

SRM-3000 Selective Radiation Meter

Operating Manual

SRM-3000 Selective Radiation Meter

300X/XX, Series C ...

Operating Manual

an (Communications Company

Please direct all enquiries to your local sales company.

Narda Safety Test Solutions GmbH Sandwiesenstr. 7 72793 Pfullingen, Germany © 2007 Order no.: 3001/98.21 Edition: 11/07.06, C ... Previous edition: 10/06.11, C ... Subject to change without notice. Our normal guarantee and delivery terms apply Printed in Germany

Contents

1	Introduc	stion	. 1-1
	1.1	Application	1-1
	1.2	About this instrument	1-3
	1.3	About this Manual	1-4
2	Safety ii	nstructions	2-1
	2.1	Before connecting up	2-1
	2.2	Correct use	2-1
	2.3	AC Adapter / Charger	2-3
	2.4	Faults and excessive stresses	2-4
	2.5	Disposal in accordance with local regulations	2-4
3	Prepara	tion for use	3-1
	3.1	Unpacking	3-1
	3.1.1	Packaging	3-1
	3.1.2	Checking the instrument for transport damage	3-1
	3.1.3	Recovery after transport and storage	3-1
	3.2	Power supply	3-2
	3.2.1	Battery pack operation	3-2
	3.2.2	Handling the battery pack	3-3
	3.2.3	Operation from AC Adapter / Charger	3-3
	3.3	Switching the instrument on and off	3-4
	3.3.1	Switching on	3-4
	3.3.2	Switching off	3-5
4	Instrum	ent concept	4-1
	4.1	SRM as a field strength meter	4-1
	4.1.1	Overall concept	4-2
	4.1.2	Basic instrument	4-2

	4.1.3	Antennas
	4.1.4	Cable
	4.2	SRM as a spectrum analyzer
5	Measu	rement setup variants
	5.1	Variant overview
	5.1.1	Measurement setup with a three axis antenna 5-2
	5.1.2	Measurement setup with a single axis antenna5-3
	5.2	Assembling the measurement setup5-5
	5.3	Fitting the antenna directly
		on the basic instrument
	5.4	Using a cable to connect the antenna
		to the basic instrument
	5.5	Fitting the Narda antenna to a tripod5-11
	5.5.1	Antenna holder for three axis antennas 5-11
	5.5.2	Antenna holder for single axis and three axis antennas5-12
	5.6	Registering a non-Narda antenna
	5.7	Registering a non-Narda cable5-15
6	User in	terface
	6.1	Control elements6-2
	6.1.1	On / Off switch
	6.1.2	Menu selection keys6-2
	6.1.3	Softkeys
	6.1.4	Function keys6-3
	6.1.5	Rotary control
	6.1.6	Keys for optimizing the display6-8
	6.2	Operating status display
	6.3	LCD panel elements
	6.4	External connectors6-12

7	"Safety	Evaluation" mode7-1
	7.1	"Safety Evaluation" mode functions
	7.2	Selecting the operating mode
	7.3	Selecting the service to be measured 7-4
	7.3.1	Restricting the list of services to be measured using the first service
	7.3.2	Restricting the list of services to be measured using the last service
	7.3.3	Restoring the original list of services to be measured
	7.4	Setting the measurement range
	7.4.1	Setting the measurement range manually 7-6
	7.4.2	Search for the best measurement range 7-7
	7.4.3	Using noise suppression (Noise Threshold) 7-8
	7.5	Selecting the result type 7-10
	7.6	Selecting the averaging parameters 7-11
	7.7	Selecting the resolution bandwidth (RBW) 7-13
	7.8	Selecting display options 7-15
	7.8.1	Selecting the units for the results
	7.8.2	Selecting display options
8	"Spectru	um Analysis" mode8-1
	8.1	Operating mode functions 8-1
	8.2	Selecting the operating mode
	8.3	Selecting the frequency range 8-4
	8.3.1	Selecting the frequency range entry method 8-4
	8.3.2	Defining the frequency range by upper and lower frequencies
	8.3.3	Defining the frequency range by center frequency and frequency span 8-6
	8.4	Setting the resolution bandwidth (RBW) 8-7

8.5	Setting the measurement range	8-9
8.5.1	Setting the measurement range manually	8-9
8.5.2	Search for the best measurement range	8-10
8.6	Selecting the result type	8-11
8.7	Selecting the averaging parameters	8-12
8.8	Selecting the display	8-14
8.8.1	Selecting the units	8-14
8.8.2	Selecting the display mode and scaling	8-16
8.8.3	Rapidly changing the frequency span (Zoom function)	8-20
8.9	Evaluating results	8-28
8.9.1	Marker functions	8-28
8.9.2	Peak table	8-32
8.9.3	Integration over a defined frequency band	8-37
"UMTS F	P-CPICH Demodulation" mode (option)	9-1
" UMTS F 9.1	P-CPICH Demodulation" mode (option) Operating mode functions	
		9-1
9.1	Operating mode functions	9-1 9-2
9.1 9.2	Operating mode functions	9-1 9-2 9-5
9.1 9.2 9.3	Operating mode functions	9-1 9-2 9-5 9-6
9.1 9.2 9.3 9.3.1	Operating mode functions	9-1 9-2 9-5 9-6 9-9
9.1 9.2 9.3 9.3.1 9.3.2	Operating mode functions	9-1 9-2 9-5 9-6 9-9 9-10
9.1 9.2 9.3 9.3.1 9.3.2 9.3.3 9.3.4	Operating mode functions	9-1 9-2 9-5 9-6 9-9 9-10 9-13
9.1 9.2 9.3 9.3.1 9.3.2 9.3.3 9.3.4 9.3.5	Operating mode functions	9-1 9-2 9-5 9-6 9-9 9-10 9-13 9-17
9.1 9.2 9.3 9.3.1 9.3.2 9.3.3 9.3.4 9.3.5 9.3.6	Operating mode functions	9-1 9-2 9-5 9-6 9-9 9-10 9-13 9-17 9-18
9.1 9.2 9.3 9.3.1 9.3.2 9.3.3 9.3.4 9.3.5 9.3.6 9.4	Operating mode functions	9-1 9-2 9-5 9-6 9-9 9-10 9-13 9-17 9-18 9-20
9.1 9.2 9.3 9.3.1 9.3.2 9.3.3 9.3.4 9.3.5 9.3.6 9.4 9.4.1	Operating mode functions	9-1 9-2 9-5 9-6 9-9 9-10 9-13 9-17 9-18 9-20 9-21
9.1 9.2 9.3 9.3.1 9.3.2 9.3.3 9.3.4 9.3.5 9.3.6 9.4 9.4.1 9.4.2	Operating mode functions	9-1 9-2 9-5 9-6 9-10 9-10 9-13 9-17 9-18 9-20 9-21 9-22
9.1 9.2 9.3 9.3.1 9.3.2 9.3.3 9.3.4 9.3.5 9.3.6 9.4 9.4.1 9.4.2 9.5	Operating mode functions	9-1 9-2 9-5 9-6 9-9 9-10 9-13 9-17 9-18 9-20 9-21 9-22 9-23
9.1 9.2 9.3 9.3.1 9.3.2 9.3.3 9.3.4 9.3.5 9.3.6 9.4 9.4.1 9.4.2	Operating mode functions	9-1 9-2 9-5 9-6 9-10 9-10 9-13 9-17 9-18 9-20 9-21 9-22 9-23 9-23 9-23

	9.5.3	Using noise suppression (Noise Threshold) 9-25
	9.6	Selecting the result type 9-27
	9.7	Selecting the averaging parameters 9-28
	9.8	Selecting the UMTS demodulation algorithm
		(FAST/SENSITIVE)
	9.9	Setting the extrapolation factor (Extr. Fact.) 9-31
	9.10	Evaluating and interpreting measurement results
	9.10.1	Individual results
	9.10.2	Overall result (Total)
	9.10.3	Partial results for specific radio cells (Scrambling Codes)
	9.10.4	Analog measurement result (Analog) 9-34
10	"Time A	nalysis" mode10-1
	10.1	Operating mode function
	10.2	Selecting the operating mode 10-1
	10.3	Selecting display options 10-4
	10.3.1	Value display 10-4
	10.3.2	Graph display 10-6
	10.3.3	Mixed display
	10.4	Selecting the Center Frequency (Fcent) 10-10
	10.5	Selecting the Detector Type (RMS value, peak value)
	10.6	Selecting the Resolution Bandwidth (RBW) 10-12
	10.7	Setting the measurement range 10-13
	10.7.1	Setting the measurement range manually 10-13
	10.7.2	Search for the best measurement range 10-14
	10.7.3	Using noise suppression (Noise Threshold) 10-15
	10.8	Selecting the Result Type 10-17
	10.9	Selecting the Averaging Time 10-18
	10.10	Evaluating the results 10-19

11	Isotropio	c measurements 11-1
	11.1	Measurements with a three axis antenna 11-2
	11.1.1	Isotropic measurement with a three axis antenna
	11.1.2	Measuring a single axis with a three axis antenna
	11.2	Measurement using a single axis antenna 11-5
	11.2.1	Standard measurement using a single axis antenna11-5
	11.2.2	Isotropic measurement with a single axis antenna11-6
12	Spatial A	Averaging (option)
	12.1	Spatial Averaging in "Safety Evaluation" mode
	12.1.1	Continuous Averaging
	12.1.2	Discrete Averaging
	12.1.2.1	Discrete Averaging with a three axis antenna 12-8
	12.1.2.2	Discrete Averaging with a single axis antenna. 12-10
	12.2	Spatial Averaging in "Spectrum Analysis" mode
	12.3	Spatial Averaging in "Time Analysis" mode12-16
13	Result n	nemory
	13.1	Saving data13-1
	13.1.1	Saving a single measurement
	13.1.2	Automatic saving
	13.1.3	Time Controlled Storing (option)
	13.2	Managing data sets
	13.3	Entering and editing comments
	13.4	Reading out stored data sets

14	Genera	l settings (Configuration)
	14.1	Configurations for "Safety Evaluation" mode 14-3
	14.2	Configurations for "Spectrum Analysis" mode 14-3
	14.3	Configurations for "UMTS P-CPICH Demodulation" mode 14-4
	14.4	Configurations for "Time Analysis" mode 14-5
	14.5	Selecting a safety standard 14-6
	14.6	Selecting a service table 14-7
	14.7	Selecting a cell name table 14-9
	14.8	Displaying device information 14-11
	14.9	Setting the date and time 14-13
	14.10	Setting the number format (Configure General)
	14.11	Selecting the remote control interface (Configure General)
	14.12	Selecting the parameters for the measurement range search (Configure General)
	14.13	Selecting an antenna / sensor
	14.14	Selecting a cable 14-18
	14.15	Creating and managing setups 14-20
15	Mainter	nance and repairs
	15.1	Changing the battery pack
	15.2	Cleaning 15-2
	15.3	AC Adapter / Charger 15-3
16		ng the instrument configuration using ools" or "SRM-TS"16-1
	16.1	Task of the "SRM-Tools" software
	16.2	Connecting a PC to the SRM-3000 16-3
	16.2.1	Serial interface connection 16-4

	16.2.2	USB interface connection	16-4
	16.3	SRM configuration	16-10
	16.4	Reading out the stored results from a SRM .	16-13
	16.5	Updating the firmware of the SRM	. 16-15
	16.6	Activating options	16-16
	16.7	Installing and uninstalling "SRM-Tools" or "SRM-TS"	16-18
17	Remote	control	17-1
	17.1	Connecting to the PC	17-1
	17.2	Switching the SRM to	
		remote controlled operation	
	17.3	Fundamentals of remote control	17-3
	17.3.1	Remote control command syntax	17-3
	17.3.2	Parameter syntax	17-4
	17.3.3	Command line termination	17-4
	17.4	Separate document about remote control	17-5
18	Specific	cations	18-1
	18.1	Frequency range and operating modes	18-1
	18.2	RF characteristics	18-1
	18.2.1	Frequency	18-1
	18.2.2	"Spectrum Analysis" mode	18-3
	18.2.3	"Safety Evaluation" mode	18-4
	18.2.4	"UMTS P-CPICH Demodulation" mode (Optic	on) 18-5
	18.2.5	"Time Analysis" mode	18-7
	18.2.6	Measurement functions	18-8
	18.2.7	General specifications	. 18-11
	18.3	Three axis E-field measurement antenna specifications	18-13
	18.3 18.3.1		
		specifications	. 18-13

18.3.3	General specifications
18.4	Single axis E-field antenna specifications (3531/01) 18-16
18.4.1	Characteristics
18.4.2	Measurement uncertainty 18-17
18.4.3	General specifications
18.5	Single axis E-field antenna specifications (3531/02B)
18.5.1	Characteristics
18.5.2	Measurement uncertainty 18-20
18.5.3	General specifications
18.6	Single axis H-field antenna specifications (3551/01) 18-22
18.6.1	Characteristics
18.6.2	Measurement uncertainty 18-22
18.6.3	General specifications
18.7	Conformity declaration 18-24

Appendix A:

N	Measurement methods using a single axis antenna	A-1
Appe	ndix B:	
٦	Fechnical descriptions	B-1
Appe	ndix C:	
I	nstrument graphics	C-1

1 Introduction

1.1 Application

In today's world, virtually everyone lives and works in an environment full of technical equipment that generates electric and magnetic fields. As research into the possible effects on humans has increased, so has awareness of the problem and the depth of information within this area of interest. Various authorities have long defined limit values to protect users from excessive exposure to emissions.

The SRM-3000 provides practically everyone who is concerned with this problem with a measuring instrument which, with the minimum of fuss, is capable not only of showing whether limit values are being adhered to or not, but also of allowing further analysis of the field components in relation to the overall exposure.

The available operating modes cover the requirements of very different users.

For example, a safety engineer concerned with the frequency spectrum of telecommunications equipment can use the instrument to monitor compliance with limit values at the workplace, and a planner can measure the emissions present in public areas so that these can be taken into account in future plans.

On the other hand, the SRM is also a high-quality evaluation tool for qualified communications engineers who may be concerned with the emission spectra present around telecommunications equipment.

The SRM takes care of all evaluations directly on site. Nevertheless, the results can be transferred to a PC, so that measurement reports can be produced, for example. The SRM can also be remote controlled from a PC.

Fig. 1-1 The SRM-3000 in use

1.2 About this instrument

The SRM-3000 is an instrument for measuring high-frequency fields in the range from 100 kHz to 3 GHz.

The instrument incorporates a very wide, versatile range of functions in an extremely light weight, handy device. This means that it is also ideal for use particularly under conditions that require high mobility and robustness.

The SRM-3000 is a complete measuring system. Along with the basic instrument, the SRM, Narda Safety Test Solutions GmbH also supplies various antennas as solutions to different applications and frequency ranges. These antennas have either three axes or a single axis. All Narda antennas can be mounted directly on the basic instrument or connected to it using a special RF cable.

Antennas with three axes (three axis antennas) make it possible to automatically detect the three spatial components of the field to be measured. Isotropic measurements are simpler and much faster than with single axis antennas.

Other commonly available antennas can also be connected to the SRM using the customary types of connecting cable.

1.3 About this Manual

The following is a standard text which explains the typographic conventions used in Narda documentation.

Typographic conventions

Some of the paragraphs in this Manual are marked with various symbols or headings to make it easier to read and understand.

- The bent arrow indicates a cross-reference to another chapter or section or to another document.
- **Note:** This heading indicates important additional information or **notes** about special features or situations.
- ✓ The check mark before a paragraph indicates a requirement that must be fulfilled before the next steps can be carried out.
- ⇒ An arrow before a paragraph indicates a single **action** or task that must be performed.
- 1. A numbered list indicates a **series of actions** that must be performed one after the other.

2 Safety instructions

2.1 Before connecting up

This instrument was shipped in perfect condition. To ensure that this condition is maintained and that operation is safe, please follow the instructions given below.

2.2 Correct use

The instrument must only be used for the purpose and under the conditions for which it is designed.

No warning function

The instrument is designed for detection and rapid evaluation of electromagnetic field emissions. It is not a warning instrument; i.e. it does not actively warn you of the presence of dangerous fields by means of visible or audible signals.

Danger

⇒ Always consider this instrument to be a measuring instrument, not a warning device.

- ⇒ Always carefully observe the measured value display when approaching unknown fields.
- ⇒ If you are in any doubt, use a warning device such as "RadMan" or "Nardalert" from Narda Safety Test Solutions to give warning of potentially hazardous field strengths.

Unsuitable frequency range

Dangerous fields can be overlooked if an unsuitable frequency range is selected.

Danger

- \Rightarrow Select the largest available or the appropriate frequency range.
- ⇒ Always carefully observe the measured value display when approaching unknown fields.
- ⇒ If you are in any doubt, use a broadband device such as "RadMan" or "Nardalert" from Narda Safety Test Solutions to give warning of potentially hazardous field strengths.

Misinterpretation of results obtained with single axis antennas

Only the field components which are parallel to the antenna axis will be detected by a single-axis antenna.

Danger

Even if the field is strong, there is a danger that only a weak field or no field at all will be measured if the antenna is not correctly positioned in the field.

⇒ Make sure that the measurement setup is suitable when using a singleaxis antenna.

Strong fields

Very strong fields can occur in the vicinity of some radiation sources.

- \Rightarrow Take care to observe safety barriers and markings.
- Danger
- ⇒ In particular, persons fitted with electronic implants (pacemakers) must keep away from danger areas.

Danger

Electric shock

High voltages can occur inside the instrument.

- \Rightarrow Do not bring the instrument or the antenna into contact with parts carrying live voltages.
 - \Rightarrow Do not open the instrument.
 - ⇒ Do not use or handle an instrument which is open or which has been visibly damaged.
 - ⇒ Only use the accessories supplied and intended for use with the SRM-3000.

Malfunction

Incorrect use, damage and unauthorized repairs can adversely affect the accuracy and function of the instrument.

Caution

- \Rightarrow Only use the instrument under the conditions and for the purpose for which it is designed.
 - \Rightarrow Check the instrument regularly for signs of damage.
 - \Rightarrow Repairs must only be made by qualified service personnel.

Malfunction

Metallic stickers placed on the (yellow) sensor area of the antenna can lead to measurement errors, particularly to an underestimation of the electromagnetic field strength.

Caution

⇒ Stickers or labels of any type should only be affixed to the (black) antenna shaft.

2.3 AC Adapter / Charger

Electric shock

Parts carrying live voltages may be exposed if the AC Adapter / Charger is damaged. This could result in injury from electric shock.

Danger

 \Rightarrow Never use a damaged AC Adapter / Charger.

Destruction

The AC Adapter / Charger can be destroyed or damaged by an incorrect AC line voltage, condensation, too high or too low temperatures, and insufficient ventilation.

- Caution
- ⇒ Before connecting up the AC Adapter / Charger check that the operating voltage of the AC Adapter / Charger and the voltage of the local AC supply are the same.
- ⇒ Do not use an AC Adapter / Charger on which condensation has formed. If condensation is unavoidable, e.g. because the AC Adapter / Charger is cold and it is brought into a warm room, make sure that it has dried out before connecting it up.
- \Rightarrow Only use the AC Adapter / Charger indoors and at temperatures between +5 °C and +45 °C.

2.4 Faults and excessive stresses

Take the instrument out of service and secure it against unauthorized use if safe operation is no longer possible. This is the case, for example, if:

- the instrument shows visible signs of damage,
- the instrument does not work,
- the instrument has been subjected to any kind of stress that exceeds the permitted limits.

In such cases, contact the service center for your area.

2.5 Disposal in accordance with local regulations

The SRM-3000 is a high-quality instrument that will give you many years of reliable service. Nevertheless, even this product will eventually become obsolete. When that time comes, please remember that electronic equipment must be disposed of in accordance with local regulations.

The SRM-3000 conforms to the WEEE Directive of the European Union (2002/96/EC) and belongs to Category 9 (Monitoring and Control Instruments).

You can return the instrument to us free of charge for proper environmentfriendly disposal. You can obtain further information from your local Narda Sales Partner or by visiting our website at www.narda-sts.com.

3 Preparation for use

3.1 Unpacking

3.1.1 Packaging

The packaging is designed to be reused as long as it has not been damaged during previous use. Keep the original packaging and use it for all future transport of the instrument.

3.1.2 Checking the instrument for transport damage

After unpacking, check the instrument and all accessories for any damage that might have occurred during transport. This should be suspected if the packaging itself has been clearly damaged. Do not attempt to use a damaged instrument.

3.1.3 Recovery after transport and storage

Condensation can form on an instrument that has been stored or transported at a low temperature when it is brought into a warmer environment. To prevent any damage, wait until condensation is no longer visible on the instrument surface. The instrument is not ready for use until it has reached a temperature within the guaranteed operating range of -10 °C to +50 °C.

3.2 Power supply

The battery pack provided is usually used as the power supply. You can also use the AC Adapter / Charger as an alternative power supply.

3.2.1 Battery pack operation

The SRM-3000 is operated from the battery pack supplied with the instrument.

A fully charged battery pack is sufficient for about 4 hours operation. As supplied, the battery pack is only pre-charged and needs to be fully charged before it is used for the first time.

Note: Only use original battery packs as supplied with the instrument. If the capacity of the battery pack supplied is insufficient for your test task requirements, further battery packs can be obtained as accessories.

Charge indicator

The charge state of the battery pack is indicated by a battery symbol in the "General information" section of the LCD panel.

✤ Refer to sec. 6.3, page 6-10 for more details.

Discharge indication

If the battery voltage drops below a critical value, the battery symbol will be replaced by the flashing message "Low Battery". A warning message will also be displayed at regular intervals in the center of the LCD panel. The instrument will switch off automatically after about 10 minutes of further operation. The instrument configuration is saved before switch off.

Charging the battery pack

A full charge cycle takes about 3.5 hours.

You must use the AC Adapter / Charger supplied with the instrument to charge the battery pack.

Starting the charge cycle

- The local AC line voltage and the operating voltage of the AC Adapter / Charger must be the same.
- 1. Connect the AC Adapter / Charger to the charging socket of the SRM-3000.
- Connect the AC Adapter / Charger to the AC power supply. Charging starts. A red LED next to the "Charge" label is on during the entire charge cycle. When the battery pack is fully charged, the AC Adapter / Charger automatically switches to trickle charging.

At this stage, a green LED next to the "Charge" label switches on.

3.2.2 Handling the battery pack

- Do not drop, damage or dismantle the battery pack.
- Only recharge the battery pack as described in this Operating Manual.
- Do not expose the battery pack to very high temperatures for a long time either inside or outside the instrument.
- Do not leave a discharged battery pack in the instrument for a long time.
- · Do not store battery packs for more than six months without recharging them occasionally.

3.2.3 **Operation from AC Adapter / Charger**

The SRM-3000 can always be powered and operated from an AC Adapter / Charger connected to it.

This is not recommended in practice, however, because the measurement characteristics can be affected considerably by the presence of the power supply cable in the field when the SRM-3000 is operated with the AC Adapter / Charger connected to it.

3.3 Switching the instrument on and off

3.3.1 Switching on

- ✓ You have made sure that the battery pack is sufficiently charged for the planned measurement task.
- ⇒ Press the ON/OFF button for about 1 second. The SRM-3000 switches on.
 A green LED next to the "Status" label switches on. The function test runs.

Function test

The function test checks the functions of various components and checks internal processes. It takes about 5 seconds.

A test screen is displayed during the function test. This shows the instrument name and serial number along with a list of the elements that are to be tested.

	narda Safety Test Solutions	Cont.
	an (B) Communications Company	
	SRM-3000 -017	
	V1.31 16.01.05	
FPGA RF	Ok Ok Ok 100 %	
Pause key is pressed		Info

Fig. 3-1 Display during function test

When the function test has been completed successfully, the instrument reverts to the settings used for the last measurement and the measurement screen is displayed.

Measurements can now be started.

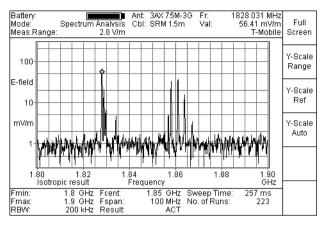


Fig. 3-2 Display after completion of function test (example)

- **Note:** The instrument reverts automatically to the default setting if you change the antenna:
 - Maximum input attenuation, i.e. least sensitive measurement range
 - Maximum frequency range

Possible faults

If a fault occurs during the function test, the message "Error detected during initialization" will be displayed and the start-up process will be interrupted automatically. The error code for the fault that was detected will be shown on the display.

 \Rightarrow Contact the Service Center.

3.3.2 Switching off

⇒ Press the ON/OFF button for at least 1 second. The LCD panel clears. The instrument is switched off. Notes:

4 Instrument concept

4.1 SRM as a field strength meter

The SRM is an instrument designed to measure electromagnetic fields in the frequency range from 100 kHz to 3 GHz. The main measurement task is the determination of field strength.

Users can select from several operating modes, all of which are designed to give immediate, informative on-site results that require no further processing or evaluation.

In "Safety Evaluation" mode, users can put together a list of frequency ranges within which the field strength is to be measured. The results in each frequency range of the so-called Service Table defined in this way are displayed in units of field strength or as a percentage of a selected safety standard. The displayed value 100% indicates that the limit value defined in the standard has been reached. This makes direct, on-site determination of compliance with defined limit values possible.

In "Spectrum Analysis" mode, all the field components in the selected environment can be detected to give an overview of the spectrum or for determining maximum values. Here too, the extended functions of the instrument allow evaluation of the measured values directly on site.

In "UMTS P-CPICH Demodulation" mode (option) the SRM decodes the Primary Common Pilot Channel of UMTS cells. As in "Safety Evaluation" mode, the field strengths due to individual pilot channels can be determined in units of field strength or as percentages of a selected human safety standard level. The field strength exposure that the cell would cause when fully loaded can be extrapolated from these values.

In "Time Analysis" mode, the SRM makes selective, continuous measurements at a fixed, user-defined frequency. This allows detection of even short duration spikes, e.g. from pulsed radar equipment. The operating mode is ideal for timer-controlled measurements.

4.1.1 Overall concept

In the simplest case, the complete test setup for measuring field strength consists of the basic instrument plus an antenna which plugs into the basic instrument.

Depending on the measurement method selected, it may be advisable or necessary to place the antenna some distance from the basic instrument rather than directly on it. Cables can be used to connect the antenna to the basic instrument. The field strength measuring systems supplied by Narda Safety Test Solutions include a 1.5 m long cable. A 5 m long cable is available for special applications.

The antenna must be placed where it will not be disturbed and positioned exactly for precision measurements. A tripod which is also provided with a suitable positioning device can be added to the test setup for this purpose.

Regardless of the items supplied as described, you can also connect customary antennas and cables to the basic instrument and make measurements as required.

4.1.2 Basic instrument

The SRM is a field strength meter which can be used for outdoor measurements, especially in locations where access is difficult or awkward.

The functions of the instrument have therefore been tailored to provide easy handling under practical conditions of use.

Despite its wide range of functions, the SRM is very handy and light. There are two ergonomically formed grips located to the left and right of the casing, which allow secure handling during measurements and trouble-free access to all controls at the same time.

The main menus are accessed by three menu selection buttons. Sub-menus, functions and entry boxes within these menus is by means of softkeys. Function keys allow direct entry of parameters and access to the evaluation and memory functions.

The large easy-to-read LCD panel is backlit to allow operation even in poorly-lit areas.

The foil keypad makes operation even under bad conditions safe and sure.

All the display and control elements of the basic instrument are described in sec. 6, page 6-1.

4.1.3 Antennas

A three axis antenna is included as standard with your SRM-3000. This antenna covers the frequency range from 75 MHz to 3 GHz. It automatically determines the three spatial components of the field being measured, so isotropic measurements are quick and easy to perform. It is designed for outdoor use and for making measurements in places that are difficult to access.

Narda Safety Test Solutions also supplies other single axis and three axis antennas for electric and magnetic fields that are suitable for other applications and lower frequency ranges.

Every Narda antenna is equipped with a control cable as well as the RF connection. The control cable is connected to the basic instrument by a multi pin connector, and is used to transmit the antenna parameters (type, serial number, calibration date, list of antenna factors) so that these can be recognized by the SRM.

Customary types of antenna can also be connected to the basic instrument. The table below summarizes the types of antenna that are suitable for measuring field strength exposure:

Туре	Field type measured	Frequency range (typical values)	Notes
Broadband dipole	Electric field	Between 30 MHz and 3 GHz	-
Log- periodic antenna	Electric field	Between 30 MHz and 20 GHz	Directional characteristic. Not suitable for isotropic measurements.
Loop antenna	Magnetic field	Between 100 kHz and 30 MHz	-

Table 4-1	Antenna	types
-----------	---------	-------

4.1.4 Cable

Narda Safety Test Solutions offers two cables that can be used for the connection between the antenna and the basic instrument, covering the frequency range between 100 kHz and 3 GHz. These cables are 1.5 m and 5 m long and contain ferrite to reduce the effects of the external field on the measurement results. The cables contain a control cable as well as the RF cable. This is connected to the basic instrument by a multi pin connector. This control cable transmits the cable parameters (type, serial number, calibration date, list of attenuation factors) so that these can be recognized by the SRM. When the three axis antenna is used, the SRM also uses this cable to control successive measurement of all three axes for an isotropic result (see sec. 11.1.1, page 11-2), or to select a single axis in order to obtain directional information (see sec. 11.1.2, page 11-4).

Customary types of cable can also be used for the connection between the antenna and the basic instrument. However, such cables do not provide the controller function for three axis antennas.

4.2 SRM as a spectrum analyzer

Although designed for field use, the basic instrument of the SRM can also be used as a spectrum analyzer under laboratory conditions, for example.

The serial or USB interface can be used to connect the instrument to a PC and provide access to the instrument functions.

5 Measurement setup variants

5.1 Variant overview

The measurement setups for using a three axis and a single axis antenna are shown on the following pages.

✤ Measurement setup with three axis antenna: sec. 5.1.1, page 5-2

✤ Measurement setup with single axis antenna: sec. 5.1.2, page 5-3

Both variants are considered with regard to their suitability for mobile applications (pendulum or sweep method) or for use in a precision measurement (matrix method). The description of possible applications and the limitations in their use is intended to help you select the right antenna and measurement method for the type of measurement you want to make.

The two methods (pendulum or sweep method and matrix method) are described in detail in Appendix A for measurements using a single axis antenna.

Appendix A: Measurement methods using a single axis antenna: see page A-1

The information in this section too can be of assistance when selecting the appropriate measurement method. You should in any case familiarize yourself with the correct procedure for the selected measurement method before starting measurements.

5.1.1 Measurement setup with a three axis antenna

	Mobile measurement	Precision measurement
Measurement method	Manual movement of antenna within the field	 Measurement at various points within the space Sequential positioning of antenna at various heights using a tripod
Measurable frequency range	75 MHz to 3 GHz	
Appropriate use	 Rapid determination of maximum field strength within a space Locating a maximum value within a space where interruptions in operations are unacceptable (e.g. offices) Locating a maximum value in spaces where high mobility is needed (e.g. platforms, rooftops) 	 Exact measurement of a defined space with the aid of a tripod Spatial averaging of immissions desirable (required by some standards) Location of local maxima
Usage limitations	Spatial averaging of immissions not possible	 Rapid determination of maximum values not possible as a large number of measurements have to be made Locating a maximum value within a space where interruptions in operations are unacceptable (e.g. offices) Locating a maximum value in spaces where high mobility is needed (e.g. platforms, rooftops) Locations where a tripod cannot be used (e.g. platforms, rooftops)

Table 5-1 Comparison of possible uses of a three axis antenna

5.1.2 Measurement setup with a single axis antenna

- **Note:** The table below refers to customary antenna types. Two main types are considered:
 - broadband dipoles
 - loop antennas

	Mobile measurement (pendulum or sweep method)	Precision measurement (matrix method)
Measurement method	 Manual movement of antenna axis within the field 	 Measurement at various points within the space Sequential positioning of antenna on three orthogonal axes and at various heights using a tripod
Measurable frequency range	Depends on the antenna selected	
Appropriate use	 Rapid determination of maximum field strength within a space Locating a maximum value within a space where interruptions in operations are unacceptable (e.g. offices) Locating a maximum value in spaces where high mobility is needed (e.g. platforms, rooftops) Adequate experience required 	 Exact measurement of a defined space with the aid of a tripod Spatial averaging of immissions desirable (required by some standards) Location of local maxima

Table 5-2 Comparison of possible uses of a single axis antenna

	Mobile measurement (pendulum or sweep method)	Precision measurement (matrix method)
Usage limitations	 Spatial averaging of immissions not possible Underestimates strongly elliptically polarized immissions Undefined measurement uncertainty: Measurements with single axis antennas only detect field components that are parallel to the antenna axis. Even if the field is strong, there is a danger that only a weak field or no field at all will be measured if the antenna is not correctly positioned in the field. 	 Rapid determination of maximum values not possible as a large number of measurements have to be made Signal does not remain constant throughout the measurement Locating a maximum value within a space where interruptions in operations are unacceptable (e.g. offices) Locating a maximum value in spaces where high mobility is needed (e.g. platforms, rooftops) Locations where a tripod cannot be used (e.g. platforms, rooftops)

 Table 5-2
 Comparison of possible uses of a single axis antenna

5.2 Assembling the measurement setup

The connecting socket for the antenna is on the top end of the SRM.

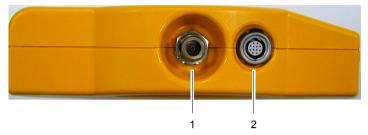


Fig. 5-1 N type connector RF input socket, 50 $\Omega(1)$ and multi pin type cable connector (2)

Note: The multi pin connector is only used with Narda antennas and cables.

It has two functions:

- Automatic detection of the connected antenna and / or cable
- Control of three axis antenna for making isotropic measurements

5.3 Fitting the antenna directly on the basic instrument

Connecting a Narda antenna

- ✓ The SRM is switched off.
- 1. Stand the basic instrument up vertically.
- 2. Place the N connector of the antenna over the N connector of the basic instrument.
- Carefully screw down the coupling ring of the N connector of the antenna on to the N connector of the basic instrument taking care not to crossthread it.
- **Note:** If there is resistance when you try to screw down the coupling ring, it needs to be re-seated. Only about 4 turns are needed to establish a firm connection.

Fig. 5-2 Connecting up the N connectors

4. Place the control cable plug of the antenna on the multi pin connector of the basic instrument so that the red dot on the control cable plug and the red dot on the multi pin connector are aligned.

5. Press the control cable plug into the connector using the locking sleeve until the plug lock clicks into place.

Fig. 5-3 Connecting the multi pin connectors

The Narda antenna is now connected.

The instrument will automatically detect the type of antenna that is connected.

This information will be shown in the general instrument configuration section of the LCD panel when the instrument is switched on.

Connecting customary antenna types

You will not normally be able to connect customary types of antenna directly to the basic instrument. You will need to use a connecting cable.

Sconnecting customary antenna types using a cable: see page 5-10

5.4 Using a cable to connect the antenna to the basic instrument

Connecting a Narda cable

A Narda cable is connected in two stages:

- Connect the Narda cable to the SRM
- Connect the Narda cable to the Narda antenna

Fig. 5-4 Connecting the SRM-3000 and antenna with a cable

Connecting the Narda cable to the SRM

- ✓ The SRM is switched off.
- 1. Stand the basic instrument up vertically.
- 2. Place the N connector of the cable over the N connector of the basic instrument.

- Carefully screw down the coupling ring of the N connector of the cable on to the N connector of the basic instrument taking care not to cross-thread it.
- **Note:** If there is resistance when you try to screw down the coupling ring, it needs to be re-seated. Only about 4 turns are needed to establish a firm connection.
- 4. Place the control cable plug of the cable on the multi pin connector of the basic instrument so that the red dot on the control cable plug and the red dot on the multi pin connector are aligned.
- Press the control cable plug into the connector using the locking sleeve until the plug lock clicks into place.

The Narda cable is now connected.

The instrument will automatically detect the type of cable that is connected.

This information will be shown in the general instrument configuration section of the LCD panel when the instrument is switched on.

Connecting the Narda cable to the Narda antenna

- ✓ The SRM is switched off.
- 1. Place the N connector at the end of the cable over the N connector of the antenna.
- Carefully screw down the coupling ring of the N connector at the end of the cable on to the N connector of the antenna taking care not to crossthread it.
- **Note:** If there is resistance when you try to screw down the coupling ring, it needs to be re-seated. Only about 4 turns are needed to establish a firm connection.
- Place the control cable plug of the antenna on the multi pin connector of the cable so that the red dot on the control cable plug and the red dot on the multi pin connector are aligned.
- 4. Press the control cable plug into the connector using the locking sleeve until the plug lock clicks into place.

The Narda antenna is now connected.

The instrument will automatically detect the type of antenna that is connected.

This information will be shown in the general instrument configuration section of the LCD panel when the instrument is switched on.

Connecting customary antenna types using a cable

- ✓ The SRM is switched off.
- 1. Stand the basic instrument up vertically.
- 2. Place the N connector of the cable over the N connector of the basic instrument.
- Carefully screw down the coupling ring of the N connector of the cable on to the N connector of the basic instrument taking care not to cross-thread it.
- **Note:** If there is resistance when you try to screw down the coupling ring, it needs to be re-seated. Only about 4 turns are needed to establish a firm connection.
- Place the N connector at the other end of the cable over the N connector of the antenna.
 If the antenna is not equipped with an N connector you will need to use an adapter.
- 5. Carefully screw down the coupling ring of the N connector of the cable on to the N connector of the antenna taking care not to cross-thread it.
- **Note:** If there is resistance when you try to screw down the coupling ring, it needs to be re-seated.

5.5 Fitting the Narda antenna to a tripod

Special fittings are needed to attach Narda antennas to a tripod. Narda provides two different types of antenna holder.

5.5.1 Antenna holder for three axis antennas

This antenna holder can be used to attach the antenna vertically or horizontally to the tripod. In principle, the orientation has no effect on the results, since the antenna has three axes. It is still a good idea to align the antenna head roughly with the probable location of the field source to avoid any possible side effects.

Assembly

- 1. Screw the antenna holder horizontally or vertically on to the tripod.
- 2. Attach the antenna using the Velcro strips.
- 3. Connect the antenna to the basic instrument using a cable, see sec. 5.4, page 5-8.

Fig. 5-5 Antenna attached to holder for three axis antennas (3501/90.02), mounted horizontally and vertically

5.5.2 Antenna holder for single axis and three axis antennas

This holder is used to precisely align the antenna in defined positions. This serves a dual purpose:

- Single axis antennas can be aligned in three mutually perpendicular (orthogonal) directions one after the other by simple rotation, allowing you to make isotropic measurements easily (see sec. 11.2.2, page 11-6)
- three axis antennas can be precisely oriented within a field, allowing you to measure a specific axis (see sec. 11.1.2, page 11-4).

Assembly

Fig. 5-6 Single axis E field antenna (top) and single axis H field antenna (bottom) mounted on the antenna holder for single axis and three axis antennas (3501/90.01)

- 1. Screw the antenna holder plate on to the tripod.
- 2. Screw the antenna holder on to the antenna holder plate.
- Open the Velcro strips and place the antenna in the holder so that the N connector and the control cable lie in the groove provided (see fig. 5-7).
- 4. Close the Velcro strips.
- 5. Turn the antenna to the desired position (marked on the antenna holder plate) and fix it in position with the screw.
- 6. Connect the antenna to the basic instrument using a cable, see sec. 5.4, page 5-8
- **Notice:** When removing the antenna from the holder, first slide it a little in the direction of the antenna head and then remove it from the holder. This will prevent the black coating from being damaged by the spacing screws.

Fig. 5-7 Cable and N connector in guide groove

5.6 Registering a non-Narda antenna

Note: Automatic detection of the connected antenna type is not possible if a customary antenna is used instead of a Narda antenna. You will need to manually register / select the connected antenna on the basic instrument in order to display the results in units of field strength or as a percentage of a selected safety standard. This requires that the corresponding antenna type has been defined by the user with the aid of the "SRM-Tools" or "SRM-TS" PC software supplied and has been saved in the basic instrument. Refer to sec. 16, page 16-1 for more information.

Registering a non-Narda antenna

- ✓ The instrument is switched on.
- 1. Press the **CONF** button. The CONFIGURATION menu opens.
- 2. Select the ANTENNA/SENSOR command.
- 3. Press the **ENT** button. The ANTENNA/SENSOR menu opens.
- 4. Select the connected antenna type.
- Press the ENT button. The antenna type is shown in the general instrument configuration section of the LCD panel.

5.7 Registering a non-Narda cable

Note: Automatic detection of the connected cable type is not possible if a customary cable is used instead of a Narda cable. You will need to manually register / select the connected cable on the basic instrument in order to take the cable losses into account in the results. This requires that the corresponding cable type has been defined by the user with the aid of the "SRM-Tools" or "SRM-TS" PC software supplied and has been saved in the basic instrument. Refer to sec. 16, page 16-1 for more information.

Registering a non-Narda cable

- ✓ The instrument is switched on.
- 1. Press the **CONF** button. The CONFIGURATION menu opens.
- 2. Select the CABLE command.
- 3. Press the **ENT** button. The CABLE menu opens.
- Select the cable type used and press the ENT button to confirm. The cable type is shown in the general instrument configuration section of the LCD panel.

Notes:

6 User interface

Fig. 6-1 Display and control elements

No.	Element
1	Rotary control
2	Softkeys
3	Function keys
4	Menu selection keys
5	On / Off switch
6	Status LED / Charge LED
7	LCD panel

Table 6-1Display and control elements

6.1 Control elements

6.1.1 On / Off switch

Key	Function
ON/OFF	On / Off switch.
	 Starts the instrument with the same settings as were active when it was last switched off. Switches the instrument off (press key for longer time).

Table 6-2 On / Off switch

6.1.2 Menu selection keys

Key	Function.
CONF	 Opens the CONFIGURATION menu. Enables: Antenna selection. Cable selection. Standard selection. Service table selection. Cell name table selection (option). Device information display. Date and time settings. General instrument properties settings. "Safety Evaluation" mode configuration. "Spectrum Analysis" mode configuration. "UMTS P-CPICH Demodulation" mode configuration (Option). "Time Analysis" mode configuration.
МЕМ	 Opens the MEMORY menu. Enables: Display and management of stored results. Definition and activation of special memory mode. Comment function settings.
MODE	Opens the MODE menu. Enables operating mode selection.

Table 6-3 Menu selection keys

6.1.3 Softkeys

The softkey functions vary according to the menu that is displayed.

The softkeys are operated using the row of keys on the right next to the display.

6.1.4 Function keys

Note: Numerical entries can be made using either the function keys or the rotary control. The two functions are mutually exclusive; if you use the rotary control, the function keys are disabled, and vice versa.

Key	Function
ESC / .	Cancels an operating sequence.
	 Cancels the current operating step; changes in values are also canceled. Enables return to a higher menu level.
	Key for entering a decimal point when editing a parameter.
ENT / 1	Confirms entries or activates menus.
	 Ends the current operating step and confirms changes in values. Activates sub-menus in the CONFIGURATION menu.
	Key for entering the number 1 when editing a parameter.
HOLD / 2	 Pauses the measurement. Stops the measurement. (In stopped status you can access display and evaluation functions but you cannot edit parameters.) Resumes the measurement. Key for entering the number 2 when editing a parameter.

Function key functions

Table 6-4Function keys

Кеу	Function
SAVE / 3 (abc)	 Saves data sets. Saves: individual sets of data (spectra, tables) Key for entering the number 3 when editing a parameter. Key for entering the characters ABC.
DISPL / 4 (def)	 Activates the DISPLAY menu. Enables the following in "Spectrum Analysis" mode: full screen display selection of display scale range (20 dB, 40 dB, 60 dB, 80 dB, 100 dB) selection of the upper limit of the Y axis automatic Y axis scaling if the other parameters have been selected correctly. Enables the following display modes in "Safety Evaluation" mode: full screen as condensed table (Cond. Table) Enables the following display mode in "UMTS P-CPICH Demodulation" mode: full screen full screen
MARK / 5 (ghi)	 Key for entering the characters DEF. Activates the "Peak Marker" function. Enables the following in "Spectrum Analysis" mode: search for highest peak search for next peak to the right search for next peak to the left search for next higher peak search for next lower peak Key for entering the number 5 when editing a parameter. Key for entering the characters GHI.
EVAL / 6 (jkl)	 Activates the EVALUATION FUNCTION menu. Enables the following in "Spectrum Analysis" mode: display of a list of the 20 highest peaks integration of the results over a selected frequency range Key for entering the number 6 when editing a parameter. Key for entering the characters JKL.

Table 6-4 Function keys

Кеу	Function	
UNIT / 7 (nmo)	 Selects the display units. Opens a selection menu listing the available units. Key for entering the number 7 when editing a parameter. Key for entering the characters NMO. 	
AXIS / 8 (pqrs)	 Activates the MEASUREMENT MODE menu. If a three axis Narda antenna is used, enables: selection of an isotropic measurement mode selection of a measurement axis (X, Y or Z axis) If a single axis antenna is used, enables: selection of the isotropic measurement method for sequential measurement of the three spatial components of the field being measured Key for entering the number 8 when editing a parameter. Key for entering the characters PQRS. 	
ZOOM / 9 (tuv)	 Activates the "Zoom" function. Enables: rapid setting of a new sweep range within the sweep range just selected in "Spectrum Analysis" mode Key for entering the number 9 when editing a parameter. Key for entering the characters TUV. 	
SETUP / 0 (wxyz)	Activates the SETUP menu. • Enables: – saving of user defined setups – recalling of saved setups – deletion of saved setups Key for entering the number 0 when editing a parameter. Key for entering the characters WXYZ.	

Table 6-4 Function keys

Editing parameters

Opening the numerical value entry box

 \Rightarrow Press the softkey that enables editing of a parameter (e.g. **Fmin**). The box for entering the numerical value to be changed opens.

Entering the numerical value and units

- ✤ For entry using the rotary control, see sec. 6.1.5, page 6-7.
- 1. Use the function keys to enter the first digit of the desired numerical value.

The rotary control is disabled as soon as you have entered the first digit. The digit you entered will be displayed. The previous value is deleted. The softkeys will now be labeled with the possible units and the backspace function.

- 2. Enter all the remaining digits of the numerical value, using the decimal point if necessary.
- Press the softkey that is labeled with the desired units. The entry box now shows the complete numerical value and units.

Using the BACKSPACE softkey

Incorrect entries can be deleted by pressing the BACKSPACE softkey.

⇒ Press the BACKSPACE softkey. The unit or digit furthest to the right will be deleted.

Completing an entry

- \Rightarrow Press the **ENT** key.
 - The entry box closes.

The values defined are displayed in the "Instrument configuration" section.

The function keys are enabled.

The softkey functions change.

6.1.5 Rotary control

Note: Numerical entries can be made using either the function keys or the rotary control. The two functions are mutually exclusive; if you use the rotary control, the function keys are disabled, and vice versa. The first step in setting a parameter determines which method of entry is selected.

Opening the numerical value entry box

⇒ Press the softkey that enables editing of a parameter (e.g. Fmin). The box for entering the numerical value to be changed opens. One digit of the displayed value is shown highlighted. The position of this digit defines the step width when the rotary control is used to change the value.

Examples: 100 = step width 100, 100 = step width 10, 100 = step width 1

Using the rotary control

 \Rightarrow Turn the rotary control one step to the right.

The original value will increase by one digit corresponding to the current step width.

The > and < softkeys for changing the step width are activated. The function keys are disabled.

– or –

 \Rightarrow Turn the rotary control one step to the left.

The original value will decrease by one digit corresponding to the current step width.

The > and < softkeys for changing the step width are activated. The function keys are disabled.

Changing the step width

 \Rightarrow Press the > softkey.

The highlighted digit moves one position to the right. The step width is reduced by a factor of 10.

– or –

 \Rightarrow Press the < softkey.

The highlighted digit moves one position to the left. The step width is increased by a factor of 10.

Completing an entry

 ⇒ Press the ENT key. The entry box closes. The values defined are displayed in the "Instrument configuration" section.
 The function keys are enabled. The softkey functions change.

Note: The rotary control can only change the value of parameters within the pre-set range limits.

6.1.6 Keys for optimizing the display

Кеу	Function	
0	CONTRAST key.Opens the "Adjust contrast" box for setting the display contrast.	
	BRIGHT key.Switches the display backlight on or off.	

Table 6-5 keys for optimizing the display

Setting the display contrast

- Press the CONTRAST key. The display contrast is shown as a bar graph.
- 2. Use the rotary control to adjust the contrast.
- 3. Press the **ENT** key. The contrast is adjusted. The bar graph is no longer displayed.

Switching on the backlight

⇒ Press the BRIGHT key for longer than 2 seconds. The backlight switches on permanently.

Switching off the backlight

⇒ When the backlight is switched on permanently, press the BRIGHT key. The backlight switches off.

6.2 Operating status display

Element	State	Function
Status LED	Green	Indicates readiness for use
	Red	Instrument is being initialized Error detected
Charge LED	Red	Battery is being charged
	Green	Charging cycle has ended AC Adapter / Charger is still connected to the instrument

Table 6-6 LED overview

6.3 LCD panel elements

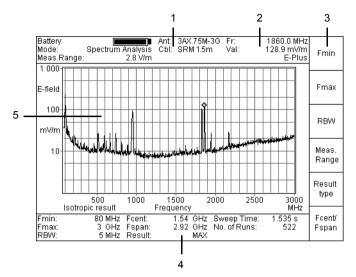


Fig. 6-2 LCD panel in "Spectrum Analysis" mode (example)

No.	Description	
1	General information	
	The "General information" section gives information about the current instrument status.	
	The following data are displayed here:	
	 type of antenna connected type of cable connected selected operating mode active standard (if a standard has been activated as reference) battery pack charge status selected measurement range 	
2	Evaluation tools	
	The "Evaluation tools" section indicates the status of the active evaluation tools, e.g. current position of the marker.	
3	Softkeys	
	The softkey labels change according to the menu that is being displayed. The softkeys are operated using the row of keys to the right next to the display.	
4	Instrument configuration	
	The "Instrument configuration" section displays the user settings for the individual operating modes.	
5	Measurement data	
	The measurement result display depends on the operating mode and evaluation tools that have been selected. Refer to the sections covering the operating modes for more details.	

Table 6-7 Key to LCD panel elements

More detailed information about the LCD panel is given in the sections dealing with the different operating modes.

6.4 External connectors

There are two sockets on the top side of the SRM-3000. These are for connecting the antenna and the control cable.

Fig. 6-3 Antenna and control cable connector sockets

No.	Function
1	Antenna connector socket N connector
2	12 pole socket (multi pin connector) for connecting the control cableIf a Narda antenna or Narda cable is used this socket automatically detects the antenna and cable.

Table 6-8	Antenna and control cable connector sockets

On the base of the instrument you will find the battery holder on the left and three further external connections on the right: USB, serial interface, AC Adapter / Charger.

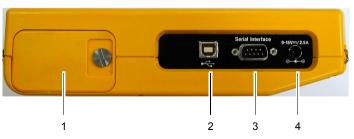


Fig. 6-4 Battery holder and external connectors

No.	Function
1	Battery holder
2	USB interface for connecting to a computer (PC)
3	 Serial data interface (RS 232) for connecting to a computer (PC): 115000 Baud 8 data bits 1 stop bit No parity Xon / Xoff protocol
4	AC Adapter / Charger connection Nominal voltage: 9 V

 Table 6-9
 Battery holder and external connectors

Notes:

7 "Safety Evaluation" mode

7.1 "Safety Evaluation" mode functions

"Safety Evaluation" mode was specially developed for evaluating field strength exposure in a multi frequency environment. It provides an overview of exposure values in units of field strength or as a percentage of a selected safety standard for certain frequency bands or "services". This makes an immediate assessment of conformance to defined limit values possible right at the point of measurement, as well as indicating the contribution made by frequency bands of interest to the overall exposure level.

The service tables used as the basis for "Safety Evaluation" mode are defined and transferred to the instrument using the "SRM-Tools" or "SRM-TS" PC software.

✤ Refer to sec. 16, page 16-1 for more information about this.

7.2 Selecting the operating mode

1. Press the **MODE** button. The OPERATING MODES menu opens.

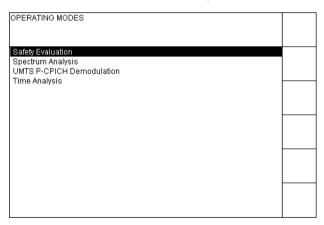


Fig. 7-1 OPERATING MODES menu

2. Use the rotary control to highlight "Safety Evaluation".

3. Press the ENT button.

The measurement menu for "Safety Evaluation" mode opens. The softkey functions change.

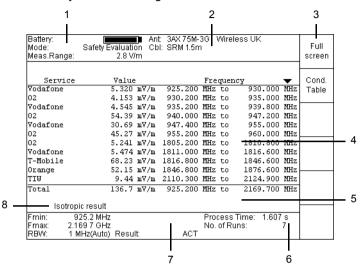


Fig. 7-2 Measurement menu for "Safety Evaluation" mode

No.	Description	Explanation	
1	Operational status:		
	Battery	Battery charge state	
	Mode	Operating mode	
	Meas. Range	Input attenuator setting (input sensitivity)	
2	Antenna parameters		
	Ant	Selected / connected antenna	
	Cbl	Selected / connected measurement cable	
	-	Name of service table used	
3	-	Softkey functions	

Table 7-1 Key to "Safety Evaluation" mode measurement menu

No.	Description	Explanation		
4	Table of results (individual results)			
5	Total	Total result		
6	Progress display (rotating bar)			
7	Measurement parameters display			
	Processing Time	Time to perform the measurement		
	No. of Runs	Number of times measurement performed		
	AVG	Number of averages. Only displayed for "Result Type" = "AVERAGE" and "MAX AVERAGE".		
	Result	Result type (ACT, MAX, AVERAGE, MAX AVERAGE)		
	Fmin	Lower frequency limit		
	Fmax	Upper frequency limit		
	RBW	Resolution bandwidth. Only displayed if "RBW Automatic" set to OFF in the CONFIGURATION menu.		
8	Isotropic result	Measurement type: X, Y, Z axis measurement or isotropic measurement		

 Table 7-1
 Key to "Safety Evaluation" mode measurement menu

7.3 Selecting the service to be measured

All the frequency bands (or services) that are of interest when assessing field strength exposure are usually collected together into a so-called service table. "Safety Evaluation" mode is based on the selection and activation of such a table. The desired service table is selected using the CONFIGURATION menu (see sec. 14.6, page 14-7).

Note: If there is no active service table when you select "Safety Evaluation" mode, a warning message will appear to remind you of this. "Safety Evaluation" mode cannot be used if there are no service tables available on the instrument.

If an antenna combined with a cable or an antenna and a separate cable are used together, only those services which are within the frequency range of the antenna and / or the cable will be taken into account in "Safety Evaluation" mode.

"Safety Evaluation" mode provides two methods of further restricting the list of services to be measured:

- Selection of the first service to be measured in the frequency range (restricts the list upwards)
- Selection of the last service to be measured in the frequency range (restricts the list downwards)

7.3.1 Restricting the list of services to be measured using the first service

- ✓ The "Safety Evaluation" mode measurement menu is displayed.
- Press the Sel. first service softkey. The "Select First Service" selection box opens showing the list of first services to be measured.
- 2. Use the rotary control to highlight the desired first service to be measured.
- Press the ENT button. The "Measurement parameters" pane of the measurement menu will display the lower limit frequency of the selected service as the minimum measurement frequency.
- **Note:** If the newly selected service is after the last service just set in the table, the list of services to be measured will be reduced to a single service, i.e. to the service just selected.

7.3.2 Restricting the list of services to be measured using the last service

- ✓ The "Safety Evaluation" mode measurement menu is displayed.
- Press the Sel. last service softkey. The "Select Last Service" selection box opens showing the list of last services to be measured.
- 2. Use the rotary control to highlight the desired last service to be measured.
- 3. Press the **ENT** button.

The "Measurement parameters" pane of the measurement menu will display the upper limit frequency of the selected service as the maximum measurement frequency.

Note: If the newly selected service is before the first service just set in the table, the list of services to be measured will be reduced to a single service, i.e. to the service just selected.

7.3.3 Restoring the original list of services to be measured

- ✓ The "Safety Evaluation" mode measurement menu is displayed.
- \Rightarrow Press the **Sel. all services** softkey. All the services in the service table are displayed.

7.4 Setting the measurement range

The system sensitivity depends on the input attenuator setting, which is determined by the "Measurement Range" parameter. A high measurement sensitivity avoids any falsification of the results that might occur due to the intrinsic noise of the device. However, the device must not be overloaded. Overloading can also be caused by signals that are outside the frequency range of the services being measured, such as those from a powerful radio transmitter which might be superimposed on the mobile telephone signals that you actually want to measure.

For the above reasons, the SRM allows you to

- · select the measurement range manually,
- automatically search for the best measurement range,
- apply noise suppression.

The measurement range you select will apply to all operating modes, so you do not have to set it each time you change from one operating mode to another.

7.4.1 Setting the measurement range manually

This method can be used if you know the field situation.

- Press the Meas Range softkey. The "Set Measurement Range (MR)" selection box opens showing a list of possible input sensitivities.
- 2. Use the rotary control to highlight the desired input sensitivity.
- Press the ENT button. The selected input sensitivity is set.

	xt. Power Ant: 3A, yaluation Cbl: 5 V/m Std: Std: Value 60.79 mV/m 60.73 mV/m N 18.39 mV/m 2.987 mV/m 20.13 mV/m 28.77 mV/m 20.61 mV/m 18.76 mV/m 18.76 mV/m 18.76 mV/m	Fre Set Measurement Range 87.5 (MR) 174.0	MR Search
Total Isotropic Result	258.7 mV/m	6.3 V/m 5.6 V/m 5 V/m	
Fmin: 87.5 MHz Fmax: 2.5 GHz RBW: 200 kHz(Auto)		Process Time: 1.851 s No. of Runs: 8 ACT	

Fig. 7-3 "Set Measurement Range (MR)" selection box

7.4.2 Search for the best measurement range

This method is best if you do not know the field situation.

- Press the Meas Range softkey. The "Set Measurement Range (MR)" selection box opens; the fourth softkey is labeled MR Search.
- 2. Press the MR Search softkey. The message "Searching for best measurement range. Please wait." is displayed. The SRM makes a background measurement over the entire frequency range covered by the antenna you are using. This will take several seconds. When the measurement is finished, the SRM automatically sets the measurement range to the best value and displays the normal measurement menu again.

Note: Press the ESC key if you want to stop the automatic setting process.

Selecting the parameters for the measurement range search (Configure General): see page 14-16

7.4.3 Using noise suppression (Noise Threshold)

The intrinsic noise of the device is present in all frequency ranges, including those that are not occupied with payload signals. When you perform a spectrum analysis and display the results graphically, it is easy to see when a spectral line disappears into the noise floor. You can set a threshold so that you can also make this distinction when the results are presented numerically as in "Safety Evaluation" mode. If the result is below this threshold level, the device displays the threshold value preceded by the "<" character (i.e. less than the threshold value) instead of the actual measured value.

You can set threshold levels of 0, 3, 6, 10, 15 and 20 dB. These values are relative to the level of the intrinsic noise floor.

Selecting the threshold value for noise suppression

- 1. Press the CONF key.
- The CONFIGURATION menu opens.
- 2. Use the rotary control to highlight "Configure Safety Evaluation Mode".
- 3. Press the **ENT** key. The current settings will be displayed.
- 4. To change the setting, use the rotary control to highlight "Noise Threshold Factor".
- 5. Press the ENT key.
- 6. Use the rotary control to select a value between 0 and 20 dB.

CONFIGURATION SAFETY EV	ALUATION	
Average Type Number of Averages Average Time	NUMBER OF AVERAGES 4 6 min	
RBW Automatic Noise Threshold Noise Threshold Factor	ON OFF 3 dB	

Fig. 7-4 CONFIGURATION SAFETY EVALUATION menu; setting the threshold value for noise suppression (Noise Threshold Factor) 7. Press the ENT key.

The threshold value is set.

8. Press the **ESC** key twice to return to the measurement menu.

Activating and deactivating noise suppression

- 1. Press the **CONF** key. The CONFIGURATION menu opens.
- 2. Use the rotary control to highlight "Configure Safety Evaluation Mode".
- Press the ENT key. The current settings will be displayed.
- 4. To change the setting, use the rotary control to highlight "Noise Threshold".
- 5. Press the ENT key.
- 6. Use the rotary control to select "ON" or "OFF". Automatic noise suppression is activated or deactivated.
- 7. Press the ESC key twice to return to the measurement menu. When noise suppression is activated, the measurement menu displays the set threshold value preceded by the "<" character for all numerical measurement values that are below the threshold value.

7.5 Selecting the result type

The result type determines how the values recorded are evaluated and displayed. One value is displayed for each service.

ACT	The actual (latest) measured value is displayed.
MAX	The maximum measured value is displayed.
AVERAGE	The average of the measured values is taken ofer a
	specified number of results or a specified time.
	The resulting value is displayed.
	♦ Selecting the averaging parameters: see page 7-11
MAX AVERAGE	The maximum of all the averaged values is displayed.

Selecting the result type

- Press the **Result type** softkey. A selection box showing a list of possible result types opens. If the "Spatial Averaging" option has been activated, the fifth softkey will be labeled **Spatial AVG**. Spatial Averaging in "Time Analysis" mode: see page 12-16
- 2. Use the rotary control to highlight the desired result type.
- Press the ENT button. The selected result type is shown in the "Measurement parameters" pane of the measurement menu.

7.6 Selecting the averaging parameters

The SRM provides two ways of averaging the results:

- Averaging over a specified number of individual results (Number of Averages)
- Averaging over a specified time (Average Time)

You can set both parameters in the CONFIGURATION menu. They will be effective only when you select "AVERAGE" or "MAX AVERAGE" evaluation mode.

Selecting averaging over a specified number of results (Number of Averages)

- 1. Press the CONF key.
 - The CONFIGURATION menu opens.
- 2. Use the rotary control to highlight "Configure Safety Evaluation Mode".
- 3. Press the ENT key.

The current settings will be displayed.

CONFIGURATION SAFETY EV	ALUATION	
Augus as Trace		
Average Type Number of Averages	NUMBER OF AVERAGES	
Average Time	6 min	
RBW Automatic Noise Threshold	ON OFF	
Noise Threshold Factor	3 dB	

Fig. 7-5 CONFIGURATION SAFETY EVALUATION menu

- 4. To change the setting, use the rotary control to highlight "Average Type".
- 5. Press the ENT key.
- 6. Use the rotary control to set the command to "Number of Averages".
- 7. Press the ENT key.
- 8. Use the rotary control to highlight "Number of Averages".
- 9. Press the ENT key.

- 10.Use the rotary control to set the number of averages (between 4 and 64).
- 11. Press the ENT key.
- 12.Press the **ESC** key twice to return to the measurement menu. The selected averaging parameter is shown in the "Measurement parameter" pane of the measurement menu.

Selecting averaging over a specified time (Average Time)

- 1. Press the **CONF** key. The CONFIGURATION menu opens.
- 2. Use the rotary control to highlight "Configure Safety Evaluation Mode".
- 3. Press the **ENT** key. The current settings will be displayed.
- 4. To change the setting, use the rotary control to highlight "Average Type".
- 5. Press the ENT key.
- 6. Use the rotary control to set the command to "Average Time".
- 7. Press the ENT key.
- 8. Use the rotary control to highlight "Average Time".
- 9. Press the ENT key.
- 10.Use the rotary control to set the averaging time (between 1 and 30 min).
- 11. Press the ENT key.
- 12. Press the ESC key twice to return to the measurement menu.
 - The selected averaging parameter is shown in the "Measurement parameter" pane of the measurement menu.

7.7 Selecting the resolution bandwidth (RBW)

You will not normally need to enter the resolution bandwidth (RBW) manually in "Safety Evaluation" mode. In the default setting of the SRM ("RBW Automatic"), the device selects the resolution bandwidth so that the narrowest band service being measured is resolved finely enough for an accurate measurement. Nevertheless, you can set the resolution bandwidth manually. As a rule, the finer the resolution, the longer the measurement will take.

The actual setting can be seen from the lowermost softkey label:

(no label)RBW Automatic (default setting)RBWYou must enter the resolution bandwidth manually.

Deactivating automatic resolution bandwidth selection in the CONFIGURATION menu

- 1. Press the **CONF** key. The CONFIGURATION menu opens.
- ♦ Also refer to sec. 14, page 14-1.
- 2. Use the rotary control to highlight "Configure Safety Evaluation Mode".
- 3. Press the **ENT** key. The current settings will be displayed.

CONFIGURATION SAFETY EV	ALUATION	
Average Type	NUMBER OF AVERAGES	
Number of Averages	4	
Average Time	6 min	
RBW Automatic Noise Threshold	OFF OFF	
Noise Threshold Factor	3 dB	
Noise meshold actor	5 60	

Fig. 7-6 CONFIGURATION SAFETY EVALUATION menu

- 4. To change the setting, use the rotary control to highlight "RBW Automatic".
- 5. Press the ENT key.
- 6. Use the rotary control to set the command to "OFF".
- 7. Press the ENT key.
- Press the ESC key twice to return to the measurement menu. The lowermost softkey is now labeled RBW. The selected value is shown in the "Measurement parameter" pane of the measurement menu.

Defining the resolution bandwidth in the measurement menu

- ✓ "RBW Automatic" is set to "OFF" in the CONFIGURATION menu.
- ✓ The "Safety Evaluation" mode measurement menu is open.
- Press the **RBW** softkey. A selection box showing a list of the possible resolution bandwidths opens.
- 2. Use the rotary control to highlight the setting you want.
- Press the ENT key. The selected value is shown in the "Measurement parameter" pane of the measurement menu.
- **Note:** A narrow resolution bandwidth will result in a long measurement time. You can see that the device is working by looking at the progress display (rotating bar) in the measurement menu (see fig. 7-2).

7.8 Selecting display options

The following display options can be selected:

- Units for the results
- · Full screen display of the service table
- · Display of results as a detailed table or a condensed table

7.8.1 Selecting the units for the results

- ✓ "Safety Evaluation" mode is set.
- 1. Press the UNIT button.

The "Select Display Unit" selection box opens.

- 2. Use the rotary control to select the desired units.
- 3. Press the ENT button.

The measurement results will be displayed with the selected units in the "Safety Evaluation" mode measurement menu.

Battery: Ant: 3AX 75M-3 Mode: Safety Evaluation Cbl: SRM 1.5m Meas.Range: 10 V/m Service Value	IG Funkdienste D Select Display Unit	
UKW 164.0 mV/m 87.500 Band II/DAB 86.31 mV/m 174.000 Band IV/V/DTVB 127.6 mV/m 470.000 GSM 900 80.26 mV/m 890.000 GSM 1800 127.1 mV/m 1710.000 UMTS 130.8 mV/m 1920.000 Others 254.6 mV/m	dBV/m dBmV/m dBµV/m dBA/m V/m A/m Wm ² mW/cm ² %	
Total 393.9 mV/m 87.500 : Isotropic result		
Fmin: 87.5 MHz Fmax: 2.17 GHz RBW: 5 MHz(Auto) Result: ACT	Process Time: 1.263 s No. of Runs: 110	

Fig. 7-7 "Select Display Unit" selection box

Refer to sec. 8.8.1, page 8-14 for a detailed description of the units that can be set.

7.8.2 Selecting display options

- ✓ "Safety Evaluation" mode is set.
- ⇒ Press the **DISPL** button. The softkey functions change.

Battery: Mode: Meas.Range:		t: 3AX 75M-3G Wireless UK I: SRM 1.5m	Full screen
Service	Value	Frequency 🗸 🗸	Cond.
Vodafone	5.320 mV/m	925.200 MHz to 930.000 MHz	Table
02	4.153 mV/m		Table
Vodafone	4.545 mV/m	935.200 MHz to 939.800 MHz	
02	54.39 mV/m	940.000 MHz to 947.200 MHz	
Vodafone	30.69 mV/m	947.400 MHz to 955.000 MHz	
02	45.27 mV/m	955.200 MHz to 960.000 MHz	
02	5.241 mV/m	1805.200 MHz to 1810.800 MHz	
Vodafone	5.474 mV/m	1811.000 MHz to 1816.600 MHz	
T-Mobile	68.23 mV/m	1816.800 MHz to 1846.600 MHz	
Orange	52.15 mV/m	1846.800 MHz to 1876.600 MHz	
TIW	9.44 mV/m	2110.300 MHz to 2124.900 MHz	
Total	136.7 mV/m	925.200 MHz to 2169.700 MHz	
Isotropi	ic result		
Fmin: 9:	25.2 MHz	Process Time: 1.607 s	
	69 7 GHz	No. of Runs: 7	
RBW: 1 M	IHz(Auto) Result:	ACT	

Fig. 7-8 Softkeys for selecting the display type

Selecting "Full Screen" display

\Rightarrow Press the Full Screen softkey.

The entire display area is used to display the service table.

Vodafone 02 Vodafone 02 Vodafone 02 Vodafone T-Mobile 0range TIW 02 Vodafone T-Mobile 0range 0thers	5.117 10.82 48.02 26.22 51.46 4.670 5.245 77.62 62.22 10.28 8.571 10.73 8.444	$\begin{array}{c} n \nabla / n \\ n \nabla / n \end{array}$	925.200 930.200 935.200 947.400 955.200 1805.200 1811.000 1846.800 2110.300 2124.900 2134.900 2134.900 2159.700	MHZ MHZ MHZ MHZ MHZ MHZ MHZ MHZ MHZ MHZ	to to to to to to to to to to	935.000 939.800 947.200 955.000 1810.800 1816.600 1846.600 1876.600 2124.900 2134.900 2149.700 2159.700	NHZ NHZ NHZ NHZ NHZ NHZ NHZ NHZ NHZ NHZ
T-Mobile Orange	8.444 16.88	nV/m nV/m	2149.700	MHz	to	2159.700	MHz
Total Isotropic result	144.8	mV/m	925.200	MHz	to	2169.700	MHz

Fig. 7-9 "Full Screen" display

Displaying the normal size service table (Detailed Table)

 \Rightarrow Press any button.

The service table will be displayed normal size again.

Displaying the condensed service table (Condensed Table)

\Rightarrow Press the **Cond. Table** softkey.

The display switches to the condensed table display. The softkey function changes to "Detail Table".

Battery: Mode: Meas.Range:	Safety Ev	aluation 2.8 V/m	Cbl: S	3AX 75M- 3RM 1.5m	3G Wireless UI 1	<	Full screen
Service Vodafone 02			Value 39.96 82.24				Detail Table
T-Mobile Orange TIW Others			81.61 56.70 9.818 68.06	nV/n nV/n			
Total			151.5	mV/m			-
Fmin: Fmax: 2.	pic result 925.2 MHz 169 7 GHz MHz(Auto)	Result		ACT	Process Time: No. of Runs:	1.599 s 47	

Fig. 7-10 "Cond. Table" display

Displaying the detailed service table (Detailed Table)

 \Rightarrow Press the **Detail Table** softkey.

The display switches to the detailed table display. The softkey function changes to "Cond. Table". Notes:

8 "Spectrum Analysis" mode

8.1 Operating mode functions

In "Spectrum Analysis" mode, you can display all the field components in the selected environment for an overview of the detected spectrum or to determine maximum values. Complete evaluation of the results can be performed directly at the measurement site.

8.2 Selecting the operating mode

Press the MODE button. The OPERATING MODES menu opens.

OPERATING MODES	
Safety Evaluation	
Spectrum Analysis	
UMTS P-CPICH Demodulation	
Time Analysis	

Fig. 8-1 OPERATING MODES menu

- 2. Use the rotary control to highlight "Spectrum Analysis".
- 3. Press the **ENT** button. The measurement menu for "Spectrum Analysis" mode opens.

The softkey functions change.

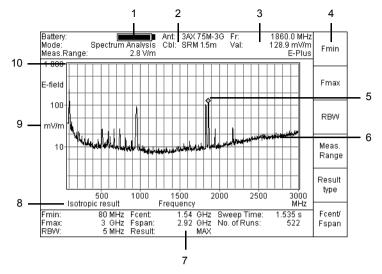


Fig. 8-2 Measurement menu for "Spectrum Analysis" mode

No.	Name	Description		
1	Operating states			
	Battery	Battery charge state		
	Mode	Operating mode		
	Meas. Range	Input attenuator setting (input sensitivity)		
2	Antenna param	eters		
	Туре	Selected / connected antenna		
	Cbl	Selected / connected measurement cable		
3	Digital result dis	splay		
	Fr (Pk)	Frequency display, e.g. for the marker position. The display depends on the chosen settings.		
	Val	Level value e.g. for the marker position. The display depends on the chosen settings.		

Table 8-1 Key to "Spectrum Analysis" mode measurement menu

No.	Name	Description			
4	-	Softkey functions			
5	-	Marker			
6	Graphic result d	result display (spectrum)			
	-	Frequency spectrum (graphic)			
7	Measurement p	arameters display			
	Sweep Time	Sweep time (the total time of the complete process to determine the isotropic result is shown here for three axis antennas)			
	No. of Runs	Number of times measurement performed			
	AVG	Number of averages. Only displayed for "Trace Type" = "AVERAGE" and "MAX AVERAGE".			
	Fcent	Center frequency			
	Fspan	Frequency span			
	Result	Result type			
	Fmin	Lower frequency limit of spectrum			
	Fmax	Upper frequency limit of spectrum			
	RBW	Resolution bandwidth			
8	Isotropic result	Display of measurement type: X, Y, Z axis measurement or isotropic measurement			
9	mV/m (dBV)	Y axis scale units			
	-	X axis scale			
10	-	Reference line, reference point			

 Table 8-1
 Key to "Spectrum Analysis" mode measurement menu

8.3 Selecting the frequency range

There are two ways to set the frequency range in "Spectrum Analysis" mode:

- By entering the upper and lower frequencies
- By entering the center frequency and frequency span

8.3.1 Selecting the frequency range entry method

The lowermost softkey in the "Spectrum Analysis" mode measurement menu toggles between the functions "Fmin/Fmax" and "Fcent/Fspan".

- If the toggle function shown is "Fcent/Fspan", the first two softkeys have the functions "Fmin" and "Fmax". The frequency range is defined by setting the upper and lower frequencies.
- If the toggle function shown is "Fmin/Fmax", the first two softkeys have the functions "Fcent" and "Fspan". The frequency range is defined by setting the center frequency and frequency span.
- **Note:** Both pairs of values are always displayed in the "Measurement parameters" pane of the measurement menu. The display automatically adjusts to the last frequency range defined.

8.3.2 Defining the frequency range by upper and lower frequencies

- ✓ The toggle key function is "Fcent/Fspan".
- Press the Fmin softkey. An entry box opens where you can enter the value of the lower frequency limit.
- Enter the value using the function keys or the rotary control. As soon as the first digit is entered, the softkey functions change to show the possible units.

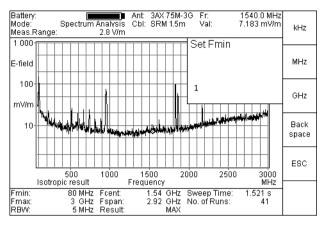


Fig. 8-3 "Set Fmin" entry box

- 3. Use the appropriate softkey to enter the units.
- 4. Press the ENT button.

The lower frequency limit you defined will be displayed in the "Measurement parameters" pane of the measurement menu.

Press the Fmax softkey and enter the upper frequency limit in the same way.

The display frequency axis automatically adjusts to the selected frequency range.

The upper frequency limit you defined will be displayed in the "Measurement parameters" pane of the measurement menu. The values of Fcent and Fspan are also adjusted to match your entries and now correspond to the defined frequency range.

8.3.3 Defining the frequency range by center frequency and frequency span

- ✓ The toggle key function is "Fmin/Fmax".
- 1. Press the Fcent softkey.
 - An entry box opens where you can enter the value of the frequency that is to be at the center of the desired frequency sweep range.
- Enter the value using the function keys or the rotary control. As soon as the first digit is entered, the softkey functions change to show the possible units.

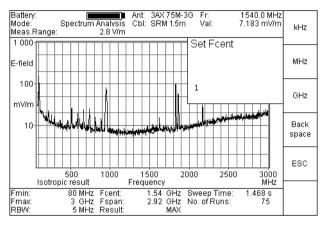


Fig. 8-4 "Set Fcent" entry box

- 3. Use the appropriate softkey to enter the units.
- Press the ENT button. The center frequency you defined will be displayed in the "Measurement parameters" pane of the measurement menu.
- Press the **Fspan** softkey and enter the value in the same way for the frequency band to be examined by the spectrum analyzer. The display frequency axis automatically adjusts to the selected frequency range.

The frequency span you defined will be displayed in the "Measurement parameters" pane of the measurement menu. The values of "Fmin" and "Fmax" are also adjusted to match your entries and now correspond to the defined frequency range.

8.4 Setting the resolution bandwidth (RBW)

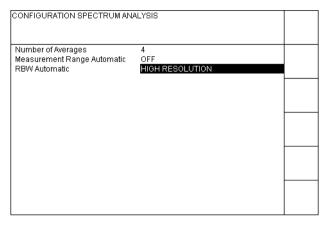
The resolution bandwidth (RBW) characterizes the selectivity of the spectrum analyzer in respect of signals having the same amplitude. Only signals which are separated by a frequency greater than the defined resolution bandwidth can be distinguished from one another.

Tip: An appropriately small value of RBW must be selected for signals that are very closely spaced in frequency. A larger resolution bandwidth can be selected for broadband signals.

Setting methods

The SRM-3000 can automatically define a suitable resolution bandwidth dependent on the selected frequency span. Two options for this are provided in the CONFIGURATION menu:

FAST SWEEP	The RBW is set so that the optimum sweep time can be achieved.
HIGH RESOLUTION	The RBW is set so that the highest resolution can be achieved.


You can alternatively set the resolution bandwidth directly from a range of preset values. This option is available when the setting "OFF" is selected in the CONFIGURATION menu.

The criteria governing the resolution bandwidths available for the currently selected frequency span are explained in Appendix B.

Activating automatic resolution bandwidth selection in the CONFIGURATION menu

- 1. Press the **CONF** button. The CONFIGURATION menu opens.
- ♦ Also refer to sec. 14, page 14-1.
- 2. Use the rotary control to highlight "Configure Spectrum Analysis Mode".
- 3. Press the ENT button.
- 4. Use the rotary control to highlight "RBW Automatic".
- Press the ENT button. The current setting will be highlighted.

6. Use the rotary control to highlight "FAST SWEEP" or "HIGH RESOLUTION".

- 7. Press the ENT button.
- Return to the measurement menu of "Spectrum Analysis" mode by pressing the MODE button and selecting "Spectrum Analysis". Automatic resolution bandwidth selection is activated. The RBW softkey is no longer displayed.

Defining the resolution bandwidth in the measurement menu

- ✓ "RBW Automatic" in the CONFIGURATION menu is set to "OFF".
- ✓ The "Spectrum Analysis" mode measurement menu is open.
- 1. Press the **RBW** softkey. A selection box opens showing a list of possible resolution bandwidths.
- 2. Use the rotary control to highlight the desired setting.
- Press the ENT button. The selected value will be shown in the "Measurement parameters" pane of the measurement menu. The spectrum is re-drawn using the RBW.

8.5 Setting the measurement range

The system sensitivity depends on the input attenuator setting, which is determined by the "Measurement Range" parameter. A high measurement sensitivity avoids any falsification of the results that might occur due to the intrinsic noise of the device. However, the device must not be overloaded. Overloading can also be caused by signals that are outside the set frequency range, such as those from powerful UHF and VHF broadcast transmitters.

For the above reasons, the SRM allows you to

- select the measurement range manually,
- automatically search for the best measurement range.
- **Note:** The measurement range you select will apply to all operating modes, so you do not have to set it each time you change from one operating mode to another.

8.5.1 Setting the measurement range manually

This method can be used if you know the field situation.

- Press the Meas Range softkey. The "Set Measurement Range (MR)" selection box opens showing a list of possible input sensitivities.
- 2. Use the rotary control to highlight the desired input sensitivity.
- Press the ENT button. The selected input sensitivity is set.

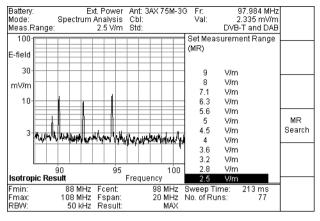


Fig. 8-6 "Set Measurement Range (MR)" selection box

8.5.2 Search for the best measurement range

This method is best if you do not know the field situation.

- Press the Meas Range softkey. The "Set Measurement Range (MR)" selection box opens; the fourth softkey is labeled MR Search.
- 2. Press the MR Search softkey. The message "Searching for best measurement range. Please wait." is displayed. The SRM makes a background measurement over the entire frequency range covered by the antenna you are using. This will take several seconds. When the measurement is finished, the SRM automatically sets the measurement range to the best value and displays the normal measurement menu again.

Note: Press the ESC key if you want to stop the automatic setting process.

Selecting the parameters for the measurement range search (Configure General): see page 14-16

8.6 Selecting the result type

The result type defines how the values recorded are displayed.

ACT	The rms value of the current (actual) spectral line is displayed.
MAX	The maximum value occurring for all spectral lines since activation of MAX trace type is displayed.
AVERAGE	The average of the measured values is taken over a specified number of results or a specified time. The resulting value is displayed.
MAX AVERAGE	 Selecting the averaging parameters: see page 8-12 The maximum value of all the averaged spectra is displayed.

Selecting the result type

1. Press the **Result type** softkey.

The "Select Result Type" selection box opens showing a list of possible result types.

If the "Spatial Averaging" option has been activated, the fifth softkey will be labeled **Spatial AVG**.

Spatial Averaging in "Spectrum Analysis" mode: see page 12-14

- 2. Use the rotary control to highlight the desired result type.
- 3. Press the ENT button.

The selected result type is shown in the "Measurement parameters" pane of the measurement menu.

8.7 Selecting the averaging parameters

The SRM provides two ways of averaging the results:

- Averaging over a specified number of individual results (Number of Averages)
- Averaging over a specified time (Average Time)

You can set both parameters in the CONFIGURATION menu. They will be effective only when you select "AVERAGE" or "MAX AVERAGE" evaluation mode.

Selecting averaging over a specified number of results (Number of Averages)

- 1. Press the **CONF** key.
- The CONFIGURATION menu opens.
- 2. Use the rotary control to highlight "Configure Spectrum Analysis Mode".
- Press the ENT key. The current settings will be displayed.
- 4. To change the setting, use the rotary control to highlight "Average Type".
- 5. Press the ENT key.
- 6. Use the rotary control to set the command to "Number of Averages".
- 7. Press the ENT key.
- 8. Use the rotary control to highlight "Number of Averages".
- 9. Press the ENT key.
- 10.Use the rotary control to set the number of averages (between 4 and 64).
- 11. Press the ENT key.
- 12.Press the **ESC** key twice to return to the measurement menu. The selected averaging parameter is shown in the "Measurement parameter" pane of the measurement menu.

Selecting averaging over a specified time (Average Time)

- 1. Press the **CONF** key. The CONFIGURATION menu opens.
- 2. Use the rotary control to highlight "Configure Spectrum Analysis Mode".
- 3. Press the **ENT** key. The current settings will be displayed.
- 4. To change the setting, use the rotary control to highlight "Average Type".
- 5. Press the **ENT** key.
- 6. Use the rotary control to set the command to "Average Time".

CONFIGURATION SPECTRU	IM ANALYSIS	
Average Type Number of Averages AVERAGE TIME RBW Automatic	AVERAGE TIME 4 6 min OFF	

Fig. 8-7 CONFIGURATION SPECTRUM ANALYSIS menu

- 7. Press the ENT key.
- 8. Use the rotary control to highlight "Average Time".
- 9. Press the ENT key.
- 10.Use the rotary control to set the averaging time (between 1 and 30 min).
- 11. Press the ENT key.
- 12.Press the **ESC** key twice to return to the measurement menu. The selected averaging parameter is shown in the "Measurement parameter" pane of the measurement menu.

8.8 Selecting the display

This section describes how to optimize the display of measurement results in "Spectrum Analysis" mode.

8.8.1 Selecting the units

The Y axis units are selected using the UNIT button.

The following power and voltage units are available if an antenna is not connected or selected:

dBm dBV dBmV dBµV	Power level referred to 1 mW Voltage level referred to 1 V Voltage level referred to 1 mV Voltage level referred to 1 µV
The following units are available if an antenna is connected or selected:	
V/m	Electric field strength (calculated using the characteristic impedance of a vacuum $Zo = 377 \Omega$ if not measured directly)
A/m	Magnetic field strength (calculated using the characteristic impedance of a vacuum Zo = 377Ω if not measured directly)
dBV/m	Electric field strength (expressed logarithmically, referred to 1 V/m)
dBmV/m	Electric field strength (expressed logarithmically, referred to 1 mV/m)
dBµV/m	Electric field strength (expressed logarithmically, referred to 1 µV/m)
dBA/m	Magnetic field strength (expressed logarithmically, referred to 1 A/m)
W/m ²	Power density (calculated using the characteristic impedance of a vacuum $Z_0 = 377 \Omega$)
mW/cm ²	Power density (calculated using the characteristic impedance of a vacuum $Z_0 = 377 \Omega$)
%	% referred to a selected safety standard

✓ "Spectrum Analysis" mode is set.

1. Press the UNIT button.

The "Select Display Unit" selection box opens showing a list of available units.

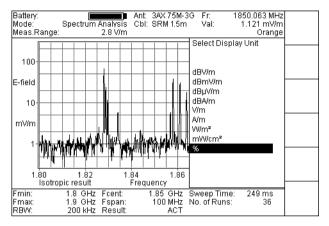


Fig. 8-8 "Select Display Unit" selection box

- 2. Use the rotary control to highlight the desired units.
- 3. Press the **ENT** button.

The measurement results will be displayed with the selected units in the "Spectrum Analysis" mode measurement menu.

8.8.2 Selecting the display mode and scaling

The display mode (full screen), scaling and the Y axis reference value are set using the **DISPL** button.

- ✓ "Spectrum Analysis" mode is set.
- \Rightarrow Press the **DISPL** button.

The softkey functions change.

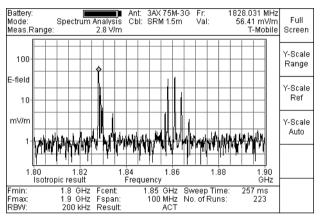


Fig. 8-9 Softkeys for selecting the display mode and scaling

Selecting the display mode

 \Rightarrow Press the **Full Screen** softkey. The entire display area is used to display the spectrum.

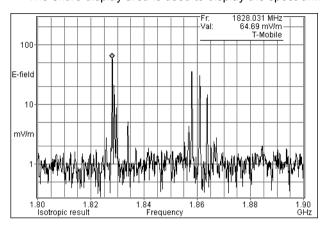


Fig. 8-10 "Full Screen" display mode

Displaying the spectrum in normal size

 \Rightarrow Press any button.

The display mode reverts to the normal size spectrum display.

Selecting the Y axis scaling

- ✓ The **DISPL** button has been pressed.
- ✓ The corresponding softkeys are displayed.

1. Press the **Y-Scale Range** softkey.

The "Select Y-Scale Range" selection box opens.

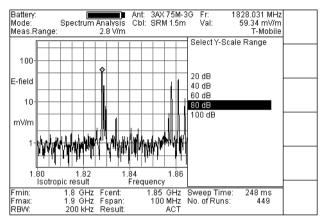


Fig. 8-11 "Select Y-Scale Range" selection box

- 2. Use the rotary control to highlight the desired value.
- 3. Press the ENT button.

The Y axis will be displayed with the selected scale range in the "Spectrum Analysis" mode measurement menu.

Selecting the Y axis reference point

- ✓ The DISPL button has been pressed.
- ✓ The corresponding softkeys are displayed.
- Press the Y-Scale Ref softkey. The "Select Y-Scale Reference" selection box is displayed. The Auto softkey is displayed.

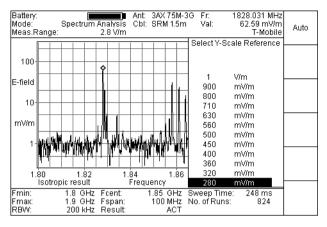


Fig. 8-12 "Select Y-Scale Reference" selection box

- 2. Use the rotary control to highlight the desired value.
- 3. Press the ENT button.

The Y axis reference point is set to the selected value in the "Spectrum Analysis" mode measurement menu.

Note: The reference value is shown in the selected units.

Selecting the reference value automatically

- ✓ The "Select Y-Scale Reference"selection box is displayed.
- ✓ The Auto softkey is displayed.
- ⇒ Press the Auto softkey.

The Y-axis reference value is the same as the measurement range. The Y-axis reference adjusts automatically when you change the measurement range.

The selection box closes.

8.8.3 Rapidly changing the frequency span (Zoom function)

Zoom functions are provided to allow rapid alteration in the frequency span. An area of interest within the selected frequency span is marked and the upper and lower frequency limits of the marked frequency range are then set as the limits of the new frequency span.

Note: Executing this function starts a new measurement. New measurement parameter values may also be set automatically, e.g. a new resolution bandwidth.

The individual settings are described in the sections below.

- ✓ "Spectrum Analysis" mode is set.
- \Rightarrow Press the **ZOOM** button.

The softkey functions change.

The zoom area is defined by two vertical lines on the display. The frequencies at the line positions are shown as Zmin and Zmax in the measurement menu. Zcent is the frequency at the center of the zoom area.

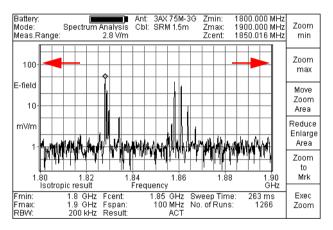


Fig. 8-13 Softkeys for selecting the zoom settings

The softkey functions are as follows:

Sets the lower limit of the zoom area.
Sets the upper limit of the zoom.
Moves the zoom area over the spectrum.
Reduces or enlarges the zoom area by a specific amount.
Positions the zoom area symmetrically about the marker.
Activates the zoom settings.

Note: The frequency range (Fmin, Fmax) for the spectrum analysis changes immediately the **Exec Zoom** softkey is pressed. The RBW is set automatically.

Setting the lower limit of the zoom area

The lower limit of the zoom area can be set individually.

- ✓ The **ZOOM** button has been pressed.
- ✓ The softkeys for selecting the zoom settings are displayed (see fig. 8-13).
- 1. Press the Zoom min softkey.

The lower line demarcating the zoom area is marked with a diamond.

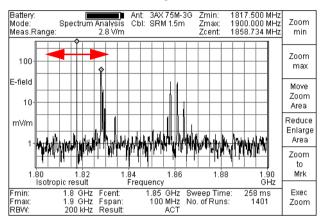


Fig. 8-14 Lower limit of zoom area

2. Move the line to the desired position using the rotary control.

Setting the upper limit of the zoom area

The upper limit of the zoom area can be set individually.

- ✓ The **ZOOM** button has been pressed.
- ✓ The softkeys for selecting the zoom settings are displayed (see fig. 8-13).
- 1. Press the Zoom max softkey.

The upper line demarcating the zoom area is marked with a diamond.

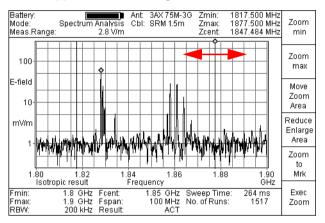


Fig. 8-15 Upper limit of zoom area

2. Move the line to the desired position using the rotary control.

Moving the zoom area

The upper and lower limits of the zoom area can be moved simultaneously.

- ✓ The **ZOOM** button has been pressed.
- ✓ The softkeys for selecting the zoom settings are displayed (see fig. 8-13).
- 1. Press the **Move Zoom Area** softkey.

The lines demarcating the zoom area are marked with diamonds.

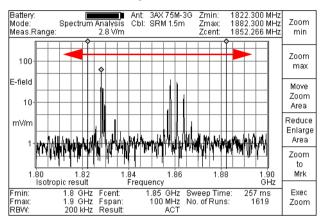


Fig. 8-16 Move zoom area

2. Move the zoom area to the desired position using the rotary control.

Reducing / enlarging the zoom area

- ✓ The ZOOM button has been pressed.
- The softkeys for selecting the zoom settings are displayed (see fig. 8-13).
- 1. Press the **Reduce Enlarge Area** softkey.

The lines demarcating the zoom area are marked with diamonds.

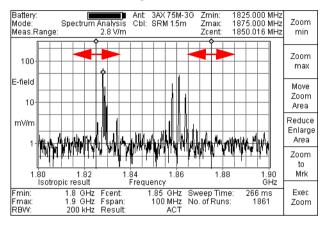


Fig. 8-17 Reduce / enlarge zoom area

2. Reduce or enlarge the zoom area using the rotary control.

Positioning the zoom area symmetrically about the marker

- ✓ The marker is set to the desired position.
- ♦ Marker functions: see page 8-28
- ✓ The **ZOOM** button has been pressed.
- ✓ The softkeys for selecting the zoom settings are displayed (see fig. 8-13).
- 1. Define the zoom area using the **Zoom min** / **Zoom Max** softkeys or with the **Reduce Enlarge Area** softkey.
- Press the Zoom to Mrk softkey. The zoom area will be positioned so that the marker is in the center of the area.

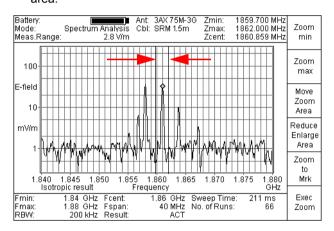


Fig. 8-18 Positioning the marker in the center of the zoom area

Activating the zoom settings

- ✓ The **ZOOM** button has been pressed.
- ✓ The softkeys for selecting the zoom settings are displayed (see fig. 8-13).
- ✓ The zoom area has been defined.
- \Rightarrow Press the **Exec Zoom** softkey.

```
The limits of the zoom area are set as the new values of Fmin and Fmax. The RBW is set automatically.
```

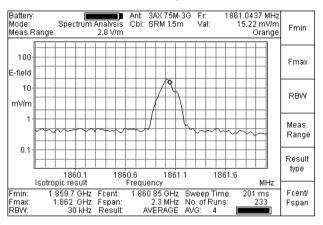


Fig. 8-19 Measurement menu after pressing the Exec Zoom softkey

8.9 Evaluating results

Marker functions and a peak value table are provided for rapid evaluation of the spectrum analysis results. You can also display the integrated level of a freely definable frequency band.

8.9.1 Marker functions

Standard marker

The standard marker is always visible and is located in the center of the frequency range when spectrum analysis is started. It is indicated by a small diamond. The marker (diamond) is moved over the frequency range by turning the rotary control. This marker function is always active. The frequency value (Fr) and level value (Val) at the position of the marker are shown in the measurement menu.

- Note: This marker gives you access to all measured values e.g. for all the spectral lines (more information can be found in Appendix B). The spacing between two measured values (between two spectral lines) is approximately half of the currently selected resolution bandwidth.
- Tip: Turn the rotary control slowly to move in small frequency steps. Turn it quickly to move in large steps. A brief movement in the opposite direction stops the marker movement.

Peak marker

- ✓ "Spectrum Analysis" mode is set.
- \Rightarrow Press the **MARK** button. The softkey functions change.

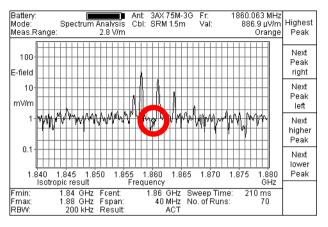


Fig. 8-20 Peak marker in the measurement menu

The softkey functions are as follows:

Highest Peak	Moves the marker to the highest peak
Next Peak right	Moves the marker to the next peak to the right of its current position
Next Peak left	Moves the marker to the next peak to the left of its current position
Next higher Peak	Moves the marker to the next peak that is higher than the current position
Next lower Peak	Moves the marker to the next peak that is lower than the current position

Note: An algorithm is used for the determination of peak markers. The frequency resolution is about 1/50 of the currently selected resolution bandwidth.

Moving the peak marker to the highest peak

- The MARK button has been pressed.
- ✓ The softkeys for selecting the marker functions are displayed (see fig. 8-20).

\Rightarrow Press the **Highest Peak** softkey.

The marker is set to the peak with the highest level value.

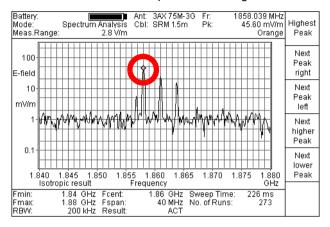


Fig. 8-21 Moving the marker with the Highest Peak softkey

Moving the peak marker to the next peak (left or right)

- The MARK button has been pressed.
- The softkeys for selecting the marker functions are displayed (see fig. 8-20).
- ⇒ Press the Next Peak right softkey.

- or -

Press the Next Peak left softkey.

The marker is set to the next peak to the left or right of its current position.

Moving the peak marker to the next higher or next lower peak

- ✓ The MARK button has been pressed.
- ✓ The softkeys for selecting the marker functions are displayed (see fig. 8-20).
- \Rightarrow Press the **Next higher Peak** softkey.

– or –

Press the Next lower Peak softkey.

The marker is set to the next peak that is higher or lower than its current position.

8.9.2 Peak table

The display can be switched to show a peak table for better result evaluation. The peak table lists the highest peaks (maximum of 20) occurring in the frequency spectrum being considered.

Note: The same algorithm is used for the peak table as is used to determine local maxima using the peak marker (see sec. 8.9.1).

Displaying the peak table

- ✓ "Spectrum Analysis" mode is set.
- 1. Press the **EVAL** button. The EVALUATION FUNCTION menu opens.

EVALUATION FUNCTION	
Peak Table	
Integration over a frequency band	

Fig. 8-22 EVALUATION FUNCTION menu

- 2. Use the rotary control to highlight "Peak Table".
- Press the ENT button. The peak table is displayed.

Battery: Mode: Meas.F	Spectrum A	180 V/m	Ant: 3AX 75M-3 Cbl: Std:	G Cellular+GSN Thresh:	1 22.5 µV/m	Thresh. Off
		Peak 1			•	
Index	Frequency		Level	Service		Set
1	21.6 MHz		5.111 V/m			Thresh.
2	34.7 MHz		4.278 V/m			
3	27.5 MHz		4.142 V/m			Set
4	41.1 MHz		3.085 V/m			No. of
5	57.5 MHz		2.524 V/m			Peaks
6	87.5 MHz		2.252 V/m			reaks
7	62.9 MHz		2.219 V/m			
8	67.3 MHz		2.178 V/m			
9	73.0 MHz		2.060 V/m			
10	117.0 MHz		1.777 V/m			
11	2992.5 MHz		1.749 V/m			
	Isotropic Result					
Fmin:	20 MHz	Fcent:	1.51 GHz	Sweep Time:	1.803 s	
Fmax:		Fspan:	2.98 GHz	No. of Runs:	40	
RBW:	5 MHz	Result:	ACT			

Fig. 8-23 Peak table

Note: Press the ESC button to display the frequency spectrum again.

Column header	Explanation
Index	Peak sequence number (maximum 50).
Frequency	Peak frequency value.
Level	Peak level value.
Service	Service to which the peak (frequency value) belongs, e.g. "UMTS". Assignment of a frequency value to a service is only possible if a corresponding service table has been selected in the CONFIGURATION / Service Table menu. The name of the selected service table is shown in the measurement menu, e.g. Orange.
or	The triangle indicates that there are more values in the table. They can be displayed by turning the rotary control.

The table below explains the column headers used in the peak table:

Table 8-2 Peak table column headers

The following softkey functions are available for this display mode:

Thresh. On	Activates the threshold if it is deactivated, i.e. the softkey label "Thresh. On" indicates that the threshold is currently switched <i>off</i> . The instrument will display all the peaks.
Thresh. Off	Deactivates the threshold if it is activated, i.e. the softkey label "Thresh. Off" indicates that the threshold is currently switched <i>on</i> . The instrument will only display the peaks that are above the specified threshold.
Set Thresh.	Sets the threshold for the peaks to be displayed.
Set No. of Peaks	Sets the number of peaks that are to be displayed (maximum 50 peaks).

Displaying only those peaks which exceed a selected threshold

- ✓ The peak table is displayed.
- 1. Press the Set Thresh softkey.

The "Set Threshold" selection box opens.

Battery: Mode: Meas.Ranj	Spectrum Analysis ge: 2.8 V/m	Cbl: SRM 1.5m	3G Wireless UK 1	
Index	Peak Frequency	Table: Level	Select value of upper limit	
1 2 3 4 5 6 7 8 9 10 11 12	1857.998 MHz 1860.970 MHz 1863.762 MHz 1863.6842 MHz 1867.168 MHz 1840.460 MHz 1845.073 MHz 1855.167 MHz 1858.528 MHz 1843.511 MHz 1873.146 MHz 1877.698 MHz	45.89 mV/m 30.66 mV/m 12.81 mV/m 5.207 mV/m 2.079 mV/m 2.074 mV/m 2.036 mV/m 2.011 mV/m 2.008 mV/m 1.974 mV/m 1.855 mV/m 1.791 mV/m	2 V/m 1.8 V/m 1.6 V/m 1.4 V/m 1.25 V/m 1.25 V/m 1.1 V/m 900 mV/m 900 mV/m 800 mV/m 630 mV/m 560 mV/m	
Fmin: Fmax: RBW:	1.84 GHz Fcent: 1.88 GHz Fspan: 200 kHz Result:		Sweep Time: 201 ms No. of Runs: 711	

Fig. 8-24 "Select Threshold" selection box

- 2. Use the rotary control to highlight the desired threshold value.
- 3. Press the **ENT** button.
- 4. Press the Thresh. On softkey.

(The softkey label changes to "Thresh. Off".)

Only those peaks which exceed the set threshold value will now be displayed. The selected threshold value (Thresh) is shown in the measurement menu.

Limiting the number of peaks displayed

- ✓ The peak table is displayed.
- 1. Press the Set No. of Peaks softkey.

The "Select max. number of peaks in peak table" selection box opens.

Battery:		Ant: 3AX 75M-3		
Mode:	Spectrum Analysi		Thresh: 22.5 µV/m	
Meas.Ra		n Std:		
	Pea	k Table:	Select max. number of	
Index	Frequency	Level	peaks in peak table	
1	29.3 MHz	5.945 V/m		
2	38.9 MHz	4.447 V/m	50	
3	49.6 MHz	2.965 V/m	30	
4	45.9 MHz	2.509 V/m	20	
5	74.8 MHz	2.090 V/m	10	
6	96.9 MHz	2.058 V/m	5	
7	59.2 MHz	1.976 V/m	3	
8	86.7 MHz	1.943 V/m	2	
9	54.3 MHz	1.935 V/m	1	
10	101.3 MHz	1.647 V/m	1'	
11	65.3 MHz	1.617 V/m		
ls	otropic Result		1	
Fmin:	20 MHz Fcent:	1.51 GHz	Sweep Time: 1.623 s	1
Fmax:	3 GHz Fspan		No. of Runs: 30	
RBW:	5 MHz Resul	t: ACT		

Fig. 8-25 "Select max. number of peaks in peak table" selection box

- 2. Use the rotary control to highlight the desired number.
- Press the ENT key. The peak table is now limited to the number of peaks you have specified.

8.9.3 Integration over a defined frequency band

The results in a defined frequency band within the currently selected frequency range can be integrated using this function. This evaluation function thus provides an indication of the broadband value within the frequency range being considered.

The current result (Value) is shown in the measurement menu.

- **Note:** The integration function takes all the spectral lines within the integration range into account, including those buried in the noise floor. The result of this evaluation function is therefore strongly dependent on the intrinsic noise level and consequently from the selected measurement range if the levels of the available signals are too close to the intrinsic noise level.
- ✓ "Spectrum Analysis" mode is set.
- 1. Press the **EVAL** button. The EVALUATION FUNCTION menu opens.

EVALUATION FUNCTION	
Peak Table Integration over a frequency band	

Fig. 8-26 EVALUATION FUNCTION menu

2. Use the rotary control to highlight "Integration over a frequency band".

3. Press the ENT button.

Two lines (band limits) are displayed in the frequency spectrum. The band limit frequencies (FIntmin and FIntmax) and the integrated level value (Value) are displayed in the measurement menu.

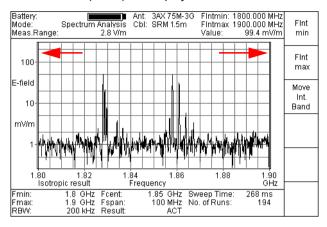


Fig. 8-27 Integrating the level value over a frequency band

The following softkey functions are available in this display mode:

FInt min	Sets the lower limit of the frequency band.
FInt max	Sets the upper limit of the frequency band.
Move Int. Band	Moves the frequency band over the spectrum.

Setting the lower limit of the frequency band

The lower limit of the frequency band can be set individually.

"Integration over a frequency band" display mode is activated.

1. Press the **FInt min** softkey.

The lower limit of the frequency band is indicated by a diamond.

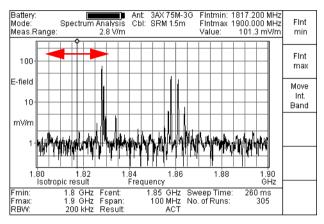


Fig. 8-28 Lower limit of frequency band

2. Use the rotary control to move the line to the desired frequency.

Setting the upper limit of the frequency band

The upper limit of the frequency band can be set individually.

✓ "Integration over a frequency band" display mode is activated.

1. Press the FInt max softkey.

The upper limit of the frequency band is indicated by a diamond.

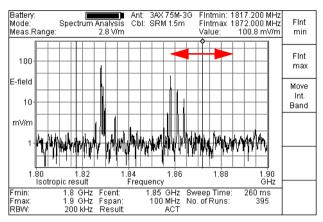


Fig. 8-29 Upper limit of frequency band

2. Use the rotary control to move the line to the desired frequency.

Moving the frequency band

- ✓ "Integration over a frequency band" display mode is activated.
- 1. Press the Move Int. Band softkey.

The demarcation lines for the frequency band are indicated by diamonds.

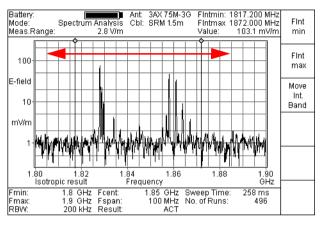


Fig. 8-30 Moving the frequency band

2. Use the rotary control to move the frequency band to the desired position.

Notes:

9 "UMTS P-CPICH Demodulation" mode (option)

9.1 Operating mode functions

Unlike GSM, you cannot simply use a frequency selective measurement with UMTS to detect individual channels and assign them to a radio cell. This is because the information in individual channels is "spread" over an entire frequency channel of 5 MHz and is also scrambled. This method is known as W-CDMA (Wideband Code Division Multiple Access). Within this multiplex signal there is a P-CPICH (Primary Common Pilot Channel) for each radio cell. This channel transmits continuously at a constant power level. Each cell has its own P-CPICH with its own scrambling code.

In "UMTS P-CPICH Demodulation" mode, the SRM decodes all the scrambling codes present in the selected UMTS frequency channel. In this way, it is capable of separately detecting and listing the contributions made by the individual cells to the overall field exposure level. It also calculates the sum of these contributions. You can use an extrapolation factor to estimate the "worst case" situation that would occur if all traffic channels were fully loaded. The SRM also displays the analog measurement value, which corresponds to the actual field exposure level integrated over the complete UMTS frequency channel of 5 MHz.

9.2 Selecting the operating mode

- ✓ The Option has been enabled (sec. 16.6, page 16-16).
- 1. Press the **MODE** button. The OPERATING MODES menu opens.

OPERATING MODES Safety Evaluation Spectrum Analysis UMTS P-CPICH Demodulation Time Analysis		
Spectrum Analysis UMTS P-CPICH Demodulation	OPERATING MODES	
Spectrum Analysis UMTS P-CPICH Demodulation		
Spectrum Analysis UMTS P-CPICH Demodulation		
UMTS P-CPICH Demodulation		
	Spectrum Analysis	
Time Analysis	UMTS P-CPICH Demodulation	
	Time Analysis	
		l

Fig. 9-1 OPERATING MODES menu

- 2. Use the rotary control to highlight "UMTS P-CPICH Demodulation".
- 3. Press the ENT button.

The measurement menu for "UMTS P-CPICH Demodulation" mode opens.

The softkey functions change.

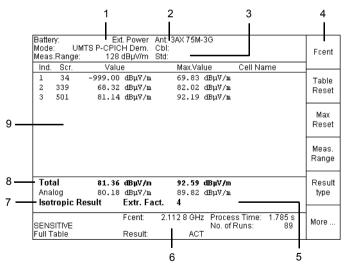


Fig. 9-2 Measurement menu for "UMTS P-CPICH Demodulation" mode

No.	Name	Description		
1	Operating states			
	Battery	Battery charge state.		
	Mode	Operating mode.		
	Meas. Range	Input attenuator setting (input sensitivity).		
2	Antenna param	eters		
	Туре	Selected / connected antenna.		
	Cbl	Selected / connected measurement cable.		
3	Evaluation			
	Std	Standard or regulation selected if result display is set to a percentage of a limit value.		
4	-	Softkey functions.		
5	OVERDRIVE display if the result overloads the device (Value). MAX OVERDRIVE display if the maximum value result overloads the device (Max Value).			
6	Measurement p	Measurement parameter display.		
	No Scr. Code found!! This message appears if the device cannot detect a scrambling code.			
	SENSITIVE	Optimization for high sensitivity or high speed (FAST) when detecting UMTS channels		
	Full Table	Display of the entire table. The entries in the table can be sorted and selected using various criteria.		
		Sorting table entries: see page 9-7		
		Selecting table entries: see page 9-8		
	Fcent	Center frequency		
	-	Provider's name (based on selected service table, if any; see sec. 14.6, page 14-7).		
	Process Time	Time taken to run a measurement sequence.		

Table 9-1 Key to "UMTS P-CPICH Demodulation" mode measurement menu

No.	Name	Description
	Measurement p	arameter display (continued).
	No. of Runs	Number of measurement runs.
	Result	Evaluation type: Current (actual) value (ACT) or average of several results (AVERAGE).
	AVG	Number of averages. Only displayed for "Result Type" = "AVERAGE".
7	Isotropic result	Display of measurement type: X, Y, Z axis measurement or isotropic measurement.
	Extr. Fact.	Display of extrapolation factor used for multiplying the individual results and the overall result but not the result of the analog field strength measurement.
8 Overall result display.		splay.
	Total	Overall result calculated from the individual results of instantaneous measurements (Value), as well as the overall result determined from the saved maximum values (Max. Value).
	Analog	Result of analog field strength measurement in the selected 5 MHz UMTS frequency channel.
9	Individual result	display.
	Ind.	Consecutive index corresponding to the detected scrambling codes.
	Scr.	Detected scrambling code number.
	Value	Current measurement value.
	Max. Value	Maximum value since last reset.
	Cell Name	Cell name, if a cell name table has been recorded (see sec. 14.7, page 14-9).

Table 9-1 Key to "UMTS P-CPICH Demodulation" mode measurement menu

9.3 Selecting the display

\Rightarrow Press the **DISPL** key.

The second to last softkey provides the following options:

Table Ratio	Switches to table display mode. The last column shows the ratios of the individual results ¹⁾ to the result of the analog field strength measurement (Value/Analog) in dB.
Bar Graph	Switches to graphic display mode, showing the measured values as a bar graph.
Mixed	Switches to mixed display mode:
	 Numerical display of the overall result²⁾ or the results for selected scrambling codes^{2,3)}. Graphic display versus time of the overall result ²⁾ or the results for selected scrambling codes^{2,3)}.
Value	Switches to numerical display of the overall result ²⁾ or the results for selected scrambling codes ^{2,3)} .
Graph	Switches to graphic display versus time of the overall result ²⁾ or the results for selected scrambling codes ^{2,3)} .
Table Normal	Switches to the default display mode showing the results $^{2,3)}$ as a table (fig. 9-2, page 9-2).

1 The extrapolation factor is not used for this calculation.

Multiplied by the extrapolation factor.
 Selecting table entries: see page 9-8

9.3.1 Table Normal display mode

This is the default display setting for "UMTS P-CPICH Demodulation" mode (fig. 9-2, page 9-2).

- ✓ You have pressed the DISPL key.
- The corresponding softkeys are displayed.
- 1. Press the second to last softkey repeatedly until **Table Normal** appears.
- Press the Table Normal softkey. The results are displayed as a table. Cell names are shown in the last column if a cell name table is recorded.
- ♦ Selecting a cell name table: see page 14-9.
- 3. Press the **ESC** key to return to the measurement menu.

Selecting the result units

- 1. Press the **UNIT** key. The "Select Display Unit" selection box opens.
- 2. Use the rotary control to highlight the units you want to select.
- 3. Press the ENT key.

The measurement results are shown with the desired units in the measurement menu. The extrapolation factor is applied to all individual results and to the overall result (Total) but not to the result of the analog field strength measurement (Analog).

Batter Mode: Meas		TS P-CPIC		Cbl:	3AX 75M-	30)	
Ind.	Scr.	Valu	e		Max.Va	lue	Select Display Unit	
1	34	-999.00	dBµV/m		63.81	dI		
2	339	64.13	dBµV/m		76.00	dI		
3	501	73.66	dBµV/m		86.17	dI	d8V/m	
							dBmV/m	
							dBµV/m	
							dBA/m	
							V/m	
							A/m	
							Wm²	
							m₩cm²	
Tota		74 19	dBµV/m		86.57	л	%	
Anal			dBuV/m		89.82			
	ropic Re		Extr. Fa		1	ш		
isut	iopic Re	esun	LAU. FO	ы.	•			
			Fcent:	2.1	128 GHz		Process Time: 1.852 s	1
SENS			D				No. of Runs: 325	
Full T	able		Result:		ACT			

Fig. 9-3 "Select Display Unit" selection box

- For a detailed description of the units that you can select, see sec. 8.8.1, page 8-14.
- Setting the extrapolation factor (Extr. Fact.): see page 9-31

Selecting "Full Screen" display mode

- \Rightarrow Press the **DISPL** key. The softkey labels change.
- ⇒ Press the Full Screen softkey. The entire display area is used for the results.

Press the ESC key to return to the measurement menu.

Sorting table entries

- 1. Press the **More** softkey. The softkey labels change.
- 2. Press the **Sort Table** softkey.

The "Sort Table" selection box opens. The following sort options are provided:

CODELists entries in increasing order of scrambling codes.VALUELists entries in decreasing order of measured values.MAX VALUELists entries in decreasing order of maximum values.CELL NAMELists entries in alphabetical order of cell names.

- 3. Use the rotary control to highlight the desired option.
- 4. Press the ENT key.

The table entries are shown in the desired order in the measurement menu.

Selecting table entries

- 1. Press the **More** softkey if necessary. The softkey labels change.
- 2. Press the **Select Menu** softkey.

The SELECT menu opens.

You can now choose from the following options using the softkeys:

- Select First Selects an entry in the table that is to be selected as the first in a series of entries. The entry is marked with a triangle pointing downwards.
- Select Last Selects an entry in the table that is to be selected as the last in a series of entries. The entry is marked with a triangle pointing upwards.

Select All Selects all the entries in the table.

Entries are marked with a check mark.

Select Selects or deselects the highlighted entry.

- Deselect The selected entry is marked with a check mark.
- Invert All Inverts the selection.
- 3. Use the rotary control to highlight the entry you want to select.
- 4. Press the appropriate softkey to make the type of selection you want.
- 5. Press the ENT key.

The selection you made is shown in the measurement menu.

The message "Partial Table" is shown at bottom left.

The overall result (Total) is made up from the contributions of the selected table entries only (Scrambling Codes).

Resetting the maximum values

 \Rightarrow Press the **Max Reset** softkey.

The stored maximum values are deleted. The measurement results themselves are retained. The measurement continues.

Resetting the entire table

 \Rightarrow Press the **Table Reset** softkey.

The entire table including all results up till now, as well as the sort options and selections will be deleted. A new measurement starts.

9.3.2 Table Ratio display mode

This display mode directly shows how much each UMTS radio cell contributes to the overall field strength of an UMTS frequency channel. The ratios are expressed in dB.

- ✓ "UMTS P-CPICH Demodulation" mode is set.
- ✓ You have pressed the **DISPL** key.
- ✓ The corresponding softkeys are displayed.
- 1. Press the second to last softkey repeatedly until Table Ratio appears.
- 2. Press the Table Ratio softkey.

The results are displayed as a table.

The last column shows the ratio of the individual results to the result of the analog field strength measurement in dB (Value/Analog).

The extrapolation factor is not applied to this calculation.

	Ext. Power CPICH Dem. 2.5 V/m		Full Screen
Ind. Scr.	Value	Max.Value Value/Analog	
1 34	0.000 µV/m	1.551 mV/m -999.00 dB	
2 339	1.236 mV/m	6.306 mV/m -17.35 dB	
3 501	4.752 mV/m	20.35 mV/m -5.65 dB	
Total	4.910 mV/m	21.30 mV/m	Bar
Analog	9.111 mV/m		Graph
Isotropic Result			
SENSITIVE	Fcent:	2.112 8 GHz Process Time: 1.807 s No. of Runs: 341	
Full Table	Result:	ACT	

Fig. 9-4 Table Ratio display mode

- 3. Press the ESC key to return to the measurement menu.
- ♦ Selecting the result units: see page 9-6
- Selecting "Full Screen" display mode: see page 9-7
- ♦ Sorting table entries: see page 9-7
- Selecting table entries: see page 9-8
- Resetting the maximum values: see page 9-8
- ♦ Resetting the entire table: see page 9-8

9.3.3 Bar Graph display mode

This display mode shows the individual results, the overall result (Total) and the result of the analog field strength measurement (Analog) as a bar graph.

✓ "UMTS P-CPICH Demodulation" mode is set.

- ✓ You have pressed the DISPL key.
- ✓ The corresponding softkeys are displayed.
- 1. Press the second to last softkey repeatedly until Bar Graph appears.
- 2. Press the Bar Graph softkey.

The results are displayed as a bar graph.

Individual results are numbered from 1 to 16 to correspond with the index numbers in the table display. The scrambling code number is shown within each bar.

The overall result is shown on the right (T = Total) along with the result of the analog field strength measurement (A = Analog). Maximum values are shown as horizontal lines.

You can use the rotary control to position the marker on individual bars in the graph. The selected item (Scrambling Code No., Total, or Analog) is shown in plain text along with the corresponding measurement value at the top right of the measurement menu.

The extrapolation factor is applied to all individual results and to the overall result (T), but not to the analog result (A).

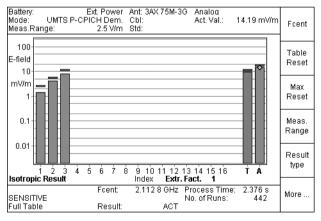


Fig. 9-5 Bar Graph display mode

- 3. Press the ESC key to return to the measurement menu.
- ♦ Selecting the result units: see page 9-6
- Setting the extrapolation factor (Extr. Fact.): see page 9-31

Selecting the Y-axis scale range

- You have pressed the DISPL key.
- The corresponding softkeys are displayed.
- 1. Press the **Y-Scale Range softkey**. The "Select Y-Scale Range" selection box opens.
- 2. Use the rotary control to highlight the desired value.
- 3. Press the **ENT** key. The Y-axis scale is set to the new value.

Selecting the Y-axis reference point

- ✓ You have pressed the **DISPL** key.
- ✓ The corresponding softkeys are displayed.
- 1. Press the **Y-Scale Ref** softkey. The "Select Y-Scale Reference" selection box opens.
- 2. Use the rotary control to highlight the desired value.
- Press the ENT key. The Y-axis reference point is set to the desired value.

Selecting the reference point automatically

- ✓ The "Select Y-Scale Reference" selection box is displayed.
- ✓ The **Auto** softkey is displayed.
- ⇒ Press the Auto softkey.

The Y-axis reference value is the same as the measurement range. The Y-axis reference adjusts automatically when you change the measurement range.

The selection box closes.

Selecting "Full Screen" display mode

Selecting "Full Screen" display mode: see page 9-7

Sorting the display of individual results

The individual results (Scrambling Codes) are shown in the same order as their index numbers in table display mode, so you can use the **Sort Table** softkey function to change the sort order.

♦ Sorting table entries: see page 9-7

Selecting displayed individual results

You can select the individual results that are displayed in the same way as you select them from the table, so you can use the **Select Menu** softkey function to change the options for selecting results.

The overall result (Total) is made up from the contributions of the selected table entries only (Scrambling Codes).

♦ Selecting table entries: see page 9-8

Using the marker to read out numerical results

⇒ Use the rotary control to position the marker on a bar in the graph. The corresponding Scrambling Code or the designation "Total" or "Analog" is shown together with the numerical measurement value in the top right of the measurement window.

Resetting maximum values

⇒ Press the Max Reset softkey.

The stored maximum values are deleted. The measurement results themselves are retained. The measurement continues.

Resetting the entire graph

 \Rightarrow Press the **Table Reset** softkey.

The entire graph including all results up till now, as well as the sort options and selections will be deleted. A new measurement starts.

9.3.4 Mixed display mode (numerical display with graphical display versus time)

The following are displayed in this mode for a selected individual result or for the overall result:

- The instantaneous (Value) and maximum (Max Value) field strength results as numerical values
- A graph of the field strength versus time.
- ✓ "UMTS P-CPICH Demodulation" mode is set.
- You have pressed the DISPL key.
- ✓ The corresponding softkeys are displayed.
- 1. Press the second to last softkey repeatedly until Mixed appears.
- 2. Press the Mixed softkey.

The results are displayed numerically and graphically. The extrapolation factor is applied to all the results.

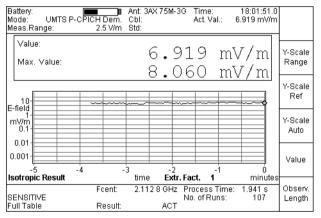


Fig. 9-6 Mixed display mode (numerical display with graphical display versus time)

- 3. Press the ESC to return to the measurement menu.
- Selecting the result units: see page 9-6
- ♦ Setting the extrapolation factor (Extr. Fact.): see page 9-31

Selecting the X-axis scale (Observation Length)

- You have pressed the DISPL key.
- ✓ The corresponding softkeys are displayed.

1. Press the Observ Length softkey.

The "Select Observation Length" selection box containing a range of available values opens.

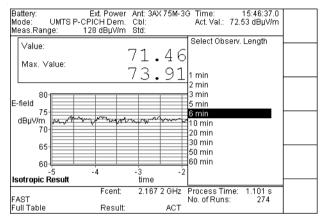


Fig. 9-7 "Select Observation Length" selection box

- 2. Use the rotary control to highlight the desired value.
- 3. Press the ENT key.

The X-axis and the measurement values recorded so far will be redrawn using the new scale.

Note: The X-axis scale is independent of the averaging time setting (Selecting the averaging parameters: see page 9-28).

Selecting the Y-axis scale range

- You have pressed the DISPL key.
- The corresponding softkeys are displayed.
- 1. Press the **Y-Scale Range softkey**. The "Select Y-Scale Range" selection box opens.
- 2. Use the rotary control to highlight the desired value.
- 3. Press the **ENT** key. The Y-axis scale is set to the new value.

Selecting the Y-axis reference point

- ✓ You have pressed the **DISPL** key.
- ✓ The corresponding softkeys are displayed.
- 1. Press the **Y-Scale Ref** softkey. The "Select Y-Scale Reference" selection box opens.
- 2. Use the rotary control to highlight the desired value.
- 3. Press the **ENT** key. The Y-axis reference point is set to the desired value.

Selecting the reference point automatically

- ✓ The "Select Y-Scale Reference" selection box is displayed.
- ✓ The Auto softkey is displayed.
- \Rightarrow Press the **Auto** softkey.

The Y-axis reference value is the same as the measurement range. The Y-axis reference adjusts automatically when you change the measurement range.

The selection box closes.

Using the marker to read out numerical results

The default marker is always visible. During the measurement, it is positioned on the instantaneous measurement value at the right hand edge of the window.

 \Rightarrow Press the **HOLD** key.

You can now use the rotary control to move the marker across the measurement graph. The Time and Value corresponding to the marker position are displayed in the result box at the top right of the window.

Selecting displayed individual results

You can select the individual results that are displayed in the same way as you select them from the table, so you can use the **Select Menu** softkey function to change the options for selecting results.

The overall result (Total) is made up from the contributions of the selected table entries only (Scrambling Codes).

♦ Selecting table entries: see page 9-8

Resetting maximum values

\Rightarrow Press the **Max Reset** softkey.

The stored maximum values are deleted. The measurement results themselves are retained. The measurement continues.

Resetting the entire graph

 \Rightarrow Press the **Table Reset** softkey.

The entire graph including all results up till now, as well as the sort options and selections will be deleted. A new measurement starts.

9.3.5 Value display mode (numerical)

The instantaneous (Value) and maximum (Max Value) field strength values of selected individual results are displayed numerically in this display mode.

- ✓ "UMTS P-CPICH Demodulation" mode is set.
- ✓ You have pressed the DISPL key.
- ✓ The corresponding softkeys are displayed.
- 1. Press the second to last softkey repeatedly until Value appears.
- 2. Press the Value softkey.

The results are displayed numerically.

The extrapolation factor is applied to all results.

Battery: Ext. Powe Mode: UMTS P-CPICH Dem Meas.Range: 2.5 V/n		
Value:	4.955 mV/m	
Max. Value:	12.30 mV/m	
Lestronia Desult	Extr. Fact. 1	Graph
Isotropic Result		
Fcent: SENSITIVE	2.112.8 GHz Process Time: 1.888 s No. of Runs: 475	
Full Table Result		

Fig. 9-8 Value display mode (numerical)

- 3. Press the ESC key to return to the measurement menu.
- ♦ Selecting the result units: see page 9-6
- ♦ Setting the extrapolation factor (Extr. Fact.): see page 9-31
- ♦ Selecting "Full Screen" display mode: see page 9-7
- ♦ Selecting table entries: see page 9-8
- **Note:** The numerical result is made up from the contributions of the selected table entries only (Scrambling Codes).
- ✤ Resetting the maximum values: see page 9-8
- ♦ Resetting the entire graph: see page 9-12

9.3.6 Graph (versus time) display mode

The variation of field strength versus time is displayed graphically for selected individual results or for the overall result in this display mode.

✓ "UMTS P-CPICH Demodulation" mode is set.

- ✓ You have pressed the DISPL key.
- ✓ The corresponding softkeys are displayed.
- 1. Press the second to last softkey repeatedly until Graph appears.
- 2. Press the **Graph** softkey.

The results are displayed graphically versus time along with the instantaneous measurement result value (Act. Value; shown in result box, top right).

Ext. Power Ant: 3AX 75M-3G Time 15:53:24.0 Batterv UMTS P-CPICH Dem. Mode: Chl Act. Val.: 1.768 mV/m Ecent Meas.Range 2.5 V/m Std: Table 30 Reset E-field 10 Max Reset 1m WWWW mV/m 3 Meas. Range 1 Result type -4 -3 Ó Isotropic Result time Extr. Fact. 4 minutes Fcent: 2.112 8 GHz Process Time: 1.928 s More ... SENSITIVE No. of Runs: 164 Partial Table Result ACT

The extrapolation factor is applied to all results.

Fig. 9-9 Graph (versus time) display mode

3. Press the **ESC** key to return to the measurement menu.

- ♦ Selecting the result units: see page 9-6
- Setting the extrapolation factor (Extr. Fact.): see page 9-31
- Selecting the X-axis scale (Observation Length): see page 9-14
- ♦ Selecting the Y-axis scale range: see page 9-14
- Selecting the Y-axis reference point: see page 9-15
- ✤ Selecting the reference point automatically: see page 9-15

- Selecting "Full Screen" display mode: see page 9-7
- ♥ Using the marker to read out numerical results: see page 9-15
- ♦ Selecting table entries: see page 9-8
- **Note:** The numerical result is made up from the contributions of the selected table entries only (Scrambling Codes).
- ✤ Resetting maximum values: see page 9-16
- **Note:** The maximum value is saved continuously in the background even if it is not displayed in the graph versus time.
- Resetting the entire graph: see page 9-16

9.4 Selecting an UMTS frequency or channel

There are two ways to set the measurement frequency to an UMTS frequency channel in "UMTS P-CPICH Demodulation" mode:

- By entering the center frequency (Fcent)
- By entering the channel number (Channel)

Choosing between "Fcent" and "Channel"

- Press the CONF button. The CONFIGURATION menu opens.
- ♦ Also refer to sec. 14.3, page 14-4.
- 2. Use the rotary control to highlight "Configure UMTS P-CPICH Demodulation Mode".
- 3. Press the ENT button.
- 4. Use the rotary control to highlight "Channel selection by ...".
- 5. Press the **ENT** button. The current setting (FCENT or CHAN) is highlighted.
- 6. Use the rotary control to select "FCENT" or "CHAN".

CONFIGURATION UMTS P-CPICH	DEMODULATION MODE	
Average Type	NUMBER OF AVERAGES	
Number of Averages	4	
Average Time	6 min	
Channel selection by	FCENT (Center frequency)	
Selection of Demod. Algorithm	SENSITIVE	
Noise Threshold	OFF	
Noise Threshold Factor	3 dB	
Graph Content	Value	

Fig. 9-10 CONFIGURATION UMTS P-CPICH DEMODULATION MODE menu (Channel selection by ...)

- 7. Press the ENT button.
- 8. Press the **MODE** and **ENT** buttons to return to "UMTS P-CPICH Demodulation" mode.

9.4.1 Selecting the center frequency

- ✓ The topmost softkey is labeled "Fcent".
- 1. Press the **Fcent** softkey.
- The entry box for the center frequency opens.
- Enter a value using the rotary control or the function keys. Once the first digit has been entered, the softkey labels change to indicate the possible units.

Meas.Range	MTS P-CPIC		Std:	Select Menu
Ind. Scr. 1 34 2 339 3 501	-999.00	dBµV/m		Select All
			2.167 2 GHz	Extr. Pol OFF
				Extr. Pol Factor
Total	81.72	dBuV/m	92.59 dBµV/m	
Analog	80.75	dBµV/m	89.82 dBµV/m	
Isotropic Result Extr. Fact. 4				
SENSITIVE		Fcent:	2.112.8 GHz Process Time: 1.618 s No. of Runs: 101	Sort Table
Full Table		Result:	ACT	

Fig. 9-11 "Set Fcent" entry box

- 3. Enter the units using the appropriate softkey.
- 4. Press the ENT button.

The center frequency you defined will be shown in the "Measurement parameters" pane of the measurement menu.

9.4.2 Selecting the channel number

- ✓ The topmost softkey is labeled "Chann".
- 1. Press the **Chann** softkey.
- The entry box for the channel number.
- 2. Enter a value using the rotary control or the function keys. Once the first digit has been entered, the softkey labels change.

Battery: Mode: Meas.Rar	UMTS P-CPIC			G		Select Menu
Ind. Sc		е	Max.Valu	Set Chan		
	-999.00		69.83 d			Select
	-999.00					All
3 501	81.72	dBµV∕m	92.19 d			
				10 836		Extr. Pol OFF
						Extr. Pol Factor
Total	81.72	dBµV/m	92.59 d	BuV/m		
Analog			89.82 d			
Isotropic Result Extr. Fact. 4						
		Fcent:	2.112 8 GHz	Process Time:		Sort
SENSITIV Full Table		Result:	ACT	No. of Runs:	101	Table

Fig. 9-12 "Set Channel" entry box

3. Press the **ENT** button.

The channel number you defined will be shown in the "Measurement parameters" pane of the measurement menu.

9.5 Selecting the measurement range

The system sensitivity depends on the input attenuator setting, which is determined by the "Measurement Range" parameter. A high measurement sensitivity avoids any falsification of the results that might occur due to the intrinsic noise of the device. However, the device must not be overloaded. Overloading can also be caused by signals that are outside the frequency range of the services being measured, such as those from a powerful radio transmitter.

For the above reasons, the SRM allows you to

- · select the measurement range manually,
- automatically search for the best measurement range,
- apply noise suppression.
- **Note:** The selected measurement range applies to all operating modes, so you do not have to set it again when you change operating modes.
- **Note:** Noise suppression is only applied to the numerical display of the analog measurement value.

9.5.1 Setting the measurement range manually

This method can be used if you know the field situation.

- Press the Meas Range softkey. The "Set Measurement Range (MR)" selection box opens showing a list of possible input sensitivities.
- 2. Use the rotary control to highlight the desired input sensitivity.
- Press the ENT button. The selected input sensitivity is set.

Battery: Mode: UN Meas.Range: Ind. Scr.	ITS P-CPICH	H Dem. BPV/m	Ant: Cbl: Std:	3AX 75M- Max.Va			sureme	ent Range	Select Menu
1 34 2 339 3 501	-999.00 -999.00 81.72			69.83 82.02 92.19	di di	(MR)	Vim		Select All
						7.1 6.3 5.6	V/m V/m V/m		Extr. Pol OFF
						5 4.5 4 3.6	V/m V/m V/m V/m		Extr. Pol Factor
Total	81.72	dBµV/m		92.59	đ	3.2	V/m		
Analog		dBµV/m		89.82	dI	2.8 2.5	V/m V/m		
Isotropic R	lesult	Extr. Fa	ct.	4		2.5	V/m		
SENSITIVE		Fcent:	2.1	128GH;	1	Process 1 No. of Rui		1.618 s 101	Sort Table
Full Table		Result:		ACT					

Fig. 9-13 "Set Measurement Range (MR)" selection box

9.5.2 Search for the best measurement range

This method is best if you do not know the field situation.

1. Press the Meas Range softkey.

The "Set Measurement Range (MR)" selection box opens; the fourth softkey is labeled **MR Search**.

2. Press the MR Search softkey.

The message "Searching for best measurement range. Please wait." is displayed. The SRM makes a background measurement over the entire frequency range covered by the antenna you are using. This will take several seconds. When the measurement is finished, the SRM automatically sets the measurement range to the best value and displays the normal measurement menu again.

Note: Press the ESC key if you want to stop the automatic setting process.

Selecting the parameters for the measurement range search (Configure General): see page 14-16

9.5.3 Using noise suppression (Noise Threshold)

The intrinsic noise of the device is present in all frequency ranges, including those that are not occupied with payload signals. When you perform a spectrum analysis and display the results graphically, it is easy to see when a spectral line disappears into the noise floor. You can set a threshold so that you can also make this distinction when the results are presented numerically as in "UMTS P-CPICH Demodulation" mode. If the result is below this threshold level, the device displays the threshold value preceded by the "<" character (i.e. less than the threshold value) instead of the actual measured value. The results from decoding the scrambling codes are not affected by this.

You can set threshold levels of 0, 3, 6, 10, 15 and 20 dB. These values are relative to the level of the intrinsic noise floor.

Selecting the threshold value for noise suppression

- 1. Press the **CONF** key.
 - The CONFIGURATION menu opens.
- 2. Use the rotary control to highlight "Configure UMTS P-CPICH Demodulation Mode".
- Press the ENT key. The current settings will be displayed.
- 4. To change the setting, use the rotary control to highlight "Noise Threshold Factor".
- 5. Press the ENT key.
- 6. Use the rotary control to select a value between 0 and 20 dB.

Average Type Number of Averages Average Time	NUMBER OF AVERAGES 4 6 min	
Channel selection by Selection of Demod. Algorithm Noise Threshold Noise Threshold Factor	FCENT (Center frequency) SENSITIVE OFF 3 dB	
Graph Content	Value	

Fig. 9-14 CONFIGURATION UMTS P-CPICH DEMODULATION MODE menu, setting the noise suppression threshold (Noise Threshold Factor)

- 7. Press the **ENT** key. The threshold value is set.
- 8. Press the ESC twice to return to the measurement menu.

Activating and deactivating noise suppression

- 1. Press the **CONF** key. The CONFIGURATION menu opens.
- 2. Use the rotary control to highlight "Configure UMTS P-CPICH Demodulation Mode".
- Press the ENT key. The current settings will be displayed.
- 4. To change the setting, use the rotary control to highlight "Noise Threshold".
- 5. Press the ENT key.
- Use the rotary control to select "ON" or "OFF". Automatic noise suppression is activated or deactivated.
- 7. Press the ESC key twice to return to the measurement menu. When noise suppression is activated, the measurement menu displays the set threshold value preceded by the "<" character for all numerical measurement values that are below the threshold value.

9.6 Selecting the result type

The result type defines how the values recorded are displayed.

ACTThe actual (latest) measured values are displayed.AVERAGEA specified number of measured values are averaged.
The resulting values are displayed. The number of
values averaged is set in the CONFIGURATION menu.

Selecting the averaging parameters: see page 9-28

Selecting the result type

- Press the **Result type** softkey. The "Select Result Type" selection box opens showing a list of possible result types.
- 2. Use the rotary control to highlight the desired result type.
- 3. Press the ENT button.

The selected result type is shown in the "Measurement parameters" pane of the measurement menu.

9.7 Selecting the averaging parameters

The SRM provides two ways of averaging the results:

- Averaging over a specified number of individual results (Number of Averages)
- Averaging over a specified time (Average Time)

You can set both parameters in the CONFIGURATION menu. They will be effective only when you select "AVERAGE" or "MAX AVERAGE" evaluation mode.

Selecting averaging over a specified number of results (Number of Averages)

- Press the CONF key. The CONFIGURATION menu opens.
- 2. Use the rotary control to highlight "Configure UMTS P-CPICH Demodulation Mode".
- Press the ENT key. The current settings will be displayed.
- 4. To change the setting, use the rotary control to highlight "Average Type".
- 5. Press the ENT key.
- 6. Use the rotary control to set the command to "Number of Averages".

CONFIGURATION UMTS P-CPICH	DEMODULATION MODE	
Average Type Number of Averages Average Time Channel selection by Selection of Demod. Algorithm Noise Threshold Noise Threshold Factor Graph Content	NUMBER OF AVERAGES 4 6 min FCENT (Center frequency) SENSITIVE OFF 3 dB Value	

Fig. 9-15 CONFIGURATION UMTS P-CPICH DEMODULATION MODE menu

- 7. Press the ENT key.
- 8. Use the rotary control to highlight "Number of Averages".

- 9. Press the ENT key.
- 10.Use the rotary control to set the number of averages (between 4 and 64).
- 11. Press the ENT key.
- 12.Press the **ESC** key twice to return to the measurement menu. The selected averaging parameter is shown in the "Measurement parameter" pane of the measurement menu.

Selecting averaging over a specified time (Average Time)

- 1. Press the **CONF** key. The CONFIGURATION menu opens.
- 2. Use the rotary control to highlight "Configure UMTS P-CPICH Demodulation Mode"
- 3. Press the ENT key.
 - The current settings will be displayed.
- 4. To change the setting, use the rotary control to highlight "Average Type".
- 5. Press the ENT key.
- 6. Use the rotary control to set the command to "Average Time".
- 7. Press the ENT key.
- 8. Use the rotary control to highlight "Average Time".
- 9. Press the ENT key.
- 10.Use the rotary control to set the averaging time (between 1 and 30 min).
- 11. Press the **ENT** key.
- 12.Press the **ESC** key twice to return to the measurement menu. The selected averaging parameter is shown in the "Measurement parameter" pane of the measurement menu.

9.8 Selecting the UMTS demodulation algorithm (FAST/SENSITIVE)

In FAST mode, the SRM-3000 is optimized for fast measurements (fast Process Time). The instrument detects all the UMTS channels that have a level which is not less than 10 dB below the highest measured channel level.

In SENSITIVE mode, the SRM-3000 also detects UMTS channels that have a level which is up to 15 dB below the highest measured channel level. This will, of course, slow down the measurement (extend the Process Time).

Choosing between FAST and SENSITIVE

- 1. Press the **CONF** button. The CONFIGURATION menu opens.
- Configurations for "UMTS P-CPICH Demodulation" mode: see page 14-4
- 2. Use the rotary control to highlight "Configure UMTS P-CPICH Demodulation Mode".
- 3. Press the ENT button.
- 4. Use the rotary control to highlight "Selection of Demod Algorithm".
- Press the ENT button. The current setting (FAST or SENSITIVE) is highlighted.
- 6. Use the rotary control to select the setting you want.

CONFIGURATION UMTS P-CPICH DEMODULATION MODE				
Average Type	NUMBER OF AVERAGES			
Number of Averages	4			
Average Time	6 min			
Channel selection by	FCENT (Center frequency)			
Selection of Demod. Algorithm	FAST			
Noise Threshold	OFF	7		
Noise Threshold Factor	3 dB			
Graph Content	Value			
1				

Fig. 9-16 CONFIGURATION UMTS P-CPICH DEMODULATION MODE menu (Selection of Demodulation Algorithm)

- 7. Press the ENT button.
- 8. Press the **MODE** and **ENT** buttons to return to "UMTS P-CPICH Demodulation" mode.

9.9 Setting the extrapolation factor (Extr. Fact.)

The extrapolation factor is applied to all the results of UMTS P-CPICH Demodulation, but not to the result of the analog field strength measurement for the entire UMTS frequency channel. You can set the value of the extrapolation factor anywhere between 1 and

100 with a resolution of 0.001.

Extr. Fact. 1 means that the results are unchanged.

- **Note:** The extrapolation factor always refers to the power level, even if you have selected field strength units (Selecting the result units: see page 9-6).
- ✓ "UMTS P-CPICH Demodulation" mode is set.
- 1. Press the **More** softkey. The softkey labels change.
- 2. Press the **Extr. Pol Factor** softkey. The "Set Extrapolation Factor" entry box opens.
- Use the rotary control or the function keys to enter a value. The softkey labels change as soon as you have entered the first digit.

Battery: Mode: UMTS P- Meas.Range:	CPICH Dem.	Ant: 3AX 75M-3G Cbl: Std:	
Ind. Scr.	Value	Max.Value Set Extrapolation	
1 34	0.000 µV/m	0.000 factor	
2 339	1.704 mV/m	3.300	
3 501	3.572 mV/m	9.238	
		3.3	
Total	3.957 mV/m	9.810 mV/m	
Analog	7.944 mV/m	15.32 mV/m	
Isotropic Result	Extr. Fa	act. 1	
SENSITIVE	Fcent:	2.112.8 GHz Process Time: 1.660 s No. of Runs: 331	
Full Table	Result:	ACT	

Fig. 9-17 CONFIGURATION UMTS P-CPICH DEMODULATION MODE menu (Set Extrapolation Factor)

4. Press the ENT key.

The extrapolation factor setting is made. however, it is not effective until you activate the extrapolation function.

Activating and deactivating the extrapolation function

 \Rightarrow Press the **Extr. Pol ON** softkey.

The extrapolation factor you set will now be applied to the results. The value of the extrapolation factor is shown in the measurement menu. The softkey label changes to **Extr. Pol OFF**.

 \Rightarrow Press the **Extr. Pol OFF** softkey.

The extrapolation factor you set will no longer be applied to the results. The value 1 is shown in the measurement menu. The softkey label changes to **Extr. Pol ON**.

9.10 Evaluating and interpreting measurement results

After you start the measurement, the SRM-3000 scans the UMTS frequency channel you set for scrambling codes and measures the corresponding field strengths. It also makes an analog measurement of the total power level of the UMTS frequency channel at the same time.

Battery: Mode: UM Meas.Range:	ITS P-CPIC		Ant: 3AX 75M-3G Cbl: Std:	Select Menu
Ind. Scr.	Valu	e	Max.Value Cell Name	
1 34	-999.00	dBµV/m	69.00 dBµV/m	Select
2 339	69.70	dBµV/m	81.18 dBµV/m	All
3 501	80.12	dBµV/m	91.36 dBµV/m	
				Extr. Pol OFF
				Extr. Pol Factor
Total	80.49	dBuV/m	91.75 dBuV/m	
Analog			89.82 dBuV/m	
Isotropic R			ct. 3.3	
SENSITIVE		Fcent:	2.112 8 GHz Process Time: 1.8 No. of Runs:	876 s Sort 286 Table
Full Table		Result:	ACT	14610

Fig. 9-18 Results of an UMTS measurement

9.10.1 Individual results

In the default display setting ("Table Normal"), the "Scr." column successively lists in ascending order the numbers of the scrambling codes that have been detected (numbers between 0 and 511). They are also numbered consecutively in the "Ind." column. The list can contain up to 16 scrambling codes.

The cell names are shown in plain text in the "Cell Name" column if you have recorded a corresponding table (see sec. 14.7, page 14-9).

The instantaneous measurement result multiplied by the extrapolation factor (Extr. Fact.) is shown for each scrambling code in the "Value" column.

The maximum values occurring since the start of the measurement multiplied by the extrapolation factor (Extr. Fact.) are shown in the "Max. Value" column. You can clear these values by pressing the **Max Reset** softkey.

You can clear the entire table by pressing the **Table Reset** softkey. You can use this function to clear unwanted scrambling codes from the list (i.e. ones that are not to be received any more), making room for new scrambling codes.

Note: A Table Reset occurs each time you change a parameter.

9.10.2 Overall result (Total)

This value corresponds to the total power of all the scrambling codes listed in the table, multiplied by the extrapolation factor (Extr. Fact.). The overall result is determined for the instantaneous values and for the maximum values of the individual results.

9.10.3 Partial results for specific radio cells (Scrambling Codes)

You will often only want to determine the contribution that certain radio cells in an UMTS frequency channel make to the overall field strength. You can use the **Select Menu** softkey function to select the radio cells you are interested in by means of their scrambling codes.

♦ Selecting table entries: see page 9-8

The selection you make will apply in all display modes and for all evaluations. This means that the numerical value of the overall result (Total) as well as the graphical display of results versus time will only take the selected scrambling codes into account.

If you only select one scrambling code, you can display the variation in the field strength of this radio cell versus time.

9.10.4 Analog measurement result (Analog)

This value is the direct result of an analog measurement of the selected UMTS frequency channel made using a fixed resolution bandwidth (RBW) of 5 MHz. The extrapolation factor is not applied to this result.

10 "Time Analysis" mode

10.1 Operating mode function

"Time Analysis" mode enables you to make selective measurements at a defined frequency (Fcent), e.g. to monitor the field strength of a GSM or UMTS channel. The resolution bandwidth (RBW) can be selected to match the channel bandwidth, and averaging over a user defined time period, e.g. 6 minutes, is also possible. Maximum hold functions simplify the on-site evaluation of results.

The results are displayed numerically and/or graphically.

One advantage of "Time Analysis" mode is that the results are recorded **continuously over time** if you use a single axis antenna or measure just one axis of a three axis antenna.

You cannot make isotropic measurements using a single axis antenna in "Time Analysis" mode, since a successive measurement of three separate axes naturally means that the results cannot all be recorded at the same (or the correct) point in time.

10.2 Selecting the operating mode

- ✓ The option is activated (see sec. 16.6).
- 1. Press the **MODE** button. The OPERATING MODES menu opens.

OPERATING MODES	
Or faith Eacharding	
Safety Evaluation	
Spectrum Analysis	
UMTS P-CPICH Demodulation	
Time Analysis	

Fig. 10-1 OPERATING MODES menu

2. Use the rotary control to highlight "Time Analysis".

3. Press the ENT button.

The measurement menu for "Time Analysis" mode opens. The softkey functions change.

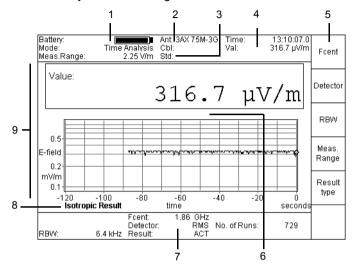


Fig. 10-2 "Time Analysis" mode measurement menu

No.	Name	Description		
1	Operating states			
	Battery	Battery charge state		
	Mode	Operating mode		
	Meas. Range	Input attenuator setting (input sensitivity)		
2	Antenna parameters			
	Туре	Selected / connected antenna		
	Cbl	Selected / connected measurement cable		

Table 10-1 Key to "Time Analysis" mode measurement menu

No.	Name	Description				
3	Evaluation					
	Std	Standard or regulation selected if result display is set to a percentage of a limit value				
4	Numerical result					
	Time	Displays the time of day in hh:mm:ss during the measurement. Displays the timestamp (resolution 0.1 second) corresponding to the measured value when the results are read out.				
	Value	Measured value.				
5	Softkey function	IS				
6	OVERDRIVE - displayed if the instrument is overdriven					
7	Measurement p	arameter display				
	RBW	Resolution bandwidth				
	Fcent	Center frequency				
	Detector	Detector type: RMS or PEAK value				
	No. of Runs	Number of measurements				
	Result	Result type				
	AVG	Averaging time. Only displayed if "Result Type" = "AVERAGE" or "MAX AVERAGE". The detector must be set to "RMS". A bar graph shows the progress of measurements until the set averaging time has elapsed.				
8	Isotropic result	It Measurement type display: Measurement of X, Y, or Z axis, or isotropic measurement				
9	Result display					

Table 10-1 Key to "Time Analysis" mode measurement menu

10.3 Selecting display options

 \Rightarrow Press the **DISPL** button.

The second to last softkey has three possible functions:

- Value Switches the display to show the measured values numerically.
- Graph Switches the display to show the measured values as a graph.
- Mixed Switches the display to show the measured values numerically and as a graph.

10.3.1 Value display

- ✓ The **DISPL** button has been pressed.
- ✓ The corresponding softkeys are displayed.
- 1. Press the **Value** softkey. The result is shown as a numerical value in the display.

Battery: Mode: Meas.Range:	Ant: 3AX 75M-3G Time: 13:12:06.0 Time Analysis Cbl: Val: 330.8 μV/m 2.25 V/m Std:	
Value:	330.8 µV∕m	
Isotropic Re	sult	Graph
RBW:	Fcent: 1.86 GHz Detector: RMS No. of Runs: 1727 6.4 kHz Result: ACT	1

Fig. 10-3 Value display

2. Press the **ESC** button to revert to the default setting.

Selecting the result units

1. Press the **UNIT** key. The "Select Display Unit" selection box opens.

- 2. Use the rotary control to select the desired units.
- Press the ENT key. The results are shown in the desired units in the "Time Analysis" mode measurement menu.

Selecting "Full Screen" display mode

1. Press the **DISPL** key.

The softkey labels change.

 \Rightarrow Press the **Full Screen** softkey.

The entire display area is used to display the results.

Press the **ESC** key to return to the default display mode.

10.3.2 Graph display

- ✓ The **DISPL** button has been pressed.
- ✓ The corresponding softkeys are displayed.
- 1. Press the Value softkey.

The result history is shown as a graph in the display:

The current measured value is shown on the right as the zero position on the x axis. The previous values are shown as a graph to the left of this position.

The times shown along the x axis are therefore negative values.

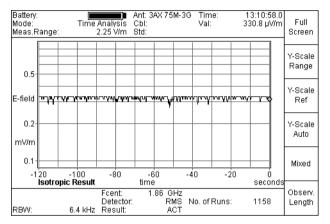


Fig. 10-4 Graph display

2. Press the ESC button to revert to the default setting.

Selecting the result units

- 1. Press the UNIT key.
- The "Select Display Unit" selection box opens.
- 2. Use the rotary control to select the desired units.
- Press the ENT key. The results are shown in the desired units in the "Time Analysis" mode measurement menu.

Selecting the X axis scaling (Observation Length)

- ✓ The **DISPL** button has been pressed.
- ✓ The corresponding softkeys are displayed.

1. Press the Observ Length softkey.

The "Select Observation Length" selection box opens showing a list of available values.

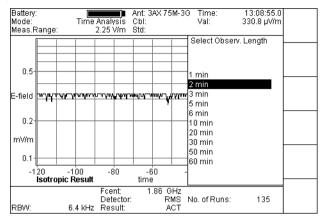


Fig. 10-5 "Select Observation Length" selection box

- 2. Use the rotary control to highlight the desired value.
- 3. Press the ENT button.

The scaling of the x axis and the measured values recorded so far is adjusted.

Note: The X-axis scale is independent of the averaging time setting (Selecting the Averaging Time: see page 10-18).

Selecting the Y axis scale range

- ✓ The DISPL button has been pressed.
- ✓ The corresponding softkeys are displayed.
- Press the **Y-Scale Range** softkey. The "Select Y-Scale Range" selection box opens.
- 2. Use the rotary control to highlight the desired value.
- 3. Press the ENT button.

The Y-axis scale range is adjusted.

Selecting the Y axis reference point

- ✓ The **DISPL** button has been pressed.
- ✓ The corresponding softkeys are displayed.

1. Press the Y-Scale Ref softkey.

The "Select Y-Scale Reference" selection box is displayed.

- 2. Use the rotary control to highlight the desired value.
- 3. Press the ENT button.

The Y axis reference point is set to the selected value.

Selecting the reference value automatically

- ✓ The **DISPL** button has been pressed.
- ✓ The corresponding softkeys are displayed.
- ⇒ Press the Y-Scale Auto softkey. The Y-axis reference value is the same as the measurement range. The Y-axis reference adjusts automatically when you change the measurement range.

Selecting "Full Screen" display mode

- 1. Press the **DISPL** key. The softkey labels change.
- ⇒ Press the Full Screen softkey. The entire display area is used to display the results.

Press the **ESC** key to return to the default display mode.

10.3.3 Mixed display

- ✓ The **DISPL** button has been pressed.
- ✓ The corresponding softkeys are displayed.
- 1. Press the Mixed softkey.

The current measurement result is shown in the upper part of the display. The result history is shown as a graph in the lower part of the display

(Graph display: see page 10-6).

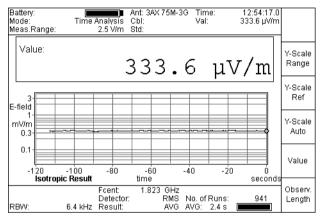


Fig. 10-6 Value display

- Selecting the X axis scaling (Observation Length): see page 10-6
- Selecting the Y axis scale range: see page 10-7
- Selecting the result units: see page 10-4
- 2. Press the ESC button to revert to the default setting.

10.4 Selecting the Center Frequency (Fcent)

- 1. Press the **Fcent** softkey. The entry box for the center frequency opens.
- Enter a value using the rotary control or the function keys. Once the first digit has been entered, the softkey labels change to indicate the possible units.

M	attery: ode: eas.Range:		Analysis 180 V/m	Ant: 3A) Cbl: Std:	<75M-3	-		
						Set Fcent		
	Value:			398	8.	1.500 05 GHz		-
	sotropic Res	sult						
	BW:	6 MHz	Fcent: Detector Result:	1.500 0 r:		No. of Runs:	101	-

Fig. 10-7 "Set Fcent" entry box

- 3. Enter the units using the appropriate softkey.
- 4. Press the **ENT** button.

The center frequency you defined will be shown in the "Measurement parameters" pane of the measurement menu.

10.5 Selecting the Detector Type (RMS value, peak value)

You can select either an RMS value detector or a PEAK value detector.

- 1. Press the **Detector** softkey.
- The detector type entry box opens.
- 2. Use the rotary control to highlight the required detector type.
- 3. Press the ENT button.

The selected detector type will be shown in the "Measurement parameters" pane of the measurement menu.

Battery: Mode: Tim Meas.Range:	Ant: 3AX 75M-3 e Analysis Cbl: 4 V/m Std:	3G
Value:	398.	ACT ACT ACT ACG MAX MAX AVERAGE
Isotropic Result		
RBW: 6.4 kH		No. of Runs: 805 AVG: 6 min 🔳

Fig. 10-8 "Select Result Type" entry box

- **Note:** Because peak value detection only makes sense when you are displaying instantaneous or maximum values, the device automatically switches the result type to "ACT" if "AVG" or "MAX AVG" is set when you select "PEAK" detector type.
- ♦ Selecting the Result Type: see page 10-17.
- **Note:** The peak value detector has a hold time of 480 ms. This means that the result displayed is the highest value that occurred during the last 480 ms. As a result, the numerical display is not jittery and the graph display is smoother.

10.6 Selecting the Resolution Bandwidth (RBW)

1. Press the **RBW** softkey.

The resolution bandwidth entry box opens.

2. Use the rotary control to highlight the desired resolution bandwidth.

	Ant: 3AX 75M-30 Analysis Cbl: 180 V/m Std:		
Value:	41.1	Select Resolution Bandwidth (RBW) 80 kHz 64 kHz 50 kHz 40 kHz 32 kHz 25 kHz 20 kHz 16 kHz 12.5 kHz 10 kHz 8 kHz	
Isotropic Result		6.4 kHz	
RBW: 6.4 kHz	Fcent: 900 MHz Detector: PEAK Result: ACT	No. of Runs: 51	

Fig. 10-9 "Select Resolution Bandwidth (RBW)" entry box

3. Press the ENT button.

The selected resolution bandwidth will be shown in the "Measurement parameters" pane of the measurement menu.

10.7 Setting the measurement range

The system sensitivity depends on the input attenuator setting, which is determined by the "Measurement Range" parameter. A high measurement sensitivity avoids any falsification of the results that might occur due to the intrinsic noise of the device. However, the device must not be overloaded. Overloading can also be caused by signals that are outside the frequency range of the services being measured, such as those from a powerful radio transmitter which might be superimposed on the mobile telephone signals that you actually want to measure.

For the above reasons, the SRM allows you to

- select the measurement range manually,
- automatically search for the best measurement range,
- apply noise suppression.
- **Note:** The measurement range you select will apply to all operating modes, so you do not have to set it each time you change from one operating mode to another.
- **Note:** Noise suppression is only effective for the numerical display of results (Value).

10.7.1 Setting the measurement range manually

This method can be used if you know the field situation.

- Press the Meas Range softkey. The "Set Measurement Range (MR)" selection box opens showing a list of possible input sensitivities.
- 2. Use the rotary control to highlight the desired input sensitivity.
- Press the ENT button. The selected input sensitivity is set.

	t. Power Ant: 3A) Analysis Cbl: 2.5 V/m Std:	(75M-3)	3 Time: Val:		6:01:25.0 73 mV/m	
Value:	12	.7	Set Meas (MR) 9 8 7.1 6.3 5.6 5 4.5 4 3.6 3.2 2.8	V/m V/m V/m V/m V/m V/m V/m V/m V/m V/m	t Range	MR Search
Isotropic Result			2.5	V/m		
RBW: 4.8 MHz	Fcent: Detector: Result:	3 GHz RMS ACT	No. of Rui	ns:	158	

Fig. 10-10 "Set Measurement Range (MR)" selection box

10.7.2 Search for the best measurement range

This method is best if you do not know the field situation.

1. Press the Meas Range softkey.

The "Set Measurement Range (MR)" selection box opens; the fourth softkey is labeled **MR Search**.

2. Press the MR Search softkey.

The message "Searching for best measurement range. Please wait." is displayed. The SRM makes a background measurement over the entire frequency range covered by the antenna you are using. This will take several seconds. When the measurement is finished, the SRM automatically sets the measurement range to the best value and displays the normal measurement menu again.

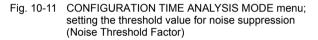
Note: Press the ESC key if you want to stop the automatic setting process.

Selecting the parameters for the measurement range search (Configure General): see page 14-16

10.7.3 Using noise suppression (Noise Threshold)

The intrinsic noise of the device is present in all frequency ranges, including those that are not occupied with payload signals. When you perform a spectrum analysis and display the results graphically, it is easy to see when a spectral line disappears into the noise floor. You can set a threshold so that you can also make this distinction when the results are presented numerically as in Mode "Safety Evaluation". If the result is below this threshold level, the device displays the threshold value preceded by the "<" character (i.e. less than the threshold value) instead of the actual measured value.

You can set threshold levels of 0, 3, 6, 10, 15 and 20 dB. These values are relative to the level of the intrinsic noise floor.


Selecting the threshold value for noise suppression

1. Press the CONF key.

The CONFIGURATION menu opens.

- 2. Use the rotary control to highlight "Configure Safety Evaluation Mode".
- 3. Press the **ENT** key. The current settings will be displayed.
- 4. To change the setting, use the rotary control to highlight "Noise Threshold Factor".
- 5. Press the ENT key.
- 6. Use the rotary control to select a value between 0 and 20 dB.

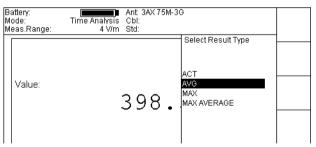
CONFIGURATION TIME ANALYS	SIS MODE	
Average Time	2.4 s	
Noise Threshold	OFF	
Noise Threshold Factor	3 dB	

- 7. Press the **ENT** key. The threshold value is set.
- 8. Press the ESC key twice to return to the measurement menu.

Activating and deactivating noise suppression

- 1. Press the **CONF** key. The CONFIGURATION menu opens.
- 2. Use the rotary control to highlight "Configure Safety Evaluation Mode".
- Press the ENT key. The current settings will be displayed.
- 4. To change the setting, use the rotary control to highlight "Noise Threshold".
- 5. Press the ENT key.
- Use the rotary control to select "ON" or "OFF". Automatic noise suppression is activated or deactivated.
- 7. Press the ESC key twice to return to the measurement menu. When noise suppression is activated, the measurement menu displays the set threshold value preceded by the "<" character for all numerical measurement values that are below the threshold value.

10.8 Selecting the Result Type


The result type defines how the values recorded are displayed.

ACT AVG	The current (actual) measured value is displayed. For "Detector" = "RMS" only: The measured values are averaged over a defined time period. The resulting value is displayed. A bar graph shows the progress of the measurement until the averaging time has elapsed. As soon as the averaging time has elapsed (bar graph full), the instrument refreshes the result value using the latest measurement results and discards the oldest results. This gives a "sliding" average which reflects the status at the time. The averaging time is defined in the CONF menu.
MAX	Selecting the Averaging Time: see page 10-18 The maximum value that occurred since the start of the measurement is displayed.
MAX AVERAGE	For "Detector" = "RMS" only: The maximum value of the average values that occurred since the start of the measurement is displayed.

Selecting the result type

1. Press the **Result type** softkey.

A selection box opens showing a list of possible result types.

- 2. Use the rotary control to highlight the desired result type.
- 3. Press the ENT button.

The selected result type is shown in the "Measurement parameters" section of the measurement menu.

10.9 Selecting the Averaging Time

The averaging parameter is defined in the CONFIGURATION menu. It specifies the time period over which the measured values are averaged for the result types "AVERAGE" and "MAX AVERAGE".

1. Press the **CONF** button.

The CONFIGURATION menu opens.

- 2. Use the rotary control to highlight "Configure Time Analysis Mode".
- 3. Press the ENT button.
- 4. Use the rotary control to highlight "Averaging Time".
- Press the ENT button. The current setting (0.96 s ... 30 min.) is highlighted.

CONFIGURATION TIME ANALY:	3IS MODE	
Average Time Noise Threshold Noise Threshold Factor	0.96 s OFF 3 dB	

Fig. 10-13 CONFIGURATION TIME ANALYSIS MODE menu (Averaging Time)

- 6. Use the rotary control to highlight the desired averaging time.
- 7. Press the ENT button.
- Press the MODE and ENT buttons to return to "Time Analysis" mode. The selected averaging time will be shown in the "Measurement parameters" pane of the measurement menu.

10.10 Evaluating the results

The SRM just stores the last value measured when it is in numeric display mode. When in graph display mode or mixed graph and numeric display mode, it stores the numerical results continuously along with a corresponding timestamp with a time resolution of 0.1 seconds.

Marker function

✓ Graph display mode or Mixed display mode

The default marker is always displayed and is located on the current measurement value at the right hand edge of the window during the measurement.

 \Rightarrow Press the **HOLD** key.

You can now use the rotary control to move the marker across the result graph. The Time and corresponding measurement result (Value) are displayed numerically in the results pane at the top right of the window.

Duty cycle function

- ✓ Graph display mode or Mixed display mode
- Detector = RMS
- ✓ Result Type = ACT or AVG

You can use the duty cycle function to automatically display the ratio of the average power level to the maximum power level (Pavg/Pmax), calculated over the displayed time period.

Selecting the X axis scaling (Observation Length): see page 10-6.

You can use this evaluation to determine the duty cycle of transmitters. The function works in **HOLD** mode as well as during a measurement in progress.

- Press the EVAL key. The EVALUATION FUNCTION menu containing the "Duty Cycle" command opens.
- 2. Press the ENT key.

The duty cycle result is shown in the result pane at the top right of the window. The marker function is disabled.

3. Press the **ESC** key to deactivate the duty cycle function.

Notes:

11 Isotropic measurements

Measurement with a three axis antenna

Three axis antennas make simple, rapid isotropic measurements possible by automatically detecting the three spatial components of the field to be measured. Narda Safety Test Solutions offers a three axis antenna for measuring electric field strength which covers the frequency range from 75 MHz to 3 GHz. You can, of course, measure each axis separately using a three axis antenna.

Measurement with a single axis antenna

Isotropic measurement using a single axis antenna is much more time consuming than a measurement made with a three axis antenna because the three axes have to me measured separately one after the other.

The SRM provides support for sequential measurements made using a single axis antenna and for calculation of the isotropic result.

The following sections explain how such measurements can be made.

You can use any suitable antenna and appropriate cable regardless of the items supplied with the instrument.

11.1 Measurements with a three axis antenna

11.1.1 Isotropic measurement with a three axis antenna

✓ A Narda three axis antenna is connected to the SRM-3000 either directly or via a cable.

Isotropic measurement mode is selected automatically by default. All three axes are measured one after the other and the isotropic result is then calculated and displayed by the SRM-3000.

The label "Isotropic result" is displayed next to the result.

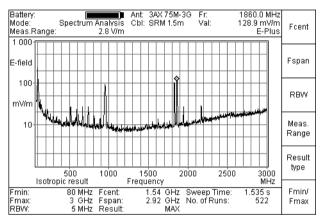


Fig. 11-1 "Spectrum Analysis" mode (Isotropic result)

To select this isotropic measurement mode again, e.g. after making a measurement on one axis (see sec. 11.1.2), use the MEASUREMENT MODE menu.

1. Press the **AXIS** button. The MEASUREMENT MODE menu opens.

MEASUREMENT MODE	
Isotropic measurement Measurement on X-Axis Measurement on Y-Axis Measurement on Z-Axis	

Fig. 11-2 MEASUREMENT MODE menu (Isotropic measurement)

- 2. Use the rotary control to select "Isotropic measurement".
- 3. Press the ENT button.
- You will use the SRM-3000 most often for this application. It is described in detail in the sections describing the different operating modes.

11.1.2 Measuring a single axis with a three axis antenna

✓ A Narda three axis antenna is connected to the SRM-3000 either directly or via a cable.

As stated in sec. 11.1.1, page 11-2, isotropic measurement mode is selected automatically when a three axis antenna is used. When an application requires additional information about the individual spatial components of the field, the axes can be measured individually using the MEASUREMENT MODE menu.

This measurement is useful when the orientation of the sensors in the field is known. A tripod with a special antenna mount must be used for Narda antennas (see sec. 5, page 5-1). The positions of the three measurement axes are marked on this special device.

1. Press the **AXIS** button. The MEASUREMENT MODE menu opens.

MEASUREMENT MODE	
MERSOREMENT MODE	
Isotropic measurement	
Measurement on X-Axis	
Measurement on Y-Axis	
Measurement on Z-Axis	
Measurement on 2-7403	

Fig. 11-3 MEASUREMENT MODE menu (Measurement on X-Axis)

- 2. Use the rotary control to select "Measurement on X-Axis" (or Y, or Z).
- 3. Press the ENT button.

The selected axis will be measured and the result displayed. The selected axis will be indicated next to the result.

You will find more information about the settings and result display in the sections describing the different operating modes.

11.2 Measurement using a single axis antenna

11.2.1 Standard measurement using a single axis antenna

✓ A single axis antenna (e.g. customary antenna) is connected to the SRM-3000 either directly or via a cable.

A single spatial component is detected and displayed by default when a single axis antenna is used. Various methods can be applied in this configuration to determine the field strength exposure (see Appendix A).

To select the standard measurement mode again, e.g. after a sequential isotropic measurement (see sec. 11.2.2), use the MEASUREMENT MODE menu.

1. Press the AXIS button.

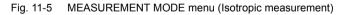
The MEASUREMENT MODE menu opens.

MEASUREMENT MODE	
Single-axis measurement Isotropic measurement	

Fig. 11-4 MEASUREMENT MODE menu (Single-axis measurement)

- 2. Use the rotary control to select "Single-axis measurement".
- 3. Press the ENT button.
- Position the antenna along the desired axis. The axis is measured and the result displayed.
- You will find more information about the settings and result display in the sections describing the different operating modes.

11.2.2 Isotropic measurement with a single axis antenna


The SRM-3000 provides a sequential measurement for making isotropic measurements with a single axis antenna. The three separate measurements are made one after the other. The overall result is then calculated and displayed.

- **Note:** Antennas with directional characteristics, such as log-periodic antennas, are generally not suitable for such sequential measurements.
- ✓ A single axis antenna (e.g. customary antenna) is connected to the SRM-3000 either directly or via a cable.

As mentioned in sec. 11.2.1, page 11-5, a single axis is measured by default when a single axis antenna is used. The MEASUREMENT MODE menu must be used to enable isotropic measurements.

1. Press the **AXIS** button. The MEASUREMENT MODE menu opens.

MEASUREMENT MODE	
Single-axis measurement	
Isotropic measurement	

- 2. Use the rotary control to select "Isotropic measurement".
- 3. Press the **ENT** button. The following is displayed:

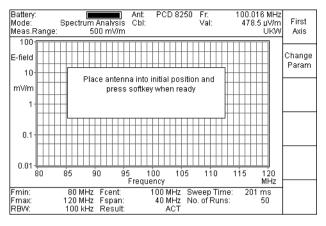


Fig. 11-6 "Spectrum Analysis" mode; isotropic measurement with a single axis antenna

4. Press the **Change Param** softkey if the measurement parameters need to be changed.

Further softkey functions are shown which can be used to change the measurement parameters (see the sections describing the different operating modes).

- 5. To return to the sequential measurement, press the Axis button.
- 6. Position the antenna along the desired axis.
- 7. Press the First (Next) Axis softkey.

The axis is measured and the result displayed.

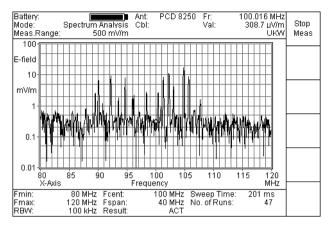


Fig. 11-7 "Spectrum Analysis" mode; separate sequential measurement

8. Press the Stop meas softkey.

The result for the measurement of the first axis is saved.

 Repeat steps 6 through 8 for the two other axes. The isotropic result is calculated and displayed from the results saved for the three perpendicular axes as soon as the third measurement is completed.

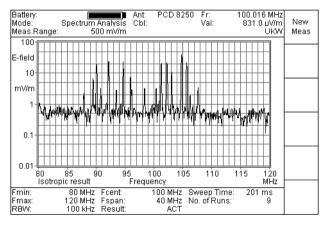


Fig. 11-8 "Spectrum Analysis" mode; display of result

Note: Further sequential measurements can be started using the New Meas softkey. Exit from isotropic measurement mode is only by means of the

Exit from isotropic measurement mode is only by means of the MEASUREMENT MODE menu. Notes:

12 Spatial Averaging (option)

The "Spatial Averaging" function of the SRM allows you to average the measured values recorded at different points within a room. The SRM determines the root mean square (RMS) value of the power level.

✤ For details of the "Spatial Averaging" function: see page B-9

Spatial averaging can be used in "Safety Evaluation" mode, "Spectrum Analysis" mode and "Time Analysis" mode but not in "UMTS P-CPICH Demodulation" mode.

There are two types of spatial averaging:

- Continuous averaging
- Discrete averaging (also possible with single-axis antennas).

Continuous Averaging

The SRM uses a start / stop function to record and average the values continuously. This allows you to traverse a specific path within a room. You can continue recording measurement values at a different point in the room by using the "Continue" button. The SRM takes the average of all the recorded measurement values. You can save intermediate results and the final result using the **SAVE** button at any time.

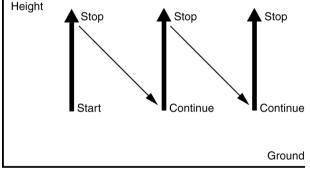


Fig. 12-1 Example of continuous measurement recording at three positions in a room

Discrete Averaging

Discrete Averaging with a three axis antenna

The SRM records and averages single measurement results each time a button is pressed. This allows you to record results for specific positions in the room. The antenna must not be moved while the individual measurement is being made. You can save intermediate results and the final result using the **SAVE** button at any time.

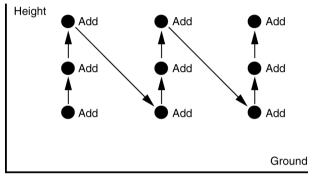


Fig. 12-2 Example of discrete measurement recording of three separate values at each of three positions in a room

Discrete Averaging with a single axis antenna

You can also perform discrete averaging using a single axis antenna. Three measurements must be made at each point to be measured in the room (Isotropic measurement with a single axis antenna: see page 11-6). The SRM calculates the isotropic result for each point and averages the isotropic results for all the points measured. You can save intermediate results and the final result using the **SAVE** button at any time.

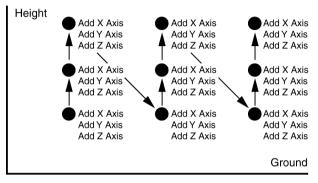
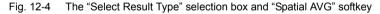



Fig. 12-3 Three separate measurements are needed at each point if a single axis antenna is used

12.1 Spatial Averaging in "Safety Evaluation" mode

- ✓ The Option has been enabled (see sec. 16.6, page 16-16).
- ✓ The SRM-3000 is in "Safety Evaluation" mode (see sec. 7, page 7-1) and all settings, such as the measurement range, selection of services to be measured, etc., have been made.
- Press the Result Type softkey. The "Select Result Type" selection box opens. The Spatial AVG. softkey also appears.
- **Note:** The SRM uses the instantaneous (ACT) value for spatial averaging regardless of the Result Type setting.

Battery: Evalu Mode: Safety Evalu Meas.Range: 180	Ant: 3AX 75M-3G Cellular+GSM ation Cbl: I Wm Std:	
Service	Value Fre Select Result Type	
NA. Cellu. UL	728.4 mV/m 746.0	
NA. Cellu. DL	739.5 mV/m 776.0	
GSM 850 UL	834.7 mV/m 824.0	
GSM 850 DL	790.8 mV/m 869.0	
GSM 1900 UL	1.767 V/m 1850.0 MAX	
GSM 1900 DL	2.015 V/m 1930.0 MAX AVERAGE	
Others	5.590 V/m	
		Spatial
Total	6.389 V/m 746.000	AVG
Isotropic Result		
Fmin: 746 MHz	Process Time: 1.195 s	
Fmax: 1.99 GHz	No. of Runs: 4	
RBW: 3 MHz(Auto) Re	esult: ACT	

2. Press the Spatial AVG softkey.

The following functions are now provided by the last softkey:

Continuous Sets the evaluation function to "Continuous Averaging". The softkey label changes to the next available function. Discrete Sets the evaluation function to "Discrete Averaging".

iscrete Sets the evaluation function to "Discrete Averaging". The softkey label changes to the next available function.

Discrete Axis Sets the evaluation function to "Discrete Averaging with single axis antenna". The softkey label changes to the next available function.

"Discrete Axis" is not shown unless a single axis antenna is connected.

12.1.1 Continuous Averaging

Battery:	Ant: 3AX 75M-3G Cellular+GSM	
Mode: Safety Evalu	Jation Cbl:	
Meas.Range: 2.2	5 V/m Std:	
Service	Value Frequency	
NA. Cellu. UL	11.75 mV/m 746.000 MHz to 764.000 MHz	
NA. Cellu. DL	9.934 mV/m 776.000 MHz to 794.000 MHz	
GSM 850 UL	11.54 mV/m 824.000 MHz to 849.000 MHz	
GSM 850 DL	11.64 mV/m 869.000 MHz to 894.000 MHz	
GSM 1900 UL	102.1 mV/m 1850.000 MHz to 1910.000 MHz	
GSM 1900 DL	24.33 mV/m 1930.000 MHz to 1990.000 MHz	
Others	311.2 mV/m	
		Start
T -+-1	200 1 - II /- II /- II /	
	329.1 mV/m 746.000 MHz to1990.000 MHz	
Isotropic Result	Spatial Averaging	
Fmin: 746 MHz	Process Time: 1.196 s	Discusto
Fmax: 1.99 GHz	No. of Runs: 4	Discrete
	esult: ACT No. of SAVG: 0	

✓ Continuous Averaging is set (indicated by the **Start** softkey).

Fig. 12-5	Continuous Averaging, Start
-----------	-----------------------------

1. Locate the desired position in the room and press the **Start** softkey. The softkey label changes.

The SRM starts measuring and displays the number of measurements (No. of Runs) and the number of values averaged (No. of SAVG).

2. Move the antenna along the path to be measured within the room.

Battery: Mode: Safety Evalu Meas.Range: 2.25	Ant: 3AX 75M-3G Cellular+GSM uation Cbl: 5 V/m Std:	
Service	Value Frequency	
NA. Cellu. UL	9.193 mV/m 746.000 MHz to 764.000 MHz	
NA. Cellu. DL	9.882 mV/m 776.000 MHz to 794.000 MHz	:
GSM 850 UL	12.62 mV/m 824.000 MHz to 849.000 MHz	:
GSM 850 DL	11.34 mV/m 869.000 MHz to 894.000 MHz	
GSM 1900 UL	100.4 mV/m 1850.000 MHz to 1910.000 MHz	
GSM 1900 DL	28.21 mV/m 1930.000 MHz to 1990.000 MHz	:
Others	264.9 mV/m	
		Stop
	285.5 mV/m 746.000 MHz to1990.000 MHz	Clear
Isotropic Result	Spatial Avg: Cont.	
Fmin: 746 MHz Fmax: 1.99 GHz RBW: 3 MHz(Auto) Re	Process Time: 1.324 s No. of Runs: 1 esult: SAVG No. of SAVG: 1	

Fig. 12-6 Continuous Averaging, first measurement

3. Press the **Stop** softkey.

The softkey label changes.

The SRM stops averaging (No. of SAVG remains constant) and displays the averaged result.

The SRM continues measuring in the background (indicated by No. of Runs), but does not use these measurement values to form the average.

Battery: Eatery: Mode: Safety Eva Meas.Range: 2	Ant: 3AX 75M-3G Cellular+GSM aluation Cbl: .25 V/m Std:	
Service	Value Frequency	
NA. Cellu. UL	11.42 mV/m 746.000 MHz to 764.000 MHz	1
NA. Cellu. DL	10.43 mV/m 776.000 MHz to 794.000 MHz	
GSM 850 UL	11.43 mV/m 824.000 MHz to 849.000 MHz	
GSM 850 DL	10.53 mV/m 869.000 MHz to 894.000 MHz	
GSM 1900 UL	100.5 mV/m 1850.000 MHz to 1910.000 MHz	
GSM 1900 DL	26.61 mV/m 1930.000 MHz to 1990.000 MHz	
Others	323.9 mV/m	
		Continue
Total	340.9 mV/m 746.000 MHz to1990.000 MHz	Clear
Isotropic Result	Spatial Avg: Cont.	
Fmin: 746 MHz	Process Time: 1.372 s	1
Fmax: 1.99 GHz	No. of Runs: 12	
RBW: 3 MHz(Auto)	Result: SAVG No. of SAVG: 11	

Fig. 12-7 Continuous Averaging after the first "Stop"

4. If required, locate the next point in the room to be measured and press the **Continue** softkey.

The softkey label changes.

The SRM resumes averaging (indicated by No. of SAVG).

- Move the antenna along the second path to be measured within the room.
- 6. Press the Stop softkey.

The softkey label changes.

The SRM stops averaging (No. of SAVG remains constant) and displays the result averaged over the two paths traversed in the room. The SRM continues measuring in the background (indicated by No. of Runs).

- 7. Repeat this process until you have obtained the final result. This can be directly read off numerically.
- Press the SAVE button to record the result in the result memory (Result memory: see page 13-1).
- 9. Press the Clear softkey to clear the result.
- 10.Press the **ESC** button to exit from Spatial Averaging.

Note: When you press the SAVE button, the SRM saves the current result of spatial averaging in the result memory. You can therefore use this function to record intermediate results. The SRM resumes averaging when you press the Continue softkey, incorporating the measured values already recorded. The SRM does not clear all the recorded measured values and start a new spatial averaging procedure until you press the Clear softkey.

12.1.2 Discrete Averaging

12.1.2.1 Discrete Averaging with a three axis antenna

✓ Discrete Averaging is set (indicated by the Add Value softkey).

Total 6.518 V/m 746.000 MHz to 1990.000 MHz Isotropic Result Spatial Averaging Con- Fmin: 746 MHz Process Time: 1.200 s Fmax. 1.99 GHz No. of Runs: 4 tinuou	Battery: Mode: Sa Meas.Range:	Ant: 3A afety Evaluation Cbl: 180 V/m Std:	X75M-3G Cellular+(ЭSM	
NA. Cellu. DL 773.3 mV/m 776.000 MHz to 794.000 MHz GSM 850 UL 851.9 mV/m 824.000 MHz to 849.000 MHz GSM 850 DL 854.7 mV/m 869.000 MHz to 849.000 MHz GSM 1900 UL 1.857 V/m 1850.000 MHz to 190.000 MHz GSM 1900 UL 1.997 V/m 1930.000 MHz to 1990.000 MHz Others 5.679 V/m Add Value Total 6.518 V/m 746.000 MHz to 1990.000 MHz Fmin: 746 MHz Process Time: 1.200 s Con- Fmax: 1.98 GHz No.of Runs: 4 tinuou	Service	Value	Frequency		
GSM 850 UL 851.9 mV/m 824.000 MHz to 849.000 MHz GSM 850 DL 854.7 mV/m 869.000 MHz to 894.000 MHz GSM 1900 UL 1.857 V/m 1850.000 MHz to 1910.000 MHz GSM 1900 DL 1.997 V/m 1930.000 MHz to 1990.000 MHz Others 5.679 V/m Add Total 6.518 V/m 746.000 MHz to 1990.000 MHz Fmin: 746 MHz Process Time: 1.200 s Fmax: 1.99 GHz No.of Runs: 4	NA. Cellu. UL	865.9 mV/m	746.000 MHz to	764.000 MHz	
GSM 850 DL 854.7 mV/m 869.000 MHz to 894.000 MHz GSM 1900 UL 1.857 V/m 1850.000 MHz to 1910.000 MHz GSM 1900 DL 1.997 V/m 1930.000 MHz to 1990.000 MHz Others 5.679 V/m Add Value Total 6.518 V/m 746.000 MHz to 1990.000 MHz Fmin: 746 MHz Process Time: 1.200 s Fmax: 1.96 GHz No.ofRuns: 4	NA. Cellu. DL	773.3 mV/m	776.000 MHz to	794.000 MHz	
GSM 1900 UL 1.857 V/m 1850.000 MHz to 1910.000 MHz GSM 1900 DL 1.997 V/m 1930.000 MHz to 1990.000 MHz Others 5.679 V/m Total 6.518 V/m 746.000 MHz to 1990.000 MHz Isotropic Result Spatial Averaging Fmin: 746 MHz Process Time: 1.200 s Fmax 1.96 Hz No. of Runs: 4	GSM 850 UL	851.9 mV/m	824.000 MHz to	849.000 MHz	
GSM 1900 DL 1.997 V/m 1930.000 MHz to 1990.000 MHz Others 5.679 V/m Add Others 6.518 V/m 746.000 MHz to 1990.000 MHz Total 6.518 V/m 746.000 MHz to 1990.000 MHz Isotropic Result Spatial Averaging Con- Fmax: Fmin: 746 MHz Process Time: 1.200 s Fmax: 1.99 GHz No. of Runs: 4	GSM 850 DL	854.7 mV/m	869.000 MHz to	894.000 MHz	
Others 5.679 V/m Add Value Total 6.518 V/m 746.000 MHz to 1990.000 MHz Fisotropic Result Spatial Averaging Spatial Averaging Con- tinuou Fmin: 746 MHz Process Time: 1.200 s Fmax: 1.99 GHz No. of Runs: 4	GSM 1900 UL	1.857 V/m	1850.000 MHz to 1	910.000 MHz	
Total 6.518 V/m 746.000 MHz to 1990.000 MHz Isotropic Result Spatial Averaging Process Time: 1.200 s Con- tinuou Fmin: 746 MHz Process Time: 1.200 s Con- tinuou	GSM 1900 DL	1.997 V/m	1930.000 MHz to 1	.990.000 MHz	
Total 6.518 V/m 746.000 MHz to 1990.000 MHz Isotropic Result Spatial Averaging Fmin: 746 MHz Process Time: 1.200 s Con- tinuou Fmax: 1.98 GHz No. of Runs: 4 tinuou	Others	5.679 V/m			
Isotropic Result Spatial Averaging Fmin: 746 MHz Process Time: 1.200 s Fmax. 1.99 GHz No. of Runs: 4 tinuou					Add Value
Isotropic Result Spatial Averaging Fmin: 746 MHz Process Time: 1.200 s Fmax: 1.99 GHz No. of Runs: 4 tinuou					
Fmin: 746 MHz Process Time: 1.200 s Con- Fmax: 1.99 GHz No. of Runs: 4 tinuou	Total	6.518 V/m '	746.000 MHz to19	90.000 MHz	
Fmax: 1.99 GHz No. of Runs: 4 tinuou	Isotropic F	Result Spatial Avera	iging		
RBW: 3 MHz(Auto) Result: ACT No. of SAVG: 0	Fmax: 1.99) GHz	No. of Runs:	4	Con- tinuous

Fig. 12-8 Discrete Averaging, started by pressing the Add Value softkey

- 1. Position the antenna at the first point in the room to be measured.
- 2. Press the Add Value softkey.

The SRM makes the measurement, indicates "RUN" under "No. of Runs" in the display, and confirms the measurement with a beep. The number of averaged values (No. of SAVG) shows "1". Measurement continues in the background (indicated by No. of Runs), but does not use these measurement values to form the average.

Note: The antenna must not be moved during the measurement, i.e. between pressing the "Add Value" softkey and hearing the beep confirming the measurement.

Battery:			AX 75M-3G	Cellular	+GSM		
Mode:		valuation Cbl:					
Meas.Ran	ge:	180 V/m Std:					
Servic	e	Value	Frequ	iency			
NA. Cell	.u. UL	858.3 mV/	m 746.000	MHz to	764.000	MHz	
NA. Cell	u. DL	795.0 mV/	m 776.000	MHz to	794.000	MHz	
GSM 850	UL	860.6 mV∕	m 824.000	MHz to	849.000	MHz	
GSM 850	DL	764.7 mV/	m 869.000	MHz to	894.000	MHz	
GSM 1900	UL I	1.875 ∀/	m 1850.000	MHz to	1910.000	MHz	
GSM 1900	DL	2.091 V/	m 1930.000	MHz to	1990.000	MHz	
Others		5.633 Ⅴ/	m				
							Add
							Value
							Clear
Total			746.000 M	Hz tol	L990.000 I	Ήz	
Iso	tropic Resu	It Spatial Avg	: Discrete				
Emin:	746 MHz		Dr	acoce Ti	me: 1.197	~	
Fmax:	1.99 GHz			of Runs		6	
RBW:	3 MHz(Auto)			. of SAV(1	
ROVV.	⇒ INI⊟Z(AULO)	Result.	SAVO NU	UI SAVU	э.		

Fig. 12-9 Discrete Averaging after the first measurement

- 3. Move the antenna to the next point in the room to be measured.
- 4. Press the **Add Value** softkey.

The SRM makes the measurement, indicates "RUN" under "No. of Runs" in the display, and confirms the measurement with a beep. The number of averaged values (No. of SAVG) now shows "2". Measurement continues in the background (indicated by No. of Runs).

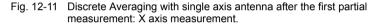
- 5. Repeat the above procedure for each point in the room to be measured. The final result can then be directly read off numerically.
- 6. Press the **SAVE** button to record the result in the result memory (Result memory: see page 13-1).
- 7. Press the Clear softkey to clear the result.
- 8. Press the **ESC** button to exit from Spatial Averaging.
- **Note:** When you press the **SAVE** button, the SRM saves the current result of spatial averaging in the result memory. You can therefore use this function to record intermediate results. The SRM resumes averaging when you press the **Continue** softkey, incorporating the measured values already recorded. The SRM does not clear all the recorded measured values and start a new spatial averaging procedure until you press the **Clear** softkey.

12.1.2.2 Discrete Averaging with a single axis antenna

- The antenna is fitted on a tripod using the antenna holder.
- ✤ Measurement setup with a single axis antenna: see page 5-3.
- ✤ Isotropic measurement with a single axis antenna: see page 11-6.
- ✓ Discrete Averaging is set (indicated by the Add X Axis softkey).

Battery: Mode: Meas.Range:	Safety Evaluation 180 mV/m	Cbl:	5 Cellular+G8M		
Service	Val	ue Fre	equency		
GSM 1900 UL	851	8 µV/m 1850.0	00 MHz to 1910.000	MHz	
GSM 1900 DL	812	.7 µV/m 1930.0	000 MHz to 1990.000	MHz	
Others	554	1.0 μV/m			
					Add X Axis
Total		1 mV/m1850.000 atial Averaging) MHz to 1990.000 (MHz	
Fmin: 1	.85 GHz		Process Time: 201 n	ns	Con-
	.99 GHz			-	tinuous
RBW: 5 M	Hz(Auto) Result	: ACT	No. of SAVG:	0	

Fig. 12-10 Discrete Averaging using a single axis antenna, started by pressing the Add X Axis softkey


- 1. Position the antenna at the first point in the room to be measured and align it in the direction of the X axis.
- 2. Press the Add X Axis softkey.

The SRM makes the measurement, indicates "RUN" under "No. of Runs" in the display, and confirms the measurement with a beep. The softkey label changes.

The number of values averaged (No. of SAVG) remains "0".

Measurement continues in the background (indicated by No. of Runs), but does not use these measurement values to form the average.

D-H	_		0 m tr	000445	0.11				
Battery: Mode:	Safety Ev			ICO3115	Celli	liar+G5	5 M		
			Cbl: Std:						
Meas.Range:	10								
Service		Value		Frei	quency				
GSM 1900 UI		870.1	L μV/m	1850.00	0 MHz	to 19.	10.000	MHz	
GSM 1900 DI		826.7	7 µV/m	1930.00	0 MHz	to 19	90.000	MHz	
Others		419.3	3 µV/m						
									Add
									Y Axis
									Clear
Total		1.271	mV/ml8	50.000	MHz	to 1990	0.000 1	MHz	0.001
		Spati	al Avg: E)isc. Axis					
	1.85 GHz						201 n		
	1.99 GHz	Describe				Runs:		6	
RBW: 51	/Hz(Auto)	Result:		ACT N	lo. of S	iavg:		0	

- 3. Align the antenna with the Y axis.
- 4. Press the Add Y Axis softkey.

The SRM makes the measurement, indicates "RUN" under "No. of Runs" in the display, and confirms the measurement with a beep. The softkey label changes.

The number of values averaged (No. of SAVG) remains "0". Measurement continues in the background (indicated by No. of Runs).

Battery: Mode: Meas.Range:	Ant: EMCO3115 Cellular+GSM Safety Evaluation Cbl: 180 mV/m Std:		
Service	Value Frequency		
GSM 1900 UL	918.8 µV/m 1850.000 MHz to 1910.0	000 MHz	
GSM 1900 DL	808.7 µV/m 1930.000 MHz to 1990.0	000 MHz	
Others	302.2 µV/m		
			Add Z Axis
			27000
Total	1.261 mV/m1850.000 MHz to 1990.00	0 MHz	Clear
	Spatial Avg: Disc. Axis		
Fmax: 1	.85 GHz Process Time: 20 .99 GHz No. of Runs:	31	
RBW: 5 M	IHz(Auto) Result: ACT No. of SAVG:	0	

Fig. 12-12 Discrete Averaging with single axis antenna after the second partial measurement: Y axis measurement.

- 5. Align the antenna with the Z axis.
- 6. Press the Add Z Axis softkey.

The SRM makes the measurement, indicates "RUN" under "No. of Runs" in the display, and confirms the measurement with a beep. The softkey label changes.

The number of values averaged (No. of SAVG) is now "1", as the isotropic measurement for the first point has now been completed. Measurement continues in the background (indicated by No. of Runs), but does not use these measurement values to form the average.

Battery:		Ant: EMCO3115	Cellular+GSM	1
Mode:	Safety Evaluation	Cbl:	condian com	
Meas.Range:	180 mV/m			
Service	Valu	e Freq	uency	
GSM 1900 UL	918.	8 μV/m 1850.00	0 MHz to 1910.000 MH	z
GSM 1900 DL	808.	7 µV/m 1930.000) MHz to 1990.000 MH	z
Others	302.	2 µ∀/m		
				Add
				X Axis
Total	1 261	mW/m1950_000_1	MHz to1990.000 MHz	Clear
IUCAI			MRZ CO1990.000 MRZ	
	Spatial Avg: Disc. Axis			
	.85 GHz		rocess Time: 201 ms	1
	.99 GHz		o. of Runs: 31	
RBW: 5 M	Hz(Auto) Result:	ACT N	o. of SAVG: 1	

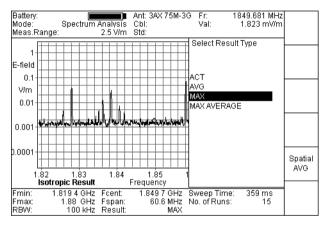
Fig. 12-13 Discrete Averaging with single axis antenna after the third partial measurement: Z axis measurement.

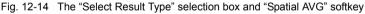
7. Move the antenna to the next point in the room to be measured and repeat the procedure for measuring the X, Y and Z axis positions as above.

The number of values averaged (No. of SAVG) is now "2". The SRM averages the two isotropic measurements and displays the overall result numerically.

Measurement continues in the background (indicated by No. of Runs).

8. Repeat the above procedure for all the points in the room to be measured.


The final result can then be directly read off numerically.


- 9. Press the **SAVE** button to record the result in the result memory (Result memory: see page 13-1).
- 10. Press the **Clear** softkey to clear the result.
- 11. Press the **ESC** button to exit from Spatial Averaging.

Note: When you press the SAVE button, the SRM saves the current result of spatial averaging in the result memory. You can therefore use this function to record intermediate results. The SRM resumes averaging when you press the Continue softkey, incorporating the measured values already recorded. The SRM does not clear all the recorded measured values and start a new spatial averaging procedure until you press the Clear softkey.

12.2 Spatial Averaging in "Spectrum Analysis" mode

- ✓ The Option has been enabled (see sec. 16.6, page 16-16).
- ✓ The SRM-3000 is in "Spectrum Analysis" mode (see sec. 8, page 8-1), and all settings, such as the measurement range, frequency, resolution bandwidth, etc., have been made.
- Press the Result Type softkey. The "Select Result Type" selection box opens. The Spatial AVG. softkey also appears.
- **Note:** The SRM uses the instantaneous (ACT) value for spatial averaging regardless of the Result Type setting.

2. Press the Spatial AVG softkey.

The following functions are now provided by the last softkey:

Continuous Sets the evaluation function to "Continuous Averaging". The softkey label changes to the next available function.

Discrete Sets the evaluation function to "Discrete Averaging". The softkey label changes to the next available function.

Discrete Axis Sets the evaluation function to "Discrete Averaging with single axis antenna". The softkey label changes to the next available function.

"Discrete Axis" is not shown unless a single axis antenna is connected.

The measurement procedures are described in detail above under Spatial Averaging in "Safety Evaluation" mode:

- Continuous Averaging: see page 12-5.
- Discrete Averaging with a three axis antenna: see page 12-8.
- Discrete Averaging with a single axis antenna: see page 12-10.

12.3 Spatial Averaging in "Time Analysis" mode

Spatial averaging assumes that the field strength in the room remains constant over time. For this reason, the spatial averaging function is only available in "Time Analysis" mode when the display is set to "Value".

- ✓ The Option has been enabled (see sec. 16.6, page 16-16).
- ✓ The SRM-3000 is in "Time Analysis" mode (see sec. 10, page 10-1) and all settings, such as the measurement range, frequency, resolution bandwidth, etc., have been made.
- ✓ The display is set to "Value" (see sec. 10.3, page 10-4).
- **Note:** The detector should be set to RMS (Selecting the Detector Type (RMS value, peak value): see page 10-11).
- Press the Result Type softkey. The "Select Result Type" selection box opens. The Spatial AVG. softkey also appears.
- **Note:** The SRM uses the instantaneous (ACT) value for spatial averaging regardless of the Result Type setting.

Battery: Mode: T Meas.Range:	ime Analγsis 2.25 V/m	Ant: 3AX 75M-30 Cbl: Std:		13:24:18.0 330.8 µV/m	
Value:			Select Result 7 AVG MAX MAX AVERAGE	Гуре	Spatial
Isotropic Result					AVG
RBW: 6.4	Fcent: Detectoi kHz Result:	1.86 GHz r: RMS ACT	No. of Runs:	2285	

Fig. 12-15 The "Select Result Type" selection box and "Spatial AVG" softkey

2. Press the Spatial AVG softkey.

The following functions are now provided by the last softkey:

Continuous Sets the evaluation function to "Continuous Averaging". The softkey label changes to the next available function. Discrete Sets the evaluation function to "Discrete Averaging".

The softkey label changes to the next available function.

Discrete Axis Sets the evaluation function to "Discrete Averaging with single axis antenna". The softkey label changes to the next available function.

"Discrete Axis" is not shown unless a single axis antenna is connected.

The measurement procedures are described in detail above under Spatial Averaging in "Safety Evaluation" mode:

- Continuous Averaging: see page 12-5.
- Discrete Averaging with a three axis antenna: see page 12-8.
- Discrete Averaging with a single axis antenna: see page 12-10.

Notes:

13 Result memory

The results obtained in any operating mode can be saved. The SRM provides the following functions for this:

- Saving of the current result by pressing the SAVE key.
- Automatic saving of results when a threshold value is exceeded; set using the MEMORY menu.
- Timer controlled result storage, set using the MEMORY menu.

Data sets are generated when the results are saved. The data they contain is indicated by the name (type):

Туре	Contains results of
TAB	"Safety Evaluation" mode
SPEC	"Spectrum Analysis" mode
UTAB	"UMTS P-CPICH Demodulation" mode (option)
VAL	"Time Analysis" mode
LIST	"Time Analysis" mode with "Time Controlled Storing" (option)

13.1 Saving data

The results that are determined are saved along with the following data:

- Index (consecutive number)
- Sub index
- Operating mode
- Operating mode parameters
- Antenna / cable data (where available)
- Measurement mode (isotropic measurement or single axis measurement)
- Date
- Time
- Comment (where available)

13.1.1 Saving a single measurement

- **Note:** Single measurements can be saved without a comment, with a predefined standard comment or with your own comment. These settings are made in the MEMORY menu. Also refer to sec. 13.3, page 13-17
- ✓ The appropriate operating mode is selected, e.g. Spectrum Analysis.
- ✓ All settings have been made.
- ✓ The result is displayed.
- 1. Press the SAVE key.
- If the "Individual text" setting was selected in the MEMORY Comment menu, enter your comment using the softkeys and keys (up to 15 characters).
- 3. Press the **ENT** key. The result is saved.

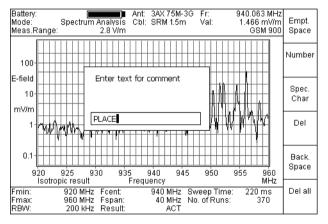


Fig. 13-1 Saving a result using the SAVE key and entering your own comment

Softkey functions

The softkeys have the following functions:

Empt. Space Number	Enters a space. Opens a list with numerical characters.
	The required character is selected with the rotary control and the ENT key.
Spec. Char	Opens a list with special characters.
	The required character is selected with the rotary control and the ENT key.
Del	Deletes the highlighted character.
Back Space	Moves the highlight back one character to the left and deletes the character.
Del all	Deletes all characters.

13.1.2 Automatic saving

The SRM can save results automatically. To do this, a threshold can be set and a save mode selected for the individual operating modes.

Note: Automatic saving can be done without a comment, with a predefined standard comment or with your own comment. These settings are made in the MEMORY menu. See sec. 13.3, page 13-17.

Setting the threshold

- ✓ The appropriate operating mode is selected, e.g. Spectrum Analysis.
- 1. Press the **MEM** key. The MEMORY menu is displayed.
- 2. Use the rotary control to highlight "Conditional storing".
- 3. Press the **ENT** key. The CONDITIONAL STORING menu is displayed.
- 4. Use the rotary control to highlight "Threshold".
- 5. Press the **ENT** key. The current threshold value is highlighted.
- 6. Use the rotary control to highlight the desired threshold value.
- 7. Press the **ENT** key. The selected threshold value is set.



Fig. 13-2 CONDITIONAL STORING - Threshold menu

Selecting the store mode

- ✓ The appropriate operating mode is selected, e.g. Spectrum Analysis.
- ✓ The CONDITIONAL STORING menu is displayed.
- 1. Use the rotary control to highlight "Conditional storing options".
- 2. Press the **ENT** key. The current option is highlighted.
- 3. Use the rotary control to highlight the desired option, e.g. "First value over threshold".
- Press the ENT key. The selected option is set.

CONDITIONAL STORING		
Threshold: Conditional storing option:	360 mV/m First value over threshold	
Max. Number of records:	As many as possible	

Fig. 13-3 CONDITIONAL STORING - Conditional storing option menu

First value over threshold	In "Spectrum Analysis" mode the first sweep which contains at least one spectral line that exceeds the threshold is stored.
All value over threshold	In "Safety Evaluation" mode the table containing the first result that exceeds the threshold is stored. In "Spectrum Analysis" mode all the sweeps containing at least one spectral line that exceeds the threshold are stored.
	In "Safety Evaluation" mode all the tables containing at least one result that exceeds the threshold are stored.

Selecting the maximum number of data sets

- ✓ The appropriate operating mode has been selected, e.g. "Spectrum Analysis".
- ✓ The CONDITIONAL STORING menu is displayed.
- 1. Use the rotary control to highlight "Max. number of records".
- 2. Press the **ENT** key. The current option is highlighted.
- 3. Use the rotary control to set the desired number (between 2 and 500) or "As many as possible".
- 4. Press the **ENT** key. The selected option is set.

CONDITIONAL STORING		
Threshold: Conditional storing option: Max. Number of records:	360 mV/m All values over threshold 10	

Fig. 13-4 CONDITIONAL STORING menu: Max. number of records

Starting storage

- ✓ The appropriate operating mode is selected, e.g. Spectrum Analysis.
- / The CONDITIONAL STORING menu is displayed.
- The threshold and desired storing option are set.
- \Rightarrow Press the **Immd start** softkey.

Storage is activated.

The display changes to show the operating mode you selected previously.

"Conditional Storing ..." is also displayed.

– or –

- If the "Individual Comment" setting was selected in the MEMORY -Comment menu, enter your comment using the softkeys and keys (up to 15 characters).
- 2. Press the ENT key.

The display changes to show the operating mode you selected previously.

"Conditional Storing ..." is also displayed.

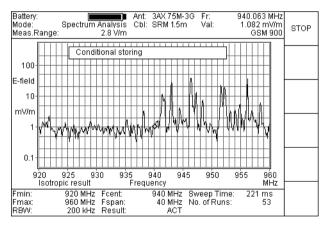


Fig. 13-5 Display during automatic storage

Note: When the memory is full, a warning will be displayed briefly and storage mode will then terminate.

Stopping automatic storage

- ✓ Automatic storage was activated using the **Immd start** softkey (see fig. 13-5).
- \Rightarrow Press the **STOP** softkey. Automatic storage terminates.

13.1.3 Time Controlled Storing (option)

The SRM can store measurement results under timer control. To do this, you can set the start date, start time, measurement duration and other parameters in the TIME CONTROLLED STORING sub menu.

Note: You can save the results without any comments, or with a predefined (default) comment, or with an individual comment. These settings are made in the MEMORY menu. See sec. 13.3, page 13-17.

Preparing the settings

- The appropriate operating mode is set, e.g. "Spectrum Analysis".
- Press the MEM key. The MEMORY menu is displayed.
- 2. Use the rotary control to highlight "Time controlled storing".
- 3. Press the **ENT** key.

The TIME CONRTROLLED STORING menu is displayed.

TIME CONTROLLED STORING		Start now
Start date [dd:mm;y;): Start time [hh:mm:ss]: Duration [hh:mm:ss]: Time interval: Maximum reset:	14.01.00 16:27:05 00:00:00 1.2 s Always	Prog'd start
		Adjust date time

Fig. 13-6 TIME CONTROLLED STORING menu

You can make the following settings from this menu:

Start date	6 digits (Setting the number format (Configure
	General): see page 14-15)
Start time	Entered in hours:minutes:seconds
Duration	Measurement duration entered in hour:minutes:seconds maximum 99:99:99
Time interval	Time interval between result saves.
	Can be set to fixed values between 1.2 seconds and 60 minutes or to the maximum rate possible (As many as possible).
Maximum reset	Specifies when to reset the maximum value that is determined.

- Always: Reset after every result save.
- On start: Reset when the measurement starts.
- Never: No reset. The maximum values from previous measurements are retained.

Setting:

- 1. Use the rotary control to highlight "Start date".
- 2. Press the ENT key.
- Use the rotary control to set the day, month and year one after the other. Use the ">" and "<" softkeys to switch between day, month, and year settings.
- 4. Press the **ENT** key. The start date is set.
- 5. Use the rotary control to highlight "Start time".
- 6. Press the ENT key.
- Use the rotary control to set the hours, minutes and seconds. Use the ">" and "<" softkeys to switch between the hours, minutes and seconds settings. Press the ENT key. The start time is set.
- 8. Use the rotary control to highlight "Duration" markieren.
- 9. Press the ENT key.
- 10.Use the rotary control to set the hours, minutes and seconds. Use the ">" and "<" softkeys to switch between the hours, minutes and seconds settings.
- 11. Press the **ENT** key. The measurement duration is set.
- 12.Use the rotary control to highlight "Time interval" markieren.
- 13.Press the ENT key.

- 14.Use the rotary control to set a value between 1.2 seconds and 60 minutes or select the setting "As many as possible".
- 15. Press the ENT key.

The time interval between result saves is set.

- 16.Use the rotary control to highlight "Maximum reset" markieren.
- 17.Press the ENT key.
- 18.Use the rotary control to highlight the desired option.
- 19.Press the ENT key.

The desired option is set.

Setting the start date and time to the current date and time (Adjust date time)

You can set the start date and time more conveniently in many cases:

 \Rightarrow Press the **Adjust date time** softkey.

This automatically sets the current SRM date and time as the start date and time for the measurement.

Starting from these values, you can easily make further adjustment to the start date and time e.g. by changing one digit of the start time.

Setting the date and time: see page 14-13

Starting time controlled storing

1. Press the Start now softkey.

The measurement starets immediately. The measurement duration and time, and all other parameters correspond to the option settings.

A pane opens in the measurement menu containing the message "Time controlled storing", together with the index numbers of the stored data sets and the remaining measurement time.

The end of the measurement is indicated by the message "Time controlled storing: Finished".

	d. Power Ant: 3AX 75M-3G GSM+UMTS E /aluation Cbl: 2.5 V/m Std:	UR	STOP
Service Time control	led storing: Finished		
E-GSM 90 Time remain	ing: 00:00:00	,000 MHz	
GSM 900 UL	<21.15 mV/m 890.000 MHz to 915	.000 MHz	
E-GSM 900 DL	<13.38 mV/m 925.000 MHz to 935	.000 MHz	
GSM 900 DL	26.41 mV/m 935.000 MHz to 960	.000 MHz	
GSM 1800 UL	<38.66 mV/m 1710.000 MHz to 1785	.000 MHz	
GSM 1800 DL	48.65 mV/m 1805.000 MHz to 1880	.000 MHz	
UMTS UL	<40.16 mV/m 1920.000 MHz to 1980	.000 MHz	
UMTS DL	<47.37 mV/m 2110.000 MHz to 2170	.000 MHz	
Others	<143.0 mV/m		
Total	55.36 mV/m 880.000 MHz to2170.	000 MHz	
Isotropic Result			
Fmin: 880 MHz	Process Time:	852 ms	
Fmax: 2.17 GHz	No. of Runs:	3136	
RBW: 2 MHz(Auto)	Result: ACT		

Fig. 13-7 "Safety Evaluation" measurement menu with TIME CONTROLLED STORING

2. Press the Stop softkey to exit from time controlled storing.

– or –

1. Press the Prog'd Start softkey.

The measurement will start at the specified time.

The message "Time controlled storing" together with the remaining time until the satt of the measurement is shown in the measurement menu. This is replaced by the index numbers of the stored data sets and the remaining measurement time when the measurement starts. The end of the measurement is indicated by the message "Time controlled storing: Finished".

2. Press the Stop softkey to exit from time controlled storing.

Note: You can stop the measurement at any time by pressing the Stop softkey.

The results stored up till that time will be retained.

13.2 Managing data sets

The MEMORY VIEWER is used to display and manage the data sets. The data sets are listed in a table. You can display or delete a single data set or delete all data sets.

Displaying a data set

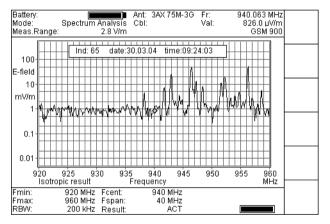
- 1. Press the **MEM** key.
- The MEMORY menu is displayed.
- 2. Use the rotary control to highlight "Viewer".
- 3. Press the ENT key.

The MEMORY VIEWER menu opens. The data sets are shown with the following information:

Index Sub	Consecutive index number Consecutive sub index number if the data set contains more than one individual result.
Num	Number of individual results in the data set.
Туре	Type: see page 13-1
Store	Storage mode:
	 MAN: Manual COND: Automatic when a threshold is exceeded (Conditional Storing) TIME (Time Controlled Storing)
Date Time	
Comment	If available

A small black triangle indicates that there is more than one page of information.

MEMOR	Y VIEV	VER						Page up
Index	Sub	Num	Type	Store	Date	Time	Comment 🛛 🔻	_
1	1	1	UTAB	MAN	13.01.00	17:45:37		Page
2	1	1	UTAB	MAN	13.01.00	18:08:58		down
3	1	1	SPEC	MAN	14.01.00	16:24:01		
4	1	1	SPEC	MAN	14.01.00	16:24:03		Recall
5	1	1	SPEC	MAN	14.01.00	16:24:06		
6	1	1	SPEC	MAN	14.01.00	16:24:08		dataset
7	1	1	SPEC	TIME	14.01.00	16:28:17		
8	1	32	TAB	TIME	14.01.00	16:29:51		Delete
9	1	9	LIST		60741.492	204.24385	13549:5824:6066	datase
10	1	1	SPEC	MAN	23.06.06	19:17:10		
11	1	1	SPEC	MAN	23.06.06	19:27:30		
12	1	1	SPEC	MAN	23.06.06	19:30:34		Delete
13	1	1	SPEC	MAN	23.06.06	19:31:52		all
14	1	1	SPEC	MAN	23.06.06	19:43:49		
15	1	1	SPEC	MAN	26.06.06	07:24:27		_
16	1	1	SPEC	MAN	26.06.06	07:25:17		Expand
			Fre	ee memo	ory space:	: 99 %		Tree


Fig. 13-8 MEMORY VIEWER showing stored data sets

4. Use the **Page up** or **Page down** softkeys and / or the rotary control to highlight the desired data set.

The data set is highlighted in black.

5. Press the **Recall dataset** softkey.

The data set is displayed along with its storage date and index number.

Displaying sub data sets

- ✓ The MEMORY VIEWER menu is open (see fig. 13-10).
- ✓ At least one data set containing sub data sets is stored.
- 1. Press the Expand Tree softkey.

A list of all the data sets and sub data sets is now displayed. A small black triangle indicates that there is more than one page of information.

MEMOR'	A AIEA	/ER						Page up
Index	Sub	Num	Type	Store	Date	Time	Comment 🛛 🔻	_
1	1	1	UTAB	MAN	13.01.00	17:45:37		Page
2	1	1	UTAB	MAN	13.01.00	18:08:58		down
3	1	1	SPEC	MAN	14.01.00	16:24:01		
4	1	1	SPEC	MAN	14.01.00	16:24:03		Recall
5	1	1	SPEC	MAN	14.01.00	16:24:06		
6	1	1	SPEC	MAN	14.01.00	16:24:08		dataset
7	1	1	SPEC	TIME	14.01.00	16:28:17		
8	1	32	TAB	TIME	14.01.00	16:29:51		Delete
	2		TAB	TIME	14.01.00	16:29:54		dataset
	3		TAB	TIME	14.01.00	16:29:56		
	4		TAB	TIME	14.01.00	16:29:57		
	5		TAB	TIME	14.01.00	16:29:59		Delete
	6		TAB	TIME	14.01.00	16:30:02		all
	7		TAB	TIME	14.01.00	16:30:03		
	8		TAB	TIME	14.01.00	16:30:05		
	9		TAB	TIME	14.01.00	16:30:07		Collapse
			Fr	ee mem	ory space:	: 99 %		Tree

Fig. 13-10 MEMORY VIEWER mit den gespeicherten Sub-Datensätzen

 Use the Page up or Page down softkeys and / or the rotary control to highlight the desired sub data set.
 The sub data set is highlighted in black

The sub data set is highlighted in black.

- Prsss the Recall dataset softkey. The sub data set and all the information in it (store date, index, sub index, etc.) is displayed.
- 4. Use the ">" or "<" softkeys to page forwards or backwards in the information.

Hiding sub data sets

 \Rightarrow Press the **Collapse Tree** softkey.

Deleting a data set

- ✓ The MEMORY VIEWER is displayed (see fig. 13-8).
- ✓ At least one data set has been stored.
- Use the Page up or Page down softkeys and / or the rotary control to highlight the desired data set. The data set is highlighted in black.
- 2. Press the **Delete dataset** softkey. A warning message is displayed.
- 3. Press the **ENT** key. The data set is deleted.
- Notice: You cannot delete a single sub data set. Even if you only highlight one sub data set, the entire data set is deleted when you press **Delete dataset**.

Deleting all data sets

- ✓ The MEMORY VIEWER is displayed (see fig. 13-8).
- ✓ At least two data sets have been stored.
- 1. Press the **Delete all** softkey. A warning message is displayed.
- 2. Press the **ENT** key. All the data sets are deleted.

13.3 Entering and editing comments

Each data set can be stored without a comment, with a pre-defined default comment or with your own comment. The comments are managed separately for each operating mode.

1. Press the MEM key.

The MEMORY menu is displayed.

- 2. Use the rotary control to highlight "Comments".
- 3. Press the ENT key.

The COMMENTS menu is displayed.

COMMENTS		
Comment mode: Standard text for comment:	Standard text BTS 23643 GRO	

Fig. 13-11 COMMENTS menu

Selecting the comment mode

- ✓ The COMMENTS menu is displayed.
- 1. Use the rotary control to highlight "Comment mode".
- 2. Press the **ENT** key. The available selections are activated.
- 3. Use the rotary control to highlight one of the following:
 - Individual text
 A comment must be entered for every data set to be stored.
 - No comment Data sets are stored without comments.
 - Standard text

The data set is stored with the default comment (see next section).

Entering a default comment

- ✓ The COMMENTS menu is displayed.
- 1. Use the rotary control to highlight "Standard text for comment".
- 2. Press the **ENT** key. The "Enter text for comment" dialog opens. The softkey functions change.

COMMENTS	Empt. Space
Comment mode: Standard text Standard text for comment: BTS 23643 GRO	Number
Enter text for comment	Spec. Char
BTS 23643 GRO	Del
	Back. Space
	Del all

Fig. 13-12 Entering a standard comment

3. Use the softkeys and the keys (abc through wxyz) to enter the comment (up to 15 characters).

Softkey functions

The softkeys have the following functions:

Empt. Space Number	Enters a space. Opens a list with numerical characters. The required character is selected with the rotary control and the ENT key.
Spec. Char	Opens a list with special characters. The required character is selected with the rotary control and the ENT key.
Del	Deletes the highlighted character.
Back Space	Moves the highlight back one character to the left and deletes the character.
Del all	Deletes all characters.

13.4 Reading out stored data sets

Stored data sets can be transferred to a PC / laptop computer via the serial data interface (RS 232). The "SRM-Tools" PC software supplied with the instrument can be used for this.

♦ Also refer to sec. 16.4, page 16-13.

Notes:

14 General settings (Configuration)

General settings or configurations are selected using the **CONF** button.

Opening the Configuration menu

\Rightarrow Press the **CONF** button.

The CONFIGURATION menu opens showing the following options:

CONFIGURATION MENU	
Antenna/Sensor	1
Cable	
Standard	
Service Table	
Cell Name Table*)	
Device Information	
Clock	
Configure General	j i
Configure Safety Evaluation Mode	
Configure Spectrum Analysis Mode	
Configure UMTS P-CPICH Demodulation Mode *)	
Configure Time Analysis Mode	

Fig. 14-1 CONFIGURATION menu *) only if "UMTS P-CPICH Demodulation" option is installed

Option	Explanation
Antenna/Sensor	Selects an antenna See sec. 14.13, page 14-17
Cable	Selects a cable See sec. 14.14, page 14-18
Standard	Selects a safety standard See sec. 14.5, page 14-6
Service Table	Selects a service table See sec. 14.6, page 14-7

Table 14-1 Options in the CONFIGURATION menu

Option	Explanation
Cell Name Table	Selects a cell name table See sec. 14.7, page 14-9
Device Information	Displays instrument information See sec. 14.8, page 14-11
Clock	Sets the date / time See sec. 14.9, page 14-13
Configure General	Switches the numerical format between normal and exponential display See sec. 14.10, page 14-15 Switches the remote control interface between SERIAL (RS 232) and USB See sec. 14.11, page 14-15
Configure Spectrum Analysis Mode	Configures "Spectrum Analysis" mode See sec. 14.2, page 14-3
Configure Safety Evaluation Mode	Configures "Safety Evaluation" mode See sec. 14.1, page 14-3
Configure UMTS P-CPICH Demodulation Mode	Configures "UMTS P-CPICH Demodulation" mode See sec. 14.3, page 14-4
Configure Time Analysis Mode	Configures "Time Analysis" mode See sec. 14.4, page 14-5

Table 14-1 Options in the CONFIGURATION menu

Selecting an option

- 1. Use the rotary control to highlight an option.
- 2. Press the **ENT** button. Further sub-menus open.

These sub-menus are explained in the sections below.

14.1 Configurations for "Safety Evaluation" mode

- ✓ The CONFIGURATION menu is open.
- 1. Use the rotary control to highlight "Configure Safety Evaluation Mode".
- Press the ENT button. The CONFIGURATION SAFETY EVALUATION menu opens. Configurations for the input attenuation (Measurement Range) and averaging parameters (Number of Averages) are set here.
- ♦ Setting the measurement range: see page 7-6
- Selecting the parameters for the measurement range search (Configure General): see page 14-16
- ♦ Selecting the averaging parameters: see page 7-11
- Selecting the resolution bandwidth (RBW): see page 7-13

14.2 Configurations for "Spectrum Analysis" mode

- ✓ The CONFIGURATION menu is open.
- 1. Use the rotary control to highlight "Configure Spectrum Analysis Mode".
- Press the ENT button. The CONFIGURATION SPECTRUM ANALYSIS menu opens. Configurations for the resolution bandwidth (RBW), input attenuation (Measurement Range) and averaging parameters (Number of Averages) are set here.
- Setting the resolution bandwidth (RBW): see page 8-7
- ♦ Setting the measurement range: see page 8-9
- Selecting the parameters for the measurement range search (Configure General): see page 14-16
- Selecting the averaging parameters: see page 8-12

14.3 Configurations for "UMTS P-CPICH Demodulation" mode

- ✓ The CONFIGURATION menu is open.
- 1. Use the rotary control to highlight "Configure UMTS P-CPICH Demodulation Mode".
- Press the ENT button. The CONFIGURATION UMTS EVALUATION menu opens. The following configurations can be selected here: Channel selection by entering the UMTS frequency or the channel number (Channel selection by ...) Measurement range UMTS channel recognition (Selection of Demodulation Algorithm) Number of averages.
- Selecting an UMTS frequency or channel: see page 9-20
- Selecting the measurement range: see page 9-23
- Selecting the parameters for the measurement range search (Configure General): see page 14-16
- Selecting the UMTS demodulation algorithm (FAST/ SENSITIVE): see page 9-30
- ♦ Selecting the averaging parameters: see page 9-28

14.4 Configurations for "Time Analysis" mode

- ✓ The CONFIGURATION menu is open.
- 1. Use the rotary control to highlight "Configure Time Analysis Mode".
- Press the ENT button. The CONFIGURATION TIME ANALYSIS MODE menu opens. The following configurations can be selected here: Averaging time Measurement range.
- Selecting the Averaging Time: see page 10-18
- ♦ Setting the measurement range: see page 10-13
- Selecting the parameters for the measurement range search (Configure General): see page 14-16

14.5 Selecting a safety standard

- **Note:** Safety standards can be selected and transferred to the SRM-3000 using the "SRM-Tools" or "SRM-TS" PC software.
- ✓ The CONFIGURATION menu is open.
- 1. Use the rotary control to highlight "Standard".
- Press the ENT button. The STANDARD LIST menu opens. The various safety standards stored in the SRM-3000 are listed here.

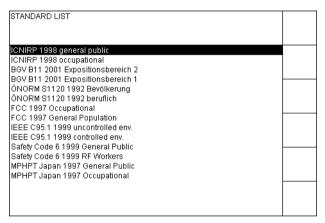


Fig. 14-2 "STANDARD LIST" selection box

- 3. Use the rotary control to highlight an option.
- 4. Press the **ENT** button. The selected standard will be used for the evaluation.

14.6 Selecting a service table

Service tables are lists of named frequency bands or so-called services.

A service is defined by three parameters:

- · Lower limit of frequency band
- Upper limit of frequency band
- Text for service name

Service tables are used for various functions by the SRM-3000:

- Correlation of a measured level to a service using the frequency in the marker box and in the peak table ("Spectrum Analysis" mode)
- Automatic determination of field strength exposure for selected services ("Safety Evaluation" mode).

Note: Service tables can be created, edited and transferred to the SRM-3000 using the "SRM-Tools" or "SRM-TS" PC software.

- ✓ The CONFIGURATION menu is open.
- 1. Use the rotary control to highlight "Service Table".
- 2. Press the ENT button.

The "SERVICE TABLE LIST" selection box opens.

The various service tables stored in the SRM-3000 are listed here.

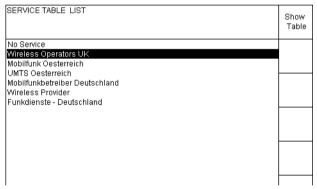


Fig. 14-3 "SERVICE TABLE LIST" selection box

- 3. Use the rotary control to highlight a service table.
- 4. Press the ENT button.

The selected service table is used for the evaluation.

Displaying a service table

- ✓ The CONFIGURATION menu is open.
- ✓ The "Service Table List" is displayed.
- 1. Use the rotary control to highlight a service table.
- 2. Press the **Show Table** softkey. The selected service table is displayed.

SERVICE TABLE - Punkalensie - Deutschland	SERVICE TABLE :Fu
Langwelle 0.148 MHz to 0.283 MHz Mittelwelle 0.526 MHz to 1.606 MHz Kurzwelle 3.400 MHz to 26.100 MHz Band I 47.000 MHz to 68.000 MHz UKW 87.500 MHz to 230.000 MHz Band I/DAB 174.000 MHz to 230.000 MHz Band I/DAB 174.000 MHz to 960.000 MHz GSM 900 890.000 MHz to 960.000 MHz GSM 1800 1710.000 MHz to 2170.000 MHz UMTS 1920.000 MHz to 2170.000 MHz	Mitterwelle Kurzwelle Band I UKW Band II/DAB Band IV//DTVB GSM 900 GSM 1800

Fig. 14-4 "SERVICE TABLE: ..." display box

14.7 Selecting a cell name table

Cell name tables refer to UMTS cells and are only displayed if you have installed the "UMTS P-CPICH Demodulation" option. The tables contain lists of scrambling codes and the names assigned to them.

The SRM can store a maximum of 20 tables.

Each table may contain up to 50 pairs of values:

- Scrambling code number (Primary Scrambling Code divided by 16, i.e. a number between 0 and 511)
- Name (up to 15 characters)

Each table has a short name (up to 10 characters) and a full name (long name, up to 35 characters).

Note: Cell name tables can be edited, created and transferred to the SRM-3000 using the "SRM-Tools" or "SRM-TS" PC software.

- ✓ The CONFIGURATION is open.
- 1. Use the rotary control to highlight "Cell Name Table".
- 2. Press the ENT button.

The "CELL NAME TABLE LIST" selection box opens. Cell name tables will now be displayed if they have been saved in the SRM-3000.

CELL NAME TABLE LIST	Show Table
No Cell Name	
Cell Name Example	

Fig. 14-5 "CELL NAME TABLE LIST" selection box

- 3. Use the rotary control to highlight an item.
- 4. Press the ENT button.

The selected cell name table will be used for the evaluation.

Displaying a cell name table

- ✓ The CONFIGURATION menu is open.
- ✓ The "Cell Name Table List" is displayed.
- 1. Use the rotary control to highlight a cell name table.
- Press the Show Table softkey. The selected cell name table is displayed.

Cell Name Example			
6	Town Hall 1		
17	Tower East 1		
123	Tower East 2	2	
126	Tower North 1		
164	Factory 1		
201	Town Hall 3	}	
213	Tower North 2	2	
238	Factory 3	3	
312	Tower North 3	}	
345	Tower East 3	3	
456	Factory 2	2	
502	Town Hall 2	2	

Fig. 14-6 "CELL NAME TABLE: ..." display box (cell name example)

14.8 Displaying device information

- ✓ The CONFIGURATION menu is open.
- 1. Use the rotary control to highlight "Device Information".
- 2. Press the ENT button.

The "DEVICE INFORMATION" display box opens.

Device-specific information such as the serial number, ID number, software version and date of last calibration is displayed here.

DEVICE INFORMATION		Device Diag
Device Typ: Serial Number: ID Number: Firmware Version: Firmware Date: Calibration Date:	SRM-3000 G-0067 E65D1CBA46B989FA V1.5.2 Beta8 07.09.06 07.09.06	

Fig. 14-7 "DEVICE INFORMATION" display box

Note: This information is needed when ordering options and also for servicing purposes.

Diagnostic function (Device Diagnostic)

This function delivers detailed information about the device. For example, it tells you which options are activated and provides assistance for Narda service.

- ✓ The "DEVICE INFORMATION" display pane is open.
- 1. Press the Device Diag softkey.

The "DEVICE DIAGNOSTIC" display pane opens.

DEVICE DIAGNOSTIC		
RSP FPGA RF / Startup Status FMD Init Disk Volume Config Partition Data Partition Last PowerDown Data Consist	0K 0K 0K / 0000 (H) 0K 0K 0K Error 0008 (H) 0K	•
Interface Interface Baudrate Bootloader Baudrate Bootloader Version RF FW Version RF Status (current) RF Voltage (current)	SERIAL 115200 VI.5.3 RF SelMet 2.02 0000 (H) 9.5 V	

Fig. 14-8 "DEVICE INFORMATION" pane

Use the rotary control to see all the information on the second second

DEVICE DIAGNOSTIC			
		A	
RF Voltage (current)	9.5 V		
RF Temp. (current)	50.0 °C		
Device Temp. (current)	47.7 °C		
Hardware Options	7		
RAM	32MB		
FLASH	32MB	-	
RF BOARD RESET	DISABLE		
PWR EXT	DISABLE		
ADC REF	MAX872		
OPERATING MODE	GUI	-	
EXTERNAL SIGNAL LINE	DISABLE		
Firmware Options	3		
UMTS P-CPICH Demodulation	Activated	Γ	
Spatial Averaging	Activated		
Time Controlled Storing	Activated		

Fig. 14-9 "DEVICE INFORMATION" pane

14.9 Setting the date and time

- ✓ The CONFIGURATION menu is open.
- 1. Use the rotary control to highlight "Clock".
- 2. Press the **ENT** button.
 - The CLOCK menu opens.

The date format can be selected and the date and time entered or edited here.

CLOCK MENU	
Date Format DD.MM.YY Date 20.12.04	
Time 14:26:05	

Fig. 14-10 CLOCK menu

Selecting the date format

- 1. Use the rotary control to highlight "Date Format".
- 2. Press the ENT button.
- 3. Use the rotary control to highlight "DMY" (day, month, year) or "MDY" (month, day, year).
- 4. Press the **ENT** button. The selected date format is set.

Entering the date

- 1. Use the rotary control to highlight "Date".
- 2. Press the ENT button.
- 3. Use the rotary control and the < and > softkeys to set the date.
- 4. Press the **ENT** button. The date is set.

CLOCK MENU		>
Date Format Date Time	DD.MM.YY 20.12.04 14:26:05	<

Fig. 14-11 CLOCK menu - Date entry

Entering the time

- 1. Use the rotary control to highlight "Time".
- 2. Press the ENT button.
- 3. Use the rotary control and the < and > softkeys to set the time.
- 4. Press the **ENT** button. The time is set.

14.10 Setting the number format (Configure General)

- ✓ The CONFIGURATION menu is open.
- 1. Use the rotary control to highlight "Configure General".
- Press the ENT button. The "CONFIGURE GENERAL" display box opens showing the "Number Format" line.
- 3. Press the ENT button.
- 4. Use the rotary control to set NORMAL or EXPONENTIAL.
- Press the ENT button. The number format will be set to either NORMAL (e.g. 12.34 mV/m) or EXPONENTIAL (e.g. 12.34 E-3 V/m).

14.11 Selecting the remote control interface (Configure General)

You can use either the serial (RS 232) or the USB interface, but not both interfaces at the same time.

- To install the USB hardware driver on your PC, see sec. 16.2.2, page 16-4
- ✓ The CONFIGURATION menu is open.
- 1. Use the rotary control to highlight "Configure General".
- Press the ENT button. The "CONFIGURE GENERAL" display box opens.
- 3. Use the rotary control to highlight "Remote Control Port".
- 4. Press the ENT button.
- 5. Use the rotary control to select SERIAL or USB.
- Press the ENT button.
 Either the serial or the USB interface is now set to be used for communication between the SRM and the PC.

14.12 Selecting the parameters for the measurement range search (Configure General)

The SRM uses two parameters to search for the best measurement range automatically.

- NORMAL is suitable for all signals that are more or less static.
- CONSERVATIVE gives a greater overload reserve for pulsed signals.
- ✓ The CONFIGURATION menu is open.
- 1. Use the rotary control to highlight "Configure General".
- 2. Press the ENT key. The "CONFIGURE GENERAL" display pane opens.
- 3. Use the rotary control to highlight "MR Search Mode".
- 4. Press the ENT key.
- 5. Use the rotary control to highlight NORMAL or CONSERVATIVE.
- 6. Press the **ENT** key. The parameter for the automatic measurement range search is set.
- 7. Press the **ESC** key to exit from the CONFIGURATION menu.

You can set the automatic measurement range search to start every time you recall a setup. You can also start a measurement range search at any time by pressing the appropriate softkey.

- ✓ The CONFIGURATION menu is open.
- 1. Use the rotary control to highlight "Configure General".
- Press the ENT key. The "CONFIGURE GENERAL" display pane opens.
- 3. Use the rotary control to highlight "MR Search on Setup Recall".
- 4. Press the ENT key.
- 5. Use the rotary control to highlight ON or OFF.
- Press the ENT key. This switches the automatic measurement range search when you recall a setup on or off.
- 7. Press the **ESC** key to exit from the CONFIGURATION menu.

14.13 Selecting an antenna / sensor

Note: This function is only needed when customary antennas are used.

You must select the type of antenna that you are using in order that the results can be displayed in units of field strength when a customary antenna is used for measurement. Otherwise the range of functions available from the SRM will be restricted. The stored antenna factors for the antenna type being used are taken into account in the result displayed.

The antenna factor describes the relationship between the existing field strength and the voltage generated at the antenna base at a specific frequency.

- Note: Antenna or sensor data can be created, edited and transferred to the SRM-3000 using the "SRM-Tools" software. This step is not required for Narda antennas because the SRM automatically recognizes the antenna or sensor data via the control cable as soon as it is connected to the multi pin connector.
- ✓ The CONFIGURATION menu is open.
- 1. Use the rotary control to highlight "Antenna/Sensor".
- 2. Press the ENT button.

The "ANTENNA/SENSOR LIST" display box opens. The data for the various antennas or sensors stored in the SRM is displayed here.

No Antenna/Sensi	or				
PCD 8250	80 MHz	to	2.5 GHz	E-FIELD	
EMC0 6512	10 kHz	to	30 MHz	H-FIELD	
Test 1	200 MHz	to	600 MHz	E-FIELD	
Curr. T1	80 MHz	to	2.5 GHz	CURRENT	
C-Test 2	100 kHz	to	300 MHz	CURRENT	
C-Test 3	100 kHz	to	300 MHz	CURRENT	
Test 2	100 kHz	to	300 MHz	E-FIELD	
C-Test 4	100 kHz	to	300 MHz	CURRENT	

Fig. 14-12 "ANTENNA/SENSOR LIST" display box

- 3. Use the rotary control to highlight an item.
- 4. Press the **ENT** button.

The data for the selected antenna will be used in the evaluations.

14.14 Selecting a cable

Note: This function is only needed if customary cables are used.

You must select the cable type that you are using if the effects of a customary cable on the measurement result are to be taken into account. The loss factors stored for this cable type will then be used automatically in displaying the result.

- Note: Antenna or sensor cable data can be created, edited and transferred to the SRM using the "SRM-Tools" software. This step is not needed if Narda cables are used because the SRM-3000 automatically recognizes the data via the control cable as soon as it is connected to the multi pin connector.
- ✓ The CONFIGURATION menu is open.
- 1. Use the rotary control to highlight "Cable".
- Press the ENT button. The "CABLE LIST" display box opens. The data for the various antenna or sensor cables stored in the SRM-3000 is listed here.

CABLE LIST				
No Cable RG-142 TestCabl 2 TestCabl 1	10 MHz 200 kHz 400 kHz	to to to	3 GHz 1.7 MHz 1.5 MHz	

Fig. 14-13 "CABLE LIST" display box

- 3. Use the rotary control to highlight an item.
- 4. Press the **ENT** button.

The data for the selected antenna cable will be used for the evaluations.

14.15 Creating and managing setups

The **SETUP** button is used for storing a complete instrument configuration.

The following settings are stored:

- Operating mode
- Operating mode parameters
- Antenna and cable
- Standard
- Service table
- · Measurement mode (single axis, isotropic measurement)
- ✓ All the desired settings have been made.
- \Rightarrow Press the **SETUP** button.

The SETUP menu opens.

The softkey functions change.

All the setups that have been stored are displayed here with their name, date and time. If there is more than one page of setups, this will be indicated by a small black triangle.

CONFIGURAT	ION MENU		Store current setup
Setup Name GSM 900 GSM 1800	Date 30.03.04 30.03.04	Time 09:34:26 09:34:49	Factory setup
PCS UMTS FM RADIO	30.03.04 30.03.04 30.03.04	09:35:09 09:35:27 09:36:12	Recall setup
			Delete setup
			Delete all

Fig. 14-14 SETUP menu

The softkeys have the following functions:

Store current setup	Stores the current settings. A setup name must be entered.
Factory setup	Loads the factory default setup.
Recall setup	Loads the highlighted setup.
Delete setup	Deletes the highlighted setup.
Delete all	Deletes all the setups after confirmation.

Storing the current setup

- ✓ The SETUP menu is open.
- 1. Press the **Store current setup** softkey. The "Enter a text for comment" dialog opens. The softkey functions change.
- Enter a setup name using the softkeys and the buttons ABC through WXYZ.
- 3. Press the **ENT** button. The setup is stored.

Loading a setup

- ✓ The SETUP menu is open.
- ✓ At least one setup has been stored.
- 1. Use the rotary control to highlight a setup.
- Press the Recall setup softkey. The setup is loaded.
- **Note:** An error mesage ("SRM Setup Check") is displayed if it is not possible to load a setup. This can happen if a different antenna to the one specified in the setup is being used, or if the configuration data (antenna lists, service tables, etc.) specified in the setup are unavailable.

This could occur if the configuration data has been edited using the "SRM-Tools" or "SRM-TS" PC software.

It may be possible to "repair" such setups in the SRM basic unit.

"Repairing" a saved setup

- ✓ The message "SRM Setup Check" is displayed.
- 1. Make a note of the error message that is displayed, e.g. "Could not find specified antenna".
- 2. Press the **ENT** key. The setup opens.
- 3. Press the **CONF** key. The CONFIGURATION menu opens.
- 4. Redefine each item of configuration data for which an error message was displayed.
- 5. Press the ENT key to complete each new definition.
- 6. Press the SETUP key.
- Press the **Overwrite setup** softkey. The setup is "repaired" in the sense that it can now be used without restrictions using the changed configuration data.

Deleting a setup

- ✓ The SETUP menu is open.
- ✓ At least one setup has been stored.
- 1. Use the rotary control to highlight the setup you want to delete.
- 2. Press the **Delete setup** softkey. The setup is deleted.

Loading the factory default setup

- ✓ The SETUP menu is open.
- ⇒ Press the Factory setup softkey. The factory default setup is loaded.

15 Maintenance and repairs

15.1 Changing the battery pack

- 1. Unscrew the battery holder lock.
- 2. Remove the cover.
- 3. Pull out the battery pack using the strap provided.
- 4. Slide in a new battery pack.
 - The battery pack is designed so that it cannot be inserted wrongly.
- 5. Replace the cover and screw the lock closed.

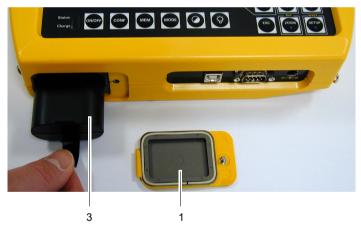


Fig. 15-1 Changing the battery pack

No.	Function
1	Cover
2	Lock
3	Battery pack with strap

Table 15-1 Changing the battery pack

Battery pack disposal

Do not throw away battery packs with household trash. Take them to the appropriate recycling collection center or return them to the manufacturer for disposal.

15.2 Cleaning

- Never use solvents to clean the basic instrument, antennas or the AC Adapter / Charger. For cleaning, we recommend the use of lukewarm water to which a little liquid detergent has been added.
- Only lightly moisten the cleaning cloth. Do not let water get into the instrument.
- To avoid spots and drying marks, wipe of the still damp instrument parts with a dry cloth.

15.3 AC Adapter / Charger

The AC Adapter / Charger is not designed to be repaired.

If a defect occurs or operation is faulty, the entire unit must be replaced.

Opening the unit

Electric shock

Parts carrying live voltages may be exposed when the AC Adapter / Charger is opened.

Danger

⇒ Before opening the unit, disconnect it from the AC line and all other voltage sources. Maintenance or repair of the opened AC Adapter / Charger under power

must be performed by qualified service engineers familiar with the risks involved.

Damage to the unit

Damage to the unit

The AC Adapter / Charger can be destroyed or damaged by unprofessional repairs that result in short circuits across creepage and air paths, for example.

Caution

 \Rightarrow Repairs must only be performed by qualified service engineers.

Spare parts

Damage to the unit

The safety of the AC Adapter / Charger cannot be guaranteed if changes are made in the construction of the unit.

Caution

⇒ Only use original spare parts when making repairs to the AC Adapter / Charger. Notes:

16 Adapting the instrument configuration using "SRM-Tools" or "SRM-TS"

16.1 Task of the "SRM-Tools" software

SRM-Tools	X
Device <u>C</u> onfiguration O <u>R</u> ead Out Data OK	

Fig. 16-1 "SRM-Tools" software

The PC configuration software "SRM-Tools" is a stand-alone software tool that runs on any customary PC under Windows 2000 or higher.

The software performs the following main tasks:

- Configuration of the SRM
- SRM software update (using Device Configuration or Read Out Data)
- Enabling options (using Device Configuration or Read Out Data)
- Uploading the saved results from an SRM (Read Out Data)

These tasks are described in the sections below.

- Note: The PC configuration software "SRM-Tools" is included with the SRM-3000.
 The PC software "SRM-TS" can be purchased. It includes all the functions of "SRM-Tools" combined with convenient remote-control, evaluation, and database functions. You do not need to install the
- Further detailed information is found in the on-line help function of the "SRM-Tools" or "SRM-TS" software.

"SRM-Tools" configuration software if "SRM-TS" is already installed.

16.2 Connecting a PC to the SRM-3000

Note: You do not have to connect the SRM to a PC in order to process configuration data for the SRM. The connection is only required when data are to be transferred to or from the SRM.

The connectors for the serial (RS 232) and USB interfaces are at the bottom of the instrument.

Note: All the functions of SRM-Tools can be used with the serial interface. All the functions of SRM-Tools **except "Firmware update**" can be used with the USB interface.

Fig. 16-2 Serial (1) and USB (2) interfaces

16.2.1 Serial interface connection

- ✓ The SRM-3000 and PC are switched off.
- 1. Connect the serial interface (1) of the SRM to a serial port of the PC using a zero modem cable. You can also use a serial to USB adapter if you want to use the USB port on your PC.
- Switch on the SRM and set Remote Control Port to SERIAL (see sec. 14.11, page 14-15).
- 3. Switch on the PC.
- Start "SRM-Tools" or "SRM-TS". The start up screen is displayed.
- Click on the "Device Configuration", "Read Out Data" or "Remote & Data Analysis" button, depending on the task you want to perform. The corresponding window opens.
- Check the selected COM port. To do this, open the "Communication" dialog from the "Device" -> "Communication Settings" menu. The default transmission speed is 115200 Baud. Select the 230400 Baud option if your PC interface can handle this speed.

16.2.2 USB interface connection

- ✓ SRM is equipped with firmware version 1.5.2 or above (see sec. 14.8, page 14-11 for details of how to query the firmware version).
- ✓ PC operating system: Windows 2000 Service Pack 4 or Windows XP Service Pack 2 or Windows Vista.
- ✓ "SRM-Tools" version 2.2.1 or above, or "SRM-TS" version 1.2.0 or above is installed on the PC (see page 16-18).

The PC requires a hardware driver for the USB link with the SRM. This driver is included on the CD-ROM with the "SRM-Tools" or "SRM-TS" software and is automatically installed correctly when you instal "SRM-Tools" or "SRM-TS" on the PC. Nevertheless, you need to run through a small installation routine when you make the connection for the first time.

First time connection Description for the Windows 2000 operating system

- ✓ The "SRM-Tools" or "SRM-TS" software is installed on the PC, but the application is not running.
- 1. Switch on the SRM and set the Remote Control Port to USB (see sec. 14.11, page 14-15).
- Connect the USB interface of the SRM to a USB port on the PC using a USB cable.

The "Install Hardware Device Drivers" window opens.

Found New Hardware Wizard
Install Hardware Device Drivers A device driver is a software program that enables a hardware device to work with an operating system.
This wizard will complete the installation for this device:
A device driver is a software program that makes a hardware device work. Windows needs driver files for your new device. To locate driver files and complete the installation click Next.
What do you want the wizard to do?
Search for a suitable driver for my device (recommended)
Display a list of the known drivers for this device so that I can choose a specific driver
< Back Next > Cancel

Fig. 16-3 "Install Hardware Driver" window

- 3. Select the option "Search for a suitable driver for my device (recommended)" and click on "Next". The program will automatically locate the only (i.e. correct) SRM USB driver. The driver file name is "nardcom.inf" and it is located in the Programs\NardaSafety\SRM USB Driver folder if you did not specify a different location when you were installing SRM-TS.
- 4. Follow the remainder of the installation routine through to completion.

First time connection Description for Windows XP operating system

- ✓ The "SRM-Tools" or "SRM-TS" software is installed on the PC, but the application is not running.
- 1. Switch on the SRM and set the Remote Control Port to USB (see sec. 14.11, page 14-15).
- 2. Connect the USB interface of the SRM to a USB port on the PC using a USB cable.

The message "Found New Hardware" appears and the "Found New Hardware Wizard" opens and displays the query: "Can Windows connect to Windows Update to search for software?".

3. Select "Yes, this time only" and click on "Next". The following message appears:

Found New Hardware Wizard					
	This wizard helps you install software for: USB Device If your hardware came with an installation CD or floppy disk, insert it now.				
	What do you want the wizard to do? Install the software automatically (Recommended) Install from a list or specific location (Advanced) Click Next to continue.				
	<pre></pre>				

Fig. 16-4 "Found New Hardware Wizard"

 Select the option "Install the software automatically (Recommended)" and click on "Next". The following message appears:

Fig. 16-5 "Hardware Installation" window

This message appears because the driver has not passed the "Windows Logo Test" routine provided by Microsoft. It has, however, been thoroughly tested and can be used without reservations.

5. Click on "Continue Anyway" and follow the remainder of the installation routine through to completion.

First time connection Description for Windows Vista operating system

- ✓ The "SRM-Tools" or "SRM-TS" software is installed on the PC, but the application is not running.
- 1. Switch on the SRM and set the Remote Control Port to USB (see sec. 14.11, page 14-15).
- 2. Connect the USB interface of the SRM to a USB port on the PC using a USB cable.

The message "Driver Software Installation" appears and installation starts automatically. The following message appears during the routine:

Fig. 16-6 "Windows Security" window

This message appears because the driver has not passed the "Windows Logo Test" routine provided by Microsoft. It has, however, been thoroughly tested and can be used without reservations.

3. Click on "Install this driver software anyway" and follow the remainder of the installation routine through to completion.

Selecting the USB port on the PC

The USB driver sets up a virtual COM port when you connect the SRM basic unit to the PC using a USB cable. You will have to select this COM port manually if SRM-TS does not locate it automatically.

- 1. Start the "SRM-Tools" or "SRM-TS" software. The start-up screen is displayed.
- Click on the "Device Configuration", "Read Out Data" or "Remote & Data Analysis" button, depending on the task you want to perform. The corresponding window opens.
- 3. Select the "Communication Settings" command in the "Device" menu. The "Communication Settings" window opens.
- 4. Click on "Select port manually"

A list of available COM ports is displayed.

Communicat	ion Settings	
 Select port Select port 	-	
<u>P</u> ort: <u>B</u> aud rate:	COM9 COM1 COM4	
☑ <u>O</u> pen thi	COM9 s dialog for each connection	ļ
	OK Cancel	

Fig. 16-7 "Communication Settings" window

The last device connected to the PC using USB will normally be assigned the highest number.

5. Select the USB port and click on "OK".

You can now use all the functions under "Device Configuration" and "Read Out Data" via the USB interface.

Exception: Firmware updates can only be performed via the serial interface.

16.3 SRM configuration

This section covers the following topics:

- Creating a configuration
- Transferring a configuration from the PC to the SRM
- Transferring a configuration from the SRM to the PC

Creating a configuration

The "SRM-Tools" software performs the following tasks:

- Creation and management of up to 20 antenna factor lists for non-Narda antennas. Antenna factors for Narda antennas do not need to be entered because the SRM-3000 detects them automatically.
- Creation and management of up to 20 cable loss lists for non-Narda cables. Cable losses for Narda cables do not need to be entered because the SRM detects them automatically.
- Creation and management of up to 50 service tables.
- Creation and management of up to 20 cell name tables (only for the "UMTS P-CPICH Demodulation" option).
- Management of safety standards (e.g. IEEE, FCC, ICNIRP, BGV B11, Ö NORM, Safety Code 6).
- Management of up to 20 instrument setups.
- Management and storage of all settings in libraries.
- **Note:** Detailed information about the operation of the "SRM-Tools" or "SRM-TS" software is found in the on-line help for the software.

ievice configuration Library Object Extras ? 全	<u> ₹ №</u>		
Antennas Cables Service Tables Standards Setups		ess UK ess Operators UK	
Wireless Provider Wireless Operators UK	Service Table	Upper frequency	Service Name
dollhark Destenreich Mol Destenrich Mol Markotreber Deutschland Unik dennte - Deutschland	925,200 MHz 933,200 MHz 940,000 MHz 947,400 MHz 955,200 MHz 955,200 MHz 1,81500 GHz 1,811000 GHz 1,81600 GHz 1,84600 GHz	930,000 MHz 935,000 MHz 947,200 MHz 947,200 MHz 955,000 MHz 956,000 MHz 1,816800 GHz 1,816800 GHz 1,876800 GHz 2,124900 GHz	Votafone O2 O2 Votafone O2 Votafone O2 O2 O2 Votafone O2 O2 Theobile Orange TTW TW TW
Copy to SRM Copy to Library ibrary (SRMLibrary.srm) unk dente - Deutschland	2,124900 GHz 2,134900 GHz 2,149700 GHz 2,159700 GHz	2,134900 GHz 2,149700 GHz 2,159700 GHz 2,169700 GHz	02 Vodafone T-Mobile Orange
	New	Import Edit	Remove

Fig. 16-8 "SRM-Tools" software in "Configuration" mode

Transferring a configuration from the PC to the basic instrument

- ✓ SRM and PC are connected together (see sec. 16.2, page 16-3).
- ✓ "SRM-Tools" or "SRM-TS" is running and is in "Device Configuration" mode.
- ✓ The configuration to be transferred to the basic instrument has been created and is shown in the upper left part of the window.
- **Notice:** When configurations are transferred, any configurations already stored in the basic instrument will be deleted. The following warning message appears:

SRM Tool	s 🛛 🛛
<u>•</u>	III Warning III If you continue, you will overwrite all antennas, cables, service tables, standards, cell names, and setups of the connected SRM (measurement data will not be affected).
	If you just want to add data to the existing configuration of the SRM basic unit, press "No". Then please first transfer the existing configuration of the connected basic unit to the PC(Laptop, add the relevant configuration data and transfer the complete image back to the SRM basic unit.
	Do you want to continue?
	lein

Fig. 16-9 "SRM-Tools" software: Warning before overwriting data

Always therefore transfer a complete data set with ALL the configurations that you want to save in the SRM, i.e the new ones AND the old ones.

If you are in any doubt, you can first transfer the configurations from the basic instrument to the PC (image).

 \Rightarrow Now click on the \clubsuit icon in the toolbar.

– or –

⇒ Click on Transfer from PC/Laptop to SRM in the Device configuration menu.

The data are transferred to the SRM.

Transferring a configuration from the basic instrument to the PC

- ✓ SRM and PC are connected together (see sec. 16.2, page 16-3).
- ✓ "SRM-Tools" is running and is in "Configuration" mode.
- \Rightarrow Click on the \blacklozenge icon in the toolbar.

– or –

⇒ Click on Transfer from SRM to PC/Laptop in the Device configuration menu.

The data are transferred from the SRM to the PC, where they can be processed and stored.

Note: "SRM-Tools" and "SRM-TS" check the SRM setups for consistency and provide the same "repair" features that are described under "Creating and managing setups" (see page 14-20).

16.4 Reading out the stored results from a SRM

All the results saved by the SRM can be transferred to the PC using the "SRM-Tools" software.

- ✓ SRM and PC are connected together (see sec. 16.2, page 16-3).
- ✓ "SRM-Tools" is running and is in "Readout stored data" mode.
- 1. Click on the 🔺 icon in the toolbar.
 - or –

Click on Load in the Datasets menu.

The "Load data" dialog opens.

	Load da	ta				×	
	Index	Data Type	Mode	Date / Time	-	All	
	1	SPEC	MAN	19.03.2004/12:27:39			
Please click on first left sy	2	SPEC	MAN	19.03.2004/12:29.05		All selected	
datasets stored in the int	₩3	SPEC	MAN	19.03.2004/12:29.18			
	₩4	SPEC	MAN	26.03.2004/13:46:42		Invert	
	₫5	SPEC	MAN	26.03.2004/13:46:45		inven	
	₽ 6	SPEC	MAN	26.03.2004/13:46:48			
	₫7	SPEC	MAN	26.03.2004/13:46:52			
	128	TAB	MAN	26.03.2004/13:47:08			
	Ø 9	SPEC	MAN	26.03.2004/13:55:01			
	10	SPEC	MAN	26.03.2004/13:56:46			
	☑ 11	SPEC	MAN	26.03.2004/13:56:48			
	12		MAN	26.03.2004/13.56.49	_		
	☑ 13		MAN	26.03.2004/13:56:50			
	☑ 14	SPEC	MAN	26.03.2004/13:56:52			
	☑ 15		MAN	30.03.2004/16:06:57			
	☑ 16		MAN	30.03.2004/16:07:09			
	☑ 17		MAN	30.03.2004/16:12:02			
	18	SPEC	MAN	30.03.2004/16:12:18	•		
					- 1	ОК	
				Abbrec	nen		
_							

Fig. 16-10 Selection of data sets in the instrument memory

- 2. Select the data sets that you want to transfer from the instrument memory to the PC.
- 3. Click on "OK". The selected data sets are transferred.

Obtacets Extense ? ● B B ? ? ● Descense ? ? ? ● Descense ? ? ? ? ● 24, 0.5 SFC, MOCE: MMA, 19.03.2004/12:27:39 ? <t< th=""><th></th></t<>	
□ 0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:	
□ Outwards ⊕ #4, 10, 5 FEC, MODE: MAN, 19.03.2004/12:27:39 ⊕ #2, 10, 5 FEC, MODE: MAN, 19.03.2004/12:27:605 ⊕ #3, 10, 5 FEC, MODE: MAN, 19.03.2004/12:27:616 ⊕ #4, 10, 5 FEC, MODE: MAN, 19.03.2004/12:27:616 ⊕ #4, 10, 5 FEC, MODE: MAN, 19.03.2004/12:27:616 ⊕ #4, 10, 5 FEC, MODE: MAN, 20.03.2004/13:46-42 ⊕ #5, 10, 5 FEC, MODE: MAN, 20.03.2004/13:46-42 ⊕ #5, 10, 5 FEC, MODE: MAN, 20.03.2004/13:46-48	
B) # 4, 0: SPEC, MODEL MAN, 19, 03.2004/12:27:09 (B) # 20, 0: SPEC, MODEL MAN, 19, 03.2004/12:29:05 (B) # 40, 0: SPEC, MODEL MAN, 19, 03.2004/12:29:05 (B) # 40, 0: SPEC, MODEL MAN, 20.30204/13:46:42 (B) # 45, 0: SPEC, MODEL MAN, 20.30204/13:46:42 (B) # 65, 0: SPEC, MODEL MAN, 20.30204/13:46:48	
(i) ≠ 2, 0: SPEC, MODE: MAN, 19.03.2009/12:29-015 (i) ≠ 3, 0: SPEC, MODE: MAN, 19.03.2009/12:29-015 (i) ≠ 4, 0: SPEC, MODE: MAN, 26.03.2009/13:46-42 (i) ≠ 5, 0: SPEC, MODE: MAN, 26.03.2009/13:46-42 (i) ≠ 6, 0: SPEC, MODE: MAN, 26.03.2009/13:46-49	
(i) = 4, 0; 59°C, MOCE IMA, 10.3.200/11229/18 (i) = 40, 0; 59°C, MOCE IMA, 26.3.0200/113-64-2 (i) = 45, 0; 59°C, MOCE IMA, 26.3.0200/113-64-3 (i) = 60, 0; 59°C, MOCE IMA, 26.3.0200/113-64-8	
⊕ #5, D: SPEC, MODE: MAN, 26.03.2004/13:46:45 ⊕ #6, D: SPEC, MODE: MAN, 26.03.2004/13:46:48	
#-#6, D: SPEC, MODE: MAN, 26.03.2004/13:46:48	
E-#7, D: DPEC, MODE: MAN, 26.03.2004)13:46:52	
#-#8, D: TAB, MODE: MAN, 26.03.2004/13:47:08	
B-#9, D: SPEC, MODE: MAN, 26.03.2004/13:55:01	
- #10, D: SPEC, MODE: MAN, 26.03.2004/13:56:46	
+ #11, D: SPEC, MODE: MAN, 26.03.2004/13:56:48	
#12, D: SPEC, MODE: MAN, 26.03.2004/13:56:49	
⊕-#13, D: SPEC, MODE: MAN, 26.03.2004/13:56:50	
⊕ #14, D: SPEC, MODE: MAN, 26.03.2004/13:56:52	
#15, D: SPEC, MODE: MAN, 30.03.2004/16:06:57	
⊕ #16, D: SPEC, MODE: MAN, 30.03.2004/16:07:09	
⊕-#17, D: SPEC, MODE: MAN, 30.03.2004/16:12:02	
#18, D: SPEC, MODE: MAN, 30.03.2004/16:12:18	
B: #19, D: SPEC, MODE: MAN, 30.03.2004/16:14:36	
For Help, press F1 disconnected	

Fig. 16-11 List of transferred data sets

The "SRM-Tools" software provides the following features in this mode:

- Export all results or individual results in text or CSV format for further processing with other programs such as Microsoft EXCEL[®]. The separator character for CSV format can be selected.
- Printing out results (summary)
- **Note:** Detailed information about the operation of the "SRM-Tools" or "SRM-TS" software is found in the on-line help for the software.

16.5 Updating the firmware of the SRM

Malfunction

Data loss

Downgrading from a higher to a lower firmware version can cause the SRM-3000 to malfunction.

Caution

✓ The new firmware release is stored on the PC.

Updating the firmware can take up to **10 minutes**. If the process is terminated prematurely, loss of data may occur so that the SRM no longer operates.

Caution

All the measurement results stored in the SRM basic unit will be deleted when you update the firmware. Configurations and setups are not deleted.

Before making the update:

- \Rightarrow Upload your saved measurement results to your PC (see page 16-13).
- \Rightarrow Finish all measurements.

During the update:

- \Rightarrow Avoid interruptions due to power failures.
- ⇒ Do not make any settings on the SRM until the message "Firmware update successfully achieved" is displayed.
- 1. Connect the AC Adapter / Charger to the SRM.
- 2. Start "SRM-Tools" or "SRM-TS".
- 3. Select "Device Configuration" or "Read Out Data" mode.
- 4. Start the dialog from the "Device" -> "Update Firmware" menu.
- 5. Follow the program instructions:
 - Connect SRM and PC via their serial interfaces (see sec. 16.2, page 16-3).
 - Switch off the SRM.
 - Select the firmware release.
 - Start the update.

The update process starts and its progress is indicated. When the update is complete, the message "Firmware update successfully achieved" is displayed.

6. Switch off the SRM.

- 7. Close "SRM-Tools".
- Note: Detailed information about the operation of the "SRM-Tools" or "SRM-TS" software is found in the on-line help for the software.

16.6 Activating options

Options are delivered along with new firmware releases.

To activate them, you require a special code (Option Key) which you will find in the "SRM-3000 Options Passport". This document is supplied along with the purchase documents for the option.

- 1. Connect the AC Adapter / Charger to the SRM.
- 2. Start "SRM-Tools".
- Click on the "Options" button. The "Connect Device" window opens.
- Click on NEXT. The "Select Options" window opens displaying the available options. Options that have not been activated are marked LOCKED.
- 5. Highlight the option you want by clicking on it:

Options - SRM Tools	_ 🗆 ×
Options Extras ?	
≌ ↓ ? №	
Select Options	
To enable an option select it from the list and enter its activation code To disable an option leave the fields emtpy or enter an illegal code.	3.
Firmware: V1.3.1	
Code:	
Option State	
UMTS P-CPICH DEMODULATION LOCKED	
Set O	ption
For Help, press F1 disconnected	

Fig. 16-12

- 6. Type in the Option Key.
- 7. Click on "Set Option".

If activation is successful, the option status will change to UNLOCKED.

Options - SRM Tools	미 ×
Options Extras 2	
iii ↓ ? №	
Select Options	
To enable an option select it from the list and enter its activation code. To disable an option leave the fields emtpy or enter an illegal code.	
Firmware: V1.3.1	
Code: 5D66 8DE1 12D5 F5C2	
Option State	
UMTS P-CPICH DEMODULATION UNLOCKED	
Set Option	
For Help, press F1 disconnected	

Fig. 16-13

8. Exit the "SRM-Tools" software.

16.7 Installing and uninstalling "SRM-Tools" or "SRM-TS"

To install "SRM-Tools" or "SRM-TS"

- 1. Insert the CD-ROM in the PC CD-ROM drive.
- 2. Open the "SRM Tools" or "SRM-TS" folder using the file manager (Windows Explorer).
- 3. Double click on "setup.exe" to start the program.
- 4. Follow the instructions displayed on screen.

To uninstall "SRM-Tools" or "SRM-TS"

- 1. Insert the CD-ROM in the PC CD-ROM drive.
- 2. Open the "SRM Tools" or "SRM-TS" folder using the file manager (Windows Explorer).
- Double click on "setup.exe" to start the program. A message asking if you want to delete "SRM-Tools" or "SRM-TS" is displayed.
- Click on "Yes".
 "SRM-Tools" or "SRM-TS" will be deleted.

You can use an uninstall link in the folder "Programme / NardaSafety / SRM Tools" or "Programme / NardaSafety / SRM TS" instead.

17 Remote control

All the instrument functions can be remote controlled using a remote control program (e.g. a standard terminal emulator such as "Hyperterminal").

The following hardware is required for this:

- PC with serial interface
- Interface cable (zero modem cable supplied)

– or –

- PC with USB interface
- USB interface cable

The sections below describe how the SRM is connected to the PC as well as the steps to be taken to start the remote control process.

Note: The individual remote control commands are listed in a separate PDF document. The latest version of this PDF document can be downloaded from our homepage.

17.1 Connecting to the PC

1. Connect the serial interface of the PC to the serial interface of the SRM with a zero modem cable

– or –

Connect the USB interfaces of the SRM and the PC with a USB cable.

- 2. Start the program for control and management of the PC interface (e.g. a standard terminal emulator such as "Hyperterminal").
- 3. Set the following interface parameters in the interface control program that you have selected on your PC:
 - Select the communications port (COM port)

to correspond with the physical connection made in step 1 above.

If you are using the serial interface, set the following:

- Baud rate: 115200 or 230400
- No parity
- 8 data bits
- 1 stop bit
- Handshake: None

4. Switch on the SRM and set its Remote Control Port to SERIAL or USB (see sec. 14.11, page 14-15).

The connectors for the serial (RS-232) and USB interfaces are found at the bottom of the instrument.

Fig. 17-1 Serial (1) and USB (2) interfaces

17.2 Switching the SRM to remote controlled operation

- ✓ The PC and the SRM are switched on.
- ✓ The data connection has been made.
- ✓ The interface parameters have been set.
- ⇒ Transmit the command Remote<ws>ON<SC> (<ws> = white space, <SC> = semicolon) The SRM-3000 should now display the following:

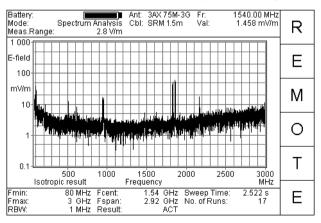


Fig. 17-2 SRM-3000 in remote control mode

Help for problems

Check the following if the SRM does not switch to remote control mode:

- Has the correct remote control cable been used (zero modem cable)?
- Do the interface parameters of the PC and the SRM match?
- Was the "Remote" command transmitted correctly?

17.3 Fundamentals of remote control

Some fundamental remote control terms are explained in the sections below.

The remote control command syntax is based on ASCII strings, which are made up from a remote control command and a certain number of parameters.

17.3.1 Remote control command syntax

An underline is sometimes used to improve legibility of the commands (e.g. **F_MIN**, **BI_VALUE**). Upper and lower case letters are not differentiated, i.e. **F_MIN** and **f_min** are processed identically.

17.3.2 Parameter syntax

The parameters in the commands have various formats:

Parameter	Explanation
String	The maximum number of characters or values that can be assumed by a parameter is specified in the remote control command. The use of upper or lower case letters is decided within a string by a block without a space. Example: <remote on;=""> switches on remote control mode.</remote>
Float/Double (32 bit or 64 bit floating point value)	Used for numerical parameters. Results that have specific units require a special format: d.dddE(-)e for linear units and (-)(d)(d)d.dd for logarithmic units. Example: < F_MIN 1E6; > sets the lower frequency to 1 MHz.
ShortInt (16 bit integer with sign)	The range of values that can be set is specified in the description of the remote control command. Example: <ct_ant_sel 3;=""> selects the third antenna in the internal list of antennas.</ct_ant_sel>
Date and time specific formats (dd.mm.yy and hh:mm:ss)	Example: <time 12:15:00;=""> sets the time to 12:15.</time>

The parameters in a command containing several parameters must each separated by a comma (abbreviation: CO) or a "carriage return" (abbreviation: CR).

17.3.3 Command line termination

Remote control commands are terminated by a semicolon (abbreviation: SC).

17.4 Separate document about remote control

Because the software for the SRM is constantly being further developed and improved, a separate document about remote control is available. This document contains the individual remote control commands as well as some example programs.

You can obtain the latest version of this PDF document about remote control by requesting it from Narda.

Notes:

18 Specifications

18.1 Frequency range and operating modes

Frequency range	100 kHz to 3 GHz
Operating modes	Spectrum Analysis
	Safety Evaluation
	UMTS P-CPICH Demodulation (Option)
	Time Analysis –Time Controlled Storing (Option)

18.2 RF characteristics

18.2.1 Frequency

Resolution bandwidths (RBW)	See individual operating mode specifications	
Phase noise (SSB)	30 kHz carrier spacing 100 kHz carrier spacing 1 MHz carrier spacing	< -85 dBc (1 Hz) < -105 dBc (1 Hz) < -120 dBc (1 Hz)
Reference frequency	Initial deviation Aging Thermal drift	< 1.5 ppm < 0.5 ppm/year < 2.0 ppm (within the specified operating temperature range)

Amplitude

Upper measurement range (MR) limit	-27 dBm to +23 dBm (in 1 dB steps)
Display range	From noise floor up to +26 dBm
Maximum RF power level	+30 dBm
Maximum DC voltage	50 V

Intrinsic noise	-120 dBm for 1 kHz RBW, f > 20 MHz and measurement range (MR) = -27 dBm
RF attenuation	0 to 50 dB in 1 dB steps (coupled to measurement range)
Second order intermodulation products	< -57 dBc for two signals with levels 9 dB below the measurement range (MR) and a spectral line spacing greater than 100 kHz
Third order intermodulation products	< -68 dBc for two signals with levels 9 dB below the measurement range (MR) and a spectral line spacing greater than 500 kHz
Level measurement uncertainty	within the temperature range 15 °C to 30 °C: < 1.1 dB in the frequency range 20 MHz to 3 GHz
Interference, due to input	< -65 dBc or measurement range (MR) = -71 dB for signal levels less than MR = -6 dB (the worst value applies); input frequency f > 40 MHz < -60 dBc for a carrier spacing of 72 MHz
Interference, not due to input	< -94 dBm or measurement range (MR) = -67 dB for frequencies above 20 MHz (the worst value applies)
Units	dBm, dBV, dBmV, dBµV Units of field strength available if a measurement antenna is used (see "Measurement functions")

RF input

Туре	N connector, 50 Ω
Return loss	> 12 dB for frequencies from 200 kHz to 2.7 GHz

18.2.2 "Spectrum Analysis" mode

Measurement type	Spectrum analys	sis
Resolution bandwidths (RBW, -3 dB)	1 kHz to 5 MHz in decade steps of 1, 2, 3, 5, and 10. List of available resolution bandwidths depends on the SPAN setting	
Measurement range setting (MR)	Manually from list or using the "MR Search" function to determine the current best measurement range	
Sweep time	50 ms to 1 s, depending on span setting, measurement in direction of one axis	
Filter	Туре	Gaussian filter
	Form factor (-3 dB / -60 dB)	< 3.8 for resolution bandwidths (RBW) less than 100 kHz
Detection		ed by Result Type function: ean square value (RMS) alue (PEAK)
Evaluation (Result Type)	 MAX: Maxim AVG: Averag spectra (4 to or over a sele MAX AVG: M defined numb 	s the current spectrum um hold function e taken over a selectable number of 64) ectable time period (1 to 30 min.) aximum hold function after averaging a per of spectra al averaging (option)
Marker functions	next lowest peak	ane (frequency, level, service name
Evaluation functions		f the 50 highest peaks) a user-defined frequency band
Measurement axis	Measurement in (for separate me	rement ay of isotropic result) X, Y, or Z axis direction easurements in one direction only using ee axis antenna)

Display functions	Y-axis display range: 20, 40, 60, 80 or 100 dB Y-axis reference point: -47 dB to +43 dB Full Screen mode: Function enabling the entire display to be used to show the spectrum
Zoom	Zoom Min: Zoom window lower frequency setting Zoom Max: Zoom window upper frequency setting Move Zoom Area: Shifts the zoom window along the frequency axis Reduce/Enlarge Zoom Area: Changes the scale of the zoom window Zoom to Marker: Shifts the zoom window to the marker position Execute Zoom: Sets the zoom window limits to the selected frequency values

18.2.3 "Safety Evaluation" mode

Measurement type	Spectrum analysis followed by integration in user defined frequency bands ("services")
Resolution bandwidths (RBW, -3 dB)	Automatic, depending on the narrowest user defined service, or user defined
Measurement range setting (MR)	Manually from list or using the "MR Search" function to determine the current best measurement range
Filter	See "Spectrum Analysis" mode
Detection	Root mean square (RMS), integration time = 1/(2xRBW)
Evaluation (Result Type)	See "Spectrum Analysis" mode
Measurement axis	Isotropic measurement (with direct display of isotropic result)
	Measurement in X, Y, or Z axis direction (for separate measurements in one direction only using an isotropic / three axis antenna)

Display functions	Table view showing service names, field strength contributions, and corresponding frequency band (maximum three columns)
	Full Screen mode: Function enabling the entire display to be used to show the table
Noise suppression	Determines whether measured values are above the device noise floor by setting a threshold (0, 3, 6, 10, 15, 20 dB relative to the intrinsic noise). Measured values below the threshold are shown as the absolute threshold value preceded by "<" (less than).

18.2.4 "UMTS P-CPICH Demodulation" mode (Option)

Measurement type	P-CPICH (Primary Common Pilot Channel) demodu- lation used as the basis for assigning the measured field strength values to individual UMTS radio cells	
UMTS channel selection	Enter the center frequency (Fcent) or channel number (Chann)	
Resolution bandwidth (RBW)	3.84 MHz (-3dB)	
Measurement range setting (MR)	Manually from list or using the "MR Search" function to determine the current best measurement range	
Channel selection resolution	100 kHz for center frequency entries, 0.5 x channel number for channel number entries	
Detection	RMS, integration time 10 ms	
Filter	Root-raised cosine (RRC), roll-off factor α = 0.22	
Demodulation algorithms	FASTSENSITIVE	
Evaluation (Result Type)	 ACT: Displays the instantaneous value as well as the maximum value which occurred since the last reset AVG: Displays the average value taken over a selectable number of results (4 to 64) or over a selectable time period (1 to 30 min.) as well as the maximum of the average values which occurred since the last reset 	

Marker functions – in "Hold" status only, "Bar graph", "Mixed" and "Graph" display modes	Highest peak, right peak, left peak, next highest peak, next lowest peak Selection of Value or Max. Value display
Evaluation function	Extrapolation factor for multiplying the individual results and the overall result, selectable from 0 to 100 in steps of 0.001
Demodulated received signal	P-CPICH
Measurement axis	Isotropic measurement (with direct display of isotropic result)
	Measurement in X, Y, or Z axis direction (for separate measurements in one direction only using an isotropic / three axis antenna)
Display	Up to 16 scrambling codes simultaneously
	Instantaneous and maximum channel power level (Value and Max. Value)
	User defined cell names (from cell name tables)
	Number of sweeps since last reset
	Selection of individual scrambling codes
	Extrapolation factor, setting from 0 to 100 in steps of 0.001.
"Normal Table" display mode	Table format: Index number, Scrambling code, Value, Max. value, Cell name
	Total of all Value and Max. value results (Total)
	Analog measurement result (Analog)
"Table Ratio" display mode	Table format: Index number, Scrambling code, Value, Max. value, Ratio (Value/Analog)
	Total of all Value and Max. value results (Total)
	Analog measurement result (Analog)
"Bar graph" display mode	Bar graph display of the selected scrambling code, the total (Total) and the analog measurement result (Analog) with indication of maximum value in each case
"Mixed" display mode	Total of selected scrambling codes: Value and Max. value shown as enlarged numerical display, together with Graphic display of history for the past 1 to 60 minutes
·	

"Value" display mode	Total of selected scrambling codes: Value and Max. value shown as enlarged numerical display
"Graph" display mode	Total of selected scrambling codes: Graphic display of history for the past 1 to 60 minutes
Noise suppression	Determines whether measured values are above the device noise floor by setting a threshold (0, 3, 6, 10, 15, 20 dB relative to the intrinsic noise). Measured values below the threshold are shown as the absolute threshold value preceded by "<" (less than).

18.2.5 "Time Analysis" mode

Measurement type	Selective measurement at a fixed frequency
Detection	Root mean square (RMS), integration time 480 ms, or peak value (PEAK)
Filter	Steep cut-off channel filter
Resolution bandwidths (RBW, -6 dB)	6.4 kHz to 6 MHz
Evaluation (Result Type)	 ACT: Displays the instantaneous value AVG: Average over a specified time (with RMS detector only) MAX: Maximum hold function MAX AVERAGE: Maximum hold function for the averaged values (with RMS detector only) SAVG: Spatial averaging in "Value" display mode (option)
Marker functions – in "Hold" status only, "Mixed" and "Graph" display modes	Highest peak, right peak, left peak, next highest peak, next lowest peak
Evaluation function	Duty Cycle: Displays the ratio of the average power level to the maximum power level (Pavg/Pmax), calculated over the displayed time period.
Time averaging	0.96 seconds to 30 minutes; selectable values 0.96, 1.2, 2.4, 3.6, 6, 12, 18, 30 s, 1, 2, 3, 5, 6, 10, 15, 20, 30 min.

Measurement axis	Measurement in X, Y, or Z axis direction (for separate measurements in one direction only using an isotropic / three axis antenna)
"Mixed" display mode	Measurement result at selected frequency: Value and Max. value shown as enlarged numerical display, together with Graphic display of history for the past 1 to 60 minutes
"Value" display mode	Measurement result at selected frequency: Value and Max. value shown as enlarged numerical display
"Graph" display mode	Measurement result at selected frequency: Graphic display of history for the past 1 to 60 minutes
Noise suppression	Determines whether measured values are above the device noise floor by setting a threshold (0, 3, 6, 10, 15, 20 dB relative to the intrinsic noise). Measured values below the threshold are shown as the absolute threshold value preceded by "<" (less than).

18.2.6 Measurement functions

Field strength measurements

Detection of Narda measurement antennas	Antenna parameters taken into account automatically when antenna connected: Antenna type, serial number, calibration date and antenna factors (see below) Automatic restriction of frequency range to correspond with that of the antenna connected
Antenna factors	Used for displaying results in units of field strength Stored in all Narda antennas during calibration Up to 20 antenna factor lists for non-Narda antennas can be saved (these lists are defined using "SRM-Tools" or "SRM-TS" PC software)
Detection of Narda cables	Cable parameters taken into account automatically when cable connected: Cable type, serial number, calibration date and attenuation factors (see below) Automatic restriction of frequency range to correspond with that of the cable connected

Cable attenuation factors	Used to correct the power level display Stored in all Narda cables during calibration Up to 20 cable attenuation factor lists for non-Narda cables can be saved (these lists are defined using "SRM-Tools" or "SRM-TS" PC software)
Units	With Narda antenna: % (percentage of permitted limit value), V/m, A/m or W/m ² , mW/cm ² , dBV/m, dBmV/m, dBµV/m, dBA/m Without antenna: dBV/m, dBmV/m, dBµV/m, dBA/m
Isotropic measurements	Automatic switching of antenna axis when Narda antenna used, with calculation of isotropic result Support for sequential measurements using single- axis antennas, with calculation of isotropic result The device shows the results in both cases immediately, either as spectrum or as numerical value
Weighted display	In % of human safety standard limit values (e.g. ICNIRP, IEEE, FCC, Safety Code 6, BGV B11, BImSchG, and similar) Updates of new developments in human safety standards possible using "SRM-Tools" (included) or "SRM-TS" PC software
Assignment of results to telecommunications services	Service tables can be defined and edited using "SRM- Tools" or "SRM-TS" PC software; these are lists of frequency bands (upper and lower limit frequencies, name of the defined frequency band) Up to 50 service tables can be saved in the basic unit These service tables are used to automatically assign the results to the specified services according to frequency (marker functions, peak table evaluation function, "Safety Evaluation" mode)

Setups

	Up to 20 device configurations can be saved in the basic unit. They can be uploaded or downloaded to or from a PC using "SRM-Tools" or "SRM-TS" PC software.
1	

Memory

Storage modes	 Instantaneous result storage: Spectrum in "Spectrum Analysis" mode (SPEC) Table in "Safety Evaluation" mode (TAB) Values in "UMTS P-CPICH Demodulation" mode (UTAB) Values in "Time Analysis" mode (VAL), Also lists of values with "Time Controlled Storing" option (LIST)
Conditional storing	Results stored when they exceed a threshold value (in all operating modes); with programmable storage rate and reset function
Time controlled storing (option)	Storage controlled by timer for long-term monitoring (in all operating modes). Start date and start time settable with one second resolution
	Measurement duration settable from 1 second to 99 hours in one-second steps
	Storage repetition rate, settable values 1.2, 2.4, 3.6, 6, 12, 18, 30 s, 1, 2, 3, 5, 6, 10, 15, 20, 30 min.
	Reset function for automatic reset of stored maximum values each time a result is stored (Always), or when a measurement is started (On start) or never (Never)
Memory capacity	16 MB, 48 MB from series F onwards (up to 9999 data sets)

18.2.7 General specifications

Operating temperature range	-10 °C to +50 °C for operation from batteries and AC adapter / charger unit 0 °C to +40 °C for recharging	
Humidity	< 29 g/m3 (< 93% at +30 °C)	
RF immunity	200 V/m in the frequency range 100 kHz to 3 GHz	

Standards compliance

Climatic	Storage	1K3 (IEC 60721-3), extended to -10 °C to +50 °C
	Transport	2K4 (IEC 60721-3)
	Operation	7K2 (IEC 60721-3)
Mechanical	Storage	1M2 (IEC 60721-3)
	Transport	2M3 (IEC 60721-3)
	Operation	7M3 (IEC 60721-3)
ESD and EMC	EN 61326:2004	
Safety	EN 61010-1:2002	
CE (European Community)	Yes (Conformity declaration: see page 18-24)	

Dimensions and weight

Dimensions W x H x D (without antenna)	255 mm x 195 mm x 60 mm
Weight	1900 g (including built-in rechargeable batteries)

Display

Туре	Monochrome, transflective LCD, with backlight for indoor and outdoor use.
Size, resolution	115 mm x 80 mm, 480 x 320 pixels

Interfaces

RS-232	Electrical or optical (with optional accessory); transmission speed 115.2 kbaud
USB	USB 1.1

Power supply

Rechargeable batteries

Battery	Lithium-ion rechargeable battery Typical operating time 4 hours Rechargeable using AC adapter / charger unit
External power supply	AC/DC Adapter
(12 V DC / 2.5 A)	Input: 100 to 240 V~, 47 to 63 Hz, 700 mA

Calibration interval

Recommended calibration interval	24 months
----------------------------------	-----------

18.3 Three axis E-field measurement antenna specifications

The three axis measurement antenna is included with the SRM-3000.

18.3.1 Characteristics

Frequency range 1)	75 MHz to 3 GHz	
	The correction factors individually determined during calibration are stored in an EEPROM and are applied automatically when used together with the SRM basic unit.	
Antenna type	E-field	
Sensor type	Three axis dipole array with scanned axes	
Dynamic range ²⁾	0.25 mV/m to 200 V/m	
Destruction limit (CW signal)	435 V/m or 50 mW/cm ²	
Intrinsic noise displayed when used with SRM basic unit with separate measurement in direction of one axis ³⁾	50 μV/m at 900 MHz with 1 kHz resolution bandwidth (RBW) 70 μV/m at 2,1 GHz with 1 kHz resolution bandwidth (RBW)	
Intrinsic noise displayed when used with SRM basic unit with isotropic (three axis) measurement ³⁾	87 μV/m at 900 MHz with 1 kHz resolution bandwidth (RBW) 120 μV/m at 2,1 GHz with 1 kHz resolution bandwidth (RBW)	
Upper limit of measurement range (for a single carrier signal)	300 V/m 1000 V/m for frequencies up to 110 MHz	
Upper limit of measurement range (when used with SRM basic unit) ³⁾	200 V/m (without restrictions throughout the entire frequency range from 75 MHz to 3 GHz)	
RF connector	N connector, 50 Ω	

1 Available on request with extended setting range from 50 MHz

2 Characteristic dynamic range with 10 dB signal to noise ratio (RBW = 1 kHz)

3 Characteristic values

18.3.2 Measurement uncertainty

Extended measurement uncertainty ¹⁾ (when used with SRM basic unit and 1.5 m RF cable)	Frequency range	Single axis measurement with three axis antenna	Isotropic measurement
	75-900 MHz	+2.4 / -3.4 dB	+2.4 / -3.3 dB
	901-1400 MHz	+2.3 / -3.1 dB	+2.4 / -3.3 dB
	1401-1600 MHz	+2.2 / -3.1 dB	+2.6 / -3.4 dB
	1601-1800 MHz	+1.8 / -2.2 dB	+2.2 / -3.7 dB
	1801-2200 MHz	+1.8 / -2.2 dB	+2.4 / -3.3 dB
	2201-2700 MHz	+1.8 / -2.3 dB	+2.6 / -3.6 dB
	2701-3000 MHz	+1.9 / -2.4 dB	+3.2 / -5.3 dB
Calibration uncertainty	< 1.5 dB		

1 Characteristic value k = 2

(k = extrapolation or correction factor for calculating the assessment value); +15 °C to +30 °C

18.3.3 General specifications

Operating temperature range	-10 °C to +50 °C (same as SRM basic unit)
Humidity	< 29 g/m3 (< 93% at +30 °C)

Standards compliance

Climatic	Storage	1K3 (IEC 60721-3), extended to -10 °C to +50 °C
	Transport	2K4 (IEC 60721-3)
	Operation	7K2 (IEC 60721-3)
Mechanical	Storage	1M2 (IEC 60721-3)
	Transport	2M3 (IEC 60721-3)
	Operation	7M3 (IEC 60721-3)

ESD and EMC	EN 61326:2004
Safety	EN 61010-1:2002
CE (European Community)	Yes (Conformity declaration: see page 18-24)

Dimensions and weight

Dimensions	450 mm long, 120 mm antenna head diameter
Weight	450 g

Calibration

Calibration	18 calibration points: 75, 100, 200, 300, 433, 600, 750, 900 MHz, 1, 1.2, 1.4, 1.6, 1.8, 2, 2.2, 2.45, 2.7, 3 GHz. The SRM basic unit interpolates linearly between the calibration points
Recommended calibration interval	24 months

18.4 Single axis E-field antenna specifications (3531/01)

The single axis E-field measurement antenna 3531/01 is available as an option.

18.4.1 Characteristics

Frequency range	27 MHz to 3 GHz
Antenna type	E-field
Sensor type	Single axis broadband dipole
Dynamic range ¹⁾	90 μV/m to 80 V/m
Destruction limit (CW signal)	> 300 V/m or 25 mW/cm ²
Intrinsic noise displayed when used with SRM basic unit $^{2,3)}$	30 μV/m in the range 100 MHz to 2.1 GHz with 1 kHz resolution bandwidth (RBW)
Upper limit of measurement range (for a single carrier signal)	100 V/m
RF connector	N connector, 50 Ω

1 Characteristic dynamic range with 10 dB signal to noise ratio (RBW = 1 kHz)

2 Characteristic values

3 Intrinsic noise increases by 0.5 dB per 100 MHz above 2 GHz

18.4.2 Measurement uncertainty

Extended measurement uncertainty ^{1, 2)} (when used with SRM basic unit and 1.5 m RF cable)	Frequency range	Single axis measurement with antenna
	36 - 300 MHz	2.1 dB
	301 - 433 MHz	2.3 dB
	434 - 1600 MHz	2.1 dB
	1601 - 3000 MHz	1.8 dB
Calibration uncertainty	< 1.5 dB	

1 Characteristic values

2 Characteristic value k = 2

(k = extrapolation or correction factor for calculating the assessment value); +15 °C to +30 °C

18.4.3 General specifications

Operating temperature range	-10 °C to +50 °C (same as SRM basic unit)
Humidity	< 29 g/m3 (< 93% at +30 °C)

Standards compliance

Climatic	Storage	1K3 (IEC 60721-3), extended to -10 °C to +50 °C
	Transport	2K4 (IEC 60721-3)
	Operation	7K2 (IEC 60721-3)
Mechanical	Storage	1M2 (IEC 60721-3)
	Transport	2M3 (IEC 60721-3)
	Operation	7M3 (IEC 60721-3)

ESD and EMC	EN 61326:2004
Safety	EN 61010-1:2002
CE (European Community)	Yes (Conformity declaration: see page 18-24)

Dimensions and weight

Dimensions	460 mm long, 135 mm x 90 mm antenna head dimensions
Weight	450 g

Calibration

Calibration	24 calibration points: 26, 30, 40, 50, 60, 75, 100, 200, 300, 433, 600, 750, 900 MHz, 1, 1.2, 1.4, 1.6, 1.8, 2, 2.2, 2.45, 2.6, 2.8, 3 GHz	
	The SRM basic unit interpolates linearly between the calibration points	
Recommended calibration interval	24 months	

18.5 Single axis E-field antenna specifications (3531/02B)

The single axis E-field measurement antenna 3531/02B is available as an option.

18.5.1 Characteristics

Frequency range	100 kHz to 300 MHz
Antenna type	E-field
Sensor type	Single axis, active broadband dipole
Dynamic range ¹⁾	125 μ V/m to 16 V/m in the range 100 kHz to 10 MHz, 125 μ V/m to 36 V/m in the range >10 MHz to 300 MHz
Destruction limit (CW signal)	> 1000 V/m
Intrinsic noise displayed when used with SRM basic unit ²⁾	40 μV/m in the range 100 MHz to 300 MHz with 1 kHz resolution bandwidth (RBW)
Upper limit of measurement range (for a single carrier signal)	50 V/m
RF connector	N connector, 50 Ω

1 Characteristic dynamic range with 10 dB signal to noise ratio (RBW = 1 kHz)

2 Characteristic values

18.5.2 Measurement uncertainty

Extended measurement uncertainty ^{1, 2)} (when used with SRM basic unit and 1.5 m RF cable)	Frequency range	Single axis measurement with antenna
	0.1 - 20 MHz	2.7 dB
	20.1 - 300 MHz	2.0 dB
Calibration uncertainty	< 1.2 dB	

1 Characteristic values

2 Characteristic value k = 2 (k = extrapolation or correction factor for calculating the assessment value); +15 °C to +30 °C

18.5.3 General specifications

Operating temperature range	-10 °C to +50 °C (same as SRM basic unit)
Humidity	< 29 g/m3 (< 93% at +30 °C)

Standards compliance

Climatic	Storage	1K3 (IEC 60721-3), extended to -10 °C to +50 °C	
	Transport	2K4 (IEC 60721-3)	
	Operation	7K2 (IEC 60721-3)	
Mechanical	Storage	1M2 (IEC 60721-3)	
	Transport	2M3 (IEC 60721-3)	
	Operation	7M3 (IEC 60721-3)	
ESD and EMC	EN 61326:2004		
Safety	EN 61010-1:2002		
CE (European Community)	Yes (Conformity declaration: see page 18-24)		

Dimensions and weight

Dimensions	460 mm long, 135 mm x 90 mm antenna head dimensions
Weight	550 g

Calibration

Calibration	141 calibration points. The SRM basic unit interpolates linearly between the calibration points.
Recommended calibration interval	24 months

18.6 Single axis H-field antenna specifications (3551/01)

The single-axis H-field measurement antenna 3551/01 is available as an option.

18.6.1 Characteristics

Frequency range	100 kHz to 300 MHz
Antenna type	H-field
Sensor type	Single axis loop antenna
Dynamic range ¹⁾	0.4 µA/m to 71 mA/m
Destruction limit (CW signal)	> 2.65 A/m above 1 MHz
Intrinsic noise displayed when used with SRM basic unit ²⁾	0.17 μA/m for each frequency > 20 MHz with 1 kHz resolution bandwidth (RBW)
Upper limit of measurement range (for a single carrier signal)	100 mA/m
RF connector	N connector, 50 Ω

1 Characteristic dynamic range with 10 dB signal to noise ratio (RBW = 1 kHz)

2 Characteristic values

18.6.2 Measurement uncertainty

Extended measurement uncertainty ^{1, 2)} (when used with SRM basic unit and 1.5 m RF cable)	Frequency range	Single axis measurement with antenna
	0.1 - 20 MHz	2.7 dB
	20.1 - 300 MHz	2.0 dB
Calibration uncertainty	< 1.2 dB	

1 Characteristic values

2 Characteristic value k = 2

(k = extrapolation or correction factor for calculating the assessment value); +15 °C to +30 °C

18.6.3 General specifications

Operating temperature range	-10 °C to +50 °C (same as SRM basic unit)
Humidity	< 29 g/m3 (< 93% at +30 °C)

Standards compliance

Climatic	Storage	1K3 (IEC 60721-3), extended to -10 °C to +50 °C	
	Transport	2K4 (IEC 60721-3)	
	Operation	7K2 (IEC 60721-3)	
Mechanical	Storage	1M2 (IEC 60721-3)	
	Transport	2M3 (IEC 60721-3)	
	Operation	7M3 (IEC 60721-3)	
ESD and EMC	EN 61326:2004		
Safety	EN 61010-1:2002		
CE (European Community)	Yes (Conformity declaration: see page 18-24)		

Dimensions and weight

Dimensions	460 mm long, 43 mm x 100 mm antenna head dimensions
Weight	450 g

Calibration

Calibration	141 calibration points. The SRM basic unit interpolates linearly between the calibration points.
Recommended calibration interval	24 months

18.7 Conformity declaration

Supplier's Declaration of Conformity

(in accordance with ISO/IEC 17050-1)

SDoC no.:	2006-09		
lssuer's name:	Narda Safety	Test Solutions	GmbH (manufacturer)
Issuer's address:	Sandwiesenstr. 7, D-72793 Pfullingen, Germany		
Object of declaration:	Model no.	Order no.	Designation
	SRM-3000	3001/01	Selective Radiation Meter

The object of the declaration described above is in conformity with the requirements of the following documents:

Documents No.	Title
89/336/EEC	EMC Directive of the Council of the European Union amended by 91/263/EEC, 92/31/EEC and 93/68/EEC
EN 61326: 1997 + A1: 1998 + A2: 2001 + A3: 2003	Electrical equipment for measurement, control and laboratory use. EMC requirements
73/23/EEC	Low Voltage Directive of the Council of the European Union amended by 93/68/EEC
EN 61010-1: 2002	Safety requirements for electrical equipment for measurement, control, and laboratory use - Part 1: General requirements
Signed for and on behalf of:	Narda Safety Test Solutions GmbH
Place and date of issue:	Pfullingen, 2006-01-26

Signature:

Name, function:

W.K.C

Werner Kumbier, Technical Director

Supplier's Declaration of Conformity

(in accordance with ISO/IEC 17050-1)

SDoC no.:	2006-11		
Issuer's name:	Narda Safety Test Solutions GmbH (manufacturer)		
Issuer's address:	Sandwiesenstr. 7, D-72793 Pfullingen, Germany		
Object of declaration:	Model no.	Order no.	Designation
			•
	SRM Antenna	9	-
	SRM Antenna	a 3531/01	Single Axis E-Field, 27MHz-3GHz
	SRM Antenna	-	Single Axis E-Field, 27MHz-3GHz Single Axis E-Field, 0.1-300 MHz
	SRM Antenna	3531/01	

The object of the declaration described above is in conformity with the requirements of the following documents:

Documents No.	Title
89/336/EEC	EMC Directive of the Council of the European Union amended by 91/263/EEC, 92/31/EEC and 93/68/EEC
EN 61326: 1997 + A1: 1998 + A2: 2001 + A3: 2003	Electrical equipment for measurement, control and laboratory use. EMC requirements
73/23/EEC	Low Voltage Directive of the Council of the European Union amended by 93/68/EEC
EN 61010-1: 2002	Safety requirements for electrical equipment for measurement, control, and laboratory use - Part 1: General requirements

Signed for and on behalf of:

Narda Safety Test Solutions GmbH

Place and date of issue:

Pfullingen, 2006-01-30

Werner Kumbier, Technical Director

Signature:

Name, function:

Notes:

Appendix A:

Measurement methods using a single axis antenna

This Appendix describes methods that can be used to determine field strength exposure using a single axis antenna, e.g. a customary antenna. It also describes how the SRM can be used with these methods.

Pendulum or sweep method (mobile measurement)

Measurement setup

The single axis antenna is fitted directly on to the basic instrument or the antenna and basic instrument are linked by a short cable.

- ✤ Fitting the antenna directly on the basic instrument: see page 5-6.
- ♥ Using a cable to connect the antenna to the basic instrument: see page 5-8.

Procedure

The user moves through the area to be measured during the course of the measurement, slowly sampling the entire volume using the manually held antenna by varying the preferred direction and the polarization direction simultaneously. In other words, the antenna is moved or "swept" round the area on a wave-like path.

The SRM should be set to "MAX" evaluation mode (maximum hold) during this procedure, regardless of the selected operating mode.

Experience has shown that recording times of a few minutes are generally sufficient to locate the maximum field strength within a given volume (e.g. a room in a house, or an office).

Advantages of this method

- Immediate determination of the maximum value of immissions for the area under consideration.
- Little time required.
- Operations within the affected area are only slightly disrupted.
- No time-consuming preparation needed for the measurement (e.g. moving of furniture).

Disadvantages of this method

- Measurement is not reproducible.
- Not possible to subsequently determine where within the measured area the maxima occurred.
- Requires a certain amount of experience in order to obtain meaningful results.
- Measurement uncertainty cannot be quantified.
 For example, only the components of the field that are parallel to the dipole axis will be detected when a dipole type antenna is used.
 If the antenna is not oriented correctly in the field, there is a risk that the exposure level measured will be zero or very low even if strong fields are present.

Rotation method

Measurement setup

The measurement can usefully be performed either manually or with the aid of a tripod.

For a manual measurement, the antenna is fitted directly on to the basic instrument or the antenna and basic instrument are linked by a short cable.

- ✤ Fitting the antenna directly on the basic instrument: see page 5-6.
- Using a cable to connect the antenna to the basic instrument: see page 5-8.

Alternatively, the single axis antenna can be fitted to a tripod and connected to the basic instrument by a long cable.

✤ Fitting the Narda antenna to a tripod: see page 5-11.

Procedure

The rotation method may be considered as a combination of the sweep method and the matrix method.

As with the matrix method, the volume to be measured is considered in terms of a cylinder that is supposed to represent the human body. The measurement is therefore made within a volume approximately 1 m in diameter and 2 m high, making measurements at different heights to ensure that the results are meaning.

To make the measurement, the antenna is rotated along a circular path about the axis. The measurement must be repeated at each measurement height with four different antenna polarizations (horizontal, vertical, $+45^{\circ}$, -45°).

Movement along the circular path can be done manually like the sweep method or a tripod and antenna positioning device can be used, similar to a precision measurement.

Advantages of this method

- Not as time-consuming as the matrix method. The rotation procedure is simplified if a suitable antenna positioning device is available.
- Good measurement reproducibility.
- Allows spatial averaging of immisions (required by some standards).
- Local maxima can be located with a few measurement points.

Disadvantages of this method

- More time-consuming than the sweep method. Measurement of the defined volume must be repeated at different points in the area in order to cover the entire volume.
- Operations within the areas being measured are significantly disrupted. No conductive objects or persons may move within the defined measurement volume during the measurement.

A minimum distance must be kept between the antenna and interfering objects such as furniture or walls in order that the reception characteristics of the antenna are not impaired.

Matrix method (precision measurement)

Measurement setup

The single axis antenna is mounted on a tripod and connected to the basic instrument by a long cable.

✤ Fitting the Narda antenna to a tripod: see page 5-11.

Defining the matrix

The measurement volume is sampled at points on a fixed matrix during a measurement using the matrix method.

If it is assumed that the immissions affect the body evenly, then the measurement volume can be defined as a cylinder approximately 2 m high and 1 m which is supposed to represent the human body.

Various measurement heights are set within the measurement volume. The resulting field strength is determined at each of these heights. The spacing between these measurement points should reflect the sensitivity of the corresponding body parts and organs.

Positioning the antenna

The antenna is mounted on a tripod to allow exact positioning of the sensors on the points of the matrix.

Only one component of the field strength can be detected at a time when a single axis antenna is used. For this reason, the antenna must be aligned in three orthogonal directions at each measurement point and a result (spectrum, table) obtained for each of these three directions. The field strength used for the assessment is given by the vector sum of the three orthogonal field strength values. The SRM provides support for such sequential measurements (see sec. 11.2.2, page 11-6).

An antenna positioning device is available in addition to the tripod to enable precise orthogonal positioning of the antenna axis when a making measurements with a single axis antenna.

Measurement procedure

- 1. Fit the antenna to the tripod with the antenna positioning device.
- 2. Place the tripod at the first point of measurement.
- 3. Set the tripod to the first measurement height.
- 4. Perform sequential measurement at this position as described in sec. 11.2.2, page 11-6.
- 5. Save the isotropic result that is determined.
- 6. Repeat steps 2 through 5 for further measurement heights.

Advantages of this method

- Good measurement reproducibility.
- Allows spatial averaging of immisions (required by some standards).
- Local maxima can be located with a few measurement points.

Disadvantages of this method

- The signal to be measured must remain constant for the entire measurement time while the three components are being detected.
- Very time-consuming. The already time-consuming measurement of the defined volume must be repeated at various points within the area to measure the complete area.
- Operations within the areas being measured are significantly disrupted. No conductive objects or persons may move within the defined measurement volume during the measurement.

A minimum distance must be kept between the antenna and interfering objects such as furniture or walls in order that the reception characteristics of the antenna are not impaired.

Notes:

Appendix B:

Technical descriptions

Measurement principle

Signal frequencies of 3 GHz can hardly be sampled digitally. The SRM therefore uses a combination of analog and digital signal processing. The SRM is not a customary spectrum analyzer. It has been engineered specially to enhance particular characteristics for the analysis of electromagnetic fields. This includes a fast measurement speed at small resolution bandwidths (RBW). Intrinsic noise is also very low, -121 dBm at a resolution bandwidth of 1 kHz. Phase noise is extremely low, too; a YIG (Yttrium Iron Garnet) oscillator is employed internally to achieve this. The SRM is thus right at the cutting edge of modern technology.

RF module, analog

The RF module is a screened unit that communicates serially with the main board. It includes the classic components of a superheterodyne receiver: input stage, 1st mixer, 2nd mixer, IF amplifier.

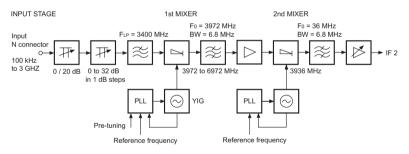


Fig. B-1 Block circuit diagram of RF module

The input stage itself contains a special feature: the two-stage attenuator. This optimizes the dynamic range with 1 dB steps over a range of 50 dB. The permitted input level is limited to +30 dBm because of thermal effects.

The 1st mixer converts the input signal to the first IF of 3972 MHz. The IF filter has a bandwidth of 6.8 MHz. The LO (local oscillator) can be set on a frequency raster of 400 kHz (coarse tuning). The oscillator is pre-tuned to a frequency close to the desired frequency so that the PLL (phase-locked loop) locks quickly to the correct frequency. Once settling has occurred, the mixer signals "PLL locked" to the main board so that the digital section can start collecting data.

The 2nd mixer operates with a fixed heterodyning frequency of the LO. The PLL converts only the reference frequency of 96 MHz to 3936 MHz. The 2nd IF is around 36 MHz. Here, too, the IF filter has a bandwidth of 6.8 MHz.

Main board, digital

Spectrum analysis itself is performed in the digital section. Three modules downstream of the A/D converter take care of this function:

- A RSP (real-time signal processor) operates as a digital frequency converter with variable output filters.
- A DSP (digital signal processor) formed from a FPGA (field programmable gate array) assumes the function of a transient recorder. It captures the data and stores them in a SRAM (static random access memory).
- A µC (micro controller) reads the data from the DSP and performs the FFT (fast Fourier transformation).

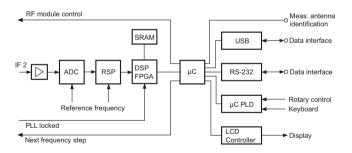


Fig. B-2 Block circuit diagram of main board

The RSP is a type of digital mixer and synthesizer. Because the analog IF signal can only be tuned in steps of 400 kHz, the RSP takes over the task of fine tuning in a \pm 200 kHz range. The RSP uses a programmable low pass

filter to also limit the bandwidth of the output signal to correspond to the resolution bandwidth set by the user. The reduction factor can assume values from 4 to 3750.

The RSP also detects whether the A/D converter is overloaded. An overload is indicated by OVERLOAD in the display.

The DSP takes up the data from the RSP. The data are complex, i.e. real and imaginary parts are each present as 16-bit fixed point values packed into a 32-bit word.

Up to this point, all operations take place in the time domain. In "Spectrum Analysis" and "Safety Evaluation" modes, the μ C transforms the data into the frequency domain. A FFT is unnecessary for the frequency range from 1 to 5 MHz, since the output from the RSP already corresponds to a single point FFT. For finer resolutions down to 1 kHz, the μ C calculates a FFT with 16 to 8192 check points, of which up to 6709 are used.

Internal processes for a spectrum analysis

The interaction of analog preselection and digital fine tuning can lead to wide ranging internal processes which are unnoticed by the user. The instrument can cover a maximum frequency range of about 4 MHz with one FFT. If the FFT range is insufficient, the RF synthesizer may have to be retuned several times to other frequencies. The SRM-3000 then performs the FFT block by block and forms the overall result from the individual FFT results.

Display, measurement range and resolution

Spectrum analyzers designed for laboratory use have input attenuators and internal reference levels that can be set independently of one another in order to find a suitable compromise between signal to noise ratio and indermodulation. Simple, portable instruments often only allow selection of the reference level. This then determines the setting of the input attenuator and also usually the highest value on the y axis of the display. Problems arise if a few weak mobile radio channels close to a strong radio broadcast channel are to be measured. Either overloading and the attendant measurement error must be risked, or the mobile radio signals disappear at the bottom of the display.

For this reason, the SRM takes a different course, without requiring careful thought about the dynamic range on the part of the user, who simply sets a measurement range, preferably to the highest expected level. The

instrument then automatically selects the corresponding input attenuation. The user can select the display range independently. So, for example, the user can set a measurement range of 100 V/m because the mobile radio antennas are mounted on a UHF transmitter mast, but still display the mobile radio channel field strengths on a scale of 1 V/m to fill the display screen.

It is similar for the x axis, which is linked to the frequency span and the resolution bandwidth (RBW). The SRM-3000 provides resolution bandwidths from 1 kHz up to 5 MHz - fine enough to separate long wave transmitters from one another and broad enough to capture an entire UMTS frequency block. In "Spectrum Analysis" mode, the SRM reduces the available resolution bandwidth to correspond with the frequency range setting so that the spectrum contains a maximum of 6709 lines or measurement points. The spacing between lines then corresponds to about half of the set resolution bandwidth. This is sufficient to resolve the entire 3 GHz frequency range at 1 MHz. 6709 lines are in any case still much more than the almost 300 pixels that the display panel can show along the x axis. The SRM must therefore combine more than 20 lines into a single result under certain circumstances. The display algorithm used by the SRM ensures that the displayed trace represents the minimum and maximum values. The high resolution set of raw data is retained, in contrast with many customary spectrum analyzers. This means that the display area can be changed subsequently or the entire data set can be processed further by an external PC. The markers and other evaluation functions also apply to the entire data set, thus giving these functions much higher precision and greater ease of use than has been the case up till now.

"Safety Evaluation" mode

Demonstrating the safety of electromagnetic fields requires answers to the initial questions:

- · How high is the overall exposure relative to the permitted limit value?
- Who is contributing what to the exposure level?
- Who may therefore need to reduce transmitter output?

This requires selective measurement of the entire spectrum, but in the end only a few values are of interest, namely: the overall exposure level and the contributions made by the individual services expressed either in units of field strength or as a percentage of the permitted limit value.

The SRM as a special instrument has a separate operating mode for this purpose: "Safety Evaluation". From the configuration menu, users select the services to be detected and the regulations to be used in assessing the results. The frequency tables for the most common services and the weighting factors for the standards and regulations are programmed into the instrument in the factory. The tables can be edited or new tables created using PC software. Simply assign a name to the service, set the upper and lower frequency limits and transfer the data to the instrument via the serial interface.

The measurement is then made by pushing a button. The SRM successively measures the bands corresponding to the services and also detects what is going on between these bands. The resolution bandwidth is set automatically so that there are still eight spectral lines in the narrowest band. The SRM-3000 thus achieves high measurement accuracy without wasting time on the measurement.

All of takes place unseen by the user, who does not need to worry about what is happening. The results are displayed: the contributions of the individual services (such as GSM and UTMS) towards the field strength as well as the contributions from the frequencies between them (Others) and the total field exposure level (Total). The SRM automatically integrates all the corresponding spectral lines in order to do this.

Measurement services usually want to see the result as a percentage of the permitted limit value. The SRM automatically evaluates each individual spectral line according to the standard or regulation that has been selected. If absolute values are required, a simple switch to displaying field strength (V/m) or power density (W/m²) is all that is needed to ignore the evaluation.

"UMTS P-CPICH Demodulation" mode

The problem with measuring the electromagnetic fields that emanate from mobile phone base stations is that the output power level varies according to the level of traffic. As a result, the field strength also varies. However, both GSM and UMTS use at least one channel per base station that transmits at a constant, known power level. This is the BCCH (Broadcast Control Channel) in GSM, and the P-CPICH (Primary Common Pilot Channel) in UMTS. It is possible to estimate the maximum possible field exposure level from a measurement of this channel.

Because UMTS uses a modulation procedure called W-CDMA (Wideband Code Division Multiple Access), it is not possible to distinguish between the individual channels by means of a frequency-selective measurement. All the channels use the entire bandwidth of an UMTS frequency channel, which is about 5 MHz. The channels can only be separated by decoding them. The P-CPICHs and hence the UMTS cells can be distinguished by their different scrambling codes.

The SRM uses its analog superheterodyne receiver (RF module) for preselection for the UMTS measurement. The IF filters have a bandwidth of 6.4 MHz, sufficient to detect an UMTS frequency channel in its entirety. All further processing is done by the digital section after conversion in the 12 bit ADC:

- Zero conversion using the same type of filter as the UMTS transmitter uses
- Recording by a transient recorder
- Final demodulation.

The scrambling codes are determined using a correlation method. The SRM uses an algorithm capable of registering all the reflections from a transmitter separately if they are separated in time by more than a so-called chip width. If the same pilot channel is found several times, all the partial power levels are added together to give a total power level for this channel. If the reflections are closer together, it is neither possible nor necessary to separate them, since the total power level is the result in any case.

The SRM can also separate and detect two transmitters that accidentally have the same time structure. This "luxury" naturally requires more processing time. To make the measurements as fast as possible, you can switch between two demodulation algorithms. In FAST mode, the instrument reliably detects pilot channels having a power level of up to

10 dB below the total power level in the UMTS frequency channel. In SENSITIVE mode, the instrument also reliably detects pilot channels with power levels up to 15 dB below the total power level.

The frequency accuracy of the SRM is within 2.6 ppm, including adjustment accuracy, thermal response and aging. This corresponds to a maximum frequency offset of about 5.7 kHz for an UMTS frequency of 2200 MHz. This does not affect the demodulation process, but does result in a measurement error: The displayed field strength is less than the actual field strength. For this reason, the SRM-3000 automatically determines its frequency offset from the phase characteristic of the strongest P-CPICH during the first measurement run and corrects the tuning frequency accordingly for the next run. This automatic frequency of the strongest base station to an accuracy of a few Hertz. This is a highly precise frequency, since the prescribed deviation from the nominal frequency for base stations in the UMTS system is less than 0.1 ppm. The SRM-3000's AFC thus reduces the field strength measurement error due to mis-tuning to negligible values.

"Time Analysis" mode

"Time Analysis" mode is designed to monitor field sources that emit variable field strengths over a period of time. All mobile telephone base stations show such variations, since their exposure levels depend on the volume of traffic, i.e. the number of traffic channels in use at a given time. Pulsed radar equipment exhibits extreme variations; such equipment is used by flight controllers (all round radar).

"Time Analysis" mode is available from firmware release 1.4, and allows the SRM to continuously measure field exposure at a user defined frequency (Fcent). The bandwidth can be set between 6.4 kHz and 6 MHz to suit the source being measured, using the RBW parameter. The filters have very steep cutoffs and a stop band attenuation of at least 80 dB. This is advantageous when an individual service is to be measured without interference from neighboring services.

The special feature of "Time Analysis" mode is the gap-free measurement and recording of radiation power level versus time. The filters and internal processes in the SRM are arranged so that real-time recording of measurement results is not interrupted when the results are calculated. This is a particularly strong feature of the instrument. However, the measurement is restricted to a single axis to allow for continuous recording. If automatic isotropic measurement is selected, the SRM measures the three spatial axes one after the other, and no measurement results can be recorded while the instrument is switching from one axis to another. The three axis antenna can be used for continuous recording of results if one axis is selected for measurement. In this case, there is no advantage over the use of a single axis antenna.

The frequency range of 100 kHz to 3 GHz makes the SRM suitable, when used in conjunction with appropriate antennas, for monitoring all communications services from long wave up to UMTS, as well as for measuring radar equipment operating in the RF, VHF, UHF, L-band, or lower S-band. The filter settling time at a bandwidth of 6 MHz is around 330 ns. This is fast enough to correctly detect the peak values of radar signals with pulse widths of typically 1 μ s.

RMS or peak value detectors can be selected, and the "Result Type" can be selected to display either current (actual) values (ACT), average values (AVG), or maximum values (MAX, MAX AVG), in each case as numerical values.

The averaging time can be set between 1 second and 30 minutes. In this way, the SRM matches the requirements of numerous human safety standards, including the German 26th BImSchV or the new European Guideline 2004/40/EG. These standards define limit values for the RMS value averaged (square law) over a period of 6 minutes, and they also specify the monitoring of peak values, which should not, for example, exceed 32 times the permitted RMS value.

If the "Result Type" is set to AVG or MAX AVG, the SRM indicates the progress of averaging by means of a bar graph at the lower edge of the window. When the bar graph is full, the averaging time has elapsed. The SRM then calculates the new average values continually by incorporating the new measurement values and deleting earlier values. Recording of measurement values is not interrupted at any time when a single axis measurement is being made.

"Spatial Averaging" function

The major standards concerned with human exposure to radio frequency radiation specify maximum exposure levels averaged over the whole body. The co-linear dipole antenna arrays that are very common in modern wireless communications systems, for example, have multiple lobes close to the antenna. The field strength typically varies by 6 to 7 dB along the length of an array. Therefore, the measured value is highly dependent on not only the distance from the antenna but also the height above the ground.

The traditional method of making spatial-averaged measurements is to use a "styropole". A styropole is a non-conductive pole, often made of wood, equal in height to an average adult, having distance marks equally spaced along its length. Measurements are made alongside the styropole at each height and then mathematically averaged. The height and spacing of each measurement varies from standard to standard. For example, the IEEE C95.1-1999 standard specifies measurements from 0 centimeters (ground level) to 200 centimeters in 20 centimeter increments. Some exposure standards such as Canada's Safety Code 6, require that measurements be averaged across two dimensions - vertically and horizontally. The Revised ECC Recommendation (02)04 of October 2003 used in Europe envisages averaging of three values, measured at heights of 1.1, 1.5 and 1.7 meters above floor level.

This manual technique is made more difficult than ever by modern wireless communications sites, particularly multi-user sites, because the field levels are continually varying. For example, paging systems go on and off and the number of cellular channels in use is always changing. Thus, a series of measurements made at different heights can vary more as a function of time than of location.

The averaging process

The SRM simplifies these measurements by automatically averaging the measurement values recorded at different positions within a room. The SRM determines the root mean square (RMS) value, i.e. the average power level, so it is sensible to set the detector function to RMS in "Time Analysis" mode, even though the PEAK setting is also available. The SRM always uses the instantaneous value (ACT) for the evaluation, although the other result type settings are also available (Result Type = ACT, AVG, MAX, MAX AVERAGE). These settings only affect the other measurement processes.

Spatial Averaging can be used in "Safety Evaluation" mode, "Spectrum Analysis" mode and "Time Analysis" mode, but not in "UMTS P-CPICH Demodulation" mode. Depending on the operating mode, the SRM averages

- the individual results for the different services ("Safety Evaluation" mode),
- the individual spectral values ("Spectrum Analysis" mode), or
- the individual measurement values (Value, "Time Analysis" mode).

Two types of spatial averaging with different time domain behavior are used.

Measurement sequence for Continuous Averaging

Users control recording of measured values using "Start" and "Stop" or "Continue" and "Stop". The number of measured values recorded is shown under "No. of SAVG".

The SRM measures at its maximum measurement speed continuously (even during "Stop"). This can be seen from the "No. of Runs" indicator in the display, which is incremented by one each time a value is recorded. Users must adjust the speed at which the measuring antenna is moved along the path to be measured within the room to match the measurement speed.

The measurement continues in the background even when the device is set to "Stop". This can be seen by the fact that the "No. of Runs" indicator continues to increment. These results are not, however, used for the evaluation. This is indicated by the fact that the "No. of SAVG" indicator remains static.

The SRM averages all the measured values recorded between "Start" and "Stop" or between "Continue" and "Stop", regardless of when the measurement was started or continued. If, for example, several parallel paths are swept with the measurement antenna in the same room, they should all be swept at approximately the same speed.

Measurement sequence for Discrete Averaging

Users control measurement using the "Add Value" function. Here, the SRM performs just one measurement, confirms this with a beep, and increments the value under "No. of SAVG" by one.

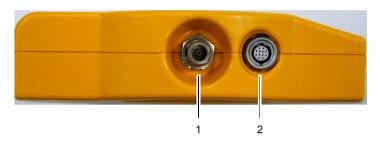
The SRM averages all the recorded measurement values. If the field remains constant over time, the order in which the measurement points within the room are sampled is unimportant.

When discrete averaging is performed using a single axis antenna, the SRM automatically calculates the isotropic result for each measurement point in the room. The spatial average therefore reflects the isotropic results rather than the results for the individual axis directions.

Notes:

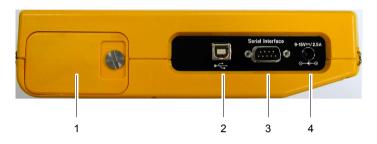
Appendix C:

Instrument graphics


Complete instrument

No.	Element
1	Antenna
2	Side with antenna and cable connection
3	LCD panel, rotary control, operating keys, and Status and Charge LED
4	Side with battery holder, serial interface and connector for AC Adapter / Charger
5	Carrying strap

Side with antenna / cable connection


There are two sockets on the top side of the SRM. These are for connecting the antenna and the control cable.

No.	Function
1	Antenna connector socket N connector
2	12 pole socket (multi pin connector) for connecting the control cableIf a Narda antenna or Narda cable is used this socket automatically detects the antenna and cable.

Side with battery holder and external connections

On the base of the instrument you will find the battery holder on the left and three further external connections on the right: USB, serial interface, AC Adapter / Charger.

No.	Function
1	Battery holder
2	USB interface for connecting to a computer (PC)
3	 Serial data interface (RS 232) for connecting to a computer (PC): 115200 or 230400 Baud 8 data bits 1 stop bit No parity Xon / Xoff protocol
4	AC Adapter / Charger connection Nominal voltage: 9 V

Notes:

Index

Symbols

"Repairing" a setup 14-22 "Full Screen" display mode 9-7, 10-8

A

AC Adapter / Charger 2-3, 3-2, 3-3, 6-12, 6-13, 15-2, 15-3, C-1, C-3 Activating the zoom settings 8-27 Antenna holder 5-12 Automatic resolution bandwidth selection 7-13, 8-7 Automatic saving 13-4 Average time 7-12, 8-12, 9-29 Averaging time 10-18

В

Battery holder 6-12, 15-1, C-1 Battery pack disposal 15-2

С

Calibration interval 18-12, 18-15, 18-18, 18-21, 18-23 Carrying strap C-1 Cell name 9-4, 9-33, 14-9 Cell name table 6-2, 9-4, 14-2, 14-9, 16-10 Center frequency 8-4, 8-6, 9-20, 9-21, 10-10 Changing the battery pack 15-1 Changing the step width 6-7 Channel number 9-20, 9-22 Charge 3-3 Charge indicator 3-2 Charge LED 6-1, 6-9, C-1 Charging the battery pack 3-3 Cleaning 15-2 Commands 17-3 Completing an entry 6-6, 6-8 Condensation 2-3 Configuration 14-1 Connecting a Narda antenna 5-6 Connecting a Narda cable 5-8 Connecting customary antenna types 5-7 Connecting customary antenna types using a cable 5-10 Connecting the Narda cable to the Narda antenna 5-9 Connecting the Narda cable to the SRM 5 - 8Connecting to the PC 17-1 Continuous averaging 12-1, 12-5 Correct use 2-1 Creating a configuration 16-10

D

Damage 2-4 Damage to the unit 15-3 Default marker 9-15, 10-19 Defining the matrix A-4 Deleting a data set 13-16 Deleting a setup 14-22 Deleting all data sets 13-16 Destruction of AC Adapter / Charger 2-3 **Diagnostic function (Device** Diagnostic) 14-12 Dimensions 18-11, 18-15, 18-18, 18-21. 18-23 Discharge indication 3-2 Discrete averaging 12-2.12-8 Discrete averaging with a single axis antenna 12-3. 12-10 6-1 Display and control elements Display, measurement range and resolution B-3 Displaying a data set 13-13 Displaying a service table 14-8 Displaying peaks 8-35 Displaying sub data sets 13-15 Displaying the condensed service table (Condensed Table) 7-17 Displaying the detailed service table (Detailed Table) 7-17 Displaying the normal size service 7-17 table Displaying the peak table 8-32 Displaying the spectrum in normal size 8-17 Disposal 2-4 Duty cycle 10-19

Ε

Editing parameters 6-6 Electric shock from damaged AC Adapter / Charger 2-3 Electric shock from high voltages 2-2 Enabling options 16-1 Entering a default comment 13-18 Entering the date 14-13 Entering the measurement range 7-6 Entering the numerical value and units 6-6 Entering the time 14-14 External connections C-3 External connectors 6-12 Extrapolation factor for UMTS measurements 9-31

F

Frequency span 8-4, 8-6, 8-20 Function key functions 6-3 Function test 3-4

Η

Help for problems 17-3 Human safety standard 5-14, 18-9

I

Instrument graphics C-1 Internal processes for a spectrum analysis B-3 Isotropic measurement with a single axis antenna 11-6 Isotropic measurements 11-1

Κ

Key descriptions 6-2

L

Loading a setup 14-21 Loading the factory default setup 14-22 Low battery 3-2

Μ

Main board, digital B-2 Malfunction through incorrect use 2-2. 2-3 13-13 Managing data sets Marker function 8-28 Matrix method (precision measurement) A-4 Measurement methods A-1 Measurement principle B-1 Measurement range 6-11, 7-6, 8-9, 9-23, 10-13, 14-3 Measurement range search 9-24, 10-14 Measurement with a single axis 11-1 antenna Measurement with a three axis (triaxial) antenna 11-1 Misinterpretation of results obtained with single axis antennas 2-2 Mobile measurement A-1 Moving the frequency band 8-41 Moving the peak marker to the highest peak 8-30 Moving the peak marker to the next peak (left or right) 8-30 Moving the zoom area 8-24 Multi pin connector 4-3, 4-4, 5-5, 5-6, 5-9, 6-12, 14-17, 14-18, C-2

Ν

N connector 5-5, 5-6, 5-8, 5-9, 5-10, 5-13, 6-12, 18-2, C-2 Number format 14-15 Number of Averages 7-11 Number of averages 8-12, 9-28

0

Observation length 9-14, 10-6 Opening the Configuration menu 14-1 Opening the numerical value entry box 6-6, 6-7 Opening the unit 15-3 Operating status display 6-9 Optimizing the display 6-8 Overload 9-3

Ρ

Packaging 3-1 Parameters 17-4 P-CPICH (Primary Common Pilot Channel) 9-1, B-6 Peak marker 8-28 Peak table 8-32 Pendulum or sweep method (mobile measurement) A-1 Positioning the antenna A-4 Positioning the zoom area symmetrically about the marker 8-26 Power supply 3-2 Precision measurement A-4

R

RBW 7-3, 7-13, 8-3, 8-7, 10-3, 10-12, 14-3, 18-3, B-1, B-4 Reading out stored data sets 13-19 Rechargeable batteries 18-12 Reducing / enlarging the zoom 8-25 area Registering a non-Narda antenna 5-14 Registering a non-Narda cable 5-15 Remote control 17-1 Remote control commands 17-3 Resolution bandwidth 7-13, 8-8. 10-12 Result type 7-10, 8-11, 10-18 RF module, analog B-1 Rotary control 6-7, C-1 Rotation method A-2

S

Safety instructions 2-1 Safety standard 4-1, 7-1, 8-14, 14-1, 14-6, 16-10 Saving a single measurement 13-2 Saving data 13-1 Scrambling Code 9-33 Scrambling code 9-1, 9-4, B-6 Search for measurement range 7-7, 8-10 Selecting "Full Screen" display 7-16 Selecting an option 14-2 Selecting display options 7-16, 9-5, 10-4

Selecting result units 9-6, 10-4, 10-6 Selecting the comment mode 13-17 Selecting the date format 14-13 Selecting the display mode 8-17 Selecting the maximum number of data sets 13-6 Selecting the reference value automatically 8-19, 10-8 Selecting the result type 10-17 Selecting the store mode 13-5 Selecting the trace type 7-10, 8-11, 9-27 Selecting the units for the results 7-15 Selecting the Y axis reference point 8-18 Selecting the Y axis scaling 8-18 Sequential measurements 11-1 Serial interface 6-12, 16-3, 17-1, C-1, C-3 Service center 2-4 Service table 6-2, 7-1, 7-4, 7-5, 7-15, 14-1, 14-20, 16-10, 18-9 Setting measurement range manually 8-9, 9-23, 10-13 Setting methods 8-7 Setting the display contrast 6-8 Setting the lower limit of the frequency band 8-39 Setting the lower limit of the zoom area 8-22 Setting the threshold 13-4 Setting the upper limit of the frequency band 8-40

Setting the upper limit of the zoom area 8-23 Softkev functions 13-3, 13-18 Softkeys 6-3 Spare parts 15-3 Spatial averaging 12-1, B-9 Starting storage 13-7 Starting the charge cycle 3-3 Status LED 3-4, 6-1, 6-9, C-1 Stopping automatic storage 13-8 Storing the current setup 14-21 Strong fields from strong radiation sources 2-2 Switching off 3-5 Switching off the backlight 6-8 Switching on 3-4 Switching on the backlight 6-8

Т

Technical descriptions B-1 Time Analysis 10-1 Time analysis 10-1 Time controlled storing 13-9 Transferring a configuration from the basic instrument to the PC 16-12 Transferring a configuration from the PC to the basic instrument 16-11 Transport and storage 3-1 Transport damage 3-1 Typographic conventions 1-4

U

UMTS P-CPICH demodulation 9-1 Unpacking 3-1 Unsuitable frequency range 2-1 USB interface 17-1 Using the Backspace softkey 6-6 Using the rotary control 6-7

V

Velcro strips 5-11, 5-13

W

Warning function 2-1 Weight 18-11, 18-15, 18-18, 18-21, 18-23

Х

X-axis scale 9-14, 10-6

Υ

Y-axis reference point 9-11, 9-15, 10-7 Y-axis scale range 9-11, 9-14, 10-7 Y-axis units 8-14

Ζ

Zoom function 8-20

Narda Safety Test Solutions GmbH Sandwiesenstrasse 7 72793 Pfullingen, Germany Int'l phone: +49 7121-9732-777 Int'l fax: +49 7121-9732-790 E-mail: support@narda-sts.de www.narda-sts.com

Narda Safety Test Solutions 435 Moreland Road Hauppauge, NY 11788 USA USA phone: 631-231-1700 USA fax: 631-231-1711 E-mail: NardaSTS@L-3COM.com www.narda-sts.com