
HP Data Entry and Forms
Management System (VPLUS)

Reference Manual

HP 3000 MPE/iX Computer Systems

Edition 6
Manufacturing Part Number: 32209-90024

E0300

U.S.A. March, 2000

Tables
Notice
The information contained in this document is subject to change without notice.

Hewlett-Packard makes no warranty of any kind with regard to this material, including, but not
limited to, the implied warranties of merchantability or fitness for a particular purpose.
Hewlett-Packard shall not be liable for errors contained herein or for direct, indirect, special,
incidental or consequential damages in connection with the furnishing or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment
that is not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights
reserved. Reproduction, adaptation, or translation without prior written permission is prohibited,
except as allowed under the copyright laws.

Restricted Rights Legend
Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in
subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013. Rights for non-DOD U.S. Government Departments and Agencies are as set forth in
FAR 52.227-19 (c) (1,2).

Acknowledgments
UNIX is a registered trademark of The Open Group.

Hewlett-Packard Company
3000 Hanover Street
Palo Alto, CA 94304 U.S.A.

© Copyright 1978, 1980, 1981, 1982, 1986, 2000 by Hewlett-Packard Company
2

Contents
1. VPLUS Overview
Product Overview . 23

Interface Design . 23
Transaction Processing . 23
Source Data Entry . 23
Features . 24
Designing Forms With FORMSPEC . 25
Levels of Forms Design . 26
Application-Ready Buffer . 32
Program Interface Intrinsics . 32
Entering Data with ENTRY . 34
Reformatting Data . 35

Using This Manual . 37
Forms Designer . 37
Applications Programmer . 37
Application User . 38

2. Entering Data with ENTRY
Protected and Unprotected Fields . 39
Error Detection . 39
Data Modification . 39
Data Reformatting . 40
Terminal Usage . 40

Function Keys . 40
Display Enhancements . 41
Printing Forms and Data . 42

Running ENTRY . 42
Specifying ENTRY Files . 42
Responding To ENTRY Prompts . 42
Removing Deleted Records From a Batch File . 43
Expanding the Batch File . 43
Block Mode . 44
Local Form Storage . 44

Forms Sequence . 45
Repeating Forms . 45
Appended Forms . 45
Frozen Forms. 45

Entering Data . 47
Optional and Required Fields . 48
Program-Generated Data . 48
Correcting Errors . 49
System and Logic Errors . 49
3

Contents
Interrupting Data Entry .49
Terminating a Session .50
Unexpected Program Interruption .50

Viewing and Modifying Data .51
Invoking Browse/Modify Mode .51
Resuming Data Collection .51
Viewing Data .51
Modifying the Data .52
Deleting Data .52

3. INTRODUCTION TO FORMS DESIGN
GETTING STARTED WITH FORMSPEC .54

Specify a Forms File .54
Choose an Option .55
FORMSPEC Function Keys .55
Menu Sequence .56
Creating an Application-Ready Buffer (ARB) .58
Year 2000 Functionality. .58
Programmable Defaults for Field and Data Types in FORMSPEC59
Ability to Define More than 52 Single Character Fields per Form .60
Compatibility Issues .60
Terminating FORMSPEC .60

EASE OF FORMS DESIGN .61
Form Layout .61
Defining the Fields .64
Understanding Form Sequencing .73
Sample of Forms Design .77

FORMS FILE .79
Forms Modification .79
Copying of Processing Specifications. .79
Forms File Size .81
Expand Forms File .83
Compiling the Forms File .83
Renumbering a Form with Interactive FORMSPEC .84
Listing Forms .84

FORM FAMILIES .87
Creating Child Forms .87
Form Family Example .88

Fields .90
MAIN MENU .91

Fields .91
FORM MENU .95
4

Contents
Fields . 96
FORM FUNCTION KEY LABELS MENU . 98
FORM LAYOUT . 99
FIELD MENU . 100

Fields . 100
GLOBALS MENU . 103

Fields . 104
GLOBAL FUNCTION KEY LABELS MENU . 106
SAVE FIELD MENU . 107

Fields . 108
USING FORMSPEC TO CREATE AN ARB . 109

Setting Up the Data Type Conversion Record . 110
Generating the ARB . 112

TERMINAL/LANGUAGE SELECTION MENU . 119
Fields . 119

DATA CAPTURE DEVICE SPECIFICATIONS MENU . 121
Fields . 121

4. Advanced Forms Design
Levels Of Advanced Design . 126
Entering Processing Specifications . 127

Special Cases . 128
Correcting Existing Specifications . 128

Statement Syntax. 129
Comments . 129
Continuing Lines . 129
Custom Error Messages . 129
Checking Data Entered . 130
Operands . 133
Arithmetic Expression . 134
Index Retrieve Operand . 135

Processing Specifications For Configuration. 137
DEVICE . 138

Syntax . 138
Parameters . 138
Discussion . 138
Example . 138

LIGHT . 139
Syntax . 139
Parameters . 139
Discussion . 139
Example . 139
5

Contents
LOCALEDITS .140
Syntax .140
Parameters .140
Discussion .140
Example .143

Processing Specifications For Field Edits. .144
Edit Statements .144

LENGTH CHECK .145
Syntax .145
Parameters .145
Discussion .145
Example .145

SINGLE VALUE COMPARISONS .146
Syntax .146
Parameters .146
Discussion .146
Character Comparisons .146
Numeric Comparisons .147
Date Comparisons .147
Example .147
Native Language Support .147

TABLE CHECKS .148
Syntax .148
Parameters .148
Discussion .148
Example .148
Native Language Support .148

RANGE CHECKS .149
Syntax .149
Parameters .149
Discussion .149
Example .149
Native Language Support .150

CHECK DIGIT .151
Syntax .151
Parameters .151
Discussion .151

PATTERN MATCH .152
Syntax .152
Parameters .152
Discussion .152
Special Pattern Characters .152
6

Contents
Transparency . 153
Choice . 153
Range . 153
Grouping and Optional . 154
Repetition . 154
Operator Hierarchy . 155
Example . 156

Processing Specifications For Advanced Processing. 157
SET . 158

Syntax . 158
Parameters . 158
Discussion . 158
Assigning a Value to the Current Field . 158
Syntax . 158
Parameters . 158
Discussion . 158
Example . 159
Moving Data Between Fields . 159
Syntax . 160
Parameters . 160
Discussion . 160
Example . 160
Automatic Formatting . 160
Character Type . 160
Numeric Type . 161
Date Type . 162
Default Formatting . 163
Parameters . 163
Example . 164

STRIP . 165
Syntax . 165
Parameters . 165
Discussion . 165
Example . 165

JUSTIFY . 166
Syntax . 166
Parameters . 166
Discussion . 166
Example . 166

FILL . 167
Syntax . 167
Parameters . 167
7

Contents
Discussion .167
Example .167

UPSHIFT .168
Syntax .168
Discussion .168
Example .168

CHANGE .169
Syntax .169
Parameters .169
Discussion .170
Example .170

IF .171
Syntax .171
Parameters .171
Discussion .172
Example .172

FAIL .174
Syntax .174
Parameters .174
Discussion .174
Example .174

STOP .175
Syntax .175
Discussion .175
Example .175

PHASES .176
Syntax .176
Parameters .176
Discussion .176
Example .177
Configuration Phase. .177
Initialization Phase .177
Field Edit Phase .179
Finish Phase .179

5. Reformatting Specifications
Files .183

Reformat File .183
Relation of Forms to Output Records .185

Input Forms Sequence .185
Output Record Definition .186
Field Specifications .187
8

Contents
Combining Data from Several Forms. 187
Separating Data into Several Records . 189
Reformatting Repeating Forms . 189
Separating Data from One Batch File into Several Output Files 192

Using REFSPEC. 193
Terminating REFSPEC . 193
Unexpected Program Interruption. 193
REFSPEC Function Keys . 194

REFSPEC Menus . 195
Forms File Menu . 197
Main Menu . 198

Adding a Reformat . 198
Compiling the Reformat File . 198
Adding Global Specifications . 199
Changing the Forms File Name . 199
Modifying Reformat Specifications . 199
Changing an Input Forms Sequence . 199
Changing an Output Record Definition . 200
Deleting a Reformat . 200
Listing a Reformat . 200
Resuming Design from Main Menu . 200

Globals Menu . 203
Fields . 203

Input Forms Menu . 206
Fields . 206

Output Record Menu . 208
Fields . 210

Output Field Menu. 213
Data Type . 214
Field Formatting . 214
STRIP. 217
JUSTIFY . 218
Sign . 219
Fill . 220
Check Digit . 221

Running REFORMAT . 223
Concatenating Batch Files . 223
Using a User-Defined Command . 224
Streaming REFORMAT . 224

6. USING VPLUS INTRINSICS
Multipurpose . 227
9

Contents
Multilanguage .227
Error Detection .228
HOW INTRINSICS ARE USED .230

Form Definition Area .230
Data Buffer Area .230
Window Area .232
Key Label Area .232

CALLING VPLUS INTRINSICS .233
Parameter Types .233

COMMUNICATION AREA .235
Parameters .238
Parameters .245

ERROR HANDLING .248
Intrinsic Call or File Errors .248
Editing Errors .248
Error Messages .248
Determining Fields in Error .249

USING TERMINAL FEATURES .250
The Touch Feature .250
Local Form Storage .250

INTRINSIC DESCRIPTIONS .254
Dependency Between Intrinsics .257
VARMSCP. .258
VBLOCKREAD. .259
VBLOCKWRITE. .261
VCHANGEFIELD .263
VCLOSEBATCH .265
VCLOSEFORMF .266
VCLOSETERM .267
VERRMSG .268
VFIELDEDITS .270
VFINISHFORM .272
VGETARBINFO .273
VGETBUFFER .275
VGETFIELD .277
VGETFIELDINFO .280
VGETFILEINFO .283
VGETFORMINFO .286
VGETKEYLABELS .290
VGETLANG .292
VGETNEXTFORM .293
VGETSAVEFIELD .295
10

Contents
VGETSCPDATA . 297
VGETSCPFIELD . 299
VGETtype . 300
VGETYYYYMMDD . 304
VINITFORM . 305
VLOADFORMS . 307
VMERGE . 309
VOPENBATCH . 314
VOPENFORMF . 318
VOPENTERM . 320
VPLACECURSOR . 322
VPOSTBATCH . 323
VPRINTFORM . 324
VPRINTSCREEN . 326
VPUTBUFFER . 331
VPUTFIELD . 333
VPUTSAVEFIELD . 335
VPUTtype . 336
VPUTWINDOW . 339
VPUTYYYYMMDD . 341
VREADBATCH . 342
VREADFIELDS . 344
VSETERROR . 347
VSETKEYLABEL . 350
VSETKEYLABELS . 352
VSETLANG . 354
VSHOWFORM . 355
VTURNOFF. 359
VTURNON. 361
VUNLOADFORM . 363
VWRITEBATCH . 365

7. USING FORMSPEC IN BATCH MODE
USING FORMSPEC IN BATCH MODE . 369

Deleting Forms Using FORMSPEC’s Batch Mode Facilities . 369
Compiling Forms File in Batch Mode . 369
Updating Forms In Batch Mode . 369
Listing Forms Files in Batch Mode . 370
Relating Forms In Batch Mode . 370

INVOKING FORMSPEC IN BATCH MODE . 371
BATCH MODE COMMANDS . 372

COMPILE . 374
11

Contents
COPY .375
DELETE .376
EXIT .377
FIELD .378
FILE .379
FKLABELS .380
FORMS .381
LIST .384
RELATE .385
RENUMBER .386
SELECTLANG .387
SELECTTERM .388

ARB BATCH MODE COMMANDS .389
ADDARBFIELD .390
ARBTOSCREEN .391
DELARB .392
DELARBFIELD .393
GENARB .394
MODARBFIELD .395
MOVEARBFIELD .396
RENAMEARBFIELD .397
SCREENTOARB .398

SAMPLES OF FORMSPEC IN BATCH MODE .399
Sample Command File .399
Sample Job Stream .399

8. NATIVE LANGUAGE SUPPORT
LANGUAGE ATTRIBUTE .402

Unlocalized (NATIVE-3000) .402
Language-Dependent .402
International .402

NLS CAPABILITIES .403
Setting the Native Language ID Numbers .403

FIELD EDITS .404
Date Handling .404
Numeric Data .404
Native Language Characters .404

ENTRY AND LANGUAGE lD NUMBER .405

A. SAMPLE PROGRAMS
SPL .408
COBOL .432
12

Contents
FORTRAN 77 . 444
BASIC . 463
TRANSACT. 471
PASCAL . 480

B. VPLUS Error Messages
Classification of Error Messages . 490
FORMSPEC Error Messages. 491

Access Method Messages . 491
Screen Definition Messages . 491
Field Symbol Table Messages . 494
Menu Processing Utility Messages . 496
Menu Init and Processing Messages . 496
Batch Mode Messages . 500
RELATE Command Messages . 502
Menu Controller Messages . 502
Init and Compile Messages . 505
Scanner Messages . 508
Parser Messages . 509
Apply Errors . 509
Pattern Compile Messages . 512
Release Messages . 512
Application-Ready Buffer (ARB) Errors . 514
ARB Compile Errors . 517
Native Language Support Errors. 519

VPLUS Intrinsic Error Messages . 522
VOPENTERM and VCLOSETERM Messages . 522
General Messages . 524
VOPENFORMF and VCLOSEFORMF Messages . 524
VOPENBATCH and VCLOSEBATCH Messages . 526
Access Method Messages . 526
VGETNEXTFORM Messages . 527
VMERGE Messages . 529
VSHOWFORM Messages . 534
VREADFIELDS Messages . 534
VPRINTFORM Messages . 535
VINITFORM, VFIELDEDITS, and VFINISH Messages . 535
VREADBATCH Messages . 538
VWRITEBATCH Messages . 538
VSETERROR, VGETFIELD, VPUTFIELD, VPUTtype, and VGETtype Messages 538
VGETBUFFER and VPUTBUFFER ARB Messages . 540
VGETLANG and VSETLANG Messages . 541
13

Contents
VCHANGEFIELD Messages .541
VPLACESURSOR Intrinsic .541
INFO Intrinsic Messages .541
Forms Loading Messages .542

SNA DHCF Intrinsic Messages .543
Native Language Support .543

REFSPEC Messages .545
Access Method Errors. .545
Output Sequence Definition Errors. .546
Validation Errors .549
Field Table Errors .551
Menu Processing Errors. .553
Menu Processing Utility Errors. .555
Menu Init and Processing Errors .557
Menu Controller Errors .559
Init and Compile Errors .561
Compile Errors .561

Reformat Messages .563
Reformat Messages .563
Reformat Errors .568
Message Info .571
Header Messaages .571
Testlist Errors. .571
Native Mode Access Error Messages. .572

C. USASCII Character Set in Collating Sequence
ASCII Character Set .573

D. CHECK DIGIT CALCULATION
MODULUS 10 .580

Example .580
MODULUS 11 .581

Example .581
ALPHABETIC CHECK DIGITS .582

E. Application Hints
Designing Your Forms File .584
Rules for the DL Area .588
Coding the Touch Feature .589

Example .589

F. STATE/POSTAL CODES
14

Contents
G. TERMINAL INFORMATION
SUPPORTED TERMINALS AND FEATURES . 594

Termtypes . 594
Modified Data Tag . 594
Extended Local Edits . 595
Relabeling Function Keys . 595
Security Display Enhancement . 595
Local Form Storage Capabilities . 596
X.25 Capability . 597
Color Enhancement . 597
Data Capture Device Special Features . 597
Cursor Position Sensing . 597

THE HP 264X TERMINALS . 599
HP 2640B Terminal . 599
HP 2644A Terminal . 600

THE HP 262X TERMINALS . 601
HP 2624A Terminal . 601
HP 2624B Terminal . 601
HP 2625A, HP 2628A Terminals . 601
HP 2626A Terminal . 602
HP 2627A Terminal . 602

THE HP 239X AND HP 150 TERMINALS . 603
HP 2392A Terminal . 603
HP 2393A Terminal . 603
HP 2394A Terminal . 603
HP 2397A Terminal . 603
HP 150 Terminal (Obsolete) . 603

THE DATA CAPTURE DEVICES . 604
TERMINAL COMMUNICATION AREA . 605

Parameters . 605
TERMINAL BUFFER CONFIGURATION . 607
RECOVERING FROM UNEXPECTED PROGRAM INTERRUPTION 608
USER ENVIRONMENT CONTROL FILE . 609
ADVANCED TERMINAL I/O PROCEDURES . 610
VTURNON/VTURNOFF . 611

VTURNOFF . 611
VTURNOFF . 612
VTURNON . 612

H. Version Control
KSAM File Management . 616

Purge Forms File . 616
15

Contents
Rename Forms File .616
Convert KSAM File .616

Adjust Menu .618
HP32209 .618

The HP32209B Utility .619
Example .619

I. BIT MAP CONVERSION
Syntax .621
Parameters .621
Discussion .622
Example .622

J. HP PRECISION ARCHITECTURE
MIGRATION ISSUES .624

Supported Peripherals and Applications .625
HPPA INTRINSICS .626

Introduction .626

K. SNA DHCF with VPLUS Applications
SNA DHCF Overview .634

System Connections .634
VPLUS Supportability .634

IBM 3270 Differences and Limitations .635
Keyboard Differences .635
Screen Differences .636

Using FORMSPEC With DHCF .640
Using VPLUS Intrinsics With DHCF .642

Unsupported Intrinsics .642
Intrinsics Altered With SNA DHCF .642

SNA DHCF and VPLUS Utilities .644
ENTRY .644
REFSPEC .644
REFORMAT .644
HP32209B and HP32209S Utilities .644

L. A Programmer’s Guide to VPLUS
VPLUS Intrinsic Calls. .648

Opening Files .648
Preparing and Showing the Screen .650
Reading Data from the Screen. .654
Editing .655
16

Contents
Returning Data to the Program . 658
Closing Files . 658

VPLUS Enhancements . 660
HPTOUCH Support (Introduced on VPLUS B.04.10 in MPE G.01.01) 660
Cursor Positioning (Introduced on VPLUS B.04.10 in MPE G.01.01) 660
264X Function Key Labels (Introduced on VPLUS B.04.10 in MPE G.01.01). 661
VGETFORMINFO Enhancement (Enhanced on VPLUS B.04.10 in MPE G.01.01). 661
Batch Mode FORMSPEC (Enhanced on VPLUS B.04.10 in MPE G.01.01) 661
Color Support for 2627A and 2397A (Introduced on VPLUS B.04.15 in MPE G.01.04) . . 662
VCHANGEFIELD (Introduced on VPLUS B.04.15 in MPE G.01.04) 662
User Environment Control File (Introduced on VPLUS B.04.20 in MPE G.02.01). 663

VPLUS & Multiplexers . 664
Using VPLUS on a Pad-Terminal(Connected to a Cluster Controller HP 2334A) 664

Optimizing VPLUS Utilization . 670
Definition of Terms . 670
Effective Forms Design . 670
Stack Use by VPLUS Applications. 672

VPRINTSCREEN Intrinsic . 674
VPRINTSCREEN . 675
Modes of Operation . 675
Limitations . 678
Viewing the VPRINTSCREEN Demo . 679

M. Application Notes
Workarounds for VPLUS Forms Fille 32767 Record Limit . 684

Problem Description . 684
Solution . 684
HP Only Info . 684

Using the VPLUS Environment Control File (VENVCNTL). 685
Problem Description . 685
Solution . 685

How to Trace VPLUS calls in the Program While it is Running. 687
Problem Description . 687
Solution . 687

How to Redirect $STDLIST in a VPLUS Application . 688
Problem Description . 688
Solution . 688

FORMSPEC Gives FS Error -99 at Compile Time. 689
Problem Description . 689
Solution . 689
17

Contents
18

Figures
Figure 1-1.. Overview of VPLUS . 25
Figure 1-2.. FORMSPEC Form Menu . 27
Figure 1-3.. FORMSPEC Screen Design . 28
Figure 1-4.. Sample Field Menu . 29
Figure 1-5.. Advanced Processing Specifications. 30
Figure 1-6.. Transfers Controlled by VPLUS Intrinsics . 33
Figure 2-1.. Bracketed Fields . 47
Figure 2-2.. Fields without Brackets . 48
Figure 3-1.. Forms File Menu . 54
Figure 3-2.. Main Menu . 55
Figure 3-3.. Relation between Menus and Function Keys . 57
Figure 3-4.. Sequence of Menus for Form Design . 61
Figure 3-5.. Example of a Form Layout . 62
Figure 3-6.. Examples of Form Layouts . 63
Figure 3-7.. Example of a Field Menu . 64
Figure 3-8.. The Field Attributes . 65
Figure 3-9.. Example of a Field Extending over Several Lines . 65
Figure 3-10.. Example of a Form Menu . 73
Figure 3-11.. Sample Forms File Layout . 78
Figure 3-12.. Forms File Prototype. 82
Figure 3-13.. Forms File Listing . 85
Figure 3-14.. Form Family Relationship . 87
Figure 3-15.. Parent Form. 89
Figure 3-16.. Child Form. 89
Figure 3-17.. Main Menu . 91
Figure 3-18.. Form Menu . 95
Figure 3-19.. Form Function Key Labels Menu. 98
Figure 3-20.. Form Layout Menu . 99
Figure 3-21.. Field Menu. 100
Figure 3-22.. Globals Menu. 103
Figure 3-23.. Global Function Key Labels Menu. 106
Figure 3-24.. Save Field Menu . 107
Figure 3-25.. Menu Sequence for ARB Feature . 110
Figure 3-26.. Globals Menu. 111
Figure 3-27.. Data Type Conversion Menu . 111
Figure 3-28.. ARB Menu . 112
Figure 3-29.. Restructure ARB Menu. 115
Figure 3-30.. ARB Field Menu . 116
Figure 3-31.. Terminal/Language Selection Menu . 119
19

Figures
Figure 3-32.. Data Capture Device Specifications Menu . 121
Figure 3-33.. Form Layout in FORMSPEC. 123
Figure 3-34.. Displayed on Standard Character Set Mini-CRT Screen 123
Figure 3-35.. Displayed on 32 Character One Line Alpha Display Screen 123
Figure 3-36.. Displayed on Large Character Mini-CRT Screen. 124
Figure 4-1.. Field Menu with Processing Specifications . 127
Figure 4-2.. Field Menu with Custom Error Messages . 130
Figure 4-3.. Field Menu with a SET Statement . 164
Figure 4-4.. Flow a Phase Execution for ENTRY . 178
Figure 5-1.. Relation among Files Used for Formatting. 182
Figure 5-2.. Prototype of REFORMAT File. 184
Figure 5-3.. Combining Data from 3 Forms into 1 Output Record 187
Figure 5-4.. Reformat Data from 3 Forms into 2 Output Records 188
Figure 5-5.. Separating Data from 1 Form into Several Records 189
Figure 5-6.. Reformatting Data from Repeating Forms . 190
Figure 5-7.. Reformatting Data Based on Form Sequences . 191
Figure 5-8.. Generating 2 Output Files from 1 Batch File. 192
Figure 5-9.. Relation of REFSPEC Menus to Function Keys. 196
Figure 5-10.. Forms File Menu . 197
Figure 5-11.. Main Menu . 198
Figure 5-12.. Reformat Listing . 201
Figure 5-13.. Globals Menu . 203
Figure 5-14.. Input Forms Menu . 206
Figure 5-15.. An Example of an Output Record Menu. 208
Figure 5-16.. Sample Output Record Menu . 209
Figure 5-17.. Output Field Menu. 213
Figure 6-1.. Operation of VPLUS Intrinsics . 231
Figure 6-2.. Intrinsic Flow . 255
Figure 6-3.. Intrinsics Dependencies. 257
Figure L-1.. Statistical Multiplexer. 664
Figure L-2.. PAD or CLUSTER Connection to an HP 3000 with an INP 664
Figure L-3.. Direct Connection to an ATP- or ADCC-Port . 665
Figure L-4.. Sample EPOCLIST Screen from TDP . 678
20

Tables
Table 2-1.. Function Keys for Entry . 40
Table 3-1.. FORMSPEC Key Labels . 56
Table 3-2.. FORMSPEC Reserved Word List . 66
Table 3-3.. Display Enhancement. 67
Table 3-4.. How Each Numeric Data Type Interprets Entered Values 69
Table 3-5.. Valid Dates . 70
Table 3-6.. Invalid Dates . 70
Table 3-7.. Recommended Data Type Conversions . 71
Table 3-8.. Valid Screen Data Types. 72
Table 3-9.. Valid Application Data Types. 72
Table 3-10.. Maximum Number of Characters in Fields . 90
Table 3-11.. Form/ARB Relationships . 113
Table 4-1.. Summary of Processing Statements . 141
Table 4-2.. Local Edit Terminal Menu Selection . 142
Table 4-3.. Local Edit Terminal Menu Selection with Defaults . 142
Table 4-4.. Local Edit Terminal Menu Items . 143
Table 4-5.. Pattern Match Operators . 156
Table 4-6.. Automatic Formatting for Character Data . 161
Table 4-7.. Automatic Formatting for Numeric Data . 162
Table 4-8.. Automatic Formatting for Dates . 162
Table 4-9.. Conversion During Data Movement . 163
Table 4-10.. Variations on the IF Statement . 173
Table 5-1.. Key Definitions . 194
Table 5-2.. Standard Formatting by Data Types . 215
Table 5-3.. Examples Using STRIP . 218
Table 5-4.. Examples of Three Types of Justification . 219
Table 5-5.. Correspondence Between Signed Digits and Characters 220
Table 5-6.. Example Using the SIGN Option. 220
Table 5-7.. Examples Using the FILL Option . 221
Table 5-8.. Example Using the FILL LEADING and FILL ALL Option 221
Table 6-1.. Summary of VPLUS Intrinsics. 228
Table 6-2.. Examples of Intrinsic Call Formats for Each Language. 233
Table 6-3.. Data Types Used for Various Languages. 234
Table 6-4.. Outline of Communication Area Contents. 235
Table 6-5.. Communication Area Contents for Data Capture Devices 237
Table 6-6.. Codes for the Window Line Enhancement. 240
Table 6-7.. Intrinsics by Function Group . 254
Table 6-8.. Specifications Buffer . 264
Table 6-9.. Actions Used by Intrinsics . 271
21

Tables
Table 6-10.. Field Information Buffer . 281
Table 6-11.. File Information Buffer . 284
Table 6-12.. Form Information Buffer . 287
Table 6-13.. Numeric Type Conversions . 301
Table 6-14.. Correlation of VGETtype with the Data Types for each Language 302
Table 7-1.. FORMSPEC in Batch Mode Commands. 372
Table A-1.. Programming Languages and References . 407
Table C-1.. ASCII Character Set . 573
Table G-1.. Terminals Supported by VPLUS . 595
Table K-1.. Comparison of Major Keys . 635
Table K-2.. Mapping of Keys . 636
Table K-3.. Display Enhancements . 638
Table K-4.. Differences Between HP and IBM Character Displays 639
22

VPLUS Overview
Product Overview
1 VPLUS Overview

This chapter provides overview information about using VPLUS and also provides
information about using this manual.

Product Overview
VPLUS is a comprehensive software system that provides an interface between a terminal
and any transaction processing program. The interface can support the formatting,
editing, and validation of data as well as the display and collection of that data. VPLUS
also includes a source data entry facility that provides a "front end" for batch transaction
processing applications.

Interface Design

The interface between the user at a terminal and the application program is implemented
as a form. VPLUS enables you to easily design the layout of the form and the data to be
displayed and entered on the form. A variety of processing for the data can be specified to
occur before and after it is displayed and entered.

Transaction Processing

VPLUS provides a set of intrinsics that enables you to control forms and data on a
terminal from an application program. These intrinsics are available for programs written
in any of the supported programming languages listed in appendix A.

Additionally, some languages (also listed in appendix A) provide a special interface with
terminals and forms, as described in their respective reference manuals. With these
languages, you do not call VPLUS intrinsics directly. Instead, you specify the appropriate
statements for the special interface.

Source Data Entry

VPLUS provides a ready-to-use data entry program, called ENTRY, for collecting data
without any programming effort. The data is collected in a file for later batch processing.
Users can browse the entered data using ENTRY and modify the data while browsing it. If
you need additional or different capabilities that ENTRY does not provide, you can write
your own application that incorporates VPLUS intrinsics. Appendix A, "Sample
Programs", includes sample source data entry programs.

VPLUS also provides a batch reformatting capability. You can create specifications to
control how collected data is to be reformatted, and then run a program to actually
reformat the data.
Chapter 1 23

VPLUS Overview
Product Overview
The collection and reformatting capability, either singly or combined, provide a method of
adding interactive source data collection to existing batch applications.

Features

The primary features of the VPLUS system are:

• A forms design program (FORMSPEC) that allows quick and easy interactive forms
design using menus.

• Batch mode management of forms files, through FORMSPEC, that allows a forms file to
be updated, compiled, and listed in a background job.

• Advanced forms design, through FORMSPEC, that provides for editing, formatting,
movement, and computation of data when the form is executed, using the user's native
language for alphabetic information and the local customs for numeric and date
information.

• A set of intrinsics that manage the interface between:

— an application

— the terminal

— the FORMSPEC definitions

— the data displayed and entered on the terminal

These intrinsics manage the interface from applications written in any of the supported
programming languages.

• A ready-to-run data entry program (ENTRY) that provides immediate use of forms for
data entry and modification with no programming effort.

• A flexible data reformatting design program (REFSPEC) that specifies reformatting of
data collected in a batch file.

• A batch program (REFORMAT) that reformats the collected data according to the
REFSPEC formatting specifications and writes it to a file for use by an application.

• Run-time data transformation capability (Application-Ready Buffer, or ARB) that
allows data to be entered on the screen in an order and format the user understands,
while the application receives the data converted and reordered to match the format of
its storage record.

Figure 1-1. shows an overview of the VPLUS system.
24 Chapter 1

VPLUS Overview
Product Overview
Figure 1-1. Overview of VPLUS

Designing Forms With FORMSPEC

FORMSPEC enables you to design forms ranging from simple to complex. FORMSPEC
keeps forms in a special file, called a forms file. A forms file can have one or many forms.
There may be multiple forms files per application or multiple applications per forms file,
depending on the complexity of the task to be performed. You must compile the forms file
before using it in an application program. You can modify forms at any time, but you must
recompile the forms file to use the modified forms in your program.

You enter the form specifications on formatted screens, called menus, that FORMSPEC
displays. The Main Menu and terminal function keys enable you to display all of the
FORMSPEC menus. The various menus enable you to perform tasks, such as changing
existing forms, adding new forms, and deleting forms or fields.

DEFINITION

DATA FORMSPEC

DATABASE
FILE

Entry or
Application

DATA
ENTRY

REFORMATTING
SPECS OUTPUT

FORMS AND
DATA EDITING

HP 3000 CAPABILITIES

VPLUS
INTRINSICS

REFORMATREFSPEC
Chapter 1 25

VPLUS Overview
Product Overview
Levels of Forms Design

FORMSPEC has four complexity levels of forms design:

Simple Collection You specify the form layout and FORMSPEC allows any
character set codes that you enter. This level keeps the
default field attributes and does not require any other
FORMSPEC editing or formatting capabilities.

Simple Editing You specify the form layout and specify edits for the field
attributes, such as field type (optional, required, display
only) or data type (character, numeric, or date). No
processing specifications are required for the field
attributes.

Full Field Editing You specify field edits using processing specifications that
apply to individual fields in a form. These include
minimum length, range checks, pattern checks, etc. A
subset of the available processing specifications are used
for these edits.

Advanced Processing You specify movement of data between fields and forms,
arithmetic computation of data, formatting of data
(JUSTIFY, FILL, STRIP), alteration of forms sequence,
and conditional processing based on the result of
processing specifications. This level implements the entire
range of the processing specifications.

The following sections provide introductory information about each of these levels.
Chapters 3 and 4 provide specific information on each level of forms design.

Simple Collection

When you run FORMSPEC, the first menu to appear is the Forms File menu in which you
specify the name of the forms file. After you specify the forms file, the Main menu appears,
enabling you to select one of the following tasks:

• Adding a form or a save field

• Selecting a terminal type or a native language

• Going to the global characteristics or to a particular form or field

• Listing a forms file or a form

• Deleting a form

• Copying a form

• Compiling the forms file

• Relating a child form to a parent form

• Going to the Application-Ready Buffer (ARB)

For example, if you want to select the task of adding a form, FORMSPEC would respond by
displaying the Form menu, shown in Figure 1-2. You would use this menu to enter the
form name and indicate how you want the form to be sequenced. This menu offers several
26 Chapter 1

VPLUS Overview
Product Overview
options, such as appending to the current form. Chapters 3 and 4 instruct you about
specifying whether the current form is to be repeated, or repeated and appended to itself.

Figure 1-2. FORMSPEC Form Menu

After you make the desired selections, FORMSPEC provides you with a blank screen to
design your form. You can use any of the terminal capabilities on this screen to insert or
delete lines or characters, and to position the cursor. The special terminal capabilities that
provide field enhancements, such as half bright, color, inverse video, or blinking are
selected through FORMSPEC Field Menus, as described in chapters 3 and 4. You do not
need to use complicated escape sequences to request enhancements to data fields.

The position of a field is defined by field delimiters. You identify each field by typing its
name within these delimiters. If the field is too short for a meaningful name, you can
provide a longer name later, if desired. The position of the beginning and ending of the
field automatically defines the maximum length of each field. Field delimiters can be
either brackets ([]) or invisible control characters, as shown in Figure 1-3. If the
delimiters are not visible, you can use a fill character to make the actual length of the field
visible during design.

PREV
FORM

NEXT
FORM

REFRESH PREV NEXT MAIN/
RESUME

EXIT

FORMSPEC v.uu.ff Form Menu FORMS FILE: filename

[SHIPTO] Form Name

[R]

[C]

[]

Repeat Option

Next Form

 Function Key Label

[]Reproduced from (opt)

N--No Repeat
A--Repeat, appending
R--Repeat, overlaying

C--Clear before Next Form
A--Append Next Form
F--Freeze, then append Next Form

Y--Define form level function key labels.

[$END]

[CUSTOMER SHIPPING FORM] Comments
Chapter 1 27

VPLUS Overview
Product Overview
Figure 1-3. FORMSPEC Screen Design

Simple Editing

You can edit each field of a form by using the Field Menus. Figure 1-4. is a typical Field
Menu example, which shows the various field attributes in the highlighted fields. This
menu displays the field name and length determined by the form design. The menu also
displays the data type, field enhancements, and the field type, any of which you can change
by typing a new value over the displayed value. You can also assign the field a new name
by which it is subsequently referenced, and you can specify an initial value for the field.

Field Name This parameter enables you to assign a field name longer than that
assigned during form design. This is useful, because during form design, an identifier for
each field typed within the field limits the field name to the length of the field.

Field Enhancement VPLUS displays each field in half bright, inverse video (code=HI)
unless you change the value for the enhancement parameter on the Field Menu (or in the
Globals Menu). Other enhancements, underline, blinking, color, and security can combine
with or replace the default enhancements, or you can eliminate field enhancements
altogether. (Only some terminals support color and security. Refer to "Supported Terminals
Features" in appendix G for more information.)

Field Type This attribute controls how data is entered in the field. For example, if a field
must contain a value, simply change the field type from the default value O (optional) to R
(required) as shown in Figure 1-4. If a user then does not enter data in the field, an error
message appears. If you want to prevent a user from entering data in the field because you
plan to use it only to display data, change the field type to D (display only). You can force a
field to be processed even if it is blank by changing the field type to P (process).

PREV
FORM

NEXT
FORM

REFRESH PREV NEXT MAIN/
RESUME

EXIT

*****ABC MANUFACTURING*****

Date: [ordate]

SHIP TO:
Name [name]

Address [address]
City [city] State [st]

Zip [zip] Telephone [phone]

QTY. PART NO. DESCRIPTION UNIT TOTAL
PRICE PRICE

qty.. partnum. description............................uprice. tprice.

Order Number: [ordnum]
28 Chapter 1

VPLUS Overview
Product Overview
Figure 1-4. Sample Field Menu

Data Type This attribute controls the type of data allowed in the field. Suppose you
want to make sure that only digits are entered. Simply change the data type from the
default type (CHAR for any character set code) to DIG. Or, if you want to allow entry of a
signed number with two decimal positions and a decimal indicator, you can change the
data type to NUM2 as shown in Figure 1-4. If the user enters a non-numeric value, an
error message appears.

Initial Value You can use the Field Menu to specify a particular value to be displayed in
that field when the form is first displayed at the terminal.

Full Field Editing

To specify full-field edits, you enter simple language statements in the lower portion of the
Field Menu, labeled Processing Specifications. These field processing specifications enable
you to check a field value for:

Minimum Length The value entered must be at least a specified number of
characters long. For example, MINLEN 10 means at least
ten characters must be entered in the field.

Equality The value entered must be less than, less than or equal to,
equal to, greater than or equal to, greater than, or not
equal to a specified value. For example, GE FIELD2 means
the value entered must be greater than or equal to the
value entered in a different field, FIELD2 .

Range Check The value entered must be within (or not within) a range
of values. For example, IN 10:20,F1:F4,100:300 means
the value must be between 10 and 20, or between the

PREV
FORM

NEXT
FORM

REFRESH PREV NEXT MAIN/
RESUME

EXIT

FORMSPEC v.uu.ff Field Menu FORM NAME: SHIPTO

Initial Value

Num Len [n][n] [fieldtag] [HI] [0] []FType DTypeName Enh

*** Processing Specifications ***

QTY. PART NO. DESCRIPTION UNIT TOTAL
PRICE PRICE

qty.. partnum. description............................ uprice. tprice.
Chapter 1 29

VPLUS Overview
Product Overview
values entered in fields F1 and F4, or between 100 and
300, inclusive.

Table Check The value entered must be in (or not in) a table of values.
For example, IN 5,10,15,F7+5 means the value must be
5, 10, 15, or the current value of field F7 plus 5.

Pattern Check The value entered must match a particular pattern. For
example, MATCH Aaa-dddmeans the value must start with
the letter "A" and be followed by two alphabetic letters, a
hyphen, and three digits.

Check Digit A check digit in the entered value is checked according to
modulus 10 or 11. For example, CDIGIT 10 checks the
value according to a modulus 10 check digit test.

Advanced Processing

Processing specification statements are similar to elements of a programming language in
that the order of entry is significant. Figure 1-5. shows a Field Menu that includes
advanced processing specifications.

Figure 1-5. Advanced Processing Specifications

In this example, the UPRICE field (already specified as required and numeric) is limited
further. The minimum value that may be entered in this field is 1. A custom error message
"MINIMUM ORDER IS $1.00" appears if the user enters any value less than 1. Also, if the
user enters a value greater than 10,000, a special next form, FORM2, appears when the
user presses Enter .

PREV
FORM

NEXT
FORM

REFRESH PREV NEXT MAIN/
RESUME

EXIT

FORMSPEC v.uu.ff Field Menu FORM NAME: SHIPTO

Initial Value

Num Len [n][n] [fieldtag] [HI] [0] []FType DTypeName Enh

*** Processing Specifications ***

QTY. PART NO. DESCRIPTION UNIT TOTAL
PRICE PRICE

qty.. partnum. description............................ uprice. tprice.

GE 1 “MINIMUM ORDER IS $1.00”

IF GT 10000 THEN
CHANGE NFORM TO “FORM2”
30 Chapter 1

VPLUS Overview
Product Overview
Advanced Processing Statements The advanced processing statements provide:

Data Movement You can set any field to a particular value, or to a value
moved from another field. Default formatting of the data is
performed during movement according to the data type of
the destination field.

For example, SET TO !JUNE 17,1999! moves the date
constant (which must be delimited by exclamation points)
to the current field. Another example, SET F1 TO F3 ,
moves the value in the field F3 to the field F1.

Arithmetic Calculation You can set any numeric field to a value calculated using
standard arithmetic operators (+, -, *, /, %).

For example, SET TAX TO TOTAL*TAX_RATEmultiplies the
value in the field TOTALby the value in the field TAX_RATE
and moves the result to the field TAX. (All these fields must
be numeric.)

Data Formatting You can specify particular formatting of the entered data
in addition to default formatting. Formatting includes:
STRIP, JUSTIFY , FILL and UPSHIFT.

For example, JUSTIFY RIGHT; FILL LEADING "0" moves
the data to the right of the field, and then fills any leading
blanks with zeros.

Forms Sequencing You can change the form sequence originally specified for
the form on the Form Menu.

For example, CHANGE NFORM TO $HEAD changes the next
form to the head form. The head form is the first form
displayed. One form is designated as the head form in the
global characteristics. Another example, CHANGE CFORM TO
NO REPEAT, stops the current form from repeating.

Conditionals You can execute a processing specification, or group of
specifications, but only if a particular edit is true.

For example, IF F1 EQ 20 CHANGE NFORM TO CLEAR
clears the current form and displays the next form when
the value of field F1 equals 20.

Phases You can execute processing statements in one of four
phases: configuration (CONFIG), initialization (INIT), field
editing (FIELD), and finish (FINISH).

Save Fields and Other Global Specifications

You can use the Save Field Menu to define special fields, called save fields , for the entire
forms file. These fields are global to the forms file, and can be referenced in the processing
specifications of any field in any form. Save fields are primarily useful for passing values
between forms.

FORMSPEC supplies certain global characteristics of a form as defaults, such as field or
Chapter 1 31

VPLUS Overview
Product Overview
error enhancements and the placement of the error/status line on the form. You can change
these default characteristics using the Globals Menu.

Application-Ready Buffer

An application-ready buffer (ARB) is a buffer passed between the application and the
run-time intrinsics for data collection and display. It performs the following functions:

• Holds data as the application will use it, which may differ from how it appears on the
screen.

• Synchronizes with other application sources, such as the program code and databases.

• Facilitates maintenance in that the user can rearrange fields on the screen without
modifying the application program. Conversely, changes in the application program
that affect the ARB do not necessarily require changes in the screen.

• Supports an extended range of data types, including floating-point decimal and
COBOL-packed and zoned decimal.

• Simplifies coding, because the field-by-field transformation is specified in the forms file
rather than by using a series of transformation intrinsics in the application program.

The ARB presents data as the application expects to use it, such as to update a database,
whereas the screen receives and displays data in the format that the user understands.
This distinction between screen data and application-ready data facilitates maintenance.

Refer to Chapter 3 for information about creating an ARB.

Program Interface Intrinsics

All terminal-oriented applications can use a library of high-level intrinsics. Any of the
supported programming languages listed in appendix A can call these intrinsics. Appendix
A also contains listings of sample applications that use the intrinsics.

The program interface provides intrinsics for the following:

Terminal Interface These intrinsics open and close a terminal file, load and
unload forms (if the terminal has local forms storage),
display a form and data to the terminal, and read data
entered in fields of the displayed form.

Forms File Interface These intrinsics open and close a forms file, get the next
form in sequence from the forms file, and print the current
form, with its contents, on the line printer.

Data Manipulation These intrinsics initialize a form to its initial values,
perform any user-defined edits, and perform any final form
processing.

Access to Data These intrinsics move data between the application
program and VPLUS work areas. The data can be moved
one field at a time or as a single buffer for the entire form.
Data can be moved as character strings, or it can be
transformed to and from internal representations most
32 Chapter 1

VPLUS Overview
Product Overview
useful to the application program. The data
transformations may be predefined for the entire buffer in
the forms file using FORMSPEC (the ARB). If
field-by-field movement is used, the transformation type is
specified by the intrinsic name.

Data Transformation These intrinsics gather data entered by the user at the
screen and transform it into the format most useful to the
application, or vice versa. Data passed to or from fields can
be converted to or from a variety of data types.

Status/Error Control These intrinsics set or capture error flags and display
messages.

Batch Data Collection These intrinsics open and close the batch file, write data to
the batch file, or read data from the batch file.

Figure 1-6. shows an overview of the various transfers between elements controlled by the
VPLUS intrinsics. Note that many applications use their own files or data bases rather
than the VPLUS batch file for the collected data.

Figure 1-6. Transfers Controlled by VPLUS Intrinsics

FORMS FILE

FORMS FILE
Form Definition

Data Buffer

Application
Program

Memory

Processing

Data

Forms

Forms

Data

Data
Chapter 1 33

VPLUS Overview
Product Overview
Entering Data with ENTRY

VPLUS features a standalone data entry program, called ENTRY. Forms and data
specifications are created using FORMSPEC. This program does the following:

• Displays forms at the terminal

• Accepts and validates data entered on the forms

• Writes the data to a batch file

ENTRY operates in two modes: data collection and browse/modify. Data collection mode
collects data from the terminal, and browse/modify enables you to look at the collected
data and modify it if necessary. When the user first runs ENTRY, the initial mode is
always data collection. The user must request browse/modify by pressing a terminal
function key.

Chapter 2 provides complete information about using ENTRY. The following sections
discuss principles of data collection and browse/modify.

Data Collection

ENTRY displays forms on the terminal screen in the order that FORMSPEC determines.
Each form is displayed with any initial values specified for the form. As each form is
displayed, the user types data into the "unprotected" fields on the form. (These are the
fields that permit data entry; they include all fields defined on a form except "display only"
fields.)

After typing in the data, the user presses Enter . ENTRY then tests the entered data for
errors and, if errors are found, it enhances each field in error. The particular enhancement
is determined by the forms designer. The default error enhancement is inverse video
underline. ENTRY also displays a message associated with the first field with an error.
The user can then correct the error (or errors) and press Enter again. ENTRY continues to
check the entered data until no errors are detected. It then writes the data entered on the
form as a single record to the batch file, and displays the next form in form sequence.

Note that the forms designer determines the form sequence. However, the terminal
function keys provide the user some control over this sequence. These keys enable the user
to:

• Request the first (or head) form in execution sequence.

• Terminate a repeating form and display the next different form.

• Reset the current form to its initial values.

• Print the current form with its initial values on the line printer.

• Request browse/modify mode to view and/or change data already written to the batch
file.

• Terminate ENTRY.
34 Chapter 1

VPLUS Overview
Product Overview
Browse/Modify

The user can view the data already written to the batch file by requesting browse/modify
mode. The user requests this mode by pressing a terminal function key. The same key
returns the user to data collection mode at the point of interruption.

When browse/modify is requested, the previous data record written to the batch file is
displayed on the form through which it was entered. The user can examine the data,
change it if desired, and then press Enter . Any new data is written to the same batch
record, overwriting data previously entered in the same form.

If the user wants to examine the entire file, he or she simply presses a function key to
request the first batch record. The data in this record is displayed on the form through
which it was entered. When NEXT is pressed, the data in the next batch record is displayed.
The user can progress through all the records in the batch file by making changes as
required and pressing Enter , or by leaving the data unaltered and pressing NEXT.

As with data collection, terminal function keys enable the user to have further control over
the sequence of browsed data. The keys for browse/modify allow the user to:

• Display data from the first batch record on its form.

• Display data from the previous batch record on its form.

• Display data from the next batch record on its form.

• Reset the current form to the values displayed before any current modifications were
entered.

• Delete the record currently displayed at the terminal.

• Print the current record on the line printer.

• Return to collection mode to enter new data.

• Terminate ENTRY.

Reformatting Data

ENTRY writes entered data to a batch file. This file can then be used as input to an
application. Sometimes it is necessary to reformat the data in the batch file so that it
meets the input requirements of the application. VPLUS provides a reformatting
capability that enables you to:

• Combine data entered on several forms into one output record.

• Separate data entered on a single form into several output records.

• Rearrange data within a record, inserting constants, and generating check digits before
writing it to the output file.

• Format data within fields by justifying, filling, stripping characters, or adjusting the
sign of a numeric value.

The REFSPEC program enables you to specify how you want to reformat the batch file.
This program operates very much like FORMSPEC in that it displays menus, allows you to
"draw" a pattern of the output record, and allows you to accept default field formatting or
specify your particular formatting.
Chapter 1 35

VPLUS Overview
Product Overview
When you have created all of the reformat specifications, you compile the reformat file. The
REFORMAT program reads data from the batch file, reformats it according to the
REFORMAT file specification, and writes it to an output file.

REFORMAT can be run any time after a data entry batch file has been written. It can be
run from a terminal or as a batch job, requiring only the names of the batch file, the
reformat file, and the output file. The application can then use the output file it creates.

Refer to Figure 1-1., "Overview of VPLUS," for the flow of data between the batch file,
through the reformatting specifications entered with REFSPEC, to the output file.
36 Chapter 1

VPLUS Overview
Using This Manual
Using This Manual
This manual is intended for the following users:

Forms Designer Designs the forms to be displayed, determines the order in
which forms are displayed, and specifies any editing or
special processing to be performed on data entered or
displayed through the forms.

Applications Programmer Designs and codes the application that uses data entered
or displayed through the FORMSPEC forms.

Application User Enters data on the forms defined with FORMSPEC for
processing by an application or by ENTRY.

The following sections explain which chapters in the manual are applicable to each type of
user.

Forms Designer

The forms designer who uses FORMSPEC to design forms should read chapters 3 and 4.
These chapters describe basic and advanced forms design with FORMSPEC. The forms file
can be managed in a job stream for many tasks, such as compiling and listing the file or
renumbering fields within a form.

The forms designer with the responsibility for reformatting the data entered through the
forms should read chapter 5, which describes how to specify reformatting with REFSPEC.

If designing forms in a native language other than the default (NATIVE-3000), the forms
designer should refer to chapter 8 for information on Native Language Support.

The forms designer can skip chapters 2, 6, and 7, unless he or she is also the applications
programmer.

Applications Programmer

The applications programmer should read chapter 6, which describes the VPLUS
intrinsics callable from any of the supported programming languages listed in appendix A.
If using one of the special interface programming languages, the applications programmer
should refer to the reference manual for the particular language.

Since FORMSPEC provides editing and processing capabilities, the applications
programmer should study FORMSPEC to determine how to divide the processing
responsibilities between FORMSPEC and the application. Interactive FORMSPEC is
described in chapters 3 and 4; batch mode FORMSPEC is described in chapter 7.

The applications programmer may also read chapter 5, which describes the specifications
for reformatting data entered through an application like ENTRY. Reformatting may
provide a way to adapt entered data to an existing application.

VPLUS Native Language Support enables an application programmer to create
interactive applications that reflect native language numeric and date conventions for
more than a dozen supported languages. For information on using VPLUS with Native
Chapter 1 37

VPLUS Overview
Using This Manual
Language Support, the applications programmer should refer to chapter 8.

If the application being designed consists of data collection for later batch processing, the
applications programmer should determine whether ENTRY fulfills the user's application
needs. Chapter 2 describes ENTRY from the user's perspective. If the user's needs require
application modifications, the applications programmer should review appendix A,
"Sample Programs." This appendix lists the source code for ENTRY (in SPL) along with
similar examples in various languages.

Application User

The application user is the person who actually enters data into the forms designed with
FORMSPEC.

If the applications programmer has chosen to use ENTRY, read chapter 2 as an instruction
guide for users or for their trainer. The chapter describes how to enter data to be processed
by ENTRY.

If ENTRY has been modified, the applications programmer should modify chapter 2 to
reflect the changes.

For other applications, the programmer should provide a similar guide that explains how
to:

• Log on and off the HP 3000.

• Use the terminal keys, especially the function keys.

• Enter and modify data.
38 Chapter 1

Entering Data with ENTRY
Protected and Unprotected Fields
2 Entering Data with ENTRY

This chapter describes using the VPLUS standalone data entry application, called ENTRY.
The forms file you design implements the specific data collection function that your
application requires. ENTRY is the execution mechanism.

This chapter is intended for the operator of the ENTRY program. Since ENTRY is written
using the VPLUS intrinsics, you can also use this chapter as a tutorial that explains some
of the concepts you might apply when designing your own application program. If a locally
modified version of ENTRY is used, the instructions in this chapter may also require
modification.

Refer to chapters 3 and 4 for a description of forms design and to chapter 6 for a
description of the intrinsics associated with ENTRY.

Protected and Unprotected Fields
Each form contains protected fields that you cannot change, and unprotected fields where
you key in data. Protected fields can consist of field titles, report headings, or display
only fields to which the system sends data. Data entered at a keyboard can only be keyed
into unprotected fields.

Error Detection
If ENTRY detects an error after you enter data, ENTRY highlights the field(s) in error and
displays an error message. You can then correct the error and reenter the data on the form.

Data Modification
After data has been entered, you can review it and modify it if desired. The entered data
can be reviewed in a different order than it was entered.
Chapter 2 39

Entering Data with ENTRY
Data Reformatting
Data Reformatting
You run REFORMAT if the file of collected data is to be reformatted before it becomes
input to another program. The data is reformatted automatically and written to a selected
output file from a selected batch file containing the previously entered data.

Terminal Usage
You can enter data using any of the terminals listed in appendix G. Refer to the
appropriate terminal reference manual for complete instructions on terminal use.

Function Keys

ENTRY assigns special functions to the terminal function keys during data entry and
subsequent data modification. These keys have slightly different functions depending on
whether you are entering new data into the system, or are reviewing or modifying existing
data. The keys are illustrated in this table, followed by their function for each mode.

Table 2-1. Function Keys for Entry

Key Key Action Data Collection Mode Key Key Action Browse/Modify
Mode

HEAD FORM
f1

Display first form in sequence of
forms.

FIRST REC
f1

Display first record in batch
file on form used to enter
data.

f2 Not used; an error message appears
if pressed accidentally.

DELETE REC
f2

Delete current batch record
from the batch file. Note
that you cannot insert a
record in place of a deleted
record; any new records are
added to the end of the
batch file.

PRINT
f3

Print current form on line printer.
Prints form with current data (all
values typed in fields and recorded
by pressing Enter).

PRINT
f3

Same as in Data Collection.
40 Chapter 2

Entering Data with ENTRY
Terminal Usage
Function key labels for a form can be defined with FORMSPEC as described in chapter 3.
The labels you define with FORMSPEC are displayed in place of the ENTRY labels;
however, changing a label also affects the action associated with the key.

Display Enhancements

The terminals used for data entry provide display enhancements to highlight portions of
the forms display. These enhancements are defined during forms design and vary
depending on how the form is defined. The enhancements may highlight both input and
display-only fields. An alternate enhancement may be defined to indicate fields in which
errors are detected. The data capture devices do not support display enhancements.

If not specifically changed by the forms designer, all unprotected fields are shown in
half-bright inverse video. If a field contains an error, it is normally highlighted using
full-bright inverse video, and is underlined. (Note that the particular way a field in error is
enhanced depends on choices made by the forms designer. In general, enhancements
enable you to easily distinguish fields where data can be entered and to locate fields where
data has been entered incorrectly.

Depending on the design, fields also may be delimited by brackets to indicate the exact
location of the field within the form.

REFRESH
f4

Clear screen, initialize terminal,
and redisplay with initial values. On
terminals with local form storage,
clear form storage memory and
reinitialize form storage directory.
Also used to recover from
"Unexpected Program
Interruption," as described later in
this chapter.

REFRESH
f4

Same as in Data Collection,
except that previously
entered data is displayed.

f5 Not used; an error message appears
if pressed accidentally.

PREV REC
f5

Display previous record in
batch file on form used to
enter data.

NEXT FORM
f6

Interrupt display of repeating form,
and display next form.

NEXT REC
f6

Display next record in batch
file on form used to enter
data.

BROWSE
f7

Enter browse/modify mode. The
previous form is displayed with
entered data; the window line is
updated to show BROWSE.

COLLECT
f7

Return to Data Collection
mode; the window line is
updated to show COLLECT.

EXIT
f8

Exit from ENTRY; return to MPE
control.

EXIT
f8

Same as in Data Collection.

Table 2-1. Function Keys for Entry

Key Key Action Data Collection Mode Key Key Action Browse/Modify
Mode
Chapter 2 41

Entering Data with ENTRY
Running ENTRY
Printing Forms and Data

To print any form, simply press PRINT. In Collect mode, the current form with any initial
data is printed on the line printer. Unless a specific initial value has been assigned to a
particular field by the forms designer, all fields in the form are blank initially. In
Browse/Modify mode, the form is printed with the data previously collected to the current
record.

Ordinarily, the printed form contains the data that appears on the screen. However, if you
key in data on the form and press PRINT before you press Enter , the new data is not
printed. In Collect mode, only initial data displayed with the form is printed. In
Browse/Modify mode, any data already recorded on a batch record is printed.

Running ENTRY
To run ENTRY, log on to the HP 3000 and type the following command:

: RUN ENTRY.PUB.SYS

Then press Return .

Specifying ENTRY Files

After you start ENTRY, it prompts you for a forms file name where the data entry forms
are stored. It also prompts for the name of the batch file where you want to save the data.
If you do not know the names of these files, ask your application manager.

The forms file is a standard MPE file identified by its data file name. It may be fully
qualified by account, group name, and lockword.

The batch file is a standard MPE file. If the named batch file does not exist, a new file is
created automatically. If the file already exists, it is opened so that new data can be added
to the end of the existing data in the file.

Responding To ENTRY Prompts

ENTRY prompts for the forms file name as follows:

ENTER FORMS FILE NAME AND PRESS RETURN:

Type the desired forms file name and then press Return . If a password is associated with a
forms file, you are prompted for it twice. The forms file must be opened twice: first to
determine the forms file type (KSAM or non-KSAM), and then to open it in the correct
mode. If you want to avoid being prompted twice for the forms file password, enter it along
with the forms file name in the format: formsfile/lockword.

ENTRY then prompts for the batch file name:

ENTER BATCH FILE NAME AND PRESS RETURN:

Enter the batch file name. If the batch file name you entered is an existing file to which
data has already been written, you may receive the following message:
42 Chapter 2

Entering Data with ENTRY
Running ENTRY
WARNING: Forms file recompiled since this
batch was created. Enter "Y" to continue:

This message is issued if the forms file has been modified and recompiled since it was last
used to collect data to the batch file. Enter Y to continue only if you are sure that the
changes to the forms file will not invalidate data already entered in the file. Otherwise,
press Return . This causes the forms file prompt to be reissued so you can enter a different
forms file name and/or a new batch file name. Generally, you should use a new batch file
when a forms file is recompiled.

If the batch file you named was originally used with a different forms file than the one you
named, you will receive this message:

WARNING: A different forms file was used to
create this batch. Enter "Y" to continue:

This message may mean that the wrong forms file was entered. If you press Return , the
forms file prompt is issued again so you can enter the correct forms file name. If the forms
file name was correct, but the batch file name is wrong, you must reenter the forms file
name and then enter a different or new batch file name when the batch file prompt is
issued. If this situation occurs, you would typically not enter Y to continue, because you
would not use a batch file that does not match the forms file.

If the forms file has been designed to accept data using a native language other than
NATIVE-3000 and ENTRY does not know the exact language that should be used, ENTRY
displays this message:

ENTER LANGUAGE ID NUMBER AND PRESS RETURN:

If you see this message and do not know the appropriate number, contact your application
manager. For more information on Native Language Support, refer to chapter 8.

Removing Deleted Records From a Batch File

When records are deleted from a batch file, they are only "tagged" for deletion. If you wish
to physically remove deleted batch records, use the HP file copier, FCOPY, as follows:

1. Determine the record size of the batch file (in bytes) by using the MPE :LISTF
command. Assign this value to N.

2. The delete flag is located 19 bytes from the end of a batch record, or at location N-19.
Assign this value (N-19) to M.

3. : RUN FCOPY.PUB.SYS
>FROM=oldbatch ;TO=newbatch ;SUBSET=#0,0#,M;NEW
>EXIT

4. If desired,

: PURGEoldbatch
: RENAMEnewbatch,oldbatch

Expanding the Batch File

In most cases the batch file that ENTRY builds for you has enough space, but if you want
to enter a large amount of data (more than 1023 records), you must either specify a larger
batch file before running ENTRY or increase the size of your existing batch file. To specify
Chapter 2 43

Entering Data with ENTRY
Running ENTRY
a larger batch file, first use the MPE :FILE command before running ENTRY:

: FILE filename; DISC=numrec

where filename is the name of a new batch file and numrec is the number of records you
want the new batch file to have. When you run ENTRY, specify *filename as the batch file;
the program will build it with the number of records you requested.

You can also use FCOPY to enlarge an existing batch file. First issue the MPE :FILE
command as shown above. Then run FCOPY to build a new, larger file of the size you
requested and copy the existing data into it:

: RUN FCOPY.PUB.SYS

When the FCOPY prompt (>) appears, type:

>FROM=oldname ;TO= *filename ;NEW

where oldname is the name of your existing batch file and filename is the name of your
new, larger file. Remember to include the asterisk; otherwise, the new file will not be larger
than the old one. After the prompt reappears, type EXIT and press Return .

Finally, purge the old batch file from the system and assign its name to your new batch file:

: PURGEoldname
: RENAMEfilename,oldname

where oldname and filename are the names of your old and new files, respectively. When
you run ENTRY again, specify oldname as the batch file, and you can continue entering
data as before.

Block Mode

After you have specified the ENTRY files, ENTRY operates in block mode. When you log on
and request ENTRY, and when you specify the forms and batch file names, your commands
are entered into the system by pressing Return at the end of each line. When ENTRY
operates in block mode, your data is entered only when you press Enter . This allows you to
move around on the screen, pressing Return if you wish, and to type in or correct data.
ENTRY does not receive any keyed data until you press Enter .

After you have specified the forms and batch files, ENTRY begins to display the forms
defined in the specified forms file. The data you enter in each form displayed on the screen
is stored in separate records of the specified batch file. Subsequently, you can look at or
modify the data stored in the batch file as described in the section entitled "Modifying
Data."

Local Form Storage

Some terminals have a feature that allows forms to be stored locally in terminal memory.
Forms stored in the terminal can be displayed on the screen directly rather than having to
be retrieved from the memory area of the computer. This feature, with look ahead mode, is
automatically activated when you run ENTRY. Refer to appendix G for a list of supported
terminals with this feature; refer to chapter 6 for more information on local form storage.
44 Chapter 2

Entering Data with ENTRY
Forms Sequence
Forms Sequence
After you specify the forms and batch files, the Head form is the first form to appear.
Depending on the forms file definition, the Head form could be a menu from which you
could select the particular form on which you want to enter data. If the Head form is a
menu, the data you enter determines which form is displayed next.

The next form displayed after the Head form also depends on the definition of the forms
file; it is usually a data form on which you enter data in unprotected fields. All entered
data is stored in the batch file when you press Enter . At that time, ENTRY automatically
displays the next form in the sequence defined in the forms file. This process continues
until all the forms in the sequence have been displayed, or until you press the Exit
function key.

Repeating Forms

The next form is not always a different form. For instance, a form used for order entry may
be repeated as you enter different data into the form. Each time you press Enter to enter
data for a repeating form, the next form displayed is identical to the preceding form except
that the unprotected fields are empty or contain initial values.

You interrupt a repeating form in order to display the next form by pressing the NEXT FORM
function key. In this case, the form that immediately follows the repeating form is
displayed. If you know that the next form is the first form (the "head" form), you can also
display this form by pressing the HEAD FORM function key.

Appended Forms

Forms may also be designed so that the next form is appended to the current form. An
appended form is displayed immediately below the current form on the screen. When you
type data into the current form and then press Enter , the data in the current form is
written to the batch file as usual, but the form and its data remain on the screen with the
next form displayed below it. Note that an appended form may also be a repeating form, or
it may be different from the preceding form.

You may then enter data in the appended form, but not in the previous form. Although the
previous form remains on the screen, all of its fields become protected.

Frozen Forms

A form can be designed as frozen . A frozen form remains on the screen when subsequent
forms are displayed. The next form after a frozen form is always appended to the frozen
form. As you enter data into the next form (or forms), eventually no more space will be
available on the screen, depending on the form size. At this point, the top appended form
rolls off the screen leaving the frozen form at the top of the screen. Forms rolled off the
screen cannot be rolled back down for review. Data in the frozen form can be changed only
by entering Browse/Modify mode using the BROWSE function key.

The following steps provide an example of a possible sequence of forms, including a
repeating appended form that follows a frozen form.
Chapter 2 45

Entering Data with ENTRY
Forms Sequence
1. For a frozen Head form, press Enter to append the Next form, as shown in figure 2-1.
The Next form is then repeated/appended whenever you press Enter .

2. Press NEXT FORM to stop repeating, clear the screen, and display the Next form.

3. Press Enter to return to the Head form.
46 Chapter 2

Entering Data with ENTRY
Entering Data
Entering Data
You can enter data only in unprotected fields. Depending on how the forms are designed,
unprotected fields may be delimited by brackets as shown in Figure 2-1, they may be
designated simply by the enhanced display as shown in Figure 2-1, or they may not be
distinguished from the protected areas of the screen. Press Tab to position the cursor to the
beginning of the next unprotected field.

Figure 2-1. Bracketed Fields

You enter data anywhere within the unprotected field. The brackets, although enhanced
like the field, cannot be overwritten by data. If the data you key into a field does not fill the
field, press Tab to go to the next field.

After keying all the data into the unprotected fields on the screen, press Enter . ENTRY
collects the data and tests for errors. If no errors are detected, the data is then written as a
record to the batch file you named when you first ran ENTRY.

Each time you press Enter , a new record is written to the batch file. Each batch file record
is associated with the data entered on a single form. If a number of appended forms are
displayed on the screen, the data you enter on each form is written to a separate record in
the batch file. (The relationship of records to forms is important during the browse/modify
phase of data entry, described in the section entitled "Viewing and Modifying Data".)

FORMSPEC v.uu.ff Batch Record #4 Mode: COLLECT

[100001]Order Number: [04/02/98]

[]

Date:

SHIP TO:

[]

QTY PART NO. DESCRIPTION UNIT TOTAL

Name
[]
[]
[]

State
[]Telephone

Address
City
Zip

HEAD
FORM

REFRESH NEXT BROUSE EXITPRINT
FORM
Chapter 2 47

Entering Data with ENTRY
Entering Data
Figure 2-2. Fields without Brackets

Optional and Required Fields

Fields can be defined as required or optional. If a field is required and you do not key in
data, ENTRY detects an error and displays an error message. If a field is optional, ENTRY
accepts an empty field.

Program-Generated Data

When you press Enter , ENTRY can assign values to certain fields in the form if the
appropriate processing specifications have been supplied during forms design. With the
appropriate processing specifications, ENTRY can calculate values from data that you
have entered. It can also move values from other fields in this form or another form or can
specify actual values to be displayed in these fields.

For example, you might enter the quantity, the unit price, and the part number of an item.
ENTRY uses these values to calculate the net price for this line of the order and, when you
are in Browse mode, will display the price in a field on the form. Figure 2-6 illustrates this
example. Another application for these calculations is that you could enter a value that
ENTRY automatically edits. For example, a date you enter as September 15, 1989 could
be displayed in the same (or a different) field as 9/15/89 .

The following steps provide an example of assigning values to fields.

1. Key in values for QTY, PART NO., DESCRIPTION and UNIT PRICE .

2. Press Enter .

3. ENTRY calculates NET PRICE and displays it in Browse mode.

HEAD
FORM

REFRESH NEXT BROUSE EXIT

FORMSPEC v.uu.ff Batch Record #4 Mode: COLLECT

100001Order Number: 04/02/98Date:

SHIP TO:

QTY PART NO. DESCRIPTION UNIT TOTAL

Name

State
Telephone

Address
City
Zip

PRINT
FORM
48 Chapter 2

Entering Data with ENTRY
Entering Data
Correcting Errors

You can correct errors either before or after pressing Enter . If ENTRY detects an error after
you press Enter , ENTRY does not write the data to the batch file until you correct all errors
in the form. (Data can be changed after being written to the batch file with the
Browse/Modify capability described in the section entitled "Modifying Data.")

Before Pressing Enter

You can examine the form for errors before pressing Enter . If you notice an error, you can
correct it and then press Enter . Refer to your terminal reference manual for information on
how to use the cursor positioning and editing keys.

All unprotected fields on the screen can be cleared to the original spaces or default values
by pressing the REFRESH function key.

NOTE If this is an appended form, any previous forms on the screen will be lost. If
forms can be stored locally in the terminal for fastest display, they will be
flushed from the local storage area and normal display will occur.

After Pressing Enter

After you have pressed Enter , ENTRY edits the data you have entered. If ENTRY detects
any errors, it leaves the form and the entered data on the screen, positions the cursor to
the beginning of the first field with an error, and causes all fields with errors to blink (or,
depending on the forms design, to be enhanced in another manner). Also, a message
describing the first error is displayed in the window line. This line is dedicated to error and
status messages, and it appears on the form in the position specified in the forms file with
FORMSPEC.

You should correct the field in error and then press Enter again. If more than one field
contains errors, you can correct all of them before pressing Enter .

System and Logic Errors

Some errors cannot be corrected as described above. When a system error occurs, the
program terminates and returns to MPE control. An MPE error message is displayed on
the screen. System errors are caused by problems in the computer system. Other errors
are logic errors, which do not terminate the program. A logic error is not necessarily the
fault of the user, but may result because of a form design flaw.

A logic error might occur, for example, when data entered causes the program to perform
an impossible calculation, such as division by zero. Whether you encounter a system or a
logic error, you should consult with your application manager for the best method of
correcting the error.

Interrupting Data Entry

If you want to interrupt data entry before reaching the last form, press Enter to record the
data on the current form, then press EXIT . The next time you run ENTRY with the same
forms file and the same batch file, the next form is displayed automatically, enabling you to
Chapter 2 49

Entering Data with ENTRY
Entering Data
resume data entry from the point where you had stopped.

If you press EXIT before pressing Enter , data keyed into the current form is not recorded in
the batch file. When you run ENTRY again with the same forms and batch files, the last
form is redisplayed with any initial values, and you must retype the data into the form
whose data entry you interrupted in the previous session.

Terminating a Session

You can terminate ENTRY by pressing EXIT to return to MPE control. The effect is the
same as for interrupting data entry. After the MPE colon prompt (:) appears, you terminate
the session by entering the BYE command and pressing Return , as follows:

: BYE

Unexpected Program Interruption

The program may be interrupted unexpectedly because of a power failure or because you
accidentally pressed Break . Refer to appendix G for instructions on program recovery. Once
you have recovered, the form displayed at the time of the failure reappears, and you can
continue where you had stopped before the interruption.
50 Chapter 2

Entering Data with ENTRY
Viewing and Modifying Data
Viewing and Modifying Data
You can view and modify data written to a batch file in data collection mode by using
Browse/Modify mode.

Invoking Browse/Modify Mode

If you are currently in Data Collection mode, press BROWSEto invoke Browse/Modify mode.
If you have exited from ENTRY, run the program again. When the forms file menu appears
on the screen, enter the name of the forms file used to enter the data and the name of the
batch file to which the data was collected. ENTRY displays the next form in which you can
enter data. To enter Browse/Modify mode in order to view data already entered, press
BROWSE.

When you press BROWSE, the data in the last record of the batch file to which data has
been written is displayed. If you then press PREV REC, a previous record appears. You can
also press NEXT REC to display the next record in a forward direction. Of course, you can
only view data that has already been entered.

You can press FIRST REC to display the data from the first record in the batch file. Then
you can press NEXT REC to proceed sequentially through the records in the batch file. You
can continue to press NEXT REC until you have viewed each record in the file that contains
data. When the last form with data has been displayed, pressing NEXT REC displays the
following message:

There are no more batch records

If you press PREV REC after displaying the first form, ENTRY responds with:

There are no previous records

Resuming Data Collection

You can press COLLECT at any time to return to data collection mode. The next form in
sequence appears. You can then continue to enter data into the batch file that you have
been reviewing in Browse/Modify mode.

NOTE The BROWSE and COLLECT keys are physically the same f7 function key. In
data collection mode, the key is called BROWSE; in Browse/Modify mode it is
called COLLECT .

Viewing Data

When you browse the data in the batch file using PREV REC or NEXT REC, the selected form
appears with data previously entered at the keyboard or generated by the system. That is,
you see the form with calculated data as well as the entered data exactly as it appeared
when you pressed Enter .

Only one record of data from the batch file appears on the screen with each selection of
PREV REC or NEXT REC. If the data originates from a set of appended forms, the forms and
Chapter 2 51

Entering Data with ENTRY
Viewing and Modifying Data
data append when you press NEXT REC. However, when you move backward by pressing
PREV REC, forms originally appended are displayed one at a time with data.

Modifying the Data

You can modify any unprotected field by typing over the data displayed in the field. When
you press Enter , the modified data is edited and written to the associated record in the
batch file. Existing values are overwritten by the new values.

When you change a field, ENTRY determines if the change affects other fields in the form.
For example, if you change the quantity of an item on an order form, ENTRY recalculates
the net price if, during normal data entry, ENTRY had calculated net price from the
quantity and a unit price.

ENTRY rechecks the modified data according to any specified editing. If you change one
field which consequently causes another field dependent on it to fail the edit check, you
must correct the field that is now in error.

You can use REFRESH to reset the data on a form during modification. However, in
Browse/Modify mode, ENTRY redisplays the data previously collected to the batch file,
replacing any changes just entered; it does not clear the fields to blanks or reset initial
values.

Figures 2-8, 2-9, and 2-10 show an example of data modification.

1. Press BROWSE to enter Browse Mode and display the previous batch record. Since this
is an appended form, you would only see the last appended form with data.

2. Press PREV REC until the record to be modified, Batch Record #1, appears. Modify TAX
RATE to 0.04 and press Enter . ENTRY recalculates SALES TAX and TOTAL PRICE and
displays the next form.

3. Press PREV REC again to see the recalculated values.

4. Press COLLECT to continue data collection.

Deleting Data

You can delete an entire record from the batch file by pressing DELETE REC. Thereafter,
ENTRY skips over this record when you browse through the data in the batch file.

You cannot insert a new record in the same position as the deleted record. ENTRY does not
provide for inserting records; any new records are written to the end of the batch file.

If you only want to delete a single field, modify the field to show all blanks and press Enter .
52 Chapter 2

INTRODUCTION TO FORMS DESIGN
3 INTRODUCTION TO FORMS DESIGN

The forms displayed to a user are designed at a terminal with the interactive program,
FORMSPEC. Using FORMSPEC, the designer designs the forms and defines parameters
for editing, manipulating and displaying data. Forms defined in this manner are saved in a
forms file. At any time during forms design, FORMSPEC allows the designer to modify the
forms in the form file. Once a form has been defined, the designer can create an
Application-Ready Buffer (ARB) for it. The ARB stores screen data in a format compatible
with the requirements of the application program: this format may differ from the screen
layout.
Chapter 3 53

INTRODUCTION TO FORMS DESIGN
GETTING STARTED WITH FORMSPEC
GETTING STARTED WITH FORMSPEC
You execute FORMSPEC in interactive mode by entering the following command in
response to the MPE colon prompt:

: FORMSPEC.PUB.SYS

FORMSPEC runs entirely in block mode. HP block mode terminals are placed in block
mode automatically by VPLUS; refer to Appendix G for a list of supported terminals.

When you run FORMSPEC, it displays a series of "menus" on which you enter the
specifications to define the forms for a single application. Each menu uses a
fill-in-the-blanks type of format. Refer to the menu descriptions later in this section for
more information on all the FORMSPEC menus.

With FORMSPEC, you press ENTER to record data; you use function keys to move between
FORMSPEC menus and for other tasks, as described below. You can use your terminal
editing keys to correct data typed into fields on the FORMSPEC menus; refer to your
terminal manual for more information.

Most of the capabilities of interactive FORMSPEC are also available with batch mode
FORMSPEC. (See "Using FORMSPEC in Batch Mode", Section 7 for more information.)

Specify a Forms File

The first menu displayed whenever you run FORMSPEC is the Forms File Menu, as
shown in Figure 3-1. The letters v.uu.ff used for Figure 3-1., and for all the examples
shown in this manual, will be replaced by the version number of VPLUS used on your
system.

Figure 3-1. Forms File Menu
54 Chapter 3

INTRODUCTION TO FORMS DESIGN
GETTING STARTED WITH FORMSPEC
At the Forms File Menu, you specify the name of the forms file to be created or modified,
such as the example FORMSF2.PUB.ACCTG shown in Figure 3-1.; press ENTER. If the forms
file does not exist, FORMSPEC prompts you to press ENTER again to confirm that you
want to create a forms file.

Choose an Option

Once you have specified the name of the forms file and pressed ENTER, the next menu is
the Main Menu, as shown in Figure 3-2. Notice that the top line, called the window line,
contains useful information, which includes the version number (v.uu.ff) , the title of the
menu (Main Menu) , and the name of the forms file (FORMSF2.PUB.ACCTG).

Figure 3-2. Main Menu

From the Main Menu, you have access to the menus of FORMSPEC with all of their forms
design features. You simply type the option desired in the selection box and press ENTER.
In Figure 3-2. option A is specified, which selects "Add a form" and leads to a sequence of
menus that allow you to design a form simply and easily. This process is described later
under "Ease of Forms Design".

Many of the options, including L, D, C, and X, only require information in the fields on the
Main Menu in order to be executed immediately. Option B lets you create and modify and
application-ready buffer for a particular form.

FORMSPEC Function Keys

In addition to the control provided by the Main Menu, the defined function keys, shown in
the following table, allow you to select menus either for initial definition or for modification
of an existing forms file. The combination of the Main Menu and function keys gives you
the ability to change any form, field, or global specification as you define the forms file.
Chapter 3 55

INTRODUCTION TO FORMS DESIGN
GETTING STARTED WITH FORMSPEC
The function keys used by FORMSPEC should not be confused with the function keys
defined by an application or by ENTRY for use while the application is executing, as
discussed under "Advanced Forms Design" later in this section. Although the two groups of
keys are physically the same programmable keys, their functions differ in most cases.

Menu Sequence

FORMSPEC displays its menus in a predetermined sequence. As each menu is displayed,
type in the specifications you want and then press ENTER. If you do not want to enter a
specification on a particular menu, or you want to skip over one or more menus, you can
use the menu sequence control function keys (NEXT FORM, PREV FORM, NEXT, and PREV).
These keys allow you to select menus relative to the current menu in order to make
changes or additions. Figure 3-3. illustrates the relation between the menus provided by
FORMSPEC and the function keys that control menu sequence.

You can move forwards or backwards through the sequence of menus to locate a particular
menu by pressing NEXT or PREV, respectively. If you want to skip the field menus
associated with each form, you can use the PREV FORM or NEXT FORM. An alternate
method is to request the Main Menu with MAIN/RESUME, and then select an existing menu.

Although it is not technically a menu, the form layout associated with each form is treated
as the menu following the Forms Menu when NEXT is pressed, and as the menu preceding
the first Field Menu when PREV is pressed.

The sequence control keys can also be used from the Main Menu. You can go to the Main

Table 3-1. FORMSPEC Key Labels

Key Key Action

PREV
FORM
f1

Display the previous Form Menu. If no forms are defined, a Form Menu with no
values is displayed.

NEXT
FORM
f2

Display the next Form Menu. If the next form is not defined, a Form Menu with no
values is displayed.

FIELD
TOGGLE
f3

Only used in Field Menus to switch between field attributes and the optional
processing specifications.

REFRESH
f4

Redisplay current menu in its initial state before any specifications were entered
or existing specifications modified. Also used to recover in case of unexpected
program interruption (refer to Appendix G).

PREV
f5

Displays previous menu in sequence of menus (refer to "Menu Sequence").

MAIN/
RESUME
f7

Request Main Menu or, if Main Menu displayed, return to menu displayed when
MAIN/RESUME was requested.

EXIT
f8

Terminate FORMSPEC and return to MPE control.
56 Chapter 3

INTRODUCTION TO FORMS DESIGN
GETTING STARTED WITH FORMSPEC
Menu at any time from any other menu by pressing MAIN/RESUME. You can return to the
menu from which you requested the Main Menu by pressing MAIN/RESUME. In this case,
the menu on the screen when MAIN/RESUME was requested is treated as the current menu.
If you just entered FORMSPEC and the Main Menu is displayed, pressing MAIN/RESUME
results in a display of the Globals Menu. From the Globals Menu, NEXT FORM causes the
first Form Menu to be displayed; NEXT causes a Save Field Menu to be displayed.

NOTE The number of Field Menus displayed depends on the number of fields you
defined on the screen for the form. The system automatically displays a Field
Menu for each field named on the screen and displays the default values for
the field. When menus for all fields on a form have been displayed, the Form
Menu is redisplayed. If you have no more forms to design, press
MAIN/RESUME for the Main Menu through which you compile the forms file.
Otherwise, continue defining forms by specifying the next form on the Form
Menu.

Figure 3-3. Relation between Menus and Function Keys

MAIN SEQUENCE

MAIN MENU

GLOBALS MENU

SAVE FIELDS MENU 1

SAVE FIELDS MENU 2

FORM MENU 1

FORM LAYOUT 1

FIELD MENU 2

FIELD MENU 3

FORM MENU 2

FORM LAYOUT 2

FIELD MENU 1

FIELD MENU 2

FIELD MENU 3

PREV FORM

PREV

NEXT

NEXT FORM

EXIT

to MPE

RESUME

MAIN

Current menu

Select menu
or operation

F1

F5

F6

F2

F7

F8

FIELD MENU 1
Chapter 3 57

INTRODUCTION TO FORMS DESIGN
GETTING STARTED WITH FORMSPEC
Creating an Application-Ready Buffer (ARB)

The purpose of the ARB is to allow you to transform screen data into application data and
back again by converting data types between screen and application, and by reordering the
fields.

Once you have created a form and saved it in the forms file, you can create an
application-ready buffer (ARB) for it if you choose. Not every form needs to have an ARB,
you can create ARB's for selected forms only. You can also create an ARB for a form at any
time after you have created the form itself, and you can delete an existing ARB and
generate a new one if you have made extensive changes to the associated form. Fields on
the form are mapped one-to-one to the ARB when you select GEN from the ARB Menu.
You can rearrange fields on the form using the Screen Design Menu without affecting the
ARB, and you can add and delete ARB fields without affecting the form by selecting RES
(Restructure) from the ARB Menu.

Before you can generate and ARB, you must define the Data Type Conversions you want to
take place between the form on the screen and the ARB. From the Globals Menu, you
access the Data Type Conversions menu and define the data conversion defaults. Screen
and application data types are listed under "Data Type" further on in this section.
Creation of an ARB is described in detail under "Using FORMSPEC to Create an ARB" in
this section.

At runtime, the ARB transforms the data as it appears on the screen into a format that the
application can use without further manipulation, and converts application data back into
a format suitable for display on the screen.

Year 2000 Functionality

VPLUS contains new functionality to address Year 2000 issues. The following sections
describe features related to Year 2000 functions.

FORMSPEC Enhancements

FORMSPECApplication Ready Buffer (ARB) processing has been enhanced with the addition
of a new ARB data type. This data type can be specified on the DTC Menu for Data Type
Conversions from Screen Type to Application Type. The new ARB Type is YYYYMD and is
defined as a 8-byte ASCII field containing a date value in YMD order with no separators.
Also the year component in the date value has 4 digits. Note that FORMSPEC will ensure a
length of 8 for the data type YYYYMD in the ARB. In essence, the value is of the form
YYYYMMDD (8 bytes) even though the Type designator on the DTC Menu has been
abbreviated to YYYYMD.

Processing Enhancements

Date processing in VPLUS has been enhanced to handle date values with 4-digit year
components. Specifically, the following additions have been made.

Date output will be formatted with 4-digit years if the target field is wide enough to receive
the date, and the user requests this action. Examples of such output include the SET
statement in FORMSPEC. The target field should be at least 10 characters in length to have
a 4-digit year output.
58 Chapter 3

INTRODUCTION TO FORMS DESIGN
GETTING STARTED WITH FORMSPEC
VPLUS, by default, will format date output with 2-digit years. To change the behavior as
described above, define a JCW called VSETNEXTCENTURY and set bit 15 to 1 (bits are
numbered from 0 through 15). It should be noted that this option will be active for fields
wide enough to hold the 4-digit year date. For other fields, 2-digit years will be used.

Existing 2-digit years can be interpreted differently to handle dates in the next century.
Currently VPLUS handles year components 00-99 as 1900-1999. This scheme of
interpretation can be changed. In the new scheme, 00-49 is interpreted as 2000-2049 and
50-99 is interpreted as 1950-1999. This interpretation will be valid through all processing
done by VPLUS. For example, this scheme will allow the user to enter 02/29/00 (MDY
order) in an existing application and have it processed correctly.

To invoke the above method of date interpretation, define a JCW called VSETNEXTCENTURY
and set bit 14 to 1. Note that this method is used for processing only 2-digit year dates and
not 4-digit year dates. Note also that the display of 2-digit year dates is not affected by this
enhancement. This means that 12/11/10 (MDY order) can refer to 1910 in one application
and 2010 in another application.

NOTE When defining the JCW VSETNEXTCENTURY, set all unused bits to 0.

Programmable Defaults for Field and Data Types in FORMSPEC

FORMSPEC version B.06.07 has been enhanced to provide the capability to set the default
Field Type and Data Type of a form. This capability can be used to reduce the time taken
to complete the design of a new form. Two new fields for user input have been added to the
Form Menu screen of FORMSPEC. One is for the default Field Type, and the other is for the
default Data Type.

On the Form Menu, the user typically specifies the name of the form and other
characteristics of the form. In addition now, the user can specify the default Field Type and
Data Type for the form. For a list of the allowable values for the Field Type and Data Type,
refer to chapter 2 of this manual. All fields created newly for the form will have the Field
Type and Data Type set to the default values supplied on the Form Menu.

Notes

• The Field Type and Data Type values supplied on the Form Menu are applicable only to
fields created for the form thereafter. This means that if these default values are
changed for an existing form, the types of the existing fields are not changed. For a new
form, the default values apply to all the fields created for the form.

• Cloned forms have their screen already designed; hence, the values on the Form Menu
do not apply to such forms.

• The Field Type and Data Type can be specified independently. This means that either,
or both, fields on the Form Menu can be blank.

— If the Field Type is blank, all newly created fields for the form will have a Field Type
of “O.”

— If the Data Type is blank, all newly created fields for the form will have a Data Type
of “CHAR.”
Chapter 3 59

INTRODUCTION TO FORMS DESIGN
GETTING STARTED WITH FORMSPEC
Ability to Define More than 52 Single Character Fields per Form

This enhancement allows more than 52 single character fields to be defined for a Form.
Currently the field tag which is defined for a field at screen design (creation) time should
begin with an alphabetic character. This enhancement will allow several other characters
to be used for the field tag, thus increasing the number of single character fields that can
be defined for a Form.

The following are the other characters which can be used for the field tag (defined at screen
creation time):

Digits 0,1,2,3,4,5,6,7,8,9

Specials @,#,$,%,&,*,-,+,<,>,/,\,!,|,=,?,;,_

Field Menu Initialization

In the case where one of the characters listed above (a Digit or a Special) is used in a single
character field, the Field Name will be blanked out when the Field Menu is invoked for the
field the first time. The user should input a new name for the field in this case. With this
enhancement, a maximum of 80 single character fields can be defined for a Form.

Compatibility Issues

Forms created with previous versions of FORMSPEC can be used with this version
without any modifications.

Forms created with this version of FORMSPEC can be used with existing applications
without any modifications.

Forms created with this version of FORMSPEC can be used with previous versions of
FORMSPEC. However, some extra characters may appear near the bottom of the Form Menu
screen which should be ignored. These extraneous characters appear only once, the first
time the Form Menu is invoked for the form, and they do not affect the functionality in any
way.

Terminating FORMSPEC

You can terminate operation of FORMSPEC at any time by pressing EXIT . This returns
you to MPE control which then issues the MPE colon prompt (:).

However, if you have made any modifications and have not compiled the forms file,
FORMSPEC issues a warning. By pressing EXIT again you terminate operation of
FORMSPEC without compiling the file. Refer to "Forms File" for more information on
compiling the forms file.

Unexpected Program Interruption

In case of unexpected interruption due to hitting BREAK or a terminal power failure,
control returns to MPE. Refer to Appendix G for the steps to recovery from such a
situation. Once you have recovered, the menu will be cleared to initial or previously
entered values. To ensure against damage to the file, reenter the information on all menus
pertaining to the form you were creating or modifying at the time of the program
interruption.
60 Chapter 3

INTRODUCTION TO FORMS DESIGN
EASE OF FORMS DESIGN
EASE OF FORMS DESIGN
Once you have specified a forms file and the Main Menu is displayed, you are ready to use
FORMSPEC to create forms. Whenever you create a new forms file, your first task is
always to add a form; if you are modifying an existing file, you may want to add a form. In
either case, you follow the sequence of menus shown in Figure 3-4. Refer to the menu
descriptions later in this section for more information on all the FORMSPEC menus.

Figure 3-4. Sequence of Menus for Form Design

A Form Menu, shown later in Figure 3-10., allows you to define the characteristics of each
form, such as the form name and what form sequencing options to use. Refer to
"Understanding Form Sequencing" below.

Form Layout

The Form Menu is followed by a blank screen on which you design the layout of the form as
it will appear on the screen. An example of a form layout is shown in Figure 3-5. This
layout is easy to draw on the screen — and easy to change at this stage or later. You use
your terminal editing keys to layout the fields and text of your form on the screen; refer to
your terminal manual for more information.

Forms Menu

[FORM1]

Forms Menu

[FORMn]

Forms File

[FORMF]

Main Menu

[A]

Name Name Name

[Fn]Name [Fn]Name

Selection

FORM1 TITLE

[F1]. . . [Fn]

FORMn TITLE

[F1]. . . [Fn]

Field Menu

[F1]

Field Menu

[F1]

:runf:RUN FORMSPEC.PUB.SYS

Enter filename

Select Option
(A= Add a Form)

Enter filename

Layout Form

Specify Edits

Enter formname

Layout Form

Specify Edits

. . .

Name Name
Chapter 3 61

INTRODUCTION TO FORMS DESIGN
EASE OF FORMS DESIGN
Figure 3-5. Example of a Form Layout

Each layout consists of two kinds of information:

Fields Areas, delimited on the form, into which data will be entered by or
displayed to the user. The maximum number of fields allowed on anyone
form is 128.

Text The headings and other displayed information that appears on the form
but is never altered during execution.

You must distinguish between these two kinds of information within the form layout using
field delimiters and field tags to indicate the fields.

Field Delimiters

The data fields are delimited by brackets ([]), by ESCAPE followed by brackets, or by a
combination of these. Pressing ESCAPE, then bracket, prevents the brackets from being
displayed on the screen.

Printed Delimiters. If you delimit the data fields with brackets, they are not included in
the length of the field, but they do take on the display enhancements assigned to the field.
Brackets make it easy to see where a field begins and ends during definition, but they take
up space on the form. If you must concatenate two data fields, you should use nonprinting
delimiters to delimit the fields.

Nonprinting Delimiters. You can also delimit fields by pressing ESCAPE followed by:

the left bracket ([) OR the right bracket (]).

The advantage of these delimiters is that they take up no space on the form and thus can
be used to delimit contiguous fields. The disadvantage of using these keys is that they are
not displayed and therefore do not show up during form design.

Mixing Printing and Nonprinting Delimiters. To use one printing and one
nonprinting delimiter to fix the boundaries of a field, use the delimiters as follows:

PREV
FORM

NEXT
FORM

REFRESH PREV NEXT MAIN/
RESUME

EXIT

*****ABC MANUFACTURING*****

Date: [ordate]

SHIP TO:
Name [name]

Address [address]
City [city] State [st]

Zip [zip] Telephone [phone]
62 Chapter 3

INTRODUCTION TO FORMS DESIGN
EASE OF FORMS DESIGN
If the printing delimiter is to come first, use

[ESCAPE [fieldtag . . . ESCAPE]

If the printing delimiter is to come last, use

ESCAPE [fieldtag . . . ESCAPE]

In the case where a field begins with ESCAPE [and ends with], the terminal will insert
ESCAPE] if a following field also starts with ESCAPE [. As a result VPLUS will reject the
form layout. This terminal feature can be avoided by properly using the above rules for
mixing delimiters. Refer to Figure 3-6. for examples of different ways to layout a form.

Figure 3-6. Examples of Form Layouts

Field Tag

Regardless of the technique used to delimit the fields, each field must be identified by a
"field tag". This tag consists of (USASCII only) letters of the alphabet (uppercase or
lowercase), digits, or the underline (). The first character must be alphabetic. Since the
field tag must be specified within the field delimiters, it is limited to a length less than or
equal to the number of characters in the field. Thus, if you have a one-character field, its

SHIP TO:

Name [name
...]
Address
[address...]

SHIP TO:

Name name
..
Address
address..

SHIP TO:

Name name
..
Address

address..

ESCAPE [ESCAPE]

ESCAPE]

ESCAPE]

C. Combining Brackets with

ESCAPE]

ESCAPE [

ESCAPE [

ESCAPE [and ESCAPE]

B. Using ESCAPE [and ESCAPE] as Field Delimiters

ESCAPE [

A. Using Brackets as Field Delimiters
Chapter 3 63

INTRODUCTION TO FORMS DESIGN
EASE OF FORMS DESIGN
tag may not have more than one character. However, the field tag is also used for the field
name. You may change any field name on the Field Menu. Thus, you can give a
one-character tag a longer field name when the Field Menu for the field is displayed.

Note that for the field tag, uppercase letters differ from lowercase letters. Thus, f1 and F1
are two different tags. All other names used by FORMSPEC make no distinction between
uppercase and lowercase letters, but shift all letters to uppercase. Since each tag is
upshifted when used as the default field name, tags that differ on the form may result in
identical field names. When this occurs, you must rename one of the identical field names
on a Field Menu. Each field tag must be unique before it is upshifted, thus, a form may
have up to 52 one-character fields.

You can fill up the field with dots (periods). This gives you a visual representation of field
size while you are designing the field. Using dots in the field is particularly useful when
the field is delimited by ESCAPE [and ESCAPE] since these delimiters are not displayed.
The dots do not show up when the form is displayed by the application.

Defining the Fields

After defining the form layout, FORMSPEC displays a Field Menu for each field, such as
the example shown in Figure 3-7.

Figure 3-7. Example of a Field Menu

Each Field Menu displays the portion of the form containing the current field. Compare
Figure 3-5. and Figure 3-7.; notice the portion of the form layout of Figure 3-7. that is
displayed in the Field Menu in Figure 3-5. The current field is indicated by a caret (^)
under the field tag. In the example in Figure 3-7., the current field is labeled Date: with
the field tag of ordate.

The information you enter on the Field Menu is divided into two categories: field attributes
64 Chapter 3

INTRODUCTION TO FORMS DESIGN
EASE OF FORMS DESIGN
and processing specifications. The field attributes are the two lines of fields below the
portion containing the current field. For example:

Figure 3-8. The Field Attributes

Only the field attributes are discussed here. The processing specifications are described in
Section 4. If you can use the field attributes without change, the entire form design is
complete at this point. If not, you can specify any simple edits, as described below, or, if you
want to use the FORMSPEC processing specifications, described in Section 4, you can
enter appropriate processing specifications on the Field Menu. As shown in Figure 3-4., the
form design sequence can be repeated until all forms in the file are defined.

Field Number

Although your form may have a maximum of 128 fields, a number between one and 256 is
assigned by FORMSPEC to each new field. This number is assigned to the field and is not
changed even if other field characteristics are changed. If, however, the field tag is
changed, this effectively deletes the field associated with the old tag. The field number is
deleted along with the field, and a new number is assigned to the field associated with the
new tag. The field numbers of a form can be renumbered in screen order with the
FORMSPEC batch mode command RENUMBER, as described in Section 7.

Field Length

This is the length of the field as determined by the number of characters entered between
the field delimiters during form layout. The length of a field cannot be changed on the
Field Menu. If you want to change field length, you must display the form layout and
actually change the field on the form. If you change the field length on the form, the new
length is automatically reflected in the Field Menus.

If you want to design a field that is longer than one line, you start the field with a bracket
(or ESCAPE[) and terminate it with a closing bracket (or ESCAPE]). At the beginning of
each intermediate line of the field, you enter an ESCAPE [.

For example, as shown in Figure 3-9., consider a field that extends across three lines.

Figure 3-9. Example of a Field Extending over Several Lines

Col 1 Col 35 Col 80

[fielda

ESCAPE [
]

Chapter 3 65

INTRODUCTION TO FORMS DESIGN
EASE OF FORMS DESIGN
Assuming the first line of the field contains 79 characters, the second line contains 80
characters, and the third line contains 34 characters, the entire field is 193 characters
long. This count excludes the printing brackets which delimit the beginning and the end of
the field.

Field Name

The field tag assigned during form design is shifted up to all uppercase letters and
becomes the field name. You can enter another name in this field. For example, you may
want a longer name than would fit in the field, or if two tags are no longer unique when
shifted to all capitals, you can rename one of them here. In any case, the name in this field
(an upshifted tag or a new name) identifies the field in subsequent references. It must not
be one of the reserved words listed in Table 3-2.

You can enter any name up to 15 characters long. Like other FORMSPEC names, it must
be USASCII and start with an alphabetic character. It may be followed by uppercase or
lowercase letters (A-Z), numbers (0-9), or an underline ().

Default The uppercase field tag.

Table 3-2. FORMSPEC Reserved Word List

ALL FILL LOCALEDITS SET

APPEND FINISH LT STDCHAR

BARCODE FREEZE MAGSTRIPE STOP

CAD GE MARKS STRIP

CDIGIT GT MAT THEN

CENTER HOLES MATCH TO

CFORM IF MFR TRAILING

CHANGE ILV MINLEN TYPEV

CLEAR IN NE UPC

COD INIT NFORM UPSHIFT

CONFIG 125 NIN $EMPTY

CUT 139 NOCUT $END

DEVICE JUSTIFY NONE $HEAD

DISPLAY KEYBOARD NOREPEAT $LENGTH

EAN LARGECHAR OF $REFRESH

ELSE LE PRINTER $RETURN

EQ LEADING RELAY $STATE

FAIL LEFT REPEAT $TODAY

FIELD LIGHT RIGHT
66 Chapter 3

INTRODUCTION TO FORMS DESIGN
EASE OF FORMS DESIGN
Display Enhancement

You can change the enhancement for the particular field with any combination of the codes
shown in Figure 3-3. Up to four of the available enhancements may be used at one time.
The data capture devices do not support display enhancements.

Security and color enhancements are only available on terminals with the security or color
feature, as listed in Appendix G. Refer to "Using Terminal Features" for more information
on security and color.

Field Type

The field type is specified as D, R, O, or P to indicate one of the following options:

Display(D) Field cannot be modified by the user. Intended for display only, the field
can receive data as specified by processing specifications (see Section 4). It
is a protected field on the form, but data is written to display only fields
exactly as if it had been entered by the user.

Required(R) Field cannot be left blank. User must enter nonblank values in field.

Optional(O) Field may be left blank by user. Edit checks and field phase processing
specifications for the field are skipped if the field is left blank.

Process(P) Exactly like an optional field, except that edit checks are performed and
field phase processing specifications are executed even if the field is blank.

Default O (optional)

Required, optional, and process fields are treated as "input" fields. An input field is one in
which the user can enter or change data, as opposed to a display only field which is
protected from user input. Note that initial values may be displayed in any field, but such
values can be, and usually will be, changed by the user.

Data Type

There are two sets of data types, the screen data types and the ARB data types. If you are
creating an ARB for a form, the application needs to know the ARB data types. Each field
on the form and the ARB must be specified as one of three data types: character, numeric,
or date. Based on the data type, FORMSPEC can determine the basic validity of the data

Table 3-3. Display Enhancement

Enhancement Code

Half Bright H

Inverse video I

Underline U

Blinking B

Security S *

Color 1-8 *

None NONE
Chapter 3 67

INTRODUCTION TO FORMS DESIGN
EASE OF FORMS DESIGN
entered, how it is formatted for data movement, and the type of operations that can be
performed on the field.

Screen data types impose format and edit rules for data entered on the screen. ARB data
types determine how that data will be interpreted by the application. Conversions from
screen data type to ARB data type and vice versa occur automatically at runtime (see
VGET/PUTBUFFER in section 7).

Screen Data Type. Valid screen data types are: CHAR, NUM(n), DIG, IMPn, MDY,
DMY, and YMD. Figure 3-4. illustrates how each numeric data type interprets an
entered value on the screen. The data types are described in the following paragraphs.

Default CHAR

Character Type. CHAR Data entered in the field is assumed to be a string of any
characters. No validity checking is performed on data at
time of entry. No arithmetic operations can be performed
on data of this type. The user can enter any characters in a
CHAR type field. (As noted above, CHARis the default data
type.)

For example, $12.59, A-15-75, and **123** are all
legitimate entries.

Numeric Types. NUM[n] Data entered in a field of this type must be numeric. The
maximum number of decimal places can be indicated by
the optional digit, n, where n is a value between 0 and 9. If
you omit the value, n, the data item is assumed to have a
floating decimal point.

Validity checking is performed on this data type. An
optional leading sign (+ or -) is allowed. Commas are
allowed, but if included they must be correctly placed. An
optional decimal point may be included in the data. When
Native Language Support is used, the symbols used to
indicate thousands and decimals are language-dependent.
For more information on Native Language Support, see
Section 8.

The user must enter numeric data in this field. If n
specifies a maximum number of decimal positions, the
user must include a decimal point when the value has
decimal places, and may omit the decimal point when it
does not.

For example, in a NUM2 field, the user can enter a value
with no decimal places (such as 500) or a value with one
decimal place (such as 5.5) or a value with two decimal
places (such as 5.95). Commas and a sign may also be
included. For example, the following are legitimate entries
for a NUM2 field: 1,390, -327.00, +100,000.00 and so
forth; but the value 5.678 is disallowed as it has too many
decimal places.
68 Chapter 3

INTRODUCTION TO FORMS DESIGN
EASE OF FORMS DESIGN
DIG Data entered in a field of this type must be a positive
integer. No sign, no commas, and no decimal point can be
included. As with NUM data, validity checks are
performed on this data type.

For example, 10030, 2 and 307 are all legitimate entries
in a DIG field, but 10.5, 100,000 or -10 are not.

IMP n A value entered in an IMP field has an assumed decimal
point. The assumed decimal point is n places from the
right of the value. (Note that the value, n, must be
specified.) Although permitted, a decimal point should not
be entered in this type field, but commas and an optional
leading sign (+ or -) are allowed. As with NUM type data,
validity checks are performed on data of this type.

For example, if the data type is IMP2, and the user enters
the value 500 , the value is treated as 5.00 .

With Native Language Support, the symbols accepted for
thousands and accepted or required for decimal indication
are language dependent. For more information on Native
Language Support, see Section 8.

Date Types.

MDY A date entered in an MDY field must be in the order: month, day, year. The
data can be entered in any format, such as FEB 6, 1986 or 02/06/86 or
FEBRUARY 6 86 and so forth.

DMY A date entered in a DMY field must be in the order: day, month, year. It
can be any format, such as 2 MAR 1986 or 02-03-86 or 2/3/86 and so
forth.

YMD A date entered in a YMD field must be in the order: year, month, day. It
can be in any format such as 1986, APRIL 12 or 86/4/12 or 86-04-1 or
860402 .

Table 3-4. How Each Numeric Data Type Interprets Entered Values

Entered
Value

Interpreted Value (Based on data type)

NUM2 IMP2 NUM NUM0 DIG

10.95 10.95 10.95 10.95 (error) (error)

1095 1095.00 10.95 1095 1095 1095

10.9 10.90 10.90 10.9 (error) (error)

10.956 (error) (error) 10.956 (error) (error)

-100 -100.00 -1.00 -100 -100 (error)

1,000 1,000.00 (error) 1,000 1,000 (error)

1,00000 (error) 1,000.00 (error) (error) (error)
Chapter 3 69

INTRODUCTION TO FORMS DESIGN
EASE OF FORMS DESIGN
The entered data is checked by VPLUS for correct format and that it is a valid date.
Arithmetic operations are not allowed on date fields.

Native Language Support does not affect the order of the date field. It does, however,
accept the names of months and their abbreviations for each native language at run-time.
For more information on Native Language Support, see Section 8.

To illustrate how the three date type specifications interpret entered dates for
NATIVE-3000, Figure 3-5. shows legal dates followed by Figure 3-6. with dates that would
be diagnosed as illegal.

ARB Data Types The valid choices for ARB data types are: CHAR, INT, DINT, REAL,
LONG, SPACKn, PACK n, SZONE n, ZONE n, and YYMMDD. Data type and length may differ
from screen to ARB. The ARB data types include some that are language-specific. For
example, SPACKn and PACKn correspond to COBOL COMP-3; SZONEn and ZONEn correspond
to COBOL signed display numeric and unsigned display numeric respectively; and INT and
DINT correspond to COBOL COMP. For more information on COBOL data types, see the
COBOLII/3000 Reference Manual. The default data type and length for an ARB field are
derived from the data type and length of the corresponding field on the associated form
and the Data Type Conversion record.

Table 3-5. Valid Dates

MDY DMY YMD

February 7, 1986 7 February 1986 1986, February 7

FEB 7 1986 7 FEB 1986 1986 FEB 7

02/07/86 07/02/86 86/02/07

2/7/86 7/2/86 86/2/7

02-7-86 07-2-86 86-2-07

2 7 86 7286 8627

020786 070286 860207

Table 3-6. Invalid Dates

MDY DMY YMD Reason

Febrary 7, 1986 7 Febrary 1986 1986, Febrary 7 Misspelled

FEBR 7 1986 7 FEBR 1986 1986 FEBR 7 Four letter abbreviation

2786 7286 8627 Must be a two-digit month, day
when no separator is included.
70 Chapter 3

INTRODUCTION TO FORMS DESIGN
EASE OF FORMS DESIGN
Figure 3-7. sets out recommended guidelines for data type conversions from screen to ARB
and back.

FORMSPEC will ensure the following length specifications for ARB data types:

YYMMDD length = 6
INT length = 2
DINT length = 4
REAL length = 4
LONG length = 8

YYMMDD is defined as a 6-byte ASCII field containing numeric data with no separators,
in YMD order; for example, 860419.

The designer is responsible for making legitimate data conversions. The three critical
factors are data type, value, and length. The following examples illustrate their
importance.

• Data Type: Runtime errors may arise from specifying a CHAR/DATE source conversion
to a numeric destination, or a CHAR source to a DATE destination.

• Value: The ARB data type INT may have a screen type of CHAR. This works if the field
is for display only, but if it is an entry field, the user could input ABC unless the
designer has taken steps to prevent it.

• Length: Data may be truncated if the screen data type DIG is specified for a field of
length 10 and the ARB type is INT (length 2 bytes, equal to 1 HP 3000 word). Both
COBOL and Pascal can store numbers in the range -32768 to 32767 in one word.

NOTE These are recommendations only, and are not enforced by FORMSPEC edits.
The programmer may set up the application code to handle non-standard
conversions.

Figure 3-8. shows the valid screen data types and their corresponding values for COBOL,

Table 3-7. Recommended Data Type Conversions

Screen Data Type — > ARB Data Type

CHAR CHAR only

YMD, DMY, MDY YYMMDD, CHAR

DIG any except YYMMDD, CHAR

NUM[n], IMPn any except YYMMDD, CHAR; "n" truncated if INT, DINT

ARB DATA Type — > Screen Data Type

CHAR CHAR only

YYMMDD MDY, YMD, DMY, CHAR, DIG

INT, DINT DIG, NUM[n], IMPn; positive only if DIG

REAL, LONG, PACK, ZONE DIG, NUM[n], IMPn; if DIG - "n" truncated, positive only
Chapter 3 71

INTRODUCTION TO FORMS DESIGN
EASE OF FORMS DESIGN
Pascal and FORTRAN.

Figure 3-9. shows valid application data types and their values in COBOL, Pascal and
FORTRAN.

Initial Value

You may specify an initial value for the field. This value will be displayed in the field when
the form is first displayed at the terminal. It is also displayed when REFRESH is pressed
during data collection in ENTRY and the form is cleared to its initial values.

The value entered here is treated like user input. That is, it must match the data type of
the field and must not be longer than the field length.

(Refer to Section 4 for a discussion of how FORMSPEC uses these data types to perform
validity checks on data entered in the fields, and how data is treated during movement
from one field to another.)

If Native Language Support is used, you must specify the initial value in NATIVE-3000.

Table 3-8. Valid Screen Data Types

ARB Data Type COBOL Pascal FORTRAN

CHAR PIC X (_) Packed array CHAR [.._] CHAR

YMD as above as above as above

DMY as above as above as above

DIG as above as above as above

NUM[n] as above as above as above

IMP[n] as above as above as above

Note: [n] represents the number of decimal digits

Table 3-9. Valid Application Data Types

FORMSPEC COBOL Pascal FORTRAN

CHAR X Packed array CHAR [.._] CHAR *_

YYMMDD X(6) as above CHAR *6xx

ZONEn 9(_)Vn

PACKn 9(_)Vn COMP-3

SPACKn S9(-)Vn COMP-3

REAL REAL REAL

LONG LONG Double Precision

INT S9(4) COMP Subrange -32768..32767 Integer **2

DINT S9(4) COMP Integer Integer **4
72 Chapter 3

INTRODUCTION TO FORMS DESIGN
EASE OF FORMS DESIGN
The value will appear with the conventions of the native language at run-time. For more
information on Native Language Support, see Section 8.

Understanding Form Sequencing

As shown in Figure 3-4., the Form Menu is the first menu in the sequence of menus used to
define a form. On the Form Menu, as shown in Figure 3-10., you specify a name for the
form and the form sequencing options to use (Repeat Option and Next Form The form
sequening options are described below. the other fields pertain to advanced features such
as “Form Families” discussed later in this section.

Figure 3-10. Example of a Form Menu

The Repeat Option

When the forms in a forms file are displayed, a form may be repeated and appended to
itself (A) ; it may be repeated overlaying the previous display of itself (R) ; or it can be a
non-repeating form that is displayed once (N) .

To illustrate how the three choices of the repeat option work, assume that form X is a
repeat/append form (A) . This form is displayed, the user types in data, and presses ENTER.
The form with the data remains on the screen, and the same form with no data (except
initial values) is displayed Immediately below the form with data. The next time ENTER is
pressed, the form is displayed a third time immediately below the second form. This
Chapter 3 73

INTRODUCTION TO FORMS DESIGN
EASE OF FORMS DESIGN
continues until the repeat option is changed.

Appended forms are particularly useful when the form is a single line that has an
indeterminate number of iterations. An order entry blank, for instance, could be designed
as a repeat/append form.

A form that repeats without the append option (R) is cleared each time the user presses
ENTER to enter data. For example, assume form X is a repeating form that overlays itself:

Note that this type of repeating form overlays itself even if there are other forms on the
screen.

The Next Form Option

You specify the name of the next form to be displayed after the current form or keep the
default of $HEAD. You may also specify whether the next form is to be appended to the
current form (A) ; and, if appended, whether the current form is to remain frozen on the
screen when the screen fills up (F) . If the screen is to be cleared before the next form is
displayed, keep the default of C.

The following examples illustrate how freeze (F) and append (A) interact with the current
form. Assume a current form X and a next form Y. The next form (Y) is defined on its own
Form Menu as a repeating form appended to itself (repeat option = A for Append).

1. Current Form X -- Repeat Option = N
Next Form Option = C

Next Form Y -- Repeat Option = A

Form X is displayed, then after ENTER, the screen is cleared and form Y is displayed.
After the next ENTER, Y is repeated below itself until the user presses NEXT or the
application changes the repeat option.

X(1)X(1)
X(2)

X(1)
X(2)
X(3)

X(1) X(2) X(3)

Y(1)X Y(1)
Y(2)

Y(1)
Y(2)
Y(3)

screen cleared before next form
74 Chapter 3

INTRODUCTION TO FORMS DESIGN
EASE OF FORMS DESIGN
2. Current Form X -- Repeat Option = R
Next Form Option = C

Next Form Y -- Repeat Option = A

X is displayed until the repeat option is terminated, then Y is displayed and appended
to itself until the repeat is terminated again.

3. Current Form X -- Repeat Option = A
Next Form Option = C

Next Form Y -- Repeat Option = A

X is displayed and then appended to itself until the repeat option is terminated. Then
the screen is cleared and Y is displayed.

4. Current Form X -- Repeat Option = N
Next Form Option = A

Next Form Y -- Repeat Option = A

X remains on the screen while Y forms (in this example, two copies of Y) are appended
to it until no room is left on the screen. When the third copy of Y is appended, form X (or
part of it) is rolled off the screen and deleted to make room. However, if the next form
Y(1) filled the screen below X, Y(1) would be rolled off and deleted before Y(2) is
displayed.

X(2)X(1) Y(1) Y(1)
Y(2)

repeat

X(1)X(1) Y(1)

repeat

X(2)
X(1)
X(2)
X(3)

XX Y(1)

screen full

Y(1)
X
Y(1)
Y(2)

Y(2)
Y(3)
Chapter 3 75

INTRODUCTION TO FORMS DESIGN
EASE OF FORMS DESIGN
5. Current Form X -- Repeat Option = A
Next Form Option = A

Next Form Y -- Repeat Option = A

Form X is repeated and appended until the repeat is terminated. When the first Y form
is displayed, there is no more room for the first X and it is rolled off the top of the screen
and deleted. As new Y forms are appended, the X forms continue to be rolled off and
deleted.

6. Current Form X -- Repeat Option = N
Next Form Option = F

Next Form Y -- Repeat Option = A

Form X remains frozen on the screen as form Y is appended to it. When the screen is
filled, X remains frozen on the screen while the oldest Y form, Y(1) is rolled off to make
room for Y(3). Note that if Y(l) fills the screen below X, it will be rolled off the screen and
deleted when Y(2) is displayed.

Note that the F specification determines what happens when the screen is full, The A
specification determines what happens when the next form is displayed. If an appended
form does not fit on the screen with a frozen form, the freeze specification is cleared and
the frozen form is rolled off the screen and deleted until the entire next appended form
fits.

7. Current Form X -- Repeat Option = A
Next Form Option = F

Next Form Y -- Repeat Option = A

Form X is appended to itself. When the repeat is terminated, the first Y form is appended
to the last X. When the next Y form is displayed, the first Y is rolled off the screen and

X(1)X(1)

Y(1)

repeat terminated screen

X(2)
X(1)
X(2)
X(3)

Y(1)
X(2)
X(3)

X(3)

Y(2)

X(1)X(1)

Y(3)

screen full

Y(1)
X(1)
Y(1)
Y(2)

Y(3)
X(1) X(1)

Y(4)
Y(2)

X(1)X(1)

Y(2)

repeat

X(2)
X(1)
X(2)
Y(1)

X(2)
X(1)
X(2)

X(1)

Y(3)
76 Chapter 3

INTRODUCTION TO FORMS DESIGN
EASE OF FORMS DESIGN
deleted leaving the remaining X forms on the screen.

Note that if one frozen X forms should fill the screen, the first X is rolled off and deleted to
make room for the latest X, and when the first Y form is appended, the X forms are no
longer frozen.

Sample of Forms Design

Before running FORMSPEC to define your forms file, it is very helpful to decide on some of
the basics of forms design, such as:

• Consider what kind of data the user will be entering — character, numeric, or date.

• Determine the position of the fields — what order, how many on a line, which need to be
on the same line, the same form.

• Decide on which enhancements to use for each field.

• Take into account what type of terminal the users will have. Are there any special
features? Will they be used?

• What native language will be used?

• Will the forms file be used with ENTRY or with an application? How will form
sequencing be handled? Do function keys need to be defined? If so, which ones?

Not all of these questions need be answered prior to forms design, since FORMSPEC
provides defaults for most form and field characteristics. Still, you may find it helpful to
roughly sketch each form layout on paper, something along the lines of the example in
Figure 3-11. The field name and length should be noted, and if a field has special
(nondefault) characteristics, these too may be noted on your preliminary sketch, as was
done in Figure 3-11. Preparing your forms layout in this way allows you to then sit down at
the terminal and actually specify the complete forms file in a matter of minutes. You may
find that completing the form layout and accompanying Field Menus is sufficient to define
the characteristics of all fields on the form. In many cases, the default values supplied by
FORMSPEC can be used, thereby reducing your actual input to a minimum. However, as
you become familiar with the capabilities of VPLUS, including the processing
specifications of FORMSPEC, described in Section 4, and the intrinsics available to
applications, described in Section 6, you may find yourself taking advantage of the
additional options as you finalize the design of your forms file.

The example in Figure 3-11. answers many of the questions listed above, both graphically
and in accompanying notes. This forms design, when entered through the FORMSPEC
menus, will generate a set of forms similar to those used as a data entry example with
ENTRY in Section 2. (What data will your application need? How should it be laid out?)
For forms sequencing, note that the first form is "frozen" on the screen, the second form is
appended to the first and is repeated until the user presses NEXT to display the next and
last form, TOTALS. (In this example, since ENTRY is used, the ENTRY function keys are
used as well as the forms sequencing options of the Form Menu. Is this true for your
design?) When TOTALS is displayed, all previous forms are cleared from the screen. Up
until that point the first form is frozen on the screen. Should the second form be repeated
so many times that there is no more room on the screen, its first appearance is rolled off
while the first form remains on the screen. (How will you handle multiple forms?) These
are some of the questions you should consider when designing your own forms file.
Chapter 3 77

INTRODUCTION TO FORMS DESIGN
EASE OF FORMS DESIGN
Figure 3-11. Sample Forms File Layout

FORMS FILE NAME = ORDENT

(No GLOBALS)

FORM #1 (head form)

Name: SHIPTO

Repeat = N <-- no repeat/append

freeze/append = F <-- leave form on screen with next form

Layout:

Date: [date]
type=MDY)

Ship to: [Name] (required field)
[Address]
[City] [St]
ZIP: [Zip] (type=DIG)

QTY: PART DESCRIPTION UNIT NET
NO. PRICE PRICE

FORM #2
Name= ORDER

Repeat = A<-- Form is repeated and appended

freeze/append = C<-- When next form is requested
by user or program, current
form is cleared.

Next Form = TOTALS

Layout:

(required) (display only)

[Qty][Part Num][Description][Unit][Net]

(type = DIG) (type = Num2)
78 Chapter 3

INTRODUCTION TO FORMS DESIGN
FORMS FILE
FORMS FILE
The forms file consists of "global" specifications that apply to all forms in the file, followed
by the individual forms specification. Within each form specification, the form is identified,
and its form layout is defined. The form layout defines each field into which data can be
entered. Each of these different types of specification is entered on a menu displayed by
FORMSPEC. (Refer to Figure 3-12. for an illustration of a prototype forms file.)

Forms Modification

At any time during forms design, you can change any form or field currently specified in
the forms file. The function keys or the Main Menu allow you to return to any existing form
or field specification. You can then simply change the field or form and press ENTER. The
new specifications override those previously entered. Refer to "Ease of Forms Design"
earlier in this section.

Another method of modifying a form file is to use the delete option on Main Menu. This
option allows you to delete an entire form or to delete fields global to all forms (save fields).
When you delete a form, be sure to modify any other form that references the deleted form.
For example, if FORM2 is given as the next form name for FORM I, and FORM2 is deleted,
you must change the next form name specification on the menu for FORM1. Note that
when you delete a parent form, all child forms of that form family will be deleted also.
Refer to the "Main Menu" menu description and the "Form Families" discussion for more
information.

Copying of Processing Specifications

 The processing specification copy function allows processing specifications to be copied
from one field to another field within and across forms files. Processing specifications are
entered from the Field Menu of the FORMSPEC utility. This function is also invoked
interactively from the Field Menu.

To use this function, enter one of the following commands in the first line of the processing
specifications area in the Field Menu:

• #COPYTOnewfilename

• #COPTFROMoldfilename

If processing specifications exist on the first line, press Insert Line before entering the
command. After entering one of these commands, press F3 to execute the command.

NOTE These commands are not case sensitive.

#COPYTO

When #COPYTOnewfilename is executed, the processing specifications defined for the field
are copied to the file specified by newfilename. As the template suggests, the file specified
should be a new file. If there are no processing specifications to copy, the new file is not
Chapter 3 79

INTRODUCTION TO FORMS DESIGN
FORMS FILE
created. The command should then be deleted from the processing specifications area. If
any error is encountered in executing the command, it is displayed in the upper area of the
Field Menu screen.

#COPYFROM

When #COPYFROMoldfilename is executed, the processing specifications (if any) in the file
specified by oldfilename are copied into the processing specifications area of the field.
Press Enter after the command executes (successfully) to save the copied processing
specifications for the field.

Since this command is used to retrieve the processing specifications, it cannot be used if
specifications already exist for the field. If any error is encountered in executing the
command, it is displayed in the upper area of the Field Menu screen.

The copy option on the Main Menu provides yet another method of modifying a form file.
This useful option allows you to copy an entire form from the current forms file or from
another forms file. The copied form is created by FORMSPEC as a new form that is an
exact replica of the existing form. The form being copied must be given a name unique to
the current forms file. The copied form can then be displayed and modified to suit your
design.

The copy option does not copy save fields from one file to another; you must recreate the
necessary save fields if you copy a form from a forms file other than the current file. Also,
form family relationships are not maintained when forms are copied from one file to
another. You may re-establish form family relationships using the relate option on the
Main Menu. Refer to the "Main Menu" description for more information.

Most of the modifications can also be made using FORMSPEC in batch mode. (See Section
7 for more information.)

Error Messages

The following error messages may be displayed when executing the #COPYTOnewfilename
command:

• If the file specified by newfilename already exists, the following message is displayed
and no copying is done:

File already exists!

• If the syntax of the command is not proper, the following message is displayed:

Check syntax: #COPYTO newfilename .

• If the file attributes check for a new file results in an error, the following message is
displayed:

New file check failed!

The specified file should be a non-existent permanent file.

• If the file cannot be opened, the following message is displayed:

Cannot create new file!

The following error messages may be displayed when executing the #COPYFROM
oldfilename command:
80 Chapter 3

INTRODUCTION TO FORMS DESIGN
FORMS FILE
• If oldfilename cannot be opened, the following message is displayed:

Unable to open old file!

• If the syntax of the command is not proper, the following message is displayed:

Check syntax: #COPYFROM oldfilename

• If processing specifications exist for the field, the following message is displayed:

Cannot do a #COPYFROM if proc specs already esist.

When a new file is created with the #COPYTO command, it is created in the permanent file
domain. Using this file in a subsequent #COPYFROM command does not purge this file.
Purge this file manually if it is no longer required.

Forms File Size

FORMSPEC indicates what percentage of the forms file is full whenever the Main Menu is
displayed from the Forms File Menu. The percentage is determined by the formula:

file EOF / file limit

This message is designed to give the user an idea of the space utilized in the forms file.
Since a single forms file can contain an essentially unlimited number of forms (subject to
system constraints), the forms file may reach its end-of-file (default=4000 records). When
the percentage indicated on the Main Menu grows large, you should increase the size of
your forms file, as described below.
Chapter 3 81

INTRODUCTION TO FORMS DESIGN
FORMS FILE
Figure 3-12. Forms File Prototype

Global specifications
that apply to all
forms in file.

First form
specification

Second form
specification

Global Data

Save Field 2

Save Field 1

Form 1
Layout 1
Field 1
Field 2

Field n

Form 2
Layout 2
Field 1
Field 2

Field n

Entered on Globals
Menu

Entered on Form Menu

New Forms

Entered on Save Fields

New save fields

Entered on Form Layout

Entered on Field Menus

Menu

FORMS FILE
82 Chapter 3

INTRODUCTION TO FORMS DESIGN
FORMS FILE
Expand Forms File

When you require the forms file to be larger than the default limit of 4000 records, you
may override the FORMSPEC default size to create a new forms file using the MPE :FILE
command. The :FILE command must be issued prior to the :RUN command to initiate
FORMSPEC. Another method is to use the MPE :BUILD command to create a larger file
and then use FCOPY to copy an existing forms file into the larger file.

To use the :FILE command to create a forms file named ORDFORM, issue the file equation:

: FILE ORDFORM;DISC=6000
^

desired disc space, in number of records

Run FORMSPEC and specify ORDFORM as the forms file. You now have an empty file with
room for 6000 records, into which you may add or copy forms using the FORMSPEC Main
Menu options. Note that the FORMSPEC copy Main Menu option will not copy save fields
from other forms files or maintain form family relationships across forms files. You may
re-establish form family relationships using the FORMSPEC relate Main Menu option.
Refer to the "Main Menu" description for more information.

To use the :BUILD command to expand your forms file, ORDFORM, give the following
command:

: BUILD ORDFORM2;DISC=6000;REC=128,1,F,ASCII;CODE=VFORM

desired disc space

Run FCOPY to copy the contents of ORDFORM into the larger file:

: RUN FCOPY.PUB.SYS
>FROM=ORDFORM;TO=ORDFORM2

EOF FOUND IN FROMFILE AFTER RECORD 1015 <-FCOPY response

1016 RECORDS PROCESSED *** 0 ERRORS

Compiling the Forms File

The forms defined through FORMSPEC are written to a forms file. The forms are initially
stored as a "source" version. This source is modified if you change the forms file, but it
must be compiled before it can be executed by an application, The compiled version, on the
other hand, can be executed but not modified. The source version of the forms file is kept
along with the compiled version for purposes of display and modification. Once modified,
the source version must be recompiled before it can be executed. However, unless a global
attribute of the forms file is modified, only those forms which were changed are actually
recompiled. The global attributes include any save fields or the fields on the Globals Menu
or the Terminal/Language Selection Menu.

Note that the source version is the sequence of specification records entered on the menus.
The compiled version is the sequence of forms displayed to the user.

When your forms design is complete, you can compile the forms file to a "fast forms file". A
fast forms file is similar to the forms file except that it is created with the smallest record
size that can hold the largest form in the file. Also, it contains only the information that
VPLUS needs at run-time, so it has fewer records. Because the record size and the number
Chapter 3 83

INTRODUCTION TO FORMS DESIGN
FORMS FILE
of records are minimal, such a forms file can improve performance at run-time. A fast
forms file can only be executed; it cannot be modified. You may however always modify the
source forms file and then recompile it to a fast forms file.

The forms file can also be compiled using FORMSPEC in batch mode. (See Section 7 for
more information.)

Renumbering a Form with Interactive FORMSPEC

FORMSPEC provides an option to renumber forms interactively. A new command has been
added to the Interactive FORMSPEC to renumber forms. This command is invoked by
selecting option “N” on the Main Menu. The form to be renumbered should be specified in
the field next to the keyword “N”. (This field is the same as where you would specify a form
when also selecting the “D” option.) This option is equivalent to the RENUMBERcommand in
batch mode FORMSPEC.

Listing Forms

Figure 3-13. illustrates the listing for a forms file. Note that the listing includes the
current status of the forms file, including when it was last modified and compiled, and the
number of two-byte words of stack space needed by VPLUS when accessing this forms file
at execution time.

Forms can also be printed using FORMSPEC in batch mode. (See "Using FORMSPEC in
Batch Mode", Section 7 for more information.) Consult Appendix E, for information
regarding the file equations which VPLUS uses when listing forms files.
84 Chapter 3

INTRODUCTION TO FORMS DESIGN
FORMS FILE
Figure 3-13. Forms File Listing

* FORMSPEC Version v.uu.ff *
* Wed, APR 16. 1986, 3:34 PM *
* *
* ORDFORM1.PUB.ACCTG *
* *

Forms File Status
Modified: WED, APR 16, 1986, 3:25
Compiled: WED, APR 16, 1986, 3:25

Requires 5605 bytes of data space in addition to the applciation
defined Comarea. (Subtract 1600 bytes if only using fast forms files.)

Head form: ORDER_HEAD
Default Display Enhancement: HI

Error Enhancement: IU
Window Display Line: 1

Window Enhancement: HI

THERE ARE 4 SAVE FIELDS IN THIS FORMS FILE:
Save Field: SORDNUM Length: 6 Date Type: DIG

Init Value: 100001

Save Field: SNAME Length: 42 Data Type: CHAR
Init Value:

Save Field: STOTNET Length: 10 Data Type: NUM2
Init Value: 0

Save Field: LINE_COUNT Length: 2 Data Type: DIG

There are 3 forms in this forms file:
Field Counts Largest Number of
Total/Display Field Lines in

Form Name Only Number Screen Next Form

ORDER_HEAD 8 / 2 8 16 ORDER_LINE
ORDER_LINE 5 / 7 13 1 ORDER_TOTALS
ORDER_TOTALS 11 / 7 11 19 $HEAD

FORMSPEC VERSION v.uu.ff WED, APR 16, 1986, 3:34 PM
FORMS FILE: ORDFORM1. PUB.ACCTG page 2

Form: ORDER_HEAD
Repeat: Option: N

Next Form Option: F
Next Form: ORDER_LINE
Reproduced from:

Comments: EXECUTE THIS FORM FIRST
******* ******* ******* ******* ******* ******* ******* *******

****ABC MANUFACTURING****

Order Number: [ordnum] Date: [ordate]

SHIP TO:
Name [name]

Address [address]
City [city] State [st]
Zip [zip] Telephone [phone]

Global
Information

Save Field
Information

Summary of Forms
in Forms File

Example of a
Page Heading

Example of a
Form Menu

Example of a
Form Layout
Chapter 3 85

INTRODUCTION TO FORMS DESIGN
FORMS FILE
Figure 3-13. Forms File Listing (Cont)

QTY PART NO. DESCRIPTION UNIT TOTAL
PRICE PRICE

******* ******* ******* ******* ******* ******* ******* *******

Field: ordnum
Num:8 Len:6 Name:ORDNUM Enh: HI FType: D DType: DIG
Init Value:

*** PROCESSING SPECIFICATIONS ***

INIT
SET TO SORDNUM \Mover order number to this field
SET STOTNET TO 0 \Initialize totals save field
SET LINE_COUNT TO 0 \Initialize counter for order lines

Field: ordate
Num:1 Len:18 Name:ORDATE Enh: HI FType: D DType: MDY
Init Value:

*** PROCESSING SPECIFICATIONS ***
INIT

SET to $TODAY \Assign today’s date to field

Example of
Field Menus
86 Chapter 3

INTRODUCTION TO FORMS DESIGN
FORM FAMILIES
FORM FAMILIES
A family of forms is a collection of forms that share a common form layout but may have
different field attributes, processing specifications, or form sequencing options. Use of form
families may improve VPLUS performance in some transaction processing applications;
since only the internal form characteristics are different among members of a family, you
do not have to wait for VPLUS to repaint the screen when you change to another form in
the same family. Note that the security attribute is not updated when changing from one
form in a family to another in the same family. Figure 3-14. illustrates some form family
concepts.

Figure 3-14. Form Family Relationship

Parent Form Also called father or root form. A parent form is a standard VPLUS form
created in FORMSPEC either by designing it or by copying it from another
form. The form layout of the parent form determines the layout of all child
forms that are reproduced from it. Changing the layout of the parent form
causes the layouts of the child forms to change.

Child Form Reproduced from the parent form, the form layout of the child form may
not be modified. You may change form sequencing options, field attributes
and processing specifications. As Figure 3-14. indicates, you may
reproduce a child form from another child form, although VPLUS still
considers the original root form to be the parent of both forms.

Reproduce Generate a related form by entering the name of an existing form in the
"Reproduced from" field of the Form Menu.

Creating Child Forms

You create child forms by following these steps:

1. Select A for "Add a form" at the Main Menu. Press ENTER.

2. When the Form Menu comes onto the screen, specify the name of the child form you
wish to create, and, in the "Reproduced from" field, specify the name of the form from

REPRODUCTION Parent
Form

Child
Form

Child
Form

Child
Form
Chapter 3 87

INTRODUCTION TO FORMS DESIGN
FORM FAMILIES
which you wish to generate the child form. You may change any of the other Form Menu
fields. Press ENTER.

3. The layout for the form you named in step 2 is displayed. Then press NEXT. Since the
form layout must be the same for parent and children, pressing ENTER causes the error
message "Cannot change screen, the form is a family member." to appear in the window.

4. You may change any of the attributes or processing specifications on the Field Menus
(except length and field number) to adjust the internal characteristics of the child form
to your needs. A child form continues to have all the characteristics of the parent if you
do not modify the child's Field Menus.

To modify the form layout of a form family, you need to change only the layout of the parent
form, and recompile the forms file. This changes the layouts of the child forms
automatically. Deleting the parent form deletes the entire form family.

Careful naming of forms and the use of the optional comment field of the Form Menu
makes relationships between forms of the same family more apparent. To make it easier to
distinguish between forms of the same family in ENTRY or in other applications, you may
wish to add a field reserved for the form name to the screen definition of the parent form,
and add processing specifications which set the value of that field to the name of the
current form. Refer to the SET command in Section 4.

Although family relationships are not maintained after a copy operation, they can be
re-established using the R option "Relate child form to parent form" at the Main Menu. In
order to use this method of creating family relationships, certain criteria must be met. The
forms must already exist and their form layouts must be identical. The forms must have
identical field number sequences. The forms must be distinct forms; that is, one form
cannot be both the parent form and the child form. Furthermore, the child form cannot
already be a child form or a parent form. Thus, it is also possible to relate forms which
were never previously related.

Users should note that if a new form is to be reproduced from a form which is already a
child, then its parent will be designated as the actual parent. For example, suppose that an
existing forms file contains three forms named PARENT, CHILD and NEWCHILD, where
PARENTand CHILD already maintain a relationship. At the Main Menu, it is indicated that
NEWCHILD should become a child form of CHILD. If the forms meet the above criteria,
FORMSPEC actually creates the relationship with PARENT as the parent form and
NEWCHILD as its child. The form named CHILD continues to be a child form of PARENT.

Forms can also be related using the RELATE command from FORMSPEC in batch mode.
(For further information see "Using FORMSPEC in Batch Mode", Section 7.)

Form Family Example

Suppose you have a VPLUS application which, after accepting a customer's identification
number, retrieves items of pertinent customer information from a data base and displays
them on a form. It would be convenient to have two forms, one on which the customer ID is
required, and the other on which the user views or alters the customer data. If you don't
use the form family feature, the user who is alternating between entering customer ID's
and inspecting or modifying data constantly has to wait for the form to be repainted each
time the user needs information on another customer.
88 Chapter 3

INTRODUCTION TO FORMS DESIGN
FORM FAMILIES
The solution to this problem of long user waiting time is to create two forms with the same
form layout but different field attributes.

Suppose the root or parent form of this example is named CUSTPAR, and that its form
layout is as shown in Figure 3-15. below. All of the fields in this form are display only,
except for the Customer ID Number field, which is required.

Figure 3-15. Parent Form

Create a child form, CUSTCHILD, by specifying CUSTPAR in the "Reproduced from" field of
the Form Menu. Press NEXT until the Field Menu for CUSTID appears and make it a
display only field. Make all other data fields in the form optional. Compile the forms file.

Figure 3-16. Child Form

Now when the user types the customer ID and presses ENTER, the application retrieves
the related information from the database and displays it in the form immediately. Once
the form is on the screen, it appears to remain there as long as the user uses the
application, rather than being repainted each time for every customer about whom the
user calls up data.

Customer Record

Customer ID Number Form ID

Transaction Product
Date Number Price Quantity Total

CUSTPAR
Required
Field Init set to

“CUSTPAR”

Display only
Fields

Customer Record

Customer ID Number Form ID

Transaction Product
Date Number Price Quantity Total

CUSTCHI

Display only

Init set to
“CUSTCHILD”

Optional
Fields
Chapter 3 89

INTRODUCTION TO FORMS DESIGN
Fields
Fields
Forms File Name Enter the name of the forms file in this field. It may consist of up to 36

characters, as shown in Table 3-10.

NOTE In order to maintain (and browse or list) a forms file, the user must have
exclusive write access to the file.

FORMSPEC accepts only forms files that are MPE files with the file code
of VFORM. If you have a forms file that is a KSAM file, created by versions
of VPLUS prior to A.01.01, refer to Appendix H for instructions on
converting KSAM files to MPE files.

NOTE If your file has a lockword, you must enter the lockword along with the file
name, as filename/lockword. If you do not enter a lockword with the file name
and one is required, your terminal hangs. This is because the MPE prompt
requesting the lockword is in character mode and cannot be received while
your terminal is in block mode. You can recover from this error by doing a
hard reset followed by pressing RETURN at least four times, then pressing
EXIT . How you perform a hard reset depends on what type of terminal you
are using; consult your terminal manual for instructions.

Table 3-10. Maximum Number of Characters in Fields

Element of File Name Maximum Number of Characters

File Name 8

Group Name 8

Account Name 8

Lockword 8

2 periods, 1 slash 3

Terminator (blank or special character) 1

TOTAL 36
90 Chapter 3

INTRODUCTION TO FORMS DESIGN
MAIN MENU
MAIN MENU
The Main Menu, as shown in Figure 3-17., is the main control menu for all FORMSPEC
operations. If the forms file is new, you usually select A for Add a form. FORMSPEC then
displays the menus that allow you to define your forms file, as described in "Ease of Forms
Design". If the forms file already exists, you may enter any selection depending on what
you want to do, such as add new forms to the file, select a particular menu in order to
change it, delete a form, and so forth. Most of the options available on the Main Menu are
also available using FORMSPEC in batch mode. (See Section 7 for more information.)

After modifying the forms file, you must compile it before it can be executed with the
modifications. Only those forms of the existing file which have been changed are actually
recompiled, unless a global attribute of the forms file, such as a save field, has been
modified.

Figure 3-17. Main Menu

Fields

A--Add a Form

To add a form, simply type A in the selection box and press ENTER. In
response, FORMSPEC displays a Form Menu, as shown in Figure 3-18., so
you can define the form. For details of form definition using this menu, see
the description below under "Form Menu".

S--Add a Save field

If you specify S in the selection box and press ENTER, a blank Save Field
Chapter 3 91

INTRODUCTION TO FORMS DESIGN
MAIN MENU
Menu is displayed. This menu, as shown in Figure 3-24., allows you to
specify a save field description. If you want to modify a save field, you use
PREV or NEXT to locate the particular Save Field Menu specification. For
more information, refer to the "Save Fields Menu" description.

T--Terminal/Language Selection Menu

If you specify T in the selection box and press ENTER, the
Terminal/Language Selection Menu is displayed. This menu, as shown in
Figure 3-31., allows you to specify the terminal or set of terminals as well
as the native language (if utilizing Native Language Support) with which
the forms file will be used. For more information regarding Native
Language Support, see Section 8. (Refer to "Terminal/Language Selection
Menu" below for detailed information.)

G--Go to Globals Menu

Type G in the selection box, but do not specify a form or field name. Press
ENTER. The Globals Menu, as shown in Figure 3-26., is displayed so you
can make changes to the global characteristics of the forms file. It provides
access to the Data Type Conversions Menu. (Refer to "Globals Menu" for
detailed information.)

G--OR Go to form

To display the Form Menu for a specific form, type G in the selection box,
specify the form name, and press ENTER. (You can also locate the Forms
Menu with PREV FORM or NEXT FORM. When the Form Menu is displayed,
you can then change any specification on the menu. (Refer to "Form Menu"
below for a discussion of the form description.)

G--OR Go to field

The Field Menu for a specific field can be located by typing G in the
selection boxes then specifying both the form and field name, and pressing
ENTER.

You can display or change field descriptions either on the Field Menu or
directly during the form layout. The field attributes (except for length and
number) and processing specifications can be entered and changed directly
on the Field Menu. Any new fields are added, existing fields deleted, or the
number or length of fields are changed by changing the form layout. (For
details, refer to the "Ease of Forms Design" discussion earlier.)

L--List Forms File OR List form

Type an L in the selection box, specify the form name and press ENTER to
print a description of any form in your forms file. If you want to list all the
forms in the file with a description of the file in general, simply type L but
do not specify a form name. Press ENTER. Refer to the example listing in
Figure 3-13. The listings are printed on the standard list device (;DEV=LP,
usually, the line printer) if there is no overriding MPE :FILE command.
Consult Appendix E for information on the file equations and the JCW
that VPLUS uses when listing forms files.
92 Chapter 3

INTRODUCTION TO FORMS DESIGN
MAIN MENU
D--Delete Save Field

To delete a save field, specify D in the Main Menu selection box, specify the
save field name, and press ENTER. The field will be deleted. You should be
sure there are no references to the deleted field in the processing
specifications of any other field (refer to Section 4).

D--Delete Form

You can delete an entire form from the forms file by typing D in the
selection box on the Main Menu, specifying the form name, and pressing
ENTER. If the form has an ARB associated with it, the ARB is deleted at
the same time.

C--Copy new form name from form from Forms file (opt)

To copy a form, type C in the selection box. Then specify the name you
want to give the new form, the name of the existing form to be copied, and,
if the form to be copied is not in the current file, the name of the file
containing this form. Press ENTER. If the form has an ARB associated with
it, the ARB will also be copied.

X--Compile Forms File

You can compile the current forms file by typing X in the selection box on
the Main Menu and pressing ENTER.

If the forms file has already been compiled, only new and modified
information is recompiled unless a global attribute such as a save field, an
item on the Terminal/Language Selection Menu, or an item on the Globals
Menu has been modified. The new compiled version replaces the previous
version. There is never more than one compiled version of a forms file at a
time. You may however modify the source version without affecting the
compiled version. For example, if the compiled version is being used for
data entry, it is not altered in any way as you modify the source version.
When the source is completely modified, you can compile it and use the
newly compiled version for data entry. In that case, the previous compiled
version is lost.

X--Compile Optional: Fast Forms File

To compile to a fast forms file, type X in the Main Menu selection box
exactly as you would for any compilation (or recompilation), but also
supply the fast forms file name and press ENTER.

R--Relate child form to parent form

Form family relationships can be created by typing an R in the Main Menu
selection box, and the names of the two forms which are to be "related" in
the Relate fields and pressing ENTER. The forms must already exist and
their form layouts must be identical. The forms must be distinct forms;
that is, one form cannot be both the parent form and the child form.
Furthermore, the child form cannot already be a child form or a parent
form. Thus, it is also possible to relate forms which were never previously
related. Family forms and their characteristics are fully discussed under
Chapter 3 93

INTRODUCTION TO FORMS DESIGN
MAIN MENU
"Form Families" earlier in this section.

B--Go to ARB Menu

To create, modify or delete an application-ready buffer (ARB), type B in the
Main Menu selection box, and the name of the associated form in the ARB
Menu field, and press ENTER. The form must already exist in the forms file
and the data type conversion record must have been set up using the
Globals menu. Construction of an ARB is discussed in detail later in this
section.
94 Chapter 3

INTRODUCTION TO FORMS DESIGN
FORM MENU
FORM MENU
The name and characteristics of each form are specified on the Form Menu. As soon as the
Menu specifications are entered, FORMSPEC displays a blank screen on which you design
the layout of the form. This form layout phase establishes the field names and their
characteristics. Based on the form layout, FORMSPEC then displays a Field Menu for
each field established on the form.

The Form Menu is displayed once for each form you define. When you have no more forms
to define, press MAIN/RESUME to display the Main Menu in order to compile the forms file.
The Form Menu is illustrated in Figure 3-18.

FORMSPEC stores forms in alphabetic order. When new forms are added to the forms file,
they are inserted in the USASCII collating sequence. The Globals Menu (see description
later in this section) allows you to specify which form is to be executed first. This form can
be referenced by the system-defined value $HEAD. If you do not specify the head form name,
$HEADdefaults to the first form in the file. Adding a new form may change the value of this
default.

Figure 3-18. Form Menu

You must specify at least a form name on the Form Menu. Default values are provided for
the remaining specifications. If these defaults are not what you want, you can overwrite
them with other values. If satisfied with the defaults, press ENTER to go directly to form
layout.

PREV
FORM

NEXT
FORM

REFRESH PREV NEXT MAIN/
RESUME

EXIT

FORMSPEC v.uu.ff Form Menu FORMS FILE: filename

[] Form Name

[R]

[C]

[]

Repeat Option

Next Form

 Function Key Label

[]Reproduced from (opt)

N--No Repeat
A--Repeat, appending
R--Repeat, overlaying

C--Clear before Next Form
A--Append Next Form
F--Freeze, then append Next Form

Y--Define form level function key labels.

[$HEAD]

[] Comments
Chapter 3 95

INTRODUCTION TO FORMS DESIGN
FORM MENU
Fields

Form Name Enter a name to identify the form. The name can be from 1
to 15 characters, either letters of the USASCII alphabet
(A-Z), digits (0-9), or the underline (). The first character
must be alphabetic. The name can be entered using
uppercase or lowercase letters, but all lowercase letters
are shifted to uppercase by FORMSPEC. Thus, if you
enter the name Form2, FORMSPEC changes it to FORM2.

The form name must be unique within the forms file, and
it cannot be one of the reserved words listed earlier in
Table 3-2. Note that the form name can be changed by
replacing the name in the Form Name field. If you change
a form name, you should make sure that references to this
form as "Next Form" in other Form Menus are also
changed.

Repeat Option When the forms in the forms file are displayed, a form may
be repeated and appended to itself (A); it may be repeated
overlaying the previous display of the same form (R); or it
can be a non-repeating form that is displayed on the
screen once (N).

Either repeat option (A or R) causes the form to be
repeated until the application changes the repeat option,
or, in ENTRY, the user presses NEXT to request the next
different form.

Default No repeat (N).

NOTE Both Repeat Option and Next Form can be changed dynamically within the
application (refer to Section 6) as well as through processing specifications
(refer to Section 4).

Next Form You must enter the name of the next form to be displayed
after the current form. You may also specify whether the
next form is to be appended to the current form, A; and, if
appended, whether the current form is to remain on the
screen when the screen fills up, F. If the screen is to be
cleared before the next form is displayed, leave the default
value, C.

Default Clear (C).
96 Chapter 3

INTRODUCTION TO FORMS DESIGN
FORM MENU
Next Form Name The next form name is entered as a standard form name or
you can enter one of the following system-defined values:

$RETURN Display the previous (but different) form.

$HEAD Display the first form (either the first in the file or as
defined on the Globals menu).

$END Terminate forms display with this form.

$REFRESH Display current form cleared to initial values as the next
form.

Note that each of these values has meaning only when the
forms file is executed. Any value entered for Next Form
Name can be changed through the CHANGE NFORM
processing specification described in Section 4.

Default $HEAD

Freeze/Append Option This option allows you to specify how the next form will
interact with the current form. The next form can be
appended to the current form, and if so, the current form
can be frozen on the screen when subsequent forms are
displayed. Note that this option can also be changed by the
CHANGE NFORM field processing specification described in
Section 4.

Default Clear screen before displaying next form (C).

Function Key Labels To define or modify form level function key labels, enter a
Y in this box to obtain the Form Function Key Labels
Menu. After function key labels have been defined,
FORMSPEC will place an X in the Function Key Label
field. The default function key labels can be reset by
entering an N. If you specify a Y in this field, the Form
Function Key Labels Menu is displayed, as shown in
Figure 3-19. The data capture devices do not support
function key labeling.

Reproduced from (opt) This optional field is used in the creation of form families,
a feature discussed earlier in this section.

Comments You can enter a comment to help document the form. The
comment is displayed with the source file, but is not
included in the displayed form at execution time. A
comment can be up to 50 characters long.
Chapter 3 97

INTRODUCTION TO FORMS DESIGN
FORM FUNCTION KEY LABELS MENU
FORM FUNCTION KEY LABELS MENU
This menu is used to specify function key labels that will be displayed along with the form.
Labels you specify replace original labels provided by VPLUS. Each label consists of two
lines of eight characters each, To specify a label, enter the first line in the first field and the
second line of the label in the second field in the menu. Both lines can be specified on this
menu. The color pairs fields allow you to specify a number, (1 - 8) to indicate a color for
each function key. If color pairs are not specified, VPLUS supplies color pair 3 as the
default. Functions keys are always shown in the inverse of the color pair supplied. That is,
the foreground and background colors are exchanged.

Refer to Table 3-3. for the correct color to number mapping.

If the labels are to be Local, they will be displayed only while that form is on the screen. If
the next form does not have Local labels, the file's Global labels will be displayed. In the
case of a frozen form with another form appended to it, the labels displayed will be those
for the appended form. If the appended form has no Local labels, the file's Global labels
will be used. The function key labels can be updated using FORMSPEC in batch mode.
(See Section 7 for more information.)

Figure 3-19. Form Function Key Labels Menu

For example, to change the label
for Key 1 to read:

Change the field for Key 1 as shown:

ORDER
NUMBER

Function Key 1 [[

PREV
FORM

NEXT
FORM

REFRESH PREV NEXT MAIN/
RESUME

EXIT

FORMSPEC v.uu.ff Forms Function Key Labels Menu FORM: formname

[f1]Function Key 1 []

[f2]Function Key 2 []

[f3]Function Key 3 []

[f4]Function Key 4 []

[f5]Function Key 5 []

[f6]Function Key 6 []

[f7]Function Key 7 []

[f8]Function Key 8 []

[]

Color pairs:

f1 []f2 []f3 []f4 []f5 []f6 []f7 []f8
98 Chapter 3

INTRODUCTION TO FORMS DESIGN
FORM LAYOUT
FORM LAYOUT
Each form is associated with a picture that is displayed when the form is requested during
execution. This picture is called the "form". You design the form on a blank display screen,
as shown in Figure 3-20., using all the terminal capabilities associated with block mode.

Once you have entered your headings and other text, and delimited the data fields, the
form is basically designed. Each field has default field attributes assigned to it by
FORMSPEC, so that unless you want to specify different attribute or processing
specifications for the field, form design is complete.

Figure 3-20. Form Layout Menu

Note that you can use the terminal escape sequences or function keys to enhance the text.
If you display another set of function keys (such as with AIDS or MODES) while designing
the screen, you must restore the function keys to their FORMSPEC-defined values (such
as with USERKEYS) before continuing forms design on the next menu.

Note that if you are designing a form to run on the HP 264X terminals, you must not use
column 79 if the form is to be part of a form family nor use column 80 if the form is to be
either appended or part of a form family. A multiline field must go all the way through
column 80 in order to continue on the next line.
Chapter 3 99

INTRODUCTION TO FORMS DESIGN
FIELD MENU
FIELD MENU
In case you want to assign special field characteristics, FORMSPEC displays a Field Menu,
illustrated in Figure 3-21., for each field delimited during form design. Each menu displays
up to three lines of the form, and marks the particular field to which the menu applies. It
then displays the default field attributes of the field. The Field Menus are presented in the
order the fields appear on the form layout, from left to right, top to bottom.

You can change the default field attributes by typing new values and pressing ENTER. If
you do not want to change the defaults, simply press NEXT to display the next Field Menu.
If you are designing simple forms, in which all data is accepted and no special edits are
performed, you can skip all the Field Menus by pressing NEXT FORM. If you change the
field length or type, the screen length or type of the associated ARB (if any) is updated at
the same time, but the ARB length and type are not changed.

The field attributes, all except length, can also be changed using FORMSPEC in batch
mode. See Section 7 for more information. Processing specifications can be specified on the
Field Menu. See Section 4 for a description.

Figure 3-21. Field Menu

Fields

Num (Display only) A number between 1 and 256 assigned by FORMSPEC to
the field at form layout. The number is permanently assigned to the field
and is not changed even if other field attributes or the position of the field
on the form layout changes. However, if the field tag is changed, a new
field number is assigned to the field. The field numbers of a form can be

PREV
FORM

NEXT
FORM

REFRESH PREV NEXT MAIN/
RESUME

EXIT

FORMSPEC v.uu.ff Forms File Menu FORMS FILE: filename

Initial Value

Num Len [n][n] [fieldtag] [HI] [0] []FType DTypeName Enh

*** Processing Specifications ***
100 Chapter 3

INTRODUCTION TO FORMS DESIGN
FIELD MENU
renumbered in screen order with the FORMSPEC batch mode command
RENUMBER, as described in Section 7.

Len (Display only) The length of the field as determined during form layout.

Name Specify any USASCII name of up to 15 characters long; it must start with
an alphabetic character and may be followed by any alphanumeric (A -Z,
a-z, 0-9) or the underline (). It cannot be one of the reserved words listed
earlier in Figure 3-2.

Enh Specify any combination of enhancements using up to four characters:

H Half Bright

I Inverse video

U Underline

B Blinking

S Security

1-8 Color (refer to Figure 3-7.)

NONE No enhancement

Default HI

FType Specify the field type:

D Display only — cannot be modified by user.

R Required — cannot be left blank.

O Optional — may be left blank; edit checks and field phase
processing specifications are skipped if the field is blank.

P Process — may be left blank, but edit checks are
performed and field phase processing specifications are
executed even if the field is blank.

Default O

DType Specify the data type:

CHAR Specifies data to be a string of any characters.

NUM[n] Specifies data to be numeric. The maximum number of
decimal places is indicated by the optional digit (n), where
n is a value between 0 and 9. An optional leading sign (+ or
-) is allowed; as are commas and decimal points if correctly
placed.

DIG Specifies data to be a positive integer. No sign, no comma,
no decimal point allowed.

IMPn Specifies data to be numeric with an assumed decimal
point. The assumed number of decimal places is indicated
by the required digit (n), where n is a value between 0 and
9. A sign and commas are allowed. A decimal point is
allowed but should not be entered.
Chapter 3 101

INTRODUCTION TO FORMS DESIGN
FIELD MENU
MDY Specifies data to be a date in the order month, day, year.

DMY Specifies data to be a date in the order day, month, year.

YMD Specifies data to be a date in the order year, month, day.

When Native Language Support is used, the symbols used to indicate
thousands and decimals are language-dependent. The names of months
and their abbreviations are accepted for each native language at run-time.
For more information on Native Language Support, see Section 8.

Default CHAR

Initial Value Specify data to be displayed in the field when the form is initially
displayed.
102 Chapter 3

INTRODUCTION TO FORMS DESIGN
GLOBALS MENU
GLOBALS MENU
Certain characteristics of the entire forms file are defined as global specifications and
specified on the Globals Menu, illustrated in Figure 3-22. The global specifications include
the default screen enhancements for fields and errors, the first form to be executed, where
the message "window" line appears on the form, and provides for user-defined labels for
the function keys. These specifications apply to the entire forms file rather than to
individual forms or to fields within the forms.

FORMSPEC supplies default values for these characteristics and, unless you want to
change the defaults, you need never be concerned with global specifications. If, however,
you want to change these specifications, you enter G in the Main Menu selection box, and
do not specify a form name or a field name. The Globals Menu is then displayed so you can
change the default global specifications. If you indicated the data capture devices on the
Terminal/Language Selection Menu, the following message will appear at the bottom of
the Globals Menu:

Press NEXT to select HP 3075/6 device specifications

(The Data Capture Device Specifications Menu is described later in this section).

Figure 3-22. Globals Menu

When you press ENTER, FORMSPEC checks and records the global values (default or
specified) and then displays the next menu. The next menu is the Save Field Menu. To get
to the first Form Menu, press NEXT FORM.

PREV
FORM

NEXT
FORM

REFRESH PREV NEXT MAIN/
RESUME

EXIT

FORMSPEC v.uu.ff Forms File Menu FORMS FILE: filename

[]Head Form Name

[HI]

[IU]

[24]

[]

[HI]

Default Display Enhancement

Error Enhancement

Window Display Line

Window Enhancement

Define Function Key Labels (“Y”)
Chapter 3 103

INTRODUCTION TO FORMS DESIGN
GLOBALS MENU
Fields

Head Form Name

Enter the name of the first form you want displayed when the forms file is
executed. If you leave this field blank, the first form in the forms file will
be the first form displayed. Note that adding forms to the forms file may
change the first form. When the forms file is compiled, this name must
identify an existing form. If you enter the name using lowercase letters,
FORMSPEC upshifts the letters to uppercase and then looks for a
matching form name.

Default First form in USASCII collating sequence in the forms file.
($HEAD)

Default Display Enhancement

When defining a form, you can specify individual display enhancements
for any field on the Field Menu. If you do not specify such enhancements
on the Field Menu, FORMSPEC assigns default field enhancements. If you
do not want to use these default display enhancements, you can specify
your own default enhancements here. Enter one or more of the display
enhancement codes (B, H, I, S, U, and 1 - 8) in any combination, or
you can enter NONE if you do not want the fields to be enhanced at all. The
enhancement codes can be entered in any combination, in any order. For
example, for blinking, half bright, underlined, you can specify BHU, HUB,
UBH, and so forth. If you want to remove all display enhancements, enter
NONE. The data capture devices do not support display enhancements.

Default Half bright, Inverse video (HI).

Error Enhancement

When a user entering data on a form makes an error, the field with the
error is highlighted on the form by special display enhancements. You can
change the default error enhancement by entering one or more of the
display enhancement codes (B, H, I, S, U , and 1 - 8) in any
combination, or you can enter NONEif you do not want fields with errors to
be enhanced at all. For example, if you want fields with errors to be
displayed in half bright, underlined, and to blink, enter BHU.

Default Inverse video, full bright, Underline (IU).

Window Display Line

You can specify the line of the terminal screen to be reserved for error and
status messages. Screen lines are numbered from 1 (top) through 24
(bottom). You may enter 0 (zero) if you do not want a window. Note that in
this case no error or status messages are displayed on the form during
execution. Any fields in which errors are detected will still be enhanced
when there is no window line, unless you specify NONE for error
enhancements. If function key labeling on HP 264X terminals is in effect
and a window line of 23 or 24 is chosen, line 22 is actually used.

Default Bottom line (24)
104 Chapter 3

INTRODUCTION TO FORMS DESIGN
GLOBALS MENU
Window Enhancement

The window line is normally enhanced with inverse video, half bright. If
you want a different enhancement for this line, you must specify it in this
box. You may enter any of the standard enhancement codes (I, H, U, B,
S, and 1 - 8) in any combination, or you can specify no enhancements by
entering NONE.

Default Inverse video, Half bright (HI).

Define Function Key Labels

To define function key labels, enter Y to obtain the Global Function Key
Labels Menu. If you wish to retain the default global labels, leave this box
blank. When function key labels have been defined, FORMSPEC will place
an X in the Define Function Key Labels field. Once function key labels
have been defined, the default labels can be reset by entering an N in this
field. If you specify a Y in this field, the Global Function Key Labels Menu
is displayed, as shown in Figure 3-23.The data capture devices do not
support function key labeling.

Define Data Conversions

To use the ARB feature, you must specify default conversions for screen
data to application data and vice versa. Type Y in this field to reach the
Data Type Conversions Menu, shown in Figure 3-27. The default data type
conversions must be set up before you can create an ARB for a form.
Chapter 3 105

INTRODUCTION TO FORMS DESIGN
GLOBAL FUNCTION KEY LABELS MENU
GLOBAL FUNCTION KEY LABELS MENU
This menu is used to specify new function key labels which will appear when an
application is executed. Labels you specify replace original labels provided by VPLUS.

Each label consists of two lines of eight characters each. To specify a label, enter the first
line in the first field and the second line of the label in the second field in the menu. The
color pairs fields allow you to specify a number, (1 - 8) to indicate a color for each function
key; refer to Figure 3-23. for the correct color to number mapping.

If the labels are to be Global, they will be displayed for all forms that do not have Local
labels defined.

In the case of a frozen form with another form appended to it, the labels displayed will be
those for the appended form. If the appended form has no Local labels, the file's Global
labels will be used.

Figure 3-23. Global Function Key Labels Menu

For example, to change the label
for Key 1 to read:

Change the field for Key 1 as shown:

ORDER
NUMBER

Function Key 1 [[

PREV
FORM

NEXT
FORM

REFRESH PREV NEXT MAIN/
RESUME

EXIT

FORMSPEC v.uu.ff Global Function Key Labels Menu FORM FILE: filename

[f1]Function Key 1 []

[f2]Function Key 2 []

[f3]Function Key 3 []

[f4]Function Key 4 []

[f5]Function Key 5 []

[f6]Function Key 6 []

[f7]Function Key 7 []

[f8]Function Key 8 []

[]

Color pairs:

f1 []f2 []f3 []f4 []f5 []f6 []f7 []f8
106 Chapter 3

INTRODUCTION TO FORMS DESIGN
SAVE FIELD MENU
SAVE FIELD MENU
A save field is a global field whose value can be used anywhere in the forms file where field
references are allowed. Save fields are not part of a particular form like other fields, but
are "global" to all forms. Like other fields, they always contain data in external, character
form. The save fields can be used by most processing statements, but are particularly
useful for passing data between fields on different forms. Refer to the SET command in
Section 4. A maximum of 20 save fields can be defined for any forms file.

Save fields are specified on the Save Field Menu, which is displayed when requested on the
Main Menu. Any defined save fields are stored at the beginning of the forms file just after
the global specifications. (Refer to "Forms File" earlier in this section for the order of
specifications in the forms file.) The Save Field Menu is illustrated in Figure 3-24.

Figure 3-24. Save Field Menu

A save field name appears exactly the same as a field name. To help distinguish the global
save fields from local fields, you may want to establish a naming convention. For example,
if all save field names (and no local field names) start with the letter SF, then any field
name starting with SF is immediately recognizable as a save field.

Up to 20 save fields can be defined in one forms file. The Save Field Menu is usually
requested through the Main Menu. To add a save field, press MAIN/RESUME to request the
Main Menu and then type S in the selection box and press ENTER. A blank Save Field
Menu is then displayed. You can also display a blank Save Field Menu by pressing PREV
from the first Form Menu.

To delete a save field, you also request the Main Menu and then enter Din the selection box

PREV
FORM

NEXT
FORM

REFRESH PREV NEXT MAIN/
RESUME

EXIT

FORMSPEC v.uu.ff Forms File Menu FORMS FILE: filename

Initial Value

[] []Length Data Type[]Save Field Name
[]
Chapter 3 107

INTRODUCTION TO FORMS DESIGN
SAVE FIELD MENU
and the name of the save field to be deleted in the field name box.

Fields

Save Field Name A standard field identifier composed of up to 15 USASCII
characters, beginning with an upper or lowercase letter.
The remaining characters can be upper or lowercase
letters, digits, or underlines. For example, SF3, D2 15 , or
ALPHA. Note that if you use a lowercase letter in a name,
FORMSPEC shifts it to an uppercase letter. (The name
must not be one of the reserved words listed earlier in
Table 3-2.

Length Like other fields, save fields must be assigned a length,
representing the maximum number of characters allowed
in the field. Note that you must supply a field length,
unlike field specifications where field length is determined
from the screen design. Since save fields may be used as
accumulators, it is important that the save field length be
long enough to avoid rounding and/or truncation when
summed values are moved to the field.

Data Type The data types allowed are the same as for any field. The
general types are character (CHAR), numeric (NUM[n],
IMPn, or DIG), or date (MDY,YMD, or DMY). (Refer to
"Ease of Forms Design" for a complete discussion of these
data types.)

Initial Value An initial value may be assigned to any save field. This is
an optional specification; if omitted, all fields are set to
blanks ($EMPTY). If specified, the initial value must be the
same type as the specified data type. Values are entered
exactly as if they were entered by a terminal user; that is,
characters are not delimited by quotes, and dates are not
delimited by exclamation points. For example:

12.5 type is NUM1
3790 type is DIG
FEB 3, 86 type is MDY
John type is CHAR

When the forms file is opened, initial values (default or
specified) are assigned to the save fields.
108 Chapter 3

INTRODUCTION TO FORMS DESIGN
USING FORMSPEC TO CREATE AN ARB
USING FORMSPEC TO CREATE AN ARB
Once you have created a form and saved it in a forms file, you can create an associated
application-ready buffer (ARB) for that form. There are two steps to the process; first, you
must set up a data type conversion (DTC) record, then you can generate the ARB. The DTC
record need only be set up once for the entire forms file.

You may want to transform data between the screen and application for several reasons.
First, the data the application will store may differ from what appears on the screen:
menu-selection and next-screen fields, for example, would normally be excluded from the
ARB. Conversely, you may want to store data from a source other than the screen, such as
key fields for an IMAGE dataset, along with the screen data. This can be done by using
"filler" fields, fields that exist on the ARB but not on the corresponding form (see RES
below).

Second, the order in which the application stores data may differ from the order in which it
is entered on the screen. An arrangement of fields that makes logical sense to the user may
not be suitable for a database, for example. Fields can be rearranged on the screen without
affecting their order on the ARB, and vice versa.

Third, data type and length may differ from screen to ARB, and the designer uses the ARB
screens, in conjunction with the Data Type Conversions Menu, to specify conversions (see
discussion under "ARB Data Types").

Figure 3-25. shows the sequence of menus used to create, modify and delete an ARB and
the fields on it.
Chapter 3 109

INTRODUCTION TO FORMS DESIGN
USING FORMSPEC TO CREATE AN ARB
Figure 3-25. Menu Sequence for ARB Feature

Setting Up the Data Type Conversion Record

The data type conversion record allows the forms designer to define the default values for
screen and ARB data types. You must define these values, even if you only press ENTER to
accept FORMSPEC's preset defaults, shown in Figure 3-27. You will probably want to
replace some, if not all, of these defaults with your own.

Set up the data type conversion record by following these steps:

1. Make sure you are at the FORMSPEC Main Menu and select G for "Go to Globals
Menu". when you press ENTER, the Globals Menu is displayed.

FORMSPEC
 Main Menu

FORMSPEC
 Main Menu

Globals
Menu

Data Type
Conversion Menu

Save Fields

ARB Menu

Enter

Enter

Enter

Enter

Main Menu

Select
“Globals
Menu”

Select
“Define Data
Conversions”

Set data type
Conversion
defaults

Select
“ARB
Menu”

ARB ARB

Layout Menu Field Menu
Generate a
new ARB

Delete
an ARB

Change ARB field
length and data typeadd a

field
move

a field
rename
a field

delete
a field

GEN RES DELMOD
110 Chapter 3

INTRODUCTION TO FORMS DESIGN
USING FORMSPEC TO CREATE AN ARB
Figure 3-26. Globals Menu

2. Enter Y for "Define Data Conversions" in the last box. The Data Type Conversions
menu is displayed. This screen allows you to specify default conversions to and from
every available screen and application data type.

Figure 3-27. Data Type Conversion Menu

PREV
FORM

NEXT
FORM

REFRESH PREV NEXT MAIN/
RESUME

EXIT

FORMSPEC v.uu.ff Forms File Menu FORMS FILE: filename

[FORM 1]Head Form Name

[HI]

[IU]

[1]

[X]

[NONE]

Default Display Enhancement

Error Enhancement

Window Display Line

Window Enhancement

Define Function Key Labels (“Y”)

[Y]Define Data Conversions (“Y”)

PREV
FORM

NEXT
FORM

REFRESH PREV NEXT MAIN/
RESUME

EXIT

FORMSPEC v.uu.ff Data Type Conversions Menu FORMS FILE: FILENAME

[CHAR][CHAR] [CHAR][CHAR] [CHAR]

[CHAR][CHAR][CHAR] [CHAR][CHAR] [CHAR]

Default Data Type Conversions:

From Screen Type to Application Type

CHAR date DIG NUMn IMPn

From Application Type to Screen Type

CHAR
INT SPACKn/

PACKn
REAL/
LONG/DINT ZONEn YYMMDD
Chapter 3 111

INTRODUCTION TO FORMS DESIGN
USING FORMSPEC TO CREATE AN ARB
The n in the numeric types stands for a number of decimal places. When specifying a
conversion to one of these types, you must replace n with a digit or a. When you set the
number of decimals to a, you are instructing FORMSPEC to determine the decimals
algorithmically on the basis of the source type. Note that you can only select the a
option on this menu, and not on the field menus. For recommendations on data type
conversions, see "Data Types" earlier in this section.

3. When you have set your defaults, press ENTER and then press MAIN/RESUMEat the SAVE
FIELD Menu to return to the Main Menu.

Generating the ARB

Follow these steps to generate an ARB for a form.

1. At the Main Menu, enter B for "Go to ARB Menu" in the Main Menu Selection box.

2. In the "Go to ARB Menu" field, enter the name of the form for which you wish to
generate an ARB and press ENTER. The ARB Menu is displayed.

Figure 3-28. ARB Menu

The form name is displayed in the first field. This is a display-only field: you cannot
select a new form from this menu. If you want to create an ARB for a different form, you
must go back to the Main Menu.

The next field shows the number of fields in the ARB: in this case there are none, since
there is no ARB yet.

Types of Field

An ARB may contain two kinds of field. They are live fields and filler fields.

• Live fields exist on both the screen and the ARB.

• Filler fields exist on the ARB only; for example, alignment and accumulator fields.

The designer can select one of four options on the ARB Menu.

REFRESH MAIN/
RESUME

EXIT

FORMSPEC v.uu.ff ARB Menu

[FORM 1]Form Name

[]MOD--Modify ARB field

NO field(s) in ARB

[GEN] Enter selection

GEN--Generate ARB

RES--Restructure ARB (add, move and delete fields)

DEL--Delete entire ARB
112 Chapter 3

INTRODUCTION TO FORMS DESIGN
USING FORMSPEC TO CREATE AN ARB
Options GEN (Generate) Create an ARB from scratch, containing a field for each
field on the form. The sequence of the fields accords with
their sequence on the form, and can be altered using the
Restructure ARB Menu Figure 3-29. The type and length
of the fields are determined by comparing the screen
attributes with the data conversion record. They can be
changed using the ARB Field Menu.

This option is only valid if no ARB exists for the form.

RES (Restructure) Display the current ARB, showing the sequence of fields.
Allows the designer to add, delete, move and rename fields
using the Restructure ARB Menu.

MOD (Modify) Modify the length and data type of the designated field in
the ARB, using the ARB Field Menu.

DEL (Delete) Delete the entire ARB. If you want to make a lot of
changes to the fields on a form, it is usually better to
delete the existing ARB and generate a new one once the
form has been altered. If you copy or delete a form, the
corresponding ARB will be copied or deleted as well.

Table 3-11. shows how an alteration made to the form will affect the ARB, if at all.

Table 3-11. Form/ARB Relationships

Form ARB

Adding a form… Does not add an associated ARB.

Copy a form… Copies the associated ARB.

Renaming a form… Renames the associated ARB.

Deleting a form… Deletes the associated ARB.

Changing a form:
- adding a field…

Does not add it to the ARB once the ARB has been created, unless you
create a new ARB.

- changing a field… Changes the screen length and screen data type on the ARB, but does not
affect the ARB field length and data type.

- deleting a field… Changes the corresponding ARB field to a "filler" field.

No effect on form… Add, change delete ARB or the fields in it.

Form can exist without an
ARB.

ARB cannot exist without a form.
Chapter 3 113

INTRODUCTION TO FORMS DESIGN
USING FORMSPEC TO CREATE AN ARB
The Effect of Renaming a Field on a Form There are three possibilities, which are described
below.

• The old name is in the ARB but the new name is not: The ARB field is renamed to the new name,
retaining its "live" field type, and the screen length and screen type are altered if necessary.

• The old name is not in the ARB, but the new name is, as a "filler" field: The ARB field changes
from "filler" to "live" field type, and the screen length and screen data type are updated if
necessary.

• Both old and new names exist in the ARB: The old name changes from "live" to "filler" type, and
the screen length and screen data type change to zero and blanks respectively. The new name
changes from "filler" to "live" field type, and the screen length and screen data type are updated.

NOTE FORMSPEC allows the designer to delete a field from a form after a corresponding
field has been added to the ARB. The field need not be deleted from the ARB as well;
at compile-time, the ARB field is converted to a "filler" field, with screen length set to
zero and screen type blank. The designer can; however, choose to delete or rename
the ARB field.

It is possible, though usually not advisable, to create an ARB without using the
GENerate feature. To do this, type RES and use the Restructure ARB Menu to add
fields one at a time.

If your default conversion for any field(s) could cause run-time errors, you will get a message to that
effect (see Appendix B, VPLUS ERROR MESSAGES). Go to the ARB Field Menu to check that the
conversion does make sense in this case, or to change the target datatype if it doesn't.

3. Enter GEN in the Selection box and press ENTER to generate an ARB for this form. The "No
field(s) in ARB" changes to show a number equivalent to the number of fields on the form.

4. You can now change the position of a field in the ARB, add or delete fields, or modify a field by
changing its length and/or data type.

5. To move, rename, add or delete fields, type RES in the Selection box and press ENTER. The
Restructure ARB menu is displayed.

This menu displays all the fields in the ARB by name and in sequence. The form name is
displayed in the first field (display only). The lower part of the screen shows the ARB fields. Use
PREV PAGE and NEXTPAGE to view them all if necessary.

NOTE ARB changes do not propagate to form family members. Changes impact the current
form only.
114 Chapter 3

INTRODUCTION TO FORMS DESIGN
USING FORMSPEC TO CREATE AN ARB
Figure 3-29. Restructure ARB Menu

6. Use the fields at the top of the screen to change the order by moving fields or ranges. Press
ENTER to execute all changes.

Options Command

Must state MOVE, ADD, RENAME, or DELETE. DELETE must be spelled out;
the other commands may be abbreviated.

Field or Range

Name(s) or numbers(s) of the field(s). A slash (/) indicates a range: valid for
MOVE or DELETE only. Any field may be deleted.

You can ADD only a single field at a time; it may not already exist on the
ARB and it must conform to FORMSPEC naming rules. You may add a
field that does not exist on the associated form. This "filler" field will have
an ARB default length of 1 byte, and ARB type of CHAR; screen length is
zero and screen type is blank. Fillers are marked with a "+" on the
Restructure ARB Menu.

To RENAME a field, enter the name of an existing field, and enter the new
name of the field in DESTINATION. "Live" fields exist on both form and
ARB; "filler" fields exist on the ARB only. The following defaults apply to
renamed ARB fields:

• Live name changed to live name (new ARB field has corresponding
field on the form): new ARB field length and type derived
algorithmically from the length and type of the corresponding field on
the form.

• Filler name changed to live name (new ARB field has corresponding
field on the form): new ARB field length and type derived

REFRESH MAIN/
RESUME

ARB

FORMSPEC v.uu.ff Restructure ARB Menu

[FORM 1]Form Name 48 field(s) in ARB

[MOVE]Enter Selection: (Add, Move, Rename or DELETE)
[FIELDA/X1]
[AFTER] [ADDRESS2]Destination:

Field or Range:
(Before, After):

PREV
PAGE

NEXT
PAGE MENU

001 FIELDA 002 FIELDD 003 FIELDC 004+XNOTFIELD
005 FIELDX 006 NAME 055+X1 006 ADDRESS
007+ X2 008 CITY 009+HUNDREDS 010 THOUSANDS
011 ADDRESS2
Chapter 3 115

INTRODUCTION TO FORMS DESIGN
USING FORMSPEC TO CREATE AN ARB
algorithmically from the length and type of the corresponding field on
the form.

• Live name changed to filler name (new ARB field has no
corresponding field on the form): new field retains length and type of
old ARB, and screen length becomes zero and type blank.

• Filler name changed to filler name (new ARB field has no
corresponding field on the form): new field retains length and type of
old ARB, and screen length remains zero and type blank.

7. When you have finished modifying the field order on the ARB, press ARB MENU to
return to the ARB Menu, or MAIN/RESUME to go back to the Main Menu.

8. To change the length or data type of an ARB field, type MODon the ARB Menu. The ARB
Field menu is displayed.

Figure 3-30. ARB Field Menu

This screen allows you to scroll through all the fields in the ARB and change their
length and data type if required.

NOTE You can change only the ARB field type and length. To change the
characteristics of the field on the form, you must use the FORMSPEC Field
Menu (see figure 3-22). If you use this menu to change the length or type of a
field on the form, the corresponding screen length and screen type of the field
in the ARB will be changed accordingly, but the ARB length and ARB type
will remain the same.

REFRESH MAIN/
RESUME

ARB

FORMSPEC v.uu.ff ARB Field Menu

[FORM 1]Form Name

PREV
PAGE

NEXT
PAGE MENU

--------Screen--------- ---------ARB---------

ARB Sequence # Field Len Dtype Byte Len Dtype
[A2][1] [3] [CHAR] [3] [CHAR]
116 Chapter 3

INTRODUCTION TO FORMS DESIGN
USING FORMSPEC TO CREATE AN ARB
Using and Defining ARBs The programmer is responsible for:

• Using the correct data types for each programming language; for example, REAL is
invalid for COBOL applications.

• Aligning and/or padding the ARB/source code. If an odd number of bytes is followed by
an integer, some languages, including Pascal and FORTRAN, automatically pad the
record definition, forcing the integer to be word-aligned. No such padding occurs in
COBOL unless the SYNCHRONIZED clause is used (see the COBOL II/3000 Reference
Manual).

If you use a language whose compiler pads to ensure word alignment for integers, you
must pad your ARB correspondingly. For example, suppose you are coding in Pascal and
you declare a record that looks like this:

ODD_BYTE_EXAMPLE = RECORD
THREE_BYTES : PACKED ARRAY [1..3] OF CHAR;

GOTCHA : INTEGER
.
.

END;

The Pascal compiler will insert an additional byte after THREE_BYTES to align the integer
on a word boundary. You must do the same with the ARB record; use the ARB LAYOUT
screen to add a filler field after the three-byte field so that the ARB looks like this:

Field Name ARB Type ARB Length

DEPT CHAR 3

FILLER1 CHAR 1

TOTAL PURCHASES DINT 4

• Ensuring the application specifications match the ARB specifications, for example, if
the ARB type is PACK, the COBOL specification should be COMP-3, not COMP.

• Avoiding run-time errors, which may occur when:

— Converting a CHAR or date source to a numeric destination

— Converting a numeric or CHAR source to a date destination

— Invalid length specifications are encountered

— There are alignment problems; FORMSPEC does not detect these

There is also the possibility that data will be truncated; for example, if DIG -> INT ,
but screenlen is greater than 5.

The ARB Trace Facility The ARB trace facility may be enabled by setting the JCW
VPLUSARBTRACE to 1. This will print trace messages to the stdlist. You may direct
VPLUS screens to a different device by using a FILE command to set the device of the
filename used by VOPENTERM to a device other than the stdlist device.

This is an example of a trace from a form that has seven fields.

:SETJCW VPLUSARBTRACE,1
:FILE VTERM;DEV=99
Chapter 3 117

INTRODUCTION TO FORMS DESIGN
USING FORMSPEC TO CREATE AN ARB
:RUN ARBPROG

Field 1 : Buffer offset fro m 0 = 1
Length = 2

Type = INT
Value = 1234

Field 2 : Buffer offset fro m 0 = 3
Length = 2

Type = INT
Value = 1234

Field 3 : Buffer offset fro m 0 = 6
Length = 2

Type = INT
Value = 1234

Field 4 : Buffer offset fro m 0 = 9
Length = 4

Type = DINT
Value = 12345678

Field 5 : Buffer offset fro m 0 = 14
Length = 4

Type = DINT
Value = -1234567

Field 6 : Buffer offset fro m 0 = 19
Length = 4

Type = DINT
Value = 12345678

Field 7 : Buffer offset fro m 0 = 23
Length = 8

Type = CHAR
Value = ABCDEFGH

END OF PROGRAM
:

The trace provides the following information. It shows:

• The location of each field in the ARB (Buffer offset);

• The length of each field in the ARB (Length);

• The type of transformation that occurs (Type);

• The value that is transformed in the ARB field (Value).

NOTE This ARB is tied to seven form fields, but there are gaps in the buffer before
field 1, and between each field from 2 to 6. These gaps are one-byte filler
fields.
118 Chapter 3

INTRODUCTION TO FORMS DESIGN
TERMINAL/LANGUAGE SELECTION MENU
TERMINAL/LANGUAGE SELECTION MENU
The Terminal/Language Selection Menu allows you to specify which terminals will be used
with the forms file. You may select one family or any combination of families, including all
four families (HP 264X, HP 262X, HP 239X (includes HP 150), and HP 307X). The HP
264X family is the terminal default value. When the selection is defaulted, the forms file
will run on the HP 264X family, the HP 262X/HP 239X family and the HP 150, but the
following features of selected terminals will not be supported: color, local edits, function
key labeling on HP 264X terminals, and security display enhancement. Consult Appendix
G to see which HP terminals support which features. The family of terminals need not be
specified unless the forms file will be making use of these terminal features or will be used
with the data capture devices. Refer to the field descriptions below for more information.

The Terminal/Language Selection Menu also allows you to specify the native language
with which the forms file will be used. See "Setting the Language ID Numbers", Section 8,
for more information.

The options available on the Terminal/Language Selection Menu are also available using
FORMSPEC in batch mode. (See Section 7, for more information.)

Figure 3-31. Terminal/Language Selection Menu

Fields

Select (X) the terminals

The choices are:

HP264X Family Specify an X for HP 264X terminals; specify a Y for HP
264X terminals with function key labeling.
Chapter 3 119

INTRODUCTION TO FORMS DESIGN
TERMINAL/LANGUAGE SELECTION MENU
HP262X, HP239X Families Specify an X for HP 262X and HP 239X
terminals; includes HP 150 terminals.

HP3075A, HP3076A, HP3081A Specify an X in the HP 3075A, HP 3076A,
HP 3081A box in order for the forms file to run on the data
capture devices; specify an 8 to run on the data capture
devices and take full advantage of the HP 3081A.

HP2627A, HP2397A Specify an X for terminals with the color feature; you
must also specify an X in the HP262X, HP239X Families
field.

If you want the forms file to run on the HP 264X and HP 262X/HP 239X
families, you must specify both on the Terminal/Language Selection Menu.

Enter Language ID:

Specify the following:

FORMSPEC LanguageOnly 0 for NATIVE-3000 is supported.

Forms File Language Specify one of the following:

0 for NATIVE-3000

the native language ID number for a language-dependent
forms file or

-1 for an international forms file. Refer to Section 8 for
more information.

Default 0 for NATIVE-3000
120 Chapter 3

INTRODUCTION TO FORMS DESIGN
DATA CAPTURE DEVICE SPECIFICATIONS MENU
DATA CAPTURE DEVICE SPECIFICATIONS MENU
If you select the data capture devices on the Terminal/Language Selection Menu, the
following message will appear at the bottom of the Globals Menu:

Press NEXT to select HP 3075/6 device specifications

Press NEXT to display the Data Capture (3075/6) Device Specifications Menu, as shown in
Figure 3-32. On this menu you can specify how you want messages longer than 24 (or 32
for the HP 3081A) characters to be presented on single line display. In addition, you can
specify which keyboard light is to be lit if an error is detected, and the device configuration
for the Multifunction and Bar code readers if they were specified as valid input devices.

Figure 3-32. Data Capture Device Specifications Menu

Fields

Split Message Pause (seconds) You may specify the number of seconds between
screen presentations for messages longer than 24 (or 32) characters. Enter
a value between 1 and 99 in this box and a NOin the Wait for ENTER box.
User and VPLUS's messages will be broken so as not to display part of a
word. This field does not apply to Mini-CRT display.

Default 3 (seconds)

PREV
FORM

NEXT
FORM

REFRESH PREV NEXT MAIN/
RESUME

EXIT

FORMSPEC v.uu.ff 3075/6 Device Specifications FORMS FILE: filename

[3]Split Message Pause (seconds)

[NO]

[E]

[HOLES]

[NONE]

[YES]

OR Wait for user to press ENTER

Error Light

HOLES/MARKS

Corner Cut Required

Clock On/After/NONE

[UPC]Format Disable Check Digit [N]

Multifunction Reader:

Barcode Reader:
Chapter 3 121

INTRODUCTION TO FORMS DESIGN
DATA CAPTURE DEVICE SPECIFICATIONS MENU
OR Wait for user to press ENTER You may also specify that screen presentations
for messages longer than 24 (or 32) characters be displayed after ENTER is
pressed. Enter a YES in this box and a zero (0) in the Split Message
Pause box. This field does not apply to Mini-CRT display.

Default NO

Error Light You may specify which keyboard light is to be lit if an error is detected on
the form by the application or by VPLUS. This light will remain lit during
the re-presentation of the form. You may specify any one of the following:
@, A through P.

Default E

Multifunction Reader: If you select the Multifunction Reader as an input device, you
can specify how it should be configured to accept valid card and badge
input. The following options are available:

HOLES/MARKS The card or badge will have holes or will be mark sensed.

Default HOLES

Corner Cut Required The card or badge must be presented with the
corner in accordance with the diagram on the terminal.

Default YES

Clock On/After /NONE The card or badge will have clock marks after
each column of data, or no clock marks. Valid input is CAD
(clock after data) or NONE (no clocking).

Default NONE

Invalid combinations of the above are Holes with Clock On data and
Marks with NONE.

Bar Code Reader If you select the Bar Code Reader as an input device, you can specify
how it should be configured. The following options are available:

Format You can specify which bar code format will be read. Choose
one of the following:

• UPC — Universal Product Code

• I25 — Industrial 2 out of 5

• MAT — INTERMEC 2 out of 5 MATRIX code

• 139 — INTERMEC code 39 alphanumeric bar code

• EAN — European Article Numbering

• ILV — Interleaved 2 out of 5

Default UPC

code I39 is a registered trademark of Interface
Mechanism, Inc.

Disable Check Digit When you specify the bar code reader as an input
device, VPLUS configures the device to require check
122 Chapter 3

INTRODUCTION TO FORMS DESIGN
DATA CAPTURE DEVICE SPECIFICATIONS MENU
digits. You can change this by specifying yes (Y) in this
field.

Default N

Example of how a typical form layout will took displayed on the data capture devices:

Figure 3-33. Form Layout in FORMSPEC

Figure 3-34. Displayed on Standard Character Set Mini-CRT Screen

Figure 3-35. Displayed on 32 Character One Line Alpha Display Screen

This is the first line of the form.

This is line 3 of the form and it extends all the way to column 80.....

This line starts in column 17.

This line starts in column 25.

This line starts in column 33.

This is the first line of the
form.

This is line 3 of the form
and it extends all the way to

column 80..........

This line starts
in column 17

This
line starts in column 25.

This line starts in column 33.

This is the first line
of the form.

This is line 3 of
the form and it extends
all the way to column 80
..........

This
line starts in column 17

This line starts in

column 25

This line starts
in column 33
Chapter 3 123

INTRODUCTION TO FORMS DESIGN
DATA CAPTURE DEVICE SPECIFICATIONS MENU
Figure 3-36. Displayed on Large Character Mini-CRT Screen

This is the
first line of
the form.

This is line
3 of the form

and it extends

all the way to
column 80
..........

This line starts
in column 17

This
line starts in
column 25

This line starts
in column 33
124 Chapter 3

Advanced Forms Design
4 Advanced Forms Design

The processing specifications for advanced forms design allow you to:

• Compare a field value to a specified single value, range of values, list of values, or a
pattern.

• Test a check digit.

• Specify up to 20 global save fields.

• Assign a value to any field in the form, including save fields.

• Move values between fields in a form or, using save fields, between fields in different
forms.

• Perform arithmetic calculations on data in numeric fields.

• Format data in a field either during data movement, or using the set of formatting
commands.

• Dynamically alter the forms sequencing originally assigned to a form.

• Execute any of the processing specifications conditionally, depending on the value of a
field.

• Perform processing specifications in different phases of form execution.
Chapter 4 125

Advanced Forms Design
Levels Of Advanced Design
Levels Of Advanced Design
Advanced forms design can be separated into two levels of processing specifications:

• Field Edits — use a comprehensive set of editing statements that apply to a single
field. These statements allow you to test a value entered in a field for length, and to
compare the value to a single value, a range of values, the values in a table or against a
pattern, and to test a check digit in a field. Each of these edits applies to the field in the
Field Menu in which it appears — the editing statements do not cross field boundaries.

• Advanced Processing — includes statements that control data movement between
fields and across forms, arithmetic calculation and formatting of data, dynamic
alteration of forms sequencing options. Any of these statements and the edit statements
can be combined into conditional statements so that processing is performed only in
specified circumstances. This type of processing, as in any programming language, is
affected by the order in which the statements are specified. The order of statement
execution can be defined explicitly through phase statements.

Advanced forms design uses processing specifications that are specified in the lower
nonformatted area of the Field Menu. Although they apply primarily to particular fields,
some specifications apply to the form in general. The specifications can, if desired, be
executed in four phases: configuration, initialization, field edits, and finish. If used, phases
allow the selection of:

• terminal configuration for local edit terminals and data capture devices,

• initialization of fields in the form before data is entered in the fields,

• editing of data in each field after the data is entered, and,

• after all fields are edited, any finish processing of the form.

The application requests execution of each phase with appropriate VPLUS intrinsics,
except for configuration, which is a passive phase built into the presentation of the form.
Refer to "Phases" later in this section for more information.

If you have collected data in a batch file, you may also use the Reformatting Capability
(described in Section 5) to reformat the data in the batch file for subsequent use by an
application.
126 Chapter 4

Advanced Forms Design
Entering Processing Specifications
Entering Processing Specifications
After defining the field attributes on the Field Menu (as described in Section 3), if you want
to define additional processing, press FIELD TOGGLE . You can then enter the processing
statements in the lower (nonformatted) area of the Field Menu. (Refer to Figure 4-1. for an
illustration of the Field Menu that includes processing specifications.) When additional
field processing is requested, FORMSPEC performs the following steps:

1. Leaves the Field Menu on the screen with its current values for the field attributes.

2. Places the terminal in nonformatted block mode. This allows you to type anywhere on
the screen, not just in unprotected fields, and use the full terminal capabilities for block
mode entry (refer to your terminal manual for details.)

3. Positions the cursor at the beginning of the first line on which you can enter the
processing specifications.

Figure 4-1. Field Menu with Processing Specifications

You can then enter any of the processing statements described in this section. They can be
typed on any line in the processing specifications area, and must conform to the specified
syntax rules. When you have typed all the specifications for this field, press ENTER. When
ENTER is pressed, the field attributes are cheeked first. If there are no errors, the
processing specifications are checked for syntax errors. When the Field Menu passes these
checks, the next menu is displayed. You can continue with field definitions or go back to
change previously defined fields.
Chapter 4 127

Advanced Forms Design
Entering Processing Specifications
Special Cases

If a processing specification statement line extends to the 80th column, the line is
expanded to two lines when you return to the Field Menu. This may in turn result in
processing specification truncation due to either terminal memory overflow or FORMSPEC
internal buffer overflow.

In nonformatted mode, it is possible to accidentally clear or delete any field attributes with
a key such as CLEAR DISPLAY or DELETE LINE . Doing this is only a problem if the values
for the field attributes have not yet been recorded by pressing ENTER. To recover, press
REFRESH and then reenter any changed values for the field attributes.

While in the processing specification area of the Field Menu, recovering from accidently
pressing BREAK or from system problems requires a special recovery procedure. Refer to
Appendix G.

Correcting Existing Specifications

Whenever you return to a Field Menu, the terminal is in formatted mode with the cursor
positioned to the first unprotected field in the upper part of the screen. To change the field
attributes, TAB to the field you want to change and type in the new value. To change the
processing specifications in the lower part of the screen, you must press FIELD TOGGLE to
put the terminal in nonformatted mode. The cursor is then positioned to the beginning of
the processing specification area.

If you want to change a field attribute in the upper part of the Field Menu when you are in
the lower part entering processing specifications, you must press FIELD TOGGLE to return
to formatted mode. The cursor is then positioned at the first unprotected field in the upper
part of the menu, and you can then change the field attributes.
128 Chapter 4

Advanced Forms Design
Statement Syntax
Statement Syntax
The processing specifications consist of statement names followed by parameters. The
description of each statement uses the conventions defined at the beginning of the manual.
In order to understand the notation used in the statement formats in this section, you
should review these conventions.

Multiple statements can be placed on the same line by following the last parameter of the
statement by a blank and the next statement. If you want, you can separate statements on
the same line with an optional semicolon (;). For example:

MINLEN 5 GT 1000 LT 2500 3 statements without separator
MINLEN 5; GT 1000; LT 2500 3 statements separated by ;

Statements may begin anywhere on the line, except for nested IF statements where
indentation is significant. Multiple blanks are ignored within a line, except at the
beginning of a line in a nested IF statement.

Comments

Comments may be included in the text by preceding the comment with a backslash (\).
Anything typed between the backslash and the end of the line is ignored. For example:

Continuing Lines

Statements that are not completed before the first backslash or the end of the line can be
continued anywhere on the next line. A continuation character, the ampersand (&), is used
only when a string literal must be continued on the next line. The ampersand concatenates
two or more string literals to form one string. For example:

EQ "ABCDEF"& \This field must be the string of
"UVWXYZ" \the uppercase letters ABCDEFUVWXYZ.

Custom Error Messages

Whenever a field edit statement detects an error at run-time, the application can call the
appropriate VPLUS intrinsics to have an error message (provided by VPLUS) issued and
displayed in the window line, such as is done with ENTRY. You may choose to write a
custom message to be issued when a field fails a particular edit specification. To do this,
you specify the custom message in quotes immediately following the statement to which it
applies. Figure 4-1. illustrates a Field Menu in which the processing specifications contain
custom error messages. When and if the statement causes a field to fail, the custom
message is displayed instead of a VPLUS error message. For example:

MATCH udddd "Field has wrong format for Product Number"

GT 12

statement

\This field must have a value greater than 12.

comment
Chapter 4 129

Advanced Forms Design
Statement Syntax
Figure 4-2. Field Menu with Custom Error Messages

Checking Data Entered

The field attributes for the field determine the first checks made on the data in the field.
For example, if the field is required (FType=R), it is checked to be sure that the user has
entered a value in the field. Editing is performed according to the data type. For example,
if the data type is DIG, then the field is checked to be sure that only the digits 0-9 were
entered in the field. Next, the processing specifications are tested in the order they are
specified. As an example, consider the specifications in Figure 4-2. After making the checks
based on the field attributes, data entered in the field is tested to be sure that at least 5
digits were entered (MATCH ddddd), and optionally the value is checked for a hyphen and 4
more digits ([- dddd]). In all cases, the checks are performed by VPLUS when the
application calls the appropriate VPLUS intrinsics, as described in Section 6.

The following sections provide a summary of all the statements that may be entered in the
Processing Specifications area of the Field Menu. Each of these statements is fully
described later in this section.
130 Chapter 4

Advanced Forms Design
Statement Syntax
CONFIGuration Statements

LOCALEDITS [ALPHABETIC
ALPHANUMERIC
CONSTANT
IMP_DEC
IMP_DEC_FILL
INTEGER
INTEGER_FILL
SIGN_DEC
SIGN_DEC_FILL
UNRESTRICTED
UPSHIFT] [JUSTIFY

MUST_FILL
REQUIRED] ...[DEC_DIGITS n]

[DEC_TYPE_EUR
DEC_TYPE_US]

[TRANSMIT_ONLY]

LIGHT {@
A
...
O
P }...

DEVICE {PRINTER
KEYBOARD
MAGSTRIPE
TYPEV
MULTIFUNCTION
READER
MFR [CADMARKS

NONE HOLES
CAD HOLES [CUT

NOCUT]]
DISPLAY [LARGECHAR

STDCHAR]
BARCODE [READER] [UPC

I25
I39
MAT
EAN
IVL]}...
Chapter 4 131

Advanced Forms Design
Statement Syntax
Edit Statements

MINLEN value [“ msg”] {GT
LT
GE
LE
EQ
NE} value [“ msg”]

{IN
NIN} { value [, value]

lowvalue : highvalue [, lowvalue : highvalue]...
value [, lowvalue : highvalue]... } [“ msg”]

MATCH pattern [“msg”] CDIGIT {10
11} [“ msg”]

Formatting Statements

STRIP { TRAILING
LEADING
ALL } “ character ” JUSTIFY { LEFT

RIGHT
CENTER}

FILL {LEADING
TRAILING } “ character ” UPSHIFT

SET Statements

SET { TO { value
index OF value [, value]...}

{field
save field } [TO { value

index OF value [, value]... }] }

CHANGE Statements

CHANGE {CFORM TO {NOREPEAT
REPEAT
REPEAT APPEND}

NFORM TO {[CLEAR
APPEND
FREEZE APPEND] [“ formname ”

fieldname
index OF value [, value]...
$RETURN
$HEAD
$END
$REFRESH]}}
132 Chapter 4

Advanced Forms Design
Statement Syntax
Conditional Statement

IF [value] editstatement THEN [statement]...
[statement]...

[ELSE [statement]...
[statement]...

Control Statement

FAIL [“ msg”] STOP

Operands

Whenever value is specified as an operand in a field processing statement, a field name,
constant, expression, or a save field name can be used. If the operand is numeric, any of
these can be combined into an arithmetic expression whose result is used as the operand.

Another operand, index, is used to retrieve items from a list by an index value. It must be
enclosed within parentheses in edit statements; in SET and CHANGE statements, it can be
specified without the enclosing parentheses.

Field

The name of any existing field within the same form can be specified as a value operand.
When a field name is specified, the value in that field at run-time is used to check the
current field.

A field name in an editing statement must describe a field of the same data type (character,
numeric, or date) as the current field.

Constant

Constants are divided into categories corresponding to the three main data types:
character, numeric and date. In addition, there are four system defined constants:

$EMPTY equivalent to all blanks; in comparison, $EMPTY is less than any other
value (any data type).

$LENGTH equivalent to the length of the field the last time the form was compiled
(numeric data types).

$STATE equivalent to a table of constants each of which is a two-character upper or
lowercase United States state or territory code; refer to Appendix F for the
codes (character type; used only in table checks).

$TODAY equivalent to today's date in the form dd/dd/dd where the order of month
day year is determined by the field type (date type only).
Chapter 4 133

Advanced Forms Design
Statement Syntax
Character Character constants are strings of any character enclosed in single or double
quotes.

For example:

"This is a constant."
'and this is, too!'
$EMPTY
$STATE

Numeric Numeric constants are digit strings with an optional leading sign and optional
decimal point. Commas are not allowed in numeric constants. If the constant has no
decimal point, a decimal is assumed at the right of the rightmost (least significant) digit.
$EMPTY (all blanks) can be used to indicate a numeric constant less than any non-$EMPTY
value, $LENGTH can be used to indicate the length of the current field. The following
examples Illustrate numeric constants:

.23
-123
5000
-3729
$EMPTY
$LENGTH

Date. A date constant can be any legal date format, but it must be in the order MDY.
With Native Language Support, the date constant order (e.g., mmddyy) will not be
language dependent. For more information on Native Language Support, see Section 8. To
distinguish it from other constants, a date constant must be delimited by exclamation
points (!). Note that the date constant in the order MDY is used to check date values in any
of the three legal orders: MDY, DMY, or YMD. A special date constant $TODAYis equivalent
to the date at execution time. Examples of date constants are:

!MAY 30, 1986!
!12/24/86!
!NOVEMBER 7, 86!
$TODAY
$EMPTY

Arithmetic Expression

Any numeric constant, field, or save field can be combined into an arithmetic expression.
The expression is evaluated to generate a constant that can be used to check a field or
replace the value of a field. The operators used to form an arithmetic expression are:

+ (add)

- (subtract)

* (multiply)

/ (divide)

% (percent of)

The operators determine the order of evaluation in the standard operator hierarchy where
+ and - are evaluated after *, /, and %. Operators at the same level are evaluated from left
to right. Parentheses may be used to further define the hierarchy. Expressions within
134 Chapter 4

Advanced Forms Design
Statement Syntax
parentheses are evaluated first and, if parentheses are nested, the innermost are
evaluated first. The % in the expression a%b is equivalent to (a*.01)*b. When $EMPTY is
used in an arithmetic expression, the result is always $EMPTY. Thus, $EMPTY with any
operator and operand = $EMPTY. The following examples illustrate arithmetic expressions:

F2 + 1 Add 1 to the value in field F2.

QUANTITY * UNITPRICE Multiply value in QUANTITY by value in UNITPRICE.

TOTALCENTS/ 1000 Divide value in TOTALCENTS by 1,000.

20% (TOTALPRICE - TAX) Find 20 percent of the value resulting from subtracting
TAX from TOTALPRICE.

$EMPTY + 20 The result is always $EMPTY, regardless of the operator or
other operand.

NOTE When the VPLUS intrinsics execute an arithmetic expression, they expect
each operand in the expression to have a value; if any operand does not have
a value, the result is null. It appears to the user as if the expression had not
been executed and no message is issued.

Index Retrieve Operand

An index retrieve operand (enclosed within parentheses) can be used in any edit statement
where a constant, field, or expression is legal. An index retrieve operand without enclosing
parentheses can be used in SET and CHANGE statements.

An index retrieve operand is specified in the format:

index OF element [,element] ...

index is a numeric type field or save field, or a numeric expression whose value is
a positive integer. The index value indicates which element is selected.

element is a constant, field, save field, or expression. Each element in the list of
elements separated by commas must be the same type (character, numeric,
or date).

When an operand of this type is specified, its effective value is selected from a list of values
according to its position in the list, where the first element of the list is 1. First, the index
expression is evaluated, then this value is used to select a final value from the list.

For example:

EQ (N OF "ABC","DEF" , "GHI", FIELDX)

If the value of N is 1, the character string "ABC" is the selected operand: if
the value of N is 4, the value of FIELDX is selected. If the value of N is
negative, zero, or greater than the number of elements, an error message
is returned. Note that the operand is enclosed in parentheses because EQis
an edit statement.

SET TO F3 OF F1,15,20, 25,35,40

If the value of F3 is 1, the selected operand is the value of field F1; if F3 is
Chapter 4 135

Advanced Forms Design
Statement Syntax
4, the selected operand is 25. Parentheses are not required in a SET
statement.

CHANGE NFORM TO X OF
"FORMA", "FORMB", "FORMC",
OPSELECT

X may be a value between 1 and 4. If its value is 4, the field name
OPSELECT is chosen. The value of OPSELECT must be type character to
conform to the other elements in the list, and to make sense it should
contain a form name. No parentheses are needed in a CHANGE statement.

If an index has a value beyond the number of elements in the list or is $EMPTY, an error is
returned.
136 Chapter 4

Advanced Forms Design
Processing Specifications For Configuration
Processing Specifications For Configuration
You can use the processing specifications for configuration to specify local editing to be
done on the HP 2394A and HP 2624A/B terminal, and to specify the input device and
prompting lights for use on the data capture devices.

These statements may only be used in the configuration phase of field processing, and
must have the CONFIG heading in the processing specification area of the Field Menu.

NOTE VPLUS edit processing specifications and terminal edit processing
statements are separate and are not checked for compatibility. There will be
no check to see that the designer has specified a terminal local edit
(DEC_TYPE_EUR, DEC_TYPE_US) in the configuration phase which is
consistent with the language-dependent decimal indicator for the native
language specified in the forms file. For more information on Native
Language Support see Section 8.
Chapter 4 137

Advanced Forms Design
DEVICE
DEVICE
Enables the input media device on a data capture device.

Syntax
DEVICE { device1,device2,...devicen }

Parameters

device Any of the following may be specified:

PRINTER
KEYBOARD
MAGSTRIPE
TYPEV
MULTIFUNCTION READER
DISPLAY
BARCODE READER

There are no default devices. Note that MULTIFUNCTION READER and
BARCODE READER must be abbreviated as MFR and BARCODE respectively.

Discussion

This command allows you to override the global attribute values for the Multifunction
Reader and Bar Code Reader. You must specify which devices are to be used for
input/output.

NOTE The Interleaved 2 out of 5 bar code is only supported from the Globals Menu.
If you wish to use this bar code format, it must be defined globally from that
menu.

Example
Processing Specifications

CONFIG
DEVICE PRINTER, KEYBOARD, DISPLAY, BARCODE READER
138 Chapter 4

Advanced Forms Design
LIGHT
LIGHT
Specifies which light will be lit during field presentation on a data capture device.

Syntax
LIGHT {light1,light2,...lightn}

Parameters

light Specifying @ turns on the light associated with the shift key. The
remaining valid characters of A through P are associated with the same
characters on the alphanumeric keyboard.

Discussion

This command allows you to specify which, if any, of the seventeen available prompting
lights is to be turned on during a field presentation. As many lights as desired can be
specified.

Example
Processing Specifications

CONFIG
LIGHT A,B,D,G,N,P
LIGHT @
Chapter 4 139

Advanced Forms Design
LOCALEDITS
LOCALEDITS
Used to stipulate edits to be done within the terminal.

Syntax
LOCALEDITS {edit1,edit2,...editn}

Parameters

edit Table 4-2. lists available local edits along with their meanings. Refer to
Table 4-1. for valid local edit combinations. For example, you can specify
alphanumeric, required, decimal type, and number of digits to the right of
the decimal together. You cannot specify alphanumeric and upshift
together.

Discussion

This command allows you to specify local edits that are performed as keys are pressed by
the user entering data into the form. At run-time, VPLUS checks the terminal type and, if
the terminal supports local edits, loads the specified local edits to the terminal. If the
terminal does not support local edits, VPLUS ignores them.

The last three decimal edits in Table 4-2. alter the mode of the terminal; therefore, the last
field for which a decimal edit is specified that is displayed on the terminal alters the way
the terminal processes all fields until the terminal mode is changed by another screen
containing a decimal edit. All other local edit specifications affect only the field for which
they are specified.

When an invalid key is pressed, the terminal beeps, and an error message issued by the
terminal (not by VPLUS) is displayed. Press RETURN to clear, then reenter data into the
field.

If you specify local edits with a form family, the local edits associated with the first
displayed form in the family are retained as subsequent family members are displayed (in
other words, it is not possible to change local edit specifications among family members at
run-time).

VPLUS "edit" processing specifications and "terminal" edit processing statements are
separate and are not checked for compatibility. There will be no check to see that the
designer has specified a terminal local edit (DEC_TYPE_EUR,DEC_TYPE_US) in the
configuration phase which is consistent with the language-dependent decimal indicator for
the native language specified in the forms file. For more information on Native Language
Support, see Section 8.
140 Chapter 4

Advanced Forms Design
LOCALEDITS
Table 4-1. Summary of Processing Statements

Local Edit Description

ALPHABETIC Upper and lowercase alphabetic, space, period, hyphen

ALPHANUMERIC Upper and lowercase alphabetic, digits, space, period, minus sign,
plus sign, comma.

CONSTANT No characters may be entered from the keyboard,

IMP_DEC Implied decimal (the number of digits to the right of the decimal
is governed by the last DEC_DIGITS command in the form).

IMP_DEC_FILL Implied decimal, right justified and zero filled (the number of
digits to the right of the decimal is governed by the last
DEC_DIGITS command).

INTEGER Digits and spaces.

INTEGER_FILL Digits and spaces, right justified and zero filled.

SIGN_DEC Signed decimal.

SIGN_DEC_FILL Signed decimal, right justified and zero filled.

TRANSMIT_ONLY No data may be entered unless the cursor control keys are used to
access the field.

UNRESTRICTED Any character.

UPSHIFT Lowercase alphabetic changed to uppercase when entered.

JUSTIFY right justify numeric types; left justify character types.

MUST_FILL The field must be blank or filled entirely.

REQUIRED The field must have an entry when ENTER is pressed.

DEC_TYPE_EUR European number format.

DEC_TYPE_US United States number format.

DEC_DIGITS n Specifies number of digits to right of decimal point.
Chapter 4 141

Advanced Forms Design
LOCALEDITS
Here is a table showing the local edit terminal menu selection and associated VPLUS local
edits.

For each field, the user may select one edit from Table 4-2. and any combination of edits
from Table 4-3. according to the following guidelines:

1. If no selection is made from Table 4-2., the default edit of UNRESTRICTED is used.

2. The CONSTANT and REQUIRED edits are incompatible, since the required data cannot be
entered in the CONSTANT field.

3. The terminal executes all edits implied by field type before it checks for TOTAL_FILL .
The MUST_FILL edit is always met by INTEGER_FILL ,SIGN_DEC_FILL , and IMP_DEC_
FILL .

4. The effect of the JUSTIFY attribute on each of the field types is shown in Table 4-2.

Table 4-2. Local Edit Terminal Menu Selection

Local Edit Terminal Menu Selection Justify is used

UNRESTRICTED 0. ALL CHARACTERS Left Justify

ALPHABETIC 1. ALPHABETIC Left Justify

UPSHIFT 2. AUTO UPSHIFT Left Justify

ALPHANUMERIC 3. ALPHANUMERIC Left Justify

INTEGER 4. INTEGER right justify

SIGN_DEC 5. SIGNED DECIMAL right justify

IMP_DEC 6. IMPLIED DECIMAL Ignore

CONSTANT 7. CONSTANT Ignore

INTEGER_FILL 8. INTEGER/FILL Ignore

SIGN DEC FILL 9. SIGNED DECIMAL/FILL Ignore

IMP_DEC_FILL 10. IMPLIED DECIMAL/FILL Ignore

Table 4-3. Local Edit Terminal Menu Selection with Defaults

Local Edit Terminal Menu Selection Default

REQUIRED REQUIRED OPTIONAL

JUSTIFY JUSTIFY NO JUSTIFY

MUST_FILL TOTAL FILL NO TOTAL FILL
142 Chapter 4

Advanced Forms Design
LOCALEDITS
Along with the selections from Table 4-2. and Table 4-3. you may specify the number of
decimal digits (DEC_DIGITS n) and select a decimal format (DEC_TYPE_US or
DEC_TYPE_EUR). (Note that the DEC_DIGITS n setting may only be used with IMP_DEC or
IMP_DEC_FILL edits.) Unlike other edits, DEC_DIGITS and DEC_TYPE edits are global
terminal configurations that remain in effect until they are reset by another DEC_TYPE or
DEC_DIGIT edit. Please note that VOPENTERM and VCLOSETERM do not reconfigure
DEC_DIGIT and DEC_TYPE; these settings may carry over from one application to the next.

Example
Processing Specifications

CONFIG \No characters may be entered
LOCALEDITS CONSTANT \from the keyboard.
CONFIG \Entered data must be in United States
LOCALEDITS DEC_TYPE_US,REQUIRED \number format; the field must contain

\data when ENTER is pressed.

Table 4-4. Local Edit Terminal Menu Items

Local Edit Terminal Menu Item Menu Selection

DEC_DIGITS n Implied Dec digits 0-9

DEC_TYPE_EUR Decimal Type EUR

DEC_TYPE_US Decimal Type US
Chapter 4 143

Advanced Forms Design
Processing Specifications For Field Edits
Processing Specifications For Field Edits
If only field editing is needed, the edit statements listed below provide full field edits. Edit
statements apply to the current field only. During table and range checks leading and
trailing blanks are stripped. (The current field is the field defined in the Field Menu in
which the edit statements are specified.)

Edit Statements

The FORMSPEC edit statements allow you to check whether the value of the current field:

• is at least a specified minimum length; refer to "Length Check" for the MINLEN
command.

• is greater than, equal to, or less than a specified value; refer to "Single Value
Comparisons" for the GT, GE, LT, LE, EQ , and NE commands.

• is one of a list (table) of values, or is not in the list; refer to "Table Checks" for the IN and
NIN commands.

• is within a range of specified values; refer to "Range Checks" for the IN and NIN
commands.

• has a valid check digit; refer to "Check Digit" for the CDIGIT command.

• matches a general pattern of characters; refer to "Pattern Match" for the MATCH
command.

Edit statements use the set of statements listed in Table 4-1. They are performed in the
order they are entered by the forms designer. As soon as an edit fails during execution, the
field is marked in error and further processing on that field is abandoned.
144 Chapter 4

Advanced Forms Design
LENGTH CHECK
LENGTH CHECK
Used to specify the minimum length of a field value.

Syntax
MINLEN value ["message"]

Parameters

value The value can be a field, constant, save field, or a numeric expression, or it
may be an index retrieve operand within parentheses. Refer to "Statement
Syntax" earlier in this section for details.

message Specifies a custom error message.

Discussion

A value longer than the field cannot be entered because of the physical limit imposed by
the unprotected field area. For this reason, maximum field length need never be specified
as an edit check. You may, however, specify the minimum number of characters to be
entered with the MINLEN statement.

The value specifies the minimum number of characters allowed in the field. Note that this
length does not include leading and trailing blanks.

The system defined value $LENGTH may be specified. This value allows you to require that
the field be filled. The advantage of $LENGTH rather than the current field length is that
$LENGTH allows you to change the field length without changing the MINLEN specification.
The $LENGTH constant is equal to the length of the field when the forms file is compiled.

Example

1. For example, the minimum number of characters entered in a six-character field could
be specified as:

MINLEN 2

If the user spaces over three characters, types in one nonblank character, and leaves the
rest of the field blank, an error is diagnosed.

2. In another example, MINLENis used to specify that the field must be filled. The following
statement forces the field to filled, leaving no leading or trailing blanks:

MINLEN $LENGTH

You can also use an indexed operand as follows:

MINLEN (LEN OF F1,F2,F3,F4,F5)

LEN must contain an integer value between 1 and 5, and the current value of the fields F1
through F5 must be positive. The minimum length depends on the value of LEN and the
respective values of F1 through F5.
Chapter 4 145

Advanced Forms Design
SINGLE VALUE COMPARISONS
SINGLE VALUE COMPARISONS
Used to compare the field value against a single value.

Syntax
[{GT

LT
GE
LE
EQ
NE} value [“ message ”]]

Parameters

value The value can be a field, constant, save field, or a numeric expression, or it
may be an index retrieve operand within parentheses. Refer to "Statement
Syntax" earlier in this section for details.

message Specifies a custom error message.

Discussion

You may use these statements to compare the contents of the current field with a specified
value. Any field can be compared to the special comparison value $EMPTY that represents
the lowest value for any data type. The main rule governing these comparisons is that only
values of the same data type (character, numeric, or date) may be compared. The
comparison is performed from left to right after leading and trailing blanks have been
stripped from the field.

Character Comparisons

If the two values being compared are not the same length, the shorter is padded with
blanks on the right until it is the same length as the longer value. Then a comparison is
made.

In a character comparison, values are considered equal only if each character matches.
One value is less than another if, at the point of mismatch, one character is numerically
less than its counterpart. Collating sequence order is used to determine the numeric value
of a character. (Refer to Appendix C for the USASCII collating sequence; refer to the
Language Support Reference Manual for the collating sequences for all supported native
languages.) For example, for NATIVE-3000:

a is greater than A

A is greater than ∆

AA is greater than A

A∆ is greater than ∆a

where ∆ represents a blank.
146 Chapter 4

Advanced Forms Design
SINGLE VALUE COMPARISONS
Numeric Comparisons

When numeric values are compared, they are first converted to the HP 3000 internal
representation of the number. Thus, a field of type IMPn can be compared with NUMn, and
NUMnor IMPn fields can be compared to type DIG fields. For example, assume a field of type
NUM2 in which the value 123 has been entered. This value can be successfully compared to
the constant "123", or a field of type IMP, NUM, or DIG so long as the field contains the value
123 at run-time. For example:

123.000 (NUM3) is equal to 123 (DIG)
123.000 (NUM3) is equal to 12300 (IMP2)

Date Comparisons

Two dates may be compared even if they differ in format and order. This means that the
date February 9 , 1986, specified in the current field as 9 FEB 1986 (DMY) can be
successfully matched against the constant ! 02/09/86 ! whose order is MDY. Remember: a
date constant must always be in the order MDY. For example:

2/3/86 (MDY) is equal to Feb 3, 1986 (MDY)
2/3/86 (MDY) is equal to 86/2/3 (YMD)

Example

EQ F3 The current field value must exactly match the value in F3 at run time.
(Any leading or trailing blanks are stripped from the value in both fields
before the comparison is made.)

GT 143.56 The current field value must be greater than 143.56

NE $TODAY A date entered in this field cannot be today's date.

GT "Cd" The current field may contain any value greater than Cd, such as D or Cde
but it cannot be C or CD. Note that in NATIVE-3000 all uppercase
characters have a lower value than any lowercase character.

GE !5/7/86! Any date including and after May 7, 1986 may be in current field. The
date may be in any of three formats: MDY, DMY, or YMD.

Native Language Support

NATIVE-3000 must be used to define values for date and numeric fields within
FORMSPEC. VPLUS will convert the value when the forms file is executed to be
consistent with the native language selected. Single value comparisons (GT, GE, LT, LE,
EQ, NE), specified within FORMSPEC may contain any character in the 8-bit extended
character set consistent with the selected language ID. When the form is executed, the
collating table for the native language specified is used. For more information on Native
Language Support, see Section 8.
Chapter 4 147

Advanced Forms Design
TABLE CHECKS
TABLE CHECKS
Used to verify that the field value is either in a list (table) of values, or is not in that list.

Syntax
[{IN

NIN} value1[,value2]...[“message”]]

Parameters

value The values specified in the list may be any mixture of field names, save
fields, constants, numeric expressions, or it may be an index retrieve
operand within parentheses. Refer to "Statement Syntax" earlier in this
section for details.

message Specifies a custom error message.

Discussion

Each element in the list must result in a single value to be matched exactly, except for
leading and trailing blanks in the field. There is an implicit ORbetween the elements of the
list so that the statement can be understood as:

Is current value equal to (IN) value1 ORvalue2 OR…
Is current value not equal to (NIN) value1 NORvalue2 NOR…

One system defined table, $STATE, is provided that consists of a list of all two-character
United States state and territory codes (see Appendix F for a list of the codes). This list is
in alphabetic order and can be compared successfully with all upper or lowercase codes.
The $STATE constant may be used anywhere a table is legal in the statement syntax.

As with other comparison, values must match the field data type; that is, a numeric field
can only be compared to a list of numeric values, a date field to a list of date values, and a
character field to a list of character values.

Example

IN 12, 14, 16, 18, 20 Current value must be one of the five listed numbers.

NIN "CA", "ME", "NY" Current value must not be any of the three listed values.

IN $STATE, MX Value must be legitimate state code or be MX. The system
constant $STATE can be in a list including other values.

Native Language Support

NATIVE-3000 must be used to define values for date and numeric fields within
FORMSPEC. VPLUS will convert the value when the forms file is executed to be
consistent with the native language selected. Table checks specified within FORMSPEC
may contain any character in the 8-bit extended character set consistent with the selected
language ID. For more information on Native Language Support, see Section 8.
148 Chapter 4

Advanced Forms Design
RANGE CHECKS
RANGE CHECKS
Used to check whether the field value is within, or is not within, a specified range of
values.

Syntax

[{IN
NIN} lowvalue :highvalue [,lowvalue :highvalue]… ["message "]]

Parameters

value The value can be a field, constant, save field, or a numeric expression, or it
may be an index retrieve operand within parentheses.

message Specifies a custom error message.

Discussion

Range checks are similar to table checks except that you specify a list of ranges rather
than a list of exact values. The range is inclusive, that is the field value must be within the
range that includes the lowvalue and the highvalue.

The low and high values may be any combination of field names, constants, save fields,
arithmetic expressions, or index retrieve operands. As with table checks, an implicit OR is
understood between the ranges in the list. Thus, the statement can be interpreted as:

Is current value in (IN) range1 OR range2 OR...
Is current value not within (NIN) range1 NOR range2 NOR. . .

The low value must not be greater than the high value. If it is, an error is issued when the
form is executed (not when it is compiled).

Example

NIN 12:45 Current numeric value must not have any value between
12 and 45 inclusive.

IN F2/2:F2*2 The field can have any numeric value ranging from half
the value in field F2 through twice the value in F2. Note
that the current field and F2 must be numeric in order to
use an arithmetic expression in the range check.

IN $TODAY:! 12/12/99! Any date between today's date and December 12, 1999
may be entered.

Range and table checks can be combined in one statement, as illustrated in the following
examples:

NIN -12.5:-2,25, 1000:FIELD3 Value may NOT be in range -12.5 through -2, nor
equal to 25, nor in the range from 1000 through the
current value of FIELD3 .
Chapter 4 149

Advanced Forms Design
RANGE CHECKS
IN "ADE": "BB", "s", "t" The field may have any value in the range ADEthrough BB
or it can be s or t . Thus, it could be Abcd, or B or t , but it
cannot be AB or S. In NATIVE-3000, all lowercase letters
are greater than any uppercase letters.

IN "20":"30" Allows any character values between 20 and 30 in the
USASCII collating sequence. Thus 2A and 3& are valid for
NATIVE-3000. (Other native languages use other
collating sequences.)

Native Language Support

NATIVE-3000 must be used to define values for date and numeric fields within
FORMSPEC. VPLUS will convert the value when the forms file is executed to be
consistent with the native language selected. Range checks specified within FORMSPEC
may contain any character in the 8-bit extended character set consistent with the selected
language ID. When the form is executed the collating table for the native language
specified is used to check whether the field is within range. For more information on
Native Language Support, see Section 8.
150 Chapter 4

Advanced Forms Design
CHECK DIGIT
CHECK DIGIT
Used to test the check digit in a numeric or alphanumeric field (modulus 10 or 11).

Syntax

[CDIGIT {11
10} ["message "]]

Parameters

message Specifies a custom error message.

Discussion

Check digit verification is a special check on a numeric or alphanumeric field in which the
last (rightmost) character is a check digit. Verification can be either modulus 10 or
modulus 11. (You can use REFSPEC, as described in Section 5, to add a check digit to an
existing field value in a batch file.)

Modulus checks are used when the risk of error keying in numbers must be reduced to a
minimum. Depending on the modulus selected, single digit errors, and single or double
transpositions can be checked using a check digit. Modulus 10 detects single transpositions
and incorrect keying of a single digit. Modulus 11 detects these, plus double transpositions.
(Refer to Appendix D for an exact description of the modulus 10 and 11 checks.)

In general, a check digit is arrived at by performing calculations on a number and then
using the result of these calculations as the final digit or "check digit" in that number. For
example, suppose a 5-digit charge account number is to be assigned to a new account. The
specified calculations (modulus 10 or 11) are performed on the 5-digit number, the result is
added as a check digit to the number, and a 6-digit number is assigned as the new account
number.

Thereafter, when this number is keyed in and the CDIGIT edit test is selected, then the last
digit is checked against the same calculations. If the number was keyed incorrectly, an
error is diagnosed.

Note that a number derived using modulus 10 calculations can only be checked by CDIGIT
10, and a number derived using modulus 11 can only be checked by CDIGIT 11 .

Letters of the alphabet can be checked by either a modulus 10 or 11 check. Digits are
assigned to the letters so they can be treated like numbers. Thus a field with a check digit
can contain a mix of numbers and letters, but must not contain any special characters. Any
initial plus or minus sign is ignored.
Chapter 4 151

Advanced Forms Design
PATTERN MATCH
PATTERN MATCH
Used to test a field value against a pattern of characters.

Syntax
MATCHpattern [" message "]

Parameters

pattern A pattern of characters which indicate which type of character in which
position is acceptable input for this field.

message Specifies a custom error message.

Discussion

The pattern match allows you to check field values against a general pattern. It can be
used to check the actual value, but actual values are more easily checked in the Single
Value, Table, or Range tests. This test is generally used to test the type of character
entered in a particular position. Before data is checked against a pattern, any leading and
trailing blanks are stripped.

NOTE Native Language Support does not support pattern matching with native
language characters. MATCH uses USASCII (NATIVE-3000) rules. For more
information on Native Language Support, see Section 8.

Special Pattern Characters

The pattern consists of a series of special characters that indicate the type of USASCII
data that can be entered in that position. These characters are:

a upper or lowercase alphabetic character (A-Z, a-z)

u uppercase alphabetic character (A-Z)

l lowercase alphabetic character (a-z)

b blank

d digit (0-9)

? any character

The beginning of the pattern is defined by the first nonblank character after MATCHand, in
the simplest case, is terminated by the first blank encountered. A pattern beginning or
ending with the special character b will interpret the b as the alphabetic character and not
the special character indicating a blank. Leading and trailing blanks should be indicated
as spaces within a grouping as described on the next page.

A pattern may contain embedded blanks only if it is enclosed within braces {}. Also, a
152 Chapter 4

Advanced Forms Design
PATTERN MATCH
pattern can span more than one line if it is enclosed within braces {}. If a pattern is within
braces, it is terminated by the first blank outside the braces.

The match pattern can include specific characters in addition to the types listed above. To
illustrate:

MATCH Aaa-ddd

This pattern means that the value must start with the letter A, be followed by any two
upper or lowercase letters of the alphabet, followed by a hyphen and then three digits. For
example, the value Acs-123 or AAA-999 are acceptable, but the values Bcs-999 or A12-345
are not.

Transparency

A special operator can be used to indicate that a pattern character is to be used as an
actual value. For example, suppose you want the lowercase letter a to be an exact value in
the pattern. You can do this by preceding it, or any of the other special pattern characters,
with an exclamation point (!). For example:

MATCH !addd \Value must start with the letter "a"
\followed by any three digits.

The exclamation point (called the transparency user) is also used to allow inclusion of any
of the pattern operators listed below, and described in Table 4-2.

! (tranparency)

, (choice)

: (range)

{} (grouping)

[] (optional)

+ (repetition — 1 or more)

* (repetition — 0 or more)

Choice

You can indicate a selection of acceptable patterns as part of the MATCH pattern. Each
possible choice is separated by a comma (,). For example:

MATCH A,AB,BCD,ddd \The characters "A", "AB", "BCD",
\or any three digits are acceptable.

Range

A range of acceptable characters for a single character position can be indicated with the
colon (:). All characters within the range are acceptable. This acts as a shorthand for
listing a series of single characters in USASCII sequence. For example:

MATCH C:J This is equivalent to the pattern specified by MATCH
C,D,E,F,G,H,I,J .

MATCH 1:7 Any of the digits 1,2,3,4,5,6, or 7 is accepted by this
Chapter 4 153

Advanced Forms Design
PATTERN MATCH
pattern.

MATCH !a:f Since the letter a is a pattern character, it is preceded by
an exclamation point. Other such characters within the
range are implicitly preceded by this operator. Thus, the
range is equivalent to specifying MATCH !a,!b,c,!d,e,f .

It is important to differentiate between a pattern range which is a range of single
characters, and the range check described earlier. In a pattern check, MATCH 10:90 means
the value must be a 1 followed by a digit between 0 and 9, followed a 0. In a range check,
IN 10:90 means the value must be in the range 10 through 90.

Grouping and Optional

You can group pattern specifications by enclosing the pattern in braces {}. Brackets [] make
the enclosed pattern optional. Braces indicate data must correspond to at least one item in
the group; brackets indicate any item in the group is optional. For example:

MATCH {A,AB,BCD}) ddd One of the choices within braces must be matched. For
example: A123 or AB999 or BCD562, among others, are
acceptable matches for this pattern.

MATCH [A,AB,BCD] ddd All choices within brackets can be omitted, or one may be
matched. For example: AB345, BCD567, A441 , or 123 are
all acceptable matches.

MATCH [u,d]!+ [1:5] Some acceptable values are A+ or 5+3 or +5 or simply +.

MATCH [B,dd]dd[%,d] Accepts such values as B12 or 12345 or 50% or 10, among
others.

Since blanks may be included within braces, you can put blanks in a pattern to enhance its
clarity by enclosing the entire pattern within braces. For example,

MATCH {[B,dd] dd[%,d]} Identical to preceding pattern except that it is enclosed
within braces so that blanks can be included.

Enclosing a pattern within braces also allows the pattern to span lines. For example:

MATCH {[B,dd]
dd
[%,d]} Identical to the example above, except that each pattern

component is listed on a separate line.

Repetition

Repetition of any character or sets of characters can be indicated by an asterisk (*) or by a
plus sign (+) following any pattern character or pattern group within braces. Plus (+)
means that at least one occurrence of the pattern is required for the match; the asterisk (*)
means that zero or more occurrences can be matched. These repetition indicators cannot
follow items enclosed within brackets. Some examples:

MATCH d+ The plus sign indicates repetition of the digit, with at least
one occurrence required for the match. Leaving the field
blank is not acceptable unless the field type is 0 for
154 Chapter 4

Advanced Forms Design
PATTERN MATCH
optional, in which case a blank is accepted because
processing specifications are ignored.

For example, 2 or 7654321 or 55 are acceptable.

MATCH Xd+ This pattern accepts the letter X followed by one or more
digits.

For example, X1 or X2345, and so forth are acceptable, but
not X.

MATCH M{A,C,d}+ A plus sign after a pair of braces indicates repetition of
any item within the braces, in any order.

Some acceptable values are MA, MCCC, or M12333CAA9.

MATCH d* The asterisk indicates optional repetition that allows
zero or more occurrences of the pattern. Thus, the digit
can be omitted, or repeated any number of times.

For example, nothing, or 3, or 123456 , and so forth are
acceptable matches.

MATCH [d+] This pattern is another way of expressing the pattern
shown above as d*.

MATCH a* Accepts any alphabetic or empty string.

MATCH Xu* This pattern accepts X alone, or followed by any number of
uppercase letters.

For example, XABC or XX or X are all acceptable.

MATCH M{A,C,d}* Any of the enclosed characters can be repeated in any
order, or can be omitted.

Thus, M is acceptable, as are MAA, MCCAC12, MA63CCA5,
and so forth.

Operator Hierarchy

Table 4-5. summarizes the operators allowed in a MATCHpattern. The pattern operators are
evaluated in the following order, where x and y are any patterns:

Highest !x Transparency
| x:y Range
| x+ or x* Repetition
v xy Concatenation

Lowest x,y Choice
Chapter 4 155

Advanced Forms Design
PATTERN MATCH
Example

Some further examples of the MATCH statement are:

MATCH 1dddd Accepts an integer between 10000 and 19999. Could also
be expressed as: IN 10000:19999.

MATCH [d]d!:dd [AM,PM] Accepts a time such as 3:00 PM or 12:00.

MATCH {1:9,1(0:2}}!:
{0:5}db*[{A,P}
[M]] Accepts 12-hour clock time, such as 12:15 PM or 01:30 AM.

MATCH {1:7}{0:7} * Accepts an octal number greater than zero with at least
one digit and no leading zeros, such as 2047, or 1 or 24.

MATCH ddd-dd-dddd Accepts any United States Social Security number, such as
044-24-0474.

MATCH [(ddd)]b*ddd- dddd Accepts a United States phone number with an optional
area code.

Table 4-5. Pattern Match Operators

Operator Function Example

Exclamation
point
!

Transparency operator that allows use
of any special MATCH characters as an
element in the pattern.

MATCH !u,!d,!,, accepts any of the
values u, d,,, or ! .

Comma
,

Choice of subpatterns, any one of which
satisfies the match.

MATCH A,B, dd accepts values such as
A,B, and 22 .

Colon: Range of single characters in ascending
collating order, any one of which
satisfies the match.

MATCH 2:6 accepts only the values
2,3,4,5, or 6 .

Braces
{}

Required grouping that specifies at
least one occurrence of any pattern
within braces.

MATCH {A,B}dd{%,d} accepts A223,
B34%,A795, and so forth.

Brackets
[]

Optional grouping that allows zero or
one occurrence of any item in pattern
within brackets.

MATCH [A,B]dd[%,d] accepts 24,A99,
10%,123 , and so forth.

Plus
+

Required repetition that specifies at
least one or more occurrences of a
preceding item, or a pattern within
braces.

MATCH Xd+ accepts values such as
X1,X22 , X3334789 , and so forth, but
not X. MATCH {d,a} + accepts values
such as 11,A23,acb , or 33ABC9.

Asterisk
*

Optional repetition that allows zero or
more occurrences of a preceding item
or a pattern within braces.

MATCH Xd* accepts values such as
X,X1, X22 , and X3334789 . MATCH
{d,a}* accepts a null value, or such
values as 11,A23,acb , or 33ABC9.
156 Chapter 4

Advanced Forms Design
Processing Specifications For Advanced Processing
Processing Specifications For Advanced Processing
The advanced processing discussed in the rest of this section includes:

• Data movement. Data movement falls into two basic categories: setting the current
field to a value and moving data between fields. Each of these categories uses the SET
statement.

• Data formatting. When data is moved between fields with the SET statement, certain
automatic formatting is performed. If the automatic formatting is not exactly what you
want, or if you want to display data in a different format, you can use the FORMSPEC
formatting statements to reformat the current data field during data collection. These
statements are: STRIP, JUSTIFY, FILL, UPSHIFT .

• Altering forms sequence. The CHANGE statement allows you to alter the sequence in
which forms are displayed.

• Conditional processing. The IF statement allows you to specify under which conditions
the processing statements are to be executed.

• Control Statements. Two statements provide control over forms processing. The FAIL
statement forces a failure of the current field edit, the STOP statement stops all
processing of the current phase of the current form.

• Processing phases. Processing statements may be associated with one of four phases
of form execution:

— Configuration. Configure the terminal for specific field.

— Form initialization. Determine initial values of fields.

— Field edits. Edit and validate data entered in field.

— Finish form. Complete processing of form.

For advanced processing, the sequence of specifications must be considered. If you need
only the field edits described so far, you need not be overly concerned with the order in
which statements are specified. Advanced processing statements, on the other hand, can
be thought of as elements of a language where the order in which they are entered is
important.

You may want to refer to "Phases" at the end of the section before reading the statement
descriptions. In any case, you should be aware that all field edit and advanced processing
statements can be executed in all phases, except configuration. Only configuration
processing statements are executed in the configuration phase. Phases allow terminal
configuration preceding initial processing for the form, which in turn precedes field edits
and finish processing.
Chapter 4 157

Advanced Forms Design
SET
SET
Used to move data either by setting the current field to a value or by moving data between
fields. Also performs automatic formatting.

Syntax

[SET {destination TO source
destination
TO source }]

Parameters

source Can be a field name, save field name, constant, arithmetic expression, or
an index retrieve operand within parenthesis. Refer to "Statement Syntax"
earlier in this section for details.

destination Can be a field name or save field name.

Discussion

When data is moved between constants, fields, and save fields, certain restrictions apply
and certain conversions may take place. These depend entirely upon the data types of the
source and destination. In general, any field, save field, or constant can be converted to a
character type field, but numeric and date fields accept only data of a similar type. DIG
fields accept only positive sources. If a source is $EMPTY, the destination is set to all blanks.
Table 4-9. shows the conversion that is performed when data is moved between fields.

Assigning a Value to the Current Field

To set the current field to the value of another field, a save field, a constant, an arithmetic
expression, or a value in a list located through an index, use the following SET statement:

Syntax
SET [fieldname] TO source

Parameters

fieldname The current field name (default).

source Can be a field name, save field name, constant, arithmetic expression, or
an index retrieve operand within parenthesis. Refer to "Statement Syntax"
earlier in this section for details.

Discussion

In general, any source value can be moved to a character type field. Numeric and date
fields accept only data of similar type. If the field type is DIG, the source must be a positive
158 Chapter 4

Advanced Forms Design
SET
value (see Table 4-7.).

By default, all fields are initialized to blanks in the initialization phase (refer to "Phases"
at end of this section for more information on phases.) You can specify a particular initial
value for any field by including an initial value in the Field Menu field attributes. More
elaborate initialization can be done with this subset of the SET statement.

When you assign an initial value to a field in the Field Menu, you can specify only a
constant. The constant is entered exactly like user input at a terminal. (Remember that
input in FORMSPEC is NATIVE-3000; if a native language is specified, data is converted
at run-time. Refer to Section 8.) When you assign a value through the SET statement, you
have more flexibility. The values assigned are dynamic in that they may depend on values
in other fields or in save fields, or they may be derived from an arithmetic expression, or
through an indexed retrieval. If you do assign a constant through the SET statement, it
must follow the rules for constants described earlier in this section. That is, a character
string must be surrounded by quotes, a date string by exclamation points. Also, a date
constant must be in the order MDY regardless of its destination format.

If a source field is of date type (MDY, YMD, DMY), the current field must be defined to be 8
bytes long to allow for internal delimiters. Some examples using the SET TO source
statement follow.

Example

1. Assume a date field of the form MDY.

SET TO $TODAY \Sets the field to today's date in the
\format dd/dd/dd in the order of
\the field's date type.

SET TO !FEB 10,1986! \Sets the field to the specified date.

SET TO DAT1 \Sets the field to whatever value
\is in the field DAT1 at run-time.

2. Assume the current field is type DIG. The following statement sets this field to a digit
selected from a list of digits by the index value, COUNT:

SET TO COUNT OF 7,9,16,24,31,72,15,12

If COUNT=5, the value assigned to the field is 31, if COUNT=3, the value 16 is assigned,
and so forth.

3. Values may be passed from one form to another through save fields. Assume that when
FORMA is executed, the save field SF3 is set to the value of F1. Further assume you are
designing FORMB and want to set the current field to the value of the field F1 in FORMA.

SET TO SF3 \Value passed from a field in a different
\form through the save field SF3.

Moving Data Between Fields

To move data to a field or a save field from another field or save field, or to move a constant,
an arithmetic expression, or a value retrieved from a list to a particular field, use the
following versions of the SET statement:
Chapter 4 159

Advanced Forms Design
SET
Syntax

[SET {destination
destination ''TO'' source }]

Parameters

source Can be a field name, save field name, constant, arithmetic expression, or
an index retrieve operand within parenthesis. Refer to "Statement Syntax"
earlier in this section for details.

destination Can be a field name or save field name.

Discussion

When a source is not included, whatever value is in the current field is moved to the
specified destination. (The current field is the field in which the SET statement appears.)

Example

1. Move the value resulting from an arithmetic expression to a numeric data field AMOUNT:

SET AMOUNT TO 6 %(3*COST)

This statement multiplies the value of the field COST by 3 and then sets AMOUNT to 6
percent of the result.

2. Set the save field SF3 to the current value of the field in which the SET statement
appears:

SET SF3

Assume the current field is a character type with the value SMITH. The SET statement
moves the value SMITH to the save field SF3. SF3 must be a character type save field.

Automatic Formatting

In general, automatic formatting performed during data movement is governed by the
data type of the destination. The following discussion illustrates data movement for
various data types. Refer to Table 4-9. for a summary of the conversion performed during
data movement.

Character Type

If the destination is a character field, data moved to it does not change its relative position.
If the source is too large for the destination, the data is truncated on the right when it is
moved. If the source has fewer characters, the destination is padded with blanks on the
right.
160 Chapter 4

Advanced Forms Design
SET
Numeric Type

When data is moved between numeric fields, the following formatting is performed:

Sign Any plus sign is stripped from the source before the
number is moved to its destination. If the source is
negative, a minus sign is inserted to the left of the first
digit in the destination.

Decimal Point If the source has an implied or actual decimal point (IMPn
or NUM[n] data type), the fractional part is rounded and/or
truncated or zero filled to conform to the number of
decimal places specified for the destination.

If the destination has no decimal position (NUMO, IMPO, or
DIG), any fractional part is rounded and/or truncated. If
the destination is NUM(floating decimal point), the number
is right justified after being stripped of trailing zeros
following the decimal point.

If the source specifies no decimal places (type is NUMO,
IMPO, or DIG) and if the destination has an implied or
actual decimal point, the fractional part is zero filled.

Note that if the length of the destination is too small, any
decimal places are rounded and truncated until the source
fits.

Commas All commas in the source are removed.

Leading Zeros Leading zeros are stripped in all cases.

The result is then placed, right justified, as shown in Table 4-8., in the destination field.

With Native Language Support, decimal and thousands indicators are
language-dependent in the NUM[n] and IMP[n] fields. When data is moved between fields
and automatic formatting occurs for data entered in any field, recognition, removal or
insertion of these decimal and thousands indicators also depends upon the local custom for
the native language specified for the forms file. The optional decimal symbols in constants
will be local custom-dependent. For more information on Native Language Support, see
Section 8.

Table 4-6. Automatic Formatting for Character Data

Source Destination

"ARMSTRONG" (9 characters) "ARMSTRONG∆" (10 characters)

"∆∆ARMSTRONG" (11 characters) "∆∆ARMSTRON" (10 characters)

"ARMSTRONG∆∆∆∆∆" (14 characters) "ARMSTRONG" (9 characters)
Chapter 4 161

Advanced Forms Design
SET
Date Type

Any date, regardless of the format of the source, is moved to the destination as dd/dd/dd ,
as shown in Table 4-8. Thus, if a date is going to be placed into a field using a SET
command, the field must be at least eight characters long. The order depends on whether
the destination is specified as MDY, DMY, or YMD. With Native Language Support,
conversion from alphabetic months to the numeric destination month is language
dependent. For more information on Native Language Support, see Section 8.

Table 4-7. Automatic Formatting for Numeric Data

Source Destination

123 (DIG) 123 (DIGIT,length is 5)

123 (IMP2) 1.23 (NUM2,length is 4)

12.3 (NUM1) 12.3 (NUM,length is 6)

12.3 (NUM1) 12.30 (NUM2)length is 5)

12.3 (NUM1) 12. (NUM2,length is 3)

12.3 (NUM1) 1230 (IMP2,length is 4)

12.3 (NUM1) 123 (IMP1,length is 3)

+3357 (NUM) 335700 (IMP2,length is 6)

-3357 (IMP3) -3.4 (NUM1,length is 4)

001,000 (NUM) 1000.00 (NUM2,length is 7)

Table 4-8. Automatic Formatting for Dates

Source Destination

FEB 5, 1986 02/05/86 (defined as MDY)

2/5/86 86/02/05 (defined as YMD)

2,5,86 02/05/86 (defined as MDY)

February 5, 1986 05/02/86 (defined as DMY)

September 16, 1986 09/16/86 (defined as MDY)

Oct. 23. 1986 86/10/23 (defined as YMD)

October 23, 1986 23/10/86 (defined as DMY)
162 Chapter 4

Advanced Forms Design
SET
Default Formatting

Besides the explicit formatting described below, data is formatted whenever it is moved
between fields according to the rules for automatic formatting. If you want data entered by
the user to be formatted automatically, you can specify the following version of the SET
statement.

SET TO thisfield

Parameters

thisfield is the name of the field in which SETappears. Essentially, you set the field
to itself.

For example, you may want to ensure that a monetary value is always right justified with
a decimal point inserted preceding two decimal positions. To do this, define the field as
type NUM2 and then use the SET statement to force data entered in this field to be
formatted. The Field Menu in Figure 4-3. illustrates this use of SET.

Table 4-9. Conversion During Data Movement

From
To

CHAR NUM NUMn IMPn DIG DATE

CHAR Truncate or
Pad with
blanks on
right

illegal illegal illegal illegal illegal

NUM Truncate or
Pad with
blanks on
right

Right
justify; Strip
leading
zeroes; Pad
leading
blanks; try
to fit 9
decimal
places,
rounding
truncating,
inserting a
decimal
point as
needed

Right
justify;
Strip
leading
zeroes; Pad
leading
blanks;
Round or
truncate
fractions,
insert
decimal
point as
needed

Right
justify;
Strip
leading
zeroes even
if
fractional;
Pad leading
blanks
remove any
decimal
point.

Right
justify;
Strip
leading
zeroes; Pad
leading
blanks.
Value must
be positive)

illegal

NUMn illegal

IMPn illegal

DIG illegal

DATE Truncate or
Pad with
blanks on
right

illegal illegal illegal illegal Convert to
dd/dd/dd in
order of
destination;
Left justify;
Pad trailing
blanks
Chapter 4 163

Advanced Forms Design
SET
Figure 4-3. Field Menu with a SET Statement

Example

1. Suppose the user enters a price in the field as follows:

[123.5 ∆∆∆∆]

The SET statement causes it to be formatted as:

[∆∆∆123.50]

2. In another situation, this version of SET TO can be used to format a date. Suppose the
date field, DATE1, is type MDY and the user enters a date in the form:

[FEB 12, 86]

A SETstatement of the form SET TO DATE1in the Field Menu describing DATE1formats
the user entered data as:

[02/12/86 ∆∆]
164 Chapter 4

Advanced Forms Design
STRIP
STRIP
Used to delete any specified character in the field.

Syntax

[STRIP {TRAILING
LEADING
ALL} "characters "]

Parameters

TRAILING If TRAILING is specified, all occurrences of each character at the end of the
field are replaced with blanks.

LEADING STRIP LEADING replaces with blanks all occurrences of each character at
the beginning of the field.

ALL STRIP ALL deletes all occurrences of each character, compressing the data
to the left.

characters Any string of one or more characters can be specified. Since the statement
does not apply to leading or trailing blanks, the statements STRIP
LEADING or STRIP TRAILING are not useful.

Discussion

The STRIP statement can be used to format data entered into or moved to any field. (For
automatic formatting, refer to the SET command earlier in this section.) As is true of all
formatting statements, STRIP has an immediate effect on the data in the memory buffer;
the formatted data is then available for display or copying into the application. When the
user enters data into a field for which formatting is specified, the data is formatted as soon
as ENTER or an appropriate function key is pressed. Thus, FORMSPEC formatting is done
before data is written to the data or batch file. (In contrast, reformatting through
REFORMAT, described in Section 5, is done after data is collected, edited, and written to
the batch file.)

Note that only the characters between the leftmost nonblank and the rightmost nonblank
characters are affected. That is, leading and trailing blanks are not included when the
data is formatted. No formatting occurs when the field is blank since there are no
characters to strip.

Example

Statement Data Entered After Formatting

STRIP ALL "-" [548-72-2002] [548722002∆∆]

STRIP LEADING "0" [∆000205000] [∆∆∆∆205000]
Chapter 4 165

Advanced Forms Design
JUSTIFY
JUSTIFY
Used to move data within a field to the left or right boundary of the field, or center it
within the field.

Syntax

[JUSTIFY {LEFT
RIGHT
CENTER}]

Parameters

LEFT The data in the current field is shifted to the left.

RIGHT The data in the current field is shifted to the right.

CENTER The data in the current field is centered in the field.

Discussion

The JUSTIFY statement can be used to format data entered into or moved to any field. (For
automatic formatting, refer to the SET command earlier in this section.) As is true of all
formatting statements, JUSTIFY has an immediate effect on the data in the memory buffer;
the formatted data is then available for display or copying into the application. When the
user enters data into a field for which formatting is specified, the data is formatted as soon
as ENTER or an appropriate function key is pressed. Thus, FORMSPEC formatting is done
before data is written to the data or batch file. (In contrast, reformatting through
REFORMAT, described in Section 5, is done after data is collected, edited, and written to
the batch file.)

Example

If the data cannot be centered exactly, the extra blank is on the right.

Statement Data Entered After Formatting

JUSTIFY LEFT [∆∆SMITH∆∆∆∆] [SMITH∆∆∆∆∆∆]

JUSTIFY RIGHT [∆∆SMITH∆∆∆∆] [∆∆∆∆∆∆SMITH]

JUSTIFY CENTER [∆∆SMITH∆∆∆∆] [∆∆∆SMITH∆∆∆]
166 Chapter 4

Advanced Forms Design
FILL
FILL
Used to replace all the blanks between the field boundaries and the first or last nonblank
data character with a designated character.

Syntax

[FILL {TRAILING
LEADING } "character "]

Parameters

TRAILING FILL TRAILING replaces those blanks following the data with the specified
character.

LEADING FILL LEADING replaces the blanks preceding the data with the specified
character.

character The specified character is any single character.

Discussion

The FILL statement can be used to format data entered into or moved to any field. (For
automatic formatting, refer to the SET command earlier in this section.) As is true of all
formatting statements, FILL has an immediate effect on the data in the memory buffer;
the formatted data is then available for display or copying into the application. When the
user enters data into a field for which formatting is specified, the data is formatted as soon
as ENTER or an appropriate function key is pressed. Thus, FORMSPEC formatting is done
before data is written to the data or batch file. (In contrast, reformatting through
REFORMAT, described in Section 5, is done after data is collected, edited, and written to
the batch file.)

If you want the field to remain blank, redefine the processing specification using a
statement such as:

 IF NE $EMPTY THEN FILL LEADING “0” .

Example

Note that more than one formatting statement can be specified. Since the statements are
executed in order of appearance, the FILL statement in the second example above affects
the data justified by the preceding JUSTIFY statement.

Statement Data Entered After Formatting

FILL TRAILING "*" [∆250∆∆∆] [∆250***]

JUSTIFY RIGHT [∆250∆∆∆] [0000250]

FILL LEADING "O"
Chapter 4 167

Advanced Forms Design
UPSHIFT
UPSHIFT
Used to shift every lowercase character in a field to its uppercase equivalent.

Syntax
UPSHIFT

Discussion

The UPSHIFT statement can be used to format data entered into or moved to any field. (For
automatic formatting, refer to the SET command earlier in this section.) This statement
causes all alphabetic characters to be replaced with their uppercase counterparts. If edit
statements expect data to be uppercase but it could be entered in lowercase, this statement
should be executed prior to the edit statement. With Native Language Support, if a native
language ID has been specified in the forms file, the UPSHIFT formatting statement will
use native language upshift tables. For more information on Native Language Support, see
Section 8.

As is true of all formatting statements, UPSHIFThas an immediate effect on the data in the
memory buffer; the formatted data is then available for display or copying into the
application. When the user enters data into a field for which formatting is specified, the
data is formatted as soon as ENTER or an appropriate function key is pressed. Thus,
FORMSPEC formatting is done before data is written to the data or batch file. (In contrast,
reformatting through REFORMAT, described in Section 5, is done after data is collected,
edited, and written to the batch file.)

Example

Suppose the field contains an United States state code that is to be checked against a list of
uppercase state codes. The following statements ensure that codes entered in lowercase
pass the edit:

UPSHIFT
IN "NY","NJ","PA"
168 Chapter 4

Advanced Forms Design
CHANGE
CHANGE
Used to change the specification of either the current form or the next form.

Syntax

[CHANGE NFORM TO {[CLEAR
APPEND
FREEZE APPEND] ["formname "

fieldname
indexretrieve
$RETURN
$HEAD$END
$REFRESH]}

CHANGE CFORM TO {NOREPEAT
REPEAT
REPEAT APPEND}]

Parameters

NFORM indicates the next form to be displayed after the current
form at execution time.

CFORM indicates the current form.

CLEAR indicates that the screen is to be cleared when the next
form is displayed.

APPEND indicates that the next form is to be appended to the
current form.

FREEZE APPEND indicates that the current form is kept on the screen when
the next form is appended to it even after the screen is
full, at which point the top next form is rolled off the
screen.

NOREPEAT indicates that the current repeating form is to be stopped.

REPEAT indicates that the current form is to be repeated.

REPEAT APPEND indicates that the current form is to be repeated and
appended to itself.

formname is the name of any existing form in the forms file.

fieldname is the name of a character type field that contains a form
name.

indexretrieve is an item in a list of existing form names. It is specified
as:

index OF "name" [,"name"] ...

where index is an integer, and name is a form name or any
Chapter 4 169

Advanced Forms Design
CHANGE
field or save field whose value is a form name. The name
must identify an existing form.

$RETURN indicates the last different form displayed before the
current form at execution time.

$HEAD indicates the first form displayed at execution time.

$END indicates to ENTRY or an application that the current
form is the last form to be displayed.

$REFRESH indicates that current form is to be refreshed (cleared of
entered data) and displayed as the next form.

Discussion

This statement may be entered in a processing specification for any field in the form. It
causes the specified changes to the current or next form to take effect when the next form
is requested, and it causes the specified next form to be displayed when the current form is
finished at execution time.

If several NFORM statements are specified in a form, only the last statement executed is
effective.

When forms sequence is defined in the Form Menu (refer to Section 3), the current form
may be repeated, or repeated and appended to itself, or neither, when the next form is
requested. Also, the current form may be cleared when the next form is requested, or it
may remain on the screen with the next form appended to it. The CHANGEstatement allows
you to alter these form specifications dynamically.

Additionally, the CHANGEstatement allows you to specify a different next form than the one
specified on the Form Menu. Note that the form changes do not occur when the field is
entered with the ENTER statement, but only after the current form has been finished.

Example

CHANGE NFORM TO CNT OF "FORM3", "FORM4", "FORM5", "FORM6""FORM7"

Depending on the current value of field CNT, the next form displayed is one
of the forms in the list. For instance, if CNT is 3, FORM5 is the next form.

CHANGE NFORM TO $END

After this form is finished, no more forms will be displayed.

CHANGE NFORM TO APEND "FB"

The next form, FB, is to be appended to the current form.
170 Chapter 4

Advanced Forms Design
IF
IF
Used to execute any of the processing statements only under certain conditions.

Syntax

[IF condition THEN [statement]
[statement]

.

.
.

[statement]

[ELSE [statement]
[statement

].
.

.
[statement]]]

where condition is:

[{ constant
field
save field
expression
(indexretrieve) }

editstatement]

Parameters

condition A condition specified in an IF statement can be any edit statement
described below. The edit statement can be preceded by a constant, a field
name, a save field name, an expression, or an index retrieve operand
within parentheses. Refer to "Statement Syntax" earlier in this section for
details. If an operand precedes the edit statement, that value is tested;
otherwise, the value of the current field is tested.

If editing statement passes, then the condition is true. If it does not, then
the condition is false. Note that this differs from interpretation of a
standalone edit statement, which causes the field to return an error and
stops field processing if the data fails the edit. Only edit statements can be
used in conditions.

editstatement A condition specified in an IF statement can be any edit statement
MATCH and CDIGIT

statement Any of the processing statements can be executed conditionally depending
an the run-time interpretation of the specified condition. Refer to the
syntax rules below.
Chapter 4 171

Advanced Forms Design
IF
Discussion

An IF statement consists of two groups of statements: the THEN part and the ELSE part.
Either may have no statements associated with it. The THEN part may include statements
on the same line as THEN, plus statements indented from the IF on immediately following
lines. An ELSEstatement at the same level of indentation as the IF corresponds to that IF .
Like the THEN part, the ELSE part can have statements on the same line, plus statements
on immediately following lines that are indented from it. Nested IF statements must be
indented from each enclosing IF , but otherwise follow the same rules. Table 4-10.
illustrates some variations on the IF statement according to the syntax rules, which are:

• No more than one IF or ELSE statement may appear on the same line.

• When non-IF statements follow either the THEN or the ELSE, they may be on the same
line as the THEN or ELSE. Statements can be separated from each other by an optional
semicolon (;).

• The entire ELSE portion of the statement may be omitted. In such a case, no statement
is executed if the condition is false. If ELSE is included, it must be the first statement
following the THEN part that is at the same level of indentation as its corresponding IF .

• Nested IF statements are allowed to a maximum of eight levels of nesting. They must
maintain nested indenting.

• When nested IF statements are specified, they must be indented. The indenting is
essential for multiple statements to identify the scope of the THEN part, as well as the
ELSE part.

• An IF statement (including the THEN and ELSE part) must not cross phase boundaries.
(Refer to "Phases" later in this section.)

Example

IF QUANTITY GT 100 THEN… If the current value of the field QUANTITY is greater than
100, any statements in the THENpart at the same level are
executed.

IF NE $EMPTY THEN… If there is a value in the current field (it is not blank), then
any statements in the THEN part are executed.

IF SAV1 IN 12:50,100:120 THEN… If the value of the save field is within the range 12
through 50 or 100 through 120 , then any statements
associated with THEN are executed.

IF MINLEN 1 THEN… If at least one character was entered in the current field,
execute any statements associated with THEN.
172 Chapter 4

Advanced Forms Design
IF
Table 4-10. Variations on the IF Statement

Variation Description

IF condition THENstatement Simple IF statement. If condition is true, then statement
is executed; if false, then statement is not executed.

IF condition THEN
statement
statement
statement

If condition is true, all three statements are executed in
the order specified. If condition is false, none of the three
statements is executed.

IF condition THENstatementA
ELSEstatementB

If condition is true, statementA is executed; otherwise,
statementB is executed.

IF condition THENstatementA
statementB statementC

ELSEstatementD

The statementA, statementB and statementC are
executed if the condition is true; statementD is executed if
the condition is false,

IF condition THENstatementA
statementB
statementC

ELSEstatementD

If condition is true, statementA, statementB , and
statementC are executed; otherwise statementD is
executed.

IF condition1 THEN
IF condition2 THEN

statementA
statementB

ELSE
IF condition3

statementC
statementD

ELSE
statementE

Only if condition1, condition2 are both true,
statementA, statementB are executed.

Only if condition1, condition3 are true, but condition2
is false, is statementC executed.

Only if condition1 is true, regardless of whether
condition2, condition3 are true, is statementD
executed.

Only if condition1 is false, is statementE executed.
Chapter 4 173

Advanced Forms Design
FAIL
FAIL
Used to force failure of a field edit.

Syntax

[FAIL ["message "]]

Parameters

message Specifies a custom error message.

Discussion

When this statement is executed, it forces data entered in the current field to fail any
specified edits. When FAIL is executed, an error flag is set for the field. If you include the
message parameter, that message is issued; otherwise, a system message is issued.

A FAIL statement is normally used in an IF statement where it is executed conditionally.

Example

For example, suppose you want to ensure that an entered value is in a table of values. You
can use the FAIL statement to ensure that no further edits are performed and an error
message issued if the value is no found.

IF NIN $STATE THEN
SET TO $EMPTY
FAIL "Must enter legitimate state code"

If the value is found in the table, the FAIL statement is not performed nor is the field
cleared to blank.
174 Chapter 4

Advanced Forms Design
STOP
STOP
Used to stop processing the current phase of the current form.

Syntax

[STOP]

Discussion

When STOP is executed, no further processing is performed on the current field, or on any
subsequent fields in the form in this phase.

Example

For example, if using ENTRY, processing of the entire forms file could be terminated when
"END" is entered in the current field with the following specification:

IF EQ "END" THEN
CHANGE NFORM TO $END;STOP These statements terminate execution

of the forms file in "END" is the
value of the current field.

The STOPcommand ends processing of this form; using the $ENDconstant as the next form
instructs ENTRY to end processing of all forms.
Chapter 4 175

Advanced Forms Design
PHASES
PHASES
Used to determine when specified processing specifications are executed.

Syntax
phaseheader
[statement]

.

.

.
[statement]

Parameters

phaseheader One of the following headings. The phase headings must be specified in the
order shown:

CONFIG Perform the following configuration during form
presentation.

INIT Perform the following statements during initialization
(VINITFORM).

FIELD Perform the following statements during the field edit
phase (VFIELDEDITS).

FINISH Perform the following statements during the finish phase
(VFINISHFORM).

Configuration processing specifications must always be preceded by the
phase header CONFIG. The INIT header can be omitted if the initialization
processing specifications are followed by the FIELD phase header and field
edit processing specifications. The FIELD phase header can be omitted if
there are no configuration or initialization processing specifications. The
FINISH header must always be specified to indicate that a statement is to
be executed in that phase.

statement A processing statement to be executed in the specified phase.

Discussion

During the configuration phase, local edits are loaded to terminals that support the local
edit feature (see Appendix G), and the output device and error lights to be lit are identified
for data capture devices. During the initialization phase, all fields in the form are
initialized; during the field edit phase, all fields (in screen order left to right, top to bottom)
are validated and edited. An application usually requests execution of the finish phase
only when all fields have passed the edit tests of the field phase. Finish statements apply
to the entire form. (Refer to Figure 4-1.for an illustration of the flow of form execution
under ENTRY control.)

You can specify that a statement be executed during a particular phase with the phase
176 Chapter 4

Advanced Forms Design
PHASES
specification statements. It is important to note that while specifications are entered field
by field, execution of the phases applies to the entire form. If you omit these phase
headings altogether, all statements are executed in the field edit phase.

Example
CONFIG
LOCALEDITS alphabetic
LIGHTB
DEVICE printer
INIT
SET TO 20.00
FIELD
IN 20:200
IF IN 100:200 THEN JUSTIFY RIGHT
FINISH
SET TO SAVE_FIELD_1

If you want statements to be executed in a particular phase, you must precede the
statements by the appropriate phase headings. Phase headings must be specified in the
order shown above.

Configuration Phase

If you use the configuration phase, the CONFIG statement must be the first statement in
the processing specification area on the field menu. The CONFIG statement is processed
only for the field in which it appears. The commands that can be used in the configuration
phase are: DEVICE, LIGHT and LOCALEDITS. (Refer to the "Processing Specifications for
Configuration" earlier in this section.)

Initialization Phase

The initialization phase occurs when VINITFORM is called. The processing that precedes
the display of the form is usually performed in this phase.

For each field in the form, the field is first initialized to any value specified in the Initial
Values box of the Field Menu. (By default, all fields are set to $EMPTY, all blanks). If any
initialization statements are included in the field processing specifications, these are
executed next. This process continues until all fields in the form are initialized.

If the form being initialized is a child or sibling to the previous form, data from the
previous form is transferred to this form (with conversion if necessary) before
initializations occur. Refer to "Form Families" in Section 3 for more information.

A SET TO source statement may be used to initialize field values.
Chapter 4 177

Advanced Forms Design
PHASES
Figure 4-4. Flow a Phase Execution for ENTRY

CONFIGURATION PHASE

from
previous
field

to next field

Perform local edits:
Local Edit Terminals
Light specified light:
Data Capture Devices

Set field to initial
value (default or
specified)

Perform finish
statements

from
previous
field

from
previous
field

to next field

to next field

INITIALIZE PHASE

FINISH PHASE

FIELD EDIT PHASE
from
previous
field

to next field

Required Optional or Process

Display

Blank?

Field
Type?

Blank
and

Optional

Data Type
Valid?

Edit
Statement

Errors?

Flag Field
in error

No

Yes

No

Yes

Yes

NoNo

Yes
178 Chapter 4

Advanced Forms Design
PHASES
Field Edit Phase

The field edit phase occurs when VFIELDEDITS is called. The field edit phase is usually
requested by the application after the form is displayed on the screen, and the user has
input data. During this phase, the entered data is checked according to the field attributes
and any processing specifications entered by the designer. The Edit statements can be
executed only in the field edit phase.

Each field in turn is examined. The first action is to check the field type. If it is optional
and the field is blank, the rest of the field edit phase for this field is skipped. If the field is
required, it must contain a nonblank value. If it has a value, the data is checked to see if it
conforms to the field's data type. If it does, then any field processing statements are
executed in the order they were entered.

Edit failures detected in this phase cause the field to be flagged in error so the user can be
informed. All further processing on this field is stopped when an error is detected, and
control passes to the next field.

ENTRY loops through all processing statements in the field edit phase until all errors have
been corrected by the user.

Finish Phase

The finish phase occurs when VFINISHFORMis called. The finish phase usually is requested
by the application after all data has been entered and validated for the entire form. The
ENTRY program executes statements in this phase only when no errors are detected after
ENTER is pressed. Finish statements direct irreversible processing during which the global
environment can be altered.

Under ENTRY control, any processing performed by the preceding two phases can be
undone prior to the FINISH phase. For instance, if the user presses REFRESH, the initial
values replace any that were entered. In the finish phase, such changes can no longer be
made.

Under ENTRY control, the batch file is written as soon as the finish phase is complete. The
assumption is that all fields have been tested and corrected; fields with errors are not
enhanced in the finish phase.
Chapter 4 179

Advanced Forms Design
PHASES
180 Chapter 4

Reformatting Specifications
5 Reformatting Specifications

Information gathered during data collection is stored in one or more "batch" files. The data
entered for each field in a form is stored exactly as it was entered. All blanks, punctuation,
or special characters are included in the data. The only exception is that any formatting
specified on the Field Menu or any automatic formatting resulting from data movement
(refer to Chapter 4) is completed before the data is written to the batch file. Thus, if a value
has been entered in the middle of a field, the blanks on either side are stored as part of the
data; or if a number has been right justified and zero filled, it is stored in the batch file in
that form.

All data from all fields in a single form are concatenated together without delimiters into a
single record in the batch file.

If the configuration of the data in a batch file is not suitable for input to an application
program, the data can be reformatted with REFORMAT. This program writes the data
from the batch file to another file, the "output" file, according to formatting specified
through the reformat design program, REFSPEC. (Refer to Figure 5-1.)

You may want to reformat data entered in the batch file in order to:

• Combine data from several forms into one record in the output file.

• Separate data from a single form into two or more output records.

• Generate several output files from the data entered through a single forms file.

• Add literals (such as sort codes or record separators) to each output record.

• Use only a selected portion of the data entered in any field.

• Write only selected fields from any form to an output record.

• Fill, justify, or strip characters from data entered in any field.

• Add a check digit to alphabetic or numeric data.

This chapter describes how to use the reformat design program REFSPEC. It is an
extension of forms design and is used by the forms designer in conjunction with an
application programmer to specify how data is to be reformatted. Use of REFORMAT is
described at the end of this chapter.
Chapter 5 181

Reformatting Specifications
Figure 5-1. Relation among Files Used for Formatting

Users

Programmer

Designer

Forms File

:RUN FORMSPEC

:RUN ENTRY

Batch File

Reformat File Output File

:RUN REFSPEC

:RUN REFORMAT

Application

form
specifications

reformat
specifications

data

reformatted
data
182 Chapter 5

Reformatting Specifications
Files
Files
One batch file containing collected data can be reformatted into one output file. This
output file is then used as input to the application that processes the collected data. Data
from more than one batch file can be written to one output file in sequence — that is, data
from a batch file can be appended to data from another batch file in an existing output file
with an MPE :FILE command equation. (See "Concatenating Batch Files", this chapter, for
an example of this.) Without a file equation, data from each batch file overwrites data in an
existing output file.

The reformatting specifications themselves are stored in a "reformat" file. The
specifications in this file determine how the data in the batch file is to be stored in the
output file.

One output file is generated for each reformat file. If you wish to separate the data into
more than one output file, you must establish different reformat files, and run the
reformatter program separately, to generate each output file. REFSPEC accepts either
KSAM or standard MPE reformat files. The only forms files created by REFSPEC,
however, are MPE files. In the MPE reformat files, the key and form records are
interspersed throughout the file. MPE reformat files do not require extra data segments
and are automatically recovered after a power failure or system crash. Refer to Appendix
H for information on converting KSAM files to MPE files.

Reformat File

The reformat file consists of the following components:

Forms File Name Identifies the forms file that contains the forms through
which data in the batch file was entered.

Global Information Specifications that apply to the entire output file, such as a
string used for an end-of-record mark, or record length
and whet her the record length is fixed or variable. Any or
all global specifications can be omitted since defaults are
provided.

Input Forms Sequence Specify the form names on which data to be reformatted
was entered. Only data from the forms in an input forms
sequence is written to the output file. At least one input
forms sequence must be included, and as many may be
included as there are forms in the forms file.

Output Record Definition Specify each field to be written to the output file, and
define the beginning of each output record. Usually, one
output record definition follows each input forms
sequence.

Field Specifications Special reformatting at the field level can be specified for
each field listed in the preceding output record definition.

This information is entered on menus very much like those issued for FORMSPEC. Figure
5-2. illustrates a prototype REFORMAT file.
Chapter 5 183

Reformatting Specifications
Files
Figure 5-2. Prototype of REFORMAT File

Global specifications
that apply to all
reformats in

reformat file.

Global Data

Forms File Name

Output Field 1
Output Field 2

Output Field n

Entered on FORMS FILE
menu

Entered on OUTPUT

Entered on GLOBALS

Entered on INPUT FORMS

Entered on OUTPUT

menu

REFORMAT FILE

Input Forms
Sequence 1

Output Record
Definition 1First reformat

Second Reformat

Output Field 1
Output Field 2

Output Field n

Input Forms
Sequence 2

Output Record
Definition 2

Subsequent
reformats

menu

RECORD menu

Field menus
184 Chapter 5

Reformatting Specifications
Relation of Forms to Output Records
Relation of Forms to Output Records
Every record in a batch file consists of data entered on a single form. It may be that the
data on one form represents a logical group of information. However, the data from a
sequence of forms may make up such a logical grouping, or the data entered on one form
may make several logical groupings. The reformatter allows you to rearrange the entered
data into output records with different groupings.

Before running REFSPEC to set up your reformat file, it is important to understand the
relations between the forms (and the data entered on the forms) and the output records
generated by the reformatter. The forms to be reformatted are identified in the input forms
sequence of the reformat file; the output records are defined in the associated output
record definitions.

Input Forms Sequence

Each input forms sequence lists the form or forms on which the data to be reformatted was
entered.

In order to generate the output file from the reformatting specifications, REFORMAT
reads each batch record in turn. Associated with each record is the form on which the data
was entered. For the first batch record, REFORMAT searches the input forms sequences in
the reformat file for a matching "reformat identifier". This identifier is the name of the first
form in each in put forms sequence, and must be unique in the reformat file. If a matching
reformat identifier is not found, the batch record is skipped.

Other form names may follow the reformat identifier in the same input forms sequence.
These form names need not be unique. If a sequence of forms is specified, the batch records
following the record that matches the reformat identifier must exactly match the form
names in the input forms sequence. If they do not, the batch record is skipped, and the
next batch record is checked against all reformat identifiers in the reformat file. Some
rules to remember:

• Every batch file record contains data entered on a single form.

• The form name on which the data was entered is stored in the batch record with the
data.

• Records in the batch file are processed sequentially starting with the first record and
continuing through to the end.

• The first form name in each input forms sequence is the reformat identifier, and must
be unique.

• In order to be reformatted, the form name of a batch record must match one of the
reformat identifiers or be in a sequence following a form that matches a reform at
identifier.

• Form names in an input forms sequence following the reformat identifier can appear in
other input forms sequences as reformat identifiers or as part of a sequence following
the reformat identifier.

• If more than one form is named in an input forms sequence, the sequence of batch
Chapter 5 185

Reformatting Specifications
Relation of Forms to Output Records
records starting with the reformat identifier must exactly match the sequence of forms.

Output Record Definition

The output record definition determines how information from batch file records is stored
in the output file. Any field in the batch file that is to be written to an output record must
be uniquely identified. The sequence of the output field names in the output record
definition determines the order in which fields are written to the output record. Fields
from the batch file may thus be reordered, or repeated, or omitted from the output record.

Constants, in the form of literals, system constants, or the numeric equivalent of USASCII
characters, can be interspersed freely between fields or portions of fields in the output
record definition.

The output record definition also determines where each output record begins. The
designer can mark one or more fields (or constants) as the starting point of a record. If no
field is so marked in an output record definition, then the first field in the definition is
appended to the last field in the previous definition as part of the same record. Thus a
batch record can be divided into several output records, or be made part of a larger record.

Note that you can specify a fixed record length, or a maximum variable record length, for
all output records through the Globals Menu. REFSPEC does not allow the designer to
specify a record in any one output record definition that is longer than this maximum
length; however, it does not check the length of a record formed from several output record
definitions. Some rules to remember:

• A unique output field name must be assigned to any batch field to be written to the
output file. (Usually, the input field name is unique and can be used as the output field
name.)

• Batch fields are written to the output file in order of the output field names.

• Only those fields specified in an output record definition are written to the output file.

• A particular batch field can be specified many times in a single output record definition
as long as each occurrence is given a unique output field name.

• A start-of-record marker in an output record definition determines the start of an
output record.

• A start-of-record marker can be associated with any field or constant in an output
record definition.

• If no start-of-record marker is included in an output record definition, the first field of
this definition follows the last field of the preceding definition when it is written to the
output file.
186 Chapter 5

Reformatting Specifications
Relation of Forms to Output Records
Field Specifications

An Output Field Menu is issued for each field named in the preceding output record
definition. The designer can reformat the output field, or leave the field as it was written to
the batch file.

The following set of examples illustrates some ways in which the data from a batch file can
be reorganized in an output file.

Combining Data from Several Forms

Suppose data is entered on forms A, B, and C. The reformat file shown in Figure 5-3.
processes these records in sequence and writes them to one output record.

Figure 5-3. Combining Data from 3 Forms into 1 Output Record

data:

form A

form B

form C

form A

form B

form C

fields:

F1(A)
F2(B)
F1(C)
F3(A)
F2(C)

fields:

F1(A)
F2(B)
F1(C)
F3(A)
F2(C)

1

2

rec #

GLOBALS

INPUT FORMS SEQ

OUTPUT RECORDS

form A (Ref. Id)
form B
form C

field 1 form A*
field 2 form B
field 1 form C
field 3 form A
field 2 form C

OUTPUT FIELD 1A
OUTPUT FIELD 2B
OUTPUT FIELD 1C
OUTPUT FIELD 3A
OUTPUT FIELD 2C

* = start-of-record marker

REFORMAT FILE BATCH FILE OUTPUT FILE

rec#

1

2

3

4

5

6

Chapter 5 187

Reformatting Specifications
Relation of Forms to Output Records
Data from the batch file illustrated in Figure 5-3. can be reformatted in many different
ways. For example, Figure 5-4. shows how this same data could be combined into two
output records with data from forms A and B appearing in both records. Note that when
the same field appears more than once, it must be given a unique field name for each
occurrence (this is not specifically shown in Figure 5-4.)

Figure 5-4. Reformat Data from 3 Forms into 2 Output Records

data:
form A

form B

form C

form A

form B

form C

fields:

F1 - F6 (A) 1

2

rec #

GLOBALS

INPUT FORMS SEQ

OUTPUT REC. DEF

form A (Ref. Id)
form B
form C

* = start-of-record marker

REFORMAT FILE BATCH FILE OUTPUT FILE

rec #

1

2

3

4

5

6
3

4

field 1 form A*

field 6 form A
field 1 form C

field 4 form C
field 1 form A*
field 5 form C

field 10 form C
“Literal”
field 1 form B

field 8 form B

OUTPUT FIELD 1A

OUTPUT FIELD 8B

F1 - F4 (C)

F1 - F6 (A)
F1 - F4 (C)

F1 (A)
F5 - F10 (C)

“Literal”
F1 - F8 (B)

F1 (A)
F5 - F10 (C)

“Literal”
F1 - F8 (B)

(8 fields)

(10 fields)

(6 fields)
188 Chapter 5

Reformatting Specifications
Relation of Forms to Output Records
Separating Data into Several Records

In the following example, Figure 5-5., data entered on form A is separated into three
output records, each a fixed length of 40 bytes. Data from a subsequent form is written to a
single 40-byte record. If any group of data is less than the 40-byte record length, the record
is padded with blanks. The data cannot be formatted to exceed the record length.

Figure 5-5. Separating Data from 1 Form into Several Records

Reformatting Repeating Forms

In Figure 5-6., form B is a repeating form that may occur a variable number of times. The
reformat file in this example causes data entered on forms A, B, and C to be written to a

data:
form A

form B

form A

form B

form A

form B

2

rec #

GLOBALS

INPUT FORMS SEQ

OUTPUT REC. DEF

form A (Ref. Id)

* = start-of-record marker

REFORMAT FILE BATCH FILE
rec #

1

2

3

4

5

6

3

4

field 1 form A*

field 5 form A

field 15 form A

field 1 form B*

field 8 form B

OUTPUT FIELD 1A

OUTPUT FIELD 8B

fields:
A

A

A

B

A

A

1

5

6

7

8

Record = fixed
Length = 40 chars.

field 8 form A
field 6 form A*
field 7 form A
field 9 form A*

OUTPUT FIELD 1A

OUTPUT FIELD15A

INPUT FORMS SEQ.
form B (Ref Id)

OUTPUT REC. DEF

OUTPUT FILE

(15 fields)

(15 fields)

(1-5, 8)

(6,7)

 (9-15)

(1-5, 8)

A
(9-15)

B

 (6, 7)
Chapter 5 189

Reformatting Specifications
Relation of Forms to Output Records
single variable length output record. Note that if repeating form B causes so much data to
be written to the output record that the maximum record length is exceeded, data (possibly
significant) is truncated when REFORMAT is run.

Figure 5-6. Reformatting Data from Repeating Forms

data:

form A

form B

form B

form B

form B

form B

2

rec #

GLOBALS

INPUT FORMS SEQ

OUTPUT REC. DEF

form A

* = start-of-record marker

REFORMAT FILE BATCH FILE
rec #

1

2

3

4

5

6

field 1 form A*

field 10 form A

OUTPUT FIELD F1C

OUTPUT FIELD F3C

data:

A

1

INPUT FORMS SEQ.
form B

OUTPUT FILE

form C

form A

form B

form B

7

8

9

10

form C11

B

B

B

B

C

B

A

B

B

C

OUTPUT FIELD F1A

OUTPUT FIELD F10A

field 1 form B*

field 5 form B

OUTPUT REC. DEF

OUTPUT FIELD F1B

OUTPUT FIELD F5B

field 1 form B*

field 5 form B

OUTPUT REC. DEF

INPUT FORMS SEQ.
form B
190 Chapter 5

Reformatting Specifications
Relation of Forms to Output Records
Suppose data entered on one form can follow data entered on either of two different forms,
and you want to generate separate records depending on the sequence in which the forms
appear. In such a case, you can set up a reformat file as shown in Figure 5-7. Note that
form B (a repeating form) appears as a reformat identifier and also as a succeeding form in
other input forms sequences.

Figure 5-7. Reformatting Data Based on Form Sequences

data:

X

B

B

B

B

E

2

rec #
GLOBALS

INPUT FORMS SEQ

OUTPUT REC. DEF

form X

* = start-of-record marker

REFORMAT FILE BATCH FILE

rec #

1

2

3

4

5

6

field 1 form X*

OUTPUT FIELD F1

A

1
INPUT FORMS SEQ.

form B

OUTPUT FILE

Y

B

B

E

7

8

9

10

X11

B

B

B

B

C

B

A

B

B

C

OUTPUT FIELD 1

field 1 form B
OUTPUT REC. DEF

field 1 form E
OUTPUT REC. DEF

INPUT FORMS SEQ.
form E

OUTPUT FIELD 1

OUTPUT FIELD F1C

INPUT FORMS SEQ.
form Y

form B

field 1 form Y*
OUTPUT REC. DEF

field 1 form B

B12

E13

form B
Chapter 5 191

Reformatting Specifications
Relation of Forms to Output Records
Separating Data from One Batch File into Several Output Files

A separate reformat file must be established for each different output file. In Figure 5-8.,
data entered on forms A and B is written as a single record to one output file. Data from
forms A and C is written as two records to a second output file; data from form B is not
written to output file 2.

Figure 5-8. Generating 2 Output Files from 1 Batch File

data:

A

B

C

A

B

C

2

rec #
GLOBALS

INPUT FORMS SEQ
form A

* = start-of-record marker

REFORMAT FILE 1 BATCH FILE

rec #

1

2

3

4

5

6

A 1

OUTPUT FILE 1

A

B

C

A

7

8

9

10

B

A

B

field 1 form A*
OUTPUT REC. DEF

form B

field n form B

OUTPUT FIELD 1

OUTPUT FIELD n

GLOBALS

INPUT FORMS SEQ
form A

REFORMAT FILE 2

field 1 form A*
OUTPUT REC. DEF

field n form A

OUTPUT FIELD (A)

field 1 form C*
OUTPUT REC. DEF

field n form C

OUTPUT FIELD (C)

INPUT FORMS SEQ
form C

2

A
1

C

A

C 4

3

OUTPUT FILE 2
rec #

formatted data:

formatted data:
192 Chapter 5

Reformatting Specifications
Using REFSPEC
Using REFSPEC
You execute REFSPEC by entering the following command in response to the MPE colon
prompt:

: RUN REFSPEC.PUB.SYS

Since REFSPEC runs entirely in block mode, your terminal is placed in block mode
automatically.

Like FORMSPEC, REFSPEC prompts for information on menu screens. The information
you enter on these menus defines how data in the batch file is to be reformatted and
written to an output file. The first menu issued whenever you run REFSPEC is the
Reformat File Menu.

If you specify a new reformat file, REFSPEC creates this file and then issues the Forms
File Menu so you can specify the forms file through which the data to be reformatted was
entered. If you specify an existing reformat file, it is already associated with a forms file so
the Forms File Menu is not issued, and the Main Menu is the next menu.

NOTE If your file has a lockword, you must enter the lockword along with the file
name, as filename/lockword. If you do not enter a lockword with the file name
and one is required, your terminal hangs. This is because the MPE prompt
requesting the lockword is in character mode and cannot be received while
your terminal is in block mode. You can recover from this error by doing a
hard reset followed by pressing RETURN at least four times, then pressing f8
to exit. How you perform a hard reset depends on what type of terminal you
are using; consult your terminal manual for instructions.

Terminating REFSPEC

You can terminate operation of REFSPEC at any time by pressing EXIT to return to MPE
control, indicated by the colon prompt (:).

When you next run REFSPEC after terminating and request the same reformat file, the
Forms File Menu is skipped and the Main Menu is displayed on the screen. You may then
select an option on the Main Menu or you can press MAIN/RESUMEto display the Forms File
Menu. If you specify a new reformat file on the Reformat File Menu, the next menu issued
is the Forms File Menu.

Unexpected Program Interruption

As with FORMSPEC, if the program halts unexpectedly because of a terminal power
failure or the user pressing BREAK , control returns to MPE. Refer to Appendix G for the
steps to recover from such a situation. After you have recovered, you then press REFRESHto
return to the REFSPEC Menu where you were interrupted. The menu is cleared to initial
or previously entered values. To ensure against damage to the file, reenter the information
on all menus pertaining to the reformat you were creating or modifying at the time of
program interruption.
Chapter 5 193

Reformatting Specifications
Using REFSPEC
REFSPEC Function Keys

A set of seven function keys, similar to those used for forms design, are used to control
execution of REFSPEC. These keys are described in Table 5-1.

NOTE The function keys used by REFSPEC should not be confused with the
function keys defined for ENTRY (see Figure 2-2). Although the two groups of
keys are physically the same programmable keys, their functions differ
significantly.

Table 5-1. Key Definitions

Key Key Action

PREV FORMAT
f1

Go to previous Input Forms Menu (skipping any intervening menus).

NEXT FORMAT
f2

Go to next Input Forms Menu (skipping any intervening menus).

f3 Not defined.

REFRESH
f4

Redisplay current menu in its initial state before any specifications were entered,
or existing specifications were modified.

PREV
f5

Position to Previous Menu screen in sequence of menus.

NEXT
f6

Position to Next Menu screen in sequence of menus.

MAIN/ RESUME
f7

Request Main Menu or, if Main Menu displayed, return to menu displayed when
Main was requested.

EXIT
f8

Terminate REFSPEC and return to MPE control.
194 Chapter 5

Reformatting Specifications
REFSPEC Menus
REFSPEC Menus
REFSPEC displays menu screens in a predetermined sequence. As each menu is
displayed, enter the reformatting specifications you want in the reformat file, and then
press ENTER. When ENTER is pressed, the specifications are written to the reformat file
and the next menu in the sequence is issued. If you do not want to enter any specifications
(on a menu such as the Globals Menu where defaults are supplied), simply press NEXT to
display the next menu.

When the reformatting is completely defined, request the Main Menu by pressing
MAIN/RESUME. You can then compile the reformat file so that it can be executed.

The REFSPEC menu screens are shown in Figure 5-9. in the order they are issued. First
the Reformat File Menu requests the name of the reformat file. For a new reformat file, the
next menu asks for the name of the forms file whose data is to be reformatted. For an
existing reformat file, the Forms File Menu is skipped and the Main Menu displayed.

You can move forwards or backwards through the sequence of menus to locate a particular
menu by pressing NEXT or PREV, respectively. You can skip an entire reformat specification
by pressing NEXT REFORMAT or PREV REFORMAT. (A reformat consists of an input forms
sequence and its associated output record definition.) These keys allow you to go directly to
the next or previous Input Forms Menu. An alternate method is to request the Main Menu
by pressing MAIN/RESUME and then selecting a particular menu.

Press EXIT to return to MPE control from REFSPEC.

Figure 5-9. illustrates the relationship between the menu definitions presented on the
REFSPEC menu screens and some of the special function keys.

NOTE The number of Output Field Menus issued depends on the number of
reformat fields defined in the preceding Output Record Menu. One Output
Record Menu is issued for each Input Forms Menu. You may be able to specify
reformatting with as few as one Input Forms Menu, or you may need as many
as there are forms in the forms file.
Chapter 5 195

Reformatting Specifications
REFSPEC Menus
Figure 5-9. Relation of REFSPEC Menus to Function Keys

MAIN SEQUENCE

MAIN MENU

GLOBALS MENU

INPUT FORMS 1

OUTPUT RECORD 1

OUTPUT FIELD 1A

OUTPUT FIELD 1C

INPUT FORMS 2

OUTPUT RECORD 2

OUTPUT FIELD 2A

OUTPUT FIELD 2B

OUTPUT FIELD 2C

PREV REFORMAT

PREV

NEXT

NEXT REFORMAT

EXIT

to MPE

RESUME

MAIN

Current field

Select menu
or operation

F1

F5

F6

F2

F7

F8

OUTPUT FIELD 1B
196 Chapter 5

Reformatting Specifications
Forms File Menu
Forms File Menu
The Forms File Menu, shown in Figure 5-10., asks you to enter the name of an existing
forms file. This is the file that was used to create the batch file (or files) to be reformatted.
Only one forms file can be specified for each reformat file. The name of the data file may be
a fully qualified MPE file name.

After you have identified the forms file, the Main Menu is issued.

NOTE In order to maintain (and browse or list) a forms file, the user must have
exclusive write access to the file.

Figure 5-10. Forms File Menu

PREV
FORM

NEXT
FORM

REFRESH PREV NEXT MAIN/
RESUME

EXIT

FORMSPEC v.uu.ff Forms File Menu REFORMAT FILE: filename

[]Forms File Name
Chapter 5 197

Reformatting Specifications
Main Menu
Main Menu
The Main Menu, shown in Figure 5-11., is the main control menu for all REFSPEC
operations. If the reformat file is new, you will usually select Add a reformat . REFSPEC
then issues the menus that allow you to define the reformat file. If the reformat file already
exists, you may enter any selection depending on what you want to do. You can compile the
reformat file, add new reformats, select a particular menu in order to change it, purge
reformats and so forth.

Figure 5-11. Main Menu

Adding a Reformat

When you are creating a new reformat file, you will always add at least one reformat; if
you are modifying an existing reformat file, you may want to add a reformat. New
reformats are added to the end of the reformat file. To add a reformat, simply enter A in
the Main Menu selection box. In response, REFSPEC displays the Input Forms Menu,
shown in Figure 5-14.

Compiling the Reformat File

In order for REFORMAT to use the reformat file, the file must be compiled. You compile a
reformat file by entering an X in the Main Menu selection box.

PREV
FORM

NEXT
FORM

REFRESH PREV NEXT MAIN/
RESUME

EXIT

FORMSPEC v.uu.ff Main Menu REFORMAT FILE: filename

[] Enter Selection

[]

A--Add a reformat
X--Compile Reformat File
G--Go to GLOBALS Menu

[]

F--Go to FORMS FILE Menu

G-- Go to reformat id output field

D--Delete reformat id
L--List reformat id
198 Chapter 5

Reformatting Specifications
Main Menu
If the file has already been compiled, it is recompiled and the newly compiled version
replaces the previous version. There is never more than one compiled version of a reformat
file at a time. When you modify the source version, the compiled version is not affected.

Adding Global Specifications

Certain characteristics of the reformat definition are global; that is, they apply to the
entire output file. For example, record length and the end of record separators are global
definitions. (Refer to the Globals Menu description below.)

REFSPEC supplies default values for all global characteristics and, unless you want to
change these defaults, you need never be concerned with global values. If you do want to
specify nondefault global characteristics, enter G in the Main Menu selection box, but do
not specify a reformat identifier or output field name. The Globals Menu, shown in Figure
5-13., is displayed so you can enter global specifications.

Changing the Forms File Name

Normally, you will not need to modify the forms file name once it has been specified.
However, in case the forms file is renamed with the MPE :RENAMEcommand, you can go to
the Forms File Menu and rename the forms file to correspond to its new name. To do this,
enter F in the Main Menu selection box and, when the Forms File Menu is displayed, type
in the new forms file name.

Modifying Reformat Specifications

You can change a reformat specification at any time, either as you initially define the
specification, or after the reformat file has been compiled. In either case, you locate the
particular specification through the Main Menu selection box or with the function keys
that control menu sequence.

Changing an Input Forms Sequence

Each input forms sequence consists of the form names associated with batch records to be
reformatted and written to the output file. (Since each batch file record is associated with a
form name, the list of form names is in effect a list of batch records.) The first form name in
any input forms sequence is called the reformat identifier. Each reformat identifier is
unique to the reformat file and is used to identify the input forms sequence.

If you want to modify an input forms sequence, enter G in the Main Menu selection box,
and then specify the reformat identifier that identifies that sequence; or locate the input
forms sequence you want with PREV REFORMATor NEXT REFORMAT. The Input Forms Menu
is displayed with the form names previously specified. You can then change any of these
names, add new names, or delete existing names. When you have made the changes, press
ENTER. You can change the reformat identifier exactly as you would change any other form
name, but the changed identifier must still be unique to the reformat file.

Note that if you change an Input Forms Menu, you must validate the associated Output
Record and you may have to validate the Output Field Menus. To do this, you request the
applicable Output Record and output Field Menus and press ENTER for each. (If these
menus were affected by your change to the Input Forms Menu, you must make the
Chapter 5 199

Reformatting Specifications
Main Menu
appropriate changes before pressing ENTER.) Until these menus are validated, REFSPEC
prints a warning when they are displayed.

Changing an Output Record Definition

Every input forms sequence has an associated output record definition. The output record
definition defines how the individual fields or portions of fields from the batch file are to be
written to the output file. You can change some of these field specifications directly on the
freeform Output Record Menu, and others on a particular Output Field Menu. The Output
Field Menus can be located by entering G in the Main Menu selection box and then
specifying a reformat id and output field name, or by using NEXT or PREV. An output
record definition can be located only through these function keys.

The basic output record descriptions are entered and changed on the Output Record Menu.
The output fields can be rearranged, new fields or constants added, or existing fields or
constants deleted only on this menu. To change specific field reformatting specifications,
you must go to the Output Field Menu for that field. (For details, refer to the Output
Record Menu and Output Field Menu descriptions below.) After changing a reformat, you
must compile the reformat file to enter these changes in the executable version of the file.

Deleting a Reformat

You can purge an entire reformat with its associated output record definition and field
specifications. Enter D in the Main Menu selection box and then specify the reformat
identifier that identifies the reformat to be deleted. The reformat specification is not
physically removed from the reformat file, but it can no longer be referenced by
REFORMAT. After deleting a reformat, you must compile the reformat file or the reformat
will still be in the file.

Listing a Reformat

You can print a listing of the entire reformat file or only a single reformat on an off-line
device (usually, the line printer). To list a single reformat, enter L in the Main Menu
selection box and then specify the reformat identifier for the reformat you want listed. If
you want to list all reformats in the reformat file, simply enter L in the selection box
without specifying a reformat identifier. Figure 5-12. illustrates the listing of a reformat.

Resuming Design from Main Menu

If you requested the Main Menu by pressing MAIN/RESUME during reformat design, you
can return to the menu you were in by pressing MAIN/RESUME again. Note that this is the
same key in each case, but it acts differently in the Main Menu than it does in other
menus.

You can also go to the previous menu or the next menu by pressing PREV or NEXT
respectively. When requested from the Main Menu, the previous menu is the one preceding
the menu you were in when you requested the Main Menu, and the next menu is that
following the menu you were in. Similarly, you can request the previous or next reformat
directly by pressing PREV REFORMAT or NEXT REFORMAT. The previous or next reformat is
relative to the reformat you were designing when MAIN/RESUME was requested.
200 Chapter 5

Reformatting Specifications
Main Menu
Figure 5-12. Reformat Listing

* REFSPEC Version v.uu.ff *
* MON, JUN 16. 1986, 5:24 PM *
* *
* REF211.PUB.ACCTG *
* *

Reformat File Status
Modified: TUE, DEC 31, 1985, 9:45 AM
Compiled: TUE, DEC 31, 1985, 9:45 AM

Forms File: FORMS32.PUB.ACCTG

Output Record Format: F
Record Length: 80 (bytes)

Upshift? N
Convert to EBCDIC? N

Record Separator String:
Field Separator String:

REFORMAT FORM211

Input Forms (in sequence):
FORM211

Output Record Definition

INPUT Field Subst Len Form Name OUTPUT Field Strt Len Strt
Strt Col Rec

**
“RUN 1.211; CHAR TO CHAR” *
FIELD1 1 6 FORM211 FIELD1 1 6 *
FIELD2 1 7 FORM211 FIELD2 7 7
FIELD3 1 8 FORM211 FIELD3 14 6
FIELD4 1 9 FORM211 FIELD4 22 9
FIELD5 1 10 FORM211 FIELD5 31 10
FIELD6 1 11 FORM211 FIELD6 41 11
FIELD7 1 12 FORM211 FIELD7 52 12
FIELD8 1 13 FORM211 FIELD8 64 13
FIELD9 1 14 FORM211 FIELD9 1 14 *
FIELD10 1 15 FORM211 FIELD10 15 16
FIELD11 1 16 FORM211 FIELD11 30 16
“MOVE TO LARGER FIELD”
DATA1 1 5 FORM211 DATA1 1 20 *
DATA2 1 6 FORM211 DATA2 21 20
DATA3 1 7 FORM211 DATA3 41 20
DATA4 1 8 FORM211 DATA4 61 20
DATA5 1 9 FORM211 DATA5 1 20 *
DATA6 1 10 FORM211 DATA6 21 25
DATA7 1 11 FORM211 DATA7 26 15
“MOVE TO SMALLER FIELD”
DATA8 1 12 FORM211 DATA8 1 11 *
DATA9 1 13 FORM211 DATA9 12 12
DATA10 1 14 FORM211 DATA10 24 2
DATA11 1 15 FORM211 DATA11 26 6
“MOVE TO PARTIAL FIELDS”
FIELD10 1 10 FORM211 TEMP10 1 10
FIELD11 4 10 FORM211 TEMP11 20 10
DATA10 1 10 FORM211 TEMP12 1 8 *
DATA11 3 10 FORM211 TEMP13 20 6

Chapter 5 201

Reformatting Specifications
Main Menu
Figure 5-13. Reformat Listing (Continued)

REFSPEC VERSION v.uu.ff MON, JUN 16, 1986, 5:24 AM

REFORMAT FILE: REF211.PUB.ACCTG

INPUT Field: FIELD1 Start: 1 Length: 6 Form: FORM211
OUTPUT Field: fIELD 1 Start: 1 Length: 6 Data Type: CHAR

STRIP: All: Leading: Trailing:
CHECK DIGIT:
JUSTIFY:
SIGN: PLUS SIGN?
FILL: All: Leading: Trailing:

.

.

INOUT Field: DATA11 Start: 3 Length: 10 Form: FORM211
OUTPUT Field: TEMP13 Start: 20 Length: 6 Data Type: CHAR

STRIP: All: Leading: Trailing:
CHECK DIGIT:
JUSTIFY:
SIGN: PLUS SIGN?
FILL: All: Leading: Trailing:

.

.

.
REFORMAT FORM211

Input Forms (in sequence):
FoORM212

INPUT Field Subst Len Form Name OUTPUT Field Strt Len Strt
Strt Col Rec

**
“RUN 1.212; NUMx FIELDS TO SAME NUMx” *
NUM1 1 20 FORM212 N1 1 20 *
NUM2 1 20 FORM212 N2 30 20
NUM3 1 20 FORM212 N3 60 20
NUM4 1 20 FORM212 N4 2 20 *
NUM5 1 20 FORM212 N5 30 20
NUM6 1 20 FORM212 N6 60 20
NUM7 1 20 FORM212 N7 1 20 *
NUM8 1 20 FORM212 N8 30 20
NUM9 1 20 FORM212 N9 60 20
NUM10 1 20 FORM212 N10 1 20 *
NUM11 1 20 FORM211 N11 30 20
**

INOUT Field: N1 Start: 3 Length: 20 Form: FORM212
OUTPUT Field: N1 Start: 20 Length: 20 Data Type: NUM

STRIP: All: Leading: Trailing:
CHECK DIGIT:
JUSTIFY:
SIGN: PLUS SIGN?
FILL: All: Leading: Trailing:

.

.

.

202 Chapter 5

Reformatting Specifications
Globals Menu
Globals Menu
The Globals Menu, shown in Figure 5-13., requests information that applies to the total
reformat process. All information entered on the Globals Menu relates to the output file
produced when REFORMAT is run. Since only one output file is generated for each
REFORMAT execution, this information appears only once in the reformat file.

Figure 5-13. Globals Menu

When the Globals Menu is displayed, default values are shown for each option. The
possible values and their defaults are listed below. You can change any of the values or you
can keep the default values provided by REFSPEC. Press ENTER to record the values and
request the next menu, the Input Forms Menu.

Fields

Output Record Format Specifies whether the output record is fixed, variable, or
undefined in length. Enter:

• F - Fixed -length records

• V - Variable -length records

• U - Undefined-length records

Default = F (Fixed length)

PREV
FORM

NEXT
FORM

REFRESH PREV NEXT MAIN/
RESUME

EXIT

FORMSPEC v.uu.ff Globals Menu REFORMAT FILE: filename

[]Output Record Format

Record Terminator String _________________________________

F--Fixed length records
V--Variable length records
U--Undefined length records

[80]Record Length (bytes)

[N]Upshift?

[N]Convert to EBCDIC?

Yes/No

Yes/No

Field Separator String _________________________________
Chapter 5 203

Reformatting Specifications
Globals Menu
Record Length A positive integer that specifies the total number of characters in the
output record, including all fields and separators.

If the output records are fixed length and the total number of characters is
less than this length, the record is padded with blanks at the end. If there
are more characters in the field than will fit in the record, the record is
written up to the specified length and the excess characters are discarded.
In this case, a warning message is issued to the user who runs
REFORMAT.

For variable length records, the actual record length is the sum of all the
fields written to the record, including separators. In this case, the record
length specified here is the maximum length allowed for any record.

Default = 80 characters.

Upshift? Indicates whether letters of the alphabet are to be shifted up to all
uppercase letters when data is written to the output file. Specified as:

• Y — Shift letters to uppercase.

• N — Leave letters as entered by the user.

Default = N (do not upshift).

If nothing is specified, an error is returned.

Convert to EBCDIC? Indicate whether the output file is to be written in EBCDIC code
rather than USASCII.

• Y - write output file in EBCDIC

• N - leave output file in USASCII

Default = N (do not convert).

Record Terminator
String Indicates a character or string of characters to be appended to the end of

every record. The record terminator may be specified as any of the
following:

• Quoted String — Any USASCII characters, including blanks, enclosed
within single or double quotes. For example: “eof” or “ “ or ‘**’ .

• USASCII Code — Numeric equivalent to an USASCII character
preceded by a dollar sign ($). Code may be any decimal number in range
0-127 (refer to Appendix C for decimal equivalent to USASCII code).
For example: $34 is the numeric equivalent of quotation mark; $65 is
the equivalent of the letter A.

• System Constant — The following system defined constants may be
used as a terminator:

— $LF — line feed

— $CR — carriage return

— $GS — group separator
204 Chapter 5

Reformatting Specifications
Globals Menu
— $US — unit separator

— $RS — record separator

Default = No terminator

If a record terminator is not specified, no special terminator is placed at
the end of output records.

You can combine any of the above terminators into a single terminator by
specifying them one after the other. For example: "end" $LF $CR or $120
"! " $CR or "ABC" "DEF" .

Such multiple terminators are concatenated together to form a single
string that is inserted between fields. Note that blanks are optional except
between quoted strings where a separating blank is required. If a blank
does not separate quoted strings, the quote is included; for example:
"ABC""DEF" becomes ABC"DEF in the record.

Field Separator String A user-defined value to be inserted between all consecutive
fields in the output record. It will not appear after the last field in the
record, or before or after a constant. If two consecutive fields are assigned
specific column positions so that the second does not immediately follow
the first, the field separator is placed after the first field. For example,
suppose the field separator is, and the fields are defined as:

• FIELD 1 value = ABCD start column = 5

• FIELD 2 value = XYZ start column = 15

The output record for this example is shown below.

The separator may be a quoted string, a USASCII code, or a system
constant, as described above for the Record Terminator.

Unless a separator is specified, fields in an output record are not
separated, but are written as one continuous string of characters.

Default = No separator.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

A B C D * * X Y Z
Chapter 5 205

Reformatting Specifications
Input Forms Menu
Input Forms Menu
The Input Forms Menu, shown in Figure 5-14., is used to specify one or more forms whose
data is to be written to the output file. You can specify as many input forms sequences as
there are forms in the forms file, or you can specify as few as one input forms sequence.

Each input forms sequence may contain a single form name or it may contain up to 10 form
names. The first form in the sequence (or the only form) is the reformat identifier. All
reformat identifiers must be unique to the reformat file. Subsequent form names in the
sequence need not be unique.

Figure 5-14. Input Forms Menu

Fields

Forms in Input Sequence

The form names in any input forms sequence must be existing forms in the
forms file named on the Forms File Menu for this reformat file. (Refer to
Figure 5-10.)

Care must be taken when you specify a sequence of forms. The form names following the
reformat identifier must be in exactly the same order as the forms appear in the batch file.
(Each data record in the batch file is entered on a single form and the name of this form is

PREV
FORM

NEXT
FORM

REFRESH PREV NEXT MAIN/
RESUME

EXIT

FORMSPEC v.uu.ff Input Forms Menu REFORMAT FILE: filename

Forms in Input Sequence: [] (Reformat identifier)

[]

[]

[]

[]

[]

[]

[]

[]

[]
206 Chapter 5

Reformatting Specifications
Input Forms Menu
included with the data in the batch file.) To illustrate, assume the following input forms
sequence:

FORMA (reformat identifier)
FORMB
FORMD

And assume the first three records of data in the batch file were entered on forms in the
sequence:

FORMA
FORMB
FORMC

The data entered on FORMA of this sequence will not be written to the output file. This is
because of the method used by REFORMAT to match batch file records with input forms
sequences in the reformat file.

REFORMAT:

• Reads records from the batch file in sequential order from the beginning. (Assume the
first record was entered on FORMA.)

• Checks all reformat identifiers in the reformat file until it finds FORMA. (Assume
FORMA is found as the identifier for the sequence FORMA, FORMB, FORMD.)

• Reads the next record from the batch file. (Assume the next record was entered on
FORMB.)

• Checks form names in the input forms sequence following FORMA. (Assume the next
form in the sequence is FORMB, and the check is satisfactory.)

• Reads the next record from the batch file. (Assume the next record was entered on
FORMC.)

• Checks next form name in the input forms sequence after FORMB. (Assume this form is
FORMD; the form names do not match.)

• Skip data record written on FORMA.

REFORMAT then takes the next record in the batch file, in this case, the record written on
FORMB, and searches the entire reformat file for a reformat identifier, FORMB. If such a
reformat identifier is found, it checks the rest of the input forms sequence (as described
above) to make sure that all forms in the sequence match the forms on which the batch
records following FORMB were entered.

When a match is successful, each batch record is discarded as it is processed. If the match
is unsuccessful, only the first batch record in a sequence is discarded.
Chapter 5 207

Reformatting Specifications
Output Record Menu
Output Record Menu
An Output Record Menu, shown in Figure 5-15., is issued for every input forms sequence.
It specifies which fields in the input forms are to be written to an output record. The output
record definition may generate one output record, many output records, or only a portion of
an output record. The order in which fields are specified is the order in which they are
written to the output record.

The Output Record Menu is not a true menu screen. Rather than selecting from predefined
options, you enter the reformat fields in a freeform area on the screen. Once the output
record definition is specified, you will have a complete list of the output record image for
the forms specified in the corresponding input forms sequence. At a glance, you can see the
order in which fields will appear and where each record begins. If only a portion of a field is
to be written, this too is evident from the output record definition. As such, the output
record definition can be thought of as the "screen image" of the reformat similar to the
screen image generated for each form in the forms file.

Figure 5-15. An Example of an Output Record Menu

When the Output Record Menu is displayed, the cursor is positioned to the first position in
the first line in which you can enter an output record specification. Tabs are set so that
when you press TAB , the cursor is moved to each subsequent position. Figure 5-16.
illustrates an example of a completed Output Record Menu specification.

PREV
FORM

NEXT
FORM

REFRESH PREV NEXT MAIN/
RESUME

EXIT

FORMSPEC v.uu.ff Output Record Menu REFORMAT IDENTIFIER: A

INPUT OUTPUT

Field Name Substring Form Name Field Name Strt Len Strt
Strt Len Col Rec

^ ^ ^ ^ ^ ^ ^ ^
1 2 3 4 5 6 7 8
208 Chapter 5

Reformatting Specifications
Output Record Menu
Figure 5-16. Sample Output Record Menu

When the output record definition has been defined, press ENTER. A Field Menu is issued
for each field name associated with an input field name in the output record definition.

Note that the only required entry is the field name; other specifications depend on the
particular definition. You can specify a constant (literal string, system constant, or
numeric equivalent of an USASCII character) instead of a field name. A constant may
start anywhere on the line, but cannot extend past column 75.

NOTE Since the output record specifications are entered on a freeform area of the
screen, you can type anywhere on the screen. You should be careful not to
delete or overwrite lines accidentally. The field specifications should be
entered in the positions to which the tabs are set.

The specifications under the heading INPUT identify the fields (or portions of fields) to be
accessed from the batch file. The specifications under OUTPUTdetermine how the field is to
be written to the output record.

You may enter as many specification lines as there is room in your terminal memory.
(Check the terminal memory capacity in the reference manual for your terminal.)

PREV
FORM

NEXT
FORM

REFRESH PREV NEXT MAIN/
RESUME

EXIT

FORMSPEC v.uu.ff Output Record Menu REFORMAT IDENTIFIER: A

INPUT OUTPUT

Field Name Substring Form Name Field Name Strt Len Strt
Strt Len Col Rec

“ship to:” *
NAME FORMA
ADDR 1 20 FORMA ADDR1
ADDR 21 30 FORMA
ZIP FORMA
$RS

“Account Number:”
ACCTNO FORMA ACCTB *
$RS
-

Chapter 5 209

Reformatting Specifications
Output Record Menu
Fields

Field Name (Required)

Identifies the field in the batch file to be written to the output file. The field
name must identify an existing field in one of the forms specified in the
preceding input sequence.

The field name need not be unique to the output definition. But, if it is not
unique, a different output field name must be entered for each identical
input field name.

Substring Strt (Optional)

If you want to retrieve a portion of an input field that is not at the
beginning of the field, specify the first character position that you want
written to the output field as the Subst Strt value. Character positions in a
field are numbered from 1. For example, suppose you want only the last
five characters of a 20-character field written to the output file, enter 16
under Subst Strt. Used in combination with the Len parameter, you can
specify any group of consecutive characters in an input field.

Default = First character in field (1).

Substring Len (Optional)

Allows you to retrieve only a portion of an input field. For example, if you
want only the first five characters in a field, leave the Subst Strt field
blank and enter 5 under Len. By combining the Len specification with the
Subst Strt specification, you can select any consecutive group of characters
in the input field. For example, to select characters 5 through 14 of the
input field, set Subst Strt to 5 and Len to 10.

Default = length of input field - Subst Strt + 1

Form Name (Optional)

Identifies the form in which the input field appears. This parameter can be
included when a field with the same name appears in more than one form
in the forms file. If omitted, and the field name is not unique, the first form
in the input forms sequence in which the field appears is assumed.

Default = First form in which field appears.

Field Name (Optional)

In case the input field name is not unique, you can give the field (or portion
of the field) a unique identifier in this position. Any legal 15-character
identifier can be specified. (Note that any lowercase letters are shifted to
all uppercase by REFSPEC.)

Default = Input field name.
210 Chapter 5

Reformatting Specifications
Output Record Menu
Strt Col (Optional)
If you want the field to start in a particular column in the output record
rather than immediately after the preceding field, you can specify a
starting column. Column numbers in this case correspond to character
(byte) positions in the output record. Columns are numbered starting with
1.
When you specify a new starting column, REFSPEC checks to make sure
the starting column does not overwrite a previous field in the output
record. If the starting column is not correctly specified, REFSPEC issues
an error message.
One reason for changing the starting column is to ensure that a field starts
on a word boundary. For example, suppose the first field to be written is
five characters long. You can either increase the length of this field in the
"Len" position to an even number of characters, or you can specify a new
starting column for the next field.
Default = Consecutive fields with no intervening spaces.

Len (Optional)

You can specify the number of characters for the output field in this
position. If you specify a length shorter than the input field, character type
data is truncated when it is written to the output field; numeric data may
not be converted if the field is too short.

If you plan to add a check digit to the field, you must specify the output
field length as at least one character longer than the input field length.

Default = Input field length (or substring length).

Strt Rec (Optional)

In order to separate the output into records, you must specify the
beginning of each record. Any character entered in the Strt Rec position of
the Output Record Menu marks the associated field or constant as the
beginning of a new record. For consistency, you should select a standard
character, such as an asterisk.

If a starting record is not marked in the output record definition, the fields
in the current definition follow the fields in the previous definition as part
of the same record.

Default = Field is not first field.

Constant (Optional)

You can specify a constant instead of a field name. The constant can be any
of the following:

• a character string (literal) enclosed within single or double quotes;

• the numeric equivalent of a USASCII character preceded by a dollar
sign ($);

• one of the system-defined constants:

— $CR carriage return
Chapter 5 211

Reformatting Specifications
Output Record Menu
— $LF line feed
— $GS group separator
— $US unit separator
— $RS record separator

The following are acceptable constants:

"Part No." 'ABC' $65 $34"NAME"$34 $RS

Constants may not be specified on the same line as a field name. More
than one constant can be specified on a line. When multiple constants are
specified, they are concatenated into a single literal value. For example:
"Part No."
$GS $65 .

Blanks are not significant except within quoted strings, where they must
be included.

A constant or group of concatenated constants must not extend past
column 75 of the screen. Apart from this restriction, they can appear
anywhere on the line.

Default = No constant.
212 Chapter 5

Reformatting Specifications
Output Field Menu
Output Field Menu
A separate Output Field Menu shown in Figure 5-17., is displayed for every input field
named in the preceding Output Record Menu. The Output Field Menus are issued in the
order the field names were entered in the output record definition. No Output Field Menu
is issued for constants.

The Output Field Menu displays the information for a field entered on the preceding
output record definition. In addition, it allows you to change the data type of a field from
CHAR to any of the legal FORMSPEC data types. It also allows some formatting in
addition to that performed by default when data is moved from the input field in the batch
file to the output field in the output file.

Figure 5-17. Output Field Menu

The first line of the menu displays the input field values defined for this field on the
preceding Output Record Menu. None of these values can be changed.

The second line displays the output field values defined for this field. Except for the data
type, these values were established on the preceding Output Record Menu and cannot be
changed on this menu. The data type of all fields to be written to the output file is
defaulted to CHAR. This is done because only character type fields are written to the
output record exactly as they were entered. If you want the field to be formatted to the
format of a particular data type, you must change the data type specification on the
Output Field Menu. (Refer to Table 5-2. on the following page for the standard formatting

PREV
FORM

NEXT
FORM

REFRESH PREV NEXT MAIN/
RESUME

EXIT

FORMSPEC v.uu.ff Output Field Menu REFORMAT FILE: A

[ADDR]INPUT Field:

L--Left
R--Right
C--Center

[1]Start:

[]JUSTIFY

[30]Length: [FORMA]Form:

[ADDR1]OUTPUT Field: [1]Start: [20]Length: [CHAR]Data Type:

STRIP All ________________ Leading ________________ Trailing _____________

INSERT CHECK DIGIT [] 10/11

F--Float

R--Right
Z--Zoned

[]SIGN []PLUS SIGN? Y/N

L--Left

N--No sign

FILL All [] [] []Leading Trailing
Chapter 5 213

Reformatting Specifications
Output Field Menu
by data type.)

The remaining items in the Output Field Menu allow you to specify reformatting to be
performed on the data item when it is moved to the output field. Note that these
reformatting specifications cannot override the standard conversion and reformatting
performed on the item based on the destination data type.

Data Type

You may change the output data type to a type other than CHAR. If, for example, the data
type of the input item is NUM2, you can retain this data type by changing the output data
type from CHAR to NUM2. This causes the value to be reformatted according to the
standard rules for data type reformatting.

To illustrate, when a NUM2 item entered as 000123.12 is moved to a NUM2 field, leading
zeros are replaced by blanks and it is right justified in the field. If moved to a CHAR field
the value is moved to the output field exactly as entered. For another example, assume a
date of type MDY is entered as MAR 6, 1986 . If the output data type is left as CHAR, the
date is written to the output field as MAR 6, 1986 . If, on the other hand, the output data
type is changed to MDY, the date is written as 03/06/86 . When you change a data type to
one other than CHAR and different from the original data type, you must take care since
not all data types are interchangeable, and those that are may require conversion of the
data. Allowed changes are:

Any type to character No conversion — data is left exactly as it was entered.

Numeric to numeric Convert numeric value to conform to the destination type (DIGIT,
NUM, NUMn, or IMPn).

Date to date Convert date to dd/dd/dd ; the exact order depends on the destination date
type (MDY, DMY, or YMD).

Field Formatting

The remaining Output Field Menu specifications affect the actual data in the field. These
specifications (STRIP, JUSTIFY, SIGN, FILL, and CHECKDIGIT) are performed in
addition to the standard formatting performed when data is moved from an input (batch)
field to an output field.

The standard formatting is described in Table 5-2. In general, the data is first converted to
the destination data type, if necessary. Then all other formatting is performed. Note that
the data is converted only if the output field type is specifically changed to a type other
214 Chapter 5

Reformatting Specifications
Output Field Menu
than CHAR.

Table 5-2. Standard Formatting by Data Types

Destination
Data Type

Standard Formatting

CHAR Conversion: none. Data movement: Move data to output field, character by
character from leftmost character (including blanks) through last character
(including blanks). If the data is shorter than the output field, pad with blanks on
the right. If the data is longer than the output field, truncate on the right.

Assume a value with length=10 ∆∆∆CHAR∆∆∆
moved to CHAR field, length=10 ∆∆∆CHAR∆∆∆

to CHAR field, length=15 ∆∆∆CHAR∆∆∆∆∆∆∆∆
to CHAR field, length=5 ∆∆∆CH

DATE Conversion and Movement: Convert entered date to dd/dd/dd , where the order of
digits depends on the date type. A date is written to MDY type field as mm/dd/yy ;
to DMY type field as dd/mm/yy ; to YMD field as yy/mm/dd . Write converted date,
character by character, to the output field starting with the leftmost character. If
the date is shorter than the field, fill with blanks on the right; if longer than the
field, issue error message.

Assume an MDY date, length=12 JAN 31, 1986
moved to MDY field, length=12 01/31/86 ∆∆∆

to DMY field, length=8 31/01/86
to YMD field, length=8 86/01/31

to any date field, length=7 ERROR

DIGIT Conversion and Movement: Strip any leading zeros. Right justify converted data
in the output field. If the data is shorter than the field, pad it with blanks on the
left. If the data is too long for the output field, strip any leading blanks, one at a
time until the data fits. If, after all leading blanks are removed, the data does not
fit, issue error message.

Assume an integer, length=7 0012345
moved to DIGIT field, length=7 ∆∆12345

to DIGIT field, length=10 ∆∆∆∆∆12345
to DIGIT field, length=5 12345
to DIGIT field, length=4 ERROR
Chapter 5 215

Reformatting Specifications
Output Field Menu
NUMn\or
\NUM

Conversion and Movement: Strip any commas, sign, or leading zeros. Float any
minus sign to position preceding the first nonblank character. Right justify data
in the output field. If the data is shorter than the field, pad with blanks on the
left. If the data is too long, strip leading blanks one at a time until data fits. If,
after all blanks are removed, the data is still too long, strip trailing fractional
zeros, one by one. Then, if necessary, round fractional digits, one place at a time,
until the value fits in the output field. (Note that rounding may change the value
of the integer part.) If the value still does not fit, issue error message.

Assume value with length=10 1,234.510
moved to NUM3 field, length=10 ∆∆1234.510

to NUM3 field, length=ll ∆∆∆1234.510
to NUM3 field, length=6 1234.5
to NUM3 field, length=4 1235
to NUM3 field, length=3 ERROR

Assume signed value, length=10 +1234.510 ∆
moved to NUM2 field, length=10 ∆∆∆1234.51

to NUM2 field, length=3 ERROR

Assume signed value, length=7 -12.10 ∆
moved to NUM2 field, length=7 ∆-12.10

to NUM2 field, length=3 -12
to NUM2 field, length=2 ERROR

IMPn Conversion and Movement: Strip any decimal indicator, commas, sign, or leading
zeros. Float any minus sign to the position preceding the first nonblank digit.
Right justify data in the output field. If the data is shorter than the field, pad
with blanks on the left. If the data is too long, strip leading blanks, one by one. If
the data does not fit and only the fractional part remains, strip leading fractional
zeros. (Trailing fractional zeros are never stripped from an IMPn field.) If the
data still does not fit, issue error message.

Assume a value, length=10 -123.0120 ∆∆
moved to IMP4 field, length=10 ∆∆∆-1230120

to IMP4 field, length=8 -1230120
to IMP4 field, length=7 ERROR

Assume a value, length=7 .0120 ∆∆
to IMP4 field, length=3 120

to IMP4 field, length=2 ERROR

Table 5-2. Standard Formatting by Data Types

Destination
Data Type

Standard Formatting
216 Chapter 5

Reformatting Specifications
Output Field Menu
REFSPEC performs all formatting (user-defined and standard) in the following order:

1. Convert data to destination data type (unless type is CHAR). If numeric type data does
not fit in the output field after conversion, the output field is set to all blanks,

2. STRIP (user-specified)

3. Move data to output field, justified left, and inserting check digit if specified, and
padding with blanks as needed. If character type data does not fit, it is truncated on the
right. If a data field does not fit, the output field is set to all blanks.

Perform any CHECKDIGIT (user-specified) and/or JUSTIFY (user-specified).

4. SIGN (user-specified)

5. FILL (user-specified)

Note that step 3 includes data type formatting with data movement and user-specified
justification and check digit insertion. These steps are performed simultaneously so that
significant data is not lost due to justification. For example, if you justify data in a field to
the left, the data is justified before movement; but if you justify data to the right, the
justification is performed after the data is moved.

Any changes (truncation, conversion, and so forth) made to the data in the output field do
not affect the original data in the input field.

STRIP

This option lets you remove a particular character or group of characters from data
entered in the field. The following three options are provided:

STRIP ALL characters

Strips each occurrence of each specified character. The remaining
characters are shifted left to fill the space created by stripping the
specified characters.

STRIP LEADING characters

Strips each occurrence of each specified character only if it appears before
any other nonblank characters in the field. Stripped characters are
replaced by blanks. It is meaningless to strip leading blanks; if you want to
shift data left, use JUSTIFY LEFT .

STRIP TRAILING characters

Strips each occurrence of each specified character only if it appears after
all other nonblank characters. Stripped characters are replaced by blanks.

In Table 5-3. are examples using STRIP where both the input field and the output field are
12 characters long and are the same data type; a blank is shown by the character ∆.
Chapter 5 217

Reformatting Specifications
Output Field Menu
Note that in the last IMP2 example, stripping the last character moves the implied
decimal to the position between 4 and 5.

JUSTIFY

This specification lets you move data to the right or left boundary of the output field or to
center it in the field. These three options are specified as:

JUSTIFY RIGHT

Moves the data to the right until the last character in the output field is
nonblank, padding with blanks on the left as the data is moved.

JUSTIFY LEFT

Moves data to the left until the first character in the output field is
nonblank, padding with blanks on the right as the data is moved.

JUSTIFY CENTER

Positions the data so that there is an equal number of blanks to the right
and left of the nonblank data. If the total number of blanks in the field is
not even, the extra blank is on the right.

If JUSTIFY is not specified, numeric type data is justified right and date type data is
justified left. No justification is performed on character type data. In Table 5-3., the
examples illustrate the three types of justification. It is assumed the input and output data

Table 5-3. Examples Using STRIP

Data Type Input Value Specification Output Value

CHAR ∆ACBAXCBYZBB none
STRIP ALL "ABC"
STRIP LEADING "ABC"
STRIP TRAILING "ABC"

∆ACBAXCBYZBB
∆XYZ∆∆∆∆∆∆∆∆
∆∆∆∆∆XCBYZBB
∆ACBAXCBYZ∆∆

DIGIT ∆234567 ∆∆∆∆ none
STRIP ALL "35"
STRIP LEADING "0"
STRIP TRAILING "7"

∆∆∆∆∆1234567
∆∆∆∆∆12467 ∆∆∆
∆∆∆∆∆12345.67
∆∆∆∆∆3456 ∆

NUM2 ∆12,345.67 ∆∆ none
STRIP ALL "35"
STRIP LEADING "01"
STRIP TRAILING "7"

∆∆∆-12345.67
∆∆∆-124.67 ∆∆
∆∆∆∆-2345.67
∆∆∆-12345.6 ∆

IMP2 ∆12,34567 ∆∆∆ none
STRIP ALL "35"
STRIP LEADING "01"
STRIP TRAILING "7"

∆∆∆∆-1234567
∆∆∆∆-12467 ∆∆
∆∆∆∆∆-234567
∆∆∆∆-123456 ∆
218 Chapter 5

Reformatting Specifications
Output Field Menu
types are the same.

Sign

With the SIGN specification, you can indicate where you want either a plus or minus sign
placed in the output field. Any plus sign is removed automatically when a number is
moved to the output field unless you specifically request that it be included with the PLUS
option of SIGN. SIGN has the following options:

SIGN LEFT The sign is placed in the first character position of the field. If this position
contains a blank, the sign replaces it. Otherwise, data may be moved to the
right of a leading zero stripped to accommodate the sign. If needed, a
fractional digit is rounded. If the sign still does not fit, an error occurs and
the field is set to blanks.

SIGN RIGHT The sign is placed in the last character position in the field. As with SIGN
LEFT, every attempt is made to fit the sign in the field, but if it results in
too many characters, an error occurs and the field is set to blanks.

SIGN FLOAT The sign is placed immediately preceding the first nonblank digit in the
field. As with SIGN LEFT a leading zero may need to be stripped or a
fractional digit rounded to accommodate the sign. If it still does not fit, an
error occurs and the field is set to blanks.

SIGN ZONE The sign is represented as an "overpunch" character in the last digit of the
field. (See Table 5-2. for the value of a zoned sign.) No movement of data is
required for this option.

NO SIGN Any sign in the input field is stripped from the field when it is moved to
the output record.

PLUS All the preceding specifications apply to either a minus or a plus sign. The
default is to insert only minus signs. If you want to retain a plus sign, you
must enter Y in the PLUS option as well as indicate where you want the
sign positioned.

If SIGN is not specified, a minus sign is floated for numeric type data and any plus sign is
stripped; character type data is written exactly as entered.

Table 5-4. Examples of Three Types of Justification

Data Type Input Value Specification Output Value

CHAR ∆ABCDEF∆∆ JUSTIFY R
JUSTIFY L
JUSTIFY C

∆∆∆∆ABCDEF
ABCDEF∆∆∆∆
∆∆ABCDEF

DATE 1/30/86 ∆∆∆ none
JUSTIFY R
JUSTIFY C

1/30/86 ∆∆
∆∆01/30/86
∆01/30/86 ∆

DIGIT NUM
or IMP

∆∆123456 ∆∆ none
JUSTIFY L
JUSTIFY C

∆∆∆∆123456
123456 ∆∆∆∆
∆∆123456 ∆∆
Chapter 5 219

Reformatting Specifications
Output Field Menu
In Table 5-6. are examples that illustrate the use of the SIGN option. The input and output
fields are assumed to be the same data type.

Fill

This specification allows you to replace leading, trailing, or all blanks in a field by a
particular character. The specified character may be any printable character. It may not be
a nonprinting control character, nor may it be more than one character. If FILL is not
specified, no default replacement is made.

FILL ALL character

Replaces all blanks in the data with the specified character.

FILL LEADING character

Replaces all leading blanks with the specified character.

FILL TRAILING character

Replaces all trailing blanks with the specified character.

Table 5-5. Correspondence Between Signed Digits and Characters

Positive Values Positive Values Negative Values Negative Values

Signed Digit Character Signed Digit Character

+0 { -0 }

+1 A -1 J

+2 B -2 K

+3 C -3 L

+4 D -4 M

+5 E -5 N

+6 F -6 O

+7 G -7 P

+8 H -8 Q

+9 I -9 R

Table 5-6. Example Using the SIGN Option

Data Type Input Value Spec. Output Value

NUMO -123456
+123456
-123456
-1234567
+1234567
-1234567

none
none
NO SIGN
SIGN ZONE
SIGN ZONE, PLUS
SIGN RIGHT

∆∆∆-123456
∆∆∆∆123456
∆∆∆∆123456
∆∆∆123456P
∆∆∆123456G
∆∆1234567-
220 Chapter 5

Reformatting Specifications
Output Field Menu
Default = none

You can specify both FILL LEADING and FILL TRAILING with no redundancy. But, you
must not specify either FILL LEADING or FILL TRAILING with FILL ALL . Since the FILL
ALL fills all the blanks, any other FILL specification for the field is diagnosed as an error.
The examples in Table 5-7. illustrate use of the FILL option. The input and output data
types are the same.

FILL LEADING and FILL ALL are not sensitive to the sign of a signed number. For example,
the first set of specifications in Table 5-8. produces a meaningless result because the sign is
floated before the field is filled with zeros; the second set of specifications produces the
desired result.

Check Digit

You can request that a check digit be added to the end of any digit or alphabetic value by
entering 10 or 11 in the CHECKDIGIT option of the Output Field Menu. The check digit is
calculated by modulo 10 or modulo 11 depending on which you specify.

Check digits can be added only to fields that are type DIG or type CHAR and that contain
only digits or letters of the alphabet.

If ADD CHECK DIGIT is not specified as 10 or 11, no check digit is added.

NOTE This specification adds a check digit. If you want to verify a number that
contains a check digit, this can be requested in the original form design using
FORMSPEC (refer to Chapter 4).

If the data is right justified, the nonblank digits in the field are moved left one character
position to make room for the check digit. Note that when a check digit is to be added to a
field, the length of the output field must be specified as at least one character longer than
the input field. (Field length is increased on the Output Record Menu, not the Output Field
Menu.) Refer to Appendix D for a description of how check digits are calculated if modulo

Table 5-7. Examples Using the FILL Option

Data Type Input Value Specification Output Value

CHAR ∆∆ABC∆DEF∆∆ FILL ALL*
FILL LEADING* FILL
TRAILING*

ABC*DEF
**ABC∆DEF∆∆
∆∆ABC∆DEF**

NUM2 ∆∆∆∆∆123.75 FILL LEADING* *****123.75

Table 5-8. Example Using the FILL LEADING and FILL ALL Option

Input Value Specification Output Value

- ∆∆999 FLOAT SIGN
FILL LEADING 0

000-999

- ∆∆∆999 SIGN LEFT
FILL ALL 0

- ∆∆∆999
-000999
Chapter 5 221

Reformatting Specifications
Output Field Menu
10 or modulo 11 is specified.

Examples:

CHECKDIGIT 10 Calculate check digit according to modulo 10 formula and add it
following rightmost nonblank digit.

CHECKDIGIT 11 Calculate check digit according to modulo 11 formula and add it
following rightmost nonblank digit.

If the product generated by a CHECKDIGIT 11 calculation evaluates to 10,
this is considered invalid and the following message is issued when
REFORMAT is executed:

"Check digit is invalid for modulus 11 calculation."

If the product generated by a CHECKDIGIT 11calculation evaluates to 11, a
zero is appended to the basic number.
222 Chapter 5

Reformatting Specifications
Running REFORMAT
Running REFORMAT
Once the reformat specifications have been defined and are stored in a compiled reformat
file, you can run REFORMAT to actually reformat the data in the batch file and write it to
the output file.

REFORMAT is not an interactive program. That is, it does not prompt for any information.
It is usually run as a batch job, though it can be run from a terminal directly or as a
"streamed" job.

REFORMAT needs the names of three files: the "reformat" file containing the reformat
specifications, the "batch" file containing the data to be reformatted, and the "output" file
to which the reformatted data is written. To specify these files, use MPE :FILE commands
before running REFORMAT, as follows:

:FILE REFENTITY = reformatfile
:FILE BATCH= batchfile
:FILE OUTENTITY = outputfile

For example, assuming a reformat file named REF1, a batch file named BAT1, and an
output file named OUT1, the following commands are needed to run REFORMAT:

:FILE REFENTITY =REF1
:FILE BATCH=BAT1
:FILE OUTENTITY =OUT1
:RUN REFORMAT.PUB.SYS

These file equations show the required files for running REFORMAT. You will also
probably want to list the reformatted data and, if you are running REFORMAT from a
terminal, you will want error messages listed on the line printer rather than on the
terminal screen.

A list of the reformatted data is very important when you run REFORMAT the first time,
so you can see whether your reformat specifications are doing what you expect. To list
reformatted data, include the file TESTLIST in the file equation that sends the listing to the
line printer:

FILE TESTLIST;DEV=LP

Another important file, particularly when you are running a session, is the error message
file. This file REFLIST normally is written to $STDLIST . Since $STDLIST in a session is the
terminal, you may want to equate this file to the line printer with the command:

:FILE REFLIST;DEV=LP

Concatenating Batch Files

Data from a batch file can be appended to data from another batch file in an existing
output file by issuing the following commands:

:FILE REFENTITY = reformatfilename
:FILE OUTENTITY = outputfilename
:FILE BATCH= firstbatchfilename
:RUN REFORMAT.PUB.SYS
Chapter 5 223

Reformatting Specifications
Running REFORMAT
These commands will run REFORMAT using the three files specified in the :FILE
commands. Next, issue the following commands:

:FILE OUTENTITY = outputfilename ;ACC=APPEND
:FILE BATCH= secondbatchfilename
:RUN REFORMAT.PUB.SYS

The outputfile now contains the reformatted data from the first and second batch files.

Using a User-Defined Command

You may want to combine the three :FILE commands required to run REFORMAT into
one user-defined command (UDC). You enter a UDC through a text editor, as follows:

REFORMAT REFSPECS, DATA, OUTPUT=$STDLIST
FILE REFENTITY =!REFSPECS
FILE BATCH=!DATA
FILE OUTENTITY =!OUTPUT
FILE REFLIST;DEV=LP
FILE TESTLIST;DEV=LP
RUN REFORMAT.PUB.SYS

Use the SETCATALOG command to set the UDC.

The UDC definition is recorded by the MPE :SETCATALOG command. Now, all you need to
do in order to run REFORMAT, is to enter the following command:

:REFORMATreformatfilename, batchfilename, outputfilename

Suppose your reformat file is named REF1, your batch file is named BAT1, and your output
file is OUT1, run REFORMAT as follows:

:REFORMAT REF1, BAT1, OUT1

Streaming REFORMAT

You may also want to stream REFORMAT. You must first create a text file of the
commands to run the job through a text editor, and then issue the MPE :STREAMcommand
to actually run the program. For example:

!JOB USER.ACCOUNT
!FILE REFENTITY =REF1
!FILE BATCH=BAT1
!FILE OUTENTITY =OUT1
!FILE TESTLIST;DEV=LP
!FILE REFLIST;DEV=LP
!RUN REFORMAT.PUB.SYS
!EOJ

To stream this job, assuming you named the text file REFSTREM, use the following
command:

: STREAM REFSTREM
224 Chapter 5

Reformatting Specifications
Running REFORMAT
In many cases, a streamed job is part of a group of streamed jobs. When REFORMAT is
part of a series of program executions, you should precede the RUN REFORMATcommand by
a MPE :CONTINUE command. Otherwise, any fatal error in REFORMAT (such as an
inappropriate file name) prevents subsequent programs from executing. For example:

!JOB
!FILE ...
!FILE ...
!FILE ...
!CONTINUE
!RUN REFORMAT.PUB.SYS
!SPLGO MYPROG
!EOJ

.

.

.

Chapter 5 225

Reformatting Specifications
Running REFORMAT
226 Chapter 5

USING VPLUS INTRINSICS
Multipurpose
6 USING VPLUS INTRINSICS

A set of callable intrinsics is provided by VPLUS. Table 6-1. lists the VPLUS intrinsics in
alphabetic order and summarizes their functions. A full description of each intrinsic
appears later in this section. They can be used by any application, either for data entry or
for other terminal related applications. The VPLUS intrinsics manage the interface
between an application, the terminal, a forms file, the entered data, and, optionally, the
batch file to which entered data may be written. These intrinsics are used by the VPLUS
Data Entry Program (ENTRY) to control data entry.

Appendix A contains listings in different programming languages of sample applications.
These listings provide useful examples of how to use the VPLUS intrinsics.

Multipurpose
The VPLUS intrinsics can be called by any application that displays forms on a terminal
supported by VPLUS. With the exception of the batch file management intrinsics used
specifically for data entry, the VPLUS intrinsics can be used in conjunction with
FORMSPEC to allow for data base inquiries and updates via the application, as well as
any other operation that results in the display or collection of data through a terminal
form. Such applications can also make use of the capabilities that VPLUS provides for
validating input data.

Multilanguage
The VPLUS intrinsics can be called from programs written in any of the supported
programming languages listed in Appendix A. Additionally, some languages (also listed in
Appendix A) provide the programmer with a special interface with terminals and forms, as
described in their respective reference manuals. With these languages, the programmer
does not call the VPLUS intrinsics directly. Instead, the programmer specifies the
statements appropriate to the special interface. Each of the supported programming
languages calls the VPLUS intrinsics with the same parameters, and these parameters
are essentially the same type and size. So that the intrinsics can adjust to any peculiarities
of the calling programming language, one input sub-parameter specifies the language of
the calling program.
Chapter 6 227

USING VPLUS INTRINSICS
Error Detection
Error Detection
If a system or program error causes a VPLUS intrinsic to fail, an error code is returned to
the calling program. Once an error has been detected, subsequent intrinsic calls do not
perform any functions until the program detects the error and performs its own error
routine. In order for processing to continue after an error is detected, the calling program
must reset the error argument. This method of error handling means that intrinsic errors
do not cause unexpected program termination.

Table 6-1. Summary of VPLUS Intrinsics

INTRINSIC FUNCTION

VCHANGEFIELD Changes field attributes for specified fields at run-time.

VCLOSEBATCH Closes batch file.

VCLOSEFORMF Closes forms file.

VCLOSETERM Closes terminal file.

VERRMSG Returns message associated with error code.

VFIELDEDITS Performs field phase processing specifications.

VFINISHFORM Performs final phase processing specified for form.

VGETBUFFER Copies contents of data buffer into application.

VGETFIELD Copies field contents from data buffer into application.

VGETFIELDINFO Returns field information.

VGETFILEINFO Returns forms file information.

VGETFORMINFO Returns form information.

VGETKEYLABELS Returns global or form function key labels.

VGETLANG Returns the native language ID of the forms file being executed.

VGETNEXTFORM Reads next form into form definition area of memory; window and data
buffer are not affected.

VGETtype Copies field contents from data buffer to application, converting data to
specified type.

VINITFORM Sets data buffer to initial values for form.

VLOADFORMS Loads the specified forms into terminal local form storage memory.

VOPENBATCH Opens batch file for processing.

VOPENFORMF Opens forms file for processing.

VOPENTERM Opens terminal file for processing.

VPLACECURSOR Positions the cursor at a specified field after a form is displayed.
228 Chapter 6

USING VPLUS INTRINSICS
Error Detection
VPOSTBATCH Updates end of file mark in batch file after last record referenced.

VPRINTFORM Prints current form and data buffer on off-line list device.

VPRINTSCREEN Prints entire contents of screen on off-line list device.

VPUTBUFFER Copies data from application to data buffer.

VPUTFIELD Copies data from application to field in data buffer.

VPUJTtype Copies data of specified type from application to data buffer, converting
data to external format.

VPUTWINDOW Copies message from application to window area in memory for later
display.

VREADBATCH Reads record from batch file into data buffer.

VREADFIELDS Reads input from terminal into data buffer.

VSETERROR Sets error flag for data field in error and copies error message to window
area.

VSETKEYLABEL Temporarily sets a new label for a function key.

VSETKEYLABELS Temporarily sets new labels for function keys.

VSETLANG Specifies the native language ID to be used with an international forms file.

VSHOWFORM Updates terminal screen, merging the current form, any data in buffer, any
key labels, and any message in window.

VUNLOADFORM Unloads a specified form from terminal local form storage memory.

VWRITEBATCH Writes data from data buffer to batch file.

Table 6-1. Summary of VPLUS Intrinsics

INTRINSIC FUNCTION
Chapter 6 229

USING VPLUS INTRINSICS
HOW INTRINSICS ARE USED
HOW INTRINSICS ARE USED
The VPLUS intrinsics control the interface between forms stored in a forms file, a terminal
screen, data entered on a form, and an application. Table 6-1. illustrates the relation
between the VPLUS intrinsics, terminal, forms file, application, data file or optional batch
file, and the buffer areas in memory used by the intrinsics.

The intrinsics use a buffer area in memory for the form definition and another buffer area
for the data. A third area in memory is used as a buffer for the window area, the line on the
form to which error and other messages are sent. User-defined function key labels also
reside in a buffer area while they are active. There is a buffer area for global labels and
another for form-specific labels. These buffer areas are managed by VPLUS and are in
addition to any buffers the application may define.

Form Definition Area

A form displayed on the terminal screen consists of protected areas (headings, labels,
titles, display-only fields) and the unprotected areas (fields) into which data can be entered
by a user.

Any form written to the terminal screen by VSHOWFORM already resides as a form image in
memory. It may also be stored in terminal local form storage. The form image contains the
description of all the protected areas on the form, except for "display only" fields. It also
contains the visual enhancements for all fields, protected and unprotected. The form image
can be loaded from the forms file into local form storage by VLOADFORMS. Or the form image
is read from the forms file into memory by a call to VGETNEXTFORM. Then it is written to the
terminal screen or loaded into local form storage depending on options that can be set in
VREADFIELDS or VSHOWFORM.

Associated with each form is a set of data specifications — field attributes and processing
specifications defined in FORMSPEC. These specifications are read from the forms file by
VGETNEXTFORMand reside in memory during execution of the form. The field attributes can
be dynamically altered using VCHANGEFIELD.

Data Buffer Area

Besides the form definition, there is a data buffer area in memory that contains data for all
the fields (unprotected and display only) defined for the form. These fields reside in the
buffer in the order they are defined on the screen, from left to right, top to bottom.

When ENTER is pressed at the terminal, VREADFIELDS transfers the user-entered data
from the screen to the data buffer. Before data is entered, if there are any initializations,
VINITFORM sets the appropriate fields in the buffer to initial values. In the field phase,
VFIELDEDITS verifies and possibly modifies the user-entered data in the data buffer
according to any edit specifications defined for the fields. VFINISHFORM performs any final
form modifications specified in the "finish" phase. Data for display-only fields may be
written to the buffer by VINITFORM, VFIELDEDITS , or VFINISHFORM. Any changes to the
data buffer are displayed at the terminal by the next VSHOWFORM.

An application can send data to the buffer with VPUTBUFFER or to a single field in the
230 Chapter 6

USING VPLUS INTRINSICS
HOW INTRINSICS ARE USED
buffer with VPUTFIELD or VPUTtype . Conversely, the data buffer can be copied to an
application with VGETBUFFER, or a single field can be copied with VGETFIELD or VGETtype .

Figure 6-1. Operation of VPLUS Intrinsics

FORMS FILE

BATCH FILE

WINDOW

FORM IMAGE

ERROR FLAGS

FORM DEFINITION

DATA BUFFER

KEY LABELS

APPLICATION
DATA

MEMORY

INIT
RULES

EDIT
RULES

FINISH
RULES

VSHOWFORM
VREADFIELDS

VLOADFORMS VUNLOADFORM

VSHOWFORM

ENTERVOPENTERM
VCLOSETERM

VOPENBATCH
VCLOSEBATCH
VPOSTBATCH

VREADBATCH>

<VWRITEBATCH

VREADFIELDS

VINITFORM

VFIELDEDITS

VFINISHFORM

VGETNEXTFORM

VOPENFORMF
VCLOSEFORMF

VGET..INFO

VPUTWINDOW

VSETERROR

<VGETLANG
VSETLANG>

VCHANGEFIELD

VGETBUFFER
VGETFIELD
VGETtype

VPUTBUFFER
VPUTFIELD
VPUTtype

VGETKEYLABELS

VSETKEYLABEL(S)

VOPENFORMF
VGETNEXTFORM

VPLACECURSOR

Message

Enhancement
Chapter 6 231

USING VPLUS INTRINSICS
HOW INTRINSICS ARE USED
As is done in ENTRY, during data collection, data in the data buffer can be written to the
batch file by VWRITEBATCH. The data in the batch file can be read from the batch file to the
data buffer by VREADBATCH. Typically, data is read from the batch file for display at the
terminal during browse and modify operations.

Window Area

If the field editing specifications detect an error in data entry or data movement, an error
flag is set for the field. When called, VERRMSG returns the message associated with the
error, and VPUTWINDOW puts the message into the window. If an error is detected by an
application, VSETERROR may be used to set the error flag, and also to put any message
associated with the error into the window. Any non-error messages generated by an
application are put in the window by VPUTWINDOW. A subsequent call to VSHOWFORM
displays the contents of the window at the terminal.

Key Label Area

If there are user-defined function key labels, these labels are transferred to the key label
area of memory. There is a key label area for global function key labels and another area
for current form labels (global labels are associated with a forms file; form labels are
associated only with the current form).

Labels may be defined with FORMSPEC. Alternately, VSETKEYLABEL or VSETKEYLABELS
may be used to override existing labels with labels from the application. Global labels
defined with FORMSPEC are transferred to the global key label area when the forms file
is opened by VOPENFORMF. Form labels defined by FORMSPEC are transferred to the form
key label area by VGETNEXTFORM. A global or current form label specified by VSETKEYLABEL
is copied into the appropriate key label area from an application. VSETKEYLABELSfunctions
in the same manner for multiple label definitions. Labels are displayed on HP terminals by
a call to VSHOWFORM.
232 Chapter 6

USING VPLUS INTRINSICS
CALLING VPLUS INTRINSICS
CALLING VPLUS INTRINSICS
The examples in Table 6-2. show the format for calls to the VPLUS intrinsics from each
language, where:

intrinsicname Identifies the intrinsic being called.

parameter At least one parameter is required for each intrinsic; the particular
parameters are listed in the formats for the individual intrinsic
descriptions.

In order to provide consistency between calls from different programming languages, the
following rules apply to all parameters:

• Parameters are passed by reference; this means that a literal value cannot be used as a
parameter. The exception is VSETLANG, which has one parameter that is passed by
value.

• No condition codes are returned; the status of the call is returned in a status word
included as part of the comarea parameter specified in every intrinsic call.

• Return type intrinsics are not allowed; any values returned by the intrinsic are sent to
the comarea or to a passed parameter.

Parameter Types

The data types that are used in VPLUS intrinsics are shown in Table 6-3. Note that not all
types are allowed for all languages.

Table 6-2. Examples of Intrinsic Call Formats for Each Language

Language Intrinsic Call Format

COBOL CALL"intrinsicname" USINGparameter 1 [, parameter 2]…

FORTRAN CALLintrinsicname (parameter 1 [,parameter 2]…)

BASIC label CALL intrinsicname (parameter 1[,parameter 2]…)

PASCAL intrinsicname (parameter 1[,parameter 2]…);

SPL intrinsicname (parameter 1[,parameter 2]…);
Chapter 6 233

USING VPLUS INTRINSICS
CALLING VPLUS INTRINSICS
The VPLUS parameters use only data types that are available in all programming
languages: character, integer, logical, and double integer. The only exceptions are the
transfer and conversion intrinsics, VPUTtype and VGETtype , which use real and long.

Each parameter is described according to its generic type (character, integer, logical, or
double integer). This table is provided for those languages that do not call their data types
by these particular names. For example, if you are coding in COBOL and a parameter is
specified as logical, you can determine from this table that it is an unsigned computational
item that uses from one to four digits.

Table 6-3. Data Types Used for Various Languages

Data Type COBOL FORTRAN BASIC PASCAL SPL

Character DISPLAY
PIC X(n)

Character String Packed Array
of Char

Byte Array

Two-byte
Integer

COMP PIC
S9 thru PIC
S9(4)

Integer*2 Integer Subrange
-32768.. 32767

Integer

Unsigned
Two-byte
Integer

COMP PIC 9
thru PIC 9(4)

Logical Integer (with
value
<32767)

Subrange
0..65535

Logical

Four-byte
Integer

COMP PIC
S9(5) thru
PIC S9(9)

Integer*4 Integer
Integer1

Integer Double

Real
Four-byte

— Real Real Real Real

Long 8-byte — Double
Precision

Long Longreal Long

1In BASIC, a double integer can be represented by two consecutive integers:

• the first contains the high-order digits of values above 32767 or is zero,

• the second contains the low-order digits of values above 32767 or the entire value up to
32767.
234 Chapter 6

USING VPLUS INTRINSICS
COMMUNICATION AREA
COMMUNICATION AREA
Every application that calls VPLUS intrinsics must allocate a data area in the application
for communication with the intrinsics. This area (called the comarea) is the first, and often
the only, parameter in every call to a VPLUS intrinsic. Table 6-4. briefly outlines the
contents of this communication area; Table 6-5. outlines the items used for data capture
devices. It is essential to successful operation of your application that the comarea be
defined exactly as shown in these tables; items that are "Reserved for system use" should
not be set or used after they are initialized. The comarea items listed in Table 6-4. and are
defined below.

Table 6-4. Outline of Communication Area Contents

Data Type Position Offset Name Function

Integer
(Two-byte)

1 0 cstatus status, error returns

2 1 language programming language of calling program

3 2 comarealen length of comarea length of comarea in
two-byte words

4 3 usrbuflen comarea extension length (BASIC)

5 4 cmode current mode (collect or browse)

6 5 lastkey code of last key pressed

7 6 numerrs number of errors in current form

8 7 windowenh code for window enhancement

9 8 multiusage Child of previous form

10 9 labeloption function key label indicator

Character
Array

(16-byte)

11-18 10-17 cfname current form name (15 characters)

19-26 18-25 nfname next form name (15 characters)

Integer

(Two-byte)

27 26 repeatapp current form flag (repeat/append)

28 27 freezapp next form flag (freeze/append)

29 28 cfnumlines number of lines in current form

30 29 dbuflen data buffer length (in bytes)

Integer
(Two-byte)

31 30 Reserved for
system use.

—

Logical
(Two-byte)

32 31 lookahead flag for background form load in
VREADFIELDS

33 32 deleteflag delete current batch record
Chapter 6 235

USING VPLUS INTRINSICS
COMMUNICATION AREA
34 33 showcontrol control flags for VSHOWFORM

Integer
(Two-byte)

35 34 Reserved for
system use.

—

Integer
(Two-byte)

36 35 printfilnum MPE file number of forms file print file

37 36 filerrnum MPE file error number from FCHECK

38 37 errfilenum MPE file number, error message file

39 38 formstoresize number of forms in buffer

Integer
(Two-byte)

40-42 39-41 Reserved for
system use.

—

Integer
(4-byte)

43-44 42-43 numrecs number of records in batch file

45-46 44-45 recnum record # of current batch record

Integer
(Two-byte)

47-48 46-47 Reserved for
system use.

—

Logical
(Two-byte)

49 48 filen MPE file number of terminal

Integer
(Two-byte)

50-54 49-53 Reserved for
system use

—

Logical
(Two-byte)

55 54 retries* max number of retries

56 55 termoptions* suppress msgs. and autoread

57 56 environ term environment: Sys LDEV

58 57 usertime* user defined time out period in seconds

59 58 identifier type of terminal

60 59 labinfo number of function keys; length

Integer
(Two-byte)

61-64 60-63 Reserved for
system use

—

65 64 buffercontrol control ARB processing

66 65 bufferstatus indicate successful data conversion

68-70 67-69 Reserved for
system use

—

Refer to
Table 6-5.

71-85 70-84 — These comarea items are only referenced
when using data capture devices.

Table 6-4. Outline of Communication Area Contents

Data Type Position Offset Name Function
236 Chapter 6

USING VPLUS INTRINSICS
COMMUNICATION AREA
Not supported on data capture devices.

NOTE The comarea size required for each feature can be summarized as follows:

FEATURE COMAREALEN

Data Capture Terminal 85
ARB Feature 70
All Others 60

The position of each item in comarea is given as a two-byte word offset in the table; for
SPL programs the word offset starts with zero; for all other programs, it starts with one.

The comarea must be at least 60 two-byte words long (120 bytes) unless you are working
with an ARB. To take advantage of the ARB feature, the comarea must be at least 70
words long. The COMAREA array size must be at least as large as the sum of the values of
comarealen plus usrbuflen . For BASIC programs, the area must be extended to include
space for the form and data buffers and for internal tables. For non-BASIC programs, the
DL area is used for these buffers and internal tables, and the communication area need
not be extended. However, non-BASIC programs must be careful not to use the DL area for
other purposes when using VPLUS. Refer to Appendix E for more information on the DL
area.

Before calling the first VPLUS intrinsic, you should initialize the entire comarea to binary
zeroes. Do not change comarea values between calls except under documented conditions.
Then, if you are coding in a programming language other than COBOL, you must set

Table 6-5. Communication Area Contents for Data Capture Devices

Data Type Position Offset Name Function

Integer
(Two-byte)

61-70 60-69 Reserved for
system use

—

71 70 numflds number of fields on current form

72 71 splitpause length of pause (in seconds)

73 72 leftmodule type of terminal options

74 73 rightmodule type of terminal options

75 74 keyboard type of keyboard

76 75 display type of display

77 76 keyboardover whether to override or not

Character
(Two-byte)

78 77 errorlight error detection light

Logical
(two-byte)

79-80 78-79 userlightson Lights on/off indicator

Integer
(two-byte)

81-85 80-84 Reserved for
system use

—

Chapter 6 237

USING VPLUS INTRINSICS
COMMUNICATION AREA
language to the code for the programming language you are using. If you are coding in
BASIC, you must set usrbuflen to the number of two-byte words needed for the comarea
extension. This value is displayed on the forms file listing generated by FORMSPEC.
Finally, in order to provide for possible future extensions to comarea , set comarealen to its
current total length.

Parameters

cstatus Two-byte integer to which the intrinsic status is returned. Set to zero if the
call is successful; to a nonzero value if an error occurs. If the error is an
MPE file error, a file error number is also returned to filerrnum (Refer to
Appendix B for a list of the error codes that may be returned to cstatus
with their meaning.) It is up to the user to provide error-handling routines
and to reset cstatus .

language Two-byte integer that indicates the programming language of the calling
program:

• 0 = COBOL II/III

• 1 = BASIC

• 2 = FORTRAN 66

• 3 = SPL

• 5 = PASCAL//HP FORTRAN 77//HP BUSINESS BASIC //C/XL

The language must be set by the calling program before any intrinsic is
called.

comarealen Two-byte integer that indicates the total length of comarea (use 6 0 for
terminals; 85 for data capture devices). The comarealen should be
specified for each comarea to simplify future changes to the length of
comarea .

usrbuflen For BASIC programs only, usrbuflen must be set to the number of
two-byte words to be appended to comarea for the form and data buffers
and internal tables. (Note that the number of bytes required for this
extension is printed when a form is listed through FORMSPEC.) The
usrbuflen need not be set by other languages since VPLUS automatically
uses the DL area for buffers and internal tables. The usrbuflen does not
include the comarea length specified in comarealen , but it must be
contiguous to and immediately follow comarea .

cmode Indicates whether current mode of data entry is collect.

• 0 = Collect Mode

• 1 = Browse Mode

If you want to save the form sequence for $RETURN, you must set cmode to
zero before calling VGETNEXTFORM.

lastkey Two-byte integer set to a number between -256 and 26 (or -999) by
VREADFIELDS to indicate user response, which can be ENTER or the last
238 Chapter 6

USING VPLUS INTRINSICS
COMMUNICATION AREA
function key pressed at a standard terminal, the last field touched for a
touch terminal, or the last key pressed for data capture devices. The value
returned can be interpreted as follows:

For standard terminals, 0-8 is returned:

• 0 = ENTER

• 1 -8 = f1-f8

For touch, in addition to 0-8, -256 to -1 (or -999) is returned:

• -1 to -256 = field number of touched field

• -999 = no field in area touched by user

For data capture devices, - 1 to 26 is returned:

• -1 = Attention key

• 0 = enter

• 1-26 = A-Z

numerrs Two-byte integer set to the number of errors found when a form is edited
according to FORMSPEC edit specifications.

windowenh Two-byte integer in which the right byte contains a USASCII code for the
window line enhancement. The code specifies any combination of
enhancements according to Table 6-6.; zero indicates no enhancement. For
example, to indicate Half -Bright, Inverse Video, windowenh is set to the
character J.

Specifying an enhancement code with windowenh is independent, and in
addition to, any color enhancement specified with FORMSPEC.

On data capture devices any enhancement except blinking is ignored. The
entire display blinks, not just the field in error.
Chapter 6 239

USING VPLUS INTRINSICS
COMMUNICATION AREA
multiusage Two-byte integer that indicates whether the current form is in the same
family as the previous form but is not the parent form.

• 0 = Not in the current family

• 1 = Child or sibling to previous form

labeloption Two-byte integer that indicates whether function key labels are to be used.

• 0 = Default function key labels are used (F1 - F8).

• 1 = User-defined labels are to be used

Space to store the labels defined either in FORMSPEC or specified with
VSETKEYLABELS is allocated in the user stack by VOPENFORMF.

The labeloption must be set prior to a call to VOPENFORMF so that it can
be determined whether or not to allocate space for user-defined function
key labels.

cfname A 16-byte character array containing the name of the current form (15
characters). Updated by VGETNEXTFORM.

NOTE All comarea entries start on two- or four-byte word boundaries. Thus, the
16-byte character array items cfname and nfname are each followed by one
filler byte that is not part of the name.

nfname A 16-byte character array containing the name of the next form (15
characters). Required by VGETNEXTFORM and updated when necessary by
VGETNEXTFORM. The nfname may be set by an application. The nfname may
contain one of the following values:

formname Identifies the form to be read from the forms file.

$REFRESH Clear and reset the terminal. Set the internal flags to
indicate to VSHOWFORM to redisplay the current form,
window and data buffer. For terminals with local form
storage, clear form storage memory and reinitialize the
form storage directory.

$RETURN Retrieve previous different form; if current form is the

Table 6-6. Codes for the Window Line Enhancement

@ A B C D E F G H I J K L M N O

Half-Bright X X X X X X X X

Underline X X X X X X X X

Inverse Video X X X X X X X X

Blinking X X X X X X X X

Stop
enhancement

X

240 Chapter 6

USING VPLUS INTRINSICS
COMMUNICATION AREA
head form, the current form is retrieved. There is a
maximum of eight forms; after eight, each additional form
replaces the most recent form.

$HEAD Retrieve first form displayed when the forms file is
executed (the "head" form).

$END For ENTRY only, terminate execution of VGETNEXTFORM;
return to calling program without resetting any comarea
items.

repeatapp Two-byte integer that indicates whether the current form is a repeating
form and, if so, whether it is to be appended to itself:

• 0 = Normal sequence, neither repeat nor append

• 1 = Repeat current form

• 2 = Repeat current form, appending it to itself

freezapp Two-byte integer that indicates whether the screen is to be cleared when
the next form is displayed, or whether next form is to be appended to
current form, and, if appended, whether current form is to be frozen on the
screen. If the current form is frozen, it remains on the screen and the next
form is rolled off when the screen is full; otherwise, the current form is
rolled off the screen when the screen is full. The freezeapp is specified as:

• 0 = Clear screen, neither freeze nor append current form

• 1 = Append next form to current form

• 2 = Freeze current form and append next form to it

cfnumlines Two-byte integer that specifies the number of lines in the current form.
The cfnumlines is used by VPRINTFORM to print the form off-line.

dbuflen Two-byte integer that specifies the number of bytes in the data buffer for
the current form. Set by VGETNEXTFORM, this length is the sum of all the
concatenated data fields in the form, including any display-only fields.

lookahead Two-byte integer that indicates whether or not look-ahead form loading is
to occur when VREADFIELDS is called.

0 - ON The next form, as defined in FORMSPEC, is loaded before
the current form is read if point-to-point data
communications is being used. If multipoint data
communications is being used, the next form is loaded
after the current form is read. The least recently used
form in the terminal's local form storage memory could be
purged to make room for the new form if there is no room
in the terminal or there are no available entries in the
form storage directory.

1 - OFF No look-ahead form loading is performed, and no forms in
the terminal's local form storage memory are purged
(however, forms could still be purged if VSHOWFORMis called
to preload forms; see the discussion of VSHOWFORM later in
Chapter 6 241

USING VPLUS INTRINSICS
COMMUNICATION AREA
this section).

If lookahead is zero and a family member of the form specified as the next
form is already in the terminal's local form storage memory, the new form
is not loaded. Instead, the family member is changed into the required
form when it is displayed. The lookahead feature is ignored if the
terminal does not have form storage capability.

deleteflag Two-byte logical flag that indicates whether the current batch record has
been or is to be deleted. The deleteflag is returned by VREADBATCH and
used by VWRITEBATCH:

• FALSE (all zeros) = Current batch record not deleted

• TRUE (all ones) = Delete current batch record

showcontrol Control options for VSHOWFORM or VREADFIELDS. These bits remain set
until an application resets them. The following bits can be set:

bit 15 = 1 Force form to be written to the terminal screen; overrides
VPLUS optimization.

14 = 1 Force data and field enhancements to be written to the
terminal screen; overrides VPLUS optimization.

13 = 1 Force window line to be written to the terminal screen;
overrides VPLUS optimization.

12 = 0 Stop after displaying a form without fields (default); data
capture devices only.

1 Do not stop after displaying a form without fields; data
capture devices only.

11 = 0 Do not put a right closing bracket (]) on all input fields
(default); data capture devices only.

1 Put a right closing bracket (]) on all input fields; data
capture devices only.

10 = 0 Enable the keyboard for input (default).

1 Do not enable the keyboard.

9 = 0 Do not preload form into the terminal's local form storage
memory but write it directly to the screen (however,
VSHOWFORM always checks to see if the form is in local
storage already) (default).

1 Preload form into the terminal's local form storage
memory if it is not already there. Forms could be purged
from local form storage if there is not room for the form
(this could occur even when lookahead is 1).

8 = 0 Do not enable AIDS, MODES, or USERKEYS (default).

1 Enable AIDS, MODES, and USERKEYS. These keys are
enabled after a form is displayed on the screen and remain
242 Chapter 6

USING VPLUS INTRINSICS
COMMUNICATION AREA
enabled until bit 8 is reset to 0.

7-1 = 0 The undefined bits (7-1) must be initialized to zero.

0 = 0 Do not enable the touch feature (default).

1 Enable the touch feature.

Bits 15, 14, and 13 are used to override VSHOWFORM optimization (where
only information that has changed since the last call to VSHOWFORM is
written to the terminal screen). Bits 12 and 11 are used with VREADFIELDS
on data capture devices. Bit 10 is used when consecutive calls are made to
VSHOWFORM (no call to VREADFIELDS in between). Bit 9 is used with
terminals having local form storage capability.

Bit 8 is used to allow access to the function control keys on the HP 239X
and HP 262X terminals. For example, device control and device mode keys
can be used for local printing to an integral printer. Enabling the function
control keys using bit 8 is recommended for experienced users only. Misuse
or accidental use of certain function control keys could yield undesirable
results.

Bit 0 is used to activate touch available with terminals with the touch
feature. VREADFIELDS returns lastkey with the field number of the
touched field (as a negative number).

printfilnum MPE file number to which a form is printed by VPRINTFORM. The formal
designator is FORMLIST.

filterrnum MPE file error number (FCHECK number) returned by VPLUS intrinsics
when an MPE file error occurs. (Refer to Appendix B for a list of the errors
that return a number to filerrnum).

errfilenum MPE file number of the error message file used by VERRMSG.

formstoresize Two-byte integer that indicates the number of entries allowed in the
form storage directory.

-1 No local form storage is to be performed. For the HP
2626A terminal the workspace configuration is under user
control. VPLUS does not modify terminal workspace,
window, or datacomm configuration, and either terminal
port can be used.

0 No local form storage is to be performed. For the HP
2626A terminal VPLUS reconfigures the workspaces and
windows to the terminal's default values, but only the first
terminal port can be used.

1..255 One through 255 forms can be stored locally. For the HP
2626A terminal any value greater than four defaults to
four (allowing an application to run on either the HP
2626A, HP 2394A, or HP 2624B terminals), where four
indicates that one form is the displayed form and three
forms are stored in the HP 2626A local forms storage.
VPLUS reconfigures the HP 2626A terminal workspaces
Chapter 6 243

USING VPLUS INTRINSICS
COMMUNICATION AREA
and windows to support local form storage, but only the
first terminal port can be used.

The formstoresize allows the user to control the number of entries
allowed in the form storage directory on the user stack and must be set
prior to opening the terminal and the forms file. The space required is
listed on the forms file listing generated by FORMSPEC.

When designing forms for local form storage terminals, keep in mind that
large forms need a substantial amount of terminal display memory. For
forms that are greater than 24 lines, so much terminal display memory
may be used that insufficient terminal memory is available for form
storage. If so, VPLUS resets formstoresize to zero and no local form
storage is performed.

numrecs Four-byte integer that contains the number of nondeleted records in the
current batch file. It is used by the V..BATCH intrinsics.

recnum Four-byte integer set to the current record number in the batch file. (Note
that record numbers start with zero.) The recnum must be set by the
program before writing to or reading from the batch file. It is used by the
VREADBATCH and VWRITEBATCH intrinsics.

filen MPE file number used to identify the terminal.

retries Maximum number of retries.

• value = 0 Use default value (four retries)

• value > 0 Use this value as maximum

• value < 0 do not perform any retries

termoptions Terminal control options:

bits

0-8 reserved for system use

9-10 01 = enables ENTER /function key timeout in VREADFIELDS.
11 or 00 = disables ENTER /function key timeout in
VREADFIELDS. (default)

11-12 10 = do not clear the screen at terminal open or close.

13-14 01 = enables AUTOREAD in VREADFIELDS. 11 or 00 =
disables AUTOREAD. (default)

(AUTOREADcauses the terminal to do a programmatic enter
instead of waiting for the user to press ENTER.)

15 0 = Sound bell as usual, (default)

1 = Suppress bell.

NOTE In programming languages which do not have the capability of setting single
bits, programmers should add or subtract appropriate amounts to change
single bits. For example, if termoptions was initialized entirely to zeros and
244 Chapter 6

USING VPLUS INTRINSICS
COMMUNICATION AREA
the programmer wishes to enable the AUTOREAD, the following statement
should be issued in COBOL:

ADD 2 TO TERM-OPTIONS.

Conversely, if disabling the AUTOREAD feature, the programmer should
subtract 2 from termoptions . For more information on the AUTOREADfeature,
please consult Appendix G.

environ First byte is the logical device number of the terminal. The remaining byte
is reserved for system use.

usertime If enabled, the value in this position is used as the number of seconds to
wait for either ENTER or a function key to be pressed. Consult Appendix G
for more information regarding enabling user timeouts.

identifier VPLUS identifier for the terminal model being used. See Appendix G for
the interpretation of the contents of this word.

labinfo First byte is the length of key labels (in bytes); Second byte is the number
of key labels that VPLUS uses on the terminal.

buffercontrol Controls the ARB options. The bit settings are as follows:

Bit 15 (ARB option) 0 = return data "raw": no reordering or conversion.

1 = reorder and convert data according to ARB specifications.

The remaining bits must be set to zero. Note that VGETBUFFER will not
change these settings (see Section 6, VGETBUFFER, for special
considerations).

bufferstatus Return parameter indicating that VGET/PUTBUFFER performed the data
conversion successfully (but 15 in offset 65 will be set to 1).

NOTE STATUS in the COMAREA will be non-zero if the conversion is not successful.

In addition to the above comarea descriptions, the data capture devices use the following
items:

Parameters

splitpause Length of time in seconds to pause between the presentation of lines of
text on the single line alpha display. Default is 3 seconds.

• -1 - wait for user to press key

• 0 - do not pause

• >0 - pause specified number of seconds

leftmodule MPE determines which, if any, module is present.

• 0 - no module

• 1 - printer
Chapter 6 245

USING VPLUS INTRINSICS
COMMUNICATION AREA
• 2 - multifunction reader

• 3 - RS232 interface

• 4 - typeV badge reader

• 5 - magstripe reader

• 6 - bar code reader

• 7 - HP-IB interface

rightmodule MPE determines which, if any, module is present.

• 0 - no module

• 1 - printer

• 2 - multifunction reader

• 3 - RS232 interface

• 4 - typeV badge reader

• 5 - magstripe reader

• 6 - bar code reader

• 7 - HP-IB interface

NOTE VPLUS does not communicate with the RS-232 interface (3) or the HP-IB
interface (7).

keyboard Type of keyboard used with terminal.

• 0 - HP 3077-no keyboard.

• 1 - standard keyboard (12 function keys with values of -1,0,17…26).

• 2 - alphanumeric keyboard (28 function keys with values of - 1,0…26).

display Indicates the terminal type of display.

• 0 - numeric display

• 1 - alphanumeric display

• 2 - mini-CRT display

VPLUS does not support the terminal that has numeric display.

keyboardover Two-byte integer determining whether to override input on the keyboard
or not. Default is 0.

• -1 - Override and enable the keyboard without regard to forms design.

• 0 - Do not override. Allow input from the devices specified during the
form design (in the Processing Specification area).

errorlight Indicates which light to be turned on when an error is detected. The
default is E, but this can be changed to @ or any letter from A to P. The
second byte is reserved for system use.
246 Chapter 6

USING VPLUS INTRINSICS
COMMUNICATION AREA
lightsOn Two two-byte integers to indicate whether or not lights are to be turned on
during run time. The turning on of lights here does not affect the lights
turned on during form design (in the Process Specification area of the
form).

• 0 - OFF

• 1 - ON

The default value is OFF, but this may be changed as follows:

TWO-BYTE WORD 1, a "1" in:
bit positio n 0 > turns light of key "@" ON

1 "A" ON
2 "B" ON

... ...
14 "N" ON
15 "O" ON

TWO-BYTE WORD 2, a "1" in:
bit positio n 0 > turns light of key "P" ON

The remaining bits are reserved for system use.
Chapter 6 247

USING VPLUS INTRINSICS
ERROR HANDLING
ERROR HANDLING
There are basically two types of errors that can occur as a result of calling VPLUS
intrinsics. The first type consists of errors in the intrinsic call itself or in an attempt to
access a file used by the called intrinsic. The second type are errors detected by editing
data entered into FORMSPEC forms. These two error types are handled differently by
VPLUS.

Intrinsic Call or File Errors

If a call to a VPLUS intrinsic causes an error so that the intrinsic cannot be executed
correctly, or if an MPE file error occurs as a result of an attempt to access a file with a
VPLUS intrinsic, the comarea word cstatus is set to a nonzero value. In addition, the
number associated with an MPE file error is stored in the comarea word, filerrnum .

When cstatus is not zero, any subsequent VPLUS intrinsics called by the application
return to the application without executing. As part of good programming practice, check
cstatus after each call, report the error, and then reset cstatus . There is one exception —
VERRMSGuses cstatus to determine the error number. If cstatus is set to zero (indicating
no error) prior to the call to VERRMSG, then no message is returned.

Editing Errors

Field processing may be specified in the forms description with FORMSPEC and checked
by VFIELDEDITS, VINITFORM , or VFINISHFORM; or editing may be provided by user
routines in an application.

Each field in a FORMSPEC form has an error flag associated with it. When one of the
VPLUS intrinsics that performs field processing (VFIELDEDITS, VINITFORM or
VFINISHFORM) detects a field error, it sets the error flag for that field. It also increments
numerrs , the word in comarea that contains the total number of fields with errors in each
form. If a user-provided editing routine detects a field error, the program must call the
VPLUS intrinsic VSETERRORin order to set the field error flag and increment numerrs . The
cstatus item is not set when an editing error is detected and subsequent intrinsics may be
executed without resetting this comarea item.

If new data is written to a field in the data buffer that had an error, the error flag for the
field is cleared and nurnerrs is decremented. VPUTBUFFER, VPUTFIELD, or VPUTtype are
the intrinsics that can correct field errors and decrement numerrs . The intrinsic
VREADFIELDS resets numerrs to zero when it reads new data into the buffer from the
terminal. If numerrs has been set to a nonzero value by one of the VPLUS edit intrinsics,
then VREADFIELDS with reset it to zero. Also, when VGETNEXTFORM is called, nurnerrs is
reset to zero.

Error Messages

Messages associated with all VPLUS-detected errors can be retrieved by a call to VERRMSG.
This intrinsic uses the error message file whose MPE file number is kept in the comarea
word, errfilenum The error message file contains internal error numbers linked to
248 Chapter 6

USING VPLUS INTRINSICS
ERROR HANDLING
particular field errors. Error messages may be general VPLUS messages (see Appendix B),
or custom messages specified during forms design with FORMSPEC. In either case, the
message is returned to the calling program by VERRMSG. VERRMSG determines the type of
the error by examining cstatus and numerrs . If cstatus is not zero, its value indicates a
particular intrinsic call error. If cstatus is zero and numerrs is set, VERRMSG knows the
error is an editing error and uses internal values to locate the error in the error message
file. If an editing error is detected by a user routine, the program must provide its own
message when it calls VSETERROR to set the error flag for the field.

Determining Fields in Error

VGETFORMINFO provides a method of determining which fields are flagged in error by the
editing routines. VFIELDEDITS sets an error flag for each field that failed edit checks. Only
the error number of the first field in error and the number of errors have been returned to
an application by VFIELDEDITS via the comarea . All fields in error are enhanced with the
error enhancement if VSHOWFORM is called after VFIELDEDITS . To enable applications to
determine which fields are in error for a given form at run-time, VGETFORMINFO optionally
returns data about these error flags to show which fields failed the edit checks.
Chapter 6 249

USING VPLUS INTRINSICS
USING TERMINAL FEATURES
USING TERMINAL FEATURES
VPLUS provides a way to take advantage of special terminal features, using processing
specifications (refer to Section 4), VPLUS intrinsics, and selections on the FORMSPEC
menus (refer to Section 3). Two of the special terminal features that can be controlled with
VPLUS intrinsics are touch and local form storage, as described below. Refer to Appendix
G for a list of terminals that support these features.

The Touch Feature

VPLUS supports the touch feature available with specified terminals, as listed in
Appendix G. The touch feature is aimed to improve programmer productivity for the
design of intuitive, friendly user interfaces.

To activate the touch feature, an application must set bit 0 of the showcontrol word in the
comarea to 1 before calling VSHOWFORM. This feature will remain activated until the
showcontrol bit 0 is set to 0, or until VCLOSETERM is called.

With the touch enhancement enabled, VREADFIELDSreturns a number when a field on the
form is touched. This number is the negative of the field number that was assigned by
FORMSPEC at form design time. All fields as currently defined on a form return a
negative of their assigned field number when touched. No additional definition of touch
fields is necessary. The number returned is negative in order to distinguish it from the
positive numbers returned for function keys. In this manner, fields on the form can be
treated just like function keys.

Thus, touch applications can be designed using the same VPLUS intrinsics and the same
forms file. The negative field number returned to the lastkey field in the comarea can
then be interpreted for further processing.

Local Form Storage

Certain terminals allow forms to be stored locally in terminal memory, which can reduce
the overhead of writing a form image from the form definition area of memory. Frequently
displayed forms can be loaded into the terminal to be written directly to the screen. Only
form images are loaded — not the associated data. The HP 2626A terminal can store as
many as four forms locally. The HP 2624B and HP 2394A terminal can store a maximum of
255 forms locally depending on the size of the forms and the size of terminal memory
available.

The VPLUS intrinsics and communication area items activate and control local form
storage. The same intrinsics and variables are used with local form storage terminals, but
there are some differences as to how the form storage is handled. These differences, along
with general information about using form storage, are described here. The specifics of the
intrinsics involved are contained in the individual intrinsic descriptions later in this
section.

The HP 2626A vs. the HP 2624B/HP 2394A

VPLUS utilizes the workspace/window feature of the HP 2626A terminal, configuring
250 Chapter 6

USING VPLUS INTRINSICS
USING TERMINAL FEATURES
terminal memory into from one to four workspaces to store forms. Total available space is
equal to 119 lines of forms, with the minimum size of a workspace being 26 lines. One
full-screen window is used to display a form.

A form is displayed by attaching a workspace to the window. Any enhancements and data
entered onto the form are part of the form as long as it is in the terminal — a "fresh" form
is not available in local storage. If a fresh copy of the form is to be displayed, it must be
written from the form definition area of system memory.

One workspace is always attached to the window and displayed, even if there are no forms
loaded. The workspace being displayed is frozen — no form can be loaded into this frozen
workspace. Therefore, only three forms can actually be loaded in a single call to
VLOADFORMS. To get a fourth form into the terminal, display it in the window with
VSHOWFORM.

Forms can be purged from the terminal if there is not room for the form you are trying to
load. Forms are purged on a "least recently used" basis. During a load operation, each form
is frozen until all forms have been loaded, thus preventing loading and purging in a single
operation.

If you want to purge the currently displayed form from the terminal, it is not erased from
the screen, but the form storage directory entry for this workspace is marked available.
(The form storage directory is discussed later in this section.)

On the HP 2624B/HP 2394A terminals, forms stored locally are copied from terminal
memory to the screen. A fresh copy of the form remains available in local storage. When
the terminal is opened, enough memory is reserved to display the largest form in the forms
file and this affects how many forms can actually be loaded.

Form Storage Directory

The comarea variable formstoresize , which must be set before opening the terminal and
the forms file, indicates the maximum number of forms you are going to store locally. A
form storage directory with an entry for each form is created on the user stack. This
directory is used to keep track of loaded forms and of how much terminal memory each
form is using. Note that setting this variable does not load any forms — it just reserves
space for them. VSHOWFORM searches the directory to determine if a form to be displayed is
in local storage.

When a form is purged from local storage, the corresponding directory entry is marked
available to indicate that the form is no longer in the terminal and is not taking up any
terminal memory space.

NOTE VCLOSETERM deallocates local form storage space — both VOPENTERM and
VOPENFORMF must be called if local form storage space is to be reallocated.

Loading Forms

Forms can be loaded into local form storage in the following ways:

• Preload the current form when VSHOWFORMis called by setting showcontrol bit 9 to one.

• Load the next form when VREADFIELDS is called by setting lookahead to zero.
Chapter 6 251

USING VPLUS INTRINSICS
USING TERMINAL FEATURES
• Call VLOADFORMS.

When VSHOWFORM is called to display a form, it searches the form storage directory to
determine whether or not the form is already in the terminal.

If the form is in local storage, VSHOWFORM displays it on the screen. If the form is not in
local storage, VSHOWFORMpreloads it into the terminal before displaying it when bit 9 of the
comarea variable showcontrol is set to one.

If there is not enough room in terminal memory for the form, the least recently used form
(or forms) is purged from the terminal. If the form is not already in the terminal and is not
preloaded into local form storage (bit 9 is zero), it is written to the screen from the form
definition area of system memory.

(On the HP 2626A terminal, the form is written from memory when showcontrol bit 15 is
set to force a write, no matter what the setting of showcontrol bit 9 or whether the form is
already in the terminal.)

Look-ahead loading can be performed by setting the comarea variable lookahead to zero
before the call to VREADFIELDS. The next form, named by nfname in VGETNEXTFORM, is
loaded before or after the current form is read depending on the type of data
communications being used. If point-to-point is being used, the next form is loaded before
the current form is read, If multipoint is being used, the next form is loaded after the
current form is read. The least recently used form (or forms) is purged from the terminal if
there is not enough room to load the next form.

VREADFIELDS does not check whether or not the next form loads successfully. If the form
does not load, the next call to VSHOWFORM retrieves it from the form definition area of
system memory.

Forms can also be loaded into local form storage by a call to VLOADFORMS, which simply
loads the forms named in the forms parameter. A form loaded by this intrinsic is thus
already in the terminal when the call to VSHOWFORMis made (recall that VSHOWFORMalways
checks whether the form is in local storage). Forms are loaded in the order specified in the
forms parameter as long as there is space in the terminal. Any remaining forms are
ignored.

VLOADFORMSchecks to see whether or not a form is loaded. During this check, the keyboard
is locked briefly. To avoid possible loss of keystrokes and/or entered data do not call
VLOADFORMS between VSHOWFORM and VREADFIELDS.

Form Families and Local Storage

VLOADFORMS loads forms strictly by form name so that multiple family members can be
loaded at the same time. For look-ahead loading or preloading, to optimize performance,
the form is not loaded if a related form is currently being displayed or is already in the
terminal. The family member that is in local storage is changed into the required form and
displayed by VSHOWFORM(unless showcontrol bit 15 is set to force a fresh copy of the form
to be written).

Note that form family optimization displays any data associated with the required form.
When optimization occurs on the HP 2626A terminal, the form storage directory is
updated to reflect the name of the required form rather than the name of the family
member that was used to make the change.
252 Chapter 6

USING VPLUS INTRINSICS
USING TERMINAL FEATURES
Appending Forms and Local Storage

The implementation of appending forms differs between the HP 2626A and the HP
2624B/HP 2394A terminals. On the HP 2626A, the appending form is always written to
the screen from the form definition area of memory rather than being displayed from local
storage. If, however, the appending form has 24 or more lines (23 or more if a message
window is defined), it is handled as an independent form rather than as an appending one.
In this case, it can be displayed from local storage.

The workspace for the current form (the one being appended to) is marked available, so the
current form cannot be displayed again from local storage.

Form family optimization occurs when the current form is an appended form and is related
to the next form to be displayed. The current appended form is changed into the required
form when it is displayed.

On the HP 2624B/HP 2394A terminals, the appending form can be copied from local
storage.

Purging Forms From Local Storage

The VUNLOADFORM intrinsic is used to purge an unneeded form from local storage to make
room for a new form. This intrinsic checks to see whether or not a form is purged. During
this cheek, the keyboard is locked briefly. To avoid possible loss of keystrokes and/or
entered data, do not call VUNLOADFORMbetween VSHOWFORMand VREADFIELDS. In addition,
the intrinsics VCLOSEFORMF and VCLOSETERM also clear all forms from local storage.

With look-ahead loading, forms can be automatically purged from the terminal to make
room for a new form. To protect forms from being purged from local storage, set lookahead
to one before any other calls to VREADFIELDS or to VLOADFORMS. If lookahead is zero, the
least recently used forms are purged if necessary. However, when showcontrol bit 9 is set
to one, forms can be purged to make room even if look-ahead is not enabled.
Chapter 6 253

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
INTRINSIC DESCRIPTIONS
The intrinsics on the following pages are described in alphabetic order for easy reference.
However, this is not the order in which they are normally used. Table 6-7. is provided to
group the intrinsics according to the functions they perform. Note that terminal access is
performed by only seven intrinsics: VOPENTERM, VCLOSETERM, VPLACECURSOR, VSHOWFORM,
VREADFIELDS, VLOADFORMS, and VUNLOADFORM. The remaining intrinsics interact with the
form definition, data buffer, window, and key label areas of memory. An example of the
order in which the intrinsics are used is shown in Table 6-7.

All intrinsics require that three items in comarea (cstatus, language and comarealen)
are set before the intrinsic is called. However, two of these items, language and
comarealen , only need to be initially set, prior to the first intrinsic call, since they are
not modified by any subsequent intrinsics. In contrast, cstatus should be reset before
calling any intrinsic after an error occurs (except for the intrinsic VERRMSG that uses
cstatus in retrieving the associated error message).

No running examples are provided with the intrinsic descriptions. Instead, Appendix A
contains sample programs that use many of the intrinsics described in this section.

Table 6-7. Intrinsics by Function Group

Function Intrinsic

Access to Terminal VOPENTERM
VCLOSETERM
VSHOWFORM
VPLACECURSOR

VREADFIELDS
VLOADFORMS
VUNLOADFORM

Access to Forms Definition VOPENFORMF
VGETFIELDINFO
VGETFORMINFO
VPRINTFORM

VCLOSEFORMF
VGETFILEINFO
VGETNEXTFORM
VCHANGEFIELD

Data Processing VINITFORM
VFINISHFORM

VFIELDEDIT

Data Entry VCLOSEBATCH
VPOSTBATCH
VWRITEBATCH

VOPENBATCH
VREADBATCH

Programmatic Access to Data VGETBUFFER
VPUTBUFFER
VGETtype

VGETFIELD
VPUTFIELD
VPUTtype

Access to Error/Status Window,
Function Key Labels, Native
Language ID

VERRMSG
VGETKEYLABELS
VSETKEYLABELS
VGETLANG

VSETERROR
VPUTWINDOW
VSETKEYLABEL
VSETLANG
254 Chapter 6

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
Figure 6-2. Intrinsic Flow

1)

2)

3)

4)

5)

6)

7)

8)

9)

A

VOPENTERM,

VOPENBATCH
VOPENFORMF

VGETLANG

VSETLANG

VLOADFORMS

VGETNEXTFORM

VSETKEYLABEL(S)

VPUTBUFFER or
VREADBATCH

VINITFORM

VCHANGEFIELD

Open terminal, forms file,
optional batch file

Determine whether the forms
file is a language-dependent
forms file.

If international forms file,
specify a native lanuage for
language-dependent editing.

Load forms into terminal
memory (for terminals with local
form storage capability.)

Retrieve form from forms file.

Define global or form function
key labels.

Copy data from application or
read from batch file.

Initialize in data buffer values
to be displayed along with form.

Change field characteristics
temporarily.
Chapter 6 255

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
Figure 6-2 Intrinsic Flow Continued:

10)

11)

12)

13)

14)

15) 16)

17)

18)

VOPENTERM,

VOPENBATCH
VOPENFORMF

VPLACECURSOR

VREADFIELDS

ENTER

VFIELDEDITS

errors?

VFINISHFORM

errors?

VGETBUFFER or

done?

VSHOWFORM

or user edits

VWRITERBATCH

VERRMSG,
VPUTWINDOW,
VSETERROR

19)

20)

21)

A

Yes

No

Yes

No

No

Yes

Display Form (can be preloaded
first if terminal has local form
storage capabiliity)

Position cursor to the desired
field.

User presses enter; data is
read into data buffer.

Check for errors (look-ahead
loading of next form can be
performed if terminal has local
form storage capability)

Display message; user makes
corrections.

Perform final phase of field
editing; check for errors.

Copy data into application or
write it to batch file.

Is data collection complete?
Repeat entry cycle or browse
file.

Close terminal, forms file, batch
file (if any).
256 Chapter 6

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
Dependency Between Intrinsics

Certain intrinsics must be called before other intrinsics can be executed. Figure 6-3.
illustrates the standard dependencies among intrinsics. For example, the terminal file
must be opened before any other intrinsics are called if prompts are to be sent to the
terminal. Each of the three files, terminal, forms and batch must be opened before
operations can be performed on these files and before the files can be closed.

Figure 6-3. Intrinsics Dependencies

VOPENTERM VOPENFORMF VERRMSG*

VCLOSETERM

VLOADFORMS
VUNLOADFORMS

VCLOSEFORMF

VGETNEXTFORM

VPUTWINDOW

VOPENBATCH

VGETFILEINFO
VGETFORMINFO
VGETFIELDINFO

VGETLANG
VSETLANG

VSHOWFORM

VPLACECURSOR

VREADFIELDS

VINITFORM
VFIELDEDITS
VFINISHFORM
VGETERROR
VPRINTFORM
VCHANGEFIELD

VGETBUFFER
VPUTBUFFER
VGETFIELD
VPUTFILED
VGETtype
VPUTtype
VGETKEYLABELS
VSETKEYLABELS
VSETKEYLABEL

VWRITEBATCH
VREADBATCH
VPOSTBATCH

VCLOSEBATCH

*VERRMSG does not require any previous intrinsics calls.

Note: VGetNextForm must be called before either VShowForm or VReadFields can be done.
Chapter 6 257

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
VARMSCP

Arms or disarms cursor sensing capability.

Syntax

VARMSCP {comarea,scpenable}

Parameters

comarea Must be comarea name specified when the forms file was opened with
VOPENFORMF. If not already set, the following comarea items must be set
before calling VARMSCP:

cstatus Set to zero.

comarealen Set to total number of two-byte words comarea . Must be at
least 70 words in length.

VARMSCP May set the following comarea item, cstatus.

cstatus Set to nonzero value if call is unsuccessful.

scpenable Two-byte logical variable which determines whether the cursor position
sensing is enabled or not.

• 0 - Disarm cursor sensing.

• 1 - Arm cursor sensing.

Discussion

When cursor sensing is armed, the data returned after a read, as in VREADFIELDS, is
prefixed with an escape sequence which contains the position of the cursor on the screen
when the read terminated. This information is used by VGETSCPFIELDand VGETSCPDATAto
retrieve the cursor position.

When cursor sensing is disarmed, no cursor position information is available following a
read. VREADFIELDS automatically disarms cursor sensing. VARMSCP should be called prior
to a cursor sensing transaction to arm the cursor sensing function for the next read. This
deletes any existing cursor location information.

Example

COBOL
CALL “VARMSCP” USING COMAREA SCP-ENABLE.

SPL
VARMSCP(COMAREA,SCP’ENABLE);

These calls arm/disarm cursor sensing depending on whether the second parameter
contains a 1 or a 0 respectively.
258 Chapter 6

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
VBLOCKREAD

The VBLOCKREAD intrinsic reads a block of characters from a terminal in block mode. The
syntax and parameter descriptions for this intrinsic are provided below.

VBLOCKREAD {COMAREA,BUF,LEN,ACTLEN,TMODE,LOC,BC,TC}

COMAREA The following COMAREAfields must be set before calling VBLOCKREAD, if not
already set:

LANGUAGE Set to code identifying the programming language of the
calling program.

COMAREALEN Set to total number of 2-byte words in COMAREA.

VBLOCKREAD may set the following COMAREA fields:

CSTATUS Set to nonzero value if call is unsuccessful.

FILERRNUM Set to file error code if MPE file error.

BUF Byte array to receive data from the terminal.

LEN Maximum number of bytes to read from terminal (2-byte integer).

ACTLEN Actual number of bytes read from terminal (2-byte integer).

TMODE Terminal setting at the time of read (2-byte integer).

1 assume terminal is in format mode.

2 assume terminal is in unformatted mode.

LOC Start position of write (array of two 2-byte integers). Absolute cursor
addressing is not allowed in format mode. An error will be returned.

[0] [0] home cursor before read

[-1] [0] start from current cursor position

BC Buffer control (2-byte integer) -- not currently used. Must initialize to zero.

TC Terminal control (2-byte integer)--not currently used. Must initialize to
zero.

This intrinsic reads a block of data from the terminal with a number of options. There are
two major differences between VREADFIELDS and this procedure. First, it provides more
options for reading data from the terminal. Second, data read is returned directly to the
application buffer. There is no VPLUS form associated with the read.

Like the companion intrinsic, VBLOCKWRITE, this procedure is recommended only for
advanced programmers who are proficient with terminal input/output. VOPENTERMmust be
called before using VBLOCKREAD. The keyboard must be unlocked before calling
VBLOCKREAD. (Refer to keyboard unlock options in VBLOCKWRITE.) VBLOCKREADwill lock the
keyboard immediately after Enter or a function key is pressed to ensure data integrity.

This procedure is primarily designed for unformatted reads. For users who do not use
VREADFIELDS but use VBLOCKREAD to read data in format mode, the application data
interpretation algorithm should accommodate both MDT (Modified Data Tag) and
non-MDT inputs. When MDT is on, unmodified blanks and data are not transmitted from
the terminal. Refer to the appropriate terminal reference manuals for further explanation
Chapter 6 259

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
of the MDT feature.

The following examples illustrate a call to VBLOCKREAD using common programming
languages:

COBOL:

CALL “VBLOCKREAD” USING COMAREA @ BUF LEN ACTLEN TMODE LOC BC TC.

BASIC:

CALL VBLOCKREAD(C(*),B1$,L1,L2,M1,L(*),U1,U2)

FORTRAN:

CALL VBLOCKREAD(COMAREA,BUF,LEN,ACTLEN,TMODE,LOC,BC,TC)

SPL:

VBLOCKREAD(COMAREA,BUF,LEN,ACTLEN,TMODE,LOC,BC,TC);

Pascal:

VBLOCKREAD(COMAREA,BUF,LEN,ACTLEN,TMODE,LOC,BC,TC);
260 Chapter 6

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
VBLOCKWRITE

The VBLOCKWRITE intrinsic writes a block of characters to a terminal in block mode. The
syntax and parameter descriptions for this intrinsic are provided below.

VBLOCKWRITE {COMAREA,BUF,LEN,TMODE,LOC,TC}

COMAREA The following COMAREA fields must be set before calling VBLOCKWRITE, if
not already set:

LANGUAGE Set to code identifying the programming language of the
calling program.

COMAREALEN Set to total number of 2-byte words in COMAREA.

VBLOCKWRITE may set the following COMAREA fields:

CSTATUS Set to nonzero value if call is unsuccessful.

FILERRNUM Set to file error code if MPE file error.

BUF Byte array containing characters to be written to the terminal.

LEN Number of bytes in the BUF array (2-byte integer).

TMODE Terminal mode (2-byte integer).

0 do not change terminal mode.

1 change to format mode.

2 change to unformatted mode.

LOC Start position of write (array of two 2-byte integers). Absolute cursor
addressing is not allowed in format mode. An error will be returned.

[0] [0] home cursor before WRITE

[x] [y] start from absolute row x, column y. (Not allowed in
format mode.)

[-1] [0] start from current position

[-2] [0] start from first available line of display memory, for
example, the first available line after the end of a previous
form. (Not allowed in format mode.)

TC Terminal control (2-byte integer)

0 do not lock keyboard at the beginning of write; unlock at
the end of write.

1 lock keyboard at the beginning of write; unlock at the end
of write.

This procedure writes the content of a user buffer to a terminal. TMODEoptions can be used
to change the terminal to format or unformatted mode before the write. LOC options allow
the programmer to specify the position of the screen where the write is to begin. Terminal
control (TC) options can be used to control keyboard locking for the protection of data as it
is being written to the terminal. TC= 1 is recommended for applications which do multiple
writes to the terminal with no intervening reads. Procedures, such as VBLOCKREAD or
Chapter 6 261

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
VREADFIELDS, lock the keyboard as soon as the terminal begins transmitting data when
triggered by the Enter key or a function key.

VOPENTERMmust be called before using this procedure. This procedure is intended only for
advanced programmers who are proficient with terminal control operations and VPLUS
terminal settings. Terminal keyboard operations, such as PREV PAGE and NEXT PAGE, can
be performed programmatically by sending the appropriate escape sequences to the
terminal via VBLOCKWRITE. VBLOCKWRITE can also be used to write large blocks of
unformatted text or multiple report lines in between uses of predefined VPLUS forms. To
ensure portability of the application from one driver to another, alteration of terminal
straps using VBLOCKWRITE is not recommended. See VTURNON and VTURNOFF for
information on how to switch between character mode and block mode without disturbing
the screen.

The following examples illustrate a call to VBLOCKWRITE using common programming
languages:

COBOL:

CALL “VBLOCKWRITE” USING COMAREA @BUF LEN TMODE LOC TC.

BASIC:

CALL VBLOCKWRITE(C(*),B1$,L1,M1,L(*),T1)

FORTRAN:

CALL VBLOCKWRITE(COMAREA,BUF,LEN,TMODE,LOC,TC)

SPL:

VBLOCKWRITE(COMAREA,BUF,LEN,TMODE,LOC,TC);

Pascal:

VBLOCKWRITE(COMAREA,BUF,LEN,TMODE,LOC,TC);
262 Chapter 6

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
VCHANGEFIELD

Allows dynamic field attribute definition.

Syntax

VCHANGEFIELD {comarea,specbuffer,numentries }

Parameters

comarea Must be comarea specified when forms file was opened with VOPENFORMF.
If not already set, the following comarea items must be set before calling
VCHANGEFIELD:

cstatus Set to zero.

language Set to code identifying the programming language of the
calling program.

comarealen Set to total number of two-byte words in comarea .

VCHANGEFIELD may set the following comarea items:

cstatus Set to nonzero value if call unsuccessful.

specbuffer A record; the specifications buffer is an array that provides VCHANGEFIELD
with the information regarding the fields which are to be altered. The
format of the array is as shown in Table 6-8.

numentries A two-byte integer indicating the number of entries in the specifications
buffer. The specifications buffer can contain up to three types of changes
for each field in the form. That is, one call to VCHANGEFIELDcan change the
field type, data type and enhancement of every field in a form. For
example, if a form contains four fields and an application is designed to
make three changes to each field, then numentries should have a value of
12.

Discussion

VCHANGEFIELDalters the run-time copy of the current form. It does not modify the contents
of the forms file. The next call to VGETNEXTFORMwhich actually retrieves a copy of the form
from the forms file will reset the field specifications. The only exception to this is when two
calls to VGETNEXTFORM are performed without resetting nfname ; the second call will not
retrieve the form definition from the forms file.

Please note that it is the responsibility of the programmer to ensure that a new data type
is compatible with any initial values or processing specifications which may have been
defined for the field.

If the change type selected is a toggle type, (change type of 1, 2 or 3), the change
specification buffer is returned with the "old" characteristics. Hence, the next
VCHANGEFIELDcall with the same buffer will toggle between the characteristics specified in
the first VCHANGEFIELDcall and the original characteristics. To toggle between two specific
characteristics, VCHANGEFIELDcan be used to set a field (change type of 4, 5, or 6) to certain
starting characteristics without the toggle option at first.
Chapter 6 263

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
VCHANGEFIELD has no effect on the security or color enhancements; an error is returned if
the codes for these enhancements (1-8 or S) are specified. VCHANGEFIELDdoes not alter the
field error enhancement nor is this enhancement code returned when the enhancement
attribute is toggled (rather the current "normal" enhancement is altered and returned if
toggling).

Example

COBOL

CALL "VCHANGEFIELD" USING COMAREA,SPECBUF,ENTRIES.

BASIC

CALL VCHANGEFIELD(C(*),Bl,EN)

FORTRAN

CALL VCHANGEFIELD(COMAREA,SPECBUF,ENTRIES);

SPL/PASCAL

VCHANGEFIELD(COMAREA,SPECBUF,ENTRIES);

Table 6-8. Specifications Buffer

Data Type Position Description

Integer
(Two-byte)

1 positive field number or negative screen order number

Integer
(Two-byte)

2 Change type
1 = toggle enhancement
2 = toggle field type
3 = toggle data type
4 = change enhancement
5 = change field type
6 = change data type

Character array
(4-byte)

3-4 Change Specifications
Type 1, 4 values = H, I, B, U, NONE
Type 2, 5 values = 0, D, P, R
Type 3, 6 values = CHAR, DIG, IMP n, NUM[n], DMY, MDY, YMD
264 Chapter 6

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
VCLOSEBATCH

Closes an open batch file.

Syntax

VCLOSEBATCH" {comarea }

Parameters

comarea Must be name of comarea specified in VOPENBATCH call that opened this
batch file. If not already set, the following comarea items must be set
before calling VCLOSEBATCH:

cstatus Set to zero.

comarealen Set to total number of two -byte words in comarea .

VCLOSEBATCH may set the following comarea items:

cstatus Set to nonzero value if call unsuccessful.

filerrnum Set to file error code if MPE file error.

Discussion

The open batch file identified by comarea is closed when this intrinsic is called. The batch
file must be closed before VCLOSEFORMF is called.

Example

COBOL

CALL "VCLOSEBATCH" USING COMAREA.

BASIC

200 CALL VCLOSEBATCH(C(*))

FORTRAN

CALL VCLOSEBATCH(COMAREA)

SPL/PASCAL

VCLOSEBATCH(COMAREA);
Chapter 6 265

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
VCLOSEFORMF

Closes an open forms file.

Syntax

VCLOSEFORMF{comarea}

Parameters

comarea Must be comarea specified when forms file was opened with VOPENFORMF.
If not already set, the following comarea items must be set before calling
VCLOSEFORMF:

cstatus Set to zero.

comarealen Set to total number of two-byte words in comarea.

VCLOSEFORMF may set the following comarea items:

cstatus Set to nonzero value if call unsuccessful.

filerrnum Set to file error code if MPE file error.

Discussion

The open forms file is closed when this intrinsic is executed. Once closed, the forms file is
not available for further processing.

Example

COBOL

CALL "VCLOSEFORMF" USING COMAREA.

BASIC

200 CALL VCLOSEFORMF(C(*))

FORTRAN

CALL VCLOSEFORMF(COMAREA)

SPL/PASCAL

VCLOSEFORMF(COMAREA);
266 Chapter 6

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
VCLOSETERM

Closes an open terminal file.

Syntax

VCLOSETERM {comarea }

Parameters

comarea Must be comarea named when file was opened by VOPENTERM. If not
already set, the following comarea items must be set before calling
VCLOSETERM:

cstatus Set to zero.

comareaten Set to total number of two-byte words in comarea .

VCLOSETERM may set the following comarea items:

ctstatus Set to nonzero value if call unsuccessful.

filerrnum Set to file error code if MPE file error.

Discussion

The terminal file opened with the specified comarea is closed when this intrinsic is
executed. For terminals with this feature, the local forms storage of the terminal is cleared.
For additional information about about using the pseudo intrinsic .LOC to put and address
into a word of the COMAREA, refer to the COBOL II/XL Reference Manual.

Example

COBOL

CALL "VCLOSETERM" USING COMAREA.

BASIC

200 CALL VCLOSETERM(C(*))

FORTRAN

CALL VCLOSETERM(COMAREA)

SPL/PASCAL

VCLOSETERM(COMAREA);
Chapter 6 267

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
VERRMSG

Returns a message corresponding to the error number of an edit error or an intrinsic call
error.

Syntax

VERRMSG {comarea,buffer,buflen,actualen }

Parameters

comarea Must be comarea named when forms file was opened with VOPENFORMF. If
not already set, the following comarea items must be set before calling
VERRMSG:

language Set to code identifying the programming language of the
calling program.

comarealen Set to total number of two-byte words in comarea .

errfilenum Contains MPE file number of VPLUS error message file;
should be initialized to zero so that VERRMSG can open the
error message file.

(Note that cstatus must not be cleared before calling this intrinsic.)

VERRMSG may set the following comarea items:

errfilenum If initialized to zero, VERRMSGopens VPLUS error message
file and sets errfilenum to MPE file number of the opened
file.

buffer Character string in an application to which message is returned by
VERRMSG. In order to contain the message, this buffer must be defined as at
least 72 bytes long.

buflen Two-byte integer variable set by an application to the length of the buffer.

actualen Two-byte integer to which VERRMSG returns the number of bytes in the
message sent to buffer.

Discussion

If an error occurs in an intrinsic call or is detected by a VPLUS edit, a call to VERRMSG
returns the message associated with the error. For an intrinsic call error, cstatus is set to
a nonzero value. If cstatus indicates an error, VERRMSG returns the text explaining the
type and cause of the error. If VINITFORM, VFIELDEDITS , or VFINISHFORM detects a data
error, cstatus is set to zero and numerrs is set to a nonzero value. If numerrs is set,
VERRMSG returns a custom error message if there is one; otherwise, it returns the VPLUS
error message associated with the edit error number in the VPLUS error message file. The
error message, custom or VPLUS, is returned for the first field flagged in error.

The message describing the error is returned to an application in the area defined by the
buffer parameter. The message length can be no longer than buflen ; the actual length of
the message is returned in actualen . You can then call VPUTWINDOWto move this message
to the window area of memory for later display at the terminal.
268 Chapter 6

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
The errfilenum contains the MPE file number of the VPLUS error message file. This file
contains the error numbers and their associated messages for both intrinsic call and edit
errors. It does not contain custom error messages, which are retrieved by VERRMSGthrough
the form definition. VERRMSG opens this file if errfilenum equals zero when VERRMSG is
called; it then sets errfilenum to the MPE file number of the file. The file is closed
automatically when an application terminates.

If the VPLUS error message file cannot be opened and read by this intrinsic, default
messages are generated. If cstatus is not equal to zero, the message is:

"VPLUS Error, COM'STATUS is nnn".

If cstatus is zero and numerrs is greater than zero, the message is:

"VPLUS Edit Error nnn".

Example

COBOL

CALL "VERRMSG" USING COMAREA, BUFFER, BUFLEN, ACTUALEN.

BASIC

225 CALL VERRMSG(C(*),M$,L,M)

FORTRAN

CALL VERRMSG(COMAREA,BUFFER,BUFLEN,ACTUALEN)

SPL/PASCAL

VERRMSG(COMAREA,BUFFER,BUFLEN,ACTUALEN);

Assume that filerrnum contains an MPE file error code. The calls to VERRMSG shown
above return to your application a message describing the error and the length of this
message in bytes.
Chapter 6 269

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
VFIELDEDITS

Edits data entered in each field of form and, if indicated, modifies data in the data buffer. If
necessary, sets error flags.

Syntax

VFIELDEDITS { comarea }

Parameters

comarea Must be comarea name specified when forms file was opened with
VOPENFORMF. If not set already, the following comarea items must be set
before calling VFIELDEDITS :

cstatus Set to zero.

comarealen Set to total number of two-byte words in comarea .

VFIELDEDITS may set the following comarea items:

numerrs Set to total number of fields in which errors were detected.

cstatus Set to nonzero value if call unsuccessful.

nfname Set to new next form name if name changed by processing
specifications.

repeatapp Set to new current form code if code changed by processing
specifications.

freezapp Set to new next form code if code changed by processing
specifications.

Discussion

This intrinsic checks the data content of each field. It checks that the data type and field
type are correct, and if any special processing specifications were defined for this field in
the Field Edit phase, it checks that the data conforms to these specifications. If any data
formatting or data movement was specified for a field, VFIELDEDITS performs these
functions on the data in the data buffer.

For each field that does not pass the edit checks, VFIELDEDITS sets an error flag. These
error flags are used by the VPLUS intrinsics, as shown in Table 6-9. In addition, these
error flags can be accessed by an application with a call to VGETFORMINFO, which retrieves
a table corresponding to the current error flag settings.
270 Chapter 6

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
After setting error flags for all fields with errors, VFIELDEDITS saves the error number of
the first field with an error. (Fields are counted in screen order, starting at the top left and
moving left to right, then top to bottom.) VFIELDEDITS sets numerrs to the total number of
fields in which errors were found.

If requested by a call to VERRMSG, the text associated with the error number in the VPLUS
error message file, or the associated custom error message, is returned to an application. If
requested by a call to VPUTWINDOW, the message is copied to the window area of memory.
Then, a call to VSHOWFORM can be used to display this message on the terminal screen and
enhance the fields with errors.

Example

COBOL

CALL "VFIELDEDITS" USING COMAREA.

BASIC

150 CALL VFIELDEDITS(C(*))

FORTRAN

CALL VFIELDEDITS(COMAREA)

SPL/PASCAL

VFIELDEDITS(COMAREA);

Table 6-9. Actions Used by Intrinsics

Intrinsic Action

VGETNEXTFORM Initializes all the error flags to zero.

VFIELDEDITS
VFINISHFORM
VINITFORM
VSETERROR

Each may set field error flags on, increment numerrs , and set an internal
error number used by VERRMSG.

VSHOWFORM Enhances the fields whose error flags are set.

VREADFIELDS Resets the flags to zero after the form is displayed.

VPUTBUFFER
VPUTFIELD
VPUTtype

Each may clear field error flags and decrement numerrs if new data is
entered into a field with an error.
Chapter 6 271

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
VFINISHFORM

Performs any processing specifications defined for the final phase of fields editing.

Syntax

VFINISHFORM {comarea }

Parameters

comarea Must be comarea name specified when the forms file was opened with
VOPENFORMF. If not already set, the following comarea items must be set
before calling VFINISHFORM:

cstatus Set to zero.

comarealen Set to total number of two-byte words in comarea .

VFINISHFORM may set the following comarea items:

cstatus Set to nonzero value if call unsuccessful.

numerrs Set to total number of fields in the form in which errors
were detected.

nfname Set to name of next form if processing specifications
altered form name.

repeatapp Set to new repeat code if processing specifications altered
code.

freezapp Set to new next form code if processing specifications
altered code.

Discussion

All special processing defined as part of the "finish" phase of field editing is performed by
this intrinsic. Altering the next form to be displayed is a typical finish operation, and
updating a save field is another. (Refer to the discussion of phases in Section 4.) Like
VFIELDEDITS, VFINISHFORM sets an error flag for each field that has an error as a result
of processing the form. (Refer to the VFIELDEDITS discussion.)

Example

COBOL

CALL "VFINISHFORM" USING COMAREA.

BASIC

160 CALL VFINISHFORM(C(*))

FORTRAN

CALL VFINISHFORM(COMAREA)

SPL/PASCAL

VFINISHFORM(COMAREA);

The examples above perform all finish operations on a form.
272 Chapter 6

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
VGETARBINFO

A new VPLUS intrinsic has been added to retrieve the VPLUS ARB field mapping
information. The intrinsic is named VGETARBINFO and is callable as follows:

CALL “VGETARBINFO” USING VPLUS-COMAREA,
ARB-INFO-BUF,
INFO-BUF-LEN.

Record VPPLUS-COMAREA << use existing definitions >>

Record ARB-INFO-BUF:

Record ARB-INFO-HEADER:

2 byte integer NUM-OF-ENTRIES; << input only >>
2 byte integer ENTRY-LEN; << input only >>
6 byte array FORM-NAME; << input only >>
16 byte array FILLER; << reserved for future use >>
2 byte integer NUM-ARB-FLDS. << output only >>

Table of record ARB-INFO-DETAIL:

2 byte integer FIELD-NUM; << input only >>
10 byte array ARB-DATA-TYPE; << output only >>
2 byte integer ARB-DATA-LEN; << output only >>
2 byte integer ARB-BUF-OFFSET. << output only >>

2 byte integer INFO-BUF-LEN. << total 2 byte word length of >>
<< ARB-INFO-BUF, minimum valid >>
<< length is 27. >>;

NUM-OF-ENTRIES indicates number of ARB-INFO-DETAIL table entries and
must be zero or greater; if number of entries is zero then
the intrinsic returns immediately to the application (in
other words, does a no-op).

ENTRY-LEN indicates number of ARB-INFO-DETAIL table entries and
must be zero or greater; if number of entries is zero then
the intrinsic returns immediately to the application (in
other words, does a no-op).

FORM-NAME contains justified, upshifted form name of 1 to 15
characters, blank terminated.

FILLER reserved for future use; should be initialized to 16 blanks.

NUM-ARB-FLDS at output indicates the number of ARBfields defined for the
specified form. Values for NUM-ARB-FLDS range from zero
(no active ARBfields in specified form ARB; all are filler), to
128 (maximum number of fields in any one form).

NOTE If this intrinsic is called for a form with zero active fields in the form’s ARB,
the intrinsic continues to process all ARB-INFO-DETAIL entries, returning
$NOTARBFLD for each entry.)

FIELD-NUM is ARB-INFO-DETAIL table key and contains field number
Chapter 6 273

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
assigned by FORMSPEC.

ARB-DATA-TYPE at output contains field type conversion notation from
FORMSPEC, for example, CHAR, DINT, SPACK2 , or token
$NOTARBFLD, which indicates that the requested field does
not exist within the ARB.

ARB-DATA-LEN at output contains ARBfield length in bytes (not updated if
field does not exist in ARB).

ARB-BUF-OFFSET at output contains zero relative byte offset of the ARBfield
(not updated if field does not exist in ARB).
274 Chapter 6

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
VGETBUFFER

Copies entire contents of data buffer from memory to an application.

Syntax

VGETBUFFER {comarea,buffer,buflen }

Parameters

comarea Must be comarea name specified when the forms file was opened with
VOPENFORMF. If not already set, the following comarea items must be set
before calling VGETBUFFER:

cstatus Set to zero.

language Set to the code identifying the programming language of
the calling program.

comarealen Set to total number of two-byte words in comarea . Must be
at least 70 words in length if the ARB feature is used.

buffercontrol Set bit 15 to 1 to indicate that data is to be transformed
according to the ARB specifications.

VGETBUFFER may set the following comarea items:

cstatus Set to nonzero value if call unsuccessful.

bufferstatus Bit 15 set to 1 if data conversion successful.

buffer Character string in an application to which the data in the data buffer is
copied. Could also be a record describing the ARB, i.e., non-CHAR data.

buflen Two-byte integer variable that specifies the number of bytes to be
transferred to the user buffer.

Discussion

This intrinsic transfers data from the data buffer in memory to the area in an application
specified by the buffer parameter. The data includes everything in the unprotected and
display-only fields on a form. Previously, data in the data buffer was stored in the order of
the fields on the form, and specific fields could be moved from the buffer with VGETFIELDor
VGETtype . Now, the Application-ready Buffer (ARB) allows you to specify, using the
FORMSPEC ARB feature, the order in which the application should receive the fields in
the buffer, and the data type conversion to be performed on each (see the discussion on
creating an ARB in Section 3). You need no longer use VGETtype to convert individual
fields; a call to VGETBUFFER accomplishes the task.

The number of bytes moved from the data buffer is based on the number of bytes specified
in the buflen parameter, or the number of bytes specified by the dbuflen item in the
comarea (refer to Table 6-5), whichever is less. The dbuflen item is set by VGETNEXTFORM
when the current form is read into memory. For example, if there are 20 bytes in the data
buffer (dbuflen is 20), and the user requests 50 bytes in the buflen parameter, only 20
bytes are transferred. Conversely, if the user requests 10 bytes through the buflen
parameter, but there are 20 bytes in the data buffer (dbuflen is 20), only 10 bytes are
transferred.
Chapter 6 275

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
Special Considerations

Designers using the ARB feature in VGETBUFFERshould be aware that damaging run-time
errors could occur if the application is inadvertently run on a system that has a VPLUS
version earlier than B.05.00.

To prevent this, the designer should do three things:

1. Document the product with a clear warning that VPLUS version B.05.00 or later MUST
be used.

2. Use the VPLUS intrinsic HP32209 in the code. This intrinsic checks to make sure that
you are using the proper VPLUS version. If not, the application should terminate with
an appropriate message.

3. Check offset 65 (bufferstatus) in the comarea on return from VGETBUFFER. Bit 15 will
be set to 1 if VGETBUFFER performed the conversion successfully. In other words, the
application must check both status and bufferstatus to be sure that the data was
correctly converted.

Example

COBOL

01 ORDER-ENTRY.
03 PART-NO PIC X(7).
03 DESCR PIC X(12).
03 QTY PIC S9(4).
03 UNIT-PR PIC S9(4)V9(2).
03 TOTL-PR PIC S9(6)V9(2).

:
:

CALL "VGETBUFFER" USING COMAREA, ORDER-ENTRY, DBUFLEN.

BASIC

340 L1=D1 <D1 is the dbuflen word in C
350 CALL VGETBUFFER(C(*),D$,L1)

FORTRAN

CALL VGETBUFFER(COMAREA,D1,DBFLEN)

SPL/PASCAL

BYTE ARRAY D1 (0:36) ;
:
:

VGETBUFFER(COMAREA,D1,DBUFLEN);

The examples above transfer the contents of the data buffer in memory to an application.
The current value of dbuflen is specified as the user buffer length.
276 Chapter 6

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
VGETFIELD

Copies contents of specified field from data buffer in memory to an application.

Syntax

VGETFIELD {comarea,fieldnum,fieldbuf,buflen,actualen,nextfldnum }

Parameters

comarea Must be comarea name specified when the forms file was opened with
VOPENFORMF. If not already set, the following comarea items must be set
before calling VGETFIELD:

cstatus Set to zero.

language Set to the code identifying the programming language of
the calling program.

comarealen Set to total number of two-byte words in comarea .

VGETFIELD may set the following comarea items:

cstatus Set to nonzero if call unsuccessful, or if requested field has
an error, or if fieldnum is unacceptable.

fieldnum Two-byte integer variable containing the number assigned to the field by
FORMSPEC.

fieldbuf Character string in an application to which data entered in specified field
is copied.

buflen Two-byte integer variable that specifies the number of bytes in fieldbuf .

actualen Two-byte integer to which VGETFIELDreturns the number of bytes actually
moved to fieldbuf .

nextfldnum Two-byte integer to which VGETFIELDreturns the number of the next field
in screen order. If there are no more fields, zero is returned. If fieldnum
was set to zero or a negative number by an application, this is an error. In
this case, VGETFIELD returns the number of the first field in screen order
in nextfieldnum .

Discussion

VGETFIELDtransfers the contents of the field specified by fieldnum from the data buffer to
a variable in an application. This is in contrast to VGETBUFFER which retrieves data
according to the current field layout.

When considering what is transferred by VGETFIELD, keep in mind that all the fields
defined for a particular form in FORMSPEC are assigned numbers. The number assigned
to a field by FORMSPEC does not change regardless of any changes to the field's position
in the form or to its length and does not necessarily correspond to the screen order. The
field numbers on a form can only be changed with the batch command, RENUMBER, as
described in Section 7. The field number must not be confused with the field's position in
the data buffer, which corresponds to its position in the form according to screen order, not
assigned field number.
Chapter 6 277

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
If the number of bytes specified by buflen is less than the field size, the rightmost bytes
are truncated. If the requested field has an error, its value is returned, but cstatus is set
to an error number indicating the field error flag is set.

Following a successful transfer, actualen contains the exact number of bytes transferred
to fieldbuf , the user buffer; nextfldnum is set to the number of the next field in screen
order, or to zero after the last field is processed.

Note that VGETFIELD does not convert the data it moves. If you want to convert the field,
you must use VGETtype , where type specifies the data type to which the field is converted.

Example

COBOL

DATA DIVISION.
77 ORD-LEN PIC S9(4)COMP.
77 ITEM-LEN PIC S9(4)COMP.
77 FIELD-NUM PIC S9(4)COMP.
77 ACTUAL-LENGTH PIC S9(4)COMP.
77 NEXT-FIELD PIC S9(4)COMP.
01 ORDER-ENTRY.

03 PART-NO PIC X(8).
03 UNIT-PR PI C 9 (4) V9 (2).
03 QUANTITY PIC S9(4)COMP.
03 TOTAL-PR PIC 9(5)V9(2).
03 PART-DESCR PIC X(12). <- field number "2"

:
:

PROCEDURE DIVISION.
:
:

MOVE 12 TO ITEM-LEN.
MOVE 2 TO FIELD-NUM.
CALL "VGETFIELD" USING COMAREA, FIELD-NUM, PART-DESCR OF ORDER-ENTR,

ITEM-LEN, ACTUAL-LENGTH, NEXT-FIEL.

BASIC

350 F1=2
355 L1=12
360 CALL VGETFIELD(C(*),F1,P$,L1,A1,N1)

FORTRAN

FIELD=2
LEN=12
CALL VGETFIELD(COMAREA,FIELD,PARTDES,LEN,LENFLD,NXTFLD)

SPL/PASCAL

INTEGER
FIELD,
LEN;
BYTE ARRAY PARTDES(0:11);

:
:

FIELD:=2;
LEN:=12;
278 Chapter 6

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
VGETFIELD(COMAREA,FIELD,PARTDES,LEN,ACTUAL'LEN,NEXT'FLD);

Assume that the contents of field number "2" is to be copied, and that the length of this
field is 12 bytes. The calls shown above copy the contents of this field into a variable in an
application.
Chapter 6 279

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
VGETFIELDINFO

Returns information about specified fields to an application.

Syntax

VGETFIELDINFO {comarea,infobuf,infobuflen }

Parameters

comarea Must be comarea name specified when the forms file was opened with
VOPENFORMF. If not already set, the following comarea items must be set
before calling VGETFIELDINFO:

cstatus Set to zero.

comarealen Set to total number of two-byte words in comarea .

VGETFIELDINFO may set the following comarea item:

cstatus Set to nonzero value if call unsuccessful.

infobuf A record through which you pass the request for field information and to
which the intrinsic returns the specified information. This parameter must
be initialized to spaces before filling in your request and calling
VGETFIELDINFO. The layout of infobuf is shown in Table 6-10.. The three
required fields of infobuf pass user-supplied parameters to
VGETFIELDINFO as follows:

numofentries Specifies how many fields you want information about.

entrylength Indicates how many two-byte words of information
(maximum 17 as shown in Table 6-10.) you want about
each field.

formname The name of the form that contains the fields you are
inquiring about.

The rest of infobuf (beginning with position 11) must consist of
entrylength number of words for each field you want information about.
Thus, the total length of infobuf in words must be as follows:

10 + (entrylength * numofentries)

You may pass one or more of the three permissible keys, which must be
passed in the position indicated in the table. Remember that infobuf
must be initialized to spaces before filling in the parameters and any key.

infobuflen Two-byte integer variable set to the number of two-byte words in infobuf .

Discussion

This intrinsic accesses an internal table and places information about one or more fields
into infobuf . You tell VGETFIELDINFOhow many fields, how much information about each
280 Chapter 6

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
field, and the name of the form containing the fields.

Passing INFOBUF Without Entering Keys

Keys are optional. If you do not supply a key to indicate the first field you want
information about, VGETFIELDINFOstarts with the first field not already reported on by the
current call.

As an example, suppose you want information about 10 fields, and you enter screen order
numbers 3, 5, and 6 as keys. VGETFIELDINFOreturns information about fields 3, 5, 6, and 7
through 13. If you enter no keys, VGETFIELDINFO returns information about fields 1
through 10.

Table Wraparound

VGETFIELDINFOstarts over with the first field in the form if you request information about
more fields than are in the form or, if when you pass a key, your request goes beyond the
end of the form.

Suppose a form has 12 fields. If you request information about 10 of the fields and enter
screen order number 8 as a key, VGETFIELDINFO returns information about fields 8
through 12, and then goes to the beginning of the form and returns information about
fields 1 through 5.

Table 6-10. Field Information Buffer

Data Type Position Contents Comments

Integer (Two-byte) 1 numofentries Required

2 entrylength Required

Character Array
(16-byte)

3-10 formname Required; second byte of position 10
is unused

11-18 Field name Permissible key; last byte of position
18 is unused

Integer (Two-byte) 19 Field number according
to screen order

Permissible key

20 Field number Permissible key; in order of creation

21 Field length In bytes

22 Position of field in data
buffer

In bytes, offset from zero

Character Array
(4-byte)

23-24 Field enhancement Combination of I, H, U, B, 1-8 ,
or NONE.

25-26 Data type of field May be CHAR, DIG, IMPn, date (MDY,
DMY, YMD), or NUM[n] .

Character
(Two-byte)

27 Field type First byte of position 27; may be O,
R, P or D.
Chapter 6 281

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
Example

COBOL

DATA DIVISION.
:
:

WORKING-STORAGE SECTION.
01 INFOBUF.

05 NUMBER-OF-ENTRIES PIC S9(4) COMP.
05 ENTRY-LENGTH PIC S9(4) COMP.
05 FORM-NAME PIC X(15).
05 FILLER PIC X.
05 ENTRY-TABLE OCCURS 10 TIMES.

10 FIELD-NAME PIC X(15).
10 FILLER PIC X.
10 SCREEN-ORD-NUM PIC S9(4) COMP.
10 FIELD-NUM PIC S9(4) COMP.
10 FIELD-LENGTH PIC S9(4) COMP.
10 FIELD-POSITION PIC S9(4) COMP.
10 FIELD-ENHANCE PIC X(4).

01 INFOBUFLEN PIC S9(4) COMP VALUE 80.
:
:

PROCEDURE DIVISION.
:
:

MOVE SPACES TO INFOBUF.
:

MOVE 5 TO NUMBER-OF-ENTRIES.
MOVE 14 TO ENTRY-LENGTH.
MOVE "FORM1 " TO FORM-NAME.
MOVE 2 TO SCREEN-ORD-NUM.
CALL "VGETFIELDINFO" USING COMAREA, INFOBUF, INFOBUFLEN.

The example shown above illustrates the data declaration of infobuf and infobuflen and
the passing of parameters to VGETFIELDINFO. Note that before the intrinsic is called,
infobuf is initialized to spaces (not zeros). The intrinsic copies 14 two-byte words of
information about fields 2 through 6 of form FORM 1 into infobuf .
282 Chapter 6

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
VGETFILEINFO

Returns information about forms file to an application.

Syntax

VGETFILEINFO { comarea,infobuf,infobuflen }

Parameters

comarea Must be comarea name specified when the forms file was opened with
VOPENFORMF. If not already set, the following comarea items must be set
before calling VGETFILEINFO:

cstatus Set to zero.

comarealen Set to total number of two-byte words in comarea .

VGETFILEINFO may set the following comarea item:

cstatus Set to nonzero value if call unsuccessful.

infobuf A record through which you pass the request for forms file information and
to which the intrinsic returns the specified information. This parameter
must be initialized to spaces before filling in your request and calling
VGETFILEINFO. The layout of infobuf is shown in Table 6-11. The two
required fields of infobuf pass user-supplied parameters to
VGETFILEINFO as follows:

numofentries Specifies how many times you want the information
repeated (information is returned only about the forms file
associated with comarea ; if you specify a number greater
than one, you get duplicate information).

entrylength Indicates how many two-byte words of information
(maximum 19 as shown in Table 6-11.) you want about the
file.

Remember that infobuf must be initialized to spaces before filling in the
parameters.

infobuflen Two-byte integer variable set to number of two-byte words in infobuf .

Discussion

This intrinsic accesses an internal table and places information about the open forms file
into infobuf. You tell VGETFILEINFO how much information you want about the file.
Chapter 6 283

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
Example

COBOL

DATA DIVISION.
:
:

WORKING-STORAGE SECTION.
01 INFOBUF.

05 NUMBER-OF-ENTRIES PIC S9(4) COMP.
05 ENTRY-LENGTH PIC S9(4) COMP.
05 ENTRY-TABLE OCCURS 1 TIMES.

10 FILE-VERSION PIC S9(8) COMP.
10 NUMBER-OF-FORMS PIC S9(4) COMP.
10 MAX-FIELDS PIC S9(4) COMP.
10 MAX-BUFSIZE PIC S9(4) COMP.
10 SAVE-FIELDS PIC S9(4) COMP.
10 HEAD-FORM PIC X(15).
10 FILLER PIC X.
10 ERROR-ENHANCE PIC X(4).

Table 6-11. File Information Buffer

Data Type Position Contents Comments

Integer
(Two-byte)

1 numofentries Required

2 entrylength Required

Integer
Array
(Four-byte)

3-4 File version
number

A date/time stamp, recorded at last forms file
compile.

Integer
(Two-byte)

5 Number of forms
in file

6 Maximum
number of fields

In any one form

7 Maximum data
buffer size in
two-byte words

Of any one form, plus up to one additional
two-byte word.

8 Number of save
fields in file

Character
Array

9-16 Name of head
form in file

Last byte of position 16 is unused

17-18 Global error
enhancement

Combination of I, H, U, B, 1-8, or NONE.

19-20 Global window
enhancement

Combination of I, H, U, B, 1-8, or NONE.

Integer
(Two-byte)

21 Position of
window

Line number, 0-23 . The line closest to the top of
the form is 0; 255 means no window.
284 Chapter 6

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
10 WINDOW-ENHANCE PIC X(4).
10 WINDOW-POSITION PIC S9(4) COMP.

01 INFOBUFLEN PIC S9(4) COMP VALUE 21.
:
:

PROCEDURE DIVISION.
:
:

MOVE SPACES TO INFOBUF.
:
:

MOVE 1 TO NUMBER-OF-ENTRIES.
MOVE 19 TO ENTRY-LENGTH.
CALL "VGETFILEINFO" USING COMAREA, INFOBUF, INFOBUFLEN.

The example shown above illustrates the data declaration of infobuf and infobuflen and
the passing of parameters to VGETFILEINFO. Note that before the intrinsic is called,
infobuf is initialized to spaces (not zeros). The intrinsic copies 19 two-byte words of
information about the open forms file into infobuf .
Chapter 6 285

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
VGETFORMINFO

Returns information about specified forms to an application.

Syntax

VGETFORMINFO {comarea,infobuf,infobuflen }

Parameters

comarea Must be comarea name specified when the forms file was opened with
VOPENFORMF. If not already set, the following comarea items must be set
before calling VGETFORMINFO:

cstatus Set to zero.

comarealen Set to total number of two-byte words in comarea .

VGETFORMINFO sets the following field:

cstatus Set to nonzero value if call unsuccessful.

infobuf A record through which you pass the request for form information and to
which the intrinsic returns the specified information. This parameter must
be initialized to spaces before filling in your request and calling
VGETFORMINFO. The layout of infobuf is shown in Table 6-12. The two
required fields of infobuf pass user-supplied parameters to
VGETFORMINFO as follows:

nurmofentries Specifies how many forms you want information about.

entrylength Indicates how many two-byte words of information
(maximum 36 as shown in Table 6-12.) you want about
each form.

The rest of infobuf (beginning with word 3) must consist of entrylength
number of two-byte words for each form you want information about.
Thus, the total length of infobuf in two-byte words must be as follows;

2 + (entrylength * numofentries)

You may pass one or both of the two permissible keys, which must be
passed in the position indicated in the table. Remember that infobuf
must be initialized to spaces before filling in the parameters and any key.

infobuflen Two-byte integer variable set to the number of two-byte words in infobuf .

Discussion

This intrinsic accesses an internal table and places information about forms into infobuf .
You tell VGETFORMINFO how many forms and how much information you want about each
form.
286 Chapter 6

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
Passing INFOBUF Without Entering Keys

Keys are optional. If you do not supply a key to indicate the first form you want
information about, VGETFORMINFOstarts with the first form not already reported on by the
current call.

As an example, suppose you want information about 3 forms, and you enter form number 6
as a key. VGETFORMINFO returns information about forms 6, 7, and 8. If you enter no keys,
VGETFORMINFO returns information about forms 1 through 3.

Table Wraparound

VGETFORMINFO starts over with the first form in the file if you request information about
more forms than are in the file or, if when you pass a key, your request goes beyond the end
of the file.

Suppose a file has 10 forms. If you request information about 5 of the forms and enter form
number 8 as a key, VGETFORMINFOreturns information about forms 8 through 10, and then
goes to the beginning of the file and returns information about forms 1 and 2.

Table 6-12. Form Information Buffer

Data Type Position Contents Comments

Integer
(Two-byte)

1 numofentries Required

2 entrylength Required

Character
Array
(16-byte)

3-10 Form name Permissible key; last byte of position 10 is
unused (15 bytes maximum).

Integer
(Two-byte)

11 Form number Permissible key; forms are ordered within the
forms file in alphabetic order, thus this
argument reflects the order of the form within
the file, not a permanently assigned form
numeric identifier. As a result, the number may
change if the forms file is recompiled.

12 Number of fields
in form

13 Data buffer length
in bytes

Character
Array
(16-byte)

14-21 Name of next
form.

Last byte of position 21 is unused.

Character
(Two-byte)

22 Repeat option. First byte of position 22; may be N, A, or R.

22 Next form option Last byte of position 22; may be C, A, or F.

Integer
Array
(32-byte)

23-38 Fields in error. Bit map; bit is on if field is in error.
Chapter 6 287

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
Error Determination

To enable applications to determine which fields are in error for a given form at run-time,
VGETFORMINFO optionally returns a 32-byte bit map containing these error flags to show
which fields failed the edit checks.

Each field in a form is represented by a bit in the bit map according to its field creation
number. The bit map is a 32-byte logical array to accommodate the maximum of 255 field
numbers. The most significant (left most) bit of the first byte in the bit map array
represents the field with the field number equal to 1 as assigned by FORMSPEC. For
example, the field assigned a field number of 17 would be represented by the most
significant bit of the third byte in the array. If a field is in error, the corresponding bit
representing that field will be set to a one. Otherwise, the value will be zero.

The bit map is valid for the current form only; information for the current form must be
requested by form name key. If the bit map is requested for any other form, it will contain
all zeros. Therefore, a value of zero should not be interpreted to mean the field is not in
error for the current form, (i.e., the last form retrieved by VGETNEXTFORM). Furthermore,
bit positions representing nonexistent field numbers for a given form will contain a value
of zero.

To retrieve the bit map, the user-supplied parameter entrylength in infobuf should
contain a value of 36. This is to inform VPLUS to supply 36 two-byte words of information
pertaining to the form requested. The last 16 two-byte words will contain the bit map
indicating which fields are in error.

The infobuflen parameter normally passed to VGETFORMINFO is calculated using the
entrylength of 36. To request the bit map for the current form, the calculation is as
follows:

2 + (entrylength * numofentries)

where entrylength is equal to 36 and numofentries is equal to 1. Thus, the infobuflen
parameter should contain a value of 38 when calling VGETFORMINFO.

For languages which provide bit manipulation capability, the bits can be shifted left or
right to determine which bits are on. For other languages, a mask may be used with the bit
map to determine whether a bit is on or off. An intrinsic called BITMAPCNV is available to
help decode and set bits in the bit map. Refer to Appendix I for more information.

Example

COBOL

DATA DIVISION.
:

WORKING-STORAGE SECTION.
01 INFOBUF.

05 NUMBER-OF-ENTRIES PIC S9(4) COMP.
05 ENTRY-LENGTH PIC S9 (4) COMP.
05 ENTRY-TABLE OCCURS 9 TIMES.

10 FORM-NAME PIC X15.
10 FILLER PIC X.
10 FORM-NUMBER PIC S9(4) COMP.
10 NUMBER-OF-FIELDS PIC S9(4) COMP.
10 BUF-LENGTH PIC S9(4) COMP.
288 Chapter 6

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
10 NEXT-FORM PIC X(15).
10 FILLER PIC X.
10 REPEAT-OPTION PIC X.
10 NFORM-OPTION PIC X.

01 INFOBUFLEN PIC S9(4) COMP VALUE 62.
:

PROCEDURE DIVISION.
:

MOVE SPACES TO INFOBUF.
:

MOVE 3 TO NUMBER-OF-ENTRIES.
MOVE 20 TO ENTRY-LENGTH.
MOVE "FORM1 " TO FORM-NAME.
CALL "VGETFORMINFO" USING COMAREA, INFOBUF, INFOBUFLEN.

The example shown above illustrates the data declaration of infobuf and infobuflen and
the passing of parameters to VGETFORMINFO. Note that before the intrinsic is called,
infobuf is initialized to spaces (not zeros). The intrinsic copies 20 two-byte words of
information about 3 forms in collating sequence order, beginning with the form named
FORM 1, into infobuf .
Chapter 6 289

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
VGETKEYLABELS

Retrieves global or current form function key labels.

Syntax

VGETKEYLABELS {comarea,formnorglob,numoflabels,labels }

Parameters

comarea Must be comarea name specified when the forms file was opened with
VOPENFORMF. If not already set, the following comarea items must be set
before calling VGETKEYLABELS:

cstatus Set to zero.

language Set to the code identifying the programming language of
the calling program.

comarealen Set to total number of two-byte words in comarea .

VGETKEYLABELS may set the following comarea item:

cstatus Set to nonzero value if call unsuccessful.

formorglob Two-byte integer specifying which type of labels are to be retrieved.

• 0 - Retrieve global labels

• 1 - Retrieve current form labels

numflabels Two-byte integer indicating how many labels are to be retrieved. This
value must be from 1 to 8, inclusive.

labels A byte array in which the labels are passed back to an application. The
length of the array must be at least numflabels * 16. (Each label is 16
bytes long.)

Discussion

This intrinsic is used to copy global or current form function key labels that have been
specified with FORMSPEC, VSETKEYLABEL, or VSETKEYLABELS into an application. Labels
for some or for all eight function keys can be copy. The labeloption must be set to one
prior to VOPENFORMF.

When this intrinsic is called, any active labels are retrieved from the key label buffers in
memory into an application. If there are no active labels, a buffer of spaces is returned.
The labels are displayed by calling VSHOWFORM.

Example

COBOL

77 FORM-OR-GLOB PIC S9(4)COMP.
77 NUM-OF-LABELS PIC S9(4)COMP.
77 KEY-LABELS PIC X(32).
…
MOVE 1 TO FORM-OR-GLOB.
MOVE 2 TO NUM-OF-LABELS.
290 Chapter 6

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
CALL "VGETKEYLABELS" USING COMAREA,FORM-OR-GLOB,NUM-OF-LABELS,KEY-LABELS.

BASIC
10 INTEGER F,N
20 DIM L$[32]
30 F=1
40 N=2
50 CALL VGETKEYLABELS(C[*],F,N,L$)

FORTRAN
CHARACTER*32 LABELS
INTEGER*2 FORMORGLOB,NUMLABELS
FORMORGLOB=1
NUMLABELS=2
CALL VGETKEYLABELS(COMAREA,FORMORGLOB,NUMLABELS,LABELS)

SPL/PASCAL
INTEGER

FORM'OR'GLOB,
NUM'OF'LABELS;

BYTE ARRAY
LABELS(0:31);

…
FORA'OR'GLOB: =1;
NUM'OF'LABELS:=2;
VGETKEYLABELS(COMAREA,FORM'OR'GLOB,NUM'OF'LABELS,LABELS);
Chapter 6 291

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
VGETLANG

Returns the native language ID assigned to the forms file. For more information on Native
Language Support, see Section 8.

Syntax

VGETLANG {comrea, langnum }

Parameters

comarea Must be comarea name specified when the forms file was opened with
VOPENFORMF. If not already set, the following comarea items must be set
before calling VGETLANG:

cstatus Set to zero.

comarealen Set to total number of two-byte words in comarea .

VGETLANG may set the following comarea items:

cstatus Set to nonzero value if call is unsuccessful

langnum Two-byte integer variable to which VGETLANG returns the native language
ID assigned to the forms file.

Discussion

The forms file must be opened before calling VGETLANG. Otherwise, cstatus returns a
nonzero value. The native language ID returned is always the number assigned to the
forms file on the Terminal/Language Menu in FORMSPEC. If the international language
ID (-1) is assigned, which means that VSETLANG may be used to specify the native
language ID when the application executes, the native language ID returned by VGETLANG
will be the number assigned to the forms file (-1), not the number specified with
VSETLANG.

Example

COBOL

CALL "VGETLANG" USING COMAREA, LANGNUM.

BASIC

120 CALL VGETLANG(C(*),L)

FORTRAN

CALL VGETLANG(COMAREA,LANGNUM)

SPL/PASCAL

VGETLANG(COMAREA,LANGNUM);
292 Chapter 6

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
VGETNEXTFORM

Reads the next form from an open forms file into the form definition area of memory.

Syntax

VGETNEXTFORM {comarea }

Parameters

comarea Must be comarea name specified when the forms file, from which the form
is to be retrieved, was opened with VOPENFORMF. If not already set, the
following comarea items must be set before calling VGETNEXTFORM:

cstatus Set to zero.

comarealen Set to total number of two-byte words in comarea .

cmode Set to zero.

nfname Set to name of next form, or $END, $HEAD, $RETURN , or
$REFRESH. See "Communication Area" earlier in this
section for more information. (May also be set by prior call
to VGETNEXTFORM, VOPENFORMF, VREADBATCH,
VINITFORM, VFIELDEDITS, or VFINISHFORM.)

repeatapp Set to 1 if current form is to be repeated, to 2 if repeated
and appended. Note that repeatapp must be set to zero in
order to retrieve and display the next form. (Also may be
set by a prior call to VGETNEXTFORM, VINITFORM,
VFIELDEDITS, or VFINISHFORM.)

freezapp Set to 1 if next form is to be appended to current form, to 2
if current form is to be frozen before next form is
appended. Set to zero in order to clear the current form
before displaying the next form. (Also may be set by prior
call to VGETNEXTFORM, VINITFORM, VFIELDEDITS , or
VFINISHFORM.)

VGETNEXTFORM sets the following items in comarea :

numerrs Set to zero.

cfname Set to name of form just read from file.

cstatus Set to nonzero value if call unsuccessful.

filerrnum Set to file error code if MPE file error.

multiusage Set to 1 if current form is child or sibling of previous form,
zero otherwise.

In addition, if a new form has been retrieved (repeatapp is zero),
VGETNEXTFORM sets the following items:

cfnumlines Set to number of lines in form just read (now the current
form).

nfname Set to name of next form to be read from file. See
Chapter 6 293

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
Discussion below for more information.

repeatapp Set to value read from forms file for this (current) form.

freezapp Set to value read from forms file for this (current) form.

dbuflen Set to length (in bytes) of the current form just read from
the forms file.

Discussion

VGETNEXTFORM checks the value of repeatapp passed in comarea . If this value indicates
the current form is to be repeated, or repeated and appended to itself, it does not read the
next form, nor does it update the values of cfnumlines , nfname , repeatapp , freezapp , or
dbuflen . Note that a repeating form is repeated until repeatapp is set to zero, either by an
application or, for ENTRY, when the user presses NEXT FORM to request the next form, or
by the FORMSPEC processing language. If the current form is not to be repeated,
VGETNEXTFORM checks nfname to determine which form to read from the forms file.

Example

COBOL

CALL "VGETNEXTFORM" USING COMAREA.

BASIC

11 CALL VGETNEXTFORM(C(*))

FORTRAN

CALL VGETNEXTFORM(COMAREA)

SPL/PASCAL

VGETNEXTFORM(COMAREA);

The examples above call VGETNEXTFORM to retrieve the next form from the forms file and
reset the comarea according to the values in the next form.
294 Chapter 6

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
VGETSAVEFIELD

Copies contents of the specified save field from save field buffer in memory to an
application.

Syntax

VGETSAVEFIELD {c omarea,sfname,sfbuf,buflen,actualen }

Parameters

comarea must be comarea name specified when the forms file was opened with
VOPENFORMF. If not already set, the following comarea items must be set
before calling VGETSAVEFIELD:

cstatus set to zero.

language set to the code identifying the programming language of
the calling program.

comarealen set to total number of two-byte words in comarea . Must be
at least 70 words in length.

VGETSAVEFIELD may set the following comarea item:

cstatus set to nonzero value if call is unsuccessful.

sfname is a character string in the application which contains the name of the
save field.

sfbuf is a character string in the application to which the contents of the save
field is copied.

buflen is a two-byte integer variable which specifies the number of bytes in
sfbuf .

actualen is a two-byte integer variable which specifies the number of bytes actually
moved to sfbuf .

Discussion

VGETSAVEFIELDtransfers the contents of the save field specified by sfname to a variable in
an application.

If the number of bytes specified by buflen is less than the length of the save field, the right
most bytes are truncated. Following a successful transfer, actualen is set to the actual
number of bytes transferred to sfbuf .

VGETSAVEFIELD does not convert the data moved to the application variable.
Chapter 6 295

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
Example

COBOL
CALL "VGETSAVEFIELD" USING COMAREA SFNAME SFBUF BUFLEN ACTLEN.

SPL
VGETSAVEFIELD(COMAREA,SFNAME,SFBUF,BUFLEN,ACTLEN);

These calls will transfer the contents of the save field specified by SFNAME to SFBUF. If the
call is successful, ACTLEN will contain the exact number of bytes transferred.
296 Chapter 6

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
VGETSCPDATA

Returns information about the cursor position by field number and row and column on a
VPLUS screen.

Syntax

VGETSCPFIELD { comarea,fieldnum,screenrow,screencol }

Parameters

comarea Must be comarea name specified when the forms file was opened with
VOPENFORMF. If not already set, the following comarea items must be set
before calling VARMSCP:

cstatus Set to zero.

comarealen Set to total number of two-byte words in comarea. Must be
at least 70 words in length.

fieldnum Two-byte integer variable to which VGETSCPFIELD returns the field
number of the field where the cursor was last positioned when the read
terminated.

screenrow Two-byte integer variable to which VGETSCPDATAreturns the physical row
number on the screen where the cursor was last positioned when the read
terminated.

screencol Two-byte integer variable to which VGETSCPDATA returns the physical
column number on the screen where the cursor was last positioned when
the read terminated.

Discussion

When VREADFIELDS terminates, the cursor position on the screen is tracked and retrieved
by VGETSCPFIELD. The information contains the field number of the field in which the
cursor was positioned when the read was terminated. No cursor position information is
available if a VREADFIELDS retry occurs.

VGETSCPDATA returns the physical position of the cursor on the screen by row and column
number. Rows are numbered from top to bottom and columns are numbered from left to
right.

NOTE The row and column information returned by VGETSCPDATA is raw physical
information and may not directly correspond to actual elements of the user
interface.

Like VGETSCPFIELD, VGETSCPDATA returns a -1 in fieldnum if:

• The cursor was not positioned within a field when the read terminated.

• No cursor position information is available when VGETSCPDATA is called.

• The cursor is positioned within a multi-line field and beyond the first line of the field.

VGETSCPDATAshould be called after each VREADFIELDS since it first retrieves the cursor
Chapter 6 297

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
position information, then deletes the cursor position information upon procedure
completion.

Example

COBOL
CALL “VGETSCPDATA” USING COMAREA
FIELDNUM SCREENROW SCREENCOL.

SPL
VGETSCPDATA (COMAREA,FIELDNUM,
SCREENROW,SCREENCOL);

These examples return the cursor position on the last read in the fieldnum, screenrow and
screencol variables.
298 Chapter 6

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
VGETSCPFIELD

Returns information about the cursor position by field number on a VPLUS screen.

Syntax

VGETSCPFIELD { comarea,fieldnum }

Parameters

comarea Must be comarea name specified when the forms file was opened with
VOPENFORMF. If not already set, the following comarea items must be set
before calling VARMSCP:

cstatus Set to zero.

comarealen Set to total number of two-byte words in comarea. Must be
at least 70 words in length.

fieldnum Two-byte integer variable to which VGETSCPFIELD returns the field
number of the field where the cursor was last positioned when the read
terminated.

Discussion

When VREADFIELDS terminates, the cursor position on the screen is tracked and retrieved
by VGETSCPFIELD. The information contains the field number of the field in which the
cursor was positioned when the read was terminated. No cursor position information is
available if a VREADFIELDS retry occurs.

VGETSCPFIELD returns a -1 in fieldnum if:

• The cursor was not positioned within a field when the read terminated.

• No cursor position information is available when VGETSCPFIELD is called.

• The cursor is positioned within a multi-line field and beyond the first line of the field.

VGETSCPFIELD should be called after each VREADFIELDS since it first retrieves the cursor
position information, then deletes the cursor position information upon procedure
completion.

Example

COBOL
CALL “VGETSCPFIELD” USING COMAREA FIELDNUM.

SPL
VGETSCPFIELD(COMAREA,FIELDNUM;

These examples return the cursor position on the last read in the fieldnum variable.
Chapter 6 299

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
VGETtype

Copies character coded data contents from data buffer into an application, converting
numeric value to specified type.

Syntax

VGETtype { comarea,fieldnum,variable } [{, numdigits,decplaces }]*

Parameters

type The type in VGETtype indicates that this intrinsic may be specified as:

VGETINT converts value to two-byte integer

VGETDINT converts value to four-byte integer

VGETREAL converts value to four-byte real value

VGETLONG converts value to eight-byte long value

*VGETPACKEDconverts value to packed decimal format (COBOL usage
is comp-3 format); this intrinsic has two extra
parameters, numdigits and decplaces . Both are two-byte
integer variables that contain the number of digits and
number of decimal places, respectively, specified by the
COBOL usage is
 comp-3 data declaration.

VGETZONED converts value to zoned decimal format (COBOL) default
format); has the parameters numdigits and decplaces ,

which are two-byte integer variables that contain the
number of digits and number of decimal places,
respectively, specified by the COBOL data declaration.

VGETYYMMDD converts date to a six-byte character value

For example: CALL "VGETINT" USING COMAREA,FIELDNUM,VARIABLE

CALL "VGETPACKED" USING
COMAREA,FIELDNUM,VARIABLE,NUMDIGITS,DECPLACES

comarea Must be comarea name specified when the forms file was opened with
VOPENFORMF. If not already set, the following comarea items must be set
before calling VGETtype :

cstatus Set to zero.

comrealen Set to total number of two-byte words in comarea .

VGETtype may set the following comarea items:

cstatus Set to nonzero value if call unsuccessful or if requested
field has an error.

fieldnum Two-byte integer variable containing the number assigned to the field by
FORMSPEC.
300 Chapter 6

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
variable Variable within application, of type specified in VGETtype , into which
converted value is placed.

Discussion

If there is no ARB, all data is read from the unprotected fields on the screen as character
strings and concatenated to create a data buffer. The VGETBUFFER intrinsic copies the
entire buffer to an application program or VGETFIELDcan be used to obtain the contents of
an individual field.

NOTE If you are using VGETBUFFER in conjunction with an ARB, you do not need to
use VGETtype . VGETBUFFER performs all the required conversions on the
screen data in the buffer.

You can use both VGETBUFFER with an ARB and VGETtype calls in the same
program: the buffercontrol setting in the comarea that controls ARB
processing can be switched on or off for each form.

The VGETtype intrinsics, VGETINT, VGETDINT, VGETREAL, VGETLONG, VGETYYMMDD,
VGETPACKED, and VGETZONED, have been provided to perform conversion from character
coded data to the seven indicated data types. This intrinsic copies the contents of the field
identified by its field number from the data buffer. (Note that this field number is a unique
number assigned to each field by FORMSPEC and is totally independent of the field
position in the data buffer.) The field's value must be numeric, but its data type need not
be. That is, numbers in a character type field can be converted.

The numeric value, stored in the buffer in character coded form, is converted to the
specified type and then copied to the variable in the application. (Refer to Table 6-13. for
the format of each type.) If errors occur during conversion, cstatus is set to an error code.
If the requested field has an error, its value is moved to the variable, but cstatus is set to
an error code.

The default behavior for VGETPACKEDand VGETZONEDis to produce an unsigned result. If a
signed result is desired, the negative of the number of digits in the receiving variable
should be passed in the “numdigits” variable. For example, if the number of digits in the
receiving variables is 6, and a signed result is desired, then -6 should be placed in
“numdigits”.

Table 6-13. Numeric Type Conversions

Type Format

INT Two-byte word fixed-point; twos complement representation of positive and negative
values; range from -32768 through +32767.

DINT Four-byte word fixed-point format; twos complement representation of positive and
negative range between approximately -2 billion and +2 billion. (Not used by BASIC
programs.)

REAL Four-byte word floating-point format with sign bit in bit 0; an exponent (biased by +256) in
bits 1 through 9, and a positive fraction in the remaining 22 bits in HP 3000 format. (Not
used by COBOL programs.)
Chapter 6 301

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
The following chart will help you correlate VPLUS data types with VGETtype intrinsics
and programming language data types.

1. If errors occur during conversion, the two-byte status word in the communications area
is set to an error value.

2. If the requested field has been flagged as having an error (perhaps by VFIELDEDITS or
VSETERROR), the conversion is performed, but the two-byte status word is also set to an
error value.

3. An attempt to convert a number larger than 32767 using VGETINT returns an error
value (504) in the two-byte status word and leaves the receiving value unchanged.

4. All numeric separators are stripped before conversion is performed.

5. Fields of type CHAR may be converted as long as they contain numeric characters
(including signs and separators). Otherwise, an error value is returned in the two-byte

LONG Floating -point format using eight-bytes; sign bit in bit 0; an exponent (biased by +256) in
bits 1 through 9, and a positive fraction in the remaining 54 bits in HP 3000 format. (Not
used by COBOL programs.)

PACKED COBOL only; comp-3 . See COBOL II/3000 Reference Manual.

ZONED COBOL only. See COBOL II/3000 Reference Manual.

YYMMDD Six-byte ASCII, in format YYMMDD; for example, 870623.

Table 6-14. Correlation of VGETtype with the Data Types for each Language

Language Intrinsic Data Type

FORTRAN VGETINT
VGETDINT
VGETREAL
VGETLONG

Integer*2
Integer*4
Real Double
Precision

BASIC VGETINT
VGETREAL
VGETLONG

Integer
Real
Long

SPL VGETINT
VGETDINT
VGETREAL
VGETLONG

Integer
Double
Real
Long

COBOL VGETINT
VGETDINT

S9-S9(4)COMP
S9(5)-S9(9)COMP

PASCAL VGETINT
VGETDINT
VGETREAL
VGETLONG

Subrange -32768..32767
Integer
Real
Longreal

Table 6-13. Numeric Type Conversions

Type Format
302 Chapter 6

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
status word.

6. VGETINT and VGETDINT only convert the integer portion of a given field. The fractional
portion is truncated before conversion. Remember that in a field of type IMPn, the
rightmost "n" characters are treated as a fraction.

7. Note that if VGETFIELD is used to pass a field containing a decimal point to a COBOL
program, the decimal point is also passed and no arithmetic may be performed on the
field.

8. Negative numbers can be zoned correctly for COBOL only by using the VGETINT and
VGETDINT intrinsics. VGETBUFFER and VGETFIELD transfer the negative sign, but
COBOL treats the value as positive, ignoring the sign character. An EXAMINEstatement
using TALLY can determine that the negative sign is present and then the program can
treat the value accordingly.

9. Normal rules of truncation in COBOL are followed. For example, conversion of 12345
using VGETINT with a receiving field of S9(4) truncates to the value of 2345.

10.VGETINT may be used to convert positive integers to type LOGICAL in SPL.

Example

COBOL

77 FIELD-NUM PIC S9(4)COMP.
77 COUNT PIC S9(4)COMP.

:
MOVE 5 TO FIELD-NUM
CALL "VGETINT" USING COMAREA, FIELD-NUM, COUNT.

BASIC

210 F1=5
220 CALL VGETINT(Cl(*),F1,C)

FORTRAN

FIELD=5
CALL VGETINT(COMAREA,FIELD,K1)

SPL/PASCAL

INTEGER
FIELD,
COUNT;
:

FIELD:=5;
VGETINT(COMAREA,FIELD,COUNT);

The calls in this example convert a value contained in field 5 in the data buffer to two-byte
integer representation and store it in an application.
Chapter 6 303

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
VGETYYYYMMDD

Converts data in the data buffer to a eight-byte character value and copies it to an
application.

Syntax

VGETYYYYMMDD {comarea,fieldnum,variable }

Parameters

comarea must be comarea name specified when the forms file was opened with
VOPENFORMF. If not already set, the following comarea items must be set
before calling VGETYYYYMMDD:

cstatus set to zero.

comarealen set to total number of two-byte words in comarea . Must be
at least 70 words in length.

VGETYYYYMMDD may set the following comarea item:

cstatus set to nonzero value if call is unsuccessful or requested
field has an error.

fieldnum is a two-byte integer variable which specifies the number assigned to the
field by FORMSPEC

variable is a character string in the application into which the converted value is
placed

Discussion

VGETYYYYMMDD transfers the contents of the field specified by fieldnum to a variable in an
application. The contents of the field are stored in a data buffer from which the value is
taken. This value is converted to YYYYMMDDformat and the converted value is placed in the
application variable. The YYYYMMDD format is an 8-byte ASCII value, for example,
19961225.

If errors occur during conversion, cstatus is set to an error code. If the requested field has
an error, its value is moved to the variable but cstatus is set to an error code.

Refer to the VGETtype intrinsic description in the Data Entry and Forms Management
System VPLUS Reference Manual for related information.

Example

COBOL
CALL "VGETYYYYMMDD" USING COMAREA FIELDNUM VARIABLE.

SPL
VGETYYYYMMDD(COMAREA,FIELDNUM,VARIABLE);

These calls will convert the contents of the data buffer corresponding to the field specified
by FIELDNUM and place the converted value into VARIABLE.
304 Chapter 6

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
VINITFORM

Initializes fields in data buffer according to specifications defined in the initialize phase of
field definition. Both VOPENFORMF and VGETNEXTFORM must have been executed
successfully prior to calling VINITFORM.

Syntax

VINITFORM { comarea }

Parameters

comarea Must be comarea name specified when the forms file was opened with
VOPENFORMF. If not already set, the following comarea items must be set
before calling VINITFORM:

cstatus Set to zero

comarealen Set to total number of two-byte words in comarea .

VINITFORM may set the following comarea values:

cstatus Set to non-zero value if call unsuccessful.

numerrs Set to total number of fields in which errors were detected.

nfname Set to new next form name, if name changed by processing
specifications.

repeatapp Set to new current form code, if code changed by
processing specifications.

freezapp Set to new next form code, if code changed by processing
specifications.

Discussion

Certain values may be assigned to fields as initial values. These values are determined by
special processing specifications that are explicitly or implicitly defined as part of the
initialize phase of field processing using FORMSPEC. These values include any initial
values specified on the Field Menus for the form. If no initial values were specified, all
fields are initialized to blanks by VINITFORM. If the form being initialized is a child or
sibling to the previous form, data from the previous form is transferred to this form (with
conversion if necessary) before initializations occur. If a field in a child or sibling form must
be initialized to blanks, use $EMPTY as an initial value.

VINITFORM only resets the field error flag if the field is initialized explicitly by
initialization phase (INIT) processing specifications.

Example

COBOL

CALL "VINITFORM" USING COMAREA.

BASIC

140 CALL VINITFORM(Cl(*))
Chapter 6 305

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
FORTRAN

CALL VINITFORM(COMAREA)

SPL/PASCAL

VINITFORM(COMAREA);

The calls shown above set initial values in the data buffer area of memory according to
initialize specifications defined for each field in the current form.
306 Chapter 6

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
VLOADFORMS

Loads specified forms into terminal local form storage memory.

Syntax

VLOADFORMS {comarea,numofforms,formsloaded,forms }

Parameters

comarea Must be comarea name specified when the forms file was opened with
VOPENFORMF. If not already set, the following comarea items must be set
before calling VLOADFORMS:

cstatus Set to zero.

language Set to the code identifying the programming language of
the calling program.

comarealen Set to total number of two-byte words in comarea .

VLOADFORMS sets the following items in comarea :

cstatus Set to nonzero value if call unsuccessful.

numofforms Two-byte integer value, between 1 and 255, inclusive, indicating the
number of forms to be loaded.

formsloaded Two-byte integer value indicating the number of forms that were
successfully loaded.

forms The names of the forms to be loaded. Each name can be up to 15 characters
and is stored in a 16-byte character array with a one byte filler that is not
part of the name.

Discussion

This intrinsic is used on terminals having local form storage. VLOADFORMS loads the forms
named in forms into terminal local form storage memory in the order they are specified. It
may not be possible to load all the forms named because of a limit of available space in
local form storage or in the form storage directory (set with formstoresize prior to
VOPENTERM and VOPENFORMF). When there is no more space, any other forms named in
forms are ignored. The value returned in the formsloaded parameter is:

formsadded + formsalreadypresent

where formsadded is the number of forms specified in the forms parameter that were
actually loaded into the local storage of the terminal and formsalreadypresent is the
number of forms specified in the forms parameter that were confirmed to already exist in
the local storage. Because forms are loaded by form name, family relationships are
ignored. Multiple family members can be loaded at the same time.

Note that the terminal keyboard may be locked briefly while VLOADFORMSverifies whether
or not a form was loaded. In case keys are pressed during this time, the terminal beeps to
indicate that the keystrokes and/or entered data are lost. You can avoid this by not calling
VLOADFORMS between calls to VSHOWFORM and VREADFIELDS. Refer to the discussion on
"Local Forms Storage" earlier in this section.
Chapter 6 307

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
Example

COBOL

77 NUM-OF-FORMS PIC S9(4)COMP.
77 FORMS-LOADED PIC S9(4)COMP.
77 FORMS PIC X(16).

:
MOVE 1 TO NUM-OF-FORMS
MOVE "FORMA "TO FORMS.
CALL "VLOADFORMS" USING COMAREA, NUM-OF-FORMS, FORMS-LOADED, FORMS.

BASIC

10 INTEGER N,F
15 DIM F$[16]
20 N=1
30 F$="FORMA "
40 CALL VLOADFORMS(C[*],N,F,F$)

FORTRAN

INTEGER*2 NFORM,FLOAD
CHARACTER*16 FORMS
NFORM=1
FORMS="FORMA "
CALL VLOADFORMS(COMAREA,NFORM,FLOAD,FORMS)

SPL/PASCAL

INTEGER
NUM'OF'FORMS,
FORMS'LOADED;

BYTE ARRAY
FORMS(0:15);

:
NUM'OF'FORMS:=1;
MOVE FORMS:="FORMA ";
VLOADFORMS(COMAREA,NUM'OF'FORMS,FORMS'LOADED,FORMS);
308 Chapter 6

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
VMERGE

VMERGEis a new VPlus utility that allows you to combine two or more separately-compiled
VPlus forms files into a single forms file, which may then be used with an application
program to manage the entry and/or retrieval of data.

Combining multiple forms files with VMERGE provides the following advantages:

• Some file size limitations can be overcome. Since there are limitations on how many
physical records can be placed in a VFORM file, VPlus users sometimes find that they
cannot use a single forms file to hold all the forms their application requires. With
VMERGE, it is possible to add more forms (from a second forms file) to the ones in the
initial forms file, even if the first is at or near the maximum size.

• It is sometimes easier to maintain a large forms file as several separately compiled
“modules” that can then be combined with VMERGE rather than to maintain one large
forms file.

Overview

VMERGE usually resides in PUB.SYS. It may be run on either MPE/iX or MPE V.

Before VMERGE is invoked, you must specify two input forms files and one output file. The
input files are specified with file equations for the formal designators VMASTER and VAUX.
The output file is specified with a file equation for the formal designator VOUTPUT. VMASTER
and VAUX must exist, and each may be of type VFORM (slow forms file) or VFAST (fast forms
file). VOUTPUT is created by the VMERGE utility and is of type VFAST.

As VMERGE runs, informative messages are presented on $STDLIST . If any problems are
encountered, appropriate error messages are displayed. These message are described in
the “VMERGE Messages” section in this article.

Forms File Handling by FORMSPEC and VMERGE

VPlus forms files exist in files with two different file codes: VFORM (slow forms file) and
VFAST (fast forms file). VFORM files are created and modified with FORMSPEC. VFORM files
contain the “source” for each form in the file, coded in a way that FORMSPEC can
understand. When a forms file is compiled by FORMSPEC, “object” forms are added to the
VFORMfile. The object forms are accessed when the forms file is used with ENTRYor another
application program that invokes the VPlus intrinsic functions.

When you use FORMSPEC to compile a VFORM file, you may request the creation of a fast
forms file. This file contains only the object forms for the forms in the specified VFORM file.
Processing the VFAST file is fast because the file is smaller than its corresponding VFORM
file. That is, the fast forms file does not contain source forms and, therefore, can be
accessed faster. Since a fast forms file does not contain source forms, it cannot be modified
by FORMSPEC.

Both VFORM and VFAST files are limited in the number of records they can hold. However,
the problem is more severe with VFORM files since they contain both source and object
forms.

Previously, the only way to create a fast forms file was by compiling a VFORM file with
FORMSPEC. Consequently, you might have been unable to include forms that theoretically
could have fit into a VFASTfile, since the source and object forms might have been too large
Chapter 6 309

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
to fit into a VFORM file. Now, VMERGE gives you an alternate method for generating VFAST
files that contain additional forms. However, VFAST files still have limited capacity, and so
there are still limits on the total number of forms you can place in a forms file, even using
VMERGE.

Initial analysis shows that the ratio of fast form file size to slow form file size is around 1/3
to 1/10. This suggests that you can expect to combine forms from three or more nearly full
(to FORMSPEC) forms files into one forms file, by using VMERGE. However, this is an estimate
only, since non-typical forms files may vary considerably in their object to source ratios.

Input File Compatibility

Not all forms files can be successfully combined using VMERGE. The input forms files must
be “compatible” in order to be combined with VMERGE. The compatibility factors are:

• Form names -- the same form name may not appear in both the VMASTERand the VAUX
files.

• Save fields -- if both input files use save fields, the specifications for both files must be
identical in all respects: names of save fields, lengths, data types, and initial values. The
save fields must also be defined in the same order. It is permissible for one file to use
save fields and the other not to do so.

• Global function key labels -- if both input files define global function key labels, the
specifications for both files must be identical in all respects. It is permissible for one file
to define global function key labels and the other not to do so. In this case, the global
function key labels from the file which contains them will be retained in the output file.

• Terminal selection and language id -- both input files must have exactly the same set of
terminals selected and the same Forms File Language specified (from FORMSPEC
Terminal/Language Selection Menu).

There are a number of forms file characteristics that may differ between the two input files
that are not serious enough for VMERGE to consider the two files as incompatible. These
include: head form name, error enhancement, window display line, error window color, and
window enhancement. The characteristic found in the VMASTER file is retained in the
VOUTPUT file.

Application Requirement for Combined Forms Files

VMERGE takes two FORMSPEC-compiled forms files specified by the VMASTER and VAUX file
designators, extracts the object forms from each file, and places these forms in a VFASTfile
specified by the VOUTPUT file designator.

Every forms file has a $HEADform designated for it. Additionally, every form in a forms file
has a “Next Form” designated for it. Next Form may be $HEAD or it may be the name of
another form in the file. In order to compile a forms file, FORMSPEC requires that any form
named as the $HEADor as a Next Form exist in the file. Consequently, it is impossible for a
form in the VMASTERforms file to refer to a form in the VAUXforms file as its Next Form and
vice versa.

Therefore, the application program used with a combined forms file must be coded to
sequence among the forms in the combined forms file without depending on the Next Form
designation. The Next Form designation can only be used when it and the current form
310 Chapter 6

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
originated from the same forms file.

VMERGEusers should be aware that VMERGEmakes the $HEADform from VMASTERthe $HEAD
for VOUTPUT. If data entry operators are used to seeing the $HEAD form from the VAUX file,
they may be surprised if this $HEADform is no longer what is displayed when they bring up
their application.

Technical Reference

VMERGE normally resides in PUB.SYS; if it is moved from PUB.SYS, it must be moved to a
group with “DS” capability.

VMERGE is invoked with the following command:

:RUN VMERGE.PUB.SYS

Before invoking VMERGE, three file equations must be given. The two VMERGE input forms
files are indicated by the file designators VMASTER and VAUX. VMASTER and VAUX must
designate existing forms file, with file codes VFORM or VFAST. The VMASTER and VAUX files
must have been compiled with a recent version of FORMSPEC. If an input file is provided
that does not meet this criterion, a message is given, and VMERGE processing halts.

VMERGE’s output VFAST forms files is indicated by the file designator VOUTPUT. If the
designated file already exists and has the file code VFAST, then it is purged and recreated
by VMERGE. If the file exists but has a file code other than VFAST, the file is not purged, a
warning message is given, and VMERGE halts.

The files used by VMERGEare opened for exclusive use to avoid concurrent update problems.

Two JCWs (job control words) are defined for use with VMERGE: VMERGETERSE and
VMERGEERROR. If the user sets VMERGETERSEto 1 before running VMERGE, then the messages
indicating the form names contained in the VMASTER and VAUX files are suppressed. The
VMERGEERROR JCW is set by VMERGE after it runs. If VMERGE detected a severe error that
prevented the VOUTPUT file from being successfully created, VMERGEERROR is set to 1. If
VMERGE successfully created the VOUTPUT file, VMERGEERROR is set to 0.

Example 1: Using VMERGE to Combine Forms Files Suppose your company has
three distinct uses for an order form prepared by a salesperson. The order form is used in
the shipping department, the billing department, and the marketing department.
Currently the original order form is passed among three clerks who each enter their data
using their own VPlus forms files (SHIPFF, BILLFF , and MARKETFF) that are distinct to
their respective departments. Your job is to merge the forms files and fix the application
program so that one clerk can enter the data for all three departments.

You decide that each of the three application areas (shipping, billing, and marketing)
should be selectable by pressing a function key. Once an area has been selected, processing
will be performed using the same sequence as when the application for that area existed
on its own. Remember that while combining the three applications into one, you will need
to examine the effect of $HEADbeing different from what two of the original three programs
expected. Most likely, you will want to create a new form to serve as the $HEAD for the
combined application.

After examining and fixing the application program, you will need to look at the forms files
and make them compatible, if they are not already. You will need to make sure that the
save fields, if any, have distinct names and are identical in each of the forms files that uses
Chapter 6 311

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
them. Additionally, you will need to check that the global function key specifications are
compatible in the three forms files. Note that in some cases incompatibilities may be so
extensive that it will be impossible to merge the forms files.

Next you determine what order to merge the forms files together. Suppose in this example
that the marketing forms file is much more volatile than the other two. Therefore, you
decide that this file should be the last one merged. You also need to decide which form your
combined application should use as its $HEAD. Suppose in this example you depend on the
$HEAD form from BILLFF being the $HEAD of the combined forms file.

Combining the forms files is accomplished in two stages. In the first stage you enter:

:FILE VMASTER=BILLFF
:FILE VAUX=SHIPFF
:FILE VOUTPUT=INTERFF
:RUN VMERGE.PUB.SYS

VMERGE creates the intermediate forms file INTERFF.

In the second stage you enter:

:FILE VMASTER=INTERFF
:FILE VAUX=MARKETFF
:FILE VOUTPUT=COMBOFF
:RUN VMERGE.PUB.SYS

VMERGEcreates the final forms file COMBOFF. You may wish to keep the intermediate forms
file, INTERFF, so you won’t need to recreate it if only MARKETFF changes.

Now you could test COMBOFF with your combined application program.

Example 2: Using VMERGE to Divide a Forms File Another use of VMERGE is to
divide an existing forms file into two or more smaller forms files. This might be desirable if
different forms in the original forms file were going to be modified by different people, or if
compiling the entire forms file takes a long time.

When VMERGE is used to divide a file, there are few compatibility problems since the
original form file is already “merged”. You will have to be careful not to introduce
incompatibilities (for example, refer to the $HEAD and Next Form issues discussed earlier)
as a result of dividing the file.

Suppose you want to remove forms F1, F2, and F3 from a forms file named BIGFF and
place them into another forms file, LITTLEFF . The F1, F2, and F3 forms are changed often,
and you want to separate them out in order to minimize the time it takes to recompile each
time changes are made.

First, you would FCOPY BIGFF to LITTLEFF by entering the following command:

:FCOPY FROM=BIGFF;TO=LITTLEFF;NEW

Second, you would run FORMSPECon BIGFF to delete forms F1, F2, and F3. You would need
to correct the Next Form fields for any affected forms.

Third, you would probably want to take advantage of some of FORMSPEC’s batch mode
facilities to delete all but the F1, F2, and F3 forms from LITTLEFF (see the Deleting Forms
Using FORMSPEC’s Batch Mode Facilities section below).

Fourth, you would compile both forms file to verify that no $HEAD or Next Form
312 Chapter 6

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
dependencies exist. The compilation for BIGFF will be lengthy, but it will only need to be
done once.

Fifth, you would make your changes to the forms in LITTLEFF and add additional forms
that could not be put into BIGFF due to size limitations.

After you had taken all these steps you could combine the two forms files with VMERGE:

:FILE VMASTER=BIGFF
:FILE VAUX=LITTLEFF
:FILE VOUTPUT=SUPERFF
:RUN VMERGE.PUB.SYS

Check your application using the SUPERFF forms file.
Chapter 6 313

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
VOPENBATCH

Opens existing batch file for processing; or, if the specified file is new, creates a batch file
and then opens it for processing.

Syntax

VOPENBATCH {comarea,batchfile }

Parameters

comarea Must be comarea name specified when the forms file was opened with
VOPENFORMF. If not already set, the following comarea items must be set
before calling VOPENBATCH:

cstatus Set to zero.

language Set to the code identifying the programming language of
the calling program.

comarealen Set to total number of two-byte words in comarea .

VOPENBATCH sets the following comarea items:

nfname Set to the name of the form corresponding to the record
identified by recnum .

recnum Set to zero if new file opened; to the next sequential record
number if existing file opened.

numrecs Set to zero if new file opened; to the number of nondeleted
records in file if existing file opened.

VOPENBATCH may set the following comarea items:

cstatus Set to nonzero value if call unsuccessful.

filerrnum Set to file error code if MPE file error.

batchfile Character string of up to 36 characters (including a terminator) that
identifies the batch file being opened. Specified name can be any fully
qualified MPE file name.

Discussion

VOPENBATCH opens the specified batch file for processing by the calling program. The
batch file may be an existing file or a new file.

Existing File

If the named file already exists, VOPENBATCHinitializes recnum to the record number of the
next record in the file, and numrecs to the total number of existing batch records. Thus, a
user resuming collection does not overwrite data collected into previous batch records.
VOPENBATCH sets nfname to the name of the form associated with the batch record to be
collected. This record is identified by recnum. VOPENBATCH keeps track of forms sequence
in order to associate a form with a record. For example, if a batch file is closed after record
6 of FORMA was collected, and FORMA is a repeating form, the batch file starts with
record 7 FORMA when it is next opened by VOPENBATCH.
314 Chapter 6

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
VOPENBATCH also resets the global environment (save fields and so forth) to the
environment existing when collection stopped. (All this information is derived from the file
labels preceding each file.)

New File

If the named file does not exist, VOPENBATCHcreates a new file with the specified name and
sets recnum and numrecs to zero. A new batch file created by VOPENBATCHhas the following
characteristics:

Record Format

The size of the fixed-length batch file records must be large enough to hold the largest data
buffer used by the forms file associated with the batch file, plus 10 two-byte words for
batch record control information. If the largest data buffer is an even number of bytes, an
additional two-byte word is added before the control information. This batch record
information consists of:

2 bytes (logical) — Delete flag (TRUE if record deleted)

16 bytes (character) — Current form name + extra character

2 bytes (logical) — Data buffer length

Total = 20 bytes

The above batch record information is written at the end of each record in the batch file,
starting on a two-byte word boundary. To illustrate, assume the record size is 74 bytes, and
the data only requires 35 bytes (bytes are numbered from 1):

Labels

In addition, VOPENBATCH creates sufficient user labels (each 256 bytes long) to hold any
save field buffers, plus 176 bytes for the collection environment and the forms file version.

The length of the save field buffers depends on how many (if any) save fields were defined
for the form and the length of each. The collection environment consists of the forms file
name and version number, the next form name, and 122 bytes of system information. This

• Non-KSAM file

• USASCII coded data

• Fixed-length records

• No carriage control

• :FILE command allowed (use actual file
designator)

• Update access

• Exclusive (nonshared) access

• No dynamic locking

• No multirecord access

• Normal buffering

1 (bytes) 35 55 57 73 74

data delflag dbuflencfnameundefined

two-byte word boundary
batch record info
Chapter 6 315

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
information is stored as follows:

Total = 176

For example, assume that the save fields buffer requires 242 bytes. The following user
labels are created by VOPENBATCH:

LABEL 0 — Contains first 80 bytes of Save Fields buffer

LABEL 1 — Contains remaining 162 bytes of Save Fields buffer

Note that the length of the save fields buffers is determined by taking the number of bytes
in each save field, summing them together, adding one byte, and then, if odd, rounding the
total up to an even number.

Creating Your Own Batch File

Should you want to create your own batch file rather than calling VOPENBATCH, you must
build the file using the above record format and user label requirements. Also, if you create
a batch file with variable-length or undefined-length records rather than fixed-length
records, browsing of the batch file is not allowed. Undefined-length records are formatted
like fixed-length records.

If you do, nevertheless, want to create a batch file with variable-length records for data

of Bytes

2 — Product number

2 — (System use)

4 — Forms file version (date and time of compilation)

16 — Next form name

28 — Forms file name

120 — Reserved for system use

4 — Number of nondeleted records in batch file

1 25 53 173 177

Save
Fields
Buffer

ffname (system use)

Version Number
(system use)
Prodcut Number

Number of
nondeleted
records

5 9 256

nfname

Save Fields buffer

byte
1 162
316 Chapter 6

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
collection only, the batch file information is stored immediately following the data in each
record. Assume a variable-length record with 35 bytes of data:

The total size of this record is 56 bytes. Depending on the size of the data, other records
have varying lengths. The maximum size of the variable-length records must be the size of
the largest data buffer (in bytes) plus 20 bytes for the batch record information.

Example

COBOL

CALL "VOPENBATCH" USING COMAREA, BATCH.

BASIC

170 CALL VOPENBATCH(C(*),Bl$)

FORTRAN

CALL VOPENBATCH(COMAREA,BATCH)

SL/PASCAL

VOPENBATCH(COMAREA,BATCH);

If the requested batch file name is an existing file, it is opened and the user can continue to
enter data into the record following the last record that contains data. If the requested
batch file name is a new file, VOPENBATCH creates a batch file and data entered at the
terminal is written to the first record in the file (record 0).

data

1 (bytes) 35 37 56

brinfodata

odd byte is wasted even-byte boundary
Chapter 6 317

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
VOPENFORMF

Opens forms file for access.

Syntax

VOPENFORMF {comarea,formfile }

Parameters

comarea The comarea name must be unique for each open forms file. If not already
set, the following comarea items must be set before calling VOPENFORMF:

cstatus Set to zero.

language Set to the code identifying the programming language of
the calling program.

comarealen Set to total number of two-byte words in comarea .

usrbuflen BASIC programs only; set to number of two-byte words
needed for comarea extension.

labeloption Set to zero or one.

formstoresize Set to minus one, zero, or one through 255 to indicate
the number of forms allowed in the form storage directory.

VOPENFORMF sets the following comarea items:

cstatus Set to nonzero value if call unsuccessful.

lastkey Set to zero.

numerrs Set to zero.

recnum Set to zero.

dbuflen Set to zero.

cmode Set to zero (collect mode).

repeatapp Set to zero (no repeat/append).

freezapp Set to zero (clear current form).

printfilnum Set to zero.

deleteflag Set to FALSE (all zeros) (used for batch file intrinsics).

cfname Set to blank.

nfname Set to name of head form.

cstatus Set to nonzero value if call unsuccessful.

filerrnum Set to file error code if MPE file error.

windowenh Set to enhancement code defined in forms file.

If the data capture devices are used:

errorlight Set to default or user specified value.
318 Chapter 6

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
splitmsgpause Set to default or user specified value.

formfile Character string of up to 36 characters (including a terminator) that
identifies the forms file being opened. Specified name can be any fully
qualified MPE file name.

Discussion

VOPENFORMF opens the specified forms file for processing by the calling application. If the
calling application is BASIC, it must provide its own comarea extension immediately
following the comarea and specify the size of this extension in usrbuflen . If the
application is written in a programming language other than BASIC, a DL area is
obtained for use as the comarea extension. In this case, the application must not use the
DL area for other functions. Refer to Appendix E for more information on the DL area. The
forms file listing gives an estimate of DL to DB area used. You use this estimate with the
MAXDATAparameter at PREP or RUN time. The labeloption must be set to one if you are
using function key labels.

Example

COBOL

CALL "VOPENFORMF" USING COMAREA, FNAME.

BASIC

100 CALL VOPENFORMF(c(*),F1$)

FORTRAN

CALL VOPENFORMF(COMAREA,FNAME)

SPL/PASCAL

BYTE ARRAY FNAME(0:34);
:

MOVE FNAME:="FORMSA ";
VOPENFORMF(COM1,FNAME);
Chapter 6 319

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
VOPENTERM

Opens a VPLUS supported terminal.

Syntax

VOPENTERM {comarea,termfile }

Parameters

comarea The comarea name must be unique for each open forms file. The calling
program should initialize the entire comarea to zero before calling
VOPENTERM. For additional information about about using the pseudo
intrinsic .LOC to put and address into a word of the COMAREA, refer to the
COBOL II/XL Reference Manual.

In addition, the following comarea items must be set before calling
VOPENTERM:

cstatus Set to zero.

language Set to the code identifying the programming language of
the calling program.

comarealen Set to total number of two-byte words of comarea .

formstoresize Set to minus one, zero, or one through 255 to indicate
the number of forms allowed in the form storage directory.

VOPENTERM may set the following comarea items:

cstatus Set to nonzero value if call unsuccessful.

filerrnum Set to file error code if MPE file error.

filen Set to MPE file number of terminal.

identifier Set to appropriate VPLUS terminal type code.

environ Set to logical device number of terminal.

labinfo Set to appropriate number and length of labels used by
VPLUS.

If the data capture devices are used:

leftmodule Set to appropriate value defining terminal.

rightmodule Set to appropriate value defining terminal.

keyboard Set to appropriate value defining terminal.

display Set to appropriate value defining terminal.

termfile Character string of up to 36 characters (including a terminator) that
identifies the terminal. If set to a blank, the session device is used to get
the ldev# of the logon terminal. Otherwise, any fully qualified MPE file
name can be assigned to the terminal as its formal file designator. If
specified, the name must be terminated by a special character (a blank is
suggested). Before using a terminal identified by name, the formal
320 Chapter 6

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
designator may be equated to an actual designator with a :FILE command.

Discussion

This intrinsic opens the terminal as a file. If you are running your program as a session
with your terminal as the open terminal file, the terminal name should be left blank so
that the session device is opened. If you are opening a form, you should call VOPENFORMF
before using this intrinsic,

Once the terminal is opened for control by VPLUS, an application should not call system
intrinsics to communicate with the terminal. All terminal I/O must be controlled through
VPLUS intrinsics.

If you are using an HP 2640B or HP 2644 terminal and the terminal is not in block mode,
VOPENTERM asks you to press the BLOCK MODE key; other terminals are set to block mode
automatically. The data capture devices are treated as character mode terminals.

Example

COBOL

77 T1 PIC X(8) VALUE "VTERM
01 COMAREA.

:
:

PROCEDURE DIVISION.
:

OPENTERMINAL.
CALL "VOPENTERM" USING COMAREA, T1.

This example opens the device referenced by the file equation VTERM. If no file equation
exists, the default is the logon device.

BASIC

90 Tl$-#" "
100 CALL VOPENTERM(C(*),T1$)

FORTRAN

T1=" "
VOPENTERM(COMAREA,T1)

SPL/PASCAL

MOVE T1:=" ";
VOPENTERM(COMAREA,T1);

The examples shown above open the session device with comarea identified as COMAREA
(C(60) for BASIC).
Chapter 6 321

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
VPLACECURSOR

Allows an application to position the cursor to any input field at run-time.

Syntax

VPLACECURSOR {comarea,fieldnum }

Parameters

comarea Must be comarea name specified when the forms file was opened with
VOPENFORMF. If not already set, the following comarea items must be set
before calling VPLACECURSOR:

cstatus Set to zero.

language Set to the code identifying the programming language of
the calling program.

comarealen Set to total number of two-byte words in comarea .

VPLACECURSOR may set the following comarea items:

cstatus Set to non-zero value if call unsuccessful.

filerrnum Set to file error code if MPE file error.

fieldnum A two-byte integer that identifies the input field, where a positive number
indicates the field number; a negative number indicates the screen order
number.

Discussion

VPLACECURSOR allows an application to position the cursor to any input field at run-time.
This intrinsic places the cursor to the input field specified by fieldnum . Calling
VPLACECURSOR with a positive number indicates the field number; a negative number
indicates the screen order number. Using the field number is preferable because if the
fields in a form are rearranged, no modification to an application is necessary.

VPLACECURSORmust be called after calling VSHOWFORM. VPLACECURSOR returns an error if
the field number or the screen order number does not exist. An error is also returned if the
intrinsic is called to place the cursor to a display-only field.

Example

COBOL

CALL "VPLACECURSOR" USING COMAREA,FIELD-NUM.

BASIC

120 CALL VPLACECURSOR(C(*),FIELDNUM

FORTRAN

CALL VPLACECURSOR(COMAREA,FIELDNUM)

SPL/PASCAL

VPLACECURSOR(COMAREA,FIELDNUM);
322 Chapter 6

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
VPOSTBATCH

Protects a user-specified portion of the batch file data from a system crash by posting an
end-of-file mark after the last record referenced and updating the batch file labels.

Syntax

VPOSTBATCH {comarea }

Parameters

comarea Must be comarea name specified when the forms file was opened with
VOPENFORMF. If not already set, the following comarea items must be set
before calling VPOSTBATCH:

cstatus Set to zero.

comarealen Set to total number of two-byte words in comarea .

VPOSTBATCH will set the following field:

cstatus Set to nonzero if called unsuccessful, zero if successful.

Discussion

VPOSTBATCHposts an end-of-file mark after the last record referenced in the batch file and
updates the environmental information found in the file label. Refer to the discussion of
VOPENBATCH for a description of the environmental information.

If a system crash or power failure occurs while the batch file is open, all data before the
end-of-file mark is preserved, and data collection continues from that point. In ENTRY,
VPOSTBATCHis called after every 20 records, though you may extend or shorten this posting
interval. Two cautions:

1. Never call VPOSTBATCH while you are in BROWSE mode, or at any time when the last
record referenced is not the last record in the batch file. If you call this intrinsic when
the last record referenced is in the middle of the file, VPOSTBATCH posts a mark before
the actual end of the file, causing all data after this mark to be lost.

2. The comarea field numrecs , which contains the number of undeleted records in the file,
may not be restored correctly after a system crash if batch records have been deleted
since the last call to the VPOSTBATCH intrinsic.

Example

COBOL

CALL "VPOSTBATCH" USING COMAREA.

BASIC

290 CALL VPOSTBATCH(C(*))

FORTRAN

CALL VPOSTBATCH(COMAREA)

SPL/PASCAL

VPOSTBATCH(COMAREA);
Chapter 6 323

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
VPRINTFORM

Prints the current form on an off-line list device.

Syntax

VPRINTFORM {comarea,printcnt1,pagecnt1 }

Parameters

comarea Must be comarea name specified when the forms file was opened with
VOPENFORMF. If not already set, the following comarea items must be set
before calling VPRINTFORM:

cstatus Set to zero.

comarealen Set to total number of two-byte words in comarea .

printfilnum Set to file number of the list file to which the form is to be
printed. If set to zero, VPRINTFORM opens the device "LP"
as the list file and sets printfilnum to the file number of
the opened list file.

VPRINTFORM may set the following comarea values:

printfilnum If VPRINTFORMopened the list file, set to the file number of
the open file.

cstatus Set to nonzero value if call unsuccessful.

filerrnum Set to file error code if MPE file error.

printcntl Two-byte integer that, if set to 1, causes VPRINTFORM to underline each
field in the form listing. If set to any other value, fields are not underlined.

pagecntl Two-byte integer value that determines the carriage control operation
performed after a form is listed. May be any of the carriage control codes
used by the MPE FWRITE intrinsic, including the following:

61(octal) Page eject
320(octal) No line feed or carriage return

zero Carriage return/line feed

Discussion

VPRINTFORM prints the current form to a list file. It is analogous to VSHOWFORM, in that it
prints the form and the current data buffer values, except that VPRINTFORMprints the form
on a hardcopy device rather than on the terminal. Enhancements obviously cannot be
shown directly; the window line and key labels are not printed. The form must have been
read into the form definition area of memory by a prior call to VGETNEXTFORM. The
information printed depends on what is in the data buffer, which may not necessarily be
the same as what is displayed.

The carriage control character specified in the pagecntl parameter is effective after the
form is printed.

If the calling program opens the list file, it must supply the file number of this file in
printfilnum . If printfilnum is zero, VPRINTFORM opens a list file and sets printfilnum
324 Chapter 6

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
to the file number of the file. VPRINTFORMopens the list file, with the formal and actual file
designator FORMLIST, assigns it to the device class LP, and specifies its length as 80 bytes.
This is equivalent to using the file equation:

: FILE FORMLIST;DEV=LP;REC=-80

A user may change any of these characteristics with an MPE :FILE command.

Example

COBOL

CALL "VPRINTFORM" USING COMAREA, UNDERLINE, PAGE.

BASIC

135 CALL VPRINTFORM(C(*),U,P)

FORTRAN

CALL VPRINTFORM(COMAREA,UNDRLN,PAGE)

SPL/PASCAL

VPRINTFORM(COMAREA,UNDERLINE,PAGE);

Each of the calls shown above prints the current form on a list device; if not already open,
it opens the device file.
Chapter 6 325

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
VPRINTSCREEN

Prints the entire contents of a terminal screen to an off-line list device or laser printer
during VPLUS execution.

Syntax

VPRINTSCREEN {comarea, readsize }

Parameters

comarea If not already set, the following comarea items must be set before calling
VPRINTSCREEN:

cstatus Set to zero

comarealen Set to the total number of two-byte words in comarea .

printfilenum Set to the file number of the list file to which the form is
printed. If set to 0, VPRINTSCREENopens the device "LP" as
the list file and sets printfilenum to the file number of
the opened list file.

VPRINTSCREEN may set the following comarea items.

printfilenum If VPRINTSCREEN opened the list file, set to the file
number of the opened file.

cstatus Set to a nonzero value if call is unsuccessful.

fileerrnum Set to the MPE error code if an MPE file error is
encountered.

readsize Two-byte integer, reserved for system use. Must be set to 0.

Discussion

This intrinsic provides the capability for printing the current screen display with function
keys, line drawing characters and appended forms, as well as the data on the screen. It
differs from VPRINTFORM, which is limited to printing only the data in the form data buffer.
However, VPRINTFORM offers the option of underlining fields, which VPRINTSCREEN in LP
mode does not.

The programmer can produce copies of VPLUS screens in either of two ways: incorporating
VPRINTSCREENinto an application so that screen images can be captured at run-time with
their data, or developing a simple utility that allows data to be entered into the screens
before calling VPRINTSCREENto reproduce them. The utility has the advantage of removing
the overhead caused by VPRINTSCREEN from the application, while still providing a way to
reproduce screens and data for product literature.

VPRINTSCREEN always uses the Pascal HEAP procedures to perform stack allocation. This
introduces the risk of conflict for programs written in COBOL, FORTRAN/66 or SPL,
because the existing intrinsics would use DLSIZE for stack allocation in these cases.
Applications written in these languages must, therefore, follow two rules when calling
VPRINTSCREEN. They are:

1. The language id in the comarea must be set to 5.
326 Chapter 6

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
2. The INTRINSIC calling mechanism must be used when calling the VPLUS intrinsics
from the main and all interacting parts of the application. For example, with COBOL
the application must use:

:CALL INTRINSIC <intrinsic name>

Refer to Appendix E of this manual, and to the COBOL and Pascal reference manuals, for
more information on calling mechanisms.

For applications that use a language id of 5 in the VPLUS comarea , including Pascal,
FORTRAN/77 and HPBUSINESS BASIC, VPLUS uses the HEAP procedures for stack
allocation, so VPRINTSCREEN can be called in the standard format.

The programmer may implement this feature by defining a function key that allows the
user to print the screen contents at any time. This would be useful for providing immediate
output during production.

Modes of Operation

VPRINTSCREEN operates in two modes, normal and documentation mode. A VPLUS
supported terminal is required for execution of this intrinsic.

Normal Mode

This is the default calling mode for VPRINTSCREEN. When called, the value in the
printnumfile word of the comarea is used to determine the list device. If the calling
program opens the list file, it must supply the file number of this file in printfilenum
VPRINTSCREEN opens the list file with the formal and actual file designator FORMLIST,
assigns it to the device class LP, and specifies its length as 80 characters. This is
equivalent to using the file equation:

:FILE FORMLIST;DEV=LP;REC=-80

The user may change any of these characteristics with a :FILE command.

NOTE It is recommended that VPRINTSCREEN and VPRINTFORM not be used in the
same program. Since the same list is used for both listings, output from the
two calls will be intermixed.

Each time VPRINTSCREEN is called, a PAGE EJECT is performed at the end of the print
operation.

Documentation Mode

You require TDP in order to use VPRINTSCREENin this mode. VPRINTSCREEN, in conjunction
with TDP, provides the capability to print screen contents on a laser printer (HP2680A or
HP2688A). In this mode, field highlighting other than color, borders, alternate character
sets and active function keys are captured and converted to the requisite font for printing
on the laser printer.

Documentation mode is enabled by setting a JCW before running the program. It is:

:SETJCW VPRINTJCW=1

When VPRINTJCWis set to 1, the list file FORMLISTis NOT opened. Instead, a temporary file
Chapter 6 327

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
called EPOCLISTis created (or appended to, if it already exists). EPOCLISTcan be saved and
renamed on completion of the screen capture, then input to TDP and 'finaled'. The user can
add text to the file or include it in a separate TDP file. Refer to the TDP Reference Manual
for more information on use and include files.

The following files are sample files supplied on the FOS installation tape. They should be
restored to a local group to be used by applications using VPRINTSCREEN in
documentation mode. To accomplish this, mount the FOS tape and perform the following
restore commands:

:file t;dev=TAPE:restore *t;V@.HP32209.HPPL89;local;show

These files may also be a non-local group, provided the application supplies a file equation,
T. E.,

:file VSETUP=VSETUP.othergroup.otheraccount

Filename (in HP32209.HPPL89) Description

VENV80 environment file for HP2680 printer
VENV88 environment file for HP2688 printer
VSETUP TDP include file
VEPOCUSE TDP use file for merging screens
VPRTDEMO demo program for VPRINTSCREEN”

In order to print the forms on a laser printer, an environment file must be created (if it
does not already exist). Refer to the IFS/3000 Reference Guide for more information. The
environment files for the HP2680 and HP2688 laser printers are VENV80 and VENV88
respectively. All environment files must include the font ids listed under "Limitations"
below.

EPOCLISTuses VSETUP, a TDP include file, as the default file to reference the environment
files, which must be accessible to TDP in order for EPOCLIST to be printed. If an
environment file other than VENV80 or VENV88 is used, EPOCLIST must be modified to
reference this file, and the font definitions from VENV80 and VENV88 must be included in
it (see "Limitations" below).

Printing Screens from TDP. To print the contents of EPOCLIST to a laser printer, follow
these steps:

1. :PURGE (or :RENAME) EPOCLIST

2. :SETJCW VPRINTJCW=1

3. :RUN <your application program>

4. Use the print function wherever it is available to save the screen contents, including
data, in EPOCLIST.

5. Exit the application.

6. :SAVE EPOCLIST

7. :RENAME EPOCLIST, <new name>If you do not rename EPOCLIST, the output generated
the next time the application is run will be appended to the existing file.

8. :RUN TDP.PUB.SYS

9. Text in the file and execute the command, "Final from <new name> to *HP2680" (or
328 Chapter 6

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
HP2688)

The screens will be printed out, one per page. Step 8 and 9 may be specified in a job
stream.

Merging Screens with a TDP File. You can include screens in an existing TDP document
easily by using the file VEPOCUSE, a TDP use file that divides EPOCLIST into separate files
containing one screen per file. The VSETUP file must be included as one of the first
statements of the TDP document so that the correct environment file is referenced for
printing the screens.

Follow these steps:

1. :RUN TDP Clear the workspace.

2. :USE VEPOCUSE Answer the prompts, and enter a PREFIX. VEPOCUSE separates the old
file into new files, each containing one screen.

3. Text in the TDP document and include each screen file in the correct place.

It is recommended that screen files be included as separate, individual files in a document,
rather than being incorporated directly into the text, because EPOCLISThas a record size of
168 bytes and most document files are set to 80 bytes.

These files may also be a non-local group, provided the application supplies a file equation,
T. E.,

:file VSETUP=VSETUP.othergroup.otheraccount

Filename (in HP32209.HPPL89) Description

VENV80 environment file for HP2680 printer
VENV88 environment file for HP2688 printer
VSETUP TDP include file
VEPOCUSE TDP use file for merging screens
VPRTDEMO demo program for VPRINTSCREEN”

Limitations

The following limitations pertain to the use of VPRINTSCREEN.

• Procedure calls must be modified in order to call the intrinsic from a language that does
not use a VPLUS language id of 5 in the comarea , for example, COBOL, SPL and
FORTRAN/66.

• It uses additional stack resources.

• Native Language support is NOT available for VPRINTSCREEN. To print a screen in
another language, you require a LOCALIZED environment file which maps to the
following fonts:

c = full bright
g = half-bright inverse video
d = normal
l = line-draw
m = math

• The current environment files do not distinguish between full bright and half bright,
Chapter 6 329

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
but the code is set up to do so.

• Screen images cannot be scaled; fonts come in one size only.

• The maximum TDP record size is 168 characters. A single line in a screen may easily
exceed this limit if it contains may escape sequences, in which case the line may be
truncated.

• TDP macros 5-9 are used to minimize truncation, but some screens will reach the limit
anyway. If you use your own macros 5-9, some inconsistencies may appear when text
and screens ar merged.

• TDP may indicate that errors have occurred when, in fact, there are none. The most
common error messages are: "Unrecognizable command" and "n characters have been
truncated".

Example

This is a smaple EPOCLIST file.

*>>DATE: FRI, MAY 3, 1987, 11:19AM

if main in hpvsetup.pub
image 28
need 28
>>>>>>screen formatting commands<<<<<<
*>>END VPRINTSCREEN B.05.00
330 Chapter 6

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
VPUTBUFFER

Copies data from an application to the data buffer in memory.

Syntax

VPUTBUFFER {comarea,buffer,buflen }

Parameters

comarea Must be comarea name specified when the forms file was opened with
VOPENFORMF. If not already set, the following comarea items must be set
before calling VPUTBUFFER:

cstatus Set to zero.

language Set to the code identifying the programming language of
the calling program.

comarealen Set to total number of two-byte words in comarea . Must be
at least 70 words in length if the ARB feature is used.

buffercontrol Set bit 15 to 1 to indicate that data is to be transformed
according to the ARB specifications.

VPUTBUFFER may set the following comarea items:

cstatus Set to nonzero value if call unsuccessful

numerrs May be decremented as a result of new data replacing data
in field with error.

bufferstatus Bit 15 set to 1 if data conversion is successful

buffer Character string in a application containing the data to be copied to the
data buffer in memory.

buflen Two-byte integer variable that specifies the number of bytes to be copied to
the data buffer in memory. The comarea item dbuflen , which contains the
size of the data buffer in memory, may be used as this parameter.

Discussion

This intrinsic transfers data from a buffer in an application to the data buffer in memory.
The length of the data moved is based on the number of bytes specified in the buflen
parameter and the number of bytes in the largest data buffer in the forms file, whichever is
less. The length of the buffer assigned to the current form is not considered since the user
may intend the data for another form with a longer buffer length.

For example, assume there are three forms in the forms file:

• Form A dbuflen = 100 bytes
• Form B dbuflen = 200 bytes
• Form C dbuflen = 75 bytes

In this case, the maximum data buffer length is 200 bytes. If the current form is form A
and the user calls VPUTBUFFER with a user buffer length (buflen parameter) of 200, he
may intend to call VGETNEXTFORMto get form B and then VSHOWFORMto display form B with
Chapter 6 331

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
the 200 bytes of data moved to the data buffer with VPUTBUFFER.

Fewer bytes than the data buffer can hold may be transferred; the remaining space in the
data buffer is not changed.

The data moved to the data buffer is exactly as it appears in the application buffer. (If you
want the data converted to USASCII in the data buffer, you must use VPUTtype , where
type is the data type of the field in an application.) When the data is displayed, it is moved
to each field in the form in sequence from left to right, top to bottom. If any field being
replaced by user data contained an error, VPUTBUFFERclears the error flag for the field and
decrements numerrs .

Special Considerations

Designers using the ARB feature in VPUTBUFFERshould be aware that damaging run-time
errors could occur if the application is inadvertently run on a system that has a VPLUS
version earlier than B.05.00.

To prevent this, the designer should do three things:

1. Document the product with a clear warning requiring VPLUS B.05.00 or later.

2. Use the VPLUS intrinsic HP32209 in the code. This intrinsic checks to make sure you
are using the proper VPLUS version. If not, the application should terminate with an
appropriate message.

3. Check offset 65 (bufferstatus) in the comarea on return from VPUTBUFFER. Bit 15 will
be set to 1 if VPUTBUFFER performed the conversion successfully. In other words, the
application must check both status and bufferstatus to be sure that the data was
correctly converted.

Example

COBOL

01 DAT1.
03 FIRSTNAME PIC X(6).
03 LASTNAME PIC X(18).

.

.

.
ACCEPT DAT1.
CALL "VPUTBUFFER" USING COMAREA, DAT1, DBUFLEN.

BASIC

235 L1=24
240 CALL VPUTBUFFER(C(*),D1$,L1)

FORTRAN

CALL VPUTBUFFER(COMAREA,DAT1,DBLEN)

SPL/PASCAL

BYTE ARRAY DAT1(0:23);
VPUTBUFFER(COM1,DAT1,LEN);

The following calls transfer 24 bytes from an application area, DAT 1 to the data buffer. In
this example, the longest dbuflen is assumed to be 80 bytes.
332 Chapter 6

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
VPUTFIELD

Copies data from an application into a specified field in the data buffer in memory.

Syntax

VPUTFIELD { comarea,fieldnum,fieldbuf,buflen,actualen,nextfldnum }

Parameters

comarea Must be comarea name specified when the forms file was opened with
VOPENFORMF. If not already set, the following comarea items must be set
before calling VPUTFIELD:

cstatus Set to zero.

language Set to the code identifying the programming language of
the calling program.

comarealen Set to total number of two-byte words in comarea .

VPUTFIELD may set the following comarea items:

cstatus Set to nonzero value if call unsuccessful.

numerrs May be decremented if new value is moved to a field which
has error flag set.

fieldnum Two-byte integer variable containing the number assigned to the field in
the data buffer by FORMSPEC.

fieldbuf Character string in an application containing the data to be copied to the
specified data buffer field.

buflen Two-byte integer containing the number of bytes to be copied from
fieldbuf to the field identified by fieldnum .

actualen Two-byte integer that specifies the number of bytes actually copied.

nextfldnum Two-byte integer to which VPUTFIELDreturns the number of the next field
in screen order. If there are no more fields, it returns zero.

Discussion

The data in an application is copied to the field in the data buffer identified by its field
number. Note that the field number is a unique number assigned to the field by
FORMSPEC when the form is first created. The number assigned to a field by FORMSPEC
does not change regardless of any changes to the field's position in the form or to its length.
The field number can only be changed with the batch command, RENUMBER, as described in
Section 7. The field number must not be confused with the screen order number, which is
the field's position in the data buffer and corresponds to its position in the form.

If the field is shorter than the data transferred to it, the data is truncated on the right. If
the field is longer than the data transferred to it, the data, if any, in the remaining space in
the field is not changed.

If the field whose data is being replaced contained an error, VPUTFIELD clears the field's
error flag, and decrements numerrs .
Chapter 6 333

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
Note that VPUTFIELD does not convert the data. To convert data from internal numeric
representation to character strings, you must use VPUTtype , where type specifies the data
type of the field in an application.

Example

COBOL

MOVE 1 TO FIELDNUM.
MOVE 10 TO FIELD-LEN.
MOVE "GADGET "TO PART-DES.
CALL "VPUTFIELD" USING COMAREA, FIELDNUM, PART-DES, FIELD-LEN,

DESC-LEN, NEXT-FIELD.

BASIC

250 F1=1
255 C=10
257 I$="GADGET "
260 CALL VPUTFIELD(C(*),F1,I$,C,A,N)

FORTRAN

FLDNUM=1
ICOUNT=10
XITEM="GADGET "
CALL VPUTFIELD(COMAREA,FLDNUM,XITEM,ICOUNT,INUM,FLDNXT)

SPL/PASCAL

INTEGER
FLD'NUM,
COUNT,
ACTUAL'LEN,
NXT'FLD'NUM;
BYTE ARRAY PART'DES(0:9):="GADGET ";

:
FLD'NUM:=1;
COUNT:=10;
VPUTFIELD(COMAREA,FLD'NUM,PART'DES,COUNT,ACTUAL'LEN,NXT'FLD'NUM);

The calls shown above copy a 10-byte value from an application to field number 1 in the
data buffer.
334 Chapter 6

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
VPUTSAVEFIELD

Copies data from an application to the specified save field in memory.

Syntax

VPUTSAVEFIELD { comarea,sfname,sfbuf,buflen,actualen }

Parameters

comarea Must be comarea name specified when the forms file was opened with
VOPENFORMF. If not already set, the following comarea items must be set
before calling VPUTSAVEFIELD:

cstatus set to zero.

language set to the code identifying the programming language of
the calling program.

comarealen set to total number of two-byte words in comarea . Must be
at least 70 words in length.

VPUTSAVEFIELD may set the following comarea item:

cstatus set to nonzero value if call is unsuccessful.

sfname a character string in the application which contains the name of the save
field.

sfbuf a character string in the application whose contents are copied to the save
field in memory.

buflen a two-byte integer variable which specifies the number of bytes in sfbuf .

actualen a two-byte integer variable which specifies the number of bytes actually
moved to the save field in memory.

Discussion

VPUTSAVEFIELDtransfers the contents of the application variable specified by sfbuf to the
save field in memory specified by sfname .

If the length of the save field is less than the length specified by buflen , the right most
bytes are truncated. Following a successful transfer, actualen is set to the actual number
of bytes transferred to the save field in memory.

Note that the contents of the save field as recorded in the forms file is not changed by a call
to VPUTSAVEFIELD. Also VPUTSAVEFIELD does not convert the data moved to the save field
in memory.

Example

COBOL
CALL "VPUTSAVEFIELD" USING COMAREA SFNAME SFBUF BUFLEN ACTLEN.

SPL
VPUTSAVEFIELD(COMAREA,SFNAME,SFBUF,BUFLEN,ACTLEN);

These calls will transfer the contents of the application buffer SFBUF to the save field in
memory specified by SFNAME. If the call is successful ACTLENwill contain the exact number
of bytes transferred.
Chapter 6 335

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
VPUTtype

Copies a numeric value of specified type from an application to a field in the data buffer in
memory, converting the value to character set coded external representation.

Syntax

VPUTtype { comarea,fieldnum,variable }

Parameters

type The type in VPUTtype indicates that this intrinsic may be specified as:

VPUTINT converts value to two-byte integer

VPUTDINT converts value to four-byte integer

VPUTREAL converts value to four-byte real value

VPUTLONG converts value to eight-byte long value

*VPUTPACKEDconverts packed decimal format to character set coded
ASCII; this intrinsic has two extra parameters, numdigits
and decplaces . Both are two-byte integer variables that
contain the number of digits and number of decimal
places, respectively, specified by the COBOL usage is
comp-3 data declaration.

*VPUTZONED converts zoned decimal format to character set coded
ASCII; has the parameters numdigits and decplaces ,
which are two-byte integer variables that contain the
number of digits and number of decimal places,
respectively, specified by the COBOL data declaration.

VPUTYYMMDD converts six-byte character value to YMD, DMY or MYD

For example:

CALL "VPUTINT" USING COMAREA,FIELDNUM,VARIABLE

comarea Must be comarea name specified when the forms file was opened with
VOPENFORMF. If not already set, the following comarea items must be set
before calling VPUTtype :

cstatus Set to zero.

comarealen Set to total number of two-byte words in comarea .

VPUTtype may set the following comarea items:

cstatus Set to nonzero value if call unsuccessful.

numerrs May be decremented if new value replaces the value of a
field with an error.

fieldnum Two-byte integer variable containing the field number assigned by
FORMSPEC to the field in the data buffer to which the value is copied.

variable Variable of specified type in an application that contains the value to be
converted to USASCII and copied to a field in the data buffer.
336 Chapter 6

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
Discussion

Depending on how it is specified, this intrinsic converts integer, double, real, long, packed,
zoned or yymmdd values to the external representation and copies the converted value to a
particular field in the data buffer, right justified. (Note that the exact format depends on
the data type of the destination field.) The destination field is identified by the field
number assigned by FORMSPEC. The field to which the value is copied may be defined as
a numeric field (data type NUM[n], IMPn, or DIG) or as a character field (data type
CHAR).

NOTE If you are using VPUTBUFFER in conjunction with an ARB, you do not need to
use VPUTtype . VPUTBUFFER performs all the required conversions on the
application data in the buffer.

You can use both VPUTBUFFER with an ARB and VPUTtype calls in the same
program: the buffercontrol setting in the comarea that controls ARB
processing can be switched on or off for each form.

Note that the field number never changes as long as the field exists. It is not changed when
the position of the field in the form is changed, or its length or other characteristics are
changed. The field number can only be changed with the batch command, RENUMBER, as
described in Section 7. The field number should not be confused the screen order number,
which is the position of the field in the data buffer and is based on the field position within
the form. Thus, the field number provides a way to locate fields regardless of their position.

If the specified field had an error, VPUTtype clears the field's error flag, and decrements
numerrs .

Refer to Table 6-13. under VGETtype for the format of each of the data types that may be
converted. Note that COBOL does not have type real or long, and BASIC does not have a
double integer data type.

Example

COBOL

77 FIELD-NUM PIC S9(4) COMP.
77 ITEM PIC S9(4) COMP.

:
MOVE 4 TO FIELD-NUM.
MOVE 25 TO ITEM.
CALL "VPUTINT" USING COMAREA, FIELD-NUM, ITEM.

BASIC

260 F1=4
263 I=25
265 CALL VPUTINT(C(*),F1,I)

FORTRAN

FIELD=4
ITEM=25
CALL VPUTINT(COMAREA,FIELD,ITEM)
Chapter 6 337

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
SPL/PASCAL
INTEGER FIELD,ITEM;

:
FIELD:=4;
ITEM:=25;
VPUTINT(COMAREA,FIELD,ITEM);

The calls shown above convert an integer value of 25 in the application to the external
representation and copy it to field 4 in the data buffer in memory.
338 Chapter 6

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
VPUTWINDOW

Copies a message to the window area of memory.

Syntax

VPUTWINDOW {comarea,message,length }

Parameters

comarea Must be comarea name specified when the forms file was opened with
VOPENFORMF. If not already set, the following comarea items must be set
before calling VPUTWINDOW:

language Set to the code identifying the programming language of
the calling program.

comarealen Set to total number of two-byte words in comarea .

VPUTWINDOW may set the following comarea items:

cstatus Set to nonzero value if call unsuccessful.

message Character string containing the message to be copied to the window area
of memory.

length Two-byte integer that specifies the number of bytes in the message. If set
to zero, any message in the window is cleared to blanks. The maximum
length is 150 bytes, but only 79 or fewer can be printable characters.

Discussion

This intrinsic copies the specified message to the window area of memory for later display.
Then, a call to VSHOWFORM can be used to display the message in the window area of the
terminal screen, with the window enhanced as indicated by windowenh of comarea . A
message copied by VPUTWINDOW overwrites any previous message in the window area,
including any message copied by a previous call to VPUTWINDOW or VSETERROR.

If the message is longer than the defined window length, the message is truncated on the
right. If shorter, the rest of the window line is cleared.

Note that the forms file may be defined with no window line for error and status messages.
In this case, the message is ignored.

Example

COBOL

MOVE "ENTER ORDERS ON THIS FORM" TO MESSAGE.
MOVE 25 TO MSG-LENGTH.
CALL "VPUTWINDOW" USING COMAREA, MESSAGE, MSG-LENGTH.

BASIC

310 M1$="ENTER ORDERS ON THIS FORM"
320 L1=25
330 CALL VPUTWINDOW(C(*),M1$,L1)

FORTRAN
Chapter 6 339

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
MSG="ENTER ORDERS ON THIS FORM"
LEN=25
CALL VPUTWINDOW(COMAREA,MSG,LEN)

SPL/PASCAL

BYTE ARRAY MSG(0:24):="ENTER ORDERS ON THIS FORM";
INTEGER LEN;

:
LEN:=25;
VPUTWINDOW(COMAREA,MSG,LEN);

The calls shown above copy the message

ENTER ORDERS ON THIS FORM

to the window area of memory.
340 Chapter 6

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
VPUTYYYYMMDD

Converts a numeric value representing a date from an application and copies the
converted value to a field in the data buffer in memory.

Syntax

VPUTYYYYMMDD {comarea,fieldnum,variable }

Parameters

comarea must be comarea name specified when the forms file was opened with
VOPENFORMF. If not already set, the following comarea items must be set
before calling VPUTYYYYMMDD:

cstatus set to zero.

comarealen set to total number of two-byte words in comarea . Must be
at least 70 words in length.

VGETYYYYMMDD may set the following comarea item:

cstatus set to nonzero value if call is unsuccessful or requested
field has an error.

numerrs may be decremented if the new value replaces the value of
a field with an error.

fieldnum is a two-byte integer variable which specifies the number assigned to the
field by FORMSPEC.

variable is a character string in the application which contains the value to be
converted.

Discussion

VPUTYYYYMMDD converts the contents of the application variable to the date order of the
field specified by fieldnum and copies the converted value into the corresponding field in
the data buffer, right justified. The application variable should contain a numeric value in
YYYYMMDD format. The YYYYMMDD format is an 8-byte ASCII value, for example, 19961225.
If errors occur during conversion, cstatus is set to an error code.

Refer to the VPUTtype intrinsic description in the Data Entry and Forms Management
System VPLUS Reference Manual for related information.

Example

COBOL
CALL "VPUTYYYYMMDD" USING COMAREA FIELDNUM VARIABLE.

SPL
VPUTYYYYMMDD(COMAREA,FIELDNUM,VARIABLE);

These calls will convert the contents of VARIABLE to a date value and place the converted
value in the data buffer corresponding to the field specified by FIELDNUM.
Chapter 6 341

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
VREADBATCH

Reads contents of current batch record into data buffer in memory.

Syntax

VREADBATCH {comarea }

Parameters

comarea Must be comarea name used when the batch file was opened with
VOPENBATCH. If not already set, the following comarea items must be set
before calling VREADBATCH:

cstatus Set to zero.

comarealen Set to total number of two-byte words in comarea .

recnum Set to the number of the record in the open batch file from
which data is to be read (records are numbered from zero).

VREADBATCH may set the following comarea items:

nfname Set to the name of the form associated with the data read
from the batch file (used by VGETNEXTFORMto retrieve this
form from forms file).

dbuflen Set to length of data buffer (in bytes) based on length of
data read from batch record.

deleteflag Set to TRUE (all ones) if delete flag in batch record
indicates record is deleted; set to FALSE (all zeros)
otherwise.

cstatus Set to nonzero value if call unsuccessful.

filerrnum Set to file error code if MPE file error.

Discussion

Use of this intrinsic is demonstrated by the browse/modify mode of ENTRY. It enables a
user to view the data in the batch file. VREADBATCHmay also be used to bring the data from
a batch file into the data buffer so that it can be retrieved by an application with the
VGETBUFFER, VGETFIELD, or VGETtype intrinsics.

To display the data just read onto its associated form, VGETNEXTFORMmust be called before
the call to VSHOWFORM.

VREADBATCHreads the record (recnum) in the batch file opened by VOPENBATCH. The record
is read into memory, where VREADBATCH extracts the batch record control information
(refer to the VOPENBATCH description). This information includes the current form name
which is moved to nfname , the delete flag which is moved to deleteflag , and the data
length in bytes which is moved to dbuflen . The data buffer is not updated if the
deleteflag has been set.

In order to use VREADBATCH, the batch file must be on a direct-access device and must be
created with fixed-length records, not variable-length records.
342 Chapter 6

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
Example

COBOL

CALL "VREADBATCH" USING COMAREA.

BASIC

175 CALL VREADBATCH(C(*))

FORTRAN

CALL VREADBATCH(COMAREA)

SPL/PASCAL
VREADBATCH (COMAREA);

The calls shown above read the batch record specified by recnurm update the comarea
according to the batch record information stored with the data, and put the data in the
data buffer in memory.
Chapter 6 343

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
VREADFIELDS

Accepts all user input from an open terminal, including data entered by pressing ENTER,
or user requests made by pressing a function key. Allows look-ahead form loading.

Syntax

VREADFIELDS {comarea }

Parameters

comarea Must be comarea named specified when terminal file was opened with
VOPENTERM. If not already set, the following comarea items must be set
before calling VREADFIELDS:

cstatus Set to zero.

comarealen Set to total number of two-byte words in comarea .

The following comarea items can be set:

lookahead Set to zero to enable look-ahead form loading or to one to
disable look-ahead form loading.

showcontrol Set to control the touch feature or to affect the display on
data capture devices. The particular settings are described
below.

VREADFIELDS may set the following comarea values:

numerrs Set to zero.

lastkey Set to code for terminal function key pressed by user.

cstatus Set to nonzero value if call unsuccessful.

Discussion

VREADFIELDS accepts user-entered data when ENTER is pressed. It maps the data into the
data buffer in memory. The data is mapped in screen order, from left to right, top to
bottom. If there are any display-only fields already in the buffer, the fields read by
VREADFIELDSare interspersed among the display-only fields according to the screen order.
VREADFIELDS then sets lastkey to zero. Note that the keyboard is locked after the data is
read (the subsequent call to VSHOWFORMunlocks the keyboard). If a function key is pressed,
VREADFIELDS sets lastkey to the corresponding number: 1 for f1, 2 for f2, and so forth.
The screen is not read and data is not transferred when a function key is pressed. It is,
however, possible to accomplish this by enabling the AUTOREAD feature. To enable
AUTOREAD, a bit must be set in the termoptions position of the comarea . For further
information regarding the AUTOREAD feature, consult the Terminal Communications Area
section of Appendix G.

Application programs must supply the code to perform each of the functions that can be
requested via a function key. The particular function assigned to a key is determined only
by how the program processes the key code passed to it by VREADFIELDS(refer to Appendix
A for examples of applications using VREADFIELDS).

Normally, there is no time limit for VREADFIELDS, whether the intrinsic is to be terminated
344 Chapter 6

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
by the enter key or by a function key. Timeouts can be enabled in an application by setting
bits in the termoptions word of the comarea and specifying a timeout interval in the
usertime word of the comarea . For more information regarding user timeouts, consult the
Terminal Communications Area section of Appendix G.

For any terminal with touch capability, an application activates the touch feature by
setting bit 0 of showcontrol to one. Then, for each time the user touches a field,
VREADFIELDS returns lastkey with the field number of the touched field (as a negative
number). Refer to Appendix G for the "Supported Terminal Features" list.

For the data capture devices, VREADFIELDS, not VSHOWFORM, displays a form one field at a
time and reads entered data, also one field at a time. Editing is performed after data for all
the fields in the form has been read. VREADFIELDS sets lastkey as follows for these
terminals: -1 is the ATTENTION key, 0 is the ENTER key, 1 is the "A" key, 2 is the "B"
key…and 26 is the key. If a function key is pressed when entering data on the data capture
devices, VREADFIELDS returns to the calling program and does not display any remaining
fields.

Bits 12 and 11 of the comarea item showcontrol affect form display on the data capture
devices. These bits can be set as follows:

bit 12 = 0 Stop after displaying a form without fields.

1 Do not stop after displaying a form without fields.

11 = 0 Do not put a right closing bracket (]) on all input fields.

1 Put a right closing bracket (]) on all input fields.

A form without fields can be used to display a message to a user. If bit 12 is
zero, this type of form is frozen until ENTER or a function key is pressed so
that the user has time to read the message. If bit 11 is one, a right bracket
is displayed as a terminator on all input fields.

VREADFIELDS may also invoke look-ahead form loading for terminals with local form
storage using the comarea item lookahead . If point-to-point data communications is being
used, the next form (as defined in the forms file) is loaded into the terminal's local form
storage memory while the user is typing in data) before ENTER is pressed. If multipoint or
X.25 data communications is being used, the next form is loaded after the data has been
read, after ENTER is pressed. If there is no room in local form storage for the next form, or
if there are no available entries in the form storage directory (set with formstoresize
prior to VOPENTERM and VOPENFORMF), the least recently used form could be purged from
local form storage. Look-ahead form loading does not load multiple family members. If a
family member of the next form is already in local form storage, this family member is
changed into the required form when it is displayed. (Refer to Section 4 for more
information on Local Form Storage.)

If the next form does not load successfully, no error is returned. The next form is simply
displayed by VSHOWFORM.

Example

COBOL

CALL "VREADFIELDS" USING COMAREA.
Chapter 6 345

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
BASIC

130 CALL VREADFIELDS(C(*))

FORTRAN

CALL VREADFIELDS(COMAREA)

SPL/PASCAL

VREADFIELDS(COMAREA);

Each of the following calls accepts user input from the terminal, transfers any data to the
data buffer, and sets lastkey .
346 Chapter 6

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
VSETERROR

Sets the error flag of a specified field and increments numerrs . If this is the first field (in
screen order) with an error, it copies a message to the window area of memory for later
display.

Syntax

VSETERROR {comarea,fieldnum,message,msglen }

Parameters

comarea Must be comarea name specified when the forms file was opened with
VOPENFORMF. If not already set, the following comarea items must be set
before calling VSETERROR:

cstatus Set to zero.

language Set to the code identifying the programming language of
the calling program.

comarealen Set to total number of two-byte words in comarea .

VSETERROR may set the following comarea items:

numerrs Contains number of fields in form with errors;
incremented by VSETERROR.

cstatus Set to nonzero value if call unsuccessful.

fieldnum Two-byte integer variable containing the field number or screen order
number of the data field to be flagged for error. If it is the screen order
number, it must be a negative number representing the position of the
field on the form.

message Character string containing an error message to be copied to the window
area of memory for subsequent display by VSHOWFORM.

length Two-byte integer containing the length in bytes of the message parameter.
If length is set to -1, the current content of the window is not changed. If
length is set to zero, the current content of the window is cleared to blanks.

Discussion

This intrinsic can be called by any program that wants to perform its own edits, either in
addition to, or instead of VFIELDEDITS. VSETERRORsets the error flag associated with the
specified field. If this is the first time this field has been diagnosed as having an error,
VSETERRORincrements numerrs ; otherwise, it does not change numerrs . Thus, if a field has
an error detected by a prior call to VFIELDEDITS , a call to VSETERRORfor that field does not
increment numerrs . However, if the touch feature is enabled, VSETERRORtoggles the error
flag for a specified field to clear, if it was already set, and decrements numerrs . Refer to
"Coding the Touch Feature" in Appendix E.

If this is the first field in the form (in screen order) that has an error, the specified message
is copied to the window area of memory for later display. If you do not want to change the
current contents of the window, set the length parameter to -1. To clear a message, set
length to zero.
Chapter 6 347

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
Note that the field number identifies a field regardless of its position in the form. Thus,
field "1" could be the third field in screen order counting from left to right, top to bottom.
Using the field order number is preferable because if the fields in a form are rearranged,
no modification to an application is necessary.

Example

COBOL

DATA DIVISION.
77 FLDNUM PIC 9(4) COMP.
77 MESSAGE PIC X(80).
77 MLENGTH PIC S9(4) COMP.

:
PROCEDURE DIVISION.

MOVE 3 TO FIELDNUM.
MOVE 22 TO MLENGTH.
MOVE "THIS FIELD IS REQUIRED" TO MESSAGE.
CALL "VSETERROR" USING COMAREA, FLDNUM, MESSAGE, MLENGTH.

BASIC

220 F1=3
225 L1=22
230 M$="THIS FIELD IS REQUIRED"
250 CALL VSETERROR(C(*),F1,M$,L1)

FORTRAN

FF=3
ML=22
MSG="THIS FIELD IS REQUIRED"
CALL VSETERROR(COMAREA,FF,MSG,ML)

SPL/PASCAL

INTEGER FF,ML;
BYTE ARRAY MESSAGE(0:21);="THIS FIELD IS REQUIRED";

:
FF:=3;
ML:=22;
VSETERROR(COMAREA,FF,MESSAGE,ML);

The examples above set error flags for field number "3" in the currently open form, and set
up the message "THIS FIELD IS REQUIRED" to be displayed if no value is entered in the
field and this is the first field (in screen order) in which an error is detected.

The following examples show how VSETERROR can be used to set error flags for a field in
error without writing a message to the window.

COBOL

MOVE 3 TO FIELDNUM.
MOVE -1 TO MLENGTH.
CALL "VSETERROR" USING COM1, FIELDNUM, MESSAGE, MLENGTH.

BASIC

220 F1=3
348 Chapter 6

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
230 L1=-1
CALL VSETERROR(C(*),F1,M$,L1)

FORTRAN

FF=3
ML=-1
CALL VSETERROR(COM1,FF,MSG,ML)

SPL/PASCAL

FIELD:=3;
LEN:=-1;
VSETERROR(COM1,FIELD,MESSAGE,LEN);
Chapter 6 349

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
VSETKEYLABEL

Allows for temporarily setting, programmatically, a new label for a function key.

Syntax

VSETKEYLABEL {comarea,formorglob,keynum,label }

Parameters

comarea Must be comarea name specified when the forms file was opened with
VOPENFORMF. If not already set, the following comarea items must be set
before calling VSETKEYLABEL:

cstatus Set to zero.

language Set to the code identifying the programming language of
the calling program.

comarealen Set to total number of two-byte words in comarea .

VSETKEYLABEL may set the following comarea items:

cstatus Set to nonzero value if call is unsuccessful.

formorglob Integer specifying which type of label is to be temporarily set.

• 0 - Set global label.

• 1 - Set current form label.

keynum Integer from 1 to 8 corresponding to function key to be set.

label A byte array containing the text for the label; must be 16 bytes long.

Discussion

VSETKEYLABEL is only a temporary setting of a new label for an individual function key.
Use of this intrinsic does not change the label definition made in FORMSPEC. Note only
one function key can be set with this intrinsic. The labeloption must be set to one prior
to VOPENFORMF.

The temporary label is displayed after the next call to VSHOWFORM. If the temporary label is
global, it remains active until the forms file is closed or it is replaced by a new global label.
If the temporary label is for the current form only, it is replaced when the next form is
retrieved or when a new current form label is set.

If no global or current form labels have been defined with FORMSPEC or no labels have
been set with VSETKEYLABELS, the key label buffers are cleared before the label being
defined with this intrinsic is set.

Example

COBOL

77 FORM-OR-GLOB PIC S9(4)COMP.
77 KEY-NUM PIC S9(4)COMP.
77 KEY-LABEL PIC X(16).

:

350 Chapter 6

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
MOVE 1 TO FORM-OR-GLOB.
MOVE 1 TO KEY-NUM.
MOVE "LABEL 1 " TO KEY-LABEL.
CALL "VSETKEYLABEL" USING COMAREA, FORM-OR-GLOB, KEY-NUM, KEY-LABEL.

BASIC

10 INTEGER F,N
20 DIM L$[16]
30 F=1
40 N=2
50 L$="LABEL 1 "
60 CALL VSETKEYLABEL(C[*],F,N,L$)

FORTRAN

INTEGER FORMORGLOB,KEYNUM
CHARACTER*16 LABEL
FORMORGLOB=1
LABEL="LABEL 1 "
CALL VSETKEYLABEL(COMAREA,FORMORGLOB,KEYNUM,LABEL)

SPL/PASCAL

INTEGER
FORM'OR'GLOB,
KEY'NUM;

BYTE ARRAY
KEY'LABEL(0:15);
:

FORM'OR'GLOB:=1;
KEY'NUM:=1;
MOVE KEY'LABEL:="LABEL 1 ";
VSETKEYLABEL(COMAREA,FORM'OR'GLOB,KEY'NUM,KEY'LABEL);
Chapter 6 351

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
VSETKEYLABELS

Allows for temporarily setting, programmatically, labels for function keys.

Syntax

VSETKEYLABELS {comarea,formrglob,numoflabels,labels }

Parameters

comarea Must be comarea name specified when the forms file was opened with
VOPENFORMF. If not already set, the following comarea items must be set
before calling VSETKEYLABELS:

cstatus Set to zero.

language Set to the code identifying the programming language of
the calling program.

comarealen Set to total number of two-byte words in comarea .

VSETKEYLABELS may set the following comarea items:

cstatus Set to nonzero value if call is unsuccessful.

formorglob Integer specifying which type of labels are to be temporarily replaced.

• 0 - Replace global labels.

• 1 - Replace current form labels.

numoflabels Integer from 0 through 8 indicating how many labels are to be temporarily
set, where 0 indicates that the labels defined in FORMSPEC should be
used.

labels A byte array in which the labels are defined. The length of the array must
be at least numoflabels * 16.

Discussion

VSETKEYLABELS is only a temporary setting of new labels for the function keys. Use of it
does not change the label definitions made in FORMSPEC. The labeloption must be set
to one prior to VOPENFORMF.

The temporary labels are displayed after the next call to VSHOWFORM. If the temporary
labels are global, they remain active until the forms file is closed or replaced by new global
labels. If the temporary labels are current form labels, they are replaced when the next
form is retrieved or when new current form labels are set.

If no global or current form labels have been defined with FORMSPEC or no labels have
been set with a prior call to VSETKEYLABELS, the key label buffers are cleared before the
labels currently being defined are set.

Example

COBOL

77 FORM-OR-GLOB PIC S9(4)COMP.
77 NUM-OF-LABELS PIC S9(4)COMP.
352 Chapter 6

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
77 KEY-LABELS PIC X(32).
:

MOVE 1 TO FORM-OR-GLOB.
MOVE 2 TO NUM-OF-LABELS.
MOVE "LABEL 1 LABEL 2 " TO KEY-LABELS.
CALL "VSETKEYLABELS" USING COMAREA,FORM-OR-GLOB,NUM-OF-LABELS,KEY-LABELS.

BASIC

10 INTEGER F,N
20 DIM L$[32]
30 F=1
40 N=2
50 L$="LABEL 1 LABEL 2 "
60 CALL VSETKEYLABELS(C[*],F,N,L$)

FORTRAN

INTEGER FORMORGLOB,NUMLABELS
CHARACTER*32 LABELS
FORMORGLOB=1
NUMLABELS=2
LABELS="LABEL 1 LABEL 2 "
CALL VSETKEYLABELS(COMAREA,FORMORGLOB,NUMLABELS,LABELS)

SPL/PASCAL

INTEGER
FORM'OR'GLOB,
NUM'OF'LABELS;

BYTE ARRAY
LABELS(0:31);

:
FORM'OR'GLOB:=1;
NUM'OF'LABELS:=2;
MOVE LABELS:="LABEL 1 LABEL 2 ";
VSETKEYLABELS(COMAREA'FORM'OR'GLOB,NUM'OF'LABELS,LABELS);
Chapter 6 353

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
VSETLANG

The VSETLANG intrinsic specifies the native language to be used with an international
forms file. For more information on Native Language Support, see Section 8.

Syntax

VSETLANG {comarea,langnum,errorcode }

Parameters

comarea Must be comarea name specified when the forms file was opened with
VOPENFORMF. If not already set, the following comarea items must be set
before calling VSETLANG:

comarealen Set to the total number of two-byte words in comarea .

VSETLANG may set the following comarea items:

cstatus Set to nonzero value if call is unsuccessful.

langnum A two-byte integer, passed by value , containing the native language ID
number of the forms file language to be used by VPLUS.

errorcode Two-byte integer to which the error code is returned.

Discussion

This intrinsic sets the native language to be used by VPLUS at run time for an
international forms file. The forms file must be opened before calling VSETLANG. Otherwise,
cstatus returns a nonzero value.

If VSETLANGis called to set the native language ID for a language-dependent or unlocalized
forms file, an error code of -1 will be returned to errorcode . For international forms files,
both cstatus and errorcode return a value of zero and the forms file is processed with the
native language ID specified in langnum .

Example

COBOL

CALL "VSETLANG" USING COMAREA,\LANGNUM\,ERRORCODE

BASIC Pass by value parameters not supported.

FORTRAN

CALL VSETLANG (COMAREA,LANGNUM,ERRORCODE)

SPL/PASCAL

VSETLANG(COMAREA,LANGNUM,ERRORCODE)
354 Chapter 6

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
VSHOWFORM

Displays on the terminal screen the current form from local form storage or from the form
definition buffer, any data in the data buffer, and any messages from the window buffer.
Displays any labels from the key label buffer.

Syntax

VSHOWFORM {comarea }

Parameters

comarea Must be the comarea name specified when the terminal file was opened
with VOPENTERM. If not already set, the following comarea items must be
set before calling VSHOWFORM:

cstatus Set to zero

comarealen Set to total number of two-byte words in comarea .

windowenh Set to window enhancement code; may be set before call to
code for nondefault enhancement; otherwise, set by
VOPENFORMFto default enhancement specified in forms file.
If set to zero, window is not enhanced. (Refer to windowenh
discussion under "Communication Area" earlier in this
section.)

The following comarea item can be set:

showcontrol Set to change VSHOWFORM control options. The particular
settings are described below.

VSHOWFORM may set the following comarea values:

cstatus Set to nonzero value if call unsuccessful.

filerrnum Set to file error code if MPE file error.

(Note that showcontrol is not cleared by VSHOWFORM.)

Discussion

VSHOWFORMdisplays, on an open terminal screen, the form currently stored as a form image
in the terminal's local form storage or in the form definition area of memory. Any
enhancements specified for the form are used for the display. Data currently in the data
buffer in memory is moved to the appropriate fields of the displayed form. Any message in
the window buffer of memory is displayed in the line of the form selected as the status line.
Also, any current form or global function key labels in the key label buffer are displayed.

Performance Optimization

In order to optimize VSHOWFORM performance, only changed information is written to the
terminal. Thus, if the window has not been changed by VPUTWINDOW or VSETERROR since
the last execution of VSHOWFORM, or if the current form is being repeated in place, these
areas are not rewritten. Also, when a form is repeating in place, only the changed values in
the data buffer area of memory are written by VSHOWFORM. This will be sufficient for most
applications; however, these three optimizations (form, data, window) can be overridden by
Chapter 6 355

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
setting the comarea item showcontrol as follows:

bit 15 = 1 Force form to be written to the terminal screen.

 14 = 1 Force data and field enhancements to be written to the terminal screen.

 13 = 1 Force window line to be written to the terminal screen.

Depending on the bits set, VSHOWFORMwrites a form or data or the window to the terminal
whether or not it has changed. Anything that has changed is always written to the
terminal regardless of showcontrol . Any combination of these bits may be set. For
example, if you want to force a write of all data:

showcontrol = octal 2

Or, if you want to force the window to be written:

showcontrol = octal 4

Display and Local Form Storage

Prior to display on terminals with local form storage, the form can be loaded into the
terminal with any of the following methods:

• by a call to VLOADFORMS,

• by the previous call to VREADFIELDS if look-ahead form loading is enabled, or

• by VSHOWFORM if preload is enabled.

A prior call to VGETNEXTFORM reads the form into the form definition area of memory prior
to display by VSHOWFORM. The form definition includes the form image, any field editing
specifications and all enhancements.

The field enhancements are specified with the form definition. If a field has an error,
VSHOWFORM changes its enhancement to the error enhancement defined for the form by
FORMSPEC.

The data buffer may contain data as a result of initialization by VINITFORM, retrieval of
user-entered data by VREADFIELDS, data formatting or movement caused by editing
specified with each field and executed by VINITFORM, VFIELDEDITS , or VFINISHFORM.
Data may also be transferred directly to the data buffer, either from an application with
VPUTBUFFER or VPUTtype , or from a batch file with VREADBATCH.

The window contains any message set by VSETERROR or VPUTWINDOW.

0 0 0 1 0

0 7 8 13 14 15

0 0 1 0 0

0 7 8 13 14 15
356 Chapter 6

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
Controlling the Keyboard

As soon as the form is displayed, VSHOWFORMnormally enables the keyboard so the user can
enter data. The next call is usually to VREADFIELDS, which locks the keyboard after the
entered data is read. In case of consecutive calls to VSHOWFORM, the following showcontrol
bit can be set:

bit 10 = 0 Enable the keyboard.

 1 Do not enable the keyboard.

The scenario is as follows:

• the last VREADFIELDS call locked the keyboard,

• for each of a series of consecutive calls to VSHOWFORM; set bit 10 of showcontrol to one so
the keyboard is not enabled,

• for the last of the consecutive calls to VSHOWFORM, set bit 10 to zero to enable the
keyboard.

This ensures that keystrokes do not change a form while it is being displayed. Consecutive
calls to VSHOWFORM could be used to display a form with no fields, append another form to
it, and display this second form without doing a read in between.

Controlling Preload of Forms

On terminals with local form storage, VSHOWFORM first determines if the current form is
already in the terminal. If the form is in local storage, it is displayed from local storage. If
the form is not in local storage, it is preloaded into the terminal from the form definition
area of memory depending on showcontrol , which can be set as follows:

bit 9 = 0 Do not preload the form.

 1 Preload the form.

If bit 9 is zero, the form is written directly from the form definition area of memory to the
terminal screen. If bit 9 is one, the form is preloaded into local storage and then displayed
from local storage. One or more forms could be purged from local storage if there is not
room for the form that is being loaded. Note that purging could occur even when
lookahead is set to one.

Controlling the Touch Feature

On terminals with the touch feature, touch can be enabled or disabled with showcontrol ,
which can be set as follows:

bit 0 = 0 Do not enable the touch feature.

 1 Enable the touch feature.

Controlling the Bell

By default (termoptions bit 15 is set to zero), VSHOWFORM sounds the bell if neither the
screen nor the window line have been redisplayed. The bell can be suppressed in all cases
by setting the termoptions bit to one.
Chapter 6 357

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
Example

COBOL

CALL "VSHOWFORM" USING COMAREA.

BASIC

120 CALL VSHOWFORM(C(*))

FORTRAN

CALL VSHOWFORM(COMAREA)

SPL/PASCAL

VSHOWFORM (COMAREA);

The calls shown above display a form with optional data and enhancements on the
terminal screen opened with the comarea , COM 1.
358 Chapter 6

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
VTURNOFF

The VTURNOFF intrinsic turns off VPLUS block mode and enables character mode access
without disturbing the terminal screen. The syntax and parameter descriptions for this
intrinsic are provided below.

Syntax

VTURNOFF {COMAREA}

Parameters

COMAREA Must be COMAREA name specified when the forms file was opened with
VOPENTERM. If not already set, the following COMAREA items must be set
before calling VTURNOFF:

CSTATUS Set to zero.

COMAREALEN Set to total number of 2-byte words in COMAREA.

VTURNOFF may set the following COMAREA fields:

CSTATUS Set to nonzero value if call is unsuccessful or if field’s error
flag is set.

FILERRNUM Set to file error code if MPE file error.

VTURNOFF is used for momentarily switching from VPLUS block mode to character mode.
This procedure is designed for use after a terminal has been previously opened by
VOPENTERMor after a VTURNON.VTURNOFFreconfigures the terminal and driver for character
mode operations without disturbing the screen image on the terminal. The following
operations normally performed in VCLOSETERM are not performed in VTURNOFF:

• Clear local form storage
• Enable the USER/SYSTEM keys
• Disable touch reporting, delete touch fields
• Clear screen
• Unlock keyboard
• Close terminal file

Note that VTURNOFF does not close the terminal file. To close the file and completely reset
the driver and the terminal, VCLOSETERM must be used.

The following examples illustrate a call to VTURNOFF:

COBOL:

CALL “VTURNOFF” USING COMAREA.

BASIC:

200 CALL VTURNOFF(C(*))

FORTRAN:

CALL VTURNOFF(COMAREA)

SPL:

VTURNOFF(COMAREA);
Chapter 6 359

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
PASCAL:

VTURNOFF(COMAREA);
360 Chapter 6

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
VTURNON

The VTURNON intrinsic turns on VPLUS block mode without disturbing the terminal
screen. The syntax and parameter descriptions for this intrinsic are provided below.

Syntax

VTURNON {COMAREA,TERMFILE}

Parameters

COMAREA The COMAREA name must be unique for each open forms file. The COMAREA
must be the same COMAREA used in VOPENTERM. The following COMAREA
items must be set before the call, if not already set:

CSTATUS Set to zero.

LANGUAGE Set to code that identifies the programming language of
the calling program.

COMAREALEN Set to total number of 2-byte words in COMAREA.

VTURNON may set the following COMAREA fields:

CSTATUS Set to nonzero value if call is unsuccessful or if field’s error
flag is set.

FILERRNUM Set to file error code if MPE file error.

FILEN Set to MPE file number of terminal.

IDENTIFIER Set to appropriate VPLUS/V terminal ID.

LAB’INFO Set to appropriate number and length of labels.

TERMFILE Must be the same terminal file name used in VOPENTERM.

VTURNON is normally used in an application when the terminal is already opened by
VOPENTERM, and VTURNOFF was called to switch out of VPLUS block mode. VTURNON
switches the application back to VPLUS block mode without disturbing the image on the
terminal screen.

VTURNONreconfigures the terminal and the driver without performing the following
operations which are normally performed by VOPENTERM:

• Initialize local form storage

• Clear screen

• Enable the USER function keys

• Disable or enable the USER/SYSTEM key, as specified in the SHOWCONTROL word

Unlike VOPENTERM, VTURNON will not ask you to press the BLOCK MODE key, if you are
using an HP 2640B or HP 2644 terminal when the terminal is not in block mode.

The following examples illustrate a call to VTURNON using common programming
languages:

COBOL:
Chapter 6 361

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
CALL “VTURNON” USING COMAREA, T1.

BASIC:

90 T1$=” “

100 CALL VTURNON(C(*),T1$)

FORTRAN:

T1=” “

VTURNON(COMAREA,T1);

SPL:

MOVE T1:=” “;

VTURNON(COMAREA,T1);

Pascal:

T1:=‘ ’;

VUTURNON(COMAREA,T1);
362 Chapter 6

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
VUNLOADFORM

Unloads the specified form from local form storage memory.

Syntax

VUNLOADFORM {comarea,whichform }

Parameters

comarea Must be comarea name specified when the forms file was opened with
VOPENFORMF. If not already set, the following comarea items must be set
before calling VUNLOADFORM:

cstatus Set to zero.

language Set to the code identifying the programming language of
the calling program.

comarealen Set to total number of two-byte words in comarea .

VUNLOADFORM may set the following comarea values:

cstatus Set to nonzero value if call unsuccessful.

whichform The name of the form to be removed from local form storage. Each name
can be up to 15 characters and is stored in a 16-byte character array with a
one byte filler that is not part of the name.

Discussion

This intrinsic is used on terminals having local form storage. VUNLOADFORM purges the
form named by the whichform parameter from terminal local form storage memory. Note
that the terminal keyboard may be locked briefly while VUNLOADFORM verifies whether or
not the form was purged. In case keys are pressed during this time, the terminal beeps to
indicate that the keystrokes and/or entered data are lost. You can avoid this by not calling
VUNLOADFORM between calls to VSHOWFORM and VREADFIELDS.

Example

COBOL

77 WHICH-FORM PIC X(16).
:

MOVE "FORMA " TO WHICH-FORM.
CALL "VUNLOADFORM" USING COMAREA, WHICH-FORM.

BASIC

10 DIM W$[16]
20 W$="FORMA "

100 CALL VUNLOADFROM(C[*],W$)

FORTRAN

CHARACTER*16 WFORM
WFROM="FORMA "
CALL VUNLOADFORM(COMAREA,WFORM)
Chapter 6 363

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
SPL/PASCAL

BYTE ARRAY WHICH'FORM(0:15);
:

WHICH'FORM:="FORMA ";
VUNLOADFORM(COMAREA,WHICH'FORM);
364 Chapter 6

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
VWRITEBATCH

Writes a record to the batch file from the data buffer in memory, or deletes a record from
the batch file

Syntax

VWRITEBATCH {comarea }

Parameters

comarea Must be comarea name specified when the batch file was opened with
VOPENBATCH. If not already set, the following comarea items must be set
before calling VWRITEBATCH:

cstatus Set to zero.

comarealen Set to total number of two-byte words in comarea .

recnum Set to record number in batch file to which data is to be
written (record numbers start with zero). The recnum is
initialized to zero by VOPENBATCH(or to the next sequential
record number if the file is an existing file).

deleteflag Set to TRUE (all ones) if record is to be deleted.

(The cfname and dbuflen should be set by a prior call to VGETNEXTFORM.)

VWRITEBATCH may set the following comarea values:

cstatus Set to nonzero value if call unsuccessful.

filerrnum Set to file error code if MPE file error.

numrecs Incremented each time a new record is written;
decremented if record is deleted.

Discussion VWRITEBATCHwrites the contents of the data buffer to the record specified by
recnum in an open batch file. (The recnum must be maintained by the calling program.)
VWRITEBATCH writes the following information to the batch record:

• Contents of the data buffer

• Batch record control information (from comarea):

deleteflag TRUE if record is deleted.

cfname Name of the form associated with this data.

dbuflen Length (in characters) of the data buffer.

(Refer to "Record Format" in the VOPENBATCH description for a diagram of the batch
record.)

VWRITEBATCH may be used in both the data collection and modify modes.

Data Collection Mode The data in the data buffer is entered on a particular form
displayed at a terminal and then read into the data buffer by VREADFIELDS.

VWRITEBATCHcan then be called to write the data buffer and the record control information
Chapter 6 365

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
to the batch record specified by recnum .

Modify Mode When data is modified, an existing batch file record is rewritten. The
calling program must set recnum to the record number of this record.

To mark a batch record as deleted, the deleteflag must be set to TRUE (all ones) by an
application. Then a call to VWRITEBATCH sets a corresponding flag in the batch record to
mark the record as deleted. Since a deleted record still exists in the batch file, it can be
viewed through FCOPY or a user-written intrinsic.

In ENTRY, a function key pressed by the user not only determines which record is to be
viewed, but also specifies which record is to be deleted.

Example COBOL

CALL "VWRITEBATCH" USING COMAREA.

BASIC

165 CALL VWRITEBATCH(C(*))

FORTRAN

CALL VWRITEBATCH(COMAREA)

SPL/PASCAL

VWRITEBATCH(COMAREA);

The calls shown above write the contents of the data buffer to the batch record identified
by recnum . Assume the following data is in the data buffer and that it was entered on form
ORDENT. (Note that the data entered on separate fields of a form is concatenated in the data
buffer, with no separators.)

Assume the comarea is set as follows:

• recnum = 5

• cfname = ORDENT

• dbuflen = 37

1 (bytes) 37

A10035-9

field 1 2 3 4 5

BICYCLE∆PUMP 0010.95 ∆∆5 0054.75
366 Chapter 6

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
In addition, assume the batch file opened by VOPENBATCHhas fixed-length records, 80 bytes
long. The call to VWRITEBATCH writes the following record as the sixth record in the batch
file:

1 (bytes)

37A10035-9BICYCLE∆PUMP0010.95∆∆5054.75

data unused space form name

batch record
information

ORDENT

61 63 79 8037

0

data buffer
length

delete flagtwo-byte word boundary

undefined
Chapter 6 367

USING VPLUS INTRINSICS
INTRINSIC DESCRIPTIONS
368 Chapter 6

USING FORMSPEC IN BATCH MODE
USING FORMSPEC IN BATCH MODE
7 USING FORMSPEC IN BATCH MODE

USING FORMSPEC IN BATCH MODE
FORMSPEC in batch mode allows you to manage a forms file without tying up your
terminal. With this feature, forms may be deleted from or copied to a forms file, compiled,
and listed on a printer by accepting commands from a job stream or from a disc file or I/O
device.

Deleting Forms Using FORMSPEC’s Batch Mode Facilities

Suppose you wanted to delete all forms but F1, F2, and F3 from a forms file named
LITTLEFF . To accomplish this, you would take the following steps:

1. Use the FORMSPEC “FORMS” command to generate a list of forms in LITTLEFF and
redirect the list to a disk file.

:FILE FORMOUT;REC=-80,16,F,ASCII;DEV=DISC;TEMP
:RUN FORMSPEC.PUB.SYS;INFO=”$STDIN”
>FILE LITTLEFF
>FORMS
>EXIT
:SAVE FORMOUT
:RENAME FORMOUT,FORMCMDS
:RESET FORMOUT

2. Bring FORMCMDS into an editor. Delete all lines that do not list form names. Delete the
lines listing forms F1, F2, and F3. Insert the keyword “DELETE” in front of every other
form name. Delete the text remaining after the form name.

3. Add the command FILE LITTLEFF as the first line in the file.

4. Add an EXIT command as the last line in the file.

5. Keep the update FORMCMDS file and exit the editor.

6. Execute the commands in the FORMCMDSfile. Note: you may want to do this within a job
file.

Compiling Forms File in Batch Mode

Compiling a forms file can be very time consuming, especially if there are many forms,
fields, and field specifications defined in the file. By using FORMSPEC in batch mode, long
compilations can be executed from a job stream. You do not have to wait for compilation to
complete in order to use your terminal for other purposes.

Updating Forms In Batch Mode

A forms file can be updated systematically by using FORMSPEC in batch mode. Entire
Chapter 7 369

USING FORMSPEC IN BATCH MODE
USING FORMSPEC IN BATCH MODE
forms can be copied to or deleted from a forms file, field attributes may be updated, and
function key labels may be created and updated. Individual screens, save fields, and some
global information; however, cannot be defined in batch mode. Also, save fields cannot be
copied from one forms file to another.

Listing Forms Files in Batch Mode

By using the batch mode LIST command, forms can be listed on the list device from a
streamed job. This means forms file listings may be automated in a job that updates a
forms file. For example, a job that updates a forms file could also print all or specific forms
for future reference. The form listings may also be directed to a disc file to be examined.

Relating Forms In Batch Mode

Form family relationships can be established using the RELATE command in batch mode.
The RELATE command requires that the forms exist and their screen designs be identical.
Furthermore, the forms to be related must be distinct forms and the proposed child form
cannot already be a member of a family of forms.
370 Chapter 7

USING FORMSPEC IN BATCH MODE
INVOKING FORMSPEC IN BATCH MODE
INVOKING FORMSPEC IN BATCH MODE
FORMSPEC in batch mode can be invoked from within a job stream or from within a
session. When invoked, FORMSPEC can accept batch mode commands from a command
file or from $STDIN .

To invoke FORMSPEC to accept batch mode commands from a command file, use the MPE
:RUN command with the INFO=filename parameter, where filename is the name of the
command file. For example:

: RUN FORMSPEC.PUB.SYS;INFO="COMMANDS.PUB.MFG"

will execute FORMSPEC in batch mode using COMMANDS.PUB.MFG as the command file.
Remember, before you can invoke FORMSPEC in batch mode to accept commands from a
command file, you must first create the command file using a text editor and enter the
batch mode commands into the file. (See the end of this section for a sample of a command
file.)

The INFO=filename parameter directly invokes batch mode. In addition, FORMSPEC will
always execute in batch mode within a job stream. When the INFO=filename parameter is
omitted within a job stream, $STDIN becomes the command file by default and commands
are accepted from within the job stream. In order to use $STDIN as the command file
within a session, the INFO=filename parameter is required. For example:

: RUN FORMSPEC.PUB.SYS;INFO="$STDIN"

In response to the greater than (>) prompt, enter the batch mode commands. Although this
usage of batch mode will not free up a terminal, users will have the ability to react to any
error conditions which may occur.

When FORMSPEC detects an error in batch mode, the error message is sent to the output
file ($STDLIST by default). The number of errors can be checked with FORMSPECERRORJCW;
number of warnings can be checked with FORMSPECWARNJCW. An error will cause one of the
following actions:

• If any batch mode command except the FILE command causes an error, then
FORMSPEC will skip that command and continue to the next command.

• If a FILE command caused the error or the error occurred because FORMSPEC did not
recognize a batch mode command, then all batch mode commands, except the FORMS
command, will be skipped until the next FILE or the EXIT command is encountered.

Batch mode output (errors, warnings, or messages) will normally be directed to $STDLIST .
However, output can be redirected to another file by using the MPE :FILE command to
redefine the formal file designator, FORMOUT. For example, since $STDLIST in a session is
the terminal, you may want to redirect output to the line printer as follows:

: FILE FORMOUT;DEV=LP

When the output file is redirected to a disc file or the list device, the batch mode commands
will also be echoed to the output file as they are executed. This will help to determine the
cause of any errors that may occur.
Chapter 7 371

USING FORMSPEC IN BATCH MODE
BATCH MODE COMMANDS
BATCH MODE COMMANDS
The following pages show the syntax and description of the batch mode commands that
FORMSPEC accepts in a command file or job stream. Table 7-1. gives a summary of the
batch mode commands, a brief description of their functions, and the interactive
counterpart for each command.

Note that each command must be entered on a separate line and a command may not carry
over to the next line. Leading blanks may be used for indentation. You can also use blank
lines between commands to make the command file easier to read. Comments may be
inserted anywhere in a command file. They may be more than one line long, but they must
be delimited by double arrows comment.

Table 7-1. FORMSPEC in Batch Mode Commands

Command Function Interactive Counterpart

Batch Mode Commands

COMPILE Compiles the current forms file. Selection X on the FORMSPEC
Main Menu.

COPY Copies forms within the current
forms file, or from another file to the
current forms file.

Selection C on the FORMSPEC
Main Menu.

DELETE Deletes a form from the current
forms file.

Selection D on the FORMSPEC
Main Menu.

EXIT Terminates FORMSPEC in batch
mode.

Function key f8 in any menu.

FIELD Updates field attributes. Field attributes specified on the
FORMSPEC Field Menu.

FILE Declares the current forms file. Forms file name on the Forms File
Menu.

FKLABELS Creates or updates function key
label strings.

FORMSPEC form-specific Function
Key Menu.

FORMS Prints summary information on the
current forms file as well as for each
or all the forms therein.

No interactive counterpart for this
command.

LIST Lists a form or all the forms on the
standard list device.

Selection L on the FORMSPEC
Main Menu.

RELATE Establish family relation between
two forms.

Selection R on the FORMSPEC
Main Menu.

RENUMBER Renumbers fields within a form. No interactive counterpart for this
command.
372 Chapter 7

USING FORMSPEC IN BATCH MODE
BATCH MODE COMMANDS
SELECTLANG Updates native language
specifications.

FORMSPEC Terminal/Language
Menu.

SELECTTERM Updates terminal and device
specifications.

FORMSPEC Terminal/Language
Menu.

ARB Commands

ARBTOSCREEN Set data type conversion defaults
from ARB to screen.

Select defaults on FORMSPEC Data
Type Conversion Menu.

SCREENTOARB Sets data type conversion rules from
screen to ARB.

Set defaults on FORMSPEC Data
Type Conversions Menu.

DELARB Deletes an ARB. Select DEL on the FORMSPEC ARB
Menu.

GENARB Generates an ARB from a form. Select GEN on the FORMSPEC ARB
Menu.

ADDARBFIELD Adds a field to the ARB. Select ADD on the FORMSPEC
Restructure ARB Menu.

DELARBFIELD Deletes a field from the ARB. Select DEL on the FORMSPEC
Restructure ARB Menu.

MODARBFIELD Modifies the attributes an ARB. Select MOD on the FORMSPEC ARB
Menu.

MOVEARBFIELD Moves a field or group of fields
around on the ARB.

Select MOVE on the FORMSPEC
Restructure ARB Menu.

RENAMEARBFIELD Changes the name of an ARB field. Select RENAME on the FORMSPEC
Restructure ARB Menu.

Table 7-1. FORMSPEC in Batch Mode Commands

Command Function Interactive Counterpart
Chapter 7 373

USING FORMSPEC IN BATCH MODE
BATCH MODE COMMANDS
COMPILE

Compiles the current forms file.

Syntax

COMPILE [INTO fastfile]

Parameters

fastfile is the name of the fast forms file to which all code records are copied. Since
a fast forms file contains only records needed by VPLUS/V intrinsics at
run-time, it may be advantageous to compile the forms file into a fast
forms file. If fastfile already exists and it is a fast forms file, it is
replaced with this version. If fastfile already exists and it is not a fast
forms file, an error occurs. The current forms file still compiles, but the
code records are not copied to a fast forms file. If fastfile does not exist,
it is created for you as a fast forms file.

Discussion

Normally the COMPILE command only compiles the forms that have been modified in the
current forms file. However, when certain global attributes (such as save fields) are
modified, all forms in the current forms file are compiled. The fast forms file, if specified,
contains code records for all forms in the current forms file.

Example

COMPILE

compiles the current forms file.

COMPILE INTO INVFFORM.PUB

compiles the current forms file and creates a fast forms file named INVFFORM in the PUB
group.
374 Chapter 7

USING FORMSPEC IN BATCH MODE
BATCH MODE COMMANDS
COPY

Copies a form within the current forms file, or copies a form from another forms file to the
current forms file.

Syntax

[COPY form {TO newform
IN file [TO newform]}]

Parameters

form is the name of the form to be copied.

newform is the name of the new form in the current forms file to which form will be
copied. The newform cannot already exist in the forms file. If newform
already exists, an error will occur and no copying will be done. If TO
newform is omitted, the new form created in the current forms file will
have the same name as the form it was copied from.

file is the name of the forms file, if form is not in the current forms file.

Example

COPY PARTS TO PARTS2

copies FROM the form PARTS in the current forms file TO the new form PARTS2.

COPY PARTS IN INVFORMS TO PARTS2

copies FROM the form PARTS in the forms file INVFORMS TO the new form PARTS2 in the
current forms file.

COPY PARTS IN INVFORMS

copies FROM the form PARTS in the forms file INVFORMS TO the new form PARTS in the
current forms file.
Chapter 7 375

USING FORMSPEC IN BATCH MODE
BATCH MODE COMMANDS
DELETE

Removes a form from the current forms file.

Syntax

DELETE form

Parameters

form is the name of the form to be removed from the current forms file. If form
does not exist, FORMSPEC will issue a warning and proceed to the next
command.

Example

DELETE ORDER2

removes the form ORDER2 from the current forms file.
376 Chapter 7

USING FORMSPEC IN BATCH MODE
BATCH MODE COMMANDS
EXIT

Terminates FORMSPEC in batch mode.

Syntax

EXIT

Discussion

The EXIT command is optional. FORMSPEC will also terminate after the last command in
the command file is executed.
Chapter 7 377

USING FORMSPEC IN BATCH MODE
BATCH MODE COMMANDS
FIELD

Updates field attributes.

Syntax

{, newfieldname }
{, enhancement }

FIELD form { fieldtag } {, fieldtype }
{ oldfieldname } {, datatype }

{, initialvalue }

Parameters

form is the name of an existing form within the current forms file.

fieldtag tag assigned to the field in form screen design.

oldfieldname name currently assigned to the field in the field menu.

newfieldname replacement field name.

enhancement replacement display enhancement code.

fieldtype replacement field type.

datatype replacement data type.

initialvalue replacement initial value. If $EMPTY is entered in the first six positions
of the parameter, initial value is cleared.

Discussion

The first two parameters of this command identify the field to be updated. The remaining
parameters are the actual updates. The field menu update parameters
(newfieldname …initialvalue) may be longer than the corresponding number of
character positions available on the Field Menu in interactive FORMSPEC, in which case
the input parameter is truncated (i.e., treated as command documentation).

Example

FIELD PARTS a_b_ c A _ B_C_CODE,NONE,R,,D

Updates field menu selections for field a_b_c of form PARTS. Specifically, the field name is
set to A_B_C_ CODE, the field display enhancement code is set to NONE (for no
enhancements), the field type value is set to R (for required), and the data type value is
unchanged. The initial value for the field is set to the character D.
378 Chapter 7

USING FORMSPEC IN BATCH MODE
BATCH MODE COMMANDS
FILE

Specifies the current forms file to be used.

Syntax

FILE file

Parameters

file is the name of the forms file to be used by subsequent batch mode
commands. The file is referred to as the current forms file.

Discussion

The FILE command must precede all other commands in a command file or job stream.
This command opens the specified forms file to be operated on by the other batch mode
commands. Only one forms file can be modified at a time (only one current forms file at a
time). However, more than one forms file can be operated on in one command file or job
stream as long as a FILE command precedes any operations on that file. Note that a FILE
command specifying a new current forms file closes the previous current forms file and
opens the new current forms file. Termination of FORMSPEC automatically closes the
current forms file.

If the file specified does not already exist, it is created. A message indicating that the file
was created is issued.

Example

FILE INVFORMS.PUB

opens the forms file INVFORMS in the PUB group to be operated on by other batch mode
commands.
Chapter 7 379

USING FORMSPEC IN BATCH MODE
BATCH MODE COMMANDS
FKLABELS

Updates function key labels.

Syntax

FKLABELS form [\ keylabel ... \ keylabel]

Parameters

form is the name of an existing form within the current forms file.

keylabel literal which is to appear in the function key label. If $EMPTY is entered
as the first six characters of keylabel , the existing key label is cleared.

Discussion

The FKLABELS command creates (if none exist) or updates function key labels for the
specified form. The first 16 characters of the keylabel literal are used for the label. Only
the first eight keylabels are used.

Example

FKLABELS STAF_SALARY Start Over$EMPTY Exit Planner

Updates labels for function keys 2, 5 (which is cleared), and 8 in form STAFF_SALARY.
Existing labels for function keys 1,3,4,6, and 7 are not updated.
380 Chapter 7

USING FORMSPEC IN BATCH MODE
BATCH MODE COMMANDS
FORMS

Prints a summary listing for the forms in the current forms file.

Syntax

[FORMS [form]
[@]]

Parameters

form The name of an existing form within the current forms file for which
summary information is to be printed. If omitted, a summary of the
current forms file is printed.

@ The commercial at sign (@) specifies that summary information for all
forms, as well as the current forms file, is printed.

Discussion

The FORMS command prints the name of each form, the number of fields in the form, the
number of bytes in the screen image, the number of children that the form has, and the
name of the form's parent form, if any. If a form name (form) is included with the FORMS
command, an extended summary is generated for the form. The extended summary
includes all of the form information listed above. In addition, for each field in the form, the
FORMSPEC assigned field number, data buffer offset (in bytes, one relative), and field
length (in bytes) is printed. If the commercial at sign (@) is used for form , an extended
summary is generated for each form in the forms file. See the examples below for samples
of the three types of summary listings available.

Although all FORMSPEC output is normally directed to $STDLIST, you may want to
redirect this output separately to the line printer. To do so, use the MPE :FILE command
to redefine the formal file designator, FORMOUT, as follows:

: FILE FORMOUT;DEV=LP

The FORMS command prints a maximum of 60 lines per page. This maximum can be
changed by setting the JCW.

FORMSPECLINESPERPAGE

See Appendix E for more information.

The FORMS command is a very useful bath mode command. When FORMS is used after
the forms file has been updated, the listing can be used to quickly check that the resulting
forms in the file are the correct ones.

This command also provides useful reference information when coding (or modifying) an
application data buffer that has to match the layout of the fields in a form.
Chapter 7 381

USING FORMSPEC IN BATCH MODE
BATCH MODE COMMANDS
Example

FORMS

prints a summary of the current forms file, SYSADMIN in this example:

Forms file: SYSADMIN.ACCTG.FINANC Page 1
File last modified: WED, MAY 14, 1986, 1:58 PM
File last compiled: WED, MAY 14, 1986, 1:58 PM

NUMBER LARGEST NUMBER OF:
OF FIELD BYTES IN

FORM NAME FIELDS NUMBER NEXT FORM SCREEN CHILDREN PARENT FORM
----------- ------ ------ ----------- ------- -------- -----------
ACCOUNT_MGRS 5 5 $HEAD 114 0
SYSTEMZ-USERS 5 5 @HEAD 98 0

Example

FORMS SYSTEM_USERS

Prints a summary of the form specified, SYSTEM_USERS in this example:

Forms File: SYSADMIN.ACCTG.FINANC Page 1
File last modified: WED, MAY 14, 1986, 1:58 PM
File last compiled: WED, mAY 14, 1986, 1:58 PM

NUMBER LARGEST NUMBER OF:
OF FIELD BYTES IN

FORM NAME FIELDS NUMBER NEXT FORM SCREEN CHILDREN PARENT FORM
----------- ------ ------ ----------- ------- -------- -----------
SYSTEM_USERS 5 5 $HEAD 98 0

Forms File: SYSADMIN.ACCTG.FINANC Page 2

SCREEN BUFFER
LENGTH LENGTH FIELD LENGTH BUFFER

FORM NAME (bytes) (bytes) FIELD NAME NUMBER (bytes) OFFSET
----------- ------ ------ ------------------ ------- ------- -------
SYSTEM_USERS 168 33 **** Compiled for: HP264X

USER_NAME 1 8 0
ACCOUNT_NAME 2 8 8
HOME_GROUP 3 8 16
PORT_NUMBER 4 4 24
PHONE_EXTENSION 5 5 28

****End of compiled forms listing. ****
382 Chapter 7

USING FORMSPEC IN BATCH MODE
BATCH MODE COMMANDS
Example

FORMS @

Prints a summary of the current forms file, (SYSADMIN) as well as the summary
information for each form in the forms file, two in this example:

Forms File: SYSADMIN.ACCTG.FINANC Page 1
File last modified: WED, MAY 14, 1986, 1:58 PM
File last compiled: WED, mAY 14, 1986, 1:58 PM

NUMBER LARGEST NUMBER OF:
OF FIELD BYTES IN

FORM NAME FIELDS NUMBER NEXT FORM SCREEN CHILDREN PARENT FORM
----------- ------ ------ ----------- ------- -------- -----------
ACCOUNT_MGRS 5 5 $HEAD 114 0
SYSTEM_USERS 5 5 $HEAD 98 0

Forms File: SYSADMIN.ACCTG.FINANC Page 2

SCREEN BUFFER
COMPILED LENGTH LENGTH FIELD LENGTH BUFFER
FORM NAME (bytes) (bytes) FIELD NAME NUMBER (bytes) OFFSET
----------- ------ ------ ------------------ ------- ------- -------
ACCOUNT_MGRS 155 68 **** Compiled for: HP264X

ACCOUNT_NAME 1 8 0
MGR_LAST_NAME 2 20 8
MGR_FIRST_NAME 3 15 28
DEPARTMENT 4 20 43
PHONE_EXTENSION 5 5 63

SYSTEM_USERS 168 33 **** Compiled for: HP264X
USER_NAME 1 8 0
ACCOUNT_NAME 2 8 8
HOME_GROUP 3 8 16
PORT_NUMBER 4 4 24
PHONE_EXTENSION 5 5 28

****End of compiled forms listing. ****

Number of errors = 0 Number of warnings = 0
Chapter 7 383

USING FORMSPEC IN BATCH MODE
BATCH MODE COMMANDS
LIST

Lists a specified form or all forms on the list device.

Syntax

LIST [form]

Parameters

form is the name of the form in the current forms file to be listed. When form is
not specified, all forms in the current forms file are listed.

Discussion

The LIST command can be used to provide documentation for a forms file. The forms are
usually listed on the line printer. The LIST command can also be used to list forms to a disc
file to be examined. To do so, use the MPE :FILE command to redefine the formal file
designator FORMLIST as shown below:

: FILE FORMLIST=MYFILE;DEV=DISC;SAVE;NOCCTL

will list forms to the disc file, MYFILE. The SAVEkeyword specifies that MYFILE be saved as
a permanent file. The NOCCTL keyword indicates that no carriage control characters are
written to the file. (See the MPE Commands Reference Manual(30000-90009), for more
information on the MPE:FILE command.)

The LIST command prints a maximum of 60 lines per page. This maximum may be
changed by setting the JCW.

FORMSPECLINESPERPAGE

See Appendix E for more information.

Example

LIST

lists all forms in the current forms file on the list device.

LIST PARTS

lists the form PARTS in the current forms file on the list device.
384 Chapter 7

USING FORMSPEC IN BATCH MODE
BATCH MODE COMMANDS
RELATE

Creates a family relationship between two existing forms.

Syntax

RELATE childform TO parentform

Parameters

childform is the name of the form which is to become the child form. It must already
exist, and not be related to any other form.

parentform is the name of the form which is to become the parent form. It must
already exist, and have the identical form design as the childform specified
with the childform parameter.

Example

RELATE FORM1 TO FORM2

Establishes a family relationship between FORM1and FORM2where FORM1is the child
form, and the FORM2 is the parent form.
Chapter 7 385

USING FORMSPEC IN BATCH MODE
BATCH MODE COMMANDS
RENUMBER

Renumber fields to screen order.

Syntax

RENUMBERform

Parameters

form is the name of the form containing the fields to be renumbered.

Discussion

The fields in the form specified by form are renumbered in accordance with screen order,
left to right, top to bottom. If your application depends on field numbers, be sure to update
your application to reflect the changed field numbers. If the fields are already numbered in
screen order, a message is returned and the fields are not renumbered.

For family forms, the parent form must be specified; all family members are then
automatically renumbered. Again, if your application depends on field numbers, be sure to
update your application, in this case, for all family members. If you specify the name of a
child form, the fields are not renumbered. Instead, a message is returned stating the form
was not renumbered because it is a child form and indicating the name of the parent form.

Example

RENUMBER FORM1

Renumbers the fields in FORM 1 in screen order.
386 Chapter 7

USING FORMSPEC IN BATCH MODE
BATCH MODE COMMANDS
SELECTLANG

Updates native language specification.

Syntax

SELECTLANG [formsfilelangID] [, FORMSPEClangID]

Parameters

formsfilelangID Set forms file native language specification.

FORMSPEClangID Set FORMSPEC native language specification.

Discussion

Only the first three characters of each parameter are used. Refer to "Setting Language ID
Number" in Section 8 for more information. At least one parameter must be specified.

If no parameters are provided, existing native language specifications are retained,

Example

SELECTLANG 8

Native language ID 8, German, is specified for the forms file.

SELECTLANG ,O

Native language ID 0, Native-3000, is specified for FORMSPEC. The native language
specified for the forms file is retained.
Chapter 7 387

USING FORMSPEC IN BATCH MODE
BATCH MODE COMMANDS
SELECTTERM

Updates forms file terminal or device specifications.

Syntax

SELECTTERM [262xand239x] [, color] [, 264x] [, 307x]

Parameters

262xand239x Configure forms file for the HP 262X and HP'239X terminal families; also
includes the HP 150.

color Configure forms file for color terminals.

264x Configure forms file for the HP 264X terminal family. Specifying yes (the
value Y or y) enables function key labeling.

307x Configure forms file for the data capture device family. Specifying eight
(the value 8) enables support of the extended features of the HP 3081A.

Discussion

The parameters may be any valid non-blank character to select the terminal family. Only
the first character of each parameter is processed (the rest is treated as command
documentation).

At least one parameter must be specified. Providing a USASCII blank as the specification
for a given device/terminal family does not change the existing specification. Specifying
$EMPTY clears an existing specification.

Example

SELECTTERM x,,y

Forms file is configured for HP 262X/239X terminals, the HP 150, and HP 264X terminals,
with HP 264X function key labeling enabled. Existing color specification, if any, is
retained.

SELECTTERM ,x,$EMPTY,8

Forms file is configured for color terminals and HP 307x terminals, with HP 3081A
features enabled. HP264X specification is cleared and existing HP262X/239X/150
specification, if any, is retained.
388 Chapter 7

USING FORMSPEC IN BATCH MODE
ARB BATCH MODE COMMANDS
ARB BATCH MODE COMMANDS
The following batch mode commands support the ARB feature. They are based on the ARB
Menu options provided in interactive FORMSPEC. The commands are summarized below,
and each one is described in detail in the rest of this section.

NOTE In the ARB commands, destination is:

[BEFORE fieldname] or [AFTER fieldname]

The data type conversion commands are:

ARBTOSCREEN and ARBTOSCREEN

The ARB commands are:

DELARB and GENARB

The ARB field commands are:

ADDARBFIELD, DELARBFIELD, MODARBFIELD, MOVEARBFIELD, and RENAMEARBFIELD

Their functions are summarized in Table 7-1.
Chapter 7 389

USING FORMSPEC IN BATCH MODE
ARB BATCH MODE COMMANDS
ADDARBFIELD

Add a field to the ARB.

Syntax

ADDARBFIELD arbname fieldname destination

Parameters

arbname Name of the ARB to which the field will be added.

fieldname The name of the new field.

destination Position at which the field is to be inserted. May be left blank.

Discussion

If the arbname doesn't exist, an ARB with this name will be created for the associated
form. The ARB cannot contain the fieldname already. If fieldname is not a field on the
form, it becomes a filler field, with no datatype and with a length of 1 (this length may be
changed using the MODARBFIELD command). If fieldname is on the form, its ARB length
and data type are created from its screen attributes and the Data Conversion table (set
up using the Data Conversion Menu). If destination is specified, the field will be inserted
at that position, otherwise it will be appended to the end of the ARB.
390 Chapter 7

USING FORMSPEC IN BATCH MODE
ARB BATCH MODE COMMANDS
ARBTOSCREEN

Create/update the datatype conversion rules for converting ARB field contents to screen
field contents.

Syntax

ARBTOSCREEN [chartype, inttype, realtype, packtype, zonetype]

Parameters

chartype The conversion type for ARB fields with type CHAR.

inttype The conversion type for ARB fields with type INT or DINT.

realtype The conversion type for ARB fields with type REAL or LONG.

packtype The conversion type for ARB fields with type PACK, PACK0, PACK1,…
PACK9, SPACK, SPACK0, SPACK1,…SPACK9.

ZONETYPE The conversion type for ARB fields with type ZONE, ZONE0, ZONE1…
ZONE 9.

Discussion

This command creates/updates the datatype conversion rules for converting ARB data
types to screen data type. If a data type update is omitted, then the current default for that
type is retained. If no update parameters are specified, all ARB-to-screen conversion types
are set to CHAR, the default. Leading commas must be supplied.

Valid data type updates are: CHAR, YMD, MDY, DMY, DIG, NUM(n) NUMA, IMPn IMPA

EXAMPLE

The command:

ARBTOSCREEN, DIG, NUM

Sets the conversion type for INT and DINT ARB fields to DIG and for REAL and LONG
ARB fields to NUM.
Chapter 7 391

USING FORMSPEC IN BATCH MODE
ARB BATCH MODE COMMANDS
DELARB

Deletes the entire specified ARB.

Syntax

DELARB arbname

Parameters

arbname Name of the existing ARB.

Discussion

All the fields are deleted. You can generate another ARB for the specified form if required.
If extensive changes are made to a form, it is easier to delete the existing ARB and create a
new one than to revise the old ARB.
392 Chapter 7

USING FORMSPEC IN BATCH MODE
ARB BATCH MODE COMMANDS
DELARBFIELD

Deletes a specified field from the ARB.

Syntax

DELARBFIELD arbname fieldname

Parameters

arbname Name of the existing ARB.

fieldname Name of the specified field on the ARB.

Discussion

The arbname must exist in the forms file and the fieldname must exist on the ARB.
Chapter 7 393

USING FORMSPEC IN BATCH MODE
ARB BATCH MODE COMMANDS
GENARB

Generates an ARB from the form specified by the formname.

Syntax

GENARBarbname

Parameters

arbname Same as the name of the associated form

Discussion

The ARB will contain a field for every field on the form. The data type and length of each
ARB field are determined from the screen attributes and the Data Conversion table (set up
using the Data Conversion Menu).
394 Chapter 7

USING FORMSPEC IN BATCH MODE
ARB BATCH MODE COMMANDS
MODARBFIELD

Modify the attributes of a field on an ARB.

Syntax

MODARBFIELDarbname fieldname {[length, type]}

Parameters

arbname Name of the ARB that contains the field to be modified

fieldname The name of the field to be modified.

[length, type] The new ARB field length and/or data type.

Discussion

The arbname must exist in the forms file and the fieldname must exist on the ARB. You
can change both the parameters length and type , but you must specify at least one. They
must conform to the edit rules (see Section 3).

EXAMPLE

The command:

MODARBFIELD EMPLOYEE SSNUM, CHAR

changes the ARB data type to CHAR.
Chapter 7 395

USING FORMSPEC IN BATCH MODE
ARB BATCH MODE COMMANDS
MOVEARBFIELD

Move a field or group of fields to a specified position on an ARB.

Syntax

MOVEARBFIELDarbname range [destination]

Parameters

arbname The name of the ARB.

range The field or fields to be moved, expressed as fieldname or
fieldname/fieldname.

[destination] The position in the ARB to which the field(s) will be moved. Can be left
blank.

Discussion

The arbname must exist. If the destination is not specified, the field(s) will be appended
at the end of the ARB.

EXAMPLE

Suppose the fields in the ARB EMPLOYEE are in this order:

NAME
ADDRESS
PHONE
SSNUM
SUPERVISOR

The command:

MOVEARBFIELD EMPLOYEE ADDRESS/PHONE AFTER SSNUM

or the command:

MOVEARBFIELD EMPLOYEE SSNUM BEFORE ADDRESS

will rearrange the fields in this order:

NAME
SSNUM
ADDRESS
PHONE
SUPERVISOR
396 Chapter 7

USING FORMSPEC IN BATCH MODE
ARB BATCH MODE COMMANDS
RENAMEARBFIELD

Change the name of oldfieldname to newfieldname in the ARB arbname .

Syntax

RENAMEARBFIELDarbname oldfieldname newfieldname

Parameters

arbname Name of the ARB that contains the field.

oldfieldname The current name of the field.

newfieldname The new game you want to give the field.

Discussion

This command does not change the ARB data type or length. The arbname must exist in
the forms file, and the oldfieldname must exist on the ARB. The ARB cannot already
contain a field with the newfieldname . If newfieldname is not a field on the form, the
renamed field becomes a filler field.
Chapter 7 397

USING FORMSPEC IN BATCH MODE
ARB BATCH MODE COMMANDS
SCREENTOARB

Create/update the datatype conversion rules for generating an ARB from a form.

Syntax

SCREENTOARB[chartype, datetype, digtype, numtype, imptype]

Parameters

chartype The conversion type for screen fields with type CHAR.

datetype The conversion type for screen fields with a date type.

digtype The conversion type for screen fields with type DIG.

numtype The conversion type for screen fields with type NUM, NUM0, NUM1…
NUM9.

imptype The conversion type for screen fields with type IMP, IMP0, IMP1,… IMP9.

Discussion

This command creates/updates the datatype conversion rules for generating an ARB from
a form. If an update parameter is omitted, then the current conversion type for that
parameter is retained. If no update parameters are specified, all screen-to-ARB conversion
types are set to CHAR, the default. Leading commas must be supplied.

Valid type updates are: CHAR, YYMMDD, INT, DINT, REAL, LONG, PACKn, SPACKn,
ZONEn, PACKA, SPACKA, ZONEA.

EXAMPLE

The command:

SCREENTOARB, INT, REAL, REAL

sets the conversion type for DIG screen fields to INT, and for NUM and IMP screen fields
to REAL.
398 Chapter 7

USING FORMSPEC IN BATCH MODE
SAMPLES OF FORMSPEC IN BATCH MODE
SAMPLES OF FORMSPEC IN BATCH MODE
The following are samples of how FORMSPEC in batch mode is used, first with a
command file and then with the commands directly in the job stream.

Sample Command File

FORMSPEC in batch mode can be executed with the following commands:

: FILE FORMOUT;DEV=LP
: RUN FORMSPEC.PUB.SYS;INFO="FORMCMDS.PUB.MFG"

The MPE :FILE command directs batch mode output (commands and error messages) to
the list device. The MPE :RUN command with the INFO=filename parameter executes
FORMSPEC in batch mode, taking batch mode commands from the command file
FORMCMDS.PUB.MFG. Remember, you must first create the command file using a text editor.

Sample Job Stream

To stream a job using FORMSPEC in batch mode, you must first create the job file using a
text editor. Then, stream the job using the MPE :STREAM command.

The following is a listing of a sample job stream which compiles a forms file and documents
its contents:

!JOB FORMUPDT, MIKE.MFG,FORMS
!FILE FORMOUT; DEV=LP
!RUN FORMSPEC. PUB.SYS
FILE FORMSF1
COMPILE
FORMS
EXIT
!EOJ
Chapter 7 399

USING FORMSPEC IN BATCH MODE
SAMPLES OF FORMSPEC IN BATCH MODE
Example

<< This command file updates the forms files, FORMSF1 and FORMSD2. >>
<< FORMSF1 is opened first. Two forms are copied from the forms file >>
<< MASTERFS.PUB. The FORMSF1 is then compiled into the fast forms file >>
<< FASTFRM1. A listing is made of all the forms in FORMSF1. >>
<< FORMSF1 is then closed and FORMSF2 opened as the current forms file. >>
<< Two forms are copied from the forms file MASTERFS.PUB to new forms >>
<< in the current forms file. FORMSF2 is then compiled (note that NO >>
<< fast forms file is produced). The names of the fomrs in FORMSF2 are >>
<< printed after all modifications to the forms file are complete. >>

FILE FORMSF1 << Opens the forms file to be updated >>

DELETE FORMA << Deletes forms to current forms file >>
DELETE FORMB << in case they already exist. >>

COPY FORMA INTO MASTERFS.PUB << Copies forms to current forms file >>
COPY FORMB INTO MASTERFS.PUB << using same form names. >>

COMPILE INTO FASTFRM1 << Compiles current forms file to >>
<< fast forms file. >>

LIST << Lists the forms in FORMSF1. >>

FILE FORMSF2 << Closes FORMSF1 and opens FORMSF2 >>
<< as new current forms file. >>

DELETE FORM2A << Deletes forms in current forms file >>
DELETE FORM2B << in case they already exist. >>

COPY FORMA IN MASTERFS.PUB TO FORM2A <<Copies forms to new current forms >>
COPY FORMB IN MASTERFS.PUB TO FORM2B << file using new form names. >>

COMPILE << Compiles current forms file. >>

FORMS << Prints the names of the forms in >>
<< the current forms file. >>

EXIT << Closes FORMSF2 and terminates >>
<< FORMSPEC in batch mode. >>
400 Chapter 7

NATIVE LANGUAGE SUPPORT
8 NATIVE LANGUAGE SUPPORT

VPLUS Native Language Support (NLS) enables an applications designer to create
interactive user applications which reflect both the user's native language and the local
custom for numeric and date information in the supported languages. (See Native
Language Support Reference Manual for an explanation of supported languages.) NLS
provides these specific features in VPLUS:

• Native decimal and thousands indicators.

• Native language month names for dates.

• Alphabetic upshifting of native characters.

• Native characters in single value comparisons, table checks, and range checks.

• Native collating sequence in range checks and single value comparisons.

VPLUS does not support the application design process in native languages. Form names,
field identifiers and field tags support only USASCII characters.

REFSPEC and REFORMAT do not use NLS features. These programs interact with users
in NATIVE-3000 only.
Chapter 8 401

NATIVE LANGUAGE SUPPORT
LANGUAGE ATTRIBUTE
LANGUAGE ATTRIBUTE
VPLUS contains an NLS native language attribute option which allows the applications
programmer to design a forms file which reflects the native language characteristics of the
application. Each forms file has a global native language ID number. The application may
be unlocalized, language-dependent, or international. Refer to the Native Language
Support Reference Manual for a list of the available native language ID numbers and for
examples of these applications.

Unlocalized (NATIVE-3000)

If a native language ID number is not assigned to a forms file, it will default to 0
(NATIVE-3000). NLS features do not impact an unlocalized forms file.

Language-Dependent

Language-dependent forms files are used when the associated application only operates in
a single native language context. The native language ID number for the specific native
language desired is assigned when the forms file is designed.

International

Multinational corporations may need to maintain a business language for commands,
titles, and menus in addition to accommodating the native language of the user for the
actual data retrieved or displayed. For this application, -1 is selected as the native
language ID number for the forms file. The VPLUS intrinsic VSETLANG must be called at
run-time to assign the appropriate native language ID.
402 Chapter 8

NATIVE LANGUAGE SUPPORT
NLS CAPABILITIES
NLS CAPABILITIES
The components of a form which can be language-dependent are the initial values of fields
and the field edit rules. The text is fixed in a single native language by the forms designer.
The native language ID number determines the context for data editing, conversion, and
formatting. There are two native language IDs assigned for each forms file. The
FORMSPEC language controls the context when the forms file is designed. The forms file
language controls the context when the forms file is executed.

Setting the Native Language ID Numbers

The forms designer sets both native language ID number values for the forms file via the
FORMSPEC Terminal/Language Selection Menu. NATIVE-3000 is currently the only
selection available for FORMSPEC language. This means that initial values and
processing specifications must be defined with the month names and numeric conventions
of NATIVE-3000.

The native language ID for the forms file language defaults to 0 (NATIVE-3000) if no
native language ID number is specified on the Terminal/Language Selection Menu. On this
menu, the forms designer can assign or change the native language ID for the forms file
language at any time. The value specified must be a positive number or a zero for a single
native language application. If the value specified is acceptable, but the native language is
not configured on the system used for forms design, FORMSPEC issues a warning
message but does not reject the native language ID number. Instead, the designer is
prompted to confirm the value or change it.

For applications that are used with multiple native languages, the forms designer specifies
the international language ID number -1 . The international language ID number allows
the intrinsic VSETLANG to be called at run-time to select the actual native language ID
number for the forms file. If an application uses an international forms file without calling
VSETLANG, it is executed in the default, NATIVE-3000. If VSETLANG is called for an
unlocalized or language-dependent forms file, an error code will be returned.

The designer has three options in designing an application to work effectively with
multiple languages:

• Develop several language-dependent forms files.

• Create one international forms file.

• Produce a combination of language-dependent files and an international forms file.

If the text needs to be in the native language, unique versions of a forms file are required
for each native language supported.

VGETLANG may be used to determine whether a language-dependent forms file or an
international forms file is being executed. If VGETLANG indicates an international forms
file, VSETLANG must be called to select the actual native language. Refer to the VGETLANG
and VSETLANG intrinsics in Section 6.
Chapter 8 403

NATIVE LANGUAGE SUPPORT
FIELD EDITS
FIELD EDITS
NATIVE-3000 must be used to specify date and numeric fields within FORMSPEC. When
the forms file is executed, VPLUS will convert the value to be consistent with the native
language selected. Single value comparisons (GT,GE,LT,LE,EQ,NE), as well as table and
range checks (IN, NIN), specified within FORMSPEC may contain any character in the 8
bit extended character set consistent with the selected native language ID number. When
the form is executed at run-time, the collating table for the native language specified is
used to check whether the field is within a range.

Date Handling

VPLUS supports several date formats and three date orders: MDY, DMY,YMD. Any format
is acceptable as input when the form is executed, provided that the field length can
accommodate the format. The forms designer specifies the order of each date-type field.
With NLS, the alphabetic month names are edited and converted to numeric destinations
using the month names corresponding to the native language of the forms file. The format
and the date order are not related to the native language of the forms file.

Numeric Data

Decimal and thousands indicators are native language-dependent in the NUM[n] and
IMPn fields. When data is moved between fields and automatic formatting occurs for data
entered in any field, recognition, removal or insertion of these decimal and thousands
indicators is native language-dependent. The optional decimal symbol in constants is also
native language-dependent.

NOTE VPLUS edit processing specifications and terminal edit processing
statements are separate and are not checked for compatibility. There will be
no check to see that the forms designer has specified a terminal local edit
(DEC_TYPE_EUR, DEC_TYPE_US) in the configuration phase which is
consistent with the native language-dependent decimal indicator for the
native language specified in the forms file.

Native Language Characters

If a native language ID number has been specified in the forms file, the UPSHIFT
formatting statement uses native language upshift tables.

Range checks and the single value comparisons GT, GE, LT and LE involve collating
sequences. When the form is executed, the native language collating sequence table
designated by the native language ID number is used to check whether the field passes the
edit.

NLS features in VPLUS do not include support for pattern matching with native
characters. MATCH uses USASCII specifications.
404 Chapter 8

NATIVE LANGUAGE SUPPORT
ENTRY AND LANGUAGE lD NUMBER
ENTRY AND LANGUAGE lD NUMBER
The native language ID assigned for the forms file language determines the native
language used by ENTRY unless the file is international (-1). ENTRY uses the intrinsic
VGETLANG to identify the native language ID assigned by the forms designer for the forms
file language.

If the forms file is international, ENTRY calls the NLS intrinsic NLGETLANG (mode 1). If it
returns a value of UNKNOWN, the user is prompted for a native language ID number.
Once a valid native language ID number is determined, ENTRY calls the VSETLANG
intrinsic to specify the corresponding native language.

The batch file does not have a native language indicator. Users with different native
languages may collect data in the same batch file if the associated forms file is
international.
Chapter 8 405

NATIVE LANGUAGE SUPPORT
ENTRY AND LANGUAGE lD NUMBER
406 Chapter 8

SAMPLE PROGRAMS
A SAMPLE PROGRAMS

The VPLUS intrinsics can be called from the programming languages listed in Table A-1.
The reference manuals to consult for each language are also listed.

In addition, this appendix contains sample programs, with the VPLUS intrinsic calls
highlighted, for each of the following programming languages:

Table A-1. Programming Languages and References

Language Reference Manual

BASIC HP
BUSINESS
BASIC

BASIC/300O Interpreter Reference Manual
BASIC/3000 Compiler Reference Manual,
HP BUSINESS BASIC Reference Manual,
HP BUSINESS BASIC Programming Guide

COBOL COBOL/3000 Reference Manual,
COBOLII/3000 Reference Manual,
COBOLII/3000 Conversion Guide,
Using COBOL

FORTRAN FORTRAN/3000 Reference Manual,
HP FORTRAN 77 Reference Manual,
FORTRAN 77 Supplement

Pascal Pascal/3000 Reference Manual

SPL System Programming Language Reference Manual

TRANSACT Transact/3OOO Reference Manual Getting Started with Transact Manual

Language Page

SPL 406

COBOL 430

FORTRAN 77 442

BASIC 461

TRANSACT 469

PASCAL 478
Appendix A 407

SAMPLE PROGRAMS
SPL
SPL
$PAGE "HP32209B.04.17 VPLUS/V S40S209B, ENTRY"
$COPYRIGHT " " , &
$ " " , &
$ " (c) COPYRIGHT HEWLETT-PACKARD. 1986 " , &

" , &
$ "This program may be used with one computer system at a time " , &
$ "and shall not otherwise be recorded, transmitted or stored " , &
$ "in a retrieval system. Copying or other reproduction of this " , &
$ "program except for archival purposes is prohibited without " , &
$ "the prior written consent of the Hewlett-Packard Company. " , &
<< >>
$CONTROL USLINIT, LIST, MAP, CODE
<<**>>
<< >>
<< ENTRY--VPLUS/V Data Entry Program >>
<< >>
<< 9/1/79 >>
<< >>
<<**>>
<<

This program controls source data entry for any forms file.
It opens a forms file, based on user input; it opens a batch
file, also named by the user. If all is ok, it displays the
head form, accepts input, edits the data, and if no errors,
writes it to the batch file. The program continues to do this
until $END is reached, or until the EXIT function key has been
pressed.

This program also controls browsing through the data collected,
and supports modification of that data.

The function keys have defined meanings as follows:

 f1 f2 f3 f4
HEAD DELETE PRINT REFRESH

f5 f6 f7 f8
PREV NEXT BROWSE/ EXIT

COLLECT

>>
408 Appendix A

SAMPLE PROGRAMS
SPL
$PAGE " "ENTRY DECLARATIONS"
<<**>>
<< >>
<< ENTRY Global Declarations >>
<< >>
<<**>>
BEGIN
DEFINE

VERSION = " B.04.17" #
,ID’MSG=("HP32209",VERSION," ENTRY (C) HEWLETT-PACKARD CO. 1986")#
;

DEFINE
COM’STATUS = COMAREA (0) #

,COM’LANGUAGE = COMAREA (1) #
,COM’COMAREALEN = COMAREA (2) #
,COM’MODE = COMAREA (4) #
,COM’LASTKEY = COMAREA (5) #
,COM’NUMERRS = COMAREA (6) #
,COM’LABEL’OPTION = COMAREA (9) #
,COM’CFNAME = COMAREA’B (10*2) #
,COM’NFNAME = COMAREA’B (18*2) #
,COM’REPEATOPT = COMAREA (26) #
,COM’NFOPT = COMAREA (27) #
,COM’DBUFLEN = COMAREA (29) #
,COM’DELETEFLAG = COMAREA (32) #
,COM’SHOWCONTROL = COMAREA (33) #
,COM’NUMRECS = COMAREA’D (21) #
,COM’RECNUM = COMAREA’D (22) #
,COM’TERMFILENUM = COMAREA (48) #
,COM’TERMOPTIONS = COMAREA (55) #
,com’term’type = comarea (58) #
,com’keyboard’type = comarea (74) #
,com’form’stor’size = comarea (38) #
;

DEFINE
CHECK’ERROR = IF COM’STATUS <>’ 0 THEN

ERROR #
,CHECK’EDIT’ERROR = IF COM’STATUS <> 0 OR COM’NUMERRS <> 0 THEN

ERROR #
;

EQUATE << MISCELLANEOUS VALUES >>
COMAREALEN = 85

,SPL’LANG = 3
,COLLECT’MODE = 0
,BROWSE’MODE = 1
,MAXWINDOWLEN = 150
,NAMELEN = 15
,NORM = 0
,NOREPEAT = 0
,REPEAT = 1
,REPEATAPP = 2
,ESC = 27
,FORWARDS = 1

,BACKWARDS = -1
 ;
EQUATE << FUNCTION KEY ASSIGNMENTS >>
 ENTERKEY = 0
Appendix A 409

SAMPLE PROGRAMS
SPL
 ,HEADKEY = 1
 ,DELETEKEY = 2
 ,PRINTKEY = 3
 ,REFRESHKEY = 4
 ,PREVKEY = 5
 ,NEXTKEY = 6
 ,BROWSEKEY = 7
 ,EXITKEY = 8
 ;
EQUATE << ENTRY ERROR EQUATES >>
 PREV’NOT’ALLOWED = 1
 ,NO’PREV’RECS = 2
 ,NOT’REPEATING = 3
 ,DELETE’NOT’DEFINED = 4
 ,NO’BATCH’RECS = 5
 ,NO’BATCH = 6
 ,NO’NEXT’RECS = 7
 ;
EQUATE << NATIVE LANGUAGE SUPPORT EQUATES >>
 INTERNATIONAL = -1
 ;
INTEGER ARRAY
 COMAREA (O:COMAREALEN-1) := COMAREALEN (0)
 ;
BYTE ARRAY
 COMAREA’B (*) = COMAREA
 ;
DOUBLE ARRAY
 COMAREA’D (*) = COMAREA
 ;
LOGICAL
 ERRORS := FALSE
 ,BATCH
 ;
ARRAY
 MESSAGE’WBUF (0:MAXWINDOWLEN/2)
 ;
BYTE ARRAY
 MESSAGE’BUF (*) = MESSAGE’WBUF
 ;
INTEGER
 PARMVAL := 20
 ,UNDERLINE := 1
 ,MESSAGE’BUF’LEN := MAXWINDOWLEN
 ,MSGLEN
 ,PAGE’EJECT := %61
 ;
DOUBLE
 LAST’REC’NUM
 ;
410 Appendix A

SAMPLE PROGRAMS
SPL
$PAGE " VPLUS/V INTRINSIC DECLARATIONS"
<<**>>
<< >>
<< VPLUS/V INTRINSICS >>
<< >>
<<**>>
INTRINSIC
 VCLOSEBATCH
 ,VCLOSEFORMF
 ,VCLOSETERM
 ,VERRMSG
 ,VFIELDEDITS
 ,VFINISHFORM
 ,VGETNEXTFORM
 ,VINITFORM
 ,VOPENBATCH
 ,VOPENFORMF
 ,VOPENTERM
 ,VPOSTBATCH
 ,VPRINTFORM
 ,VPUTWINDOW
 ,VREADBATCH
 ,VREADFIELDS
 ,VSHOWFORM
 ,VWRITEBATCH
 ,VGETKEYLABELS
 ,VSETKEYLABELS
 ,VSETKEYLABEL
 ,VSETLANG
 ,VGETLANG
 ;

<<**>>

<< >>
<< DO’COLLECT’LABELS >>
<< >>
<<**>>
PROCEDURE DO’COLLECT’LABELS;

 BEGIN

 BYTE ARRAY LABELS(0:127);

 INTEGER NUMBER’OF’LABELS,GLOB’FORM;

 MOVE LABELS := (
 << FUNCTION KEY 1 >> " HEAD FORM "
 << FUNCTION KEY 2 >> ," "
 << FUNCTION KEY 3 >> ," PRINT "
 << FUNCTION KEY 4 >> ,"REFRESH "
 << FUNCTION KEY 5 >> ," "
 << FUNCTION KEY 6 >> ," NEXT FORM "
 << FUNCTION KEY 7 >> ," BROWSE "
Appendix A 411

SAMPLE PROGRAMS
SPL
<< FUNCTION KEY 8 >> ," EXIT
);

 GLOB’FORM := 0; << GLOBAL LABELS >>

 NUMBER’OF’LABELS := 8;
 $$VSETKEYLABELS(COMAREA,GLOB’FORM,NUMBER’OF’LABELS, LABELS);

 END;

<<**>>
<< >>
<< DO’BROWSE’LABELS >>
<< >>
<<**>>
PROCEDURE DO’BROWSE’LABELS;

 BEGIN

 BYTE ARRAY LABELS(0:127);

 INTEGER NUMBER’OF’LABELS,GLOB’FORM;

 MOVE LABELS := (
 << FUNCTION KEY 1 >> " FIRST REC "
 << FUNCTION KEY 2 >> ," DELETE REC "
 << FUNCTION KEY 3 >> ," PRINT "
 << FUNCTION KEY 4 >> ,"REFRESH "
 << FUNCTION KEY 5 >> ," PREV REC "
 << FUNCTION KEY 6 >> ," NEXT REC "
 << FUNCTION KEY 7 >> ," COLLECT "
 << FUNCTION KEY 8 >> ," EXIT "
);

 GLOB’FORM := 0; << GLOBAL LABELS >>

NUMBER’OF’LABELS := 8;

 VSETKEYLABELS(COMAREA,GLOB’FORM,NUMBER’OF’LABELS, LABELS);

 END;
412 Appendix A

SAMPLE PROGRAMS
SPL
$PAGE " FORMAT’STATUS’LINE"

<<**>>
<< >>
<< FORMAT’STATUS’LINE >>
<< >>
<<**>>
PROCEDURE FORMAT’STATUS’LINE;
 BEGIN

 INTEGER CNT;

 INTRINSIC ASCII, DASCII;

 if com’term’type = 15 or << HP3075 >>
 com’term’type = 16 then << hp3076 >>
 move message’buf := (" ENTRY ", version, " "), 2
 else
 MOVE MESSAGE’BUF := (" ENTRY ", VERSION, ESC, "&a31C"), 2;
 MSGLEN := TOS - @MESSAGE’BUF;

 MOVE MESSAGE’BUF(MSGLEN) := "Batch Record #", 2;
 MSGLEN := TOS - @MESSAGE’BUF;
 MSGLEN := MSGLEN + DASCII (COM’RECNUM+1D, 10, MESSAGE’BUF (MSGLEN));

 if com’term’type = 15 or << hp3075 >>
 com’term’type = 16 then << hp3O76 >>
 move message’buf(msglen) := (" Mode: "), 2
 else
 MOVE MESSAGE’BUF (MSGLEN) := (ESC, "&a65CMode: "), 2;

 MSGLEN := TOS - @MESSAGE’BUF;
 IF COM’MODE = COLLECT’MODE THEN
 MOVE MESSAGE’BUF (MSGLEN) := "Collect", 2
 ELSE
 if com’term’type = 15 or << hp3075>>
 com’term’type = 16 then << hp3076 >>
 move message’buf(msglen):= ("Browse"), 2
 else
 MOVE MESSAGE’BUF (MSGLEN) : = (ESC, "&dKBrowse") , 2;

 MSGLEN := TOS - @MESSAGE’BUF;

 VPUTWINDOW (COMAREA, MESSAGE’BUF, MSGLEN);
 END; << FORMAT’STATUS’LINE >>
Appendix A 413

SAMPLE PROGRAMS
SPL
$PAGE " ENTRY’ERROR"

<<**>>
<< >>
<< ENTRY’ERROR >>
<< >>
<<**>>
PROCEDURE ENTRY’ERROR (ENTRY’ERROR’NUM);
VALUE ENTRY’ERROR’NUM;
INTEGER ENTRY’ERROR’NUM;
 BEGIN

 IF ERRORS THEN
 RETURN;

 ERRORS := TRUE;

 CASE ENTRY’ERROR’NUM OF
 BEGIN

 << 0 IS NOT DEFINED >>
 ;

 << PREV’NOT’DEFINED: >>
 MOVE MESSAGE’BUF :=
 " The PREV key is only defined for browse mode.", 2;

 << NO’PREV’RECS: >>
 MOVE MESSAGE’BUF :=
 " There are no previous batch records.", 2;

 << NOT’REPEATING: >>
 MOVE MESSAGE’BUF :=
 " The NEXT key is not defined for a non-repeating form.", 2;

 << DELETE’NOT’DEFINED: >>
 MOVE MESSAGE’BUF :=
 " The DELETE key is only defined for browse mode.", 2;

 << NO’BATCH’RECS: >>
 MOVE MESSAGE’BUF :=
 " There are no batch records to browse.", 2;

 << NO’BATCH: >>
 MOVE MESSAGE’BUF :=
 " No batch file was specified, so browse is not allowed.",2;

 << NO’NEXT’REC >>
 MOVE MESSAGE’BUF :=
 " There are no more batch records.", 2;

END;

 MSGLEN := TOS - @MESSAGE’BUF;

 VPUTWINDOW (COMAREA, MESSAGE’BUF, MSGLEN);

 END; << ENTRY’ERROR >>
414 Appendix A

SAMPLE PROGRAMS
SPL
$PAGE" ERROR"

<<**>>
<< >>
<< ERROR >>
<< >>
<<**>>
PROCEDURE ERROR;
 BEGIN

 IF ERRORS THEN << WILL ONLY HANDLE FIRST ERROR! >>
 RETURN;

 ERRORS := TRUE;

 MESSAGE’BUF := " ";
 VERRMSG (COMAREA, MESSAGE’BUF(1), MESSAGE’BUF’LEN, MSGLEN);
 MSGLEN := MSGLEN + 1;

 COM’STATUS := 0;
 VPUTWINDOW (COMAREA MESSAGE’BUF, MSGLEN);

 END; << ERROR >>
Appendix A 415

SAMPLE PROGRAMS
SPL
$PAGE " ENTRY INITIALIZATION PROCEDURE"
<<**>>
<< >>
<< INIT >>
<< >>
<<**>>
PROCEDURE INIT;
 BEGIN

 EQUATE
 VERSIONS’DIFF = 70
 ,DIF’FF = 73
 ,FILENAMELEN = 36
 ,LANGID’LEN = 17
 ;
 EQUATE
 BLANK’LINE = 0
 ,GET’FF’NAME = 1
 ,GET’BF’NAME = 2
 ,DIF’FF’WARN = 3
 ,VERS’DIF’WARN = 4
 ,Y’TO’CONT = 5
 ,PRODUCT’ID = 6
 ,GET’LANGID = 7
 ,NOT’CONFIG = 8
 ,NOT’INSTALL = 9
 ;
 INTEGER
 INDEX
 ,READ’LEN
 ,LANGID
 ,VERROR
 ;
 LOGICAL
 CONTINUE
 ;
 LOGICAL ARRAY
 NLERROR(0:1)
 ;
 LOGICAL ARRAY
 LANGID’STR’L(0:9)
 ;
 BYTE ARRAY
 LANGID’STR(*) = LANGID’STR’L
 ;
 BYTE ARRAY
 FILENAME (0:FILENAMELEN)
 ;
 INTRINSIC
 TERMINATE
 ,QUIT
 ,PRINT
 ,READ
 ;
416 Appendix A

SAMPLE PROGRAMS
SPL
INTRINSIC
 NLGETLANG
 ,NLINFO
 ;

SUBROUTINE HANDLE’PROMPT’ERR (QUIT’NUM);
VALUE QUIT’NUM;
INTEGER QUIT’NUM;
 BEGIN
 MOVE MESSAGE’BUF := "Terminal access failed unexpectedly.", 2;
 MSGLEN := TOS - @MESSAGE’BUF;
 PRINT (MESSAGE’WBUF, -MSGLEN, 0);
 QUIT (QUIT’NUM);
 END; << HANDLE’PROMPT’ERR >>

SUBROUTINE WRITE’MSG;
 BEGIN
 VERRMSG (COMAREA, MESSAGE’BUF, MESSAGE’BUF’LEN, MSGLEN);
 PRINT (MESSAGE’WBUF, -(MSGLEN), %60);
 IF <> THEN << CANT WRITE TO PROMPT FILE! >>
 HANDLE’PROMPT’ERR (%60);
 END; << WRITE’MSG >>

SUBROUTINE PRINT’TO’TERM (MSG’NUM, CCTL);
VALUE MSG’NUM, CCTL;
INTEGER MSG’NUM;
LOGICAL CCTL;
 BEGIN

 CASE MSG’NUM OF
 BEGIN

 << 0, BLANK’LINE >>
 MOVE MESSAGE’BUF:=" ",2;

 << 1, FF’NAME’PROMPT >>
 MOVE MESSAGE’BUF:=" ENTER FORMS FILE NAME AND PRESS RETURN: ",
 2;

 << 2, BF NAME PROMPT >>
 MOVE MESSAGE’BUF:=" ENTER BATCH FILE NAME AND PRESS RETURN: ",
 2;

 << 3, DIFFERENT FF WARNING >>
 MOVE MESSAGE’BUF:=(" WARNING: A different forms file was used",
 " to create this batch."),2;

 << 4, FF MOD WARN >>
 MOVE MESSAGE’BUF:=(" WARNING: Forms File was recompiled since",
 " this batch was created."), 2;

 << 5, Y’TO’CONTINUE >>
 MOVE MESSAGE’BUF := (" Enter ""Y"" to continue: "), 2;

<< 6, PRODUCT’ID >>
MOVE MESSAGE’BUF := ID’MSG, 2;
Appendix A 417

SAMPLE PROGRAMS
SPL
 << 7, GET’LANGID >>
 MOVE MESSAGE’BUF :=(" ENTER LANGUAGE ID NUMBER AND PRESS",
 "RETURN: "),2;

 << 8, NOT’CONFIG >>
 MOVE MESSAGE’BUF := " Specified language is not configured ",2;

 << 9, NOT’INSTALL >>
 MOVE MESSAGE’BUF := " Native language Software not installed",2
 ;

 END; << CASE >>

 MSGLEN := TOS - @MESSAGE’BUF;
 PRINT (MESSAGE’WBUF, -MSGLEN, CCTL);
 IF <> THEN
 HANDLE’PROMPT’ERR (2);

 END; << PRINT’TO’TERM >>
 INTEGER SUBROUTINE READ’FROM’TERM (READBUF, READLEN);
 VALUE READLEN;
 BYTE ARRAY READBUF;
 INTEGER READLEN;
 BEGIN

 << BLANK BUF FIRST >>
 READBUF := " ";
 MOVE READBUF (1) := READBUF (0), (READLEN-1);

 READ’FROM’TERM := READ (READBUF, -READLEN);
 IF <> THEN
 HANDLE’PROMPT’ERR (3);
 END; << READ’FROM’TERM >>
418 Appendix A

SAMPLE PROGRAMS
SPL
$PAGE

 << INITIALIZE COMAREA; IS ALL 0’S TO START >>
 COM’LANGUAGE := SPL’LANG;
 COM’COMAREALEN := COMAREALEN;

 << SET COM’LABEL’OPTION TO 1 TO ENABLE FUNCTION KEY LABEL >>
 << SUPPORT FOR TERMINALS SUPPORTING FUNCTION KEY LABELS >>
 COM’LABEL’OPTION := 1;

 << Set form storage buffer size (2626 terminal only) to 4 >>
 COM’FORM’STOR’SIZE := 4;

 BATCH := TRUE; << INIT >>

 PRINT’TO’TERM (PRODUCT’ID, %60); << ENTRY IDENTIFICATION >>

 WHILE TRUE DO
 BEGIN

 DO << UNTIL COM’STATUS = 0 >>
 BEGIN
 COM’STATUS := 0;
 PRINT’TO’TERM (GET’FF’NAME, %320);
 READ’LEN := READ’FROM’TERM (FILENAME, FILENAMELEN);
 IF READ’LEN = 0 THEN << ALL DONE >>
 TERMINATE;

 VOPENFORMF (COMAREA, FILENAME);
 IF COM’STATUS <> 0 THEN
 WRITE’MSG; << WRITES VERRMSG >>
 END
 UNTIL COM’STATUS = 0; << KEEP GOING TILL OK >>

 << NOW, OPEN BATCH FILE >>
 PRINT’TO’TERM (GET’BF’NAME, %320);
 READ’LEN := READ’FROM’TERM (FILENAME, FILENAMELEN);
 IF READ’LEN = 0 OR FILENAME = " " THEN << NO BATCH FILE! >>
 BATCH := FALSE << ALL OK >>
 ELSE
 BEGIN
 VOPENBATCH (COMAREA, FILENAME);
 IF COM’STATUS <> 0 THEN
 IF COM’STATUS = VERSIONS’DIFF OR
 COM’STATUS = DIF’FF THEN
 BEGIN
 PRINT’TO’TERM ((IF COM’STATUS=DIF’FF THEN DIF’FF’WARN
 ELSE VERS’DIF’WARN), 0);
 PRINT’TO’TERM (Y’TO’CONT, %320);
 READ’LEN := READ’FROM’TERM (MESSAGE,BUF, 1);
 IF READ’LEN > 0 THEN
 IF READ’LEN=1 AND (MESSAGE’BUF = "Y" OR
 MESSAGE’BUF = "y") THEN
 COM’STATUS := 0; << GO AHEAD >>
 END

ELSE << IS REAL ERROR >>
WRITE’MSG;

 END;
Appendix A 419

SAMPLE PROGRAMS
SPL
 IF COM’STATUS = 0 THEN
 BEGIN

 VGETLANG(COMAREA, LANGID);
 IF COM’STATUS <> 0 THEN WRITE’MSG
 ELSE IF LANGID = INTERNATIONAL THEN BEGIN

 << IF INTERNATIONAL FORMS FILE PROMPT FOR LANGID >>

 CONTINUE := TRUE;
 LANGID := NLGETLANG(1, NLERROR);
 IF NLERROR = 0 THEN BEGIN
 VSETLANG(COMAREA LANGID, VERROR);
 COM’STATUS := 0;
 END;

 WHILE CONTINUE DO BEGIN

 PRINT’TO’TERM(BLANK’LINE, %40);
 PRINT’TO’TERM(GET’LANGID, %320);
 READ’LEN := READ’FROM’TERM(LANGID’STR, LANGID’LEN);
 IF READ’LEN = 0 THEN CONTINUE := FALSE
 ELSE BEGIN
 LANGID’STR(READ’LEN) :=" ";
 NLINFO(22, LANGID’STR’L, LANGID, NLERROR);
 IF NLERROR = 0 THEN BEGIN
 VSETLANG(COMAREA LANGID, VERROR);
 IF VERROR = 0 AND COM’STATUS = 0 THEN
 CONTINUE := FALSE;
 IF COM’STATUS <> 0 THEN WRITE’MSG;
 END
 ELSE IF NLERROR = 1
 THEN PRINT’TO’TERM(NOT’INSTALL,%40)
 ELSE PRINT’TO’TERM(NOT’CONFIG,%40);
 END;
 END; << WHILE CONTINUE >>
 END; << IF LANGID = INTERNATIONAL >>

 END; << IF COM’STATUS = 0 >>

 << ALL OK HERE, SO OPEN TERMINAL >>
 IF NOT BATCH OR COM’STATUS = 0 THEN
 BEGIN

 << OPEN TERMINAL IN BLOCKMODE ... >>
 MOVE FILENAME := "A264X ";
 VOPENTERM (COMAREA, FILENAME);
 IF COM’STATUS <> 0 THEN
 BEGIN

WRITE’MSG;
 QUIT (6);

END;
 COM’TERMOPTIONS.(11:2) := 1; << DONT HARD RESET TERM >>
 RETURN; << ALL DONE INITIALIZING >>
 END
 ELSE << IS NORMAL ERROR >>
 BEGIN
 COM’STATUS := 0;
420 Appendix A

SAMPLE PROGRAMS
SPL
 VCLOSEBATCH (COMAREA);
 VCLOSEFORMF (COMAREA);
 END;

 END; << WHILE TRUE >>
END; << INIT >>
Appendix A 421

SAMPLE PROGRAMS
SPL
$PAGE " EXIT"
<<**>>
<< >>
<< EXIT >>
<< >>
<<**>>
PROCEDURE EXIT;
 BEGIN

 BYTE ARRAY LOCAL’MESSAGE’BUF (0:80);
 INTEGER LOCAL’MSGLEN;

 INTRINSIC PRINT;
 SUBROUTINE PRINT’MSG;
 BEGIN
 VERRMSG (COMAREA, LOCAL’MESSAGE’BUF, MESSAGE’BUF’LEN,
 LOCAL’MSGLEN);
 PRINT (LOCAL’MESSAGE’BUF, -LOCAL’MSGLEN, 0);
 COM’STATUS := 0;
 END;

 << FIRST, CLOSE TERMINAL >>
 COM’STATUS := 0;
 VCLOSETERM (COMAREA);
 IF COM’STATUS <> 0 THEN
 PRINT’MSG;

 << NOW, BATCH FILE >>
 IF BATCH THEN
 IF ERRORS THEN
 PRINT (MESSAGE’WBUF, -MSGLEN, 0) << MSG FROM COLLECT >>
 ELSE << OK TO GO AHEAD >>
 BEGIN
 VCLOSEBATCH (COMAREA);
 IF COM’STATUS <> 0 THEN
 PRINT’MSG;
 end
 else
 if errors then
 print (message’wbuf, -msglen, 0); << msg from collect >>

 << NOW, CLOSE FORMS FILE >>
 VCLOSEFORMF (COMAREA);
 IF COM’STATUS <> 0 THEN
 PRINT’MSG;

 END; << EXIT >>
422 Appendix A

SAMPLE PROGRAMS
SPL
$PAGE " BROWSE"
<<**>>
<< >>
<< BROWSE >>
<< >>
<<**>>
PROCEDURE BROWSE;
 BEGIN

 EQUATE
 FORWARDS = 1
 ,BACKWARDS = -1
 ;
 INTEGER
 PAGE’EJECT := %61
 ,UNDERLINE := 1
 ,DIRECTION
 ;
 DOUBLE
 LOCAL’COM’REC
 ;

 DO’BROWSE’LABELS;

 LOCAL’COM’REC := COM’RECNUM;
 COM’RECNUM := COM’RECNUM - 1D;
 DIRECTION := BACKWARDS;

 WHILE TRUE DO << UNTIL EXIT OR COLLECTKEY >>
 BEGIN

 IF COM’NUMRECS = 0D THEN
 RETURN;

 IF COM’RECNUM = LAST’REC’NUM THEN
 BEGIN
 ENTRY’ERROR (NO’NEXT’RECS);
 COM’RECNUM := COM’RECNUM - 1D;
 DIRECTION := BACKWARDS;
 END;

 IF COM’RECNUM < 0D THEN
 BEGIN
 ENTRY’ERROR (NO’PREV’RECS);
 COM’RECNUM := 0D;
 DIRECTION := FORWARDS;
 END;

 VREADBATCH (COMAREA);
 CHECK’ERROR;

 IF COM’DELETEFLAG = FALSE THEN << NOT DELETED >>
 BEGIN

IF COM’RECNUM <> LOCAL’COM’REC OR COM’LASTKEY = REFRESHKEY THEN
 BEGIN
 IF DIRECTION = BACKWARDS OR COM’LASTKEY = REFRESHKEY THEN
 COM’REPEATOPT := COM’NFOPT := NORM
 ELSE << MUST BE FORWARDS >>
Appendix A 423

SAMPLE PROGRAMS
SPL
 IF COM’CFNAME <> COM’NFNAME, (15) THEN
 COM’REPEATOPT := NORM; << CLEAR SINCE NOT REPT >>

 IF COM’LASTKEY = REFRESHKEY THEN
 MOVE COM’NFNAME := "$REFRESH ";

 VGETNEXTFORM (COMAREA);
 CHECK’ERROR;

 LOCAL’COM’REC := COM’RECNUM;
 END;

 IF NOT ERRORS THEN
 FORMAT’STATUS’LINE;

 DO << WHILE ERRORS >>
 BEGIN

 ERRORS := FALSE;

 VSHOWFORM (COMAREA);
 CHECK’ERROR

 COM’SHOWCONTROL := 0; << RESET JUST IN CASE >>

 VREADFIELDS (COMAREA);
 CHECK’ERROR;

 if com’lastkey <> 0 then
 if com’term’type = 15 or << HP3075 >>
 com’term’type = 16 then << HP3076 >>
 if com’keyboard’type = 1 then << Numeric keyboard >>
 com’lastkey := com’lastkey - 16;

 IF NOT ERRORS THEN
 CASE COM’LASTKEY OF
 BEGIN

 << ENTERKEY: >>
 BEGIN
 DIRECTION := FORWARDS;

 VFIELDEDITS (COMAREA);
 CHECK’EDIT’ERROR;

 IF NOT ERRORS THEN
 BEGIN

$$VFINISHFORM (COMAREA);
 CHECK’EDIT’ERROR;

 IF COM’REPEATOPT=NOREPEAT AND COM’NFOPT <> NORM
 OR COM’REPEATOPT=REPEATAPP THEN
 BEGIN
 COM’SHOWCONTROL.(10:1) := 1;
 VSHOWFORM (COMAREA);
 COM’SHOWCONTROL. (10:1) := 0;
 CHECK’ERROR;
 END;
424 Appendix A

SAMPLE PROGRAMS
SPL
IF NOT ERRORS THEN
 BEGIN
 VWRITEBATCH (COMAREA);
 CHECK’ERROR;

 IF NOT ERRORS THEN
 COM’RECNUM := COM’RECNUM+1D;
 END;

 END;

 END;

 << HEADKEY: >>
 BEGIN
 DIRECTION := FORWARDS;
 COM’RECNUM := 0D;
 COM’REPEATOPT := COM’NFOPT := NORM;
 END;

 << DELETEKEY: >>
 BEGIN
 DIRECTION := FORWARDS;

 COM’DELETEFLAG := TRUE;
 VWRITEBATCH (COMAREA);
 CHECK’ERROR;
 COM’DELETEFLAG := FALSE;
 IF NOT ERRORS THEN
 COM’RECNUM := COM’RECNUM + 1D;

 COM’REPEATOPT := COM’NFOPT := NORM;
 END;

 << PRINTKEY: >>
 BEGIN
 VPRINTFORM (COMAREA, UNDERLIINE, PAGE’EJECT);
 CHECK’ERROR;
 END;

<< REFRESHKEY: >>
 ;

 << PREVKEY: >>
 BEGIN
 DIRECTION := BACKWARDS;
 COM’RECNUM := COM’RECNUM - 1D;
 END;

 << NEXTKEY: >>
 BEGIN
 DIRECTION := FORWARDS;
 COM’RECNUM := COM’RECNUM + 1D;

 IF COM’REPEATOPT=NOREPEAT AND COM’NFOPT <> NORM
 OR COM’REPEATOPT=REPEATAPP THEN
 BEGIN
 COM’SHOWCONTROL.(10:1) := 1;
 VSHOWFORM (COMAREA);
Appendix A 425

SAMPLE PROGRAMS
SPL
 COM’SHOWCONTROL.(10:1) := 0;
 CHECK’ERROR;
 END;
 END;

 << COLLECTKEY: >>
 RETURN;

 << EXIT: >>
 RETURN;

 END; << CASE >>

 END
 UNTIL NOT ERRORS AND COM’LASTKEY <> PRINTKEY;

 END << IN NOT COM’DELETEFLAG >>
 ELSE << REC WAS DELETED >>
 COM’RECNUM := IF DIRECTION = BACKWARDS THEN COM’RECNUM - 1D
 ELSE COM’RECNUM + 1D;

 END; << WHILE TRUE DO >>

 END; << BROWSE >>
426 Appendix A

SAMPLE PROGRAMS
SPL
$PAGE " COLLECT"

<<**>>
<< >>
<< COLLECT >>
<< >>
<<**>>
PROCEDURE COLLECT;
 BEGIN

 LOGICAL
 FIRST’TIME := TRUE
 ;
 BYTE ARRAY
 SAVED’FORM’NAME (0:NAMELEN-1)
 ;

 DO’COLLECT’LABELS;

 COM’MODE := COLLECT’MODE;
 COM’DELETEFLAG := FALSE;

 DO << UNTIL COM’NFNAME <> EXIT AND COM’DO <> NORM >>
 BEGIN

 IF COM’LASTKEY=ENTERKEY OR COM’LASTKEY=NEXTKEY THEN
 IF COM’REPEATOPT=NOREPEAT AND COM’NFOPT <> NORM OR
 COM’REPEATOPT=REPEATAPP THEN
 BEGIN

 COM’SHOWCONTROL.(10:1) := 1;
 << TO SUPPRESS KEYBOARD ENABLE >>
 VSHOWFORM (COMAREA);
 COM’SHOWCONTROL.(10:1) := 0;
 CHECK’ERROR;
 END;

 VGETNEXTFORM (COMAREA);
 IF FIRST’TIME AND COM’STATUS <> 0 THEN << IS FIRST TIME >>
 BEGIN
 VERRMSG (COMAREA, MESSAGE’BUF, MESSAGE’BUF’LEN, MSGLEN);
 ERRORS := TRUE; << DONT WANT TO CLOSE BATCH IF ERROR! >>
 RETURN;
 END;

 CHECK’ERROR;
 FIRST’TIME := FALSE;

 VINITFORM (COMAREA);
 CHECK’EDIT’ERROR;

 IF NOT ERRORS THEN
 FORMAT’STATUS’LINE;

DO << WHILE ERRORS >>

 BEGIN
Appendix A 427

SAMPLE PROGRAMS
SPL
 ERRORS := FALSE;

 VSHOWFORM (COMAREA);
 CHECK’ERROR;

 COM’SHOWCONTROL := 0; << CLEAR >>

 IF COM’DBUFLEN <= 0 AND << DONT READ!!! >>
 COM’REPEATOPT=NOREPEAT AND COM’NFOPT <> NORM THEN
 BEGIN
 IF NOT ERRORS AND BATCH THEN
 BEGIN
 VWRITEBATCH (COMAREA).
 CHECK’ERROR;

 IF NOT ERRORS THEN
 BEGIN
 COM’RECNUM := COM’RECNUM + 1D;
 IF (COM’RECNUM MOD DOUBLE(PARMVAL) = 0D) THEN
 VPOSTBATCH (COMAREA);
 END;
 END;
 END
 ELSE << IS NORMAL FORM >>
 BEGIN
 VREADFIELDS (COMAREA);
 CHECK’ERROR;

 if com’lastkey <> 0 then
 if com’term’type = 15 or << HP3075 >>
 com’term’type = 16 then << Hp3076 >>
 if com’keyboard’type = 1 then << Numeric keyboard >>
 com’lastkey := com’lastkey - 16;

 IF NOT ERRORS THEN
 CASE COM’LASTKEY OF
 BEGIN

 << ENTERKEY: >>
 BEGIN
 VFIELDEDITS (COMAREA);
 CHECK’EDIT’ERROR;

 IF NOT ERRORS THEN
 BEGIN
 VFINISHFORM (COMAREA);
 CHECK’EDIT’ERROR;

 IF NOT ERRORS AND BATCH THEN
 BEGIN

VWRITEBATCH (COMAREA);
CHECK’ERROR;

IF NOT ERRORS THEN
BEGIN
COM’RECNUM := COM’RECNUM + 1D;
IF (COM’RECNUM MOD DOUBLE(PARMVAL) = 0D) THEN

VPOSTBATCH (COMAREA);
428 Appendix A

SAMPLE PROGRAMS
SPL
END;

END;

END;

END;

<< HEADKEY: >>
BEGIN
COM’REPEATOPT := NORM;
COM’NFOPT := NORM;
MOVE COM’NFNAME := "$HEAD ";
END;

<< DELETEKEY: >>
ENTRY’ERROR (DELETE’NOT’DEFINED);

<< PRINTKEY: >>
BEGIN
VPRINTFORM (COMAREA, UNDERLINE, PAGE’EJECT);
CHECK’ERROR;
END;

<< REFRESHKEY: >>
MOVE COM’NFNAME := "$REFRESH ";

<< PREVKEY: >>
ENTRY’ERROR (PREV’NOT’ALLOWED);

<< NEXTKEY: >>
BEGIN
IF COM’REPEATOPT = NORM THEN

ENTRY’ERROR (NOT’REPEATING)
ELSE

COM’REPEATOPT := NORM;
END;

<< BROWSEKEY: >>
BEGIN
IF NOT BATCH THEN

ENTRY’ERROR (NO’BATCH)
ELSE

IF COM’NUMRECS = 0D THEN
ENTRY’ERROR (NO’BATCH’RECS)

ELSE
BEGIN

 LAST’REC’NUM := COM’RECNUM;
 MOVE SAVED’FORM’NAME := COM’CFNAME,(NAMELEN);
 COM’MODE := BROWSE,MODE;
 COM’REPEATOPT := COM’NFOPT := NORM;

 COM’SHOWCONTROL.(14:1):=1;
 BROWSE;
 COM’SHOWCONTROL.(14:1):=0;
 COM’MODE := COLLECT’MODE;
 MOVE COM’NFNAME := SAVED’FORM’NAME,(NAMELEN);
Appendix A 429

SAMPLE PROGRAMS
SPL
 COM’RECNUM := LAST’REC’NUM;
 COM’REPEATOPT := COM’NFOPT := NORM;
 COM’DELETEFLAG := FALSE; << IF NO RECS >>

 IF COM’LASTKEY = EXITKEY THEN
 BEGIN
 MOVE COM’CFNAME :=
 SAVED’FORM’NAME,(NAMELEN);
 RETURN;
 END;

 DO’COLLECT’LABELS;

 END;

 END; << BROWSEKEY >>

 << EXIT: >>
 RETURN;

 END; << CASE COM’LASTKEY >>

 END; << IS COM’DBUFLEN > O? >>
 END
 UNTIL NOT ERRORS AND COM’LASTKEY <> PRINTKEY;

 END
 UNTIL COM’NFNAME = "$END " AND
 COM’REPEATOPT = NORM;

 END; << COLLECT >>
430 Appendix A

SAMPLE PROGRAMS
SPL
$PAGE " ENTRY OUTER BLOCK"
<<**>>
<< >>
<< OUTER BLOCK >>
<< >>
<<**>>

INTRINSIC PRINT; << FOR ID MESSAGE >>

<< FOR INTERNAL TESTING ONLY >>

INIT;

COLLECT;

EXIT;

END.
Appendix A 431

SAMPLE PROGRAMS
COBOL
COBOL
$CONTROL LIST, MAP, VERBS

 IDENTIFICATION DIVISION.

 PROGRAM-ID. COBOL-EXAMPLE.

***** This application collects employee payroll deduction
***** transactions and places the edited transactions into
***** a file.

***** For this application: Enter key = edit and file
***** transaction;

***** f8 = exit application;

***** all other f keys = redo transaction.

***** Each transaction entered by the operator is subjected to the
***** data edits embedded within the input form.

***** The application continues to collect transactions until either
***** the operator signals to exit or a system error is detected.

 ENVIRONMENT DIVISION.

 INPUT-OUTPUT SECTION.

 FILE-CONTROL.

 SELECT TXN-ENTRY ASSIGN TO "PAYTXN".

 DATA DIVISION.

 FILE SECTION.

 FD TXN-ENTRY
 RECORD CONTAINS 200 CHARACTERS
 DATA RECORDS ARE TXN-REC.

 01 TXN-REC.
 05 FILLER PIC X(200).
 WORKING-STORAGE SECTION.

 01 COMAREA.
 05 CSTATUS PIC S9(4) COMP VALUE 0.
 05 LANGUAGE PIC S9(4) COMP VALUE 0.
 05 COMAREALEN PIC S9(4) COMP VALUE 0.
 05 USERBUFLEN PIC S9(4) COMP VALUE 0.
 05 CMODE PIC S9(4) COMP VALUE 0.
 05 LASTKEY PIC S9(4) COMP VALUE 0.

05 NUMERRS PIC S9(4) COMP VALUE 0.
432 Appendix A

SAMPLE PROGRAMS
COBOL
 05 WINDOWENH PIC S9(4) COMP VALUE 0.
 05 MULTIUSAGE PIC S9(4) COMP VALUE 0.
 05 LABELOPTIONS PIC S9(4) COMP VALUE 0.
 05 CFNAME PIC X(16) VALUE SPACES.
 05 NFNAME PIC X(16) VALUE SPACES.
 05 REPEATAPP PIC S9(4) COMP VALUE 0.
 05 FREEZEAPP PIC S9(4) COMP VALUE 0.
 05 CFNUMLINES PIC S9(4) COMP VALUE 0.
 05 DBUFLEN PIC S9(4) COMP VALUE 0.
 05 FILLER PIC S9(4) COMP VALUE 0.
 05 LOOKAHEAD PIC S9(4) COMP VALUE 0.
 05 DELETEFLAG PIC S9(4) COMP VALUE 0.
 05 SHOWCONTROL PIC S9(4) COMP VALUE 0.
 05 FILLER PIC S9(4) COMP VALUE 0.
 05 PRINTFILENUM PIC S9(4) COMP VALUE 0.
 05 FILERRNUM PIC S9(4) COMP VALUE 0.
 05 ERRFILENUM PIC S9(4) COMP VALUE 0.
 05 FORMSTORESIZE PIC S9(4) COMP VALUE 0.
 05 FILLER PIC S9(4) COMP VALUE 0.
 05 FILLER PIC S9(4) COMP VALUE 0.
 05 FILLER PIC S9(4) COMP VALUE 0.
 05 NUMRECS PIC S9(8) COMP VALUE 0.
 05 RECNUM PIC S9(8) COMP VALUE 0.
 05 FILLER PIC S9(4) COMP VALUE 0.
 05 FILLER PIC S9(4) COMP VALUE 0.
 05 TERMFILEN PIC S9(4) COMP VALUE 0.
 05 FILLER PIC S9(4) COMP VALUE 0.
 05 FILLER PIC S9(4) COMP VALUE 0.
 05 FILLER PIC S9(4) COMP VALUE 0.
 05 FILLER PIC S9(4) COMP VALUE 0.
 05 FILLER PIC S9(4) COMP VALUE 0.
 05 RETRIES PIC S9(4) COMP VALUE 0.
 05 TERMOPTIONS PIC S9(4) COMP VALUE 0.
 05 ENVIRON PIC S9(4) COMP VALUE 0.
 05 USERTIME PIC S9(4) COMP VALUE 0.
 05 IDENTIFIER PIC S9(4) COMP VALUE 0.
 05 LABELINFO PIC S9(4) COMP VALUE 0.
01 FIELDINFO.

 05 NUM-ENTRIES PIC S9(4) COMP.
 05 ENTRY-LEN PIC S9(4) COMP.
 05 FORM-NAME PIC X(16).
 05 FIELD-ENTRY OCCURS 3 TIMES.
 10 FIELD-NAME PIC X(16).
 10 SCREEN-ORDER PIC S9(4) COMP.

01 FIELDSPECS.
 05 SPEC-ENTRY OCCURS 3 TIMES.
 10 FIELD-ID PIC S9(4) COMP.
 10 CHANGE-TYPE PIC S9(4) COMP.
 10 CHANGE-SPEC PIC X(4).

01 DATABUF PIC X(200).

 01 DATABUFLEN PIC S9(4) COMP.

 01 DONE-WITH-TRANSACTIONS PIC X.
Appendix A 433

SAMPLE PROGRAMS
COBOL
 01 ERROR-LOCATION PIC X(70).

 01 FILENAME PIC X(86).

 01 FOUND-DATA-ERRORS PIC X.

 01 INFOBUFLEN PIC S9(4) COMP.

 01 MSGBUF PIC X(150).

 01 MSGBUFLEN PIC S9(4) COMP.

 01 ERRMSGLEN PIC S9(4) COMP.

 01 NBR-TXN-COLLECTED PIC 9(4).

 01 NUMSPECS PIC S9(4) COMP.

 01 STOP-NOW PIC X.
 PROCEDURE DIVISION.

 A-000-START-PROGRAM.

 MOVE "N" TO STOP-NOW
 DONE-WITH-TRANSACTIONS.

 MOVE ZERO TO NBR-TXN-COLLECTED.

 PERFORM A-100-SETUP-FOR-WORK.

 PERFORM A-500-COLLECT-TRANSACTIONS
 UNTIL STOP-NOW = "Y"
 OR DONE-WITH-TRANSACTIONS = "Y".

 PERFORM A-900-CLEANUP-AFTER-WORK.

 DISPLAY " ".
 DISPLAY "Deduction transactions collected this session = "
 NBR-TXN-COLLECTED.

 IF STOP-NOW = "Y"
 PERFORM Z-900-DISPLAY-SYSTEM-ERROR.

 STOP RUN.
 A-100-SETUP-FOR-WORK.

 ***** Finish Comarea initialization.

***** (Note Comarea value clauses.)

***** Set Language for COBOL.

 MOVE ZERO TO LANGUAGE OF COMAREA.
434 Appendix A

SAMPLE PROGRAMS
COBOL

***** Set Comarealen to 60 words (120 bytes).

 MOVE 60 TO COMAREALEN OF COMAREA.

***** Activate function key labeling.

 MOVE 1 TO LABELOPTIONS OF COMAREA.

***** Disable form background loading on Vreadfields.

 MOVE ZERO TO LOOKAHEAD OF COMAREA.

***** Set size of local form storage directory.

 MOVE 4 TO FORMSTORESIZE OF COMAREA.

***** Open the Transaction File

 OPEN OUTPUT TXN-ENTRY.

***** Open the Forms File.

 MOVE "PAYROLL.WORK.ADMIN" TO FILENAME.

 CALL "VOPENFORMF" USING COMAREA
 FILENAME.

 IF CSTATUS OF COMAREA NOT = 0
 MOVE "Y" TO STOP-NOW
 MOVE
 "**** Paragraph: A-100-SETUP-FOR-WORK - Forms File Open"
 TO ERROR-LOCATION
 PERFORM Z-100-GET-ERROR-MESSAGE.

IF STOP-NOW NOT = "Y"

***** Open the Terminal.

 MOVE "HPTERM" TO FILENAME

 CALL "VOPENTERM" USING COMAREA
 FILENAME

 IF CSTATUS OF COMAREA NOT = 0
Appendix A 435

SAMPLE PROGRAMS
COBOL
 MOVE "Y" TO STOP-NOW
 MOVE
 "**** Paragraph: A-100-SETUP-FOR-WORK - Terminal Setu
 "p"
 TO ERROR-LOCATION
 PERFORM Z-100-GET-ERROR-MESSAGE.
 IF STOP-NOW NOT = "Y"

***** Translate field names to screen orders.

***** Three of the fields in the form used by this
***** application need to be toggled from "display
***** only" to "input allowed". In order to do this,
***** we first translate field names to screen orders.

 MOVE 3 TO NUM-ENTRIES OF FIELDINFO

 MOVE 9 TO ENTRY-LEN OF FIELDINFO

 MOVE "DEDUCTION" TO FORM-NAME OF FIELDINFO

***** The value 8224, which is moved to Screen Order in
***** the following statements is equal to two ASCII blanks.

 MOVE "BADGE_NUMBER" TO FIELD-NAME
 OF FIELD-ENTRY (1)
 MOVE 8224 TO SCREEN-ORDER
 OF FIELD-ENTRY (1)

 MOVE "LAST-NAME" TO FIELD-NAME
 OF FIELD-ENTRY (2)
 MOVE 8224 TO SCREEN-ORDER
 OF FIELD-ENTRY (2)

 MOVE "SUR NAME" TO FIELD-NAME
 OF FIELD-ENTRY (3)
 MOVE 8224 TO SCREEN-ORDER
 OF FIELD-ENTRY (3)

***** Now determine the length of the entire Fieldinfo
***** Buffer.

 MULTIPLY NUM-ENTRIES OF FIELDINFO
 BY ENTRY-LEN OF FIELDINFO
 GIVING INFOBUFLEN

 ADD 10 TO INFOBUFLEN

 CALL "VGETFIELDINFO" USING COMAREA
 FIELDINFO
 INFOBUFLEN

 IF CSTATUS OF COMAREA NOT = 0
 MOVE "Y" TO STOP-NOW
436 Appendix A

SAMPLE PROGRAMS
COBOL
 MOVE
 "**** Paragraph: A-100-SETUP-FOR-WORK - Field Informa
 "tion Retrieval"
 TO ERROR-LOCATION
 PERFORM Z-100-GET-ERROR-MESSAGE.
 A-500-COLLECT-TRANSACTIONS.

***** Setup for and get transaction data entry form.

 MOVE ZERO TO REPEATAPP OF COMAREA
 FREEZEAPP OF COMAREA.

 MOVE "DEDUCTION" TO NFNAME OF COMAREA.

 CALL "VGETNEXTFORM" USING COMAREA.

 IF CSTATUS OF COMAREA NOT = 0
 MOVE "Y" TO STOP-NOW
 MOVE
 "***** Paragraph: A-500-COLLECTION-TRANSACTIONS - Form R
 "etrieval"
 TO ERROR-LOCATION
 PERFORM Z-100-GET-ERROR-MESSAGE.

 IF STOP-NOW NOT = "Y"

***** Toggle three fields in form to "input allowed".

***** Screen order is indicated to field change
***** intrinsic as negative number.

***** Change field type is indicated by a 5.

***** "Input allowed" is indicated by an "O"
***** (for input/output).

 MULTIPLY SCREEN-ORDER OF FIELD-ENTRY (1)

 BY -1
 GIVING FIELD-ID OF SPEC-ENTRY (1)
 MOVE 5 TO CHANGE-TYPE OF SPEC-ENTRY (1)
 MOVE "O" TO CHANGE-SPEC OF SPEC-ENTRY (1)

 MULTIPLY SCREEN-ORDER OF FIELD-ENTRY (2)
 BY -1
 GIVING FIELD-ID OF SPEC-ENTRY (2)
 MOVE 5 TO CHANGE-TYPE OF SPEC-ENTRY (2)
 MOVE "O" TO CHANGE-SPEC OF SPEC-ENTRY (2)

 MULTIPLY SCREEN-ORDER OF FIELD-ENTRY (3)
 BY -1
 GIVING FIELD-ID OF SPEC-ENTRY (3)
 MOVE 5 TO CHANGE-TYPE OF SPEC-ENTRY (3)
 MOVE "O" TO CHANGE-SPEC OF SPEC-ENTRY (3)
Appendix A 437

SAMPLE PROGRAMS
COBOL
 MOVE 3 TO NUMSPECS
 CALL "VCHANGEFIELD" USTNG COMAREA
 FIELDSPES
 NUMSPECS

 IF CSTATUS OF COMAREA NOT = 0
 MOVE "Y" TO STOP-NOW
 MOVE
 "**** Paragraph: A-500-COLLECT-TRANSACTIONS - Field
 "Type Updates"
 TO ERROR-LOCATION
 PERFORM Z-100-GET-ERROR-MESSAGE.

 IF STOP-NOW NOT = "Y"

***** Load window message.

 MOVE 79 TO MSGBUFLEN

 MOVE
 "Fill in Deduction Transaction according to worksheet."
 TO MSGBUF

 CALL "VPUTWINDOW" USING COMAREA
 MSGBUF
 MSGUFLEN

 IF CSTATUS OF COMAREA NOT = 0
 MOVE "Y" TO STOP-NOW
 MOVE
 "**** Paragraph: A-500-COLLECT-TRANSACTIONS - Window
<…sc><…x>

<ex><esc>
 "Load"
 TO ERROR-LOCATION
 PERFORM Z-100-GET-ERROR-MESSAGE.

 IF STOP-NOW NOT = "Y"

***** Initialize form.

 CALL "VINITFORM" USING COMAREA

 IF CSTATUS OF COMAREA NOT = 0
 MOVE "Y" TO STOP-NOW
 MOVE
 "**** Paragraph: A-500-COLLECT-TRANSACTIONS - Form I
 "nit "
 TO ERROR-LOCATION
 PERFORM Z-100-GET-ERROR-MESSAGE.
 IF STOP-NOW NOT = "Y"

438 Appendix A

SAMPLE PROGRAMS
COBOL
***** Show form.

 CALL "VSHOWFORM" USING COMAREA

 IF CSTATUS OF COMAREA NOT = 0
 MOVE "Y" TO STOP-NOW
 MOVE
 "**** Paragraph: A-500-COLLECT-TRANSACTIONS - Form D
 "isplay"
 TO ERROR-LOCATION
 PERFORM Z-100-GET-ERROR-MESSAGE.

 IF STOP-NOW NOT = "Y"

***** Setup and loop on transaction until it can be filed.

 MOVE "Y" TO FOUND-DATA-ERRORS

 PERFORM B-100-READ-EDIT-AND-FILE
 UNTIL FOUND-DATA-ERRORS = "N"
 OR STOP-NOW = "Y"
 OR DONE-WITH-TRANSACTIONS = "Y".
 B-100-READ-EDIT-AND-FILE.

***** Read form.

 CALL "VREADFIELDS" USING COMAREA.
IF CSTATUS OF COMAREA NOT = 0

 MOVE "Y" TO STOP-NOW
 MOVE
 "**** Paragraph: B-100-READ-EDIT-AND-FILE - Terminal Rea
 "d"
 TO ERROR-LOCATION
 PERFORM Z-100-GET-ERROR-MESSAGE.

 IF STOP-NOW NOT = "Y"

***** Determine if operator wants to stop transaction collection.

 IF LASTKEY OF COMAREA = 1
 MOVE "Y" TO DONE-WITH-TRANSACTIONS.

 IF STOP-NOW NOT = "Y"
 AND DONE-WITH-TRANSACTIONS NOT = "Y"

***** Edit data read from terminal

 CALL "VFIELDEDITS" USING COMAREA
Appendix A 439

SAMPLE PROGRAMS
COBOL
 IF CSTATUS OF COMAREA NOT = 0
 MOVE "Y" TO STOP-NOW
 MOVE
 "**** Paragraph: B-100-READ-EDIT-AND-FILE - Data Edit
 " "
 TO ERROR-LOCATION
 PERFORM Z-100-GET-ERROR-MESSAGE

 ELSE

***** Determine if edit errors detected.

 IF NUMERRS OF COMAREA < 1
 MOVE "N" TO FOUND-DATA-ERRORS.
 IF STOP-NOW NOT = "Y"
 AND DONE-WITH-TRANSACTIONS NOT = "Y"
 AND FOUND-DATA-ERRORS NOT = "Y"

***** Finish form data.

 CALL "VFINISHFORM" USING COMAREA

 IF CSTATUS OF COMAREA NOT = 0
 MOVE "Y" TO STOP-NOW

 MOVE
 "**** Paragraph: B-100-READ-EDIT-AND-FILE - Data Fini
 "shing"
 TO ERROR-LOCATION
 PERFORM Z-100-GET-ERROR-MESSAGE

 ELSE

***** Determine if data finishing errors detected.

 IF NUMERRS OF COMAREA > 0
 MOVE "Y" TO FOUND-DATA-ERRORS.
 IF STOP-NOW NOT = "Y"
 AND DONE-WITH-TRANSACTIONS NOT = "Y"

***** Do we have a transaction that can be filed?

 IF FOUND-DATA-ERRORS NOT = "Y"

 IF LASTKEY OF COMAREA = 0

***** Get transaction from form and file it.
440 Appendix A

SAMPLE PROGRAMS
COBOL

 MOVE SPACES TO DATABUF

 MOVE 200 TO DATABUFLEN

 CALL "VGETBUFFER" USING COMAREA
 DATABUF
 DATABUFLEN

 IF CSTATUS OF COMAREA NOT = 0

 MOVE "Y" TO STOP-NOW
 MOVE
 "**** Paragraph: B-100-READ-EDIT-AND-FILE - Dat
 "a Get"
 TO ERROR-LOCATION
 PERFORM Z-100-GET-ERROR-MESSAGE

 ELSE

 WRITE TXN-REC FROM DATABUF

 ADD 1 TO NBR-TXN-COLLECTED.
IF STOP-NOW NOT = "Y"
 AND DONE-WITH-TRANSACTIONS NOT = "Y"

***** Do we need to prompt the operator to correct errors?

 IF FOUND-DATA-ERRORS = "Y"

 IF LASTKEY OF COMAREA = 0

 PERFORM B-200-PROMPT-OPERATOR.

 IF STOP-NOW NOT = "Y"
 AND DONE-WITH-TRANSACTIONS NOT = "Y"

***** Do we need to refresh the display?

 IF FOUND-DATA-ERRORS = "Y"

 IF LASTKEY OF COMAREA NOT = 0

***** The operator pressed some key other than Enter
***** or Exit so clear data error flag to break loop.

 MOVE "N" TO FOUND-DATA-ERRORS.
 B-200-PROMPT-OPERATOR.

Appendix A 441

SAMPLE PROGRAMS
COBOL
***** Get message text associated with first field flagged
***** with a data error.

 PERFORM Z-100-GET-ERROR-MESSAGE.

 CALL "VPUTWINDOW" USING COMAREA
 MSGBUF
 ERRMSGLEN.

 IF CSTATUS OF COMAREA NOT = 0
 MOVE "Y" TO STOP-NOW
 MOVE
 "**** Paragraph: B-200-PROMPT-OPERATOR - Window Load"
 TO ERROR-LOCATION
 PERFORM Z-100-GET-ERROR-MESSAGE.

 IF STOP-NOW NOT = "Y"

***** Display highlighted form and updated window message.

 CALL "VSHOWFORM" USING COMAREA.
IF CSTATUS OF COMAREA NOT = 0

 MOVE "Y" TO STOP-NOW
 MOVE
 "**** Paragraph: B-200-PROMPT-OPERATOR - Display Upd
 "ates"
 TO ERROR-LOCATION
 PERFORM Z-100-GET-ERROR-MESSAGE.

 A-900-CLEANUP-AFTER-WORK.

***** Note that this paragraph unconditionally attempts to
***** close the Forms File and Terminal.

 CLOSE TXN-ENTRY.

 MOVE 0 to CSTATUS OF COMAREA.

 CALL "VCLOSEFORMF" USING COMAREA.

 MOVE 0 to CSTATUS OF COMAREA.

 CALL "VCLOSETERM" USING COMAREA.

 Z-100-GET-ERROR-MESSAGE.

 MOVE SPACES TO MSGBUF.
 MOVE 150 TO MSGBUFLEN.

 CALL "VERRMSG" USING COMAREA
 MSGBUF
 MSGBUFLEN
442 Appendix A

SAMPLE PROGRAMS
COBOL
 ERRMSGLEN

 Z-900-DISPLAY-SYSTEM-ERROR.

 DISPLAY "**** Transaction entry facility detected system erro
 "r at:".
 DISPLAY ERROR-LOCATION.
 DISPLAY "**** The error message returned is:".
 DISPLAY "**** "
 MSGBUF.
Appendix A 443

SAMPLE PROGRAMS
FORTRAN 77
FORTRAN 77
$CONTROL list on, tables on
!
! This application collects employee payroll deduction
! transactions and places the edited transactions into
! a file.
!
! For this application: Enter key = edit and file
! transaction;
!

! f8 = exit application;
!
! all other f keys = redo transaction.
!
! Each transaction entered by the operator is subjected to the
! data edits embedded within the input form.
!
! The application continues to collect transactions until either
! the operator signals to exit or a system error is detected.
!

$TITLE ’ Main Program’
!***!
! !
! Main Program !
! !
!***!
!
 PROGRAM FTNEXMP
!
 IMPLICIT NONE
!
 COMMON /COMO1/ COMAREA
 COMMON /COMll/ STOP_NOW
 COMMON /COM12/ DONE WITH TXNS
 COMMON /COM13/ NBR_TXN_COLLECTED
 COMMON /COM21/ FIEEDINFO
 COMMON /COM22/ INFOBUFLEN
 COMMON /COM81/ MSGBUF
 COMMON /COM82/ MSGBUFLEN
 COMMON /COM83/ ERRMSGLEN
 COMMON /COM91/ ERROR_LOCATION
!
 INTEGER*2 COMAREA(60)
 INTEGER*2 STOP_NOW
 INTEGER*2 DONE_WITH_TXNS
 INTEGER*2 NBR_TXN_COLLECTED
 INTEGER*2 FIELDINFO(37)
 INTEGER*2 INFOBUFLEN
 CHARACTER*150 MSGBUF
444 Appendix A

SAMPLE PROGRAMS
FORTRAN 77
 INTEGER*2 MSGBUFLEN
 INTEGER*2 ERRMSGLEN
 CHARACTER*70 ERROR_LOCATION
!
 STOP_ NOW = 0
 DONE_ WITH_TXNS = 0
!
 NBR_TXN_COLLECTED = 0
!
 CALL SETUP_FOR_WORK
!
 DO WHILE (STOP NOW.EQ.0
 + .AND.DONE_WITH_TXNS.EQ.0)
 CALL COLLECT_TXNS
 END DO
!
 CALL CLEANUP_AFTER _ WORK
!
 PRINT *,
 + "Deduction transactions collected this session =",
 + NBR_TXN_COLLECTED
!
 IF (STOP NOW.EQ.1) THEN
 CALL DISPLAY_SYSTEM_ERROR
 END IF
!
 STOP
 END
Appendix A 445

SAMPLE PROGRAMS
FORTRAN 77
$TITLE ’ Setup For Work’

!***!
! !
! Setup For Work !
! !
!***!
!
 SUBROUTINE SETUP-FOR -WORK
!
 IMPLICIT NONE
!
 COMMON /COMO1/ COMAREA
 COMMON /COMll/ STOP_NOW
 COMMON /COM21/ FIELDINFO
 COMMON /COM22/ INFOBUFLEN
 COMMON /COM81/ MSGBUF
 COMMON /COM82/ MSGBUFLEN
 COMMON /COM83/ ERRMSGLEN
 COMMON /COM91/ ERROR_LOCATION
!
 SYSTEM INTRINSIC VOPENFORMF,
 + VOPENTERM,
 + VGETFIELDINFO
!
 INTEGER*2 COMAREA(60)
 INTEGER*2 CSTATUS
 INTEGER*2 LANGUAGE
 INTEGER*2 COMAREALEN
 INTEGER*2 LABELOPTIONS
 INTEGER*2 LOOKAHEAD
 INTEGER*2 FORMSTORESIZE
 EQUIVALENCE (COMAREA(1), CSTATUS),
 + (COMAREA(2), LANGUAGE),
 + (COMAREA(3), COMAREALEN),
 + (COMAREA(10), LABELOPTIONS),
 + (COMAREA(32), LOOKAHEAD),
 + (COMAREA(39), FORMSTORESIZE)
 INTEGER*2 STOP_NOW
 INTEGER*2 FIELDINFO(37)
 INTEGER*2 NUM_ENTRIES
 INTEGER*2 ENTRY_LEN
 CHARACTER*16 FORM_NAME
 EQUIVALENCE (FIELDINFO(1), NUM_ENTRIES),
 + (FIELDINFO(2), ENTRY_LEN),
 + (FIELDINFO(3), FORM_NAME)
 CHARACTER*18 FIELD_NAME (1,3)
 EQUIVALENCE (FIELDYNFO(11), FIELD_NAME)
 INTEGER*2 INFOBUFLEN
 CHARACTER*150 MSGBUF
 INTEGER*2 MSGBUFLEN
 INTEGER*2 ERRMSGLEN
 CHARACTER*70 ERROR_LOCATION
 INTEGER*2 ARRAY_INDEX
 CHARACTER*86 FILENAME
446 Appendix A

SAMPLE PROGRAMS
FORTRAN 77
!
! Init Comarea to all zeros.
!
 ARRAY_INDEX = 1
 DO WHILE (ARRAY_INDEX.LE.60)
 COMAREA(ARRAY_INDEX) = 0
 ARRAY_INDEX = ARRAY_INDEX + 1
 END DO
!
! Set Language for FORTRAN-77.
!
 LANGUAGE = 5
!
! Set Comarealen for 60 words (120 bytes).
!
 COMAREALEN = 60
!
! Activate function key labeling.
!
 LABELOPTIONS = 1
!
! Disable form background loading on Vreadfields.
!
 LOOKAHEAD = 0
!
! Set size of local form storage directory.
!
 FORMSTORESIZE = 4
!
! Open the Transaction File:
!
 OPEN (UNIT = 10,
 + ENTITY = ’PAYTXN’,
 + ACCESS = ’DIRECT’,
 + RECL = 200,
 + FORM = ’UNFORMATTED’,
 + STATUS = ’NEW’,
 + ERR = 110)
!
 GOTO 120
!
 110 STOP_NOW = 1
 ERROR_LOCATION =
 + "**** Routine: Setup For Work - Open Transaction File"
 MSGBUF =
 + "**** File open failed!"
!
! Open the Forms File.
!
 120 IF (STOP NOW.EQ.0) THEN
 FILENIME = "PAYROLL.WORK.ADMIN"
!
 CALL VOPENFORMF (COMAREA,
 + FILENAME)
!
 IF (CSTATUS.NE.0) THEN
 STOP_NOW = 1
 ERROR_LOCATION =
Appendix A 447

SAMPLE PROGRAMS
FORTRAN 77
 + "**** Routine: Setup For Work - Forms File Open"
 CALL GET_ERROR_MESSAGE
 END IF
 END IF
!
! Open the Terminal.
!
 IF (STOP NOW.EQ.0) THEN
 FILENAME = "HPTERM"
!
 CALL VOPENTERM (COMAREA,
 + FILENAME)
!
 IF (CSTATUS.NE.0) THEN
 STOP_NOW = 1
 ERROR_LOCATION =

 + "**** Routine: Setup For Work - Terminal Setup"
 CALL GET_ERROR_MESSAGE
 END IF
 END IF
!
! Translate field names to screen orders.
!
! Three of the fields in the form used by this
! application need to be toggled from "display
! only" to "input allowed". In order to do this,
! we first translate field names to screen orders.
!
 IF (STOP_NOW.EQ.0) THEN
!
 NUM_ENTRIES = 3
 ENTRY_LEN = 9
 FORM_NAME = "DEDUCTION"
!
! Note that because the FIELD_NAME element is defined as 18
! characters long, each occurrence of FIELD_NAME overlaps
! the position of each occurrence of the SCREEN_ORDER element
! in the infobuf. Thus setting each FIELD_NAME element to
! a literal that is 16 characters long or Less results in each
! SCREEN_ORDER element being implicitly filled with blanks.
!
 FIELD_NAME(1,1) = "BADGE_NUMBER"
!
 FIELD_NAME(1,2) = "LAST_NAME"
!
 FIELD_NAME(1,3) = "SUR_NAME"
!
! Now determine the length of the entire Fieldinfo buffer.
!

INFOBUFLEN = (NUM_ENTRIES * ENTRY_LEN) + 10
!
 CALL VGETFIELDINFO (COMAREA,
 + FIELDINFO,
 + INFOBUFLEN)
!
 IF (CSTATUS.NE.0) THEN
 STOP_NOW = 1
448 Appendix A

SAMPLE PROGRAMS
FORTRAN 77
 ERROR_LOCATION =
 + "**** Routine: Setup For Work - Field Info Retrieval"
 CALL GET_ERROR_MESSAGE
 END IF
 END IF
!
 END
Appendix A 449

SAMPLE PROGRAMS
FORTRAN 77
$TITLE ’ Collect Transactions’
!***!
! !
! Collect Transactions !
! !
!***!

!
 SUBROUTINE COLLECT_TXNS
!
 IMPLICIT NONE
!
 COMMON /COMO1/ COMAREA
 COMMON /COMll/ STOP_NOW
 COMMON /COM12/ DONE_WITH_TXNS
 COMMON /COMI3/ NBR_TXN_COLLECTED
 COMMON /COM21/ FIELDINFO
 COMMON /COM81/ MSGBUF
 COMMON /COM82/ MSGBUFLEN
 COMMON /COM83/ ERRMSGLEN
 COMMON /COM91/ ERROR_LOCATION
 COMMON /COM101/ FOUND_DATA_ERRS
!
 SYSTEM INTRINSIC VCHANGEFIELD,
 + VPUTWINDOW,
 + VINITFORM,
 + VSHOWFORM
!
 INTEGER*2 COMAREA(60)
 INTEGER*2 CSTATUS
 INTEGER*2 REPEATAPP
 INTEGER*2 FREEZEAPP
 CHARACTER*16 NFNAME
 EQUIVALENCE (COMAREA(1), CSTATUS),
 + (COMAREA(27), REPEATAPP),
 + (COMAREA(28), FREEZEAPP),
 + (COMAREA(19), NFNAME)
 INTEGER*2 STOP_NOW
 INTEGER*2 DONE_WITH_TXNS
 INTEGER*2 NBR_TXN_COLLECTED
 INTEGER*2 FIELDINFO(37)
 INTEGER*2 NUM_ENTRIES
 INTEGER*2 ENTRY_LEN
 CHARACTER*16 FORM_NAME
 EQUIVALENCE (FIELDINFO(1), NUM_ENTRIES),
 + (FIELDINFO(2), ENTRY_LEN),
 + (FIELDINFO(3), FORM_NAME)
 INTEGER*2 FIELD NAME (9,3)
 INTEGER*2 SCREEN ORDER (9,3)
 EQUIVALENCE (FIELDINFO(11), FIELD_NAME),
 + (FIELDINFO(11), SCREEN_ORDER)
 CHARACTER*150 MSGBUF
 INTEGER*2 MSGBUFLEN
 INTEGER*2 ERRMSGLEN
 CHARACTER*70 ERROR_LOCATION

 INTEGER*2 FIELDSPECS(12)
 INTEGER*2 FIELD_ID(4,3)
450 Appendix A

SAMPLE PROGRAMS
FORTRAN 77
 INTEGER*2 CHANGE_TYPE(4,3)
 CHARACTER*4 CHANGE_SPEC(2,3)
 EQUIVALENCE (FIELDSPECS (1), FIELD_ID) ,
 + (FIELDSPECS (1), CHANGE_TYPE),
 + (FIELDSPECS (1), CHANGE_SPEC)
 INTEGER*2 NUMSPECS
 INTEGER*2 FOUND_DATA_ERRS
!
! Setup for and get transaction data entry form.
!
 REPEATAPP = 0
 FREEZEAPP = 0
!
 NFNAME = "DEDUCTION"
!
 CALL VGETNEXTFORM (COMAREA)
!
 IF (CSTATUS.NE.0) THEN
 STOP_ NOW = 1
 ERROR_LOCATION =
 + "**** Routine: Collect Transactions - Form Retrieval"
 CALL GET_ERROR_MESSAGE
 END IF
!
! Toggle three fields in form to "input allowed".
!
! Screen order is indicated to field change intrinsic
! as a negative number.
!
! Change field type is indicated by a 5.
!
! "Input allowed" is indicated by an "O" (for input/output).
!
 IF (STOP_NOW.EQ.0) THEN
!
 FIELD_ID(1,1) = (SCREEN_ORDER(9,1) * (-1))
 CHANGE_TYPE(2,1) = 5
 CHANGE_SPEC (2,1) = "O"
!
 FIELD ID(1,2) = (SCREEN_ORDER(9,2) * (-1))
 CHANGE_TYPE(2,2) = 5
 CHANGE_SPEC(2,2) = "O"
!
 FIELD_ID(1,3) = (SCREEN_ORDER(9,3) * (-1))
 CHANGE_TYPE(2,3) = 5
 CHANGE_SPEC(2,3) = "O"
!
 NUMSPECS = 3
!
 CALL VCHANGEFIELD (COMAREA,
 + FIELDSPECS,
 + NUMSPECS)
!
 IF (CSTATUS.NE.0) THEN
 STOP_NOW = 1

 ERROR_LOCATION =
 "**** Routine: Collect Transactions - Field Type Updates"
Appendix A 451

SAMPLE PROGRAMS
FORTRAN 77
 CALL GET_ERROR_MESSAGE
 END IF
 END IF
!
! Load window message.
!
 IF (STOP_NOW.EQ.0) THEN
!
 MSGBUFLEN = 79
!
 MSGBUF =
 + "Fill in Deduction Transaction according to worksheet."
!
 CALL VPUTWINDOW (COMAREA,
 + MSGBUF,
 + MSGBUFLEN)
!
 IF (CSTATUS.NE.0) THEN
 STOP_NOW = 1
 ERROR_LOCATION =
 + "**** Routine: Collect Transactions - Window Load"
 CALL GET_ERROR_MESSAGE
 END IF
 END IF
!
! Initialize form.
!
 IF (STOP_NOW.EQ.0) THEN
!
 CALL VINITFORM (COMAREA)
!
 IF (CSTATUS.NE.0) THEN
 STOP_NOW = 1
 ERROR_LOCATION =
 + "**** Routine: Collect Transactions - Form Init"
 CALL GET_ERROR_MESSAGE
 END IF
 END IF
!
! Show form.
!
 IF (STOP_NOW.EQ.0) THEN
!
 CALL SHOWFORM (COMAREA)
!
 IF (CSTATUS.NE.0) THEN
 STOP_NOW = 1
 ERROR_LOCATION =
 + "**** Routine: Collect Transactions - Form display"

 CALL GET_ERROR_MESSAGE
 END IF
 END IF
!
! Setup and loop on transaction until it can be filed.
!
 FOUND_DATA_ERRS = 1
!

452 Appendix A

SAMPLE PROGRAMS
FORTRAN 77
 DO WHILE (FOUND_DATA_ERRS.EQ.1
 + .AND.STOP_NOW.EQ.0
 + .AND.DONE_WITH_TXNS.EQ.0)
!
 CALL READ_EDIT_AND_FILE
!
 END DO
!
 END
Appendix A 453

SAMPLE PROGRAMS
FORTRAN 77
$TITLE ’ Read Edit and File’

!***!
! !
! Read Edit and File !
! !
!***!
!
 SUBROUTINE READ_EDIT_AND_FILE
!
 IMPLICIT NONE
!
 COMMON /COMO1/ COMAREA
 COMMON /COMll/ STOP_NOW
 COMMON /COM12/ DONE_WITH_TXNS
 COMMON /COM13/ NBR_TXN_COLLECTED
 COMMON /COM81/ MSGBUF
 COMMON /COM82/ MSGBUFLEN
 COMMON /COM83/ ERRMSGLEN
 COMMON /COM91/ ERROR_LOCATION
 COMMON /COM101/ FOUND_DATA_ERRS
!
 SYSTEM INTRINSIC VREADFIELDS,
 + VFIELDEDITS,
 + VFINISHFORM,
 + VGETBUFFER
!
 INTEGER*2 COMAREA(60)
 INTEGER*2 CSTATUS
 INTEGER*2 LASTKEY
 INTEGER*2 NUMERRS
 EQUIVALENCE (COMAREA(1), CSTATUS),
 + (COMAREA(6), LASTKEY),
 + (COMAREA(7), NUMERRS)
 INTEGER*2 STOP_NOW
 INTEGER*2 DONE_WITH_TXNS
 INTEGER*2 NBR_TXN_COLLECTED
 CHARACTER*150 MSGBUF
 INTEGER*2 MSGBUFLEN
 INTEGER*2 ERRMSGLEN
 CHARACTER*70 ERROR_ LOCATION
 INTEGER*2 FOUND_ DATA_ERRS
 CHARACTER*200 DATABUF
 INTEGER*2 DATABUFLEN
!
! Read form.
!
 CALL VREADFIELDS (COMAREA)
!
 IF (CSTATUS.NE.0) THEN
 STOP_NOW = 1
 ERROR_LOCATION =
 + "**** Routine: Read Edit and File - Terminal Read"
 CALL GET_ERROR_MESSAGE
 END IF
!
! Determine if operator wants to stop transaction collection.
!

454 Appendix A

SAMPLE PROGRAMS
FORTRAN 77
 IF (STOP NOW.EQ.0) THEN
 IF (LASTKEY.EQ.8) THEN
 DONE_WITH_TXNS = 1
 END IF
 END IF
!
! Edit data read from terminal.
!
 IF (STOP_NOW.EQ.0
 + .AND.DONE_WITH_TXNS.EQ.0) THEN
!
 CALL VFIELDED (COMAREA)
!
 IF (CSTATUS.NE.0) THEN
 STOP_NOW = 1
 ERROR_LOCATION =
 + "**** Routine: Read Edit and File - Data Edit"
 CALL GET_ERROR_MESSAGE
 END IF
 END IF
!
! Determine if edit errors detected.
!
 IF (STOP_NOW.EQ.0
 + .AND.DONE_WITH_TXNS.EQ.0) THEN
!
 IF (NUMERRS.LT.1) THEN
 FOUND_DATA_ERRS = 0
 END IF
 END IF
!
! Finish form data.
!
 IF (STOP_NOW.EQ.0
 + .AND.DONE_WITH_TXNS.EQ.0
 + .AND.FOUND_DATA_ERRS.EQ.0) THEN
!
 CALL VFINISHFORM (COMAREA)
!
 IF (CSTATUS.NE.0) THEN
 STOP NOW = 1
 ERROR_LOCATION =
 + "**** Routine: Read Edit and File - Data Finishing"
 CALL GET_ERROR_MESSAGE
 END IF
 END IF
!
! Determine if data finishing errors detected.
!
 IF (STOP_NOW.EQ.0
 + .AND.DONE_WITH_TXNS.EQ.0
 + .AND.FOUND_DATA_ERRS.EQ.0) THEN
!
 IF (NUMERRS.GT.0) THEN
 FOUND_DATA_ERRS = 1
 END IF
 END IF
Appendix A 455

SAMPLE PROGRAMS
FORTRAN 77
!
! Do we have a transaction that can be filed?
!
 IF (STOP_NOW.EQ.0
 + .AND.DONE_WITH_TXNS.EQ.0) THEN
!
 IF (FOUND_DATA_ERRS.EQ.0
 + .AND.LASTKEY.EQ.0) THEN
!
! Get transaction from form and file it.
!
 DATABUF = " "
!
 DATABUFLEN = 200
!
 CALLVGETBUFFER (COMAREA,
 + DATABUF,
 + DATABUFLEN)
!
 IF (CSTATUS.NE.0) THEN
 STOP NOW = 1
 ERROR_LOCATION =
 + "**** Routine: Read Edit and File - Data Get"
 CALL GET_ERROR_MESSAGE
!
 ELSE
!
! Write Databuf to Transaction File.
!
 WRITE (UNIT = 10,
 + ERR = 310) DATABUF
!
 GOTO 320
!
310 STOP_NOW = 1
 ERROR_LOCATION =
 + "**** Routine: Read Edit and File - File Write"
 MSGBUF =
 + "**** Write to Transaction File failed!"
!
320 IF (STOP_NOW.EQ.0) THEN
 NBR_TXN_COLLECTED = NBR_TXN_COLLECTED + 1
 END IF
 END IF
 END IF
 END IF
!
! Do we need to prompt the operator to correct errors?
!
 IF (STOP_NOW.EQ.O
 + .AND.DONE_WITH_TXNS.EQ.0) THEN
!
 IF (FOUND DATA ERRS.EQ.1
 + .AND.LASTKEY.EQ._O) THEN
!
 CALL PROMPT _OPERATOR
!
 END IF
456 Appendix A

SAMPLE PROGRAMS
FORTRAN 77
 ENDIF
!
! Do we need to refresh the display?
!
 IF (STOP_ NOW.EQ.0
 + .AND.DONE_WITH_TXNS.EQ.0) THEN
!
 IF (FOUND_DATA_ERRS.EQ.1
 + .AND.LASTKEY.NE.0) THEN
!
! The operator pressed some key other than <ENTER>
! or <EXIT> so clear data error flag to break loop.
!
 FOUND_ DATA_ERRS = 0
!
 END IF
 END IF
!
 END
Appendix A 457

SAMPLE PROGRAMS
FORTRAN 77
$TITLE ’ Prompt Operator’

!***!
! !
! Prompt Operator !
! !
!***!
!
 SUBROUTINE PROMPT_OPERATOR
!
 IMPLICIT NONE
!
 COMMON /COMO1/ COMAREA
 COMMON /COM11/ STOP NOW
 COMMON /COM81/ MSGBUF
 COMMON /COM82/ MSGBUFLEN
 COMMON /COM83/ ERRMSGLEN
 COMMON /COM91/ ERROR_LOCATION
!
 SYSTEM INTRINSIC VPUTWINDOW,
 + VSHOWFORM
!
 INTEGER*2 COMAREA(60)
 INTEGER*2 CSTATUS
 EQUIVALENCE (COMAREA(1), CSTATUS)
 INTEGER*2 STOP_NOW
 CHARACTER*150 MSGBUF
 INTEGER*2 MSGBUFLEN
 INTEGER*2 ERRMSGLEN
 CHARACTER*70 ERROR_LOCATION
!
! Get message text associated with first field flagged
! with a data error.
!
 CALL GET_ERROR_MESSAGE

 CALL VPUTWTNDOW (COMAREA,
 + MSGBUF,
 + ERRMSGLEN)
!
 IF (CSTATUS.NE.0) THEN
 STOP NOW = 1
 ERROR_LOCATION =
 + "**** Routine: Prompt Operator - Window Load"
 CALL GET_ERROR_MESSAGE
 END IF
!
! Display highlighted form and updated window message.
!
 IF (STOP_NOW.EQ.0) THEN
 CALL VSHOWFORM (COMAREA)
!
 IF (CSTATUS.NE.0) THEN

 STOP_NOW = 1
 ERROR_LOCATION =
 + "**** Routine: Prompt Operator - Display Updates"
 CALL GET_ERROR_MESSAGE
458 Appendix A

SAMPLE PROGRAMS
FORTRAN 77
 END IF
 END IF
!
 END
Appendix A 459

SAMPLE PROGRAMS
FORTRAN 77
$TITLE ’ Cleanup After Work’

!***!
! !
! Cleanup After Work !
! !
!***!
!
 SUBROUTINE CLEANUP_AFTER_WORK
!
 IMPLICIT NONE
!
 COMMON /COMO1/ COMAREA
!
 SYSTEM INTRINSIC VCLOSEFORMF,
 + VCLOSETERM
!
 INTEGER*2 COMAREA(60)
 INTEGER*2 CSTATUS
 EQUIVALENCE (COMAREA(1), CSTATUS)
!
! Note that this routine unconditionally attempts to close
! the Forms File and Terminal
!
 CLOSE (UNIT = 10)
!
 CSTATUS = 0
!
 CALL VCLOSEFORMF (COMAREA)
!
 CSTATUS = 0
!
 CALL VCLOETERM (COMAREA)
!
 END
460 Appendix A

SAMPLE PROGRAMS
FORTRAN 77
$TITLE ’ Get Error Message’

!***!
! !
! Get Error Message !
! !
!***!
!
 SUBROUTINE GET-ERROR-MESSAGE
!
 IMPLICIT NONE
!
 COMMON /COMO1/ COMAREA
 COMMON /COM81/ MSGBUF
 COMMON /COM82/ MSGBUFLEN
 COMMON /COM83/ ERRMSGLEN
!
 SYSTEM INTRINSIC VERRMSG
!
 INTEGER*2 COMAREA(60)
 CHARACTER*150 MSGBUF
 INTEGER*2 MSGBUFLEN
 INTEGER*2 ERRMSGLEN
!
 MSGBUF = " "
 MSGBUFLEN = 150
!
 CALL VERRMSG (COMAREA,
 + MSGBUF,
 + MSGBUFLEN,
 + ERRMSGLEN)
!
 END
Appendix A 461

SAMPLE PROGRAMS
FORTRAN 77
$TITLE ’ Display System Error’

!***!
! !
! Display System Error !
! !
!***!
!
 SUBROUTINE DISPLAY_SYSTEM_ERROR
!
 IMPLICIT NONE
!
 COMMON /COM81/ MSGBUF
 COMMON /COM91/ ERROR_LOCATION
!
 CHARACTER*150 MSGBUF
 CHARACTER*70 ERROR_LOCATION
!
 PRINT *,
 + "**** Transaction entry facility detected system error at:"
 PRINT *, ERROR_LOCATION
 PRINT *,
 + "**** The error message returned is:"
 PRINT *, MSGBUF
!
 END
462 Appendix A

SAMPLE PROGRAMS
BASIC
BASIC
 60 REM This program controls source data entry for any forms file.
 65 REM It prompts the user for the name of a forms file and opens it
 70 REM if possible. It also prompts for the name of a BATCH file and
 75 REM opens it if possible. If all is OK, it displays the HEAD FORM
 80 REM accepts input, edits the data, and if no errors, writes data
 85 REM to the BATCH file. This process continues until the form with
 90 REM name $END is encountered or the EXIT function key is pressed.
 95 REM
100 REM This program also provides BROWSE control and permits
105 REM modification of the collected data.
110 REM
115 REM The function keys have the following meanings:
120 REM
125 REM f1 f2 f3 f4
130 REM HEAD DELETE PRINT REFRESH
135 REM
140 REM f5 f6 f7 f8
145 REM PREV NEXT BROWSE/ EXIT
150 REM COLLECT
155 REM
160 REM The following variable assignments are used:
165 REM
170 REM Strings:
175 REM
180 REM B$[16] - Name of current Form
185 REM BO$[16] - Saves B$ during BROWSE
190 REM B1$[16] - Name of next Form
195 REM E$[60] - Entry error messages
200 REM M$[150] - General messages
205 REM S$[150] - Status line
210 REM U$[150] - General user input and file names
220 REM
225 REM Integers:
230 REM
235 REM B1 - Batch : O=false; 1=true
240 REM F1 - First time : O=false; 1=true
245 REM W1 - Max window length (150)
250 REM R1 - Saves number of last accessed record in batch file
255 REM D1 - Browse direction: O=forward; 1=backward
260 REM R2 - Local batch record number
265 REM
270 REM E - Errors Flag : O=false; 1=true
275 REM
280 REM
285 REM Com area Array C(1:60)
295 REM C(1) - Status (O=OK; >0 ERROR)
300 REM C(2) - Language (1=BASIC)
305 REM C(3) - Com area length (60)
310 REM C(4) - Com extention length (2000)
315 REM C(5) - Mode
320 REM C(6) - Lastkey (# of last used function key)
325 REM C(7) - Numerrs
330 REM C(8:10) - not used
335 REM C(11:18) - name of current form (packed)
Appendix A 463

SAMPLE PROGRAMS
BASIC
340 REM C(19:26) - name of next form (packed)
345 REM C(27) - Repeat option
350 REM C(28) - NF option
355 REM C(29) - not used
360 REM C(30) - Length of data buffer
365 REM C(31) - not used
370 REM C(33) - Delete flag
375 REM C(34) - Show control
80 REM C(35:42) - not used

 385 REM C(43:44) - Number of recs in batch file (double)*
 390 REM C(45:46) - Record # in batch file (double)*
 395 REM C(47,48) - not used
 400 REM C(49) - Terminal file #
 405 REM C(56) - Terminal options
 410 REM
 415 REM *Only c(44) and c(46) are used in this program.
 420 REM Therefore, this program cannot handle BATCH files
 425 REM that have more than 32768 records.
 430 REM
 450 REM
 451 REM ***
 452 REM
 500 REM2 ** DECLARATIONS **
 510 DIM B$[16],BO$[16],B1$[16],C$[2]
 520 DIM E$[60],M$[150],S$[150],U$[150],X$[2]
 530 INTEGER B1,D1,F1,E,I,J,R1,R2,W1,X,Y,P,P1
 540 INTEGER C[4560]
 900 REM2 ** FUNCTIONS **
 905 REM1 * UNPACK INTEGER INTO 2 CHARACTERS *
 910 DEF FNU$(X)
 915 Y=INT(X/256)
 920 X=X-256*Y
 925 RETURN CHR$(Y)+CHR$(X)
 930 FNEND
 950 REM1 * PACK 2 CHARACTERS INTO INTEGER *
 955 DEF INTEGER FNP(X$)
 960 RETURN NUM(X$[2;1])+NUM(X$[1;1])*256
 965 FNEND
1000 REM2 ** ENTRY **
1010 REM *INITIALIZE*
1020 GOSUB 2000
1030 REM1 *COLLECT*
1040 GOSUB 3000
1050 REM1 *EXIT*
1060 GOSUB 5000
1070 END
2000 REM2 <INITIALIZE>
2010 MAT C=ZER
2020 C[2]=l
2030 C[3]=60
2040 C[4]=2000
2050 B1=1
2060 E=O
2070 W1=150
2100 REM1 *OPEN FORMS FILE*
2110 C[1]=0
2120 PRINT " Enter FORMS file name and press RETURN: ";
2130 LINPUT U$
464 Appendix A

SAMPLE PROGRAMS
BASIC
2140 IF NOT LEN(U$) THEN 9900
2150 U$=U$+" "
2160 CALL VOPENFORMF(C[*],U$)
2170 IF C[1] THEN DO
2180 GOSUB 9000
2190 GOTO 2100
2200 DOEND
2210 REM1 *OPEN BATCH FILE*
2220 PRINT " Enter BATCH file name and press RETURN: ";
2230 LINPUT U$
2240 IF NOT LEN(U$) THEN B1=0
2250 ELSE DO
2260 U$=U$+" "
2270 CALL VOPENBATCH(C[*],U$)
2280 IF C[1] THEN DO
2290 IF C[1]=70 OR C[1]=73 THEN DO
2300 IF C[1]=70 THEN PRINT "WARNING: A different FORMS file was used to
2305 create this batch."
2310 IF C[1]=73 THEN PRINT "WARNING: FORMS file was recompiled since
2315 this batch was created.
2320 PRINT "Enter "’34"Y"’34" to continue: ";
2330 LINPUT U$
2340 IF UPS$(U$)="Y" THEN C[1]=0
2350 DOEND
2360 ELSE GOSUB 9000
2370 DOEND
2380 DOEND
2390 REM2 ** OPEN TERMINAL **
2400 IF NOT B1 OR NOT C[1] THEN DO
2410 U$="A264X"
2420 CALL VOPENTERM(C[*],U$)
2430 IF C[1] THEN DO
2440 GOSUB 9000
2450 END
2460 DOEND
2470 C[56]=C[56]+8
2480 RETURN
2490 DOEND
2500 ELSE DO
2510 C[1]=0
2520 CALL VCLOSEBATCH(C[*])
2530 CALL VCLOSEFORMF(C[*])
2540 DOEND
2550 GOTO 2100
3000 REM2 <COLLECT>
3005 F1=1
3010 C[5]=C[33]=0
3015 IF NOT C[6] OR C[6]=6 THEN DO
3020 IF NOT C[27] AND NOT C[28] OR C[27]=2 THEN DO
3025 CALL VSHOWFORM(C[*])
3030 IF C[1] THEN GOSUB 9100
3035 DOEND
3040 DOEND
3045 REM1 *COLLECT LOOP*
3050 CALL VGETNEXTFORM(C[*])
3055 IF F1 AND C[1] THEN DO
3060 CALL VERRMSG(C[*],M$,BO,I
3065 E=1
Appendix A 465

SAMPLE PROGRAMS
BASIC
3070 RETURN
3075 DOEND
3080 IF C[1] THEN GOSUB 9100
3085 F1=0
3090 CALL VINITFORM(C[*])
3095 IF C[1] OR C[7] THEN GOSUB 9100
3100 IF NOT E THEN GOSUB 8000
3105 REM1 *SOFTKEY LOOP*
3110 E=O
3115 CALL VSHOWFORM(C[*])
3120 IF C[1] THEN GOSUB 9100
3125 C[34]=0
3130 IF C[30]<=0 AND C[27]=0 AND C[28)<>0 THEN DO
3132 IF NOT E AND B1 THEN DO
3135 CALL VWRITEBATCH(C[*])
3140 IF C[1] THEN GOSUB 9100
3145 IF NOT E THEN DO
3146 C[46]=C[46]+1
3147 P1=20
3148 P=C[46] MOD P1
3149 IF P=0 THEN CALL VPOSTBATCH(C[*])
3150 DOEND
3151 DOEND
3152 DOEND
3155 ELSE DO
3160 CALL VREADFIELDS(C[*])
3165 IF C[1] THEN GOSUB 9100
3170 IF NOT E AND C[6]=8 THEN RETURN
3175 IF NOT E THEN GOSUB C[6]+1 OF 3300,3350,3400,3450,3500,3550,3600,370
3180 DOEND
3185 IF C[6]=8 THEN RETURN
3190 IF E OR C[6]=3 THEN 3105
3195 GOSUB 8100
3200 IF B1$<>"$END" OR C[27] THEN 3045
3205 RETURN
3300 REM2 <ENTER KEY>
3305 CALL VFIELDEDITS(C[*])
3310 IF C[1] OR C[7] THEN GOSUB 9100
3315 IF NOT E THEN DO
3320 CALL VFINTSHFORM(C[*])
3325 IF C[1] THEN GOSUB 9100
3330 IF NOT E AND B1 THEN DO
3335 CALL VWRITEBATCH(C[*])
3340 IF C[1] THEN GOSUB 9100
3342 IF NOT E THEN DO
3343 C [46]=C[46]+1
3344 P1 = 20
3345 P=C[46] MOD P1
3346 IF P=O THEN CALL VPOSTBATCH(C[*])
3347 DOEND
3348 DOEND
3349 DOEND
3350 RETURN
3351 REM1 <HEAD KEY>
3355 C[27]=C[28]=O
3360 B1$="$HEAD"
3365 GOSUB 8200
3370 RETURN
466 Appendix A

SAMPLE PROGRAMS
BASIC
3400 REM1 <DELETE KEY>
3410 E$="DELETE key defined only for BROWSE"
3420 GOSUB 9200
3430 RETURN
3450 REM1 <PRINT KEY>
3455 I=1
3460 J=49
3465 CALL VPRINTFORM(C[*],I,J)
3470 IF C[1] THEN GOSUB 9100
3475 RETURN
3500 REM1 <REFRESH KEY>
3505 B1$="$REFRESH"
3510 GOSUB 8200
3515 RETURN
3550 REM1 <PREV KEY>
3555 E$=" The PREV key is only defined for BROWSE mode."
3560 GOSUB 9200
3565 RETURN
3600 REM1 <NEXT KEY>
3610 IF NOT C[27] THEN DO
3620 E$=" The NEXT key is not defined for a non-repeating form."
3630 GOSUB 9200
3640 DOEND
3650 ELSE C[27]=0
3660 RETURN
3700 REM1 <BROWSE KEY>
3710 IF NOT B1 THEN DO
3720 E$=" No BATCH file was specified, so BROWSE is not allowed."
3730 GOSUB 9200
3740 DOEND
3750 ELSE DO
3760 IF NOT C[44] THEN DO
3770 E$=" There are no more batch records."
3780 GOSUB 9200
3790 DOEND
3800 ELSE DO
3810 R1=C[46]
3820 GOSUB 8100
3830 BO$=B$
3840 C[5]=1
3850 C[27]=C[28]=0
3860 GOSUB 4000
3870 C[5]=0
3880 B1$=B0$
3890 GOSUB 8200
3900 C[46]=R1
3910 C[27]=C[28]=C[33]=0
3920 IF C[6]=8 THEN DO
3921 B$=B0$
3922 RETURN
3923 DOEND
3930 DOEND
3940 DOEND
3950 RETURN
4000 REM2 <BROWSE>
4005 R2=C[46]
4010 C[46]=C[46]-1
4015 D1=1
Appendix A 467

SAMPLE PROGRAMS
BASIC
4020 REM1 *BROWSE UNTIL EXIT OR COLLECT KEY*
4025 IF NOT C[44] THEN RETURN
4030 IF C[46]=R1 THEN DO
4035 E$=" There are no more batch records."
4040 GOSUB 9200
4045 C[46]=C[46]-1
4050 D1=1
4055 DOEND
4060 IF C[46]<0 THEN DO
4065 E$=" There are no previous batch records."
4070 GOSUB 9200
4075 D1=C[46]=0
4080 DOEND
4085 CALL VREADBATCH(C[*])
4090 IF C[1] THEN GOSUB 9100
4095 IF NOT C[33] THEN DO
4100 IF C[46]<>R2 OR C[6]=4 THEN DO
4105 IF D1 OR C[6]=4 THEN C[27]=C[28]=0
4110 ELSE DO
4115 GOSUB 8100
4120 IF B$<>B1$ THEN C[27]=0
4125 DOEND
4130 IF C[6]=4 THEN DO
4135 B1 $="$REFRESH"
4140 GOSUB 8200
4145 DOEND
4150 CALL VGETNEXTFORM(C[*])
4155 IF C[1] THEN GOSUB 9100
4160 R2=C[46]
4165 DOEND
4170 IF NOT E THEN GOSUB 8000
4175 REM2 *SOFTKEY LOOP*
4180 E=0
4185 CALL VSHOWFORM(C[*])
4190 IF C[1] THEN GOSUB 9100
4195 C[34]=0
4200 CALL VREADFIELDS(C[*])
4205 IF C[1] THEN GOSUB 9100
4210 IF NOT E AND C [6] >6 THEN RETURN
4215 IF NOT E THEN GOSUB C[6]+1 OF 4300,4400,4450,4500,4550,4600,4650
4220 IF E OR C[6]=3 THEN 4175
4225 DOEND
4230 ELSE DO
4235 IF D1 THEN C[46]=C[46]-1
4240 ELSE C[46]=C[461+1
4245 DOEND
4250 GOTO 4020
4255 RETURN
4300 REM2 <ENTER KEY>
4305 D1=0
4310 CALL VFIELDEDITS(C[*])
4315 IF C[1] 0 C[7] THEN GOSUB 9100
4320 IF NOT E THEN DO
4325 CALL VFINISHFORM(C[*])
4330 IF C[1] THEN GOSUB 9100
4335 IF NOT C[27] AND C[28] OR C[27]=2 THEN DO
4340 CALL VSHOWFORM(C[*])
4345 IF C[1]THEN GOSUB 9100
468 Appendix A

SAMPLE PROGRAMS
BASIC
4350 DOEND
4355 IF NOT E THEN DO
4360 CALL VWRITEBATCH(C[*])
4365 IF C[1] THEN GOSUB 9100
4370 IF NOT E THEN C[46]=C[46]+1
4375 DOEND
4380 DOEND
4385 RETURN
4400 REM1 <HEAD KEY>
4410 D1=C[27]=C[28]=C[46]=0
4420 RETURN
4450 REM1 <DELETE KEY>
4455 D1=0
4460 C[33]=1
4465 CALL VWRITEBATCH(C[*])
4470 IF C[1] THEN GOSUB 9100
4475 C[33]=0
4480 IF NOT E THEN C[46]=C[46]+1
4485 C[27]=C[28]=0
4490 RETURN
4500 REM1 <PRINT KEY>
4505 I=1
4510 J=49
4515 CALL VPRINTFORM(C[*],I,J)
4520 IF C[1] THEN GOSUB 9100
4525 RETURN
4550 REM1 <REFRESH KEY>
4560 RETURN
4600 REM1 <PREV KEY>
4610 D1=1
4620 C[46]=C[46]-1
4630 RETURN
4650 REM1 <NEXT KEY>
4655 D1=0
4660 C[46]=C[46]+1
4665 IF NOT C[27] AND C[28] OR C[27]=2 THEN DO
4670 CALL VSHOWFORM(C[*])
4675 IF C[1] THEN GOSUB 9100
4680 DOEND
4685 RETURN
5000 REM2 <EXIT>
5010 REM1 *CLOSE TERMINAL*
5020 CALL VCLOSETERM(C[*])
5030 IF C[1] THEN GOSUB 9000
5040 C[1]=0
5050 REM1 *CLOSE BATCH FILE*
5060 IF B1 THEN DO
5070 IF E THEN PRINT M1$
5080 ELSE DO
5090 CALL VCLOSEBATCH(C[*])
5100 IF C[1] THEN GOSUB 9100
5110 C[1]=0
5120 DOEND
5130 DOEND
5140 REM1 *CLOSE FORMS FILE*
5150 CALL VCLOSEFORMF(C[*])
5160 IF C[1] THEN GOSUB 9100
5170 C[1]=0
Appendix A 469

SAMPLE PROGRAMS
BASIC
5180 RETURN
8000 REM2 <PRINT STATUS LINE>
8010 S$=" ENTRY "+V$+’27"&a31CBATCH RECORD # "
8020 CONVERT C[46]+1 TO S$[LEN(S$)+1]
8030 S$=S$+’27"&a65CMODE: "
8040 IF NOT C[5] THEN S$=S$+"COLLECT"
8050 ELSE S$=S$+’27"&dKBROWSE"
8060 I=LEN(S$)
8070 CALL VPUTWINDOW(C[*],S$,I)
8080 RETURN
8100 REM2 <GET FORM NAMES FROM COM ARRAY>
8110 B$=B1$=""
8120 FOR K=11 TO 18
8130 B$=B$+FNU$(C[K])
8140 B1$=B1$+FNU$(C[K+8])
8150 NEXT K
8160 B$=DEB$(B$[1,15])
8170 B1$=DEB$(B1$[1,15])
8180 RETURN
8200 REM2 <PUT NEXT FORM NAME IN COM ARRAY>
8210 B1$(LEN(B1$)+1,16] =""
8220 B1$[16,16]=’0
8230 FOR K=1 TO 15 STEP 2
8240 C[INT(K/2)+19]=FNP(B1$[K;2])
8250 NEXT K
8260 RETURN
9000 REM2 <PRINT ERROR MESSAGE TO SCREEN>
9020 CALL VERRMSG(C[*],M$,W1,I)
9030 PRINT M$
9040 RETURN
9100 REM2 <PRINT VIEW ERROR MESSAGE TO DISPLAY WINDOW>
9105 IF E THEN RETURN
9110 E=1
9125 CALL VERRMSG(C[*],M$,W1,I)
9130 M$=" "+M$
9135 I=LEN(M$)
9140 C[1]=0
9145 CALL VPUTWINDOW(C[*],M$,I)
9150 RETURN
9200 REM2 <PRINT ENTRY ERROR MESSAGE TO DISPLAY WINDOW>
9210 IF E THEN RETURN
9220 E=1
9230 I=LEN(E$)
9240 CALL VPUTWINDOW(C[*],E$,I)
9250 RETURN
9900 REM2 ** TERMINATE **
9910 PRINT "END OF PROGRAM"

9920 END
470 Appendix A

SAMPLE PROGRAMS
TRANSACT
TRANSACT
SYSTEM TRANS,ENTITY =TXNFILE(APPEND);
<<
This application collects employee payroll deduction transactions
and places the edited transactions into a file.

For this application: Enter key = edit and file transaction;

 f8 = exit application;

 all other f keys = redo transaction.

Each transaction entered by the operator is subjected to the data
edits embedded within the input form.

The application continues to collect transactions until either
the operator signals to exit or a system error is detected.
>>
DEFINE(ITEM) MAXWINDOWLEN I(4),INIT=150;
DEFINE(ITEM) COMAREA 60 I(4):
 CSTATUS I(4)=COMAREA:
 LANGUAGE I(4)=COMAREA(3):
 COMAREALEN I(4)=COMAREA(5):
 USERBUFLEN I(4)=COMAREA(7):
 CMODE I(4)=COMAREA(9):
 LASTKEY I(4)=COMAREA(11):
 NUMERRS I(4)=COMAREA(13):
 WINDOWENH I(4)=COMAREA(15):
 MULTIUSAGE I(4)=COMAREA(17):
 LABELOPTIONS I(4)=COMAREA(19):
 CFNAME X(16)=COMAREA(21):
 NFNAME X(16)=COMAREA(37):
 REPEATAPP I(4)=COMAREA(53):
 FREEZEAPP I(4)=COMAREA(55):
 CFNUMLINES I(4)=COMAREA(57):
 DBUFLEN I(4)=COMAREA(59):
 LOOKAHEAD I(4)=COMAREA(63):
 DELETEFLAG I(4)=COMAREA(65):
 SHOWCONTROL I(4)=COMAREA(67):
 PRINTFILENUM I(4)=COMAREA(71):
 FILERRNUM I(4)=COMAREA(73):
 ERRFILENUM I(4)=COMAREA(75):
 FORMSTORESIZE I(4)=COMAREA(77):
 NUMRECS I(8)=COMAREA(85):
 RECNUM I(8)=COMAREA(89):
 TERM-FILEN I(4)=COMAREA(97):
 RETRIES I(4)=COMAREA(109):
 TERM-OPTIONS I(4)=COMAREA(111):
 ENVIRON I(4)=COMAREA(113):
 USERTIME I(4)=COMAREA(115):
 IDENTIFIER I(4)=COMAREA(117):
 LABELINFO X(2)=COMAREA(119):
 DATABUF X(200):
Appendix A 471

SAMPLE PROGRAMS
TRANSACT
DATABUFLEN I(4):

 DONE-WITH-TRANS I(4):
 ERROR-LOCATION X(70):
 FIELDINFO X(80):
 NUM-ENTRIES I(4)=FIELDINFO:
 ENTRY-LEN I(4)=FIELDINFO(3):
 FORM-NAME X(16)=FIELDINFO(5):
 FIELDDATA 3 X(20)=FIELDINFO(21):
 FIELDENTRY X(20)=FIELDDATA:
 FIELD-NAME X(16)=FIELDENTRY:
 SCREEN-ORDER I(4)=FIELDENTRY(17):
 FIELD-NUM I(4)=FIELDENTRY(19):
 FIELDSPECS-ITEM 3 X(8):
 FIELDSPECS X(8)=FIELDSPECS-ITEM:
 FIELD-ID I(4)=FIELDSPECS:
 CHANGE-TYPE I(4)=FIELDSPECS(3):
 CHANGE-SPEC X(4)=FIELDSPECS(5):
 FILENAME X(86):
 FOUND-DATA-ERRS I(4):
 INFOBUFLEN I(4):
 MSGBUF X(150):
 MSGBUFLEN I(4):
 NBR-TXN-COLLECT I(8):
 NUMENTRIES I(4):
 NUMSPECS I(4):
 STOP-NOW I(4):
 GLOBAL 3 I(4):
 ZERO I(4)=GLOBAL:
 ONE I(4)=GLOBAL(3):
 EIGHT I(4)=GLOBAL(5):
 FALSE I(4)=ZERO:
 TRUE I(4)=ONE;
LIST MAXWINDOWLEN;
LIST COMAREA,INIT: << Initialize to all zeros >>
 DATABUF:
 DATABUFLEN:
 DONE-WITH-TRANS:
 ERROR-LOCATION:
 FIELDINFO:
 FIELDSPECS-ITEM:
 FILENAME:
 FOUND-DATA-ERRS:
 INFOBUFLEN:
 MSGBUF:
 MSGBUFLEN:
 NBR-TXN-COLLECT:
 NUMENTRIES:
 NUMSPECS:
 STOP-NOW:
 GLOBAL;
SET(OPTION) NOHEAD;

<< Sample program main line >>

PERFORM SETUP-FOR-WORK;
LEVEL; <<setup loop until done collecting transactions>>
472 Appendix A

SAMPLE PROGRAMS
TRANSACT
 IF (STOP-NOW) = (TRUE) THEN
 END(LEVEL)
 ELSE IF (DONE-WITH-TRANS) = (TRUE) THEN
 END(LEVEL)
 ELSE
 DO
 PERFORM COLLECT-TRANSACTIONS;
 END; <<loop to next transaction>>
 DOEND;
PERFORM CLEANUP-AFTER-WORK;
DISPLAY "Deduction transactions collected this sesion =":
 NBR-TXN-COLLECT;
IF (STOP-NOW) = (TRUE) THEN
 PERFORM DISPLAY-SYSTEM-ERROR;
EXIT;

DISPLAY-SYSTEM-ERROR:
<<*****************>>

 DISPLAY "**** Transaction collection facility detected system "
 "error at: ":
 ERROR-LOCATION:
 "**** The error message returned is:",line=1:
 "****",line=1:
 MSGBUF;
 RETURN;

CLEANUP-AFTER-WORK:
<<***************>>

 FILE(CLOSE) TXNFILE;
 LET (CSTATUS) = (ZERO);
 PROC VCLOSEFORMF((COMAREA));
 LET (CSTATUS) = (ZERO);
 PROC VCLOSETERM((COMAREA));
 RETURN;

GET-ERROR-MESSAGE:
<<**************>>

 LET (MSGBUFLEN) = (MAXWINDOWLEN);
 MOVE (MSGBUF) = " ";
 PROC VERRMNSG((COMAREA),%(MSGBUF),(MSGBUFLEN),(MSGBUFLEN));
 RETURN;

PROMPT-OPERATOR:
<<************>>

 PERFORM GET-ERROR-MESSAGE;
 PROC VPUTWINDOW((COMPAREA),%(MSGBUF),(MSGBUFLEN));
 IF (CSTATUS) <> (ZERO) THEN
 DO

 LET (STOP-NOW) = (TRUE);
 MOVE (ERROR-LOCATION) = "**** procedure: Prompt Operator - "
 "Window Load";
 PERFORM GET-ERROR-MESSAGE;
 RETURN;
Appendix A 473

SAMPLE PROGRAMS
TRANSACT
 DOEND;
 PROC VSHOWFORM((COMAREA));
 IF (CSTATUS) <> (ZERO) THEN
 DO
 LET (STOP-NOW) = (TRUE);
 MOVE (ERROR-LOCATION) = "**** procedure: Collect Transactions"
 " - Display Update";
 PERFORM GET-ERROR-MESSAGE;
 DOEND;
 RETURN;

READ-EDIT-FILE-TRANSACTION:
<<***********************>>

 PROC VREADFIELDS((COMAREA));
 IF (CSTATUS) <> (ZERO) THEN
 DO
 LET (STOP-NOW) = (TRUE);
 MOVE (ERROR-LOCATION) = "**** procedure: Read, Edit, and File"
 " - Terminal Read";
 PERFORM GET-ERROR-MESSAGE;
 RETURN;
 DOEND;

 << Determine if operator wants to stop transaction collection >>

 IF (LASTKEY) = (EIGHT) THEN
 DO
 LET (DONE-WITH-TRANS) = (TRUE);
 RETURN;
 DOEND;

 IF (LASTKEY) <> (ZERO) THEN

 << Operator pressed some key other than Enter or Exit
 so clear data error flag to break loop >>

 DO
 LET (FOUND-DATA-ERRS) = (FALSE);
 RETURN;
 DOEND;

 << Edit data >>

 PROC VFIELDEDITS((COMAREA));
 IF (CSTATUS) <> (ZERO) THEN
 DO
 LET (STOP-NOW) = (TRUE);
 MOVE (ERROR-LOCATION) = "**** procedure: Read, Edit, and"
" File - data Edit";
 PERFORM GET-ERROR-MESSAGE;
 RETURN;
 DOEND;

 << Determine if edit errors >>

 IF (NUMERRS) < (ONE) THEN
474 Appendix A

SAMPLE PROGRAMS
TRANSACT
 LET (FOUND-DATA-ERRS) = (FALSE);
 IF (FOUND-DATA-ERRS) = (FALSE) THEN
 DO

 << Finish form data >>

 PROC VFINISHFORM((COMAREA));
 IF (CSTATUS) <> (ZERO) THEN
 DO
 LET (STOP-NOW) = (TRUE);
 MOVE (ERROR-LOCATION) = "**** procedure: Read, Edit,"
 " and File - Data Finishing";
 PERFORM GET-ERROR-MESSAGE;
 RETURN;
 DOEND;
 IF (NUMERRS) > (ZERO) THEN
 LET (FOUND-DATA-ERRS) = (TRUE);
 DOEND; << Finish form data >>

 << Do we have a transaction that can be filed? >>

 IF (FOUND-DATA-ERRS) = (FALSE) THEN
 DO

 << get transaction from form and file it >>

 MOVE (DATABUF) = " ";
 LET (DATABUFLEN) = 200;
 PROC VGETBUFFER((COMAREA),%(DATABUF),(DATABUFLEN));
 IF (CSTATUS) <> (ZERO) THEN
 DO
 LET (STOP-NOW) = (TRUE);
 MOVE (ERROR-LOCATION) = "**** procedure: Read, Edit, and"
 "File - Data Get";
 PERFORM GET-ERROR-MESSAGE;
 RETURN;
 DOEND;
 PUT TXNFILE,LIST=(DATABUF);
 LET (NBR-TXN-COLLECT) = (NBR-TXN-COLLECT) + 1;
 DOEND << Get transaction from form and file it >>
 ELSE

 << Prompt the operator to correct errors >>

 PERFORM PROMPT-OPERATOR;
RETURN;

COLLECT-TRANSACTIONS:
<<*****************>>

 << setup form and get transaction entry form >>

 LET (REPEATAPP) = (ZERO);
 LET (FREEZEAPP) = (ZERO);
 MOVE (NFNAME) = "DEDUCTION";
 PROC VGETNEXTFORM((COMAREA));‘‘
 IF (CSTATUS) <> (ZERO) THEN
 DO
Appendix A 475

SAMPLE PROGRAMS
TRANSACT
 LET (STOP-NOW) = (TRUE);
 MOVE (ERROR-LOCATION) = "**** procedure: Collect Transactions"
 " - Form Retrieval";
 PERFORM GET-ERROR-MESSAGE;
 RETURN;
 DOEND;

<< Toggle three fields in form to "input allowed" >>

<< Screen order is indicated to field change intrinsic as
 negative number

LET OFFSET(FIELDSPECS) = 0;
LET OFFSET(FIELDENTRY) = 0;
LET (FIELD-ID) = (SCREEN-ORDER) * [-1];
LET (CHANGE-TYPE) = 5;
MOVE (CHANGE-SPEC) = "O";
LET OFFSET(FIELDSPECS) = 8;
LET OFFSET(FIELDENTRY) = 20;
LET (FIELD-ID) = (SCREEN-ORDER) * [-1]
LET (CHANGE-TYPE) = 5;
MOVE (CHANGE-SPEC) = "O";
LET OFFSET(FIELDSPECS) = 16;
LET OFFSET(FIELDENTRY) = 40;
LET (FIELD-ID) = (SCREEN-ORDER) * [-1];
LET (CHANGE-TYPE) = 5;
MOVE (CHANGE-SPEC) = "O";
LET (NUMSPECS) = 3;
PROC VCHANGEFIELD((COMAREA),(FIELDSPECS-ITEM),(NUMSPECS));
IF (CSTATUS) <> (ZERO) THEN
 DO
 LET (STOP-NOW) = (TRUE);
 MOVE (ERROR-LOCATION) = "**** procedure: Collect Transactions"
 " - Field Type Updates";
 PERFORM GET-ERROR-MESSAGE;
 RETURN;
 DOEND;

<< Load window message >>
<…sc><…x>

<ex><esc>

LET (MSGBUFLEN) = 79;
MOVE (MSGBUF) = "Fill in Deduction Transaction according to "
 "worksheet";
PROC VPUTWINDOW((COMAREA),%(MSGBUF),(MSGBUFLEN));
IF (CSTATUS) <> (ZERO) THEN
 DO
 LET (STOP-NOW) = (TRUE);
 MOVE (ERROR-LOCATION) = "**** procedure: Collect Transactions"
 " - Window Load";
 PERFORM GET-ERROR-MESSAGE;
 RETURN;
 DOEND;

<< Init form >>
476 Appendix A

SAMPLE PROGRAMS
TRANSACT
PROC VINITFORM((COMAREA));
IF (CSTATUS) <> (ZERO) THEN
 DO
 LET (STOP-NOW) = (TRUE);
 MOVE (ERROR-LOCATION) = "**** procedure: Collect Transactions"
 " - Form Init";
 PERFORM GET-ERROR-MESSAGE;
 RETURN;
 DOEND;

<< Show form >>

PROC VSHOWFORM((COMAREA));
IF (CSTATUS) <> (ZERO) THEN
 DO
 LET (STOP-NOW) = (TRUE);
 MOVE (ERROR-LOCATION) = "**** procedure: Collect Transactions"
 " - Form Display";
 PERFORM GET-ERROR-MESSAGE;
 RETURN;
 DOEND;

<< Setup and loop on transaction until it can be filed >>

LET (FOUND-DATA-ERRS) = (TRUE);
LEVEL;
 IF (FOUND-DATA-ERRS) = (FALSE) THEN
 END(LEVEL)
 ELSE IF (STOP-NOW) = (TRUE) THEN
 END(LEVEL)
 ELSE IF (DONE-WITH-TRANS) = (TRUE) THEN
 END(LEVEL)
 ELSE
 DO
 PERFORM READ-EDIT-FILE-TRANSACTION;
 END;
 DOEND;
RETURN;

SETUP-FOR-WORK:
<<***********>>

 LET (ZERO) = 0;
 LET (ONE) = 1;
 LET (EIGHT) = 8;
 LET (STOP-NOW) = (FALSE);
 LET (DONE-WITH-TRANS) = (FALSE);
 LET (NBR-TXN-COLLECT) = (ZERO);

 << Init Comarea >>

 << Set language to SPL. This is the default language if TRANSACT

 opens the formfile. However, in this language, all character
 arrays must be passed as byte addresses, ie %(NAME) >>

 LET (LANGUAGE) = 3;
 LET (COMAREALEN) = 60;
Appendix A 477

SAMPLE PROGRAMS
TRANSACT
 LET (LABELOPTIONS) = 1;
 MOVE (CFNAME) = " ";
 MOVE (NFNAME) = " ";
 LET (FORMSTORESIZE) = 4;

 << Open of Transaction file done in SYSTEM statement. Opened
 so that new records are appended to those already in the file >>

 << Open forms file >>

 MOVE (FILENAME) = "PAYROLL.VPLUS.MILLER";
 PROC VOPENFORMF((COMAREA),%(FILENAME));
 IF (CSTATUS) <> (ZERO) THEN
 DO
 LET (STOP-NOW) = (TRUE);
 MOVE (ERROR-LOCATION) = "**** procedure: Setup For Work - "
 "Forms File Open";
 PERFORM GET-ERROR-MESSAGE;
 RETURN;
 DOEND;

 << Open terminal >>

 MOVE (FILENAME) = "HPTERM";
 PROC VOPENTERM((COMAREA),%(FILENAME));
 IF (CSTATUS) <> (ZERO) THEN
 DO
 LET (STOP-NOW) = (TRUE);
 MOVE (ERROR-LOCATION) = "**** procedure: Setup For Work - "
 "Terminal Open";
 PERFORM GET-ERROR-MESSAGE;
 RETURN;
 DOEND;

 << Translate field names to screen order >>

 << Three of the fields in the form used by this application
 need to be toggled from "display only" to "input allowed".
 In order to do this, we first translate field names to
 screen order. >>

 << Setup to retrieve screen order for three specified fields >>

 MOVE (CFNAME) = "DEDUCTION";
 MOVE (FIELDINFO) = " ";
 LET (NUM-ENTRIES) = 3;
 LET (ENTRY-LEN) = 10;
 MOVE (FORM-NAME) = "DEDUCTION";
 LET OFFSET(FIELDENTRY) = 0;
 MOVE (FIELD-NAME) = "BADGE NUMBER";
 LET OFFSET(FIELDENTRY) = 20;
 MOVE (FIELD-NAME) = "LAST_NAME";
 LET OFFSET(FIELDENTRY) = 40;
 MOVE (FIELD-NAME) = "SUR_NAME";

 << Set length of entire info buffer >>
478 Appendix A

SAMPLE PROGRAMS
TRANSACT
 LET (INFOBUFLEN) = (NUM-ENTRIES) * (ENTRY-LEN) + 10;
 PROC VGETFIELDINFOR((COMAEA),(FIELDINFO),(INFORBUFLEN));
 IF (CSTATUS) <> (ZERO) THEN
 DO
 LET (STOP-NOW) = (TRUE);
 MOVE (ERROR-LOCATION) = "**** procedure: Setup For Work - "
 "Field Info Retrieval";
 PERFORM GET-ERROR-MESSAGE;
 DOEND;
 RETURN;
Appendix A 479

SAMPLE PROGRAMS
PASCAL
PASCAL
$TITLE ’VPLUS/V Data Entry Sample Program’$

{

This application collects employee payroll deduction transactions
and places the edited transactions into a file.

For this application: Enter key = edit and file transaction;

 f8 = exit application;

 all other f keys = redo transaction.

Each transaction entered by the operator is subjected to the data
edits embedded within the input form.

The application continues to collect transactions until either
the operator signals to exit or a system error is detected.
}

PROGRAM Pascal_Sample (output);

CONST
 MAXWINDOWLEN = 150;
 FILENAMELEN = 86;

TYPE
 SMALL_INT = 0..65535

 PAC_ 2 = PACKED ARRAY [1..2] OF CHAR;
 PAC_ 4 = PACKED ARRAY [1..4] OF CHAR;
 PAC_ 8 = PACKED ARRAY [1..8] OF CHAR;
 PAC_ 16 = PACKED ARRAY (1..16] OF CHAR;
 PAC_ 70 = PACKED ARRAY [1..70] OF CHAR;
 PAC_ 80 = PACKED ARRAY [1..80] OF CHAR;
 PAC_ 200 = PACKED ARRAY [l..200] OF CHAR;
 PAC_ FILENAME = PACKED ARRAY [1..FILENAMELEN] OF CHAR;
 PAC_ MAXWINDOWLEN = PACKED ARRAY [1..MAXWINDOWLEN]
 OF CHAR;

 TWO_BYTE_SUB_RANGE = PACKED ARRAY [1. .2] OF 0. .255;

 COMAREA REC = RECORD
 CSTATUS : SMALL_INT;
 LANGUAGE : SMALL_INT;
 COMAREALEN : SMALL_INT;
 USERBUFLEN : SMALL_INT;
 CMODE : SMALL_INT;
 LASTKEY : SMALL_INT;
 NUMERRS : SMALL_INT;
 WINDOWENH : SMALL_INT;
 MULTIUSAGE : SMALL_INT;
 LABELOPTIONS : SMALL_INT;

CFNAME : PAC_16;
480 Appendix A

SAMPLE PROGRAMS
PASCAL
 NFNAME : PAC_16;
 REPEATAPP : SMALL_INT;
 FREEZEAPP : SMALL_INT;
 CFNUMLINES : SMALL_INT;
 DBUFLEN : SMALL_INT;
 SKIP_31 : SMALL_INT;
 LOOKAHEAD : SMALL_INT;
 DELETEFLAG : SMALL_INT;
 SHOWCONTROL : SMALL_INT;
 SKIP_35 : SMALL_INT;
 PRINTFILENUM : SMALL_INT;
 FILERRNUM : SMALL_INT;
 ERRFILENUM : SMALL_INT;
 FORMSTORESIZE : SMALL_INT;
 SKIP_40 : SMALL_INT;
 SKIP_41 : SMALL_INT;
 SKIP_42 : SMALL_INT;
 NUMRECS : INTEGER;
 RECNUM : INTEGER;
 SKIP_47 : SMALL_INT;
 SKIP_48 : SMALL_INT;
 TERM_FILEN : SMALL_INT;
 SKIP 50 : SMALL_INT;
 SKIP_51 : SMALL_INT;
 SKIP_52 : SMALL_INT;
 SKIP_53 : SMALL_INT;
 SKIP_54 : SMALL_INT;
 RETRIES : SMALL_INT;
 TERM_OPTIONS : SMALL_INT;
 ENVIRON : SMALL_INT;
 USERTIME : SMALL_INT;
 IDENTIFIER : SMALL_INT;
 LABELINFO :TWO_BYTE_SUB_RANGE;
 END;

 FIELDENTRY_REC = PACKED RECORD
 FIELD_NAME : PAC_16;
 SCREEN_ORDER : SMALL_INT;
 END;

 FIELDINFO REC = PACKED RECORD
 NUM_ENTRIES : SMALL_INT;
 ENTRY_LEN : SMALL_INT;
 FORM_NAME : PAC 16;
 FIEL_ENTRY : PACKED ARRAY [1..3] OF FIELDENTRY_REC;
 END;

 FIELDSPECS_REC = RECORD
 FIELD_ID : SMALL_INT;
 CHANGE_TYPE : SMALL_INT;
 CHANGE_SPEC : PAC_4;
 END;
CONST

LABELINFO_INIT = TWO_BYTE_SUB_RANGE [2 OF 0];
Appendix A 481

SAMPLE PROGRAMS
PASCAL
{ Comarea initialization constant record }

 COMAREA_INIT = COMAREA REC
 [CSTATUS : 0,
 LANGUAGE : 5, {Pascal }
 COMAREALEN :60,
 USERBUFLEN : 0,
 CMODE : 0,
 LASTKEY : 0,
 NUMERRS : 0,
 WINDOWENH : 0,
 MULTIUSAGE : 0,
 LABELOPTIONS : 1, {activate labels}
 CFNAME : ’’,
 NFNAME : ’’,
 REPEATAPP : 0,
 FREEZEAPP : 0,
 CFNUMLINES : 0,
 DBUFLEN : 0,
 SKIP_31 : 0,
 LOOKAHEAD : 0, {no form background loading}
 DELETEFLAG : 0,
 SHOWCONTROL : 0,
 SKIP_35 : 0,
 PRINTFILENUM : 0,
 FILERRNUM : 0,
 ERRFILENUM : 0,
 FORMSTORESIZE : 4, {local form storage}
 SKIP_40 : 0,
 SKIP_41 : 0,
 SKIP_42 : 0,
 NUMRECS : 0,
 RECNUM : 0,
 SKIP_47 : 0,
 SKIP_48 : 0,
 TERM_FILEN : 0,
 SKIP_50 : 0,
 SKIF_51 : 0,
 SKIP_52 : 0,
 SKIP_53 : 0,
 SKIP_54 : 0,
 RETRIES : 0,
 TERM_OPTIONS : 0,
 ENVIR0N : 0,
 USERTIME : 0,
 IDENTIFIER : 0,
 LABELINFO : LABELINFO_INIT];
 VAR
 COMAREA : COMAREA_REC;
 DATABUF : PAC_200;
 DATABUFLEN : SMALL_INT;
 DONE_WITH_TRANSACTIONS : BOOLEAN;

 ERROR_LOCATION : PAC_70;
 FIELDINFO : FIELDINFO_REC;
 FIELDSPECS : ARRAY [1..3] OF FIELDSPECS_REC;
 FILENAME : PAC_FILENAME;
 FOUND_DATA_ERRORS : BOOLEAN;
482 Appendix A

SAMPLE PROGRAMS
PASCAL
 INFOBUFLEN : SMALL_INT;
 MSGBUF : PAC MAXWINDOWLEN;
 MSGBUFLEN : SMALL_INT;
 ERRMSGLEN : SMALL_INT;
 NBR_TXN_COLLECTED : INTEGER;
 NUMSPECS : SMALL_INT;
 STOP_NOW : BOOLEAN;
 TXN_FILE : TEXT;

{ Procedure Declarations }

PROCEDURE VCHANGEFIELD ; INTRINSIC;
PROCEDURE VCLOSEFORMF ; INTRINSIC;
PROCEDURE VCLOSETERM ; INTRINSIC;
PROCEDURE VERRMSG ; INTRINSIC;
PROCEDURE VFIELDEDITS ; INTRINSIC;
PROCEDURE VFINISHFORM ; INTRINSIC;
PROCEDURE VGETBUFFER ; INTRINSIC;
PROCEDURE VGETFIELDINFO ; INTRINSIC;
PROCEDURE VGETNEXTFORM ; INTRINSIC;
PROCEDURE VINITFORM ; INTRINSIC;
PROCEDURE VOPENFORMF ; INTRINSIC;
PROCEDURE VOPENTERM ; INTRINSIC;
PROCEDURE VPUTWINDOW ; INTRINSIC;
PROCEDURE VREADFIELDS ; INTRINSIC;
PROCEDURE VSHOWFORM ; INTRINSIC;

PROCEDURE DISPLAY_SYSTEM_ERROR;

BEGIN

WRITELN (’**** Transaction collection facility detected system ’,
 ’error at: ’,
 ERROR_LOCATION);

WRITELN (’**** The error messaged returned is:’);
WRITELN (’**** ’, MSGBUF : MSGBUFLEN);

END;

PROCEDURE CLEANUP_AFTER_WORK;

{ Note that this procedure unconditionally attempts to close
 the forms file and terminal }

BEGIN

CLOSE (TXN_FILE);

COMAREA.CSTATUS := 0;

VCLOSEFORMF (COMAREA);

COMAREA.CSTATUS := 0;

VCLOSETERM (COMAREA);
Appendix A 483

SAMPLE PROGRAMS
PASCAL
END;

PROCEDURE GET_ERROR_MESSAGE;

BEGIN

MSGBUFLEN := MAXWINDOWLEN;

VERRMSG (COMAREA,
 MSGBUF,
 MSGBUFLEN,
 ERRMSGLEN);

END;

PROCEDURE PROMPT_OPERATOR;

BEGIN

GET_ERROR_MESSAGE;

VPUTWINDOW (COMAREA,
 MSGBUF,
 ERRMSGLEN);

IF COMAREA.CSTATUS <> 0 THEN
 BEGIN
 STOP_ NOW := TRUE;
 ERROR_LOCATION
 := ’**** procedure: Prompt Operator - Window Load’;
 GET ERROR_MESSAGE;
 END;

IF NOT (STOP_NOW) THEN
 BEGIN

{ Display update }

 VSHOWFORM {COMAREA};

 IF COMAREA.CSTATUS <> 0 THEN
 BEGIN
 STOP_NOW := TRUE;
 ERROR_LOCATION
 : = ’**** procedure: Collect Transactions - Display Update’;
 GET_ERROR_MESSAGE;
 END;

 END; { Display update }

END; {Procedure Prompt Operator }

 WHILE (FOUND_DATA_ERRORS)
 AND (NOT (STOP_NOW))
 AND (NOT (DONE_WITH_TRANSACTIONS)) DO
 READ_EDIT_FILE_TRANSACTION;
484 Appendix A

SAMPLE PROGRAMS
PASCAL
 END;

END; { Procedure Collect Transactions }

PROCEDURE SETUP_FOR_WORK;

BEGIN

{ Init Comarea }

COMAREA := COMAREA_INIT;

{ Open Transaction File so that new transactions are
 added to those already in the file }

APPEND (TXN_FILE, ’PAYTXN’);

{ Open forms file }

FILENAME := ’PAYROLL.WORK.ADMIN’;

VOPENFORMF (COMAREA,
 FILENAME);

IF COMAREA.CSTATUS <> 0 THEN
 BEGIN
 STOP_NOW := TRUE;
 ERROR_LOCATION
 := ’**** procedure: Setup For Work - Forms File Open’;
 GET_ERROR_MESSAGE;
 END;

IF NOT (STOP_NOW) THEN
 BEGIN

 { Open terminal }

 FILENAME := ’HPTERM’;

 VOPENTERM (COMAREA,
 FILENAME);

 IF COMAREA.CSTATUS <> 0 THEN
 BEGIN
 STOP_NOW := TRUE;
 ERROR_LOCATION
 := ’**** procedure: Setup For Work - Terminal Open’;
 GET_ERROR_MESSAGE;
 END;

 END; { Open terminal }
 IF NOT (STOP_NOW) THEN
 BEGIN

 { Translate field names to screen orders }
Appendix A 485

SAMPLE PROGRAMS
PASCAL
 { Three of the fields in the form used by this application
 need to be toggled from "display only" to "input allowed".
 In order to do this, we first translate field names to
 screen orders. }

 { Setup to retrieve screen order for three specified fields }

 FIELDINFO.NUM_ENTRIES := 3;

 FIELDINFO.ENTRY_LEN := 9; { Field name key and screen order }

 FIELDINFO.FORM_NAME := ’DEDUCTION’;

 FIELDINFO.FIELDENTRY [1].FIELD_NAME := ’BADGE_NUMBER’;
 FIELDINFO.FIELDENTRY [1].SCREEN_ORDER := 8224; {ASCII blanks}

 FIELDINFO.FIELDENTRY [2].FIELD_NAME := ’LAST_NAME’;
 FIELDINFO.FIELDENTRY [2].SCREEN_ORDER := 8224; {ASCII blanks}

 FIELDINFO.FIELDENTRY [3].FIELD_NAME := ’SUR_NAME’;
 FIELDINFO.FIELDENTRY [3].SCREEN_ORDER := 8224; {ASCII blanks}

 { Set length of entire info buffer }

 INFOBUFLEN
 := (FIELDINFO.NUM_ENTRIES * FIELDINFO.ENTRY_LEN) + 10;

 VGETFIELDINFO (COMAREA,
 FIELDINFO,
 INFOBUFLEN);

 IF COMAREA.CSTATUS <> 0 THEN
 BEGIN
 STOP_NOW := TRUE;
 ERROR_LOCATION
 : = ’**** procedure: Setup For Work - Field Info Retrieval’;
 GET_ERROR_MESSAGE;
 END;

 END; { Translate field names to screen orders }

 END; { Procedure Setup For Work }

 BEGIN

 { Sample program outer block }

STOP_NOW := FALSE;
DONE_WITH_TRANSACTIONS := FALSE;

NBR_TXN_COLLECTED := 0;

SETUP_FOR_WORK;

WHILE (NOT (STOP_NOW))
 AND (NOT (DONE_WITH_TRANSACTIONS)) DO
 COLLECT_TRANSACTIONS;
486 Appendix A

SAMPLE PROGRAMS
PASCAL
CLEANUP_AFTER_WORK;

WRITELN (’Deduction transactions collected this session = ’,
 NBR_TXN_COLLECTED);

IF STOP NOW THEN
 DISPLAY_SYSTEM_ERROR;

END.
Appendix A 487

SAMPLE PROGRAMS
PASCAL
488 Appendix A

VPLUS Error Messages
B VPLUS Error Messages

Note the following words or characters within messages:

This appendix lists all error messages that can occur during execution of VPLUS in
interactive mode or batch mode. The messages consist of the error number and the
associated message. Cause and action text is provided for most messages.

• FSERR

Indicates a file system error has occurred. When the number following FSERR is
negative, refer to the appropriate group (FORMSPEC, REFSPEC, etc.) of "Access
Method Errors" listed in this appendix.

• COM 'STATUS

Indicates an error executing one of the VPLUS intrinsics.

• Internal

Indicates that the problem is internal to the system; the user cannot easily correct the
problem. If you encounter a message with this condition, contact the system manager
for advice.

• Exclamation point ()

Exclamation points in the message are replaced by particular numbers or characters
before the message is displayed. For instance, if a message contains FSERR, the
exclamation marks will be replaced by a file error number when the message is
displayed.
Appendix B 489

VPLUS Error Messages
Classification of Error Messages
Classification of Error Messages
VPLUS issues the following basic types of error messages:

• FORMSPEC

• VPLUS Intrinsics

• SNA DHCF

• REFSPEC

• REFORMAT

The following tables provide a map of the classification of messages within each category,
the number range for the classification, and the associated page numbers where error
information can be found.
490 Appendix B

VPLUS Error Messages
FORMSPEC Error Messages
FORMSPEC Error Messages

Access Method Messages

Screen Definition Messages

Error Message Cause/Action

086 Access method: file code error.

087 Access method: Attempt to add a
duplicate key.

088 Access method: Internal error.
Key insertion location error.

089 Access method: Internal error.
Block not present.

090 Access method: Attempt to open an
old file as new.

091 Access method: Internal error.
Key block buffer error,

092 Access method: Internal error.
Invalid key block number.

093 Access method: Internal error.
Block not verified.

094 Access method: Record not found.

095 Access method: Not enough space
in extension for the directory.

Increase the MAXDATAparameter on the PREP
or RUN command. Check the FORMSPEC
listing for directory size.

096 Access method: Internal error.
Parent block not found.

097 Access method: Internal error.
Illegal entry number.

098 Access method: The file is not a
KSAMless forms/ ref file.

099 Access method: The file is at
EOF.

Error Message Cause/Action

101 Form is too big, overflowed the
screen buffer.

Maximum screen buffer size is 7984 bytes.
Reduce the size of your form.
Appendix B 491

VPLUS Error Messages
FORMSPEC Error Messages
102 Form ! is too big to
becompiled.

Form code record has exceeded 8K bytes.
Maximum number of fields is 127. Reduce the
number of fields, size of screen, or amount of
processing specifications.

103 An END FIELD must have a
matching START FIELD.

Check your screen design to make sure that
each "end field" delimiter has a matching "begin
field" delimiter. If your delimiters are the
unprinted kind (ESC [and ESC]), it may be
more convenient to delete the line containing
the delimiters and to replace them.

106 Internal error: All of the
screen was not read correctly.

Possibly a missing record terminator. Press
ENTER again. If the error still occurs, reduce the
size of the form or of the processing
specifications.

107 A name cannot be longer than 15
characters.

Limit your form, field, or save field names to 15
characters.

108 A name cannot have embedded "
"’s or "."’s.

Blanks and periods not allowed in names.

109 A name must start with an
alphabetic character.

Special characters and digits are not allowed.

110 A name cannot have embedded "
"’s or "."’s.

See error 108.

111 A name can only contain alphas,
digits and "_"’s.

Letters (A-Z), (a-z), numbers (0-9), or an
underline (_) are allowed in a name.

112 Internal error: Unexpected CR. Unexpected carriage return.

113 Internal error: Screen
terminator never found.

See message for error 106. Also make sure
enough terminal buffers are configured to
complete the rest of the screen. The number of
buffers can be increased to 255.

114 Internal error: Expected LF
after CR.

Line feed expected after carriage return.

115 A field must contain a name. Each field on the screen must have a name
within the field boundaries.

116 Internal error writing screen
message. (COM’STATUS !!!!)

117 Terminal error initializing new
screen. (COM’STATUS !!!!)

118 Terminal error writing new
screen. (COM’STATUS !!!!)

119 Terminal error writing new
screen. (COM’STATUS !!!!)

Error Message Cause/Action
492 Appendix B

VPLUS Error Messages
FORMSPEC Error Messages
120 Terminal error initializing old
screen. (COM’STATUS !!!!)

121 Terminal error writing old
screen. (COM’STATUS !!!!)

122 Terminal error reading screen.
(COM’STATUS !!!!)

 See error 106.

123 Error writing the screen
source. File full? (FSERR!!!!)

Could not write the screen source record to the
form file. First try to correct the problem using
the information given in the File System error
message. If you are unsuccessful, try the
following:

a) The file may be full. Build a larger file using
the :BUILD command and FCOPY>

b) A system crash or abort may have corrupted
the form. Re-enter all menus defining the form.

c) If the above intrinsics fail, delete the form
and recreate it.

124 Internal error reading the
screen source for form !.
(FSERR !!!)

 Could not read the screen source record from
the forms file. See error 123.

125 A name can only be in the first
line of the field.

If a field is continued on a second line, the name
must be in the first line.

126 A name can only be in the first
line of the field.

See error 125.

127 Internal error: Allocate of
GLOB’SCREEN failed.

128 Error writing the global screen
record. File full? (FSERR!!!!)

See error 123.

129 Internal error: Allocate of
STBL failed.

Could not allocate stack space for symbol table.

130 Error writing STBL to the forms
file. File full? (FSERR!!!!)

See error 123.

131 INTERNAL ERROR: changing screen
of family.

132 Only 128 fields are allowed in
a form.

 Reduce the number of fields in the form.

Error Message Cause/Action
Appendix B 493

VPLUS Error Messages
FORMSPEC Error Messages
Field Symbol Table Messages

Error Message Cause/Action

301 Internal error: FST ALLOCATE for
form ! failed.

FST is Field Symbol Table. See error 129.

302 Internal error: Field symbol
table for form ! is missing.

See error 123. Could not find Field Symbol
Table for old form in form file. Press ENTER on
screen design to re-create FST.

303 Error writing FST to forms file.
File full?

Could not write FST record in forms file. See
error 123.

304 Internal error: FST does not have
any more room.

Renumber the form in batch mode.

305 The name must be unique for this
form.

The field name is the same as another field
name in the same form.

306 Internal error: FST search range
error.

Field Symbol Table search problem. See error
304.

307 Internal error: FST field length
changed.

Field Symbol Table access problem. See error
304.

308 Internal error: FST start order. Field Symbol Table structure problem. See
error 304.

309 Internal error: FST end order. Field Symbol Table structure problem. See
error 304.

313 Internal error: FST unreferenced
error.

Field Symbol Table structure problem. See
error 304.

314 Internal error: In form !, field
! has an invalid screen order.

 Field Symbol Table structure problem. See
error 304.

315 The field could not be found. Field name does not exist.

316 Internal error: FST update screen
order.

 See error 308.

317 The field number must be unique
for this form.

See error 308.

319 In form !, screen order for field
! is out of bounds.

 See error 304.

320 Internal error: FST wrap loop. See error 308.

321 Internal error reading FST for
form !. (FSERR !!!)

See errors 123, 303.

322 Internal error storing FST for
form !. (FSERR !!!)

 See errors 123, 303.

Internal error: CFG ALLOCATE for
form ! failed.
494 Appendix B

VPLUS Error Messages
FORMSPEC Error Messages
The field number cannot be more
than 256.

Too many modifications have been made to
the screen for this form. The form must be
rebuilt from scratch or renumbered in batch.

Error Message Cause/Action
Appendix B 495

VPLUS Error Messages
FORMSPEC Error Messages
Menu Processing Utility Messages

Menu Init and Processing Messages

Error Message Cause/Action

601 Must be B, H, I, U, 1-8, in any
combination, or NONE.

Enhancement code is incorrect; check and
correct.

604 The name cannot have embedded
blanks.

A field or form name has embedded blank;
delete blank or use underline (_).

605 The form name must be unique for
this forms file.

Form name duplicates another form name in
file; make name unique.

606 Must be NUMn, DIG, IMPn, MDY,
DMY, YMD, or CHAR.

Data type incorrect; use one of the listed codes
- n indicates number of decimal positions.

608 Must be 0 (optional), R
(required), P (process) or D
(display only).

Field type incorrect; use one of the listed
codes.

609 Internal error: Global allocate
failed.

610 Error writing globals buffer.
File full? (FSERR!!!!)

See error 123.

611 For a NUMn data type, n must be a
digit.

Use digit (0-9) after NUM data type to
indicate number of decimal positions.

612 For the IMPn data type, n is
required.

You must specify the number of implied
decimal places in an IMP type field.

613 The name cannot be a reserved
word.

Refer to the list of the FORMSPEC reserved
words.

615 Color pair value must be between
1 and 8.

Error Message Cause/Action

701 The name cannot be blank. The form name must be specified on FORM
menu.

702 The next form name cannot be
blank.

Specify a particular next form name, or
$HEAD, $END, $RETURN , or $REFRESH.

703 Error trying to open the forms
file. (FSERR!!!!)

Refer to the File System Error number for the
cause of the open failure. Check form name.
Do not use the key file if the form file is old.

704 The window line must be a number
between 0 and 24, inclusive.

Correct window specification on GLOBALS
menu.
496 Appendix B

VPLUS Error Messages
FORMSPEC Error Messages
705 Must be N (no repeat), R
(repeat), or A (repeat and
append).

Correct Repeat Option on FORMS menu.

706 Must be C (clear), A (append), or
F (freeze, then append).

 Correct Next Form option on FORMS menu.

707 Internal error writing top lines
to terminal.then append).

 Field Menu.

708 Internal error writing terminal
initialization.(COM’STATUS !!!!)

709 Internal error writing field
specs to terminal.
(COM’STATUS !!!!)

Field Menu.

710 Error in VREADFIELDS.
(COM’STATUS !!!!)

711 Internal error reading the
terminal, unformatted.
(COM’STATUS !!!!)

Screen read error or processing specification
read error.

712 Internal error positioning the
cursor. (COM’STATUS !!!!)

713 Error in VSHOWFORM.
(COM’STATUS !!!!)

714 Internal error writing the
window. (COM’STATUS !!!!)

715 Internal error writing the Field
Menu source record.(FSERR!!!!)

716 Internal error writing the error
cursor pos’ n. (COM’STATUS !!!!)

717 Internal error writing the field
top lines. (COM’STATUS !!!!)

Field Menu.

718 Error in VGETNEXTFORM for Main
Menu. (COM’STATUS !!!!)

719 Error in VSHOWFORM for Main Menu.
(COM’STATUS !!!!)

720 Error in VREADFIELDS for Main
Menu. (COM’STATUS !!!!)

721 Selection cannot be blank. Enter a value in the MAIN menu selection
box.

722 The form could not be found. Form specified on MAIN menu not found in
forms file. In batch mode, form not found in
current forms file.

Error Message Cause/Action
Appendix B 497

VPLUS Error Messages
FORMSPEC Error Messages
723 Selection must be one of the
characters listed below.

Enter one of the specified characters in the
MAIN menu selection box.

724 This selection requires a form
name to be supplied.

Specify a form name in the appropriate box, or
enter a different character in the selection
box.

725 Err writing form int’m. rec for
form !. File Full? (FSERR !!!)

See error 123. Field Symbol Table error.

726 Internal error initializing the
form!.

727 A forms file has not yet been
specified, so selection is
invalid.

To copy or compile from MAIN menu, forms
file must have been specified on FORMS FILE
menu.

728 File does not exist. Press ENTER
to create file.

734 There was an error trying to open
this forms file. (FSERR !!!!)

736 Internal error reading the forms
file. (FSERR !!!!)

740 There are no forms in this forms
file.

Specified forms file has no defined forms.

742 Save field length cannot be
blank.

Enter number of characters in save field on
SAVE FIELD menu.

743 Save field length must be an
integer greater than 0.

744 This save field already exists. Use a new save field name.

745 A forms file can only have 20
save fields.

746 There are no save fields in this
forms file.

747 The save field name cannot be
blank.

Enter a save field name on the SAVE FIELD
menu.

748 WARNING: Forms file modified and
not compiled.Press EXIT to exit.

You modified the forms file and then pressed
EXIT. If you want to compile before
terminating FORMSPEC, press MAIN,
otherwise press EXIT again.

749 This file is a Fast Forms File
and cannot be modified.

You are attempting to modify a fast forms file;
use the forms file name you originally
specified.

750 This file is a Reformat file; use
REFSPEC to modify it.

Specify a forms file name, or RUN
REFSPEC.PUB.SYS to modify the reformat file.

Error Message Cause/Action
498 Appendix B

VPLUS Error Messages
FORMSPEC Error Messages
751 This file is not a VPLUS Forms
File.

You specified an incorrect file name.

752 Error opening the Fast Forms
File. (FSERR !!!!)

753 Error reading the forms file.
(FSERR !!!!)

754 Error writing to the Fast Forms
File. File full? (FSERR !!!!)

See error 123.

755 Error finding the correct record.
(FSERR !!!!)

756 Error reading the chained
records. (FSERR !!!!)

757 Error opening the old Fast Forms
File. (FSERR !!!!)

758 Error purging the old Fast Forms
File. (FSERR !!!!)

759 Error closing the Fast Forms
File. (FSERR !!!!)

760 The old file is not a VPLUS Fast
Forms File.

The fast forms file name you specified is not
an existing VPLUS fast forms file.

761 This file is not a VPLUS forms
file.

See error 751.

762 Fast forms file name must be
specified if key file is
specified.

You are trying to compile to a fast forms file
without naming the data file.

763 Copy/rename/delete I/O error.
(FSERR !!!!)

See error 123.

764 Error when deleting an old
record.

See error 123.

765 The specified family is not
defined.

766 Cannot change screen, the form is
a family member.

User pressed ENTER on the screen of a child
form or attempted to change the screen. Press
REFRESH (f4) to repaint the original and press
NEXT (f6) to go to the field menus.

767 Cannot change family of the form. Do not attempt to change the name in the
"Reproduced from" field of the form menu.

768 List operation failed. A write to file FORMLIST failed. Check for a
valid file equation or for spooling problems.

Error Message Cause/Action
Appendix B 499

VPLUS Error Messages
FORMSPEC Error Messages
Batch Mode Messages

Error Message Cause/Action

769 Invalid batch mode command. FORMSPEC expected a valid batch mode
command or parameter.

770 Warning: Forms file modified and
not compiled.

The forms file must be compiled before it can
be used.

771 Could not open command and not
compiled.

Check file name, security, or if in use
elsewhere.

772 Could not open list file. Check file name, security, or if in use
elsewhere.

774 In form !, field !, "!" is
undefined:

An error was found in a field during
compilation. (See next error message printed.)

775 Internal error in form !, field
!:

An error was found in a field during
compilation. (See next error message printed.)

776 Form !, field ! has semantic
error:

An error was found in a field during
compilation. The syntax of the statement in
the field may be correct, but its meaning is
wrong. (See next error message printed.)

777 Form !, field ! has a data type
error:

An error was found in a field during
compilation. Data type inconsistent with
specification. (See next error message
printed.)

778 Form !, field ! hasa syntactic
error:

Statement syntax is incorrect. (See next error
message printed.)

780 Commands must be preceded by a
FILE command.

Current forms file must be specified.

781 Missing form name. Form name must be specified.

782 Missing forms file name. Forms file name must be specified.

783 Missing fast forms file name. Fast forms file name must be specified when
"INTO" is used.

784 Too many arguments. Too many parameters were specified for the
command.

785 Expecting "TO form-name". The form name must be specified when "TO"
is used.

786 Expecting "IN forms-file" or "TO
form-name".

COPY command must include either "IN file"
or "TO newform".

787 Expecting "INTO
fast-forms-file".

The only option for the COMPILE command is
"INTO" followed by the fast forms file name.

788 Internal error in FORMSPEC
processing.

See System Manager.
500 Appendix B

VPLUS Error Messages
FORMSPEC Error Messages
789 All commands ignored until next
FILE command.

Either a command was not recognized or an
error occurred with a FILE command.

790 Compile failed.

Error Message Cause/Action
Appendix B 501

VPLUS Error Messages
FORMSPEC Error Messages
RELATE Command Messages

Menu Controller Messages

Error Messages Cause/Action

791 Child cannot have the same name
as parent.

Same form name was specified as the parent
and child form.

792 Form is already child of that
parent.

The forms are already related.

793 Child form is already related to
another parent.

A child cannot have more than one parent.

794 Form specified as child cannot
have any children.

A child form cannot be a parent.

795 Form layout of child must be the
same as parent.

The form layouts must be identical, including
field tags.

796 Field numbers of child must be
the same as parent.

When the field numbers do not match, the
forms cannot be related.

797 Correct syntax is: "RELATE
child-form-name TO
parent-form-name".

Arguments in the batch mode command were
mistyped.

798 KSAM forms files can no longer be
modified - use CONVERT. PUB.SYS.

Refer to Appendix H for instructions.

799 Cannot change color forms file on
a non-color terminal.

800 Internal error in color
conversion.

Error Messages Cause/Action

802 The PREV key is not appropriate;
there are no previous menus.

You are currently at the first menu; press
NEXT to go to the next menu, NEXT FORM to
display the next form menu, or use the MAIN
menu to select a particular menu.

803 The function key just hit is not
defined for this mode.

804 Internal error reading source
record from forms file.
(FSERR !!!!)

See error 123

805 Internal error getting next form
!. (COM’STATUS !!!)

806 Error in VSHOWFORM.
(COM’STATUS !!!!)

807 Error in VREADFIELDS. (COM’STATUS
!!!!)
502 Appendix B

VPLUS Error Messages
FORMSPEC Error Messages
808 Error in VGETBUF. (COM’STATUS
!!!!)

809 Error writing source to forms
file. File full? (FSERR !!!!)

See error 123.

811 Internal error reading form
record for form !. (FSERR !!!)

See error 123.

812 Internal error reading globals
record. (FSERR !!!!)

See error 123.

813 Internal error allocating
GLOB’SCREEN for form !.

814 Internal error allocating STBL
for form !.

815 NEXT is not meaningful until a
forms file name is specified.

Enter a forms file name on the FORMS FILE
menu. (Exit if necessary and run FORMSPEC
again to display the menu.)

816 NEXT is not appropriate, since
there are no more forms.

Use PREV or PREV FORM key, or go to the
MAIN menu to request a particular form.

817 The save field could not found.

820 The PREV FORM key is not
appropriate; there are no
previous forms.

Use NEXT or NEXT FORM key, or go to the
MAIN menu to request a particular form.

821 Internal error allocating the
globals buffer.

822 This value is required and cannot
be blank.

823 Enter "Y" to go to function key
labels menu.

To define global function key labels, enter "Y"
on the last line of the GLOBALS menu. To
define form function key labels, enter "Y" on
the Function Key Label line of the FORM
menu.

824 Pause interval may not be
negative.

The Split Message Pause must be between 1
and 99.

825 Invalid error light
(A ... P, @@).

Enter a valid error light (a letter of the
alphabet or the @@ character).

826 Invalid Multifunction reader
definition (MARKS or HOLES).

Enter either of the valid Multifunction reader
definitions.

827 Field may only have the values
"YES" or "NO".

The valid options for Corner Cut Required are
YES or NO.

828 Illegal combination of options
for the Multifunction reader.

The combinations HOLES with Clock On and
MARKS with NONE are not valid.

Error Messages Cause/Action
Appendix B 503

VPLUS Error Messages
FORMSPEC Error Messages
829 Invalid Multifunction reader
definition (COD, CAD, NONE).

Enter one of the valid Multifunction reader
definitions.

830 Invalid barcode type (UPC, EAN,
I25, I39, MAT, ILV).

Enter one of the valid Barcode Reader types.

831 Internal error: Writing device
intermediate record (FSERR !!!!)

832 Invalid combination of PAUSE
INTERVAL and WAIT FOR USER

If Split Message Pause is specified, Wait for
User must be NO.

833 Enter "CONTINUE" only, or press a
function key.

Only CONTINUE may be entered in this field.

834 NEXT is not appropriate until the
forms file has been adjusted.

The specified forms file is an old version and
must be adjusted before going further.

835 Place name of form to be listed
within List Form field.

836 Enter "Y" or "N" only.

837 Enter ‘‘Y’’ to go to Data Type
Conversion Menu.

Error Messages Cause/Action
504 Appendix B

VPLUS Error Messages
FORMSPEC Error Messages
Init and Compile Messages

Error Message Cause/Action

902 For form !, the next form ! has
not been defined.

The next form name specified does not exist in
the forms file. Change the next form name or
create a form with that name.

903 The head form ! has not been
defined.

The head form specified on the globals menu
does not exist in the forms file. Create a form
with the head form name or change the head
form on the globals menu.

904 Internal error closing FORMSPEC
forms file. (COM’STATUS !!!!)

905 Internal error closing the
terminal file. (COM’STATUS !!!!)

909 Error writing the global code
record. File full? (FSERR !!!!)

See error 123.

911 Error writing form code record
for form !. File full?
(FSERR !!!)

 See error 123.

912 Internal error reading screen
source for form !. (FSERR !!!)

913 Internal error closing your forms
file. (FSERR !!!!)

915 Initial value contains system
constant,

916 In form !, the field name ! is
not unique.

Duplicate field name found in indicated form;
use FIELD menu to change field name.

917 Error writing field names table
for form !. File full? (FSERR
!!!)

918 Error writing save field table
for form !. File full? (FSERR
!!!)

See error 123.

919 The initial value is too long. The initial value is longer than the length of
the field as defined on the screen menu. Use
the screen menu to lengthen the field or
shorten the initial value on the field menu.

920 The initial value contains an
invalid DIG value.

A DIG type field may contain only digits (0-9),
no decimal point, commas, or sign.

921 The initial value contains an
invalid NUM value.

A NUM type field may contain only digits,
decimal point, a sign.

922 The initial value contains an
invalid numeric value.

This field may only have a numeric value; no
letters or special characters.
Appendix B 505

VPLUS Error Messages
FORMSPEC Error Messages
923 Internal error: For form !,
allocating local buffer for
field !.

924 Internal error: For form !,
reading source for field !.
(FSERR !!)

 See error 123.

925 In form !, field ! has an invalid
initial value.

The initial value specified does not match the
field data type.

926 In form !, field name !is a
reserved word.

Check list of reserved words and change field
name.

927 The initial value contains an
invalid MDY date value.

Make sure date is in order month day year, is
a valid date, spelled correctly.

928 The initial value contains an
invalid DMY date value.

Make sure date is in order day month year, is
a valid date, spelled correctly.

929 The initial value contains an
invalid YMD date value.

Make sure date is in order year month day, is
a valid date, spelled correctly.

932 The initial value contains an
invalid IMP value.

An implied decimal field may contain only
digits, decimal point, commas, sign.

950 EDIT statements are not allowed
in the INIT phase.

Field edits cannot be performed in the INIT
phase; move statement to FIELD phase.

951 EDIT statements are not allowed
in the FINISH phase.

Field edits cannot be performed in the
FINISH phase; move statement to FIELD
phase.

952 Only a field, save field, or
implied current field is allowed.

953 Only one character is allowed in
a FILL statement.

Enter single character surrounded by quotes.

954 Only 10 or 11 is allowed in a
CDIGIT statement.

CDIGIT tests only modulo 10 or modulo 11
check digits.

994 In form !, field !, "!" is
undefined; press NEXT to see
error.

Indicated specification is not recognizable;
NEXT will display FIELD menu so you can
make correction and then press ENTER.

995 Internal error in form !, field !
; press NEXT to see error.

NEXT displays FIELD menu and another
message with the cursor positioned to the
location of the error so you can correct the
specification and then press ENTER.

996 Form !, field ! has a semantic
error; press NEXT to see error.

NEXT displays FIELD menu so you can correct
the error and then NEXT to see error.
press ENTER. The syntax of your statement
may be correct, but its meaning is in error.

Error Message Cause/Action
506 Appendix B

VPLUS Error Messages
FORMSPEC Error Messages
997 Form !, field ! has a data type
error; press NEXT to see error.

Data type inconsistent with specification;
NEXT displays NEXT to see error. FIELD menu
so you can correct data type or specification
and press ENTER.

998 Form !, field ! has a syntactic
error; press NEXT to see error.

NEXT displays FIELD menu so you can correct
statement syntax and then press ENTER.

999 Field processing specification
syntax error.

Correct syntax of statement and then press
ENTER. error.

Error Message Cause/Action
Appendix B 507

VPLUS Error Messages
FORMSPEC Error Messages
Scanner Messages

Error Messages Cause/Action

1001 Too many levels of indenting, limit is
!!!!.

Only 10 levels of nesting are allowed.

1002 Improper indenting, statement groups
must be vertically aligned.

IF and ELSE parts at same nesting level must
be indented vertically aligned the same
amount. Maximum levels of nesting for IF is
eight levels.

1003 Improper indenting, must be within
outer level of indenting.

An ELSE or subsequent IF starts to the left of
first IF statement.

1010 More left braces than right braces
were found.

Braces must match; add right brace, or delete
extra left brace.

1011 More right braces than left braces
were found.

Braces must match; add left brace, or delete
extra right brace.

1030 Token is too long, limit is !!!!
characters.

A string exceeds 120 characters. Correct and
press enter.

1031 A $ may only appear with a system
defined name, like $empty.

A $ cannot be part of a name unless it is one of
the system defined names (see TABLE 03-01).

1032 Expected a statement beginning. Syntax error. The cursor is positioned to the
location of the error.

1033 String is too long, limit is !!!!
characters.

1034 String must end with a quote. A literal string (character constant) must be
enclosed within quotes.

1035 String must begin with a quote. When continuing a string to the next line,
close the quotes, put an & at the end of first
line, enclose string on second line within
quotes.

1036 Only a comment may appear on the
same line after an ampersand.

An ampersand (&) is used to continue a
string; it cannot be followed by another
statement, only a comment starting with a \.

1037 A date constant must end with an
exclamation point.

A date used as a constant must be enclosed
within exclamation points.

1038 Date constant is too long, limit is !!!!
characters.

1039 Date constant must be a valid MDY
date.

Date constants must be in the order: month
day year, and must be valid dates.
508 Appendix B

VPLUS Error Messages
FORMSPEC Error Messages
Parser Messages

Apply Errors

Error Messages Cause/Action

1094 Invalid name: no field or
save field with this name is
defined.

A valid field name is expected

1095 Internal error.

1096 Semantic error. See error 1098.

1097 Data type error: Data types
must be compatible.

Data type and value in processing specification
do not correspond.

1098 Field processing
specification syntax error.

Statement is incorrect. Cursor is positioned to
the location of the error. Correct and press
enter.

Error Message Cause/Action

1101 Left operand must be type
DIG, NUMn, IMPn, or an
expression.

An arithmetic operand is expected as
destination of SET or comparison or an
expression. statement. Cursor is positioned to
the location of the error.

1102 Both operands must be type
DIG, NUMn, IMPn, or an
expression.

Arithmetic operands expected in SET or
comparison statement. Cursor is positioned to
the location of the error.

1103 Operand must be type DIG,
NUMn, IMPn, or an expression.

Arithmetic operand expected in SET or
comparison statement.

1104 Operand data types must be
compatible.

Operands of the same data type are expected in
a SET or comparison statement.

1105 Operand types must agree
unless source is a field or a
save field.

Operands must be the same data type unless
the source is a field or save field name.

1106 Right operand must be type
CHAR.

A character type value is expected as source of
SET or comparison statement.

1107 Left operand must be a field
or a save field.

Destination operand of SET statement may only
be a field or save field name.

1108 NFORM name must be a FORM name
in quotes, or a type CHAR
field.

In CHANGE NFORM statement, the next form is
identified by its name in quotes, by a char type
field containing the form name, or by a system
constant such as $HEAD.

1109 MINLEN operand must be type
DIG, NUMn, IMPn, or a number.

The minimum field length is specified as a
positive integer, or a name of a numeric field.
Appendix B 509

VPLUS Error Messages
FORMSPEC Error Messages
1110 CDIGIT operand must be 10 or
11.

CDIGIT checks only modulo 10 or 11 check
digits.

1120 Too many statements, code for
entire form is too big.

At compilation, the form information generated
does not fit into the maximum record size of
12000 bytes. Reduce the number of fields or
processing specifications.

1130 Improper indenting, statement
groups must be vertically
aligned.

Corresponding IF and ELSE parts of IF
statement must start in same column.

1131 Syntax error: A name is not
expected here.

A name occurs where a reserved word is
expected. Check spelling, correct and press
ENTER.

1132 Syntax error: The statement
is incomplete.

A valid statement ends unexpectedly.Correct
and press ENTER.

1133 Syntax error: Unexpected
symbol.

 A special character is not expected here.

1923 Internal error: Unexpected
auto-indent.

Internal error in IF-THEN-ELSE statement.

1924 Internal error: Error numbers
are inconsistent.

1925 Internal error: MEM size is
inconsistent with ARRAYSIZE.

1926 Internal error: XEVAL
recursion underflow.

1927 Internal error: Invalid node
in XEVAL.

1928 Internal error: Invalid MATCH
operand in XEVAL.

1929 Internal error: Date
conversion failed in XEVAL.

1930 Internal error: XEVAL
recursion overflow

1931 Internal error: INEXT
conversion failed.

1932 Internal error: Operand must
be character string constant.

1933 Internal error: Invalid
operand in APPLY.

1934 Internal error: Invalid
operand in type check.

Error Message Cause/Action
510 Appendix B

VPLUS Error Messages
FORMSPEC Error Messages
1935 Internal error: Invalid
operand in MATCH.

1936 Internal error: Invalid
operand in CDIGIT.

1937 Internal error: Invalid right
operand.

1938 Internal error: Invalid left
operand.

1939 Internal error: Invalid
source operand.

1940 Internal error: Invalid Dtype
in type checking.

1941 Internal error: EXTIN
conversion failed.

1942 Internal error: Bad id
number.

1943 Internal error: Bad screen
order number.

1944 Internal error: MEM dispose
failed.

1945 Internal error: Lexic level
underflow.

1946 Internal error: Invalid
leading blanks.

1947 Internal error: Invalid Dtype
in scanner.

1948 Internal error: MEM allocate
failed.

1949 Internal error: Invalid
production.

1950 Internal error: Scanner
error.

1951 Invalid local edit
combination.

An invalid combination of local edits has been
specified in the CONFIG phase of the field
processing specifications.

Error Message Cause/Action
Appendix B 511

VPLUS Error Messages
FORMSPEC Error Messages
Pattern Compile Messages

Release Messages

Error Message Cause/Action

2101 A "(", ")", "[" , or "] is not
paired in pattern.

MATCH statement contains odd number of
parentheses or brackets.

2102 Invalid character found in
pattern.

A character in the expression is not recognized
as a valid character in the pattern.

2104 End of pattern found
prematurely.

Pattern characters were found after the end of
the pattern was found.

2105 Second character in range is
lower than first.

A range (a:b) is transposed, or else a colon was
not preceded by an exclamation point.

2203 Pattern is too big. Either split the pattern into smaller patterns
(with IF statements), or simplify the pattern.

2900 Internal error
:COMPILE’PATTERN failed.

Error Message Cause/Action

3097 Invalid data type conversion
notation.

Enter the correct data type to which the
specified data type should be converted.

3098 Data Type Conversion Record
has not been defined.

Use the Data Type Conversions Menu to set the
default data type conversions.

3100 Internal error: Could not
create list process.

3101 Internal error: Could not
send mail to list process.

3102 Internal error: Mail from
list was lot.

3104 Formsfile reopen failed.Press
PREV to reopen.(FSERR !!!!)

3105 Internal error: List could
not close the formsfile.

3106 Internal error: List could
not close the formsfile.

3107 Internal error: could not
flush current form to the
forms file.

3108 Internal error: could not
flush the field table to the
forms file.
512 Appendix B

VPLUS Error Messages
FORMSPEC Error Messages
NOTE In most cases, the corrective action is clearly implied by the message.
"Internal Errors" are serious; they imply a corrupted forms file and/or a
program error. Call your SE.

3109 Internal error: could not
flush the globals to the
forms file.

3110 Internal error: could not
close the formsfile.

3111 List could not open the
FORMSPEC formsfile.
(FSERR !!!!).

3112 Internal error: List could
not close the FORMSPEC
formsfile.

3113 List could not find form !in
the FORMSPEC formsfile.

3114 List write failed.
(FSERR !!!!)

3115 FORMSPECLINESPERPAGE JCW must
be between 1 and 150. List
failed.

3116 FORMSPECLINESPERPAGE JCW must
be between 1 and 150.

Error Message Cause/Action
Appendix B 513

VPLUS Error Messages
FORMSPEC Error Messages
Application-Ready Buffer (ARB) Errors

Error Message Cause/Action

3403 Internal error: ARB detail
record missing.

3405 This field must not be blank. Enter the required information in the field.

3406 This field accepts only
contiguous digits.

Remove any spaces between the digits.

3407 Must specify number of
decimals here.

3409 Internal error: could not
update ARB Detail record.

3412 Internal error: Field Symbol
Table record missing.

3413 The form has no fields. You cannot reproduce the form fields on the
ARB because they do not exist.

3414 Internal error: Data Type
Conversion record missing.

3416 Internal error: Could not
create ARB Detail record.

3418 Internal error: could not
create ARB Map record.

3420 An ARB already exists. You cannot create two ARBs for one form. If you
want to create a new ARB, you must delete the
old one first.

3423 Warning: Run-time errors may
result from default data
conversions.

You may have specified incompatible data
conversions. Check your data type to make sure
that data conversions are legitimate. If your
code has made provision for these anomalies,
you may disregard the warning.

3424 Warning: ARB length adjusted
to match data type.

You specified a length for an ARB field that was
too long or too short.

3425 Length must be greater than
zero.

3426 Field was not found in ARB.

3429 ARB does not exist.

3433 Form ! has duplicate field
names.

Correct the name duplication in the field menu
and retry.

3450 First field of range is
missing; specify a name or
number.
514 Appendix B

VPLUS Error Messages
FORMSPEC Error Messages
3451 Number specified is not in
current ARB range.

3452 ARB is full; no more fields
may be added.

An ARB may hold up to 256 fields.

3453 Please enter a valid ARB
field name.

Check the syntax of the name you have entered.

3455 Range is reversed; try
‘leading-field/trailing
field’.

You have reversed the order of the fields you
want to manipulate. The field that appears first
on the ARB must appear first in the command.

3456 Please enter a valid command
(Add, Move, Rename or
DELETE).

3457 That command cannot be
abbreviated. Please try
again.

3458 ARB field name is too long;
maximum length is 15
characters.

3459 Please specify Before or
After, or leave blank.

3460 ARB field name to be added
already exists in ARB.

You cannot duplicate an ARB field name; choose
a new name or delete the other field first.

3461 Internal error: Selection
routine approved an unknown
command.

3462 New (Destination) name
already exists in ARB.

Select a name that does not already exist.

3465 A destination entry requires
that Before or After be
specified.

If you do not want to specify Before or After, you
must leave the Destination field blank.

3466 An ARB field name must start
with an alphabetic character.

3467 No imbedded blanks are
allowed in an ARB field name.

3468 Legal ARB field name
characters are A-Z, 0-9 and
‘_’.

3469 An ARB field name cannot ne a
reserved word.

Choose a new name for the field.

3473 ARB field name must be
specified; numeric reference
is not allowed.

Error Message Cause/Action
Appendix B 515

VPLUS Error Messages
FORMSPEC Error Messages
NOTE In most cases, the corrective action is clearly implied by the message.
“Internal Errors” are serious; they imply a corrupted forms file and/or a
program error. Call your SE.

3474 Second field of range is
missing; specify ARB field
name or number.

3475 Internal error: SearchRec did
not locate field in ARB Add.

3476 A range cannot be moved to a
destination within itself.

3498 Internal error: VGETBUFFER
failed (COM’STATUS !!!!)

3499 Internal error: VPUTBUFFER
failed (COM’STATUS !!!!)

Error Message Cause/Action
516 Appendix B

VPLUS Error Messages
FORMSPEC Error Messages
ARB Compile Errors

More Menu Init and Processing Errors

Error Message Cause/Action

3500 In ARB !, field ! has no
corresponding screen field.

Either delete the ARB field, or add a field to the
associated screen.

3501 In ARB !, field ! has an
incorrect length.

Change the ARB field length to match the
length of the corresponding screen field.

3502 In ARB !, field ! has an
incorrect ARB type.

Check the permitted conversion types and
correct the ARB data type.

3503 Internal error: IN ARB
!,missing source record for
field !.

Errors Message Cause/Action

7001 Correct syntax is: "Field
formname fieldtag/name", then
menu specs.

7002 Unable to open screen file.

7003 WARNING: No new screenfile
specified. Old screenfile was
closed.

7004 Correct syntax is: "ADD
formname [\comments]".

7005 Correct syntax is: "READD
formname [new formname]
[\comments]"

7006 A screen layout file is not
currently open.

7007 End of file when reading screen
layout file.

7008 File system error when reading
screen layout file.

7009 Form name in screen file record
not equal to current form name.

7010 Cannot find screen record for
form.

7011 Cannot find screen record for
form.

7012 Write of screen record to
screen layout file failed.
Appendix B 517

VPLUS Error Messages
FORMSPEC Error Messages
7013 WARNING: if ADD command, form
created with no screen.

7014 WARNING: if READD, screen not
updated (form renamed?)

7015 Correct syntax is: "FKLABELS
formname
[˛eystring1...˛eystringn]".

7016 Screenfile contains an invalid
character.

7017 Missing datatype parameter

7018 Missing field type parameter.

7019 Missing field enhancement
parameter.

7020 SELECTTERM update parameters
must be separated by commas.

7021 Missing new FORMSPEC language
ID.

7022 FIELD update parameters must be
separated by commas.

7023 Renumbered !.

7024 Renumber was not necessary for
!.

7025 Form is family child; renumber
family by specifying parent
form !.

7026 Internal error: unable to fetch
form head.

7027 There are no forms in the
current file.

7028 Creating new forms file.

7029 Recovering file -- PLEASE WAIT.

7030 Compiling form !

7031 Number of errors = !!!! Number
of warnings = !!!!

7032 There are no compiled forms in
the current file.

7033 No update values specified.
Command ignored.

Errors Message Cause/Action
518 Appendix B

VPLUS Error Messages
FORMSPEC Error Messages
Native Language Support Errors

7034 **** End of compiled forms
listing ****

7035 Missing color parameter.

7036 Missing 264x parameter.

7037 Missing 307x parameter.

7038 New function key labels must be
preceded by ˙

7039 End of command file.

7040 Forms file is being converted to new
format.

7041 Missing ARB name

7042 Sorry. That command has not been
implemented.

7043 Missing ARB field name.

7044 Correct syntax is:

7045 ADDARBFIELD ARBname fieldname
[BEFORE/AFTER fieldname]

7046 Missing field name in
"BEFORE/AFTER fieldname".

7047 MODARBFIELD ARBname
fieldname { length, type }

7048 MOVEARBFIELD ARBname field [
field] [BEFORE/AFTER FIELD]

7049 SCREENTOARB [char, date, dig,
num, imp]

7050 ARBTOSCREEN [char, int, real,
pack, zone

7051 RENAMEARBFIELD ARBname
oldfieldname newfieldname

Error Message Cause/Action

8000 This edit statement is not
valid for international forms
files.

Errors Message Cause/Action
Appendix B 519

VPLUS Error Messages
FORMSPEC Error Messages
8001 Edit contains data inconsistent
with language of this forms
file.

8002 Edit contains language-dependent
data.

8003 Edit contains data not
compatible with the language of
this forms file.

8004 Invalid initial value for
International forms file.

9001 Native language support
software not installed.

9002 Language specified is not
configured on this system.

9003 Character set specified is not
configured on this system.

9004 Internal error: National table
is not present.

9005 Internal error: Bad NLT extra
data segment.

9006 Internal error: Bad LDST extra
data segment.

9007 Error calling native language
support intrinsic.

9008 Error calling native language
support intrinsic.

9009 Error calling native language
support intrinsic.

9010 Internal error: NLINFO item out
of range.

9011 WARNING: Language not
configured, change or hit ENTER
to proceed.

9012 This edit requires a configured
language.

9014 Attempted setting a language-
dependent forms file to another
language.

9015 NATIVE-3000 is currently the
only selection available.

9016 Invalid date value for
international forms file.

Error Message Cause/Action
520 Appendix B

VPLUS Error Messages
FORMSPEC Error Messages
9017 Internal Error: Error updating
language ID - try again.

9070 Internal Error: writing
terminal selection source
record failed

9500 Language of forms file is not
configured on this system.

9998 Language ID must be 0 to 999 or
-1 for international forms
file.

9999 Call to native language support
intrinsic failed.

Error Message Cause/Action
Appendix B 521

VPLUS Error Messages
VPLUS Intrinsic Error Messages
VPLUS Intrinsic Error Messages

VOPENTERM and VCLOSETERM Messages

Error Message Cause/Action

001 Internal error: Terminal file
initialization failed. failed.

FCONTROL or FSETMODE intrinsic

002 Your terminal is not supported
by VPLUS.

VPLUS works on the HP terminals listed in
Appendix G.

003 VPLUS does not run on a series
I.

VPLUS does not run on an HP Series I
computer system.

004 The terminal status request
failed.

VOPENTERM’s request for terminal status
failed. Check that strapping is correct. May
also be data comm problem.

005 The terminal allocation failed. Message used only with the 2640A terminal,
which is not supported by VPLUS. Reserved
words in the COMAREA are not initialized to
zeroes.

006 The terminal needs the H strap
in (closed).

Refer to Appendix G for instructions on how to
strap your terminal for VPLUS.

007 Internal error: HP2640 mode
could not be correctly set.

Possible block mode or data comm problem.

008 Internal error: HP2645 mode
could not be correctly set.

See error 007.

009 The terminal open failed.
(FSERR !)

FOPEN intrinsic failed.

010 The terminal close failed.
(FSERR !)

FCLOSE intrinsic failed.

011 Sorry, this device is not
supported by VPLUS.

Refer to Appendix G for a list of supported
terminals.

012 The HP2640B needs straps A, C,
H in (closed); D, F, G out.

You must strap this terminal (and the 2644A)
yourself; other terminals are strapped
automatically. (Refer to Appendix G.)

013 The HP2644A needs straps A, C,
H in (closed); D, G out.

You must strap this terminal (and the 2640B)
yourself; other terminals are strapped
automatically. (Refer to Appendix G.)

014 The HP2645A/41A/48A needs
straps A, C, H, J in (closed);
D, G out.

Note that these terminals should be
configured automatically by VPLUS.
522 Appendix B

VPLUS Error Messages
VPLUS Intrinsic Error Messages
015 Terminal type incorrectly
determined.

Possible block mode or data comm problem.
Check straps. Note: 2645 multipoint straps
should never be touched!

016 Internal error HP2645A
multipoint terminal mode not
correctly set.

See error 015.

017 Comarea too short for run-time
HP3075/6 terminals.

The Comarea must be 85 words for HP 3075/6
terminals. Set terminals. Comarealen to 85.

018 Non-page/block mode terminal
types not supported.

Redefine terminal type. (Note: VPLUS
requires a terminal which supports page/block
mode.)

019 Internal error: FDEVICECONTROL
should not return ccg.

See System Manager.

021 Invalid terminal type. TERMTYPE used is a printer terminal type

Error Message Cause/Action
Appendix B 523

VPLUS Error Messages
VPLUS Intrinsic Error Messages
General Messages

VOPENFORMF and VCLOSEFORMF Messages

Error Message Cause/Action

020 Error detected by host
language.

Check the Comarea item FILERRNUM for
the host language error number.

021 Invalid terminal type. See 021 above.

023 Environment control file access
failed.

Error Message Cause/Action

040 Internal error: DLSIZE failed;
there is not enough DL area
space.

Stack size or MAXDATA too small. Re-PREP
your application program with a larger
MAXDATA parameter.

041 Internal error: DLSIZE failed;
the stack is frozen.

Stack size or MAXDATA too small. Re-PREP
your application program.

042 Formsfile name not passed to
VOPENFORMF.

The name of the forms file to be opened must
be included in the call to VOPENFORMF.

043 Comarea length may not be less
than 60.

The Comarea length as specified by the item
Comarealen must be 60 words for HP
terminals and 85 words for data capture
devices.

044 Comarea length is too large. The Comarea length as specified by the item
comarealeng must not be longer than the
longest length documented.

045 TERMINAL or FORMSFILE has not
yet been opened.

046 Unrecognized Comarea language
code passed.

050 Forms File open failed.
(FSERR !)

FOPENintrinsic failed. Check forms file name.

051 The file is not a VPLUS Forms
File.

Check the formfile parameter to make sure
the file name is correct.

052 Internal error: Forms File
FGETINFO failed. (FSERR !)

FGETINFO intrinsic failed.

053 Forms File probably hasn’t been
compiled. (FSERR !)

Run FORMSPEC and compile the forms file.

060 The program supplied COMAREA
extension is too small.

If you are using BASIC, check word 4 of
COMAREA (USRBUFLEN), and increase the
length of the COMAREA extension.
524 Appendix B

VPLUS Error Messages
VPLUS Intrinsic Error Messages
061 Internal error: Failure to
obtain required PASCAL Heap
area.

062 Internal error: Failure to
return PASCAL Heap area.

063 Failure to close Forms File.
(FSERR !)

An error occurred while trying to close the
forms file. Check that the forms file is open
before VCLOSEFORMF is called.

067 Invalid form store size
specified.

A number outside the range of -1 to 255 is
specified in the FORM’STORE’SIZE variable,
which is the 39th word of the VPLUS
communication area.

068 VPLUS internal error; there is
not enough DL area space.

For languages other than BASIC,

069 VPLUS internal error; the stack
is frozen.

See error 041.

9001 Native Language Support
software not installed

Check with System Manager to install Native
Language Support software.

9002 Language specified is not
configured on this system.

Select another language or check with System
Manager to configure the desired language.

9500 Language of forms file is not
configured on this system.

See System Manager to configure the
language or use forms files on a system with
that language configured.

Error Message Cause/Action
Appendix B 525

VPLUS Error Messages
VPLUS Intrinsic Error Messages
VOPENBATCH and VCLOSEBATCH Messages

Access Method Messages

Error Message Cause/Action

070 Forms file was re-complied
since last using this batch.

You may want to specify a different batch file
name since the forms file has been changed
since the specified batch file was last used
with the forms file.

071 A forms file must be opened
before opening a batch file.

Call VOPENFORMF before calling VOPENBATCH

072 The file does not appear to be
an existing batch file.

Check the batch file name you specified; if this
is a new file, it will be created automatically
and then opened.

073 A different forms file created
this batch.

You opened a forms file that is not the forms
file associated with the batch files specified.
See 070.

074 Batch file not yet opened.

080 Batch file open failed
(FSERR !)

Refer to the file system error to determine the
cause of the open failure. Check file name.

081 Can’t read the batch file’s
user label (FSERR !)

FREADLABEL intrinsic failed.

082 Internal error: Batch file
FGETINFO failed. (FSERR !)

FGETINFO intrinsic failed.

084 Can’t write user label to batch
file (FSERR !)

FWRITELABEL intrinsic failed.

085 Internal error: Batch file
close failed. (FSERR !)

FCLOSEBATCHintrinsic failed. Refer to the file
system error to determine the cause of the
close failure.

Error Message Cause/Action

086 Access method: file code error.

087 Access method: Attempt to add a
duplicate key.

088 Access method: Internal error.
Key insertion location error.

089 Access method: Internal error.
Block not present.

090 Access method: Attempt to open
an old file as new.

091 Access method: Internal error.
Key block buffer error.
526 Appendix B

VPLUS Error Messages
VPLUS Intrinsic Error Messages
VGETNEXTFORM Messages

092 Access method: Internal error.
Invalid key block number.

093 Access method: Internal error.
Block not verified.

094 Access method: Record not
found.

095 Access method: Not enough space
in extension for the directory.

Fast form files require 500 words of space in
the COMAREA extension. If you are coding in
BASIC, list the forms file to find how many
words are needed for the extension, and
increase the COMAREA field USERBUFLEN
to this number. If the application is not
written in BASIC, increase the MAXDATA
parameter on the PREP or RUN command.

096 Access method: Internal error.
Parent block not found.

097 Access method: Internal error.
Illegal entry number.

098 Access method: The file is not
a KSAMless forms/ref file.

099 Access method: The file is at
EOF.

Error Message Cause/Action

100 Can’t find the next form.
(FSERR !) program.

Check form name in application.

101 Form $HEAD does not apply,
since no forms have been
displayed.

NFNAME in COMAREA is $HEAD, but this
specification only applies when forms have
been displayed.

102 An invalid COM’REPEAT value was
supplied programmatically.

REPEATAPP in COMAREA should be set to
one of the codes:
0 - no repeat/append
1 - repeat current form
2 - repeat & append current form

103 An invalid COM’NFOPT value was
supplied programmatically.

The next form option in FREEZAPP of
COMAREA can be:
0 - clear current form, display next form
1 - append next form to current form
2 - freeze current form, append next form

Error Message Cause/Action
Appendix B 527

VPLUS Error Messages
VPLUS Intrinsic Error Messages
104 Formsfile not compiled for this
run-time terminal.

The type of terminal is being used has not
been selected for use with the forms file.
Specify the terminal type in the FORMSPEC
Terminal Selection menu, then recompile the
forms file. If you open a forms file and then
call VGETNEXTFORM without opening the
terminal, you must compile the forms file for a
264X terminal

105 HP3075/6 terminal with numeric
only display is not supported.

VPLUS does not run on the numeric display
HP3075/6 terminals.

106 HP3077 terminal is not
supported except for opening
and closing.

VPLUS only opens and closes the HP3077
terminal; no other functions can be
performed.

Error Message Cause/Action
528 Appendix B

VPLUS Error Messages
VPLUS Intrinsic Error Messages
VMERGE Messages

Following are the messages produced by the VMERGE utility. The cause of each, and the
action you may take is also described.

Message Cause/Action Action

hp32209V.UU.FF VMERGE
(c) Hewlett-Packard
Co. 1992 ALL RIGHTS
RESERVED

Header generated at the start of
VMERGE processing.

No action required.

*****Internal processing
error (VM1001)

An unexpected condition has been
detected by VMERGE.

Preserve the input files
for diagnosis and
contact HP rep.

Begin VMERGE
Processing ...
(VM1003)

Given at the start of processing. No action required.

No consistency check
required, AUX file is
$NULL

Self-explanatory.

Consistency check of
MASTER and AUX file
begun ...(VM1005)

Self-explanatory.

Input files are
consistent (VM1006)

The consistency check of MASTER
and AUX has been completed, and the
files have been found consistent.

No action required.

***** Input files are
not consistent
(VM1007)

The consistency check of MASTER
and AUX has been completed, and
the files have been found inconsistent.
(Normally an explanatory message
indicating why they are inconsistent
will have been issued prior to this
one.) The OUTPUT file will not be
produced.

Adjust the input files to
overcome the indicated
inconsistency and rerun
VMERGE

End of VMERGE
Processing. (VM1009)

Self-explanatory. None

***** Form name table
could not be allocated
(VM1400)

An attempt to allocate an extra data
segment to hold a form name table for
the MASTER or AUX forms has failed.

Consult with your
system administrator to
determine why this
failure occurred on your
system. This is probably
due to limitations on the
number of Extra Data
Segments that can be
created in your
configured environment
Appendix B 529

VPLUS Error Messages
VPLUS Intrinsic Error Messages
***** Form name table
overflow (VM1401)

More forms have been found in the
MASTER or AUX file than can be
accommodated in the form name
table.

Contact your HP rep.

***** Conflicting data
in MASTER forms file
(VM1402)

Invalid or inconsistent data has been
found in the MASTER file.

Recreate the file and
rerun VMERGE. If the
problem persists,
contact your HP rep.

***** Conflicting data
in AUX forms file
(VM1403)

 Invalid or inconsistent data has been
found in the AUX file.

Recreate the file and
rerun VMERGE. If the
problem persists,
contact your HP rep

**** Error accessing
table in an extra data
segment (VM1404)

An attempt to access data in an extra
data segment was rejected by the
MPE operating system.

Rerun VMERGE. If the
problem persists,
contact your HP rep.

***** Version of
MASTER file format not
supported by VMERGE
(VM1500)

The MASTER file was compiled with a
version of FORMSPEC that is not
supported by VMERGE. (Versions
prior to B.03.03 are not supported.)

Reconstruct the file with
the current version of
FORMSPEC.

***** Version of AUX
file format not
supported by VMERGE
(VM1501)

The AUX file was compiled with a
version of FORMSPEC that is not
supported by VMERGE. (Versions
prior to B.03.03 are not supported.)

Reconstruct the file with
the current version of
FORMSPEC.

Warning: Error
enhancement settings
differ (VM1504)

The error enhancement settings differ
in the MASTER and AUX files.

None. (The value from
the MASTER file is
retained in OUTPUT.

Warning: Window
display line settings
differ (VM1505)

The display line settings differ in the
MASTER and AUX files.

None. (The value from
the MASTER file is
retained in OUTPUT.)

Warning: Error window
color settings differ
(VM1506)

The error window color settings differ
in the MASTER and AUX files.

None. (The value from
the MASTER file is
retained in OUTPUT.)

Warning: Window
enhancement settings
differ (VM1507)

The window enhancement settings
differ in the MASTER and AUX files.

None. (The value from
the MASTER file is
retained in OUTPUT.

***** Terminal
Specific settings
differ (VM1508)

The terminal settings differ in the
MASTER and AUX files.

Revise the files to make
them compatible and
rerun the utility

***** Language ID
settings differ
(VM1509)

The language id settings differ in the
MASTER and AUX files.

Revise the files to make
them compatible and
rerun the utility.

Message Cause/Action Action
530 Appendix B

VPLUS Error Messages
VPLUS Intrinsic Error Messages
***** Number of
databases differ
(VM1510)

The number of databases differ in the
MASTER and AUX files.

Revise the files to make
them compatible and
rerun the utility

***** Save fields
specifications differ
(VM1521)

The save field specifications differ in
the MASTER and AUX files.

Revise the files to make
them compatible and
rerun the utility. The
save field specifications
must be identical in all
respects in both input
files.

***** Global function
key labels differ
(VM1531)

The global function key labels differ in
the MASTER and AUX files.

Revise the files to make
them compatible and
rerun the utility

***** 307x terminal
settings differ
(VM1541)

The 307x terminal settings differ in
the MASTER and AUX files.

Revise the files to make
them compatible and
rerun the utility

Form name
“nnnnnnnnnnnnnnn”
found in MASTER file
(VM1601)

Documents that the named form was
found in the MASTER file

None

Form name
“nnnnnnnnnnnnnnn”
found in AUX file
(VM1603)

Documents that the named form was
found in the AUX file.

None

***** MASTER and AUX
contain duplicate form
name(s) (VM1611)

Forms with the same name were
found in both the MASTER and AUX
files

Remove or rename the
duplicate forms from
one file and rerun
VMERGE.

***** Duplicate form
name: nnnnnnnnnnnnnnn
(VM1612)

Identifies a form name found in both
the MASTER and AUX files.

Remove or rename the
duplicate form one file
and rerun VMERGE

***** Unattached
messages; use fast
forms files (VM1613)

Messages have been found that are
not associated with any form.
OUTPUT file is not produced.

Compile the input files
and produce fast forms
files. Use the fast forms
files as input to
VMERGE

***** MASTER file
could not be opened
(VM1700)

The file designated as MASTER could
not be opened.

Remove the impediment
to opening the file and
rerun VMERGE. (The
file may not exist under
the designated name, or
may be already open for
exclusive use, etc.)

Message Cause/Action Action
Appendix B 531

VPLUS Error Messages
VPLUS Intrinsic Error Messages
***** Error reading
MASTER file (VM1701)

An error occurred in attempting to
read the MASTER file.

Regenerate the file and
rerun VMERGE.

***** Error in MASTER
file data (VM1702)

An inconsistency was found in the
data in the MASTER file.

Recreate the file and
rerun the utility. If the
problem persists contact
your HP rep.

MASTER file opened
(VM1703)

Self-explanatory. None

***** MASTER file type
is not VFORM or VFAST
(VM1704)

Self-explanatory Designate the correct
file and rerun
VMERGE.

MASTER file designated
as: fff ... f (VM1705)

Shows the full pathname of the
MASTER file.

None

***** MASTER file has
not been compiled
(VM1706)

Self-explanatory. Compile the MASTER
file and rerun
VMERGE.

***** AUX file could
not be opened (VM1800)

The file designated as AUX could not
be opened.

Remove the impediment
to opening the file and
rerun VMERGE. (The
file may not exist under
the designated name or
may be already open for
exclusive use, etc.

***** Error reading
AUX file (VM1801)

An error occurred in attempting to
read the AUX file.

Regenerate the file and
rerun VMERGE.

***** Error in AUX
file data (VM1802)

An inconsistency was found in the
data in the AUX file.

Recreate the file and
rerun the utility. If the
problem persists
contact your HP rep.

AUX file opened
(VM1803)

Self-explanatory. None

***** AUX file type is
not VFORM or VFAST
(VM1804)

Self-explanatory. Designate the correct
file and rerun
VMERGE.

AUX file designated
as: fff ... f (VM1805)

Shows the full pathname of the AUX
file.

None.

***** AUX file has not
been compiled (VM1806)

Self-explanatory. Compile the AUX file
and rerun VMERGE.

***** OUTPUT file
could not be opened
(VM1900)

Self-explanatory. Remove the impediment
to opening the OUTPUT
file and rerun
VMERGE.

Message Cause/Action Action
532 Appendix B

VPLUS Error Messages
VPLUS Intrinsic Error Messages
**** Error writing
OUTPUT file (VM1901)

Self-explanatory. Correct the problem
that has caused the
write error and rerun
VMERGE. You may
need to consult with
your system
administrator to
determine the problem.

OUTPUT file opened
(VM1903)

Self-explanatory. None.

***** OUTPUT file type
is not VFAST (VM1904)

The file designated as OUTPUT
pre-exists but is not of type VFAST.

This is viewed as an
error since it is assumed
that the user has
unintentionally
designated the name of
a file being used for
other purposes.
Redesignate the
OUTPUT file (or purge
the old file if the name is
correct) and rerun
VMERGE.

OUTPUT file designated
as: fff ... f (VM1905)

Shows the full pathname of the
OUTPUT file

None

Error closing OUTPUT file
(VM1906

Self-explanatory. Correct the problem
that has caused the
error and rerun
VMERGE. You may
need to consult with
your system
administrator to
determine the problem

***** OUTPUT file
purged (VM1911)

Inconsistency or some other problem
has prevented the OUTPUT file from
being successfully generated. To avoid
confusion, the file is purged.

Correct the underlying
problem and rerun
VMERGE

***** OUTPUT file
pre-existed and could
not be purged (VM1912)

An attempt to purge the existing file
with the name designated for the
OUTPUT file failed.

Make sure that the
correct file name has
been designated. If so,
determine why it could
not be purged and
remove the impediment

Message Cause/Action Action
Appendix B 533

VPLUS Error Messages
VPLUS Intrinsic Error Messages
VSHOWFORM Messages

VREADFIELDS Messages

Error Message Cause/Action

130 Internal Error: Terminal write
failed. (FSERR !)

FWRITE intrinsic failed.

131 Internal error: Color
conversion failed.

Error Message Cause/Action

150 The supplied read buffer (dbuf)
is too small.

The data buffer in memory is too small for the
data on the form. Check application program
DBUF array size and DBUFLEN.

151 Internal error: An expected DC2
from the terminal was missing.

Block mode or data comm problem. Press
REFRESH.

152 Internal error: A read
terminator (an RS or a GS) was
expected.

Press ENTER again. Also try REFRESH. If
problem recurs, check DBUFLEN in
application program. Possible block mode or
data comm problem.

153 A status request was pending,
so the terminal read was
invalid.

Application program requested terminal
status, then called VREADFIELDS.

154 An unrecognized escape sequence
was read.

Possible softkey problem. Press REFRESH or
perhaps RESET to correct.

155 Read length error. Length of data actually read is less than
expected for current form.

160 Internal error: Terminal Read
Failed (FSERR!)

FREAD intrinsic failed. If user timeouts were
enabled in the user application, a time out has
occurred.

161 Field too long for HP3075/6
terminals.

The maximum length of a field on the HP
3075/6 terminals is 200 characters.

162 Terminal Power Failure
detected.

A power failure has been detected on an HP
3075/6 terminal.

163 Invalid error light. Valid error lights are letters of the alphabet or
the @@ character.

164 HP3075/6 Terminal printer is
out of paper.

Load the printer with a roll of paper.

165 Device is not supported by
VPRINTLOCAL.

The terminal must be an HP 3075A or HP
3076A.

166 HP3075/6 Terminal does not have
a printer.

Your terminal is not equipped with a printer.
534 Appendix B

VPLUS Error Messages
VPLUS Intrinsic Error Messages
VPRINTFORM Messages

VINITFORM, VFIELDEDITS, and VFINISH Messages

Error Message Cause/Action

190 Can’t open the printfile.
(FSERR !)

FOPEN intrinsic failed. Refer to file system
error to determine the cause.

191 Can’t write to the print file.
(FSERR !)

FWRITE intrinsic failed.

Error Message Cause/Action

202 The required field is empty. A required field in current form is blank.

203 Invalid field type. Valid field types are: 0(optional), R(required),
D(display only), P(Process even if blank).

204 The field can only contain
digits.

The field is specified as type DIG, but it
contains characters other than 0-9.

205 The field can only contain a
number.

The field is specified as type NUM, but it
contains characters other than 0-9, decimal
point, comma, or plus or minus sign.

206 The field can only contain a
number, with max ! decimal
places.

Reduce the number of digits to the right of the
decimal point with max ! decimal to n.

207 The field can only contain a
number (! decimal places
implied).

The field is specified as type IMPn, but it
contains characters other than 0-9, implied).
decimal point, comma, or plus or minus sign.
Also, there could be more than n digits to the
right of the decimal point.

208 The field must be a valid date,
in DMY order.

The data in a DMY field is not a valid date, or
is not in order: day, month, year.

209 The field must be a valid date,
in MDY order.

The data in a DMY field is not a valid date, or
is not in order: day, month, year.

210 The field must be a valid date,
in YMD order.

The data in a YMD field is not a valid date, or
is not in order: year, month, day.

211 Internal error: Invalid field
data type.

Field table problem.

212 Error during data conversion
between family members.

A data conversion error has been detected by
VINITFORM when converting between family
members. Check for field type compatibility
problems in the form family in the forms file.

220 Internal error: Invalid
destination.

Code execution problem.
Appendix B 535

VPLUS Error Messages
VPLUS Intrinsic Error Messages
222 An edit test failed. The default field edit error message had been
provided. Check the data you entered in the
field against the processing specifications.

321 Attempted a SET into a numeric
field that is too short.

The destination of a SET statement has fewer
characters too short. than the number being
moved to it.

323 Internal error: Invalid op
code.

Code execution problem.

325 Attempted a SET into a date
field that is too short.

The destination of a SET statement has fewer
characters than the value being moved to it.

326 Internal error in field.

327 User-defined error for this
field.

A FORMSPEC custom error message is
associated with this field, but could not be
correctly retrieved from forms file.

328 The field cannot contain a
negative number (Dtype DIG).

A minus sign is in a field whose data type is
DIG, only digits (0-9) allowed.

330 Internal error: Invalid op in
logical eval.

 Code execution problem.

331 Range error. Low value is
greater than high value.

The first value is in an IN/NIN range is
greater than the second value (for a:b, a>b)

332 Check digit requested on empty
field.

CDIGIT is specified for a field that contains no
data. There must be a value in order to test
the check digit.

333 Check digit requested on field
containing only + or - sign.

CDIGIT is specified for a field that has no
value except a sign; there must be a value in
order to test the check digit.

334 Check digit requested on field
containing special characters.

CDIGIT only operates on numeric (0-9) or
alphabetic (A-Z) values. characters.

335 Check digit 10 is invalid for
modulus 11 calculation.

Since value has remainder greater than 9, it
has no possible modulus 10 check digit. Use
CDIGIT 11.

336 Internal error: Check digit
modulus must be 10 or 11.

337 Check digit validation string
contains only one character.

A field whose value is to be checked by a
modulus calculation must contain at least two
characters.

340 Division by zero was attempted. Expression in field processing statement
evaluated to division by zero.

Error Message Cause/Action
536 Appendix B

VPLUS Error Messages
VPLUS Intrinsic Error Messages
341 Attempted a SET from a field
containing an invalid number.

A numeric value is expected as the source of a
SET statement, but the source is not a valid
number.

344 Internal error: Invalid op in
long eval.

345 Overflow in an add operation. Value is outside 4-word REAL range. Range of
4-word REAL is from approximately 8.636
times 10^(-78) to 1.158 times 10^77.

346 Overflow in a subtract
operation.

See error 345.

347 Overflow in a multiply
operation.

See error 345.

348 Overflow in a divide operation. See error 345.

349 Overflow in a percent
operation.

See error 345.

350 Index expression out of range
in an "index of" numeric
statement.

In an index retrieve operand (index OF
element, element...) the index evaluates to a
digit greater than the number of elements in
the list. (Numeric operands).

351 Overflow in a negate operation. See error 345.

360 Attempted a SET from a field
containing an invalid date.

A date is expected as the source of a SET
statement, but the date is not valid.

363 Internal error: Invalid op in
double eval.

364 Index expression out of range
in an "index of" date
statement.

See error 350. (Date operands)

370 Internal error: Invalid op in
text eval.

371 Index expression out of range
in an "index of" text
statement.

See error 350. (CHAR operands)

380 The index expression evaluates
to "empty."

An arithmetic expression used as the index in
an index OF element, element.. operand is
blank or zero.

Error Message Cause/Action
Appendix B 537

VPLUS Error Messages
VPLUS Intrinsic Error Messages
VREADBATCH Messages

VWRITEBATCH Messages

VSETERROR, VGETFIELD, VPUTFIELD, VPUTtype, and VGETtype
Messages

Error Message Cause/Action

400 Can’t read the batch file
record. (FSERR !)

FREADDIR intrinsic failed.

401 Warning: Can’t browse a batch
file with variable length
records.

Browse mode is illegal for batch records which
are not fixed length.

Error Message Cause/Action

450 Can’t write the batch
record. (FSERR !)

FWRITEDIR intrinsic failed.

Error Message Cause/Action

500 A field with the field number
supplied does not exist.

The fieldnum parameter contains a value that
is not a field number in the current form.

501 The field number supplied is
out of range.

The fieldnum parameter contains a value
greater than any field number associated with
the current form.

502 The field requested is in
error.

The field specified by the fieldnum parameter
contains invalid data.

503 The field requested is empty. The field specified by the fieldnum parameter
contains no data.

504 Error converting field to
numeric type.

VGETtype tried to convert value to a numeric
type, and failed. Check conversion rules. (For
VGETINT, message, indicates attempt to
convert number > 32767; receiving field is
unchanged.)

505 Error converting numeric type
to ASCII.

VPUTtype tried to convert a numeric value to
a character string and failed. Check
conversion rules.

506 A DIGIT field cannot contain a
negative number.

A value in a DIG type field has a minus sign;
DIG values may only be digits (0-9).

507 Function key labels option is
disabled.

The COMAREA item LABEL’OPTION must
be set to one before opening the forms file.
538 Appendix B

VPLUS Error Messages
VPLUS Intrinsic Error Messages
508 Error reading function key
values from forms file (FSERR
!!!!)

An error occurred while trying to read the
function key label definitions from the forms
file.

509 Invalid input parameter to
function key intrinsics.

An invalid value has been passed as the
FORM-OR-GLOB or KEY-NUM parameter to
VGETKEYLABELS, VSETKEYLABEL, or
VSETKEYLABELS intrinsics.

510 A field with the screen order
supplied does not exist.

515 WARNING: Sign in field not
stored in unsigned variable.

If the NUMDIGITS is positive, the intrinsic
assumes the destination variable for the GET
is unsigned. If the parameter is negative, the
destination is assumed to be signed.

Error Message Cause/Action
Appendix B 539

VPLUS Error Messages
VPLUS Intrinsic Error Messages
VGETBUFFER and VPUTBUFFER ARB Messages

Error Message Cause/Action

519 ARB flag is set but no ARB
record is found.

This is an application-specified conversion,
but the forms file does not contain an ARB
record. Do the following:
1. Initialize ARB conversion flag to 0 if conver
sion is not desired.
2. Use FORMSPEC to add the necessary ARB
record.
3. Check for possible corruption of the
formsfile.

520 ARB conversion type specified
is not supported.

Check for possible corruption of the formsfile.

521 ARB record length exceeded
maximum limit.

Check for possible corruption of the formsfile.

522 IEEE conversion is not
supported in this version.

This application-specified IEEE conversion is
not yet supported.Check the IEEE conversion
flag in the Comarea.

523 ARB record does not contain
the minimum amount of informati
on required.

Check for possible corruption of the formsfile.

524 ARB record does not contain the
minimum amount of information
required.

525 Error converting YMD type
to YYMMDD format.

526 Error converting MDY type to YY
MMDD type.

527 Error converting DMY type to YY
MMDD format.

528 Internal error: converting
Julian to YYMMDD format.

529 YYMMDD variable parameter does
not contain a valid date.

530 Internal error: converting
Julian to date type.

531 Attempted to place date into s
hort date field (less than 8
char).
540 Appendix B

VPLUS Error Messages
VPLUS Intrinsic Error Messages
VGETLANG and VSETLANG Messages

VCHANGEFIELD Messages

VPLACESURSOR Intrinsic

INFO Intrinsic Messages

Error Message Cause/Action

9002 Language specified is not
configured on this system.

Select another language or check with System
Manager to configure the desired language.

9014 Attempted setting a language
dependent forms file to another
language.

VSETLANGcan only be used with international
forms files.

Error Message Cause/Action

850 Invalid field type
specification.

Field type incorrect; use one of the listed
codes.

851 Invalid data type
specification.

Data type incorrect; use one of the listed codes
- n indicates number of decimal positions.

852 Invalid enhance type
specification.

Enhancement code is incorrect; check and
correct.

853 Internal error: invalid field
type.

Internal.

854 Internal error: invalid data
type.

Internal.

855 Internal error: invalid enhance
type.

Internal.

856 Invalid VCHANGEFIELD
specification type.

Value must be 1-6.

Error Message Cause/Action

800 Cannot place cursor to display
only fields.

Field number must be for an input field.

Error Message Cause/Action

601 Invalid input parameters to
INFO intrinsic.

602 Form specified to FORMINFO does
not exist.

603 INFO intrinsic: Form field list
read error (FSERR !!!!).
Appendix B 541

VPLUS Error Messages
VPLUS Intrinsic Error Messages
Forms Loading Messages

604 INFO intrinsic: Form record
read error (FSERR !!!!).

605 FF version is old. Must
recompile to use FORMINFO
intrinsic.

606 Invalid field specified to
FIELDINFO intrinsic.

Make sure that the field name is correctly
spelled if the field name is the key; make sure
that the field name parameter is 16 bytes
long, and padded with ASCII blanks. If the
field number is used as the key, be certain
that this number is the actual field number.

607 Invalid form # specified to
FORMINFO intrinsic.

Error Message Cause/Action

700 No such form in terminal form
storage memory.

The specified form is not purged because it
does not exist in the form storage directory.

701 Terminal form storage memory is
full.

The specified form is not loaded because the
form storage memory is full.

702 Requested loan of blankform
name.

Error Message Cause/Action
542 Appendix B

VPLUS Error Messages
SNA DHCF Intrinsic Messages
SNA DHCF Intrinsic Messages

Native Language Support

Error Message Cause/Action

8000 This edit statement is not
valid for international forms
files.

8001 Edit contains data inconsistent
with language of this forms
file.

8002 Edit contains language
dependent data.

8003 Edit contains data not
compatible with the language of
this forms file.

8004 Invalid initial value for
international forms file.

9001 Native Language Support
Software not installed.

Check with System manager to install NLS
software.

9002 Language specified is not
configured on this system.

Select another language or check with System
Manager to configure the desired language.

9003 Character set specified is not
configured on this system.

9004 Internal error: National table
is not present.

Internal error from NLS.

9005 Internal error: Bad NLT extra
data segment.

Internal error from NLS.

9006 Internal error: Bad LDST extra
data segment.

Internal error from NLS.

9007 Error calling native language
support intrinsic

Internal error from NLS.

9008 Error calling native language
support intrinsic.

Internal error from NLS.

9009 Error calling native language
support intrinsic

Internal error from NLS.

9010 Internal error: NLINFO item out
of range.

Internal error from NLS.

9011 WARNING: Language not
configured, change or hit ENTER
to proceed.

Language specified is not configured on the
system; forms file produced will only run on a
system configured with that language.
Appendix B 543

VPLUS Error Messages
SNA DHCF Intrinsic Messages
9012 This edit requires a configured
language.

9013 Encountered invalid Asian
(2-byte) character.

9014 Attempted setting a language
dependent forms file to another
language.

FORMSPEC language can only be 0 in this
version.

9015 NATIVE-3000 is currently the
only selection available.

FORMSPEC language can only be a 0 in this
version.

9016 Invalid date value for
international forms file.

9017 Internal error: Error updating
language ID - try again.

9070 Internal error: writing
terminal selection source
record failed.

9500 Language of forms file is not
configured on this system.

9998 Language ID must be 0 to 999 or
-1 for international forms
file.

Forms file language ID must be between -1
and 999.

9999 Call to native language support
intrinsic failed.

Error Message Cause/Action
544 Appendix B

VPLUS Error Messages
REFSPEC Messages
REFSPEC Messages

Access Method Errors

Error Message Cause/Action

086 Access method: file code
error.

087 Access method: Attempt to add
a duplicate key.

088 Access method: Internal
error. Key insertion location
error.

089 Access method: Internal
error. Block not present.

090 Access method: Attempt to
open an old file as new.

091 Access method: Internal
error. Key block buffer
error.

092 Access method: Internal
error. Invalid key block
number.

093 Access method: Internal
error. Block not verified.

094 Access method: Record not
found.

095 Access method: Not enough
space in extension for the
directory.

096 Access method: Internal
error. Parent block not
found.

097 Access method: Internal
error. Illegal entry number.

098 Access method: The file is
not a KSAMless forms/ref
file.

099 Access method: The file is at
EOF.
Appendix B 545

VPLUS Error Messages
REFSPEC Messages
Output Sequence Definition Errors

Error Message Cause/Action

101 Field name has more than 15
characters.

Limit name of input field to 15 characters.

102 Field name improperly aligned
on screen.

Enter input field name at tab position 1.

103 Form name has more than 15
characters.

Limit name of input form to 15 characters.

104 Form name ! is not ininput
forms sequence.

A form name on the OUTPUT RECORD menu
was not named on corresponding INPUT
FORMS menu.

105 A digit is not a legal
character in this field.

A field or form name is expected in this field.

107 Substring start column offset
is improperly aligned on
screen.

Enter input substring start column at tab
position 2.

108 Substring starting column has
more than 4 digits.

Substring start column must not exceed 4
digits.

111 Closing quote expected. Character string constant must be enclosed
within quotes; the closing quote is missing.

113 Input length field is
improperly aligned on screen.

Enter input substring length at tab position 3.

114 Internal error: Expected LF
after CR.

Line feed expected after carriage return.

115 Line must start with field
name, literal or system
constant.

First column of OUTPUT RECORD menu
should contain first character of field name, a
literal, or system constant.

116 Input length cannot have more
than 4 digits.

Input substring length must not exceed 4 digits.

118 Field name cannot be blank. A field name must be specified if other
characteristics are entered on line.

119 Letters are not allowed in
this field.

Only digits are expected in this field.

121 Form name is improperly
aligned on screen.

Enter input form name at tab position 4.

123 Output field name has more
than 15 characters.

A field name is limited to 15 characters.

124 Output field name is
improperly aligned on screen.

Enter output field name at tab position 5.

126 Length of output field may
only have up to 4 digits.

Output field length must not exceed 4 digits.
546 Appendix B

VPLUS Error Messages
REFSPEC Messages
127 Output field length is
improperly aligned on screen.

Enter output field length at tab position 7.

129 Output field starting offset
can only have up to 5 digits.

Starting column of output field must not exceed
5 digits.

130 Output field starting offset
is improperly5 digits.

Starting column of output field must not exceed
5 digits.

131 Start record indicator is not
in its field.

Enter start-of-record marker at tab position 8.

132 Start record indicator should
be a single character.

A start-of-record marker is limited to 1
character.

133 Column numbering starts with
1.

The starting column in the output record cannot
be zero.

134 This is not a legal system
constant.

Use one of the legal constants: $CR, $LF, $GS,
$US, $RS, or $ followed by the numeric
equivalent of an ASCII character. Other
constants may not start with a $.

135 Output field length must be a
positive integer greater than
0.

Output length cannot be zero or a negative
number.

136 Output field starting column
causes overlapping fields.

The starting column for this field falls within
the bounds of a previous field. Enter a higher
value.

137 A single literal cannot have
more than 75 characters.

Literal must fit on a single line of OUTPUT
RECORD menu and must not overwrite the
start-of-record marker position.

138 Literal must not continue
beyond column 75.

One line of OUTPUT RECORD menu is limited
to columns 1-75.

139 This is not a field. No
character may appear here.

140 Only literal, ASCII constant
or system constant expected
here.

141 Digit must follow sign.

142 Value for ASCII character
must be between 0 and 127.

The numeric equivalent of an ASCII character
may be only 0-127.

143 Field name must start with
char. No embedded blanks
allowed.

First character of field name must be
alphabetic; field name may not have embedded
blanks.

144 Record size must have a
value.

Record size on globals menu is a required field.
User must give maximum size of output record.

Error Message Cause/Action
Appendix B 547

VPLUS Error Messages
REFSPEC Messages
145 "Y" or "N" expected in
upshift field.

On GLOBALS menu, only a Y or N can be
entered in response to "Upshift?"; default is N.

146 "Y" or "N" expected in answer
to "Convert to EBCDIC?".

On GLOBALS menu, only a Y or N can be
entered in response to "Convert to EBCDIC?";
default is N.

147 Illegal character. Character in output record menu is neither
alphabetic nor numeric.

148 This is not a field. In output record menu, you may enter data only
in the highlighted fields.

149 Form name must start with
char. No embedded blanks
allowed.

First character of form name must be
alphabetic; name may not have embedded
blanks.

150 Output field name must start
with char. No embedded blanks
allowed.

See error 143.

151 Internal error: Field
alignment check failed.

153 Fields cannot have embedded
blanks.

Embedded blanks are not allowed in any field of
the OUTPUT RECORD menu.

154 Input length field cannot
have embedded blanks.

Length of input field must be a positive integer
with no embedded blanks.

155 Start substring field cannot
have embedded blanks.

Input starting column must not contain
embedded blanks.

157 Output starting column field
cannot contain blanks.

Embedded blanks are not allowed as part of the
output starting specification.

158 Input length field cannot
contain blanks.

No embedded blanks are allowed in the input
length field.

159 Input length must be greater
than 0.

Specify input length as positive integer greater
than zero.

160 Substring starting column
exceeds length of forms file
field.

Start of input field must be within the forms file
field; column specified is greater than the
number of characters in the form field.

161 Substring start column +
input length > length of
forms file field.

Specified starting column plus length of field
add up to more characters than the forms file
field contains.

162 Input length for reformat
field exceeds length of forms
file field.

Length specified for input field is greater than
the number of forms file field. characters in the
field.

163 Output record size must be
between 1 and 8192.

The output record size exceeds 8192 characters.
Make the output record smaller.

Error Message Cause/Action
548 Appendix B

VPLUS Error Messages
REFSPEC Messages
Validation Errors

Error Message Cause/Action

201 Field ! not found in form !. Input field in OUTPUT RECORD menu not
found in specified form.

202 Field ! not found in any form
in input forms sequence.

Input field in OUTPUT RECORD menu not
found in any form in the sequence.
corresponding INPUT FORMS menu.

203 Reformat identifier ! is not
a unique reformat sequence.

First form specified on INPUT FORMS menu is
not unique to the identifier. reformat file. Use a
form name that has not been specified as a
reformat identifier on another menu.

204 Internal error: Data type is
bad.

See error 206.

205 Output record length is
greater than globally defined
record length.

Change either the total output record length on
the OUTPUT RECORD defined record length.
menu, or the record length on the GLOBALS
menu, or start a new record using the start
record marker.

206 Internal error: Bad entry in
field table. Illegal field
type.

Internal descriptions of fields are bad. Press
ENTER again. If field type. that fails, delete
and recreate the offending format.

207 Error opening reformat file.
(FSERR !!!!)

Refer to the file system error for the cause of the
open failure.

208 A unique reformat identifier
is required.

See error 203.

210 Internal error: OFST table is
bad.

See error 206. OFST is Old Field Symbol Table.

211 Internal error: Field table
is bad. Set’next failed.

See error 206.

212 Form name must begin with an
alphabetic character.

Form name cannot start with a special
character or a digit.

213 Form name cannot have
embedded " "’s or "."’s.

The only non-alphanumeric character allowed
in a form name is the underline "_".

214 Form name may contain only
alphas, digits and "_"’s.

Use the correct naming conventions: A name
may contain letters, digits, or the underline,
must start with a letter, and have no more than
15 characters.

215 Internal error in
ADJUST’ALL’START’COL.

Internal error in recording the change in the
default starting position of each field, a change
resulting from altering the field or record
separators in the globals menu.
Appendix B 549

VPLUS Error Messages
REFSPEC Messages
216 Internal error reading
reformat intermediate record
for !.

Error reading an internally used record from
the reformat file.

217 WARNING: Start column goes
beyond global output record
length.

Starting column for output record specified on
OUTPUT RECORD menu is greater than the
record length on the GLOBALS menu. To avoid
truncation, change one of the two specifications.

218 Embedded blank form names not
allowed in a sequence.

A form name consisting of a blank found in the
INPUT FORMS menu. Remove the blank line
from the sequence.

219 Internal error: Data type is
bad.

See error 204.

220 WARNING: This field causes
output record size to be too
big.

 A field specified on the OUTPUT RECORD
menu is beyond the record to be too big.
size set on the GLOBALS menu. Change the
GLOBALS specification or delete the field.

Error Message Cause/Action
550 Appendix B

VPLUS Error Messages
REFSPEC Messages
Field Table Errors

Error Message Cause/Action

301 Internal error: OFST ALLOCATE
failed.

Space allocated for dynamic array is
insufficient.

302 Internal error: OFST record
missing. Write failed
previously.

Attempt to read internal record failed because
the record did not exist.

303 Internal error: OFST write
failed. (FSERR !!!!)

Attempt to write an internal record failed.

304 Internal error: OFST does not
have any more room.

305 Output field name ! not
unique.

Output field name on OUTPUT RECORD menu
must be unique for the record. Use output field
name to provide unique name.

306 Internal error: OFST search
range error.

See error 301.

307 Internal error reading OFST
record. (FSERR !!!!)

Failure to read an intermediate (internal)
record.

308 Internal error: OFST start
order.

See error 301.

309 Internal error: OFST end
order.

See error 301.

313 Internal error: OFST
unreferenced error.

See error 301.

316 Internal error: OFST update
screen order error.

See error 301.

320 Internal error: OFST wrap
loop error.

See error 301.

400 Internal error: Field table
allocation failed.

See error 301

401 Internal error: Field table
record missing. Prev write
failed.

See error 302.

402 Internal error reading FST
from forms file. (FSERR !!!!)

Field names in output record menu cannot be
checked against the forms file because of
internal inability to read information from
forms file.

403 Internal error writing FST to
reformat file. (FSERR !!!!)

See error 303.

404 Internal error: Field table
has no more room.

See error 301.
Appendix B 551

VPLUS Error Messages
REFSPEC Messages
405 Internal error reading input
seq from reformat file.
(FSERR !!!!)

See error 402.

406 Internal error: Input seq
table record missing. Prev
write failed.

See error 302.

407 Internal error writing seq
table to refmt file.
(FSERR !!!!)

450 Form ! does not exist in the
forms file.

Form name specified on INPUT FORMS menu
is not in forms file. Check name and correct it.

451 Internal error reading glob
forms buf from form file.
(FSERR !!!!)

Failure to read list of forms in the forms file.

452 Internal error: Global forms
file rec missing. Prev write
failed.

453 Internal error reading field
name table for form !.
(FSERR !!!)

Failure to read list of all fields for a particular
form in the forms file.

460 Internal error in reading
globals from forms file.
(FSERR !!!!)

461 Internal error: Allocation of
form’glob’buf failed.

462 Internal error: Allocation of
form’flds’buf failed.

463 Internal error: Allocation of
literal table failed.

464 Internal error: Literal table
record missing. Prev write
failed.

465 Internal error: Error reading
literal table record.
(FSERR !!!!)

466 Internal error writing
literal table record.
(FSERR !!!!)

468 Internal error: Allocation of
global buffer failed.

469 Form ! does not exist in this
forms file.

Error Message Cause/Action
552 Appendix B

VPLUS Error Messages
REFSPEC Messages
Menu Processing Errors

Error Message Cause/Action

501 Selection field cannot be
blank.

Enter one of the following codes in the MAIN
menu selection box: A, X, G, F, L, or D.

502 Reformat identifier ! not
found.

A reformat id entered on the MAIN menu is
not in the reformat file. Check the INPUT
FORMS menu or correct the identifier.

503 Output field name ! not found. An output field name entered on the MAIN
menu is not in the reformat file. Check the
OUTPUT RECORD menus or correct the field
name.

504 No reformat identifier was
specified.

A selection on the MAIN menu requires a
reformat identifier. Enter the identifier or
change the selection.

505 There are no input form
sequences in the deleted was
specified.

A reformat identifier was specified, but no
INPUT FORMS reformat file. menu has been
entered.

506 No reformat to be deleted was
specified.

"D" was entered in MAIN menu selection box;
specify the reformat identifier to be deleted.

507 No such reformat identifier
exists.

A reformat identifier on the MAIN menu is
not on any INPUT FORMS menu.

508 Main selection field must be
"A!, "X", "G", "F", "L" or "D".

Enter one of the listed codes.

509 This field must be blank when
deleting.

The reformat id for deletion should be in the
right hand box; clear in the lefthand box.

510 Listing is not done on a field
level.

Enter "L" to list, and a reformat identifier in
the left hand box; you cannot list a single
field.

511 Form name must be blank for
compile.

When you enter "X" to compile the reformat
file, you cannot enter a reformat identifier.

512 Field name must be blank for
compile option.

When you enter "X" to compile the reformat
file, you cannot enter an output field name.

513 Form name is not specified when
adding a form.

When you enter "A" to add a reformat, do not
specify the reformat id; reformat id’s are
entered on the INPUT FORMS menu.

514 Fields are not added from the
MAIN menu.

Output fields are added on the OUTPUT
RECORD menu, not using the "A" option of
the MAIN menu.

515 Form name must be blank for
this option.

A selection was made on the MAIN menu that
cannot use a reformat id. Clear the reformat
id box.
Appendix B 553

VPLUS Error Messages
REFSPEC Messages
516 Field name must be blank for
this option.

A selection was made on the MAIN menu that
cannot use an output field name. Clear the
output field box.

Error Message Cause/Action
554 Appendix B

VPLUS Error Messages
REFSPEC Messages
Menu Processing Utility Errors

Errors Message Cause/Action

600 NUMn can have digits only from
"O" to "9".

A value other than a digit was entered for a
NUMn type field; change the data type or the
selection.

606 Must be NUMn, DIG, IMPn,MDY,
DMY, YMD, or CHAR.

Enter one of the listed codes as the data type
of this field; n can be a digit 0-9 for NUM, 1-9
for IMP.

608 Justify field must be "L", "R",
"C", or " ".

Enter one of the codes to justify field Left,
Right, or Center; default is Right justify for
numbers or dates, no justification for
characters.

609 Checkdigit must be either "10"
or "11".

 If you want to insert a check digit, specify 10
for modulus 10, 11 for modulus 11.

610 Checkdigit can only be added to
fields of type DIGIT or CHAR.

If you want to add a checkdigit, change the
data type on the OUTPUT FIELD menu.

611 Internal error: Substring start
column value could not be
displayed.

Intrinsic ASCII failed.

612 Numeric fields cannot be
converted to fields of date
type.

When the input field is a number, you cannot
specify a data type of MDY, DMY, or YMD on
the OUTPUT FIELD menu. Change the data
type.

613 Date fields cannot be converted
to fields of numeric type.

When the input field is a date, you cannot
specify DIG, IMPn, or NUMn as the data type
on an OUTPUT FIELD menu. Change the
data type to a date or CHAR.

614 Fields of type CHAR cannot be
converted to other data types.

When the input field is type CHAR, you
cannot change the data type on an OUTPUT
FIELD menu. Leave the type as CHAR.

615 Internal error: Input length
value could not be displayed.

Intrinsic ASCII failed.

617 Only fields of type NUM, NUMn
and IMP can be signed.

If the input field is not one of the listed types,
you cannot specify a sign on the OUTPUT
FIELD menu.

618 Sign must be "L", "R","F", "Z",
"N" or " ".

Only the listed codes or a space can be entered
on the SIGN box of the OUTPUT FIELD
menu. Correct your entry.

620 Plus field must be "Y"or"N". If you want the plus sign retained in the field,
enter Y in the PLUS SIGN? box; if N or blank,
only minus signs are inserted.
Appendix B 555

VPLUS Error Messages
REFSPEC Messages
621 Expected "F", "V", or "U" in
record format field.

Enter one of the listed codes in the Output
Record Format box of the GLOBALS menu;
default is F (fixed length).

622 Record size must be a numeric
value less than 32767.

Enter a positive integer less than 32767 in the
Record Length box of the GLOBALS menu, or
leave the default length of 80 characters.

624 Expected literal, system
constant or ASCII equivalent in
string.

Record terminator or field separator string
can only be a quoted string, the numeric
equivalent of an ASCII c.haracter preceded by
$, or a system constant: $LF, $CR, $GS, $US,
or $RS.

625 Output field must be expanded
to allow for checkdigit.

If you enter 10 or 11 in the CDIGIT box of the
OUTPUT FIELD menu, be sure to increase
the size of the output field on the OUTPUT
RECORD menu.

626 Internal error: Checkdigit
option not valid for data type.

See error 610

627 Strip fields must start and end
with a quote.

Enclose any characters in a STRIP box of the
OUTPUT FIELD menu between quotes.

628 Use "" or ’’ to indicate " or ’
inside a literal.

Use double quotes for any quotation marks
within a literal (literal is entered in the
GLOBALS menu.)

629 Plus option cannot be "Y" if
sign option is "N".

If you want a plus sign, you must also specify
where you want any sign in the SIGN box of
the OUTPUT FIELD menu.

630 Fill all has already filled
leading blanks.

Enter a character in Fill ALL OR Fill
Leading, not both.

631 Fill all has already filled
leading blanks.

Enter a character in Fill ALL OR Fill
Leading, not both.

632 IMPn can have digits only from
"0" to "9".

 Number of implied decimal places must be a
digit.

Errors Message Cause/Action
556 Appendix B

VPLUS Error Messages
REFSPEC Messages
Menu Init and Processing Errors

Error Message Cause/Action

702 Internal error. Intrinsic ASCII
failed.

703 Largest legal integer value is
32767.

Error in Record Length field of GLOBALS
menu.

704 Length of field cannot be
negative.

Negative value specified as field length on
OUTPUT RECORD menu.

705 Internal error initializing
OUTPUT RECORD menu.
(COMSTATUS !!!!)

Internal error in writing the header part of
the output record menu.

706 Internal err writing old output
recdef to screen
(COMSTATUS !!!!)

Internal error in writing user’s
specifications--part of output menu.

707 Internal error reading output
recdef from screen.
(COMSTATUS !!!!)

Attempt to read the output record menu
failed.

708 Internal error in writing
output recdef to refmt file.
(FSERR !!!!)

709 Internal error reading source
rec from reformat file.
(FSERR !!!!)

710 Internal error in writing
source rec to reformat file.
(FSERR !!!!)

If trying to change the forms file name in
REFSPEC make sure that the original forms
file does not exist by temporarily renaming it.

714 Internal error writing the
window. (COM’STATUS !!!!)

716 Internal error writing the
error cursor pos’n.
(COM’STATUS !!!!)

742 Internal error: Start column
could not be displayed.

Intrinsic ASCII failed.

743 Internal error: Length could
not be displayed.

Intrinsic ASCII failed.

744 Forms file is not a valid forms
file or forms file is not
compiled.

The forms file specified on the FORMS FILE
menu is not valid. Correct the name or go
back to FORMSPEC and compile the forms
file.

745 Internal error in
T’READ’NO’HOME. Bad key read.
(COMSTATUS !!!!)
Appendix B 557

VPLUS Error Messages
REFSPEC Messages
746 Internal error in cursor
positioning before read.

747 Internal error writing the
current reformat rec for !.
(FSERR !!!)

748 Internal error initializing
Input Form Menu for reformat id
!.

749 Internal error reading MAIN
MENU form. (COMSTATUS !!!!)

750 Internal error showing MAIN
MENU form. (COMSTATUS !!!!)

751 Internal error getting MAIN
MENU form. (COMSTATUS !!!!)

752 Internal error in initializing
output record menu.
(COMSTATUS !!!!)

753 Internal error: VSETERROR
failed. (COMSTATUS !!!!)

754 Internal error: FGETINFO
failed.

755 File is not a forms file. File name specified on the FORMS FILE
menu does not name an existing forms file.
Correct the name.

756 File is not a reformat file. The file name specified on the REFORMAT
file menu does not identify an existing
reformat file.

757 Internal error: Could not get
information from reformat file.

Intrinsic FGETINFO failed.

758 Internal error: Could not get
information from forms file.

Intrinsic FGETINFO failed.

Error Message Cause/Action
558 Appendix B

VPLUS Error Messages
REFSPEC Messages
Menu Controller Errors

Error Message Cause/Action

802 The PREV key is not allowed
here.

There is no previous menu.

803 The function key just hit is
not defined for this mode.

This key has not meaning on the current
menu.

805 Error getting next form !.
(COM’STATUS !!!)

806 Internal error in VSHOWFORM.
(COM’STATUS !!!!)

807 Internal error in VREADFIELDS.
(COM’STATUS !!!!)

808 Internal error in VGETBUF.
(COM’STATUS !!!!)

810 Internal error in writing
reformat rec for reformat !.
(FSERR !!!)

811 Internal error in reading
reformat rec for reformat !.
(FSERR !!!)

812 Internal error in reading
globals record. (FSERR !!!!)

815 NEXT is not meaningful until a
forms file name is specified.

Enter a forms file name on the FORMS FILE
menu before using the NEXT key.

816 NEXT is not appropriate. There
are no more reformats.

Use the MAIN menu to go to a particular
reformat, or use PREV REFORMAT key to go to
a prior reformat.

817 NEXT is not meaningful until a
reformat file name is
specified.

Enter a reformat file name on the
REFORMAT FILE menu before using the
NEXT key.

818 You cannot specify more than
255 reformats.

You have already entered 255 INPUT FORMS
menus; try to use fewer.

819 The NEXT REFORMAT key is
inappropriate.There are no more
reformats.

There are no more INPUT FORMS menus in
the file.

820 There are no previous
reformats.

The current reformat is the first one. Use the
main menu to go to a particular reformat or
use the NEXT REFORMAT key to go to the next
input forms sequence.

821 Internal error in writing
globals table record.
(FSERR !!!!)
Appendix B 559

VPLUS Error Messages
REFSPEC Messages
822 WARNING: Changes in input forms
menu may have invalidated this
menu.

The OUTPUT FIELD menu may be affected
by changes to the INPUT FORMS menu.

823 WARNING: Changes in input forms
menu may have invalidated this
menu.

The OUTPUT RECORD menu may be
affected by changes to the INPUT FORMS
menu.

824 Internal error: Missing record
for reformat !. Prev write
failed.

825 NEXT’REFORMAT is not meaningful
until forms file name is
specified.

826 NEXT’REFORMAT not meaningful
until reformat file name is
specified.

827 Cannot go to MAIN MENU until
reformat file name has been
specified.

828 Cannot go to MAIN MENU until
forms file name has been
specified.

Do not press MAIN key until you have entered
forms file name on FORMS FILE menu.

829 Reformat file was modified
since last compile. Press EXIT
to exit.

You pressed EXIT before compiling the
reformat file; press MAIN to go to MAIN menu
to compile, or press EXIT to exit without
compiling.

Error Message Cause/Action
560 Appendix B

VPLUS Error Messages
REFSPEC Messages
Init and Compile Errors

Compile Errors

Error Message Cause/Action

906 Error writing reformat !.
(FSERR !!!)

913 Internal error closing your
forms file. (FSERR !!!!)

914 Internal error in storing the
field symbol table.
(FSERR !!!!)

917 Internal error in storing OFST.
(FSERR !!!!)

918 Error closing reformat file.
(FSERR !!!!)

919 Internal error in closing
REFSPEC forms file.
(FSERR !!!!)

920 Internal error in closing
terminal file. (FSERR !!!!)

921 Internal error in writing
globals record on exit.
(FSERR !!!!)

922 Internal error in storing
literal table. (FSERR !!!!)

923 Error in opening user’s forms
file. (FSERR !!!!)

Refer to the file system error to determine the
cause of the open failure.

Error Message Cause/Action

1000 Internal error on compile. Bad
field type.

1001 Internal error writing field
intermediate code rec.
(FSERR !!!!)

1002 Internal error writing reformat
code record. (FSERR !!!!)

1003 Internal error: Allocation of
compile buffer failed.

1004 Internal error writing globals
code record. (FSERR !!!!)
Appendix B 561

VPLUS Error Messages
REFSPEC Messages
1005 Internal error reading field
intermediate code rec.
(FSERR !!!!)

1006 REFSPEC version has been
changed. Reformat file invalid.

The specified reformat file was produced on an
earlier version of REFSPEC.

1007 Reformat file is empty. There
is nothing to compile.

Enter A to add a reformat before entering X to
compile.

1008 Error in output record menu in
reformat !.

Go to the OUTPUT RECORD menu for the
specified reformat, and make correction.

1009 Error in input forms menu in
reformat !.

Go to the specified reformat (INPUT FORMS
menu) and make correction.

1010 Output field ! of reformat ! is
in error.

Go to the specified OUTPUT FIELD menu
and make correction.

1011 Internal error writing code rec
for input forms seq.
(FSERR !!!!)

Error Message Cause/Action
562 Appendix B

VPLUS Error Messages
Reformat Messages
Reformat Messages

Reformat Messages

Error Message Cause/Action

2 Error opening reformat file.
(FSERR !!!!)

Check file system error number.

4 Batch file could not be opened.
(FSERR !!!!)

Check file system error number.

5 No reformatting was done. No sequence of forms in batch matched with
any Reformat sequence.

6 Batch file: ! Not an error. Listing message.

8 Error closing batch file.
(FSERR !!!!)

Check file system error number.

9 Error closing output file.
(FSERR !!!!)

10 Error closing reformat file.
(FSERR !!!!)

11 Error opening output file.
(FSERR !!!!)

13 Cannot append to a file with
variable length records.

If you specify an existing output file in the
:FILE command, and expect to write/append
to that file, it must have fixed-length records.

14 Reformat file not compiled or
not a legal reformat file.

Check the reformat file name in your :FILE
command; you may have to run REFSPEC to
compile the reformat file.

15 Form file versions from batch
and reformat file don’t match.

A warning that forms file was recompiled
since batch file was created.

16 Batch data must be from forms
file !.

Reformat file expects batch file written from
forms in specified forms file. Check that batch
and reformat names are correct.

17 Not a legal batch file. Check batch file name in :FILE command.

18 REFORMAT TERMINATED ABNORMALLY.FGETINFO failed. See error message given in
your output above this message.

19 Internal error getting info
from reformat file.
(FSERR !!!!)

20 Reformat file: ! Not an error.

22 Output file: ! Not an error.
Appendix B 563

VPLUS Error Messages
Reformat Messages
23 Internal error getting
information from batch file.
(FSERR !!!!)

FGETINFO failed.

24 File specified was not a
reformat file.

Check reformat file name in :FILE command.

Error Message Cause/Action
564 Appendix B

VPLUS Error Messages
Reformat Messages
Allocation Messages

I/O Messages

Intrinsic Messages

Error Message Cause/Action

30 Internal error: Batch data
space too small. Allocation
failed.

31 Internal error allocating batch
information buffer.

32 Internal error allocating batch
data buffer.

33 Internal error allocating batch
temporary buffer.

34 Internal error allocating
reformat code buffer.

35 Internal error allocating
output buffer.

36 Internal error allocating
temporary output buffer.

37 Internal error allocating data
buffer.

Error Message Cause/Action

50 Error reading batch record #
!!!. (FSERR !)

51 Error reading from reformat
file. (FSERR !!!!)

52 Error reading from reformat
file. (FSERR !!!!)

54 End of file reached on output
file. Record not written.

55 Error writing to output file.
(FSERR !!!!)

56 Error reading from reformat
file. (FSERR !!!!)

Error Message Cause/Action

73 Internal error: Translation to
EBCDIC failed.

Intrinsic failed.
Appendix B 565

VPLUS Error Messages
Reformat Messages
Access Method Messages

Code Interpretation Messages

Error Message Cause/Action

086 Access method: file code error.

087 Access method: Attempt to add a
duplicate key.

088 Access method: Internal error.
Key insertion location error.

089 Access method: Internal error.
Block not present.

090 Access method: Attempt to open
an old file as new.

091 Access method: Internal error.
Key block buffer error.

092 Access method: Internal error.
Invalid key block number.

093 Access method: Internal error.
Block not verified.

094 Access method: Record not
found.

095 Access method: Not enough space
in extension for the directory.

Fast form files require 500 words of space in
the COMAREA extension. If you are coding in
BASIC, list the forms file to find how many
words are needed for the extension, and
increase the COMAREA field USERBUFLEN
to this number.

096 Access method: Internal error.
Parent block not found.

097 Access method: Internal error.
Illegal entry number.

098 Access method: The file is not
a KSAMless forms/ref file.

099 Access method: The file is at
EOF.

Error Message Cause/Action

101 Record terminator causes output
record overflow. Data
truncated.

End-of-record marker makes record longer
than output record length defined on
GLOBALS menu for reformat file.
566 Appendix B

VPLUS Error Messages
Reformat Messages
102 Field separator causes output
record overflow. Data
truncated.

See error 101. See globals menu.

103 Literal causes output record
overflow. Data truncated.

A literal constant in output record makes
record longer than output record length
defined for file in GLOBALS menu.

104 Internal error: Bad code for
reformat sequence.

105 Output length greater than
largest possible output record.

Length of actual output record is longer than
largest variable length record as defined on
GLOBALS menu for file.

106 Field causes output record
overflow. Data truncated.

An output field causes the output record to be
longer than truncated. the record length
defined on the GLOBALS menu.

107 Field causes output record
overflow. Field data not
written.

In this case, the entire field is omitted from
the output record. (For error 106, the field is
written with data truncated.)

108 Field causes overwrite on
previous data. Field data not
written.

The beginning of this field overlaps a previous
field. data not written. Check OUTPUT
RECORD specification for reformat file.

109 System constant $Gs causes
record overflow. Data
truncated.

Group separator in output record makes
record longer than maximum record size
defined for output file.

110 System constant $RS causes
record overflow. Data
truncated.

Record separator in output record makes
record longer than Data truncated.
maximum record size defined for output file.

111 System constant $US causes
record overflow. Data
truncated.

Unit separator in output record makes record
longer than maximum truncated.
record size defined for output file.

112 System constant $LF causes
record overflow. Data
truncated.

Line feed specified in output record makes
record longer than maximum record size
defined for output file.

113 System constant $CR causes
record overflow. Data
truncated.

Carriage return specified in output record
makes record longer than maximum record
size defined for output file.

114 ASCII character causes output
record overflow.Data truncated.

The numeric equivalent of an ASCII character
in the output record makes record longer than
maximum record size defined for output file.

Error Message Cause/Action
Appendix B 567

VPLUS Error Messages
Reformat Messages
Statistics Messages

Reformat Errors

Error Message Cause/Action

200 Reformatting completed
successfully with no errors.

Hurrah!

201 !!!! reformats attempted. Message reports how many times reformat
identifiers were matched with records in the
reformat file.

202 !!! records written to output
file.

This message tells you the total number of
reformatted records written by REFORMAT.
Message is always issued.

203 !!! batch records processed. This message tells you the total number of
records in the batch file that were processed
by REFORMAT.

204 !!!! errors. The total number of errors detected by
REFORMAT.

205 Some errors were found see
above. REFORMAT terminated
normally.

This message is issued after message 204
when REFORMAT completes despite errors.

Error Message Cause/Action

300 Invalid numeric data. Numeric data expected for output field, but
data in batch field not numeric.

301 Numeric data conversion failed. Conversion of numeric data from batch field to
output field not successful. Check that
OUTPUT FIELD is a numeric type, that
batch field contains numeric data.

302 Numeric data conversion failed.
Output field too small.

Output field defined in reformat file not large
enough for numeric data in batch field.

303 Invalid data for digit data
type.

Output field defined as type DIG, but data in
batch field is not solely digits.

304 Numeric data conversion failed. See error 301.

305 Numeric data conversion failed.
Output field too small.

See error 302.

306 Date conversion failed. Conversion of a date from batch field to output
field not successful. Check that OUTPUT
FIELD is a date type, that batch field contains
a date.

307 Date conversion failed. Output
field too small.

The output field is not large enough to contain
the date in the batch field. Check field size in
OUTPUT RECORD menu, check batch field.
568 Appendix B

VPLUS Error Messages
Reformat Messages
308 Invalid data in date input
field.

Output field expects a date, but batch field
does not contain a date.

309 No data movement. Truncation of
significant data would occur.

The numeric data is not written to the output
field because it would be truncated.

315 Non-numeric characters cannot
be converted to zone decimals.

Output field defined as SIGN = Z, but batch
field does not contain zone decimals.
numeric data.

316 No sign inserted. Truncation of
significant data would occur.

Output field defined as SIGN = F, L, P, or Z,
but inserting sign would cause value in batch
field to be truncated.

317 Data truncated for output
record # !!!.

Data written to the specified output record
has been truncated. Presumably, the data is
not significant.

318 No reformatting done for the
following:

The listed (fields/records) in the batch file
have not written to the output file.

319 Insertion of checkdigit would
cause loss of significant data.

The output field into which a checkdigit is to
be inserted is not large enough to contain the
extra digit. The checkdigit is not added.

320 Illegal character infield.
Checkdigit not generated.

In performing the checkdigit calculations, a
character other than a letter (A-Z) or a digit
(0-9) was found.

321 Internal error: More than 9
decimal places expected.

Batch data. Involves NUM(n) field where n is
valued internally to be greater than 9.

322 All blank numeric field cannot
be reformatted.

A batch field containing blanks cannot be
converted to a numeric output field.

323 Commas in numeric data field
are not correctly positioned.

Any commas in a numeric batch field must be
correct; otherwise value cannot be converted
to numeric output field.

324 Numeric data has more than the
expected number of decimal
places.

Numeric batch field has more decimal digits
than defined for the output field. Output field
is replaced with blanks.

325 Invalid character in numeric
data field.

Batch field to be converted to numeric output
field contains characters other than digits,
sign, decimal point, or commas.

326 Invalid character in digit data
field.

Batch field to be converted to digit type output
field contains characters other than digits.
Output field replaced with blanks.

327 Only a plus or minus sign was
found in numeric field.

Batch field to be converted to numeric output
field contains only a sign. REFORMAT
replaces the output field with blanks.

Error Message Cause/Action
Appendix B 569

VPLUS Error Messages
Reformat Messages
328 Internal error: More than 9
decimal places expected.

See error 321.

329 An all blank field is not a
legal implied value.

A batch field to be converted to an IMPn type
output field must contain values other than
blanks.

330 Commas in implied data field
are not correctly positioned.

In an IMPn type field, commas should be
positioned counting back from the implied
decimal point.

331 Implied data has more than the
expected number of decimal
places.

IMPn type batch field has more than n digits
to the right of an actual decimal point. Output
field replaced with blanks.

332 Illegal character found in
implied data field.

IMPn type batch field contains character
other than a digit, decimal point, sign, or
commas.

333 Only a plus or minus sign was
found in implied field.

IMPn type batch field contains only a sign;
cannot convert to numeric output field.

334 IMPn field must have at least
!!!! digits.

IMPn type batch field has fewer than n digits.

335 Illegal implied field data. IMPn type batch field has data other than
digits, decimal point, sign, or commas.

336 Check digit requested on empty
field.

Cannot generate check digit from blank batch
field.

337 Check digit requested on field
containing only + or - sign.

Cannot generate check digit from sign only.

338 Check digit requested on field
containing special characters.

Can only generate check digit from digits (0-9)
or letters (A-Z).

339 Check digit 10 is invalid for
modulus 11 calculation.

This number or string is inappropriate for
modulus 11 check digit calculation because
that process yields a value of 10 when only
single digit results can be used.

340 Check digit modulus must be 10
or 11.

Check OUTPUT FIELD in reformat file; only
modulus 10 or 11 check digits can be
generated.

341 Check digit generation failed. See appendix D. Check digits cannot be
calculated for some fields

Error Message Cause/Action
570 Appendix B

VPLUS Error Messages
Reformat Messages
Message Info

Header Messaages

Testlist Errors

Error Message Cause/Action

400 Reformat identifier: !

401 Reformat field name: !

402 Batch record form name: !

403 Batch record #: !!!

404 Output record #: !!!

405 Output record col #: !!!!

Error Message Cause/Action

500 ******************************* **********************************

501 * *

502 * REFORMAT HP32209! *

503 * ! *

504 PAGE !!!!

505 !

506

507 REFORMAT/3000 HP32209!

Error Message Cause/Action

640 Error writing to testlist file.
(FSERR !!!)

641 EOF reached on testlist file.

642 Error opening testlist file.
(FSERR !!!)

643 Error allocating testlist
buffer.
Appendix B 571

VPLUS Error Messages
Reformat Messages
Native Mode Access Error Messages

Error Message Cause/Action

996 Forms file must be adjusted
with
FORMSPEC before it can be used.

997 Forms file is corrupt.

998 Negative argument passed to
VPLUS intrinsics

See Appendix J.

999 Attempt to access Compatibility
Mode VPLUS services failed.

See Appendix J.
572 Appendix B

USASCII Character Set in Collating Sequence
ASCII Character Set
C USASCII Character Set in Collating
Sequence

ASCII Character Set
Table C-1. ASCII Character Set

Hex. Dec. Octal Left Octal Right Char

00 0 000000 000000 NUL (null)

01 1 000400 000001 SOH (start of heading)

02 2 001000 000002 STX (start of text)

03 3 001400 000003 ETX (end of text)

04 4 002000 000004 EOT (end of transmission)

05 5 002400 000005 ENQ (enquiry)

06 6 003000 000006 ACK (acknowledge)

07 7 003400 000007 BEL (bell)

08 8 004000 000010 BS (backspace)

09 9 004400 000011 HT (horizontal tabulation)

0A 10 005000 000012 LF (line feed)

0B 11 005400 000013 VT (vertical tabulation)

0C 12 006000 000014 FF (form feed)

0D 13 006400 000015 CR (carriage return)

0E 14 007000 000016 SO (shift out)

0F 15 007400 000017 SI (shift in)

10 16 010000 000020 DLE (data link escape)

11 17 010400 000021 DC1 (device control 1, X-ON)

12 18 011000 000022 DC2 (device control 2)

13 19 011400 000023 DC3 (device control 3, X-OFF)

14 20 012000 000024 DC4 (device control 4)

15 21 012400 000025 NAK (negative acknowledge)

16 22 013000 000026 SYN (synchronous idle)
Appendix C 573

USASCII Character Set in Collating Sequence
ASCII Character Set
17 23 013400 000027 ETB (end of transmission block)

18 24 014000 000030 CAN (cancel)

19 25 014400 000031 EM (end of medium)

1A 26 015000 000032 SUB (substitute)

1B 27 015400 000033 ESC (escape)

1C 28 016000 000034 FS (file separator)

1D 29 016400 000035 GS (group separator)

1E 30 017000 000036 RS (record separator)

1F 31 017400 000037 US (unit separator)

20 32 020000 000040 blank

21 33 020400 000041 !

22 34 021000 000042 "

23 35 021400 000043 #

24 36 022000 000044 $

25 37 022400 000045 %

26 38 023000 000046 &

27 39 023400 000047 ' (closing single quote)

28 40 024000 000050 (

29 41 024400 000051)

2A 42 025000 000052 *

2B 43 025400 000053 +

2C 44 026000 000054 , (comma)

2D 45 026400 000055 -

2E 46 027000 000056 . (period)

2F 47 027400 000057 /

30 48 030000 000060 0

31 49 030400 000061 1

32 50 031000 000062 2

33 51 031400 000063 3

Table C-1. ASCII Character Set

Hex. Dec. Octal Left Octal Right Char
574 Appendix C

USASCII Character Set in Collating Sequence
ASCII Character Set
34 52 032000 000064 4

35 53 032400 000065 5

36 54 033000 000066 6

37 55 033400 000067 7

38 56 034000 000070 8

39 57 034400 000071 9

3A 58 035000 000072 : (colon)

3B 59 035400 000073 ; (semicolon)

3C 60 036000 000074 <

3D 61 036400 000075 =

3E 62 037000 000076 >

3F 63 037400 000077 ?

40 64 040000 000100 @

41 65 040400 000101 A

42 66 041000 000102 B

43 67 041400 000103 C

44 68 042000 000104 D

45 69 042400 000105 E

46 70 043000 000106 F

47 71 043400 000107 G

48 72 044000 000110 H

49 73 044400 000111 I

4A 74 045000 000112 J

4B 75 045400 000113 K

4C 76 046000 000114 L

4D 77 046400 000115 M

4E 78 047000 000116 N

4F 79 047400 000117 O

50 80 050000 000120 P

Table C-1. ASCII Character Set

Hex. Dec. Octal Left Octal Right Char
Appendix C 575

USASCII Character Set in Collating Sequence
ASCII Character Set
51 81 050400 000121 Q

52 82 051000 000122 R

53 83 051400 000123 S

54 84 052000 000124 T

55 85 052400 000125 U

56 86 053000 000126 V

57 87 053400 000127 W

58 88 054000 000130 X

59 89 054400 000131 Y

5A 90 055000 000132 Z

5B 91 055400 000133 [

5C 92 056000 000134 \

5D 93 056400 000135]

5E 94 057000 000136 ^ (caret)

5F 95 057400 000137 _ (underscore)

60 96 060000 000140 ` (opening single quote)

61 97 060400 000141 a

62 98 061000 000142 b

63 99 061400 000143 c

64 100 062000 000144 d

65 101 062400 000145 e

66 102 063000 000146 f

67 103 063400 000147 g

68 104 064000 000150 h

69 105 064400 000151 i

6A 106 065000 000152 j

6B 107 065400 000153 k

6C 108 066000 000154 l

6D 109 066400 000155 m

Table C-1. ASCII Character Set

Hex. Dec. Octal Left Octal Right Char
576 Appendix C

USASCII Character Set in Collating Sequence
ASCII Character Set
6E 110 067000 000156 n

6F 111 067400 000157 o

70 112 070000 000160 p

71 113 070400 000161 q

72 114 071000 000162 r

73 115 071400 000163 s

74 116 072000 000164 t

75 117 072400 000165 u

76 118 073000 000166 v

77 119 073400 000167 w

78 120 074000 000170 x

79 121 074400 000171 y

7A 122 075000 000172 z

7B 123 075400 000173 {

7C 124 076000 000174 | (vertical line)

7D 125 076400 000175 }

7E 126 077000 000176 ~ (tilde)

7F 127 077400 000177 DEL delete

Table C-1. ASCII Character Set

Hex. Dec. Octal Left Octal Right Char
Appendix C 577

USASCII Character Set in Collating Sequence
ASCII Character Set
578 Appendix C

CHECK DIGIT CALCULATION
D CHECK DIGIT CALCULATION

Check digits are digits added to the end of a value that contains only numbers (0-9) or
letters of the alphabet (A-Z). A FORMSPEC option can be selected that causes a modulus
check to be made on a value entered at the terminal.

Whenever a value is entered for which check-digit verification has been specified, a
modulus calculation is performed. The result of a modulus calculation is a single digit that
must match the last digit (the "check digit") of the entered value. If the match is not
successful, an error is diagnosed. Note that for modulus checks to be meaningful, the last
digit verified by such a check must have been calculated by the same method used for the
check.

REFSPEC has an option that lets you add a check digit to an entered value. The check
digit is added when REFORMAT is run. Thus, the check digit is added after the value is
entered at the terminal but before it is input to the application program. In this case, the
modulus calculation is made programmatically.

The modulus calculations used by VPLUS/V are either modulus 10 or modulus 11. A value
is checked by one or the other of these calculations, depending on which was used to add
the check digit. Thus, a value whose check digit was added using modulus 10 can be
checked only by modulus 10; and a value with a modulus 11 check digit can be checked
only with modulus 11 calculations.
Appendix D 579

CHECK DIGIT CALCULATION
MODULUS 10
MODULUS 10
Modulus 10 calculations detect single transpositions and incorrect keying of a single digit.
The calculation is performed as follows:

• The units position and every alternate position of the basic number is multiplied by 2.

• The digits resulting from the multiplication are added to those that were not
multiplied.

• The total is subtracted from the next higher number ending with zero. The result is the
check digit.

Example

Assume a basic number 9 6 4 3 8

Unit and every alternate 9 4 8

Multiplied by 2 18 8 16

Digits not multiplied 6 3

Add them together 1+8+6+8+3+1+6 = 33

Next higher number ending in zero 40

Subtract sum of digits -33

Check digit = 7

The base number with check digit 96438 7
580 Appendix D

CHECK DIGIT CALCULATION
MODULUS 11
MODULUS 11
Modulus 11 detects single digit errors, single transpositions, and double transpositions.
Unlike other check digit systems, it is based on a weighted checking factor for each digit in
the basic number. The modulus 11 check digit is obtained as follows:

• Each digit position of the basic number is assigned a weighted checking factor . The
following factors are assigned, starting with the units digit and progressing toward the
high-order digit:

2 3 4 5 6 7 2 3 4 5 6 7 2 3 4 . . .

• Each digit in the basic number is multiplied by its checking factor.

• The products are summed and then divided by 11. The remainder is subtracted from 11.
The result is the check digit.

Example

If a check digit is generated using modulus 11 calculations and the result is 10, the check
digit cannot be used and an error is returned. Modulus 11 check digits are the remainder
from dividing the product of the calculations by 11 (see example above). Thus, if check
digits are being generated for a continuous series of numbers, every eleventh number must
be skipped to avoid this error.

If the product generated through the modulus 11 calculations is evenly divisible by 11 (no
remainder), the resulting check digit is 11. In this case, the digit 0 is appended to the basic
number.

To summarize, if the calculated check digit is 10, an error is returned; if the calculated
check digit is 11, a zero is appended to the basic number.

When you attempt to add a modulus 11 check digit that evaluates to 10, the reformatter
issues the message: "Check digit is invalid for modulus 11 calculation".

If ENTRY checks a field according to the FORMSPEC statement CDIGIT 11 and that field
contains a value with a check digit that evaluates to 10, the same message is issued.

Assume a basic number 5 1 6 1 9 2 8 7 2

Checking factors 4 3 2 7 6 5 4 3 2

Add the products 20+3+12+7+54+10+32+21+4=163

Subtract remainder from 11 11-9=2

Check digit = 2

Self-checking number 516192872 2
Appendix D 581

CHECK DIGIT CALCULATION
ALPHABETIC CHECK DIGITS
ALPHABETIC CHECK DIGITS
Letters of the alphabet are treated like numbers in either modulus 10 or modulus 11 check
digit calculations. This is done by assigning a digit to each letter of the alphabet as follows:

A B C D E F G H I J K L M N 0 P Q R S T U V W X Y Z (=space)

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9 0

A value to be checked may be preceded by a plus or minus sign; however, the sign is
ignored in the check digit calculations. To illustrate, perform a modulus 10 check digit
calculation on a value that contains letters as well as numbers:

Assume a basic value 3 4 G 1 2 H

Change the letters to digits 3 4 7 1 2 8

Multiply alternate digits by 2 8 2 16

Digits not multiplied 3 7 2

Sum with digits that were not multiplied 3+8+7+2+2+1+6 = 29

Subtract sum from next higher number ending with zero 30-29 = 1

Check digit = 1

Self-checking number 34G12H1
582 Appendix D

Application Hints
E Application Hints

This appendix provides hints and guidelines on the following topics

• Designing your Forms File

• Rules for the DL Area

• Coding the Touch Feature
Appendix E 583

Application Hints
Designing Your Forms File
Designing Your Forms File
The following hints may help you design your forms file with FORMSPEC:

1. If the status/window line is the last line on the screen, it should be no longer than 79
characters. This is because using the 80th character on the bottom line of the screen
causes the screen to roll up one line temporarily. If this roll-up is not a problem, then
the last line can use 80 characters.

2. On an HP 264X terminal, when a form is to be appended, column 80 of any line of the
form with an unprotected field should not be used. When the next form is displayed,
column 80 of the current form disappears.

3. If you want to enhance text (the protected area of the screen), you can define a field with
a display only field type and any enhancements you desire. Using the INIT processing
phase specification, text can be initialized to appear in the field. For example:

This method can also be used to alter "text" on the screen during execution. Define a
display only field with the desired enhancements. You can either use the processing
specifications phases (INIT, FIELD or FINISH) to alter the contents of the field or you
can programmatically change the field contents using VPUTBUFFER or VPUTFIELD
intrinsic calls.

NOTE Processing specifications only execute if the application calls the "editing"
intrinsics: VINITFORM, VFIELDEDITS, VFINISHFORM .

4. If you want to define blank lines at the bottom of a form, define a display only field of at
least one character at the end of the blank lines. Delimit the field by ESCAPE and
ESCAPE , with the field enhancements of NONE. This forces the display of seemingly
blank lines and does not affect the application programs. Otherwise FORMSPEC would
delete trailing blank lines from a form.

5. If you use save fields to accumulate totals and you expect the user to browse and correct
the fields used for summation, special care must be taken to ensure that the totals are
accurate. If an entered value is summed into a save field, and then this value is changed
in browse/modify mode, the new value is also summed into the save field unless you
specify the SET statement to account for this possibility.

For example, assume you are accumulating values entered in a field F1 into a save field
used for batch totals BT. In order to allow only the correct values to be accumulated,
construct a display-only field OLDF1 identical in its characteristics to F1. The field is
initialized to zero in collect mode only, but not in browse mode. In browse mode, OLDF1
contains the previous value of F1. This previous value is then subtracted from the sum
584 Appendix E

Application Hints
Designing Your Forms File
BT. The following specifications are entered in the F1 Field Menu to ensure that only the
correct values are summed:

INIT

SET OLDF1 TO 0 \executed only in collect mode

FIELD

<any edit statements>

SET BT TO BT + F1 - OLDF1 \executed in browse or collect
mode

SET OLDF1

6. If you want to include a logical AND function in your processing specifications, use
nested IF statements. For example, to get the effect of

IF A=B AND C=D AND E=F

use the following statements:

IF A=B THEN

IF C=D THEN

IF E=F THEN

To negate an IF condition, simply use the ELSE part with a null THEN part.

A logical OR or NOR cannot be similarly specified, but for comparisons on a single field,
use IN or NIN with a list. For example, to get the effect of

IF A=B OR A=D OR A=F

use the edit statement:

A IN B, D, F

7. Sometimes in data entry applications, the user would like to knowingly enter a value
that normally falls the designer's edits. This is called "Edit Override", and can be
implemented through FORMSPEC in a number of ways.

a. Adopt a user convention to require some special character(s) in the field along with
the desired data. (Note that the field must be made long enough to accommodate the
extra character(s).) For example:

IF MATCH ?*!! THEN \Skip the edits.

ELSE<edit statements> \No trailing “!”; apply normal edits

Note that the special characters must satisfy the default data type edit. The above
statement, for instance, would not work with a numeric field. Some possibilities of
special characters for numeric fields are leading zeros (MATCH O?*), a leading plus
(MATCH !+?*), or a comma (MATCH 000,?*). If signed numbers are expected, prefix
your pattern with !+,-.

b. Include an auxiliary EDIT OVERRIDE field that must be marked in order to bypass
edits. For example, assume a field named EO:
Appendix E 585

Application Hints
Designing Your Forms File
IF EO MINLEN 1 THEN

ELSE<edit statements> EO not marked; apply edits

8. The contributed utility program RESTORE will not correctly copy records larger than
2000 bytes. If you wish to copy a KSAM forms file or reformat file from a store tape to a
disc file, use the MPE :RESTORE command and the FCOPY subsystem.

9. There are three file equations for which VPLUS checks during execution. The use of
these file equations provides the user with a way to override the defaults used by
VPLUS. These file equations are also useful when attempting to debug an application
with trace messages or when DEBUG is used. The VPLUS intrinsic VOPENTERM, used by
FORMSPEC, ENTRY, and REFSPEC, searches for a file equation named A264X.
VOPENTERM attempts to open the device referenced by A264X to display VPLUS forms
and accept their associated input. For example:

: FILE A264X; DEV=28
: RUN ENTRY.PUB.SYS

causes logical device 28 to be opened by VOPENTERM, and subsequent screen displays by
VSHOWFORM appear on LDEV 28. In this example, LDEV 28 must be a logged off
terminal in an available state. Applications can make use of this feature by using the
termfile parameter of VOPENTERM and a file equation. If the second parameter to
VOPENTERM contained the value TERMINAL, the following file equation will cause logical
device 28 to be opened for forms display:

: FILE TERMINAL;DEV=28

Trace and abort messages will be displayed to the command terminal — the one which
initiated the application. This would be the main reason to use this feature as abort
messages are frequently impossible to read because they are displayed in the
unprotected fields of a VPLUS application.

The second file equation which VPLUS searches for is FORMLIST. The VPRINTFORM
intrinsic uses FORMLIST to list forms (as in ENTRY). FORMSPEC also uses
FORMLIST for the LIST command. FORMLIST defaults to the system printer. If,
however, the user wishes to save the list file on disc, the following file equation does just
that, creating a file named FORMLIST containing the form listing.

: FILE FORMLIST; DEV=DISC;SAVE

If your system has both a page printer and a line printer (default), the file equation:

: FILE FORMLIST;DEV=PP

sends the form listing to the page printer.

The third file equation which VPLUS uses deals with a summary listing of the forms
file from batch mode FORMSPEC. Batch mode prints to a file named FORMOUT. A file
equation for FORMOUT can use the same parameters as discussed for the file
FORMLIST.

10.The LIST command and the batch mode FORMS command print a maximum of 60 lines
per page. This maximum may be altered by setting the JCW.

FORMSPECLINESPERPAGE
586 Appendix E

Application Hints
Designing Your Forms File
For example, the MPE command

:SETJCW FORMSPECLINESPERPAGE=45

sets the maximum number of lines per page to 45. This JCW is useful when more white
space is desired at the bottom of the page, or when special paper is used.

FORMSPECLINESPERPAGE must be in the range 1 to 150. Any value outside this range
will cause a LIST command to fail, and will cause batch mode FORMSPEC to halt with
the error message.

FORMSPECLINESPERPAGE must be between 1 and 150

No lines will be printed in either case, to ensure that FORMSPEC does not waste paper
printing a listing of FORMS reference in an unwanted format.
Appendix E 587

Application Hints
Rules for the DL Area
Rules for the DL Area
VPLUS makes use of the DL area for buffers and internal tables. Therefore, if the DL area
is put to any other use during the execution of a VPLUS application, such use must not
conflict with that of VPLUS. To insure against conflict, observe the following rules:

1. The first use of the DL area by an application, including any procedures, routines, or
intrinsics executed on behalf of the application, should be the call to VOPENFORMF that
opens the forms file and allocates the DL area needed by VPLUS.

2. The call to VCLOSEFORMFthat frees up the DL area used by VPLUS must not occur until
the application has released all other DL space allocated subsequent to the VOPENFORMF
call.

These restrictions need not be followed if the application is wholly coded in any
combination of Pascal, HPFORTRAN 77, and HPBUSINESS BASIC and sets the comarea
item language to 5, which causes VPLUS to use the heap procedures provided by Pascal
instead of managing the DL area directly.

VPLUS applications coded in other languages need to take great care if they pass the
language identifier of 5 as a means of getting around the restrictions stated above.
Specifying an incorrect language identifier can cause other aspects of the VPLUS
interface, such as addressing of byte parameters, to function unreliably. In such a case, the
application must use the INTRINSIC mechanism (CALL INTRINSIC in COBOL) for the
main and all interacting parts of the application. Check the Pascal and COBOL reference
manuals for more information.

In all cases, check for any other use of the DL area by intrinsics such as the DSG intrinsics.
588 Appendix E

Application Hints
Coding the Touch Feature
Coding the Touch Feature
In order to use the touch feature effectively, a method is needed to provide feedback to the
user when a field is touched. Changing the field enhancement is one of the best methods to
indicate that a field has been touched. The enhancement of a field can be changed by using
the VCHANGEFIELDintrinsic, or family forms. If neither of these methods is appropriate and
the error count is not important, VSETERROR can be used instead. VSETERROR toggles the
error flag when called successively; i.e., if VSETERROR is called the second time for a
particular field, the error flag is cleared. Therefore, the error enhancement can be used
with VSHOWFORM as feedback to the user to indicate that a field has been touched. This
feature is only activated if the showcontrol bit 0 is set to 1.

When designing touch applications, the designer should keep the idea of compatibility in
mind. Applications should be able to run on HP 262X/239X terminals, or on a touch
terminal/workstation using keyboard input. For VPLUS applications, this objective can be
achieved by designing one single form interface for all HP 262X/239X terminals.

To design a touch application with compatibility in mind, the interface should be built so
that the user has the option of responding via the keyboard or the touch screen. This
consideration is important in two respects. First, it provides an alternative path for the
user when an application is run on touch terminals. Second, an application can be run on
non-touch terminals as well as touch terminals.

For example, if an application is designed to display a form with many items for the user to
select from, the programmer may wish to include one input field for the users to type in
their choice. This will allow for one interface for both touch and non-touch terminals.

Example
IF COM-LASTKEY < 0 THEN

CALL "VSHOWFORM" USING COMAREA
CALL "VREADFIELDS" USING COMAREA
IF COM-LASTKEY IS NOT EQUAL TO -999 THEN

NEXT-FIELD = -(COM-LASTKEY)
CALL "VSETERROR" USING COMAREA, NEXT-FIELD, MSG, MSGLEN
CALL "VSETERROR" USING COMAREA, PREVIOUS-FIELD, MSG, MSGL

EN
PREVIOUS-FIELD = NEXTFIELD.

The first VSETERROR toggles the error flag of the new field touched, and the second
VSETERROR toggles the error flag of the previous field touched. When VSHOWFORM is called,
NEXT-FIELD will be highlighted with the error enhancement, while PREVIOUS-FIELD
reverts to the normal enhancement. The VPLACECURSOR intrinsic can be used to position
the cursor if the default cursor position set by VSETERROR needs to be overridden. @
Appendix E 589

Application Hints
Coding the Touch Feature
590 Appendix E

STATE/POSTAL CODES
F STATE/POSTAL CODES

The special system constant $STATE consists of a table of all the state codes for the 50
states of the United States, plus U. S territories, armed services and other valid postal
codes. When an entered postal code is matched against the table, the entered code can be
in any combination of upper or lowercase letter. For instance the code for California is CA;
any of the following codes can be successfully matched against the California code: CA,
ca, Ca, or even cA.

The state codes listed below are shown only in uppercase for convenience.

Area Americas AA Mississippi MS

Area Europe AE Missouri MO

Area Pacific AP Montana MT

Alabama AL Nebraska NE

Alaska AK Nevada NV

American Samoa AS New Hampshire NH

Arizona AZ New Jersey NJ

Arkansas AR New Mexico NM

California CA New York NY

Canal Zone CZ North Carolina NC

Colorado CO North Dakota ND

Connecticut CT Northern Mariana Islands CM

Delaware DE Ohio OH

District of Columbia DC Oklahoma OK

Florida FL Oregon OR

Federated States of Micronesia FM Palau PW

Georgia GA Pennsylvania PA

Guam GU Puerto Rico PR

Hawaii HI Rhode Island RI

Idaho ID South Carolina SC

Illinois IL South Dakota SD

Indiana IN Tennessee TN

Iowa IA Texas TX
Appendix F 591

STATE/POSTAL CODES
Kansas KS Utah UT

Kentucky KY Vermont VT

Louisiana LA Virginia VA

Maine ME Virgin Islands VI

Marshall Islands MH Washington WA

Maryland MD West Virginia WV

Massachusetts MA Wisconsin WI

Michigan MI Wyoming WY

Minnesota MN
592 Appendix F

TERMINAL INFORMATION
G TERMINAL INFORMATION

This appendix contains information about terminals that affects the operation of VPLUS.
An overview of the supported terminals and their main features is followed by information
on terminals, grouped according to terminal family and model within the family. This
appendix also contains information about:

• The VPLUS comarea items that relate to terminals

• Configuring terminal buffers

• Recovering from unexpected program interruption

• The user environment control file

• Advanced terminal I/O procedures; VTURNON/VTURNOFF
Appendix G 593

TERMINAL INFORMATION
SUPPORTED TERMINALS AND FEATURES
SUPPORTED TERMINALS AND FEATURES
VPLUS can be used with the following terminals:

Applicable special features of these terminals are shown in the table above and are
described below.

Termtypes

As a user of an HP 3000 system, you may choose to specify a termtype when you log onto
MPE; for example,

:HELLO username.acctname ;term=nn

However, VPLUS only supports a subset of the available termtypes . They are termtypes
10, 12, 14, and 24.

A termtype that is not supported by VPLUS may be:

• Rejected as an error if VPLUS knows that it cannot continue, or

• Mapped to a supported termtype if this will allow VPLUS to continue.

When VPLUS maps an unsupported termtype to one that is supported, the terminal
driver is reconfigured to the original termtype when VPLUS closes the terminal. Finally,
VPLUS defers to the Workstation Configurator when editing termtype if that facility is
available.

Modified Data Tag

You do not have to take any action to utilize this feature. Only the fields which have been
modified are transmitted to the computer. This feature is supported on the following
terminals:

• HP 150*

• HP 2382A

• HP 2392A

• HP 2393A

• HP 2394A

• HP 2397A

• HP 2622A

• HP 2623A

• HP 2624A

• HP 2624B

• HP 2625A

• HP 2626A

• HP 2627A

• HP 2628A

• HP 2640B

• HP 2641A

• HP 2642A

• HP 2644A

• HP 2645A

• HP 2647F**

• HP 2648A

• HP 3075A

• HP 3076A

• HP 3081A

* HP 150 is obsolete and not supported for this release.
** HP2647F opt series 6x/7x consoles are not compatible.

HP 150 (obsolete and
not supported)

HP 2393A
HP 2394A
HP 2397A

HP 2624A/B
HP 2625A
HP 2628A
594 Appendix G

TERMINAL INFORMATION
SUPPORTED TERMINALS AND FEATURES
Extended Local Edits

This feature provides for the editing of information by the terminal as it is typed into the
form. You specify the editing to be done by using the command LOCALEDITS in the field
processing specification section. The HP 2624B and HP 2394A terminals supports this
feature.

Relabeling Function Keys

This feature allows you to specify during forms creation or modification time function key
labels that will be used during data entry. Function key labeling is supported by VPLUS on
all terminals except the data capture devices. On HP 264X terminals, VPLUS uses the last
two screen lines to emulate function key labels, which are available as a terminal feature
on all other HP terminals.

Security Display Enhancement

This feature allows you to inhibit the display of the data in certain fields. When this
feature is used, the characters entered at the terminal are displayed as blanks on the
screen. The security display enhancement is supported on the following terminals:

HP 150 (obsolete and
not supported)

HP 2393A
HP2394A

HP 2624B
HP 2625A
HP 2626A
HP 2628A

Table G-1. Terminals Supported by VPLUS

ID * MODEL GRAPH COLOR TOUCH LFS MDT LOCAL
EDITS

SEC
ENH

X.25
PAD

0 * %

1 2640B

2 2644A

3 2645A

4 2641A

5 2648A x

6 2647A x

7 * 2621A

8 2626A x x

9 2624A x x x

10 2642A

11 2622A

12 2623A x &
Appendix G 595

TERMINAL INFORMATION
SUPPORTED TERMINALS AND FEATURES
* Not a supported terminal
% Unknown
+ Can only be opened and closed by VPLUS
& Check ROMS for auto keyboard lock

Local Form Storage Capabilities

This feature allows forms to be stored locally in the terminal's memory. Local form storage
can reduce the data communication overhead associated with frequently displayed forms.

13 2624B x x x x &

14 2382A &

15 3075A

15 3081A

16 3076A

17 + 3077A

18 * 2621B

31 2647F x

51 2703A x

52 2627A x x x

55 2622E

56 2392A x x

57 2394A x x x x x

61 2625A x x x

62 2628A x x x

63 2625A x x x x

64 2628A x x x x

65 2393A x x x x

66 2397A x x x x

67 2393A x x x x x

68 2397A x x x x x

70 * HP150 x x x x x

700/92 x

Table G-1. Terminals Supported by VPLUS

ID * MODEL GRAPH COLOR TOUCH LFS MDT LOCAL
EDITS

SEC
ENH

X.25
PAD
596 Appendix G

TERMINAL INFORMATION
SUPPORTED TERMINALS AND FEATURES
This feature is supported on the HP 2394A, HP 2624B and HP 2626A terminals, and is
fully described in Section 6.

X.25 Capability

This feature allows X.25 block mode to be used via a PAD interface with the following
terminals:

Color Enhancement

This feature allows color to be used for field, error, and window enhancements with the HP
2397A and HP 2627A terminals.

Data Capture Device Special Features

The HP 3075A, HP 3076A and HP 3081A terminals are data capture devices. Special
features of the data capture devices that VPLUS supports are as follows:

The HP-IB and RS232 Input/Output options, the Numeric Display terminal, Card Image
Data and Multifield Input options are not supported.VPLUS.

Cursor Position Sensing

The cursor position sensing function includes three new intrinsics that have been designed
to enable application programs to sense the cursor position on a VPlus screen:

VARMSCP Arms or disarms cursor sensing capability.

VGETSCPFIELD Returns information about the cursor position by field
number on a VPlus screen.

HP 150 (obsolete
and not supported)

HP 2392A HP 2622A* HP 2625A

HP 2393A HP 2623A* HP 2627A

HP 2394A HP 2624B* HP 2628A

HP 2397A

* Check ROMS for auto keyboard lock.

Terminal Input Options Terminal Output Options

-Type V Badge Reader -Alphanumeric Printer

-Multifunction Reader -Prompting Lights

-Magstripe Reader -Alphanumeric Display

-Bar Code Reader -Mini-CRT

-Standard Keyboard

-Alphanumeric Keyboard
Appendix G 597

TERMINAL INFORMATION
SUPPORTED TERMINALS AND FEATURES
VGETSCPDATA Returns information about the cursor location by field
number and row and column number on a VPlus screen.

These intrinsics enable application programs to determine where the cursor was left on a
VPlus screen after a read operation. The information returned to the application varies
with the intrinsic used.

Usage

These intrinsics should be called in an application at certain points of the transaction flow:

• Call VARMSCPat the beginning of each VPlus transaction where cursor information is
required. Typically, this is prior to a call to VSHOWFORM and preceding VREADFIELDS.

• Call VGETSCPFIELD or VGETSCPDATA at the end of a VPlus transaction to collect the
cursor position or location information. This is after a call to VREADFIELDS.

NOTE Important Details! Please Read.

• Cursor position sensing is available on DTC-connected terminals only.

• These intrinsics work only on terminals that have the capability to return
cursor location information. These terminals are:
700/9X 2392A

2394A
598 Appendix G

TERMINAL INFORMATION
THE HP 264X TERMINALS
THE HP 264X TERMINALS
The HP 264X terminal family is the terminal default — you do not need to access
FORMSPEC's Terminal/Language Selection Menu unless you need to change the default.
However, if you want function key labeling for HP 264X terminals, you must access the
Terminal/Language Selection Menu and specify Y in the HP 264X Family field. Also, when
designing forms to run on these terminals, the following constraints must be considered:

• Do not use column 79 if the form is to be part of a form family.

• Do not use column 80 if the form may have another form appended to it or is part of a
form family.

• A multiline field must go all the way through column 80 in order to continue on the next
line.

• The security display enhancement is not supported on HP 26 4X terminals.

All HP 264X terminals, except the HP 2640A and HP 2644A terminals described below,
run VPLUS with the default terminal strapping. However, if the defaults have been
altered, you must close straps G and H. These terminals are automatically configured by
VPLUS so you do not have to press the block mode key.

HP 2640B Terminal

This terminal must be placed in block mode. When the terminal is opened by FORMSPEC,
ENTRY, REFSPEC, or an application, a message is displayed asking you to press the block
mode key. Also, when the terminal is closed, a message reminds you to unlatch the block
mode key. The HP 2640B must be strapped as follows to use VPLUS:

Strapping the terminal in this manner allows BLOCK MODE/PAGEoperation and allows you
to use the function keys without also using CONTROL. The backtab feature, which allows
you to use CONTROL TAB to position the cursor to the beginning of the previous field, is not
available on this terminal.

Switch Setting

A closed

B ------

C closed

D open

E open

F open

G open

H closed
Appendix G 599

TERMINAL INFORMATION
THE HP 264X TERMINALS
HP 2644A Terminal

This terminal must be placed in block mode. When the terminal is opened by FORMSPEC,
ENTRY, REFSPEC, or an application, a message is displayed asking you to press the block
mode key. Also, when the terminal is closed, a message reminds you to unlatch the block
mode key. The HP 26 44A must be strapped as follows to use VPLUS:

Strapping the terminal in this manner allows BLOCK MODE/PAGE operation.

Switch Setting

A closed

B ------

C closed

D open

E ------

F ------

G open

H closed
600 Appendix G

TERMINAL INFORMATION
THE HP 262X TERMINALS
THE HP 262X TERMINALS
VPLUS runs on the HP 262X family without any special action by you (without specifying
the HP262X, HP239X Families on FORMSPEC's Terminal/Language Selection Menu)
except in the special cases noted in the following paragraphs.

To use X.25 block mode via a PAD interface, available with all HP 262X terminals except
the HP 2624A, the transmit and receive pacing must be set correctly, the appropriate
ROMS must be used, and the terminal must be strapped correctly. You must check that the
correct ROMS are used with the HP 2622A, HP 2623A, HP 2624B and the HP 2627B
terminals. The HP 262SA and HP 2628A terminals always have the correct ROMS. Also,
the correct terminal type must be used when logging on to the terminal. For more detailed
information, refer to the DSN/X.25 HP 3000 Reference Manual.

HP 2624A Terminal

To utilize the local edits and security display enhancement features of the HP 2624A, you
must specify the HP262X, HP239X Families on FORMSPEC's Terminal/Language
Selection Menu.

At run time, when using a form, you could receive the message:

LINE IS FULL - RETURN TO CLEAR.

This message is issued by the terminal, not by VPLUS. It means that there are too many
characters on the line, and you must redesign and recompile the form.

HP 2624B Terminal

To utilize the local edits and security display enhancement features of the HP 2624B, you
must specify the HP262X, HP239X Families-on FORMSPEC's Terminal/Language
Selection Menu.

This terminal also has the capability of storing as many as 255 forms locally in terminal
memory depending on the size of the forms and the memory available. Use of this feature
is activated and controlled by the VPLUS intrinsics and comarea items as discussed in
Section 6.

To use VPLUS and local form storage on this terminal, you must alter the default
datacomm configuration menu. Change the strip NULL and DEL field from YES to NO.

At run time, when using a form, you could receive the message:

LINE IS FULL - RETURN TO CLEAR.

This message is issued by the terminal, not by VPLUS. It means that there are too many
characters on the line, and you must redesign and recompile the form.

HP 2625A, HP 2628A Terminals

To utilize the security display enhancement of these terminals, you must specify the
HP262X, HP239X Families on FORMSPEC's Terminal/Language Selection Menu.
Appendix G 601

TERMINAL INFORMATION
THE HP 262X TERMINALS
HP 2626A Terminal

To utilize the security display enhancement feature of the HP 2626A, you must specify the
HP262X, HP239X Families on FORMSPEC's Terminal/Language Selection Menu.

The HP 2626A terminal can store as many as four forms locally depending on the size of
the forms. VPLUS utilizes the workspace/window feature of this terminal and configures
terminal memory into from one to four workspaces. Local form storage is activated and
controlled by the VPLUS intrinsics and comarea items as discussed in Section 6. Only port
I of the HP 2626A terminal can be utilized with local form storage. If you wish to run an
application on port 2 of the terminal without local form storage, the formstoresize item
of the comarea should be modified as described in Section 6 in the comarea item
description.

HP 2627A Terminal

To utilize the color display enhancement feature of the HP 2627A, you must specify both
HP262X, HP239X Families and HP2627A, HP2397A on FORMSPEC's Terminal/Language
Selection Menu.
602 Appendix G

TERMINAL INFORMATION
THE HP 239X AND HP 150 TERMINALS
THE HP 239X AND HP 150 TERMINALS
VPLUS runs on the HP 2 39X and the HP 150 terminals without any special action by you
(without specifying the HP262X, HP239X Families on FORMSPEC's Terminal/Language
Selection Menu) except in the special cases noted in the following paragraphs.

To use X.25 block mode via a PAD interface, available with all HP 239X and HP 150
terminals, the transmit and receive pacing must be set correctly and the terminal must be
strapped correctly. (The HP 239X and HP 150 terminals always have the correct ROMS.)
Also, the correct terminal type must be used when logging on to the terminal. For more
detailed information, refer to the DSN/X.25 HP 3000 Reference Manual.

HP 2392A Terminal

To utilize the security display enhancement feature of the HP 2392A, you must specify the
HP262X, HP239X Families on FORMSPEC's Terminal/Language Selection Menu.

HP 2393A Terminal

To utilize the security display enhancement feature of the HP 2393A, you must specify the
HP262X, HP239X Families on FORMSPEC's Terminal/Language Selection Menu.

HP 2394A Terminal

To utilize the local edits and security display enhancement features of the HP 2394A, you
must specify the HP262X, HP239X Families on FORMSPEC's Terminal/Language
Selection Menu

This terminal also has the capability of storing as many as 255 forms locally in terminal
memory depending on the size of the forms and the memory available. Use of this feature
is activated and controlled by the VPLUS intrinsics and comarea items as discussed in
Section 6.

HP 2397A Terminal

To utilize the color display enhancement feature of the HP 2397A, you must specify both
HP262X, HP239X Families and HP2627, HP2397A on FORMSPEC's Terminal/Language
Selection Menu.

HP 150 Terminal (Obsolete)

To utilize the security display enhancement feature of the HP 150, you must specify the
HP262X, HP239X Families on FORMSPEC's Terminal/Language Selection Menu.
Appendix G 603

TERMINAL INFORMATION
THE DATA CAPTURE DEVICES
THE DATA CAPTURE DEVICES
To use the HP 3075A, HP 3076A or HP 3081A devices with VPLUS, you must specify the
HP307X Family on FORMSPEC's Terminal/Language Selection Menu. To take advantage
of the HP 3081A features, you must specify an eight (8) in the selection box for the HP307X
Family on the Terminal/Language Selection Menu. VPLUS only opens or closes the HP
3077A device; no other functions are available.
604 Appendix G

TERMINAL INFORMATION
TERMINAL COMMUNICATION AREA
TERMINAL COMMUNICATION AREA
Positions 49 through 58 (relative to 1) of the VPLUS communication area (comarea) are
used for terminal-related information, which includes the terminal file number, terminal
type, terminal allocation and error logging, and terminal options. It is not necessary for
you to access this area as VPLUS manages it automatically. However, if you need to know
the MPE file number of your terminal, how to suppress messages, read data automatically,
or specify a timeout value for reading keys, the comarea items described in the following
paragraphs perform these functions.

Parameters

Position 49 - filen MPE file number used to identify the terminal.

Position 56 - termoptions Terminal control options:

bits: 0 - 8 Reserved for system use.

9 - 10 01 = Enable ENTER or function key timeout in
VREADFIELDS.

00 = Disable ENTER or function key timeout in
VREADFIELDS (default).

13 - 14 01 = Enable AUTOREAD in VREADFIELDS.

00 = Disable AUTOREAD in VREADFIELDS (default)

15 0 = Display mode message (default)

1 = Suppress mode message.

Normally, there is no time limit for VREADFIELDS, whether the intrinsic is
terminated by ENTER or a function key. Timeouts can be enabled in
applications by setting bit 10 of the termoptions item of the comarea to 1,
and specifying a timeout interval in the usertime item of the comarea .
When a timeout is enabled, if ENTER or a function key is not pressed
within the number of seconds specified in comarea position 58, the
cstatus of 160 will be returned to the comarea . At this point, control will
then be passed to the statement following the VREADFIELDS call in the
application.

For example, in COBOL:

INITIALIZE-COMAREA
MOVE ZERO TO COM-OPTIONS.
ADD 32 TO COM-OPTIONS.
MOVE 60 TO COM-USERTIME.

if included in the initialization section of the application will indicate that
all calls to VREADFIELDS should timeout after 60 seconds. Note that an
ADD instruction was used to turn on the timeout feature. All changes to
the termoptions item following VOPENTERM should be careful to set only
single bits, as VPLUS uses bits 0-7. A MOVE instruction will destroy the
Appendix G 605

TERMINAL INFORMATION
TERMINAL COMMUNICATION AREA
configuration of these bits.

When VREADFIELDS is terminated by a function key, VPLUS does not
transmit any data entered on the screen to the user buffer. If the
programmer wishes for data to be transmitted to the data buffer when a
function key is pressed, the AUTOREAD feature should be enabled. The
following COBOL example shows how to enable the autoread feature, and
transfer data to the buffer when the function key f4 is pressed:

CALL "VREADFIELDS" USING COMAREA.
IF COM-LASTKEY = 4 THEN

ADD 2 TO COM-OPTIONS
CALL "VREADFIELDS" USING COMAREA
SUBTRACT 2 FROM COM-OPTIONS.

Note that two VREADFIELDS calls are necessary to complete the process.
The first VREADFIELDSdetects that a function key was pressed, the second
call actually transmits the data to the data buffer. The second call to
VREADFIELDSdoes not wait for the user to press enter, but rather sends an
"ESC d" to the terminal to simulate an automatic enter. As noted above in
the description of user timeouts, the COBOL SUBTRACT and ADD
statements should always be used when setting bits in the termoptions
item of the comarea .

The mode message is displayed on terminals not automatically configured
by VPLUS. The mode message for VOPENTERMis BLOCK MODE/PAGE IS SET;
for VCLOSETERM it is REMEMBER TO UNLATCH THE BLOCK MODE KEY.

Position 58 - usertime If enabled, the value in this word is used as the number of seconds
to wait for the ENTER or function key to be pressed. The maximum timeout
value is 3 2,7 6 7 seconds (9.1 hours).

Position 59 - identifier VPLUS identifier for the HP terminal model being used, as
shown earlier in Table G-1. in the column labeled ID .
606 Appendix G

TERMINAL INFORMATION
TERMINAL BUFFER CONFIGURATION
TERMINAL BUFFER CONFIGURATION
When using FORMSPEC, ENTRY, REFSPEC, or the intrinsics VREADFIELDS or
VSHOWFORM, there must be sufficient terminal buffers available for all concurrently
executing terminal I/O operations. The number of terminal buffers must be at least 150
and it is strongly recommended that the number of terminal buffers be set to the
maximum allowed on your system, shared by all processes. (See the configuration dialogue
in the MPE V Systems Operation and Resource Management Reference Manual.
Appendix G 607

TERMINAL INFORMATION
RECOVERING FROM UNEXPECTED PROGRAM INTERRUPTION
RECOVERING FROM UNEXPECTED PROGRAM
INTERRUPTION
In case of unexpected interruption due to hitting BREAK or a terminal power failure,
control returns to MPE. To recover from such a situation, you take the following steps:

1. Perform a hard reset.

• On an HP 264X terminal, you press the RESET TERMINAL key twice, and then press
RETURN to display the colon prompt,

• On HP 262X, HP 239X, and HP 150 terminals, you press SHIFT CONTROL RESET and
then press RETURN to display the colon prompt.

2. If echo is turned off, press ESCAPE, then press : to restore echo.

3. Type RESUME and you should see the message READ PENDING.

4. Press REFRESH to return to the menu at which you were interrupted.

The menu will be cleared to initial or previously entered values. To insure against damage
to the file, reenter the information on all menus pertaining to the form you were creating,
modifying, or entering data at the time of interruption.

If you were in the unformatted portion of a FORMSPEC Field Menu, the procedure is
slightly different, as follows:

1. Perform a hard reset, as described above.

2. Type CONTROL R ABORTCONTROL R (Letters must be upper case as shown).

3. If echo is turned off, press ESCAPE, then press : to restore echo.

4. Issue the RUN command for FORMSPEC to continue operation.
608 Appendix G

TERMINAL INFORMATION
USER ENVIRONMENT CONTROL FILE
USER ENVIRONMENT CONTROL FILE
The user environment control file is called VENVCNTL.PUB.SYS, and is designed to let the
programmer assert limited control over terminal activities. It is opened and read on the
VOPENTERM call, and it controls these two items in the user environment.

1. Abbreviating a terminal query. When VOPENTERM is called, it usually goes through a
complicated process to identify the terminal type. The VENVCNTL file shortens the
identification process. However, it should only be used if it is known that a query will
elicit a valid terminal ID. To shorten the terminal query, enter 1 in the first column of
the VENVCNTL file.

2. Enabling AIDS/MODES/USERKEYS without a program. Instead of setting the
SHOWCONTROL word of the user's comarea in the application, enter 1 in the second
column of the VENVCNTLfile. This option is very useful if you do not have the source code
for the software but you want to enable AIDS/MODES/USERKEYS.

To implement a user environment control file, build this file:

: BUILD VENVCNTL.PUB.SYS;DEV=DISC;REC=-80,1,F,ASCII

Use any editor to enter 1 in column 1 and/or 2. When VOPENTERM executes, it looks for the
VENVCNTLfile. If it does not find it, VPLUS carries out its usual operations. If the file exists
and columns 1 and/or 2 are set, VPLUS performs either or both of the prescribed actions.

The VENVCNTL file need not necessarily by in PUB.SYS. However, if you have the file
residing in another group and account, you must set up the file equation:

: FILE VENVCNTL.PUB.SYS=VENVCNTL.mygroup.myaccount
Appendix G 609

TERMINAL INFORMATION
ADVANCED TERMINAL I/O PROCEDURES
ADVANCED TERMINAL I/O PROCEDURES
In general, the VPLUS terminal input/output procedures such as VOPENTERM,
VCLOSETERM, VREADFIELDS and VSHOWFORM are sufficient for most applications that
communicate with a user via a terminal interface.

In building complex user interfaces, however, application designers have a limited number
of tools for implementation. Hence, they resort to using FREAD, FWRITE, and input/output
verbs of their programming language to display and retrieve information from the
terminal when running VPLUS. The situation becomes more complicated when the
application controls the terminal settings as well as the driver settings, and is likely to
result in an application that runs in a restricted environment; for example, on an ATP an
on one kind of terminal only.

VPLUS provides two additional procedures that help application designers to write
applications with complex user interfaces that are more portable and easier to maintain.
They are VTURNON and VTURNOFF.
610 Appendix G

TERMINAL INFORMATION
VTURNON/VTURNOFF
VTURNON/VTURNOFF
VOPENTERM configures the driver and the terminal for block mode access. VCLOSETERM
configures the terminal and driver for character mode access. These procedures initialize
the terminal in many ways, including clearing the screen image. VTURNON and VTURNOFF
reconfigure the terminal and driver but leave the terminal screen image intact. VTURNOFF
allows the application to switch momentarily to character mode from block mode without
disturbing the screen. A call to VTURNON will reconfigure the terminal back to block mode.
An example of such use is an application which performs graphics input/output after the
terminal has been opened by VOPENTERMand a form has been displayed using VSHOWFORMF.
VTURNOFFcan then be called to prepare for graphics operations. A subsequent VTURNONcall
will switch the application back to VPLUS block mode. The use of VOPENTERM,
VCLOSETERM, VTURNONand VTURNOFFprovides for a systematic approach to controlling the
terminal and driver settings.

The recommended practice for programming VPLUS applications is to use only VPLUS
procedures to perform terminal input/output operations when in VPLUS. If the application
must perform terminal input/output operations using other input/output methods, either
VCLOSETERM or VTURNOFF must be used to switch out of VPLUS before doing so.

This simple programming guideline assures that the application will be compatible with
the different HP3000 drivers and terminals, and improves its maintainability.

VTURNOFF

Turns off VPLUS block mode and enables character mode access without disturbing the
terminal screen.

Syntax

VTURNOFF {comarea }

Parameters

comarea Must be comarea named when the file was opened by VOPENTERM. If not
already set, the following comarea items must be set before calling
VTURNOFF.

cstatus Set to zero.

comarealen Set to total number of 2-byte words of comarea .

VTURNOFF may set the following comarea items:

cstatus Set to nonzero value if call is unsuccessful.

fileerrnum Set to file error code if there is an MPE file error.

Discussion

VTURNOFF is used for momentarily switching from VPLUS block mode to character mode.
This procedure is designed for use after a terminal has been previously opened by
VOPENTERM or after a VTURNON.
Appendix G 611

TERMINAL INFORMATION
VTURNON/VTURNOFF
VTURNOFF reconfigures the terminal and driver for character mode operations without
disturbing the screen image on the terminal. The following operations normally performed
in VCLOSETERM are not performed in VTURNOFF:

• Clear local form storage

• Enable the USER/SYSTEM keys

• Disable touch reporting, delete touch fields

• Clear screen

• Unlock keyboard

• Close terminal file

VTURNOFF

NOTE VTURNOFFdoes not close the terminal file. To close the field and completely
reset the driver and the terminal, VCLOSETERM must be used.

Example

The following examples illustrate a call to VTURNOFF:

COBOL
CALL "VTURNOFF" USING COMAREA.

BASIC
200 CALL VTURNOFF (C(*))

FORTRAN
CALL VTURNOFF (COMAREA)

SPL
VTURNOFF (COMAREA);

PASCAL
VTURNOFF (COMAREA);

VTURNON

Turns on VPLUS block mode without disturbing the terminal screen.

Syntax

VTURNON {comarea, TERMFILE}

Parameters

comarea The comarea name must be unique for each open forms file. The comarea
must be the same one used in VOPENTERM. The following comarea items
must be set before the call if not already set:
612 Appendix G

TERMINAL INFORMATION
VTURNON/VTURNOFF
cstatus Set to zero.

language Set too code that identifies the programming language of
the calling program.

comarealen Set to total number of 2-byte words in comarea .

VTURNON may set the following comarea fields.

cstatus Set to nonzero value if call is unsuccessful.

fileerrnum Set to file error code if there is an MPE file error.

filen Set to MPE file number of terminal.

identifier Set to appropriate VPLUS terminal ID.

lab'info Set to appropriate number and length of labels.

Discussion

VTURNONis normally used in an application when the terminal has already been opened by
VOPENTERMand VTURNOFFwas called to switch out of VPLUS block mode. VTURNONswitches
the application back to VPLUS block mode without disturbing the image on the terminal
screen.

After a VTURNON, you must perform a VSHOWFORM. You must also unlock your keyboard.
Sending the escape sequence ESC-b unlocks the keyboard programmatically, or depressing
the RESET key once also unlocks the keyboard.

VTURNON reconfigures the terminal and the driver without performing the following
operations, which are usually carried out by VOPENTERM.

• Initialize local form storage

• Clear screen

• Enable the USERKEYS function keys

• Disable or enable the USER/SYSTEM key as specified in the SHOWCONTROL word

Unlike VOPENTERM, VTURNONwill not ask you to press the BLOCK MODEkey if you are using
an HP2640B or HP2644 terminal and the terminal is not on block mode.

Example

The following examples illustrate a call to VTURNON:
Appendix G 613

TERMINAL INFORMATION
VTURNON/VTURNOFF
614 Appendix G

Version Control
H Version Control

This appendix provides information on:

• KSAM File Control and Conversion to MPE Files

• Adjust Menu

• The HP32209 intrinsic

• The HP32209B utility
Appendix H 615

Version Control
KSAM File Management
KSAM File Management
Since the release of version B.03.23 of VPLUS, VPLUS accepts only MPE files with the file
code of VFORM. VPLUS has created only MPE files since VPLUS version A.01.01. Prior to
A.01.01, VPLUS created KSAM files. Any KSAM file created by VPLUS before version
A.01.01 will continue to function when accessed through FORMSPEC, REFSPEC, ENTRY or
your applications without any actions on your part. If, however, you wish to modify the
forms file using FORMSPECor REFSPEC, the file must be converted using the CONVERTutility,
as described below.

Purge Forms File

The MPE :PURGE command will delete a non-KSAM forms file. If, however, your forms file
is a KSAM file, MPE does not provide a direct means to purge it. If you want to
permanently delete a KSAM forms file created through a prior version of FORMSPEC, you
must run the KSAMUTIL utility program as follows:

: RUN KSAMUTIL.PUB.SYS

This program will issue a greater than sign (>) as a prompt. In response to this prompt,
you enter the PURGE command. Suppose the forms file you want to purge is named
ORDFORM, enter the command as follows:

>PURGE ORDFORM
ORDFORM.PUB.ACCTG & ORDKEY PURGEDsystem response

Note that you need not specify the key file name associated with your forms file; KSAMUTIL
knows this name as it indicates in the response to the PURGE command. KSAMUTIL also
notes the account and group in which the forms file resides.

Rename Forms File

If you want to rename an existing non-KSAM forms file, simply use the MPE :RENAME
command. In order to rename a KSAM forms file, you must run program KSAMUTIL. You
may rename either the forms file or the key file with a single RENAMEcommand; or you may
rename both files with two RENAME commands. Suppose you want to rename the forms file
ORDFORM and also its associated key file ORDKEY. To do this, run KSAMUTIL and then
enter two RENAME commands, as shown:

: RUN KSAMUTIL.PUB.SYS

>RENAME ORDFORM, NEWORD
(new names)

>RENAME ORDKEY, NEWKEY

Convert KSAM File

Before converting a KSAM file to the now standard MPE files, you should first use FCOPY
to physically remove any records which have been logically deleted in the file. This can be
accomplished as follows:
616 Appendix H

Version Control
KSAM File Management
: FCOPY FROM=ORDFORM;TO=(ORDFORM2,ORDKEY2)

This will copy only the active records in the KSAM file named ORDFORM to the new
KSAM file named ORDFORM2 whose key file in ORDKEY2, also a new file.

The utility program CONVERT.PUB.SYSwill create an MPE file from the KSAM file created
above:

: RUN CONVERT.PUB.SYS
PLEASE ENTER NAME OF THE OLD FORMS FILE.
ORDFORM
PLEASE ENTER THE NEW FORMS FILE NAME.
ORDNEW
DIRECTORY LENGTH=1264 -system response
END OF PROGRAM

The directory is found in an extension to the comarea , and consists of information
regarding the location of the data records in the forms file. Its length varies from forms file
to forms file and is indicated in the system response as in the example.
Appendix H 617

Version Control
Adjust Menu
Adjust Menu
The Adjust Menu is automatically displayed from the Forms File Menu the first time a
forms file created before VPLUS version B.03.03 is accessed from FORMSPEC version
B.03.03 or beyond.

You are given a choice of exiting FORMSPEC by pressing f8, or continuing with the
adjustment process by entering CONTINUE into the only field on the Adjust Menu. It is
recommend that you create a backup copy of the forms file before the adjustment. Once the
forms file is converted to the B.03.03 (or later) format, it is not compatible with VPLUS
version prior to B.03.03.

HP32209

Returns the version identifier for the installed version of the VPLUS intrinsics.

Syntax

HP32209 { buffer }

Parameters

buffer Fourteen-byte character string defined in an application to which the
version identifier is returned.

Discussion

The version identifier is in the format HP32209v.uu.ff where v denotes the major
enhancement level, uu the update level, and ff the fix level.

Example

COBOL
CALL INTRINSIC HP32209 USING BUFFER

BASIC
200 CALL HP32209(B$)

FORTRAN
CALL HP32209 (BUFFER)

SPL/PASCAL
HP32209(BUFFER)
618 Appendix H

Version Control
The HP32209B Utility
The HP32209B Utility
The HP32209B utility provides you with a simple way to confirm the version of the VPLUS
software that you are currently running on the system. HP32209B resides in the PUB.SYS
group and account. You can use it by typing the MPE command

:RUN HP32209B.PUB.SYS

The screen will display the product name and version as well as the version number of
each segment of the software. This is to indicate any patches that may have a version
number different from the product.

Refer to Appendix J for more information on the use of the MPE/XL version of this utility,
called HP32209S, with HP Precision Architecture.

Example
:HP32209B

VPLUS INTRINSICS VERSION: HP32209B.06.08

 ------- --------------
SEGMENT VERSION
------- --------------

 01 B’06’08’S01’00
 02 B’06’08’S02’00
 03 B’06’08’S03’00
 04 B’06’08’S04’00
 05 B’06’08’S05’00
 06 B’06’08’S06’00
 07 B’06’08’S07’00
 08 B’06’08’S08’00
 09 B’06’08’S09’00
 10 B’06’08’S10’00
 11 B’06’08’S11’00
 12 B’06’08’S12’00
 13 B’06’08’S13’00
 14 B’06’08’S14’00
 16 A.00.06.S16.00
 17 B’06’08’S17’00
 18 B’06’08’S18’00
 19 B’06’08’S19’00
 20 B’06’08’S20’00
 21 B’06’08’S21’00
 22 B’06’08’S22’00
 ------- --------------
 DHCF A4004000

VPLUS/Windows VERSION: HP36393A.00.06
Appendix H 619

Version Control
The HP32209B Utility
620 Appendix H

BIT MAP CONVERSION
Syntax
I BIT MAP CONVERSION

A procedure called BITMAPCNV is provided to help decode and set bits in programming
languages which do not have bit operations. It is particularly helpful in COBOLwith the bit
map returned by VGETFIELDINFO.

Syntax
BITMAPCNV {bitmap,bytemap,numbytes,function,cnverr }

Parameters
bitmap Source bit array containing bits to be converted to a byte array, or

destination bit array for conversion from a byte array.

bytemap Destination or source byte array. (For COBOL use BYTEMAP)

 mbytes Two-byte integer set to number of bytes to be converted from or to.

function Two-byte integer set to conversion type;

• 1 = bit to byte,

• 2 = byte to bit

cnverr Two-byte integer variable containing conversion error return;

• 0 = conversion successful,

• -1 = conversion failed,

• -2 = invalid input parameter
Appendix I 621

BIT MAP CONVERSION
Discussion
Discussion
This procedure can be used to set bits in the comarea. It can also be used to decode the
error bit map returned by VGETFORMINFO. The BITMAPCNVprocedure decodes a bit map to a
byte array if the function parameter contains a value of one. Each byte in the byte array
represents the corresponding bit in the bit map. If a bit in the bit map is on (value of one),
the corresponding byte will contain the character of one (1). If the bit is off, the byte will
contain the character of zero (0).

If the function parameter passed contains a value of two, the conversion will be from byte
to bit. A bit map will be produced to reflect the 1's and 0's in a byte array.

When converting bytes to bits, anything in a byte other than the character zero (0) causes
the corresponding bit in the bit map to be set to one (1).

In COBOL, BITMAPCNV can be called as shown in the example below.

Example
CALL "BITMAPCNV" USING BITMAP,@@BYTEMAP,NUMBYTES,FUNCTION,CNVERR.
622 Appendix I

HP PRECISION ARCHITECTURE
J HP PRECISION ARCHITECTURE

This appendix offers some guidelines for the migration of programs developed on MPE/V to
MPE/XL systems, and a short list of peripherals and languages supported on MPE/XL
systems.

It also provides information on those aspects of VPLUS that pertain exclusively to
MPE/XL running on the HP Precision Architecture (HPPA) systems. They are:

• The intrinsics VGETIEEEREAL/VGETIEEELONG and VPUTIEEEREAL/VPUTIEEELONG

• The HP32209S utility
Appendix J 623

HP PRECISION ARCHITECTURE
MIGRATION ISSUES
MIGRATION ISSUES
Programs that were originally developed on MPE/V must be rewritten to run in native
mode on the MPE/XL. For details, refer to the following reference manuals:

• Migration Process Guide describes how to migrate existing applications to MPE/XL.

• Programmers' Skills Migration Guide explains new program development on
MPE/XL and serves as a reference to the operating system.

• COBOL II/XL Migration Guide explains how to migrate COBOL II/V programs to
MPE/XL.

• FORTRAN 77/XL Migration Guide, details the migration of FORTRAN 77/V
applications to MPE/XL.

• HP Pascal/XL Migration Guide details the migration of Pascal applications to
MPE/XL. Migration of SPL programs to MPE/XL.

Some points to be noted when applications developed on VPLUS are run MPE/XL are
described below.

Terminals. When you run an application on MPE/XL, the terminal must be configured for
the XON/XOFF handshake. If it is not, large or complex forms will appear to be corrupted
when displayed on the screen.

Floating Point Numbers. The type conversion of floating point numbers in VPLUS
assumes the HP 3000 floating point format, whereas native mode applications store
floating point values in IEEE format. The type conversion will work, but the values will be
wrong.

Native Mode Pascal Applications. The MPE/XL native mode Pascal compiler allocates
4 bytes for the integer subrange -32768..32767, compared with the 2 bytes allocated by the
MPE/V pascal compiler. You should use type SHORTINTin native mode Pascal applications
to get a 2-byte allocation for this subrange.

Record padding in native mode Pascal will cause data misalignment problems for
programmers using the VPLUS intrinsics, VGETFIELDINFO, VGETFORMINFO, and
VGETFILEIINFO . The problem can be avoided by packing the inforbuf records passed as
parameters.

Incorrect Parameters. Existing VPLUS applications written in COBOL and recompiled
into MPE/XL native mode may fail to function. The application either fails with VPLUS
error code of 998 or 999, or it aborts with a Memory Fault error. The reason for this is that
the programmer has coded the application to pass a display numeric data type as the
parameter for a VPLUS intrinsic, instead of a binary numeric data type. That is, COBOL
data type PIC 9 has been coded instead of PIC 9 COMP.

This kind of mistake is not caught when the application is compiled, because most COBOL
VPLUS applications do not use the compiler intrinsic mechanism, "CALL
INTRINSIC…USING…". So, the error must be caught at run-time, if at all. It is possible
for the defective program to appear to work correctly in MPE/V and MPE/XL compatibility
mode, because VPLUS is more forgiving when parameters of the wrong type are passed to
it. However, native mode applications on MPE/XL call the VPLUS intrinsics through
624 Appendix J

HP PRECISION ARCHITECTURE
MIGRATION ISSUES
switch stubs, which require the correct parameter types. The wrong parameter causes a
run-time error because the VPLUS native mode access layer does not have the capacity to
edit the data passed through it.

If your application fails with a VPLUS error 998 or 999, or a memory fault, you can take
the following steps:

1. Activate the VPLUS trace facility and examine the trace, especially the entering and
leaving messages from the VPLUS native mode stub software.

2. Check the parameter content messages of the last VPLUS intrinsic call before the
program failed.

3. Examine and correct VPLUS parameter declarations as needed, both in native mode
code and in compatibility mode code if this is a migrated application.

Supported Peripherals and Applications
The following are currently supported on MPE/XL.

Printers-HPIB 2565, 2566, 2680, 2688

Terminals 2392, 2393, 2394, 2397,
2622, 2624B, 2627,

HP 150, Vectra, Port+

Native Mode COBOL II/XL, FORTRAN 77/XL
Languages HP Pascal/XL

Compatibility Mode SPL/V RPG/V, Business BASIC/V,
Languages Transact/V
Appendix J 625

HP PRECISION ARCHITECTURE
HPPA INTRINSICS
HPPA INTRINSICS

Introduction

On the MPE/V and previous systems, Hewlett Packard represented real or floating point
numbers in a format unique to each machine. However, on the MPE/XL systems, these
numbers are represented in a format that conforms with an IEEE standard. This means
that programs running in native mode on MPE/XL systems will deal with numbers stored
in the IEEE format. VPLUS will be running in compatibility mode, however, and will thus
deal with numbers stored in the MPE/V format.

Currently, VPLUS offers intrinsics that will accept a real number n the MPE/V format,
convert it to its equivalent external representation and put it into a form's data buffer. The
four HPPA intrinsics described below have been developed to allow programs running in
native mode to perform the same operations on a number stored in the IEEE format.

NOTE Use these intrinsics only if you are programming entirely in native mode. If
you are accessing a database in compatibility mode, you must use the VPLUS
intrinsics, VGET/PUTtype .

VGETIEEEREAL

Copies character coded data contents from data buffer into an application, converting
numeric value to IEEE floating point format.

Syntax VGETIEEEREAL {comarea,fieldnum,variable }

Parameters comarea Must be the comarea name specified when the forms file was
opened with VOPENFORMF. If not already set, the following comarea items
must be set before calling VGETIEEEREAL:

cstatus Set to zero.

comarealen Set to total number of two-byte words in comarea .

VGETIEEEREAL may set the following comarea items:

cstatus Set to nonzero value if call is unsuccessful or if requested
field has an error.

fieldnum Two byte integer variable containing the number assigned to the field by
FORMSPEC. The field itself may not be longer than 80 characters.

variable Variable within application, of type IEEE floating point real (32 bits), into
which converted value is placed.

For Example:

VGETIEEEREAL(COMAREA,FIELDNUM,VARIABLE);

Discussion The content of the field denoted by the field number is read from the data
buffer. This content must be numeric but its data type need not be; numbers in a field of
626 Appendix J

HP PRECISION ARCHITECTURE
HPPA INTRINSICS
CHAR type can be converted.

NOTE The field number is a unique number assigned to each field by FORMSPEC
and is completely independent of the field's position in the data buffer or the
form. It only changes if the batch command, RENUMBER, is used. You can alter
the length, position or other characteristics of a field without affecting the
field number. The field number provides a way to locate fields regardless of
their position.

The numeric value, stored in the buffer in character coded form, is converted to IEEE
floating point format and then copied to the variable in the application. If errors occur
during conversion, cstatus is set to the appropriate error code. If the requested field's
error code is set, its value is moved to the variable but cstatus is set to an error code.

VGETIEEELONG

Copies character coded data contents from data buffer into an application, converting
numeric value to IEEE floating point long format (64-bit).

Syntax VGETIEEELONG {comarea,fieldnum,variable }

Parameters comarea Must be the comarea name specified when the forms file was
opened with VOPENFORMF. If not already set, the following comarea items
must be set before calling VGETIEEELONG:

cstatus Set to zero.

comarealen Set to total number of two-byte words in comarea

VGETIEEELONG may set the following comarea items:

cstatus Set to nonzero value if call is unsuccessful or if requested
field has an error.

fieldnum Two-byte integer variable containing the number assigned to the field by
FORMSPEC. The field itself may not be longer than 80 characters.

variable Variable within application, of type IEEE floating point (64 bits), into
which converted value is placed.

For example:

VGETIEEELONG(COMAREA,FIELDNUM,VARIABLE);

Discussion The content of the field denoted by the field number is read from the data
buffer. The content of the field must be numeric, but its data type need not be; numbers in
a field of CHAR type can be converted.

NOTE The field number is a unique number assigned to each field by FORMSPEC
and is completely independent of the field's position in the data buffer or the
form. It only changes if the batch command, RENUMBER, is used. You can alter
the length, position or other characteristics of a field without affecting the
field number. The field number provides a way to locate fields regardless of
Appendix J 627

HP PRECISION ARCHITECTURE
HPPA INTRINSICS
their position.

The numeric value, stored in the buffer in character coded form, is converted to IEEE
floating point long format and then copied to the variable in the application. If errors occur
during conversion, cstatus is set to the appropriate error code. If the requested field's
error code is set, its value is moved to the variable but cstatus is set to an error code.

VPUTIEEEREAL

Writes a floating point number in IEEE standard format from an application to a specified
field in the form data buffer, converting the value to character set coded external
representation.

Syntax VPUTIEEEREAL {comarea,fieldnum,variable }

Parameters comarea Must be the comarea name specified when the forms file was
opened with VOPENFORMF. If not already set, the following comarea items
must be set before calling VPUTIEEEREAL:

cstatus Set to zero.

comarealen Set to total number of two-byte words in comarea .

VPUTIEEEREAL may set the following comarea items:

cstatus Set to nonzero value if call is unsuccessful.

numerrs May be decremented if a new value replaces the old value
of a field with an error.

fieldnum Two-byte integer variable containing the number assigned by FORMSPEC
to the field in which the value is written. The field itself may not be longer
than 80 characters.

variable Variable within application, of type IEEE floating point real (32 bits), that
contains the value to be converted to character set coded external
representation and copied to a field in the data buffer.

For example:

VPUTIEEEREAL(COMAREA,FIELDNUM,VARIABLE);

Discussion This intrinsic converts an IEEE floating point real number to its character
coded form and writes the converted value to a particular field in the data buffer, right
justified. The exact format of the written data depends on the type of destination field. For
example, if the number "34.56" were put to a field of type DIG, the result would be "34"
since such a field may contain only the digits 0 through 9. The destination field is
identified by the field number assigned by FORMSPEC, and must be defined as a numeric
field, that is, type NUM, IMP or DIG.

If the specified field had an error, VPUTIEEREAL will clear the field's error flag and
decrement numerrs .
628 Appendix J

HP PRECISION ARCHITECTURE
HPPA INTRINSICS
NOTE The field number is a unique number assigned to each field by FORMSPEC
and is completely independent of the field's position in the data buffer or the
form. It only changes if the batch command, RENUMBER, is used. You can alter
the length, position or other characteristics of a field without affecting the
field number. The field number provides a way to locate fields regardless of
their position.

VPUTIEEELONG

Writes a floating point number in IEEE standard long format from an application to a
specified field in the form data buffer, converting the value to character set coded external
representation.

Syntax VPUTIEEELONG {comarea,fieldnum,variable }

Parameters comarea Must be the comarea name specified when the forms file was
opened with VOPENFORMMF. If not already set, the following comarea items
must be set before calling VPUTIEEELONG:

cstatus Set to zero.

comarealen Set to total number of two-byte words in comarea .

VPUTIEEELONG may set the following comarea items:

cstatus Set to nonzero value if call is unsuccessful.

numerrs May be decremented if a new value replaces the old value
of a field with an error.

fieldnum Two-byte integer variable containing the number assigned by FORMSPEC
to the field to which the value is written. The field itself may not be longer
than 80 characters.

variable Variable within application, of type IEEE floating point long (64 bits), that
contains the value to be converted to character set coded external
representation and copied to a field in the data buffer.

For example:

VPUTIEEELONG(COMAREA,FIELDNUM,VARIABLE);

Discussion This intrinsic converts an IEEE floating point long number to its character
coded form and writes the converted value to a particular field in the data buffer, right
justified. The exact format of the written data depends on the type of the destination field.
For example, if the number "34.56" were put to a field of type DIG, the result would be "34"
since such a field may contain only the digits 0 through 9. The destination field is
identified by the field number assigned by FORMSPEC, and must be defined as a numeric
field, that is, NUM,IMP or DIG.

If the specified field had an error, VPUTIEEELONG will clear the field's error flag and
decrement nuerrs .
Appendix J 629

HP PRECISION ARCHITECTURE
HPPA INTRINSICS
NOTE The field number is a unique number assigned to each field by FORMSPEC
and is completely independent of the field's position in the data buffer or the
form. It only changes if the batch command, , is used. You can alter the
length, position or other characteristics of a field without affecting the field
number. The field number provides a way to locate fields regardless of their
position.

THE HP32209S UTILITY

The HP322095 utility provides you with a simple way to confirm the versions of both the
native mode software and the compatibility mode software that you are currently running
on the system. HP322095 resides in the PUB.SYS group and account. You can use it by
typing the MPE command.

:RUN HP32209S.PUB.SYS

The screen will display the product name and version as well as the version number of
each segment of the software. This is to indicate any patches that may have a version
number different from the product.

This is a quick way to test whether native mode is moving through to compatibility mode
on the MPE/XL system, and hence to confirm that the VPLUS software is accessible in
compatibility mode.

Example When you run HP32209S, the screen displays the information in the format
shown in the following example, first for native mode and then for compatibility mode. In
this example, VPLUS native mode is enabled and the VPLUS switch to compatibility mode
is disabled.

:HP32209S

VPLUS INTRINSICS VERSION: HP32209B.06.08

------- --------------
 SEGMENT VERSION
 ------- --------------
 01 B’06’08’S01’00
 02 B’06’08’S02’00
 03 B’06’08’S03’00
 04 B’06’08’S04’00
 05 B’06’08’S05’00
 06 B’06’08’S06’00
 07 B’06’08’S07’00
 08 B’06’08’S08’00
 09 B’06’08’S09’00
 10 B’06’08’S10’00
 11 B’06’08’S11’00
 12 B’06’08’S12’00
 13 B’06’08’S13’00
 14 B’06’08’S14’00
 16 A.00.06.S16.00
 17 B’06’08’S17’00
 18 B’06’08’S18’00
630 Appendix J

HP PRECISION ARCHITECTURE
HPPA INTRINSICS
 19 B’06’08’S19’00
 20 B’06’08’S20’00
 21 B’06’08’S21’00
 22 B’06’08’S22’00
 ------- --------------

VPLUS NATIVE MODE INTRINSICS VERSION: HP32209B.06.08
 OVERLAY VERSION: B.06.08.00

FOR THIS USER:

 VPLUS NATIVE MODE IS ENABLED;
 VPLUS SWITCH TO COMPATIBILITY MODE IS DISABLED;

WILL DEFAULT COMPATIBILITY MODE SL SEARCH TO
 SYSTEM SL

 DHCF A4004000

VPLUS/Windows VERSION: HP36393A.00.06

VPLUS/Windows Native Mode VERSION: HP36393A.00.06
 OVERLAY VERSION: A.00.06.00
Appendix J 631

HP PRECISION ARCHITECTURE
HPPA INTRINSICS
632 Appendix J

SNA DHCF with VPLUS Applications
K SNA DHCF with VPLUS Applications

This appendix provides advisory information about running VPLUS applications from
IBM 3270 display stations using the Systems Network Architecture Distributed Host
Command Facility (SNA DHCF). Note that the IBM 3270 Display System features several
display station models. Consequently, this appendix generically refers to this family of
display stations as IBM 3270.

The sections in this appendix provide information about:

• The purpose and function of SNA DHCF and its impact on VPLUS

• IBM 3270 screen and keyboard characteristics that affect VPLUS

• The effect of SNA DHCF on VPLUS intrinsics

• The effect of SNA DHCF on FORMSPEC

• The effect of SNA DHCF on other VPLUS applications

For additional information on these topics, refer to the SNA DHCF Application
Programmer's Manual.
Appendix K 633

SNA DHCF with VPLUS Applications
SNA DHCF Overview
SNA DHCF Overview
SNA DHCF enables IBM System 370-compatible mainframes and series 900 HP 3000
systems to communicate interactively. Users of IBM 3270 display stations with access to
the IBM Host Command Facility (HCF) can access an HP 3000 in an SNA network and
initiate a session on the MPE XL operating system. SNA DHCF converts ASCII data from
HP 3000 VPLUS and TTY-compatible applications to the EBCDIC format that IBM 3270
display stations require, and vice versa.

To avoid potential confusion, it is important to note that IBM has a counterpart to
Hewlett-Packard's SNA DHCF, which is called DHCF.

System Connections

An IBM user can execute HCF commands to access an application on a remote IBM
minicomputer. If an IBM user wants to access an application on a remote HP 3000 instead,
he or she would use HCF and HP SNA DHCF, rather than IBM DHCF. HP SNA DHCF
emulates IBM DHCF, enabling the connection of an HP 3000 to an IBM mainframe. When
SNA DHCF is used, an HP 3000 perceives an IBM 3270 display station to be a virtual
terminal (VT) device. Conversely, an IBM mainframe perceives an HP 3000 to be a remote
IBM minicomputer.

VPLUS Supportability

SNA DHCF supports VPLUS applications if you recompile forms files for use with IBM
3270 display stations. Certain IBM 3270 display station limitations affect full-screen
VPLUS applications. For instance, the expanded HP terminal feature set offers display
enhancements, such as inverse video, that are unavailable on many IBM 3270 display
stations. Consequently, you cannot display these enhancements on an IBM 3270 display
station when using SNA DHCF.

Applications must exclusively use VPLUS intrinsics for all terminal I/O between
VOPENTERMand VCLOSETERMcalls, because the SNA DHCF subsystem is in unedited mode
when performing VPLUS I/O. Unedited mode means that the subsystem expects valid
3270 data streams (in EBCDIC) from the VPLUS intrinsics.

If you design HP 3000 application programs with VPLUS-based forms for IBM 3270
application users, or for both HP 3000 and IBM 3270 users, it is imperative to note the
IBM 3270 display station and forms compilation limitations described in subsequent
sections of this appendix.
634 Appendix K

SNA DHCF with VPLUS Applications
IBM 3270 Differences and Limitations
IBM 3270 Differences and Limitations
When using VPLUS to design or modify applications for IBM 3270 users, it is important to
understand the limitations that restrict forms design for IBM 3270 display stations. The
information in the following sections explain how an IBM 3270 differs from an HP 3000
terminal and the impact of these differences when running VPLUS applications using
SNA DHCF.

Keyboard Differences

Table K-1 compares HP 3000 terminal keys with equivalent IBM 3270 keys.

Table K-1. Comparison of Major Keys

HP 3000 Key Equivalent IBM 3270 Key and Explanation

AIDS No equivalent key exists.

BREAK PA1 - Equivalent to a system break. A VPLUS application can disable this
key. If disabled, SNA DHCF ignores the key when pressed and re-enables the
keyboard.

CLEAR DISPLAY CLEAR - Functions as a refresh key by clearing the entire screen, including
data and the form itself. Consequently, this key is not a local function, like the
equivalent HP key.

CLEAR LINE ERASE EOF - Clears data in an unprotected field from the cursor to the end of
the field, regardless of the number of lines in the field. This differs slightly
from CLEAR LINE , which performs the same function only if the field does not
exceed one line.

CTRL No equivalent key exists.

CTRLY PA2 - Equivalent to a subsystem break. A VPLUS application can disable this
key. If disabled, SNA DHCF ignores the key when pressed and re-enables the
keyboard.

DEL LINE No equivalent key exists.

ENTER ENTER - Locks the keyboard and transmits all modified data. The cursor
remains in the same position.

ESC No equivalent key exists.

INS LINE No equivalent key exists.

MODES No equivalent key exists.

NEXT PAGE No equivalent key exists.

PREV PAGE No equivalent key exists.

RESET RESET - Unlocks a locked keyboard.

ROLL DOWN No equivalent key exists.
Appendix K 635

SNA DHCF with VPLUS Applications
IBM 3270 Differences and Limitations
In addition to the keys listed above, IBM 3270 function keys differ from HP 3000 function
keys. The IBM keyboard has 12 or 24 function keys; the first 8 function keys map to HP
keyboards. Table K-2 shows the mapping of HP function keys to IBM 3270 function keys.

Screen Differences

SNA DCHF affects the screen design of VPLUS applications for IBM 3270 display stations
in the following areas:

• Screen attributes

• Screen enhancements

• Function key labels

• Fields

ROLL UP No equivalent key exists.

USER KEYS No equivalent key exists.

Table K-2. Mapping of Keys

HP Function Key IBM 3270 Function Key

ENTER (0) ENTER

f1 (1) PF1, PF13

f2 (2) PF2, PF14

f3 (3) PF3, PF15

f4 (4) PF4, PF16

f5 (5) PF5, PF17

f6 (6) PF6, PF18

f7 (7) PF7, PF19

f8 (8) PF8, PF20

ENTER (0) PF9, PF21

ENTER (0) PF10, PF22

ENTER (0) PF11, PF23

ENTER (0) PF12, PF24

BREAK PA1

CTRLy PA2

REFRESH CLEAR

Table K-1. Comparison of Major Keys

HP 3000 Key Equivalent IBM 3270 Key and Explanation
636 Appendix K

SNA DHCF with VPLUS Applications
IBM 3270 Differences and Limitations
• Character translation

Screen Attributes

IBM 3270 display stations have the following screen attributes and limitations:

Display Area Depending on the IBM 3270 display station model, the
display area is either 24, 32, or 43 lines long. The
maximum length for a VPLUS form is 24 lines.
Consequently, if you display a VPLUS form on an IBM
3270 that has 32 or 43 lines, the lines following line 24 will
be blank.

SNA DHCF reserves the last two lines of the display area
for function key labels. Therefore, a form can consist of
either 21 lines including a window line, or 22 lines without
the window line.

Status Line A status line appears below the display area. SNA DHCF
applications, including VPLUS, cannot access the status
line. Only the display controller can update this line.

Window Line A window line defined in a forms file consumes a line of
the available display. If you define a window line in the
forms file, you must place the window line on line 1 or line
22, because IBM 3270 limitations prohibit inserting a line
in the middle of a form. Selecting a window line reduces
the form length to 21 lines.

You must reserve a fixed line if you define a window line in
a forms file, because window lines cannot be inserted.

SNA DHCF limits the text in a window line to 79 bytes
instead of 80, because space must be reserved for the
attribute byte. Text exceeding 79 bytes becomes truncated.
(Refer to the section entitled "Fields" for information about
the attribute byte.)

Modified Data Tag An IBM 3270 functions as a modified data tag (MDT)
device. It transmits to the HP 3000 only the data that the
end user has modified.

Limitations The following IBM 3270 limitations are important to note
when designing or modifying VPLUS applications. The
IBM 3270 does not have:

• Forms caching capability

• Terminal memory other than display memory, which
consists of a 24-line length and 80-column width

• Scrolling capability

In addition, the IBM 3270 does not support:

• The line-drawing character set provided on some HP
Appendix K 637

SNA DHCF with VPLUS Applications
IBM 3270 Differences and Limitations
terminals

• Local field edits that occur in the terminal firmware,
such as edits for numeric fields

Screen Enhancements

Several HP terminal display enhancements are unavailable on the IBM 3270. You do not
have to alter any enhancements specified in an existing forms file for IBM 3270 usage,
however.

Table K-3 summarizes the mapping of HP display enhancements to IBM 3270 display
stations. The codes provided for some of the HP display enhancements correspond to the
value specified in FORMSPEC for the display enhancements of fields, errors, and the
window line. Note that the half-bright enhancement (code=H) overrides all other
enhancements except for security.

Function Key Labels

VPLUS simulates function key labels by "reserving" the last two lines of the screen. This
reduces the available screen area to 22 lines.

Function key labels for IBM 3270 display stations appear similar to those for HP
terminals. The label text appears on an IBM 3270 display station as intensified display on
a blank background. The default labels on HP terminals and IBM 3270 display stations
are identical, and cannot be configured by users.

Table K-3. Display Enhancements

HP Display Enhancement IBM 3270 Display Enhancement

Security (code=S) Non-display

Half-bright (code=H) Normal display

No enhancement (code=NONE) Intensified display

Blinking (code=B) Intensified display

Underlining (code=U) Intensified display

Inverse video (code=I) Intensified display

Color pair 1 (red/black) Intensified display

Color pair 2 (green/black) Intensified display

Color pair 3 (yellow/black) Intensified display

Color pair 4 (blue/black) Intensified display

Color pair 5 (magenta/black) Intensified display

Color pair 6 (cyan/black) Intensified display

Color pair 7 (black/yellow) Intensified display

Color pair 8 (white/black) Intensified display
638 Appendix K

SNA DHCF with VPLUS Applications
IBM 3270 Differences and Limitations
Fields

You should not design a form that has contiguous fields, because the IBM 3270 display
station requires an attribute byte preceding each field or text area. The attribute byte uses
a physical screen location and appears as a blank space on the screen. The attribute byte
indicates whether the field can be or has been changed.

You can create a space for both leading and trailing attribute bytes by inserting visible
brackets before and after all fields. SNA DHCF can convert these visible brackets to
invisible attribute bytes on IBM 3270s. For instance, if you defined the following three
fields:

[08][05][52]

they would appear as shown below when the VPLUS form is displayed on an IBM 3270
screen.

*08**05**52*

The * represents an attribute byte. On the screen, the attribute byte appears as a blank.

If you use invisible brackets to delimit fields, you must provide a leading space before each
field or text area. When the field or text begins in the first column of a line, insert the space
at the end of the previous line. The "Home" position is an exception to this guideline; the
attribute byte should be inserted in the bottom right position instead (reverse "Home").

Although the attribute byte is the most important concept regarding fields for IBM 3270
display stations, you should also be aware of the following information about fields.

Character Translation

As mentioned earlier, HP computer systems use ASCII character sets, whereas IBM
computer systems use EBCDIC character sets. Consequently, SNA DHCF must use system
default translation tables from the Native Language Subsystem (NLS) to translate
characters from one system to the other.

If Native-3000 is the native language used, SNA DHCF translates all ASCII characters
without alterations, except for the characters shown in table K-4. Note that the HP
terminal bracket characters equate to text, not actual FORMSPEC brackets.

To display one of these characters on one system, you must specify the corresponding
character on the other system. For instance, if you want to send an exclamation point (!) to
an IBM 3270 user, your VPLUS application must specify this character as a right bracket
(). If an IBM user wants to input a left bracket (), he or she must specify ¢.

Table K-4. Differences Between HP and IBM Character Displays

HP Terminal Character ASCII Hex Value IBM 3270 Character EBCDIC Hex Value

[5B ¢ 4A

] 5D ! 5A

! 21 4F

^ 5E 5F
Appendix K 639

SNA DHCF with VPLUS Applications
Using FORMSPEC With DHCF
Using FORMSPEC With DHCF
You can compile a forms file for an IBM 3270 and any HP terminal that supports VPLUS
on MPE/V or MPE/XL by selecting the desired terminals from the Terminal/Language
Selection Menu and ensuring that the forms file adheres to IBM 3270 requirements. You
must compile a forms file for at least one HP terminal as well as an IBM 3270.

Certain FORMSPEC block-mode components prohibit you from running FORMSPEC
interactively on an IBM 3270 display station while using SNA DHCF. However, you can
use FORMSPEC in batch mode on an IBM 3270.

The following procedure provides a hypothetical example that uses FORMSPEC to modify
a VPLUS form application for an SNA DHCF session.

1. Type the following command at the MPE prompt:

RUN FORMSPEC.PUB.SYS

FORMSPEC responds by displaying the Forms File menu.

2. Type the desired forms file name and press Enter . FORMSPEC responds by displaying
the Main menu.

3. Type T at the Enter Selection field where the cursor is currently positioned.
FORMSPEC responds by displaying the Terminal/Language Selection menu.

4. Type X beside the IBM 3270 field and at least one HP field as shown below. Even if your
application is strictly for the IBM 3270, you must also select an HP terminal on this
menu for diagnostic purposes. This enables you to display a form on an HP terminal if
you are unable to display the form on an IBM 3270.

5. Press Enter after you have selected the desired terminals. If SNA DHCF is not installed
on your system, FORMSPEC responds by displaying the message, SNA DHCF not
installed; necessary to compile for IBM 3270. You must then either remove the
IBM 3270 selection or make sure that SNA DHCF is installed on your system.

If SNA DHCF is installed, FORMSPEC responds by displaying the Globals menu as
shown below. Note that the Window Display Line shows the default of 24 lines.

6. Change the number of the Window Display Line field to either 0 (no window line), 1
(window line at top line of screen), or 22 (window line at line 22 above labels). If you
inadvertently press Enter without changing this field, FORMPSEC responds by
displaying the error message shown below.

If this message appears, correct the error by specifying 0, 1, or 22 for the Window
Display Line field and press Enter . FORMSPEC responds by displaying the Save Field
menu.

7. Create or modify one or more forms. When you compile the form(s), you may encounter
an error message. The following example shows one of the possible error messages for
form "XYZ", which involves the attribute byte explained earlier in this appendix. (Refer
to appendix B for a list of SNA DHCF-specific error messages.)

8. Go to form "XYZ" and press Enter to determine the nature of the error. FORMSPEC
responds by displaying an explanatory message about the error and positions the cursor
640 Appendix K

SNA DHCF with VPLUS Applications
Using FORMSPEC With DHCF
at the error location as shown below.

In this example, the error is obvious. The field tag D must be moved one column to the
right to line up with the other characters. Moving this field allows space for the
attribute byte between the colon and the beginning of the field.
Appendix K 641

SNA DHCF with VPLUS Applications
Using VPLUS Intrinsics With DHCF
Using VPLUS Intrinsics With DHCF
From the group of all available VPLUS intrinsics, SNA DHCF does not support two of the
intrinsics when they are run on IBM 3270 display stations. Six of the intrinsics can be
used, but are altered because of IBM 3270-related differences. The remaining intrinsics
can be used in the same manner as for an application to be run on HP terminals. The
following sections discuss unsupported intrinsics and those that are affected by IBM 3270
differences.

Unsupported Intrinsics

If a VPLUS application calls an intrinsic unsupported for IBM 3270 display stations
during an SNA DHCF session, you must modify the application before it can run
successfully. Otherwise, the intrinsic may not function, or it may return an error message.
The following intrinsics are not supported at this time.

VPRINTFORM Generates an error when called. This intrinsic is dependent on an ASCII
screen image, but the screen image on an IBM 3270 is EBCDIC.

VPRINTSCREENGenerates an error when called.

In addition to these unsupported intrinsics, SNA DHCF does not support VPLUS internal
routines called directly by an application.

Intrinsics Altered With SNA DHCF

The following intrinsics function differently for IBM 3270 display stations than for HP
terminals.

VCHANGEFIELD HP enhancement types map dynamically to IBM 3270
enhancement types.

VOPENTERM The identifier is set to the IBM 3270 display station type
(80; reserves 80-85 for 327x terminal types).

VPUTWINDOW The message can contain up to 79 printable characters.
Messages longer than this are truncated. Unprintable
characters are removed.

VREADFIELDS The lastkey parameter in the comarea contains the value
that corresponds to the mapping of an IBM 3270 function
key to an HP function key.

VSETERR The message can contain up to 79 printable characters.
Messages longer than this are truncated. Unprintable
characters are removed.

VSHOWFORM Uses showcontrol bits as for a non-caching, MDT,
non-touch terminal. Enhancements are mapped to those
available on an IBM 3270 display station. The following
limitations apply:

• The commands "Repeat/Append forms" do not roll a
642 Appendix K

SNA DHCF with VPLUS Applications
Using VPLUS Intrinsics With DHCF
partial form, because the terminal does not support
scrolling and SNA DHCF does not simulate it. Instead,
the commands roll up an entire form at a time.

• Brackets are not visible around fields.

• The function key area is simulated only in VPLUS
mode.
Appendix K 643

SNA DHCF with VPLUS Applications
SNA DHCF and VPLUS Utilities
SNA DHCF and VPLUS Utilities
Besides FORMSPEC, SNA DHCF affects certain other applications of the VPLUS-based
forms management system as explained in the following sections.

ENTRY

ENTRYcan run on an IBM 3270 if you have compiled the forms file for the IBM 3270. Initial
prompts are in TTY-mode and the remaining prompts use standard VPLUS.

REFSPEC

REFSPEC cannot run on an IBM 3270 display station because it uses both VPLUS and file
system intrinsics for terminal I/O.

REFORMAT

REFORMAT is a TTY-mode application and should run without modifications on an IBM
3270 display station.

HP32209B and HP32209S Utilities

The version identification utilities, HP32209B and HP32209S, are TTY-mode applications
and should run without modifications on an IBM 3270 display station. The utilities check
for SNA DHCF on MPE/XL systems. The following example shows the MPE response
when you run utility HP32209B if SNA DHCF is installed on the system.

:RUN HP32209B.PUB.SYS

VPLUS INTRINSICS VERSION: HP32209B.05.15

------- --------------
SEGMENT VERSION
------- --------------

01 B'05'12'SO1'00
02 B'05'12'SO2'00
03 B'05'12'SO3'00
04 B'05'12'SO4'00
05 B'05'12'SO5'00
06 B'05'12'SO6'00
07 B'05'12'SO7'00
08 B'05'12'SO8'00
09 B'05'12'SO9'00
10 B'05'12'S10'00
11 B'05'12'S11'00
12 B'05'12'S12'00
13 B'05'12'S13'00
14 B'05'12'S14'00

------ ---------------
DHCF A0005005

END OF PROGRAM
:

644 Appendix K

SNA DHCF with VPLUS Applications
SNA DHCF and VPLUS Utilities
The following example shows the MPE response when you run utility HP32209S if SNA
DHCF/XL is installed on the system.

:RUN HP32209S.PUB.SYS

VPLUS INTRINSICS VERSION: HP32209B.05.15

------- ---------------
SEGMENT VERSION
------- ---------------

01 B'05'12'SO1'00
02 B'05'12'SO2'00
03 B'05'12'SO3'00
04 B'05'12'SO4'00
05 B'05'12'SO5'00
06 B'05'12'SO6'00
07 B'05'12'SO7'00
08 B'05'12'SO8'00
09 B'05'12'SO9'00
10 B'05'12'S10'00
11 B'05'12'S11'00
12 B'05'12'S12'00
13 B'05'12'S13'00
14 B'05'12'S14'00

----- --------------

VPLUS NATIVE MODE INTRINSICS VERSION: HP32209B.05.15

FOR THIS USER:

VPLUS NATIVE MODE IS ENABLED;
VPLUS SWITCH TO COMPATIBILITY MODE IS DISABLED;

WILL DEFAULT COMPATIBILITY MODE SL SEARCH TO
SYSTEM SL

DHCF A0000001
END OF PROGRAM
:

Appendix K 645

SNA DHCF with VPLUS Applications
SNA DHCF and VPLUS Utilities
646 Appendix K

L A Programmer’s Guide to VPLUS

VPLUS is an HP tool used by programmers to design screens and implement an on-line
application to collect and display information. With VPLUS, you are able to design screens
which prompt the user for input in familiar business terms. VPLUS intrinsics are
available to help you develop a customized application.

This note is intended for programmers who want to understand the purpose of each
intrinsic and the sequence of calls. For each intrinsic, a discussion of the passed
parameters, some programming tips, and some details of what the intrinsic does is
presented. Also included is a summary of VPLUS enhancements which can make an
existing or new application easier to use. A brief synopsis is presented on each
enhancement. For more details on their use, please refer to the HP Data Entry and Forms
Management System (VPLUS/V) Reference Manual. Note that in the remainder of this
paper, this manual will be referred to as the VPLUS/V Reference Manual.

This Application Note covers two topics to help you code your application.

• VPLUS Intrinsic Calls

• VPLUS Enhancements

This note assumes that the reader has some basic knowledge of the HP Data Entry and
Forms Management System (VPLUS).
647

A Programmer’s Guide to VPLUS
VPLUS Intrinsic Calls
VPLUS Intrinsic Calls
ENTRY.PUB.SYS is an example of an application which uses VPLUS intrinsic calls. This
program accepts data from a user and writes the information to an MPE file. The MPE file
contains information in the user label for use by ENTRY.PUB.SYS.

Since ENTRY.PUB.SYS does not meet the needs of some business environments, many
programmers develop customized programs to write the data to a database, an MPE file or
a KSAM file; or to perform edits on the data. An understanding of the purpose of each
intrinsic and the sequence in which the intrinsics are called is crucial to a successful
program. The intrinsics can be logically grouped into one of six functions. An application
program must use these functions in this sequence:

1. Opening Files

2. Preparing and Showing the Screen

3. Reading Data from the Screen

4. Editing

5. Returning Data to the Program

6. Closing Files

Illustration 1 in the appendix of this note is a flowchart of the VPLUS intrinsic calls. The
flowchart illustrates the sequence of calls that an application program may follow. It
groups the intrinsics into one of the six functions listed above. Note that it does not include
examples of local form storage, softkey labeling, or interfacing with VPLUS batch file

Opening Files

Before a VPLUS application can run, it must open the necessary files. VOPENFORMF is
called to open a formsfile. VOPENTERM is called to open a terminal. Note that VPLUS
requires an HP block mode terminal. For a list of the supported terminals, refer to
Appendix G of the VPLUS/V Reference Manual.

VOPENFORMF

Purpose: to open the formsfile to be used by the application.

VOPENFORMF should be the first VPLUS intrinsic call executed in an application program.
This intrinsic opens the formsfile specified in the call. Parameters passed to VOPENFORMF
are the comarea array and the formsfile name. The comarea array is a 60 word
communication area between the program and VPLUS. The comarea array contains
assorted fields to be set before an intrinsic call.

One important field is CSTATUS or the status word. This is set on the completion of each
VPLUS intrinsic call. The programmer should check this status after each intrinsic call to
determine the success or failure of the call. If the status word is not zero, subsequent
VPLUS intrinsic calls are not executed. If the program uses local forms storage or labeled
softkeys, the FORM’STORE’SIZE and LABEL’OPTION words of the user’s COMAREA must be
set prior to calling VOPENFORMF. VOPENFORMF allocates additional space on the user’s stack
648 Appendix L

A Programmer’s Guide to VPLUS
VPLUS Intrinsic Calls
based on the values of these fields. Other words in the comarea array that need to be set
prior to VOPENFORMF’s call are:

• LANGUAGE which contains the language code of the calling program

• COMAREALEN which contains the length in words of the comarea array.

In addition, for BASIC/3000 programs, USRBUFLEN should specify the number of words
needed for the comarea extension on the stack.

When VOPENFORMF is executed, it opens the formsfile and allocates space on the stack for
the comarea extension. The comarea extension is used by VPLUS to protect data between
calls, to provide a buffering mechanism so that terminal reads are transparent to the user,
and to aid in directory searches for formsfile information. Illustration 2 in the appendix of
this note contains a layout of the tables which are in the comarea extension. For most
programming languages, the comarea extension resides in the DL-DB area of the stack.
For BASIC/3000, the comarea extension is declared as a variable of the program and
resides with the global variables.

VOPENTERM

Purpose: to open the terminal as a file and set the terminal for block mode.

Another intrinsic which performs an open function within VPLUS is VOPENTERM. This
intrinsic is called after VOPENFORMF. VOPENTERM does exactly what its name suggests. It
opens the terminal as a file. In addition it sets the terminal in block mode and initializes
the user function keys to contain the escape sequences which VPLUS expects.

Two parameters are passed to VOPENTERM: COMAREAand TERMFILE. COMAREAis the comarea
array which VPLUS uses to communicate with the program. The words within the
comarea array that VOPENTERM requires before the call are: CSTATUS, LANGUAGE,
COMAREALEN and FORM’STORE’SIZE. These words were set at the time VOPENFORMF was
called and therefore do not need to be reinitialized. Upon the completion of the call,
VOPENTERM returns additional information (such as CSTATUS) in the comarea array which
indicates the success or failure of a call. It also returns FILERRNUMwhich is the file system
error if it could not open the terminal; FILEN which is the MPE file number of the terminal
file; IDENTIFIER which contains a unique terminal ID assigned to a specific terminal; and
ENVIRON which contains the logical device number of the terminal.

TERMFILEspecifies a file name which is opened. This file defaults to the logical device from
which the program is being run.

When debugging your VPLUS application, the messages displayed from your programs are
only displayed within the unprotected fields on a form. For debugging purposes, it is
possible to redirect the screen to another logical device so that an error message sent to
$STDLIST is displayed in its entirety.

To redirect the VPLUS screen to another LDEV, you should:

1. Ensure that the other terminal’s LDEV number is AVAIL by issuing a :SHOWDEV
command. The terminal must be logged off. Do not use the keyboard or the terminal
becomes unavailable at that time. The terminal must be configured at the same baud
rate as the port of garbage will print when VPLUS displays the screen. This is because
no speed sensing is done when the screen is routed to the alternate terminal.
Appendix L 649

A Programmer’s Guide to VPLUS
VPLUS Intrinsic Calls
2. Issue a file equation as follows:

:FILE {termfilename};DEV=xx

{termfilename} is the name used in your call to VOPENTERM; ‘xx’ is the LDEV of the
terminal to which you are redirecting the screens

Another method that can be used in your application is to redirect the display of the error
message from the program to another device. This allows the screen to be displayed on the
terminal from which you are running the program, but the error messages will be directed
elsewhere. This method of redirecting $STDLIST is the easiest to use.

1. Issue a file equation to the device where you would like the displays directed, for
example:

:FILE TEST;DEV=LP

 or

:BUILD TEST;REC=-132,1,F,ASCII;DEV=DISC :FILE TEST,OLD;DEV=DISC

or

:FILE TEST;DEV={LDEV # of terminal, which must be AVAIL

2. After setting the file equation in step 1, run the program as follows:

:RUN {vprog};STDLIST=*TEST

Preparing and Showing the Screen

The next stage in a VPLUS application program is to prepare and show the screen.
Preparing the screen to be displayed involves retrieving the form definition and
initializing fields with the desired values. Optionally, it may include initializing the
terminal window with a message and labeling the function keys. The intrinsics which
prepare the screen to be shown are VGETNEXTFORMwhich retrieves the specified next form’s
design; VINITFORM and/or VPUTBUFFER which places values into fields on the screen;
VPUTWINDOW which places a message to be shown on the terminal window; and
VSETKEYLABEL(S) which can label function keys. After all the information to be displayed is
set up, VSHOWFORM is called to display the form.

This section discusses the VGETNEXTFORM, VINITFORM, VPUTBUFFER and VSHOWFORM
intrinsics. When used in a program, the intrinsics are called in the order listed.

VGETNEXTFORM

Purpose: to retrieve the next form’s definition.

VGETNEXTFORM is the next intrinsic called after VOPENTERM. It is the first intrinsic to
prepare and show the screen. It may also be called when a new form is to be displayed on
the terminal.

The only parameter passed to VGETNEXTFORM is COMAREA. Within the comarea array, there
are several variables pertinent to VGETNEXTFORMsuch as NFNAME, REPEATAPP, FREEXAPP
and CFNAME. NFNAME is the variable containing the next form’s name. CFNAME is the
variable containing the current form’s name. After the call to VGETNEXTFORM, the CFNAME
variable in the comarea array is updated to contain the name of the form just read from
650 Appendix L

A Programmer’s Guide to VPLUS
VPLUS Intrinsic Calls
the formsfile.

REPEATAP is the repeat append option and will take on a numeric value from 0 - 2.
These values are defined as follows:

0 Do not repeat the current form 1

1 Current form is to be repeated

2 Current form is to be repeated and appended

FREEZAPP is the freeze append option. This will also take on a numeric value from
0-2. The values for FREEZAPP follow:

0 Clear the current form before displaying the next form

1 Next form is to be appended to the current form

2 Current form is to be frozen before the next form is
appended

VGETNEXTFORMretrieves the next form based on the value of two words in the COMAREA:
REPEATAPP and NFNAME. If the repeat append word indicates the current
form is to be repeated (REPEATAPP=1) or the current form is to be repeated
and appended to itself (REPEATAPP=2), VGETNEXTFORMdoes not get the next
form. REPEATAPP must be set to 0 before VGETNEXTFORM will retrieve the
next form. The next form is determined by NFNAME. If NFNAME is blank, it
gets the $HEAD form.

Other options for NFNAME, other than an actual form name are:

 $END
$HEAD
$REFRESH
$RETURN

Upon the completion of the call to VGETNEXTFORM with $END as the NFNAME, the CFNAME
becomes $END. The application must check the CFNAME to determine to shut down the
application.

With $HEAD, the head form which is specified in FORMSPEC, is retrieved. Within FORMSPEC,
a specific form may be designated as the head form. If this field is left blank, the head form
becomes the first form in the formsfile (alphabetic order of forms).

When VGETNEXTFORM is called with $REFRESH, the terminal is reinitialized. If there are
forms in local forms storage, the forms are cleared. Only the current form is displayed with
$REFRESH, therefore prior appended screens are lost. Data, screen design, windows and
softkeys are displayed again. An alternative to using $REFRESH which takes less overhead
is to simply display the data again. In many cases, where the data is overlaid but the
screen design is intact, this method is sufficient. An example of when this type of refresh
can be used is when another user has sent a WARN message through the user’s form. This
refresh method would simply force data and field enhancements to be rewritten to the
screen.

An example of the alternate method is:

VINITFORM (COMAREA)
SHOWCONTROL (14:1)=1
Appendix L 651

A Programmer’s Guide to VPLUS
VPLUS Intrinsic Calls
[COBOL programmers must add 2 to SHOWCONTROL]

VSHOWFORM (COMAREA)
SHOWCONTROL (14:1)=0

[COBOL programmers must subtract 2 from SHOWCONTROL]

Lastly, VGETNEXTFORM may be called with $RETURN. Before performing VGETNEXTFORM,
REPEATAPP must be 0 as in all the above cases. VPLUS keeps track of the forms most
recently used by your program. $RETURNreturns the last form called. If the current form is
$HEAD, it returns $HEAD again (no forms file access is actually done). The form file
definition which is retrieved by VGETNEXTFORMis stored in an area of the user’s stack called
the comarea extension.

VINITFORM

Purpose: to initialize fields on the current form.

VINITFORM is called after VGETNEXTFORM in order to initialize any fields on a form. For
example, on the field menu, the designer may specify an initial value. Or within the field
processing section of the field menu, a designer may specify INIT phase specifications such
as setting the field to a value of another field on the form.

VINITFORMuses any initial value specified in the FIELD MENUand performs any processing
specifications defined in the INIT phase.

Any field that does not have a specified initial value is by default set to $EMPTY(all blanks).
If this is a child form, the values for any fields that do not have an initial value are
retrieved from the parent form. The only parameter passed to VINITFORM is COMAREA. The
fields within the comarea array which VINITFORM may set are listed in the VPLUS/V
Reference Manual.

Any initialized values are placed in the comarea extension’s data buffer.

VPUTBUFFER

Purpose: to place data from a program buffer into the VPLUS data area.

Before the form is displayed with the initialized fields, additional information may be
retrieved from a data base, KSAM file, MPE file, or from within the program. This is
application dependent. Once the data is retrieved with a DBGETor FREADcall, VPUTBUFFER
transfers the data from the program’s form buffer to the VPLUS data buffer. VPUTBUFFER,
however, does not format the data being sent to the data buffer (e.g., strip leading zeros or
format signs on numeric fields); this must be handled by the application before
VPUTBUFFER is called. The comarea extension contains its own copy of the data buffer
which aids VPLUS to interface with the terminal.

VPUTBUFFERis an optional step for preparing and showing the screen function. It is used if
information from other sources needs to be displayed on the screen. An example is showing
an employee’s name which is retrieved from a personnel data base after the user has
entered the employee’s number.

The call to VPUTBUFFER in pseudocode looks like:

VPUTBUFFER (COMAREA, BUFFER, BUFLEN)

There are three parameters passed to VPUTBUFFER: COMAREA, buffer, and buffer length. The
652 Appendix L

A Programmer’s Guide to VPLUS
VPLUS Intrinsic Calls
COMAREAwords have been set from preceding VPLUS intrinsic calls. If CSTATUSword of the
user’s COMAREAis not zero, the call to VPUTBUFFERdoes not execute. The buffer is the name
of the program’s form buffer whose contents are to be put to the form. The third parameter
is the length of the buffer in bytes.

VSHOWFORM

Purpose: to display screen definition, data, window function keys, enhancements or
terminal screen.

This intrinsic takes the current form as defined in the comarea extension form definition
and displays it on the screen. A prior call to VGETNEXTFORMplaces the form definition in the
comarea extension. VSHOWFORM displays the field values from the data buffer of the
comarea extension. The content of the data buffer is affected by calls to VINITFORM,
VPUTBUFFER or VREADFIELDS. VSHOWFORM also uses the global/form function keys and
window buffer from the comarea extension to display the softkey labels and the window
message.

The only parameter which is passed to VSHOWFORM is COMAREA. The SHOWCONTROL word in
the COMAREA allows the programmer control of several VSHOWFORM options. The following
paragraphs discuss some of the options and how they are used.

Bit 15=1 Forces the form to be displayed again.

This overrides the VPLUS default. This may be useful when using process
handling and returning to the father process’ screen. In some cases,
VPLUS does not show the father process screen when control is returned
to the father process because it believes the father screen is the current
form. Bit 15 must be set to 1 in this case.

Bit 14=1 Forces the window to be displayed again.

The other intrinsics which force the window to be displayed again are
VPUTWINDOW, VSETERROR, VGETNEXTFORM with NFNAME=$REFRESH.

Bit 13=1 Forces the data to be displayed again.

VPLUS normally does not re-display values that are already on the screen.
Setting bit 13 to 1 overrides the default, and may be used as another
alternative to $REFRESH. In most cases, forcing the data to be displayed
again is sufficient rather than using $REFRESH which will re-display data,
screen design, window and softkeys. (Refer to the example of how this is
performed in the preceding VGETNEXTFORM discussion).

Bit 10=0 Enables the keyboard (default).

Bit 10=1 Disables the keyboard.VREADFIELDS locks the keyboard so that no user
input can take place until the screen is displayed. VSHOWFORMunlocks the
keyboard so that a user may enter data after the screen is displayed. If
more than one VSHOWFORMis called in a row without an intervening call to
VREADFIELDS, bit 10 should be set to 1. After the last VSHOWFORM is
called, bit 10 should be set back to 0 to allow user input of data.

Bit 9=0 Do not preload current form into local form storage (default).

Bit 9=1 Preload form into local form storage.
Appendix L 653

A Programmer’s Guide to VPLUS
VPLUS Intrinsic Calls
For terminals that have local form storage, the current form may
optionally be loaded into local form storage if it is not already present.

Bit 8=0 Do not enable A/M/U (default).

Bit 8=1 Enables A/M/U.

If bit 8 is set to 1, users may access the A/M/U. Currently on VPLUS
version B.04.20, a VENVCNTL.PUB.SYS file can also control this option; the
format of this file is discussed in the Communicator, Volume 2, Issue 13
(UB-DELTA-1).

Bit 0=0 Do not enable the touch screen feature (default).

Bit 0=1 Enable the touch screen feature.

As of VPLUS version B.04.10, VREADFIELDS can be used to read a field
number that has been “touched”. Terminals that support the touch screen
feature are listed in the VPLUS/V Reference Manual Appendix G.

Reading Data from the Screen

After displaying the screen along with any initial values, the user is ready to input data.
VREADFIELDS triggers a read from the user. The read is satisfied when the user presses E
or one of the function keys. Also if the HPTOUCH feature is implemented, the read is
satisfied when a user selects a field on the form. For more information on the HPTOUCH
feature, refer to the VPLUS/V Reference Manual. The VPLUS Enhancement section
briefly discusses this feature.

VREADFIELDS

Purpose: to trigger a read from the user.

VREADFIELDS allows users to enter data. The read is satisfied if the user presses E or any
other function key. If E is pressed, data is transferred from the screen to the data buffer in
the comarea extension. Data is read in screen order, from top to bottom, and left to right.

If a function key is pressed, control is returned to the program without any data being
transferred to the VPLUS data buffer in the comarea extension. Instead, the LASTKEY
word in the comarea array is set. LASTKEY contains a value corresponding to the function
key that satisfied the read trigger. LASTKEY will take on a value as follows:

0 Enter Key

1 - 8 Corresponding to F1-F8

If the HPTOUCH feature is implemented, VREADFIELDS is satisfied when a user selects a
field. IN this case, no data is transferred to VPLUS’s data buffer. Instead, the LASTKEY
word in the comarea array is set to a negative number which indicates the field number
selected. The number is negative to distinguish it from the function key’s numbers which
are positive 1 through 8.

The only parameter passed to VREADFIELDS is COMAREA. Within the COMAREA, the
TERMOPTIONS word can be set to perform some advanced functions. These include setting
up automatic reads or having a timed read.

AUTOREAD is used when VREADFIELDS is terminated by a function key instead of E. For
654 Appendix L

A Programmer’s Guide to VPLUS
VPLUS Intrinsic Calls
example, if an order processing clerk is entering order information on a screen, then
presses a function key labeled “MODIFY”, the program needs to read the data on the
screen. Without the AUTOREAD option set, the program would not read the screen. The
program needs to interrogate the LASTKEYword of the COMAREAfor an i value. If a non-zero
value is found, it needs to proceed with enabling AUTOREAD.

AUTOREAD is enabled by setting bit 14 of the TERMOPTIONS word to 1. For COBOL
programmers, ADD and SUBTRACT may be used to set bit 14. For example, in pseudocode:

VREADFIELDS (COMAREA)
IF LASTKEY = 1 THEN
TERMOPTIONS(14:1)=1

[COBOL programmers must add 2 to TERMOPTIONS]

VREADFIELDS(COMAREA)
TERMOPTIONS(14:1)=0

[COBOL programmers must subtract 2 from TERMOPTIONS]

ENDIF

Another feature which is enabled through the TERMOPTIONS word of the comarea array is
setting a timed read. The TERMOPTIONSword bit (10:1) enables a times read. Another word
in the comarea array, USER’TIME, defines the time limit in seconds. Again, COBOL
programmers must use the ADDand SUBTRACTto set bit 10. For example, to enable a timed
read for 60 seconds in pseudocode:

USER’TIME = 60
TERMOPTIONS(10:1)=1

[COBOL programmers must add 32 to TERMOPTIONS].

VREADFIELDS(COMAREA)
IF COM’STATUS = 160 THEN
PERFORM TIME-OUT-PROCEDURE
ENDIF
TERMOPTIONS(10:1)=0

[COBOL programmers must subtract 32 from TERMOPTIONS].

Editing

Once the data is read from the screen into VPLUS’s data buffer, edits may be performed.
The edits may be performed in as many as three passes. On the first pass, the editing
process checks that all required fields are present, the data input by the user is consistent
with the data type defined for the field, and the data meets rules set out by the user (for
example, matching a pattern or being within range of values). Optionally, a second editing
pass may be performed by the program. Edits can be designed into the program. An
example of a programmatic edit is verifying that an employee number exists in the
personnel data base before allowing a modify of an employee record. Optionally, a third
pass of editing may be performed. The third pass of editing performs any totaling or
formatting functions. For example, if a form contains hours worked for each day of the
week, a first level editing pass would verify that the hours input for each day is less than
24 hours. In this example, we will assume that there are no programmatic edits in the
second pass of editing. However, in the third pass of editing, a weekly total is accumulated
Appendix L 655

A Programmer’s Guide to VPLUS
VPLUS Intrinsic Calls
and the numbers are right justified.

This section on “Editing” will cover the three phases of editing: VFIELDEDITS , optional
programmatic edits, and VFINISHFORM.

VFIELDEDITS

Purpose: to verify the data entered.

This intrinsic is called to verify the data entered. If the field is defined as OPTIONALand is
left blank, no further processing is performed. To perform processing on a blank field (for
instance, to set it to a value), the field type should be defined as PROCESS. VFIELDEDITS
performs the following checks if the field is a REQUIRED field type or a PROCESS field type
and the field contains data.

• Field type - If the field type is REQUIRED and no data is present, the field is flagged in
error.

• Data type - If the data type is invalid, the field is flagged in error. The data input by the
user must match the data type defined for the field.

• Field processing specification statements - The user may define processing specification
statements within each field menu. If the data does not meet the specifications set up by
the user, the field is flagged in error.

If VFIELDEDITS detects any errors on the checks listed above, the field is set in error and
the NUMERRSword of the user’s COMAREAis incremented by one. The only parameter passed
to VFIELDEDITS is COMAREA. When the intrinsic completes, it may set the NUMERRS word
within the comarea array. NUMERRS contains a count of the number of fields on the form
detected in error. Note that a CSTATUS of 0 only indicates that the intrinsic executed
properly, not that no errors were found; this information is contained in NUMERRS.

In looking at Illustration 1, if there are any errors (NUMERRS> 0) the program calls an error
processing routine. The error processing routine calls VERRMSG to retrieve the appropriate
error message of the first field in error. The error processing routine then calls VPUTWINDOW
which puts the error message to a window buffer maintained by VPLUS. It next calls
VSHOWFORM which highlights all fields in error and displays the error message in the
terminal window. VREADFIELDSis called to prompt the user to input the correct data. Then
VFIELDEDITS is called once again. This loop is performed until there are no errors flagged
by VFIELDEDITS .

Optional Programmatic Edits against Data

After passing the first phase of editing, additional checks may be desired. For example, a
programmatic check could be made to verify that the employee number entered exists in
the company’s data base. Since this type of check cannot be done in FORMSPEC, it needs to
be implemented by the program with a call to a data base, KSAM or MPE file.

Before any user editing is performed, the program needs to retrieve VPLUS’s data buffer
into its own program buffer. A call to VGETBUFFER or VGETFIELD or VGETtype returns the
data to the program’s buffer. At this point, the data can be verified against a database or
KSAM file or MPE file. If the programmatic edits detect an error, VSETERRORis called to set
the field in error.

VSETERROR is another VPLUS intrinsic available to the programmer so that when
656 Appendix L

A Programmer’s Guide to VPLUS
VPLUS Intrinsic Calls
programmatic edits detect invalid data, the field may be highlighted and set in error. The
pseudocode for VSETERROR looks like:

VSETERROR (COMAREA, FIELDNUM, MESSAGE, MSGLEN)

VSETERROR sets the field in error if it is not already in error and increments the NUMERRS
word of the user’s COMAREA by one. After the call to VSETERROR, NUMERRS reflects the
number of fields detected in error on the form. The second parameter of VSETERROR is the
field number to be set in error. The third and fourth parameters of VSETERROR are the
customized error message and the error message length, respectively. If this is the first
field in error, the customized error message appears in the terminal window on a call to
VSHOWFORM.

In looking at Illustration 1, if the optional programmatic edits detect an error, the field is
set in error by VSETERROR. The subsequent VSHOWFORM displays the programmer’s custom
error message and highlights the fields in error. VREADFIELDS is then called after
VSHOWFORMto allow the user to input the corrected data. The data is next taken through all
the passes of editing once again - beginning with VFIELDEDITS , next with the
programmatic edits, and finally with VFINISHFORM.

VFINISHFORM

Purpose: to perform final editing.

Once the validity of data has been established with VFIELDEDITS and it has passed
optional programmatic editing, VFINISHFORM can be called to perform the final totaling
and editing processes. VFINISHFORM executes any processing statements defined in the
FINISH phase. If there are no FINISH phase statements in the form, it is not necessary to
call VFINISHFORM.

FINISH phase statements are input through FORMSPEC in the field menu at the field
processing specification section. Formatting and totaling are typical functions performed
in this phase. An example of the formatting at FINISH phase is right justifying a number,
or stripping out a decimal point or filling a numeric field with leading zeros.

The only parameter passed to VFIELDEDITS is COMAREA. Within the comarea array,
VEDITFIELDS may set the NUMERRS word. If there are any field type, data type or editing
errors, the field is set in error and NUMERRS is incremented.

In looking at the flowchart, if there are any errors (NUMERRS>0), VERRMSG retrieves the
appropriate error message. VPUTWINDOWputs the error message in VPLUS’s window buffer.
When VSHOWFORM is called, all fields in error are highlighted and the window displays the
error message retrieved by VERRMSG. VREADFIELDSallows the user to input corrected data.
Again, the flowchart passes through all levels of error checking from VFIELDEDITS through
VFINISHFORM. Once the data passes all levels, the program proceeds to the next step.
Appendix L 657

A Programmer’s Guide to VPLUS
VPLUS Intrinsic Calls
Returning Data to the Program

After the data is verified by VFIELDEDITS , optional programmatic edits, and VFINISHFORM,
it is returned to the program’s form buffer with a call to VGETBUFFER. There are other
intrinsics to return from VPLUS’s data buffer to the program buffer such as VGETtype and
VGETFIELD. These two intrinsics can be used to retrieve one field’s worth of data to a
program buffer. Refer to the VPLUS/V Reference Manual on their use.

This section covers the VGETBUFFER intrinsic.

VGETBUFFER

Purpose: to return values from VPLUS data buffer to the user’s program buffer.

When VREADFIELDS is performed, it returns user input data to the VPLUS data buffer.
When VFIELDEDITS and VFINISHFORM are performed, the editing and formatting is
performed on VPLUS’s copy of the data buffer. In order to return the data to the program
buffer, a call to VGETBUFFER is necessary.

The call to VGETBUFFER in pseudocode looks like:

 VGETBUFFER (COMAREA, BUFFER, BUFLEN)

The number of bytes that VGETBUFFERreturns into the program form buffer is determined
by BUFLEN (the third parameter of the call) and DBUFLEN (word in comarea array which
contains the buffer length in bytes of the current form). DBUFLEN is set by the call to
VGETNEXTFORM which retrieved the current form. VGETBUFFER transfers the lesser number
of bytes between BUFLENand DBUFLENinto the program buffer. VGETBUFFERreturns all the
data from the screen in a left-to-right and top-to-bottom order. Display-only fields are also
returned into the program buffer and therefore you will need to ensure that the program
buffer is set up to accommodate this data.

There are also two other routines that transfer data from the VPLUS data buffer into the
program buffer.

• VGETFIELD - transfers one field from the VPLUS data buffer to a character buffer.

• VGET{type} - transfers one field from the VPLUS data buffer to a numeric defined field,
such as an integer, double integer, real, or long.

VGETFIELDand VGETtype are useful to you if you want to return one field at a time to your
program buffer. If the form design is changed so that fields are moved around within the
form, VGETBUFFER’scall requires that your program buffer matches the changes you have
made to the screen. With VGETFIELDand VGETtype calls, the program buffer’s definition is
independent of the order in which fields are organized on the screen.

Once the data resides in the program buffer, the program may write the data to a
database, KSAM or MPE file.

Closing Files

Once data collection has finished, the terminal and formsfile may be closed. Signaling the
end of data collection can be accomplished several ways and is application dependent.
Some programmers use 8 to signal an exit. When VREADFIELDS has finished and LASTKEY
is equal to 8, the program performs the closing routines.
658 Appendix L

A Programmer’s Guide to VPLUS
VPLUS Intrinsic Calls
VCLOSETERM

Purpose: to close the terminal file and reset the terminal out of block mode.

This takes the terminal out of block mode and resets the straps. VCLOSETERMonly partially
restores the terminal’s configuration. One of the things that it does not do is to restore user
function key labels.

If a VPLUS application terminates abnormally, VCLOSETERM is not done. Therefore, the
terminal is not taken out of block mode and echo is not turned back on. Generally, a hard
reset and an “e :” can reset the terminal back to a usable state.

VCLOSEFORMF

Purpose: to close the formsfile.

In all languages except BASIC/3000, VCLOSEFORMF releases stack space allocated by the
VOPENFORMF intrinsic. The stack space released was for the comarea extension. In
BASIC/3000, since the comarea extension is declared as a global variable, the space is not
released with a call to VCLOSEFORMF.

In addition, VCLOSEFORMF performs an FCLOSE on the formsfile.
Appendix L 659

A Programmer’s Guide to VPLUS
VPLUS Enhancements
VPLUS Enhancements
There have been many changes and enhancements to VPLUS since version B.04.10. This
section will briefly discuss some of the changes and enhancements and how they can be of
use to the programmer. The ones reviewed in this section are:

• HPTOUCH Support

• Cursor Positioning

• 264X Function Key Labels

• Enhanced VGETFORMINFO

• Batch Mode Formspec Enhancements

• Color Support for 2627A and 2392A Terminals

• VCHANGEFIELD

• VPLUS Environment Control File

HPTOUCH Support (Introduced on VPLUS B.04.10 in MPE G.01.01)

With HPTOUCH support in VPLUS, a programmer may design a form that is to be used
with the HP150, the 2393A or the 2397A. Users may select a field by touching the field on
the screen. When a field is selected, VREADFIELDS interprets the row and column
coordinates into a field number.

VREADFIELDS returns the field number as a negative number to LASTKEY. Negative
numbers are returned into LASTKEY so as to distinguish from the positive number that is
returned when a function key is hit. LASTKEYis set to -999 if the area touched is not a field.
HPTOUCH is enabled by setting bit 0 of the SHOWCONTROLword in the user’s COMAREAto 1.
An example of coding the HPTOUCH feature is outlined in the VPLUS/V Reference
Manual in Appendix E. Currently, HPTOUCH is supported on the 2393A, 2397A and
HP150 terminals. For an up-to-date list of the terminals supporting HPTOUCH, refer to
Appendix G of the VPLUS/V Reference Manual.

Cursor Positioning (Introduced on VPLUS B.04.10 in MPE G.01.01)

VPLUS displays the screen and positions the cursor to the first field on the form. With
some applications, positioning the cursor elsewhere would eliminate the requirement that
the user press T to get to the desired field. VPLACECURSOR is a new intrinsic introduced in
VPLUS version B.04.10 which allows the cursor to be positioned at an unprotected field.
An unprotected field is any field in which the user is allowed to enter data. Protected fields
may be headings or display-only fields. If the cursor is positioned at a display-only field, an
error is returned. VSHOWFORM should be called first before positioning the cursor. The
parameters of VPLACECURSOR are:

• COMAREA

• FIELDNUM- If the field number parameter is negative, it implies screen order number. If
the field number parameter is positive, field number creation order is implied. The
660 Appendix L

A Programmer’s Guide to VPLUS
VPLUS Enhancements
screen order number is a relative number of the field on the form. For example, if there
are five fields on a form and the programmer wants to place the cursor on the fourth
field, the FIELDNUM parameter would contain a “-4”. On the other hand, if
the FIELDNUM parameter is positive, it implies field number creation order. This
number is assigned to the field when the field is created through FORMSPEC. This
number stays with the field unless the form is renumbered through batch mode
FORMSPEC or if the field is deleted from the form

264X Function Key Labels (Introduced on VPLUS B.04.10 in MPE
G.01.01)

With 264X terminals, there are no function key labels like the 262X or 239X terminals. As
of VPLUS version B.04.10 which was introduced in MPE version G.01.01, function key
labels may now be displayed on 264X terminals. With this version of VPLUS, function key
labels appear in lines 23 and 24 of the terminal display on a 264X terminal. With 264X
terminals, function keys may be displayed by performing the following steps:

1. Select “Y” instead of “X” in the 264X box of the TERMINAL/ LANGUAGE SELECTION
MENU.

2. Define the labels using the same methods as with other HP Terminals, for example,
enter the labels using the FORM FUNCTION KEY LABELS MENU, or enter the labels
using the GLOBAL FUNCTION KEY LABELS MENU, or set the labels in your program
calls to VSETKEYLABEL or VSETKEYLABELS.

3. Set the LABELOPTION word in the COMAREA to 1 before a call to VOPENFORMF (as with
all other terminals).

VGETFORMINFO Enhancement (Enhanced on VPLUS B.04.10 in
MPE G.01.01)

Prior to this enhancement, if VFIELDEDITS detected a field in error, the total number of
errors would be set in the NUMERRS word of the user’s COMAREA. All fields would be
highlighted upon a call to VSHOWFORM. No information regarding which fields were found to
be in error is passed to the program.

With VPLUS version B.04.10, VGETFORMINFO has been enhanced to return information on
all fields in error. The information may be used by the program if a special error routine is
to be performed when a certain field is in error. The information buffer returned by
VGETFORMINFO has been expanded to include a 16-word array. This 16-word array is a bit
map of all the fields on the form and can accommodate the maximum of 256 field numbers.
Field numbers may range from 1 to 256, although a form may have a maximum of 128
fields on the form. If the bit corresponding to the field is set to 1, the field is in error.

To decode and set the bits, a new intrinsic called BITMAPCNV is available and documented
in the VPLUS/V Reference Manual, Appendix I.

Batch Mode FORMSPEC (Enhanced on VPLUS B.04.10 in MPE
G.01.01)

There have been several enhancements to batch mode FORMSPEC. Chapter 7 of the
Appendix L 661

A Programmer’s Guide to VPLUS
VPLUS Enhancements
VPLUS/V Reference Manual describes how to use batch mode FORMSPEC. Three new
commands are available to the programmer:

• FIELD - This command allows, several field attributes to be updated in batch mode. Any
of the following can be changed: field name, field enhancements, field type, data type,
initial value.

• RENUMBER- This command reassigns field numbers to their screen order numbers. This
is particularly useful for forms which have deleted fields and are approaching the
maximum field number (256).

• FKLABELS - This command creates or updates a form’s function key labels.

To further enhance batch mode compiling in FORMSPEC, two new JCWs have been
introduced: FORMSPECERRORJCWwhich indicates the count of the number of errors during a
compile and FORMSPECWARNJCW which indicates the count of the number of warnings
during a compile.

Color Support for 2627A and 2397A (Introduced on VPLUS B.04.15 in
MPE G.01.04)

Starting with VPLUS version B.04.15 which was introduced on MPE version G.01.04,
2627A and 2397A color terminal users may have forms displayed with specific colors
defined for a field. VPLUS has defined eight color pairs which can be used to enhance
fields, highlight fields in error, and display the window. Digits 1 through i correspond to the
default color pairs. The color pairs are defined in Chapter 3 of the VPLUS/V Reference
Manual. These color pairs can be used along with the normal enhancement set of H, I,
B, U, S or NONE for field, error or window enhancements. To use the color enhancements,
the formsfile must have an “X” in the HP2627 box in the TERMINAL/LANGUAGE SELECTION
MENU in FORMSPEC.

VCHANGEFIELD (Introduced on VPLUS B.04.15 in MPE G.01.04)

Prior to VPLUS version B.04.15, a field defined through FORMSPECcould not be changed in
the program. Therefore, if a programmer decided that a field defined as a “REQUIRED” field
type should now be considered a “DISPLAY” field type, this could not be done. With
VCHANGEFIELD, this is now possible. This intrinsic dynamically alters a field on a form. The
changes are temporary, and are not posted to the formsfile. Some of these changes are:

• Changing field enhancements to the following: H, I, B, U, NONE. Changing field
enhancements to S (security) is not available. As of version B.04.20, VCHANGEFIELDhas
been expanded to allow field enhancements to include a color pair in addition to H, I, B,
U or NONE.

• Changing field types to any of the following: Optional (O), Display (D), Processing (P),
Required (R).

• Changing data type to any of the following: CHAR, DIG, NUMn, IMPn, DMY, MDY,
YMD.
662 Appendix L

A Programmer’s Guide to VPLUS
VPLUS Enhancements
User Environment Control File (Introduced on VPLUS B.04.20 in
MPE G.02.01)

With VPLUS version B.04.20 introduced in MPE G.02.01, there is an MPE file called
VENVCNTL.PUB.SYS which is opened and read on the VOPENTERM call. Currently, the
VPLUS USER ENVIRONMENT CONTROL file can control two items when VOPENTERMis
executed. Two options have been implemented for the user environment control file.

• The first option is an abbreviated terminal query. When VOPENTERM is called, it goes
through an involved process to identify the terminal type. With the VPLUS user
environment control file, this terminal identification process can be shortened. This
option should only be used if it is known that a query will return a valid terminal ID. To
effect a shortened terminal query, place a “1” in column 1 of the VENVCNTL file.

• The second option is the ability to enable A/M/U without using a program. Instead of
setting the SHOWCONTROL word of the user’s COMAREA in your program, use the
VENVCNTL file. Placing a “1” in column 2 of the VENVCNTL file enables the keys. This
option is particularly useful if you do not have source code for the software packages
that you are running, but would like to enable A/M/U.

To implement a user environment control file for VPLUS, build the file:

 :BUILD VENVCNTL.PUB.SYS;DEV=DISC;REC=-80,1,F,ASCII

Use any type of editor tool to place “1” in column 1 and/or column 2. When VOPENTERM
executes, it looks for the user environment control file. If it doesn’t find it, VPLUS operates
as usual. If the file exists and columns 1 and/or 2 are set, VPLUS will perform the
abbreviated terminal query and/or the enabling of keys, depending on what columns are
set.

It is also possible to have a VENVCNTLfile in a different group and account than PUB.SYS. If
the file is in another group and account, this file equation is necessary:

 :FILE VENVCNTL.PUB.SYS=VENVCNTL.mygroup.myaccount

For more information on how to implement the features, refer to the VPLUS/V Reference
Manual.
Appendix L 663

A Programmer’s Guide to VPLUS
VPLUS & Multiplexers
VPLUS & Multiplexers

Using VPLUS on a Pad-Terminal(Connected to a Cluster Controller
HP 2334A)

What is a CLUSTER CONTROLLER?

When you use a Packet Switching Network (PSN) for data communication, you need
equipment to do the packing and unpacking of the data at both ends. A CLUSTER
normally will receive the packets for different users, unpack them and change the
transmission mode from synchronous to asynchronous. This way you can connect several
different asynchronous devices, such as printers and terminals to one X.25 packet line (on
a HP 2334A up to 16).

At the computer side you can use another CLUSTER and connect the asynchronous ports
to the ATP or ADCC ports of the HP 3000. This kind of connection is called STATISTICAL
MULTIPLEXER.

Figure L-1. Statistical Multiplexer

The other way is to connect the X.25 packet line directly to an INP-card in the HP 3000
computer. To support the INP, you need special DS- or NS-software. The software and the
INP-card will do the packing and unpacking of the data received. This configuration is the
CLUSTER CONNECTION and we call it Packet Assembler / Dissassembler (PAD).

Figure L-2. PAD or CLUSTER Connection to an HP 3000 with an INP

Terminal 2334 2334 HP 3000

LP

Term
X.25

Terminal 2334 HP 3000

LP

Term
X.25

I .
N .
P .
664 Appendix L

A Programmer’s Guide to VPLUS
VPLUS & Multiplexers
First we will describe the minor differences between using the terminal directly to an
ADCC / ATP port on an HP 3000, or to a port on a PAD (HP 2334A).

1. Terminal configuration when used to a direct line (ADCC / ATP):

Figure L-3. Direct Connection to an ATP- or ADCC-Port

DATACOMM :

BaudRate : line speed (9600, 4800, 2400, 1200, ..)
Parity/Bits: Par/# of bits (None/8, 0’S/7, ODD/7, EVEN/7)
Enq/Ack : YES use enq/ack handshake
Asterisk : OFF no indicator is shown
Chk Parity : NO we don’t check for parity errors
SR(CH) : LO we don’t select any Baudrate
CS(CB)Xmit : NO we don’t use modem signals
RecvPace : NONE no XON and XOFF handshake is done
XmitPace : NONE on receive or transmit

NOTE Do not turn RecvPace or XmitPace to on at a 2392A terminal if it is connected
directly to an HP 3000. An XOFF (ctl S) could hang the terminal. (Only
POWER-OFF the terminal will reset this situation).

TERMINAL :

Datacomm/ExtDev : PORT1/PORT2
Keyboard : USASCII (or other keyboards)
LocalEcho : OFF the HP 3000 will echo
CapsLock : OFF we allow upper and lowercase
Start Col : 01 start column
Bell : OFF no right margin cell
XmitFnctn : NO move- and editor-keys are not transmitted to the computer
SPOW : NO spaces will overwrite existing characters
InhEolWrp : NO no wraparound at the end of line
Line/Page : LINE transmit one line at a time
InhHndShk : NO enable XON / XOFF handshake
Inh DC2 : NO ignored
Esc Xfer : NO transmit esc-sequences to the printer
TermMode : HP use HP special sequences

Terminal HP 3000

LP
Term

A A .
T / D .
P C .

C .

Modem
Appendix L 665

A Programmer’s Guide to VPLUS
VPLUS & Multiplexers
2. When you want to connect the terminal to an HP 2334A CLUSTER (PAD) you must
change the following specifications:

DATACOMM:

 RecvPace : Xon/Xoff use XON/XOFF handshake
XmitPace : Xon/Xoff on send and receive transmission.

TERMINAL :

 InhHndShk : YES disables the use of DC1-
Inh DC2 : YES and of DC1/DC2/DC1-

handshake on blockmode.

With the reconfiguration of the terminal you switch off the handshake normally used. For
example: you do not use an XONand XOFFprotocol between the computer and the terminal
to control the dataflow on a direct line. The terminal does not transmit XON or XOFF (DC1
and DC3) automatically, this only can be sent by pressing the ‘CTRL Q’ or ‘CTRL S’ key
combination.

The CLUSTER must be configured to use the PROFILE 1 to work properly.

The HP 3000 must have a PAD-terminal configured in the system like this:

DRT# = ldev of inp UNIT = 0 CHANNEL = 0
TYPE = 16 SUBTYPE = 0 REC.WTH = 40
DRIVER NAME = IOPAD0 DEV.CLASS = PADTERM

If you want to use VPLUS on the terminal connected to an HP 3000 via a port on a PAD
(HP 2334A), you need a terminal supporting blockmode. For example:

HP 2382A, HP 2392A-2394A, HP 700/92-700/94 or similar.

One of the problems will be the transmission of a block after pressing the ENTER key.
Normally the HP 3000 will control the dataflow with the normal DC1 and DC3 handshake
(XON / XOFF). When starting VPLUS, the Application reconfigures the terminal, so it will
use a handshake named DC1/DC2/DC1. By using this protocol, the computerside tells the
terminal, that the FORM is transmitted completely and that the user may start entering
data to the FORM. This is initiated with the signal DC1.

When the input is terminated either with an ENTER, a SELECT or a function-key, the
terminal tells the ready-state of the data to the computer with the DC2-signal. The
computer now will initiate the transmission with the signal DC1.
666 Appendix L

A Programmer’s Guide to VPLUS
VPLUS & Multiplexers
VPLUS TERMINAL USER
-----------------------I------------I-----------------------------

. .
send a FORM ---------->. .

. .
FORM is ready, . .
data can be . .
entered . .
DC1------------------->. .

. .

. . The User can

. .<--------- start typing.

. .

. .<------ ENTER or Function-key

. .

.Data is ready

.to be .

.transmitted .
<----------------------.DC2 .

. .
VPLUS is ready . .
to receive the . .
data . .
DC1------------------->. .

. .

.Terminal sends

.the data .

.entered to .
<----------------------.the computer.

.separated with ‘us’

.and terminated with ‘rs’

. .
after receiving . .
the last block . .
VPLUS starts the . .
execution and . .
continues with . .
the next FORM--------->. .

. .
--

This handshake does not work when you use your terminal on a PAD. The PAD itself
catches the DC1 and DC3 signals or generates them as needed. So you can not use them to
specify the transmission between the computer and the terminal, or to use the
DC1/DC2/DC1 handshake for blockmode applications.

 The alternative is the use of the term=24 in the LOGON like this:

HELLO paduser,user/usrpass.account/acctpass;TERM=24

This terminal type does not exist as a Term-Type file. The only program that requires it as
a parameter, is VPLUS (and all VPLUS using applications). VPLUS checks this parameter
and if the terminal type is decoded to be ‘type=24’, then there will be a special handling of
the FORMS.

Normally when starting the blockmode, the application will check the configuration of the
terminal with the sequence ‘esc^^’ and ‘esc~’. Additionally it will check if the terminal is
able to SPOW. Thereafter it will switch the terminal with the escape sequence ‘ecs&s0h1G’
Appendix L 667

A Programmer’s Guide to VPLUS
VPLUS & Multiplexers
to do the DC1/DC2/DC1-handshake.

When using TERM=24, the application first will set the InhHndShk=Y and the
InhDC2=YES with the escape-sequence ‘esc&s1h1G’. You should set this before you start
the session, but if you forgot, VPLUS will do it for you (but other things could go wrong, so
it’s better to do it yourself to be sure!). This sequence will switch off all handshakes. After
this, the terminal will be checked like usual. Additionally the terminal will be set to lock
the keyboard every time the ENTER or one of the Function-Keys is hit. This is done with
the sequence ‘esc&k1K’. It will prevent the user from entering data before the new FORM
is rebuilt completely, and the keyboard is unlocked with ‘escb’. This is necessary because
the normal handshake with DC1/DC2/DC1 does not work here.

 VPLUS Terminal User
------------------------I---------------I------------------------
. .
the keyboard will be . .
locked, before the . .
transmission of a FORM . .
‘esc c’ --------------->. .

. .
now the transmission . .
of the FORM will start . .
FORM ------------------>. .

. .
when the FORM is ready . .
the keyboard will be . .
unlocked with . .
‘esc b’ --------------->. .

. . now the user can

. . start to enter . .<---- data

. .

. .<- ENTER or function-key

. . this automatically

. . locks the keyboard . .

.start transmitting

.of the data .
<---------------------- .entered .

.separated with ‘us’

.and terminated with ‘rs’

. .
when the FORM is . .
received completely, . .
VPLUS goes on and . .
continues with the . .
next Form ------------->. .

. .

. .
and unlocks the keyboard. .
after the the FORM . .
transmitted completely . .
‘esc c’ --------------->. .

. .

The difference between the use of VPLUS on a direct line and a PAD is just the kind of
dataflow control. The problem comes up only by the intelligence of the CLUSTER
CONTROLLER which tries to prevent his memory or that of the terminal from overflow.
668 Appendix L

A Programmer’s Guide to VPLUS
VPLUS & Multiplexers
This problem is solved by using ‘term=24’ in the logon. If you want to use VPLUS
applications on a specified PADTERM, you can configure the terminal type in the system
configuration to be ‘24’. This will switch on the correct blockmode handling for every user
on this logical device.
Appendix L 669

A Programmer’s Guide to VPLUS
Optimizing VPLUS Utilization
Optimizing VPLUS Utilization
VPLUS, Hewlett-Packard’s standard terminal management software, finds wide use in
applications ranging from manufacturing control to financial transaction processing.
Offered as part of the HP3000 Fundamental Operating Software (FOS), VPLUS provides
programmers and designers access to the features of HP block-mode terminals, effectively
insulating programs from the details of data communication and terminal control.

The Response Centers receive many questions regarding VPLUS optimization and
program performance. This Note will address several topics related to these issues. There
are three major areas where even small amounts of effort from the programmer can make
significant differences in VPLUS performance:

• Effective forms design

• Stack use by VPLUS applications

• Programs’ utilization of forms and forms files

A proper balancing of effort in all three areas can help you make significant strides
towards efficient use of VPLUS.

A working knowledge of FORMSPEC and “general principles” of forms file management is
assumed, as is knowledge of the major VPLUS routines (e.g., VGETNEXTFORM,
VSHOWFORM, VOPENTERM).

Definition of Terms

In this Note we shall discuss what changes need to be made to the largest form in the
forms file targeted as being troublesome. There are many valid definitions of “largest
form”. One is “that form in which the largest amount of data is transferred between the
program and terminal”. Another is “that form which contains the largest number of fields”.
A third is “the form which, when displayed on the terminal, uses up the most space on the
“screen”. When the term “largest” is used, it will be further defined for its context.

There are also three acronyms used throughout this paper. FST stands for Field Status
Table, and is used by VPLUS to hold information about each field on the current form.
DBUFand IBUF refer to the Data BUFfer and Input BUFfer used internally by VPLUS. Any
program (through calls to VPUTBUFFER and VGETBUFFER) can manipulate the DBUF, while
the IBUF is a reordering of the DBUF and is used internally by the VPLUS intrinsics for
data transfer to and from the terminal.

Effective Forms Design

One of the easiest and least painful ways to help the performance of programs using
VPLUS is to use foresight in designing the forms to be used by those programs. A few
simple tricks applied in advance can save a lot of debugging and redesign later in the
process.

One Screen Approach

One of the first things to keep in mind when designing forms is how much data the user
670 Appendix L

A Programmer’s Guide to VPLUS
Optimizing VPLUS Utilization
needs to access at one time. Assuming there is enough information to fill the screen, does
one want to show it all at once. Too much data may overwhelm the user, making data entry
more difficult due to a crowded and confusing screen. Presenting data in small doses may
frustrate the user as he moves through multiple forms to see all the data, making data
entry that much longer.

Here, the old “space/time” tradeoff comes into play: by saving the space needed for the
display of data (in the multiple-form scheme), more time is needed for showing all screens,
while by displaying all the data at once, more space is needed (but all necessary
information is shown in one pass). One advantage to the multiple-form method is that a
user could stop viewing the screens of data once the needed data is displayed (assuming
such an escape mechanism is designed into the program).

If you decide to use the one-screen approach, there are many things you can do to avoid
problems before they occur. One is to keep the amount of data (in number of bytes) equal
between forms in the forms file. This will enable VPLUS to get the greatest amount of
utilization from the DBUF and IBUF, since there would then be only a few instances where
just portions of each were needed for I/O operations. Another is to keep the number of
fields as equal as possible between forms. This will allow VPLUS to get the greatest
amount of utilization from the FST and other internal tables connected with field
manipulation on each form.

Reducing the Size of Large Fields

If some forms in the forms file are composed of many small fields, while there is also a form
with one or two VERY large fields (for example, a program where general information is
needed about a person, but specific comments may be made), you might consider changing
the form with those large fields into a form with smaller fields.

A good example of this is one where the entire screen is an unprotected field for text entry.
That form would only need one entry from the FST (since there’s only one field), but would
require 80*24=1920 characters for the DBUF and IBUF. Changing this form to one which
repeats, appends to itself, and is made of only one 80-character long field will allow the
same functionality of the former form (with the exception of having to press ENTER at the
end of each line), and actually be more flexible. This flexibility comes from the fact that
now the user can input as many lines of text as are needed, whereas before they were
restricted to 24 lines.

Similar things can be done to the form which has the largest number of fields. If the fields
are some sort of tabular data, making another repeat/append type form set can help. In
this set, the first form could contain header information, while the second is a
self-repeating and self-appending form containing the fields for each detail line.

Using Forms Families

Another trick to speed up the display of forms is the effective use of forms families. Forms
families are sets of forms which share a common screen definition, but different field
characteristics. Any time a forms family member is to be displayed, VPLUS checks to see if
the last form displayed was another member of that same family. If it was then instead of
transmitting the entire form definition, VPLUS sends only those escape sequences needed
to alter those fields that differ between the forms (e.g., from unprotected to display- only,
from half-intensity inverse to underlined blinking, etc.). If all of the information to be
Appendix L 671

A Programmer’s Guide to VPLUS
Optimizing VPLUS Utilization
displayed is similar in format, it’s possible to use forms families to make minor changes in
the display without repainting the entire screen. You can also use the intrinsic
VCHANGEFIELD (released with version B.04.17 of VPLUS) to accomplish the same ends.

Combining Several Forms

If your program accesses several forms files, you should seriously consider combining them
into a single file. Not only does this save stack space (since VPLUS must maintain
separate control information-- including the DBUF and IBUF--on the program’s data stack
for each open forms file), but it helps make maintenance of the forms much simpler. If the
forms are scattered among multiple forms files, the forms files must be closed and
reopened each time they are used, and much of the time used by the program will be tied
up in this moving between forms files, rather than with the actual processing of the data.

Stack Use by VPLUS Applications

Some of what will be talked about in this section will contradict what was discussed in the
prior section. Once again, it is the computer world’s old “space/time” problem: optimizing
the data space required for a program will most likely increase the execution time of the
resulting application.

If a VPLUS application aborts with any of the typical indicators of a stack problem (STACK
OVERFLOW; a call to VOPENFORMF fails with error codes 40, 41, 61, 62, 68 or 69), the first
thing to do is to compile the forms file into a fast forms file. One part of the space reserved
on a data stack is an area which contains the directory of all records in a forms file. By all
records, we mean ALL records-- source records containing the raw, input form definitions,
code records containing the escape sequences needed to paint those forms on the screen, as
well as FORMSPEC-internal records needed to manipulate those forms.

What goes into a fast forms file is only a few control records (to designate it as a fast forms
file) and code records--but no source records. Since there are fewer records in the file, the
directory is smaller and less space is needed on the stack for it. As a result, you save a
minimum of 800 words per forms file simply by using fast forms files. (We should also note
that, in addition to the space savings, fast forms files are so named because they require
much less disc I/O. Some benchmarks have shown as much as a 50% reduction in forms file
I/Os when a fast forms file is used instead of a slow forms file.)

Other methods of space optimization may involve taking out some of the features
incorporated in the original design of the application. Local Forms Storage (LFS) is very
useful for minimizing data communications overhead involved in VPLUS, since by its use
a forms definition may be sent to a terminal once, but there is a price to be paid on the
stack. If LFS is being used, a directory of form names already downloaded to the terminal
is kept on the stack to enable VPLUS to quickly discover whether a form has already been
downloaded. Each entry in this table is 16 words long. Therefore, if LFS is enabled for a
large number of local forms (via VOPENFORMF), disabling it will save 16*n words, where n is
that number of “local” forms. (Local forms storage will be discussed in greater detail in a
later section.)

One of the ergonomic features discussed in the forms design section comes into play now.
Remember, VPLUS keeps two copies of the data buffers on your stack (the DBUFand IBUF),
in addition to any buffer space allocated by your program. Minimizing, or standardizing,
the amount of data that is transferred for each form will help control the sizes of those
672 Appendix L

A Programmer’s Guide to VPLUS
Optimizing VPLUS Utilization
buffers. For example, suppose most forms in the forms file contain 20 2-character long
fields, while one form contains 40 6-character long fields. Whereas most of the forms would
only require the DBUF and IBUF to be 40 characters long (20 fields times 2 characters per
field), VPLUS will allocate 240 characters for both buffers (40 times 6). Changing that
40-field form to a self-repeat/append containing 4 fields brings that form’s requirements
down to buffers 24 characters long. Notice that by making that change, VPLUS’s stack
requirements have just decreased by 432 words (216 words each for the DBUF and IBUF).

In the same vein, if most of the forms have close to the same number of fields and almost
the same data buffer requirements, but one form has MANY more fields, a simple splitting
of the form into either a self-repeating of multiple forms (if dealing with REPEAT/APPENDis
not desirable) will decrease the space needed for the FST, as well as the other internal
tables needed to manipulate fields.

If stack space is a problem, and function key labels (FKLs) are enabled, their elimination
could save up to approximately 800 words. When enabled, space is reserved for two copies
of FKLs: one copy for global FKLs to be used in the forms file, and another to be used for
FKLs local to each form. For each copy, there are 16 bytes of storage reserved per key label
for the messages associated with each, as well as information used by VPLUS to tell if FKL
definitions have changed (via calls to the VSETKEYLABELSor VSETKEYLABELroutines) and if
those changed values have yet been displayed.

Another feature of VPLUS that occupies a large amount of stack space is the use of INIT ,
FIELD , and FINISH phase edit specifications. FORMSPEC compiles these into object code
meaningful only to the appropriate VPLUS routines (VINITFORM, VFIELDEDITS ,
VFINISHFORM) which act upon the copy of the data brought into the IBUF by VREADFIELDS.
Since each form can have up to 12000 words of code (which is treated on the stack as part
of the form definition), either eliminating or simplifying edit specifications can save
immense amounts of stack space.

All of these suggestions used in combination can save a program on the order of hundreds,
if not thousands, of words of stack space. In most cases, simply using a fast forms file in
combination with eliminating LFS will return more than enough stack space to allow
processing to commence.
Appendix L 673

A Programmer’s Guide to VPLUS
VPRINTSCREEN Intrinsic
VPRINTSCREEN Intrinsic
A new intrinsic, VPRINTSCREEN, provides the capability to print the entire contents of a
terminal screen during VPLUS execution. Currently, VPLUS provides the intrinsic
VPRINTFORMwhich prints the current form with the data contained in the form data buffer;
function keys, appended forms, line drawing characters, etc., are not printed. With
VPRINTSCREEN, these limitations no longer exist.

The largest demand for this functionality has been from documentation and training
departments. In the past, the only method for obtaining a complete “snapshot” of a screen
was through the use of the internal printers available on some HP terminals.

There are two approaches a user can take to produce copies of VPLUS screens. One is to
incorporate the use of VPRINTSCREEN into an end-user application so that screen images
can be captured at run time. This allows actual screen and data to be captured in
production mode. The other method is to develop a simple utility which would only be used
to produce hard copies of screens. The utility should allow data to be entered into the
screens before calling VPRINTSCREEN to produce the image. The advantage of this method
is that it removes the overhead of using VPRINTSCREEN from the application, but still
provides a mechanism for including reproductions of the screens and data in product
literature.

The demo program, VPRTDEMO, is an example of this type of utility. Refer to the section
“Viewing the VPRINTSCREEN Demo” for specifics on how to access and use the demo
program. Any user interested in the VPRINTSCREEN intrinsic should use this demo with
existing forms before attempting to modify existing applications.

The remainder of this article will concentrate on the process of calling VPRINTSCREENfrom
a user program. This procedure was implemented using the Pascal heap procedures to
perform stack allocation. This introduces a high risk of conflict for applications which use
the DLSIZE intrinsic for stack allocation. In the case of VPLUS, DLSIZE is used by the
existing intrinsics when the application is written in COBOL, FORTRAN/66, or SPL.
However, since VPRINTSCREEN always uses the heap procedures, applications written in
one of these specified languages must follow two rules when calling VPRINTSCREEN.

1. The language id in the COMAREA must be set to 5

2. The INTRINSIC calling mechanism must be used when calling the VPLUS intrinsics
from the main and all interacting parts of the application. For example, with COBOL
the application must use:

CALL INTRINSIC <intrinsic name>

Refer to Appendix E of the VPLUS Reference Manual, the COBOL Reference Manual and
the Pascal Reference Manual for more information on these calling mechanisms.

For applications which use a language-id of 5 in the VPLUS COMAREA (Pascal,
FORTRAN/77, HPBUSINESS BASIC), VPLUS uses the HEAP procedures for stack
allocation. The new intrinsic can be called in the standard format from an application of
this type.
674 Appendix L

A Programmer’s Guide to VPLUS
VPRINTSCREEN Intrinsic
VPRINTSCREEN

VPRINTSCREEN records the contents of the current screen to an off-line list device. A
documentation option allows formatting for printing to a laser printer (See Modes of
Operation). A VPLUS supported terminal is required during execution. TDP is required
for the laser printer output.

VPRINTSCREEN {COMAREA, READSIZE}

Parameters

COMAREA The following COMAREA items must be set before calling VPRINTSCREEN
(unless previously set):

CSTATUS Set to zero.

COMAREALEN Set to the total number of 2-byte words in COMAREA.

PRINTFILENUM Set to the file number of the list file to which form is
printed. If set to 0, VPRINTSCREEN opens the device “LP”
as the list file, and sets PRINTFILENUM to the file number
of the opened list file.

VPRINTSCREEN may set the following COMAREA values:

PRINTFILENUM If VPRINTSCREEN opened the list file, set to the file
number of the opened file.

CSTATUS Set to a nonzero value if call is unsuccessful.

FILEERRNUM Set to the MPE error code if an MPE file error is
encountered.

READSIZE 2-byte INTEGER. Reserved for system use; must be 0.

A possible implementation of this feature would be to define a function key which is
available to the user for printing the screen contents in any transaction. This feature
would be useful for providing immediate output of documents and data during production.
This new intrinsic is demonstrated with the program VPRTDEMO. See the section titled
“Viewing the VPRINTSCREEN Demo” in this note for directions on obtaining the demo.

Modes of Operation

VPRINTSCREENoperates in two modes; normal and documentation. Both of these modes are
discussed in detail below.

Normal Mode

This is the default calling mode of VPRINTSCREEN. When called, the value is the
PRINTFILNUM word of the COMAREA is used to determine the list device. If the calling
program opens the list file, it must supply the file number of this file in PRINTFILNUM.
VPRINTSCREEN opens the list file with the formal and actual file designator FORMLIST,
assigns it to the device class LP, and specifies its length as 80 characters. This is
equivalent to using the file equation:

:FILE FORMLIST;DEV=LP;REC=-80
Appendix L 675

A Programmer’s Guide to VPLUS
VPRINTSCREEN Intrinsic
A user may change any of these characteristics with a :FILE command.

It is recommended that VPRINTSCREEN and VPRINTFORM not be used together within the
same program. Since the same list file is used for both listings, output from the two calls
will be intermixed.

Another visible difference between VPRINTFORM and VPRINTSCREEN is that VPRINTFORM
gives you the option to underline fields. This option is NOT available with VPRINTSCREEN
(LP mode).

A PAGE EJECT is performed each time VPRINTSCREEN is called (at the completion of the
print operation).

Documentation Mode

The output provided in this mode of operation is intended for manual writers and/or
programmers who are familiar with TDP. The user must already have TDP on their
system or must purchase it to use VPRINTSCREEN in this mode.

In documentation mode, VPRINTSCREENin conjunction with TDP, provides the capability to
print screen contents on a laser printer (HP2680A and HP2688A). With this more, borders,
field highlighting (other than color), alternate character sets, and active function keys are
captured and converted to the appropriate font for printing on the laser printer.
Documentation node is enabled by setting a JCW before running the program:

:SETJCW VPRINTJCW=1

When VPRINTJCW is set to “1”, the list file, FORMLIST is NOT opened. Instead, a temporary
ASCII disc file, EPOCLIST, is created (or appended to, if it already exists). This file can be
saved and renamed on completion, and then input to TDP and “finaled”. A documenter can
also add text to the file, or have a separate file, and use the TDP “include” statement to
access the screens. (Refer to the TDP Reference Manual for a detailed discussion on USE
and INCLUDE files).

In order to print the forms to a laser printer, an environment file must be created. (See the
IFS/3000 Reference Guide). We have supplied sample environment files which can be used
if the user does not already have his/her own files. If other environment files are used, they
must include the font ids shown under LIMITATIONS> The supplied files are:

VENV80 environment file for the HP2680 laser printer

VENV88 environment file for the HP2688 laser printer

VSETUP TDP include file which sets parameters for TDP listings and references the
environment files

VEPOCUSE TDP USE file which separates each screen contained in EPOCLIST into
separate files

VPRTDEMO Demo program which demonstrates the use of the VPRINTSCREEN
intrinsic

NOTE See the section titled “Viewing the VPRINTSCREEN Demo” for information
on obtaining these files.
676 Appendix L

A Programmer’s Guide to VPLUS
VPRINTSCREEN Intrinsic
Printing Screens from TDP

By default, EPOCLIST uses the VSETUP file to reference the supplied environment files.
These files must be accessible by TDP before EPOCLIST can be printed. If a different
environment file is used, EPOCLIST must be modified to reference the appropriate
environment file. In addition, the font definitions from VENV80 and VENV88 must be
included in the environment file used. (Refer to the fonts listed in the Limitations section).

Following are the steps involved to print the entire contents of EPOCLIST to a laser
printer:

1. :PURGE (or :RENAME)EPOCLIST

2. :SETJCW VPRINTJCW = 1

3. :Run your application program.

4. Access the PRINT function wherever it’s available to save screen contents in EPOCLIST.
Remember, all the data entered by the user will also be saved as part of the screen.

5. Exit application.

6. :SAVE EPOCLIST (EPOCLIST is the temporary file which was created in the above step.
It contains the contents of all the screens printed).

7. :RENAME EPOCLIST, <new name> If not renamed, the next time the application is
run, the output will be APPENDED to the existing file.

8. :RUN TDP.PUB.SYS

9. Execute the following command:

 “FINAL from <new name> to *HP2680 ”

 or “FINAL from <new name> to *HP2688 ”.

These final two steps could be specified in a job stream. The screens will be printed out
one per page.

Merging Screens with a TDP File

Instead of printing the screens out separately, you may want to include them into an
existing TDP file. A special file, VEPOCUSE, is provided to facilitate the user in this task.
The VSETUPfile must be included as one of the first statements of your TDP document file.
It will set up the reference to the correct environment file necessary for printing the
screens in EPOCLIST.

NOTE If you want to use a difference environment file, you must include the font
definitions from VENV80 or VENV88 in your environment file. (Refer to the
fonts listed in the Limitations section).
Appendix L 677

A Programmer’s Guide to VPLUS
VPRINTSCREEN Intrinsic
The first step is to separate the screens in EPOCLIST. VEPOCUSE can be used to do this by
following these steps:

1. :RUN TDP.

Clear workspace.

2. USE VEPOCUSE.

Answer the prompts: filename, number of occurrences, and desired PREFIX. VEPOCUSE
will then split the file into ‘n’ files, all prefixed with the PREFIX entered.

3. Text in your document, and include the appropriate screen file in the appropriate
location.

It is recommended that the screen files are “included” into the file, because EPOCLISThas a
record size of 168 bytes, and most document files are set to 80 bytes.

Sample EPOCLIST File

*>>DATE:FRI,MAY 3, 1986, 11:19AM
if main in hpvsetup.pub
image 28
need 28
>>>>>screen formatting commands<<<<<
*>>END VPRINTSCREEN B.04.20

Sample EPOCLIST

Figure L-4. Sample EPOCLIST Screen from TDP

Limitations

The Intrinsic VPRINTSCREEN

• Procedure calls must be modified in order to call the intrinsic from a language which
does not use a VPLUS language id of 5 in the COMAREA. (COBOL, SPL, FORTRAN/66).

• Uses additional stack resources.

Name: []

Address: []

City: [] State: []

Phone: []

ADD CHANGE DELETE REVIEW HELP PRINT EXIT
678 Appendix L

A Programmer’s Guide to VPLUS
VPRINTSCREEN Intrinsic
The Environment Files

• Native Language support is NOT available for VPRINTSCREEN. To print a screen in
another language, a LOCALIZED environment file must map to the following fonts:

c = full bright

g = half bright inverse video

d = normal l = line draw

m = math

• There is no distinction between fullbright and halfbright provided with the current
environment files. However, the code is set up to distinguish between them. (See the
above fonts). Currently, the fontids “c” and “g” map to the same font in the VSETUP file.

• Screen images cannot be scaled. In other words, fonts are provided in one size only. A
“scaled font” environment file which maps to the same fonts above, would need to be
created.

• Sample files are provided. They can be modified or the user can create their own using
the font ids defined above.

Use of TDP

• The maximum TDP record size is 168 characters. A single line of a display screen can
contain multiple escape sequences, and easily exceed this limit (e.g., line draw, full
bright, many single character fields). If this limit is exceeded, the line may be
truncated.

• TDP Macros ‘5’ through ‘9’ are used to alleviate this truncation, but some screens are
complicated enough to reach this limit anyway. If you use your own macros 5-9 (other
than as temporary macros), some inconsistencies may exist when merging text and
screens.

• TDP may indicate errors have occurred, when in fact, there are no errors. The most
common messages are: “Unrecognizable command” and “x Characters have been
truncated”.

Viewing the VPRINTSCREEN Demo

The new VPLUS intrinsic, VPRINTSCREEN, can be demonstrated with the program
VPRTDEMO. You can simply run VPRTDEMO and specify a forms file name. The application
will present the forms in alphabetical order and call the VPRINTSCREENintrinsic when the
user selects the PRINT function key, F3. At the beginning of execution, the user will have
the option to automatically print all forms in the forms file.

Several sample and demo files have been supplied as examples for the user. They are
contained on the installation tape in the HPPL89 account and HP32209 group. They
should be restored to a local group and account. Some name modifications may be
necessary (see below).

VENV80 This is the environment file required for printing to the HP2680 printer.

VENV88 This is the environment file required for printing to the HP2688 printer.
Appendix L 679

A Programmer’s Guide to VPLUS
VPRINTSCREEN Intrinsic
VSETUP This is a TDP “include” file which selects and sets up the proper
environment for the printer selected. This file should be modified so the
references to VENV80 and VENV88 are properly qualified by the
GROUP.ACCOUNT they reside in. If the document you are printing resides
in a separate group and account from VSETUP, then a file equation must be
issued to reference VSETUP. This also applies if the user renames the
VSETUP file to a local name. In either case a file equation must be issued,
for example:

:FILE VSETUP = VSETUP.MYGROUP.MYACCT -OR- :FILE VSETUP =
MYSETUP.MYGROUP.MYACCT

VEPOCUSE This is a TDP “use” file, potentially needed when merging text with
screens.

VPRTDEMO This is a demo program which demonstrates the use of the VPRINTSCREEN
intrinsic. It can be run in normal or documentation mode. Following are
instructions for running the demo.

Running VPRTDEMO

1. :PURGE (or :RENAME) EPOCLIST

2. :SETJCW VPRINTJCW = 1

3. :RUN VPRTDEMO.

4. Accessing the PRINT function wherever it’s available to save screen contents in
EPOCLIST. Remember, all the data entered by the user will also be save as part of the
screen.

5. Exit VPRTDEMO .

6. :SAVE EPOCLIST (EPOCLIST is the temporary file which was created in the above step.
It contains the contents of all the screens printed).

7. :RENAME EPOCLIST, <new name> If not renamed, the next time the application is run,
the output will be APPENDED to the existing file.

8. :RUN TDP.PUB.SYS

9. Execute the following command:

 “FINAL from <new name>to *HP2680 ”

 or “FINAL from <new name>to *HP2688 ”.

These final two steps could be specified in a job stream. The screens will be printed out
one per page.

If you answered “Y” to the automatic print prompt, the forms will be displayed and printed
in alphabetic order. At completion, you will have EPOCLIST. If the VPRINTJCW is not set,
then a FORMLIST file will be created.

If manual print mode was selected, then the first form in alphabetic order is displayed. If
local function keys were defined for the form, then these keys will be displayed.

However, the action performed by VPRTDEMO when a key is selected is defined below:
680 Appendix L

A Programmer’s Guide to VPLUS
VPRINTSCREEN Intrinsic
Key 1 = FIRST FORM <displays first form in file>

Key 2 = not defined

Key 3 = PRINT <prints screen design to EPOCLIST or FORMLIST>

Key 4 = REFRESH <refresh current screen design>

Key 5 = PREV FORM <displays previous form in file>

Key 6 = NEXT FORM <displays next form in file>

Key 7 = SELECT FORM <prompts for name of form to be displayed>

Key 8 = EXIT <exit VPRTDEMO>
Appendix L 681

A Programmer’s Guide to VPLUS
VPRINTSCREEN Intrinsic
682 Appendix L

Application Notes
M Application Notes

This appendix contains a number of application notes which are also posted on the KMINE
web site. They represent some of the most frequently asked questions (and the answers)
about VPLUS . There are hundreds of similar notes and articles posted to KMINE.

KMINE is a large database of problems and solutions which is accessible by both HP staff
and customers. It is searchable by key word topics. You can also define your search more
narrowly by specifying the types of documents you wish to search.

If you have not used KMINE in the past, you will need to register your ID and password.
The KMINE web site is located at the following URL.

http:\\12485kmi.mayfield.hp.com/kmine
Appendix M 683

Application Notes
Workarounds for VPLUS Forms Fille 32767 Record Limit
Workarounds for VPLUS Forms Fille 32767 Record Limit

Problem Description

When trying to add a form to my forms file in FORMSPEC, I get an INTEGER
OVERFLOW error. I understand that this is due to the forms file record limit of 32767 (see
RCEN [W1331556/RCEN/English]). How can I add my new form ?

Solution

There are three solutions to the 32767 record limitation for VPLUS forms files:

1. Use two forms files. The disadvantage to this solution is the need to change any existing
applications to use the two forms files. In addition, there will be some overhead when
closing one forms file and opening another.

2. f you have ever deleted forms from the forms file, you should be able to gain some space
by creating a new forms file and copying the forms from the old to the new forms file.
This can be done online or via VPlus batch commands as documented in Chapter 7 of
the HP Data Entry and Forms Management System (VPLUS/V) Reference Manual

3. .Use two forms files as source and have a single target fast forms file using the new
VMERGE utility available on the the latest VPLUS patch on both MPE/V and MPE/iX.
This utility takes advantage of the fact that you can fit a lot more forms into a fast
forms file than into a regular forms file.

4. This solution would require the ongoing use of two regular forms files for development,
but the applications could continue to use only the single merged fast forms file. The
VMERGE utility is documented in the MPE/iX 5.0 and MPE/V 3P Communicators.

HP Only Info

Additional note on solution #2 to copying forms to a new forms file:

2A. VCOPY job stream is an UNSUPPORTED job that can be given to the customer to
automate this task. This job stream copies all active forms and relates parent/child forms.
It can be found in Mountain View on Spam as VCOPY.VPLUS.BLOECHL. Instructions
are included.

2B. See instructions provided in SR 5003126110.
684 Appendix M

Application Notes
Using the VPLUS Environment Control File (VENVCNTL)
Using the VPLUS Environment Control File (VENVCNTL)

Problem Description

What is the VENVCNTL.PUB.SYS file on my system, and what is it used for?

Solution

The VPLUS environment control file, VENVCNTL, allows applications to override specific
VPLUS defaults. VPLUS always checks for the existence of VENVCNTL.PUB.SYS or,
alternatively, the existence of a file equated to this formal file designator. If no VENVCNTL
file exists, no VPLUS defaults are overridden.

VENVCNTLis a simple text file containing only one line of data. Each override option may be
activated by setting the option byte number to 1. For example, in the VENVCNTLfile below,
options 1, 5, and 20 are set.

 :print venvcntl
10001000000000000001

For MPE V/E, the basic recommendation is either no VENVCNTLfile, or, if there are no 264x
terminals capable of accessing the system, a VENVCNTL file with byte 1 set.

For MPE/iX, the basic recommendation is a VENVCNTLfile with bytes 1, 5, and 20 set. Since
264x terminals will not work on MPE/iX, byte 1 should always be set to improve
performance.

The table below explains the function and possible side effects of each VENVCNTL option.
Note that many bytes are either diagnostic only or reserved for future use; these bytes
should never be set to 1.

Byte Explanation Side Effects / Comments

1 VOPENTERM does not try to determine
terminal identity if terminal does not
have self-identification capability.

VPLUS will not run on terminalsthat
cannot self-identify (264x terminals).

2 VPLUS does not lock out terminal
Aids/Modes/User keys during
interactions.

User could corrupt terminal
configurations established and expected
by VPLUS.

3 Reserved.

4 VPLUS bypasses Modified Data Tag
(MDT) feature of MDT terminals.

MDT terminals will transmit all input
field data, not the subset that user
actually keyedin; increases datacomm and
associated processing overhead.

5 (MPE/iX only) VPLUS strips carriage
return character from terminal status
read input.

DO NOT USE this option on MPE V/E;
MPE V/E driver already strips the
carriage return characters so this option
is redundant on MPE V/E.
Appendix M 685

Application Notes
Using the VPLUS Environment Control File (VENVCNTL)
6 (MPE V/E only) VPLUS extends terminal
status reads to ensure that input
termination character is accounted for.

DO NOT ACTIVATE this option unless
experiencing VPLUS ”terminal status
request failed” errors due to network
delays.

7 Diagnostic only.

8 VPLUS does not force 7009x terminals to
80 columns.

If 7009x terminal is configured for 132
columns, there is a possibility of data
corruption.

9 VTURNON and VTURNOFF do notreset
terminal function keys to default strings.

10 (MPE/iX) VPLUS inhibits dual
terminator; only the record separator
(instead of either the record separator or
the carriage return) will be recognized as
a record terminator.

It will be awkward for user to recover a
blockmode application after a power
failure. Also, applications will treat line
feeds as terminators, not as data.

11 VTURNON does not save 7009x terminal
function key configuration information.

12 VOPENTERMdoes not save and VCLOSETERM
does not restore 7009x terminal function
configuration information.

13 - 18 Reserved

19 Diagnostic only.

20 (MPE/iX only) VPLUS posts pending
terminal driver reconfigurations to
overcome timing windows and force
synchronization.

21 - 29 Reserved

30 VPLUS posts pending terminaldriver
reconfigurations to overcome timing
windows and force synchronization in a
multi-hop network environment.

There will be incremental file system
overhead associated with the posting
action; this overhead is only necessary if
difficulties are being experienced.

31 VOPENTERM and VIDTERM do not check
JOB/SESSION mode when doing terminal
open (available in soon to be released
VPLDV28 (MPE V/E) and VPLEXF7
(MPE/iX) patches).

If executing VPLUS in a job and no valid
file equation to the terminal exists, then
job $STDIN file may be corrupted.

32 - 80 Reserved

Byte Explanation Side Effects / Comments
686 Appendix M

Application Notes
How to Trace VPLUS calls in the Program While it is Running
How to Trace VPLUS calls in the Program While it is
Running

Problem Description

How can you track the VPLUS calls in the program as they are being

executed?

Solution

To produce a record of VPLUS calls from a program as they are called, use the following:

:SETJCW VIEWTRACE=1
:FILE TRCFILE;DEV=LP
:RUN progname;STDLIST=*TRCFILE

The file equation for TRCFILE could as easily be used for a disc file or for display to another
terminal by doing the following

:FILE TRCFILE;DEV=DISC (for disc)

or

:FILE TRCFILE;DEV=nnn (nnn being the ldev number of the terminal)
Appendix M 687

Application Notes
How to Redirect $STDLIST in a VPLUS Application
How to Redirect $STDLIST in a VPLUS Application

Problem Description

Whenever my VPLUS program gets error messages those messages are displayed in the
unprotected fields on the screen. Why does this happen? How can I redirect the messages
so that they are either displayed on the printer or written to another file?

Solution

These messages are being displayed on the screen because the error messages are written
to the STDLIST, which by default is the terminal. When a VPLUS program is run, the error
message will be displayed in the unprotected areas of the terminal.

To redirect the STDLIST so that the messages will be displayed to the printer, use these
steps:

1. :FILE LP;DEV=LP

2. :RUN PROG;STDLIST=*LP

To redirect the STDLIST so the the messages will be written to file, use these steps:

1. :BUILD OUTFILE;REC=-132,,F,ASCII;DISC=10000

2. :RUN PROG;STDLIST=OUTFILE
688 Appendix M

Application Notes
FORMSPEC Gives FS Error -99 at Compile Time
FORMSPEC Gives FS Error -99 at Compile Time

Problem Description

When trying to compile my formsfile, I receive the following error:

FS ERROR -99

What does this mean?

Solution

The FS error -99, is a FormSpec error. This error means your formsfile is at end-of-file
(eof). To verify this, do a :LISTF formsfile_name,2 and look at the EOF and LIMIT. If they
are the same or very close, this is the reson you are getting this error.

The maximum size of a VPLUS formsfile is 32767. If your formsfile is less than this size,
let’s say around 28000, you can try the following: The first step is to build a new larger
formsfile:

:BUILD MNTFORM1;REC=128,1,F,ASCII;DISC=32767;CODE=VFORM

Then do the following:

1. :FCOPY FROM=oldform;TO=newform

2. :RENAME oldform,something

3. :RENAME newform,oldform (:RENAME newforms file to original’s)
Appendix M 689

Application Notes
FORMSPEC Gives FS Error -99 at Compile Time
690 Appendix M

Index
A
Access to data, 32
Add Check Digit option, REFSPEC, 221
ADDARBFIELD

in ARB batch mode, 390
ADDARBSCREEN

in ARB batch mode, 391
Adding

a reformat, REFSPEC, 198
Adjust menu, 618
Advanced forms design, 125
Advanced processing, 30, 157

altering forms sequence, 157
data formatting, 157
data movement, 157
processing phases, 157

Advanced Processing Statements, 31
Alphabetic check digits, 582
altering forms sequence, 157
Application-Ready Buffer, 32
Applications programmer, 37
Applications programmer, using manual, 37
Applications user, 38
ARB

batch mode commands, 373, 389
data types, 70
field menu, 116
menu, 115
See also Application-Ready Buffer

ARBs
defining, 117
trace facility, 117
using, 117

Arithmetic calculation, 31
Arithmetic expression, 134
ASCII character set, 573
Automatic formatting

character type, 160
date type, 162
numeric type, 161
SET statement, 160

B
Basic Design, 26
basic editing, 28
BASIC sample program, 463
Batch data collection, 33
Batch files

concatenating, 181, 223
expanding, 43
protection against system crash, 183

REFORMAT, 181
REFSPEC, 181
relation to other files, 181
removing deleted records, 43

Batch mode, 662
commands, 372
compiling forms file, 369
listing forms file, 369
relating forms, 369
updating forms, 369
using FORMSPEC, 369

Bit map conversion, 621
Blank replacement

in output, 204
BREAK key

recovery in REFSPEC, 193
Buffer configuration, 607

C
Calculations

alphabetic check digits, 582
check digit, 580
modulus 10, 580
modulus 11, 581

CHANGE statements, 132
FORMSPEC, 169

Changing
forms file name, FORMSPEC, 199
input forms sequence, 199
output record definition, 200

Character
deletion, REFSPEC, 217

Character type, 160
Check digit, 151

adding, REFSPEC, 221
Check digits, 579
Child form, 87
COBOL sample program, 432
Collect mode, 42
Color enhancement, 597
comarea, 605
Combining data, 187
Communication area, 235
COMPILE

in FORMSPEC batch mode, 374
Concatenating batch files, 223
Conditional processing, 157
Conditional statements, 133
Configuration, 157
Configuration statements, 131

DEVICE, 138
LIGHT, 139
Index 691

Index
LOCALEDITS, 140
Constant

output file, REFSPEC, 211
control file, 609
Control statements, 133
Controlling the bell, 357
Conversion

bit map, 621
of data, REFSPEC, 214
output data to EBCDIC, REFSPEC, 204

Conversion during data movement, 163
converting, 616
Converting forms file, 616
COPY

in FORMSPEC batch mode, 375
Creating an ARB with FORMSPEC, 109
Cursor, 322
Cursor placement, 322
Cursor positioning, 660

D
Data

combining, 187
entering, 47
interpreting type, 69
modifying, 51
program-generated, 48
separating, 189
type, 68
viewing, 51

Data Buffer area, 230
Data capture device specification menu, 121
Data capture devices, 237
Data collection mode, modify mode, 365
Data conversion

REFSPEC, 217
Data formatting, 31, 157
Data justification

REFSPEC, 219, 221
Data manipulation, 32
Data movement, 31, 157
Data reformatting

REFORMAT, 181
Data transformation, 33
Data type, 29
Data Type Conversion Record, 110
Data type conversions, 71
Data types

formatting, REFSPEC, 215
REFSPEC output field, 214

Data types for languages, 234
Date type, 162

Date types, 69
Default formatting, 163
DELARB

in ARB batch mode, 392
DELARBFIELD

in ARB batch mode, 393
DELETE

in FORMSPEC batch mode, 376
Deleting

a reformat, 200
Deleting characters

REFSPEC, 217
Deleting data, 52
Designing

forms file, 584
device, 138
DHCF

with FORMSPEC, 640
with VPLUS, 642

Display enhancement, 67
Display enhancements, 41
DL area, 588
Dsiplay enhancement, 595

E
EBCDIC, conversion to, REFSPEC, 204
Edit statements, 132, 144

check digit, 151
length check, 145
pattern match, 152
range checks, 149
single value comparisons, 146

Editing errors, 248
Entering data, 47
Entering precessing specifications, 127
ENTRY

block mode, 44
browse/modify, 34
data collection, 34
entering data, 39
error detection, 39
function keys, 40
reformatting data, 35
removing deleted records, 43
responding to prompts, 42
running, 42

Environmnet control file, 663
Error fields, 249
Error flag, 347
Error handling, 248
Error messages, 248, 489

file, REFORMAT, 223
692 Index

Index
Errors
correcting, 49
logic, 49
system, 49

EXIT
in FORMSPEC batch mode, 377

EXIT key
REFSPEC, 194

F
FAIL statement

FORMSPEC, 174
FIELD

in FORMSPEC batch mode, 378
Field

length, 65
name, 66
number, 65
REFSPEC Output Field Menu, 213
separator, REFSPEC, 205
specifications, REFSPEC, 187
specifying initial value, 72
tags, 64
type, 67

Field edits, 157
date handling, 404
numeric data, 404

Field eidts
native language characters, 404

Field enhancement, 28
Field length

REFSPEC output field, 213
Field menu, 100
Field name, 28

REFSPEC input field, 212
REFSPEC ouput field, 212

Field specifications
Reformat file, 183

Field Type, 28
Fields

defining, 64
Formatting, REFSPEC, 214
length, REFSPEC output field, 211
maximum number of characters, 90
protected, 39
standard formatting, REFSPEC, 215
substring, REFSPEC, 210

FILE
in FORMSPEC batch mode, 379

File equations, REFSPEC, 223
File errors, 248
File management

KSAM, 616
Files

REFORMAT, 183
reformat file, REFSPEC, 183
REFSPEC, 183

Fill
option, REFSPEC, 220

FILL statement
FORMSPEC, 167

Finish form, 157
FKLABELS

in FORMSPEC batch mode, 380
Floating point numbers, 624
Form

child, 87
parent, 87

Form defition area, 230
Form field delimiters

nonprinting, 62
printed, 62

Form function key labels menu, 98
Form layout, 61, 99
Form menu, 95

fields, 96
Form name

Input Forms Menu, REFSPEC, 206
Form sequence, 191
Form storage

local, 251
Form storage directory, 251
Form/ARB relationship, 113
Formatting

by data types, 216
Formatting statements, 132
FORMS

in FORMSPEC batch mode, 381
Forms

appending, 45, 252
frozen, 45
loading, 251, 252
purging, 252
repeating, 45
reproducing, 87

Forms design, 26, 61
advanced, 125
advanced processing, 126
field edits, 126
levels of design, 26
sample, 77

Forms design, simple collection, 26
Forms designer, 37
Forms designer, using manual, 37
Index 693

Index
Forms families, 87, 252
Forms family

example, 87
Forms file

compiling, 83
converting, 616
designing, 584
expanding, 83
listing, 84
purging, 616
renaming, 616

Forms file interface, 32
Forms file menu

REFSPEC, 197
Forms file prototype, 81
Forms file size, 79
Forms modification, 79
Forms sequence, 45
Forms sequencing, 31, 73

next form option, 74
repeat option, 73

FORMSPEC, 26, 54
creating an ARB, 109
file menu, 54
function keys, 55
invoking in batch mode, 371
key labels, 56
menu sequence, 56
reserved words, 66
terminating, 60
with DHCF, 640

FORMSPEC statements
CHANGE, 169
FAIL, 174
FILL, 167
IF, 171
JUSTIFY, 166
PHASES, 176
SET, 158
STOP, 175
STRIP, 165
UPSHIFT, 168

FORTRAN 77 sample program, 444
Full field editing, 29
Function key labels, 41, 661
Function keys

relabeling, 595

G
GENARB

in ARB batch mode, 394
Generating the ARB, 112

Global function key labels menu, 106
Globals menu, 103

fields, 203
REFORMAT, 203

H
HP 239X terminals

HP 2392A terminal, 603
HP 2393A terminal, 603
HP 2394A terminal, 603
HP 2397A terminal, 603

HP 262X terminals
HP 2624A terminal, 601
HP 2624B terminal, 601
HP 2625A terminal, 601
HP 2626A terminal, 602
HP 2627A terminal, 602

HP 264X terminals
HP 2640B terminal, 599
HP 2644A terminal, 600

HP32209B utility, 619
HP32209S utility, 630
HPPA intrinsics, 626

VGETIEEELONG, 627
VGETIEEEREAL, 626
VPUTIEEELONG, 629
VPUTIEEEREAL, 628

HPTOUCH support, 660

I
IBM 3270 character translation, 639
IBM 3270 differences, 635
IBM 3270 display, 634
IBM 3270 display enhancements, 638
IBM 3270 form fields, 638
IBM 3270 keyboard mapping, 636
IBM 3270 keys, 635
IBM 3270 screen attributes, 637
IF statement

FORMSPEC, 171
Index retrieve operand, 135
Initial value, 29
Initialization, 157
Input forms, 185
Input Forms Menu

REFSPEC, 206
Intrinsic call errors, 248
Intrinsic calls, 648
Intrinsic descriptions, 254
Intrinsic flow, 254
Intrinsics
694 Index

Index
HPPA, 626
Intrinsics dependencies, 257
Intrinsics functions, 254

J
JUSTIFY, 218
JUSTIFY statement

FORMSPEC, 166

K
Key label area, 232, 234
Keyboard control, 357
KSAM, 616
KSAM forms file, 616

L
Language attribute, 402
Length check, 145
Light, 139
LIST

in FORMSPEC batch mode, 384
Listing a reformat, 200
Loading form families, 252
Loading forms, 251
Local edits, 140
Local form storage, 250, 356

M
Main menu, 91

fields, 91
REFSPEC, 198

Menu
adjust, 618
data capture device specification, 121
field, 100
form, 95
global function key labels, 106
globals, 103, 203
local edit terminal, 142
main, 91
output field, 187
output record, 208, 213
save field, 107
terminal/language selection, 119

Menus
Form menu, 73
forms file, 197
main, 198

Migrating programs, 624
MODARBFIELD

in ARB batch mode, 395

Modified data tag, 594
Modifying data, 52
Modulus 10 calculations, 580
Modulus 11 calculations, 581
MOVEARBFIELD

in ARB batch mode, 396
Moving data

SET statement, 159
Multiplexer, 664

N
Native Language identifier, 403
NLS language attribute, 402
Numeric type, 161

O
Operator hierarchy, 155
Optimization, 670
Output field menu, 187
Output files, 192
Output record definition, 186
Output record menu

fields, 210
REFORMAT, 208
REFSPEC, 213

Output records, 185

P
Parent form, 87
Pascal

native mode, 624
PASCAL sample program, 480
pattern characters, 152
Pattern match, 152

choice, 153
grouping and optional, 154
operator hierarchy, 155
range, 153
repetition, 154
special characters, 152
transparency, 153

Pattern match operators, 156
PHASES statement

configuration, 177
field edit, 179
finish, 179
FORMSPEC, 176
initialization, 177

Postal codes, 591
Precessing specifications, 127

entering, 127
Index 695

Index
Precision architecture, 623
Preload of forms, 357
Print

VPRINTFORM, 324
VPRINTSCREEN, 326

Printing forms and data, 42
Processing phases

configuration, 157
field edits, 157
finish form, 157
initialization, 157

Processing specifications
for configuration, 137

Processing specifications for field edits, 144
Processing statements, 141
Program Interface intrinsics, 32
Program interruption, 608
Programmer’s guide, 647
Purging, 616
Purging forms, 252
Purging forms file, 616

R
Range checks, 149
REFORMAT, 181, 185

globals menu, 203
output record menu, 208
using, 224

Reformat file, REFSPEC, 183
Reformat identifier, 199
Reformating data, 190
REFSPEC, 181

forms file menu, 197
function keys, 194
main menu, 198
menus, 195
output record menu, 213
terminating, 193
using, 193

REFSPEC options, 218, 219
STRIP, 217

RELATE
in FORMSPEC batch mode, 385

RENAMEARBFIELD
in ARB batch mode, 397

Renaming, 616
Renaming forms file, 616
RENUMBER

in FORMSPEC batch mode, 386
Repeating forms, 190
Reset terminal, 608
Resuming design, 200

Running REFSPEC, 223

S
Sample programs

BASIC, 463
COBOL, 432
FORTRAN 77, 444
PASCAL, 480
SPL, 408
TRANSACT, 471

Save field menu, 107
SCREENTOARB

in ARB batch mode, 398
Security display enhancement, 595
SELECTLANG

in FORMSPEC batch mode, 387
SELECTTERM

in FORMSPEC batch mode, 388
Separating data, 189, 192
Session

terminating, 50
SET statement

Automatic formatting, 160
FORMSPEC, 158

SET statements, 132
SIGN, 219
Single value comparisons, 146
SNA DHCF, 633

and VPLUS utilities, 644
ENTRY, 644
HP32209b and HP32209S, 644
REFSPEC, 644

Special pattern characters, 152
Specifications

correcting, 128
processing, 127
Syntax, 129

SPL sample program, 408
Stack, 672
State codes, 591
State postal codes, 591
Statements

CHANGE, 132
conditional, 133
CONFIGuration, 131
continuing lines, 129
control, 133
edit, 132, 144
error messages, 129
formatting, 132
SET, 132
syntax, 129
696 Index

Index
Status/Error control, 33
STOP statement

FORMSPEC, 175
Streaming REFORMAT, 224
STRIP statement

FORMSPEC, 165
Supported terminals, 594
Syntax, 129
System crash, 323

T
Table checks, 148
Terminal

buffer configuration, 607
communication area, 605

Terminal configuration, 624
Terminal features, 250
Terminal interface, 32
Terminal/language selection menu, 119
Terminals, 593

color enhancement, 597
data capture device, 597
X.25 capability, 597

Terminating a session, 50
Termtype, 594
TRANSACT sample program, 471
Transparency, 153

U
UPSHIFT statement

FORMSPEC, 168
User environment control file, 609
User-defined commands, 224
Using VPLUS intrinsics, 230

V
VARMSCP, 258
VCHANGEFIELD, 263
VCLOSEBATCH, 265
VCLOSEFORMF, 266, 659
VCLOSETERM, 267, 659
VERRMSG, 267
VFIELDEDITS, 270, 656
VFINISHFORM, 272, 657
VGETBUFFER, 275, 658
VGETFIELD, 277
VGETFIELDINFO, 280
VGETFILEINFO, 280, 283
VGETFORMINFO, 286, 661
VGETKEYLABELS, 290
VGETLANG, 292

VGETNEXTFORM, 293, 650
VGETSAVEFIELD, 295
VGETSCPDATA, 297
VGETSCPFIELD, 299
VGETtype, 300
VGETYYYYMMDD, 304
Viewing data, 51
VINITFORM, 305, 652
VLOADFORMS, 307
VMERGE, 309
VOPENBATCH, 314
VOPENFORMF, 318, 648
VOPENTERM, 320, 649
VPLUS

with DHCF, 642
VPOSTBATCH, 323
VPRINTFORM, 324
VPRINTSCREEN, 674

documentation mode, 326
normal mode, 326

VPRTDEMO, 680
VPUTBUFFER, 331, 652
VPUTFIELD, 333
VPUTSAVEFIELD, 335
VPUTtype, 336
VPUTWINDOW

copies message, 339
VPUTYYYYMMDD, 341
VREADBATCH, 342
VREADFIELDS, 344, 654
VSETERROR

set error flag, 347
VSETKEYLABEL, 350
VSETKEYLABELS, 352
VSETLANG

specifies native language, 354
VSHOWFORM, 653

displays current screen, 355
optimize performance, 355

VTURNOFF, 359, 611
VTURNON, 361, 611
VUNLOADFORM, 363
VWRITEBATCH

data collection mode, 365

W
Window area, 232, 234
Window line enhancement, 240
Index 697

	1� VPLUS Overview
	Product Overview
	Interface Design
	Transaction Processing
	Source Data Entry
	Features
	Designing Forms With FORMSPEC
	Levels of Forms Design
	Application-Ready Buffer
	Program Interface Intrinsics
	Entering Data with ENTRY
	Reformatting Data

	Using This Manual
	Forms Designer
	Applications Programmer
	Application User

	2� Entering Data with ENTRY
	Protected and Unprotected Fields
	Error Detection
	Data Modification
	Data Reformatting
	Terminal Usage
	Function Keys
	Display Enhancements
	Printing Forms and Data

	Running ENTRY
	Specifying ENTRY Files
	Responding To ENTRY Prompts
	Removing Deleted Records From a Batch File
	Expanding the Batch File
	Block Mode
	Local Form Storage

	Forms Sequence
	Repeating Forms
	Appended Forms
	Frozen Forms

	Entering Data
	Optional and Required Fields
	Program-Generated Data
	Correcting Errors
	System and Logic Errors
	Interrupting Data Entry
	Terminating a Session
	Unexpected Program Interruption

	Viewing and Modifying Data
	Invoking Browse/Modify Mode
	Resuming Data Collection
	Viewing Data
	Modifying the Data
	Deleting Data

	3� INTRODUCTION TO FORMS DESIGN
	GETTING STARTED WITH FORMSPEC
	Specify a Forms File
	Choose an Option
	FORMSPEC Function Keys
	Menu Sequence
	Creating an Application-Ready Buffer (ARB)
	Year 2000 Functionality
	Programmable Defaults for Field and Data Types in FORMSPEC
	Ability to Define More than 52 Single Character Fields per Form
	Compatibility Issues
	Terminating FORMSPEC

	EASE OF FORMS DESIGN
	Form Layout
	Defining the Fields
	Understanding Form Sequencing
	Sample of Forms Design

	FORMS FILE
	Forms Modification
	Copying of Processing Specifications
	Forms File Size
	Expand Forms File
	Compiling the Forms File
	Renumbering a Form with Interactive FORMSPEC
	Listing Forms

	FORM FAMILIES
	Creating Child Forms
	Form Family Example

	Fields
	MAIN MENU
	Fields

	FORM MENU
	Fields

	FORM FUNCTION KEY LABELS MENU
	FORM LAYOUT
	FIELD MENU
	Fields

	GLOBALS MENU
	Fields

	GLOBAL FUNCTION KEY LABELS MENU
	SAVE FIELD MENU
	Fields

	USING FORMSPEC TO CREATE AN ARB
	Setting Up the Data Type Conversion Record
	Generating the ARB

	TERMINAL/LANGUAGE SELECTION MENU
	Fields

	DATA CAPTURE DEVICE SPECIFICATIONS MENU
	Fields

	4� Advanced Forms Design
	Levels Of Advanced Design
	Entering Processing Specifications
	Special Cases
	Correcting Existing Specifications

	Statement Syntax
	Comments
	Continuing Lines
	Custom Error Messages
	Checking Data Entered
	Operands
	Arithmetic Expression
	Index Retrieve Operand

	Processing Specifications For Configuration
	DEVICE
	Syntax
	Parameters
	Discussion
	Example

	LIGHT
	Syntax
	Parameters
	Discussion
	Example

	LOCALEDITS
	Syntax
	Parameters
	Discussion
	Example

	Processing Specifications For Field Edits
	Edit Statements

	LENGTH CHECK
	Syntax
	Parameters
	Discussion
	Example

	SINGLE VALUE COMPARISONS
	Syntax
	Parameters
	Discussion
	Character Comparisons
	Numeric Comparisons
	Date Comparisons
	Example
	Native Language Support

	TABLE CHECKS
	Syntax
	Parameters
	Discussion
	Example
	Native Language Support

	RANGE CHECKS
	Syntax
	Parameters
	Discussion
	Example
	Native Language Support

	CHECK DIGIT
	Syntax
	Parameters
	Discussion

	PATTERN MATCH
	Syntax
	Parameters
	Discussion
	Special Pattern Characters
	Transparency
	Choice
	Range
	Grouping and Optional
	Repetition
	Operator Hierarchy
	Example

	Processing Specifications For Advanced Processing
	SET
	Syntax
	Parameters
	Discussion
	Assigning a Value to the Current Field
	Syntax
	Parameters
	Discussion
	Example
	Moving Data Between Fields
	Syntax
	Parameters
	Discussion
	Example
	Automatic Formatting
	Character Type
	Numeric Type
	Date Type
	Default Formatting
	Parameters
	Example

	STRIP
	Syntax
	Parameters
	Discussion
	Example

	JUSTIFY
	Syntax
	Parameters
	Discussion
	Example

	FILL
	Syntax
	Parameters
	Discussion
	Example

	UPSHIFT
	Syntax
	Discussion
	Example

	CHANGE
	Syntax
	Parameters
	Discussion
	Example

	IF
	Syntax
	Parameters
	Discussion
	Example

	FAIL
	Syntax
	Parameters
	Discussion
	Example

	STOP
	Syntax
	Discussion
	Example

	PHASES
	Syntax
	Parameters
	Discussion
	Example
	Configuration Phase
	Initialization Phase
	Field Edit Phase
	Finish Phase

	5� Reformatting Specifications
	Files
	Reformat File

	Relation of Forms to Output Records
	Input Forms Sequence
	Output Record Definition
	Field Specifications
	Combining Data from Several Forms
	Separating Data into Several Records
	Reformatting Repeating Forms
	Separating Data from One Batch File into Several Output Files

	Using REFSPEC
	Terminating REFSPEC
	Unexpected Program Interruption
	REFSPEC Function Keys

	REFSPEC Menus
	Forms File Menu
	Main Menu
	Adding a Reformat
	Compiling the Reformat File
	Adding Global Specifications
	Changing the Forms File Name
	Modifying Reformat Specifications
	Changing an Input Forms Sequence
	Changing an Output Record Definition
	Deleting a Reformat
	Listing a Reformat
	Resuming Design from Main Menu

	Globals Menu
	Fields

	Input Forms Menu
	Fields

	Output Record Menu
	Fields

	Output Field Menu
	Data Type
	Field Formatting
	STRIP
	JUSTIFY
	Sign
	Fill
	Check Digit

	Running REFORMAT
	Concatenating Batch Files
	Using a User-Defined Command
	Streaming REFORMAT

	6� USING VPLUS INTRINSICS
	Multipurpose
	Multilanguage
	Error Detection
	HOW INTRINSICS ARE USED
	Form Definition Area
	Data Buffer Area
	Window Area
	Key Label Area

	CALLING VPLUS INTRINSICS
	Parameter Types

	COMMUNICATION AREA
	Parameters
	Parameters

	ERROR HANDLING
	Intrinsic Call or File Errors
	Editing Errors
	Error Messages
	Determining Fields in Error

	USING TERMINAL FEATURES
	The Touch Feature
	Local Form Storage

	INTRINSIC DESCRIPTIONS
	Dependency Between Intrinsics
	VARMSCP
	VBLOCKREAD
	VBLOCKWRITE
	VCHANGEFIELD
	VCLOSEBATCH
	VCLOSEFORMF
	VCLOSETERM
	VERRMSG
	VFIELDEDITS
	VFINISHFORM
	VGETARBINFO
	VGETBUFFER
	VGETFIELD
	VGETFIELDINFO
	VGETFILEINFO
	VGETFORMINFO
	VGETKEYLABELS
	VGETLANG
	VGETNEXTFORM
	VGETSAVEFIELD
	VGETSCPDATA
	VGETSCPFIELD
	VGETtype
	VGETYYYYMMDD
	VINITFORM
	VLOADFORMS
	VMERGE
	VOPENBATCH
	VOPENFORMF
	VOPENTERM
	VPLACECURSOR
	VPOSTBATCH
	VPRINTFORM
	VPRINTSCREEN
	VPUTBUFFER
	VPUTFIELD
	VPUTSAVEFIELD
	VPUTtype
	VPUTWINDOW
	VPUTYYYYMMDD
	VREADBATCH
	VREADFIELDS
	VSETERROR
	VSETKEYLABEL
	VSETKEYLABELS
	VSETLANG
	VSHOWFORM
	VTURNOFF
	VTURNON
	VUNLOADFORM
	VWRITEBATCH

	7� USING FORMSPEC IN BATCH MODE
	USING FORMSPEC IN BATCH MODE
	Deleting Forms Using FORMSPEC’s Batch Mode Facilities
	Compiling Forms File in Batch Mode
	Updating Forms In Batch Mode
	Listing Forms Files in Batch Mode
	Relating Forms In Batch Mode

	INVOKING FORMSPEC IN BATCH MODE
	BATCH MODE COMMANDS
	COMPILE
	COPY
	DELETE
	EXIT
	FIELD
	FILE
	FKLABELS
	FORMS
	LIST
	RELATE
	RENUMBER
	SELECTLANG
	SELECTTERM

	ARB BATCH MODE COMMANDS
	ADDARBFIELD
	ARBTOSCREEN
	DELARB
	DELARBFIELD
	GENARB
	MODARBFIELD
	MOVEARBFIELD
	RENAMEARBFIELD
	SCREENTOARB

	SAMPLES OF FORMSPEC IN BATCH MODE
	Sample Command File
	Sample Job Stream

	8� NATIVE LANGUAGE SUPPORT
	LANGUAGE ATTRIBUTE
	Unlocalized (NATIVE-3000)
	Language-Dependent
	International

	NLS CAPABILITIES
	Setting the Native Language ID Numbers

	FIELD EDITS
	Date Handling
	Numeric Data
	Native Language Characters

	ENTRY AND LANGUAGE lD NUMBER

	A� SAMPLE PROGRAMS
	SPL
	COBOL
	FORTRAN 77
	BASIC
	TRANSACT
	PASCAL

	B� VPLUS Error Messages
	Classification of Error Messages
	FORMSPEC Error Messages
	Access Method Messages
	Screen Definition Messages
	Field Symbol Table Messages
	Menu Processing Utility Messages
	Menu Init and Processing Messages
	Batch Mode Messages
	RELATE Command Messages
	Menu Controller Messages
	Init and Compile Messages
	Scanner Messages
	Parser Messages
	Apply Errors
	Pattern Compile Messages
	Release Messages
	Application-Ready Buffer (ARB) Errors
	ARB Compile Errors
	Native Language Support Errors

	VPLUS Intrinsic Error Messages
	VOPENTERM and VCLOSETERM Messages
	General Messages
	VOPENFORMF and VCLOSEFORMF Messages
	VOPENBATCH and VCLOSEBATCH Messages
	Access Method Messages
	VGETNEXTFORM Messages
	VMERGE Messages
	VSHOWFORM Messages
	VREADFIELDS Messages
	VPRINTFORM Messages
	VINITFORM, VFIELDEDITS, and VFINISH Messages
	VREADBATCH Messages
	VWRITEBATCH Messages
	VSETERROR, VGETFIELD, VPUTFIELD, VPUTtype, and VGETtype Messages
	VGETBUFFER and VPUTBUFFER ARB Messages
	VGETLANG and VSETLANG Messages
	VCHANGEFIELD Messages
	VPLACESURSOR Intrinsic
	INFO Intrinsic Messages
	Forms Loading Messages

	SNA DHCF Intrinsic Messages
	Native Language Support

	REFSPEC Messages
	Access Method Errors
	Output Sequence Definition Errors
	Validation Errors
	Field Table Errors
	Menu Processing Errors
	Menu Processing Utility Errors
	Menu Init and Processing Errors
	Menu Controller Errors
	Init and Compile Errors
	Compile Errors

	Reformat Messages
	Reformat Messages
	Reformat Errors
	Message Info
	Header Messaages
	Testlist Errors
	Native Mode Access Error Messages

	C� USASCII Character Set in Collating Sequence
	ASCII Character Set

	D� CHECK DIGIT CALCULATION
	MODULUS 10
	Example

	MODULUS 11
	Example

	ALPHABETIC CHECK DIGITS

	E� Application Hints
	Designing Your Forms File
	Rules for the DL Area
	Coding the Touch Feature
	Example

	F� STATE/POSTAL CODES
	G� TERMINAL INFORMATION
	SUPPORTED TERMINALS AND FEATURES
	Termtypes
	Modified Data Tag
	Extended Local Edits
	Relabeling Function Keys
	Security Display Enhancement
	Local Form Storage Capabilities
	X.25 Capability
	Color Enhancement
	Data Capture Device Special Features
	Cursor Position Sensing

	THE HP 264X TERMINALS
	HP 2640B Terminal
	HP 2644A Terminal

	THE HP 262X TERMINALS
	HP 2624A Terminal
	HP 2624B Terminal
	HP 2625A, HP 2628A Terminals
	HP 2626A Terminal
	HP 2627A Terminal

	THE HP 239X AND HP 150 TERMINALS
	HP 2392A Terminal
	HP 2393A Terminal
	HP 2394A Terminal
	HP 2397A Terminal
	HP 150 Terminal (Obsolete)

	THE DATA CAPTURE DEVICES
	TERMINAL COMMUNICATION AREA
	Parameters

	TERMINAL BUFFER CONFIGURATION
	RECOVERING FROM UNEXPECTED PROGRAM INTERRUPTION
	USER ENVIRONMENT CONTROL FILE
	ADVANCED TERMINAL I/O PROCEDURES
	VTURNON/VTURNOFF
	VTURNOFF
	VTURNOFF
	VTURNON

	H� Version Control
	KSAM File Management
	Purge Forms File
	Rename Forms File
	Convert KSAM File

	Adjust Menu
	HP32209

	The HP32209B Utility
	Example

	I� BIT MAP CONVERSION
	Syntax
	Parameters
	Discussion
	Example

	J� HP PRECISION ARCHITECTURE
	MIGRATION ISSUES
	Supported Peripherals and Applications

	HPPA INTRINSICS
	Introduction

	K� SNA DHCF with VPLUS Applications
	SNA DHCF Overview
	System Connections
	VPLUS Supportability

	IBM 3270 Differences and Limitations
	Keyboard Differences
	Screen Differences

	Using FORMSPEC With DHCF
	Using VPLUS Intrinsics With DHCF
	Unsupported Intrinsics
	Intrinsics Altered With SNA DHCF

	SNA DHCF and VPLUS Utilities
	ENTRY
	REFSPEC
	REFORMAT
	HP32209B and HP32209S Utilities

	L� A Programmer’s Guide to VPLUS
	VPLUS Intrinsic Calls
	Opening Files
	Preparing and Showing the Screen
	Reading Data from the Screen
	Editing
	Returning Data to the Program
	Closing Files

	VPLUS Enhancements
	HPTOUCH Support (Introduced on VPLUS B.04.10 in MPE G.01.01)
	Cursor Positioning (Introduced on VPLUS B.04.10 in MPE G.01.01)
	264X Function Key Labels (Introduced on VPLUS B.04.10 in MPE G.01.01)
	VGETFORMINFO Enhancement (Enhanced on VPLUS B.04.10 in MPE G.01.01)
	Batch Mode FORMSPEC (Enhanced on VPLUS B.04.10 in MPE G.01.01)
	Color Support for 2627A and 2397A (Introduced on VPLUS B.04.15 in MPE G.01.04)
	VCHANGEFIELD (Introduced on VPLUS B.04.15 in MPE G.01.04)
	User Environment Control File (Introduced on VPLUS B.04.20 in MPE G.02.01)

	VPLUS & Multiplexers
	Using VPLUS on a Pad-Terminal(Connected to a Cluster Controller HP 2334A)

	Optimizing VPLUS Utilization
	Definition of Terms
	Effective Forms Design
	Stack Use by VPLUS Applications

	VPRINTSCREEN Intrinsic
	VPRINTSCREEN
	Modes of Operation
	Limitations
	Viewing the VPRINTSCREEN Demo

	M� Application Notes
	Workarounds for VPLUS Forms Fille 32767 Record Limit
	Problem Description
	Solution
	HP Only Info

	Using the VPLUS Environment Control File (VENVCNTL)
	Problem Description
	Solution

	How to Trace VPLUS calls in the Program While it is Running
	Problem Description
	Solution

	How to Redirect $STDLIST in a VPLUS Application
	Problem Description
	Solution

	FORMSPEC Gives FS Error -99 at Compile Time
	Problem Description
	Solution

