.||I‘

File No. §360-30
GY28.- 2068

Program

Version 8.1

IBM System/360 Time Sharing System
Access Methads

This publication describes the internal logic of the
nonresident access metnods used in TSS/360. (The
facility which controls most conversational input/output
in TSS/360, tne resident terminal access method (RTAM) is
part of the resident supervisor and 1is described in IBM
system/360 Time Sharing System: Resident Supervisor
Program Logic Manual, GY28-2012.)

The nonresident access methods are:

s The virtual access methods (VAM), used to store and
retrieve page-organized data located on direct access
devices, and including the virtual sequential (VSAM),
virtual index seguential (VISAM), and virtual
partitioned {VPAM) access methods.

e The sequential access methods (SAM), used to access
05/360-oriented data sets on tape or direct access
devices, and including the basic seguential (BSAM)
and queued sequential (QSAM) access methods.

¢ The multiple sequential access method (MSAM), used
for efficient input/output with unit record
equlpment.

e A facility, IOREL, which allows a user to provide his
own access methol with « private device.

» The terminal access method (TAM), which allows
input/output with specific terminals.

e A Terminal Task Control module which provides task
control for multiterminal task (MTT) applications.

For each access method, an overview, routine
descriptions, and flowcharts are provided.

This material is intended for persons involved in
program maintenance, and system programmers who are
altering the program design. It can be used to locate
specific areas of the program, and it enables the reader
to relate these areas to the corresponding program
listings. Program logic information is not necessary for
the use and operation of the program.

Logic

PREFACE

This publication describes the access
methods {except for the resident
terminal access metcthod®). It can be read
velectively foxr a general understanding of
4 partieular access method, or i1t can be
used as a guide to more detaileld
information in an object program listing of
a particular access method object module.

HOW THIS BOOK I5 ORGANIZEL

The access methods are grouped 1n this
pook into four parts:

® Basic Seqgquential Access Method (BSAM),
Multiple Sequential Access Merthod
{MSAM), Terminal Access Method (TAM),
and IOREy.

e Virtual Access Methods (VALY , including
Virtual sequential {VSaM), Virtual
Index Sequential (VISAM), and Virtual
Partitioned {VPAM) Access Methods.

s Queued Seqguential Access Method [(QSAM).

¢ Terminal Task Control (a facility which
controls tasks that have Multi-Terminal
Task (MTT) applications).

For each access method, an overview and
individual routine descriptions arxe
provided. Flowcharts for all access
methods are grouped in one section.

TGO USE Th1S BOOK, YOU NELD:

¢See Resident Supervisor Program logic
Manual, GY28-2012.

Fifth Edition (September 1971)

This is a minor revision of GY28-20164
incorporating TNL GN28-3212.

This edition i3 current with Version 8, Modification 1,
<f the 18M System/ 380 Time Sharing System (Tsu/360),
and remains in effect for all subsequent versions or
nodifications of TSS/3160 unless otherwisc noted.
Significant changes or additions to this publication
will be provided in new editions or Technical
Newsletters., Before using this publication, refer to
the latest edition of IBM System/360 Time Sharing
system: Addendum, GC28-20&3, which may contain
information pertinent to the topics covered in this
vdition. The Addendum also lists the editions of ali
TS5/ %0 publications that are applicable and current.

General familiarity with TSS/360
ssembler language and the main concepts ot
55/360.

GENERAL BOOES TO REFER TO:

IBM system/ 360 Principles of Operation,
GAR22-6821.

IBM System/360 Time Sharing System:
Concepts and Facilities, GC28-2003.

BOOKS RELATED TO ACCESS METHODS:

Access methods are usually invoked as
the result of user- or systeminitiated
macyro instructions described in:

IBM System/ 360 Time Sharing System:
Assembler User Macro Instructions,
GC28-2004.

A complete explanation of data
management in TSS/360 from the user point
of view is provided in:

IBM System/360 Time Sharing System:
Lata Management Facilities,
GC28-2056.

TO FIND AN ACCESS METHOD:

See the Table of Contents.

TO FIND A PARTICULAR ROUTINE (MODULE):

See Appendix C, Access Methods Module
Directory.

Requests for copies of IBM publications should ke made to your IBM
representative or to tne IBM branch office serving your locality.

A form 1s provided at the back of this publication for reader’'s

comments.

18M Corporation, Department b43, Neighborhood Road, kKingston,

12601

I1f the form has been removed, comrents may bte addressed to

N.Y.

© Copyright International Business Machines Corporation 1967, 1968,

1969, 1970, 1971

PART 1: ACCESL MITHOD FOR BSAM, MSAM, TAM AND IOKREQ

SECTION 1: INT/ODUCTION . .

- Y -

Linkdage to the Access Methods Routines

Access Mothod Phases e e e e e
Mdacro Inctructions
control Rlocks e e e e
BSAM OVERVIEW
MGAM Overview

. - - e -

Data sets, pufters, and Blocking Factors .

Schematic Dercription
MSAM Glossary o . . o L .
RTAM OVERVIEW
TAM Overview
IOREQ Overview e e e e e .

SECTION 2: OPEN PROCESSING
Common Processing . .« « . . . o . o«
Open Common Routine (CLCLA) e e e
SAM Open Processing . . . « . « « « . .
SAM Open Mainline Routine (CZCWO) .
Tape Open Routine (CZCWT)
DA Open Routine (CZCWD)
DEB PROCESSING . . .« 4 «v v v ¢ o 4 o
Build Common DEB Routine (CZCWB) .
Build DA DEB Routine (CZCWL) e e e
DSCB ProcCessing . . « « =« « « o s « o
Read Format-3 DSCBs Routine (CZCWR)
Set DSCB Routine (C2CXS)
MSAM ProcCessing . .« « « « « o o o 2 o «
MSAM Open Routine (CZCMC)
SETUR Routine {CZCMD)
TAM Processing . . « o « 2 s « « s « «
TAM Open Routine (CZCYA)
IOR Processing « e e e e .
IOR Open Routine (CZCSC) e e e e .

SECTION 3: READ/WRITE+ « . .
Read/Write Processing . . . « « « « . .
BSAM Read/Write Routine (CZCRA) . .
DOMSAM Routine (CZCME) « . .« e
MSAM Reads/Write Routine (CZCMF) . .
TAM Read/Write Routine (CZCYM) P
IOREQ Routine (CZCSB)

SECTION 4: POSTING AND CHECK e e v e
Posting and Check Processing
SAM Posting and Error Retry Routine
DA Exrror Retry Routine (CZCRH) . .

- « . e . -

. “ e« ¢ e
P

(CZCkP) . .

. - - -

MSAM Posting and Error Retry Routine (CZCMG) -

Central Installation Devices
Remote Job Entry Devices
TAM Posting Routine (CZCzZA)
IOREQ Posting Routine (CZCEE) . . .
Check Routine (CZCRC)

SECTION 5: CLOSE e e e 4 e e e e e e
Close Processing . . o « o« o o « o o .
Close Common Routine (CZCLB) e
SAM Close Routine (CZCWC)
MSAM Finish Routine (CZCMH}
MSAM Close Routine (C2CMI) e e e .

CONTENR.

.. 1
- .. 3
PR 4
- - - ()
. . Y
. .. 7
. - . jat
. . &
. e . 3
. . .10
- 10
. . 10
e . .12
. . . 14
< . . 14
R
. . . 15
. . . 15
. .« . 106
. . . 17
- . .17
T
. .« . 18
. . . 19
« . . 1
« . . 19
. <« . 19
< . . 19
- . .20
« . . ZU
e . . 26
.« . . 28
. . . 28
- e . 2
« . . 30
. . . 34
. - . 35
. . . U1
« o . U6
. . . u6
« . . U&
. . . 590

. .« . Hu

-1

.« . 59
« . . 60
. . . 65
. . . 6%

. . 68

. . . b8
. . . 68

- . . b8
. . 69
. . 71

TAM Clone rout ine (CZCYS)
IOR Close poutine {CZCSDY . o . .

SeCTION 6: ROUTINES SYPECIFICALLY DESIG

Label Proceusors e e e e e e e e
Tape Volum: Label Koutine (CZCWX)
Tape Data et Label #outine (CLCWY
DA Inpirt Label Routine (CZCXN) .
['A Output Label Routine (CZCXU) .

EOV Processors .« o . 4 . .. e . .

NED
)

Force ind of Volume koutine (CZCLDY .

Mainline EOV Rcutine (CZCXE) ..
Tape Input ECOV Routine {CZCXT)

Tape Uutput BOV Routine (CZCX0O) .
DA Input EOV Routine {CZCXI1) . .
DA Cutyput EOV Routine (CZCXD) . .
Concatenation Routine {(CZCXX) . .

RSAM User Routines . e e s s 4 e
Note routine (LZCRN) e e e o e
Point Routine (C2CEM)

Backspace Routine {CICRG)
Control Routine {C2CkBY

- -
. e
PR

L S T
PN . . « e
- - e A =
. . -

- s e x

s e e e &
o e = 4 e N
« e e o & s
e o & » s =
« s+ s e 2
e e e s x =
- . « e e

ASC1I Translation and Conversion Routine (CZCHA)

Buffering Jervices .« o .+ .+« 4+ . . .
GETPOCL Routine (C2ZCHMB)
GETBUF Routine (CZCHMR) e e e e
FREEEUF Routine (CZICNA)
FREEPOCL Routine {CZCNB) e e e

BSAM Internal Control Routines . . .
Tape Positioning Routine {(CZCWP)

e
. =
« -
o e
« .
> -

e & & s+ e+ =
e e 4 s s e
. s e = e e
L
« e ® e s e
e e s s & =
e e s a2 Y

Volume Sequence Convert Routine {CZCWV)

Message Writer koutine (CZCWM) .

Find Records per Track Routine {(CZCRQ)

RELFUL Routine (CZCRR) e e e e a
FULREL Routine (CZCRS) s e s e s

PART II: VIRTUAL ACCESS METHOD (VAM)

SECTION 1: INTRODUCTION
Virtual Data Set Orxganization
Movepage Routine (CZCOC)
The Access Methods . . « e e + a
Facilities Provided by VAM « e e s e
VAM ERROR RECOVERY TECHNIQUES . . .
VMIEK Routine (CZCEI}
VDMEP Routine (CZCQK)
VAM Interfaces
Module Attributes« .«
Linkage Conventions
CONTROL BILOCKS f e e e e e e e e e
Interruption Storage Area (ISA) --
Task Data Definmition Table (TDT) -

Shared Data Set Table (SDST) . .
ST Maintenance
Search SDST Routine (CZCQF) . e .

SECTION 2: VAM VOLUME FORMAT AND DATA
The Data Set Control Block {(DSCB) . .
Building and Maintaining a Data Set .
Insert/Delete Page Routine (CZCGD)
Insert Routine (CZCOF) e e e e .
Expand RESTBL Routine (CZCQI) . .
kequest Page Routine (CZCOE) . .
Reclaim Routine (CICOG)
DELVAM Routine (CZCFT)

SECTION 3: DATA SET SHARING

iv

. .
P
P
PR
. .
ER—
. e
PR
- e
. e

. S Y

« 2 = e e
e & s« 8 e @
« o = 8 e a
* s e & e @
“ s @ o a4 o
e =« e e
s = e+ e e @
e e e« = = »
® o e e e 8
« e = & & =
e & e o =
» s e 2 s e
. e & = e
e e e« e s e
© e o & + =
. * e e

(LHAI A) . e e
- {(CHATDT) - .
Relative External Storage Correspondence Table (RESTBL)

. .
.« .
. .
SET
. o
- .
. .
. .
..
. .
.« .

MAINTENANCE

-

-

-

.118
.118
.119
.119
.120
121
-122
-123
-124

.127

Control Table InterlocksS .« v v« v ¢ v v ¢ o o « o
Interlock Routine (CZCOH) . . . e s e e e e .
Release Interlock Routine (CZCOI) .« .

SECTION U4: OPEN AND CLOSE PROCESSING
OPEN PROCESSING . ©¢ v & 4 4 4 ¢ o o o o o o o o
OPENVAM Routine (CZCCA) . . . v «¢ «v o « o o o«
DUPOPEN Routine (CZCEY) . .
VSAM Open Routine (CZCOP) . . .
VISAM Open Routine (CZICPZ) . .
Close Processing . . . © s e e e e e e e e e
CLOSEVAM Routine (CZCOB) « e
DUPCLOSE Routine (CZCEZ) . . .
VSAM Close Routine (CZCOQ) . .
VISAM Close Routine (CZCQA) . . « s s
VAM ABEND Interlock Release Routine (CZCQQ)

e e © 8 e e s+ e

s ° s =2 e & s

SECTION 5: VIRTUAL SEQUENTIAL ACCESS METHOD (VSAM)

Routines in VSAM
VSAM Get Routine (CZCOR)
VSAM PUT Routine (CZCOS) . . .
SETL Routine (CzCOT)
PUTX Routine (CZCOU) e o e o o =
FLUSHBUF Routine (CZCOV)

o e e » o e & e a s e a

.
.
.
.
“
.
»
.
.
.
.

SECTION 6: VIRTUAL INDEXED SEQUENTIAL ACCESS METHOD
VISAN, OVEIVIew .« . ¢ v ¢ o o o o « o o o a o « o =
VISAM Page Formats
VISAM Routines
VISAM Put Routine (CZCPA) . . .
VISAM Get Routine (CZICPB)
SETL Routine (CZCPC) . . .
Read/Write, DELREC Routine (CZCPE) « e s e
GETPAGE Routine (CZCPI)
Add Directory Entry Routine (CZCPL) e e .

SECTION 7: VIRTUAL PARTITIONED ACCESS METHOD (VPAM)
VPAM Overview « + « o« « «
VPAM Control Blocks . « « « « « . & . e e
Partitioned Organlzatlon Dxrectory (POD) « o s
Use of Member Headers in RESTBL
VPAM Routines e e o o o & e a4 e ® a o a =
Find Routine (CZCOJ) e e e s e e e e
Stow Routine {(CZCOK) e s e s+ s e 4 e a s e
Search Routine (CZCOL) e e s e e e e e s
Extend POD Routine (CZCOM) . e e e e s
Relocate Members Routine (CZCON) e e e e e s
GETNUMBR Routine (C2CO0) . . . « . « « .

= e« @« ® a e e a

PART II1: QUEUED SEQUENTIAL ACCESS METHOD (QSAM) .

SECTION 1: GENERAL DESCRIPTION . .« « ¢ o « .
QSAM Macro Instructions . . . ¢ « o o =« « o = =
Work Area and Buffers« ¢ ¢ + o .«
Control BloCKS . « 4 v o o « o o o o o o + =

SECTION 2: INTERFACE RULES AND MODULE DESCRIPTION .
QSAM Routine (CZCSA) ¢ « & o « « = =

SECTION 3: INTERNAL LOGIC . ¢ ¢ o« « o « o o« o « o a
Common PYXOCESSINGg « « « v o o « o « o o « o =
SYNAD Subroutine . . . ¢ ¢ ¢ &« ¢« o ¢ « « o« o =
Read/Write Subroutine« « . +« « « o o &
Control Subroutine & + < . . .
Backspace Subroutine o . o ¢ . . .
Point Subroutine .« . . .« « « ¢ + o o s 2 e o
Check Subroutine . . . ¢ ¢ ¢ & ¢ o s = « o« = =
Flush Subroutine+ + ¢« « o o « o o « =

= e s .

e« + e =

« e -

-128
.129
.130

.132
-132
.132
.136
.137
.138
.139
.139
<1481
. 142
.142
.142

144
144
. 144
<147
.148
.150
.150

.152
.152
.153
154
-155
.157
.157
.159
.160
-162

.164
164
-.164
.164
.165
.165
.165
-168
.171
.172
.172
.173

-175

-177
177
.178
.178

.179
.179

.186
.186
.186
.186
-186
-186
.186
.186
.186

GETIO Subroutine .« . « o« ¢ o o o « o = o o a s o « =«
PUTIO Subroutlne .« . « « = « o « o o 2 o a o o o« « =
PUTXIO SUDroutine . . . « « « o o o o o « o o a o « =
LOgGic Of MacroO ServiCEeS ¢ + « « 2 « s o = = = » « 2 o o« =
GET Macreo PrOCeSSiNg .« +« « = « « s + o « o = +« o o =
PUT Macro PrOCeSSING « « o « o o o o o o « o« o = o =
PUTX Macro PIOCESSING o « « o « o« =« « o o o o o s o« =
TRUNC Macro ProCessiNg . « o« « « o« o o« o a o o o o =
RELSE Macro ProCesSsSing .« « « « o s « « o o o o o o =
SETL Macro ProcCesSing . . « =+ « « = « « « o o o o o
CLOSE and FEOV Functions Perxformed by QSAM

PART IV: RTAM/MTT ACCESS METHODS SUPPORT « « .« .

SECTION 1:

MTT TERMINAL TASK CONTROL

Terminal Task Control Routine {(CZCTC)
MTT Enable . . . ¢ ¢ & 4 ¢ ¢ & o o o o o s o 2 « « =
FIND{ Macro . + « o o =« o v «a 2 s a o o o o o s s o =
READG MACYO . & 4 « 4 = « o s 2 % = o a » s @« s o« s o
WRITEQ MACIO . ¢ & & o 2 4« o + s « o o o « a o o o
CLEARQ Macro « w = »= o e e v ©® & e = ® e » 4 e« o @« a
FREEQ MBCIO . . + v « « 2 « + u s o o « =« o a o o o =

FLOWCHARTS

APPENDIX A:

APPENDIX B:

APPENDIX C:

APPENDIX D:

APPENDIX E:

INDEX . . .

vi

« © ®© & e 8 s« s @ e @& & © %= e e & & & s e 8

CONTROL BLOCKS USED BY ACCESS METHODS MODULES
MODULES CALLED BY ACCESS METHODS MODULES . .
ACCESS METHODS MODULE DIRECTORY . . . & « « «
OWKAR DSECT AND DESCRIPTION o « « &«

DESCRIPTION OF FIELDS IN QSAM PORTION OF DCB

s 4 4 a4 & & ® & ® @& & & ® » * @ & @ & ®» @ @ @

.187
.187
.187
.187
.187
.188
.189
.189
.189
.190
.191

L1933
.195
.195%
.195
.196
.19¢6
.197
.197
.197
.199
440
Luhg
448
. 453
. 454

456

Figure
Figure
Figure
Figure
Figure
DEB .

Figure
Figure
Paths

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

ILLUSTRATIONS

Access Method Phases for BSAM, MSaM, TAM, and IOREQ .

DEB
DEB
TAM
IOR
TAM
TAM

Obtain Keys and Label I/0 Areas
Retain Keys and Label I/0 Areas

How
How

Tape Positions « « « o &« « .
Data Positioning
Skipping Files on Tape « +. & o « « « =

Page Layout & ¢ ¢ ¢ 4 ¢ « o o + e +
Work Page Layout o e e

Oper.: DEB and TOS Storage Allocatlon and P01nters
OPEN: Basic Pointers and Data Moved from JFCB to

Read/Write: CPG 1. ~ation Sequence
Posting: Normal Coisletion and Exception Analysis

e & e e

TSS/360 Handles ASCII Record Imput
TSS/360 Handles ASCII Record Output

Entry for Single/Multiple Phase Message . . . « . . .

DCB

RESTBL Format « e e s e =
RESTBL External Page Entry - CHAEPE
Shared Data Set Table (SDST) Format . . .

Linkage Relationships Among Control Blocks Used

Format for vAaM

e e e & e 2 = s e

®» & @ . ® % s s ®

»

Deleting Pages from the "In Use" List in RESTBL . . .
Module Interaction in VAM Open Processing

Module Interaction in VAM Close Processing
DCBHEADER Interlock Summary « . +« « + « « o =

VSAM Data Record and Page Formats
VISAM Record Relationship . . . e e e e x e .
Partitioned Organization Dlrectory (POD) e e e e e

.

-110
-111
- 111
114

thh VAM. 115

.124
.133
.133
L1143
. 145
. 155
.164

TABLES

Table 1. BSAM, MSAM, TAM and IDREQ READ/WRITE and GET/PUT Level

Macro InsStructions . . ¢ ¢ . e« 4 4 e 2 + e + + w o 2 e s a + = « « « 5
Table 2. BSAM, MSAM, TAM, and IOREQ I/0 Macro Instructions

Required for I/0 Operations . . . ¢ « ¢ o« o« o ¢ 2o « o o 5 s « = = = « &
Table 3. BSAM, MSAM, TAM, and IOREQ Macro Instructions 6
Table 4. DCB Table Fields and Flags {MSAM Section) 11
Table 5. Some DBP Table Fields . . . e e e s e s e = » = « « « o 11
Table 6. Some DECB Table Fields (CHADEC) B & |
Table 7. Some DEB Table Fields . ¢ « ¢« ¢ ¢ ¢ v o o ¢ o o o« =« « « o« 11
Table 8. TAM Reads/Write: Terminal Information from SDAT 38
Table 9. TaM Read/Write: Type Option (Hex and Mnemonic) Codes and
Description e + @ = o o % 2 2 « « = 39
Table 10. TaAM Read/urlte. Unlt Type Table Format . . - . 40
Table 11. TAM Read/Write: Terminal Library Table Format (for 2702 -
TLT) « e e . . “ o« e e e s e e » e e« o e e o o s+ « - - . 40
Table 12. TAM Read/Write: Terminal Control Program Format 41
Table 13. TAM Read/Write: Selected Terminal Control Information

Table Entries . . ¢ ¢ ¢ & o o 4 o o o s s o s « s o » o o o s « » « « 41
Table 14. TAM Read/Write: Channel Command Word Generator Section . . 42
Table 15. TAM Read/Write: Channel Command Word Generator Format . . 42
Table 16. TAM Reads/Write: Buffer Allocation Flag Bits of CCWG . . . 43
Table 17. TAM Posting: Terminal Length Statisties 61
Table 18. TAM Posting: Specification of User Buffer 62
Table 19. TAM Posting: Expected EOL Sequence . . « « « « o » « « o« » 62
Table 20. TAM Posting: CSW Status and Sense Data Typical Maximum -
Exception Retry Counts {(Extracted from CHASDT) « 65
Table 21. Label 1 Fill Table . . . & & & o o o« s o o o s o« » s « o « 17
Table 22. Label 2 Fill Table e s o s s b e e = s w o o s « 17
Table 23. Decisions for Settlng Block e e o = 5 s e s+ s s = =« « « . B4
Table 24. Abbreviations Used in Control Block Descriptions108
Table 25. Selected Fields of the Interrupt Storage Area109
Table 26. Selected Fields of @ JFCB . . . « &« « o o o =« =« « + « « 2109
Table 27. Selected Fields of the DCB Common . . . « « « o « = . <110
Table 28. Description of the Fields Comprising the VAM Organlzatlon -
Independent Working Storage . . . « ¢ + o « o 2 s a2 = « B 5 B
Table 29. Field Descriptions for the RESTBL Header -- (CHARHD) - . o113
Table 30. Field Descriptions for the DCB Header -- (CHADHD)114
Table 31. Field Description of the SDST Header -- {(CHASDS)115
Table 32. Field Description of a Member Entry -- (CHASDM)115
Table 33. Field Description of a Data Set Entry -- (CHASDE)116
Table 34. Effect of OPEN Option on Member Interlocks in Member

BEAAer « + o « o o + o o o o o o o 5 s o s s s = s e s s'e + + o« o 2128
Table 35. Effect of OPEN Options on Data Set Interlocks in SDST . . .128
Table 36. Effect of OPEN Option of VISAM Page Level Interlock128
Table 37. Description of DCB Working Storage Used by VSAM Routines .144
Table 38. FLUSHBUF Decisions to Control Buffer Allocations151
Table 39. Descrintion of DCB Working Storage Used by VISAM Routines 152
Table 40. Fields and Codes of the DECB Referenced by VISAM Routines
(CHADEB) « +. « 4 « « o o = o o o « « o o a a s s a =« o =« « « = « « 2153
Table 81. Organi:zation of @ VISAM Data Set « « « « = « « « 2153
Table 42. VISAM Page Formats -- Super Indexed Sequential Directory .154
Table 4#3. VISAM PVage Formats ~-- Data or Overflow154
Table 44. VISAM Page Formats -- Directory . . . « « « « < « « . . 2154
Table 45. POD FOmMAt . .« . v o 4 v =+ « o o o o = = s o = s o« « o » 2165
Table 46. POD Member DeSCriptor . . .« & 4 ¢ o« o « = s = = « o « « <166
Table 47. POD Alias Descriptor e 2 a o s s & = o s« « o« + <167
Table 48. RESTBL Member Headers (CHAMHD) e e e e s e e e e e o xos . 167
Table 49. Usage of BSAM Modules . . . ¢ ¢ & v & o « o « o « « « « <177
Table 50. Subsection Interface e s e e e+ s e e« s s« = <« « 2180
Table 51. Parameters and Return Codes of BSAM Modules181
Table 52. Subroutine FUNCtionNS . . + < ¢ 4« & o « « = « = » =« = « » 182

viii

Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart

BA.
BB.
BC.
BD.
BE.
CA.
CB.
CcC.
CD.
CE.
CF.
DA.
DB.
DC.
DD.
DE.
DF.
EA.
EB.
EG.
EH.
FA.
FB.
FC.
FD.
FE.
FF.
FG.
GA.

GC.
GD.
GE.

HB.
HC.
HD.
IA.
IB.
IC.
iD.
1E.
IF.
JA.
JB.
JcC.
JD.
KA.
KB.
KC.

Open Comnon - CZCLA
BSAM Open - CZCWO « « & =«
OPENTAPE - CZCWT
DAOPEN - CZCWD
Build Common DEB - CZCWB o e e e
Build DA DEB - C2CWL
Read Format-3 DSCB - CZCWR
SETDSB -~ C2CXS . . « +« « =«
MSAM Open - CZCMC + v & & =« o = o
SETUK - CZCMD« . .+ . .
TAM Open - CZCYA« ¢ « & «
IOR Open - C2CSC . . & v ¢ « o & =
BSAM Read/Write - CZCRA
DOMSAM ~ CZCME . . . « ¢ 2 + 2 & «
MSAM Read/Write - CZ2CMF
TAM Reads/Write - C2CYM
IOREQ - CZ2CSB « e e o =
SAM Posting & Error Retry - CZCRP.
DA Error Retry - CZCRH
MSAM Posting - CZCMG « .« .
TAM Posting - CZCZA ¢ & o = + + « =
IOREQ Posting -~ CZCSE . . & &« « o & = « &
BSAM Check = CICRC . « ¢ & o « « o o 2 « o
Close Common - CZCLB . . +v v « « o « « &
SAM Close - CZCWC &« & o o « & o«
MSAM Finish - CZCMH . . . « & « ¢ « +« &+ «
MSAM Close = CZCMI . . v & 4 « o o «
TAN Close - CZCYG .« &« ¢ &+ o o o = o« & »
IOR Close - CZCSD v v &« v o & o = « s e e e
Tape Volume Label Processor - CZCWX . e .
Tape Data Set Label Processing - CZCWY . .
Direct Access lnput Label Processor - CZCXN .
Direct Access Output Label Processor - CZCXU
Force EOV = CZCLD « « . ¢ & « o o « o o « =

Mainline BEOV — CZCXE . . & + ¢ o o « a + &

Tape Input EOV Processor - CZCXT . .«
Tape Output BOV - CZCX0 . « . « o o « o o+
DA Input EQV Processor - CZCXI
DA Output EOV Processor - CZCXD
Concatenation Processor - CZCXX
Note = CZCRN . ¢ & ¢ &« & ¢ o ¢ o o o » = =
Point - CZCRM ¢« « ¢ &+ « o o «
Backspace = CICRG . ¢ « 4 o & o o o o o s o =
Tape Control - CZCRB . .« « . . « « « « . .
ASCII Translation € Conversion - CiCWA . . .
GETPOOL - CZCMB . . <« « o & ¢ « o o o o o o «
GETBUF - CZCMA ¢ ¢ & o o« o o « =
FREEBUF = CZCNA . o ¢ ¢ © ¢« o o« o o = o » =« =
FREEPOOL - CZCNB . . . e e = 2 v a e e e
Tape Positioning - CZCWF« + + « «
Volume Sequence Convert - CZICWV
Message Writer - CZCWM« . + . .
FINDR - C2CRQ « o« ¢ o o o o o « o o o o o = =
RELFULL - CZCRR <« « ¢ « « o o o o o » o =« @
FULREL = CZCRS «. & & v & « o o o o « « o =
MOVEPAGE - CZCOC . . v v o o o o o o« « o o =
VMIER - CZCEL ¢ . ¢ v o o o o 2 o = o« o s = =
VDMEP - CZCQK o « ¢ o o o o o « o« o o o « o« =
Search SDST - CZCQE . . w & e s o e w o o @
Insert/Delete Page - CZCOD « e e e e e e e
INSERT =~ C2ZCOF .+ o o o & & o o o s o o « o« «
Expand RESTBL - CZCQI ¢ « « « = « «

CHARTS

. .200
« 2202
. .206
. .208
. .210
. . 211
.- .212
. <213
. .214
.« .216
. 2221
. 222
. .223
- 227
.- 237
. .2u43
. .244
. .2U5
. .257
. 264
. 275
. 277
. .278
. .281
. .282
. .284
. .289
. 291
« <293
. <294
. .298
- .307
. .308
. <309
. »310
. 311
. <312
. .313
. -314
. <316
< 2317
.- .318
- -319
. 320
. 321
. 324
. 325
. -326
. 327
. 328
. .33
. .332
- .333
. «334
- .335
. 336
- - 340
. 343
. .348
. .35
. .352
. <353

Ix

Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart

NB.
NC.
ND.
NE.
OA.

Request Page - CICOE

Reclaim - CZC0G . .
DELVAM - CZCFT . .
Interlock - CZCOH
Release Interlock
OPENVAM - CZCCA . .
DUPOPEN - CZCEY .
VSAM Open -~ CZICOP .
VISAM Open - CICPZ

CLOSEVAM - CZ(OB .
DUPCLOSE - CZCEZ .
VSAM Close - CZICQOQ

VISAM Close - CZCQA
VAM ABEND Interlock
VSAM GET - CZCOR .
VsapM PUT - CZCOS N
VSAM Set Location -
VSAM PUT Exchange -

I

.

Release

CLCOT .
Cicou .

Flush Buffer - CzCOV . . .

VISAM PUT - CICPA .
VISAM GET - CZCPB .

VISAM Set Location -

Read/Write - CZCPE

GETPAGE - CZCPI . .
Add Directory Entry
Find - CZCOJ . . .
STOW - CZCOK o e e
Search - CicoL . .
Extend POD - CZCOM

Relocate Members -

GETNUMBR - CZICOC .
QSAM - CZCSA . . .

Terminal Task Control

CZCPC

- . =

CZICPL

- « ® e

s & w s

- e o

CZCON .

. e

~ CZCTC

PART I

ACCESS METHOD FOR BSAM, MSAM, TAM AND IOREQ

I'he data management access met:hods for
IBM Time Sharing Systew/360 (TSS./360)
inctiude the routines, control blocks, and
work areas that receive or transmit data
fron or to 1/0 devices. Part I describes
dati management access methods:

1. Basic Sequential Access Method (BSAM)

2. Multiple Sequential Access Method
{MSAM)

3. Resident Terminal Access Method (RTAM)
~ Overview only

4. Terminal Access Method (TAM)
5. I/0 Request (IOREQ)

The routines in eacn of the access
methods, although similar in operation,
differ in these ways:

e BSAM routines enable the user to access
data at the READ/WRITE macro instruc-
tion level. BSAM processes sequential
data sets that reside on magnetic-tape
or direct access devices. BSAM data
sets are compatible (except for the two
limitations indicated in the BSAM over-
view) whether created under IBM System/
360 Operating System, referred to as
Operating Systemvs/360 (0S/360), or under
TSS/360. Both data sets can be pro-
cessed by 05/360 BSAM and TSS5/360 BSAM.

» MSAM routines allow tne user to process
logical records at the GET/PUT macro
instruction level for the 2540 card
reader/punch and 1403 printer. MSAM
aiffers from BSAM in that the channei
command woras (CCWs) used to perform
the I/0 operations on the above men-
tioned devices are command chained,
significantly reducing the interruption
processing overhead. MSAM can be emp-
loyed by any user; however, device
management restricts the use of unit
record equipment to privileged users.

e RTAM routines, as the name suggests,
are located mainly in the resident
supervisor. For the logic flow and
detailed descriptions of the major por-
tion of RTAM, see the System Logic Sum-
mary PLM, GC28-2009 and the Resident
Supervisor PLM, GY28-2012. This publi-
cation describes Terminal Task Control,
the virtual storage routine, analogous
to other access methods routines, which
initiates multi-terminal tasks (MTT)
and sets up read, write, and polling

SECTION 1: INTRODUCTION

control blocks for READQ, WRITE,,
FINDQ, FREEQ, and CLEARQ macros issued
by the MTT user.

* TAM routines restrict nonprivileged
user programs to accessing data using
the GATE macro instructions, and allow
privileged programs to access data at
the READ/WRITE macro instruction level.
TAM processes sequential data sets that
reside on specified communication
terminals.

e JOREQ routines permit the user to
access data, from any device, at the
channel command word (CCW) level. The
user must, however, be privileged to
have access to these IOREQ routines for
unit record equipment.

This section provides an introduction to
the access methods, the user's 1I/0 macro
instructions, the common control blocks,
and contains an overview of BSAM, MSAM,
TAM, ana IOREQ. Sections 2, 3, 4, and 5
discuss details of the access methcu rou-
tines® Open, Read/Write, Posting and Close
phases. Section 6 discusses routines pri-
marily designed for use with BSAM.

Linkxage to the Access Methods xoutines

Problem programs, as well as IBM-writtem
3ystem programs, may, directly or indirect-
ly, use the four access methods (BSAM,
MSAM, TAM, and IOREQ), therefore privileged
ana nonprivileged programs may link to
these access methods. The access routines
are called upon by I/0 macro instructions
that are in source programs. During lan-
guage processing, the I/0 macro instruc-
tions are expanded into code that links to
ana passes parameters to appropriate access
method routines. The DCB, DFTRMENT, and
OCBD macro instructions do not 1link to
access methods routines but complete their
function during assembly. Expansion of the
DCB ana DFTRMENT macro instructions only
build control block tables. The DCED macro
instruction inserts a dummy control section
at the place the macro instruction is
encountered.

Privileged programs use Type-1 linkages
to the privileged access method routines;
nonprivileged programs use the ENTER
mechanism. See IBM System/360 Time Sharing
System: Task Monitor Program Logic Manuail,
GY-28-2041, for an explanation of ENTER.

Section 1: Introduction 3

User's 170
Macro Instructions
Reod/Write Clos
O [
pen and/or Get/Put
Dota
Monagement L L @ @ @
' Open Read ‘Write Close
Routines Routines Routines
& i §
Tosk Tosk . Su H
Monagement @ osk Monitar and Supervisor
Data Posting
Manogement L. . Routines
8 i Interrupt
Signal
1/0 Status IORCE
: Doto Event
Control Block
Channel

Note: MNumbered boxes refer to the accompanying description under Access Method Phases

rigure 1.

Access Method Phases

Lach of the BSAM, MSAln, TaM or IOREQ
access methods may be presented in four
phases, illustrated in Figure 1.

Here are some preliminary notes on each
of the four phases. The numpers in paren-
theses correspond to those circled in
Figure 1.

Cpen Phase: Details are presented in Sec-
tion 2 of this vart.

(1) iIf a user desires transmission of
data to or from an I1/0 device, he must ini-
tially use the OPEN macro instruction in
ris program.

{2) The OP:N macro instruction calls the
open routines that prepare the I/0 devices,
control blocks, and the data set for furth-
€I processing.
nead/Write Phase: Details are presented in
Section 3.

(3) after completion cf the OPEN rou-
tines, data may be transmitted by using the
READ/WRITc macro instructions.

4 Part 1I: Access Method for BSAMN,

hccess Method Phases for BSAM, MSAM, TAM, and IOREQ

(4) These call the READ/WRITE routines
that build CCWs in the IORCB.

(5} Tne resident supervisor is requested
to execute the channel commands via an 10C-
AL SVC.

Note: The reaaswrite phase is initiated by
READ/WRITE or GET/PUT level macro instruc-
tions where the specific access method
READ/WRITE or GET/PUT ievel macro instruc-
tions are listed in Table 1. READ or GET
macro instructions read data from an I/C
device. WRITE or PUT macro instructions
either write data to an I/0 device or send
control information to the control unit.

Posting Phase:
Section 4.

Details are presented in

(6) After an I/0 operation has been com-
pleted, an I/0 interruption occurs which
results in the storage of K I/0 status infor-
mation and the IORCB at fixed locations in
the interruption storage area (ISA).

(7) The posting routines obtain control,
via the task monitor, after the resident
supervisor receives the interruption, with
all other task interruptions masked off.

MSANM, TAM and IOREQ

Table 1. BSAM, MSAM, TAM and IOREQ
READ/WRITE and GET/PUT Level

Macro Instructions

T T T]
| | READ Macxro |[WRITE Macroj
| Access Method |[Instruction |Instruction|
b 4= + 1
| BSAM | READ | WRITE |
| | | |
| MSAM | GET |pUT i
I |] i
| TAM {READ |WRITE |
| (privileged) | | |
] | |]
| TAM | GATRD] GATWR {
i (nomprivileged)|] | |
{ | |
| IOREQ | VCCW, IOREQ |VCCW, IOREQ]
b) S, R, 3

(8) These posting routines record whetn-
er the I/0 operation had a normal or
abnormal completion.

{9) The posting routines post the
results in a DEB and a DECB.

Note: Error retry and recovery is
attempted by the system, if the I/0 comple-
tion was abnormal. (IOREQ POSTING does not
have error retry or recovery routines.)

The posting routines return control to the
task monitor which returns control to the
interrupted program by loading the old 1/0
VPSH. Consequently, the posting processing
is transparent to data management routines
except for the altered DEB and DECB. The
CHECK macro instruction in the user's pro-
gram waits for and checks completion of the
I/0 operation that is posted in the DECB.
(MSAM does not have a CHECK macro instruc-
tion. DOMSAM performs the functions of the
CHECK macro for MSAM. GET/PUT provides
return codes which indicate the completion
status of the requested operation.)

Close Phase:
tion 5.

Details are presented in Sec~

(10) When the user has completed proces-
sing his data set he issues a CLOSE macro
instruction.

Note: When the MSAM user has completed
processing his data group he may issue a
FINISH macro instruction prior to the CLOSE
macro instruction to empty or truncate the
last buffer and test the result of all out-
standing I/0. This is preferable to simply
issuing CLOSE since the task is permitted
to continue as the I/0 operation gueue.

{11) CLOSE calls the close routines
which will reset/release control blocks and
complete data set processing.

Macro Instructions

To communicate with the access methods,
specific I/0 macro instructions in the
user's program are regquired for BSAM, MSAM,
TAM and IOREQ (see Table 2).

All I/0 macro instructions available for
each of the access methods are in Table 3.
For more details, see Assembler User Macro
Instructions.

Control Blocks

The list below indicates the control
blocks that are within the user's program
and access method storage; BSAM, MSAM, TAM,
and ICREQ require that all these control
blocks be generated if the access methods
are to function. Additional control blocks
are described later, under the access
methods to which they are related.

Dynamically Built or
Assembly Generated SYSGEN Generated System
Control Blocks Contxol Blocks

SDAT

sSDT
DCB JFCB
*DECB DEB

IORCEB

*In MSAM the DECB is generated at open
time.

Control blocks are generated either in
the user's program area or in the access
method area.

USER'S PROGRAM AREA: The following control
blocks are generated in the user's program
area.

Data Control Block (DCB): The DCB is
generated during assembly by a DCB macro
instruction and serves as a basic communi-
cations area for 170 coperations. 1t is
used to maintain information such as data
set organization, attributes of data set
buffering information (used in data set
processing), and addresses of special exit
routines.

Data Event Control Block (DECB}): The DECB
is generated during assembly by a READ/
WRITE macro instruction (except for MSAM)
and serves as an I/0 status-reference block
for I/0 operations. It is used to store
information such as: state of completion
of an 1/0 operation, type of operation pre-
viously issued, CSW information, and codes
that indicate, to the user program, condi-
tions on ending the I-0 operation.

ACCESS METHOD AREA: The following tables
and control blocks are generated in the
access methods area.

Section 1: Introduction 5

Table 2. BSAM, MSAN, TAM, and IOREQ 1/0
Macrc Instructions Regquired for

1/0 Operations

§ T -
j I/70 Macro | i
{Instruction] Explanation |
<4

R

|Required prior to open phase;|
|reserves space in user's
{program for the data control
{block (DCB), which is basic
jcompunication area for 1I/0C
joperations.

i
|Required to start open phase,
}1links to open routines to
{open the DCB.

&
w

uwgﬂan_,.m*”ommm_ﬂ__.wqu
o]
]
o

5

q

T/PUT

&

Required tc initiate
transmission of data.
Applicable only to MSAM.

i
i
|
i
i
{READ/WRITE®* |Required to initiate
ltransmission of data;
jreserves space for the data
jevent control block (DECB),
{which contains status of 1I/0
jopexrations; links to
jread/write routines that
jbuild CCWs in the IORCB, and
jrcauses the commands to be
jexecuted by issuing the IO0CAL
jsve.

i

{Required under BSAM, TAM, and
{IOREQ to test I/0 operation
jassociated with the DECB;

CHECK

jcompletion of XI/0 operations
jthat are posted in the DECB;
ifor I/0 normal completion
jreturns to proklem program;
{for exception I/0 completion
jexits to the routines
jspecified in the DCB.

!
|Required
iset from
jlinks to
jcomplete

CLOSE

to disconnect data
user®s program;
close routines that
control blocks.

jRequired if user accesses the
jDCB fields; it provides the
{dummy control section (DSECT)
|which contains alil symbolic
names used to reference
{information in a DCB.

A

i s B e s SIS s 32X ik A . AN i 3 s b b el S ST e Y i KA VALY B A VA, G SIS byrhun e e

*iefer to Table 1 for listing of specific
READ/WRITE macro instructions.
READ/WRITE macyo instructions at
assembly time either generate space for
a DECB (5 and L form) or refer to an
existing DECB (E form); MSAM has no

|
!
|
|
|
]
{
|
i
!
!
i
|
]
]
i
!
|
i
i
i
i
|
!
!
!
|
jwaits for and checks |
]
|
]
!
!
|
|
|
!
|
{
]
|
|
|
!
]
|
|
i
1
]
|
!
|
READ/WRITE macro. {

o e S g, s ot o s B i

6 Part I:

Table 3. BSAM, MSAM, TAM, and IOREQ Macro

Instructions

L S Ty

~ T -3
| Used in | |
| Common |

- 3
| DCB

BSAM | IOREQ |

4 I
+ -

| IOREQ|

|

MSAM | TAM
———i
4

ET |READS

i !
jveew |
| CHECK |

G
PUT |WRITE*
SETUR |CHECK

|
FINISH|DFTRMENT

e S P e A b SR s B S oS st RS

- i [N SUUONS U O
*In TAM, only privileged programs may
issue the READ/WRITE macro instructions
Nonprivileged programs issue GATRD/GATW

| macro instructions.
i

]
|
|
|
|
|
|
|
|
|
| | BSP
|
|
|
!
|
b
i
|
|

e

Symbolic Device Allocation Table {(SDAT):
The SDAT which is initialized by device
management resides in public virtual
storage and provides information on the
status and characteristics of each allocat-
able I/0 device in the system. The SDAT
contains information on the symbolic device
address, model code, device code, device
class and unit type.

Job File Contrxol Block (JFCB): The JFCB is
constructed for a data set by the DDEF rou-
tine from information in a DDEF command or
macro instruction. The information in the
JFCB is used to complete the DCB during
execution of the OPEN macro instruction.
The JFCB contains information defining the
data set attributes, informaticn on where
the data set is located, and pointers to
other JFCBs in the task.

Note: The data set organization must be
specified in the DDEF command for IOREQ.

Data Extent Block (DEB)}: The DEB 1is con-
structed at OPEN time for a given data set
and serves as a data set reference block
for 1/0 operations. The DEB is used to
store information such as volume locations,
device and data set attributes, pointers to
other control blocks associated with the
data set, and pointers to DECBs that have
not been checked.

Access Method for BSAM MSAM, TAM and IORE(C

1/0 Request Control Block (IORCB): The
IORCB 1is constructed at READ/WRITE time and
serves as a control reference block for 1/0
operations. It contains the CCWs that con-
trol the 1/0 operation and may contain
either the 170 data buffer, or a pointer to
the 1I/0G data buffer.

1/0 statistical bata Table (SDT): For each
device the SDT contains maximum retry thre-
sholds which are used in certain error
processing.

BSAM OVERVIEW

BSAM comprises those instructions, con-
trol blocks and data areas which allow for
limited data set interchange between TSS/
360 and 0S/360. (TSS/360 BSAM will not
support the 0S/360 direct access split
cylinder format and will not deblock reco-
rds provided by 0S/360 QSAM.)

With tape input and output, BSAM sup-
ports either EBCDIC symbols and the stan-
dard IBM label and record formats or the
print symbols and label and record formats
of the American National Standard Insti-
tute. The latter print symbols standard is
officially the American National Standard
Code for Information Interchange X3.4-1968,
and 1is referred to herein as ASCII. The
latter label and record formats standard is
officially the American National Standard
magnetic Tape Labels for Information Inter-
change, X3.27-1969, and the format is
referred to herein as American National
Standard. TSS/360 processing is in EBCDIC
and standard IBM format; when the user spe-
cifies the ASCII option as a parameter of
the DDEF command, BSAM provides a conver-
sion interface between ASCII and EBCDIC
symbols and American National Standard and
standard IBM formats.

The access methods descriptions pre-
sented in this manual do not include the
DDEF command, which performs some preli-
minary open functions for BSAM. The Open
Common and Open BSAM routines oversee the
completion of the necessary open functions.

The DDEF command contains such informa-
tion about the data set as its name, volume
residence, organization, and type of device
used. The DDEF command causes the building
of the job file control block (JFCB), over-
sees initial device allocation and mounting
and allocates space for data sets on direct
access storage devices.

By macro instruction, the user will be
linked to the Open Common routine. This
routine performs those open functions which
are common to all the TSS/360 access
methods. These functions basically are:

* Finding the JFCB in the system.

e Filling in the data control blcok (UCE,

with information from the JFCE. The
user i¢ thus able to specity, ior a
particular run, many data organization

and herdling options which may not be
known at assembly time.

¢ Ensuring that only privileged programs
use privileged data sets.

e Checking for conflicts between user
indicated options and control block
data.

® Getting a page of storage to be used
later for input/output request control
blocks (IORCBs).

For BSAM, Open Common links to BSAM
Open. At this point, the JFCB and DCB have
been constructed, a data extent block
{DEB), the primary control block used by
the Read/Write routines for such informa-
tion as the device type, error statistics,
ocutstanding IORCBs, and the queue of
unchecked 1/0 requests, is still required.
ESAM Open’s main function is the building
of this DEB in protected storage so that it
cannot be destroyed or changed by the user
program. To build the DEB, linkage is made
tc the Build Common DEB routine or to the
Build DA DEB routine; the choice depends on
device type.

DA Open is used to complete open proces-
sing for direct access devices while Tape
Open is used to complete the open process
for tape. Both DA Open and Tape Open call
the appropriate label processing routines
to process user and data set labels. Label
information such as reccord length can be
used to modify the DCB.

The labeling routines available in BSAM
are Tape Label Processor, which has separ-
ate entry points for input header, ocutput
header, input trailer, and output trailer
labels, DA Input User Label Processor, and
DA Cutput User Label Processor.

Where ASCII-encoded tapes have heen spe-
cified, the ASCII Translation and Conver-
sion routine provides ASCII-to-EBCDIC tran-
slation on tape input and EBCDIC-to-ASCII
translation on tape output.

Four macro instructions are provided to
obtain buffer space: GETPOOL, GETBUFF,
FREEPOOL, and FREEBUFF.

After his data sets have been opened,
the user will normally access data by means
of a READ or WRITE macro instruction, foi-
lowed (not necessarily immediately) by a
CHECK instruction to ensure complete and
correct I/0 termination. The actual ter-

Section 1: Introduction 7

mination of the I/0 operation will cause an
interruption, at which point the Supervisor
will link to the SAM Posting and Error
Ketry (SPER) routine whicn runs with all
interruptions disabled. Here the [/0 com-
pletion code is posted into the DECB. This
routine aiso performs variocus post-1/0
functions, such as adjusting magnetic tape
block counts. 1In addition, the error retry
routines are incorporated into the SPER
routine. The CHECK macro instruction,
issued by the user at some point after his
READ or WRITE, will test the indicators set
by SPER.

If the DECB indicated unit exception,
the Check routine invokes Mainline EQOV,
which in turn uses Tape Input EOV, Tape
Output EOV, DA Input EOV, oxr DA Output ECV
to complete EOQV processing for tape or DA
devices. When end of volume is in fact an
end of data set condition, processing will
involve setting an end of data set indica-
tion in the DCB. At this point Check is
:sed to set up linkage to the user's end of
data set routines if specified.

For DA output devices at EOV but not end
of data set, the Extend routine 1s called
to try to get more space ¢on the current
volume. If and when another DA output
volume is necessary, Bump is called to
mount/dismount the next volume and, in
turn, Extend is used again to obtain space
on that volume.

The Concatenation routine is used to
iink concatenated data sets.

EOV processing 1s transparent to the
user; when end of volume but not end of
data set ocgurs on input, cutstanding reads
will be automatically yeissued by the Check
routine upon return from EOV.

The end of data set indicator is reco-
gnized in the Check routine, and linkage is
made to the user’s end of data set routine,
if specified.

In addition to Check, several other con-
trol routines are available and used in
BSAM: Note, Point, Backspace, Control, and
Force End of Volume.

To close his files, the user employs the
CLOSE macro instruction which will link to
Ciose Common. This routine resets fields
in the DCB filled in by the access methods.
For nonshared data sets, it does the neces-
sary recataloging for volume extents.

Close Common will link to SAM Close.
EOV is called to compliete closing output
tape or DA data sets. The Tape Output EOV
routine will in turn utilize the label
nandling routines after it waits for out-
standing 1/0 to quiesce. The SAM Close

8 Part I:

routine will release unused storage unless
the user directs otherwise.

Another basic BSAM module 1is the Message
Writer, which is called by the Open, Close
and EOV routines to handle most messages
and console communication, and do most
ABEND processing.

See Section 6 of this PLM for routines
specifically designed for BSAM.

SAM Communication Block: The SAM communi-
cation block 15 a table area used heavily
5AM Open, Close and EOV routines for

ng pardmétorq. See System Control
dlockQ _PLM tor a detailed description of
this table.

I };

MSAM OVERVIEW

Data Sets, Buffers, and Blocking Factors

The Multiple Sequential Access Method
{M5AaM) provides a fast and efficient
mechanism for simultaneously driving ssever-
al card readers, card punches, and printers
under the control of a single user's task.
Several data sets may be grouped together
on any one device, allowing the user to
process all of them under the same Data
Control Block without opening and closing
the DCB each time a data set with different
characteristics 15 to be processed. Each
of the separate data sets is referred to as
a data group. Input data groups may be
separated by control cards which consist of
invalid EBCDIC characters in the first four
columns and as many valid EBCDIC characters
as required for control purposes. MSAM
will recognize these control cards and
notify the user that a control card hacs
been read, allowing him to take whatever
uﬁfznb 1$ necessary. Output data groups on
T card punch may be separxsted with spe-
cial cards from the reader by specifying
the COMBIN option in the DCB macro instruao-
ticn, or they may be removed from the reoad-
er by the operator, who may be instructed
to do so when a FINISH macro instruction is
issued.

M5AM differs from other sequential
access methods in that each MS5AM 1/0 requ-
est of the system processes a buffer group
of logical records, while each request
issued by the cther sequential access
methods processes only a single physical
record. Physical records are buffered by
pages of virtual storage. MSAM processes a
number of buffer pages based on an
installation-provided parameter which ic
set in the symbolic device allocation table
(SDAT), and which may vary for each device.
Its value may be adjusted to provide opti-
mum device utilization when the number of
records which can be contained on N pages

Access Method for BSaM, MSAM, TAM and IOREQ

will drive the device full speed for the
maximum length of time between the two con-
secutive time slices.

The first 32 bytes of each buffer page
are reserved for control information used
by MSAM. The remaining portion of the page
is packed with format-F or format-V logical
recorxds. Format-F logical records are
packed in the buffer starting with the 353rd
byte in the bufter. Format-V logical reco-
rds are packed in the buffer starting with
the 37th byte in the buffer, since four
bytes must be reserved as control bytes
(LLBB), as 1is the case with blocked,
variable-length records.

The number of recoras per buffer page 1is
restricted to a maximum of 100 on input and
200 on output. Depending on the size of
the records, there may be fewer.

The size of an input buffer will be com~
puted by adding to the 32 control bytes the
smaller product ¢t {(a) 100 times the logic-
al record length, or (b) multiplying by the
logical record length the integral part of
the result of dividing 4064 by the logical
record length.

The size of an output buffer will be
regulated by the following rules.

1. For fixed-length records, the number
of bytes used for data will be the
lower of (a) 200 times the logical
record length, or (b) the product of
multiplying by the logical record
length the integral part of the result
of dividing 4064 by the logical recora
length.

2. For variable-length records, the last
record will have been placed in the
buffer when (a) the record count
reaches 200, or (b} the sum of the
user—-provided control bytes (LL) of
each record in the buffer plus the
next expected logical record length
plus four is greater than 4064.

3. The buffer will be ended when form
type-F is mounted on a printer, and a
FORTRAN* control character is found
indicating a skip to channel 1.

Schematic Description

The user's problem program initializes
for an MSAM I/0 operation by defining a
data control block with the DCB macro

itControl characters defined by Rmerican

- National Standard FORTRAN, ANSI X3.9 -
1966, hereinafter referred to as FORTRAN
control characters (previously known as
ASA or USASI control characters).

instruction, which generates a common po«-
tion and an MSAM portion of the DCB. The

user then issues an OPEN macro instraction
which lirks to the Open Common routine.

Open Common completes the common portion
of the DCB from the TDT JFCB, and then
invokes MSAM Open to build a DEB and pro-
vide N buffer pages (where N is a constant
in the SDAT set at system generation time).
MSAM Open also provides N half-pages for
IORCBs and a DBP page, which is used as a
work area by MSAM Read/Write and DOMSAM. A
DEB work page is also obtained to use as a
save area for DOMSAM and to hold the N+1
DECBs. MSAM Open formats N IORCBs and N
DECBs, and it checks the SDAT and tne DCB
for agreement and for valid options.

To set up online output devices, the
user may issue a SETUR macro instruction.
In the case of a print file, the SETUR rou-
tine may read the two system VIP data sets,
SYSURS and SYSUCS, to obtain the parameters
necessary for setting up the printer.

SETUR will issue WTO macro instructions and
possibly IOCAL SVCs to the 1/0 supervisor
to achieve the desired setup of the device.

The user 1issues a GET macro instruction
to obtain each card read from the card
reader. Each GET macro instruction invokes
the DOMSAM routine via type-1 linkage. If
there are any records already in the buff-
er, DOMSAM passes the next sequential reco-
rd to the user. 1If the buffer is empty, or
if all the records in the buffer have
already been processed, DOMSAM invokes MSAM
Read/Write.

The user issues a PUT macro instruction
to print each line on the on-line printer
or punch each card on the on-line punch.
Each PUT will cause a record to be piaced
in a succeeding location of a buffer page.
DOMSAM keeps account of these records to
determine when the last record has been
placed in the buffer. At that time, 1t
invokes MSAM Read/Write.

The MSAM Read/Write routine builds an
IORCB and invokes the I/0 supervisor (I08?
via an IOCAL SVC. Each IORCB contains a
list of CCWs for each record to be read or
written. Each record read has a read CCW
and a distinct feed, stacker select CCW
associated with it. Each record written
has essentially one CCW associated with 1it,
for example, a punch, feed, select stacker
CCW, or a print and space CCW. Additional
control CCWs may be generated by MSAM at
the beginning of the CCW list, such as skip
to channel 1 on the printer. The 10ORCBs
specify command and IORCB chaining and pro-
vide the address of the MSAM Posting
routine.

Section 1: Introduction &

When the CCWs in an IORCB complete their
execution, the currently running task pro-
gram is interrupted, and MSAM Posting is
given control from task monitor so that the
necessary information may be stored in the
DEE and in the DECB to inform DOMSAM of the
170 progress. If an I/0 error has
occurred, Posting will attempt the error
retry procedures.

If intervention 1is required by the
operator, Posting will record, in the DEB
page, information about the IORCB returned
by IOS in the ISA, and specify to the task
monitor an asynchronous interruption rou-
tine to be given control when the device is
transferred from the not-ready state to the
ready state. A WTO macro instruction is
issued indicating the regquired action, and
control 1s returned to the task monitor,
which returns control to the routine which
was interrupted for the posting operation.
The asynchronous routine is part of the
MSAM Posting routine, but it has a separate
entry point. When given control, it will
reissue, from the point of failure, the
CCWs in the IORCB which was posted by MSAM
Posting.

By testing the return code from his GET
or PUT macro instruction, the user can
determine whether or not his operation has
neen completed. Before reissuing his
incomplete GET or PUT, he is free to de
other processing. Prior to reissuing a GET
which returned an incomplete, the user
should test the DECB pointed to by DCBCDE
for completion; prior to reissuing a PUT
which provides an incomplete return the
user should test the DECB pointed to by
DCBTDE for completion. If these DECBs are
not complete and no further processing can
be performed, the user may execute the
AWAIT SVC in the DECB pointed to by DCBCDE
or DCBTDE.

When the processing for the current data
group is completed, the user may issue the
FINISH macro instruction, which will invoke
the MSAM Finish routine. On output, this
routine will initiate type-1 linkage to
DOMSAM, which may in turn invoke MSAM Read/
Write for writing the last buffer on an
output data group, and it will test the
results of the write. It will wait for
completion of all outstanding I/0 requests
for an input data group. Then it will
notify the operator to remove the input or
wutput data group from the device by a WTO,
unless the user has indicated that such
messages are to be suppressed.

If the operator has been requested to
respond to the message by readying the
device, the Finish routine notifies the
task monitor to recognize an interruption
when the affected device is changed from
the not-ready to ready state. This inter-

10 Prart I1:

ruption will give control to the Finish
routine at its second entry point. The
next time the Finish macro instruction is
issued after this interruption is received,
a return code other than incomplete 1s
returned by the Finish routine to the user.

When no more data groups are to be pro-
cessed by the task on the device at the
present time, the CLOSE macro instruction
is issued. The Close Common routine 1is
invoked and clears all fields of the DCB
completed by Open Common . It then invokes
MSAM Close, which issues a FINISH macro
instruction, waits for completion, and
releases the storage areas obtained by MSaM
Open.

MSAM Glossary

Tables 4, 5, 6, and 7 contain fields
and/or flags used by MSAM which are fre-
quently mentioned in the sections of this
publication devoted to MSAM.

RTAM OVERVIEW

Activation of a terminal will cause an
asynchronous interruption tc be generated.
The interruption will be fielded by the I/0
Interruption Stacker routine in the resi-
dent supervisor and placed on the channel
interruption processor gueue. The Channel
Interruption Processor determines that this
is a terminal I/0 interrxruption and passes
it to the Terminal Communications Subpro-
cessor, which is also resident.

This terminal control is all taking
place in the resident supervisor, as the
RTAM abbreviation suggests. For details ox
an overview of the RTAM access method, see
the Resident Supervisor PLM, GY28-2012 or
the System Logic Summary PLM, GC28~-2009.

The Terminal Task Control routine, whioh
describes internals for some of the MIT
user commands and macros, is described in
this PLM.

TAM OVERVIEW

Privileged programs arxe the only ones
that may issue READ/WRITE macro instruc-
tions to directly call TAM Read/Write.
Nonprivileged programs may only use the
GATE 1/0 macro instructions that call an
intermediate system’s GATE routine that in
turn calls TAM routines. The command Sys-
tem also invokes those GATE routines that
link to TAM. All programs that use TAM
routines either by a direct call or by the
intermediate system's GATE routine are
restricted in that they may only be used
with specific communication terminals.

Access Method for BSAM, MSAM, TAM and IOREQ

Table 4. DCB Table Fields and Flags (MSAM

Section)

|DCRINHMS {DCBINH|Inhibit message to operator to remove
§ | | data qroup
{ i
SDCBCOMET | CBCMB|Combine a reader on same 25u0 as punch
i

|
| DCBICE

; {Address of ICB named in SIR (0 = none)
IDCBL&MAX% :Haximum allowable logical record length
lDCBLRC : :Address of current logical record in
| | {buffer for input records, or next
H | |available buffer lccation for output
| i | records
iDCBEAP % |Address of end of current bufier
tDCBPPT 1 !Address of current buffer page
:LCBRCX 1 jInternai return code
;DCBCNT % jLogical record count
:DCBCDE i }Address of current DECB
iDCBFDE 1 1Addxess of first DECB in list
DCBLDE ; {Address of last DECB in list
DCBTDE 2 {Address of DECB to be tested for

i jcompletion on a PUT
DCBUDE § j{Address of user's copy of erring DECB
DCBFRMTP: :SYSURS form type for printing
DCBSTRIK: :UCS strike ocut code

| |
DCBMSF1 | DCBEOP|End-of-buffer processing needed

i |
| DCBIOC|Read/Write already invoked
flags)y |

{ |
|DCBENT {Buffer priming to be performed
|
| DCBOVF |Format ¥ new print page
| |
|DCBELP}|Last PUT issued was in locate mode

| |
|DCBNLP|Previocus locate mode PUT being .
i { processed

| |

DCBMSF? | DCBPUR| Purge all I/0 at CLOSE
¢ | |
| (MSAM | DCBSUR | SETUR in process
| flags) |
| i |
| {DCBFIN|FINISH just issued
| ! |
1 {DCBFIP|{FINISH in progress
!
|

| |
| DCBFT {First GET or PUT on a data group
b Lo A e e

Table 5.

Some DBP Table Fields

Meaning

Printer retry counter

}__,ﬁ
DBPPRTRY

DBPPRDC Printer data check counter
DBPFRMTP SYSURS form type code
SYSURS UCS folding code

SYSURS UCS strike out code

Table 6. Some DECB Table Fields (CHADEC)
e S B e 1
| Field |} Flag | Meaning |
e P S :
| DECECB | DECECU|Rrad/Write request :
| (completion | jeode i
{ code)] | !
| | { |
] | BECEC1|Normal Completion H
! ! | i
| | DECEC2|{Complete with error |
l l]
i | DECEC3|Intercepted i
| | | |
i |DECECH |Wait |
|] | |
| DEC LEN | |Data area length 1
| I] |
| DECCSW | |Channel status word |
C e e e ¥ U 3
Table 7. Some DEB Table Fields

e T 2t]
1 Fielas |} Flag | Meaning i
T —— R e ..
{DEBIOC | {Number of outstanding|
| | { IORCBs i
DEBNF {DEBNF1	Unrecoverable I/O
	jerror
i	i
{ {DEBNF2	Permanent 1/0 error
i	!
DEBCLS	
	{class of DCB
S j S L _—

During execution the OPEN macroc instruc-
tion provides linkage to the Open Common
routine. Open Common locates the corres-
ponding JFCB for the data set. Open Common
links to TAM Open to continue special open
functions, and then TAM Open returns to
Open Common which sets bits in the DCB and
the JFCB to say that the DCB is open. A
counter in the JFCB is updated to indicate
the number of DCBs that are open.

During TAM Open, one page of storage 1is
allocated and pointers are set up between
this page and other control blocks. FPart
of this page is reserved for the DEB, which
is partially completed during TAM Open with
terminal information that was stored in the
the symbolic device allocation table
{SDAT). The remainder of this page is
reserved for the terminal operational sta-
tus table (T0S) which includes the IORCB.
The TOS is used as a work area during TAM
Read/Write in order to complete the I0RCE.
Since the SDAT contains current information
about the terminals, TAM Open increments
the SDAT DCB open count for this terminal
by one.

Section 1: Introduction 11

To accomplish a read/write function, the
corresponding TAM GATRD/GATWR macro
instruction is required in the nonprivi-
leged program while READ/WRITE macro
instructions may be used in a privileged
program. During assembly this generates a
DECB that will be used to store the 1/0
status of this operation. During execution
from the terminal information (terminal
type and model code stored in the DEB durx-
ing TAM Open), and from the type op:iion
{stored in the DECB), TAM Read/Write begins
a table search. This search is through
three internal tables (unit type, terminal
library, and terminal control program) to
locate a prestored channel program genera-
tor (CPG) for the terminail. This CPG is
made up of channel command woxd generxrators
{CCHGs) that use the work area in the TOS
to build channel command words (CCWs) and
then move them into the IORCB. The I/0
buffer area is also completed in the IORCB.
The CCW list is executed by issuing an
IOCAL SVC. This passes the IORCB to the
1/0 superxrvisor to execute the CCWs. AL the
completion of the I/0 coperation an inter-
ruption occurs. The IORCB and the complete
170 status information are stored in the
interruption storage area {(ISA located at a
fixed location of segment (¢, page 0).

TAM Posting processes this 1/0 interrup-
tion by decoding the interruption data.
The CCW list that was executed during TAM
kead /Write is traced through again to loc-
ate read CCWs. The Data In processor
assures that the user read area is avail-
able and transiates and moves the data to
this area. TAM Posting does not issue an
ABEND upon noting exception or error condi-
tions, but only posts this exception infor-
mation in the DECB. It is the user's
responsibility to verify correct operations
with a CHECK macro instruction so the
user’s program may continue. However, if
error conditions occux, the user's SYNAD
routine may be entered where the address of
this routine is pointed to by the DCB.

When the user®s 1/0 operations with the
terminal arxe completed and a close is
issued, the CLOSE macro instruction links
to the Close Common routine. Close Common
closes the DCB by restoring it to the ori-
ginal status. Close Common then links to
TAM Close to continue the special close
functions and then TAM Close returns to
Close Common to reset bits in the DCB and
the JFCB to indicate a closed DCB.

TAM Close frees the storage page allo-
cated during TAM Open and resets the
required pointers.

The SDAT DCB open count for this termin-
al is decremented by 1. For LOGOFF at all
terminals, the disables/enable logoff func-
tion imbedded in CLOSE is also required. A

12 Part I:

recursive call flag prevents a recursive
locp between TAM Close and ABEND.

IOREQ OVERVIEW

Privileged programs are the only ones
that may use the IOREQ routines for unit
record equipment or using SDAT. The IOREQ
programs access data from any private 1/0
device. The data is accessed at the chan-
nel command word level. A data set organi-
zation of RX (IOREQ facility being used)
must be specified in the DDEF command.

When OPEN 1is issued, the Open Common
routine opens the DCB and locates the
corresponding JFCB for the datas set. Open
Common links to IOR Open to continue spe-
cial open functions and then IOR Open
returns to Open Common which sets bits in
the DCB and the JFCB to indicate the DCB is
open.

During this IOR OPEN, tests are made to
verify that: (1) the user’s privilege
class 1s E for unit record equipment, (2}
IOREQ is specified in the DDEF command, {3}
IOREQ is allowed on the device, and (4}
this device 1is a private volume. Storage
is allocated for the DEB and the IORCB con-
trol blocks with data type code information
moved from the JFCB to the DEB. A final
check assures that the user is privileged,
if access to the volume is privileged.

To accomplish a read/write, the IOREQ
macro instruction is required in the user's
program. This generates, during assembly,
a DECBHB table that will be used to store the
I/0 status of this operation. The I/O
operation is specified by VCCW macro
instructions specified in the user*s pro-
gram. These VCCW macro instructions are
used by IOREQ to generate a list of CCWs to
control the I/0 activity. IOREQ places
this 1list of CCWs in the IORCB. If buffer-
ing is reguested by the user, space is
allocated in the IORCB for the buffer ar
If buffering is not requested by the use
space 15 allocated in the IORCE for pag
list entries to connect the CCWs to the ;
areas. The CCWs are executed by issuing a&n
IOCAL SVC. This passes the IORCE to the
I/0 supervisor (I0OS) to execute the CCWs.
At the completion of the IOREQ 1I/0 opera-
ticn an interruption occurs, and the IORCR
and the complete 1/0 status infoymation are
stored in the interruption storage area
(Isa, located at a fixed location of seg-
ment 0, page 0).

IOREQ Posting processes this 1/0 inter-
ruption by analyzing the interruption data
with all other task interruptions masked
off. It then posts the normal or abnormal
completion code in the DECB allowing the
Check routine to later take action based cn

Access Method for BSAM, MsaAM, TAM and IOREQ

these codes. IOREQ Posting does not con-
tain any error recovery routines. The
CHECK macro instruction must be used to
ensure the completion of the 1/0 operation
and to detect errors or exception condi-
tions. If the I1I/0 operation is successful,
the program resumes execution at the
instruction after the CHECK macro instruc-
tion. If the I/0 operation results in an
unusual conditicn, the check of the DECB
associated with this IOREQ causies contrcl
to be given to the user's SYNAD routine
specified in his DCB. If multiple IOREQs
are issued before a check of the first
IOREQ is made, and one of these 1OREQs
generates an error, the subsequent IOREQs
will be intercepted by IOS. It 1is the
user's responsibility to reissue any IOREQ
following the error-causing IOREQ.

The CHECK macro instructions must also
be issued in the same order in which the
associated IOREQ macro instructions were
issued.

When the user's I/0 operations with the
device are completed, the CLOSE macro
instruction links to the Close Common rou-
tine. Close Common then links to IOR Close
to continue the special close function, and
then IOR Close returns to Close Common to
reset bits in the DCB and the JFCB to ind-
icate a closed DCB.

This IOR Close waits until all outstand-
ing DECBs have been completed and then
frees the storage allocated during IOR
Open.

Section 1: Introduction 13

SECTION 2: OPEN PROCESSING

COMMON PROCESSING

The following routine is common to all
access methods OPEN processing.

Cren Common Routine (CZCLAY

The Open Common routine, called by the
OPEN macro instruction, performs those open
functions common to all access methods:

s I+ checks for DCB ervror conditions, and
ABENDs if any exist.

¢ It uses the GETMAIN macro instruction
to acquire a one-page work area, and
passes the address of the work area as
part of a parameter 1list when it 1links
to the access-dependent Open routines.

s It places the open options in the DCB
for reference by the access~dependent
ogpen routines.

s If necessary, it issues a call to
FINDJFCR to find the JFCB assoclated
with the data definition name {(ddnamel
0f the DCR.

in certain defauited DCRB
tields with information from the corre-
sponding fields in the JFCB. It keeps
track of the DCB fields so modified, so
that at CLOSE time the DXCR can be
restored to its pre-CPEN status.

e It fi1l

In addition to these operations common
o all access metheds, Open Common automat-
1cally catalogs all VAM data sets.

Open Common 1inks to the appropriate
routine for access-dependent open proces-
g {(Chart AAY.

cributes: Reentrant,
age, closed, read-only,
Line, public.

resident in virtual
privileged rou-

Entered by type-l

Irput: Register 1 contains the address of
the CHAGSM table. CHAGSM (the general ser-
vices macro table), built by the expansion
Gf the OPEN macro instruction, consists of
one doubleword entry for each DCB to be
opened.

Data References:
CHAISA.

CHADCB, CHATDT, CHAGSH,

mModules Called:
FINDJFCB (CZAEB) -- Find JFCB.

14 Part I:

SAM Open (CZCWO) -- SAM Open.
TAM Open (CZCYA! ~-- TAM Open.
MSAM Open (CZCMC) -~ MSAM Open.
Open VAM (CZCOA) -~- VAM Open.
IOR Open (CZCSC) -- IOR Open.

VMA (CZCGA) -- Get virtual storage.

Addcat {(CICFA) -- Catalogs all VAM data
sets. ’

Search SDST (CZCQE) -- Search shared data
set table.

Read/Write (CZICPE) -- Index sequential
readswrite.

Exits:

Normal -- Return to calling program.

Error -- ABEND macro instruction.

Operation: Open Common provides DCB

addressability and checks for valid DCB
identifier and nonzero ddname. If an error
condition exists, the task will ABEHND.

one of the primary functions of Open 1is
to find the JFCB for the data set being
opened. If the data set is concatenated,
the address of the JFCB is picked up from
DCBCON: otherwise, the routine examines the
TDT for the JFCB address. 1f still not
found, the address «f the JFCB is obtained
through @ call to the FINDJFCB routine.

Following the call to FINDJFCB, VAM data
sets are automatically cataloged by calling
Addcat .

A user with read-only access is allcwed
to open a VAM data set even though ne has
specified it as modifiable for nis purposes
(OUTPUT, EDIT, or other options). This
allows him to use the data set locking fea-
ture; he will be prevented from modifying
the data set by the VAM output routines.

An existing read~only data set not of VAM
organization and specified by the user with
other than the INPUT option will result in
an ABEND.

Open Common will turn on the conca-
tenated system flag in the DCB if the JIFCB
describes a concatenated data set.

The zero DCB fields are filled in with
corresponding entries from the JFCB, enabl-
ing the user to specify many data set
characteristics and handling options for

Access Method for BSAM, MSAM, TAM and IOREQ

this run that were not specified during
assembly.

Open Common gets a page of storage which
is used by the BSAM for IORCBs, and by
fence straddlers and VAM for save areas,
tnen links to the appropriate access-
dependent open routines.

Upon return from the access dependent
routine, Open Common tests for other DCBs
to be cpened. The entire procedure is
repeated for each DCB and when all DCBs
have been opened, control is returned to
the calling routine.

SAM OPEN PROCESSING

The following routines are common to SAM
processing.

SAM Open Mainline Routine (CZCWO)

This routine performs opening functions
common to sequential access methods. It
branches to the Open Tape or Open DA rou-
tines to have the open processing completed
for magnetic tape or direct access devices
respectively (Chart AB).

Attributes: Reentrant, resident in virtual
storage, closed, privileged.

Entry Point: CZCWO1l -- Entered only by
type-1 linkage.

Input: When this routine is entered,
register 1 contains the address of the fol-
lowing three word parameter 1list:

Word 1 -- Address of DCB being opened.

Word 2 -- Address of associated JFCB.

Wword 3 -- Address of work area for building
IORCBs.

The PSECT of CZCWO contains the SAM com-
munication block (CHASCB), three temporary
control blocks - a DCB, a DEB and a DECB
which are used by the label processors for
reading or writing tape labels, and a para-
meter area for reading and writing format-1
DSCBs.

Data References:
CHATDT, CHADEC.

CHADCB, CHADEB, CHASCB,

Modules Called:
DA Open (CZCWD1l) -- Open direct access.

Tape Open (CZCWT1l) -- Open tape.

Mainline EOV (CZCXEl) -- Write EOV trailer
and header labels when BOV encountered
during header label processing.

User Prompter (CZATJ1) -- Write a warning
message.

VMA (CZCGA2, CZCHA2) ~-- Get virtual
storage.

VMA (CZCHA3) -~ Free virtual storage.

Volume Sequaence Convert (CZCWV1) -- Volume

address conversion.

Exits:

Normal -- Return to calling program.
Error -- Issue ABEND.

Operation: The S5AM Open Mainline routine

initializes the SAM communication block
(CHASCB). If a DCB is currently opened on
the JFCB, the task is abnormally ter-
minated. Open options are checked against
the JFCB disposition parameter to see if a
data set with a disposition of NEW is
opened for input. If it is, and the task
is nonconversational, the task is abnormal-
ly terminated; for conversational mode
tasks, the routine gives the user a warning
and the option to continue.

SAM Open checks to make sure that the
data set has a mounted volume, and that the
proper volume is mounted. The routine also
checks to make sure no reading will be per-
formed on output data sets, or writing on
input data sets.

The main function performed by SAM Open
is the building of the data extent block in
privileged storage so that it cannot be
destroyed or changed by the user program.

If the device assigned to the data set
is a magnetic tape or direct access device,
control is given to Tape Open or DA Open
respectively. These routines, in turn,
call the proper DEB building routine.

If Tape Open or DA Open had been given
control, any storage dynamically obtained
by either routine is released by calling
FREEMAIN, and normal return is made to the
user.

Whenever Tape Open or DA Open encounters
errors, it posts an abnormal condition code
in the SCB and terminates via ABEND.

In case an end-of-volume condition
occurs while Tape Open is writing the head-
er, SAM Mainline will call Mainline EOV to
end the present tape with an EOV trailer
label and write the header on a new tape.

The block size of ASCII format tapes is
checked for minimum (18 bytes) and maximum
(2048 bytes) length.

Section 2: OPEN Processing 15

QOPEN 1s bypassed if neither GET nor PUT
is indicated in the macro field of the DCB.
It the data set being opened is a QSAM data
set, then QOPEN, a section of SAM Open
Mainline, is entered to perform those func-
tions unigue to a QSAM data set. If
blocked records were indicated in the DCB
and the blocksize is zero, an ABEND exit is
taken. Otherwise, the block size is set
equal to the maximum logical record length.
Then, the number of buffers to be obtained
for the data set must be determined. If
the data set is opened for UPDATE, and
CNTRL is specified in the DCB, only one
buffer is needed. If the data set is
opened for RDBACK, and if the record format
is variable, three buffers must be
obtained. Otherwise, two buffers must be
cbtained. The storage for buffers is
obtained by issuing a GETMAIN macro
instruction which returns the address of
the area obtained in register 1. This
address 1s saved in the DCB. If twe or
three buffers are needed, their addresses
are calculated and stored in the DCB. The
protection class of the area will be the
same as that of the DCB. For data sets
using only one buffer, the DCB field indi-
cating the maximum number of reads or
writes which may be done before a check is
set to one, and for all others it is set to
two. Then the same procedure described
above is followed to cbtain storage for
CSAM'S QWK wOrk area. {See the {SAM sec-
tion of this publication for a description
of the QWK work area.}

The V-~cons for the entry points CICSAA,
CZCSAB, C2CSAX, and CZCSAS are set into the
pCB. 1If the data set is opened for output,
the GET V-con field in the DCB (DCBGTV) is
set to one. Otherwise, the PUT V-con field
{DCBPTV) is set to one. This is to insure
that no GETs are issued on an output data
set, and no PUTs issued on an input data
set.

Tape Open Routine (CICWT)

The Tape Open routine completes the open
processing for a sequentially organized
data set on magnetic tape. It builds a
data extent block (DEB), uses the appropri-
ate label processor to process tape labels,
and completes the tape recording informa-
tion fields in the DCB. (See Chart AC.)
resident in virtual

Attributes: Reentrant,

storage, closed, read-only, privileged.
Entry Points: CZCWT1 -- Entered with type-

1 linkage.

Input: Register 1 contains the address of
the SAM communication block (CHASCB). Note
that the SCB contains pointers to a DCB,
DEB, and a DECB in the SAM Open PSECT which
are used for reading or writing tape

i6 Part 1:

labels, as well as pointers to the actual
DCB being opened and its associated JFCB.
Pata Referencer: CHADCB, CHATDT, CHASCH,
CHADER, CHAIGA.

Modules Called:
Control (CZCRB)
positioning.

-~ Magnetic tape

Bump {CICAB) -- Request and verify mount of
new volume.

VMA (CZCGAR) -- Get virtual storage.

LVPRV (CZICJL) -~ Leave privileged state.

Build Common DEB (CZCWB)} -~ Build the com-
mon portion of a DEB.

Tape Data Set Label
processor.

(CZCWY)} ~- Tape label

Tape Positioning {(CZCWP) -- Position tape.
User Prompter (CZCTJ) -- Inform user of
error.

Exits:
Normal -- Return to calling program.

Error -- Via ABEND macro instruction.

Opexation: If the tape is labeled, GETMAIR
13 called to get an area of virtual storage
for label buffers. If the routine deter-
mines from the SCB that the correct volume
for the data set is not mounted, the Bump
routine is called to mount the proper
volume.

The Build Common DEB routine is called
to build the common portion of the DEB for
the data set being opened. This portion of
the DEB is copied into the "temporary® DEB
pointed to by the SAM communication block
for use in processing labels.

The tape volume 1is positioned by calliing
the Tape Positioning routine; the volume
labels are then written or read via Tape
Data Set Label. If the OPEN option is
INPUT, INOUT, or RDBACK, orxr if the JFCB
indicates MOD, the data set labels are pro-
cessed as input; otherwise the label is
processed as ocutput.

The labels are processed unless the JFCB
indicates no labels. If the user requests
it, he is given control at this time,
through the DCB exit, to mcdify the DCB.

The tape recording fields in the user's
DCB are completed. The User Prompter rou-
tine is called to request directions from
the user if there are incompatibilities in
the user's specifications for tare record-
ing in his DCB; for example, recording

Access Method for BSAM, MSAM, TAM and IOREQ

density of 200 bits per inch is incompat-
ible with 9-track magnetic tape. Should
the user not supply a satisfactory solution
to the problem, Tape Open will effect an
abnormal end with an ABEND.

DA Open Routine {CZCWD)

The DA Open {Direct Access Cpen) routine
completes the open processing for a SAM
data set on a direct access device. It
builds a data extent block {(DEB), process:.
DSCBs and user labels, sets necessary
fields in the DEB, and makes sure the prop-

er data set volume is mounted. (See Chart
AD.)

Attributes: Reentrant, resides in virtual
storage, closed, read-only, privileged.
Entry Point: CZCWD1 -- Entered by type-1
linkage.

Input: Register 1 contains the address of

the SAM communication block (CHASCB).

Data References: CHATDT, CHADSC, CHAIXBE,
CHADEB, CHASDA, CHASCB, CHAISA.

Modules Called:
Bump (CZCAB) -- Request and verify mounting
of new volume.

Obtain/retain {(CZCFO) ~-- Obtain DA user
label and retain DA user label.

VMA (CZCGA) - Get virtual storage.
LVPRV (C2CJL) -- Leave privileged state.

Build DA DEB (CICWL) ~-- Build direct access

DEB.

User Prompter {CZCTJ) -- Inform user of
error.

Read Format-3 DSCBs (CZCWR) -- Read and
chain format-3 DSCBs.

DA Input Label {CZCXN) -- Direct access
input label processor.

DA Output Label (CZ2CXU) -~ Direct access
output label processor.

Exits:

Normal -- Return to the calling routine.

Error -- Via ABEND.

Operation: If the volume to be processed

is not the one which is mounted, DA Open
calls the Bump routine to mount the proper
volume.

The Obtain routine is called to get the
format-1 DSCB for the data set. If the
integrity bit is on in the DSCB, a PRMPT

macro is issued to ask the user if he wants
to continue. The integrity bit is set on
when the data set is opened, and set off at
EOV or CLOSE by Set DSCB. Therefore, if
the integrity bit is already on during the
open process, the data set was previously
opened but never closed.

If the data is being opened for output
and has &a disposition of OLD, and the
expiraticn date in the DSCB has not been
reached, a PRMPT macro is issued to ask the
user if he wants to write on the unexpired
data set. The Retain routine is used to
write the format-1 DSCB on the volume. For
old data sets, zero DCB fields are com-
pleted with fields from the format-1 DSCB,
and the expiration date is stored in the
JFCB from the DSCB field.

Should the data set have format-3 DSCBs,
they are read by calling the Read Format-3
DSCB routine. Then since all extents are
known, the Build DA DEB routine is called
to buiid a direct access DEB.

If the user labels are specified, GET-
MAIN is used to get buffer space for label
processing.

DA Open sets on the integrity bit in the
format-1 DSCB when processing a volume with
a data set opened for OUTPUT, OUTIN, or
INOUT. As processing of each volume is
completed, the integrity bit is reset by
other BSAM routines.

The DEB is set to point to the first
data record except for a data set with dis-
position MOD. In the latter case, the DEB
is set to point to the end of the last data
record as indicated in the format-1 DSCB.

The user labels are then read or written
using either the DA Input User Label pro-
cessor or the DA Output User Label
Processor.

DEB PROCESSING

The following routines are used to build
or modify the data extent blocks.

Build Common DEB Routine {(CZCWB)

The Build Common DEB routine may be
entered to perform either of two functions.
It can obtain virtual storage to create a
DEB and initialize the DEB's common por-
tion. Alternatively, Build Cormon DEB may
be called to modify the common portion of
an existing DEB. (See Chart AE.)

Attributes: Reentrant, resident in virtual
storage, closed, privileged.
Section 2: OPEN Processing 17

Entry Point: CZCWB1 -- Entered by type-1
linkage.
Input: Register 1 contains the address of

the SAM communication block (CHASCB).

Data References:
CHATDT, CHASDA.

CHASCB, CHADCB, CHADEB,

Modules Called:

VMA (CZCGA) -~ Get virtual storage.

User Prompter (CZCTJ) -- Issue message to
user.

Exits:

Normal -- Return to calling routine.

Lrror -- Via ABEND.

Operation: When the routine is called to

build the common portions of the DEB,
storage is obtained via GETMAIN and all the
fields in the common portions of the CHADEB
which can be filled from the CHADCB, CHAS-
DR, and CHASCR are initialized. The
remaining fields of the CHADEB are zeros.

If the routine is called to reinitialize
fields for the appropriate CHASDA, Build
Common DEB reinitializes, in both the CHA-
DER and the temporary access method CHADEB,
those fields originally obtained from the
CHASDA ana DEVOL.

This routine abnormally terminates if
the size of the CHADEB equals zero.

suild DA DEB Routine (CZCWL)

The Build DA DEB routine creates a data
extent block (DEB) for the first volume of
a data set on a direct access device.
Additionally, it can add extents to an
existing DEB, or build a new DEB for a mul-
tivolume data set when the extents indi-
cated in the o©old DEB are obsolete. {See
Chart AF.)

Attributes: Reentrant, resident in virtual
storage, clo=ed, privileged.

Entry Point: CZCWL1 -- Entered by type-1
linkage.

input: Register 1 contains the address of
tne SAM communication block (CHASCB). The
CHASCB will contain a pointer to the cur-
rent DEB, a pointer to a chain or format-1
and/or format-3 DSCBs, and an indication of
whether the routine is toc construct or
extend a DA DEB. The routine assumes that
the chained DSCBs are in virtual storage.

Data References: CHASCB, CHADEB, CHADSC,
CHADCB, CHATDT, CHASDA.

18 Part I: Access Method for BSAM, MSAM,

Modules Called:
VMA (C2ZCGA) -- Get virtual storage, free
virtual storage.

Point (CZCRM) -- Logically reposition data
set.
Build Common DEB (CZCWR) -- BRuild and modi-

fy the comron portion of the DEB.

User Prompter (C2CTJ) -- Issue message to

user.

Exits:

Normal -- Return to caller.
Error =-- Via ABEND.

Operatiocn: This routine first calculates
the actual size (in bytes) of the DEB. The
size is the sum of: the number of bytes in
the common portion of the DER, four times
the number of channel programs (DCBNCP)
less one, the number of bytes in the fixed
length direct access portion of the DEB,
and sixteen times the number of extents to
be contained in the DEB. The number of
extents is determined by searching the
DSCBs until either a null extent type code
or a null CCHHR chain address is found.

If the data set has not been opened, the
Build Common DEB routine is called to con-
struct and initialize the common portion of
a DEB. The extents (addresses) are then
stored in the DEB from the indication of
extents in the DSCB chain. Control is then
returned to the calling routine.

If the data set is open, this routine
has been entered with a DEB already in
existence. Thexefore, a new DEB must be
generated and the present extents entered
in it.

GETMAIN is called to obtain wirtual
storage for the new DEB. If the next
extent to be processed is zero, the fixed
portion of the cld DEB is moved into the
new DEB, and the Build Common DEB routine
is called to modify the volume and device
fields in the DEB. Should the next extent
to be processed be non-zero, the common and
fixed direct access portions of the old DEB
are copied into the new DEB, and Build Com-
mon DEB is called for the volume and device
field modifications of the new DEB. The
DEB fields for next I/0, last 1I/0, and last
write addresses are initialized. 1If the
JFCB indicates DISP=MOD, Point is called to
position logically to the end of the data
set. In either case FREEMAIN is called tc
release the storage of the old DEB, and
extents are added to the new DEB on the
basis of those extents currently indicated
in the DSCB chain. Control is returned to
the calling routine.

TAM and IOREQ

This routine abnormally terminates if:

1. The DSCB extents are not equal to the
number of calculated extents.

2. The DSCB extents are not numbered in
consecutive order.

Di5CB_PROCESSING

The following routines concern SAM DSCB
processing.

Read Format-3 DSCBs Routine (CZCWR)

The Read Format-3 DSCBs routire causes
all format-3 DSCBs associated with one
volume of a data set to be read into virtu-
al storage and chained together. (See
Chart AG.)

Attributes: Reentrant, resident in virtual
storage, privileged.

Entry Point: CICWR1 -- Entered by type-1
linkage.
Input: Register 1 contains the address of

the SAM communication block (CHASCB).

Data References: CHASCB, CHADSC, CHADEB.

Modules Called:

Obtain/Retain (CZCFO) -- Obtain DA user
label.

VMA (CZCGA) -- Get virtual storage.

User Prompter (CZCTJ)} -- Issue message to
user.

Exits:

Normal -- Return tc the calling routine

Error -- Via ABEND.

Operation: It is necessary to compute the

amount of virtual storage needed for read-
ing the format-3 DSCBs. The correct number
of bytes is calculated and stored in
SCBF3Z. GETMAIN is called to get that cal-
culated number of bytes of virtual storage.

The DSCBs are then read into the storage
which GETMAIN supplied. The Obtain routine
is used to read each DSCB. The DSCBs are
chained together. Where there are no more
DSCBs to be read, control is returned to
the calling routine.

Set DSCB Routine (CZCXS)

The Set DSCB routine updates the infor-
mation in format-1 DSCBs, turns off the
integrity bit in the format-1 DSCB, and
writes a file mark on the DA output volume.
(See Chart AH.)

Attributes: Reentrant, resident in wvirtual
storage, closed, read-only, privileged.

Entry Point: CZCXS1 -- Entered by type-1
linkage.
Input: Register 1 contains the address of

the SAM conmunication block (CHASCB).

Data References: CHADEB, CHADCB, CHADSC,
CHASCB, CHASDA, CHATDT, CHADEKC.

Modules Called:
Reads/Write (CZCRA) -- BSAM reads/write.

Obtain/Retiin (CZCFO) -- Obtain DA user
label and retain DA user label.

FULREL {CZCRS} -- Convert full DA address
to relative address.

User Prompter (C2CTJ) -- Communicate with
user.

Exits:

Normal —-- Return to calling program.

Error -- Via ABEND.

Operation: If the SCBRF1 flag is on, the
format-1 DSCB is read, the integrity bit is
set off, and the DSCB is written.

Otherwise, the format-1 DSCB is read via
OBTAIN, and the DCB type fields in the
format-1 DSCB, volume sequence number, and
the last volume bit are written. The Last
Record pointer is set to point to the last
record written, the bytes left on the track
are stored in DSCLRD, the integrity bit is
set off, and the format-1 DSCB is rewritten
via RETAIN to reflect the above. A file
mark is placed following the last record
that was written on the volume and the
SCBFLG, which contains the SCBRF1 flag, is
set to zero.

MSAM PROCESSING

The following routines are used with
MSAM processing.

MSAM COpen Routine {(CZCM)

The MSAM Open routine edits the DCB and
SDAT for valid options and combinations of
options, and constructs control tables
(DEB, IORCBs, and DECBs) and work areas
(DEEB page and buffer pages) in virtual
storage for use by the multiple sequential
access method. (See Chart AI.)

Attributes: Reentrant, read-only, public,

privileged, system, nonrecursive.

Section 2: OPEN Processing 19

kntry Point: CZCMC1l -- Entered by type-1
iinkage from Open Common when the DSORG
field of the DCB specifies MS.

input: When this routine is entered,
register 1 contains the address of the fol-
lowing parameter list:

word 1 -- Address of the DCB.

wWord 2 -- Address of the TDT JFCB.

Data References: CHADCB, CHASDA, CHATDT,
CHADEB, CHADEC, CHAIOR, CHAICB, CHADBP.

Modules Called:

VMA (CZCGA) -~ Get virtual storage.

CKCLS (CEAQH4) -~ Check storage prctection
class.

Exits:

Normal -- Retwrn to Cpen Common.

Exrror -- Via ABEND.

Operation: When MSAM Open is entered,

register 1 contains the address of a para-
meter list which contains a full word
pointing to the DCB and a full word point-
ing to the TPT JFCB. MSAM Open accesses
these two addresses, and obtains the
address of the SDAT from the TDT. If a DCB
has peen opensd previously for this data
set, the task is abnormally terminated
unless it is a remote job entry (RJE} task.
If it is RJE, the task is abnormally ter-
minated if more than one previous DCB has
been opened. (The JFCB indicates a pre-
viously opened DCB.)

There are two tables (TBDD1B and TBDDZ2B)
in MSAM Open for each of the device depen-
dent parameter fields in the DCB. These
tables contain the allowable parameters and
the default parameters for the particular
device dependent fields. If the value of a
device dependent field does not match any
of the allowable parameters, the default
parameter is stored in the field. Checks
are made on fields of the DCB and SDAT for
valid options and combinations of options.
Any invalid condition causes abnormal ter-
mination of the task with the appropriate
message displayed on SYSOUT via the ABEND
macro instruction.

The value of N, the maximum number of
allowable IORCBs, 1S obtained from the SDAT
and a check is made to determine the
storage protection class of the DCB. If
the DCB is Class A (user read-write), a
GETMAIN macro instruction is issued to
obtain {(N+3)/2 contiquous pages of Class B
(user read-only) virtual storage. These
pages will be used for the DEB page and the
(N+1) /2 IORCB pages which cannot be of
Class A storage. (See Figure 2 and Figure
3.) A pointer to the first page obtained

20 Part I1:

O e e e e e e 1
} DEB !
B0 e e e e {
i 1ORCB |
2008 prm e e ——— 4
| Work area fields used by MSAM |
2392 pr e e e
] ICB]
2HUO0 e i
i Commmunications area + 4 bytes |
2456 p— - - .|
{ Fixed area of IORCB }
2536 p—— — — e
I SYSURS !
2808 ¢ ——— -1
! SYSUCS i
K s L Y

Figure 2. DEB Page Layout
0 e e e e -
| Save Area (19 words) |
76 b - - - !
] DOMSAM work area (5 words) i
G oo e e e e e e e ~4

i N+1 DECBs

i {48 bytes in length, each) |
L et s i i s . e e e o . e 0. e . . 2 o o st S -

Figure 3. DEB Work Page Layout

15 stored in the DCB. A second GETMAIN is
then issued to obtain N+1 contiguous pages
of Class A virtual storage for the DEB work
page and the N buffer pages which must be
of the same protection class as the DCBE.

If the DCB is Class B {(user read-only}
or Class C {(user inaccessible}, a single
GETMAIN is issued for (3N+5}/2 contiguous
pages of virtual storage of the same pro-
tection class as the DCB. In both cases the
same number of pages are obtained, although
in the first case the two groups of pages
will not necessarily be contiguous. Except
for the case where the DEB and IORCB pages
cannot be Class A, all pages obtained are
of the same class as the DCB.

Fields in the DEB may now be initia-
lized, and pointers set to the other con-
trol tables. For an RJE task, DEB pointexrs
in the TDT JFCB are enchained if a previocus
DEB has been created during the task. &
skeleton ICB is built to specify an
attention-type interruption, with pointers
to the DCB and associated communication
area. The fixed area of an IORCB 1is built,
and additional fields in the DEB page are
initialized for use by the other MSAM
modules. If RJE, flags are set in the
IORCB and the DEB.

Next, N skeleton DECBs are built in the
DEB work page following the 19 word save
area of DOMSAM, and a pointer to the first
DECB 1s set into the DCB. To initialize

Access Method for BSAM, MSAM, TAM and IOREQ

for looping, the DCB pointer to the current
DECB is initialized to the address of the
first DECB.

For fixed record format, the number of
logical records in the buffer is then com-
puted as the buffer size divided by the
logical record length, where the buffer
size is equal to 4096 minus the number of
control bytes (currently 32). If this
count of logical records is greater than
100 on input, it is set to 100, and if i
is greater than 200 on output, it is set *o
200. For variable record format, th-. nw i
er of logical records in the buffer is
initialized at zero. 1If RJE, logical reco-
rd size is stored in the DEB work page
area. The following fields are calculated
and saved: the maximum record count for
RJE PUT (40O48/(LRECL+2+15))/2#2; the maxi-
mum record count for the RJE first PUT of
the first IORCB with machine control chaza-
cters (4040/ (LRECL+2+15))/2#2; and the
maximum size of the PUT logical record
(LRECL+1+15)/8%#8. After calculation of
logical record size and count limit, a loop
is performed to initialize N skeleton
DECBs.

Now the N IORCBs are initialized in
their half pages. The fixed area of the
first IORCB (at the beginning of the first
full page beyond the DEB page) is built.
Since each of the other N-1 IORCBs is to be
built in the same manner as the first, the
fixed area of the first IORCB is moved to
these other N-1 IORCBs, which are located
at successive half-page boundaries follow-
ing the first IORCB.

Next, the fields in the MSAM portion of
the DCB are initialized. The DCB pointers
to the last, the current, and the user's
DECBs are set, and the fields indicating
the number of logical records and the
return code are both set to zero. A flag
is set in the DCB to indicate that the next
GET or PUT issued will be the first on this
data group.

The DCB macro field is then tested. If
it specifies PUT, the DOMSAM PUT VCON and
RCON are set into their respective fielas
in the DCB, and unused VCONs in the DCE are
set to full words of hexadecimal Fs. II
the records are fixed length, the address
of the current logical record is computed
as the beginning-of-buffer address plus the
number of control bytes. If the records
are variable length, a test is made for an
RJE task. If RJE, the address of the cur-
rent logical record is set to the
beginning-of-buffer address plus the number
of control bytes plus 9. If not RJE, it is
set to the beginning-of-buffer address plus
the number of control bytes plus 4, and the
block control bytes (LLBB) are initialized
to X'0004°'C'bb"'.

If the DCB wacr: fietd specitfies GEY,
the DOMSAM GET VCON and RUON are set iato
their respective fields in the DU, and
unused VCONs are set to full words of hexa-
decimal Fs.

Control is then returned to Gpen Conmon.
There is no return code.

SETUR_Routine (CZCMD)

The Set Unit Record (SETUR) routine spe-
cities the unit recoxrd configuration fur a
local or remote printer or a card punch.

It is called as the result of a usexr-
initiated SETUR macyxo instruction, indicat-~
ing how a device is to be set up tor a job.
If the device is not already correctly set
up, the SETUR routine reguests ain operator
to set the device as specified by the macro
and sends the user return codes indicating
the results. (See Chart AJ.)

Attributes: Privileged, reenvrant,
only, public, system, nonrecursive,

vread-

Entry Points:
CZCMD1 -- Primary entry puint enteved with
type-1 or type-2 linkage.

CZCMD2 -~ Asynchrxonous entry point entered
with type-2 linkage.

CZCMD3 -- Synchronous entry point entered
with type-1 linkage.

Input:

For entry at CZCMDi, register 0 contains
the address of the unit record device
setup parameter and register 1 contains
the DCB address.

For entry at CZICMD2, register 1 contains
the ICB address.

For entry at CZICMD3, the ISA contains the
IORCB.

Data Referenves: CHADCB, CHASDA, CHADER,
CHAIOR, CHAICB, CHAISA, CHADBP.

Modules Called:
WTO (CZABQ) -- Write message Lo operator Ci
console typewriter.

SIR (C2CJ8) -- Specify intervuption

routine.
DIR (C2CID) -- Delete interruption routine.
Open (CZCLA)Y -~ Open a data contrxol block.

Find (CZCOJ)
data set.

~- Find a membex of a VPAM

Read (CZCPE) -~ Read a VISAM record.

Section 2: OPEN Processing 21

close (CZCLB) -- Close a data control
block.

Reset (CEAAH) -- Reenable a device after
I1/0 error.

Exits:
Normal -- For return from CZCMD1 register
15 contains one of the following codes:

00 Completed successfully.

‘our Incomplete.

‘08" Unrecoverable 1I/0 error.

‘oc® Bad parameter for SYSURS key.

*10° Invalid SYSUCS key specified
by SYSURS.

14 Intervention required on RJE

device.

For return from CZCMD2 oxr CZCMD3 regist-
er 15 contains ‘00°.

Exror —-- Abnormal termination wia the ABEND
macro instruction.

Operation: The operation at the three
entry points is:

MAIN ENTRY AT CZCMD1: SETUR abnormally
terminates if the DEB or DCB is invalid, orx
1f the DCB has not been opened.

Since the SETUR macro instruction is
issued repetively by the user until he
receives a return code other than 4 (incom-
plete), the SETUR routine must determine
oconditions existing each time it is
invoked. The internal return code in
CBRBCX, in combination with the SETUR-in-
progress switch {(DCBSUR), determines the
line of processing to be followed upon
entry. DCBSUR is set on when SETUR is
first called for a device; it is set off
when SETUR has completed its processing, orx
when the invoking routine wishes to notify
SETUR to stop its processing when it is
next given contreol. Processing for the
various DCBSUR, DCBRCX combinations is as
follows:

DCBSUR off, DCBRCX less than 100: If the

device is other than a card punch or a
srinter f(or,

if an RJE task, other than a
printer), SETUR exits to the caller with a
return code of normal completion.

>

For a card punch: (DCBSUR off, DCBRCX
less than 100}). If the setup parameter
card form number is the same as the SDAT
form number, normal ending procedures are
followed. The return code is set for ncrm-
al completion, DCBSUR is set off, and con-
trol returns to the calling routine.

22 Part I:

If the numbers are not equal, a message
is sent to the operator via WTO requesting
him to mount the desired form, CZCMD2 is
specified as the asynchronous entry point
and SETUR returns to the caller with a
return code for incomplete while operator
response is awaited.

For a printer lor, if RJE, remote print-
er): (DCBSUR cff, DCBRCX less than 100).
If the setup perameter key is the same as
the SDAT URS key, the desired confiquration
is already set, so normal ending procedures
are followed as with the card punch.

Otherwise, the DCB for the VPAM data set
containing the member $SYSURS is opened,
and the four-line SYSURS recoxrd is read
according to the key given in the setup
parameter. If an error occurs on a READ,
SETUR saves the error information in the
MSAM DCB, closes the SYSURS file, turns
DCRBSUR off, and exits to the caller with a
return code indicating either ®"invalid S¥S-
URS key® or "unrecoverable error®. When
the SYSURS reccrd has been read successful-
ly, the SYSURS DCB is closed and checks are
made for appropriate printing specifica-
tions and valid SYSURS parameters. SETUR
abnormally terminates if the conditions
checked for are not met.

SETUR now checks that the required print
form, carriage tape, print chain/train and
density are now being used. If any of these
need to he changed, an appropriate message
is sent to the operator via the WTO macro
instruction, or, if an RJE task, toc the re~
mote operator via an IOCAL macro instruc-
tion, after building a special IORCB.
CZCMD2 is specified as the asynchronous en-
try point by a SIR macro instruction unless
the task is RJE, in which case this entry
point will have been specified as part of
BULKIO initialization. SETUR returns an
'incompiete' indication while local or re-
mote operator response is awaited.

If no such changes are necessary, the
SYSURS form type value is saved in the DCR,
and SETUR tests for use of the Universal
Character Set (UCS) feature.

For UCS printing, SETUR abnormally ter-~
minates if the folding code is invalid. If
the SDAT and SYSURS wvalues for the UCS key
do not match, the DCB for the VPAM data set
containing the VIP member $SYSUCS is
opened, and the 5-1lipe SYSUCS record is
READ according to the key given in SYSURS.
If no erxor occurred on the read opera-
tions, the SYSUCS DCB is closed, an IORCB
is built to load the UCS buffer anad is
executed with CZICMD3 specified as its post-
ing entry point. SETUR then exits to the
caller with a return code for incomplete.
If an exrror occurred when reading the SYS-
UCS record, the SYSUCS file is closed,

Access Method for BSAM, MSAM, TAM and IOREQ

DCBSUR is set off, and SETUR returns to the
caller with a return code for an invalid
SYSUC5 key or data set. VAM error return
information may be found in the MSAM DCB.

If the SDAT and SYSURS values for the
Ucs key match, the UCS buffer does not have
to be loaded. 1If the UCS strikeout
character is to be used, it is tested for
validity (ABEND results if it is invalid)
and converted and saved in the DCB. The
SYSURS folding code is saved in the SDAT,
and SETUR proceeds tc test for printer ali-
gnment (see below).

If the UCS feature is not in use, loading
the UCS buffer is not necessary, so testing
for print alignment coccurs immediately.

If print alignment is necessary {(unless
an RJE task), an IORCB specifying CZCMD3 as
its posting entry point is built to print
50 lines on the printer for purposes of
alignment. A message is sent to the opera-
tor via WTO requesting him to align the
printer, and SETUR returns an incomplete
while operator response is awaited. CZCMD2
is specified as the asynchronous entry
point.

If no alignment is necessary, or if the
task is RJE (in which case alignment is not
possible), processing is completed. The
URS key from the setup parameter is stored
in SDAT, DCBSUR is set off, any active
interruption is deleted, (not necessary if
the task is RJE), and control returns to
the caller with the return code in register
15 set to “"completed successfully® or "com-
pleted with unrecoverable I/0 error."

DCBSUR on, DCBRCX not in the range 100
through 136: SETUR abnormally terminates
when this invalid condition occurs.

DCBSUR on, DCBRCX = 100: The operator has
not vet mounted the requested form on the
card punch. Until he does, contrel is
returned to the caller with a return code
for incomplete.

DCBSUR on, DCBRCX = 104: The operator has
mounted the specified form con the card
punch as requested. The punch form number
from the setup parameter is therefore moved
into the corresponding field in the SDAT,
and normal ending procedures (see above)
are followed.

DCBSUR on, DCBRCX = 108: The operator has
not yet mounted or set the SYSURS-specified
form, carriage tape, chain/train or density
on the printer as reguested. Control
returns to the user with a return code for
incomplete.

DCBSUR on, DCBRCX = 112: The operator has
mounted or set the requested form, carriage

tape, chain/train, and density for the
printer. The corresponding four SDAT
tields are therefore set from the SYSURS-
specified values, and processing continues
as 1f tne four SDAT fields were already
correctly set (see above).
. BEUR on, DCFRCX = 1le: SETUR is in the
~rocess 0of loading the UCS buffer. 1f the
«ffer loading operation is not yet com-
plete, control returns to the caller with a
return code for incomplete. 1If the loading
is complete, but the DEB indicates an
error, DCBSUR is turned off and SETUR exits
to its caller with a message to the opera-
tor and return codes for "unrecoverable
error™. If intervention is required, a
message 1s sent to the operator with a
return code indicating incomplete. If
there is no error, an IORCB specifying
CZCMD3 as its posting entry point is built
and executed, to print the UCS buffer along
with the UCS torm of the verification mes-
sage, and control returns to the caller
with a return code for incomplete.

DCBSUR on, DCBRCX = 120: SETUR is in the
process of printing the UCS buffer and
verification message. If the printing is
not yet complete, control returns to the
caller with a return code for incomplete.
If the printing is complete, but the DEB
indicates an error, DCBSUR is turned off
4nd SETUR exits to the caller with a mes-
sage to the operator and return codes for
"unrecoverable error®*. If intervention is
required, the message is sent to the opera-
tor with return code indicating incomplete.
If there is no error, a WIO is issued to
write the EBCDIC form of the verification
message on the operator's console, and to
request that the operator verify that this
verification message matches the one pre-
viously printed on the printer. CZICMD2 is
specified as the asynchronous entry point,
and SETUR returns to the caller with a
return code for incomplete while operator
response is awaited.

DCBSUR on, DCBRCX = 124: The operator has
r-t yet verified that the print line
peared identical on the printer and the
isole. Control is returned to the caller
wath a return code for incomplete.

DCREUR on, DCERCX = 128: The operator has
verified the UCS printing. The UCS key is
stored in the SDAT and the universal-
character-set bit is turned on in the [CCBE.
Processing then continues as if the SDAT
and SYSURS values for the UCS key matched
{see above).

LCBSUR on, DCBRCX = 132: The alignment
iines are being printed and the operator is
checking printer alignment. If the DEB
indicates an error, any active interruption
is deleted; DCBSUR is turned off, and con-

Section 2: OPEN Processing 23

tral returns to the caller with a message
to tne operator and return code for "unre-
coverable error™. 1f no error is indi-
cated, contrel returns to the caller with a
return code for incomplete.

XBSUR on, DCBRCX = 136: The operator has
successfully aligned his print form. If a
rrint IOKRCB 15 still outstanding, control
j returned to the caller with a return
for i1acomplete. If there 1s no out-
ctanding IORCB, processing continues as if
nc alignment were necessary {(see abovel.

DCBSUR on, DCBRCX = 140: A start 1/0 error
retry has failed and DCBRCX is set to 140
pofore returning from the SETUR synchronous
rnterruption routine entered at CZCMD3. At
the next SETUR macro instruction, the SETUR
ioutine, entered at its main entry point,
will detect this condition, set a return
code of 8 (unrecoverable I/0 error) in
register 15, and return.

DUBSUR off, DCBRCX not less than 100: The
caller has turned off the DCB SETUR-in-
progress bit in order to prematurely ter-
minate the SETUR processing. In this case,
the SDAT carriage tape, chainstrain, fold-
ing option, UCS key, URS key, and density
tields are zeroed if the device is a

L*t’l nter.

ACYNCHRONOUS INTERRUPT ENTRY AT CZCMD2:
SrTUR 1s given control at its asynchronous
entry point, CICMD2Z, when an operator
response {(an attention interruption caused
by changing the state of a device from "not
ready” to ®"ready™) is received.

1f neither printer alignment nor
intervention-reguired retry is in progress,
DCBRCX is incremented by 4. Otherwise, un-
1ess there is an outstanding IORCB or error
indicated, a RESET will be issued and an
10CAL SVC executed. Then, unless printer
alignment is in progress or the task is
#«JE, the interruption routine will be
deleted. In all cases, control returns to
the caller with a return code of 0 in
register 15.

SYNCHRONOUS INTERRUPTION ENTRY AT CZCMD3:
The synchronous entry point of SETUR is
given control by the task monitor when the
1/0 activity associated with an IORCB
terminates.

Errors occurring during the I/0 activity
will result in either no retry or limited
vetry, depending upon the type of error.
Any final erxror is recorded in the DEB.

If a unit check or unit exception is
indicated when alignment is in progress,
but no intervention is required and no
errors are indicated, DCBRCX is incremented
by 4 to indicate completion of alignment,
and the number of outstanding IORCBs is
reduced to zero. Then, as in all cases,

24 Part I:

control returns to the task monitor with a
return code of 0 in_vegister 15.

In an RJE task, 1if a unit check with
intervention required is detected, a return
code of 20 will be placed in the DECB for
reference by BULKIC. If, for an RJE task,
a unit check is not detected but a unit
exception or incorrect length is detected,
set-up for retry after continuation is spe-
cified and return is made to the Task Mon-
itor. (The rerote operator must feed in a
CONTINUE card for the job to continue; this
will cause the next entry to be at the
asynchronous entry toint, CZCMD2.)

TAM_PROCESSING

The following routine is used with Ter-
rinal Access Method (TAM) processing.

TAM Open Routine (CZCYA)

In continuing the open processing from
Open Common, TAM Open is called Lo perform
additional opening functions for terminals.
This includes building control blocks and
providing buffer areas for initiating com-
munications with a terminal. TAM Open then
returns to Open Common except wh2n an
abnormal end is required, in which case it
goes to ABEND. (See Chart AK.?

Attributes: Reentrant, resident in virtual
storage, closed, read-only, privileged.

Entry Point: C2ZCYAl -~ Entered by type-1
linkage. g
Input: When this routine is entered,
register 1 contains the address of the fol-~
lowing parameter list:

Word 1 ~- Address of the current DCB being
opened.
Word 2 -- Address of the associated JFCB.

Data References:
CHADER, CHATOS.

CHADCB, CHATDT, CHASDA,

Modules Called:
Write (CZCYM) -- TAM write.

Che~k {(CZCRC} ~- Check.
VMA (CZCGA) -~ Get virtual storage.
LVPRV (CICJL) -- Leave privilege mode.

WTC (CZABQ) -~ Write to operator.

ABEND {(CZACP) -- Abnormal task termination.
ADDEV (CEAAC) ~- Add device to task device
list.

RMDEV (CEAAD) -- Remove device from task
device list.

Access Method for BSAM, MSAM, TAM and IOREQ

Exits:
Normal -- Normal RETURN to calling routine.

Error -- ABEND macro instruction.

Operation: TAM Open initially saves the
general registers, gets the TOS page and
examines the number of DCBs that were
opened for a given terminal.

e If this number is equal to §, the ter-
minal definition is checked.

¢ If this number is greater than 0 and
less than or equal to 255, TAM Open
continues the processing by updating
the count of DCBs in the SDAT.

e If this number 1is greater than 255 (the
maximum number of opened DCBs allowed
for a terminal), TAM Open branches to
ABEND.

The terminal is checked for definition
and type when the first DCB is opened for
this terminal.

¢« If the terminal is defined, TAM Open
continues the processing by updating
the count of DCBs in the SDAT.

@ I1f the terminal is not defined this
routine branches to ABEND.

e If the terminal is defined and is eith-
er a 2741 or a 1050, the system must
determine which of the two terminal
types is involved. This determination
is made by issuing the LCD macro
instruction.

TAM Open issues a GETMAIN macro instruc-
tion to obtain one page of virtual storage
for the data extent block (DEB), and the
terminal operational status table (TOS)
which includes the 1/0 request control
block (IORCB). Pointers are set up between
these blocks and blocks that were created
before TAM Open, and are illustrated in
Figure 4. The purpose of these pointers
between TAM Open allocated blocks and pre-
viously existing blocks is to facilitate
their use by all TAM routines under normal
and abnormal conditions.

DER virtual storage, after being ini-
tially allocated during TAM Open, has the
following pointers set and data moved:

{(A) The DEB is pointed to by the DCB.

{B) The DEB points to the DCB and the
SDAT.

(CY The DEB points to the SDAT terminal
information. This SDAT terminal
information pointer is moved from the
JFCB.

ord @ DCB ‘
! (€)
7S]

*TOS

*IORCB

*DEB - 8
(
oy

@SDAT

NN

Terminal

P
Information
-

2 JFCB -

@ Blocks created before TAM OPEN
» Blocks for which TAM OPEN allocates spoce

Pointers existing before TAM OPEN
Pointers set up during TAM OPEN

Data moved during TAM OPEN

Parameter list pointers

Figure 4. TAM Open: DEB and TOS

Allocation and Pointers

Storage

(D} The SDAT terminal informaticn 1is
loaded into the DEB. This terrinal
information is iocaded into the DEE.
This terminal information is used by
the TAM Read/Write and TAM routines
and includes the terminal type, con-
trol unit type, data adapter and model
code of the terminal.

TOS virtual storage is allocated by TAM
OPEN and is pointed to by the DCE. TAM
Read/Write uses the TCS area to build the
channel command words. It is also used by
TAM Read/Write, TAM Posting, and TAM Open
for communication of common information.

Processing ends with the terminal DCB
open count in SDAT incremented by 1 for
this current DCB and a return to Open
Common .

Section 2: OPEN Processing 25

following routine is used with
poat SOutput Request (IOR} processing.

P

R Open Routine (CZCSC)

in continuing the open processing {rom

woJommon, IOR Open is called to allocate

for control blocks and complete the
fields in the DEB to allow the

ng of the IOREQ macro instruction.

I0R Upen then returns to Open Common
cpt wnen an abnormal end is required, in
case it goes to ABEND. {See Chart

€~E
>, <losed, nonrecursive, read-only,
ileged.

nt: JECSC1 -- Entered with type-~1

When this routine is entered,
ey 1 contains the address of the fol-
parameter lists

wd 1 -- Address of DCBE being opened.
dord 2o-- Address of associated JFCB.

---- Address of workpage obtained by
COmmon .

CHADCB, CHATDT, CHASDA,

25 _Called:
Vil {CACGAY «~ Get virtual storage.

CREOLS (CEAQU) -- Check protection class.

werymal -~ Return to calling routine.
Fryoy ~- ABEND macro instruction.

ion: IOR OPEN saves the general
. Tests are then made to check

%

¢ The IOREy facility is allowed on the
device, by checking that the SDAIOR
field in SDAT is equal to one.

» The DCB identification is valid, by
checking that the DCBID identifier is
equal to *%*%.

e The TDT indicates that the IOREQ faci-
lity is specified in the DD command
{TDTDSV=RX). The DCB was previously
checked in Open Common (DCBDSO=RX}
which called for I0OR Open. The data

2% Part I:

egntrant, tvesident in virtual

Access Method for BSaM, MSAM, TAM

set organization requirements must be
specified at data definition time only.

e« The user-supplied NCP parameter, in the
DCB macro instruction, is not greater
than the maximum (DCBNCP=99). If the
user did not set a value, or set a
value of zero, a value of 1 is
inserted.

s The volume is not public, as indicated
by the volume public flag (TDTV1=0) not
being set. IOREQ can only be used on
private volumes.

An ABEND exit is taken if any of the
above error conditions occur. Processing
continues by caluclating the area needed
for the DEB plus additional contiguous
bytes for the IORCB. The length of the DEB
is set to contain a common area plus extra
storage for each NCP specified. This
amount is rounded to a multiple of eight sc
that the contiguous bytes to build the
IORCB originate on a doublewcrd boundarvy.

IOR Open then requests, with a GETMAIN
macro instruction, one page of wvirtual
storage for DEB and IORCB to be used by
IOREQ and IOREQ Posting. This area is ini-~
tially zeroed.

DEB virtuwal storage, after being ini-
tially allocated during IOR Open, has the
following pointers set and data moved
{(refer to Figure 5):

{A) The DEB is pointed to by the DCB and
JFCB.

{B) The DEB points to the DCB and JFCB.
(C) The DEB points to the IORCB.

{D}) The DEB points to the SDAT address
and device address information.
These SDAT information pointers are
contained in the JFCB.

(E) The JFCB data type code information
is moved to the DEB.

Some other DEB fields listed below are
also completed:

¢ The identification field (DEBID) is set
to *(.

 The size field {DEBSIZ) is set to DEB
area size.

s The IOREQ Posting VCON (DEBPSV) is set
to IOREQ Posting entry point and the
RCON (DEBPSR) is set to IOREQ Posting
PSECT address.

and IOREQ

o

€)

Figure 5.

(8

DCBDES

DCBle —

- .j ’_'

DEBCCB

L L L e b T 2 g

AAMHITIHIMTINENAERRSTISIRRNWN

NN

DEBCLY (Data Type Code)

DEB (A)

Work Page

1070EV

LA L L L e

O)y———— == ——— —o=4 DEBSDT (SDAT Add-)
| o ———— o4 DEBSYM (Sym. Dev. Addr)
g : ®) DEBIFC
| | (C)-——— DEBWRK
|] {ORCB
{ |
| |
1]
i i TDTDEB s
: Lo e TDTID] (in SDAT) '
b e ~4 TDTIDY +°2 (To SDAT)

Parameter list pointers

SDAT poinfers from JFCB moved to DEB -

IOR OPEN:

The number‘of channel.programs (NCP)
field in DEB {(DEBNP) 1is set to the
value in the DCB field. (DCBNP).

The DEBDVC field is set with a hex code
indicating the device (magnetic tape,
direct access, unit record).

The DEBUNT field is set with a hex code
indicating the unit type (2400, 2311,

PR I

The maximum number of IORCBs allowed
field in the DEB (DEBIO} 1is set to the
maximum in the SDAT field (SDAMRB).

The DCB protection class field in the
DEB (DEBCLS) is set to the appropriate
value. It is .as obtained as a result
of an SVC, generated by a CKCLS macro
instruction. A final check on this
value within IOR Open assures that the
user is privileged if the access to the
volume is privileged.

- DEB pointers, to and from DCB and JFCB, and to IORCB

Data Type Code information moved from JFCB to DEB

Basic Pointers and Data Moved from JFCB to DEB

‘e A pointer to the DECB field in the DEB

({DEBDEL) is not completed during IOR
Open but during ICREQ. However, the
address of DEBDEL is stored in a DCB
field (DCBDEC) during IOR Open.

A final check is made of both the DCB

protection class and the type of access to
the device.

Then,

s If the DCB protection class is not pri-

vileged (DEBCLS+1) and the type of
access to the device is privileged
(TDTVPY=1), an ABEND exit occurs.

If no DCB protection class can be
determined, an ABEND exit occurs.

1f neither of the above criteria are
met, a return to Open Common OCCUrs.

5

Section 2: OPEN Processing 27

SECTION 3: READ/WRITE

KEAD/WRITE PROCESSING

This section describes the BSAM Read and
Write, MSAM Get, Put, Read and Write, TAM
Read and Write, and IOREQ routines.

CAM Read/Write Routine {(CIZICRA)

The Read/Write routine creates an IORCB
wnich contains the appropriate channel com-
mands to perform the 1I/0 operation wnich is
requested by the BSAM READ or WRITE macro
instruction. The IORCB is passed to the
1/0 supervisor so the channel commands may
be executed. ({See Chart BAa.)

Attributes: Reentrant, resident in wvirtual
storage, closed, read-only, privileged,
nonrecursive,

Entry Points:

CZCRAS -- Main entxy point to the Read/
Write routine; entered by type-1 or
type-2 linkage.

CZCRDS -~ Entrxy point for building an IORCB
{Build subroutinel; entered by type-1
linkage.

CZCRES -- Entry point for adding the chan-
nel program {(Construct subroutinej;
entered by type~1 linkage.

Input: Register 1 contains the address of
a DECB containing all information which was
coded as parameters of a Read or Write
instruction.

Data References: <CHASDA, CHAIOR, CHBADCE,
CHADEB, CHADEC, CHAVPS.

Modules Called:

AWAIT (CEAP7) -~ Await 2n interruption.
IOCAL (CEAAQ) -- I/0 call.
CKCLS {CEAQW4) ~-- Check protection class.

ASCIT Translation and Conversion (CZICWA) --
When an ASCII Write request is

encountered.
Exits:
Normal -- Return to the calling routine.
Error -- Abnormal termination of task by

ABEND macro instruction.

Operation: The main entry point processing
at CZCRAS is as follows:

28 Part I:

During open processing, a queue cf
zerced DECB pointers 1is established in the
DEB for the data set. The main routine
stores the address of the input DECB point-
ers in the reserved pointer area.

When this routine is entered, 1if the
passed DECB is the same as the first DECB
in the gueue, it is the Check routine that
has entered the Main routine to have a read
or write request reissued.

If entry was not by Check, the new DECB
is inserted into the queue if there is
room. The "in use® and "intercepted® flags
are set on in the new DECB. Should the
“number of IORCBs allowed®” count permit
another IORCB to be given to the I/0 super-
visor, a search of the gueue of DECBs is
initiated to find the first request to be
fulfililed. If that particular DECB is
associated with an ASCII Write request that
was intercepted by the 1I/C supervisor, a
call to the ASCII Translation and Conver-
sion routine (CZCWA) is made to put the
record back in EBCDIC format. Then the
main routine proceeds to have the I0RCB
buiit by the Build routine and filled in by
the Construct routine. Successfual con-
struction of an IORCB will then permit the
main routine to execute the IOCAL SVC which
requests the I/0 supervisor to perform the
I/0 operation.

The build entry point processing at
CZCRDS is as follows: The Build routine
generates a skeleton IORCB and stores sev-
eral parameters in it.

Build returns to the Main routine which
stores the address of the SAM Posting rou-
tine in the IORCB, and branches to the Con-
struct routine to complete the IORCB hy
constructing 2 channel program in it.

The construct entry point processing at
CZCRES 1s as follows: The Construct rou-
tine is passed a pointer to the skeleton
JORCB which was generated by Build. The
Construct routine must complete the IORCB
so that it may be used by IOCAL. Fami-
liarity with IOCAL as presented in System
Programmer's Guide, GC28-2008, is required
to understand the logic of Construct .

The first decision Construct must make
is whether to use the IORCB as a buffer or
to build a page list which points to the
user*®s data pages. If the data exceeds

- 1800 bytes, the IORCB cannot be used as a

buffer, and a page list must be
constructed.

Access Method for BSAM, MSAM, TAM and IOREQ

For 7-track tape the channel program
which is generated consists of two CCWs.
The first CCW is a Mode Set command which
sets the density, data converter, and tran-
slator as specified in the tape option
field in the DCB. The second CCW is the
read or write command. For 9-track tape,
just the one CCW for the read or write is
required.

For an ASCII write request, ASCII Trans-
lation and Conversion is called to transi-
ate the data to be written from EBCDIC to
ASCII and convert variable-length records
from V to D format (standard IBM to Ameri-
can National Standard). ASCII output may
occur only to 9-track tape.

For direct access, the channel program
is more complex. The generated channel
program depends on whether the requested
operation is a read or write, whether track
overflow is specified, and what the record
format is.

The channel program for a DA read is
generated as follows. A full DA device
address is in the form bbCCHHR, where bb is
two bytes which indicate bin number (data
cell), CC is two bytes which indicate
cylinder number, HH is two bytes which ind-
icate track (or head) number, and R is the
record number on the track. The first CCWs
are two Seek commands to the next I/0
address (bbCCHH) which is found in the DEB.
The first Seek command is software chained
because a seek takes a relatively long time
to execute (arm movement may be necessary),
and hardware chaining of commands makes the
channel unavailable to other tasks. There-
fore, software chaining will cause the two
seeks to be executed without locking other
users out of the channel. The second seek
command is command chained to the rest of
the CCWs in the channel program, so execu-
tion of the second seek gives the task
exclusive control of the channel until the
execution of the channel program is con-
cluded. The next CCW is a search for the
identifier CCHHR, which will position the
DA device to the key field of the record.

A TIC command fcllows the search to cause
the channel program to loop until the reco-
rd is found. The Read command {(read key
and data) is next in the channel program
and it is followed by a NOP command.

When reading format-U or V records, it
is not known where the next record to be
read is. This is because the number of
bytes in the current record is not known.
If the end of the current record cannot be
calculated, the beginning of the next reco-
rd is not known. So when reading format-u
records, the search command is directed to
the last I/0 address. Then three CCWs are
generated: read-no transmit, read, and
NOP. The READ-no transmit causes the last

record to be passed by the reading head,
and the read key and data causes the
correct record to be read.

The channel program for a DA write is
generated as follows. Using the last write
address from the DEB, the first four chan-
nel commards are generated: seek, seek,
search, TIC. The reason for using the last
I/0 address is that it is known where the
last record was written, but if format-u
records are being written, it is not known
where the next record should go. Then a
read-no transmit, followed by a write-
count, key, data is generated. The Read-no
transmit brings the head past the last
record which was written and then the WRITE
puts the new record on the volume sequen-
tially following the previous record. 1If
track overflow is specified and the record
to be written is larger than the room
remaining on the current track, the record
is bequn on the current track and continues
on the next sequential track. However, no
record can be split between cylinders on a
DA volume.

As in the channel program for a DA read,
the write channel program is ended by a NOP.

The Construct routine uses closed sub-
routines to help in the completion of the

IORCB. They are:

ENTCCW ~- Enters a CCW into the IORCB.

SCHCCW -~ Generates SEEK, SEARCH, and TIC
CCWs, and puts them in the IORCB.

SETPAG -- Sets up a page list in the IORCB.

NXTIC ~-- Computes the MBBCCHHR of the next
record to be written on a DA
volume.

Intercepting a Read or Write Request: The
DECB which i1s passed to the SAM Read/Write
routine contains an intercept flag set by
SAM Read/Write when the I/0 request is not
actually initiated. (IOCAL is not given
the ICRCB pbuilt for the DECB).

There are several reasons why the 1/0
request of a particular DECB may not be
initiated. For example, if a read request
is given and the current volume was used up
on the preceding read, the DECB is set as
intercepted and the EOV request flag in the
DECB is set on. If a write request is
given and there is nc more room in the cur-
rently allocated extents, the same flags
are set. If the DECBs request I/0 on the
same devices and the first one encounters a
hardware erxor condition, the intercept
flags in the remaining DECBs are set on so
the I/0 will not be initiated unless the
hardware error is cleared up. If this were
not done, each DECB I/0 request could run

Section 3: Read/Write 29

et

into the same hardware problem and a per-
manent error would be found, not once, but
many times.

When a DECB is operated upon by the
Check routine, the intercepted flag is
tested. Should there be no serious erxrror
conditions posted in the DECB, the Check
routine, in addition to performing other
services, will reinitiate the I/0 request
by passing the DECB back tc the Read/Write
routine. This I/70 request is given immedi-~
ate attention by Reads/Write because it is
the first entry in the queue.

DOMSAM Routine {(CZCME)

DOMSAM blocks and deblocks logical reco-
rds into system buffers when GETs or PUTs
are issued, invokes MSAM READ/WRITE to
build and execute the IORCB necessary for
1/0, and provides the user with a return
code describing the outcome of his GET or
PUT request. The routine runs in the same
privilege as its caller. {See Chart BB.}

Attributes: Read-only, public, reentrant,
nonrecursive, assumes privilege of caller.

£ntry Points:

CZCMEl1 -- Entered upon issuance of a GET
macro instruction which generates type-1
linkage.

JLCMEZ -~ Entered upon issuance of a PUT
macro instruction which generates type-i
linkage.

Input:

Registexr 0 ~- Address of user-specified

area for move mode GET or PUT.
Hegister i -- Address of the DCB.

Data References:
CHADBP, CHAISA.

CHADCB, CHADEB, CHADEC,

Modules Called: MSAM Read/Write (CICMF) «~-
To read oxr write records.

Exits:
Noxrmal -~ Foliowing a GET, register 15 con-
tains one of the following return codes:

00° Normal completion. Register 1 points
to record obtained in buffer if loc-

ate mode, user area if move mode.
Request incomplete.

‘08* Unrecoverable I/0 error. Register 1
points to (failing) record in buffer
if locate mode, in user area if move
mode register 0 points to user DECB.
'*0c* End of data set reading. (No record
obtained). Register 0 points to user
DECB.

30 Part I1:

*10° cControl card sensed reading. Regist-
er 1 points to control card in buffer
if locate mode, user area if move
mode. Register 0 points to user DECB
14 Intervention 1s required in an RJE
task because the line is discon-
nected. (No record is cbtained.)

Normal -- Follcwing a PUT, register 15 con-
tains one of the following return codes:

'*00' Normal completion. Register 1 points
to next available location in buffer
if locate mode, to user area if move
mode.

*04' Regquest incomplete.

'08° Unrecoverable I/0 error. Register 1
points to buffer of record that
failed to be written. Register 0
points to user DECB.

*OC?' Intervention is required in an RJE
task because the line is discon-
nected. {(No record is written)

Error ~- ABEND macro instruction is used
for abnormal end termination.

Operation: . DOMSAM has no PSECT. It uses
the first 19 fullwords of the DEB woxk page
as its standard register save area, obtains
adcons from the DEB page (CHADBP}, and
maintains switches and other variable
information in the MSAM portion of the DCB.
Its work areas are the DEB work page, which
contains DECBs, and the buffer pages.

Upon entry to DOMSAM, a transfer pointer
is set to indicate whether a GET or a PUT
has been issued. Checks are then performed
to be certain that the DCB and the DEB are
valid, and that the DCB has been opened. If
any one of the three conditions is not met,
execution is terminated by an ABEND macro
instruction. If all conditions are met,
processing is categorized as GET or PUT.

GET Processing: If the GET macro instruc-
tion is the first issued on the data group,
or if the previous GET emptied a buffer,
the end-of-buffer switch in the DCB will be
on. In this case, MSAM Read/Write must be
invoked to either prime all the buffers or
refill the buffer just processed. If prim-
ing is to be done, no IORCBs may be out-
standing or the return ccde will be set tc
indicate incomplete, and a return will be
made to the caller.

For each buffer to be filled, the cur-
rent DECB is marked in use {(xead/write
requested) and initialized, and MSAM Read/
Write is invoked. Upon return from Read/
Write, the current DECB is checked to see
if it is the last in the list, and if so,

Access Method for BSAM, MSAM, TAM and 1OREQ

its pointer is reset to point to the first
DECB. If not, the DECB pointer is incre-
mented to point tc the next DECB.

A check is then made to see if all the
buffers are to be primed, and if 350, the
next buffer is filled by setting up the
DECB and invoking MSAM Read/Write as
before, until the last DECB has been pro-
cessed. At that point, the current DECB
address is reset to point to the first
DECB.

The DCE pointer to the current buffer
page is set to the address of the buffer
associated with the current DECB. Then the
DECB is tested for completion, and if the
I/0 is not yet complete, control is
returned to the caller with a return code
indicating that the GET has not been com-
pleted and must be reissued at a later
time. In an RJE task, if the line to the
remote device is not connected, the return
code will indicate intervention is
required.

If the DECB is posted complete and indi-
cates normal completion with neither a unit
check (indicating that a control card has
been read) nor a unit exception (indicating
end of data set), the normal completion
code of zero is set into the DCB for even-
tual use as a return code. The pointer to
the current logical record within the buff-
er is then set immediately beyond the 32
control bytes in the buffer, and the end-
of-buffer address is computed by adding to
that address the product of the logical
record length and number of records that
can fit in the buffer. Following a trans-
mission from a remote reader (RJE task),
this end-of-buffer address is adjusted
based on whether an odd or even number of
logical records were read into the buffer.

If the DECB is posted complete without
errors, but unit check or unit exception is
indicated, or if the DECB is posted com-
plete with errors, the appropriate return
code is set into the DCB, and a copy of the
current DECB is moved to the user®s DECB
area. In this case, the end-of-buffer
address is computed as the byte immediately
following the last normal input record by
adding the displacement-to-error field of
the DECB's modified CSW to the beginning-
of-buffer address. This displacement must
be decremented by 84 if, in an RJE task,
only one logical record was read in during
the last transmission. The current logical
record address is computed as 32 bytes
beyond the beginning of the buffer.

Following this, or if no buffer priming
or refilling was necessary to begin with, a
check is made to determine if the current
logical record is valid by comparing the
record address with the end-of-buffer

address. If it 1s lower, normal steps will
be taken to get the record for the user.
Otherwise, one of the unusual conditions
{end-of-data-set, control card, or record
with error) exists, and the return code in
the DCB is set into register 15 for the
user. The end-of-buffer and buffer-priming
switches are set, the count of logical
records within the buffer is set to zero,
and the pointer to the current DECB is
reset to point to the first DECB in the
list so thct the nexwt GET issued will re-
prime all the buffers. If the unusual con-
dition is an end-of-data set, there is no
record tc be obtained for the user, and
control is returned immediately. However,
if there is a record beyond the buffer end
address f(either a control card or a record
with an error), it is returned to the user
as described below.

When the current logical record is
valid, it must be returned to the user. If
the GET is in locate mode, the current
record address is set into register 1; if
the GET is in move mode, the record is
moved to the user-specified area whose
address was supplied in register 0. The
current record address is then incremented
by the logical record length to point to
the next record, and the count of logical
records already processed within the buffer
is incremented by one. If the record
address is no longexr less than the end-of-
buffer address, or if the count of logical
records is 100, the current buffer is com-
pletely processed. In that case, the end-
of-buffer switch in the DCB is set on to
indicate that end-of-buffer processing is
necessary before the next GET can be com-
pleted, and the count of logical records is
reinitialized to zero. Whether or not this
GET emptied a buffer, the return code is
set to zero, signifying normal completion
of the GET, and control is returned to the
caller.

If, upon entry to DOMSAM, the end-of-
buffer switch is on, and if a FINISH macro
instruction was previously issued, edits
and initialization largely of the type per-
formed by MSAM Open are required before
MSAM Read/Write may be invoked to reprime
all the buffers. If any permanent errors
have occurred, or if any IORCBs remain out-
standing, the task is abnormally ter-
minated; if not, a flag is set in the DCB
to indicate that this is the first GET
issued on the data group, the buffer-
priming switch is set on, and the FINISH-
just-issued flag is turned off.

The record format is checked to be cer-
tain it is not variable. 1If variabkle, the
task is abnormally terminated since vari-
able format records are not supported for
the card reader. If not variable, the
maximum allowable record length is calcu-

Section 3: Read/Write 31

lated, and compared with the value speci-
fied by the user. If the user-specified
value is not gxreater than zero and less
than or equal to the computed maximum, the
task is abnormally terminated. If the
record length is acceptable, the count of
logical records within the buffer .is set to
zero, and the maximum number of logical
records per buffer is computed and stored
in each DECB. The curreni DECB pointexr is
set to point to the first DECB in the list,
tne acknowledgement {(ACK) switch is initia-
iized for RJE, and the routine proceeds
with buffer priming as described above.

PUT Processing: Initially, for both local

and RJE jobs, 1if the PUT before the current
one was not in lcocate mode, and if no end-

of-buffer processing is required, the fol-

lowing processing occurs.

The length of the record to be PUT is
obtained either from the DCB, or, if the
vecord 1s variable format and the PUT is in
move mode, from the length control bytes in
front of the record. If variable, the
length is checked for wvalidity -- at least
equal to the number of control bytes (0, 1,
4, or 5), but no greater than the maximum
for records of its type. An invalid length
causes abnormal termination of the task.

For local devices, a record of the
obtained length will not fit in the space
remaining in the buffer, end-of-buffer pro-
cessing must be done before the current
record can be processed, and control is
transferred to a section for invoking MSAM
ReadsWrite. If the maximum size record
will fit within the buffexr, and if the PUT
is in locate mode, the current record
address is set into register 1, the return
code is set to zero to indicate normal com-
pletion and control is returned to the
user. If the PUT is in move mode, the
record in the user-specified area whose
address was supplied in register 0 is moved
to the current buffer location.

For RJE (which operates only in locate
mode) , buffering is handled differently
than for local devices. Logical records
are built into transmission control blocks
{TCBs) aligned on halfword boundaries
within the page buffer. The page buffer
and DECE work page both contain appropriate
pointers and flags (current TCB pointer,
final TCB flag, etc.). The address pointer
returned to the caller does not point to an
area in the page buffer itself, but rather
to a 144-byte area within the DECB work
page. DOMSAM then processes the record
from this location, moving it to the cur-
rent TCB in the page buffer after it has
been processed. On normal completion, the
address of the record buifer in the DECB
work page is returned to the user in
register 1.

32 Part I:

Additional processing depends on whether
or not the TCB is filled, whether it is the
final TCB in the page buffer, and, if not,
whether there is sufficient space in the
buffer for another TCB of maximum (404
bytes) or minimum (278 bytes) length.
Appropriate flags are set; if an end-of-
buffer condition is reached, MSAM Read/
Write is called. If the RJE device has the
maltiple record feature (MRF), seven reco-
rds may be placed in a TCB:; otherwise, two.
If necessary, the °*Previous Put in Locate
Mode® flag is set on before returning to
the user.

If for both local and RJE, the previous
PUT was in locate mode, the record subse-~
quently built in the buffer requires check-
ing. If variable format records are being
used, the length is checked for validity as
above and also for being no greater than
predicted. If the DCB indicates that this
is a form-sensitive file for a loccal or re-
mote printer, the control character is
tested. A machine code control character
specifying "skip to Channel 1 after print™
will trigger the ending of the current
buffer after this record. A FORTRAN (ASA)
control character specifying ®“skip to chan—
nel 1 before print® will result in the new
page switch being set in the associated
DECB as this is the first record in the
buffer, or will trigger processing to end
the buffer in front of this record if it is
not.

For RJE tasks, RJE transmission controi
characters are inserted into each record,
and a dummy record is moved to the TCB
where this is the first PUT after OPEN orx
FINISH, or if this is the first record in
the buffer and it has FORTRAN (ASA) control
characters. Trailing blanks are sup-
pressed; error characters are translated
from the record; if tabbing is required,
tabs are inserted in the record; and the
FORTRAN (ASA) or machine control character
is translated to a 2780 control character.
The processed record is then moved from the
l4k-byte record buffer in the work page to
the current TCB in the page buffer and the
TCB length is adjusted. If FINISH is in
progress, an end-of-transmission TCB is
added to the buffer.

In all cases, once the logical record is
satisfactorily placed in the buffer, the
current record address is incremented by
the record length to point to the next
available space in the buffer. If variable
length records are being processed, the
total block length is also incremeented by
the record length. The count of recorxds
within the block is incremented by one, and
if it has reached the output buffer maximum
of 200, the end-of~buffer switch in the DCB
is set on so that the next PUT processed

Access Methcd for BSAM, MSAM, TAM and IOREQ

will cause end-ot-bufter procensing to
occur.

Then, 1f processing ot a move-mode PUT
has just been completed, control is
returned to the user with a return code of
zero indicating normal completicn. If,
however, the previous processing has com-
pleted checking of a previous lccate-mode
PUT, contrcl is transferred back to the
beginning of the PUT routine, where the
end-of-buffer switch is tested before pro-
cessing the current PUT.

When a buffer must be ended and written
out before the next record can be pro-
cessed, the appropriate switches are set,
and control is transferred to a section for
invoking MSAM Read/Write. This section
will check to see if Reads/Write has already
been invoked, and if so, will proceed to
test the appropriate DECB for completion.
If complete, contrecl is returned immediate-
ly to the caller (MSAM FINISH).

If Reads/Write has not yet been invoked,
and if a FINISH macro instruction was not
issued just prior to this PUT, the current
record count is set into the DECB and then
reinitialized toc zero. The DECB is marked
read/write requested, and MSAM Read/Write
1S given contrel. Upon return from Read/
Write, the pointer to the current DECB is
updated to point to the next DECEB, unless
the current DECB is the last in the list,
in which case the pointer is reset to point
to the first DECE in the 1list. The DCB
pointer to the current buffer page is set
to the buffer address associated with the
current DECB, and the pointer to the DECB
to be tested for completion is set. 1In an
RJE task, TCB flags and pointers are
initialized in the buffer and DECB work

pages.

Once MSAM Read/Write has been invoked,
the DECB is tested for completion. If it
is not marked complete, the next record may
not be processed, and control is returned
to the user with a return code indicating
incomplete. Where incomplete because an
RJE line is disconnected, before returning
to the caller, a return code is set to ind-
icate RJE intervention is required.

If the DECB is marked complete, a check
is made for an unrecoverable 1I/0 error, and
if one is found, a test is made to deter-
mine if the error was non-permanent and
already returned to the user. 1In that
case, provided no IORCBs are still out-
standing (in which case a code of incom-
plete will be returned to the caller), MSAM
Read/Write will be called to output the
records suppressed by the errxor, and the
DECB will be tested again for completion.
If the error was not already returned to
the user, the DECB associated with the

error is located and moved to the user's
DECH area. The address of the falling
record 1o computed, and control is returued
to the user with a return code indicating
unrecoverable 170 error. 1f the proper
DECB could not be found, it is assumed that
error recovery is still in progress, and
control is returned to the user with a
return code indicating incomplete.

If no I/0 error occurred and the finish-
in-progress flag is on, control returns to
the Finish routine. Otherwise, if no I/0
error occurred, a check is made to deter-
mine if the new buffer begins a new form-
sensitive print page. If so, and if FOR-
TRAN (ASA) control characters are being
used, the record which should start the new
page 1s still trailing after the last reco-
rd in the buffer just written and must be
moved to the beginning of the current buff-
er. If the new buffer does not begin a new
form-sensitive print page or FORTRAN (ASA)
control characters are not used, the first
available location in the buffer is set
beyond the 32 control bytz2s. If the reco-
rds are variable format, this address
peints to the block control bytes (LL)
which are then initialized to four, and the
first available location address is incre-
mented by four. For RJE, this address
pointer is further incremented by 12 to
allow space for the printer selection
sequence and various bisynchronous charac-
ters. The address of the first available
location is saved in the DCB as the current
record address, and control is transferred
back to the beginning of the Put routine to
process the current PUT.

If, upon entry tc the Put routine, a
FINISH macro instruction has just been
issued and end-of-buffer processing is
indicated, the following edits and initia-
lization, largely of the type performed by
MSAM Open, are required before the Put can
be processed.

If any permanent I/0 errors have
occurred, or if any IORCBs remain outstand-
ing, the task is abnormally terminated. If
none, a switch is set in the DCB to indic-
ate that this is the first PUT on this data
group, and the variocus processing switches
in the DCB are reset. All DECBs are rein-
itialized, the pointer to the current DECB
is set to point to the first DECB in the
list, and the current buffer page address
is set from the current DECB. The record
format is checked to be certain it is eith-
er fixed or variable, and if it is neither,
the task is abnormally terminated. The
current record address is computed as
described above. In an RJE task, TCB
pointers and flags are reinitialized and
maximim and minimuam TCB size is set.
Abnormal termination occurs if the device
is neither a card punch nor a printer, or

Section 3: Read/Write 33

1f the lcgical record length specified in
the DCB is invalid. Otherwise, conrol is
transferrxed to the beginning of the PUT
recutine to process the first record of the
new data group.

MSAM Read/Write Routine (CZCMF}

The MSAM Reads/Write routine builds an
IORCB, which contains a channel program
(CCY¥s) to process an entire buffer page of
records. It invokes IOS by the IOCAL SVC
to perform the actual input or output com~
mands. (See Chart BC.)

Attributes: Privileged,

reentrant, nonrecursive.

read-only, public,

Entry Point: CZCMF1l -- Entry from DOMSAM
{GET or PUT) by type-1 or type-2 linkage.

Input: Register 1 contains the address of
the DECB.

Jata References:
CHAIOR, CHAISA.

CHADEC, CHADCB, CHADEEB,

Modules Called:
DIR (CZCJID) ~-- Delete interruption routine.

IOCAL (CEAA0) ~- Initial supervisor proces-
sing of an IORCB.

SYSER {(CEAIS) -~ System eIrroY processor.

Reset (CEAAH) -- Reset device suppression
flag routine.

Normal -- No return codes used.
Error -- Link to ABEND with condition code

1 and appropriate error message.

Operation: When Read/Write is entered, the
DCE address, the DEB address, and the
address of the buffer page are obtained
from the DECB. The location where the
IORCB is to be built 1s obtained from the
first system control word of the buffer
page. Since this buffer page may be in
Class A (user read-write) virtual storage,
a series of checks are made to verify that
the IORCB address is still valid and has
not been changed by the user. An incorrect
JORCB address causes an ABEND.

If the DECB passed to Read/Write indi-
cates complete with error rather than Read/
Write request, any outstanding asynchronous
routine is deleted, the IORCB abnormally
terminated is reissued immediately at a
point beyond the command that failed, and
any subsequent IORCBs whose DECBs are
marked intercepted are reissued. Control
then returns to the caller.

34 Part I:

If the DECB passed to Read/Write indi-
cates & READ/WRITE request, the IORCB is
built and executed. The location of the
buffer page is placed in the single page
list entry. All CCWs created will
reference this page list for the address of
the buffer page. Pointers, counters, and
the displacemert are initialized. Each CCW
contains a displacemnt field which corres-
ponds to the displacement, in its buffer
page, of the data to which this CCW refers.
If the CCW does not reference data (for
example, skip immediate or NOP), the dis-
placement is the same as for the adjacent
CCW. The device type 1s tested, and pro-
cessing divexrges for local or remocte
devices, and for input or output.

For local card readers, the data mode
{EBCDIC or column binary) the stacker bin,
and the record length are determined from
the DCB. Two command-chained CCWs are
generated for each record to be read; a
read CCW followed by a feed and select
stackexr CCW.

After the CCWs have been constructed for
a buffer full of records (count is given in
the DECB), a NOP without command chaining
terminates the CCW list. The length of the
CCW list and the total length of the IORCB
are computed and set in the fixed area of
the IORCB.

If this is the first record of a data
group, or on initial priming after an
error, the device is reset for I/0 and
exceptional condition flags are cleared.
(If not the first record, and an exception-
al condition has been detected on the
device, the DECB is marked "posting reis-
sue” if error recovery 1s in progress, or,
if not in progress, it is marked "inter-
cepted®, and control returns to the
caller.)

Task interruptions are inhibited while
the count of IORCBs outstanding is incre-
mented by 1. Then this IORCB is issued to
I0S by executing its IOCAL SVC. Control is
returned to the calling program.

For remote card readers, an IORCB is
built consisting of alternating read and
write CCWs. Each read CCW brings in a 168~
byte transmission containing two card reco-
rds. With a remote card reader containing
the multiple record feature, each read CCW
will bring in four card records. Following
each read CCW a two-byte write CCW is built
in the IORCB to transmit to the device ack-
nowledgement of the previous read. The
write CCW transmits bisynchronous control
characters (ACKO or ACK1l) which must
alternate for successful transmission. For
purposes of error recovery, the first CCW
built in the IORCB will be a one-byte write
containing a negative acknowledgement

BAccess Method for BSAM, MSAM, TAM and IOREQ

character (NAK). This will be followed by
a NOP command, then an initial write CCW
with an acknowledgement character. The
start CCW will follow and be the first of
the alternating read and write CCWs built
in the IORCB.

A pagce buffer in an RJE GET operation
may contuin up to 24 transmissions (48 card
records). When the maximum number of CCWs
have been reached {or there are no more
records), a NOP command will terminate the
command chain. The lengths of the CCW list
and of the IORCB are computed and entered
in the fixed area of the IORCB.

If no errors are outstandiny, acknowled-
gement responses for the write CCWs are
synchronized, task interruptions are per-
mitted if necessary, and the IORCB is
executed via the IOCAL SVC. <Control is
returned to the caller.

For card punches and local or remote
printers both FORTRAN (ASA) and M control
characters are supported. The record
length for fixed length records is deter-
mined from the DCB. Variable length reco-
rds specify their own length. The length
field of a variable length record is never
printed or punched nor is any control
character printed or punched. Control
bytes are examined in the buffer.

If the device is a card punch, one
punch, feed, and select stacker CCW will be
generated for each record to be punched.

If M control characters are being used the
control character itself is used as the
command code. It must be a write command,
otherwise ABEND terminates the task. If
FORTRAN (ASA) control characters are being
used, the command code is determined by
combining the DCB mode specification with
the appropriate extended ASA stacker speci-
fication. If no control characters are in
use, the mode and stacker specifications
are obtained from the DCB and combined to
create the command code. 1f COMBINE is
specified, the stacker must be RP3, other-
wise ABEND terminates the task.

If the device is a local printer and if
universal character set (UCS) printing is
to be done a reset block data check command
is the first command of a data group. Pre-
ceding the first print command of a data
group is a skip immediate to channel 1 CCW.
If neither FORTRAN nor M control characters
are in use, each CCW created to print a
line will be a write and space after writ-
ing. The number of lines to space is
determined from the DCB. If M control
characters are in use each control charact-
er will be used as the command code in the
one CCW generated for each record. It must
be a write command, otherwise ABEND will
terminate the task. Since FORTRAN control

characters specify skipping or spacing
before printing as opposed to the command
codes which specify only skipping and spac-
ing alone, or skipping or spacing aftex
printing, the control action is associated

with the previous write, or requested «lons
if there is no previons write. Thus, if
FORTRAN control characters are in use, the

first record will cause two CCWs to he con-
structed; one control CCW to skip or space
before printing and one write CCW. FEach
subsequent record will cause the generatior
of one CCW, whose write command code is
also determined by the next FORTRAN control
character. The CCW for the last record to
be printed is a print and no space command.
When the last punch or print CCW has been
built, the list 1s terminated with a NOP,
and the line of processing for the card
reader is rejoined.

If the device 15 a remote printer, the
channel program will consist of alternatin
write and read CCWs. Each write CCW will
transmit a transmission control bleok (TCH.
of data containing up to 7 records f the
device has the multiple record feat ire and
2 recoxrds it it does not. FEach real CCW
will read in bisynchronous acknowledgement
bytes for determining successful transmis-
sion {alternating ACKO and ACK1). 1if this
is the first PUT after an OPEN or FINISH
macro instruction, or if the IORCE is beins
reissued for purposes of error reccvery,
the initial CCWs will consist of writes an
reads of bisynchronocus bytes to ascertain
the state of the device and get the acknow
ledgements (ACKO and ACK1) in synchroniza-
tion and a selection record to select the
printer. In addition, if the device has
the tabbing feature, CCWs will be edded to
write the tabbing record, which will set
the tabs on the printer. (The 1u4-byte
tabbing record is built by Read/Write in
the IORCB preceding the page list pointer;
it is built only once for each ICR(B.! The
write/read CCW pairs will follow urtil an
end-of -transmission (EOT) TCB is reco-
gnized. Then a write CCW is built for the
ECT TCB and a NOP is added to terminate
command chaining.

TAM Read/Write Routine (CZICYM)

During the execution of a systen pro-
gram, where the programmer had cricinally
requested a read or write from or to a ter-
minal, a call is generated that lirks to
TAM Read/Write.

TAM Read/Write functions are accomp-
lished by using the control blocks and
buffer area allocated during TAM Cpen, and
by using the tables internal to TAM Read/
Write. The terminal-computer communication
is accomplished through a buffer area under
control of the channel command words
{(CCWs), loucated in the IORCB.

Section 3: Read/Write 29

TAM Read/Write also issues control func-
tions (orders) to the transmission control

unit (2702). {See Chart BD.)
Attributes: Reentrant, resident in virtual

storage, closed, read-only, privileged.

Entry Points:

CZCYM1 -- Type-1 linkage.
systems routine.

CiCYM2 -- Type~1 linkage.

Entered from

Entered from TAM

Posting.
Input: Register 1 contains the address of

the DECB.

Data Reference: CHADEC, CHADCB, CHADEB,
CHAIOR, CHATOS, CHASDA.

Modules Called:

ABEND (CZACP) -- Abnormal task termination.
CKCLS (CEAQ4) -~ Check protection class.
IOCAL (CEAA0} -- I1/0 call.

TSEND (CEAPY9} -- Time slice end.

Exits:

Normal -- Return to calling routine.
Error -- ABEND macro instruction.

Dgeration: TAM Read/Write initially saves
the general registers. The general regis-
ters are then loaded with pointers to
referenced control blocks, starting with
the data event control block (DECB):

‘f | DE‘B
4
[pece t—{ ocs FL 105

including
HORCSE

The DECB pointer to the DCB is included
as one of the Reads/Write macro instruction
operands. The rest of the pointers are
described in TAM Open.

An initial test is made to see if a non-
privileged user has called TAM Read/Write.
An improper linkage will immediately ABEND
the task.

Any time the command system is used, it
causes TAM Read/Write to be invoked py way
of the Gate routine. Nonprivileged pro-
grams should only use those GATE macro
instructions which link to the Gate rou-
cine. The system program Gate routine then
links to TAM Read/Write. A nonprivileged
program attempting to directly call TAM
Read/Write is an abnormal condition that
causes a branch to ABEND. Two areas of
error testing are then made to assure that
system parameters are properly set, If
either area is not satisified, a return to
the user occurs. If both areas are
correct, TAM Read/Write continues.

36 Part I:

L‘{ SDAT i

The tirst area tested assures that in
the SDAT the number of active IORCBs is
zero. No busy DECE exists for this termin-
al. (A busy DECEB occurs after a TAM REAL/
WRITE is issued and ends during tne ccrres-
ponding TAM Posting.)} If the number of
active IORCBs is zero, the IORCRB active
count field in the TAM Read/Write PSECT
this terninal =.s set to 1 (for this TAM
Read/Write entryl and the csecond area 1is
tested. If the number of active IORCBs 1o
not zero, then the in-use bit in the flag
field of the DECR is set ana a return is
made to the user.

-
O
1

The second area tested asaures that in
the DECB, the type option code specified is
within the rarge of all defined types for
all terminal types, and that the type
option code specified is valid for the
actual terminal type.

If these conditions are met, data from
referenced areas, including DE3 informa-
tion, are merged in TOS (terminal access
operational status table) to reduce paging
time later. The type option i1s then
decoded.

It either of these conditions is not
met, no further testing occurs. Instead,
an error code is moved into the ECB of the
DECB, the user error flag is set in the
DEC# and the SYNAD request is set in the
DECB. A return to the user occurs.

The type option code in the DECB is then
decoded to see if it is a control function
(order). If it is a control function:

e The corresponding CCW generator
generates one appropriate CCW in the
TOS puild area.

e The CCW is moved from the TOS build
area into the IORCB CCW list area.

» The IORCR fixed area is completed.

* An IOCAL 1s issued, which links to I
for this IORCB to be executed. When
the supervisor returns contreol, TAM
Read/Write restores the registers and
returns to its user.

os

Accessing the Channel Program Generatcor:

If this is not a control function, TAM
ReadsWrite begins processing to build a CU#
list appropriate to the cption reguested
for the particular terminal.

TAM Read/Write begins processing for
this requested terminal computer I/0 opera-
tion by first finding the proper channel
program generator {(CPG}. To accomplish
this a program search of internal tables
within TAM Read/Write (illustrated in
Figure 6) 1is required. These tables are:

Access Method for BSAM, MSAM, TAM and IOREQ

uTT

Terminal i
Type (S TLT ADD. _1
LY
Model 1 L
Code ! e
=y TCP ADD. >
TCIT
P
Type o
Option — CPG DISP ——a&-~——-

Figure 6. TAM Read/Write: CPG Location Sequence

e The unit type table (UTT)
¢ A terminal library table (TLT)
¢+ A terminal channel program (TCP)

The procedure to find this CPG in TAM
Read/Write requires as input:

* Terminal information loaded in the DEB
from the SDAT during TAM Open contain-
ing terminal type and model code f{(refer
to Table 8}.

¢ Type option code specified in the DECB
{refer to Table 9).

The sequence (refer to Figure 6) in
finding this CPG is as follows:

1. The code for the mechanism for joining
the terminal to the system (that is, a

[

CPG - TID (R}

CCWG
COWG
COWG

CPG - TIN R) ,

CCWG
CCWG
CCWG

CPG - TIA (W)

CCWG
COWG
CCWG

2702 control unit connection or a
direct multiplex connection) deter-
mines the displacement in the UTT to
obtain the address of the TLT (Table
10).

The model code {that 1is, 1050 or a
2741) determines where in the TLT
(refer to Table 11) the address of the
TCP can be located. This address is
then examined.

a. 1If the entry in the TCP is zexo,
it indicates that the library does
not exist.

b. If the TCP entry is an address,
TAM Read/Write then calculates a
displacement from the TCP, which
is used to get to the appropriate
CCWG.

Section 3: Read/Write 37

Table 8. TAM Kead/Write:

mation from SDAT

Terminal Intor-

Stttk St St T 1
[Model | Line | Terminal | SAD |
I Code | Type j Type {Order |
e yommmmmme omm e 3
H | | High-Order{ Low-Order|

|
iByte 1|Byte 2 Byte 3 | Byte 3 |Byte 4}
i

{

U S b S S S 3
[Byte 1 -- represents a model code for {
fterminal units {10506, 2741, 35, 1052) |
! {
|Byte 2 -- represents a line type for |
{cornection {dial line or dedicated line) |
| |
{High-Order Byte 3 -- represents a |
jterminal control unit type (IBM terminal |
lcontrol unit; type I, type II, telegraph |
jterminal control unit; type I, type II, |
{World Trade terminal contrcl unit) |
I i
| Low-Order Byte 3 -- represents a terminall
jchannel connection type (2702, {
|Multiplexer} |
| {
jByte 4 -~ represents & SAD order (0, 1, |
{2, |

4

3. In tne TCP (Table 12), TAM Read/Write
locates the proper CPG from the type
option code. The TCP is divided into
three main fields which are:

¢« Terminal control information table
(TCIT)

¢ Channel program index table (CPIT)
e Chamnnel program generator {(CPG)

The terminal control information table
{(TCIT) in the TCP contains data on addres-
sing, polling, EOL sequence characters,
etc., (Table 13).

The channel program index table (CPIT)
{refer to Table 12) determines from the
Type option code (stripped of the repeat
bit if any) where the corresponding CPG
displacement is.

The CPG is obtained from the displace-
ment in the CPIT. This displacement value
is added to the TCP address to generate the
address of the CPG (Figure 6).

Makeup and processing ©of the Channel
Program Generator: A CPG contains channel
command word generators {(CCWG) (refer to
Table 14).

A breakdown of each of the CCWG sections
is shown in Table 15.

To process the CPG, each sequence cycle

begins by sequentially testing the CCWG

38 Part I: Access Method for BSAM,

butfer allocation tlag bits shown in Table
16. For each flag that is on, TAM Read/
Write branches to the indicated associated
routine to perform the indicated required
function. These functions are used in
generating a CCW or updating information
needed to construct an IORCB. Overall
these functions include allocating space in
the IORCB buffer area and moving into this
buffer:

¢ Begin ands/or end control characters

e Space for response characters

e Cutput data

* Data translation of cutput data
¢ Space allocation of output data

The last buffer allocation flag is an
end flag. If it is not set, the developed
CCW is then moved {see note below} into the
build area of TOS where the command code
and flag fields are obtained from the CCWG
area and the count and relative displace-
ment address fields are obtained from regi-
sters. The logical function code is moved
into the logical function area of TOS to be
used later by TAM Posting. The next
sequence cycle in this CPG then repeats, by
sequentially testing the next CCWG buffer
allocation flags.

If the last buffer allocation flag is
set, TAM Reads/Write prepares to terminate.

Note: A developed CCW is not moved into
the build area of TGS and the logical func-
tion byte code is not moved into its respe-
ctive location if the following conditions
are present in the CCWG:

e Command code field is zero
¢ End allocation flag is set
¢ Inhibit allocation flag is set

TAM Read/Write then prepares to termin-
ate since all the allocation flags in all
the CCWGS in the CPG have been tested. To
accomplish this termination:

* The message in the buffer area cf the
IORCB is translated to the terminal
character set code, for all write
operations.

¢ The CCW list is moved from the TOS
build area into the ICRCB CCW list
area.

s The IORCB fixed area is completed.

MSAM, TAM and IOREQ

Table

1Optxon
| Code
{ (Hex)

} ______
| 02
,i

|

|

03

o4

et e s s — =

06

07

08

09

oA

0B

OE

g T s i S g Mo e e 3ot s o i = = e PO o e o e e i s

OF

64

65

e e s S e S e o e e o s e oo S o €

| S

9. TAM Read/Write: Type Option (Hex and Mnemonic) Codes and Description
(Part 1 of 2)

Option
Code

e e . i o s S g e i e s e mone
+3 <
2z =D
P z W

=)
0
2z

3
(2]
o

e :
=
2 X @)

=]
4
o)

-3
=
>

e e e e e s it o e e i e S b e e i e . . T o it . St i e O s i S i B S R e i
3 .

|
|
!
!
i
!
;
‘,
i
i

1
1
)
|
1
I
]
I
-

________ [I [—

. 1
Mnemonic)

|

{ bescraption

| Read In%tia} with Dial: This option indicates that an automatic dial
}connecthn 1s to be made with the terminal. The dialing digits are
jlocated in the terminal entry list (DFTRMENT). If the terminal type

|requires polling, the necessary polling sequence characters are
|generated.

|
{Read initial with dialing/rep=at.
|
|Read Initial: It assumes that the line connection has been previously
[made. If the terminal type requires polling, the necessary polling
|sequence characters are generated.

|
jRead initial/rep=at.
|
jRead Continue: This option is specified when pollan is not required.
|It may be used for terminals previously polled and in a transmit state.

|
|
|
|
{
|
|
|
|
|
I
|
|
|
|
! |
|Read continue/repeat. {
|
|
!
{
|
|
|
|
{
{
|
]
|
|
|
|

f
jWrite Initial with Dial: This option indicates that an automatic dial
jconnection is to be made with the terminal. The dialing digits are
llocated in the terminal entry list (DFTRMENT). If the terminal type

| requires addressing, the necessary addressing sequence characters are
{generated.

|
|Write initial with dialing/repeat.
]
{Write Initial: It assumes that the line connection has been previously
imade. If the terminal type requires addressing, the necessary
jaddressing sequence characters are generated.
|
|Write initial/repeat.
|
jWrite with Response: It assumes that the line connection has been
| previously made. If the terminal type requires polling and addressing, |
|the necessary sequence characters are generated. This option provides |
|the ability to output a message to a terminal and receive the |
iterminal's next input record or line. The maximum output message size |
{is 1 to 32,767 characters. The maximum input message is one logical |
{record or line as specified by terminal type. |
|
|

|
{Write with response/repeat.

| |
|The above types with the repeat option will automatically retransmit or|
|request retransmission of messages in error if the terminal is equipped|
jwith error correction facilities. A predetermined number of retries as,
|specified by terminal type will be attempted for each message
Jtransmitted in error. The posting of uncorrectable errors will 1nc1ude§
{appropriate error informatior. |

AUTOWRAP|On accepting this order, the Transmission Control Unit wraps the output

jof the addressed line to the input of line 0. The command within the
|channel operates as a write.

DISABLE |[On accepting this control order, the Transmission Control Unit resets

|
|
i
|
|
|the enable latch within the line adapter of the addressed |
|communications line. No data transfer occurs. |
|
|
I
i
1

ENBLASYN{On accepting this control order, the Transmission Control Unit sets the

jenable latch within the line adapter of the addressed communication
{line. No data transfer occurs.

Section 3: Read./Write 39

Table 9. TAM Read/Write: Type Option (Hex and Mnemonic) Codes and Description
(Part 2 of 2)

.
jOption|Mnemonic
jCode | Option

| (Hex)

ENBLSYN |On accepting this control order, the Transmission Control Unit sets the|
{enable latch within the line adapter of the addressed communication |
{line. No data transfer occurs. |
! !

PREPARE |This oxder may be used in a contention type communicaticons system to i
{indicate to the processor when data is arriving. When a valid start |
|bit is detected by a line instructed to prepare, a character is strobed}
joff. If at stop time the line is at mark, the prepare command 1is i
jterminated with channel end and device end status. The character |
jassembled is not transferrea tc the nmultiplexor channel. If the line |
|is at space, a timeout 1is started. 1f the line returns to mark before |
| the timeout is complete, the prepare command 15 terminated with channelj
lend and device end. The prepare command is terminated when the timeout|
loccurs, indicating an open line condition with channel end, device end,!
}and unit check status and intervention required in the sense byte.
|

SADONE |On accepting this contrecl order, the Transmission Control Unit sets the
jterminal control (TC)} field within the addressed ILCW to one, so that
Jthe terminal control with the internal address equal to one is
jassociated with the addressed communications line. No data transfer

i
4
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
{
|
| joccurs.
i
|
|
i
|
|
|
|
|
|
i
|
|
|
|
|
|
|
|
|
A

o o o snm S b s 125

I

SADTWO |On accepting this control order, the Transmission Control Unit sets the}
|TC field within the addressed LCW to two, so that the terminal control |
|with the internal address equal to two is associated with the addressed|
jcommunications line. No data transfer occurs. {
|

SADTHREE |On accepting this control order, the Transmission Control Unit sets the
{TC field within the addressed ICW to three, so that the terminal
jcontrel with the internal address equal to three is associated with the
jaddressed communications line. No data transfer occurs.
|

SADZER |On acceptance, the Transmission Control Unit will set the TC field
jwithin the addressed LCW to zero so that the terminal control with the
|internal address egqual to zero is associated with the addressed
|communication line. No data transfer occurs.

I

BREAK {On accepting this order, the addressed line transmits a continuous
|space signal. Bytes transferred from the channel to the addressed unit]
jmust be all zeros. To provide control over the length of space signal, |
la byte count must be sepecified by the program. i
i

— - —_— e e i i e e e - o d

6B

6C

e - T T —r—— 2 v ookt o

|
i
|
|
i
a
%
|
g
i
|
|
i
i
|
|
|
1
l
|
|
|
|
1
|
|
|
|
|
|
|
[
i
|
|
|
|
| ©6A
[

|

|

L.

Table 10. TAM Read/Write: Unit Type Table Table 1i. TAM Read/Write: Terminal
Format Library Table Format (for 2702

S ——1 TLT)

| 2702 TERMINAL LIBRARY TABLE {(TLT) ADDRESS

____________ ————

r
| {11050 TERMINAL CHANNEL PROGRAM (TCP)
12701 TLT ADDRESS | ADDRESS

!
{ MULTIPLEXER TLT ADDRESS

%
i
|]
|2741 TCP ADDRESS i
i | 35 TCP ADDRESS }
| SELECTOR TLT ADDRESS L 1

2701 OR SELECTOR TLT ADDRESS

|Note: Unit Type Table (UTT) is specified
{in READ/WRITE.
| V.

|
!
!
|
]
|
|
|
!
q
|
|
E

40 Part I: Access Method for BSAM, MSAM, TAM and IOREQ

Table 12. TAM Read/Write: Terminal Con-

trol Program Format

[T T T e e e 1
| I
| TERMINAL CONTROL INFORMATION TABLE |
| |
oo i
|
| CHANNEL PROGRAM INDEX TABLE (CPIT) i
| |
| CPG DISPLACEMENT FOR TID#* (R) |
| |
i CPG DISPLACEMENT FOR TIN# {R) i
| |
| CPG DISPLACEMENT FOR TCN* (R) |
i |
| CPG DISPLACEMENT FOR TID®* (W) i
| |
| CPG DISPLACEMENT FOR TIN®* (W) {
| |
§ CPG DISPLACEMENT FOR TCN#* (W) {
|]
| CPG DISPLACEMENT FOR TIA* (W) |
| |
b i
| |
| CHANNEL PROGRAM GENERATOR for TID#* (R) |
| i
| CPG FOR TIN* (R) !
| |
| CPG FOR TCN* (R) |
] |
| CPG FOR TID* (W) !
| |
| CPG FOR TIN* (W) i
| |
| CPG FOR TCN* (W)
| |
] CPG FOR TIA* (W) |
| !
T - - 1
|*RAll CPG displacements need not be i
| required for the terminal type. These |
| displacement fields are zeroed and the |
| corresponding CPG fields do not exist. |
e e _ 3

e An IOCAL is issued, which links to the
supervisor to initiate the terminal
computer communication, under control
of the IORCB CCW list and through the
IORCB buffer area.

When the supervisor returns control, TAM
Read/Write restores the registers and
issues a return to the user, if the posting
flag is not on.

If the IORCB buffer data area was not
large enough to complete the TAM Read/Write
operation, it is necessary for continuous
IORCBs to be developed for one DECB.
Although the initial TAM READ/WRITE was
from the user, subsequent IORCB entries
would be from TAM Posting until the opera-
tion is complete. These TAM Posting calls

Table 13. TAM Read/Write: Selected Ter-
minal Contrcl Information Table
Entries

[3

{Maximum Option Amount; Begin Control {
|Character Count; Begin Control Character. |
!

|Maximum Cnaracter Tet Amount; Polling
|Character Count; Polling Characters.

|
|Prefix Count; End Control Character
|Count; End Control Characters.

[
|Read End Of Line Sequence Count;
|0f Line Sequence Character.

!
|Maximum Number of CCW; Addressing
|{Character Count; Addressing Characters.
|
|TAM READ Data Set Length; Control
|Character Table Address.

|
|Write Error; Read Error; Read Error
|Positive Response.

|
{Control Count; Positive Response;
{Characters.

|
|
|
I
|
{
Read End|
|

|

|

|

|

|

|

{

|

|

|

i

|

{ . {
| Maximum Count Of Line Control Characters; |
|Read Error Negative Response; Read Error |
|

!

|

!

i

!

|

|

|

l

f

|

|

|

g

|

i

|

!

i

i

i

{Negative Response Characters.

|

| TAM WRITE Data Set Length.
1
}Polling Response; Addressing Response
{Count; Addressing Response Characters.
l
|Repeat Option; End Of Line Sequence
|Count; End of Line Segquence Characters
| (20 Characters Maximum).

!
|Maximum Buffer & CCW Size; End of Card
|Sequence Count; End of Card Sequence
{Charzcters.

!
|Terminal Character Set Address; Translate
land Test Function Table Address.

!
|{Continue Count; Text Control Character
|Count; Text Control Characters.

{
|Failure Count; End of Message Sequence
jCount; End of Mcssage Sequence Characters
| (20 Characters Maximum).

to this program cause a return ta TAM Post-
ing under direction of the posting entry
flag in TOS.

ILOREQ Routine ({(CZCSB)

During the execution of a user's pro-
gram, where the programmer had originally
issued an IOREQ macro instruction to gener-
ate an I1/0 operation on a device, a call is

Section 3: Read/Write 41

Table 14. TAM Read/Write: Channel Command
Word Generator Section

p e e e e T T T T T T T e e e e e e 1

| Name | Commuents |

R e e e i

{Command Code |Command code for a particu-|
jFrield jlar operation. This tyte
| |is moved into the command
lcode field of a CCW list
jlocated in the build area
jof TOS.

}

[This field is reserved for
jfuture expansion.

Unused rield

{Displacement of endingy
jpoint to CCWG when
fcompleting a CCW or a
jregeneration of a
lprarticular command
jgenerator when multiple

| IGRCBs are required.

|

|Flag Field |Flags required for a parti-
{Logical Func-jcular command generator.
|tion Code |Requirea for TAM Posting
jField jroutine. The byte is moved
{into the logical function
jarea of TOS.

Uisplacement
Field

Buffer Allo-
cation Flag
Field

|Kequired in building the
|CCW. Allows additional
{routines to pe called to
jfi1li in tae buffer area of
{the IORCB when a CCWG is

|processed.
Lo P

B0 o et s s o i — e o — o — T cp— i Wil SO (i M g o s . s MO o i s,

generated that links to IOREQ. A system
routine may also directly call IOREQ at a
second entry point.

IOREQ uses control blocks and buffer
areas that are allocated during IOR OPEN to
build channel command words in the IORCB.
{See Chart BE.)
resident in wvirtual

Attributes: Reentrant,

storage, closed, nonrecursive, read-only,
privileged.

Entries:

CZCSB1 -- Type-2 linkage. Entered from

user IOREQ macro instruction.

LZCSE2 -- Type-1 linkage.
sy~ tem.

Entered call by

Input: Register 1 contains the address of
a two-word parameter list:

Word 1 —- Address of the DECB.

word 2 -- Address of main storage furnished

by the privileged user for IOREQ portion
of DCB and for IORCB.

42 Part I: Access Method for BSAM,

Table 15. TAM Read/Write: Channel Command
Word Generator Format
(e e e YT T T T T T T T T T T T T s e i}
| Command Code |[See Table 4.

| I

|Displacement |Completed by I10S5.

| |

| Flags |bata chaining, command
jchaining, suppress length
jindication, skip, proaram

Jcontrol interruption.
i
Logical Func-jvial end controil,
tion Code |data 1in,
|response,

i

{

|

|

i

!

!

|

]

data out, |
read error i
write error |
{respons:, adaressing, |
jpolling, aldress resovonse, |
|polling response,]
|end control, {
|negative response, {
jerror message. |
|

|

{

control,
exrror TIC,
write

—— s — s S iy — — — T o W

|Buffer Allo-

I
|See Table 16.
Jcation Flag |
i

The second parameter word is used only
for entry at CZCSB2.

Data Reference:
CHAISA, CHAIOR.

CHADEC, CHADCB, CHADEB,

Modules cCalled:
CKCLS (CERQM4) -- Check protection class.

IOCAL (CEAAQ) -- I/0 call.

Exits:

Normal -- Return to calling routine.
Error -- ABEND macro instruction.

Operation: A user originally issuing an
IOREQ macro instruction enters IOREQ to
edit the VCCW list. IOREQ initially saves
the general registers and then loads them
with pointers to referenced control blocks.
This starts with the DECB.

DECB = DC8 DeB

The DECB pointer to the DCB is included as
one of the IOREQ macro instruction
operands, and the other pointers are
described in IOR OPEN. IOREQ then performs
the following functions:

* Validates user parameters.

¢ Checks that the DCB identification is
valid DCBID=*%*%.

MSAM, TAM and IOREQ

Table 16. TA Reaus/Write: DLuffer Allocation Flag Bits of CCwG

[ittt T T T T T T T e s 1
Bits Name { Comments |
T e e e e 3
| 48 junused jReserved for future expansion. {
| | |

| 49 JR.gan Control 1o No control characters reguirted. 3
1 | il Begin vontrol characters required betore polling or addressing 1o inituated, |
{ | i Chnatacter:s. are obtained from the TCT and woved to butter area an CHATCK, }
t | |

| %C |En1 Control |0 No control vharacters required. :
| i it End contrcl characters required after pollinj or addressinag has been |
| | | initiated. Characters are obtained from the TCI and moved to puffer area inj
| | i CrAIOR. ;
| { | i
| 51 jText Control H] N cortrol characters reguired. |
| | i1 Text contr ol cheracters required after end control characters. Characters |
} [| dare obto. % trom 'ne TCI and noved to buffer area in the CHAIUR. |
| | |

| 52 |Data Out {0 NO deta transiitred to terminal. l;
{ i 11 Data to be moved from user area (address in CHADECO) to butter arra in |
| | i CHAIOR (data 15 tested tor function control characters). Functinn Contrnl 1
1 i { Cnaracters ard related codes which are not recognized by different terminal |
| i { types are Jdedoeted from messagqe when moved to the batter ares in CHATOR. i
i i 4 Translating data to terminal character set cade 1o done at completion ot i
! i | CHATOkK. |
I i i i
bS53 ilate In LU NO data tranamitted to CrU. i
| | | Data to be transmittea from terminal to CPU. A buffer arca is rrserved in o |
| i H the ChAICR to accept the message. The message 15 not tested for function |
| | { control characters. Translating data to EBCDIC is accomplished .n TAM i
{ { i POSTING routine. |
| | i |
i 5S4 |Reag Error ronitiveil No kead Error Positive hesponse characters reqguired. |
i | Res ponse il Read rrror Positive Response characters required after transmission of data |
| t l to CPU. Characters are obtained from the TCT and moved to huffer area of |
! ! | the CHAIOR. |
| { | |
| 55 |Read Error Negative|U No kerad Error Negative response characters required. {
{ |Response i1 Read Error Negative Response characters required atter transmission of data |
| i | to CPU. Characters are obtained from the TCI and moved to buffer area of {
i i | the CHAIOR. |
| b | i
| 56 lWrite Error 10 NO Write cwrror control characters required. {
| | kesponse it Write Error control characters are transmitted by the terminal control unit.j
| | | The count is obtained from the TCI and space allocated in the buffer area of i
| | | the CHAIOR. i
| l i !
} 57 |Addressing }0 No addressing required for a terminal. |
{ | i1 _Addressin; required, obtain addressing characters from the terminal entry }
| { { list (DFTHMENT-address located in DECB). If not present, addressing |
| i | characters are obtained trom the TCI. Characters are placed into the buffer]
| i] area of the CHAIOR. |
| I { !
| 9% {Pelling i No olling required for a terminal. 1
{ | i1 Polling required, obtain addressing characters from the terminal entry list |
| { i {DFTRMENT-address location in DECB). It not present, polling characters are]
| t { ~btained from the TCIB. Characters are placed in the bhufter area of the |
| | i THAIOK. |
| | | |
{ 59 |Addressing Response|0 No addressing response reguired. |
| | 11 Addressing required, obtain characters trom the TCIB. Characters are moved |
| i } into the buffer area of the CHAICR. H
| | { i
{ 6C |{Polling Response {10 No polling response required. |
{ i i1 Polling required, obtain characters from the TCIB. Characters are moved {
i { | into the pbuffer area of the CHAIOR. i
i		
61	Inhibit 10 current cnannel command werd will be developed and placed into tre pbuild	
		area o the Crnt o5,
R i i1 Inhipit currern: ~hannel comrmand word from being developed. i		
l	l i	
62	[Continue i0 Follow ncrmal : -iuence of CCWG operation. i	
	ji Nurmal sequence of CCWG 1o changed. It permits return to a previously i	
		executed CCWG.
!		
&3 {End Y Continue normal sequence of CCWG.		
	i1 Terminates the CCWG list.	
[SR, A e e e e e o e e e e o e e e e 1

Section 3: FEead/Write

43

® Checks that the DEB identification is
valid DEBID=# (.

® Stores address of DECB ain DCBTMP (work
area)l.

s Clears the fixed portion of the IORCB.

s Clears the outstanding IOREQ requests
(DECB Queue) if the DEB flag (DEBNF7)
is set. This indicates that the pre-
vious CHECK macro instruction caused an
exit to SYNAD. Thexefore while execut-
ing the previous SYNAD routine the user
must reissue desired purged DECS8s.

Note: If either the DCEB or DEB identifica-
tion is not wvalid, an exit to ABEND occurs.

Pre-edit checking now occurs and, if
satisfactory, IOREQ begins the edit phase.
This pre-edit checking includes the
following:

1. Check if the IORCB can be executed.
If a previous operation set the DEB
flag (DEBNF1) to indicate an inter-
cepted error, the IORCB is marked
intercepted and a return occurs. The
IORCB cannot be executed at this time,
but the DECB is entered in the gueue
and the IOREQ should be reissued by
the user.

2. Check if the DECB is valid. A return
occurs if the DECB has any of the fol-
lowing invalid conditions:

e The DECB is in the wait state (DECB
not ready).

e The DECB is in use (DECB active).

¢ The queue of pointers in the DEB is
full (DEBNPC is exceeded).

IOREQ then begins the edit phase. This
edit phase consists of a preliminary pass
through the VCCW list pointed to by the
IOREQ macro instruction to determine the
validity of the VCCWs. 1In addition, the
amount of space required for the buffer or
page list entries and the VCCW list is
determined.

If buffering is requested by the IOREQ
macro instruction, the following pointers
and countexs are also initialized:

e A pointer to the lowest address of a
read request VCCW, used to determine
the low-order buffer address needed for
the read request.

e A pointer to the highest address of a
read request VCCW, used to determine
the high-order buffer address needed
for the read request.

44 Part I:

e A counter containing the amount of
buffer space needed in the I10ORCR tar
read requests. For these pead
requests, the amount ot bulter space as
the contiguous difference between the
high and ilow-address buffer pointers.

Tests are ilso made in this edit phase
to assure that chaining rules are not vio-
lated. Chaining rules are listed in IORE(:
VCCW section of Assembler User Macro
Instructions, GC2Z28-2004. If any rules are
violated, a return to the user occurs. The
user*s program has been checked for validi-
ty within IOREQ but a system program that
calls IOREQ directly, enters at this second
point and therefore is assumed to have the
VCCW list built correctly without the need
of editing. However, on IOREQ recognizing
a system program entrance, it branches to
the previous phase only to set up buffer
addresses and values or to build page list
entries. During this build phase a dif-
ferent sequence is followed depending on
whether or not buffering is specified.

If buffering is requested:

e The start address of the IORCB buffer
is set.

e The buffer total length is set.
¢ The start of the CCW list is set.

The CCW entries are generated in the
ICRCB using the VCCW list as input, and
space is allocated in the buffer area. In
addition, in write and control requests,
data specified in the fields of the current
VCCW are moved into the buffer. 1If the CCW
is a transfer-in-channel (TIC}, the displa-
cement address of the CCW is set to point
to the desired CCW (displacement is from
CCW origin).

If buffering is not requested by the
user, the appropriate addresses in the
IORCB are set from values calculated in the
edit phase (the previous pass through the
VCCW list). The number of page list
entries is calculated for the privileged
request by a special branch to the initial
edit section. For read, write, and control
requests, the linkage is made from the CCW
page list pointer to the appropriate page
list entry, by searching through the page
list for an address which has the same sea-
ment and page in the CCW.

For both buffered and nonbuffered
IORCBS, the following also occurs:

e The length of the IORCB is cbtained by
adding to the fixed area, the buffer
area (either buffer or page list
entries), and the CCW list length.

Access Method for BSAM, MSAM, TAM and IOREQ

e The length of the IORCB, 1f greater
than the maximum allowed, causes I1OREQ
to return to the user with an error
code in register 15.

® This pass through the VCCW list moves
the op-code count, and flag fields to
the appropriate CCW list entry in the
IORCB.

e The protection key and other flags are
set in the IORCB.

The system programmer that entered at
the second entry point now returns with a
return code of zero in register 15. Hence
to execute his IORCB, the system programmer
must update the required fields and issue
his own IOCAL. The sequence IOREQ follows
for the IOREQ macro instruction user is:

Test the 10C flag in the last VCCw. If
set, this IORCB must be chained to the
next IORCB.

Move the DECB address into the gueue by
updating pointers to this DECB as well
as updating the number of IORCBs and
DECBs that are outstanding.

Determine if the IORCB is not to be
executed so that the DECB can be placed
in queue and marked intercepted.

Issue the IOCAL macro instruction.

Return to the user.

Section 3: Read/Write 45

SECTION 4: POSTING AND CHECK

POSTING AND CHECK PROCESSING

The following routines describe posting
and error processing for SAM, SAM direct
access, MSAM, TAM, and IOREQ, and the
operation of the Check routine.

SAM Posting and Error Retry Routine (CZCRP)

This routine processes a synchronous I/0
interruption caused by the termination of a
GAM I/0 operation. It posts the completion
code in the event control block (ECB) of a
data event control block (DECB). In addi-
tion, depending upon tne device, this rou-
tine may perform other post-1/0 activities,
such as adjusting magnetic tape block
counts. The retry/recovery operations are
4lso incorporated into this routine; they
are employed if the channel status word
{C5W) returned at the most recent interrup-
tion reveals an abnormal end condition.
(See Chart CA.)}

Attributes: Reentrant, nonrecursive, resi-
dent in virtual storage, privileged.
Entry Point: CZCRP1 -~ Main entry point

via type-1 linkage.

Input: The channel status word (CSW) and
sense information pertinent to the I1I/0
operation are contained in the ISA.

Data References: CHADEC, CHADEB, CHADCB,
CHAIOR, CHAISA, CHASDA, CHASDT.

Modules Called:

VMER (CZRX2)} -~ Virtual memory error
recording.

VMSDR (CZCRYY) ~- Virtual memory statistic-
al data recording.

ABEND (CZACP1) ~- Abnormal task
termination.

OLE (CZCJITQ)
monitor.

-- Build queue in task

WI0 and WTOA (CZABQ1l) -- Write message to

operator.

ASCII Translation (CZCWA1l) -- Translate
ASCII data to EBCDIC.

DA Error Retry (CZCRH1) -~ Direct access

error retry routine.

46 Part I:

Reset (CEEAH) -- Permit task to access I/0
device.

SYSER {(CEAIS) -- System error processor.

Exits:

Normal -- Return to task monitor.

Error -- An ABEND is issued if the I/0

device is not tape or disk.
issued if:

A SYSER is

¢ A program check has occurred.

e A protection check has occcurred.

e A specification error has occurred.
® The CSW has a status of X°*00°".

e There was no entry for the SDA.

* A command reject occurred because of
an invalid op code.

Operation: SAM Posting examines the com~

pleted IORCB and either posts the DECB ox

passes control to a device-dependent error
routine.

Completion of the requested I/0 is sig-
nalled by the device via an I/C interrup-
tion that 1is associated with the IORCB by
the Supervisor.

The completion information, along with
the IORCB, is passed back to the requesting
task as a synchronous I/0 interruption
enqueued on the TSI. During the interval
between request and response, the task
could have generated other I/0 reguests,
and possibly had its time slice ended.

SAM Posting requires that all interrup-
tions be masked. It will process a synch-
ronous I/0 interruption to completion,
regardless of the interrupted operation.
SAM Posting will process only one synch-
ronous I/0O interruption at a time for a
given task.

The I/0 Supervisor is expected to return
unexecuted IORCBs when there is an 1/0
interruption caused by hardware failure, a
unit check, or a unit exception condition.

SAM Posting expects the following fields
of the CHADEC Table (DECB) tc be zeroced:
ECB, BSJ, SB1, SB2, FLG, CSE. Under error
conditions, it examines BSF to determine
how many sense bytes from the ISA are to bhe
saved for user reference. These are placed

Access Method for BSAM, MSAM, TAM and IOREQ

in the last field of the DECB (normally BSF
will contain X'02*, indicating all eight
sense bytes are to be saved).

For the Control routine (CNTRL), IORCB,
Rewind, and Rewind and Unload, the DECB
pointer in the IORCB will equal zero. The
Check routine will clear the Error flag in
the DEB to zero upon return from the user's
SYNAD routine.

In handling the I/0 synchronous inter-
ruption, the task monitor performs short
save to provide working registers, and
executes a type-1 call for the appropriate
posting and error recovery routine. SAM
Posting is the proper routine fcr SAM.

SAM Posting first detexrmines if the
IORCB has been executed. An IORCB would
not be executed if the preceding I1/0 opera-
tion for that device had resulted in an
abnormal completion. (Such a check must be
done to handle error conditions properly
when multiple IORCBs can be outstanding for
one device by one task.) If the IORCB was
not executed, the IORCB is reissued (via
IOCAL), or the DECB is posted to indicate
*Intercepted®” status. The choice depends
upon whether the preceding condition was a
permanent error.

NORMAL COMPLETION: If the IORCB was
executed, a test for normal completion is
made. If normal, the event control block
of the DECB is posted to indicate normal
completion. SAM Posting also performs
other optional services which can only be
done after completion of the I/0 operation:

e Data Movement - Movement of data from
an IORCB buffer to the user area for an
input operation can be requested by the
user.

e Magnetic Tape Block Counts and Unit
Exception Flag - SAM Posting increments
(for forward tape movement) or decre-
ments (for backward movement) the prop-
er counts. The routine also sets
appropriate flags for unit exception
conditions.

e Direct Access Read Variable Length
Record and Pending C.W.E. Flags - The
routine will perform the appropriate
address movement and flag setting.

OTHER THAN NORMAL I/O COMPLETION: I0S will
lock the device to further 170 by this
task, until a Reset SVC is issued by SAM
Posting. This Reset SVC, when issued, will
set off the suppression flag so that the
task may resume I/0 activity on the device
in question.

If the 1/0 was not normally completed,
further tests are made and control is
passed, if necessary, to device dependent
error recovery routines which, it possible,
will i1ssue a retry 1/0 request. Each of
these device dependent error recovery rou-
tines subsequently returns to the posting
routine.

Unrecoverapie (Hardware) Error Ccmpletion -
General {(non-device-dependent) Processing:
If the CSW information associated with the
executed IORCB does not indicate comple-
tion, the routine searches for an immediate
hardware indication of unrecoverable error.

If the error or condition is pot vyet
considered to be unrecoverable, the routine
will issue a Reset SVC to I0S. The purpose
of the Reset SVC is to "unlock™ the device
queue previously “"locked" by the 1/0
Supervisor.

1f the error is unrecoverable,
appropriate flags,
set.

the
addresses and counts are

Recoverable Exrror or Exceptional Condition
(non-Error) Completion - General Proces-
sing: This condition is indicated by the
Unit Check or Unit Exception flags.

Recoverable Error or Exceptional Condition
Completion - Device-Dependent Processing:
If possible, depending on the device, N
retries over the original path and also N
retries over 3 alternate paths will be
made, until a successful retry or until the
set maximum of retries is reached. 1In the
latter case the failure is termed a "hard"
failure. The VMER routine is called to
record data associated with this "hard®
failure.

Appropriate flags are set, messages are
put out, counters are incremented, informa-
tion is saved, and routine linkage is
effected.

Device-Dependent Error Procedures: The
following are general notes on the device
dependent error procedures:

Exror indication: When certain malfunc-
tions occur, the CSW will contain more than
one error indicator. Generally, only one
of these properly describes the malfunction
while the other(s) indicate secondary
effects. Similarly, some devices/control
Unit errors can cause more than one sense
bit to be present.

Original and alternate path retries: For
some error conditions, there are no origin-
al path retries. However, there are always
alternate path retries. An original path
retry utilizes the same channel and device
as that used in the original erroneous I/0

Section 4: Posting and Check 47

operation. An alternate path retry uses
the same device, but goes through a 4if-
ferent channel.

Number of retries: The number of retries
is dynamic; the installation, however, not
the user, determines the threshold rumber.
In the descriptions of the error retry pro-
cedures, in most cases N = a + b where a is
the threshold number, and b is a constant
for that particular approach to recovery.

User's SYNAD routine: If appropriate, SAM
Posting will set the SYNAD flag in the
user's DECB. The user®'s SYNAD routine is
his own "error® routine. It does not,
however, attempt error recovery on 1/0
devices, but rather determines if the user
wants to terminate or continue processing.

Return codes from error recovery routines:
00 - Retry in progress.

04 - Permanent error encountered, no
retry.

08 - Normal completion.
0C - Complete with errorxr without retry.

10 - Complete with error after retry.

Rebuild of the IORCB:

The IORCB will be in page 0, segment 0
of virtual storage (that is, within the
interruption storage areal. The issuance
of an error retry IORCB will consist, in
the main, of initializing certain fields
automatically, conversion of the CCW list
from real core to virtual storage
addresses, appending of the CCW list if
required, and initialization or modifica-
tion of other fields within the IORCB. The
purpose of these actions is to provide I0S
with an input IORCB, that is, an IORCB with
no main storage references, and no past
action flags set (such as start 1/0
failure).

The need for appending a channel program
with additional CCWs is determined in
accordance with error retry requirements.
The appendage will be made to the end of
the channel program. If additional CCWs
are added to the IORCB, the following
fields will require incrementing orxr other
modification:

1. IORLN -~ IORCB length; calculate the
new value in accordance with the numb-
er of additional CCWs in the appended
list.

48 Part I:

2. IORCL -- CCW list length; increment by
the number of additional CCWs

appended.
3. IORST -- Relative origin of ®"Start
CCcW®"., Modify this field in accordance

with the error retry procedure.

4., IORSC -- IORCB Software Command Chain
flag set if addition to the CCW list
requires it.

MAGNETIC TAPE - 2400 TAPE SERIES ERROR
RETRY PROCEDURE: The device-dependent
error procedure for the 2400 tape series is
described as follows:

Unit Check (CSW bit 38): The routine
checks the sense byte information to deter-
mine the cause of the unit check condition.
Sense byte information will be found in
segment 0, page 0 of virtual storage.

Next, the routine checks the corresponding
bit position in the IMSK field of the DCB.

Load Point Sense Bit Only: The routine
will set Complete With Error in the ECB,
set on the Error flag, and move the CSW and
the first two sense bytes from segment 0,
page 0, to the DECB. The tape block count
will be decremented by 1 and DEBMSK in the
DEB will be incremented by 1.

Load Point and/or Other Sense Bits Set:

1. Bus Out Check (Byte 0, bit 2) -- The
retry will consist of repositioning
the tape, if required, and a repeat of
the failing CCW. If tape motion takes
place and the failing operation is a
forward or backward space of record or
file the error will be deemed unrecov-
erable. The routine will set the Per-
manent Error indication in DCBIFL, set
the Permanent Error flag in the DEB,
and provide a return code of °04°.

2. Equipment Check {(Byte 0, bit 3) -- Bit
7 of sense byte 3, or one or more of
the bits of byte 4, will also be set
to give more detail about the hardware
failure. There is no original path
error retry. Since data transfer and
tape motion are indeterminate for ail
equipment checks, there will be no
alternate path error retry. The rou-
tine will set the Permanent Error
indication in DCBIFL, set the Per-
manent Error flag in the DEB, provide
a message to the operator, and provide
a return code of *04° in gen-aral
register 15.

3. Intervention Required (Byte 0, bit 1)
-—- If the addressed tape unit is non-
existent, (indicated by sense byte 1,

Access Method for BSAM, MSAM, TAM and IOREQ

bit 2 equal to zero), the routine will
try an alternate path.

The routine will also perform ABEND
processing for a control rout:ine IORCB
when the operation is other <than
rewind and unload (RUN). If the
operation is RUN then a return code of
zero will cause a return to the task
monitor. For a non-control routine
IORCB, if the selected tape unit is in
the end-of-tape area, the routine will
set Request for Synad in the DECB and
the Error flag in the DEB. It will
also set Complete With Error in the
ECB, move the CSW to DECCSW, move the
first two sense bytes to DECSBO and
DECSB1l, and all eight sense bytes to
DECASB. The routine will then set a
return code and a message will be sent
to the operator to demount the tape.
If the selected tape unit is not in
the end-of-tape area, execution of the
CCW list will be resumed from the
point of interruption. A message will
be sent to the operator to ready the
tape unit, and the routine will set a
return code of zero after a return
from the IOCAL routine.

Overrun (byte 0, bit 5) -- Data
transfer will be stopped. Retries
over the original path will consist of
repositioning the tape and re-
initiating the failing command. This
error should not be associated with a
control operation and, if such should
be the case, the routine will request
an abnormal termination of the task.
If the error retries fail, the routine
will send a message to the operator.

Data Check (byte 0, bit 4) -~ Bits 0
through 3 of byte 3 will be set to
give more specific detail regarding
the data check.

a. Control Operation -~ If the fail-
ing operation is write tape mark
{WTM) , then original path error
retry will be attempted N times.
The error retry procedure will
consist of backspacing the tape
one block, followed by an erase
gap command, and then a repeat of
the failing write tape mark opera-
tion. 1If the error retries fail,
the routine will send a message to
the operator.

If the failing operation is other
than WTM, the original path error
retry will be attempted N times by
retrying the command which failed.

b. Write Operation -- Same as first
paragraph of a.

c. Read Operation -- If the operation
was a read backwards and if the
tape is at load point, spurious
noise was detected and the data
check should be ignored. 1In this
instance the routine will set on
the DEB error flag, mark the ECB
Complete With Error, and move the
CSAW into DECCSW and sense bytes
into DECSBO and DECSB1l. If this
was an error retry IORCB, the rou-
tine will set off the Error Reco-
very In Progress indication and
set a return code in general
register 15. If this was not an
error retry IORCB, the routine
will set a return code in general
register 15. If the tape is not
at load point, or if it is at load
point but the operation was not a
read backward, then a test is made
to see if the block meets minimum
block length requirements.

If this is a noise block, and the
interruption occurred on the last
CCW, the routine will set a return
code for Normal Completion ter-
mination processing in general
register 15. If more CCWs remain,
the routine will rebuild the
IORCB, and will resume the channel
program from the point of inter-
ruption. Whether the record was a
noise record or not, the read will
be retried N times. The error
correction programming segquence
consists of setting the correct
mode, repositioning the tape,
sending track~in-error information
to the control unit, and then
issuing a read or read backward
command. An error that persists
should cause the tape to be back-
spaced five blocks (if five are
available), thus placing the tape
past the tape cleaner. An attempt
is again made to read the tape,
using the procedure just described.
This loop should be repeated until
the error is corrected, up to a
maximum of N reads. Should the err-
or still persist, the associated
block is defined as a permanent
read error. The routine sends a
message to the operator indicating
an unrecoverable error.

Data Converter Check (byte 0, bit 7}

-- If the chaining check bit is on,
the action in the subsection referring
to CSW bit 47 below is performed. If
the chaining check bit is not on, the
routine will abnormally terminate.

Command Reject (byte 0, bit 0) -- If
the tape is file protected and the
channel command word was a write,
write tape mark, or erase gap, the

Section 4: Posting and Check 49

DECID is set to X°20°, an unrecover-
able exror indication i=m set, SYNAD is
requested, the errox is recorded
through the VMER macro, and return is
made. If the tape is not file pro-
tected, an exit is made via SYS3ER.

chaining Check (CSW bit 47}: If the fail-
ing operation is a read command, the ori-
ginal path error retry is attempted N
times. The error retry consists of reposi-
tioning the tape and reinitiating the com-
mand that failed. 1If the error persists,
the routine provides a message to the
operator indicating "unrecoverable error®.
The routine will also set on the "Permanent
Error® flag, set on the ®*Permanent Erxor®™
indication, and move the channel status
byte from the CSW to the IORCB. The rou-
tine will send a return code of '04° in
general register 15.

I1f the chaining check occurs on other
than a read operation after N errorxr retri-
es, the routine:

{1) Sets the Error and Permanent Exror
flags on.

{2) Sets DCBIFL tc Permanent Error
condition.

{3) Sets DECECB to Complete With Exror.
(4) Sets Synad Requested in the DECB.
{5) Moves CSW from ISA to IORCB.

{6) Interfaces with the VMER routine.

Unit Exception (CSW bit 39): This bit is
set to indicate a read of a tape mark, or a
write in the end-of-tape area. If the CCW
involved in this interruption is an erase
gap (ERG) and there are remaining CCWs, the
routine sets the IORUE flag on, rebuilds
the IORCB, and resumes the CCW list with
the remaining CCWs. If this interruption
occurred on an error retry within an
appended CCW, the routine rebuilds the
IORCB and restarts with the origimal fail-
ing CCW.

If this was not an exrror retry, or if
the interruption did not occur on an
appended CCW, or if the CCW involved was an
ERG with no remaining CCWs, the routine
will process as follows:

(1) Set on the Error flag.
(2) Set DECECB to Complete With Error.

(3) Move the CSW to DECCSW.

50 Part 1:

{#) Move the first two sense bytes to
DECBBO and DECSB1 and all eight sense
data bytes toc DPCASB.

Incorrect Lenqth (CSW bit 41): If the

failing CCW is a read operation the routine
will determine if the record length con-
forms to one of the following standards:

For fixed block the record length equals
a multiple of the block length.

For variable length the CCW count equals
the residual count plus LL. For an ASCII
variable-length record the CCW count equals
LL plus the buffer offset minus 4.

An undefined length is automatically
acceptable, and a "fixed standard® length
is an automatic errcr.

If acceptable, ®"normal completion® is
set and a return occurs. If in error,
"SYNAD request®™ and "complete with error”
are set in the DECB, "unrecoverable error®
in the DEB, the sense bytes and CSW bytes
are saved in the DCB, and a returm occurs.

DA Error Retry Routine (CZCRH)

DA Error Retry processes synchronous I/C
interruptions originating from a SAM or an
Obtain/Retain operation on a DA device. DA
Error Retry modifies the channel program,
rebuilds the IORCB, and reissues the 1/0
request (see chart CB).

Attributes: Privileged, reentrant, closed,
resides in virtual storage.

Entry Point: CIZICRH1 -- Entered via type-1

linkage.

Input: When this routine is entered, the
channel status word and sense information
pertinent to the iI/0 operation are con-
tained in the ISA.

Data References: CHASDT, CHBAISA, CHAIOR,
CHADEB, CHADCB, CHADEC.

Modules Called:
VMSDR {CZCRY) -- Virtual memory statistical
data recording.

VMER (CZCRX) -- Virtual memory error

recording.
VMA (CZCGA) -- Get work area.
SIR {CZCJS) -- Select interruption reguest

(handle asynchronous 1/0).
QLE (C2CJT) =-- Build queue in task monitor.

WIO (C2ABQ) -- Send message to operator.

Access Method for BSAM, MSAM, TAM and IOREQ

sPATh (CEAAB) -- Mark the device, control
unit, or channel, down or OK.

{TRCT (CEAH3) -- Get task ID.

SETAE (CEAAK) -- Set up interruption queue.

Exits:
Normal -- Return to SAM Posting with the
return code in register 15.

Error --

e Abnormal termination via the ABEND
macro instruction.

e SYSER.

Operation: For general notes on device-
dependent error procedures, see the SAM
Posting and Error Retry routine, "Opera-
tion® section, under "Device-Dependent
Error Procedures.”

For each error retry attempt the DA
Error Retry routine increments the appro-
priate error retry counter by 1, sets the
Error Retry flag on in the IORCB, sets the
Error flag on in the DEB and sets the Error
Recovery in Progress indication in the DCB.
The IORCB is rebuilt appropriately and
executes the IOCAL SVC preparatory to re-
execution of the channel program. A return
code of zero is set in general register 15
prior to returning to the calling routine.

For each unrecoverable (permanent) error
the routine sends a message to the operator
indicating unrecoverable error, sets on the
Permanent Error flag, sets the Permanent
Error indication in DCBIFL and moves the
channel status byte from the CSW in the ISA
to IORCSB. When the error source is indi-
cated by the channel status byte, this rou-
tine interfaces with the VMER routine, sets
a return code of '04' in general register
15, and returns to the calling routine.

When the DCBIMK corresponding bit is
zero (that is, the user does not wish to
have a retry for this error), the routine
will move the CSW from the ISA to DECCSW,
move sense bytes 0 and 1 from ISA to DECSBO
and DECSB1 respectively, and set return
code of °*0C" in general register 15.

The following shows termination proces-
sing to be done by the SAM calling routine
after the direct access retry routine sets
a return code in general register 15 other
than zero. For a return code of zero
(which occurs when the error recovery pro-
cedure issued an Error Retry IORCB) the
calling routine will exit to the task mon-
itor without any further processing.

1
} |Return Code in |
i {IG.R. 15]
i S SR DAt et S|
{ Action jo4j0Bj{0C|10|14 |
e S SR S TR S S
[Set DECECB=X'41'=Com~ |v| |vivi
|plete With Error I

|

jSet Synad Regquested
iflag in the DECB

f

| Move CSW to DECCSW

|

|Move sense bytes 0 and
{1 to DECSBO and DECSB1
!

|Set Exrror flag,
|DEBNF1, to 1

|

|Decrement DEBIOC by 1
| (Allowed IORCB o/s

| Count)

<
<
<

<«

B i s o s S s S . S i S e, R it OO A o O S v W o . St e s o . i T i, Nt S i AN g s it s
< < <«

o v e o g ST vt A s SN oA, i AW S, O g D, s, SO s SO o, O A AT S St S S SRS e S SN S HUGO Wit pomat @ W
<

i . e e i S e s gy S i S g A . TS M . S i e S G S i e S s S s, e o S i, S . S s s
<

i e e e S o R gt S s A e S il SO S, R S S S P S = e e S B S e, R e . e o i e
<

<
<
<

<
<
<
<

{Move data from IORCB
|to user virtual stor-
jage, if required

|

|Device~dependent termi-
ination processing

{

jNormal Completion
|=*7F' set in DECECB

]

}Link to VMSDR ~- after
jsuccessful error retry
|

|Link to VMER

|

{Clear DEBNF1 to zero
{after successful error
jretry

|

| Set DCBIFL Error Re-
|covery in Progress in-
{dication=0 after suc-

|cessful erxor retry
.

<
<
<
<«

< <
<

<
<

<
Kot e o vt e S e et e ot 3 e AP o B e e 288 o T i e S e P M, e e . i it i . . e . . i s

<

<

]
|
|
|
!
i
|
|
]
|
[
|
|
|
i
|
{
|
!
|
|
|
!
!
|
|
!
!
!
|
|
|
!
|
]
]
|
|
|
L

!
]

CONTINGENT ADDITIONAL PROCESSING: In addi-
tion to that processing which occurs with
each error retxy attempt, the following
contingencies may be encountered and the
ensuing processing involved.

Channel Data Check (2311, 2314, 2302):
Criginal path error retry is attempted.
Each time an alternate path is requested,
the channel status byte of the CSW will be
moved from (0, 0) to IORCSB in the IORCB to
be used by the VMER routine.

Unit Exception: The Errcr flag is set on
and a test is made for a corresponding
DECB.

1. If a corresponding DECB exists, DECECB
is set to indicate Complete With

Section 4: Posting and Check 51

Error, the CSW is moved from the ISA
to DECCSW, and two bytes of sense
information are moved from the ISA to
DECSB0O and DECSB1.

2. If a DECB does not exist and this is
not a retry IORCB, a return code of
‘0C* is set in general register 15
before exit. Otherwise, when a DECB
does not exist and this is a retry
IORCB, a return code for VMSDR inter-
face is set prior to exit.

Chaining Check: There will be N original
path error retry attempts consisting of
repeating the original CCW list.

Ilncorrect Length: The action taken in this
case is contingent upon the format of the
record being processed as indicated in
DCBREC. The possible logical paths and
actions performed are:

1. Unknown - normal completion is indi-
cated by a return code of *(8°.

2. Variable - if the residual count of
CSW is equal to zero, Complete With
Error is set in the DECB, the SYNAD
Requested flag is set, the Error flag
is set in the DEB, the CSW is moved
from (¢, 0) o the DECB, and the
return code is set to *0CT.

If the residual count of the CSW is not
equal to zero, a comparison is made between
zero, and the difference obtained by sub-
tracting the sum of the CSW residual count
and the °"LL®* count from the CCW count.

If the result of subtraction is 0, the
return code is set to '08'; and Normal Com-
pletion processing will take place. 1If the
result of subtraction is not 0, "Complete
With Error® is set in the DECB, the SYNAD
Requested flag is set, the error is indi-
cated in the DEB, the CSW is moved from (0,
0) to the DEVB, and a xreturn code of *0C*
is set.

Unit Check (2311, 2314, 2302): The number
of retries over the original path is depen-
dent upon the type of exror which caused
the unit check condition. Examinaticn of
the sense byte data will indicate the error
cause. Prior to any diagnosis or error
retry, the appropriate bit in the DCBIMK
field of the DCB is tested against the
corresponding bit set in the sense byte
data. If the bit is off, further proces-
sing will be that as contained above for
DCBIMK corresponding bit equal to zero. If
the bit is set on, diagnosis and retry con-
tinues as follows:

Equipment Check (byte 0, bit 3) -- There
is no original path error retry. The

52 Part I:

alternate path error retry will consist of
repeating the original CCW list.

No Recoxrd Found (byte 1, bit 4) -- When
the Missing Address marker (byte 1, bit 6)
is also set, there are N or:iginal path
error retry attempts. For a 2311 the error
retry procedure consists of a Restore CCW
followed by a TIC to seek the original
address.

If the Missing Address Marxrker bit is not
get, there are N original path error retry
attempts. Initially this error retry pro-
cedure consists of verification of the home
address. This is done by comparing the
CCHH of the home address stored in the
IORCE against the CCHH of the search argu-~
ment. If the comparison indicates equali-
ty, an ABEND situation is encountered. The
routine performs termination processing by
setting on the Error and Permanent Erxor
flags, setting ABEND Requested in the DECR,
and setting the return code to '0C* in gen-~
eral register 15.

If the CCHH comparison indicates an
inequality, the error retry procedure will
be as indicated when the Missing Address
marker is set.

Seek Check (byte 0, bit 7) -- If Command
Reject (byte G, bit 0} is also set, an
ABEND situation is encountered, and a
return code of X*12' is set before return.
If command Reject is not set, there are N
original path error retry attempts.

Intervention Required {byte 0, bit 1) =-=-
A message will be sent to the operator to
ready the device and execution of the CCW
list will be resumed from the point of
interruption.

Bus Out Check (byte 0, bit 2) -- The
original path error retry attempt will con-
sist of repeating the original CCW list.

Data Check {byte 0, bit 4) -- There will
be N original path error retry attempts
consisting of repeating the original CCW
list. Aftexr unsuccessful retries, if there
is a data check in the count area, the rou-
tine abnormally terminates. If there is a
data check in the count area, and the Read
Variable Length Records flag is set, and
the failing CCW is the last in the CCW
list, then termination processing will be
in accordance with the return code in gen-
eral register 15 set to ‘04°'. 1If the fore-
going °*AND*' situation does not occur the
Error and Permanent Error flags, DEBNF1 and
DEBNF2, are set, and an ABEND is effected.

When error retry has been exhausted for
data check and there is no check in the
count area, then Overflow Incomplete (byte
1, bit 7) is checked. If there is an

Access Method for BSAM, MSAM, TAM and IOREQ

"Overflow Incomplete® condition, processing
will be as follows:

a. Add 1 to *HH' of seek to seek to next
consecutive track.

b. Set R=1 in search argument.

c. Set °"CCHH' of search from "CCHH' of
seek argument.

d. Append CCW list *B' to original CCW
list.

e. Set start CCW to 1st seek of List 'B°'.

f. Bookkeep (IORCB) IORCL and IORLN
fields.

g. Adjust count and data address of fail-
ing CCW.

h. Execute IOCAL SVC after setting flags.

When error retry has been exhausted for
data check and there is no data check in
the count area, and Overflow Incomplete is
not set then:

1. If the Read Variable Length Records
flag is set on:

a. Subtract 1 from *'R' field of

search argument.

b. Append appropriate CCWs to the
original CCW list in order to
ensure that the correct data area
is being searched.

c. Set Start CCW to first seek of the
appended channel program.

d. Bookkeep IORCL and IORLN fields.

e. Execute IOCAL SVC after setting
flags.

2. If the Read Variable Length Records
flag is not on:

a. For a read set a return code of
'04' in general register 15.

b. Set DEBNF2 and a return code of
‘04° in general register 15 for a
Write operation.

overrun (byte 0, bit 5) -- There will be
N original path error retry attempts con-
sisting of repeating the original CCW list.
When the retries are unsuccessful, an ABEND
situation is encountered.

Missing Address Markers (byte 1, bit 6)
-- There will be N original path error
retry attempts consisting of repeating the
original CCW list.

Command Reject (byte 0, bit 0)
is an ABEND situation.

-- This

Track Condition Check (byte 0, bit %) --
An additional check is made on the Read RO
Failed and Alternate Track Indicators. If
the read RO failed, this is an ABEND
situation.

If the Alternate Track flag is set, the
CCHH of the seek argument is set equal to
the "CCHH' of the defective track plus one,
and one of the following will occur,
depending upon conditions:

1. If the Overflow Incomplete (byte 1,
bit 7) bit is not set append CCW list
"A"™ to original CCW list, set start
CCW to first seek or "A"™ CCW list,
bookkeep IORCL and IORLN, and Execute
IOCAL SVC after setting flags.

2. If the Overflow Incomplete bit is set
on, set R=1 in the search arqument,
set search arqgument °'CCHH®' from seek
argument °CCHH', append CCW list *B*®
to original CCW list, set start CCW to
first seek of list "B"™, set the IORCL
and IORLN fields of the IORCB, adjust
the count and data address of the
failing CCW, and execute the IOCAL SVC
after setting flags.

I1f the Track Condition Check is set and
the Alternate Track flag is not set, the
DEBATK and DEBETK "'MBE' are set from the
seek argument "'MBB', the DEBATK °'CCHHR' is
set from the °'CCHHR' of the alternate
track, the DEBETK 'CCHHR' is set from the
'CCHHR®' of the defective track, and the
seek argument ‘CCHH® is set from the *CCHH'
of the alternate track. If Overflow Incom-
plete is not set, process as in 1 under
Track Condition Check. If Overflow Incom—
plete is set, process as in 2 under Track
Condition Check.

Track Overrun (byte 1, bit 1) -- There
will be no error retry. The routine will
set a return code of ‘04’ in general
register 15 and will return to the calling
program.

Cylinder End (byte 1, bit 2) -- If the
Overflow Incomplete bit is set, or if Read
Variable Length Records is not set, or if
the failing CCW is not the last in the ori-
ginal CCW list, then the processor will set
on the Error flag and the Permanent Err
flag, set DECECB to Complete With Error,
set on the DECB ABEND Required flag bit,
and set DCBIFL to indicate Permanent Error
condition. The CSW is moved to the DECCSW,
sense bytes 0 and 1 to DECSBO and DECSBL, a
message is provided to the operator indi-
cating a permanent error and there is a
return to the calling program with a return
code of '0C' in general register 15.

Section 4: Posting and Check 53

1f overflow Incomplete is not set and
Read Variable Length Records is set and the
failing €CW is the last of the CCW list,
then the routine will set DEBNIO to all 1
bits, set IORRV=(0, set a return code of
*08°' in general register 15 and return to
the calling program for Normal Completion
processing.

File Protect {(byte 1, bit 5) ~- The com-
mand reject bit will also be set when this
condition is detected. There will be no
erroxr retry. This is an ABEND situation.

MSAM Posting and Error Retry Routine
czeMe).

This routine records the results of an
170 operation from or to a unit record
device and determines future processing.
MSAM Posting is called by the task monitor
as the result of a synchronous I/0 inter-
ruption following the execution of an IORCB
by the MSAM Read/Write routine, or as the
result of an asynchronous 1/0 interruption,
such as when the opexator has reset a
jammed device. If the I/0 operation was
completed normally, MSAM Posting records it
so that further processing may continue.

If an error or unusual condition occurred,
MSAM Posting records the condition and may
determine whether to retry the operation or
notify the operator before rxeturning to the
task monitoxr. (See Chart CC).

Attributes: Read-only, privileged, reen-
trant, nonrecursive.

Entry Points:

C2ZCMG1 ~-- Primary entry point from the task
monitor with interruptions masked off.
Type-1 linkage.

CZCMG2 -- Entry point following an asynch-
ronous interruption. Type-1 linkage.
Input: Register 1 contains the address of

the ICB.

Data References: CHAISA, CBADCR, CHADEBRB,
CHADEC, CHASDT, CHASDA, CHAIOR, CBAICB,
CHADRBP.

dodules Called:

VMER (CZCRX) -- Informs the operater of the
failing task I/0 component and generates
I/0 error records.

VMSDR (CZCRY) ~-- Accumulates error statis-
tics on task I/0 devices.

SIR (CZICJS) -- Specify interruption

routine.
DIR (C2CJD) -- Delete interruption routine.
Reset (CEAAH) -- Reset Device Suppression

flag routine.

54 Part I:

SYSER (CEAIS) -- System error processor.

WTO or WTOA {(CZABQ) -- Write messaqe to
operator on console typewriter.

Exits:
Normal -- Register 15 contains 00.
Exrror -- Register 15 contains the return

code passed from VMER or VMSDR.

Operation: What happens in MSAM POSTING
depends on the type of device (reader,
punch, or printer) on which the I/0 opera-
tion occurred, and on whether the device is
central (located at the central installa-
tion) or remote (located away from the
central installation; remote job entry).
Although the general logic in MSAM Posting
is similar for all unit record devices, the
sequence of operation and special consi-
derations vary and regquire separate
explanation. This description is divided
into two parts. The first part explains
MSAM Posting processing for central instal-
lation devices. The second part explains
MSAM Posting processing for remote job en-
try devices.

CENTRAL INSTALLATION DEVICES

NORMAL I/0 COMPLETION: ©On entry to MSAM
Posting, the number of cutstanding IORCEs
is decremented by one. After falling
through a series of abnormal condition
tests, the Retry in Progress flag is set
off in the DECB, the DECB is marked Normail
Completion, the remaining DECBs are checked
for Posting Reissue flag on (if so, the
associated IORCBs are reissued), and return
is made to the task monitor.

OTHER THAN NORMAL I/0 COMPLETION: In gen-
eral, where some abnormal condition is dis-
covered, retry procedures are initiated,
depending upon the condition and the
device. If recovery is possible and the
number of retries for a given condition has
not been exceeded, the IORCB is reissued by
MSAM Posting. If no recovery is possible,
or if all recovery procedures have failed,
the DECB is marked complete with error, and
flags are set for unrecoverable and, if
applicable, permanent error. A modified
form of the CSW and the ISA sense byte are
moved to the DECB, a message is sent to the
operator with the WIO instruction, all
DECBs whose Posting Reissue flags are set
on are marked intercepted, the Posting
Reissue flag is reset, and control is
returned to the task monitor.

Priority of Checking I/0 Results: The
tests in MSAM Posting to determine results
of the I/0 operation are made in the fol-
lowing orxder for a card reader or card

punch:

Access Method for BS2M, MSAM, TAM and IOREQ

1. No Path Available

2. Purged I/0 Operation

3. CCWs Not Relocated (specification
error)

4. IORCB Intercepted

5. Start I/0 Failure

6. CSW Status Zero

7. Prior Error Check {(on normal
completion)

8. Channel Control Check

9. Interface Control Check

10. Channel Data Check

11. Invalid CSW Status Bits Set

12. Unit Check - Sense Failure {invalid
sense information)

13. Unit Check - Intervention Required
14. Unit Check - Command Reject

15. Unit Check - Bus Out Check {initial
selection)

16. Unit Check - Bus Out Check {data
transfer)

17. Unit Check - Equipment Check
18. Unit Check - Data Check
19. Unit Check - Unusual Command Sequence

20. Prior Error Check (not normal
completion)

21. Program Check
22. Protection Check
23. Unit Exception

The priority for checking an I/0 operation
for a printer is:

1 - 12. same as for reader and punch
13. Unit Check - Equipment Check

14. Unit Check
Parity

Code Generation Storage

15. Unit Check - Intervention Required

16. Unit Check - Bus Out Check ({data
transfer)

17. Unit Check - Bus Out Check (initial
selection)

18. Unit Check - Channel 9
19. Unit Check - Command Reject

20. Unit Check

Data Check (UCS option)

21. Prior Error Check {(not normal
completion)

22. Program Check

23. Protection Check

24. Unit Exception

Description of Posting and Recovery
Efforts: Posting and recovery efforts in

the order in which they occur (based on the
priority lists above) are described below.

Name references appearing in parentheses
at the end of paragraphs in the following
descriptions correspond to block labels in
flowchart CC and statement names (labels)
in the listing of module CZCMG (MSAM
POSTING) .

No Path Available is set because no path
is available and may be due to setting all
paths disabled during alternate path retry.
The associated entry in the SDAT for the
device will be marked “"phase out" by set-
ting SDACE. The SDA entry must be locked
during this change. A.message is sent to
the operator and permanent error posting is
done (TESTLOCK).

A Purged I/0 Operation indicated by
IORPG causes an unrecoverable error to be
set and return is made to the task monitor.
A permanent error will be set if purged I/0
occurs recursively more than ten times
{TSTPURGE-UNRERR2) .

If the CCWs are not relocated (specifi-
cation error), an unreccoverable error is
posted and a minor software.errox is rec-
orded by issuing the SYSER macro instruc-
tion (CCWSPEC).

IORCB Intercepted occurs when one or
more IORCBs to be executed during an opera-
tion failed to be executed because of an
interruption during an IORCB being executed
earlier in the operation. .If no prioxr
unrecoverable exror has been recorded and
retry is not already in progress, the IO0RCB
is reissued (INCEPTED - PRIERR).

Start 1/0 Failure indication occurs for
busy or not operational conditions. An
alternate path is requested by setting
IORAL, and a message is sent to the opera-
tor after requesting alternate path retry.
If successful, normal posting occurs. If

Section 4: Posting and Check 55

unsuccessful, each alternate path is tried
once and a message 1s sent to the operator.
When all paths have been tried unsuccess-
fully, permanent error posting occurs
(INCEPTED} .

A Zero CSW should not occur and causes
an unrecoverable error to be posted and a
minor software SYSER (TSTCSW).

Prior Error Check indicated when CSW
status bytes equal normal completion means
some previous data may have been lost. The
Error Retry flag is set off and an unrecov-
erable error is posted unless the 1/0
operation involves Form-D printing (that
is, a dump). In that case, the cperation
is not considered unrecoverable and normal
completion posting occurs (TSTSTAT).

Channel Contrcel Check is one of four
error conditions that is retried and then
posted as an unrecoverable error when suc-
cessful. This is because a record may have
been lost or duplicated. These error con-
ditions {(channel control check, interface
control check, invalid status or sense con-
dition) set the error check flag, IOREC, to
permit correct posting after retry occurs.
if none of these error types occur after
retry, then an unrecoverable error is post-
ed. An exception is Form-D printing which
is analyzed for a lower priority exrrxor or
posted normal. After determining a channel
control check condition exists, the flags
IORAL and IOREC are checked to see if a
prior error condition caused alternate path
retry to be requested or if a prior Error
Check condition occurred. If either flag
is sevw, VMER is called to record a hard
inboard error, the Alternate Path Retry
flag is set, and a message is sent to the
operator prior to reissuing the IORCB. If
a prior error condition does not exist, the
Error Check flag is set and the IORCB is
reissied along the same path. A successful
retry results in an unrecoverable error
being posted (unless Form-D printing is
under<ay}. Unsuccessful retries result in
one retry at each alternate path, with VMER
being called and a message sent to the
operator in each case (TESTCCC-ALTPATH1).

Interface control check occurs if there
are channel or control unit problems. Pro-
cessing is the same as for chammel control
check above (TESTICCY.

Channel Data Check occurs when the chan-
nel detects a parity exror in the informa-
tion transferred to or from main storage on
an 1/0 cperation. VMER is called to record
the error on each occurrence. Processing
is as follows: Flags IORAL and IOREC are
checked to determine if a prior erxor con-
dition caused alternate path retry to be
requested or a prior Error Check condition
occurred. If either flag is set, alternate

56 Part I:

path retry is requested, VMER is called to
record the error, and a message sent to the
coperator. If neither flag is set, the same
path is retried according to the threshold
values SDTCR0O, SDTPUO, or SDTPRO for the
card reader, punch or printer respectively.
Normal posting is done for successful
retry. An alternate path is requested if
the threshold value has been exceeded. A
message is sent to the operator after requ-
esting retry at an alternate path
(TESTCDC-ALTPATH2) .

Invalid CSW Status Bits cause processing
similar to that for channel control check.
The invalid bits are 32 (attention), 33
{status modifier), 34 {(contrcl unit end},
47 {(chaining check), and #1 {incorrect
iength); these bits should not be set for
unit record devices. VMFER is called to
record the error on each occurrance; a mes-
sage is sent to the operator after reguest-
ing retry at an alternate path (TESTINVL).

Unit Check ~ Sense Failure is processed
the same way as channel control check. B3
sense failure is caused by a sense coummand
failure or invalid sense information.
Sense bits 5 and 7 should not be set for
the card reader or card punch. Sense bit §
should not be set for the printer. Sense
bits 4 and S may be set for the printer
only if 0CS is specified. BAll conditions
can occur for either channel or contrxol
unit problems. VMSDR is called to record
the error and a message is sent to the
operator after requesting retry at an
alternate path. Each alternate path is
tried once (TESTUC).

The following unit check processing is
dependent on the type of unit recordg
device. '

e For the reader or punch:

Unit check - intervention required
occurs when the unit is not ready due to
any of several conditions. Cards are not
at each station (not EOF for readerl, a
stacker is full, the hopper is empty {(not
EOF for reader), the stop key is depressed
the chip box is full or removed, or a card
is jammed. A message to the operator is
set up telling him that intervention is
required. Asynchronous interruption proce
dures follow. The message previously set
up is sent to the operator (WT0O). The Spe
cify Interruption Routine (SIR) macro
instruction is issued, the Error Recovery
in Progress flag set on in the DEB, and
control is returned to the task monitor.
The operator performs the required action,
correcting the condition requiring intex-
vention or replacing the card on the equip
ment or data check, and makes the device
ready. The asynchronous interruption
occurs, control is transferred to the Post

Access Method for BSAM, MSAM, TAM and IOCREQ

é.
¢

ing entry point, CZCMGZ, the virtual
storage IOHRCH 13 reissued, the number of
outstanding IORCHS 13 incremented by one
and return 15 made to the task monitor
(INITSEL-ISINTV).

A Command Reject occurs when i command
1S given which the device is unable to
execute. Posting 1s done for an unrecover-
able error and if the DCB did not specify
FORTRAN {formerly ASA) or machine control
characters a minor software SYSER is rec-
orded (TESTCREJ).

Unit Check - Bus Out for the reader or
punch occurs when a parity error is
detected on a bus out during either initial
selection or command selection. Original
path retry will be attempted the number of
times specified in the SDT. A flag will be
set in the DEB to indicate error recovery
is in progress and the Error Retry
Attempted flag set in the IORCB. The vir-
tual storage IORCB will be reissued and
control returned to the task monitor. If
all retries on one path fail, VMSDR will be
called to record hard outboard error sta-
tistics, a message will be written to the
operator, and the IORCB will be reissued on
an alternate path (BUSOUT-ALTPATHS).

A Unit Check - Egquipment Check will
cause retries on the same path to be
attempted the number of times specified
separately for reader and punch in the SDT.
In each case, prior to returning to the
task monitor, the Error Recovery in Pro-
gress flag is set in the DEB, the Error
Retry Attempted flag is set in the IORCB, a
message is sent to the operator, and an
interruption routine is specified with the
SIR macro instruction. The message sent to
the operator directs him to take appropri-
ate corrective action on the reader or
punch. Such action creates an asynchronous
interruption and MSAM Posting is entered at
CZCMG2 where the Error Retry Attempted flagq
is set in the IORCB, the virtual storage
IORCR reissued, and the number of outstand-
ing IORCBs incremented by one before
returning to the task monitor.

Where the maximum number of retries have
been done, an alternate path is tried; a
message is written to the operator request-
ing an alternate path, and again MSAM Post-
ing returns until entered as the result of
operator action. In the event alternate
path retry is performed, a hard outboard
error is recorded via VMSDR for the failing
path (ALTPATH3).

Unit Check - Data Check occurs when an
invalid card code is detected. This can
occur only on a read command. If the card
is a control card, two flags are set on in
the DEB to indicate that a control card has
been read. If the card is not a control

card and the retry option in’the DCH speap-
fies no retries, the pocket option in the
DCB i5 tested. This determine: whether the
Feeder and Stacker Select command is
changed tc use the stacker specified in the
pocket option or whether the card is
stacked as if no error occurred. A flag is
set in the DEB to indicate that an invalad
card has been read and dccepted, a tlag is
set in the virtual storage IORCB to indic-
ate error retry attempted, and the DEB
Error Recovery in Progress flag is set on.
The virtual storage IORCB is reissued at
the next feed, select stacker command with
command chaining suppressed, the number of
ocutstanding IORCBs is incremented by one,
and control is returned to the task monitor
(RPBIT4-TESTPOCK-RETRY2).

If the card is not a control card and
the retry option in the DCB specifies an
unlimited number of read retries, a message
is issued (WTO) informing the operator to
replace the errxoneous card for the retry
attempt. Asynchronous procedures are
handled as in Intervention Required, except
that a flag is set on in the IORCB to ind-
icate an error retry was attempted
{CHKCOUNT-SETASYNC) .

Unit Check - Unusual Command Sequence is
caused by a read following a read with no
intervening feed. This condition is allow-
able only if an error retry is in progress.
Processing continues with the next CCW. If
unusual command sequence occurs when an
error retry is not in progress, posting for
an unrecoverable error occurs (RPBIT6}.

A Prior Error Check indicated when sta-
tus bytes showed other than normal comple-
tion is treated as an unrecoverable error
for a reader or punch (TESTEC - UNRERR2).

If a Program Check or Protection Check
occurs on the reader or punch, there is no
recovery procedure. Unrecoverable error
posting is done and, if a protection check,
SYSER is invoked to record a minor software
failure (TESTPGC - TESTPTC - UNRERR2 -
MISERRY4) .

A Unit Exception on the punch should
never occur. If it does, permanent error
posting is done and a minor software SYSER
recorded. A unit exception on the reader
indicates end of file (data set) and ncrmal
completion posting is done. A flag is set
on in the DEB to indicate end of file
(TESTPTC).

¢ For the printer:

A check is made for invalid sense bits
as explained above under Unit Check - Sense
Failure (PRUNITCK).

Section 4: Posting and Check 57

Unit Check -~ Equipment Check is pro-
cegned similar to equipment check proces-
sing for the reader and punch. This unit
check can be caused for a printer by either
a hammer check or a buffer parity error
(PRBIT3).

Unit Check - Code Generator Parity Error
causes original path retry to be done the
number of times specified in the SDT. It
cccurs only if the code generator storage
is being reloaded for a printer with the
universal character set (UCS) feature. If
retry over the same path is unsuccessful,
an alternate path 1s requested and a mes-
sage sent to the operator. The error is
recorded as intermittent when successful or
45 solid when unsuccessful for a path. The
error is preccessed the same for each path,
except each alternate path is tried once
(PRBITS).

If Unit Check - Intervention Required is
the error, and the DCB for type is D or S
(that is, form-sensitive), the operator
will be sent a message to ready the print-
er. The SIR macro instruction will be
issued to handle the expected asynchronous
interruption. The error recovery in pro-
gress flag will be set on in the DEB and
control will be returned to the task mon-
itor. When the operator signals correction
of the errxor condition by hitting the stop
putton followed by the start button, the
asynchronous interruption will occur.
Posting will be entered at its second entry
point (CZCMG2), which was specified in the
Specify Asynchronous Entry Condition macro
instruction ICB. The virtual storage IORCB
will be reissued beginning with the failing
CCW, the number of outstanding IORCBs
incremented by one, and control returned to
the calling program. For form type-F, a
message is sent to the operator directing
him to mark the error page. The fixed area
of the IORCB is moved from the interruption
storage area to the DEB page. The address
of the ICB in the DEB page is stored in the
DCB, and the V- and R-con for posting entry
2 are stored in the ICB. The SIR macro
instruction is issued to service the
expected asynchronous interruption, the
erroxr recovery in progress flag is set on
in the DEB, and control is returned to the
task monitor. After the asynchronous
interruption occurs, processing is identic-
al to that done for error recovery on form
type F for the printer after an equipment
or data check (INITSEL - PRBIT1 - PTRINT -
SETASYN2 - SETASYNC).

Unit Check - Bus Out is caused by a
parity error on 4 command (initial selec-
tion) or data (data transfer) byte. Each
path is retried the number of times speci-
fied in the SDT; when the maximum is
reached, the failing path is recorded via
VMSDR, a message 1S sent to the operator

58 Part I:

about the failure, and the IORCB is reis-
sued along a new path (PRBITZ2 - PRBOUT -
RTRYBOUT) .

If Unit Check - Channel 9 was sensed by
the printer during the previous carriage
motion and no other status or sense bits
are set, processing continues with the next
CCW. If FORTRAN {(formerly ASA) or machine
control characters have not been specified
and there was a unit exception, the failing
CCW is changed to a skip to channel 1 and
processing continues. If any other sense
bits are on, no special processing is done
for the channel 9 indication (PREBIT7 -
UEPRINT - NEXTLINE -~ RETRY3).

Unit Check ~ Command Reject is processed
for the printer as explained for the reader
and punch above (PRBITO - CMDREJ).

Unit Check - Data Check occurs only with
a printexr having the UCS feature when a
code in data storage finds no match with
any code in code generator storage. If
SETUR had not been previously called by the
user to load the buffer, a message is sent
to the operator and an unrecoverable error
1s posted. Otherwise, the first time a
data check occurs the buffer will be
reloaded prior to the write retry. When
the buffer has been successfully reloaded,
the print retry counter is set to a number
specified in the SDT and the failing CCW is
changed to print without skipping, spacing,
or command chaining. A flag is set in the
IORCB to indicate error retry attempted,
the IORCB is reissued, the number of out-
standing IORCBs incremented by 1, and con-
trcl returned to the task monitor. After
the maximum number of retries have
occurred, a message is sent to the operator
indicating task ID and buffer arrangement.
SIR macro instruction is issued to handle
the possible asynchronous interruption from
the operator. Posting is done for an unre-
coverable error and control is returned to
the task monitor.

If the operator wishes to accept the
error and block further data checks, he
will depress the stop and start buttons,
thereby causing the asynchronous interrup-
tion. Posting invoked at its second entry
point, CZICMG2, will proceed with the next
line to be printed, except that the first
CCW to be issued will be a block data com-
mand (UNRERR-RLDBFR-RETRY4-TSTCNT-ASKOPER).

A Prior Error Check (not normal comple-
tion} is treated as an unrecoverable error
unless Form-D printing (that is, a dump) is
in progress. If FormD printing is in pro-
gress, MSAM Posting assumes the user is
willing to have the job continue; proces-
sing continues to test for program check,
protection check, or unit exception (TESTEC
- UNRERRZ2).

Access Method for BSAM, MSAM, TAM and IOREQ

If a Program Check or a Protection Check
on the printer occurs, there is no recovery
procedure. Unrecoverable error posting is
done and unless FORTRAN (formerly ASA) or
machine characters were not specified on
the program check, SYSER is invoked to
record a minor software failure (TESTPGC -
TESTPTC - UNRERR2 - MISERR4).

A Unit Exception on the printer indi-
cates the end of a page has been reached
and a skip to the next page is required.

If FORTRAN (formerly ASA) or machine con-
trol characters are in use (meaning the
aser handles his own skipping), the current
IORCB will be reissued at the next CCW.

The number of outstanding IORCBs is incre-
mented by one and control returned to the
task monitor. If FORTRAN or machine con-
trol characters are not in use, a skip to
channel 1 command will be inserted over the
last executed CCW, the virtual storage
IORCB will be reissued beginning with the
skip to channel 1, the number of outstand-
ing IORCBs is incremented by one and con-
trol is returned to the task monitor
(UEPRINT - NEXTLINE - RETRY3).

REMOTE JOB ENTRY DEVICES

For remote job entry devices {(reader or
printer; a punch is not supported), normal
1/0 completion results in processing ident-
ical to that for central installation
devices plus several additional processes.
Buffer input received from a reader is
checked for the presence of an ETX charact-
2r; where found, it indicates end-of-data-
set (end-of-file) and a flag is set. Where
unissued IORCBs are to be reissued as the
result of a prior unsuccessful completion,
synchronization of ACK characters is
assured for the reader before an IOCAL is
issued (TESTRJE - SETENOF - REISS1 -
CHECKACK) .

In general, MSAM Posting performs only
posting functions for remote job entry
devices. Necessary error recovery proce-
dures are performed by the resident super-
visor. MSAM Posting error processing for
both the remote reader and printer is
explained below.

Channel control check, interface control
check, and channel data check errors are
recorded via VMER, CHKINTM is called if
intermittent errors are present, and a mes-
sage is written via WTO to the TSS operator
informing him of the permanent channel
error (NORMRJE - TESTICC - TSTCDC).

Unit check - sense failed error is rec-
orded via VMSDR, permanent error is posted,
CHKINTM and WTO are called (TSTDUC).

Unit check ~ time out error is recorded
via VMSDR, permanent error is posted,
CHKINTM and WTO are called if it is a
*should not occur' erroxr (IORJESN is on}.
If it is a 'should occur® error (IORJESN is
off), then the operation is set up to be
handled by an asynchronous interruption
(TOCHK) .

Unit check - intervention required
results in the first byte of the DECB being
set to hex 14 so that BULKIO may reinitia-
lize the job (IRCHK).

Unit check - lost data, data check, or
overrun errors are recorded via VMSDR, per-
manent error is posted, CHKINTM and WTO are
called. If IORJESN is on, subsection 2 of
the error counter tables is used for reco-
rding the error. If it is off, subsection
1 is used (DATACHK).

Unit check - busout, equipment check, or
command reject errors are xecorded via
VMSDR, permanent error posting is done,
CHKINTM and WTO are called (BOCHK -
EQUIPCHK - COMMREJ).

If no sense bits were found on, a minor
software SYSER is called.

Unit exception - first, intermittent
errors are recorded using the CHKINTM sub-
routine. Then, if receive mode, the first
byte of the buffer is checked for an EOT.
(An FOT will be found if the operation was
completed in the previous buffer but there
was no room to write the EOT, or if a card
jam occurred just as the buffer was being
completed.) If there is an EOT, the
DCBENOF flag is checked, and if on normal
completion is posted. 1If off, it indicates
either a card jam or the *STOP' button was
pushed. The operation will then be set up
to be handled by an asynchronous interrup-
tion (SKPINTM - TSTEOF - CHKSAIN).

If the first byte of the buffer does not
contain an EOT, then the data buffer being
read at the time of the interruption is
checked for ETX or ETB. This check will be
made at the middle of the buffer (byte 83)
if IORJEOC is on, or at the end of the
buffer (byte 167) if IORJEOC is off. If an
ETX, the operation has completed normally,
DCBENOF is set on, and normal completion is
posted. If ETB is found, either a caxrd jam
has occurred or the STOP button has been
pushed. Setup will be made for an asynch-
ronous interruption. If neither ETX or ETB
is found, a minor software SYSER is posted
(SETEOF -~ CHKSAIN - RJEMSER1}.

For unit exception transmit mode, incor-
rect length is checked. If off, normal
completion is posted. If on, either a
paper jam exists or the printer was stopped
by pushing the stop button. 1In either case

Section 4: Posting and Check 59

the operation 1s set up for an asynchronous
interruption (CHKFORM).

Incorrect length errors are reccorded via
VMER, any intermittent errors are recorded
and a message is written to the operator
via WTO informing him of the permanent
error (CHKIL).

Control unit end, program check, chain-
ing check, and protection check errors are
posted as permanent errors, intermittents
are recorded, and a message is written to
the operator via WTO {(CUEND - CHAINCHK).

Attention, status modifier, and busy
errors are handled the same as incorrect
length (D9} (BUSYCHK ~ ATTNCHK - STATMOD).

iIf none of the status bits are found on
a minor software SYSER is called
(RIJEMSER2).

TAM Posting Routine (CZCZA)

After the termination of a TAM Read/
Write initiated I/0 operation, control is
passed by the task monitor to TAM Postinao
to process this I/0 interruption. TAM
Posting analyzes the interruption data to
determine the action to be taken. It also
examines the input message content to
determine the buffering technique to use
and if user errors have occurred. Wwhen
errors occur, both recovered and unrecover-
able error data is recorded. (See Chart
CD.)

Functions provided by TAM Posting are:
e Posting of completed I/O actions.

s Translation and movement of user data
on read operations.

s Continuation of TAM Read/Write opera-
tions which involve multiple IORCB
generation.

e Posting of attention signaling during
input or output operations while the
terminal is transmitting or receiving.

* Detection of errors or exceptions ter-
minating the channel program.

e Decoding of errors or exceptions and
initiating possible recovery action.

¢ Posting of error or exception data when
recovery has not been requested or the
error is nonrecoverable.

Attributes: Reentrant, resident in virtual
storage, closed, read-only, privileged.

Entry Point: CZCZAl -- Entered via type-1
linkage.
60 Part I: Access Method for BSAM, MSAM,

Input: The IORCB and the ISA contain
information reiative to the condition under
which the I/0O operation was terminated.

Data Reference: CHAISA, CHAIOR, CHADEC,
CHATOS, CHADCB, CHADEB, CHASDA.

Modules Called:

GETBUF (CZCMA) ~-- Get a buffer area.
WRITE (CZCYM) -- TAM Read/Write.
WTO (CZABQ -- Write to operator.

RESET (CEAAH) -- Permit task to access 1/0
device.

IOCAL (CEAAQ) -~ I/0 call.

VMER (CZCRX) =-- Virtual memory error

recording.

VMSDR (CZCRY) -- Virtual memory statistical
data recording.

SYSER (CEAIS) ~-- System error.

Exits:

Normal -- Return to the task monitor.

Error -- SYSER is called in the case of an

undefined interruption, no SDAT entry,
an undefined inboard error, or no sense
data.

Cperation: TAM Posting is called by the
supervisor as the result of an I/0 com-
pleted interruption. It saves the general
registers and then initializes them with
pointers to the IDA, DECB, DCB, TOS, and
IORCB buffer and CCW list.

TAM Posting then decodes the reason for
the interruption of the 1/0 operation (see
Figure 7). On determining that the inter-
ruption does not reflect a normal comple-
tion, a branch is made within TAM Posting
to initiate the appropriate recovery proce-
dure. If this is not possible, errors or
exceptions are analyzed, and flags are set.

The sequence to determine the interrup-
tion type follows:

¢« JORCB flags - The flags in the IORCE
are checked first to determine if ther
was a HALT I/O or a START I/0 failure.
An exception condition detected by I10S
is indicated by setting flags in the
IORCB.

» Inboard failures - The inboard (chan-
nel) type of failures are tested first
as a group {incorrect length, program
check, protection check, channel data
check, interface control check, chain-
ing check). If any one is found set,
control is transferred to the inboard
failure analyzer.

TAM and IOREQ

Exception Anclysis

Decode
interrupt
Normal Completion l CSW Reflected JORCB Reflected Other
CCW Troce List Inboard Outboard . Mochine O User SYSERR
Dato~in Processor on Doto~-in Foilure Failure Check Cowned
logical Function T
Butfer Analysis |
i
Tronsiate Reod Data Chonnel Unit e.g..
1 . £ . Buffer
Data Movement ype Unir xception Overrun
Check
Post Control With
Sense
Data
Analysis
Conclwsion Recovery ';“ordi"g of Recovery
Howsekeeping Mechanism emporary Routines
Foilures
Abort Situation
Posting DECB Recording of Reiniticlize
Solid Failures IORCB
1OCAL

Figure 7.

s Outboard check
board failures

or exception - The out-
(unit check and unit
exception) are tested individually. If
either is set, control is given to the
appropriate outboard failure analyzer.

» Normal completion - The channel end
(CE), device end (DE), and program con-
trolled interruption (PCI) bits are
tested. The detection of any CE, DE,
or PCI bit being set will transfer con-
trol directly to the CCW trace list.

e Undefined operation - If there was no
detected error or no normal condition,
TAM Posting identifies this I/0O inter-
ruption as an undefined operation and a
SYSER is declared.

The CCW trace list is then traced
directly when normal completion was decoded
from the interruption. TAM Posting per-
forms this CCW trace by processing each CCW
in the CCW list. This CCW list was just
executed previcusly by IO0OS and is returned
by I0S in the IORCB area of the ISA. For
dynamic buffering the length is obtained
from TOS and is indicated in Table 17.

TAM Posting: Normal Completion and Exception Analysis Paths

Table 17. TAM Posting: Terminal Length
Statistics

~ T e b3 - - 3
| Terminal |Standard|Maximum Single Input |
| Type | Length | Record Buffer |
S + + - 4
}IBM 1050 | 130 | 260 |
| i | !
1IBM 2741 | 130 i 260 !
| ! ! !
|IBM 1052-7} 130 i 260 i
| | | i
{TTY MOD 35§ 72 | 144 i
b e 1 L ——— —d

TAM Posting uses the logical function
list kept in TOS associated with this IORCHB
for determining necessary processing
requirements for each CCW. 1in logical
function 1list contains a one byte code for
each CCW in the channel program. For each
CCW and its associated logical function
code, the IORCB buffer pointer is stepped
to the proper buffer location and the CCW
list pointer is stepped to the next CCW.
TAM Posting then processes the next logical
function until the entire list has been

Section 4: Posting and Check 61

processed. Processing then continues with
post control. If the Data-In logical func-
tion code is present it performs the pre-
vious action and also branches to the Data-
In processor. This Data-In assures that a
user buffer area is available, and trans-
lates and moves data to this buffer area
when required. It is the initial Data-In
CCW, in the CCW trace list, that determines
the user buffer area reguirements.

The Data-In processor is entered if
there is a Data~-In logical function .n the
CCW list. The Data-In processor coding
determines input buffer length, detemmines
input buffer processing requirements, tran-
slates input data when required, moves data
tc user buffer area, and maintains input
data bookkeeping.

The user may supply the necessary buffer
area, by specifying in the TAM Read/Write
macro instruction, the address and length
of this area. The user may also specify,
in other parameters in this DECB or in the
DCB, that dynamic buffering 1is requested.
{See Table 18.)

If TAM Posting issues the GETBUF macro
instruction to obtain dynamic buffer areas,
the user must return these buffer areas,
when processing of the input data is
complete.

The input buffer length and processing
requirements axe determined by doing a
translate and test of the input data. The
data in the transliate and test table (ZAT-
DIT) contains only one functional charact-
er, at present, which senses the end of the
input data record. The ZATDIT functiocnal
character code is used to do a table lookup
ftor the processing routine to be called.
The data in the processing control table
(ZATDIC) is provided for this purpose and
contains the location of the end-of-record
processor. This end-of-record processor
determines if translation of the input data
is required and translates the data to
EBCDIC when necessary. The translation
table address is obtained from TOS. If the
tield is zero, no translation is required.

One error condition may be determined as
a result of the translate and test. This
1s an input buffer overflow and exists when
the terminal operator inputs a single reco-
rd length greater than the specified length
for the terminal. This condition will
cause the Master Exception flag in the
Posting flag field of TOS to be set, and
the Input Buffer Overflow flag bit to be
set 1n the flag field of the DECB. When
the translation requirements are completed
the message is checked for the end of line
(EOL) sequence of the input record (illus-
trated in Table 19).

It is determined that the terminal has a

specified EOL sequence when the EOL
segquence count in TOS is other than zero.

62 Part 1:

Table 18. TAM Postimng: Specification of
User Buffer
r) S B e 1
{ DCB i DECB | Comment s
frmm oo B :
joption | L=C jConversational move, |
ignored	jdynamic buffering	
		length is twice
		standard terminal
		length.
G St S T		
option	A=S	Dynamic buffering.
jignored	L=N	Length is stated
	[value=N. H	
pom e o i		
L=N	A=S	Dynamic buffering.
	L=5	Length is stated
	{value=N (from DCB).	
R e		
BUFTEXK=DYN	L=5 {Dynamic buffering }	
		{(from DCB). {
L=N	{Length is stated H	
i	jvalue=N (from DCB).	
e — T —- ———- 1		
BUFTEXK=DYN	L=N	Dynamic buffering
		{from DCB).
Length		Length is stated i
ignored { {value=N,		
T O {		
{Option	A=address	Buffer address is i
ignored		indicated.
	L=N	Length is stated }
		value=N. i
H L . 4		
{L - LENGTH i		
!]		
{L=5 - implies length in DCE.		
! !		
{Dynamic Buffering - Buffer obtained by		
POSTING and address passed to user in		
DECR. A user is therefore responsible		
}for returning these dynamic buffers by i		
using a FREEBUF. i		
o i		
Table 19. TAM Posting: Expected EOL		
Sequence		
[mo=— e ——— -= L AR -~		
Terminal	Seqguence {	
e oo .		
{IBM 1050 ICR, B i		
{ i		
IBM 2741	CR, C	
]	
JIBM 1052-7	NONE i	
]	i	
TTY MOD 35 {CR, L.F., XCFF]		
pmm e e e 1		
CR - Carriage Return]		
I		
B - End of Block	{	
i		
iC - End of Transmission]		
[i i		
jL.F. - Line Feed		
!]		
XOFF - Transmitter Off H		
, _— L 4		

{
{

Access Method for BSAM, MSAM, TAM and IOREQ

When a successful comparison cannot be made
the device type code is obtained from the
TOS and used to do a table lookup for the
abnormal EOL routine for that device.

The IBM 1050 and 2741 use a ccmmon
Abnormal End of Line routine and it is
entered whenever the ending sequence is
other than the expected. The routine will
determine one of four possible conditions:

1. B--EOB character only -- Necrmal allow-
able ending which may indicate card
input of inter-line record formatting.
Detection of this condition will inhi-
bit the placing of the New line code
character in the data record and will
return to the normal program flow.

2. Last character received is C--EOT --
If this character is received the Unit
Exception flag in the Post Flag field
in the CHATOS is tested, and if set,
the Message Complete flag will be set
and the return is to normal Data-In
processing flow. If the Unit Excep-
tion flag is not set, the Attention on
Read and Master Exception flag are set
in the Posting flag field of the CHA-
TOS and the Attention flag bit in the
Pre-Post Data field in the CHATOS is
set. <Control is then returned to the
normal Data-In processor flow.

3. Neither B nor C -- The Master Excep-
tion flag in the Posting flag field of
CHATOS is tested. If on, control is
returned to the Input Data processor
to allow the record in error to be
moved to the user buffer area.

4. 1If the Master Exception flag is not
set, an undefined system error has
occurred and control is given to the
undefined error routine. Should the
record length prove to be greater than
the user the user buffer remaining
count field, that portion of the reco-
rd equal to the user buffer remaining
count is moved to the user buffer
areas, the User Buffer Overflow flag
in the flag field of the DECB is set,
and the master exception flag bit in
the posting flag field of the TOS is
set. Normal processing continues with
control being returned tc the CCW
trace list as if no user buffer over-
flow had occurred.

If the EOL sequence comparison is suc-
cessful the first character of the EOL
sequence is overlaid with an EBCDIC new
line (NL) character and the record length
is adjusted to include the text plus the NL
character. This record length is then com-
pared to the usexr buffer remaining count
field of TOS. If it is equal or low, the
record is moved from the input buffer to

the user buffer area. The user buffer
pointer, user buffer remaining count, and
input character count fields in the TOS are
updated. Control is then returned to the
CCW trace 1list.

The CCW trace list coding continues for
each logical function byte until the entir
CCW list has been processed. When the last
CCW is processed, we continue processing
with the proper post control coding as
determined by the option type-code
reference in the post control table.

The functions of the post control rou-
tine coding are to determine the proper
posting and control for:

s Read operation entry

¢ Write operation entry

s Write with response entry
e Control order entry

If a read request is complete within
this IORCB, the area and length are moved
to the DECB and common DECB posting con-
tinues. If the read is not complete, TAM
Read/Write is called.

If a write is complete within this
IORCB, common DECB posting continues. 1If
the write is not complete, TAM Read/Write
is entered as a subroutine.

If the write with response is complete
within this IORCB, the data in the buffer
bit in the Posting flag field of TOS is
tested. If set, the Message Complete flag
is set in the Post flag field and control
is transferred to post control read. If
the data in buffer bit is not set, enter
TAM Read/Write is entered as a subroutine.

I1f write with response is not complete,
TAM Read/Write is entered as a subrcutine.

If a control order entry, common DECB
posting continues. Common DECB posting
ends post control by making an initial test
of the Master Exception flag in the Posting
flag field of TOS. If set, the ECB field
of DECB is posted complete with error and
the synad request is set in the DECB flag
field. If the Mastexr Exception flag is not
set, the ECB field of DECB is posted com-
plete without error and the prepost data
field is moved to the DECS flag field.

Common DECB posting then moves CSW and
sense data from ISA to DECB. If the Master
Exception flag is set, TAM Posting does not
allow entering TAM Read/Write as a subxou-
tine but continues with common DECB
posting.

Section 4: Posting and Check €3

After completing common DECB posting the
housekeeping completion routine coding is
executed. The housekeeping function
includes:

¢« Recording unrecoverable error data
¢ Recording recovered error data

s Clearing error counters and error data
fields

e Preparing line on abnormal end and
return

e Issuing status of IORCB and return

®» Setting up normal return to task
monitor.

Note that TAM Posting does not issue an
ABEND. ©On determining any exception or
error condition, the appropriate informa-
tion is posted in the DECB and at the prop-
er time a return is made to Task Monitor.

Only if TAM Posting cannot determine a
path to follow will it issue a SYSER.

TAM Posting provides exception analysis
error decoding and recovery actions. The
processing of all exceptions except atten-
tion interruptions posts all data to the
user, whenever error recovery is not indi-
cated or possible. The following flags may
be set in TCS to communicate unrecoverable
termination status to the user via the DECB:

e Unit Exception flag - set when a func-
tion is terminated by unit exception.

e Master Exception flag - set whenever an
exception interruption has terminated
the action.

» Abort flag - set whenever maximum error
recovery attempts have been
unsuccessful.

e Attention flag ~ set whenever attention
signalling is detected during a read
type operation.

e Recovery in Progress flag - set whenev-
er an error recovery action is
initiated.

An example of Start I/0 (SI10) failure
follows. The SIO Failure flag in the IORCB
18 interrogated by the Define Interruption
routine. If the flag is found to be on,
transfer is made to the SIO-HIO failure
pProcessor.

The status in the CSW is then interro-
gated to see if a unit check or unit excep-
tion has occurred. If either bit is on,
control is turned over to the proper pro-

64 Part I:

Cessor. If neither bit 1s on, a message 1S
sent to the system operator informing him
of the Start 170 failure and the associated
symbolic device.

The ABEND Required and SYNAD Requested
flags are set in the flag bytes of the
DECB. The ECB field of the DECB is5 sect to
indicate "complete with error®™. A bpranch
to the Housekeep and Return subroutine
occurs.

The two types of outboard failures are
unit check and unit exception. Each has
its own control routine coding whose puzx-
peose 1s to determine the recovery action to
be initiated. Each of the recovery rou-
tines is coded to operate for unique combi~
nations of conditions.

As an example of error recovery on unit
check, TAM Posting starts with the inter-
rupted CCW obtained through the data pro-
vided in the ISA and the IORCB located in
the ISA. The sense byte bits in the ISA
are then tested in a predetermined
priority.

When a test is found to be positive, a
counter located in TOS which represents
that sense condition is stepped and tested
for a maximum count. Refer to Table 20 for
CSW status and sense data typical °‘maximur
exception retry® counts.

When any sense condition retry counter
15 stepped to maximum, the Abort flag is
set to indicate an unrecoverable condition,
the failures arxe recorded, and TAM Posting
branches to conclusion housekeeping. If it
1S a recoverable condition the internal
recording saves pertinent error data in
TOS. After this recording, the Unit Check
Director routine coding is entered, to
access the Unit Check Recovery routine to
be initiated as determined by the interrup-
tion conditions.

The Reinitialize IORCB subroutine is
provided to be used by all unit check
action routines. Prior to entering, all
altering of the channel program and buffer
data is completed. This routine initia-~
Iizes all relative addresses in the IORCEH;
sets the necessary flags, and issues the
IOCAL macro instruction. TAM Posting then
sets up for a return to task monitor.

The following describes typical unit
check recovery routine coding provided:

Ret.xry Full IORCB on System Exrror: This
action is used where the channel program
has been terminated in such a way as to
require a retry of the full program or
posting of a system error which is unrecov-
erable. The routine will first test the
Abort flag in TOS. If set, it will set a

Access Method for BSAM, MSAM, TAM and IOREQ

Table 20. TAM Posting: CSW Status and
Sense Data Typical Maximum
Exception Retry Counts
(Extracted from CHASDT)

| A S B ik J
{ CSW Stratus |BRit No. |Retry Count|
pmmm e e R dommm e 1
|Attention | 32 i N.A. |
|Status Modifier | 33 | N.A. |
|Control Unit End | 34 | N.A. {
|Busy | 35 | N.A. |
jChannel End | 36 i N.A, H
Device End	37	N.A.
Unit Check	38 { 3	
Unit Exception	39 i 3	
pCl	1o { N.A.	
Incorxrect Length	41 i 3	
Program Check	42	3
Protection Check	43 i 3	
Channel Data Check	ub H 3	
IChannel Control } 45 1 3		
Interface Control	46	3 {
{Chaining Check	w7] 3 i	
{Consecutive Errors		10

e - — S 4
{ SENSE DATA | | i
|Command Reject i 0 | 3
|Intervention Required| 1 | 3 i
|Bus Cut | 2 i 3 {
| Equipment Check | 3 | 3
|Data Check |) | 3 |
{Overrun | 5 | 3 {
|Receiving | 6] 3 |
|Time Qut | 7 | 3 |
L - P 1 — 4

System Error and ABEND Requested flag in
the DECB and enter the CCW trace list rou-
tine. If the Abort flag is not set, the
routine will set the Retry in Progress flag
in TOS. The Reinitialize IORCB routine is
then entered.

System Error Retry from Interrupted CCW:
This action is used whenever a system error
has occurred and it is necessary to restart
the program from the interrupted CCW. The
Abort flag in TCS is tested. If set, the
routine will set an error condition in the
DECB and enter the CCW Trace List routine.
If abort is not set, the Retry in Progress
flag will be set. The relative location of
the interrupted CCW is saved and the Rein-
itialize IORCB routine is entered.

Record Only: This action is used when an
error has occurred which will not effect
channel program operation, but must be rec-
orded as a system history. It also may be
used when the terminal is not equipped with
error correction. A branch occurs to the
CCW Trace List routine.

Unit exception, for example, can be
caused by a negative response from the
1050, either during addressing or polling.

IOREQ Posting Routine (CZCSE)

After a system interruption which occurs
at the completion of an IORFQ initiated 1I/0
operation, control 1s passed by the Task
Monitor to IOREQ Posting to process this
I/70 interruption. The address ot I0OREQ
Posting 1is specified by the posting address
constants i1n the IORCB.

IOREQ Fosting analyzes the interruption
data to determine the action to be taken.
It then posts the normal or abnormal com-
pletion code in the DECB, allowing the
Check routine to later take action based on
these codes. IOREQ Posting is executed in
privileged mode, with all other task inter-
ruptions masked off. (See Chart CE.}

Attributes: Reentrant, resident in virtual
storage, closed, nonrecursive, read-only,
privileged.

Entry Point: CZCSE1l -- Entered via type-1
linkage.

Input: None. Information relative to the
conditions under which the I/0 operation
was completed is in the IORCB and the ISA.

Data References: CHAISA, CHADEC, CHADEEB,
CHADCB, CHAIOR.

Module Called: Reset (CEAAH) -- Resets
error flag so that task can access 1/0
device.

Exits:
Normal -- Return to calling program.
Exrror -- ABEND macro instruction.

Operation: IOREQ Posting initially saves
the general regqgisters. A check is made to
verify that the IORCB has been executed
{that is, the channel program has been
attempted).

If the JORCRE was not executed, a check
of the Error flag for the corresponding DEE
(pointed to by the IORCB) is made. If the
error flag is set, an intercepted condition
is set in the ECEB (pointed to by the IORCB)
of the DECB. The allowed IORCB count field
in the DEB is decremented by 1 an a return
to task monitor occurs. If the exror flag
is not set, an exit to ABEND occurs.

1f the IORCB was executed, the CSW is
moved to the DECB, the ISA sense informa-
tion is moved to the DECB, the allowed
IORCB count in the DEB 1is decremented by 1,
and the input data in the IORCB data buffer
area, if buffering is used, is moved to the
data area in the user virtual storage
pointed to by the DECB.

Section 4: Posting and Check 65

If START I/0 failed *Complete with
Error' is posted, DECBSF is set to show SIO
failure, SYNAD is requested, and the IORCB
count decremented. The return code is set
to zero and a return to the task monitor is
effected.

The CSW bits are examined and, depending
on their setting, normal Or erxror comple-
tion is posted. If the CSW=0, ABEND is
requented and error and permanent error
flags set 1in the DEB. IOREQ Posting does
not perform 4any error recovery.

For normal completion, ®"normal comple-
tion® is posted in the ECB of DECB, and a
return to the task monitor occurs.

For abnormal completion, ®complete with
error™ is posted in the ECB of DECEB, a
request is set for SYNAD in DECB, the error
flag is set in DEB, and a return to the
task monitor occurs.

Check Routine {CZCRC)

The Check routine is entered as the
result of the CHECK macro instruction that
a user issues to ensure the completion of a
previous READ or WRITE macro instruction.
To determine completion or other results,
Check examines the DECB. SAM Posting and
Exrxror Retry will have posted information in
the DECB if the I/0 operation is complete.
1f not complete, Check awaits completion.
On completion {(successful or otherwise),
normal return, an ABEND, or set-up for en-
try to a user's SYNAD routine occurs,
depending on switches set by SAM Posting
and Error Retry. Check also calls SAM
Mainline EOV for necessary end-of-volume
processing. If end of data set is encoun-
tered, Check sets up entry to a user's
EODAD routine before returning to the
caller.

Attributes: Reentrant, resident in virtual
storage, closed, privileged, nonrecursive.
Entry Point: CZCRCS -- Entered via type-1M

or type-2 linkage.

Input: Register 1 contains the address of
the DECB to be checked.

Data References:
CHADCB.

CHADEC, CHADEB, CHASDA,

Modules Called:
SAM Mainline EOV (CZCXE) -- SAM EOV main-
line processing.

SAM Read/Write (CZCRA) -- SAM Read/Write.
AWAIT (CEAP7} -- Await an interruption.

TWAIT (CEARO) -- Terminal I/C wait.

66 Part I1:

Normal -- Returns to the cailing program
with zero in register 15.

Other conditions --

-

e If a SYNAD condition, returns with:

Register 0 - DECBE address
Register 1 - 8-bat GYNAD code
Register 15 - Address of parameter

list containing us«er®s SYNAD V-con
and R-con addresses.

e 1f an EODAD {(end of data set) condi-
tion, returns with:

Register 1 - DCB address

Register 15 - Address of parameter
list containing user's EODAD V-con
and R-con addresses.

¢ ABEND occurs if EODAD or SYNAD exits
needed but not provided. Requested by
SAM Posting and Error Retry. I/0
requests checked out of sequence.

Operation: If the In-Use flag jn the DECB
is not on, Check has been entered to check
a DECB for which no I/0 is outstanding.
Therefore, control is immediately returned
to the calling routine.

When the DECB is in use but the I1I/¢
operation is not complete, the AWAIT pacro
instruction is issued to wait for the
expected I/0 event to complete.

When the I/0 event has occurred, the
DECB is checked for errors. The task will
be abnormally terminated when the SYNAD cr
EODAD exit is to be given control and it is
not supplied.

Note: When an intercepted DECB is checked
and it has an end of volume request posted .
in it, end-of-volume processing is per-
formed as explained below. However, if the
intercepted DECE has no end-of-volume regu-
est this means that the I1/0 associated with
the DECB was never attempted. Therefore,
Check links to the Read/Write routine to
reissue the 1/0 request. Check waits until
this request is complete before doing any
other processing.

If complete with errors is posted, and
if there is a unit check caused by reading
backwards intc a load point, the end of
volume processing is performed as explained
below.

If the DECB is marked complete with
errors, and there was no read backward into
lcad point, this means that an I/0 errorx
has occurred, and the system retry proce-
dures cannot correct it. The Check routine
first tests the ABEND bit {in the DECB), if

Access Method for BSAM, MSAM, TAM and IOREQ

the data set 1s sequentially organized. It
on, this means that the error 15 catas-
trophic, and the task cannot continue.
ABEND is then called. If the ABEND bit is
off, then the SYNAD request flag (in DECB)
is tested, and the user's SYNAD exit is
entered. If SYNAD is not on, a normal
return is given to the user.

If the data set is not sequentially
organized, the Check routine proceeds as
described above for the case in which the
ABEND bit is found off.

tnd-of-Volume Processing: Check calls the
Mainline EOV routine which performs various
end of volume processes and will Jdo volume
switching if necessary. When control
returns to Check, if the end of volume
corresponded to end of data set, the user's
EODAD exit is set up (if supplied). When
the end of volume condition does not corre-

spond to end of data set, the read reauest
DECB which causied the FOV request jo
restarted. Should 1t be a write reguest
DECB which causes the EOV condition, a
normal return is made to the calling rou-
tine with the DECB marked "Complete, No
Errors®.

Note that when conditions arise which
require a branch to SYNAD or EODAD, the
Check routine only sets a pointer to the
R-con and V-con of that routine in register
15, and returns to the calling program.

The point returned to will be within the
expansion of the CHECK macro instruction.
If general register 15 is zero, the next
sequential instruction after the expansion
should be given control. If non-zero, the
succeeding instructions of the expansion
must set up a type-1 linkage with the supp-
lied R~ and V-type address constants.

Section U4: Posting and Check 67

SECTION 5: CLOSE

CLOSE PROCESSING

The folliowing routines describe the
CLOSE processors for SAM, MSAM, TAM, and
IOR, as well as Close Common and MSAM
Finish.

Close Common Routine (CZCLB)

The Close Common routine will logically
disconnect the data set from the problem
program, close the data control block, and
relinquish main storage. It then branches
to the appropriate access dependent close
routine to complete the closing. (See
Chart DA.)

Attributes: Reentrant, resident in virtual
storage, closed, read-only, privileged rou-
tine, public.

Entry Point: CZCLBC -- Entered by type-1
or type-2 linkage.

Input: Register 1 contains the address of
the CHAGSM table. The CHAGSM table is
generated by the expansion of the CLOSE
macro instruction and consists of one
double word entry for each DCB (and its
associated data set) to be closed.

Data References:
CHADEB, CHADHD.

CHAGSM, CHADCB, CHATDT,

modules Called:
SAM Close (CZCWC)} -- SAM close.

TAM Close (CZICYG) -- TAM close.
MSAM Close (CZCMI) -- MSAM close.
IOR Close (CZCSD} -- IOR close.
VAM Close (CZCOB) ~-- VAM close.

VMA (CICGA) ~ Free virtual storage.

Exits:
Normal -- Return to the calling program.
Error - - ABEND macro instruction.

Operation: This routine performs close
processing only if the DCB to be closed is
open. If the close is temporary, the numb-
er of times the data set has been open is
not decremented as is the case in a normal
close.

Close Common then transfers control to

the appropriate access dependent close rou-
tine. When the access dependent close rou-

68 Part I:

tine returns, all storage assigneﬁ to the
DCB is released via FREEMAIN, unless the
close 1s temporary in which case the
assigned stcrage is not released. The DCB
is restored to its pre-open condition. If
this is not the last DCB to be closed,
CHAGSM points to the next DCB to be
processed.

SAM Close Routine {(CZCWC)

Called by Close Common, SAM Close posi-
tions the data set volume, releases storage
allocated for the DEB, disconnects the DEB
from the chain of DEBs, and returns unused
DA extents to external storage (Chart DB}.

resides in virtual
read-only, privileged.

Attributes: Reentrant,
storage, closed,

Entry Point: C2CWC1l - Entered by type-1

linkage.

Input: Register 1 contains the address of
the DCB. The SAM communication block
{CHASCB) is defined in the PSECT of SAM
close and contains three temporary control
blocks - DCB, DEB, and DEC - which are used
during the closing process to perform label
processing.

Data References: CHASCB, CHADCB, CHADER,
CHATDT, CHASDA, CHADEC.

Modules Called:
Tape Positioning (CZCWP) -- Tape
positioning.

User Prompter (CZCTJ) -- Communicate with
user.

VOLLVT (CZCWV) -- Volume address convert.

VMA (CZCGA) -- Free virtual storage.

GIVBKS (CZCEG) -- Release unused SAM
external storage.

Control {(CZCRB) -- Magnetic tape
positioning.

Mainline EOV (CZCXE) -- SAM mainline EOV
processor.

SETDSCB (CZCX5) -~ Set DSCB.

QSAM {(CZCSA) -- To handle end-of-volume
condition.

AWAIT (CEAP7) -- Await an interruption.

Access Method for BSAM, MSAM, TAM and IOREQ

Exits:

Normal -- Return to calling routine.
Error -- Via ABEND.
Operation: 1f the device indicated in the

DCBE 1s direct access, the T-Close flag is
turned off. DA data sets may not be tem-
porarily closed.

The SAM control block (CHASCB) is
initialized by zeroing out the wariable
portion, storing pointers to the DCB, DEB,
and JFCB into it, and initializing the tem-
porary DCB and DEB.

The QCLOSE subroutine is bypassed if
neither GET nor PUT is indicated in the
DCB. If the data set being closed has been
processed by QSAM, QCLOSE, an in-line sec-
tion of SAM Close, is entered to perform
functions unique to the closing of a QSAM
data set. Control is given to the TREOV
section of QSAM, which checks for outstand-
ing read requests and flushes any which
exist, or writes out any buffer which has
been partially or completely filled, but
not yet written out. (See the QSAM section
of this publication for a description of
TREOV.) A FREEMAIN macro instruction is
next issued to release the storage obtained
for the work area and buffers by QOPEN. At
this point, QCLOSE processing is complete
and normal processing of SAM Close
continues.

If the device is a magnetic tape drive,
the common portion of the input DEB is
copied into the common portion of the tem-
perary DEB, and a pointer to the temporary
DCB is stored into the temporary DEB.
Fields in the temporary DCB are set so it
may be used for label processing.

SAM Close uses the AWAIT macro instruc-
tion to make sure that all user I/0 is com-
plete before the data set's close proces-
sing is continued. Incomplete input opera-
tions will be purged by SAM Close.

Unused extents are released, via GIVBKS,
if the following three conditions are met:

a. device is direct access
b. at least one full track is unused

c. release of unused extents is specified
in the JFCB.

The Mainline EOV routine is then entered
to complete end-of-volume processing if the
last I/0 operation was a write. When con-
trol is returned to SAM Close, and if the
device is a magnetic tape drive, the tape
volume is positioned as specified in the
close options by use of the Control
routine.

MSAM Finish Routine (CZCMH)

MSAM Finish 1s used to complete proces-
sing for a data group mounted on a unit
record device. MGAM Finish can also be
used to signal the end of the current data
group without closing and reopening the DCB
for the next data group. (Chart DC.)

Attributes:
only, public,

Privileged, reentrant, read-
system, nonrecursive.

Entry Points:
CZCMH1 -- Primary entry point via type-1 or
type-2 linkage.

CZCMH2 -- Asynchronous interruption entry
point via type-1 linkage.

CZCMH3 -- Synchronous interruption entry
point via type-1 linkage.

Input:
For entry at CZCMH1, register 1 contains
the address of the DCB.

For entry at CZCMH2, register 1 contains
the address of the ICB.

For entry at CZCMH3, the ISA contains the
IORCB.

Data References: CHADCB, CHADEB,
CHAIOR, CHAISA, CHADBP.

CHADEC,

Modules Called:)
WTO (CZABQ) -- Write message to operator.

SIR (CZCJS) -- Activate an interruption
routine.

DIR (CZCJD) -- Delete an active interrup-
tion routine.

Reset (CEAAH) -- Reenable a device after
I/0 erxror.

Exits:
Normal ~-- For CZCMH1 return, register 15
contains one of the following return

codes:

'00' cCompleted successfully.

‘04" Incomplete.

‘08¢ Complete with 1/0 error; if PpUT,

register 1 points to failing reco-
rd, register 0 points to user
DECB.

For CZCMH2 and CZCMH3 return, register
15 contains zero.

Error -- Abnormal termination wvia ABEND

macro.

Section 5: Close 69

gperation: in order to avoid an automatic
wait in MSAM Close, the FINISH macro should
be issued and subsequently reissued by the
user until i1ts return code indicates com-
pletion. When the FINISH macro is issued
by the user or by the MSAM Close, CZICMH1 is
entered. Following an asynchronous inter-
ruption (caused by operator response to a
message), CZCMH2 1s entered; CZICMH3 is
entered after a synchronous interruption
{caused by completion of the card-read-and-
stack operation).

The user can stop Finish processing by
setting off the Finish in Progress bit in
his DCB and calling Finish for the final
time. This will cause any activated inter-
ruption routine to be deleted before a
return code indicating "complete”™ is given
to the user.

The user may also prevent the issuing of
a data-group-end message by turning on the
inhibit Message bit in his DCB. This will
cause Finish to go directly to its comple-
tion routine at points where it would
otherwise issue a message and wait for
response.

Primary Entry Point (CZCMH1) Processing:
If the DCB or DEB are not valid, the task
1S terminated via ABEND.

When the input is complete without
error, the message-defining loop is
entered. (See DCBRCX=30, below.) If the
input is incomplete, control returns to the
user with general register 15 indicating
"incomplete®. If the input is complete
with exror, the completion routine (see
DCBRCX=80 below) is entered.

When Finish is first entered on output,
and an error was recorded by a user-issued
PUT, no attempt will be made to flush the
buffer. Otherwise, if no error occurred,
the device type determines the line of
processing.

For a printer, a PUT is issued to write
the last buffer page. If the PUT is not
yet complete, the return code 1s set to
"incomplete®™ and the routine returns to the
caller. If the PUT 1s complete but an
error on a Finish-issued PUT is indicated,
the user will be provided with error point-
ers if this has not already been done
{erxror recovery will be attempted if the
error indicator is set off), and control
returns to the caller with the Finish-Just-
Issued flag on, the Finish-in-Progress flag
cff, and a return code indicating "complete
with error™ in general register 15.

Otherwise, the message "Remove output
from printer XXXX, then ready printer" or
*Remove output from punch XXXX, then ready
punch®™ is sent and the routine awaits

70 Part I:

operator response. However, 1if the combine
option is indicated, an IORCB for a card to
be read and stacked in pocket 3 is built

and executed before this message is issued.

For a punch, a blank record is con-
structed and PUT in order to force the last
card into the stacker. If this punching is
incomplete, control returns to the user
with general register 15 indicating "incom~-
plete™. If the punching is complete with
error, another PUT 1s issued to obtain
error pointers for the user if this has not
already been done (error recovery will be
attempted if the error indicator is set
off) and controcl returns to the caller with
the Finish-Just-Issued flag on, the Finish-
in-Progress flag off, and a return code
indicating "incomplete with error™ in gen-
eral register 15. If no error occurred in
the punching, processing continues, as with
the printer, at the PUT for flushing the
last buffer.

For subsequent entries toc Finish, the
path taken depends on the value of DCBRCX
as set by the previous FINISH.

DCBRCX=30: Completion of input is being
awaited. If the input operation is not yet
complete, the routine returns to the caller
with the return code indicating *incom—
plete®. If the input operation is complete
with error, the completion routine (see
DCBRCX=80 below) is entered. If the input
operation 1s complete without error proces-
sing continues at the message-defining
loop. 1If any of the DECBs are marked com—
plete with no errors and a unit check is
indicated, the message "Remove output from
reader XXXX, then ready reader® is sent and
operator response is awaited. If a unit
exception is indicated, the message "Remove
output from reader XXXX" is sent and Finish
enters its completion routine. If there
are no such DECBs, the message sent will
instead be "Remove input/output from reader
XXXX, then ready reader."®

DCBRCX=U40: Finish is awaiting comple-
tion of the PUT. Processing continues as
if Finish had just issued its PUT to write
the last buffer page.

DCBRCX=60: Awaiting an asynchronous
interruption (operator response}. The
interruption has still not occurred, so the
return code is again set to indicate
"incomplete®™ and the routine returns to the
caller. (Not applicable to RJE.)

DCBRCX=80: End of wait for the asynch-
ronous interruption. This condition is
caused by the occurrence of the interrup-
tion or by the user's turning off the
FINISH-in-Progress bit before the interrup-
tion was received. The completion routine
is entered, the FINISH-Just-Issued flag is

Access Method for BSAM, MSAM, TAM and IOREQ

set, the FINISH-in-Progress flag is turned
off, the appropriate return code indicating
"complete®™ 1s set in general register 15,
and the routine returns to the caller.

(Not applicable to RJE.)

DCBRCX=50: A wait for a card to be
stacked in pocket 3 when the device is a
punch and the combine option is indicated.
If there are any outstanding IORCBs, the
card~read-and-stack operation is not yet
complete so the R15 return code is set to
“incomplete” and the routine returns to the
caller. Otherwise, if no errors were rec-
orded on the card-read-and-stack operation,
the message "Remove output from punch XXXX,
then ready punch®" is sent and operator
response is awaited. If an error was rec-
orded, the message sent instead will be
"Feed card from reader YYYY, stack in poc-
ket 3, remove output from punch XXXX, then
ready punch.® (Not applicable to RJE.)

Asynchronous Interruption Entry Point
(CZCMH2) Processing: This interruption is
caused by the operator changing the device
state from "not ready" to “"ready”™, the
response required following the issuing of
a message. (This routine is not entered
& ring an RJE task.)

The DCBRCX field is set to indicate that
the interruption has occurred. The DIR
macro is used to delete the interruption
routine and control is passed to the cal-
ling routine with a return code of zero in
general register 15.

Synchronous Interruption Entry Point
(CZCMH3) Processing: This interruption is
caused by the completion of a read, feed
and stack in pocket 3 operation when the
combine option is indicated. (This routine
is not entered during an RJE task.)

Errors occurring during the I/0 activity
may result in limited retry, depending upon
the type of error. Any final error is rec-
orded in the DEB.

Except when a retry is in progress, the
number of outstanding IORCBs is reduced to
zexo and then, in all cases, a return code
of zero is set in general register 15, and
the routine returns to the task monitor.

MSAM Close Routine {(CZCMI)

MSAM Close calls Finish to complete out-
put if necessary, to attempt recovery from
an error on a previous PUT, or to indicate
end of data group to the operator. MSAM
Close frees pages of virtual storage
obtained by MSAM Open. (Chart DD.)

Attributes: Privileged, reentrant, read-
only, public, system, nonrecursive.

Entry Point: CZCMI1 -- Entered from Common
Close via type-1 linkage.

Input: Register 1 contains the address of

the DCB.

Data References: CHADCB, CHADEB, CHADEC,
CHATDT, CHASDA, CHAICB, CHADBP.

Modules Called:
MSAM Finish (CZCMH) -- Complete output and
indicate end of data group.

DIR (CZCJD) -- Delete an active interrup-
tion routine.

FREEMAIN (CZCGA) -- Release virtual

storage.

INTINQ (CZCJI) -- Interruption inquiry.

AWAIT (CEAP7) -- Await an interruption.

RJELC (via SVC 232) ~-- Disconnect RJE line
control.

Exits:

Normal -- Return to caller.

Exrror -- ABEND macro used for abnormal
termination.

Operation: If the DEB is invalid, MSAM

Close abnormally terminates.

Finish is called to assure that I/O0 has
been completed. If it has not, the routine
goes into the wait state (using AWAIT)
until the I/0 is complete. FINISH will
then be reissued. This process will be
repeated until all DECBs have been checked
for 1I/0 completion. If Finish is awaiting
an asynchronous interruption the INTINQ
macro will be issued. If Finish is in the
process of stacking a blank card, Close
will wait until that operation is complete.
The interruption will then be dispatched
and FINISH will be reissued until a return
code is received indicating that the opera-
ticon is complete. In an RJE task, the
INTINQ macro will not be issued (Finish
does not field an asynchronous interruption
during an RJE task) and the test for a
blank card being stacked is bypassed. If
an unrecoverable erroxr occurred on a PUT,
FINISH is reissued in order to attempt
recovery before informing the user of the
error.

The SDAT malfunction flag is set on if a
permanent error is indicated. The DEB
pointer in the JFCB is removed, and the DIR
macro instruction is used to delete any
active interruption routine. The DIR is
bypassed in an RJE task (BULKIO specifies
and deletes interruption routines for RJE).
RJE line control will be disconnected if
the device is a remote printer and the

Section 5: Close 71

installation operator will be notified at
his console via a WIO macro.

If the DEB indicates user read-write
protection class, two FREEMAIN macro
instructions are issued to free the two
noncontiguous groups of virtual storage
pages obtained by MSAM Open. If user-read-
only or user-inaccessible protection is
indicated, a single FREEMAIN is issued to
tree the contiguous pages of virtual
storage obtained by MSAM Open.

The DEB pointer in the DCB is removed,
and control returns to Close Common.

TAM Close Routine (CZCYG)

TAM Close is called by Close Common if a
user desires to close a TAM DCB, because of
ABEND requirements for a task to be closed,
or as a result of a LOGOFF command.

In continuing the close processing from
Close Common, TAM Close is called to per-
form additonal closing functions unigue to
TAM terminals. This includes freeing the
control blocks and buffer areas obtained
during TAM Open and pexforming the disable/s
enable function at logoff time. TAM Close
then returns to Close Common except when an
abnormal end is required in which case it
goes to ABEND or SYSER. (See Chart DE.)

Attributes: Reentrant, resident in virtual
storage, closed, read-only, privileged.

Entry Point: CZCYGl -~ Entered via type-1

linkage.

Input: Register 1 contains the address of
a two-word parameter list:

Word 1 -- Address of DCB being closed.
Wword 2 —- Address of associated JFCB.

Data References: CHADCB, CHATDT, CHASDA,
CHADEB, CHAISA, CHADEC.

Modules Called:

Write {(CZCYM) -- TAM write.

Check {CZCRC) -- Check.

VMA (CZCGA) -- Free virtual storage.

ABEND {({CZACP) -- Abnormal task termination.
WIO (CZAB() -- Write to operator.

SETAE (CERAK) -- Set asynchronous entry.

ADDEV {(CEAAC) -- Add device to task device
list.

RMDEV (CEAAD) -- Remove device from task
device list.

72 Part I:

XTRCT (CEAH3) -- Extract TSI field.

SYSER (CEAIS) -- System exrror.

Exits:

Normal -- Return to calling routine.
Error -- 1. ABEND macro instruction.

2. SYSER.

Operation: TAM Close initially saves the
general registers. The Recursive Call flag
is tested to prevent a recursive loop
between TAM Close and ABEND. If the flag
is set, it indicates that this is a recur-
sive call. This means that just prior to
this entry o TAM Close {thrxough Close Com-
mon?} from ABEND, and exit from TAM Close to
ABEND occurred. TAM Close therefore does
not proceed but only clears the Recursive
Call flag and branches to ABEND.

If the Recursive Call flag is not set,
the opened DCB count in SDAT for this ter-
minal is decremented by 1 (for this DCE}
and the number of opened DCBs that are
still open for this terminal is examined.

If the number is positive, the pages of
virtual storage created for this DCB are
freed, and the pointers that were set dur-
ing TAM Open are removed. (See TAM Open
Figure 4.) A return is then made to Close
Common .

If the number is zero, processing con-
tinues. (This indicates there is now no
opened DCB for this terminal.)

If the number is negative, the recuxsive
call flag is set, a count of zero replaces
the negative number and processing con-
tinues as if there were a zerc count.

Processing continues with this terminal
no longer having any opened DCB. A test is
made to determine if the interruption
storage area (ISA) flag is set with ABEND=
2. If it is not, TAM Close continues test-
ing the terminal to determine the type of
close.

If it is set, then TAM Close immediately
goes to the final steps of a close.

Note: ABEND=2 indicates that the entry to
this closing came from ABEND and, after the
closing, a return is made to ABEND. When
this return is made, ABEND retains control
of the terminal.

Testing continues at this point to
determine the type of close by verifying
that the terminal is defined and, if so, if
it is on a 2702.

If it is defined and is not on a 2702,
TAM Close proceeds with the final steps of

Access Method for BSAM, MSAM, TAM and IOREQ

a close, bypassing the disable/enable func-
tion. (The terminal defined in this manner
is the operator's terminal; a 1052-7 direct
connection to the¢ multiplexor channel.)

If it is supported and is also on a
2702, then the disables/enable function is
required. Initially, after checking that
the device has not been phased out, proces-
sing takes place to provide a SYNAD address
for the disables/enable function. The SYNAD
address in the user's DCB is saved in a
temporary area within TAM Close and is
replaced with a TAM Close SYNAD address.
Should any I/0 operation fail during the
disable/enable function the SYNAD will
either declare a minor SYSER scftware error
or abnormally terminate the task. 1In all
error cases the task is abnormslly ter-
minated. At this point the terminal is
disabled and TAM Close must then enable the
line. 1In order to enable the line, TAM
Close reopens the DCB (by setting the DCB
open flag) that was previously closed in
Close Common. After performing the follow-
ing functions, TAM Close closes the DCB
again with the disable/enable function com-
pleted and the user's SYNAD address
replaced. The fcllowing functions are
required in order for TAM Close to enable
the line:

» The disabled terminal must be added to
the task.

s Asynchronous interruptions must be
ignored when the disabled terminal is
connected to the task.

e The terminal control unit must be
restored to the initial SAD order.

¢« The line is then enabled.
e The terminal is removed from the task.

If it is not defined, then the Recursive
Call flag is set and TAM Close proceeds
with the final steps of a close, bypassing
the disablesenable function.

In the final steps of a close, the pages
of virtual storage created for this DCB are
freed and the pointers that were set during
TAM Open are removed (see Figure 4).

A final test is then made of the Recur-
sive flag. If it is on, a message is
issued to the operator and ABEND is
invoked. If it is not on, a return is made
to Close Common.

IOR Close Routine {(CZCSD)

IOR Close is called by Close Common:

e Due to normal completion of a task.

e Due to ABEND requirements for a task to
be closed.

In continuing the close processing from
Close Common, IOR Close is called to per-
form additional functions for these
devices. IOR Close waits until all out-
standing DECBs have been completed and then
frees the IOREQ work area, DEB and IORCB.
IOR Close then returns to Close Common.
(See Chart DF.)

Attributes: Reentrant,
storage, closed,
privileged.

resident in virtual
read-only, nonrecursive,

Entry Point: CZCSD1 -~ Entered by type-1

linkage.

Input: Register 1 contains the address of
a two-word parameter list:

Word 1 -- Address of DCB being closed.
Word 2 -- Address of associated JFCB.

Data Reference:

CHADCB, CHADEC, CHADEB.

Modules Called:
VMA (CZCGR) -- Free virtual storage.

AWAIT (CEAP7) -- Await an interruption.

DIR (CZCJID) -- Delete asynchronous inter-
ruption requests pending.

Exit: Normal return to calling program.
Operation: IOR Close initially saves the

general registers. The address of the DEBR
(DCBDEB) is obtained from the DCB. A test
for any unchecked DECBs is made.

s If there are no unchecked DECBs
(DEBNPC=0), processing continues by
determining the area to be freed.

» If any DECB is unchecked (DEBNPC#0),
the address of the last DECB in the
queue is obtained (from DEBDEL). The
AWAIT SVC is moved into this DECB and
the IOR Close executes (EX) the AWAIT
in this DECB. IOR Close then waits
until this last DECB is posted complete
(DECECB), and then processing continues
by determining the area to be freed.

In determining the area to be freed the
size of the DEB is added to the size of the
IORCB and then a FREEMAIN macro instruction
is issued to free the area. The final step
of IOR Close is to return to Close Common.

Section 5: Close 73

SECTION 6:

ROUTINES SPECIFICALLY DESIGNED FOR BSAM

LABEL PROCESSORS

The following routines describe tape and
direct access input and output label
rOCesSsSors .

Tape Volume Label Routine {CZCWX)

The Tape Volume Label routine is called
by Device Management to read a tape volume
label, or to rewind and unload a tape. It
may alsoc be called by Device Management or
the LABEL command routine to write a volume

label (Chart EA).

Entry Points:

CZCWX1 -- Entered to read the volume label.

CZCWX2 -- Entered to rewind and unload a
tape.

CZCWX3 ~- Entered to write the volume
label.

Input: Register 1 contains the address of

the following parameter list:

Word 1 -~ Address of the SDAT.

Word 2 -- Address of an 80~character label
buffer.

Word 3 -- Address of a 1-byte field con-

taining the density setting.

word 4 -- Address of a i-byte field con-
taining ASCII/EBCDIC indicator ({(X'20° =
ASCII; X'00°' = EBCDIC).

Modules Called:
Control (CZCRBS) -- Rewind, rewind and
unload, write Tape Mark, oxr backspace.

GETMAIN {CZCGA2) -- Get a work page.
read/Write (CZCRAS) -~ Read a block, write
a label.
Exits:
Return Code Condition
00 Normal return, or in-
correct length on READ
or WRITE.
0% Intercepted more than 10

times, or unit check with
no file protect.

08 Unit exception.
oc Unit check with file
protect.

T4 Part I:

Operation: The text of the 'Operation® is
keyed to the labels of Chart EA.

A Read is entered at CZCWX1l, a Write at
CZCWX3. Tape Recoxrding Technique, density,
BPI are set (CA001), a temporary DEBR built
(CAQ01A7) and the tape rewound (CAQ02).

CZICRAS reads the label for a Read option
and returns on normal completion or returns
a code as described under 'Exits' (CAQ04C -
CAQOQ8A).

CZCRAS writes a number of tape marks if
the first word of the buffer is blank, or
writes a label. An American National Stan-
dard format label is written where ASCII is
specified. The label write will be fol-
lowed by a write of tape marks. If CZCHWX
was called by Pause, two tapemarks are
written; otherwise, five tapemarks are
written (via five calls to Control) (CA004
- CAOOU4A - CAO08 - CAOO0SE).

If CZCWX was called by PAUSE, the file
is backspaced past the tape marks. If not
called by PAUSE, it is rewound and unloaded
(CAGOSF - CRA0OS5a).

At CZICWXZ, a temporary DEB is created
and CZCRB 1is called to rewind and unlcad
the tape.

various return codes reflect the possi-
ble READ/WRITE errcrs. (See "Exits*.}

Tape Data Set Label Routine {(CZCWY)

This routine reads and writes data set
header and trailer labels on magnetic tape
volumes. Error checking is provided after
reading labels. User label routines are
called if required. Provision is made fox
reading and writing labels in either stan-
dard IBM or American National Standard for-
mats. (See Chart EB.)

Bttributes: Reentrant, resident in virtual
storage, read only, public, privileged,
system, nonrecursive.

Entry Points:
CZICWYl -- Entry point for processing header
labels for input data sets.

CZCWY2 -- Entry point for processing trail-
exr labels for input data sets.

CZCWY3 -- Entry point for processing header
labels for output data sets.

CZICWY4 —-- Entry point for processing trail-
er labels for output data sets.

Access Method for BSAM, MSAM, TAM and IOREQ

Input: Register 1 contains the address of
a parameter list consisting of the address
of the SAM communication block, CHASCB.
CHASCB includen 5CBLIOA, which points to an
BO0-byte bufter area. Flelds of special
intereust reached through CHASCB:

DCGOFG {(Open Flag - DCBO3M) which may

contain:
0 Data set being opened or closed.
1 Data set open, BOV process.

DCBOFG (EOT Flag - DCBO6M) which may

contain:

0 Process on basis of open flag.

1 BEOT occurred while writing EOF
labels - write EOV this time.

DCBOPT (Option - DCBSU2) which may

contain:

0 Standard IBM labels (EBCDIC
user).

1 American “dational Standard labels

(ASCII user).

TDTLAR (Labels - TDTSUM) which may
contain:

0 No user labels.

1 Process user labels.

Data References:
CHADEC, CHAISA,
CHATDT.

CHASCB,
CEALBI1,

CHADCB, CHADEB,
CHALB2, CHASDA,

Modules Called:
BSAM Read/Write {(CZCRA) --
physical record.

Read or write a
Control (CZCRB) -- Provide non-data opera-
tions on the tape device.

LVPRV (CZCJL) -- Provide type-3 linkage to
nonprivileged user label routines.

User Prompter (CZCTJ) -- Communicate with
aser.
Volume Sequence Convert (CICWV) -- Compute

the address of the volume serial field
of JFCB specified by relative volume
sequence number in SCBRVS.

Exits:
Normal -- Return to calling program with
return code 0 in register 15.

Error -- Link to
er 1 pointing
byte of which
message text.

CZACP (ABEND) with regist-
to message area, first
contains the length of the

Operation: An initialization section used
in common from all four entry points per-
forms standard linkage and save require-
ments and establishes addressability. A
branch table containing the addresses of
the four separate labeling routines is
encountered, and the appropriate label pro-

Section 6:

cessor reached based on a code saved upon
entering Tape Label Processor at one of the
four entry points.

Processing for each of the tour labeling
routines is discussed below separately. 1In
addition, three subroutines, Build, a rou-
tine which actually builds the tape label
in a buffer for output, Check, which deter-
mines processing after a label I/0 opera-
tion has occurred, and SUL, which handles
user labels, are described.

Input Header Label Processor (C2ZCWY1): The
tape label is read and the read checked by
a branch to the Check subroutine. If a
read error has occurred, or a tape wark or
the beginning of the tape is encountered,
an abnormal end is made. If the label is a
volume label, another read is issued. If
the label is not a volume label, and is not
a HDR1, EOV1, or EOF1 label, an abnormal
end is made.

If the label is HDKl, EOV1, or EOF1,
block count is stored in the DCB. The
DSNAM subroutine is entered to check the 17
least significant characters of the data
set name against those in the JFCB. The
user is notified through the PROMPT macro
instruction when the data set names in the
label and the JFCB do not agree and given
the option to continue or to terminate by
an abnormal end.

the

If the generation/version numbers are
not correct, the user, as above, has the
choice of terminating or continuing.

The next label is read and the read is
checked. An abnormal end termination is
made if a read error occurs. If a tape
mark is read during a read backward opera-
tion, the routine backspaces the tape to
position it for a data set read. If the
label was an HDR2, an EOF2, or an EOV2,
if the record format, record length, and/or
block size in the CHADCE are zero, the rou-
tine obtains the information from the
iabel, converts it to binary, and stores it
in the DCB. 1If the user has indicated his
data set is in ASCII, the HDRZ2 label will
have a buffer offset field. Unless this
field contains zero, it will also be con-
verted to binary and stored in an appropri-
ate field in the DCB.

and

If standard user labels are not speci-
fied, or if they are specified but the user
input header label exit is not active, the
tape is positioned to read the data set,
and a normal return is made.

With user labels specified, a branch is
made to the SUL subroutine (explained
below). On return to the Input Header rou-
tine, the tape is positioned to read the
data set, and a normal return is made.

Routines Specifically Designed for BSAM 75

Input Trailer lLabel Processor (CZCWY2):
This routine processes standard IBM (EBCDIC
users) and American Natiocnal Standard
(ASCII users) trailer labels for an input
data set being read forward, and header
labels for an input data set being read
backwards. User labels are also processed.

The routine first reads and checks the
label. If an error or tape mark is encoun-
tered during the read operation, or if the
ilabel read was inwvalid, the abnormel end
code is set in the CHASCB, and an abnormal
end is effected.

If a volume label was read, the read is
reissued.

If the block count of the CBADCEB does
not equal that in the label, the user is
informed, and a reply is expected. The
user may elect to terminate the task.

1f standard usex labels are specified,

and the exit is active, ancther READ is
issued and checked. &Again, if a read error
was encouvntered, the abnormal end code is
set and an abnormal end is effected. The
READ is reissued if an HDR, EOF, or ECV
label is encountered. O(therwise, the user
is given the facility to process the label.

User labels are read and checked by the
SUL sulkxoutine,

Output Header Label Processor {CIZCWY3):
This routine checks the currently mounted
cutput tape to see if the expiration date
of any data set currently on the tape (and
about to be overlaid) has been reached and
oversees creation and writing of mnew output
header labels in either standard IBM orx
hmerican National Standavd (ASCII users)
format. It sets up the mechanism for writ-
ing up to eight standard user labels, or an
unlimited number of user labels when ASCII
is specified.

On entyxy to this routine, the tape label
is read and checked. If a volume label is
encountered, the next label is read; this
label should be either a HDR1 label (from
an old data set which we are overlaying) or
a tape mark (if the tape is clean}. Where
neither iz encountered, abrnbrmal termina-
tion oCours.

if HDR1 was present, the expiration date
of that data set is checked and if it has
not yet been reached, the user is prompted.
He may choose to continue or request
abnormal termination.

The logical file (data set) sequence
number is taken from the JFCB, the tape is
repositioned to write the header labels,
and the Build subroutine called to write
both HDR1 and HDR2 labels.

+

76 Part I:

If user labels have been requested, a
branch is made upon return from Build to
the SUL subroutine.

On return from SUL, the Control subrou-
tine is called to write a tape mark follow-
ing the header label group and position the
tape to write the data set. Normal return
is made to the caller.

Output Trailer Label Processor {(CZCWY4j:

I1f CLOSE processing is being done, the
characters EOF1 are placed in the first
four bytes of the 80 character label buf:-
er. Otherwise, this routine must have been
called for an end-of-tape condition, and an
EOV1 is placed there. The remainder of the
label is created and written by a branch to
the Build subroutine. Build writes the two
trailer labels in either standard IBM or
American National Standard label format.

The SUL subroutine is called if user
labels have been requested. Control is
called to write a tape mark and position
the tape. Normal return is then made to
the caller.

Build Subroutine: This routine builds #0-
byte output header and trailer labels for
tape volume data sets and writes them by
calling BSAM Read/Write.

The routine expects the first four bytes
of the 80-byte label buffer to already con-
tain HDR1 (for header labels), or EOF1 or
BOV1 {for trailexr labels}. Builad fills in
the remaining pbytes as shown in Table 21.

Initially, after moving the 17 least

o the label bufier, the Volume Sequencs
Convert routine is called to compute the
address ©of the volume serial field of the
JFCB. The data set serial number is
obtained from this field if the volume is
not mounted, or from the SDAT if it isz.

Then, in oxder, the relative volume
sequence number, the data set seguence
number, generation and versicon numbers,
creation and expiration dates, block count,
and system code are moved into the label
buffer. The data set security number field
is made blank for American National 3tan~
dard (ASCII users) label format or a
character zerc for standard IBM format.

Build then branches t¢ the Write subrou-
tine in Tape Data Set Label which calls
BSAM Read/Write to write the first label on
the tape. The Check subroutine determines
tape write errors or end of tape and passes
that information back to Build. Build now
sets the label number to two and makes up
the second label, illustrated in Table 22.
The standard IBM and the American National
Standard second label formats are similar

Access Method for BSAM, MSAM, TAM and IOREQ

Table 21.

Label 1 Fill Table

r T ki T T T T s s s ———l
| | Size In | Pilled | i
i Label Field | Bytes | From | Remarks i
t it Suhenbstieid L S B —1
| Data Set Identifier| 17 { CHATDT | 17 least significant |
i | { (JPCB) | characters of &w |
i |] | character Data Set |
i] i { Name in the Job File |
i | 1] | Control Block]
i | ! | |
{ Data Set Serial i ® | CHASDA | Filled from Volume ID |
| Nomber] { or JFCB| field of CHASDA if i
i i } | volume is mounted, |
I 1 i { otherwise from Volume |
i | i | ID field of first i
i 1 | j Volume Serial field i
| 1} } | in the Job File |
i { i { Control Block i
| | | { |
| Volume Sequence { 4 { CHASCB |]
| Number | i I i
{ | | | |
| Data Set Sequence | 4 { CHATDT | i
| Number] { (JFCB) | |
| | | | i
| Generation Number | L] } CHATDT |]
] i { (JFCB) | {
| i { | !
{ Version ot i 2 | CHATDT | {
| Geoeration] § (JFCB) | H
i 1 | i '
| Creation Date 1 6 | CHATDT | i
1] i rce) | {
i | | | |
{ Expiration Date §] { CHBATDT | i
1 | | FCB) | H
! | i | !
| Data Set Security | 1 § - { Not Implemented i
| Rumber { { | tblank if ANS; zero H
| {Accessibility) I i { if scandard IBM) H
i i { i !
| Block Count i 3 | CBADCE | |
] | | | |
| System Code | 13 i - I !
| | i] |
| Reserved { 7 - | Filled with blanks |
o Aok A {
| TOTAL 76 Bytes |
L ————— R |
Table 22. Label 2 Fill Table

r Al Bd T A
{ | Size In | Filled | |
1] Label Field | Bytes | From | Remarks [
b 4 4 & “l
l' Record Format 11 1 '; CHADCB 1 {
| | | 1 |
| Block Length 1 s | CHADCB | i
i i i | i
| Record Length IS { CHADCB | i
| | i i |
| Density |1 { CHADCB | i
| } i | |
| Data Set Position | 1] - | Contains 0 if first {
i] i { volume mounted, {
i | | | otherwise contains 1 |
	i	
Job/Step 117	--	OS only
Identification]	
i 1 t		
Tape Recording	2 { CBADCB	i
{ Technique	i { l'	
i		

} Print Control [T | CHADCB |} i
| Character i | i {
! } § | i i
Reserved] 13] --	Contains Blanks	
§	i	
Buffer Offset P2	CHADCB	ANS labels (ASCII)
i] { only; otherwise {	
\ § i { reserved		
i] i	. 13	
Reserved {28 { -	Contains blanks	
o o i i 4		
TOTAL 7% Bytes i		

Section 6:

except for the buffer offset field which
must be filled in for the American Natiornal
Standard format.

The routine effects an abnormal end it
there is a tape write error in writing
either lakel. 1If, on attempting to writ. a
header lakbel, an end-of-tape indication s
detected, an EOV trailer label 1s written
instead and the header iabel is written on
the next volume.

A more detailed discussion, including
tables, of both standard IBM and American
Natiocnal Standard label formats, is con-
tained in Appendix A of Data Management
Facilities, GC28-2056.

SUL Subroutine: This routine reads and
writes user labels. Standard IBM format
users; may have a maximum of eight user
labels; ASCI1I users, who must conform to
the American National Standard label for-
mat, are allowed in TSS5/360 to have a numb-
er of user labels limited only by the phys-
ical extent of the tape volume.

Initially, the routine calling SUL will
have placed UHLl1 (user header label) or
UTL1 (user trailer label) in the label
buffer. SUL will then determine from a
code passed in register 1 whether to read
or write. If a user label is to be read,
the Read subroutine will be branched to for
reading and checking a user label. An
abnormal termination will occur if the
label read is neither a header or trailer
label. The user's label processor will
then be called.

Wnere a label is to be written, the
user's label processor will be called first
to build the rest of the label in the label
buffer, and then SUL will cause the label
to be written and checked.

If the user is nonprivileged, his user
routine is not called directly; he gains
control through the Leave Privilege
routine.

When the user labels have all been read
or written (a maximum of eight for EBCDIC
users, no maximum for ASCII users), return
is made to the routine which called SUL.

Check Subroutine: This routine is entered
following a return from BSAM Read/Write to
check the I/0 operation results and deter-
mine further processing.

Check inspects various fields and flags
in the data event control block and sets
the return code as follows:

Routines Specifically Designed for BsSaM 77

- - =T 1
| OPERATION CHECKED i | : N .
______________ {Rtn. | UHL i) UHL () CCHRRO0O
] READ | WRITE |Code | o
-------------------------------- = UTL) UTL

|Normal Complete |Normal Completef"00"' |

{ | | |

i

{Unit Exception | - jfou" |

; Error “ Error ? 108"* } Obtain key User Tebel key Miscelloneos Direct Accens
; 3 l User Dore Address

i

jIntercepted | Intercepted j*oc* |

f | | |

{Unit Check |Unit Exception }°10° | " 4 76 8

| (Beginning of | i |

{ Tape) i { |

SR SN, F S |

If the operation is intercepted, the
routine sets a counter So that a maximum of
50 interceptions on this operation is
allowed before the return code is set to
the error code.

If the aperation is nct complete, the
AWAIT macre instruction is used to allow
the operation to complete.

DA Input Label Routine (CZCXN)

The Direct Access Input Label processor
reads standard direct access user header or
trailer labels, and provides linkage to 3
user label processing routine as specified
in the DCHB exit list. {See Chart EG.)

Attributes: Reentrant, nonrecursive, resi-
dent in virtual storage, privileged.

Entry Point: C2ZCXN1 -- Entered via type-1
linkage.

Input: Register 1 contains the address of
the SAM communication block.

Data References: CHASCB, CBADEB, CHADCB,
CHAISA.

Modules Callied:
Message Writer (CZCWM: -- Message proces-
sing and ABEND processing.

Obtain/Retain (CZCF0O) -- Obtain DA user

label.

LVPRV ({(CZCJL) -- Leave privileged state,

Exit:
Normal -- Return to caller.
Error -- Call Message Writer to do ABEND

processing.

Operation: Standard user labels are read
via Obtain, and, if the user is non-
privileged, processing is provided for via
the Leave Privilege routine (LVPRV)}.
Figure 8 shows Obtain keys and Label I/0

78 Part I: Access Method for BSAM, MSAM,

Figure 8. Obtain Keys and Label I1/0 Areas

area. When a file mark is read, or the
user returns a zero code from LVPRV, the
routine places a zero code in general
register 15 and returns control to the
invoking program.

If the exit type in SCBEXT is not for
input user header or trailer labels, the
routine sets a unique ABEND code in SCBABN,
and links to the Message Writer for ABEND
termination.

If there was a hardware error while
attempting to read a label, the message
"XXXX LABEL UNREADABLE, ENTER N TO READ
NEXT LABEL, B TG BYPASS LABELS OR E TO END
THE TASK® is sent to the user via the Mes-
sage Writer routine. If the user replies
"N", and there have not been eight attempis
to read labels, reading of the next label
1s attempted.

If eight attempts have been made, or if
the user replies "B", control is returned
to the caller with a zero return code in
general régister 15. If the user replies
"E®, the routine sets a unigue ABEND code
in SCBABN and calls the Message Writer rou-
tine to perform ABEND termination.

DA Output Label Routine (CZCXU)

The Direct Access Output Label processor
provides the user with the facility for
building and writing standard user labels
on a direct access device. (See Chart EH.)

Attributes: Reentrant, nonrecursive, resi-
dent in virtual storage, privileged.

Entry Point: C2ZCXU1l -- Entered via type-1
linkage.
Input: Register 1 contains the address of

the SAM communication block.

Data References: CHASCB, CHADCB, CHADEBE.

TAM and IOREQ

Modules Called:
LVPRV (CZCJL) --

Leave pravileged ntate.

Obtains/Retain (CZCFO)
label.

-- Retain DA user

Exits:
Normal -- Return to caller with *00°' in
general register 15.

Error -- Register 15 contains ‘'04°.
Operation: If there is a label track in

the first extent of the data extent block,
and an output label type is specified in
the CHASCB, and the exit type is active,
the user is given the facility to build
labels via the Leave Privilege routine, and
to write labels wvia Retain, until the user
passes a zero return code in general
register 15, or until eight labels are
written. At that time, a file mark is
written via Retain. (See Figure 9 for the
RETAIN keys and the LABEL 1I/0 area.)

If the exit type specified in the CHASCB
is not for output header or trailer labels,
a unique ABEND code is set in the CHASCB,
and control is returned to the caller with
a return code of ‘04’ in general register
15.

If Retain returns with a code other than
zero in general register 15, a unique ABEND
code is set in the CHASCB, and control is
returned to the caller with a return code
of *'04* in general register 15.

EOV_PROCESSORS

End of volume processing consists of
tape and direct access input and output EOV
routines, mainline and *‘forced' EOV rou-
tines, and concatenation and check proces-

sors. The EOV routines are entered as the
result of one of two conditions: end of
data set or end of volume.
URL (n) UHL (n + 1} CCHHRO00
or or
UTL {n) UTL (n + 1}
Retoin key User label key Miscellaneous Direct Access
User Dota Address
4 4 76 8

Force End of Volume Routine (CZCLD)

The Force End of Volume routine ter-
minates the processing of the current
volume of a data set, and prepares for the
processing of the next volume. It accomp-
lishes this by initiating the End of Volume
(EOV) routines. (See Chart FAL)

Attributes: Reentrant, resident in virtual

storage, closed, privileqed, read-only,
public.

Entry Point: CZICLDF -- Entered by type IM
or type IIM linkage.

Input:
the DCB.

Register 1 contains the address of

Data References: CHADCB, CHADEB.

Modules Called:
SAM Mainline EOV (CZCXE) -- SAM Mainline
end of volume processor.

QSAM FEOV (C2Z2CSA) -- QSAM forced end of
volume processor.

Exits:
Normal -- Return to calling routine.

Error -- ABEND macro instruction.

Operation: Force End of Volume abnormally
terminates the task wvia the ABEND macro
instruction for any of the following
reasons:

e DCB identifier is not valid.
e pData set is not physical sequential.
 Data set is not on magnetic tape or DA.

e Not all BSAM DECBs have been checked.
/
control is returned to the calling routine
when the input DCB is not open.

Should all of the above tests be passed
and if QSAM, QSAM FEOV is entered. If not
QSAM, or on return from QSAM FEOV, the FEOV
flag is set on and the Mainline EOV routine
is entered. When Mainline EOV returns to
Force End of Volume, control is then
returned to the calling routine.

Note the function of this routine is
mainly performed by Mainline EOV.

Mainline EOV Routine (CZCXE)

Figure 9. Retain Keys and Label 1/0 Areas

Section 6:

Mainline EOV performs as a control pro-
gram to End of Volume (EOQOV) processing. It
oversees the modifying of the DEB, label
processing, volume switching, determining
end of data set, concatenation processing,

Routines Specifically Designed for BSAM 79

and pausing control to user label exit rou-
tines. ({(See Chart FB.)

Attributes: Reentrant, resides in virtual
storage, closed, read-only, privileged.

Entry Point: C2ZCXEl -- Entered by type-1
linkage.

Input: Register 1 contains the address of
the DCB causing EOV involvement. The PSECT
contains CHASCB and three temporary control
blocks for use in the I/0 operations of
label processing.

Data References: CHADCB, CHADEB, CHASCB,
CHATDT, CHADEC, CHAISA.

modules Called:
VMA (CZCGA) -- Get virtual storage, free
virtual storage.

Build Common DEB (CZCWB) -- Restore the
common portion of the DEB.

Volume Sequence Convert (CICWV) -- Volume
address convert.

DA Input EOV (CZCXD) -- Direct access out-
put end of volume processing.

DA Output EOV (CZCXI) -- Direct access
input end of volume processing.

Tape Qutput EOV (CZCX0) -- Tape output end
of volume processing.

Tape Input BEOV (CZCXT) ~-- Tape input end of
volume processing.

User Prompter {CZCTJ) ~-- Communicate with
user.

BWAIT (CEAP7) -- Await an interruption.

Exits:

Normal -- Return to calling program.

Error --

e Call User Prompter to inform user.
e Via ABEND.

Operation: The SAM control block {(CHASCB)
is initialized by zeroing the variable
fields, storing pointers to the input DCB,
JFCB, and DEB, and storing the volume
address in the volume serial field of the
SCB. The pointers to the JFCB and DEB are
known because the input DCB contains a
pointer to the DEB, and the DEB points to
the JFCB.

Mainline EOV assures the DEB pointed to
by the DCB has a valid DEB-id, and that the
DEB points to the DCB passed. If not, the
routine abnormally terminates.

The routine initializes the temporary
DCB and DEB tor use by SAM routines called
by SAM EOV. End of data set is indicated
for non-concatenated unit-record data sets.

1f the device 1s tape, the temporazy
control blocks are adjusted o tape labels
may be read or written. For DA devices,
the temporary DCB is set so user labels may
be read or written. In either case, tape
or DA, if user labels are specified, GET-
MAIN is called to get unprotected virtual
storage for a label buffer.

Depending on whether the device is tape
or DA, and whether the last I1I/0 operation
was input or ocutput, Mainline EOV branches
to Tape Output EOV, Tape Input EOV, DA Out-
put EOV, or DA Input EQV routines.

When the device-oriented EOV routine
returns control to Mainline EOV, any
storage which had been obtained for label
buffers and format-3 DSCBs is released via
FREEMAIN.

If no abnormal conditions occurred dur-~

ing EOV processing, contxol is returmned to
the calling routine.

Tape Input EOQOV Routine {CZCXT)

The Tape Input EOV routine executss the
end-of-volume procedures for the mounted
input magnetic tape volume. That is, it
oversees label processing and final volume
positioning. If the mounted volume is only
one of a multivolume data set, Tape Input
EOV causes the next volume to be mountsad,
oversees positioning and label processing
of the new volume, and updates the DEB to
reflect the presence of the new volume. If
the data set is a member of a concatenation
of data sets, the Concatenation routine is
used. (See Chart FC.)

Attributes: Reentrant, resides in virtual
storage, closed, read-only, privileged.

Entry Point: CZCXT1 -- Entered by type-1
linkage.

Input: Register 1 contains the address of
the SAM communication block.

Data References: CHADCB, CHADEB, CHASCE,
CHATDT.

Modules Called:
Control (CZCRB)}) ~-- Tape positioning.

Bump (CZCAB) -- Request and verify mount of
new volume.

Build Common DEB (CZCWB) -- Modify the com—
mon portion of the DEB.

80 Part I: Access Method for BSAM, MSAM, TAM and IOREQ

Tape Data Set Label
processor.

(CZICWY) -- Tape label

BSAM Read/Write (CZICRA)
tape mark.

-- Read ahead for

User Prompter (CZATJ) --.Send message to

user.

Tape Positioning {CZCWP) -- Tape
positioning.

Volume Sequence Convert (CZCWV) -- Volume

address conversion.

Concatenation (CZCXX) -- Concatenation.

kxits:
Normal -- Return to calling program.
Error -- Call Message Writer to do ABEND

processing.

Operation: For forced end-of-volume condi-
tions, Tape Input ECV proceeds as if the

EOV condition was @ncountered for unlabeled
tape.

The tape is properly positioned via the
Control routine.

when trailer labels are present, Tape
Data Set Label is called at entry point
CZCWY2 to process user trailer labels and
standard trailer labels.

Unless a read backward operation was
performed, a READ is issued to check for a
second tape mark, indicating end of tape.
Otherwise, end of data set processing is
required. The tape is repositioned via
CONTROL.

If this is the last volume, and there is
no concatenation, the End of Data Set flag
is set in the DCB and control is returned
to the calling routine.

The Concatenation routine is invoked if
concatenation is indicated. For a non-end-
of-data-set condition, the Bump routine is
used to mount the next volume. The DEB is
updated via Build Common DEB to reflect the
new volume and the Tape Positioning routine
is used to position the tape for proces-
sing. If the newly mounted tape has
lables, the Tape Data Set Label is called
at entry point CZCWY1l to process standard
labels and user header labels. Tape Input
EOV then returns control to the calling
routine.

The routine abnormally terminates when
Bump indicates that the requested volume
has not been mounted, ox when the relative
volume sequence of the volume to be mounted
is less than the volume sequence number of
the current volume.

Section 6:

Tape Output EOV Routine (CZCXO)

When a data set is being closed, Tape
Cutput EOV oversees the end-of-volume tape
processing, including the writing of trail-
er labels. For multivolume output data
sets, this routine oversees the mounting of
the new volume and updating of the DEB.
(See Chart FD.)

Attributes: Reentrant, resides in virtual
storage, closed, read-only, privileged.
Entry Point: CZCX01 -- Entered by type-1
linkage.

Input: 'Register 1 contains the address of

the SAM communication block which was
generated in the PSECT of Mainline EOV.

Data References: CHADCB, CHASCB, CHATDT.

Modules Called:
Control (CZCRB)

-- Tape positioning.

Bump (CZCAB) --
new wvolume.

Request and verify mount of

Build Common DEB (CZCWB) -- Modify the com-
mon portion of the DEB.

Volume Sequence Convert (CZCWV) -~ Volume
address conversion.
Tape Data Set Label (CZCWY) -- Tape label

processor.

User Prompter (CZCTJ) -- Communicate with

user.

Exits:

Normal -- Return to calling program.
Exror -- Via ABEND macro instruction.

Operation: Tape Output EOV turns off the
FEOV flag in the DEB and, via the Control
routine, writes a tape mark on the tape.

1f labels arxe specified, the Tape Data Set
Label is called at CICWY4 to write user and
standard volume trailer labels. Another
tape mark is written and the volume posi-
tioned immediately before the tape mark.

Tope marks writter by Tape Input EOV

T T T 7
\ !
3 1 i 0 | . [é
Record [R | Record | {T|R| User Labels | Volume Lobels |g|T] |(
G G |m Gi | 1Giml !
1 o o
If the data set is being closed, normal

return is made to the user.

Otherwise, the address of the next
volume is obtained by Volume Sequence Con-

Routines Specifically Designed for BSAM 81

the wvolume just ended is rewound by
Control, and the volume is mounted by the
Bump routine. The DEB is updated via Build
Common DEB to indicate the presence of the
new volume and 1f labels are specified, the
user and standard header labels are pro-
cessed by the Tape Data Set Label.

vert,

Where an end-of-volume indication is
received while the EOF trailer label is
being written, the trailer label is rewrit-
ten to contain EOV instead. The EOF trail-
er label is then written by the Tape Data
Set Label at the beginning of the newly
mounted volume following its volume and
header labels.

This routine abnormally terminates when
Bump returns an error code indicating that
the requested volume was not mounted, or
when there is an incorrect volume sequence
number.

DA Input EOV Routine (CZCXI1)

When a data set is being closed, Direct
Access Input EOV oversees the end-of-volume
direct access device processing, including
the reading of user trailer labels. For
multivolume input data sets, or data set
members of a concatenation, this routine
oversees the end-of-volume processing for
the current volume, the mounting of the
new, or next volume, and the updating of

the DEB. (See Chart FE.)

Entry Point: CZCXI1 -- Entered via type-1
linkage.

Input: Register 1 contains the address of

the SAM communication block.

Data References:
CHADEB, CdHADCB.

CHASCB, CHATDT, CHADSC,

Modules Called:
Bump (CZCAB) -- Request and verify mount of
new volume.

Obtain/kRetain (CZCFO) -- Obtain DA user
label and retain DA user label.

Build DA DEB (CICWL}
DEB.

-- Build direct access

User Prompter (CZATJ) -- Communicate with

user.

SETDSCB {CZCXS)
file mark.

-- Update DSCB and write

Volume Sequence Convert (CZCWV) -- Volume
address conversion.

DA Input Label (CZCXN) -- Direct access
input user label processor.

82 Part I:

Concatenation {(CZCXX) ~-- Concatenation of
data sets.

Exits:

Normal -- Return to caller.

Exror -- Call User Prompter or ABEND.
Operation: If the inteqrity bit is on, or

1f a write was previously executed on the
volume on which the EOV condition was
encountered, a call to SETDSCB is provided
to rewrite the format-1 DSCB with the inte-
grity bit off and also to write a file mark
if this is indicated.

Input user labels are processed by a
call to the DA Input Label routine.

If all volumes have been processed and
concatenation is not specified, end of data
set is indicated.

Otherwise, the Concatenation routine is
called if concatenation is specified. If
all volumes have not been processed, Bump
is used to switch volumes. When the new
veolume is mounted, Obtain and Retain are
called to read the DSCB and write the new
DSCB respectively. The user is warned and
given the option to continue if the inte-~
grity bit for the newly mounted volume is
on. The new DEB is buiit by Build DA DEB.

DA Output EOV Routine (CZCXD)

When a data set is being closed, Direct
Access Output EOV performs end-of-volume
processing, including the writing of user
labels and release of available unused
storage. For multivolume cutput data sets,
this routine oversees the acquisition of
new extents and the updating of the DERB.
(See Chart FF.)

£

Attributes: Reentrant, resides in virtual
storage, closed, read-only, privileged.
Entry Point: CZCXD1 -- Entered by type-i
linkage.

Input: Register 1 contains the address of

the SAM communication block.

Data References:
CHASCB, CHADSC.

CHADEB, CHADCB, CHATDT,

Modules Called:
Bump (CZCAB) -- Request and verify mount of
new volume.

Extend (CZCEX) -- Allocate additional DA
space for a data set.

Obtain/Retain (CZCFO) -- Obtain direct
access user label and retain direct
access user label.

Access Method for BSAM, MSAM, TAM and IORE(Q

Build DA DEB (CZCWL) -- Build or modify a
direct access DEB.

Message Writer (CZCWM) -- Message proces-
sing and ABEND processing.

Read Format-3 DSCBs {(CZCWR)
chain format-~-3 DSCBs.

-- Read and

Volume Sequence Convert (CZCWV)
address convert.

-- Volume

Set DSCB (CZCXS)
file mark.

-~ Update DSCB and write

DA Output Label (CZICXU) -- Write user
labels for DA output data sets.

Exits:
Normal -- Return to calling program.

Error -- Call Message Writer to do ABEND
processing.

Operation: The integrity bit is set on.
If the data set is being closed, a request
is issued for space or a volume switch.

DA Qutput BEOV uses Set DSCB and DA Out-
put Label to write a file mark on the
volume, reset the integrity bit, and pro-
vide for user output label processing.

01d data sets which exist on more than
one volume and for which there is a suc-
ceeding volume, have space allocated to
them on the succeeding volume.

On a forced EOV, DA Output EOV forces a
volume switch.

For new data
attempts to get
mounted volume.

sets, DA Output EOV
space on the currently
If it cannot:

e For privafé data sets - If the data set
is OLD or new, and this is the last
volume of the data set, a demount/mount
is requested, and allocation on the
newly-mounted volume is attempted.

When space is denied on the current
volume, Set DSCB is used to write a file
mark on the volume and to reset the format-
1 DSCB integrity bit when volume switching
is required. DA Output EOV uses the DA
Output Label to allow user label
processing.

Build DA DEB is used to extend the DEB
if space is allocated on the current
volume; otherwise, when space is allocated
on a new volume, Build DA DEB builds a new
DEB.

Section 6:

Concatenation Routine (CZCXX)

The Concatenation routine is called to
make the next data set of a concatenated

group ready for processing. (See Chart
FG.)

Attributes: Reentrant, resident in virtual
storage, closed, read-only, privileged.

Entry Point: C2CXX1 -- Entered via type-1
linkage.
Input: Register 1 contains the address of

the SAM communication block.

Data References:
CHADEB.

CHASCB, CHADCB, CHATDT,

Modules called:
Bump (CZCAB) -- Request and verify mount of
new volume.

Open Common {(CZCLA) -- Common open.

Close Common (CZCLB) ~- Common close.

ABEND (CZACP) -- If bad return code from
Bump.

Exits:

Normal -- Return to the calling routine.

Error -- Call ABEND.

Operation: The Bump routine is called to
mount the first volume of the next data
set.

Close Common is called to close the cur-
rent data set and Open Common is called to
open the next data set. A return code of
four is provided in the calling program.

The routine abnormally terminates when
Bump returns an error code.

BSAM USER RCUTINES

The following routines provide user con-
trol of some aspects of direct access and
tape devices.

Note Routine (CZCRN)

The Note routine provides the user with
identification of the last record read or
written. A relative track and record numb-
er is returned, if the device is direct
access, and a block count is returned for
tape. All DECBs must be checked by the
Check routine before Note is used. (See
Chart GA.)

resident in virtual
nonrecursive.

Attributes: Reentrant,
storage, closed routine,

Routines Specifically Designed for BSAM 83

Entry Point: CZCRNA -- Entered via type-1M
linkage.
Input: Register 1 contains the address of

the DCB.

Data References: CHADCB, CHADEB.

Modules Called:
FULREL (CICRS) -~ Convert full DA address
to relative address.

User Prompter (CZATJI)} -- Communicate with

user.

Exits:

Normal -~ Return to the calling routine.
Exroy —-- ABEND termination.

Operation: Any data set which is not DA
will be treated as if it were on magnetic
tape. HNo error occurs when the Note rou-
tine is entered for other than DA or mag-
netic tape, but the address Note returns
will not be meaningful for other devices.

The routine ABENDs if the DCB is inva-
i1id. If all I/0 has not been checked, the
user is prompted to see if he wishes to
continue.

To obtain the relative address of the
last record read or written on DA, the DA
address of the last record is passed to the
FULREL routine which converts the full DA
address to a relative address. The rela-
tive address is placed in register 1, and
if the last 1I/0C operation was a write, the
number of bytes remaining on the current
track is placed in registexr 0.

For magnetic tape the Note address
returned to the calling routine is a rela-
tive block count. The block count is zero
when the data set is opened to write. The
first block is block 0, the second block is
block 1, the third block is block 2, etc.
The relative block count is maintained (for
the current record} in the DCBBLX.

Table 23 indicates the block count which
is set into register 1 for the calling pro-
gram. The flag DEBRSB indicates if the
last block processed was read backwards
{ON} or not (OFF}.

Note: For magnetic tape volumes, if the
Note routine is entered after a Point macro
instruction was executed and there is no
READ or WRITE macro instruction between
them, it returns the current relative block
count plus one (if last I/0 opeaation was a
read backward), or minus one {if the last
1/0 operation was forward). The reason for
this is that there is no change in the
DCBBLK field since the last READ or WRITE,
yet when Note is again entered it will per-

84 Part I:

Table 23. Decisions for Setting Block
Count
[T T T e e i TUTYTTT
| Last block read backward YIN{N]
i o
| DCBBCK=0 i YN}
————————————————————————————————— $-4-4-4
| Add one to block count 1Xp 1|
| I I
| Subtract one from block ccunt [D S I
| [I
| Return with block count in I
| register 1 RIX X
S, - P S .]

form the calculation tadding or subtracting
one) on the relative block count anyway.

Point Routine (CZCRM)

The Point routine performs certain
operations which cause the next read or
write operation to be performed at a speci-
fied block in the current volume. The
relative address of the block in question
is passed to this routine as an input para-
meter. The Point routine may be thought ot
as a logical repositioning of the data set.
{It is a real repositioning in the case of
magnetic tape.) Point may only be used
with DA and magnetic tape volumes. (See
Chart GB.)}

Attributes:
storage,

Reentrant, resident in wirtua
closed routine, privileged.

Entry Point: CZCRMA -- Entered via type-1

linkage.

Input: The following parameters are

passed:

Register 0 -- Relative DA address, or rela-
tive magnetic tape block address.

Register 1 -- Address of DCB.

The relative block address should have
been obtained by use of the Note routine.

Data References: CHADEB, CHADCB.

Modules Called:
RELFUL (CZCRR) -~ Convert a relative Da
address to a full DA address.

Control (CZCRB) ~-- Tape positioning.
Exits:
Normal -- Return to calling program.

Exrror -- ABEND termination.

Operation: Point does not apply to devices
other than DA or magnetic tape. Therefore,
for other devices, normal return to the
calling routine is made immediately.

Access Method for BSAM, MSAM, TAM and IOREQ

Note always returns the relative address
of the last block read or written. If the
user wishes to point to that block, the 2
byte should remain zero.

When Point is entered for a DA device,
the above mentioned flag (DEBIPT) is set if
necessary, and the relative DA address is
passed to the RELFUL routine. The RELFUL
routine converts the relative addiress to a
full DA address which is stored into the
DEBNIO field. The DEBBP flag is set on to
indicate to Read/Write that a Point opera-
tion has occurred.

When Point is entered for magnetic tape,
if the tape volume is not currently at the
requested postion, the Control routine is
used to forward space or backward space the
tape to the requested position. The dif-
ference between the requested block count
and the current block count is the number

of blocks to be skipped.

If errors occur during a point, DEBNF1
is turned on so that subsequent reads or
writes will be intercepted and SYNAD will
be given control when those reads or writes
are checked.

Backspace Routine (CZCRG)

The Backspace routine backspaces a phys-
ical record on the current magnetic tape or
direct access volume. (See Chart GC.)

resident in virtual
nonrecursive,

Attributes: Reentrant,
storage, closed routine,
privileged.

Entxy Point: CZCRGA -- Entered by type-1M
or type-2 linkage.

Input: Register 1 contains the address of
the DCB.
Data References: CHADCB, CHADEB, CHASDA.

Modules Called:
Find Records per Track (CZCRQ) -- Find
records per track.

Control (CZICRB) -- Tape positioning.

Exits:
Normal -- Return to the calling routine.

Exrror -- For unsuccessful completion, gen-
eral register 15 contains a return code
>f *04".

ABEND is called under the following
conditions:

e Invalid DCB
e Unchecked Read or Write outstanding

e Illegal device or overflow records.

Section 6:

Operation: For magnetic tape a backspace
is much easier to perform since only the
physical position of the tape need be esta-
blished. ©On the other hand, the records of
a sequential data set on DA are not neces-
sarily packed on the volume, and are not
necessarily on the same track. They must
be on the same volume for backspace.

For a backspace on magnetic tape, the
Backspace routine links to Control via a
type-1 linkage, with a backspace record
request. If a backspace record goes over a
tape mark, a forward space record commangd
is issued to Control, and an error return
is given to the user. If an unrecoverable
error occurs, a return code of '04°' is
placed in general register 15 upon return
to the user.

The backspace operation for a direct
access volume may be very easy or quite
involved, depending on where (logically)
the data set is positioned. The DEB con-
tains the DA address of the next record to
be processed (DEBNIO)}. The Read/Write rou-
tine will operate upon that address when it
is entered. Consequently, the DA backspace
is accomplished if the DA address of the
previous record can be stored into DEBNIO.
A backspace is not performed on a data set
which has track overflow specified. Neith-
er is a backspace performed if the track
containing the user labels would be
entered.

If 1I/0 operations have not been per-
formed on the data set, no backspace is
possible and control is returned to the
calling routine with a non-zero return
code.

Should DEBBP be zero, no prior backspace
has occurred since the last READ or WRITE.
And if DEBLIOR contains some positive numb-
er, there is no possibility of backspacing
into labels or out of extents. Therefore,
the backspace is accomplished by moving the
last I/0 address to the next I/0 address.

1f a previous backspace operation
resulted in an error, control is returned
to the calling routine (return code = 0)
without any attempt to backspace. The pre-
vious error will be detected by the Check
routine when the next I/0 operation is
checked.

DEBBP is set to 1 when the first backs-
pace is made. If a previous backspace has
occurred and curcent position is not at the
first record in current track, the backs-
pace is accomplished by subtracting from
DEBNIOR which logically positions to the
previous record in the current track.

Note 1: The Find Records per Track routine

is used toc count the number of records in a
track. To use it one stores the MBCCHH of

Routines Specifically Designed for BSAM 85

interest in DCBRD and calls Find Records
per Track. When Find Records per Track
returns, the number of records in the track
is in DCBRDR. If Find Records per Track is
called by Backspace and it does not work
properly, Backspace sets DEBNF1l on sC the
DECB of the next read or write will be
intercepted by the Read/Write routine and
Check will transfer to SYNAD.

Now, if Backspace is entered and
DEBNIOR=1, the last record of the previous
track must be found to accomplish the back-
space. The important thing to determine is
whether the previous track is just a track
containing records or if it has the user
labels. DEBEHT set to one indicates that
there are labels in the first track of the
first extent. DEBNIC pointing to the first
track of the first extent means a backspace
would leave the extents. DEBNIO pointing
to the second track of the first extent
means a backspace will get into the label
track if there are labels. If the first
extent is only one track in length, it will
contain labels if there are labels. When
DEBNIO is in the first extent and neither
the first nor the second track is pointed
to by DEBNIO, then it is safe to backspace
to the last record on the previous track.

Note 2: The Read/Write routine will per-
form I/0 from the DEBNIC address if DEBBP
is on, and will then turn DEBBP off.

DEBBP is turned on by the Backspace rou-
tine and DEBNH is also turned on if Back-
space encounters error conditions. It is
assumed that Read/Write will intercept an
170 request to the data set when both the
above bits are on, and that Check will
transfer to SYNAD when checking that DECB.

Ccontrol Routine (CZCRB)

The Control routine performs magnetic
tape positioning, card reader stacker
selection and/or printer channel skipping.
Control builds an IORCE containing appro-
priate CCWs, and executes it via the IOCAL
SVC which invokes the I/0 Supervisor. {See
Chart GD.)
resident in virtual

Attributes: Reentrant,

storage, closed routine, priviieged,
nonrecursive.
Entry Point: CZCRBS -- Entered via type-1M

or type-2 linkage.

Iinput: The following parameters are
passed:
Register 0 -- Two-character operation code

and count modifier.
Register 1 -- Address of DCB identifying

I1/0 device.

86 Part I: BAccess Method for BSAM,

Data References: CHADCB, CHADEB, CHAIOR,
CHADEC, CHASDA. e

Modules Called:

AWAIT (CEAP7) -- Await an interruption.
IOCAL (CEAAC) -- I/O call.

Exits:

Normal -- Return to calling routine.
Error --

» Abnormal termination via ABEND macro
instruction.

e Exit to SYNAD routine.

Operation: Initially, the IORCB is
cleared. Then it is completely filled in
with the appropriate CCW as well as the
address of the SAM Posting routine.

When the IORCB is complete, the IOCAL is
executed. If the requested operation is
REW or RUN, control is then returned to the
calling routine. However, for all other
requested operations the DECB is tested to
determine if the operation is complete. If
not complete, the AWAIT macro instruction
is executed to wait for completion of this
event. When the initiated operation is
completed, the DECB is tested for error
indicators.

Upon successful completion, control is
returned to the calling routine. For
unsuccessful completion, the user's SYNAD
routine is given control. If there is no
SYNAD routine and errors exist, the task is
abnormally terminated.

ASCII Translation and Conversion Routine
(CZCWA)

Users may read or write physical sequen-
tial data sets encoded in ASCII with ANS
(American National Standard} label and
record formats provided the storage medium
is magnetic tape. Since TSS/360 processes
internally in EBCDIC and standard IBM label
and record formats, this routine is
required to provide an interface for ASCII
users. On input, this routine translates
ASCII to EBCDIC and converts ANS formats to
the standard IBM formats. On output, it
translates EBCDIC to ASCII and converts
standard IBM formats to ANS formats. (See
Chart GE.)

Attributes: Reentrant, resident in virtual
storage, read-only, privileged,
nonrecursive.

Entry Point: CZCWA1l -- Entered via type-1

linkage.

MSAM, TAM and IOREQ

Input: Register 1 contains the address of
a tnree-word parameter list:

word 1 - Byte 1 - X'Cl"' for output
X*'C5*' for input
Byte 2 - X'00*' (unused)
Bytes 3 and 4 - Length of record
or block
Word 2 - Address of buffer area

Word 3 - Address of DCB

Modules Called: None.

Exits:
Normal --

s Return to caller via BR 14 with return
code 0 in register 15.

s On input only, register 1 on return
will contain the number of bytes
shifted to overlay any block prefix.

Error -- Return to caller via BR 14 with
one of the following return codes in
register 15:

X*04* - First byte of parameter list not
X*'C1l®* or X*'CS’

X*'08*' - Buffer offset greater than 99

Tables and Work Areas: CHADCB, CZICWZA

(ASCII-to-EBCDIC translation table), CZCWZE
(EBCDIC-to~-ASCII translation table).

Operation: ©On input, after reading a reco-
rd, where the user has defined his data set

as ASCII, SAM Posting and Error Retry calls
this routine to translate the record to
EBCDIC. On output, before writing a reco-
rd, BSAM Read/Write calls this routine to
translate from EBCDIC to ASCII.

ASCII Translation and Conversion
provides:

1. A character-for-character translation
interface between EBCDIC and ASCII.

2. Conversion of values in block and
record descriptor fields to unpacked
decimal (output) or binary (input)
where records are format-D
(variable-length).

3. On input, evaluation of block or reco-
rd format and resultant shifting of
records to overlay any block prefix.

4. On output, a block prefix of 4 bytes
if specified by the user.

Section 6:

American National Standard record ior-
mats provide for an optional block prerix
which may precede the first or only logical
record in eack block. This prefix may con-
tain user data and, for formut-b (variable-
length) records, the block length in the
block descriptor field. The ASCII user,
entering data sets from tape, may tell the
system (in either his DDEF command or his
label) tc expect a block prefix; he may
specify up to 99 bytes. Any data in the
block prefix, other than the block length,
will not be available to him, however.
ASCII Translation and Conversion saves the
value (the block length) in the block
descriptor field (the last four bytes of
the block prefix) and then shifts the first
or only record left, overlaying the block
prefix. The end of the record is zeroed
out. On output, a user may specify only 0
or 4 bytes of block prefix, and then only
if format-D records are specified. When a
4-byte block prefix is specified, it will
contain a block descriptor.

- The length of the block prefix is speci-
fied by the buffer offset. The differences
between American National Standard and
standard IBM label formats are slight;
difference is the existence of a buffer
offset field in the second headexr label
(American National Standard). If the user
specifies or defaults the buffer offset
(BFOFF) parameter in the DDEF command, the
buffer offset field in the label determines
for ASCII Translation and Conversion the
number of bytes of input block prefix to
handle.

one

The translation and conversion inter-
faces provided by this routine are illus-
trated in Figures 10 and 11.

Additional information on label and
recoxd formats, both standard IBM and
American National Standard, for magnetic
tape volumes is contained in Appendix A of
Data Management Facilities, GC28-2056.

BUFFERING SERVICES

The following four routines are provided
to allocate a pool of buffers and permit
easy access and release of the buffers
within the pool.

GETPOOL Routine (CZCMB)

The GETPOOL (get a buffer pool) routine
fills the buffer length and the number of
buffers field in the DCB. (See Chart HA.)

Attributes:
storage,

resident in virtuail
read-only, public.

Reentrant,
closed routine,

Entry Point: CZCMBG egquated to SYSMBG --
Entered via type-1 linkage.

Routines Specifically Designed for BSAM 87

ON A buffer offset (block prefix length) of 0-99 bytes is supported in all formats.
INPUT: The user specifies the buffer offset in either the tape label or the DDEF command.

FORMAT F records-blocked and unblocked {blocked shown here) FORMAT U records

Data Dato Data N
(ASCIH (ASCIH {ASCID Data (ASCH)
is translated to EBCDIC ond the BSAM user READs ., is tronslated to EBCDIC and the BSAM user READs. ..

Data Data Data

(EBCDIC) | (EBCDIC) | (EBCDIC) Dato (EBCDIC)

the QSAM user GETs. ., the QSAM user GETs. ..
Data
(EBCDIC) ,) Dota (EBCDIC)
. (three times}

FORMAT D (variocble-length) records

if the buffer offset is specified os 0... blocked or
vnblocked (shown). ..

dddd Dato (ASCH)

becomes. ..
In all Format D cases, whatever the
buffer offset (0-99)...

Leoo | oo Data (EBCOIC) unblocked,
the BSAM user READs. , .

If the buffer offset is specified as 4.. .blocked LLoo | ffoo Data not
{shown) or unblocked. .. (EBCDIC) present
if
buffer
Data (ASCH) 1dddd offset
4 or less

becomes., .. blocked

the BSAM user READ:s. ..

LLOO | 000 | Dota (EBCDIC) | Bf00
Data

(EBCDIC)

LLOO | {fo0 ftoo

If the buffer offset is specified as other than O or

nck locked. , .
4. blocked or unblocked blocked and unblocked,

the QOSAM user GETs. ..

Dota Data
dddd
(ASCIHH) (ASCil)
feald] Dota (EBCDIC)
becomes. ..

However, LLOO will exist in the
Data Doto system buffer for each Format D

LLo0 | too (EBCDIC) ttoo (EBCDIC unblocked record or block.

{
Zeroes

*Does not have to contain DDDD; BSAM calculates and creates correct LLOO.

dddd is the record (length) descriptor in ASCH format; a 4-byte value in unpacked decimal,
B00 is the record {length) descriptor in EBCDIC format; = a value in binary; 00 = Zeroes (unused).
DDDD is the block {length) descriptor in ASCit format; o 4-byte value in unpacked decimal,
LLOO is the block {length} descriptor in EBCDIC format; LL = a value in binary; 00-= Zeroes (unused).

Figure 10. How TSS/360 Handles ASCII Record Input

88 Part 1: Access Method for BSAM, MSAM, TAM and IOREQ

ON
QUTPUT:

For Formats £ and U, no buffer offset (block prefix} is ollowed. For Format D, o buffer offset of 0 or 4 moy be specified.

FORMAT F and FORMAT U records - blocked and unblocked

Dato (EBCDICY

becomes

Data (ASCID

FORMAT D (variable-tength) records - blocked or unblocked

{f a buffer offset of O is specified. ..

LLOO {mO Dota {mo Data
{EBCDIC) (EBCDIC)
becomes. ..
Data Dato
ddd {
d (ASCH) dddd (ASCI)

If a buffer offset of 4 is specified, the
EBCDIC block above becomes. ..

Data

DD
PODD) (ASCH)

dddd

Dota

dddd (ASCIH

block descriptor onoutput.

to supply his own LLOO.

See Figure 10 for the meaning of dddd, etc.

Notes: The BSAM user must calculate and supply his own LLOO and 00 and specify buffer offset = 4 if he wonts o

The QSAM user must specify buffer offset = 4 if he wants o block descriptor even though he does not have

ABEND macro instruction.

Operation: The routine will ABEND if the
DCBID is not valid. The routine also
ABENDs if a buffer pool has been previously
assigned, if the buffer length or block
size exceeds 32,768 bytes, or if the number

Figure 11. How TSS/360 Handles ASCII Record Output
Input: The following parameters are Error --
passed:
Register 0:
[T T T T s e & S i 1
| NN | LL |
[) S 4
o 15 16 31

where NN - number of buffers requested.

LL - length of each buffer in the
request.

Register 1 -- Address of DCB.

Data References: CHADCB, CHADER, CHAISA,
CHAVPS.

Mmodules Called: None.

Exits:

Normal -- Return to caller.

Section 6:

of buffers exceeds 255. GETPOOL inserts
buffer length and number of buffers into
DCBBUF and DCBBUN respectively. The rou-
tine sets on bits corresponding toc DCBBUF
and DCBBUN in DCBMSK if the DCB is open.

GETBUF Routine (CZCMA)

The GETBUF (get a buffer) routine finds
an available buffer in a buffer pool and
returns a pointer to it. When the GETBUF
routine is entered for the first time, the
buffer page list, which describes the loca-
tion of all the buffers for this DCB, 1is
built, the buffer pool is allocated, and
the first available buffer is obtained.
(See Chart HB.}

Routines Specifically Designed for BSAM 89

resident in virtual
reentrant, public.

Attributes: Read-only,
storage, closed routine,

Entry Point:
entered via type-1

CZCMAG equated to SYSMAG --
linkaqgeo.

Input: Heqister 1 contains the address of
the DCB. :
Data References:
CHAISA, CHAVPS.

CHADCB, CHABPL, CHADEB,

Modules Called:
VMA (CZCGA) -- Get virtual storage.

CKCLS (CEAQ4) =-- Check protection class.
Exits:
Normal -- Return to calling program.

Error -- ABEND macro instruction.

Operation: GETBUF will ABEND if the DCBID
is not valid, or if the DCB is not open.

If this is the first entry to GETBUF, a
puffer page list must be built. GETBUF
ABENDs if the buffer length is too large or
if buffer length and blocksize are both
zero. When only buffer length is zero, and
access is for other than QSAM, and the
device is direct access, the actual size of
the buffer is computed by GETBUF by adding
the key length to the blocksize. GETBUF
determines which cutoff constant is to be
used and calculates the total number of
pages needed for the buffers, and the buff-
er page list.

GETMAIN is used to obtain the needed
pages. GETBUF maintains the count of
available buffers and enters the buffer
addresses into the Buffer Page List.

FREEBUF Routine (CZCNA)

The FREEBUF (free a buffer) routine
makes available a buffer which was pre-
viously obtained and made unavailable by
the GETBUF routine. (See Chart HC.)

Attributes: Reentrant, resides in virtual
storage, closed routine, read-only, public.

Entry Point: CZCNAF equated to SYSNAF --
Entered via type-1 linkage.

Input: The following parameters are

passed:

Register 0 -- Address of buffer to be
released.

Register 1 -- Address of DCB.

pata References:
CHAVPS, CHAISA.

CHADCB, CHABPL, CHADEB,

90 Part I:

Modules Called: Nene

Exits:

Normal -- kceturn Yo calling program.
kError -- ADEND macro instruction.

Operation: The addresses of buffers in
CHABPL are searched to find a match for the
address passed in register 3. When a match
is found, the In-Use flag for that puffer
is turned off in the CHABPL, and BPLNBF
(number of free buffers) is incremented by
one.

FREEBUF exits tc ABEND if the DCB iden-
tification is not valid, if GETBUF has not
been called, if the buffer to be freed is
not in the pool, or if the buffer to be
freed is already free.

FREEPOOL Routine {CZCNB)

The FREEPOOL (free a buffer pool) rou-
tine releases all virtual storage which was
assigned to a DCB as a buffer pool. (See
Chart HD.)

Attributes:
storage,

resident in virtual
read-only, public.

Reentrant,
closed routine,

Entry Point: CLCNBC eguated to SYSNBC -~
Entered via type-1 linkage.

Input: Register 1 contains the address of
the DCB for the data set which last used
pool.

Data References:
CHAVPS, CHAISA.

CHADCB, CHaBPL, CHADEB,

Module Called: VMA (CZCGA} -- Free virtual
storage.

Exite:
Nermal -- Return to calling program.

Exrror -- ABEND macrc instruction.

Operation: FREEPOOL ABENDs if the DCBID is
not valid, or if the access is QSAM and the
DCB 1is open.

Unless the Buffer Page List pointer 1is
zero, the number of pages in the buffer
pool is determined from BPLNPG, and FREE-
MAIN is called tu release those pages.

FREEPOCL zeros tne puffer Page Lint

pointer, and the butfer length and numter
of buffers fields in the DCB.

BSAM INTERNAIL CONTROL ROUTINES

The internal ccntrol rcutines include
the message writing, tape positioning, and
volume serial field finding routines.

Access Method for BSAM, MSAM, TAM and IOREQ

Tape Positioning Routine {(CZCWP)

The Tape Positioning routine positions a
tape volume to any of three positions. The

positions are shown in Figure 12. (See
Chart IA.)

Attributes: Reentrant, resides in ritual
storage, subroutine, privileged.

Entry Point: CZCWP1 -- Entered via type-1
linkage.

Input: Register 1 contains the address of

the SAM communication block. SCBEPOS con-
tains the code which indicates which tape
position is desired.

Data References: CHADEB, CHASCB, CHASDA,
CHATDT.

Modules Called:

Control (CZCRB) -- Tape positioning.

Message Writer (CZOWM) —-- ABEND processing.

Build DEB (CZCWB)
volume switch.

-- Update DEB after

Bump (CZCAB) -- Mount next volume.

Volume Sequence Convert (CICWV) -- Deter-
mine if there is another volume.

Exits:

Normal -- Return to the calling routine.

Exror -- Call Message Writer to do ABEND
processing.

Operation: Positioning is always relative
to the tape marks on a volume. It is
assumed that unlabeled volumes contain data
sets separated by single tape marks, and
that labeled volumes contain data sets with
a single tape mark separating header labels
- and data, and a single tape mark preceding
trailer labels.

tabeled Tape
INRSN] Ll LT VT 0
RIMIR | Heoder Labels |R [M{R| Daro [R |M|R Trailer Lobels |R [M|R
G| |G G G G G . G G1
24
k Position 1 Position 3 -—/I Position 2 ._/
Unlabeled Tape
LiTh A
R | MIR Data RIMIR
G| |G Gi |G
Porition 1 _/ Position 3 _f A Position 2
Figure 12. Tape Positions

Section 6:

The number of forward or backward speces
to be made must first be calculated. The
calcuiation is made from the position code,
the current tape mark count and the logical
data set sequence number in the JFCB.

The present position on the tape voluae
is known from the tape mark couat which
indicates how many tape wmarks are behind
the presernt position. For example, in
Figure 13 there are unlabeled data sets on
a tape volume (the current positioning is
indicated); the tape mark count at this
position would be two.

Calculating the Position to Which the Tape
is to ce Moved: A temporary data area,
TFN, is set to the relative physical
sequence number of the current data set of
the current volume. This is calculated by
subtracting the first logical file (datsa
set) sequence number on the mounted volume
(TDTLFN - 1) from the logical file sequence
number (TDTPSQ) of the data set which the
user requested (TDTFSQ - TDTLFN + 1). For
example, in Figure 13 the TDTFSQ contains a
2 if this is the only volume, indicatiag
that current positioning is somewhere
within the second data set on the volume.

It should be noted now that one tape
mark follows every data set on an unlabeled
tape volume. Similarly, since there are
three tape marks associated with each data
set on labeled tape, multiplying the phys-
ical sequence number of the current data
set (TFN) by three, then subtracting one,
yields the exact number of tape marks pre-
ceding the first TM of the current data
set.

Now that the number of tape marks asso-
ciated with the data set on which position-
ing is to occur is known, it only remains
to determine how many tape marks beyond the
previous data set are needed to find the
desired new position in terms of tape
marks.

Looking at Figure 12, it is clear that
for labeled tape: zero additional tape
marks yields position 1, three additional
tape marks yields position 2, or two addi-
tional tape marks yields position 3. For
unlabeled tape, zero additional tape marks
yields position one, while one additional
tape mark yields position 2. Position 3

e [Jisection of Tape movement

| | LT
R Data Dato RIMIR

Data %
G G G G G
S

=
Zz
o —

W___LOAD POINT \-(Current position of tape volume)

Figure 13. Data Positioning

Routines Specifically Designed for BSAM 91

cannot be found directly now because files
(tape marks delimit files) are being coun-
ted in the forward tape direction. A back-
space file is necessary to obtain position
3 on nonlabeled tapes after forward space
files are completed.

The appropriate number of additional
tape marks is put into a temporary data
area TFA.

Since all information necessary to find
the new position is known in terms of tape
marks, the calculation can be made:

TFS (TFN-1) x3+TFA

labeled tape
or

unlabeled tape TFS = (TFN-1)+TFA

TFS is a temporary data area which con-
tains the desired new position in terms of
number of tape marks from the beginning of
the tape volume.

The difference between TFS, the desired
position, and SDATAP, the present position,
1s determined by subtraction. The result
1s the number of files {delimited by tape
marks) to be forward or backward spaced.
The direction to go is indicated by the
sign of the above difference.

The Control routine is used to forward
or backward space the required number of
files.

The following situation may occur when
skipping files forward or backward. The
solution is the same for either case. As
in Figure 14 there is a requirement for
forward spacing.

When forward spacing to the correct
position, the following procedure is fol-
lowed if Tape Positioning was called by
Tape Open:

Labeled tapes - A forward space record
is done to check for a tape mark, which
would indicate the end of the tape. 1If
a tape mark is encountered and another
tape is not specified, an ABEND results.
If a tape mark is not encountered, three
forward space files are done to position
to the beginning of the next data set.

“ P z D
T ¥ ?
T vyt PIT
R im|R R M| R RIM|R
G G G G G G
Desired Position _* W_ Position Z
Current Position
Figure 14. Skipping Files on Tape

92 Part I: Access Method for BSAM, MSAM,

This procedure is followed until the
correct file (data set) is reached.

Then ancother forward space record 1is
done to check for an end-of-tape condi-
tion. If a tape mark is encountered, a
check i3 made for another volume. If
there 15 not another volume and the user
is open for input and reading forward,
his task is ended via ABEND. Otherwise,
the tape is positioned correctly.

Unlabeled tapes - The same procedure is
followed as for labeled tapes, except
only one forward space file is done
after the forward space record.

Multivolume Check - If the JFCB indi-
cates another volume on an end-of-volume
condition, it is mountea, the DEB is
updated, and the tape positioning values
are updated for the newly-mounted
volume. In addition, the logical file
sequence number is placed in the volume
entry (TDTFSQ) of the TDT.

Forward moticon of the tape can only
result in position Z or D because spacing
by files (delimited by tape marks) causes
the tape to stop in the interrecord gap
after the skipped file. Therefore, to
reach the desired position in Figure 14,
files are skipped forward to reach position
Z, and then there is a backward skip of one
file position to the desired position.

Volume Sequence Convert Routine (CZCWV}

The Volume Sequence Convert routine is
called to determine the address of a volume
serial field within the correct job file
control block (JFCB) within the task
definition table, based on a Relative
Volume Sequence Number (RVS) stored in the
SAM communication block (CHASCB). (See
Chart IB.)

Attributes: Reentrant, nonrecursive, resi-
dent in virtual storage, privileged.

Entry Point: CZCWV1 -- Entered via type-1
linkage.

Input: Register 1 contains the address of
the SAM communication block.

Data Reference: CHASCB.

Modules Called: None.

Exits:

Normal -- Register 15 contains one of the

following return codes:
'Q0°* Address of the volume serial
field requested is in SCBVCA and
the field is valid.

TAM and IOREQ

‘04" SCBVCA contains the address of
a null volume serial field, or
a null chain field.

‘08" Volume serial field considered
out of range.

Error -- None.
Operation: The calling program stores the

address of a volume serial field within the
JFCB in the CHASCB, and places a return
code in general register 15 indicating the
result of the search.

The return code setting indicates to the
calling program whether the volume serial
field has been located, and if it has, its
address (stored in CHASCB). Otherwise, the
return code indicates whether the RVS
stored in the CHASCB points to a null
volume serial field and the address of tais
field is stored in the CHASCB; or whether
the RVS points to a volume serial field
which would begin the next chain of volume
serial entries in the JFCB (in which case
the CHASCB contains a pointer to the null
chain field which will be used to point to
the address of the field requested by the
RVS). The return code, on the other hand,
may indicate that the RVS stored in the
CHASCB points to a volume serial field
which does not exist in the current JFCB
(in which case a pointer to the terminating
null chain field is stored in the CHASCB),
or the return code may indicate that the
RVS was zero upon entry, and the address of
the volume serial field pointed to by RVS
has been set to zero.

Note: The first volume serial field in the
JFCB is assumed to be 1.

The RVS stored in the CHASCB is not
changed by VOLCVT.

Message Writer Routine (CZICWM)

The Message Writer provide:s for all the
message handling required by -he SAM Open,
End-0f-Volume, and Close Routines. This
module contains all message text. It
selects the proper method of transmitting
the message to the user or to the operator.
Some standard responses are processed and
returned to the calling SAM modules in the
form of return codes in general register
15.

The Message Writer also handles all
ABEND processing for BSAM. (See Chart IC.)

Attributes: Reentrant, nonrecursive, resi-
dent in virtual storage, privileged.

Entry Point: CZCWM1l -- Entered via type-1

linkage.

Section 6:

Input: Register 1 contains the address of
CHASCB. The two-byte SCBMSG field of

CHASCB is set as follows:

byte 0 byte 1
| HAMRO000 | NNNNNNNN |
1 - -3
o] 7 8 15
where H = 0 No header required
1 Message requires header
A =20 ABEND
i Prompting message
M =0 User message
1 Operator message
R =0 No response
1 Response required

and byte 1 is a message ID consisting of
a binary number. There is a unigue
number for each message.

The SCBABN field contains the SAM ABEND
code, if the call is for an ABEND
message.

Data References:
CHADEB, CHALBI1.

CHASCB, CHATDT, CHASDA,

Modules Called:

WTO (CZABQ) -- Write message to operator.

Gate (CZAAB) -- Print message on terminal
or SYSCUT device.

ABEND (CZACP) -- Abnormal termination of a
task.

Exits:

Normal -- Return to caller.

Exrror -- ABEND.

Operation: This routine uses the message
code placed in the CHASCB as an index to
locate the desired entry in the message
control table (MSGTS). A message is then
formed in a buffer area in the PSECT of
this routine. All messages begin with a
prefix, contain a header if the message is
for a user, and end with the message text.

The prefix is built from information in
the CHASCB. It contains the module name of
the caller, the abend code, and the message
code. This uniquely identifies each
message.

When the message is for a user, a header
line is added. This provides the DDNAME

Routines Specifically Designed for BSAM 93

and DSNAME to identify the data set being
processed.

The phrase or phrases forming the mes-
sage text axe concatenated with the prefix
and header in the buffer area. If neces-
sary, a medification routine is invoked to
complete variable fields in the text. The
completed message i then transmitted as
indicated by flags in the message control
table.

1f the message control table flags ind-
icate that a response is required, it is
returned to the user by glacing a pointer
to the response buaffer in the CHASCB. If
possible, the response wili be interpreted
and & return code set to facilitate testing
by the caller. When the expected response
is not obtained, a retry message is trans-
ritted with the same prefix used for the
original message. This cycle is then
repeated until the proper reply is obtained.

The Message Writer routine is called to
a0 ABERU processing when one of the follow-
ing conditions occurs:

1. The message code received from the
caller indicates an entry outside the
range of the message control table or
an eptry within the table that is no
longer active,

2. The message is too iong toc be conca-
tenated in the buffer available.

3. The modification or response routine
is not available when indicated.

4., No SDAT pointey was available when
required to complete the operator
message.

The Message Control Table: The message
control table contains cone entry of two
words for each message. Each entry, as
illustrated in Figure 15, has the following
format:

Entry for Single Phose Message

e e el LEN Massoge Text

/ LEN Massage Text

LEN Message Text

Phrose List

Entry for Multi Phose Message

'

Entry for Single/Multiple Phase
Message

. LEN Message Text
ete . n entries

Figure 15.

94 Parxt I: Access Method for BSAM, MSAM,

r

DC A(MSG)3901nter to message text if P?
|is zexre. Pointer to Phrase
jList of PP entries if PP is not

.
| !
| {
| !
| {zero. {
| i |
|DC *MM"' [Code for Modification routine |
] } {00=none). i
I | !
{DC *RR®" |Code for Response routine {
] { {00=none). i
| i !
|BDC *PP' |Wumber of entries in Phrase |
H jList. }
! i ' !
{DC 'FF* [Flags. {
pomm e b R =4
i 01234587 i
|Pbo not print header. 0 X X X X XX X i
| |
|Print header. 1 ¥ X X X XX X |
|
| Abend text. X0 XX XXX % |
i i
{Prompting Message text. X 1 X X X X X ¥ ¢
|
|{Message for Userx. X 0 X X ¥ X X
] !
|Message for operator. EX 1 XXX ¥ X i
I i
{No response required. XX XO0XXX X
’ s
{Response required. ¥ XX1XXXXK |
i — - e - ed

Find Records pexr Track Routine {(CZCRQ)

The Find Records Per Track routine com-
putes the number of records on a track of a
direct access device. For a data set of
unknown oy varying record length, an IORCE
is set up to read the entire track in order
to find the number of the last record.

{See Chart ID.)

Entry Point: CZCRQA -- Entered via Type-1
linkage.
Input: Register 1 contains the addresz of

the DCB. DCBRDB contains the address of
the track concerned.

wodules Called: None. The AWAIT and IGCAL
SVCS are issued.
Exits:
Return Code Condition
00 Normal return.
o'} I/0 error othex than

defective track or °*No

Record@ Found®.

Operation: For fixed, standard format
records, the record count is computed and
stored in the DCBRDR field. A return to
the calling routine is then effected.

TAM and IOREQ

For record formats other than tixed, or
tixed but not standard, an IORCH 11 buillt,
and an IOCAL issued, which returns the
record count to a data area in th=> PSECT.
The count 1is then stored in the DCBRDR
field of CHADCB.

This count 1is also stored in tne DCBRDR
field if an error return of *No Record
Found®' 1is detected after the IQCAL SVC.

1f the IOCAL return shows that the track
was defective, the alternate Seek address
1is moved into the IORCB and the IOCAL
issued again.

Any other exror return from ICCAL causes
Find Records per Track to return a code of
X'04*' in register 15.

RELFUL Routine (CZCRR)

This routine converts a relative direct
access device address - of the form TTRZ,
to a full address -~ of the form RMBBCCHH,
where R is the record number, M is the
extent number, CC is the cylinder number,
and HH is the head (track) number. (See
Chart IE.)

Entry Point: CZCRRA (SYSRRA equated) --
via type-1 linkage.

Input: Register 1 contains the address of
the DCB. DCBRDT contains the relative
address to be converted.
Modules Called: None.
Exits:
Return Code Condition
00 Normal return.
ou Track number is ocutside
data set.

Section 6:

Operation: The extent
rd namber are moved an from the DEB. The
track number s computed and 1t it is on
the first cylinder of the extent, the
cylinder and track (head) are placed
directly into the DCB and a return to the
calling mocules effected.

nuuber (M) and reco-

If the track is not on the first cylind-
er, the cylinder count is updated until the
track is found, and the cylinder and track
are computed and stored in the DCB. A
return to the calling module is effected.

FULREL Routine (CZCR5)

FULREL converts a full DA device address
in the form RMBBCCHH to a relative address
in the form TTRZ. R is the record number,
M i1s the extent number, BB is the bin numb-
er, CC is the cylinder number, and HH is
the head (track) number. TTRZ represents
the relative track and record numbers for
the current volume. {(3e¢e Chart IF.}

Entry Point: CZCRSA (SYSRRA equated) --
via type-1 linkage.

Input: Register 1 contains the address of
the DCB.

Modules Called: None.

Exits: Return to the calling routine. No

return code.

/
Operation: The address is converted to the
TTRZ form where the R of TTRZ is set to the
R of RMBBCCHH minus one, the Z is set to
zero, and the track is computed by adding
the number of tracks in the extents. The
remaining fields of DCBRD are set to zerc.

Routines Specifically Designed for BSAM 95

PART 11

VIRTUAL ACCESS METHOD (VAM)

The data management facility discussed
in this Section is the virtual access
method (VAM). There are three organiza-
tional methods: virtual sequential, virtu-
al indexed sequential, and virtual parti-
tioned, which are designed for use with
TSs/360. All incoming and outgoing data
processed by the virtual access methods is
organized in units of pages which are 4096
bytes in length and stored on direct access
devices.

TSS/360 VAM is designed to minimize the
nunber of virtual storage pages associated
with an open data set. VAM brings into
virtual storage only those data set pages
currently needed for user operation.

In this section, the implementation of
VAM is presented using seven subdivisions:

s A general description of VAM including
its unique characteristics and its spe-
cial capabilities.

e A description of error recovery techni-
ques used for VAM data sets.

¢ A description of the volume format and
the manner in which data sets are main-
tained on such a volume.

e Data set sharing - a detailed discus-
sion on one of VAM's more important
facilities.

s Open and Close processing -~ that part
of VAM processing common to all the
access methods.

* The virtual sequential access method.

s The virtual indexed sequential access
method.

¢ The virtual partitioned access method.

Where practical, individual routines
will be presented immediately following the
particular facility they support. The
first of the above subdivisions, a general
description of the wvirtual access methods,
will occupy the remainder of this section.

VIRTUAL DATA SET ORGANIZATION

As metioned above, the data sets
accessed by the virtual access methods all
reside on direct access storage devices.
The devices supported by TSS/360 are the
2311 and 2314 direct access disk storage

SECTION 1: INTRODUCTION

devices. FEach device is preformatted, in a
manner which will be described later, in
units of 4096 bytes called pages. Although
records in a data set may occupy less than
a page, exactly one page, or more than one
page, the access method deals in terms of
page units.

The general philosophy of the virtual
access methods is closely tied to the con-
cept of relocation exceptions. When a user
issues a request to get or read a record,
the virtuval access method merely adds the
page Or pages containing the record to the
requesting task®'s page tables. This opera-
tion is performed by the Movepage routine
(CzCcoC). That is, the record is read into
the task's virtual storage. When the task
in execution makes a reference to the reco-
rd, a page relocation hardware interruption
occurs. This interruption causes the resi-
dent supervisor to read the referenced page
into main storage by means of its paging
mechanism.

A put or write operation, on the other
hand, results in the actual writing out of
the record as well as the updating of the
page tables. The writing operation is per-
formed by the Movepage routine (CZCOC)
which issues the PGOUT SVC. This SVC is
also serviced by the resident supervisor
and performs the actual writing operation.

Movepage Routine (CZCOC)

Movepage is called by OPENVAM (CZCOA),
CLOSEVAM {(CZCOB), VSAM Get (CZCOR), VSAM
Put (CZC0S), SETL (CZCOT), FLUSHBUF
(czcot), Getpage (CZCPI), and VISAM Close
(CZCQA) to perform input or output and to
control the use of shared pages by setting
and releasing interlocks. (See Chart JA.)
Attributes: Read-only, public, privileged.
Entry Point: CZCOC1 - Entered via type-1
or type-2 linkage.

Input: Register 1 contains a pointer to a
two-word parameter list:
Word 1 -~ Address of DCB.
Word 2 -- Address of first page of request.

Field DCBN contains the relative page
number of the first data set page of the
request.

Field DCBM contains the total number of

contiguous pages involved in the request.

Section 1: Introduction 99

Field DCBOP contains the type of opera-
tion requested as follows:

‘80° Input reqguest.

'20° Input request with exclusive
read.

‘io* Output request.

02 Release read lock.

‘01 Release write lock.

Modules Called: :

GETNUMBR (CZCO01) -- Converts the page
number of a partitioned data set rela-
tive to a member to the relative page
number with respect to the start of the
data set if part of the member has been
moved to an overflow page.

Interlock (CZCOH1) -- Interlocks the
external page entry cf a shared data
page or interlocks the entire RESTBL.

Release Interlock (CZCOI1) -- Releases the
above interlocks.

PGOUT (CEAAl) -- Causes the pages of an
output request to be written to external
storage.

SETXP (CEAH7) -- Adds the pages of an input
request to the task's external page
table so that the supervisor can bring
them into main storage when a reference
to them causes a relocation exception.

RELEXPG (CZCEN1) -- Releases pages assigned
to the jata set but not in use.

FINDEXPG (CZCEL1) -- Assigns new pages to
the data set.

Exits:

Normal -- RETURN macro instruction.

Error --

1. Return with a code of X'04° in general
register 15 if an attempt to perform
an exclusive read failed because the
page was already locked.

2. ABEND is called under the following
conditions:

¢ An unrecoverable error occurs during
the PGOUT operation.

s The DCB in the parameter list is not
the same as the one in the DCB
header.

e Illegal data set organization

exists.

100 Part II: Virtual Access Method (VAM)

*« An output operation is requested on
a data set opened for input. This
is not the case if the output opera-
tion is to output the POD of a par-
titioned data set.

e The request is for input from beyond
the data set limits.

¢ The operation requested is invalid.
e The DSORG is indexed, and DCBM # 1.

e An error return is received from
GETNUMBR.

e An illegal buffer is passed to Move-
page for VI organized data sets.

s The PGOUT buffer is not data or
overflow.

Operation: On entry, registers are saved
and base registers are established in con-
formance with linkage conventions. If the
data set is shared, the RESTBL is inter-
locked. If the address of the DCB is not
in the DCB header, or if the data set is
not partitioned and the request is for out-
put when the DCB was opened for input only,
a call is made to ABEND. This latter
operation is valid for partitioned data
sets since the request may be from CLOSEVAM
and be a request to write out the POD.

If the data set is partitioned, the
relative page number must be determined.
The user reference is to a relative page
numbexr based on the start of the member;
this relative page number must be converted
to one based on the start of the data set.
Where part of the member has been relocated
to an overflow page, GETNUMBR is called to
make the relative page number determina-
tion.

After this calculation or if the data
set was not partitioned, the request is
examined further. If the request was for
an output operation on a partitioned data
set opened for input, and the request was
not to output the POD, ABEND is called. If
this error condition does not exist, pro-
cessing continues. The extent of the
requested operation is tested to see if the
pages involved are all within the limits of
the pages currently assigned to the data
set. If the data set limits will be
exceeded by the request, ABEND is called.
If all is in order, the processing con-
tinues. From this point on, the processing
differs according to the type of request.

Output Operation: 1In general, the output
of data set pages is accomplished by means
of the PGOUT SVC. The processing in Move-
page consists of building a parameter list
and issuing the SVC. The parameter list

fcer PGOUT contains the first page involved,
the numbexr of pages, and the virtual
storage address of the first external page
¢ntry. The page entries must be converted
from the format used in the RESTBL ireia -
tive volume number-relative external pag:e
number), to a format suitable to the PGOUT
processuy (symbolic device address-external
page number). This conversion is accomp-
lished by directly indexing into the volume
teble and appending the SDA to the given
external page number. This parameter is
tnen placed in the PGOUT list. This pro-
cess 1s repeated, page by page, until aiil
pages involved have been placed in the
parameter list or until the maximum of 8
entries have been placed in the list. When
either of these conditions is met, the
PGOUT SVC is issued and the transfer of
pages is accomplished. ©On return from
PGOUT, the data set 1is tested to see if it
is duplexed (see duplexing later in this
section). If it is, the same parameter
list is used to write the pages to the
secondarxy copy of the data set. When both
copies have been written out, the procedure
is repeated, if necessary, for each suc-
ceeding group of 8 pages until the request
has been satisfied.

Once this has been done the exit proce-
dure is entered. This entails the release
of RESTBL and page interlocks set on shared
data set pages and RESTBLsS, and a return to
the calling routine.

Non-output Operation: Operations which are
not output may be simple input operations
on a nonshared data set, input from a
shared data set, a read exclusive request
for a shared data set, or a request to
release a read or write interlock on a
shared data set page. If none of these
operations is indicated, a call is made to
ABEND.

If the request is for a simple input
operation on a nonshared data set, the vir-
tual storage address of the first page in
the request is computed and placed in the
parameter list for SETXP. As with the
parameter list constructed for PGOUT, these
page entries must be converted to a form
acceptable to the SETXP processor. The
conversion process is identical. Page
entries are converted one by one and placed
in the parameter list until the list maxi-
nun of 64 entries is completed or until the
requested page entries are all in the list.
The SETXP SVC is then issued. This action
results in the placement of the pages
involved in the external page table of the
task. Any future reference to the pages
will result in a relocation exception which
can now be processed by the resident super-
visor. If there are more than 64 pages
involved in the requests, this process is

repeated until all requested pages have
been placed in the external page table.

If this input request was not received
from Open, the number of checked out pages
is updated. After that or if the request
was from Open, control is returned to the
calling routine.

The processing of input requests for
shared data sets is basically the same as
for nonshared data sets. The only dif-
ference is that page level interlocks must
be set and released in certain operations.
If the data set organization is other thaun
VISAM, no interlocks must be set, so the
above input processing is entered. The
parameter list for the SETXP SVC is estab-
lished and the SVC is issued. If the data
set is VISAM but the request is for a di-
rectory page the same processing occurs.

when the request is for a data page of a
VISAM data set, one of two interlocks must
be set on all pages involed in the reguest.
For data sets opened for inpot or for
operations other than read exclusive, a
read interlock is set on all pages; for a
read exclusive request, a write interlock
is set. The significance of these inter-
locks and the manner in which they are
imposed is discussed in the section on
sharing.

Once the type of interlock has been
determined, the pages are examined to see
if an interlock is already set. This
occurs when an exclusive read request is
made for a page which is already in use.

In such a case, a return is made to the
caller with a return code of *04' to indic-
ate that the page is not currently avail-
able. If the page is not already locked, a
call is made to Interlock to impose the
proper interlock on all pages. This inter-
lock is not imposed if the call to Movepage
is for a read request from the dynamic
loader. Following the setting of appropri-
ate interlocks, the parameter list is built
and the SETXP SVC is issued as for non-
shared input requests.

After the SVC has been processed and
control has returned to Movepage, the numb-
er of pages checked out is updated for ali
requests except those from Open, the RESTBL
interlock is released and control is
returned to the calling routine.

The remaining function performed by
Movepage is the release of the page level
interlocks set for input requests on the
data pages of a VISAM data set. The inter-
locks set can be either read or write. The
type of interlock is determined and passed
to the Release Interlock routine as a para-
meter. Once the interlocks on the pages
have been released, the interlock on the

Section 1: Introduction 101

RESTBL is released by again calling Release
intertock, and control is xeturned to the
calling routine.

THE _ACCESS METHODS

Astsociated with each of the organiza-
vional methods 1s an access method by which
the user may access records in his data
set. These access methods are: the virtu-
al sequential access method (VSAM), the
virtual indexed secuential access method
{VISAM) , and the virtual partitioned access
methed {(VPAM). This last facility is not
an access method in the normal sense of the
term. VPAM contains no routines for the
actual reading or writing of records. A
virtual partitioned data set is a collec-
tion of other data sets which a user has
comhined for ease of reference. These sub-
sidiary data sets are called members and
cach member is 1tself organized as a virtu-
al sequential or virtual indexed sequential
data set. It is by means of the other
access methods that the records of a member
are actually read into the task's wvirtual
storage.

VFAM provides the additional control to
perform the following functions on members:

e To create or add to a virtuwal parti-
tioned data set.

e To prepare any member of a virtual par-
titioned data set for processing.

e To add new members to, or delete exist-
ing members from an existing data set.

s To update existing members in place.

The virtual sequential access method
provides the user wWith access to recoxds
that are located in logically segquential
locations in his virtual storage. Because
of the nature of the virtual storage con-
cept, these records may or may not be in
physically sequential locations in main or
external storage, but they may be conceived
of as being sequentially organized for pro-
cessing purposes. Tables maintained by the
data management routines and by the resi-
dent supervisor make this type of proces-
sing possible. The manner in which this is
done is described in detail in the section
on the virtual sequential access method.

The virtual sequential access method
{VSAM) processes virtual sequential data
sets and virtual sequential members of par-
titioned data sets. It can be used for any
of the following functions:

e To create or extend a virtual sequen-
tial data set or virtual sequential
member of a partitioned data set.

102 Part IX: Virtual Access Method (VAM)

¢ To delete all records in an existing
data set or member, from a specified
record to the end of the Jdata set.

* To retrieve the logical records ot the
data set or member in a sequential
manner.

» To update ar existing record of the
data set or member in place.

The virtual indexed sequential access
method provides the means by which a user
can access records in a virtual indexed
sequential data set. Such data sets con-
tain records which are not sequentially
located in virtual storage. Each record is
associated with a key which is contained in
the record in storage. The lowest record
key in each data page, except the first
data page, of a virtual indexed sequential
data set is also entered in a directory
which 1s associated with each such data
set. By referencing the keys associated
with the records in a sequential manner,
the user may process his data set as a
sequential data set. Optionally he may
access records in a nonsequential manner,
selecting the records he wishes in any
order by referencing the appropriate keys.
This processing is detailed in the section
cn the virtual indexed seguential access
method.

The virtual indexed sequential access
method (VISAM) processes virtual indexed
sequential data sets or indexed sequential
members of partitioned data sets. It can
be used for any of the following functions:

*+ To create a virtual indexed sequential
data set or member in a sequential
manner.

» To retrieve the logical records of the
data sgt or member in a sequential or
nonsequential manner.

e To update records in a sequential or
nonsequential manner.

¢« To insert records in logical sequence
within the data set or member.

s To delete selected records from the
data set or member.

FACILITIES PROVIDED BY VAM

In addition to the restriction that th:.y
reside only on direct access devices, VAM
data sets are characterized by two facili-
ties that they provide for the user.

The first VAM facility is the sharing >Of
data sets. A user may elect to share his
data set with other users. When he does

this he 1s known as the data set owner and
any user who shares the data set with him
is known as the sharer. The extent to
which the sharer may use the data set is
determined by the owner when he permits the
sharing. He may permit read only access,
read-write access, or unlimited access.

The sharing of data sets necessitates
the use of interlocks which prevent two or
more users from simultaneously accessing
the data set. These interlocks and their
use, as well as the rules for sharing data
sets and the routines involved in the shar-
ing process, are discussed in the section
on sharing.

The second of these facilities is dup-
lexing. This facility provides the user
with an error recovery capability by allow-
ing him to maintain two identical copies of
his data set. The user specifies this
option by opening his data set with the
DUPOPEN macro instruction rather than with
the OPEN macro instruction. The net effect
of this is to link two identical DCBs
together and to flag his data set RESTBL as
duplexed. The duplicate copy is updated by
the Movepage routine as previously
described and, other than the DUPOPEN macro
instruction, the user processes his data
set as he normally would and does not con-
cern himself with the duplexing operation.

VAM ERROR RECOVERY TECHNIQUES

Two routines are used by data management
to attempt error recovery, or to allow the
user to make the decision to attempt reco-~-
very, rather than cause an ABEND to destroy
the user's task.

The Virtual Memory Input Error Recovery
(VMIER) routine is invoked when an error is
encountered on an input operation taking
taking place on a direct access device. If
the user has maintained a duplexed data
set, the secondary copy is used to replace
the error page in a newly assigned external
location of the primary data set, and pro-
cessing continues.

The VAM Data Management Error Processing
(VDMEP) routine is designed to process most
errors occurring while manipulating data
sets. The data set in question is closed
out, appropriate diagnostics are generated,
and control returned to the user.

VMIER and VDMEP are not to be confused
with VMER (Virtual Memory Error Recording)
and VMSDR (Virtual Memory Statistical Data
Recording); these modules are called by
certain access methods posting routines and
are described in System Service Routines,
GY28-2018.

VMIER Routine (CZCEI)

The Virtual Memory Input Error Recovery
routine is a public, read-only, privileged,
system routine which is called by the Task
Monitor to attempt recovery from an input
error occurring on a direct access device.
(See Chart JB.)

Entry Point:

CZCEI1 - Entered via type-1
linkage.

Input: None. The ISA must contain:
ISAORV -~ ¥Wirtual storage address into

which the error page was to have been
read.

ISACRE -- External page address from which
the error page was to have been read.

Modules Called:

SETXP (CEAH7) -- Sets the task's external
page table tc point to the secondary
copy of a duplexed data set so that a
good copy of the error page may be
obtained.

PGOUT (CERAl) -- Causes the secondary copy
of the error page to be written toc a new
primary copy location.

FINDEXPG (CZCEL) -- Assigns a new data page
to the data set. This page will replace
the error page and the secondary copy of
the copy of the error page will be writ-
ten to it.

Interlock (CZCOH) -- Places an interlock on
the RESTBL and the external page of a
shared data set.

Release Interlock (CZCOI} -- Releases the
aboye interlocks when appropriate.

WTL (CZABQ) -- Writes a message to the sys-
tem log when a PAT page is in exror.

WTO (CZABQ) -- Informs the operator of a
successful recovery.

GATWR (CZATC) -- Writes a message to the
task's SYSOUT when a PAT page of a priv-
ate volume is in error.

ABEND {CZACP) -~ Abnormally terminates a
task under certain error conditions.

DSCB/CAT Recovery (CZUFX) -- If the error
page is in USERCAT or SYSCAT data sets.

Exits:

Normal -~ Return to the task monitor.

Error —-- ABEND is called under the follow-

ing conditions:

Section 1: Introduction 103

e The error occurred on an auxiliary
paging wolume.

® An unrecoverable error occurred on a
data page {data set nor duplexed).

s« The device on which the error osccurred
was not a direct access device,

oy page is cutside the limits

E
s
o
|
7
A
i
]
3
"

1§ externai page entyy is

ary :@py of a iupipxeﬁ C&ud Bet.

L0 have been
COY .

and seventh
1 5 impossible

& yfx§9rl1 functioning supexvi-

ey should be taken L0 mean bad

VHMIER provides the processing
Biss the system to make use of the
z - £eature in virtual organization
ta sets. When an input ¥ror oOCCurs on a
primary data page for such & data set, the
secondary copy of the data page is read and
rewritten to a newly “0%13néc primary data

page location in external storage.

when first entered, VMIER saves the
input registers and establishes base yegis-
cees foxr Lhbe CSECT, PSECT, and SDAT. It

- iocks the SDAT by means of the Test
¥l Set aimstruction and locates the SDAT
ity for the device on which the exrror
If¥ the errox occcourred on a
device other than direct access oY o©n an
auxiliary paging device a call is made to
ABEND. The same call is made if the errox
page is found to be outside the limits of
the device.

COCGETEG .

The errory page is next classified as
being & PAT page, a DSCBR page, or a data
cage. If it is a PAT page, the page is
locked and all the page entries on the page
are set unavailable for assignment, by set-
ting the pnumber of users currently assigned
» the maxipum of 127. This process
wolwes a call to PGOUT to write out the
ated PAT page. Those pages represented
the PAT page in error, are shown
vailable for assignment in the SDAT en-
try for the device and the PAT page lock is
xexaased. WL (CZARQ) is called to make a
note in the system log concerning the
error. If the volume is private a message
is written to the task®s SYSOUT via GATWR
{CZATC). After this, or if the volume was
public, a return is made to the task
monitor.

104 Part II: Virtual Access Method (VAM)

If the error page is not a PAT page, the
PAT page is locked and the errxor page is
examined. If the page is already marked in
error, an attempt has been sade to read an
error page and ABEND is called (since other
VAM routines, especially OPENVAM, will pre-
viously have relocated all known error
pages). If this is not the case, the page
is examined to determine if it is a DSCB
page or a data page.

For a DSCB page, the entry in the PAT is
marked in erroxr and the errxor page is
rewritten to its original location. This
should permit the page to be input correct-
1y {that is, without parity ezrors) on sub-
sequent references and prevent supexrfluocus
calls to VMIER. The resulting data erxors
will be detected wia checksum validation by
those VAM routines which read or write DECE
pages that is, VAMOPEN, ADDDSCB, WRITDSCE,
CATVANM, etc. Both of these operations
involve calls to the PGOUT processor. If
the DSCE page is determined tc be for the
system catalog data set (SYSCATY, a call iz
made to the DSCE/s/Catalog Recovery routine
o rebuild the catalog: the error page is
not rewritten to its original location.
Folliowing this, the SDAT lock is released
and contyxol is returned to the task
monitor.

When the evvror page is found 7o be
neither PAT norx BSCB, the cbain of JFCEs in
the TDT is searched in an attempt to locatse
the data set which contains the error page.
This is done by scanning the RESTBLs of ail
open {that is, currently in use! VAM {on
direct access) data sets for = match. If
the entire chain of JPCBs is checked
without finding a match, ABEND is called
since this indicates a possible VAM mal-
function (no page should be input which is
not part of some VAM data set}. During the
search all RESTBLs for shared data sets are
locked while being checked and unlocked
afterwards. If the secondary RESTBL is
located first, the primary RESTBL is used
to obtain header information needed for the
scan {as this information is identical for

th RESTBLs but is maintained only in the
primary RESTBL header). Both primary and
secondary RESTBLs will eventually be
searched for the proper external page en-
try. If the RESTEL does not contain the
page, the next JFCB in the chain is retxri-
eved and the search continues.

Once the error page entrxy has been
leccated in a RESTBL, its entry in the PAT
is set to indicate the page is in ervor.
Since recovery is possible only for dup-
lexed data sets, if the set is nonduplexed,
a call is made to ABEND. Thisz is alsc done
if the data set is duplexed but the error
occurred on the secondary copy since the
secondary copy will only be read by VMIER
when trxying to recover from an exror to the

failing primary copy. Whether duplexed or
not, the error page is checked to see if it
is in the USERCAT or SYSCAT data sets; if
so, a call is made to CZUFX to rebuild the
catalog and return is made to the task mon-
1itor. If the error page is in the primary
copy, recovery is possible so the secondary
copy address is set in the external page
table via a SETXP call. A call is then
made to FINDEXPG to assign a new page to
contain the primary copy, that is, the
error page replacement in both the RESTBL
and the DSCB for the data set. When the
new page has been assigned, PGOUT is called
to write the secondary copy to the new pri-
mary location. Write to Operatox 1s then
called to inform the operator of a bad page
on one of the system packs and, incidently,
that VMIER was invoked successfully; all
interlocks are then released and a return
1s made to the task monitor.

VDMEP Routine {(CZCQK)

The VAM Data Management Exrror Processing
(VDMEP) routine processes all the errors
detected while mainipulating a data set.
VDMEP will close the data set which caused
the error, release the interlocks set, and
transmit diagnostic messages to the user's
SYSOUT. VDMEP is called by the VDMER macro
expansion or by ABEND (CZACP).

I1f the task is conversational, controil
is returned to the terminal; otherwise the
task is deleted. (See Chart JC.)

Entry Points:
CZCQK1 ~- Entered from expansion of the

VDMER macro.

CZICQK2Z2 -- Entered from CZACP (ABEND) when
ABEND receives a recursive call while
processing a VDMEP request.

CZCQK3 -- Entered from CZACP (ABEND) when
ABEND has successfully completed a VDMEP
request.

Input:

For entry at CZCQK2 and CZCQK3, there are
no parameters passed.

For entry at CZCQKl, register 1 contains
the address of the following parameter
list:

Word 1 ~-- Address of DCB for the data set
in error.

Word 2 -- Pointer to an 8-character Message
1D, preceded by a l-byte count of point-
ers to variable data, and focllowed by
the pointers.

ryoTmmTm T T R |
P3Py P3Py | PaP2P,P; | Pp |
1 L 1

C = 1-byte count of pointers. (May be
Zero.)
A = B character message ID. This doub-

leword is actually addressed by word
2 of the parameter list.

Py, P3,.-..Pp = U-byte pointers to vari-
able data, if any.

Word 3 -- Pointer to a 2-byte field:
Byte 1 Condition
*10° ECDAD or SYNAD condition
20 Clear Last Operation flag
Byte 2 Condition
‘OA" Called by one of the 'OPEN®
modules - CZCOA, CZCPZ, CZCOoP
oC SDST erroxr in CZCOA
‘OE" Non-VAM data set in CZICOA

MdModules Called:
VAM ABEND Interlock Release (CZCQQI) ~-
Release interlocks.

FREEMAIN (CZCGA3) ~-- Free virtual storage.

FINDJFCB {(CZAEBl) -- Get JFCB address.

RELEXPG (CZCEN1) -- Release DSCB slot.

DELCAT (CZCFD1) -- Delete catalog entry.

Search SDST (C2CQE1) -- Close SDST entry.

Interlock (CZCOH1l) -~ Set RESTBL lock.

Close Common (CZCLBC) -- Close data set.

Release Interlock (CZCCI1) -- Release
RESTRL lock.

Disconnect {(CZCGA8) -- Disconnect from
shared virtual storage.

Prompt (CZATJ1l) -- Communicate with user
terminal.

Stow (CZCOK1}) -- Add or replace VP member.

XWTO (CZABQ1) -- Communicate with the sys-
tem operator.

DUPCLOSE (CZCEZ1) -~ Close duplexed data
set .

CZAWAl -- BULKIO ABEND recovery.

ABEND (CZACP1) -- Abnormal task
termination.

ABEND (CZACP3) -- Successful VDMEP
completion.

Section 1: Introduction 105

Cperation: This text is keyed to the flow-
chart for CICQX {(Chart JC) and a reference
ny label will be included for each areas.
This routli 3111 agssembls appropriate dia-
grostics Lo the user SYSOUT informing the
user of the original error which cauvsed the
call to VDMEP, the data set name of the
data set for which the srrory was detectad,
the data s

2

&ﬁe recarglve count
X @i

In = 1, or pre-logon/post~
ABEND is regquired, aftex
oressing (GEO0E - QRO0E5 -

4p§z0pr*2i& e
sJKt‘i.gi.}O) »

DCBID and DCB Header checks are made and
either a diagnostic or an information mes-~
sage is inserted in the main message list
{QKE0100 - QX0315%).

Foxr data set, exit is via
QRBSQO. sywise, the special processing
£ie i »aveﬁ and exit is wia the YDMEP
entzy point to ABEND, CZACP3. HNormally,

AREND will return to VDMEP at CIZICOR3.

at CZCQK3: ABEND has completed
the VDMEP request. VDMEP npust
on the data b&i in errog. En~
at CZPQK§ is from ABERD wia an entiy in
ALE Table.

Processing c¢f unopened data sets is
shown from {(QK3040 - QK3I700).

If thizs is the secondary copy of a dup~
lexed data set, the primary copy is found
and closed {QK3i0u1 QK304%) .

If a new data set was being created, the
DSCB slot and catalog entry are deleted
10K3055 - QK3100).

106 Paxt IIi: Virtual Access Method {(VAM)

Search SDST is called to close the entry
in the SDST, if the data set is not dup-
lexed and there are no DCBs open for the
data set by this task (QK3200 QK3210).

If theye are no other DCB headers, the
RESTBL pointer is cleared ({QK3IZ20 - QK3570
- QK3700); but 1f other DCB headers exist,
the RESTBL is locked if necessary, and any
existing buffer, overflow and indexed

seguential direcrory pages are The
RESTBL lock is released and the dis~

connected if necessary. If there are no
other users, the RESTBL pages are freed
{QE33G0 - QR35703.

here &

cailled {(QK9IO00L - QR?ﬁiG)Q

Frocessing of opened data sets is shown

in Chert JC (QK3B0O -~ QKLTO0Y.

o
U

YR 3 ck Release is call
release interlocks, ﬁqd 1f no STOW is
necsSssary or @A?Oagﬁ, th@ 3
ciosed ﬁf;.x‘h eithey CLOSE oy DUPCLOSE,
the messagesexit pnasp Of the youtine
sntered {(QK39%00 - QEECS0 - QKRABQC -
~ DR%100).

o

If a STOW is necessary, a
an cold member (QK4050) and
A niew mpembisy -~ Or on the o
STOW-R didn’t tvake {(QK41¢

If the user has had four PRMPTS ox
defaults or af the task is nonconversation-
#1l, a unique member name is created by
VDMEP and placed in a message to inform the
user of the name. This 8 character member
name will consist of 4 alphabetic charac-
vers and ¥ numeric characters; *ABARNNNN®.
Initially °"NNNN® = 0000; if a retuorn code
from CZCOK (8T0OW? indicates that this memi-
ey name already axists, "HNNN® is incre-
mented by 1 and the call to STOW issued
(OE43006 ~ QKU3503.

¥hen the STOW-¥ is complete, the me
name 18 written in SYSLOG for s nonconwy
sational task {(QRE84%0), and both conve

tional and nonconversational tasks CLOSES
DUPCLCSE the data set and enterx the
messages/exit phase of the routine {(QRU500 -
QK9100) .

There is a subroutine {aiso used In-
iine) which plafec the diagnostics/message
and its inserts in the message list (QEILSS

OX9090) .

Any messages for SYSOUT that can be
written (SYSOUT, SYSMLF are open - PROMPT
can be called) are passed via CZATJI (QK9100

- QK9150), and then written in SYSLOG via
CZABQ (QK9200 - QK9250).

ABEND 1s called if required at CZACP1,
returned to normally if a previous call to
CZACP3 was made from VDMEP, or called at
CZACP3 if no previous call occurred (QK9500
- QK9600).

For entry at CICQK2: CZCQK2 is entered
from ABEND, when ABEND receives a recursive
call while processing a VDMEP request. The
'ABEND Required' switch is set and the
messages/exit phase entered.

VAM INTERFACES

VAM effects the input/output of data by
interfacing with the paging supervisor.
External storage of a VAM data set is
limited to direct access devices, whose
records are in the page (4096 bytes) format
used with that device.

VAM data sets are organized by relative
page number. Each page of a data set is
assigned a page number which is relative to
the beginning of the data set.

These relative page numbers are trans-
lated to an input/output device address
through use of the relative external
storage correspondence table (RESTBL). The
content of the RESTBL is created from data
set extents obtained from data set control
blocks (DSCBs) and maintained within virtu-
al storage by VAM routines. External
device addresses supplied by the RESTBL are
passed to the paging supervisor, as
required, to build the external page
tables. In part, these are pointers to
external storage areas associated with the
active pages of a VAM data set.

One or more pages are required for the
RESTBL. If a partitioned organization data
set is opened, the partitioned organization
directory (POD) will reside in virtual
storage. For an index sequential data set,
directory page(s), plus possibly an over-
flow page, will exist in virtual storage in
addition to a one-page data buffer. With
VSAM, a buffer in virtual storage is pro-
vided which is large enough to contain the
largest record in the user®s data set, with
a maximum size of one segment (256 pages).

VAM is designed to minimize the number
of virtual storage pages associated with an
open data set. Only those data set pages
currently being operated on by the user's
program are addressable as virtual storage.

The virtual access methods routines
interface with other routines in TSS/360
including some in the command system, cata-
log services, and the resident supervisor.

These external routines are referenced in
the module descriptions of the access
methods routines.

MODULE ATTRIBUTES

All modules of the VAM have the follow-
ing attributes:

READ~-ONLY The storage protecticn key
is set to prevent the user
from performing a store
operation on any part of
the CSECT.
REENTERABLE More than one task may
concurrently execute the
code embodied in the
CSECT.
PRIVILEGED The CSECT will be pro-
tected against any
reference by nonprivileged
routines: the CSECT,
however, may reference any
part of VM.

PUBLIC Available to all tasks.

FIXED The size assigned will not
vary while in execution.
SYSTEM User reference to the
module is prohibited,
except through SYS sym-
bols. SYS symbols are
used to label entry points
to nonprivileged system
routines to which the user
may transfer control by a
standard CALL linkage.

LINKAGE CONVENTIONS
7

Seven modules of VAM are considered
"fence sitters.”™ That is, they may be
called via type-1 linkage by either a pri-
vileged or a nonprivileged routine. Calls
from those modules to privileged modules
will be type-2 if it is necessary to “"cross
the fence."

The "fence sitters®™ are:

GET CZCOR

POT CZCOs Z VSAM routines
SETL CZCOT |

PUTX CZcou)

GET CZCPA

PUT CZCPB } VISAM routines
SETL CZCPC

The routines referenced by the above
modules may sometimes be called by type-z
linkage. 1In order to effect type-2 link-

Section 1: Introduction 107

age, V-cons and R-cons for the foliowing
wodules are stored in the enter table
{CHBET1). The code to access those modules
is also given.

¥ T
] Name | Entry Point | ENTER Code |
v — oo e oo 1
| MOVEPAGE | CZCoCl | X'4c’ |
i i]]
| INSPAGE |} czcony | X48" I
! | ! i
{ DELPAGE | CZCoD2 i X*49° i
| i | |
| PUT i CZCOS53 | X'3g® |
i ! ! {
i FLUSHBUF | CaCOoV1 i X'ygD’ §
| ! | |
{ i CZCPIL i X"47° i
} GETPAGE i CZCPI2 i X°4E* i
] | czcPI3d | X*4F’]
i ! | !
i ADE ! CZCPLL i X 46° i
L R B O, 3

Other VAM modules may be called by eith-
er privileged or nonprivileged routines but
are always executed in the privileged
state. Those modules are also listed in
the enter table:

e e e o i 0 e e A e e 4
| Name | Entry Point | ENTER Code |
e -t |
{ FIND | CzZCoJ1 i fyye i
| | | |
] STOW | CZCORL |} T4]
| i | /
| ESETL i c2CPDL | Tyt i
{ i i |
i READ/WRITE | CZCPEL i o |
! | | |
L]

| RELEX | czcPGl | 42 i
| | | !
{ DELREC { czcpHl | 430]
L s — i 1

CONTROL BILOCKS

Control block descriptions in this PLM
provide the following information to assist
in the understanding of the Virtual Access
Methoed.

¢ SYMBOL - The assembly mnemonic as it
appears in the assembly listing, DSECT
listing, or module descriptions in this
manual.

e DATA - A code to indicate the format of
the information stored in a field. The
possible values are listed in Table 24.

108 Part II: Virtual Access Method (VAM)

Table 24. Abbreviations Used in Control
Bleock Descriptions

ot St - 1
| & | Address of an area-control block, {
| | subroutine, etc. :
| |

| B | Relative pyte position within an |
H | area. i
|] i
| C | EBCDIC data. ;
i | i
i D | Relative doubleword within a }
| | control block. i
i | 1
i L | Lock byte to be referenced by Test |
§ { and Set (TS} instruction. See {
| | INTLX {C2C0R) module description H
H | for more information. i
P |
| N | Number -- count, limit, size, etc. i
| | !
{ R | R-con ~-- address of a PSECT. i
| | i
} V| V-con -- address of an entry point |
} i to a CSBECT. i
! ! i
| W | Relative word position within a |
§ } control block. i
| i i
| X | Code defined in hexadecimal, or a i
| | group of fields. i
LS - - ~d

¢ DESCRIPTION - A brief description of
the contents and usage of a field. Foz
code fields, a list of possible vaues
is also given.

Control blocks and tables common to all
VAM access methods are described in this
section. Elements which are used only by &
single VAM access method (such as VISAM)
are presented with the discussion of the
appropriate routine.

Intexruption Storaqe Area {(ISA} -- (CHAISA)

The interruption storage area is locatec
at virtual storage addresses 0 through
4095. One copy exists for each task. It
is used as a fixed communication region for
interruption processing between the task
and the task monitor, and between the task
and the resident supervisor (Table 25}.

Task Data Definition Table (TDT) ~-

{CHATDT)

The TDT specifies the data set name, and
supplies information about the external
storage of the data set. This control
btlock is generated pricor %o OPEN time by
either a DDEF command or a DDEF macro
instruction. It is updated at open time if
necessary (Table 26).

Table 25. Selected Fields of the Interrupt

Storage Area

|Symbol |Data] Description {
——————— T |
{ISAVMP | A |Virtual storage packing |
1 1 jorigin l
| i | |
[ISANAS | N |{Next available segment |
| ! [|
| ISATDT*| A |[Task Data Definition Table |
] i lorigin i
| | | |
|ISASPN | N |Shared Page Table number of |
] | |the public segment |
| | i |
|ISATDY | A |Dynamic Loader Task i
| | |Dictionary |
] | | |
| 1SASDS®| A |Shared Data Set Table (SDST) |
| l | !
|ISAVTH | X |Authority code i
| | i
| ISALCK*| L {Task Interruption Inhibit {
{ | {lock byte |
] |] {
{ISACVP | X |Current VPSW i
oo T — - i
| *Used dlrectly by VAM. {
e 3
Data Control Block (DCB - CHADCB): (Figure

16 and Tables 27, 28, 34, and 35).

The data control block, generated by a
DCB macro instruction, is used to maintain
information necessary for access method
routines to process a data set. It con-
tains data set oxganization, record format,
current page number, last operation, retri-
eval address of the current record, and
V-cons and R-cons of the access method rou-
tines (macro transfer list) to process the
data set or menber.

A DCB is generated at assembly time by
the DCB macro instruction. Subsequently,
both the programmer and the system may
enter information into the data control
block fields. The process of filling in
the DCB is completed at execution time.

Sources of information for DCB fields
are, the DCB macro instruction in the
source program, the DDEF command Or macro
instruction in the job stream {(or DDEF
macro instruction executed by the user pro-
gram), and the DSCB.

These sources are used in that order and
only fields not yet specified can be filled
from each source. For example, if a field
is specified in both the DDEF command or
macro instruction and the DSCB, only infor-
mation supplied by the DDEF command or
macro instruction is used for the DCB; the

Table 26. Selected Fields of a JFCB

ISymbol jData| Descrxptlon

e
!TD’I‘DDN { C |DDEF name (ddname)

{TDTDS1, | C
| TDTDS2|

| Data Set name

y
1]

TDTDSV | X Data Set Organization
X'04° VISAM
X'05° VSAM
X*06* VPAM

e Bl s WIS s W s T i o e o ot

!

{]

‘ i

i |

| |

|]

|TDTDSR | C Absolute generation number

| |

|TDTDSM | C Member name

|]

| TDTOPN | N Number of open DCBs

{ | i
{TDTVPY |} X |Privilege flag; X°01*' = {
|] |privileged !
| |] 1
|TDTAQL | X |Access Qualifierx i
{ | | X°00' unlimited {
{ H] X°01*' reads/write §
]] | X°02" read only !
|] | i
|TDTSHC | X |{Sharing gqualifier; X'01°' = !
| ! |shared {
| | I i
|TDTDEB | A |Pointer to RESTBL |
i | | |
|TDTDCB | X |First 32 bytes of DCB |
i | { i
|TDTVF1 | X |{Volume flagq {
| | | |
|TDTID1 | C |Volume serial number |
| | | {
|TDTDSC |} A |Pointer to format E DSCB i
| i | i
|TDTDUP | A |Pointer to secondary JFCB of!
| i ja duplexed set i
{ { | i
|TDTSD1 | A |Symbolic Device Allocation
| | |table (SDAT pointer) i
} | |
ITDTID2 | X |{2nd and 3rd volumes; same 1
| i jformat as for TDTVF1, i
{ i | TDTID1, and TDTSDI, above]
i | | i
{TDTAPN | X |Chain flag {
| ! { i
|TDTAPP { A |Chain to JFCB appendage i
L i A 4

corresponding field in the DSCB is ignored.
The programmer can write routines that
modify any data control block field.

The DCB for VAM is composed of five
parts. The first part of the DCB is common
to all access methods. The four remaining
parts pertain to VAM only. Their relation-
ship is shown in Figure 16.

Section 1: Introduction 109

(CHADCS)

DCB Commen
Used by all access methods

Tronsfer List for Macros

Common to all VAM QOrganization

Orgonizetion Independent

Storoge

bytes Working Storage
|
- T L
| i
| i
i | Extended indexed
} Extended Sequentiof
e A] Sequential Working 8
byres Werking Storage i bytes
i
i

A L

Figure 16.

DCB Format for VAM

Relative External Storage Correspondence
Table {RESTBL)

A control block used exclusively by VAM
is the relative external storage correspon-
dence table (RESTBL). A RESTBL is asso-
ciated with each open data set using the
virtual access method. It contains a list
of external pages assigned to the data set.
The RESTBL is used to convert page numbers
relative to the data set, to external
storage addresses. It also maintains con-
trol over data set page sharing. The
RESTBL is located in an area of virtual
storage protected from the user. The area
of virtual storage that contains the RESTBL
has a read-only protection key assigned.

In the case of a shareable data set, the
RESTBL pages are shared by user tasks, VAM
sharing rules are discussed in the section
on sharing.

A RESTBL is composed of four subsections
whose functions are described below. The
overall relationship is shown in Figure 17.

The RESTRL header contains control
information for using the RESTBL.

The second subsection, (Figure 18), con-
sists of a series of external page entries
(EPE), with the control block identifica-
tion CHAEPE.

One entry exists for each page of the
data set, and contains the relative volume
number and relative external page number,
plus the page status, defined as in use,
not in use, or assigned but not yet
written.

110 Part I¥: Virtual Access Method (VAM)

Table 27. Selected Fields of the DCB
Copmmon

““““““ B S S s
|Symbol {Datal Description i
------- B et
|DCBDSO | X {Data Set Organization 1
| i !]
{ | | Macro |
H { iCode Param Access Routines |
| DCBDV1| IX'71* VIS VISAM]
| DCBDV2i [X*72° vs VSAM H
| DCBDV3| }|X°73° VIip VISAM § VPAM }
| DCBDV4| |X*74°* VSP VSAM & VPAM |
{ DCBDV5S| [X*'75* vp VPAM & * i
} | i
§ { {*as determined by member ¢
| } { organization]
! | { i
|DCBDDN | C |DDEF name {ddname) i
i i | :
JDCRSYV, | V,Rf{Synchronous Error exit |
[DCBSYR | faddress (SYNAD) i
l |
{DCBEOV,| V,R|End of Data exit address H
| DCBEOR | { C(EODAD) !
i | | i
|DCBREC | X |Record format |
| DCBRCF| | X°80° Fixed |
| DCBRCV| j X'40" Variable i
| DCBRCU} { X*CO0° Undefined |
] | | |
|DCBLRE | N |Record length §
| | ! |
{DCBEKEY | N |Key length ;
| i ! |
IDCBRKP | N |Relative key position §
i]]]
{DCBLPA | N {Retrieval address I
! | { |
{DCBEX1,| X |SYNAD codes 1
{DCBEXY | { i
| | | {
|DCBOPI | X jOPEN options i
| | |
| DCBID | C |DCB identifier: C'*%s%* i
' {] i
{DCEDEB | A jPointer to RESTBL i
|] i
I|DCBLEN | N |Length of this DCB (in i
| | }doublewords? H
| | | |
JDCBGTV, | V,R|GET routines® i
| DCBGTR | }]
] | | i
{DCBPTV, | V,RIPUT routine* |
|DCBPTR | | i
| | i {
{DCBPXV,| V,R|{PUTX routine# |
| DCBPXR | | |
| | | |
|DCBSLV, | V,RISETX routine* i
{DCBSLR | i i
[Y OO 4
|*R-cons -- Pointer to save areas on a i
|

|} dynamically allocated pnage

{
i
[

s s e M e e, s s S2n lh onr e B t immt t r bi ma (pt m ghrn i At s ko s KU i o st i B i i ol s | AR Sl gy S St RG] S A s W i it ks i s e e

Table 28. Description of the Fields Com-
prising the VAM Organization
Independent Working Storage

|Symbol |Dataj Description i
_______ B T O
DCBVMA | A |VMA of next record in buffer|
| | |

DCBCPB | N |[Current page and byte; i
| |defined as follows: |

{ { !
DCBDPN{ N |{Current data page number |
| | |
DCBCBP| N |Byte position relative to i
] |current page |

| | I

DCBN | ¥ |First page in reqgquest |
! | |

DCBM } ¥ |Number of requested pages |
| | |

DCBOP | X |VAM General Services |
i |Operation: |

| ‘ 1

DCBOPO | }X*8000* Input, set Read |
{ linterlock]

| |

DCBOF1 | {X'4000' Loader request |
! | |

DCBOP2 | [X?2000° Input, set Write |
| |interlock |

| | |
DCBOP3} fX*1000*' Output {
! | |

DCBOP 4| 1X*0800"' Insert |
] [|
DCBOP5| |X*0400* Delete i
| | I

DCBOP®6 | | X*0200' Release Read |
| |interlock |

| |

DCBCP7 | }|X*0100* Release Write |
| |interlock |

| | |

DCBOP& | }X*0080* Replace blank pages |
| jon an insert |

| | |

DCBHEY | N |{Hash value of member name (6]
{ |bits) i

| | |

DCBNI | N |First page in request, f
H |relative to data set -]

{ | computed by VPAM routine |

i |GETNUMBR (CZCOO) |

| |]

DCBSHC | ¢ |Type of search request; see |
{ { SEARCH (CZCOL) |

! |

| |C*A' Alias name {

| |

i {C'E' Either alias or member |

| | name i

| | i

} |C*'¥' Member name |

| | |

|DCBHD | A |DCB header in RESTBL i
[i i _— - —d

RESTBL Heoder
(CHARHD)

External

Poge Entries

{ P
Mo imum CHAEPE)
size is
262,144
bytes
L Availoble Space A
- {ZERC bytes) T
DCB ond Member
Headers
{CHADHD & CHAMHD)
— e X
Figure 17. RESTBL Fcrmat
rL# 4 by?es ;,‘i
Flag Relotive Volume Number External Poge Number
N, S — .|]
- 2 ot 14 - 16 e

Figure 18. RESTBL External Page Entry -

CHAEPE

For shared data sets, a 4-byte interlock
word in each EPE controls sharing of the
page. The interlock control word, and
method of updating it, is discussed in
detail in the sections on VAM sharing.

The third and fourth subsections of the
RESTBL,, designated as DCB and member head-
ers {(CHADHED and CHAMHD), are constructed at
open time. Address pecinters in the DCB
header identify associated control blocks:
pCce, JFCB, POD, RESTBL header. The DCB
header is linked to the RESTBL header or
the member header (if partitioned crganiza-
tion) oy DHDLNK.

The DCB header link, and compatible
tield design of the RESTBL and member head-
ers, make it possible to process members of
data sets identically.

A RESTBL is created for a data set by
the OPENVAM (CZCOA) routine, using informa-
tion extracted from the DSCNs of the
volumes where the data set resides. Each
volume contains all Jdata set control blocks
{DSCBs) for the data sets contained on that
volume. At open time, the external page
entries (EPE) are built from extents found
in the DSCB. As the data set is generated,
additional extents are obtained dynamically

Section 1: Introduction 111

by REQPAGE (CZCOE). Once a shared data set
is open, no new RESTBL is generated by any
subsequent OPEN, that is, only one RESTBL
ever exists at a time for a shared data
set. However, for each DCB opened for a
data set, one DCB header will exist in the
KRESTBL. If this is a shared, nonparti-
tioned data set, each user's DCB will have
@ DCB header. Each of these headers, in
turn, is linked to the RESTBL header.

For a partitioned data set, the DCB
headers of each open DCB will be linked to
member headers.

The basic purpose of the RESTBL header
or member header is to document tnree items
of importance:

¢ ORGANIZATION - Sequential or Index
Sequential

e RECORD FORMAT - Fixed, Variable or
Undefined

¢ CONTENT - Starting page position in the
RESTBL, number of data, overflow, or
directory pages

The RESTBL header also accounts for
pages assigned to the date set, but not yet
in use, as well as available virtual
storage in the RESTBL.

Closing a DCB causes its DCB header to
pe deleted from the RESTBL. In a parti-
tioned data set, this also causes the memb-
er header to be deleted provided no other
DCB headers exist for that member. The
RESTBL header and external page entries
will remain in virtual storage until the
last DCB is closed. At that time, the CLO-
SEVAM (CzCOB) routine will return the con-
tents of the RESTBL to the DSCBs associated
with the data set.

Descriptions of fields for the RESTBL
header {(CHARHD) and for the DCB header
(CHADHD) are provided in Table 29 and Table
30, respectively.

Shared Data Set Table (SDST)

The sSpST, whose address is giwven in the
interruption storage area (CHAISA} of each
task, consists cof a header (CHASDS) and a
series of data set (CHASDE)} and member
{CHASDM) entries. The SDST format is illu-
strated in Figure 19. Tables 31, 32, and
33 provide field descriptions of the SDST
header, a member entry and a data set en-
try. The data set entries are linked by
forward and backward chain pointers, with
the pointer to the first data set entry in
the SDST header. Member entries are
organized intc €4 hash chains. The hash
chain to which a member is linked is
generated from the member name. A tabie of

112 Part II: Virtual Access Method (VAM)

64 words, part of the SDST header, gives
the address of the first member within each
hash chain. 1In addition to the data set
and member chains, two chains of deleted
entries are maintained in order to recover
space for building data set or member
entries. Deta set and member entries are
linked to the appropriate deleteu chain
when their user count reaches zero.

The information in the data set and
member entries is used to control access to
a data set, and also to provide a common
location to store the information (shared
page table number and RESTBL address)
necessary for multiple tasks to obtain
access to an existing control block in
shared virtual storage. This control block
is updated by the VAM general services rou-
tine Search SDST (CZCQE) which has the fol-
lowing capabilities:

» Search the SDST for a specified data
set entry and/or member entry.

¢ Modify data set or member entries by
incrementing or decrementing the user
count. This capability also provides
for creating or deleting such entries.

The linkages between a user's DCB and
the RESTBL, POD, and JFCB for a member of a
partitioned data set, are shown in Figure
20. DHDLNK is shown as linked to either a
member header or the RESTBL header, since
this field, when the data set is non-
partitioned, will point to the RESTBL head-
er. If this data set were shareable, the
RESTBL and POD would be in shared virtual
storage.

SDST MAINTENANCE

The following routine maintains the
shared data set table (SDST).

Search SDST Routine (CZCQE)

The Search Shared Data Set Table routine
is called by OPENVAM (CZCOA), CLOSEVAM
{CZCOB), Find (CZICOJ), Stow (CZCOK), and
the dynamic loader, to ada, update or
delete, data set or member entries in the
shared data set table (SDST), and establish
correspondence to shared virtual storage.
{(See Chart JD.)

Entry Point: CZCQE1l - Entered via type-1

linkage.

Input: Register 1 contains the address of
a four-word parameter list:

Word 1 -- Address of JFCB.

Word 2 ~- Address of DCB.

Table 29.

Symbol

. ——— —— O —, = s e i i S ———

|
i
|
|
|
RHDINW | L
!
RHDINR | N
RHDINN % N
|
RHDINI | L
|
RHDNAP | W
| |
| |
{RHDNEP | N
| |
|RHDFEP | W
i |
|RHDDIR | N
| {
| |
| |
| |
|RHDDAT | N
|
{RHDOVT { N
|
iRHDRPG | N
| |
{RHDTHD | W
| |
| i
| |
| i
| I
| |
| |
|RHDFLG | X
| |
| |
|]
! |
| |
| i
| |
| § .

Description

|The first 4 bytes of the
|RESTBL form a VAM interlock
|word which is updated by
JINTLK (CZCOH) and RLINTLK

| (czcol)

|Write interlock

|

|Read interlock

O it T s, S g, oo c ol wwen e

|Count of read interlocks set
|

|Update interlock

|

|Next available External Page
{Entxry (EPE)

|Count of available EPE

|

|First EPE of data set

|

|Size {pages) of the Indexed
|Sequential Directory or
|{Partitioned Organization
|Directory (POD)

|

|Data set size (pages)

|

| Number of overflow pages

|
|RESTBL size (pages)

|Last header built from
|available space. This
|field, when decremented by
{the size of the header to be
jbuilt (DCB=48, member=32)
|gives the address where a
|new header may be built

|Data set organization:
X*'80* Shared

X*'40"' pPartitioned
X'20° Index Sequential
X'08*' ISD Integrity
X*'04* POD Integrity
X*'02' DSCB Integrity
X*01°* Recatalog Flag

T —
i e e e e S s, S S 09 o G A — — i —— " 2 1ol e S € " o s, D s D o W s 5 . W

Field Descriptions for the RESTBL Header --

[St T
} | Datal

N

(CHARHD)
[Siashndeniesiuings Suinsiasits e b
|Symbol {Dataj} Description |
e S Ot
JREDINI | L |Lock byte for the next 6 |
| | |fields |
| | | {
|RHDDCB | N |Number of DCBs that are OPEN|
1 | { |
{RHDODC { D |First DCB header |
| | I |
{RHDADC | D |First deleted (available) 1
| | |DCB header space
| I |
|RHDOMC | D |First member header i
| | |
fRHDAMC | &+ {First deleted (available) i
i | |member header space |
| i | |
{RHDPOD | A |POD i
[| ! |
{RHDTID | D |Task ID which set RESTBL]
i | | interlock {
i |] |
{RHDVTA | A |(Address of the volume table |
| | 1 !
{RHDSPT | |Pointer to the format E DSCB|
| | | |
{RHDCPO | N |Data set cumulative pageout |
| | | count i
| | |
{RHDSAL | A |Secondary allocation (ESA) |
i i i {
|RHDRFM | X |Record format i
REDKYL	X	Key length
REDPAD	X	VI pad factor
]		
RHDRKP	B	Relative key position i
] 1 I		
RHDRCL	N	Record length
RHDDSO	X	DSORG
i {		
RHDCRD	X	[Changes/Reference Date flags
RHDOPC	X	option codes]
i]

A

Section 1: Introduction 113

Tabie 30. Field Descriptions for the DCB

Table 30. PField Descriptions for the DCB

Header -- (CHADHD) (Part 1 of 2) Header -- (CHADHD) (Part 2 of 2)
g ———— o ——— 1 r T T T T e e e e e 1
{Symbol |Data] Description] |Symbol |Data] Description |
pomm e R ST I T
|DHOLCH | A |0C18 associated with this | | | | X*0200" SDST data set entry ?
| i |header | | i | X*0800° RESTBL header |
| j | | | | | X*0800* Member descriptor in|
[DHDJFC | A JJFCB (TDT) for the data set | i | { POD i
i | i | { ! |X*1000° POD |
{DHUTSK | N |Task identification i | | |X*2000' External Page }
} | { | | i i Entries i
|DHDRES | A JRESTBL address i | i |
| { | | | | |The following 4 fields are |
{DEDPOD | A |POD address | | | Jused with VSAM organization: |
]] i | | |
{DHDLNK | A jLinkage to either the RESTBL| |DHDFBP | A |Buffer address i
| i jheader or to the member | | | | {
i i {header if this is a | |DHDNBP | N |Buffer size (pages) {
| i jpartitioned data set and a | }] { |
i | {member 1s active (FIND has | |DHDFDP | N |First data page checked out |
i i | been done) | | } |to this DCB |
| !] | | | i
|DHDOPN | X |OPEN options - same as | |DHDPCO | N |Number of pages checked out !
} { | DCEOP1 i | | jto this DCB {
] | | | { | |
{CHDPRO | X |Protection class of the | |DEDCOP | A |Overflow buffer :
i | jvirtual storage in which thej | | f
{ | {DCB resides | |DHDISD | A |VISAM directory location |
| | | | | | | I
| | | X*'03' Read only | |DHDCDP | N |Current data page {
i | | X'01' Read/Write { | | | i
i i } X'07* Private privileged | |DHDNOP | N |Current overflow page i
| | | | i |] |
jDHDINT | X |Interlock summary. This i |DHDMRL | N |Maximum record length |
| | [field is updated by INTLK | | | i i
i] | (CZCOH), RLINTLK (CzcC0l1), | | DHDNDH, | W |Forward and reverse DCB §
l] {and VAMABIR (CZCQQ) | | DHDPDH | | neadexr pointers |
i] |]] | | }
{ | |The following reflect | |DEDDUP | A |Address of duplex copy of }
H ! finterlocks set in the i | | |the RESTBL |
i i findicated control blocks: | | | | |
i i i | |DHDDXP | A |Current External Page |
] | |X*0001' Data Set Entry in | | | | Address |
i [SDST Lo l, |
| | |X*0002* RESTBL header | |DHDOXP | A |Overflow External Page
i | }X*0004"* Member descriptor in| { { | Address |
i ! % POD | t PR 1 A 4
{ i }X*0008* POD |
|] }X'0010' EPF that are checked|
| | | out to this DCB |
| | |X°0020' Member heaaer in |
i | | RESTEL |
} } | X*0040" SDST ccntrol entry |
f 5 jx‘ 0080"' RESTBL header l Control Entry ond Hash Toble
i i | partial interlock {
| | | Set (RADINI) | ! Seqment (CHasES)
i | {X'0100°* SPT number in SDST | Maximom
i i | Data Set Entry |
} | | locked]
i] ! | .
{ | jSome of the above interlocks | ~ Dato Set and Member Entries |
|] }indicate either a read or a | T (CHASDE, CHASDM) 7
i | {write interlock. The next 5|
| | jmask values indicate which |
i | fof the control blocks are |
|] iwrite interlocked. | Figure 19. Shared Data Set Table (SDST)
L 4

114 Part II: Virtual Access Method (VAM)

T{

Format

Table 31.

Field Description of the SDST

Header -~ (CHASDS)
e —— T T T T T e e e e e]
|SymboljDatal Description |
O T 1
SDSINT| L |SDST interlock byte. If set,

|access

|

is not permitted

Table 32. Field Description of a Member
Entry -- (CHASDM)

s e e T 1

|Symbol|Data| Description

prmmm = T 1

| SDMCUHN] A |{Next memper entry in this

|

{hatih alias chaln

| . { | |
| ! | | {
s P _ | z |
|SDSLPN| N |Last page number assigned to | |SDMNUR}] N |Number - of users in this i
i | jthe sDST { | { jmember {
] ! { | I | I {
|SDSSPT| N |Last assigned Shared Page | {SDMSPT| N |Shared Page Table (SPT) |
| | |Table (SPT) nunmber] |] | number assianed to this
| | l | | | | member |
|SDSAVA} A |Next byte of available space | i | i i
{ | lin the SDST i JSDMNSP{ N |Number of shared pages |
| ! | | | | | !
{SDSDE { A |First deleted Data Set Entry | | SDMFSP}] N |Number of the first shared |
| | | | | i | page I
|SDSDME| A |First deleted member entry | | | |]
| | | ' | |SDMLSD} A |Data Set kntry corresponding |
{SDSSDE{ A |First Data 5et Entry i } i |to this member |
| | ! i | | { !
jSDSHAS| A | |First mempber entry for each | | SDMNAM| C |Member name |
| i jof the possible 64 hash { L U 1
i { fvalues of member names |
| ! | |
] SDSPLK| L |[VMA lock on SDSPSN |
| | |
| SDSPSN} 4 | Public segment numpbers |
b S T P 4
ISA SDST
(CHAISA) (c HASDSW
IDATDT {CHASDM)
ISASDS
(CHASDE)
f SDESPT,
| SDEFSP
RESTBL DCB
> (CHARHD) st
(CHAEPE} i {CHADCB)
> (C HAMHD} DCBDEB
L——— DHDLNK DHDDCB DCBSP b
DHDRES (CHADHD) DCBHD
DHDJFC DHDPOD F——] DCBSC
|
Akl POD |
(chaton (CHAPOD) -‘—-J {
JFCB, (C HAPOE) I
(TOTDDMY ‘i
TDTDEB (CHAPOM),
JFCB, (CHAPOMY,
JFCB, (CHAPOMI,
Figure 20. Linkage Relationships Among Control Blocks Used with VAM
Section 1: Introduction 115

Table 33. Field Description of a Data Set
Entry -- (CHASDE)
g T T T T T T T T T s — e 1
| | |
{Symbol|Datal Description |
T S oo !
|SDECHN| A |Next data set entry {
| i i |
i H |The next 4 bytes form a VAM |
] { {interlock word which is |
1 ! jupdated by INTLK (CZCOH), andj
i H {RLINTLK (CZCOI) |
| | | !
SDEINW] L	Write interlock	
	I	
SDEINR	L	}Read interlock
i	i	
{SDEINN	N	[Count of read interlocks set
	{ !	
{SDEINI	L	Update interlock {
!	i	
1]		
SDENUR	N	Number of users
	!	
{SDESPT	N	SPT number i
! i]	
SDENSP	N	(Number of shared pages
i		
SDEFSP	N	Number of the first shared
i !	page entry :	
i	i	
SDENAM] C	Data S22t name
[N U U 1
Wword 3 -- Address of 8-byte member name,

zero if no member.
Word 4 -- Address of 1-byte type code:
C - close
O - open
J - user count only
Modules Called:

Interlock (CZCOH1) -- Set write (W) inter-
lock on a shared data set entry (SDSE).

Release Interlock (CZC0I1) -- Release write
(W) interlock on an SDSE.

ABEND (CZACP) -- Abnormal termination of
task.

Exits:

Normal -- For Open option:
'00° Entry existed.
‘08" New entry built.
'10*' Data set does not exist.

For Close option:

‘00' Entry closed, users still exist.

116 Part II: Virtual Access Method (VAM)

04 Entry closed, no more users.
10' Data set does not exist.
Error -- ABEND 1u ¢alled when one ot the

following conditions exist:
s No polnter to the DCR.

¢ SDST or shared page tahle already
locked by this task.

e The data set is non-VAM.

e Current pcinter is higher than the
"last page®™ pointer.

* There 1is insufficient space for the
member entry or data set entry.

¢ An attempt is made to close an unknown
member or an unknown data set.

= An attempt is made to access a non-
shared data set by two different
tasks.

Operation: Overall operation of this
module consisits of entry linkage, data set
name search, member name search, analysis
of user requirements, updating of data set
entries and member entries, and either a
normal return, an error return, Or an
ABEND.

After completion of linkage and loading
base registers from the parameter list,
this module checks that the DCB code is
present in the field DCBID. If unequal,
ABEND 1s invoked.

By use of test and set (TS) and time
slice end (TSEND), execution of this task
will be delayed until the SDST interlock
byte is found in the reset state. At that
time, this task has exclusive control of
the SDST, and a search through the chain of
data set entries is made beginning with the
SDSE specified in SDSDSE, by comparing the
44 byte data set name in the JFCB with the
data set name in each SDSE in the chain.

If the end of the SDSE chain is reached
before a matching data set name is found,
or if no chain exists, an SDSE for that
data set name does not exist--subsequent
action depends on the option regquested by
the calling routine in the parameter list.
When a matching name is found, this task
will delay execution until the shared page
table number (SDESPT) is not equal to
X'FFFF®' (SPT lock condition). If the lock
condition is present, and this module was
not called by ABEND for release of inter-
locks, the portion of the SDSE search for
the specified data set name which follows
interlocking the SDST, will be repeated.
Then if a member name was specified in the

list of input parameters, a search for that
menmnber name entry will be performed.

The 8 byte member name is hashed to 6
bits using the logical operation “exclusive
or”., That hash value is used to pick one
of the 64 member entry chains, and the
selected chain is searched for the speci-
fied member name. Each member name entry
in the selected chain is compared against
the member name specified in the parameter
list. 1If equal, the data set name in the
SDSE addressed by the member entry is com-
pared. If both are equal, the proper memb-
er entry has been found and will be pro-
cessed by this routine. If no member entry
chain exists or no matching member name is
found or matching member names do not point
back to the SDSE previously found, then no
member entry exists. Continued processing
depends on options specified in the para-
meter list.

The following describes processing fol-
lowing data set and member name searches.

If the SDSE was not present, and a memb-
er name was specified, an error return is
made. If a member name was not specified,
and the option was CLOSE, an error return
is made. Otherwise, a new SDSE is built,
whether from the chain of deleted SDSEs or
from available storage, and linked to the
active SDSE chain with the user count set
to one. Insufficient storage will cause
ABEND. For VSAM or VISAM organization,
Interlock (CZCOH1l) is called to impose a
write interlock on the SDSE if the OPEN
option is non-Input. A return is then made
to the user with a normal completion code
and the address of the found SDSE in gener-
al register 1.

If the SDSE was present and a member
name was not specified, the organization
and operation will be checked prior to
updating the SDSE. If this is not a VAM
organization, ABEND occurs. If this is
either a VSAM or VISAM data set {(but not
VPEM) to be opened, for OUTPUT, OUTIN, orx
UPDATE, the presence of an SDSE indicates
that this data set has at least one user
and is therefore not available to this
task. If a VSAM or VISAM data set is to be
opened for INPUT and a write interlock
exists, the data set is not available. For

either of these two cases, the interlock on
the SDST will be released, and TSEND will
be used to delay processing of this task
until the other tasks have ceased to pro-
cess that data set. Each time the task is
reinitialized, the procedure to search for
the SDSE will be started at the point
(described above) where an interlock on the
SDST is established by use of a TS.

Where a VSAM or a VISAM data set is to
be opened for input and a write interlock
does not presently exist, Interlock is
called to impose a write interlock on the
SDSE if the open option is other than
INPUT. It is not necessary to impose a
read interlock, since the presence of an
SDST entry without a write interlock
implies a read interlock condition. The
last operations to be performed are, to
increment the user count in the SDSE, place
the normal return code in register 15, the
address of the SDSE in register 1 and
return to the calling routine. This is
done for VSAM or VISAM opened for input,
and for any VPAM open.

When the specified operation is CLOSE
and no SDSE exists, the interlock on the
SDST is released, and an error return is
made to the calling program.

When the specified operation is CLOSE
and the SDSE was found and a member name
was specified, the count of users will be
reduced. If this count reached zero, the
member entry will be deleted from the memb-
er chain and its space appended to the
deleted member chain. A return will be
made to the user with a normal completion
code.

When the operation is CLOSE, the SDSE
was found and no member name was specified;
if the data set organization is VSAM or
VISAM, Release Interlock is called to
release the interlock that had been set on
the data set-R read or write according to
the OPEN option in the DCB. Following
that, the user count in the SDSE is reduced
by 1. If the count reaches zero, that SDSE
is deleted from the chain of active SDSEs,
and its space appended to the chain of
deleted SDSE. A normal return is then made
to the user.

Section 1: Introduction 117

SECTION 2: VAM VOLUME FCIMET AND DATA SET

MAT NTENANCE

All direct access devices {2311 or
2314), on which VAM data sets reside, are
initialized and maintained in a standard
format. All space on these volumes, with
the exception of cylinder 0, track), and
possibly cylinder 0, track 1, is tr-—ated in
units of 40%6 bytes (one page). Associated
with each volume is a page assignment table
{PAT) which contains entries for all of the
pages on the wolume. The length of the PAT
depends on the type of device and currently
ceocupies one page on the 2311 volum:, and
two pages on the 2314 volume. This table
is pointed to by a field in the volume
label.

rach entry in the PAT is 1 byte long.
If the first hit of the entry is zero, the
page represented by the entry is either
available for assignment to a data set or
is already assigned. The remaining 7 bits
provide a binary count of the number of
data sets sharing the page. When this
count is zero, the page is available for
assignment.

If the first bit of the entry is 1, the
page it represents is either a DSCB page orx
an error page. If the second bit of such
an entry is 0, the entry represents a DSCB
page, that is, the page contains data set
control blocks (DSCBs). Each DSCB page can
contain up to 16 DSCRBs and is, accordingly,
divided into slots. When only 4 of these
slots remain available on a page, one of
two flag bits is set to one. This indi-
cates that the page is only to be used for
DSCBs which further describe data sets
already included in that BSCB page. The
second of these flags is set to 1 when all
16 slots on the page are in use. The func-
tion and format of the DSCBs will be dis-
cussed further below.

The third type of entry which can be
found in the PAT is the error page entry.
This entry represents a page which is
unsuitable for use due to surface errors
discovered by the RESTORE utility and is
indicated by a 1 in bits ¢ and 1. Follow-
ind the page entries in the PAT, there are
several unused bytes of space. The last 97
words of this space are used for relocation
entries. The last word in the table is a
relocation control entry, which maintains a
half-word count of the number of relocation
entries which precede it, and a half word
{X*FFFF') if there are any entries. The
other 96 words may be occupied by reloca-
tion entries. These entries contain the
relative page number of the error page, and

118 Part II: Virtual Access Method {(VAM)

the relative page number of the xe¢location
page.

THE DATA SET CONTROL BLOCK (DSCB)

Assocliatec with each data set .s one or
more DSCBs. The first of these control
blocks is callec¢ a format-E DSCB; if addi-
tional space is required to descr:be the
data set, format-F DSCBs are built and
chained to the format—-E DSCB. A data set
and the NSCBs which describe it may be on
more than one volume. Because of this, the
chaining procedure used gives the relative
volume number and the relative page number
on that volume where the next DSCR is
located. Also, since each DSCB page con-
tains up to 16 DSCRBs, the slot number of
the DSCB is included. Each format-E DSCB
contains the data set name and properties
and possibly the external page entries
which give the location of the data set
pages on external storage. These entries
contain the relative volume and relative
page number on the volume where the data
set page is located.

The concept of relative volume numbers,
introduced above, arises from the possibi-
lity of a data set occupying more than one
volume. For public data sets, this rela-
tive volume number provides an indexing
factor into the public volume table. This
table consists of a 16 byte header, which
contains a count of the maximum number of
public volumes allowed, and the count of
public volumes actually in use. Following
the header is a series of 16 byte entries
representing each vclume assigned to public
storage. The entry contains the volume ID,
the device code, and the symbolic device
address of the volume. This information,
in conjunction with the pathfinding tables
and the pathfinding routine of the resident
supervisor, make it possible to locate all
volumes which contain a given data set.

The public volume table is a separately
assembled CSECT which is a part of initial
virtual storage and is initialized by Star-
tup. In order to maintain similarity in
the processing of public and private data
sets, a table, called the private volume
table, is built for private volumes. The
address of the volume table is placed in
the RESTBL headexr by OPENVAM.

The content of the DSCBs for a data set
also vary according to whether the data set
is public or private. Within the field of
data set properties is a count of the numb-

e€r of volumes which the data set occupies.
For public data sets this count is zero
since the list of volumes is contained in
the public volume table. In this case, the
data set name and properties field is fol-
lowed immediately by a list of external
page entries. Lach of these entries con-
sists of a relative volume number which
provides an index into the public volume
table and a relative external page number,
which provides an index into the page assi-
gnment table on that volume. For private
data sets residing on one volume, this
field is also zero since the volume 1D is
contained in the data set descriptor. For
multivolume private data sets, the data set
name and properties field is followed by a
list of the volume IDs on which the data
set resides. This 1list is used by MOUNTVOL
when it builds the private volume table.
The format-E DSCBR may contain up to 25
volume IDs each 6 bytes long. Following
the list of volume IDs, is the list of
external page entries which are the same as
for public data sets.

BUILDING AND MAINTAINING A DATA SET

When a user is building or updating a
aata set, he conceives of it as being a
group of contiguous pages of records.
Actually, because of the virtual storage
concept, the pages of any data set may be
physically located in several external
areas known as extents. In order to allow
the user to continue to think of the data
set in terms of contiguous pages, it is
necessary to construct a relative page/
external page correspondence table
(RESTBL). This table is built by OPENVAM
when a data set is first opened for use.
The RESTBL consists of a header which con-
tains information such as the number of
pages available for assignment to the task,
the number of pages currently in use by the
task, and the relative location of the
first unused page which can be assigned to
the task. The balance of the RESTBL con-
sists of a series of external page entries
which are identical in format to the
external page entries in the DSCB described
above. This parallel cons“ruction of
external page entries enables the system to
assign and delete pages in a data set, and
to update the availability of the pages on
the volume, without the use of conversion
routines.

The external pages assigned to a task
are also placed in the user's external page
table or shared page table so that a
reference to a virtual storage address is
translated to the correct main storage
adéress during execution.

During execution, a data set may be
aynamically increased or diminished in size

or deleted completely. When this occurs,
the affected pages must be added to or
deleted from the data set and the task's
RESTBL. For this purpose, six service rou-
tines are provided with the virtual access
method:

Inserts/Delete Page (CZCOL}) -- Effects the
addition or deletion of pages in a data
set and performs error checks to deter-
mine the validity of the operation.

Insert (CZCOF) -- Adds external page
entries representing the new pages to
the task®s RESTBL.

Request Page (CZCOE) -~ Provides Insert
with & list of available pages for ins-
ertion into the RESTBL. It also marks
the pages in use and unavailable for
assignment.

Expand RESTBL (CZCQI) -- Increases the size
of the RESTBL for nonshared data sets
when the addition of new page entries
causes an overflow condition.

Reclaim {(CZCOG) -- Deletes page entries
from a task's RESTBL and adds them to
the available list for future assignment
or release at the time the data set is
closed.

DELVAM (CZCFT} -- Deletes a virtual organi-
zation data set by deleting its catalog
entry and freeing the external pages and
DSCB slots which it occupies.

Insert/Delete Page Routine (CZCOD)

The Insert/Delete Page routine is called
by FLUSHBUF (CZCOV), GETPAGE (CZICPI), and
Add Directory Entry (CZCPL) to check and
perform insertion or deletion of pages
within 2 data set. The validity of the
request is checked, based on the specific
request and on parameters in the DCE and
RESTBL. (See Chart KA.}

Entry Points:
Cz2CODl1 -- Insert pages, entered via type-1
or type-2 linkage.

CZCOD2 -- Delete pages, entered via type-1
or type-2 linkage.

Input: Register 1 contains the address of
the DCB. Two fields which must be set in

the DCB are:

DCBN ~- Page number, relative to the data
set or member, at which the operation is
to take place.

DCBM -- Number of pages to be inserted or
deleted.

Section 2: VAM Volume Format and Data Set Maintenance 119

Modules Called:

Insert (CZCOF1) -- Insert additional pages
at a specified position within a data
set and move all other active pages
upward.

Reclaim (CZCOG1l) -- Delete specified pages.

Interlock (CZCOH1) -~ Set a write interlock
in the RESTBL external page entry.

Release Interlock (CZC0OI1l) -- Release write
information on RESTBL.

GETNUMBR (CZC00l) -- Validate and perform
insertion or deletion on a partiticned
data set,

TSEND (CEAHi9) -~ Force end of time slice
for this task, to wait for interlocks in
shared pages to be released by the task
that had set them.

VDMEP (CZCQK1l) ~-- Output a diagnostic mes-
sage and terminate the function ({(but not
the task).

Exits:
Normal -- Return to the calling routine
with cone of the following return codes:

*00° HNormal.

‘04* No storage space available,

*08' Storage ration exceeded.

'0C* ©No secondary storage allocation
specified.

10' Shared data set RESTBL cannot be
expanded.

14 Maximum data set/or member size
exceeded.

*18' Insertion beyond end of data set.

1C Deletion beyond end of data set.

Error -- VDMEP is called and the function

(not the task) terminated if an invalid
return code is received from Reclaim,
Insert, or GETNUMBR.

Operation: Calls to CZCOD are for the log-
ical insertion or deletion of data pages
within a data set. If the routine is
entered at the primary entry point
(Czcopl), the Insert flag in the DCB opera-
tion field (DCBOP) is set to insert
(DCBOPU}. If entry is made at the secon-
dary entry point (CZCCOD2) in the case of a
deletion, no indication is set at this
time. The code from these two types of
entries converges to perform module
initialization.

120 Part II: Virtual Access Method (VAM)

Initialization and general register
storage is executed in conformance with
linkage conventions. Base registers are
declared for the calling program's save
area. CZCOD CSECT and PSECT, DCB, DCB
header and RESTBL.

Insertions or deletions may not be done
on data sets which are opened tor input
only. If the DCB open option indicates
input, ABEND is called immediately. The
RESTBL is interlocked for shared data sets.

If the data set is partitioned, GETNUMB-
ER (C2ZCOO) must be called. The requested
operation is tested. If the Insert flag is
not set as descrbied in the entry proce-
dure, the Delete flag (DCBOPS) is set and
GETNUMBR called. Upon a successful return
from GETNUMBR, control is returned to the
user by the RETURN macro, since GETNUMBR
has already accomplished the desired inser-
tion or deletion.

For nonpartitioned data sets, CZCOD per-
forms a great deal of the consistency and
validity check required for the insertion
or deletion.

The extent of a deletion, that is, the
first page plus the number of pages being
deleted, must be contained within the data
set. If any of the pages to be deleted
falls outside of the range of the data set,
ABEND is called.

Reclaim (CZCOG) is called to accomplish
the deletion. The return ceode from Reclaim
is tested for errors. If general errors
exist or the deletion was requested on
pages of a shared data set that were inter-
locked, an appropriate return code is set
and control returned to the caller. Upon
successful deletion, control is returned to
the caller by the RETURN macro. If the
data set is shared, the RESTBL interlock is
released before returning.

An insertion must be made within the
range of the data set or contiguous to the
last page. If the insertion is requested
outside or not adjacent to the data set, an
appropriate return code is set and control
returned to the caller. The actual inser-
tion of the data page is performed by
Insert (CZCOF). The return code from
Insert is tested for errors. If they
exist, VDMEP is called. Control is
returned to the caller by the RETURN macro.
For shared data sets the RESTBL interlock
is released before returning.

Insext Routine (CZCOF)

Insert is called by Insert Page (CZCOD),
Extend POD (CZICOM), and GETNUMBR (CZCOO) to
insert additional "in use® pages in the

RESTBL of the data set involved in the

request. (See Chart KB.)

Attributes: FRead-only, reentrant,
privileged.

Entry Point: CZCOFl1 -- Entered via type-1
linkage.

Input: Register 1 contains tne address of

the DCB. Fields used in the DUB are:
DCBN -~ First page of data set involved in
request (nonpartitioned).

DCBNI -- First page of data set involved in
request (partitioned).

DCBM -~- Number of pages involved in
request.

DCBOP —-- Type of operation requested.

Modules Called:

Request Page (CZICCE1l) -- Flags additional
external page entries "in use™ in the
available page chain in the RESTBL.
Request Page will also attempt to
increase the number of pages available
to the task, by calling FINDEXPG, when a
sufficient number of pages is not avail-
able to fill the request.

VDMEP (CZCQK1) -- Output a diagnostic mes-
sage and terminate the function (but not
the task).

Exits:

Normal -~ Return to the calling routine.

Error -- A valid error code returned from

REQPAGE is passed back to the calling
routine in register 15. An invalid
error code returned from REQPAGE results
in VDMEP being called.

Operation: When Insert is first entered,
registers are saved and base registers
established for the CSECT, PSECT, DCB, DCB
header, and RESTBL header. Insert then
retrieves the number of the first page to
be inserted and the total nuwaber of pages
to be inserted from the DCEB. Next, the
virtual storage addresses of the next
available page and of the location of the
insertion are computed, and a call is made
to Request Page (CZCOE). Request Page will
flag the requested number of pages "in use"”
by setting the flag in the external page
entries in the RESTBL. If a sufficient
number of pages are not available to fill
the request, an attempt is made to add
pages to the available list from external
storage. If Regquest Page is unable to fill
the request, an error return is made to the
calling routine by the RETURN macro
instruction.

Section 2:

Insert may be called to insert pages
between existing pages of the data set or
to simply add pages to the end of the data
get. 1In the latter case, Request Page will
have added the new pages at the end of the
list of "in use" pages and no additional
work is required of Insert. If pages are
being added between existing pages, it is
necessary to create a gap in the list of
"in use® pages in the RESTEL. For this
purpose, a 6iU4-word work area is provided in
the PSECT. This area will hold 32 shared
or 64 nonshared external page entries. The
new entries are moved into this work area
starting from the beginning of the avail-
able list. All current "in use” entries
following the point of insertion are moved
back in the RESTBL an egual number of words
to create a gap. The new page entries are
then moved from the work area to the gap
thus created. This procedure is repeated
until all new entries have been inserted.

In the case of duplexed data sets, this
process is repeated for the secondary copy,
after which the DSCB integrity bit is set
and a normal return is made to the calling
routine . The setting of the integrity bit
will cause CLOSEVAM to call Write DSCB to
update DSCBs on the volumes. In this mann-
er, pages dynamically added to the data set
are made unavailable for future allocation.

Note that this routine does not inter-
lock the RESTBL for shared data sets. This
is so because Insert assumes that the cal-
ling routine had done so before calling it.
Also, Request Page is responsible for
updating the counts of external pages in
use, available pages, and the relative
location of the first available page.

Expand RESTBL Routine {(CZCQI)

Expand Relative External Storage Corres-
pondence Table is called by OPENVAM
(CZCOA} , MOVEPAGE (C2COC), Request Page
{CZCOE), and Find (CZCOJ) to increase the
size of the RESTBL by one page. The addi-
tional space appears between the external
page entry words, and the DCB and member
header control blocks. Note that a RESTBL
which resides in shared virtual storage
cannot be expanded. (See Chart KC.)

Attributes:
privileged.

Read-oniy, reenterable,

Entry Point: CZCQI1 -- Via type-1 linkage.
Input: Register 1 contains the address of
the RESTBL to be expanded.

Modules Called: VMA (CZCGU) -- Toc increase
the size of a specified virtual storage
area.

VAM Volume Format and Data Set Maintenance 121

Lxits:

Normal =-- Execution of the calling program
is resumed by use of RETURN. No special
recurn code is given.

kExroxr -- None.

¢ tion: Initialization and general
register storage is executed in conformance
with linkage convention. Base registers
zre declared for the CSECT and PSECT, @
save area, RESTBL, DCB header and JFCB.

Expand RESTBL calls Expand (CZCGu; Dy
“he CALL macro to expand the virtuai
storage of the RESTBL by 1 page. After the
expansion, the RESTBL pointers, are updated
in the JFCE if the RESTBL was relocated in
the expansion. RESTBL pointers (VM
addresses) within the DCB and member head-
ers are updated if the RESTBL has been
relocated.

The DCB and member headexrs are moved on
o the new page up to the top header; this
creates space between the external page
entries and headers, for the insertion of
new information. The relative pointers
within the headers, and the DCB and member
headers are updated by 8096 to reflect
their new position.

when the new virtual memory space has
been obtained, and all pointers and
addresses which need to be adjusted have
been updated, Expand RESTBL returns to the
calling module by the RETURN macro.

Note that a RESTBL which resides in
shared virtual storage cannot be expanded.

Request Page Routine (CZCOE)

Request External Pages is called by
Insert {(CZCOD) and OPENVAM (CZCOAR) for the
purpose of assigning available external
pages to a data set. If sufficient pages
are not available to £iil the request, an
attempt is made to increase the size of the
aata set by calling FINDEXPG (CZCEL). The
newly assigned pages are added to the
task's RESTBL or, in the case of a shared
data set, to the shared RESTBL. If this
addition results in an overflow of the
RESTBL, 1t is expanded to accommodate the
extra pages in the case of nonshared data
Since a shared RESTBL cannot be
expanded, this condition results in a call
to VDMEP {CZCQOK1). {See Chart KD.)

en e o
PR S WS

Attributes:
privileged.

Read-only, reentrant,

Entry Point: <CZCOEl -- Entered via type-1

linkage.

Register 1 contains the address of
Fields used in the DCB are:

Input:
the DCB.

122 Part II: VWVirtual Access Method (VAM)

DCAM -- Number of pages requested.

DCBN -- Relative number of the first page
affected.

Modules Calied:

Expand RESTBL {CZCQIl) -- Increases the
size of the REISTBI for a nonshared data
set when the inclusion of the newly
assigned pages causes overflow of the
curve<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>