TIMER/COUNTER

5304A

HEWLETT hp PACKARD

CERTIFICATION

The Hewlett-Packard Company certifies that this instrument was thoroughly tested and inspected and found to meet its published specifications when it was shipped from the factory. The HewlettPackard Company further certifies that its calibration measurements are traceable to the U.S. National Bureau of Standards to the extent allowed by the Bureau's calibration facility.

WARRANTY AND ASSISTANCE

This Hewlett-Packard product is warranted against defects in materials and workmanship. This warranty applies for one year from the date of delivery, or, in the case of certain major components listed in the manual, for the specified period. We will repair or replace products which prove to be defective during the warranty period provided they are returned to HewlettPackard. No other warranty is expressed or implied. We are not liable for consequential damages.

Service contracts or customer assistance agreements are available for Hewlett-Packard products that require maintenance and repair on-site.

For any assistance, contact your nearest Hewlett-Packard Sales and Service Office.

HP MOIN:L.5304A TIMER (`OUNTER

Record of Revisions (Manual (hamge P'ages)

HP MOIEL 5304A TIMER COUNTER
Record of Revisions (Manual Change Pages)

REVISION NUMBER	DATE ISSUED		INSERTED INSERTED

SECTION IX D TIMER/COUNTER

5304A

SERIAL PREFIX: 1212A00467

This section applies directly to HP Model 5304A. Timer Counters having serial prefix number 1212A00467, and must be inserted into the 5300A Measuring System Manual.

NEWER INSTRUMENTS

This Section with enclosed "Manual Changes Piges" applies directly to HP Model 53:304A Timer Counters having prefix numbers above 1212A00467.

OLDER INSTRUMENTS

Changes required to back-date this Section for older instruments are in Section IX D. Subsection VII.
Copyright HEWLETT-PACKARD COMPANY 1973
5301 STEVENS CREEK BLVD., SANTA CLARA, CALIF. 95050

Printed: AUG 1973

TABLE OF CONTENTS

Section T'age
IX D 5304A Timer/Counter
Subsection
I GENERAL INFORMATION $9 \mathrm{D} \cdot 1 \cdot 1$
91)-1-1. Introduction 9D-1-1
91)-1-2. Description 9D-1-1
9D-1-4. Purpose and Use of Section IX D 9D)-1-1
9D-1-6. Instrument Identification 9D-1-1
9D-1.8. Manual Changes and Options 9D-1-1
II INSTALLATION 9D.2-1
9D-2-1. Unpacking and Inspection 91)-2-1
9D-2-3. Storage and Shipment 9D-2-1
9D-2-5. Installation and Removal of Plug-On 91)-2-1
9D-2-8. Portable Operation 91)-2-1
III OPERATION 9D-3•1
9D-3-1. Operating Information 9D)•3-1
IV THEORY OF OPERATION 9D-4-1
9D-4-1. Introduction 9D.4-1
9D-4-4. Input Amplifiers 9D-4-1
V MAINTENANCE 90.5-1
9D-5-1. Introduction 9D-5-1
9D-5-3. Recommended Test Equipment 9D-5-1
9D-5.-5. Instrument Access 9D.5-1
9D-5-7. Periodic Maintenance 9D-5-1
9D-5-9. Maintenance and Repair 9D-5•1
91)-5.13. Instrument Troubleshooting 9D-5-1
9D-5-16. DC Balance Adjustment $9 \mathrm{D} \cdot 5-3$
VI REPLACEABLE PARTS 9D-6-1
9D-6-1. Introduction 9D-6-1
9D-6.3. Ordering Information 9D-6-1
VII MANUAL CHANGES ANi OP'TIONS 9D.7-1
9D)-7-1. Manual Changes 9D-7-1
9D.7.3. Newer Instruments 91).7.1
9D-7-5. Older Instruments 91).7-1
9D-7.7. Options 91).7-1
VIII CIRCUIT DIAGRAMS 91) 8.1
9D-8.1. General 91)-8-1

LIST OF FIGURES

Figure Page
9D-1-1. 5304A Timer/Counter 91)-1-()
91)-3-1 Signal Conditioning Using Attenuator, Level and Slope Controls 9D.3-1
91)-3-2. Front-Panel Controls and Connectors 91)-3-2
9D-3-3. Rear-Panel Connectors 91) $3 \cdot 4$
9D-3-4. Making Self-Check Measurement 9D.3.5
9D-3-5. Making Frequency A Measurements 9D-3-6
9D-3-6. Making Period Average Measurements 9D-3-7
9D-3-7. Making Time Interval Measurements 91).3-8
9D-3-8. Totalizing 9D-3.10
9D-5-1. Separation Procedure 9D-5-2
9D-5-2. Frequency A Troubleshooting Diagram 9D-5.5
9D-5-3. Period Average A Troubleshooting Diagram 9D-5-7
9D-5-4. Time Interval Troubleshooting Diagram 9D-3-11
9D-5.5. Open/Close Troubleshooting Diagram 9D-5-13
9D-5-6. Check Troubleshooting Diagram 9D-5-15
9D-8-1. A1 Time Interval Board Assembly,A2 Attenuator Board Assembly9D-8.5

LIST OF TABLES

Table Page
9D-1-1. 5304A Timer/Counter Specifications 9D.1-2
9D-5-1. In-Cabinet Performance Checks 9D-5-16
9D-6-1. Replaceable Parts 9D-6.2
9D-6-2. Manufacturers Code List 9D. $6 \cdot 5$
9D-8-1. Instrument Interconnection List 91)-8.2

SECTION IX D

5304A TIMER/COUNTER

SUBSECTION I GENERAL INFORMATION

9D-1-1. INTRODUCTION

9D-1-2. Description

9D-1.3. The Hewlett-Packard Model 5304A/Timer Counter, when plugged onto an HP Model 5300A Measuring System, is capable of: Measuring frequencies up to 10 MHz , Time Interval measurements from 500 nsec to 10,000 seconds, Period Average over a range of 10 Hz to I MHz , and Totalizing. The electrical and mechanical specifications are listed in Table 91)-1.1.

9D-1-4. Purpose and Use of Section IX D

9D-1-5. Section IX I) coatains the documentation necessary to operate, maintain, and repair the HP Model 5304A Timer/Counter plug-on. Also included are parts lists, component locators, and schematics. This information is intended to be inserted into the 5300 A Measuring System manual as part of Section IX of that manual.

9D-1-6. INSTRUMENT IDENTIFICATION

91)-1.7. Hewlett-Packard uses a two-section, ninedigit serial number $(0000 \mathrm{~A} 000000$ mounted on the rear panel to identify the instrument. The first four digits are the serial prefix and the last five digits refer to the specific instrument. If the serial prefix on your instrument differs from that listed on the title page of this section, there are differences between the manual and your instrument. Lower serial prefixes are documented in Section IX D, Subsection VII and higher serial prefixes are covered by a manual change sheet included with the manual.

9D-1-8. Manual Changes and Options

9I)-1-9. The title page lists the serial prefix number to which this information directly applies. If the serial prefix is different from the one listed, a change sheet is meluded describing the required changes. If this change sheet is missing, the information can be supplied by any Hewlett-Packard Sales and Service office listed in Section VI of the 5300A Measuring System Manual. Options are listed in Section IX I), Subsection VII.

INPUT CHANNELS A AND B

Range: DC coupled; 0 to 10 MHz . AC coupled; 100 Hz to 10 MHz .
Sensitivity $(\min): 25 \mathrm{mV} \mathrm{rms}$ sine wave to 1 MHz .50 mV rms sine wave to 10 MHz . $\quad 150 \mathrm{mV}$ p.p pulse at minimum pulse width, 40 nsec. Sensitivity can be decreased by 10 or 100 times using ATTENUATOR switch.
Impedance: $1 \mathrm{M} Q 2$ shunted by less than 30 pF .
Overload Protection: 250 V rms on X 10 and X100 attenuator settings. On X1 attenuator setting 120 V rms up to 1 kHz , decreasing to 10 V rms at 10 MHz .
Trigger Level: PRESET position centers triggering about 0 volts $\pm 25 \mathrm{mV}$, or continuously variable over the range of -1 V to +1 V times attenuator settings.

Slope: Independent selection of triggering on positive or negative slope.
Channel Inputs: Common or separate lines.
Gate Output: Rear panel BNC. TTL Low level while gate is open. May be used to intensity modulate an HP oscilloscope.

TIME INTERVAL

Range: 500 nsec to $10^{4} \mathrm{sec}$.
Input: Channels A and B; can be common or separate

Overload: Maximum recommended levels for pulse signals is 2 V p-p. Clipping occurs at 3 Vp-p.

Resolution: 100 nsec to 10 ms in decade steps.

Accuracy: +I count t time base accuracy + trigger error.*

Display: $\mu \mathrm{s}, \mathrm{ms}$, or s (seconds) with positioned decimal point.

Time Interval Holdoff: Front panel concentric knob which inserts variable delay of approximately $100 \mu \mathrm{sec}$ to 100 msec between START (Channel A) and enabling STOP (Channel B); may be disabled. Electrical inputs during delay time are ignored. Delay may be digitally measured in CHECK position. Delay Output: rear panel BNC. TTL low level during delay time. May be used to intensity modulate an HP oscilloscope.

PERIOD AVERAGE

Range: 10 Hz to 1 MHz .
Input: Chamnel A.
Period Averaged: I to 10^{\prime} automatically selected for maximum resolution.
Frequency Counted: 10 MHz .
Accuracy: +1 count + time base accuracy + trigger error.*
Display: $\mu \mathrm{s}, \mathrm{ms}$ with positioned decimal point.

FREQUENCY

Range: 0 to 10 MHz .
Input: Channel A .
Gate Times: Manually selected $0.1,1$, or 10 seconds. AUTO position selects gate time to fill display for maximum resolution within a I-second measurement time.

Accuracy: +1 count t time base accuracy.
Display: $\mathrm{Hz}, \mathrm{kHz}$, and MHz with positioned decimal point.

OPEN/CLOSE (Totalizing)

Range: 10 MHz maximum.
Input: Channel A.
Function: Input signal totalized while gate open. Opening and closing of gate initiated by front panel pushbutton switch.

GENERAL

Check: Inserts internal 10 MHz reference frequency into Channels A and B. Time Interval Holdoff may be digitally meastred by switching to CHECK and TIME IN. TERVAI, positions.

Operating Temperature: 0° to $50^{\circ} \mathrm{C}$.
Power Requirements: Including 5300 A mainframe, nominally 10 watts. Minimum of 3 hours operation (typically 5 hrs) at 20 C to 30 C operating and charging temperatures.
Weight: Net, $1 \mathrm{lb}(0.9 \mathrm{~kg})$. Shipping, $31 /$ lbs (1.5 kg).
*For any waveshape, trigger error is less than

$$
\pm \frac{0.005}{\text { Signal Slope }(\mathbf{V} \mu \mathrm{s})} \mu \mathrm{s}
$$

*Trigger error is less than $\pm 0,33^{\%}$ of one period. : periods averaged for signal with 40 dB or better signal-to-noise ratio.

SECTION IX D 5304A TIMER/COUNTER

SUBSECTION II

 INSTALLATION
9D-2-1. UNPACKING AND INSPECTION

9D-2-2. If the shipping carton is damaged ask that the carrier's agent be present when the instrument is unpacked. Inspect the instruments for damage such as scratches, dents, broken kncbs, etc. If the instrument is damaged or fails to meet performance tests when used with the 5300A Measuring System notify the carrier and the nearest Hewlett-Packard Sales and Service office immediatciy. Performance check procedures are located in Section IX D-5, and Sales and Service offices are listed in Section VI of the 5300 A portion of the manual. Retain the shipping carton and the padding material for the carier's inspection. The Sales and Service office will arrange for the repair or replacement of the instrument without waiting for the claim against the carrier to be settled.

9D-2-3. STORAGE AND SHIPMENT

9D-2.4. PACKAGING. To protect valuable electronic equipment during storage or shipment always use the best packaging methods available. Your HewlettPackard Sales and Service office can provide packaging material such as that used for original factory packaging. Contract packaging companies in many cities can provide dependable customer packaging on short notice. Here is one recominended packaging method:
a. The original container is a corrugated cardboard box with 200 Jbs , burst test (HP No. 9211-1620). The instrument is secured and protected, while in the box by a top and bottom molded form of polystyrene foam (HP No, 9220-1545). Also included with the instrument is a plastic dust-protection cover HP Part No. 05300 -80004.

9D-2-5. INSTALLATION AND REMOVAI. OF PLUG-ON

9D-2.6. The 5304A Timer/Counter must be used with a mating 53300 A Measuring System before any measurements can be made. To mate the 5304 A Timer/Counter with the 5300A Measuring System, see Figure 2-1 and Paragraph 2-1 of the 5301 A portion of the manual.
91)-2.7. ENVIRONMENT. Conditions during storage and shipment should be normally limited as follows:
a. Maximum aititude: 25,000 feet
b. Minimum temperature: $-40^{\circ} \mathrm{F}\left(40^{\circ} \mathrm{C}\right)$.
c. Maximum temperature: $+167^{\circ} \mathrm{F}(+75 \mathrm{C})$

9D-2-8. PORTABLE OPERATION

91)-29. The use of the HP Model 5310A Battery Pack enables the 5300 A Measuring System and 5304 A Timer Counter to be used in areas removed from ac power sources. The 5310A Battery Pack provides : minimum of 3 hours operation (typically 5 hours) at $20^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$ operating and charging temperature, Tables $1-2$ and 1.4 of 5300 A portion of the manual list the HP 5310A Battery Pack as an available accessory. Documentation on the 5310A is also included in Section IV through VIII ot the 5300A portion of the manual. To prepare the 5300 A 5304 A for portable operation. refer to Paragraph $2-15$ and Figure $2-2$, steps a to e of 5300 A portion of mamual.

OPERATION

SECTION IX D
 5304A TIMER/COUNTER

SUBSECTION III OPERATION

9D-3-1. OPERATING INFORMATION

9D-3-2. The 5300A/5304A Timer/Counter measures frequencies up to 10 MHz , period average to 1 MHz , time interval from 500 nsec to 10,000 seconds; or totalizes input signals.

Figure 9D-3-1. Signal Conditioning Using Attenuator, Level and Slope Controls

9D-3-3, There are four basic signal conditioning controls used in Channel A or Channel B (the effect of these controls is shown in Figure 9D-3-1). These are:
a. ATTEN switches for Channel A and B.
b. SLOPE switches for Channel A and B.
c. LEVEL controls for Channel A and B.
d. AC-DC switches for Channel A and B.

9D-3-4. ATTEN. X1, X10, X100 switches (both Channels. Large amplitude signals can be attenuated by using the ATTEN switches. Setting the attenuator switches increases the trigger levels and the hysteresis voltages by factors of $1,10,100$. If input signal levels are unknown, the initial measurements should be made with the attenuator switches set to X100. The attenuator settings are then reduced until a stable, useable measurement is obtained.

9D-3-5. SLOPE Switches (both Channels). The slope switches allow the selection of triggering on the positive (+) or negative (-) slope of the input signals (see Figure 9D-3-1).

9D-3-6. LEVEL Controls (both Channels). The level controls allow adjustment of the triggering point on the input signal waveform. With the LEVEL. controls set to PSET or " 0 ", triggering is centered about zero volts. The voltage range over which triggering may be set is 1 volt to +1 volt times the ATTEN switch settings ($\pm 1 \mathrm{~V}$ to +100 V).

9D-3-7. AC-DC Switches (both Channels). The AC-DC switches select ac or dc coupling. In AC position and PSET, triggering is centered about ac-zero, and de components on the signal have no effect. In DC position and PSET, triggering is centered about 0 volts dc on the signal.

1. COM-SEP-CHK. Three position switch enables selection of input signal from separate or common sources or enables the selection of a Self-Check position.
a. COM: Connects INPUT Λ and INPUT B in parallel.
b. SEP; Channel A and Channel B inputs are from separate sources.
c. CHK: Self-Check verifies that 5300 A 10 MHz crystal oscillator and counting logic and the 5304 A gating logic is functioning correctly.
2. INPUT A and B. Input signal frequencies to be measured are connected to INPUT A. INPUT B is used in time interval measurements.
3. ATTEN. Three-position input signal attenuator for both channels.
a. X1: Connects input signals directly to input amplifiers.
b. X10: Attenuates input signals by factor of 10 .
c. X100: Attenuates input signals by factor of 100 .
4. AC-DC. Two-position switch allows selection of ac-coupling or direct-coupling to input amplifiers.
5. SLOPE +, Selects the triggering on positive or negative slope of the input signals.
6. LEVEL. Adjusts the input trigger levels. Preset to trigger at 0 volts.
7. FUNCTION, Twelve-position switch enables 4 modes of operations to be selected. The modes are:
a. T.I. A to B: Enables time interval measurements to be made from 500 nsec to 10,000 seconds. Resolution is adjustable from $.1 \mu \mathrm{~s}$ to 10 ms in six decade steps.
b. PER AVG A: Enables multiple period averages to be made from Channel A with frequencies of 10 Hz to 1 MHz . Periods averaged are automatically selected from 1 to $10{ }^{3}$.
c. FREQ A: Enables frequency measurements from 0 to 10 MHz when de coupled and 100$) \mathrm{Hz}$ to 10 MHz when ac coupled.
1) AUTO: Gate time is automatically selected to fill the display for maximum resolution of the signal being measured, without overflow, up to a maximum of 1 second.
2) $1 \mathrm{~S}, 1 \mathrm{~S}, 10 \mathrm{~S}$: Counter gate time is manually selected for .1 seconu, 1 second or 10 seconds.
d. OPEN/CLOSE A (Totalize): Enables input signals to Channel A to be totalized. Totalizing is initiated by pressing OPEN/CLOSE A switch and terminated by pressing the switch a second time.
8. DELAY. Adjustment inserts a time interval delay of $100, \mu \mathrm{sec}$ to 100 msec between Start (Channel A) signal and Stop (Channel B) signal; when disabled, there is a residual delay of about 200 nsec.

Model 5304A
Operation

1. Connect ac power to 5300 A ac receptacle.
2. Turn ac power "on" with 5300A SAMPLE RATE control. Adjust SAMILE RATE for desired display time.
3. Set 5304A COM SEP-CHK switch to CHK.
4. Set 5304 A "Function" switch to FREQ A, AUTO. Display should be 10.0000 MHz , +1 count.
5. The time interval hold-off may be meas ured by selecting on of the T.I. A to B positions of the "Function" switch.

Operation

Figure 9D-3-5. Making Frequency A Measurements

Figure 9D-3-6. Making Period Average Measurements

1. Connect ac power to 5300 A ac receptacle.
2. Turn ac power "on" with 5300A SAMPLE RATE control. Adjust sample rate for desired display time.
3. Set COM-SEP-CHK to SEP.
4. Connect input signal to INPUT A jack.
5. Set ATTEN to X100, AC-DC to coupling desired and SLOPE to polarity desired. Set LEVEL to PSET.
6. Set "Function" to PER AVG A; adjust ATTEN switch until a stable display is obtained. The number of periods averaged is automatically selected.

Figure 9D-3.7. Making Time Interval Measurements

1. Connect ac power to 5300 A ac receptacle.
2. Turn ac power "on" with 5300A SAMPLF, RATE control. Adjust sample rate for desired display time.
3. Set "Function" switch to T.I. A to B, with desired resolution. Ensure DELAY control is full cew.
4. Set ATrTEN switches for both channels to X100; AC-DC switches and SLOPE controls switches to settings desired; set LEVEL controls to PSET.
5. If Start and Stop signals are from separate sources, connect the Start signal to INPUT A connector and the Stop signal to INPUT B connector, then set the COM-SEP-CHK switch to SEP. If the Start and Stop signals are from a common source, connect the signal input to INPUT A and set the COM-SEP-CHK switch to COM.
6. Adjust ATTEN switches until a stable display is obtained.
7. Time Interval Holdoff (DELAY). The DELAY control inserts a delay of about $100 \mu \mathrm{sec}$ to 100 msec between the triggering of the START' Channel " A " and the enabling of the STOP Channel "B" (see Figure B). This delay may be used to measure relay or other mechanical switch timing sequences without error due to contact bounce. It may also be used for measurements on pulse trains; for example from the start pulse to a later pulse, in the presence of intervening pulses. To use the DELAY, proceed as follows:
a. If the desired delay is known, it may be set and measured by selecting T.I. A to B and CHK and setting DELAY control to the desired delay time. The measurement may then be made by switching COM-SEP-CHK in step $\overline{5}$.

Figure 9D-3.7. Making Time Interval Measurements (Continued)
b. If the input signals are pulse trains, it is possible to select a pulse out of the train by increasing the DELAY from full cew; the measured time interval will increase in steps as the delay falls after successive pulses in the train.
c. For maximum flexibility and ease of interpretation, an oscilloscope may be used to set up the measurement (as shown in Figure A). The DELAY OUTPUT is used to trigger the time base and intensity modulate the display (see Figure A). For a repetitive waveform, the Channel A input may fall during the display cycle, and therefore might not initiate a measurement. The GATE output may be substituted for the DELAY OUTPUT; this allows intensifying the actual measurement rather than the delay. If the inputs are common, the GATE OUTPUT or DELAY OUTPUT can be displayed on the second channel (or a third channel of a four-channel scope), and the other of these two used to intensity modulate.
d. Set oscilloscope controls as follows:

HP 1801A: Set A and B Channel controls for a display of both input signal. Set DISPLAY to $\mathrm{A}+\mathrm{B}$.

HP 182:A: Set TRIGGER to EXT. SLOPE to -
Coupling to ACF
SWEEP MODE to NORM.
Time/CM for one cycle of measured Time Interval.
e. Set DELAY slightly out of full cew and select the time interval delay. The SWEEP TIME may have to be readjusted.
f. Adiust INTENSITY to view only the time interval measured.
g. Oscilloscope time display and $53000 \wedge$ time readout should be the same.

Figure B: Example of Delay Control

Figure A: Delay Control Setup

THEORY

SECTION IX D

5304A TIMER/COUNTER

SUBSECTION IV THEORY OF OPERATION

9D-4-1. INTRODUCTION

9D-4-2. This subsection describes the theory of operation for the 5304A Timer/Counter. Basic operation of gates, certain amplifiers and integrated circuits is found in Section IV of the 5300A portion of the manual.

9D-4.3. To simplify measurement making refer to operating information starting with Paragraph 9D-3-1 for optimum adjustment of various controls.

9D-4-4. INPUT AMPLIFIERS AND MODES OF OPERATION

9D-4-5. CHANNEL A. The Channel A input signal is applied to front-panel INPUT A jack and attenuated by A2 attenuator assembly (X1, X10, X100) and sent to AI Channel A input amplifier The A2 Attenuator Board Assembly also contains the AC-DC switches, SLOPE switches, and the LEVEL controls for both channels. The input signal is sent through A2 to the input of matched FET sourcefollower pair, Q2 and Q4. Diodes CR2, CR4 are limiters for Q2 inputs.

9D-4-6. One side of the FET source-follower pair (Q2) receives the input signal from A2J2 and the other side (Q4) is connected to LEVEL A triggerlevel control A2R9. Q2 and Q4 are connected to differential amplifier Q6 and Q8 respectively and provides level shifting and gain of approximately .3 for Channel A signals. Resistor R20 is a de balance for differential amplifier Q6 and Q8,

9D-4-7. The output from Q6, Q8 drives another differential amplifier, U24B. The U24B output is shaped by Schmitt-Trigger U24A and level-shifted (ECL to TTLL) through U21B, Q12 combination. The U21B expander output is used to obtain sufficient signal swing to drive Q12,

9D-4-8. CHANNEL B. The Channel B input signal is applied to front panel INPUT B jack and attenuated by A2 Attenuator Assembly (X1, X10, X100) and sent to A1 Channel B input amplifier. The A2 Attenuator assembly also contains the Channel B coupling switches, slope switches and the Channel B level control. The Channel B signal is routed through A2 to the input of matched FET sourcefollower pair Q1 and Q3. Diodes CR1, CR3 are limiters for Q1 inputs.
91.4.9. One side of the Channel B FET source follower pair (QI) receives the input signal from A2JI and the other side (Q3) is connected to LEVEI, B trigger level control A2R10. Q5 and Q7 are connected to differential amplifiers Q5 and $Q 7$ respectively and provide level-shifting and gain of approximately .3 for Channel B signals. Resistor R19 is a de balance for differential amplifier (25 and Q7.

9D-4-10. The output from Q5, Q7 drives another differential amplifier U23B. The U23B sutput is shaped by Schinitt-Trigger U23A and level-shifted (ECL to 'TTL) through U21A, Q11 combination. The U2IA expander output is used to obtain sufficient signal swing to drive Q11.

9D-4-11. VOLTAGE REGULATION. Transistors Q9, Q10 provide regulated, low-ripple de power to the amplifiers and time interval hold-off circuits.

9D-4-12. SLOPE SELECTION. Slope selection for Channel A is accomplished by using $\mathbf{W} 19 \mathrm{C}$, U20C, and U20D in conjunction with A2S7. Slope selection for Channel B is accomplished by using U191), U20D, and U20A in conjunction with A2S6.

9D-4-13. CHECK MODE. In the CHECK mode, the operation of the 5300 A 10 MHz crystal oscillator and counting logic and the 5304A gating logic is verified. When A2S1 is in CHK mode, ground is applied to U18A(2), U18D(12), and U13C(5). The 10 MHz clock from the 5300A A1J1(16) is routed through the 5304A A1P1(16) and sent to U12D(12). The Channel A switch (U18B) and Channel B switch (U18C), gate the 10 MHz clock signal through. The Channel A switch output is also gated through U12B and U16B and is available as the Fl signal at $\mathrm{A} 1 \mathrm{P} 1(5)$.

9D-4-14. FREQ A MODE. In the frequency measuring mode, with the "Function" switch S 2 in any of its four frequency measuring positions (FREQ AUTO, 1S, 1S, 10S) the Channel A input signal is gated through "Channel A Slope Selection" switch comprised of U19C, U20C, and U20B. The input signal is then routed through another "Channel $A^{\prime \prime}$ switch made up of U18A and U18B. From U18B(6) the Channel A input signal is gated through U12B and U16B as the Fl signal to the 5300A mainframe which controls the opening and closing of the main gate. The 10 MHz clock signal from
the 5300 A mainframe at $\mathrm{AIP1}(16)$ is routed through U12C as the F2 signal to control the time base, which clocks the opening and closing of the main gate.

9D-4-15. The positive-going edge of a negative pulse from U17E is the MAX TIME signal. The MAX TIME signal at AIP1(17) triggers a display cycle in the 5300 A mainframe. This negative-going pulse can be generated from one of two sources. One of the sources is the positive-going edge of the $\overline{\text { MGFF }}$ line at A1P1(12) which indicates the closing of the 5300 A main gate. This signal is inverted through U17D and differentiated by C14 and R69. CR18 is a clamping diode to shorten the differentiation recovery time. The negative pulse of the differentiated waveform, gates U16A "on" and the narrow positive-going pulse is inverted through U17E as the MAX TIME signal.

9D-4-16. The TIME BASE OUT signal at A1P1(18) comes from the 5300 A mainframe and is buffered by Q18 then gated through U14C, U16A, and inverted through U17E as the MAX TIME signal.

9D-4-17. The positive-going edge of the negative pulse at A1P1(17), indicates the display cycle has been triggered.

9D-4-18. PERIOD AVG A MODE. In period average mode the "function" switch S2 enables U1A, U6D, U12C, and U14A. The Channel A signal is routed through "Channel A Slope Selection" and "Channel A Switch" at U18B(6). The signal is then gated through U16C and is available at A1P1(21) as the I MHz TIME BASE. The CLOCK signal at AIP1(16) is gated through U12A, U16B as the F1 signal to be counted.

9D4-19. Flip-flop U4A prevents very narrow pulses from triggering the time base but not the main gate. The first Channel A pulse after the INHIBIT signal goes high at the end of the display cycle "clocks" U4A(5) to a high state and enables U16C. The next positive-going edge of the Channel A signal is gated through U16C as the 1 MHz TIME BASE INPUT signal. The main gate is then closed by one of two events. The first event is: The 9 signal line from 5300A, U3 COUNTER, goes low, and enables the main gate in the $5300 \mathrm{~A}, ~ U 5$ CONTROL, to close on the next LOG pulse. When the 9 line goes low it indicates that the display is 9% full. The main gate closes at the end of the next decademultiple of the input signal to prevent overflow. The second event is: The TIME BASE OUT signa! (AIPl(18)) from the $5300 \mathrm{~A}, \mathrm{U} 4$ TIME BASE goes
low indicating the 10 periods have been counted. The main gate closes because no more counts can be stored in the 5304A exponent counter URA and URB. The exponent counter counts the number of decadetransitions of the input signal that have been counted ($1,10,100,1000$ input transitions or exponent counts of $1,2,3,4$).

91-4-20. The LOG OUTPUT signal (generated by 5300 A , U4 TIME BASE) is active in Frequency and Period Average Modes and provides pulses to open and close the main gate. Following a display cycle and reset, the first $\overline{\mathrm{LOG}}$ pulse opens the main gate and a following LOG pulse will close the gate only after a $\overline{9}$ or MAX TIME low signal enables the closing of the main gate flip-flop.

9D-4-21. OPEN/CLOSE A MODE. In open/close mode, with the "function" switch S2 in OPEN/ CLOSE position the main gate is opened and closed by successive actuations of pushbutton switch SI. The Channel A input signal is gated through "Slope Selection" switch U19C, U20B, and U20C to "Channel A Switch" U18A and U18B.

9D-4-22. The Channel A input signal is gated through U12B, U16B to be counted. U4B "clocks" on successive actuations of the S1 OPEN CLOSE switch. When U8B(9) output is low the 5300A main gate is opened (through U19B). When $\mathrm{U} 4 \mathrm{~B}(8)$ output is low the 5300A main gate is closed (through U14D and U22A). When the "Function" switch S2 is in a position other than OPEN/CLOSE, the U4B Preset and Clear lines (U4B pins 10 and 13 respectively) are set through U10A and B, so that U4B, Q and Q output (U4 pins 9 and 8) are high.

9D-4-23. TIME INTERVAL A-B MODE. In the time interval mode, the "function" switch S2 may be set to any one of six time-interval positions (. $1 \mu \mathrm{sec}$ to 10 msec). The 5300 A main gate is opened by a Channel A transition and closed by a Channel B transition. Switch A2S1 enables the input signals to be taken from separate sources or from a common source.

9D-4-24. The Channel A signal, after passing through A2 Attenuator Assembly, is processed through Channel A amplifier, Q2 Q4 and differntial amplifiers Q6, Q8, and U24B. The U24B output is shaped through U24A Schmitt-Trigger and sent through an ECL-to-TTL level-shifter (U21B, Q21) to the Channel A Slope Selection circuits (U19C, U20C, U20B).

90-4-25. The output from U20B(4) is gated through Channel A switch, comprised of U18A and B. The Channel A signal "clocks" U15B which is gated through U9C, U19B, and opens the 5300A main gate. During the gate-open time, the TIME BASE OUT
signal from the 5300A AlJl(18) is gated through Q18, U17F, U9B, and U16B to be counted (except in the, $1 \mu \mathrm{sec}$ position, where the 10 MHz clock is gated through U12A and U16B). The TIME BASE OUTPUT signal is a 10 MHz clock signal divided down by the time base to allow counting in increments of $1 \mu \mathrm{sec}, 10 \mu \mathrm{sec}$ etc.

9D-4-26. The main gate closes when Channel B "clocks" U15A and a display cycle is initiated by the positive-going edge of the MGFF signal at A1P1(12). This signal is inverted through U17D and differentiated by C14 and R69. The negative pulse of the differentiated waveform gates U16A "on" and the narrow positive-going pulse is inverted through U17E as the MAX TIME signal.

9D-4-27. At the end of the display cycle, the RESET signal at AIPI(15) is inverted through U13E and sets U15B(9) low. U15A(5) is set high by the PRESET signal at U15A(4). The INHIBIT signal goes "high" and sets U15B(12) so that U15B changes states on the positive-going transition from U18B(6). This produces two results:

1. U9C(8) goes low which set the $\overline{\mathrm{OPEN}}$ signal at A1P1(10) low through U19B and opens the 5300 A main gate.
2. Q16 turns off and allows C12 to charge through R43 and R61.

9D-4-28. Transistor Q15 is an emitter-follower input to Schmitt-Trigger Q13, Q14. The output from Q13 is level-shifted by CR15 and inverted by Q17. Q15, 14, 13, and 17 form a one-shot multivibrator with a very wide timing range, U15A cannot change states until Q17 output goes low; then U15A(3) is clocked to its opposite state by the positive transition of U18C (Channel B switch output). The U15A(5) output is gated and inverted through U14D and U22A. This causes the CLOSE signal line to go low which in turn closes the 5300A main gate.

91-4-29. The 5300A main gate cannot be re-opened until U15B is cleared by the RESET signal at AIP1(15) and until the INHIBIT signal at AIP1(8) sets U15B(12) high. U15B(8) goes high at RESET and turns on Q16 which discharges C12. When $\mathrm{R} 43(\mathrm{~S} 2)$ is open (full cew), C12 is not charged up and the one-shot time-interval is very short (about 200 nsec). The time-interval is the interval from the time U15B(8) goes low and Q17 collector goes low.

9D-4.30. A buffered DELAY OUT signal is provided at J3 and may be used for intensifying the oscilloscope Z axis which permits observing the start and stop period in a time interval measurement. A buffered GATE OUT signal is also provided at J4 which permits observing the gate signal duration in a time interval measurement

9D-4:31. EXPONENT COUNTER; EXPONENT STORAGE. Outputs from the 5300A, U5 EXP line are applid to exponent counter U8A, U8B "Clock input". The RESET signal at AIP1(15) clears U8A and presets U8B for another measurement. Exponent signals "clocked" into U8 indicate length of measurements $(10 \mathrm{~ms}, 100 \mathrm{~ms}$, or 1 sec in FREQ AUTO mode; 1, 10, 100, 1000 periods in PERIOD AVG mode). During the measurement cycle, information is transferred into U7A, B exponent storage by the TRANSFER signal. Therefore, the displayed measurement, the decimal point and the units, change simultaneously.

91-4-32. Exponent storage U7A, B is disabled (both flip-flops are cleared). except in AUTO measurements, by U6D. Manual reset also clears U7A, U7B, the decimal point and measurement units.

90-4.33. The remander of the gates with the exception of USB provide time base, decimal point. annunciator, and function decoding. The U3A output is high in any of the four frequency-measuring positions. $W_{5 B}$ locks out the LOG OUTPUT signal in OPEN CLOSE: A and TIME INTERVAL. A-B, when the open and closing of the main gate is controlled by TPEN and CLOSE:
91) 4\%4. Q19 normally turns off the 9 line except during frequency Auto or Period Average; this allows overflow to occur, if desired, in manuai frequency position.

MAIN

 A

 A

SECTION IX D 5304A TIMER/COUNTER

SUBSECTION V MAINTENANCE

9D-5-1. INTRODUCTION

9D-5-2. This section contains maintenance and service information for Model 5300A/5304A Timer/ Counter. Included are performance check procedures and tests to localize, isolate, and locate defective components.

9D-5-3. RECOMMENDED TEST EQUIPMENT

9D-5-4. Test equipment recommended for performance checks, maintaining, troubleshooting and servicing the 5300A/5304A Timer/Counter is listed in Table 5-1 of 5300A portion of the manual. Test equipment with equivalent characteristics may be substituted for equipment listed.

9D-5-5. INSTRUMENT ACCESS

9D-5.6. For access to plug on assembly, separate the 5300 A from the 5304 A as follows:
a. Turn ac power OFF and disconnect power cord.
b. Pull the two-side casting latches fully rearward (it is necessary to press the latch handles gently away from the center of the instrument to unlock them).
c. When latches are fully extended rearward, the 5300 A and 5304 A castings should be separated by about $1 / 8$-inch.
d. Lift the 5300A gently away from the 5304A.
e. Separate 5304A A1 BOARD ASSEMBLY from 5304A casting as follows (refer to Figure 9D-5-1):

1. Press rear, plastic-nylon retaining clips on each side of 5304A casting and lift the rear of the Al Board Assembly to release it from the casting.
2. Press front plastic-nylon retaining clips on each side of 5304A casting and lift the front of the A1 Board Assembly to release it from the casting.
3. Lift A1 Board Assembly from the casting.
f. Mate the $5304 \mathrm{~A}, \mathrm{Al}$ Board Assembly to 5300 A and reapply ac power.
g. To reinstall the Al Board Assembly into the casting reverse procedure of steps d through f.

9D-5-7. PERIODIC MAINTENANCE

$9 \mathrm{D}-5-8$. To determine if the $5300 \mathrm{~A} / 5304 \mathrm{~A}$ is operating properly within specifications, perform the InCabinet Performance Checks listed in Table 9D-5-1. These checks may also be used for the 5300A performance checks when the $5300 \mathrm{~A} / 5304 \mathrm{~A}$ combination is used.

9D-5-9. MAINTENANCE AND REPAIR

9D-5-10. BOARD REMOVAL. When removing the printed circuit board for replacement, repair, or servicing, always remove ac power and separate the board from the casting using Paragraph 9D-5-6 steps a to e.

9D-5-11. COMPONENT REPLACEMENT. When replacing a circuit board component use a low heat soldering iron. Heat must be used sparingly as damage to the circuit foil may result. Mounting holes may be cleaned out with a toothpick while heat is applied. Connection should be cleaned with a cleaning solution after component removal and replacement.

9D-5-12. INTEGRATED CIRCUIT REPLACEMENT. Two methods are recommended for removing integrated circuits;
a. Solder Gobbler. Solder is removed from board by a soldering iron with a hollow tip connected to a vacuum source. The IC is removed intact so it may be reinstalled if diagnosis is wrong.
b. Clip-Out. This method is used when an IC is proven defective. Clip leads close to case, apply heat and remove leads with long nose pliers. Clean board holes with a toothpick and cleaning solution.

9D-5-13. INSTRUMENT TROUBLESHOOTING

9D-5-14. Trouble isolation can best be accomplished by first obtaining all possible information from the controls, connectors, and indicators on the 5300 A and 5304 A , then logically using this information to locate the defective component. If the

Model 5304A
Maintenance

Figure 9D-5-1. Separation Procedure

performance checks indicate a malfunction or if instrument operation is suspect, perform the SelfCheck procedures in Table 9D-5-1. For further tests, separate the 5304 A from the casting and reconnect to 5300 A using Paragraph 9D-5.6 steps a to e as a guide. Operating procedures in Subsection 9D-3 can be used to help understand operation. To test the 5304 A , obtain the test equipment listed in Table $5 \cdot 1$ of the 5300 A portion of the manual.

9D-5-15. Figure 9D-5-2 to Figure 9D-5-6 are troubleshooting flow diagrams for each of the five modes of operation. Signal flow is outlined for each mode and waveform test points and voltage test points are indicated. The waveforms or voltage level for each mode is included with the figures. To obtain the waveforms and/or levels for each mode, follow the directions for instrument connections which are listed with the troubleshooting flow diagrams of each respective mode.

9D-5-16. DC BALANCE ADJUSTMEN'T

9D-5-17. If Channel A or Channel B fail to operate with their respective LEVEL controls in PSET position when measuring sine wave signals, or when periodic maintenance/calibration is performed, the de balance may be adjusted as follows:
a. Connect an HP 651B Oscillator, set to 10 $\mathrm{MHz}, 50 \mathrm{mV} \mathrm{rms} / 50 \mathrm{~s} 2$, through a 500 OM BNC Feedthru Termination, to Channel A input.
b. Set the 5304 A controls as follows:

ATTEN to X1 (both channels). $\mathrm{AC}-\mathrm{DC}$ to AC (both channels). + , to + (both channels).
LEVEL to PSET (both channels).
SEP-CHK to SEP
"Function" to FREQ A, AUTO
c. Connect an HP 180A oscilloscope through a 10 M) piode to U18(6).
d. Adjust the oscilloscope controls to monitor a useable signal.
e. Adjust AlR20 for a symmetrical waveform with minimum or no change in duty cycle when SLOPE switch is changed from + to - and minimum or no change when AC-DC switch is set to AC or DC.
f. Connect the oscilloscope probe to U18(8) and the 651 B input signal to Channel B .
g. Adjust A1R19 for a similar display observed in step e.

Model 5304A
Maintenance

FREQ A, AUTO MODE.

5304A controls:
Channel A, SEP, XI, AC, +, PSET, AUTO

INPUT:
HP 651 B set to $10 \mathrm{MHz}, 100 \mathrm{mV} \mathrm{rms} / 50 \Omega$.

Oscilloscope:
HP 180A, 1801A Vert. Amp. I821A T.B. through a 10;1 probe.

Settings:
AC coupled (except as noted).
NORM sweep mode.

+ SLOPE (except as noted).
ACF (except as noted).
Channel A.

5300A SAMPLE RATE ccw out of OFF (except as noted). 5300 Display should be approximately the same as the HP 651 B setting.

Test points using HP 10525A Logic Probe

$$
\begin{array}{r}
\mathrm{H}=\text { High (lamp on) } \\
\mathrm{L}=\text { Low (lamp off) }
\end{array}
$$

TP1 H (dim). Flash rate decreases as 5300 SAMPLE RATE control is truned cw.

TP2 H (dim). Flash rate decreases as 5300 SAMPLE RATE control is turned cw. Level goes Low when 5300A RESET is pressed.

TP3 H (dim). Flash rate decreases as 5300A SAMPLE RATE control is turned cw. Level goes Low when 5300A RESET is pressed.

TP4 H (dim). Flash rate decreases as 5300A SAMPLE RATE control is turned cw. Level goes High when 5300A RESET is pressed.

TP5 H (dim). Flash rate decreases as 5300^ SAMPLE RATE control is turned cw. Level goes High when 5300A RESET is pressed.

TP6 L. Goes High when 5300 RESET is pressed.

TP7 L. Goes High when 5300A RESET is pressed.

TP8 L .

(1) $.01 \mathrm{~V} / \mathrm{cm}$
$.1 \mu \mathrm{sec} / \mathrm{cm}$

(3) $\quad .2 \mathrm{~V} / \mathrm{cm}$
$.1 \mu \mathrm{sec} / \mathrm{cm}$ de coupled

(3) $\quad .1 \mathrm{~V} / \mathrm{cm}$
$.1 \mu \mathrm{sec} / \mathrm{cm}$

2) $.01 \mathrm{~V} / \mathrm{cm}$
$.1 \mu \mathrm{sec} / \mathrm{cm}$

(6) $\quad .2 \mathrm{~V} / \mathrm{cm}$
$.1 \mu \mathrm{sec} / \mathrm{cm}$ dc coupled

(10) $.1 \mathrm{~V} / \mathrm{cm}$
$10 \mathrm{msec} / \mathrm{cm}$ de coupled slope

(3) $\quad .01 \mathrm{~V} / \mathrm{cm}$
$.1 \mu \mathrm{sec} / \mathrm{cm}$

(4) $\begin{aligned} & .2 \mathrm{~V} / \mathrm{cm} \\ & .1 \mu \mathrm{sec} / \mathrm{cm} \\ & \mathrm{dc} \text { coupled }\end{aligned}$

(8) $.1 \mathrm{~V} / \mathrm{cm}$
$.1 \mu \mathrm{sec} / \mathrm{cm}$

(I) $\quad .2 \mathrm{~V} / \mathrm{cm}$
$.2 \mu \mathrm{sec} / \mathrm{cm}$ dc coupled -slope

(12)
.2 V cm $.5 \mu \mathrm{sec} \mathrm{cm}$ de coupled slope

(13) $.2 \mathrm{~V} / \mathrm{cm}$
$10 \mathrm{msec} / \mathrm{cm}$
de coupled
-slope

Model 5304A
Maintenance

PERIOD AVERAGE A MODE

5304A Controls:

Channel A, SEP, X1, AC, + PSET, PER AVG A.
INPUT:
651 B set to $1 \mathrm{kHz}, 100 \mathrm{mV} \mathrm{rms} / 50 \mathrm{~s} 2$.
Oscilloscope:
HP 180A, 1801A Vert Amp, 182 A T.B, through a 10:1 probe.

Settings:

AC coupled (except as noted).
NORM sweep mode.

+ slope (except as noted).
Channel A.

5300A

SAMPLE RATE cew out of OFF (except as noted). 5300 Display should be approximately $1.00000 \mathrm{MS}, \mathrm{C}$.

HP 10525A Logic Probe

Test points using
$\mathrm{H}=\mathrm{High}$ (lamp on)
$\mathrm{L}=$ Low (lamp off)
TP1 H (dim). Flash rate decreases when 5300 SAMPLE RATE is turned ew. Goes Low when RESET is pressed.

TP2 H (dim). Flash rate decreases when 5300 SAMPLE RATE is turned ew. Goes Low when RESET is pressed.
TP3 H (dim). Flash rate decreases when 5300 SAMPLE RATE is turned cw. Goes High (bright) when RESET is pressed.

TP4 H (dim). Flash rate decreases when 5300 SAMPLE RATE is turned cw. Goes High (bright) when RESET is pressed.

TP5 L. Goes High when RESET is pressed.
TP6 H
TP7 H

TIME INTERVAL A TO B Mode, $.1 \mu$ sec position.
Equipment connections: Connect equipment as shown in Figure 9D-5-4A.

Control Settings: 5300/5304A.
ATTEN (both channels) to X1.
AC-DC (both channels) to DC.
SLOPE (both channels) to ${ }^{+}$.
LEVEL. Set Channel A LEVEL slightly positive $\left.{ }^{(}+\right)$until the "C" lamp comes on. Set Channel B LEVEL cw until a stable 5300 display is obtained. Function to $.1 \mu \mathrm{sec}$.
COM/SEP/CHK to SEP.
Oscilloscope:
VOLTS/CM to 2 (both channels).
DISPLAY to $\mathbf{A}+\mathrm{B}$.
INPUT (both channels) to DC.
TIME/CM to $1 \mu \mathrm{sec}$.
SWEEP MODE to NORM.
TRIGGER to INT.
SLOPE to + .
Coupling to ACF or AC.
No. 1 HP 222A:
REP RATE to $1 \mathrm{~K}-10 \mathrm{~K}$ with adjustment centered.
PULSE DELAY has no effect.
PULSE WIDTH to $.05-.5$. Vernier adjusted for oscilloscope display of $.1 \mu \mathrm{sec}$.

PULSE POLARITY to + .

PULSE AMPLITUDE for $\mathrm{a}+2 \mathrm{~V}$ pulse on oscilloscope.

No. 2 HP 222A:

KEP RATE to MAN/EXT ${ }^{+}$.

PULSE WIDTH to $.05-5$. Vernier adjusted for oscilloscope display of $.1 \mu \mathrm{sec}$.
PULSE POLARITY to + .
PULSE AMPLITUDE for $\mathrm{a}+2 \mathrm{~V}$ pulse on oscilloscope.
PULSE DELAY for approximate display, on oscilloscope and 5300 A , of $10 \mu \mathrm{sec}$ (5300 display should be approximately $00010,0 \mu \mathrm{~s} \mathrm{C})$.
From the set-up outlined in Figure 915-5-4A, disconnect the Channel A input to the HP 180A Oscilloscope. Connect a $10: 1$ divider probe and check for the waveforms listed.

Test points using an HP 10525A Logic Probe

$$
\begin{aligned}
H & =\text { Hikh (lamp on) } \\
L & =\text { Low (lamp off) }
\end{aligned}
$$

TP1 H (dim). Flash rate decreases when DELAY control is turned cw or when SAMPLE RATE is turned cw .

TP2 H (dim). Flash rate decreases when DELAY control is turned cw or when SAMPLE RATE is turned cw .

TP3 H (dim). Flash rate decreases when DELAY control is turned ew or when SAMPLE RATE turned cw

Figure 9D-5-4A. Time Interval Mode Troubleshooting Set-Up

Part of Figure 9D-5-4. Time Interval Troubleshooting Diagram

.5 V/cm $50 \mu \mathrm{sec} / \mathrm{cm}$ dc coupled
(DELAY just out of DETENT. 5300ADisplay time should be approximateley onehalf the oscilloscope waveform time)

(2)
$.1 \mathrm{~V} / \mathrm{cm}$
$50 / \mathrm{sec} / \mathrm{cm}$
de coupled

(24) A
$.5 \mathrm{~V} / \mathrm{cm}$
$50 \mu \mathrm{sec} / \mathrm{cm}$
de coupled
(DELAY IN DETENT)
(2)

$$
\begin{aligned}
& 2 \mathrm{~V} / \mathrm{cm} \\
& .1 \text { usec } / \mathrm{cm} \\
& \text { de coupled } \\
& \text { Slope }
\end{aligned}
$$

(20) B
.5) V / cm $50 \mu \mathrm{sec} / \mathrm{cm}$ de coupled (DELAY just out of DETENT. 5300A Display should be approximately 200 to $240 \mu \mathrm{sec})$

(2)
$2 \mathrm{~V} / \mathrm{cm}$
$.1 \mu \mathrm{sec} / \mathrm{cm}$ de coupled
Slope
(DELAY IN DETENT)

(2)
$.2 \mathrm{~V} / \mathrm{cm}$
$20 \mu \mathrm{sec} / \mathrm{cm}$
de coupled

- Slope
(1)ELAY just out of DETENT. 5300A Dis. play should be approximately 200 to $240 \mu \mathrm{sec})$

A
$.2 \mathrm{~V} / \mathrm{cm}$
$.1 \mu \mathrm{sec} \mathrm{cm}$
de coupled

- Slope
(DELAY IN DETENT)

(2) B
. $2 \mathrm{~V} / \mathrm{cm}$
$50 \mu \mathrm{sec} \mathrm{cm}$ de coupled
- Slope
(DELAY just out of DE'TENT. 5300 A Dis play should be approximately the total time of wave. form pulse)

(3)
$\therefore \mathrm{V} / \mathrm{cm}$
$.1 \mu \mathrm{sec} \mathrm{cm}$ de coupled

OPEN/CLOSE MODE

5304A Controle:

Channel A, SEP, X1, DC, + PSET OPEN/CLOSE A. Press RESET, then OPEN/CLOSE; display should be accumulating at a 10 Hz rate.

INPUT:

651 B set to $10 \mathrm{~Hz}, 100 \mathrm{mV} \mathrm{rms} / 50 \mathrm{~s} 2$.
Oscilloscope:
HP 180A, HP 1801A Vert Amp, HP 1821A T.B. through a 10:1 probe.

Settings:

AC coupled (except as noted).
NORM sweep mode.

+ slope (except as noted)
AC (except as noted)
Channel A

5300A Sample Rate ccw out of OFF (except as noted).

5304A: OPEN/CLOSE Mode

TP1 H. Goes Low when OPEN/CLOSE switch is pressed. Reamains Low if this switch is held depressed.

TP2 L. Goes High when RESET is pressed. Remains High if this switch is held depressed.
TP3 L
TP4 L. Goes High when OPEN/CLOSE is pressed to stop accumulation or when RESET is pressed during accumulation.

TP5 H. Goes Low when OPEN/CLOSE is pressed to stop accumulation or when RESET is pressed during accumulation.

$.02 \mathrm{~V} / \mathrm{cm}$
$20 \mathrm{msec} / \mathrm{cm}$

$2 \mathrm{~V} / \mathrm{cm}$
$50 \mathrm{msec} / \mathrm{cm}$ dc coupled

Model 5304A
Maintenance

CHECK MODE

5304A Controls:
COM/SEP/CHK to CHK; "Function" to AUTO

5300 A Display should be 10.0000 MHz C ± 1 count.

Oscilloscope:
HP 180A, HP 1801A Vert Amp, HP 1821A T.B.
through a 10:1 probe

Settings:

AC coupled (except as noted). NORM sweep mode.

+ Slope (except as noted).
AC (except as noted).
Channel A.

Table 91-5-1. In-Cabinet Performance Checks

1. CHK mode and Time Interval Holdoff.
a. Set 53300 A OSC switch to INT.
b. Mate 5300 A to 53304 A and ensur te casting latches at rear of 5300 A are latched.
c. Connect ac power to 5300 A ac receptacle.
d. Turn ac power "on" with 5300A SAMPLE RATE slightly ew out of OFF.
e. Set COM-SEP-CHK to CHK; "Function" switch to FREQ A, AUTO. Display should be $10.0000 \mathrm{MHz}+1$ count.
f. Set "Function switch to T. I. A to B, $.1 \mu \mathrm{sec}$. Press 5300A RESET' switch; the 5300 A display should be about $.2 \mu$ sec (200 nsec residual holdoff). It may also be, $0 \mu \mathrm{sec}$.
g. Set the DELAY slightly cw out of the detent position. Display should be approximately $100 \mu \mathrm{sec}$.
h. Adjust the DELAY control cw until maximum setting is reached. Display should be about * $00000.0 \mu \mathrm{~s}$ i $^{*}=$ OVERFLOW) ($100,000.0 \mu \mathrm{sec}$).
i. Repeat steps g and h for the following ranges; display should be as listed.

	Approximate 5300A Display with DELAY control: T. I. A to B 	
cew out of Detent	max. cw	
$1 \mu \mathrm{sec}$	$000100 \mu \mathrm{sec}$	$100000 \mu \mathrm{sec}$
$10 \mu \mathrm{sec}$	0000.10 MS	0100.00 MS
1 ms	00000.0 MS	00100.0 MS
1 ms	000000 MS	000100 MS
10 ms	0000.00 S	0000.10 S

2. FREQ A Mode.

RANGE: de coupled: 0 to 10 MHz . ac coupled: 100 Hz to 10 MHz .

Sensitivity as in Table 91)-1-1.
Obtain following test Equipment:
HP 651B Test Oscillator
HP 11048 B 50 -Ohm Feed-Thru
Termination
Table $5-1$ in the 5300A portion of the manual and Table 9D-5-1 lists equipment used; equipment with equivalent characteristics may be used.
a. Connect $651 \mathrm{~B} 50-\mathrm{Ohm}$ OUTPUT through the $50 . \mathrm{Ohm}$ feed-thru to 53304 A "A INPUT" connector. Set 53304 A "Function" switch to FREQ A, AUTO; set COM-SEP-CHK to SEP, ATTTEN to X1, AC-DC to AC, SLOPE to +, LEVEL to PSET or adjusted until a stable count is displayed.
b. Set 651 B to frequencies and output levels listed below: Display should be as listed.
3. FREQ A Mode, Pulse Measurements.

RANGE; dc coupled: 0 to 10 MHz
Sensitivity as in Table 9D-1-1.
Pulse Width: 40 nsec minimum
Obtain the following test equipment:
HP Model 222A Pulse Generator HP Model 11048B 50-ohm Feedthru Termination HP Model 180A Oscilloscope BNC Tee Connector
a. Connect equipment as in Figure A.

651 B OUTPUT mV rms	651 B FREQ Hz Approximate	"Function" (sec)	Approximate Display +1 Count + Accuracy of source
25	10 Hz	10	00010.0 Hz
25	10 kHz	10	10000.0 Hz
25	100 kHz	1	100000 Hz
25	1 MHz	1	1000.00 kHz
50	10 MHz	AUTO	10.0000 MHz

Table 9D-5-1. In-Cabinet Performance Checks (Continued)

b. Set 222A for "+" PULSE POLARITY; 40 nsec pulse width; 150 mV p-p as monitored on oscilloscope.
c. Monitor 222 A pulse output with oscilloscope and set REP RATE for 10 Hz .
d. Set 5304A Channel A controls as follows:

ATTEN switch to X1
AC-DC to DC
SLOPE to ${ }^{+}$.
LEVEL to PSET or adjust until a stable count is displayed.
e. 5300 A display should be approximately 10 Hz .
f. Repeat step c with 222 A repetition rates of $10 \mathrm{kHz}, 100 \mathrm{kHz}, 1 \mathrm{MHz}$ and 10 MHz . The 5300 A display should be the same as the 222 A repetition rate setting.
g. Set 222A PULSE POLARITY to " - ". Set 5304A Channel A SLOPE to Repeat steps b through f.
4. PER AVG A Mode.

RANGE: $10 \mathrm{~Hz}(.1 \mathrm{sec})$ to $1 \mathrm{MHz}(1 \mu \mathrm{sec})$.
Obtain the following test equipment:
HP Model 651 B Test Oscillator.
HP Model 11048B 50 OHM Feed-thru Termination.
a. Connect equipment as shown in Figure B.
b. Set 5304A Channel A controls as follows:

1. "Function" switch to PER AVG A.
2. ATTEN to X1.
3. AC-DC to AC.

4. SLOPE to + .
5. LEVEL to PSET or adjusted until a stable display is obtained.
c. Monitor the oscilloscope and set 651 B coatrols for $10 \mathrm{~Hz}, 100 \mathrm{mV}$ rms output.
d. Display should be approximately ${ }^{*} 00.0000$ MS, C c $^{*}=$ OVERFLOW (101 msec).
e. Monitor the oscilloscope and set 651B for the following frequencies; displa; should be as listed.

$$
\begin{array}{rl}
\frac{651 \mathrm{~B}}{10 \mathrm{kHz}} & \frac{5300 \Lambda / 5304 \mathrm{~A}}{100.000 \mu \mathrm{~s} \mathrm{C}} \\
100 \mathrm{kHz} & 10.0000 \mu \mathrm{~s} \mathrm{C} \\
1 \mathrm{MHz} & 01.0000 \mu \mathrm{~s} \mathrm{C}
\end{array}
$$

NOTE

Periods averaged are automatically selected to provide maximum resolution.

5. T. I. A to B (Time Interval) Mode.

RANGE: 500 nsec to 10,000 seconds.
Obtain the following test equipment:
HP Model 222A Pulse Generator (2 required).
HP Model $11048 B \quad 50$ Ohm Feed thru Termination (2 required).
HP Model 180A Oscilloscope.
BNC Tee Connectors, (3 required).
a. Connect equipment as shown in Figure C.

Table 9D-5-1. In-Cabinet Performance Checks (Continued)

b. While monitoring generator No. 1 output with oscilloscope, set No. 1 generator controls as follows:

1. REP RATE to $1 \mathrm{k}-10 \mathrm{k}$ with adjustment centered.
2. PULSE WIDTH for $2 \mu \mathrm{sec}$ pulse at 2 V amplitude.
3. PULSE POLARITY to + .
c. While monitoring generator No. 2 output with oscilloscope, set No. 2 generator controls as follows:
4. REP RATE to MAN/EXT +
5. PULSE POLARITY to + .
6. PULSE WIDTH for $2 \mu \mathrm{sec}$ pulse at 2 V amplitude.
7. PULSE DELAY for $.5 \mu \mathrm{sec}$.
d. Set Oscilloscope DISPLAY control to $\mathrm{A}+\mathrm{B}$ to monitor No. 2 pulse position.
e. Set 5304 A control as follows:
8. ATTTEN (both channels) to X 1 .
9. AC-DC (both channels) to DC.
10. SLOPE (both channels) to + .
11. LEVEL (both channels to PSET.
12. COM-SEP-CHK to SEP.
f. 5304 A should display $00000.5 \mu \mathrm{sec}$; verify time interval with oscilloscope.
g. While monitoring oscilloscope, adjust No. 2 generator PULSE DELAY for time intervals from $.5 \mu \mathrm{sec}$ to $150 \mu \mathrm{sec} .5300 \mathrm{~A}$ Display should be the same as oscilloscope display.
h. Set No. 1 generator REP RATE to 100 1 k and adjustment centered.
i. While monitoring oscilloscope, adjust No. 2 generator PULSE DELAY for time intervals from $150 \mu \mathrm{sec}$ to $2000 \mu \mathrm{sec}$. 5300 A display should be the same as oscilloscope display.
j. Set No. 1 generator REP RATE to 10-100 and adjustment full cew.
k. While monitoring oscilloscope, adjust No. 2 generator PULSE DELAY for time intervals from $2000 \mu \mathrm{sec}$ to $6000 \mu \mathrm{sec}$. 5300A display and oscilloscope display should indicate the same time intervals.

NOTE

Measurement resolution may be adjusted from $1 \mu \mathrm{sec}$ to 1 msec with the T.I. A to B switch.

Table 9D-5-1. In-Cabinet Perfomrance Checks (Continued)

6. Totalizing (OPEN/CLOSE A) Measurements.

Obtain the following test equipment:
HP Model 651B Test Oscillator.
HP Model 11048B $50.0 h m$ Feed-thru Termination.
a. Connect $651 B 50 . \mathrm{Ohm}$ output, get to 10 Hz at 100 mV rms, to 5304A Channel A INPUT connector.
b. Set Channel A ATTEN switch to X100, AC-DC to AC; SLOPE to + and LEVEL to PSET.
c. Set "Function" switch to OPEN/CLOSE A.
d. Instrument gate is controlled by operator when OPEN/CLOSE A pushbutton is pressed.
e. Press OPEN/CLOSE A switch; 5300 A C lamp will turn on; adjust Channel A ATTEN to X1; 5300A display should accumulate.
f. To stop 5300A from accumulating, press OPEN/CLOSE A. To continue accumulation from the number displayed press OPEN/CLOSE A, otherwise press RESET to clear display.

PERFORMANCE CHECK TEST CARD

Hewlett-Packard Model 5300A/5304A TIMER/COUNTER
Serial No. \qquad . \qquad

Description
Test Performed by \qquad —

Date \qquad

Check

1. CHECK Mode and Time Interval Holdoff.

Display is $10 \mathrm{MHz} \pm 1$ Count.
Hold off as in Table 9D-5-1, item 1, step i.
2. FREQ A Mode. \square
0 to 10 MHz de coupled.
100 Hz to 10 MHz ac coupled.
3. FREQ A Pulse Measurement Mode. \square

Channel A; 0 to 10 MHz
40 nsec minimum.
4. PER AVG A Mode.

$10 \mathrm{~Hz}(.1 \mathrm{sec})$ to $1 \mathrm{MHz}(1 \mu \mathrm{sec})$.
5. TIME INTERVAL Mode \square
500 nsec to 10,000 seconds.
(tested to $6000 \mu \mathrm{sec}$).
6. Totalizing (OPEN/CLOSE A). \square
Controlled accumulation.

PARTS

SECTION IX D

5304A TIMER／COUNTER

SUBSECTION VI

 REPLACEABLE PARTS
9D－6－1．INTRODUCTION

9D－6－2．This subsection contains information for ordering replacement parts．Table 9D－6－1 lists parts used in the HP 5304A．

9D－6－3．ORDERING INFORMATION

9D－6－4．To obtain replacement parts address order or inquiry to your local Hewlett－Packard Sales and

Service Office（see lists in Section VI，5300A Manual for addresses）．Identify parts by their Hewlett－ Packard part number．To obtain a part that is not listed，include：
a．Instrument model number．
b．Instrument s rial number．
c．Description of the part．
d．Function and location of the part．

REFFRFNCE DHALGNATORS							
A	ancombly	r	fux．	M11	methameal patt	1	
13	metor	F1．	lilley	1	pfuy：	V	
117	thatter	${ }^{1}$	Mitretated／Mrum	Q	thamstath		berl．photion－ 11 － 1
${ }^{\text {c }}$	chas it． 1	1	luek	11	［rastor	ve	bittane trematou
Cl	－muples	K	1，las	HT	the itmistiot	W	anl.
CH	（ta）t	1	inductos	8	titutit	X	wathl
b1．	Thay line	IS	thud spuaker	t	Hanctormet	Y	－Instal
ds	devic absablme flemy	M	meter	T11	（．1．tumat inead	7	fumer－wite
1		MK	merephetie	TV	trat punt		botuork
ABBRE VIATLINS							
A	Amperts	H^{H}	hemers	$\mathrm{N}^{\prime} \mathrm{O}$	neitmatiy umen	F（1）	1．tik maxt tory
A16	auternaly fryoums metrol	11181	hantball	NOM	mertamal	HMS	fomt li．at－qual，
A ME＇	dimithel	$11+\mathrm{X}$		NHO	Heshative posative／s．ty	ISWY	Writse wetkem
		1 HC	microus		（zto temperature		voltas：
100		1 k	tmutis）		（\％）Hackot）		
151.17		117	bers\％	NHN	W\％ative jumaty．	sill	sthe－hthus
lift	bathery bead				matave	SH	20114
110	labilyake	15	mermeahate ficy	Nictit	Tht teronumefotect tor		stomem
1605		IMFG	impraznatel		tiekt replace tome	SFC	2t thins ${ }^{\text {a }}$
（16）	lackuard wave mschllatit	$\begin{aligned} & \text { INCH } \\ & \text { NCL } \end{aligned}$	meandescont itw－luite（s）	SSH	met repatately	$\begin{aligned} & \text { si MICOS } \\ & \text { st } \end{aligned}$	 aftou
12\％	bituht 1－ctackw）	IS	mbuhatot（ra）		＂1730－2the．	S11．	nitw
1118	＂＇amer	INT	intertat		＂ubit by deathtion	St	shis
＇sio	Stame fowat mits	k		O11	wal heat	S10	Stome
cot 1ON1		h	k1． 1000	0 O	＂xdt	31	curasi
coss	＊о6ли，	111	Fil funt	1	IN th		
COMEL	amplete	İR WASH	brase taje luk wabler	I＇C i＇1		ST1．	
URN	（0mereth	tix：	lagatlomb taper		lasub	$1 / 1$	
\％	Sthrum piat：	1.15	Lus pase blict		（itorptaz itwour	II）	Lime delay
cti	totwale－ict tutu			191	Pluthys	IGil	tuest
（ 71	Thabure．	M	muti 10^{-3}	IV		THI）	thicat
		M15，	Hom se	EN：	positus berativ．	11	
bie	ar）amatat－41001	M MH I FIM	Ru－talitm		pusatmes．	TOT．	tetotione
	dis．	MFTOX	mor talhe mate	110	prat if	T1619	trimem
1116	－ic itoly	$\begin{aligned} & \text { MFK } \\ & \text { M1H2 } \end{aligned}$	Masmantur＂t	Poty pold	moうsiveme	TW T	Hentime wave toby
$\begin{aligned} & 1 \times 0 \mathrm{x} \\ & i \times \mathrm{t} \end{aligned}$	：Mayrohatal	Milivat		Potc Fus		1	\％－uty 10°
1	1．atat－	Mosy Nos	Hement．as ${ }^{\text {a }}$ ，	Hot	（＂）｜entionet．	VAIK	vatcrile
FII	that lo en	Mos N17，	metat wate substrat．	11		Vbcw	d．Wotkbias balt－
＋11 11	tiflemit to－nt	N1\％ al	＂mounting	i＇tis	Prat		
FXI）	†लせ	（1）	＂mivar＂	PW5	Fask woikny maltar．	W	－ 4 ＋14
6.	（2）\square^{10}	N	нин＂（609）	H2－T	1．（131－4		W，att－
1.1	L＇：	N1	thermati）；loned	KF		WN	
61	p．tan－	N1	（ロาว	1111		WW	nimeromel
G18：	［ceatused）	N1 1＇1．	1aike 1 ，lati		meith haint	1 O	＋1thent
01124.14							

Model 5304A
Replaceable Parts
Table 9D－6－1．Replace Parts

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A1	05304－60001	1	BOARD ASSY．TIME INTERVAL INot availabite for ferid replacement or satel Itrcludes AZ 05304600021	28480	05.30460001
Alci	$0150-0050$	2	C：FXO CER 1000 PF H HO	56289	C0678102t $1022526-\mathrm{CDH}$
${ }_{\text {AlC }}{ }_{\text {ald }}$	$0150-0050$ $0150-0075$	6		56289 77987	COG7B102t $1022526-\mathrm{COH}$ BS $1-000-5500-4721$
Alc 4	$0150-0075$	6	C：FXO CER 4700 PF ，100－201 500vocu	1794？	A51－790－x500－4121
Alcs	$0180-0106$	3	C：FXD ELECT OD UF 20\％GVDCN	2月4an	0180－0106
Alcs	0180－0106		C：FXD ELECT B0 UF $20 \pm$ GVDCM	7 H 4 HO	O1P0－0106
alct	0180－0197	2	C：FXD ELFCI 2.2 UF 108 zovocw	56289	1500？258Y020AP－DYS
A1C8	$0180-0197$ $0150-0075$		C：FXD FLECT 2.2 UF 10 T 20VDCW C：FXD CER P	562 Hg 17987	150n225x402042－0Y5
A1C9	$0150-0075$		C：FXD CER $4100 \mathrm{PF}+100-20 \mathrm{~S}$ S00VbCN	12982	851－000－x540－4122
AlC10	$0150-0075$ $0180-0106$			179 Hz 7 ALPO	$851-080-\times 5400-4172$ $0180-0106$
${ }_{\text {alcil }}$	0160－0168	I	C：FXD MY 0.1 UY $10 \pm 200 \mathrm{VOCW}$	$56>49$	102 pl 10497 －pts
Alcis	9150－2204	1	C：FEXD MICA 100 PF 5\％	12136	FOM15FIOIJ3C
AlC14	0140－0198	19	C：FXD MICA 200 PF $5 \mathbf{5}$	12176	EOHIST 7 CL 5 SC
AlCLS	$0180-1702$ $1901-0376$	4	C：FXD ELECT 180 U＇ 20% GVOC． DIODF：SILICON 35 V	56289 78440	
AICR2	1901－0376		DIODE：SILICON 35 V	$2 \mathrm{A4HO}$	1901－0276
AlCR 3	1901－0376		DIDDEESILICON 35V	2R4BC	1901－n7／h
AlCra	1901－0376		DIODE：SILICON 35V	284，80	1901－0176
AICRS AICRG	$1901-0040$ $1901-0040$	10	DIODE $=5$ ILICON 30MA 30 NV DIODE：SILICON 30 MA 3	c1263 07263	
AICRG	$1901-0040$ $1901-0040$		DIODE：STIIICON 3OMA 3OWV	G126s	togiosh
AICR ${ }^{\text {a }}$	1901－0040		DIIDEESSILICON 3ONA 30NV	07203	－DGisar
AlCR9	1901－0040		DIODE：SILICSN 3OMA 10 WV	07263	F DGICAE
Alcalo	1901－0040		DIODE：STLICON 30ma 30w	07263	F0．109\％
AICRII	1901－0040		DIDOE：SILICON 30AA 30WV	07263	10，ioam
Alcal2	1901－0040		DIDEE SSILICON 30ma 30 WV	07263	1 bgiona
AICAIS	1902－0031	2	DIDDE BREAKDOWN：12．7V S\％	2H4＊O	1902－0071
AICR14	1902－0031		DIDDE BREAKDOMN：12．7V St	2 H 4 HO	1207－0n31
AICRIS	1902－3149	1	DIODE BEEAKOOWN：9．09Y 5z	2月4日6	1902－314\％
AICR16	1901－0040		DIDDE：STILCON SOMA BOWV	07263	106.1048
AICR17	1901－0040		DIODE：SILICON BOMA BOWV	07263	10 Citonat
${ }_{\text {AlCAI }}{ }^{\text {AIEI }}$	$1901-0460$ $1810-0041$	1		03508 7 H 4 HO	S185 1810
${ }^{\text {Al E }}$ A1	1810－0041		A：NE TMORK， B RES．2． 7 K OHM 58	－ 84.40	1810－0041
A1P1	1251－2．56	1	CONNECTOR：R E P，SO CONTACT	76868	57－20500． 31
A191	$05304-6.001$ $05304-80001$	2	TRANSISTOR：FET MATCHED TRANSISTOR：FET MATCHED	28480 28480	$05304-40001$ $05304-80001$
4123			（PART OF AIG1）		
${ }^{\text {A1 }} 24$			（PART OF A102）		
Ales	1853－0036	6	TSTP：S P PNP	80131	7N3906
A196	1853－0036		TSTRESI PNP	80171	241906
A108	1853－0036		TSTRESS TSTR：SI PNP	80171 80131	2N3YG6
A199 ${ }^{\text {A1010 }}$	1853.0036	1	ISTR SI NPN	H0181	2 N 3906
A1010	18540246 $1854-0094$	4	TSTR：SI NPN TSTR：SI NPN	H0131 H01	2N3643
Alat2	1854－0094		ISTR：SI NPN	80111	2N3646
Alat3	1854－0071	4	TSTR：SI NPNISELECTED FRDM 2 N3T041	28480	$1 \mathrm{H54-00} \mathrm{\%}$
A10：4	$1854-0071$ $1854-0071$		TSTR：SI NPNISELECTED FROM 2N3104）	28440	$1454-0071$
A1215 A1216	$1854-0071$ $1854-0071$		TSTR：SI TSTR	2H4RO 7 P 4 HO	$1854-007$ $1854-10071$
41917	1854－0094		TSTR：ST NPN	89131	2N＋646
A1018	1854－0094		TSTRESI NPN	H0131	2N3646
A1919	－1853－0036			ค\％131	3N34ne
Alri	0683－1045 $0683-1045$	3		01121	C． CH 104\％ 104
AIR3	0683－2215	2	R：FXO COMP 220 OHH $5 \pm 1 / 4 \mathrm{~W}$	91121	CA 2215
AlR4	0683－2215		R：FXD COMP 220 OHM $581 / 4 \mathrm{~W}$	01121	C．15 2715
AlR 5	0698－3159	4	R2FXD MET FLA 26.1 K OHM IT $1 / 8 \mathrm{EW}$	24400	0698－7150
Al2 AIR	$0698-3159$ $0698-3159$			$2 \mathrm{H}_{4} \mathrm{HO}$ $2 \mathrm{H} 4 \mathrm{H9}$	
Alȧ	0698－3159		C：FKD MET FLM 26.1 K OHM If $1 / \mathrm{sw}$	2A480	
A1R9	0683－1055	5	R：FXD COMP I NEGOHM S\％ $1 / \mathrm{sw}$	01121	CH 1055
A1R10	C683－1055 $0683-5125$	12		01121 01121	$\begin{array}{ccc}\text { CA } & 1056 \\ \text { CH } & 51 / 5\end{array}$
AlR12	0683－5125		R ：FX0 Comp 5100 OHM 5\％1／4M	01121	（A） $51 / \mathrm{c}$
A1213	0683－5125		R：FXD COAP 5100 Otim $5 \mathrm{5m} 1 / 4 \mathrm{M}$	01121	CA 512 C
A1814	0683－5125			01121	CA 5175
A1R15	0757－0280	4	R：FXD MET PLM 1 K OHW IT $1 /$ AH	2，4480	c757－0281）
A1R16	0698－3444	4	R：EXO MET FLM 316 OHM 12 1／8M	28480	0648－1444
A1R17	0757－0280		R：FXD MET FLK 1 K OHM 12 I I／ HW	2 F 4 BO	c757－0280
A1R18 AlR19	0698－3444		R：FXD MET FIM $316 \mathrm{OHM} 121 / \mathrm{HM}$	2 Hach	0698－1444
A1R19	2100－1768	2	R：VAR WW 20 OHM 5\％TYPF H IN	28480	2100－1768

Sec introduction to this swetion for orderig：information

Model 5304A

Table 9D－6－1．Replaceable Parts（Continued）

\begin{tabular}{|c|c|c|c|c|c|}
\hline Reference Designation \& HP Part Number \& Qty \& Description \& Mfr Code \& Mfr Part Number

\hline Alta \& 7100－176R \& \& E：VAE WM 30 OHM 5 T TVPE H IW \& 294 月n \& 2100－1／oh

\hline ${ }^{1} 1421$ \& 5151－02 HC \& \& \& 2R4日C \& C75－n7an

\hline A1922
A12 \& $0698-3444$
$775 \%-0280$ \& \& \& 78490
724900 \&

\hline Alke \& 3699－3444 \& \& R：FXO MFT FIM 316 OHM is 1／$/ \mathrm{NW}$ \& 28400 \& C69R－1464

\hline A10，${ }^{3}$ \& 26P 1－1005 \& ？ \& －：FK0 Comp io unm $5 \mathrm{SE} 1 / 4 \mathrm{~W}$ \& 01131 \& CB 1004 ，

\hline ${ }^{\text {A } 1926}$ \& C6A3－1005
C643－6405 \& \& \& 01121 \& CA 1ncts

\hline Alket \& C643－6405
$06 \mathrm{P} 3-6805$ \& ？ \& \& 61121 \&

\hline A 4×27 \& 0683－2715 \& 2 \& \& 01121 \& CA 2714

\hline A1P 30
A123
ald \& \& ？ \& \& 01121 \& CA 2718

\hline A143： \& Cse3－5115 \& ？ \& \& 01171 \& CH 5115

\hline AlR33
Alk3 \& n6 $63-5115$
C6P3－5105 \& \& \& 01121

11121 \&

\hline A1．35 \& 0683－4715 \& 2 \& Re：TXD COMD 470 ПHm St $1 / 4 \mathrm{M}$ \& 01121 \&

\hline A1236 \& 6698－1075 \& \& \& 21121 \& （8） 1075

\hline A1837 \& 2683－4715 \& 3 \& R：FXD CTup 470 THM $571 / 4 \mathrm{~N}$ \& 01121 \& C．${ }^{\text {4 } 415}$

\hline Ala 30 \& 0694－1025 \& \& R：FX0 COMP 1000 OHM S\％ $1 / 4 \mathrm{~W}$ \& 21171 \& C． $\mathrm{B}_{1} 102 \%$

\hline A1239 \& 0683－2425 \& 1 \& RFXD COMP 2400 OHM 5\％ 1.4 W FACTORY SELECT \& 01121 \& ［9 74： 5

\hline A1R4，
A134， \& cos $3-5175$ \& \& \& C1121 \& $\begin{array}{ccc}\text { CA } 5172 \\ \text { CA } & 5172\end{array}$

\hline A124，
A1R4， \& 06F 9 －5175 \& 1 \& \& 01121
71121 \& CA． 5176

\hline A124） \& 0693－1055 \& \& R：F×0 COMP i megohm $581 / 4 \mathrm{~W}$ \& 01121 \&

\hline A1244 \& с6рх－5175 \& \& \& 01121 \& C．A 5175

\hline A1745 \& 2683－5175 \& \& \& 1121 \& C11 512h

\hline A1246
A1k， \& \& 1 \& \& ＂11\％ \&

\hline A1R4EI PART OF \& 1801 －0041 \& \& R FXO2 IK PART OFE1 E2 \& 28440 \& 1801 （0041

\hline Aikst \& 0693－1075 \& \& F：1 x0 Camp inon unm \& $0: 171$ \& CH in7s

\hline \& 0683－ 9625
$06 \mathrm{P} 3-5125$ \& \& \& 21131 \& C1\％ 3075

\hline A1254 \& 0683－1035 \& 1 \& k：Ex0 comp lok $044 \mathrm{sk} 1 / 4 \mathrm{~m}$ \& ${ }^{311}$ \&

\hline A1265 \& 0683－5125 \& \& \& 01121 \& cil 9 ，${ }^{\text {c }}$

\hline 41256 \& 0693－5125 \& \& \& 01121 \&

\hline A1R67
A1
A \& 0693－5125
$0693-1035$ \& \& \& 91121 \& CA 512 C

\hline ${ }^{\text {A } 11269}$ \& 0683－1035 \& \& R：F XD COMP 10K OHM 5 ¢ 9 1／4M \& c1121 \& CH 1035

\hline 41270 \& c683－1025 \& \& \& 01121 \& CH 3025

\hline A1J1
Aluz \& $1820-7441$
$1820-0096$ \& $\frac{1}{2}$ \& 16：DUAL 5－1NPUT NANO GAIE \& ${ }^{4}, 113$ \& CCH1／1PK

\hline Alue \& $18200-0096$
$1270-0669$ \& \& \& \& $1820-6094$
CNT 34.4

\hline ${ }^{\text {Al }}$ U 4 \& 1820－6077 \& 4 \& IC：TTI duat o fF［LATCH） \& 01705 \& 514.754

\hline 41u5 \& 1820－0273 \& 2 \& IC：OTL quat z－InPT ano tatf \& $2 \mathrm{H6HO}$ \& 1820－627

\hline Alus \& 1820－9094 \& \& IC：OTL quan－－1Not gate \& 20460 \& 103n－6096

\hline Alut
alue \& $1930-0 \times 71$
$18>0-\mathrm{col7}$ \& \& \& 21204＊ \&

\hline A1J9 \& 1820－006a \& ？ \& 1C：TIL TRIPL：3－18PUT PDS NANO GAATI \& 12 n 60 \& SN／61090

\hline A1010 \& 1820－0307 \& 1 \& IC：Oigitat dit hex inverise \& 244Her \&

\hline AlJil \& $1830-0273$ \& \& IC：DET OUAD $7-$ INPT AND GATE \& 2 PraO \& tr00－n＞

\hline AlJil
A1J1s \& $1820-0370$
$1820-0174$ \& $\frac{1}{7}$ \& \& 71295
$n 1265$ \& 50447＂

\hline A1014 \& 18＞0－005， \& 2 \& IC：ITL quas z－1NPOT HAND fiate \& 91790 \&

\hline Aluls \& 1920－0011 \& \& IG：TtL dual of if（latchi \& 01305 \&

\hline Aljic \& $1870-0764$

$1820-0174$ \& \& | IC：ITL TRIPLI B－INDUT POS NAND GATF |
| :--- |
| | \& 12060

$1 / 200$ \&

\hline aluis \& 1 2 20－nbs， 4 \& \& IC：ITI DUAD z－IMPUI Nind gate \& 21\％ \& （N616）

\hline ${ }_{4} 1317$ \& $1 \mathrm{P} 20-0511$ \& 1 \& IC：ITI quab z－MP1 g．catt \& 010 \& （v）es，

\hline Aluzo \& $1900-0129$ \& 1 \& IC：IH JUAO 2 －INPT NTE，GIATI \& C1\％ \& ［1444］

\hline AlJ
A1
a \& $1870-6574$
$1820-0571$ \& 1 \& IC：DIGITAL DUAL P－ImPt OR／NOR GATE \& 9471， \& strante

\hline 4132， \& $1820-0.51$
$1820-0.53$ \& γ \& \& \&

\hline A1．324 \& \& \& initgoatro ctacuitedigital fel duat \& 041 ． \& mr 10 ，${ }^{\text {a }}$

\hline A2 \& 05304－60003 \& 1 \& bonho assyiattenuator \& － 4 ¢8C \& 05301－60003

\hline A2XA Misc \& －5，3co－29007 \& 1 \& PIN CONNECTOR GROUP PC Contains 36 pc nght angle CONNECTORS Only 14 are used \& 29400 \& （6）300－20not

\hline ${ }^{\text {A C L }} 1$ \& $7150-950$ \& z \& L：FXD CER S．1 Pf 500VDCW \& ア9ッ： \&

\hline A．c．
$A, 2$ \& N14n－ \& \& C：FA0 CER 5.1 \％f SOOVDCW \& P9AP： \&

\hline A2： \& （14．）－07e4 \& $?$ \& r： $1 \times 0 \mathrm{HICA}$ G40 DI \& 1717. \& 90156，＋15 5

\hline ${ }_{\text {A A C }}{ }_{\text {A }}$ \& （140\％ \& ： \& \& $\cdots{ }_{\text {phen }}$ \&

\hline A． CO_{0} \& 160－3 10 \& \& f：lx］Hica in PF s\％zoevicum \& ［4609 \& $0160.7 \cdots$

\hline A．C ${ }^{\text {a }}$ \& 7b－rer \& \& \& （194） \&

\hline A．L． 5 \& \& \& \& 129% ， \& いち！－－－\％\％

\hline
\end{tabular}

Replaceable Parts
Table 91)-6-1. Replaceable Parts (Continued)

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A 231 A2J A 281 A 282 A2S	$1250-1163$ $1250-1163$ $0693-9145$ $0683-9145$ $0683-9125$	$?$ $?$ 2		2A4 20 78480 O1121 01121 01121 01121	$\begin{aligned} & 1250-1169 \\ & 1250-1163 \\ & \text { C4 } 9145 \\ & \text { CA } 9145 \\ & \text { CA } 9125 \end{aligned}$
	$0683-9125$ 06983576 $0688-3576$ $06833-1055$ $0683-1055$	2		01121 28480 $784 \mathrm{H0}$ 01121 01121	CA 9125 OS 9 P-35 76 O698-3576 CB 1055 CA 1055
A229 A2R10 A252 A25 A2S A 254	$\begin{aligned} & 2100-3228 \\ & 2100-3228 \\ & 3101.1598 \\ & 3101.1598 \\ & 3101.1596 \end{aligned}$	2 4		284RO 28480 28480 28480 28480	$\begin{aligned} & 2100-3228 \\ & 2100-3228 \\ & 31011598 \\ & 31011598 \\ & 31011596 \end{aligned}$
$\begin{aligned} & \text { A255 } \\ & \text { A25 } \\ & \text { A2S } 7 \end{aligned}$	31011596 31011596 31011596		SWITCH:SLIDE DPDT 0.5 A 125V AC/OC SWIICH:SLIOE DPDT O.5A 125 V AC/DC SWITCH:SLIDE DPDT CHASSIS PARTS	$\begin{aligned} & 28480 \\ & 28480 \\ & 28480 \end{aligned}$	31011596 31011596 31011596
Cl J2 $R 43$ 51	$\begin{aligned} & 1250-0083 \\ & 0160-0182 \\ & 1250-0083 \\ & 2100-3078 \end{aligned}$	2 1 1	```CONNECTOP: BNC C:FXD 47 pf, 5'%,300V CONNECTOR:ANC R:Var comp I megohm zoz (PART OF 52)```	$\begin{aligned} & 02660 \\ & 14655 \\ & 02680 \\ & 28480 \end{aligned}$	$31-221-1020$ $31-221-1020$ $2100-3074$
51 58	$\begin{aligned} & 3101-1159 \\ & 3100-2922 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	SWIICH: PUSHAUTTON SPDt SWIICH:ROTAGY	$\begin{aligned} & 82389 \\ & 28480 \end{aligned}$	$\begin{aligned} & 105-1051 \\ & 3100-297 ? \end{aligned}$
${ }_{\text {S }}^{5}$	05304-60004 0310-1005 0370-1100	$\begin{aligned} & 1 \\ & 2 \\ & 1 \end{aligned}$	```(PAPT OF RC,3) cABLE ASSY KNOB:JADE MISELL ANEOUS PARTS KNOB:JADE GREY```	$\begin{aligned} & 28480 \\ & 28840 \\ & 28480 \end{aligned}$	05304-60024 $0370-1005$ $0370-1100$
?	$\begin{aligned} & 0370-2102 \\ & 05245-2016 \\ & 05300-40003 \\ & 05300-40004 \\ & 05301-20005 \\ & 0530080004 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 4 \\ & 1 \\ & 1 \end{aligned}$	KNOB COUPLER SUPPDRT: BOARD GUIDE: SLIDE STAND:IIT COVER PLASTIC DUST PROTECTION	28480 28480 28480 2840 28480 2880 28480	$\begin{aligned} & 0370-2107 \\ & 05245-2016 \\ & 05300-40107 \\ & 05300-400.06 \\ & 05301-200005 \\ & 0530080004 \end{aligned}$
	05304-00001 $05304-00004$ 06240208	$\begin{aligned} & 1 \\ & 1 \\ & 8 \end{aligned}$	PANEL:FRONT PANEL:REAR SCREW SELF TAP, CAD PLATE, $6 / 32 \times 1 / 2^{\prime \prime}$	$\begin{aligned} & 28480 \\ & 2 R 480 \\ & 28480 \end{aligned}$	05304 -000001 05304-00004 06240208
	$\begin{aligned} & 05300-20010 \\ & 50407032 \end{aligned}$	1	CASE:ALUMINIUM CAST FOOT REAR	28480 28480	05300-20010 50407032

BAGU DATING

CHANGES

SECTION IX D 5304A TIMER/COUNTER
 SUBSECTION VII MANUAL CHANGES AND OPTIONS

9D-7-1. MANUAL CHANGES

9D-7-2. Section IX D applies directly to Models 5304 A Timer/Counter having serial prefix number $1212 A 00467$.

9D-7-3. NEWER INSTRUMENTS

9D-7-4. As changes are made, newer instruments may have serial prefix numbers not listed in Section IX D. The manuals for these instruments will be supplied with "manual changes" pages containing the required information; replace the affected pages with the "replacement manual changes" pages. Contact the nearest Hewlett-Packard Sales and Service Office for information if this sheet is missing.

9D-7-5. OLDER INSTRUMENTS

9D-7-6. Changes for 5304A instruments with serial numbers 1116A00466 and below are listed as replacement pages in Table 9D-7-1, 7-2, 7-3, and Figure 9D-7-1.

To back date the manual, do the following:
Replace the 5304A Title Page with the replacement page containing Tables $9 \mathrm{D}-7-1$ and $7-2$. Replace page 9D-6-3 and 9D-6-4 with replacement page containing Table 9D-7-3 and 7-4. Replace page 9D-8-5 with replacement page containing Figure 9D-7-1.

9D-7-7. OPTIONS

9D-7.8. No options at time of printing.

SECTION IX D TIMER/COUNTER

5304A

SERIAL PREFIX: 1116A

This section applies directly to HP Model 5304A, Timer/ Counters having serial prefix number 1116A, and must be inserted into the 5300A Measuring System Manual.

NEWER INSTRUMENTS

This Section with enclosed "Manual Changes Sheet(s)" applies directly to HP Model 5304A Timer/Counters having prefix numbers above 1116A.

OLDER INSTRUMENTS

Changes required to back-date this Section for older instruments are in Section IX D, Subsection VII.

Copyright HEWLETT-PACKARD COMPANY 1971
5301 STEVENS CREEK BLVD. SANTA CLARA, CALIF 9505,0
Section Page
IX D 5304A Timer/Counter
Subsection
I GENERAL INFORMATION 9D)-1-1
9D-1-1. Introduction 9D.1-1
9D-1-2. Description 9D-1-1
9D-1-4. Purpose and Use of Section IX D 9D-1-1
9D-1-6. Instrument Identification 9D-1.1
9D-1-8. Manual Changes and Options $9 \mathrm{D} \cdot 1 \cdot 1$
II INSTALLATION 9D-2-1
9D-2-I. Unpacking and Inspection 9D-2-1
9D-2-3. Storage and Shipment 9D-2-1
9D-2-5. Installation and Removal of Plug.On $9 \mathrm{D}-2 \cdot 1$
9D-2-8. Portable Operation $9 \mathrm{D} \cdot 2-1$
III OPERATION 9D-3-1
9D-3-1. Operating Information 9D-3-1
IV THEORY OF OPERATION 9D.4-1
9D-4-1. Introduction 9D-4-1
9D-4-4. Input Amplifiers 9D-4-1
V MAINTENANCE 9D-5-1
9D-5-1, Introduction 9D-5-1
9D-5-3. Recommended Test Equipment 9D.5-1
9D-5-5. Instrument Access 9D-5-1
9D-5-7. Peric dic Maintenance 9D-5.1
9D-5-9. Maintenance and Repair 9D-5.1
9D-5-13. Instrument Troubleshooting 9D-5-1
9D-5-16. DC Balance Adjustment 91).5.3
V1 REPLACEABLE PARTS 9D.6-1
9D-6-1. Introduction 9D-6-1
9D-6-3. Ordering Information 9D-6-1
VII MANUAL CHANGES AND OPTIONS 9D.7.1
9D-7-1. Manual Changes 9D).7.1
9D-7-3. Newer Instruments 91).7-1
9D-7-5. Older Instruments 9D-7-1
9D-7-7. Options 9D. $7-1$
VIII CIRCUIT DIAGRAMS 9D-8-1
9D-8-1. General 91)-8-1

Table 91)-7-3. Replaceable Parts

\begin{tabular}{|c|c|c|c|c|c|}
\hline Reference Designation \& HP Part Number \& Qty \& Description \& Mfr Code \& Mfr Part Number \\
\hline A1世20 \& 2100-1768 \& \& F:VAE WW 20 THM 5T TYPF H IW \& 2月480 \& 2100-17 hm \\
\hline Alkz1 \& 0757-028C \& \& O:Ex0 MET FLM IK DHM IT \(1 / 8 \mathrm{M}\) \& 2H48C \& -757-07An \\
\hline A1922 \& O698-3444 \& \& R:FYO MET FLM 316 nHM IE 1/BN \& 2 H 490 \& 5690-3464 \\
\hline A122S
AlE24 \& \(3757-028 C\)
\(3698-3644\) \& \& \& \& 0757-5747
OR, \\
\hline Alfer \({ }^{4}\) \& 6698-3644 \& \& R:fx0 MFT FLM 316 OHM IT \(1 / \mathrm{MW}\) \& \& \\
\hline A1225 \& 0683-1005 \& \(?\) \& D:FXD COMP 10 IHM \(5 \mathrm{5R} 1 / 4 \mathrm{~W}\) \& 01121 \& CA 1005 \\
\hline A1826 \& 0683-1 005 \& \& \& 01121
01171 \& CA 17005 \\
\hline AlR27
AlR28 \& 6683-6405 \& \(z\) \& \& 01171
01171 \& CA GACS
CA
SAOS \\
\hline AIR29 \& 0683-2715 \& 2 \& \& 01121 \& CB 2715 \\
\hline A1R30 \& C693-2715 \& \& R:FXO COMP 270 OHM \(5 \mathbf{z}\) 1/6\% \& 01121 \& \(C_{\text {CA }} 2715\) \\
\hline A1231 \& 06833-5105
C6P3-5115 \& \(?\) \& \& 01121
01171 \& \\
\hline A1R32
A1R33 \& 6683-5115
\(0683-5115\) \& 2 \& \& 01121
01121 \& CA
CA
CA
C
5115 \\
\hline A1R34 \& 0683-5105 \& \& \& 01121 \& CB Slos \\
\hline A1835 \& 0683.4715 \& 7 \& \& 01121 \& C. 4715 \\
\hline A1836 \& 0687-1025 \& \& H:FXD COMP 1000 OHM \(5 \mathrm{LE} 1 / 4 \mathrm{M}\) \& 01121
01121 \& CA 1725 \\
\hline A1R37
AlR 38 \& 0683-4715
\(0693-1025\) \& 3 \& \& 01121
01121 \& \\
\hline 41739 \& 0683-2425 \& 1 \& REXD COMP 2400 OHM \(5 \% 1 / 4 \mathrm{~W}\) FACTORY SELECT \& 01121 \& CA 7425 \\
\hline A1R40 \& C6.83-5125 \& \& R EFXO COMP SION DHM 5 ¢ \(1 / 6 \mathrm{~W}\) \& 01121 \& C. 5125 \\
\hline A1261 \& 0683-5125 \& \& R:FXD COMP 5100 OHM 5\% \(1 / 4 \mathrm{~K}\) \& 01121 \& CB 5172 \\
\hline A1R4? \& 06833-2435 \& 1 \& D: FXD COMP
R:FXO COMP
S \& c1121
01121 \& \(\begin{array}{cc}\text { CA } \& 2435 \\ \text { CA } \& 1755\end{array}\) \\
\hline A1R43
A1844 \& O6H3-1055
C6P3-5125 \& \& \& 01121
01121 \& \(\begin{array}{ll}\text { CA } \& 1755 \\ \text { CA } \& 5125\end{array}\) \\
\hline A1245 \& 0683-5125 \& \& P:FX0 COMP 5100 OHm 58 1/4W \& 01121 \& CA 5125 \\
\hline A1846 \& C683-3025 \& 1 \& P:FXD COMP 3000 OHM S\% 1/4W \& 01121 \& CR 1025 \\
\hline A1K67 PRTOF
AIR 4 P \& \(0683-1045\)
180t-094 \& \& \& 01121
28410 \& CH 1045
1801.0041 \\
\hline AIRGO) E1.E2 \& \& \& \& \& \\
\hline AIPS 1 \& 0683-1025 \& \& R:1 XD COMP 1000 OHM 5\% \(1 / 4 \mathrm{~W}\) \& 01171 \& CA 1025 \\
\hline A12, \& 0683-3025 \& \& R:FXD COMP 3000 OHM 58 1/4W \& 91121 \& CA 3025 \\
\hline A1R63 \& 0683-5125 \& \& P:FXD COMP 5100 OHM 5\% 1/4N \& 01121 \& CA 5125 \\
\hline A1264
41265 \& 06A3-1035 \& 3 \& \& 01121 \& CA 1035 \\
\hline \& 0683-5125 \& \& R:FP0 COMD 5100 OHM 58 \% \(1 / 4 \mathrm{M}\) \& \& CA 5175 \\
\hline AlRbi \& 0683-5125 \& \& \& 01171 \& CA 5175 \\
\hline A1 1768 \& 0683-1035 \& \& R:Exhi Comp iok 0 HM \(5 \mathrm{5x} 1 / 4 \mathrm{~W}\) \& 01121 \& CA 1035 \\
\hline A 1869 \& 0683-1035 \& \& R:FXU COMP ICK OHM 59 T \(1 / 4 \mathrm{~N}\) \& 01121 \& CA 1035 \\
\hline A1270 \& C683-3025 \& \& R:FXD COMP 3000 OHM 58 1/4M \& \(011>1\) \& CH 3075 \\
\hline A1J1 \& 1820-0441 \& \(t\) \& IE:OUAL S-INPUT NAND GAIE \& 04713 \& S6. 9171 PK \\
\hline Aluz \& 1820-0094 \& 2 \& IC:DTt DUAD 2 -INPT CATE. \& 28440
71205 \& \(1820-0094\)
\(5 N 4344\) \\
\hline Alu3 \& \(1820-0669\)
\(1820-0077\) \& 1 \& IC:TTL DIAL
S-INPT POS NAND GATI
IC:TTI DUAL
I FF ILATCHI \& 91205
01795 \& \(5 N 4344\)
\(5 N 4354\) \\
\hline Alus \& 1820-0273 \& 2 \& 16:OTL QUAD ?-INPT ANO GATF \& 2H4AO \& 1820-6773 \\
\hline AIUS \& 1820-0094 \& \& IC:OFL QUAO Z-INDT GATE \& 28480 \& \[
1470-0094
\] \\
\hline Alut \& \(1820-0077\) \& \& IC:TTL DUAL D FF (LATCH) \& 01295
01295 \& \[
5 N 4354
\] \\
\hline Aluy
AlJ, \& \(18>0-0077\)
\(1820-0068\) \& 2 \& IC:TTL DUAL D
IC: ITE TRIPLE
3-INPUTCHI POS NAND GATE \& 01298
12040 \& SN4 154
SNT410N \\
\hline Aluio \& 1820-0307 \& 1 \& IC:DJiJat bre hex invertie \& 2H480 \& 182\%-n70) \\
\hline Aluli \& 1820-0273 \& \& IC:DTL OUAB P- INPT AND GATE \& 2 H 4 BO \& 18 O \\
\hline Alult \& 1820-0370 \& 1 \& IC:ITL QUAT - INPI NAND GATE \& 01795 \& 5N4470 \\
\hline Aluls \& \(1820-0174\) \& \(?\) \& INTEGRATED CIRCUIT:Tti MFX INVFRTER \& C1253 \& SNA19\% \\
\hline Aluis \& 1820-0054 \& 2 \& IC:TTL OUAD 2 -INPUT NAND GATE \& 01295 \& \({ }^{-1} 1434\) ? \\
\hline Aluls \& 1820-0071 \& \& IC:TTL OUAL D FF (IATCH) \& 01305 \& -N4354 \\
\hline Alutb \& 18>0-066 \({ }^{\text {c }}\) \& \& IC:TTL TRIPLE 3-1NPUT POS NANQ GATH \& 12040 \& SN: 14100 \\
\hline A1J17 \& 1820-0174 \& \& INTEGRATES CIPCUIT: TTL MEX TNVFRTFR \& 01295 \& 5NH199 \\
\hline Alula
Alj19 \& \(1420-0054\)
\(1820-0511\) \& 1 \& \& ntows \& SN434?
SN20572 \\
\hline Aluzo \& \(18>0-0328\) \& 1 \& IC:TTL DUAC Z-INPT NOR GGATE \& 1.95 \& CN4467 \\
\hline A1J2
A1J2 \& \(1820-0578\)
\(1820-0577\) \& 1 \& IC: DIGGITAL DUAL P-IMPT OR/NOH GATE IC:DIGITAL TIL HFX INVFRTIR \& 04713
01745 \& \\
\hline Alues \& 1820-0253 \& 2 \& INTEGRATEO CIRCUIT:DIGITAL ECL DUAL \& 04117 \& NC.10159 \\
\hline A1U24 \& 1820-0253 \& \& IMTEGRATFO CIRCUIT:DIGITAL FCL DUAI \& 04713 \& Mr.1035P \\
\hline A 2 \& 25304-60002 \& 1 \& BOARD ASSY: ATTENUATOR \& 28440 \& 05304-60002 \\
\hline A2xA Misc \& 25300-20007 \& 1 \& PIN CONNECTOR GROUP PG Contains 36 pe right angie CONNECTORS Only 14 are used \& 38680 \& 05300-20007 \\
\hline A2t 1 \& 0150-2250 \& 2 \& C:EXD CER 5.1 PF SOOVDCW \& 72982 \& 301-000-C0\% \({ }^{3}-5191\) \\
\hline A2E
ALE 3 \& \(0160-2250\)
\(0140-0208\) \& 2 \& E:FXD CER S. 1 PF SOOVDOL
C:FXD MICA GHO PF S\% \& 77982
17136 \& \begin{tabular}{l}
\[
3 C 1-000-\mathrm{COHO}-519 t
\] \\
RDM 15 FRAIJ3E
\end{tabular} \\
\hline A2C6 \& 0140-0208 \& \& C:FXD HICA GRO OF 58 \& 17136 \& RDNISthalJ3C \\
\hline A2C5 \& 0160-2199 \& 2 \& C:FXO MICA 30 PF 52300 VOCN \& 28480 \& C150-2199 \\
\hline A2C: \& 0160-2199 \& \& C:FXD HICA TO PF ST 300VDC. \& 28489 \& 9160-2199 \\
\hline A2Cl

22Ca \& $0150-0075$
$2150-0075$ \& \& C:FXD CER 4700 PF $+103-202$ Sonvocen \& 7298? \& 951-9C0-x5u0-4,121

\hline A2CA \& $2150-0075$ \& \& C:FXD CER 4700 et $+103-20 \% ~ S 00 V O C N$ \& 1298? \& A51-0.0-x5ut-417t

\hline
\end{tabular}

Manual Changes and Options
Table 9D－7－4．Replaceable Parts

Reference Designation	HP Part Number	Oty	Description	Mfr Code	Mfr Part Number
A231 A2．J2 A2R 1 A2R2 A293	$\begin{aligned} & 1250-1163 \\ & 1250-1163 \\ & 9693-9145 \\ & 6683-9145 \\ & 0683-9125 \end{aligned}$	2 2 2		28480 28480 01121 01121 $211 \geqslant 1$	$\begin{aligned} & 1250-1163 \\ & 1250-1163 \\ & \text { CA } 9145 \\ & \text { CB } 9145 \\ & \text { CA } 9125 \end{aligned}$
A2R A2R A2R A2 A22 A2R	0683－9125 0698－3576 C690－3576 0683－1055 0683－1055	2		01121 28490 28480 01121 01121	CA 9125 0698－35 76 3698－3576 CB 1055 CA 1055
A229 A2R10 A2S2 A2S A2S A2S	$\begin{aligned} & 2100-2905 \\ & 2100-2995 \\ & 3101-1313 \\ & 3101-1313 \\ & 31011596 \end{aligned}$	2	R：VAR CERMET IOK OHM LOT LIN R：VAR CERMET IOK OHM 102 LIN SWITCH：SLIOE DP3T 0．5A $125 \mathrm{vaC/OC}$ SWITCH：SLIDE DP3T O．5A 125V AC／DC SWITCH：SLIDE DPOT O．5A 125 V AC／DC	28480 28480 79727 79727 28480	$\begin{aligned} & ? 1000-2705 \\ & 2100-2905 \\ & 51285-0034 \\ & 61285-0004 \\ & 31011596 \end{aligned}$
$\begin{aligned} & \text { A255 } \\ & \text { A25 } \\ & \text { A25 } \end{aligned}$	3101.1596 3101.1596 31011596		SWITCH：SLIDE DPDT 0.5 A 125V AC／DC SWITCH：SLIDE DDOT O．5A 125V AC／DC SWITCH：SLIDE DPDT 0.5 A 125V AC／DC CHASSIS PAPTS	28480 28480 2月280	$\begin{aligned} & 3101.1596 \\ & 3101.1596 \\ & 3101 \cdot 1596 \end{aligned}$
ct	$1250-0083$ $0160-0182$	1	CONNECTOP：RNC C：FXD $47 \mathrm{pf}, 5 \%, 300 \mathrm{~V}$	$\begin{aligned} & 02660 \\ & 14655 \end{aligned}$	31－221－1020
12 84	$\begin{aligned} & 1250-0083 \\ & 2100-3078 \end{aligned}$	t	CONNECTOR：BNC R：VAR COMP 1 MEGDHM 202 （PART OF 52）	$\begin{aligned} & 02660 \\ & 2 A 480 \end{aligned}$	$\begin{aligned} & 31-271-1020 \\ & 2100-3074 \end{aligned}$
$\begin{aligned} & 51 \\ & 52 \end{aligned}$	$\begin{aligned} & 3101-1159 \\ & 3100-2922 \end{aligned}$	1	SWITCH：PUSHRUTTON SPDT SWITCH：RCTARY	$\begin{aligned} & 82389 \\ & 284 \text { B } \end{aligned}$	$\begin{aligned} & 105-1051 \\ & 3100-29>2 \end{aligned}$
$\begin{aligned} & \text { S3 } \\ & \mathbf{w 1} \end{aligned}$	$\begin{aligned} & 05306-60006 \\ & 0370-1005 \\ & 0370-1100 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 1 \end{aligned}$	```(PADT OF R43) CABLE ASSY Miscell aneous parts KNOB: JADE GREY KNOB:JADE GREY```	$\begin{aligned} & 28480 \\ & 288880 \\ & 28480 \end{aligned}$	$\begin{aligned} & 05304-60004 \\ & 0370-1005 \\ & 0370-1109 \end{aligned}$
	0370－2102 25245－2016 $05300-40003$ $05300-40004$ 05301－20005 0530080004 05301－40001 0．304－00001 7．304－00004 34．0208	$\begin{aligned} & 1 \\ & 1 \\ & 4 \\ & 4 \\ & 1 \\ & 1 \\ & 2 \\ & 1 \\ & 1 \\ & 8 \end{aligned}$	```KNOB COUPLER SUOPOPT : 60ARD GUIDE:SLIDE STAND:TILT COVER: PLASTIC DUST PROTECTION FOOI PANEL:FRONT PANEL:REAR SCREW SELF TAP, CAD PLATE, 6/32\times1/2"```	28480 28480 24480 2月4月n 284 RO 28480 2月480 28480 28480 28480	0x70－2102 05245－2016 05300－4C．103 05300－400n4 05301－20005 0530080004 05301－40001 05304－00031 05304－00004 0624.0208

Notis	AI	AR
c.	$\begin{aligned} & \mathrm{Cl}-1 \mathrm{~s} \\ & \mathrm{CH}=-\mathrm{D} \\ & \mathrm{CL}, \mathrm{P} \end{aligned}$	Ci.
8.4		4) 2
	21-19	
${ }^{44} 4$	21-70	mi 10
5.2		St-r
	117-24	

RCFERENC! DESIGNATIONS	AART minaers
CH. 4	1901-aste
CHS -12.16,11	190. doas
CHIS. 14	1902-0091
(nis	1902-3/49
01.4	(85s-0031
05,5,49	-653-0036
010	1554-0746
201.12.1518	1854: 0094
015.60	1854-00\%
${ }^{10}$	$1420-0441$
U7. 6	$1820-6094$
us	inzo 0069
U4, I, A, 15	1420 00017
us.11	1820-027
10.4.	1820.0068
170	1820-0507
U12	1420-0370
vis.l?	1820-01/4
174,10	1820.0054
-19	(420 0511
URC	1820-07\%
v21	is\%o -0sta
v22	$1820-08 \mathrm{~m}$
vi3. 24	1820-025

Figure 9D-7-1. A1 Time Interval Board Assembly

SECTION IX D
 5304A TIMER/COUNTER
 SUBSECTION VIII CIRCUIT DIAGRAMS

9D-8-1. GENERAL

9D-8-2. Subsection VIII contains:
a. Schematic diagram notes are contained in Section VIII of the 5300A portion of the manual.
b. Instrument interconnection pin list of signals listing where they originate and where the go.
c. Component locators, circuit and block diagrams of assemblies.

Table 9D-8-1. Instrument Interconnection List

PIN NO.	SIGNAL NAME	DESCRIPTION
1 2 3 4 5^{*} 6^{*} 7* 8 9* 10 * 11 12 13 14 15 16 17^{*} 18 -19 -20 21 * 22 * 23 * 24 * $\underbrace{-25}_{-50}$ 26 27^{*} 28 * 29 * 30 * 31 * 32 33 * 34^{*}		Input DC from 5300A This is the signal to be accumulated in the counter after gating by the control circuit. Goes low when the counter reaches 9% full scale The input signal to the time base gated by the control circuit. High during the measurement cycle, low during the display cycle. Low signal forces the main gate flip-flop to the open position. Low signal forces the main gate flip-flop to the close position Logarithmic output pulse train from time base triggers main gate flip-flop on rising edge. Main gate flip-flop signal is low when gate is open. Inverted \log pulses while main gate is open indicates number of auto ranging steps. High signal resets all registers. 10 MHz reference signal from crystal oscillator. Low signal enables closing of the gate on next log pulse. Rising edge initiates display cycle. Output from the time base decade position selected by the time base select code on pins 22,23 , and 24 . Low signal provides print command to rear panel connector. Low signal transfers data to display. High signal stores data. Input direct from plug-on bypasses control circuit. Time base select code A, B, and C selects the time base division factor of the signal at the time base output at pin 18. Full wave rectified voltage from the power transformer secondary. Provides power to charge the battery pack. If no battery pack is used, pin 25 is connected via the plug-on to pin 50. Pins 27 through 31 provide the drive to the annunciator lights. on the front panel. A low signal lights the curresponding indicator. Low signal from front panel pushbutton switch on rear panel input clears the system to zero. Low signal activates decimal point 1 . Low signal activates decimal point 2 .

Table 9D-8.1. Instrument Interconnection List

* Source

Model 5304A
Circuit Diagram
Part of Figure 9D-8-1. 5304A Block Diagram

A 1

A2 Top

3

A2 Bottom

$$
\begin{aligned}
& \text { MANUAL } \\
& \text { CHANGES }
\end{aligned}
$$

MANUAL CHANGES

CHANGE DATE: December 15,1981
This change supersedes all earlier dated changes.
*** Make all correctio:ıs listed under ERRATA before making other changes.
** Check following table for your instrument's serial prefix or series number and make listed change(s) to manual.

MANUAL DESCRIPTION

Timer-Counter Module *

 Operating and Service Manual *SERIAL PREFIX: 1212A *
DATE PRINTED: AUG 1973*
HP PART NO: 05304-90006 *
\# INDICATES NEW OR REVISED ITEM
> INDICATES ACTION TO BE TAKEN
NPC $=$ NO PREFIX CHANGE

Information for any optional circuit boards described in this manual agrees with the series numbers on the circuit board(s) for the option, which may not be the same as the Serial Prefix Number on the rear of the instrument.

MANUAL CHANGES MODEL 5304A (05304-90006) Page 1

ERRATA
Page 9D-2-1, 9D-3-2, 9D-3-6, and 9D-3-10:
>Add the following:

Page 9D-3-8, Figure 9D-3-7, Paragraph 6:
>Change to read as follows:
Adjust ATTEN switches and LEVEL controls until a stable display is obtained.
Page 9D-5-18, Table 9D-5-1, In-Cabinet Ferformance Checks:
>Change step e.4. to "COM-SEP-CHK to SEP."
>Change step e.5. to "LEVEL (both channels) to position giving most stable display."

Page 9D-8-5, Figure 9D-8-1, A1 (05304-60001) Schematic Diagram:
>Add "NOTE 3" just above line showing connection between A1U12D(13) and junction of A1U12A(2) and A1U12C(9).
>Add the following under NOTES:
3. IN "REV D" CKT BOARDS, A1U12D(13) IS CONNECTED TO A1U12C(8); NOT TO

THE JUNCTION OF A1U12A(2) AND A1U12C(9).
Page 9D-6-4, Table 9D-6-1, Replaceable Parts:
>Add A2S1; 3101-1598; SWITCH-SLIDE DP3T 0.5A 125V AC/DC; 28480; 3101-1598.
\#Page 9D-6-4, Table 9D-6-1, Miscellaneous Replaceable Parts:
>Change CASE part number from 05300-20010 to 05300-20006 in HP and Mfr Part Number columns.

CHANGE 1 (1704A)
Page 9D-6-2, Table 9D-6-1, A1 (05304-60001) Replaceable Parts:
>Add "SERIES 1704" to Description for A1 circuit board.
>Change A1Q1 and A1Q2 from 05304-80001 to 1855-0213; DUAL JFET N-CHANNEL 2N5912; 28480; 1855-0213.
>Change A1R19 and A1R20 from 2100-1768 (20-ohm) to 2100-2010; RESISTOR-VAR COMP 10-ohm 20\%; 32997; 3329H-1-10R.

Page 9D-8-5, A1 (05304-60001) Schematic Diagram:
>Add "SERIES 1704" at top of A1 (05304-60001) schematic.
>Add "NOTE 4" between A1Q1/A1Q3 and A1Q2/A1Q4.
>Add the following under NOTES:
"4. A1Q1/A1Q3 AND A1Q2/A1Q4 ARE DUAL JFET N-CHAN UNITS WITH CENTER LEAD TO CASE CDT OFF."
>Change Q1-4 in TABLE OF ACTIVE COMPONENTS to Q1/Q3, Q2/Q4; and HP PART NUMBER to 1855-0213.
>Change the values of A1R19 and A1R20 from 20 to 10 -ohm.
CHANGE 2 (1716A)
Page 9D-6-2, Table 9D-6-1, A1 (05304-60001) Replaceable Parts: >Change A1 from series 1704 to 1716.
>Change A1U15 from 1820-0077 (3N7474N) to 1820-1112; IC TTL LS DUAL-D FLIPFLOP; 01295; SN74LS74N.

Page 9D-8-5, Figure 9D-8-1, A1 (05304-60001) Schematic Diagram: >Change series number, at top of diagram, from 1704 to 1716. >Change A1U15 in TABLE OF ACTIVE COMPONENTS to 1820-1112.
>Change A1 schematic by disconnecting $A 1 U 15 B(13)$ from the junction of U13E (10) and U8(1,10).
$>$ Add a connection between A1U15B pins 12 and 13.
CHANGE 3 (1804A)
Page 9D-6-2. Table 9D-6-1, A1 (05304-60001) Replaceable Parts: $>$ Change A1 series number from 1716 to 1804. $>$ Change A1R19 and A1R20 from 2100-2010 (10-ohm) to 2100-1985; RESISTOR-TRMR 20-ohm 20\% C TOP-ADJ 1-TURN; 32997; 33294-1-20R.

Page 9D-8-5, Figure 9D-8-1, A1 (05304-60001) Schematic Diagram:
>Change A1 series number from 1716 to 1804.
$>$ Change the values of A1R19 and A1R20 from 10 to 20-ohm.
CHANGE 4 (Serial Prefix 1940A)
Page 9D-6-3. Table 9D-6-1, A2 (05304-60003) Replaceable Parts:
>Add (SERIES 1940) to A2 Description.
>Change A2S1, S2 and S3 from 3101-1598 to 3101-2383 in HP and Mfr Part Number columns.
>Change A2S4 thru S7 from 3101-1596 to 3101-2334 in HP and Mfr Part Number columns.

Page 9D-8-5, Figure 9D-8-1, A2 Schematic Diagram:
>Add (SERIES 1940) at top of A2 schematic diagram.

MANUAL CHANGES MODEL 5304A (05304-90006) Page 3

CHANGE 5 (Serial Prefix No. 2024A)
Page 9D-6-3 A2 (05304-60003), Replaceable Parts:
>Change A2 (05304-60003) Series Number to 2024A.
Page 9D-6-4 A2 (05304-60003), Replaceable Parts:
>Change A2S1, S2 and S3 from 3101-2383 to 3101-1313;SWITCH-SLIDE DPDT 0.5A 125V 28480; 3101-1313.

CHANGE 6
Pages 9D-6-3 and 9D-6-4, Table 9D-6-1. A2 (05304-60003) Replaceable Parts: >Change A2 SERIES number to 2148.
>Change A2S1, S2 and S3 to 3101-2383; SWITCH-SLIDE DP3T MINTR .5A 125VAC PC
Page 9D-8-5, Figure 9D-8-1. A2 Attenuator Board Assembly Schematic Diagram: >Change A2 SERIES number to 2148, at top of schematic.
\#CHANGE 7
Page 9D-6-3, Table 9D-6-1. A1 (05304-60001) Replaceable Parts: >Change A1U21 to 05300-80013; IC GATE ECL OR-NOR, DUAL 2-INP

Page 9D-8-5, Figure 9D-8-1. A1 Time Interval Board Assembly Schematic Diagram: >Change A1U21 part number to 05300-80013 in TABLE OF ACTIVE COMPONENTS.

This suppiement contains important information for correcting manual errors and for adapting the manual to instruments containing improvements made after the printing of the manual.

To use this supplement:
Make all ERRATA corrections.
Make all appropriate serial number related changes indicated in the tables below.

Serial Prefix or Number $1323 U-01151$	1
1632 U	$1-2$
1714 U	$1-3$

Serial Prefix or Number	Make Manual Changes

NEW ITEM

ERRATA

Pages 9D-2-1, 9D-3-2, 9D-3-6 and 9D-3-10:
Add the following:

WARNING

TO AVOID POSSIBILITY OF BODILY INJURY AND/OR EQUIPMENT DAMAGE, DO NOT CONNECT "HOT" SIDE OF POWER LINE TO INSTRUMENT CHASSIS GROUND. HEWLETT-PACKARD RECOMMENDS USING AN ISOLATION TRANSFORMER WHEN MEASURING AC LINE FREQUENCIES. ADDITIONALLY, DO NOT EXCEED THE INPUT VOLTAGE LIMITATIONS AS SPECIFIED IN TABLE 9D-1-1.

Page 9D-3-8, Figure 9D-3-7, Paragraph 6:
Change to read as follows:
"Adjust ATTEN switches and LEVEL controls until a stable display is obtained".

NOTE
Manual change supplements are revised as often as necessary to keep manuals as current and accurate as possible. Hewlett-Packard recommends that you periodically request the latest edition of the supplement. Free copies are available from all HP offices. When requesting copies quote the manual identification information from your supplement or the model number and print date from the title page of the manual.

15-9-77

ERRATA (Cont'd):

Page 9D-5-18, Table 9D-5-1, In Cabinet Performance Checks:
Change Step e.4. to "COM'SEP-CHK to SEP".
Change Step e.5. to "LEVEL (both channels) to position giving most stable display".

Page 9D-6-2/3, Table 9D-6-1:

* Change AlR19/20 to 2100-1985.

Add MP1 Part Number 1460-1312 Spring Clip.
Add MP1 Part Number 0905-0479 Gasket.

CHANGE 1

Page 9D-6-2, Table 9D-6-1:
Add Al Part Number 05304-20001 Board Blank RevD.
Page 9D-8-5, Figure 9D-8-1, Al (05304-60001) Schematic Diagram:
Add "NOTE 3 " just above line showing connection between AlUI2D (13) and junction of AIU12A (2) and A1U12C (9).
Add the following under NOTES:
3. IN "REV D" CKT BOARDS, AlU12D (13) IS CONNECTED TO AlU12 (8); NOT TO JUNCTION OF AIUI2A (2) AND AIUI2C (9).

Page 90-6-4, Table 9D-6-1:
Under Miscellaneous Parts:
Change 05300-20010 to 05300-20025.

CHANGE 2

Page 9D-6-2, Table 9D-6-1:
Change A1Q13/A14 to Part Number 1854-0094 XSTR NPN SI.
Page 9D-7-7, Figure 9D-7-1:
In Table of active components:
Change A1Q13/14 to 1854-0094.
Page 9D-8-5, Figure 9D-8-1:
In Table of active components:
Change A1Q13/14 to 1854-0094.

CHANGE 3

Page 9D-6-2, Table 9D-6-1, A1 (05304-60001) Replaceable Parts:
Change A1Q1 and A1Q2 from 05304-80001 to 1855-0213; DUAL JFET N-CHANNEL 2N592.

CHANGE 3 (Cont'd):

Page 9D-6-3, Table 9D-6-1:
Change AlUl5 to 1820-1112 INT CCT SN74LS74.
Page 9D-8-5, A1 (05304-60001) Schematic Diagram: Add "NOTE 4" between A1Q1/A1Q3 and A1Q2/A1Q4.
Add the following under NOTES:
4. "A1Q1/A1Q3 and AIQ2/AIQ4 ARE DUAL JFET N-CHAN UNITS WITH CENTER LEAD TO CASE CUT OFF".

Change Q1-4 in TABLE OF ACTIVE COMPONENTS to Q1/q3, Q2/Q4 and HP PART NUMBER to 1855-0213.

Page 9D-8-5:
In table of active components:
Change U15 to 1820-1112.
Alter Schematic to show change of wiring:
a) Connect Pins 12 and 13 of U15 together.
b) Remove track from U13 Pin 10 to U15 Pin 13.

