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In Memoriam PAUL THVRION 

Paul Thyrion s'est 4teint ~ l'aube du 2 juin ~978. La nouvelle de sa mort 
s'est r6pandue rapidement darts le monde de l'assurance belge et parmi les 
nombreux amis qu'il comptait k l'dtranger, frappant de consternation et 
d'dmotion tous ceux qui l 'avaient connu et qui apl)rdciaient ses dminentes 
qualitds. 

Paul Thyrion avail 62 ans. I1 dtait Ing6nieur Civil de l'Ecole Royale 
Militaire de ]3elgique, Actuaire de l'Universitd Catholique de Louvain, 
Lieutenant-Colonel de rdserve et Commandeur de l'Ordre de Ldopold IL 
I1 dtait entr6 ~. la Royale Beige en 195o et en 6tait devenu le Directeur 
Gdndrat en 1974. Commissaire k la Socidt6 Gdndrale de Belgique, Admini- 
strateur de plusieurs socidtds, membre de la Commission des Assurances 
et du Conseil de Direction de l'Union Professionnelle des entreprises 
d'assurances, Patti Thyrion avail dr6 Prdsident de i'A.S.T.I.N, de 1968 k 
197o et Prdsident de l'Association Royale des Actuaires Belges de 1971 g 
1974. II dtait dgalement membre du Bureau de l'Association Actuarielle 
Internationale au sein duquel il oecupait It poste de trdsorier. 

Les contributions actuarielles de Paul Thyrion, en particulier celles 
dans le domaine de la th4orie collective du risque et dans celui des 
mod61es "non-life", sont nombreuses, de grande valeur et universellement 
apprdcides. 

Mats Paul Thyrion n'avait  pas que des qualitds scientifiques, si 6mi- 
nentes soient-elles; il 6tail aussi, tout simplement et dans route l'ac- 
ception du terme, un grand homme, doud d'une fiche personnalit6, 
droite, gdn6reuse et noble. 

II n'dtait pas question pour lui que "Fair was foul and foul was fair": 
il ne pratiquait pas la confusion des valeurs. 

Ses rapports avec les jeunes actuaires dtaient toujours constructifs, 
sympathiques et stimulants; il les encourageait volontiers dans leurs 
recherches, n'hdsitait jamais ~t consacrer une pattie de son temps libre, 
rare et pr4cieux, 5. t'examen de leurs travaux, et les conseiUait toujours 
judicieusement. 

On se rend mieux compte maintenant, avec le reeul des jours, de 
l'6norme courage dont a dfi faire preuve Paul Thyrion darts les derni6res 
ann6es de sa vie. On le disait quelque i)eu souffrant; en rdalit6, il 6tait 
atteint d'un real implacable dont lui seul, 5. part peut-fitre ses proches, 
connaissait l'existence. Jusqu'k ses derniers instants, il nous aura donnd 
l'exemple d'une noblesse discrete et sereine. 

j .  ADAM 
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L E T T E R  TO T H E  E D I T O R  

Dear  Sir: 

I am delighted at  the independent  verification of m y  thesis in Asl in  Bulletin, 9, 
213, t ha t  the gamma distr ibut ion general ly produces results nearer  the t ru th  
of F (x, l) than  the so-called NP2, when bo th  approximat ions  are f i t ted by  
means of the first three moments  of F.  

In  his cont r ibut ion  to the Astin Colloquium in Washington,  D. C., T. Penti-  
k~tinen has reproduced  15 of the 24 comparisons I made  in the first three and 
the fifth sets shown in my  table thus obtaining 11 in favour  of the  g am m a  
(a slight improvemen t  over  m y  16 in 24!). He has added 4 8 -  15 = 33 new 
results showing, in his table, tha t  in 11 of them the gamma is superior to 
NP2 and tha t  there  is supposedly equal i ty  in 14 results. However ,  using Pent i -  
k~iinen's own tabular  values of 1 - F ( x , t ) ,  lo of the 14 "equal i t ies"  tu rn  out  
to favour  gamma and only three have the same value to the number  of deci- 
mals shown. 

Summarizing these results we have:  

Number of Number in favour 
comparisons of gamma 

Pentikainen (Astin Colloquium): 
Taken from Seal 15 l 1 
New 33 1 t + lo + 1½ (half of 3) 

Seal (Astin Bull.): 
Not used in Pentikainen's 
extraction 9 5 
Remainder (viz. fourth, sixth 
and seventh sets) 14 t I 

Total 71 49½ 

Several  lines and groups of lines in this table produce a rat io of close to 7o % 
in favour  of gamma.  

Yours ve ry  truly,  

HILARY L. SEAL 

AUGUST 1977 
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A NUMERICAL ILLUSTRATION OF OPTIMAL SEMILINEAR 
CREDIBILITY* 

FL.  D E  VYLDER AND Y .  BALLEGEER 

INTRODUCTION 

The homogeneous (in time) model of credibility theory is defined by a sequence 
®, X1, X2 . . . .  of random variables, where for ® = 0 fixed, the variables 
X1, X2 . . . .  are independent and equidistributed. The structure variable 0 
may be interpreted as the parameter of a contract chosen at random in a 
fixed portfolio, the variable X~ as the total cost (or number) of the claims of 
the kth year of that  contract. 

Bzihlmann's linear credibility premium of the year t + 1 may be written in 
the form 

(1) f ( x l )  + . . .  + 

where f is a linear function. In optimal semilinear credibility, we look for an 
optimal f, not necessarily linear, such that  (1) is closest to Xt+~ in the least 
squares sense. In the first section we prove that  this optimal f, denoted by f*,  
is solution of an integral equation of Fredhohn type, which reduces to a system 
of linear equations in the case of a finite portfolio. That is a portfolio in which 
® and Xk can assume only a finite number of values. 

In the second section we see that  the structure of such a portfolio is closely 
connected with the decomposition of a quadratic form in a sum of squares of 
linear forms. 

In the last section we calculate numerically the optimal premium for a 
concrete portfolio in automobile insurance. We limit ourselves to the considera- 
tion of the number of claims. The optimal premium is compared with the usual 
linear premium. The difference is far from negligible. 

As basic statistics we need the probabilities 

p~ = P(X~=i ,  X~=j)  

In the third section we give a simple general solution to the subsidiary 
problem of adjusting the matrLx pq of such probabilities. 

1. THE FUNDAMENTAL RESULT 

I.I. Hypotheses. Notations. Definitions 

We consider a sequence ®, X~, X2 . . . .  of random variables such that  for ® = 0 fix- 
ed, the variables X1, X2 . . . .  are conditionally independent and equidistributed. 

* P r e s e n t e d  a t  the  I 2 t h  A S T I N  Colloqium, Por t im~o,  Oc tobe r  1975. 
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All variables considered are supposed to have finite second order moments .  
The risk premium of each year  is defined by  

m o -- E ( X 1  I 0 ) .  

Here,  and also hereaf ter  in similar situations, the index 1 could be replaced 
by  another  one. The variables X~, X2 . . . .  are exchangeable in the sense of 
De Finelti. More generally, for each function f of one variable, we denote  by  
fo  the random variable 

fo  = E f f (X~)  l O) 

Hereaf te r  t will be a fixed posit ive integer. I t  is the number  of years tha t  we 
have  already observed our portfolio. We have to make forecasts for the year  
t + 1. Since t is fixed, the dependence on t is not  always indicated in our nota-  
tions. 

1.2. Lemma 

(I) For  each couple f ,  g of functions of one variable:  

(2) E(f (X~)  g(X2)) = E(fog(X2))  = E( f (X~)go)  = E ( f o g o )  

(II) For  each function f of one variable and each function q~ of t variables:  

(3) E(9(X~ . . . . .  X~) f (X t~ t )  ) = E(q?(Xi, . .  Xt) fo) 

( I l i )  For  each funct ion f of one variable:  

(4) E(f (Xt+t )  [ X t ,  X2 . . . .  , Xt)  = E ( fo  I X t  . . . .  X,) 

Demonst ra t ion .  

(i) Using the condit ional  independence of Xz, X2 for fixed ® 

E( f (X~)  g(X2) ) = EE( f (X~)  g(X2) [ ®) = 

E(E( f (X~)  I ®) E(g(Xz) ®)) = E(f~go) 

Also 

E(fog(X~))  = EE( fog(X2)  [O) = ECfoE(g(X2) l®)) = E(fogo)  

and similarly 

E ( f ( X t )  go) = E( fogo)  

(ii) Wri t ing 

, o  = E ( ~ ( x l  . . . . .  x , )  I o ) ,  

we have in a similar way the more general result  

E(q~(X1, . . ., Xt)  f (Xt+l)  ) = E(q~ofo) = E(9(X1, . . . , X ~ ) f o )  
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(iii) From the conditional independence of X~, X2 . . . .  , Xt+l ,  for fixed O, it 
follows tha t  

f o  = E( f (X t+~)  I O) = E ( f ( X t + i )  [@, X~ . . . . .  Xt) 

Then, by applying the operator E ( .  ]X~  . . . . .  X t )  and using a general 
property of conditional expectations: 

E ( f o  i Xx  . . . . .  X t )  = E ( E ( f ( X t + i )  I ®, X~ . . . . .  X~) t X~ . . . . .  X t )  = 

E( f (X t+a)  [ X~ . . . . .  X t )  

1. 3 . Theorem 

Let f*  be a solution of 

(5) E(..,¥2 IX1) = f*(X1) + (t - 1) E ( f * ( X 2 ) [ X 1 )  

Then, for every function f :  

(6) E f m o - f * ( X ~ )  - . . .  - /* (X, ) )  2~< E ( m o - f ( X z )  - . . .  - f ( X t ) )  2 

The mean square error in the approximation of mo by f * ( X ~ )  + . . .  + 

f * ( X t )  is given by 

(7) E ( m o - f * ( X , )  - . . .  - f * ( X t ) )  2 = E(X~X2)  - t E ( X , f * ( X 2 ) )  

If g* also satisfies 

(8) E(X. .  t X , )  = g* (X l )  + ( t -  t) E(g*(X2)  [ X~), 

then 

(9) f * ( X ~ )  = g*(X~) a.e. 

Demonstration. 

Multiplying (5) by f ( X ~ )  and taking the mean value, we have 

(lo) E ( f ( X i )  X2) = E ( f ( X 1 ) f * ( X i ) )  + 

In particular, for f = f * ,  we have 

(t l) E ( f * ( X ~ )  X~) = E ( f * ( X t ) ) ~  + 

Using (2), we have for every f :  

E ( m o - f ( X 1 )  - . . .  

(12) 

(t - 1) .E(f(X1)f*(X2)) 

( t -  1 ) E ( f * ( X i ) f * ( X 2 ) )  

- f ( X t ) ) 2  = 

E(m~)  - 2 t E ( m o f ( X 1 )  ) + E ( f ( X , )  + . . .  + f(X,))2 = 

E ( m ~ )  - 2t E ( m o f ( X , )  ) + t E f 2 ( X i )  + t ( t -  1) E ( f ( X 1 )  f ( X 2 )  ) = 

E ( X i X 2 ) -  2 t E ( f ( X l )  X2))  + t E f 2 ( X ~ )  + t ( t -  1)E(f (X1)f (X2))  
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T a k i n g f = f *  and using (11), we have 

. E ( m o -  f * ( X 1 )  - . . .  - f * ( X , )  )2 = 

E ( X i X 2 )  - 2t E ( f * ( X 1 )  X2) + t [ E ( f * ( X ~ ) )  2 + ( t -  1)E(f*(X~)f*(X2))I  

= E(X~X2)  - 2t E ( f * ( X ~ )  X2) + t .E ( f* (X~)  X2) = 

(13) E(X~X2)  - t E ( f * ( X ~ )  X2) 

Since Xi  and X2 are exchangeable, this proves (7). Neglecting a factor t, 
using (12) and (13), the difference between the second and the first member  of 
(6) equals 

d = E ( f * ( X ~ )  X2) - 2 E ( f ( X ~ )  X2) + E f 2 ( X i )  + ( l -  1) E ( f ( X ~ ) f ( X 2 ) )  

Replacing the first two terms by their  expression given by (1o) and (11) 
and using (2), we have 

d = E ( f * ( X x ) )  2 + ( t -  1)E(f*(X~)f*(X2))  

- 2 E ( f ( X i ) f ' * ( X i ) )  - 2 ( t -  1) E ( f ( X ~ ) f * ( X 2 ) )  

+ E ( f ( X l ) )  2 + ( t -  1) E ( f ( X x ) f ( X ~ ) )  = 

E ( f * ( X ~ ) - f ( X 1 ) )  2 + ( t -  1)[E(f~) 2 - 2 E ( f o f ~ )  + .E(fo)2] = 

E ( f * ( X l ) - f ( X ~ ) ) 2  + ( t -  1) E ( f ~ - f o )  2 1> o 

This proves (6) and it only remains to show that  (9) is true. Writing h* = 
f * - g * ,  we have from (5) and (8)" 

o = h*(x1) + ( t -  1) ~(h*(x2) I x~) 

Multiplying this last relation by h*(X~) and taking the mean value, we have 

o = E(h*(X~) )  2 + ( t -  1) E ( h * ( X i )  h*(X2))  

or, by (2): 

This implies 

and thus (9). 

o = E ( h ( ° X l ) ) 2  + ( t - 1 )  E(h~)  2 

E ( ~ , * ( X l ) ) 2  = o 

1. 4 . Corollary 

Let f *  be solution of (5). Then, for each f :  

(14) E ( X t ÷ l - f * ( X 1 )  - . . .  - f::'(Xt))2 ~< E ( X , + i - f ( X i )  - . . .  - f ( X t ) ) 2  

Demonstrat ion.  

Using (3) it easily follows tha t  for every function $ of t variables we have 

E ( X t + ~ -  ~(X~ . . . . .  X~) )~ : E ( X , + ~ -  mo)~ + E(n,o - ~(Xl  . . . . .  Xt) ) ~ 
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The difference between the members of (14) then is the same as that between 
the members of (6). 

1.5. Remark. Notation. Definition 

In DE VYLr~EI~ (1976), the fundamental relation (5) is derived in a geometrical 
way. In that paper the existence o f f*  is proved. 

The optimal semilinear credibility premium of the year t + 1 is defined and 
denoted by 

(15) E*(Xt+~[X~ . . . . .  Xt) =f*(X~)  + . . .  + f*(Xt),  

where f *  is solution of (5). 

1.6. Theorem 

(16) E E*(Xt+~ [ XI . . . . .  Xt) = E(Xt+~) 

Demonstration. 

Follows from (5) and (15) by taking the mean values. 

1.7. Determination of the Optimal Premnium 

If the variables X~ and X2 have a joint density p(x, y), then equation (5) 
becomes 

(17) f y p(x, y) dy = f*(x) f p(x, y) dy + ( t -1 )  ~ /*(y) p(x, y) dy 

This is an integral equation of Fredholm type for the unknown function f*.  
If  X~ can only assume, with probability one, a finite number of values, say 

o, l, 2 . . . .  , n, then (5) becomes the linear system 
t ,  • n 

(18) YE jp,: = f ,  E p,j + ( t - l )  ~ f ; p , j ( i = o  . . . . .  n), 
l - o  I - o  I - o  

where 

(19) 

(20) 

p, j  = P(X1 = i, X2 = j ) ,  

f ;  = f ' ( i ) .  

Equations (17) and (18) may serve as well for theoretical investigations as 
for the numerical computation of the optimal premium. Only the joint distri- 
bution of X1 and X~ is needed. 

1.8. The Linear Credibility Premium 

We shall denote the usual linear credibility premium of the year t + 1 by  

Z 
(21) B ( X t + : I X :  . . . . .  X~) = ( I - Z )  E(X~) + 7 (X1 + . . .  + Xt), 
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where 
l cov(X~, X~) 

(22) Z - 
V(l/" X l .  -l- ( t -  1) cov(X1;X2 i 

The mean square error in the approximat ion  of me by  this premium equals 

(23) (t - Z) coy(X,, X2). 

By what  precedes, it is never  less than the mean square error in the ap- 
proximat ion of m e by  the optimal premium, given by (7). 

2. F I N I T E  P O R T F O L I O S  A N D  Q U A D R A T I C  FORMS 

2.1. Hypolheses. Dcfinitio,. 

From now o11 we assume tha t  the range of values of X,  is a finite set of numbers  
s a y o ,  l , 2 ,  . . . , ~ .  

We use tile nota t ion  (t9) for pej and set 
n 

Pi = 1)(Xt = i) = E Pij (¢ = O, 1, . . . ,  'It) 
j o 

We denote  by Q~ the quadrat ic  form in the variables xo, xt . . . . .  x~: 
u 

(24) Qp = x pi jx tx j  
t , ]  0 

(in the nota t ion Qv, P is of course not  a numerical  index, but  a fixed symbol  
re la ted to the nota t ion  PU.) 

If ® also can only assume a finite numl)er of distinct values, say 0o, Ot . . . . .  0.,, 
we call the portfolio a f i ,  ite porlfolio and we write 

(25) u= = P(O = 0~) " ' ( ~ = 0 ,  1, . . . , V )  
(26) p~/~ = l ' (X t= i [®=O~) .  \ i = o ,  1, . . . , ~  

The numbers  (25) and (26) complete ly  describe our portfolio. For  example:  

(27) PU¢ . . . .  P ( X t = i ,  X 2 = j ,  X a = k ,  . . . )  = 2 u~,pq~pj/~,p¢/~. . .  
OL 0 

Note tha t  it is not  assumed tha t  tile portfolio be finite in the following 
theorem. 

2.2. Theorem 

The (~ + 1) x ('J~ + 1) nlatr ix [)6~j] is semidefinite t)ositive. 

Demonst ra t ion .  

For  every  funct ion f of one variable, we have by  (2) : 

.E ( f (X1) f (X2) )  = E f~  >~ o 
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Wri t ingf ( i )  = x:, this gives 
s t  

i , J  " ,  0 

for every value of xo, xz, . . . ,  x,~ 

2.3. Theorem 

Let  [q,j] be an a rb i t ra ry  (1l + I) x (.1~ + l) symmetr ic  mat r ix  with nonnegat ive  
elements adding up to unity.  Define q,(i = o . . . . .  n) 13 3, 

n 

q, = X qz: 
] . , 0  

Then, if one of the matrices [q,:] or [q~:-q,q:~ is semidefinite positive, so is 
the other.  

Demonstra t ion.  

Let  Qq and R e be the quadrat ic  forms 
n 

Oa = X q~: x lx: ,  
I , ] '  0 

R e  = 22 (q l : -qzq j )  x~x: = O a - -  ( £ q¢ xda 
I , j  o I o 

Then 
tt 

t O 

and if Rq is semidefinitc positive, so is Qq, 5. fortiorl. 
Conversely, let Qq be semidefinite positive. Define tile couple of random 

variables Y~, Y2 1)3, 

= ( . , , j = , , ,  . . . ,  ,.,.) 

For every  f we have, set t ing f ( i )  = xi: 
n n 

E ( I ( Y  O f ( Y = ) )  = Z f ( z )  f ( j )  q,: = 22 q¢: x ,x:  l> o 
I , J ,  o ¢ ,1 '  o 

since Qq is semidefinite positive. In part icular ,  for the function f - E f ( Y , )  = 
/ -  w e  h a v e  

E ( ( f ( Y t )  - E f ( Y t ) )  ( f ( Y e )  - E l ( Y 2 ) ) )  >1 o 

o r  

n 

R e = X ( q , : -  q~q:) x ,x:  i> o 
l ,  I ' 1 0 
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2. 4 . Theorem 

In the finite portfolio the form Q~ equals 

= £ ,,o( p .o  x,/-. 
or, o { ~ o  

Demonstration. 

By (27): 
n n n 

f , t ~ o  Ct, o d o ~r,.o c t o o  d , . o  

2.5. Theorem 

n 

Let Qq = Z q~j x i x  t be a quadratic form with nonnegative symmetric coeffi- 
d, I .  o 

cients q~l adding up to unity. Then, to every decomposition 

( ,J 0 Ct, ,O t " 0  

of Qq in a sum of squares of linear forms with nonnegative coefficients a~, 
there corresponds a finite portfolio for which 

(29) PO = q,J, 
n 

(30) , ~  = ( x a . ) 2 ,  

n 

(31) p,/~ = a l~/  X a,~, 
t . . O  

( i = o  . . . . .  n; ~ = o  . . . . .  ~) 

Demonstration. 

We suppose of course that no linear form of the decomposition is the zero 
form. 

Define u~ and/b,/~ by (30) and (31). From (31) we have 
tt  

X p , ~ =  1 ( ~ = o  . . . . .  ~ ) .  

By setting xo = x, . . . . .  xn = 1 in (28), we have Z u~ = 1 
o ~ o  

Also 

¢t ,o  ~x o 

by taking the coefficient of x~x~ in (28) and using (30) and (31). 
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2.6. Remarks 

(I) Given the matrix [p,j], every possible finite portfolio for which (19) is 
valid thus results from a decomposition of Q~ in a sum of squares of linear 
forms with nonnegative coefficients. For all such possible portfolios, the 
credible premium (optimal or linear) will be the same. 

(II) By 2.2., a necessary condition on a given matrix [qIj] to be the [Po] 
matrix of some portfolio, finite or not, is that [qIj] be semidefinite positive. 

(III) In the classical theory of decomposition of a quadratic form in a sum 
of squares of linear forms, the latter are generally independent and in 
number not larger than the dimension of the matrix of the quadratic 
form. For a decomposition giving rise to a portfolio, this is no longer 
needed. On the other side, we need linear forms with nonnegative coef- 
ficients, which is not the case in the classical theory. 

(IV) As a simple illustration, we consider the form Q in two variables 

1 

Q = 79 (3x2 + 12xy + 143,2 ) 

Among a lot of others, three possible decompositions are 

+ + 3 /  + ; + 4 , '  

27 _x+ + o x +  ly 
Q= 3 3 

2oo(   
Q = - -  + + i x +  oy 

2o3 10/ 2o3 

To these three decompositions correspond three different finite port- 
folios with same [P*I] matrix equal to 

3/29 6/29] 
6/29 14/29] 

For each of the three portfolios we would find the same optimal premium 
and the same linear credibility premium. 

If we had a decomposition with only one square of a linear form, the 
two variables Xi and X2 should be independent. So the third decomposi- 
tion shows that, in the present case, these variables are "nearly" in- 
dependent. 
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3. ADJUSTMENT OF A [Ptl]  MATRIX 

3.1. The Problem 

In the next  section, we apply  the theory  to a concrete portfolio in automobile  
insurance. We limit ourselves to the consideration of the number  of claims. 
Then Pij is the probabi l i ty  of i claims in one year,  say the first, a n d j  claims in 
ano ther  5,ear, say the second, for a cont rac t  chosen at random in the portfolio. 

Practical ly,  the probabi l i ty  Plj is es t imated  by  an observed f requency qij. 
Excep t  perhaps for est imates f rom very  large samples, the ma t r ix  Eq~Jl, of 
course symmet r ized  in the obvious way, does not fit in the theory  because 
general ly it is not  semidefinite positive. So it must  be t ransformed,  as slightly 
as possible, in a uaable mat r ix  IP~JI. 

3.2. Smoolhing  on a F txed  Ascending  Diagonal  

Suppose, for a moment ,  tha t  the parameter  0 of each fixed cont rac t  is inter- 
pre ted as the mean number  of claims in one year,  and that  the arrivals are 
poissonnian. Then  we should have 

0~ 
(3 2 ) P(X~=iI®=O) = e - °  ~ ( i = o ,  1 , 2  . . . .  ) 

But  since, for practical reasons, we do not  consider a number  of claims in 
one year  greater  than a fixed integer n, we replace (32) by 

0z 
(33)  P ( x ~  = i t o = 0) = c,,,o e - °  ~- ( i  = o , ,  . . . . .  . )  

where Cn,o is the suitable norming factor. 

Denot ing by  U(0) the s t ruc ture  function of the portfolio, we have,  for a 
cont rac t  chosen at randoln 

i o 0 ~+l PiJ = C;,o e-2° - -  dU(O) ( i , j = o ,  I , . .  n) 
i~ j~  " 

o 

For  the probabi l i ty  of k (k = o, 1 . . . . .  2n) claims in two years, we have then 

(34) (z); " , ~  ~ ~ -~ e -'~° 0**J  d g ( 0 )  ~Pe = Ps~ = C,.o T~ ji 
i , t  , 0  ' ,1  0 

t + J  L ~ + J  L t I 

So, for i + j = k (i, j =  o, 1 . . . . .  n), PO and 2pk are related by  

(35)  p~j = a , j  ~p~ 
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where 

(36) 

If we take 

ai j  = 

1 

1 

,.j..o i !  j !  
I ÷ l ~ k  

, ( i , j = o ,  . . . , u ;  i + j = k )  

(37) eqe = ~ q,j 
i , ] , ,o  

t + ] ~ k  

and then use (35) with epe =eqk, We have a first ad jus tment  o[ the ma t r ix  [q*J3- 
Since, for f ixed k, the elements a,j of (36) add up to unity,  it is immedia te  tha t  
the sum of the elements  of each ascending diagonal is the same in the initial 
and the adjus ted  matr ix .  

We reached (35), s tar t ing from a poissonnian hypothesis .  Now we kee t) only 
(35) and abandon the poissonnian hypothesis ,  because this relation is in fact  
true in a more general situation. For  example,  if the factor  cn, o2 e -2° is replaced 
by another  one not  depending on i or j, then (35) remains true with a~j given 

by  (36). 

3.3- Extrapolation for the Last Ascendi'~tg Diagonals 

For  statistics deriving from small samples, the above me thod  does not  ye t  
furnish a semidefinite positive [p,j] matr ix .  So a prel iminary smoothing of the 
eqx's is necessary. 

If, again for one moment ,  we make the poissonnian hypothes is  and do not  
neglect claims in number  greater  than  ,~t in one year,  then we have 

d U ( O ) ,  (k, = O, 1, 2, .) 
(20) e 

( 3 s )  . ,Pc = e - " °  ~ - - ~ -  . .  

0 

Writ  i n g 

(39) 

w e  h a v e  

re = k! epe ( k = o ,  1, 2, . . . )  

re = f e -~° (zO)e dU(O) ( k = o ,  1, 2 . . . .  ) 

From this relation it can be proved tha t  

(40) r~ ~< r k_l re+l, (k= 1, 2, . . . )  

and tha t  equal i ty  for some k can only hold in a portfolio of homogeneous  
composit ion ( that  means:  ® = cons tant  a.e.), in which case it holds for every  
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k. In the case of a binomial  negat ive dis t r ibut ion for the to ta l  number  of claims 
in a fixed period (here 2 years), which amounts  to a gamma densi ty  for 0 ,  it can 
be verif ied that ,  for k--> oo, we have  

Tk-i Tk+l 

Yk 

These considerat ions suggest the following me thod  of ad jus tment .  We take  

r0 = o[ xqo, r: = 1[ 2ql, . . . , r k 0  = k0!2qk0 

and, f rom ko on, t aken  as large as possible, we set 
2 

~v~_ 1 
(41 ) ~k = ( l  + ¢ k , ~ , ~ , . . . )  - -  (k >/ ko+ 1) 

rk-2 

where ~k,~,~,... is a posit ive quant i ty ,  decreasing with increasing k and con- 
taining parameters  c~, ~, . . .  to be de termined  in funct ion of some requirements  
for the adjusted matr ix .  There  is of course some arbitrariness in the choice of 
,e,~,~,..., bu t  as we shall see in our numerical  i l lustrat ion of nex t  section, this 
quant i ty ,  when proper ly  chosen, introcuces only very  smaU probabilities. 

F r om the preceding discussion we only retain (41) and (39), because it  is 
not  difficult to see tha t  (40) is valid in a more general s i tuat ion than  the 
poissonnian from which we started.  

4" N U M E R I C A L  I L L U S T R A T I O N  

4.1. Basic Statistics 

The statist ics used are those of Table  1. 

TABLE I : BASIC STATISTICS 

\ J  
i~ o I 2 3 4 5 

o 784 to3 13 2 2 o 
1 119 33 5 1 o o 

2 18 5 3 2 o o 
3 i l o o 1 o 
4 o o o o o o 
5 : o o o o o 

The number  at  the intersection of row i and column j in this table is the 
number  of automobiles  with i claims one year  and j claims the following year  

among lO94 automobiles.  
These statist ics were established by  P. Thyrion and used in THYI~ION (1972) 

and af terwards  in DE VYLDER (1975). 
On dividing by  lO94 and symmetrizing,  we obtain the ma t r ix  [q*JJ of Table  2. 
Most of our following numerical  results were computed  with a precision of 

15 ~t 16 significant digits. Often, however,  we reproduce the in termedia te  
results with 3 significant digits only. 
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TABLE '2." NON ADJUSTED SYMMETRIZED MATRIX [qf]] 

143 

• 717 .2o3 .o585 .0119 .oo64 o 

i = l  
i = 2  
i = 3  
i = 4  
i = 5  

• 7 1 7  .lOl .o142 .oo137 .ooo914 .ooo457 
.lOl .o3o2 .oo457 .ooo914 o o 
.o142 .oo457 .oo274 .00o914 o o 
.oo137 .ooo914 .ooo914 o .ooo457 o 
.ooo914 o o .o0o457 o o 
.ooo457 o o o o o 

.00274 
o 

• ooo9 i 4 
o 
o 
o 

.835 .137 -o224 .00366 .00137 .ooo457 

j = o  j = l  j = 2  ] = 3  J = 4  J = 5  

TABLE 3: ADJUSTED MATRIX [PtJ] 

.717 .2O 3 .O585 .O119 •OO493 

i = o  
i = l  
i = 2  
i = 3  
i = 4  
i = 5  

.717 .lOl .o146 .ool49 .000308 .0000815 

.1Ol .0293 .00446 .00123 .000408 .oooi34 

.o146 .o0446 .o0185 .00o815 .ooo335 .ooo127 

.00149 .oo123 .000815 .ooo447 .000211 .oooo909 

.ooo3o8 .ooo4o8 .ooo335 .ooo211 .000114 .0o00579 

.o0oo815 .ooo134 .ooo127 .00009o 9 .o000579 .0000410 

.oo261 

.o0139 

.o0o676 
000296 

.000116 

.0000410 

• 835 .137 .0222 .00428 .oo143 .ooo532 

j = o  j = l  . /=2 .1=3 J = 4  . /=5 

4.2. Adjustment 
0ux a im is to f ind a semidefini te  posi t ive m a t r i x  (P,J] as close as possible to the  
m a t r i x  [q~]. 

Fol lowing the  m e t h o d  expla ined in the preceding section, we take  

~p0 = q00 = .717 
2pl = q01 + ql0 = .203 

~p2 = q02 + qn + q20 = .0585 
~pa = q03 + q12 + q21 + q30 = .Oll 9 

We tr ied of course to keep  also for ep4 the observed  corresponding f requency  
.oo64o, bu t  this was unsuccessfull.  F r o m  the above  values,  we have  the  value 
of ro, rl, r2, ra by (39). We set 

( g ~ = ~ l  r~-I ( k = 4 ,  5 . . . . .  1o) 
~'k = \ P ] I  + r k - 2  
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because we observed tha t  a q u a n t i t y  ~.~,~,~,... in (41) rap id ly  converging to zero 
gives a 2p4 closer to .oo64o than  one converging more  slowly to zero. F rom the 
values of the r~ (k = 4, 5 . . . . .  1 o) we deduce those of the pe by  (39) and choose 

and  ~ to sat isfy 

lO 

(42) Z 2pk = I 
L 0 

From the values of the 2pk we then deduce those of the Ptj by  (35). 
For  fixed } it is not difficult to de te rmine  ~, wi th  the required precision, 

from (42). So we still dispose of }. For  a previous ly  indicated reason, we t ry  to 
take  t3 as large as possible. Now, by  calculat ing the character is t ic  values, we 
observed  tha t  for 13 = 2, we ob ta ined  a semidefinite posi t ive ma t r ix  [Plj], while 
for 13 = 4, there appeared  one negat ive  character is t ic  value. \,Ve then t r ied the 

values  13 = 2.1, 13 = 2.2 . . . . .  13 = 3.8, 13 = 3.9 and  found tha t  for 13 = 3 all charac-  
teristic were still posit ive,  while for ~3 = 3.1 there appeared  a negat ive  one. In  
fact,  for 13 = 3 there was a character is t ic  value so small  t ha t  we preferred to 
t ake  13 = 2. 9, a l though this was not essential. The corresponding value of oc is 

o~= 1.723 569 981 73o55o.  The character is t ic  values  of the adjus ted  [P*Jl 
m a t r i x  are .732 .or 5 l .oo J 54 .oooo835 .ooooo96 .ooooooo81. For  the ad jus ted  
mat r ix ,  the mean  value of the n u m b e r  of claims in one year  is .2o26o7, while 

for the original m a t r i x  it is .2oo64o. I n s t ea d  of (42), we could have  used the 
relat ion mak ing  these mean  values equal, bu t  then, unless we in t roduced a 
new pa ramete r ,  we would have  had to change propor t iona l ly  the now kept  
f ixed quant i t ies  2po, ap~, ape, 2p3. Since the difference between the two means 
is small  in our actual  ad jus tmen t ,  we keep it as it is. 

A glance at  Tables  2 and 3 is enough to be convinced of the qua l i ty  of our 
ad jus tmen t ,  especially when one looks a t  the par t ia l  sums indicated in the 
margins .  

A character is t ic  of our a d j u s t m e n t  is tha t  it used only the numbers  _oplc and 
not  the decomposi t ion of such a n u m b e r  on the corresponding ascending 
diagonal.  In  other  words, ins tead of Table  1, we used only the frequencies of k 
claims in two years.  I t  seems tha t  our me thod  can be adap t ed  for the case were 
the  f requency  of h claims in one year  is the only s tat is t ical  mater ia l .  

4.3. A Theorically Possible Portfolio Compatible w~th the [P~Jl Matr ix  

ot  ' I f  we decompose  the quadra t ic  form Qv by  Lagran~e s me thod  (successive 

comple t ion  of squares),  t ak ing  the var iables  in the order  Xo, xl . . . . .  x~, we 
find af ter  some normal isa t ions :  

b 

Qv = z p ~ j x t x j  = 
' l , t , .  0 



OPTIMAL SEMILINEAR CREDIBILITY 145 

.972 (.859x0 + .122x~ + .o175x2 + .oo178xu + .ooo369x4 + .oooo983x~)2 
+ .0237 (.793xt + .127 x2 + .0545 x3 + o194 x4 + .00652 xs) 2 
+ .oo4ol (.54 ° x2 + .287 xa + .125 x4 + .0488 xs) 2 
+ .000285 (.392 x3 + .373 x, + .235 a.~)2 
+ .oo0025 (.32 x4 + .68 x~)~ 
+ 0000032 ( xs) 2 

As explained in section 2, this decomposit ion defines a portfolio for which the 
[Ptj] mat r ix  is our adjus ted  [p,j]. 

This portfolio does not serve in the sequel, but  we calculated it to make sure 
tha t  our adjus ted [P*JI mat r ix  is not a theorical ly impossible one. 

4-4- The Optimal Premi,~m and the Linear Premium 

To make comparisons sensefull, these premiums are of course calculated both 
for the adjusted [p,j] matr ix.  

4.4. I. The  opt imal  13remium 

From (18), we obtain,  in table 4, the values of the f ;  for the indicated values 
o f t + l .  

TABLI2. 4: COMPONENTS OF THE OPTIMAL PREMIUM 
E*(Xt+ ,  I X ,  . . . . .  X t )  = f.~, + f.t.~ + . . .  + f.~', 

t + 1  f ;  f :  .17 f~* / :  f ;  

2 .163922 .322485 .566282 1.285385 t.712988 2.060772 
3 .o70165 .201312 .385665 .938154 1.252583 1.4958o4 
4 .041312 .154117 .301413 -748922 .993612 1-1741o4 
5 -o279~1 .127399 .249519 .624949 822816 962363 
6 .020394 .109677 .213655 .536605 .701129 .812356 
7 015681 .096841 .187171 -470247 .609979 .700767 
8 .o125oo .087009 166728 .418507 539185 .614733 
9 .OLO237 .079179 .15o432 -377009 482654 .546539 

1o .008562 .072763 .137116 .342977 -436504 .491274 
20 oo2613 .041181 .073446 .179860 .219454 .23856o 
3 ° oo129o .029042 .050507 .121616 144603 .155734 
5 ° .oo0526 .018364 .o31328 .073604 .084674 .091804 
99 .000159 .o09688 .016461 .037222 .o4o897 .046423 

loo .0o0156 .009596 .0163o5 .036848 .040458 .045969 

T A B L E  5 :  I~ROI3ABILITY P t  OF i CLAIMS IN ONE Yh~AR 

p0 pl p2 p~ p~ p2 

.834599 .L36944 .022208 004283 ,oot434 ,000532 

IO 
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From this table it follows, for example, that  the optimal semilinear forecast 
of the number of claims in the 4th year, for a driver with 2, 2, o claims in the 
preceding years is 

E ' ( X a t X ~ =  2, X 2= 2, X a=  o) = f ; + f ~  + f ;  = 

.3o1413+.3o1413+.o41312 = .644138 

To make a verification possible of relation (16) which amounts to 

t E(I•,) = E(X1) 
o r  

where 

t Z p , f ;  = E ( X ~ )  

.E(X~) = .202607 

we give, in table 5, the values of p,, the probability of i claims in one year, 
with a precision greater than in Table 3. 

4.4.2. The linear premium 

The credibility factor Z in (21), given in (22), is expressed in Table 6 for 
various values of t + 1. Intermediate values computed from the not printed 
15 digits precise [p,j] matrix are also indicated. 

TABLE 6: CREDZBIL~TY FFAC'rOR Z 
IN LINEAR FORECAST 

E(Xt+~ 
(l--Z) E(X,) 

1 X~ . . . . .  Xt) = 
+ Z/t  ( X , +  . . .  + X t )  

2 .231545 
3 -376024 
4 .474773 
5 .546537 
6 .6OLO48 
7 .643859 
8 .678373 
9 .706788 

•o .730590 
20 .85 t3oo  
30 .897310 
50 .936566 
99 ,967244 

lOO .967564 
E(X1) = .202607 
E ( X I )  = .300577 
.E (XiX2) = .101142 
var(X~) = .259527 
coy(X1, X=) = .o6oo92 

t + l  Z 
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The l inear forecast  for the above considered driver  is 

E(Xs  I 2 1 =  2, X2= 2, X s =  o) = ( 1 - Z )  E(X~) + Z ( 2 + 2 + o ) / 3  = .739445 

4.4.3. The mean quadra t ic  errors 

Table  7 gives, for different  values o. t + 1, the mean square error  in the ap- 
proximat ion  of the risk premium ms  by  the opt imal  p remium and the l inear 
premium.  The formulae used are (7) and (23). 

As expected,  the opt imal  p remium is always closer to too, and thus  to Xt+l, 
than the linear premium.  

T A B L E  7 :  M E A N  S Q U A R E  E R R O R  F O R  T H E  

O P T I M A L  A N D  T H E  L I N E A R  P R E M I U M  

t + 1 O p t i m a l  L i n e a r  

2 .o438 .o462 
3 .o347 .o375 
4 .o288 .o316 
5 .o247 .0272 
6 .o217 .o24o 
7 .o193 .o214 
8 .o175 .oi93 
9 .o164 .o176 

lo .o147 .o162 
20 .oo822 .oo894 
3 ° .00574 .oo617 
5 ° .00359 .00381 
99 .00188 .00197 

loo .00186 .oo:95 

4-4.4- Comparat ive  Tables 

The values of the opt imal  p remium and  the linear one are given in Tables  8 
and 9 for t + 1 = 2 and t + 1 = 3 respectively.  As is seen, these values m a y  differ 
ve ry  much,  even for relat ively small values of X1, X2. Consider, for example  
the case X1 = o, X2 = 3 in Table  9. 

TABLE 8: OPTIMAL AND LINEAR FORECAST 

FOR SECOND rEAR (t + I = 2) 

X i  Optimal  Linear  

o .163922 .155694 
1 .322485 .387239 
2 .566282 .618784 
3 1.285385 .85o329 
4 1.712988 1.o81873 
5 2.o6o772 1.313419 
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T A B L E  9 :  OPTIMAL AND L I N E A R  FORECAST FOR THE T H I R D  Y.EAR ( l +  1 = 3 )  a 

\ X ~  
X l ~  o 1 2 3 4 5 

14o33o .271477 .45583 ° 1.oo8319 1.322748 1.565969 
o .126422 .314434 502446 690458 .878470 i.o66482 

.271477 .402624 .586977 i t39466 1.453895 1 697116 
1 .314434 .5o2446 .690458 .87847o 1.o66482 1 254494 

.45583 ° .586977 77133 o 1.323819 1.638248 x.881469 
2 .502446 .690458 .87847o l o66482 1.254494 1.4425o6 

1.oo8319 1.139466 1.323819 1.8763o8 2.29o737 2.433958 
3 690458 .878470 1.o66482 I 254494 1.4425o6 1.63o518 

i 322748 1 453895 1.638248 2 190737 2.5o5166 2.748387 
4 .878470 1.o66482 1.25449, t i 442506 i 630518 1.818530 

1.565960 1.697116 1.881469 2.433958 2.748387 2 991608 
5 1.o66482 1.254494 1.4425o6 1.63o518 1.818530 2.006542 

a The :first nunlber indicated is the optimal prenmun, the nuinber beneath it, the 
linear one 

In  Table  9, the l inear p r e m i u m  does of course riot ve ry  01"1 an ascending 
diagonal.  This  is not  the case for the op t imal  premium.  For  example ,  3 and  
o claims respect ive ly  in the first and  the second year  is much  worse than  2 
and 1 claim. 
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P R O B A B I L I T Y  OF RUIN U N D E R  I N F L A T I O N A R Y  CONDITIONS 
OR U N D E R  E X P E R I E N C E  R A T I N G  

G. C. TAVLOR * 

The effect  of inflation of p remium lllCOUae &nd claims size d is t r ibut ion ,  but  nol  

of free reserves,  on the  probabi l i ty  of ruin of an insurer  is s tudied.  
An in teres t ing  s imilar i ty  be tween  this  problem and the  ruin problem in an ex- 

per ience-ra ted  scheme ts exhibi ted  This s imilar i ty  allows the  deduct ion  of parallel  
results  for the  two problems in later  sect ions 

I t  ~s shown t h a t  the  p robab i l i ty  of ruin is a lways increased when the  (constant)  
inflat ion rate  ~s increased. 

The d is t r ibu t ion  of aggregate  c lmms under  inf la t ionary  condi t ions  is descr ibed 
and used to calculate an upper  bound on the  ruin probabi l i ty .  Some numermal  ex- 
amples  show t h a t  this  bound is not  a lways sharp  enough to be pract ica l ly  useful. I t  
is also ~hown, however,  t h a t  this  bound can be used to cons t ruc t  an approx ima t ion  
of the  effect  of inf lat ion on rnin 1)robab~hty. 

I t  is sh.own t h a t  if inflation occurs a t  a cons t an t  rate,  then  ruz~t is  cer tatn ,  ~r- 

respect ive  of the  smallness of t h a t  rate  and of the  largeness of initial f lee reserves 
and the  safe ty  margin in the  p r emmm.  The cor responding  result  for experience-  
ra ted  schemes is t h a t  a pract ical  and " in tu i t ive ly  reasonable"  exper ience-ra t ing  
scheme leads eventua l ly  to cer tain ruin. 

Finally,  a s imple modif icat ion of the  techniques  of the  paper  is made  in order  to 
br ing  i n v e s t m e n t  income into account .  

1. INTNODUCTION 

The probabi l i ty  of ruin of a risk business has been studied under  various 
conditions in the past, e.g. LUNDBERG (1909), CRA~a~.R (t930, 1955), and 
others. Most of these studies have assumed tha t  the risk process is ei ther a 
s ta t ionary  one or can be made s ta t ionary  by means of a simple t ransformat ion.  

Such models of the risk process do not include the case in which the phe- 
nomenon of inflation is causing the volume of p remium income and of claims 
but  not free reserves to va ry  in time. In current  times, when rates of inflation 
in many  countries have been, are and appear  likely to remain for some time 
at high levels, it seems advisable to examine the impact  of this feature on the 
solvency of the risk business in so far as this la t ter  is described by  the prob- 
abil i ty of ruin. 

In carrying out  this examinat ion,  it is noted tha t  the operat ion of certain 
types of experience rat ing schemes is closely parallel to tha t  of inflation on a 
"conven t iona l"  risk business, so that  the methods  foreshadowed in the pre- 
ceding paragraph are also applicable to experience rated processes. 

* Thc au tho r  grateful ly  acknowledges  the  use of facilities of the  Swiss Re insurance  
Company,  Zurmh, Switzer land in the  p repa ra t ion  of th is  paper .  
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2. DESCRIPTION OF THE RiSK PROCESS 

We consider a risk process in wllich premiums received in the t ime-interval  
[o, t] total  C(I) (the process begins at t = o). Let  X(I) denote the aggregation of 
claims occ2~rring in the lime-interval [o, l:. 

Suppose tha t  {X(t), t > o} is a one-dimensional Markov process. Let  Z(t) 
denote  the free reserves at time t and write x for Z(o). Then 

O) e ( t )  = x + C( t )  - X ( t )  

is also a one-dimensional  Markov process. 

Since X(t) is the aggregation of claims up to t ime t, it is possible to write 
N(,) 

x(1) = r ,  

where S~ is the random variable denoting the size of #~e i4h daim and N(t) is 
the random variable denot ing the number of claims occurring in the time-interval 
[o, II. 

Sometimes in the following sections, no fur ther  assumptions about  the risk 
process will be made. At o ther  t imes it will be necessary to place some restric- 
tions on the random variables N(t) and S,. 

g.  ADDITION OF INFLATION TO THE RISK PROCESS 

We now wish to superimpose an inflation process on the risk model described 
in Section 2. We suppose this process to be a determinist ic  one in tha t  we as- 
sume the existence of a non-stochast ic  inflation factor  f(t) ( >  o) at  t ime t. 

P remium volume at t ime t and also claims paid at t ime t are inflated by  the 
factor  f(t)  (assume f (o)  = 1). Let  C*, X* and Z* represent  the functions C, 
X and Z respect ively after  modification by  the factor  f.  Then 

(2) C*(t) = f f(s) dC(s); 
0 

X*(t) = f f(s) dX(s) 
o 

z~(,) 
(3) = Z f(l~) S,, 

t 1 " !  

where It is the epoch of the i- th claim; 

(41 Z*(t) = x + C*(t) - X*(b). 

Note  tha t  in (4) inflation is assumed to have no effect on free reserves. This 
is not  unrealistic in the light of the experience of the last few years. In any  
case, this restriction is relaxed in Section 12. 
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4. THE RELATION BETWEEN INFLATION AND EXPERIENCE RATING 

Consider a risk business subject to the same risk process as (1) except that 
each element of premium paid is modified by a refund or surcharge according 
to the difference between past premiums and past claims. Suppose that the 
precise form of this experience rating is such that the element of premium 
payable at time t is: 

(5) d C(t) = {c - k [C(t) - X(t ) ;}  dr. 

c being the base rate of premium payable, i.e. the prcmiuln rate when the 
experience follows its expected pattern exactly; and h being the experience 
rating factor at time t (normally, o < k < 1). 

It is easy to deduce from (5) that 

e N(O 
(6) C(t) ---- ~ [1 -- e -/~t] + X S t  [ I  - e-k(t-tO], 

whence 

i ~(,) Z(t)  = x + e - k t  c e ~s ds - e - k t  ~ S t  e ~t', 
0 ~ . , 1  

o r  

(7) ~(t)  = e~'~ Z(t) = xe+'~ + ce~'+" ~ts - X & d < .  
0 i , . 1  

FronI (2), (3) and  (4) it  can be seen that  Z(t) represents  a "convent ional"  

risk process subject to inflation at a contimtous rate of k per unit time except that 
the init,al free reserve also inflates at this rate instead of remaining constant as 
assumed in Section 3. 

In each of the following sections, this relation between a risk process in 
inflationary conditions and an experience-rated risk process permits the deduc- 
tion of parallel results, although the emphasis is on the former in the section 
headings. 

5" PROBABILITY OF RUIN IS NONDECREASING WITH INCREASING INFLATION 

This result is proved by showing that any realization of {Z*(t), t > o} leading 
to ruin also leads to ruin if the rate of inflation is increased. 

Consider two Z*-processes called Z~ and Z~ with associated inflation factors 
of f t  and f~ respectively. Suppose a particular realization of Z~ leads to ruin. 
Then for some t, we have 

(8) 2 ~ ( t )  < o , Z ~ ( s ) ~ o r o r o < s  < t. 

No,,,, from (2), (3) and (4), 

Z ~ ( t )  - Z i (t) = i [f2(s) - fl(s)]dZ(s). 
o 
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Integra t ion  by parts  yields: 
~ - o  

(9) z ; ( o -  I zD) 
0 

where g(s) = f2 ( s ) / f l ( s ) - l ,  and it has been assumed that  this function is 
measurable.  If g(s) is a monotone  nondecreasing function (recall tha t  g(o) = o), 
then g(s) > o for s > o and dg(s) > o for s > o, and by  (8) and (9) 

0 o )  G(*) - zi(t) o .  

We may  summarize  the above in tim following: 

Result 
If two Z*-processes, Z~. and Z~, are subject  to measurable inflation factors of 

f~(t) and f2(l ) such that  the difference f2(l)/f~(l ) is nondecreasing with increasing 
l, then the probabi l i ty  of ruin On finite or infinite time) is not less for the 

2X-process than for the Z~-process. 

Red,arks 

I. I t  is of course assumed that  the initial reserves are the same in the Z~- and 
2~-processes. 

2. The result is entirely independent  of the propert ies  of the process Z. I t  
includes, for example,  cases where the claim number  process is not Poisson, 
where sizes of different  claims are not independent ,  etc. 

3. The requirement  tha t  f2(t)/fl(l) be monotone  nondecreasing is easily seen to 
be equivalent  to the requirelnent  tha t  the Z~-inflation rate should always be 
not less than the Z~-inflation rate in those cases where f t  anclf2 are smooth 
and the term "inflat ion ra te"  therefore meaningful.  

The  si tuat ion for the exper ience-ra ted process Z is not  so simple, However ,  
in the case of zero initial reserves (i.e. x = o), we see from a comparison of 

equat ions  (4) and (7) tha t  the Z-process is exact ly  the same as a Z*-process 
with f ( t )  = exp (kl). I t  follows, therefore,  that ,  in this case, increasing k, the 
degree of experience rating,  will i~cmase the ruin probabil i ty,  

We shall see further ,  in Section 11, tha t  under  experience rating the ul t imate  
(t = coo) probabi l i ty  of ruin is always 1. 

Tha t  these results are not intui t ive to some ex ten t  is clear from a paper  by  
SZAL (Z969), in which he refers to the criticism tha t  his s imulated ruin prob- 
abilities (according to "conven t iona l"  risk processes) were too high. The sug- 
gestion is tha t  in practice an insurer can use some kind of expermnce rat ing 
and, by basing premiums on past results, will be able to reduce the ruin 
probabil i ty .  

The reasoning leading to this conclusion is probably  somewhat  along the 
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following lines. There are two im portan t classes of free reserve t ra jectory : tha t  
consisting of trajectories characterized by persistently light claims experience, 
and that  characterized by persistently heavy claims experience. [n tile first 
case ruin does not occur whether experience-rated or not" in the second, 
premium rates are forced tip by the poor experience, thus reducing the pro- 
portion of ruins. 

The fallacy in such all a rgumer l t  is tha t  it ignores the possibility of a light 
claims experience followed 1) 5, a slightly heavier than usual experience. In this 
case the initial light exl)erience forces premiums down so that  the fund built up 
in this period is not part icularly large, despite the absence of claims. 

6. THE DISTR[BUTION OF AGGREGATE CLAIMS UNDER I N F L A T I O N A R Y  

CONDITIONS 

In this section we investigate the distribution of X*(I) under the more specific 
assumption that  it is a compound Poisson variate, the claim number  process 
having a Poisson parameter  7, and the individual claim size distribution 
having d.f. B{.)  at time zero. The method of obtaining the momelat generating 
function (m.g.f.) of X*(t) is essentially that  of ANDREWS and BRUNNSTROM 
(1976) , though requiring some generalization since they take ./3(.) to be the 
d.f. of a single-point distribution. 

Consider the time-interval (j l /m, ( j  + 1) l/m) where m is a very large positive 
integer and j is an integer between O and ( m -  I). Because the length of this 
interval, l/m, is small, the Poisson claim number  process within it approxilnates 
a binomial process with parameters I and )4/m. Therefore, the m.g.f, of ag- 
gregate claim anaount in this small interval i s :  

( i~)  M; ( . . )  = ~ - ~ + .,- B('~d(Jq,,*)) + o (,,~-~) 

xt 
= ~ + -  I~ ( , . f ( j t / , ,~ )  - ~] + o (.,,~-~). 

where i3(u,) is the m.g.f, associated with ./3(.) If the additional assumption of 
independence of sizes of different claims is made, then the cumulant  generating 
function of X*(t)  becomes" 

(~2) K * ( , . ,  t) = Z l o g  t + - -  r~( , . f ( j t / .~))-  ,] + o (.,-~) 

. . . .  ~(u f ( j t /m)  ) - , 
= X Z + 0 ( n , - ~ ) .  

j. o m/t 

Let t ing m --> co, we see that  the c.g.f, becomes" 

. ,  ] (13) [( (?t, t) = 7,l 7 ~(uf (s ) )  d s -  1 . 
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From this it follows tha t  the j - th  cumulant  of X*(I) is 

0 

where ej is the j - th  order moment  (about the origin) of tile d.f. B( . )  and the 
second factor  on the right is the average value of [f(s)]~ over ss[o, t]. 

Obviously, the m.g.f, of X*(t) is: 

(15) M*(u, t )  = exp lXt [~ ! , ( u f ( s ) ) d s - 1 ] l  

In the too.it impor tan t  special case, f(s) = e ~8, (13) and 04)  can be put  in a 
sometimes more convenient  form. Equat ion  (14) becomes: 

(16) ×;(t) = X~y (e m -  1 ) / j k ,  

w h e n c e  

(17) I<*¢.,t) = (x/k) o J! ] 

u ~ s  

u 

2 c~ 1 u J ]  

7. AN U P P E R  B O U N D  ON T I l E  P R O B A B I L I T Y  OF R U I N  U N D E R  I N F L A T I O N A R Y  

C O N D I T I O N S  

An upper  bound  on the ruin probabi l i ty  can be found using the method  of 
GERBER (1973). Define Y*(t) = Z * ( I ) - Z * ( o ) .  Gerber  shows that ,  if d~*(x, t) 
is the probabi l i ty  of ruin before t ime t (in the model of Section 6), then 

(18) +*(X, t) < rain e -m  max  E[exp  { -  r Y*(s)}], 
r O ~ 8 ~ t  

where for the sake of simplici ty we are now assuming tha t  tilne has been so 
scaled that  expected  number  of claims for unit  time, i.e. X, is equal to unity.  

In our case this reduces to: 

(19) +*(x, ~) < rain e -rx max  exp [ - r C * ( s )  + K*(r, s)]. 
r o ~ s G t  

Let  us examine the square-bracketed  tel ' I l l  ill (19), By (14) , it is 
s * 

(20) s - r . - f (u)  du + X rJo~jl I . - [f(u)3.~ du ,  
S S 

j l 
0 0 

where c is premium income per unit  time. 
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Since all claims are > o, the c~j's are all > o. Thus for large r, the higher  
powers of r dominate  and expression (20) is positive and increasing. I t  also has 
a zero at r = o. Differentiat ion (with s constant)  shows tha t  it has one turning 
point.  Thus expression (20) is o at r = o, becomes negat ive as r increases, and 
for s constant  has a single real positive zero re(s). 

For  r > u (s) it is positive and increasing. In view of this, we can deduce 
from (18) tha t :  

(21) +*(x , l )  . ~ m i n e - r x m a x { 1 ,  e x p L - r C * ( l )  + K * ( r , t ) ] } ,  

since, for given r > o, the nmximum in (19) is 1 if r < n(t), and is - r C*(t) + 
I (*(r ,  t) if r > re(t). Note  tha t ,  in (2~) we consider only r > o. This is because the 
max imum in (19) is always at  least i (whether r is positive or negative),  so 
tha t  considerat ion of r < o tells us no more than  tha t  +*(x, t)~< exp ( - r x )  
which is > 1 and can be improved  upon by  choosing r = o  in (19). We can 
simplify (21) a little fur ther  by  not ing tha t  the exponential  term there is < 1 
when o < r < 7z(l), and so 

(22) +*(x, t) -~ rain e x p [ - r x  - r C*(t) + I<*(r, t)]. 
r~=(t) 

where we recall t ha t  r = re(t) is the unique real and positive solution of: 

(23) - r C*(l) + K * ( r ,  l) = o. 

The similari ty between this result  and Gerber 's  (19), both  derived from 
(18) by  very  similar reasoning, is to be noted.  The two formulas are easily seen 
to be identical  if f (t) = 1 for all t. 

R e m a r k  

GERBER (1973, p. 210) commented  for the case f ( t )  = 1 tha t  inequal i ty  
(22) is ra ther  sharp if t is not too small. [ t  would follow then in our case of more 
general f ( t )  tha t  we could take the right side of inequal i ty  (22) as reasonable 
provided ! is not too small and tile rate of inflation under lying f ( t )  is not  too 
large. 

In the case of an exper ience-ra ted scheme, the whole analysis goes through as 
before except  tha t  Y * ( t )  is replaced by:  

fl(t) = ~Z*(l) + X(e kl:- l). 

Making this replacement  and following through the previous working, we 
soon find tha t :  

(24) +(x, t) < rain exp [ -  rxe ke - rC(t) + I£(r, t)] 
r ~ ( t )  
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where C, K denote  C*, K* with constant  inflation rate k, and r = 5(t) is the 
unique real and positive solution of the equat ion 

(25) - ~ x ( ~ ' - ~ ) -  , , @ )  + ~ ( ~ .  t) = o. 

~. AN A P P R O X I M A T I O N  

i t  would be useful to have on hand a simple approximat ion  to the ratio 
,~;(x, l ) / , ~ ( x ,  l) where qb~ is the ruin prol)abili ty associated with inflation 
factor  re. Table , in Section I0 shows that  inequali ty (.22) is not ahvays as 
sharp as we would like, but  tha t  the ratio +~(x, l)/O~(x, t) is usually ap- 

p rox imated  reasonably 1) 3, the ratio of the upper  bounds given I)y (22). At 
least this tends to be so in the " in teres t ing"  cases where l)rol)al)ility of ruin is 
not  too high. 

This is demons t ra ted  in Table 2 of Section l o. 

9. I N F L A T I O N  A N D  E X P E R I E N C E  R A T I N G  C O M B I N E D  

There  is no difficulty in combining an inflation factor of f(l)  and an experience 
rat ing factor  of k. I t  is easily checked tha t  reserves at t ime t are" 

jj x(,) 
x + e - e l  c f ( s )  eXsds  - c -x t  Z, 5'¢f(h) e ~t,, 

which leads us to consider the stochastic process, 

2 . ( t )  = ~ + ~*(t)  - 2 * ( t ) ,  

where C*(t) and ,Y*(l) are the premium income and claims outgo respect ively 
up to t ime t under  the influence of an inflation factor  of exp ( k t ) f ( t ) .  

10.  N U S I E R I C A L  E X A M P L E S  

Consider the case in which the time-axis has been scaled in such a way that ,  
in the absence of any  inflation, the claun intensi ty  is 1 per unit tmle. Suppose 
tha t  money  values have also been so scaled tha t  (again in the absence of 
inflation) the distr ibution of indwidual  claim size is 7.~/6, i .e.m.g.f,  is (1 - r/3) -3. 
We shall assume constant  rates of inflation, i.e. f ( t )  = e kt, and consider the 
values k = o ,  .o5 and .l 5. Suppose that  the basic premium income is 1.2 per 
unit  time, thus allowing a safety margin of 2o ~o. Then, by (22) and (23), 

[ eL'-' ] 
(26) +*(x , t )  -- rain exp - r x - z  ~ r - -  - -  + K * ( r , t )  , 

r ~ n ( t )  " -  k 

where r = r~(t) is the real positive solution of 

C kt - -  1 

(27) - 1.2 r - - ) T -  + I < * ( r , t ) =  o. 
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In cases where the minimum in (26) is assumed for r>rc(t),  the relevant 
value of r is tha t  satisfying the equation: 

. . . . .  e ~ ' - ,  , [~(rckl)-- ,  ~ ( r ) - - , ]  = 0 
- - x - -  1.2 k + k  r 

i .e. 

(2s) 

Also 

( l - : ~ r e k t )  - a  - ( 1 - ~ r )  -a = r [ k x + l . 2 ( e  k t - l ) ] .  

re k l  

1 ~ ( 1 - ~ v ) - a - l d v  
K*(r, t )= ~. v 

i#  

r 

r #  c 

_if J~ [(~ - ~ ) - '  + (t - ~ ) - ~  + (~ - ~v)-~] dv 

r 

1 r e  It 

= ~ E - l o g 0 - > )  + ( , - ~ ) - '  + ~ ( 1 - : > ) - 2 ] l v _ ,  

We take initial reserves equal to 5 and, for each value of k, calculate for 
various t the upper bound (22) on +*(5, l) and the ratio of this bound to the 
corresponding bound on ~(5, l). The results are given in Tables 1 and 2 where 
the values of +*(x, t) obtained from a comt)uter simulation are also given. The 
sample size for each simulated probabil i ty was 24oo. 

Similar calculations are made for the case of a negative exponential  claim 
size distril)utmn. Equation (28) is replaced by: 

( l - r e g t )  - I  - (1 _/ , ) -1  = r f k x +  1.2 (e ,~t- 1)]. 

i.e. 

where 

Also, 

r = ~(1 + e  - k t )  [1 - -  ~ 1  - -  4 (1 --  I / A )  e -let ( 1 - - F 6  - k t ) - 2 ]  

,4 = 1 .2  + k x  ( e e t  - 1)-1 

1 L - - r  

z{ (r, t) k 

Tables 3 and 4 then sumnlarize these calculations. Once again the results of 
a computer  simulation (saml)le size again 2400 ) are given. 

Several facts emerge from Tables 1 to 4- 
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T A B L E  1: U P P E R  B O U N D  ( 2 2 )  ON t~*(5 , l )  IN C A S E  O F  A X~/6 CLAIM SIZE  
D I S T R I B U T I O N  a 

t k = o k = .0 5 k = .15 

1 .o21 (.0033) .023 (.0038) .o31 (.0046) 
2 .o57 (.oo96) .071 ( o 1 4 )  .1o 5 (.024) 
3 .094 (.023) . 1 2 2  (.o31) .194 (.048) 
4 .126 (.032) .169 (.055) .283 (.o91) 
5 .154 (.o54) .212 (.074) .364 (. 15 o) 

1o .235 (.098) .360 (.172) .631 b (.365) 
25 .273 (.165) .563 b (.383) .944 b (.787) 
cO .273 I b I b 

a F i g u r e s  ila p a r e n t h e s e s  a r e  s i n l u l a t e d  r u i n  p r o b a b i l i t i e s .  
b V a l u e s  b a s e d  Oll r = ~(t) .  

T A B L E  2 :  E S T I M A T E  OF R A T I O  ~ * ( 5 ,  t ) / + ( 5 ,  t )  B Y  

T H E  R A T I O  O F  T H E  C O R R E S P O N D I N G  U P P E R  B O U N D S  
(22) IN CASE OF A X~/6 CLAIM SIZE DISTRIBUTION ~ 

t k ---- .05 k = . 15 

1 1.1o (1.15) 1.48 (1.39) 
2 1.25 (1.46) 1.84 (2.50) 
3 1.30 (1.35) 2.06 (2.09) 
4 1.34 (1.75) 2-25 (2.87) 
5 1.38 (1.38) 2.36 (2.79) 

lO 1.53 (1.76) 2 .69 (3.72) 
25 2.o6 (2.33) 3.46 (4.78) 

F i g u r e s  in  p a r e n t h e s e s  a r e  t a k e n  f r o m  com-  
p u t e r  s i m u l a t i o n .  

T A B L E  3 :  U P P E R  B O U N D  (22) ON + * ( 5 ,  t)  I N  C A S E  O F  A NEGATIVE 

E X P O N E N T I A L  CLAIM SIZE  D I S T R I B U T I O N  a 

t k = o k = .05 k = .15 

1 . I O 8  (.009) . 1 1 7  ( .OI  1) . 1 3 6  ( . O 1 7 )  

2 .182 (.035) .205 (.o41) .258 (.053) 
5 .311 (.096) .379 (.121) .529 (.200) 

1o .397 (.158) .52o (.233) .883 (.436) 

F i g u r e s  in  p a r e n t h e s e s  a re  s i m u l a t e d  r u i n  p robabx l i t i e s .  

T A B L E  4 :  E S T I M A T E  O F  R A T I O  + * ( 5 ,  t ) / + ( 5 ,  l)  
B Y  THE R A T I O  O F  THE C O R R E S P O N D I N G  UPPER 

BOUNDS (22) IN CASE OF A NEGATIVE EXPONEN- 

TIAL CLAIM SIZE DISTRIBUTION & 

t k = .05 k = .15 

1 1.o8 (1.22) 1.26 (I.89) 
2 1 . 1 3  ( 1 . 1 7 )  1 . 4 2  ( 1 . 5 1 )  
5 1.22 (1.26) 1.70 (2.o8) 

10  1 . 3 1  (1.47) 2.22 (2.76) 

a F i g u r e s  i n  p a r e n t h e s e s  a re  t a k e n  "from c o m -  
p u t e r  s i m u l a t i o n .  
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First ly,  in Tables 1 and 3 we see tha t  the upper  bound (22), even in the case 

of no inflation, is not  as sharp as one might  expect  af ter  a perusal of the cal- 
culations of GEm~ER (1973, p. 210). The bound does, however,  improve with 
increasing t, whether  inflation is present  or not. 

Secondly,  for a given pair of inflation rates the ratio of upper  bounds (22), 
as exemplif ied in Tables 2 and 4, can serve as a rough approximat ion  to the 
ratio of the corresponding ruin probabilities, provided tha t  these probabili t ies 
are not too large. Even  though the s imulated results of Tables 1 to 4 are based 
upon 24oo trials, the s imulated low probabili t ies are still subject  to random 
disturbance.  However ,  for k = .o5 in Table  2, the average relative error in the 
approximat ion  to +*(5, t)/+(5, t) is 11%. The corresponding figure for k =  .15 
is 15°/o . If for k =  .t 5, this error is calculated only on the basis of those t for 
which s imulated probabi l i ty  is less than  .2 (this corresponds to considering 
the values t = 1, 2, 3, 4, 5 for k = .o5), then the average relat ive error is again 
only  IO%. 

In Table  4, the average relative error in the ratio for t = 1, 2 is 8 % for k = .o5. 
I t  is larger for k = . I  5 bu t  mainly  as a result  of random error  at t = 1 in the 
simulation. 

Thirdly,  as +*(5, t) increases with increasing t, the approximat ion  to +*(5, t)/ 
+(5, t) dealt  with in Tables 2 and 4 becomes poorer. 

In summary,  it is fair  to say tha t  this approximat ion  seems reasonable for 
+*(5, t) < about  .2, but  thereaf ter  is ra ther  dubious. However ,  the range 
+*(5, t) < .2 is cer ta inly  the most  interest ing from a pract ical  viewpoint.  

1 1. E X P O N E N T I A L  INFLATION MAKES ULTIMATE RUIN CERTAIN 

The values of 1 given by  (22) in the case t = co are ra ther  conspicuous in 
Table 1, and raise the quest ion of whether  u l t imate  ruin ahvays occurs with 
probabi l i ty  1 when inflation is present.  

We consider here the case where there  exists a constant  K > o such tha t  

(29) i f (s )  ds ~< K f( t)  for all t. 
0 

For  example,  if there is a cons tant  ra te  of inflation, i.e. the inflation factor  
is exponential ,  then (29) is satisfied. We also assume tha t  the uninf la ted pre- 
mium income is always received at  a ra te  of c per unit  time, and tha t  individual  
claims in excess of cK occur with nonzero probabil i ty.  

Under  these conditions the ra ther  discomfort ing answer to our question is 
tha t  no ma t t e r  how large the initial reserves, no ma t t e r  how large the safe ty  
margin in premiums,  no m a t t e r  how small the rate  of inflation (subject to 
(29)), the ul t imate  probabi l i ty  of ruin is always 1. 

This is easily proved.  Suppose tha t  our assertion is un t rue ;  then +*(x, t) 
approaches  a limit ( <  1) as t--~ co. 
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Then 

Now let G(x, t, 30 denote  the probabi l i ty  tha t  an insurer with initial reserve 
x will survive to time t and have reserves between o and a~ at tha t  time. 

If  Bt( . )  denotes the d.f. of individual claim size at t ime t, then:  

(3 l) X S [ t - B t ( y ) ] d u G ( x , l , y ) /  J" d v g ( x , t , y ) - + o a s t - - + c o  
o o 

But  reserves at t ime t are at most" 

(32) x + c i f ( s )  ds < x + cK f ( t )  
o 

By (31 ) and (32) • 

X F [1 - B d x  + c K f ( t ) ) ]  duG(x, t, y) / j7 duG(x, I, 3') 
0 0 

_< x f [1 -&(y)~ g,,a(x t. ),) / .~ d,C(~, ~, v) 
o o 

- - > O  a s  ¢ - - >  cO 

i . e .  

(33) 

But,  of course 

so tha t  (33) becomes" 

I - B t ( x + c K f ( t ) ) - + o  as t--+ 

B,(~) = e (~  / f (O) ,  

i.e. 
1 - B ( c K + x / f ( O ) - + o  as 

- B ( c K )  = o. 

l ---+ CO0. 

Since this contradicts  our assumption that  larger clailns than cK (unin- 
flated) can, occur, our hypothesis  of +*(x, t) < 1 is false. 

By  an identical line of reasoning, we find that  if individual claims in excess 
of x + cK can occur in an experience rated scheme, then the probabi l i ty  of 
u l t imate  ruin is I. This result was conjectured (though wi thout  any condit ion 
oll the distr ibution of individual claim sizes) by Sidney Benjamin.  

As was remarked in Section 5, this result  is not entirely mtmt ive .  However ,  
it does become reasonable when one notes tha t  (by formula (7)), the contri-  
but ion to reserves at  t ime ! of all safety margins paid up to then is 

( 1 + ",~) - ~ "~c e - kt  / e ~  ds 
o 

= ( . ~ c l k ) ( ~ - ~ - ~ ) 1  ( ~ + - ~ )  
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where -~ is the proport ion of risk premium taken as a safety margin. \Ve see 
tha t  accumula ted  safety margins converge to a finite limit with increasing 
t, i.e. the average safety margin per unit t ime tends to zero. In these cir- 

cumstances,  it is not  surprising tha t  ,$(x, co) = 1. 

This suggests tha t  the experience rat ing formula  (5) should be replaced by  
one which does not refund most  safety margin. Perhaps,  we could take 

[ c(t) 
(34) dC(t) = l c - h  t- i :~n X(t)] I dr. 

i,e. only the risk premium C(/.) / (z + -q) is allowed for in the experience rating. 
Thus (34) can be rewritten as 

= + - -  - k  - X ( t )  dr, (35) dC(t) l + "r/ 1 + "0 l + "~ . 

and we can see tha t  a constant  rate of safety margin c-0/(l +-~) is main ta ined  
in addit ion to the experience rated risk premiuln.  

However ,  there m a y  be some sales difficulties with rat ing formula (34), 
since the proport ion of tim premnium absorbed by  the safety margin increases 
as the claims experience improves.  One can well imagine the insured objecting 
to an increase in the relat ive safety margin being occasioned by  a favourable 
experience. 

12.  A L L O W A N C E  FOR E A R N I N G S  ON ASSETS 

Of course, all of the preceding analysis has been made on the assumption tha t  
the free reserves of the insurer earn no interest.  We now relax this assumption 
and suppose that  interest  is earned at a rate such tha t  a unit invested at t ime 
zero accumulates  to amount  A(t) at t ime t. Then the free reserves at t ime t 
under  the operat ion of both interest  and inflation are: 

t l 

xA(t) + f (f(s) A(t) / A(s)) dC(s) - f (f(s) .4(t) / A(s)) dX(s) 
o 0 

Discounting these free reserves back to t ime zero, we obtain 

+ I (f% / A(s))dC(s) I' x - dx( ) 
o o 

so tha t  a process subject  to an inflation fac to r f ( t )  and an interest  accumulat ion  
factor  A(t) is equivalent  to a process with just  an inflation factor of f(t)/A(t).  
What  matters ,  therefore, is whether  rate of inflation is greater  or less than the 
rate of interest.  For  example,  if the difference between the force of inflation 
and the force of interest  is constant  and positive (be it ever so small), then the 
result of Section 11, viz. unit  probabi l i ty  of ruin, still holds. 

I r  
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B A Y E S I A N S  L E A R N  W H I L E  W A I T I N G  * 

WILLIAM S. JEWELL 

In many estimation problems, incomplete as well as complete samples are 
available for Bayesian prediction. After developing the theory for a special, but 
useful family of distributions, examples are given in life testing, renewal risk 
processes, hfe contingencies, and the problem of estimating a defective distribution. 

1. INTRODUCTION 

In Bayesian predict ion problems, one is interested in using observed values 

of a given process to upda te  the prior  knowledge about  the process para-  
meters,  and thence to make  be t t e r  predict ions about  the process itself. Most 
of the theory  concerns itself ei ther  with exact  calculations using so-called 
na tura l -conjugate  families of prior and likelihood distr ibut ions ~, or with best  
l inear least-squares approximat ions ,  referred to in the actuar ia l  l i tera ture  as 
credibil i ty theory  ~. However ,  bo th  approaches consider only the use of 
complete  da ta  samples. 

The purpose of this paper  is to show tha t  there are m a n y  si tuat ions in 
which incomplete observat ions also provide upda t ing  information,  tha t  is, 
Bayesians can learn while wait ing for the finish of the sampling exper iment .  
After  developing the necessary theory  and int roducing the gamma-pro-  
por t ional -hazard  family of distr ibutions most  appropr ia te  for incomplete  da ta  
formulat ions,  examples are given from life testing, renewal risk processes, 
and life cont ingency reserving. I t  is shown in what  sense an individual  life 
(or cohort  of similar lives) can learn about  his (their) own remaining lifetime 
distr ibutions with the passage of time. The paper  concludes with the problem 
of es t imat ing the parameters  and the defect  in a defect ive distr ibution.  

2 .  MODEL 

As is usual in Bayesian models, we assume tha t  ~, the r andom lifetime of 
interest ,  has a likelihood distribution function, P (x]0), which depends upon an 
unknown random paramete r  ~ which has a prior distribution function, P(O). 
We use p c =  1 - P  to denote  the complemen ta ry  dis tr ibut ion (or survival) 
function,  and we assume tha t  (continuous or discrete) densities exist, denoted  
by  p (xlO), p (0) etc. 

* An earlier version of this paper was presented at the 13th ASTIN Colloquium, 
Washington, D.C., lX{ay 1977. 

1 see AITCHINSON and DUNS~tORE (1975), 
o see JEWELL (1978). 
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The basic problem is to use observational data, sampled from the likelihood 
distribution with fixed, but unknown parameter, in Bayes' law to find the 
posterior-to-data distribution of the parameter, and thence to predict various 
moments and economic functions of the underlying lifetilne process. 

To illustrate the natural way in which incomplete samples arise, we consider 
a life-testing schelne in reliability, as in JEWELL (1977), in which: 

1. N items, all with lifetimes drawn as samples from P ( x '  LO) with common 
and fixed 0, are put "on test" at epochs {h}, and removed from test at 
epochs {t l+r t} ,  (i, t, 2 , . . . , N ) ;  

2. C of these items (with indices in the set S) will have failed before removal 
with observed lifetimes {)l = xi < Tl} (i e S); 

3. ]'he remaining lifetimes aye not completely observed, since the items are 
still operating at removal, so it is known only that  {~l > Ti} (i ~ S). 

Depending upon the experimental protocol, the {Ti} may be fixed in 
advance, giving then a random C; or, C may be fixed in advance for a simul- 
taneous test, giving a common, random time-on-test, T. Considering for a 
moment that  the { Tl} are fixed, and denoting the observed data by D = { Yt, 
Y2, . . . ,  y~v; S}, where 

l) ~ l= txt (ieS) (2. J 

Z~ (i ¢ S) 

we can easily argue that  the likehood density of this data set, given 0, is: 

(2.2) p (n}0) = H p (x, I 0) [I p c ( r j i 0 ) "  

Bayes' law then gives the predictive density for continued testing of items 
j ~ S, or for future experiments on other items with the same parameter value : 

(2.3) p ( x I D )  = p ( x l 0 )  I P ( D 1 0 ' ) p ( 0 ' ) d 0 '  dO. 

The ratio in square brackets is the posterior-to-data parameter density, 
p (OLD). 

(2.2) is also useful for many other life testing protocols. Suppose that  all 
items are put on test at the same epoch; the common testing interval _7" need 
not be fixed in advance, but may be a continuously-evaluated stopping rule, 
a possibly random decision to stop experimenting that  depends upon the 
values {x 1, x~ . . . . .  xc;  S} observed up to and including .7", but not directly 
upon 0. In this case, the likelihood includes additional terms relating to the 
stopping rule that  cancel out of the ratio in (2.3); the stopping rule is non- 
informative, and the likelihood kernel (2.2) is sufficient for O. For instance, 
one could stop after the fifth failure, or at T equal to twice the first-observed 
complete lifetime. 
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3. THE PROPORTIONAL-HAZARD FAMILY 

The calculation of (2.3) can, of course, be carried out by computer for any 
given prior and likelihood distributions. However, for model-building, it is 
desirable to use a family of distributions in which the calculations are es- 
pecially tractable so that parametric behavior can be analyzed theoretically. 
Unfortunately, the Koopnaarl-Pitman-Darmois exponential family of distri- 
butions so useful in credibility theory has no simple form for pc ;  see JEWELL 

0974). 
However, a special case of the exponential family, the proportional-hazard 

family, has useful properties: 

(3.~) P~ (x l0 )  = e-o~(~); p (x I o) = Oq (x) e-oQ(~), (x >_ o) 

where Q (x) is a monotone non-decreasing function (Q (o) = o), and q (x)= 
dQ (x)/dx. We note: 

I. 0Q (x) is the cumulative hazard (failure) fin~ction, making q (x) a u,J,it- or 
prototype failure rate ; 

2. If ~ is a random variable with absolute failure rate, q (w), and 0 is an 
integer, the original lifetime, ), has a physical interpretation as 

3- This family includes the exponential, Weibull, and Gumbel (extreme- 
value) distributions. 

The data likelihood (2.2) becomes" 

(3.2) p (D I 0) = n q (~,) [0c ~-OT~(D)] ,  
tE.S 

where TQT is a statistic, 

(3.3) TQT (D) = Z Q (x d = X Q (x d + z Q (7)), 
t t tES Jqks 

referred to in JEWELL (1977) as the total-Q-o,~t-test-statistic, a generalizatmn 
of the "total-time-on-test" concept of reliability life-testing. Note that if 
item k was already age Sk (and still working) when placed on test, then Q (Sk) 
should be subtracted from the TQT. 

A convenient natural conjugate prior for 0 is the gamnla d.ensity, 

Qo (QoO) c°-1 ~-0Q. 
(3.4) p (0) = p (0 I Co, 90) = P (Co) , (0 ~ o) 

with hyperparameters Co, Qo; the usefulness of (3-4) in modelling uni-modal 
densities is well known. It is easy to see that Bayes'  law then gives a posterior- 
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to-data density of the parameter, p (0 ] D), that is also gamma, with updated 
parameters : 

(3.5) Co+-Co+C; Qo~-Qo+ TQT (D). 

Furthermore, the updated means of "0 and 0-1 obey the exact credibility 
formulae : 

(3.6) [E {~ I D}]-a = (, _ Z~) [E {0}] -~ + Z~ TQT 

(3.7) E{0-11 D} = (1-Z2)  E {~-1} + Zo [ TQT(D)], 

with credibility factors: 

(3.8) Z~ = C / / C  0+C);  Z~ = C / ( C  o - ~ + c ) .  

The posterior-to-data variances are also easily obtained: 

(3.9) V { 0 ] D }  = C ~  [E{~ID}]  2, 

[ , ]  
(3.,o) v{°-IED  = C0-2+C [E{0-11 }]' 

the first terms decrease with increasing C, and so, ultimately, with probability 
one, do the variances. This makes precise the difference between incomplete 
and complete samples; two different data sets could lead the to same mean 
forecast, but we would have more "confidence" in the result with the larger 
number of complete samples. 

The terms in square brackets in (3.6) (3.7) are the classical maximum-like- 
lihood estimators got from the term in square brackets in (3.2). If the experi- 
ment gives a large number of complete observations, relative to Co, then the 
Bayesian and nlaximum-likelihood estimators coincide. However, for relatively 
incomplete tests, more weight is given the prior means, E {~} = Co~ Qo, 
or .~ {0-1} = Q0 / (Co- 1). 

Classical estimators are often obtained from Bayesian formulae when the 
prior knowledge becomes "diffuse"; in our model this corresponds to keeping 
E {~} or E {~-1} fixed, and letting the corresponding variances (the prior 
uncertainty) increase without Limit. From (3.9) (3.to) we see this corresponds 
to letting Co--+ o or Co--> 2, respectively (with corresponding adjustments 
in Qo). Thus, with very uncerlain prior knowledge, we get : 

(3.11) E { 6 [ D }  = TOT(D) ' 
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E {~-'} + TQT (D) 
(312) E{0-11 D} = i + C  

Thus, when estimating 0, we place "full credibility" in the maximum- 
likelihood estimator, and ignore all prior information; but, when estimating 

-1, a Bayesian would ahvays insist on keeping the prior mean as an initial 
data point, because the prior is still informative and proper in this case. 

The mixed, or predictive distribution of ~, averaged over all possible values 
of ~, is: 

(3.Ib I Co, Qo) = [Qol (Qo+Q (x >_ o) 

with density 

(3.14) # (x I Co, Oo) = (Coq (x)/Qo) [Oo/(Qo + (2 (x))]Co+,, 

a generalization of the shifted Pareto distribution. If the prototype failure 
function is Gumbel, we get exponential tails for large x in (3.13), while if the 
underlying failures are Weibull, we get tile "more dangerous" algebraic tails. 
Posterior-to-the-data, predictive density is of the same form, but  with 
updated parameters. 

The cumulative hazard function of the mixed distribution is: 

(3.15) R{xlCo,  Qo)=- InPc(x lCo ,  Qo)=Colu [t 

One can show that this mixing tends to decrease 
fact, the mixed population may have approximately 
hazard rate, even with increasing q (x). 

Life testing applications are covered in more detail 
the problem of model identification of the form of Q 
turn now to applications of these ideas in risk theory. 

+ (Q (x)/Qo)]. 

the rate of failure; in 
constant or decreasing 

in JIZWELL (1977), and 
is also considered. We 

4. RENEWAL PROCESSES 

Ill one model of the collective risk process, claims are assmned to follow a 
renewal process. If, during an exposure interval T, C events (accidents, claims, 
equipment failures, etc.) are observed, this means there are C complete interval 

o 

samples {x,}, and the final interval-in-progress, T - X x,. If all intervals 

are sampled from (3.1) with fixed 0, the parameter updating becomes: 
c c 

(4.1) Co+--Co+C; Qo~-Qo + Z Q(xd + Q (T - Z xd. 

Note that  not only tile random number of events in (o, T], but  also the 
actual lengths of tile intervals provide information in the general case. 

An important special case in risk processes occurs when Q (x)= x, leading 
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to exponentially-distributed intervals, and a Poisson counting process, for 
each O. However, here 

(4.2) Qo<-Qo + X xi + ( r  - _, x,) = Oo + T, 

so we conclude that the Poisson process is specia[ in that  only the number of 
events in (o, T], not the epochs of events, provides predictive information! 

5" INDIVIDUAL LEARNING ABOUT REMAINING LIFE 

We turn now to the interesting question of whether or not a Bayesian can 
learn about his own remaining lifetime distribution function (rldf). For a 
mixed population with average tail distribution pc, 

pc (2" + u) 
(5.1) P r { } >  T + u I ? >  T } - p c ( T  ) - P~ (u) 

represents the fraction of those individual components alive (operating) at 
age T which will survive until age T + u. 

However, for a single life component with known parameter 0, the appro- 
priate rldf is: 

pc (7"+u10) 
(5.2) P r { ~ > T + u I ~ > T ; O } -  P c ( T I 0 )  - P~ (u l0) .  

If we have to estimate this single life behavior as averaged over the popu- 
lation (i.e., without Bayesian learning), we get the prior expected rldf: 

(5.3) E{P~,  (u I0)} = f 
pc (r+,,,  10) 

pc g'10)  p(0)d0, 

which is clearly not identical with (5-1). 

Now let us adopt the Bayesian point of view, and estimate the remaining 
life of a single individua[ who has lived to age T; since he is still alive, we 
have the single datum D = {x > T}, which must update the parameter density 
t o :  

/>c (1" I 0)p(0) pc (T I 0)p(0) 
(5.4) p (0 IZ)) = j, pc  (T l ~3)p(q~)dq~ - pc (T) 

So the Bayesian-updated rldf will be 

f P~ (T + u 1 O) p(O) 
(5.5) E~i o {P.~, (u I 0 ) }  = - p c  (T) dO, 

which is exactly the same as the population rldf in (5.1)! Stated another way, 
a single life (or component) cannot, on the average, gather any additional 
information about his remaining lifetime distribution bv the mere passage 
of time, other than that  given for the population as a whole--even though 
he can learn about his parameter! A surprising, but satisfying result. 
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6. COHORT LEARNING ABOUT REMAINING LIFE 

This does not mean, however, tha t  several incomplete samples cannot  provide 
information about  other lifetimes with the same 0, nor that  a group of lives 
with the same 0 cannot learn from the passage of time. Consider a cohort of 
N lives with the same parameter  which are put  "on tes t"  at the same epoch. 
From Section 2, with T i = T  for all i, we see tha t  the da ta  D = { x i  < T  
(i e S); S} changes (5.5) to: 

(6.1) ESI D {pc (u i ~)) } = j-pc ( T + u  10) 

where learning would clearly take place. 

For  the proport ional-hazard family, 

(6.2) P~, ( u l 0 )  = e-O[Q{T+'O-Q(T}I. 

[pc (T [ 0)] ~v-c-' II p (x, [ 0)p(0) 
dO, pc (O) 

If the prior at T = o  is gamma with hyperparameters  C O and Qo, the pos- 
terior-to-data density of 0 at 7" is gamma with hyperparameters  C o+ C and 
Qo+(N-C)Q(T)+ E Q (x,), giving finally the special cohort-experienced 
remaining-lifetime distribution function: 

(6.3) 
[ Qo + (N-C) Q(T) + X Q(xt) ]Co+C 

E51D{P,~ (u[0)} = Qo + ( N - ~ - - ~ Q ~ T ) -  ~--E ~}(x,) + Q ( T + u )  

I t  is easy to see how learning vanishes when N = I and C = o. 

7- LIFE CONTINGENCIES AND RESERVES 

To apply the results above, consider tha t  we are determining the net single 
premiunl for a continuous life annui ty  of $ 1/year, at force of interest 8, for 
an individual aged x. Given 0, this would be (we omit the usual overbar 
notat ion):  

(7.1) ax (0) = f e-~" P~ (u I 0) du = ,f e-~",-tQ(~+~'}-Q(x)] du. 

Let us suppose tha t  the prior on 0 is gamma with hyperparameters  C,, QQ~ 
at the moment  of underwrit ing (age x). The population-average annu i ty  fair 
premium is then: 

(7.2) az ( c .  9 0  = 9~" .f e ~-" I0~ + 0x  ( . ) i - c ,  du, 

where 

(7.3) Q~ (~) = Q ( ,  + .,.) - Q (x) 

is the prototype cumulat ive failure function for the remaining life, begin- 
ning at age x. 

Now, suppose we have insured a cohort of N lives aged x, all of whom 
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have the same parameter, and let us follow the cohort for t additional years. 
During this time the data provided by the C expirations at additional ages 
{t,}, together with the fact that  N - C  lives are still in existence at age x +  t, 
would update the hyperparameters to: 

(7.4) C~ = Ca + C; Q2(l) = Q1 + ( i v - C )  Q~(t) + z Qx(t,). 
ICS  

Although it is too late to change the 1)remium, this additional knowledge 
could be useful in adaptive modification of the reserves on the N - C outstanding 
policies; for a single-premium annuity of $ 1/year still outstanding at age 
x + t, the correct adaptive reserve would be: 

(7.5) ~v 0~) = ~+~ (co., G (t)). 

We remind the reader that Co and Q~ (t) will be random outcomes, depending 
upon actual cohort experience during ages (x, x +  tl. Only when there is a 
single incomplete life under observation (C2= Cl; Qo. ( t ) = Q i +  Qx (t)) will no 
learning take place, and the reserves will follow the classic result for an average 
member of the mixed population: 

(7.6) a ~ t  = j e-aU 
pc (t + u) 

P--~  (t) du = ~ + ,  (G, G + Q~ (t)). 

A similar develol)ment could be given in terms of the net single premium 
for a life assurance of $ 1, at force of interest 8, payable at the instant of 
death of an individual now aged x, 

(7.7) A~ (0) = I e a,, Pz( u I O) du. 

The appropriate formulae follow from the previous results by  the universal 
relation A~ = 1 - 8ax. 

It  is of interest to follow through the actual stochastic behavior of a "learn- 
ing reserve" of the type (7.5). First of all, we note that adaptive annuity 
reserves do not decrease as quickly as the corresponding ax+t, for small t and 
C = o, which can be seen from: 

dax+t (Co., Qo. (t)) 
- 8 a x + t  (C~,  Q2 ( t ) )  - 1 dt 

(7.s) 
[c.q (x + 

t)j 1 (C2, Q2 (t)) + [" 00~~ { ( N - C )  ax+t 

- ( N - C -  t) ax+t (Co.+ i;Q2 (t))} 

as compared with the well-known classical result 

d a x  ~t _ 
I +  (7.9) d~ LQ1 + Q~ (t)j ax+~. 
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The term in square brackets is, of course, the failure rate at x + t for the 
mixed population in the proportional-hazard family, i.e., the derivative of 
(3-15)- When the first and subsequent deaths occur, there is an instantaneous 
drop in (7.5), since C2 increases by unity, but Q2 (t) is continuous. In general, 
if fewer (more) lives than expected terminate during (x, x+ t], the reserves 
on the remaining lives are larger (smaller) than usual, since this indicates that  
the value of 0 is smaller (larger) than average for this cohort. A complementary 
effect occurs for life assurance learning reserves. 

I t  should be mentioned that  a gamrna-mixed proportional-hazard model 
should be used with care for human mortality. If, for example, the prototype 
failure rate is assumed to follow Makeham's law, q ( t ) = A + B e  ~t, we find 
that the mixed hazard rate (the derivative of (3.15)) is asymptotically constant, 
due to the failure-rate-decreasing properties of mixing! One would have to 
assume that, given 0, individuals follow a much stronger "wear-out" (say, 
Gumbel), in order to obtain a population Makeham-type law. It is interesting to 
speculate as to whether or not this occurs for closely-matched humans, where 
0 would have to include health, genetic, and environmental effects. 

8. DEFECTIVE DISTRIBUTIONS 

Component and human lives are finite, with l)robability one; however, 
defective distributions arise in a variety of other operational situations. 
Consider, for example, the estimation of the time it takes for a number of 
requests for bids, mailed survey responses, etc., to be returned. Some responses 
are received rather quickly; in other cases, an answer is never received. 

A reasonable model for this situation would add an unknown defect para- 
meter, ~, to the usual lifetime distribution, as follows: 

(s.t) P~(xlO,~)=~+(i-~)P~(xlo);p(xlO,~)--(t-~)p(xlo). 
is then the probability that the lifetime is "infinite".  
Under the life testing scheme of Section 2, the likelihood of the date set D 

beconles : 

¢)= (~7)(1-6)c rl p (x,] 0)lI [¢+ (I-¢) pc (T/, 0)]. (8.2) P(DIO,  
i¢s i¢s 

Assuming all the intervals Tj have common value 7", we find the posterior- 
to-data density of 0 and ¢ by a binomial expansion: 

P (0,~1 D) = 
/ g - -C  

1 " 0  

where K is a normalizing constant to make Yl # (0, I D) dOdq~ = 1. To illustrate 
the calculations further, assume that  the "honest" part of (8.1), pe (x I 0), 
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is from the proport ional-hazard family (3.1), with gamma prior on 0 (3.4). For  
simplicity, assume q~ is, apriori, independent  of 0, and has a beta  prior densi ty:  

(8.4) p($ )=p($ lao ,  bo)=B q (ao, bo)~bOo-a ( t-ff)~o-~ (o < ~  < t). 

B (a o, bo) is the beta  function, P (%) P (bo) / P (%+ bo). After straight- 
forward calculations with these special forms, we find the mixed be ta-gamma:  

p (0, ff I D) = 
N - C  

X Hj(D) p(~[ao+ j , b o + N - 3 )  p(OICo+C,Qo+TQT:(D)), 
I o 

(8.5) 

where 

(8.6) TQTj(D) = £ Q(x,) + ( N - C - j )  Q(T), 
t C b  

and the mixing probabili t ies are given by:  

(8.7) Il :  (D) = K -  B (a 0 + j, b o + N -  j) [Qo + TQT: (D)I -(Co +c), 

where, again, K is a normalizing factor  to make ~ H i =  1. I t  is impor tant  to 
note that ,  posterior-to-data,  the est imates of 0 and q~ are dependent ,  unless 
all of the observat ions are complete. For  est imating the mean defect, we have 

(8.8) E { a I D }  = _~, rb (D) , 
o o + b o +  

where we recognize the term in square brackets  as the mean of b, given only 
that  we observe j defects out of N trials. For  N = l and no failure: 

ao [(ao+ ') [l +Q (T)/Qo~e°+ bo] 
(8.9) E { ~ I D }  - ao+bo+ 1 t. aoEl+O(T)/Oo3Co+bo ' 

which shows clearly how the mean defect increases from its original est imate 
of ao/(ao+bo) towards  (ao+ t ) / ( a o + b o +  1) as T--> m with no failure. Of 
course, if the lifetime ever terminates,  E {~ [ D} jumps  to (bo+ 1) / (%+ bo+ 1). 
Other mixing models are given in JEWELL (1977). 
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MODI~LES A D D I T I F S  ET NON A D D I T I F S  EN ACTUARIAT 

PHILIPPE VINCKE 

De nombreux  mod61e% en actuar ia t ,  se basen t  sur [ 'existence d ' une  fonct ion 
d 'ut i l i t6  addi t ive  Le bu t  de cet  article est  de mont re r  que ce t te  hypoth6se  enl6ve 
au probl6me trait6 son caracthre  d y n a m i q u e  et  que la suppress ion de l ' addi t iv i t6  
condui t  5. une solution plus rdaliste. 

INTRODUCTION 

I1 arrive frdquemment,  dans les applications, et no tamment  en actuariat ,  que 
la d4cision k prendre consiste en une suite de choix qui s '6chelonnent dans le 
teml)s. Cette ddcision est done reprdsentde, non par une variable x mais par un 
vecteur (x~, x2, . . . ,  x2v) oh chaque xi correspond it une p6riode diffdrente, la 
politique s '6talant sur un horizon de N p6riodes. L ' a t t i tude  g6n6ralement 
adop t& dans ce cas consiste i~ construire une fonction d'utili td additive du type 

N 

N6anmoins, le choix d 'un tel mod61e exige des conditions assez restrictives 
sur les pr6fdrences que cette fonction d'utili td est sens& repr6senter (en plus 
des conditions impliqu6es par l 'existence de la fonction U). 

Bien rares sont les t ravaux qui me t t en t  en 6vidence les hypoth6ses qu' im- 
plique un tel mod61e. Le but  de cet article est de montrer,  k l 'aide d 'un pro- 
bl6me de la th6orie du risque, que l 'addit ivit6 de la fonction d'utili t6 enl&,e au 
problhme trait6 son v6ritable caract6re dynamique  et que la suppression de 
cette hypoth6se peut conduire 5. un modhle plus rdaliste, fournissant une 
politique plus "raisonnable" .  

UTILITE ADDITIVE - -  INDEPENDANCE PREFERENTIELLE 

Soit > la relation repr6sentant les pr6fdrences d 'un  individu dans l 'ensemble 
des ddcisions {(xl, x., . . . .  , x2v)}. Soit U une fonction (suppos6e exister) telle que 

(xl, x2, . . . ,  x~,) > G ,  ~ . . . . .  ~ )  

ssi  

V(xl, x2 . . . . .  x~) > v G ,  ~ . . . .  , x~). 

L'hypoth6se d 'addit ivi t4 consiste k supposer l 'existence de fonctions U, 
telles que 

N 

U ( x l ,  x2 . . . .  x2v) = ~ U,(x,); 
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eUe implique, pour la relation ~ ,  des propri6t6s qui peuvent  s 'exprimer en 
termes d ' ind6pendance pr6f6rentielle. 

Un sous-ensemble E de l 'ensemble (1, 2 . . . . .  N)  est pr~f~rentiellement 
ind6pendant  (ou ind6pendant  au sens des pr6f6rences) clans (1, 2, . . . ,  N)  ssi 
les pr6f6rences entre des politiques qui ne different que par les composantes 
correspondant "~ K sont ind6pendantes des autres composantes. Aut rement  
dit, E c (1, 2, . . . ,  N)  est pr6f6rentiellement ind6pendant  clans (1, 2 . . . . .  N) 

ssi 

(1) 

et 

(2) 

ent ra inent  

Oil 

(3) 

(4) 

t 
(x,, x~ . . . . .  ~ )  > (~  . . . .  x2~) 

x, = x;, ¥ i ~ ( 1 , 2  . . . . .  N) I E  

t 

6 ' .  y~ . . . . .  y~) > (y~ . . . .  y~) 

i Yi = x,, ¥ i c E ,  

I , (5) y ~ =  y~, ~ i e { 1 , 2  . . . . .  N } I E  

De mani~re intuitive, cela signifie que les prdfdrences du ddcideur concernant 
le sous-ensemble E de p~riodes ne d6pendent pas de ce qui s'est pass6 ou de ce 
qui pourra se passer au cours des autres p&iodes. 

On peut  montrer  ais6ment que l 'addit ivit6 de la fonction d'utili t6 n6cessite 
l ' ind~pendance pr6f&entielle de tout  sous-enscmble .E de {1, 2, . .  N}. En 
effet : 

(,) _~ ~ V,(x~)> ~ V,(x',) 

d'ofi, gr/~ce/~ la relation (2) 

Us(x,) > X U,(x~) 
~6E ~6E 

ou encore, par les relations (3) et (4) 

~6E t ~ g  

et, en vertu de la relation (5) 

par  ¢onsdquent, 

N 

(yl, y2, . . . ,  y#)  > (y~ . . . .  y~)  
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Sons certaines conditions concernant les espaces X, auxquels appartiennent 
les x,, l ' ind@endance pr6f6rentielle de tout sons-ensemble E de {1, 2, . . . ,  N} 
est aussi suffisante pour que la fonction d'utilit6 soit additive. Pour plus de 
pr6cision sur ce sujet, nous renvoyons le lecteur aux travaux de DEm~EU (t959), 
FISI-IBURN (1970), GORMAN (1968), KOOPMANS (1960), TI~O (1971), . . .  

L'indfpendance pr6f6rentielle n'est cependant pas toujours une hypoth6se 
tr6s rdaliste. Ainsi par exemple, en supposant qu'g chaque pdriode le d6cideur 
ait int6rat k maximiser x~, les fonctions U, du mod61e prdc6dent seront crois- 
santes. Par cons6quent, parmi les deux vecteurs suivants, c'est le premier qui 
aura la prdf6rence: 

(1) ( 3 , 5 , 2 , 2 , 3 , 4 , 3 )  

(2) (1, 2, 2, 2, 3, 3, 3) 

Ce r6sultat est naturel si ces 2 vecteurs repr6sentent par exemple les profits 
r6alis6s par une entreprise suite k 2 investissements qui lui cofltent le m~me 
prix. Ii est peut-6tre beaucoup moins naturel si les 2 vecteurs repr6sentent les 
dividendes vers~s k des actionnMres 5. la fin de chaque annie (une politique 
stable inspirant souvent une plus grande confianee) ou le pouvoir d'achat de la 
population pour 2 plans de d6veloppement diff6rents (pour des raisons psycho- 
logiques ou politiques). 

L'hypoth&se de l'existence d'une fonction d'utilit6 additive supprime en fail 
le v6ritable caract~re dynamique d'un probl~me puisqu'elle impliqne que les 
pr~f6rences du d~cideur relativement 5. chaque p6riode soient ind@endantes 
des autres p6riodes. 

C'est ce que nous nous proposons d'illustrer ici au moyen d'un probl~me de la 
th~orie du risque. Apr~s avoir d6fini le probl~me et rappel6 un module additif 
eonstruit par FRISQUE 0974) pour le r6soudre, nous pr6sentons un module qui 
ne n6cessite pas d'hypoth~se d'ind6pendance pr6fdrentielle. La comparaison des 
deux modules montre que la suppression de l'hypoth~se d'additivit6 conduit 
une politique plus stable el, 5. notre avis, plus r~aliste. 

LE PROBLI~ME 

Une compagnie d'assurances verse, /X la fin de chaque p6riode, des dividendes 
ses actionnaires et fixe, pour la p6riode suivante, la part  de son portefeuille 

qu'elle engage dans un syst&me de r6assurance. Le probl&me consiste k d6ter- 
miner une politique de "dividendes" optimale, le but  de la compagnie 6tant de 
maximiser l'utilit6 moyenne des dividendes. Cette utilit6 sera sens~e repr6senter 
les pr6f6rences des actionnaires. L'horizon consid6rd et le montant total des 
primes vers6es ~. la compagnie au cours de chaque p6riode sont des donn6es du 
probl~me. La distribution de probabilit6 caract6risant les sinistres k couvrir au 
tours  de chaque p6riode sera fix6e par le module. 
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N o t a t i o n s  

la rdserve initiale, 
l 'horizon conslddrd, 
la rdserve 5~ la fin de la pdriode j ( j  = 1, 2 . . . . .  N ) ,  

la distr ibution de probabil i td qui caract6rise le mon tan t  total  des 
sinistres pendant  la p6riode j ( j  = l, 2, . . . ,  N ) ,  

Pj  le mon tan t  to ta l  des primes versdes au cours de la p6riode j ( j  = 1, 2, 
. . . .  N), 

sj le m o n t a n t  des dividendes versfs  aux actionnaires "~ la fin de la pdriode 
j ( j  = 1, 2 . . . . .  N),  

k.~_l la par t ie  de portefeuille gdr6e par  la compagnie durant  la pdriode 
j ( j  = 1 , 2  . . . . .  N) ,  

U(s~ . . . .  , s~+e) l 'utilitd des dividendes s~ . . .  s~+k (k = o, 1 . . . . .  N - 1), 
U s .... sj_, ( s j . . .  sj+~.) l 'utilit6 des dividendes s j . . .  sj+lc sachant  que l 'on a 

versd les dividendes s ~ . . .  sj_L au cours des pdriodes pr@ddentes 
( j = 2 ,  . . . , N ;  k = o ,  ,, . . . , N - j ) .  

Comme, -V- k s {o, 1, . . .  N -  1}: 

U(s~ . . . . .  s~+~) = U(s~) + ~ U s .... ~' (s~+l) 
| 1 

les pr~fdrences des act ionnaires sont ent i~rement  caractdrisdes dSs que l 'on 
connMt U(s  0 et U s .... s,_, (sj), ¥ j e {2 . . . .  , N }  

Soit encore 

U s .... sj_, [Sj] l'utilitfi moyenne  optimalc pour la pdriode allant de la fin de la 
pdriode j ,  avan t  le paiement  de s s, jusqu 'h  ]a fin de l 'horizon, apr~s le 
pa iement  de SN, sachant  que la rdserve h la fin de la pdriode j e s t  Sj et 
que l 'on a vers5 les dividendcs st . . .  sl-~ au cours des pdriodes prd- 
cddentcs, 

U'[S~] l 'utilitd moyenne  opt imale  pour  la pdriode allant de la fin de la premi6re 
pfiriode, avan t  lc pa iement  de st, jusqu 'h  la fin de l 'horizon, apr~s lc paie- 
ment  de SN, sachant  que la r~serve h la fin de la premi6re pdriode est S~, 

U[So] l 'utilitd moyenne  optimale pour  tou t  l 'horizon consid6r6, sachant  que 
la rdserve initiale est So. 

Le principe d 'opt imal i td  de la p rogrammat ion  dynamique  permet  d'dcrire: 

U s .... sJ-~[Sj] = max { U  s .... s,-,(sj) + .f U s .... s , [ S j - s j + k j ( P : l + ~ - x ) ]  dFj+~(x)} 

sous les contra intes  
o ~ sj ~< S j  

1 o  ~< kj ~< 

Soit 
So 
N 

Sj 

/5 
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ModUle de Frisque 

Dans ce module, la dis tr ibut ion des sinistres et les primes sont caractdris6es, 
j ,  par :  

F j ( , )  = 

o h p  > l12, e t P j = l .  

D ' au t r e  par t ,  

et, ¥ j s { 2  . . . . .  N}: 

0 x < o  

p o ~ < x < 2  

l 2 ~ < x  

U'(sl) = s~ 2 

or' . . . .  ' , - % )  = ~J-~  ~[[-' 

Le facteur  v n 'a  pas ndcessairement un lien avec le t au x  d ' intfr~t .  I1 peut  
aussi expr imer  ' T i m p a t i e n c e "  des actionnaires,  c 'est-k-dire "le degr6 qui 
caract~rise la prdf6rence d 'un  pa iement  rficent sur un paiement  ul t6r ieur"  
[BORCI-I (1968)]. Ainsi, par  exemple,  soit v < I et 

U s .... sj_~ (sj, sj+~) = sj+vsj+~ 

I1 vient  

ors . . . .  ~,-~(x,  y)  - v ~ .. . .  ~ , -~(y ,  x) : x 0  - v) - y(~  - v) 

expression qui sera positive ssi x > y: le ddcideur pr6f&re recevoir  la plus 
grande somme en premier  lieu. C'est la d~finition de l ' impat ience donnde par  
KOOP~{ANS (1960). 

Le module de FRISQUE (1974) condui t  k la solution suivante:  

Sj 
s.j = j ~{ t ,  2, N} I + K + K 2 +  . . .  + K N - Y  . . . .  , 

oh 

p2__ q2 
kj  = ( S j - s j )  p~+q----~, j e { ~ ,  2 . . . .  , N -  1} 

]52__ q2 
ko  = S o  - -  p2 + q2 

VS""sJ-l[S~] = v j - I  S~A(I + K + . . .  + K~v-j) ~, j E{2  . . . .  N} 

u[s~] = s~; (~ + I c +  . . .  + Ic~v-~) v: 

U[So] = s~; f~Cp~+q~)Y~ O + K +  . . .  +KN-~)  ~ 

K = 2v2 (p2 + q2) 
q =  1 - p .  

I2 
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ModUle non addit i f  

En vue de faciliter la comparaison de ce mod&le avec celui de Frisque, nous 
ddfinirons Fj(x) et P j  de la mdme mani6re que ce dernier. D ' au t r e  part ,  sup- 
posons que 

U(sd = Si  2 , 

et  ¥ y e { 2  . . . . .  N}, 

U',-"8,- <sj) = v J - ~ ( j s j -  s , -  s ~ -  . . .  - s j _ ~ ) ~  

La rdsolution du probl~me h l 'aide de ce modble a 6t6 condui te  d 'une  mani&re 
analogue it celle de Frisque. Nous ne reproduisons pas ici les calculs, qui sont 
assez lourds. Le lecteur  intdressd les t rouvera  faits en d&ails dans VINCKE 

(1977). 

Ce module condui t  h la solution suivante:  

oh 

jL j_  1 
J (sl+ . . .  + si_~) (1 +Li )B1 sj = Sj (1 + L j ) B j  

$1 

sl - (t +L1)B1 

5] ,  j e { 2  . . . .  , N }  

kl = [ S j -  s j -  Lj(s~ + . . .  + sj)] - -  
p2__ q2 
p , + q 2 '  J e{1 ,  2, . . . ,  N -  1} 

p2__ q2 
ko = So - - - - -  p~ + q2 

US""s'-'[SJ] = vJ-~ \1 + Lj]  [ S j -  Ll_~[s~ + . . .  + st_x)]~, j e {2 . . . . .  N} 

( B, lY'- 
U[S,] = \ i  + L1/ s~', 

I 
V[So] = ~ (p~ + q')~ \ 1 + L d  s°y' 

1 + Lj+i, 
Lj = L j+l + : j e {1, 2, . . . ,  N -  I} 

3 + 1  

L N  = 0 

Bj = j + 2v2(p2+q2)(1 + L j )  - -  
Bj+i 

1 +Lj+i '  j e { 1 ,  2, . . . ,  N -  1} 

B N =  N.  
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COMPARAISON DES DEUX MODULES 

Les tableaux qui suivent permettent de comparer les valeurs num4riques 
auxquelles conduisent les deux mod&les dans diffdrentes situations. L'horizon 
choisi est de 5 pdriodes ( N = 5 ) .  La notation 011oo signifie qu'il n 'y a pas 
sinistre au cours des prelnigre, quatri61ne et cinqui~me pdriodes et qu'il y a 
sinistre au cours des deuxi~ine et troisi&me p~riodes. Les nombres qui ap- 
paraissent dans les tableaux doivent fitre multiplifs par So. 

T A B L E A U  11 p = ' 7 ; q  = . 3 ; V  = . 2  

01100 01111 I11OO ooooo 

non  non non non 
Fr i s que  add i t i f  lZrisque add i t i f  l : n s q u e  add i t i f  F n s q u e  a d ~ t i f  

k0 .690 .690 .69 .69 .69 .69 .69 .69 
St  1.69o 1.69o 1.69 1.69 .31 .31 1.69 1.69 
sl  1.61o .49 ° 1.61 .49 .3 .09 1.61 .49 
k~ .050 .15o .05 .15 .009 .028 .05 .15 
Sa .030 1.050 .03 1.05 .OOl .192 .13 1.35 
sz  .028 .272 .028 .272 .0oo95 .0488 .124 .4 
k2 .ooo 9 .Ol 4 .ooo 9 .or 4 .00o03 .0032 .o04 .o32 
Sa .oo1 '  .76 .OOll .76 0ooo2 .14 .or .982 
sz .OOl .25 .OOl .25 .o0o019 .046 .0o95 .35 
ka .oooo3 .oo9 .oooo3 .o09 .o000006 .oo18 .ooo3 .o17 
$4 .oo0133 .519 .oooo67 -5 .0o00016 .o96 .ooo75 .65 
sa .0oo127 .261 . ° ° ° ° 6 4  .255 .oo0oo15 .05 -o0o7 .33 
k,  .o0ooo 4 .o005 .o0oo02 .ooo25 .ooo00oo48 .ooo27 .oooo2 .oo 3 
S0 .00001 .25 .oooool .2,t6 .000000148 .046 .00o72 .323 
ss .0ooo1 .25 .oooool .246 .oooooo148 .o46 .ooo72 .323 

TABLEAU 2: p = "7; q =  "3; V = l 5 

O 1 1 0 0  O 1 1 1 1 | 1 1 0 0  O O O O O  

non I ] O l l  n o n  n o n  

Fr i sq u e  add i t i f  F r i sque  additiif F r i s q u e  add i t i f  F r i sque  add i t i f  

ko .69 .69 .69 .69 .69 .69 .69 .69 
S, 1.69 1.69 1.69 1.69 .3t .31 1.69 1.69 
s~ 1.2 . 1 7 7  1.2 . 1 7 7  .22 .032 1.2 . 177  

kt .33 .79 .33 .79 .06 .145 -33 79 
S .16 .723 .16 .723 .03 .133 .82 2. 3 
s2 .11 . 1 6 2  .11  . 1 6 2  . o2  .o  3 .58 .48 
k2 .o31 .16 .o31 .16 .006 .027 .16 .8 
$3 .o19 .4 .o19 .4 .004 -076 -4 2.62 
sa .Ol 4 14 .oi 4 .14 .003 .026 .3 1.ol 
ks .0035 .016 .0035 .016 .00075 .0025 .075 .536 
$4 .oo85 .276 OOl 5 . 2 4 4  .00175 . 0 5 2 5  .175 2.14 
s4 .0066 .I 4 .OOll .12 -00135 .026 .135 1 17 
ka .oo13 .Ol . 0 0 0 2  . 002  . 0 0 0 2 7  .oo2 .027 .33 
S0 .oo32 .126 .ooo2 .122 .ooo67 .o285 .o67 1.3 
s5 .0032 .126 .0002 .122 .ooo67 .o285 .o67 1.3 
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TABLEAU 3: P =  "7; q =  '3; V= .9 

Ol IOO O l  1 1 1  11 lOO OOOOO 

non  non non non 
Fr i sque  addi t i f  Fr i sque  addi t i f  Fr isque  addl t l f  Fr isque  addi t i f  

k0 .69 .69 .69 .69 69 .69 .69 .69 
Si 1.69 1.69 1.69 1.69 .31 .31 1.69 1.69 
sx .38 .0236 .38 .0236 .o 7 .oo43 .38 .o236 
hi .89 1.115 .89 1.115 . :64 .2 .89 1.115 
St .42 .55 .42 .55 .076 .1 2.96 2.78 
sa .:15 042 .115 .042 .02 .oo76 .811 .175 
k2 , 2 1  . 3  . 2 1  . 3  .°38 "°54 1'48 1"64 
Sa .o95 .2 .095 .2 .o18 .038 3.83 4.245 
s3 .033 .04 .033 .o4 .0064 .0075 1.29 .624 
h~ .o422 .o75 .o422 .o75 .oo8 .Ol 4 1.61 2.2 
S4 .1 .235 .02 .o85 .o196 .045 3-95 5 .8 
s4 .053 .o89 .o1 .038 .Ol .o17 2 2.06 
k4 .o34 .o819 .oo68 .oi 3 .oo66 .o142 1.34 2.18 
$5 o81 .228 .0032 .034 .o16 -o422 3.29 5 92 
s~ .o81 .228 .oo32 .o34 .o16 .o422 3.29 5.92 

TABLEAU 4: P =  .7; q =  .3; v = 1.5 

O l l 0 0  O l 1 1 1  l l l O 0  O O O O O  

non non non non 
F n s q u e  addi t i f  F n s q u e  addi t i f  Fr isque  addi t i f  Fr i sque  addi t i f  

ho -69 .69 .69 .69 .69 .69 .69 69 
Si 1.69 1.69 :.69 1.69 .3: .31 1.69 1.69 
s~ .Ol 4 .ooo6 .oi 4 .ooo6 .oo26 .OOOl .Ol 4 .ooo6 
kt 1.15 1.16 1.15 1.16 .21 .214 1.I 5 1.16 
$2 .526 .53 .526 .53 .o97 .o96 2.82 2.85 
s2 .005 .0026 .005 .0026 .oot .00045 .03 .o123 
kz .357 -359 .357 .359 .o66 .o65 1.91 1.949 
Sa .164 .168 .164 .168 .o3 .o3 4.7 4.78 
sa .o2 .oo6 .o2 .oo6 .oo36 .OOl .56 .144 
ks .o98 .I .o98 .: .o18 o196 2.82 3 : 4 6  
S4 .242 .26 .046 .062 .0444 .0486 6.96 7.782 
s4 .o726 .045 .o138 .o115 .o133 .0085 2 1.346 
k4 .116 .137 .o22 .o31 .o2 .o25 3 34 4.23 
S~ .28 .352 .Ol .o2 .05 .o65 8.3 1o.6 
s5 .28 .352 .Ol .02 .o5 .o65 8.3 lO.6 



MODULES ADDIT IF S  Z T  NON A D D I T I F S  

TABLEAU 5: P=-9;  q =  . t ;  v = .  5 

O11OO O1111 111OO OOOOO 

rlon noll  n o n  n o n  
F r i s q u e  a d d l t i f  F r i s q u e  a d d i t i f  F r i s q u e  a d d i t i f  F r i s q u e  a d d i t i f  

ko 975 .975 .975 .975 .975 .975 .975 .975 
St  1.975 t 975 i 975 1.975 .o25 .o25 1.975 1.975 
s l  1.185 .15 1.185 .15 .ol  5 .oo19 1.185 .15 
kt  .77 1 48 .77 1.48 .00975 .01875 .77 1.48 
$2 .02 -345 .02 .345 .ooo25 .oo435 1.56 3 3 
s2 .o12 .082 .o12 082 OOOl 5 .OOl .936 .62 
k~ .oo78 .034 .o078 .034 .0o0o975 .0oo36  .6 1.82 
Sa .ooo2 23 .00o2 23 .ooooo25 .oo3 1.22 4 5 
s~ .000128 .o76 .ooo126  .076 .o000015  .ool  .77 1.43 
k3 .oooo72 .0o3 .000072 .oo3 .o0o0oo9  o .44 1.9 
$4 .000146  .157 .000002 15 .000oo19  .oo2 .89 4 .97  
s4 .OOOl .o733 .ooooo14 .o7 .0000o13 .ooo97 .63 2.54 
h4 .00004  .0025 .0000005 o .0000005 . oooo l  .25 1.44 
$5 .00oo86  .08 .0ooo001 .o8 .0000011 .OOl .51 3.87 
s5 .oooo86  .08 .0000001 .o8 . o o o o o l l  .OOl .5 l 3.87 

Ces tableaux permet ten t  de voir: 

- -  que les variations de dividendes d 'une pdriode ~. l 'autre  sont beaucoup 
moins fortes dans le module non addit if  que dans le mo&le  de Frisq~,te: 
la suppression de l 'hypoth~se d 'addit ivi t6 (de l ' ind@endance pr6f6rentielle) 
conduit  5~ une politique plus stable; 

- -  que les dividendes sont plus petits dans le module 2 que dans le module 1 
en d fbu t  de politique et deviennent  plus grands par la suite:  le mod&le 
non addit i f  conduit  ~ une politique plus prudente ;  

- -  que la part  du portefeuille que l'011 engage dans un syst~me de r6assurance 
est moins importante  clans le module 2 que le mod61e 1; 

- -  que le facteur v joue un r61e pr6pondfrant  dans la faoon de distribuer les 
dividendes: plus v e s t  petit, plus les dividendes sont grands en d6but de 
politique ; 

- -  que les difffrences entre les modules 1 et 2 sont d ' au t an t  plus grandes 
que ves t  petit :  la forme de la fonction d'utili t6 clans le module non addit if  
a un effet opposd k celui de v lorsque celui-ci est peti t ;  

- -  que lorsque la probabilit6 de sinistre est petite (q petit), la politique de 
dividendes est for tement  influenc6e par la rfalisation d 'un sinistre (com- 
paraison des tableaux 2 et 5). 

CONCLUSION 

Comme nous l 'avons dit pr~c~demment, l ' a t t i tude  g~n~ralement adopt~e, 
lorsqu'on cherche une politique s '6talant  sur plusieurs p6riodes, consiste ~. se 
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baser sur une fonction d'utilitd additive, ce qui exige des hypothhses tr6s 
fortes et tr6s restrictives. Le mod61e non additif pr4sentd ici n'a pas la prdten- 
tion d'6tre le plus ad6quat pour le probl6me posd mais il montre 5. notre avis 
que la suppression de l'additivitd conduit ~ une solution plus raisonnable et 
plus r6aliste. 

De manihre gdndrale, nous pensons qu'une attention plus soutenue devrait 
4tre consacrde aux hypotheses qu'entralne le choix d'un mod61e math6matique 
en vue d'un problhme d'actuariat, non seulement pour ce qui concerne les 
aspects purement actuariels du problhme (distributions des sinistres, primes, 
. . . )  mais aussi pour la d6termination des fonctions A maximiser, qui sont 
sens6es repr6senter les pr6f6rences du ddcideur. 
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DYNAMIC PROGRAMMING, AN APPROACH FOR  ANALYSING 
COMPETITION STRATEGIES 

T. PENTIKAINEN* 

Stochastic-dynamic programming provides a technique for forecasting limits 
within which the insurance business will flow by a prefixed probability. Th.e future 
development depends, among mmmrous other things, on management strategies, 
especially resources, whmh are planned for allocation in the acquisition of new 
business and for competition. Tb.is technique can be used to analyse different 
market situations. Various competit ive measures and eventual counteractions by 
competitors can be assumed and simulated for the purpose. In this way the con- 
sequences of different strategies can be studied in order to find the most appropriate 
one. Our approach is similar to the well-known business games where teams play 
business in a simulated market The idea of applying dynamic programming to 
business games was suggested by Esa Hovinen (discussion at the Astin Colloquium 
in Washington in 1977). 

1. STOCHASTIC-DYNAMIC PROGRAMMING 

Stochastic-dynamic programming is a technique for making prognoses for the 
future development of the insurance business. When the initial state is known 
and necessary characteristics such as the volume of premiums, claim size 
distributions, expected number of claims, yield of interest, probable growth of 
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the business, margins needed for operational cost, etc. are given or assumed, 
then it is possible step by step for future points in time t = 1, 2 . . . . .  T to make 
a prognosis for state varial)les such as premium volume P, risk reserve (free 
reserves) U, etc. Due to the stochastic character of the method, a distribution 
of each state variable is obtained for each time t. The probability of ruin is also 
obtained as a byproduct.  Fig. t illustrates the idea. The mean value of the 
premium volume P and risk reserve U is calculated for t = 1, 2 . . . . .  T. In 
addition, the limits of the stochastic flow of the business are estimated (upper 
limit Ru and lower limit R~). When a ruin barrier is defined, the probability 
of ruin is obtained as a byproduct.  

The flow of business and also the security limits R depend on the manage- 
ment strategy which the company is assumed to follow. Competition, espe- 
cially, can be an important  factor. 

The dynamic programming approach is referred to in detail by the author in 
the papers listed in the bibliography. 

2. BUSINESS MODELS FOR COMPETITIVE MEASURES 

For model building it is necessary to know how the insurance market reacts to 
such competitive measures as changes in premimns, sales promotion efforts, 
etc. Obviously circumstances vary a great deal in different countries and even 
within a country, e.g. concerning the 1)ranch of insurance, perhaps concerning 
particular groups of insurance and clients, etc. It  is well known that the degree of 
market saturation is one essential factor. The theory and technique for construc- 
ting market reaction models are developed for industrial and commercial prac- 
tice. A good review is given by KOTLEIi (1975). These general approaches are 
clearly also applicable to insurance. Of course market reactions are mainly phe- 
nomena that can bc ascertained only by collecting experience in real situations. 

Two examples of the market reactions of the Finnish third par ty  motor and 
motor vehicle insurance business are given in figs. 2 and 3. Company 1 reduced 
the premiums for third party motor insurance (fig. 2) by about 8 per cent and 
those for motor vehicle business (fig. 3) by about 15 per cent. The reduction 
was valid for one year, 1973-1974. The other companies followed suit, reducing 
motor vehicle (but not third party) rates to the same extent. Following this the 
companies again agreed on a joint level for rates. Tile reaction ill the market  
share percel!tages can be clearly seen. Thanks to their different special groups 
of clients companies 3 and 5 were immune to the competitive action taken by 
company 1. Company 1 also carried out an advertising campaign whereas 
company 2 took some rationalisation measures which obviously temporarily 
reduced tile volume of sales. Hence the changes in market  shares were also due 
to reasons other than different rates, but this situation will not be analysed 
here. The reduction in third par ty  motor rates was reflected in the market 
shares for motor vehicle insurance, too, even if tile rates were not different. 
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The re turn from compet i t ive  measures is described by  what  is called a sales 
response function. The re turn  in our case is an increase in premium volume. 
The problems of how to find appropr ia te  sales response functions will not  be 
discussed here. A der ivat ion of this kind is a s tandard  excercise in economic 
theory  (cf. I{O'rLER 1975). Our purpose is only to show how the dynamic  
l)rogramming technique can funct ion if the sales response funct ion and all 
o ther  necessary initial facts are known. 

To provide a simple i l lustrat ion we assume tha t  the sales response funct ion 
is of the simple exponent ia l  form 

(1) P ( I )  -~- / > ( ~ -  I) • (I + g )  • ( 1 - ~ ( t ) ) - P  

P(¢) is the premium volume for year  1, g is the rate of natural  growth of the 
business (level expected  wi thout  compet i t ive  action) and ~(t) is tile relat ive 
decrease in the premium rates, assumed to have been made  in year  t as a 
compet i t ive  action, p is the coefficient of elasticity (empirical data).  The  
formula  is a simplified version of formula 04)  discussed in m y  paper  (1978). 

By  par t ia l ly  differentiat ing formula (1) we obta in  

(2) ap~ 
p ~ p ~  

The relat ive sales response, i.e. the increase in p remium volume due to ~, is 
propor t ional  to r:, elastici ty p being a propor t iona l i ty  coefficient. 

In fact  a reduct ion r~ in the premium rates has a double effect. On the one 
hand  it p romotes  the sale of new business according to formula  (2). On the 
o ther  hand  an amount  r~P is lost from the premium income (and at  the same 
time, from the prof i t  margin).  This term ~P  should be subt rac ted  from (1) to 
get the actual  premiuln income. I t  is, however,  convenient  for the computa t ion  
to use the unreduced premium volume P obta ined f rom (1) and take tile 
reduct ion r:P into account  as a loss of profit ,  as was done in the formulae 
represented in the paper  ment ioned above. This unreduced premium best 

demonst ra tes  the effect of the compet i t ive  action. For  this reason we have 
taken  it as the variable _P in the following figures. Because the compet i t ive  
reduct ions re(t) will be assumed to be only  t em p o ra ry  in our examples,  the 
final values P(T) equal the actual  p remium incomes even if in the in termedia te  
years  the actual  premium incomes deviate  f rom P. Unreduced  .P also best 
represents  the actual  clientele. 

F rom fig. 2 a value for p is got. I t  seems to be of the order of 2. We assume in 
the fo l lowingp = I. 5. 

I t  is obvious tha t  the exponential  sales response funct ion is applicable only 
to an open marke t  where sa tura t ion is not  innninent .  As a short  t ime reaction 
it m a y  also be more generally applicable, bu t  if the premium reduct ion has a 
dura t ion of several years,  the sales funct ion is p robably  more of the S form, as 
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Kotler claims. We omit this kind of analysis and use the simple form (1), 
because here we are only demonstrating the dynamic programming approach. 

We have also simplified the example by assuming that  the competitive 
reduction of premiums concerns the whole business of the company. Actually, 
of course, most non-life COml)arfies have many insurance branches and com- 
petition can be restricted only to part of the business. In principle the approach 
is also applicable to more complicated cases, but then the business must be 
divided into subsections, e.g. according to insurance branch. A simple example 
along this line was given by the author (1975). 

Another simplification is the assumption that  a prelnium reduction is the 
only competitive action. This is probably generally supported e.g. by an 
advertising campaign and other sales promotion efforts. Extension of the sales 
response function for this can also be found in the attthot's paper (1978). 

3' A MULTI-UNIT COMPETITION MODEL 

We are now going to deal with a market in which the leading companies are 
C1, C2 and Ca. In addition, a number of smaller companies operate in the same 
market. We assume that  the latter have a joint tariff association and follow the 
same rates; hence we can "unite"  them as a "fourth company", Ca, in our 
model. 

In order to apply the model it is necessary to know, at least apl)roximately, 
the initial state and a great number of parameters for each of the companies 
involved, in this case also as concerns competitors. In practice this may be 
difficult. However, at least in some countries the annual reports of the com- 
panies, the official statistics and other papers available can probably make it 
possible for a skilful analyst to gather numerous pieces of information and 
compile from them a picture on the state and resources of the competitors, at 
least when the analysis is continued for several years (collecting this kind of 
information may be a practice in many companies). 

We apply the same formula (1) for all companies C,, i = 1, 2, 3, 4. The 
t)remium reductions n,(t) which company i applies in year t are the decision 
variables of the model. Different competitive strategies are obtained by taking 
different values for these variables, i.e. the matrix 0v,(t)) where i = 1, 2, 3, 4 
and t = I, 2 . . . . .  T, defines the total competitive strategy mixture. 

The competitive effect can be expected to be proportional to the difference 
in premiums between companies, i.e. the cheaper the premiums a company i 
applies compared with the average level of the market, the more new business 
it can expect. Hence formula (1) must be amended by introducing the relative 
differences in the level of premiums as follows. The weightted average level of 
the premium reduction is 

1 
(3) ~(t) - Z P,(t) rq(t) P(t) 
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where P(t) = E Pi(t) = the total  volume of premiums on the market .  Then 
t 

tile relative premium reduction for company i is 

(4) ~(t)  = ~ l ( t ) -  ~(t) 

This variable will replace ~ in formula (x). The loss of profit  owing to the 
premium reduction must  always be calculated on the basis of tlm absolute 
reduction r: compared with the initial level ~ = o. All companies have the 
same initial rate, i.e. n¢(o) -- o. Hence, if all companies reduce their premiums 
by the same relative amount  ~t = ~, nobody will reap any benefit in the form 
of increased premium volume but, of course, all companies will stiffer loss of 
profit due to reduced premiums. With some calculation formulae (2)-(4) show 
tha t  generally changes in premiums APi(t) caused by any  combination of 
variables ~l(/) are 

(5) E APe ~ o. 
I 

This equation, where AP is again the change in unreduced premium income, 
is only at)proximately valid, because (2) is also an approximation obtained by 
a simple differentiation. A sales response of this type applies to sa turated 
markets  where competit ive action mainly  causes only all increase in market  
shares at the expense of the competitors. 

In terms of the theory of games, we are dealing with an n-person multi- 
period zero-sum game in an oligopolistic market .  The model can be extended 
to elastic markets,  where a premium reduction increases tlle total  demand for 
insurance. A factor ( t - ~ ( t ) ) - ~ '  must  be a t tached to formula 0)  for the 
purpose. This will be done in fig. 8. 

Applying the formulae given above and those given in more detail by the 
author  (1978), it is possible to compute the business flow for different mixed 
strategies (rc,(t)) (i = 1, 2 . . .  ; t = ~, 2 . . . . .  T). The model can be programmed 
for a computer.  The probabil i ty of ruin, the profits and losses and the final 
s tate of each company can be obtained as ou tpu t  for any strategy assumed. 
A good review can be obtained by arranging the main state variables, volume 
of premiums P and risk reserve U on a P,U-plane as in fig. 4. At the final 
point the number  of the s t ra tegy is assigned (ill fig. 4 only two strategies were 
applied). In our example T = 5 years. C, indicates the company i. The lines 
(solid for company 1 and dot ted for the others) from the initial point P,(o), 
Ut(o) to the final point P~(7"), U d T  ) show the flow of the business as in fig. l. 
A change rci(t-1)--> ~i(t) gives rise to a deviation from the normal flow 
((r~,(t)) = o) and also affects the other companies due to (5). 

We are now ready to test  the model by  analysing the efforts and conse- 
quences of different strategies. 

Stra tegy 1 was the "neu t ra l "  one, where no premium reductions were 
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Fig. 4. Results obtained by different strategies. Units of .P and U are some con- 
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Formulae and data as in example I m the author's paper (J978). 

applied,  i.e. all ~dt)  = o. Due to the normal  g rowth  fac tor  g in fo rmula  (1) 
and an assumed safe ty  loading all companies  get an increase in bo th  p r e m i u m s  
P and  risk reserve U. Inf la t ion  can be t r ea ted  separa te ly ,  as we discussed in our  
pape r  0978) ,  hence it can be om i t t ed  in this connection,  i.e. as a working  
hypothes is  the m o n e t a r y  value is assumed to be constant .  

S t ra tegy  2 consists of an assumpt ion  tha t  c o m p a n y  C1 reduces its p r emiums  

by  15 % in one year  t = t and  the o ther  companies  do not  react  to it, i.e. their  
reduct ions  are cont inual ly  = o. For  t > 1 all companies  again have  joint  ra tes  
(hi(t) = o). We see f rom fig. 4, how c o m p a n y  1 gains an increase in the  vo lume 
of p r emiums  whereas  the compet i to r s  suffer a loss of p r emium incomes and  in 
addi t ion  a small  loss of profi t ,  i.e. bo th  -Pt(5) and  U,(5) for i=2, 3, 4 are 
somewha t  smaller  for s t r a t egy  2 than  they  were for s t r a t egy  1. 

Dev ia t ing  f rom the general  prac t ice  in game  theories we do not  t ake  maxi -  
mising prof i t  as a final object ive  of the company .  I n s t ead  we assume here and  
in the following tha t  c o m p a n y  C1 has  an ambi t ion  to become the largest  com- 
p a n y  in the m a r k e t  and  surpass  c o m p a u y  C2, which at  the initial t ime  poin t  
t = o is the largest.  To this end the c o m p a n y  expe r imen t s  wi th  different  
compet i t ive  reduct ions  n~O), which are appl ied for one year  and  then  removed.  
The rest  of the m a r k e t  does not  t ake  any  counte rac t ive  measures  (fig. 5). 
Because it  is crucial how much  the companies '  resources can s t and  in reduc- 
tions, an indica tor  for security,  the p robab i l i ty  of ruin, is in t roduced  (cf. the  
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author ' s  paper, 1978 ). This is indicated by  symbols in fig. 5 and in the fol- 
lowing figures as it is shown in the r ight-hand corner of the picture.  The 
reductions ~ (1 )  for different  strategies are as follows: 

S t ra tegy  1 ~ = o 
S t ra tegy  2 ~ = o.1 
S t ra tegy  3 ~ = o.15 
St ra tegy 4 rc = 0.20 
S t ra tegy  5 n = 0.25 

The results are given in fig. 5, where only companies C1, Ca and C3 are noted.  
The probabi l i ty  of ruin for s t ra tegy  4 already begins to be alarming and for 

s t ra tegy  5 it is no longer acceptable.  Hence it seems tha t  s t ra tegy  3 is an 
acceptable choice. 

Fig. 5 involves cases where the other  companies do not  take any  counter-  
active measures.  The analysis must  be cont inued by  s tudying  different  com- 
binat ions of counteract ions.  Tha t  is done in fig. 6. 

S t ra tegy  1 is again neut ra l  as in previous pictures, and s t ra tegy  2 is agai~ 
the same as tha t  in fig. 4, i.e. in the first year  only company  C1 has reduct ion 
~1(1) = o.15 and the others have none. In  s t ra tegy  3 all o ther  companies  
respond to a premium reduct ion by  making the v e r y  same reduct ion hi(2) = 
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o.15 ( i=  1, 2, 3); hence all companies apply the same reduction in year  
t = 2. The result is, of course, a loss for all of them. I t  is interesting to observe 
tha t  company Ct, due to losses, is already approaching a risky state, and more 
seriously than  its competitors, as is shown by the symbols. 

Strategy 4 assumes tha t  the joint reduction will be continued for another  
year  t = 3, but  after tha t  all companies will discontinue reductions. We see 
tha t  the s t ra tegy puts company C1 itself in difficulty, causing more serious 
losses for it t han  for its competitors. 

We now present, as a further  example, the same series of strategies but  
now assume tha t  company C~ has more initial risk reserves than  it llad in tile 
preceding cases. Let  U~(1) = l lO million units, whereas in the preceding cases 
it  was only 75. The very same strategies, 1-4, are now applied again (fig. 7)- 
The bet ter  initial resources of company C~ obviously first put  a squeeze on the 
main competitors C2 and C3. If the objective of company C~ is rootless growth, 
it  can probably make use of its strong state (the relatively large risk reserve) 
for winning marke t  shares from other companies, because these obviously 
cannot  afford effective counteractions over a long time wi thout  losing their  
security. Hence we have still cont inued with a s t ra tegy al ternat ive 5 where the 
other companies are compelled--for  the sake of their increased losses--to 
remove their reductions for t = 2 whereas C~ contillues with them. Hence this 
s t ra tegy matr ix  is o oi) i o.15 o o Strategy 5" ( h i ( t ) )  = o . 1 5  o o 

O.15 0 0 

We see how, as expected, C1 reaches its goal, to be the largest in the market!  
Finally we have experimented with a formula of elastic markets  a t taching 

another  multiplicative factor ( 1 -  ~)-~o, to (1). Hence an average reduction of 
rates K increases tile total  sum P(t) of premiums by elasticity p ' .  We repeated 
the computat ions  of fig. 4- The results are given in fig. 8. 

St ra tegy 1 xvas again neutral  (=) = o, p = 1.5 and p '  = o. For  strategies 2, 3 
and 4 ~l(1) =o.1  and all other ~t(t) = o .  Ill case 2 p ' = o ,  in case 3 p ' = o . 5  
and in case 4 = I.O. If p--p'= 1.5 then P and U of companies 2, 3 and 4 
obtain approximately  the same values as in case 1, i.e. the action of one 
company  has no influence upon any  other company.  The market  is perfectly 
elastic. 

A fur ther  development of the si tuation obviously would lead us to well- 
known problems of tile theory of n-person games in an oligopolistic market ,  
such as possible collutions, equilibrium, etc. (cf. FRIED~{AN (1977)). Obviously 
the exponential  sales response function (1) must  also be amended and cor- 
rected according to accumulated experience if the competi t ive si tuat ion 
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continues for several years. Considerations like this are, however, already 
beyond the scope of this paper, which set out only to demonstrate how dynamic 
programming can be incorporated in the analysis of competitive strategies. 

4" D I S C U S S I O N  

The idea outlined above can probably help ill an estimation of the conse- 
quences of competitive measures and cotmteractions better than if this were 
done only using rules of thmnb. One special merit of stochastic-dynamic 
programming is that it is able to give at least an approximation for the ruin 
probability, i.e. an estimation of the security. 

Another merit of dynamic programming is its flexibility. Thanks to tile 
simulation technique it is also able to operate rather complicated models 
without needing to narrow down the assumptions, as is often the case when 
other approaches are used. It is also possible to treat models providing mul- 
tivariable utilities, in our example profit (=  U) and market share (=.P), 
whereas the conventional game theory mostly operates using only single 
variable utilities (profit). On the cther hand, it seems to be difficult to obtain 
elegant formulae for optimal strategies, equilibrium conditions, etc. as only 
data in tabular form or graphs can be obtained. 

Probably "a play" by means of different strategies can help provide a better 
understanding of the structure and features o[ different alternatives of eventual 
policies. When the model is programmed for a computor the numerous alter- 
natives can be plotted, as was illustrated in tile preceding figures. The same 

33 
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p r o g r a m  can  a lso  b e  u s e d  for  p l a y i n g  a b u s i n e s s  g a m e ,  w h e r e  t e a m s  of p a r t i c i -  
p a n t s  a re  s i m u l t a n e o u s l y  " m a n a g i n g "  c o m p a n i e s  C~, C2 . . .  
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A NON S Y M M E T R I C A L  V A L U E  F O R  GAMES W I T H O U T  
T R A N S F E R A B L E  U T I L I T I E S ;  A P P L I C A T I O N  TO R E I N S U R A N C E *  

JEAN LEMAIRE 

We define axiomatically a concept of value for games without transferable 
utilities, without introducing the usual symmetry axiom. The model--a generali- 
zation of a previous paper [6] extending Nash's bargaining problemiattempts to 
take into account the affinities between the players, dehned by an a priori set of 
"distances". The general solution of all three- and four-person games is described, 
and various examples are discussed, like the classical "Me and nly Aunt" and a 
reinsurance model. 

Nous d6finissons de lnaniJre axiomatique un concept de valeur pour les jeux 5. 
utilit6s non-transf6rables, sans mtroduire l'axiome classique de sym6trie. Le 
module - -  une g6n6rahsation d'un concept de valeur E 6] 6tendant h plusieurs joueurs 
le probl~me de marehandage de Nash - -  tient compte des afffimt6s entre les joueurs, 
donn6es sous :forme d'une matrice de "distances" a priori. Nous donnons la solution 
gdn6rale do tousles jeux 5. trois et quatre joueurs, et discutons plusieurs exemples 
classiques, dont le c6lgbre "Ma tante et moi" et le module de rdassurance de ]3orch. 

I. INTRODUCTION 

In  most  of the value concepts of the cooperat ive theory  of games [6j, [lol, 
[12], the authors  have enforced a s y m m e t r y  axiom: every symmetr ical  game 
has a symmetr ical  solution; tha t  is, if the charactel is t ic  funct ion of the game 
is symmetr ica l  with respect to the bissecting line passing through the initial 

payoffs,  the solution grants  the same uti l i ty increase to each player. I f  this 
axiom seems innocuous (it is evident  tha t  the final payoff  must  not depend on 
a permutat ion,  on a re-numbering of the players), it implies the implicit as- 

sumpt ions  tha t  the game is adequate ly  represented by  the characterist ic  
funct ion and tha t  no element outside this funct ion influences the behaviour  of 
the par t ic ipants  and the results of the game. But  eve ryday  observat ions sug- 

gest tha t  the players usually do not behave as one would expect f rom the 
abs t rac t  s tudy  of the game:  some coalitions are formed more easily than 
others, two players tha t  should coalize in order to niake a profit  do not unite 
because of personal an t ipa thy ,  some persons are more likely to enter in a 
coalition with a given group than  others, e t c . . .  ; the characterist ic  funct ion 

form of the game seems unable to forecast the coalitions tha t  will effectively 
form, since it does not  take into account  the personal affinities between the 
players. For  instance, the French Comlnunist  par ty ,  during the Fou r th  Re- 
public consistently the largest par ty ,  never  managed  to enter into a govern- 
ment  coalition, because no other pa r ty  was ever willing to join it in a coalition. 

* Presented at the 14th AST1N Colloquium, Taormina, October 1978. 
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So the va lue - - s ay  the Shapley value, or any  value computed  on the basis of 
the character is t ic  function o n l y - - o f  this pa r ty  is largely overest imated,  since 
it does not  consider the aversion of the other  parties. 

We shall in this paper  develop a value concept  tha t  a t t empt s  to catch the 
notion of "aff ini t ies" ,  by  suppressing the s y m m e t r y  axiom and introducing 
"d is tances"  between players.  I t  is a modif icat ion of our former  [6] symmetr ica l  
value. 

2. AXIOMS 

Let  [N, v(C), ~] be a game wi thout  t ransferable utilities (shortly a non-trans-  
ferable game), where 

- -  N = {J . . . . .  n} is the set of the n players;  
- -  v(C) is the character is t ic  function,  defined on all the non-void subsets C 

of N (the coalit ions) '  the image of this funct ion is a subset v(C) of E I e l ,  
the Eucl idean space of dimension I C I, such that  v(C) is non-empty ,  closed, 
convex and super-addi t ive:  

V Ca, G, c N D - C~ Cl Co = 4, v(C~ U G )  D v ( G )  x v(G); 
- -  ~ is the prospect  space for the grand coalit ion N, i.e. the space delimited by  

the Pare to-opt imal  surface v(N) and the hyperplanes  perpendicular  to the 
axes whose coordinates are the initial utilities of the players. 

Let  [C, v(C'), ~cl be the subgame associated to the coalition C. The purpose 
of this paper  is to define a value for such games. We shall assume tha t  the 
players  will sign a t r e a ty  

y ( X )  = [ y d N )  . . . . .  yn(N)] ,  

where yl(N) specifies the mone ta ry  payoff  to player  j .  Since such a t r ea ty  
usually involves s ide-payments  (whose stun must  be zero), the components  of 
.9(N) must  satisfy a linear admissibil i ty condit ion 

( i )  y : ( N )  + . . .  + y , d N )  = z 

(the model can easily be ex tended  to the games wi thout  s ide-payments .  In 
tha t  case the treat ies have to ment ion the commodit ies  owned or exchanged by  
each part ic ipant) .  

An example of a non-transferable  game is the classical exchange of risks. 
Le t  the players be n insurance companies, of respective si tuations [Sj, F~(xj) 1, 
where S 1 is the initial surplus of company  j,  and F~(xj) the distr ibution funct ion 
of its total  claim amount .  Each company  evaluates  its s i tuat ion by an ut i l i ty  
funct ion 
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u/x j )  = uj  [&, Fj( . j ) ]  = Jr u j (S j -  xj) dFj(~j), 
o 

where u / x )  is the util i ty of a monetary  amount  x, with u}(x) > o and u~'(x) ~< o. 
The members of the pool will t ry  to improve their si tuations by concluding a 
t rea ty  of risk exchanges 

9 = [> (x~ ,  . . . ,  ~ , , )  . . . . .  y , , ( x ~ ,  . . . ,  ~) ] ,  

where yj(x~ . . . .  , x,~) is the amount  tha t  j has to pay  if the claims for the clif- 
ferent companies are respectively xz, . . . ,  x,~. 

Since all the claims must  be indemnified, the yj(x, ,  . . . ,  xn) must  satisfy the 
admissibility condition 

. 4 , , I  ] t 

the total  amount  of all claims. After tile signature of 9, the ut i l i ty of j becomes 

~J(9) = f ~J [ s j -  y~(x)] d F ( x ) ,  
0 

where O is the posit ive o r than t  of .E n and ./7(y) the n-d imensionM d is t r ibu t ion  
function of the clairns 2 = (xl . . . . .  x~). 

.9 is Pareto-optimal  if there is no .9' such tha t  U j ( f ' )  >1 U~ (.9) V j ,  with at 
least one strict inequality.  Borch (see for instance [1]) has demonst ra ted  tha t  
all the Pareto-optimal  treaties are characterized by the following relations. 

t t 

(2) kd. 9 [S$ - 39(x)] = k~u, [Sx - 3,~(X)] lej >i o g j .  

Let K =  {k~ . . . . .  le~}. The t rea ty  is unique for given K,  but  there usually 
exists an infinity of K satisfying (l ') and (2). 

I t  has been shown [5] tha t  this reinsurance marke t  is in fact a non-trans- 
ferable game and tha t  the problem of selecting an optimal set of constants k~ 
is identical to the determinat ion of tile value of the game. In [71 we have 
computed the Shapley value and the Nash-Lemaire value [6] of this game. 
Both values use the classical symmet ry  axiom. In the sequel, we shall extend 
axiomatical ly the lat ter  value to the non-symmetrical  case. We shall use four 
axionls. 

A x i o m  1 : L inear  invariance 

The solution is not affected by a linear t ransformat ion performed on the 
utilities of the players. 

Just i f icat ion:  Since utilities are only defined up to a linear t ransformation,  
it must  obviously be the case for the solution. 
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Axiom 2: Strong Pareto-optimality 

The solution depends on all the sub-treaties relative to all the sub-coalitions 
(with the exception of the sub-coalitions that form with probability zero--see 
section 4). Each sub-treaty (and the final treaty) must be Pareto-optimal and 
satisfy the admissibility condition. 

Justification: The axiom expresses the fact that, during a negotiation, the 
bargaining strength of a player depends on the terms he obtained during the 
preceding discussions; a player will get more from his partners if he has signed 
a favourable treaty in a sub-coalition. We thus authorize the formation of any 
coalition during the bargaining process. Each one may negotiate with a 
disjoint group in order to unify. During this partial bargain, we suppose that  
each coalition acts as a single player: no one has the right to disavow his 
signature and quit his coalition in order to negotiate separately. We also assume 
that  the grand coalition is formed step by  step; at each step two coalitions 
only merge, so that N is obtained after (.n- 1) steps 1). Since the power of a 
player depends on all the already signed contracts, they must influence the 
final payoff. Each sub-treaty must of course be Pareto-optimal in the cor- 
responding sub-game, and the admissibility condition must be satisfied. 

Axio*~ 3: I~depende.nce of irrelevant alternatives 

During each negotiation between two coalitions, exclusion from the prospect 
space of possible payoffs other than the solution and the disagreement t)oint 
(the utilities that  the players get in case they cannot reach an agreement) 
does not affect the solution. 

Justification: This axiom means that  the solution, which by axiom 2 must 
lie on the upper boundary of the prospect space, only depends on the shape of 
this boundary in its neighbourhood, and not on distant points. This expresses 
a structure property of the bargaining process : during the negotiations, the set 
of the alternatives likely to be selected progressively reduces, so that at the end 
of the discussion, the solution must only compete with very close points, and not 
with propositions already eliminated during the prior stages of the bargaining. 

Axiom 4: Partial symmetry 

If, during a negotiation between two disjoint groups, the prospect space is 
symmetrical, so must be the treaty signed. 

~) Those  b e h a v i o u r a l  h y p o t h e s e s  are n o t  ve ry  r e s t r i c t ive  since t h e  ax iom considers  
all t h e  g roup ing  possibi l i t ies .  For  ins tance ,  we p r o h i b i t  t he  s imu l t aneous  merg ing  of 
t h r e e  d i s jo in t  g roups  Ca, Cb, Cc B u t  t he  so lu t ion  will in p a r t i c u l a r  s t u d y  t he  g roup ing  
of Ca and  Co a t  one s tep  and  the  a d j u n c t i o n  of C,  d u r i n g  the  nex t  step.  The  two o t h e r  
cases (Ca and  C,  uni fy  f i rs t  t h e n  a b s o r b  C~, and  Cb and  Ce group  and  join Ca one s tep  
later)  will. also be considered.  I n  t he  same  fashion,  some schemes  of coa l i tmn  fo rming  
where  one p l aye r  re lna ins  i so la ted  ml t i l  t he  f inal  step, will i n t e r v e n e  in the  final t r ea ty .  
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Justification : The classical symmetry axiom is weakened, since we only en- 
force it for the sets of two players or groups of players. I t  implies that  the af- 
finities between the players do not affect the discussions between two coalitions, 
which consist of a tough haggling between two groups trying to take as much 
advantage as they can from the situation. The affinities will intervene in the 
kind of coalitions that tend to form, in the propensity that  some players have to 
start discussing with a particular group instead of another. In other words, 
the affinities influence tile choice of the groups that  enter negotiation, but not 
their negotiation itself. For example, the recent French political events demon- 
strate that  the fact that  the Communists and the Socialists have a strong 
affinity does not incite them to make concessions to each other: coalition 
forming and bargaining are two different things. 

Therefore, we shall separate the computation of the value of a game in two 
distinct parts : 

1. tile coalition forming procedure, which consists of the determination of 

a set of probabilities W = { Wc, u K~ V C c N, V C a c C, C a = C \Ca, C~t # ¢, 
Ca # ¢}, interpreted as "weights associated to orders of formation of the 

--"5, coalitions C = Ca U C~ ; 
2. the bargaining procedure, which attributes a payoff to each player, given 

the set W. 

3'  THE BARGAINING PROCEDURE:  EXISTENCE AND UNICITY THEOREM 

Let us denote ~(C) = ~(x, [ i ~ C) the treaty signed by a coalition C 

and U, (C) = U, [y, (C)J the utility i ~ C derives from this signature. 

Suppose that, at a given moment of the negotiation, a first group Ca of 
players has reached an agreement and signed a treaty p(Ca), allowing to each 
of its members an utility U,(Ca), while another group Cb (such that  Ca I'l Cb = 
¢) has concluded a treaty y(Cb), giving to each j a C~ an utility Uj(C~). Both 

groups meet in order to conclude a global t reaty p(Ca U Cb) (the symbol U" has 

a slightly different meaning than the usual reunion sign. Ca U Cb means "Ca 
joins Cd'. The • is placed to recall that  the result not only depends on the set 
Ca U Cb, but also on the manner in which this coalition was formed, i.e. on 

C,t and Cb). If both coalitions cannot agree on a treaty ~(Ca UCb), they 
necessarily return to the starting point of the negotiation, awarding to each 
player U,(Ca) (if i ~ Ca) or Uj(Cb) ( i f j  ~ Cb). For this reason, this point is called 
the disagreement point. 

Lermna : 

There exists one and only one t reaty satisfying the axioms. It  can be obtained 
by maximizing the expression 
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(3) n [u~(c~ uc~)  - UdCa)]. n [ u j ( c~  u c~) - ~:(cb)], 
IEC a t ~ C b 

providing each term of the product  is non-negative. 

P r o o f  

The demonstrat ion is a slight generalization of Nash's result [6]. Denote I tile 
number  of players of C~ (o < I < n) and L the cardinal i ty  of Cb (o < L 

n - I ) .  Number  the players in such a way tha t  the members of Ca occupy the 
indices I to I and the players of Cb the indices I +  J to L. The vector 

Od = [gl(Ca) . . . . .  U i ( C a )  , U i + i ( C b )  . . . . .  a i + g ( C b )  ] 

is the disagreement point of this negotiation. Let  + be the maximum of (3). 
is unique because of the convexi ty of ~¢° g c,. 
Suppose tha t  + is distinct from Oa (otherwise the problem is trivial since the 

prospect space consists of a single point). We can subject all the players' 
ut i l i ty functions to a linear t ransformation ,~, by changing their origins so as 
to carry 0 e  to ~7) = (o . . . . .  o) and their units to carry + to ~" = (l . . . .  , 1). Let 
~b° v Cb = "r(~C~ u c~) be the image of ~,c, u c~ by ~r. ~,  e Cb is convex. 4" is the 
unique point of tangency between ~b, u c'~ and the hyperboloid whose equation 
is 

I + L  

H U ~ =  I. 
i ' l  

~c. u c~ is even completely under  the hyperplane H,  of equation 
I + L  

U~ = I + L .  
i , . t  

y ' :  I ~ L  

In fact, if a point P e ~c'o u c~ was such tha t  U, > I + L, it would be 
l 1 

the same for any  point of the segment PC: by convexity.  Some of the points of 
I + L  

this segment would be inside the hyperboloid, with thus [I U, > 1, con- 
I + L  t 1 

t radict ing the fact tha t  d? ~ maximizes 1-I Ui. 
t 1 

Under Hi  we can construct a half hypersphere ~ around +~ with a radius 
sufficiently large as to include E" Consider first the game whose prospect . . C ~  U Cb" 

space is l imited by ~ and Hi. This game is symmetrical ,  and += is its solution 
by axioms 2 and 4- Axiom 3 allows us to withdraw all the points of ~ \ ~ °  u c~ 
without  al_tering the solution. Final ly  through axiom I we can perform the 
inverse t ransformat ion 

- ~T 

~c.  u c~ = ~ ~ (~co u c'~) 

and assert tha t  + = ,r -~ (t~ ~) is the optimal point. 
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Note that ,  as announced in the discussion of axiom 4, the negotiation 
between two groups of players is a "pure"  bargaining, i.e. not influenced by 
affinities between players. 

Theorem z 

To each set of probabilities W can be associated one and only one t rea ty  
.p(N) satisfying all the axioms. I t  can be obtained by the recursion. 

y,({,:}) = .,-, 

Io 
y,(N) = S w c °  0 ez y,(C~ 0 ~ )  

C a C  N 

ca.$ 

i e C  t 
o =  I C I  

V C z - t  < c  < n  

U~ = c\c~ 
i c e  

i =  l . . . . .  n. Ca = NICa, 

(4) 

where, at  each step, E Wc, v c ,  - 1 a n d W c ,  uc= > o, andyi(CaUC-~)  is 
C a (  6' 

obtained by maximizing (3), with the disagreement point 

U~(C,~) i e C~ 

c/c~) j ~ U~. 

Proof  

1. Existence: I t  is sufficient to verify that  2(N) satisfies all the axioms. 
This proof is s traightforward.  

2. Suppose that ,  for a given set {Wc° 0 ~},  there exist two different opti- 
mal solutions 2(N)  and 9'(N),  i.e. there exists at  least an i such tha t  
y,(N) ~ 34(N). 

We shall first show tha t  the two solutions must  differ in at  least a partial  

treaty.  In other words, it is iml)ossible tha t  y,(C~, 0 ~ )  = y;(C a ~" C--~) for 
all C~ c N and that  yi(N) ¢ y',(N). (4) expresses tha t  the partial  treaties 

y,(Ca U Ca) are summarized by a weighted ari thmetic mean. One could of 
course think of other parameters,  like the geometric or the quadrat ic  mean for 
instance, but the only parameter  satisfying the admissibility condition is the 
weighted ari thmetic mean 

r a C N  
L a @ ~  
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We shall now show that  the admissibility condition also implies that 
ld~c°0c. - W ~ . 0 N  Vi" It  is sufficient to prove it for n = 3 .  In this case, 
there are only three ways to form the grand coalition, which we shall note to 
simplify 

A = { 1 2 } U { 3  } 

= { ' 3 } 0 ( ~ }  

C = ( ~ 3 } U ( ~ } .  

Thus yl(N) = I,V~ y~(A) + I.V~ yl(B) + W~. y~(C) 

y2(N) = W~ y2(A) + I,V~ y2(B) + W~ y2(C) 

y3(g) = W~ y3(A) + W~ y3(B) + W~ y~(C). 

(1) allows us to replace y~(A) by z - y2(A) - ys(A), with similar relations 

for yl(B) and y~(C). We obtain 

y~(n) = W~ [z-  y2(A) - y3(A)] + l,V~Ez- y2(B) - y3(B)] + W~[z-  y2(C) - 

- y~(c)] 
y2(n) = I,V~ y2(A) + W~ y2(B) + I,V~ y2(C) 

y~(N) = W~ y~(A) + W~ y~(B) + W~ y~(C). 

Summing, and using (1), we get 

z = y2(A)(W~-I,V~) + ys(A)(I ,V~-W~) + y2 (B) (W~-W~)  + 

+ ya (B) (W~ -W~ )  + y2(C)(W~-I'VL) + ya(C)(W~-WL)  + 

+ w ~  + WLz + w ~ .  

Since the W's are the coefficients of a weighted arithmetic mean, 

W ~ + W ~ + W ~ .  = 1, a n d t h e s u m  

yz(A) (W~ - W~) + y2(B) (W~- W~) + y2(C) (14:~- W~) 

+ y3 (A) (W~-  l,V~)+ ya(B)(W~-I,V~) + y3(C)(W~,-I,V~) 

must be identically equal to zero, V y2 and ya. Thus W t = W ~ V i. 

So there exists a coalition C a c N such that y~(C a U~a) ~ Y~(Ca £rC--~). 
Since the solution of the maximization of (3) is unique, this result can only be 
explained by a difference of the disagreement points y¢(Ca) and y~(Ca). Sup- 
pose U, [y,(Ca) ~ < U¢ [y~(Ca)]. There exists a player j ~ C a such that  Uj [yj(Ca) ~ 
> U: lye(Ca) t, for otherwise p(Ca) would not be Pareto-optimal in the subgame 

Ice, ~(c,~), ~cJ. 
The same argument can be repeated iteratively for the coalition Ca" there 

exists a C b c C a such that  U~ [yt(Cb)] < U~ [y~(Cb) ]. j must also belong to C b 
t 

(or another player j '  such that  Uj, [yj, (Co) ~ > U~, [yj, (Cb)]), in fact, if j were 
a member of CalC ~, .y(Cb) would not be Pareto-optimal in [C b, v(C~), ~c~ as 

' and axiom 2 would be violated. 2'(Ca/Cb) in [C\aC b, v(C;), ~c. ~c~ 
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So we can present a finite succession of coalitions 

N~ C ~ 3 C ~  . . .  ~ C / ~  . . .  ~ CF 

such that, for all f < F: 

¢,j ~C:; 
/ u, b,dc:)] < [ydc:)l; 

v'j Eyj (c:)l > G: Eye(C:)]. 
The last term CF can only be the coalition formed by players i and j (other- 

wise we could have continued tile process). There exists thus two treaties 
f(CF) and 2'(CF), Pareto-optimal in [{ij}, v(C), ~{@' i.e. such that  

max {Ut[y~({i, j})] - U~[y~({i})l} • {Us[yj({i,j})] - Uj [yj({j})]} 

= max {U, [y;({i,j})] - U, b4({i})]} "{Uj [yj({i,j})] - Uj [Yj({J})I}. 

This contradicts the lemma, applied to the coalitions Ca = {i} and C~ = {j}. 
The solution is constructed by induction on the number of players of the 

coalitions: one must successively compute the value of all the two-player 
coalitions, then all the three-player sets . . . .  to end up finally with the grand 
coalition. The optimal treaty for a coalition C of c players is obtained by 
considering the set of its 2c-*- I (strict) sub-coalitions C~ for which there 
already exists a computed sub-treaty. For each Ca, one computes by (3) a 

treaty .9[Ca Lr (CICa)]. The utility granted to a player never diminishes when 
one or more partners are added to the coalition: (3) always provides a 

Us(Ca U c-~) greater or equal than Us(Ca). The higher his disagreement point, 
the higher the utility awarded to a player. The procedure provides 2 c-~-  1 
(generally) different partial treaties, which are summed up by a weighted 
arithmetic mean. The fact that  W~, 0 ~ does not depend on i allows us to 
interpret those weights as "probabilities associated to orders of formation of 
the coalitions". 

To sum up, the value concept takes into consideration all the possible 
orders of formation of the grand coalition, weighted by their respective prob- 
abilities; each player allies with other players or sets of players so that  after 
( ~ -  1) junctions N is formed and a treaty concluded. All the grouping pos- 
sibilities are considered, weighted, and account in the final solution. 

For ,n= 2, the value coincides with the unweighted value [6], the Nash 
solution [8] and the Shapley value [121. 

For 'n=3,  the value weights three different partial treaties 5[{12} U{3}], 

.9[{13} U{2}] and .9[{1} U {23} ]. Since the disagreement points are computed 
on the basis of coalitions of one or two persons, the partial treaties are the same 
as in the symmetrical value. The solution differs generally from the Shapley 
value. 
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For n > 3, however, the generalization is more than  just "adding weights" 
to the partial  treaties, since the disagreement points already take the affinities 
into account and favour the close partners. 

Nothing was said u I) to now as far as the determinat ion of the weights 
Wc= 0 b; is concerned. This will be the subject of the next  section. 

4" FORMALIZATION OF THE A F F I N I T Y  C ONC EPT:  THE COALITION I:ORMING 

P R O C E D U R E  

We suppose that  the affinity between two players can be expressed by a non- 
negative number,  d~j, representing the "dis tance"  (in a broad sense) between 
i and j :  the larger tile distance, the lesser the affinity between both players. 
dtj = coo means tha t  the an t ipa thy  1)etween them is so strong tha t  they  will 
never join together a sub-coalition 2). On the other hand, d~j = o implies tha t  
the coalition {i, j} will immediately form. This is a relatively uninteresting 
case, since it amounts  to the same thing to consider {i, j} as a single player. I t  
is therefore not restrictive to suppose that  the (symmetrical) matr ix  of the 
distances (the figures of the diagonal are irrelevant) does not contain more 
than one zero in each row or colunm (the reunion of three players in a single 
step is indeed not allowed, al though the model could be easily adapted to this 
case, by introducing as a first stage the merging of the three players with 
probabil i ty one). 

Define the "dis tance"  between two coalitions C~t and Cb by 

.X £ d,j 
t6Ca 16Cb 

dco,c~ = I C~ I I Co I" 

The value of all the two-player coalitions can easily be computed by (3). 
Suppose, by induction, tha t  we have already computed the solution for all the 
sets containing at most 0~-  l) players. I t  only remains to calculate the value 
of the grand coalition. 

A coalition configuration of order m (shortly a m-configuration) is a vector 

C~VIC~ = ~ a-Cb 
m 

C m =  (C1 . . . . .  C,,,) U C~ = N 
a . t  

C , , # ~  g a, 

-0) H o w e v e r ,  t h e  h y p o t h e s e s  of  t h e  mo( le l  i m p l y  t h a t  t h e y  will be  fo rced  to  c o o p e r a t e  
a t  t h e  f ina l  s t ep ,  s i n c e  t h e  gTand  c o a h t i o n  is b o u n d  to  e v e n t u a l l y  f o r m .  T h i s  is a con -  
s e q u e n c e  of  t h e  f a c t  t h a t  we r e q u i r e d  t h e  v a l u e  of a n - p e r s o n  g a m e ,  a v a l u e  t h a t  is u s e l e s s  
if we k n o w  in a d v a n c e  t h a t  A r will n e v e r  fo rm.  B u t ,  a s  o u r  t h e o r y  a lso  p r o v i d e s  t h e  
v a l u e  of all  t h e  ( n - - l ) - p e r s o n  s u b g a m e s ,  a s  well  a s  t h e  p r o b a b i l i t i e s  of  f o r m a t i o n  of 
e a c h  s u b c o a l i t l o n ,  no  m o d t f t c a t i o n  is r e q u i r e d  w h e n  o n e  (or more )  o f  t h e  d i s t a n c e s  is 
i n f in i t e .  
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indicat ing the coalitions formed af ter  step (n--m).  During a negotiat ion,  m 
successively takes all the integer  values, decreasing from n to ~. At the be- 
ginning, n = m, and C n = ({,}, {2} . . . . .  {n}). After  the final junction,  m =  1 and 
C t =  ({1 . . .  n}). For  I < m < n there exists several different coalition con- 
figurations, denoted by C~ ~, C~ ~ . . . . .  Let  M m be the set of all the m-config- 
urations.  We shall denote  i ~ j  if i and j belong to the same coalition of C m, 
i @ j if they  do not. 

Each  m-configuration C m generates a number  of descendants  C "z-t obta ined  
by  joining two coalitions of C% Let  Dt  be the set of all the descendants  of C m. 
Of course, two different m-configurat ions can produce the same descendant .  
Le t  I,Vc,, be the probabi l i ty  tha t  C m forms during the procedure,  and I, Vc=-, t c ~ 
the (conditional) probabi l i ty  tha t  C m generates C m-*. 

Natura l ly ,  this probabi l i ty  is zero if C m-~ cannot  be a desceadant  of C m. 
\Ve must  associate to each distance mat r ix  D a set W of probabili t ies 

I'Ve, O c-~, defined V C o N ,  V C~ c C  ~ - C a  = C\Ca, C a # Q ,  Ca#q~. 

D ={do} (Woo0<} 
Of course not  any  rule R that  associates a set W to a mat r ix  D is suitable for 

our  problem. A rule will be said coherent if it satisfies the following conditions. 

Condit ion I (Rules o f  probabil i ty  calculus) 

1.a. I,Ve,,, >~ o V C m 

1.b. ~ Wo,,  = 1 m =  l . . . . .  n 
M m 

1.c. Z W c ~ - , t c  . . . .  1 V C  m 
D 1 

1.d. W c . . . . .  X W e , ..... { c,* " Wc ~  V C m-1 
M m  

Condit ion 2 (Relation between aff ini t ies and probabilities) 

2.a. Wc, .  is a non-increasing function of d o 

Wc, ,  is a non-decreasing funct ion of d~ 

2.b. lim W c . . . .  l i ~ j  
gO---+O 

2.c. lira W c ~  = o V C m, i,,~j 

rl°~ Vm D-- 1 < m < n 

g C"~ D- i ~ j  

vc,,>i j 

Condit ion 3 (Possible s y m m e t r y  o f  two players)  

3. If  djt = d u V l, then Wc~ = Wc~, where C~ ~ is obta ined  from C.~' by 

commut ing  i and j.  
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Condi t ion 4 (Relations between successive configurations) 

. If  W c ~  > l'Vc~, then  l ,Vc~-, > Wc~, - ,  V m ,  if czm -~ is a descendant  

of C~ ~ and if -yCm-~ is the descendant  of C~ ~ obta ined through the same 
adjunct ion.  

Condit ion 5 (Relalio~as between configuralion probabili t ies and weights) 

5. Woo ir W, = I'Ve', V C a, where C ~ = (Ca, Ca). 

Condilior~ 6 (Invaria~,ce wi th  respect to a s imi lar i ty )  

6, W is not  affected by  a mult ipl icat ion of the distances by a positive 
cons tant :  if d;  = kd 0 V i i ,  W ' =  W.  

Note  tha t  any  coherent  rule determines a set lV whose cardinal i ty  exceeds 
by  far (for n >  2) the number  of distances. I t  can be shown tha t  D ]  = 

1) 
- -  - l a n d ] W I  = Z (~) (2 ' - '  - 2). 

2 ,_, 

We obtain the following numbers  for 3 ~< n <- to. 

N u m b e r  of N u m b e r  of 
*z d i s t a n c e s  p r oba b i l i t i e s  

3 2 2 

4 5 14 
5 9 64 
6 14 244 
7 20 846 
8 27 2,778 
9 35 8,828 

lo 44 27,488 

There  exists few coherent  rules. In  the sequel, we shall use the following 

1 

d 2 
Ca, Cb 

I417C~-~ I C = = 

d 2 
,. C¢, C~ 

rule 

w he r e C  m-~ = (C~, . . ., Ca U Cb, . . ., Cm) is the  d e s c e n d a n t  of C m = (Ct, . . . ,  
Ca . . . .  , Ct, . . . .  , Cr,). We thus suppose the a t t rac t ion  between two coalitions 
inversely propor t ional  to the square of their  distance. 
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5" RESOLUTION SCHEME OF ALL THREE-PERSON GAMES 

1. Suppose three players, 1, 2 and 3, of initial utilities Ux ({1}), U2 ({2}) and 
U~ ({3}), and of affinities defined by the set (d~,o, d~3, d2a). For the sake of 
simplicity, we shall in the sequel omit the braces, e.g. write 12 instead of 
{ 1 2 } .  

2. The maximizat ion of the products  

W~ 0 2 ) -  0"~ (1)~ • W~ ( 1 2 ) -  U~ (2)] 
Icr~ (13) - 0"~ (~)1 • W ~  (~3) - 0"~ (3)~ 
W~ (23) - ~ (2)1 • W~ ( 2 3 ) -  ~ (3)J 

provides the treaties 

:~(12) = [y~ (i2) ,  y~ (12)1 

.9(23) = [y2 (23), y~ (23)J. 

3- Grand coalition 

m Configurat ion Probabi l i ty  

3 (1 ,2 ,3)  

2 (12, 3) t'V~,3 = A/d~, 
1 

A ' (13, 2) I'V13,2 = / dx~  where A = 
l 1 1 - -  + +- -~-  (,,  23) W,,~3 = A/at ,  d;~ 7~ d,, 

m Configurat ion Probabi l i ty  T rea ty  Obta ined  by maximiz ing  

1 (t23) I'V12ba = W1~,a .9(12 U3) 

l,V~a/,2 = W13,2 .5(13 U2) 

[Ul(123)--Ul(12)]  . [U2(123)--U2(12)] . 
[ U3(, 23 ) - -  U3(3)] 

[U1( ,23) - -  Ul(13)] • [U2(123)--  U~(2)] 
[U3(123)-- U,(13)] 

[Ul(123)--r . r , ( , )]  . [U2(123)--U~(23)] . 
[U~( , 2 3 ) - -  8,(23)] 

Example I The constant-sum three-person game. 

The characteristic function of this game is 

'v(~) = V ( I )  = v(2)  = v(3)  = o 

v(12) = v(13) = v(23) = v(123) = 1. 
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S" 

Uti l i t ies  

1. In i t i a l  ut i l i t ies  ( .o, .o, .o 

2. 2 -p l aye r  coa l i t ions  

(~ U 2) ( .5, .5, .o 

(l U 3) ( .5, .o, .5 

(2 U 3) ( .o,  .5,  .5 

3. G r a n d  coal i t ion.  D i s t a n c e s :  dr ,  = 1, d 1 3  = 2, d23 = 2.5 

F o r l n a t m n  of N 

(12U3) 
(13/.f2) 
(l ~'23) 

P robab i l i t y  

l'ITl2tr:l = I'Vi2,.a = .7092 (.5, .5, .o ) 
1'111~02 = I'V13,., = '1773 (.5, .o, -5 ) 
1'V~023 = I,V~,23 = . 1135 (.o, .5, .5 ) 

Value (.4433, .4113, .1454) 

v(12) = v0B)  = v 0 2 3 )  = ~. 

Using  the  s a m e  d i s t ances  as in e x a m p l e  1, we o b t a i n  

F o r m a t i o n  of N P r o b a b i h t y  

(12U3) 
(1302) 
( 1 U23) 

U t l h t y  

I'V1@3 = .7o92 (.5, .5, .o ) 
I'Vi@~ = .z773 ( 5, .0, .5 ) 
I'Vt/b.2a = .1135 (.3333, '3333, .3333) 

Value  ( .48 t l ,  .3924 , .1265} 

W e  not ice  t h a t  1 a n d  2 t a k e  a big a d v a n t a g e  of the i r  v ic in i ty .  Besides ,  the  
so lu t ion  conve rges  t o w a r d s  (.5, .5, .o) as  d12 a p p r o a c h e s  o. 1 becomes  a l i t t le  
m o r e  t h a n  2 because  he  is s l igh t ly  n e a r e r  of 3. 

Example 2. A pa i r  of shoes.  

"l  owns  a left  shoe. 2 a n d  3 are  each  in possess ion  of a r igh t  shoe. T h e  pa i r  can  
be  sold for  I uni t .  H o w  m u c h  is I en t i t l ed  to ?" This  e x e m p l e  is f a m o u s  in g a m e  
t h e o r y  because  i m p o r t a n t  concep t s  l ike the  core,  the  b a r g a i n i n g  set,  the  kerne l  
and  the  nuc leo lus  c o m p l e t e l y  fail to c a t ch  the  t h r e a t  poss ibi l i t ies  of coa l i t ion  
(23) a n d  lead  to the  p a r a d o x i c a l  a l l o t m e n t  (1,o,o). Moreover ,  the  so lu t ion  is the  
s a m e  if t he re  are  999 left  shoes a n d  1,ooo r igh t  shoes :  the  s i tua t ion  b e c o m e s  
n e a r l y  s y m m e t r i c a l  a n d  the  owner s  of r igh t  shoes  still get  no th ing .  T h e  S h a p i e y  
va lue ,  (~, ~, ~), is c e r t a i n l y  m o r e  in tu i t ive ,  a l t h o u g h  it s eems  a b i t  too  gene rous  
t o w a r d s  1. Our  u n w e i g h t e d  va lue  is (~, ~s, '~ ~). 

T h e  c h a r a c t e r i s t i c  func t ion  is 

v(¢) = v(I)  = v(2) = v(3) = v(23) = o 
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One notices tha t  2 makes  the  most  out of his fr iendship with ~. The  solution 
converges  towards  (.5, -5, o) as all2 ~ o. The  share of 1, a lways  included in the 
in terval  [1/3, 1/2], diminishes when 2 and  3 feel more  inclined to coalize before 
enter ing discussion with him. For  the  set  (&o = 2, d,a = 2.5, &a = I), for 

instance,  the  solution is (.38 1 8, .3252, .293O ). I t  tends  to ( t/3, t/3, 1/3) as d2a -+  o. 

Example 3. The re insurance model.  

As Gerber  [3], [4~ has shown tha t  exponent ia l  u t i l i ty  funct ions possess ve ry  
desirable proper t ies  for insurers, we shall suppose  t ha t  

I 
Uj(X) = ~j  ( 1 - -  e-a, '~) j =  1 . . . .  , ~,. 

Solving equat ions  (2), t ak ing  into account  the admiss ibi l i ty  condi t ion (1'), 
leads to the  solution 

yj(e) = qjz+yj(o), 
where 

and  

1 

a/ 
q J - -  

n £1 
a~ 

It..l 

- --  Log • yj(o) = Sj qj S, + a, kj/  

This is a famil iar  quo ta -share  t rea ty ,  with quotas  qj and  s ide -paymen t s  

yj(o). As qj does not  depend on tile cons tan ts  hi, the bargain ing procedure  will 
only have  to de te rmine  the a m o u n t  of the compensa t ions  yj(o). 

Suppose t h a t  the three companies  only differ by  their  a t t i t ude  towards  risk : 
al  = .3, ao. = .6, aa = .1, while the other  pa r ame te r s  are equal:  the reserves 
equal  to lO, and the to ta l  claim am oun t s  are F-dis t r ibuted ,  with a mean  1.2 
and  a var iance  1.25. 

1. 

The initial  utilities are then  

Ul(x,) = 3.0778 
U2(x2) = 1.6539 
Ua(x~) = 5.8242. 

The t reat ies  arising f rom the merging  of two companies  are 

{I} U{2} '  Quotas  q~ = 2/3 Side p a y m e n t  yl(o) = - o . 6 7 7 8  

q2 = l/3 
Util i t ies af ter  re insurance Ui [..9(12)1 = 3.1o14 

U-. [..9(12)] = 1.656o; 

I4 
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{1} 8(3}: 2. Quotas qt = 1/4 Side p a y m e n t  y~(o) = o.7111 

qa = 3/4 
Utilities af ter  reinsurance Ui [.?(13)1 = 3.0856 

Us[.?(~3)j = 5.8676; 

3. {2} ~r{3 }" Quotas  q2 = .1429 S idcpaymen ty2 (o )  = - 1.218o 
q3 = .8571 

Utilities af ter  reinsurance U~ [2(23)] = 1.656o 

Us[lP(23)I = 5.9599. 

Adding the th i rd  player  leads to quotas  qt = 2/9, q2 = 1/9, q3 = 2/3. 3, 
being the least risk averse, takes advantage  of this to a t t rac t  a large propor t ion  
of its par tners '  portfolios. As a compensat ion for its increased liabilities, it will 
na tura l ly  demand  a high fixed sum. We obtain the following side paymen t s  

and utilities. 

Side paymen t s  Utilit ies 

1. {12} U{3} y~(o) = .2127 Ut(~p) = 3.1o65 

y2(o) = l.O844 U2(.9) = 1.6565 
ya(o) = - 1.2971 U3(i)  = 5.8565 

2. {13} ~r{2} yl(o) = .2882 UlO~) = 3.1o13 
y2(o) = 1.2576 U2(.9) = 1.6554 
y3(o) = - 1.5458 Us(9) = 5-9583 

3. {1} Lr(23} yl(o) = .5356 U i ~ )  = 3.o834 
y2(o) = 1.o89o U2(2) = 1.6565 

y~(o) = - 1.6264 Us( i )  = 5.9897. 

suppose tha t  1 and 3 are the closest friends, i.e. 
d23 = 2.5), the final t r e a ty  is 

y~(o) = .3o29 U~(..9) 
y2(o) = 1.2o78 U2(2) 
ya(o) = - 1.51o7 Ua(20) 

The last company  to enter  the bargaining has a solid disadvantage.  
Wi th  the set of distances D1 = (d12 = 1, &s = 2, d23 = 2.5), the final solution is 

yl(o) = .2627 U~(_9) = 3.1o31 
y2(o) = 1.1156 U2~)  = 1.6565 

y3(o) = - 1.3783 U3~)  = 5.8897 

1 and 2 take advan tage  of their  vicini ty  to pay  as less as possible to 3. If  we 
tha t  Do, = ( d n = 2 ,  d i s = l ,  

= 3.1oo3 

= 1.6557 
= 5.9438. 

As the initial utilities correspond to side paymen t s  of (yl(o) = .6o96, 
y2(o) = 1.4659, y a ( o ) =  - 1 . 2 2 o l )  the final solution achieves the same 
ut i l i ty  increase as a gain in capital  of (.3469, .35o3, .1582 ) for the set D1, and of 

(.3o67, .2581, .29o6 ) for D2. 
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6. RESOLUTION SClIEME OF ALL FOUR-PERSON GAMES 

I. Treaties for all the sub-sets of two or three players: see § 5. 
2. Trea ty  for the grand coalition. Distances (&2, &, ,  &a, d2a, d,~, d,~). 
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m C o n f i g u r a t i o n  P r o b a b i l i t y  

( 1 , 2 , 3 , 4 )  
(t2,  3, 4) W,a,~,4 = A/d~, 
(~3, 2, 4) l, Vta,=.4 = A/at, 

(~4, 2, 3) W,4,~,a = A/dr, 

( ' ,  23, 4) W,.,a.4 = AidS, 
( ' .  24. 3) I'V,.=a.a = Aid',, 

( , .  2, 34) I,Vt,o.,s~ = A/d], 

w i t h  A = 

1 

1 1 l 1 1 l 

dh + ~  + dh + ~ + + -  - -  - -  d , ,  ~ dh 

m P a r e n t  D e s c e n d a n t  P r o b a b i l i t y  

(12. 3 .4 )  (123.4)  I'V~=3.41~2.a.4 = B/d~t.a wi th  B = 
(124, 3) Wx~4,a,1...,a,a=l~/d~,,, ( I I l )  - t  
(12. 34) Wxa.ad12.a.* = l?/d~, d~..---'~ + dlt..----~ + da';i~ 

(13. 2.4) (,23.4) w,,,.,l,~.=., = c/d].., w i th  c = 

( ' 34 ,  2) Wt34.~lla.~,4 = / d  . . . .  I 1 

d,,,, ~ d,, (13, 24) W~a,2,tl~a,:,4 = C/d~, ~ + + 
(14, 2, 3) (124, 3) l'Vla4.alt4.a.3 = DidO,,. w i t h  D = 

( , 3 4 . 2 )  I'V,~,~,,,.~.~ = D / d : , , .  . ( l_;i - -  + t + 7¢-t)- '  
( ' 4 . 2 3 )  l.Vm:alt4.~., = D/dE. d .... ~ d.. 

( ' .  23. 4) (123. 4) I'Vlza.4ll.:~.4 = Elder.8 w i t h  12 = 

( ' , 2 3 4 )  Wt,aa,],.23., = E/d~., ( , "~--- + 1 + "5i-1)-' 
( '4 ,  23) W,4,~.a[,,,a,4 = E/d',, d,,,, ~c,,,, dr, 

( ' ,  24, 3) ( ' 24 ,  3) W ~ , ~ l , . ~ , a  = F/dt~.,, w i t h  .F = 

( , ,  234 ) I , V ,  234[1 24 3 = / d t~ , ,  l l 1 

(13, 24) lVt~.=alx.=4.~ = F/d~t~ ~ + - -  + 

( 1 ,  2, 34) (I ,  234) Wa.=a4lt.a,a4 = G/d,".~, w i t h G  = ( ,)' (134, 2) |~2"~a4,2]1,=,=4 = G/d~,,, 1 + 1 + 
1,34 1,$4 (12, 34) W**,ad,,~,a4 = G/dr, ~ ~ 

'm C o n f i g u r a t i o n  T r e a t y  

wl0.~.4 = A /ah  B/a;,,, + A/dh  C / d k ,  + A/a;,  E / d L ,  = W1=3,~ 
Wl,4,3 = A/dh  B/dh.,  + A/dh  D/d~,,, + A/d,", F/d;,~, = W,=,,~ 
Wta4,, = A/d~ C/d~3., + A/d~, D/d~,., + A/d], G/d,".,, = W~a4., 
Wa.2a4 = A/d]. E/at,., + A/dl,  lr/d',,.~ + A/d], G/d~.,, = [V~.234 
W,,,a4 = A/d], B/d~, + A/d], G/d~, = W,=i~a4 
w,~,=4 = A/a',.. C/all, + AlaL FId~, = W,~>.4 
W,4.,s = A/d~, D/d~, + A/dl~ E/d',, = IV,sO2, 

.;9(, 23 U4) 
y(,24 03) 
Y(,34~2) 
9(1 U234) 
y(12034) 
5(13U24)  
5 (14U23)  
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Coa l i t ion  f o r l n a t i o n  

123 0 4 1"V123,4 

124U3 l'Vlza, a 

t 3 4 0 2  l'Vx~4,z 

1 U234 l,V~,=3a 

12 U34 1'V~2,~4 

t3U24 l,V~3,~ 
14U23 l'l/'la,2a 

Example 4. The homogeneous weighted major i ty  game (3 ; 2, l, 1, 1)h. 

This four-person game, a simplification of the game "Me and my  Aun t "  was 
studied by Owen [9] in his generalization of the Shapley value. The strongest 
player, l, possesses two votes, while each of his opponents has only one. As 
three votes are required to win the game, the only winning coalitions are 

(i) 1 and one, two or all three of his partners,  
(ii) 234. 

The game is however complicated 1)y the fact tha t  players 1 and 2 are 
parents  ; in fact, 1 is 2's aunt.  Since we only want  to s tudy  the influence of this 
relationship, we can set d~2 = 1 and all tile other distances equal to 2. 

W e i g h t  U t i l i t y  

= .2527 (.4722, .3889, .1389, .o ) 

= .2527 (.4722, .3889, o , .1389) 

= .0774 (.4444, .o , 2778, .2778 ) 

= .0774 (.o , .3333, .3333, .3333) 
= .2222 (.5 , .5 , .o , .o } 

= . 0 5 8 8  (.5 , .o .5 .o  ) 

= . o 5 8 8  _(.5 _ , _  .o : z o  : _ 5 _ _ )  

V a l u e  (.443 o, -3334, .11t8 ,  . t t t 8 )  

The solution converges towards (-5 .5 , .o , .o ) 
when dr2 ~ o. Owen's modified version of Shapley's  value tends to (2/3, 1/3, 
o, o, o) in this case (see discussion of § 7). 

7" A F IVE-PERSON GAME 

Example 5. Me and nay Aunt.  

This is the original game introduced by Davis and Maschler, perhaps the most 
celebrated game of the theory (see [2] for an interesting discussion of the game). 
I t  is in fact the homogeneous weighted major i ty  game (4; 3, l, I, 1, 1)n with the 
addition tha t  player 1 (my aunt) and player 2 (me) " in principle" agree to form 
a coalition. 

The Shapley value is 
The kernel, the nucleolus and the 
Nash-Lemaire value agree on a 
division proportional to the weights = 

(.6, .1, .1, .1, .1 ) 

(317, 117, #7, l/7, 117 ) 

(.4286, .1428, .1428, .1428, .t428) 

Most of tile discussions among the game theorists in fact center on the words 
"in principle":  tile problem is phrased in an asymmetr ic  fashion, whereas it is 
symmetr ic  in terms of payoffs to coalitions. One way to capture into the model 
the preferences between l and z is to introduce some external feature, like our 
"affinit ies",  independent ly  of the characteristic function. 
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The computa t ion  of the weighted value, assuming tha t  d12 = 1 and d,j = 2 
V (ij) ~ (12) becomes rather  lengthy. The solution is 

(.4472, .2849, .0893, .o893, .o893) 

and favour the nephew more than  his aunt.  The payoff  vector converges 
towards (.5, .5, .o, .o, .o) when d12--~ o, a division tha t  we feel more intui t ive 
than Owen's limiting value (.75, .25, .o, .o, .o). As a ma t t e r  of fact, we think 
that ,  if 2 knows tha t  his aunt  feels compelled to agree with him and tha t  the 
other players are consequently irrelevant, he should be able to "ex t r ac t "  {- 
from her. If the blood ties are strong enough, no other partnership is thinkable,  
and any threat  of the aunt  to negotiate with somebody else will not  be credible : 
the a symmet ry  between t azld 2 disappears and the equal division seems the 
only fair payoff. 

Remark  tha t  the limit value does not depend on the part icular  choice of the 

rule R. 
Note tha t  the bargaining set for the configuration (12,345) grants  player t a 

payoff  in the interval [.5 ° .75] (it of course does not introduce any consanguini ty 
in the problem). Our value thus stands at one end of this interval (the more 
generous towards the weaker player), Owen's generalization at the other end. 

The different concepts of value a t t empt  to be good predictors of the actual 
outcomes of negotiations. I t  is thus  always interesting to compare the values 
with experimental  data. "Me and nay A u n t "  has been effectively played 12 
times under  the direction of Selten and Schuster [11] (no preference relationship 
was introduced in the experiments). The game ended 8 times with a coalition 
between l and 2, with a payoff to 1 always inferior than  .75. The division 
(.75, .25, .o, .o, .o) appeared twice during bargaining, bu t  the stronger player 
was never able to protect his share and the coalition broke off. The average 
payoff  was .4668 to I, .t333 to the other players, a division tha t  seems con- 
sistent with the predictions of the kernel and our unweighted value. 

The facts tha t :  

(i) the average gain of 1 was well under  the figure predicted by the Shapley 
value ; 

(ii) even without  affinities, t was never able to force a gain of -75, 
natura l ly  corroborates the idea tha t  the Shapley value (or modified value) 

seems to be too generous towards the stronger players, by overlooking the 
threat  possibilities of the weaker players. 

I t  can besides be shown that ,  for n > 2, our value will always award more to 
the weaker players than  Shapley's value. I t  is due to the fact that ,  if one 
accepts Shapley's  axioms, the pivotal player becomes all of his admission 
value, while the axioms of § 2 have the effects by (3) of sharing this quan t i ty  
between the members of the coalition according to their respective strengths. 
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OPTIMAL CLAIM DECISIONS FOR A BONUS-MALUS 
SYSTEM: A CONTINUOUS APPROACH* 

NELSON D E  PRIL 

1. INTRODUCTION 

For the premium calculation the insurer will split up his collectivity of risks 
into risk groups which are homogeneous with respect to some directly observable 
risk factors. All risks of such a risk group will be charged the same base pre- 
mium. But it is clear that  by such an a priori classification not all determined 
factors can be taken into consideration, so that  there will still remain accident 
proneness differentials within a risk group. Since these differentials will be 
reflected in the course of time by the claim experience of each risk, the in- 
surer can come to a fair tarification by adjusting, each period, the base pre- 
mium according to the individual claim experience of the risk. Such a system 
in which earlier neglected risk factors are taken into account a posterioli 
is an individual experience rating system. Our main interest goes to the 
following side-effect of experience rating: since an unfavourable claim ex- 
perience results in a premium increase, an experience rated policyholder is 
stimulated to self-insure small damages. This phenomenon is well know in 
connection with bonus-malus systems in motor-car insurance, which explains 

why it is called "bonus-hunger". 
In the present paper a continuous time model for the bonus-malus system 

is set up which takes into account this hunger for bonus. An insured causing 
an accident will decide according to a certain decision rule whether to file a 
claim with his insurance company. The relevant information that  he needs to 
make this decision is: his current risk class, the number of claims he has 
already filed during that period and the moment at which the decision is to 
be made. The decision of an insured causing at time t of period n an accident 
which amounts to L, can thus be thought of as being based on a decision rule 
of the following general form 

[ > 0 claim 
L - L ~ ( i , k , t )  1 

I ~< o do not claim 

with Ln (i, k, t) the anaount that  the actual accident must exceed in order to 
justify the filing of a claim, if the insured is at time t of period n in risk class i 
and has already filed k claims. The determination of the critical claim size 

* An earlier version of this  pape r  was p resen ted  a t  the  14th ASTIN Colloquium, 
Taormina ,  October  1978. 
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Lr~ (i, k, t) should be made on economic grounds. Typical  non-opt imal  critical 
claim sizes are some positive constant  or the first year  difference between the 
insurance premiums for filing and not filing a claim. The opt imal  value of 
L~ (i, k, t) is clearly the one tha t  minimizes the discounted expectat ion of the 
total  fu ture  cost ((.premiums and self-defrayed claims) of the policyholder. 

The problem of determining the opt imal  critical claim size was tackled in 
several papers  under  different restr ict ing assumptions.  In some of them an 
experience rat ing me thod  is considered which avoids difficulties appearing by  
the general bonus-malus sys tem;  e.g. in DE LEVE and WEEDA 096S) and 
\VEEDA (1975) a pure bonus system is considered in which the policyholder  
is classified according to the number  of claimfree years since the last claim, 
so tha t  the decision to file or not  to file a claim exists only if no claim has 
been made  during the same period. In other  papers  the general model  in 
which the decision is to be taken is not  satisfying; e.g. in the model of LES~AIRE 
(1976-77) a policyholder  remains always insured which leads to a critical 
claim size tha t  is independent  of the period in which the accident takes place. 
Final ly  there are papers  in which restrictions are made on the form of the 
decision rule itself; e.g. MARTIX-L6F (1973) supposes tha t  the decision whether  
to file a claim has to be made at the end of the insurance period. 

The most general approach to this problem was given by HAEHLING YON 
LANZENAUI~R (1974) , who considers a discrete t ime model and deterlnines the 
opt imal  critical claim size by  dynamic  programming.  However  his formulat ion 
seems con t rad ic to ry  since he takes on the one side tha t  the number  of accidents 
is Poisson dis t r ibuted and on the other  side that  in a s h o r t - - b u t  f in i t e - - t ime  
interval  no more than one accident can occur. Wi th  a cont inuous model this 
problem will be avoided.  

2 .  D E S C R I P T I O N  O F  T H E  M O D E L  

We consider a risk group in which the accident  proneness of a risk is represented 
by  a risk pa ramete r  X which is constant  in time. We assume tha t  the risks 
are independent  so tha t  we can restrict  ourselves to the discussion of a single 
risk. We take a risk X and assume tha t  the number  of accidents in each t ime 
interval  of length t is Poisson dis t r ibuted with mean X/. Fu r the r  we int roduce 
the following notat ions:  

fn  (l) densi ty  funct ion of a claim amount  in period n. 
.Fn (l) the corresponding distr ibution function. 
wn probabi l i ty  tha t  the risk remains insured for the period n if it was 

insured for the period n -  1. For  the first period we have w~ = l, and 
if we introduce a last period N af ter  which each risk has left the system 
with cer ta inty,  we have w2v+~ = o. 
force of interest.  
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We assurne tha t  the tar i f icat ion in the risk group is based on a bonus-  
lnalus sys tem tha t  is de te rmined  in the following way. 

- -  The length of an insurance period is 1. 
- -  Tim n u m b e r  of classes in J .  
- -  The class in which a risk is placed dur ing the first period in the class s. 
- -  The p r e m i u m  tha t  a risk of class j has  to p a y  at  the beginning of period n 

to be insured for this period is b,~ (j) ( j  = l . . . . .  J ;  ~l, = 1 . . . . .  N) .  
- -  The t rans i t ion rules are given in the form of probabi l i t ies  tij (k) (i, j =  

l . . . . .  J ;  k =  o, J . . . .  ) where t,j ( k )=  l if a risk of class i moves  to class j 
when k claims were filed in the past  period, and l , . / (k)= o if such a risk 
goes to a class different  f rom j.  In order  tha t  the t rans i t ion rules be com- 
plete and  free of cont radic t ions  we mus t  have:  for each (i, k) there is one 
and  only o n e j  so t ha t  hj (k )=  t. 

By  convent ion  the classes are n u m b e r e d  so tha t  the highest  p r e m i u m  

corresponds to the class J .  Then we have in a reasonable  sys tem tha t  hl (k )=  
h f ( k ' ) =  l, with h > k ' ,  implies j>~j ' .  By definit ion we call character is t ic  
claim n u m b e r  of a class i the minilnal  n u m b e r  of filed claims tha t  makes  tha t  
a risk of this class will go to the highest  class f for the following period. The 
character is t ic  claim number s  Ki  are thus  de te rmined  by  

o for k = o . . . . .  1~5~ - t 

(2) ha(le) = ~ 1 f o r t ~ = I q ,  I q + l  . . . .  

3. THe: EXPEGTATION OF TIIIL TOTAL COST FOIl TIll?. POL1CYIfOLDER 

We consider a risk X who decides whether  to file a claim according to a given 
decision rule of the form (1), where L~ (i, h, t) is cont inuous  in o ~< t < 1. Le t  
A u (i, k, t) represent  the d iscounted expec ta t ion  of all fu ture  cost (prenl iums 
and self-defrayed claims) if the risk is cur ren t ly  at  t ime l of period n, belongs to 
risk class i, and  has a l ready  filed h claims tha t  period. According to the assump-  
tion tha t  the number  of claims is Poisson dis t r ibuted,  we have  in a (short) t ime 
in te rva l  of length At t ha t  

./I~ (i,]e,t) = ( t - - X A t )  e -aat A ~  (i,]e,t + At) 

+ X A t l # ~ , [ Z . , , ( i , k , t + § ) J { e  -a§ f l f n I l l l ~ < L ~ , ( i , k , t + § ) ] d l  
o 

+ ~- '~ '  A,, (i,k.~+~xt)} + > a t { ~ -  I~,, [L,, (,:,<t + ~')]} e -''~' A,, (.i,/~ + ~.t + a t )  

+ o (at) 

where o < §, § ' <  A/. H e r e b y  o (At) denotes  a funct ion f (&t) for which l im 
f (at) ~ o  

- -  O .  
& t  
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Dividing by  At, we have 

An (i ,k , t  + At) - An  (i,k,t) 

+ X{1 -Yn  [Ln ( i , k , t+  §)]} e -~a* An ( i , k , t+A t )  

-- ~ , . { 1 - V  n EL,, ( i ,k ,~+  §')2} e -$At An ( i , k +  l , t + ~ t )  

L.(,.~.t ~ §) 

o 
- Ze -~§ _j l f , ,  (t) dl  - 

A t  
0 

and by lett ing At- > o, we obtain 

dA,~ (i, k, t) 
= 8A  ~ (i, h, t) + X { t - V ~  [ L ~  (i, k, t)]  } [A  ~ (i, k, t) - dt 

(3) 
- x I Zf (Z) dZ 

0 

Boundary  conditions Rrt' flmnd by considering the left-hand limit of 
A ~ (i, k, l) at t = 1. 

. !  

(4 a) { A n ( i , k ,  1)=zv,**l X [ b ~ z + l ( j ) + A n + ~ ( y , o , o ) ; h j ( k ) i f n = l  . . . . .  N - 1  
] I t 

(4b) I A ~, (i, k, 1) = o 

In (4a) we have taken into account the premium for the period n + t of the 
unique class j determined by the class i and the number  of claims k filed 
during period n. By means of the equations (3) and (4) every An (i,k,t) can 
be determined recursively start ing with A x  (i,k, 1 ) = o  for each (i,k). The 
recurrence differential equation (3) determines the evolution of A n  (i,k,t) 
through period n and the formula (4 a) gives the relation between the A n (i, k, t) 
for consecutive periods. 

4" T H E  O P T I M A L  C R I T I C A L  C L A I M  S I Z E  

A risk causing at  t ime t of period n an accident which amounts  to L has the 
disposal of two strategies. When he does not file a claim the present value 
at  the moment  of the accident of the expectat ion of his total  cost is L + 
A n  (/,k,t), where i is his current risk class and h is the number  of claims he 
has already filed tha t  period. \Vhen he files a claim the expectation of his 
total  cost is An ( i , k+  1,t). By definition the risk will make an optimal claim 
decision if the expectat ion of his total  cost is minimized as a result of his 
decision making. The optima! critical claim size is thus 

(5) L~ ( i , k , t ) = A n  (i,I~ + 1, t ) - A n  (i,k,t) 
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According to (3), derivation gives 

dL,~ (i, k, t) 
- aL~ (i ,<0 +X{,  -V, ,  IL~ (i,k,t)l} L,, (i,1~,t) 

dt 

- X { 1 - F , ,  [ L n ( i , k +  1 , t ) ] I L n ( i , k + l , t ) + X  f l f n ( l ) d l  

and after partial integration we have 

dLn  (i, k, t) ~.0.,,,) 
(6) dt - 8 L , ( i , k , I ) + X  f [ 1 - ] : n ( l ) ] d l  

(,,k ~- ~,t) 

This recurrence differential equation determines the evolution of L n  (i, k, l) 
through period n. The boundary  conditions are obtained by taking the left- 
hand limit of Ln (i, k, l) at t = 1. Hereby  we can distinguish the following three 
CaSeS. 

a) h = K t ,  K , + l  . . . .  

According to the definition of characteristic claim number  it follows from 
(4a) and (5) that  

J 
L n  ( i , k ,  1) = ~0,,+1 ~ [ b n + t  ( j ) + d n + l  ( j ,o ,o)J  [tlj (/~+ 1 ) - t ~ j  (/~)] 

= o f o r k = K , , K , + l  . . . .  

and tile solution of equation (6) reduces to 

(7) Ln  ( i ,k , t )  = o for k = K , , K ,  + 1 . . . .  

b) n = N  

Using (4 b) and (5) we find tha t  

L 2 v ( i , k , l )  = A 2 v ( i , k + l ,  1 ) -  A N ( i , k , l )  = o 

so that  the solution of (6) is 

(8) 

The results (7) and (8) are 

c) k =  o . . . . .  K t -  1 and n =  

According to (4 a) a repeated 
,I 

L n ( i , k ,  1) = wn+l Z 

L N ( i , k , t )  = o 

intui t ively appealing. 

1, . . . , N - 1  

use of (5) yields 

[bn+l (j)'4-A?~,+i (ff, o ,o ) ]  [t{j (k °v I ) -  t~j (k)l 

• ° ° 

d 
7o~+1 ." Eb.+~ ( j ) + A . + 1  (LKj, o)-L, ,+i (j, K j -  1,o) 

]',1 
• . .  -- L n + l  ( j , o , o ) l  [/IJ ( k +  1) -- tlJ (k)] 
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From (3) and (7) it follows t h a t  

d A  n÷~ (j ,  K j ,  t) 

dl 
- 3An+~ (j ,  K j ,  t) 

so t h a t  

and  thus  

A,,+,_ ( L K j ,  o) = ~-~ . 4 . .  (j,.t,;j, ~) 

= ~-~ ~,,,+~ z [b,~+2 (j) + A,,+~ (j ,o ,o) l  t,j (Kj) 
]=1 

= e -~ w,,+2 [bn+2 ( f )  + A , e 2  ( f , o , o ) J  

This  shows t h a t  An+~ (j ,  K l ,  o) is i n d e p e n d e n t  of j ,  so t h a t  we h a v e  for 
k = o , . . . , K , -  ~ a n d n =  1 . . . .  , N -  t 

J 
(9) L~( , : ,k ,~)  = ~.,~+, ~ [ b , , , _ ( j ) - L , , , . ( j , _ l ~ : j - ~ , o ) - . . . -  

I' 1 

- L n ~ t  ( j , o , o ) ]  [ t i j  ( k +  1)--t,CJ (k)] 

I n  pa r t i cu l a r  for n = N - l this fo rmula  reduces  to 
J 

L N _ i  ( i , k ,  1) = [UN X b ~ v ( j )  [ t i j ( k +  1) - h j ( k ) l  
i i 

5" T H E  O P T I M A L  C R I T I C A l .  C L A I M  S I Z E  I N  T I l E  C A S E  OF EXPONENTIALLY 

DISTRIBUTED CLAIM AMOUNTS 

W e  assume  t h a t  the  claim a m o u n t s  are d i s t r i bu ted  accord ing  to :  
F n  (l) = T - e  -c.z. T h e n  e q u a t i o n  (6) becomes  

(lO) dLndt( i ,k , t )  - 3Ln  ( i ,k , t )  + - - X  ~e_C.L.<Lk+t,t ) _ e_C.L.(l,k,t)] 
Cn 

with  g iven  init ial  va lues  L n  ( i ,k ,  l) for k = o . . . .  , K , -  I, and  where  
L • (i, k, t) = o for k = K, ,  K ,  + 1 . . . . .  

W e  m a k e  the  subs t i t u t i on  

4,, (~, k,t) ( ~ )  L .  ( i ,k, t)  = - -  Z,, 
c,, ¢,~ (i,k + ~,t) 

where  we p u t  Cn (i, k, t) = I for  k = K ¢ , K t + l , .  
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Substitution in equation ([o) leads to 

1 d¢,~ (~,~,~) ¢,,. (~:,/~ + i,~) 
+ X  

l 

¢~ (i,k + ~,t) 

= X 

des (i, k + ~, t) ¢~ (i, k + e, t) 
+ x ~1~¢,~ (i,/1 + ~, t) 

d/~ C n  ( { , k  + 1 , t )  

o r  

(12) den (i,k,t) 
d t  

-- X¢~ (i, k,t) -- X¢~ (i, k + ~, ~) + ~¢,~ (i, k, 0 Z,*¢. (i, k, 0 

For given t we can compute the solutions ¢n ( i , k , t ) ,  k =  0 . . . . .  K , -  1, of 
(12) by successive approximations. We replace (12) by 

t d ¢ ~  (i, k,t) _ ~(0,  (i, k,t) - x¢~, °~ (i, k + ~, t) 
d t  "'~" ~ 

(~3) ) d¢~ (i,k,t) 
dt - [ x + ~ n ¢ ~  -~' (~:,k,b)l ¢ ~  (~:,k,t) - x¢~;)(i,i~+ ~,t) 

\ v ~ 1 , 2 ,  . . ,  

These equations are of the form 

d¢,~ ff,~,t) 
(~4) dt - (x + ~) Cn if, k, t) -- X¢,, (i, k + I, l) 

and have as solution 

( X /K'-k 
05)  ¢,, (i,k,t) = \ ~ - - ~ /  

where 

"'~'~ Ix (1 - t ) l ' - '  
4- e - ( x + a ) ( t - t )  : .T 

[ ¢ .  (i,z, T) - \ i - J ~ /  j 

¢,, (i,z, 1) = e c"L°Cu'l) Cn (i,Z+ 1,1) 

(16) . . . .  

= exp [c,~ E Ln(i ,k,  1)] 
k "1 

The formulae (1 l), (15) and (16) determine the solution of equation (lO). 
Together with (9) these formulae permit a policyholder to calculate his optimal 
critical claim size at each moment. 
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THE THEORY OF INSURANCE RISK PREMIUMS - -  
A RE-EXAMINATION IN THE LIGHT OF 

RECENT DEVELOPMENTS IN CAPITAL MARKET THEORY 

YEHUDA KAHANE * 

1. INTRODUCTION 

The premium calculation principle is one of the main objectives of study for 
actuaries. There seems to be full agreement among the leading theoreticians 
in the field that  the insurance premium should reflect both the expected 
claims and certain loadings. This is true for policy, risk or portfolio. There are 
three types of positive loadings: a) a loading to cover commissions, admin- 
istrative costs and claim-settlement expenses; b) a loading to cover some 
profit (a cost-plus approach) ; and c) a loading for the risk taken by the insurer 
when underwriting the policy. The administrative costs can be considered a part 
of "expected gross claims". Thus, the insurer's ratemaking decision depends 
on his ability to estimate expected claims (including costs) and on the selection 
of a fair risk loading. 

The main concern in the literature is the appropriate measurement of the 
risk and the exact loading formula. BOI-rLSIANN [1970, ch. 5] and others iden- 
tified four possible principles of risk loading, namely, the expected value 
principle, the standard deviation loading, the variance loading, and the 
loading according to the principle of constant utility. Various studies point 
to the advantages and disadvantages of these principles and also examine 
some additional loading forms--semi-variance, skewness, etc. (e.g., BOHLSIANN 
[1970], BENKTANDER [1971], BERGER [1972 ], I~URNESS [1972], BERLINER 
[1974], BERLINER and BENKTANDER [1976 ], BOHS{AN [t976], COOPER [1974], 
GERBER [1975] and others). Despite different pleferences in choosing the 
appropriate loading calculation principle, all seem to agree that the risk 
loading must be positive, since, otherwise, the firm would just have to wait 
for its ruin, that  is bound to come sooner or later, according to risk theory. 

The purpose of this article is to re-examine the appropriate principle of 
premium calculation in light of the recent developments in the theory of 
finance and especially in the theory of capital market  equilibrium. These 
developments may suggest a new point of view and raise a few questions 
regarding the loading rules. 

* Senior  Lec tu re r  a t  t he  F a c u l t y  of /XIanagement, Tel  Av iv  Un ive r s i ty ,  Israel ,  a n d  
Academic  Director ,  E r h a r d  Cente r  for H i g h e r  S tudies  and  Resea rch  in Insu rance ,  Tel  
A v l v  Un ive r s i ty ,  Israel .  T h e  a u t h o r  wishes  to  acknowledge  t he  ve ry  he lpfu l  discussions 
w i t h  Dr.  13. Ber l ine r  on  a n  ear l ier  d r a f t  of th i s  p a p e r  and  the  m a n y  r e m a r k s  of t he  pa r t i -  
c i pan t s  of t he  14th A S T I N  Col loquium in T a o r m i n a ,  Oc tobe r  t978. 
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The first question is related to whether or not, and how, investment income 
should be considered in premium calculation 1). Some insurers and insurance 
regulators tend to disregard investment income altogether. They misinterpret, 
perhaps, earlier models in risk theorv which concentrated on the insurance 
portfolio in isolation and disregarded the investments merely for the sake of 
simplicity. Other insurers, and especially in certain liues, deduct investment 
income through the calculation of the expected present value of the relevant 
cash flows (claims and expenses). This paper suggests that investment income 
should be considered in ratemaking, either through a present value calculation, 
or through a negative loading on expected claims. 

Another problem which can be solved with the use of financial theory is 
related to the appropriate measurement of risk for ratemaking purposes. It is 
suggested that the traditional measures of riskiness of an individual risk 
(standard deviation, variance, etc.) be replaced by the "systematic" element 
of the variance and that  the risk loading be proportional to this element. 

I t  will be shown that, since the profit of the insurer is derived from both 
underwriting and investment incomes, the insurer might, under certain 
circumstances, even be willing to lose on his underwriting activities. The 
appropriate loading on the expected pure claims may therefore be negative, 
and this may offer a theoretical explanation for the willingness of some in- 
surers to under-rate 2). The exact conditions for a negative loading will be 
studied later and an explicit expression for the profit (loss) will be presented. 
And finally, it is suggested that risk loadings should be determined by capital 
market equilibrium and must therefore be objective and uniform for all insurers. 

The main argument in the following analysis can be explained by viewing a 
very simple example: Assume an investment company which raises funds 
through the sale of bonds (debt) and invests its capital plus the external funds 
in an assets portfolio. The required return on the shareholder's investment 
reflects the risks of the investment portfolio and the financial leverage (debt) 
used. Notice that  the shareholders derive an appropriate profit after the 
payment of a positive interest on the firm's debt. Now assume an insurer is 
silnilar to the investment company, except that  it raises the additional funds 
as a by-product of the sale of insurance contracts, rather than through the 
use of regular debt instruments. According to QmRIN and WATERS [1975], 
this is analogous to a firm which charges a positive interest rate from its 
creditors, rather than paying them for the use of their money. A positive 
underwriting profit on the insurance portfolio would mean that the insurer 

x) This  topic  has  a t t r a c t e d  m a n y  econollllStS and  actuar ies .  A discussion and  references  
to  some sources  m a y  be found in BIGER and  I{AHANE [1978], PYLE [1971], QUIRIN and  
"~'VATERS [ t975]  or in  a book  by  CooPI,:R [1974]. 

=) The  t r a d i t m n a l  e x p l a n a t m n s  for u n d e r r a t i n g  are re la ted  to the  a t t e m p t  to preserve  
l o n g - t e r m  connec t ions  w i th  msureds ,  or to  the  lack of knowledge  and  exper ience  (see 
BENKTANDER [197 t]). 
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makes a higher overall rate of profit than the investment company. Although 
the analogy is imperfect and very simplistic it may still demonstrate that  
consistent underwriting profits violate capital market equilibrium. 

Section 2 stumnarizes the developments in financial literature and the risk- 
return relationships in capital market equilibrium. This will be used in Section 
3 to analyze the treatment of investment income in ratemaking and the 
implications of the financial theory for the measurement of underwriting risks 
and tile loading factor to be used in ratemaking. Some reservations and a 
few concluding remarks are summarized in Section 4. 

2. RISK RETURN RELATIONSHIPS AND CAPITAL MARKET EQUILIBRIUM 

Assume that the insurance company competes for investors' funds in the 
capital market. The firms' profits must therefore compensate the existing and 
potential shareholders for the risks they assume through their investment. The 
insurers' profitability is affected by the premium formula, and thus the 
relationship between the required expected return and the risk level on the 
insurer's shares may serve as a key to the ratemaking formula (BORCH [1974, 
ch. 22]). 

Fairly recent developments in financial theory suggest that exact relation- 
ships between the expected return and the risk must prevail in market 's 
equilibrium. A brief summary of these developments follows prior to tile 
discussion of the implications for ratemaking. 

Risk and Diversification 

The basic idea in portfolio theory, which has been suggested by the pioneering 
work of Markowitz [1952], is imbedded ill the mathematical properties of the 
standard deviation. I.e., the standard deviation of a linear combination of 
stochastic variables is typically lower than the weighted sum of the individual 
standard deviations. Each individual risk is represented by a stochastic 
variable, which is assumed to be fully characterized by its expected value and 
standard deviation a). The expected value is taken as a measure of profit- 
ability, while the standard deviation is used as a measure of the risk. It can 
easily be seen that there would generally be some gain from holding diversified 
portfolios, since the standard deviation of the portfolio will be lower (i.e. less 
"risky") than that of an undiversified portfolio. 

This can be demonstrated by considenng two securities A and B (see fig. I). 
All portfolios obtained by holding these securities in varying proportions are 
represented by a curve APB. The nature of tlns curve depends on the cor- 
relation between the random variables A and B. In the extreme case, where 
the securities are perfectly positively correlated, there would be no gain from 

3) See a s h o r t  d i s cus s ion  in the  c o n c l u d i n g  r e m a r k s .  

t5 
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diversification (AQB in fig. 1). In the other extreme case, where all securities 
are perfectly negatively correlated, the investor would even be able to construct 
a portfolio with a positive expected leturn and zero standard deviation (i.e., 
a risk-free portfolio (R in fig. l)), although it is composed of individual risky 
securities. 

E x p e c t e d  
Rate  o f  
R e t u r n  

E 

R 

I i _ ~  B 

~ "'~¢"A 

S t a n d a r d  D e v i a t i o n  o f  
Rate  o f  R e t u r n  (=Risk)  

Fig. 1. The E f f e c ~  of Diversif icat ion on the  Po~fo l io ' s  E x p e c t e d  Re t u rn  and Risk. 

Efficiency Frontier 
Identifying the optimal portfolio is clearly not an easy task, since an infinite 
number of combinations of each pair of securities must be examined. The 
first step in the optimization is to calculate the efficient portfolio, which has 
the minimal standard deviation for a given level of expected value. This can 
be accomplished quite efficiently using the Quadratic Programming Technique 
(MARKOWlTZ [1952~). Repeating the same process for all levels of expected 
value creates the efficiency frontier which is the locus of all portfolios having 
the lowest standard deviation at each level of expected value (curve DEF 
in fig. 2). 

Knowing the efficiency frontier, the main problem is to select the optimal 
portfolio on that frontier. The traditional economic solution is based on the 
introduction of a set of indifference curves which represent the subjective 
trade-off between risk (standard deviation) and profitability (expected return). 
The optimal portfolio would be obtained at the tangency point between the 
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Expected  
Rate of 

Return 

E 

JA..  F 
E • C 

r 

S t a n d a r d  D e v i a t i o n  
o f  Ra t e  o f  R e t u r n  (=Ri sk )  

Fig. 2. E f h c i e n c y  F ron t i e r  and  t he  O p t i m a l  Portfol io.  

highest possible indifference curve and the efficiency frontier (point E in 
fig. 2). This solution depends on the individual's subjective att i tude toward 
risk reflected by the indifference curves and assumes a full knowledge of 
individual utilities. 

The Capital Asscls Pricing Model (CAPM) 

The CAPM offers a new solution which does not depend on the individual's 
preferences and which is uniform for all investors. Its main assumption is 
the existence of a perfect capital market (i.e., there is a uniform interest rate 
at which each investor can borrow or lend any amount of money with no 
other transactions costs). The introduction of this interest rate, which is a 
risk-free security (Ri), causes dramatic changes in the efficiency frontier; 
combining a risky security, or portfolio, A with the risk-free security R I 
will generate portfolios on the straight line RIA (see fig. 3). The best com- 
binations will lie on the ray RIM which is tangent to the original efficiency 
frontier at M. Being on the section RiM means that the investor lends part 
of his initial capital (purchases risk-free bonds). A portfolio represented by a 
point on ray RIM but to the right of M is obtained by borrowing money at the 
risk-free rate and investing tile capital and the borrowed funds in the risky 
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portfolio M (i.e., by using "financial leverage"). The optimal portfolio is 
selected in two isolated stages. The first consists of finding the portfolio M 
of risky securities. In the second stage the desired mix of this portfolio with 
the risk-flee asset is selected according to the tangency of R i M  to the indif- 
ference curves. 

Expected 
Rate o f  
Return 

Rf 

! / j J  x 
[ ~ l j  ~ • B 

Standard Deviation of  
Rate o f  Return (=Risk) 

Fig. 3. Capital Asstes Pricillg Model 

r 

The next step in the development of the C A P M  is based on the assumption 
that  all investors have the same expectations concerning the means, standard 
deviations and covariances between all securities. Under a model of full 
agreement, all investors must hold the same portfolio composition of risky 
securities (point M). This portfolio is composed of all the risky ventures and 
is called the "market  line" portfolio. The combinations of this portfolio with 
the risk-free interest rate, lie on a straight line called the "market  line" which 
represents the risk-return relationship for al! portfolios in the market. It  is 
impossible to create a portfolio with a better performance which would be 
represented by a point above this capital market line. Any portfolio below 
this line would be inferior. The equation :for the capital market line is 

E m -  R f  
(t) E~ = R.f + ~ ,  
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where E and e denote expected value and standard deviation, respectively, 
and the subscripts p and m denote a portfolio and the market portfolio, 
respectively (SuARPE [1964], LINTNER [1965], MOSSlN [1966]). 

Equation (1) represents the objective risk-return relationship for a port- 
folio in market equilibrium and can be interpreted as follows: The expected 
return on any investment portfolio equals the risk-free rate of interest plus a 
risk loading which is proportional to the standard deviation of the porttolio. 

Under the CAPM, the appropriate risk measure for a portfolio of securities 
is the standard deviation and not its variance. This result stems from the 
basic assumption of the model and therefore cannot be used as an argument 
against the use of a risk loading proportional to the variance, which is recom- 
mended by some of the leading authorities in the Collective Risk Theory 
(BfUHLMANN [197o ], BERLINER [1974], BOHMAN [1976 ], etc.). 

Risk-Relur~ Relalionship for an Individual Risk 

The capital market line is obtained through the holding of a combination of 
securities which are typically below it (like points A, B, C, in fig. 3). What  is 
the appropriate risk-return relationship for the iudividual security ? Further 
analysis of the CAPM showed that  the expected return of each individual 
investment under equilibrium must satisfy the following equation 

E , , -  Rf 
(2) E, = R.r + ~ ~ ,  

(~?/t 

where the a,m represents the covariance between the return on security i and 
the return on the market portfolio (The proof for these relationships is given 
by SVlARPE [1970, pp. 85-90]). Equation (2) means that  the expected return 
on the individual security equals the return on the risk-free asset plus a 
proportional risk loading. Unlike the relationship for a portfolio (equation (I)), 
the risk for an individual security is measured by **m, the covariance of the 
return on the security and the market portfolio. This suggests a new measure 
for the risk level of an individual security--the systematic risk clement. A 
variation of this term, namely, a,m/%2n, is often used in financial literature for 
the same purpose and is called the "beta" coefficient. 

The risk for an individual security, unlike the measure of risk for a port- 
folio (collective risk), is not measured by its standard deviation or variance. 
The full variance of the return on each security is split into two components: 
the systematic risk (representing the correlation with the market portfolio), 
and a non-systematic element (representing random fluctuations or noise). 
This is demonstrated by fig. 4, which shows the return on a hypothetical 
security i and the return on the market portfolio. The dots on this graph 
represent individual observations (periodic observations). The systematic 
element is captured by the slope of the regression line. The vertical deviations 
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Fig. 4. Systematic and Non-SystenlaticRisk. 

of the observed re turn  from its condit ional  expected value represent  a random 
noise. 

The non-sys temat ic  element  (the "noise")  is excluded from the measure-  
ment  of risk because it can be diversified away and el iminated to a great  
ex ten t  by  holding appropr ia te ly  diversified portfolios 4). T15s results from the 
assumption tha t  the random f luctuat ions of securities i and j are uncorrelated.  

The re turn  on securities fluctuates. Despite these f luctuat ions some secu- 
rities may  be regarded as risk-free where their  rates of re turn  have no con- 
sistent relationships with those of the marke t  portfolio. In such a case their  
expected  re turn  must  equal the risk-free rate  of interest.  Such securities are 
represented by  lines with zero slope in fig. 5. Other  securities m ay  be represented 
by  a slope of uni ty.  Holding such securities has an effect similar to the holding 
of the marke t  portfolio itself (despite their higher var iance caused by  r andom 
noise). Securities having slopes steeper than  uni ty  are "aggressive",  i.e., they  
augment  the f luc tua t ion  of the marke t  and are therefore more risky than  the 

marke t  portfolio. Some securities m a y  even have negat ive slopes, which 
means  tha t  t hey  behave counter  to the marke t  portfolio. The expected  re turn  
on these securities would be lower than  the risk-free rate of interest  since 
they  have a risk reduct ion effect in a portfolio context .  

4) See a quite similar idea in BERLINER [1974]. 
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l:ig • 5. The fRisk-Return llelationship for Individual Risks. 
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3. IMPLICATIONS FOR INSURANCE RATEMAKING 

The C A P M  is obviously an over-simplified representation of financial markets 
in the real world. Tile model rests on the assumption that  a security is com- 
pletely described by a stationary probability distribution and that  only the 
first two moments of the distribution are relevant. Ii1 addition, the model 
assumes uniform information among investors, identical investment planning 
horizons, and perfect capital markets with a risk-free rate of interest. Despite 
the over-simplifications, the model seems to capture some of the essential 
elements in real situations and has demonstrated a fairly good explanatory 
power in empirical tests 5). Unfortunately, this model has hardly received the 
attention it deserves in actuarial literature. Among the few exceptions are 
the works by BOl~CH [1974, ch. 9, 21, 22] and by QUIRIN ET AL. [1974]. 

5) The re  are  a g rea t  nulr iber  o~ elnpir ical  t e s t s  for t he  v a h d i t y  of t he  CA.PM.  A review 
of s ome  of t h e  t e s t s  cart be found  m ~,{ODIGLIANI arid POGUE [1974]. 
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The potential of the C A P M  for the analysis of the ratemaking issue is quite 
obvious. According to the CAPM ,  there should be an objective market price 
per unit of risk. This may suggest that the insurance risk loadings must be 
determined objectively, rather than through subjective considerations of the 
insurance company. It means that the loading should not depend on manage- 
ment att i tude toward risk (i.e., its utility function). Moreover, the C A P M  
may be used to find the exact parameters for the risk loading. 

The profit of the insurer is derived from two sources' its underwriting 
profits and its investment income. Thus, the ratemaking problem should be 
analyzed by considering the two income sources simultaneously. It  will be 
shown that previous studies which simplified the analysis by examining the 
insurance portfolio in isolation (e.g., BENKTANDER [1971], BOHI.MANN [1970]) 
offered only a partial solution for the ratemaking problem. 

Assume that the firm has m insurance activities (policies or lines). The firm 
collects SX, in premiums for contract i and expects to make an underwriting 
loss (profit) of X,h  dollars, h is a stochastic variable representing the rate 
of underwriting loss in this line (a negative value will denote profit). The 
stochastic variables arc clearly affected by  the ratemaking formula in use 
(since it determines the expected rate of profit or loss through the profit 
loading). 

Assume that the insurer holds an investment portfolio composed of n 
securities (assets). The amount invested in activity i is SX~ (i= m + 1, . . . ,  
m + n), and the rate of return on this activity is a stochastic variable ~l. The 
total profit of the firm, Y, is 

m + n  ,n 

(3) Y = X X ~ h -  Z X~t ,  
l , . m + l  ~ . , 1  

where the two summations in the right-hand term express the aggregate 
investment profit and the total underwriting loss (profit), respectively. 
Equation (3) can be expressed in terms of rate of return on equity, ~y, by 
dividing both sides of the equation by the equity capital K 

Z 2 X' 
Y ... .  Xl /', _ f,. 

(4) ~v -= ~ = "~  "~ 
t m + l  I ,  1 

Xl 
Let xi = -~  denote the premiums and investments relative to the capital. 

A subscript j can be added to the elements of the equation in order to relate 
it to a certain insurance company j 

m + n  m 

(5) ~VJ = E X l j r  t - -  E XtJff t .  
( ' , m + l  f , 1  

Note that  r, are assumed to be identical for all companies in the market. 
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Now make the brave assuinption that the accounting rate ot return on the 
firm's equity is equal to the market rate of return on the firm's shares 6). 
Under this assulnption, equation (5) also reflects the return on the firm's 
shares. The CAPM suggests that the expected return on firm j shares is 
related to its systematic risk [3; as follows 

(6) E (~vJ) = R/ + (Era- R/) f3:. 

Taking the expected value of equation (5) and substituting into (6) yields 
m ÷ n nl 

(7) E(~v:) = X X , j E ( i , )  - Z X l j E ( i , )  = Rf + ~j [ E m - R i I .  
t , . t t | +  I t 1 

Note that the systematic risk of a portfolio is a linear combination of the 
systematic risk elements of its components 7). Therefore, the systematic risk 
of the insurance firm j is a weighted average of the systematic risk of all 
underwriting and investment activities, that is, 

m a - t t  m 

l m + l  , l ~ t  

Substituting equation (S) into (7) and eliminating the subscript j for the 
simplicity of notation yields: 

m + n m m + n m 

(9) X x i E  ( r t ) -  X x i E  ( f l ) =  R f  + [ X x , ~ , -  X x,~3,] [ E m - R / ]  
t , m + t  i I [ , - o l + l  i , 1  

Since investment activities obey the same capital market equilibrium 
relationships, the expected return on every investment satisfies the equation 

0 o )  E ( h )  = R :  + ~ , ( E ~ - R : )  i = m + ~  . . . . .  r e + n ,  

and the return on the entire investment portfolio is 
i n +  n , ~ + ~  m + n  

i - m + l  t m + l  i m + l  

Subtracting ([1) from (9) gives the expected underwriting profit which 
preserves the capital market eqailibrium 

m m + r t  m 

( t2 )  - Z x , E ( : , )  = R : ( I  - X x , )  - 13 x , ~ , ( E m - R / ) .  
t . . 1  ~ .  m + l  ~ 1 

0) T h e  p r o b l e m  of c o n s i s t e n c y  b e t w e e n  a c c o u n t i n g  a n d  m a r k e t  d a t a ,  a n d  e spec i a l l y  
t h e  r e l a t i o n s h i p  b e t w e e n  a c c o u n t i n g  a n d  l n a r k e t  be t a s ,  is s t u d i e d  in e x c e l l e n t  p a p e r s  by, 
BEAVER a n d  IVIANEGOLD [ t 9 7 5 ]  a n d  b y  BEAVER, I(ETTLER a n d  SCHOL~ZS [1970].  T h e s e  
p a p e r s  g ive  r e f e r e n c e s  to  m a n y  ea r l i e r  w o r k s  on  t h e  s u b j e c t  

7) A s s u m e  a p o r t f o l i o  z c o n s i s t i n g  of a l i n e a r  c o m b i n a t i o n  of s t o c h a s t i c  v a r i a b l e s  
x a n d  y ~ =dx + bfi. T h e  s y s t e m a t i c  r i sk  of t h i s  p o r t f o l i o  ( w h e r e  ~5 d e n o t e s  t h e  r e t u r n  
o n  t h e  m a r k e t  p o r t f o h o )  is 

13z ~' coy  (~., ,i'~) / v a r  (~-z) = [t / v a r  (,~i)] • coy  [a .~+  bfi, ~*) = 
= [ 1 / v a r  (ff~)] - [ a . c o v ( ~ , * ~ )  + b .  coy  (j~,,~'¢)] = a -  [3x + b .  flu. 
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Assuming that  each dollar of premium in insurance activity i generates g, 
dollars of investment, the insurer's balance sheet equality (i.e., the require- 
ment that assets equal the equity plus liabilities) is expressed as 

r n + n  m 

03) E x~ = 1 + E xtg~. 
{ . , m + l  ~, 1 

Substituting 03) into (12) and rearranging gives 
r n  r n  m 

04) E x~E ( ~ ) =  R! X, x~gi + Z x~[3~ [Em-Rs] .  

This equation does not lead to a clear-cut statement about the expected 
rate of underwriting loss on each individual insurance activity. Given all 
~l, Era, R! and the values of x,, the equation is insufficient to determine a 
single set of E (~,) (i = 1 . . . .  , m) and there may be a large number of vectors 
that  satisfy it (BIGER and KAHANE [1978]). However, one possible solution 
may be of special interest, since it resembles the CAPM relationship 

05)  E (h) = R f g ,  + ~, [ E ~ , , - R f ; ,  (i = ~ . . . . .  m ) .  

That is, on tlle average, the firm would be willing to lose on insurance 
activity i as much as gt times the risk-free rate, plus a risk loading proportional 
to its systematic risk. 

The Investment Income in Ratemaking 

The intuitive solution in equation (15) is attractive, since it may have an 
interesting interpretation regarding the treatment of investment income in 
the ratemaking formula. Tile normative question of whether or not invest- 
ment income should be considered in ratemaking was extensively discussed 
in tile literature. However, this problem has seldom been examined under 
capital market equilibrium, and even in these cases it was studied tinder the 
simplified model where all insurance activities were aggregated and only one 
or two assets were assumed (PYLE [1971], QUIRIN and WATERS [1975] ) . 
According to equation (15), there is a negative loading Rfg, (recall that  E (S,) 
represents expected underwriting loss) which represents the investment in- 
come and is indirectly generated through the insurance activity i. 

Under the simplifying assumption made, the deduction should be proportion- 
al to an approximated value g,, the funds generating coefficient. For example, 
if the activity generates one investlnent dollar for each dollar of premium 
but creates no systematic risk, the firm may be willing to underwrite this 
activity for an expected underwriting loss equivalent to the risk-free rate! 
On a line which generates more than one dollar of investments for each dollar 
of premiums (e.g., liability insurance) the firm is willing to lose even more. 

A more accurate solution would probably be to deduct the investment 
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income through the calculation of the present value of claim payment  (simi- 
larly to the calculation of life insurance premiums). Note that this negative 
loading is proportional to the risk-free rate of interest, although the firm 
invests in a combination of risky assets. The investment risk is ignored in 
rate-making decision since it is accounted for by  the risk premium element 
which is imbedded in the expected return on each risky asset, under capital 
market equilibrium. 

Risk Loadi~g in Ratemaking 

The expected underwriting loss in equation (15) is also a function of the 
"risk" of the specific insurance contract. Equation (15) therefore may serve 
as a guide in determining the risk loading. Since the analysis concentrated on 
underwriting losses, a project with a positive beta has the desirable risk- 
reduction properties. Therefore, a positive beta would justify additional 
underwriting loss (over the negative investment income loading). 

The risk loading is proportional to tile systematic element of risk, beta, 
that reflects the contribution of an activity to the market portfolio. This 
means that  tile underwriting loss (profit) on an activity may fluctuate dra- 
matically around its expected value (i.e., high variance) but nevertheless may 
be regarded as riskless by tlle shareholders of the firm. The risk loading is 
proportional to the beta, according to the objective price of a unit of risk. 
This price factor is given by  the difference between the expected return on a 
market portfolio and the return on the riskless interest rate. This price is 
uniform for all investors. 

Preliminary findings presented in a recent paper by BIGER and KAIIANE 
[1978 ] suggest that underwriting profits are uncorrelated with the rate of 
return on the market portfolio (i.e., underwriting activities have no systematic 
risk). Thus, according to equation (15), the average underwriting losses should 
be approximately equivalent to the risk-free rate of interest (g, is commonly 
close to 1), while for the liability insurance lines, which typically generate 
more funds because of the long claims settlement period (reflected by  larger 
gt), the losses must be even higher. 

Rough empirical evidence in support of the ratemaking formula suggested 
in this paper can be obtained from aggregate statistical data of the insurance 
industry. Although the ratemaking formulas approved by regulators in most 
countries include a positive profit loading on net premiums, insurers often 
report underwriting losses. In view of the underwriting losses which insurers 
do complain about, and noting that the losses typically fluctuate in the range 
around the level of the risk-free rate of interest, the loading formula suggested 
here has some explanatory power. It  appears as if competition has forced the 
rates to reach their equilibrium level, despite the regulatory formula. 
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4- CONCLUDING iIiEMARKS 

This paper examined some of the implications of recent developments in the 
financial literature and capital market equilibrium theory for the insurance 
ratemaking problem. In an early and almost unique study of this problem, 
Botch [1974, ch. 9] stated that no pareto optimal equilibrium can exist in 
(re)insurance market. We did not obtain a unique solution either, but we 
presented a possible solution that has a great intuitive appeal. 

Tile ratemaking formula which is suggested in this paper has at least two 
types of loadings (on top of the "expected gross claims"): (a) a loading to 
reflect the investment income; and (b) a risk loading. 

The Role of Investment Income 

Earlier studies in risk theory concentrated on the statistical nature of the 
claims process in isolation. This simplifying assmnption led, unfortunately, 
to the incomplete solution whic]l ignored the ability of the firm to obtain 
an investment income as a result of its underwriting activity. The ratemaking 
formula suggested here includes a negative loading which is proportional to 
the amount of investment generated by the insurance activity. The relevant 
rate of interest is the risk-free rate of interest (even though the funds are 
typically invested in risky assets). 

This may be considered an approximation to the deduction of the invest- 
ment income through the calculation of present values. Such an approach is 
taken in the actuarial calculation of life insurance premiums but is often 
disregarded in non-life insurance. 

Risk Loading 

A second element in the ratemaking formula is a loading for the risk of the 
individual activity. Two new concepts are introduced: First, the risk level 
of an individual risk is measured by  the systematic risk ("beta") rather tilan 
by  the variance, standard deviation or other traditional measures. Secondly, 
most authorities in the field of risk theory concentrate on "internal" factors 
to determine the correct loading--those related to the nature of the individual 
activity or of the firm (e.g., management utility). It  is argued in this paper 
that  the appropriate loading is determined objectively, according to the market 's  
price of a unit of risk, rather than through the subjective decision of the firm. 
Thus, the traditional thought that a small firm is "punished" by having to 
charge a higher loading (BENK'rANDER [1971]) should be re-examined s). 

s) Theoret ical ly,  the  avai labi l i ty  of re insurance  enables  the  small f i rms to t ransfer  
the  excessive risks, as long as there  is no d iscr iminat ion  in re insurance  rates.  
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Limitations 

Despite its simplified assumption, the model sheds some light on the rate- 
making formula problem. Some reservations and suggestions for future studies 
seem, however, to be required. 

(a) The model is based on the assumption that insulers and investors 
know the correct parameters of the relevant distributions. The risk element 
resulting from statistical errors and incorrect (biased) estimation of the para- 
meters has not been discussed here. Such an element may justify a special 
risk loading. Similar recognition should be given to the risk originated by 
non-stationary distributions. 

(b) The level of aggregation affects the risk measure. The term "insurance 
activi ty" can be used in a narrow meaning (individual policy) or a broader 
sense (an insurance line). At higher levels of aggregation, the systematic risk 
approaches tile standard deviation (since 'noise' is eliminated through diver- 
sification). Thus, when dealing with aggregated lines, the difference between 
the "beta  loading" and the traditional loading, which is proportional to the 
standard deviation or variance, is very limited indeed 9). 

(c) All distributions were assumed to be characterized by the first two 
moments. This makes the model acceptable only for certain utility assump- 
tions. It  is not inevitable that loading factors which are related to higher 
moments should be analyzed under more sophisticated models. Thus, measures 
of asymnaetry, like the skewness and semi-variance, may be needed in a loading 
formula (especially for risks with catastrophic nature--which are represented 
by extremely skewed distributions). Another shortcoming of the model is 
its limitation to a single period analysis so that it cannot hmldle diversification 
over a multi-period horizon--which may be needed for the risks with catas- 
trophic nature. 

(d) The analysis ignored the problem of inflation and growth. All para- 
meters were assumed stable and in real terms. Non-zero inflation, for example, 
may cause some problems since riskless assets may become risky in real 
terms, and this may create difficulties with the CAPM.  Also, since invest- 
ment income often does not keep up with inflation, there may be a need for 
another element of positive loading. The problem of inflation is only partially 
handled in the model through the determination of the parameters. 

The model suggested in this paper cannot be regarded as the final answer 
to the ratemaking problem in practice. There is still much room for further 
improvements through the development of models with more relaxed as- 
sumptions. Some adjustments will probably improve the explanatory power 
of the model. Among these, a possible suggestion is the analysis of the case 

9) Some empir ical  ev idence  shows t h a t  the  ra te  of r e tu rn  oil shares  in the  s tock  
m a r k e t  is re la ted  to b o t h  the i r  " b e t a s "  and the  s t a n d a r d  deviat ions .  (See a s u m m a r y  
in I~AODIGLIAN! and POGUE [1974])- 
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where  inves to r s  h a v e  d i f ferent  p l a n n i n g  hor izons  a n d  m a y  differ in the i r  

an t i c ipa t i on  of the  p rospec t s  of va r ious  securities.  I n  addi t ion ,  it wou ld  be 
wor thwh i l e  to e xa m i ne  the  effects of o the r  imper fec t ions  in the  cap i ta l  and  
re insu rance  m a r k e t s  a n d  the  effects of possible differences be tween  a c c o u n t i n g  
and  m a r k e t  da ta .  

Desp i t e  these obv ious  s h o r t c o m i n g s  of the  model ,  it con t r i bu t e s  to a be t t e r  
u n d e r s t a n d i n g  of  a n d  a new a p p r o a c h  to  the  ca lcu la t ion  of i n su rance  rates .  
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