on j.ts privilege state. 

l'UTX verifies that the DCB header in the 
RESTBL points to the same DeB indicated in 
gen'~ral register 1. and that the last 110 
operation stored in the DeB was a lecate 
mod.' GET. 

if eit.her of the above are not satis­
fied, an exit to ABEND occurs. 

VD~£P is called to terminate the func­
tion and issue a message if the read-only 
access flag is on in the DCB header. 

Processing continues by setting, in the 
DeB, the number of output pages to be 
rewritten equal to the number of buffer 
pages in use; the number of the first out­
put page equal to the first buffer page; 
the indication in the Last operation flag 
(DCBLOF) to PUTX. 

If there is more than one buffer page tc 
be rewritten. or if a hold does not exist 
on a single buffer page. FLUSHBUF ic; called 
to write out the necessary pages. On 
return from FLUSHBUF. processing is con­
cluded by updating the current poSition 
pointers. If one buffer page is to be 
rewritten, and a hold exists for this page, 
FLUSHBUF is bypassed. 

Processing concludes by updating the 
current relative position pointers 1-.0 

reflect the record just processed. This 
includes the page number pointer, the byte 
pOSition pointer, and the buffer position 
pointer. PUTX then issues a normal return. 

FLOSHBUF Routine (CZCOV) 

FLOSHBUF is called by VSAM Get {CZCOR}, 
VSAM Put (C2COS). SETL (CZCOT), or ?UTX 
(CZCOU) to return data in the buffer to 
external storage. (See Chart NE.) 

Att.ributes: Read-only, reentrant. public, 
privileged. 

Entry Point: CZCOVl -- Entered via type-l 
or type-2 linkage. 

Input: Register 1 contains the address of 
the OCB. 

Modules Called: 
MOVEPAGE (CZOOC1) -- Force buffer contents 

to be written on external storage. 



Insert/Delete Pdg€ (CZCODl) -- Assign 
external storage to data pages in the 
buffer. 

VDMEP (CZCQKl) -- Output d diagn.ostic mes­
sage and terminate the function (without 
terminating the task). 

:t.xits: 
NOrmal -- Return to the calling routine. 

Error -- VDMEP is called under the follow­
ing conditions; 

• Invalid return code from Insert/Delete 
Page (CZCODl). 

• No external storage space available. 

• Storage ration exceeded. 

• No secondary storage space specified. 

• Attempt to expand RESTBL for shared 
data set. 

• Maximum data set or member size 
exceeded. 

• Insertion beyond end of data set. 

• Deletion beyond end of data set. 

Operation: FLUSHBUF stores general regis­
ters in conformance with linkage conven­
tions and establishes base registers for 
the DCB, DCB header, and RESTBL or member 
header. 

If the number of pages to output is non­
zero, and greater than the number checked 
out, Insert/Delete Page (CZeOD1) is called 
to assign enough pages to complete the 
request. The insertion is made at the page 
following the last page checked out. The 
number of pages checked out is increased by 
the number inserted. Subsequent processing 

depends on tests made of the Hold Last 
Buffer flag (HLB), number of pages to out­
put (NPO>, and buffer paqes in use (BPU), 
and affects the number of pages checked out 
as illustrated in Table 38. 

After the operation indicated for ca,;es 
1, 2, and 3, in Table 38 are performed, if 
no pages are checked out, the current p'Jsi­
tion is set to indicate the beginning of 
the buffer, the number of buffer pages in 
use is reset to zero, and an exit is made 
to the caller. If pages are checked out 
and the Hold Last Buffer flag is off, all 
buffer pages checked out will be relea~led. 

The number of pages is reduced by the 
number of pages that has been checked out. 
At this time if a page is still checked 
out, it is moved to the beginning of the 
buffer area and addresses and counters in 
the DCB are adjusted to indicate that the 
current record is in the first buffer page 
and that one page is in use. This routine 
then returns to the caller. 

Table 38. FLUSHBUF Decisions to control 
Buffer Allocations 

r-------T---T---T---------------------------T-----------, 
I i I I I Resulting I 
I HLn I I I ~---T---T---~ 
i Hdq INPOlbPUI Act"lon INPOIBPUlpcOI 

~-------+---t---+---------------------------+---+---+---~ 
1(1) OFF I I I Ca 11 MOVEPAGE (CZCOCll to G I $! I 
I I i I OUtPU~ all page,; in the I I I 
I I I Irequest I \ ! 
I I I I I I I 
I (2) ON I I 1 Ii· I 
i I I I I I I 
i (3) ON I 1 I 1 I Sa me as (1) I I· I 
I I I I I I 
I (4) ON I 1 I 1 Icall MOVEPAGE (CZCOCll to I 0 I 1 I 1 
I I I tout pu tall pag~s €'xcept: the I I I 
I I I Ilast, Move last buffe~ I I ! 
I i I I peg€' to tne f iICst buffer I I 
I I I I pa'F and RETURN. \ I I 
t-------~---~---~---------------------------~---~---~---I 
j4TE'x-minat..inq dction \.1eserib~d in text. ! L _____ ~ _________________________________________________ 1 

section 5: Virtual Sequential Access Method {VSAM} 151 



~!"~cnON _~_'{:rRTUAL INDEXED SEQUENTIAL ACCESS METHOD (VISAM) 

v I::l\M OVERVIEW 

VISAM is designed to give the user 
',,"quential ox: nonsequential access to a 
record within the data (member> by search­
ID] for the user specified key. The key is 
" field located at a uniform position 
wi thln each rpcord of a dat.a set. The £01-
Jowl.ng contribute to \lI5AM: 

User Coded Macros 
DeB supply parameter to define data 

set structure. 

KL~D Request access or specify 
WRITE creation of records within VISAM 

data set. Also generates a DECB 
(parameter list). 

5~TL Request location of a specified 
record. 

~SETL Specify release of a record that 
WlaS located. 

RELEX specify release exclusive control 
of a page. 

DELREC 

GET 

PUT 

Specify deletion of a VISAM data 
record. 

Request. a record. 

Specify generation of a record. 

Note: Records must be generated 
in sequence when using this 
macro. 

Control Blocks 
OCB 

DECB 

POD 

Data control block -- Extended 
index sequentia 1 worki ng storage. 

Data event control block used to 
control a READ or WRITE 
operation. 

Relative external storage corres­
pondence t.able. 

Partitioned organization directo­
ry (if partitioned). 

Tables 39 and 40 show fields of the DCB 
~nd DEeB control blocks used by VISAM 
routines. 

General VISAI'! Routines 
VISAM Sequentially generate o~ truncate 
Put records of a VISAM data set. 

VISAM 
Get 

Sequentially obtain records of a 
VISAM data set. 

152 Part II: Virtual Access Met~od (VAM) 

Table 39. Description of DCB Working 
storage Used by VISAM Routines 

r------T---"-' ----------------------------·1 
ISymboll Data " Description I 
r------+----i------------------------------1 
I DCBPCCI N ,Data page call counter 
i I I 
I I I 
iDCBOPCI N IOverflow page counter 
I I I 
I I I 
IDCBCL I A Icurrent VISAM locator 
I I I position relative to page 
j I I 
I I I 
lDCBCCLIX.A iContents of current locator 
I I I 
I I IX'OOOO' through X'OFFY' :::: 
I I lon-page 
I I ! 
I I IX'1000' through X'FFFF' = 
I I I off-page 
I I I 
IDCBIOSI X IInput, Output switch 
I I I 
IDCBPT I X iPage type 
I I I 
i I IX' FFI overflow page 
j i !X'OO' data page 
I I I 
IDCBCRLI N !CUrrent record length 
I I I 
I DCBCRS I X ICUrrent record switch 
I I I 
I DCBRES I X IRead exclusive switch 
I I I 
IDCBPLMI X IPUT locate mode only 
I I I 
IDCBPMMI X IPUT move mode only 
I I I 
IDCBOLMI X IOutstanding locate mode GET 
I I I 
IDCBASYI X IAsynchronous switch 
I I I 
IDCBRK I A IRecord key area for previous 
I I lrecord I l ______ ~ ____ ~ _____________________________ J 

SETL 

ESETL 
RELEX 

READ 
WRITE 

DELREC 

Search VISAM data set for a reco­
rd. Set current key location of 
a VISAM data set record. 

Release a page. 

Nonsequential generation or 
retrieval of a VISAM data set. 

Remove a record from a VISAM data 
set. 



Add Directory 
Entry AJd dlrectory entry. Update 

I;ETPAGF 

VISAM 
Open 
VISAM 
Close 

VH~AM key din'ctory. 

Int('rt.1CP~; wit h VAM Gf-'nelal Ser­
vices to control paqp 1/0. 

op. n and close ddt J ~ "t (access 
dependent). 

VISAM ~aqe Formats 

The following types of page constitute a 
VISAM data set (member). (Also see Table 
41.) 

Data and overf low pages com,ist of data 
records and locators. The data records are 
placed on a page starting at the top (low­
est numbered bytes) and are added towards 
the bottom (increasing byte locations). 
Locators, on the other hand, begin at the 
end of the page and extend toward beginning 
(highest numbered bytes to lowest). 

The locators are a series of 2-byte 
fields which, when examined in sequence, 
give the location of records in ascending 
sequence by key, regardless of arrangement 
of records on that page or any number of 
overflow pages. There are 2 types of 
locators: 

• Onpage locators whose values range from 
X'OOOA' to X'OFFS' and specify the 
starting byte of the corresponding 
record. The values X'OOO' througo 
X'009' and X'OFF9' through X'OFFF' are 
unattainable. 

• Offpage locators whose values range 
from X'lOOO' to X'FFFF', The first 
byte of an offpage locator specifies 
the page number of the overflow page 
incremented by 16, on which the data 
record may be found. The second byte 
specifies the relative poBition of a 
locator on the overflow ~lge which will 
in turn specify the startlng byte loca­
tion of the proper record, 

Keys on directory pages which are write­
protected from the user, are automatically 
placed there as each, except t:he first, 
data page is generated. 

The lowest key associated with a data 
page is the one which appears in the direc­
tory position corresponding t<) that page. 
If a record is added to a pag''!, and this 
record has a lower key than any other key 
associated with that data pag~. the direc­
tory is updated to ref lect th,'! new value. 
An inserted record on a page may cause 
locators to be displaced to subsequent 
pc:ges this case also causes the directo-
ry to be updated. 

Table 40. Fields and codes of the DECB 
Referenced by VISAM Routines 
(CHADEB) 

f'- - - - -- -T -- - -T -- - - --_.- -- -- ---- ----- ------- - ----------, 
1~;ymboJ Illata I Description I 
i- -- ,- - --+-- --+---. -----------------------------------~ 
In':CEcn i X 'Opf'r"'t~t)n ("olDl'letion code.. I 
I I I I 
I \)IXECOI IX'Oo' \<PMlr""u· code. ! 
I I I I 
IlJECTYI' I X IOpl"ra tion TYI* Code. I 
I i I I 
I DECTYlt ~ ;First byte of operat.ion fleld defined as: I 

1 I 
i I code operation 
I Ilnternal External 

DEC40 I I X'~O' KR Write l'eplace by re-
I I trieval address. 
I I 

DEC43! I x'43' KS ''''ut.e replace by key. 
I I 

DECQ4 I ! X'44' KT Write new key. 
I I 

DECUS! I X'48' KY Read by key. 
! 

DEC"9 I X'U'l' KZ Read by retrH,val 
I address. 
I 

DEC4A I X'4A' KX Exclus1ve read by key. 
I I 
\DECTY2 I x Second byte of operation field is defined 
I I las operation modl.fier. 
I I I 
I DECT'lMI ! ",' qO' Character ·s· appeared in the area 
I I \field of the mdcro iU3truction. 
I I I 
\OECLEN I N IDdta dr~a length. 
I I I 
IDECDCB I A ILocation of DCB. 
I I I 
I DECiO\D I A I Local: ion of the key or retrieval address. I l _______ .J. ____ ..L-. __________________________________________ J 

Table 41. organization of a VISAM Data Set 
r-----·-----~----~----~---------------------·----, 

I I IMax. I I 
I Title IOptionallPages I Description i 
~---------+-------.-+------+---------------------------~ 
I Directory! Yes i 2551consists of the lowest key ! 
I (0) I I !frolt each data pale after thel 
I I I Ifirst. Appears in data sets I 
I i I I ("",lIIbers) consist i.n<J ot more I 
I I I I than 1 data pa<Je. I 
I I I I I 
iOverflow I Yes I 2_0lContains data records and I 
I (0) I I [locators When there is not I 
I I I Isufficient space on the data I 
I I I I page with Which its key is I 
I I I I associated. ! 
I I ! I I 
I Data I No 165.000lContains ,lata records dnd I 
I I I sequentia Uy orgo nized I 
I I I !locators. I l ________ .L.- _______ J.. _____ J.. ____________________ , _____ J 

In order to reduce paging on VISAM data 
sets with large directories, a super inde­
Ked sequential directory (SISD) is created 
when the number of directory pages exceeds 
2 and a SETL by KEY is performed. The key 
fields in the SISD consist of the first 
whole key on a directory page, and the 
address of that key relative to the begin­
n1ng of the directory paqe on which it 
resides (byte 0 = directory page number; 
byte 1 = key offset within page). The for­
mat for the SISD is shown in Table 42. 

Section 6: Virtual Indexed Sequential Access Method (VISAM) 153 



Table 42. VISA."I Page }'ormats -- Super 
Indexed Sequential Directory 

,------T----,.----------------------, 
i Byt.es i Symbol i Contents I 
I---·----t-------t-------------------------~ 
!0-1 jPAGNUM INo. SISD pages. I 
I I I I 
I 2- 3 I VMSPACE I No. VM pages occupil~d by I 
I I I the directory. I 
I I I I 
i 4- '1 ! ENDSISD I End of SISD di rectory I 
! I I relative t.o the beginning I 
! I lof the last SISD I 

I I directory page. I 
1 I I ! 
; 6-7 I ENDDIR ! End of ISD directory ! 
i Irelative to beginning of I 
! ilast ISD directory page. I 
! I ! 
18-9 IX'OOOO' I 
i ! I 
il0-qO~5! IKeys and ISD relative I 
I ! laddresses. Note that I 
I I I keys and its address may I 
I I I span pages. I 
t-------~------L------------------------~ 
!When space is allocated for the SISD and I 
!until it is updated, bytes 4-7 will I 
jcontain X'FFFFFFl-·F'. I l _________________________________________ J 

A READ or SETL by key will cause the 
following: 

• Search directory for the largest Key 
Which is smaller than or equal to the 
one supplied by the user. 

• Access the indicated data page. 

• Using the locators on that page, search 
for the desired record. Note that this 
may cause overflow records to be read. 

The relationship between locators and 
records, data pages and overflow paqes is 
depicted in Figure 26. This diagram ill us­
trat.es variable length records. overflow 
records. available space and recoverable 
space. To summarize, "the sequence of reco­
rds is determined not by their sequence on 
a page, but by the order of the locators 
which address the records. 

The formats of data and overflow pages 
are shown in Table 43. The format of di­
rectory pages is shown in Table 44. 

VISAM ROUTINES 

The VISAM processing for VISAM Put, 
VISAM Get, SETL, READ/WRITE DELREC, GET­
PAGE, and Add Directory Entry is described 
below. 

154 Part II: Virtual Access Method (VAM) 

Table 43. VISAM Page Formats -- Data or 
Overflow 

,.--·--------y-----T----- ----------- ----- --, 
I Bytes iSymooll Contents I 
~----------+------+-----------------------~ 
10-1 IPAGNUMIPage nurr~er (starts I 
I I! from zero) I 
I I j I 
I 2- 3 I EN.JDAT I End of da ta re lat i ve to I 
I I I PTR to the beginning of I 
I I I unused spaces I 
I I I I 
14-5 iDATSPAtData space. Total i 
I I I number of byte:> I 
I I jcontaining data records t 
I I I I 
16-7 jEHDDIRiEnd of space accounting! 
i I larea (bytes 0-9) in ! 
I I Ithis page valU€ is I 
I I !X'0009' ! 
I I I I 
18-9 IRECSPAIRecoverable space. I 
i I INumber of bytes deleted I 
I I I from the data area I 
i I I I 
IIO-ENDDAT I IData records and I 
I I I recoverable space I 
I I I I 
i (ENDDAT+1) I I Unused space I 
I to (EOS-l) I I I 
i I I I 
IEOS-4093 I ILocators (halfword I 
I I I each) I 
i I I I 
14094-4095 I£OS lEnd of available space I 
I I IrelativE' to start of I 
i I I page. Points to start 
I I lof locators I l __________ L ______ L _______________________ J 

Table 44. VISAM Page Formats -- Directory 
r------~------T--------------------------, 
! Bytes iSymboll Contents ! 
~-----t-----t------------------------·--_l 
10-1 IPAGNUMITotal number of directory t 
I I I pages (starts from one). I 
I I I I 
12-3 IDIRPG INumber of pages in I 
I I I directory, used for ! 
I I I maintenance of the virtual I 
j I I memory length of the I 
I I Idirectory buffer aft.er thel 
I I I directory is read into the I 
I I I buffer. I 
I I ! I 
14-5 I IX'OOOO' I 
I I I 
16-7 tENDDIR\£nd of directory relative 
I I Ito pointer to the 
I I Ibeginning of last data 
I I lpage. 
I I I 
18-9 I IX·OOOO· 
I I I 
110-40951 IKeys. Note that keys may 
I I I span pages. I L _______ L ______ L ________ ~ _________________ J 



----------------- ----- ----------- - -------------

r-f-~-,-------------------;L-.J..-I::----~--~:-p~J~~~~~~-.r.--_______ -.-LC,--_-_ -------~-----------------,--

I 
1 __ -___ --+---- __ J I 

___________________________________ .--1 ---J~ -~---.----------

'i--I ---1.-~-----..J I I 
I ' 
i I 

I 

1,-. ----I:~-~ .. -
________ . ___ __ S I L I '1 ? 

A 

l __ ~ ___________ -_ -_ -_-_ -__ -______ _ , 
.-.----"-~-~--------.--.----~-~-------------.~ ! 

----------- ____________________________________________________ 3 

! ( D 

D D 

D 

R, thf;J R_-. Off! dolCl 'I'(O'di 
, til 

f I rhf'..1 '87 O(P length 1~ .. ld~ 

X i~ recoverable lPOCf' 

A i~ 0 .... 0 i lobi\!, \pocoe-

EOS 1\ e>"d of spo<'4l'. 

D 

D 

""Note: 
There _I j' be :: 

cOt"respor;jing lacotol 

on the dcto p:::lge, 

All record$. of 0 doto 1~1 or me-mb-er will be of 0 ul~ifo",., 

format wit"" regord to Kf"Y I~nglh. location of key, vorioblt' 

or fi)led; :i fixC'd, all wiil be of the \oeme length. 

m $-hown fc( recor-a ? 

Figure 26. VISAM Record rtelationship 

VISAM Put Routine (CZCPA) 

VISAM Put is called by the user (through 
the DCB) to concatenate a record in the 
user's area onto the data set, or to pro­
vide the user with a buffer area into which 
to construct a record. This module may 
also be called by GET (CZCPB), GETPAGE 
(CZCPI), SETL (CZCPC), READ/WRITE/DELREC 
(CZCPE), or VISAM Close (CZC~A) to complete 
processing of a preceding locate mode PUT. 
(See Chart OA.) 

Attributes: Read-only, reenterable, privi­
legea, public. 

l:.ntry Points: 
CZCPAI -- Normal entry from expansion of 

PUT macro instruction. Entered via 
type-l linkage. 

CZCPA2 -- Entered to complete previous 
locate-mode PUT. 

Input.: 
For CZCPAl, register 0 contains the address 

of user area (move-mode only). Register 
1 contains the address of the DCB. The 
macro code field of the DCB is set as 
follo\ols: 

'0000' Locate mode. 

'0004' Move mode. 

• 0008' Move mode complete • 

For CZCPA2 Register 1 contains tne 
address of the DCB. 

~odules Called: 
GETPAGE {CZCPI} -- Perform input and/or 

output of pages. 

Ada Di rectory Entry (CZCPL1) -- U pdat'~ t lV" 
index sequential directory. 

Section 6: Virtual Indexed sequ~ntial Access Method (VISA~} 15~ 

] 



VDMLP (CZCQK1) -- Terminate the function if 
read-only access is indicated. 

[,DC,le; 1. -- Cant: 1:01 is passed back to the 
Cd 11er by ll.se of the RETURN In1!.cro. Gen­
eral register 1 will always contain the 
ddd.r.~ss of t.he record. 

"ITc>r -... Dependl ng on the erl:or condition. 
t!, ('xi t ma y be made via ABEND or VOMER 

. ')[, -""here provided, to a user's SYNAD 
routine. 

"BEND occurs if: 

- The record length exceeds 4000 bytes. 

" The record length exceeds the maximum 
stated in the DCB (when completing a 
previous PUT). 

o A SYNAn condition is encountered dur­
ing completion of a final PUT. 

VDl>1Lt< occurs if: 

• The user has read-only access. 

• The DCB is not open for output. 

G Two or more DCBs are open with OUTPUT 
specified for a nonshared data set. 

.. An unexpected return code is received 
from GETPAGE. 

Conditions for which the user may pro­
vide a SYNAn routine and the codes which 
PUT will provide in DCBEX2 are: 

K~ys equal (sequence error) 
KEc'YS out of sequence 
Record length exceeds that spec­
ified in DCB 

X'04' 
• OC' 
'lC' 

2~ration: VISAM Put is a -fence sitter,­
and has no PSECT. It is always called by 
type-l linkage, and assumes the same privi­
l~e as t.he caller. The Put save area is 
ob'airlf>d dynamically by Open Common on a 
OCB ba~'lS. Put has to access the Interrup­
t ion st.oraqe area USA) to determine its 
currer.t privilege state before calling pri­
vileged routines. Put will execute type-1 
·:;r type-2 calls depending on its privilege 
state. 

~;.:LJ'ormaJ: En_~: In). tialization and gen-
eral register storage is executed in con­
formance with linkage conventions. Base 
registers are declared for the CSECT. DCB, 
DeB h€adfx, RESTBL and data page. Initial-
1y, VDMEf' is (,.d lIed via the VOMER macro 
in,;truction if the user has read-only 
access tc, the data set, if the data set is 
not_ open for output, or if two or more DCBs 

156 Part II: Virtual Access Method (VAM) 

have been opf'npd t ('I t h~' dd t.l !'f"t '" i t h t h<' 
OUTPUT option. 

If the prE'viow~ operation was a PUT. an 
internal SUb~()\ltlne, ·Complete Previous 
PUT" is executed. Processin'1 continues to 
find space for a npw record. 

If any pagES exist beyond this page, the 
number is computed and GETPAGE (CZCPI3) is 
called to delet.e them. If this is not the 
first data page, Add Directory Entry 
(CZCPL1) is called to update the directory • 

If any records exist on this page beyond 
the current poSition, they are deleted one 
by one until the locator indicated by the 
end-ot-space field is reached. Each record 
deleted causes the data space to be 
increased by 2 bytes. and recoverable space 
to be incremented by the length of the 
record. 

Find Space for New Record: The last opera­
tion switch is set to PUT. If a page is 
assigned, and either more than 4000 bytes 
are available, or padding space, plus a 
locator, plus record lenqth is not greater 
than data space, then a page is not 
required. It a page is not aSSigned or 
insufficient space exists, GETPAGE (CZCPI1) 
is called to insert a new page. The cur­
rent locator address is set to 4092, the 
new page switch is set on and the addresses 
of the current locator and buffer position 
are generated. 

If move mode, the record is moved from 
the user area to the dat.a page after check:­
ing that the record length exceeds neither 
4000 (ABEND>. nor the value stated in the 
DCB as a maximum (SYNAn). 

The current buffer address is placed in 
register 1. If the operation being per­
formed is not a PUT-move mode complete, 
control is returned to the caller. If the 
operation was PUT-move mode complete, the 
previous PUT is completed. Control then is 
returned to the caller. 

pUT Secondary ~ntry: Base registers are 
established as above, SKIP is turned on and 
the internal subroutine ·Complete Previous 
PUT- is executed. GETPAGE (CZCPI3) is 
called to output the data page. A RETURN 
is executed. 

Complete Prevl.OUS PUT: The .key in the cur­
rent record is compared against the key of 
the previous record. If out of sequence or 
equal, SYNAD exits are executed. If this 
is a new page, Add Directory Entry (CZCPLl) 
is executed to update the director.y. If 
format-V, ABEND is executed if user 
exceeded the record length limit in the 
DCB. 



End ddtd <ind (idld ~;pdCP ale updated by 
t fir' len'll h of th .. current rt'corU. End of 
~pace is updated ar,d cO n.",o/ 2..ocat,or is 
insert eLi. Th~o ;suhrolJt,.l.ne LPturns to the 
~ortion of this module that called it. 

~ISAM_Get Routine (CZCPB) 

VISAM Get is a routine cdlled by the 
user through t,he DCB to obtain access to 
the next logical record. ';:;ee Chart OB.) 

f>.ttri bute;s; Read-only, reenterable, publ­
ic, privileq(c'd. 

Entry Point: CZCPBl Expansion of the 
GET macro generates linkage to this module. 

Input: Parameters are passl·d as follows: 

Register 0 Address of user area. 

Register 1 Address of OCB. 

The macro code in the OCB (OCBMCD) is 
set to indicate move or locate m~le. 

X'OOOO' Locate mode. 

X'0004' Move mode. 

Modules Called: 
PUT (CZCPA2) -- Complete outstand~ng PUT 

operation. 

GETPAGE (CZCPI2) -- Input n€!xt paqe of the 
data set. 

Exi t~: 
Normal -- General register 1 will contain 

the address cf the record. 

EODAD Position is at end of data set. 

Error ABEND EODAD is unresolved. 

Operation: Initialization and general 
register storage is executed in conformance 
with linkage conventions. Base registers 
are declared for DCB, GET save area, CSECT, 
and ISA. Base registers for DCB header, 
data page, and RESTBL are declared as 
needed. 

VISAM Get is a 8fence sitter,· and has 
no PSECT. It i~; always called by type-l 
linkaqe and assumes the same privilege as 
the caller. The Get save area is obtained 
dynamically by Open Common on a DCB basis. 
GET has to access the interruption storage 
area (ISA) to determine its current privi­
lege state before calling privileged rou­
tines. GET will execute type-lor type-2 
calls depending on its privileged state. 

The DCB (DCBPLM) is tested to determine 
if the last operation was a PUT. The 

sec:onddry pnt ry point or PlJ'r (CZCI'A/) ~~; 

entered to t ermlnCltp any out:;t <lndin,! PlJT~ .. 

Before 4ettinq thp ~ecord. If the data 
set is not shared and the data page in the 
buffer is not the current data page, the 
buffer data page is output via GETPAGE 
prior to bri nging the current page into the 
buffer. 

The Current Record s .. ntch in the DCB 
IDCBCRS) is tested to see if the DCB is 
currently positioned to the proper record. 
If the Current Record switch is on. the 
current lOCutor is obtained. The locator 
may bt! a data page locator or point to an 
overfLow page. If it is an overflow page 
point€!r the overflow page is obtained by .-, 
call to GETPAGE (CZCPI). The next logicai 
record is located on the data page or th~ 
overflow page. The record address, key 
address, and retrieval address are set f n>m 
the found record. 

If a move mode GET was requested, the 
record is moved to the user supplied area. 
Control is then returned to the caller by 
the RETURN macro. 

If the Current Record switch """as not on, 
the locator of the next logical .!:ecord mu~;t 
be obtained. If the current loc;ltor is not 
at the end of the locators on th,> current 
page, the location of the locato) is 
updated to the next logical record and pr()­
cessing continues as if the Current Record 
switch were on. 

If the current locator was the last on'~ 
on that page. the page number is incre­
mented and the next page obtained by cal­
ling GETPAGE (CZCPI). If the call to GE'T"' 
PAGE caused an end-of-file condition, the 
user-supplied (in the DCB> EODAD exit is 
taken, if it exists. If the user did not 
provide an EODAD, VDMEP is called. For a 
non-end of data condition, the locator 
pointers are initialized and processing 
continues as if T,he CUrrent Data switch 
were on. 

SETL Routine (CZcPc> 

SET LOCATION (SETL) is called by the 
user or by READ/WRITE to locate :1 specifi.~ 
record within a VISAM data set or member. 
(See Chart OC.) 

,Attributes: Read-only, reenterable, publ-· 
ie, privileged. 

Restrictions: May not SETL by retrieval 
address for a shared data set. 

Entry Points: 
CZCPCl -- Entered via type-l linkage 

through expansion of the SETL macro 
instruction. 

Section 6: Virtual Indexed sequential Access Method (VISAM) 1 ')7 



C~CPC2 -- Ent~rtd vld type-l linkaqe from 
other VISAM routinps. 

Jnpu!: : 
fr>T C":1.(:PCl. rAqi~;t.~r 0 contAins the ac,dress 

(,f XIi!y (;'; H-t rievill rtddrens. RegiEter 1 
c0nt"'linu l~h<, ",ddr<:'~i'; of t,he OCB. The 
!liaCrO code f i t"ld of the DeB ..,ill b<, set 
to one of the following: 

'00' SE'TL operation to beginning. 

'OS' By key. 

'oct By retrieval address. 

'14' To previous. 

'18' To next. 

'130' To end. 

For CZCPC2, register 1 contains the address 
0.' a t . ..,o-..,ord parameter list: 

word 1 Address of DeB. 

word 2 Address of key or retrieval 
address. 

The macro code field of the DeB has the 
same permissible values as for entry point 
CZCPC1. 

Modules Called: 
PUT (CZCPA2) -- Complete previous PUT. 

GETPAGE (CZCPI2) -- Read data or overflow 
page without outputting old page. 

Interlock (CZCOH1) -- Lock RE;STBL for 
shared data set. 

Release Interlock (CZCOll) -- Unlock 
RESTBL. 

Exits: 
Normal -,- Return is to the calling program 

via HETu.RN macro and with a completion 
code in general register 15. 

E-rror --

SYNAD: EXTor return to the user is by 
using SYNAD exit in the DCB for any of 
the following conditions: 

• Invalid retrieval address. 

• Operation was SETL to next, and at end 
of data set. (member>. 

• Operation was SETI. to previous, and at 
beginning of data set (member). 

• Key not found. 

158 Part II: Virtual Access Method (VAM) 

ABEND is executed <Itt <:'t t ht" (,ollpwlllcj 

ca ses wher'!:' cont i nUll t i on \,; ,,.)t 
meaningful! 

• Invalid code in macro code field at 
D(:B. 

• A1'.tempted ;,ETL by retrieval address 
f'.Jr shared data set .. 

VDMEP is called if: 

• SYNAD address in OCB had not been 
resolved. 

Operation: Ini.tialization and general 
register storage is executed in conformance 
with linkage conventions. Base registers 
are declared for the SETL save area and 
CSECT, DCB, DCB header. RESTBL, and data 
page buffer. 

SETL is a "fence sitter,- and has no 
PSECT. It is always called by type-l link­
age and assumes the same privilege as the 
caller. The SETL save area is obtained 
dynamically by Open Common on a DCB basis. 
SETL has to access the interruption storage 
area (ISA) to determine its current privi­
lege state before calling privileged rou­
tines. SETL will execute type-lor type-2 
calls depending on its privilege state. 
The RESTBL is interlocked for shared data 
sets. The lock will be l'."eleased prior to 
any r.kurn. 

If a PUT was in progress, it is com­
pleted by calling PUT (CZCPA2). For SETL 
to next, the Current Record switch is 
turned on and the page is read into the 
buffer. The current locator is stepped 
down by 2 bytes. If the current locator is 
equal to end of space (EOS>. the next page 
must be read. The current locator is then 
set to X'FFC' (4092). This process is 
repeated until a data record is found. 

For SETL to previous, the current loca­
tor is stepped up by 2. If this value 
reaches X' FFC' (40C}2> the previous page 
must be obtained by calling GETPAGE 
(CZCPI2). The current locator is then set 
to tbe value in IDS. This process repeatE 
until a data record is found. 

Set SETL to beginning, the first data 
page is read in, the current locator is set 
to X'FFC' (4092) and a procedure as in 
·SETL to next- is followed. 

For each of the above. the locator is 
examined; if necessary the specified over­
flow page will be read into the overflow 
buffer, and the locator (on page or from 
the overflow page) is used to set up the 
retrieval address in the OCB. 



For SETL by retrieval address. the spec-
1fied record is read in and the program 
exits. 

For SETL by key. a binary search of tne 
directory is performed. If d di rectory h; 
not present, the first page is dS0umed to 
contain the specified record. Wnen the 
required page is read in, a binary search 
against t.he keys associated with that page 
15 performed using tne locators found 
there. Overflow pages may be read to per­
form this search. When the desired record 
1S found, the retrieval address is set as 
above and the program exits to the caller. 

Read/Write, DELREC Routine (CZCPE) 

Read/Write is used for nonsequent.ial 
access to a VISAM data set by either key or 
by retrieval address. DELREC is used to 
delete a record by the same criteria. (See 
Chart 00.) 

Attributes: Read-only, reenterable, publ­
ic. privileged. 

xestrictions: Cannot expand RESTBL for 
shared data set. Shared data sets cannot 
be read by retrieval address. 

Entry Points: 
CZCPEl -- Entered via type-lor type-2 

linkage through expansion of the READ or 
WRITE macro instruction. 

CZCPHl -- Entered via type-lor type-2 
linkage through expansion of the DELREC 
macro instruction. 

Input: 
For CZCPE1, register 1 contains the address 

of the DECB. The operation will be con­
t.rolled by specifications stored in the 
DECB (Table 40). 

For CZCPH1, register 1 contains the address 
of the DCB. 

Modules Called: 
PUT {CZCPA2} -- Complete previous PUT. 

SETL (CZCPC2) -- Locate proper record 
position. 

Add Dir ect ory Ent ry ( C ZCP L 1) 
VISAM directory. 

Update 

VMA (CZCGA) -- Get (free) a page buffer in 
order to reclaim needed space from a 
data overflow page. 

GETPAGE (CZCPI) 
page. 

Input or output of a 

MOVEPAGE (CZCOC) -- Release read interlock 
on data page. 

VDMEP (CZCQK1) -- Output a diagnostic mes­
sage and terminate the funcLion (but not 
the task). 

Exits: 
Normal Return to the callinq routine. 

Error ._-

1. Return to the calling rou1_ine with a 
return corle of X'04' in 9 p neral 
register 15, followed by " call to the 
user SYNAD routine, under any of the 
follOWing conditions: 

2. 

• READ, WRITE, or REPLACE key not 
found 

• Equal keys found on a weite new key 

• Too many overflow pages 

• Attempt to EXPAND shared data set. 

VDMEP is called if: 

• No SYNAD address. 

• Update with read-only access. 

• Nonprivileged caller/data set 
privileged. 

• Input key does not match the key in 
the record for a write opeLation. 

• Unexpected return code from CZCPI. 

3. ABEND is issued if the DeB header does 
not point to the DCB, or if the record 
length exceeds maximum. 

Operation: Initialization and general 
register storage is executed in conformance 
with linkage conventions. Base registers 
are declared for the CSECT and PSECT, DECB, 
DCB, DCB header, RESTBL and data page 
buffer. 

Upon entry to CZCPEl or CZCPH1, the 
SYNAD indicator in the DeB (DeBEX1) is set 
to either READ/WRITE or DELREC. The RESTBL 
is interlocked for shared data sets. The 
lock will be released prior to any return. 
If the last operation was a PUT. a test is 
made to see if the data set is shared. If 
shared, PUT is called at CZCPA2 to complete 
the previous PUT. If the data set is not 
shared, and the operation is not WRITE New 
Key, PUT is called at CZCPA2. If WRITE New 
Key and the key is not greater than the 
previous key, CZCPA2 is called. However, 
if the new key is greater than the previous 
key, PUT is called at CZCPAl to place the 
new record with a move mode PUT. 

The type of the requested operation (by 
key or by retrieval address) is determined, 

Section 6: Virtual Indexed Sequential Access Method (VISAM) 159 



dna U1P apl'J:opridtP code ~5 set ~ n the OCB 
:"1cro code riE'ld (DeBMeD) prlor to calling 
:;ETL. A checK for read-onJ.y access is 
nldde; .if ~O. VDMEP is called. SETL 
I\ZC~C2) is then called to locate th~ 
l<'c;lrcd record. 

:.:E'.:'L return:> Pither found or not found. 
it Got found, the key did not exist 3nd the 
"f*'Z"dt.lon 15 assumed to be d WRITE Ne .... Key. 
,'It tiii:: point for operations other than 
WRITE New Key, SYNAD is called with 3 not 
1. OU!Hj condi t lon.. For a. n€"I'W WRITE. not 
i~sicloned to the end of the data set. a 
.loc,-ltor lS inserted in the appropricte 
F,lace, U"',e control information govelning 
,.;!.,acCc· is updated to reflect the insE,rtion, 
dnd the data record is moved. GETPJ\GE 
(C2CrO .is called to output the page con­
t61ninq the new record, and control is 
.Let urned to the ca ller by the RETURN macro. 
If the operat.ion is IORITE New Key. posi­
t,ianed to end of data set, and shared, PUT 
~ s ccd.led at. CZCPAl with the PUT option set 
,.0 Viove Mode Coroplet e (OCBMCD = X' 0008' ) • 
if the dat.a set is lilY\: shared, the PUT 
opt.10:' is set to Move Mode {OCBMCl == 
);' OOOi,') • Upon return fram PUT, control is 
(·,ctu:cnea directly t.C the caller if t:he data 
~~,t_ is not. shared; if shared. GETPAGE 
(CZCPIU is called to output. the paqe con­
tairnng trw nt~W record prior to returning 
to the caller. 

If S.!:..'TL returned a found condition, the 
operation to be performed is one of the 
f ollowi ng : 

" DEI..REC 

" "',UTE Replace by Retrieval Address 

~ ~RrTE Replace by Key 

i}-":::.I;.xEc~_;:.ation: If the operation is a 
:-:.elet.2. the locator is removed froll! the 
paqe and the remaining locators are com­
pressed to close the gap made by the dele­
tlon of t~he locator. The number of bytes 
occupied by the deleted record and its 
locator is added to the recovera.ble space 
,x'cmter and the End of Space pointer is 
u[,Jd'cpd 'to reflect the deletion. If the 
phySical deletion was performed on an over­
tlow ;::>a9'" , -ehe overflow page is written out 
;jY cdlling GETPAGE (CZCPIl>. in addition to 
c~, lL.ng G:E:TPJ\GE to olltput the data page. 
T;,,,, locator on the data page is cleared 
f;r~or to outputting the page. Control is 
returned to l.he caller by the RETURN macro. 

~EAD Operatic?E: For the READ operation, 
the data record located by SE'I'L is moved to 
trw user specified area. A test is then 
inade to determine if the operation being 
performed is a READ Exclusive (READ KX). 

160 Part II: Virtual Access Method (VAM) 

It y"s. control is returned to the caller. 
If nn't. dnd t.he dat.a set is not shared, 
conteol 1S returned to the caller. If 
sharf>d, MOVF.PAGE (C2C'OC) is callpd to 
rele iS€' the READ inter lock on th(: data 
paqt' < Cant. rol is then returned to the 
caller. 

WRI'I~l;:_ Hepl_a_~by Retrieval Address and 
WRITE Repldce !2Y..J<ey O~ration: For a 
WRITE Replace, where record length is equal 
to or shorter than the old record, the new 
data replaces the old, recoverable space is 
adjusted, and control is returned to the 
caller. For a WRITE Replace where the new 
record is lonqer than the existing record, 
the procedure for a Delete is followed to 
adjust available space. Then the record 
will be moved into the available space if 
sufficiently large. If space plus recover­
able space is not sufficient to contain the 
recox·d. the record will be placed on an 
overflow page where sufficient space 
exists. 

When space plus recoverable space is 
sufficient to contain the record, GETMAIN 
(CZCG2) is called to obtain a 1 page buffer 
and the page (overflow or data) will be 
copied so as to collect available space 
into a single field, thus allowing the new 
record to be inserted. FF£EMAIN (CZCG3) is 
then called to release the page buffer. 
Alternatively, a WRITE may cause a page to 
become filled with locators or cause an 
existing record to be moved to an overflow 
page. 

Add Directory Entry will be called to 
update the directory if the last locator on 
the current page must be moved to the next 
page. This process may repeat when pages 
filled with overflow locators are 
encountered. 

GETPAGE Routine (CZCIQ 

GETPAGE is used by VISAM routines RF~D/ 
~~ITE (CZCPE). SETL (CZCPc>. VISAM Get 
(CZCPB), and VISAM Put (CZCPA). to control 
page I/O of a data set or member. It is 
used to bring data or overflow pages of a 
data set into a buffer (or locate them), 
delete existing pages, add new pages, or 
update existing pages. GETPAGE calls r<lO\!E­
PAGE to set up the action I/O operation. 
Additionally, GETPAGE releases interlOCKs 
on the external page entries (CHAEPE) of d 

shared RESTBL, RELEX and ESETL. (See Chart 
OE. ) 

Attribu~es: Read-only. reenterable, publ­
ic, privileged. 

Entry Points: 
CZCPI1-- Output current page, read speci­

fied page; if page number equals last 
data or overflOW, insert one page. 



CZCPI2 Input a sp~cified page. 

<.:7.CP1 ] 

CZCPGl Relea~e exclU~lve control WRITE 
interlock of a page (RELEX). 

CZCPDl -- Release existing READ interlock 
on a page (ESETL). 

Type-lor type-2 linkage may be used for 
any of the above entry points. 

Input: Registel 1 contains the address of 
the DeB. 

Modules Called: 
Stow (CZCOKU "-- Update POD for overflow 

page in VPAM member. 

MOVEPAGE (CZCOC1) -- Input or output a 
page. 

Insert/Delete Page (CZCOD1) -- Insert added 
pages or. remove unused pages. (CZCOD2) 
-- Delete page from a data set or 
member. 

Interlock (CZOOH1) -- Called by CALL macro 
to lock RESTBL. 

Release Interlock (CZCOI1) -- Called by 
CALL macro to release RESTBL lock. 

WRITEDSCB (CZCEW1) -- Update DSCB for a new 
VISAM overflow page. 

VDMEP (CZCQKl) -- Output a diagnostic mes­
sage and terminate the function (but not 
the task). 

VISAM PUT (CZCPA2) -- Complete PUT if that 
was last previous operation. 

Exits: 
Normal -- Return to the calling routine 

with one of the following return codes: 

• 00' Normal. 

'04' 

'OC' 

Insert required, DeBIO switch 
not set for input. 

Maximum overflow pages exceeded. 

'10' Return code of '04' received 
from MOVE PAGE {C2COC1}. 

'14' First attempt to assign overflow 
page with no external space 
available. 

Error -- VDMEP is called under any of the 
following conditions: 

• Incorrect page number on attempt to 
insert page. 

• No external space available. 

• storage ration exceeded. 

• No secondary storage allocation. 

• Attempt to expand shared data set. 

• 1-1aximum data set or member size 
'"xceeded. 

• Attempt to insert or delete beyond end 
of data set. 

• SYNAD, but no SYNAn address in DeB. 

• Invalid return code from CZCOD 
(Insert/Delete Page). 

Operation: The several entry points serve 
processing as follows: 

CZCPll and CZCPI2: In.i tialization and gen­
eral register storage is executed in con­
formance with linkage conventions. Base 
registers are declared for the GETPAGE 
CSECT and PSECT. DCB, DCB header and 
RESTBL. 

Entry flags are set to indicate which 
entry point was called. CZCPIl effects the 
outputting of the current page before per­
forming the input of the requested page. 
CZCPI2 effects the inputting only. 

GETPAGE may be entered to insert a new 
page in the data set. Insert/Delete Page 
(CZCODl) is called to insert the page. 
WRITEDSCB will be called to update the DseB 
if a new overflow page is being inserted. 
The page is initialized to VISAM format and 
control is returned to the caller by the 
RETURN macro. 

For a new insert which has a page cur­
rent1y in the buffer, a ca11 is made to 
MOVEPAGE to output the page if GETPAG.E was 
entered at entry point CZCPIl. 

Also, if it was a pure output request. 
control is returned to the caller by the 
RETURN macro. 

For a noninsert entered at entry point_ 
CZCPI2. or entered at entry point CZCPll 
for other than output, a test is made to 
determine if the buffer is empty. If not, 
and if t_he data set_ is shared, MOVEPAGE is 
called to effect the input of the requested 
page. If nonshared. and if the page (data 
or overflow) is already in the buffer, con-" 
tIol is returned directly to the caller. 
If the page is not in the buffer. MOVEPAGE 
is called to effect the input of the 
requested page. 

Section 6: Virtual Indexed sequential Access Method (VISAM) 161 



CZCFr): £T,llV is made at CZCPI3 to delete 
DaQ~1;; - froID .a ;-':'ISAM data seL Insert/Delete 
Page (CZCOD2} is called 'to perform tne 
p.bywllcal d~1{3tion. The number of' data, di­
:;:t,ct{n-y. and overt low pa'~I'~l.l are updated to 
refl~c~ tne deletion. Control is returned 
v, the c..aller by the RETURN macro. 

elCPDl and CZCPG1: Indicators are set to 
~ai:~e rea,rN-write interlocks. If the 

was a PUT, PUT {C:ZCPA2) is 
to ter:winate the previous PUT. The 

call l;;.J pur CiH1S\?S a call to MOVEPAGE Which 
wi 11 Jreleas,~ thE> indicated interlocks. 
Centrol then returns to the caller. 

If the last operat.ion was not a PUT. 
Gc;-,ttol is passE'd just beyond the CZCPIl 
ilT;Q C'ZCPI2 entry points. TlH~ resulting 
calls to MOVEPAG.f~ will reset t_he indicated 
L'1terlocKs. 

GE"l'PAGE will. upon 
to input a page. test if 

that page is a data page or an overflow 
L,.)i,lge. For an overf low page. it 1Iiiill input 
U",e page, since overflow pages are not 
i7lterlocked, For a data page. GETPAGE will 
check if there isa data page interlock 

imposed. If so, it will deter­
mine it a read or write lock is set, and 
call MOVEPAGE with the appropriate option 
to release the lock. It will then input 
the requested page.. If MOVEPAGE returns to 
GETPAGE with a return cooe stating that the 
f-age was locked and could not be input.. 
GETPAGE will set a return code, and exit, 
indicating the page was not input. 

Add Dir~ctory Entry Routine (CZCI'L) 

Add Directory Entry is used to change 
contents of a VISAM directory due to added 
or deleted pages, which may cause the size 
of the directory to change. It also 
c~anges the key value when a change is made 
~o a record that does not cause t.he number 
of data set pages to change. (See Chart 
OF. ) 

Read-only, !:~~enterable. puhl-

~estri£tion~: The directory of a shared 
data set may not be expanded. 

CZCPLl --- Entry t.O Add Direc­
s by type-l (privileged to pri­

vileged). or type-2 (nonprivileged to pri­
vileged) linkage. 

Input: Register 1 contains the address of 
the DeB for tbe member whose directory is 
to be updated. 

162 Part II: Virtual Access Method (VAN) 

Modules Called: 
GETMAIN (CZCG2) -- Obtain one page of vir­

tual storage for initial directory 
entry. 

Expand (CZCG4) -- Increase space assigned 
to the directory area. 

Insert/Dl!lete Page (CZCODU -- Insert added 
directory paguCs) into RESTBL. (CZCOD2) 
-- Delete pAge(s) no longer needed in 
directory. 

VDMEP (cZCQRl) -- output a diagnostic mes­
sage and terminate the function (but not 
the task}. 

Exits: 
Normal -- Return is to calling progr.u:. 

using the RETURN macro. 

Error -- ABEND is called for the follOWing 
conditions; 

It Current page number greater than nu:;nb­
er given in DeB. 

.. Number of directory keys not properly 
cOGIputed. 

VDMEP is called (the function is ter­
minated) under any of the follOWing 
conditions : 

.. Maximu.m directory size exceeded. 

.. No external storage space avail~ble. 

.. Storage ration exceeded. 

.. No secondary storage allocation 
specified. 

.. Expanding directory of sbared data 
set. 

'" Insertion beyond end of data set. 

.. Oeletion beyond end of data set. 

'" Maxi~ data set size exceeded. 

" Invalid return code from CZCOD. 

Operation: Initialization and general 
register storage is executed in conformdnc,> 
""ith linkage conventions. Base I'egister~3 
are declared for the CSECT and PSECT. DCB, 
RESTBL and DeB header. 

If one or no data pages exist, no keys 
are placed in the directory and control is 
returned to the caller by the RETURN macro. 

If keys are to be taken out of the di­
rectory as a result of the deletion of data 



pages, the keys are removed; if any direc­
tory pages are vacated due to key rpmoval. 
they are deleted from the data set by cal­
ling Insert/Delete Page at CZCOD2. The 
number of directory pages is updated and 
control is returned to the caller by the 
RETURN macro. 

If a data key is to be added to the di­
rectory, and no directory pages exist, vir­
tual storage space is obtained by calling 
GETMAIN. The directory page is logically 
inserted into the data set by calling 
Insert/Delete Page at CZCOD1. The newly 
obtained directory page is initialized. 

The number of keys in the directory is 
cowputed. The number of keys in the direc­
tory must be equal to or less than the cur­
rent data page number minus 1, which means 
that the call is to change a key. If the 
current data page number minus 1 is greater 
than the number of keys, ABEND is called. 
since an attempt is being made to add data 
beyond the end of the data set. 

If a new key is being added, the last 
directory page is checked to see if enough 

room exists to hold the key. If no space 
is available. dnd no assigned but unused 
directory pages pxist, the dirfctory is 
expanded (CZCGII> providing tht' data set is 
nonshated. If shared, VDMEP 1: called. 
For the nonHhared data s~t, a ('heck is made 
to determine 1f more than one ['CB has been 
op0 ned for the data set; if so, all dre 
linked to the same ISO dlld SIS[i buffer 
Pdqe. The new directory page ~s initia­
lized and logically inserted into the ddt" 
set hy callinq Insert/Delete P'1ge at 
CZCOD1. Processing continues '1S if a new 
key were being inserted or a key being 
changed. The key is moved to the directo­
ry. If a new key is being added, a new end 
of directory is computed. 

'I'he ISD Integrity flaq in t.he RESTBL i:; 
set; this indicates to VSAM CLOSE (CZCQA) 
that it should write the ISD to external 
storage. 

Control is returned to the caller by the 
CALL macro. 

Section 6: Virtual Indexed sequential Access Methorl (VISAM) 163 



Vl'A~i OVERVIE;'; 
--- --- ----- .. 

;h., p"rtit lun,'d 'd<jdniz.3tion of th., Vlr­
t 11;.1 ~ dC("f-:;:; ffif·t hod !J~;\-':_; IJot-h ~~f'(~\h'nt idl dnd 
j nn.-x 1~I;)qU(-'nt ldl orC;';:.1i1_1Z.tt_inns tn procf~;~:: 

c,aL; !-;vt l",cmtH·r~;. Thi~, methon usps macro 
In:;t_ ruc1:lon::i 'Hl'} rOllt in"s to combine V~;AM 
and VIE>AM datd sets into d single data set 
25 a serips of logical partitions. To deal 
wIth the complexitles associated with this 
dcee:;,; HlPthccl, J'SS/360 ll~,ec; a partitioned 
orqanization directory (POD) and relative 
F8qe/f'xterna 1 paq,o corn,s[londence table 
i "ESTEL). Th., ,em dnd the associated data 
control block (DeE} aLP used t,o relate a 
member, or it:; alias name~"to the relat,ive 
;-:os,ltion of i'he member wit,hin the data ~,et. 
TI"-itf: }(E.s~rBI~ is used to dptennine the actual 
ext,rnal devi ce addre:;s of t,h.> requested 
page {s) • 

The- ::':)llowlnq CO!it..r-ibute t.o th(~ virtual 
rartitioDed access method (VPAM). 

User COdf;d Macros 
'i:x'::ij------S-uppl:i'es parameters to define 

FIND 

STa.J 

member ,;tructure dnd at.tributes. 

ReqtH'~,;t~~ dccess to d member 
descriptor from the POD. 

Specifies updating of a member 
and/or alias descriptors in the 
POD. 

Control Flocks 
DeB D"ta control block -

oganization-independent working 
s'orage. 

RESTBL 

F·)[: 

Rf,>},ative external storage corres­
pondence table. 

Partitioned organization 
directory. 

Gencral V PAl', Hout,l,nes 
----.-----------'--------.---~- .. -
Find Locat{-~s ID€mbf:r Jescriptor in POD. 

Stow Update:; member and/or al ias 
descrlptors in POD. 

earTh Searches POD for member or alias 
nareE'. 

Extend rneceases size of POD. 
peD 

Relocate llpdates t,he POD to acconnt for 
l';eITth.,,~c; in size of the POD or any mf'.mber 

cf the data set,. 

164 Part U: Virtual Access Method (VAM) 

GETNllMBFi c;ives paqe nnmbf'r of a member 
relati vp to the data set,. based 
on stdrtinq paOlO nun,ber of the 
member. 

The POD and RESTBL member header are 
described below. 

Partitioned Organization Direct,ory (POQ!. 

The POD, which consists of paqe{s) at 
the beginning of a VP,l\M data :cet is placed 
in the user's vi.rtual storage by OPENVAM at 
data set OPEN time. The POD page(s) are 
provided and maintained by \~j~ for each 
partitioned data set. Its function is to 
document member names with th.~ir relative 
locations within the data set and their 
attributes (data set organizat:ion, number 
of pages, user data field). The POD also 
documents all aliases assi",ned to the 
various members of the dat,a, s.~t. 

The rr,aximum size of a partltioned data 
set is 65.535 pages; the maximum size of 
all members or even a single member is 65, 
534 pages. When the data set is shareable, 
the POD is placed into shared virtual 
storaqe and protected from the user. 

The directory. F'igure 27, is divided 
int,Q four parts; each POD part provides a 
particular function. The four parts are as 
follows: 

1. An interlock control entry. 

2. A space control entry. 

3. A directory block hashing table. 

4. Directory block entries linked into 64 
chains. 

The int erIoel< word and the procedures tel 
update same are described in the modul.e 

(----------------------------------·-------'1 
I Interlock Control (If bytes) I 
~---------------·--------------------·--·-i 
I Space Control (8 bytes) ! 
t-----------------------------------------~ I Hashing Table (256 bytes) I 
~---------------------------------------~ 
I Linked Block Entries <variable length) ! l-______________________________________ J 

Figure 27. Partitioned Organization Direc­
tory (POD) 



de~;cri lit. iOn!:> fur VM'J gen8rdl services rou­
tine!.; Intt-rlock (CZCOH), and Release Inter­
lock. (CZCOI). 

Th", ~;PdCt' cunt r 01 entr y (POOSPA) indi­
cates t he number of pages in the POD and 
the nurnbf'I" of pdqf'S in the data set (Tdble 
45), 

The ha!';hing tabltc: (l'ODi-lT) conT.ains 64 
pointers {edch four bytes in length to the 
member and alias descriptors. The hashing 
value of a member name or alias causes 
select.ion of one of the 6!1 painters, which 
in turn contains the byte address relative 
to the POD. of the linked block entry 
corresponding to the first name having that 
nashing value. This block entry then 
points to the word address relative to the 
POD, of the second name having that hashing 
value, etc. 

Linked block entries are of two types: 
member descriptor entry and alias descrip­
tor entry. A member descriptor entry is 
defined in Table 46. 

An alias descriptor is defined in Table 
47. 

Use of Member Headers in RESTBL 

For partitioned data sets only, a field 
(DHDLNK) in the DCB header (DSECT name: 
CHADHP, Table 48) of the RESTBL, points to 
the member header (CHAMHO) rather than to 
the RESTBL header. The RESTBL member head­
er gives additional data needed to locate 
pages within a member. 

Table 45. POD Format 
r-----T------T----------------------------, 
IBytes I Symbol I contents I 
~-----+------+----------------------------~ 
10 IPODW IWrite interlock I 
I I I I 
11 I POOR tRead interlock I 
I I I I 
12 IPODRC tRead interlock counter I 
I I I I 
13 IPODIC IControl bytes for POOR and I 
I I IPODRC I 
I I ! I 
14-5 IPODPG INumber of pages in POD I 
I I I I 
j6-7 IPODNDPINumber of pages in data set, I 
I I I including POD pages I 
I I I I 
18-B IPODLBPILinked block pointer, I 
I I lpointer (relative to POD) ofl 
I I Inext available byte in POD I 
I I j I 
IC-l0BIPODHT I Hashing Value Table 256 I 
I I Ibytes I l _____ L ______ L ____________________________ J 

VPAM ROU,!'INES 

Descriptions of Find, Stow, Search, 
Ext~nd POD, Relocate Members, and GETNUMBR 
follow. 

Find !;earches t.he POD in order to locate 
the memb.~r descriptor. The member informa­
tion including the starting page number and 
RESTBL header offset is transmitted to the 
member header and the associated DCB. (See 
Chart PA.) 

Attributes: Read-only, reenterable, privi­
leged. public, system. 

Rest.rictions: A DeB can refer to only one 
member at a time. STOW must be issued to 
change user data in the POD prior to issu­
ing a FIND. The OCB must be opened before 
FIND is executed. 

Entry Point: CZCOJl -- Via type-lor type-
2 linkage. 

Input: On entry, general register 1 con­
tains the address of the following four­
word parameter list: 

Word 1 Address of DeB. 

Word 2 Address of member name or alias. 

Word 3 Address of area where user data 
is to be placed. 

Word 4 -- Address of member of bytes of 
user data. 

Modules Called: 
Stow (CZCOK1) -- Stow member already 

cheCked out to his DeB. 

CKCLASS (CKCLS) -- Check protection class 
of user area and DeB for compatibility. 

VDMEP (CZCQK1) -- Process error occurring 
while trying to access locked member 
header. 

Search (CZCOL1) -- Locate member or alias 
descriptor in POD. 

VSAM Open (CZCOP1) -- Initialize for 
sequential organization. 

VISAM Open (CZCPZ1) -- Initialize for index 
sequential organization. 

Interlock (CZCOH1) -- Impose interlocks on 
RESTBL for shared data sets. 

Release Interlock (CZeOI1) -- Release 
interlocks on RESTBL for shared data 
sets. 

Section 7: Virtual Partitioned Access Method (VPAM) 165 



Table t\6. POD M',~r ~;<'~;criptot: 

(Part 1 of /' 
rr--- --r--- -T -- - - -- - - - ~ ~- .----- - -~----~-.~-- - -"1 

ISymboliOdtdl /o'iEld l"'f~nitl')O I 
\------,-t----t - - --.- -- -- --- - - ----- ---~--- -~--~ 

I POMNAMI C I Thp fT1t>mt" r l"lm.~" 
! I Ileft-'<ld'!t\,;t",i <'Inti p,l,id"d withl 
I I Ibldnks •. ll 1l1'Cp:i:;ary_ ~'nl ,\, 

I Idelf't€'d .'lIt IY, Pi1ch byty of I 
I Ithis f1elJ is set to X'FF'. I 

I I I I 
iPOMFLGIX IBit 0=1 to indicate that thisl 
I ! i is a memher descr ipt.or. I 

j IBit 1=0 indicates that no I 
I luser data is appended. 

jPOMHAS!W, 
I 
I 

I 
i ! 
! I 
I I 
I t 
IPOMFP IN 
I I 
I i 
!POMPG IN 

I 
I I 
!PO~.sEQI N 

! 
i I 
IPOMKL IN 
I 
I 
I 
i POMIX 
! 

I 
! 
I 
IN 
I 
I 
I 
I 

!Bit 1=1 ind1cates that user 
Idata is appended. 
IBits 2-7 are presently nat 
i m~e(1. 
! 

XIBit;.; 0-· I') contain <l pointer 
I to the Dt'xt d,,'scriptor whose 
I name i" d h,cJshing synonum t~o 

ithe menilir:r flame. Tili:, fJ.eld 
l points to thE' relative 
I full word upon which the next 
l hashing c,ynonym descriptor I 
lexists, or is zero it no suchl 
t descrip-tor exist:s. ! 
IBlts 20-21 indicate the I 
1 organizat ion of the member: I 
I 00 sequential 
, 01 Index Sequential 
IBits 22-23 indicate the 
Irecord length format of the 
I member: 
l 00 Variable 
I 01 Fixed 
i 10 Undefined 
I 
! First pagE" of this member 
!relative to data set. I 
! I 
INumber of data pages in this I 
I member. I 
I I 
Isequential member - record I 
jlength (actual or maximum> I 
I ! 
I Length in bytes of the keys ! 
Ifor an lndex sequential I 
I member. I 
I I 
I Bits 0-11 - length of the I 
jlogical records for, member I 
Iwith fixed length loc,ical I 
I records, the maximum logical I 
!record length for an index ! 
I <ieq uentia 1 mernber- with I 
!variable length records. I 
! I 
IBits 12-23 - relative I 
lposition of the key ~ithin a I 
Ilogical record of an index I 

I I lsequential member. I l ______ i ___ ~i _____________________________ J 

166 Part II: Virtual Access Method (VAM) 

Td hie 4 f;. P00 Me.rnher Descr iptot' 
(Part '2 of 2) 

r- ----T---- T-------· -----------------------1 
Isymhol I !lrtta I Field IWfinition I 
f------t-----t·- ---- '-'---.---~----------------~ 
IPUMOVI'IN INllml:'t'l "t \'v .. dlnw !-'<Iilt'S I 
I ! 1 (\ndt'" -""'lIl<'fll\;t\ I"rllll'l=, I 
I I :,',,1)'1, I 
I I 1 I 
!POMh I)IN IPilll 1_)f'rCpntaqp tc)I llldf"x I 
I I !sequential paq.'s. Maximl,", ! 
! ~vctll\e lS 50. I 
I I ! I 
i POMDi> IN INumber of directory pages, I 
I I~ndex sequential merr.ber, or i 
I r I r,wr,ber of um,sed bytes in thel 
I I llast .'lata page for a I 
I I I sequential member. I 
I I I I 
I POMB!.' IN pllurrtber of bytes of user data j 
i I I C-ont-_d tned in next field; this I 
I I jiield and following field i 
I I Iwill be absp.nt if bit 1 of I 
! I IPOMFLG is O. I 
I ! I ! 
IPOMU3E!X iOptional data to be supplied i 
I I I by the USeI.'. Length of this I 
I I I field is L,pecified by POMEU. I 
I ! I For object~ program modules, I 
I I (this field describes the i 
I I ! relative (to the member) ! 
! I 11ocation.c: of the internal 
I I I symbol dictionary. The next 
! I Idescript~or will begin at a 
I I I word txmnddry regardless of 
I I I the length of this field. I l ______ i ____ ~ _____________________________ j 

SETL (C2CO'ID (VSAM) -- Position DCB to 
b'~ginning or end of VSAM member. 

SETL (C2CPC2) (VISAl1) -- Position DCB to 
beginning or end of VISAM member. 

Expand RESTBL (CZCCI1) -- Expand RESTBL by 
1 page to accommodate new member header. 

TSEND tCEAP?) -- Function is executed while 
waiting to access user counter in member 
header. 

CLOSEVAM (CZCOB1) -- Close member header if 
opt:n on a STOW-type D. 

Exit s: 
Norrial -- Return is made to the caller with 

~ completion code in qeneral register 
15. If the user area and size were 
uP3pecified in the calling parameter 
iist, the location and nUmber of bytes 
of user data in the member descriptor 
(POD) are returned as words 3 and 4 of 
parameter list addressed by general 
register 1. 



Table 47. POD Alias Descriptor 
f------~----T-----------------------------, 
ISymbollDatal Field Definition I 
~------+----+-----------------------------~ 
IPOENAMI C IThe alias, left-adjusted and I 
I ! I padded with bla nks if I 
! I I necessary. For a deleted I 

I lentry, each byte of this I 
I Ifield contains X'FF'. Y. I 
! !For a deleted entry, each I 
I I byte of this field contains I 
I IX'FF'. I 

! I I I 
jPOEFLGI X lIs zero (high-order bit being I 
I I I zero indicates that this not I 
I I la member descriptor). I 
j I I I 
\POFHAS\ W IBits 0-19 are a pointer to I 
I I I the next descriptor whose I 

ilname is a hashing synonym to I 
I \field 1. This field points I 
I I to the relative fullword I 
I Icontaining the next hashing I 
I Isynonym descriptor, or is I 
I Izero if no such descriptor I 
I \exists. I 
I I I 
I IBits 20-23 are zero. I 

I I I I 
IPOEMEMI B (POinter to the mewber I 
I I Idescriptor for which this I 
I I I entry is an alias (byte I 
I I I address relative to the POD).I L-_____ ~ ____ ~ _____________________________ J 

Return codes: 

'00' Member or alias found and member 
opened. 

'04' Member name or alias not found. 

'OS' The DCB is creating a member -- A 
STOW-N must be issued for member 
being created before this DCB can be 
used to FIND a member. 

• oct 

'10' 

'lll' 

Data set organization in member 
descriptor does not match DSORG 
specified in DCB. (Can only occur 
if DCB specified VIP or VSP and mem­
ber descriptor did not match; 'if VP 
was specified in DCB, Find fills DCB 
in with DSORG found in member 
descr iptor. ) 

The user area length is not large 
enough to contain the user data to 
be retrieved. 

Member to be located has already 
been checked out to this DCB. (Mem­
ber bas been previously found.> 

Table 48. RE:3TBL Member Headers <CHAt-lBD) 
r---·---,-----T-----------------------------, 
I Symbol I Datal Fi",ld Description I 
I-------+----+----------------------------~ 
I MHDNAMI C' IMember rum,' I 
! I I I 
IMHDFEPI w lotfset to fir;t ('xternal fldgpl 

I I entry of the ml'mfJer 
I I I 
IMHDDIRI N INumber of directory pages 
! ! I <index sequential 
i I lorganization only) 
I I I 
I MHDDAT I N INumber of data pages in the 
j I I member 
Ii! 
I MHDOVF' I N I Number of overf low pages 
I I I (index sequentidl 

I iorganization) 
! I I 
jMHDBYTI N INumber of bytes used in la,;t 
! I Ipage of sequential 
I I lorganization 
I I I 
I MHDFLG I X IFlag to indicate sharing 
i I Istatus and organization 
I I I 
I I I X'SO' Shared 
I I I X'20' Index Sequential 
I I I 
IMHDINTI L IInterlock byte ~o protect 
I I Inumber of users and chain 
I I llink fields 
I I I 
IMHDUSEI N INumber of users associated 
I I Iwith this member 
I I I 
I MHDVALI X IValue of first external p,lge 
I I lentry in the RESTBL of thE' 
! I I member 
I I I 
IMHDNMH\ D (Chain to next member header* 
I I I 
IMHDPMH\ D IChain to previous member 
I I I header· 
~------~----~---------.-------------------~ 
I.This value gives the relative location 
I within the RESTBL by multiplying by 8 
i (left shift 3 bits). L _________________________________________ J 

FIND calls VDMEP if: 

1. While waiting to access locked member 
headers, an Attention is received. 

2. While waiting to access locked member 
headers, 100 TSENDs are completed. 

3. The DCB is found to be closed or 
invalid. 

4. The DSORG is invalid. 

Section 7: Virtual Partitioned Access Method (VPAM) 167 



,[',['-'l --- Af'-rJ-hJ Wl .t l bf f'Xt'cut~'d upon 
t ~ I'- f () 1 1 f) lAl 1 n q df·I.'ct i fl', .,ny "f 

f'(,n<jll )'irl.~ 

• RE~;TBI.. c~f --I ~_~h'.l r~>d ;1.1ta Sf'1 rf,.~uir'e:'} 

F":'q dn~')io!l. 

.. Th(~ fJ('otect Lon cld:::~·~i'';~; of tne DCP dod 
\IS(~l d,r~>d arc ir"·(_)mf;2t-iblf~. 

" VPA,"l Incrdk'l' ileader locKed, witt, riC) 

dc't i ve DCt~ d(J 1j<.1E.:"I' .. 

e IGvalld me~ber or alias ndmc 
'_) r>: ci f i f-'<l .. 

l'('qi~;ter storage j;: .·x'2cdtul in confonnance 
·,tlJt-h l.inkaq·c> cOi:\}'(~:ltion~~. Hi'I!.;e rcgi~';~-C'rs 

He declared for t h~' Find C~;;:';t'T end PSECT. 
;;C'j, [:CB fh'dder. RE~;T8L. l11emher rH'ader and 
PO~) " 

Upon ("n"!',{, if till: Dell. neaclf'r doe::; nr,t' 
L-J;in:r to ~.hf\ DCH .. J\BEND 1.<::'; called .. 

Tne RESTRL is w~lte-lnterlocked for 
;;halc'd ddta :;pt,,;,, 

T['.p DeB i:o. Lec,tel l0 det.ermine if it is 
currenr.ly j.,n u:,:.e.. Ii" a n:ember had bpen 
toun:j }~'r!:v}on:~ly ..:i.n,j was ~3till checked out 
t.o t~.hf' 0C£:'" F'ind {~dl1::-j, ~,":tow (R) to c]()!~t'j 

ihe ",ember:. If t.he DCi' is in U~,f> tor 
crea~ins 0 member, the call to Find R0y 

ha~ been done erroneously. A return is 
qiVfJ, r,) t·h., caller Indicating that t.he DCB 
->-.. i n ll~-;f; tflr cr~~at l nq it memt:er.. Thi~-; 

dllow:~ the: o;;er t() ;)drV" and stow the :nember 
aDd sdlvaqe the work he has done which 
c()ul'j naVE. be',n 10,;t. fl:'orn an erroneous call 
t-c F1.nri, sinc~' t.hf,' ml?JTlber belng created waG 
unnamed. 

T ~ t-~i:; L:(~:-~ ;.,~ ~'l:'·t~ in USt-~, the POD is 
(;~,ar-,-~hed tc)r tne ni~mp givPfJ tc F.ind.. If 
t_ne l~d:;ne Cafiflot bt" locat(:-'.j In tht:.; POD, a 

~n()t rour,(j" [<'turn ic' made t:o ttle caller. 

It the found naIll<' wa~~ an alia!3, t.h'" 
cG!n,"pondinq membE'r :JamE' J.S located. 

User Ja~d is moved to the user area if 
i.t was speclfied. 

,,;here mort, tlV1D one DCB 1S open for out­
put for a nonshaI'f'd merr.bf?r, all DCB header::; 
are linked to the same member heaaer and 
flags are set to indicate the data spt may 
not be wri ttJ'n out. 

168 Part II: Virtual Access Method (VAM) 

'r~lr ,!t~l 1. Vf~ rrlf:'.rllHloI hf"'ddel cl:..J in .,;,.n t J.it; 

PE:;TH£, I" ;;"dr':~j"': to SFf' if the member is 
alrpady 1n use t'l .,nather DeB. If t.he mero-
b"r i,; "Ct.lVE' d '"cc;t is made to see if it 
j!~ l.ni' e-intf,rlocKed. This ffi<?dnS that the 
memh"t i:; c-urrE'ntly bE'inq modifiE'd a .. ri is 
una vai L, b 1 E' for u,;,· > A t i mp-, i i Cf' ,'nc! ,,' 
r~"l11":;t,>d V1.il T:;EN:1. lI,t trl<c' r,,-c;nn'1-·t1,'il ,'" 
the' u"er'!; Ld:;k, ttlt F'JNI' h,I!~ to b. ['-
i nit idted, ::;ince t'lle oth.··r USPt mal' hdve 
dc'l et ed the meml:wr or eha nq (·d its name 
while it Wd~; intprlockf'~L 

If the rremher was actIve, the DCB header 
.is 1 inKed to trw dcti ve header. Dummy 
hf'ddpr ::;pacc i;J placed in the deleted head­
er chaUl if it existed. 

if the melr:)Cr was not dcti ve, a member 
header ha~, to be built. It can be built in 
the dUIT,n;y header space provided by OPENVAt'l;, 
ill availablp (deleted header) space, or it. 
C<.ln be built in unused RES'I'BL. A dummy 
header will exist if this is the first call 
to Find since OPf:tNk"'l was t:xecut ed. If a 
FIND was ~one and th~ DCB header ~as linked 
to dll active mem:_,er'1Eader. the dununy head­
er :;pace W.t~_; relea~,ed. Subsequent FINDs 
will U5€ the deleted header space, if 
dvailable. or unused RESTBL space. If 
unused RESTHL space is required and l_tler(,; 
is not enough sPdce remaining to accommOG­
ate d l1'cmber header, the RESTBL is €,xpClnd.?d 
ty calling ~xpand RESTBL (CZCQl) (non­
,;hdrf'd daTd ,.;et onl:,). 

Aft"c UIC member header is built, data 
set'. p<lrawet.ers are filled in the DCB from 
"tht:) PGD~ 

If directory pao,'s exist (VISAM), GET­
MAJ~ (CZCGA). is cdlled to obtain virtual 
:;tordge Gpace and tJle eli rectories are rcad 
in by calling MOVEPAGE (CZCOC). 

The ja~J set orglnlzation (DCBDSO) is 
rp:;tE'U. if VSAM or VISAM partitioned, SETL 
is called, de .:endin; on t.he Open. opt .• ion to 
logically posLtion the members for proces­
sing. If the DSORG is "non-specified" 
(VP), the data set)rganizdtion is obtained 
from the POD and tho appropriato access 
dr:pfCnd<'-nt open r'j~t illE> i:; cdllFd. 

The RESTBL H,tYT'lock i:; rf'l fa::;e<:! for 
shared dat21 sets, and control i::; rf't.1Jrn"d 
to the caller by t_h·c RETURN mriCco. 

3tow Routin" <CZCO;) 

Stow is used to modify, add, or d~lete 
IT.En.ber or alias descriptors in the PGL. 
The RESTBL will also be updated as 
required. Stow also updates the user data 
field in the member descriptor. {See Chart 
PB. } 



Att,rJ.l>ut~:<;: Re.ld-only, reenterable, privi­
Yeged; publ~c. system. 

Restrictions: Each member and alias name 
within a VPAM data set must be unique. 

The DeB used to control opelations on a 
member must be open prior to i~;suing a 
STOW. 

If a type-N STOW or type-R STOW is given 
for a member, subsequent references to the 
same member must be preceded by a FIND. A 
FIND must be issued before attempting a 
STOW (R). (0), or (D). 

If new aliases are being added to an 
existing data set, no duplicates are 
allowed within the input list of new 
aliases. 

Entry Point: CZCOKl -- Called by either 
type-l (privileged to privileged), or type-
2 (nonprivileged to privileged) linkage. 

Input: Parameters are passed to Stow in 
general registers as follows: 

Register 0 -- Address of the user supplied 
data area. The formats will be inter­
preted, depending on the type of STOW 
issued. They are described with the 
STOW macro format. 

Register 1 -- Address of the DCB. Note 
that the macro code field in the DCB 
will be preset to one of the values 
(hex) discussed with STOW macro format. 

Modules Called: 
CLOSEVAM (CZCOB1) -- Close member header if 

open on a STOW type-D. 

Search (CZCOL1) -- Search POD for a member 
or alias name. 

Search SDST (CZCQE1) -- Search shared data 
set table. 

Interlock (CZCOHl) -- Impose read or write 
interlocks on POD and RESTBL. 

Release Interlock (CZCOI1) -- Release read 
or write interlock on POD and RESTBL. 

Reclaim (CZCOG1) -- Release external pages. 

Relocate Members (CZCON1) -- Updates POD 
after call to RECLAIM. 

Extend POD (CZCOM1) Expand POD by page. 

VSAM Close (CZCOQ1) Close VSAM member. 

VISAM Close (CZCQA1) -- Clos~ VISAM member. 

GET MAIN (CZCG2) -- Obtain storage for the 
alias list. 

FREEMAIN (CZCG3) -- Release virtual 
storage. 

Expand (CZCG4) -- Obtain additional conti­
guous storage for the alias list. 

Disconnect (CZCGA) -- Loqically disconnect 
a task from an area of virtual storage. 

VDMEP (CZCQK1) output a diagnostic mes-
sage and terminate the function (but not 
the task). 

Find CCZCOJ1) -- Search POD to locate a 
member descriptor. 

Exits: 
Normal -- Return with one of the following 

codes in register 15: 

'00' 

'04' 

·os· 

• 10' 

• 14' 

STOW successful. 

New name, or replacement for old 
name, a.lready in use (N, NA, C, 
CAl, or old alii:ts does not belong 
to member specified. 

Member name not in POD. 

Old member name not in POD (C), 
or alias name not in POD (CA, 
DA) . 

Illegal STOW type requested 

- Macro code out of range. 
- Name specified is all FFs. 
- Input area not on FW bound-

ary. 
- STOW eNA) and alias count=O. 

'lS' User data exceeds maximum length. 

'20' Attempt to expand POD for system 
catalog. 

Error -- When any of the following errors 
are detected, the ABEND procedure is 
executed to terminate the task: 

• DCB header does not point to DCB. 

• DSORG in DCB is not VIP or VSP. 

• Type-R STOW. member name not found, 
and not called by ABEND. 

• DCB already opened for another member. 

• A call to Search SDST gave an error 
return. 

• Member checked out by another DCB. 

• DCB not linked to specific member. 

• Member in use; cannot delete it. 

Section 7: Virtual partitioned Access Method (VPAM) 169 



>'1'[,;'r; ,-j fly 

rjf..·'lf'Ct (1(1 

funrt i()o 

(~i t tlt" ~ { LnWl tlq • (. ~.Or'i 'j.{'.~ 

d ":IlML! ,'; PX<'Cllt.Pc! ,ln,l ~h' 

tr,(); tht' ~d!.:;k) ~:, t-.~~rrrjnd~p,~:; 

• No secondary allncaLion. 

• Attempt~ t ~"', c~xp:-i~-,d RE~~TRL for: sh~re(~ 

data Set. 

• Maximl~ directory size exceeded. 

• In-v''':::::i2 ... t,i I'f,t 'J.rn code from CL.COM or 
·.~%C(:; ,'.011'1 ,do;,' ('du::e :;Y;';EH). 

• nUf,.l.icate inpJl .';'!'Ow NA <,r NlI.Jct. Invd-
lid '01 cl,';~.~pd lJ('~~, r)..]~,:~;{-'d a~~ rkjr·dmt~~t-t"r .. 

'J*'n~·'rd 1 
c () nf 0 T.1nd n c.- r;. 

are declared fer th0 5tow CSECT and PSEC0 , 

ISl~~!1 DCB" Di~f!, :~1t:"1('irj~)l" r membe.r hedder, .-4nd 
[>;:.:D. 

The: val idi t Y 1:.hf·· STOW t.Y:t?t--ti and t~hc 
val.idit,y of p<:rtlcu"',l.r t'.ypes of ::3TOH witn 
the existing UPEN opt,ions, are verified. 
AEEND is callfd if any error~.O or 5.nconsis­
tcncips are f( ~lnd-> 

Thp RESTB.L i:3 i E"t' r:~ ~ 10(":' KPO .f ·:')"t :'::';1)~'i r~·,] 

(J.ata sets... T;~e .loch. will .of" relea~3ed prior 
to dny RETURl', VSI,M CLOSE (CZCOQ) or VISAM 
CLOSE (CZCCA) au' called If requirf-:d. 

;:h., PClu l~; 'iedrcllPQ to locatf! the member 
descriptor.. f th+_~ membE1r name is not 
~ouna lL ~he ~D. a member d2scriptor ~s 
buU.t: for a t_ 'pe-N STOW. 'rfJr POD and 
RESTEL pd~1E' C :'untF,'IS are Updd"'(~d t_Ci reflect 
the addi t lon )f t.he new member a nd to 
reflect change'S to a.ll. CfU,pd Ifl",rrbc'r,;. If 
the POD has b';en updatej, by STCJ\o.i, t.be POD 
Integrity fla} in the RESTBL is set; this 
Cduse~-; CLOSEV AM (CZCOB) to write the POD to 
external stoT'lge. ControJ. is returnpd to 
t~he caller by the RETURN macro. 

If the merrher name is found in the POD, 
rrocessing continues for the particular 
::;TO'''' typp: 

.. Type-N -- It a name was found on a type 
N (new mtmber), no further processing 
is done, and return is made with d 

return cede signifying that the new 
name .... as not unique. 

170 Part II: Virtual Access Method (VAM) 

• TYf"'- NA N<>w " lla~;ps n';dy be added to 
,In ('xic;t in<, mf>lPber. The pe'D is 
:;t"drch":j f()r ear:h alias beino added. 
If thp dlja~cs are unique, an alias 
~~scriptor is rredted for each alias 
beinq added. These new al.las descrip­
tors cir~ llnked tr the appropriate mem­
her ;'iescrirtor, and control is returned 
to th[ caller hy thp RETU&N macro. 

• TYFf'-R -'- ;;T,lhi \ iTt-' h i;~ (",d 1 Pc:! tc 
replace' U:;fr ']at d, rlnd c:luC'e the m .. 'm-
1'('r. If user dlPi> wa~, specified, the 
user data is stored in the POD. This 
'11<i'l C2 use t.tw IN'<T:1bc'r de:;rr i pt 01' t.O be 
IT.oved. ~,ince i~ roay not trpvlously haVf> 
contain~>d USPt" datd, ~)r thf:: new user 
data requires ~dditional space. If the 
member descriptor is moved, the hash 
painters and the ali3s links are 
upJat"d. If th," llser ('ount in the mem'" 
bpr h"'ader is 'Zr'TO, the member header 
i ,; clos,,'d, rthilt. 1:;, the member header 
1.S dnded to th(' delf'ted member header 
chain, the P('R hE'dder link is cleared, 
and the membpi name is set to 
BXL1'FF' I. Thf POD is updated, and 
cont_roll"; p'tiJ['rlcd to t.he caLler by 
thf~ RETUE=;N JTtG,C co. 

• Type--'U -- TYPf:-iJ STOW accomplishes the 
same thing as type-R, except that the 
rnembfT headpt is not closed. It 
remain:; dcti.ve for furt,her pcocessinq. 

" TYf,"-D-'- STOW type-D (delete) cause:·, 
the data pc.ge" as~;ociated with a merrber 
to bf' delet_€d 'rYy calling Reclaim 
{CZCOG} • The memb"r dnd alias descrip­
t.or~; an': deleted from the POD. The DCB 
ie, :initialized for reuse, and control 
is CFt urned t.O the call er hy the RETURN 
llkl.Cro. 

.. Tvp<.-DA -- I'\i.iase:' mc.y be deleted fro:;:, 
"ll Exi~;tins JT>pn,ber. The POD is 
searched for th~' a lias being deleted. 
If found. the alia3 descriptor is 
deleted trom the POD. This process is 
done for e~cn allas being deleted. 

.. 'Typ:"-C and Type-CA -- Type-C and -CA 
;,1'OW are name changes of members or 
aliases. The POD is searched for the 
ni'\we being chanqed. When found, the 
new name member or alias replaces the 
old name accordingly. 

.. Type-NAIl -- Ni'W aliases may be added to 
an existing member as in ;; type-~IA STOW 
but if any new aliases dUf-lieate exist­
ing aliases or names, nom:· arE' stowed 
and a list of these duplicates is supp­
lied ~o the caller. Stow does a GET­
MAIN for ~A of list, passes VMA in 
register 0 and will not FREEMAIN this 
ayea. It there are duplicate aliases 
within an input list of new aliases. 



some aliases may be stowed and, 
although a return code of '04' will be 
set, no duplicate names will be supp­
lied the caller (see Restrictions). 

Search Routine (CZCOL) 

Search is called by F'ind, Stow, and GE'T'­
NUMBR to locate d member descriptor in thp 
POD for a given member name or al1ds. 
MOSEARCH, entered at Search's second entry 
point, may be used to search past the first 
matching entry in the POD for additional 
entries with the same name. (See Chart 
PC. ) 

Attributes: Read-only, reenterable, pri vi­
leged, public, system. 

Restriction: If MOSEARCH is called, Search 
must have been called first, and the 
results of that search left undisturbed. 

Entry Points: 
CZCOLl -- Entered via type-l linkage to 

locate first matching member descriptor. 

CZCOL2 -- Entered via type-l linkage to 
search past first matching entry in the 
POD, seeking additional entries with the 
same name. 

Input: General register 1 contains the 
address of a two-word parameter list: 

Word 1 -- Address of the DeB associated 
with the POD to be searched. 

Word 2 -- Address of an a-character field 
containing the member name or alias to 
be used as a search key_ 

The search code field in the DCB will 
contain a code to indicate the type of 
search being requested: 

M Member 

A Alias 

E Either 

Modules Called: None. 

Exits: 
Normal Register 15 contains one of the 

following return codes: 

• 00' 

• 04' 

'OS' 

Successful. 

Entry with matching name and type 
not found -- no hashing chain for 
hash value. 

Entry with matching name and type 
not found -- hashing chain exists 
for hash value. 

Error -- None. 

Operation: Initialization and general 
register· storage is execut.ed in conformance 
with linkage conventions. Base registers 
are declared for the CSECT. DCB, DCB head­
er, POD, and POD member descriptor. 

The OCB i~~ modified per results of 
~:;earch or MOS.l'.:ARCH: 

Den 
§.ymha! 
DCBHV 

DeESC 

DCBSP 

DescriEtion 
Hash value of member or alias. 

Relative location within POD of 
found descriptor. 

Relative location within POD 
descriptor of preceding found 
descriptor in same hash chain. 

Search has two entry points. CZCOLl is 
the entry point for the ~nit.ial call to 
Search. CZCOL2 l.S t.he entry point for con­
tinuing Search (MOSEARCH), after Search has 
initially been called. A switch (DCBS·d'I') 
is set to indicatet.hat the current entry 
was to Search (C2COL1). This switch is 
tested on every entry; if on, the member 
name is hashed; if off, the name is not 
hashed, since it was hashed on the initial 
entry and the value still exists in the rCB 
(DCBIN) . 

The hash value is used to obtain the 
hash chain pointers from the POD. If th. 
pointer is zero, the return code is set to 
"no hash chain R , and control is returned to 
t.he user by t.he RETURN macro. 

If the hash chain pointer exists, the 
descriptor is obtained. The name input to 
Search is compared t.o the descriptor namf'. 
If the names do not compare, the rest of 
the chain is searched in the same manne:r 
until the name is found or the end of the 
chain is reached. If the end of the cha).n 
is reached and the name is not found, th" 
return code is set "not found" and contrc-l 
is returned to the caller by the RETURN 
wacrc. 

If d descriptor name is found that 
corres!:-,onds to the Search input nam,', th·, 
search t.ypE' (m(>mber, alias, or either) i·; 
t.ested to det.ermine if the found descrip-t.o! 
is the correct type. If the search type 
was "E" (either), t.he search was success·· 
ful, and the return code is set to .. foun,L" 
The location of the last two descriptors 
are saved (for MOSEARCH) and control is 
returned to the caller by the RETURN mac:o. 

If t.he search type was "M" (member), dnd 
t.he found descriptor is a member descrir­
tor, a "found- exit is made as descrlbed 
above. If the search type was "M" and tje 

Section 7: Virtual Partitioned Access Method (VPAM) l71 



found descriptor is an alias, the search of 
Lhe hash chain is continued. 

If the search type was eA- (alias) and 
che found descriptor is an alias, a • found­
exit is taken as described above; other­
wise, the hash chain search is continued. 

Extend POD is called by Stow t.o expand 
U;e POD by one page, both in virtual 
storage and on the external storage device. 
<See chart PD.) 

;,ttEirjl~~.§_: Redd--only. reenterabl e, pri vi­
leged. public, system. 

!kstrict.ions: It is not possible to expand 
;;~,aied datil tables. If t.his becomes neces­
~3a .. :y. a .return code is passed to the caller 
.Jna this function terminates. 

Entry Potnt: CZCOMl -- Type-l linkage 
(privileged to privileged). 

Input: Register 1 contains the address of 
the OCB associated with this POD. 

Modules called: 
'Expand (CZCG4)-- E.xpand the size of the 

virtual stora9f': area containing the POD. 

Insert (CZCOFD -,- Insf:!rt external page en­
try into RESTBL. 

Relocate Members (CZCONl) -- Adjust member 
page numbers to compensate for expanded 
POD. 

VDMEP <CZQK1) -- Output a diagnostic mes­
sage and terminate the function (but not 
the t.ask). 

Exits: 
Normal -- Return to the calling routine 

with one of the following return codes: 

'00' Normal. 

'04' No storage space available. 

·os· storage ration exceeded. 

• OC' 

'10' 

'14' 

No secondary storage allocation 
specified. 

Shared data set RESTBL cannot be 
expanded. 

Maximum data set/or member size 
exceeded. 

'18' Insertion beyond end of data set. 

'lC' Deletion beyond end of data set. 

172 Part II: Virtual Access Method (VAM) 

Error -- VD~P is called if an invalid 
return code is received from Insert. 

Operatio~~ Initialization and general 
register storage is executed in conformance 
with linkage convpntions. Bas~ registers 
are declared for the CSECT and PSECT, DeB, 
DCB header, POD and RESTBL. 

The POD i 5 expanded by one page by cal­
ling Expand with the virtual storage 
address of the POD, the number of pages 
currently in the POD. and a one page expan­
sion request. 

On return from Expand, the returned vir­
tual storage address is tested to see if 
the POD was relocated due to expansion. If 
relocated. the POD base and POD pointer in 
the RESTBL have to be updated. An external 
page entry is inserted in the RESTBL (by 
calling Insert) to correspond to the new 
POD page. Error returns from Insert cause 
an ABEND. The data set length is checked 
to see that the new page added does not 
exceed the maximum allowable size of a par­
titioned data set. A return code is set if 
the maximum data set length has been 
exceeded. 

The number of POD pages is updated in 
the POD and RESTBL. 

Since the page inserted in the data has 
changed the relativeposit.ion of all mem­
bers. Relocate Members (CZCON) is called t.o 
update the relative location of existing 
members in the POD. 

control is returned to the caller by the 
RE'l'URN macro. 

Relocate Members Routine (CZCON) 

Relocate Members is called by GETNUMBR 
and STOW, to updat.e member descriptors in 
the POD to compensate for added or deleted 
pages within a partitioned data set. Mem-­
bel' headers of members that are checked out 
are also updated. (See Chart FE.) 

Attributes: Reenterable, read-only, privi­
leged, public, system. 

Entry Point: CZCONl -- Entered via type-l 
linkage. 

Input: Register 1 contains the address of 
the DCB associated with the data set being 
modified. Relevant fields in the DeB are 
set as follows: 

DCBN 

DeBM 

Data set page number at which 
relocation must occur. 

Number of pages inserted or 
deleted. 



DeSaI' '08UU' indicatcc insert. 

'0400' indicates delete. 

Modules Called: None. 

Exits: Rettlrn t..o t_he calling routine. 

('peration: Initialization and general 
regi~oter storage is executed in conformance 
\l/ith linkage conventions. Base registers 
are declared for the CSECT, DeB, DeB head­
er, POD, Member Header, and RESTBL. 

Member descriptors in the POD are 
located by searching the hash chains. They 
are examined to determine if they have bE~en 
relocated. The relative location and the 
external page value of the first page of 
each member is recorded in the POD. 

If a member requires relocation (that 
is, it is past the point of relocation), 
the member is tested to determine if it is 
the member causing relocation and if the 
first page is affected. It the first page 
is affected, the first page value is 
Updated and the search of the hash chain is 
continued. 

If t_he current. member is not the member 
causing relocation, or it is the member 
causing relocation and the first page is 
not affected, the POD is updated to reflect 
location. 

The member header chain in the RESTBL is 
searched to determine if the current member 
is checked ont (that is, active - a member 
header exists). If the member is checked 
out, the member header is updated to 
reflect the relocation. The search of the 
hash chain is resumed. 

When a hash cllain is exhaust.ed, the next 
hash chain is sedrched until all chains 
have been processed. The member header 
chain is tested to see if any members are 
being created. The start. of members being 
created is adjusted in the member header 
for any relocation. 

Control is returned to the caller by the 
RETURN macro. 

GETNUMBR Routine (CZCOO) 

GETNUMBR (Get Member Page Number) is 
called by MOVEPAGE (CZCOC) to convert the 
page number relative to member, to the page 
number relative to the data set; and by 
Insert/Delete Page (CZCOO) to control 
changes in the size of a member. (See 
Chart PF.) 

Attributes: Read-only, reenterable, privi­
leged, public, system. 

Entry Point: CZCOOl -- Via type-l (privi­
leged to privileged) l~nkage. 

Input: Regist:er 1 contains the address of 
the DCB associated with the partitioned 
data set for \l/hich meml~r page numbers must 
be corrected. Relevant fields in the DCB 
are: 

DCBN 

DCBM 

DCBOP 

page number relative to member 
of the first page in the 
request. 

Number of pages to be processed. 

'SOOO' - Input. 

'2000' - output. 

'0800' - Insert. 

'0400' - Delete. 

Modules Called: 
Search (CZCOL1) -- Search POD for member 

descriptor. 

Insert (CZCOF1) -- Ins'::ort pages in RESTBL. 

Relocate Members (CZCON1) -- Adjust member 
description for added or deleted pages. 

Reclaim (CZCOG1) -- Delete member page 
entries from RESTBL. 

TSEND (CEAH19) -- Wait for shared pages to 
go out of use before deleting pages. 

VDMEP (C2CQK1) -- Output a diagnostic mes­
sage and terminate the function (but. not 
the task). 

Exits: 
Normal -- Register 15 contains one of the 

following return codes: 

'00' 

• 04 • 

'OS' 

'OC' 

'10 • 

'14' 

'lS' 

'lC' 

Successf ul. 

No external storage space 
available. 

Storage ration exceeded. 

No secondary storage allocation 
E;pecif ied. 

Shared data set RESTBL cannot be 
expanded. 

Maximum data set or member size 
exceeded. 

Insertion beyond end of data set. 

Deletion beyond end of data set. 

Error -- VDMEP is called if an invalid 
return code is received from Reclaim or 

Section 7: Virtual Partitioned Access Method (VPAM) 173 



.cmH#ct, or it dn old member could not he 
locatt'r1 in Hie POD {the m~mbE:r ha!;; been 
deleted abnorrr~lly). 

Opera~!on: Initialization and general 
registers are stored in conformance with 
lir~age conventions. Base registers are 
declared for the CSECT and PSECT, DeB, DCB 
t,'2ader, IX.ember header, POD and RESTBr". 

The offset of the member is tested to 
d(:,t.~!:;:rin€ if it has been relocated since 
t~he l,::,t operatiGn. .t.,n ad justment has to 
De made in Ul€ POD and member header for an 
cIrl member. Only the member header need be 
iidjust.ed for a new member, since it has not 
been STOWed dnd no POD entry exists. 

The extent of the current operation is 
': ested t'J "iRe if it is wi UJin t.he range of 
che member for a deletion or pure number 
trar;sldtLon, or contiguous to the member 
"or an insertion. A return code is set if 
the operation is not within the computed 
1 imit:s .. 

174 Part II: Virtual Access Method (VAM} 

The page number relative to the member 
is converted to a page number relative to 
the data set. If the operation is not an 
insertion or deletion, control is returned 
to the caller by the RETURN macro. 

If the operation is a deletion, the 
pages are deleted by calling Reclaim 
(CZCOG). If the deleted pages did not 
belong to a member being created but to an 
existing member, Relocate Members (CZCON) 
is called t.o relocate t.he member in the POD 
and member headers, by the amount of dele­
tion. Control is then returned to the 
caller by the RETURN macro. 

Similarly, the data pages are inserted 
by calling Insert (CZCOF). Relocate Mem­
bers is called if the insertion was in an 
existing l'IIembe.r. to adjust the other mem­
bers by the amount of the insertion. Con­
trol is returned to the caller by the 
RETURN macro. 



PART III 

QUEUED SEQUENTIAL ACCESS METHOD (QSAM) 





QSAM routines operate upon data sets of 
queued, sequential organization. They will 
process all of the OS/360 QSAM facilities. 
(vSAM uses move-mode to provide the func­
tional equivalent for OS/360 substitute­
mode programs.) In addition, TSS QSAM pro­
vides the following features not supported 
by OS/360 QSAM: 

1. Both locate and move mode macro 
instructions can be intermixed on the 
same data set. 

2. Variable record formats are allowed on 
a data set opened for ROBACK. 

3. A SETL routine is provided to alter 
sequential processing of a QSAM data 
set. 

QSAM's basic functions are blocking and 
deblocking logical records, issuing I/O 
requests. checking. and positioning for 
blocks of data. 

QS~M itself blocks, deblocks, and buf­
fers internally, but uses BSAM to perform 
I/O operations such as reading. writing, 
checking, and positioning for access to 
data. Through BSAM routines, QSAM also 
provides labeling services and, if 
required, ASCII translation. Table 49 
lists the modules of BSAM invoked by QSAM, 
and briefly describes their functions. 

~AM Macro Instructions 

The macro instructions used on a QSAM 
data set fall into three groups: 

1. Those which are directly serviced by 
QSAM. 

a. The GET macro instruction retrieves 
for the user a Single logical 
record. 

b. The PUT macro instruction adds a 
single logical record to a block of 
records. 

c. The POTX macro instruction returns 
an updated block of records to a 
data set, or includes a record of 
an input data set in an output data 
set. 

d. The TRUNC macro in~truction causes 
tne next logical record of an out­
put or update data set to be . 
treated as the first record of the 
next block. 

SECTION 1: GENERAL DESCRIPTION 

Table 49. Usage of BSAM Modules 
r----------T------T------T----------------, 
ITitle and I I I I 
I ~lodule 1D I VCON I RCON I Usage I 
t----------+------+------+----------------~ 
lREAD/WRITE!CZCRASICZCRA?IReads or writes I 
I CZCRA I I I blocks of data I 
I I I I I 
I CHECK ICZCRCS!CZCRCPlchecks the com- I 
I CZCRC I I I pletion of read I 
I I I lor write opera- I 
I I I I tions I 
I I I! I 
I POINT ICZCRMAICZCRMPIRepositions a I 
ICZCRM I I Idata set I 
I I I! I 
ICNTRL ICZCRBSICZCriBPIRepositions a I 
ICZCRB I I Idata set I 
I I I I I 
I NOTE ICZCRNAICZCRNPIReturns relativel 
ICZCRN I i laddress within al 
I I I I volume of last I 
I I I Iblock read or I 
I I I I written I 
I I I I I 
IBSP ICZCRGA!CZCRGPIBackspaces a I 
ICZCRG I I Idata set I l __________ ~ ______ L ______ L ________________ J 

e. The RELSE macro instruction causes 
the remaining loqical records in an 
input or update buffer to be 
ignored. 

f. The SETL macro instruction speci­
fies a new start location for 
sequential processing. 

2. Those which are serviced only by BSAM, 
but affect the operation of QSAM. 

a. The OPEN macro instruction fills in 
certain fields of the data control 
block that were not filled in at 
assembly time, checks volume 
labels, constructs tables, and pro­
vides work space and buffer areas. 

3. Those which are serviced mainly by 
BSAM with additional functions per­
formed by QSAM. 

a. The CLOSE macro instruction com­
pletes or purges all outstanding 
I/O requests, releases the storage 
obtained by the OPEN routines, and 
writes trailer labels. 

Section 1: General Description 177 



Jh~~ -f-,~'~,~>~' 4,L:!i-. ,;.~ lL·')riL",Jct~)i-: .... 'ji"::c,ct: .. -
i . .r~~ ,'.>cu~t,,;: ~,.d t)t-(:~'(~£{.m t,~) G .. :l .. ia:·~,~,-2 t~c 

th-l?: n~,lr ',{,_:d IJAtI;:, .. ,f i!. .:\:;\,""",,,,,' 

:. ,-<",:t ,',,-{',H ':3 t~·U'€.i d i t ur<.; ;: ,;:1::" .I:.;"JL~,·::'t;;.!·i. ~,i.l~; .:J z::q'l.li . 

s_t\.i()H ::~i: l~~,~tk:LHq ~~I.>~r::<:~ j-:!e(:dUGt~. it :t,;.::; 
~:~~;::i,i"-:~;tL~\ i>~O ~;'5.:r<~-t:\J" Q:~),\til _f. ,,:;qtiij:~~3 ,,;; ~:\ l-k 
'.'1'::\ ':~'\~'" ~:.:,l?-·i \ <;~_:·~_{t'':''{1S ~ !,~;l~ ~jR-;~~{;£ 'fc;,~' th~~s 
~L-j .• :k ,51"2;~ a}so f"'.lrCf,;'::i.de~ blJ.ft,,;:t" a:r.·(~d.S 

t,~j'J.: :~!SAt\1 

'l,'}'je "WI'I( .;.J"ea pro,F.i.. uc-d 1:0I: O8.\[>'i :i;~ known 
(~:.,.; t,h;.:.' QivX \-vv)!: k i5i.rE:~a ~ or ~~;-WKAB,.. I J_.:: 
"it,l.'1t'E~),~3,~ is t)lci .. :t:c~ in. t.tte j)t:P~\~K f5.c ,t.r::l uf 
the d:ita e'-'ntxo! t·lcdc, by S./lJ-1 ul?'t:!n" All 
1i-r;:).(1;f: \J),7:J:d ... n 1:J.~.'=.: riW.K 1#()£k d't'ea" ej':,c(:'i-:'(· 
t~h()f~t-:; lti,;:'):!'ds re~ :eA:'\) E:d ri.H:' oa;."t>il. f::'v~~nt". Ct/nt,!';7:1 

blocks. a~e rsi~rred to with d pKsfix of 
Q~Ji\, Q~T}\J.LR (~' ... if,~:-i1!5Ls- 1)£ ~ 

!.J ,. 

:~it.a.ff }.~:~,:'..':i.Ht. stO~:?~di.{tC: i<:'lt' t-h:1..~B;"::: da.tCl. 
""'J,,;:nc (:'i)r.t,,:;l Ll'~'c:ks (D)2':,Bl'"DECi:13) 

AXi g·-·~wj':d ·";cr';ilf~ i';i .. (C-'& fc.rJt ,'::Hl'iiii:aq t:€t ~JY::~ 

",ddX:'l:3SE'S ootwf;,en sl.lh;.;ect:ion:.'> of Q'SAM 
Qi§7Kr-;R.f1""{2~-t'K~~~H? j ~ 

.:'~lJl~;tJ"~(:·R" u--· ~~'J.)K ('!, ~:;' d'~(e ;;. i:. €"3 tf.; r s.?f\i"il.lg 

\~(-<;9i~; t,ex '\.>C:'r .. C,,;~xft~s wJaen El~~DAD Dr ::rtNA,l) 
l$' :i,wJ'o.l<.ed [QwKWKi-QWKWln3}, 

KLn·c./LhE:l: .1 ~~~ <1iIi",::;;~: d s(-}\ V{~ d.:rt:!·-)i t (,,1.' s!.tVi ng 

':::€fji..s·tet':}. it~ a t.ypi~ 2 lin}(:tzJ·e, 

'"'b,"!"lie ,:'")SEC'l! u~;-ed 1:. () ,l:ef ~.!l' to r.fi~:K.Ait {:::Hl be 
f{j4md. in Appendiw ;; .. 

I;, addit:ic,n r n ,'):(-o'll.id'S.ng UH, \lq~Z \IIu.:r)( 
<tP<d, ,':;;'.1<1 Op'en ,,,ill disc p:r;.H1;id-s \)SAi:j wit:Ji,; 

l _, 

OH~ !:.mftel,Jcc:h tor dat(]. Bets ;:,:Vi.'l:C·,j 

for Ul.x'late, '~j'vj when ;H.'l'r. (S'I :l,;, 
'!(!'liJElst£<S ir, 'the DeB Hi\CIU' f i21,] 

'1.'4H'ce (l\:d,ferJ "'m: oeach do.!.:", "",i;: O'<)'f:,)<'_<1 
'(';;;'\' RDBACK USil:~9 "«rid,tlle x",,',':Jt'd 
fm:llli:lL. 

.), J''fi,~ i:m:ft2I'S €«<;b fen: ,,11 ,.::<-11('( ("""til 
Sf~Y_':i " 

QS;;'H's buftering T.0Ch;,i'.:Jue:;; 'nL!. b,':' TtE 

,:~,ssee. further in Pa.rt II of th.is s!3,.tio!L 

~:01J0''';\.i'9 ale brJ.ef ;).esc:r.ipU.;)!1:;: or ,~a;:_L 
ot th'£ <:ontr.ol blocks llsed by QSAM. 

D<,l.i.:..a. Cont.r:cl Block (OCB): The XB :;.s 
~5SAM'spriinary s()urce of information a ix-.;;' I: 
dJ€ ,!iJ:td set" It: 1.s defined by tiH: lme( at; 

a~,8"'-dbly tinli! t.l:n:ough tl'1"=' lX:B macro 
inst.v.1ct_io£l, and n.ay be filled in or mr)(H' 

fi.:,! at. OPEN t:,imc or during exec:u.Litm" 
i\PF€.i":'UX '8 C"Hltains a lis,,:: of t.h'2 ",<d,n 
ti.elij,' of t.be DCB used exclusively QSI',!1 
with a brief description of "';ach" 

[u'C;;( E"'~nt. Contxol BlocltW~B): 'UH! DE',:D 
'p.~0-;~ide;--[nfm:=mati(m nec:€:ssary- fu.(tr;€ i.:.cn­
t \hol of each 1.10 operdttion and refie,:ts t.b0' 
std~.US r~f t_Rl.~ comple.ted operation. QSMJ, 
L .. l. '(.:tal i zes the DEeB before I/O xc<."(~uests 

d r.:e pctssed to BSAM, and the 135M'1 Posting 
l:',(,'utine complete~; the control blod.;>, 

:::at;a E,rtev.t Block (DEE'): QSAM uses the DEB 
t~~;----;'eterroine if t,herea re any out(~tanding r 
lmci"".€cA:€d I/'O reguests or error condi tim:;s 



SECTION 2: INTERFACE RULES AND MOCULE DESCRIPTION 

It is important to note that QSAM is 
designed as a Rfence sitter- routine, and 
~ill run in the same privileged status as 
the routine which invokes it. Also, since 
~o linkage is established to the problem 
program when QSAM has been invoked by any 
other routine, all linkage between the pro­
blem program and QSAM will be of type-1. 

There are 22 subroutines within the QSAM 
module. Since QSAM does not have a PSECT. 
register usage and register saving are kept 
to d minimum by carefully regulating use of 
those registers. 

The linkage between subroutines differs 
from normal linkage procedures, because 
when one subroutine is invoked by another, 
it may not return directly to the invoking 
subroutine without having first invoked one 
or more other subroutines. The normal pro­
cedures for invoking a subroutine, with the 
return address in register 14, require a 
separate save area for each of the 22 sub­
routines, in order to maintain the integri­
ty of return addresses. The 22 subroutines 
are therefore divided into seven levels, 
such that no subroutine invokes another 
subroutine on the same level. either 
directly or indirectly. For example, the 
GET subroutine on level 3 never invokes 
another subroutine which is also on level 
3, nor invokes any subroutine which in turn 
invokes another subroutine on level 3. 
Thus one regist~r is aSSigned as a return 
register for all subroutines on one level, 
there being no need for a separate return 
register save area for each level. Thus, 
each subroutine has an exit register based 
upon its level, as defined in the subrou­
tine interface table (Table ~O). 

All SUbroutines are invoked by a BASR 
instruction with register 15 containing the 
entry point address of the subroutine, and 
the exit register of the particular subrou­
tine containing the return address. The 
invoked subroutine must save its exit 
register in one of the fields (QWKGRl­
'2WKGR7) provided in the QWK work area for 
this purpose, in order that the exit 
register may also be used for calculation 
during processing. When it has completed 
~ts processing, the subroutine restores its 
exit register and issues a Branch to 
Register instruction (BR). 

QSAM uses two base registers. Which are 
established at each of the nine entry 
points. Another register, the base regist­
er for the DCB known as DCBREG, is also 
established at each entry point, and 
remains the same throughout the processing 

of anyone macro instruction. TheTP 1S 
also an assigned bahe reqister for thp 
DECG, known dS the DECREG, which mU3t be 
loaJ~j by each subroutine using it, cince 
there may be more than one DECb in use. 
Registers 0 anu 1 are also reservea to pass 
parameters between subroutines. The para­
IT'eters exp+'ct ed by each subroutine are 
listed in Table 50. 

"ince OSAM generally runs in the same 
~rivilpqpd state as the ~r~t~em proqram, it 
may or !~ay not be of the saJT1e t)ri vilege as 
the BSAM modules which it invokes. Allot 
the modules listed in Table 49, except 
CZCRN, are privileg~d routines. CZCRN is 
also constructed as a ~fencP-sitter· rou­
tine, and will take on the privilege status 
of QSAM whenever it is invoked by QSAM. 
Therefore, type-l linkage is always estab­
lished to invoke CZCRN, using the V-con and 
R-con defined within the QSAM module. 

Before establishing linkage to any of 
the other BSAM modules, it is necessary to 
determine the status of QSAM. The subrou­
tines Read/Write, Check, Point, Control, 
and Backspace perform this function with 
respect to their BSAM counterparts, by 
test lng the first bit of the VPSW in the 
ISA table (CHAISA). If QSAM is privileged, 
type-l linkage is established using the 
V-cons and R-cons defined within the QSAM 
module. If it is not privileged, type-2 
linkage is established via the ENTER SVC, 
with the appropriate code in register 15. 

The parameters expected by the BSAM 
wodules and the possible return codes from 
them are listed in Table 51. 

QSAM Routine (CZCSA) 

QSAM blocks and deblocks logical records 
within a buffer, performs buffering ser­
vices, and issues requests to BSAM for 
transfer of data between storage and any 
I/O device. (See Chart QA.) 

Attributes: Reentrant, nonrecursive, 
closed, resident in virtual storage, 
assumes privilege of caller. , 
Entry Points: QSAM has nine entry points 
and nine entry sections which serve to 
channel prOFessing throuqh the appropriate 
subroutines. 

CZCSAA -- Entered upon issuance of the 
first GET on a data set, the first GET 
following a SETL type-E or -B, or the 
first GET following a FEOV. 

Section J: Interface Rules and Module Description 179 



, ......... """"'f -, .. _ ... - .. _,. .... __ . __ .. _-- .... _, .... -.-_.- -....... _" ............ " ..... _._--,_._-_ .. --' "-""---~"-----'-"" '----------" 
I t;.x it ±-,..::.tameter I I 

f< <':':j 1 ~i t .,r s en ;:~l Cl:' l' I OUier Subroutines In1'tolo.",d ! 
.. _,." __ ~.,, __ . _____ . __ , ____ ,_, __ . ___ . __ .,, " .. ",,"_ .,~. i . , 

IGETIO, P~TXIO I 
i 0·~"u:-e; WOI:K <J.\.:ea ",cldLE:SS Cb: dny) I I 

I I 
! l~' ,F: h a '.k,· e'" ;" I PUTIO 
IV=U:3er -..o.,k di.t:i.1 address \if an:!'} I 
I I 
~ 1. ''''DCb ad(JJ"t::s~, I PUT I PUTXIO. 
i O"-'lnput lXB a<:l:i.retis for O(;'Cput. PUTX I 
I I 
Il~DCB address IPUTIO 
I I 
j',"'DCf' addno-ss I 
! I 
il"-DCB address IPUTIO, CHECK, FLUSH 
! I 
11-=DCB dodres;:; ITREOV, INITIO, GET, CHECK. 

i 
I 
~ HEAD/WRIT!:: I 
j i 
ICNTRL 

2 

2 

J 

IO=pointe:r to ;l"rR2', or ZZCC* I POINT, ESP, CN'l'RL 

! I 
11=DC8 address rESP, INITIO, GET, SYNAJ). 
I ITREOV, FLUSH 
I I 
j l""DCB addn;:ss ICHECK 
: i 
i j e'De::: ""orh",,>,,, I TREOV. CNTRL, POINT 
I I 
11=DCH addrt:ss I GETIO, READ/WRITE 
i I 
I :l.'''fKB ",ddnss I READ/WRITE, CHlX!\:. Cm'lIO 
! I 
11=C~B address I READ/WRITE, CHECK, COMIO 
! I 
11=DC3 address iREAD/WRITE, CHECK, GETIO 
! I 
11=DCB dddl:ess i 
i I 
il=error type code I 
IO==DECB addr£'ss I 
I I 
!1=DECB address I 
I I 
11=DCB address I SYNAn 
IO=action code and value I 

I I I 
I ESP 3 Il=OCB address I 
I I I 
I POHlT 3 11=DCB addr.Ess I SYNAD 
I IO=pointer to 'l"l'RZ or ZZCC· I 
I I I 
IOh.: i( t; P=DECB addn3ss I SYNAn 
Iii 

! 
I 

CNTRL, i 
I 
I 

'P~"I,U::;H I 4 11 "'DCB address I CHECK I 
1-.-.... ,-,---.... - .. " • .1. ....... ----.. --.1. .. ---.--------... -------·-··---------.1.------------------·---"~· .. -·1 
I "'The t .. e~tms TTRZ and ZZCC refer to the relative form of the retrieval address of any i 
! (· .. lock ",ithin it data set on snagnatic tape or direct access devices. This address is ! 
I obtained, in h:s relative form, by BSAM NOTE (CZCRN). Tl'RZ refers to data sets on I 
I magnetic tape, and ZZCC refers to data sets on direct access devices. i I. ... _ •. _________ • ___ ,_. ___________________________ ~ ___ ... _____________________________ .J 

180 Part III: Queued Sequential Access Method (QSAM) 



Table 51. Parameters and Return Codes of 
BSM Modules 

rabl"," IJ 1. f\drJrcif>t ('r~; dnd kpt urn cojes of BSAM Modules 
r------T---------------------T--------------------------, 
!~Dduipi PdramPter'. 1 Return Codes I 
f------+---------------------+--------------------------i 
ICZc"RA IGRlouU:ll addre,"s I None I 
I I I I 
1'~ZCi<C iGkl~[)F£f\ "ddr!',;s I c;Yl'AD r<>C]u,:st flag in DECBI 
I I jtuDAD fldq in DCB I 

IGRO=DECIl dddr!'s," I 
I I 

ICZc""M C;Rl lJl'" dddn"'s INormal <<'turn, GR1S~O I 
I GNO·!"olnt~r to TTRZ IError return, GR1S=~ I 
I or ZZCC IUnrecoveraole error flag I 
I lin DEB I 
I I I 
ICZCRll G~l~DCB dcldrps,; l!'lonMl return, GR1S=O I 
I IlRO=dctlon cod., dnd Il::rror return, GR1S#O I 
I I numb .. r value I I 
I I I I 
ICZCRG IGH1=DCB addres-i INormal return, GRIS=O I 
I I I Enor r<'turn, GR1S"O I 
I I I I 
:CZCRN IGKloDCB ddClr<'sc; I(;RI=TTRZ or ZZCC address I l ______ 4 ____________ ~ ________ ~ ________________________ __ J 

CZCSAB -- Entered upon issuance of the 
first PUT on a data set, the first PUT 
following a SETL type-E or -B, or the 
first PUT following a FEOV. 

CZCSAG -- Entered upon issuance of all GETS 
except those listed under CZCSAA. 

CZCSAW -- Entered upon issuance of all PUTs 
except those listed under CZCSAB. 

CZCSAX E.ntered upon issuance of a PUTX. 

CZCSAT Entered upon issuance of a TRUNC. 

CZCSAR Entered upon issuance of a RELSE. 

CZCSAV Entered only by SAM Close or 
FEOV. 

CZCSAS -- Entered upon issuanCE: of a SETL. 

Input: The following parameters are 
passed: 

Register 0 -- Address of work area (if any) 
for entries CZCSAA. CZCSAB, CZCSAG, and 
CZCSAW. 

Register 0 -- Address of input DCB for 
CZCSAX when an output-mode PUTX is 
issued. 

Register 1 -- Address of DCB for all entry 
points. 

Data References: CHADCB, CHADEC, CHADEB, 
CHAISA, QWKAR. 

Modules Called: 
BSAM Read/Write (CZCRA) -- Entry at CZCRAS. 

For data transfer. 

BSAM CheCK (CZCRC) -- Entry at CZCRCS. 
Test 1/0 results. 

Section 2: 

BSAM Point (CZCRM) -- Entry at CZCRMA. 
Reposition a data set. 

BSAM Control (CZCRB) -- Entry at CZCRBS. 
Reposition a data set. 

BSAM Backspace (CZCRG) -- Entry at CZCRGA. 
Backspace. 

BSAM Note (CZCRN) -- Entry at CZCRNA. 
Identify last record read or written. 

Exits: 
Normal -- Return to the calling routine. 

Error -- ABEND termination under the fol­
lowing conditions: 

a. During processing of a GET macro 
instruction, when the computed sum of 
the logical record lengths (11) of 
variable length records does not 
equal the specified block size (LL). 

b. During processing of a PUT macro 
instruction, when the user attempts 
to PUT a logical record longer than 
the specified maximum block size. 

c. During processing of a PUT macro 
instruction, when the user specifies 
a value in the lenqth control bytes 
(11) of a variable record larger than 
the logical record length previously 
estimated in the DCB. 

d. During processing of a PUTX macro 
instruction, when the previous macro 
instruction was not a locate-mode 
GET. 

e. During processing of an output-mode 
PUTX macro instruction, issued on an 
output DCB whose address is in 
register 1, when the associated DCB, 
whose address is in register 0, has 
been opened for Output. 

f. During construction of a block of 
fixed format records, if the user 
causes an incorrect length output 
block to be created by changing the 
value of the logical record length. 

g. When a PUT macro instruction is 
issued on an update, input, or read­
back data set, or when a GET macro 
instruction is issued on an output 
data set. 

h. When a SETL is issued, but there is 
no (S) in the DCB MACRF. 

Otherwise, exit to user's SYNAD or EODAD 
routine. 

operation: The subroutine functions are 
shown in Table 52. 

Interface Rules and Module Description 181 



Tl>ble !>2. Sul:n:out.ine Function:; 
r---------- --- -T--------------- ----'--7----' ,- '-'1' - ,- ----- - ----, - -----------, ------------------------) 

I NaIll€ i Entry (8) I Chart I Function I 
~,-,-----------,-t----,-------------+-----+------------------------------------------------1 
iGE',C leZCAS7 I OM IDeblocks logical records I 
I 1 I I 
I PlY!' I CZCSA8 I ON I Blocks logical records 
I I I I 
I P(JTX I eZCSA2 I DO I Returns logical records retrieved by a locat,~-mode 

!1'RUNC 

! 
jRELSE 

I iGET to an UPDATE or OUTPUT data set 
i I I 
i eZCSA3 I DP i Truncates current block (output or update) 
! I I I 
!CZeSA4 I DQ IReleases current block (input, update, or readback}! 
I I! I 

ITREOV ICZCSA9 I OR ICompletes or purges outstanding I/O requests I 
I I I I I 
!SerLR !CZCSAL I OS IPositions data set at specified retrieval address I 
i I I i 
iSETLP I DT IPositions data set at previous loqical record I 
I I I I 
iSETLe !CZeSAZ OU ,Obtains retrieval address (TTRZ or ZZCC) of current I 
I t Ilogical record 1 
!! I I 
ISETLEB ICZCSAH DV IPositions data set at beginning or end of current I 
I I I~l~e I 
I I ! I I 
IINITIO ICZCSA6 I OW IInitializes buffer addresses, block size, etc., andl 
I I I I constructs DECBs I 
1 I I I 
jGETIO !CZCSA5 I IPerforms buffering for input operations 
I I (Entry frolll GET) I I 
I I I I 
I I CZCSAI I I 
I I (Entry from PUTX) I I 
I I I I 
\PUTIO ICZCSAU I IPerfo~~ buffering for output operations 
I I I I 
!PUTXIO ICZCSAJ I IPerforms buffering for update data sets 
I I I I 
ICOMIO \CZCSAM I OX IInitializes for a new buffer 
I I I I 
ISYNAD !CZCSAN I (Transfers control to user's SYNAD routine and 
I I I I performs checks on error options 
I I I I 
IREAD/WRITEICZCSAD I tIssues an I/O request for data transfer 
I ! (Entry frolll GETIO) I I 
I I i I 
I !CZCSAE I I 
I I (Entry from Pln'IO) I , 
I I I I 
ICNTRL ICZCSAC I IRequests repositioning of data set 
I I I I 
IBSP ICZCSAY I IRequests backspacing of one block 
I I I I 
I POINT ICZCSAP 1 !Requests repositioning of data set 
I I I I 
I CHECK I CZCSAK I I Requests a check on results of an I/O operation 
I I I I 
IF"LUSH ICZCSAF I IPurges I/O activity from OECB queue I L-_________ ~ __________________ ~ ____ ~ ___________________________________________________ J 

182 Part III: Queued Sequential Access Method (QSAM) 



Blocking Logical Records: The user 
issues a PUT macro instruction for each 
logical record he wishes to include in 
thf: output data set. The PUT subroutine 
adds the logical record to the block if 
it will fit within the current buffer. 
Otherwise, the block is considered com­
plete, and the record for which t.hc PUT 
was issued will be treat0d as the first 
record of a new block. The user can 
cause a block to be regarded as complete 
prematurely by issuing a TRUNC macro 
ins truction. 

Deblocking Logical Records: The GET 
subroutine returns to the user a single 
logical record each time he issues a GET 
macro instruction. When a block of 
records has been read and checked, the 
buffer address. of the first logical 
record is returned to the user if the 
GET macro instruction was in locate 
modei or, if it was in move mode, the 
first logical record is moved to his 
work area. When the current block is 
completely processed, the next GET 
issued causes the buffer to either be 
refilled if the data set was opened for 
Input or Rdhack, or to be written hack, 
if required, to an update data set and 
then refilled. At any time, the user 
can cause processing on a buffer to be 
regarded as complete by issuing a RELSE' 
macro instruction. 

Buffering Blocks of Data: The normal 
buffering facility of QSAM is known as 
double buffering. This involves the use 
of two buffers, one of which will be 
currently in use while I/O activity is 
being performed on the other. Thus, on 
a normal input or readback data set, 
while logical records from one buffer 
are being supplied to the user, the 
other buffer is being refilled. On a 
normal output data set, QSAM will con­
tinue adding logical records to one 
buffer while the other is being written 
out. 

Each buffer is assigned to one of the 
first two OECBs contained in QSAM's QWK 
work area. Pointers to these OECBs are 
contained in the DCB (DCBOEl and DCBDE2). 
To achieve the alternating of buffers, all 
read or write operations are performed on 
the DECB painted to by DCBDE2, and all 
checki ng operations are performed on the 
DECB pointed to by DCBDE1. Following each 
checking operation, the two pointers are 
switched so that, when the next I/O is 
initiated, the read or write performed on 
the DECB previously pointed to by DCBDE2 
ciDd now pointed to by DCBDEl will be 
checked, and the buffer belonging to the 
DECB now pointed to by DCBDE2 will be eith­
er refilled or written out. 

section 2: 

Once a buffer has been either filled or 
wr i tten out, and checkt~Ll. it i:' available 
for processing. and V~;AM will begin return­
ing logical records from it to the uspr, or 
adding logical records to it as they are 
supplied by the user. When this current 
buffer is completply ~rocesspd, VSAM is~ues 
f' i t h ._" r dr. '(j d r f.'qlF'!; t t" r·' t i. 1 l 1 t, \ H ,i 

write request to wr.l~' It uu'. Th.,[, the 
previous read or write op~rdtion is 
checked, and that buffer oecomes available 
for processing. Buffering is performed for 
input or reddb~ck, output, dnd update data 
set_s by the GETIO, 1'1];:·10, dna PUTXIO sub­
routines, respectively. 

Under some circufnstances, it is neces­
sdry to perform only sinqie buffering; that 
i'. only one buffer is used. In this case, 
tlH' fJointers to tjoo two DECBs are both set 
to point to the first DECB, so all opera­
tions will be performed on the same DECB 
regardless of the switching of pointers. 

The decision to use double or single 
buffering is based on the OPEN option of 
the data set, or on t.he combination of 
device type and macro option specified in 
the DCB. Double buffering will be done i; 
all. cases except the following: 

1. When the data set is opened for 
UPDATE. 

2. When the DCB MACRF requests a SETL 
(S> • 

Single buffering must be done on an up­
date data set to allow the user to update 
one block of records at a time. No readi,g 
ahead can be done until it is determined 
whether or not the current block of recorjs 
must be updated, since an updat~ write can 
only return the las~. block read. 

With double-buttering faciliti~s, QSAM 
requests two writes before requesting a 
check on the first write. 

Examples of Double Buffering: 

1. Double buffering involvinG an outr ut 
data set. 

Phd Se I 

DCBDEl 
\ 
'''; 

DECDl 
I 

V 
Buffer I (em~ty) 

DCBDE2 
i 
V 

DECB2 

I 
V 

ruffer II (available 
for processing) 

QSAM bui lds tr.'C! first block of t· he 
user's data set in Buffer II by adding to 
the buffer each logical record for which a 

Interface Rules and Module Description 183 



PUT l.S :;,ss\led, ur.til the buffer is full. 
Then a write request is issued for Buffer 
II, a check request is issued on Buffer I 
i. since DECBl is initialized by QSAH to in­
dicate normal completion, this check con­
stitut.es a dummy request>, and the DECB 
pointers are switched. 

OCBDE2 
I 
V 

DECal 
! 
V 

Buffer I (available 
for processing) 

OCBDEl 
I 
V 

DECB2 
I 

V 
Buffer II (written 

out, unchecked) 

QSAM now builds the second block of 
I'ecords in Buffer I. When it is complete, 
d write request is issued for Buffer I. a 
check request is issued for Buffer II, and 
the DECB pointers are switched. 

Phase III 

OCBDEl 
I 
V 

DECBl 
I 
V 

Buffer I (written 
out. unchecked) 

DCBDE2 
I 
V 

DECB2 
I 

V 
Buffer II {written 
out, checked. now 
available for 
processing> 

Buffer II is again available for proces­
sing. The third block of the data set is 
built in Buffer II, and when complete, a 
write request is issued for Buffer II, a 
check request is issued for Buffer I, and 
the DECB pointers are again switched. Thus 
the processing operation continues. alter­
nating the buffers used, W1til the user has 
placed the last logical record of his data 
set in the buffer, at which time he may 
CLOSE the data set, causing the last hlock 
of records to be written out and checked 
immediately. 

II. Double buffering involving an input 
data set. 

Phase I 

DeBDEl 
i 
V 

DECBl 
I 
V 

Buffer I (read, 
Unchecked) 

DCBDE2 
I 
V 

DECB2 
I 
V 

Buffer II (empty) 

Since on the first I/O request of an 
input data set, both buffers must be 

primed, an initial read is requested on 
Buffer I. (This varies from the normal 
procedure of reGuesti~g reads only on the 
DECB pointed to bj- OCBDE2.) Then another 
read is requested to fill Buffer II, a 
check is requested on Buffer I. and the 
DECB pointers are switched. 

Phase II 

DCBDE2 
I 
V 

DECBl 
I 
V 

Buf f er I (read, 
checked, and avail­
able for processing) 

OCBDEl 
I 
V 

DECB2 
I 
V 

Buffer II (read, 
unchecked) 

Each of the logical records in Buffer I 
is returned to the user when he issues a 
GET macro instruction. When all the reco­
rds in Buffer I have been returned to him, 
a read request is issued to refill Buffer 
I, a check request is issued on Buffer II, 
and the DECB pointers are switched. 

Phase III 

DeBDEl 
I 
V 

DECBl 
I 
V 

Buffer I (read, 
unchecked) 

DCBDE2 
I 
V 

DECB2 
I 
V 

Buffer II (read, 
checked, and avail­
able for processing) 

Buffer II is now the current buffer in 
use, and each of the logical records in it 
is returned to the user until there are 
none left, at which point Buffer II will be 
refilled, Buffer I will be checked, and the 
DECB pointers will be switched again. Pro­
cessing continues in this manner until an 
end of data set is encountered. At that 
point, the user's EODAD routine gains 
control. 

III. Double buffering on a readback 
data set. 

Double buffering on a readback data set 
of fixed or undefined length records is 
handled in the same manner as that on an 
input data set, except that blocks of reco­
rds are read beginning with the last blOCK 
of the data set. However. if a data set 
opened for Rdback specifies variable-format 
records, the procedure is var1ed tq include 
the use of a third buffer. After a block 
of records bas been read and checked. a 
copy of it is moved to the third buffer. 
This copy is used as a table to contain 
record lengths so that the records con­
tained in the actual buffer may be accessed 

184 Part III: Queued Sequential Access Method (QSAM) 



ln r.'ver~;Oc' order. l\ torwdld :;"diCh i~, made 
through thl' block tor the length control 
nytes (11) in front of ench record, and 
these bytes are saved in the blank control 
bytes (bb) of the following record. The 
length of the last leCOrel in the block is 
saved in the DeB in order that the address 
uf th,o flIst IPcord to be accessed (logic­
ally the Idst Lecord at the block) may be 
com~uted. The follow~ng Jlagrdm demon­
strates the layout of the third buffer. 

DATA 

ll, ~DCBSVl 

The beginning-of-buffer address for 
blocks of records in a readhack data set is 
at the logical end of the block. By sub-

t.rdct.i nq t r Olll t h"t dddn:>ss t.he h~ngt h of 
th~ last record in the block, which is 
saved in the DCB, the first record 
requested by the user is accessed from the 
actual buffer. Then the lenqth of the pre­
ceding record is obtained from the control 
bytes of the current record in the third 
huffer, and saved in the OCB so that the 
address of the next record may be computed. 
By maintaining its own copy of the current 
buffer. QSAM can be certain the lengths of 
the previous logical records recorded in 
the control bytes are always correct. 

Issuing I/O Reguests, Checking. and Posi­
tioning for Blocks of Data: QSAMs internal 
functions are performed entirely within 
storage. Any I/O requests for transfer of 
data between storage and any I/O device, or 
requests for repositioning a data set, are 
passed on to BSAM. Table 50 in this sec­
tion lists the BSAM modules invoked by QSAM 
and the expected return codes. 

section 2: Interface Rules and Module Description 185 



before G1scussing the 1nternal logic of 
tilL' '.ISM<; rout ine in relation to QSAM macro 
instructions, it is necessary to establish 
certain rules which will be followed throu­
ghout the discuss1on. 

1. All fields wi.thin the OCB, when 
referenc~~d. have a prefix of DCB. 

/, 1\11 fields within the DECD, when 
referenced, have a prefix of DEC. 

J. All references to fields withi!l either 
table indicate the contents of the 
field unless it is specifically stated 
otherwise. 

!j. Each at the nine entry subroutines is 
referred to by the name of its entry 
point. A calling module always enters 
QSAM at the entry point itself. For 
internal processing, however, a 
:c(eferencE: to "returning to CZCSAA" 
will indicate the entry subroutine, 
not the entry point .• 

::"", ::.~ince cert.ain of the QSAM subroutines 
have the same names as BSAM modules, 
, .. ;uch as Redd/Write or Check,reference 
t.o the BSI\M module of that name will 
always be clearly marked by referring 
to wBSAM Read/Write (CZCRA)- or by 
using just the module ID "CZCRA" after 
it has been identified with the name 
of t.he module. 

Certain of the QSAM subroutines perform 
the same function each time they are 
",ntered, regardless of the type of dat.a 
set, device or macro instruction being 
H3ed. To simplify the tracing of each 
macro instruc'1:,ion, these subroutines are 
~riefly described below, and thereafter 
referred to only to indicate the specific 
points at which they are invoked to perform 
their functions. 

SYNJ'..D is entered whenever an error in 
reading, writing. or positioning has 
occurred. If the user has provided his own 
SYNAD routine, a copy of the DECB on which 
the error occurred is moved to DECB3, and 
control is passed to his SYNAD. If not, or 
upon return from the user's SYNAD, tests 
are made to see if the erroneous block may 
be accepted or skipped, or if the task must 
be abnormally terminated. If no abnormal 

exit is required, the appropriate flags are 
set in the DCB, and a r'eturn is made to tn", 
calling subroutine. 

Read/Write Subroutine 

The Read/Write subroutine has two 
entries.' CZCSAD is the ent ry when c: read 
request is issued. and CZCSAE is the entry 
~hen a ~rite request is issued. The appro­
priate type code is set. 1nt_o the DEeB, dnd 
linkage is established t_o BSAM Read/Write. 
When control is returned to Read/Write, a 
return is made to the calling subroutine. 

Control Subroutine 

The Control (CNTRL) subroutine invokes 
the BSAM Control routine. If the return 
code from BSAM Control is not zero, the 
SYNAD SUbroutine is invoked. Otherwise, a 
return is made to the calling subrout~ine. 

Ba~kspace Subroutine 

The Backspace subroutine invokes BSAM 
BaCKspace. After control is returned to 
BaCKspace. a return is made to the calling 
subroutine. 

Point Subroutine 

The Point subroutine invokes BSAM Point. 
On return from CZCRM. the SYNAD subroutine 
is invoked if the return code regist.er con­
tains a four. If the return code is zerc, 
or upon return from SYNAD, a return is made 
to the calling subroutine. 

Check Subroutine 

The Check subroutine establishes linkage 
to BSAM Check (CZCRC). After control is 
passed back from CZCRC, if SYNAD is 
requested the SYNAD subroutine is invoked, 
and after cont.rol is passed back to Check, 
a return is made to the calling subroutine. 
If SYNAD is not requested and EODAD is 
indicated, control is passed to the user's 
EODAD routine, from ~hich no return is 
expected. Otherwise, a return is made to 
the calling subroutine. 

Flush Subroutine 

Three cases exist: 

1. If no I/O requests are outstanding, an 
exit is ~de to the calling 
subroutine. 

186 Part III: Queued Sequential AcceSS Method (QSAM) 



2. When any I/O request is outstanding 
and the DECB has been marked inter­
cepted and EODAD has been requested, 
then the number of outstanding I/O 
requests in the DEB (DEBNCP) is set to 
zero, and a return is made to the cal­
ling subroutine. 

3. If the I/O request which remains out­
standing is not complete, an AWAIT SVC 
is issued and the completion is 
awaited. The Purge flag in the DECB 
is then set on, and control is passed 
to the Check subroutine. Upon return 
from Check, a return is made to the 
calling subroutine. 

GET 10 Subroutine 

The GETIO subroutine first invokes Read/ 
Write to perform a read on the DECB pointed 
to by DCBDE2, and then invokes CheCK to 
check the read done previously on the DECB 
pointed to by DeBDE1. If Check detected an 
error in the read operation and the user 
indicates it is to be skipped, GETIO 
Switches the DECB pointers and goes back to 
repeat the reading and checking operations, 
until no error is detected. Otherwise, 
GETIO invokes the COMIO subroutine to 
initialize buffer addresses, and then 
returns to the calling subroutine. 

PUTIO Subroutine 

PUTIO invokes Read/Write to perform a 
write on the DECB pointed to by DCBDE2, and 
then invokes Check to check the DECB 
pointed to by DCBDE1. PUTIO gives control 
to COMIO to reinitialize the free buffer, 
and then makes a return to the calling 
SUbroutine. 

PUTXIO Subroutine 

IF A PUTX has been issued on the current 
block, PUTXIO invokes Read/Write to write 
the updated block back to the data set, and 
Check to check the completion of the write. 
Following this, or if no PUTX was issued on 
the block, PUTXIO invokes GETIO to read and 
check the next block. It then returns to 
the calling subroutine. 

LOGIC OF MACRO SERVICES 

The logic of the GET, PUT, and PUTX 
macro instructions can be broken down into 
three phases. Phase 1 deals with the com­
munication between the problem program and 
the body of the QSAM routine. Phase 2 
describes the initialization which is done 
only for: the first of these macro 
instructions issued on a data set; the 
first issued after a SETL type-E or -B has 
repositioned the data set; or the first 
after FEOV has advanced to a new volume in 

1 . 

the data set. Phase 3 will de~cribe the 
functions performed for all the .'Ibove macro 
instructions when subsequently issued. 

GET Macro Processing 

Phase 1 - Communication: When the user 
issues a GET macro instruction, the macro 
expansion sets a locate or move mode code 
in the DCB, and then establishes type-l 
linkage to the QSAM entry point whose V-con 
is found in DCBGTV. At the entry pOint, 
the user's registers are saved, and base 
registers for QSAM are established. If 
CZCSAA is entered, phase 2 is begun by giv­
:hg control to INITIO. If CZCSAG is 
entered, phase 3 is begun by giving control 
to GET. 

phase 2- First GET; Initialization: 
INITlO fills in two DECBs, for all data 
sets, and places their addresses in the 
DCB. It sets the forward or backward reads 
byte in the DECB. and sets the addresses of 
the buffers obtained by SAM Open into the 
data area pointers of the DECBs. Then the 
DCB address and the maximum block size are 
set into the DECBs. If single buffering is 
being done, the DECB pointers in the DCB 
are set equal to each other, and GETIO is 
invoked to read and check the first block. 
If double buffering is being done, Read/ 
Write is invoked to read the first block, 
and GETIO is then invoked to read the 
second and check the read of the first. 

Before returning to INITIO, GETIO gives 
control to COMIO to initialize buffer 
addresses. COMIO calculates the actual 
size of the block read in, by subtracting 
the residual count in the CSW from the 
",aximum block size. It sets the current 
record address in the DCB from the data 
area address in the DECB, and then calcu­
lates the end-of-buffer address using the 
actual block size. If the record format is 
variable, four is added to the record 
address to allow for the four system con­
trol bytes in front of the block, and the 
sum of the lengths of the records is 
checked against the block size. If they 
are not equal, ar,j if the user had not 
specified an EROPT parameter of ACC in the 
DCB, the task abnormally terminates by 
executing an ABEND macro instruction. 
Otherwise, COMIO returns to GETIO, which 
immediately returns to INITIO. Before 
returning to CZCSAA. INITIO places the 
V-con of CZCSAG in DCBGTV and DCBGTR, in 
order that the next GET issued by the user 
will enter QSAM at that point. 

After INITIO has returned control to 
CZCSAA, the Get subroutine is invoked, and 
phase 3 is entered. 

Section 3: Internal Logic 187 



:;_::._~'C!.i!t~on; If process1ng on t.he 
Ql~rent bufter is complete, Get invokes 
~ither PUTXIO. to write an updated block 
Lack to an update data set, and read in the 
~.<·:(t [.lnck, CI it l.nvokes GE:rrc to reflll 

co;np],·ted ',llfter. Arter. the return 
± (,,1;'. ".1 til"r P\TTXIe> or GETIO, or. .If proce:,,­
'.inq no the C'url>"nt Clutter is not yet com-
I. lett·, GET cdlc1ilate~; t.he current. record 
ddjl~S~. and if the GST macro instruction 
was in locate mode, sets the current record 
"ddress int.o register 1 in the user' s save 
.;rcc;. 1ft he GET macro instruction wa~; in 
~ove mode, the record is moved into the 
user's work area. 

TtH'n t he record address is incremented, 
t t!lP lengt.h of the current logical reco­
:co, ~;o as t.O point t.e the end of t: he reco­
nl. If 1. t 1S wi t.hin the block, an immedi­
ate return is made to the entry section. 
It it 15 at the end of the block, a flag in 
the DeB 1.5 bet on to indicate t.hat. proces­
:;:,nq on trle current buffer is corr,plet.e, and 
the return is made. If it lies outside the 
Dlock, and it the user has not specified an 
t.l;:OI"I parameter of Ace in t~he DCB, the task 
abnormally terminates by executing an ABEND 
macro instruct. ion. Ot.her1>lise, the return 
to the entry section is made. 

Sl.nce processlng on any GET macro 
1. '1,-; t ruct ion is now complete, botil CZCSAA 
and CZCSAG issue a RETURN macro instruc­
tion, to restore the user's registers, and 
link back to the problem program. 

.Phase 1 - Corrununication: When the user 
issues·--a""PuT· macro instruction. the macro 
eX[MDSion indicates either locate or move 
mode in the DCB, and establishes type-l 
lin.kaqe to the QSAM entry point whose V-con 
:l.s .In DCBPTV. At the entry point, the 
user's registers are saved, and base regls­
ters for QSAM are established. If CZCSAB 
.is enteTed, phase 2 is begun by giving con­
trol 1'.0 INITIO. If CZCSAW is entered, 
phase 3 is begun by giving control to PUT. 

Phase 2 - First PUT - Initialization: 
INITle) builds two DECBs for all output data 
S2tS, as described in phase 2 of the GET 
Hldcro instruction, except that it sets the 
DEeB type code to indicate that only writes 
aTe Lo be done. It then invokes the BSAM 
Note routine (CZCRN) to obtain the relative 
",oaress .... ithin the volume (TTRZ or ZZCC) of 
the last block read or ...,ri tten. If sing le 
buffering is being done, the DECB pointers 
111 the DCB are set equal to each other. If 
double buffering is being done, the comple­
tion code in the DECB is set to indicate 
"complete with no errors·, so that the 
first check, which will be done on an 
unused DECB, will return normally. Follow­
ing this, if the record format is variable, 

tne t .... o length control b\tes at the begin­
ning of the block are initially set to 
four, and the current loqical recora 
address is set to the beqinning-of-buffer 
address, plus four. The end-of-buffer 
address is calculat.ed by adding the maximum 
block size to the beginning-of-buffer 
address. 

The V-con elf CZCSAW is placed in DCTPTV 
so that the next PUT issued will en' er QSA~j 

at that point, and a return is made to 
CZCSAB. From CZCSAB, control is th~n 
passed to Put, and phase 3 is entertd. 

Pnase 3 - Operation: If the current block 
of records is complete, Put gives control 
to PUTIG to write t.he block out and check 
the previous write operation. The record 
format is checked, since variable format 
records are treated separately from fixed 
and undefined. the en~-of-buffer address is 
set to the current record address plus the 
logical record length. Then, for both 
fixed and undefined records, if the pu'r 
maCL'O instruction is in locate mode, the 
current record address is set into register 
1 in the user"s save area. If the PUT is 
in move mode, the record is moved from the 
user's work area to the current record 
address, and in order to support substi tot;:, 
mode exchange buffering. the address of the 
user's work area is set into register 1 in 
his register save area. 

If t.he blOCK is complete, the End of 
Buffer flag in the DCB is set on. If the 
block is not yet complete, or after the End 
of Buffer flag is set, the logical record 
(~unt for the current block is increased by 
one, and a return is made to the entry sec­
tion. If the record overflowed the buffer, 
the t..ask abnormally terminates by executing 
an ABEND macro inst.ruct ion. 

For variable format records, a check is 
first made to see if the last PUT issued 
was in locate mode. If so, the length con­
trol bytes of the record which was subse­
quently built in the buffer are checked to 
be sure that the record is not larger than 
the length previously estimated by the 
user. If it is larger. and if the record 
~s too long to fit into the buffer. the 
taSK is abnormally terminated. 

Following this, or if the last PUT .... as 
not in locate mode, if the current record 
will not fit into the buffer. PUTIO is 
invoked to write out the buffer. check the 
previous write, a.nd provide a new buffer 
address. After return from PUTIO, or if 
the current record will fit into the buff­
er, the current record address is set into 
register 1 of the user's register save area 
if the PUT is in locate mode, and a return 
is made to the entry section. If the PUT 
is in move mode. the record is moved from 

188 Part III: Queued Sequential Access Method (QSAM) 



. 
J 

the user's work area to the current record 
address, which is then incremented by the 
length of the record. 

Since processing on any PUT macro 
instruction is then complete, both CZCSAB 
and CZCSAQ issue a RETURN macro instruction 
to restore the user's registers and return 
to the problem program. 

PUTX Macro Processing 

Phase 1 - Communication: When a PUTX macro 
instruction is issued, the macro expansion 
establishes type-l linkage to CZCSAX, whose 
V-con is in DCBPXV. At the entry point. 
the user's registers are saved, and base 
registers for QSAM are established. If the 
PUTX is an update PUTX, it must have been 
preceded by a locate mode GET on the same 
data set, and therefore cannot be the first 
macro issued. Hence, phase 3 is begun by 
giving control to the PUTX subroutine. If 
it is an output PUTX. a check is made to 
see if it is the first macro issued on the 
data set, and if so, phase 2 is begun by 
giving control to INITIO. Otherwise, PUTX 
is invoked. 

Phase 2 - First PUTX - Initialization: The 
initialization for the first PUTX on a data 
set is accOlIlplished by INITIO in exactly 
the same manner as that for the first PUT 
on a data set. When initialization is com­
plete, a return is made to CZCSAX, which 
then gives control to PUTX. 

Phase 3 - Operation: If the data set on 
which the PUTX macro instruction was issued 
is opened for Output, the associated data 
set must be opened for Output, and if it is 
the task abnormally terminates by executing 
an ABEND macro instruction. The record 
which is to be put out must have been 
retrieved by a locate-mode GET on the asso­
ciated data set. If it was not, the task 
is abnormally terminated. Otherwise, a 
flag is set in toe output DCB to indicate 
that a move-mode PUT is to be performed, 
the logical address field of the input DCB 
is supplied as the address of the record to 
be output, and control is given to the PUT 
subroutine (whose operation was discussed 
in phase 3 of the PUT macro instruction). 

The data set must be opened for Output 
and Update, and the last logical record 
must have been retrieved by a locate mode 
GET; otherwise, abnormal termination 
occurs. 

A flag is set in the DCB to indicate 
that a PUTX has been issued on the current 
block. If processing on the current block 
is complete, PUTXIO is inVOked to write the 
updated block back to the data set, and to 
read in the next block if ca lIed by the GET 
subroutine. After the return from PUTXIO, 

or if processing on the block was not com­
plete, a return is made to CZCSAX, which 
then issues a RETURN macro instruction to 
restore the user's registers and link back 
to the problem program. 

TRUNe Macro Processing 

The macro instructions TRUNe and RELSE 
require no initialization phase, since they 
perform no functions if they are the first 
macro instructions issued on a data set. 
Therefore, they will be discussed in only 
two phases, communication and operation. 

Phase - Communication: The expansion of 
the TRUNC macro instruction establishes 
type-l linkage to CZCSAT. whose V-con is 
defined within the expansion. The entry 
section saves the userts registers, estab­
lishes base registers for QSAM, and gives 
control to the TRUNC subroutine. 

Phase 2 - Operation: TRUNC makes an imme­
diate return to the entry section under the 
follOWing conditions: 

1. If proceSSing on the current block is 
already complete, or has not yet 
begun: 

2. If the record format is undefined; 

3. If the data set is opened for neither 
Output nor Update: 

4. If no GET or PUT has previously been 
issued on the data set. 

Otherwise, if the data set is opened for 
UPDATE, TRUNC sets the End of Buffer flag 
in the DCB so that the next GET will retri­
eve the first logical record of the follow­
ing block. If the data set is opened for 
OUtput, and if the record format is vari­
able, and if the last PUT was in locate 
mode, the last logical record is checked to 
be certain it does not overflow the buffer. 
If it does, the task is abnormally ter­
minated. In all other cases, the actual 
block size is calculated, and PUTIO is 
invoked to write out the block. 

RELSE Macro Processing 

Phase 1 - Communication: The expansion of 
the RELSE macro instruction establishes 
type-1 linkage to CZCSAR, whose V-con is 
defined within the expansion. The entry 
section saves the user's registers, estab­
lishes base registers for QSAM, and gives 
control to the RELSE subroutine. 

Phase 2 - Operation: RELSE makes an imme­
diate return to the entry section if pro­
cessing has not yet beg1ffi on the current 
block, or if the aata set is opened for 
Output. Otherwise, it sets the End of 

Section 3: Internal Logic 189 



.: ;"'.' iF,", ,,() t h"t th.· r.,,'xt (;1:1' 
;,. ... j"! t i'i>.:; d~:d~ d -:-;.po> \.4' ill r- t.-!t.":l t:"ve ·.:-_be :{ i a'. :·-jt 

";':i ~ •. :di x"c'c'Jrj of the follo\..ling iJlock. 
Tr,,,,;'; ;Un..sE return::; to CZCSAR. which issues 
., in~T'l1RN mdcro instruction 'to restore the 
cl';el.'" r,c'gisteLs dnd link back to the pro­
t 1 ;_'~n to' { ':':'.{; .[ iim .. 

Ti'le C01.UDunicatJ.on phase is the same for 
',J, t:'frJ"5 of SETI, macro instruct.ions, but 

(:,,, ."Je~a.tlor; phases must be discussed 
s':,':JGirat.ely. The expansion of each 5ETL 
11IdCIO inst.ruction sets d code in the OCB to 

:,(ji.cdte 1.1:.'3 type U:. R, P, E or B), and 
t.ablishes type-l linkage to CZCSAS, whose 

Ii"COD is found in nCBSLV. The entry sec­
!.1.0l1 saves til,,: user's regist(xs and estab­
llstH?s r..ase r€<Jisters for QSA."I. It. then 
i.,iv«s control to SETLC. SETLR. SETLP. or 
SZrLEB. The rout,ine ABENDs if SETL was not 

in the DeB MACRf. Single buffer-
i~; ~s done far SETL. 

The SETLC 
to check the 

},dE;t: X'(::i~L;:i or writ.e ~)erformedi a~ld then 
'1102,;; cuntc'.)";' to BSAM Note ':CZCRN) to est.a­
~.:oh the relative address (TTRZ or ZZCC) 

wi 'Lc." the data set of the last block read 
<L!'I: qJ~'i'(,'tC'il" :-_;.:Lnce t:bat may not be t.he 
bloc:( C1l1CrerH:iY being processed. it must be 
dete;nYJ.ined whether or not addi t.ional spac-
1.j'g will be needed. The dat.a set is repo­
,·;.ltJ.cned tc, t.hat r'etrieval address. 

If the ,:lata set is opened for Output, 
,~{;j"" ::t 'L.Z lS ;-;ct. positioned 'to the be<jin·-

• 1 is rl6ded to t~e retrieval address, 
Sif.Ce tht:' cu::crent: block will always be ). 

the last block writt.en. The count. 
10,:;1.ca1 records already processed within 

tb~ curren~ clock is then returned to the 
nse:::- 9 a.long \'l)i't.~l "f.:LE' l:etrieval address ... 

If thE data set is opened for Update, a 
~:e!"t: r:,I.lbt be a.ade to see if the current 
record address points to the beginning of 
~:he Llcck. This is possible only when a 
eUTX macro instruct. ion, issued on the last 
Yecord of a block, has caused that block to 
be\<n"lt~ten back to the data set and a new 
~)1ui.:;;:~ Lo be read in.. In this case, a back­
space wi II De recp.LL red to retrieve t.he 
block withLn which the desired record 
L·es.ides" Therefore, the count of records 
wi't,hin the last block, wi th the high order 
hi.t. set on to indicate that a backspace is 
r.(!eded, is returned to the user with the 
'cetrieval address. If the current record 
address points within the block. no back­
s~~ce is needed, since a GET must already 
have been issued on the block. Hence, the 
count of records already processed within 
~he current block is returned to the user 
\llith the retrieval address. 

~ii .lCi-' d oat d 8ei Opr<T ~ r\),t r nr/ut or 
RDBAO< employs doub:" bdf ering, (Jl,i> Gl", x 
beyond the current 0,;2 beinq processeci wi u 
be the aile marked by CZCRN. Theret,)t'>i:, 
either a backspace or d f or'Wdrd SPdCt' .;1 1: 
d lways b~ req\! ired h:, t"I,t t l"'V!' t h.' ,'P d < \: ( 

block. The count. at d'cn;d~; j.·lo,"o>:,.,o',1 

witni.n the current block (with the ;,:.qh "< 
der bit set on to indicat.e t.lia\ d lJackwiLrd 
or for.ward space is needed) is rf~t urneCi t," 
the user with the relative address obtdH";.ed 
by CZCRN. 

When processing is CuirplE't.e, d tf.,l:U •. d ::;, 

made to CZCSAS. which then issues d RETURN 
macro instruction to restore the user's 
registers and link back to the problem 
program. 

§.ETL...1.YEe-R (Retrieval Address>..: TtIE' SETl.'< 
subrou·tine first invokes TREOV to cledr any 
outstanding 1/0 requests. Then, using the 
retrieval address provided by the user as d 

parameter. the SETLR subroutine invokes 
POINT to reposition the data set to the 
block specified by the ret.riaval addres~;. 
If a backward or forward space is required 
(see SETL type-C for the manr'er in ",hich 
this is determined), either Backspace is 
invoked to backspace one block, or Contr',d. 
is invoked to forward space one block. 

Following this, the original open oj:.tLor, 
is saved, and if the data s~t is opened for 
Out. put , the open option is set to indicate 
that. t he block to which tJW data set is now 
positioned must be read back in. INITIO J.S 
invoked 1:.0 set up new DECBs and ini'ciat.(' a 
read of the desired block. INITIO ,iliLt 
function as it does in phase 2 of the GET 
macro instruction, except in the case of an 
output data set, when it sets the DECB tYF' 
code to -read· and invokes Read/Write to 
read in the desired block and GETIO to 
check it. 

When INITIO returns control to SETLR, 
the current record address points to the 
first record of the block. The recox'd 
count provided hy the user is then 
decreased by one, and if the result is not 
zero, the Get subroutine is invoked t~o cal-· 
culate the address of the next logical 
record. Again the record count: .is 
decreased by one, and GET is invoked 1,f 11: 
is not zero. When the record count j~"<.!>:::he;,; 
zero, the current. record address poinT,~~ tc 
the desired record. At this point. Ul<2 

original open option is restored, and, if 
the data set is opened for Output ,. t.hc DEd" 
type code is reset to ·writew • A return is 
made to CZCSAS, which issues a RETURN macro 
instruction to restore the user" 5 register,; 
and link back to the problem program, 

SETL Type-P (Previous Record): The SETLP 
subroutine first checks to see if proces­
sing bas begun on the current buffer. If 

190 Part III: Queued Sequential Access Method (QSAM) 



so, the previous record must be within the 
~urr8nt hlock. Its address is calculated, 
the record count within the block is 
decr~a~ed by t, and a return is made to 
,~ZCSAS. 

If the current buffer is empty, nawever, 
~he previous record lies within the last 
clock processed. In this case, TR£OV is 
lnvoked to clear any outstanding I/O 
requests. Upon return fron. TREOV, if the 
Write Request flag in the DeB is on, an 
1wmediate backspace of one block is made. 
If the data set is opened for RDBACK, Con­
trol is invoked to space forward one block. 
If the data set is opened for Input, Check 
lS invoked to check the last. read and then 
a~ckspace is inVOKed to backspace the data 
set three times, since it is positioned at 
the end of the third block beyond the one 
in which the desired record lies. If the 
data set. is opened for Output, it is posi­
tioned at the end of the block containing 
the desired record, and BSP is therefore 
invoked to backspace one block. If any 
positioning errors occur, SYNAD is invoked. 

When the data set is correctly pOSi­
tioned, the open option is saved, and if 
the data set is opened for Output, the open 
option is temporarily set to Input. INITIO 
is invoked to build new DECBs and initiate 
a read of the desired block. Then GE'r is 
invoked t.O calculate the next record 
address until the End of Buffer flag is on, 
at which time the data set is opened for 
Output, the original open option is 
restbred, the DECB type code is reset to 
·write", and Flush is invoked to purge out­
standing read requests. Finally, for all 
OPEN options, the End of Buffer flag is set 
off, and a return is made to CZCSAS. which 
issues a RETURN macro instruction to 
restore the user's registers. and link back 
to the problem program. 

SETL Type-E or -B (End or Beginning): The 
SETLEB subroutine makes an immediate return 
to CZCSAS, if the data set is opened for 
Output and type-E is specified. Otherwise, 
TREOV is invoked to clear all outstanding 
write requests. Then, if the device is 
direct access, register 0 is set to zero 
for type-B, and Point is invoked to poSi­
tion the data set at the beginning or the 
end. 

If the device employs magnetic tape, and 
the da ta set is opened for Rdback. and 
type-B is specified, it must be spaced bac­
kward to the end. If the data set is 
opened for Input, it must be spaced back­
ward to the beginning for type-B, or spaced 
forward to the end for type-~. Control is 
invoked to perform the spacing of a data 
set on magnetic tape. 

When the data set is correctly posi­
tioned, the Get and Put V-cons in DCBGTV 
arid DCBPTV, respectively, are set to CZCSAA 
and CZCSAB so that the next GET or PUT on 
the data set. Then <l rptUTll is m,1dt to 
CZCSAS, which is~ul'!; ,) RETUllN nl,lCI U 

instruction to rp~;t0n' t he \l~;,'r ':; t .'qi st. 1',: 

an'1 link b,lCk to tht' probl\~m pro<)rdill. 

CLOSE and FEOV Functions Pertor~ed by QSAM 

During processing of a Cl~SE or FEOV 
macro instruction~;, tht TRr~OV subroutine ot 
(QSAM) is used to pprform thOSE functions 
neces~ary to closinq out a volump or a data 
set, sucn ~s writing out th~ last buffer ot 
an output data set, or purging any read 
requests whicb may have been issued on. an 
input data set. aftpI th, CLOSE or FEOV w:,!", 
l.ssued. 

When it is being invoked by SAM Close or 
FEOV, TREOV is giVf~n control by the QSlI.M 
entry section CZCSAV. SAM Close or FEOV 
establishes type-l linkaoe to CZCSAV, where 
base registers for QSl<M ar'" established and 
control is passed to TREOV. (Note that 
TREOV is also used internally by other sub­
routine~; of QSAM during the processing of 
QSAM macro instructions. and returns to 
whatever routine called it.) 

If the data set has been opened for 
RDBACK or Input, the Flush subroutine of 
TREOV is invoked to purge outstanding I/O 
requests, and upon return from Flush, the 
first Get or Put V-cons are moved into the 
DeB, and an immediate return is made to 
CZCSAV, or to the callinq subroutine. 

If the data set is opened for Output and 
the current. buffer is empty, t_he last block 
of the data set has already been written 
out, and, if it has not_ yet. been checked, 
the Check subroutine is invoked to perform 
the check. OtherwL; co, or upon ret.urn fr.om 
Check, a return is made tc the entry rou­
tine or to the calling suoroutine. If the 
buffer is not empty, it mu:;t be written out 
as the last block of the data set. If the 
last PUT issued was in locate mode, and if 
the records are variable format., a check is 
made to be certain that the last record 
placed in the buffer does not overflow the 
end of the buffer. If it does, the task is 
abnormally terminated. Otherwise, the 
actual size of the bloclr i::; calculated and 
PUTIO is invoked to ~Tite out the current 
buffer and check thp ruvjous write. (If 
single bufferinl is beinq done, PUTIO will 
write and check the same buffer.) Upon 
return from PUTIa, if any unchecked DECfs 
remain, Check is invokej to perform the 
check. Then a return is made to CZCSAV or 
to the calling subroutine. 

If the da~a set is opened for Update, 
and if no PUTX macro instruction has been 

Section 3: Internal Logic 191 



·~,ed en u.t,' ClHrent block, TREOV gives 
cn"tKol to Flush to purge any outstanding 
J./O requE;;ts, and then returns to the entry 
sp~tion ur the calling subroutine. If d 

';:TX hdS b'PPr: ls~;ued on the current block, 
LO\<"'JE,r, Lhp KPad/Write subroutine is 
! :-!voi<;(·j te, ,n i te t.he updated block back :.t:.o 
lhf d~ta set, and the Check subroutine is 
lDvDked to check on the completion of the 
,ni te .r:equest. Then the return is made to 
t;t,e er.txy section or the calling 
'-.;ubroutine ,r 

192 Part III: Queued Sequential Acces:; Method (QSAM) 



PART IV 

RTAM/MTT ACCESS METHODS SUPPORT 





For the MTT user, there is a virtual 
storage routine (CZCTC) which performs 
functions analogous to access methods Read, 
Write, Find, or Close routines. The MTT 
command, through the command system, is 
processed by this routine, and the CLEARQ 
and FREEQ macro instructions which clear 
pending work for a terminal a~d logically 
disconnect a terminal respectively. 

Terminal Task Control Routine (CZCTC) 

The Terminal Task Control routine pro­
vides an interface with the Terminal Com­
munications Subprocessor in the resident 
supervisor. None of the macro instructions 
entered by the MTT user issue their own 
I/O, such as Read or Write. The method 
used by CZCTC is to set information into 
the application task's terminal control 
table (TCT), and then to issue the ATCS 
macro instruction which calls the Terminal 
Control subprocessor to perform the 
requested operation. 

Wben processing the MTT enable, communi­
cation with tbe user is effected through 
PRMPT (CZATJ) in order to prompt the user 
for unentered or unacceptable parameters. 

The processors described are for the MTT 
command, and the FINDQ, READQ, WRITEQ, 
CLEARQ, and FREEQ macro instructions. Each 
has a separate entry point in CZCTC (Chart 
rtA). 

The subroutine, CZCTC7, tests the vali­
dity of the device (line) number for each 
of the macro instructions (Chart RA). 

Ml'T Enable 

Entry is the result of the MTT command 
given from a terminal, and passed through 
the command system. The application pro­
gram is loaded, parameters are checked, the 
schedule table level is entered, and the 
virtual memory necessary for the task is 
reserved. When the application progran, is 
complete it is unloaded, the original sche­
dule table level restored, and the virtual 
storage released. (The application program 
in this case is the control program for the 
mUltiterminal task operation (Chart RA).) 

Entry Point: CZCTCl -- From the command 
system via type-l linkage. 

Input: Register 1 contains the address of 
a 4-word parameter list: 

SECTION 1: MTT TERMINAL TASK CONTROL 

Word 1 -- Address of a progrdm name which 
is a maximum of 8-characters long. The 
byte preceding this address is a count 
of the characters in the name. 

Word 2 -- Address of 4-byte count of the 
maximum number of terminals which may be 
simultaneously connected to the task 
(1-4095) • 

Word 3 -- Address of 3-byte schedule table 
level (1-255). 

Word 4 -- Address of 4-byte count of the 
si2e of the input buffer associated with 
each terminal line (16-4076), default 
200. 

Modules Called: Via type-2 linkage, unless 
specified: 

PRMPT (CZATJ1) -- Prompt user for parame­
ters, inform user of error.· 

GETMAIN (CZCGA2) -- Allocate necessary vir­
tual storage. 

ABEND (CZACP1) -- Abnormal task 
termination. 

FREEMAIN (CZCGA3) -- Free virtual storage. 

There is also a type-1 call to the app­
lication program named in the MTT command. 

Exits: 
Normal Return to the calling routine. 

Errot" -.,.. 
• Return to the calling routine after 

informing SYSOUT that the user is not 
authorized to issue MTT. 

• Type-2 exit to SYSER followed by a 
return to the callinq routine, if the 
return from a PRMPT call is an error 
code. 

• SYSER followed by ABEND, if a non-zero 
return code is received after a FREEQ 
ALL macro is issued. 

Operation: This text is keyed to the flow­
chart for CZCTC <Chart RA) and is 
referenced by label. 

The authority of the user issuing the 
MTT is tested and the application program 
is loaded or prompted for. The user must 
have an '0' or 'p' authority 
(AOO-AOOX-AOI-A02). 

Section 1: MTT Terminal Task Control 195 



The parameter s are tested I a od prompted 
iCH if ntcessary (AO 3-A17-A14B). 

The number of pages required by the task 
1S cumpilt.ed and allocated, based on t.he 
n,lW::Rr of application buffer pages needed 
pl.us the number of TCT pages necessary 
(JUS-AlBA) . 

'Tli(e: CONN SVC is issued which transfers 
c mtxol to CEAR4 to perform initialization 
lB real-co:n::~. The multi terminal system 
control block (MTSCB) is bui It and the TCI' 
dDd buffer page allocated. If the task is 
aIne.ady MTT, it is returned to normal sta­
tus and the CONN is reissued 
('J'C1A-TCIB-TC1BU. 

The current schedule table level is 
saw\ed and the new level entered 
(TClJi,"TC1C) • 

The application program, which is the 
iff~r control proqram, is nOW' dispatched via 
:" type-l call. 

,~hen UH·! MTI' application returns, it is 
;-'~,LOclde.,j WEL:t.'TE) and FREEQ ALL is issued 
to lcqicdlly disconnect the terminals. The 
DeON macro cleans up main storage, the ori­
-:iinal schedule table level is returned, and 
the virtual storage is freed. 

A :ceturn is made to the command system. 

IINQ~L.Macro 

FINDQ tests a specific line number, or 
f-olls the MTT application program's work 
queue (TCT) to find a terminal with work to 
be done. A return code speCifying the work 
to be done. or that_ there is no work to do, 
is returned to the calling program. 

k~t~~Point: CZL~C2 -- Via type-l linkage. 

!~.:t.: 
CHAFNQ. 
field: 

FFFli' 

xxx X 

Register 1 contains the address of 
FNQCTL (in CHAFQN) is a 2-byte 

Polling operation. 

Unique device number from 0000 
to a user-specified maximum. 
The system maximum is 4095. 

.Modules Called: None. 

Exits! Return to the calling routine with 
one of the following codes in register 15: 

'04' 

Condition 
No work. 

Invalid relative line number (not 
connected to application). 

196 Part IV: RTAM/MTT Access Methods Support 

'OS' Initial connec.:tion of device. 

·OC· Attentior tram terminal. 

• 10' 

• 14' 

'18 • 

'lC' 

'20' 

Solid I/O er:ror on termin .. l line . 

Message Out complete (from prEovious 
WRITEQ) • 

Message In complete (from previous 
WRITEQ/RESP) • 

Negative response from input 
component. 

Message In overflowed buffer. 

Operation: If polling is specified, the 
TCT slots are scanned for work starting 
with the slot after the halt of the pre­
vious scan. The result is returned as a 
code in register 15. (See 'Exits.') 

CHAFNQ fieldS are set with the device 
type and symbolic device address. 

Message In also sets the length of the 
message and its address in CHAFNQ. 

If a specific line is to be tested. no 
polling takes place if there is no work in 
its TCT. 

A SYSER is issued if there is work in 
the TCT, but it cannot be identified. The 
SYSER is followed by a return to the user 
with a return code of X·Oq'. 

READQ Macro 

READQ posts the read request and asso­
ciated options in the TCT slot and passes 
control to the resident supervisor via 
ATCS. For any return r.ode other than '00". 
the read operation has not been initiated. 

Entry Point: CZCTC3 -- Via type-l linkage. 

Input: Register 1 contains the address of 
CHARDQ. RDQDEV (in CHARDQ) is a 2-byte 
device (line) number. 

Modules Called: None. 

Code 
'00' 

'04' 

Return with a code in register 15: 

Condition 
Normal completion • 

Device number invalid. component 
select invalid. 

'OS' Previous operation incomplete. 

'OC' 

'10' 

Attention from terminal. 

Unrecoverable I/O error on terminal 
line. 



Operation: The text is keyed to chart RA, 
Entry CZCTC3. References are by label. 

The device (line) number, and the Atten­
tion and Previous Operation flags in the 
TCT are tested (Entry CZCTC3-TC3A). 

Parameter fields are tested and set 
accordingly (TC3B-TC3G). The Interruption 
bit specifies that an application program 
will process external interruptions 
generated upon completion of a read opera­
tion. The interruptions will, be ignored if 
it is not set. 

The Component Select field specifies a 
type of 1050 unit: 

o Any input component 

5 Terminal keyboard 

6 Reader 1 

7 Reader 2 

The Terminal Communications Subprocessor 
is invoked to perform the operation via 
ATCS, and upon completion the result is 
tested, and an appropriate code returned 
(TC3G-TC3J) • 

WR.ITEQ Macro 

WRITEQ posts the write requests and 
associated options in the application TCT 
slot and passes control to the resident 
supervisor via ATCS for execution. For any 
return code other than '00', the write 
operation has not been initiated. 

~try Point: CZCTC4 -- Via type-1 linkage. 

Input: Register 1 contains the address of 
CHAWRQ. WRQDEV (in CHAWRQ) is a 2-byte 
device (line) number. 

Modules Called: None. 

Exits: Return to the calling routine with 
a code in register 15: 

Code 
'00' 

Condition 
Normal return. 

'04' Invalid relative line number, 
Component-Out field. 

'08' 

'OC' 

'10' 

'14' 

Busy, I/O outstanding, HIO not 
comple~e. 

Attention interruption from 
terminal. 

Solid I/O error on line. 

Message length not 1-4080 bytes. 

Operation: The text is keyed to the flow­
chart (Chart RA, Entry CZCTC4) by label. 

The device (line) number, 'break· 
option, outstanding I/O, and 'busy' options 
are tested (Entry CZCTC4-TC~3A). 

Paran,eter options are set in TCT 
(TC44-TC4C) • 

The data is forced into core, and the 
ATCS macro issued to execute the write 
operation. The results are tested upon 
return from the resident supervisor, and a 
code set accordingly (TC4D-TC4C3). 

CLEARs;? Macro 

The status byte of the application TCT 
slot is tested for work indications, and 
unless a READQ or WRITEQ is in progress, 
the contents of the TCT slot are saved and 
the byte is set to zero. 

Entry Point: CZCTC5 -- Via type-1 linkage. 

Input: Register 1 contains the address of 
CHACLQ. CLQDEV (in CHACLQ) is a 2-byte 
device (line) number. 

Modules Called: None. 

Exits: Return to the calling program with 
a code in register 15: 

Code 
'00' 

'04' 

'08' 

Condition 
Normal return. 

Invalid device (line) number. 

Busy, previous READQ or 
WRITEQ not completed. 

'oct Attention from line. 

Operation: The device number and 'busy' 
indicator are checked. 

The work byte is saved, and the reset 
byte also. If a buffer is connected, ATCS 
is issued to perform the clear function 
(see Chart RA, labels TC51-TC5Al). 

A return is made with the appropriate 
code. 

FREEQ Macro 

FREEQ will logically disconnect a spe­
cific terminal, or all terminals associated 
with an application program. If specified, 
a message is written out to the terminal 
before disconnecting. A physical discon­
nect may be requested, whereby the line to 
the device will be disabled -- this is 
handled in the resident supervisor. 

Section 1: MTT Terminal Task Control 197 



J.::n'=!:Lyoint~ CZCTC& -- Via type-l linkage. 

!!~!C; 
CHAFRQ. 
device 

Register 1 contains the address of 
FRQDEV (in CHAFfo1Q) is a 2-byte 

(llne ) number. 

Non~. 

Lxits: Return to the calling program with 
d code in register 15; 

• 04' 

Condition 
Normal return. 

Invalid device (line) number. 

• 08' 

'OC' 

'10' 

Di sconnect spec if l"d !lot 'iuq ied 1 • 
and not 'physlcal', 

Message specIfied with zero lengtn. 

Message address illegal, 

QQerat_ion: If the ALL option is set and 
the disconnect valid {physical or logical}, 
the message is tested and ATCS issued to 
perform the request. 

If a specific line is to be freed, the 
Free F'unct.ion flag is set and the work byte 
cleared, before ATCS is issued. (See Chart 
RA, Entry CZCTC6.) 

198 Part IV: RTAM/MTT Access Methods Support 



Program Logic Manual 

GY28-2016-5 

Access Methods 

Flowcharts on pages 199-438 were not scanned. 



Chart RA. Terminal Task Control - CZCTC (Page 1 of 1) 

C~~~ 
CLEARQ MACRO fREEQ MACJH) 

c~ .... f::::') <" ~ryJO?- s:n= 
~ES ! 

I a_i 
. ::2L 
r~ 

I I 
I r£l~ I 

~~ L 

ITC5.2 

I 

I 
I. 

I 
I I- .--~ 
I ------~ 

I 

I i I 
i I I 

I f:··,~>J 
iOL 
~2 .. 

! 
I i 

'

I TC62 ! 
/:.:"~ 
I~ 
I I 
I ! 

I I 
I-.-~ 
I 

YES 

SUBROUTINE 

CAS 

CZCTC7 ) 
CHECK 
DEV NR 

Flowcharts 439 



APPENDIX A: CONTROL BLOCKS USED BY ACCESS METHODS MODULES 

CHAADC-Explicit adcon group 
used by: 

CZCTC-Terrninal Task Control 

CHABCT-BULKO~ Table 
used by: 

CZCQK-VDMEP 

CHABPL-Buffer Page List 
used by: 

CZCMA-GETBUF 
CZ CNA- FREEBU F 
CZCNB-FREEPOOL 

CHADBP-DEB Page 
used by: 
CZC~-MSAM Open 
CZCMD-SETUR 
C7.CME-DOMSAM 
CZCMG-MSAM Posting and Error Retry 
CZCMH-MSAM Finish 
C7.CMI-MSAM Close 

CHACLQ-CLEARQ 
used by: 

CZCTC-Terminal Task Control 

CHADCB-Data control Block 
used by: 

440 

CZCLA-Open Common 
CZCLB-Close Common 
CZCLD-FEOV 
CZCMA-GETBUF 
CZCMB-GETPOOL 
CZC~-MSAM Open 
CZCMD-SETUR 
CZCME-DOMSAM 
CZCMF-MSAM Read/Write 
CZCMG-MSAM Posting and Error Retry 
CZCMH-MSAM Finish 
CZCMI-MSAM Close 
CZCNA-FREEBUF 
CZCNB-FREEPOOL 
CZCOA-OPENVAM 
CZCOB-CLOSEVAM 
CZCQC-MQVEPAGE 
CZCOD-Insert/Delete Page 
CZCOE-REQPAGE 
CZCOF-Insert 
CZCOG-Reclaim 
CZCQJ-Find 
CZCQK-Stow 
CZCOL-Search 
CZCOM-Extend POD 
CZCON-Relocate Members 
CZCOD-GETNUMBR 
CZCOP-VSAM Open 
CZCOQ-VSAM Close 
CZCOR-VSAM Get 
CZCOS-VSAM Put 
CZCQT-SETL 
CZCOU-PUTX 
CZCQV-FLUSHBUF 
CZCPA-VISAM Put 

CZCPB-VIST\M Get 
CZCPC-SETL 
CZCPE-Read/Write 
CZCPI-GETPAGE 
CZCPL-Add Directory Entry 
CZCPZ-VISAM Open 
CZCQA-VISAM Close 
CZCQE-Search SOOT 
CZCQI-Expand RESTBL 
CZCQQ-VAM ABEND Interlock Release 
CZCRA-BSAM Read/Write 
CZCRB-Control 
CZCRC-Ch'~ck 
CZCRG-Backspace 
CZCRM-Point 
CZCRN-Note 
CZCRP-SAM Posting and Error Retry 
CZCSA-QSAM 
CZCSB-IOREQ 
CZCSC-IOR Open 
CZCSD-IOR Close 
CZCSE-IOREQ Posting 
CZCWA-ASCII Translation and Conversion 
CZCWB-Build Common DEB 
CZCWC-SAM Close 
CZCWD-DAOPEN 
CZCWL-Build DA DEB 
CZCWO-SAM Open Mainline 
CZCWT-Tape Open 
CZCWY-Tape Data Set Label 
CZCXD-DA Output EOV 
CZCXE-Mainline EOV 
CZCXI-DA Input EOV 
CZCXN-DA Input LABEL 
CZCXO-Tape Output EOV 
CZCXS-Set OSCB 
CZCXT-Tape Input EOV 
CZCXU-DA Output Label 
CZCXX-Concatenation 
CZCYA-TAM Open 
CZCYG-TAM Close 
CZCYM-TAM Read/Write 
CZCZA-TAM Posting 

CRADEB-Data Extent Block 
used by: 

CZCLA-Open Common 
CZCLB-Close Common 
CZCLD-Force End of Volume 
CZCMA-GETBUF 
CZCMB-GETPOOL 
CZCMC-MSAM Open 
CZCMD- SETUR 
CZCME-OOMSAM 
CZCMF-MSAM Read/Write 
CZCMG-MSAM Posting and Error Retry 
CZCMH-MSAM Finish 
CZCMI-MSAM Close 
CZCNA-FREEBUF 
CZCNB- FREEPOOL 
CZCRA-BSAM Read/Write 
CZCRB-Control 
CZCRC-Check 
CZCRG-Backspace 



CZCHM- Pc; 111 

CZCRN- Not •. 
CZCRP- SAM po::;t! l~g and Error Retry 
CZCSl'..-Q5AM 
CZCSB-IORW 
CZCSC- lOR 0p'n 
CZCSD- lOR <:1(,,(2 
CZCSE-IOREQ POJt1n~ 
CZ(,WB- Bu i Id C,~mm<)il DEb 
CZCWC--SAM Closp 
CZCWlJ--DNJPEN 
CZC .... L-Rui 1<1 ill'.. LH:S 
CZCWM-Messdqe Writer 
CZCWO-SAl'l Open Mai oline 
CZCWP-Tape Positloning 
('ZOm-Read Format -3 DSeE 
CZCWT-Tape Open 
CZCW¥-Tape Data Set Label 
CZCXD-DA Output EOV 
CZCXE-Mainli.ne EOV 
CZCXI-DA Input EOV 
CZCXN-DA Input Ldbel 
CZCXS-Set DSCB 
CZCXT-Tape Input EOV 
CZCXU-DA Output Label 
CZCXX-Concatenation 
CZCYl>.-TAM Open 
CZCYG-TAM Close 
CZCYM-TAM Read/Write 
CZCZA-TAM Posting 

CHADEC-Data Lvent Control Block 
used by: 

CZCMC-M!-~A}", Open 
CZCME-DO~..sAM 

CZCMF-M.SAM Read/Wr'ite 
CZC~-MSAM Posting and Error Retry 
CZCNH-MSAM Finish 
CZC~J-MSAM Close 
CZCPE-Read/Write 
CZCRA-BSAM Read/Write 
CZCRB-Control 
CZCRC-ChpcK. 
CZCRP-SAM Posting and Error Retry 
CZCSA-QSAM 
C':-'.CSB-IOR.F:V 
f~ZCSD- IOH Clo.:3e 
CZCSE--IOkEQ Posting 
CZCWC-SAM Close 
CZCWO-SAi"; Open Mr'1inline 
CZCW¥-Tapp Data Set Label 
CZCXE-Mainline EOV 
CZCXS- Sd D~~CB 

C ,;CYG-TAr-~ Close 
C2C:YM-TNr Re-"\d/Writ_E' 
CZCZA-T~M Posting 

CHADdD-DCB Header 
used by ~ 

CZCLB-Close Common 
ClCOA-OPENVAM 
CZCOB-CI,oSEVAM 
CZCOC-MOVEPAGE 
CZCOD-Insert/Delete Page 
C2COE-REQPAGE 
CZCOF-Insert 
elCO(;-Heclaim 
CZCOJ-Find 
CZCOK--Stow 
CZCOL-Search 

CZCOM-Extend POD 
CZCON-Relocate Members 
CZC()fJ-GE'i'NUMBR 
CZCOP-VSI',M Open 
CZCOQ-VSl1.M Close 
CZCOR-VSAM Get 
CZCOS-V'3 bu"'i Put 
cz C."CT- SETL 
CZCOl'- PUTX 
CZ CO V- fLUSHBUF 
CZCII\-VJSAM Put 
cz .. .:r B- V I SAM Get 
CZC::::C-SETL 
CZCPE-Read/Write 
eZCPI-GETPAGE 
CZCPL-Add Directory Entry 
CZCPZ-VISAM Open 
CZCQA-VISAM Close 
CZCQI-Expand RESTBL 
CZC'.:1K-VDMEP 
CZCQQ-VAM ABEND Interlock Release 

CHAUse-DSCE Format-l & -3 
used by: 

CZCWD-DAOPEN 
CZCWL-Build DA DEB 
CZCWO-SAM Open Mainline 
C2.CWR-Read Format-3 OSCB 
CZCXD-DA Output EOV 
CZCXI-DA Input EOV 
CZCXS-Set OSCB 

eHADSV--DSCB Format-A & -B 
used by: 
CZCOA-OP~AM 

CZCOB-CLOSEVAM 

CHAEPE-RESTBL External Page Entry 
used by: 

czeOC-ZVIOVEPAGE 
CZCOE-REQPAGE 
CZCOF-Insert 
CZCCX:;-Reclaim 
CZCOO-GETNUMBR 

CHAFNQ- FINDQ 
used by: 

CZCTC-Terminal Task Control 

CHAFRQ-FREEQ 
used by: 

CZCTC-Terminal Task Control 

CHAGSM-General Services Macro Table 
used by; 

CZCLA-Open Common 
CZCLB-('lose Cornman 

CHAICB-Interruption Control Block 
used by: 

CZCMC-MSAM Open 
CZCMD- SETUR 
CZCMG-MSAM Posting and Error Retry 
CZCMI-MSAM Close 

CHAIOR-I/O Request Control Block 
used by: 

CZCMC-t-'BAM Open 
CZCMD-SETUR 
CZCMF-MSAM R~~d/Write 

Appendix A: Control Blocks Used by Access Methods Modules 441 



CZCMG-MSAM Posting and Error Retry 
C2CMH-MSAM Finish 
C2CRA-BSAM Read/Write 
CZCRB-Control 
CZCRP-:-SAM Posting and E:t"ror Retry 
CZCSB- IOREQ 
C2CSE-IOREQ Posting 
CZCYM-TAM Read/Write 
CZCZA-TAM Posting 

CHAISA-Interruption storage Area 
used by: 

CZCEI-VMIER 
CZCLA-Open Common 
CZCtJ'.A-GETBUF 
CZCMG-GETPOOL 
C2CMD-SETUR 
CZCME-OOMSAM 
CZCMF-MSAM Read/Write 
CZCMG-MSAM Posting and Error Retry 
CZCMH-MSAM Finish 
CZCNA-FREEBUF 
CZCNB-FREEPOOL 
CZCPA-VISAM Put 
CZCPB-VISAMGet 
C2CPC-SETL 
CZCQE-Search SDST 
CZCQK-VDMEP 
CZCQQ-VAM ABEND Interlock Release 
C2CRP-SAM Posting and Error Retry 
CZCSA-QSAM 
CZCSB- IOREQ 
CZCSE-IOREQ Posting 
CZCWD-DAOPEN 
CZCWO-SAM open/Mainline 
CZCWT-Tape Open 
CZCWY-Tape Data Set Label 
CZCXE-Mainline EOV 
C2CXN-DA Input Label 
C2CYG-TAM Close 
CZCZA-TAIvi Posting 

CHALBt-Data Set Header/Trailer Labell 
used by: 

C2CWM-Message Writer 
CZCWY-Tape Data Set Label 

CHALB2-Data Set Header/Trailer Label 2 
used oy: 

CZCWY-Tape Data Set Label 

CHAMHD-RESTBL Member Header 
used by: 

C2COA-OPENVAM 
C2COB-CLOSEVAM 
CZCOC-MOVEPAGE 
CZCOE-REQPAGE 
CZCOJ-Fina 
CZCOK-St.ow 
CZCON-Relocate Members 
CZCOO-GETNUMBR 
CZCQI-Expand RESTBL 
CZCQK-VDMEP 
CZCQQ-VAM ABEND Interlock Release 

CHAPOD-Partitioned Organization Directory 
used by: 

442 

C2COJ-Find 
CZCOK-Stow 
CZCOL-Search 

CZCOH-Extend POD 
CZCON-Relocate Members 
CZCOO-GETNUMBR 

CHAPOE-Directory Alias Descriptor 
used by: 

CZCQJ-Find 
C2COK-Stow 
CZCOL-Search 

CHAPOM-DirectOl"y Member Descri ptor 
used by: 

CZCOJ-Find 
czeOK-Stow 
CZCOL-Search 
CZCON- Rf!locate Members 
CZCOO-GJ,;TNUMBR 

CHAPVT-Public/Private Volume Table 
used by: 

CZCEI-VMIER 

CHARDQ-READQ 
used by: 

CZCTC-Terrninal Task Control 

CHARHD-RESTBL Header 
used by: 

CZCOA-OPENVAM 
CZCOB-CLOSEVAM 
CZCOC-MOVEPAGE 
CZCOD-Insert/Delete Page 
CZCOE-REQPAGE 
CZCOF-Insert 
CZCOG-Reclaim 
CZCOJ-Find 
CZCOK-Stow 
CZCOM-Extend POD 
CZCON-Relocate Members 
CZCOO-GETNUMBR 
CZCOP-OPENSEQ 
CZCOQ-CLOSESEQ 
CZCOR-VSAM Get 
CZCOS-VSAM Put 
CZCOT-SETL 
CZCOU-PUTX 
CZCPA-VISAM Put 
CZCPB-VISAM GET 
CZCPC-SETL 
CZCPE-Read/Write 
CZCPI-GETPAGE 
CZCPL-Add Directory Entry 
CZCPZ-VISAM Open 
CZCQA-VISAM Close 
CZCQI-Expand RESTBL 
CZCQK-VDMEP 
CZCQQ-VAM ABEND Interlock Release 

CHASAR-System Activity and Resource Table 
used by: 

CZCTC-Terrninal Task Control 

CHASCB-SAM Communication Block 
used by: 

CZCWB-Build Common DEB 
CZCWC-SAM Close 
CZCWD-DAOPEN 
CZCWL-Build DA DEB 
CZCWM-Message Writer 
CZCWO-SAM Open Mainline 



CZCWP-Tape Positioning 
CZCWR-Read Format-3 DSCB 
CZC..JT-Tape Open 
CZCWV-Volume Sequence Convert 
CZCWY-Tape Data Set Lab€l 
CZCXD-DA output EOV 
CZCXE-Mainline EOV 
CZCXI-DA Input EOV 
CZCXN-DA Input Label 
CZCXO-Tape Output EOV 
CZCXS-Set DSCB 
CZCXT-Tape Input EOV 
CZCXU-DA Output Label 
CZCXX-Concatenation 

CHASDA-Symbolic Device Allocation 
used by: 

CZCEI-VMlER 
CZCMC-MSAM Open 
CZCMD-SETUR 
CZCMG-MSAM Posting and Error Retry 
CZCMl-MSAM Close 
CZCQK-VDMEP 
CZCRA-BSAM Read/Write 
CZCRB-Control 
CZCRC-ChecK 
CZCRG- Backspace 
CZCRP-SAM Posting 
CZCSC-IOR Open 
CZCWB-Build Common DEB 
CZCWC-SAM Close 
CZCWD-DAOPEN 
CZCWL-Build DA DEB 
CZCWM-Message Writer 
CZCWP-Tape Positioning 
CZCW¥-Tape Data Set Label 
CZCXS-Set DSCB 
CZCYA-TAM Open 
CZCYG-TAM Close 
CZCYM-TAM Read/Write 
CZCZA-TAM Posting 

CHASDE-Shared Data Set Entry 
used by: 

CZCOA-OPENVAM 
CZCOB-CLOSEVAM 
CZCQE-Search SDST 
CZCQK-VDMEP 
CZCQQ-VAM ABEND Interlock Release 

CHASET-BULKIO S-Entry Table 
used by: 

CZCQI<-VDMEP 

CHASDM-Shared Data Set Member 
used by: 

CZCOA-OPENVAM 
CZCOB-CLOSEVAM 
CZCQE-Search SDST 
CZCQK-VDMEP 
CZCQQ-VAM ABEND Interlock Release 

CHASDS-Shared Data Set Table 
used by: 

CZCOA-OPENVAM 
CZCOB-CLOSEVAM 
CZCQE-Search SDST 
CZCQK-VDMEP 
CZCQQ-VAM ABEND Interlock Release 

CHASDT-I/O Statistical Data Table 
used by: 

CZCMG--MSAM Posting and Error Retry 
CZCRP--SAM Posting and Error Retry 

CHATCM-Task Common Table 
used by" 

CZCE.I -'IMLER 
CZCQK- VDMEP 
CZCTC-Terminal Task Control 

CrlATCT-Terminal Control Table 
used by: 

CZCTC-Terminal Task Control 

CHATDT-Task Data Definition Table 
used by: 

CZCEI-VMlER 
CZCLA-Open Common 
CZCLB-Close Common 
C2CMC- MSAM Open 
CZCMI-MSAM Close 
CZCOA-OPENVAM 
CZCOB-CLOSEVAM 
CZCOE-REQPAGE 
CZCQE-Search SDST 
CZCQI-Expand RESTBL 
CZCQK-VDMEP 
CZCQQ-VAM ABEND Interlock Release 
CZCSC-IOR Open 
CZCWB-Build Common DEB 
CZCWC-SAM Close 
CZCWD-DAOPEN 
CZCWI.-Build DA DEB 
CZCWM-Message Writer 
CZCWO-SAM Open Mainline 
CZCWP-Tape Positioning 
CZCWT-Ta pe Open 
CZCWY-Tape Data Set Label 
CZCXD-DA Output EOV 
CZCXE-Mainline EOV 
CZCXI-DA Input EOV 
CZCXG-Tape Output EOV 
CZCXS-Set DSCB 
CZCXT-Tape Input EOV 
CZCXX-Concatenation 
CZCVA-TAM Open 
CZCYG-TAM Close 

CHATOS-Terminal Access Operational status 
Table 

used by: 
CZCYM-TAM ReadIWrite 
CZCZA-TAM Posting 

CHAVPS-Virtual Program Status Word 
used by: 

CZCMA-GETBUF 
CZCMB-GETPOOL 
CZCNA-FREEBUF 
CZCNB-FREEPOOL 
CZCRA-BSAM Read/Write 

CHAW RQ-WRI TEQ 
used by: 

CZCTC-Terminal Task Control 

QWKAR-QSAM Work Area 
used by: 

CZCSA-QSAM 

Appendix A: Control Blocks Used by Access Methods Modules q43 



APPENDIX B: MODULES CALLED BY ACCESS METHODS MODULES 

l'iOdule 
CEAAC-ADDEV 

CEAAD-RMDEV 

Access Methods Modules That 
Call this Module: 

CZCYA - TAM Open 
CZCYG - TAM Close 

CZCYA - TMti Open 
CZCYG - TAM Close 

CEAAH-Reset CZCMD - SETUR 
CZCMF - MSAM Read/Write 
CZCMH - MSAM Finish 
CZCRP - SAM Posting 
CZCSE - lOREQ Posting 
CZCZA - TAM Posting 

CEAAK-SETAE CZCRA - DA Error Retry 
CZCYG - TAM Close 

CEAAQ-LlO CZCMF - MSAM Read/Write 
CALL CZCRA - BSAM Read/Write 

CZCRB - Control 
CZCRP - SAM Posting 
CZCSB - lOREQ 
CZCYM - TAM Read/wt:ite 
CZCZA - TAM Posting 

CEAHQ-LSCHP/ CZCOC - MOVEPAGE 
TSEND CZCOD - Insert/Delete Page 

CZCOH - Interlock 
CZCOI - Release Int~rlock 
CZCOJ - Find 
CZCOK - Stow 

CEAH3-XTRCT CZCRH - DA Error Retry 
CZCYG - TAM Close 

CEAH7-SETXP CZCOC - MOVEPAGE 

CEAIS-SYSER CZCMF - MSAM Read/Write 
CZCMG - MSAM Posting and 

Error Retry 
CZCRP - SAM Posting 
CZCYG - TAM Close 
CZCZA - TAM Posting 

CEAP4-LVPSW CZCRA - BSAM Read/Write 

CEAP7-AWAIT CZCMI - MSAM Close 
CZCRA - BSAM Read/Write 
CZCRB - Control 
CZCRC - Check 
CZCSD - lOR Close 
CZCWC - SAM Close 
CZCWO - SAM Open Mainline 
CZCXE - Mainline EOV 

CEAP9-TSEND CZCYM - TAM Read/Write 

CEAQ4-CKCLS CZCMA - GETBUF 

444 

CZCMC - MSAM Open 
CZCNB - BSAM Read/Write 
CZCOI - Release Interlock 

Module 

CEARO-TWAIT 

CEAA1- PGOU'l' 

CZAAB-Gate 

CZABQ-WTO 

CZACP-ABEND 

CZAEB­
FINDJFCB 

CZCAB-Bump 

CZCAP-ABEND 

Access Methods Modules That 
Call this Module 

CZCOR - VSAM Get 
CZCSB - IOREQ 
CZCSC - lOR Open 
CZCYM - TAM Read/Write 

CZCRC - Check 

CZCOB - CLOSEVAM 

CZCWM - Message Writer 

CZCMD - SETUR 
CZCMG - MSAM Posting and 

Error Retry 
CZCMH - MSAM Finish 
CZCRH - DA Error Retry 
CZCWM - Message writer 
CZCYA - TAM Open 
CZCYG - TAM Close 
CZCZA - TAM Posting 

CZCOA - OPENVAM 
CZCOB - CLOSEVAM 
CZCOC - MOVEPAGE 
CZCOD - Insert/Delete Page 
CZCOE - REQPAGE 
CZCOJ - Find 
CZCOK - Stow 
CZCOM - Extend POD 
CZCOO - GETNUMBR 
CZCOP - VSAM Open 
CZCOR - VSAM Get 
CZCOS - VSAM Put 
CZCOT - SETL 
CZCOO - PUTX 
CZCPA - VISAM Put 
CZCPB - VISAM Get 
CZCPC - SETL 
CZCPE - Read/Write 
CZCPI - GETPAGE 
CZCPL - Add Directory Entry 
CZCPZ - VISAM Open 
CZCQE - Search SDST 
DZCYA - TAM Open 
CZCYG - TAM Close 
CZCYM - TAM Read/write 

CZCLA - Open Common 

CZCXD - DA Output EOV 
CZCXI - DA Input EOV 
CZCXO - DA Input Label 
CZCXT - Tape Input EOV 
CZCXX - Concatenation 
CZCWD - DAOPEN 
CZCWT - Tape open 

CZCRP - SAM Posting 



Access Methods Modules That 
Module Call this Module 
CZCEG-GIVBKS CZCWC - SAM Close 

C:lCEV-GIVBKV ChCOE - CLt)SEVAM 

C2CEK-Extend CZCOE - REQPAGE 
CZeXD - DA Output EOV 

CZCF0-0btain/ CZCWD - DAOPEN 
Retain CZCWR - Read Forut.lt- 3 OSCB 

CZCXD - DA Output EOV 
CZCXI - DA Input EOV 
CZCXN - DA Input Label 
CZCXS - Set oseB 
ezcxu - DA. Output Label 
CZCOA - OPENVAM 
CZCOB - CLOSEVAM 

CZCGA-VMA CZCLA - Open eOllU\lOn 
CZCLB - Close Conmon 
czeMA - GETBUF 
CZCMC - MSAM Open 
CZCMI - MSAM Close 
CZCGA - VMA 
CZCRH - DA Error Retry 
CZCNB - FREEPOOL 
CZCOA - OPENVAM 
CZCOB - CLOSl,VAM 
CZCOC - MQVEPAGE 
CZCOP - OPENSEQ 
CZCPE - Read/Write 
CZCPL - Add Directory Entry 
CZCPZ - VISAM Open 
CZCOM - Extend POD 
eZCQI - Expand RESTBL 
czcse - lOR Open 
czeSD - lOR Close 
eZCWB - Build Common DEB 
CZCWC - SAM Close 
CZCWD - DAOPEN 
CZCWL - Build DA DEB 
CZCWO - SAM Open Mainline 
CZCWR - Read Format-3 OSCB 
CZCWT - Tape Open 
CZCXE - Mainline EOV 
CZCYA - TAM Open 
CZCYG - TAM Close 

C2CJD-DIF CZCMD - SETUR 
CZCMF - MSAM Read/Write 
CZCMG - MSAM Posting and 

Error Retry 
CZCMH - MSAM Finish 
CZCMI - MSAM Close 
CZCRP - SAM Posting 
CZCSD - lOR Close 

CZCJI-INTINQ CZCMI - .M.SAM Close 
CZCRP - SAM Posting 

CZCJ 1.-LVPRV CZCWD - DAOP.EN 
CZCWO - SAM Open Mainline 
CZCWT - Tape Open 
CZCWY - Tape Data Set Label 
CZCXN - DA Input Label 
CZCXU - DA Output Label 
CZCYA - TAM Open 

Module 
CZCJS-SIR 

Access Methods Modules That 
call this Module 

CZCMD - SETUR 
CZCMG - MSAM Posting and 

Error Retry 
CZCMH - MSAM Finish 
CZCRH - DA Error Retry 
CZCRP - SAM Posting 

CZCJ'I'-QLE CZCRH - DA Error Retry 
CZCRP - SAM Posting 

CZCLA-Common CZCMD - SETUR 
Open CZCXX - Concatenation 

CZCLB-Coromon CZCMD - SETUR 
Close CZCXX - Concatenation 

CZCMA-GE~BUF CZCZA - GETBUF 

CZCMC-MSAM 
Open 

CZCMF-MSAM 
Read/Write 

CZCMH-MSAM 
.Finish 

CZCMI-MSAM 
Close 

C:ZCOA-VAM 
Open 

CZCOB-VAM 
Close 

CZCOC­
MOVE PAGE 

CZCLA - Open Common 

CZCME-DOMSAM 

CZCMI - MSAM Close 

CZCLB - Close Common 

CZCLA - Open Common 

CZCLB - Close Common 

CZCOA - OPENVAM 
CZCOB - CLOSEVAM 
CZCOR - VSAM Get 
CZOOS - VSAM Put 
CZCOT - SETL 
CZCOV - FLUSHBUF 
CZCPI - GETPAGE 
CZCQA - VISAM Close 

CZCOD-Insert/ CZCOS - VSAM Put 
Delete Page CZCOV - FLUSHBUF 

CZCPI - GETPAGE 
CZCPL - Add Directory Entry 

CZCOE-REQPAGE CZCOA - OPENVAM 
CZooC - MOVEPAGE 
CZCOF - Insert 

CZCOF-Insert CZCOD - Insert/Delete Page 
CZCOM - Extend POD 
CZCOO - GETNUMBR 

CZCOG-Reclaim CZooD - Insert/Delete Page 
CZCOK - Stow 

CZCOH­
Interlock 

CZCOO - GETNUMBR 

CZCOA - OPENVAM 
CZCOC - MOVEPAGE 
CZooD - Insert/Delete page 
CZCOJ - Find 

Appendix B: Modules Called by Access Methods Modules 445 



Access Methods Modules That 
f'lJOdule Ca 11 this Module -----

CZCOK - Stow 
CZCOO - GETNUMBR 
CZCQE - Search SDST 

C ZCOl-Release C'lCOA - OPENVAM 
Interlock CZCOC - MOVEPAGE 

CZCOD - Insert/Delete Page 
CZCOJ - Find 
CZCOM - Extend POD 
CZCOO - GETNUMBR 
CZCQE - Search SDST 
CZCQQ - VAM ABEND Interlock 

Release 

C'lCOJ-Find CZCMD - SETUR 
CZCOB - CLOSEVAM 

CZCOK-Stow CZCOJ - r'ind 
CZCV() - VAM ABEND Interlock 

Release 

CZCOL-Search CZCOJ - Find 
CZCOK - Stow 
CZCOO - GETNUMBR 

CZCOM-Extend CZCOK - STOW 
POD 

CZCON- CZCOM - Extend POD 
Relocate CZCOO - GETNUMBR 
Members 

CZCOO- CZCOC - MOVEPAGE 
GETNUMBR CZCOD - Insert/Delete Page 

CZCOP- CZCOA - OPENVAM 
VSAM Open CZCOJ - Find 

CZCOQ- CZCOB - CLOSE.VAM 
VSAM Close CZCOK - Stow 

CZCOR- CZCOP - VSAM Open 
VSAM Get 

czcos- CZCOP - VSAM Open 
VSAM Put CZCOQ - VSAM Close 

CZCOT - VSAM SETL 

CZCOT-SETL CZCOJ - Find 
CZCOP - VSAM Open 

CZCOU-PUTX CZCOP - VSAM Open 

CZCOV- CZCOQ - VSAM Close 
FLUSHBUF CZCOR - VSAM Get 

CZCOS - VSAM Put 
CZCOT - SETL 
CZCOU - PUTX 

CZCPA- CZCPA - VISAM Put 
VISAM Put CZCLB - VI SAM Get 

CZCPC - SETL 
CZCPE - Read/Write; DELREC 
CZCPI - GETPAGE 
CZCQA - VISAM close 

446 

Access Methods Modules That 
Module Call this Module 
CZCPB- CZCPC SETL 

VISAM Get 

CZCPC-SETL CZCOJ - Find 
CZCPE - Read/Write; DELREC 

CZCPE-Read/ CZCMD - SETUR 
Write; CZCPA - VISAl'i Put 
DELREC CZCPI - GETPAGE 

CZCPI-GETPAGE CZCPA - VISAM Put 
CZCPB - VISAM Get 
CZCPC - SETL 
CZCPE - Read/Write; 

CZCPZ- CZCOA - OPENVAM 
VISAM Open CZCOJ - Find 

CZCQA- CZCOR - CLOSEVAM 
VI SAM Close CZCOK - Stow 

CZCQE- CZCOA - OPENVAM 
Search SDST CZCOB - CLOSEVAM 

CZCOK - Stow 

DELREC 

CZCQQ - VAM ABEND Interlock 
Release 

CZCQF-JFCBVUD CZCOB - CLOSEVAM 
CZCOE - REQPAGE 

CZCQI - CZCOA - OPENVAM 
Expand CZCOC - MOVEPAGE 
RESTBL CZCOE - REQPAGE 

CZCOJ - Find 

CZCRA-SAM CZCRC-Check 
Read/Write CZCSA-QSAM 

CZCWY-Tape Data Set Label 
czcxs-Set DSCB 

CZCRB-Control CZCRC - Check 
CZCSA - QSAM 

CZCRC-Check 

CZCRG­
Backspace 

CZCRH-DA 
Error Retry 

CZCWY - Tape Data Set ~bel 
CZCXS - Set DSCB 

CZCYA - TAM Open 
CZCYG - TAM Close 
CZCSA - QSAM 

CZCSA - QSAM 

CZCRP - SAM Posting 

CZCRM-Point CZCWL - Build DA DEB 
CZCSA - QSAM 

CZCRN-Note CZCSA - QSAM 

CZCRQ-FINDR CZCRG - Backspace 

CZCRR-RELFUL CZCRM - Point 

CZCRS-FULREL CZCRN - Note 
CZCXS - Set DSCB 



l-lodule. 
CZCRX-VMER 

CZCRY-VM5DR 

CZCSA-QSAl'J 
FEOV 

CZCSC-IOR 
Open 

CZCSD-IOR 
Close 

Access Methods Modules That 
Call this Module 

CZCMG - MSAM Posting and 
Error Retry 

CZCRP - SAM Posting 
CZCZA - TAM Postinq 

CZCMG - MSAM Posting 
Error Retrl 

CZCRP - SAM Postinq 
CZCZA - TAM Postinq 

CZCLD - Force End of 

CZCLA - Open Common 

CZCLB - Close COllllton 
CZCXI - DA Input EOV 

and 

Volume 

CZCTJ-Prompt CZCWY - Tape Data Set Label 
CZCXI - DA Input EOV 

CZCWB-Build CZCWL - Build DA DEB 
Common DEB CZCWO - SA¥ Open Mainline 

CZCWT - Tape Open 
CZCXE - Mainline EOV 
CZCXO - Tape Output EOV 
CZCXT - Tape Input EOV 

CZCWC-SAM CZCLB - Close Common 
Close 

CZCWD-DAOPEN CZCWO SAM Open Mainline 

CZCWL-Build 
DA DEB 

CZCWM­
Message 
Writer 

CZCwo-SAM 
Open 

CZCWD - DAOPEN 
CZCXD - DA Output EOV 
CZCXI - DA Input EOV 

CZCWP - Tape Positioning 
CZCXD - DA output EOV 
CZCXN - DA Input Label 
CZCXX - Cbncatenation 

CZCLA - Open Common 

CZCWP-Tape CZCWC - SAM Close 
Positioning 

CZCWR-Read 
Format-3 
OSCB 

CZCWT-Open 
Tape 

CZCWD - DAOPEN 
CZCWX - DA Output EOV 

CZCWO - SAM Open Mainline 

Modul.§: 
czcwv­

Volume 
~)equence 

Convert 

Access Methods Modules That 
Call this Module 

czcwc 
CZCWO 
CZCWY 

- SAM Close 

CZCXD -
CZCXE -
C'1,('X I 
CZCXO -
CZCXT 

SAM Open Mainline 
Tiipe Data Set Wbel 
DA Ollt put EOV 
Mdinllnt' l':OV 
DA Input EOV 
Tape Output EOV 
Tape Input EOV 

CZCXD-DA CZCXE - Mainline EOV 
Output. EOV 

CZCXE-SAM 
Mainlin(' 
EOV 

CZCXI-DA 
Input. EOV 

CZCLD - Force End of Volume 
CZCRC - Check 
CZCWC - SAM C los e 

CZCXE - Mainline EOV 

CZCXN-DA CZCWD - DAOPEN 
Input. Label 

CZCXO-TAPE CZCXE - Mainline EOV 
output. EOV 

CZCXS-Set CZCWC - SAM Close 
DseB CZCXD - DA Output EOV 

CZCXI - DA Input EOV 

CZCXT-Tape 
Input EOV 

CZCXU-DA 
Output 
Label 

CZCXX­
Concatena­
tion 

CZCYA-TAM 
Open 

CZCYG-TAM 
Close 

CZCYM-TAM 
Write 

SVC-REDTIM 

SYSKA1-TIME 

CZCXE - Mainline EOV 

CZCWD - DAOPEN 
CZCXD - DA Output EOV 

CZCXE - Mainline EOV 
CZCXI - DA Input BOV 
CZCXT - Tape Input EOV 

CZCLA - Open Common 

CZCLB - Close Common 

CZCYA - TAM Open 
CZCYG - TAM Close 
CZCZA - TAM Posting 

CZCMD - SETUR 

CZCWY - Tape Data Set Label 

Appendix B: Modules called by Access Methods Modules 441 



APPENDIX C: ACCESS METHODS MODULE DIRECTORY 

This appendix provides an alphabetic listing of the various modules that are used in the 
Access Methods. Also provided are the CSECT, PSECT, entry points and chart ID of each 
module. 

r--------T-------------------------------~----------~---------T----------T-----------, 
I Module I I I I Entry I I 
I 10 I Module Name I CSECT I PSECT I Points i Chart 10 I 
t---------t--------------------------------+----------+----------t----------t-----------~ 
i CZCEI I VMIER I CZCEIC I CZCEIP I CZCEIl I JB I 
I I i I I I I 
I CZCEY I OUPOPEN I CZCEYC I CZCEn I CZCEYl I MB I 
I I I I I I , 
I CZCEZ I DUPCLOSE I CZCEZC I CZCEZP I CZCEZl i MF ! 
I I I I I I ! 
I CZCFT I DELVAM I CZCFTC I CZCFTP I CZCFTl I KF I 
I I I Iii I 

CZCLA I OPEN COMMON I CZCLAC I CZCLAB I CZCLAO I M I 
I I I I I I 

CZCLB I CLOSE COMMON I CZCLBB I CZCLBP I CZCLBC I DA I 
I I I I I i 

CZCLD I FORCED END OF VOLUME I CZCLDC I CZCLDB i CZCLDF I FA 
I J I I I 

CZCMA I GEl' A BUFFER I CZCMAC I CZCMAB I CZCMAG I BB 
I I I I SYSMAG I 
I I I I CZCMAB I 
I I I I I 

CZCMB I GET A BUFFER POOL I CZCMBB I CZCMBP I CZCMBG I BA 
I I I I SYSMBG I 
I I I I CZCMBP I 
I I I I I 

CZCMC I MSAM OPEN I CZCMCC I CZCMCP I CZCMCl I AI 
I I I I I 

CZCMD I SET UNIT RECORD I CZCMDC I CZCMDP I CZCMDl I AJ 
i I I I CZCMD2 I 
I I I I CZCMD3 I 
I I I I I 

CZCME I OOMSAM I CZCMEC I I CZCMEl I BB 
I I I I CZCME2 I 
I I I I I 

CZCMF I !o5AM READ/wRITE I CZCMFC I CZCMFP I CZCKFl I BC 
I I I I I 

CZCM:; I !o5AM POSTING AND ERROR RETRY I CZCMGC I CZCMGP I CZCMGl I CC 
I I I I CZCMG2 I 
I I I I I 

CZCMH I MSAM FINISH I CZCMHC I CZCMHP I CZCMHl I DC 
j I I I CZCMH2 I 
I I I I CZCMH3 I 
I I I I I 

CZCMI I MSAM CLOSE I CZCMIC I CZCMIP I CZCMIl I DD 
I I I I t 

CZCNA I FREE A BUFFER I CZCMBB I CZCMBP I CZCNAF I BC 
I I I I SYSNAF I 
I I I I CZCNAP I 
I I I I I 

CZCNB I FREE A BUFFER POOL I CZCNBA I CZCNBB I CZCNBC I HD 
I I I I SYSNBC I 
I i I I CZCNBB I 
I I I I I 

CZCOA I OPEN VAM I CZCOAC I CZCOAP I CZCOAl I MA 
I I I I I 

CZCOB I CLOSE VAM I CZCOBC I CZCOBP I CZCOBl I ME 
I I I I I 

I CZCOC I ..,VEPAGE I CACOCC I CZCOCP I CZCOCl I JA I L-________ ~ _______________________________ ~ __________ ~ _________ ~ __________ ~ __________ J 

448 



r---------T---------------------------·-----T----------T----------T----------T-----------
I Module I I I I Entry I 
i ID I Module Name I CSECT I PSECT I Points I Chart ID 
t---------f---------------------------·-----f----------+---------+----------+------------

CZCOD I INSERT PAGE CZCOOC CZCODP CZCODl KA 

I DELETE PAGE CZCOD2 
I 

CZCOE I REQUEST PAGE CZCOEC CZCOEP CZCOEl KD 
I 

CZCOF I INSERT CZCOFC CZCOFP CZeOFl KB 
I 

czeOG I RECLAIM ezcocc czeOGP CZCOGl KE 
I 

eZCOH I INTERLOCK CZCOHC CZeOHP CZCOHl LA 

I 
eZCOI I RELEASE INTERLOC" CZCOIC CZCOIP CZCOIl LB 

I 
CZCOJ I FIND CZCOJC CZCOJP CZCOJl PA 

I 
CZCOK I STOW CZCOKC CZCOKP CZCOKl PB 

I 
CZCOL ! SEARCH CZCOLC None CZCOLl PC 

I CZCOL2 
I 

CZeOM I EXTEND POD eZCOMe CZeOM"£' CZeOMl PO 
I 

CZCON I RELOCATE MEMBERS eZCONC None CZCONl PE 
i 

CZCOO I GETPAGE NUMBER CZCOOC CZCOOP CZCOOl PF 
I 

CZCOP I OPEN SEQUENTIAL CZCOPC czeopp CZCOPl Me 
I 

ezcOQ I CLOSE SEQUENTIAL ezeOQC ezcoQP CZCOQl Me 

I 
CZCOR I VSAM GET CZCORC None CZCORl NA 

I 
CZCOS I VSAM PUT CZCOSC None CZCOSl NB 

I CZCOS2 
I 

CZCOT I SET LOCATION CZCOTC None CZCOTl NC 
I 

CZCOU I PUT EXCHANGE CZCOUC None CZCOUI ND 
I 

CZCOV I FLUSH BUFFER(S) CZCOVC CZCOVP CZCOVl NE 
I 

CZCPA , VISAM PUT CZCPAC None CZCPAl OA I 

I CZCPA2 
I 

CZCPB I VISAM GET CZCPBC None CZCPBl OB 
I 

CZCPC I SET LOCATION CZCPCC None CZCPCl OC 

I CZCPC2 
! 

CZCPE I READ/wRlTE CZCPEC CZCPEP CZCPEI OD 
I DELETE-RECORD CZCPHl 
I 

CZCPI I GETPAGE CZCPIC CZCPIP CZCPIl, OE 
i END SEQUEm'IAL CZCPI2, 
I RELEASE EXCLUSIVE CZCPI3 , 
I CZCPD1, 
I CZCPGl 
I 

CZCPL I ADD DIRECTORY ENTRY CZCPLC CZCPLP CZCPLl OF 
I 

CZCPZ I VISAM OPEN CZCPZC CZCPZP CZCPZl MD 
I 

CZCQA I VIS AM CLOSE CZCQAC CZCQAP CZCQAl MH 
I 

CZCQE I SEARCH SDST I CZCQEC I CZCQEP I CZCQEl I .10 ! L-________ L-______________________________ -L __________ L-_________ ~ __________ i_ __________ J 

Appendix C: Access Methc,ds Module Directory 449 



r---------T--------------------------------T----------T----------T----------T-----------, 
I Module I I I I Entry t t 
I 10 I Module Name I CSECT I PSECT I Points I Chart 1D ! 
r---------t--------------------------------f----------t----------t----------+-----------~ 
I CZCQI I EXPAND HESTRL I CZCQEC I CZCQEP I CZCVF.l 1 KC I 
I I I I I I I 
! CZCQK I VDMEP I CZCQKC I CZCQKP I CZCVKl I .h' I 
! I I I I CZCVK 2 I I 

I I I i CZCVKJ 1 I 
I I I I I I 

CZCQQ I VA!" ABEND INTERLOCK R:":LEASE I CZCQEC I CZCQEP I CZCQQl I Ml I 
! I I I I ! 

CZCRA I BSAM READ/WRITE I CZCRAC I CZCRAP I CZCRES, 1 SA I 
I I I I CZCRAS, I I 
I I I I CZCRDS I ! 
I I I I I I 

CZCRB I TAPE CONTROL I CZCRBC I CZCRBP I CZCRBS I GD I 
I I I I I I 

CZCRC I CHECK I/O I CZCRCC I CZCRCP I CZCRCS I CF I 
I I I I I I 

CZCRG I BACKSPACE I CZCRGC I CZCRGP I CZCRGA t GC I 
I I I I I 1 

CZCRa I DA ERROR RETRY I CZCRHC t CZCRHP I CZCRHl I CB I 
I I I I I I 

CZCRM I LOGICALLY REPOSITION TAPE OR I CZCRMC I CZCRMP I CZCRMA I GB I 
I DA DATA SET I I 1 f I 
I I I I I I 

CZCRN I NOTE ID OF LAST RECORD READ f CZCRNS I CZCRNP I CZCRNA 1 GA I 
I OR WRITTEN I I I SYSRNA I I 
I I I I 1 I 

CZCRP I SAM POSTING AND ERROR RETRY I CZCRPC I CZCRPR I CZCRPl I CA I 
I I I I CZCRP2 1 I 
, I I I I I 

CZCRQ I FIND RECORDS PER TRACK t I I CZCRQA I 10 
I I I I I .\ 

CZCRR I RELFUL 'I I CZCRRA I IE 
I I I I SYSRRA I 
I I I I I 

CZCRS I FULREL I I I CZCRSA I IF 
I I I I SYSRSA I 
I I I I I 

CZCSA I GET (The first GET following al I I CZCSAA I QA 
I SETL type E or B, the first I I I I 
I GET following a FEOV, or the I I I I 
I first GET on a data set.) I I I I 
I I I I I 
I PUT (Entered for the Same PUT I I t CZCSAB I 
I macro instruction as GET I I I I 
I above. ) I I , I 
I 1 I I I 
I GET (All tnose not covered I I I CZCSAG I 
I above. ) I I I I 
I I I I I 
I PUT I I I CZCSAW I 
I I I I I 
1 SETLB, E I I I CZCSAH 1 
I I I I I 
I SETLR I I I CZCSAL 1 
I 1 I I I 
, COMIO I 1 I CZCSAM I 
I I I I I 
I SETLP I I I CZCSAQ 1 
I I 1 I I 
1 SETL I 1 I CZCSAS I 
I I I I I 

I I SAM CLOSE or FEOV I I I CZCSAV I I L _________ L-_______________________________ ~ __________ ~ __________ ~ __________ ~ ___________ J 

450 



r---------T--------------------------------T----------y----------T----------T-----------, 
I Module I I I i Entry I 
i ID I Module Name I CSECT I PSECT I Points I Chart ID I 
~---------+------------------~-------------t----------t----------+----------+-----------~ 
! CZCSA I SETLC I! I CZCSAZ I QA 

I I i I 
I PUTX I ! CZCSl\2 I 
I I I I 
I TRUNC I I C'ZCSA.3 I 
I I ! I 
I RELSE I I CZCSALI I 
I I I I 
I INITIO I t CZCSA6 I 
I I I 
I GET I CZCSA7 I 
I I I 
I PUT I CZCSA8 I 
I I I 
I TREOV I CZCSA9 
I I 

CZCSB I IOREQ I CZCSBC 
I I 

CZCSC I lOR OPEN I CZCSCC 
I t 

CZCSD I lOR CLOSE I CZCSDC 
I I 

CZCSE I IOREQ POSTING I CZCSEC 
I I 

CZCTC I TERMINAL TASK CONTROL ! CZCTCC 
I I 

CZCSBP 

CZCSCP 

CZCSDP 

CZCSER 

CZCTCP 

CZCSBl 
CZCSB2 
CZCSCl 

CZCSDl 

CZCSEl 

CZCTCl 

I MTT COMMAND I CZCTCl I 
I I : 
I FINDQ MACRO I CZCTC2 ! 
I I I 
I READQ MACRO I CZCTC3 I 
I I I 
I WRITEQ MACRO I CZCTC~ I 
I I I 
I CLEARQ MACRO I CZCTC5 I 
I I I 
I FREEQ MACRO I CZCTC6 I 
I I I 

CZCWA I ASCII TRANSLATION AND ,. CZCWAC CZCWAP CZCWAl I 
I CONVERSION I I 
I I I 

CZCWB I BUILD OR MODIFY COMMON I CZCWBC CZCWBP CZCWBl I 
I PORTION OF A DEB I I 
I I I 

CZCWC I SAM CLOSE I CZC~CC CZCWCP CZCWCl I 
I I I 

CZCWD I DAOPEN I CZCWDC CZCWDP CZCWDP I 
I I I 

CZCWL I BUILD OR EXTEND DA DEB I CZCWLC CZCWLP CZCWLl I 
I I I 

CZCWM I MESSAGE AND ABEND PROCESSING I CZCWMC CZCWMP CZCWMl I 
I I I 

CZCWO I SAfoil OPEN l'1AINLINE I CZCWOC CZCWOP CZCWOl I 
I I I 

CZCWP I TAPE POSITIONING I CZCWPC CZCWPP CZCWPl I 
I I I 

CZCWR I READ FORMAT-3 DSCBs I CZCWRC CZCRWP CZCRWP I 
I I I 

CZCWT I OPEN TAPE I CZCWTC CZCWTP CZCWTl I 
I I I 

BE 

AL 

DF 

CE 

RA 

GE 

AE 

DB 

AD 

AF 

IC 

AB 

IA 

AG 

AC 

I CZCWV I VOLUME SEQUENCE CONVERT I CZCWVC I CZCWVP i CZCWVl I IB 

; 
i . / 
I 

l _________ ~_~ _____________________________ i __________ i _ _________ l __________ L ___________ J 

Appendix C: Access Methods Module Directory 451 



r---------T--------------------- -----------T----------T--------- -T-- -- --- ---T-- ---- - -. -- -1 

I Module I I I lEnt ry I I 
I ID I Module Name I CSECT I PSECT I Points I Chart ID I 
~------+_----------------------------+--------+_---------+--------+----------1 
I czcwx I TAPE VOLUME LABEL PROCESSOR I CZCWXC I cZCWXP I CZCWXl I EA I 
I I I I I CZCWX2 I \ 
I I I I I CZCWX3 I I 
I I I I I I I 
! cZCWY I TAPE DATA SET LABEL PROCESSOR I CZCWYC t cZCWYP I CZCWYl I EB I 

I I I I CZCWY2 I I 
I I I I CZCWY3 I 
I I I I CZCWY 4 I 
I I I I I 

CZCXD I DA OUTPUT EOV I CZCXDC I CZCXDP I CZCXDl I FF 
I I I I I 

CZCXE I MAINLINE EOV I CZCXEC I CZCXEP I CZCXEl i FB 
I I I I I 

CZCXI I DA INPUT EOV I CZCXIC I CZCXIP I CZCXIl I FE 
I I I I I 

CZCXN I DA INPUT lABEL PROCEBSOR I CZCXNC I CZCXNP I CZCXNl I EG 
I I I I I 

CZCXO I TAPE OUTPUT EOV I CZCXOC I CZCXOP I CZCXOl I FD 
I I I I I 

CZCXS I SET DSCB I CZCXSC I CZCXSP I CZCXSl I AH 
I I I I I 

CZCXT I TAPE INPUT EOV I CZCXTC I CZCXTP I CZCXTl I FC 
I I I I I 

CZCXU I DA OUTPUT LABEL PROCESSOR I CZCXUC I CZCXUP I CZCXUl I EH 
I I I I I 

CZCXX I CONCATENATION PROCESSOR I CZCXXC I CZCXXP I CZCXXl I FG 
I I I I I 

CZCYA I TAM OPEN I CZCYA I CZCYAP I CZCYAl I AK 
i I I I I 

CZCYG I TAM CLOSE , CZCYG I CZCYGP I CZCYGl I DE 
I I I I I 

CZCYM I TAM REAOI'WRITE I CZCYM I CZCYMP I CZCYMl I BD 
I I I I I 

I CZCZA I TAM POSTING I CZCZA I CZCZAP I CZCZAl I CD I l _________ L-___________________________ -L __________ ~ __________ ~ _________ L--___ ~ _____ J 

452 



QWKAR 
QWKLEN 
QWKBKL 
QWKFRL 
QWKS14 
QWKS15 
QWKSVO 
QWKSVl 
QWKSV2 
QWKSV3 
\iWKSV4 
QWKSV5 
QWKSV6 
QWKSV7 
QWKSV8 
QWKSV9 
QWKS10 
QWKSll 
QWKS12 
QWKS13 
QWl<RES 
QWKSTL 
QWKCIP 
DECB1 

DECB2 

OECB3 

QWKBKC 
QWKRE2 
QWKGRO 
QWKGRl 
QWKGR2 
QWKGR3 
QWKGR4 
QWKGR5 
QWKGR6 
QWKGR7 
QWRWK1 
QWKWK2 
QWKWK3 
QWKWK4 
QWKWK5 
QWKWK6 
QWKWK7 
~WKWK8 
QWKLNK 
QWKEND 
QWKSZ 

DSECT 
OC 
DS 
DS 
DS 
DS 
OS 
OS 
OS 
OS 
OS 
OS 
OS 
OS 
DS 
OS 
DS 
OS 
DS 
OS 
os 
EQU 
EQU 
EQU 
DS 
EQU 

os 
EQU 
ORG 
DS 
OS 
DS 
OS 
OS 
OS 
OS 
OS 
OS 
DS 
DS 
DS 
DS 
OS 
DS 
DS 
DS 
DS 
DS 
OS 
EQU 
EQU 

A (QWKSZ) 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
X'40' 
X'SO· 
• 
OF 
OECB1+DECS1. 

OF 
OECB2+DECSZ 
OECB3+DECSZ 
of 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
11F 
• 
QWLEND--QWKLEN 

APPENDIX 0: QWKAR DSECT AND DESCRIPTION 

QWKAR length 
Storage for backward link register 
Storage for forward link register 
Storage for Register 14 
Storage for Register 15 
Storage for Register 0 
Storage for Register 1 
Storage for Register 2 
Storage for Register 3 
Storage for Register 4 
Storage for Register 5 
storage for Register 6 
Storage for Register 7 
Storage for Register 8 
Storage for Register 9 
Storage for Register 10 
Storage for Register 11 
Storage for Register 12 
Storage for Register 13 
NOTE -- Reserved word number 1 
SETL in progress flag 
CLOSE in progress flag 

(DECSZ is defined within CHADEC as 
the size of the DECB) 

Block count of current volume 
NOTE -- Reserved word number 2 
Save for (0) between subsections 
Save for (1) between subsections 
Save for (2) between SUbsections 
Save for (3) between subsections 
Save for (4) between subsections 
Save for (5) between subsections 
Save for (6) between subsections 
Save for (7) between subsections 
Working area 
Register save area 
Register save area 
Register save area 
Register save area 
Register save area 
Register save area 
Working area 

The QWK area consists of 340 bytes; DCBQWK contains its address. The first 19 words 
of the work area are the QSAM general register save area. The address of this save area 
is furnished to any called routine in the save area parameter register. These 19 words 
will have the same storage protection class as the one assigned to the data set. 

In the QWK work area, 36 words are used for the three DECBs used by QSAM. The first 
two OECBs (DECB1 and DECB2) are used for all the I/O operations. They are pointed to by 
the addresses in DCBDE1 and OCBDE2. All read or write operations will use the DECB 
pointed to by OCBDE2. and all checking operations will use the DECB pointed to by OCBDE1. 
The addresses in OCBDE1 and OCBDE2 are switched after each read or write so that the 
check will refer to the current DECB. The third DECB (DECB3) holds the appropriate copy 
of one of the other DECBs if a transfer to the user's SYNAD must be made. This copy is 
made so the user cannot erroneously alter the original DECB. The address of DECB3 is 
contained in OCBDE3. 

Appendix D: QWKAR DSECT and Description 453 



APPENDIX E: DESCRIPTION OF FIELDS IN QSAM PORTION OF DCB 

This discussion will not attempt to cover tho,;e fields used by QSAM which belong to 
the common portion of the DCB. 

FIELD DISPLACEMENT FROM ZERO (in hexadecimal), 9SAM USAGE 

DCBRCD 90 

DCBEAD 94 

OCBLX 98 

DCBLXN 9C 

DCBBSV 9E 

DC B LAD AD 

DCBDE1 A4 

DCBDE2 A8 

DCBDE3 AC 

DCBBFl BO 

OCBBF2 B4 

DCBBF3 B8 

DCBLRS BC 

OCBSVL BE 

OCBQWK CO 

OCBQFO C4 

DCBQFl C5 

DCBWFL 

DeBEOB 

DCBPTX 

DCBCPS 

DCBSWl 

DCBLM 

DCBSYN 

DCBMC 

454 

Address of the current logical record within the current block (1 word) 

Address of the end of the current block (1 word) 

The complete TTRZ direct address of ZZCC IMgnetic tape retrieval address 
to be used by SETI (4 bytes) 

Logical record count in the last block processed, used by SETL to retri­
eve a particular logical record within a block (2 bytes) 

Save area for original contents of DCBBLK (2 bytes) 

Address of the first byte of the last logical record processed (1 word) 

Address of DECBl (1 word) 

Address of DECB2 (1 word) 

Address of DECB3 (1 word) 

Address of data buffer initially aSSigned to DECBl (1 word) 

Address of data buffer initially assigned to DECB2 (1 word) 

Address of data buffer used for a data set opened for RDBACK with vari­
able format records (1 word) 

Save area for original contents of DCBLRE (2 bytes) 

Length of next logical record for variable format records in a readback 
data set 

Address of the QSAM work area (1 word) 

Reserved for QSAM (1 byte) 

Field containing the following QSAM flags (1 byte): 

Set on to indicate TREOV issued a write request (bit 0) 

Set on to indicate an end-of-buffer condition (bit 1) 

Set on by PUTX to indicate a PUTX updat(~ wa~; issued (bit 2) 

Set on to indicate to SETL that when a POINT is issued, the relative 
address should not be incremented by one (bit 3) 

Set on after the INITIO SUbsection is executed for the first time 
(bit 4) 

Set on when a locate-mode GET or PUT is issued (bit 5) 

SET ON WHEN SYNAD determines that a block is to be skipped (bit 6) 

Set on when SYNAD determines that an erroneous block is to be 
accepted (bit 7) 



DCBQF2 Co 

DCBLSW 

DCBSGB 

DCBDNN 

DCBDET 

DCBQF3 C7 

Field containing the following QSAM flag;; (1 byll'): 

Set on to indicat_e to GET that SETL is sp€cified in DCBMCD (bit O) 

set on to indicate that single buffering must be done (bit 1) 

set on by PUT to indicate to BSAM READ/WRITE that a channel nine 
overflow t_est should be made (bit 2) 

Set~ on by PUT to indicate to BSAM READ/WRITE that a channel twelve 
overflow test should be made (bit 3) 

Save area for the contents of the OCBOPI field used by SETL (1 byte) 

Appendix E: Description of Fields in QSAM Portion of DCB 455 



INDEX 

Where more than one page refer,~nce is 
given, the major reference is first. 

ABEND 
exit from routine (see specifio routine) 
interlock release 142-1q3 
processing for BSAM 93-94 

abnormal end termination (see ABEND) 
abnormal termination 54-59 
abort flag 64 
access dependent open processing 136 
access method phases 4-5 

Close 5 
Open 4 
Posting 4-5 
Read/Write 4 

add data set or member entries to 
SDST 111,116-111 

Add Directory Entry routine 
(CZCPI.) 162-163 

chart 398-399 
add member or alias descriptor 168 
ADE (Add Directory Entry) routinli~ 

(CZCPL) 162-163 
chart 398-399 

alias descriptor entry in POD 167 
allocate virtual storage algorithms 20-21 
alternate path retries 41,48 
ASCII interface in BSAM 7 
ASCII translation and converstion routine 

(CZCWA) 86-87 
chart 321-323 

aSSign pages to data set 110 
asynchronous interrupt routines 10 
ATCS macro use 195 
attention flag 64 

Backspace 149 
Backspace (BSP) routine (CZCRG) 85-86 

chart 319 
Basic Sequential Access Method 

construct channel program 28 
introduction 3 
lOCAL use 28-30 
modules invoked by QSAM 171 
overview 7-8 
routines (see specific routine) 
special routines 14-95 

beginning 149 
blocking factors for MSAM 9 
blocking logical records 182 
BREAK operand of TAM Write 40 
BSAM (see Basic Sequential Access Method) 
BSAM Read/Write routine (CZCRA) 28 

chart 223-226 
BSP (Backspace) 

chart 319 

456 

macro instruction 6 
routine (CZCRG) 85-86 

buffer allocation flag 42 
buffer area 44 
buffer page 8 
buffer size computation 

BSAM 86 
MSAM 9 
TAM 62 

buffer specification 62 
buffering 86 
buffering, Single or double 183-185 
BUFTEK 62 
Build Common DEB routine (CZCWB) 17 

chart 210 
Build DA DEB routine (CZCWL) 18 

chart 211 
building and maintaining a VAM data 
set 119 

building the RESTBL 135 
bus out check 

DA 52 
MSAlv, 

printer 
reader, 

21lQO tape 

55,57-59 
punch 54-55,56-57 
48 

card punch configuration specification 
carriage return 62 
catalog entry release 124 
CCW 

BSAM 29 
IOREQ 41 
MSAM 34 
TAM 36 
TAM CCW trace list 61 

CHAnCB 109 
CHADHD (DCB header) 111-113 
CHAEPE (external page entries) 111 
chaining 44 
chaining check 

DA 52 
2400 series tape 50 

CHAISA (interrupt storage area) 108 
CHAMHD (member headers) 111 
channel command word (see CCW) 
channel control check 56 
channel data check 

MSAM 56 
2311, 2314, 2302 51 

channel end 61 
channel failure 60 
channel program 

BSAM Read/Write 28 
DA Write 29 
MSAM 33 

channel program generator 36,38 
channel program index table 38 
CHARHD (RESTBL header) 113 
CHATDT (task data definition table) lOB 
check (and posting) processing 46-67 
Check routine (CZCRC) 66 

chart 218 

21 



check subroutine 186 
CLEARQ macro processor 197 
Close 

BSAM overview 7 
dUplLcate ~~rl 141 
tinal proces~;inq 140 
la~;t opt'n Dell 140 
modul e int.£'rdct ion 11 I 
phase 5 
processing 68-73 
QSAM 190 
SAM 68 
TAM Close rout.ine 72 
VAM 139 
VISAM 142 
VSAM 142 

Close Common routine (CZCLB) 68 
chart 281 

close temporary 140 
CLOSEVAM routine (CZCOB) 139 

chart 369 
closing last open DCB 140 
CNTRL (see Control) 
code generator storage parity error 

error 58 
COMBIN option 7 
command reject 

DA 53 
MSAM 

printer 58 
reader I punch 57 

2400 tape 49 
Common Close (see Close Common) 
Common Open (see Open Common) 
comparison of access methods routines 3 
completion of I/O 7-8 
concatenation of record to data set 101 
Concatenation routine (CZCXX) 83 

chart 316 
CONN SVC. use in MTT 196 
Construct (subroutine of BSAM 

Read/Write) 28 
control block relationship 115 
control blocks 

access methods area 5 
QSAM 178 
relationship 115 
SAM. TAM, IOREQ 5-7 
user area 5 
VAM 107-113 
VISAM 152 
VPAM 164 

Control routine (CZCRB) 86 
chart 319 

control table interlocks 128 
CPG (channel program generator) 36,38,40 
CPIT (channel program index table) 40 
CSW zero 56 
cylinder end 53 
CZCEI (Virtual Memory Input Error 
Recorvery) 102,340 

CZCEY (DUPOPEN) 136,366 
CZCEZ (OUPCLOSE) 141,374 
CZCFT (Delete a VAM Data Set) 124,356 
CZCLA (Open Common) 14,200 
CZCLB (Close Common) 68,281 
CZCLD (Force End of Volume) 79,309 
CZCMA (GETBUF) 89,325 

CZCMB (GETPOOL) 87,324 
CZCMC (MSAM Open) 19,214 
CZCMO (Set Unit. Record) 21,216 
CZCMF. (OOMSAM) 30,227 
CZ('MF (Read/Write, MSAM) 34,237 
ClCMG (M~;AM ro~;t inq) '>4, /64 
czeMl1 (1'\::;"",1 ~'lni"h) hll,:l1l4 
CZeMI (M~;AM clm;!,) 71, ~H9 
eZCNA (FREEBUF) 90,320 
eZCNB (FREEPOOL) 90,327 
ezeOA (OPENVAM) 132.3bl~ 
CZCOB (CLOSEVAM) 139,369 
ezeoc (MOVEPAGE) 98,336 
CZCOD (Insert/Delete Page) 119,351 
CZCOE (Request External Pages) 122,354 
CZCOF (Insert) 120,352 
eZCOG (Reclaim) 123,355 
czeOH (Interlock) 129,359 
eZCOI (Release Interlock) 130,360 
CZCOJ (Find) 165,400 
czeOK (Stow) 168,404 
CZeOL (Search) 171,412 
czeOM (Extend POD) 172,413 
CZCON (Relocate Members) 172,414 
CZCOO (GETNUMBR) 173,415 
CZCOP (VAM Open) 137,367 
CZCOQ eVAM Close) 142,375 
CZCOR (VSAM GET) 144,379 
CZCOS (VSAM PUT) 147,381 
CZCOT (VSAk SETL) 148,383 
CZCOU (PUTX) 150,385 
CZCOV (FLUSHBUF) 150,386 
CZCPA (VISAM PUT) 155,387 
CZCPB (VISAM GET) 157,390 
CZCPC (VISAM SETL) 157,392 
CZCPE (Read/Write Delete Record) 159,394 
CZCPI (GETPAGE) 160,396 
CZCPL (Add Directory Entry) 162,398 
CZCPZ (VISAM Open) 138,368 
CZCQA (VISAM Close) 142,376 
CZCQE (Search SDST) 112,348 
CZCQI (Expand RESTBL) 121,353 
CZCQK (VAM Data Management Error 

Processing) 104,343 
CZCQQ (VAM ABEND Interlock 

Release) 142,377 
CZCRA (BSAM Read/Write) 28,223 
CZCRB (Control) 28,223 
CZCRC (Check) 86,320 
CZCRG (Backspace) 85.319 
CZCRH (DA Error Recovery) 50,257 
CZCRM (Point) 84,318 
CZCRN (Note) 83,317 
CZCRP (Posting, BSJ\.M) 46,245 
CZCRQ (FINDR) 94,333 
CZCRR (RELFUL) 95,334 
CZCRS (FULREL) 95,335 
CZCSA (QS~) 179,417 
CZCSB (IOREQ) 41,244 
CZCSC (I/O Request, Open) 26,222 
CZCSD (I/O Request, Close) 73,292 
CZCSE (Posting, IOREQ) 65,277 
CZCTC (Terminal Task Control) 195,433 
CZCWA (ASCII Translation and 
Conversion) 86,321 

CZCWB (Build Common DEB) 17,210 
CZCWC (SAM Close) 68,282 
CZCWD (DA Open. BSM!) 17,208 

Index 457 



CZCWL (Build DA DEB) 18,211 
CZCWM (Message Writer) 93,332 
CZCWO (SAM Open) 15,202 
CZCWP (Tape Positioning) 91,328 
CZCWR (Read Format- 1 DSCBs) 19,212 
CZCWT (TAPE OPEN) 16,206 
CZCWV (Volume Sequence Convert) 92,331 
CZCWX (Tape Volume Label) 74,294 
CZCWY (Tape Data set Label) 74,298 
CZCXD (DA Output EOV) 82,31~ 
CZCXE (Mainline EOV) 79,310 
CZCXI (DA Input EOV) 82,313 
CZCXN (DA Input Label Processor) 18,307 
CZCXO (Tape Output EOV) 81,312 
CZCXS (Set DSCB) 19,213 
c~CAT (Tape Input ~OV) 80,311 
CZCXU (DA Output Label Processor) 78,308 
CZCXX (Concate"'lation Processor) 8:J,316 
CZCYA (TAM Open) 24,221 
CZCYG (TAM Close) 72,291 
CZCYM (TAM Read/Write) 35,242 
CZCZA (TAM Posting) 60,275 

DA Error Recovery routine (CZCRH) 50 
chart 257 
contingent processing 51-54 
general processing 50 

DA Input EOV routine (CZCXI) 52 
chart 313 

DA Input Label Processor .routine 
(CZCXN) 78 

chart 307 
DA Open routine (CZCWD) 17 

chart 208 
DA Output EOV routine (CZCXD> 82 

chart 314 
DA output Label Processor routine (CZCXU) 78 

chart 308 
DA Read/Write (see BSAM Read/Write) 27 
DAIN (DA Input EOV) routine (CZCXI) 82 

chart 313 
DAOV (DA output EOV) routine (CZCXD) 82 

chart 314 
data check 

MSAM 
printer 56 
reader. punch 57 

2311. 2314. 2302 51 
2400 tape 49 

Data control Block 
primary/secondary 136 
QSAM 178 
SAM, TAM, COREQ 5 
VAM 109 
VIS AM 152 
VSAM 145 

data convertec check 49 
Data Event Control Block 

check (interceptions) 66 
IO~EQ 42 
MSAM 11.3~ 
QSAM 178 
queue (IOR~Q) 42 
SAM 28 
VISAM 152 

Data Extent Block 
building of 

458 

common 17 
DA 18 
SAM 15 
tdpe 16 

DA siz~ algor~Lhm 18 
modify 18 
page and workpage layout 20 
processing 18 
QSAM 178 
SAM 6 

data group E9-71,8 
data movement from buffer 42-45 
Data Set Control Block 

Read Format-) DSCB 19 
SAM processing 19 
S.i::T USCB 19 
VAM 118 

data set labels 74-79 
data set maintenance 119-126 
data set page release 125 
data set sharing 127-131,102.112-117 
DCB (see Data Control Block) 
DCB header 112 

chaining of 135 
interlock summary 143 

DCB macro. control block building 3 
DCBD macro. control block building 3 
DCBRCX 22-24.70-71 
DCBSUR 22-24 
DEB (see Data Extent Block) 
deblocking logical records 183 
DECB (see Data EVent control Block) 
DECB queue 4J. 
delete e~ernal paqe entries 123 
delete member or alias descriptor 168 
delete VAM data set 124 
delete VISAM J.ecord (CZ,CPE) 159 

chart 394 
DELPAGE (Insert/Delete Page) routine 

(CZCOD) 119 
chaI:t 351 

DELVAM (Delete a VAM Data set) routine 
(CZCFT) 124 

chart 356 
device end 61 
DFTRMENT macro. control block building 3 
DILBL (DA Input Label Processor) routine 

(CZCXN) 78 
directory 

chango VISAM 162 
VAM 115 
VISAM 1':.'3 
VPAM 't~ 

directory page assj.qnment 132 
disallie 39 
disconnect. k'I'T terminal 197 
DOLBL (DA Ou(~f'ut. lAt.el Processor) routine 

(CZCXU) 78 
chart 308 

DOMSAM routine (CZCME) 30 
chart 227 
GET processing 30 
PUT processing 32 
error recording 33 
unit check, exception 31 

double hufterinq 183-185 
DSCB (see Data Set Control Block) 
DUPCLOSE routine (CZCEZ) 141 



chart 374 
duplexing 103 
DUPOPEN routine (CZCEY) 136 

chart 366 
dynamic buffering 62 

edit phase 44 
enable 39 
end of block 63 
end of data set 149 
end of file (EOF) 72 
end of line 63 
end of transmission 63 
end of volume processors 79-83 

Check 66 
SAM overview B 

enter table 108 
EOV (see end of volume) 
EPE '10 
equipment check 

DA 52 
2400 tape 48 
MSAM printer 58 
reader, punch 57 

error retry and recovery 
BSAM 4,47 
IOREQ 65 
MSAM 33,34,54-59 
Posting 46-67 
TAM 60-65 
VAM 103-107 

ESETL 160 
Event Control Block (see DECB) 
Expand RESTBL EXPRES routine (CZCQI) 121 

chart 353 
Extend POD routine (CZCOM) 164 

chart 413 
External Page Entry 110 
EXTPOD (Extend POD) routine (CZCOM) 172 

chart 413 

Fence Sitter 
QSAM 179 
VA.l'1 107 

FEOV 191 
FEOV (Force EOV) routine (CZCLD) 79 

chart 309 
tile protect 54 
find records per track 94 
Find routine (CZCOJ) 105 

Chart 400 
PINDO macro processor 196 
FINDR routine (CZCRQ) 94 

chart 333 
Finish (CZCMH) 69 

chart 284 
fixed-length records 

VSAM 137 
VSAM GET 147 

Flush 186 
FLUSHBUF routine (CZCOV) 150 

chart 386 
Force End-of-Volume routine (CZCLD) 79 

chart 309' 
form type F 58 
format, VAM volume '18 

format-E DSCB 118 
format-F DSCB 118 
FREEBUF routine (CZCNA) 90 

chart 326 
FREE pour. Tout.ine (CZC"lB) 90 

chart 327 
Jo'Ri':EQ rnacre, processor 197 
F1JL.REL rout in.' (CZC'RS) q~, 

chart .\)') 

general services macro table (CHAGSM) 14 
GET 187 
Get Member Page Number routine (CZCOO) 17 J 

chart 415 
GET routine (CZCORJ 144 

chart. 179 
GET routine (CZCPB) 157 

chart. 379 
GET/PUT 

BSAt-, rna cros 3 
QSAt-l 187-189 

GETBUF routine (CZCl".AJ 89 
chart~ 325 

GETIO 187 
GETNUMBR (Get Member Page Number routine 

(CZCOO) 173 
chart. 415 

GETPAGE routine (CZCPI) 160 
chart. 396 

GETPOOL (CZCMB) routine 87 
chart 324 

hardware failure 47 
hashing table 165 
header labels 75,76 

I/O completion 7 
I/O interrupt 46 
I/O request 

buffering 12 
chaining rules 44 
Check used with 13 
close 13 
Close routine 73 
edi t. phase 44 
introduction 3 
macro 26,12 
Open routine 23 
overview 12 
posting overview 
posting routine 

I/O request control 
chaining 9 
SAM general 7 

12 
65 
block (lORCB) 

use in posting 46-67 
I/O statistical data table 7 
I/O Supervisor 

BSAM 46 
MSAM 34 
IOR£Q 12 

inboard failure 60 
incorrect length 

DA 52 
MSA"~ printer, reader, punch 60 
2400 tape 50 

inhibit 39 
input/output request control block (see 

Index 459 



J{)CCbJ 
DS0r~/Delete Page (INSDEL) routine 
U:zeOD) 119 

:~hdl:"t 351 
fc(,\!tine ICZCOF) 120 

lc:). fa,,:.," ,-'':"",lTol check 56 
,nh',]ock ,oHLine (CZCOH) 129 

il,H t ]59 
il,(e,];:,cl\. .";tlm.mary (DHD) 143 

c()nL.l:ol !:.dble 128 
POD 164 
t'edd 127 
I.cole",;,;€: aftel: ABEND 
.clp~se page level 
",q;ite 127 

143 
160 

l ,,If;:'lXoption stora,)e area 108 
l.)",t-e.l:v,~nt ion required 

D.il, ~i2 

!lSi\N 
p"Llnter S8 
redder, punch 56 

.<:4iIO tape 48-49 
.iNTIK (Interlock) rout;im' (ClCOH) 129 

chm:t 359 
-'"m Cj;;,:'k Ioutin,:, (CZCSD) '13 

Chi.iiit 292 
,tt'Jr.). ()'p~i) i>_t)ut,l.l~:e: (CZeSCi 26 

,hi> i:"t 222 
2LUhJ:l:\ (",'.00::- 1/0 :n::quest control block) 
};)hl~':) ,: l,,-'!,: :r 10 1: equest) 
UHr~,,) :n)'.ltHH' (CZCSS) 41 

crh±."i ,to :~ J.j. i,~ 

i I.Il ~,n:\lpt iOlI Storagp Al ea} 108 

.• fl G £0Ie~se 126 
"i~.f' Control Block (~JFCB) 6-13 

i. 1 (,z, of 6 
If",l';1,.2 12 
f<i:.:"; i\J~ 8 
Slt~(i ~:J 

'I'ft; ~\~ 1. () 

.1 '.r 

~~ 1~0ces~ors 74-79 
" 76-17 

16· n 

i \--~. i 

i'~' i~H:;'Wnet or alias 
h)Cd t !,lode 31 
I ','i,'d' ,0 .t:pccrd 157 

til cOldrul chaLdcter 35 
',,;:\,:"10 ir,struetions 

\)S.M! 7'1 
.s l~M 110 ') 
\/1 SM·l 152 
IJP{;..M 164 
v~}rd"'\ 144 

f·'i.d.n line EOV routine (CZCXE) 79 

chdrt 310 
master exce~tion fldq 64 
member descriptor 16') 

locate (FIND) 165 
member header (MHD) 112 

VPAl'J 65 
message control table 94 
message handling 93 
Message Writer routine (CZCWM) 93 

chart 332 
missing address marker 53 
module interaction 
V~ CLOSE 133 
VAM OPEN 133 

MOSEARCH 171 
MOVEPAGE routine (CZCOC) 98 

chart 336 
output operation 100 
non-output operation 101 

MS~ (see Multiple Sequential Access 
Methods) 

MSAM Close routine (CZCMI) 71 
chart 289 

MSAM Finish routine (CZCMH) 69 
chart 284 

MSAt-l Open routine (CZCMC) 19 
chart 214 

MSAM Posting and Error Retry routine 
(CZCMG) 54 

chart 264 
device dependent processing 

printer 57 
reader or punch 56 

general processing 54 
MS~ Read/Write routine (CZCMF) 34 

chart 237 
MSGWR (Message Writer) routine (CZCWM) 93 

chart 332 
MTT, access methods support 193 
MTT command processor 195 
multiple phase message 94 
Multiple Sequential Access Method 

block-deblock records 30 
buffer size algorithms 9 
close 71 
data group, grouping 8 
DOMS~ 30 
Finish 69,10 
Get, Put 30-33,9 
Open 19 
overview 8 
posting 54,10 
Read/Write 34,9 
record format 9 
tables 11 
unit check, exception 31 
unit record 21 

Multiterminal Task (MTT) support 193 

NCP (number of channel programs) field 26 
new record 156 
no path available 56 
no record found 52 
Note routine (CZCRN) 83 

chart 317 
number of channel programs 26 



on/,)ff page locators 153 
Open 

acces~, dependent 1 ]6 
Common 14 
D.l\ 17 
funr;t_ions ., 
pha:;p 11 

;;hM 1', 
T"p" 16 
unit_ TPcord 21 
VAM 1.17 
VISAM 138 
VSAM 137 

Oppn Common routine (CZCLA) 14 
chart 200 
f IInct ions 7 

open shared data set 134 
OPENVAM routine (CZCOA) 132 

chart 361 
original path retries 47 
outboard failure 61 
overflow page 153 
overru.'1 

DA 53 
2400 tape 49 

Fil<:W Assignment Table 118 
page level interlock 127-128 
~ge locators 153 
paging mechanism 99 
Partitioned organization Direc1:ory 166 

alias descriptor 167 
hashing table 165 
manipulation of (STOW) 168 
member descriptor 166 

PAT (Page Assignment Table) 118 
Permit command 129 
PGOUT SVC 100 
phases (see access methods phases) 
POD (see Partitioned Organization 
Directory) 

Point routine (CZCRM) 84 
chart 318 

Point subroutine 186 
post:ing 46- 61 

BSAM 46 
IOREQ 65,4 
MSAM 54 
phase - SAM 4 
SAM 46 
TAM 60 

pre'-edi t checking 44 
printer (MSAM Finish) 70 
printer configuration 21 
program check 57 
protection check 57 
I~eudo-lock (interlock) 128 
punch (MSAM Finish) 70 
.Put (M,SAM) 32 
Put (QSAM) 188 
Put routine (CZCPA) 155 

chart 381 
Put r'outine (CZCOS) 141 

chart, 381 
PUTIO subroutine 181 
PUTX 189 
PUTX routine (CZCOU) 150 

chart 385 
PUTXIO 187 

ySAM (s~e ~ueued Sequ~nt1al Access Method) 
()SAM rout in .... · (CZCSA) 179 

chart 417 
Queued Sequential Access Method 

butfers, buftering 178,183 
contrel blocks 178 
error conditions 181 
general 177 
interface 179 
internal logic 186 
linkage 179 
macro}, 177,187 
param.?ters 181 
return codes 181 
subsection 180 
work areas 178 

QWK work area 178 

Head F'ormat-3 DSCBs (CZCWR) 19 
chart. 212 

read interlock 127 
F:.ead/Write 

BSAfv, 28 
DOMSAM 30 
interception 
IOREQ 41-45 
MSM·l 34 
MTT (READQ) 

29 

186 
196 

123 

recovery and error retry 
BSAM 5 
VAM 103-101 

recovery in progress flag 64 
relative external storage correspondence 
table 110-112 

relative volume number 119 
Release Interlock: routine (CZCOI) 130-131 

chart 360 
release read interlock on page 161 
release VAM data page 124 
release write interlock: on page 161 
RELEX 161 
RELFUL routine (CZCRR) 95 

chart 334 
Relocate Members (RELMBRS) routine 

(CZcoN> 172 
chart 414 

RELSE (QSAM) 189 
Request External Pages (REQPAGE) routine 

(CZCOE) 122 
chart 354 

Resident Terminal Access Method 
introduction 3 
overview 10 

Index q61 



terminal task control 195 
RESTBL 110-112 

building the 135 
VPAM 164-165 

RESTBL header 110,112 
retrieval address 149 
retry and error recovery 

(see also - Posting) 
VAM 103-107 

return data to external storage 150 
rewrite a logical record 150 
kLINTLK (Release Interlock) routine 

(CZCOH 130-131 
chart 360 

RTAM (See Resident Terminal Access Method) 

SAM Close routine (CZCWC) 68 
chart 282 

SAlti communication block (CHASCB) 8 
initialization 15 

SAM Open Mainline (CZCWO) 15 
chart 202 

SAM Posting and Error Retry routine 
(CZCRP) 46 

chart 245 
device dependent error procedure 47 
general 47-48 
non-normal completion 47 
normal completion 47 
2400 Tape 48 

SCB (SAM communication block) 8,15 
SDAT (Symbolic Device Allocation Table) 6 
SDSE (Shared Data Set Entry) 115 
SDST (Shared Data Set Table) 112 
SOT (I/O Statistical Data Table) 7 
search code 171 
SEARCH routine (CZCOL) 171 

chart 412 
Search Shared Data Set Table routine 

(CZCQE) 112 
chart 348 

search ty~e (M, E, or A) 171 
SEEK Check 52 
Set OSCB routine (CZCXS) 19 

chart 213 
Set Unit Record routine (see SETUR) 
SETL 190 
SETL routine (CZCOT) 148 

chart 383 
SL~L routine (CZCPC) 157 

chart 392 
SL~UR (Set Unit Record) routine (CZCND) 21 

asynchronous interruption 24 
card punch 22 
chart 216 
printer 22 
synchronous interruption 22 
ues 22 

SETXP SVC (in Movepage) 101 
SHARE command (VAM sharing) 129 
shared data set entry 116 
shared data set table 112-117 
Sharing 127-129,101-102 

PERMIT command 129 
SuST 112 
SHARE command 129 

Single phase message 94 

462 

SPER routine (:Jet' :;AM Postinq d'1ci Error 
Retry) 

SRCHSOST (Search SOST) routine (CZCQE) 112 
chart 348 

START I/O failure 
MSAl-l 55 
IORhQ 66 

statistical data table 7 
STOW routine (ClCOK) 168 

chal.t 40Q 
types 169 

symbolic device allocation table 6 
SYNAO subroutine 186 
SYSUeS, SYSURS 9,22 

TAIEOV (Tape Input EOV) routine (CZCXT) 80 
. chart 311 

TAM (see Terminal Access 1.'1ethod> 
TAN Close routine (C?CYG) 72 

chart 291 
TAM Open routine (C~CYA) 2Q 

chart 221 
TAM Posting routine (CZCZA) 60 

chart 275 
TAM Read/Write routine (CZCYM) 35 

chart 242 
type option 36 

TAOEOV (Tape Olltput roV) routine 
(CZCXO) 81 

chart 312 
Tape Data Set Label routine (CZCWY) 74 

chart 298 
Tape Input EOV routine (CZeXT) 80 

chart 311 
TapE Open routine (CZCWT) 16 

chart 206 
Tape Output EOV routine (CZCXO) 81 

chart 312 
tape positioning calculation 91-92 
Ta~e POSitioning routine (CZCWP) 91-92 

chart 328 
Tape Read/Write 29 
Tape Volume Label rout:ne (CZCwX) 74 

chart 294 
task data definition table 108-109 
TCIT <terminal control information 
table) 41 

TCP (ter~inal channel program) 38,41 
TOT (task data definition table) 

(CHATDT) 108-109 
temporary DEB 16 
Terminal .'l,.cceSG M"?ho.~ 

bufte-r len<]th 62 
chdnnel program generat.or 36.38 
clo:3e 72 
open 11,24 
overview 10-12 
posting (,0.12 
Read/Write 35.12 
terminal definition 25 

terminal channel program 38,41 
terminal control information table 41 
terminal cont: rol table 195 
terminal definition 25 
terminal linrarj table 37,40 
Terminal Task Control routine (CZCTC) 195 

chart 433 



threshold number 48 
TLT (terminal library table) 37,40 
TOS (terminal access operational status 

table) 36,38 
track condit1on check 53 
trc,ck overrUll 53 
TRU:--JC 189 
TVClLBL (Tapt> Volume Laoel) roul11l(~ 

(CZCWX) 74 
chart 294 

UCS (universal character set) 
(see also SETUR routine) 

undefined operation 61 
undefined records 137 

VSAM GET 146 
unit check 

MSAM 58,59 
2311, 2314, 2302 52 
2400 Tape 48 

unit exception 
DA 51 
flag 64 
MSFu'1 57 / 59 
2400 Tape 50 

unit record configuration 21 
unit record device (see MSAM) 

(see also SETUR) 
unit type table 37,40 

22,35,58 

universal character set 22,35,58 
unrecoverable error 58-59 
unusual command sequence 57 
user routine 83-87 
user SYNAD (BSAM Posting) 48 
UTT (unit type table) 37,40 

Vfu~ (see Virtual Access Method) 
VAM ABEND Interlock Release routine 

(CZCQQ) 142 
chart 377 

V&'1 close module interaction 133 
VAM control block relationship 108 
VAM Data Management Error Processing 
routine (CZCQK) 104 

cilart 343 
Vfu~ facilities 103 
VAM interfaces 107 
V}\Yl introduction 99 
VAYl open processing 132-138 
VA,\{ volume format 11B 
VNili\BIR ('lAM ABEND Interlock Release) 
routine (CZCQQ} 142 

chart 377 
variable length records 

VSAM 137 
VSAM GET 147 

VCCW list 42,44-45 
VDMEP (VAM Data Management Error 

Processing) routine (CZCQK) 104 
chart 343 

VOMER macro use 105 
Virtual Access Method 

close processing 139-142 
introduction 99-117 
open processing 132-139 
overview 99 

virtual data set organization 99 
Virtual Indexed Sequential Access Method 

control blocks 152 
data set organization 153 
DCB working storage 152 
direct.ory 154 
keys 1 r.)l 
on/off t-l.l"t' l,lc,It,,!·,; 1',\ 
ov(~rvic'w, m~.lL"t·OS 1~) .. ~ 
p.:llje [unnal!; 1~)J 1',4 

Virtual Memory ltlj!llt Error Recllvery routine 
(CZCEI) 102 

chart 340 
Virtual Partitioned Access Method 

control blocks 164 
macros 164 
overview 164,102 
routines, general 164 

Virtual Sequential Access Method 
macros 144 
overview 102 
record formats 144 
routines 144 

VISAM (see Virtual Indexed Sequential 
Access Method) 

VISAM Close routine 142 
chart 376 

VISAM interlock overview 127 
VISA.."1 Open rout_ine 138 

chart 368 
VISAM record relationship 155 
VMER (see System Service Routines, 

GY28-2018) 
VMIER (Virtual Memory Input Error Recovery) 
routine (CZCEI) 102 

chart 340 
VOLCVT (Volume Sequence Convert) routine 

(CZClfIV) 92 
chart 331 

volume format 118 
Volume Sequence Convert routine (CZCWV) 92 

chart 331 
VPAM (see Virtual Partitioned Access 

Method) 
VPAM interlock overview 127 
VSAl-i (see Virtual Sequential Access 

Method) 
VSAM Close routine 142 

chart 375 
VSAM Open routine 137 

chart 367 
VSAM interlock overview 127 

write (see Read/Write) 
write into application TCT slot 197 
write replace by key 159 

replace by retrieval address 159 
WRITEQ macro processor 197 

zero CCW 56 

1050 37,40,62 
1052-7 73 
2302, 2311, 2314 50-54 
2400 tape 48-50 
2701 40 
2702 

control unit 40 
Close 72-73 

2741 37,62 

Index 4£3 



International Busineaa Mechines Corporation 
Data Procesaing Division 
U33 Westcheater Avenue, White Pleina, Naw York 10604 
!U.S.A onlyJ 

IBM World Trade Corporetian 
821 United Nations Plaza, New York, New York 10017 
ilnternatianelj 


