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STATISTICAL. METHODOLOGY FOR LARGE CLAIMS

J. Tiaco DE OLIVEIRA
Center of Applied Mathematics (I.A.C.) Faculty of Sciences, Lisbon

I. INTRODUCTION

The question of large claims in insurance is, evidently, a very
important one, chiefly if we consider it in relation with reinsurance.
To a statistician it seems that it can be approached, essentially, in
two different ways.

The first one can be the study of overpassing of a large bound,
considered to be a critical one. If N(f) is the Poisson process of
events (claims) of intensity v, each claim having amounts Y,
independent and identically distributed with distribution function
I'(x), the compound Poisson process

N
M) = = MYy a)

wlhere a denotes the critical level, can describe the behaviour of
some problems connected with the overpassing of the critical level.
For instance, if MY, a) = H(Y — a), where H(x) denotes the
Heavside jump function (H(x) = o0 if x <o, H(x) =1 if x > o),
M(¢) is then the number of claims overpassing a; if A(Y,a) =
Y H(Y — a), M(f) denotes the total amount of claims exceeding
the critical level; if 4(Y, a) = (Y — a) H(Y — a), M () denotes the
total claims reinsured for some reinsurance policy, etc.

Taking the year as unit of time, the random variables M(1),
M(2) — M(1), ... are evidently independent and identically
distributed; its distribution function is easy to obtain through the
computation of the characteristic function of M(1). For details see
Parzen (1964) and the papers on The ASTIN Bulletin on compound
processes; for the use of distribution functions F(x}, it seems that
the ones developed recently by Pickands I1I (1g75) can be useful,
as they are, in some way, pre-asymptotic forms associated “with
tails, leading easily to the asymptotic distributions of extremes.

The results of Leadbetter (1972) and Lindgren (1975) can also

I



2 STATISTICAL METHODOLOGY

be useful, the last one introducing the notion of alarm level, con-
nected with the critical level.

We will not follow this approach, which seems a very interesting
one, letting here only this short note.

The second approach, which we will devclop, is based in the
asymptotic distributions of largest values, largely exposed in
Gumbel’s (1958) book and used in some papers of Ramachandran
(1974) and (xg75), for fire losses. A detailed bibliography will appear
in the sequel; but we can recall immediately the important paper
by de Finetti {1964} and the useful summary by Beard (1963).

2. THe AsYMPTOTIC DISTRIBUTION OF THE LARGEST VALUES AND
m-th LARGEST VALUES OF A SAMPLE

The theory of largest and smallest values of a sample of indc-
pendent and identically distributed random variables goes as far
away as 1920, in a paper by Dodd. Owing to the difficulty of real
usc of the distributions, in general even dependent of unknown
parameters if their analytic forms are known, we resort to the use
of asymptotic distributions for (relatively) large samples. This
theory began to be developed in the late twenties by Fisher and
Tippett and von Mises and was systematized, in a definitive way,
by Gnedenko (1943). Gumbel (1935) developed one of the forms of
asymptotic distributions of the m-th largest (or smallest) values.

Later the requisites of independence or identical distribution
were weakened; we will not refer to them because they do not scem
to be very important to the application in insurance theory. In a
general way, we can summarize those results by saying that wc
have the same asymptotic distributions if the marginal distribu-
tions are the same and there is a kind of asymptotic independence
or if the random variables are independent and their distributions
are related in some way.

If (x1, ..., %,) is a sample of »n independent and identically
distributed random variables with distribution function F(x), the
distribution function of max (xi, ..., x,) is evidently

Fr{x) = Prob (21 < %, ..., 2p < 2).

For some initial distribution functions I7(x), there exist constants
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An and 3,(>0), not uniquely defined, such that there exists a
function L{x) such that

F"()\n + 8"37) — I;(x).

The asymptotic distribution function L(x) may be one of the
three forms: )
Alx) =c " Gumbel distribution
b fx) =0ifx <o
=¢° %% 0 >0i1fx >0
Tfx) =c-2" a0 >0ifx <o
=1ifx >0

TFréchet distribution

Weibull distribution

As the asymptotic distributions are continuous, the convergence
is uniform to that, for large #, L {x — A/8) can be taken as an
approximation of I'#(x). This asymptotic distribution contains the
two parameters A (location) and & (dispersion) and cventually the
shape parameter o. Fig. 1 shows the reduced Gumbel density (with-
out location and dispersion parameters) and Fig. 2 and Fig. 3
show how Fréchet and Weibull densities, without location and
dispersion parameters, behave with the change of «.

FOO=EXP {~X) w EXP { ~EXP (-X)}

Fig. 1
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ALFA=S

FiX}= ALFA # X & {=ALFA~1) % EXP {-X 4 (-ALFA))

ALFA=1/2

- ALFA=S

F{X}= ALFA # (=X} # (ALFA-1) % €XP (-{-X} ¢ ALFA)

-4 -3 -2 -1

Fig. 3

An important tool to evaluate the use of the distributions of
largest values is the behaviour of the force of mortality. The force
of mortality for Gumbel distribution is an increasing function as
well as for Weibull distributions, and has an U form for Fréchet
distributions.

The extension for m-th largest values is immediate. If x;, < ...
< x,, denotes the ordered sample, the m-th largest values is the

,

order statistics x,,_,,,; for m = 1 we have x,, = max (x,, ..., x,).
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The distribution function of %

n-m1 1S given by

X () Fwf (t —F@)** = I (2) F@)? (1 — F(x)?
kan—m+1 p=0

and it is easy to show that if Fr(p, 4+ 84x) — L(x), i.e., that the

maximum value has the asymptotic distribution L(x) (of one of

the three forms A, ¢, ¥',) then the asymptotic distribution of the

m-th largest value is given by

m-1

L(x) Z ]fi [— log L(%)].

Note that we have three asymptotic forms and not only the
form deriving from L(x) = A(x), as it is supposed sometimes. For

instance, if F2(h, + 8,x) — A(x), then the reduced asymptotic
form for the sm-th largest value is ’

n=1
"\ ¢ PE

P!

e %

It should be noted that if we take ¢~% = m ¢~ ¥, we obtain the
expression given in Gumbel (1958)

-1

e-meTr T omPe Py [ pl
L]

.

3. ESTIMATION AND PREDICTION PROCEDURES

As it scems, the two more important problems of statistical
decision in actuarial field for the distribution of extremes, are
estimation and prediction to be dealt with in this section; it seems
that other statistical decision questions are not important in
actuarial field.

It must be remarked that we are lacking yet, in many questions,
the methodology to obtain the best statistical decision procedures.
Its description can be found, in detail, in Tiago de Oliveira (1972)
and (1975), not only for Cumbel distribution but also for Fréchet
and Weibull ones.
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In the sequel we will only describe, as an example, the method-
ologyv uscd when the (supposed) underlying distribution is Gumbel
distribution A(x), sometimes called fhe distribution of extremes.

The maximum likelihood estimators of » and 3(> o), the loca-
tion and dispersion parameters in Gumbel distribution, from a
sample (x1, ..., ¥y) are given by the equations (£ denoting the
average)

" ~

n ~
Yaje W = (x — ) T e FP
1 1

» ~

Yo~ Tild
~ - )
A= —3dlog \— ,
/

n

the first one being solved by iterative methods.

When we take as first approximation §0 = ]/6 Sfr, where S
denotes the standard deviation, the iteration converges numerically,
in general, in few steps; the estimate of ;\, given by the second
equation, is immediate.

As it is well known, the cfficiency of those estimators is 1.

Confidence regions can be formed, using the fact that (7?, BA) is
asymptotically binormally distributed with mean values » and 3,
asymptotic variances

[ 6 2] d2 . 6 8§
I-}—;(I——Y) . and =

and asymptotic correlation coefficient

( n? ) -V
o= G

"To avoid the iterative procedures we can use lincar combina-
tions of order statistics given by the Lieblein-Zellen and Downton
statistics, see Tiago dc Oliveira (rgys), which have, in genecral,
good efficiency, of about 809, or more.

Prediction procedures can be developed from the use of those
estimators, for instance, from the use of ’7: and 5 The prediction

of the maximum of N sequent observations is given by;\ + v+

~

log N) 3 and a prediction interval with coefficient 1 — o (prob-
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ability 1 — o that the future observed value will fall in the interval)
is givey, apart errors of order n-1, by
D+ (@ + log N) 8,5 + (b + log M) 5]

where a and b are given by the equations

e tee " =1 —0

at+e =04 ¢0

The theory of estimation for the m-th largest value is not yet

developed but it can be done in the way of the preceding estimation

for the (1st) maximum. For instance, for the 2nd maximum, as
the density is

g-€"F " 2z
the estimators are given by

" ~
PP
1

3

2 |2 —
3 g Tl
1}

4 \

}Ec-z,fﬁ
A= — & log \- o

The theory can follow the usual way.

Statistical decision theory of m-th extremes in the case of distri-
bution such that the largest value has a Fréchet or Weibull dis-
tribution, not yet developed, will surely have the difficulties found
until now for those distributions.

4. SoME HINTS ON APPLICATIONS

The applications of the theory of the m-th largest values has
been developed, in the last years, in a series of papers by Ramachan-
dran, for instance, (1974) and (1975), for the case where is supposed
that the asymptotic distribution for the largest value is a Gumbel
one and, consequently, the reduced asymptotic are

Ay(x) =e-¢" Z ‘f_}l e~ PF,
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A problem which appears in the applications is the fact that, in
many cases, when we take & large samples of sizes #y, ..., np the
attraction coefficients A, and 8, are, in general, different. Under
some condition, we can obtain a general relationship between the
A and 3.

Suppose that exist constants « and p(> 0) such that ¢**#% (1 —
I(x)) - o as & — oo, which corresponds to the asymptotic condi-
tions supposed in Ramachandran (1974).

In that case we can take A, = 1/B (log n — «), 8, = 1/p so that
we get the following relation

Ay = h, - Slogu'in

n

8n’ = 8n'

Let us, for simplicity, suppose that Y;"" is the m-th largest
value from a sample of size n; under the hypothesis madc on F(x).
Then the random variables

Y;’") . )‘":
e 8"/

have the asymptotic distribution A, (x).

From the relation given, taking A,, = A, §,, = 8 we see that
we can write

v (m) 11

25 = ~—--—§~— +- loga _

so that the Y{™ have the asymptotic distribution

xX—2A 1y
Am_ —8 "‘I- log

and the estimation of the parameters A and & can be made in the
usual way, for instance, using the maximum likelihood method.

Another point which is very important in the study of m-th
largest values is the choice between one of the forms of asymptotic
distributions.

Until now there is no analytic methodology for this choice.
A practical suggestion can be the use of graphical methods (for the
technique see Tiago de Oliveira (1972)). We can test, graphically,
if the largest valucs follow one of the distributions and, after,
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suppose that the m-th largest values follow the corresponding
asymptotic distribution. For that we can build a probability paper
for Gumbel distribution and a deck of probability papers, for
various valucs of a, for Fréchet and Weibull distributions. Then
the data can be plotted on those probability papers and one of the
forms will be accepted when the plotted points fall, approximately,
on a straight line. Recall that when o> o both Fréchet and
Weibull distributions, with convenient lincar changes of the
variable, converge to Gumbel distribution; from a practical point
of view it means that, for large «, in both cases, data will fit rea-
sonably well in Gumbel probability paper.
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EXPLOITATION DU SONDAGE AUTOMOBILE 1971
EN FRANCE PAR UNE METHODE D’ANALYSE
MULTIDIMENSIONNELLE

L’ASSOCIATION GENERALE DES SOCIETES D'ASSURANCES CONTRE
LES ACCIDENTS

Paris

Sous la responsabilité de I'Association Générale des Soci¢tés
d’Assurances contre les Accidents, un sondage au 1/50¢ a été effectud
en 1971 dans les portefeuilles d’un grand nombre de Compagnies
ou Mutuelles pratiquant en France l'assurance de responsabilité
civile automobile. -

Trois objectifs étaient visés:

Etudier l'influence de critéres de tarification tels que 1'age du

véhicule, I'dge du souscripteur ou 'ancienneté du permis, zone,

groupe et usage.

Déterminer, pour chaque classc du tarif, les primmes pures.

Tirer les enseignements des résultats de ces travaux, en particu-

lier, étudier les possibilités d’amélioration du tarif & la fois sur

le plan technique (choix des critéres et méthodes de calcul des
primes) et sur le plan politique (réalisation effective du tarif).

Les informations apportées par le sondage se présentaient
comme suit:

I'unité statistique était constituée par I'ensemble souscripteur —
véhicule durée d’observation. Au cours de cette durée, les
caractéristiques du souscripteur, du véhicule et de l'environne-
ment, étaient inchangées. A chaque unité statistique étaient
rattachés les renseignements concernant la zone, le groupe de
tarification du véhicule, les clauses d’usage et de garantie souscri-
tes, I'état matrimonial, le sexe et 'age du souscripteur, I'année
de premiére mise cn circulation du véhicule, I'année d’obtention
du permis de conduire. On disposait, d'autre part, du nombre de
sinistres de chaque sortc (matériels ou mixtes) et le coiit au titre
de la responsabilité civile de ceux-la.

-1
a4



ANALYSE MULTIDIMENSIONALRE I1

1. DEFINITION DES DIFFERENTS CRITERES
Zones
En Trance, les communes sont classées en 5 zones numdérotées
de 1 a 5. La zone, classification géographique, est fonction:
du lieu de garage habituel du véhicule;
de la résidence principale du souscripteur.

Dans certaines Sociétés, la zone peut étre fonction du lieu de
travail habituel pour les souscripteurs garantis en usage ,,Affaires-
Commerce”” ou en usage ,,Promenade et trajet”.

Groupes

Il existe 10 groupes numérotés de 0 a 15. Plus cc groupe est ¢leve,

plus le risque en R.C. est important. Le groupe est déterminé par

les assureurs de la maniére suivante:
Des la sortie du véhicule, un groupe est calculé d'aprés unc
formule basée sur les expériences passées. Cette formule tient
compte, cntre autre, de la puissance réelle du véhicule, de sa
vitesse de pointe, de sa conception mécanique (freins a disques ou
non, freinage assisté ounon, emplacement du moteur, propulsion
arriere ou avant, essicu rigide ou roues indépendantes .. .).
Ce groupe défini a priori peut étre modifié si les résultats
statistiques cn font apparaitre la nécessité.

Usages )

Six usages principaux sont employés:
Affaires-Comimerce
Salariés
Fonctionnaires et assimilés
Artisans
Agriculteurs
Autres

Age du conducteur .
Trois classes sont régulicrement employées:

Célibataires masculins igés de moins de 25 ans ou autres
souscripteurs agés de moins de 25 ans, permis de conduire de
moins de deux ans.
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Tous autres souscripteurs agés de moins de 25 ans, permis de
conduire d’au moins deux ans ou autres souscripteurs agés
d’au moins 25 ans, permis de moins de deux ans.

Tous souscripteurs 4gés d’au moins 25 ans, permis de conduire
d’au moins deux ans.

Age du vélicule

Trois classes d’dge de véhicule ont été formées lors de I'analyse:

véhicules de 1967 4 1970
véhicules de 1963 & 1906
véhicules antérieurs & 1903

2. METHODE UTILISEE

La méthode d’hypothése linéaire généralisée cst a la base de la
méthode d’analyse multidimensionnelle qui a été choisie. C'est celle
qui permet notamment de traiter les informations d'un sondage
représentatif caractérisé par I'inexistence de données dans certains
classes de tarification et, plus généralement, par une distribution
non uniforme des effectifs dans les cases. Cette méthode et les tests
qui lui sont rattachés nc sont valables que si les données analysées
sont de variance constante ct de distribution aussi proche que
possible d'une distribution normale. Nous avons, de ce fait, ¢té
conduits & effectuer des changements de variable. Cette opération
a alors suscité un nouveau probléme, celui de l'estimation non
biaisée des moyennes des anciennes variables (fréquences annuelles
et colits des sinistres), en fonction d’éléments relatifs aux nouvelles.

3. ANALYSE DES FREQUENCES DE SINISTRES

[y

Soit K le nombre de sinistres d’'un certain type associé a une
unité statistique (véhicule assuré — période de T — unité de temps)
prise au hasard dans une classe de tarif.

Loi de probabilité de K: soit m la fréquence annueclle moyenne
de 1'unité statistique échantillonnée; supposons que la loi de % liée
par ¢ et m soit une loi de POISSON:

e-mé - (mt)k

Prob(K=%FT=tetM =m) = 7l
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Considérant m comme une variable aléatoire (notée M) liée au
tirage de l'unité statistique, il est logique d’introduire la loi a priori
de M.

Sous I'hypothése que cclie-ci est une loi de PEARSON du type
I1I, nous avons:
I m\b-1! 2™
Prob (m < M < m 4+ dm) = —I‘—(b—) Pl (;) (;) m>o0

Par application du théoréeme des probabilités composées et aprés
plusieurs changements de variables, nous obtenons la relation:

] . I'(b+ k) 1< I )" < at )"’
Prob (K=k;T =1) = -«I-‘--(?)T— C _I——I-ZIE . T

ou micux encorc:

. . x 1 \b at \*
Prob(K=~k; T =18 =C§,,_,- a—;{ . T

Ceci n'est autre que l'expression de la loi binominale négative
(b 4+ k) souvent utilisée dans 1'étude des dénombrements. D’une
facon générale, I'espérance mathématique et la variance d’une telle
loi valent respectivement:

qc
H2

E(X) = 5 et V(X) = ¢

=i o

Dans notre cas, en posant p = LT at ;g = LT al ;

k = n — b nous obtenons:
d'une part: E(b + k) = b + E(R) = b(1 + ai)

par suite | E(k) = abt

d'autre part: V(b + &) = | V(k) = at(x + at)d

Ceci montre que:

la fréquence annuelle expérimentale (X/f) est une bonne esti-
mation de la fréquence annuelle moyenne théorique ab.
la variance de (KJf) dépend de la moyenne ab.
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De nombreux chercheurs se sont préoccupés de trouver une fonc-

tion U(It), telle que sa variance V(U) soit sensiblement constante.
K b

Ia transformation U = log (7 + ;) convient quand la quan-
tité b est constante dans le domaine exploré, sans que d’ailleurs ceci
soit une hypothése trés forte. Les travaux de M. P. DELAPORTE
ont montré que pour les risques étudiés, nous avons 1 < b < 2. 11
a donc ¢té retenu le changement de variable:

K
U = log <7 + 1)

4. MoDELE D’'HYPOTHESE LINEAIRE GENERALISEE

Convenons de désigner par réponse, soit 1'une quelconque des
composantes du risque, soit une fonction de ces composantes. Les
critéres sont, dans le cas le plus général, qualitatifs ou quantitatifs.
I.e modéle repose sur le corps d’hypothéses suivant:

1) La réponse est une variable aléatoire qui, tous critéres fix¢és,
c’est-a-dire pour une combinaison des modalités des critéres qualita-
tifs et pour des valeurs données des critéres quantitatifs, suit une
loi de GAUSS de variance constante égale a o2.

2) Les réponses attachées aux unités statistiques de I’échantillon
sont indépendantes en probabilité.

3) L'influence des critéres s'exprime sous une forme linéaire. Par
cxemple, dans le cas de deux critéres qualitatifs A et I3, prenant
respectivement les modalités 4; et By, on écrit, pour une réponsc
appartenant a la case 4, j:

yu=l‘+°"i4+gju+eu

avec comme contrainte:

Yo =ZpF =0 ou:
i H
Yu est la valeur de la réponse associée a la ui®me observa-
tion (¥ = 1 an).
u est la réalisation d'unc variable aléatoire suivant une loi
de GAUSS, centrée et de variance ot
[ est 'ordonnée a I'origine,

«f et P sont les cocfficients différenticls liés respectivement aux
modalités 4; ct B;.
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5. ESTIMATION DES COEFFICIENTS DU MODELE

D'une facon générale, le modele mathématique que I'on pose est
le suivant:

Ykl o = pF o+ Pt ye 8. +'em¢l...

Il est commode alors d’introduire la notation matricielle; 'ex-
pression précédente sc trouve alors étre un ¢lément de la forme plus
générale suivante:

—

3’=‘Y‘ﬁ+€

avec:
= ] . 1 .2 .3 r
Y1 ru Ix; &) X] ... % Fel
Ve oy 1 €;
oy :
— . —_ : - N
f\l == E B = ¢ X= l .............. g = .
: B :
By | :
: V.2 .3 P \
| Y| | 8p REIEFEENE | x|

-
y est le vecteur colonne dont les composantes sont les réponses
observées.

est le vecteur colonne dont les composantes sont les estima-
tions des cocfficients.

w |

X est le tableau des conditions d’observations & (p 4- 1) colonnes
et n lignes.

—

e est le vecteur colonne résiduel.

Le schéma des cocfficients théoriques est donné par la formule:

—

y=X.L+4¢=

- :
I’estimation des coefficicnts de B conduit au schéma:

-

y'=X‘ﬂ'
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-
Le vecteur B’ est déterminé par la méthode du maximum de
vraisemblance, c’est-d-dirc qu'il nous faut minimiser la norme

—

cuclidienne de y' — y soit:

"
o)

Q= H_'Vl—y “2 = X (y;a—yu)z

A - , dy:‘
__7- =22(yu_yu) TS =90
DB w~l dB/

ou cncore:
—
A’t . y, 3 xt . y

— —_
Comme y' = X - § il vient:
-— p—

B = (Xt X)"1 X!y

expression dans laquelle X* st la transposée de X.

- —
D'autre part,on démontre que ' est une estimation non biaisée def,
obéissant 4 une gaussicnne 4 % dimensions ayant comme matrice
des variances — covariances 'expression (X¢ X)-1 o2, o2 étant la
variance de la population cstimée par la relation suivante:
I
2 v 4 2
- = —— X —y
a—p = 5

6. TEST DES INFLUENCES DES COEFFICIENTS

Le principe du test de l'influence d'un critére est le suivant:
dans un premier stade, on effectuc un ajustement du modtle
linéaire avec tous les coefficients, cc qui fournit un vecteur

-
B’ et unc variance résiduelle VR & do degrés de liberté
(do = n — rang de la matrice X*¢ X).

ensuite, on annule a priori les coefficients correspondants au
critére testé et on effectuc un ajustement analogue. Nous ob-
tenons alors une nouvelle variabilité¢ résiduelle notée VR,
I'indice /i scrvant & repérer les tests successifs. Nous avons:
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- —_
P . -1yt .
Ban = (X - Xow) ™" - Xy -
VRpy =95 -y —5" X B
expression dans laguelle X () sc déduit de X par suppression
des colonnes correspondant aux coefficients annulés. Le nom-
bre de d.d.l. de VR ) est.égal p:

d@ = n — rang de la matrice X%, + X3

On montre que si le critere testé n'a pas d'influence réelle, la
quantité:
VR@py — VR
dm — dw
VR
, d (o)
est une variable de FISCHER-SNEDECOR a:

1mn = d J— d
§ nl d(h) @ 3 degrés de liberté.
2 = G(0)

F o=

Le test statistique en résulte; si I' est supérieur au seuil de signifi-
cation, on est en droit de conclure d l'influence significative du
critere testé en notant bien que, d’un point de vue théorique, les
influences testées sont des influences conditionnelles: on isole
I'influence d’un critére quand celui-ci est introduit dans le modele
apres que tous les autres I'aient été.

7. ESTIMATION DE LA FREQUENCE ANNUELLE MOYENNE: F
L’ajustement des coefficients du modele:

Yu=[J.+at+ ......... +ru

conduit aux estimations des valeurs moyennes de Y dans chaque
classe de tarif et de la variance résiduelle de Y.

Il ne serait pas satisfaisant de prendre, pour estimation de ab
(voir paragraphe ‘‘Analyse des fréquences des sinistres”), la valeur
de f telle que log (f + 1) soit ¢gale i I'estimation de Y. En effet,
nous pouvons écrire:

K .
Y = logie 7 +1
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K
Posant T = et E(x) = /, il vient:

Y=MLogx+1)=MLog{x—/+f+ 1)

=M[Log(f+1)+7:{—§-%%:—€-;—:+ ...... ]
d’oU:
By w0 [Log i+ 0 — 5 £ (3]
pratiquement

E(Y) # M Log (f + 1)

Quant a la variance de Y, elle se met sous la forme:
V{Y) = E(Y — E(Y))*
soit apres calcul:
M2
V{Y) == —— - E{(x —[)?
( ) (f + 1)2 (x ./)
d’oU l'on tire:
E(Y —E(Y))?-(f+ 1)?
M2

E(x—[)2 =

En reportant cette quantité dans I'expression complete de E(Y),
nous obtenons:
. E(Y — E(Y)
EY)=M \Log(f+ 1) ——F37

Soit:
E(Y — E(Y))e

M Log (f+ 1) = E(Y) + ——

Finalement, nous obtenons I'expression simple suivante:
logi(f + 1) = E(Y) + 1,151 V(Y)

Cette formule permet de calculer /& partir de E(Y) moyenne de
Y et V(Y) variance de Y.

La régression de V{Y) en fonction de E(Y) est sensiblement
linéaire.
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CoNDUITE DE L'ETUDE

Pour calculer la prime pure, nous avons appliqué l'analyse
multidimensionnelle & chacune de ses quatre composantes.

PP =[pCpn+/fe-Ce

Aux fréquences des sinistres matériels et corporels, nous avons
fait subir le changement de variable:

y = logie (f + 1)

Des dépouillements nous ont montré que les colits des sinistres
d’un certain type, relatifs , une classe de tarif, se distribuent sui-
vant une loi logarithmo-normale de variance constante. Nous
avons donc soumis & I'analyse les logarithmes des cofits S:

W = logo (S)

Apreés traitements pour repasser des logarithmes aux valeurs
réelles, nous avons employé les formules suivantes:

pour 'étude des fréquences des sinistres matériels, la régression
de V(Y) en fonction de E(Y) est:

V(Y) = 0,319 E(Y) — 0,00016 avec un coefficient de corréla-
tion de v = 0,82.

pour I'étude des fréquences des sinistres corporels, la régression
de V(Y) en fonction de E(Y) est:

V(Y) = 0,496 E(Y) — 0,001 avec un coefficient de corrélation
de v = 0,87

Par suite, les formules a employer pour repasser en réel seront:
logio (fm + I) = 1,367169 E(Y) pour les matériels

logio (fe + 1) = 1,57089 E(Y) pour les corporels

Quant aux coflits moyens matériels ct corporels, les formules du
type logio (C) = E(W) + 1,151 V(W) sont des formules exactes
permettant d’estimer C = E(S), c’est-a-dire les cotits moyens.

L.a variance calculée pour les colits moyens matériels est:

V(W 1) = 0,2135;
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celle des colits moyens corporels vaut:
V(W 2) = 0,7704.

Lors de cctte ¢tude, trois analyses ont ¢té effectuées.

dans la premiere, nous avons exploité les critéres suivants:
groupes, zones, usages, ige des conducteurs;

dans la seconde, en plus des 4 critéres de 1'exploitation précé-
dente, nous avons introduit 1’age du véhicule;

dans la troisitme, cn plus de 5 critéres de 'exploitation précé-
dentc, nous avons introduit des groupes d’interactions qui nous
semblaicnt étre significatifs.

Finalement, les primes pures ont été calculées & I'aide des coeffi-
cients de I'exploitation a 5 facteurs, car dans la troisi¢me analyse
I'introduction des interactions n’a guére diminué la somme des
carrés d’écart, ct I'analyse & 4 facteurs était tout de méme moins
compléte.

Dans I'exploitation retenue, nous avons extrait et exploité en
sus 3 sous-populations formées pour les usagers suivants:

salariés
fonctionnaires
agriculteurs

Ie mode¢le mathématique retenu était de la forme:

Yiyrim =@ + oi + 5+ ve + 8 + Vo + syrim

modele dans lequel:

7 : terme de centrage

a; : coefficient relatif aux groupes (9 niveaux)
B; : coefficient relatif aux zones (4 niveaux)
vi : coefficient relatif aux usages (6 niveaux)
z;  : cocfficient relatif a I'dge des conducteurs (3 niveaux

)
W' coefficient relatif & I'ige des véhicules (3 niveaux)

ziskim . reésiduelle
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Les résultats pour les groupes (par exemple) étaient les suivants:

IFacteurs Effets des facteurs Learts type

n 0,07079124 0,000847

Lxploitation Generale
Groupes i
o+ 142 I —0,00848394 0,001186
34 2 —0,01040909 0,001884
540 3 -—0,01039705 0,001010
7 4 —0,00047201 0,001315
8 5 —0,00001205 0,001024
9 (6} 0,00013299 0,000997
10 7 0,00444214 0,001074
11 8 0,00827156 0,001837
12 et + y 0,02382804 0,002515
Sous-Lxploitation |, Salaries”

1A 0,004y06843 0,001080
Groupes i
o+ 1 4 2 1 —o0,00838255 0,001812
3+ 4 2 —0,01335252 0,002892
5+ 6 3 —0,00999472 0,001540
7 4 —0,00654063 0,001891
8 5 —0,00084 509 0,001490
9 6 0,00012398 0,001531
10 7 0,00571904 0,001774
II 8 0,00060048 0,003088
12 et 4- 9 0,02358172 0,004871

Sous-Lxploitation ,, Fonctionnaires’

7 0,05819486 0,002240
Groupes i
o+ 14 2 1 0,00133143 0,003381
34+ 4 2 —0,02579000 0,005675
54+ 6 3 —0,00857455 0,002801
7 4 -—0,00966734 0,003710
8 5 0,00727953 0,002834
9 6 -—0,00110694 0,002924
10 7 0,00149672 0,003234
11 8 —0,00398095 0,006221
1zet + 9 0,03901210 0,008244

Sous-Lxplottation . dgriculteurs”

1 0,00039833 0,003562
Groupes i
o+ 14+ 2 1 —0,01135983 0,002490
3+ 4 2 —0,00837804 0,004073
5+6 3 —0,01431175 0,002573
7 4 —0,00105240 0,003101
8 5 —0,01489352 0,002915
9 0 —0,00184322 0,002537
10 7 —0,002209437 0,002760
11 S 0,01286054 0,005547
12 ct + 9 0,04217354 0,009586
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Graphique 1

Influence du groupe sur la fréquence des sinistres matériels
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Graphique 2

Primes pures par zone, groupe et usage.
Exploitation a 5 factewrs (véhicles de moins de 3 ans)
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CONCLUSION

Dans l'ecnsemble, les coefficients des sous-populations suivent
relativement bien le sens des coefficients de 1'exploitation générale,
hormis ceux du groupe 8 ou l'on note une divergence entre les
coefficients relatifs aux fonctionnaires et aux agriculteurs. Cela est
dit & I'hétérogénéité importante de ce groupe (proportion impor-
tante de véhicules agés dans l'usage ,,Agriculteurs”).

Le graphique 2 représente 1'étendue entre le maximum (groupe
11) et le minimum (groupes 0-1-2-3-4) des primes pures pour des
véhicules de moins de trois ans, réparties suivant quatre zones.
Il est a noter que les primes pures en zone 5 sont moins élevées
que celles de la zone 4; cette anomalie s’explique par le fait que,
si durant longtemps la zone 5 fut la plus dangereuse, elle est mainte-
nant dépassée par la zone 4 qui continne 3 se développer, alors
qu’en zone 5 la phénoméne de saturation commence a se manifester.
Ce point est tres sensible en corporel: la zone 4 présente une fré-
quence trés importante du fait du manque de transport en commun
et des possibilités meilleures de circulation.

Les Assureurs envisagent, devant ces statistiques, une fusion des
zones 4 et 5 (PARIS-LYON) et un relévement & un niveau supé-
rieur des villes qui s’avereront les plus mauvaises.

REsuME

Exploitation du sondage automobile 1971 en France par une methode
d'analyse multidimentionnellc

Sous la responsabilité de 1'Association Générale des Sociétés
d’Assurances contre les Accidents, un sondage au 1/50éme a été
effectué en 1971 dans les portefeuilies de 31 Sociétés d’assurances
pratiquant en France I'assurance de responsabilité civile automo-
bile.

Le modéle d’hypothése linéaire généralisée est a la base de la
méthode d’analyse multidimentionnelle qui a été choisie, afin de
déterminer des primes pures pour chaque classe de tarif. C’est en
cffet celle qui permet notamment de traiter les informations d’un
sondage représentatif caractérisé par l'inexistence de données dans
certaines classes de tarification et plus généralement par une
distribution non uniforme des effectifs dans les cases.
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La nécessité de soumettre a l'analyse des quantités dont la
variance est constante dans le domaine exploré nous a conduit a
effectuer des changements de variables. Cette opération a alors
suscité un nouvecau probléme, celui de I'estimation non biaisée des
moyennes des anciennes variables (fréquences annuelles ct cofits
des sinistres) en fonction d’éléments relatifs aux nouvelles.

-

SUMMARY

Use of a multidimensional analysis method to investigate the resulls
of the French 1971 motor vehicle survey

Sponsored by the Association Générale des Sociétés d'Assurances
contre les Accidents, an inquiry (approximation 1/50) was carried
out in 1971 bearing on the portfolios of 31 Insurance Companies
dealing with the Motor Vehicule Third Party Insurance in France.

The method of multidimensional analysis selected is based on the
model of linear hypothesis taken as a rule, to try and estimate the
pure premium in each class of rate. In fact, this method allows, in
particular, to deal with the information gathered by means of
representative sample to deal which features the non-availability
of information within certain rating class and, more generally
speaking, a highly diversified distribution of factors within each
class.

Quantities entering into the surveys must have constant variance
within the investigated field. So we applied a variable transforma-
tion. We were then confronted with another probleme i.c. a non-
biased estimation of the previous variable averages (annual fre-
quency rate of losses and costs of losses) in terms of data related
with the new ones.



VERIFICATION OF OUTSTANDING CLAIM PROVISIONS—
SEPARATION TECHNIQUE

R. E. BEARD

London

In reference [1} Dr. G. C. Taylor has described a useful advance
in the techniques available for verification of outstanding claims
estimates when the data provided is the cohort development of
numbers and amounts of claims. In this note it is assumed that
the numbers relate to settled claims and that the amounts relate
to claiin payments, so there is an implicit assumption that the
pattern of partial payments is constant. 1f the amounts of settled
claims were to be used, there would be a onefone relationship
between the numbers and amounts, but the effect of the exogeneous
factor would be Dblurred because the settlements in a year other
than the first include partial payments made some time previously,
and, by hypothesis, based on different factors. If information
relating to partial payments is available the data can be examined
for any major fluctuation in the pattern and allowance madc
accordingly.

2. In paragraph (2) of reference (1] a brief description is given of
a standard routine calculation in which the average distribution
function of claim payments in time is estimated from the triangle
of payments by a chain ladder technique. This distribution function
is then used to estimate the expected development of the incomplete
cohorts, the implicit assumption being made that the function was
stable in time. With a constant rate of inflation the results obtained
by this technique were found to be satisfactory but with a rapid
increase in the rate of inflation the distribution function changed
so that projection led to underestimates of the future claims
payments. Various methods of adjusting the projections to allow
for the change in the rate of inflation have been investigated, but
they all involve an important element of subjective judgment and so
far no generally suitable basis for “‘automatic™ verification by this
particular techniqué has been discovered. See however reference [2].
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3. Dr. Taylor’'s separation technique provides an alternative
approach and has been found of value in a number of practical
applications in that it has been possible to identify deviations from
the underlying hypothetical model with administrative changes
within companies. This featurc of the technique is a useful addition
to the analytical tools available to controllers or auditors. It also
provides an ‘“‘objective’” method of allowing for irregular changes
in the rate of inflation.

4. As set out, the separation method uses an appropriate index
of numbers of claims as a standardisation measure. On occasions
a suitable figure for the numbers of claims is not available or the
figures available may be suspect for various reasons. Other quanti-
ties, such as premiums, may be used as a proxy for the numbers of
claims-but if this is done some care is needed because other varia-
tions may be introduced into the model. For example if premiums
are used, the results will reflect changes in the rclationship between
premiums and claims.

5. If the number of claims is not available it would be useful to
have a separation technique based solely on the amounts of claims.
Dr. Taylor's comments in para 7 of (1) are relevant. Accordingly
when two sets of claims development data covering 7 and 12 years
respectively became available recently, consideration was given to
devising a separation technique. This proved effective in these
cases and although for reasons of confidentiality the figures
cannot be quoted, it is considered of value to record the method
used. .

6. The data are assumed to be provided in the following form:

Development Year

Year of

Origin o 1 2 e k
i) Pao Py Pas Poy
1 Pio P
2 :
k Pio

where Py is the amount of the claims paid in development year 5
in respect of year of origin .
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We assume that this is to be represented by the form:

Development Year

Year of
Origin o 1 2 R &
[+ 1n¥oAa Nur 171 : Ro¥ ki
1 U
2 :
k NEVorg

Where #; is the (unknown) total number of claims for year s, 7; is
the proportion of the total number settled in year ¢ (assumed to
be solely dependent on ¢) and ; is the index of exogeneous in-
fluences applicable to year of payment j. Ao is an index of average
claims cost in the first settlement year of year o.

7. We first eliminate the n, by forming the ‘"development’ ratios
along each cohort. (It should be noted that these are based on
payments in each year and not cumulative figures as used in the
“basic” chain ladder technique for finding the distribution func-
tion.) If we denote the ratios 7541/ 7; by Ry and As41/As by Ls
the triangle then takes the form:

Development Year

Year of

Origin o 1 2 Cee k—1
o Reln R’ Ial, Ry 1Ly
1 Ro[.l ]l)le

h—1 RoLk -1

The separation technique can now be applied to this array but

since the R’s are the ratios of the proportions in successive dura-
k-1

tions we assume that ¥ Rz;= z say and obtain a general solution:
L

f\,s=l:;32,.z3=2;/z.

8. Now z cannot be obtamed from thc trmnglu and is discussed
later. If we put z =1, k = P and l = L we can complete the

rectangle by extrapolating on L, since R L = R L The products
of the successive terms along each cohort can then be calculated
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and grossing up factors to apply to the cumulative claim payments
follow. Two difficulties have been glossed over. The first is one of
bias and arises from the calculation of the successive development
ratios. If for some reason the claim payments in year s are low
because of delay in some payments to year s 4 1 then the ratio
Rs_1 Lg_1 will be relatively low and the ratio R,L, relatively high—
the effect of a shift of a given amount of claims on the two ratios
will differ. Thus the effect on the vertical and diagonal sums will
differ and the resuiting bias can distort the sequence of values of
R and L. This must not be overlooked in making projections or
in examining the sequence for evidence of abnormal features.

9. The sccond difficulty is concerned with the extrapolation of
L, Now L, =25 ,, /% and A, [}, gives the rclation between
the exogeneous influences in years s 4+ 1 and s. If for example
only monetary inflation were involved then A;41/2,; gives the
relative increase from inflation between the two successive years.
If we form the ratios L, / L, we climinate the z factor and obtain
an index of the change in the rate of inflation. Thus, in extrapolating
on L we have to bring in the expected or assumed future changes
in the rate of inflation.

10. It may Dbe observed at this point that an alternative model
is to base the calculations on the logarithms of payments. This
then becomes an additive model and admits of a straightforward
algebraic solution, but the bias referred to in para 8 will not, of
course, be eliminated by this device.

11. The estimate of total claims is derived as follows:

We first form the products along cach cohort

Development year

Year of
Origin o 1 2 Je Sum Est, tail
o) I ﬁ'oi'o ﬁ,oi'oﬁllf,l e I’i’/o}\?'k_ lz'n. .1?',.--; = So to
1 1 ROl =8 4
2
k 1 Rl e =St &
Where the values of L, s=F%k, k+ 1, ........ are projected

from the series L}, L} .... L,_, bearing in mind the comments
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in para g. If the last term in the first cohort is not very small,
as will occur for some classes of business when % is small, an estimate
is made of the remaining tail values. The total of the terms in
cohort s is then S; 4 ¢, and if the sum of the “‘observed’” terms
is denoted by S¥~* then the grossing up factor is S,/ S¥~%. These
factors are then applied to the cumulative payments to give an
cstimate of the ultimate total claims (O,) for each cohort.

12. The foregoing provides a verification (or projection) technique
for the total expected claims from which the outstanding claims are
derived by deduction of the cumulative payments. It is however
of interest to consider the possibility of estimating z so that the

values of » and A can be found. If we replace ﬁ, by ;5+1 | ;, and I:_q
by As+1 /[ As we find:

(rors + r1As41 + ... + Pihs+k) = YoheSs = 13,/11, == Cg SAY
and
hs Ss+1 g g1
As 41 Ss  dgqr g
But
I _ %
>‘s +1 Ls
SO
S5 ts g+1 %, Ss+1 Cs <
= . . L = c= - L.
S; Ug 41 Ns 53 Cs+1

13. Provided the claim settlement distribution was stecady and
the cxogeneous factors were steady or subject only to smooth

changes this relationship shows that z is related to I:, by the change
in the numbers of claims. If the numbers are unknown, the situa-
tion when calculations are based solcly on the total payments,
then the cxogeneous factors derived will be greater than their
true values by the increasc in the numbers of claims. This is as
would be expected since any increasc associated with the year of
origin will become incorporated in the relationship of the A,. Thus,
if some idca of the rate of growth of the numbers of claims is availa-

ble, it would be feasible to adjust the values of is to correct for
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the growth factor. If the actual numbers are available then, of
course, the solution is equivalent to that derived by Dr. Taylor,
(but the bias referred to earlier may lead to minor differences).

14. Now the claim numbers settlement patternin»e 471 + ...,

can be written
71 ¥ 7y
o\l 4+ — 4 —— 4 ...,

%o Yo 7
— 70 (14 Ro+ RoRs + ....)
=7 (I +I’\?,l,z+1:’(l,i2}zz+ ceni )

If we select a suitable value of 23, judged from the trend of the
values of S,; and #, and the relationships in para 12, and use this
as an approximation to z, we can calculate a value for 7o (and
hence the settlement distribution). Using this same value of z we
can also calculate values of (A, ,/A,) = (L,/2) so that the relationships
between the successive exogencous influences can be found., The
carliest cohort gives the relation rohoSero == %o or

o
Aotto == g

Since the numbers are not known, we can find values of aeno,
M, . ... etc. to complete the solution. If some information about
growth is available, it is then possible to modify the values of A
to, say, Aonte, (A1 (10/m1))n1, . ... ctc. and thus climinate the growth
clement. .

15. It will be obvious from the foregoing that to use claims
amounts as a basis for projection when conditions are changing
rapidly or discontinuously involves some nice judgment decisions
but these can be considerably eased when claim numbers are
available. This facility is available from the current statutory
returns in the UK, which call for both numbers and amounts.
It has been found that the claims scttlement pattern estimated by
the basic chain ladder method on total claims is closely similar
to the pattern from the separation method, but the advantages of
the latter in providing values for the exogeneous factors which are
essentially discontinuous in form, can Dbe significant. In practice
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it is advantageous to use both techniques when the data is available
as the differences between the results may provide useful informa-
tion regarding the claim settlement structure.
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ON THE RATING OF A SPECIAL STOP LOSS COVER

GUNNAR BENKTANDER
Zurich

INTRODUCTION

Stop Loss reinsurance has attracted the interest of ASTIN
meinbers for years. May I recall the paper of Borch [1] in which
he demonstrates some optimality qualities of the stop loss reinsur-
ance from the ceding company’s point of view, the contribution of
Kahn [2] and the paper of Pesonen [3]. I also mention the paper
of Esscher [4] and Verbeek’s contribution [5]. Going back to the
pre-ASTIN days we find a paper of Dubois [6].

The rating problems have been dealt with by several authors.
Let me recall the rating formula worked out by a group of Dutch
Actuaries some 20 years ago. This was based on the assumption
that the mean and the standard deviation were known. Based on
Chebycheff’s inequality an approximation formula was worked out
which, of course, was heavily on the safe side.

Even younger members of ASTIN are probably familiar with the
studies made in the early sixties by a group of Swedish Actuaries,
the results of which were presented by Bohman at the Actuarial
Congress in London in 1964. Partly based on this, Bihlmann
worked out some tables which he used for rating purposes.

My present contribution to the subject may not justify the above
reviews, particularly as I will deal with a very special retention situa-
tion which a practical underwriter will rightly not accept, namely a
stop-loss point as low as equal to the mean value of the distribution.

My excuse for this is that the formula deduced is very handy
and that it is of value to the underwriter to know the stop loss risk
rate also at this low level.

Let us denote the aggregate annual claims amount for a certain
portfolio z and its distribution function IF(z) and define

E=m= fxdF(x)

V = ot = [ (v — E)2 dF(x)
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and the stop loss risk premium when the retention is 4

o(A) = | (x — A) dF(x).

A

We will study the special case

e(E) = [(x—E)dF(x) = f(E——x) aF(x).

a;_,a

CALCULATION OF ¢ (E) FOR VARIOUS DISTRIBUTIONS

1. I'(x) is generated by a Poisson process with the parameter A.
All claims are of equal size s. We have

E=2x-5s
and
V=»xa-s2
Further

e(E) = | (x — E) dF(x) = [ (E — %) dF (x)

!

B
=S (E—vw)P,)=F - I (1—vA) P,(v) =

i 0] [A] " ] -t
= E(Z Pt)— I Pv—1)) = E(Z B() — = P0)) =
= E - P(0)

where [2] is the integer part of A.

It is useful for the following if we replace in the formula
S\

PN = =53
the factorial by the I-function.

Thus
o=t A
TTh+1)

As seen in the following table the error is small.

B3
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~A 92
Comparison of P. with —=——:

.y
A Py () / ToTD
1.5 1.085
2.5 1.051
3.5 1.030
4.5 1.028
5.5 1.023
6.5 1.019
7.5 1.017
8.5 1.015
9.5 1.013
10.5 1.012

2. I’(x) is generated by a Poisson-Pareto process. In another
paper by G. Benktander ‘“A Motor Excess Rating Problem: Flat
Rate with Refund”, it has been shown that the formula for the
stop loss premium

e(E) 0 E - Py(3)

represents a remarkably good approximation.

The A to be used here should not be equal to the Poisson Para-
meter (the expected number of claims #) but smaller. A good value
is

Er  w(x + 1/k)?
% 4

(See G. Benktander ‘‘The Calculation of a Fluctuation Loading for
an Excess of Loss Cover’”’, ASTIN Bulletin, Volume VIII, Part 3.)

The results just obtained or referred to lead us to calculate e(E)
dircctly for some distributions which could describe the total
claims amount and compare it with E . P,(3).

3. The exponential distribution

Ji#) = (1/a) -2l

E=a V = a? A=1
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e(E)=f(1fa) (x—a) e dx=a j.:(y—-I) eVdy=a- ¢ '=E-Py(1)

a ]

For the exponential distribution thc formula is thus exact.

4. The Gamma distribution

) = o g v
X e X
T(y)
_I /_.Y_ _E:—_
E=- V= A= Y
Y’ Y Y'e’

e(E) =
Also in this case the formula is exact which is not surprising
considering the closc connection between the Gamma- and the

Poisson-distribution.

5. The normal distribution

I (z-m)t
fx) = e 5n
g Vzn
E=m V = g2 = g
0-2
1o x—m) _{z-m)? s . G
T TEmr o X = —— e~V Jy = —
= Ve f ” Vare f ) "= Von
™ °
as
m
G = —=
23
we get
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I
We thus have to compare with I, (3).
Vama

I

}\ —— 1)0 )\
Vamn ™

1 0.399 0.368
2 0.282 0.271
3 0.230 0.224
4 0.199 0.195
5 0.178 0.175
0 0.103 0.101
7 0.151 0.149
8 0.141 0.140
9 0.133 0.132
10 0.126 0.125
20 0.089 0.089

The approximation is very good and converges towards the
exact value. Using the Stirling-formula

I
7\!=I‘()\+I)=c"‘7\"l/27:7\(1+—1-5\+ ...... )
we get
0 e~ 1 I
WE T+ T I Y,
A+1 ‘/;7:7:(14‘;7)\4‘) 27TA
6. The Log-normal distribution
I In z -1 \*
X) = —=— e M=%
=
E = gn+on Vo= e (o — 1)
E? I

)\ _ = TIy

Vo oe—1
or

o= Vin (1 + /0.

The coefficient of variation is
W oo o1

0
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In practical applications the main interest should be concentrated
on the A-interval 1 to 100.

The corresponding interval for the dispersion of In x, o, is

Vin 2 to Vin 1.01 = 0.833 to 0.1.

After some calculations we get
o(E) = e" '™ {o(a]2) — 9(—a/2)} = E . [p(cf2) — p(— o/2)].

c -3 c P
x SRl e B
1 0.416 0.323 0.368
2 0.318 0.250 0.271
3 0.268 0.212 0.224
4 0.236 0.187 0.195
5 0.213 0.169 0.176
6 0.196 0.1506 0.161
7 0.183 0.145 0.149
8 0.172 0.130 0.140
9 0.162 0.129 0.132
10 0.154 0.123 0.125
20 0.110 0.088 0.089
30 0.091 0.072 0.073
40 0.079 0.063 0.063

The approximation is, as can be seen, good, slightly on the safec
side and converging towards the exact value when A increases. This
is not astonishing because

T al2

R

2 o] _9% 0
2 a( 0252 )
=—V_2_n'2 I— 8 R B
As o= VIn (1 + 1/n) co VI,
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7. Parcto
fB)=a-ax*'x>a >0
E - V= a2 -
L= d a = —_
L — P Ty — A= wle—2)
a a—1)\*-P r @ —1\* Y
o —1I o o o
N 1 a—1)e-1 Py (D
“ (1 —(= A (1)
2.25 0.56 0.231 0.570
2.5 1.25 0.214 0.358
2.75 2.00 0.199 0.270
3.00 3.00 0.185 0.224
3.25 4.06 0.173 0.195
3.50 5.25 0.162 0.174
3.75 0.56 0.153 0.157
4.00 8.00 0.144 0.140

The correspondence is not as good as in other examples above.
It has, however, to be kept in mind that the (unlimited) Pareto
distribution does not represent a good description of the total
claims amount.

8. F(x) is generated by a Poisson process with fluctuating basic

probabilities according to a Gamma-structure function (resulting
in a Negative Binomial distribution).

-

All claims are of equal size s.

fos) = T(fgf:;\g(h) (hf:-xy (hix)vv:“ e
E=x-s

A2s? k2
= )\ - §2 — -
V=hrstd o =2t 4 S

We transform this distribution in a Poisson distribution deter-
mining its parameter A’ in the same way as above.

E2 A2s2?
e Sl
As? 4 ——
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1A = 1/\ 4 1/h

- 3]
¢EY=E - 2 WrA—1)f(vy=E - T (1 —vA)flv)

ve[A]+1 v

is approximated by E . P, ,([A"]).

The approximation is good, cven for small & (= large variation
in the basic probability). '

'y A » A e (E) P 0
Neg. Binom. ‘ ey E » (VD)
1 15 0.037 0.380 0.392
2 15 1.705 0.288 0.302
4 15 3.158 0.220 0.223
8 15 5.217 0.173 0.175
1 25 0.962 0.375 0.382
2 25 1.852 0.281 0.291
4 25 3.448 0.210 0.217
8 25 6.001 0.160 0.161
1 50 0.980 0.372 0.375
2 50 1.923 0.276 0.281
4 50 3.704 0.203 0.209
8 50 6.897 0.150 0.I51
CoNcLUSION

We have seen that for a large group of distributions the risk
premium of a special stop loss cover (retention equal to the
expected value) can be approximately calculated by a handy
formula.

elE) =F - B([A)
with
A= E2V
E = Expected value of the distribution
V = ¢? = Variance. :

In 5. we have seen that
E 1

L-PQ) = I
I+—+...>

I2A



A SPECIAL STOI' LOSS COVER 41

G I o
T T < =T
Ver ( 1 fj ) Vz-n:
12 E*® +-
g
ImE -P,(A) = =
I VZTC

Thus the convenient approximation ¢(E) = of)/zr which is exact
in case of a normal distribution is more on the safe side than
P,(»). How does the approximation e(L) = of)/2x fit gencralized
Poisson distribution functions?

If we assume the existence of all moments of the claim size
distribution function and that the expected number of claims A
is large enough so that all terms of order oA ") and higher order
in the Edgeworth expansion can be neglected, then of|/zw is a good
approximation for the risk premium of the special stop loss cover.

{r]

(2]
(3]
(4]

(6]
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A RISK MEASURE ALTERNATIVE TO THE VARIANCE

B. BERLINER

Zurich

SUMMARY

The qualifications of the semivariance as a uscful risk measure arc ex-
amined and compared to those of the variance. Although on first sight the
scmivariance may seem more appropriate from the insured’s point of view
the analysis of this paper leads to a preference for the variance as a risk
measure.

INTRODUCTION

Since the following considerations may be important for the
reinsurance field the reader can always replace the words “insurer”
and “insured” by “reinsurer’” and ‘reinsured’”. Regarding the
variance as a risk measure for the insurer it is quite a natural
question to ask whether the negative deviations

x—E withz < Eand E = _|T x dlF (x)

that are in favour of the insurer can or should be called risky.
I7 is the distribution function of the portfolio’s total claims’ amount.

If we answer our question with “no” a consequence would be to
replace in the premium calculation for a portfolio the variance
principle

n=EL4+cV,c >0V =g (1)
by a semivariance principle
n=FE 4tV ¢ >0 (2)
where
Ve=V,iH Vo= [ (v —E2dI(x) (3)
and



ALTERNATIVE RISK MEASURE 43

H. Markowitz, in his book “‘Portfolio Selection”, chapter 1IX,
1959 [10], comprehensively analyses the properties of the semi-
variance as a measure of variability in a portfolio analysis.

If the domain of definition of F(x) is {4, B] we can always define
s' 0o for—w <a <
F(a)y =1 I'(x)for 4 <x<B  and replace I'(x) by 1'(x)

( 1 forB<x<

The terms ¢l in (1), €V 4 in (2) respectively are mcant to be
pure risk loadings. Loadings for administrative costs, commissions,
etc. are not considered.

The purpose of this paper is to investigate whether the variance
principle = = E + ¢V should be replaced by the semivariance
principle n = E 4 ¢V ,.

The lower integral limit in (3) shows that we also allow for
negative losses which can for example occur when due to a judge-
ment of a court of appeal the insured has to repay the insurer part
of the payments that he received in previous years.

The possible use of V', has already been mentioned or cven
recommended several times [2], [3], [6].

A. Properties of V 4

A1. V. depends only on the expected value E of the distribu-
tion function F(x) and on the structure of F(x) for x > E.

Az, Te<VandV,=V <=>V =o.

Therefore, if we replace in a premium calculation a V-loading
by a V" 4-loading we should enlarge the loading’s coefficient.

A3. Tor [ af(x)dx= f sgx)dx=E and f<g for x > E
follows V 4y g” V4. i

A4. Let us assume one point of intersection x > E and let
f(%) = g(&), f(x) > g(x) for E < x < % and g(x) > f(x) for x > 2.

Let us moreover assume

FHe— E)*"(flx) — gx))dx <

< § (s —E)'*"(g(x) — f(x))dx with —1 < < 1.
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Asscrtion: Then follows V45 < V4.

Proof:
(v — E)*(f(¥) —g(x))dx < (x—E)' " I’ (x — E)"'(f(x) — g(»))dx

3

"=

< (F—E) " [ (v — E)'*{g(x) — f(x)dx <

— ] (x — E}{/(x) — g(x))dx =
= [{x—E@gkx) —fa))dx=Vig— Vi >0 qed
B
A
=
Tig. 1
Corrolary 1: For y = — 1 we arrive at

A= [ () —g()dx < | (glx) —f(x))dx = B(Fig.1) =>V /< V 15

Corrolary 2: For v = 0 we arrive at:

E+1 = f(x——E)g(x)dx > f(x—E)f(x)dx =Egqi=>Vua>Vin
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i.e. if two portfolios I and II—characterized by the distribution
densities g(x) and f(x) (Fig. 1), both of which have the same pure
loss cost E—would have pure stop loss premiums Eug>Eum
excess E then follows for the respective loadings V41 > V.

The questions arise here firstly whether we should not usc the
pure stop loss premium excess the expected value

E.= [ (x— E)iF(x),

as an alternative to the standard deviation loading (dealt with in
(6]) and secondly what its relations to V', (except for the alrcady
above-mentioned corollary 2) are.

Approximations and an upper limit for £ . are given in {3] and [8].

As. TFrom A4. and Fig. 1 we can follow that ¥, is the larger,
the farther away to the right of E are substantial probabilities of
claims occurrences.

We could thercfore believe at the first moment that V' is closely
connected to the third central moment p; which, to a certain
degree, characterizes the dangerousness of a distribution function
or of a portfolio.

The argument often used is that given two risks or portfolios
having the same first and second central moments E, o2, the one
with the larger third central moment p, or skewness vy is the less
desirable one for the insurer becausc it is more dangerous [2], [9].
(J. Marschak for example proposed the use of the skewness y as
a risk measure already in 1938 [11].) The above argument is cer-
tainly correct for most distribution functions used in and needed
for insurance. Lct us, however, imagine a distribution function
with “enough” parameters which we could change in such a way
that E, ¢? and the distribution functions for x > E remain un-
changed while we are diminishing py perpetually by enlarging the
potential amounts of substantial profits with substantial but
diminishing probabilitics (deviations to the left from the expected
value) (Fig. 2).

Ey=En, Vi= Vi, Vi = Vi, ga1 > parn y1 > Y1

Would an insurance company say that portfolio I is more danger-
. ous than portfolio II and thus prefer portfolio II to portfolio 1?
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Can we at all speak of dangerousness when referring only to amounts
of profit? We think not, especially when the company utilizes the
profit z = = — x with a function #(z) with #’(z) > 0 and »"(z) <o such
that Eq{u(z | 2 > n — E)] > Enfu(z|z >~ — E)], thus making port-
folio I more ‘‘dangerous” respectively less profitable than port-
folio I.

- |
|
Profit area ' Portfolio |
~.
L= —
e = O
T -
1
I
I
{
|
I
l -
Profit area Portfolio Il
___{I v
7 > - e
This part is mainly This part is
to keep ¢ constant mainly to keep
and make u,or ] E constant.

negative.

Tig. 2

Finally we can follow from the above written and Fig. 2 that
from V41 < V+1I does not follow pa; < pagy or
Vit Van

from — <
Vi — Vn

does not follow y1 < vy

and vice versa.

The above reflections and those made in the introduction lead
us to the conclusion that V. is a better risk measure with respect
to the content of the word “‘dangerousness”, than V or u, or the
lincar combination ¢V + du,.
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B. Numerical examples lo illustrate some properties, in particular
property As.

Density functions describing the probabilitics of claims ¥

x fox fOE) feE) e fe
— 10 o o o 0,0001 0,02
o 0,18 0,198 0,076 0,0529 0,46
0,5 0 0 o 0,0440 o
0,80 0,800 0,920 0,8990 o
2 o o o o 0,50
10 0,02 o o ) 0,02
20 o 0 0,004 0,0040 o
100 o 0,002 o o o
E 1,00 1,000 1,000 1,0000 1,00
|4 1,80 19,800 1,520 1,5200 5,00
"y 1,02 14,602 1,444 1,4440 2,12
B 14,40 1940,400 27,436 27,2445 — 12,00

All the above distribution functions have the same expected
value E = 1.

Bi. The density function f®(x) illustrates as compared to
fW(x) numerically the fact that if the function's “tail” grows -
linearly and the ‘‘tail’s” probability diminishes linearly, V and V 4
are growing “almost linearly”, p; “‘almost quadratically”. I does
not change here at all, usually énly “a little bit”.

This shows how very dangerous it can be to use risk loadings
of third and larger order if the portfolio includes very large or even
catastrophe risks with an unknown, small probability of occurrence.

Bz. Since V' >V® we would conclude according to
property As. that risk I which is described by f()(x) is more danger-
ous than risk III which is described by f®)(x), although uf{" < u{®.

Let us imagine an insurance company with a utility function
u(r — x) = u(2) = 5(1 — ¢~ ?®) that can get a premium of = = 1,4
for insuring either risk I or risk I11. The calculation of the respective
expected utilities lead to
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Er (u(2)) = o,07
EIII (u(z)) = -—0,36.

Thus the insurance company would prefer to insure risk I rather
than risk III. It considers risk III more dangerous and less at-
tractive than risk I.

We constructed f®(x) to show that ¥, also is assailable with
respect to its reflecting “*dangerousness”’, however, this is true for
cvery risk measure.

We nevertheless prefer the result given in As., i.e. ¥V, to I or yg
as a measure of dangerousnecss.

B3. The density function f has been constructed in com-
parison to f™ according to the procecding described in As.

EW — E®

| 7450 R A L))

yeO = p®

far®) = fiz)(x) for £ > E® = EW = 1
and pi? < uf?

B4. The density function f® having a ncgative third central
moment shows more significantly than f* the contrast to f® and
the fact that

VasS Vo <#> pa < pape

Thus E® = E" = E®

Ve « p) )
VO <« 7 < &
w >ul’ >0 >pf.

C. Explicit expressions for V yand V [V for some disiribution func-
tions that arve of special importance in insurance and reinsurance

Ci. Normal distribution

(z-y*
I L L
fie) = I/Taa W, —w<x< w, — o< pL 00, 0<o< 0
K19

E=pu V=06, Vy=4jo02 Vo /V=1%
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Cz. Since the classical approximation of the generalized Poisson
distribution function is the normal distribution function [1], we
arrive for this approximation (first term of Edgeworth expansion)
at the same result as in Cr.

C3. For every symmetrical distribution function we have
ViV =4

C4. Exponential distribution
fr) =cePo<xrx<wo<e< ®
E=1/c;V =1/c?; V= 2[e 1fct; V]V = 2fe.

C5. Gamma distribution

c¥
flx) = ) e o< <0,0<Y<0,0<c< 0

Y Y
E=—; V=0 Vs =czr {e Y +T+1)—v (M}
1%
7~"—{6'*Y*‘+F() (0}

Thus V 4/V depends only on y, not on c. In the special case of

y = I we arrive at the exponential case that was discussed in C4.
Y | 4 +/V
0,5 0,801
0,736
0,677
0,647
0,629
0,616
0,606

S W D

For large y we can use the Stirling formula:

Let usdefmen =y —1

My) =T+ 1) ~7'e® f LLE R M A R Y
-va

~nthe T j' e htdt = Yam " e [12)

4
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D) —Tyy) =T+ )T, -+ 1) = | 27" Hdam o™ [ o™ 0
n+t vy
~ 4 Vzmath e ~ 3 Tly).

Thus
. eyt I'y) — L,(y)
lim — = lim — - lim ——————
ey = me e % T T Ty
li - ( Y )Y-% - + 1
= lim ——— | — = '
yow V2me \y —1 Vy
I
= lim —= b
y—w V27Y +
lim — =
oy =t

We want to calculate now the other extreme, namely lim V./V

>0
im PMx+y) =D =1

v—>0

V., Y
lim 7= m (1 +yeY—y [ e % d2) =
y—>0 y—0 .
Y
=1 — lim (f e %:dz)

y—0 °

For 0 < vy < 1 we have

Y Y Yz
o< [e ?Vdz < [e %dz = x——c‘*=y—; 4 - ...
Thus

h

lim (f e %%dz) = o and

¥y—>0 o
i V4
im — = I
y—0 V

As we see V|V, is independent of ¢ and is only slowly decreasing
as a function of y, slowly especially for y > 2.
C6. Pareto distribution

This distribution is of special importance for the excess of loss
reinsurer.
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fry=awa*x*la<x<o0 I<a<® 0<a< ®
* _. ata y 2a? (a——I)“‘z
= —Ma—2) = @—1) (s—2)

|4
V‘ (“__I)a-l ( « )-¢+1
|4 =2 « =2 o — I

While V and V ; exist only fora > 2 V [V like E exists fora > 1,
though for 1 < « < 2, V4+/V > 1 and thus does not makes sense.

-3

« Vv

2 I

2,5 0,930

3 0,889

4 0,844

5 0,819
10 0,775

a(7) -+ (La) ()<

. V+ . o—1I a-1
lim — = lim 2 =1

o—r2 V a—>»2 &

Vs ) \*-! 2

Iim —— =21lim {1 — - = -
| 4 a0 o e

oA->00

The quotient V[V . is independent of 2 and a slowly decreasing
function of «.

C7. Log normal distribution
_(nz~u)?
I 2%
=me 0<x<0, —OL<pL®Wo0<0o<<®
E = gu-bo’lz; V = 2+ (ec’___ 1)

y f (x — E)? o= _V’(mi-u)’d
+ = X — 4 X
J Vom o

S, f (ezuz+2u__zaa'lz+az+2u 4 ec’+2u.) e—y,z’dz'
]

I
—VZTtal

f(z)
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where

Inx—p
72 =
G

Denoting ¢(z) = 1/)/2m | ¢" %! du we arrive after some simple

calculations and substitutions at the expression:

v =2 o =3e)) o =2) el 4(-)

Thus

g V4V
o,I 0,550
0,5 0,693
1,0 0,851
2,0 0,989

f et

I
—_— =
a0 ¥V a—o0 €0 — 1 V27f
~afro

LY

. I I 1,42
— lim -O';——/—.: Jc %t dt
asoe € — I |21r
~ol
als

i ! ! f it =1—0—0=1
-— ———— ———— e /2 1 =— —_— _— =
olnl e —1 |2n —
~ale
i vV i I . ‘ (1 I 3 3)
lim 5 = I oo (o o) G R ool

I I o 2 o
— T Vi Ve
_ 1/2 * + o(c?)
T eso S F0(sY)
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The quotient V[V 4 is independent of p and a slowly increasing
function of g, slowly increasing especially for ¢ > 1.

C8. Let the portfolio’s claims function be generated
by a Poisson process (parameter A) with all claims
being of equal sizes.

AR
P(X=ns)=a"m, 0<A< 00,0 <S§ <

E=x-5;V=2x"3s

Vi= [ (x—E)dF(x) = V— [ (E — 2)2dF(x) —

3]

n\?2 AR
= s [1—2X - I——) ¢*—
= X (=) )
ORI A S
= )s? 1—7\26—)‘———}—27\ c’-———k}:c"—————
nl n 1n!
n=0 neo He~a
LN
n!
) | Al +1] Zy A%
— Asz o e')‘ ( —_— + Y —_
A — 1] ]! A

ae[M]

-~

‘;* s (—-[%], (h— D) + Z l,)

: ")

where [A] is the integer part of A.

If A is an integer, i.e. A = [A] then we have

o A-1
)\n ) )\u
=" —_—= I — ™" —
|4 n! n!

A Vv

1 0,6321
2 0,5940
5 0,5595
0 0,5421
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The quotient V 4/V isindependent of s and a slowly decreasing
function of A, slowly decreasing especially for A > 1.

Remark 1:

In cases C1.-C4. V 4/V is a fixed number, whereas in cases C5.-C8.
V +/V depends only on one parameter and is only slowly varying
with that parameter, especially in the parameter regions that are
interesting for the insurer.

Remark 2:

In all the cases C1.-C8. is V,/V > } and p, > o (for Pareto p,
exists only for « > 3). Also in the numerical examples we have
for f ) (x), f®(x), f®(x), f %) V,/V >}, us >0 whereas for f®)(z)
we observe V /V <3 and [T < 0.

The question arises therefore if the hypothesis V[V > } <=>
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ua = 0 is correct. This is not the case as we can conclude from
the following counter example.

-

Example
0,02857 for ¥ = —7
Let flx) = )o,45143forx = o
0,50000 forx = 2
0,02000 for x = 10

E =1,000; V =4,400; V,=2,120; V, K|V =0,482 < 0,500;
K3 = 0,00073 > 0.

D. Is V. to be preferred in gencral to V' as a risk measure or a risk
loading ?

When analyzing V' and V4 from a portfolio selection point of
view and putting up pros and cons, H. Markowitz does not come
to a universal proposal as to which of the two risk measures is to
be preferred {10].

For all that, Markowitz writes in [10] on page 194: “Analyses
based on S (our V,) tend to produce better portfolios than those
based on V.”

The main difference between an analysis considering appropriate
risk measures for the calculation of a premium or for a porifolio
selection are the underlying conditions and constraints. While we
may wish in insurance to establish a premium principle that takes
the dangerousness of a portiolio andjor the lack of statistics into
account, that is as just as possible to all customers that auto-
matically sets up an upper barrier of acceptance and so on, we may
for example wish to select a shares- or bonds-portfolio in such a
way that to a given expected return for the invested capital V or
V + becomes a minimum.

The choice between ¥ or 17, may therefore fall out differently
for a portfolio selection principle and for a premium calculation
principle. We are interested here in the latter case.

Having shown until now advantageous properties of V4 we
would like to list some disadvantageous properties in comparison
to V or the lack of properties of V', that we would like a risk
_measure to have and that V possesses.
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Di1. The variance loading is additive, i.e. the loading assigned
to the sum of two independent risks is the sum of the loadings
that are assigned to the two risks independently.

On the other hand the semivariance loading does not possess
the property of additivity.

Dz. Usually V, is more difficult and more time-consuming to
calculate than V.

If we wish to calculate for example the premium of a portfolio
consisting of # independent risks each of which has a distribution
function Fi(x), ....... , Fyu(x) then we need, in case of a V-loading,
to calculate only the variances of every risk and add them up. In
case of a Vi-loading the convoluted joint distribution function
Fi(x) * Fafx) * ....... * Fn(x) has to be determined for the cal-
culation of V4 which is usually complicated and time-consuming.

D3. TFor example if Fa(x), ...... , Fu(x) are Pareto distribu-
tions their convolution can not be written as a closed analytical
expression. Thus there exist cases when V' can be calculated easily
and exactly and V. can not be calculated exactly at all and an
approximation can only be got after complicated calculations.

D4. For a large class of infinitely divisible functions we arrive
in a first approximation at a variance loading if a company adds
an independent marginal treaty to its portfolio, without changing
its probability of obtaining a negative result [7], [4].

We have here an important property that characterizes a V-
loading and that a V ;-loading does not possess.

Not changing the probability of obtaining a negative result
means taking into consideration all possible results, losses as well
as profits. From this point of view it is logical to include the possible
profitable results in the risk measure which is done when using V,
but not when using V ; as a risk measure.

If an insurance company considers its internal problems and
does not want to increase its probability of ruin or of loss over a
certain period of time, i.e. if it looks upon a risk subjectively and
not objectively, its contemplations should lead it to a variance
rather than to a semivariance loading.
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Ds. Because of their quadratic nature the variance as well as
the semivariance loadings lead to an equilibrium state in an in-
" surance market. For each cover there exists a price minimum and
belonging to it fixed shares of the cover for each insurer and re-
insurer in the market. For the variance loading a simple and useful
approximation leads to shares that are very easily calculable [5].

Such a simple and useful solution to the equilibrium problem is
not known and probably does not exist if the semivariance is used
as a risk measure.

E. Final conclusion

In all cases dealt with in Cr1.-C8. all of which are important
for insurance V ,/V depended on less parameters than the under-
lying distribution function and was cither constant or dependent
on one parameter only.

In all cases where V, = constant - V' the variance and semi-
variance principles were identical since we can write

n=E4+cV=E+4cVwithc=rc: V4V,

If V ,/V depended on one parameter it was slowly varying with
that parameter, especially in those parameter regions that are
usually of interest for the insurer. In these cases and for all other
underlying distribution functions where 77 4/V is almost invariant
for parameter changes in certain regions we can replace in these
regions with a good approximation the semivariance as a risk
measure by the variance.

The advantageous properties of V¥, arc then approximately
(A1.) or generally (A3., A4.) fulfilled by 1.

On the other hand we can indeed conclude that the ‘‘theoretical”
properties of V are also generally approximately fulfilled by V.
(D1., D4.) but the “practical” disadvantages of V', as compared
to V (Dz., D3.) are neither removed nor facilitated.

We therefore conclude that the variance is usually to be preferred
to the semivariance as a risk measure. However we do not exclude
the possibility that for special cases the semivariance may be
preferable to the variance.
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CUMULANTS OF CONVOLUTION—MIXED DISTRIBUTIONS

ALAN Brown
Melbourne

1. CONVOLUTION—MIXED DISTRIBUTIONS

Consider a risk process which is characterised by three stochastic
variables

(1) the number of accidents, N,
(z) the number of claims per accident, C, and
(3) the amount of a claim, X.

Let Y be a random variable denoting the total loss in a given period.
Suppose that

pn = Prob (N =n) n=0,1I,2..
and
ve = Prob(C =c¢}anaccidenthasoccurred) ¢ =1, 2, 3...

If P, represents the probability that exactly r claims occur in the
period, then Kupper [4] has shown on certain simplifying assump-
tions that

P,= % p, o (@
where v;", the probability of exactly r claims in n accidents, is given
by \

on _ *(n-1) =
nt= I v, Yy forrzn, n=1,2,3....

e n-~1

and "= o0 forr<mn

Further

®] —

o= v,

' =1 for r =o
and v;° = o for r £ o
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Suppose that
F(x) = Prob (Y < x)
and S{x) = Prob (X < x)
The total loss can be expressed on certain simplifying assumptions
by the well known formula

Fx)= ¥ P, S%(x) (2)

ree

where S*7(x), the " convolution of the distribution function S(x),
is given by

ST(x) = [ S*V(x —2)dS(z)  for r=1,2,3....
S x) = S()
S*x) =1 for x >0
S =0 for x<o
Combining equations (1) and (z) together we obtain

Fi) = £ I p, 07 S"()

rwb ne D

= L I p, oS

LR ] r=-0

if we interchange the order of summation

Auxiliary Functions Associated with Probability Distributions

There are several useful auxiliary functions associated with a
distribution function F(x) of the random variable Y (see [3])

(r) Probability generating function
Gy(2) = Ep(®) = f 2® dl{x) (z real, positive)

-o

(2) Moment generating function
My() = Ey(e*® ) = [ ¢*® dF(x) (u real)
(3) Characteristic function i

bylt) = Ey(®) = [ 2 dF(x) (¢ real)

(4) Cumulant generating function
Ky() = log My(u)
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Provided the various integrals exist we can change from one auxi-
‘iary function to another by the transformations

u=1t=1logz

For instance Gy(e") = My(n)
and Ky(l) = log My (2
= log ¢y (f)

The Application of Generating Functions to Convolution—Mixed
Distributions

We depend heavily on the following well-known (see [3])
Lemma

If X1, X2....X, are independent and identically distributed
random variables

and Z"—"X1+X2+ ----- +Xn
then Gz(u) = [Gx(u)]"

Now from equation (3) we have

Gylz) = S 3 P, vt SM(x) 2®

=3 b Pn v;”GX,+X,+....XL"
=T I p, Gyl

. =2 $,6chc,e....40, Gx(2)

= Z Py [GelGx(2)]

= Gy(Gc(Gx(2))
Thyrion [5] has introduced a very wide class of distributions, the
distributions in a bunch (m = 2), and in a bunch of bunches (m > 2),
defined by generating functions in the following general form

Gyl2) = Gi(Ga(Gs, - - - .Gy 1 (G (2)) - . . ) m =2
where G,(z) are probability generating functions of integer valued
variables, j = I to (m — 1), and G,,(2) is any probability generating
function. ’
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A special case where the G,, j = 1 to m are all identical, occurs
in the theory of branching processes, where Y is the size of the mth
generation. The principal result of this paper is contained in the
following theorem, which is a generalisation of a known result in
the theory of branching processes {sce [2]).

Theorem
It Gy(@) = Gp(Ge(Gel(2)
then Kyn) = Kpy(Ko(Kx(u))) (4)
Proof
Let u=log z
then My(u) = Gy(2)

= Gpn(Gc(Gx(2))

= Gpn(Go(Mx(w)))

= Gy(Gele'*® M=)

= Gy(M(Kx(u))

= GN(g’OE' M, (Kx(u)))

= Mpy(Ko(K (%))

so that Ky(n) = Ky(Ko(Kx(u) as required

This theorem can obviously be extended to include the distribu-
tions, a bunch of bunches. By differentiating the cuamulant genera-
ting function and setting u = o we can obtain the cumulants of a
distribution. Using an obvious notation we can derive the following
relationships between the cumulants of a low order from equation

(4)-

Xy = K1y %ic Xix (5)
. 2 2 2 6
gy = Koy Ko X1y T My X2¢ Xax T Ky Xic Xax (6)

3 _3 3
Kzy = X3y X1 %ax 3+ 3%en Xig Ao Xax T 3Xay Xig Xex Xax
+ xiy ®ap Max + 3%y Xeoo X2y My + Ky Kig Xax (7)

- 4 .4 2 4 3 2
V.‘Y = X4N xlc Xlx + 6X3N ch xlc xlx + 6K3N )Clc x:Xv xlX
4 2 4 8 2
+ 4%y xgc %10 Xix & 3%y *ao Xy + I8Kay Xap Kap Hex X1y
2 3
+ 4%y Xi¢ Xax Max Tt 3%an %ic Xox
4
+ %y %40 xug + 6%y Xap Aoy Rix + 4%y Reg Kax Hiy
+ 3y koo Xex + Xy *ic Ky (8)
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These formulae, given in equations (5)-(8) can be used in the normal
power expansion [1]

F(x) = ®(y)
where ®(y) is the cumulative Normal distribution and
P X1y A3y 2
—_— = —— —1I
(xzy)uz 3’ + 6()(21;)3{’ (y )

2
Xuy X3y

24x3y 36%3y
In particular if the number of accidents, N, has a Poisson distribu-

tion with expected value Af, where X is a constant, then the cumu-
lants '

+ (' —3y) + (29° —59) + ... (9)

x]N = A fOl' 2111 j> ¢}

It follows that
wy = off) for all j> o

which is all that is required to establish the validity of the asymp-
totic expansion (9) for large values of &.
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COMPULSORY THIRD PARTY INSURANCE:
METHODS OF MAKING EXPLICIT
ALLOWANCE FOR INFLATION

B. J. BrutoN and J. R. CuMPSTON

Australia

SUMMARY

An inflation index is essential when constructing claim payment models
from past payment data, and when projecting these results to give estimates
of the provisions for outstanding claims and of nccessary premiums.

This paper examines the choice of inflation indices for compulsory third
party insurance in two Australian states. Two different indices, one based
on average weekly earnings per employed male unit and the other based
on consumcr prices, were tested. The index based on average weekly earnings
was considered to be superior in that past claim payment data, together
with this index, gave reasonably stable claim payment models.

Some experiments were made for an actual office to illustrate the effects
of different inflation ratc assumptions.

I. INTRODUCTION

This paper briefly examines thrce problems associated with
inflation—

{a) When determining provisions for outstanding claims, and
premium rates, how can past claim payments be adjusted to
remove the effects of inflation ?

(b) What proportion of claim payments, if any, is unaffected
by inflation after the accident ?

{c}) What is the effect of different assumptions in establishing
provisions for outstanding claims and premium rates?

2. GENERAL BACKGROUND

In Australia, compulsory third party insurance (CTP) covers
personal injury received in road accidents, but not damage to
vehicles. The amount payable is unlimited, but may be reduced
if contributory negligence by the injured person occurred.

In Victoria a large number of insurers shared the market until
recently when statutory control of premiums resulted in all but
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two insurers withdrawing from the field. In Western Australia, the
Motor Vehicle Insurance Trust has had a statutory monopoly for
about twenty-five years.

Data has been supplied by one of the two current Victorian
insurers, and by the Motor Vehicle Insurance Trust of W.A, Thesc
two insurers are of similar size, each making payments to about
7,500 injured persons per annum. We record our appreciation in
being able to publish figures from these two sources.

3. INSURED CASUALTIES

Data was obtained showing the numbers of vehicles insured
during each financial year (period 1 July to following 30 June),
together with claim payments for the corresponding twelve months
sub-divided by financial year of accident.

It was considered necessary to convert data on numbers of
vehicles insured into data on insured casualties. In both states the
introduction of legislation making seat-belt usc compulsory has
led to a substantial decline in the numbers of persons injured or
killed in road accidents per registered vehicle. For this reason it
was considered that the numbers of insured vehicles provided a
poor measure of the underlying exposure to risk.

The increasing use of seat-belts may result in lower claim pay-
ments per insured casualty, making insured casualties itself an
unreliable measure.

4. ADJUSTMENT FOR INFLATION

We consider it is most desirable that explicit allowance be made
for inflation in determining premium rates and reserves for out-
standing claims. Accordingly, past claim payments should be
increased by subsequent inflation rates to bring them to current
values.

The Australian Bureau of Statistics publishes a number of
inflation indices, of which the most relevant are Average Weekly
Earnings per Employed Male Unit (AWE), and Consumer Price
Index (CPI).

Payments made in respect of CTP insurance can be classified
into a number of categories. Hospital, medical, loss of income and
other special damages amount to approximately 209, of total

5
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payments. Legal and investigation costs amount to about 209,
and general damages account for the remaining 609%,.

Hospital and medical expenses, loss of income payments and
legal expenses can be expected to reflect changes in carnings
patterns within the community. General damages are awarded by
courts (or mutually settled before action) without indication as to
the basis of determination; however, these amounts are set against
the background of general incomc levels prevailing at point of
payment.

Therefore, on a priori grounds it is considered that AWE is
likely to prove a more relevant inflation index than CPI. However,
a statistical method of testing the appropriateness of different
indices would be useful.

5. CLAIM PAYMENTS PER INSURED CASUALTY

Table 1 illustrates claim payments per insured casualty in respect
of the Motor Vehicle Insurance Trust of W.A., where past ex-
perience has been adjusted using AWE as the inflation index.
Further tables are shown in Appendix A for Western Australian
data using CPI to adjust past expericnce, and for Victorian data
using AWE and CPI.

TABLE 1
Financial W.A. claim payments per insurcd casualty during each of
year of the following years (claim payments adjusted
payment to 30/6/74 values using AWE index)
financial
year of
accident 1966/67 1967/68 1968/69 1969/70 1970/71 1971/72 1972{73 1973/74
$ $ $ $ $ $ $ $
¢ 60 58 125 104 101 113 124* 124*
1 326 395 313 396 366 326 414 331
2 469 460 475 414 504 419 438 404
3 307 439 388 339 332 3jo8 303 303
4 134 233 218 177 236 142 156 175
5 75 68 g9 86 8o 111 93 137
6 50 156 08 193 61 36 52 121
7 o 69 o o o 47 04 o
8 o o o o o () 81 o]

Total 1,421. 1,878 1,716 1,700 1,680 1,502 1,725 1,595

{* for explanation, sce Appendix A),
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If the appropriate inflation index has been used, and the con-
ditions affecting payments have been stable, level amounts should
appear in each row of the above table.

Accordingly, for each row a straight line was fitted on a least
squares basis (ignoring any values marked with asterisks).

This is illustrated in the following graph, where data from the
second, third, fifth and sixth rows of Table 1, together with fitted
lines, has been shown

4 payment per insured casualty
500 ]
Nﬁ‘\ -
.
400 . e ® * ® 3
. row2
o0 F *
+ + +
200
¥ — row>b
+
+ X rowb
100 F x x
X
s . ) 4 Fe 2 g2 2 1 war ‘
[ A I I N B  R v
Fig. 1

The slope of each of the fitted lines was tested to see if it was
significantly different from zero. The following table sets out the
slopes of each line together with an asterisk if the slope was sig-
nificantly different from zero (at the 5%, level).

A two-sided t-test was used, with {n — 2) degrees of freedom,
where # was the number of observations.

For both states, the fitted lines obtained using AWE had a
mixture of positive and negative slopes. By contrast, all but onc
of the fitted lines obtained using CPI had positive slopes. We
consider this provides some indication that AWE is a more suitable
inflation index than CPI in adjusting CTP experience.
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TABLE 2

Financial Slopes of trend lines fitted to claim payments per insured
year of casualty (claim payments adjusted to 30/6/74 valucs)
payment
— W.A. Victoria
financial
vear of AWE CPI AWE CPrl
. accident index index index index
o it 12* — 1 —1
1 2 5% 4 12
2 — 8 11 —8 13
3 — 11 3 —7 13
4 — 3 4 7 18*
5 7% g* 29* 32*
6 — 4 o 32* 33*

Although the significance levels between AWE and CPI were
inconclusive, we consider that the lower slopes generally provide
further confirmation that AW is a more relevant index.

6. TEsTs USING DIFFERENT PROPORTIONS UNAFFECTED BY
INFLATION

The preceding section assumes that all payments arc affected
by inflation. However, it is possible that a proportion of payments
(for example, hospital and medical expenses) is not affected by
inflation after the accident.

TaBLE 3
Financial Slopes of trend lines fitted to claim payments per insured
vear of casualty (claim payvments adjusted to 30/6/74 values using

payment  AWE index and assuming that proportions (p) of payments
— are not affccted by inflation after the accident)
financial
, : :
year of W.A. Victoria
accident p=o00 p=02 p=04 pH=00 p=02 pH=o04

(o] 11 11 11 — I — 1 -— 1
I 2 2 2 4 4 5
2 — 8 — 8 — 8 —8 —6 —4
3 — 11 — 11 — 11 —7 — 4 —2
4 — 3 — 3 — 3 7 1o 14
5 7* 8+ 9* 20* 33* 37*
6 — 4 — 4 — 4 32* 30* 41*
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The [ollowing table examines the slope of fitted lines using AWE
as an inflation index but assuming 20% and 40%, of payments
are not affected by inflation. .

As in the preceding table, the asterisks indicate the statistical
significance of the difference from zero of the slopes of the fitted
lines.

The above results do not provide any clear support for any
particular choice of p. Most of the available data, however, came
from a period of low stable inflation rates. Data from a period of
unstable inflation rates is necessary before any clear indication as
to the true value of p can be obtained.

7. WEIGHTING FACTOR

In order to reduce the cffett of year by year fluctuations, it
secems desirable that several years’ past experience should be
combinced when making estimates for future experience.

However, it is likely that various changes have occurred in past
vears which could permanently affect future experience, e.g. the
growing use of seat-belts has reduced the severity of road
accidents.

Therefore, we consider that data from recent years is likely to
be more reliable than old data. This suggests that estimates should
be made using weighted averages of data from several years,
placing more weight on the most recent data.

A method by which this can be achieved is described in Appendix
B. This method involves the use of a weighting factor in the range
o to 1. Claim payments made ‘““»” ycars ago are weighted by the
factor raised to the power (# — 1). A zero weighting factor only
considers the most recent year’s data, and a weighting factor of 1
gives a simple mean of the estimates derived from all the available
payment data.

8. ErrecTt oF VARYING ASSUMPTIONS

To illustrate the effect of varying assumptions on premium rates
and provisions for outstanding claims, the following estimates were
made for the Motor Vehicle Insurance Trust of W.A.
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TABLE 4
Preminums

Estimates of necessary earned premiums during 1974/75

Weight- High future inflation Low future inflation
ing -
factor AWE AWE Crl AWE AWE CP1
index, index, index, index, index, index,
p=o00 p=o04 p=00 pPp=00 PpP=04 pP=00
$M $M ™M $M $M $™M
0.0 19.7 17.8 16.8 13.0 13.2 i1.0
0.2 19.9 17.9 16.8 13.1 13.3 i1.0
0.4 20.0 17.9 16.6 13.2 13.4 109
0.6 20.2 180 16.3 13.3 13.4 10.7
0.8 20.3 18.1 15.7 13.4 13.5 10.3
1.0 20.4 18.1 15.0 13.5 13.5 9.9
Range of
estimates 3 9 2% 11 % 4 % 2 9, 10 %,
TABLE 5

Outstanding claims

Iistimates of provisions necessary for
outstanding claims at 30/6/74

Weight- High future inflation Low futurc inflation
ing
factor AWE AWE CPI AWE AWE CPI
index, index, index, index, index, index,
p=00 p=04 PpP=00 PHp=00 P=04 H =00
$M $M $M M $M $M
0.0 40.0 36.7 35.5 30.0 29.8 26.7
0.2 40.8 37.3 35.8 30.5 30.2 26.8
0.4 40.9 37.3 35.4 30.6 30.2 - 26.5
0.6 41.0 37.3 34-4 30.7 30.2 25.8
0.8 41.1 37.1 33.1 30.9 30.1 24.9
1.0 41.1 37.0 31.6 31.0 30.1 23.8
Range of
estimates 3 9 2 95 12 % 3% 1% 12 9%,

Inflation was taken into account on the following bases:

High future inflation: AWE increases by 28%, 24%, 20%, 169,
and 139% for financial years 1974{75 to
1978/79 and 10%, p.a. thereafter.

Low future inflation: AWE increases by 79, for each future year.

Smera e
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In all cases CPI increases have been taken as 49, p.a. less than
those for AWE. The above estimates were made assuming:

— investment earnings of 9%, p.a. in future

— claims administration expenses of 1% of the Avcrage provision
for outstanding claims during the year

— average premium delay of one month

— initial expenses of 19, of premiums

— profit and solvency margins of 12.5%, of premiums.

The above estimates show that when high future inflation is
expected, the use of a low index (such as CPI) can, as would be
expected, lead to underestimation of necessary future premiums
and provisions for outstanding claims. In such conditions, the use
of a more appropriate index (such as AWE) but too high a value of
p, can also lead to underestimation. Where a low index is used,
the degree of underestimation increases as the weighting factor
increases. This occurs because increasing weight is being placed on
payments made many years ago, which have not properly been
converted to current values.

If low future inflation is expected, the use of a low index can
also lead to underestimation. The use of a more suitable index,
but too high a value of , may however cause very little error. This
is because a high value of p leads to higher claim payments per
insured casualty derived from past data, compensating partly or
wholly for the underestimation of the future effects of inflation.

We consider that some indication of the relevance of the inflation
index can be obtained from the range of results obtained with
different weighting methods. The above tables show that the
estimates obtained using CPI as an index have a much greater
spread than those obtained using AWE. If there is reason to believe
that the underlying payment process has been stable for a number
of years, then a wide range of estimates resulting from different
weighting methods suggests that an inappropriate inflation index
has been used. This is only a rough criterion, however, and it would
appear unwise to conclude from the above ranges that the use of
AWE with p = 0.4 is better than the use.of AWE with $ = o.0.

The above tables clearly show the cffect of high inflation on
this class of insurance.



72 COMPULSORY THIRD PARTY INSURANCE

APPENDIX A
Claim payments per insured casualty
Table 1: See section 5 of text.
Table 6: Western Australia data using CPI to adjust past ex-
perience.
Table 7: Victorian data using AWE to adjust past experience.
Table 8: Victorian data using CPI to adjust past experience.

TaBLi O

Fi ial . . .
1nancia W.A. claim paymients per insured casualty during each of

p:;:’:; con{t the following yvears (claim payments adjusted
_ to 30/6/74 values using CPI index)

financial

year of

accident 1960/67 1967/068 196869 1969/70 1970/71 1971/72 1972/73 1973/74

$ $ $ $ $ $ $ $

o 41 42 95 83 87 102 112* 118*
1 224 285 237 318 315 293 373 315
2 323 332 359 332 435 377 394 384
3 211 317 294 272 286 277 273 288
4 92 168 105 142 203 128 141 166
5 52 49 75 (¢3) 069 100 83 130
6 34 113 74 155 52 33 47 115
7 o 50 o o o 42 58 [
8 (o] o o] o o (o] 73 °

Total 977 1,356 1,209 1,371 1,447 1,352 1,554 1,516

TABLE 7

Financial . . . . . .
Victorian claim payments per insured casualty during each of

':;c;:;;lft the following years (claim payments adjusted
p y___ to 30/6/74 values using AWE index)
financial

vear of 1965/ 1966/ 1967/ 1968/ 1969/ 1970/ 1971/ 1972/ 1973/
accident 66 67 68 69 70 71 “72 73 74

$ $ $ $ $ $ ¥ $ $
24 19 14 21 19 16 36* ,53* 50%
200 259 245 273 165 247 204 314

583 610  Go3 529 494 550 588

551 6og 537 541 510 503

380 394 349 414 407

196 204 246 278

97 127 161

57 83

41

O3 OOnp W N~ O
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TapLE 8
Financial  victorian claim payments per insured casualty during each of
year Of. the following years (claim payments adjusted
payment to 30/6/74 valucs using CPI index)
{financial

year of 1965/ 71966/ 1967/ 1968/ 1969/ 1970/ 1971/ 1972/ 1973/
accident 66 67 68 Gy 70 71 72 73 74

$ $ $ $ $ $ $ $ $

0 17 14 10 16 16 14 33* 49* 438*
1 193 196 193 228 146 224 247 300
2 441~ 480 503 467 449 514 501
3 434 507 474 491 477 537
4 317 348 316 388 388
5 173 185 230 205
6 88 119 153
7 53 80
8 39

Values marked with an asterisk are suspect, as they depend
considerably on the accuracy of adjustments made in order to
remove the effects of no-fault payment schemes. AZ the Victorian
values are approximate, as they have been derived from records
sub-divided by year of reporting, not year of accident.

APPENDIX B
Estimation methods

Let m(k) be the claim payments (in current values) per unit of
risk, paid in the (k& — 1)th vear after the year of accident,
which is to be estimated
¢(j) be the conversion factor used to convert claim payments
during the j'th most recent payment year to current values
(assuming that 100%, of all payments are directly linked to
the inflation index)
¢(7) be the exposure to risk in the j'th most recent accident
year
p be the proportion of claim payments not affected by inflation
after the accident
P(j, k) be the claim payments made in the 7'th most recent
payment year as a result of accidents in the (%2 -— 1)th year
prior to the payment year
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1 be the number of payment years for which data is available
M(34, k) be the estimate of m(k) derived from P(j, k)
w be the weighting” factor used when combining values of
M(j, k) in order to make an estimate of m(k)
g(7) be the increase in the inflation index forecast during the
#'th future year

and F(i, 7) be the claim payments in the ¢'th future year resulting
from the j'th most recent accident year.

The estimation methods used in this paper were:

L PGA c(j)
M0 = R {’“ T T }
L ey gy
T w " M5, )
m(k) = R
DR A

F(i, j) = e(5) ﬂz# [p+(1——/>)C(J') H (1+g(%)) (1 +€ii)>]



SOME INEQUALITIES FOR STOP-LOSS PREMIUMS

H. BUHLMANN, B. GacLiarDI, H. U. GERBER, E. STRAUB
Ziirich and Ann Arbor

1. A certain family of premium calculation principles
In this paper any given risk S (a random variable) is assumed to
have a (flmte or 1nf1mte) mean. We enforce this by imposing
E[ST) <
Let then v(f) be a twice differentiable function with
V() >0, v({) 20 —0o<i<+ @
and let z be a constant witho <z < 1.
We define the premium P as follows
P=sup{Q|— o0 <Q < + 0, E[¢(S—20)] >v((x —20Q)} (1)
or equivalently
P=sup{Q|—o<Q <+ c0,v- 0 E(»S—2zQ)] >(1—2)Q}. (2)
Notation: v-1(c0) = o0.
The definitions (1) and (equivalently) (2) are meaningful because
of the
Lemma: a) E{v(S — 2Q)] exists for all Qe(— o0, + o).
b) Theset{Q|— o0 <Q <+ 0, E[v(S—2Q)] >v((1—2)Q)}

is not empty.

Proof: a) Efv™(S—2Q)] v (0) - P[S > 2Q]+'(0) f (20—S)dP(S)

s<1Q

<v7(0) - P[S=2Q]+v'(0)[2Q+E(S7)]< 0

b) Becauseofa) E[v(S—zQ)]is al waysfinite orequal to + o
If ¥(— ) = — co then E[y(S — 2Q)] > v{(1 — 2)Q) is
satisfied for sufficiently small Q. The left hand side of

the inequality is a nonincreasing continuous function
in P (strictly decreasing if 2 > o), while the right hand
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side is a nondecreasing continuous function in Q (strictly
increasing if z < 1).

If v(— o) = ¢ finite then E[y(S — 20)] >¢
{(otherwise S would need to be equal to — co with

probability 1) and again E{v(S — 20)] > v((x — 2)Q)
is satisfied for sufficiently small Q.

From the lemma we conclude the following useful

Corrolary: There are two cases to be distinguished
a) finite case: There exists Q* (finite) with
E[v(S — 20™)] = v((1 — 2)@*) (1*)
or equivalently
vTlE[v(S — 20%)] = (1 —2)@* (2*)
then P = Q*.

b) infinite case: Otherwise P = + 0.
Proof: From the proof of the lemma it is obvious that @* under
a) coincides with the supremum defining P.

Our premium calculation principle is determined by the choice
of the function v and the.constant z satisfying the above conditions.
It satisfies the following very desirable postulates: For any risk S,
for which the premium P exists,

P,: P > E[S]
P, : P < Max [S]

Here Max [S] denotes the right hand end point of the range of S.

Proof: For P, we start with equation (2) and make use of Jensen's
inequality: P is the least upper bound of the set of Q’s for
which

(1 —2)Q < v-10E[y(S — 2Q)].

By Jensen's inequality
v-10E[v(S — 2Q)] = v-10v(E[S — 2Q]) = E[S]— 20.



INEQUALITIES FOR STOP-LOSS PREMIUMS 77

The set of Q's for which
Q < E[S] is hence a subset and its supremum
E[S] can not exceed the supremum P of the bigger set.

For P, we start with equation (2*) (only the case Max[S] < o
needs to be proved) and get
(1 —2)P =v-10 E[v(S — zP)]
< v-to Max [v(S — zP)]
= v-lov(Max [S — zP))
= Max [§] — zP q.e.d.

Remarks:
1) If z = 1, we obtain the principle of zero utility,

P = sup{Q | E[u(Q — 5)] < u(o)}
by setting «(t) = — v(— ¢).

2} If z = o, we obtain the mean value principle,
P =v-to E[y(S)].

3) In the case where the function v is linear or exponential, the
premium calculation principle does not depend on the value of z.

2. Partial Ordering among risks

Let G(x), H(x) be any distributions on the real line. Then we say
that G < H, if

(PO) [(x —t)dG(x) < [(x—t) dH(x), — 0 < ¢ < 0.
Condition (b) simply means that for anyv retention limit ¢ the
net stoploss premium for a risk whose cdf is G is not higher than the
one for a risk whose cdf is H. We do allow the case where the
integrals become infinite. Integration by parts leads to the fol-
lowing equivalent condition:

(PO") [ (1 — G dx < [ (1 — H(x)] dx.

The equivalence of (PO) and(PO’) in the case of infinite integrals
is e.g. proved in Feller 1I, page 150.
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Let us now consider two stop-loss arrangements based on risks
with cdf G and H, respectively. Let P, PH denote the corresponding
stop-loss premiums (x = retention limit). For example, PZ is
obtained as the least upper bound of the set of Q's for which

o((1 —2)Q) < v(—2Q) H(a) + [ vt —a—2Q) dHE)  (3)
and in the finite case as the unique solution of
o{(t — 2)PH] = v(— zPH) H(a) + [ v(t —a— zPH) dH() (3%)

The importance of the partial ordering introduced in this section
becomes evident in the following theorem:

Theorem 1: Suppose G << H
Then PS¢ <PH —w<a<+

Proof: 1f PH = conothingistobe proved. We therefore assume PH fi-
nite which implies | {1 — H(x)] dx < oo forall f e(— o0, + o0).
If we integrate in equation (3*) twice by pﬁrts, we obtain:

o(1 —2)PH) = v(—zPHy L [ v'(t—a—zPH) [1—H()] dt
= v(— zPH) + v'(— zPH) [ [1 — H()) dt
+ [0"(t — a — 2zPH) [ [1 — H(x)] dx dt.

Now we estimate the last two terms from below, replacing H by
G and using condition (PO’). By reversing the last step (integration
by parts) we arrive at

o[(1 — 2)PH] > v(— zPH) 4 [v'(t — « — zPB) [1 — G(f)] d¢
and therefore P¢ < PH q.e.d.

We postpone examples to sections 3 and 4 and conclude this
section with some useful lemmas. Their content is essentially that
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the partial ordering is preserved under mixing and under convolu-
tion.

Lemma 1: let (Gg), (Ha) be sequences of distributions, and
let (pn) be a discrete probability distribution. If G, < H, for

all %, then

S paGn < £ pnHn.

Proof : Apply monotone convergence theorem

Lemma 2: If G < H, then
G*F < H=xF.

Proof: To establish the validity of condition (PQO’), we observe that

[(1—G * F(x)] dx
= [ [ [t —G(x — s)] dF(s) dv

and by Fubini’s theorem

= [ [t —=G(y)]dy aF(s).
The last expression shows that we obtain an upper bound if we
replace G by H. q.e.d.

Lemma 3: I Gy < Hy, i =1, 2, ..., n), then
Gi*Gax ... %G, < Hi*Hax .. % H,

Proof: Repeated application of Lemma 2 leads to

GL #Ga *Gy * ... %G,
< Hi %Gz *Gy * ... %Gy
< Hy» Ha » Gy * ... %G,
< HiyxHox Hyx ... xGy etc.
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3. Application 1: Dangerous Distributions

Definition: A distribution H is called more dangerous than a
distribution G if (A) the first moments say pg, pm existand ue < py
and if (B) there is a constant f8 such that

G(x) < H(x)forx < B
G(x) = H(x) for x > £.

Example 1: Let G be unimodal with G(a-) = o0, G(b) = 1 for
— w < a<b< o Let ¢, d be numbers such that ¢ <a, b <d
and (¢ + d)/2 = p¢. Then the uniform distribution over the interval
(¢, d) is more dangerous than G.

Example 2: Let F be a distribution with Fla-) = o, F(b) =1
for —w0 <a<b< . Let

Soforx<y.p
Gx) =
2Iforx2pp
and
goforx<a
b —
H(x) = B fora<x<b

/ b—a
1 for x > b.

\

Then F is more dangerous than G, and H is more dangerous
than F.

Theorem 2: 1f H is more dangerous than G, then G < H.

Proof: Condition (PO’) is obviously satisfied if ¢ > B. If ¢ < p. its
validity can be seen as follows:

f[1—Gx)]dx — [ [1 — H(x)j dx

= [[H(x) — G(x)] dx

< [[H(x) —G(x)] dx = pe —un < o. q.e.d.

-o
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Tllustration r: Let S=S1+S2+ ... + Sn be a sum of =
independent risks. If we replace each of these risks by a more
dangerous risk, the stop-loss premium for the sum of these new
risks will be at least as high as the stop-loss premium for S (use
Theorems 1, 2 and Lemma 3).

Illustration 2: Let S be a risk with a compound Poisson distribu-
tion, say with Poisson parameter A and amount distribution F(x).
We assume that F(0) = o (only positive claims) and that F(M) = 1
for some M > o (a claim amount is at most M), and let u denote
the mean of F (i.e. the average claim amount). We compare S with
the two compound Poisson risks S*, S with fixed claim amounts
., M, respectively, and Poisson parametersi, A = A (w/M), respect-
ively. (Observe that E(S*) = E(S) = E(S™).) From Example 2
(with @ = 0, & = M), Lemmas 1, 3, and Theorems 1, 2 we obtain
inequalities for the corresponding stop-loss premiums:

Py <P, <PY
In the case of net stop-loss premiums the second inequality has

been proved by Gagliardi and Straub (Mitteilungen Vereinigung
schweizerischer Versicherungsmathematiker, 1974, Heft 2).

4. Application 2: Random sums of positive risks
In this section we shall compare a distribution of the form
G=(1—q)F*®+gF,0<¢<1 (4)

with one of the more general form

H= 3 paF*n (s)

where

0Zpn <1, X pn=1

Theorem 3: Suppose F(o) = o

If S npn = ¢, then G < H, where G, H are given by (4), (5).
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Proof: Firstly, we show that

n—1I

F <

I
%*0 — * —
— F* 4 ~F*n =12, ... (6)

which is a special case of Theorem 3.

To show the validity of condition (PO) we introduce the indepen-
dent random variables X, X, ... X, with common distribution F.
Then condition (PO) is equivalent to

T E(Xi—8).) < (n—1) (—8). + E[(Z Xi=—1f).].

Eml- =1

But the corresponding inequality is satisfied for any outcomes of
X1, X, ..., Xy

Secondly, we show that G < H in the general case. Since

= n—1 1
H = }_‘np,.[ " F*0 4 ” F"‘"] +(1—q F*

= 5 npnF + (1—gq) F*

this follows from equation (6) and Lemma 1.

Tllustration: Individual versus collective model: The individual
model is described by n numbers ¢;, 0 < ¢; < 1, and #n distribu-
tions Fy with Fy(o) = o. We have in mind a portfolio consisting
of n components. Then ¢; is the probability that a claim occurs in
component ¢, and Fy is the distribution of its amount. Let

Sind=8,4+Sa+ ... + S,

denote the total claims of the portfolio, where
Prob(Si=0)=1—¢
Prob (S: < x) =1 —q; + ¢Fi(x), x >0

for: =1, 2, ..., n. We assume that Sy, Sz, ..., S, are independent

and denote the stop-loss premium for S!2d by Pind (4 — retention
limit).
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A collective model is assigned to the individual model in a well
known fashion: Let Scoll denote the compound Poisson random
variable with

Poisson parameter A= X ¢;

i=1

Amount distribution F = Z qi/A Fq.
{m1

Let P! denote the stop-loss premium for S By applying
Theorem 3 to each of the # components (replacing S¢ by a compound
Poisson random variable with Poisson parameter g; and amount
distribution F;), we recognize from Theorem 1 and Lemma 3 that
pind < peoll Thyus a cautious reinsurer will piefer the collective
model to the individual model.



STUDY OF FACTORS INFLUENCING THE RISK
AND THEIR RELATION TO CREDIBILITY THEORY

Maria AMELIA CABRAL and JORGE AFONSO GARCIA
Lisbon

I. INTRODUCTION

The study and analysis of the various factors influencing in- '

surance risks constitutes an intricate and usually quite extensive
problem. We have to consider on the one hand the nature and
heterogeneity of the elements we have been able to measure, and
on the other the problem of deciding—without knowing exactly
what results to expect—on the types of analysis to carry out and
the form in which to present the results.

These difficulties, essentially stemming from the fact that we
cannot easily define ‘‘a priori” a measure of influence, can be
overcome only by using highly sophisticated mathematical models.
The researcher must define his objectives clearly if he is to avoid
spending too much of his time in exploring such models.

Either for these reasons or for lack of our experience in this
field we were led to the study of three models, presenting entirely
different characteristics though based on the analysis and
behaviour of mean value fluctuations, measured by their variances
or by the least-squares method.

Our first model, described in II. 1, associates the notion of in-
fluence with the notion of variance. It analyses in detail the
alteration of the mean values variance, when what we refer to
as a ‘“‘margination” is executed in the parameter space, taking
each of the parameters in turn. We start off by having » distinct
parameters, reducing them by one with each step.

As a complement of this method and allowing for an influence
of residual character due to ignored or simply unknown factors,
we tried to introduce a small correction to the usual credibility
coefficients in order to provide for the explicit appearance of this
residual influence. This type of influence is closely related to the
existence of a tariff for the collective we are considering.
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The second model, described in II. 3, is fundamentally based
on the least-squares method, and the way in which the influences
are constructed and determined closely relates it to credibility
theory.

The application of the resulting model seems simple and practical,
although its theoretical study still needs a great deal of develop-
ment, but unfortunately we were not able to carry it out in time
for it to be incorporated in this paper.

The third model, briefly described in III. 2, is based on the 2
test, giving it classical characteristics which lead to a laborious
form of analysis and the determination of innumerable distribution
furictions (D.F.). For this reason the only purpose it served was
that of testing the Values obtained by the other two methods.

Finally, in III, we give numerical examples of the models we
have described, comparing them and discussing their practical
application.

I1. DESCRIPTION OF THE MODELS

1. Variance method

Consider a collective @ composed of risks 6 characterized by =
distinct parameters corresponding to # factors, whose influence
we wish to determine.

For simplicity suppose that all parameters assume positive
integers

f

0, 1,2,3,..., %

éz =1,2,3,...,R
bn=1:3,3, "-:kﬂ

We then have 8 = (61, 0¢, ..., 05). The structure function U(8)
defined in the collective ® represents the D.F. of the risks 6 in
that collective.

Let wisk... and pyi... be respectively the mean value of the
risk 8 (in which 01 =17, 82 = j, 63 = %, ...) and the probability
of randomly extracting that risk from the collective, that is the
probability corresponding to the D.F. U(9).
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We should note that knowing U(8) and 6 itself does not mean
necessarily that 9 is the real risk parameter, that is, 8 merely
represents the known vector corresponding to the factors being
considered. Obviously for each risk there will be a more general
unknown parameter of which 9 is part. Thus, we can use for a
certain risk the parameter (87, 0g), 87 being the known part of
the parameter and 6z the unknown, corresponding to the ignored
or unknown factors. In this case, the true structure function
U®7,8g) will also be unknown. Thus, the values we will use
correspond in a certain way to the marginal values U(6p,.), u(67,.)
and (0rp,.).

Let us consider the marginal values corresponding to the mar-
gination carried out in the parameter space T = {(61, 62, ...94)}
when one or more of these parameters are no longer considered.

Thus:

*y

Z pyk... Pijk... .
(£ 31
Begk... = W s Degk... = I Duk...
Z buk... =
i=y
L wisk... Pyx...
i ]
k... = ; Peek... =X
Beok... Z Y Dok ¢.1p“k
Considering the variances of p. (81, 82, ..., 08a), w (-, 02, ..., 05},
(., ., 83, ...,05), etc., and their respective differences
V. = I uwy.. b — & with p = Eg {(6)]
Lk ...
Vi= Z uy  bp. —& (margining in 8,)
bk
Vo = I W, bri.. —u'  (margining in 6,)
[ A SN
Vie= Z ¢y bop... — ¢

L =V—-V,la=V—Ve, ..., Jta = V—"Vi,, ...
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We can see that the ‘“‘operation” of margination, as it levels
the mean values, nearly always causes a lowering of the variance,
which can be seen by the following theorem.

Theorem I
Considering 0 = (61, 82, ..., 05) and 0’ = (8, ..., 0,) (without
loss of generality) the following inequality is always true:
Var [u(0)] < Var [u(8)]

Proof:
For simplicity we will only use two parameters: 6: and ..

Thus
0 = (0:,02); 6 = 8

We then have
Var(p®)] = I ufpy — =V
and
Var [u(8')] = E, Wy by — =7,
I, =V—-V = E G-’-%j by — ? l-l':-,j b,

making piy = @.; + ay we have
Z ay py
i

o= e +
ef = ey Y

which implies
Zaypy=o0 vj.
In this way ‘
I, = ’2 (W% 05 + :Z %y Py + 2 1y Z.: ay by — by = E ol by

Corollary 1

We see that the values of I1, Iz, ..., 12, ... defined previously
never have negative values.

Corollary 2

We can easily verify that I, = o if and only if ay; = o that is
iy = p.g for all ;.
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This corollary gives us a first approximation to the influence
concept, since w;; = w.; implies that, at least considering the
mean values, 61 has no influence.

A second approximation to this concept will be given by the
following notion of independence, defined only for mean values.

Definition of independence

We can say that 6; and 02 have independent influences on the
risk, if and only if the variation of uy with 7 is independent of the
value of j. We should note that this notion is a particular case of
the true notion of independence, which should be set out in the
same manner, by using the D.F. of the total amount of claims
during a certain period.

From this definition we arrive at the following theorem:

Theorem 2
If 61 and 62 are independent through their distribution in the
collective ® and if they have independent influences, then
Tio = 11 + I.
Proof:

By the definition of independence in relation to the D.F. U(8),
we can write the following equality:

p D skl Ptekl
el = —
1 Dokl

By the hypothesis of independent influences on the risk, we can
also write
Rkl = puk + ikl vj
We then have
2wkt pijui

%
Wejkl = Wikl +
d 7 y

or taking
Z ikt Dike
i

Deskl = ()

Regkt = Mgkt + %ex (7)
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On the other hand, we have

Rioki = Wleki -+ %kl

and
Z ikl Pkt
3
Reekl = 182 + e b xl = Wik + %exl
in which
Z () peimt
wopi =
Since

Il+12_Il2= V—Vl—Vﬂ,«'- V13=
=X a’y b — E“ Celd) Pim

ki

and
L oaw pycr Z ok poski Prort T ikl Pk
wonlf) = Dot | poampenrt ‘ pow M
We conclude immediately thaf
Ie=I1+ 1,

We should note that the inverse property of theorem of 2 is
not always true.

From the previous theorem we can conclude that
Iy... <V

In summary, the values J have the following properties:
1 — I >o
2 — I(61+02) = I(61) + I(82) if 6, and .
are independent, that is, if they are uncorrelated in the ways
described above.

The operation 6; - 02 corresponds to the ‘“union” of influences
and not to its “intersection’’ as one could be led to believe, as it
is a global influence of 6, and 0.
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By the properties 1 and 2 we can treat the value I(8) as the
measure of the influence of the parameter on the risk.
Comparing the second property with the union of events defined
in the probability space, characterized by
P(A1UAU.. . UAns) = P(A1) + P(A2) + ... + P(4d4) —
— PA1NAds) —...—PAp1Ndn) +...+
+ (—I)r 1t P(A;NA42N ... NAdg),
it is possible to generalize that property.giving it a similar form.
In order to make the comparison more evident we can still write
PA;N A;) = CP(4q, 4y)
if we consider the probability of the “intersection” of events as the
“coprobability” between A and 4;.

Theorem 3
Representing Cliz2.,.x by the following expression:
Clz. . x=V—Vi—...—
—Vie+V+...+Veexg+...(— 0%V &
k being the number of the parameters considered, we can write:
I(B;,Og,...,(),.) =l 4+ Tao4+... 4+ Ip—

—~Che—...—Clg.in+ ...+ (—1)"*1Cli2. 4
Proof:
For simplicity, consider only three parameters: 61, 62 and 6s.
We have,
L=V—-V,
In=V—Va
Is=V —V,

Cle=V —-Vi—V2+ Vi2
Clu=V —-Vi—Vs+ Via
Clas=V —Va—V3+ Vo
Clhis=V—-V1—Ve—Va+ Viz+ Vizg + Vez — Vi
I+ Ts 4+ Is—Clie —Clia —Clas 4 Cli2s = V — Va3,

As we have only three parameters, Vi = 0.
Thus the theorem is proved.
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By this theorem and comparing the coprobabilities with the CJ
we can say that they are in a certain way the measure of the
coinfluence.

We could also show by a laborious set of calculations that when
I, Is, ..., I, have a variance structure, Cliz, ..., Cl;1s have
a generalized covariance structure.

If we consider the following diagram:

(245k2
1 NG
ekt Ina ®.ax
2 G
Y
..k

we can establish the following relations, easily verified by the
previous theorems:

Ia=I+Iyn=1I2s4+ I

In a general way [i2 < Ii1 + Iz the equality being verified if
and only if I; == Is;1 and 1 = Iij2 that is, in the case of the
factors 01 and 0: having independent influences.

We note that it is not easy to establish for /(6) a measure space,
similar to the probability spaces or to other spaces defined in the
sense of measure theory.

At this point it is important to realize that CI can assume negative
values. The measure I resembles the notion of a force not only
in its nature but also in its effect.

The influence of a certain factor can be considered a type of a
potential force which, isolated or in conjunction with others, will
bring about a claim.
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Although I(8;) defines in a certain way the measure of influence
of the parameter 6;, we are interested in a global measure rather
than considering the influence on its own.

Thus, we are interested in the ‘‘measure’” of the effect or the
contribution of the parameter, in conjunction with all other
influences. In this case, we are obliged to consider the coinfluences,
which could be as important as, or more important than, the
influences themselves. How then should we proceed?

It seems that an input of the CI proportional to the influences
of each parameter could solve the problem. However, we have to
admit that such a procedure involves some risks. For example,
an isolated parameter could appear to have a weak influence and
contribute a small value for I, and with its association with other
parameters; specially for certain particular values, could have a
very strong influence. In this case, the method we have followed
would fail completely. We think that common sense, aided by
discussion with the manager responsible for the class of business
being considered, should ensure that no serious mistakes are made.

2. The existence of a residual influence and its relation to the
credibility premium ‘

There should be a difference between the value of I{f, 92, .. ., 0,)
and the true value of Var [u(0)] representing the global influence
of all factors.

In effect, working with the marginal value (8r,-) instead of
(0, 6g) will give in the general case I(f, 02, . .., 08,) << Var [u(8)],
a direct consequence of theorem I.

As it is relatively simple to estimate Var [u(8)] for the collective
and as we calculate the value of I, we would be left with the
difference I(6g) which we will call the residual influence.

Thus, the following equality will hold
Var [u(0)] = I{(61, 62,...,9,) + I(BR).

When the factors 0;,0:,...,0, are those considered by the
tariff we call 7(6y, 62, ..., 0,) the influence of the tariff, I{67).

Thus, the previous equality will be written as follows:
Var [w(8)] = I(81) + I(8z)
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We can also see that the more factors (among those having an
influence on the risk) that we eliminate from the tariff, the more
significant the residual influence will be.

This very often leads to highly, heterogeneous classes of risks,
and eventually an unsuitable tariff structure. Thus, in general
the tariff premium is nothing more than an indicator of the char-
acteristics of risks to which it is applied, so that it is often necessary
to readapt the risk premium by using a credibility premium. It
can still happen that because of the choice of parameters, the
risk is placed in a tariff class different from that in which it would
be placed if the .intrinsic values were used. The previous consider-
ations lead us to believe in the need to calculate the credibility
premium, modifying it by the value of the residual influence.

Once again let us consider the collective, over which we suppose
a tariff is defined by parameters 0. Still considering a set of
unknown parameters denoted by 6g, each risk 6 would then be
characterized by the pair (87, 0r).

As we stated previously, U(fr, 6g) is unknown, but we do
know its marginal U(6r, .) characterizing the distribution of the
risks in the collective tariff classes.

In the same way
w(p, 0g) = [ xdG®r " (y)

is unknown.

Nevertheless the value
' [ u(®r, 87) dU(Or, 8r)

J daU07, 0R)

w@r,.) = [ xdG%)(x) =

is known, G (x) being the D.F. of the total amount of claims
corresponding to the tarif class 67.

In the same manner we have

w = E[u@®)] = [ w®r,0r) aU(01, bg)

TXR

= [ u(0r,.)dU{B7,.)
= Efu(0r,.)].
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Now we shall deduce certain expressions which will be needed
in the calculation of the credibility coefficients.

I.

ETx R[P'(BT! OR) X E‘L(ST' ‘)] = ET[HZ(BT' ')]r
since

J' P-(eT;eR) X [.L(eT,.) dU(eT, eR) =

TXR

= [ u(®r,.) | u®r,08) dUQ@r,08) = [ u*br,.)dUbr,.)

Es.oxalS X w71, 08)] = Ep.alu2(0r, 08)]
where

T Si4+Sa+4...+Sn

n

Si being the global amount of the observed claims of each risk
during the period +.

Proof:

Esxrx3[§_>_< w07, Og)]
= | Sxu®r,08) dW[(S1,Sz,...,Sa)/(Or,08)]dU®OT,08) 1)

SxTxR

= [ Sxu(dr,0z) dGCr®(S)) .. dGCr®(S,) AU B, Bz) Y

SXTxR

= [ u®r, 0r)[[ S dGOr(S,) ... G (S,)] dUB7, Or)

TXR

= | w®r,08) E[S/ (07, 08)] dU (87, 0R)

TxR

= [ w87, 0R) dU(07, OR)

= Ep.r(p2r, 0gr)].
We note that
E[S/(Br, 08)] = E[Si/ (07, 8r)] = u(Br, Or)

1) The relation is justified by Bayes’s theorem and the assumed indepence
of 81, S2, ..., Sa.
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Escrxg[S X pr,.)] = Ep[u20r,.)]
From 2, we have
Escr«Rr[S X u@®r,.)] = [ u®r,.) X u®r, 0g) dU(Ar, 6r)

TR

(O7,.) [ u(®7,0R) dU(B7, OR)

= T; u0r,.) dUO7,.) = Ep[u(dp,.)]
4.
Er.a{u®r, 08) X w(®r,.)] = Es.r<alS X u(®r,.)]

Credibility Premium
Linearisation of the expected value part.
The fundamental problem resides in the determination of
Ep(u®2,08)/S1,S2,..., Syl
knowing the value p(fr,.).

We will try to approximate to that value by the usual method
of minimizing the variance in the collective. Considering the
equality

Er{p(07,08R)/S1,S2,...,Sa]=a+1b wp,.} +¢S
where the constants 2, b and ¢ are determined by minimization
of the following expression

Es r{E[u(0r,08)/S1, Sz, ..., Su] —[a+bu(dr,.) + ¢ ST} (A)
We followed two criteria to determine the values of these constants.
Following Prof. Biihlmann we can easily see that minimizing the
expression (A) is equivalent to minimizing
Esxr«r{uOr,08) —[a + b u(@r,.) + ¢S]} _
= Es«rxrl{(6 + ¢) [u(0r, 8r) — u(br,.)] + [c[n(dr,.) — ST +

+ [(1 —b—2c) u(Br, 8r) — ] }¥] (B)
Putting
S « = E[{u(®r, 08) — u(Bz,.)}]
8 = E({ulor,.) — S}
| ¢ = Efw6r, 0n) — usor, )
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and developing (B) we obtain the following expression
flb,0) = (b + 02+ 28 + (1 — b — )2 var [u(br, Or)] —
—zBt4ct+2bc—0b)y

Taking the partial derivatives of the function f(4,¢c)
and resolving the system
E
N =0

we obtain the following wvalues
Y
c ==
3 —_— a=20

b I —

I

wIi=

2. Starting on the L.H.S. of the expression defined in (B),
squaring it out and taking derivatives, we have:

s a— Efu(@r,08)] + b E[p(0r,.)] ~cE(S) =0
b E(u2(0r,.)] — E(w(®r, 08) X u(07,.)] + a E[u@6r,.)] +
( i i o+ ¢ E{u(dr,.) X S_J

¢ E(S?) — E(u(dr,0r) x S]+ a E(S) + b E[p(ir,.) X S]

From these equations we can obtain:
a =({1—b—cju=o0
_ E[p(®r, 08)] — E[p(0r, .)]
E{{u(or,.) — S}
_ E[uBr, 65)] — E[p¥(67, .)]
~ E[{u(r..) —S¥

Finally we will have for the expected value part of the credibility
premium the following linearisation

b =

- N

E[w®71,08) /S1,...,Sa) = (1 —¢) p(Bg,.) + ¢S
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If we compare this expression to that normally considered in
credibility theory, that is

Eu®)/S1,....Sa]=(1—bu+5S

we note that they are of the same form. On the other hand, com-
paring the credibility coefficients ¢ and &, in which
var [u(be, 8g)] — var [u(87, .)]

¢ = = (1)
var (S) — var (u(07, .)]

__ var [u(or, 68)]

v var (5) (2)

we can conclude that the expression (2) is a particular case of (1)
if no tariff is considered over the collective.

We can easily see that ¢ < b.

x x—2 .
Takingb=§andc= — where x, y, 2 >0, x <y and
z <y we have:
X—2Z X Xy—YyI—xy -+ Xz
C—b = —_———
y—z ¥ y(y—2)
z(x—y)
=——<
y(y—12)

If we use the value of & obtained by the expression (2) for all
the collective independently of the tariff class, we verify the
following theorem.

Theorem 4

If we consider the collective @ partitioned into well defined
classes of risk, the following inequality holds:

E[{u@®r,0r) — (1 —¢) u®r,.) —c S} <
(3) )
< E[{p(®r,088) — (1 —b)u—>bS))
(4)
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Proof:

(4) = E[{(u(8r,08) —u) + b (u — )}

= var [u(8r, Or)] + b2 var (S) + 26w E{u(8r, 08)] —
—2 b E[u(0r,08) X S]—2bu+2buE(S)

= var [u(0r, Og)] + b2 var (S) + 2 b p2 —
—2b E[p(0p,0p)] —2bp2 4 2bpt
var? (87, Og) var [u(87, OR)]
= varfu(®r, 82] + var (§) .— B var (§)
= var {uBr,08)] X (x —10).
On the other hand 3
(3) = E[{(u(07, 02) — u(dz..)) + ¢ (ul0r, ) — )}
= var [u(Br, Or)] — var (u(0p,.)] + c2[var (S) —
—var [u@7, )] + 2¢ E[p*(07,.) — p*(0r, 0r) —
' —u2(0r,.) + p2(0r,.)]

I

= var [u(f7, 8g)] — var [p(8r, .)] —
{var (w07, B8)] — var [u(67, )]}

var (S) — var [u(8s, .)]
= {var (u(8z, 0)] — var [u(®7,.)]} X (1 —¢)

Subtracting the two expressions
var [u(87, .)]
4)—@3) =
{var (S) — var [u(fr, .) )1} var (S
X {var [u(8r, Og)] — var (S)}2.

As the numerator and the denominator are positive we con-
clude that

(4) > (3)

Credibility influences method

Let 01 and 82-be two parameters by which we want to determine
the tariff for a certain risk. We can assume, without loss of gener-
ality, that w(8,.) < u(., 82).

With similar reasoning as used in the construction of the cred-
ibility premium. we can imagine two insurers A and B with the
following philosophies:
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— A, the more optimistic, assumes that 01 is the parameter with
the greater influence and uses for the net premium the mean
value u(61,.)

— B, the more pessimistic, assumes 62 to be the more influential
parameter and uses (., 02) as his net premium.

If we imagine a further insurer C, without such extrame positions,
he will attribute the intermediate value g = a1 (01, .) + a2 (., 82)
to the risk w(6:, 82).

We are assuming that all of them ignore (61, 82). We believe
that if no other information is available, C will use intuitively,

ap = oz == 0.5.

If he thinks that 8; has more influence than 82 he will naturally .

use a1 > a2 maintaining the sum w1 + a2 = I.

All in all, «; and «e represent the credibility attributed by C
to the factors, or better still, to each of their influences.

It seems that this philosophy can be generalized to all factors
in order to obtain the desired measure of influence.

Consider n parametrised factors 61, 62, ..., 84 and assume that
the marginal mean values y1 = p(61,.,...), pa = (., B2,.,...),
etc. are known. The problem we wish to solve consists in approx-
imating the unknown value u(f7, 8z) by the linear combination
a1 + oz e + ... + xpun. Using the least-squares method
normally applied in credibility theory we can determine o1, a2, . . .,y
by minimizing the expression

E[{u(®r,0r) — (1 o1 + pace + ... + pn o) }2] (1)

Squaring out this expression we obtain:

E[u*(Op. 0p)] + el E(d) + ... + a2 E(ul) —
—2a Efum X @07, 0r)] — ... — 224 E{pn X p(d7, 88)] +
+ 2 ‘EI wiog E (s X py) (2)

Taking derivatives in the other a1, «2, ..., ay, dividing by two
and equating to zero, we have:

% E(uf) —E(u]) + oo E(y X o) +... + 2, E(py X py) =0
E(us) —E(u) + 2 E(we X y) +.-. + 2, Epg X ) =0

{

( “nE(P-i) —E(Hf.)+“xE(ELnX£11)+ . -+°‘n-1E(E"n-1XP-n) =0
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Writing Ey for Efy;. X w.;] the system becomes:

_Eu E12 Em_ _cu-‘ B Eu 7]
Ean Eo2 ... Esp o2 Eqs
__Em En?. Enn_ | _%n _| . Enn_

As Eyy = Ej the matrix [Eyy] is symmetric. We should note

that £ oy = 1; so the approximation being considered is free

fm1

from bias.

It should be easy to prove that, if there are two or more factors
with no influence, from the mean value point of view, this system
will be indeterminate. In effect, its complete matrix will then
have two or more rows linearly dependent. Only after extracting
these rows will the system have a unique solution.

Although it has not been conclusively proved we noted that in
a large number of practical tests:

1 — The factors with little or no influence would systematically
induce negative « values.

2 — Eliminating the factors whose « values were negative gives
results belonging to the interval [o, 1].

In order to study the joint influence we are led to apply once
again the previous model, taking now the mean marginal values
for the various pairs of parameters.

Let wiy=w(,....,0:.,...,05,.,...) with 7 25 and consider
u(6r, 65) approximated by the linear combination

a2 12+ ... Apoin ha-1n
Taking the derivatives in order a«y; of an expression similar to

(2} and taking Eyy; instead of E{uy X wy] with £ 557 and & £/
we obtain the system
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Ei212  Eiz1a .. Er2go1p 12 Erzie
Eips Eisis co. Ewapg-1n o3 Eias
| En-ln.lz En-lnla s E-n-ln n-1np | |_GUn-1n _| L E-n—lnn-ln_

This system is similar to the previous one, but could have more
equations and unknowns.

The values obtained by solving the system will give us a sufficiently

precise idea of the influences attributed to the pairs of parameters.

Should one be interested in establishing a tariff structure, the
study of the joint influences and coinfluences seem more important
than the actual influences considered one by one (if these exist).

Given the ease of generalisation, the model -we have described
may have widespread application. We should also note that
going from the first to the second system does not necessarily
imply an increase in the number of unknowns and equations.

In effect, the number of the different permutations of parameters
in the form of combinations taken one by one, two by two, etc.,
is symmetrical, that is, the first system (obtained by margination
in n-1 parameters) will have as many unknowns and equations
as the last, obtained by margination in a single parameter.

III. PRACTICAL APPLICATION

1. In order to test the theoretical models described in this paper
we constructed our data, instead of resorting to available statistical
information. This enabled us to know the expected behaviour of
each parameter from the outset.

We considered 4 parameters, each of them assuming integer
values between 1 and 5, and we simulated the collective, starting
off with mean values obtained by the following equation:

Riskl = 7500 =+ 1000 X i + & (200 + 500 X )
In keeping with this deterministic relation we will have:
81 — the most influential factor
62 — less influential than s
B2 and 8; — coinfluential
6s — non-influential
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It was important to verify the

‘influence” of the structure

function U(6) on the model’'s behaviour. To do so, we carried
out two different sets of calculations. In one we included U(8)
taking different values for pys and in the other we maintained

pisrr constant.

REesuLTs
1.1. Considering the structure function U(6)

a) Values obtained by the variance model

I, = 1.996; I. = .227; Is = .332;
. Chhy = .002; Cliz = .003; Cliy = o0
CIza = .041, Claa = 0 , Clzy =

Chss = o ; Chhaa= 0 ; Clhiaa= o0 ;
Clizsqa = ©

b) Values obtained by the credibility model

Clz3q

N. Eq.coe!- o o2 o3 4
4 1 o b -1
3 873 - -373 .502 —
2 797 —_ .206 —

c) Values obtained by the 32 test applied to the distribution
function of each parameter in comparison with the weighted

distribution for all the collective.

Valueparasm. 01 Ba 0a 64
1 243 20.94 56.98 1.37
2 79.44 14.72 25.75 63
3 1.57 2.1 87 1.86
4 54.75 7.46 17.50 1.58
5 253.83 21.9 63.12 2.96
Variation 251.43 19.8 62.25 2.33

From the previous table one can see that the equality of distri-

butions is admissible for the fourth parameter only.
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r.2. Not taking into account the structure function

a) Values obtained by the variance model

I0

I, =2 ; Ia = 22; Iy = 54; I+ = o0
Cliz = o0 ; Clhis = o ; Chd =
CI23 = .04, CIz4 = 0 ) CI34 =
Chhas =0 ; Cha=0 ; Clhea=0 ; Clumi= 0
Clizza = 0
b) Values obtained by the credibility model
N. Eq.coef. x x2 -] [- 7
4 1 e bs -2
3 .876 -.378 .504 —
2 .8o1 — .201 —
c) Values obtained by the 2 test
Valueparam. 01 02 O3 64
1 182.87 12.70 34.87 1.57
2 46.82 6.51 17.76 3.24
3 2.12 1.09 3.66 .3
4 63.92 4.14 4.89 1.62
5 140.37 11.32 55.16 2.25
Variation 180.75 11.6 31.5 2.94

1.3 This set of values leads us to conclude that the three models
are similar. The variance method, which clearly sets out the in-
fluences of the parameters and their respective coinfluences, is
nevertheless more sensitive to small variations of the mean values.
These properties are not directly found in the other two methods.
Nevertheless, if we had applied the complete credibility model,
that is, considering the influences of combinations of parameters,
we are almost certain that the same conclusions would be reached.

Finally we can see that the results arrived at, on the one hand

considering the structure function U(8) and on the other hand
not taking it into account, are not so different as could have

been expected.
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2. 2 model

Suppose that we know for each risk (87, 8z) the D.F. G®r %) (x),
at least for the known component 67 of the risk, and also assume
that we know the weighted distribution

G(x) = [ G (x) dU(Br, Bz)
T«R

Intuitively, if a parameter has no influence, all the risks that
differ only by the value of that parameter (maintaining the values
for the others unaltered) should have the same D.F. Thus, we think
it is possible to obtain an idea of the parameter’s influence by
comparing the D.F. corresponding to each of its values with the
- weighted D.F. defined over the collective.

As the previous study could lead to such an exaggerated number
of D.F.’s we considered it justifiable to simply it, even with loss
of precision. In order to do this, we took into account only the
marginal D.F. for each value of the parameter (independently of
the other parameters).

If we consider the marginal D.F. G®- - (x), G* %»*--(x) and so
on, we can compute the values

0

Yy e
X2 = Z (v — )
—

i=1

corresponding to the comparison between the marginal D.F., with
G(x). As we all know, if we have the same distribution function,
X2 will be a %2 random variable with N-1 degrees of freedom;
but if the two distribution functions are note identical, X2 takes
on greater values. So, if we compare the X% where ¢ is the para-
meter index and j the value of the parameter, we obtain a set of
scaled values which in a certain way measure the influence of each
parameter.



EVALUATION DE PROVISIONS POUR SINISTRES A PAYER
EN PERIODE DE STAGFLATION

BERNARD DUBOIS DE MONTREYNAUD et DIDIER STRUBE
France

En matiére d’assurance de la Responsabilité Civile Automobile,
chacun connait la difficulté de fixer un tarif qui doit prévoir I'évolu-
tion & court terme, aussi bien de la fréquence, que du coit des
sinistres mais, & notre avis, un probléme bien plus important et
d’une actualité briilante réside dans 1’étude de la répercussion sur
la liquidation des sinistres, des facteurs monétaires et économiques
nationaux et peut-étre dans la remise en cause du systéme en
vigueur dans notre pays.

Le compte d’exploitation est établi en tenant compte des provi-
sions pour sinistres qui sont de l'ordre de grandeur des primes.

Or, 'incertitude de I’évolution de la valeur de la monnaie courante
dans laquélle sont établis les comptes entraine une variation
possible sur les provisions techniques, d’un ordre de grandeur
supérieur au résultat de l'exploitation.

Notre propos est de montrer I’ampleur des répercussions d’une
période de stagflation sur l'évolution des provisions pour sinistres
de Responsabilité Civile Automobile et de donner une régle empi-
rique permettant une meilleure évaluation.

Nous ne parlerons pas des sinistres matériels qui sont réglés
rapidement et pour lesquels I'indemnité est fixée au jour du sinistre;
I'inflation n’a donc pratiquement pas d’influence sur le montant du
réglement. La part des sinistres matériels dans les provisions ne
dépasse du reste pas 15%,.

Nous nous bornerons 4 I’étude des sinistres corporels. Les indem-
nités pour ces sinistres sont fixées au jour du réglement ; elles corres-
pondent a des salaires et subissent donc a la fois 'augmentation des
prix et la progression du pouvoir d’achat. Les frais de gestion et de
justice qui accompagnent le réglement des indemnités sont égale-
ment homogénes 4 des salaires.
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Cadence de réglements des sinistres corporels de R.C. Automobile

Nous remarquerons d'abord qu'a 100 F. de prime R.C. Auto-
mobile correspond 435 F. pour les sinistres corporels; cette somme
comprenant les indemnités proprement dites, les frais de justice
ainsi que les frais de gestion, est calculée en francs constants, en
prenant la valeur du franc 4 la date d’encaissement de la prime.

Il nous faut maintenant établir & quelle cadence ces 435 F. con-
stants seront réglés. Cette cadence ne peut étre trouvée qu'expéri-
mentalement a partir des réglements effectués dans le passé au
titre des divers exercices. Ces réglements étant effectués en francs
courants (valeur du jour du réglement) nous devons les exprimer
en francs constants. Nous avons adopté comme coefficient de
revalorisation des réglements d’un exercice E, le rapport de l'indice
moyen des salaires pendant l'exercice de référence (celui au cours
duquel ont eu lieu les réglements les plus récents) a l'indice moyen
des salaires pendant l’exercice £.

Les provisions résiduelles ainsi que les réglements survenus
pendant I’exercice de référence ne sont pas revalorisés car ils sont
exprimés en francs de l'exercice de référence. La liquidation de
100 F. de sinistres survenus au cours d'un exercice #, est réalisée
en dix ans selon la cadence (en monnaie constante) suivante:

année noon

% de 5
réglements
%4 cumulé 5

I n+2 n+3 ntqg n+-5 B+6 n+7 n+8 nig

Ai_

”
(M

25 18 12 3 4 3 2 I

[N
~1

52 70 82 90 94 97 99 100

Incidence de I’ Inflation

- Nous constatons que plus de 70%, des réglements seront effectués
plus de deux ans aprés le paiement de la prime et que 309, seront
effectués plus de quatre ans aprés le paiement de la prime. On voit
ainsi I'importance qui s’attache aux prévisions de 1'évolution de la
valeur de ia monnaie.

Certes, quand un bilan sincére est en équilibre, cela signifie par
définition que les postes de Passif sont globalement équilibrés par
les divers postes d’Actif, et notamment que, aux “Provisions pour
Sinistres a Payer”, correspondent des placements effectués suivant
les regles sages édictées par l'autorité de tutelle.
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C’est ainsi que les provisions techniques sont représentées essen-
tiellement par des actions, obligations et immeubles.

Quand le total du rendement et des plus-values des placements
est supérieur a la hausse des coiits en francs courants des sinistres
corporels I’excédent est utilisé d’abord pour combler le déficit de
premiére année rendu inévitable par la concurrence d’'une économie
libérale, puis éventuellement pour renforcer les fonds propres et la
marge de sécurité dont les besoins sont fonction de I'augmentation
de l'encaissement en francs courants.

Nous avons vécu en France sous ce régime depuis les années
d’aprés-guerre et en tous cas depuis. que la branche Automobile est
devenue la premiere de notre industrie.

Dans les années de forte inflation, la surchauffe et le plein emploi
ont contribué a maintenir le total, rendement + plus-values nettes,
a un niveau suffisant pour compenser la hausse du coft des sinistres
corporels.

Méme 'année 1968, malgré la trés forte hausse des bas salaires,
a été favorable grace a la relance éphémeére de I'économie qu’elle
a suscitée.

La crise mondiale que nous connaissons depuis 1974 est nouvelle
pour notre industrie, car en face d'une hausse des salaires nominaux
de 189% en France, nous avons assisté:

— 2 une baisse du cours des obligations de 'ordre de 10%,
— 4 une baisse des actions de 1'ordre de 209,

ce qui fait que malgré: )
— un taux trés élevé du rendement des obligations ou de la trésore-

Trie
— une hausse sensible de la valeur des immeubles

la plupart de nos entreprises ont enregistré un rendement négatif,
en francs courants, de leurs investissements et que seules des
dispositions réglementaires exorbitantes ont permis & la plupart des
Sociétés d’Assurances de présenter des bilans acceptables.

Or la question se pose de savoir quelle est la limite supportable
pour la différence entre le taux de hausse des salaires et le taux de
rendement des placements (y compris plus et moins values),
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ou encore, quelle marge faut-il ajouter a la masse des “‘Provisions
pour sinistres a Payer” pour que 1'entreprise puisse faire face a une
aggravation de I'écart entre le taux d’'érosion et celni du rendement
des placements.

Evaluation des provisions pour sinisires

a) En francs constants

A partir de la cadence moyenne établie en francs constants, nous
pouvons calculer le montant des provisions pour sinistres corporels
dans une économie 3 monnaie stable.

Nous supposons une variation nulle du parc assuré, ce qui se
traduit par une charge de sinistres égale pour chaque exercice
(supposée égale & oo F.). A la fin d’un exercice les provisions pour
les exercices en liquidation sont de 284 F., ce qui représente 128%,
des primes encaissées pendant le dernier exercice (la charge des
sinistres corporels étant égale a 4359, des primes). Les 284 F. en
provisions i la fin de 'exercice # seront réglés de la fagon suivante:

Au cours au titre de l'exercice
de
I'exercice n n—I1 n—2 n—3 n—4q n—3 n—6 n—7 N—3y
n~1 95 F. dont 22 25 18 12 3 4 3 2 I
n+2 73 F.dont 25 13 12 3 4 3 2 1
n+3 43 F.dont 18 12 3 4 3 2 i
n+4 30F dont 12 8 4 3 2 1
n+35 183F.dont 8 4 3 2 L
n+6 1oF.dont 4 3 2 1
n--7 6 F.dont 3 2 I
n+38 3 F. dont 2 1
n+g9 1 F. 1

Avec les hypotheses précédentes, les provisions pour sinistres
corporels dotvent donc étre de 'ordre de 1.3 fois les primes ou 3 fois
les réglements effectués pendant ’exercice.

b) Introduction du phénomene d’inflation

Tant que le taux de hausse des salaires demeure inférieur au
taux de rendement des placements (v compris les plus et moins
values) le raisonnement précédent reste valable puisque l'actif est
réévalué par un rendement suffisant.
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Lorsque le taux de hausse des salaires dépasse le taux de rende-
ment des placements il faut revaloriser les provisions en fonction
de la différence de ces taux. Soit ¢ cette différence; il v a lieu de
multiplier les réglements prévus au cours de l’exercice #n + p par
(1 + %) 2p — 1/2 le montant de ces réglements avant été prévu en
francs courants a la fin de P'exercice ».

Le calcul donne pour diverses valeurs de ¢

ien 9 I 2 3 4 5 10 I5
Progression en 9; des
provisions pour Corporels 2,1 4,2 64 87 11 24 38
Progression de provisions pour
Corporels exprimée en %, des
primes annuelles 2,7 54 82 11 14 30 48

Nous constatons que l'augmentation nécessaire des provisions
dépasse 109%, des primes dés que 7 atteint 49, ce qui signifie que la
marge de sécurité (fixée actuellement 4 109%, des primes) ne peut
garantir qu'un accroissement annuel des cotts des sinistres corporels
supérieur de 3 a 4% au taux de rendement des actifs.

Or, l'apparition d'un taux de hausse des salaires supérieur au
taux de rendement des placements n’est pas prévisible; les com-
pagnies voient donc leur marge de sécurité fortement réduite sans
avoir pris les mesures tarifaires nécessaires pour augmenter les
primes et pouvoir alimenter la marge.

En outre, pour la fixation d'un nouveau tarif, il est indispensable
de considérer 1'aggravation supplémentaire du colit des corporels
résultant de la stagflation pendant la période de liquidation.

Le tableau suivant donne en fonction de 7 le taux de cet accrois-
sement.

ien % I 2 3 4 5 I0 15
Accroissement en 9 de la
charge des Corporels 2,4 49 7.4 100 12,7 27,6 44,9

Augmentation nécessaire de la
prime 1,1

2
w

3.3 4,5 3,7 12,4 20,2
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Ces augmentations s’appliquent & une charge et 4 une prime
exprimées en monnaie constante, ¢’est-a-dire qu’elles n’incluent pas
la conséquence premiére de l'inflation qui est dans notre cas l'aug-
mentation des salaires.

En résumé, il nous semble devoir attirer 'attention sur deux
conséquences de la stagflation:

— Pour la fixation des tarifs R.C. Automobile, il y a lieu de tenir
compte, non seulement de la hausse des salaires et des prix,
entre le moment de 1’établissement du tarif et le jour de sur-
venance des sinistres, mais aussi de la conséquence sur la liqui-
dation des sinistres corporeis d’une hausse de salaires supé-
rieure au rendement net des actifs.

Cette conséquence conduit toutes choses égales d'ailleurs 4 une
majoration du tarif de 'ordre de 1.2 fois la différence entre le taux
de la hausse annuelle des salaires et le rendement des actifs.

— Pour l'estimation de la masse des sinistres corporels a régler en
matiére de R.C. Automobile, en dehors des méthodes de cadence
et de cout moyen, il semble prudent de comparer le total des
provisions pour sinistres corporels a paver avec une masse
égale A 3 fois le total des réglements R.C. Corporels de 1'exercice
augmenté d'un pourcentage égal 4 2.4 fois la différence entre le
taux de la hausse annuelle des salaires et le taux de rendement
net des actifs.



AN ESTIMATION OF CLAIMS DISTRIBUTION

NAwOJIRO ESHITA

FOREWORD

There are two phases of difficulties in estimating a claims distri-
bution. If we are going to estimate the claims distribution as
accurately as possible, we should gather considerably long terms
statistics. While economical and social environment will change.
As a result the statistics gathered should be amended by a kind of
trend value. One of difficulties here is the estimation of that trend
value. Another difficulty is the estimation of claims distribution
as being the stochastic distribution. In the case of considering
claim size, the estimation becomes more difficult.

The intention of this paper is to propose an actual way of esti-
mating stochastic claims distribution considering various kind of
claim size by the use of a computer. Regarding the problem of
amending claims distribution by a trend Value I will discuss at
another time.

1. THE MoDEL oF CrLaiMs DISTRIBUTION

(1) The logical claims distribution

The claims distribution is the distribution of claim amount which
a insurer paid for a definite period, for example, for one year.

Therefore, the claims distribution should be analized by two
factors.

The distribution of claims frequency.

The distribution of claim size.

a. The distribution of claims frequency

Since the claims frequency is a number which is calculated from
the stand point whether or not claim occur in the risk group which
an insurer is retaining in a definite term, the logical distribution of
claims frequency is considered to be a binomial distribution.
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Assuming that numbers of risks and the average claims occurrence
rate in a risk group are » and p respectively, the distribution is
expressed by the following binomial expansion formula.

blk; n - p) = (nk) p¥ - g~k
where
g=1—p9
k is probable claims number occurring.

The probability of claims occurrence in each risk in a risk col-
lective which a insurer is retaining is not always the same. Ac-
cordingly an risk collective is separated into many kinds of risk
groups with different number of risks and claims occurrence rate.
- ‘Assume the number of risks and claim occurrence rate of » number
of risk groups are m, ma; ..., ny,m and pu, po, ..., P, respectively
the following formula holds. '

'n1p1 -+ nzpz + ... + "um
N

The distribution of claims frequency of a risk collective is ac-
cordingly expressed by the following formula

n ® (n
(k‘) prgmE x (;) prgmE o L x (k"') pham ¥

where, * show convolution.

b. The distribution with claim size distribution

In considering claim size, the distribution becomes more and
more complex. The calculation is almost unrealistic, even if a
computer is used. Assuming that a risk collective is constructed by
risks being p,, ., ..., p,, of claim occurrence rate and s, s,, 3,
..., 5; of claim size and #n,,, 75, 73, .. ., %y, of risk number which
are the case of ps, PsSs, PaSss - - .. DS Tespectively, the risk col-
lective is expressed by the array of following risk groups.

Rulna, p1,51],  Riz[nae, 1, 82] ... .0 Ru(ny, p1, si]
Ra[na1, pe, 1], Ras(mes, P2, 52] ... ... Roy[nay, pe, si)

Rpi[nm, Dm, 51], Rme(fme, Pm, S2] ... .. Rumi{nmi, pm, si.
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In the case of each risk being independent stochastically, the
claims distributions of each group are shown by the following
formula.

nyy

bu(s,k; ny,, p1) = pE - qPu-k
k

b1a(Sek; nyp, p1) = (”kxz) pE gk

n R
D omi(SiR; Ny ) = < ;:l) ﬁrlsz I k

Since a claims distribution of a risk collective is a compound
function of claims distribution of these risk groups, while com-
pound function of binomial distributions is not always a binomial
distribution, a claims distribution of a risk collective is not always
a binomial distribution. Accordingly we describe the distribution
function of a risk collective as p(sk; », p).

o(sk; n, p) = bu(sik; nu1, P1) * bra(sek; mz, P1) * ...
. bml(slk; Nmi, Pm)~

This is the logical model for claims distribution which may occur
in a risk collective. )

(2) The actual claims distribution

The number of actual risks in a risk group is relatively large
(for example more than 50) and the occurrence rate of claim is
relatively small (for example less than o.1). The previous logical
distribution (which is the compound function of binomial distribu-
tions) of risk groups is, accordingly, replaced by the Poisson distri-
bution. And the previous array of logical risk groups is replaced by
the following array of claims distribution.

Du[ma, s1], Diz[maa, s2] ... Dy[muy, i)
Du[ma, 51], Dae[mas, s2] ... Dey[mey, sq]
Dml.[mm1, S;], Dm'ztmmm 52] ‘e Dml[mmb sl]
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where
M = m X P1, Mer = Ra1 X Pa, ... Mg = Ny X P

In the Poisson distribution, the compound distribution between
the distribution with the value of »1, and the value of 2 is the
same to the Poisson distribution with the value of mi + m.. As a
result, similar risk groups with a same claim size are totalled up to
one. And the previous array of claim distribution is expressed by
the more simple array as follows.

Dl[ml, Sx], Dz[m-z, Se}, e Dz[mz, Sﬂ

where
M1 == ity == ey o+ . mg
Mo = Ms1 -+ W22 + ... + Mpa
myp = my -+ mep -+ ...+ My

Although a compound poisson distribution of some Poisson
distributions is a compound Poisson distribution, the compound
function of actual claims distributions is not the Poisson distribu-
tion, because of another element (s, s,, Sy, ..., s;) are contained.
Assume the actual claims distribution of a risk collective to be
described as f(sk; m)

Slsk; m) = pi(sik; mi) * pa(sek; ma) * ... pisik; my).

This is the actual model ‘for a claims distribution which may
occur in a risk collective.

2. THE AcTUuaL ESTIMATION OF CLaIMS DISTRIBUTION

(1) Simplification of model

Since a risk collective contains varying risk groups, the actual
claim distribution is constructed by various kinds of claims distri-
butions. Assuming that claim amount occurring in a risk collective
distribute from § 10,000 to $ 1,000,000, the claims distribution
may have 100 various claims distribution and therefore, we may
have 100 different calculations. Calculations, however, need not be
so multitudinous, for example,
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a. Some distributions with approximately the same number of
claims are totalled up to a single distribution.

Assume, for example, the numbers of claims with size s,, sq, 5,5,
Say, Ssg AT€ My, Mg, Mg, Mgy, Myy respectively and then

My = Mg = M5 = My = Mys.

The distribution is replaced by the next simplified formula.
e
Po(Sok; mg) = ¢~ m

where -
MySy + MeSq + MysSys -+ MigySe; -+ MigsSss

So=
My -+ Mg + Mg + Moy + Mg

My = My + Mg+ Mg + My, -+ Mys.

b. Some distributions with approximately the same size are also
totalled up to a single distribution. Assume, for example, the claim
size of claim numbers m,, mg, ms, Mgy, Mgs are s, Sq, Sis, S21, Sss
respectively and then

$) = S = 815 = oy = S55 = Sy
My T Mg + Mg -+ Mg + Mgs == .

The distribution is replaced by the next simplified formula.

me ™

Po(Sok; mg) = e™™° T

¢. Especially when the numbers of claim is very large, the dif-

ference of size could be ignored in the actual calculation. And then
calculations need not be so multitudinous.

(2) The actual caiculation of compound Poisson distribution

The following is the calculation flow of the distribution by the
use of a computer. By this flow we can easily calculate the distribu-
tion.

a. The calculation or table research of pi(si%; m1). The number
of m1 1s not so large that the actual calculation or table research of
p1(s1#; my) should not be difficult. At this time, we ignore the value
of probability which is insignificant and therefore not pertinent.
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b. The calculation or table research of pz(s:k; m2). The insignifi-
cant value is deleted as the previous step.
c. The calculation of compound function of pi(sik; m1) and

pa(sak; me).

Assume the claim size and the occurrence numbers of claims
which should be convoluted as follows.

(s1 X &) (probability)

§1 X 0 0.00674
S1 X I 0.03369
st X m 0.17547
51 X 2my 0.01813

d. The convolution between claim

each distribution.

$1 X0 4+ s2
$1 X0 -+ s2

S1 X1 + s
S1 X I 4 sz

S1 X m1 + S2
S1 X my + Sz

s1X2my 4 Sg
s1X2m1 + Sz

X 0
X I

X0
X I

X 0
X I

X 0
X I

(s2 X A) (probability)

s2 X 0 0.00005
s2 X I 0.00045
S2 X me 0.12511
52 X 2m2  * 0.00187

amounts and probabilities of

0.00674 X 0.00005
0.00674 X 0.00045

0.03369 X 0.00005
0.03369 X 0.00045

0.17547 X 0.00005
0.I7547 X 0.00045

0.01813 X 0.00005
0.01813 X 0.00045
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e. By the calculated value of claim amount, various values of
probability are totalled and classified.

claim amount probability
) 0.00000
s1 0.00000
251 0.00000
252 0.00003
382 0.00017

1. Delete the small value of probability and its claim amount.
The distribution after the delete is described as fi2(sk; m).

g. Calculate fi,45(sk; m) by the previous calculation step d. be-
tween fi,(sk; m) and p;(s;%; m,) and proceed to the step e. and f.

h. Step g. is continued until the last.

(3) The calcuiation error by deleting small value of probability

The error is as the following, when the value of probability is

counted fractionary over 0.5 as once and disregarding the rest at
the below sixth.

numbers of » convoluted error

30* 30 0.00005

6o » 60 0.0001I1
120 * 120 0.00024
240 * 240 0.00052
480 * 480 0.00II0

The above example illustrates that errors are small.
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If we find that a more accurate calculation is necessary, it may
be figured by replacing the value of probability which we neglected
with a more detail value.

SUMMARY

Many methods have been developed over the estimation of claims distri-
butions. This paper is one of the proposal for estimating claims distribution.

In this paper, I assume that the claims distribution is a compound distri-
bution of claim occurrence frequency distribution and claim amounts
distribution. And I propose a actual estimating way of claims distribution
on the above reasoning.

The following is the architecture of this paper.

\

1. THE MoDEL oF CLAIMS DISTRIBUTION

(1) The logical claims distribution

In order to make the above mentioned compound distribution, the claim
amounts distribution is classified by many classes of claim amount.

Claim occurrence frequency distribution of the above each class is assumed
to be a binomial distribution respectively.

And then the model of logical claims distribution is considered to be a
compound distribution of binomial distributions which are the distribution
of each class claim amount.

(2) The model of actual claim distribution

The above logical claims distribution is difficult to estimate. On the other
hand, however actual claims distributions may be considered to have more
numbers of risks than about 50 and be less claim occurrence rate than
about o.1.

As a result, the claim occurrence distribution of each claim amount may
be assumed to be a poisson distribution.

2. THE EsTiMATION OF Ao CrLaiMs DISTRIBUTION
(1) Stmplification of model

The model of actual distribution is easier to estimate than the model of
logical one. In order to make estimations easier, I tried to simplify the
model itself. (In detail I describe it on the main paper.)

(2) Actual calculation of compound poisson distribution

The main paper will describe the detail way of actual calculation and
method to simplifv calculation using a computer.

(3) The calculation ervor

The main paper will describe the calculation error by the way of simpli-
fication incalculation.



DISTRIBUTION OF THE NUMBER OF CLAIMS IN MOTOR
INSURANCE ACCORDING TO THE LAG OF SETTLEMENT

G. FERRARA and G. QUARIO
Italy

1.1 Introduction

Let S be the set of motor claims S;, ¢ =1, 2, ..., N occurred
during a given year %, namely S* represents the set of claims
relevant to the generation (or cohort) »

If T»is a subset (even empty) of claims resulting without paye-

ment (that is the set of zero-claims); the set P# = S#» — T shall
denote the set of claims that should be settled.

For every s; € P®, we can define ther.v. X; which represents the pe-
riod of time required for its settlement (namely the lag of settlement).

It is not sensible to deem that the r.v. X; are equally distributed:
as a matter of fact we know that the larger is the claim, the longer
the lag of payement.

However, we can assume that-in a subset U of P#, the r.v. X3(U)
have the same distribution function, which will be denoted by
Fy(x) or in short F(x).

As F(x) represents the probability that a claim s; € U is settled
within a period 0 — x, the function 1 — F(x) = /(x) denotes the
probability that the claim results unsettled after a lag x, that is
the survival function of the claim.

In this study we intend to find an analytical expression of the
function 1(x) on the basis of particular assumptions about the
behaviour of the adjuster with regard to the settlement of claims.

The assumptions will be tested by fitting the function to some
observed data.

1.2 The assumptions

On the analogy of the actuarial life theorv, we shall consider the

. ratio

plx) = — ) (1)
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that represents the force of mortality or (in our case) the force of
settlement.

As it is known in life theory the assumptions concern the con-
nection between p{x) and x (age).

For our phenomenon it is not reasonable to link u(x) directly to
x {lag of the claim): we deem that p depends on the function
{ = I(x), that is

b= ux) = A0)] = al). (2)

In fact it is sensible to think that in the settlement work the
adjusters are more influenced by the (average) number of unsettled
claims rather than by the “age’ of the dossiers.

More precisely, we deem--that the force of settlement (/) is an
increasing function of the (average) number / of unsettled claims.
By assuming that the relative infinitesimal variation of the number
of unsettled claims leads to a proportional relative infinitesimal
variation of the force of settlement, we obtain

ag() dal
o BT B>o (3)
and, by solving this differential equation, we may write )
ing(l) = Bini 4+ c. (4)
Hence
i) = K, K >0 B >o. ()

The value of the parameter 8 characterizes the pattern of the
force of settlement p. For { — o (hence for x — + o0} the greater
8 is; the more rapidly 3 will tend to o.

1.3 The analythical expression of I(x)

On the basis of this assumption from (2), we can write
w(x) = Kif(x) (6)

where K and p are positive constants. From (1) we obtain

;
- 7(%) = KP(3). ()



12z DISTRIBUTION OF CLAIMS BY LAG OF SETTLEMENT

That is
M) g 8
- l!hl(x)— Aax. (8)
Since /(0) = 1, we find
1
“Bly) — AR -
[7P(x) = BK (x + BK>' (9)
The survival function can be written as follows
1 \ -
- -(1p) -
) = 00 (x 4 2 ) (x0)
or putting
I 1
P=pR T
we find
) ( Xo )’
(%) = 7 T x>0, a<O0, % >0. (r1)

2.1 The statistical data

In order to test our assumption we considered a particular
portfolio of claims formed by material damages whose first evalua-
tion was smaller than 300,000 Italian Lire (12,000 P.Escud.).

With the purpose of obtaining subsets such that the r.v. X; are
equally distributed, we subdivided furtherly the portfolio into six
strata. The criterion of subdivision was based on the first evaluation
of the claims. In fact, in our opinion, the first evaluation represents
a way by which the adjuster graduates his judgement on the claim
pattern. In other words, by expressing his first estimate the ad-
juster arranges the claim in a given class, characterized by particular
severity, dispersion and lag of claims.

Our fitting was made on the generation 1971, which has been
observed at the end of the year 1973.

2.2 Research of the parameters

2
The fitting of the function I(x) = ( ) presents some dif-

o
x + xo

ficulties: in fact Iz /(x) cannot be expressed in a linear form with
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respect to the parameter xo. To overcome such drawback, we
consider the translation ¥ = X + xo which allows us to express
l,(x) as a Pareto function, that is

ly(x) = S(’%) x> Xy (12)
8 I o

In this way we consider a lag Y which presents a sure component
%o (now undetermined) and the expression (12) represents the
survival function at the “‘age” ¥ = X + xo, where X is the further
duration of the claim.

On the basis of our data and by means of the least square method,
we found the values of parameters shown in table 1.

Since, in the generation considered we checked a posteriori that
the values of /(xo) are sufficiently near to 1, we deem that our
results are valid.

It is to be pointed out that, with the exception of the 5th stratum,
the curve fits well the data and, therefore, the parameters can be
used to forecast the further duration of claims relevant to our
portfolio.

However, we intend to test our assumption on the basis of other
generations and possibly to find an analythical procedure which
allows us to determine the parameters directly from the expression
(z1).
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TABLE 1

Fitting of Pareto curve to the distributions of the number of claims
according to the lag of scttlement. .

Xo *
I{x) = (;)

x = time expressed in months (1 = 30 davs);

{(x) = average number of claims unscttled at time x.
Generation 1971 (on 31.12.1973)

Value of & and ..

Class of the 1st evaluation .
(thousands of 1It. Lire) 2 X0 72

o— 50 1.252 0,89 1.68
50 — 75 1.465 1,11 6.56
75 — 100 1.242 1,10 2.49

100 — 175 1.114 1,10 4.06

175 — 250 0.976 1,21 12.39

250 — 300 0.749 1.21 9.69
TaBLE 2

Generation 1971 — Motor Claims
3rd Class of first evaluation = 75 — 100 (thous. of It. lire)
Distribution of the number of claims according to the delay of settlement
(time expressed in months 1 = 30 days); v = total number of claims

Lag Actunal Claims  Expected Claims
x N () N l(x)
2 43.887 46.838
3 28.749 28.311
4 20.497 19.804
5 15.538 15.010
6 12.207 11.969
8 8.388 8.372
1o 6.310 6.345
12 5-039 3.059
14 4.161 4.178
16 3.538 3-539
18 3.052 3.057
20 2.616 2.682
Sinlix)) St xi —n Tinlx) n oy
x = = 1,242

n I (Iny)t— (S lnx)?

a S Inl(x)}2 + S inl(x) n xy
In xe = S = 0.098
—m




ON OPTIMAL CANCELLATION OF POLICIES

Haxs U. GERBER

1. INTRODUCTION

One of the basic problems in life is: Given information (from the
past), make decisions (that will affect the future). One of the
classical actuarial examples is the adaptive ratemaking (or cred-
ibility) procedures; here the premium of a given risk is sequentially
adjusted, taking into account the claims experience available
when the decisions are made.

In some cases, the rates are fixed and the premiums cannot be
adjusted. Then the actuary faces the question: Should a given
risk be underwritten in the first place, and if yes, what is the
criterion (in terms of claims performance) for cancellation of the
policy at a later time?

Recently, Cozzolino and Freifelder (6] developed a model in an
attempt to answer these questions. They assumed a discrete time,
finite horizon, Poisson model. While the results lend themselves
to straightforward numerical evaluation, their analytical form is
not too attractive. Here we shall present a continuous time, in-
finite horizon, diffusion model. At the expense of being somewhat
less realistic, this model is very appealing from an analytical
point of view.

Mathematically, the cancellation of policies amounts to an
optimal stopping problem, see [8], [4], or chapter 13 in (7], and
(more generally) should be viewed within the framework of dis-
counted dynamic programming [I], [2].

2. A DIFFERENTIAL EQUATION AND ITS SOLUTIONS

Our model will turn out to be very tractable because the dif-
ferential equation

k(1 — 2 W' (x) = aW(¥), a>o0 (1)

can be solved explicitly. Observe that this differential equation
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has r,eguﬁn\ singular points at x = 0 and ¥ = 1. The reader will
easily verify that
(1 —x)¢
W) = = (2)
is a solution, where ¢ > 1 is the positive solution of ¢c(c — 1) = =,
ie.

c=3+3/1 ¥4 (3)

For reasons of symmetry, also A(r — x) is a solution. Thus every
solution of equation (1) is a linear combination of A(x) and
h(x — x). Equation (1’) of Section 5 will be of more general form
but can also be solved by a function of the type (2).

3. INDEPENDENT RISKS

In this section we assume that the income processes resulting
from different policies are independent. Therefore we can restrict
ourselves to the discussion of a single policy.

We shall suppose that the quality of a given risk is determined
by a well defined, but not directly observable random variable 6
(the risk parameter). Let X, denote the aggregate gain that is
generated by the policy from o to ¢. Then we assume that, for
given 0,

Xy = (r6—a)t + oW, (4)
Here 7, a,c are positive constants, and {W;} is the standard
Wiener process (independent of 8). Having observed the aggregate
gains, we will be interested in the posteriori distribution of 8.
The discussion of this will be greatly simplified by our assumption
that 6 has only the values 0 or 1. So let

= POB=1], 1—7n= P =0] {5)
be the priori probabilities (at time o), and
7,=P0=11X,,0<u<{ (6)

denote the posteriori probabilities (which depend on the priori
probability as well as on the observed profitability of the policy).
To make things interesting, we assume that » >a. Thus if 8 = 1,
our policy is a “good” risk; if 8 = o, it is a ““bad” risk (at least
as far as expected gains are concerned).
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Let 3 > 0 be a constant force of interest. The insurer’s decision
is now the selection of a stopping rule T'; foreveryn, 0 <n <1,
T = T(x) thereby defines a possibly defective stopping time. We
interpret T as the time when the policy is cancelled, with the
provision that the policy will not be cancelled if T = . Let

Vim: T) = Ej[f e dX] )

denote the expected present value of the total gain. If we extend
the integral to infinity, and subtract the correction term, we
obtain an alternative definition:

3 b)

The problem is now to find an optimal stopping rule T, i.e. one
that maximizes V (x; T) for every =, or equivalently, one such

that
a —npr
£, [ o] .

Vi T) = ———— _E, [“————Tr_a e-BT] ®)

is maximal.

The process {=;} is a diffusion process with vanishing drift and
infinitesimal variance

oin) = = [n(x —m)]2 (10)

For a sophisticated proof of this, see Lemma 5 of Chapter 4 in {8].
A more heuristic derivation goes as follows: For given X,,
o <u <¢, X;is a sufficient statistic. Therefore

n (Xy; rt — at, o)
(Xt —at o) + (—mnXe—at, o Y

T =

where n(.; u, o?) denotes the normal density with mean u and
variance o2. This can be simplified to

™ = f(TC, ‘Yg, t) (12)
where

k3

flm, %, 8) = T+ (I —nx) glx, b (13)
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and
4 7
g(x,8) = exp — gt x——;t + at (14)

Since {n;} is a Markov process (posteriori probabilities always are)
and can be expressed as a well behaved function of X;, see (12),
it has to be a diffusion process, say with drift u(x) and infinitesimal
variance o?(w). A Taylor series argument shows that
?0f e V2 Df

w T 2w T T (15)

u(x) = (rm—a)

3 2 af z ' 2
6?(r) = o2 =l = 3 {1 —w))? (16)
(the argument in the partial derivatives is x = ¢ = o). Of course
we could have anticipated the vanishing drift: Posteriori prob-
abilities always constitute a martingale (law of total probability)!

Let us introduce the function V(x},
V(r) = supremum V(x;7T) (17)
vy

Then an optimal stopping rule T is given by the formula

gooif Vi) >o0ofort > o0
T = (18)

(inf {t| V(ry) = o} otherwise

Obviously ¥V (w) is a nondecreasing function. Therefore the set of
numbers = such that V(r) > o0 is an interval (p, 1J. Hence we
can restrict ourselves to stopping rules of the form

Tp = inf {¢t|m < p} (19)
Our initial problem is now reduced to the discussion of the function

Vir,p) =V (x;Tp), 0 <p <n <1, and to the search for the
optimal value of p, call it po. Formula (8) reduces in this case to

_m’—-—a pr —a
Vs p) = —5— ——5— W9 (20)

where
Wi(r,p) = E [e”*T5] (21)
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is the present value of a unit payable at the time when m; = p.
Furthermore it is clear that the policy should not be cancelled as
long as w7 — a > 0. Therefore we expect that o < afr.

It is well known (see for example Problem 19, Chapter 16 of
[3)) that the function W(r, p) satisfies the differential equation

2

% o2 (x) —3W =o0 (22)

dme

valid for p < = < 1, where o2(x) is given by formula (10). (For
a short derivation of this equation, observe that the process
{e"3% W(r:, $)}, ¢t < Tp, is a martingale). Obviously, the function
W is continuous in the closed interval » <= < 1 and satisfies
the boundary conditions

Wig.p) =1, W, p) =o. (23)

By recalling the results of Section 2, we find that the solution of
conditions (22) and (23) is

W p)=rm, pST<T (24)

where 4(x) is given by formula (2) with parameter
¢ =% + % V1 + 83522 (25)

Thus formula (20) becomes

—_— . I.._,)c c-1
V(TL‘, P) = id 3 : - L 3 ! ,:c-‘: (Ip___ p)e (26)

valid for p <= < 1, and we are looking for the value of p that
maximizes
pe-1
a—pr) T 2
Differentiation leads to the optimal value:

= (2

where b = afr and ¢ is given by formula (25).
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Remark 1

If we let the force of interest increase from 0 to (and keep
the other parameters constant), ¢ increases from 1 to oo, and
therefore po increases from o to b. This is not surprising: The
smaller the rate of interest is, the more it pays off to postpone the
cancellation of the policy, hoping to obtain more reliable infor-
mation about the quality of the risk in the future.

Remark 2

For an arbitrary p, we obtain from formula (26) that
W 7 e —b) (p—po)
Wy 8 P(I—P)
Thus the right side derivative at = = p is positive (negative) if
P > po (P < po) and zero for p = po. Smooth pasting conditions

of this kind hold in more general models, see Section 6, Chapter
3 of [8].

(29)

Remark 3

Formulae (12), (13), (14) allow us to express the stopping rule
Tp in terms of {X;} and =. Let K = K (=, p) be the solution of

™

7+ (1—x) ke

=p (30)
Then

Tp = inf {¢t|X; < (r[2—4a) t— K} (31)
is equivalent to the original definition (19).

4. DiscussioN oF THE TIME OF CANCELLATION
The function W (=, p) can be interpreted as the Laplace trans-
form of Tp (for given = and p):
(1—m)c  pom
el (1— )¢
where ¢ = ¢(3) is given by formula (25). Thus the probability for
cancellation of the policy is

P = E.[e*T] = (32)

40) = Po(T, < 0) = T— (33)
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If 6 = o, the policy will be cancelled with probability one. There-
fore the probability for 6 = 1 and cancellation (i.e. “‘erroneous”
cancellation) is

I—=w

I—9p I—p
and the conditional probability for cancellation, given that
=1, is

—(1—m=n) = (1—m) (34)

P I—7
I—29p T

(35)

Finally, we are interested in the distribution of the time of cancel-
lation, given that it occurs. Let 4 (3) denote the Laplace transform
of this proper distribution. Thus

$(3) = ¢(8)/g(0) = e-mic-D (36)
where m = m(x, p) is given by the formula
I/p—1
m = In I—/:—_-_*—I (37)

We recognize that .the distribution of T, (given Tp < c0) is
infinitely divisible. Its first two moments are:

262

r2 " (T: ’ p)

'—9,(0) = En[Tp[Tp< CD) =
4

8
V(0) — ¥ (o) = Var,[T, | T, < o] = — m(x, ) (39)

Moreover, formula (36) can be inverted. The underlying density,
say g{t), t >o0, is

g (t 02>2)
— e gy —
mo ré \z2 rz/

gi) = ——=t"Mexp | ——F ——F——— (39)
7 j2r o 2t )

This can be seen by a comparison with formulas (73) and (75),
Section 3.7 in [5], or from problem 14, p. 439 in [g].

5. LAPSES

In this section we modify the model of Section 3 and allow for
the possibility of termination of the policy by the insured. For
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simplicity we assume that the time of termination by the insured,
say S, is (for given 8) exponentially distributed but otherwise
independent of {X,}.

PS>t = me ™ 4 (1 —m)e ™t (40)
Here M > o0 is the constant force of lapse of the “good” risks,
Ao >0 the one of the ‘““bad” risks.
The insurer is only interested in times ¢ < S. Therefore we
investigate
=P 0=11X,(0<u<t), S > (6%

Again w; is of the form. (12), with f defined as in formula (13)
where g is now

g(x,t) = exp [—-Z—, <x——£t + at) + (h—)\o)t] (14")

By the same arguments as in Section 3 we recognize that {=;} is
a diffusion process with drift

w(m) = (ho—n) =(r—n) (15")
and infinitesimal variance o*(x) as in formula (16).

We want to maximize

- Min(S, T)
Vim;T) = EJ[ [ e ™dX] (7')
and may restrict ourselves to cancellation times T, of the form
Tp = Min {¢{|m: <p or S=1t¢} (19"
For ¢ <= <1, its value V (=, p) is
w(r — a) (r —=)a
V('ﬂ.’,ﬁ)= 8+)\1 - 8_}_)\0
{pir —a) (1—2)a) ,
UM s V(R (20)
where
W, p) = E,[e™*T» | S > T,] P,[S >T,] (21)

Using the facts that {=,} is a diffusion process and that
{e¥[me™™ + (1 —x) ™ W(r,, p)) (41)
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is a martingale for = > p, we see that W(x, p) satisfies the
differential equation

2W i
o teM S — Bt =) M W =0 (22)

o

 o2(m)

valid for < = < 1, where ¢%?(n) and w(x) are given by formulas
(16) and (15’). The boundary conditions

W, p) =1, Wi, p) =0 (23")
are obvious.

Luckily, a differential equation of the form
r2

Sl — AR W (e n) 2(r— A W =
B4 xm+ (T—2x)0] W (1)
can be solved explicitly. The solution that vanishes at x =1 is

a multiple of the function %(x), see formula (2), whose parameter ¢
is the positive root of the equation

r2

cle—1) 4+ (M—2xo) (c—1I)— (34 Ag) =0 (42)

2g2
i.e.
a?

¢ =§+ 7 (Ro— ) +

2

(ko—h)]z + -%32— G+ ) (25)

20

r2

/
+ 3 ],/ [I +
Observe that ¢ > I;

From this and conditions (22’) and (23’) we see that

” B ()
(ﬂ.’,p) = h(?) ’ ﬁSﬂSI, (43)

which then can be substituted in formula (20°). The optimal value
of p, say po, is therefore the value of p that maximizes

{x—pla plr—a)) pe-t ,
{5+ 2 3+ n Y (T—p)° (27
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Thus
c—1 g’
po=10 . o (28")
(c—b) +c(r—b) 55

as can be seen by differentiation,

ILLUSTRATION

The effect of lapses is illustrated in Tables 1 and z. The para-
meter ¢ and pa (the optimal value of ) were computed for nine
combinations (e, A1). Thereby the other parameters of the model
were kept fixed, namely a =1, r=2, b=.5, 6 =2, 3 = .1I.
A glance at Table 2 shows that the po-values decrease in each
row as Ao increases. The explanation for this is: The higher the
lapse rates of the bad risk, the better this is for the insurer. On
the other hand, the po-values increase in each column (as A\ in-
creases): The higher the lapse rates of the good risks, the worse
this is for the insurer. Finally, the po-values in the main diagonal
are increasing: If Ao = M = A, lapses simply amount to an in-
creased force of interest, 3 = 3 + X, and we know that Po is an
increasing function of the interest rate (see remark 1 at the end
of Section 3). In any case the po-value is well below b = }: For
prior probabilities = with po < = < § it pays off to postpone
cancellation and to suffer an expected loss of 1 — 2= per unit
time in the nearest future.

TABLE 1
Values of the parameter ¢

EYERAN
N
o I.171 1.348 1.531
.1 1.148 1.307 1.472
2 I.I31 1.272 1.422




OPTIMAL CANCELLATION OF POLICIES I3

W

TABLE 2
Optimal values of p

N

N \)‘° o I 2
AN
o 127 I14 104
1 205 .190 176
2 257 243 .229

6. DEPENDENT RISKS

We shall consider only the most simple case, namely the case
of two dependent risks. Supposedly we observe the aggregate
gains X}, X} of two policies, which can be represented as follows:

X, = (" —a)t + oW,
X} =[r(1—0) —alt+ oW} (44)
Here { W!} denote standard Wiener processes, and 0, {W}}, {W;)}
are assumed to be independent. Again, let ¢ >0, o< a < 7.
The random variable § assumes the values o or 1 and specifies
which policy constitutes the ‘‘good’ risk: If 6§ = 1, the gain of
policy 1 has drift »r — a4 >0 and the gain of policy 2 has gain
—r; if 6 = o, the roles are interchanged.
Let = = P[0 = 1] and
m, = P [B=1]|X,, X} foro<u<i{ (45)

At time ¢, X} — X is a sufficient statistic for §. From this we
get that _ .
r = flm, X3 — XY 6)
where

™

79 = o T =y e (47)

with
g(x) = ¢4 (48)
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Thus the process {w;} is a diffusion process, namely with vanishing
drift and infinitesimal variance

s(m) = 200 (34> = T i —p (49)

dx . G2

Observe that this is just twice the infinitesimal variance that
would be effective if we could observe the gains process of only
one policy, see formula (10}.

Cancellation rules T are defined as in Section 3. Of special
interest is the family of rules Ty such that (for 0o < ¢ < 3)

T, = minimum {¢/=; < g or = > 1 —¢} (50)
with the understanding that we cancel policy 1 if =y, < ¢, but
that we cancel policy 2 if mp, > 1 —¢. We shall restrict ourselves
to cancellation rules of this type.

a) Variant 1: Only one cancellation

Here we allow for the cancellation of one policy only. If after
the cancellation it turns out that we made the wrong decision the
other policy cannot be cancelled.

Let T7'(n, g) be the value of T,. Obviously

(I—=w)7r—a
s for o<~ <yg
Vic,q) = (51)
TYr—a
( 3 for tT—g¢<=<1

As long as both policies are in force, their total gain has drift
r — 2a. Therefore, for g <= < 1 —9,

— r—z2a gqr—a —

V(Tt’ ‘]) = 3 - 3 W(‘R, ‘I> (52)

where
Wiz, q) = E.[e”*"q] (53)

Since {e™% W (=, q)}, t < Tg4, is a martingale, the function W
satisfies the differential equation

2W —
—3W =0, g<m<1I—9g (54)
bk

3 a(w
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subject to the boundary conditions
W9 = Wii—g,q) =1 (54)
Recalling formula (49} and the results of Section 2 we gather that
— h(x) + A(1 —7)

where the parameter of %(x) is now
¢ = }+ 3 V1 + 4303 (56)

Substituting the above expression for W in formula (52), we
recognize that we should choose ¢ in order to maximize the quantity

(r—9g)F ff)m]"

(a—qr) [ +

prEn T—q (57)

b) Variant 2: Possibly two cancellations

If we have the option to cancel the second policy, we will cancel
it according to the optimal rule that was established in Section 3.

Now the value of Ty, say 17(1-:, g, is

= r —2a [ r—2a

Vir,g) = —5 5 T Vi—q Po)] Wim,q) (58)
valid forg < n <1 —7q.
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HOW INSOLVENT ARE WE?

P. D. Jouxnsox

Can archaeology help us?

As we grapple with the problems of conducting non-life insurance
in a world of high inflation, we should perhaps pause for a moment
to look for historical analogies for our present predicament. Let us,
then, look back at a distressing period many years ago in the
history of the Kingdom of Carmania. )

Inflation was by no means new to the citizens of Carmania.
Year after year, all prices and incomes had been rising at a steady
rate of 59 per annum. The economy functioned quite well, albeit
in a rather uninteresting way, and the people were accustomed to
the idea that the purchasing power of the Carmanian dollar would
fall by roughly 59, every year. There were, however, some econo-
mists who argued that inflation was both undesirable and un-
necessary, and prevailed upon the King to adopt some measures
which, they assured him, would quickly reduce the rate of inflation
to zero. The measures were adopted, and the following year the
rate of inflation rose to 109%,. -

At this point a rival group of economists explained that this
unfortunate development was simply what should have been
expected, and they set out an alternative policy which would
undoubtedly reverse the trend and bring inflation quickly under
control. Convinced by the weight of their arguments, the King
introduced what became known as Phase 2 of the counter-inflation
policy. By the next year, the rate of inflation had risen to 209,.

Hereupon a third group of economists, who had been travelling
to many foreign lands, returned with news of how, in one of those
countries, the rate of inflation had been brought down from no
less than 809% to 109% by adopting policies whose wisdom was so
obvious that it required—and received—no explanation. With
great relief, the King seized upon these new policies, called them
Phase 3 and put them into force. The rate of inflation rose to 30%.

By this time, the King was beginning to wonder whether his
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faith in economists was entirely justified. After giving the matter
careful thought, he decided to dismiss all his economists and adopt
- some new measures which were entirely his own.

While all this was going on, the members of the Carmanian
Insurance Association (CIA) were naturally experiencing some
difficulties. The extent of these can be gauged from the historical
records, discovered during recent excavations, for one company
whose business consisted entirely of chariot insurance.

During the long period of 59, inflation, the company’s business
showed a remarkable stability. Not only did the volume of business
remain constant but the expenses and the pattern of claim pay-
ments remained unchanged apart from the regular increase of 59,
over the amounts for the previous year. Every claim payment was
made on 31st December and, expressed in terms of the purchasing
power of a base year, the pattern of pavments for each year's
claims was as follows, where year C is the vear of claim:

Year C C+1 C+2 C+3 C+4 C+5 C+6
Payvments at end of year 330 240 8o 60 30 20 20
Cumulative payments 550 790 870 930 960 980 1000

The actual payments made at the various durations, and the
cumulative payments, would be equal to the value of the inflation
index for the end of.the vear of claim, multiplied by the following
amounts:

Year C C+1 C+2 C+3 C+4 C+5 C+6

Pavments at end of vear 3550 252 38 69 36 26 27

Cumulative payments 550 802z 890 959 995 1021 1048

Expenses associated with the settlement of claims are included
in the above payments. Other expenses, amouting to 300, were
all paid at the end of the vear of claim. In addition, commission
was paid at the rate of 15%, of the premiums, which were all due
on Ist January.

Year o: the last year of tranquillity

We shall begin our story in vear o, the last of the long series of
years with inflation at 59,. The value of the inflation index at the
end of year 0 was unity.

All money was placed on short-term deposit and earned a rate
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of interest of 59, the same as the rate of inflation. The premiums
of 1456 charged on 1st January of year o, after deduction of com-
mission amounting to 218, earned interest of 62 and were therefore
just sufficient to meet the total claim and expense payments of
1300 at the end of the year. At the start of the year the provision
for outstanding claims was 876 and the free reserves amounted to
1456, exactly 100%, of the premiums paid on 1st January. Of the
total free reserves of 1456, 500 represented shareholders’ capital.
Interest at 59 on the provision for outstanding claims and on that
part of the free reserves which did not represent shareholders’
capital was exactly sufficient to maintain their real value, and thus
at the end of the year they stood at 920 and 1004 Trespectively.
The shareholders received dividends at the rate of 3% and, for
reasons which have not been discovered, were apparently quite
content to receive a return no greater than that which they could
have obtained by simply placing their money on deposit. At any
rate, the company had no difficulty in finding people who were
willing to subscribe further capital to replenish the 25 paid out
in dividends. Thus the free reserves at the end of year o stood at
1529.

The essential details of year o are set out in column 1 of Appen-
dix 1. ‘

Year 1: the first cloud appears

The introduction of the first counter-inflation policy naturally
disturbed this happy state of affairs. Fortunately the company was
not convinced that inflation would disappear as a consequence of
the new policy, and at the beginning of year 1 it duly charged
premiums amounting to 1529, -just 59 higher than those of the
previous year. Anothier fortunate feature was that interest con-
tinued to be obtainable at the rate of 5%, despite the official
proclamations that inflation was to be eliminated.

Column 2 of Appendix 1 shows the main features of year 1.
During the year inflation was at the rate of 109, and at the end
of the year the premiums of 1529, less commission of 229, had
amounted with interest to 1365, a sum insufficient to meet the
expenses and claim payments of 1430 (109, higher than the previous
vear’s figures of 1300). Furthermore, the company decided to
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assume that inflation would continue at 10% and fix its provision
for outstanding claims accordingly. On the other hand, it found
that at the end of year 1 interest was available at the rate of 109,
and it assumed that if inflation were to remain at that level the
interest rate would do likewise. It therefore assumed that the effect
of future inflation on the outstanding claims would continue to
be exactly offset by the interest earned on the money held to pay
those claims and it set up a provision for outstanding claims of
1012, just 10% higher than the previous vear’s provision of gz20.

Thus at the end of vear 1 the free reserves, which had begun the
wear at 1529, had been augmented by interest of 76 but depleted
by 111, representing the shortfall of 65 on the payments and 46
on the provision for outstanding claims. The company decided that
since it had suffered a trading loss it would make no distribution
to shareholders. Thus the free reserves at the end of year 1 stood

at 14094.

- Year 2: the sky gets cloudier

The rise in the rate of inflation in year 1 had occurred towards
the end of the vear, after the decision had been made to increase
the premium rates by the usual 59,. Thus the premiums charged
on 1st Januarv of vear 2 were 1605. Premiums less commission
amounted to 1364, which together with interest of 136 gave 1500,
compared with 1716 required for payment of expenses and claims
at the end of the vear after inflation at 20%,. The company decided
to assume that inflation would continue at 20%,, as would the rate
of interest which had just then risen to 20%, from the previous level
of 10%,. The provision for outstanding claims at the end of vear 2
was therefore 1214.

The free reserves of 1494 at the start of year 2 were increased by
interest of 149 but decreased by 317 (the sum of 216 and ro1).
Again no dividends were paid to shareholders, and thus at the end
of year 2 the frec reserves stood at 1326.

Year 3: darkness looms

The premiums to be charged at the start of vear 3 had to be
decided upon during vear 2, and at the time this matter was being
considered the increase in the rate of inflation from 109, to 20%,
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had not yet taken place. The company decided it would certainly
need to increase its premiums by 10%, above the level which they
apparently should have reached the previous year; this gave a
total increase of about 15%. The company would have liked to go
further—not because it was then expecting a further rise in the
rate of inflation but in order to restore its free reserves to their
previous level in real terms. Unfortunately, however, the current
counter-inflation policy decreed that past losses could not be
recouped and that premiums could not be raised by more than 15%,.
The premiums charged on 1st January of year 3 therefore amounted
to 1846. X

Year 3 thus proceeded in a similar fashion to year 2. Premiums
after deducting cerimission of 276 amounted to 1570. With interest
of 314, the amount available at the end of the year for expenses
and claims was 1884, compared with the required amount of 2231;
a shortfall of 347. The provision for outstanding claims was fixed
at 1578, and the free reserves fell from 1326 to 1123, with again
no dividend to shareholders.

In year 3, the increase in the rate of inflation had again occurred
near the end of the year, too late to be taken into account when
fixing the premiums for year 4. In the event, they were raised by
30% to 2400—roughly sufficient on the assumption of rates of
interest and inflation of 20%, but with no provision for recovery
of past losses.

Year 4: the meteorologists are consulted

During year 4, the company decided to take stock of the situation.
In three years its prospective solvency margin had fallen from
100%, to 47% of premiums and no longer seemed so comfortably
in excess of the statutory minimum level of 20%,. Whatever else
might be done, it seemed that there was a need for further capital
to support the business, but unfortunately the general economic
state of the country and the fact that the company had been making
trading losses and declaring no dividends in the past three years
did not make the prospect of raising further capital seem en-
couraging.

An argument developed regarding the likely future course of
inflation. On the one hand there were those who had great faith
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in the ability of the King and thought that now that he had rid
himself of the economists whose advice had had such unhappy
results he would succeed in restoring the country quickly to its old
state of umiform inflation at what now seemed the extremely
modest rate of 5%. On the other hand there were those who argued
that there was no reason to suppose that the recent trend would
be reversed, and that by far the likeliest outcome was that the rate
of inflation would continue to increase year by year. Between these
two factions there were some who thought that inflation might be
stabilised at its current rate of 309%,.

Accordingly it was decided to perform calculations based on
three different sets of assumptions regarding the future rates of
inflation, as follows:

Year 4 5 6 7 8 9 10
Percentage rate of (1) 30 3o 30 30 30 30 30
inflation in year (2) 20 10 5 5 5 5 5

(3 40 50 65 8o Ioo 120 150

It was assumed that in each case the rate of interest obtained in
any year would be equal to the rate of inflation in the preceding year.

First forecast: continuing cloudy

If the outcome were to correspond to Assumption r, which was
the basis on which the provision for outstanding claims had been
made at the end of year 3, then an increase in premiums of about
42%, at the start of year 5, followed by subsequent increases of
30%, would result in a stable development similar to that of the
old days of 59, inflation, but with free reserves equal to 35.5% of
the following year’s premiums. The details are given in Appendix 2.
It has been assumed that each year the provision for outstanding
claims would be arrived at on the same principles as in years 1 to 3,
namely that future inflation would be exactly matched by interest
earnings. Since this outcome is implicit in Assumption 1, the
provisions arrived at in this way are identical to the correct provi-
sions, set out at the foot of Appendix 2.

Second forecast: fine and sunny

The outcome corresponding to Assumption 2 is given in Appen-
dix 3. The provision for outstanding claims, as shown in the pro-
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jected accounts, is again based on the assumption that future
inflation would be matched by interest earnings. The correct
provision which would ultimately turn out to have been required
is shown at the foot of Appendix 2. Thus the provision made in
the accounts at the end of year 3 would prove to have been zoo
in excess of the amount required. If the premiums were increased
by about 429, at the start of year 5 and then by about 129, at
the start of year 6, followed by two years with no increase and subse-
quent increases at 59%,, the position would again stabilise, this time
with free reserves restored to 1009, of the following year’s premiums.

Third forecast: aprés nous le déluge

On assumption 3, for which the figures are given in Appendix 4,
the true provision for outstanding claims at the end of year 3 would
have been 1862, i.e. 284 greater than the provision actually made.
This alone would reduce the prospective solvency margin to 839,
or 35% of the premiums charged in year 4. Also, the premiums
charged at the start of year 4, less commission, were equal to only
2040 compared with 2565 required to meet the cost of claims and
expenses. This further deficiency of 525 would mean that the
company was already insolvent; the true deficiency in the premiums
would be even greater, since the rate of interest obtainable on the
free reserves would be insufficient to maintain their real value, let
alone maintain them at a constant percentage of premiums. Not
only was the company already insolvent, but by the time the
higher rate of inflation in year 4 was known, the premium rates
for the start of year 5 would have been decided; if the increase
were around 429%,, those premiums would clearly be hopelessly
inadequate. If, however, the company continued to assume, when
determining the provision for outstanding claims at the end of
year 4, that future inflation would be offset by future interest,
the free reserves would stand at 831 and since this would be 249,
of the following year’'s premiums the company would even then
appear from its accounts to be solvent.

The end of the Carmanian story

Unfortunately, no records have vet been found showing what
happened to inflation in Carmania in year 4 and later, nor what

I0
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happened to this particular company. While excavations continue,
let us first note one or two significant features of the experience
of our Carmanian company and then go on to consider its relevance
to the problems we face to-day.

Perhaps the most striking feature of the Carmanian situation is
that, bad as things became, they could have been much worse:

(a)

(b)

(c)

The company entered the period of increasing inflation with a
prospective solvency margin of 1009, five times the statutory
minimum [evel in Carmania, and even higher in relation to the
minimum levels which are commonly found to-day. If the
solvency margin at the end of year o had been only 47%, of the
following vear’s premiums, then on the:assumptions made in
preparing the accounts at the end of year 3 its free reserves
would have been zero.

The company kept the whole of its money in short-term
deposits, and therefore did not suffer a fall in the capital value
of its assets, either as a result of the rise in interest rates (as
would have been the case if it had invested in, say, medium-
term fixed-interest stocks) or as a result of a fall in market
values of ordinary shares and property (as might easily have
affected it if it had invested in assets of those kinds).

The company’s claims experience remained remarkably free
from the year-to-year fluctuations which the actuaries, well
versed in the classical theory of risk, had said it must expect.
The figures on which it had in part to base its decisions were
undistorted by variations in the volume of business, the volume
of claims, the types of claims, the rate of settlement or the
effectiveness of the control of claims costs; nor were there
apparently any inaccuracies in the records. Its difficulties
arose solely from the increases in the rate of inflation, the
failure of interest rates to keep up with those increases, and
the general uncertaintv which developed regarding the future
of those two items.

The Carmanian company's problems would clearly have been
somewhat diminished if it had succeeded in predicting the sharp
rise in the rate of inflation and had begun to raise its premiums by
more than 59, each year well before the rise in inflation began—



HOW INSOLVENT ARE WE? 147

although it might have had difficulties of another kind if the
chariot insurance market were a competitive one and the other
companies were not equally percipient. An increase in the rate of
inflation means that a company whose premium rates have been
just adequate must at some stage increase its rates by more than
the current rate of inflation if it is to avoid a reduction in its free
reserves.

The failure of the Carmanian company to anticipate the rise in
inflation led to a fall in its free reserves. Thanks to its strong
reserve position at the end of year o, this fall could be accepted so
long as it seemed likely to be a temporary feature. The real difficulty
which confronted the company was that of predicting the future
course of inflation and of interest rates. The higher the latest rate
of inflation became, the harder it seemed to be to forecast the future
rates. As the rate of inflation increased, there seemed to be a
tendency for interest rates to lag behind the current rate of inflation,
but whether that was likely to be a permanent feature of increasing
inflation was far from clear. Likewise, if the rate of inflation were
to fall, the rate of interest might exceed the current rate of inflation,
but whether this would really happen and, if so, to what extent,
was a matter for speculation. The range of uncertainty, expressed .
in monetary terms, was very large in relation to the premium
income, and a wrong decision as to the level of premium tates to
charge could quickly account for the whole of the statutory mini-
mum solvency margin.

Back to 1975

In the past few years, many countries have experienced a sharp
rise in the rates of increase of prices and earnings, a rise analogous
to, though perhaps differing in degree from, that which occurred
in Carmania in years 1 to 3. In some countries the rise has been
followed by a fall, while in others, so far, it has not. As we survey
the world in 1975 it seems difficult to be convinced that the general
economic uncertainties are less than they appeared to be in Car-
mania.

In the United Kingdom, for example, not only has the rate of
inflation, measured by the increase in prices or in earnings, reached
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somewhere around 309%,, but the rate of interest obrtainable on
short-term fixed interest investments has been as much as 15°%, to
20%, less than this. Whilst it seems difficult to imagine that condi-
tions of high negative rates of interest in real terms can continue
for long, thev can create considerable damage while they last.
Insurance companies normally invest a proportion of their money
in assets, such as ordinary shares and propertyv, carrying a variable
rate of return. They do so partly in order to spread their investment
tisks and partls in the hope that such assets will maintain or increase
their real value in times of inflation. So indeed they may, in the
long run; over a short period, however, they may suffer a sharp
fall in their market value—as they obligingly demonstrated in 1974.
Our ordinary shares and property may perform well enough to
make us prosperous in 1ggo, but that is small consolation if we have
been declared insolvent in 1g975.

In place of the regularity displaved by the business of the Car-
manian chariot insurance company, a modern motor insurance
company has to contend with variations in the volume and mix
of its business, in the volume and nature of its claims, in its staffing
levels, in the effectiveness of the control over claim costs, in its
progress in settling claims, and in the number of inaccuracies in its
records. All these will add to the uncertaintv surrounding our
attempts to assess the present and predict the future. Fluctuations
in the claims experience associated with what we mayx loosely
lescribe as chance factors are superimposed on, and may reinforce,
those due to inflation and the return on investments.

Our assessment of the provisions we need for our outstanding
claims and, still more important, of the level of premiums we need
to charge in the coming vear requires us to take a view as to future
inflation and link it with a careful interpretation of the figures
derived from our recent experience. It is scarcely surprising that
the premium rates currently charged for motor insurance in the
United Kingdom seem to reflect a wide range of optimism and
pessimism. For a typical portfolio of risks, the average premium
of the cheapest company of significant size seems to be about
two-thirds of that of the dearest. In a competitive market there is
a clear danger that the more pessimistic companies will be reluctant
to increase their rates to the full extent that their fears would seem
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to justify and that this in turn will encourage the optimists to
continue to charge low rates.

The financial management and supervision of insurance com-
panies are in general made more complex by further factors.
A company may transact several classes of life and non-life in-
surance and may do so in many different countries and currencies.
Although the consequence may well be a desirable spreading of
risks, there will often be greater uncertainty because of the difficulty
of obtaining reliable relevant information.

The classes of non-life business differ in the delay in settlement
of claims and in the degree to which they are exposed to the in-
flation risk. The delay distribution of the Carmanian company,
_expressed in terms of the purchasing power of the base year,
happens to contain the same figures as the delay distribution
derived from the motor insurance claims of one company in the
United Kingdom, after observing the payments over a number of
successive years, adjusting for past inflation and smoothing the
results. The definition of the delay interval was different in that in
the British company’s experience the payments at ‘“duration 1"
were those made during the calendar year in which the claims were
notified. The distribution in the case of the Carmanian company
is, however, sufficiently similar to the kind of distribution which
could easily be found in a present-day company to make it a reason-
able basis for illustration. A company transacting mainly third-
party motor insurance, or one with a large proportion of general
liability business, would be expected to have a delay distribution
with a much longer tail.

The currency risk introduces a further uncertainty. Although
assets may be matched with technical liabilities according to
currency, it is not practicable to eliminate the currency risk be-
cause of the need to draw upon the free reserves to meet fluctua-
tions.

The position shown in the published accounts of a company may
differ from what will turn out to be the real position, not only
because a company will in general not succeed in predicting the
future correctly, but also because of accounting conventions and
perhaps deliberate adjustment of the figures in one direction or
the other. Companies in the United Kingdom would, it is thought,
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aim to take as their total provision for outstanding (including
incurred but not reported) claims the total sum which those claims
are estimated to cost, without discounting to allow for interest
obtainable during the period before pavment is made. Caution of
this kind is entirely reasonable, but whatever the conventions
adopted in practice may be, the underlving principles should be
borne in mind.

The lesson of Carmania

The effects of compounding at high rates, whether of inflation
or of interest, are so familiar to actuaries that none of the arith-
métical results derived from the Carmanian experience will be at
all surprising. The main message which this paper sets out to convey
is that the uncertainties associated with high rates of inflation are
in monetary terms uncomfortably large in relation to the generally
accepted minimum margins of solvency. Fluctuations attributable
to the element of chance in the occurrence of claims and in their
size (before taking inflation into account) can largely be handled
by well-established procedures of reinsurance, modified perhaps by
the results of mathematical researches carried out by actuaries.
Inflation, however, is fundamentally an uninsurable risk. If in-
flation reaches a verv high level it soon becomes extremely difficult
to find a satisfactory basis for taking business decisions. Much of
the work which has been done in elucidating the principles on
which insurance should be conducted will be of limited value until
we return to a stable economic environment.

The dangers stemming from inflation serve to remind us that
whatever the official definition of solvency may be, no insurance
company in any country or at any time is in reality more than
conditionally solvent. \hile we wait for the immediate future to
reveal itself, we console ourselves with the though that many
msurance companies appear to be strong enough to ensure their
survival unless there is a general economic collapse, in which case
insurance will not be our only problem.
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APPENDIX I

Actual Experience of Carmanian Company up to End of Year 3

Year
o I 2 3 4
Percentage rate of inflation in year 5 10 20 30
Percentage rate of interest in year 5 5 10 20
Percentage increase in premiums at start of
vear 5 5 5 15 30
Premiums charged at start of year 1456 1529 1605 1846 2400
Provision for outstanding claims at start of
year 876 920 1012 1214
Interest on provision for outstanding claims
at start 44 46° 101 243
Free reserves at start of year 1456 1520 1494 1326
Interest on free reserves at start 73 76 149 265
Premiums less commission at start of year 1238 1300 1364 1570
Interest on (premiums less commission) 62 65 136 314
Claims and expenses paid at end of year 1300 1430 1716 2231
Provision for outstanding claims at end of
year 920 1012 1214 1578
Free reserves at end of year 1529 1494 1326 1123
Prospective solvency margin at end of year 100 % 93 % 72 % 47 %
APPENDIX 2
Projected Experience of Carmanian Company—dssumption 1
Year
3 4 6 7 8
Percentage rate of inflation
in year 30 30 30 30 30 30
Percentage rate of interest
in year 20 30 30 30 30 30
Percentage increase in pre-
miums at start of year I5 30 42.2 30 30 30
Premiums charged at start
of vear 1846 2400 3412 4436 5766 7496
Provision for outstanding
claims at start of year 1214 1578 2051 2666 3466 4506
Interest on provision for
outstanding claims at
start 243 473 615 800 1040 1352
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Year
3 4 5 6 7 8
I'ree reserves at start of year 1326 1123 1212 1576 2049 2664
Interest on free reserves at
start 265 337 364 473 615 799
Premiums less commission
at start of vear 1570 2040 2900 3770 4901 6371
Interest on (premiums less
commission) 314 612 870 1131 1470 1QII
Claims and expenses paid at
end of year 2231 2900 3770 4901 6371 8282
Provision for outstanding
claims at end of year 1578 2051 2666 3466 4506 5858
Free reserves at end of year 1123 1212 1576 2049 2664 3463
Prospective solvency margin
at end of year 47 % 35:5 % 35:5% 35.5% 35.5% 355 %
Correct provision for out-
standing claims at end 1578 2051 2666 3466 4506 5858
Correct free reserves at end 1123 1212 1576 2049 2664 3463

Correct prospective solvency
margin at end

47 % 355 % 355 % 355 % 355% 355 %

APPENDIX 3

Projected Experience of Carmanian Company—Assumption 2

Year
3 4 5 6 7 8 9
Percentage rate of inflation
in year 30 20 10 5 5 5 5
Percentage rate of interest
in year 20 30 20 10 5 5 5
Percentage increase in pre-
mium at start of year 13 30 42.2 12 o o 5
Premiums charged at start
of year 1846 2400 3412 3820 3820 3820 g4o1:x
Provision for outstanding
claims at start of year 1214 1578 1894 2083 2188 2297 2412
Interest on provision for
outstanding claims at
start 243 473 379 208 109 115 121
Free reserves at start of yvear 1326 1123 1592 2635 3482 3819 4010
Interest on free reserves at
start 265 337 318 264 175 191 201
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Year
3 4 5 6 7 8 9
Premiums less commission
at start of year 1570 2040 2000 3247 3247 3247 3499
Interest on (premiums less
commission) 314 612 580 325 162 162 170
Claims and expenses paid at
end of year 2231 2677 2945 3002 3247 3409 3579
Provision for outstanding ,
claims at end of year 1578 1894 2083 2188 2297 2412 2533
Free reserves at end of vear 1123 1592 2635 3482 3819 4010 4211
Prospective solvency margin
at end of year 47% 47% 69% 01 % 100 % 100 % 100 %
Correct provision for out-
standing claims at end 1378 1606 1989 2188 2297 2412 2533
Correct free reserves at end 1323 1790 2729 3482 3819 4010 421I
Correct prospective solvency
margin at end 35% 529% 71% 9I % 100 % 100 %, 100 9%

APPENDIX 4

Projected Experience of Carmanian Company—Assumption 3

Year
3 4 5 6 7 8

Percentage rate of inflation in year 30 40 50 65 80 100
Percentage rate of interest in vear 20 30 40 50 65 8o
Percentage increase in premiums at

start of year 15 30 42.2
Premiums charged at start of year 1846 2400 3412
Provision for outstanding claims at

start of year 1214 1578
Interest on provision for outstanding

claims at start 243 473
Free reserves at start of year 1326 1123
Interest on free reserves at start 265 337
Premiums less commission at start of

year 1570 2040
Interest on (premiums lesscommission) 314 612
Claims and expenses paid at end of

year . 2231 3123
Provision for outstanding claims at

end of year 1578 2209
Free reserves at end of year 1123 831
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Year
3 4 5 8
Prospective solvency margin at end
of year 47 % 24 %
Correct provision for outstanding
claims at end 1862 2633
Correct free reserves at end 839 407

Correct prospective solvency margin
at end 35 %% 129




EXCHANGE DE RISQUES ENTRE
ASSUREURS ET THEORIE DES JEUX
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REsuME

Un théoréme de Borch caractérisant les traités d'échange de risques
Pareto-optimaux d'un marché de réassurance est étendu au cas d'utilités
non différentiables. Les conditions d’existence d'une solution aux équations
sont étudiées. Nous montrons ensuite que le marché constitue en fait un
jeu coopératif a m joueurs a utilités non-tranférables. Nous déterminons
un contrat optimal de réassurance, d’abord en calculant la valeur au sens
de Shapley du jeu, puis en introduisant un nouveau concept de valeur.
Les deux techniques sont illustrées au moyen d’un exemple.

SUMMARY

A theorem of Borch characterizing Pareto-optimal treaties in a reinsurance
market is extended to the case of non-differentiable utilities. Sufficient
conditions for the existence of a solution to the equations are established.
The problem is then shown to be identical to the determination of the value
of a cooperative non-transferable m-person game. We show how to compute
the Shapley value of this game, then we introduce a new value concept. An
example illustrates both methods. .

§1. INTRODUCTION

Considérons un marché de m compagnies d’assurances Cy, ...,
Cm. Désignons par S; le montant dont dispose C; pour régler les
sinistres et par F;(x;) la fonction de répartition du montant total des
sinistres pour I’ensemble du portefeuille de C; pour toute la période
considérée. La situation de C; peut étre caractérisée par le couple
[S1, Fyxg)].

Nous supposons que chaque compagnie évalue sa situation au
moyen d’une fonction d’utilité

Usles) = UslSy, Fylag)] = [ us(Sy— x7) dF(xy),

ot1 #;(S; — %;) représente l'utilité attachée & un montant monétaire
S § — Xj. :

Bien entendu, toute fonction d’utilité ne convient pas pour
décrire le comportement d’un assureur. C’est pourquoi nous limitons
la classe de ces fonctions en formulant les hypothéses suivantes:
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1) uy(x) est une fonction non-décroissante de x (un gain élevé est
toujours préféré a un gain plus faible);

2) uy(x) est une fonction concave (ou, ce qui revient au méme,
chaque membre du marché a une aversion au risque positive. Un
assureur a en effet toujours peur du risque, c'est pour cela qu’il se
réassure. Si une compagnie avait une aversion au risque négative, ne
fat-ce qu’en un seul point, le probléme serait trivial car elle serait
disposée a distribuer ses réserves pour reprendre les portefeuilles de
ses partenaires);

3) u;(x) est une fonction bornée supérieurement dans un inter-
valle ouvert contenant

=[—c0, £ 5]
=1
(aucun traité de réassurance ne peut apporter une satisfaction
infinie).

Les différents membres du marché vont chercher a augmenter

leur utilité en concluant un traité d’échange de risques:

.\— = [yl(xl, « e ‘rm)y R ym(xl’ R xm)},

ol yj{x1, ..., ¥m) est le montant que C; doit payer si les sinistres
pour les différentes compagnies s’élévent respectivement a x1, ...,
xm- Comme tous les sinistres doivent étre indemnisés, les yj(x1, ...,
xm) doivent Satisfaire a la condition d’admissibilité

Zvile, .., Xm) = Z x5 (1)

1= i=1

le montant total des sinistres.

Apreés signature du traité, l'utilité de C; devient

Usl®) = JulS;— ys&)] aF (%),

ol £ = (%1, ..., ¥m), F(%) est la fonction de répartition liée de % et
0 l'orthant positif de I’espace euclidien & m dimensions.

Un traité + est dit préférable a ¥ si

Us(m)=Us®) V5,

avec le signe d’inégalité strict pour au moins un j.
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Un traité v est Pareto-optimal s’il n’en existe aucun qui lui soit
préférable. En d’autres termes ¢ est Pareto-optimal si et seulement si

U#)=U;(d) v
implique
Uiv) = Us(¥) V7.

Un traité Pareto-optimal représente un équilibre stable dans le
marché. Un traité additionnel conclu dans cette situation ne pour-
rait élever l'utilité d’une compagnie sans faire décroitre celle d’au
moins un partenaire.

Borch ([1] 2 [4]), puis Du Mouchel {[5}) ont démontré un théoréme
permettant de caractériser les traités Pareto-optimaux au moyen
d’un ensemble de m — 1 constantes. Cependant, ces auteurs utilisent
certaines propriétés de dérivabilité des fonctions d’utilité qui ne
possédent aucune justification économique; c’est pourquoi nous
allons généraliser le théoréme au cas d’utilités non-différentiables.

§2. CARACTERISATION ET EXISTENCE DES TRAITES
PARETO-OPTIMAUX

THEOREME 1: Un traité 7 est Pareto-optimal si et seulement si il

existe m constantes non-négatives &1, ks, ..., & telles que, avec une
probabilité 1,
ki " [S; — y,(%)] = Run " [Si— (@) j=1,...,m (2)

u;* (x) désignant la dérivée & droite de u,(x).

L’'énoncé a un sens car il est bien connu que toute fonction con-
cave, bornée dans un intervalle ouvert, admet une dérivée i droite
(ainsi qu'une dérivée & gauche) finies en tout point. Ces dérivées sont
monotones non croissantes.

Démonstration. Condition suffisante: Soit un traité 3 = § + ¢,
ol € = [e1(%), ..., em(®)], ol au moins une des ¢;(%) est non nulle et
supposons la relation (2) vérifiée pour ¥. Nous allons montrer que
7 est Pareto-optimal.

Le cas ou certains k£; sont nuls est trivial: la compagnie Cy ne peut
espérer améliorer son utilité et son cas ne doit pas étre envisagé.
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Nous pouvons donc supposer les &; positifs. Choisissons un indice j
tel que ¢;(%) soit non nulle. 1l vient

Ux")—Ujly) = g{w (S5 — y3(%) — e5(®)] — uy [S5 — y5(%)]} dF (%)

Nous devons distinguer le cas ol ¢;(%) est positive de celui ou
cette quantité est négative.

Supposons d’abord e;(®) positive. Par définition de la dérivée a
gatiche

15[ Sy — y4(%) — ¢5(2)] — us{Sy — y4(%)]

R R
il vient
Uj(fl) - Uj(.‘.’) = GI {— e,(,?) '”_;- [S; - )’j("")] + ej[ej(x)r yj(Z)]}dF(;?),

(3)
oil
07 (e (®), v5(®)] = 1y[S; — 4(®) — ()] — w[S; — y,()] +
+ ¢(X)u;[S; — v4(®)].
Nous allons montrer que 87 {¢(%), u,(?)] est une quantité non-
positive, c'est-a-dire que
(S5 — y5(®)] — wy(S; — ys(¥) — 81(3?)]
e5(%)

ou, ce qui revient au méme,

13[Sy — y5(&)] — 1Sy — y4(%) — &;()] -

ej(%) -
13[Sy — y5(£)] — 1s[S5 — y;(%) — xes(%)]
=
ae;(%)
o<1
ou
%s[ S5 — v3(%)] — ws[Sy—y1(x) — aey(x)] < a{my[S;— y4(£)] —

— (S5 — y1(x) — ¢;(%)]}.

Cette inégalité résulte de la concavité de la fonction d’utilité.
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Par conséquent

Uy#) — Uy(9) < — ef &(%) u; ([Sy — v,(%)] dF (%).

La concavité de #4(x) implique également
147(S; — y;(8)] = ;" [S; — y,(%)].
Donc
U#) — Uy(s) < — ['¢;(2) u;*[S; — y,(®)] AF ().

En utilisant (2)
, k ,
Uy(#) — Uy5) < — g J ¢(®) 4" 1S, — % (B 4F (2).

La méme inégalité peut se démontrer dans le cas (%) < o, en
employant directement des dérivées A droite.

Puisque T y,(%) = T y,(%) = T x,, il faut que T ¢(x) = o.
j=1 I=1 f=1 1

j=

Il vient, en multipliant par %; et en sommant
EHU) = U5 < — k[0 08— (8] Zoy(2) dF(2) = o.

Si § n’est pas Pareto-optimal, il doit exister un ¥’ tel que chaque
terme du membre de gauche soit non-négatif, avec au moins un
terme positif, ce qui est impossible. Donc ¥ est Pareto-optimal.

Condition nécessaire: Supposons par exemple qu'il n’existe pas de
k. et ko telles que la relation (2) soit vérifiée pour un traité v. Nous
allons construire un traité #' meilleur que 7.

J "?[Sl — %(%)] ""z*[sz — ¥2(%)] dF (%)
of{";’fsl — y1(®)])* dF ()

Posons s'abord & =

et
W(®) = 143 *[Se — yol¥)] — kup*[Sy — w(9)].
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Alors
of v(®) w1 *[Sy—wi (%)) dF (%) = OI {042 [Sy —yo(2)] — oy *[S; — i (2)] -
1" (S) — ¥,(2)] dF (%)
= éf 1" [So— va(£)] 141 [S) — (%)) dF (%)
—k of {1 [S; — »(2)])* 4F (%)
= 0. (4)

v(%) est donc la partie de u, *[S, — y,(%)] orthogonale d u; * [S; — v, (%)].

Comme (2) n’est pas vérifiée pour j = 2 et pour toutes &, %2,

§ v2(z) dF(z) > o.
-]

Posons

J @) aF )

’=1 TS — v e

Définissons le nouveau traité ¥ = ¥ 4 ¢, ol

a(®) =[4(%) —8 = (¢ >0
ex%) = — e1(%);
e{®%) = o (7 >2).

En employant une technique similaire & (3},
Ui(9) = Uh(5) = [{—es(®) ' S: —3a(8)] + Biar(2), (@} 4F (o)
s —DE) =3 uy* [Sy — »(2)]dF(2) + (1/5)
J8(e®), mi(®)] dF (%)}
= <( 81" Sy — m(ENF(E) + (1)

Jeftex (®), »(%)] @F (%)}



ECHANGE DE RISQUES 161

en utilisant (4). Etudions le comportement du dernier terme du
second membre au voisinage de z = 0.

(1/e)05 [e1(2), y1(B)] = (1/e) {#44[S1 — %1 (&) — &,(R)] — 4, [S, — v, (%)] +
+ e,(®) uy *[S, — y1(2)]

= (1/€) {#s[S:— 31 (Z)— (v(%)— 8) e]—14,[S1—, (%)]

+ (v(x) — 3) eu, *[S; — 1 (%)]}

1,[S) — y1(x) — (v(x) — 8) ] — 4, [S) — 9,(%)]
— (v(%) —38) =

=—[v(#) —3]
— 41 *[Sy — n @]

I1 nous faut 3 nouveau distinguer deux cas suivant le signe de
[v(z) — 8] e.

Si cette quantité est positive, le terme
Sy — y1(x) — (v(x) — 3) e] —w[S1 — n(¥)]
— (%) — 3¢

tend vers %, “[S; — y,(%)] lorsque ¢ — 0. Posons
“'1_'[51 — @) —u*[S; — n(x)] =B >o.

L’expression entre accolades tend vers 3:. Cette convergence est
monotone puisque les dérivées sont des fonctions monotones de
y1(%). Donc

lim (1fe) 87 [ea(2), 7 ()] aF(z) = 6f lim (1fe) 87 [e(#), :(2)] 4F (7)
= J BL dF (%)
= 1.
Ui7) = UW) = «8 [ 7[5 — n(#)]) dF(E) + B}
Comme 3 >0 et ej'u;*[Sl — (%)) dF (%) >0, U,(9) — U ()
est positive pour ¢ suffisamment petit.

Lorsque [v(%) — 8] ¢ est négative, l'expression entre accolades
tend vers zéro, ce qui ne change rien a la conclusion.

I1
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De maniére similaire nous avons pour C::
Us(5) — Us(§) = [{— ea(®) 112" [Sy — (%)) + 85 [ea(), ya(%)]} dF (%)
= < [ [o(®) — 8] 15 (S, — . (®)] dF () +
° + (3fe) 65Ten(R), 9B AF (1)
=zi{4%) {fuy *[Sy — ni(®)] + (%)} dF (%) —
—3J 5" [Sy — ys(%)] AF (%)
+ (1fe) [ 0 Tea(8), 22(8)] dF ()}
(8 AF(7) — 8 0[Sy — ()] F (1)
+ (1/9) | 05 (ea(8), y2(2)] 4F ()
§ (8) dF(8) + (1fe) [ 05 [ea(%), 2(8)] dF (%))

I

=

=z{}

en utilisant (4).

La derniére intégrale peut 4 nouveau étre remplacée, soit par zéro,
soit par

B2 = 1y [Sy — ya(%)] — 2" [S2 — %a(%)] >o0.

Il en résulte que Us(7’) — U=(¥) > o pour ¢ suffisamment petit.

Puisque
U(7) > Uy(w) pourj=1,2
Ui(7) = Us(¥) pour tout j > 2
7 n’est pas Pareto-optimal.

Remarquons que la condition suffisante est vraie que nous
prenions des dérivées a gauche ou a droite. L'obligation d’employer
des dérivées i droite dans la condition nécessaire résulte de la
concavité des u;(x). -

Si le théoréme précédent permet de caractériser les traités
Pareto-optimaux, il n’assure pas l'existence d’une solution aux
équations (2). Les théorémes et le contre-exemple suivants appor-
tent une réponse a cette question.
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TuEoREME 2. (Du Mouchel) Si les fonctions d’utilité sont déri-

vables en tout point d’un intervalle contenant I = {0, Z 5] et
=1

si les k; peuvent étre choisis tels que les domaines des fonctions

1;(x) . k; ont une intersection non-vide, il existe une solution Pareto-

optimale.

THEOREME 3. Pour un ensemble de constantes %; fixé, satis-
faisant aux hypothéses du théoréme 2, il existe un et un seul traité
Pareto-optimal:

Démonstration: L'existence d’un traité étant assurée par le
théoreme 2, il suffit de démontrer 'unicité.

Les relations (2) définissent implicitement les y;(%) en fonction de
y1(€), pour z fixé. Soient

y1(Z) = 11(y1(%)) j=2...,m

ces fonctions. Comme les u;(x) sont des fonctions continues non-
décroissantes des y(%), les y4(y:1(%)) sont des fonctions uniformes,
continues et non-décroissantes. La condition d’admissibilité

Zy(e) = Zxy =
J=1 Jm

devient
yi(Z) + T vs(n(R) = 2.
j=2

Le premier membre est une fonction continue croissante de
y1(%). Donc pour tout z il existe un et un seul traité y,(%) Pareto-
optimal. Un méme argument peut é&tre répété pour les autres
compagnies.

THEOREME 4. Pour un ensemble de constantes %; fixé, il existe au
plus un traité Pareto-optimal.

La démonstration s’appuie sur un raisonnement analogue i celui
du théoréme 3, utilisant des dérivées i droite. La non-continuité
des u,(%) en les points ol les fonctions d'utilité ne sont pas dérivables
implique qu’il peut ne pas y avoir de solution admissible aux
équations (2), comme le confirme le contre-exemple suivant.
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Soient
m(x) = 1 — @S
Sa(x—Sz) x < Se.
ua(x) = a>b>o0
lbx—Sy) >S5
Alors
W, [S; — n()] = ¢+

ga y2(Z) >0
" [Sg —¥2(%)] = :
b vm <o
La relation (2) devient
Skza = ket ® y2(%) >0
(kzb = ki@ y2(%) <0

gLog ke + Log a = Log k1 + yi(Z) y2(%) >0

{Log 2 + Log b = Log ki + y1(%)  y2(8) <0
gyl(f) =Loga + Logke —Loghki=A %) >0
l1(%) = Logb + Log ks —Log b = B (%) <o

avec A > B.

Or yz(%) = z — y1(%). Donc y»(%) > o implique yi(%) < z et
ya(%) < 0 — y1(%) = z. Donc

yni®) =4 ynx) < z
y1(%) = B y1(%) = 2.
Alors z > (%) = A > B = »(%) > zcequiest une contradiction.

THEOREME 5. Si les fonctions d’utilité sont strictement concaves
et si les y;(%) sont différentiables, un traité Pareto-optimal ne
dépend des montants des sinistres x; que par 'intermédiaire de leur

somme z = X ¥j.

J=1
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Cette propriété constitue une généralisation d’'un théoréme de
Borch ([3]). La démonstration en est semblable, & condition d’utiliser
les dérivées secondes a droite (u;*) "*(x), qui existent car les u; " (x)
sont des fonctions monotones. Le théoréme signifie que le montant
payé par C; ne dépend que de la somme des sinistres a régler sur
I'ensemble du marché. Sous les conditions de 1'énoncé, tout traité
Pareto-optimal revient & former un pool de toutes les compagnies
et décider d’une régle pour la répartition des charges: les assureurs
ont donc toujours intérét a coopérer.

§3. LEMARCHE DE REASSURANCE EN TANT QUE JEU A UTILITES
- NON-TRANSFERABLES

Nous allons dorénavant supposer qu’il existe un traité Pareto-
optimal, fourni par les équations (1) et (2). Ce traité est unique
lorsque les constantes 4; sont déterminées (théoréme 3). Cependant,
il existera en général tout un domaine de %; fournissant une solution
admissible. Les % ne sont déterminées qu’a un facteur prés: (2) n’est
pas modifiée lorsque les %; sont multipliées par une constante. Nous
pouvons donc arbitrairement restreindre le domaine des k;, par

exemple en posant k2 = 1 ou X & = m.
f=1

Dans 'espace euclidien & m dimensions formé par les utilités des
compagnies, l'ensemble des %; admissibles forme une surfacea m — 1
dimensions, appelée surface Pareto-optimale. Ses équations para-
métriques (en les paramétres %, ..., 2,) sont

Uy = {"1[51—}'1(«’?)] aF(z), j=1,....m
ol les y;(%) satisfont aux relations (2).

Une compagnie n’acceptera de faire partie du pool que si cela
entraine pour elle une amélioration de sa situation, c’est-a-dire une
augmentation de son utilité. La surface Pareto-optimale est donc
limitée par les m hyperplans d'équations

Uj = Uj(xy).

L’espace délimité par la surface Pareto-optimale et les m hyper-
plans est appelé ’espace du jeu &.
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Toutes ces considérations suggérent en effet une analogie avec la
théorie coopérative des jeux. Nous allons montrer que le probléme
tel que nous l'avons formulé constitue en fait un jeu a m joueurs a
utilités non-transférables.

Définition: Un jeu i utilités non-transférables est défini par un
triplet {M, »(S), H], olt

1) M est un ensemble fini d'éléments (les joueurs);

2) v(S) est une fonction (appelée fonction caractéristique) définie
sur tous les sous-ensembles non-vides S de M, envoyant chaque S
(les coalitions) sur un sous-ensemble »(S) de V'espace euclidien a
| S'I dimensions, tel que

a) v(S) est non-vide;

b) v(S) est convexe;

c) v(S) est fermée;

d) v(S) est suradditive: ¥ S1, S: ¢ M,

2-S1nS:=¢, v(S1US2) D v(S1) xv(Se);

3) H est ,l’ensemble des résultats réellement accessibles””. Plus
précisément:

v(M) = {xzE'M! | 3ye HD-y > x).

Soient 1) M l'ensemble de m compagnies;

2) v(S) l'espace délimité par la projection de la surface
Pareto-optimale dans l'espace euclidien a | S | dimen-
sions;

3) H=2.

THEOREME 5. Le marché de réassurance est un jeu a utilités non-
transférables [M, v(S), %).

Démonstration: Il suffit de montrer que v(S) vérifie les propriétés
a) a d).
a) »(S) est non-vide: elle comporte certainement le point initial

vi(%) = %;. Vi
b) v(S) est convexe: soient ¥'S et ¥"’S deux traités admissibles pour
une coalition S. Nous avons donc
T yS(x) = Z y;5(%) = Z %.
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Le traité 95 = a5 + (1 — «) 75 est également admissible car
Uy® = Uglay™s + (1 — «)377)
= aUy(§5) + (1 —)Us(#"5) en vertu de la pro-
priété de linéarité des
fonctions d'utilité
= aUj(x) + (1 — o) Uylxy)
= Ujlxp)-

Le jeu est dit ,,a utilités non-transférables’” par opposition aux
jeux a utilités transférables, pour lesquels les paiements latéraux
entre joueurs sont autorisés et n'ont pas d’effet sur la somme des
utilités de tous les joueurs. Ceci implique que les u4(x) sont de la
forme ajx + b;, et que la surface Pareto-optimale est un plan

d’équation

¥ U; = constante.
j=l

Le jeu est dit inessentiel lorsque £ se réduit a un point, 4 savoir le
traité v;(£) = x; pour tout j. De tels jeux sont intéressants car les
joueurs ne peuvent retirer aucun bénéfice de leur coopération, ils
correspondent & des cas de dégénérescence: les variances de certains
portefeuilles sont nulles par exemple. Pour éviter d’inutiles pré-
cautions de langage, nous supposerons dorénavant le jeu essentiel.

La figure suivante représente un espace de jeu possible pour un
marché de deux compagnies.

Us
—

I~

surface Pareto-optimale

Ua(x2)
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La solution Pareto-optimale n’est pas unique car nous avons
choisi une définition d’optimalité assez faible. I1 lui manque en
effet certains axiomes de partage, précisant comment les joueurs
vont répartir le bénéfice de leur coopération. Chaque compagnie a
intérét a obtenir une constante %; aussi grande que possible (com-
patible avec les conditions d’admissibilité) de maniére a4 payer le
moins possible. Le choix des k; dépend donc d’un marchandage
supplémentaire, pendant lequel les intéréts des joueurs seront
contradictoires. En termes de théorie des jeux, nous devons déter-
miner la valeur du jeu.

§4. VALEUR AU SENS DE SHAPLEY

Le premier concept de valeur satisfaisant fut présenté par Shapley
((9]) en 1953 dans le cadre des jeux A utilités transférables.

Définition: Le jeu a utilités transférables associé au marché [M,
y(S), £] est défini par le couple [M, ©(S})], ol

1) M est 'ensemble des joueurs;
2) v(S) est une fonction d’ensemble, appelée fonction carac-
téristique, associant 4 toute coalition S € M I'hyperplan d’équation

P Us(xy)

N

Ua(xs)

U,
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L U;=B(3),
. as
ol
5(5) = wax L U;'; Us = {Ujl]ES}
Ugts jes

La figure de la page précédente représente le jeu & utilités
transférables associé & une marché de deux compagnies.

Géométriquement, v(S) est 'hyperplan tangent 4 v(S) dont tous
les cosinus directeurs valent 1. Le point de tangence 4 ne fait pas
nécessairement partie de 1'espace du jeu &; il peut conférer 2 un des
joueurs une utilité inférieure & sa valeur initiale.

Remarquons que A n’est pas nécessairement unique: l'intersec-
tion de v(S) et ¥(S) pourrait étre un segment de droite ou un morceau
convexe d’hyperplan.

Une imputation — c’est-a-dire un partage du gain global — est
un point ¢ = (¢1, ..., ¢m) tel que

¢ = Ujlxy) vj

z bs = B(M).

Shapley est parvenu a définir un concept de valeur en isolant une
Imputation a partir de trois axiomes.
Soit Gy 'ensemble de toutes les fonctions u(S).

Définition: On appelle fonction de valeur ¢, la fonction définie sur
Gm qui associe A toute v(S) £ Gy, une imputation

$() = [$1(?), ..., m(¥)],
satisfaisant aux trois conditions suivantes:

I) Deux joueurs syméiriques regoivent le méme montant,
Pour toute permutation = de I’ensemble des joueurs, et pour
toute v(S) telle que v[n(S)] = v(S) pour toute S € M,

$en®) = (v). j=1,...,m.
2) Un joueur inessentiel pour toute coalition ne bénéficie pas de la
coopération;

S’il existe un j € M tel que v(S) = v(S — {7}) + v({7}) pour
tout S © M incluant j,

$1(@) = v({s}).
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3) La fonction de valeur est linéaire.
Pour toutes v(S), w(S) = G, pour tous a, b

dilav + bw) = ads(v) + des(w). j=1,...,m.
THEOREME 6. Il existe une et une seule fonction de valeur
(s —1)! {m —3s)!

ZOEY L [v(S) — (S — {})] -
s=1|S|

. La valeur au sens de Shapley peut étre interprétée de la manieére

suivante: les joueurs entrent un par un dans la coalition, dans un
ordre aléatoire. Chacun recoit la totalité de ce qu’il apporte a la
sous-coalition formée avant lui. Tous les ordres d’entrée sont
envisaéés, et résumé par une moyenne arithmétique.

Le modtle attribue donc a chacun ’espérance mathématique de sa
valeur d’admission, lorsque toutes les permutations de joueurs sont
équiprobables. Dans le cas d’un jeu & deux joueurs, la valeur au
sens de Shapley ¢(v) est le milieu du segment de droite v({1, 2})
limité par les utilités initiales: elle accorde le méme gain d’utilité
aux deux joueurs.

U N Ux(xx.)

U@ [N P
\ ‘1

Alors se pose le probléme important de généraliser ce concept de
solution aux jeux i utilités non-transférables.

Le point ¢(v) peut-il constituer une solution acceptable pour le
marché de réassurance ? Evidemment non car il se trouve en général
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en dehors de I'espace du jeu £ et ne peut donc étre atteint par un
traité. Ce n’est que dans le cas particulier ou ¢(v) coinciderait avec
le point (ou un des points) de tangence 4 qu'il pourrait étre une
solution valable (4 condition que 4 fasse partie de &).

Or, les fonctions d’utilité des joueurs ne sont définies qu'a une
transformation linéaire prés. Nous pouvons donc multiplier ces
fonctions par des constantes arbitraires non-négatives 4;. Cette
opération a pour effet de modifier %, v(S), et par conséquent A et
$(3). '

Shapley ([x0]) a montré qu'’il existe (au moins) une ensemble de
,,poids” %; tel que la valeur transformée fasse partie du nouvel
espace du jeu. La démonstration peut étre aisément adaptée au
modéle de réassurance, et fournit dans ce cas un résultat complé-
mentaire intéressant: les poids ks ne sont rien d’autre que les con-
stantes apparaissant dans l'expression fondamentale (2). Ce résultat
nous permet de donner une interprétation économique aux %;.

Celles-ci représentent les forces relatives des joueurs.

u;*[Sj — ¥,(%)] est la pente de I'utilité de C, aprés réglement des
sinistres. (2), qui peut s’écrire

w, [S; —y; (B Kk L
S = T Vi,
4 [S; — v®)] K "

exprime que ces pentes sont commensurables au moyen de ,taux
de change d’équilibre’’ &;/%;. Infinitésimalement, le marché peut étre
considéré comme un jeu a utilités transférables ol les compagnies
utilisent des ,,monnaies”’ différentes. La solution ne change pas si
localement C; et C; s’échangent de 'argent au taux kqf4;, C; devant
donner %; unités pour en recevoir %;. L’analogie avec les équilibres
monétaires peut encore étre poussée plus loin: si C; veut échanger un
montant important avec Cy, il exerce une ,,demande’’ sur les réserves
de son partenaire, ce qui a pour effet de déplacer le point d'équilibre
en faisant monterle taux de change: %; augmente et k; diminue.

Exemple

Considérons le cas ou la fonction d’utilité de chaque compagnie est
quadratique

#i(x) = x — ajx2. A4
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Borch a montré que les contrats Pareto-optimaux sont des
traités en quote-part de taux

1/kj aj
9= "=
z I/k;a,-
1

=
ol les g; doivent satisfaire aux inégalités
gg=0 VJ

g =1

j=1

I 2
(z; —Rf) +Vi

ol < 2w

2
9 <

en désignant par P; la prime pure, par V; la variance de la distri-
bution des risques de Cj et par R; la réserve S; — P;.

Considérons trois compagnies Ci, Ce, Cs, dont les parameétres
valent

Ri=1 R =4 Ry =4
Pi=1 Py =2 Piy=2
V1=55 V2= 20 Vi = 20
a = 0,01 az = 0,05 as = 0,05.

Les utilités initiales valent

Uj(x) = = —ay [(‘—I' ——Rj)z + Vf]-

aj 24y
Donc
U1(x1) = 0,44
Uz(xz) = 2,2
Us(xs) = 2,2.

Ces utilités correspondent a des quote-parts extrémales pour C;:
gPer = 0,802251
g™ = 0,757719.
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Posons pour simplifier

I 2
Yj= ("‘"’——R;) -+ Vj;

24y

FYERIS -
Y='(‘_l ::a—‘-—-Ri +‘_‘ Vi

L’utilité aprés réassurance vaut
I . _
U,5) = 4;; — & 41y v

En éliminant les paramétres ¢1, g2, g3, nous obtenons I'équation de
la surface. Pareto-optimale _
1 3
— Uj =
»n 4“] o
Y )

— I = 0,
Jm1

ce qui devient dans notre cas
Y25 — Ui + V1 — Usf5 + V1 — UsJ5 = V38,16.

La valeur au sens de Shapley transférable (c’est-i-dire sans
introduire de poids k; pour le moment) s'obtient en résolvant le
systéme de 2 équations

Ui + Uz + Us = v({1, 2, 3}) (6)
V25 — Ur + V1 — Us/s + V1 — Ua/s5 = V38,16 (7)

en les quatre inconnues Uy, Us, Us et 1{(1, 2, 3)}, en exprimant que
le plan (6) est tangent 4 la surface (7). Ces calculs donnent

Ur = $i(v) = 1,583175
Uz = ¢e(v) = 3,079841
Us = ¢s(v) = 3,079841
v({1, 2, 3}) = 7.743957-

En remplagant dans (5), on obtient

@1 = 0,783357
g2 = 0,100318
gs = 0,X00318.
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valeurs non-admissibles car leur somme est inférieure & 1. Ce point
se trouve au-dessus de la surface Pareto-optimale.

Multiplions donc les paiements de C, par 4, ceux de C: par k& et
ceux de Cs par ks. Notons ¢k(v) et v¥({1, 2, 3}) les transformés de
B(v) et v({1, 2, 3}) par cette opération. Nous savons que nous pou-
vons imposer une relation arbitraire aux ;. Nous supposons donc
que leur somme est égale a m.

Ceci nous donne trois équations

ﬁS — ¢F ()[R, + ' — B35 (v)/ky + V1 — ¢E(v) /Ry = V38»I6
' PE(@) + ¢5([@) + $5(0) = v*({1, 2, 3})
ki + ks + kg =3

pour 7 inconnues ¢¥(7), ¢5(3), ¢¥(), £y, ks, kg, ¥({1, 2, 3}).

En exprimant que
— la surface Pareto-optimale doit étre tangente a I’hyperplan de
transférabilité,
— la valeur doit se trouver sur la surface,
et en éliminant les inconnues, nous obtenons aprés de longs calculs’
une équation du 4& degré en k. Ce polynéme posséde trois racines
négatives et une seule racine positive

ky, = 0,776313
ky = 1,111684
kg = 1,111684
¥(v) = 1,169078
¢é‘(§) = 3,099199
$¥(v ) = 3,099199
vk({1, 2, 3}) = 7,367477.

En divisant ces valeurs par ki, ks, ks et en remplagant dans (5),
il vient

q1 = 0,784648 Ui(#) = 1,505937
2 = 0,107676 Ua(¥) = 2,787842
gs = 0,107676 Ua(¥) = 2,787842
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Comme on pouvait s’y attendre, C1, ayant le moins peur du risque,
va prendre 4 sa charge une quote-part importante des sinistres. En
contrepartie, elle va évidemment exiger une compensation moné-
taire. On peut montrer que celle-ci doit étre égale a

y5(0) = ¢; ‘% (i — 51) - (:E; — 5;).

2a4

Il vient

y2(0) = va(0) = 2,029856.

Donc C1 va percevoir au total

— y1(0) = y2(0) + y3(0) = 4,059712.

§5. UN NouveEau CONCEPT DE VALEUR

Le § précédent nous a permis d’isoler un traité de la surface
Pareto-optimale. Un certain nombre de critiques peuvent cependant
étre formulées a ’égard du concept de valeur de Shapley (voir [7]).
Le défaut le plus grave du modéle est que I'axiome 3 de linéarité
n'est certainement pas vérifié car les compagnies évaluent leur
situation au moyen de fonctions d'utilité, par définition non-ad-
ditives: l'utilité résultant de la signature de deux traités n’est pas
égale 4 la somme des utilités partielles. C’est pourquoi nous avons
défini (dans [6]) un nouveau concept de solution, basé directement
sur les jeux a utilités non-transférables, en généralisant un modéle
de marchandage de Nash ([8]).

Les axiomes permettant d’isoler un traité sont les suivants.

1) La solution n'est pas affectée par une transformation linéaire ef-
fectuée sur les utilités.

2) La solution est fonction de tous les sous-traités relatifs aux
coalitions d'effectifs inférieurs & m; chague sous-traité satisfait
aux relations (I) et (2).

3) Tout jeu symétrigue a une solution symétrique.

4) La solution ne change pas si nous retivons de I’espace du jeu tont
point autre que le paiement initial et la solution elle-méme.
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Pour simplifier les notations, posons
K = {k1, ..., km | les k; sont liées par une relation}
¥1(S) = y{xi |1 S}) jes
U(S) = Uy [y4(S)]

Uy(S) est I'utilité pour C; d’un traité signé par les membres d’une
coalition S.

Supposons qu’a un moment quelconque de la négociation un
premier groupe Si de joueurs soit arrivé a un traité optimal (S1),
permettant aux joueurs -Ci(¢ € S1) d’obtenir une utilité Uy(S1)
tandis qu'un autre groupe S: (tel que Si1 N S: = ¢) a conclu un
traité optimal #(S2) donnant 4 C;(l € S2) une utilité U;(Ss). Ces deux
groupes se réunissent en vue de signer un traité global 7%(S1 U Sq)
(le symbole U a ici un sens légérement différent d’une réunion;
Sy U S: veut dire ,,S) se joint & S;". Le - est placé pour rappeler
que le résultat ne dépend pas uniquement de ’ensemble S: U S:
mais aussi de la maniére dont cette coalition s’est formée, c’est-a-
dire de S, et Ss). Si les deux groupes ne parviennent pas A se mettre
d’accord sur un traité #(Si U Se), ils retombent nécessairement au
point de départ de la négociation

U{(Sl) vC:;e 5
Uz(s-z) vCi e Sa.

Pour cette raison, ce paiement est appelé le point de désaccord.

Lemme: Le traité y2(S, U Se) est 'unique point tel que

4% =max & =max [1 [UyS: US2)"“U1(51)] IT {TU(S: USz)—-Uz(Sz)]
K S, eS8,
‘ (8)

TuEoREME 7: Il existe un et un seul traité #(M) satisfaisant aux
4 axiomes. Il peut s’obtenir par la récurrence

y1i{7}) = %5
I z yj(SI US}) § = |Sl
)i g |SSS jeS ¥So —1<s<m
¥1(S) = Six¢ S1=35\5:
0 JxS
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b T y(S1US)] m=|M|
y(M)= T |siem , S1=M|S,
519,:¢ j=I,...,m

o, & chaque étape, v4(S: U§1) est obtenu par la solution de (8)
dont le point de désaccord est

Ud(S) Vich
Uz(gl) YieS

La solution se construit par induction sur le nombre de joueurs
d’'une coalition: il faut successivement calculer la valeur de tous les
ensembles comprenant 2 compagnies, 3 compagnies, etc..., pour
arriver finalement a la coalition M. Supposons que nous ayons
calculé les valeurs pour toutes les coalitions dont leffectif ne
dépasse pas s — I et construisons le traité optimal pour un en-
semble S de s partenaires. S contient 25-1— 1 sous-coalitions
(strictes) Si pour lesquelles il existe un sous-traité. Pour chaque S;,
nous calculons par (8) un traité

F[S:1 U (S\Su)].

L’utilité accordée a une compagnie ne diminue pas par cette’
opération: il est en effet facile de montrer que (8) fournit toujours
un US: U S2) supérieur ou égal & Uy(S:). Au plus le point de
désaccord est élevé pour un joueur, au plus la solution de (8) lui est
favorable. Contrairement au modéle de Shapley, le bénéfice de la
coalition est ici réparti entre les compagnies suivants leurs forces
respectives.

Nous obtenons ainsi 2¢-1 — I traités, en général différents, que
nous résumons par une moyenne arithmétique. Nous avons de la
sorte déterminé un traité optimal unique pour S. La solution du jeu
s’obtient pour S = M. '

Ce concept de valeur tient donc compte de l'ordre de formation
du marché: chaque joueur s’allie avec d’autres compagnies ou
ensembles de compagnies, de telle sorte qu’aprés un nombre fini de
jonctions, M soit formée et un traité partiel soit conclu. Toutes les
possibilités de groupement sont envisagées et interviennent avec la
méme force dans le traité final. La solution est 'espérance mathé-

12
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matique des traités partiels lorsque toutes les formations de coali-
tion sont équiprobables.

Exemple
Reprenons I'exemple du § 4.
Utilités initiales Ui({1}) = 0,44
Ual{2}) = 2,2
Us({3}) = 2,2.

Ensembles de deux compagnies.

Coalition {1, 2}. La maximisation du produit
(Ui({1, 2}) — Un({1})] [Ua{1, 2}) — Us({2})]
=[—agiY + a,Y)] [—@pY + a.Y)]
conduit, aprés élimination de ¢, & une équation du troisieme degré
en qi:
e 3, YWY Yo
‘?1‘*‘2‘11“}' 2Y q1+2Y_o'
La résolution de cette équation donne
1= 0877593  Ui({1, 2}) = 1,124759
g2 = 0,122407  Ux({1, 2}) = 2,677553.
Coalition {1, 3}. En vertu de la symétrie entre C2 et Cs, il vient
g1 = 0877593  Ui({1, 3}) = 1,124759
gs = 0,122407  Us({1, 3}) = 2,677553.
Coalition {2, 3}
g2 = 0,3 Us(}2, 3}) = 2,7
gs = 0,5 Usa(}2, 3}) = 2,7.
Coalition }1, 2, 3}. Le systéme formé par les équations (1) et (2)
s’écrit aprés résolution par la méthode des multiplicateurs de
Lagrange,
01(g2Y — Ys) = guo(qsY —Y))
q1(g3Y —V3) = ga(iY — V)
hh+q+g=1

et peut se résoudre par approximations successives.
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{1,2} U {3} 1 = 0,783358
ge = 0,102926
gs = 0,113716
{1,3} U{2} g1 = 0,783358
gz = 0,113716

gs = 0,102926

{2,3} U{1} @2 = 0,794826
g2 = 0,102587
g3 = 0,102587.

Solutién optimale g1 = 0,78718

g2 = 0,10641
gs = 0,10641
Ui({1, 2, 3}) = 1,354042
Us({1, 2, 3}) = 2,839563

Us({1, 2, 3}) = 2,839563

y1(0) = — 3,91792
y2(0) = 1,95896
ya(0) = 1,95896.

La solution est donc légérement moins favorable 4 la premiére
compagnie.
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LA SOIF DU BONUS

JEAN LEMAIRE
Bruxelles

REsuMmE

L’introduction d'un systéme bonus-malus indépendant du montant des
sinistres en assurance automobile incite les assurés & prendre eux-mémes en
charge les frais résultant de petits sinistres. Nous analysons cette ,,soif du
bonus’’ et déterminons la politique optimale de I’assuré au moyen d’un algo-
rithme apparenté A la programmation dynamique. La technique développée
est ensuite appliquée au systéme belge.

SUMMARY

In motorcar insurance is widely used a merit rating system characterized
by the fact that only the number of claims occurred (and not their amount)
modifies the premium. This system induces the insured drivers to support
themselves the cost of the cheap claims. We analyze this “‘hunger for bonus™
and solve this decision problem by means of an algorithm related to dynamic
programming. The method is then applied to the Belgian bonus system.

§ 1. INTRODUCTION

Les compagnies d’assurances européennes utilisent de plus en
plus un systéme de personnalisation a posteriori des primes d’assu-
rance automobile responsabilité civile, populairement appelé sys-
téme bonus-malus. La prime annuelle payée par le propriétaire du
véhicule dépend du nombre de sinistres survenus au cours des années
précédentes, mais non de leur montant; la compagnie accorde une
réduction ou bonus aux assurés n’ayant déclaré aucun sinistre
entrainant des débours en responsabilité civile et pénalise les
,,mauvais’’ conducteurs, ,en tort” dans plusieurs accidents, en
imposant un malus. L’augmentation de prime résultant d’un acci-
dent peut étre trés importante et ses effets se prolonger pendant
de nombreuses années. Par exemple, en Suéde, un seul accident
peut doubler la prime, et six années consécutives sans sinistres sont
ensuite requises pour ramener la prime a son taux initial. Il s’ensuit
évidemment une tendance assez marquée chez les assurés 4 prendre
personnellement en charge les petits sinistres et 4 ne pas les déclarer,
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pour échapper 4 une remontée sur 1'échelle des bonus. Cette ,,soif
du bonus’ entraine une forte réduction de la fréquence moyenne
des sinistres déclarés (une étude menée en Suisse a montré une
diminution pouvant aller jusqu'a 309%). La stratégie optimale de
l'assuré est assez difficile a déterminer, car les sinistres futurs
doivent intervenir dans le raisonnement. Le probléme de décision
reléve de la programmation dynamique en avenir aléatoire a horizon
infini.

§ 2. FORMULATION DU PROBLEME DE DECISION

Une compagnie d’assurance utilise un systéme bonus-malus
lorsque:

1) I’ensemble des polices d’un groupe donné peut étre partitionné
en un nombre fini de s classes Cy( = 1, ..., s) de telle maniére
que la prime annuelle ne dépende que de la classe;

2) la classe 2 un moment donné est déterminée univoquement par
la classe de la période précédente et le nombre de sinistres dé-
clarés pendant la période.

Un tel systéme est déterminé par deux facteurs:

1) l'échelle des primes b;( = 1, ..., s);

2) les régles de transition, c’est-a-dire les lois régissant le passage
d’une classe 4 l'autre lorsque le nombre de sinistres est connu.
Ces régles peuvent &tre présentées sous la forme de transforma-
tions Tk telles que Tx(s) = j: la police est transférée de C; a C;
si & sinistres ont été déclarés.

Considérons un assuré, venant de provoquer un accident de
montant x, 4 un instant ¢ de la période prise comme unité de temps
(o <t < 1). Désignons par

{pe) |k =0,1,...}

la distribution du nombre d’accidents par période de I'assuré, ou A
est sa fréquence movenne des sinistres. Nous supposons le processus
homogéne, c’est-a-dire A indépendante du temps.

Nous allons définir une politigue de 1’assuré par un vecteur

T= (%1, ..., %, ..., %)



SOIF DU BONUS 183

ou x; est la limite de rétention pour Cy; les frais de tout accident de
montant inférieur ou égal a x; seront supportés par l'assuré, les
sinistres de montant supérieur a cette limite seront déclarés.

En désignant par £ la variable aléatoire représentant le montant
d’un sinistre et par f(x) sa fonction de fréquence, la probabilité p;
pour qu’un accident ne soit pas déclaré si 'assuré se trouve en Cy
vaut

pi=PE <x)= | fx)ix.

La probabilité ;‘;()\) de déclarer % sinistres au cours d’une périéde
vaut .

A0 = E 50 (1 — 0"} M.

L’espérance mathématique du nombre de sinistres déclarés est
égale a
M= T kL.
kmo

L’espérance de colt d'un accident non déclaré est égale a

EYE) = (1/py) | xf(x) dx.
L’assuré devra donc débourser, en moyenne,
E'(&) (\ — ),
a titre de dédommagement des sinistres non déclarés 4 la com-

pagnie (en supposant classiquement l'indépendance entre les va-
riables représentant le nombre et le montant des sinistres).

L’espérance de colit pour cette période vaut donc
E(x) = b, + 8% EN®) (0 —2),
en introduisant un taux d’actualisation 8 et en placant les sinistres
en milieu de période.
Soit v I'espérance actualisée de tous les paiements d’un assuré se

trouvant en début de période en C;. Le vecteur v = (vs, ..., v,) doit
satisfaire au systéme

v, =E(x) +8 T PNvray i=1,...s (1)

keo
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Théoréme: Le systeme (1) posséde une et une seule solution, pour
une politique donnée.

Démonstration: Soit la transformation T définie par

To = w, ot w, = E(x) +8 T ALNvrea).
&

-0
Choisissons comme norme: || v || = max | v4 |.
i

Il vient:

| T% — T% || = max | E(x) +8 .i PN wry ) — E(%)

—B b p_i:()\)ka(“)l

=max |8 Z () (wr,w) — V1) |
i k=

<B I Py . max|wr,q)— 7, |
k=0 i
= f max | w; — vy |, en posant j = T (1)
J

=gllw—vl]l.
Par conséquent l'opérateur T est de contraction et il y a un seul
point fixe. .
L’assuré provoquant a l'instant ¢ un sinistre de montant x a deux
stratégies a sa disposition; s’il ne déclare pas l'accident, son espé-
rance de colt total, actualisée au moment du sinistre, vaut

BiE(x) +x +pi-t 2.3 PEMI — 8] 920 it

ol m est le nombre de sinistres déja déclarés pendant la période;
si I'accident est déclaré a la compagnie, elle vaut

B-tE(x) + B¢ D PLMI — 01070 mrr)-

kao
La limite de rétention x4 est évidemment celle pour laquelle les
deux stratégies sont équivalentes. Donc

=81t T PIMI — ] [0Tssmesth) — VTerm] i =1, ...,5  (2)
te=a

(2) constitue en fait un systéme de s équations a s inconnues x;,
car celles-ci apparaissent implicitement dans les p[(A(x - £)]. 11 est
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également facile de démontrer que ce systéme posséde une et une
seule solution, pour v fixé. La politique optimale £* = (x], ..., x})
peut alors étre déterminée par approximations successives au

moyen de l'algorithme suivant:

Premiére itération: choisissons une politique £ arbitraire. La plus
intéressante est £° = (0, ... 0), (c’est-a-dire celle qui consiste 2
déclarer tous les accidents), car ce point de départ nous permettra
de calculer I’amélioration de l'espérance de colit apportée par la
prise en charge de certains sinistres. Déterminons un premier
vecteur v. Le systéme (1) se simplifie et devient

- vu=05b+8 Z pxNvr,pyt=1,...,5.
kwo
Une politique améliorée peut étre obtenue par les relations (2), qui
se réduisent dans ce cas particulier a

=31t T M =] [VThsmerth) — VTirn®] 2 =1, ..., 5.
kmo

Itérations suivantes: 'application successive des relations (1) et
" (2) permet d’obtenir la politique optimale £*.

§ 3. APPLICATION AU SYSTEME BELGE

Depuis I'arrété ministériel du 14-4-1971, toutes les compagnies
belges sont astreintes a utiliser le systéme suivant. Il y a 18 classes.

Degré Niveau de prime
18 200
17 160
16 140
15 130
14 120
13 115
12 110
I 105
10 100

9 100
8 95
7 90
6 85
5 80
4 75
3 70
2 65
I 60
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Les nouveaux assurés ont acceés au degré 6 s'ils sont sédentaires
(c’est-a-dire s’ils n'utilisent leur voiture qu'a des fins privées), au
degré 10 dans le cas contraire. Cette discrimination est justifiée par
une différence de fréquence moyenne des sinistres (la distribution du
nombre de sinistres étant une loi de Poisson simple de parameétre
A = 0,21 pour les sédentaires, A = 0,26 pour les autres).

Les déplacements s’opérent selon le mécanisme suivant:

— par année d’assurance sans sinistre: descente d'un degré;
— par année comportant un ou plusieurs sinistres:
— montée de deux degrés pour le premier sinistre;
— montée de trois degrés pour les sinistres suivants.

Deux restrictions sont 4 apporter 4 ce mécanisme:

— l'assuré ne dépassera jamais les degrés 1 et 18;

— l'assuré qui n'a pas eu d’accident pendant 4 années consécuti-
ves, et qui malgré cela se trouve toujours & un degré supérieur
a 10 est ramené a ce degré.

Cette derniére clause rend malheureusement le processus non-
markovien: la condition 2 de la définition d'un systéme bonus-malus
est violée. Aussi allons-nous subdiviser certaines classes en y ajou-
tant un indice indiquant le nombre d’années consécutives sans
sinistres. Le nouveau processus ainsi défini est markovien. Il com-
porte 30 classes.

Considérons un assuré responsable d’un accident en début de
période (¢ = o). Nous supposons que
1) le taux d’intérét est de 69;;
2) la prime commerciale au niveau de base 100 vaut 10.000 F.B.
(elle correspond 4 une voiture de cylindrée movenne) ;
3) la distribution du nombre de sinistres de l'assuré est une loi
de Poison simple de parameétre A = 0,21:
e \F
k!

Pr(y) =

Nous devons également déterminer la distribution du montant
des sinistres. Faute d’avoir pu obtenir un ajustement précis et
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Niveau
de
Classe  Prime T T, T T, T, Ts Telk = 6)
18 200 17.1 18 18 18 18 18 18
17.0 160 16.1 18 18 18 18 18 18
17.1 160 16.2 18 18 18 18 18 18
16.0 140 15.1 18 18 18 18 18 18
16.1 140 15.2 18 18 18 18 18 18
16.2 140 15.3 18 18 18 18 18 18
15.0 130 14.1 17.0 18 18 18 18 18
15.1 130 14.2 17.0 18 18 18 18 18
15.2 130 14.3 17.0 18 18 18 18 18
15.3 130 10 17.0 18 18 18 18 18
14.0 120 13 16.0 18 18 18 18 18
14.1 120 13.2 16.0 18 18 18 18 18
14.2 120 13.3 16.0 18 18 18 18 18
14.3 120 10 16.0- 18 18 18 18 18
13 115 12 15.0 18 18 18 18 18
13.2 1158 12.3 15.0 18 18 18 18 18
13.3 115 10 15.0 18 18 18 18 18
12 110 11 14.0 17.0 18 18 18 18
12.3 110 10 14.0 17.0 18 18 18 18
I 105 10 13 16.0 18 18 18 18
10 100 9 12 15.0 18 18 18 18
9 100 8 11 14.0 17.0 18 18 18
8 95 7 10 13 16.0 18 18 18
7 90 6 9 12 15.0 18 18 18
6 85 5 8 11 14.0 17.0 18 18
5 80 4 7 10 13 16.0 18 18
4 75 3 6 9 12 15.0 18 18
3 70 2 5 8 I 14.0 17.0 18
2 65 I 4 7 10 13 16.0 18
I 60 1 3 6 9 12 15.0 18

maniable pour les petits sinistres, nous avons utilisé dans le pro-
gramme la distribution observée suivante, portant sur 225.330 acci-
dents survenus en 1970 en Belgique, totalisant prés de 4 milliards
de francs. Elle représente environ 75%, du parc. Les résultats plus
récents n’ont pu étre utilisés car ils sont visiblement influencés par
la soif du bonus: le nombre d’accidents déclarés est en régression
et la diminution du pourcentage observé dans les classes infé-

rieures ne peut étre expliquée par l'inflation.
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Montant de sinisives

Nombre de sinistres

Cotit moven

o- 1.000 34.368 466
1.000 -  2.000 29.408 1.462
2.000 -  3.000 27.432 2.443
3.000 - 3.000 36.473 3.874
5.000 - 10.000 44.059 6.935

10.000 - 20.000 28.409 13.884
20.000 - 350.000 16.435 29.886
50.000 - 100.000 4.440 66.675
+ de 100.000 4.306 499.755
225.330 17.337

Les résultats principaux sont résumés dans le tableau suivant.

Classes x¢* vg° v pi* Aiw E{x*) 100xa:° 100xa;:*
18 10.875 194.095 170.863 0,7732 0,0476 20.547 0,1076 0,0000
7.0 14.629 186.427 163.237 0,8205 0,0376 16.674 0,0578 0,0000
17.1 19.265 182.308 158.773 0,8790 o0,0254 16.848 0,0872 0,0000
16.0 17.121 181.047 158.836 0,8520 0,0311 14.765 0,0726 0,0000
16.1 21.324 177.511 154.761 0,8015 0,0228 14.804 0,0468 0,0000
16.2 26.238 172.125 149.9I7 0,0034 0,0203 14.963 0,0707 0,0000
15.0 12.253 176.039 155.647 0,7906 0,0440 13.592 0,1042 0,0001
15.1 15.817 173.092 152.142 0,8355 0,0345 13.717 0,0589 0,0000
15.2 20.305 168.468 147.738 0,8800 0,0233 13.880 0,0379 0,0000
15.3 25.618 161.424 142.481 0,9019 0,0206 13.955 0,0573 00,0000
14.0 10,007 1I7I1.750 152.909 0,7622 0,0499 1I12.519 0,1486 0,0003
14.1 12.928 169.460 150.001 0,799T 0,0422 12.6I5 0,0845 0©,0001
I4.2 16.809 165.608 146.146 0,8480 0,0319 12.753 0,0477 ©0,0000
14.3 21.612 159.560 141.384 0,8922 0,0226 712.808 0,0307 0,0000
13 11.264 166.2g0 148.285 0,7781 0,0466 12.059 0,3267 0,0010
13.2 14.403 163.206 145.049 0,8188 0,0380 12.169 0,0684 0,0001
13.3 18.718 158.256 140.824 0,8721 0,0269 12.326 0,0387 0,0000
12 12.427 160.854 143.846 0,7928 0,0435 11.598 0,5788 0,0036
12.3 16.040 156.938 140.268 0,8383 0,0340 11.725 0,0556 0,0001
1T 11.813 155.470 139.607 0,7850 0,0451 11.078 10,8026 0,0008
10 II.II1 150.340 135.674 0,7762 0,0470 10.554 11,4303 0,0235
9 10.773 TI45.557 132.073 00,7719 0,0479 10.543 11,9005 0,0737
8 10.328 140.527 128.277 0,7663 0,049 10.029 2,5708 0,1713
7 9.867 135.800 124.808 0,7570 o0,0510 9.5I0 3,3055 0©,3389
6 8.915 131.426 121.683 0,7197 0,05890 8.950 4,6520 11,1147
5 7.881 127.530 118.945 06793 0,0673 8.380 6,0412 71,0491
4 6.746 124.202 116.632 0,6349 0,0767 7.827 6,7360 2,8125
3 5.455 121.539 114.795 0,5844 00873  7.263 13,3333 11,2302
2 4.053 119.649 113.494 0,4900 0,107t 6.676 10,8076 10,2918
I 2.5T1  118.641 TI1I2.79T 0,3453 0,1375 6.082 46,2486 71,9702
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Colonne 2: Politique optimale de I’ assuré

On constate que pour toutes les classes supérieures a 7, la réten-
tion optimale est plus grande que la prime au niveau 100. Les
montants sont plus élevés pour les classes supérieures, étant donné
la forte augmentation de prime résultant d’un sinistre. Les plus
grandes rétentions sont obtenues dans les classes 16.2, 15.3 et 14.3:
aprés deux ou trois années sans accident un conducteur a intérét a
supporter des sinistres plus cotiteux dans le but de réintégrer la
classe 10 par application de la 2éme restriction.

Colonne 3 et 4: Espérances actualisées des paiements en déclarant tous
les sinistres (v;) et sous la politique optimale (v})
En utilisant %*, un assuré sédentaire peut espérer économiser
9.743 F., un non-sédentaire 14.675 F.

Colonne 5: Probabilité de ne pas déclarer un sinistre en utilisant 7*

Dans certaines classes, 9go%, des sinistres sont pris en charge par
I'assuré.

Colonne 6: Fréquence moyenne optimale des sinistres déclarés

Colonne 7: Espérance de cott minimale par période

La fraction due au dédommagement des sinistres non-déclarés
reste dans toutes les classes peu élevée en comparaison de la
prime.

Colonne 8 et 9: Distributions stationnaives de probabilité en utilisant
Z0 puis £*

Quelle que soit la politique utilisée, le systéme constitue une
chaine de Markov irréductible dont tous les états sont ergodiques.
La distribution des probabilités d’état converge donc vers une
distribution stationnaire, obtenue en normant le vecteur propre a
gauche de la matrice de transition. Nous voyons qu’en régime
stationnaire, un assuré se comportant de maniére optimale restera
le plus souvent dans les classes inférieures.
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Ces distributions nous permettent de calculer la prime moyenne
stationnaire

3
étant donné z° : 8° = I ajb; = 7.025 F.
i=t

étant donné £°* : b* = X a;b, = 6.293 F.

{wl
Dans ce dernier cas, 1'assuré devra suppléer, pour tous les sinistres

non déclarés X a;‘E"(E) (A —2¥) = 135 F. L’économie annuelle

[ BY
moyenne réalisée au détriment de la compagnie est donc de 597 F.
Cette perte pour l'assureur est partiellement compensée par une
3%
diminution des frais administratifs, puisque X a;p; = 40,85%
des accidents ne sont pas déclarés; la fréquence des sinistres tombe
de 0,21 a 0,1242.

Insistons sur le fait que ces derniéres relations ne sont vérifiées
qu'une fois le régime stationnaire atteint; il ne saurait étre question
de comparer par exemple le bénéfice annuel stationnaire de 597 F.
et l'économie totale actualisée de g.743 F. réalisée par un assuré
entrant dans le systéme en classe 6.



MULTISTAGE CURVE FITTING

CHRISTOPH HAEHLING VON LANZENAUER and DoN WRIGHT

INTRODUCTION

One of the most important properties of a distribution function
is that it fits the data well enough for the decision-makers’ or
analysts’ purposes. The statisticians’ problem is to select a specific
form for the distribution function and to determine its parameters
from the available data. Various methods (graphical method,
method of moments, maximum likelihood method) are available
for that purpose.

In many real world situations a single distribution function,
however, may not be appropriate over the entire range of the
available data. This suggests that the underlying process changes
over the range of the respective variable. This fact should be
considered in curve fitting. A typical example of such a situation
is given in Figure 1 representing third party liability losses for
trucks.
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Fig. 1. Loss Distribution.
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It is interesting to speculate abqut the different raisons d’étre
(Seal [5]) for the observed discontinuity. It may be the result of
out-of-court or in-court settlements or could stem from differences
between bodily injury and property damages.

To represent such data a combination or a mixture of distribution
functions appears to be more appropriate. Various authors have
considered this problem. While Almer [x] discusses the problem
in general terms, Andreasson [2] represents the distribution of
the claim size in the Swedish third party motor insurance by a
sum of exponentials (exponential polynomial) and uses a graphical
procedure to estimate the parameters. Coppini [3] derives the
distribution of the length of sickness as the weighted sum of two
gamma distributions, one referring to sick males and the other to
sick females. The purpose of this paper is

(a) to present a different approach in mixing distribution functions
to represent data as shown in Figure 1, and

{b) to use a computer based search procedure to determine the
parameters.

MvLTISTAGE CURVE FITTING

T.et x(x > o) be a random variable whose distribution function
F(X) has to be determined from a given set exhibiting such dis-
continuities. Since a single function for F(X) appears to be in-
appropriate, one can think of F(X) being composed of various
expressions which are defined over specific intervals only. Let the
index &{(k = 1, 2, ..., K) represent the Ath interval of the random
variable. We define as T4 the transition point between interval
k and %k + 1, postulate Ty < Tr+1 and set To = 0 and Tg = 0.
The function representing the kth interval is defined as gi(x).
Thus, the integral

Ty

J erla)da (1

is contribution to F(X). Adjustments however, must be made to (1)

to insure that the sum of the integrals over all intervals equal to 1.

Let « be the adjustment factor for interval . Thus we can define
k-1 T;

F(X) = T 2 _[ gy(ndx +ar_ | gemdx Te <X <Te (2)
k-1

i=1 f=1
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which satisfies .
K Ty
Zoar | ge(x)dx =1 (3)
k-1 Te-1
if ay is defined as
I k=1
oy = * TJ- gi(x)dx
' k=23 ....K

= fggaa(x)dx
7

or in its recursive equivalent
I . k=1

agp = r I gk—l(x)dx
gy ————— k=2,3....K
I gx(x)dx

Te-y

For a given form of gi(x) the problem remaining is to determine

(a) the number of intervals K,
(b) the transition points T, and
(c) the parameters of the distribution to represent the Ath interval.

The values selected depend of course on the criterion used in the
curve fitting process. Various criteria are available with the squared
sum of the error being used most frequently. The squared sum of
the errors can be defined by

N

S= ‘2‘-‘ (F(X = y1) — (G N)]2 ()
with y (¢ = 1, 2, ...., N) being the ¢th observation and y; < y¢+1.
Since accuracy in the tail areas appears to be of relevance in the
evaluation of risk, heavier weights of the errors in the tails may be
appropriate. It will be shown below that the suggested multistage
process improves specifically the fit in the-tails without using any
arbitrarily assigned weights. Furthermore, for premium calcula-
tions it seems that the mean of the fitted distribution should be

I3
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as close as possible to the sample mean, 7. Thus we can augment
the criterion of minimizing the squared
K T,
Zar [ rxgx)dx=75+di—de (6)
k=1 Te—1
with
dr,d2 <c

d1 and d» are tolerances which must be less than or equal to a
managerially determined level ¢. Of course ¢ can be zero.

Thus the problem is to determine optimally the above para-
meters using a given criterion. Although a number of methods are
available for solving optimization problems, the success of any
one method depends on the problem. Because of the existing
discontinuities in the response surface a multidimensional search
technique will be used for determining all parameters. An excellent
discussion of search techniques can be found in Wilde [6].

PATTERN SEARCH

The search method to be used here has been developed by Hooke
and Jeeves (4] and is known as pattern search. Their method takes
advantage of the fact that most response surfaces have one or
more ridges which lead to the optimum. Thus the purpose is to
find a ridge and follow it to the optimum. In pattern search the
search begins by exploring the response surface in the vicinity
of a randomly or otherwise selected base point. With repeated
success the explorations become longer taking advantage of an
established pattern. Failure to improve the criterion, however,
indicates that one must abandon the old pattern and try to find
a new one which will be followed until the pattern is broken again
and the process has to be repeated. The so determined pattern will
coincide with the ridge. In the neighbourhood of the optimum,
the steps become very small to avoid overlooking any promising
directions. The optimum is reached and the search terminates when
the predetermined final step size fails to improve the criterion.
Repeated searches from different starting points reduce the likeli-
hood of the optimum being a local extreme point. The ideas of
pattern search are exemplified for a two dimensional search problem
in the Appendix.
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ILLUSTRATIONS .

The multistage curve fitting is illustrated by two examples.
Both examples come from the authors’ experience in analysing
insurance problems for a company operating a large fleet of vehicles.
Various distributions can be used to present gx(x) and there is no
restriction to use the same distributions for all intervals 4. For the
purpose of these examples, gx(x) was chosen to be exponential for
all intervals with parameter A, since it appeared appropriate and
easy to integrate.

Example 2

This example consists of 75 data points representing collision
claims for cars during 1969/70. The data are exhibited in Figure 2
by asterisks and have a mean of § = § 363.13. The optimal values
of the parameters of the distribution function F(X) with the
squared sum of the errors and the mean of F(X) resulting from
the pattern search are given in Table 1. The initial step size for
Ak = .0005 and for Tx = $ 50.00 while the final step size is .coo01
and § 1.00 respectively.

TABLE 1

Results: Example 1

Number of Stages (K)

K=1 K=2 K=3 K=4
A .003633 .002363 002148 002187
T, — $ 3594 $ 54.69 $ 562
A2 — 004039 .004969 004996
T, - — $243.75 $ 199.99
A3 — — 001871 002906
Ts —_— — —_ $ 453.12
e — — — 001402
) .13684 .11688 .028g0 01048
x $275.26 $ 261.88 $ 346.86 § 368.27

The number of transition points K is determined similar to the
multiple regression model. The value of K will be increased as
long as a ‘“‘worthwhile” improvement in S justifies doing so.
Figure 2 illustrates the distribution functions for K < 4 indicating
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that the multistage process clearly improves the fits. Furthermore
it is interesting to note that the improvements take place primarily
in the right tail. While the means of the fitted distribution functions
for smaller values of K deviate substantially from y, £ approaches
# reasonably closely for X > 3.

Example 2

The data in the second example are g8 third party liability losses
for trucks during 1970/71. The data are exhibited in Figure 3 by
asterisks and have a mean of § 399.49. A first run of the pattern
search using the same step sizes as in Example 1 resulted in means
of the fitted distribution functions % as given in Table 2 which
are too far off from ¥ = § 399.49. Thus the criterion of minimizing

TABLE 2

Means of the Fitted Distribution Functions

Number of Stages (K)

K=1 K=2 K=23 K=4

z $ 198.44 $171.89 $ 254.63 $ 256.05

the squared sum of errors was augmented by (6) with d; = ds = o.
‘Of course this implies that the number of degrees of freedom is
reduced by one. The parameter determined as a result of the others
was selected to be hx. Table 3 summarizes the results.

TABLE 3

Resuits: Example 2

Number of Stages (K)

K=1 K=2 K =3 K=y
AL 002503 .005081 004280 .004280
T, — $ 448.64 $134.36 §135.93
A2 — .000492 008851 .000163
T. — — $ 307.80 $ 254.68
A3 —_ — .0004899 .001839
Ts —_— — —_ $ 1,148.30
A — —_ — .0002099
) 3.5262 .22751 .07630 06804
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Figure 3 again illustrates the distribution functions for K < 4.
Again considerable improvements resulted over a one stage fit.

APPENDIX

The concept of pattern search is explained and illustrated for
the two stage fit with equal means of example 2. The example has
two independent parameters, the exponential parameter A1, and the
transition point 7). The exponential parameter A; is determined
by a1, T and the restriction of equal means. The contour lines of
the response surface expressed by the squared sum of errors for
values of the independent variables A and 7 are plotted in Figures
4 and 5.

The search is illustrated in Figures 4 and 5 with solid lines
representing successful perturbation and pattern moves while
broken lines indicate perturbations and pattern moves which fail
to improve the objective function. The search begins by exploring
the response surface at base point By = H, through changes in the
transition point in T (Figure 4). An improvement in the criterion
leads to a temporary head %:(7). From here local explorations
through changes in A lead to 4:(T, &) and the second base point Ba
since only two independent variables exist. Reasoning that another
perturbation about B: would produce similar results, one creates
a new temporary head H: by adding the vector B; B, to Point B..
This represents a pattern move. Local explorations about H:
produce B;. As above local explorations about B, are omitted and
a new temporary head Hj is determined by adding the vector B, B,
to point Bjy. As can be observed from Figure 4, H, fails to improve
the criterion. The pattern is broken and local explorations must
take place at B; which lead to B, and via a new pattern eventually
to the temporary head H,y At H; the pattern is broken again and
local explorations about B; must resume which lead via pattern
moves to Hu (Figure 4). This process is continued with reduced
step sizes and illustrated in Figure 5. The optimum, By, is reached
when perturbations with the predetermined minimum step size fail
to improve the criterion. Repeated searches from different initial
base points should be performed to insure the optimum is a global
optimum.
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ON THE CALCULATION OF VARIANCES AND
CREDIBILITIES BY EXPERIENCE RATING

K. LotMARANTA
Finland

1. INTRODUCTION

By experience rating the main problem is to estimate the cred-
ibilities. We have for the credibility «x the famous formula *)

%
* = o + o-i.
but it is often troublesome to find suitable estimates for the vari-
ances a; and o}. In the present paper a general method to estimate
them from the actual statistics is given.

A disadvantage of the method is that good estimates require
relatively extensive statistical material. If one of the variances is
known, the method can be easily modified to give the other variance
from statistics of moderate size.

The method is based on the Maximum Likelihood principle and
leads to a system of non-linear equations. The equations can be
solved by an iterative process, easily programmable for computers.

The mathematical model underlying the experience rating
problem differs in our case lightly from the usual one.

2, FORMULATION OF THE PROBLEM

We consider a portfolio, which is divided into .V classes. In each
class we have observed a claim amount per risk unit. Our assump-
tion is that the relative claim amount yi in the class 2 (¢ =1, 2,

., N) has a definite but unknown meanvalue my and a variance
o}, which is inverse proportional to some known measure ¢ i of the
size of that class, e.g. the number of risk units in the class. We can
thus write

Mean:  E(y,) = m,
Variance: V(y,) = o5, = hjt,.
* Biihlman, H.: Mathematical Methods in Risk Theory.
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As a second step we assume, that the quantities my are random
variables with a common probability distribution. Let this distribu-
tion have the meanvalue m, and the variance o2:

Mean:  E(m;) = m,
Variance: V(m,) = ag.

Assuming that both steps are independent on each other (or

at least uncorrelated) we have for the compound random variable yi
Mean: E (ye) = myg
Variance: V, (y,) = o + Aft;.

The result might be better known from the theory of compound

Poisson processes.

To calculate the credibilities
2 2

Ty 1)
= 0’5-}—0‘2 h Gtz)+h/tk (A)
% hity

I_ak':

2 3 = '3

So + 0y, 6 + h/tlc

we must have estimates for the variance ¢ and the constant 4,
which determines the variances o},

3. THE MaximuM LIKELIHOOD SOLUTION

We suppose from now on, that the random variables y; are
with required accuracy normally distributed, i.e. yx has the distri-
bution function

I __{yx-ma)?
€ %ag? + hity)
I R
We use the Maximum Likelihood method *) to estimate the
parameters mo, o3 and 4 in the distribution function of y,.

For the logarithm of the Likelihood function L we have the
expression

2

(e — mo)
log L = — Z {2(—:3—-1——}1/.35 + % log (o5 + Aft,)| + const.

* E.g. Cramér, H., Mathematical Methods of Statistics.
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Its maximum value is a solution of the equgtions

dlog L Vi — Mo

e Qe Ay

dlog L O [ (e —mo)’ I
W=Z[z(cé+h/tk)2”z(c:+h/tk>}=°

dlog L (yp — mo)® I I 1
oY R

Multiplying the first equation by o, the second by o5 and the
last one by 4® and observing the expression (A) for «, we get the
following equations

I) Zakyk::m(,Zak
k k

2) Zoay(ye— me)® = o5 = %y (B)
k k

3) Zh(r— ak)z(yk. —_ )=k (11— ).

From the equations (B) and the expression (A) for ax the quanti-
ties mq, of and 4 as well as the credibilities ®, can be calculated
by an iterative process. We start with arbitrary values for the
quantities a, (e.g. «; = 1/2) and calculate m,, o5 and % from eq. (B).
New values for «, will then be calculated from eq. (A) with the
received values of o and 4. Subsequently the new values of a; will
be inserted in eq. (B), and so on.

According to our experience about ten steps are required to get
the values of «x with an-accuracy of 0.001. The method is cumber-
some for manual calculation but suits well for electronic computers.

When the credibilities «, are determined the premiums net of
charges for different classes can be calculated by the normal way

Py = agyr + (I — ag)mo.

4. A PosSSIBLE GENERALISATION

The method can be generalized to solve more complicated
problems. So far we have assumed the quantitities my to be drawn
from one and the same probability distribution. But we can also
think them to be results of a regression analysis

my = a + X bixi,
1
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where x;; is the value of the 7:th independent variable in class &.
In stead of the simple weighted mean

Z 2y

Mo =
~ g
k

we have for each step to solve a by «p weighted regression analysis
problem and to put in the equations 2) and 3) the residuals in
stead of the quantities my — ino.

5. D1sCUSSION OF THE METHOD

The maximum likelihood method is normally used for observa-
tions yi with equal distributions and gives then under general
assumptions asymptotically optimal estimates. The restriction to
equal distributions is unessential but nevertheless we have to be
careful. An other point to be observed is that we have assumed
the quantities y; to be normally distributed.

The first eq. (B) is same as Hovinen *) has got with a different
method in the case of and % are given. The equation gives an
unbiased minimum variance estimate for the mean independent of
the normality of the quantities y;. Conserning this equation we
are thus on the safe side.

It is interesting to observe that in the credibility theory an other
formula is in general used to calculate the gross mean

Sty

Tt

My = (1)

The first formula in (B) gives the correct estimate for the mean
if we choose one class at random, the formula (1) if we choose one
risk unit (policy) at random. The differences between m, and i,
can be considerable.

More caution is required by the use of the eq. 2) and 3) in (B).
It is not enough that the number of observations {classes) N is
sufficiently large. If all quantities ¢; are identical the eq. 2) and 3)
are linearly dependent and all values «; = const. are a solution of

* Hovinen, E., On the Estimation of Means and Variances in the Case
of Unequal Components, ASTIN Bulletin, Vol. VIII, Part 3.
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the equationsystem (A) and (B). An acceptable splitting of the
variance

o5 + hft,

into its components requires thus that the variation of ¢ is great
enough. Is this not the case but one of the components is known,
the method can be used to calculate the remaining component and
the credibilities «x simply by omitting the corresponding equation
in (B).

It is well-known that Maximum Likelihood method gives for
finite samples too low values for variances. The bias is normally
of the order I/N. An unbiased expression for the variance in the
case} 6 = 0, 1.e. ¢, = 0 is given by Hovinen (ibid.). His formula (26)
is by our notations

P I tx .
=N Z )
E L ————
Zi

Our eq. 3) in (B) gives with ax = 0
= 1N Z tx(yx — mo)®.
]

Comparing these two formulas we see, that the bias is negligible
if all ¢x:s are small compared with Z ¢. '
]




NOTE ON ACTUARIAL MANAGEMENT IN INFLATIONARY
CONDITIONS

OveE LUNDBERG
Stockholm

This note is an attempt to put the problems referring to the
reserves for outstanding claims into a simple understandable form
in order to facilitate the discussion of the difficult questions. In that
purpose I have taken up some of Harald Bohman'’s ideas of the
subject *). 1 find it convenient to start with the simplest case
where the liability consists of index-regulated pavments at fixed
epochs. My presentation is restricted to reserves of incurred and
reported claims.

I. Loss reserve of index-regulated payments

Expected value of liability of paving a total sum of S in the
money unit of ¢ = 0 according to a cumulated weight function F(t)
by the time scale ¢, for which we have F(0) = 0 and F(w0) = 1.
The function can also be interpreted as a distribution function
(see below).

The function F({) can be a step function with the steps f;, which
means that the payment at ¢ is s; = S - f;, but for the simplicity
of the formulas we assume F({) continuous with existing F’(f).

The calculation of the liability is made according to a basic
intensity rate of interest of 3 and to a basic inflation “intensity”’
rate of ¢.

The net value V' in the fixed money unit of { = 0 is according
to the basic assumptions equal to (for S = 1)

Vi= fexp— (8 — o) (4 — t)dF(u),
satisfying the differential equation

Vi=V,(8—¢) —F().

* Harald Bohman, “Insurance business and inflation”” to be published
in S.ALJ.
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Let us now assume that the real inflation rate has not been p
but p* in the time interval (o, #). The neces'sary amount of the
reserve in the applied money unit of current purchasing power will
then be

Vi="V,exp o™t

which reserve satisfies the differential equation (for S = 1).
Vi =Vi@—p+ ") —F(t) expp™. (12)

Interpreted for an accounting period this equation signifies the
fact that in the money unit of current purchasing power the loss
reserve at the end of the accounting period will be equal to the
loss reserve at the beginning of the period increased by the ob-
served inflation rate p*

+ the calculated interest amount according to the basic rate

— the calculated inflation amount according to the basic rate

— the amount of payment in the money unit of current purchasing
power.

Since the prospective reserve
Vi =expp't [ (exp— (8 — p) (¥ — 8))dF () (1b)

satisfies the equation (ra) with V§ = V¥, it will be equal to the
retrospective reserve.

In case the actual rate of interest 3* surpasses the basic rate 3§
by less than the difference between the actual inflation rate p*
and the basic rate p, there will be a deficit.

1.2 Fluctuation reserves

In order to meet temporary losses on account of increasing
liabilities by inflation (see above) fluctuation reserves are needed.
Further, the rate of interest 3 is object of systematic and random
variations which influence the market values of the assets. To meet
such variations of the asset values bank companies as well as in-
surance companies need contingency reserves, which can be called
valuere-gulating funds.

Since the normal rate of interest uses to be positively correlated
to the inflation rate a rising trend of inflation may in addition

14
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necessitate a higher level in the fixed money unit of the regulating
funds in order to meet the deterioration of the bond wvalues and
the values of other nominal assets.

2. Applications of the model to the reserve of outstanding claims of
non-life tnsurance

The reserve for the outstanding claims is the sum of the discounts
of the expected future payments of the outstanding claims. Besides
inflation, there are regularly during the settlement period possi-
bilities that the estimates of the different claims amounts might
be changed. The claim reserve shall be an estimate upon known
facts regarding the claim in question. These facts might change
during the settlement period and on such occasions the estimate for
the claim reserve must be changed. Such changes will be called
“run-off result” according to the terminology used by Harald
Bohman.

If F(=) is the probability that the claim is settled before =, the
conditioned probability at ¢ of the claim becoming settled before
< is for v+ >t equal to (F(z) — F(#)) : (1 — F(¢)). The distribution
function F is dependent on the branch of non-life insurance and on
the expected size of the claim amount. The distribution function
will for small amounts increase quickly from o to 1, and the in-
fluence of inflation will be relatively small. For large claims, e.g.
on liabilities by damages of persons, which can give rise to index-
regulated annuities of disability life and of life annuities of surviving
individuals, the distribution function will be slowly increasing and
the value I is attained first after 5-ro years. The influence of in-
flation will then be of great importance. Although amounts will be
paid before the definite settlement to compensate loss of income
and also e.g. losses of hospital care, the essential part of the losses
will often refer to the time of definite settlement. The model could
also be refined by introducing the concept of partial settlement.

Given the claim amount S and the distribution function F with
respect to the duration until settlement the loss reserve is defined
by a modification of the equation (ra) and the solution (1b). We
will primarily think of the claim amount S as a fixed sum in the
fixed money unit of £ = 0. The model will then correspond to a
claim amount of a fixed but index-regulated sum. If the settlement
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takes place at ¢ the sum S - exp p*¢ will be pajd in the money unit
of current purchasing power, and the reserved amount V; will
become available.

The inflation rate should refer to an index of the actual claim
costs.

As explained above the amount S and the distribution function
F are subject to regular re-estimations. As long as the estimations
S and F(t) are applicable, we write the differential equation as follow

P S—V)F@®:(x—F(@) -expe’t=3V; + (" — o) V5.
(za)

In this application the equation expresses that the claim costs in
the money unit of current purchasing power according to the left -
member (where the increase of the reserve can be both positive and
negative) shall be covered by the calculated rate of interest plus
the additional amount corresponding to the difference between the
observed and the calculated inflation rate.

The equation (2a) is satisfied by the solution

Vi=S5"(expg;) 'f (exp— (3 —p) (u —1))dF(u) : (1 —F(t)).  (2b)

F'(f) : (x — F(#)) denotes the conditional probability of the settle-
ment taking place in the small time interval d¢ if it has not taken
place before .

If the sum S is to be ‘paid when death occurs we have F(f) =
I—1 b and F () : (1 —F(t) = pg.,

T+
Profit or loss appears in reference to the equation (2a)

a) when the difference between the actual and calculated rates of
interest exceeds or is below the difference between the actual
and the calculated inflation rates,

b) when the actual payments are below or exceed the expected
payments by settlement,

and further at the end of the period

c) if the estimate S of future payments are changed by new estima-
tion orfand if the distribution function F is changed by new
estimation,

d) if the basic rates of interest and inflation are changed.
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The difference between the prospective reserve with actual
estimations of S and F and the retrospective simultaneous reserve,
containing the preceding estimations of S and the distribution
function F, will give the ‘‘run-off resuit’” according to c).

Profit and losses according to a), b) and c) are expressed in the
money unit of current purchasing power. The variations will
increase in the same progression as the inflation, and consequently
also the need of equilization funds to meet the different kinds of
systematic and random variations. A critical situation will soon
appear if the investments don’t give sufficient means for increasing
not only the loss reserve but also the equalization funds in pace
with the inflation.
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APPROXIMATIONS TO RISK THEORY'S F(x,{)
BY MEANS OF THE GAMMA DISTRIBUTION

Hitary L. SEar
Ecole Polytechnique Fédérale de Lausanne

It seems that there are people who are prepared to accept what
the numerical analyst would regard as a shockingly poor approx-
imation to F(x,¢), the distribution function of aggregate claims
in the interval of time (0, #), provided it can be quickly produced
on a desk or pocket computer with the use of standard statistical
tables. The so-called NP (Normal Power) approximation has
acquired an undeserved reputation for accuracy among the various
possibilities and we propose to show why it should be abandoned
in favour of a simple gamma function approximation.

Discounting encomiums on the NP method such as Bithimann’s
(1974): “Everybody known to me who has worked with it has
been surprised by its unexpectedly good accuracy’’, we believe
there are only three sources of original published material on the
approximation, namely Kauppi ¢t al (1969), Pesonen (1969} and
Berger (1972). Only the last two authors calculated values of
F(x, t) by the NP method and compared them with “‘true” four or
five decimal values obtained by inverting the characteristic func-
tion of F(x, ¢) on an electronic computer.

Briefly, the NP method for approximating F(x, ) consists of
calculating y from the quadratic (NP2) or cubic (NP3) equation

x—1 x;,/xglz
V‘K-Z =y + 3| (}’2“"1)
%3 ke

where the kappas are the cumulants of F(-,¢), and treating the
result as a standardized Normal variate so that

Fr,f) 0 0() = V%, fe® dz (@)




214 APPROXIMATIONS TO RISK THEORY'S F(X, T)

Berger (loc. cit.) found that the use,of x4 and the inclusion of the
last two terms of the foregoing equation in y ‘‘does not generally
produce better results than NP2”. In our view, the necessity of
solving a cubic equation and, possibly, choosing the appropriate
root (Berger, 1972) removes the ‘‘second approximation’ from the
list of simple procedures.

Among the ‘‘short cut methods” of approximating F (x, {) tried
by Bohman and Esscher in their classic 1963-64 paper was the
gamma distribution with density

I

—_— z-1
. () e ¥y oy < ®
so that
I G+IV;
F(t + z)/xa, ?) 2 T J eVy*l = Pla, « + 2}/a) (3)

where the P-notation for the incomplete gamma ratio is now
standard (see, e.g., Magnus ¢f al, 1966) and « is to be determined
from

4 3%; (4)

wwhe Y
The joint authors reported that “‘the method has an astonishing
accuracy in large parts of the field investigated” and one wonders
why it has not been used more widely. The tables of Khamis-
Rudert (1965) allow the approximation to be made with facility.
It is mentioned, however, that what we write as P(a, x) is called
by Khamis P(a, 2x); this must be watched when using the tables.

Let us therefore compare the published NP2 and NP3 approx-
imations to F(x,¢) with those obtained from (3) and (4). In the
appended table the first four ¢{-values come from Berger's (1972)
Table 2, the next is from Pesonen (1g6g) and the last two are
from Berger’s (loc. cit.) Table 3. There are 38 values of 1 — F (x, ¢)
shown in the Table and the gamma approximation (which is over-
loaded with decimals in the Table) is better than NP2 in 27 of them.
It is better than NP3 in 27 also. What is more important is that
the gamma approximation is better than NP2 in ¢ of the 12 cases
where deviations from the mean are 4, 5 or 6 standard deviations;
the corresponding number among the dozen similar NP3 cases is

X =
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also g—but not the same g/ Furthermore, the supenonty of the
gamma approximation does not seem to depend on the size of «,
large values of which are supposed to ameliorate the accuracy of
the NP method. Surely here is a case for discarding the Normal
Power method altogether.

To conclude, it is mentioned that just as the NP method can be
extended to provide stop loss premiums (Pesonen, 1969) the same
is true of the gamma approximation. The stop loss premium at
priority x can be shown to be

- g .
| (4 — x)du F(1s,8) 0 Jaxe Fq :_ 0 + (x—1) Pla,q) — (x—1)

where ¢ = o + Va/xz (e —1).

No calculations of this quantity were made as it was not thought
that any different conclusions would have been drawn.
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Individual claim Negative —
distribution binomial ¢ 2= «
(Bohman-Esscher) index V%2
o
1
Non-industrial fire © 1000 2 2.7147
3
4
6
o
I
Non-industrial fire 20 1000 2 6.0741
3
4
6
. o
I
: Non-industrial fire . © 100 2 0.27148
3
4
6
o
1
Non-industrial fire 20 100 2 0.32569
3
4
6
o
I
Life B © 1000 2 2.7056
3
4
6
o
Non-industrial fire I 1000 b 0.9901
3
5
0
Non-industrial fire I 100 1 0.5854
3
5

* The values in this panel were calculated by the author.
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1—F(x,¢ !

o + z)/a “‘exact”’ Gamma approx. NP2 NP3
2.7147 .4265 .4193 .4228 4131
4.3623 .1364 1483 .1587 .1425
6.0100 .04523 04481 .04938 04497
7.6576 .01401 .01234 01348 .01387
9.3052 .00352 .00319 .00333 .00428

12.6005 .00022 .00019 .00164 .00042
6.0741 4476 4460 4472 4444
8.5387 .1502 1535 .1587 .1500

11.0032 .03968 03977 04179 .04000

13.4678 .00892 . .00849 .00881 .00920

15.9324 .00177 .00158 .00157 .00195

20.8615 .00005 .00004 .00003 .00008
0.27148 .3743 2639 .3129 1641
0.79252 0047 .1027 1587 .0827
1.31355 .03450 .04783 08152 .04827
1.83459 .01709 .02383 04195 .03016
2.35563 .00893 .01232 02156 01967
3.39770 .00378 .00351I .005635 .00908
0.32569 .3801 2805 .3226 1795
0.80638 . .1006 .1083 .1587 .0827
1.46708 03521 .04892 .07856 .0488
2.03777 01680 .02350 0.3880 .0298
2.60846 00855 .01168 .01907 01897
3.74985 00365 00306 .00454 .00843
2.7056 <3992 4191 4227 * 4104
4.3505 1562 .1482 .1587 .1510
5.9953 04569 04483 -04947 -04531
7.6402 01258 01236 .01350 01201
9.2851 .00281 .00320 .00334 00291

12.5748 .00012 .00019 .00016 00014
0.9901 .3671 .3672 .3805 .3593
1.9851 1353 1352 1587 1347
3.9752 0184 .0184 .0229 .0104
5.9653 0025 .0025 .0028 .0029
0.5854 +3448 -3299 .3540 .3040
1.3505 .1226 1242 .1587 .1189
2.8807 .0198 .0213 .0297 0238
4.4110 .0046 .0040 L0051 .0056
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SEPARATION OF INFLATION AND OTHER EFFECTS
FROM THE DISTRIBUTION OF NON-LIFE INSURANCE
CLAIM DELAYS

G. C. TayLor

Macquarie University, Sydney, Australia
and Government Actuary’s Department, London, U.K.

I. THE RUN-OFF TRIANGLE

In recent years, as a result of more concentrated research to-
gether with the ravages wrought upon some insurers by inflation,
the fundamental significance of the so-called run-off triangle in the
calculation of provisions for outstanding claims has been in-
creasingly recognised. The run-off triangle, which is a two-way
tabulation—according to year of origin and year of payment—
of claims paid to date, has the following form, where Cy; is the
amount paid by the end of development year j in respect of claims
whose year of origin is ¢, i.e. Cy is the total amount paid in year
of origin ¢ and the following j years.

Development year
Year of ‘

The information relating to the area below this triangle is un-
known since it represents the future development of the various
cohorts of claims.
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2. THE “CHAIN-LADDER METHODs' FOR OUTSTANDING CLAIMS
Provision

Consider the problem of estimating C;, for ¢ =o0,1,2, ..., 4,
given the above run-off triangle. The various methods of tackling
this problem exploit the fact (Beard, 1974; Clarke 1974) that, in
the absence of exogeneous influences such as monetary inflation,
changing rate of growth of a fund, changing mix of business in a
fund etc., the distribution of delays *) between the incident giving
rise to a claim and the payment of that claim remains relatively
stable in time. In this case the columns (or rows) of the run-off
triangle are, apart froin random fluctuation, proportional to one
another.

One method which is based upon this assumption, and the further
assumption that the “‘exogeneous influences’ referred to above are
not too great, is the so-called chain ladder method. According to

this method we calculate the ratios
k=1
NI; = (II hp) My, (1)
hajf
where M is an estimate of C,,,/Cy; and i, an estimate of C; , ,1/Cyy,
is calculated as:
k-i-1 k—i-
Wy = _Z Cinsr ‘Z-,Cm- (2)
_M x Needs to be calculated from (inter alia) an estimate of out-
standing claims at the end of development year £. Although an
important issue, this does not affect the reasoning of this paper
and so does not receive detailed comment at this point. The factors
Mj can now be used to calculate outstanding claims provisions.
The outstanding claims provision in respect of year of origin 7 is:

Ct,k-t(Mk-i — 1)

3. DIFFICULTIES ARISING FROM THE CHAIN-LADDER METHOD

It is crucial to the logic underlying the chain-ladder method
that the “exogeneous influences” should not be too great. If this

*)} These “delays’ do not refer to any deliberate delaying on the part of
the insurer, but to delays in notification of the claim by the insured and
further delays caused by litigation, etc,
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assumption does not hold, then the conclusion,that the columns of
the run-off triangle are proportional goes awry too, and the chain-
ladder method can give misleading results. This criticism has been
made and illustrated by Clarke (1974), who demonstrated the
effects of a large rate of growth and large and volatile rate of
inflation.

One possible method of overcoming this weakness of the chain-
ladder is to recognise the variation (with 7) of the ratios C; , . ,/C,,,
to seek trends in these rations and project these trends. This modifi-
cation too has a serious drawback in that the trend may be almost
entirely due to monetary inflation, and if rates of inflation have
fluctuated in the past, there will not exist any smooth trend.
Furthermore, if the rate of inflation is thought likely to fall (say)
during the next few years, then it is not clear how this trend shouid
be reflected in the sequence {over 7) of ratios C; ,, ,/Cyy,.

4. THE ““SEPARATION METHOD"

Clearly, it would be preferable to separate, if possible, the basic
stationary claim delay distribution from the exogeneous influences
which are upsetting the stationarity. This can be done as shown
below.

We assume that, if the conditions affecting individual claim sizes
remained always constant, then the ratios of average claim amount
paid in development year j per claim with year of origin ¢ to the
average amount paid to the end of development year & per claim
with year of origin + would have an expected value »; which is
stationary, i.e. independent of <.

We further assume that claims cost of a particular development
year is proportional to some index which relates to the year of
payment rather than the year of origin. This is particularly ap-
propriate when claims cost is dominated by high rates of inflation.
It is not so appropriate in respect of influences such as-changing
mix of business within a risk group, which is related rather to
policy year. This point receives further comment later in Section 7.

According to the assumptions made above, the expected claims
cost of development year j per claim with year of origin 7 is 7;A¢45
where A\ is exogeneity index—that is an index of the effect of
exogeneous influences—appropriate to year of payment %. These
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expected values then form the following run-off triangle (but note
that claim amounts in this triangle are nof cumulative for each
year of origin).

Development year

Year of
origin o b 2 . . . k

(o]
I
2

The problem now is to separate the values 7o, 71, ..., rx from
Mo, A1, ..., Ax using only the corresponding triangle of observed
values .
sip = (C; — Ciy-1)mg
where 7; is the number of claims with the year of origin i.

This number 7¢ can be a little probilematic. In practice, the total
number of claims for year of origin 7 will not be known until a
much later development year than the one just completed. There-
fore, it will be necessary to take n; to be the sum of reported claims
and outstanding claims. But at which development year? It may
at first seem logical to take both of these figures as at the end of the
latest development year available. However, this latest develop-
ment year decreases as year of origin increases. If, as sometimes
happens, a company tends to overestimate (say) the number of
outstanding claims in the early development years, then, even if
A = AL = ... = Ag, the triangle of sy’s will tend to increase as
one move down the columns. The result would be underestimation
of the Ap’s and hence of the provisions for outstanding claims.
Thus, to ensure consistency down columns of the sy triangle it
seems necessary to take.
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ngy = number of claims settled in development year 0 +- estimated
number of claims outstanding at end of development year o
(both in respect of year of origin 7).

5. HEURISTIC SOLUTION OF THE SEPARATION PROBLEM
First note that, by definition,

k

T =1 (4)

jwpo
Hence if we sum along the diagonal involving Ag, we obtain:
dy=2{ro+7n+ ... +75) = Ar.
Thus our estimate o‘f Ak is:
l’/\\k = dy.
If the next diagonal up is summed, the result is:
g1 = Ng-1(ro + 71 + ... + 7k-1) = Ag-1(T — 7g).
Thus Ag_1 could be estimated if only we knew rg. But an obvious
estimate of 7y is:
e = vi/ A,
where vg is the sum of the column of the triangle involving 7;.
Now, _ .
Ae-1 = dp-1f(T — 7g).
This procedure can be repeated, leading to the general solution:
ih=dh/(1—;k—?]g-1— ...——;h+1); (5)
7"} = /(% + X+ + ), 6)

where djp is the sum along the (4 + 1)-th diagonal and v is the
sum down the (k 4+ 1)-th row.

6. RELATION TO VERBEEK’'S PROBLEM

Verbeek (1972) considered a similar problem in which sy was
number of claims reported in development year j in respect of
year of origin 7. He assumed the triangle of expected values of
si's to have the same structure as that displayed in (3) and, as
in our case, sought estimates of the »;s and A;’s. He assumed
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further that the total number of claims relating to any one year
of origin has a Poisson distribution. Then, employving the method
of maximum likelihood estimation, he obtained (3) and (6) as
estimates of Ay and r; respectively.

Verbeek’s analysis can be generalised slightly so as to make it
appropriate to claim amounts rather than claim numbers. In
particular, if in the model of Section 4, we denote Els;;] by wy
and if the likelihood of individual claim size can be represented
approximately by a function of the form:

Slsiy 1 wyg) = glsyy) J-:, exp [—uyl, s >0,
then all of the working goes through once agaih to produce estimates
(5) and (6). )

This observation provides ground for expecting (3) and (6) by
reasonable estimators from a statistical viewpoint. Conversely,
the development of Section 5 provides a readily understood heuristic
basis for Verbeek’s statistical analysis.

7. AN EXTENDED SEPARATION MODEL

It was mentioned in Section 4 that there are some influences
at work which tend to make claim sizes vary by yvear of origin as
well as by vear of payment. We could construct a model to acknow-
ledge this by representing the (z, j)-element of triangle (3) by the form:

i jhi +j,

with the ¢;'s normalised so that
k

z gi == 1.
i=0
However, this not only produces computational difficulties, but
also reduces the number of degrees of freedom from }k(k — 1) to
+k(k — 3). Thus even with a 5 x 3 triangle containing 15 entries,
the number of degrees of freedom in the estimation is only 2.
For these reasons it seems that the extended model is inap-
propriate and that the model described in Section 4 should be used
as being closer to reality.

8. APPLICATION OF THE SEPARATION METHOD

It is now necessary to consider the application of the estimates
%, 75 to the calculation of provisions for outstanding claims. They
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can be applied immediately to complete each row up to and in-
cluding development year %.

Later development years cause some difficulty. Suppose we write

Sik+ = X Sg.
fok+1

Then
Efsitks] = Z E[syl= Z 7M.

Juket fok+1
Since we have no information in respect of the development
years involved here except that included in any estimate of total
claims outstanding as at the end of the latest development year,
it is not possible to separate the 7;'s and the A,’s precisely. This is
a verbal expression of the fact that

T
E [S{k +] _ A=+ 1rj i+ (7)
Efsgr+] s Pihg+s

fake
does not in general simplify. It is useful to note, however, that if
it is assumed that s = const. X (1 4+ K)* for the next few years
into the future, then (7) simplifies to

E[S{k+] :
E[50k+] - (I + K) ’

and so s+ is estimated by
Stk + = Sox. (T + K)1.

In case variable inflation rates are required for future years, it
will usually be sufficiently accurate, unless the claim delay distribu-
tion has an extremely long tail, to take

Stk + = Sop +(Ak+i+1 Ak +1), 8

particularly in view of the uncertainty of the values of A in future
years.

It is still necessary to obtain $ox+, an estimate of sox+. This can
be done by simply setting

Sok+ = Sok +- (9)

15
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It might be objected that this makes no use of the company’s
estimate of outstanding claim account in respect of years of origin
later than o and that s+ should first be estimated by:

~

Siks = Stk-ie — (Stk-ta1 + ... + $0.2),
and then sog. estimated by some (possibly weighted) average of
the values of sz 1M1 41).

However, although this method makes use of more information
than does method (9), is also has a couple of drawbacks. Firstly,

stk + is dependent upon the values of A5 for future years, and is
therefore suspect to the extent that the A;'s used explicitly in the
calculations are inconsistent with those implicit in the claims
adjuster’s estimates of outstanding liabilities. This canAbe partic-
ularly important if its effect is to produce estimates Sik+ which
are biased on the low side, for this means that the resulting estimate
of sox+ will also be low and hence all the estimates §;x .+ will be too
low.

For these reasons it may often (for a supervisory authority,
always) be advisable to use formula (9) in conjunction with (8).

Having calculated the matrix:

$oo S0 $o2 . Sox Sok +
$10 $u $12 e $ix $ik+
$ko Sk $ke - Skx $kk +,

we are in a position to calculate factors which correspond to the
chain ladder factors. We calculate

My = ($io+ ... + Six + S +)/(So + ... + $y).

Note that, in principle, there is a different sequence of such
factors, M, M4, etc., for each year of origin 7. In fact, however,
we require only one of these factors for each year of origin, and
estimate the outstanding claims provision in respect of year of
origin 7 by:

Coxr—t(Meg-i— I).
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9. COMPARISON WITH OTHER METHODS

Section 3 dealt with a couple of difficulties arising out of use of
the chain-ladder method. These difficulties concerned that method’s
characteristic of not making past experienced and future expected
exogeneity factors explicit. The separation method overcomes this
major objection by calculating estimates of these factors from
past data (in the Ap's) and allowing flexibility in the choice of
future exogeneity factors.

However, once the Ap’s have been estimated, the method be-
comes essentially similar to the chain-ladder method in the calcula-
tion of the A7 factors and their use in estimating appropriate
outstanding claim provisions. Hence, it is reasonable to regard
the separation method as simply a variant of the chain ladder
method with provision for explicit recognition of exogeneous
influences.

It was already noted in Section 3 that the chain ladder technique
had been strongly criticised by Clarke (1974), and it is, therefore,
of some interest to compare the methods recommended by him
with the separation method. Indeed, an examination of Clarke’s
methods (1974; Clarke and Harland 1974) shows that they are
based on principles very similar to those of the separation method.
There are two main differences. Firstly, Clarke deals with monthly
data, rather than the annual data used here. This is not an essential
difference, the choice of frequency of data collection being dictated
by practical considerations. Clearly monthly figures are preferable
but, for a supervisory authority such as the UK Department of
Trade, not possible.

The second main difference is perhaps in favour of the separation
method. It consists in the fact that the estimation of past rates of
inflation (as part of the As's) from past data is integrated into the
whole estimation procedure, whereas it is not entirely clear whence
Clarke obtains them. Moreover, the “‘exogeneity factors’” employed
here incorporate not only inflation but el influences on the distribu-
tion of claims delays.

10. NUMERICAL RESULTS

The method developed here was applied to a number of cases
which had proved difficult to handle by other methods. In nearly
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all cases, satisfying results were obtained. Two examples are given
below—one in which results were satisfactory, and one in which
they were unsatisfactory.

Example 1: A Motor Account

The run-off triangle is:

0 I 2 3
) 50.4 28.2 9.0 4.8
1 58.0 29.2 9.7
2 59.5 33.2
3 66.2°
This yields: w0 = 234.1; do = 50.4;
n= 90.6; d, = 86.2;
v2= 18.7; d2 = 97.7;
Vs = 4.8; ds = 113.9.
Hence, ro = 0.5835; = 86.4;
r = 0.2878; M= 9¢8.9;
rs = 0.0866; Az = 102.0;
73 = 0.0421; A3 = I13.9.

The “fitted run-off triangle” based on these 8 parameters is:

o I 2 3
o 50.4 28.5 8.8 4.8
1 57.7 29.4 9.9
2 59.5 32.8
3 66.r

This fits the original triangle well, which is reassuring. On the
other hand, however, it must be remembered that there are only
3 degrees of freedom in the fitting process and so the fit is forced
to a considerable extent.

Perhaps just as important as the goodness of fit is the require-
ment that the »’s and A’s produced from the triangle which includes
only the first 3 rows and first 3 columns of the above 4 X 4 triangle
should be consistent with the r’s and \’s already calculated. This
3 X 3 triangle produces
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7o = 0.610I; 2o = 82,6;
71 = 0.2980; M = 04.9;
72 = 0.002I; he = Q97.7.

Now these values do not agree immediately with those already

calculated. However, this is principally due to the constraint
k
z r; =1I,

jmo
which means that »o + 71 4+ 72 = 1 for the 3 X 3 triangle, whereas
7o + 71 + 72 = I — 0.0421 for the 4 X 4 triangle. We can multiply
all of our 7's by some constant, and provided we divide all A’s by
the same constant, the scaled results will be equivalent to the
unscaled ones. Choosing this constant to be (I -— 0.0421), we
rescale the last set of #'s and \’s to obtain:

ro = 0.5844; 2= 86.2;
71 = 0.2855; M= §0.I;
ra == 0.0882; A2 == 102.0.

These figures agree very well with those calculated previously.
If it is assumed that A will increase in future at a rate of 10%,
per annum, then
Ay = 125.3, Ay = I37.8, ¢ = I51.6, A, = 166.8,
The procedure described in Section 8 may now be applied and
the rectangle

0 1 2 3 3+
o 50.4 28.5 8.8 4.8 7.6
1 57.7  29.4 9.9 5.3 8.4
2 59.5 32.8 10.8 5.8 9.2
3 66.5 36.1 11.9 6.4 10.2
obtained, Mo,3 = 1.082

My = I.141
M2, = 1.281
M3, = 1.971

Example 2: A Pecuniary Loss Account

o 1 2 3
o 231.1 336.6 237.3  975.1
s 9435.3 3902.2 89.9

2 70.8 234.6

3

82.5
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This yields: 7o = 0.1866; rho = 12338.3;
71 = 0.0870; M = 35716.0;
r2 = 0.0209Q; Ae = I4296.4;
73 = 0.7055; A= 1382.1,

which leads to the following fitted triangle:

o I 2 3
o 231.1 3107.3 298.8 975-1
1 6664.6 1243.8 28.9

2 2667.7 120.2

3 2579

This does not agree well with the actual run-off figures, the
reason being that, under the assumption of 7,’s being unrelated to
year of origin, line 1 of the actual run-off triangle is grossly in-
consistent with lines z and 3.
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CALCULATION OF RUIN PROBABILITIES WHEN THE
CLAIM DISTRIBUTION IS LOGNORMAL

OLoF THORIN and NILs WIKSTAD
Stockholm

SUMMARY

In this paper some ruin probabilities are calculated for an example
of a lognormal claim distribution. For that purpose it is shown
that the lognormal distribution function, A(y), may be written
in the form

Aly) = [ (1 —e~2) dV (7)
L
where V (x) is absolutely continuous and without being a dis-
tribution function preserves some useful properties of such a
function.

An attempt is also made to give an approximant Ag{y) to A(y)
such that A4(y) is a linear combination of a low number of ex-
ponential distributions. For comparison, ruin probabilities are
also calculated for two examples of Ag(y).

In the considered numerical cases it is assumed that the occur-
rence of claims follows a Poisson process.

1. INTRODUCTION

This paper can be viewed as a continuation of our previous joint
paper (Thorin and Wikstad (1973)). In that paper we made
numerical evaluations of ruin probabilities when the distribution
functions of the amounts of claims, P(y), and of the interclaim
times, K (), both could be expressed as a weighting together of
exponential distributions. In fact we considered ) the following
two classes

P(y) = S ! (f—em=) av(@),  yzo (1.1)
o, y<o
1) As to the class (1.1} we referred to Seal (1969). However, we should

also have referred to Thyrion (1964) where a systematic study of the class
(x.1) i.a. including the Pareto example was given.
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(1 — %) dW (v), tzo

K@ =11 (1.2)
0

) t<o

where V(x) and W (v) were distribution functions such that
V(o) =W(o) =o.

Besides the simples cases when V(x) and W (v) are discrete
distributions with a finite number of spikes we also considered
absolutely continuous V(x) or W(v). In particular, we gave
formulas and numerical values of the ruin probabilities when
V(x) (or W(v)) was a I'-distribution corresponding to a Pareto
distribution for P(y) (K (f})). For that case we also gave an ap-
proximant with a finite number of spikes. It turned out that the
ruin probabilities were well approximated for moderate values
of the initial risk reserve. For large values of the initial reserve,
however, discrepancies appeared corresponding to entirely different
asymptotic behaviors.

In the present paper we attempt to generalize our procedures
to a case where V (x) no longer is a distribution function but still
satisfies the conditions:

i) V() =0, V(w) =1
(i) V(x) is right-continuous

(iii) f |dV (x) | < o, i.e. V(%) is of bounded variation over

the entire interval (o, o).
Of course, not.every such V (x) inserted in formula (1.1) gives
a P(y) which is a distribution function. However, in certain cases
we get a distribution function. Let us first take a simple example.
We let
Vi) = ac(x—a1) + (T —a)e(x —asz) (1.3)
where 0 < a1 < x2, @ = azf(az — a1).

The second weight I — a = — a1f(x2 — a1) is thus negative,
Inserting V(x) in formula (1.1) we get
Ply) =1 B ey + B e =
o2 — o1 og — 1

= (1—e )« (1 —e7%)
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i.e. the convolution of two simple exponentjal distributions. In
passing, we note the obvious fact that for V(x) in (1.3) the first
moment is zero and all the higher moments are negative. (This
fact has an obvious generalization to convolutions of » exponential
distributions.)

As the reader easily realizes there is an abundance of such
examples as (1.3) where a finite number of spikes, among them
some negative ones, produce distribution functions P(y). The
same can, of course, be said about K(¢). The numerical problem
of calculating ruin probabilities in such cases present no essential
difficulties as compared with the cases where V(x) and W(v)
consist of only positive spikes. '

The main topic of this paper is, however, a case where V(x),
without being a distribution function, is absolutely continuous
and, in fact, produces the lognormal distribution A(y) for P(y).
For a special parameter choice we attempt to calculate a number
of ruin probabilities and also, for comparison, to bring forward
and determine ruin probabilities for an approximant As(y) to
A(y) such that the corresponding V,(x) consists of a low number
of spikes, which if necessary may contain negative ones. As to
K(t) our formulas are general. However, for numerical purposes
we consider only the case K(f) = 1 —e—*, i.e. we assume that
the occurrence of claims obeys a Poisson process.

In section 2 we consider the function V(x) producing the log-
normal distribution. Thereafter, the section 3 gives the formulas
for the ruin probabilities. Section 4 treats the principles for ob-
taining Aq(y). In section 5 the asymptotic behaviour of ¥(u) for -
% — co is dealt with where ¥(«) denotes the ruin probability for
an infinite time when the initial risk reserve is #. Section 6 presents
the numerical methods. Finally, section 7 and the attached tables give
the numerical results. Section 8 contains some concluding remarks.

2. THE FuncTioN V(x) PRODUCING THE LOGNORMAL
DisTrIBUTION, A(y)

Thelognormal distribution function, A(y) , has the well known form
1 —
SN(M» ¢ >0,y >0

eo, & ) {2.1)

A

0




i
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where N(-) stands for the normal distribution function with mean
zero and variance one, i.e.,

N(y) = == (e gy
Vv
and log denotes the natural logarithm. As a general reference for
the lognormal distribution see Aitchison and Brown (1957).

For convenience, we introduce « = ¢™* and use § instead of o.
Thus

Ay) = gN

eo, y£0

Clearly, the parameter « is a pure scale parameter in the same

sense as « in F(y) =1-—¢"*¥, y 2 0 is a pure scale parameter.

In contrast, the parameter 8 has a decisive influence on the shape
of the distribution A.

We now consider the Laplace-Stieltjes transform of A for

Re(s) £ 0. (Re(s) = o corresponds to the characteristic function.)

(2.2)

As) = | e dA(y)

_ fe,y iN <1<>g (= y))
: g
In order to continue A(s) analytically into the right s-halfplane
we slightly rewrite A(s) for s negative real and get

As) = f e'“dN(

log (a ) _ log (-——s))
e P

Making the substitution u = (1/x) ¢"®¥ we find

As) = J. e~ e=® g (y +1£g_%_'fl)

I g -
= ; ) g~ (la)e 3'-%(y+(log(-s))lﬁ)"‘dy. (2.3)




RUIN PROBABILITIES FOR LOGNORMAL CLAIM DISTRIBUTIONS 235

Since the last member of (2.3) represents an entire function of
log (—s) we see that we have in (2.3) not only a representation
of A(s) for Re(s) £ 0, s + 0, but also an analytic continuation
into the right halfplane if we avoid the point s = o which is a
branch point. If we avoid also the positive real axis we get in the
remaining part of the plane, say D, a single-valued function. The
boundary values of A(s) when we approach the positive real axis
from above and from below, respectively, we denote by A+(x)
and A—(x), respectively, where x > o.

From (2.3) we conclude that

. I ©  _(lUa)e-Br-y <y+logz_‘g)2
M) = —1/—2__; / dy

a

PRl —(Ua) e~ Pr_y, (y+ logx') . E_‘(y,. log 2
= VE?C I /
ey

~(zlx) e~ Pr-y Yt (niB) y

= Ve e dy (2.4)
and
nif(28%) - 2
_ —_— e = —(zx) e~ B -1 ¥ (niB) ¥
A(x) = A(x) = = [ e ay (2.5)
Taking real and imaginary parts we find
% (26%) - R
e = -(zix)e" -y, 2 Ty
Rer'(x) = ~p= [ ¢ we Ty cos - dy  (26)
e?t"‘f(?ﬂ’) °  _(zia)e-Pr-y, » Ty
Imi*(x) = T [ e ? sin-é— dy (2.7)
Note that
e™IE o a .
W@ = WS = dy = &1 (o)

FErthermore, the formula (2.3) shows that \(s) — o uniformly
in D, the closure of D, when |s|— . It is also evident that

Ms) — 1 uniformly in D when |s| — 0. In conjunction with (2.8)
these facts show that

IMs) | < e™¥e8
for se D (Phragmén-Lindelsf principle).
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However, it is easy to see directly that

I = -y Re Y|y l0B8Y (arg(- 8))* =
[As) | < V’;TE [ e e ,t\y* 8 )Qdy — ¢ T
(2.9)

when — & < arg (—s) < = i.e. for all points in D.

According to Cauchy’s integral formula we have

As”)
Ns) = E:I-— s’(j—s

where s € D and C is a simple closed curve surrounding s.

ds’

Because of A(s)’s properties when |s| — <o and {s| — 0 we may
modify C in such a way that we get

(%) Im a+(x)
M) = sz s =—f —— &=
F Im (%) | (r%)
= J- rpm—— (2.10)
Defining V'(x) = I"”:; ) (2.11)
we find
V(%) dx
A(s) = J Y_-——-_s/; (2.12)

]

Using (2.7) we may write (2.11) in the form
g 7 \

e

~(zlx)e~Pr-1 2 0w
: Y sm—y dy (2.13)

Vi) = I € 3

xr)/2m

In order to prove that

i@

FIV' (%) dx < B [ &1 dt < &0 (2.14)
we introduce
Bgn"’l(%z) v . ot
Q(y) = TL'VZ—'E J‘ et Sin_ﬁ‘ dt (Z.IS)
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Then we can rewrite (2.13):

I < —(zla) ¢-Br
VW=@ aQ(y) =
I = -By -(zla) e~ Py
=—- Qe e dy  (2.16)
and get
I - By = _(gla) e~ P
Fivimies <2 iemie™ay e dx

= flemiay @)

However, it is easy to rewrite Q(v) in the following form (com-

pare the derivatives!) o
g -yt ®R g2
Q(y) = — _TJ/;:E e of e cos (fy) dt (2.18)
Thus
T!{B ‘Z,g
IWMI@<‘I8 (2.19)

From (2.17) and (2 19) we get the asserted inequalities (2.14).
It is now easy to invert (2.12) to

Aly) = [ (t1—e-v) V'(x) dx

= [ (1—e-2¥) dV(x) (2.20)

[]
where V'(x) is absolutely continuous and satisfies the conditions
(i), (ii) and (iii) required in section I.

It is easy to see that V'(x) must have infinitely many zeros
with a limit point in co. For that purpose we consider the succes-
sive derivatives of Im At(x). For convenience we also consider
the derivatives of ReA*(x). In fact we get from (2.6) and (2.7)

Ton Re \*(x) = A\, Re X" (x e”az) (2.21)

an 2

e Imr*(x) = A, Im A" (x ™) (2.22)
enzeﬂlz

where A\, = por is the nth moment of A(y).
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Since we know that Re A+(0) = 1 Re At () = 0, Im A+(0) = o,
Im A*(0) = o the relations (2.21) and (2.22) give some information
about the shape of Re A+(x) and Im A +(x). We thus conclude that
Re At(x) starts out from the value one at x = o, where all the
derivatives to the right are positive, in fact they equal A, for
#=1,2,.... In particular, ReA*(x) near ¥ = o is increasing
and convex. Since ReA+(o0) = 0 there must exist a point xo
such that the derivative is zero in xo. Then (2.21) shows that
Re\*+(x) has a zero at %o-¢*. Then there must exist a point
%1 > %o ¢ where the derivative is zero. This reasoning can be
continued to show that there are infinitely many zeros tending to
infinity. Clearly, the construction may be pursued in such a way
that all zeros of ReA+(x) are included. Note that Re A+(x) must
change sign infinitely many times.

A similar reasoning works for Im A+(x). Since this function
starts out from Im A+(0) = o the present argument, however, does
not exclude the possibility that the zeros also have a limit point
at x = o. Note that all the derivatives at x = o are zero.

From (2.11) we see that also V'(x) must have an infinity of
zeros with oo as a limit. point. Similarly V’(x) must change sign
infinitely many times. Thus, i.a., V(x) cannot be a distribution
Sfunction. The fact that all the derivatives at x = o of Im A+(x)
are zero entail that V’(x) has the same property.

Note also that all the absolute moments

fxﬂlV’(x)ld:c, n=o0,1,2, ..

are finite. For » = 0 we have just proved it. For » > o it follows
directly from (z.13).

The moments themselves are all zero for n = 1,2, ... but
one for » = o. The latter fact is evident. The former fact can be
followed from (2.13) by straight-forward integration. In fact we get

n2/(200) — Yyt ; - -1 -zjxe-B¥
Jx“V’(x)dx: d — fe * sinlldy J‘x" e 0 dx
rcVZn 8

-
>

(n — 1) ! 38 J

TCVZTt

-Y% y*+ndy
e

. Ty
sin —=dy
e
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The integral in the last membrum equals , A ¢

6n2cs=rz l’ e~ w-nt)? o (m;ﬂ’)‘ + mc) W=

o
-®

2 Y
= (—1I1)" ¢ fe i sm—g dy = o

Thus

jcx" V'(x) dx = o, n=1I,2, ... (2.23)

However, a more rapid way to show (2.23) is to differentiate
{2.20) n times and to let y = o observing that all the derivatives
of A(y) are zero at y = o.

3. THE RuiN PROBABILITIES

We now consider the ruin problem when the claim distribution
is A(y) and K(¢) is arbitrary. The initial risk reserve is assumed to
be # Z o and the gross risk premium per time unit to be ¢ >o.

We are interested in the probability ¥ (u, #) that the risk reserve
becomes negative somewhere in the time interval (o, ¢]. We try
to get a formula for

F(w,2) = [ et d'¥ (u,8), Re(2) S 0 (3.1)
in order to invert this formula by a numerical procedure.

In the same way as in our previous paper (Thorin and Wikstad
(x973)) we find the formula

I - B (x,2) V'(x) e-2v dx
A(o,z2) f k(z—cx) [(1/R(z—cx)—Re1* (x))* +(Im A* (x))%]

(3.2)

¥ (18,2) =

et $y(2

+ 2"- gs(2)

where A(-,-),B(,-), 2(-), g ), say( - ) are the usual auxiliary
functions well known from our previous paper.
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In particular, &(2) = f et dK(t) and ‘so(z) are the roots—Ilying
in D and such that ReoSZj(Z) > o—of the equation
k(z — ¢ s25(2)) X (syy(2)) = 1. (3.3)
Furthermore,

oz = B(se(2), 2)
sJ A(o,2) (R(z—-cs25(2)) N (s25(z) — ck'(z—cs25(2)) (524(2))] 524(2)

(3-4)

I

1002 (3.5)

A check formula is ¥ (0,2) = 1 —

For the case K(f) = r —e¢—*, i.e. Poisson occurrences we get
certain simplifications of the formulas in the following way.

L

— K (x# — s1(2)) V'(x) e—%% dx
Yiug = f (I + cx — 2z — Re M {x))® + (Im a+(x))?
+Eg)e (3.6)
where )
I + ¢ sey(z) —z—A(ses(z)) = 0, Re(s2(2)) >0, sy4(z)eD
I+ cnfz) —z—As1(2)) =0, Re(si(z)) 20 (3.8)
I 1 I
&la) = = (sl(z) - sej(z)> N (s5(2)) — ¢ (3-9)
The check formula now reads
¥ (0,2) = 1 — c;(z) (3.10)

For the numerical illustrations we keep to the Poisson assumption
K({) =1—¢*, ¢t 2 0 and thus use the formulas (3.6) through
(3.10). We invert the relation (3.1) using the same Piessens’ algo-
rithm (see Piessens (196g)) as we used in our previous paper.
As to the lognormal distribution we fix the parameters to

= 1.80 :
° 22 gl-%2 (3‘11)

o =
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The choice of p = 1.80 is taken from the paper by L.-G. Benckert
and ]J. Jung to the Astin-colloquium in Essex, 1973 (Benckert and
Jung (1974)). These authors found the value 8 = r1.80 in their
investigation of the Swedish claim experience of fire insurance of
stone dwellings reported 1958-1969 (see their Table 3 Model A).
The value a = ¢!-82 is chosen in order to get the mean amount
one. (As pointed out above x is only a scale parameter.)

In our numerical illustrations we give a representative collection
of values for # = o by the use of formula (3.10). For other values
of 4 we must use the formula (3.6). For the time being we have
avoided such combinations of ¢ and ¢ which necessitates a search
for roots sz(z) in the right halfplane. From the graph of Re A+(x)
it is possible to mark out the critical regions of z for which such
roots appear. If such critical z’s must be used for a certain com-
bination of ¢ and ¢ we have thus avoided the said combination.
However, even if we are outside the critical regions but rather
near one of them difficulties arise. In fact if a s95(2) lies very near
the real axis, either effectively in D or so to speak being on the
way into D, the integrand in the integral term of (3.6) must be
expected to have a “peak” which requires some caution in the
numerical quadrature.

The critical z-regions for our choice of parameters can be char-
acterized in the following way. For ¢ z 1.13 (about) there are, in
principle, no critical regions. For 1 < ¢ < 1.13 (about) there is a
certain x-interval I. in which ReX+(x) lies above the straight
line 1 + cx. The boundaries of the critical regions, one above the
real axisand one below the same axis consist 1) of the following curves

Re(z) = 1 4+ cx— Rert(x)
Im(z) = + ImAr+(x)

where x runs through I,, and 2) of corresponding intervals on
the imaginary axis. _

From what we said above entails that also z's lying outside the
critical regions but near them may be “critical” (even for ¢ lying
sufficiently near but above 1.13).

It is possible to go around the indicated difficulties by modi-
fication of the integration line using the analytic continuation of
the integrand. However, in the present work we have made no
attempt in this direction.

16
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4. THE APPROXIMANT Aq(y)

We have attempted to approximate A(y) for 8 = 1.80 by a
four or five terms combination of exponential distributions

Ag(y) = 1 — X ay e™™¥
o<y <ap for j< i, L ay=1I, m=4o0r5.
Similarly as in our previous paper we determine {a,, «,}* as
the solution of the system of equations
I — A(y) = 1 — Ad(y)
J (x—Ax) dx = [ (1 — Aqlx)) dx (4.1)
1 4

1
y =20,10%, v =0,1I1 ..., m—2.

For the determination of W,(u, f) in the Poisson case we use
the relations

Wel(n,2) = fe“ s V(u,t) )

— n " (4.2)
\Fa('u, Z) = Z gj(z) e U $44(2) 3
f=1
where sq5(z) are the m roots in the right halfplane of
I+ es — hafs) =2 (4-3)
II (1 — sey(2)/ev)
gl) === (4.4)
IT (1 — s25(2)/520(2))
ey

Note that the number of terms in Ag4(y), necessary to get an
acceptable approximation, depends on . For “‘small” 8 the number
of terms may be prohibitive as may be inferred from the fact that
A(y) tends to ¢ (y — 1fa) when § — 0. In fact, an acceptable
approximation of = (y — 1/z) by a linear combination of ex-
ponential distributions requires a ‘large’’ number of terms.
{e (¥ — 1/a) is not representable in the form (2.z0).)
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5. THE AsYMPTOTIC BEHAVIOR OF W(u) AND Woa() FOR # — o0

As is very- wellknown the asymptotic behavior {¢ >\) of
Wa(u) is exponential.
In fact,
Ya(tt) co C e~ Ry, % —> O (5.1)
where C and R are positive constants.

In contrast, ¥(u) has another asymptotic behavior:

() “?-{"i [ lr—Ap) 4y, o

(Cf. Thorin (1974) pp. 97-98).

But we have

(T—A(y) dy =

= N (I—N (1—%—{?—“—)—{3) “'"(I—N (}ig___é_"‘_“l»

Wellknown asymptotic expressions for 1 — N(x) (see Cramér
(x955) p. 38) now give for # —

J (T —A(y) dy o0
) B3, 1
» V2= log (x %) log (x e ® u)
and thus for ¥ — <o
1 B T
¢c—M 2w log (xu) log (xe ™ u)

€,

e~ % (U8Y) (loga 6 =P )2

Y(u) oo o Y2 (U8 (log(x 2= 8% u))?

(5-2)

6. NUMERICAL METHODS

The calculations are carried out in the same way as described
in our previous joint paper (Thorin and Wikstad (1973)) except
for the solution of the equation I 4 ¢s—2z = A(s) in the left
s-halfplane. The equation is written

s = (10) (—1 +As) = f(s)
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so that the familiar recursion formula s(#+1) = f(s(®)) is obtained.
As starting value st = 1/c (z—0.5) is chosen. No convergence
problems have arisen.

The main integral in (3.2) requires calculations for a great
number of points. The positive axis is divided into intervals by
use of a logarithmic scale. In each interval a Gaussian quadrature
based on twelve points is carried out.

The computer programs used are written in FORTRAN. The
calculations are performed on a CDC 6600.

7. NUMERICAL RESULTS

The (a,, «,)T* h.ave been found to be

m = 4
v ay Ly
1 0.0009872101 0.01287817
2 0.03540901 0.09724921
3 0.2855141 0.6569753
4 0.6780897 5.440050
m = 3
v Ay &Ly
1 0.000007137059 0.001887727
2 0.001173I00 0.01480705
3 0.03587177 0.09958433
4 0.2854311 0.6601540
5 0.6775169 5-445927

All other results are presented in the tables.

8. CoNCLUDING REMARKS

This paper has been written as a part of the work carried out
by the Swedish committee for the practical applications of the
risk theory. Of the two authors Thorin is responsible for the sections
1-5 and Wikstad for the sections 6-7 including the attached tables.
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Tables showing numerical values of ruin probabilities

TABLE 1
Claim d.f.: lognormal with parameters p = 1.80, « = ¢“*
Interclaim time d.f.: K(f) = 1 —e¢-¢
(Empty places correspond to ‘“‘critical” regions)
% ¢=1.05 I.I0 1.15 1.20 1.25 1.30 2.00
T = 100 o .82192 .790870 .77571 .75314 .73115 .70082 .488035
100 .03701 .03461 .03246 .03054 .02881 .02726 .013253

I000 .00O0II .00OII .000II .000II .0OOII .00QOIXI .000IO

T = 1000 o .91556 .88534 .85407 .82301 >.79293 76423 .49967

100 .16740 .I3511 .II123 .09334 .02483
1000 .. .. .00108 .00100 .00093 .00087 .00045
T = o o .95238 .90909 .86g057 .83333 .80000 .76923 .350000

100 .55074 34395 23573 .17309 .13384 .10765 .02533
1000 .04I99 .0I09g .00574 .00384 .00288 .00230 .00060
10000 .00008 .00004 .00002 .00002 .0000I ,0000I .00O0O

TABLE 2

Claim d.f.: Ag(y) = Z ap (T — e~ *?)

w1

Interclaim time df.: K(f) = 1 —e-¢
% ¢ = 1.0§ I.I0 I1.15 1.20 I.25 I.30 2.00

T = 100 o .82617 .80295 .77986 .75711 .73487 .71324 .48869
100 .03483 .03286 .03112 .02956 .02817 .02691 .01664
1000 .00000 .00000 .00000 .00000 .00000 .00000 .00000

T == 1000 o .91738 .88722 .8s5601 .82497 .79487 .76600 .49997
100 .26749 .20036 .16664 .13514 .11163 .09382 .02439
1000 .00004 .00003 .00002 .0000I .0000I .0000I .00000

T =co o .95238 .go909 .86957 .83333 .80000 .76923 .50000
100 .33669 .32960 .22367 .16340 .12609 .I0140 .02439

1000 .01688 .00122 .00022 .00006 .00003 .000OI .0OQ0O

30000 .00000 ,00000 ,00000 ,00000 ,00000 .0000C .00000
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TABLEs3

Claim df.: Ag(y) = T ap (1 —e™*Y)

L RY

Interclaim time d.f.: K{(f) = 1 —e-¢
# €= 1.05 I.IO 1.15 1.20 1.25 1.30 2.00
T = 100 ‘o .82587 .80263 .77954 .75679 .73455 -71204 .43861

100 .03497 .03292 .03III .02049 .02803 .02671 .0I595
1000 .00OII .000II .00OIf .00OII .0OOII .00OII .000IO

T = 1000 o .9r1706 .88676 .S3540 .S2423 .79401 .76516 .49968
100 .26511 .20033 .06323 .13159 .10817 .09058 .02307%
1000 .00I18 .00III .00104 .00098 .00093 .00089 .000350

T =c0 o .95238 .gogog .86957 .83333 .S0000 .76923 .30000
100 .53784 .33082 22471 .16425 .I2677 .10195 .02447

I000 .03440 .00041 .00520 .00338 .00273 .0022I .00060

10000 .00000 .00000 .00Q00 .00000 .00000 .00000 .00000
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A STOP LOSS INEQUALITY FOR COMPOUND POISSON
PROCESSES WITH A UNIMODAL CLAIMSIZE
DISTRIBUTION

H. G. VERBEEK
Amsterdam

I. INTRODUCTION

The paper considers the problem of finding an upper bound for
the Stop loss premium.

We will start with a brief sketch of the practical context in which
this problem is relevant.

If it is reasonable to assume, that the accumulated claims variable
of the underlying risk can be represented by a Compound Poisson
Process, the following data are needed for fixing the Stop loss
premium:

— the claims intensity,
— the distribution of the claimsizes (jump-size variable).

In practical situations it is usually possible to find a reasonable
estimate for the claims intensity (expected number of claims in a
given period).

Generally speaking, however, it is not so easy to get sufficient
data on the claimsize distribution. Ordinarily only its mean is
known. This deficiency in information can of course be offset by
assuming the unknown distribution to be one of the familiar types,
such as Exponential, Gamma or Pareto.

Stop loss premiums are however very sensitive to variations in
the type of claimsize distribution and consequently it can make a
lot of difference in the result what particular choice is made.

To gain some insight into the consequences of a specific assump-
tion, it is useful to know within what range the premium can move
for varying distributional suppositions. This means establishing an
upper bound and a lower bound. The lower bound is trivially
obtained if the mass of the claimsize distribution is solely con-
centrated at its mean. The upper bound on the other hand should
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correspond to the “worst” possible claimsize distribution. This
means, that we have to look for a distribution which maximizes
the Stop loss premium.

Thus posed the question could be interpreted as a problem in
Variational Calculus.

An actual approach to this problem by Gagliardi/Straub [1] and
Bihlmann [2] has been along different lines. They start with an
assumption [3] for the maximizing distribution and subsequently
prove the truth of their assumption.

It is intuitively clear that a condition for the existence of a
maximizing distribution is, that the claimsize variable be restricted
to a finite interval. An assumption which is consequently made in
the papers mentioned.

We will prove in this paper that by making the additional as-
sumption of unimodality, a reduction of the upper bound as found
in the cited papers can be accomplished.

In a paper by Gerber [4] it is rightly argued that unimodality
can realistically be imposed on many distributions which are rel-
evant in the insurance field.

2. SOME DEFINITIONS
For easy reference we cite the following:

Definition 2.1: a realvalued function F defined on an interval I
of the real line is convex on I if, for any two points ¥ and y in [
and any number { such that o < ¢ < 1,

Fltx + (1 —t)y] <tF(x) + (1 —)F(y) (1)

The function F is concave if the inequality sign is reversed.

From [5] page 155 we quote:

Definition 2.2: a distribution function F is unimodal with the mode
at the origin if the graph of F is convex in (— o0, 0) and concave
in (o, o0).

The unimodality requires that F is continuous with a possible
exception at the origin. ’

Note: in what follows we will assume that the definition of uni-
modality implies continuity in the entire closed interval in which
F is defined.
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Further we quote from [2] the following:
Definition 2.3:
— Y representing a non-negative r.v. with maximum M and
dfG(x); hence G(— 0) = 0 and G(M) = 1; and
— Y* a modified r.v. taking on only the two values o and 3 with
probabilities 1 — p and p.

In addition it is required that E(Y) = E(Y)* = pM. It isshown
in {1] and [2] that the Stop loss premium based on Y* as the claim-
size variable will always exceed or equal the premium based on Y.

3. A MaxiMIzING RaNDoM VARIABLE FOR UNIMODAL CLAIMSIZE
VARIABLES

We introduce the following random variables:

Definition 3.1:

— Z a non-negative r.v. with maximum M and df G(x) supposed
unimodal with the mode at m(o < m < M) and G{o) = o;
hence G{- 0) = 0 and G(M) = 1; and

— Z* a modified r.v. with df

G*(x) =1 —2p + 2px | M for all xeo, M) (2)
G¥(x)=o0 otherwise
We also require p < 0.5 and E(Z) = E(Z*) = pM.
We shall show in section 4 that the variable Z* accomplishes
an upper bound if replacing Z as a claimsize variable in the Stop
loss premium. We will also show, that the upper bound produced

by Z* is at most as high as that of Y*. To prove this we shall later
need the following:

Lemma 1: if a is an arbitrary real number and E(Y) = E(Z) then
E[(Z* —a)*] < E[(Y* —a)*]. (3)
Proof:
If a is not in [0, M] the inequality is obviously true.
If a is in {0, M] we get:

E[(2* —a)*] = | P[Z* > xldx = p(1 — (/M) (M —a) ()

E[(Y* —a)*] = [ P[Y* > xldx = p(M — a) (s)
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It follows that '
E{(Z* —a)*] = (1 — (a/M)) E[(Y* —a)*]. (6)

In view of 0 < a < M, the lemma is true.

4. AUXILIARY LEMMAS AND MAIN RESULT

For the proof of the fact that Z* produces an upper bound with
regard to Z we need the following lemmas:

Lemma 2: there exists exactly one number s in [0, M) for which
holds: N

P[Z = 5] = P[Z* = 5], se(o, M). (7)
Note that we have excluded the number M from [0, M] for which

(7) is true by definition.
To increase readability we subdivide the proof in 4 assertions:

Assertion 1: at least one number satisfying (7) exists in [0, M).

Proof: suppose that no such number existed. In view of the continu-
ity of G and G* in [0, M) and the fact that P{Z > o] > P{Z* > o],
we must have in that case:

P[Z > x] > P{Z* > x], for all xe[o, M) (8)
it follows that

M u
[ P(Z > xldx > [ P(Z* > x]dx

or equivalently:
E(Z) > E(Z¥). (9)

This contradicts E(Z) = E(Z*) as required in accordance with
the definition 3.I of Z* in section 3. Therefore the assertion is true.

Assertion 2: not more than one number satisfying (7) exists in
(o, m]. (By definition m denotes the mode of G).

Proof: assume there exist two such numbers s; and s: and let s»
be the greater of the two.
In the interval [0, sz] we can write G(fsz) in the following manner:

G*(tse) = (1 — &) G*(0) + tG*(sz), for all tefo, 1] (z0)

o wrem = c e —
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Since by definition G(0) = o and the unimodality of G implies
convexity in (0, m) it follows (1) that:

G(tss) < tG(sq) tefo, 1]. (x1)
Since for sq identity (7) holds, we have:
G(s2) = G*(s2). (12)
From (10), (x1) and (12) we derive:
G*(is2) = G¢sq) te(o, 1]. (13)

Equality holding only for ¢ = 1, it is clearly impossible that a
number s; (< s3) exists in [0, m] for which G*(s1) = G(s1). This
contradicts our initial assumption and proves the assertion.

Assertion 3: not more than one number satisfying (7) exists in
[m, M). Except for minor changes the proof is analogous to that of
assertion 2.

Assertion 4: there cannot exist two numbers one belonging to
[0, m] and one belonging to (m, M), which both satisfy (7).

Proof: assume to the contrary that two such numbers s; and s: exist.
We then can write:

s1= tLm, = {o, 1] (x4)
sz = (I — ta)m + talM, b2 (0, 1). (x5)
Again recalling the definition 3.1 of G*, we note that:
G*(s1) = G*(tim) = (T — 1) G*(0) + LG*(m) (16)
and
G*(s2) = GH[(x — ta)m + M) = (1 — ta) G*(m) + 6G*() (17)

by assumption:

G(s) = G*(s1) (x8)
G(sz) = G*(sq) (19)

using (18) we can write for (16):
Glsr) = (1 — &) G*(0) + 1G*(m) (20)

in the same manner, combining (17) and (x9):
Glse) = (1 — ta) G*(m) + 6G*(M). (21)
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On the other hand, because of the assumed unimodality we have
the two inequalities:

G(s1) = G{tim) < hG(m) tie(o0, m] (22)
G(s2) = G[(x — ta)m + taM] > (1 — t2) G(m) + tG(M)  (23)
Comparing (20) and (22) we find:
(1 —1) G*(0) + 6G*(m) < iG(m) tiefo, 1]. (24)
As by definition (2) G*(0) > o, we conclude:
G*(m) < G(m). (25)
" Comparing now (21} and {23) and noting that G(M) = G*(M) = 1
it is seen that:
(1 —t2) G*¥(m) + t2 > (1 — t2) G(m) + t2 t2e (0, 1) (26)
from (26) we derive finally:
G*(m) > G(m). (27)
As the inequalities (25) and (27) contradict each other our initial
assumption is proved untrue, which proves the assertion.

The 4 assertions which have been shown to be true prove the
lemma 2.

Lemma 3: if s is the number satisfying (7) then the following
inequalities hold:

P[Z > x] = P[Z* > x], for all xe[o, 5] (28)

P[Z > x] < P[Z* > x], for all xels, M). (29)
Pryoof: follows from lemma 2, the continuity of G and G* and the
fact that P[Z > o] > P[Z* > o].

Lemma ¢: for Z and Z* as defined and arbitrary @ the following
inequality holds:
E[(Z —a)*] < E[(Z* —a)*]. (30)

Proof: for a < o and 2 > M the inequality is trivially true.
If ae[o, s] we write:

E[(Z —a)¥] = [ P[Z > x)dx

— [ P(Z > 2)dx— [ P[Z > #jdx
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using E(Z) = E(Z*) and (28)

< [ P[Z* > xldx — | P[Z* > xJdx
= [ P[z* > xldx = E{(Z* — a)*].

If ae (s, M) we make use of (29) and note:
M M
E[(Z—a)*] = [ P[Z = x]dx < | P[Z* = x]dx

which is equivalent to (30).
This proves the lemma.

’

In {2] it is shown that:
E[(S,—A)"] < E[(S; —4)"]

where S, = Z Y,and 5, = Z Yy

i1 imi
ifY,, Y, .....Y,, Y1, Y;, ...., Y, are independently distributed
variables conforming to definition 2.3.

In [2] this result is obtained as an immediate consequence of the
inequality (30) with Z and Z* replaced by Y and Y*. Since for Z
and Z*, according to Lemma 4, the same inequality holds, the
result is also true for Z and Z*.

Thus we have:
Lemma 5:for Z,, Z,, ...., Z,, Z3, ...., Zy independent, each Z,
distributed with unimodal d.f. and each Z] according to (2), all
in accordance with the definitions of Z and Z*, given in section 3
and 4 an arbitrary number, we have:

E[(S, — A)"] < E[(S;, —4)*] (31)
with
S,=1% Z,S,= % Z.
{=t i=1

Theorem: let W, be a Compound Poisson process with claimsize
distribution G(x) and W; a Compound Poisson process with distri-
bution G*(x).
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If G and G* are as defined in section 3 and W, and W} have the |

same claims intensity A, then:
E[(W, — 4)"] < E[(W;.— 4)"). (32)

Proof: as observed in {2] the proof follows because (32) holds for
each fixed number of claims in consequence of (31).

The theorem proves that replacing an unimodal claimsize variable
- Z by a modified variable Z*, both according to definition 3.1,
results in an upper bound for the Stop loss premium, if the counting
variable can be represented by a Poisson process. From the proof
it is clear, that the validity of the theorem is actually not restricted
to Poisson counting variables, but that it holds for all discrete
non-negative distributions.

Proposition: the upper bound according to Z* as stated in the
RHS of (32) is smaller or at the most equal to the upper bound
resulting from Y*.

Proof: follows by applying to Lemma 1 the argument leading to
Lemma 5 and subsequent use of the theorem.

5. NUMERICAL EvALUATION OF THE UPPER BOUND

We will now derive an expression which permits the numerical
evaluation of the upper bound as stated in the RHS of (32). To
simplify the algebra we will make use of the Laplace transform
technique.

If g*(x) denotes the density of:
G*(x) = 1 — 2p + 2px | M for all xe[o, M) (33)
G*(x) = o otherwise
we define:

Lig*;s] = [ e72 dG*(x) = 1 — 2p + 2p(x — e~ M3) | Ms. (34)

Employing F(x) for the distribution of W} we find:
L{(z1 —F);s] = st —exp{—M + ML[g*;s]}|s.  (35)
Substituting (34) in (35) and writing ¢ = 2pM for short, we get:
Ll(1 —F);s] =s-1—exp{—c + c{r —eM8) | Ms]|s. (36)
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We now introduce the abbreviation:

E® = E[(W; — 4)"] (37)
and take the Laplace transform of E* with respect to 4. This gives:
L[E*;s] = {0.5¢M — L[(1 — F);s]}|s (38)

after substitution of (36) in (38) we obtain:
L{E*;s] ={— 1 + 0.5¢Ms + exp[— ¢ + c(z — e~ M) | Ms]}| s2
(39)
To invert (39) we develop the RHS in powers of exp (— Ms) and
find: .
L(E*;s] = —s~? 4+ 0.5cMs™* +

-3 2.-4
cS ,
e-¢ [5—2 e(c!aM) 1_ e(ctaM)-Ma + 5 e(clsM)—zMa .. ] (40)

2\M

The RHS can be invérted into hyperbolic Bessel functions of
ascending order, by using the following standard result:

. ﬂ{[ +Y(n-1)/2
I [((x cf )

I, {2Ve(x — jM)*}; s] = 5™ glol-1Ms (47

Applying (41) to the RHS of (40) term by term and writing
k = A | M for short gives:

[c(k—n) )P+ I | [2V o(k—n)*]

(="
1

n

—c fnd
E'\M=—k+o0.5¢+ f—;— Z

(42)

In (42) we have introduced % which is the deductible (excess
point) of the Stop loss reinsurance expressed in the maximum of
the single risks. If 2 is a positive integer we can simplify (42) as
follows:

e =—trosc+ - S T e 1, oy

(43)

The finite series (43) represents the bound of the Stop loss
premium expressed in the maximum M.
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6. CONCLUDING REMARK

With the help of standard tables for Bessel functions, for example
in [6] actual calculation of the bound is quite easy in practice.
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AN ANALYSIS OF CLAIM EXPERIENCE IN PRIVATE
HEALTH INSURANCE TO ESTABLISH A RELATION
BETWEEN DEDUCTIBLES AND PREMIUM REBATES

G. W. pE Wit and W. M. KASTELIJN

Many studies concerning the frequency of claims by size in
health insurance are not generally known *). A possible explanation
of this circumstance could be the fact that in most countries this
line of insurance has been brought entirely within the ambit of
social insurance. Also from the side of the social insurance very few
investigations have been published **).

In this paper we will analyse the claim experience (relating to
the calendar year 1972) of a private health insurance business.
The data have been subdivided according to three levels of coverage
(in increasing order of benefits these are: class III, class IIb and
class IIa). The claim payments comprise nursing costs, auxiliary
costs and the fees for specialist treatment in and out of the hospital.

We will use the following notations:

s¢: claim amount paid for the insured ¢ in one year,
n: number of claims,
v: number of risks (policies insured).

In many instances the premium is simply determined as a level
premium. In other words each insured pays the premium p, cal-
culated as follows:

Z St
v

p:..—

*)} Notably concerning West Germany and Switzerland we refer to some
recent articles published in the Blitter der Deutschen Gesellschaft fiir Ver-
sicherungsmathematik and in the Mitteilungen der Vereinigung Schwei-
zerischer Versicherungsmathematiker.

**) See e.g. the analysis made in Finland (Research Institure fot Social
Security).
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258 CLAIMS EXPERIENCE IN PRIVATE HEALTH INSURANCE

Actually we make the assumption that the claims are nor-
mally distributed, the parameters of which can be estimated as
follows:

Plotting the empirical claim distribution on log-normal prob-
ability paper suggests however that (like many other distributions
in the field of insurance) the log-normal assumption gives a better
fit than the normal distribution. Denoting its parameters by p
and ¢ its mean and variance are:

« = exp {u + $o7} (x)
B2 = exp {a? — 1} exp {2t + o?). (2)

The premium can again be found as:

p=-u )

The parameters of the log-normal distribution can be estimated
by means of various methods (Aitchison and Brown: The log-
normal distribution). For our purposes we used logarithmic prob-
ability paper (absciss: logarithmic; ordinate: probability). This
approach has the advantage that besides estimation of the para-
meters we can test whether the data look like a log-normal distribu-
tion.

For our estimations and tests of log-normality we started from
the following data:
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TaBLE 1 \
Class ITI Class IIb Class IIa
Number Number Number

Claim of claims 9, claims of claims 9% claims of claims 9, claims
amount s <s <s <s <s <Ss <s
100 8o1 19.5 579 18.1 244 18.2
200 1434 349 1037 32.5 424 31.6
300 1806 44.0 1336 41.9 527 39.3
400 2113 51.4 1564 49.0 625 46.6
500 2367 57.6 1756 55.0 698 52.0
600 2557 62.2 1899 59.5 754 56.2
700 2675 65.1 2007 62.9 795 59.2
800 2789 67.9 2093 65.6 831 61.9
Q900 2880 70.1 2162 67.7 866 64.5
1000 2969 72.3 2219 69.5 895 66.7
1500 3282 799 2440 764 994 74.1
2000 3479 84.7 2589 81.1 1068 79.6
2500 3623 88.2 2686 84.1 1097 81.7
3000 3734 90.9 2768 86.7 1128 84.1
4000 3873 94.3 2882 90.3 . 1184 88.2
5000 3945 96.0 2968 93.0 1219 90.8
7000 4014 97.7 3069 96.1 1270 94.6
10100 4055 98.7 3135 98.2 1303 97.1
20400 4097 99.7 3183 99.7 1341 99.9

© 4108 100 3192 100 1342 100

The percentages of claims < s are plotted on log-normal prob-
ability paper. If the sample points ly approximately on a straight
line it is reasonable to assume log-normality. This appears to be
the case for each of the three classes (figures 1a, 1b, 10).

From the graph we can calculate u. and 6. The points sg, (the
median) and sy can be read from the graph. The two parameters
are then determined as follows:

u = log sso

Sos
and ¢ = log — [ 1.645.
S50
For class III we then find:
. = log 400 = 5.99
4210
400

carrying through the calculations for all possibilities results in the
following table:

6 = log { 1.645 = 1.431

7*



TaBEL 2

. Normal .
Basic data assumption Log-normal assumption
1 2 3 4 5 6 7 8 9 10 1y | I K 14
Total Number Number 50% 95%
claims of claims of risks Ll point point ¥ ¢ @ g 7 4
Class log ¥
in milli 2 2 = n 3
in millions (n) (v) ls ¥, log 7 1635 fs 13X11
111 4.67 4108 9403 1138 497 400 4210 5.99 1.43f 1113 2892 437 489
1Ib 4.48 3192 6264 1403 715 453 5573 6.12 1.526 1451 4413 .510 739
ITa 2.16 1342 2375 1610 910 477 6412 6.17 1.580 1661 5539 .565 930
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A “‘disadvantage” of this method is that the sum of the pre-
miums does not equal the sum of the claims. It seems however
questionable whether this is really a disadvantage. If we apply the
present premium estimation method to a later year it will give a
better quarantee for the adequacy of the rating than the require-
ment of strict equivalence.

In the foregoing we have considered how the level premium can
be derived from the empirical claim distribution. We can also
reverse this question: in what manner does this claim distribution
depend on the premium.

Knowing the premium is howeve:r not sufficient to find the claim
distribution, because for that purpose we also have to know the
Vvariance and (nfv.) It turns out, however, that a relation exists
between the quantities $ and £ on the one hand and between (n/v)
and p on the other hand. If we know this relation we are in a posi-
tion to find B and (nfv) directly from p and « by means of (3).

Figures 2a and 2b show that both relations are linear:

o 3 "
1!.
- .13 s i
- L
£$ m
w0004 T )
400 ) 200 ey L0 00 00 1000 9
Fig. 2a Fig. 2b
The linear relations are:
B=585p + 6r.I @)
(nfv) = .000283 p + .30 (s)
(1), {2) and (3) can be written as:

_ Lt
n
()
ad
o= tlog (32 + a2>
(B“’ + az)
o2 = log

o2
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The last three formulae allow us to calculate 8, (#/v), u and ¢ suc-
cessively for given p. We thus have found the distribution we require.
The claim distribution as a function of the premium also permits
the calculation of the premium rebate for a given deductible.
Let f(s; p) be the claim distribution and ¢(R, $) the rebate factor
applicable to the premium as a function of the deductible R and
the premium. Then the following relation exists:

[sfis:8)ds + R | fis; p) ds
(P(R'lb) = - = :
[s f(s; p) ds.

\ L]

Actual calculations for various p and R result in the following
table for (R, p):

TaBLE 3

200 300 400 500 600 700 800 QOO 1000 1100 1200 1300 1400

500 .478 .388 .332 .203 .265 .243 .226 .212 .20I .I191 .183 .175 .I69
1000 .652 .557 .49T .442 .405 .376 .352 .332 .316 .301 .289 .278 "268
1500 .745 656 .589 .538 .498 .465 .438 .415 .396 .379 .364 .351 .340
2000 .803 .721 .657 .606 .565 .531 .503 .478 .4537 .439 .422 .408 .395
2500 .842 .768 .707 .658 .617 .582 .553 .528 .506 .486 .469 .454 .440
3000 .870 .803 .746 .608 .658 .623 .594 .568 .346 .526 .508 .492 .477
3500 .891 .830 -776 .730 .691 .657 .628 .602 .579 .559 .54I .524 .5I0
4500 920 .869 .821 .780 .743 .710 .681 .656 .633 .613 .594 .577 .562
5500 .939 .895 .853 .815 .781 .750 .722 .697 .675 .654 .636 .619 .603
10000 .975 .951 .925 .899 .873 .849 .827 .806 .786 .768 .750 .734 .720
15000 .G88 .973 .956 .938 .919 .goo .882 .864 .847 .831 .B16 .802 .788
20000 .993 .983 .97I .057 .943 .928 .912 .898 .883 .869 .856 .843 .831
30000 .997 .992 .985 .976 .967 .956 .945 .934 .923 .912 .goI .891 .881

Up till now we have assumed throughout that both the level
premium and the claim distribution are independent of the age of
the insured. This assumption is actually not justified. Usually the
claim amount is age dependent as follows:

Sy = Cq * ¢f.
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Here c¢o and ¢1 are constants. Estinration of these constants from
the data available for 1972 produced the following results:

cl Males Females
ass Co c1 Co (43
111 62.0 1.034 165.5 1.021

ITb + IIa 54.4 1.045 230.9 1.021

The constant ¢: is as a matter of fact time dependent with respect
to the level of medical care and consequently will change only very
slowly with time. The constant co on the other hand reflects the
price level of medical care of which it is directly dependent.

The calculation of s, has been carried out however assuming
normality. With the log-normal assumption the age dependence of
a, B and (nfv) will have to be studied. The extent of the claim data
available was not, however, of sufficient size to justify a subdivision
by age. Hence, the age dependence of 8 and (n/v) could not be ex-
amined.



LETTER TO THE EDITOR

Dear Sir:

It is well known that when the distribution of independent intervals
(with unit mean) between claims is other than exponential the pure premium
for the company’s claims, each ‘‘expected” to amount to one monetary
unit, is the so-called renewal function. Its derivative is the renewal intensity
(the pure premium rate at epoch ¢) and only asymptotically does this become
unity. It is of interest to see how Thorin and Wikstad’s (1973) ¢, the ‘‘gross
risk premium per unit of time”, implies variable risk loadings on the corre-
sponding pure premium rates. This is all the easier to do because Bartholo-
mew (1973) has chosen to provide explicit forms for the renewal intensi-
ties of:

(i) two-term mixed exponential distributions, and
(ii) Pareto distributions.

Thorin and Wikstad's (loc. cit.) renewal densities of interclaim inter-
vals were

k() = 0.25 X 0.4~ 94 + 0.75 X 22— 2% (1)
and
k(t) = 1.5 (1 + 2y) -2 (2)

respectively, and using Bartholomew’s relations (7.6) and (7.8) for the
corresponding renewal intensities we obtained the following results.

Claim Renewal intensity at epoch ¢
epoch corresponding to:
¢ (1) (2) (approx.)
2 1.121 1.554
4 1.024 I1.403
6 1.005 1.330
8 1.001 1.285
10 I.000 1.254
20 1.000 1.176

In the Thorin and Wikstad article ¢ is given the five values 0.90 (.05} I.10
for (1) in two of their tables, and the seven values 1.05 (.05) 1.30, 2.00 in
another. We see that the pure premium rate is larger than unity until the
epoch of the eighth expected claim; thereafter ¢-1 is the constant risk loading
in the gross premium-—and this is negative in some cases. As for (2) the
six chosen values of ¢ are 1.05 {.05) 1.30. The rate of risk loading is thus
negative for most of these ¢-values until ten or more claims have been
expected and some have negative risk loadings even after 20 expected
claims.
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These early variations in the risk loading which is commonly thought
of as being constant (at ¢-1) are not, perhaps, very serious but they occur
whenever the premium is paid from a claim epoch unless the distribution
of intervals between claims is exponential.

Yours very truly,

HiLary L. SEAsL

REFERENCES

BartHOLOMEW, D. J., (1973). Stochastic Models for Social Processes. Wiley,
London.

TuoriN, O. and Wikstap, N., (1973). Numerical evaluation of ruin prob-
abilities for a finite period. ASTIN Bull. 7, 137-153.



COMMITTEE OF ASTIN

Chairman: Erkki PrsoNEN, Helsinki; Vice-Chairman: LeRoy J.
SimoN, Newark.

Secretary: Francis E. Guaschi, London.

Editor: Henry G. VERBEEK, Amstelveen.

Treasurer: Joseph ADAM, Brussels.

Members: Hans BUHLMANN, Ziirich; Giovanna FERRARA, Trieste;
Paul JouanseN, Copenhagen; Jan JunG, Saltsjobaden; Jean
SOUSSELIER, Paris; Jiirgen STRAUSZ, Miinchen.

Honorary Chairman: Edouard FRANCKX, Brussels.

The Committee is not responsible for statements made or opinions expressed
in the articles, criticisms and discussions published in this Bulletin.

Le Comité rappelle que seul I'auteur de chaque publication est responsable
des faits qu'il expose et des opinions qu’il exprime.

Past Chairmen: 1957-1960 Paul JoHANSEN, Copenhagen; 1960-
1962 Marcel HeNRY, Paris; 1962-1964 Robert Eric BEARD,
London; 1964-1966 Hans AMMETER, Ziirich; 1966-1968 Norton
E. MASTERSON, Stevens Point; 1968-1970 Paul THYRION, Brussels;
1970-1972 Jan JunG, Saltsjobaden; 1972-1974 Hans BUHLMANN,
Ziirich.

ASTIN (Actuarial Studies in Non-life Insurance) is a section of the
INTERNATIONAL ACTUARIAL AssociaTioN (IAA). MEMBERSHIP
of ASTIN is open automatically to all IAA members and under
certain conditions to non-members also. Applications for member-
ship can be made through the National Correspondent or, in the
case of countries not represented by a National Correspondent,
through the Secretary of ASTIN:

F. E. GUASCHI, Moorfields House, Moorfields, LONDON.

Members of ASTIN receive the Bulletin free of charge.

NON-MEMBERS can subscribe to the Bulletin through:
E. J. BRILL — PUBLISHER — LEIDEN (Holland).
Cost of each number: Dutch Guilders 25.—plus postage and packing.

Please send no money with your order. We will bill you.

There are no set publication dates for the Bulletin. The frequency
with which it appears varies, depending on the number and length
of the contributions submitted for publication. One volume consists
of three or four numbers, together about 300-400 pages.



