
Digital
Technical
Journal

I
SPIRALOG LOG-STRUCTURED FILE SYSTEM

OPENVMS FOR 64-BIT ADDRESSABLE
VIRTUAL MEMORY

HIGH-PERFORMANCE MESSAGE PASSING
FOR CLUSTERS

SPEECH RECOGNITION SOFTWARE

Volume 8 Number 2
1996

Editorial
Jane C. Blake, Managing Editor
Kathleen M. Stetson, Editor
Helen L. Patterson, Emtor

Circulation
Catherine M. Phillips, Administrator
Dorothea B. Cassady, Secretary

Production
Terri Autieri, Production Editor
Anne S. Katzeff, Typographer
Peter R. Woodbury, Illustrator

Advisory Board
Samuel H. Fuller, Chairman
Richard W. Beane
Donald Z. Harbert
William R. Hawe
Richard J. Hollingsworth
William A. Laing
Richard F. Lary
Alan G. Nemeth
Pauline A. Nist
Robert M. Supnik

Cover Design
Digital's new Spiralog file system, a featured
topic in the issue, supports full 64-bit system
capability and fast backup and is integrated
with the OpenVMS 64-bit version 7.0 oper-
ating system. The cover graphic captures the
inspired character of the Spiralog design
effort and illustrates a concept taken from
University of California research in which
the whole disk is treated as a single, sequen-
tial log and all file system modifications are
appended to the tail ofthe log.

The cover was designed by Lucinda O'Neill
of Digital's Design Group using images
from PhotoDisc, Inc., copyright 1996.

The Digital Technical Journal is a refereed
journal published quarterly by Digital
Equipment Corporation, 30 Porter Road
LJ02/D10, Littleton, MA 01460.

Subscriptions can be ordered by sending
a check in U.S. funds (made payable to
Digital Equipment Corporation) to the
published-by address. General subscrip-
tion rates are $40.00 (non-U.S. $60) for
four issues and $75.00 (non-U.S. $1 15)
for eight issues. University and college pro-
fessors and Ph.D. students in the electrical
engineering and computer science fields
receive complimentary subscriptions upon
request. Digital's customers may qualify
for gift subscriptions and are encouraged
to contact their account representatives.

Single copies and back issues are available
for $16.00 (non-U.S. $18) each and can
be ordered by sending the requested issue's
volume and number and a check to the
published-by address. See the Further
Readings section in the back of this issue
for a complete listing. Recent issues are
also available on the Internet at
http://www.digital.com/;.fo/dtj.

Digital employees may order subscrip-
tions through Readers Choice at URL
http://webrc.das.dec.com or by enter-
ing VTX PROFILE at the system prompt.

Inquiries, address changes, and compli-
mentary subscription orders can be sent
to the Digital TechnicalJournal at the
published-by address or the electronic
mail address, dtj@digital.com. Inquiries
can also be made by calling the Journal
office at 508-486-2538.

Comments on the content of any paper
are welcomed and may be sent to the
managing editor at the published-by or
electronic mail address.

Copyright 0 1996 Digital Equipment
Corporation. Copying without fee is per-
mitted provided that such copies are made
for use in educational institutions by faculty
members and are not distributed for com-
mercial advantage. Abstracting with credit
of Digital Equipment Corporation's auth-
orship is permitted.

The information in the Journal is subject
to change without notice and should not
be construed as a commitment by Digital
Equipment Corporation or by the compa-
nies herein represented. Digital Equipment
Corporation assumes no responsibility for
any errors that may appear in the Journal.

ISSN 0898-901X

Documentation Number EC-N6992-18

Book production was done by Quantie
Communications, Inc.

The following are trademarks of Digital
Equipment Corporation: Alphaserver,
DEC, DECtalk, Digital, the DIGITAL
logo, HSC, OpenVMS, PATHWORKS,
POLYCENTER, RZ, TruCluster, VAX,
and VAXcluster.

BBN Harkis a trademark of Bolt Beranek
and Newman Inc.

Encore is a registered trademark and
MEMORY CHANNEL is a trademark
of Encore Computer Corporation.

FAServer is a trademark of Network
Appliance Corporation.

Listen for Windows is a trademark of
Verbex Voice Systems, Inc.

Microsoft and Win32 are registered trade-
marks and Windows and Windows NT are
trademarks of Microsoft Corporation.

MIPSpro is trademark of MIPS Technol-
ogies, Inc., a wholly owned subsidiary of
Silicon Graphics, Inc.

Netscape Navigator is a trademark of
Netscape Communications Corporation.

PAL is a registered trademark of Advanced
Micro Devices, Inc.

UNIX is a registered trademark in the
United States and in other countries,
licensed exclusively through X/Open
Company Ltd.

VoiceAssist is a trademark of Creative
Labs, Inc.

X Window System is a trademark ofthe
Massachusetts Institute of Technology.

Contents

Foreword

SPIRALOG LOG-STRUCTURED FILE SYSTEM

Overview of the Spiralog File System

Design of the Server for the Spiralog File System

Designing a Fast, On-line Backup System for
a Log-structured File System

Integrating the Spiralog File System into the
OpenVMS Operating System

Jamcs E, Johnson and Willi;lmA. L ~ i n g

Christopher Whitakcr, J . Stuart Bayley, and
Rod D. W. Widdo\vson

Russell J . Green, Alasdair C. Baird, and
J . Christopher l'>a\rics

OpenVMS FOR 64-BIT ADDRESSABLE VIRTUAL MEMORY

Mark A. Howell and Jl~lian 1M. l'alnier

Extending OpenVMS for 64-bit Addressable
Virtual Memory

The OpenVMS Mixed Pointer Size Environment

Michacl S. Harvey and Lconnrd S. Szubo\\ ,~cz

Thomas I<. Benson, Kar-cn L. Noel, and
1Gchard E. I'cterson

Adding 64-bit Pointer Support to a 32-bit Run-time Library 1)uanc A. Smith

HIGH-PERFORMANCE MESSAGE PASSING FOR CLUSTERS

Building a High-performance Message-passing System
for MEMORY CHANNEL Clusters

SPEECH RECOGNITION SOFlWARE

The Design of User Interfaces for Digital Speech
Recognition Software

James V. La\vton, John J . Brosnan, Morgan 1'. 1)o)flc. 96
Scosanlh 1). 6 Riordiin, and 'I"i~iiorhy G . Rcddin

Digital Technical Journal Val. S No. 2 1996

Ed itor's
Introduction

This past spring when \ve surveyed
, / o i ~ i ~ i i ~ i / s ~ ~ b s c r i l ~ c r s , reacjcrs toolc the
rime to comment o n tlie yarticulal-
value of the issues featuring Digital's
64-hit Alpha tcclinology. The engi-
neering described in those t\vo issucs
continues, \\lit11 ever higher levels of
pcrformnncc in Alpha rnicrop~.occs-
sors, scr\,crs, clusters, and systc~ns
soft\\~arc. This i s s ~ ~ c presents reccrlt
dcvclop~nc~irs: a log-structured fi lc
systcm, called Spiralog; thc OpeliVMS
operating sysrcln extended to t,~Icc f11ll
ad\~nnrage ooF4-bit addressing; high-
pcrtbrmancc conipi~ting soh\,are for
Alp113 clustcrs; and speech recognition
soft\\.arc for Alpha workstations.

Spil:llog is a holly new cluster\vicic
file systcm integrated \\,it11 the
64-bit OpcnVMS version 7.0 opa-at-
ing systcm and is designed for high
d.lta avail.1bility and high perforniaocc.
The ti fit of four papers about Spiralog
is \\irittcn by Jim Johnson and Bill
Iaing, who introduce log-structurcci
flc (1,FS) concepts, thc uni\,ersity
rcscascli behind the dcsign, .~nd dcsigll
innovntions.

The ad\,antagcs of LFS technology
o \ ~ r co~l\.cntional "update-ill-place"
rcclinology arc csplaincd by Chris
Wliirnltcr, Stuart Baylcy, and Rod
L\licicfo\\,son. In tlicir paper about the
flc scrvcr design, they compare the
Spirnlog implementation of the LFS
tcch~iology with others and describe
the no\,cl combination of the teclinol-
ogy \\lit11 ,I]),-tree mnppi~ig lucchanism
to pro\,idc tlie system \vith ~lccded
dnta rcco\>cry guarantees.

A third papcr nbout Spiralog,
\\,ritten by Russ Green, Alasdair
Bnird, and Chris Davies, addresses
'I critical custonicr requirement-
hst, appl icat io~ i -c~ns is te~l t , on-line

1)igiral Technical Journal

luckup. Exploiting the fkaturcs of
l o g - s t ~ ~ ~ ~ c t ~ ~ r c c l sror'lge, designers
\\.ere nblc t o combine tlie tlesibilic
o f f lc-based bnckup and the high
pcrfo~.mancc oFpli\,sic.~ll!, oriented
b;lckup. C:onsistcnt copies of tlic file
sysrcm arc created \\,bile applications
modif+ da t ,~ .

The Spiralog integration into the
OpcnVlMS flc system required that
existing applications be able to run
unchanged. Mark Ho\\~ell and Julian
l'almcr dcssribe t l ~ e integration of tlie
\\.rite-bncli caching used in Spiralog
into the \\.I-itc-through en\ironmcnt
used in the existing Filcs- 1 1 tile s!,stcln.

The imporr.1ncc of co~npari bility
for existing 32-bit applications in
.i 64-bit cn\ironment is stressed
again in the set of three papers about
the latest step in the evolution of thc
0p11VhIlS okxr~t ing systelu. l'ligital
first ~x)r tcd the 32-bit OpenI'lLIS
opcmting system to the Alpha arclii-
tccturc in 1992. The cstcnsion of
tlic systcm t o csploit 64-bit virtual
atidrcssing is pscsrnted by ~Miltc
Har\,cy and Lcnny Szubo\vicz.
Their discussion includes tlic team's
solution to sig~iiticant scaling issucs
that in*ol\,cd a new approach to
pnge-nblc ~rcsidc~lcy.

Tllc OpcnVblS team anticiputcd
that applications \vould mix 32- ;lnd
64-bit nddrcsscs, o r pointers, in tlic
I ~ C \ V cnvil-onment. Tom Bcnson,
IClrcn Noel, and Rich l'cterson
csplai11 \\,hy this ~ n i s i ~ i g ofpointer
sizes is cxpcctcd and tlic DEC <:
compiler solution they dc\.elopcd t o
support tlic practice. In a related dis-
cussion, Du;lne Smith's papcr revicivs
ne\\ techniques tlie team used to
nnalyzc and rnodifiz thc C S L I I I - ~ ~ I ~ ~ C

library interfaces that accornmodatc

Vol. S No. 2 1996

applications using 32-bit, 64-bit, o r
l>otli .~ddrcss sires.

1)csigncd k,r scicnti tic users,
tlic p.lrallcl - p r o g r a ~ i i ~ i ~ i ~ i g tool
nest tiessribcd does not run on the
OIXIIVAIIS Alpha systcm but instcad
o n UNIX clustcrs con~lectcd \vith
I\IlF.MOl<Y CHANNEI, technology.
Jim I.awton, John Brosnan, Morgan
I)oylc, Scosanih 6 lliordiin, and
Tim Rctidin rc\~ic\v the chal le~~pcs in
designing the TruClustcr iMEMOJ<Y

(:HANNF,I. Sohvare product, \\,l~ich
is a rncssagc-p.lssing system intcnctcti
For builders ofparallel soh\ .are
1il~r.11-ics n11d implcnicnters ofp,~rnllcl
compilers. The PI-oduct reduces
conirn~~nic;~tions latcncy to less than
10 ps ill sharcil Illelnor!, s!,stems.

Fin;llly, Kcrnic Kozmo\,its presents
the dcsign of user interfaces fol- the
l l ig i t~ l Spccch Recog~litio~i Soti\\ln~.c
(IXRS) product. Although LXRS
is targeted for Digital's Alpha work-
stsitions running UNIX, the implc-
mcntation issues examined and the
team's c fhr t s to ensirre the prod-
uct's case-of-i~sc can be gener~all!,
~ipplicd to spcccli recognition prod-
uct dc\,clopmc~it.

<:orning LIP re papers on a \,a~-icty
of topics, including the internet
p~~otoso l , collabomti\.e sofi\\,arc for
the intcl.net, and high-pcrfol-m;uncc
scrvcn. Tliesc topics rctlcct arcas of
in tc rcs t , /oo i~~~~i / renders mtcd 11cur
tlic top in last spring's S L I T V C ~ . 0 ~ 1 r
sincere th;lnks g o t o c\.eryonc \\rho
rcsponticd to that sur\,ey.

Jane C:. 131~kc
I L ~ U I I ~ I ~ I I ? ~ Edilor

Foreword

Rich Marcello
Vice Prc.s~clcr?t, Opo I

.S?/)li,c/re Grolcj~

The papers you will read in this issue
of t h e . / o ~ ~ ~ , ~ z n l describe how \ve in the
OpenVMS engineering community
set ou t t o bring the OpenVMS oper-
ating system and our loyal customer
base into the twenty-first century.
Thc papers present both the dcvclop-
ment issues and the technical chal-
lenges faced by the engineers who
delivered the OpenVMS operating

VllLS S)csle~lls system version 7 .0 and the Sp~ralog
file system, a new log-structurcd fi lc
system for OpenVMS.

We are estremely proud of the
results ofthese etTorts. In December
1995 at U.S. Fall DECUS (Digital
E q ~ ~ i p m e n t Computer Users Socicnr),
Digital announced OpenVMS version
7.0 and the Spiralog file system as part
of a first wave of product deliveries for
the OpenVR4S Windows N T AtXnity
Program. OpenVMS version 7.0 pro-
vides the "unlimited high end" on
which our customers can build their
distributed computing en\ f~ronments '

and Inovc to\vard the next ~nillennium.
T h r release of OpcnVMS version

7.0 in January of this year represents
the most significant engineering
enhancement t o the OpenVMS oper-
ating system since Digital released
the VAXclustcr systenl in 1983.
OpenVMS vcrsion 7.0 extends the
32-bit architecture of OpenVMS
t o a 64-bit architecture, allowing
OpmViMS Alpha users to hl ly exploit
thc 64-bit virtual address capacity of
the Alpha architccture. As)~ou will
read in some of the papers in this
issue, ho\ve\rer, our design goal for
OpenVMS vcrsion 7 .0 \vent beyond
just delivering 64-bit virtual address
capability to OpenVMS users. It \ifas

essential to us that OpcnVMS users
be able to upgrade to version 7.0
with hll compatibility for their exist-
ing 32-bit applications.

In addition t o achieving the sig-
nificant goals of64-bit addressing
and compatibility for 32-bit applica-
tions, version 7.0 includes very large
memory (VLM), very large database
(VLDB), fast I/O, hs t path, and
s)!mrnetric niultiproccssing (SMP)
enhancements. These new features
recently combined with the po\ver
of the Alpha architecture t o earn
OpenVh4S a \vorld record for perform-
ance. In May of this year, OpenVMS
version 7.0 on an AlphaServer 8400
system conf ig~~red with eight pro-
cessors and 8 gigabytes of menior)f,
running Oracle's Rdb7 database
and using the ACMS transaction
processing monitor, sct a ne\v ~ l o r l d
record for TPC-C performance 011

a single SMP system. Audited per-
formance was 14,227 tpmC: at $269
per tpmC:. Just this past Augiist, the
combination of OpenVMS version
7.0, Oracle's Rdb7 database, the
ACMS monitor, and the Alphaserver
4100 system achieved world-record
depart~nental server pcrformancc.
The ncu! u~orld record was set on
an Alphaserver 4100 5/400 system
configured with four processors and
4 gigabytes ofmemory. In audited
bencIimarl<s, the pcrfor~nance results
\\!ere 7,985 tpmC at $173 pcr tpniC.

Such outstanding I-csults are achicv-
able in a fill1 64-bit environment-
hardware architecture, operating
systems, and applications such as
Oracle's Kdb database. N o otlier
vendor today can deliver this powcr.

Digital Technical J o ~ ~ r n a l Vol.8 N o . 2 1996 3

In hct , 1)igital has t\vo 64-bit opcl--
nting systems \\.it11 this polver: the
OpuiVh,lS .~nd the Digitdl U N I S
opcrnting ~!~stcrns.

As noted above, Digital introduced
the O~xn\.'hlS operating s y s t c ~ ~ i with
suppo~.t [-i)r f i r l l 64-bit \,irtual ;~ddrcss-
ing 3t the samc t i ~ ~ i c it introduscti the
Spirnlog f lc system, in l~cccn ibcr
1995. The Spiralog design is based

0 1 1 rhc Sprite log-strucrurcd file sys-
tem tiom the Uni\~ersin of California,
I~crltclcy. With its L I S ~ ofthis log-
s t r~~cturcr i approach, Spiralog offcrs
1l1;ljor. n u \ - per-t'ormance fenri~rcs,
i l lcl~~ding fist, application-consistent,
on-line b.~cliup. Furrhel., it is filll!.
compntihlc \\.ith customers' existing
Files-l 1 ti lc s!,stenis, and applicatio~is
rli;lt run o n Files-1 1 \ \ , i l l ru11 o n
Spirnlog \\ ith no lnodification. To
deliver all of the features \vc felt \vcrc
csscnti;~l to meet the needs of o i ~ r
loyal customer base, the Spiralog tc'im
csn~nincri .~nd rcsol\recl a 11~11ii1~er of
technical issucs. The papers in this
issue iicscribc some of the challcngcs
tlic!, C~cccl, inclt~ding tlie ciccision to
design .I Files-1 I tile s!,stc~n cnlulntion.

l ' h c dclivc~-y of the OpenVMS
\.crsion 7.0 opcmting s!.stem and
tlic Spi~.alog f lc s!,stcm are part of
1')igit.ll's continued commitment to
rllc OpcnVMS custolmcr base. Tlicsc
products rcprcs"cit tlie work of dcdi-
catcd, talc~itcd engineering tcalils
that li,~\,c cicployed state-of-the-art
t c c l ~ n o l o g in products that \\,ill help
O L I ~ customers remain competitive
for !.cars to conic.

In the Opcn\.'MS group as else-
*here in Digital, 11.e are committed
to excellence in the develop~-nent and

delivery of business coniputing solu-
tions. \'Vt: \ \ . i l l continnc to ~naintain
and cnli,lncc n product porthl io t h ~ t
~nccts our custonicrs' need for true
24-IIOLII- by 365-day access t o tlicil-
data, f 111 integration \\;it11 micro so ti
Wi~lcio\\,s N'1' er~\~ironments, and tlic
f i l l 1 complement of net\\rorlt s o l ~ ~ t i o n s
nnci application sofi\\,are for today
2nd \\,ell into the ncxt niil1enni~1111.

\'ol. 8 No. 2 1996

James E. Johnson
William A. Lahg

Overview of the Spiralog
File System

The OpenVMS Alpha environment requires a
file system that supports its full 64-bit capabili-
ties. The Spiralog file system was developed to
increase the capabilities of Digital's Files-I 1 file
system for OpenVMS. It incorporates ideas from
a log-structured file system and an ordered write-
back model. The Spiralog file system provides
improvements in data availability, scaling of the
amount of storage easily managed, support for
very large volume sizes, support for applications
that are either write-operation or file-system-
operation intensive, and support for heteroge-
neous file system client types. The Spiralog
technology, which matches or exceeds the relia-
bility and device independence of the Files-1 1
system, was then integrated into the OpenVMS
operating system.

Digital's Spiralog product is a log-structured, cluster-
wide file system with integrated, on-line backup and
restore capability and support for multiple file sys-
tem personalities. I t incorporates a number of recent
ideas from the research community, including the
log-structured file syteni (LFS) from thc Spritc filc
system and the ordered \\rritc back fi-om the Echo
file s y ~ t e m . ' . ~

The Spiralog filc system is fi~lly intcgratcd into the
0penV1MS operating slatem, pro\~iding compatibility
\\rid1 the current OpenVMS fi le system, Files-l 1. It
supports a coherent, cluster\\,ide write-bchind cache
and provides high-performance, on-line backup and
per-file and per-\~olumc rcstoi-e hnctions.

I n this paper, \lie first discuss the evolution of filc
systems and the recluirenicnts for many of the basic
designs i l l the Spiralog file system. Nest \\re describe
the o\lerall arcbitectilre of the Spit-alog file system,
identiffiing its major components and oi~tlining their
designs. Then cve discuss the project's results: what
worked well and what did not work so well. Finally, 11.e
present some conclusions and ideas for f i~turc \vork.

Some of the major components, i.c., the backup
and restore facility, the LFS server, and OpcnV1MS
integration, are described in greater detail in conipan-
ion papers in this iss11e.j-"

The Evolution of File Systems

File systems have existed throughout much of the his-
tory of computing. The need for libraries o r ser\lices
that help to manage the collection of data 011 long-
term storage deviccs was recognized many years ago.
The early support libraries have e\lolved into the filc
systems of today. During their c\lolution, they have
responded to the industry's improved hardware capa-
bilities and to users' increased expectations. Hardwa~-e
has continued to decrease in price and impro\~c in its
price/perfor~~iance ratio. Consequently, ever larger
amounts of data are stored and rnanipuluted by users
in ever more sophisticated ways. As more and more
data are stored on-line, the need to access that data 24
hours a day, 365 days a year has also escalated.

Digital Technid Journal Vol. 8 No. 2 1996

Sjgoificant improvements to file systelils have been
made in the following areas:

L>ircctory structures to ease locating data

Device indcpende~ice ofdata access t h r o ~ ~ g l i tlie file
S!'StCIll

Accessibility of tlie data to users on other systems

A\'ailability of the data, despite either planned or
~~np lanncd scrvice outages

Kcliability of the stored data and the performance
of the data acccss

Requirements of t h e OpenVMS File System

Since 1977, the OpenVMS operating system has
offered a stable, robust file system known as Files-l 1.
This f le systcm is considered to be very succcssf~~l in
the areas of reliability and device independence.
Recent customer feeciback, however, indicated tliat
tlic arcas of data a\~ailabilitl\; scaling of the amount o f
storage easily mnn;igcd, support for \,cry I;irge volumc
sizes, and suplx)rt for heterogeneous file spstcni clicnt
types \\,ere in need of improvement.

The Spiralog projcct \\.as initiated in response to
customers' nccds. We designed tlie Spiralog file system
to niatch or somcwh;it exceed thc Files-1 1 system in
its ~~cliability and device independence. The focus of
the Spiralog projcct was on those areas that \vel-c dc~c
k)r impt-o\!cnic~it, notably:

Data availability, especially during planned opera-
tions, SLICII as backup.

If the storagc cievice needs to be taken off-line
to perform a backup, even at a very high backup
rate o f 20 11icgal~)ltes per second (Ml3/s), almost
14 hours are needed to back up 1 terabyte. This
length of scr\ficc outage is clearly unacceptable.
1Morc typical backup rates of 1 to 2 MR/s can take
several days, which, of course, is not acceptable.

Grcatly incrcascd scaling in total amount of on-line
stor.lgc, \virIiout greatly increasing the cost to man-
age that storagc.

For cxamplc, 1 terabyte o f disk storage currently
costs approsi~nately $250,000, which is well \vithi~i
the budget of many large computi~ig centers.
However, the cost in staff and time to manage such
amounts of storage can be many times tliat of the
storage." The cost ofstorage continues to h11, wliilc
tlic cost of nianaging it continues to rise.

Effective scaling as Inore processing and storagc
resources beconic available.

For example, OpcnV1MS Cluster systems allo\\r pro-
cessing po\srcr and storage capacity to be addecl
incrementally. It is crucial that the sofnvare support-

ing the tile s!atelii scale as the processing po\vcr,
bandn,idth to storage, and storage cdpacity increase.

Impro\,ed perforniance for applications tliat arc
either write-operation o r file-systc~ii-opcratio~i
intcnsi\,c.

As tile system caches in m ~ i n nlcmor!, lia\fc
incrcnscti in capacity, data reads and tile systcm r c ~ d
operations have beconie satisfied Inorc anci more
from the cache. At tlie same time, nia~iy applica-
tions \\,rite large amounts of data or create and
~ n a n i p ~ ~ l a t e large numbers of tiles. The L I S ~ o f
redundant arrays of inexpcnsi\lc disks (1UIl)) stor-
age 11.1s increased tlie available bnnd\vidth tbr ciata
\\)rites and tile system writes. Most file system opcr-
atio~is, o n tlie other hand, arc s~iiall \\!rites and ,Irc
spread across tlie disk at random, often negating
the bcnc6ts of lWI1) storage.

Iniprovcd ability to transparcntl!~ acccss the stored
clnt~ across several dissimilar clicnt types.

Computing environments h ~ v c bccomc incrc.1~-
ingly hetcrogcnco~~s. Diffcrcnt c l i e ~ ~ t s!?stcms, sucll
as tlic Wincio\vs o r the UNIX opcmti~ig system,
store their filcs on and share their filcs \\lit11 scr\.cr
systems such as thc OpenVMS scr\,cr. I t has
bccomc necessary to support the syntax and scnian-
tics oEse\w-al diffcrcnt file system personalities o n
a common file scr\)cr.

.- -. 1 hcsc nccds wcrc cclitral to many ticsign decisions wc
madc for the Spiralog file system.

The members of the Spiralog projcct c\~aluatcd
r n ~ ~ c h of the ongoing work in file systcnu, d;ltab;lscs,
and storage architccturcs. RAID storagc makes high
band\vidtli a\,ailabJe to disk storage, but it r cq~~i res
large \\>rites to be effective. Databases lia\,c csploitcil
logs nnci thc grouping of writes togcthcr to ~ n i n i m i ~ c
the nuniber of disk I/Os and disk scclts rcquil-cd.
13;ltabascs and transaction s!lstcms have also csploitcd
the tecl~niquc of copying the tail of the log to cffcct
backups or data replication. The Sprite projcct at
13crltcley had brought together a log-structured file
system and RAID storage to good effect.'

lly cirawing fro111 tlle above ideas, particularl!, thc
insight oflio\v a log structure c o ~ ~ l d support on-line,
Jiigli-performance backup, we began our development
cft i~rt . We designed and built a distributed file system
that madc extensive use of the processor and memory
near tllc application and used log-structured storage in
tlic scrvcr.

Spiralog File System Design

The main execution stack of the Spiralog f lc system
consists of thrcc distinct layers. Figure 1 sho\vs the
o\.erall structure. At the top, nearest the user, is the file

Vol. 8 No. 2 1996

BACKUP USER I F64 I I 11 FILE I , I INTERFACE
SYSTEM I VPl SERVICES 1) I

CLERK

LFS SERVER BACKUP ENGINE

NODE A NODE B

USER APPLICATION USER APPLICATION I-
I SPIRALOGCLERK I I SPIRALOG CLERK I

ETHERNET

SPIRALOG VOLUMES

I

Figure 1
Spjralog Sr~-l~cturc Ovrr \~iew

ACTIVE LFS SERVER

Figure 2
Spiralog Cluster Configuration

STANDBY LFS SERVER

spste~ii client layer. I t consists o f a number o f filc
s y s t e ~ ~ i pcrso~~al i t ies and the underlying personality
independent scrviccs, which we call tlie VPI.

T\\/o file svstem personalities d o ~ n i n a t c the Spiralog
design. T h e F64 personality is an emulation o f the
Files-11 file system. T h e file system library (FSLIB)
personality is an implementation o f ~Uicrosoft's N e w
Technology Advanced Server (NTAS) filc scrviccs for
use by the I'ATHWOlU<S for OpenViMS file server.

T h e nes t layer, present 011 all systems, is the clerk
layer. I t supports a distributed cache and ordered write
back t o tlie LFS server, giving single-system semantics
in a cluster conf ig~~ra t ion .

T h e 1,FS server, the third laver, is present on all des-
ignated server systems. This component is responsible
for maintaining the on-disk log structure; it includes
the cleaner, and it is accessed bv ~nult iple clerks. Dislts
call be connected t o more than o n e LFS server, but
they are served only by one LFS server at a time. Trans-
parent failo\,cr, fi-om the point o f view o f the file sys-
tem client layer, is achieved by cooperation between
the clerks and tlie sur\~iving LFS servers.

T h e backup cnginc is present 011 a system with an
active LFS server. I t ~ ~ s e s the LFS server t o access the
on-disk data, and it intcrhccs t o the clerk t o ensure
that the backup o r restore operations are consistent
with the clcrl<'s cache.

Figure 2 slio\\s a typical Spiralog cluster configura-
tion. In this cluster, the clerks o n nodes A and B are
accessing the Spiralog \~olumes. Normally, they use the
LFS scrvcr o n node C t o access their data. If node C
should hi l , the LFS server o n node D ~ v o u l d imnicdi-
ately provide access t o tlic volumes. T h e clcrlts o n
nodes A and R \vould use the LFS server o n node D ,
rrtrying all their outstanding operat io~is . Neither user
application \\iould detect any failure. O n c e node C had
recovered, it \\/auld become the standby LFS server.

File System Client Design
T h e filc s)s tcm client is responsible for the traditional
file systcln filnctions. This layer provides files, directo-
ries, access arbitration, and file naming rules. I t also
provides the services that the user calls t o access the fi lc
syste1n.

NODE C

VPI Services Layer T h e VPI layer provides an underly-
ing primiti\ic file system interface, based o n the U N I S
VFS switch. T h e VPI layer has n v o o\lerall goals:

NODE D

1 . T o support multiple file system personalities

2. To effectively scale t o very large volumes o f data
and very large lumbers offiles

To meet the fi rst goal, the VPI 1,iyer provides

File Iiames o f 2 5 6 Unicode characters, with n o
reserved characters

N o restriction o n directory depth

U p t o 2 5 5 sparse data streams per file, e'lch with
64-bi t addressing

Attributes with 2 5 5 Unicode character names, con-
taining values o f up to 1 ,024 bytes

Files and directories that are freely shared a m o n g
file system personality 1iiod~11cs

To ~ n c e t the second goal, the VI'I layel- provides

File identifiers stored as 64-bi t integers

Directories through a B-tree, rather than a simple
linear structure, for log(lz) file name looltup time

T h e VPI layer is only a base for file system pcrsonali-
ties. Therefore it requires that such personalities are
trusted components o f the operating system.
 moreo over, it requires them t o implenic~i t file access
security (al though there is a convention for storing
access control list information) and t o perform all nec-
essary cleanup \vhen a process o r image ter~ninates .

Digital TCCIIIIIC.II Journrll Vol. 8 No. 2 1996

F64 File System Personality As previously stated, the
Spiralog p r o d ~ ~ c t inclildcs two file systcm personalities,
F64 and FSLIR. The F64 pcrso~iality provides 3 service
that cmularcs the Files-1 1 file system.' Its functions,
serviccs, a\f;iilablc f l c attributes, and erecution
bcl~;i\~iors arc simil'ir to those in the Files-1 1 f le s!.s-
rcm. Minor diffcrcnccs ;ire isolntcd into arcas tliat
rccci\.c little 11sc from most ;lpplications.

For instance, the Spi~alog f lc system supports the
\,arious Files-1 1 c l~~cucd I/O ($QIO) parameters for
returning f lc attribute inform;ition, bccai~se they are
~ ~ s c d implicitl!* or explicitly by most user applications.
On tlic other hand, the Files-11 method of rending
the tile header infbrmation directly t l i ro~~gl l 3 file
called 1Nl)ESF.SYS is not commonly ~ ~ s c d by applica-
tions and is not s~rpportcd.

The F64 file s!;stcm personality demonstrates that
the Vl'I laycr contains sufticicnt tlcsibilit)~ to s ~ ~ p p o r t
a complcs f lc systcm intcrfacc. I n a nunibcr of uses,
ho\\/c\lcr, scvcr;il Vl'I calls arc nccdcd to implement
a single, complex Files-l 1 operation. For instance, to
do a filc opcn opcl-ation, the F64 personality performs
tlic tasks listed belo\\!. The items tliat end nrith (VI'I)
arc tasks that use VPI service calls to complete.

Acccss tlic file's parent directory (VPI)

l3eaci tlic dirccto~.y's filc nttl.ibutcs (VI'I)

V c y i ~ autliol-iz.itio11 to rc;id tlic directory

Loop, scnrcliing tbr tlic tilc [lame, hy
- l<cading some directory entries (VPI)
- Searching the clircctory buffer fix the tile name
- Esiting the loop, if the m;itch is found

Acccss the target tile (VPI)

Read the f lc's attributes (VI'I)

Audit the tile opcn attempt

FSLlB File System Personality ?'he FSL113 file systcm
pcrso~ialit!, is o spcci,llizcd tile system to support tlie
I'ATHWORKS h- OpcnVMS f lc scr\,cr. Its nvo major
g(~,~ls arc to support rlic file names, attributes, and
behaviors found in ~Vicrosoh's NTAS f lc access proto-
cols, vld to pro\lidc lo\\, run-time cost for processing
NTAS filc systcm requests.

Fl'lic I'ATHWORIG scr\cr implcmcnts a file service
tbr pcrso~ial cornputc~. (l'<:) clients Inyered o n top of
tlic Files-11 file systcm scr\~iccs. WIicn NTAS service
bclia\4ors o r attributes clo 11ot match those of Filcs-1 1,
the PATHWORKS server Iias to emiilatc them. This
can Icad to checking security :~cccss permissions nvice,
mapping f lc names, and c~nulnting filc attributes.

Many of tlicsc problems can be a\~oided if the VPI
interface is ~ ~ s c d directly. For instance, because thc
FSI.IR personality clocs not laycr o n top of a Files-11
pcrson~ility, security ;icccss clicclts d o not need to be
performed n\,icc. Furtlicrmorc, in n str,~iglitfi)r\vnrci
design, t1ic1.c is n o nccci to map Across different filc

Vol. X No. 2 I996

naming or attribute r ~ ~ l c s . For reasons \\,c describe
later, in the VPI Results section, \vc chose not to pur-
sue this dcsig~i to its co~iclusio~i.

Clerk Design
:The clerlcs are responsible tbr mnnngi~lg the c.iclics,
dctcrmining the order of\\,ritcs out of the c,icIic to thc
LFS scr\,cr, and maintaining caclic colicrc~icy \\.itliin
a cluster. 'l'hc cachcs 'Ire \ \ ~ i t c bcliinti in a m.inncs that
prcscrvcs tlic order ofclcpcndc~it opc~.'~tio~is.

The clerk-servcl- protocol c o ~ ~ t r o l s the transfer o f
data to and fi-om stable storage. 1)nta can be sent ns
a multiblock atomic \\.rite, and opcr.itio~ls that chnngc
multiple data items such as a f lc rename cnn be mndc
atomically. If a server fails during n request, tlic clcrk
treats the r e q ~ ~ c s t as if it \\,ere lost anti ~.ctrics tlic
request.

Tlie clerk-scr\rcr protocol is idcmpotcnt. Idcm-
potent operations can bc applied rcpcatctlly \\,it11 no
effects other than thc desired one. 'T'lius, after ali)!
number of ser\,cr hil~~t-cs or scr\'cr faiIo\,c~-s, it is aI\v.i!ls
safe to reissue an operation. Clerk-to-scrvci- \\,rite
opcrations al\\:a!s Icn\.c the file systcm state consistent.

The clerk-clerk protocol protccts tlic usel- dntn and
tilc systcm nletadata cached by the clcrlis. (:ache
colierenc!~ inforln.ition, rather t1i;ln ti.lra, is passed
dircctl!, bct\\,ccn clerks.

Tlie filc systcm cachcs arc I<cpr i n tlic clcrks. AIIul-
tiple clerks can 1iai.c copies of s t ;~bi l i~cd tiat'i, i.c., data
that has been itten ten to the scr\.cr \\.it11 tlic \\.rite
acl<no\\.ledgcd. Only one clcrk call li;l\.c unstiibilizcd,
\rolatile data. Data is cschnngcd bcn\.ccn clcrks by
stabilizing it. \.V~cn a clcrk nccds to \\.l-itc n block of
data to the serIrcr from its cache, it LISCS a toke11 inter-
filce that is layered o n the clerk-clcrlc protocol.

The \\,rites f i o n ~ the caclic to tlic scr\ cr arc cicfcl-red
as long as possible \\.itliin the constraints ot'tlic c~iclic
protocol i111ci the dcpc~idc~ic!~ gunrantccs.

Dirty data rem'iins in tlic caclic as loiig as 30 scc-
onds. During that tinic, o\~cr\\.ritcs arc c o ~ i i b i ~ i c ~ i
\\;ithin the constrnints o f the iicpcndcncy gual-antccs.
Furthermore, operations that arc lino\vn to ofKsct one
another, such as freeing a file idcntifcr and allocating
a file identifier, arc hlly colnbincd \vitliin the cnche.

Eventuall!~, some trigger c;i~~scs tlic dirty Jar3 to be
\\rritte~i to tlie scr\icr. At this point, sc\,cl.nl \\)rites .lrc
grouped together. Write opcrntions to acijuccnt, or
o\ierlapping, filc locations arc conihincd to k)rm
a smaller n i~mbcr of larger writcs. 7'lic resulting \\trite
operations are then grot~pcd into mcssngcs to the
Lt'S SCr\TJ-.

The clcrks pcrfor~n write behind for b u r rcasons:

To spread the 1 / 0 load o\'cr time

To remove occluiicd ciatn, \\.hicIi c.ln result fr.on.1

repeated o\a-\\,ritcs of n dat;l block, fro111 being
tmnsferrcd to the s c r i ~ r

To avoid writing data that is cluicltly deleted such as
tcmporary filcs

To co~ilbinc multiple small writes illto larger transfers

Tlie clerks order dependent writes from the cache
to tlie server; consecluently, othcr clerks nevcr see
"impossible" states, and related \\,rites ne\ier o\lertaltc
each othcr. For instance, the deletion of a file cannot
happen before a rename that \\/as pre\liousl!~ issued to
the same file. Related data writes arc caused by a partial
overwrite, o r an explicit linking of operations passed
into the clerk by the VPI layer, o r an implicit l i~ ik i~ig
due to the clerk-clcrlc coherency protocol.

The ordering bcnveen mites is kept as a directed
graph. As tlie clerks traverse these graphs, they issue
the writes in order o r collapse the grapll \vhen writes
can be safely combined o r eliminated.

LFS Server Design
Tlie Spiralog f lc system uses a log-structured, on-disk
format for storing data within a \rolume, yet presents
a traditional, upclatc-in-place file system to its users.

FlLE HEADER

1 USER 110s

FlLE VIRTUAL BLOCKS

Recently, I o ~ - s t r ~ ~ c t i ~ r c d file systems, such as Sprite,
have beell an area of active research.'

Within the LFS server, support is provided ti,r the
log-structured, on-disk format and for mapping that
format to an ~~pdate-in-place model. Specifically, this
component is responsible for

Mapping the incoming I-cad and \\,rite operations
from thejr simple address space to positions in an
open-ended log

Mapping the open-ended log onto a finite amount
ofdisk space

Reclaiming disk space by cleaning (garbage collect-
ing) tlie obsolete (o\lcr~\lrittcn) sections of the log

Figure 3 sho\\,s the various mapping layers in tlic
Spiralog file systerm, including those handlcd b y tlie
LFS server.

Z~~corni~lg read and \vrite operatio~is arc bascd on a
single, largc address space. Initially, the LFS server trans-
forms the address ranges in tlie incoming operations
into equivalent address ranges in an open-ended log.
This log supports a very large, write-once address space.

LOG GROWS

Figure 3
Spiralog Address mapping

FlLE SYSTEM ADDRESS
SPACE I "PI

CLERK

C
FlLE ADDRESS SPACE

1 LFS

I B-TREE

LOG ADDRESS SPACE

LFS
LOG
DRIVER
LAYER

PHYSICAL ADDRESS
SPACE

Digtal Technical Jourd

A reacl operation looks up its location in the opcn-
cnclcd log and proceeds. On the otlier Iiand, a \\,rite
opcration makes obsolete its current add]-ess range
dnd appends its ne\v value t o the tail o f rile log.

In turn, locations in the open-encled log arc then
mapped into loc~ltions o n the (finite-sized) disk. This
additional mapping allo\\,s disk blocks t o be reused
once their original contents lia~lc become obsolctc.

Physicall!: the log is divided into log segments, c'lcli
of\\lhich is 256 kilob!ites (K R) in length. Tlic log scg-
mcnt is ~ ~ s c c l as the transfcr unit for the bacltup engine.
I t is also used by tlie cleaner for reclaiming obsolete
log space.

More information about the LFS server can be
found in this issue:'

On-line Backup Design
?'lie dcsign goals for the backup engine arose fi-om
higher stomge management costs and greater data avail-
ability needs. Investigations with a 11~11nbcr o f c ~ ~ s t o m c r s
rc\calcd their rccli~ircmcnts for a backup engine:

Consistent sa\,e opcrat io~is \vithout stopping an!,
applications o r locliing o u t data modifications

Very List save opcr'itions

Uoth fill1 and increme~it,ll save operations

l<estorcs o f a f~lll volume and o f indi\~iciual files

O u r response t o these needs influenced many deci-
sions concerning the Spiralog file system dcsign. T h e
nccd for a high-pcrfor~na~lce, on-line back~lp Icd t o
a search for an on-disk structure that coulcl support
it. Ag'lin, wc cliose the log-structured design as tlic
most suitable one.

A log-srructurccl organization allows the backup
Klcility t o easily demarcate snapshots o f the file system
at any point in time, si~ilply by mdrking a point in tlic
log. Such a mark represents a \,ersion o f the file systcm
and prelrents ciisk blocks that conipose tliat \.crsion
from being cleaned. In turn, tliis allons the b a c k ~ ~ p t o
r u n agaiiist a lo\\! le\,el o f tlie file system, that o f tlic
logical log, and therefore t o operate close t o the spil-al
tr~lnsfcr rate o f the underl!~ing disk.

T h e difference benvecn a partial, o r incremental,
and a f ~ ~ l l save operation is only the starting point in
the log. An incrementdl sdve need not copy data back
t o tlic beginning o f tlic log. Therefore, bo th incrc-
mental anci fbll save operations transfer data at very
high speed.

Ky implcn~cnt ing these features in t h e Spiralog fi lc
system, \vc f~~lf i l lcd o u r customers' requirements fix
hig l i -pcrh) rm~ncc , on-line backup save o p c r ~ t i o n s .
Wc also met their needs for per-file and per-volume
rcstorcs and an ongoing need for silnplicin and rcduc-
tion in operating costs.

-1-0 ~xo\cide per-file rcstorc capabilities, tlic backup
utilinr anci the L,FS scrl8er cnsurc tliar tlic appropriate
file 1icade1- inforuiiation is stol-cd during the s a \ c opcr-
ation. Tlic sa\mi file system data, including file licad-
crs, log rnappilig inforniation, ,lnel user data, drc
stored in a file kno\\.n as a .sor'es~/. Each s ~ \ , c s c t ,
r c~ard lcss o f the number o f tapes it r e i l~~i rcs , rcprc-
scnts 'I sillglc SJ\Y operation.

'l'o r c c i ~ ~ c c tlic complcsity o f file I-cstorc opcrarions,
the Spiralog file systcm pro\,idcs an off-line saircsct
mcrgc fcatul-c. This allows the systeni man'lgcr t o
merge se\~cral sa\.esets, either fill1 o r incrcu~cntal , t o
form .I nc\il, single saveset. With this feature, system
Jiian'lgcrs c'in have a worltable baclcup s , ~ \ ~ c plan that
never calls for an on- l i~ ic full backup, t l i ~ ~ s t i~r t l icr
reducing the load o n their production systems. Also,
tliis f e a t ~ ~ r c c,ln be ~ l s e d t o ens~11-e that fi lc rcstorc opcr-

ations tali be ,iccol~iplished \vith a small, b o ~ l ~ i d c d set
of s.l\~cscts.

T h e Spiralog backup facility is describeel in detail in
this I S S L I C . '

Project Results

'l'lic Spiralog tile system contains a number ofinno1.a-
tions in the arcas o f o ~ l - l i ~ l c backup, log-struct~ll-cd
s t o r ~ g c , cluster\\~ide ordercd \\,rite-behind caching, -

, ~ n d multiple-ti le-system client support . .~ ~

I l ic LISC o f log s t r ~ ~ c t ~ l r i n ~ as an on-ciisk format is
very cffecti\ic in supporting higli-pcrh)rmani-c, on-linc
backup. T h e Spiralog file s)lstcni rct,lins the prcvio~~sl!!
documented bellefits o f LFS, sucli as fast \\,rite pcrfi)r-
mallcc r h ~ t scales \\,it11 t h e disk s i ~ c and t l i r o ~ ~ g l i p ~ ~ t
tllat ~ I ~ C ~ C ' I S C S as la]-ge read caclics arc ~ ~ s c c i t o oftict
disk reads.'

I t S I I ~ L I I ~ also be iioted that the Files-l 1 file s!~stc~ti
sets a high standard fbr data reliability ,~nci robustness.
- ~

I l ic Spir.llog technolog , met this challcngc \-cr\! \ \ ~ l l :
as a result o f the iclempotent protocol, the cluster
Liilo\ycr clcsign, anti the recoircr capabilit\, o f tlic Jog,
\\,c cncounrered fe\ \ data rcliabilit\r problems ciuring
cic\~clopmc~lt .

In any large, complex project, many tcchl i ic~l dcci-
sions JI-c necessary t o con\,crt rcscarch tcclinolog\,
into a IN-oduct. I n this section, \ire d i s c ~ ~ s s \vhy certain
ciccisions \\)ere made during the dc\,elopmcnt o f the
Spil-alog subsystems.

VPI Results
Tlic VPI f lc system \Ifas generally s ~ ~ c c c s s f ~ r l in pro-
viding the ~ ~ n d c r l y i n g support ncccssary For different
file system personalities. We found tliat it \\,,is possi-
ble t o construct a set o f prirniti1.e opcl-ations tliat
coulcl be ~ ~ s c c l t o build complex, ~~se~- - lc \ , c l , file s!'stclii
0p""'iolls.

Vol. S No. 2 1996

By using these primitives, the Spiralog project
members were able to successhll!~ design t\vo dis-
tinctly different personality modules. Neither was a
fi~nctional supcrset of the other, and neither \\,as lav-
ered on top of the other Ho\\ic\~er, there was an
important second-order problem.

The FSLIB tile system personality did not have a fill1
~iiapping to the Files-11 file system. As a consequence,
tile management was rather difficult, because all the
data Inanagelncnt tools on tlie OpenVh/IS operating
system assumed compliance ~r i t l i a Files-l 1, rather
than a VPI, file systeni.

This problem led to the decision not to proceed
\\lit11 tlie original design for the FSLII3 personality in
version 1.0 of Spiralog. Instead, we dc\/eloped an
FSLIB file systeni personality that was ti~lly compatible
with the F64 personality, even ~ v h e ~ i t h ~ t compatibility
fol-ced 11s to accept an additional execution cost.

We also found an execution cost to the primitive
VPI operations. Generally, there was little overhead
for data read and write operations. However, for
operations such as opening a file, searching for a file
name, and deleting a file, we found too high an over-
head from the number of calls into the V1'1 services
and the resulting calls into the cache manager. \;Vc

called this the "fan-out" problem: one high-level
operation \vould turn into several VPI opcrations, each
of \vhicIi \vould turn into several cache manager calls.
Table 1 gives tlie details of tlie can-out problem.

VVe believe that it \\/auld be \vorthwhile to pro\,ide
slightly liiore complex VPI services in order to com-
bine calls that alcvays appear in the same sequence.

Table 1
Call Fan-out by Level

F64
Operation Calls

Create file 4
Open file 1
Read block 1
Write block 2
Close file 1

VPI Clerk
Calls Calls

18 29
6 18
1 3
4 7
4 13

Revised
Clerk
Calls

Clerk Results
'I'he clerk met a number of our design goals. First, the
use of idempotent operations allowed failover to
standby LFS servers to occur with n o loss of service to
the file system clients, and \\lit11 little additional c o n -
plesity within the clerk.

Second, the ordered write behind proved to be
effect.ive at ordering dependent, met'ldata file system

operations, thus supporting the ability to construct
co~nples file systenl operations out ofsimpler elements.

Third, the clerk \\/as able to manage large physical
caclies. It is very effective at ~naliing use of unused
pages when tlie memory demand from the OpenVMS
operating systeni is lo\v, and at quickly shrinking the
cache when meliiory delilands increase. Although
ccrtain parameters can be used to limit the size of a
clerk's cache, the caches are normally self-tuning.

Fourth, the clerks reduce the n i~mber of oper~t ions
and messages sent to the LFS server, with a subsequent
reduction to tlie 11unibcr of messages and operations
waiting to be processed. For the COPY cornmand, the
number of operations sent to the server was typically
reduced by a hctor of 3. I3y using transient files with
lifetimes of fewer than 30 seconds, \ve sa\v a reduction
of operations by a Elctor of 100 o r more, as long as the
temporary file tit into the clerk's cache.

In general, tlic code complexity and CPU path
length within the clcrk were greater than \ye had origi-
nally planned, and they will need further work. Two
aspects of the services offered by the clerk com-
pounded the cost in <:PU path length. First, the clcrk
has a simple interface that supports reads and writes
into a single, large address space only. This interface
reqi~ires a number of clerk operations for a nun~bcr of
the VPI calls, f ~ r t h e r expanding the call fan-out issues.
Second, a concurrcnc!l control model allows the clerk
to unilaterally drop locks. This requires the VPl layer
to revalidate its internal state \\/it11 each call.

Either a change to the c.1er.k and VPI ser\iice inter-
faces to support notification of lock irlvalidation, or a
change to tlie concurrency control ~iiodcl to disallow
locks that could be unilaterally invalidated, would
reduce the number of calls made. Wc believe such
changes \vould produce the results given in the last
column of Table 1.

LFS Server Results
Tlic LFS server pl.ovidcs a highly available, robust file
system server. Under heavy write loads, it provides the
ability to group together multiple recluests and reduce
the number of disk I/Os. In a cluster configuration,
it supports Gilover to a srandby server.

I n normal operation, thc cleaner was successhl in
minimizing overhead, typically adding only a few pcr-
cent to the elapsed time. The clerlner operated in a lazy
manner, cleaning only when there was an immediate
shortage of space. 'The cleaner operations were f~ r t l i e r
lessened by the tendency t i ~ r normal file overurrites to
free up recently filled log segments for reuse.

Although this produced a cleaner that operated
with little overllead, it also broi~ght about nvo L I I ~ L I S L I ~ ~

interactions \ilith the backup facility. 111 the f rst place,
the log often contains a number ofobsolete arcds that

Vol. 8 No. 2 1996

arc eligible for cleaning but ha\le not yet been
processed. These obsolete arcas arc also saved by the
backup engine. A l t h o ~ ~ g h thc!l have no effect o n the
logical state of tllc log, they d o require the bnckup
engine to move ~ n o r c ciatn to b'lckup storage thnn
might other\\/ise be necessary.

Second, the dcsign initially prohibitccf the clca~lcr
from running dgainst ;I log \\lit11 s~iapshots. Consc-
qucntl!; the clcancr \\.as disabled dul-ing ;I save opcrn-
tion, \\tliich had the follo\ving effects: (1) The anlount
of a\.ailable free space in the log was artificially
depressed during a bacl<up. (2) Once rlic bacl<up \\,as

finished, the activated clcancr \ \ ,o~~lci disco\fcr tlint
a great 11~111ibcr of log scg111ents \\,ere no\\, cligilzlc for
cleaning. As a result, the cleanel- i~ndcr\\,cnt a sudden
surge in cleaning activity soon aftel- the backup had
completed.

Wc addressed this problem by reducing tlic area of
the log that \\.as off-limits to the cleaner to only the
part that the backup engine \ \ ,o~~lcl rcad. ?'liis li~.nitcd
snapsliot \\.indo\\l allo\\led morc segments to rcmnin
eligible for cleaning, t l i ~ ~ s grcatl!. ,~llc\k~ting rlic sliort-
age of cleanable space durjng the backup and climinnt-
ing the postbackup cleaning surge. For an 8-gigabyte
time-sharing \.olume, this change typically r c d ~ ~ c c d the
period of high clcancr activity fi-0111 4 0 seconds to less
than one-half of a second.

We 1m.c not yet cspcrimcntcd \\~itIi different clcnncr
algorithms. &lore \\rork ncccis to 1x2 done in this arcn
to scc if the cleaning efficie~lcy, cost, and intcr.1. , C ~ I ~ I I S '

~vi th backup can be iml>rovc~i .
The current mapping transfol-matio~i from the

inconling operation address spacc to locations in the
open-ended log is more cspcnsi\~c in CPU time thnn
we \vould like. more \\lark is nccdcd to optimize thc
code path.

Filially, the JLFS ser\!er is gcncrall!i s~~cccssfi~l ;it pro-
\,iding the appearance of a traditional, ukidatc-in-place
file system. Houlc\cr, as the ullused spacc in a \ r o l ~ ~ ~ i l e
nears zero, the ability to behave with se~~ lu~ l t i c s that
meet users' expectations in a log-structured file system
proved more diffic~~lt than wc had anticipntcd and
reqi~ired signiticant cffi)rt to corrcct.

The LFS ser\/cr is dcscribcd in much morc detail in
this i ss i~e .~

Backup Performance Results
IVc took a nc\v approach to the backup design in the
Spiralog system, resulting in a very tist and very low
i~npact backup that can be ~ ~ s c d to crc.itc consistent
copies of the filc systcm \\~liilc applications arc acri\~cly
motii@ing data. Wc acl~ic\cd this degree of success
\\.itlloi~t compromising such fi~nctionnlip as incre-
mental backup or hst, sclcctivc restore.

The pcrfi)nnancc impro\.cmcnts of the Spiralog
save olxratiot~ nrc pal-titularly noticeable \\.it11 the
large 11~1mbcrs of transient or nctivc 61es that are typi-
cal 1y f o ~ ~ ~ i c i 011 LISU V O ~ L I I ~ I C S or 011 11i;iiI S C ~ \ , C I - \~olu~nes .
111 the follo\\ling tables, \vc compare tlic Spiralog
and tlic file-bascci Files-l 1 bac l i~~p operations on a
I>F.<: 3000 Model 500 tvorkstation *it11 a 260-1MR
volume, containing 21,682 ti lcs in 4 0 1 dircctorics and
a I-2877 tape.

T.lblc 2 gives the rcsults of n\.o sa \ r operations,
\vhich arc the average o f five operations. Alrhough its
S ; I \ ~ C S C ~ size is s o ~ i ~ c \ \ ~ I i ; ~ t I,irg~r, tlic Spiralog sa \ r
o p c r ~ t i o ~ i C O I I I ~ I C ~ C S ncnrl!. n\ricc as fast as the Filcs-l 1
sa\.c ol>cration.

-T;iblc 3 gi\rs tlic rcsults from restoring a single file
to the cargct \,olumc. I n this case, the Spiralog file
restore operation csccutcs morc than rlircc times as
fast 3s the Files-1 1 system.

The pcrtbr111xicc cid\,antngc o f thc Spil-alog bacl<up
~11ci ~.cstorc Lncility increases f i~r thc~. for Inrgc, niulti-
tape s~\~cscts . 111 rllesc c~scs , tlic Spiralog s\stc~ll is ablc
to o~i i i t tapcstth.it JI-c not ncccicci ti)r tlic f lc restore;
the Files-1 1 system docs not have this capability

Observations and Conclusions

O\'cr~Il , \\,e bcIic\'c that the signiticant iuno\.;ltion and
re31 SLICCCSS of the Spil-alog project \\,;is the integration
OF high-pcrForrnn~icc, on-line backup \\,it11 the log-
structured f lc systcm model. ?'he Spiralog tile system
dclivcrs an on-line backup cnginc that can r u n near
dc\ricc speeds, \\lit11 littlc impact o n concurrently run-
ning applications. Man!, filc operations arc signifi -
cantly Eistcr in elapsed time ;is n result o f thc reduction
in I/Os d ~ ~ c to the cnclic rind the g r o ~ ~ p i n g o f write
opuations. A l t l i o ~ ~ g I ~ tllc cocic pntlis for a n i~~ i ibc r
of olxrations ,lrc longer than \\/c had planned, their

Table 2
Performance Comparison of the Backup Save Operation

Elapsed Time
File System (Minutes:Seconds) Saveset Size (MB) Throughput (MBIs)

Spiralog 05:20 339 1.05
Files-1 1 10:14 297 0.48

Table 3
Performance Comparison of the Individual File
Restore Operation

design. We expect to be \ilorl<ing on this resource
usage in tlie near h ture .

Elapsed Time
File System (Minutes:Seconds)

Acknowledgments

Spiralog 01:06
Files-I I 03:35

length is mitigated by continuing ilnpro\lernents ul
processor perforruance.

\Vc learned a great deal during the Spiralog project
and made the following obsel-vations:

Volul-ne f~ll semantics and tine-tuning the cleaner
wcrc more complex than \ire anticipated and will
require f i~ture refinement.

A heavily layered arcliitecturc extends the CPU
path length and tlie f in-out of proccdurc calls. We
focused too 111~1ch a t tc~i t io~l 011 r c d ~ ~ c i n g I/Os and
not enough attention on reducing the resource
usage of some critical code paths.

Altliougli clcgant, the memory abstraction for the
interface to the cache was not as good a fit to file
system operations as \ve had expected. Further-
more, a block abstraction for the data space ~vould
have been Inore suitable.

111 summary, tlic project team delivered a nc\v
file systelii for the OpcnVMS operating system. The
Spir'ilog file systcm offers single-system seniantlcs in
a cluster, is compatible with tlie current OpcnV1MS
tilc slatem, and supports on-linc back~ip.

Future Work

During tlic Spiralog vcrsion 1.0 project, we pursued a
number of ~ i e w technologies and found four areas that
warrant fi~ture work:

Support is needed from storage and tile-
management tools for ~iiultiple, dissimilar file
systeln personalities.

The clcancr rcprcscnts anotlier area of ongoing
innovation and coniples d!,na~nics. We believe a
bcttcr undcrsta~iding of thesc dynamics is nccdcd,
and design alter~iatives should be studied.

The on-line backup engine, coupled with the log-
structured tile system technology, offers many areas
for potential development. For instance, one area
for investigation is conti~luous backup operation,
either to a local backup device or to a remote
replica.

Finally, we d o not believe the higher-than-expected
code path length is intrinsic to the basic file system

We \vould like to take this opportunity to thank the
many indi\liduals who contributcd to the Spiraiog
project. Don Harbert and Rich Marcello, OpenVMS
vice presidents, supported this ulork over the lifetime
of the project. Dan Doherty and Jack Fallon, thc
OperlVlMS managers in Livingston, Scotland, had d a y
to-day management rcsponsibi1it)r. Catliy Foley Icept
the project moving toward the goal of shipping. Janis
Horn and Clare Wclls, the product managers \vho
Iielpcd US understand our custo~ners' needs, ivcre elo-
q u a i t in explaining our project and goal to others.
Near the end of the project, Yeliia Bey11 and Paul
1Mosteilca gave 11s valuable testing support, ivithout
which tlie product \vould eel-tainly be less stable than it
is today. Finally, and not least, we \vould like to
acluio~vledge the members o f the de\'elopmcnt team:
Alasdair Baird, Stuart Baylep, Rob Burke, Ian
Compton, Chris Davies, S t i~ar t Deans, Alan Dewar,
Can~pbell Fraser, Russ Green, Peter Hancock, Steve
Hirst, Jim Hogg, mark Honfell, 1Mil<e Johnson,
Robert L n d a u , Douglas McLaggan, Rudi Martin,
Conor Morrison, Julian Palmer, Juciy Parsons, Ian
Pattison, Alan Paxton, Nanc!! Plian, ICevin Portcr,
Alan Potter, Russell Kobles, Chris Whitalter, and Rod
Widdo\vson.

References

1. M. Rosenblum and J . Ousterhout, "The Design and
I~ii~>lernentation ofa Log Str~~ctured File Systcm," AGl/I
Tr~ansactiorzs 071 Con7ptiler. Slstt.r?~.s, vol. 10, no. 1
(February 1992): 26-32.

2. T. iMann,A. Birrcll, A. Hisgcn, C. Jcrian, and G. Swart,
"A Col~ercnt Distributed File Caclic \\~itli Directory
Write-bchind," 1)igital Sysrcnis lksearch Center,
R~sc~rcli Repol-t 103 (J u n c 1993).

3. R . Green, A. Raird, and J . I)a\,irs, "L3csigning a Fast,
On-line Rackup Systcm ht. n Log-structured File Sys-
tcn~," Di'qitul Tcchrzicnl,Joco.r1u1. vol. 8 , no. 2 (1996,
this ~ S S L I C) : 32-45.

4. C. Wliitakcr, J. Ilnylcy, and R. Widdo\\.son, "lksign ofthe
Servcr for the Spiralog File Syste~n," Digital Tecbrliccil
./or~rncil, vol. 8, no. 2 (1996, this issue): 15-3 1.

5. 1M. Ho\\,ell al~d J . Palmer, "Integrating the Spiralog
File System into the OpenVMS Operating System,"
Digital Techr?ical.~ou~-lzaI, vol. 8 , no. 2 (1996, this
issue): 46-56.

6. R. \Vrenn, "Why the Real Cost ofstorage is More Than
$l/MB," presented a t U.S. DECUS Syniposiurn,
St. Louis, Mo., Junc 3-6, 1996.

Digital 'Ikchnical Journ.11 \~ol.81\ '0.2 1996 13

Biographies

Tames E. Johnson
Jim Joh~ison, a consulting soh\ ,are engi~lccr, hns been
working for 1)igital since 1984. H e \\,as u nicnibcr o f the
OpcnVMS Engineering Group, whcrc he contributed
in sc\.eral areas, including h\4S, transaction processing
scr\~ices, the port of OpenVMS to the Alpha 31-chitccturc,
tile systc~iis, 2nd s!lstern managcmcnt. J i ~ n recently joined
rhc I~itcrnct Sohvare Busincss Unit and is \vorlting on
the application of X.500 directory services. Jim holds nvo
patents on transaction commit protocol optimizations and
maintains a keen interest in this area.

William A. Laing -
Bill Laing, a corporate consulting cngincer, is the tcclinical
director of tlic Intcrnet Sohvarc Busincss Unit. lZill ioincd
1)igitnl in 1981; lie worked in thc United Stntcs for f\rc
yc&s before tmnsfcrring to Europc. l>uri~lg his c;ircrr at
Digital, Bill has \\~orked on VMS systenis pcrk)rmancc
analysis, VAXclustcr design and devclop~nent, opernting
s!.srerns de\.clopment, and transaction proccssing. Hc
\\.as the tcch~lical director of OpenVMS engineering, thc
rcchnicnl director for engineering in F,uropc, and most
rccel~tly was focusing on sohvare in tlic 'l'cclinology and
Architccturc Group of the Computer S!tstcms I)i\,ision.
Prior t o joining Digital, Bill held rescarch and [caching
posts in operating s!rsterns at the University of l-,di~lburgh,
\\,hcrc lhc n~orked on the EMAS operating s!lstcm. H c \\.,is
also part of the start-up of F,uropean Silicon S t r ~ ~ c t u r c s
(liS2), an ambitious pan-European company. H c holds
ilndergraduate and postgraduate degrccs in computer
scicncc from the Uni\lersinl of Edinburgh.

14 Digital Technical Journal Vol. 8 No. 2 1996

Design of the Server for
the Spiralog File System

The Spiralog file system uses a log-structured,
on-disk format inspired by the Sprite log-
structured file system (LFS) from the University
of California, Berkeley. Log-structured file sys-
tems promise a number of performance and
functional benefits over conventional, update-
in-place file systems, such as the Files-I I file
system developed for the OpenVMS operating
system or the FFS file system on the LlNlX oper-
ating system. The Spiralog server combines log-
structured technology with more traditional
B-tree technology to provide a general server
abstraction. The B-tree mapping mechanism
uses write-ahead logging to give stability and
recoverability guarantees. By combining write-
ahead logging with a log-structured, on-disk
format, the Spiralog server merges file system
data and recovery log records into a single,
sequential write stream.

I
Christopher Whitaker
J. S tuar t Bayley
Rod D. W. Widdowson

The goal of the Spiralog file system project team was
to produce a high-performance, highly available, and
robust file system with a high-performance, on-line
backup capability for the OpenVlMS Alpha operating
system. The server component of tlie Spiralog file sys-
tem is responsible for reading data from and writing
data to persistent storage. It must provide fast write
performance, scalability, and rapid recovery from sys-
tem failures. In addition, the server must allow an
on-line backup utility to copy a consistent snapshot of
the file system to another location, while allowing nor-
mal file system operations to continuc in parallel.

In this paper, cve describe the log-structured file sys-
tem (LFS) technology and its particular implementation
in the Spiralog fi le system. We also describe the novel
way in which the Spiralog server maps tlie log to pro-
vide a rich address space in \vhicli files and directories are
constructed. Finally, we review some of the opportuni-
ties and challenges presented by the design we chose.

Background

All file systems must tradc off perfor~nance against
availabi1it)r in different ways to provide the throughput
reqi~ircd during normal operations and to protect data
from corr~lption during sjlste~ii failures. Traditionally,
file systems fall into bvo categories, carefill write and
check 011 recovery.

Careful writing policies are designed to provide a
fail-safe mechanism for the file system structures in
the cvcnt of a system failure; however, they suffer
fi.0111 the need to serialize several I/Os during file
systeln operations.

S ~ I I I C file S Y S ~ C I ~ I S forego thc need to scrializc filc
system updates. After a system failure, however,
they require a complete disk scan to reconstruct a
consistelit file system. This req~~irernent becomes
a problem as disk sizes increase.

Modern file systems such as Cedar, Episode,
Microsoft's New Technology File System (NTFS),
and Digital's POLYCENTER Advanccd File System
use logging to overcome the problems inherent in
these two approaches.'.' Logging file system metadata
removes the need to serialize I/Os and allows a simple

Iligitrl Technical Jo~~rnal

and bounded mcclianism for rcconstri~cting the tile
systc~ii akcr 3 hilurc. Ilcscnrclicrs at the Uni\.ersitg of
Calihrnia, Rcrltclcy, took tliis p~.occss one stage h r -
tllcr and treated the \\rllolc disk as a single, scclucl~tial
log \\,liere all tile system modifications arc appended to
the tail of the log."

Log-structurcci fi lc systcnl technology is particularly
appropriate to the Spirnlog flc systcm, because it is
dcsigncd as a clusrcr\\,idc fi lc s!,stcm. Tkc scr\.cr must
support a largc number of filc systcm clerks, each of
\\rhich ma* be ~ ~ a i i i l l g 311ii \\,riting ciilta to the disk. Thc
clcrlts LISC large \\,rite-back cacllcs to rcci~~cc tlie need to
read dat,l horn the scr\?cr. 'The c,ichcs also allo\\l tlie
clcrks to buffer \\,rite rcclucsts dcstincd ti)r tlic scrvcr.
A log-structurc~i design allo\\;s multiple concurrent
\\?rites to be g r o ~ ~ p c d togcthcr i l l t o largc, scq~~cntial
1/0s to the disk. This 1 / 0 pattern reduces disk liead
mo\,cmcnt during \\lriting and allo\\s tlie size of the
writes to bc matched to characteristics of the ~~ndcrlying
disk. This is particularly beneficial ti)r storagc devices
\\lit11 rcdund'lnt arr,lys of incspcnsi\,c disks (lL411)).4

The use of a log-structured, on-disk k~rnla t greatly
simplifies the implcmcntation of an on-line backup
capability. Hcrc, the challcngc is to provide a consis-
tent suapsliot of the ti lc systcni tli;lt can 1)c copied to
the backup media wliilc normal opc~ations continue
to rnoditi. the file systcm. Rccausc an 1,FS ;iplx~ids a11
data to the tail of n log, ;ill data \\.rites within thc log
arc tcmpor,llly orticrcd. A co~uplctc snapshot of the
file S ~ S ~ C I I I c o r r e s ~ ~ o ~ ~ c i s to tllc co~l tc~i ts of tlic scc111e1i-
rial log up to tlie point in timc tliat the snapshot \\'as
created. By extension, nu incrcmcntal backup corrc-
sponds to the section of the scclucntial log created
sj~icc tlic last backup \\,as takc11. Tllc Spiralog backup
u t i l i ~ . LISCS these fcnt~~rcs to pro\.idc a hst, on-line, fill
and incrcmcntnl backup schcmc.'

Wc ha\.c take11 ;I 11~11iibcr of ~ C ~ ~ L I I - C from thc csist-
ing log-structurcci file systcni implcmcntatio~is, in par-
ticular, the idea of d i \ i i ing the log into tiscd-sized
segments as the basis ti)r spacc :illocation and clean
ing." FundamcntnIIy, lio\\,c\~cr, cxisting Iog-struct~~rcd
filc systems li;~\,c been built by sing the main body of
an existing filc systcm and Inycring o n top of nn undcr-
lying, log-struct~~rcd colltnincr.".' Tliis cicsign has been
taken to tlic logical cxtrc~nc \\lit11 the implcmcntntio11
of a l o g - s t r ~ ~ c t ~ ~ r c r i disIt.Vor tllc Spiralog file syste111,
\vc Ilavc clioscn to use the scclucntial log capability
provided by the log-struct~~rcd, on-disk for~nat t h r o ~ ~ g h -
out the filc systc~ii. The Spiralog scrvcr combines log-
s t ruc t~~red technology with more traditional B-tree
technology to provide a general server abstraction.
The B-tree mapping mechanism uses irrrite-ahead log-
ging to stability and reco\~erability guarantees." By
co111bining \vrite-ahead logging \\,it11 a log-structured
on-disk fbrmat, the Spiralog server merges tile system
data and reco\.ery log records into a single, sequential
write stream.

The Spiralog file systcm differs fi-om existing log-
structured implcmcntations in a n ~ ~ m b c r of otlicr
important \\.n!,s, in p a r t i c ~ ~ l ~ ~ r , the mcclia~iisn~s th,it \vc
ha1.c clioscn to ~1st till. tlic cleaner. I n subscclucnt scc-
tions of this paper, \\.c compare tlicsc ciiffcrcnccs \\.it11
cxisting implcnicntations \\.licrc appropriate.

Spiralog File System Server Architecture

The Spiralop fi lc s!.stc~il c~nploys n clicnt-scr\.c~- archi-
tecture. Each nodc in the cluster that moLllits 11

Spiralog \.olumc runs a file system ~ lc~ . l i . 7-lic tcl.ni
clerk is i~scd in tliis p3pc1. to riisti~lgi~isl~ tllc clic~it co11i-
ponent of tlie file system ti-om clicllts of the tile systcm
as a \\.hole. Clerks implcmcnt all the file f~~nct ions asso-
ciated with maintaining tlic file systcm state *it11 the
cxceptio~l of pcrsistc~lt storage of tile systcm and user
data. This latter responsibility frills o n tlic Spiralog
server. There is cs3ctly o ~ i c scr\.cr ti)r c~ich \,ol~rmc,
\\lhicll m ~ ~ s t run o n a nodc that llns 3 riircct conncctio~l
to the disk containing tlic \~olunlc. Tliis distrib~~tion of
fi~nctioo, \vlicrc tlic majority of file systcm processing
takes place on thc clerk, is similar to tliat of rlic Echo
file syste~ii.~" The reasons for clioosi~ig tliis arcliitccturc
are described in more detail i l l the paper "O\~c~-\.ic\v of
the Spiralog File System," clsc\\.licrc in this issue."

Spiralog clcrks build files and riircctorics in 3 s r r ~ ~ c -
tured address spacc called t l ~ c tile ncidrcss sixlcc. Tliis
aciilrcss spacc is jntcl-~ial to the ti lc sJtstcm and is onl!,
loosely rclatcd to that pcrcci\,cd b!. clients of the tile
system. ?'lie srr\.cr pro\,idcs a n interface tliat allo\\.s
the clcrks to pcrsistcntl!. map to file spacc uddrc55cs.
Internally, thc scr\.cr uses a logicall!, iufinitc log struc-
ture, built on top of a physical ciislt, to store tlic file
s\,steln data anti tlic srructurcs ncccsw!. to locate
tlie data. Figure 1 slio\\.s t l ~ c rclatio~isliip bct\\.ccli the
clerks and the scr\.cr ,lnd tlic ~~clntionsliips a ~ i l o ~ i p
the major components \\.ithill tlic scr\.c~..

Figure 1
Server .Architecture

16 Digital Ttcl1nic:ll J o u r n d

The mapping layer is responsible for maintaining
the rnappjng betcveeri the file address space used by
the clerl<s to the address space o f the log. The server
directly supports the file address space so that it can
make use of information about the relative perfor-
mance sensitivity of parts of the address space that is
implicit within its structure. Although this results in
the mapping layer being relatively complex, it reduces
the co~iiplexity of the clerks and aids performance.
The mapping layer is the prirnary point ofcontact with
the server. Here, read and write requests from clerks
are received and translated into operations on the log
address space.

The log driver (LD) creates the illusio~l of an infinite
log on top of the physical disk. The LD transforms read
and write requests from the mapping layer that are cast
in terms of a location in the log address space into read
and \vrite requests to physical addresses 011 the underly-
ing disk. Hiding the implementation of the log from
the mapping layer allows the organization of the log to
be altered transparently to the mapping layer. For
example, parts of the log can be migrated to other
physical devices u r i tho~ t invol\~ing the mapping layer.

FlLE HEADER

I USER 110s

FlLE VIRTUAL BLOCKS

Although the log exported by the LD layer is con-
ceptually infinite, disks have a finite size. The cleaner
is responsible for garbage collecting o r coalescing free
space within the log.

Figure 2 shows the relationship between the various
address spaces maling up the Spiralog file sjatern. In
the next three sections, we examine each of thc corn-
ponents of the server.

Mapping Layer

The mapping layer inlplements tlie mapping between
the file address space used by tlie file system clerlts
and the log address space maintained by the LD.
I t exports an interface to the clerks that tliey use to
read data from locations in the file address space,
to write new data to the file address space, and to spec-
iQ which previously written data is 110 longer recluired.

i~iterface also allows clerks to group sets of depen-
dent writes into units that succeed o r fail as if they
were a single write. In this section, we introduce the
file address space and describe the data structure used
to map it. Then we explain the method used to handle
clerk requests to modifjr the addrcss space.

FlLE SYSTEM ADDRESS
SPACE

FlLE ADDRESS SPACE

1 LFS
B-TREE

t
LOG ADDRESS SPACE

LFS
LOG
DRIVER
LAYER

4
PHYSICAL ADDRESS
SPACE

Figure 2
Address 'Translation

Vol. 8 No. 2 1996 17

File Address Space The clear opcr~t ion nllo\\/s a clerk to remo\/c a namcd
cell or a number o f bytes fioni an object.

The tile address space is a structured address space. At
its highcst le\/el it is divided into objects, each of \\~hicli
has a ~ i i~mcr ic object identifier (OID). An object may
lia\~c an!l number ofnarned cclls associated nrith it and
up to 2"'- 1 streams. A named cell may contain a vari-
able amount ofdata, but it is read and writtc~i as a sin-
gle ~rnit. A streal11 is a sequence of bytes that are
addressed by their offset fro111 the start of the stream,
up to a rnasilnum of 2"- 1. F~~ndamcntallp, there are
nvo forms of addresses defi~icd by the file address
spacc: Named addresses of the form

spcci% an indi\,idual named cell u.itliin an objcct, and
numeric addresses of the for1.n

< O I D , s t r e a m - i d , s t r e a m - o f f s e t , L e n g t h >

s l x c i ~ a scc l~~e~ ice of /engt,lln contiguous bytes in an
individual stream belonging to an objcct.

The clerks use namcd cells and streams to huild fi lcs
dnd ciircctorics. In the Spiralog tile s)atcln \~cssion 1.0,
a file is represented by an object, a na~iicd cell contain-
ing its attributes, and a single stream that is usccl
to store the file's data. A directory is represented by
an objcct that co~ltains a ~ i i ~ ~ n b c r of namcd cells.
Each 11.1mcd cell represents a link in that dircctol-\. and
contains \\.hat a traditional file system refers to as a
dircctor!l entry. Figure 3 shows lio\\l data tiles and
directories are built fro111 named cclls and strcn~ns.

The mapping layer pro\,idcs thrcc principal opcra-
tions k)r manipulating the file address spacc: read,
write, and clear. Thc read operation allow.s a clcrk to
read the contents of a named cell, a contiguous rangc
ofbytcs from a stream, o r all the riamcd cells for a par-
ticular objcct that fall into '1 specified scarch rangc. The
\\;rite opcration allo\vs a clcrk to write to a c o ~ i t i g ~ ~ o u s
rnngc of bytes in a stream or an indi\fidual ~iamcd ccll.

DATA FILE DIRECTORY

FRED TXT

FRED.C

Mapping the File Address Space
We looked at a \variety of indexing structures for mapping
tlie file address spacc onto the log address space.',12 Wc
chose a deri\lati\~e of the 8-tree for the following reasons.
For a unik>rm address spacc, B-trees prtwide predictable
worst-case access timcs because tlie trce is balanced
across all thc keys it maps. A B-tree scales well as the
number of kcys niapped increases. I11 other nlords, as
more keys are added, the B-tree grows jn \vidth and in
depth. Deep K-trees carry an ob\,ious peshrmance
penalty, particularly \vlicn the B-tree grolvs too large to
be held in ~iicn~or!/. AS described ,~bo\rc, disectory entries,
file attributes, and tile data are all addresses, or kcys, in
thc file addrcss spacc. Treating thesc keys as equals and
balancing the mapping R-tree across al.1 tlicse keys intro-
duces the possibility that a singlc directory 514th many
entries, or a tile \\it11 muny extents, may have an impact
on the access timcs h)r all the files stored in the log.

T o solve this problem, ure limited the keys for an
objcct to a single]<-tree Icafnocic. With this rcstric-
tion, sc\cral s~nall ti lcs can be accommodated in a sin-
gle leaf node. Files \\.it11 a large ~ l l ~ r n b e r of extents (o r
large directories) arc s ~ ~ p p o r t c d by allo\\~iug indi\rjdual
streams to be spn\vncd into subtrecs. The subtrees arc
balanced across the kcys \\fithin the subtree. .411 objcct
ca11 lic\lcr S ~ J I I Iiiorc tlinli 3 single leaf node of the
~ilain B-trcc; tlicrcfore, nonleaf nodes of the main
B-tree only nccd to contain OIDs. This allon,s thc
main B-tree to be \#cry conipnct. Figure 4 sho\\rs the
rclationsliip bcnvccn tlic main B-tree and its subtrees.

KEY:

u
0 OBJECT

a BYTE STREAM

A NAMEDCELL

MAlN B-TREE

STREAM-SPECIFIC
SUBTREES

OID 100
MAlN 6-TREE

STREAM 1
LEAF NODE

100,1,0 100,1,100 ioo.i.400 NODE OID 100. c-9
Figure 3
Filc S\fsrcnl

Figure 4
Mapping 13-tree St~.uc.t~~rc

To rcducc the time required to open a flc, data for
small extents and small named cells are stored directly ul
the leafnode h a t maps them. For larger extents (greater
than one disk block in size in the current irnplementa-
tion), the data item is written into the log and a pointer
to it is stored in the node. This pointer is an address in
the log address space. Figure 5 illustrates how the B-tree
maps a small file and a file with several large extents.

Processing Read Requests
The clerks submit read requests tliat may be for a
sequence of bytes from a stream (reading a data from a
file), a s~ngle named cell (reading a file's attributes), or
a set of named cells (reading directory contents). To
fulfill a glven read request, the server must consult the
B-tree to translate from the address in the file address
space supplied by the clerk to the position in the log
address space where the data is stored. The extents
making up a stream are created when the file data
is written. If an application writes S lulobytes (I a)
of data 111 1-ICB chunlts, the B-tree would contain
8 extents, one for each 1-I(B write. The server may
need to collect data fi-orn several differcnt parts of the
log address space to fi~ltill a single read request.

Read reqiicsts share access to the B-trce In much
thc same way as processes share access to the CPU of
a niultiprocessing computer system. Read requests

arriving from clerks are placed in a first in first ou t
(FIFO) work queue and are started in order of their
arrival. All operations o n the B-tree are performed bp
a single worker thread in each volume. This avoids
the need for hea\yweight locking 011 individual
nodes in the B-tree, which significantly reduces the
coniplexity of the tree manipulation algorithms and
removes the potential for deadlocks on tree nodes.
This reduction in complexity comes at the cost of
the design not scaling with the n i~mber of processors
in a symmetric multiprocessing (SMP) system. So far
we have no evidence to shou! that this design deci-
sion represents a major performance liniitatio~i on
the server.

The worker thread takes a request ti-om the head
of the work queue and traverses the B-tree until it
reaches a leaf node that maps the address range of
the read request. Upon reaching a leaf node, it may
discover that the node contains

lxecords that map part or all of die address of the
read request to locations in the log, and/or

Records tliat map part or all of the address of the
read request to data stored dircctly in the node,
and/or

N o records mapping part o r all of the address of the
read request

, - f i ' , MAIN B-TREE

NODE A ,i=-.,
\ NODEC

35.1. ...

, , , . . ,!;;T;I . . ,
, - 35.1 ,O 35,1,1000 . , SUBTREE FOR OID 35. '. . STREAM 1

I DATA IN LOG DATA IN LOG I I I

KEY:

8-TREE INDEX RECORD
MAPPING OID 35 ...

I DATA IN LOG DATA IN LOG I I I

B-TREE INDEX RECORD
MAPPING OID 35, STREAM 1.
START OFFSET O...

RECORD CONTAINING FILE RECORD CONTAINING POINTER
42,1.0,50 ~ ? ~ & 2 k % ~ ~ ~ ~ ~ 2 ~ ~ 50

TO FlLE DATA: OID 42, STREAM 1,
START OFFSET 0. LENGTH 50

Figure 5
Mapping B-tree Detail

Dig~ral Technical Journa l \'ol. 8 No. 2 1996 19

Data that is storcd in the nodc is simply copied
to the o ~ ~ t p u t buffer. Whcn data is storcd in the log,
tlic \vorker thread issues requests to the L1) to rcad tlie
data into the output buffer. Oncc a11 the reads ha\.e
bccn issued, the original rcqilcst is placcd o n a pend-
ing ~ L I C L I C until they complete; then the results are
returned to the clerk. Whcn n o data is stored for all o r
part oftlie rcad request, the scrlrcr zero-tills the corrc-
spoilding part of the output buffer.

The process described above is complicated by the
hct tliat the B-tree is itselfstored in the log. The map-
ping layer contains a node cache that C I I S L I ~ C S that con.1-
~iionly referenced nodes are normally h u n d in memory.
When the \\,orker thread needs to tra\.crsc through a
trcc nodc that is not in menlor!; it must arrange for tlic
notic to l>c read into the cachr. Tlic address of the notic
in the log is the \,due of the pointcr to it f-om its parent
nodc. The worker thread uses this to issue a request to
the I,I) to rcad the node into a cache buffer. While the
node read reqilrst is in progress, the original clcrlc opcr-
ation is placcd on a pending queue and the worker
thread proceeds to the ncxt request on the work queue.
When the node is I-esident in nlcrnor!; the pending lrad
recluest is placed back on the \\rorlc C ~ L I C L I C to be
restarted. In this \yay, multiple rcad rcclucsts can be in
progress a t any given time.

Processing Write Requests
\Yritc rcclucsts received by the scrvcr arri\,c in groups
consisting oFa number of data items corresponding to
~~pdn tcs to noncontiguous addresses in the filc address
space. Each group I ~ I L I S ~ be \\'ritte~i as a si~iglc faiI111.c
atomic unit, \vhich means that all tlic parts of the \\,rite
rcqucst must be made stable o r nouc of them 111ust
bccomc stable. Such groups of \vritcs arc called v1un-
ncrs and are ~ ~ s e d by the clerk to encapsulate con~ples
tile systcn~ opcrations."

Kcfore the server can complete n \vLlnncr, that
is, bcfol-c ; i l l acltno~\,ledgnicnt can be sent baclc to
tlic clcrlc indicating that the \\,llnncr \\.as succcssfi~l,
tlic scr\,c~- must nialte nvo guarantees:

1. All parts of tlie \\unner are stably stored in the log
so t l i ~ t t l l ~ cntirc 1\~~111lier is pcrsistc~it in the c\'ent
of 3 system failure.

2. All data items described by the wunncr arc \risible to
subsequent rcad requests.
r % Ilic \ \ r ~ ~ n ~ ~ c r is niadc persistent by n~riting each d a t ~

itell1 to the log. Each data item is tagged \\!it11 a log
record that identifies its corresponding filc space
addrcss. l_his allo\\rs the data to be rcco\~crcci in the
cvcnt of a system failure. All individual \\.rites arc matic
as \>art ofa single compound atomic opelation (CAO).
This ~nctl iod is pro\,idcd b!, the LD Iaycr to bracket
a set of \\'rites tliat must be rcco\.crcci as an atomic
unit. Oncc all the writes for the \vLlnncr lia\,c bccn

issuecl to the log, the mapping Iaycr instructs the 1,1>
laycr to end (or commit) the CAO.

The \\.unncr can be made \.isible to subsequent rcaci
oper'ltions by upci'1ting tlic B-tree to reflect the loca-
tion of tlic nc\v data. Unk)rtunatelp, this \\,auld cause
c\,ritcs to incur a significant latency since i~pdatilig the
B-tree invol\rcs tm\.crsing the R-tree and potcritially
reading B-trcc nodcs into memory fi-om the log.
I~lstcad, the scr\.cl- complctcs a write operation before
the B-tree is updated. 13y doing this, ho\\,ever, it must
talte additional steps to cnsurc tliat the data is \risible to

subscclucnt rcad rcq~~csts .
Before completing the \\,iunner, the mapping la!.cr

~ L I C L I C S the B-trcc i~pdatcs rcsulti~ig from \\.riting the
nunncr to the samc FIFO \seol-k queue as read rcq~~csts .
All items arc q i ~ c ~ ~ c d ato~~licall\,, tliat is, no otlicr re,ict
or *rite opcration can be interleaved *it11 the indi\,iti-
ual \\rllnncr i~~xia tcs . In this \\la!:, the ordering bcnvccn
the Ivritcs 111;iking up the \\runner and subsecl i~c~~t read
or \\)rite opcrations is maintained. Work cannot begill
on a suhseq~~cnt rcad r c q ~ ~ e s t ~ ~ n t i l wlork has started o ~ l
the B-tree ~ ~ p d a t c s ahead of i t in the queue.

Oncc the R-trcc t~pdates l1;1\7e been queued to the
ser\,er \\/orlt clucuc n~id tlic mapping layer has bee11
notified that tlic <:A0 for the \\!rites has committed,
both of the guarantees that the server gives o n \\,rite
conlpletion hold. The cinta js persistent, and the \\,rites
arc \.isible to s~~bscclucnt opcrations; thcrcforc, the
server can send an acl<no*lcdgmcnt back to tlic clcrl;

Updating the 6-tree
The \\~orltcr thread processes a 13-tree update rcqilcst
in much the samc \\ray as a rcad requcst. Thc update
request traverses tlic R-tree until either it reaches thc
nodc that maps the appropriate part o f thc filc addrcss
space, or it fails to find a nodc in memory.

Oncc tlie leaf nodc is rcachcd, it is updated to point at
the location of the data in the log (if the data is to be
stored directly in the noctc, tlie data is copicd into the
nodc). The nodc is no\\. dirt\, in rncrnor!, anti must
be tvritten to thc log at some point. lbthcr than \\.riting
the node immediatcl!; the mapping la!rcr \\.rites a log
record describing the cliangc, loclts the nodc into the
cache, and places ;? flush opcration for the nodc to
the mapping Iayr's flush qi~ciic. Tlic f l ~ ~ s h opcration
describes the location of the nodc in the tree and
records the need to \\!rite it to tlic log at some point
in the f i ~ t ~ ~ r c .

If, on its \\.;I!. to thc lcaf nodc, the write opcration
reaches a ~ l o d c that is not in memory, the lvorkcr
thread arranges fix it to be read fro~ii the log and the
\\!rite operation is placcd o n .I pcnciing qLlcLle as \\.it11 a
rcad operation. Rccausc the \\,rite has been ackno\\.l-
edged to the clcrk, the nc\\. data must be \,isible to sub-
seclucnt read opcrations c\.cn though the B-tree has
not bccn 11pd;ltcd filll!: This is achie\,ed b!, attaching
vi in-memory I-ccol-d of tlie update to the nodc that is

being read. If a rcad operation reaches the node with
records ofstallcd updates, it must check whether any
of these records contains data that s h o ~ ~ l d be returned.
The record contains either a pointer to the ddta in the
log or the actual data itself If a rcad operation finds
a record that can satis@ all or pdrt of the request, the
rcad request uses tlic information in tlie record to
fetch the data. This preserves the guarantee that the
clerk muht see all data for which tlie \\!rite request has
been ~ck~io\\lIcdgcd.

Once the nodc is read in f r o ~ ~ i the log, tlic stalled
updates arc restarted. Each updatc removes its log
record from tlie node and recommences traversing the
B-tree fi-om that point.

Writing B-tree Nodes to the Log
Writing nodes consumes bandwidth to the disk that
might otherwise be used for writing or reading user
data, so the server tries to avoid doing so until
absolutely necessary. Two conditions make it neces-
sary to begin writing nodes:

1. There are a large number of dirty nodes in the
cache.

2. A checkpoint is in progress.

In the first condition, most of tlie memory available
to the server h3s bee11 given over to nodes tliat are
locl<ed in memory and \vaiting to be written to the
log. ltead and update operations begin to back up,
waiting for a\!ailable memory to store nodes. In tlie
seconci condition, tlie LD has requested a checkpoint
in order to bound recovery time (see the section
Checkpointing later i l l this paper).

When either of these conditions occurs, the mapping
layer switches into flush mode, during \\lhich it only
writes nodcs, until the condition is changed. In flush
mode, the worker thread processes flush operations
from the mapping layer's flush qucue in depth order,
that is, starting with the nodes furthest from the root
of the B-tree. For each flush operation, it traverses the
B-trcc until it finds the target node and its parent. The
target node is identified by the keys it maps and its
levcl. The level of a node is its distance from the leaf of
the B-tree (or subtree). Unlike its depth, which is its
distance from the root of the B-tree, a node's level does
not change as the B-tree grows and shrinks.

Once it has reached its destination, the tlush opcra-
tion \\!rites O L I ~ thc target node and updates the parent
with the new log acldrcss. The modifications made to
the pdrcnt nodc by thc tlush operation are analogous
to those made to a leaf node by an update operation.
In this way, a ~nodification to a leaf node eventually
urorlts its way to the root of the B-tree, c a ~ ~ s i n g each
node in its path to bc rewritten to tlie log over t i~ne .
Writing dirty nodcs only hen necessary and then in
deepest first order rnininiizes the number of ~iodes

written to the log and increases the average nu~nber of
changes that are reflected in each node written.

Log Driver

'The log drivcr is responsible for creating the illusion of
a semi-infinite sequential log 011 top of a physical disk.
7 - 1 hc entire history of the file s!ateni is recorded in thc
updatcs made to the log, but only those parts of
the log that describe its current or live state need to
be persistently stored on the disk. As files are over\\lrit-
ten or deleted, the parts of the log that contain the
previous contents become obsolete.

Segments and the Segment Array
To makc tlic management of free space niore straight-
forward, tlie log is divided into sections called
segments. In the Spiralog file system, segments are
256 KB. Segments in the log are identified by their seg-
ment identifier (SEGID). SEGlDs increase monotoni-
cally and are never reused. Segmcnts in the log that
contain live data are mapped to physical, segment-sized
locations or slots on the disk that are identified by their
segment number (SEGNUM) as shown in Figure 6.
The mapping benveen SEGID and SEGNUM is main-
tained by the segment array. The segment array also
tracks which parts ofeach mapped segment contain live
data. This information is ~ ~ s e d by the cleaner.

The LD interface layer contains a segment s\vitch
that allo\\a segrnents to be fetched from a location
other than the disl<.'TThe backup function 011 the
Spiralog file system uses this meclianis~n to restore files
contained in segments held on baclcup media. Figure 7
sho\vs the LD layer.

LOG GROWS

SEQUENTIAL LOG w

SEGMENT ID 1 SEGMENT ID 2 SEGMENT ID 3 SEGMENT ID 4

PHYSICAL DISK

Figure 6
Mapping thc Log onto the Disk

LD LAYER INTERFACE u

23 DISK

SEGMENT ARRAY

SEGMENT WRITER I

6 TAPE

ALTERNATE SOURCE
I F SEGMENTS
(SPIRALOG BACKUP)

Figure 7
Subcomponents of the LD Layer

The Segment Writer
T.he scgmcnt writer is responsible for all I/Os to the
log. I t groups together writcs it rcccivcs t iom the map-
ping layer into large, sequential I/Os where possible.
"l'liis increases write throughput, but at the potential
cost of increasing the latency of i~idividual operations
~thc11 the disk is lightly loaded.

As shown in Figure 8, tlie segment jvriter is respon-
sible for thc internal organization ofsegments \vrittcn
to the disk. Segments are divided into nvo scctio~is, a
data arc3 ;111d a nlilch smaller commit rccorcl area.
Writing a picce of data requires two operations to the
segment at the tail of the log. First thc data item is
written to the data area of the segment. Once tliis 1 / 0
has completed successf~~lly, a rccord describing that
data is mlritten to the commit record arca. Only when
thc writc to thc commit record arca is complctc can
the original request be considcrcd stable.

The need for two \\/rites to disk (potentially, \\/it11 a
rotational delay bcnvecn) to commit a single data
write is clearly a disadvantage. Normally, however, the
segment writer rcccivcs a set of related writes from
the mapping layer which are tagged as part of a single
CAO. Since the mapping l a p r is interested in the com-
pletion of thc wliole CAO and not the writes \\lithi11 it,
the segment writer is able to buffer additions to the
commit records arca in mcniory and then write them
with a single I/O. Under a normal write load, tliis
reduces the numbcr of I/Os for a single data write to
very close to one.

The boundary between the commit record arca and
the data arca is f sed . Ine\ritabl>,, this wastes spacc in
either the commit rccorcl area or data area \\!he11 tlic
other fills. Choosing a size for the com~iii t record area
that minimizes this waste requires some carc. M c r
analysis ofsegmcnts that had been subjectcd to a typi-
cal OpenVMS load, we chose 24 KB as the \~aluc for
the commit rccord area.

This scgmcnt organization permits the scgmcnt
\\triter to havc comp.letc control over tlie contents of
the co~nlni t rccord arca, which allows the segment
writer to accomplish two iniportant recovery tasks:

Detect thc end of the log

Detect rnultiblock writc failure

When physical segments are reused to extend tlic
log, the!] arc not scrubbed and their commit rccorcl
areas contain stale (but coniprehensible) records. The
recovery manager n1ust distinguish between records
belonging to the currcnt and the previous incarnation
of the physical slot. To achieve this, the segment writer
writes a sequence numbcr into a specific byte in every
block written to the co~iimit record area. The original
contents of the "stolen" bytes are stored within the
record being written. The sequence number used for

DATA AREA COMMIT RECORD AREA

KEY:

USER DATA OR B-TREE NODE

COMMIT RECORD

SINGLE I10 OPERATION

Figure 8
Orgnnizatio~l o f a Segment

a segment is an attribute o f tlie physical slot that is
assigned t o it. Tlie sequence nurnber for a physical slot
is incremented each time the slot is reused, allol\iing
the recovery manager t o detect blocks that d o n o t
belong t o the segment stored in the physical slot. - - I lie cost o f resubstituting tlie stolen bytes is incurred
only during recovery 2nd cleaning, because this is
the only time that the comniit record area is read.

I n hindsight, tlie partitioning o f segments into data
and comniit areas was probably a mistake. A layout
that intermingles the data and commit records and that
alloc\is them t o be written in o n e I/O would offcr bct-
ter latency at low throughput . Ifconibined with careful
writing, command tag queuing, and o ther optimiza-
tions becoming more prc\ialent in disk hardware and
controllers, such an on-dislt structure could offer sig-
nificant improvements in latency and throughput.

Cleaner

T h e cleaner's job is t o turn free space in segnients in
the log into empty, unassigned pliysical slots that can
be i ~ s e d t o extend tlie log. Areas o f free space appear in
segnients wl ie~ i the corresponding data decays; that is,
i t is cither deleted o r replaced.

T h e cleaner rewrites the live data contained in par-
tially full segments. Essentially, the cleaner forces the
segments t o decay completely. I f the rate at which data
is written t o tlie log ~natcl ics the rate a t which it is
deleted, segnients eventually become empty o f their
o\vn accord. When the log is fill1 (f ~ l l n e s s depelids o n
tlie distribution o f file longevity), it is necessary to
proactively clean segnients. As the cleaner continues
t o consume more o f the disk bandwidth, performance
can be expected t o decline. O u r design goal was that
pcrhrn iance should be ~iiaintained u p t o a point a t
which the log is 85 percent full. Beyond this, it was
acceptable for performance t o degrade significantly.

Bytes Die Young
Recently written data is more liltely t o decay than old
data , 14.15 Scgmcnts that were ~'1-itte11 a shor t time a g o

are lilcely t o decay furtlicr, after which tlie cost o f
cleaning them will be less. In o u r design, tlie cleancr
selects candidate segments that \yere \vritten some
tinie ago and are more likely t o have undergone this
initial decay.

Mixing data cleaned from older segments with data
from the current stream o F ~ i e u ~ \ \ / r i t e s is liltely t o pro-
duct a scgnient that will need t o be cleaned again oncc
the new data lias undergone its initial decay. To avoid
mixing cleaned data and data from t h e current write
stream, the clcaner builds its ou tpu t segments sepa-
rately and then passes them t o the LD t o be threaded i n
at the tail o f the log. This has nvo important benefits:

T h e recovery information in the o u t p u t segment is
minimal, consisting only o f the self-describing tags
011 tlie data. As a result, thc cleaner is unlil<ely t o
waste space in the data area by virtue o f having filled
the commit record area.

Bv constructing the o u t p u t segment off-line, the
clcaner lias as much tinie as it needs t o look for data
chunks that best f i l l the segment.

Remapping the Output Segment
T h e data itenis contained in the cleaner's o u t p u t seg-
lnent receive necv addresses. T h c clcaner informs t h e
mapping layer o f the change o f location by submitting
B-tree update operation for each piece o f data it
copied. T h e rnapping layer handles this update opera-
tion in much tlie same way as it would a normal over-
write. This update does have one special property:
the cleaner \\'rites are conditional. In o ther words, the
mapping layer will update the B-tree t o point t o
tlie copy created by the cleaner as long as n o change
has been made t o the data since the cleaner took its
copy. This allo\\s the cleaner t o work asynchronously
t o fi le system activity and avoids any locking protocol
benveen the cleancr and any other part o f the Spiralog
file system.

To avoid m o d i h i n g the mapping layer directly, the
cleaner does n o t copy B-tree nodes t o its o u t p u t seg-
ment . Instead, it requests the mapping layer t o flush
the nodes that occur in its illput segments (i . ~ . , rewrite
t h e m t o the tail o f the log). This also avoids wasting
space in t h e cleaner o u t p u t segment o n nodes that
map data in the cleaner's input segments. These nodes
are guaranteed t o decay as soon as the cleaner's B-tree
updates are processed.

Figure 9 shou/s how the cleaner constructs an output
segment fiorn a number o f input segments. Tlie clcaner
keeps selecting input segments ~ ~ n t i l cither the outpu t
segment is full, o r thcre are ~ i o more input segments.
Figure 9 also shows the set o f operations that are gener-
ated by the cleaner. In this example, tlie output segment
is filled with the contents o f two flll segments and part
o f a third segment. This will cause the third i ~ i p i ~ t seg-
ment t o decay still further, and the remaining data and
R-tree nodes will be cleaned \vIien that segment is
selected t o create another ou tpu t scgment.

Cleaner Policies
A set o f heuristics go \c rns the cleaner's operation.
O n e o f o u r f i~ndamental design decisions was to sepa-
rate the cleaner policies from the niechaliislns that
implement them.

When to clean?
O u r design explicitly avoids cleaning until it is
req i~ i red . This design appears t o be a good match for

Digitdl 'Tcclinicdl Jot~l-nnl Vol. 8 No. 2 1996 23

INPUT
SEGMENTS I-/- L _ _ _ L _ - _ L - I

\ I /
/

\ I
/

CLEANER
\ , I , I

/

/

KEY:

I-TREENODE

OUTPUT lm,bmJ
SEGMENT

LIVE DATA

r - -1
I I SUPERSEDED DATA
L - - - J

I 1 I-TREE UPDATE REQUEST

Figure 9
C:lc.lnc~- Opcr~tion

OPERATIONS SUBMITTED TO MAPPING LAYER

a worl<load on the OpenVMS system. O n our timc-
sharing s!.stcm, tlic cleaner was entirely inactive for the
first three months of 1996; altl~ougli segnlents \\/ere
uscd and reused repeatedly, tliey alwavs tlecayccl
entirely to empty of their own accord. The trade-off
in avoiding cleaning is that although performance is
in~pro\cd (no cleaner activity), the size of the fill1
savesnaps created by backup is increased. This is
because backup copies whole segments, regardless of
how much livc data they contain.

When the cleiiner is not running, the li\.c data in t l ~ e
volume tends to be distributed across a large number of
partially fill1 segments. T o avoid this problem, \ye have
added a control to allow the system manager to nianiI-
ally start and stop the cleaner. Forcing the cleaner to
run before performing a fill1 backup compacts the live
dnt.1 in the log and reduces the sizc of the savesnap.

I n normal operation, the cleaner will start cleaning
\\ellen the number of frce segments available to extend
tlic log tills bclow a fixed threshold (300 in the cur-
rent implementation). In making this calculation, the
cleancr takes into account the amount of space in
the log tliar \ \ / i l l be consumed by \vriting data currently
licld in the clcrlts' write-behind caches. Thus, accepting
data into the cache causes the cleaner to "clear the way"
ti)r thc subsequent write request from the clerk.

When tlic cleaner starts, it is possible tliat tlic
amount of live data in tlie log is approaclling
thc capacity of the ~rnderlying disk, so the clenncr may
find nothing to tio. It is more likely, ho\vever, tliat
thcrc \\,ill be frce space it can reclaim. Because the
clcancr \vorks by forcing the data in its i n p ~ ~ t segments

CLEAN
Dl

Vol. S No. 2 1996

to ciccay by rcnfriting, it is important tliat it bcgins
work \\lhilc free segments are available. Delaying the
clccision to start cleaning could rcsult in the clcancr
being unable to proceed.

A fixed nun~bcr was chosen for the clcaning tlircsli-
old ratlicr than one based on the size o f the disk. Tlic
sizc of the disk does not affect the urgency of cleaning
at any particular point in time. Amore effective indicn-
tor of ~ ~ r g c n c) ~ is the time taken for tlie disk to fi I1 at the
m ~ x i ~ n u m mtc ofwriting. Writing to tlie log at 10 iMB
pcr sccond t\fill usc 300 segments in about 8 seconds.
Witli hindsight, we realize tliat a threshold based on a
mcasurcmcnt of the speed o f the disk 1i1iglit have been
a more appropriate choice.

-

Input Segment Selection
-The clcaner divides scglnents into four distinct groups:

1. Empty. These segments contain n o livc data and arc
available to the LD to extend the 10%

2. Nonclcanablc. These segments arc not candidates
for clcaning for onc o fnvo reasons:

CLEAN
D2

l:lic segment contains information tliat \ \ l o~~ ld
be rccl~~ired by the rcco\ier)r manngcr in the event
of a system hilure. Segments in this group arc
al~vays close to tlie tail of the log and therefore
likely to ~111dergo Further decay, r n a k i ~ ~ g them
poor candidates for cleaning.

FLUSH
NODEA

-

The scgmcnt is part of a snapshot.' The snapsl~ot
represents n reference to the scgmcnt, s o it can-
not be ~ C L I S C ~ c\,en though it may n o longer con-
tain live data.

- CLEAN
D3

- CLEAN

3. Preferred noncleanable. These segments have
recently experienced some natural decay. The sup-
position is that they may decay filrthcr in tlie near
future and so are not good candidates for cleaning.

4. Cleanable. These segments have not decayed for
some time. Their stability mal<es them good cand-
dates for cleaning.

'The transitions bet\veen the groups are illustrated in
Figure 10. I t should be noted that the cleaner itself
does not have to execute to transfer segments uito the
empty state.

The cleaner's job is to fi l l ou tp i~ t seg~nents, not to
empty i n p ~ ~ t segments. Once it has been started, the
cleaner ~rorl<s to entirely fi l l one segment. When that
segment has been filled, it is threaded into the log;
if appropriate, the cleaner will then repeat the process
with a new outpilt segment and a new set of input
segments. The cleaner will commit a partially fir11
ou tp i~ t segment only ~ ~ n d e r circumstances of extreme
resource depletion.

The cleaner fills the output segment by copying
chunks of data forward fro~ii segynents taken from the
cleanable group. The members of this group are held
on a list sorted in order ofemptiness. Thus, tlie first
cleaner cycle will always cause the greatest number of
segments to decay. As the output segment fills, the
smallest cl i i~~il t of data in the segment at the head of
the cleanable list may be larger than the space left in
the output segment. In this case, the cleaner performs
a limited search down the cleanable list for segments
containing a suitable chunlt. The required information
is ltept in memory, so this is a reasonably cheap opera-
tion. As each i n p ~ ~ t segment is processed, the cleaner

temporarily removes it from the cleanable list. This
allows the mapping layer to process the operations the
cleaner submitted to it and thereby cause decay
to occur before the cleaner again considers the seg-
ment as a candidate for cleaning. As the volume fills,
the ratio benveen the number of segments in the
cleanable and preferred noncleanable groups is
adjusted so that the size of the preferred noncleanable
group is reduced and segnients are inserted into the
cleanable list. If appropriate, a segment in the clean-
able list that experiences decay will be moved to the
preferred noncleanable list. The preferred nonclean-
able list is kept in order of least recently decayed.
Hence, as it is emptied, the segments that are least
likely to experience h r the r decay are moved to tlie
cleanable group.

Recovery

The goal of recovery of any file system is to rebuild the
file system state after a system failure. This section
describes how the server reconstructs state, both in
memory and in the log. I t then describes checkpoint-
ing, the mechanism by which the server bounds the
amount of time it takes to recover the file system state.

Recovery Process
In normal operation, a single update to the server can
be viewed as several stages:

1. The user data is written to the log. I t is tagged with
a self-identitying record that describes its position in
the file address space. A B-tree update operation is
generated that drives stage 2 of the update process.

A CLEANER
FLADTY \ OUTPUT

DECAY
TO EMPTY

CONSTRUCTION
WRITES

NONCLEANABLE

CHECKPOINT1
CHECKPOINT1

SNAPSHOT
SNAPSHOT

DELETION SNAPSHOT
CREATION

CLEANABLE
PREFERRED

CLEANER POLICY1
SEGMENT DECAY

Figure 10
Scglnent Statcs

Val. 8 No. 2 1996 25

2. The leaf nodes of the B-tree arc modified In mem-
ory, and corresponding change records are written
to the log to reflect the position of the new data.
A flush operation is generated and queued and then
starts stage 3.

3. The R-tree is written out level by level until the root
node lias been r~\ \~r i t ten . As o11c node is \\/rltten to
the log, thc parcnt of that node milst be modified,
and a corresponding change record is written to the
log. As a parent node is changed, a further flush
operation is generated for the parent node and so
on up to the root node.

Stage 2 of this process, logging changes to the leaf
nodes of the B tree, is actually redundant. The self-
identifjring tags that are written with the user data are
sufficient to act as change records for the leaf nodes of
the B-tree. When we started to design the server, we
chosc a simple implementation based on pliys~olog~cal

write-ahead logging." As t i~ile progressed, we moved
more toward operational logging.' The rccords writ-
ten in stage 2 arc a holdo\ler from the carlicr iniplc-
mentation, which we may renlovc in a f i l t ~ ~ r c rclease of
the Spiralog file systeni.

At each stage of the process, a change recot-d is \wit-
ten to the log and an in-nicnior)l operation is generated
to drive the update through the next stage. In effcct,
the change record describes the set of changes ~nadc
to an in-memory copy of a node arid an in-~nemory
operatio11 associated with that change.

Figure 11 sho\\s the log and tlic in-niemory \\~ork
queue at each stage of a \\,rite reclucst. The B-trce
describing the file systeni state consists of three nodes:
A, B, and C. A \\.unner, consisting of n single data
write is accepted by the scrver. The write request
requires that both leaf nodes A and R are modified.
Stage 1 starts with an empty log and a \\,rite recluest for
Data 1.

LOG

STAGE 1

STAGE 2:

STAGE 3:

DATA 1 Em
LOG c

LOG c

RECORD R E C W ?% %%! m=-. 03
LOG .

WORK OUEUE

REOUEST

WORK OUEUE

UPDATE

I DATA 1

WORK OUEUE

REOUEST RECUEST qznFl
WORK OUEUE

FLUSH

WORK OUEUE

REOUEST

WORK OUEUE

=J-

Figure 11
Stages of a Write Rccluesr

26 Digital Technical J o u l - ~ l ~ l

After a system hilure, the server's goal is to recon-
struct the file system state to the point of the last write
that was written to the log at the time of the crash.
This recovery process involves rebuilding, in memory,
those B-tree nodes that were dirty and generating any
operations that were outstanding when the system
failed. The outstanding operations can be scheduled in
the normal way to malte the changes that they repre-
sent permanent, thus avoiding the lleed to recover
them in the event o fa future system failure. The recov-
ery process itself does not write to the log.

The mapping layer work queue and the flush lists
are rebuilt, and the nodes are fetched into memory by
reading the sequential log from the recovery start
position (see the section Checkpointing) to the end of
the log in a single pass.

The B-tree update operations are regenerated sing
the self-identitjring tag that was written with each
piece of data. When the recovery process finds a node,
a copy of the node is stored in memory. As log records
for node changes are read, they are attached to the
nodes in memory and a flush operation is generated
for the node. If a log record is read for a node that has
not yet been seen, the log record is attached to a place-
holder node that is marked as not-yet-seen. The recov-
ery process does not perform reads to fetch in nodes
that are not part of the recovery scan. Changes to
B-tree nodes are a consequence of operations that
happened earlier in the log; therefore, a B-tree node

RECOL

log record has the effect of committing a prior modifi-
cation. Recovery uses this fact to throw away update
operations that have been committed; they no longer
need to be applied.

Figure 12 shows a log with change records and
B-tree nodes along with tlie in-memory state of the
B-tree node cache and the operations that are regener-
ated. In this example, change record 1 for node A is
superseded or committed by tlie new version of node A
(node A'). The new copy of node C (node C ') super-
sedes change records 3 and 5. This example also shows
the effect of finding a Jog record without seeing a copy
of the node during recovery. The log record for node B
is attached to an in-memory version of the node that is
marlted as not-yet-seen. The data record with self-iden-
titj.lng tag Data 1 generates a B-tree update record that
is placed on the work queue for processing. As a final
pass, the recovery process generates the set of flush
operations that was outstandng when the system failed.
The set of flush requests is defined as the set of nodes in
the B-tree node cache that has log records attached
when the recovery scan is complete. In this case, flush
operations for nodes A' and B are generated.

The server guarantees that a node is never written to
the log with uncornrnitted changes, which means that
we only need to log redo record^."^ In addition, when
we see a node during the recovery scan, any log
records that are attached to the previous version of the
node in memory can be discarded.

'ERY SCAN

RECOVERY
START POSITION

6-TREE NODE CACHE (AFTER RECOVERY SCAN)

WORK QUEUE (AFTER RECOVERY)

NODE A'

UPDATE

DATA 1 NODE A' NODE 6

TAIL OF
LOG

Figure 12
Kccovering a Log

-

RECORD 4

NODE A'

Digital Technical Journal

-

-
NODE B
(NOT-YET-SEEN)

--
-

CHANGE
RECORD 2

NODE B

Vol. 8 No. 2 1996 27

-
CHANGE

NODE C'

-

Operations generated d ~ ~ r i n g rcco\,cl-y arc posted to
the \\!ork clueLles as they \\lould be in normal running.
Nor~iial operation is not allo\\,cd to begin until tlie
recovery pass has completed; ho\\~e\,cr, \ \~lie~i recovery
reaches the end of the log, the sencr is able to service
operations t'rom clerics. Thus ne\v reclucsts from the clerk
can be scr\iced, potentiall!! in pardlcl u~itli the operations
that were generated by the recovery process.

Log records are not applied to nodes during rccov-
cry fix a number of reasons:

Lcss processing time is needed to scan the log and
therefore the server can start servicing ncnl user
r eq~~es t s sooner.

Reco\,cr!, \ \ i l l not have seen copics of nll nodcs for
wliich it has log records. To apply the log records,
the B-tree node must be read from the log. Tliis
would result in random read requests during tlie
sequential scan ofthe log, and again \ \ro~~ld result in a
longer lxriod before user requests could be serviced.

There may be a copy of the nodc later in the recoil-
cry scan. This would make the additional I/O opcr-
ation redundant.

Checkpointing

As we have shown, recovering an LFS log is imple-
mented by a single-pass sequential scan of 311 rccords
in the log fro111 the recovery start position to tlie tail of
the log. Tliis section defines a rcco\rer!l start position
and describes liow it can be lnoved for\\,ard to reduce
tlie amount of log that has to be scanned to rccoIrer
the file systcni state.

To reconstruct the in-memory statc \\lI~cn a systcm
crashed, recovery must see something in the log that
represents each operation o r change of statc that was
reprcsc~itcd in memory but not yet rnndc stable. This
Incans tliat at time t, the rcco\~er!~ start position is
dcfi~lcd as a point in the log after \\~hich all operations
tliat arc not stably stored have a log rccord associated
\\lit11 the~n . Operations obtain the association by scan-
ning the log secluentially from tlic beginning to tlie
end. Tlic recovery positiorl t l ~ c n becomes the start of
the log, \vhich has two important problems:

1. In tlie \!,orst case, it \\~ould be necessary to secluen-
tially scdn the entire log to pcrform rcco\!c~.y. For
large disks, a sequential rcad of the cntirc log con-
sumes ;i great deal of time.

2. Rcco\lcry must process every log rccord \vrittcn
bet\\~ccn the recovery start position and tlic cnd of
tlic log. As a consequence, scgmclits bcn\rcen the
start of reco\,ery and the end of thc log cannot be
clcancd and reused.

To restrict the arnount of timc to rcco\!cr tlie log
and to allo\\, segments to bc released by cleaning, the

recoverv position must be mo\,ed forward from timc
to time, so that it is al\\rays close to the tail of the log.

Under any \\,orkload, a n ~ ~ m b c r ofoutstanding opcr-
ations are at va r io~~s stages of completion. In otllcr
\vords, there is n o point in the log when all activity
has ceased. To o\zcrcomc this problem, \Ale ~rse a ti ~zzy
checkpoint scliemc." I n \~crsion 1.0 of tlic Spiralog file
system, the scrvcl- initiates a new cl~cckpoint \vhen
20 MI1 of clata has been \\lritten since the previous
checkpoint started. Tlic process cannot yet move rlic
reco\,ery position for\\lard in the log to the start of
the ne\v checkpoint, bcca~~se some outstanding opera-
tions may lia\,e priority. Tlic mapping layel- kccps track
of the opcr~~t ions that \\;ere startcd before the clicck-
point ufas initiatcci. Wlicn tlic last of tlicsc operations
has mo\,cd to rlic nest sragc (2s detined by the rcco\.cr!!
process), the mapping layer declares that thc check-
point is complctc. Only then can the recoirery position
be moved &)r\vard to the point in the log \vhcrc tlic
checkpoint was startcci.

Witli this sclicmc, the scr\.er docs not need to \\trite
all the nodes in all paths in the B-tree bcnvcen a dirty
node and the root nodc. All that is recl~~ired in practice
is to \\rrite rliosc nocics tliat lia\re flush operations
c l i x ~ ~ c d for them nt the time tliat the chcclq>oint is
started. Flushing tlicsc nodcs causes change rccorcis
to be writtcn for tlicir parent nodes aher the start of
the checkpoint. As the rcco\7er!r scan proceeds t'rom
the start oftlic last complctcd checkpoint, it is able to
regenerate the Hush operation on the parent nocics
fiio~n these change records.

UJe chose to base tlic checkpoint i~itel-\.a1 o n rhc
amount of data \vrirtcn to the log ratliel- than o n
the amount of timc to rcc(nrer the log. We felt tliat this
\vould be an accurate ~ncasul-c of liow long it w o ~ ~ l d
take to recover a particular log. 111 operation, \ilc tilid
this \vorks \\~cll o n logs tlint espcriellce a I-casonablc
\\/rite load; ho\\,c\,cr, for logs that predorninantl!~ scr-
\rice rcad rcclucsts, the ~-cco\~c~-y time tends to\\,ard the
limit. In these cases, it may be more appropriate to add
timer-based checkpoints.

Managing Free Space
A traditional, update-in-place tile system over\\,ritcs
supersedcci data by \\lriti~ig to tlie same physjcal loca-
tion on disk. If, tbr cs;implc, a single block js continu-
all!! o\zerwrittcn by a file s!!ste~ii client, 110 cstra disk
space is required to store the block. In contrast, a log-
structured file systcm appends all ~nodifications to the
file system to the tail oftlic log. E\fcry ~ ~ p d a t c to a sin-
gle block requires log s p x c , not only for tlic data, 1,111
also for tlie log rccorcis and R-trcc nodes r c q ~ ~ i r c d to
make tllc B-tree consistent. Altl~ougli old copics oftlic
data and R-tree nodcs are marked as no longer li\.c,
this free spacc is not imrncdi~tely available k>r rcusc; it
I I ~ L I S ~ be rcclaimcd by tlic clcancr. The goal is to ensure
that tlierc is sufficient spacc jn the log to \\!rite the

\lol. 8 No. 2 1996

parts of the B-tree that are needed to make the file
system structures consistent. This mealis that we can
never have dirty B-tree nodes in memory that cannot
be flushed to the log.

The server rili~st carefi~llp manage the amount of free
space in the log. I t must provide two guarantees:

1. A \\,rite will be accepted by the scrvcr only if therc is
sl~fficient free space in the log to hold tlie data and
rewrite the mapping B-tree to describe it. This guar-
antee must hold regardless of how much space the
cleaner may subsequently reclaim.

2. At the higher Ic\~els o f t l ~ e file systcm, ifan 1 / 0 oper-
atLon is accepted, eve11 if that operation is stored in
the write-behind cache, the data will be written to
the log. This guarantee holds except in the event of
a system failure.
- I. he scrvcr provides tlicsc guarantees using tlic same

mechanis~ii. As sho\vn in F i g ~ r e 13, the free space and
the reserved space in the log are modeled using an
escrow fi~nction.~'

Tlie total number of blocks that contain live, valid
data is maintained as the i~sed space. When a \\)rite
operation is receivcd, thc scrver calculates the amount
of space in the log that is required to complete the
write and update the B-trce, based on the size of
the writc and thc current topology of the B-trce. The
calculatio~i is generous because the B-tree is a dynamic
structilre and the outcome of a single update has
unpredictable effects on it. Each clerk reserves space
for dirty data that it has stored in the write-behind
cache using the same mechanism.

T o accept an operation and provide the required
guarantees, the server checl<s the current state of the
escro\v function. If the guaranteed free space is suffi-
cient, the servcr accepts the operation. As operations
proceed, reserved space is converted to used space as
writes are performed. A single write operation may
affcct se\~eral leaf nodes. As it becomes clear ho\v the
B-tree is changing, we can convert any unreqi~ired
reserved space back to guaranteed free space.

If the cost of an operation esceeds the free spacc
irrcspective of ho\v tlie reserved space is converted, the

Gmws 1 FIESERVED SPACE

GUARANTEED FREE I SPACE

GROWS USED SPACE

TOTAL
DISK
SPACE

Figure 13
Modeling Frce Spacc

operation cannot be guaranteed to complete; there-
fore it is rejected. On tlie other hand, if the cost of tlie
operation is greater than the guaranteed free spacc (pet it
map fit In the log, depending on the outcome of the out-
standing operations), the server enters a "maybe" state.
For the server to leave the maybe state and return defini-
tive results, the escrow cost h~nction must be collapsed.
This removes any uncertainty by decrcasing the reservcd
space ti gure, potentially to zero. Operations and unused
clerk reservations are drained so that reserved space is
converted to either used space or guaranteed free space.

This mechanism provides a fuzz)^ measure of how
milch space is a\iailablc in the log. When it is clear that
operations can succeed, they are allowed to contini~e.
If success is doubtful, the operation is held until a
definitive yes o r n o result can be determined. This
scheme of free spdce management is similar to the
method described in reference 7.

Future Directions

This section outlines some of the possibilities for future
implementations of the Spiralog file system.

Hierarchical Storage Management
The Spiralog server distinguishes between the logical
position of a segment in the log and its physical location
01-1 the media by means of the segment array, 7:Iiis map-
ping can be extended to cover a hierarchy of devices
with Ufering access characteristics, opening up die pos-
sibility of transparent data shelving. Since the unit of
migration is the segment, even large, sparsely used f les
can benefit. Segments containing sections of the ti le not
held on the primary media can be retrieved from slower
storage as required. This is identical to the virti~al mem-
ory paging concept.

For applications that require a complete history of
the file system, segments can be saved to archive media
before being recycled by the cleaner. In principle, this
would make it possible to reconstruct the state of the
file system at any time.

Disk Mirroring (RAID I) Improvements
When a rn~rrored set of disks is forcefully disniounted
with outstanding updates, such as when a slatem
crashes, rebuilding a consistent disk state can be an
expensive operation. A complcte scan of tlie members
may be necessary because I/Os may have been out-
standing to ally part of thc ni~rrored set.

Because the data on an LFS disk is temporally
ordered, making tlie members consistent following
a fiilure is much more straightforward. In effect, an
LFS allows the equivalent of the minimerge f~~nc t ion-
ality pro\lidcd by Volunic SIiado\ving for OpenVMS,
without the need for hardware support such as 1 / 0
controller logging of operations.Is

Digital Technical Journal Vol. 8 No. 2 1996 29

Compression
Adding file compression to an update-in-place file
system presents a particular problem: what to do when
a data item is overwritten with a new version that does
not compress to the same size. Since all ~ ~ p d a t e s take
place at the tail of the log, an LFS avoids this problem
entirely. In addition, the amount of space consumed
by a data item is determined b~7 its size and is not influ-
enced by the cluster size of the disk. For this reason, an
LFS does not need to employ file compaction to make
efficient use of large disks or RAID sets.19

Future Improvements
The existing implementation can be improved in a
number of areas, many of which involve resource con-
sumption. The B-tree mapping mechanism, although
general and flexible, has high CPU overheads and
requires complex recovery algorithms. The segment
layout needs to be revisited to remove the need for seri-
alized I/Os when committing write operations and thus
hrther reduce the write latency.

For the Spiralog file system version 1 .O, we chose to
keep complete information about live data and data that
was no longer valid for every segment in the log. This
mechanism allo~vs us to reduce the overhead of the
cleaner; however, it does so at the expense of memory
and &sk space and consequently does not scale well to
multi-terabyte disks.

A Final Word

Log structuring is a relatively new and exciting tech-
nology. Building Digital's first product using this
technology has been both a considerable challenge and
a great deal of fun. Our esperience during the con-
struction of the Spiralog product has led us to believe
that LFS tecl~nology has an important role to play in
the hture of file systems and storage management.

Acknowledgments

We would like to take this opportunity to acknowl-
edge the contributions of the many individuals who
helped during the design of thc Spiralog server. Alan
Paxton was responsible for initial investigations into
LFS technology and laid the foundation for our under-
standing. Mike Johnson made a sjgnificant contribu-
tion to the cleaner design and was a Icey nicmber ofthe
team that built the final server. We are very gratefill to
colleagues who reviewed the design at various stages,
in particular, Bill Laing, Dave Thiel, Andy Goldstein,
and Dave Lomet. Finally, we would lilce to thank Jim
Johnson and Cathy Foley for their continued loyalty,
enthusiasm, and direction during what has been a long
and sometimes hard journey.

References

1. D. Gifford, K. Needham, and M. Schroeder, "The
Cedar File System," Commzrr?ications of the ACM,
1701. 31 , no. 3 (March 1988).

2. S. Chutanai, O. Anderson, M. Kazar, and B. Leverctt,
"The Episode File System," Proceedi~zgs oJthe Winter
7992 IJSENJX Technical Con f i e~zce (January 1 992).

3. M. Rosenblum, "The Design and Implementation of
a Log-Structured File System," Report No. UCB/CSD
92/696, University of California, Berkeley (June
1992).

4. J. Ousterhout and F. Douglis, "Beating the 1/0 Botde-
neck: The Case for Log-Srructurcd File Systems,"
Operatzng Systenzs Reuieu! (January 1989).

5. R. Green, A. Baird, and J . Davies, "Designing a Fast,
On-line Backup Syste~n for a Log-structured File Sys-
tem," Digital TechnicalJour~zal, vol. 8, no. 2 (1996,
this issue): 32-45.

6. J. Oustcrl~out et al., "A Comparison of Logging and
Clustering," Computer Science Department, Univer-
sity of California, Berkeley (March 1994).

7. M. Seltzer, I<. Bostic, M. McICusick, and C. Staelin,
"An Imple~-lle~ltation of a Log-Structured File System
for UNIX," P~oceedings of [he Winter 1993 1 1E1\'IX
Technical C~nference (January 1993).

8. M. Wiebren dc Jounge, F. Icaashoek, and W.-C. Hsieh,
"Thc Logical Disk: A New Approach to I~nproving
File Systems," ACMSIGOPS '93 (December 1993).

9. J . Gray and A. Reuter, Transactio?? Processing: Con-
cepts and Tech~~iqtles (San Mateo, Calif.: Morgan
Kaufman Publishers, 1993), ISRN 1-55860-190-2.

10. A. Birrell,A. Hisgen, C. Jerian, T. hflann, and G. Swart,
"The Echo Distributed Filc System," Digital Systems
Research Center, Research lieport 11 1 (September
1993).

1 1. J. Johnson and W. Laing, "Overview of the Spiralog
File System," Digit~il Technical,Jo~~rnal, vol. 8 , no. 2
(1996, tliis issue): 5-14.

12. A. Sweeney et al., "Scalability in the U S File System,"
Proceedings of the Winter- 1996 USENX Technical
C'onfererzce (January 1996).

13. J. 'Kohl, "Highlight: Using a Log-structured File
System for Tertiary Storage Management," USENIS
Association Conference Proceedings (January 1993).

14. M. Baker et al., "Measurements of 3 Distributed Filc
System," Symposiu~n on Operating System Principles
(SOSP) 1 3 (October 1991).

15. J . Ous tc rho~~r et al., "A Trace-drivcn Analysis of the
UNIX 4.2 13SD File System," Symposiunl on Operat-
ing System Principles (SOSI') 10 (December 1985).

30 Digital Technical Journal

16. D. Lo~net and B. Salzberg, "Concurrency and Kecov-
ery for Index Trecs," Digital Cambridge Research
Laboratory, Technical Report (August 199 1).

17. P. O'Neil, "The Escrow Transactional Model,"
ACIVI Transactions on Dislribzited Systems, vol. 11
(Dcccmbcr 1986).

18. Volr.rme Shaclowing for Open VIMS hYP Version 6.1
(Maynard, Mass.: Digital Equipment Corp., 1994).

19. M. Burrows et al., "On-line Data Colnpression in a
Log-structured File System," Digital Systems Research
Centcr, Kesearch Report 8 5 (April 1992).

Biographies

Christopher Whitaker
Chris Whitaker joined Digital in 1988 after receiving
a R.Sc. Eng. (honours, 1st-class) in computer science
from the Imperial Collcgc of Sciencc and Technology,
University of london. H e is a principal software engineer
with the OpenVMS File System Development Group
located near Edinburgh, Scotland. Chris was the tcam
leader for tlie 1,FS servcr component of the Spiralog file
system. Prior to this, Chris worked 011 the distributed
transaction rnanagcment serviccs (DECdtm) for OpcnVMS
and the port of the OpenVMS record management services
(RMS and RMS journaling) to Alpha.

Rod D. W. Widdowson
Rod Widdowson received a B.Sc. (1984) and a Ph.D. (1987)
ui computer science from Edinburgh University. H e joined
Digital in 1990 and is a principal sofhvue engineer with the
OpenVrvlS File System Development Group located near
Edinburgh, Scotland Rod worked on the ~rnplementatio~i
of LFS and cluster dsuibution components of the Spiralog
filc system. Prior to this, Rod worked on tlie port of the
OpenVMS XQP fde system to Alpha. Rod is a charter niem-
ber ofthe British Computer Socicty.

J. Stuart Bayley
Stuart Bayley is a nlcniber of tlie OpenVMS File System
Developmcnt Group, located nex Edinburgh, Scotland.
He joined Digtal in 1990 aid prior to becoming a mem ber
of the Spiralog I.FS servcr team, worked on OpenVMS
DECdtm services a id the OpenVMS XQP file system.
Stuart graduated from King's Collcge, University of
London, with a R.Sc. (honours) in physics in 1986.

Digital Technical Journ'1l

Designing a Fast,
On-line Backup System
for a Log-structured
File System

The Spiralog file system for the OpenVMS
operating system incorporates a new tech-
nical approach to backing up data. The fast,
low-impact backup can be used to create
consistent copies of the file system while
applications are actively modifying data.
The Spiralog backup uses the log-structured
file system to solve the backup problem. The
physical on-disk structure allows data to be
saved at near-maximum device throughput
with little processing of data. The backup
system achieves this level of performance
without compromising functionality such as
incremental backup or fast, selective restore.

I
Russell J. Green
Alasdair C. Baird
J. Christopher Davies

Most conipLltCr L I S C ~ S \\,ant to be able to recover data
lost through user error, sotiwarc o r media fiilurc, o r
site disaster but are un~villing to de\,otc systcln
resources o r do\vnti~nc to makc b a c k ~ ~ p copies of thc
data. Furthermore, with tlie rapid gro\vtli in the use of
data storage and tlie tendcncy to mo\{c systems to\\larci
conlplete utilization (i.e., 24-hour by 7-day operation),
the practice of taking the s)lstem off line to back up
data is 110 longer fcasjblc.

The Spiralog file system, an optional component of
the OpenVMS Alpha operating s)lstcm, incorpori~tes
a nebit approach to tlic backup process (called
simply backup), resulting in a numhcr of substantial
customer benefits. By exploiting the fcati~rcs of log-
structured storage, the backup systcm combines the
advantages of two different traciitionnl approaches
to perfor~iling baclu~p: the tlcxibility or file-basccl
backup and the high pcrfonnancc of physically ori-
ented backup.

Thc design goal for the Spiralog backup systcm \\,as
to provide customers \\.ith a hst, application-consistent,
on-line backup. In this pJpcr, n8c esplain the features
o f the Spiralog file system that helped achicvc this goal
and outline the dcsign of the major backup fi~nctions,
namely volume save, \~olilnic rcstorc, ti lc rcstorc, and
incremental management. \)Vc then prcscnt some pcr-
formance results arrived at 11sing Spiralog vcrsion 1.1.
The paper concludes \\lit11 a discussion of other design
approaches and areas for f i~turc \\lark.

Background

File s)atcni data may be lost for many reasons, includ-
ing

User error-A ilscr may mistakenly dclctc data

Softwarc failurc-An application may c s c c ~ ~ t c
incorrectly.

lMedia failure-The computing ccluipmcnt may
malfunction because of poor design, old agc, ctc.

Sitc disaster-Co~~iputi~ig Eicilitics may cxpcrjcncc
failures in, for csamplc, tlic clcctrical supply or cool-
ing systems. Also, environmental catastrophes such
as electrical storms and floods may d.im;~gc hcilitics.

32 Digitdl Tcch~iical Journal

The ability to save b ~ c k u p copies of all or part of
a file spste~n's information in a form that allo\\s it to be
restored is essential to most citstolners \\rho use ~0111-
puting resources. To understand the backup capability
needed in the Spiralog file system, we spoke to a num-
ber of custon~ers-five directly and several hundred
through public ~ O ~ L I I I I S . Each ran a different nipe ofsys-
tern in a distinct environment, ranging from research
and development to finance on OpenVMS 2nd other
systems. Our survey rc\~caled the following set of cits-
torner reqilircments for the Spiralog backup system:

1. Backup copies of data must be consistent \vith
respect to the applications that use thc data.

Data I I I L I S ~ be continuously available to applica-
tions. Downtime for the purpose of backup is unac-
ceptable. An application must copy all data of
interest as it exists at an instant in time; however,
the application should also be allowed to modi@
the data during thc copying process. Performing
backup in such a way as to satistjl these constraints is
oficn called hot backup or on-line backup. Figure 1
illustrates ho\v data inconsistency can occur during
an on-line baclzup.

3. The backup operations, particularlv the save opera-
tion, must be hst . That is, copying data from the
system o r restoring data to the system II ILIS~ be
acco~~~plished in the ttliie available.

4. The backup s)!stcn~ must allo\v an incremental
backup operation, i.c., an operation that captures
only the changes made to data since the last backup.

Thc Spiralog backup team set out to design and
implement a backup system that would meet the four
customer req~tiremcnts. The foIIo\\~ing section dis-
cusses the features of the implementation of a log-
structured tile system (LFS) that allo\\/cd us to use
a nc\v approach to performing backup. Note that
throughout this paper we use clisk to describe the

TIME

FILE BACKUP EXPLANATION

The initial file contains two blocks

Backup stalls and copies the first
block.

The application rewrites the file.

Backup proceeds and copies t h e
second block. The resulting backup
copy is corrupt because the f~rst
block IS inconsistent w ~ t h the latest
rewritten file.

Figure 1
Exarnplc 0fa11 O I I - ~ ~ I I C Backup Tha t Rcs~~l t s in Inconsistent
Data

phys~cal media used to storc data and rlol~i~ne to
describe t l ~ c abstractton of the dislc as presented by the
Spiralog filc system.

Spiralog Features

The Spiralog file system is an implementation of a log-
structured file system. An LFS is characterized by the
use ofdisk storage as a sequential, never-ending rcpos-
itory of data. We generally refer to this organization of
data as a log. Johnson and Lling describe in detail the
design of the Spiralog implementation of an LFS and
how files are maintained in this implementation.'
Some feari~res unique to a log-struct~~red filc system
are of particular interest in the design of a backup
s)lsten~.'-.' These features are

Segments, where a segment is the fundamental
unit of storage

The no-o\ler\\lrite nature of the system

The temporal ordering of on-disk data structures

The means by which files arc constructed

This section of the paper discusses the relevance of
these features; a later section explains how these fea-
turcs arc exploited in the backup design.

Segments
In this paper, thc ten11 segment refers to a logical
entity that is unicluely identified and never ovcr\vrit-
ten. This definition is distinct from the physical stor-
age of a segment. Thc only physical featurc of interest
to backup urith regard to segments is that they are effi-
cient to read in their entirety.

Using log-structured storage in a tile system allo\\~s
efficient writing irrespective of the \\,rite patterns or
load to the file system. All write operations arc
groupcd in segment-sized chunks. The scgmcnt sizc is
chosen to be sufficiently large that the time required
to read o r \\trite the segment is significantl!l greater
than the time required to access thc scgmcnt, i.c., the
time required for a head seek and rotational delay on
a magnetic disk. All data (except the LFS homebloclt
and checl<point information used to locate the cnd of
the data log) is stored in segments, and all segments
are known to the file system. From a backup point of
view, this means that the entire contents of a \,olumc
can be copied by reading the segments. The segments
are large enough to allow efficient I-eading, res~~l t ing in
a ncar-maximu~n transfcr rate of the device.

No Overwrite
In a log- st^-ucturcd file systcm, in which the segments
are never overwritten, all data is \\/nttcn to ncu; c ~ n p t) ~
seglnents Each nc\v segment 1s gwen a segn1cnt den
tifier (scg~d) allocated in a monotonically incrcas~ng

Val. 8 No. 2 1996 33

manner. At any point in time, the entire contents and
statc ofa volume can be described in terms ofa (check-
poil?rposi/io/l, segrrlorr li.s/) pair. At the physical Ic\lcl,
a \iolurne collsists of a list of segments and J position
within a segment that defines the cnct of the log.
Rosenblum describes the concept of time travel, where
an old statc of tlie tile system can be rc\~isitcd by crcat-
i ~ i g and maintaining a snapshot of the file system for
future access."Allowing time tra\lel in this way rccluircs
maintaining an old checkpoint and disabling tlic reuse
of disk space by tlie cleaner. The cleaner is a mccha-
nism used to reclaim disk space occupied by obsolete
data in a log, i.c., disk spacc no l o ~ ~ g c r referenced in
the file systeln. The contents of a snapshot arc indc-
pendent of operations ~rndcrtaken o n the live version
of the file system. Modifjling o r dcleting a file affccts
only tlie live version of the file system (see Figure 2).
Because of the no-over\vrite nature of tlie LFS, previ-
ously written data remains ~lnclianged.

0 t h mcclianisms specific to a particul;ll- baclc~~p
algorithm have been developed to achieve on-line con-
sistenc..' The snapshot niodel as described above allo\\s
a more general solution \vith respect to ~ i i~~ l t ip l c con-
current b~ckups and the choice of tlic sa\.c ;algorithm.

A read-only version of the tile system at an instant
in time is precisely \\.hat is required for application
consistency in on-line backup. This snapshot approach
to attaining consistency in o~i-line baclu~p hns bccn
used ill other s y s t e ~ n s . ~ . ~ AS esplai~lcd in the fi)llowing
sections, thc Spiralog file s~lstcni combines tlie snap-
shot technique with fea t~~res of log-stri~cturcd storage
to obtain both on-line backup consistency and perfor-
mancc benefits k)r backup.

Temporal Ordering
As mentioned earlier, all data, j.c., user datn and ti lc
system lnetadata (data tliat describes the user data in
the tile system), is stored in scgnients and tlicrc is 110

overwrite of segments. AJl on-disk data structures that
refer to physical placc~nent of data use pointers,
~ianicly (sc.gid, (fi.k>r) pairs, to dcscribc thc location of
tlie data. Each (segid. ?/]Set) pair specifics the scgmcnt
and where within tliat scgment the data is storcd.
Togctlier, these imply tlic follo\ving t\vo propcrtics of
data structures, wliicli are Iccy features ofan LFS:

DIRECTION IN WHICH THE LOG IS WRITTEN

This data is This data is This is new live
visible to only shared by the dala written since
the snapshot. snapshot and the the snapshot was

live file system. laken.

Figure 2
Data Acccssiblc to thc Snapshot 2nd to tlic Live Filc
S!lstem

1. On-disk strilctilrc poi~lters, nanielj~ (.sqqi~/. (djset)
pairs, arc relatively time ordercd. Specifically, data
stored at (s2, 02) was writtcn more recelitly than
data stored at (s l , 01) if and only if s2 is greater
than sl o r s2 ccluals s l and 02 is greater than 01.
Tlil~s, ncur data would appear to tlie right in the
data structure depicted in F i g ~ ~ r c 3 .

2. Any datn strirctilrc that i~ses on-disk po i~~ te r s stored
within the segments (the mapping data structure
iniplcnicnting the LFS index) lnilst be time
ordered; that is, all pointers 1ii~1st refer to data \wit-
ten prior to tlic pointer. Kcfct-ring ;lgain to Figure 3,
onl!~ data structures that point to the lcfi are valid.

Tliesc propcrtics of on-disk data strilctilrcs are of
interest \\,lien designing backup systems. Such data
StructLIrcs can be tra\~crscd so that segments arc rcad
in reverse time order. To understand this concept, con-
sider tlie root ofsonic on-disk data structure. This root
must ha\.c bccn \witten ahcr an!, of the clata to \\,hich
it refers (property 2) . A clata itcni tliat the root rcfcr-
enccs must Iia\,c been \vrittcn bcfi>re the root and so
must 11;1ve bee11 storcd in a scgmcnt \\'it11 a scgid less
than or cq~lal to tliat of the segment in \\.liicli the root
is storcd (property 1). Asinlilar indi~cti\c ~1rgi11iient c.111

be ilscd to slio\\r that any on-disk data structure can be
traversed using a single pass of segments in increasing
segment age, i.c., ciect-casing scgicl. This is of particular
interest \\,he11 considering /lo\\ to rcco\,cr sclccti\ie
pieces of data (c.g., indi\kiual files) from an on-disk
structure tliat has been storcd in such a *a!, that only
scqi~c~ltial access is \,inblc. Tlic storage of the segments
that compose a \,01i11nc 011 tape as part ofa bacl<lrp is an
csamplc ofsuch an on-disk data structure.

File Construction
Whitalter, 13aylc): and Widdowson dcscribc the persis-
tent address spacc as exported by the Spiralog LFS.'
Essentially, tlic intcrhce presented by tlie log-
s t ruc t~~rcd scrifcr is that ofn lnc~nory (\rarious read and
\\)rite opcrx'ims) iiidcscci using n fi lc identifier and an
;iddress range. 'The entire contents of a filc, regardless
of type or size, are defined by the file identitier and all
possible nddrcsscs built ~rsing that identifier.

r < Iliis means of filc constri~ction is iliiport31it \vIien
considering how to I-cstorc the contents of a filc. All

All pointers specify
previously written segments.

DIRECTION IN WHICH THE LOG IS WRITTEN

Figure 3
A V:llid 1)nt.l S r r u c t u ~ . ~ in thc Log

\fol. 8 No. 2 1996

data contained in a file defined by a file identifier can be
recovered, independent of how the file was created,
without any knowledge of the file spstem structure.
Consequently, together ~14th tlie temporal ordering of
data in an LFS, files can bc recovered using an ordered
linear scan of the scgmcnts of a volume, provided the
o ~ ~ - d i s k data structures are traversed correctly. This
rnechanisni allows efficient .tile restore from a sequence
of segments. In particular, a set of files can be restored
in a single pass of a saved volume stored on tape.

Existing Approaches to Backup

7 7 I lie design of tlie Spiralog backup attempts to com-
bine the ad\~antages of file-based baclcup tools such as
Files-11 backup, UNIX tar, and Windows NT backup,
and physical backup tools such as UNIX dd, Files-11
baclcup/PHYSICAL, and HSC backup (a controller-
based backup for OpcnVMS volumes)."

File-based Backup
A file-based backup system Iias nvo niain advantages:
(1) thc s)~ste~ii can explicitly name files to be saved, and
(2) the system can restorc individual files. In this paper,
the file or structure that contains the output data of
a backup save operation is called a saveset. Individual
file restore is achieved by scanning a saveset for tlie file
and then recreating the file using tlie saved contents.
Incremental file-based baclcup usually entails keeping
a record ofwhen the last backup was made (either on a
per-file basis or on a per-volume basis) and copying
only those files and directories tliat have been created
or moditied since a previous backup time.

The penalty associated with these features of a file-
based backup system is that of save performance.
In effect, the backup spstem performs a considerable
amount ofworlc to lay out data in the saveset to a l l o ~)
simple restore. All files are segregated to a ~iiuch greater
extent than they are in the tile s)lsteni on-disk struc-
turc. The limiting factor in the performance of a file-
based save operation is the rate at ~vliich data can be
read from the source disk. Although there are some
ways to i~nprovc performance, in the case o f a volume
that lias a large number of files, read performance is
always costly. Figure 4 illustrates the layouts of tlirec
different types of savesets.

Physical Backup
In contrdst to the filc-based approach to baclcup, a
physical backup system copies the a c t ~ ~ a l blocks of data
on the source disk to a saveset. The backup system is
able to read the disk optimally, which allows an imple-
mentation to achieve data throughput near the disk's
maximum transfer rate. Physical baclcups typically
allow neither individual filc restorc nor jncremcntal

DIRECTION IN WHICH THE TAPE IS WRITTEN

In a physical backup saveset, blocks are laid out cont~guously on tape
File restore is not poss~ble without random access.

In a file backup saveset, files are laid out contiguously on tape.
To create this sort of saveset, files need to be read individually
from disk, which generally means suboptimal disk access.

FILE 1 I FILE 2 1 FILE 3 . . .

Figure 4
Layouts of Three Different Types of Saveset

DIR

baclcup. The overhcad required to include sut'ficicnt
information for tliese fcatures usuall!l erodes the per-
formance bencfits offered by the physical copy. In
addition, a physical backup usually requires tliat the
entire volume be saved regardless of how much of tlie
volilme is used to store data.

How Spiralog Backup Exploits the LFS

In a Spiralog backup saveset, directory (DIR) and segment table
(SEGT) allow file restore from segments. Segments are large
enough to allow near-optimal disk access.

SEGT

Spiralog backup uses the snapshot ~nechanisni to
achieve on-line consistency for backup. This section
dcscribes ho\v Spiralog attains high-performance
backup with respect to the various save and restorc
operations.

Volume Save Operation
The save operation of Spiralog creates a snapshot and
then physically copies it to a tape or disk structure
callcd a savesnap. (This term is cliosen to be different
from saveset to emphasize that it holds a consistent
snapshot of the data.) This physical copy operation
allows high-performance data transfer with minimal
proces~ing. '~ In addition, the temporal ordering of
data stored by Spiralog means that this physicnl copy
operation can also be an incremental operation.

The savesnap is a file that contains, among other
information, a list of segments exactly as they csist
in the log. Tlic structure of thc savesnap allows the
efficient implementation of volume restore and fi le
restore (see Figure 5 and Figure 6).

The steps o fa f i l l save operation arc as follows:

SEG

1. Create a snapshot and mount it. This mounted
snapshot loolcs like a separate, read-only filc system.
Read information about the snapshot.

1)igiml Technical Journal

SEG

Vol. 8 No. 2 1996 35

SEG

METADATA SEGMENTS (DECREASING SEGID)
+ - - t

HEADER SP ;ST DIRECTORY i SEGMENT INFO i TABLE SEGMENT ...

KEY:

I PHYSICAL SAVESNAP
i RECORD (FIXED SIZE FOR

: .,,............. i ENTIRE SAVESNAP)

8 ZERO PADDING

Figure 5
Sn\,csnap Srructut.c

THE LOG TAIL OF THE LOG --,

ROOT OF THE
SNAPSHOT

DIRECTION IN WHICH THE LOG IS WRITTEN

SAVESNAP

DIRECTION IN WHICH
THE TAPE IS WRITTEN

KEY:

0 UNUSED SEGMENT

a USED SEGMENT

Figure 6
C:ol-l.cspondcncc bct\\.cc~l Scgmc~lrs on 1)isk an t i i n thc
Sa\.csn~p

2. Write the licacicr to the savesnap, incl~rding snap-
shot i~~formation such ;IS the checkpoint position.

3. Cop!, the contents of the f lc systcm directories to
the savesnap.

4. Write the list of scgids that composc the snapshot
to the s a \ ~ e s ~ ~ a p as a scgmcnt table in decreasing
scgid order.

5. Copy these scgmcnts in dccrcasing scgid order
from the \~olumc to the savcsnap (see Figure 6) .

6. Dismount and delctc the snapshot, leaving only the
contents of the live volunic accessible. 'The effect of
deleting the snapshot is to rclcasc all the space ~ ~ s e d
to storc s ~ g n ~ c r i t s that contain only snnpsliot data.
All scgmcnrs tliat contain data in the live \~oli11i1c
arc lcl? inttict.

\ioI. S No. 2 1996

SP SAVESNAP INFORMATION

ST SNAPSHOT INFORMATION

The Spiralog backup systcm is pri~narily physical.
The systcm copies the volu~nc (snapshot) data in
seg~uents that arc largc cnougli to allo\v efficient
disk reading, regardless of the ~ iumbcr of files in the
\~01~11iie. TO save a \ ~ o l ~ ~ n l c , tlic Spiralog backup sys-
tern has to read all the dircctol-ics in the volume and
then all the scgmcnts. In comparison, a f lc-based
backup system must read all the directories and then
all the files. On volumes with largc tile populations,
file-based backup pcrformancc suffers greatly as a
resi~lt of the number of rcaci operations rcq~rircd to
save the \~olume. Our mcasurcmcnts slio\\'cd t h ~ t the
directory-gatherj~~g phase of our copy operation \\.as
insignificant in relation to the ciata tl-nnsfcr during the
segment copy phase.

Incremental Save Operation
The incremental sa\.e operation in Spirnlog is \,cry
differelit from that in a filc-hascd b'~ckup. \Vc usc the
ternporal ordering fcaturc of the LFS to capture only
tlic changes in a \.olumc's ilata as part of the i~lcrcmcn-
tal save. The tcmpoml ordering pro\.idcs a simple \\.a!.
of determining the rclati\.c age o f c i ~ t , ~ . To be precise,
clata in thc segment \\,it11 scgiri s2 must Iin\,c bccn \\rrit-
ten aficr data in the scgmcnt \\,it11 scgiti s l if anti onlv
if s2 is greater than sl .

Consider tlic lifetime of a \,olumc as an endless
sequence of segments. A backup copy of n volume at
any t i ~ n e is 3 copy of all scgmcnrs that contni~i data
accessible in that \~olumc. Scgmcnts in the \,oll~nic's
Iiistory tliat arc 11ot incli~dcd in the baclc~~p cop!{ arc
those tliat n o longcr contain any i~scfi~l ii;ltn or those
that have bccn cleaned. An incrcmcntal backup con-
tains the sequence of scgmcnts containing accessible
data written sincc a previot~s backup.

This is different fi.0111 JII i ~ i c r c ~ ~ i c ~ ~ t a l S;I\'C o p c ~ ~ t i o n
in a tile-based b'ickirp schcmc. The Spiralog incrcmcn-
tal save operation copies o n l y the data \\,rittcn sincc
the last backup. In comparison, a file-based backup

incj-cmcntal save comprises entire files tliat contain
nc\v o r modified data. For example, consider an incrc-
mental s x r c o f a \,olulnc in \\>liich a large databasc fi lc
has had only one record updated in place since a f~ll
backup. Spiralog's incremental save copies tlie seg-
ments \vrittcn since thc last full backup that contain
tlic modi fcd record \\,it11 o ther upd.ited file system
index d ~ t n . A f i le-b~scd b,lcIa~p copies the cntirc data-
base f lc.

T h e follo\\iing stcps for tlic incremental save opern-
tion augment tlic six process stcps pre\~iousl!r
described for tlic save operation. N o t e th'it steps 32,
42, and 5a k)llo\v stcps 3 , 4 , and 5,i-cspccti\lely.

3a. Write dependent s'lvesnap information. This is 3

list o f the s,l\iesnaps r e q ~ ~ i r e d t o coniplete the
chain ofsegments tliat constitutes the cntirc snap-
shot contents. T h e savesnap information includes
a ~rnicluc savesnap identifier (L ' O ~ I ~ I ~ Z C ' id. S O ~ I H C I I I

i r l , s e g ~ ~ ~ c ~ l t ~ (!/].I-c't). This is the chccl<point position
of t l ic snapshot and is ~ ~ n i q u c across \,olunics.

4,1. l) c t c r m i ~ ~ e the scgmcnt range t o be stored in this
sn\.csnap. This rangc is calculated by reading the
scglncnt rangc o f tlic last backup from a file storcci
o n the source \~o lume.

53. Rccord the minimum segid stored in this save-
snap \\it11 tlic scgmcnt table. T h e s e g ~ i i c n t taldc
contains the segids o f all segments in tlie sa\lcci
sn.lpsliot. T h e incremental savesnap contains
scgmcnts identified by 3 subset o f these segids.
T h e scgid o f the lust scgmcnt storcd in the savc-
snap is recorded .is tlie ~ i i i n i m u m segid held in tlic
savesnap.

7. Rccord o n tlic source \ ~ o l u m e the segment rangc
storcd in t11c savesnap.

Tlic implementation pro\'ides an interface tliat
allo\\,s tlic user t o s p e c i e the maximum n u n ~ b e r o f
sn\.csll'lps rccluirccl for a restore operation. This feature
js simil'lr t o specifiring the le\rels in the U N I S d u m p

TIME LIVE SEGMENTS IN VOLUME

Monday I 1 1 3 1 4 1

utility, \\diere a Ic\~cl O saIre is a fill1 backup (i t ~ -cq~r i rcs
n o o ther sa\,csnaps for a restore), and a Ic\,cl 1 sa\.e
is nn incrcment,ll backup since the fill1 b,lclcup (i t
r c q ~ ~ i r c s o n e 'ldditional savesnap for a restore, n.lmcly
tlie fill1 b a c l t ~ ~ p) .

Figure 7 s l i o \ ~ ~ s tlie savesnaps procluccd from
f ~ ~ l l and incre~nental sa1.e operations. Notc that the
most recently \\,ritten segment ma!, appcnr in t\\.o
different savesnaps that supposedly contain disjoint
darn. For example, segment 4 , the !~oungest scgmcnt
in ~Monday's savesnap, appears in the savesnaps made
o n both Monclay and M'ednesday. Tlic yoLlngcst scg-
mcnt is no t gl~arantccd t o be f i l l a t the time o f a snap-
sho t creation, and therefore a later savesn~lp

Wednesday

contain data tliat was no t in tlic f r s t savcsnap.
C o n s c q ~ ~ c n t l y , incremental savesnaps r c c a p t ~ ~ r c tlic
oldest segment in their segment range.

N o t c tliat \\,it11 this design a slo\\,ly c l i ~ n g i n g fi lc
can be spread across many incremental sa\,csnaps.
llcstoring such a file accordingly ~ i i a \ ~ I-cc1~1irc access
to many sa\.csnaps. T h e file restore sectioll sho\\,s t h ~ t
tlic design o f f lc restore allo\\,s efficient tape tra\,crsal
for these files.

Volume Restore Operation
Tlic Spiralog bacltup \,olume restore oper'ltion talccs a
set o f savesnaps and copies the segments that m'lltc LIP
a snapshot o n t o a disk. Together, this set o f scgmcnts
2nd tlic location of the snapshot checkpoint dcfinc
a \~o lumc. T h e steps in\lolved in a \~olunic restore from
a f11 1 1 sa\Jesnap arc

1

1 . O p e n the savesnap, and read the snaps l~ot clicck-
point position fi-om the sa\lesndp headcr.

2. Initi,llizc tlic targct disk t o be a Spiralog \ .olu~i ic .

3

3. Chpy all segments froln the sa\,esnap t o the rar-
get disk. N o t e tliat the scgmcnts \\zrittcn t o tlic
target disk d o no t depend in any \\,a!' o n the tnr-
get ciislc gcometr!l. This Iiieans tliat tlic targct disk
ma!, be complctel!, different fi-om thc soilrcc

4

Figure 7
Snapshot <:onrc~lts in Incrcmcntal S'~\.esn'lps

SAVESNAPS

Full save on
Monday

Wednesday
since Monday

Digid Tcch~iical journal

5

Fr~day

7

Wednesday
Fr~day slnce 1 4 5 7 9

dislc fro~ii \\,hich tlie savcsnap \\!as made, providing
tlie target container is large enough to hold the
restored segments.

4. Rackup declares the volume rcstore as complete
(no more segments will be written to the volume).
Rackup tells the file system hocv to mount tlie vol-
ume by supplying the snapshot checkpoint location.

A Spiralog restore operation treats an incremental
savesnap and all the preceding savesnaps upon which it
dc lx~ids as a single savesnap. For savesnaps other t l~an
the most recent savesnap (the base savesnap), the
snapshot information and directory i~~for~i ia t ion arc
ignorcd. Tlie sole purpose of thcsc savesnaps is to pro-
\vide scgmcnts to the base sa\7esliap.

To restore a v o l ~ ~ n i e from a set of i~icrcmental save-
snaps, the Spiralog backup system pcrti)rms steps 1
and 2 using the base savesnap. I n step 3, tlic rcstore
copies all the segments in the snnpsliot clcfincd by
the base savcsnap to the target disk. (Note t l i ~ t there
is a one-to-one correspondence hcnvccn snapshots
and savcsnaps.) The savcsnaps are proccsscd in reverse
chronological order. The contents of the segment
tablc in the base savesnap define the list of scg~nents in
tlic s~iapshot to be restored. Altl io~~gli the \.olume
rcstorc operation copies all tlie segments in the base
sa\,csliap, not all segments i l l the savesnaps processed
nlay be rccl~~ircd. Sa\rcsnaps are inc l~~ded in t l ~ c rcstore
p~)ccss if tlicy co~ltaili SOIIIC s c g ~ i i c ~ ~ t s tliat arc nccdcd.
Such savesn,lps ma\, also contain segmcnts tliat \\,ere
clcancd before the base savesnap was created.

Thc structure of the savesnap allo\\,s the efficic~~t
location and copying ofspecifc scgmeuts. The scgment
table in the savcsnap descrjbes exactly ~vliich segments
arc storcd in the savesnap. Since the scgmcnts are of
a fxcd size, it is easy to calculate tlic position cvitliin
the savcsnap whcre a partic~~lar segment is storcd, pro-
vided the scgment tablc is available nnd the position of
the ti rst scglncnt is kno\vn. Tliis will nl\vays bc the case
by the time the scgment tiible l ~ a s hccn read bccai~sc
the scgmcnts immediately follo\\~ tliis tablc.

 most sa\,csnaps are stored on Tliis storage
medium lends itself to the indexing just dcscribecl. 111
pnrticul;~r, modern tape drives such as tlic Digital
Linear Tape (DLT) series provide tist, relative tape
1x)sitioning tliat allo~vs tapc-basccl savesnaps to be
sclcctivcly rcad more cl~~ickly than \\/it11 a scqucntial
scan." Similarly, on ra~~do~n-access mcdia such as
ciisl<s, n particular segnient can be rcaci w i t l i o ~ ~ t strict
scclucntial scanning of data.

T l ~ c volume rcstore operation is thcrcforc a physical
olxration. The segments can be read and written cffi-
cicntly (even in tlie case of incrcrncntiil sa\,csny,s from
sccluaitial mcdia), r e s ~ ~ l t i ~ i g in a Iligh-pcrform3ncc
recover!, fioni \,olume failure or site disaster.

File Restore Operation
Tlie pilrpose of a file restore operation is to provide
a fast and efficient \vay to retrieve a small nunibcr of
files from a savesnap \\-ithout performing a fill1 \,olurne
restore. Typically, file restore is used to recover tiles
that have been inncivertently deleted. To achieve high-
performance file rcstorc, cve imposed the follo\ving
req~~ire~i icnts o n tlic design:

A file rcstorc scssion must process as fc\v savesnaps
as poss~blc; ~t s h o ~ ~ l d skip savesnaps that do not
contaln data needed by the session.

When processing ;I savesnap, the file restorc must
scan the snvcsnap lincarl!; in a single pass.

The process of restoring fi les can be broken do\vn
into tlirec steps: (1) disco\lcr the file identifiers fix all
the files to be rcstorcci; (2) i~sc the tilc identifiers to
locate t l ~ e file data in tlic s;i\~ed segments, and tlicn
rcad that clat,~; dnd (3) place tlic newly rrco\,crcd data
back into the currcnt Spiralog file systern.

Discovering the File Identifiers The user supplies the
namcs of the flcs to bc restored. The mapping
between the f le namcs and the file identifiers associ-
ated with thcsc namcs is storcd in tlie segments, but
this infbrmation cannot be disco\~crcd simply by
inspecting the contcnts of the s a ~ w i scg~ncnts. A
corollary o f tllc temporal ordering of the segmcnts
\\#ithin a s,l\.csniip is that hicrarcliical information, sucll
as nested directories, tc~ids to hc presented in precisely
tlie \\Irons order for scanning in a single pass. To over-
come tliis problem, tlic save operation \\.rites the corn-
plete directory tree to the savcsnap before copying any
segments to the savesnap. This tree maps ti lc names to
identifiers for c\.cry ti lc and directory in the savcsnap.
The file rcstorc scssion constructs a partial tree of tlic
names of the tiles to be restored. Thc partial tree is
then niatcllcci, j ~ i 3 si~iglc ~ B S S , ;lg<li~ist the co~nplcte
tree storcd in tlic sa\,csnap. This procrss produces tlic
required file idcntifi crs.

Locating and Reading the File Data Miel- disco\.cring
the file idcntif crs, the ti lc rcstore session reads the list
of segmcnts present in the savcs~~ap; this list co~iies
after the directory tree and bcti)rc any sa\.ed seg~ncnts.
'The file rcstorc tlicn switches f o c ~ ~ s to disco\~cr prc-
ciscly \\lIiich segmcnts contain the tile data that corrc-
spond to the file idcntificrs.

Tlie first segment rcaci fro111 the sa\,esnap contains
the tail of tlie log. l'llc log pro\~idcs a mapping bch\'ccn
file identifiers ancl locations of data within seglllcnts.
The tail of the log contains the root of the map.

We dc\:clopcd a simple intcrfacc for the file rcstorc
to LISC to ~ln\.ig;~tc tllc map. Essentially, this intcrfiicc
permits the retric\rnl of all]napping infixmation

Vol. 8 No. 2 1996

relevant to a particular file identifier that is held within
a given segment. The mapping information returned
through this interface describes either mapping infor-
mation held elsewhere or real file data. One character-
istic of the log is that anything to which suc l~ rnapping
infor~nation points must occur earlier in the log, that
is, in a subsequent saved segment. Recall property 2 of
the LFS on-disk data structures. Consequently, the file
restore session will progress through the savesnaps in
the desired linear fashion provided that requests are
presented to the interface in the correct order. The
correct order is determined by the allocation ofsegids.
Since segids increase monotonically over time, it is
necessary only to ensure that requests are presented in
a decreasing segid order.

The file restore interfiice operates on an object
called a context. Thc contest is a tuple that contains a
location in the log, namely (segid ofliet), and a type
field. When supplied with a file identifier and a con-
text, thc core function of the interface inspects the seg-
tnetlt determined by the contest and returns the set of
contexts that enumerate all available mapping infor-
mation for the file identifier hcld at the location gven
by the initial contest.

The type of context returned indicates one of the
follo\ving situations:

SAVESNAP

The location contains real file data

The location givcn by the context holds more
mapping information. In this case, thc core f i~nc-
tion can be appliccl repeatedly to determine the
precise location of the f le's data.

A \vorl< list of contests in decreasing segid order
drives the file restore process. The procedure for
retrieving the data for a single file identifier is as fol-
lows. At the outset of the file restore operation, the
work list holds a single contest that identifies the root
of the map (the tail of the log). As items are taken from
the head of the list, the file restore must perform one
of two actions. If the context is a pointer to real file
data, then the file restore reads the data at that location.
If the context holds the location of mapping informa-
tion, then the core hnction must be applied to enu-
merate all possible h r the r mappitlg information held
there. The file restore operation places all returned
contexts in the work list in the correct order prior to
picking the next work item. This simple procedure,
which is illustrated in Figure 8, continues until the
work list is empty and all the file's data has bccn read.

To cope with inore than one flc, thc file restore
operation extends this proceditre by converting thc
work list so that it associates a particular file identifier

EXTENTOFSAVESNAPTRAVERSALSOFAR

TARGET FlLE SYSTEM FOR FlLE RESTORE

DIRECTION IN WHICH THE LOG IS WRITTEN

KEY:
I---,

i FlLE DATA
L - - - ,

FlLE SYSTEM MAP DATA

The shaded areas represent the file data to be restored and the file system metadata that
needs to be accessed to retrieve that data. The restore session has thus far processed
segment 478. Part A of the file has been recovered into the target file system. Parts B and C
are still to come. Afler processing segment 478, the file restore visits the next known parts of
the log, segments 69 and 59. Items that describe metadata in segment 69 and data in segment
59 will be on the work list. The next segment that the file restore will read is segment 69, so the
session can skip the intervening segment (segment 195).

Figure 8
Filc Restore Session in Progress

Digiral Technical Journal Vol. S No. 2 1996 39

\vith each contest. File rcstorc initializes the \ifork list
to hold a pointer to the root oftlie map (the tail of the
log) for cach file identifier to be restored. The effect is
to intcr!ea\.c requests to ~-c,ld more rhun one f le ~ ~ h i l e
niaintaining the correct segicl ordering.

A f ~ ~ r t h c r s~~b t l cn r occurs \\,lien tlic contest at the
head of the \\forlc list is fo~111c1 to refer to a scgnlent
outside the current savesnap. Tlic ordering iniposeci
011 the \\fork list i~l~plies that all subseclucnt items of
work must also be outside the current savesnap. This
follo\\.s from the temporal ordering properties of LFS
on-disk s t r~~c tu rcs and the way in \vliicl~ il~crernental
savesnaps arc defined. When this situation occurs, the
\vork list is savcd. Wlicn the nest sa\Iesnnp is ready for
processing, the file rcstorc session can be restarted
using tlic savcci \\lorlc list ,IS the starring point.

During this stcp, tlic file rcstorc \\,rites the pieces of
files to tlic targct volumc as t1ie)r arc read fro111 the
sa\8csnap. Since the filc rcstorc process allocates file
idcntificrs o n a per-volume basis, rcstorc must allocate
new filc idcntifcrs in tlic targct \~olume to accept the
data being read from the source salcsnap.

The new fi le idcntificrs are hidden From users dur-
ing the file rcstorc ~ ~ n t i l the ti lc restore process has fin-
ished since the files arc not complete ancl may be
~nissing \rital parts such as access pernlissions. Rather
than allo\\i access to tlicsc partial filcs, thc tile restol-c
hides the nc\\, f lc idcntifcrs until a11 the clata is pres-
ent, nt \vhich rime the finnl stngc of tlic file rcstorc can
take place.

Making the Recovered Files Available t o the User In
the third stcp of the process, the fi lc rcstore operation
makes tlic ~ie\vly rcco\.crccl filcs ;~ccessible. At the
beginning of the stcp, tlic fi lcs csist only as bits of data
associated \\.it11 new fi lc identifiers-the filcs do not yet
11;ive ~ianics. The nnmcs thnt arc no\\. bound to thcsc
file idc~ititicrs conic fi-om tlic partial directory tree that
\\!as originally ~ ~ s c d t o mutcli dgainst tlic directory trcc
in tlic s;i\tcsnnp. This final stcp restores tlic original
names and contents to '111 tlic flcs that \\rere originally
rcq~~cstcd . The filcs retain the nc\v fi lc iclcntificrs that
wcrc allocated during the file rcstorc process.

Management of Incremental Saves
One design goal fix tlic Spil-nlog backup \\pas to reduce
the cost of storage mnnagcnicnt. 'The design includes
the means of pcrk)rrning an incrc~ncntal \lolumc save
that copics only ciatii written since the previous
backt~p. To inlplcmcnt n L ~ ~ I C ~ L I I) strategy tllat 11e\'c1-
requires more than one f ~ ~ l l backup L~ut allo\\/s restores
i ~ s i ~ l g a fi nitc number of sa\rcsliaps, \vc designed ,lnd
implcmcntcci tlic ~a \~csnap mcrgc f~nc t ion .

Savcsnap mcrgc opcmtcs similarly to volume
rcstorc, but instead of copying segments to a disk as

in a volunle rcstorc, savcsnap mcrgc copics scgmcnts
to a net\/ savcsnap. As slio\vn in Figure 0, tlic cfkct
of merging a base sa\,csnap and a11 the incrc~iic~ital
savesnaps upon \.i~liicl~ it ciepcncis is to prodi~cc a f i ~ l l

savesnap. This sa\?esnap is prcciscl!~ the one that \\,auld
liavc been created had tlic b'~sc sa\,csnap been spcciticd
as a hll sa\,esnap instead o f an incrcmcntal sa\zcsnap.
Spiralog merge copies the sn\.csJiap information and
the directory information stored in the base snvcsnnp
to the merged savesnap bck)rc it copics the segment
table and t l ~ c segments.

Sa\,esnap merge pro*idcs a practical \\.ny of manng-
ing very 1;irge data \.olumes. The mcrgc operation can
be used t o limit the nun~bcr of sa\,csnaps r cq~~i rcd to
restore a snapshot, c\8cn i f f 111 bacli~~ps arc nc\,cr tnltcn.
Mer,oe is independent of tlic source \rolt~mc anti can be
undertalcen on n different systcm to allo\v f~~r t l i c r sys-
tem rnanagamnt flesibility.

Summary of Spiralog Backup Features
A summary of the features and p c r h m a n c c provided
by the Spiralog backup systcm appears in Tnblc 3 at
the end of the Results section. For comparison, the
table also contains corresponding infi)rmntion k)r the
file-based and ph!lsicnl approaches to b;lcIci~p.

Results

We n~easured \volume s,~\.c ,lnci indi\,idu;~l f lc rcstorc
performance o n both the Spiralog backirp systcni and
the backup system for Files-1 1, the original OpcnVMS
file systelii. The Iiard\\.arc configi~ration consisted of
a DEC 3000 Model 500 and a single la25 source ciisk
each for Spiralog and Files-l 1 volumcs, rcspcctivcly.
The target device for the backup \\.ns n '1'2877 tapc.
The system \\.as running undcl- the 0pcnV1MS \version
7.0 operating system and Spiralog \,crsion 1.1. The
\zolumes \\.ere pop~~la tcd \\,it11 flc distr ih~~tions tlliit
reflected typical user accounts in (1111- dc\,clopnicnt
cn\~ironment. Each \.olumc contnincd 260 ~llcgnb!'tcs
(M13) of user d a t ~ , \\~liicli included a total of 2 1,682
files in 4 0 1 directol-ics.

Volume Save Performance
For both the Spiralog backup and the Fjlcs-1 1 backup,
we savcd the source volume to n fi-cshl!l initialized tapc
011 an otherwise idle systcm. We mcasurcd the clapscci
time of the save operation and rccor~icci the size o f the
o ~ t p ~ i t savesnap o r savcsct. We a\,cragcd the ~.csults
over five iterations of the benchmark. .hblc 1 p~-csc~>rs
tlicse IneasLlrements and tllc resulting tliroi~gliput.

The t l i ro~~g l ip l~ t I-cprcsc~~ts tlic n\rcr,igc rate in
megabytes per second (MB/s) of \vritins to tapc o\.cr
the duration of a save operation. I n the case of
Spiralog, tape throughput varies greatly \\.it11 the

BACKUPS
n

Wednesday-
Incremental

Friday - Merge three savesets to produce one
Incremental new savesnap equivalent to a full

savesnap taken on Friday.

Figure 9
~Mel-gin~ Savesnaps

Table 1
Performance Comparison of the Spiralog and Files-I 1 Backup Save Operations

Savesnap or
Elapsed Time Saveset Size Throughput

Backup System (Minutes:seconds) (Megabytes) (Mega byteslsecond)

Spiralog save 05:20
Files-I I backup 10:14

phases of the save operation. During the directory
scan phase (typically up to 20 percent of the total
elapsed save tinle), the only tape output is a compact
representation of the volume directory graph. In con?-
parison, the segment \vriting phase is usually bound by
the tape througliput rate. 111 tliis configuration, tlie
tape is the throughput bottleneck; its maximum raw
data t l irouglip~~t is 1.25 iMB/s (uncornpressed)."

Overall, the Spiralog volurnc save operation is nearly
twice as fast as the Files-1 1 bacltup volume save opera-
tion in tliis type of computing environment. Note that
the Spiralog savesnap is larger than tlie corresponding
Files-11 saveset. The Spiralog savesnap is less eficicnt
at holding user data than the packed per-file represen-
tation of the Files-11 saveset. In many cases, though,
the higher performance of thc Spiralog save operation
more than outweighs this inefficiency, particularly
when it is taken into account that the Spiralog save
operation can be performed on-line.

File Restore Performance
To dcterminc file restore performance, we measured
how long it took to restore a single file from the
savesets created in the save benchmark tests. The liard-
ware and s o f i a r e configurations were identical to
thosc used for the save measurements. We deleted
a single 3-kilobyte (Ia) file from tlie source \lolunie
and then restored the file. We repeated this operation
nine times, each time measuring tlie time it took to
restore the f le. Table 2 shows tlie results.

Table 2
Performance Comparison of the Spiralog and Files-I 1
Individual File Restore Operations

Elapsed Time
Backup System (Minutes:seconds)

Spiralog file restore 01 :06
Files-I I backup 03:35

The Spiralog backup system achievcs such good
performance for file restore by using its knowledge of
the way the segments are laid ou t on tape. The file
restore process needs to read only those segments
required to restore the file; the restore skips the inter-
vening segments using tape skip commands. In the
esa~nple presented in Figure 8, the restore can skip
segments 555 and 195. In contrast, a file-based backup
such as Files-11 usually does not have accurate index-
ing information to minimize tape I/O. Spiralog's
tape-skipping benefit is particularly noticeable wllen
restoring small ni~mbers of files from very large save-
snaps; however, as shown in Table 2, even with small
savesets, i~idividual file restore using Spiralog backup is
three times as fast as using Files-11.

Table 3 presents a con~parison of the save pcr-
formalice and features of tlie Spiralog, file-based, and
physical baclcup systems.

Digital Technical Journal Vol. 8 No. 2 1996 41

Table 3
Comparison of Spiralog, File-based, and Physical Backup Systems

Spiralog Backup File-based Backup Physical Backup
System System System

Save performance The number of 110s is The number of 110s is The number of 110s
(the number of 110s O(number of segments that O(number of files) is O(size of the disk)
required t o save the contain live data) plus 110s t o read the file
the source volume) O(number of directories) data plus O(number

of directories) 110s
File restore Yes Yes N o
Volume restore Yes, fast Yes Yes, fast but limited

t o disks of the same size
Incremental save Yes, physical Yes, entire files that No

have changed

Note that this table uses "big oh" notation t o bound a value. O(n), which is pronounced "order of n," means that the value represented is no
greater than Cn for some constant C, regardless of the value of n. Informally, this means that O(n) can be thought of as some constant multiple
of n.

Other Approaches a n d Future Work

This section outlines some other design options
we considered for thc Spiralog backup s\.stcm. O u r
approach offers further possil>ilitics in '1 numbcr
of 'ireas. We describe some of tlic opportunities
a\~ailablc.

Backup and the Cleaner
Tlic bcncf ts of the write perforn~ancc gains in an LFS
arc attained at the cost of having to clean scgmcnts."
An opportunity appears to exist in combining tlie
clcancr and backup hnctions to rcducc the amount of
work done by cithcr o r both of these compo~icnts;
howe\ler, the aims of backup and the cleaner are c l~~ i t e
diffcrcnt. Backup needs to read all scgmcnts \witten
since a specific time (in the case of a t i l l bnckup, since
the birth o f the \wlun~e). The cleancr nccds to Jefrag-
mcnt the frcc space on the vo1~11iie. This is done most
efficiently by relocating data l~clci in certain scgmcnts.
Tlicsc segments are those that arc sufficiently empty to
be worth scavenging for free space. Tlic data in tlicsc
scgmcnts should also be stab.lc in the scnsc tliat the
data is ~~nlikely to be deleted or outdated immediately
after rcloc3tion.

The only real benefit that can be csactcci by looking
at these fi~nctions together is to clean some scgmcnts
while performing backup. For exanlple, once a seg-
ment has bccn read to copy to a savcsnap, it can be
cleaned. This approach is probably not a good one
because it reduces system perfornia~icc in the follow-
ing ways: additional processing r cq~~i rcd in cleaning
rcmo\fcs <:PU and niemor)l rcsoilrces a\,;3ilablc to
applications, and the cleaner generates \\rritc opcra-
tions tliat reducc the backup rcati rate.

There are two other areas in \\~liich backup and
tlie cleaner mechanism interact that warrant F~~rtlicr
investigatio~i.

1. The save operation copies segments in their
entirety. That is, the operation copies both "stalc"
(old) data and li\'c data to .I s,nyesnap. Tlic cost of
extra storagc media for this extraneous data is
traded offagainst the pcrforma~~cc penalty in trying
to copy only live data. It appears that thc tile system
should run the cleaner \figorously prior to a backup
to minimize the stalc data copied.

2. Incremental savcsnaps contain cleaned data. This
means tliat an incremental sa\lesnap contains a copy
ofdata that already csists in one of the sa\lcsnaps on
which ~t dcpcncis. This is a n apparent \\laste of effort
and storagc spncc.

I t is best to ~~ndcr tukc a fill1 backup after a thorough
cleaning of the volume. A single strategy for increrncn-
tal backups is less easy to deti ne. O n one hand, the size
of an incremental backup is increased if much cleaning
is pcrk)rmed bcti)rc the backup. O n the other hand,
restore operations from ;i large incremental backup
(particul,irl~~ selccti\fc tile rcstorcs) are likely to be
more efficient. The larger the incrcniental backup, tlic
more data it contains. Co~~sequentlp, the chance of
restoring a single tile from just the base savcsnap
increases \\lit11 the size of the incremental backup.
Studying the interactions between the backup and the
cleaner may o f k r some insight into ho\v to impro\lc
either o r both of these components.

A con t in~~ous bnckup system can take copies of scg-
Iiients fi-on1 ciisk using policies similar to tlie cleaner.
This is explored in I(olil's paper. "

\lol. 8 No. 2 1996

Separating the Backup Save Operation into a
Snapshot a n d a Copy
Tlie design of the save operation involves the creation
of3 s~iapsllot follo\ved by the fast copy of the snapshot
to some separate storage. The Spiralog version 1.1
implementation of the save operation combines these
steps. A s~iapshot can exist only during a backup save
operation.

System aciniinistrators and applications havc signifi-
cantly more flexibility ifthe split in these two f~~nct ions
of backup is visible. The ability to create snapshots that
can be mounted to look like read-only versions of a file
systeln riiay eliminate the need for tlie large number of
backups performed today. Indecd, some filc systems
offcr tliis fenti~rc.~,' The additional .~dvantage that
Spiralog offers is t o allo\v the very efficient copying of
individual snapshots to off-line media.

Improving the Consistency and Availability
of On-line Backup
There are a nuutbcr of ways to inipro\le application
consistency and availability using tlie Spiralog backup
dcsigu. In addition, some of these features fi~rtlier
rcducc storage management costs.

lntervolume Snapshot Creation Spiralog allo\vs a
practicnl way ofcreating and managing large volunies,
but there will be tirnes when applications rccluire data
co~lsistcncy h r backup across volumes. A coordinated
snapshot across vol~~l-nes would provide this.

Application Involvement The Spiralog version 1.1
implc1i1cntatio~ does not addrcss application involve-
mcnt ill thc creation o f a snapshot. A snapshot's con-
tcl~ts arc precisely the volume's contents tI1.1t arc on
disk at the time ofsnapshot creation. This means that
applications accessing the volunic have to commit
indcp~idcnt ly to tlie file systcni data they require to
be part of the snapshot.

Thcrc is an emerging trend to dcsign s!~stcn>-
Ie\fcl intcrfaccs that allo\\, better application intcrac-
tion with tlie file system. For example, the Windows
NT olxrating system provides the oplock and
NtNotifiCI1angeDirector)i interfaces to ad\rise an
interested application of changes to filcs and dirccto-
rics. Similarly, an interface could allow applications to
rcgistcr an interest with thc filc system for notification
of an impencling snapshot creation. Tlie application
L V O L I I C ~ the11 be able to commit the data it needs as part
of a backup and continue, thus improving application
consistency and availability and reducing work k)r sys-
tern administrators.

Minimizing Disk Reads
Thc Spiralog file restore retrieves the data that
constitutes a number of files in a single pass of

segments read in n specific order. This design was
important to allow the efficient restore of files from
sequential media.

 more generally, this \\lay of traversing the file system
allows specific, kno\vn parts of a set of files to be
obtained by reading tlie segments that contain part of
this data only once. This technique is also interesting
for random-access media storage of volumes because
it describes an algorithm for minimizing the number
of disk rcads to get this data. Possible applications
of this technique are numerous and are particularly
interesting in the context of data management of very
large volumes.

For example, suppose an application is required
to monitor an attributc (c.g., the time of last access) of
all files on a niassi\le volume. Suppose also that the vol-
ume is too big to allo\v the application to trawl the file
system daily for tliis information; this process takes too
long. If the application maintains a database of the
information, it needs o~ily to gather the changes that
have happened to this data on a daily basis. Therefore,
the application could obtain this information by tra-
versing only those segments ulrittell since the last time
it updated its database and locating the relevant data
witliin those segments. Our mechanism for restoring
files provides exactly this capability An investigation of
how applications might best use this technique could
lead to the design of an interface that the file system
could use for fast scanning of data.

Conclusions

File systems use backup to protect against data loss.
A significant portion of the cost associated with man-
aging storage is directly related to the backup func-
tion.'"" Log-structured data storage provides some
features that reduce the costs associated with backup.

The Spiralog log-structured file system version 1.1
for the OpenVMS Alpha operating system includes
a nea; Iiigh-performance, on-line backup system. The
approach that Spiralog takes to obtain data consis-
tency for on-line backup is similar to the snapshot
approach used in Nenvork Appliance Corporation's
FAServer, the Digital U N I S Advanced File Systeln, and
other systems.".' The feature unique to the Spiralog
backup system is its use of the physical attributes of
log-structured storage to obtain high-performance
saving and restoring of data to and from tape. In par-
ticular, the gain in save perfonnance is the result of
a restore strategy that can efficiently retrieve data from
a sequence of segments stored o n tape as they arc on
disk. This design leads to a minimum of processing
and discrete I/O operations. The restore operation
uses impro\~ernents in tape hardware to reduce pro-
cessing and 1/0 bandwidth consumption; the opera-
tion uses tape record skipping within savesnaps for fast

D~giral Technical Jou l .~~a l Vol. S No. 2 1996 43

data indexing. T h e Spiralog backup in~plementat ion
provides a n on-line backup save operation with signifi-
cantly improved performance over existing offerings.
Performance o f individual file restore is also improved.

Acknowledgments

We would like t o thank the following people whose
efforts were vital in bringing the Spiralog backup sps-
t em t o fruition: Nancy Phan, w h o helped us develop
the produc t and worked relentlessly t o ge t it right;
Judy Parsons, w h o helped us clarify, describe, and doc-
ument o u r work; Clare Wells, w h o helped 11s focus o n
the real customer problems; Alan Paston, w h o was
involved in the early design ideas and later spccifica-
tion o f some o f the implementation; and, finally,
Cathy Foley, o u r engineering manager, w h o sup-
ported us th roughout the project.

References

1 . J . Johnson and W. Laing, "Overvie\v of the Spiralog
File System," Digital Technicaljournal. vol. 8, no. 2
(1996, this issue): 5-14.

2. M. Rosenblum and J. Ousterhout, "The Design and
ln~plementation of a Log-Structured File System,"
AC/LI Trunsactions on Computer Sy.ste?71.~, V O I . 10,
no. 1 (February 1992): 26-52.

3. M. Roscnblu~n, "The Design and Implementation of a
Log-Structured File System," Report No. UCB/CSD
92/696 (Berkeley, Calif.: University of California,
Berkeley, 1992).

4. M. Scltzcr, K. Bostock, M. McKusick, and C. Staclili,
"An Iniplementation of a Log-Structured Filc System
for U N 1 X," Proceedirlgs oj'the lJSENlX Winto.' 1393
Technical Cordkrence, San Diego, Calif. (January
1993).

5. K. Walls, "File Backup System for Producing a Backup
Copy of a File Which May Be Updated during
Backup," U.S. Patent No. 5,163,148.

6. D. Hitz, J . Lau, and M. Malcolm, "File Systcm Design
for an NFS File Server Appliance," Proceedilzcqs of'
the C I S E M Winter 1994 Technical Confirence,
San Francisco, Calif. (January 1994).

7. S. Chutani, 0. Anderson, M. Gzar , and B. Lcverett,
"The Episode File System," Proceeclirtgs oJ' the
IJSfiNlX Winter 2992 Tech ~zical Cor!/&rcl?ce.
San Francisco, Calif. (January 1992).

8. C. Whitaker, J. Bayley, and R. Widdowson, "Design of
the Server For the Spiralog File System," Diqilal
TechnicalJournal, vol. 5, no. 2 (1996, this issue): 15-31.

9. Open VMS System 12.Ianngement Utilities Reference
i l lc~r~~iak A-L, Order No. AA-PV5PC-TI< (M'iynard,
 mass.: Digital Eq~~ipment Corporation, 1995).

10. L. lhizis, "A Method for Fast Tape Backups an11
llestores," SoJir~~c~re-Prc~cticr clticl kh/~c~t.ic~/lcc.
vol. 23, no. 7 (July 1993): S 13-8 15.

11. "Digital Linear Tape Meets Critical Nccd fol- Data
Backup," Quantum Technical Information l'apcr,
http://wa~w.qnant~~m.com/products/\\~Iiitcp:ipcrs/
dlttips.html (Milpitas, Calif.: Quantum Corpornrior~,
1996).

12. J . Kohl, C. Staelin, and 1M. Stoncbrakcr, "HighLight:
Using a L o g - s t r ~ ~ c t ~ ~ r e d File Systan for Tcl-tiluy
Storage Management," PI-oceediizgs ?/'/be lLSElvlX'
Winter 799-3 Technical CorzJkrerzcc (Winter 1993).

13. R . M ~ S O I I , "The Storage ~Managemc~it Markct Part 1 :
l'rclinlinary 1994 Market Sizing," ID<: No . 9538
(Framingharn, &lass.: International Data Corporation,
Deccm bcr 1994).

14. I. Stenmark, "Implen~entation Guidelines k)r Client/
Scr\,cr Backup'' (Stamford, Conn.: Gartncr Group,
March 14, 1994).

15. I . S tc~ i rn~rk , "Markct S ~ z e : Ner\\.ork anti Syj tc~~is
1Ci.1nagenient Sohvare" (Stamford, Conn.. Gartncr
Group, June 30,1995).

16. I . Stcnlnark, "Client/Ser\.er Backup-1,cndcrs and
Challengers" (Stamford, Conn.: Gartncr Group,
May 9 , 1994).

17. R. Wren~i, "Why the Rcal Cost of Sto~xgc is i\!lorc
Th.in $l/MR," presented at the U.S. DI;CUS Sy~npo-
sium, St. Louis, Mo., June 3-6,1996.

Biographies

Russell J. Green
Kussell Green is a principal software a~ginecr in Digital's
OpenVMS Engineering group in Livingsto~l, Scotland.
He w;ls responsible for the design and delivcry of thc
backup component of the Spiralog file system for thc
OpcnVMS operating system. Currc~itly, Russ is the tcch-
nic;il lcader oFSpiralog follow-on \\~ork, l'rior to joining
Digital in 1991, he was a staff member in the computer
science department at the University of Edinburgh. Kuss
received a R.Sc. (Honours, 1st class, 1983) i l l engineering
fioni the Universiv of Cape Town and an tM.Sc. (1956)
in engineering ftom the University of Edinburgh. Hc
holds t\\,o patents and has filed a patent application for
his Spirnlog backup system work.

44 Digital Technical Jo~~rnal Vol. 8 No. 2 1996

Alasdair C. Baird
Alasdair Baird joined Digital in 1988 to work for the
ULTlUX Engineering group in Reading, U.K. He is
a senior software enginccr and has been a member of
Digital's OpenVMS Engineering group since 1991.
He worked on the dcsign oftlie Spiralog file systcm and
then contributed to the Spiralog backup system, particu-
larly the file restore colilponent. Currently, he is involved
in Spiralog development work. Nasdair received a B.Sc.
(Honours, 1988) in computer science from the University
of Edinburgh.

J. Christopher Davies
Sofm~are cngineer Chris Davies has worked for Digital
Equipment Corporation in Livingston, Scotland, since
September 1991. As a member of the Spiralog team, he
initially designed and implemented the Spiralog on-line
backup system. In subsequent work, he improved the
pel-forniance of the file system. Chris is currently working
on further Spiralog development. Prior to joining Digital,
Chris was employed by NRG Surve)~s as a software engi-
neer while earning his degree. He holds a B.Sc. (Honours,
1991) in artificial intelligence and coniputcr science from
the University of Edinburgh. He is coauthor of a filed
parent application for the Spiralog backup system.

Digital Technical Journal \'ol. 8 No. 2 1996 45

I
Mark A. Howell
Julian M. Palmer

Integrating the Spiralog
File System into the
OpenVMS Operating
System

Digital's Spiralog file system is a log-structured
file system that makes extensive use of write-
back caching. I ts technology is substantially
different from that of the traditional OpenVMS
file system, known as Files-1 1. The integration
of the Spiralog file system into the OpenVMS
environment had to ensure that existing appli-
cations ran unchanged and at the same time had
to expose the benefits of the new file system.
Application compatibility was attained through
an emulation of the existing Files-1 1 file system
interface. The Spiralog file system provides an
ordered write-behind cache that allows applica-
tions to control write order through the barrier
primitive. This form of caching gives the benefits
of write-back caching and protects data integrity.

The Spiralog file system is based on n log-structuring
method that offers fast writes and a hst, on-line baclu~p
capability.'-The integration of the Spirulog fi lc system
illto the OpenVMS operating system prcscntccl man\!
challenges. Its programming interface and its estcnsi\lc
use of write-back caching were substantially different
fiom those of the csisting OpcnVMS tile system,
kli0~11 as Fi les-1 1 .

To encourage use oftlie Spinllog filc systcm, \vc had
to ensure that existing applicatio~is ran unchanged in
the OpenVlMS environment. A file s ~ s t c ~ i i e~iii~lntion
layer pro\lidcd die necessary compatibility by mapping
the Files-1 1 file systeni interface onto the Spiralog tile
system. Before \vc could build the cm~~la t ion layer, we
needed to understand hocv these applications ~ ~ s c d the
file system interface. Thc approach taltcn to ~~nclcs-
standing application rccluircnlcnts Icd to ;I f lc systcm
emulation layer that csceeded the original co~npatibil-
ity expectations.

The first part of this papcr deals \\'it11 thc npproacli
to integrating a neu7 file system into tlic 0pcnV1MS
environment and preserving applicatio~i cornpatihilit\:
It describes the various Ic\lels at \\,hich the f lc systcm
could have been integrated and thc decision to emn-
late the low-le\lcl file system intcrfacc. Techniclues
such as tracing, source code scanning, and functional
anal!lsis of the Files-1 1 filc systcni helped determine
which features should be supported by the cm~~la t ion .

The Spiralog tile system uses cstcnsivc \\>rite-back
caching to gain pcrfor~nancc o\vr the \\trite-throi~gh
cache on the Files-11 filc qs tcm. Applications lia\rc
relied on tllc ordering o f writcs implicd by \vritc-
through caching to maintain on-disk consistency in
the event of system hilures. The lack of ordering
guarantees preventccl the jmplcn~cntation of such
careful write policies in write-back cn\~isonmcnts. 'I'lic
Spiralog file system uses a write-behind cache (intro-
duced in the Echo tile system) to allocv applications to
take advantage of write-back caching pcrfi)rniancc
\\/liile preserving carefill \\,rite policics.Tliis fcatusc is
unique in a commercial fi lc systcm. The second part of
this paper describes tlic clifficultics of intcgrating n.1-itc-
back caclling into a write-through cnvironnient and
ho\\r a write-behi~id cacl~c addrcsscti thcsc pl-oblcms.

Providing a Compatible File System Interface

Application compatibility can be described in two
ways: compatibility at the file system interface and
compatibility of the on-disk structure. Since only spe-
cialized applications use knowledge of the on-disk
structure and maintaining compatibility at the inter-
face level is a feature of the OpenVMS system, the
Spiralog file system preserves compatibility at tlie file
system interface level ooly. In tlie scction Files-11 and
the Spiralog File System On-disk Structures, we give
an overview of the major on-disk differences between
the two file systems.

The level O F interface compatibility would have a
large impact on how well users adopted the Spiralog
file system. If data and applications could be nioved to
a Spiralog volume and run unchanged, the file system
would be better accepted. The goal for the Spiralog
file system \\/as to achieve 100 percent interface com-
patibility for the majority of existing applications. The
jmplementation of a log-structured file system, how-
ever, meant that certain features and operations of the
Files-1 1 file system c o ~ ~ l d not bc supported.

Tlie OpenVMS operating system provides a number
of file system interfaces that are called by applications.
This section describes how we chose the most compat-
ible file systeni interface. Tlic OpenVMS operating
system directly supports a system-level call interface
(QIO) to tlie file system, which is an extremely coln-
plex interface.' The QIO interface is very specific to
the OpenVMS system and is difficult to map directly
onto a modern file system interface. This interface is
used infi-equently by applications but is used exten-
si\/e.ly by OpenVMS utilities.

Open VMS File System Environment
This section gives an over\liew of the general
OpenVMS file system environment, and the existing

OpenVMS and the new Spiralog file systeni interfaces.
To emulate the Files-11 file system, it \\/as important to
undcrstand the way it is used by applications in the
OpenVMS e~ivironnient. A brief description of the
Files-11 and the Spiralog file system interfaces gives an
indication of the problems in mapping one interface
onto tlic other. These problenis are discussed later in
the section Compatibility Problems.

In the OpenVMS environment, applications inter-
act with the file system through various interfaces,
ranging from high-level language interfaces to direct
tile system calls. Figure 1 shows the organization of
interfaces within the OpenVMS en~ i ro l i~nen t , includ-
ing both tlie Spiralog and the Files-1 1 file systems.

The following briefly describes the levels of interface
to tlie file system.

High-level language (HLL) libraries. HLL libraries
provide file system functions for high-level
languages such as the Standard C library and
FORTRAN 1 / 0 f ~ ~ n c t ~ o n s .

OpenVlMS language-specific libraries. These
libraries offer OpenVMS-specific file system fi~nc-
tions at a high level. For example, libscreate-dir()
creates a new directory with specific OpenVMS
security attributes such as ownership.

Record Management Services. The OpenVMS
Record Management Services (RMS) are a set of
coniplex routines that Form part of the OpenVMS
kernel. These routines are primarily used to access
structured data within a file. However, there are
also routines at the file level, for example, open,
close, delete, and rename. Tlie RMS parsing rou-
tines for file search and opcn give the OpenVMS
operating system a consistent syntax for file names.
These routines also provide file name parsing oper-
ations for higher level libraries. RMS calls to the file
system are treated in the same way as direct applica-
tion calls to the file system.

APPLICATIONS

HIGH-LEVEL LANGUAGE
LIBRARIES, e.g., C LIBRARY SPECIFIC LIBRARIES

OPENVMS FlLE SYSTEM INTERFACE - SYSTEM CALLS (QIO)

FILES-1 1 FlLE SYSTEM
EMULATION LAYER

FILES-1 1 FlLE SYSTEM

SPIRALOG FlLE SYSTEM

Figure 1
The OpenVlMS File System Environment

Digirnl Tcclinical Joul-nal Vol. 8 No. 2 1996 47

Files-11 file system interface. The OpenVMS oper-
ating systern has traditionally provided thc Files-1 1
file system for applications. It provides a low-level
file system interface so that applications can request
file system operations from the kernel.

Each file system call can be composed of multiple
subcalls. Thesc subcalls can be combined in nulncr-
ous permutations to form a complex file systeln
operation. The number ofpermutatio~ls of calls and
subcalls rnaltcs the file system interface extremely
d~fficult to understand and use.

File system emulation layer. This la!~er provides
a compatible interface between the Spiralog tile
system and cxisting applications. Calls t o export
the new features available in the Spirdog file systenl
are also included in this laper. An important new
feature, the write-behind cache, is described in the
section Overview of Caching.

The Spiralog file systcm interface. The Spiralog
file system provides a generic file system intcrface.
This interface was designed to provide a superset
of the featurcs tliat are typically available in file sys-
tems used in the UNIX operating system. File
system emulation layers, such as the one written for
Files-1 1, could also be written for Inany different
file s~ls tems.~ Features that could not be provided
generically, for esample, the implementation of
security policies, arc implemented in thc filc system
emulation layer.

The Spiralog file s)rstcm's interface is based on tlie
Virtual File System (VFS), which provides a file
system interface similar to those f o ~ ~ n d on UNIX
systems.' Functions available are at a higher level
than the Files-11 tile systeln interface. For example,
an atomic rename fi~nction is provided.

Files-1 7 and the Spiralog File System
On-disk Structures
A major difference between the Files-11 and the
Spiralog file systems is the way data is laid out on
the disk. The Files-11 system is a con\lentional,
update-in-place file system.Were, space is reserved for
file data, and updates to that data are written back to
the same location on the disk. Given this knowledge,
applications could place data 01-1 Files-11 volumes to
take advantage of the disk's geometry. For example,
the Files-1 1 file system allows applications to place files
011 cylinder boundaries to reduce seek times.

The Spiralog file systern is a log-structured file
system (LFS). The entire volume is treated as a con-
t i n u o ~ ~ ~ log with updates to files being appended to
the tail of the log. I n effect, files d o not have a fised
home location 011 a volume. Updates to files, or cleaner
activity, will change the location of data on a volume.
Applications d o not have to be concerned where their
data is placed on the disk; LFS provides this mapping.

With the advent ofmodern disks in tlic last decade,
the exact placemelit of data has becomc much less crit-
ical. Modern disks frecl~rently return geometry infor-
mation that does not reflect the exact gcornctry of
the disk. This nullifies any advantage that exact place-
ment on the disk offers to applications. Fortunately,
with the Files-1 1 filc system, the use of exact filc place-
ment is considered a hint to the file system and can be
safely ignored.

Interface Decision
Many features of the Spiralog file system and the
Filcs-11 file system are not directly compatible. T o
enable existing applications to use the Spiralog filc
system, a suitablc file s!~stem irlterhce 11ad to be
selected and emulated. The file system emulation layer
cvould need to hook into an existing kernel-level file
system interface to provide existing applications with
access to tlie Spiralog f le system.

Analysis of existing applications showed that the
majority of file system calls came through the RMS
interface. This provides a filnctionally simplcr interhcc
onto the louler level Files-l 1 interface. Most applica-
tions on the OpenVlMS operating system use the RMS
interface, either directly or through HLL, libraries, to
access the file svstem.

Few applications make direct calls to the low-level
Files-11 intcrface. Calls to this intcrfilce are typically
made by RMS and OpcnVMS ~~til i t ies that providc
a simplified intcrface to the file systcm. 1WS supports
file access routines, and OpenVMS utilities support
modification of file ~~lc tadata , for exa~nple, sccurjt!~
information. Although few in number, those applica-
tions that d o call the Files-11 filc systeln directly arc
significant ones. If the onl!! interhcc suppol-ted \\{as
RMS, then these utilities, such as SET FILE and
OpenVMS Backup, would need significant modifica-
tion. This class of utilities represents a large ~ iumber of
the OpcnVlvlS utilities that maintain the file system.

To provide support for tlie widest rangc of applica-
tions, we selected the low-level Files-I 1 interface for
use by the filc system emulation layer. By selecting this
interface, \\re decreased the amount of \vork ncedcd
for its emulation. Ho\vever, this gain was offset by the
increased complexity in the interface cmulation.

l'roblcnis causcd by this interface selection are
dcscribed in the nest section.

Interface Compatibility
Oncc the filc system interface \\us selected, choices
bad to be made about the level ofsupport provided by
the emulation layer. Duc to the nature of the log-
structured file system, described in the scction Filcs-11
and tlie Spiralog File System On-disk Structures, full
compatibility of all features in the cmulation layer was
not possible. This section discusses somc of the deci-
sions made concerning interface conlpatibility.

48 Digird Tcchnic'1l J o u r n a l Vol. 8 No. 2 1996

A1 initial decision was ni3dc to SLIPPOI-t ~ O C L I -
~ n c ~ i t c d lo \~~- lc \~cl Files-11 calls tlirougli the emula-
tion layer as ofien as possible. This would enable all
well-behaved applications to run i~lichanged on the
Spiralog fi le system. Examples of \yell-behaved appli-
cations are those tliat make use of HLL library calls.
The following catcgories of access to the file system
\vould not bc supported:

Those directly accessing the disk without going
through thc fi le system

Those making use of specific on-disk structure
information

Thosc mdking use of undocumented file system
fca t~~res

A very small number of applications fell into tliese
categories. Esa~iiples of applications tliat ~nake use of
on-disk structure I<no\vIedge nre the OpenVbIS boot
code, disk structure alialyzcrs, and disk dcfragnenters.

The majority of OpenVMS applications make tile
s!lstem calls through thc ltMS interface. Using file sys-
tem call-tracing techniq~~es , described in the section
In\lestigation Techniques, a f ~ ~ l l set of filc system calls
niade by RMIS could be constructed. At'ter analysis of
this trace data, it \\/as clear that hVS used a small set
of wcll-structi~rcd calls to the low-level file s)rsteni
intcrhce. Further, detailed analysis of these calls
sho\\led that all Ri iS operations could be fi~lly emu-
lated on the Spiralog filc system.

The support of OpenViiS file spstem utilities tliat
niade direct calls to tlic low-level Files-11 interhce was
important ifwe \ilcrc to nii~lilnizc the a ~ n o u n t of codc
change required in the OpenVMS codc base. Aialysis
of thcsc utilities slio\ved that the majority of thcm
coi~ld be supported through the eniulation layer.

Very fe\v applications made use of features of the
Files-11 file systeni that could not be emulated. This
enabled ;I high n~unber of applications to run
i~ncliangcd on the Spiralog filc system.

Table 1
Cateqorization of File Svstem Features

Compatibility Problems - - lhis section describes soliie of the compatibility prob-
lems that \ve encountered in developing the emulation
layer and how \Ire resolved them.

Wlie~i considering the co~npatibility of the Spiralog
file system with the Files-1 1 fi le systeln, we placed the
features of tlie file system into thrcc categories: sup-
ported, ignored, and not supported. Table 1 gives
examples and descriptions of these categories. A feature
\Ifas recategorized only if it could be supported but \\?as
not used, or if it could not be easily supported but
was used by a wide range of applications.

The ~najorit)! of OpenVMS applications ~iialte sup-
ported file system calls. These applications will run as
intended on the Spiralog file system. Fen! applications
make calls that could be safely ignored. These applica-
tions \\lould run successfi~ll!r but could not makc use of
these features. Very few applications made calls that
were not siipported. Unfortunately, some of these
applications were very important to thc success of the
Spil-alog filc system, for example, s!/stem nialiagement
utilities that \\/ere optimized for the Files-1 1 systeni.

Aialysis of applications tliat made i~nsupported calls
slio\\~ed tlie following categories of use:

Those that accessed tlie tile header-a structure
used to store a file's attributes. This method \ \ ~ s
used to return multiple tile attributes in one call.
The supported rnecha11is.m in\1ol\~cd an indi\~idual
call for each attribute.

Tliis \\{as solved by returning an emulated file
header to applications that contained the majority
ofinformation interesting to applications.

Those rcading d~rcctory tiles T h ~ s mcthod ~1'1s i~sed
to perform fast d~rectory scans. The suppostcd
mechanism invol\led a file system call for e.1~11 name.

This was solved by providing a bulk dircctory
reading interface call. Tliis call \\!as similar to the
getdircntrjes() call 011 tlic U N I S syste1-n and was

Category Examples Notes

Supported. The operation requested Requests to create a file or open Most calls made by applications
was completed, and a success status a file. belong in the supported category.
was returned.
Ignored. The operation requested
was ignored, and a success status
was returned.

A request t o place a file in a
specific position on the disk t o
improve performance.

This type of feature is incompatible
with a log-structured file system.
It is very infrequently used and not
available through HLL libraries. It
could be safely ignored.

Not supported. The operation
requested was ignored, and a
failure status was returned.

A request t o directly read the
on-disk structure.

This type of request is specific t o
the Files-1 1 file system and could
be allowed t o fail because the
application would not work on the
Spiralog file system. It is used only
by a few specialized applications.

Vol. 8 No. 2 1996 49

stmiglitfor\v,lrd to replace in applications that
directly rcad dircctorics.

The OpuiVMS Racltup iltility \\,as an cxa~nple of
a s!!stcm management ~~t i l i ty that directly read
directory f les. The backup ~~ t i l i t y was changed to
LISC tllc dirccto~.y reading call o n Spiralog volumes.

Those accessing reserved tiles. The existing tile sys-
tem stores all it7 mctadata in normal tiles that can be
read b!' applications. Thcsc files are called reserved
tiles and arc crcatcd \vlicn a volume is initialized.

No reserved files arc crcatcd o n a Spiralog \~01~11iic,
*it11 the exception of the master tile directory
(ivlF1)). Applications that rcad rcscr\,cd files ~ n a k c
specific L I S ~ o f on-disk structure informat io~~ and
arc not supported with thc Spiralog tile system. The
lMFD is ~ ~ s c d as the root dil-cctory and pcrfor~ns
directory traversals. 'I'his f lc \\Ins virt~lally emulated.
I t appears i l l directory listings of a Spiralog \lolume
and can be L I S C ~ to start a di~cctory tra\!crsal, but jt
docs not exist on the \~olumc as a real tilc.

Investigation Techniques
Tliis section describes the approach cake11 to investi-
gate the interhce and compatibility problems
dcscribcci nbo\!c. l<csults tiom thcsc in\lcstigations
\\,ere ~ ~ s e d to cictcrniine n~hich features of the Files-11
file system nccdcd to be provided to produce a high
Icvcl of conipatibility.

The investigation tbcuscd 011 i~ndcrstanding ho\\,
applications called the fi lc s\.stcm and the semantics of
the calls. A number of tcchniqucs \\!ere ~ ~ s c d in lie11
of design documcntntion for applications and the
Files-1 1 filc s!'stcm. rl-licsc tccl1nicll1cs \\,ere also used
to avoid the direct csamination ofsourcc codc.

The fi)llo\\,i~ig tcchniclucs \\,crc ~ ~ s c d to understand
application calls to the f lc system:

Tracing tile systcm opcr:~tions

Tracing tile system operations pro\,idcd a large
amount of data for applications. A moditicd
Files-l 1 filc systcm \\,as constructed that logged all
file o p w ~ t i o ~ i s o n a volumc. A fill1 set ofregl-cssion
tests \vcrc then run fill- the 25 1)igital and tbird-
party prod~~ctwmost oHcn laycrcci on the Files-1 1
tile systcm. The data was then reduced to dctcr-
mine the type ol-' tilc system calls made by thc
la!!crcd products. Analysis of log data showed
that most layered products made file system calls
t h r o ~ ~ g h HI ,I, libm~.ics or the IkVS i~itcrface. Tliis
tcclinicluc is uscf 1 1 wlicrc source codc is not avail-
able, but fill1 codc path coverage is a\lailable to con-
s t r ~ ~ c t 3 f ~ ~ l l picti~rc ofci~lls a~icl argLIIilclits.

Surveying application maintaincrs o n ti lc spstcm use

Survc!~ing application maintai~1crs \\,as a potentia.lly
usefill tcchnirluc for alerting the other ~i ia in ta i~~ers

\!(>I. 8 No. 2 1996

about the impact of the Spirulog file system, h4orc
than 2,000 surveys \\'ere sent out, but fctvcr than
25 ilsefi~l r e s ~ ~ l t s were rcturnccl. Sadly, most appli-
cation maintainers \\)ere not a\\larc of lio\\l their
product uscd the ti lc s!.stcm.

Automated application sourcc codc searching

Automated sourcc cocic searching quickly checks
a large aniount of soiircc codc. This tcclinique \\:as
most ~ ~ s e f l ~ l \\,hen nnal!lzing f lc systcm calls made by
the OpenVMS operating systcm o r i~tilitics. Ho\\,-
elrer, this does not \\fork \\,ell \\.lien applications
make dynamic calls to the filc systcm at run time.

The follo\ving tccliniqucs \\,ere used to undcrstanc~
the senlantics of filc s!,stcnl c~lls:

Functional analysis o f thc Filcs-1 1 ti lc system

F~~nct ional analysis of thc Filcs-l 1 tile systcm \\)as
one of the most usefill t cc l i~~ ic l~~cs adopted. I t
avoided the nccd to rc\,crsc-cngi~iecr the Filcs-l 1
file system. Whcnc\cr possible, the Files-l 1 file s!s-
tern \\,as treated as a black box, and its ti~nction was
inferred from interface documcntntion and appli-
cation calls. This tcchnicluc avoicicd duplicating
dcfccts in the interf~cc and cnablcd thc design of
the emillation layer to be derived from f~~nc t ion ,
rather than the csisting implcmentatio~i of the
Files-1 1 system.

Test programs to dctcnninc call semantics

'Test programs ivcrc uscd cstcnsi\,cly to isolate spc-
cific application c,~lls to the f lc systcm. Incii\.idunl
calls could be analyzed to determine lie* they
\\rorl<cd \\,ith the Fjlcs-1 1 ti lc s\.stcm and \\.it11 the
emulation layer. This tccl~niquc formcci the lmis
for an estensi\.e file systcm intcrhcc rcgl-ession test
suite \\!itho~~t recluiring the complete applicntion.

Level of Compatibility Achieved
The Ic \d of tile systcm conipatibilin, \\zit11 applications
far exceeded our initial cxpcctatio~is. Table 2 summa-
rizes thc results of the rcgl-cssion tests trscd to \rcritjf
compatibility.

Table 2 illustrates tliat applicatio~ls that use the C 01

the FORTRAN lang~~ngc or the RMS intcrficc to
access the file systcm can be cxpcctcd to \\,ark

unchanged. Verification with tlie top 25 1)igiral lay-
ered products and third-party pr-oducts shows tliat
all p r o d ~ ~ c t s that d o 11ot m;~kc spccifc i ~ s c of Filcs-1 1
on-disk fcati~res run with the Spiralog file systcm.
Witli the version 1.0 rclcasc of tlic Spiralog ti lc system,
there arc n o known co~npa t ib i l i~ f ISSLICS. '

Providing New Caching Features

Thc Spiralog tile system ~lscs orcicl-cd \\!rite-baclc cach-
ing to provide pcrformancc bcncf ts for applications.

Table 2
Verification of Compatibility

Test Suite Number of Tests Result

RMS regression tests -500 All passed.
OpenVMS regression tests
Files-I I compatibility tests
C2 security test suite -50 discrete tests

All passed
All passed.
All passed, giving the Spiralog
file system the same potential
security rating as the Files-I 1
system.

C language tests -2,000 All passed.
FORTRAN language tests -100 All passed.

Write-back caclii~lg provides \.cry different semantics
to the niodcl of \\,rite-through caching used o n tlic
Files-11 file systcm. The goal of tlic Spiralog project
members was to provide write-back caching
in a \\ray tliat was compatible with existing OpenVMS
applications.

This scction cornpares \\,rite-through and writc- back
caching and shows ho\v sonic important OpenVMS
applications rcly o n \\trite-through semantics to pro-
tect data from system failure. I t describes the ordered
m-ite-back caclic as introduced in the Echo filc system
and explains how this model o f caching (I<no\vn as
write-bcliinci caching) is particularly suited to the envi-
ronment of OpcnVMS Cluster systems and the
Spiralog log-structured file s!~stcni.

Overview of Caching
D u r ~ n g the last few years, CPU perfi)r~nancc improve-
ments have continued to outpace perforrndncc
impro\~erncnts ti)r disks. As a result, the 1 / 0 bottle-
neck has \vorscncd rather than ~mproved. One of
thc n ~ o s t s~~cccssf i~l tcchni~ji~es L I S ~ C ~ t o allev~atc this
problem is caching. Caching means holding a copy o f
data that has been recentlv rcad from, o r written to,
the disk in mcrnorp, giving applications access to that
data at memory spccds rather than at disk speeds.

Wnte-through and write-back caching arc t\vo
different niodcls frequently ~ ~ s e d in file s!lstems.

Write-tlirougli caching. In A write-through caclic,
data read from the disk is stored in the in-memory
cachc. Wlicn data is written, A copy is placed in
the caclic, but the write request does not return
until the data is o n the disk. Write-through caches
improve tlic performance of read requests but not
write rcqucsts.

WI-ite-back caching. A write-back cache improves
tlie pcrhrrnii~icc of both rcad and write rcqucsts.
Reads arc handlcd esactly as in a ~ilrite-through

cache. This time though, a writc request rcturns as
soon as the data has becn copicd to the cachc; some
time later, the data is nrrittcn to the disk. This
method allows both read and write rcqucsts to
operate at main memory spccds. Tlic cache call also
amalgamate write requests that supersede one
another. lly deferring and amalgamating write
reqtlests, a \vrite-back caclic can issue many fewer
\\]rite requests to the disk, ~ ~ s i ~ l g less disk band\vidth
and smoothing the write pattcrn over time.

Figure 2 shows the write-through and write-l>acI<
caching ~nodcls. The Spiralog tile systcm makes cstcn-
sive usc of caching, pro\~iding both write-through and
write-back models. The usc of \\.rite-back caching
allows the Spiralog file systcm to amalgalnatc \vritcs,
thus conserving disk band\vidtli. This is cspccially
important in an OpenVMS Cluster system where disk
ba~idwidth is shared by several computers. Tlic
Spiralog file system attempts to amalgamate not just
data \\!rites but also tile system operations. For esamplc,
many compilers create temporary f lcs tliat arc dclctcd
at the end of the compilation. With write-back caching,
it is possible that this type of filc map be created and
dcleted witlioi~t evcr being written to tlie disk.

There arc two disadvantages of write-back caching:
(1) if the system fails, any writc requests tliat ha\c
not becn \vrittcn to tlie disk arc lost, and (2) once in
the cache, any ordering of the write requests is lost.
The data may bc written from tlic cache to the disk in
a completely different order tlinn the order in \\lhicli
the application issued the writc requests. T o preserve
data integrity, some applications rcly o n \vritc ordering
and the use of carefill write tcchnicli~cs. (Careful \wit-
ing is discussed h r the r in tlic section belo\\:) The
Spiralog tile system preserves data integrity by provid-
ing an ordcrcd write-back caclic known as n writc-
behind caclie.

Vol. 8 So. 2 I990 51

NO CACHE

WRITE-BACK
CACHE

Figure 2
Caching Models

m -

Caching is more jmportant to tlie Spiralog file
system than it is to con\~cntional file systems. L,og-
structured file systems have inherently worst rcad
pel-for~nnncc than conventional, ~~pdate-ill-place file
systems, d ~ ~ c to the necci to locate the data in the log.
As described in another papcr in this Jorl1.17nl. locating
data in the log requires Inore disk I/Os than an
~~pdate-in-plncc file systcnl.' The Spiralog file system
uses large rcad caches to offset this cstra read cost.

MILLISECONDS

Careful Writing
The Files-1 1 file system pro\.ides \\'rite-through
semantics. IGy OpeliVMS applications such as transac-
tion processing and tlie OpcnVMS Record Managc-
ment Services (RMS) have come to rely on thc implicit
ordering of \\7rite-through. They use a tecliniclue
known as cal-cful \vriti~ig to p ~ v a i t data c o r r ~ ~ p t i o n
follo\\fi~lg :.I s!.stcnI f a1 ' I ~ l r e .

Carcl-ill \vriting allo\\rs an applicntion to cnsurc that
the data o n the disk is ncvcr in an inconsistent o r
in\~alid state. This guarantee avoicis situations in \\~liicli
an application has to scan and possibly rebuild the data
on tlic disk after a system fi~ilurc. Recovery to a consis-
tent statc aftern systc~ii hi l~rrc is ot'tcn a very complcs
and time-consumi~ig task. Ry ensuring tlint the disk
can never be inconsistent, carefill \vriting removes the
nccci for this Form of rcco\,cry.

C,lrcfi~l writing is ~ ~ s e d in situ,ltions in \\~Iiich an
update requires several blocks on the disk to be written.

MILLISECONDS

WRITE-THROUGH
CACHE Er@

MICROSECONDS CACHE

MILLISECONDS

MICROSECONDS

Most disks guarantee a ton~ic update of only a single
disk bloclc. Tlic occurrence of a system hilurc \vhilc
several blocks are being ~ ~ p d a t c d coi~ld lea\rc the blocks
partially updated and inconsistent. Carefill writing
a\.oids this risk by defining t l ~ c order in \\,hich the
blocks should be updated o n the disk. If the hloclcs are
\\,rittcn j11 this order, the data \ \ ; i l l al\\lays be consistent.

For cxnmplc, tlie filc slio\\w in Figure 3 represents
a persistent data struct~rrc. At the start of tlic file js an
index block, I, that points to t\\,o data blocks \\,ithin
the tile, A and R . The application \vishes to update tlie
data (A, R) t o tlie ne\\, data (A ' , B ') . For tlic filc to bc
valid, tlic index must pojnt to a consiste~lt set of data
blocks. So, the index must point either to (A, R) o r to
(A', 1)'). It cannot point to n mixture sucll ns (A' , 13).
Since the dislc call guarantee to write only a single
block nto~~iically, the application cannot simply \\,rite
(A' , B ') o n top of (A, l3) because that in\.ol\rcs \\friting
bvo blocks. Should tlie system f ~ i l during the ~~pdatcs .
doing so could leave the data in an invalid statc.

To sol\rc this problcm, the application writes tlie
new dnt;i to the file in a spccific order. First, it \\,rites
the nc14' data (A', R ') to a 11cw section of tlic fi lc, \ \ . i t -
ing 111ltil tlie data is written to tlic disk. O ~ l c c (A', R ')
are k n o \ \ ~ n to be on t l ~ c disk, it ntomicall!, i~pdatcs tlic
index block to point to the data. The old blocks
(A, R) arc no\v obsolete, and the space they consume
can be rci~scd. l3~1ring the updntc, tlic filc is nc\cr ill
an inconsistent state.

\'ol. 8 No. 2 I996

Figure 3
Esamplc o f n (:arch~l Write

I

Write-behind Caching
A carefi~l \\!rite policy relics totally o n being able to
control tlic ordcr ofwrites to the disk. This cannot be
nchicvcd o11 a \\q-itc-back caclic bcca~~sc the write-back
method docs not prcscrvc the ordcr of \\lritc rccluests.
l<cordcring writes jn u \\~ritc- back cache would risk cor-
rupting the data that applications using carefill writing
\lrcrc sccking to protect. This is unfol-tunatc because
the puk)rmancc benefits of deferring tlic \\trite to the
disk arc compatible \\;it11 a careful \\-rite policy. Carefill
\vr i t i~~g does not need to know when tlic data is *rittcn
to tlic disk, only the order it is \vrittcn.

To allo\v these applications to gain the pcrfi)rmancc
of the write-back cache but still protcct their data on
disk, the Spiralog file system uses a variation on writc-
back caching lu lo~rn as write-behind caching. Intro-
ducccl in the Echo file system, write-behind cnching is
essentially write-back caching with ordcri~ig guaran-
tees.' The cachc allo\vs the application to s p c c i ~ \vhich
writes nu st be ordered arid the ordcr in whicli they
must be written to the disk.

This is achieved by providing thc barrier pri~iiiti\~c to
applications. Barrier defines an ordcr or dependency
bet\vccn \\'rite operations. For csamplc, consider the
diagran~ in Figure 4: Here, writes arc reprcscntcd as
a time-ordered queue, \\,ith later \\!rites being added

A

to the tnil. In the csnmplc, the application issues
the \vritcs in the ordcr 1,2,3,4. Without a barrier, tlic
cache could \\!rite the data to the disk in any ordcr (h -
example, 1,3,4,2). If a barricr is placcd in tlie writc
c l i ~ e ~ ~ e , it specifics to thc cache that all writes prior to
the barrier must be writtcn to the disk before (01-
aton~ically \\ritli) any writc rcclilcsts aftcr it. In the
example, if a barrier is placcd after the sccond write,
the cachc f lc system guarantees that writes 1 and 2 \\,ill
be writtcn to tlic disk before \\.rites 3 and 4. Writes 1
and 2 may still be \vrittcn in any ordcr, as could \\,rites
3 and 4, but 3 and 4 will be \vrittcn aftcr 1 and 2.

A carefill nrritc policy can easily be i~nplemented o n
a writc-behind caclic. As shown in Figure 5, the appli-
cation would use barricrs to control the write ordcr-
ing. Two barriers arc required. The first (B l) comes
after the writes of the new data (A', B'). The sccond
(B2) is placcd afier the index ~ ~ p d a t c I f . B1 is required
to ensure that the new data is on the disk before the
il~dcx block is ~ ~ p d a t c d . B2 ensures that the inclcs
block is updated bck)rc any subsccl~~ent writc rcclLlcsts.

The usc of barricrs n\loids tlie need to \\,sit for I/Os
to reach the clisk, inipro\~ing CPU utilization. In addi-
tion, the Spjralog file s!lstcm allo\\~s a~nalga~iiation
of superseding \\,rites bcnvccn barriers, reducing
the 11i1111ber of reclLIests being \\,litten to tlic disk.

t t

NO BARRIER

B

BARRIER BARRIER AFTER
SECOND WRITE

START

WRITE (A'. B') I

Figure 4
Barrier Insertion in Write Queue

Digital Tcchnic~l Journal

A

t t
WAlT UNTIL ON-DISK

Vol. 8 No. 2 1996 53

B

I'

WAlT UNTIL ON-DISK

A B A ' B ' WRITE (1')

Figure 5
Example of a <:a~-eh~l Write Using Barrier

I

Internally, tlie Spiralog file system allo\vs barricrs to be
placed bcnvccn .lny two \\!rite operations, even if they
are to Jiffercnt files. The Spiralog f le system ilscs this
to build its own ca re f~ l rvritc policy for all changes
to files, including mctadata changes. This guarantees
that the filc systcm is always consistent and gives write-
back pcrformancc on cliangcs to file rnetadata as \veil
as dat:~. One major advantage is that the Spjralog filc
systeni tlocs n o t require a disk repair utility such as the
UNIX system's fsck to rebuild the file system fi)llo\ving
a system fililure.

Barriers arc used internally in several places to prc-
serve the order of updates to the file system rnetadata.
For example, \\.lien a file is extended, the allocation of
ne\v blocks must be written to tlic disk before any
subsequent data wrjtes to the newly allocated region.
A barricr is placed ini~nediatcly after the write reclilcst
to updatc the filc length.

Barriers .ire ~ l s o used during complex file operations
such as a file create. These coniplcs operations fre-
quently update shared resources such as parent dircc-
tories. The barricrs prevent updates to these shared
objects, avoiding the risk of corruption due to the
updates being reordered by the cache.

At the application level, the Spiralog file system pro-
\rides thc barricr fi~nction o~ilv \\tithin a filc. It is ~ i o t
possi blc to order \vrites benvccn files. \\.as SLI ffi-
cient to allo\v RiMS (describeci in the section OpenVNIS

A

File System En\~ironnient) to exploit the performance
of \!!rite-behind caching 01.1 most of its file organiza-
tions. 1bUS \\,as cnl~anced to use barriers in its own
careful \\trite policy, which cnsures the consistency o f
complex file org~nizations, such as indexed fi lcs, even
\\.hen they arc subject to write-behind caching. Since
the majority of OpcnVlMS applications access tlic file
system through lbVS, gaining \\/rite-behind caching
on all RIMS file organizations pro\~idcs a significant
perfor~nuncc benetit to applications.

I

Internall!!, the Spiralog tile system supports burricrs
bet\\reen tiles. Thc decision to support barriers \vithin
a flc \vas made to limit the complexity of i~ltcrfacc
changes, in the belief that ,I cross-file barricr \\!;IS of
little i ~ s e to RIMS. In retrospect, this pro\!cd to bc
\\.I-ong. Some kev RMS filc organizations use secondary
files to hold journal records 6 ~ - the main application
filc. Thcsc tile organizations clannot express the order
in \\~liich updates to the tufa tiles should read1 the disk,
and so ~ r c precluded from using write-behind caching.

B

Application-level Caching Policies
The main problem \vith the barrier primiti\.c is its
reqi~ircmcnt that the application csprcss tlic Jcpen-
dencics to thc file system. Although this is i~navoid-
able, it mcans that the application has to change if
it wishes to safely exploit \vritc-behind caching. Clcarl!~,
many applications \\!ere not going to maltc these
changes. In addition, some applications have on-disk
consistency rcqi~ire~lle~lts that tie them to a \\]rite-
through cnvirollrncnt.

The file systcln e~nulation layer provides atlditional
support k)r tlicse types of applicatio~ls by exposing
three caching policies to applications. The policies are
stored as permanent attributes of the hlc. By default,
\\,hen the tile is opened by the tilc system, the pcrma-
nent c<~cliing policy is used o n all write requests.

The tlircc policies are ticscribed as follo\\/s:

START

A

1. Writc-through caching policy. This policy pro\iicics
applications with the standard write-through beha-
vior provided by thc Files-l 1 file system. Each usrite
rcclt~cst is tlushed to the disk before the application
request returns. If an application needs to kno\v
n~liat data is 011 the disk ;it all times, it s I I ~ L I I ~ I use
\\)rite-through caching.

2. Write-behind caching policy. A pure write-behind
cache provicies the lliglicst Ie\lel of pcrformancc.
Dirty data is not tluslled to the disk \\,hen the filc is

t t
BARRIER B1

54 Digital Tcclinical Juul-nnl

B

I'

Vol.8 No. 2 1996

A ' @ WRITE (A', B')

BARRIER 82

A B WRITE (1 ')

closed. T h e semantics o f f~ll write-behind caching
arc best suited t o applications tliat can easily regen-
erate lost data at any time. Tcrnporary files from a
compiler are a good example. Should the systelii
fail, the compilation can bc restarted without any
loss o fda ta .

3 . Flush-on-close caching policy. T h e flush-on-close
policy pro\iidcs a restricted Ic\cl o f \\/rite-behind
caching for applications. Here, all updates to the file
are treated as write behind, but when the file is
closed, all changes are forced t o the disk. This gives
the performance o f write-behind but, in addition,
provides a Itnoum point when tlie data is o n the dslt .
Tlus form ofcaching is particularly suitable for appli-
cations tliat can easily re-create data in the event of
a syste~ii crash but need t o luio~\ / that data is o n the
disk at a spccific time. For csample, a mail store-and-

. .
forward system recel\llng an incoming message must
Itnow the data is 011 the disk when it aclulo\vledgcs
receipt o f the message t o the forwarder. Once tlie
acluiowledgment is sent, the message has been for-
mally passcd o n , and the for~vardcr may delete its
copy. In this example, the data need n o t be o n the
disk until tliat acluiowledgment is sent, because that
is the point at \\/hich the lnessage receipt is commit-
ted. Should tlic systcrn fail before tlie aclcnowledg-
iiient is sent, all dirty data in the cache \ \ ~ o ~ ~ l d be lost.
In tliat event, the sender can easily re-create the data
by sending the lnessage again.

Figure 6 sho\ \s the results o f a performance c o n -
parison o f the three caching policies. T h e test was r u n
011 a dual-CPU DE<: 7 0 0 0 Alpha system \\/it11 3 8 4
megabytes o f memory 011 a IWI1)-5 disk. T h e test
repeated the follocving s e c l ~ ~ e ~ ~ c e for the difkrel l t file
sizes.

1 Create and open a file o f the required slze and set
its c<~cliing policy.

2 . \;\Trite data t o the whole file in 1,024-byte I/Os.

3 . Close the file

4 . Delete the file.

\iVith srnall files, the number o f file operations (create,
close, delete) dominates. T h e lef t~nost side o f the
graph therefore sho\vs the time per operation for file
operations. MTitli time, the files increase in size, and the
data I/Os become pre\~alent. Hence, the rightniost
side o f Figure 6 is displaying the time per operation for
data I/Os.

Figure 6 clearly slio\vs that an ordered write-behind
caclie pro\/ides the highest performance o f the three
caching models. For file operations, the write-behind
cache is almost 3 0 percent faster than the \\/rite-
through cache. Data operations are approximately
three times faster than tlie corresponding operation
\vith \\/rite-through caching.

FILE SIZE (BYTES)

KEY

- WRITE-BEHIND CACHE
- - - FLUSH-ON-CLOSE CACHE
. WRITE-THROUGH CACHE

Figure 6
Performance Comparison of Caching l'olicics

Summary and Conclusions

T h e task o f integrating a l o g - s t r u c t ~ ~ r e d file system
in to the OpenVklS en\lironnient was a significant
challenge for the Spiralog project members. O u r
approach o f carefully determining the interface t o
emulate and tlie level o f compatibility was important
t o ellsure that the majority o f applications \vo~-Iced
unchanged.

PVe have s h o n ~ n that an existing update-in-place file
slatem can be replaced by a log-structured file system.
Initial effort in the analysis o f application usage f ~ r -
nislied information o n in te rhce compatibility. most
file system opel-ations can be provided th rough a f le
system emulation layer. Where necessary, new intcr-
hces were provided for applications t o replace their
direct lu~owledge o f tlie Files-l 1 file system.

File system operation tracing and fi~nctional anal!rsis
o f the Files-11 file system pro\cd t o be the most i ~ s e f i ~ l
techniques t o establish interface compatibility. Appli-
cation compatibjlity h r exceeds the le\icl cxpccted
\\/hen the project was started. A majority o f people use
the Spiralog file systeln volumes \\lithour noticing any
change in their application's belia\~ior.

C a r e h l writc policies rel!~ o n the order o f updates
t o tlie disk. Since \\,rite-back caches reorder write
requests, applications using c a r c h l ~vr i t ing ha\lc been
unable to take advantage o f the significant improve-
ments in write performa~lce gi\le~i by writc-back
caching. T h e Spiralog file system solves this problem
by pro\'iding ordered write-back caching, Itno\\jn as
write-behind. T h e \\]rite-behind cache allows applica-
tions t o co~i t ro l tlie order of\vritcs t o the disk through
a primitive called barrier.

Using barriers, applications can build careful writc
policies o n t o p o f a write-behind cache, gaining all tlie
performance o f writc-back caching \\iitliout risliing

Vol. 8 N o . 2 1996

dat.1 integrity. A \\,rite-behind cache also allo\vs tlie file Biographies
systcm itself t o gain write-back pcrk)rmancc o n all
tile system opcrations. Since many filc system opera-
tions 31-c rlic~iisel\~cs qoickl! soycrsericd, ~ ~ s i ~ i g a~r i rc - i-l
behind caching pre\.ents Inany tile system operations
from ever reaching thc disk. Rarricrs also allo\\~ tlie f le
systcm t o protect the on-disk file system consistency
by i11ipJcmcnting its own carcti~l write policy, avoiding I
the need k)r disk repair utilities.

Tlic barrier primitive pro\,idcd a way t o ge t \\,rite-
tlirougli sc~iiantics lvithin a file for those applic,itions
relying o n careful Ivrite policies. Changing RJVS t o use
the bnrricr prirniti1.e allo\ved the Spiralog f lc systcm
t o support \\,rite-bcl~ind caching as the d c h ~ ~ l t policy
on all file types in the OpenVblS cn\lironmcilt.

A c k n o w l e d g m e n t s

T h e dcvcloprncnt o f thc Spiralog file system involved
the help ~ n c l suppor t o f many individuals. We \ v o ~ ~ l d
likc t o acknowledge Ian Pattison, in particular, w h o
clcvclopcd the Spiralog c ~ c h e . We also want t o thank
Cathy Folcy and Jim Johns011 for tlicir hclp th rough-
o u t the project, and Karen Ho\\rcll, Morag C ~ ~ r r i c , and
all those wlio helped with this paper. Fi~~,ill!r, \vc arc
\,cry gr ' i tcf~l t o Andy Goldstein, St11 l'>,lvitison, and - .
lo111 S p c u for t h c ~ r hclp and ad\jicc \ \ ~ ~ t l i the Sp~r,llog
integration \\'ark.

References

I. J . Johnso11 a ~ i d H I . L i n g , "Overvic\v of rlic Spiralog Filc
Sysrc~li," Digit611 Techr~icril ,/oiir'ir~il. \,ol. 8, no. 2
(1996, this issuc): 5-14.

2. (:. Wllitakcr, S. Bayley, and R. Widdowson, "1)csign ofthc
Scrvcr tbl. tlie Spiralog File Systcln," Digil<il Tct.hrrical

, ~) I I I . I I C I ~ . i.01. 8, 110. 2 (1996, this i s s~~c) : LS-3 1 .

3. I < . Grce~i, A . Uaird, dlld J . lln\.ics, "1)csigning n Fast,
011-li~lc R~ckup System for ,I Log-structu~~cd Filc Sys-
rcln," Iligilr~l Te~~h17ic~11.Jo~11~r~ril. \,ol. 8, rlo. 2 (1996,
thij icsuc): 32-45.

4 . A. Birrell, A. Hisgen, C. Jcrian, T. Manll, nliJ G. S\varr,
"l'lic Echo Distributed File Systeni," 1)igit.il S!.stems
l<csc;u.ch Center, lcesearch Kcport 1 1 1 (Scprcmhcr
1993).

5 . Opcr~l/il.IS I / O Ckers Referertcc ~l,f~~rrrlal (~Mnynnrd,
1Ll;iss.: Digital Equipment Corporation, 1988).

6 . R . Goldcnbcrg alld S. Saravannn, Opori\'!I4/-1,\'1~ 111to.-
rla1.s a11d Dnta S t ~ z i c t l i ~ ~ s (Nc\vto~l, M,lss.: l)igitL1l
Press, 1994).

I . S. Wciman, "Vnodcs: h Architcct~lrc for ~Uultiplc Filc
System T!*pes in Sun USIS," Pincccdi~r~s (?/'Sroiz117er-
1 :St.:.\%Y Cor!/i)r-mce. Atlanra, Ga. (1986): 238-247.

8 . I<. klcCoy, I3IS File S):ctPni Iriter.ira1.s (R~~rl ington,
Mass.: Digital Press, 1990).

\/oI. 8 No . 2 1996

Mark A. Howell
Mnrk H o \ \ ~ l l is a n crigiriccr-i11g mnrlagcr in the 0pc11\rXlS
E~igi~~ccring C;roup ill L..i\.inpton, U.I<, h ~ l ~ r l i \\,CIS the proj-
ect leader for Spirnlog .ilid I\ rotc ~ 0 1 1 1 ~ of the product code.
He is no\\ , rn.~napi~ig tlic folio\\ -on rclenses to Spirdlog \.el.-
sion 1.0. I n prcvio~~.; projcc~s, hhrk colltributcci to 1)igit;il's
DECdtlli distri0~ltcd C ~ ; \ I ~ S . I C ~ ~ O I I manager, 13ECdh distrib-
utcd f lc system, and the Alpha port of OpenI'MS. I'rior
to joining Digital, Mnrk \vorkcd on flight simulators and
tliglit sohvarc tbr British Acrospacc. Mark recei\ul a l3.S~.
(1ionoul.s) in m;u-inc biolog and bioclienlisrry frorn Bangor
University, !:'iilcs. Hc is o ~ l c ol'thc rare pcoplc who still likc
interactive fiction (the stuff you have to type, i1istc3d of the
sti~ffyou point n niousc ~ r .)

Julian M. Paln.iel.
A scnior sol.'n\~;il.c c~igiliccr, Juli.11i I'.lllncr is a mcmbcr 01:
t l ~ e Opui\lh,lS Engineering C;~-oup In Li\,i~lgston, Scotl;lnct.
He is cur~.clltl!, \\.orkillg o n ti lc !.stem c~lclli~lg fbr Ope~i\'AlS.
Prior to his \\,or\< in filc systems, JUII;III ~o~ltr i l>uted to
Open\!~LlS inrcrprocc\s cornmunic;~tion. Julian joined
Digital in 1989 nficrcomplcting his R.Sc. (ho~lours) in
computcr scicncc from Eciiliburgli Uni\.c~-sin.

I
Michael S. Harvey
Leonard S. Szubowicz

Extending OpenVMS
for 64-bit Addressable
Virtual Memory

The OpenVMS operating system recently
extended i ts 32-bit virtual address space to
exploit the Alpha processor's 64-bit virtual
addressing capacity while ensuring binary
compatibility for 32-bit nonprivileged pro-
grams. This 64-bit technology is now available
both to OpenVMS users and to the operating
system itself. Extending the virtual address
space is a fundamental evolutionary step for
the OpenVMS operating system, which has
existed within the bounds of a 32-bit address
space for nearly 20 years. We chose an asym-
metric division of virtual address extension that
allocates the majority of the address space to
applications by minimizing the address space
devoted to the kernel. Significant scaling issues
arose with respect to the kernel that dictated
a different approach to page table residency
within the OpenVMS address space. The paper
discusses key scaling issues, their solutions,
and the resulting layout of the 64-bit virtual
address space.

The OpcnViMS Alpha operating system initially sup-
ported a 32-bit virtual address space that masin~ized
compatibility for OpeliVMS VAX users as they ported
their applications from the \IAX platform to the Alpha
platform. Pro\riding access to the 64-bit virtual mem-
ory capability defined by the Alpha 1 ' rc h' ltecture was
al\vays a goal for tlie OpenVMS operating system. An
early consideration was the e\lentual use of this tech-
nology to enable a transition from a purely 32-bit-
oriented context to a pure[y 64-bit-oric~ited native
context. OpenVMS designers recognized that such
a fundamental transition for the operating systern,
along with a 32-bit VAX compatibility mode support
environment, would take a long time to implement
and could seriously jeopardize the migration of appli-
cations from the VAS platform to the Alpha platform.
A phased approach was called for, by svhich the operat-
ing system could evolve over time, allowing for quiclccr
time-to-market for signifcant features and better, more
timely support for binary compatibility.

In 1989, a strategy emerged that defined hvo funda-
mental phases of OpenVMS Alpha development. Phase
1 \vould deliver the OpenVMS Alpha operating system
initially with a virtual addrcss space that faithfillly repli-
cated addrcss space as it was defined by tlie VAY archi-
tecture. This familiar 32-bit environment \vould ease
tlie migratio~i of applications from the VAX platform
to the Alpha platform and would case the port of the
operating system itself. Phase 1, tlie OpenVlMS Alpha
version 1 .O product, was delivered in 1992.'

For Phase 2, the OpenVlMS operating systern would
succcsshlly esploit the 64-bit virtual address capacity
of the Alpha architccturc, laying the ground\\lork
for further e\~olution of the OpenVMS system. In
1989, strategists predicted that Phase 2 could be deliv-
ered approximately three years after Phase 1. As
planned, Phase 2 culminated in 1995 wit11 the delivery
of OpenVMS Alpha version 7.0, the first \lersion of
the OpenVlMS operating system to support 64-bit
virtual addressing.

This paper discusses how tlie OpeliVMS Alpha
Operating System Development group extended the
OpenVMS virtual address space to 6 4 bits. Topics
covered include compatibility for existing applica-
tions, the options for extending the address space, the

Di~ital Technical Journal Vol. 8 No. 2 1996 57

strategy for page table rcsjdcncy, and tlie tinal layout of
the OpcnViMS 64-bit v i r t~~a l address spacc. In implc-
menting support for 64-bit virtu.ll addl-csscs, design-
ers maximized privileged code compatibility; the paper
presents some key measures taken to this end and pro-
vides a privileged code example. A discussion of the
immediate use of 64-bit addressing by the OpcnVMS
kernel and a sLininlarp of the work accomplished con-
clude the paper.

Compatibility Constraints

Growing the v i r t~~a l address space horn a 32-bit to
a 64-bit capacity was subject to one overarching con-
sideration: compatibility. Spccifi cally, any existing non-
privileged program that could execute prior to the
introciuction of 64-bit addressing support, even in
binary form, must continue to run correctly and
uumoditied under a version of the 0pc1iVMS opcrat-
ing system tliat supports a 64-bit virtudl nddrcss space.

In this contest, a nonprivileged program is one that
is coded only to stable interfaces that arc not allo\vcd
to change from one release of tlie operating system to
another. In contrast, a privileged program is defined
as one that must be linked against the 0pc1lVlMS
kernel to resolve references to internal intcrfilccs and
data structures that nlay change as the kernel cvolvcs.

The co~npatibilit?, constraint dictates that the hllow-
ing characteristics of the 32-bit virtual addrcss spacc
en\~iro~iment, upon \i/hicIi a nonprivilcgcd program
may depend, must continue to appear ~~nc l i angcd .~

The lo\ver-addressed half (2 gigabytes [GB]) of vir-
tual address space is defined to be private to a give11
process. This process-private space is h ~ r t h r r divided
into nvo 1-GB spaces that grow to\\,ard each other.

1. The lo\ver 1-GI3 space is referred to as PO spacc.
This space is called tlie program region, \vhcrc
user programs typically reside \vhile running.

2 . The higher 1 -GB space is referred to as P 1 spacc.
This space is called the control region and con-
tains the stacks for a given process, proccss-
permanent code, and various process-specific
colltrol cells.

The higher-addressed half (2 GB) ofvirtual addrcss
space is defined to be shared by a11 processes. This
shared space is where the OpenVMS operating sys-
tem kernel resides. Although the Vh>(architccturc
divides this space into a pair of separately named
1-GB regions (SO space and S1 space), the OpenVMS
Alpha operating system lnaltes n o material distilic-
tion between tlie nvo regions and refers to them
collecti\fely as SO/Sl spacc.

Figure 1 illustrates the 32-bit \,irtual address space
layout as implemented by the OpcnVMS Alpha oper-
ating system prior to version 7.0.' An interesting

Vol. S No. 2 1996

mechanism can be sccn in the Alpha i~nplemcntation
of this addrcss spacc. The Alpha arcliitccti~re defines
32-bit load operations such that values (possibly
pointers) are sign estcndcd fro111 bit 31 as they are
loaded into registers.' This facilitates addrcss calcula-
tions with rcsi~lts tliat arc 64-bit, sign-extended forms
of tlie original 32-bit pointer values. For all PO or P1
spacc addresses, the uppcr 32 bits of a given pointer in
a rcgistcr \ \ r i l l he written \\rich zeros. For all SO/S1
sl.>.~cc ~~ddrcsscs, tlic upper 32 bits of a given pointer in
,I rcgistcr will be written \\,it11 ones. Hence, on the
All.>lia platform, the 32-bit virtual address space actu-
ally exists ns the lo\vcst 2 GI< dnd highest 2 G13 o f the
entire 64-bit virt~lal address spacc. From the pcrspec-
tivc of a program using only 32-bit pointers, these
regions iippcar to be contiguous, exactly as thc!~
appeared on the VAX platform.

Superset Address Space Options

M'c consiclcrcci the following three general options for
extending the addrcss spacc beyo~ld the current 32-bit
limits. The dcgrce to which each option \vould rclicvc
the addrcss space pressure being felt by applications
and the OpcnVMS kcrncl itsclf \.aricd significa~ltly,
as did the cost of implcmc~iting each option.

1. Extension of slial-ed space

2. Extension of process-pri\l,~tc spacc

3. Extension of hot11 shared s p ~ c c and process-private
space

The fi rst option co~lsidered \.vas to extend the virtual
acicircss bou~ldaries fix shared spacc only. Process-
private space \vould remain limited to its current size
of 2 GI). If processes nccdcci acccss to a huge amount
of virtual menlor),, tlie melnory would have to have
bccn created i l l sliarcd spncc \vticrc, by dc f i~ i i t i o~~ , all
poccsscs WOLILCI Iia\~c access to it. This option's chief
ad\ianragc \\!as that JIO changes were required in the
complex mclnor), managcnicnt cocic that specifically
s ~ ~ p p o r t s process-private space. Choosing this option
w o ~ ~ l d ha\~e minimized the time-to-market for deliver-
ing sollie degree of v i r t~~al address extension, however
limited it would be. Avoiding any impact to process-
private spacc \.\/as also its chief disadvantage. l3y failing
to extend process-private spacc, this option proved to
be gencrallp u~ lappca l i~~g to our customers. 111 addi-
tion, it \vas vie\vcd as '1 makeshiti solution that \\/e
\ v o ~ ~ l d be unable to discard once proccss-private spacc
was cxtendccl at a f i ~ t ~ ~ r c time.

The second option was to extend process-private
space only. This option would have delivered the
highly desirable 64-bit capacity to processes but u~ould
not have cxtcndcd sliarcd spncc beyond its current
32-bit boundaries. The option presumed to reduce
the degrcc ofc11;ingc in the kernel, hcncc maximizing

PROCESS
PRIVATE
(2 GB)

, , , ,
,

Figure 1
OpcnViMS Alpha 32-bit Virt~ral Address Space

I I

I . ! , ; I : l : : : . , t l I

pri\,ilegcd code compatibility and ensuring faster time-
to-m,lrltet. Ho~\,e\ier, analysis o f this opt ion showed

/

SHARED
SPACE
(2 GB)

that tl1c1-e \\,ere enough significant portions o f the ker-
nel rccll~iring change tliat, in practice, very little addi-
tional privileged code compatibility, such as for
drivers, \\rould be achievable. Also, this option did n o t
addrcss certain important problelns that are specific t o
shared space, such as limitations 011 the Iternel's capac-
ity t o manage ever-larger, very large memory (VLM)
systems in the f~ l tu re .

We dccidcd t o pursue the opt ion o f a Bat, superset
64-bi t \jirtt~al address space tliat provided extensions
for both the sharcd and the process-private portions of
the space that a given process could reference. T h e
ne\\; extended process-private space, named P 2 space,
is .~cijaccnt t o P1 space and cxtcnds to\vard higher
\:irtual a c l d r c ~ s c s . ~ ~ j T h e new, extended shared space,
named S2 space, is adjacent t o SO/Sl space and
cxtcnds to\\,ard lower virtual addresses. P2 and S 2
spaces gro\v toward each other.

A remaining design p r o b l e n ~ was t o decide where
1'2 anci S 2 would meet in tlie address space layout.
A simple approach would split the 64-bi t address
s p x c c x a c t l y in half, syrnnietrically scaling u p the
design o f the 32-bi t address space already in place.
(?'he addrcss space is split in this way by the Digital
UNIX operating ~ v s t e n i . ~) This solution is easy t o
cxplaill because, o n the o n e hand, it extends the 32-bi t
convention that the most significant address bit can be
treated as a sign bit, indicating whether an address
is private o r shared. 01-1 the o ther hand, it allocates
fi~lly o ~ l c l l a l f the a\railablc virtual addrcss space t o the

-
00000000 00000000

FFFFFFFF80000000

SOIS1 SPACE

. FFFFFFFF.FFFFFFFF

operating system kernel, whether o r no t this space is
needed in its entirety.

T h e pressure t o g row the address space generally
stems from applications rather than from the operat-
ing system itself. 111 response, we implemented the
64-bi t address space with a boundary that tloats
benveen the process-private and shared portions. T h e
operating system configures at bootstrap only as much
virtual address space as it needs (never more than
50 percent o f the whole) . At this point, the boundary
beconics tixed for all processes, with the majority of
tlie address space available for process-private use.

'4 floating boundary maximizes the virtual address
space that is available t o applications; however, using
the sign bit t o distinguish between process-private
pointcrs and shared-space pointcrs continues t o work
only for 32-bi t pointcrs. T h e location of the floating
boundary must be used t o distinguish between 64-bi t
process-private and shared pointers. We believed tliat
this was a minor trade-off in return for realizing nvice
as much process-private address space as would otlier-
wise have been achieved.

/ ,
,

I

000000007FFFFFFF

'

Page Table Residency

$7 7

I

PO SPACE

P I SPACE

While pursuing the 64-bi t virti~al address space la j~out ,
\ye grappled with the issue o f where the page tables
that map the address space would reside within that
address space. This section discusses the page table
structure that supports the OpenVMS operating sys-
tem, the residency issue, and the method we chose t o
resolve this issue.

Digir.11 Teclinic,ll J o u r ~ u l Val. 8 No. 2 1996 59

, I l l l l l l ' ~ , ',I I '> 87 1 I
i
I

Virtual Address-to-Physical Address Translation
The Alpha architecture allo\vs an implementation to
choose one of the follo\ving four page sizes: 8 kilo-
bytes (KB), 1 6 ICB, 32 KB, or 64 KB.3 The architecture
also defines a multilevel, hierarchical page table struc-
ture for virtual address-to-physical address (VA-to-
PA) translations. All OpeliVMS Alpha platforms have
implemented a page size of 8 KR and three levels
in this page table structure. Although th ro~~g l iou t
this paper we assume a page size of 8 ICR and three
levels in the page table hierarchy, no loss of generality
is incurred by this assumption.

Figure 2 illustrates the VA-to-PA tr;~nslation
seqi~mce using the ~nultilevel page table structure.

1. The page table base register (I'TKK) is a per-process
pointer to the highest level (L l) of that process'
page table structure. At the highest level is one
8-KB page (LIPT) that contains 1,024 page table
entries (PTEs) of 8 bytes each. Each PTE at the
highest page table level (that is, each LlPTE) maps
a page table page at the next lower Ic\lcl in the ti-a~is-
lation hierarchy (the L2PTs).

2. The Segment 1 bit field of a gi\ien virtual address
is an index into tlie L l P T that selects a particular
LlPTE, hence selecting a specific L2PT for the nest
stage of the translation.

3. The Segment 2 bit field of tlie virtual address
then indexes into that L2PT to select an L2PTE,

hence selecting ;I spccific L3PT for the nest stage
of the translation.

4. The Segnicnt 3 bit field of the \rirt~ral address then
i~idescs into that L3I'T to select an L3PTE, hencc
selecting a specitic 8-IU3 code or data page.

5. The byte-within-page bit field of the virtual address
then selects a spccific byte address in that pagc.

An Alpha implc~ncntation may increase the pdgc
size and/or n ~ ~ n i b ~ r of levels in the page table I i icr~r-
chy, t h ~ ~ s ~nnpping grcater amounts of virtual spacc up
to tlie fill1 64-bit amount. The assumed combinntio~l
of 8-I(B pagc size and three levels of page tnblc allo\\.s
the system to map up to 8 terab!,tes (TB) (i.c., 1,024
X 1,024 X 1,024 X 8 KR = 8 TB) of v i r t~~a l memory
for a single proccss.

To map the entire 8-TB address space available to a
single process requires up to 8 GB of PTEs (i.c., 1,024
X 1,024 X 1,024 X 8 bytes = 8 GB). This fact alone
presents a serious sizing issue for the OpenVMS opcr-
ating system. Thc 32-bit page table residency n~oclcl
that the OpeliVMS operating system ported fi-om tlie
VAX platform to the Alpha platform does not have
the capacity to SLIpport SLICII large page tables.

Page Tables: 32-bit Residency Model
We statcd earlier that ~iiaterializing a 32-bit \.irtual
address space as it \\,as defined by the VAX architect~~re
would ease the c f h r t to port the OpenVMS operating

VIRTUAL
ADDRESS

PAGE TABLE
BASE REGISTER

63 I 42 32,31 I 0

. L1PT L2PTs L3PTs : DATA PAGES 1

Figure 2
Virtual Address-tePhysical Address Tr.inslation

BYTE
WITHIN
PAGE

SIGN EXTENSION
OF SEGMENT 1

60 Digiral Tcchnicnl Journal

SEGMENT 1 j SEGMENT 2 SEGMENT 3

system ti-om the VAX platform to the Alpha platform.
A concrete example of this relates to page table resi-
dency in virtl~al memory.

The VAX architecture defines, for a given process,
a PO page table and a P1 page table that map that
process' PO and P1 spaces, respectively.' The architec-
ture specifies that these page tables are to be located in
SO/S1 shared virtual address space. Thus, the page
tables in virtual memory are accessible regardless of
which process contcxt is currently active on the system.

The OpenVMS VAX operating system places a given
process' PO and P1 page tables, along with other per-
process data, in a fixed-size data structure called a bal-
ance slot. An array of such slots exists within SO/Sl
space with each memory-resident process being
assigncd to one of thcse slots. - .I. his page table residency design cvas ported from
the VAX platform to the Alpha platform.' The L3PTs
needed to map PO and P1 spaces and the one L2PT
needed to map those L31'Ts are all mapped into a bal-
ance slot in SO/S1 space. (To conserve virtual mem-
ory, the process' L lPT is not mapped into SO/Sl
space.) The net effect is illustrated in Figure 3.

The VAX architecture defines a separate, physically
resident system pagc table (SPT) that maps SO/S1
space. The SPT was explicitly mapped into SO/S1
space by the OpenVMS operating system o n both the
\'AX and the Alpha plattbrms.

BALANCE
SLOTS

SLOT

SLOT

SLOT

SLOT

SLOT

SLOT

Only 2 megabytes (MR) of level 3 PT space is
required to map all of a given process' PO and P1
spaces. This balance slot design reasonably accommo-
dates a large number of processes, all ofwhose PO and
P1 page tables siniultaneously reside within those
balance slots in SO/S1 shared space.

This design cannot scale to support a 64-bit virtual
address space. Measured in terms of gigabytes per
process, the pagc tables required to map such an enor-
mous address space are too big for the balance slots,
which are constrained to exist inside the 2-GB SO/S1
space. The designers had to find another approach for
page table residency.

Self-mapping the Page Tables
Recall from earlier discussion that on today's Alpha
implementations, the page size is 8 KB, three levels of
translation exist witlin the I-~ierxchical page table struc-
ture, and each page table page contains 1,024 PTEs.
Each LlPTE maps 8 GB ofvirtual memory. Eight giga-
bytes of PT space allo\vs all 8 TB of virtual memory that
this implementation can materialize to be mapped.

An elegant approach t o mapping a process' page
tables into virtual memory is to self-map them. A sin-
gle PTE in the highest-level page table page is set to
map that page table page. That is, the selected LlPTE
contains the page frame n u ~ n b e r of the level 1 page
table page that contains that LlPTE.

PROCESS
HEADER

PROCESS-PRIVATE
LPPT

PO PAGE TABLE
(L3PTs)

P l PAGE TABLE
(L3PTs)

, SIZED AT
BOOTSTRAP

ARROWS INDICATE
DIRECTION OF GROWTH

Figure 3
32-bit Page Tables in SO/S'l Space (Prior to OpenVMS Alpha Version 7.0)

Digital Technical J o u r n ~ l Vo1. 8 No. 2 1996 61

The effect of this self-mapping on the VA-to-PA
translation sequence (shown in Figure 2) is subtle but
important.

For those virtual addresses \\lit11 a Segment 1 bit
field value that selects the self-mapper LlPTE, step
2 of the VA-to-PA translation sequence reselects
the L lPT as the effective L2PT (L2PT1) for the
next stage of the translation.

Step 3 indexes into L2PT' (the L lPT) using the
Segment 2 bit field value to select an L,3PT'.

Step 4 indexes into L3PT' (an L2PT) using the
Segment 3 bit field value to select a specific data

Page.
Step 5 indexes into that data pagc (an L3PT) using
the byte-within-page bit field of the virtual address
to select a specific byte address within that page.

When step 5 of the VA-to-PA tra~lslation sequence
is finished, the final page being acccsscd is itselfone of
the level 3 page table pages, not a page that is mapped

PTBR

VL1PT'S--'

LlPT ,

. .

KEY:

PTBR PAGE TABLE BASE REGISTER
PFN PAGE FRAME NUMBER
PTE PAGE TABLE ENTRY

by a level 3 page table page. The self-map opcration
places the elltire 8 -GB page table structwc at the end
of tlie VA-to-PA tra~lslntion sequence for n specific
8-GB portion of tlie process' address spacc. This vir-
tual space that contains all of a process' potential pagc
tables is called page table space (PT space)."

Figure 4 depicts the effect of self-mapping the pagc
tables. O n tlic left is the highest-level page table
page containing a fixed number of PTEs. O n the right
is the virtual address spacc that is mapped by that page
table page. Thc mapped address space consists of a col-
lection of identically sized, contiguous address range
sections, each one mapped by a PTE in the corrc-
sponding position in tlie highest-level page table pagc.
(For clarity, lo\\ler le\:cls of the page table structure arc
ornittcd from the figurc.)

Notice that LlPTE # lo22 in Figure 4 \\.as chosen to
map the high-level pnge table page that contains that
PTE. (The reason ti)r this particular choice will
be explained in the next section. Theoretically, any one

Figure 4
Effect of Page Table Self-map

64-BIT ADDRESSABLE

62 Digital Tcchn~cal Journa l

VIRTUAL

'

~

..

Vol. 8 No. 2 1996

ADDRESS

POIP1 - - - - - - - - - - - - - - -

PT SPACE

-----.......---

SOIS1

SPACE

I 0000000000000000

8-GB #O

1 8-GB #1

> 1,020 x 8 GB

8-GB #lo22 1
8-GB #I023

FFFFFFFF.FFFFFFFF

of tlie Ll PTEs could have becn chosen as the self-
nlapper.) Thc section of virtual memory lnapped by
the chosen LlPTE contains the entirc sct of page
tables needed to map the available addrcss space of
a given process. This section of virtual memory is PT
space, which is depicted 011 the right side of Figure 4
in the 1,022d 8-G13 section in the materialized virtual
address space.

The base addrcss for this PT space incorporates the
index of the chosen self-mapper LlPTE (1,022 =

3FE(16)) as follows (see Figure 2):

Segment 1 bit field = 3FE
Segment 2 bit field = 0
Segment 3 bit field = 0
Byte within page = 0,

which result in

VA = FFFFFFFC.00000000
(also known as PT-Rase).

Figure 5 illustrates the exact contents of PT space
for a given process. One can obscrvc the positional
effect of choosing a particular high-level PTE to self-
map the page tables even within PT space. In Figure 4,
the choice of PTE for self-mapping not only places PT
space as a whole in the 1,022d 8-GR section in virtual
memory but also mcans that

PAGE TABLE
SPACE (8 GB)

'

The 1,022d grouping of the lowest-level page
tables (L3PTs) within PT space is actually the col-
lection of next-higher-level PTs (L2PTs) that map
the other groupings of L3PTs, beginning at

Segment 1 bit field = 3FE
Segment 2 bit field = 3FE
Segnient 3 bit field = 0
Byte within page = 0,

which result in

VA = FFFFFFFl~.FF000000
(also lulown as L2-Base).

Within that block of L2PTs, the 1,022d L2PT is
ac t~~al ly the next-higher-lcvel page table that maps
the L2PTs, namely, the LlPT. The L l P T begins at

Segment 1 bit field = 3FE
Segment 2 bit field = 3FE
Segment 3 bit field = 3FE
Byte within page = 0,

which result in

VA = FFFFFFFD.FF7FC000
(also known as L1-Base).

Within that L1 PT, the 1,022d PTE is the one used
for self-mapping thcse page tables. The address of
the sclf-mapper 11 PTE is

Figure 5
Page Tahlc Space

Vol. 8 No. 2 1996 63

Scg~iicnt 1 bit field = 3FE
S c g ~ i i c ~ ~ t 2 bit field = 3FE
Segment 3 bit field = 3FE
Byte \vithin pagc = 3FE X 8

This positional correspondence \\,ithi11 1'T spacc is prc-
scr\lcd should a different high-le\d PTE be chosen k)r
self-~iiappi~ig tllc page tables.

The properties inherent in this self-mapped pngc
tablc arc compelling.

The amount of virti~al ~ ~ ~ c m o r y reserved is exactly
the amount required for nlapping the pagc tables,
regardless o f pagc size or page tabJe dcptli.
Consider the segment-numbered bit fields of a
given \ ~ i r t ~ ~ a I address fro111 Figure 2. Concatcnatcci,
tlicsc bit ficlds constitute the \ , i r t ~ ~ a l page number
(VPN) portion of a given virtual addrcss.

The total sizc of the PT space needed to map cvcry
VI'N is the number of possible VPNs times 8 b!.tcs,
tlic size of n I'TE. The total size of the address
spacc mapped by tliat 1'T spacc is the n~1111bcr of
possible VPNs tinics tlie page sizc. Factoring
out the VPN ~nultiplicr, the diffcrencc bct\\.cco
tlicsc is tlic page size divided by 8, \vhich is exactly
tlic size of the S c g ~ n e ~ i t 1 bit ficld i l l the \fir-
tual addrcss. Hcncc, all the spacc mapped by a
singlc PTE at tlie highest Ie\~cl of page tablc is
csactly the sizc required for mapping all the I'TEs
tliat coi~ld ever be needed to map the proccss'
nddrcss spacc.

Tlic mapping of 1'T space in\~ol\~es simpl!, clioos-
ing one o f the highest-level PTEs and forcing it t o
self-map.

N o additional system tuning o r coding is rccluircd
t o acco~~i~i io~i ; l te a ~iiorc \\,idely implcmcntcd
\ . i r t~~nl atidrcss \\lidtli in I'T space. B!, definition of
the self-map effect, the exact amount of virtual
addrcss spacc I-cquired \vill be a*ailable, n o more
and n o less.

It is easy to locate n given I'TE. .,The adcircss of
a PTF, \heconics an efficient ti~nction of the addrcss
tliat the PTE ~iiaps. The fi~nction first clears
the byte-\vithin-pagc bit field of the subject vir-
tual addrcss and then shifts the remaining \lirti~;il
adclrcss bits such that the Seg~nents 1, 2, and 3 bit
field \~alucs (F i g ~ ~ r c 2) now reside in the corrc-
sponding nest-lower bit ficld positions. The f ~ n c -
tion then \\,rites (and sign extends if necessary)
the *aatcd Scg~nent 1 field with the index of
the self-mapper PTE. The result is the addrcss
of tlic PTF, that maps tlic original \virtual ;iddress.
Notc that this aIgorit11171 also \\.arks for addrcsscs

\\,itIiin PT space, including that of the self-mapper
I'TF, itscl f,

l'roccss pagc mble rcsjdcnc!. in \.irtual rlicmor!. is
acliic\.cd \\.ithour i~nposing on the capacity of
sharcd spacc. That is, there is no longer a need to
mnp the process page tablcs into slinrcd spncc. Such
,I mnpping \\,auld be redundant and \\,nsrcfi~l.

OpenVMS 64-bit Virtual Address Space

With this page table residency strategy in hand, it
bccamc possible to f nalize a 64- bit \airtun1 ati Jrcss 1,l)~-
out for tlic OpcnViMS operating systcln. A self-m,ippcr
IsrE had to be chosen. Consider again tllc I~iglicst Icvcl
of p g c table in a given process' page t.tblc srructurc
(Figure 4). The first PTE in tliat page tablc mlips a scc-
tion of \~irtunl memory tliat includes PO n~iJ 1'1 sp,~ccs. - . I his IyI'E \\!as therefore i~nn\~ailal~lc for ~ ~ s c us ,I sclf-
mapper. The last I'TE in that page tablc maps a section
ofvirtual mcolory that includes SO/S1 spacc. This I'TE
\\,as also unav.iilable for self-niapping pilrposcs.

All the i ~ ~ t c r \ ~ c n i n g high-lc\,el I'1'Es \\.ere potential
clioiccs ti)r self-mapping the page t~hlcs . To ma\imizc
tlic size of process-pri\,atc spacc, rhc correct choice
is the nest-lo\f.cr PTE than the one that maps the lo\\.-
cst addrcss in shared space.

This choice is implenlented as ;i boot-tinic nlgo-
~.i thm. 13ootstrap codc first detcr~liincs tlic size
rccltiircd tbr Opcn\f~MS sharcd spacc, culculnting the
corresponding number of high-lc\.cl Iyl'l:s. A suffi-
cient number of PTEs to map that slinrcd spncc 21-c
allocated later fiom tlic high-order end of n given
p~)ccss ' liiglicst-le\rel pagc tablc p ~ g c . Tlicn tlic ncsr-
lo\\,cr I'TE is alloc,ltcd for self-n~uppi~ig thnt proccss'
page th lcs . All re~naining lo\\.cr-ordered IsI'Es v-c Icti
a\.ailnblc for mapping process-pri\.;~tc space. In prnc-
ticc, nearly 311 tlie I'TEs are avnilablc, \\.l~icli means thnt
o n toda!,'s s\,stcms, ,~llllost 8 TI3 of procc.ss-pri\.,~rc \%--
~ L I J I Inernor!, is n\.ail,ibJe to a gi\,cn Opc~i\/iClS proc~~ss.

Figurc 6 presents the filial 64-bit 0pc1lVA~lS i.irtir.ll
ncldrcss spacc la!rout. Thc portion \\.it11 tlic lo\\.cr - -
aclclrcsse.~ is entirely process-pri\.atc. I he liiglicr-
aiitircsscci portion is shared b!. all process ,ldJrcss
spaces. 1'T spacc is a region o f \.irtual ~ncrnor!, th,lt lies
bct\\.cc~i the P2 and S2 spaccs for an!, gi\~cn proccss
2nd at the same \ , i r t~~al addrcss fix all proccsscs.

Notc thnt IT space itself consists of a proccssp~.i\.,ltc
;~nd 3 slinrcd portion. Again, consider Figure 5. ?l'hc
liiglicst-lc\,cl p ~ g c tablc page, I,1 l'l', is process-pr.i\,ntc.
I t is pointcci to by tlic PTRlZ. (When n ~hroccjs' contest
is loaded, or m;~dc acti\-c, the proccss' 1'TBR \-nluc is
loaded fi-om thc process' 11a1-d\\.arc-pri\~iIcgccl contest
block into the I'TBK register, thcrchy making cilrrcnt
the p ~ c t;iblc srrllcturc pointed to by tIi,lt I'1'1:l< ,lnd
tlic process-pri\.,lte .~ddress spncc thnt jt maps.)

00000000.00000000

00000000.7FFFFFFF
00000000.80000000

$5 PAGE TABLE SPACE $5

SHARED SPACE

FFFFFFFF.7FFFFFFF
FFFFFFFF.80000000

SOIS1 SPACE
FFFFFFFF.FFFFFFFF

Note that this drawing is not to scale

Figure 6
OpenViMS Alpha 64-bit Virtual Address Space

All Jiigher-addressed pagc tables in PT space are
used to map shared space and are themscl\~cs shared.
They arc also adjacent to the shared space that they
niap. All page tables in PT space that reside at
addresses lo\\fer than tliat of tlie L1 I)?' are used to niap
process-privatc space. These page tables arc process-
private and are adjacent to the process-private spacc
that they map. Hence, thc c ~ i d of the LlPT marks
a ~~nivcrsal boundary bcnveen tlic process-private
portion and the shared portion of thc cntire \r ir t~~al
address spacc, serving to separate even the YrEs that
map those portions. In Figi~re 6 , the line passing
through PT space illustrates tliis boundary.

A direct conseqllcnce of this design is that the
process pagc tables Iia\~c bee11 privatized. That is,
the portion of PT space tliat is process-private is cur-
rently active in virtual memory only whcn the owning
process itself is cl~rrently active on the processor.

Fortunately, the majority of page table references
occur w~hile executing in tlic context of the owning
process. Such rekrenccs act~~ally arc cnlia~lccd by
tlie pri\~atization of the process page tablcs becausc
the mapping function of '1 virtual address to its I'TE
is llour more efficient.

Privatization does raise a lii~rdlc for certain pri-
j~ileged code t h ~ t pre\~iously could access a proccss'
page tablcs \\)he11 esecuting outside tlic contest of t l ~ c
owning proccss. With the page tables rcside~lt in
shared space, s i~ch references could be niacic regard-
less of \\~hicli process is currently active. Witli priva-
tized pagc tables, additiondl access support js nccclcd,
as presented i l l tlic next section.

A final commentary is \varranted for the separately
maintained systcln page table. The self-mapped pagc
table approach to supplying pagc table residctlcy in
vil-tual memory includes thc l'?'Es for any \~irt i~al

lligitnl Tcchnicnl Jout.11.11 \;ol. 8 No. 2 1996 65

addresses, \vlictlicr they are proccss-pri\late or shared.
The shared portion of 1'T spacc could serve nowr as the
sole location for shared-space PTEs. Being redundant,
the original SPT is eminently discardable; howc\rer,
discarding the SS'T ~\ ,ould crcntc a massive co~npatibil-
ity problem k)r dc\,icc dri\fcrs \\.it11 their many 32-bit
SPT rcfcrcnccs. This area is one in \vliich an opportu-
nity exists to prcscr\,c a significant degree of pri\tileged
codc co~npatibilin:

Key Measures Taken to Maximize
Privileged Code Compatibility

'To implement 64-bit virtual address spacc support, \vc
altered ccntml sections of the OpcnVMS Alpha kernel
and Inany of its kc\/ data structures. We expected that
such cllangcs \ \ l o~~ ld rccll~ire compensating or corre-
sponding source changes in surrounding pri\lilcged
components within the kernel, in device dri\lcrs, and
in pri\lilcgcd In~lcrcd products.

For csamplc, the prc\lious discussion sccms to indi-
cate tliat any privileged component that wads or writes
1'TF.s \\lould no\\. need to use 64-bit-\vide pointers
instead of 32-bit pointers. Similarly, all system fork
threads and interrupt scr\ricc routines could no longer
c o u ~ i t o n ctircct acccss to process-private PTEs with-
out regard to \\lliicli process Jiappcns to be current
at the monlcnt.

A n ~ ~ m b c r of tictors csaccrbntcd tlic impact of such
changes. Since the OpcnVMS Alpha operating sys-
tem originntcd from the OpcnV1MS \JAX operating
system, significant portions of the OpenVlMS Alpha
operating s!rstem n~ici its dc\.icc dri\~crs arc still \\,ritten
in iMA<:RO-32 coclc, a compiled language o n the
Alpha platfor~n.' Rccausc lMA<:RO-32 is an r~ssembl!--
Icvcl sy lc of programming Innyuagc, \\.e cot~ld not
sinipl!, c l i~ngc the definitions , ~ n d declarations of\.ari-
oils types and l-cly o n recompilation to h:lndlc the
n?o\.c from 32-bit to 64-bit pointers. Finally, tlierc arc
\\.ell over 3,000 refcrcnccs to PTEs fioni MACRO-32
cocic modules in the OpcnVh4S Alpha source pool.

We \\,ere thus l;~ccd with the prospect ofvisiting and
potentially altering each of tlicsc 3,000 rcfcrences.
Morco\~cr, \\'c \\lould nccd to ti)llo\v tlic register life-
t i~ncs th.~t rcsultcd kom each of tlicsc rcfcrcnccs to
ensure that all addl-css calculations and mclnory refcr-
ences were done using 64- bit operations. Wc expected
that this process w o ~ ~ lii be time-consuriiin~ and error
prone and that it L \ ~ ~ L I I c ~ lin\~e a sig~iifica~it ncgativc
i~iipact o n our colnplction Jatc.

Once 0pcnV1MS Alpha version 7.0 was available
to users, those wit11 device drivers and PI-ivilcgeci code
of tlicjr o\\m \ v o ~ ~ l d need to go through a similar
effort. Tliis would f i~ r t l~c r delay wide 11sc of the
rclcasc. For all tlicse reasons, \vc \vcrc \vcll moti\latcd

to ~iiinimizc the irnpact o n pri\rilcgcd codc. The nest
four sections d i sc~~ss tccliniqucs that we used to o\.el--
COJlle these obstacles.

Resolving the SPT Problem
A signif cant number of t0c 1'TE rcfcrcnccs in pri-
vileged codc arc to PTEs \vitliin the Sl'T. 1)cvicc
drivers ohcn double-map the user's 1 / 0 h ~ ~ f f c r into
SO/Sl spacc b!, allocating and appropriately initializ-
ing system page table elltries (S1'7'Es). Another situa-
tion in \\rhicli a dri\rcr nianipulatcs SI'1'Es is in tlic
substitution of a system buffcr for a poorl* aligned o r
n o n c o n t i g ~ ~ o ~ ~ s ilscr 1 / 0 buffel that pl-c\,cnts rlie
buftirr from being directly ~lscd \\-it11 .I particulilr
device. Such codc relics lica\~ily o n the system data cell
MMG$GI,SPTRASE, \vliich points to tlic SPT.

Tlie ne\v page t,iblc ticsign complctcl!~ ob\fintcs the
need for a separate SI'T. C;ivcn all 8-Id3 pugc size nrld
8 bytes per PTE, the cntirc 2-GB SO/Sl \,irtual nddrcss
space range can be mapped by 2 MR of l'l'Es \vitliin S'T
space. Because SO/Sl resides at rlic highcst addrcssablc
end o f the 64-bit \,irtual address spacc, it is mapped by
the highest 2 IMR of PT spacc. 'The arcs o n the Ict't in
Figure 7 illustrate this mapping. The I"TEs in 1'T' spncc
tliat map SO/Sl arc fi~lly slinrcci b!~ all processes, but
they must be referenced with 64-bit addl-csscs.

This i~icornp~tibility is complctcly lliiidcn by the
creation o f a 2-IVB "SI'T *inclo\\f" o\.c~- rhc 2 kIR in
l''1' space (lc\.cl 3 PTEs) that maps SO/S 1 spacc. The
SPT n.indo\\f is positioned at thc higl~cst nddrcssnblc
elid of SO/Sl spacc. Tlicrck)rc, an acccss t l~rough the
SPT \\,indo\v o~ll\r rccli~ircs a 32-bit SO/S1 nddrcss nncl
can obtain an!I of the I'TEs in 1'T s p ~ c c that map
SO/Sl spacc. The Arcs o n tlic r igl~t in Figure 7 illus
trate tliis acccss path.

Tlie Sl'T \\,indo\\ is set up at system ini!i.llizntion
time and consumes only tllc 2 I<S< o f 1"T'Es that
are ~iecdcd to map 2 M11. The s!*stcm data cell
MMG$GL-Sl'TRASE no\v points to the base of the
SPT \\indo\\; and all existing rcfcrcnccs to that data ccll
continue to fi~nction corrcctl\$ \\rithoi~t cha11gc.-

Providing Cross-process PTE Access for Direct VO
Tlie self-mapping of the page tablcs is ;In elegant solu-
tion to tlic pagc table rcsidcncy problem imposcti by
the preceding design. Howcvcl-, tlic self-mapped pagc
tablcs present signifca~it cliallengcs oftheir own to the
I/(> subs)rstcm and to many dc\ricc drivel-s.

Typically, OpcnVMS device ciri\gcrs Innss s to r~gc ,
network, and other lii~h-pcrti)r~nancc devices pcrfi)rm
direct memory acccss (1)MA) and \\.hat OpcnVMS calls
"direct I/O." Thcsc dc\sicc dri\~crs lock do\\fn into
pl~ysical rncnior!l tlic virt~lul pagcs tli,~t contain the
rccl~iestcr's 1 / 0 buffer. The 1 / 0 transfer is pcrk)rmcd
directly to those pagcs, alicr u,Iiicli the buffel- p:~gc\ arc
unlocked, 11cncc the term "dircct I/O."

Figure 7
Systcni l'agc Table Windo\v

The virtual address o f thc buffer is not adequate for
device drivers because much o f the driver code runs in
system context and not in the process context of tlie
recluestcr. Similarly, a process-specific virtual address is
~neaninglcss to niost I>MA devices, which typically can
deal only wit11 the physical addresses of thc virtual
pages spanned by the bufkr.

For these reasons, when the I/O buffcr is loclted
into memory, the OpenVA4S 1 / 0 subs)lstem converts
the virtual address of the requester's buffer into
(1) the addrcss of the PTE that maps the start of
the buffer and (2) the byte offset within that pagc to
the first byte of the bi~ffcr.

Once the virtual address of tlie I/O buffcr is con-
verted to a PTE address, all rctkrcnccs to that buffer
arc made using the PTE address. This remains the case
even if this I/O request and I / O bufkr are handed off
froni one driver to another. For cxa~ilplc, the 1 / 0
request may be passed froni the shadowing virtual disk
driver to the small computer systems interface (SCSI)
disk class driver to a port driver for a specific SCSI host
adapter. Each of these drivers will rely solely on the
PTE address and the byte offset and not on the virtual
addrcss of the I/O buffcr.

Therefore, the ~iurnber of virtual address bits thc
req~~cstcroriginall)l i~scd to speci@ the address of

the 1 / 0 buffer is irrelevant. MJhat really matters is
the number of address bits that the driver must use
to rcfcrcnce a PTE.

These 1'TE addresses were al~vays within the pagc
tables within tlie balallcc set slots in shared SO/Sl
space. With the introduction of the sclf-mapped page
tables, a 64-bit address is required for accessing any
I'TE in PT space. Furthermore, tlie desired PTE is not
accessible using this 64-bit address when the driver is
n o longer executing in the context of the original
requester process. This is called a cross-process PTE
access problern.

111 no st cases, this acccss problem is soI\lcd for
direct 1 / 0 by copying the PTEs that map the I/O
buffcr when the 1/0 buffer is locltcd into physical
memory. The PTEs in PT space arc accessible at that
point because the requester process contest is required
in order to lock the buffer. Thc PTEs arc copied into
the kernel's heap storage and the 64-bit PT space
address is replaced by the address of the PTE copies.
Because the kernel's Ilcap storage remains in SO/Sl
space, tlie replacemelit address is a 32-bit address that
is shared by all processes on thc system.

This copy approach \\forks bccausc drivers d o not
need to moditji the acti~al 1'TEs. Typically, this
arrangement worl<s well bccause the associated 1'Tk-k

Digital Technical Jot~rnal Vol. S No. 2 1996 67

can fit into dedicated space \\,itliin the 1 / 0 recl~~est The use of self-idcntifiing stri~cturcs is also a tccli-
packet data s t r t ~ c t ~ ~ r c used by the OpcnVMS operating niclut. that \vas emplo!rcti t o compntibl!, cnli,lncc pub-
systcnl, .ind thcrc is n o mcasurablc increase in CPU lic user-nlode intcrt;iccs to librn~.!~ routines 2nd the
o\~crhc,id to cop!, tliosc l71'Es. OpcnVTvlS Itcrncl. Tliis topic is eiiscusscd in gl-cater

If tlic 1 / 0 bcrffer is so hrgc that its associatecl PTEs detail in "The Opcn\:1\4S 1Miscci I'ointcr Size
cannot f t \\.ithin the 1 / 0 request pnckct, a separate En\.ironment."*
kcrncl licnp storngc packet is alloc;ltcd to hold the
I'TEs. If the 1 / 0 buffer is so large that the cost of Limiting the Scope of Kernel Changes
copying all the I'-I'Es is ~loticc;~l>lc, ;I direct access path Another kt.\. tactic that allo\\.cd 11s to ~iiinimizc the
is crcatcd ns follo\\,s: rccluircd so~rrcc code C J I ~ I I ~ C S to tlic 013e1i\II\lS Ikcr~~el

The 1,31'TEs t l ~ a t map tlic I/O buffer arc locl<cci
into ph!.sic.ll mcmor!,.

Address splice \\.itllin SO/Sl spacc is allocated
and mapped o\,cr the I..31'TF,s that \\,ere just
locked do\v11.

This cstablislics ;I 32-bit addressable sh;lrecl-space
\\indo\\, o\u- rlic 1.3I'TEs that m;lp the 1 / 0 bi~ffCr.

The csscnti;ll point js that one of thcsc methods is
sclcctcci ,lnd cmploycci until tllc I/O is completed and
tlic buffer is unlocltcd. Each method provides a 32-bit
I'TE addl-css that the rest of tlic 1 / 0 subsystem can use
transparently, ;IS it h;is been accustomed to doing, \\itIi-
out rccluil-ing ni~mcrous, complex source cliangcs.

Use of Self-identifying Structures
To ;~cco~~l~iiociatc 64-hit user \'irtn,ll ,ldcircsscs, a n u n -
bcr of kcrl~cl data s t r ~ ~ c t ~ ~ r c s Ii~ci to be cspandcd and
cl~a~lgcci. For csamplc, as!~nchronous system trap
(AS'l') control hloclo, I~i~ffcrcci 1 / 0 p;lckcts, ;l~id t i~nc r
~ ~ L I C L I C entries all contain val-ious i~scr-provided
addrcsscs nnd par,unctcrs that can no\\. be 64-bit
addresses. Tlicsc s t r~~c tu rcs arc often cmbcddcd in
other S ~ I - L I C ~ L I I - C S S L I C I I tli;lt ,i c l i .111~~ in one has a ripple
effect to a set o fo t l~c r strLlctllrcs.

I F tllcsc strncturcs chnngcti irnconclitionall!., man!,
scattered sou~-ee changes \\,auld hn\.c bccn rccluired.
Yet, 3t tlic S ~ I I I C ti~iic, cacli of tlicsc stl-ucturcs had con-
sumers \vho had no immediate nccd fix the 64-bit
addressins-rclntcci capnbilitics.

lnstcaci ofsimpl!. changing cncli of t l~csc stri~ctures,
\jrc defined n 64-bit-cnpahlc \.;lriant that can cocx-
ist \\'it11 its t~.,lciitional 32-bit counterpart. Tlic 64-bit
\,nrianr's structilrcs arc "sc lCic ic~i t i~ i~~g" bccausc rllcy
can rc,lclily be tiistinguishcd fi-om their 32-bit countcr-
parts by cx.imininp a particular field \vitliin the struc-
ture itself. Typic;llly, the 32-bit and 64-bit \.arjants can
be intcl-mixed frccly within cli~cucs and only a li~nitcd
set of routines nccd to bc a\\-al-c of the variant types.

Thus, for csa~nplc, components t h ; ~ cio not need
64-bit ASTs c,ln c o n t i n ~ ~ c to build 32-bit AST control
bloclts 31ld c l ~ ~ c ~ ~ c them \\!it11 rhc S(:M$QAS'T routine.
Si~nilal-ly, 64-bjt AS-I' control blocks cnu be c l~~cucd
\\.it11 the s;lmc S<:H$QAST routine bccausc the AST
delivery codc \\,as cnI1;inccd to support citllcr n p c of
AST control block.

-
came from the rcalizatio~l tliat fill1 s~lppol-r of 64-bit
\~irtu;il adclressing for 311 processes docs not imply or
require esclusivc use of64-bit pointers \\.ithin the kcr-
nel. The portions of tlic kcrncl that 1i.lndlcd user
addresses \\.auld for the most part nccd to l1;lndlc
64-bit addresses; Ilo\vcvc~-, most Itcrncl data S ~ I - L I C ~ L I ~ C S

could rc~iiain within the 32-bit nddrcssahlc SO/S 1
spacc ~vithout any limit on user f~~~~ction~llit!.. For
csamplc, the kcrncl Iicap storngc is still l oc~ tcd
in SO/Sl spacc and continues to bc 32-bit ~ticil-css-
ablc. Tlic 1Zccord Management Scrviccs (RMS)
supports data transfers to ;111d fro111 64-bit atfclrcss-
able Luer buffers, but 1WS continues to use 32-hit-
wide pointers for its internal contl-ol s t r ~ l c t ~ ~ r c s .
We tliercfi>re focused our effort on the parts of
the kcrncl that cor~ld I>cncfit fi-om intcl-nnl ~rsc
of 64-bit addrcsscs (scc tlic section Irn11iccii:itc Use
of 64-bit Addressing hy the OpcnViblS Iksncl
for esamplcs) a~ici that nccdccl to cllil~lgc to support
64-bit user virtual rlcidrcsscs.

Privileged Code Example-The Swapper

The Ol.xn\"CIS \ \ . o ~ - k i n ~ sct s\\.nppcr pro\-ides nn intcr-
esting csamplc o f Iio\\- tllc 64-bit cl~angcs \\,ithill the
Itcrncl ma!, i~iipact pri\.ilcgcd codc.

Only a subset of a proccss' \.irtunl pagcs is m,lppccl
to physical mcmory at an!! given point in time. The
O ~ ~ I I V I M S operating system occ;~sio~ially s\\.nps this
\\,orking set of pagcs o ~ l t of' memory to sccondnr!. stor-
age as a conscqttcncc of managing tlic pool of,~v,liI~blc
plqlsical rne~no~-\.. Tlic entity responsible fi)r this acti\.-
it\, is a pri\,ilcgcci ~ > r o c c s s c ~ c e i tlic \\.o~-king set s\\'ap-
per or ~ \ \~appcr , ti)r short. Since it is ~.csponsihlc for
transferring the Ivorlting set of a proccss into anti o i ~ t
o f memory \\'he11]icccss,lry, the s\\,appcr 11li1st Ii;~\,c
intimate kno\\,lcdgc of the virtu;il address space of
a proccss including tliat proccss' page tables.

Collsidcr the earlier discussion in the scctio~i
OIXI~VMS 64-bit Virtual Address Space n b o ~ ~ t Ilo\\.
the proccss' p3gctablcs Iln\zc bccn pl.i\.,itizcci ns 3 \\.a!'
to efficiently pro\,idc page tnblc ~.csidcnc!~ in \'irtual
memory. A conscclucncc of this ticsign is that *llilc tllc
s\jtapper proccss is ;~cti\.c, tllc page tables oftlic proccss
being s\vappcd ;ire not a\,ail;iblc in 1-irtual memot-!..
Yet, the s\vapper rccli~ircs access to those page tables to

d o its job. This is an instance of the cross-process PTE
access problem mentioned earlier.

The swapper is unable to directly access the page
tables of the PI-occss being swapped because the swap-
per's own page tables are currently active in vil-tual
Iiiemory. We solved this acccss problem by revising tlie
s\vapper to temporarily "adopt" tlie page tables of
the process bcing s\\lapped. The s\vappcr accomplishes
this by temporarily changing its PTBR contents to
point to tlie page tablc structure for the proccss being
swapped instcacl of to tlic s\vappcr's own page table
structul-e. This change forces the PT space of the
process being s\\iapped to beco~iie active in \~irtual
Incmory and therefore available to the swappel- as it
prepares the process to be s\vapped. Note that the
swapper can makc this temporary change because
the s\vapper resides in sharcd space. The swapper does
not vanish from virtual memory as the PTBR value is
changed. Once the process has been prepared for
swapping, the swapper restores its own I'TKR value,
thus relincluishing acccss to the target process' PT
space contents.

Thus, it can be see11 haul privileged code with
intimate knowledge of OpcnVMS memory man-
agement ~nechanisms can be affccted by the changes
to support 64-bit \lirtl~al memory. Also evident is that
the alterations needed to acconiniodatc tlie 64-bit
cliangcs arc relati\lely straightforward. Although the
s\vappcr has a higher-than-non-nal awareness of meni-
or!' management internal cvorkings, extending the
s\vappu to accommodate tlie 64-bit changes was
not particularly diffic~~lt.

Immediate Use of 64-bit Addressing by t h e
OpenVMS Kernel

Pnge table residency was certainly the most pressing
issue \ve faced with regard to tlie OpenV1MS kernel as
it e\~olved from a 32-bit t o a 64-bit-capable operating
system. Once implemented, 64-bit virtual addressing
could be harnessed as an enabling technolop for solv-
ing a number of other problems as cvcll. This section
briefly discusses some prominent examples that serve
to illustrate ho\v i~nmcdiately i~seful 64-bit addressing
became to tlic 0l)cllVMS Itcrncl.

Page Frame Number Database and
Very Large Memory
The OpenVMS Alpha operating systeni ~na i~ i t a i~ i s a
database for managing individual, physical page fi-a~i~es
o f~ i i c~nory , i.e., page fi'mnc n~umbcrs. This database is
stored in SO/S1 spacc. Tlic size of this database gro\\ls
li~learly as tlie size of tlic physical memory gro\\rs.

Future Alpha systems may include larger Iilemol-!r
configurations as melnory technology continues to
e\,olve. Tlie col-responding growth of the page frame

number database for such sys tc~~is ccx~ld C O I I S L I I ~ ~ C

an unacceptably large portion of SO/S1 space, ~rhicli
has a maximum size of 2 GR. This design effecti\,ely
restricts the maximum amount of physical memory
that tlie OpcnVMS operating systelii would be able
to support in the future.

We chose to rcniove this potential restriction by
relocating the pagc frame number database fi-o~n
SO/S1 to 64-bit addrcssal>lc S2 space. l'here it can
gro\\i to support any pllysical memory size bcing con-
sidered for years to come.

Global Page Table
7 -
l h e OpenVMS operating systc~ii ~liai~itai~is a data
structure in SO/S1 space called the global pagc table
(GPT). This pseudo-page tablc maps nicmory objects
calleci global sections. Ivl~~ltiple processes may map
portions of their rcspccti\tc process-private address
spaces to these global sections to achic\lc protected
shared memory access for \\lhate\ler applications they
may be running.

With the advent of P2 space, one can easily anticipate
a need for orders-of-magnitude-greater global section
usage. This usage directly increases tlie size of the
GPT, potentially reaching the point \vhere the GPT
consumes an unacceptably large portion of SO/Sl
space. We chose to forestall this problem by I-elocating
the GPT fro111 SO/Sl to S2 space. TIiis move allocvs tlie
configuration of a GPT that is I I I L I C ~ larger than any
that could cvcr be configured i ~ 7 SO/S1 spacc.

Summary

Although providing 64-bit support \\{as a significant
amount of work, the design of the OpenVlMS operdt-
ing s!atem was readily scalable such that it could
be achieved practically. First, \ve established a goal of
strict binary compatibilit)~ for nonpri\~ileged applica-
tions. We then designed a superset vil-tual address
space that extended both process-private and sliareci
spaces while preserving tlie 32-bit visible address spacc
to cnsurc compatibility. To maximize the available
space for process-private use, \\Ie chose an asymmetric
style of address space layout. We privatized tlie pro-
cess pagc tables, thereby eliminating their residency
in sharcd space. Tlie fe\v page table accesses that
occurred fi-0111 outside the contest of the o\vning
process, \\lhicli no longer \\rorltcd after thc privatiza-
tion of the page tables, were '~ddressed in \.~rious\\~a!rs.
A variety of ripple effects stenlming horn this design
wcrc readily sol\led \vitIiin the Iterncl.

Solutions to other scaling problems related to the
I<ernel u;ere immediately possible \\!it11 the advent of
64-bit virtual address spacc. Already mentioned was
the co~nplete remo\~al of thc process pagc tables from
shared space. We also rcmo\,cd the global page t,lble

Vol. S No. 3 1996 69

and tlie page fi-ame number database from 32-bi t
addressable t o 64-bi t addressable shared space. T h e
irn~nediate net effcct o f these changes was significantly
more room in SO/Sl space for configuring niore
I<ernel heap storage, niore balance slots t o be assigned
t o greater n u ~ n b e r s o f ~nenior \ l resident processes, etc.
n7e h ~ r t h e r anticipate use o f 64-bi t addressable shared
space t o realize additional benefits o f VLM, such as
for caching massive amounts o f file system data.

Providing 64-bi t addressing capacity was a logical,
evolutionary step for the OpenVMS operating system.
Growing numbers o f custolners are demanding the
additional virtual memory to help sol\re their problems
in n e w ways and t o achieve higher performance. This
has been especially fruitfill for database applications,
with s~~bs tan t ia l performance improvements already
proved possible by the use o f 64-bi t addressing o n tlie
Digital UNIS operating system. Similar results are
expected o n the OpenViMS system. With terabytes
o f \~irtual memory and many gigabytes o f physical
Iiieliior)r available, entire databases may be loaded into
memory at once. iMuch o f tlie I/O that otherwise
\vould be necessary t o access the database can be elimi-
nated, thus allowing an application t o improve pcrfor-
mance by orders o f magnitude, for example, t o reduce
query time from eight hours t o five minutes. Such
performance gains were difficult t o achieve \vhile
the OpenVMS operating system was constrained t o a
32-bit en.i~ironment. With the advent o f64-b i t address-
ing, OpenVMS users now have a powerful enabling
technology available t o sol\rc their problems.

Acknowledgments

The work described in this paper \vas d o n e by m e n -
bcrs o f the O~CIIVIMS Alpha Operating System Devel-
opment group. Numerous contr ib~rtors pu t in many
long hours t o ensure a \\{ell-considered design and
a high-quality implemcntation. T h e authors particu-
larly ~visli t o acknowledge the follo\ving major con-
tributors t o tliis effort: T o m Benson, Richard Bishop,
Walter Blaschuk, Nitin ICarkhanis, A i d y ICuehnel,
IZaren Noel, Phil Norwich, Margie Shcrloclc, Dave
Wall, and Elinor VVoods. Thanks also t o mc~i ibcrs
o f the Alpha languages community w h o provided
cxtendecl programming support for a 64-bi t environ-
ment ; t o Wayne Cardoza, w h o helped shape the earli-
est notions o f what could be accomplished; to Kc\~crly
Schultz, w h o pro\fidcd strong, early encouragement
for pursuing this project; and t o l i o n Higgins and
Steve Noyes, for their spirited and unflagging support
t o the very end.

T h e following reviewers also deser \~c thanlts for
the invaluable comments they provided in helping t o
prepare tliis paper: T o m Benson, Cathy Foley, Clair
Grant, Russ Green, 1Marlc H o ~ f e l l , IGreli Noel, iMargie
Sherlocl<, and Rod Widciowson.

References and Notes

1. N. IO-oncnbcrg, T. Benson, W. Cardoza, R. Jaganl~atlian,
'ind R . Thomas, "Porting OpenVlMS fro111 V M to Aplia
ASP," Digilal Tecl1?rzical,/o~ir12a1, vol. 4 , no. 4 (1992) :
1 11-120.

2. T. Leonard, cd ., LTAX Architecture l\'gfi./.e/?ce 114~~1ziinl
(Bedford, (Mass.: Digital Prcss, 1987) .

3. K. Sites and K. Witek, Alpha AX'P A/-chiteellire Rejer'-
erzcc cl/lan~ial, 2d ed. (Ne\vton, ~Vlass.: Digital l'ress,
1995) .

4. Although an OpenVMS process may refer t o PO or P1
spacc using cither 32-bit or 64-bit pointers, references
to P2 space require 64-bit pointers. Applications nlay
very \\>ell execute with mixed pointer sizes. (See refer-
ence 8 and 11. Smith, "Adding 64-bit Pointer Support
t o a 32-bit Kun-time Library," Digital Tcchizic~~l
Jotoxal, vol. 8,110. 2 [1996, this issucl: 83-93.) There
is no notion ofan application executing in cither a 32-bit
~ i iode or- a 64-bit mode.

5. Superset system services and language support \\,ere

added to facilitate the manip~~lat ion of 64-bit address-
able P2 space.s

6 . This mechanism h ~ s been in place since OpenVMS
Alpha version 1.0 t o support \'irtual PTE fctclics by the
trnnslation buffer miss handler in 1'ALcodc. (PALcodc
is the operating systeni-specific privileged architecture
liL>r.~ry that pro\~ides control over interrupts, e scep t io~~s ,
contest s\vitcli i~~g, ctc.') 111 cffcct, this means that the
OpcnVMS page tables already existed in t\vo virtual
locations, n'imcly, SO/S1 space and PT space.

7. Tllc SPT \\.indo\\! is more precisely only an SO/S1 1'TE
windo\\,. The PTEs tliat map S2 space 'Ire ~.cfcrcnccd
usjng 64-bit pointers t o their n a t ~ ~ r a l locations in PT
spacc and are not accessible through the use oftliis SPT
windoar. Honrcvcr, because S2 1"TEs did nor exist prior
t o the introduction of S2 spacc, this limitation is of no
c o ~ i s e c l ~ ~ e ~ i c e to contexts tliat arc othcr\vise restricted to
SO/Sl space.

8 . T. Benson, I<. Noel, and R. Peterson, "The OpenVMS
~Miscd l'ointcr Size En\,ironrncnt," Digit~11 7?cl~wic~i/
, / o c ~ I . / I L ~ ~ . \~ol . 8, no. 2 (1996, this issue): 72-82,

General References

R. Goldenberg and S. Saravanan, (>pe/z I71.(SRYl1 I?~/e/- i~als
o?zdDutu S//zictr~/-es. C'cniorl I . 5(Nc\vton, iMass.: Digital
l'l~ss, 1994) .

Ope1 I b%f.C Alpha Gti idc to 64-Bit Acldr.c.ssii?,y (blaynLird,
Mass.: Digital Equipment Corporation, Order No.
AA-QSBCA-TE, 11ece1nbcr 1995) .

Ope11 Vil/IS Rlphci Guide lo I ~ ~ I Z I L ~ I ? I ~ Pr.it~i/c:qe~l-C~L/CJ
Applicwtiovts (Maynard, M'iss.: Digital l q u i p ~ n e n t
Corporation, Ordec No . IW-QSRGA-TE, L)ccc~nL>er 1995) .

Vol. S No. 2 1996

Biographies

Michael S . Harvey
Michael Harvey joi~icd 1)igital in 1978 after receiving his
R.S.C.S. from the U~iiversity of Vermont. In 1984, as a nicm-
bcr o f the OpenVMS Engineering group, he participated in
nc\v processor support fbr VAX m~~ltiproccssor systems and
helped develop OpenVMS symmetric multiprocessing (SIMP)
support for these systcrns. H e rccei\,ed a patent for this \vork.
&like \\,as an original ~ i i e ~ n b e r of the RISCy-VAX task force,
\vhich concei\,ed and developed the Alpha architecture.
Mikc led tlie project that ported the OpenVMS Executive
from the VLY t o tlie Alpha platfi~rm and subsequently led
tlic projcct that dcsiglicd and i~iiplcmented 64-bit virtual
addressing support in OpcnVMS. Tliis effort led to a Iluln-
bcr ofpatelit applicatio~is. As a consulting sofi\\~arc cngi-
nccr, Mike is currently working in the area of infrastructure
tliat s ~ ~ p p o r t s the Windo\\,s NT/OpcnVMS Aftinin initiative.

Leonard S. Szubowicz
1,connl-d Szubo\vicz is n consulting soft\\lare engineer in
I)igit.~l's OpcnVMS I;.~~ginccsing group. Cl~srcntly the
tci.li~lic.ll leadcs for the OpcliVMS I/O c~lginccsing tc;l~ii,
he joined I)igit,~l S o f \ \ , v c Scr\'iccs in 1983. As .i mclnhcr
o f thc OpenVMS 64-bit virtunl ;idclrcssing project team,
I.cnny had prim;lry scsponsibi l i~ k)r I/O and driver sup-
port. Prior to that, hc \\'as tlic .~rcliitcct and project 1c;idcr
k)r the OpcnVkIS high-lc\,cl I angu~gc dcvicc dri\rcr proj-
ect, c ~ n t ~ i b u t c d to tllc port oftl; C & ~ V M S opcr.lting
system t o the Alpha pl3tli)rln, illid \\';IS project leader k)r
IWS Journaling. L n n y is n coauthor of Writi11,q C)prr I'M'
A/pha Dcwice Dl-ii:c>ls ill C: which was recently publislicd
by 1)igit.d Press.

Digirill Tcclinic;ll Journal Vrol . S No. 2 1996 71

I
T h o m a s R. Benson
I G r e n L. Noel

The OpenVMS Mixed Richard E. Peterson

Pointer Size Environment

A central goal in the implementation of 64-bit
addressing on the OpenVMS operating system
was to provide upward-compatible support for
applications that use the existing 32-bit address
space. Another guiding principle was that mixed
pointer sizes are likely to be the rule rather than
the exception for applications that use 64-bit
address space. These factors drove several key
design decisions in the OpenVMS Calling Stan-
dard and programming interfaces, the DEC C
language support, and the system services
support. For example, self-identifying 64-bit
descriptors were designed to ease development
when mixed pointer sizes are used. DEC C sup-
port makes it easy to mix pointer sizes and to
recompile for uniform 32- or 64-bit pointer sizes.
OpenVMS system services remain fully upward
compatible, with new services defined only
where required or to enhance the usability of the

huge 64-bit address space. This paper describes
the approaches taken to support the mixed
pointer size environment in these areas. The
issues and rationale behind these OpenVlVlS
and DEC C solutions are presented to encourage
others who provide library interfaces to use
a consistent programming interface approach.

SLIPIX)IT for 64-bit \,irru,ll .~ddrcssing o n rlic 0pcnVh;lS
Alplin opcl-.)ring s\,stcln, \.crsion 7.0, has \.,lsrl!. incrca\cti
the ,lmount of\.irr~lnl ntid~.css s p ~ c c .~\.ail,lblc ti)r applic,l-
tion use.' At tlic s.llnc time, f ~ l l \ r cornpntiblc support for
,~pplications t l l ~ t ~ l s c only 32-bit ncidrcsscs (~ l s o c,~llccl
/)oi/l/cvs) Iias bccn prcsc~.\,cci.

An npplic,ltion tlint lnixcs 32-bi t ,lnci 64-bi t pointcr
sizcs opcrntcs in a ~?/I.\.c~cl j jo i i~ le l . .\I:(, c ~ ~ ~ r ' i i ~ o / i i ~ ~ c ~ i ~ /
iLliscci pointel- size npplicatiolls \\,ere the design ccntcr
ti)r t l ~ c initi'll i m p l c m c n t a t i o ~ ~ o f 6 4 - b i t suppol-t in the
Opcn\'AlS opcr.lting s!,stcm. This p'ipcr d i sc~~sses
the I-c,lsons \\.h\, mising pointcr sizcs is c\pcctcd t o
be n c o m m o n PI-,lcticc ,lnii dcscribcs tlic cicsign o f
operating s!.stcm and la11g~1,ige f c ~ t ~ l r c s tli,it are pro-
\,icicii t o cnsc p~ .ogra l~ iming in this rniscci pointcr s i ~ c
c ~ i \ ~ i r o ~ i l l i c ~ ~ t .

Reasons for Mixed Pointer Sizes

7'0 use 64-hi t adtircss s p ~ c c , somc simple ,~pplic,~tions
nccti orll!, be ~.ccompilcd for a uniform 64-b i t pointer
sizc. For cs.lmplc, self-contained 13i-X: C: applications
t h ~ t rcl!~ o n only the (: run-tinlc libr,lry, \ \ , i thol~t
using \ . s t e m sc~.\,iccs 01- other libraries, can talkc
this .lpp~-o.lch. l ~ c , i l - ~ \ ~ o ~ ~ l d applic,1tiolis are seldom this
elcall-cut, Iio\\~c\~cr. 111 more complex ,ipplic.~tions,
\\,hcl-c 64-bi t ncicircss spncc is likely t o bc nccticd,
miscs o f l , ~ n g ~ ~ n g c s , dcpcndc~icics o n system jntel-hccs
'inti o ther libr'11-ics, slid ~.cli,lncc o n tliirci-party p ~ c k -
ages o r libr,i~-ics JI-c c o m m o n . 'l'licsc practices all Ic,~d
t o the mixed pointcr sizc cn \ , i ron~ncnt in \\~liicli appli-
c,ltiolls c o ~ l t i n ~ l c t o LISC somc 32-hi t atidrcsscs \\.hilt
t'iliing ,idvantagc o f 64-bit \ ~ i r t ~ ~ a l ndci~.css s~>acc.

Applicntions that , ~ r c lilicly t o t,ll<c ad\r,intagc o f
64-bi t memory '11-c those in \vhicIi the dccl'11.nrion a n d
m,ln,lgcmcnt of.1 I,i~.gc tintn set can he logicall!: scp.1-
r.itcd from tllc rest o f the program. l'his ~ c p ~ i r ~ ~ t i o n
tiocs no t nccd t o be nt t11c SOIII-cc file lc\.cJ. It c,ln be
,lt ,I 1>rogr~1ii tlo\\ Ic\~cl, intiicnting \\,liicli intc~.n'il and
cstcr11,11 i~ltcl.t;lccs \ \ , i l l bc given 64-bi t .ltidrcsscs t o
\\io~.k \ \ . i th .

'l'llc ti)llo\\,ing sections csplorc the reasons for
mixing pointcr sizcs.

OpenVMS and Language Support
Implementation choices that Digital ~ilade for this first
release of the OpenVMS operating system that sup-
ports 64-bit virtual addrcssing will probably encour-
age mised pointer size programming. These choices
were driven largely by tlie need for absolute upward
co~iipatibility for existing programs and tlie goal of
supporting large, dynamic data sets as the primary
application for 64-bit addressing.

Dynamic Data Only OpcnViMS services support
dynamic allocation oF64-bit address spacc. This mech-
anism most closely resembles the malloc and free h n c -
tions for allocating ancl deallocating dynamic storage
in the C programming Iang~~agc. Allocation of this
type differs from static and stack storage in that explicit
source statements are r eq~~i red to manage it. For static
and stack stol-agc, the system is allocating the menlory
on behalf of the application at image activation tinie.
(Of course, the allocation may be extended during
execution in the case of staclc storage.) This allocation
continues to be fi-om 32-bit addrcssablc space.

T\vo special cases ofstatic allocation are worth mcn-
tioning. Linkage sections, \vhich are program sections
that contain routine linkage information, and code
sections, which contain the csccutablc instructions,
d o not differ ssubstantially from preinitialized static
storage. As a result, these sections also reside only in
32-bit addrcssablc memory.

Upward-compatibility Constraints The OpenVlMS
AJplia operating system is cautious to avoid using
64-bit nicrnory frcely where it may prevent up~vard
compatibility for 32-bit applications. For exa~nple, the
linkage sectio~l might seem to bc a natural candidate
for the OpenVMS system to allocate automatically in
64-bit memory. This allocation would essentially free
more 32-bit addressable memory for application use;
ho\vever, even if this were done only for applications
relinked for ne\v versions of tlie OpenVh4S operating
system, there is no gildrantee that all object code treats
linl<agc section addrcsscs as 6 4 hits in nridth. A simple
esaniple is storing the address of a routine in a struc-
ture. Sincc a roiltine's address is the address of its pro-
cedure descriptor in the linkage section, moving the
Ij~iltagc section to 64-bit mcmory \ \w~~lcl cause code
that stores this address in a 32-bit cell to fail.

Allocating the user stack in 64-bit spacc also appears
to bc a goocl opportuuity to easily increase the amount
of memory available to an application. Stack addresses
arc 0 t h morc visible to application code than linkage
section addresses are. For instance, a routine can easily
allocate a local \pariablc using temporary storage on the
stack and pass the address of the variable to another
routine. If tlie stack is m o \ d to 64-bit space, this

address quietly becomes a 64-bit address. If the called
routine is not 64-bit capable, attempts to use the
address will fail.

Focus on Services Required for Large Data Sets Not
all systcm services could be changed to support 64-bit
addresses (i.e., pron~oted) in tilne for the first version
of the OpenVMS operating system to support 64-bit
addressing. With the 11iixed-pointer model in mind,
we focused on those services that \ \we Iiltely to be
required for large data sets. For example, to allow I/O
directly to and from liigli memory, it was essential that
the I/O queuing service, SYS$QIO, accept a 64-bit
buffer address. Conversel!: the SYS$TlWLNM service
for translating a logical naliie did not need to be mod-
ifcd to accept 64-bit addresses. Its arguments include
a logical name, a table name, and a vector that contains
requests for information about the name. These are
s~nall data elements that arc unlilcely to rccluirc 64-bit
addressing on their own. Ofcourse, they may be part
of somc larger structure that resides in 64-bit space.
111 this case, they can easily be copied to o r from 32-bit
addressable memory.

System services are discussed further in the section
OpenVMS System Services. The 32-bit address restric-
tion on certain system services again emphasizes the
importance of being able to logically separate large
data set support from tlie rest of an application.

Limited Language Support Another interface point
that requires care when using 64-bit addressinb 1s ' at
calls benveen modules written in different prograln-
ming languages. The OpenVMS Calling Standard
traditionally makes it easy to lnis lang~~agcs in an appli-
c a t i o ~ ~ , but DEC C is the only high-level language
to filly support 64-bit addresses in the first 64-bit-
capable version of tlie OpenVMS operating ~ y s t e r n . ~

The usc of 64-bit addresses in mixed-language
applications is possible, and data that contains 64-bit
addresses may even be shared; however, references
that actually use the data pointcd to by these addresses
need to be limited to DEC C code or assernbl!r lan-
guage. Mised high-level language applications are cer-
tain to be niised pointer size applications in this
version of the operating system.

Support for 32-bit Libraries
Many applications rely on library packages to provide
some aspect of their fi~nctionality. Typical examples
include user interbce packages, graphics libraries, and
database utilities. Third-party libraries may o r may not
support 64-bit addresses. Applications that use these
libraries will probably mis 32-bit and 64-bit pointer
sizes and \\fill tl~erefore require an operating system
that supports mixed pointer sizes.

Diginl Tcchllic~l Journa l Vol 8 No. 2 1996 7.

Implications of Full 64-bit Conversion
For somc applications, it may bc desirable to 11iis
pointcr sizes to avoid the side effects of universal 64-bit
addrcss conversion. The approach of recompiling every-
thing with 64-bit address \vidths is sometimes called
"throwing the s\vitch." Ai obvious implication of
throwing tlie switch is that all pointer data doubles in
size. For complex linked data structures, this can be a
significant overall increase in size. Increasing tlie pointer
size may also reveal hdden dependencies on pointer size
being the same as integer size. If code accesses a cell as
both a 32-bit integer and a 32-bit pointer, the code will
no longer work if the pointer is enlarged. Thus,
universally increasing the pointer sizc may force changes
to code that would other\\ise continue to \\lark.

There is a more compelling reason 1-i)r not throwing
the switch for code that is part of a shared libr.lry.
Library packages must not return 64-bit addresses to
users of the library unless the calling code is definitely
64-bit capable. If the library developer throws tlie
switch when building a library written in l>EC C, all
memory returned by the nialloc function will be in
64-bit addrcss space. This can be a problem if tlie
address is blindly returned to a library caller. Ifa library
is to \vork in a mised pointer sizc en\~ironment, and
it sometimes returns pointers to memory it 113s allo-
cated, it nccds to use mised pointer sizes internally.

Programming Interface lssues

The cocsistence of 32-bit and 64-bit pointers raised
scvcral design c l~~est io~is for operating system and Ian-
g u ~ g c support, particularly in the area ofroutine inter-
faces. When an application or library is bcing modified
to use 64-bit address space, argument passing may
be the most exposed area. In this section, wc describe
ho\.v mixed pointer size support affects argument-
passing mechanisms and the design decisions made to
case the coexistence of mised pointcr sizcs.

Argument List Width
Even before the introduction of64-bit addressing, the
OpenViMS Calling Standard def ned argument list ele-
ments to be 6 4 bits in \\kith. When passing a 32-bit
address (that is, \\,hen passing an item in 32-bit space
by rcfcrcncc), co~npilcrs sign extend the 32-bit value
into the 64-bit argument location.' I'assing 64-bit
addrcsscs as v a l ~ ~ e s works transparcntlp without cliang-
ing the calling standard, assuming, of course, that the
callcd routine expects to receive 64-bit addresses.
Passing 32-bit addresses as values to routines that
expect 64-bit dddresses \vorks properly because tlie
values ha\^ been sign estendcd to a 64-bit cvicith.

Pointers by Reference
l',lssing tlie .iddresses of pointers requires special care
\\,lien mising pointer sizes. If tlic caller passes a 32-bit

Val. X No. 2 1996

addrcss by rcfcrcncc, .ind tlic callcd routine reads it as
a 64-bit addrcss from mcmor!., the uppel- 32 bits \ \ f i l l be
incorrect. Similarly, if thc address o f a 64-bit addrcss is
passed, and the called routine reads only 32 bits from
menlor): it will hi1 \\,hell tliat address is ~ ~ s e d .

This is the simplest case in which support of 64-bit
addresses may rcq~lirc a progr~mniing interface change
for 64-bit callers. A single entry point that receives
a pointer by reference cannot tell which size pointer
it has received. Sonic possible solutions includc a nc\v
alternate entry point for 64-bit-capable callers or a
new parameter indicating the size of the address.

Pointers Embedded in Structures
Pointers passed by reference are a special case of the
more general problem of passing structures that con-
tain pointers. Again, the caller and called routine must
agree o n the size of the pointers contained in tlie
structure. This case offers an option that may not
require a new programming interface, lio\ve\,er. Iftlic
structure is self-icientifiling, the routine may be able to
tell which h r m of the structure it has received and clis-
patch to appropriate code for the correspondi~~g
pointcr Icngtli.

Function Return Values
Function rcturn values ,Ire also dcfincd to be 6 4 bits in
widtli, so n o calling standard change \\!as r e q ~ ~ i r c d to
support 64-hit pointcr returns. I t is important tliat a
64-bit addrcss not be rcturncd blindl!; tliough, ~ ~ ~ i l c s s
it is lujo\vn that the callcr is 64-bit capable. typic all!^,
this is a problem For lib]-,iry support routines ratlicr
than for those \vithin an application. A library ro~~ t i l l c
should rcturn a 64-bit address only if the routine has
been specificall!/ dc\lcloped for a 64-bit en \ ' ~ ~ r o n m c n t
o r if it can tell \\.it11 certainty, based on input parame-
ters recci\,cd, tliat the cnllcr is 64-bit capable.

Calling Standard Issues
The OpenVlMS Calling Standard defines register usage
con\.entions, argument list locations, data structures,
and standard practices for malung procedure calls that
operate correctly in a niultilanguage and multi-
threaded cn\:ironment. As mentioned earlier, this stan-
dard alrcaciy dcfincd argument list elements to be
64 bits in \vidth; lio\vc\,cr, sonie key data structures
defined by the standard were based on 32-bit pointcr
sizes. The goal of ~~p\\.ard compatibility for existing
code complicated the job of cxte~lding the standard.
TJie following sections describe ho\v the structures
were ultim.~tcl\l changed and illustrate somc
appronclies to supporting mixed pointer sizes \vhcn
sliarcd strilcturcs cont'lin pointers.

Descriptors 1)cscriptors JI-c structures ciefincd by
the calling standard to spcci+ an argument's type,
Icngtli, and adclrcss, long \\it11 other n p c or

structure-specific information. Typically, descriptors
arc i~scd only for cl~aracter strings, arrays, and complex
data types S L K I J as packed decinial.

llcscriptor types are by definition self-idcntiGing by
\lirtue of the type and class fieleis they contaiu. An
obvious choice, therefore, for extencling dcscriptors to
handle 64-bit addresses \vould bc to acid new type
constants k)r 64-bit data elements and extend the
structure beyond tlie type felds to accomnlodate
larger addresses and sizes. In practice, however, the
address and length fields from descriptors are fi-e-
quently used without accessing the type fclds, partic-
~~ la r ly \\{hen a character string descriptor is expected.

As a result, a solution \\!as sought that \\10~1ld yield
a predictable failure, rather than incorrect results or
data corruption, when a 64-bit descriptor is received
by '1 roiltine that expects only the 32-bit form. The
final design includes a separate 64-bit dcscriptor layout
tliat contains two special fields at the same offsets as
the length and address fe.lds in the 32-bit dcscriptor.
These fields are called IMBO (must be one) and
M B M O (must be minus one), respectively. The sim-
plest versions of the 32-bit and 64-bit dcscriptors are
illustrated in Figure 1.

If a roiltine thnt expects a 32-bit dcscriptor rccci\rcs
a 64-bit descriptor, it \vill find the value 1 in tlic length
field. This nonzero value ensures tliat tlic addrcss \ \ r i l l
ncecl to be read. Otherlvise, the dcscriptor could be
t r e~ tcd as describing a IILIII \l;~lue, ,~ncl the address
\vouId be ignored. In the address field, a 32-bit reader
\ \) i l l find the value - 1. Wlicn the redder ,Ittempts to
refcrcnce this ~ddrcss , an access \riolation occurs,
because the OpenVMS operating system guarantees
this addrcss to be inaccessible. This combination of
values ensures that an access will also hil iftlic lcngth is
addcd to the address ti rst, in an attempt to read thc last
byte of data.

BYTE
OFFSET

ADDRESS

I LENGTH

, O CLASS

4

CLASS

I ADDRESS

SIMPLE 32-BIT DESCRIPTOR

SIMPLE 64-BIT DESCRIPTOR

DTYPE

DTYPE

Figure 1
Sirnplcsr \/crsions o f tlic 3 2 - b i t nnci 64-bit 1)cscriptors

LENGTH

MBMO

To distinguish the dcscriptor forms, a ne\v rout~ne
must chcck tlic MI30 and MBMO fields for the
e s p ~ t e d 64-bit dcscriptor values. In the OpenVMS
operating system, man!! routines no\v accept either
descriptor form.

: 4

MBO

Signal Arrays The signal array is a user-visible struc-
ture that is passed to condition handlers when an
exception occurs. The array contains message codes,
arguments specific to the conditions, and control data.
Because the arguments map include one or more vir-
tual addresses, a ncw Format \\/as necessary to accom-
modate 64-bit addresses.

The signal array coulci not simply be promoted to
contain 64-bit addresses, becai~se Ilandlers in existing
code often nialze ' l s s~~~i~p t ions about its format. :The
111echanism array, a related structure c o ~ ~ t a i ~ i i n g a snap-
shot of register contents, was already 6 4 bits in width.

The solution w s to leave the original form of the
signal array unchanged and create a 64-bit counter-
part. The items passed to a condition handler, the
32-bit signal array address, 2nd a 64-bit mecha~~ism
array address are the same. The mechanism array now
co~i ta i~is a pointer to the 64-bit \~ersion of tlie signal
array. This allo\\~s existing code to worlc without
change, urhile new liandlcrs that may require access to
64-bit addresses in csccptions can obtain the 64-bit
array address from tlic meclianism array. Some addi-
tional \vorl< \\!as needed in OpcnVMS exception Iian-
dling to lceep these t\\'o arrd!a s!lnclironized, because
handlers are allo\\~ed to change their contents.

: 0

Sign-extension Checking
As described earlier, 32-bit addrcsses passed as routine
arguments arc sign extended into 64-bit argument loca-
tions. A safeguard that can be used in 32-bit routines
that are not extended to fi~lly support 64-bit addresses is
refcrrcd to as sigo-extension checking of the argument
addresses. This checking consists of simply reading the
lo.i\, 32 bits ofthe argument, sign extencling this v a l ~ ~ e to
a 64-bit \\~idtli, , ~ n d comparing the result to the f ~ ~ l l
64 bits of the argument. Ifthe bits differ, the address is
not one that can be rcprcsentecl in 32 bits. The routine
can then return an crrorstatus ofsome kind, rather than
failing in some ~~~lprcdictablc way. Sign-extension
checking is a uschl tool for ensuring robust interhces in
the mixed pointer size en\ ~ o n m e n t . '

DEC C Language Support for Mixed Pointer Sizes

To support application programming in tlie mixed
pointer size cn\fironmcnt, some design work was
rccluircd in tlic DE(: C compiler. Tliis section
describes the rationale behind tlie final design.

I t \\!as clear tliat tlie compiler \vould have to provide
a for 32-bit and & - b i t pointers to coexist in the
same regions ofcode. At thc same time, customers anti

Vol. 8 No. 2 1996 7

internal users initially f ~ v o r e d a simple comnialld linc
switch \\/hen polled o n potential compiler support
for 64-bi t address space. (At least o n e C compilel- that
supports 64-bi t addressing, lMIPSpro C, does so only
through c o ~ i i m a ~ i d line switches for setting pointer
s i ~ e s . ~) T h e motivation for using switches was t o limit
the source changes needed t o take advantage o f the
additional address space, especial ly U ~ I ~ C I I portability
t o o ther platforms is desired. For cases in which ~ n i x -
ing pointer sizes was unavoidable, something more
flexible than a switch was needed.

Why Not -near and -far?
T h e most c o m m o n suggestion for controlling indi\~id-
ual pointer declarations was t o adopt tlie -near and
-far type qualifier syntax used in the PC e ~ i \ , i r o ~ i ~ i i e n t
in its transition from 16-bi t t o 32-bi t addressing.'
While this idea has merit in that it has already been
~ ~ s e d else\\~here in C compilers and is Gmiliar t o PC
software developers, we rejected this approach for the
follo\ving reasons:

T h e syntax is not standard.

T h e syntax requires source code edits a t each dccla
ration t o be affectcd.

T h e syntax has become largely obsolete even in the
P C domain with the acceptance o f the flat 32-bi t
address space model offcred by modern 3 5 6 -
minimum PC: compilers and the Win32 program-
ming interface.

Because o f the vast difference in scale in choosing
benvee~i 16-bi t o r 32-bit pointers o n a P C as com-
pared t o choosing between 32-bit o r 64-bit pointers
o n an Alpha system, there would be n o porting ben-
efit in using the same keywords. No existing source
code base would be able t o por t t o tlie OpenVMS
mixed pointer size environment Inore easily because
o f t h e presence of-near and f i l r qualifiers.

Pragma Support
T h e Digital UNIX C compiler had pre\~iously defined
pragma preprocessing directives t o control pointer
sizes for slightly diffcrcnt reasons than those described
for the OpenVblS system.' By default, the Digital
UNIX operating system offers a pure 64-bi t addrcss-
ing model. In some circumstances, however, it is dcsir-
able t o be able t o represent pointers in 3 2 bits t o
match externally imposed data layouts or, more rarely
t o reduce tlie amount o f memory used in representing
pointer v a l ~ ~ e s . 7 l i e Digital UNIX poilitel--size prag-
mas work in conjunction \\,it11 command lint options
and linlter/loader features tliat limit mernory use and
map memory such that pointer \ialues accessible t o the
C program can always be represc~ited in 3 2 bits.

Since compatibility with the Digital UNIX compiler
\\/auld have greater valuc if it met the needs o f the
OpcnVi\/IS platform, \ve evaluated the pragma-based

Vol. S No. 2 I996

approach and decidcd t o adopt it, propagating any
necessary clialiges back t o the U N I S platfor111 t o main-
tain compatibility. T h e decision t o use pragmas t o
control pointer size addl-essed the major deficiencies
o f tlie -near and -far approach. 111 particular, the
praglna directive is specified by ISO/ANSI C in such
a way that using it docs not compromise portability as
the use o f additional k e ~ w o r d s can, because unrecog-
nized pragmas arc ignored. Furthermore, pragmas can
easily be specified t o apply t o a range o f source code
rather than t o an individual declaration. A number o f
DEC C pragmas, including the pointer size controls
iniplcrnc~itcd o n the U N I S system, pro\,idc the ability
t o save and restore thc state o f the pragma. This rnaltcs
thern con\lenient and safe t o use t o modifi! the pointcr
size c\!itliin a particular region o f c o d e mritliout disturb-
ing the surrounding region. T h e state may easily be
saved before changing it a t the beginning o f t h c region
and then restored at t h e end .

Command Line Interaction
Pragmas fit in with the initial desire o f prospective
users t o have a simple command line s\\litch t o indicate
6 4 bits. As \vitIi several o ther pragmas, we defined a
command line qualifier (/pointel--size) t o spcci@ the
initial state o f the pragma befol-e any instances arc
c n c o ~ ~ n t e r e d in the text. Unliltc other pragmas,
though, we also use tlie same command line clualifier
t o enable o r disable the action o f the pragmas alto-
gether. 111 this way, a default compilation o f sourcc
codc modified for 64-bi t support behaves the same
\\!a)! tliat it \vould o n a system that did n o t offer 64-bi t
support . T h a t is, the PI-agmas arc effectively ignored,
\vith o111y an informational message produced.

This behavior \\!as ddopted for consistency \\!it11 tlie
Digital UNIX behavior and also t o aid in the process o f
adding optional 64-bi t support t o existing portable
32-bi t source code that might be compiled fo r all
older systelii o r \\jith a n older compiler. In this model,
a compilation o f lit\\/ source code using an old com-
m a n d line produces behavior t h ~ t is equi\!alent t o the
behavior produced ~ ~ s i ~ i g an older compiler o r a co111-
pilcr o n another platform. MIith o n e notable cxccp-
tion, building an application that actually uses 64-bi t
addressing recluil-es changing the command linc.

T h e exccptioli t o the rule that existing 32-bi t build
procedures d o n o t create 64-bi t dependencies is a sec-
o n d form o f t h c pragma, named recluircd-pointer-sizc.
This form contrasts \ \~i th the form pointer-size in tliat it
is al\\lays active regardless o f command line q~~al if icrs ;
otherwise, recluired-pointer-size and poin ter-size are
identical. T h e intent o f this second pr~ igma is t o sclp-
por t \ \ ~ i t i n g source code tliat specifics o r interfaces t o
s c r ~ ~ i c c s o r libraries that can only \vork correctly \vitIi
64-bi t pointers. hi example o f t l i s code might be '1
header file that contains declarations for both 64-bi t
a ~ i d 32-bit memory management scr\~ices; the scr\~iccs

must always be defined to accept and return the
appropriate pointer size, regardless of the command
line qualifier used in tlie compilation.

Pragma Usage
The use of pragmas to control pointer sizes within a
range of source code fits well with the model of start-
ing with a working 32-bit application and este~iding it
to exploit 64-bit addressing with lni~iimal source code
edits. Programming interface and data structure decla-
rations are typically packaged together in header files,
and the primar!! ma~i ip~~ la to r s of those data structures
are often implemented together in ~nodules.

One good approach for extending a 32-bit applica-
tion would be to start with an initial analysis of mern-
ory usage measure~nents. The purpose of this analysis
would be to produce a rough partitioning of routines
and data structures into 13vo categories: "32-bit suffi-
cient" and "64-bit desirable." Nest, 64-bit pointer
pragmas could be used to enclose just the header files
and source nodules that correspond to the r o ~ ~ t i n e s
and data structures in the 64-bit-desirable category.
Aftel. recompilation, the nest step \\loiild be to respond
to compiler diagnostics for pointer-type mismatches by
adding praglna regions to mark sections of the 64-bit
files as 32-bit and parts of the 32-bit files as 64-bit and
to careftilly add type casts, \\[here necessary. This opera-
tion is likely to itcratc i~ntil the compilation is clean and
a debugging cycle has shown correctness. The end
r c s ~ ~ l t is an application that takes advantage of the
increased address space for the data structures that will
benefit from it.

A common approach to ~uinirnizing the spread of
pragmas throughout a program is to limit them to
typedefs in header files. Thcn, subsequent uses of tlie
defined type d o not require the pragma. A simple
cxaniple appears in Figure 2 .

This exa~nple defines a type cillcd char-ptr64,
\vliich may be used to declare 64-bit pointers to char-
acter data without tlie use ofpragmas. Ofcourse, indi-
vidual pointers \vitIiin structure types liiajr also be set
to 64-bit or 32-bit sizes.

Secondary Effects
With the decision made to use pragmas and the basic
semantics of hour the pragnias taltc effect established
by the Digital UNIX implcliientation, \ve needed to
consider ,idditional recluircments and issues that

might be specific to the OpenVMS implementation.
Two major differences between the platforms are

1. O n the Digital UNIX system, tlie linl<er/loadcr
options used with mixed pointer size compilations
ensure that any address \lalue obtained by the pro-
gram can be represented using 32 bits, whereas on
the OpenVMS system, any prograni using 64-bit
pointers in C \\ill almost certainly encounter address
\lalues that cannot be represented in 32 bits.

2. O n the Digital UNIX system, the scope of thc use
of rnised pointer sizes was expected to be quite
s~iiall and not likely to grow much oiler time,
\vhereas on the OpenVlMS s)lstcni, the scope is
espected to be somewhat larger at f rst and grow
significantly over time.

These 13\70 differences e~nphasizcd the need for cffec-
tive compile-time diagnostics, debugging aids, envi-
ronmental support, and clear documentation.

Diagnostics As an aid to finding bugs rcsultilig from
improper mixing of pointer sizes, tlie DEC C compiler
provides nvo liinds of diagnostics. Compile-time warn-
ings are issued for assignments from long pointers to
short pointers because of the possibility ofdata loss. 111

addition, users may enable run-time checking for
pointer truncation through a command line clualificr.
This option causes the cornpilcr to generate code on
each conversion from a long to a short pointer, which
will signal a range-check error if data truncation occurs.

Run-time checlii~ig is particularly usefill in code that
sorneti~nes employs type casting to ~1st. long pojnters
in short pointer contexts. Since this action prevents a
compile-time warning about using a long pointer
where a short pointer is expected, a rull-time check
may be the only way to discovcr a coding error. Tlic
run-time check qualifier provides options distinguisli-
ing this case from checking on general assignments
and parameter passing, allo\\ling ilscrs to select for
which classes of pointer-size mixing the compiler
shoi~ld generate checking code. Run-time cl~ecl<i~ig is
also available for parameters received by a routine.
This allows detection of 64-bit addresses passed to
routines that expect 32-bit parameters even when the
caller is separately co~iipilcd or written in a different
programming language. For performance reasons, it is
~~sual ly desirable to rernoLre all run-time checking once
a program is debugged.

p r a g m a r e q u i r e d - p o i n t e r - s i z e s a v e / * Save t h e p r e v i o u s p o i n t e r s i z e * I
p r a g m a r e q u i r e d - p o i n t e r - s i z e 6 4 / * S e t p o i n t e r s i z e t o 6 4 b i t s * /
t y p e d e f c h a r * c h a r - p t r 6 4 ; / * D e f i n e a 6 4 - b i t c h a r p o i n t e r * /
p r a g m a r e q u i r e d - p o i n t e r - s i z e r e s t o r e I * R e s t o r e t h e p o i n t e r s i z e * I

Figure 2
S'~mplc Headcr File Code 'That Limits l'ragmas to Defined Types

Vol. 8 No. 2 1996 77

Allocation Function Mapping The comnland I~ne
cludifier setting the default pointer size has an ad&-
tional effect that simplifies the use of 64-bit address
space. If an explicit pointer size is specified on the
command line, the malloc fi~nction is mapped to a
routlne specific to the address space for that size For
example, -malloc64 is used for malloc cvhen tlie
default pointer size is 6 4 bits. This allows allocation
of 64-bit address space without additional source
changcs. The source code may also call tlie size-
specific versions of run-time routines explic~tly, \vhcn
compiled for m~ved pointer sizes. These size-spec~fic
funct~ons are available, however, only when the
/pointer-size command line qi~alifier is used. See
"Adding 64-bit Pointer Support t o a 32-bit Run-time
Library" in this issue for a discussion ofothcr effects of
64-bit addressi~ig on tlie C run-tlmc library."

Header File Semantics The treatment of pointer-size
pragmas in and around header files (i.e., any source
included by the #include preprocessing directive)
deserves special melition. Programs typically include
both private definition files and public or system-specific
header files. In the latter case, it may not be desirable for
definitions within the header files to be affected by the
pointer-sjze pragmas or comma~id line currently in
effect. To prevent these definitions from being affected,
the DEC C co~npiler searches for special prologue and
epilogue header files when a #include directive is
processed. These files may be used to establish a par-
ticular state for en\~ironrnental pragmas, such as
pointer-size, for all header files in the directory. This
eliminates the need to modify either the individual
header f les or die source code that includes them.

The co~npiler creates a predefined macro called
-INITIAL-POTNTER-SIZE to indicate tlie initial
pointer size as specified 011 the command line. This may
be of particular use in header files to determine what
pointer size should be used, if mixed pointer size sup-
port is desirable. Conditional cornpilatioil based on this
macro's definition state can be used to set o r override
pointer size o r to detect compilation by an older com-
piler lacking pointer-size support. Ifits value is zero, no
/pointer-size cl~~alifier was specified, nlhich means that
pointer-size praglilas d o not take efkct. If its value is
32 or 64, pointer-size pragnlas d o take effect, so it can
be assumed that mixed pointer sizes are in LISC.

Code Example
I n tlie si~iiple code example shown in Figure 3, sup-
pose that the routine procl is part of a library that has
been only partially promoted to use 64-bit addresses.
This function may receive either a 32-bit address o r a
64-bit address in the arStlrnerzt-j)tl- parameter. To
demonstrate the use of the nc\v DEC C features, procl
has been modified to copy this character string para-
meter from 64-bit space to 32-bit space when neces-

sary, so that routines that procl subsequently calls
need to deal \\lit11 only 32-bit addresses.

The -INITLAL_POINTER-SIZE macro is used to
determine if pointer-size pragmas will be effective
and, hence, cvliether argumentpt rmight be 64 bits it1
width. If it might be a 64-bit pointer, whose actual
width is ~~nluiocvn in this example, the pointer's value
is copied to a 32-bit-\vide pointer. The pointer-size
pragma is used to change the current pointer size to
32 bits to declare the temporary pointer. Next, the
two pointer values are compared to determine if
the original pointer fits in 32 bits. If the pointer does
not fit, temporary storage in 32- bit addressable space
is allocated, and the argument is copied there. Note
that the example uses ma l loc32 rather than malloc,
because malloc would allocate 64-bit address space
if the initid pointer size was 6 4 bits. At the end of
the routine, the temporary space is freed, if necessary.

A type cast is used 111 the assignment from
argunzerl tptr to temp-sborLprr, even though both
variables are of type char *. Without this type cast, if
a~quinerz~-ptr- is a 64-bit-wide pointer, the DEC C
compiler ~ l o u l d report a warning message because of
the potential data loss when assigning fi-om a 64-bit to
a 32-bit pointer.

For other examples of pointer-size pragmas and the
use of the -INITIAL_POINTEKSIZE macro, see
Duane Smith's paper on 64-bit pointer support in
run-time libraries."

OpenVMS System Services

The OpenVMS operating system provides a suite of
scr\~iccs that perform a variety of basic operating s)a-
tern filnctions.' Design \vork was r c q ~ ~ i r e d to maxi-
mize the utility of these routines in the new mixed
pointer size environment. Issues that needed to be
addressed included the follo\ving, which are discussed
in subseclucnt sections:

Se\leral services pass pointers by reference and,
hence, required an interface change.

Beca~~se of resource consuaints, not all system ser-
vices could be promoted to handle 64-bit addresses
in the first version of the 64-bit-capable OpenVMS
operating s)rstem.

Since tlie services provide mixed levels ofsupport, it
is important to indicate those that support 64-bit
addresses and those that d o not.

Certdin ~ i e \ \ ~ services seemed dcs~rable to improve
tile usability of 64-bit address space.

Services That Are 64-bit Friendly
Services that can be promoted to support 64-bit
addrcsses \vithout any i~itcrhce change are called 64-bit
friendly. If a scr\ice I-eceives an address by reference, tlie
service is typically not 64-bit friendly, and a scparatc

78 Digital Tcchnicnl Journal Vo1.8 No. 2 1996

v o i d p r o c l (c h a r * a r g u m e n t - p t r)
C
i f - INITIAL-POINTER-SIZE ! = 0

p r a g m a p o i n t e r - s i z e s a v e
p r a g m a p o i n t e r - s i z e 3 2
c h a r * t e m p - s h o r t - p t r ;
t e m p - s h o r t - p t r = (c h a r *) a r g u m e n t - p t r ;
i f (t e m p - s h o r t - p t r ! = a r g u m e n t - p t r) C

t e m p - s h o r t - p t r = - m a l l o c 3 2 (s t r l e n (a r g u m e n t _ p t r) + 1) ;
s t r c p y (t e m p - s h o r t - p t r , a r g u m e n t - p t r) ;
a r g u m e n t - p t r = t e m p - s h o r t - p t r ;

1
e l s e C

t e m p - s h o r t - p t r = 0;
>
p r a g m a p o i n t e r - s i z e r e s t o r e

e n d i f

/ *
The a c t u a l b o d y o f p r o c l i s o m i t t e d . Assume t h a t i t c a l l s
r o u t i n e s t h a t o p e r a t e o n t h e d a t a p o i n t e d t o b y a r g u m e n t - p t r
a n d t h a t t h e r o u t i n e s a r e n o t y e t p r e p a r e d t o h a n d l e 6 4 - b i t
a d d r e s s e s .

* /
i f - INITIAL-POINTER-SIZE ! = 0
i f (t e m p - s h o r t - p t r ! = 0)

f r e e c t e m p - s h o r t - p t r) ;
e n d i f
1

I

Figure 3
Code Esaniplc of L'oinrcr-size Prag~nas and thc -INITIAI,-POINTER-SIZE Mi1c1.0

entry point is required to support 64-bit addresses. A
single routi~ic cannot distinguish whether the address at
the specified location is 32 bits or 6 4 bits in width.

If a service docs not receive o r return an address by
reference, the scr\;icc is usuall!r 64-bit friendly. Even
descriptor argilmcnts present no problem, because tlic
32-and 64-bit versions can be distinguished at run
time. The majority of services hll into this category.

'The scr\iiccs that are not 64-bit fiicndl!l include
the entire suitc of mcn~ory management system scr-
\,ices, since they access address ranges passed by refer-
ence. Other such services include those that receive
3 32-bit vector as an argument, \\lhicIi may include the
address of a pointcr as an elclncnt. A good example
from this group is SYSSFAOL, which accepts a 32-bit
\.cctor argument h r formatted output. For all these
services, ne* intcrhccs were designed to accommo-
date 64-bit callcrs.

Promotion of Services
The OpenVMS project team esplorcd the idca of pro-
moting all system scr\~iccs to support 64-bit addresses.
Since the majorin1 of OpcnVMS systrm service
routines arc \vrittcn in the MACRO-32 assembly Ian-
gilage or the Bliss-32 programming language, the
intcrnals of the routines could not be promoted to
handle 64-bit addresses \ v i t h o ~ ~ t modifications. We
could not take ad\,antagc of the throw-the-s\\~itcli
approach, and we did not want to because many

poi~lters L I S C ~ internally in the OpcnVMS operating
system remain at 32 bits.

We considcrcd using 64-bit jacket routines to copy
64-bit arguments to the stack in 32-bit spacc, \\lhich
would then ciill the 32-bit internal routine to perform
the requested fi~nction. Hocvevcr, this approach would
fail for context argumelits such as asyncl~ronous system
trap (AST) routine parameters, where the address of
the argument is stored for subseq~~cnt use. This
approach cvoi~ld also prevent services from operating
on any true 64-bit addresses. I t was clear tliat at least
some roirtincs would lia\le to be modified internally.

The idca of using jacket routines was i~ltil~lntcly
rejected for several reasons. First, the jackets woi~ld
need to be custom written to ensure correct parameter
semantics. There could not be a " c o m ~ i ~ o n jacltct"
tliat coulcl lia\$c sa\,ed time a n d lo\vered risk. Scco~id,
there \vollld be an undesirable pcrforniance inipact for
64-bit callers. Third, we decided that having a com-
plete 64-bit system service suitc was not essential for
usable 64-bit support. We could define a subset that
t\~ould nicct the needs of 64-bit address spacc i~scrs,
\vhile lo\vcring our risk and implementation costs.

The ser\iccs selected for 64-bit support 611 into
four categories.

2. Performance-critical services. This group includes
services that are typically sensitive to the addition of

\lol. 8 No. 2 I996 79

even a fen' c!rclcs of c sec~~t ion ti~iie. Rccli~il.ing tliat
a 64-bit addrcss i~scr cio any additio~lal *ark, such
as copying data to 32-bit space, is undesirable. An
example of this typc of service is SYS$F.NQ, \vhich
is used for q~rcuing lock requests.

3. Design center scr\liccs. TIic primary design ccntcr
for 64- bit support nPas database applications.
Database arcliitccts and consultants \\,ere polled to
determine \\,hicIi scrviccs \Irere niost ~~cedeci b!.
their prociucts. many of these ser\.iccs, h r csnmple
SYS$QIO k)r q ~ ~ c u i n g 1/0 rcqucsrs, \\'ere also in
tlie performance-critical set.

4. Other i~sefi~l basic scr\~ices. This sct inclttdcs scr-
vices to case the transition to 6 4 bits \\fit11 minimal
change to program structure. For csamplc, the
SYS$CkII<RNL scr\~icc accepts a routine adclrcss
and a \,ector of 32-bit nrgilmcnts and i~~\ ,o l tcs tlic
routine in I<cnlcl mode, passing those arguments.
W i t h o ~ ~ t a nc\\. 64-bit version of SYS$<:MI<RNL.,
a caller could not pass a 64-bit address to the kernel
modc routine \\~ithoilt changing the h r m of tlic
argument block, s ~ ~ c h as passing a stri~cturc that
SYS$CILII<RNL \\louId not interpret as a

Scvcral steps n7crc taken to ease programmi~lg to
this subset i~nplcmenratiol~.

For all 64-bit scr\,iccs, rrll pointer a r g u m c ~ ~ t s may
be in 64-bit spacc. Estending only i~ldi\ ' iti~~nl . I ~ ~ L I -
lnents for some scrviccs uvould have been co~ihlsing
and difficult to docuuicnt.

Thc 64-bit-capable s!rste111 scrviccs arc clcarl!l listed
in thc OpcnV1US documc~itation, and the docu-
mentation k)r indi\riclual ser\,iccs clearly calls out
their capabiliti~s.'~

For C programmers, the header filc that defines
hnction prototypes for system scr\,iccs
(STNW5T.H) clcfincs the expectcci pointer s ~ z c
for scr\licc arguments. This filc can be useti for
compile-time type checking for correct argument
pointer sizes.
A strict naming convention has been adhered to k)r
64-bit sen-ices. If n ro~rtinc \\.as 64- bit t'ric~~dl!., i.c.,
it rccl~~ircd n o intcrhce change, its I1:lmc \\,,IS not
chru~gcd. If a net\, entry point \\.;is required
because, fix csamplc, an address is passcd hy I-cfcl--
ence, a "-64" suffix as added to the name to idcn-
ti@ the nc\v entry point.

Sign-extension chcclting is performed in routines
that d o not acccpt 64-bit addrcsscs.

Centralized Sign-extension Checking
Fol- ser\~iccs that have not been promotcci to acccpt
. i r g i ~ ~ ~ ~ r i t s i i n 64-hit spncc, centralized sign-cstcnsiol~
checking taltcs place. As described in the scction Sign-
extension Checking, such checking prcvcats errors that

occ~11- \\,hen a 64-bit address is crroncousl!. passcd to a
routine that uscs only 32-bit addrcsscs. Tliis ccntralizcd
checking is part of tlie system scr\,icc dispntclicr, \vhich
returns the error status SS$-AK(;-tiTl<-32-RITS \\rhcn
the error is disco\~c~-ccl. Perfi)rming tlic checking at this
common ~ x) i ~ i t minimized the i~liplcmcntntioii effort,
~vhile protecting scnsiti\-c iuncr modc scr\.iccs. No
changes \\.ere ncccss.ii-y to the ~nodulcs tliat contain the
32-bit scr\.icc code. The internal vcctol- of scr\.ices con-
tains ;I Hag tbr cnch service indicating \\.Iicther checking
sho~~lr i be done.

Nat~~rall!', it is best for miscci-size cl.rors to be dis-
covered nt compile time. The 1)E(: <: compjlcr issues ;I
warning message \\bell a 64-bit pointcr is used as a
parameter to a rot~tine whose fi~nction prototype spec-
ifics that tlic parameter sho~.~lci be ,i 32-bit pointer.
Run-time sign-cstcnsion checking \\.orlis for ;i~i!, lan-
gtinge, thougli, including MA(:I<O-32.

Tliis support can also be ~ ~ s c c l to ~11o\\ a run-time
decision to be made to copy data horn 64-bit spacc
to 32-bit spncc. For cxamplc, a routine could call a
system scr\~icc, passing along a n uiici~.css that it
had rcccivcci as a p~ramcrcr. I f thc scr\ricc rcturl~s
SSS-ARG-C;?'R-32-BITS, the calling routine can
then copy the argument to tlic stack 2nd retry the scr-
*ice. In this \\'a!, tlie ovcrhcncl of cop!.ing cvi bc
a\.oidcd if copring is unncccssal.!,. \Vlicn the s!.stc~ii
scr\.icc is promotcci to hancllc 64-bit nridrcsscs in a
f~iturc \.crsion of the OpcnV1MS operating s!'stcm, no
change \\.ill be nccdcd in this caller; the data copying
code \\!ill nc17cr be invoked. Tliis nppl-oach Inay be
appl-oprintc for ;I run-time librnry t l ~ a t nccds to bc fi~ll!.
64-bit c~pahlc tocia!, o n OpcnVhlS Alplin \rcrsio~i 7.0,
if that librilr!, \ \ , i l l 11ot be rcrclcascd tix .I futi~rc \.crsion
of the OpcnVMS operating ~ ! ~ s t c n ~ .

Memory Management System Services
The (1puiV1VS memory manngcmcnt s!,stcnl scr-
vices arc not 64-bit friendly bccai~sc tlic!~ pass 32-bit
input and output address arguments hy rcfcrelicc.
This set of scr\~iccs includes SYSSESI'REC; (expand
progr.lni/contl'"I region), SYSSI\IIC;I<I.S<: (map global
scction), SYSS(:Rh4l'SC (create rind m;lp scction), ant1
SYSSl'UI<C;WS (purge \\.orl<inp sct), ,lrnong otlhcrs.

yuiciiug p~.inciple in promotillg these scr\.iccs
\\.as that the nc\\. 64-bit services I~nd to pcrkjrm tlie
samc fi~nctions 3s their 32-bit co~lntcrparts but not
necessarily \\~ith an identical intcrfiicc. Since 32-bit
addrcsscs cnli bc csprcssed as 64-bit nddl-csscs \\,it11
sign-citcnsion bits in the Llppcr 32 bits, it mnrlc scnsc to
accomn~odatc 32-bit addrcsscs in the 64-hit i~~tcrhccs ,
malung the nc\\. scr\.iccs a supcrset of the 32-bit forms.
For csamplc, tlic SYSSCh\II'S<: scr\.icc \\as split into
multiple 64-bit-cnpablc ser\.iccs, bccn~rsc it h;~~iclles a
\,aricnr of rips ofscctions. Tllc nc\\, scr\.iccs cun opc r~ tc
01.1 cithcr 32-bit or 64-bit adtircsscs ;lnd h;l\.c simpler

VoI. S No. 2 I996

interfaces than the 32-bit-only SYS$CR.iiPSC. The
original SYS$(;hMPSC is still present so tliat esisting
code may f~inction \\,itbout change.

Some new feature requests \yere considered as part
of the 64-bit effort, but, to maintain the focus of
the release, these features \\rere not inlplerne~lted. The
64-bit memory management services \\{ere designed
to more easily accommodate new features in the
filturc. For csaniplc, the neu! services check the argu-
ment count for both too many and too few supplied
arguments. I n this way, new optional argllmcnts can
be added later to the end of thc list \vithout jeopardiz-
ing bacltc\lard compatibility.

Virtual Regions
One new feature that \\!as addcd to the suite of 64-bit
~ n e ~ ~ i o r y Inanagcnicnt ser\~ices is support for ncw enti-
tics called \~irtual rcgions. A virtual rcgion is an address
range tl1at is rcser\~ed by a progmm for f~iture dynamic
allocation requests. Tlic I-cgion is similar in conccpt to
the program rcgion (PO) and the cotltrol rcgion (P l) ,
\\~hich have long csistcd o n the OpenVMS operating
system." A \lirtual rcgion differs from tlic progmm and
control regions in that it may be defi ned by the uscr by
calling a systcln ser\licc and may exist n'itliin PO, P l , 01-

the ne\v 64-bit aclcircssable process-private space, P2.'
When a \!irtual rcgion is crcated, a handle is returncd
that is subseqi~entl!~ ~ ~ s c d to identi* the rcgion in
memory Inanagcmcnt rccli~csts.

Address space \vithin \rirti~al rcgions is allocated in
the same manner as in the default PO, P1, and P2
regions, with allocation cicfined to expand space
to\\rard either ascending o r descending addresses. As
in the dehult rcgions, allocation is in multiples of
pages. Tllc OpcnV1MS operating system lceeps track of
the first fice \ f i r t~~a l addrcss \\lithin the region. A region
can be created S L I C I I tllat adciress spacc is created auto-
matically \ \~hen a virtual reference is made within the
region, just 21s the control region in PI space espands
~~utomatically to accom~iiodate user stack expansion.
Whcn a \zirtual region is created within PO, P1, or P2,
the remainder of that containing region decreases in
size so that it does not o\,erlap \ ~ i t l i the v i r t~~a l region.

Virti~al regio~is \vcre addcd to the OpenVMS Alpha
opuating system along u'ith the 64-bit addressing
capability so tliat thc I ~ L I ~ C expanse of 64-bit address
space co~~lc i be Illore easily managed. If a sul?system
recluircs a large portion of virtt~ally con t ig~~ous address
space, thc spacc can he rcser\ned \\,ithin P2 \\lit11 little
o\~erliead. Other s~~bsystcms \\litliin the application
cnnnot inadvertently interfere \\it11 the contiguity
of this addrcss space. They may create their o\vn
regions o r create addrcss space within one of the
default regions.

Another advantage of using \.irtual regions is tliat
they arc the most efficient \\In\. t o manage sparse
address spacc \\lithin the 64-bit P2 space. Further-

more, no quotas are charged for tlie creation of a vir-
tual region. The internal storage for the description
of the region comes from process addrcss space, \vhich
is tlie only resource used.

Summary

This paper presents tlic rcasons behind the ncw
OpenVMS mixcd pointer size environnicnt and the
support added to allo\\~programming within this en\+
ronn1ent. The discussion touches on sollie of the new
support designed to sirnpli* the rrsc of the 64-bit
addrcss space.

The approaches discussed yielded full up\\~ard com-
patibility for 32-bit applications, \\rliile allo\ijing other
applications access to tlic huge 64-bit address spacc for
d a t ~ sets that rcquire it. Promotion of all pointers to
64-bit Ividth is not rcq~~irc t i t o irse 64-bit space; the
mixed pointer size en\~iron~iient was considered para-
mount in all dcsign decisions. A case study of adding
64-bit support t o the C run-time library also appears
in this issue of the./o~~n.ml."

Acknowledgments

The authors \?is11 to thanlc the othcr members o f t h c
64-bit Nplla-L Team who hclpcd h a p c many of the
ideas presented in this paper: Mark Arscntiu[t, Gary
Barton, Barbara Bcnton, Ron Brcnder, Ken Cowan,
&lark Davis, Mike Harvey, Lon Hilde, Duane Smith,
Cheryl Stocks, Lcnny Szubo\\,icz, and Ed \logel.

References

1. bl. Har1.e~ and L. Sz~~bo\\.icz, "Extending OpcnVhllS
for 64-bit Addrcssnble Virt11.11 l\/le~~iory," IIi,qit~ll
T e c h ~ ~ i c n l , / u ~ i r ~ t ~ ~ / , vol. S , no. 2 (1996, this issue):
57-71.

2 . Opc~lr I :\)IS Ci11li11,q S / a r ? ~ l ~ o ~ l mayn nard, Mass.: l>iginl
Eql~ipmcnt Corporation, Order No. AA-QSI$I%A-TE,
199.5).

3. il1JJ'Spr.o 64-Bit Pol.li1.18 at id TIZI ruilior~ Glr ide. 1)ocu-
Inent No. 007-239 1-002 (~Mounmin View, Calif.:
Silicon Gr.~phics, I~ic., 1996).

4. C' LLll/gl/~l,qP / , ' ~ ~ J ~ ~ J I / C ~ ,/?I/. :l'/,S-/)~I.T L / l l 6 / ~~'il~Llol/~,s
Op~~zltiug S]!F/CII~.S (Redmond, Wash.: microso oft Car-
po~'xion, 1991) and "1)eclnrations 2nd Typcs," chap. 3,
a n d "Espressions and Assignmcllrs," chap. 4, in
il/lio.osr?/i C/C"+ + C'o:iio~? 7.0 (Rcdmond, \,\f.~sli .:
 micro so ti Corporation, 1991).

5 . Digit~/l [!!\/X P ? ~ o g ~ z r n ~ r ~ ~ c s Glri~Ic~ (Maynard, Mass.:
LXgiral Eqi~ipmcnt I:orporation, 1996).

6. D. Smith, "Adding 64-bit Pointer Support to n 32-bit
Kun-time Librf1ry," Digi~crl T c ~ c h ~ ~ i c u l ~ ~ o ~ i i ~ ~ ? a l . vol. 8,
110. 2 (1996, this issue): 83-95.

L)~girdl I \ l ~ l i ~ i i ~ ~ I Jo~11.1i~il \'ol. 8 No. 2 1996 81

7. OperrfiWS System Se?-llice.s lt~ference ~ ~ / I L I T I ? / ~ / :
A-GE"~l/lSG' (Maynard, mass.: Digital E q ~ ~ i p m e n t
Corporation, Order No. M-QSBMA-TE, 1995) and
Ope71 l.';1fS Sjstew? Sercices Rqfere17ce Manual:
C;ETQtiI-Z (Maynard, [Mass.: Digital Eq~~ipnient Corpo-
ration, Order No. AA-QSBN-TE, 1995).

8. Open KPIS Alpha Guide to 64-Bit Addi*e.s.silzg (I M ~ y-
nard, klass.: Digital Equip~l~ent Corporation, Order
No. M-QSBCA-TE, 1995).

9. T. Leonard, ed., I/AXArchitecture R</k1-e17ccll/lawul
(Bedford, Mass.: Digital Press, 1987).

Biographies

Thomas R. Benson
A consulting cngi~lecr in the OpcnVMS Enginccring Group,
Tom Bcnson is one o f t l ~ c dc\felopers of 64-bit adtil-ess~ng
s ~ ~ p p o r t , Toni joined Digital's V t U Basic project in 1979
atier recci\,ing R.S. and M.S. degrees in compiltcr scie~lcc
from S!rraci~se University. After \\,orking on an o p t i ~ n i z i ~ ~ g
compiler shell used by sc\leral VAX compilers, lhe joined
the VMS Group where he led the VMS L)EC\vindo\vs
FileVic\\, and Session Manager projects, and brought the
Xlib graphics libr~sy to thc VMS opcraring system. Tom
holds threc patcnts on tlic dcsign of thc VAX iLli\CI<O-32
conipiler for Alpha and reccntly applied for nvo patents
related to 64-bit addressing work.

Karen L. Noel
A principal cngineer in the OpenVMS Engineel-ing Group,
I<aren Noel is one of tlie dc\.elopers of 64-bit addressing
support. AFtcr receiving a R.S. in computer sciencc from
Cornell University in 1985, IGren joincd 1)igital's RSX
Dc\relop~nent Group. 111 1990, she joined thc VMS Group
arid ported sc\~rral parts of the VhilS kernel f io~n the VAX
platfos~n to tlic Alpha platform. As one oftlic principal
designers of OpcnVMS Alpha 64-bit addressing s~rpport,
she has recently applied tor six sofnvare patcnts.

Richard E. Peters011
kc11 Peterson joined Digital's DEC C/C++ team in 1992.
He was the project leader for the development of the C
and C++ co~npilers that joined the microso oft front ends
to the GEM back end. These compilers \\!ere used to build
and deli\ier tlic first releasr ofthc \Yindo\\ls NT operating
system on tlie Alpha platform and later \\(ere uscd in Visual
C++ for Alpha. A principal sofn\lare engineer in the Core
Technologies Group, kc11 is currently the project leader
for DEC C o n the Digital UNIX and OpenVMS platfor~ns.
Prior to joining Digital, Rich \\rorked at Inter~rletrics on
a number ofcompiler projects, including HAL/S for the
Spnce SJi~~ttlc and Ada for IRhl/370 and MIL-STL) 1750A.
k c h also \\~orkcd at COhllPASS, where lie \\!as thc project
leadcr for the Tliinlting M~cliines Fortran compiler and
Digital's initial LMI'P compiler effort. Hc rccci\~cd a B.S.
in English from the California Institute of Tech~lology
and has applied for one patent on Alpha OpenV~blS 64-bit
co~npiler \\rork.

Duane A. Snuth

Adding 64-bit Pointer
Support to a 32-bit
Run-time Library

A key componen t of delivering 64-bit addressing
o n t h e OpenVMS Alpha opera t ing system, ver-
sion 7.0, is a n enhanced C run-time library t h a t
allows application programmers to allocate a n d
utilize 64-bit virtual memory f rom thei r C pro-
grams. This C run-time library includes modified
programming interfaces a n d addit ional n e w
interfaces y e t ensures upward compatibility
fo r existing applications. The s a m e run-time
library suppor t s applications t h a t u se only
32-bit addresses, only 64-bit addresses, o r
a combination of both . Source code changes
a r e n o t required to utilize 64-bit addresses,
a l though recompilation is necessary. The n e w
techniques used to analyze a n d modify t h e
interfaces a r e n o t specific to t h e C run-time
library a n d can serve a s a gu ide fo r engineers
w h o a r e enhancing their programming inter-
faces to suppor t 64-bit pointers.

The OpenVMS Alpha operating system, version 7.0,
has extended tlie address space accessible to applica-
tions beyond the traditional 32-bit address space. This
new address space is referred to as 64-bit virtual mem-
ory and requires a 64-bit pointer for memory access.'
The operating system has an additional set of new
menlory allocation routines that allo\vs programs to
allocate and release 64-bit niernory. In OpenVMS
Alpha version 7.0, this set ofroutines is the only rnech-
anism available to accluirc 64-bit niernory.

For application programs to take advantage of these
ne\v OpenVMS programming interfaces, high-level
program~i~ing languages such as C had to support
64-bit pointers. Both tlic C, co~npilcr and the C run-
time library r eq~~i red changes to provide this support.
The compilcr nccdcd to ~~ndcrs t and both 32-bit ;lnd
64-bit pointers, and the run-time library needed to
accept ancl return sucll pointcrs.

The compilcr has a new ~1~1idifcr called /pointer-sizc,
\\,hich sets the dct i i~ l t pointcr size tbr the compilation
to either 32 bits or 6 4 bits. Also added to thc compilcr
are praggmas (dirccti\/cs) that can be used \\,ithin tlic
source code to change tlie active pointer s i x . An
application program is not rccluircd to conipilc cacli
niodule using the same /pointer-size qualifier; some
modules may use 32-bit pointers cvl~ile otlicrs L I S ~

64- bit pointers. Rcnson, Noel, and Peterson dcscribc
these co~iipiler cnhanccmcnts.' The DEC C' I!wI.:s
Glri~le,/b,- Oper~bi~IS .~l:s/c117.s documents the qualifi cr
and tlic pragmas."

The C run-time library added 64-bit pointcr sup-
port either by ~iiodif\,ing the existing interface to a
function o r by adding a second interface to the same
fi~nction. Pitblic header filcs define the C run-time
library intcrfaccs. These header files contain the pub-
licly acccssiblc function prototypes and structilre dcfi-
nitions. The library clocumcntation and hcadcr filcs
are shipped with the (: compilcr; the C run-tinlc
library ships \\lit11 the operating system.

This paper discusses all phases o f thc enhanccmcnts
to thc C run-time library, from project concepts
through tlie analysis, the dcsign, and finally the implc-
mentation. Thc IIEC C' IIlrrrtir17c~ Lihr-nrll R</i~t-errcc
:I.lclrll~alji)t~ Opt1 1 :l.IS.S~!stc~r~ncontai~is user doc~1nie11-
tation regarding the cliangcs.'

Digital Tcchnic:il Jc>ul.n;il \'ol. X No. 7 1996 83

Starting t h e Project

We de\,otcd the initial t\\lo months of the projcct to
undcrst'l~liiing the o\lerall OpcnVMS presentation of
64-bit .xdiircsses and deciding ho\\. to presclit 64-bit
e n l l ~ ~ i c c ~ ~ ~ c ~ i t s to c ~ ~ s t o ~ ~ i c r s . Representati\.cs kom
OpenVMS engineering, the compiler team, the run-
time libr;lry tcam, and tllc OpcnVMS Calling Standard
tcam met \\,cckly with the goal of converging o n the
delivcrahlcs ti)r OpenVMS Alpha \,crsion 7.0.

TIic project team \\,as committed to preserj~ing both
s o ~ ~ r c c cocic cornpatihilit\, nnd the ~~p \ \ , a rd colnpati-
bilit!. aspccts of shareable imagcs on the Opcn\lMS
opcrati~lg system. Early discussions \\rith application
developers reinforced our belief tliat the OpcnV1MS
systcni must :illow applications to use 32-bit and
64-bit pointers within the sntilc application. The tcam
also agrccci that for a miscd-pointer application to
\\,ark cffccti\.cl!., a single run-time library \\,auld ncccl
to support botli 32-bit allti (,+-bit pointers; ho\\~c\~cr,
tllcrc \\.,IS n o l<no\\~n prcccclcnt for designing sucli
a Iilbral-y.

One implication of the decision to design n rirn-
time library that supported 32-bit and 64-bit pointers
\\.as that tlic library coulci 11cvcr ~ - c t ~ ~ r n an unsolicited
64-bit pointcr.. Returlling a 64-bit pointcr to 311

application that \\,as espccting .I 32-bit pointcr \ \~oi~l i i
result i l l tlic loss of one half of ,111 nddrcss. Alt l io~~gli
typic;ill!i tllis error \ v o ~ ~ l d cause ,I hardware c sccp t io~~ ,
the resulting address could be n ralid address. Storing
to or reading fi-on1 si~cli a n nddrcss could result jn
incorrect bcliavior that \\,auld be difficult to detect.

Tlic O/~c)ir I :\/.y Cnlliirg S~c~iiclnizlspccifies that argu-
mcnts p;~ssccd to a f i~~iction he 64-bit \ , a l ~ c s . ~ If .I

32-bit ~ddrcss is used, it is al\\,a!s sign cstcncicd to
form n 64-bit ~dclrcss t l~a t cnn be used by the Alpl i~
linrJ\\~nrc. 7'lic C run-timc lil>~-'~ry teal11 csploitcd this
fact \\.llcn creating the 64-bit interE1ce to the librar!,.

The team also agreed that using 64-bit pointers
should he :IS simple as possible; the si~iiplcst ~ i iode
\\~ould allo\\. the application to compile using the
qualifer /1>ointc1--sizc=64 \\~itliout making so~lrcc
code ch~ngcs . The cicsigll of 64-bit s ~ ~ p p o r t ~ i i ~ ~ s t
appear '1s n logical cstcnsioll to tlic C progra~li~iiing
en\'ironmc~it iu use toda!: Ful-rlicrmore, applications
\vrittcn to co~iform strictly to the ANSI standard must
be able to use 64-bit pointc~s \vliilc remaining conhr -
mant. For example, allocating 64-bit virtual memory
\\rould be an cstcnsion to the standard C memory man-
;1gunult fi~nctions ~i~alloc, cnlloc, rc,illoc, 2nd kcc.

This paper sho\\,s tliat each oftlic C run-time lil>r.lr!.
interklccs cs,iminecl falls into one of the follo\\,ing
h i ~ r catc~orics (listed in orcicl- of added complcsity
to library users):

1. Not affecteel bp the size of a pointcr

2. Enhanced to acccpt both pointcr sizes

3. Duplicated to have a 64-bit-specific interface

4. Restricted from using 64-bit pointers

One last point to come k o ~ n the meetings was
that nlnn!, of tlic C run-tinic librar!. interfaces arc
implcmcntcd by calling other OpellVMS images. For
example, the Curses Scl-ccn 1Vlanagemcnt interfaces
nlake calls to the OpcnViMS Screen Managcmcnt
(SMG) fi~cilinl. It is important that the C run-time
library defines the intcrticcs t.o support 64-bit
addresacs \\~itIiout lool<ing at tlic implc~ncnt.~tio~i of
the f i~nction. Consistcnc!. nnci co~lipletencss of the
intcrfncc nrc more jmporta~it than the conib>lcsin,
of the implementation. In the SMG cs:implc, if the
C run-time library needs to makc a copy of a string
prior to passing the string to the SLUG hcility, this
is \\'hat \ \ r i l l L>c implcmcntcd.

Analyzing t h e Interfaces

7 . I hc pu)cess o f analyzing tllc i~itcrfiices began by crcar-
ing n document that listed all the header files and tllc
definitions in these files. A total of 50 I~eadcr files that
contained approximately 50 strilctilres and 500 proto-
types nccricd to be analyzed. Each structure or pro-
totl\,pc had to be examined to see if a change in pointer
size \ \ , o ~ ~ l d affcct the interface. IGep in mi~iri tliat
\\,e nnal!lzcti only the intcrfilccs; \\'e did not csanline
thc i~ndcrlying implcn~cn t :~ t io~~ changes tllat \\goulcl
be rccluircd.

Analyzing the Structures
I t is ncccssar!. t o distinguish benveen a structure,
\\,liich contain pointers, and 3 pointer to the struc-
ture itself. For csamplc, tlic c l i \ ~ t struct~irc conrains
t\llo integer fields. Althougl~ the size of the pointer
to ciiv-t ciocs not affect the cotltcnts of the structure,
the entire strLlctllre may be allocated in 32-bit or 64-bit
\,irti~nl memory. Functions that acccpt a pointcr to such
a s t r u c t ~ ~ r c may need to he mociificd to accommodate
the 64-bit casc. The d i \ l t structure is

t y p e d e f s t r u c t C
i n t q u o t , rem;

1 d i v - t ;

Man!, structures used in the C I-un-time library
intcrF,iccs 21-e 3llocatcd by tllc run-time library i l l

rcslx)~isc to a f ~nction call. For example, ;I call to the
fopui f i~~ic t ion retllrlls the fO1lo\\ri~ig poi~ltcr to
the FII,E stl-iicti~re:

F I L E * f o p e n (c o n s t c h a r * f i l e n a m e ,
c o n s t c h a r * m o d e) ;

Tllc (: ru11-time library ;il\v;lys allocates F1I.E stl-i~c-
turcs in -32-bit virtual mcnlory and returns 3 32-bit
pointcr to the calling program. This important con-
ccpt can dl-nm'itically impact the use of 64-bit pointcrs

in structurcs. If a FILE pointer is always a 32-bit
pointcr, structures tliat contain only FILE pointers arc
not affected by the choice ofpointer size. We use this
information when we look at the layout of s t ruc t~~rcs
and csaniinc fc~nction prototvpcs tliat nccept pointers
to StrLicttIrcs.

In this paper, StriIctLIrcs tliat drc al\\,a!,s allocated in
32-bit \#irtual Incmory 'ire rcfcrl.cci to as structures
boilnd to lo\v rncmor)]. After determining \ill~icli
str~~ctul.es arc bound to lo\\^ memory, wc examine the
layout of each structure to dccidc if tlic structi~rc
is affected by ~x) i~ i t c r size. We keep in mind that
pointer sizc clocs not aFfect a structurc that is bound
to low nicmory.

For upward compatibility, the analysis must alivays
consider existing sofnvarc that depends on the Iayoi~t
of the StructiIrc. 111 the case of public lhcadcr file analy-
sis, such dcpcndcncc \\rill probably al\vays be present.
,411 application niay Iia\,c e rcc~~ tnb lc code that, for
csamplc, fctclics 4 bytes beginning at byte 12 of the
structure and dcrcfcrcnces those 4 bytes as the address
of a string.

For these public strilcturcs, the aniilysis must weigh
the impact of forcing these structurcs to bc 32-bit
pointers. If the dccision is made to allocate nvo diffcr-
cnt structure npcs, each function that either returns
or is passcd si~cli a structure must have a pointer-sjzc-
sl-xcific i1iiplc1i1~1ir,itio1i. The case analysis and further
details appear in the section Pointer to Pointer-sin-
sensitive S ~ T L I C ~ L I ~ C S .

Analyzing the Function Prototypes
Analyzing Functions onl!. requires looking at the f i~nc-
tion prototypes. To determine tlic effect of pointcl-
sizc on a fi~nction, we look at each parameter ant1
return value that i~i\~oI\~cs a poiliter. 'This section
describes the types of situations that arc affcctcd by
pointer sizc, horn t l ~ c si~uplest n8pc to the most com-
plex. Note that \vlicn a program passes an array of any
type to a f~~nc t ion , tlic array is p~sscci as a poi~itcr nnd
must be co~isi~lcrcd.

Making 64-bit-friendly Parameters As mentioned in
the section Starting the Project, the O ~ C J I I I.IL1.Y Cullii~g
S t ~ i i ~ t b r z l spccifcs that a 32-bit address is sign
extended to n 64-bit addrcss \\.lien passed as an
argument to a fi~nction. This implies tliat esisting
progrxns t11;it pass acidresscs as piinimctcrs are already
sign extending those 32- bit add~.csses to be passcd as
64-bit cli~antitics. Eacll 32-bit nclcircss can, thcrck)rc,
be csprcsscci ns 3 64-bit address in \\,liich tlic top
32 bits arc zero.

This sign-cstcnding scliemc allows the run-time
library to lia\rc 3 single irnplcmcntation that can be
used by both 32-bit and 64-bit calling programs. This

iniplenicntatiou \\,auld be motiificd to accept onl!,
64-bit addresses. PLll in1p~c11lc11~tioll tliat supports
parameters of cithcr pointer size is referred to as being
64-bit friendly. Tlic function strlcn is an csamplc of
a 64-bit-friendly fi~nction.

s i z e - t s t r l e n (c o n s t c h a r * s t r i n g) ;

The sti.ii~gparamctcr is tlie only p.11.t oftlic strlcn fi~nc-
tion that the pointcr sizc '~ffccts. To support 64-bit
addressing, tlic strlen f~inction li.id to be nioditictl to
accept a 64-hit pointcr.

Parameters Bound to Low Memory I n suuct~~rcs bound
to low nicmor!~, the addresses that the programs pass
are always 32-bit addrcsscs. One cspla~latio~l is that
the strilcturcs arc nia~laged by tlic run-time library,
and the only method of crciiting, destroying, or
obtaining tlic nddrcsscs ofthcsc StriIctiIrcs is by calling
a librar!, routine. G i \ m t h ~ t ,I si~iglc library scr\'iccs
both 32-bit and 64-bit calling programs, the lihrnr!,
docs not change the structures hascti on c o m m a ~ ~ d
tli~alificrs, nor docs it allocate the structures in W h i t
virtual memory. For user con\.enicncc, the C run-time
library implemented these pointcrs as 32-bit return
\values but 64-bit-friendly parameters.

The reason for this design hccnmc apparent \\.liilc
testing the 64-bit interfiices to the library. Co~isidcr
the following code fragment, \vliich exists in many
applications:

F I L E * f p ;
c h a r b u f f e r C 1 0 0 1 ;
f p = f o p e n (" t h e - f i l e " , " r ") ;
f r e a d (a r r a y , s i z e o f (b u f f e r 1 , 1 , f p) ;

The C run-titile library al\\~;iys allocates a FILE
structurc in 32-bit virtual ~nclnol-y. When the prc\:ious
code fragment is compiled using /pointer_size=64,, / I)
is declared ns a 64-bit pointcr to a FILE structurc,
bccause ~1si11g tliis tj~~alificr s p c ~ i f c s the dchi11t poi11tcr
size to be used. When tlic fopcn fi111ction retilrns tlic
32-bit pointcr, the return \.ali~c is sign rxtendcci into
the 64-bit F l L,E pointer. If tlic f ix~rth paralnetcr of tllc
fi-cad fi~nction had bccn dcclal-cd as a 32-bit F11.E
pointer, the co~npiler \vould report ;in error \\,lien tlic
64-bit FILE pointcr ,jp \\.as passctl as an argument.
This esnmplc csplains \\-liy the (: run-timc lil>r.~r!.
declarcs structures bound to lo\\. mcmory ns 32-bit
return values but 64-bit pamlnctcrs.

Parameters Restricted to Low Memory Stri~cturcs
restricted to lo\\, mcmory ,Ire si1lii1;1r to tliosc [> O L I I I ~ to
lo\\. nlcmor!r except that the ~ ~ s c r allocates thc s t r ~ ~ c -
tures and can allocate the structures in high mcmor!..
Tlic C run-time library cannot support tlie ;illocation
ofsuch structurcs in 64-bit virtual memory.

An c s a ~ ~ i p l e of a paramctcr being rcstrictcd to a
lo\\> memory address is the buffer being passed as the
paranictcr to the function sctbuf. The paramctcr
detillcs tliis buffer to be ~ ~ s c d for 1/0 operat io~~s . 'l.'11c
user cx~>ccts to see this buffer change as 1 / 0 opcrn-
tions arc pc~.k)rmed on the fi lc. If the run-time librnr!,
n l d e a copy of this buffer, the changes would nppcar
in the copy and not in the original buffer that the user
supplicci. When the C run-time l ibra~y be&' '111s to LISC

the 64-bit OpcnVMS Record Mnnagemcnt Scr\~iccs
(kVS) intcrf~ce, this low-~ncniorv restriction will I,c
removed.

In most cases, the run-time librar!. is able to hide
the h c t that the 32-bit RIMS intcrfiice is not able to
interpret a 64-bit \irtual menlory address. Consider
the Ji'lc.r-~utne parameter to the fopen finction. If the
paranietcr is a 64-bit virtual memory addrcss, the run-
time library copies this parameter to 32-bit \~irti1;11
memory and passes the addrcss of the copy to RMS.
Neither the iiscr nor RIMS is a\varc that this copy has
been made. The library nlay copy the data if and only if
such a copy operation docs not change f~ioctionality o r
signiticantl!! degrade pcrfi)rmancc.

Size-independent Structure Pointers man!, f ~~ic t ions
reccivc the addrcss of a structure \vliose layout is not
affected by pointer size. The simplest adclrcss i l l tliis
category is tliat of an array of integers. This array may
be in citlicr 32-bit or 64-bit virtual mcmorp, but only
one intcrhcc is needed to determine the layoi~t o f the
structllrc. If the structilrc layout is i~~depcncic~i t of
pointer sizc, then pointer-size-specific entry points arc
not rcqni~.cd for this paramctcr. ?'lie de\rclopcr \\,oi~lci
still mnltc the parameter 64-bit friendly so that the user
\\~ouIci Iinvc tlic freedom to maltc the allocation that is
best for the application.

Pointer to Pointer Parameters It is coll1nion pr.1cticc
for a h~nction to be passcci n pointcr to a pointel. I F the
pointer being pointed to is not bound or rcstrictccl to
a 32-bit addrcss, then two i rnplc~~~enta t io~ls of tlic
fi~nction arc necessary.

To ~~ncicrstand why some fi~nctio~is require t\vo
implcn~cntatio~is, consider the follo\~,ing strtod
fi~nction:

d o u b l e s t r t o d (c o n s t c h a r * s t r i n g ,
c h a r * * e n d p t r) ;

The strtod fi~nction converts ;I string to a tlonting-
point double-prccisio~~ number. The second pnramc-
ter to this fi ~nction, err~ll,li: is a pointer to a rnc rn~r !~
location into n.liich the adcircss of thc first ilnrccog-
llizcci chnmctcr is t o be placed. T l ~ c caller ofthis f ~ n c -
tion has allocated either 4 or 8 bytes to store tliis
address. Without pointer-size-specific entry points,

the f i~~ic t ion has no \ \ r , ~ \ r of determining ho\v many
bytcs to \\!rite. Writing 4 bytcs map trullc.ltc '1 pointcr;
\vriting 8 bytcs Inay o\lcr\\~ritc 4 bytes of ~ ~ s c r data that
follows tlic pointcr. The strtocl fi~nction, tlicrctbrc, has
h\,o implcmcntatiolis. -1-lie first expects c~t~c l l~~ i . to be
the acidrcss of a 32-bit pointcr, and the scconci capccts
err~Q)/i. to bc the address of a 64-hit pointer.

Pointer to Pointer-size-sensitive Structures many fi ~ n c -
tions reccivc the addrcss o f a structure. If the nnillysis
reveals th;it the layout of tliis stl-ucturc is dependent
LI~X)II poi11tc1- size, the f~~nct ions tliat recci\.c or rcrilrn
this structure must have pointer-size-specitic entry points.

Note that the l a y o ~ ~ t of thc structure is separate
from whether the structllrc is allocated in lo\\, memory
o r in high mcmor!l. The 32-bit-specific entry point is
needed to understand the layout o f the structure, but
the parameter should 'lllo\v this structure to he allo-
cated in Iiigh memory.

Functions that reccj\.c rhc address of a n array of
addresses are treated in the same \\lay, assuming that
the aciclrcsscs in the array arc neither bound nor
rcstrictccl t o lo\v memory. Tlic filnction being called
needs to law\\: ifdie army cont.lins 32-bit addrcshcs or
64-bit addresses. Unlike the address of the array, the
individual mcmbcrs of the .lrra\, arc not sign cltc~~clccl
to 64-bjt va l~~cs .

Separate implemc~lratiolls n1.c ~iecessary only to
dctcrminc tlic layout of\\lh.lt is k i n g pointed to. Tlic
32-bit illtcrticc handles pointel-s to structurch contain-
ing 32-bit acid~.csses, and tlic 64-bit intcrf,icc Il~~icilcs
poi~itcrs to s t r ~ ~ c t ~ ~ r e s c o ~ i t , l i ~ l i ~ l ~ 6 4 b i t ,iddrcsscs.

Functions That Return Pointers 1\4'113!~ f~~ncrions rcturn
1.3ointcrs as the \~aIue of tlic f~11lctio11. TIICSC poi~iters a-e
either pointer-size specific or they arc not .iffcctcd by
the pointcr sizc. Siniilc~r to its cpccifications for 64-bjt-
fi-icndly pnranlcters, the ($)OII I :\IS Ccll/ii/<:, .Slci l~c/r i~z/

indicates tl~fit rcturn \.nlucs on tlie OpenVbIS Alpha
opcrnting systeln are nl\\,a\~s sign cstcndcd to 64-bit
values and r c t ~ ~ m c d in registel- zcl-o (KO).

To n~alic an ;ldclrcss paramctcr 64-bit fricndl!., a
f ~ ~ n c t i o n nllo*s a 64-bit addrcss to be pa.;scd, thus
enabling both 32-bit and 64-bit calling programs to
use a si~iglc interface. <:onvcrscl!; if a fi~nction returns
a 64-bit address to a 32-bit calling proSmm, the
addrcss is s~lfcly rcturncci in 1<0 but is rr~ulcatcci \\,lien
movcd from 1<0 into the user's data area. A 64-bit-
friendly addrcss return \.aluc is al\\,ays 32 bits. When
mo~ccl fi-om 1<0 illto the calling program's \rarinble,
it is sign cstcnded \\,hen the c.llling program is using
64-bit .lddrcsscs.

If the return value of a f ~ ~ n c t i o n can be :I 64-bit
address, tliis fi~nction must have pointer-size-spccific
entry points. If the function returns tlie address of a

structure tliat is bound to lo\\, memory, such as a F1L.t:
or WINDOW pointer, the rcturn \i,ilue does not force
separate cntry points.

Certain fi~nctions, such as malloc, allocate memory
on behalfofthe calling progl-an1 ancl r c t u r ~ ~ the addrcss
of that mcmory as the value of the tilnction. Tlicsc
h~nctions havc nvo j~liplemcntations: the 32-bit intcr-
hce always allocates 32-bit \~irtual Iilcniory, and the
64-bit interface always allocates 64-bit virtual ~iic~nory.

Many string and mcnwry f~~nct ions I~a\le return val-
LICS that arc rclati\~c to a parameter passed to the sanic
I-outinc. ?'licsc addrcsscs may be rctur~icd as high
Jnemorp addrcsscs if and only if the parameter is a
high memory adclrcss.

The following is the f~lnction prototype for strcat,
which is found in the hcadcr file <string.h>:

c h a r * s t r c a t (c h a r * s l , c o n s t c h a r * s 2) ;

The strcat fi~nction appcnds rlic string pointed to h\.
s2 to the string pointed to by .vl. The return \~aluc is
tlic addrcss oftlic latest string s l .

In this cnsc, the size of the pointcr in the retill-n
\ralue is always tlic same as the sizc of the pointer
passed as the first parameter. The C; programming lan-
guage has n o \vay to reflect tliis. Sincc the fi~nction
may rcturn n 64-bit pointer, the strcat function must
havc nvo cntry points.

As discussed earlier, tlie pointcr sizc used for p ~ m -
mctcr s2 is not related to the rctul.ncd pointcr size.
Tlie C run-timc library ~ n a d c this s2 argumelit 64-hit
friendly by declaring it a 64-hit pointcr. This dccl.~ril-
tion allonrs thc application progralnlncr to concatc-
nate a string in high menial-y to one in lo\\, memory
\\,ithour altering the source cocic. Tllc follo\ving strcat
filnction statement sIio\vs tliis declaration:

c h a r * s t r c a t (c h a r * s l , - c h a r _ p t r 6 4 s 2) ;

The data type -cl?(l/:prt.G4 is a 64-bit chal-actcs
pointer \\~liosc cicfinition and use \ \ ' i l l be esplaincd
I,iter in tliis p;ikxr.

High-level Design

The /pointersize qualifier is n\ailablc in those
versions of the C compiler that support 64-bit point-
ers. Thc compiler has a predefined macro named
- INITIA1,-I'OINTEl<-SIZFF \vliosc value js based o11
thc use of tlic /pointel--size qualifier. Tlie macro
accepts the follo\\ling \,alucs:

0, \vhich indicates that the /pointer-size qualifier is
not i~scd or is not available

32, \vhicIi indicates that the /pointer-size cl~~alificr
is used and 113s 3 value of 32
64, \\~hich indicates that the /pointer-size qualifier
is used and Iins a value of 64

The C run-time library header filcs conditionally
co~npile bascd o n the value of this predefined macro.
A zero value indicates to the hcadcr ti lcs that thc com-
puting en\lironmcnt is purely 32-bit. The pointer-sizc-
specific function prototypes arc not defined. The user
1iii1st use the /poj~~te~--size qualifier to access 64-bit
Functionality. The choice of 32 or 6 4 cictcrmincs the
dchult pointcr sizc.

The header filcs def lie nvo distinct types of dcc1a1-a-
tions: those that ha\!e a single iri~plc~iicntatio~i id
those that 1i;~vc pointer-size-specific imple~iientatio~is.
The addresses passed or returned from ti~nctions that
have a singlc implcnientarion arc either bound to lo\\.
memory, restricted to lo\\, memory, or widencd to
accept a 64-bit pointer.

Those ti~nctions that Iia\rc pointer-size-specific
entry points have three hnction prototypes dcfincci.
Using malloc as an example, prototypes are a-eared for
tlie f~nct ions malloc, -malloc32, and -1nalloc64. Tlic
latter two prototypes are the pointer-size-spccific pro-
totypes and arc dcf ncd only \\/lien the /pointer-sizc
qiialifier. is ~ ~ s c d . The nialloc prototypc cieF'ii~lts to call-
ing -malloc32 \\:lien the defiii~lt pointcr size is 32 bits.
The malloc prototype dcf~ul ts to calling -1nalloc64
\\,hen the dchul t pointer sizc is 6 4 bits. Applica-
tion progmmmcrs \\.lie mix pointcr nVpes i ~ s c tlic
/pointersize cl~~alificr to establish the deC~ult pointcr
size but can then usc the -malloc32 and -malloc64
explicitly to acl~icvc nonclch~~l t bcl~;l\~ior.

In addition to being cnhanccd to support 64-hit
pointers, the <: compiler has tlic acicicd cnp,ibili~r o f
detecting incorrect mixed-pointer usagc. It is the
fi~nction prototype found in the header files tliat tells
the compilcr exactly what pointcr sizc is pcrniittcd or
expected in a call. Proper ~ ~ s c oft l lc hcadcr fi lcs liclps
prevent pointcr trt~ncation.

The act~~:il fi~nctions callcd in the <: run-time libr.li-y
are either dccc$malloc or dccc$-m;1lloc64, depending
on tlie pointcr size. :The C ru11-time librar!, docs]lot
co~ltaili an c~i t ry point called dccc$-malloc32. 'l'liis
naming sclic~nc \\,as selected so tliat applications rli,lt
link on oldel- systems always get the 32-bit intcrhcc.

Tlie C compilcr has al\vays loolted at a table witliin
the C run-time library sliarcablc image for assistance in
name prctixing. Using this tnblc, the conipilcr klio\\.s
t o change calls to the malloc ti ~nction into c;ills to the
decc$malloc fi~nction and not to change calls to xyz,
~lliicli is not .i C run-time library function, into culls to
decc$syz.

Thc (: run-time library and t l ~ c C compilcl- lia\~c
added new information to the tal.>lc that tclls tlic cow-
pilcr \vhich fi~nctions havc pointer-size-specific c ~ ~ t r ! ~
points. When the compilcr sees a call to tlic f~nc t ion
- xyz32, it looks it up in the name table. I f the name of
t l ~ c fi~nction is found, thc co~llpilcr then looks at

Digital ?'ci.linic.ll Journ.11 \;ol. S N o . 2 6 87

\\.Ilcthc~- tlic function is the 32-bit-specific cntr\, point.
If it is, the compiler hrnls tlic prefixed nalilc by
adcling "dccc$" to tlie beginning o f the name but
also rcmo\,cs tlic "-" and the "32." Consecli~cntl!, tlic
f i~nctio~l nnmc -1iialloc32 becomes dccc$malloc, but
the f~nct ion name -s!,z32 docs not change.

Implementation

To ilIi~st~-:ltc changes that ncccicd to be matfc to the
header filcs, *c inventcd a single header fi lc crillcci
<headcr.h>. 'This file, \vhich is sllo\\.n in Fig~11.c I , illus-
trates the clnsscs of problems Llccd b!, a developer \ \ ho
is adding support for 64-bit pointers. The fi~nctions
defined in this header tile arc ncti~al C ri11i-time library
fi~nctions.

Preparing the Header File
The 6rst pass tlirougli <hc;ldcr.h> rcsulted bi a num-
ber of c.h.11igcs in terms of formatting, commc~~t ing ,
and 64-bit support. Realizing that many ~nodifications
\ \ ~ u l d be made to the hc;idcr fi lcs, \vc considered
readability n major goal fbr this rclcasr of thcsc filcs.

Tlic initial header filcs assumcci a i~n i fo r~n pointer
size of 32 hits for the O~CIIVIMS operating systcm.
During the fi I-st pass through chcadcr.h>, \\.c ailrlcd
pointer-size pmglnas to ensure that the file sn\.cd the
user's pointer sizc, set the pointcr sizc to 32 bits, and
then rcstorcd the user's pointcr sizc at thc end ot'tlic
hcacicr.

Nest \\.c k)rmattcd clicaiicr.li> to slio\\, the \,nrious
categories r l i , ~ r the StrLIctiIrcs ~ ~ i d fi~~ictions hII into.
-The catcgol-ics and tlic rcsi~lt of thc first pass tli~.ougIi
<lieaticr.li> can bc sccn in l-!igurc 2. For cs3mplc,
the function rand Ihad n o pointers iu the fbnction

protot!q'c 2nd \\,as immcdi,~tcl!, mo\.cd to tlic section
"Functions tliat support 64-hit pointers."

Orga~iizing <headcr.h> in this way g.~vc us ,In accu-
rate ~.cniiing of ho\\. more f ~ ~ n c t i o ~ l s nccdcd
64-hit sup pol^. If any of tlic sections bccamc cmpnr,
\\re dirl not rcrno\,c the scction. This 31317roach \\.o~.kecI
\\reIl bccnusc \\.bile sonic c~ii jnccrs \\.ere doing 64-bit
\i,ol.k, otlicrs \vcrc atltii~ig nc\ \ finctions. All!, nc\\,
f~~nct ions nddcd t o a I~cuticl. hlc after the 64-bit \\.orl<
was clone \\~oulc.l be pl,~cccl in the section "Ft~nitions
th;it need 64-bit support." l'riol- to shipping tlie
l~c ;~dcr filcs, 11.c rcnio\-cd the c m p n sections.

Preparing the Source Code
At'tcr sc\.cral falsc starts, \\,c settled on a design for
~llodil j ing the sourcc code fix 64-bit support. Tlic
c s ~ x c t c d starting d c s i ~ n \\.as to m o d i c the soilrcc
code b!. addins pointer--size prnglnas and co~ i~p i l c rhc
soul.cc m o d ~ ~ l c s using the /pointer-sizc q~~aliticr.
Sonlc modulcs \vould use /pointer-sizc=32; otlicrs
\\~oiild use /pointel--sizc=64. The major dra\\,h,~cl< to
this was tliat Iooki~ig 3t ;I \.ariablc dccl;i~-cd as
a p o i ~ ~ t c r requires an understanding of the contest in
\\.hich that \rariable appears. N o longer \ \ , o ~ ~ l d "ch;l~- *"
be sinlply ;I ch;lmctcr pointcr. I t coi~ld be a 32-hit or 3

64-bit character pointcr, anrl thc implcmcntcr nccdcii
to lkno\\, \\~hicIi one.

The design o n \\dlich \\.c decided overcomes the
readabilits problem. By dcLiult, source filcs .Ire nor
coll~pilcci \\!it11 the /pointer-size cln.~lificr. 'l'his nicClns
tliat n o poi~itcr-six ~ i i n ~ i i p ~ ~ l . ~ t i o ~ i O C C L I ~ S \\.he11 i ~ l i l ~ ~ c i -

ing the Iicacic~ tiles. The rcaciabilin~ o f the sou~.cc code
is i~iipt.o\'ccl in tliat tlic implcmcntcrs can scc \\-Iiic.11
pointers arc 32-bit poiliters a n d \\rl~ich nrc 64-bit
pointers.

i f n d e f -SIZE-T
d e f i n e -SIZE-T 1

t y p e d e f u n s i g n e d i n t s i z e - t ;
e n d i f

i n t e x e c v (c o n s t c h a r *, c h a r *[I);
v o i d f r e e (v o i d * I ;
v o i d * m a l l o c (s i z e - t) ;
i n t r a n d (v o i d) ;
c h a r * s t r c a t (c h a r *, c o n s t c h a r *) ;
c h a r * s t r e r r o r (i n t) ;
s i z e - t s t r l e n (c o n s t c h a r *) ;

Figure 1
Ol-iginnl Hcndcl- Filc <hc3dc1..Ii>

/ *
* * E n s u r e t h a t we b e g i n w i t h 3 2 - b i t p o i n t e r s .
* I
i f - I N I T I A L - P O I N T E R - S I Z E
i f (-VflS-VER < 7 0 0 0 0 0 0 0)
e r r o r " P o i n t e r s i z e a d d e d i n OpenVMS V 7 . 0 f o r A l p h a "
e n d i f
p r a g m a - p o i n t e r - s i z e - s a v e
p r a g m a - p o i n t e r - s i z e 3 2
e n d i f

I *
** STRUCTURES NOT AFFECTED BY POINTERS
* /
i f n d e f -SIZE-T
d e f i n e -SIZE-T 1

t y p e d e f u n s i g n e d i n t s i z e - t ;
e n d i f

I *
* * FUNCTIONS THAT NEED 6 4 - B I T SUPPORT
* /
i n t e x e c v (c o n s t c h a r *, c h a r * [I) ;
v o i d f r e e (v o i d *) ;
v o i d * r n a l l o c (s i z e - t) ;
c h a r * s t r c a t (c h a r *, c o n s t c h a r *) ;
c h a r * s t r e r r o r (i n t) ;
s i z e - t s t r l e n (c o n s t c h a r *) ;

I *
* * C r e a t e 3 2 - b i t h e a d e r f i l e t y p e d e f s
* /

/ *
* * C r e a t e 6 4 - b i t h e a d e r f i l e t y p e d e f s .
* I

I *
* * FUNCTIONS RESTRICTED FROM 6 4 B I T S
* /

/ *
* * C h a n g e d e f a u l t t o 6 4 - b i t p o i n t e r s .
* /
i f - I N I T I A L - P O I N T E R - S I Z E
p r a g m a - p o i n t e r - s i z e 6 4
e n d i f

/ *
* * FUNCTIONS THAT SUPPORT 6 4 - B I T POINTERS
* /
i n t r a n d (v o i d) ;

I *
* * R e s t o r e t h e u s e r ' s p o i n t e r c o n t e x t
* /
i f - I N I T I A L - P O I N T E R - S I Z E
p r a g m a - p o i n t e r - s i z e - r e s t o r e
e n d i f

Figure 2
First 1'3~s rhl-ough clicadcr.h>

Vol. 8 No. 2 1996 S9

We created a C run-time library private headcr
file called <\vide-types.sro. This header file has the
appropriate pragmas t o define 64-bit pointer types used
bvitl~in t l ~ e C run-time library, as shown in Figure 3.

This header file d s o contains the definitions of nlacros
~ ~ s e d in the i~nplementations of the functions. Figure 4
shows tlic macros declared in <\\ride-t)lpes.src>.

Once a niodule includes the file <wide-types.src>,
the compilation o f that module changes t o add the
qualifier /pointer_size=32. This change improves the
readability o f the code b e c a ~ ~ s e "char *" is read as a

32-bi t character pointer, \\~licrcas 64-bi t pointers use
typedcfs whose namcs begin with "-\i~idc." T h e
name o f t h c new1 typedcf is -\vide-chacptr, \~/liicli is
read as 3 64-bi t character pointer.

T h e C I-un-time library design also I-equircs that the
in ip lemc~~ta t ion o f '1 f i~nct ion include all hcadcr files
that define the f ~ n c t i o n . This ensures that tlic jmple-
mentat ion matches the hcadcr files as they arc mocli-
fied t o SLIPPOI-t 64-b i t pointers. For functions defined
in multiple header files, this ensures that l icc~dcr tiles
d o not contradict each orhcr.

* * T h i s i n c l u d e f i l e d e f i n e s a l l 3 2 - b i t a n d 6 4 - b i t d a t a t y p e s u s e d i n
* * t h e i m p l e m e n t a t i o n o f 6 4 - b i t a d d r e s s e s i n t h e C r u n - t i m e l i b r a r y .
* *
* * T h o s e m o d u l e s t h a t a r e c o m p i l e d w i t h a 6 4 - b i t - c a p a b l e c o m p i l e r
* * a r e r e q u i r e d t o e n a b l e p o i n t e r s i z e w i t h / P O I N T E R _ S I Z E = 3 2 .
* /
i f d e f - I N I T I A L - P O I N T E R - S I Z E
i f (- I N I T I A L - P O I N T E R - S I Z E ! = 3 2)
e r r o r " T h i s m o d u l e m u s t b e c o m p i l e d / p o i n t e r _ s i z e = 3 2 "
e n d i f
e n d i f

1 *
* * A l l i n t e r f a c e s t h a t r e q u i r e 6 4 - b i t p o i n t e r s m u s t u s e o n e o f
* * t h e f o l l o w i n g d e f i n i t i o n s . When t h i s h e a d e r f i l e i s u s e d o n
* * p l a t f o r m s n o t s u p p o r t i n g 6 4 - b i t p o i n t e r s , t h e s e d e f i n i t i o n s
* * w i l l d e f i n e 3 2 - b i t p o i n t e r s .
* /
i f d e f - I N I T I A L - P O I N T E R - S I Z E
p r a g m a - p o i n t e r - s i z e - s a v e
p r a g m a - p o i n t e r - s i z e 6 4
e n d i f

t y p e d e f c h a r * w i d e - c h a r - p t r ;
t y p e d e f c o n s t c h a r * - w i d e - c o n s t - c h a r - p t r ;

t y p e d e f i n t * w i d e - i n t - p t r ;
t y p e d e f c o n s t q n t * - w i d e - c o n s t - i n t - p t r ;

t y p e d e f c h a r * * w i d e - c h a r - p t r - p t r ;
t y p e d e f c o n s t c h a r * * - w i d e - c o n s t - c h a r - p t r - p t r ;

t y p e d e f v o i d * - w i d e - v o i d - p t r ;
t y p e d e f c o n s t v o i d * - w i d e - c o n s t - v o i d - p t r ;

i n c l u d e < c u r s e s . h >
t y p e d e f WINDOW *-wide-WINDOW-ptr ;

i n c l u d e < s t r i n g . h >
t y p e d e f s i z e - t * - w i d e - s i z e - t - p t r ;

/ *
* * R e s t o r e p o i n t e r s i z e .
* /
i f d e f - I N I T I A L - P O I N T E R - S I Z E
p r a g m a - p o i n t e r - s i z e - r e s t o r e
e n d i f

Figure 3
Typcdch from <wide-typcs.src>

90 Digital Tccllnicnl Joul-nal Vol. 8 No. 2 1996

1 *
* * D e f i n e m a c r o s t h a t a r e u s e d t o d e t e r m i n e p o i n t e r s i z e a n d
* * m a c r o s t h a t w i l l c o p y f r o m h i g h m e m o r y o n t o t h e s t a c k .
* /
i f d e f - I N I T I A L - P O I N T E R - S I Z E

i n c l u d e < b u i l t i n s . h >

d e f i n e C $ $ I S - S H O R T - A D D R c a d d r) \
((((- i n t 6 4) (a d d r) < < 3 2) > > 3 2) == (u n s i g n e d - i n t 6 4) a d d r)

d e f i n e C $ $ S H O R T - A D D R - O F - S T R I N G (a d d r) \
(C $ $ I S - S H O R T - A D D R (a d d r) ? (c h a r *) (a d d r) \
: (c h a r *) s t r c p y (- A L L O C A (s t r l e n (a d d r) + I) , (a d d r)))

d e f i n e C$$SHORT-ADDR-OF-STRUCT(addr) \
(C $ $ I S - S H O R T - A D D R (a d d r) ? (v o i d *) (a d d r) \
: (v o i d *) r n e r n c p y (- A L L O C A (s i z e o f (* a d d r)) , (a d d r) , s i z e o f (* a d d r)))

d e f i n e C $ $ S H O R T - A D D R - O F - M E M O R Y (a d d r , L e n) \
(C $ $ I S - S H O R T - A D D R (a d d r) ? (v o i d *) (a d d r) \
: (v o i d *) m e m c p y (- A L L O C A (l e n 1 , (a d d r) , L e n))

d e f i n e C $ $ I S - S H O R T - A D D R (a d d r) (1)
d e f i n e C$$SHORT-ADDR-OF-STRING(addr) (a d d r)
d e f i n e C $ $ S H O R T - A D D R - O F - S T R U C T (a d d r) (a d d r)
d e f i n e C $ $ S H O R T - A D D R - O F - M E M O R Y (a d d r , L e n) (a d d r)

Figure 4
M1lacl.o~ tiom <wide-typcs.src>

Implementing the strerror Return Pointer
The fi~nction strcrror always retur~ls a 32-bit pointer.
The memory is allocated by the C run-time library for
both 32-bit nnd 64-bit calling programs. As shown
in Figure 5, we moved the function strcrror into the
section "Functions that support 64-bit pointcrs" of
<header.h> to sho\v that there arc n o restrictions on
the use of this fi~nction.

The "Crcatc 32-bit llcadcr filc typcdcfs" scction of
<lieadcr.li> is in the 32-bit pointcr scction, whcrc the
bound-to-lo\\~-n1c1~1ory data structilres are declared.
The h n c t i o ~ l r e t ~ ~ r n s a pointer to a character string.
Mlc, tlicrcforc, added typcdcfs for -charPptr32 and
A const-char-ptr.32 \vhile in a 32-bit pointer context.
Thcsc declarations arc protected \\lit11 the definition of
A CHAR-PTR32 to allow multiplc header files to use
the same naming convention. Declarations of the
const for111 of tlie typcdcf arc al\\lays made in the samc
conditional code since thcy ~~sual ly arc needed and
using the same condition rernoves the need for a dif-
ferent protectins nanlc.

The strerror fi~nction could have been implemented
j11 <Iieader.h> by placing the function in tlic 32-bit sec-
tion, but that \\/ould have i~liplicd that the 32-bit
poiutcr was a restriction that could be removed later.
The pointer is not a restriction, and the strerror h n c -
tion fully supports 64-bit pointcrs.

The private header file typedefs are always declared
starting with nvo underscores and ending in either
" - ptr32" or "ptr64." These typedefs are created only
when the header file nccds to be in a particular
pointer-size mode while referring to a pointer of the
othcr size. The return value of strerror is modified to
use the qlpedef-char-ptr32.

Including the hcader filc, which declares strcrror,
~ l lows the compiler to vcri@ that the arguments,
return values, and pointer sizes are correct.

Widening the strlen Argument
'The function strlen accepts a constant character
pointcr and rcturns an unsigned integer (size-/).
Implementing fill1 64-bit support in strlen means
changing the parameter to a 64-bit constant character
pointer. I f an application passes a 32-bit pointcr to
the strlcn hnctioli, the compiler-generated code sign
cstrnds the pointer. The recluired header file mod-
ification is to simply move strlen from the sec-
tion "Functions that nccd 64-bit support" to the
section "Functions that support 64-bit pointcrs."

Tlic steps necessary for tlic source code to support
64-bit addressing arc as follows:

1. Ensure that the modulc includes header files that
declare strlen.

D@ Technical bumal Vol. 8 No. 2 1996 91

/ *
* * E n s u r e t h a t we b e g i n w i t h 3 2 - b i t p o i n t e r s .
* I
i f IN IT IAL-POINTER-SIZE
~ ~ (- v M s - v E R < 70000000)
e r r o r " P o i n t e r s i z e a d d e d i n OpenVMS V7.0 f o r A l p h a "
e n d i f
p r a g m a - p o i n t e r - s i z e -save
p r a g m a - p o i n t e r - s i z e 3 2
e n d i f

/ *
* * STRUCTURES NOT AFFECTED BY POINTERS
* I
i f n d e f -SIZE-T
d e f i n e -SIZE-T 1

t y p e d e f u n s i g n e d i n t s i z e - t ;
e n d i f

/ *
* * FUNCTIONS THAT NEED 6 4 - B I T SUPPORT
* /
I *
* * C r e a t e 3 2 - b i t h e a d e r f i l e t y p e d e f s .
* /
i f n d e f -CHAR_PTR32
d e f i n e -CHAR_PTR32 1

t y p e d e f c h a r * c h a r - p t r 3 2 ;
t y p e d e f c o n s t c h a r * - c o n s t - c h a r - p t r 3 2 ;

e n d i f

I *
* * C r e a t e 6 4 - b i t h e a d e r f i l e t y p e d e f s .
* /
i f n d e f -CHAR_PTR64
d e f i n e -CHAR_PTR64 1
p r a g m a - p o i n t e r - s i z e 6 4

t y p e d e f c h a r * - c h a r - p t r 6 4 ;
t y p e d e f c o n s t c h a r * - c o n s t - c h a r - p t r 6 4 ;

p r a g m a - p o i n t e r - s i z e 32
e n d i f

I *
* * FUNCTIONS RESTRICTED F R O M 6 4 B I T S
* I
i n t e x e c v (- c o n s t - c h a r - p t r 6 4 , c h a r *[I);

I *
** Change d e f a u l t t o 6 4 - b i t p o i n t e r s .
* I
i f - INITIAL-POINTER-SIZE
p r a g m a - p o i n t e r - s i z e 6 4
U e n d i f

/ *
* * The f o l l o w i n g f u n c t i o n s h a v e i n t e r f a c e s o f X X X , -XXX32,
* * a n d -XXX64. * *
* * The f u n c t i o n s t r c a t h a s t w o i n t e r f a c e s b e c a u s e t h e r e t u r n
* * a r g u m e n t i s a p o i n t e r t h a t i s r e l a t i v e t o t h e f i r s t a r g u m e n t s . * *
* * The m a l l o c f u n c t i o n r e t u r n s e i t h e r a 3 2 - b i t o r a 6 4 - b i t
* * memory a d d r e s s .
* I
i f - INITIAL-POINTER-SIZE == 3 2
p r a g m a - p o i n t e r - s i z e 3 2
e n d i f

Figure 5
Final Form of <lieader.h>

v o i d * m a l l o c (s i z e - t - s i z e) ;
c h a r * s t r c a t (c h a r *-sl, - c o n s t - c h a r - p t r 6 4 -s2) ;

i f - INITIAL-POINTER-SIZE = = 32
p r a g m a - p o i n t e r - s i z e 6 4
e n d i f

i f - INITIAL-POINTER-SIZE & & -VMS-VER >= 7 0 0 0 0 0 0 0
p r a g m a - p o i n t e r - s i z e 3 2

v o i d * - m a l l o c 3 2 (s i z e - t) ;
c h a r * - s t r c a t 3 2 (c h a r *-sl , - c o n s t _ c h a r _ p t r 6 4 -s2) ;

p r a g m a - p o i n t e r - s i z e 6 4
v o i d * - m a l l o c 6 4 (s i z e - t) ;
c h a r * - s t r c a t 6 4 (c h a r *-sl, c o n s t c h a r *-s2):

e n d i f

/ *
* * FUNCTIONS THAT SUPPORT 6 4 - B I T POINTERS
* /
v o i d f r e e (v o i d * - p t r) ;
i n t r a n d (v o i d 1 ;
s i z e - t s t r l e n (c o n s t c h a r *-s);

- c h a r - p t r 3 2 s t r e r r o r (i n t - e r r n u m) ;

/ *
* * R e s t o r e t h e u s e r ' s p o i n t e r c o n t e x t .
* /
i f - INITIAL-POINTER-SIZE
p r a g m a - p o i n t e r - s i z e - r e s t o r e

e n d i f

e n d i f / * -HEADER-LOADED * /

Figure 5
<:ontinucd

2. Add the tbllowing line of code to the top of the
11iod~1Ic: # i n c l u d e (w i d e - t y p e s . s r c > .

3. Cliangc the declaration of the f ~ ~ n c t i o n to accept
a -wide-const-chal--ptr parameter instead of the
previous const char * paramctcr.

4. Visually follo\v this argument through the code,
loolting for assignnient statcmcnts. This part ic~~lar
ti~nction \\!auld be a si~nple loop. If local variables
store this pointer, they must also be declared as
- \vide-const-char-ptr.

5. Compile the sourcc code using the directive
/\\~arn=cnable=maylosedara to liavc the compiler
help detect pointer truncation.

6. Add n nc\v tcst to the tcst system to exercise 64-bit
poi11 tcrs.

Restricting execv from High Memory
Examination of the exec\! filnction prototypc showed
that tliis f ~ n c t i o n receives nvo argumcnts. The frst
nrgumcnt is a pointer to thc name of thc file to start.
The second 'irgument represents the n rp r array that is
to be passed to thc child process. This arrav of nointcrs
to null terminated strings ends with a NULL pointer.

Initially, the exec\! function was to have had two
iniplenientations. The parameters passed to the execv
function are used as the parameters to the main h n c -
tion of the child process being started. Because no
assumptions coi~ld be niade about that child process
(in terms of support for 64-bit pointers), these para-
meters are restricted to lo\v melnory addresses.

To illustrate that t17e argv passing was a restriction,
\ye place that prototype into the section "Functions
restricted froni 6 4 bits" of <header.h>. The first argu-
nient, the name of the flc, did not need to lia\w this
restriction. The section "Create 64-bit header file
t)~pedefsn was enhanced to add the definition of
- const-char-ptr64, which allows the prototypes to
define a 64-bit pointer to constant characters while in
either 32-bit or 64-bit contest.

Returning a Relative Pointer in strcat
The strcat fi~nction returns a pointer relative to its first
argument. We looked n t tliis fi~rlction and determined
that it required nvo cntr!, points. I n addition, we
\\liciened the second parameter, \vhich is the address of
the string to concatenate to the second, to a l l o ~ l the
application to concatenate a 64-bit string to a 32-bit
string ivithout source code changes.

Digitid Technical Iournnl Vol. 8 No. 2 1996 93

Figure 5 sl~o\vs the changes made to support func-
tions that have pointer-size-specific entry points. The
prototypes of functions XXS, -XXX32, and -XXX64
begin in 64-bit pointer-size mode. Since the un~nodi-
fied fi~nction name (strcat, XXX) is to be in the pointer
size specified by the /pointer-size qualifier, the
pointer sizc is changed from 6 4 bits to 32 bits if and
only if the user has specified /pointer_size=32. At this
point, we are not certain of the pointer size in effect.
We know only that the size is the same as the sizc of
the qualifier. The second argurnent to strcat uses the
- const-char-ptr64 typedef in case \\re are in 32-bit
pointer mode. Notice the declaration of -strcat64
does not use this qrpedef because we are guaranteed
to be in 64-bit pointer context. Figure 6 shows the
implementation of both the 32-bit and the 64-bit
strcat filnctions.

The 64-bit malloc Function
The implementation of multiple entry points was dis-
cussed and demonswated in the strcat implementation.
Although multiple entry points are typically addcd t o
lvoid truncating pointers, fi~nctions such as Inenlory
allocation routines have newly defined behavior.

The fi~nctions decc$malloc and decc$-malloc64
use new support pro\iided by the OpenVMS Alpha
operati~lg system for allocating, extending, and freeing
64-bit virtual memory. The C run-time library utilizes
this new flnctionality through the LIBRTL entry
points. The LIBKTL group addcd new entry points tbr
each of the existing memory management filnctions.
The LIBRTL incl~tdes an additional second entry
point for the free function. Since our implementation
of the free hnction simply widens the pointer, we end
up with a single, C run-time library hnction that nus st
choose which LIBRTL hnction to call.

i n t f r e e (- w i d e - v o i d - p t r p t r) {
i f (!(C$$IS-SHORT-ADDRcptr)))

r e t u r n (c $ $ - f r e e 6 4 (p t r)) ;
e l s e r e t u r n (c . S $ - f r e e 3 2 ((v o i d *) p t r) ;

1

Concluding Remarks

The project took approxiri~atcly seven person-months
to complete. The work involved two mont l~s to deter-
n ~ i n c what we wanted to do, onc month to figure out
how we \Irere going to d o it, and four person-months
to modi?, document, and test the sofnvare.

During the initial nvo months, the technical lenders
met on a \veeltl!l basis and discussed the overall
approach to adding 64-bit pointers to the OpenVMS
environment. Since I was the technical lead for the C
run-time library project, this initial pl~ase occupied
beo\reen 25 and 50 percent of my time.

The one month of derailed analysis and design co12-
sumed Inore than 90 percent of niy time and rc s~~ l t cd
in a detailed document of approximately 100 pagcs.
The document covered each of the 50 header f les and
500 hnction interfaces. The f~nc t ions \Ircre grouped
by type, based on the amount of work r eq~~i red to
support 64-bit pointers.

Thc first nionth of in~plcmcntntion occupied nearly
all of my time, as I made several false starts. Once I
\vorkcd out the final implen~entation technique, I
complctcd at least two of each type of ~ ~ o r k . As coding
deadlines approached, I taught nvo other engineers on
my team h o w to add 64-bit pointer support, pointing
out tliosc fi~nctions already completed for rcf'crcncc.
They came up to specd \vitl~in one \\leek. Together, 11.c
completed the work during the final month of the
project.

i n c l u d e < s t r i n g . h >
i n c l u d e < w i d e - t y p e s . s r c >

/ *
* * STRCATI-STRCAT64 * *
* * The ' s t r c a t ' f u n c t i o n c o n c a t e n a t e s ' s 2 ' , i n c l u d i n g t h e
* * t e r m i n a t i n g n u l l c h a r a c t e r , t o t h e e n d o f ' s l ' .
* /

- w i d e - c h a r - p t r - s t r c a t 6 4 (- w i d e - c h a r - p t r s l , - w i d e - c o n s t - c h a r - p t r s 2)
C

(v o i d) - m e m c p y 6 4 ((s l + s t r l e n (s l)) , s2, (s t r L e n (s 2) + I)) ;
r e t u r n (s 1) ;

3

c h a r * s t r c a t 3 2 (c h a r * s l , - w i d e - c o n s t - c h a r - p t r s 2) C
(v o i d) rnerncpy((s1 + s t r l e n (s l)) , 52, (s t r ~ e n (s 2) + I)) ;
r e t u r n (s 1) ;

L

Figure 6
Irnplcn~entation of 32-bit and 64-bit strcat Functions

\Id. 8 No. 2 1996

Acknowledgments

The author would like to ackiowvJedge thc others who
contributcd to the success of the C run-time library
project. The engineers who helped with various
aspects of the analysis, design, and implementation
wcrc Sandra Whitman, Brian McCarthy, Greg Tarsa,
1Marc Nocl, Boris Gubenko, and Ken Cowan. Our
writer, John Paolillo, worked countless hours docu-
menting the changes we made to the library.

References

1 . 1M. Harvcy and L. Szubowicz, "Estending OpcnVMS
for 64-bit Addressable Virtual Memory," Digital
Techtlical Jo~rrr7a1, vol. 8, no. 2 (1996, this issue):
57-71.

2. T. Benso~i, K. Noel, and R. Peterson, "The OpenVMS
Mixed Pointer Size En\,ironment," Digital Technical
~/o~lri1u1. vol. 8, no. 2 (1996, this issue): 72-82.

3. I)l.lc' C' I !scl-:s Griidcjbr Opeia NVIS Systctns (Maynard,
Mass.: 1)igital Eq~~iprnent Corporation, Ordcr No.
AA-PIINZt<- 'TI<, 1995).

4. I)l:'(; C' R11uti117e Libmiy Rc/i?rclicc 1!46!r11,1al for
O/I~II ~il~/ .S.S~~\ '~e/~/s mayna nard, Mass.: Digital Eq~~iprnc~it
Cosposx'ion, Ordcr No. .4A-PUNEE-TI<, 1995).

5. 04~0111:1.1.s C~tlliilg Stct~?clorcl(Ma!/nard, Mass.: Digital
Eq~~ilxmu~t Corporation, Ordcl No. IW-QSI3RA-'.rE,
1995).

Biography

Duane A. Smith
As a consulting sohrare engineer, Duane Smith is currently
architect and project leader of the C run-time library for
thc OpcnVMS VAS and Alpha plntfornis. He joined Digital
in 198 1 and has \vorked on a variety of projects, including
thc A-to-% Database manager and the Language-Scnsiti\w
Editor. 1)uanc rccei\,ed his R.S. in engineering from t l ~ c
University of Connecticut in 1981 and his 1M.S. in soh-
\\,arc cngiciccring from Wang Ic1srirutc of Graduate Studies
in 1987. H e pr~rsucd his masrcr's dcgree through l3igital's
Gradu.~tc Enginccsing Educnrion Program (GEEP) , 13~1ane
holds one U.S. pntcnt issucd for rhc DE<:\\indo\\ls Suucturcd
Vibual Na\,~gntion (SVN) \\,idget.

Digital Technical J o w l Vol. 8 No. 2 1996 95

Building a High-performance
Message-passing System for
MEMORY CHANNEL Clusters

The new MEMORY CHANNEL~O~ PC1 cluster
interconnect technology developed by Digital
(based on technology from Encore Computer
Corporation) dramatically reduces the over-
head involved in intermachine communica-
tion. Digital has designed a software system,
the TruCluster MEMORY CHANNEL Software ver-
sion 1.4 product, that provides fast user-level

access to the MEMORY CHANNEL network and
can be used to implement a form of distributed
shared memory. Using this product, Digital has
built a low-level message-passing system that
reduces the communications latency in a MEMORY

CHANNEL cluster to less than 10 microseconds.
This system can, in turn, be used to easily build
the communications libraries that programmers
use to parallelize scientific codes. Digital has
demonstrated the successful use of this message-
passing system by developing implementations
of two of the most popular of these libraries,
Parallel Virtual Machine (PVM) and Message
Passing Interface (MPI).

I
James \! Lawton
John J. Brosnan
Morgan P. Doyle
Seosarnh D. 0 Riordi in
Timothy G. Reddin

During the last fe\v years, significant rcscarch and
de\,clopnic~it has been ~~ncicrtnkcn in both :ic.ldcniia
and industl-y in an effort to rcclucc the cost of high-
perfi)rmnnce colnputing (Hl'C). Thc method most
fi-ccluaitly used \\.as to Ix~ilci parallel s!.stclns o i ~ t of
clustcrs of co~nmodit!, \\,orlistntions or scl.\.crs that
could be used as a virti~al supcrcomp~~tcr. ' The no ti-
\ration For this \\.ark \\.as the trcll~endous gains that
h 3 \ ~ bee11 ;~cIiic\~cd i l l rcd~rcccl instrilction set com-
p t c r (IIISC:) niicroproccssor pcrforn~a~icc during tlic
hs t decade. Indeed, processor performance in toiiay's
\\,orkstations and ser\.cl-s ottcn cscccds that ofthc incii-
\.iciu;ll processors in a tightly coupled si~pcl.compiltcr.
Ho\\,c\.cr, traditional local area nct\\,orli (1,,4N) per-
formance has not ltcpt pace \\it11 ~nicropl-occssor
performance. LAN, such as fiber distribi~tcd data
intcrcicc (121>DI), offel- rcnson;thlc band\\nititli, since
couinulnicution is generally carried out by mcnlis of
traditi0nnl protocol stacks such as thc user ciatagrani
protocol/internet pl-otocol (Ul>l'/I 1') o r the trans-
mission cont~.oJ protocol/intcl.nct protocol (T(:I'/I P),
but soft\\,arc o\,erhead ih a major hctor in mcssagc-
tmnsfcr ti~ilc.' This sofnvarc ovcrlicad is not I-cduccd
by building hster LAN ncnvork liard\\~arc. Rntlicl-, a
nc\\. ;~pprox l i is nccdcd-one t h ~ t bypasses tlic pro-
tocol stack \\.bile prcscl-ving sccl~~cncing, error cictcc-
tion, and protection.

~Mucli current reseal-cli is dc\,otcd to rcdrlcing this
C ~ I ~ ~ I ~ ~ L I I ~ ~ C . I ~ ~ O I ~ S o\~crhcaci l ~ s i ~ i g specialized lial-d\\rnrc
and soti\\farc. To this end, 1)igital has been \\,orliing
to ~ilalic commercial Alpha clusters, desccnclcd from
the origi~iiil VASclustcr tcch~~olog!,, n\railablc to scic~i-
tihc anti tcch~~ical users.',' l-hib clustcr tcclinolog!.
i~scs n\.;iilnblc cornmodit\ hard\\-arc and soft\v.lrc to
implcmcut a high-performance coni~iiunicatio~is sub-
systcln.' Tlic liard\\~arc i~itcrconncct that s ~ ~ p p o r t s
clustered opa-ation is Encore <:omputcr Corporation's
patented blF,~MOl<\i <:HANNEI. tech~iolog!.." This
intcrconncct pro\ridrs a mcchanis~n th;tt ;~llo\\.s the \ir-
t ~ ~ a l acitircss spacc of n process to be mapped so tliat
a store i~ ls t r~ct io l l in olie S!.S~CIII is dircctl!' r~tlcctcd in
the physical memory o f ;uiothcr sys tc~~i . Wc have
dcvclopcd sofn\/arc application programming inter-
hccs (AL'Is) that pro\ritic ~~sc~ . - l c \~c l applications \\'it11
tliis c;tp;tbility in a controlled and protected Inanncr.

96 Digital Tccl in ic;~l Joui-11~1 \hl. 8 No. 2 I996

Data may then be transferred between the machines
i~sing simp.le lilclnor\i read and cvritc operations, with
no sofi\vare o\~erliead, csscntially utilizing the f ~ ~ l l per-
formance o f thc liard\\f'~re. This approach is similar to
the o ~ i e used in t l ~ c Princeton SHRIMP project, lvhcrc
this process is described as Virtual Mcmor\l-Mapped
Comrnunicatio~~ (VI\/IM<:). '-I"

Figure 1 sho\\s the relationship ben\!ccn the various
components of our message-passing system. The first
phase of our \\fork invol\led dcsig~ii~ig a program-
riling library and associated Iternel components to pro-
vide protected, unprivileged access to the blEMORY
(;HANNEL net\vork. Our objective in creating this
library was to pro\,idc a facility much like the standard
S!lstem V interprocess corn~niuiication (IPC) shared
memory hnctions a\lailablc in UNIX iniplcnientatio~~s.
Programmers could use tlie library to set up operations
over the IMEMORY CHANNEL interconnect, but they
\vould not need to use the library fiuictions for data
transfer. I n this \\,a); pcrfor~nance could be maximized.
This product, the TruClustcr MEMOlIY CHANNEL
Soh\jarc, pro\iides progranimcrs \\!it11 a simple, high-
performance mccha~lis~n fix building parallel systems.

TruClustcr MEMORY CHANNEL Sofn\larc delivers
the performance available fi-om the MEMORY
CHANNEL network directly to user applicatio~is but
requires a programming style that is different from
that required for sharccl Inelnor)!. This different pro-
gramniing style is ncccssary because of the diffcrcnt
access cliaracteristics bcn\,ccn local memory and mem-
ory on a re1iiote nodc connected tllroi~gh a &lEA401<Y
<:HANNEL network. To ~nal<e programming \\,it11 the
MEMOl<Y CHANNEL technology relati\lcly simple
while continuing to dcli\ler tlie hardware performance,
we built a library of primiti\lc communications f ~ ~ ~ i c -
tions. This system, called Uni\~ersal Message Passing
(UMP), liides the details of MEMOltY CHANNEL
olxrations from the programmer and opcrates seam-
Icssly over t\\io transports (initially): shared rnenior)l
and the MEMORY CHANNEL interconnect. This
allo\vs seamless growth from a symmetric ~nultipro-
cessor (SMP) to a fill1 MEMORY CHANNEL cluster.
Development can bc done on a \\lorkstation, \vIiile
production worlc is done o n the cli~ster. The UIMI'

PARALLEL APPLICATION

UMP

PVM

I SHARED 1 TRUCLUSTER

SOFTWARE

MPI

Figure 1
 message-passing Sysrcnl Archircctirrc

layer was designed from the beginning \\'it11 perfor-
mance considerations in mind, particu~arly wit11
respect to minimizing thc overhead in\.ol\!cd in send-
ing sniall messages.

Two distributed nicmor!r ~nocicls arc predominantly
used in high-performance computing today:

1. Data parallel, which is iued in High Performance
Fortran (HPF)." With this model, the programmer
uses parallel langi~age constructs to indicate to the
compiler Jio\v to distribute data and \+?hat opera-
tions s h o ~ ~ l d be perfomled on it. The problem is
assu~iied to be regular so that the compiler can use
one of a number of data distribution algorithms.

2. Message passing, \\~hicIi is usecl in 1'ar.allel Virtual
Machine (PVM) and Mcssage Passing Inrerhce
(I\/IPI).'l-l' In this approach, all messaging is pcr-
formed explicitly, so the application programmer
deter~nines the data distribution algorithm, making
this approach more suitable for irregular proble~ns.

It is not yet clear whether one of tlicsc approaches
\\!ill prcdo~ninate in the fi~turc or if botli \\rill continue
to coexist. Digital has been \\lorking to pro\ridc com-
petitive solutions for botli approaches using MEMORY
CHANNEL clusters. Digital's HPF work has been
described in a previous issue of the .~orr~-~~nl. l" ' ' This
paper is primarily conccrncd \vith mcssagc passing.

Building on the UMP layer, we constructed implc-
mentations of nvo common message-passing s!!stcms.
The first, PVM, is a dc bcto stilnd'ird for programmers
\\rho want to parallelize large scientific and tcclinical
applications. In addition to messaging functions, I'VlM
also provides process control fu~ictions. The second,
MPI, represents the efforts of a largc group of acadc-
mic and industrial users who are ~vorlung together
to speciljl a standard API for mcssagc passing. At this
time, lMPI does not provide any process control hcili-
ties. The pcrformancc of tlicsc PVbl and MPI systelns
on &IEivlOl<Y CHANNEL clusters cscccds that of tlic
public-domain implementations.

MEMORY CHANNEL Overview

Encore's JMEMORY CHANNEL technology is a high-
performance nct\\lork tllat iliiplcnlents a form of
cluster\\~idc sharecl \lirtual mcmor!(. 111 1)igital's first
i~iiple~ncntntion of this technolog!(, it is a shared,
100-mcgab!!tc-per-scco~id (i\/lB/s) bus that provides
a write-only path from :I page of\.irtual address space
011 one node to a page of physical memor)l o n another
nodc (or multiple other nodes). The MEMOl\Y
CHANNEL network outperfor~ns any traditional LAN
technology that uses a bus topology. For example, a
peak band\vidth of bct\\lccn 35 MB/s and 70 M B/s is
possible \\jith the current 32-bit pcriphcral coliiponent
interconnect (PCI) h4EhilORY CHANNLL adapters,

Digital Technical Journal \'ol. S No. 2 1996 97

depending o n tlie band\vidtIi of the 1 /0 subs)'stcm
into \vliicli the adaptcr is plugged. Although tlic cur-
rent MEMORY CHANNEL, network is a shared bus, the
plan for the next generatio11 is to utilize a s\\~itched
technology tliat \\.ill increase the aggrcgatc band\\,idth
of the nct\\,ork be!*oncl thnt of currently available
s\\.itchcd I A N tcchnologics. Thc latency (time to send
a minimi~m-length lncssagc one way between two
processes) is lcss than 5 ~nicroseconds (p.s). Tlic
MEIMOKY CHANNEL, ncnvork pro\,idcs a comm L I nica-
tions mcclii~m \\.it11 a low bit-crr-01- rate, 011 the ordcr of
10-10. l'lic probabilit\, of undetected errors occurring
is so s~nall (o n the ordcr of the undetected error yatc of
CPUs a~ici Incliiory subs!~stcms) tli,~t it is csscntiall!,
negligible. A MEMOl<Y CHANNEL c1ustc1- consists of
one or more PC1 LMEMORY (:Ht\NNEL adapters o n
each notic anti a hub c o ~ ~ ~ l c c t i n g up to eight nodes.

The MEMOLIY CHANNEI, cluster s ~ ~ p p o r t ~ a
512-1Ml3 global addrcss space into \vhich each adapter,
under opcmting systcm control, can map regions of
local \,irt~lal address space . 'V i s~ i rc 2 illustratcs tlic
I\lEMOI<Y CHANNEL opcmtion. Figure 2a shows
transmission, and Figure 2 b sIio\vs reception. A pngc
table entry (PTE) is an entry in tlie system \ ' i r t~~nl-
to-physical map that tral~slatcs the virtual adcircss of
a 1.7agc to the corrcspo~iding pli\,sical atidrcss. l ~ l i c
MEh4OliY CHANNEL, adapter cont:~ins a pagc control
table (1'(:1') that indicntcs till- each page ofMEMOI<Y
CI-IANNEI. global addrcss sp:icc if tliat pagc is ~nappcd
lo call!^ 2nd \\.licther it is rnnppccl for transmission or
reception. T ~ L I S , to map a past of local \eirtual memi-
or!, for transmission, all tliat is rccl~~ircd is to

Set up an entry in the systcm \.irtual-to-ph~,sic31
niap to point to a page in the MEIUORY <:HANNF.I.
adapter's PC1 1 / 0 addrcss space \vindo\\!, \vliicli
is directly mappcci to the pagc in MEMORY
<:FIANNF.I. space

Enable tlic corresponding pagc cntr!; in tlic I'(:T
ti)r trans~~~ission

Any \\,rite to the mapped \ ~ i ~ - t ~ ~ d l page \ \) i l l then
rcsult in 3 corrcspondirlg \\/rite to t l ~ c MF,IVIOl<Y
CHANNEI, nch\.ork.

,. . l o complete tlic circuit, the page of hlElvlOl<l'
CHANNEL. spncc niust bc m ~ ~ p p c d to \.irtl~al mcmor!,
o n .~notlicr node. 'This is ~lccomplished o n tlic otlicr
node hy

Making ;I ['age of pl~ysic~ll memory nonpngcablc
(\\.ired)

Crcnting a v i r t ~ ~ a l rcgion \\,hose PTE points to the
\\.ired page

Setting LIP tlie 1 / 0 direct memory acccss (13MA)
scattcr/g.ithcr map to point to the physical pagc

Enabling tlie appropriate cntr!. in the adapter's
P(:T for rcccption

T l i ~ ~ s , \\dicn a 1\4EA40I<l' (:HANNEL n ~ t \ \ ~ o r k packet
is rcccivcd that corresponds to the page that is niapped
fix rcccption, the data is transferred directly to the
appropriate page of physicnl memory by the system's
l>MA engine. I n addition, any cachc lines that refer to
the upJ;itcd page are inr.llidatcti.

Subscclucntl!; an!. \\rites to tbc napped page of \.ir-
tual memory on the first nocic r ~ s ~ ~ l t in corrcspo~ldirlg
writes to physical memol-!l o n the second node. This
means that when a rcgion in IMEMORY (;HANNF.L.
s l > ~ c]ins bccn alloc,~tcd nnci iittnched to a proccss,
\\.rites to tIi3t rcgio~i a1-c just simple stores to a process
\rirt~~al addl-css. \ . i r t~~nl ncldl-css translates to n p h ! ~
ical adcircss tliat is m ~ p p c d for tmnsmissio~i. Rcatis
froni that region :Ire si~iiply loads from a pu)ccss \ \ ' i~ . t~~a l
address, so tllc operating system is not invol\icd in tlata
trar~sfcr, \\,it11 conscqucnt rcductio~i in o\~crhcad.

To use the MEMORY (:HANNEL hard\varc, the
operating s!.stem must PI-o\.idc ccrtaiu basic scr\.iccs.
Digital's cluster sohval-c includes a set of lo\\.-lc\,cl
primiti\,cs tli;~t can be i~scd in the UNIX Itel-ncl. 'The
fi~nctionality that these scr\riccs pro\~idc inclucics

Allocating and deallocating regions of hlEMOKY
(:I-1ANNEL space h r transmission or rcccption

Alloc.~ting and dcalloc,~ting cluster spilllocks

Pro\.iding the capability to be notifieti \\,lien ,I p,lgc
has bccn \witten (i.c., a lot if cation channel)

TruCluster MEMORY CHANNEL Software

\/Vc dcsigrlcd the TI-ir<:lustcr MEi\ilOli\r' (:Hr\SNEt.
Sott\~.nl-c product t o pro\.idc user-le\.el acccss to the
Iternel f~nctions that control the MEIMOI<Y (:HASXI-L
hard\\~lrc. The target audience for this technology is
parallel sott\\lare library builders and parallel compiler
implc~ncntcrs. As shot\-n in F i p r c 3, the product con-
sists of nvo components layered on top of the lker~lcl
hlEMORl' (:HANSEL fi~nctions:

1. A kcrlicl si~bs!.stern tliat interfaces to tlic lo\\ - l c \ ~
licrricl functions

2 . A ~~ser-Ie\.eI API librar!'

Tlicrc \\.ere t \ \ ~ choices in dc\,eloping the p . o d ~ ~ c t :
pro\.idc simple ~lser-Ic\.cl ,~cccss to thc basic f~~~ic t ion, i l -
it\. or builci a more sophisticated system (c.g., a tiisrrib-
uted sliarccl mcmor!, [DSM] s!,stc~n). Wc cliosc to
nlakc 3 S L I I > S C ~ of the f~nction;llity o f thc opcmting sys-
tcni kcrncl pril~ijti\ci a\sailnblc to applicatiolls fix tn*o
rcnsoris. Fil-st-, \\,c did not initiall!, kno* the degree
of f~nc t ionn l i c required to pro\.idc generic user-
l e \ d acccss to the iVll:.\lOl<l' (:I~.iNNlil. net\\-ol-I;.
for the long term. Second, the original purpose of
the \lurk \\.;IS to give scientific anci tcclinicnl cus-
tomcrs, r.ltlicr than com~iicrcial cluster i~scrs, cnrly
acccss to the hlt;h/lORY (:HANNEL nct\\,ork. As '1

rcsult, tlic f~~nction~~lit!, \\.c b ~ ~ i l t into the proci~~ct is

\lo1. 8 N o . 2 1996

Table 1
TruCluster MEMORY CHANNEL API Library Functions

Function
Name Description

imc-asalloc Allocates a region of NIEMORY CHANNEL address space of a specified size and permissions and
with a user-supplied key; the ability to specify a key allows other cluster processes to rendezvous
at the same region. The function returns to the user a clusterwide ID for this region.

Imc-asattach Attaches an allocated MEMORY CHANNEL region to a process virtual address space. A region
can be attached for transmission or reception, and in shared or exclusive mode. The user can also
request that the page be attached in loopback mode, i.e., any writes will be reflected back t o the
current node so that if an appropriate reception mapping is in effect, the result of the writes can
be seen locally. The virtual address of the mapped region is assigned by the kernel and returned
t o the user.

Imc-asdetach Detaches an allocated MEMORY CHANNEL region from a process virtual address space.

imc-asdealloc Deallocates a region of MEMORY CHANNEL address space with a specified ID.

imc-lkalloc Allocates a set of clusterwide spinlocks. The user can specify a key and the required permissions.
Normally, if a spinlock set exists, then this function just returns the ID of that lock set; otherwise
i t creates the set. If the user specifies that creation is to be exclusive, then failure will result if the
spinlock set exists already. In addition, by specifying the IMC-CREATOR flag, the first spinlock in
the set will be acquired. These two features prevent the occurrence of races in the allocation of
spinlock sets across the cluster.

imc-lkacquire Acquires (locks) a spinlock in a specified spinlock set.
imc-lkrelease Releases (unlocks) a spinlock in a specified spinlock set.

imc-lkdealloc Deallocates a set of spinlocks.
imc-rderrcnt Reads the clusterwide MEMORY CHANNEL error count and returns the value t o the user. This

value is not guaranteed t o be up-to-date for all nodes in the cluster. It can be used t o construct
an application-specific error-detection scheme.

imc-ckerrcnt Checks for outstanding MEMORY CHANNEL errors, i.e., errors that have not yet been reflected in
the clusterwide NIEMORY CHANNEL error count returned by imc-rderrcnt. This function checks
each node in the cluster for any outstanding errors and updates the global error count accordingly.

imc-kill Sends a UNlX signal t o a specified process on another node in the cluster.

imc-gethosts Returns the number of nodes currently in the cluster and their host names.

\ ~ l i i c l i librar!, fi~nction h:is bccn called) and any para-
JIIC~C~S and sends i t to thc lkcrncl s~~bspstcm LIS~ I I~

klnodcall. 'I'lic Itcrncl s~~bs!.stc~n l i a s a ~n;~tcI i ing fiinc-
tion ti)r cacli o f rhc librar\r cnlls. When a com~nnnd
bloclc is rccci\,cd, i t i s p~1.5cci .~nd the nppropriate h n c -
tion is callcd to scr\.icc rhc request. All security and
rcsoiIrcc cliccks ;ire pc~-fO~-~iicd inside the kernel.

Figi~rc 4 sho\\,s some o f tlic cinta struct~~rcs that the
I<cr~icl services use. A clustcr\vidc rcgion of IMEMOKY
CHANNEI, space is nllocatcd to store thcsc manage-
nicnt s t r ~ ~ c t ~ ~ r c s . This rcgion contnins a control struc-
ture 2nd sis linltcd lists of descriptors. The control
S~ I .L I~~L I I -~ manages MEAllORY CHANNEL resources
allocated L I S ~ J I ~ 'l'ru(:lustcr MLMOliY CHANNEL
Sott\\~arc. Each rcgion of h/ll-,1\~101<Y CHANNEL adclrcss
space 2nd cnch set ofMEI\/IOIU' <:HANNEL. spinloclts
nllocatcd using the product hnvc a corresponding
descriptor in tlic kernel data structure.

For cnch rcgion o f MEMORY (IHANNEL address
spncc nllocntcd in the clustc~-, thcl-c i s n cluster rcgion
dcscriptor ((;111>) that contains information dcscrib-
i11g the rcgion, including its cl~ntcru.idc rcgion identi-
fication number (II)), i t s s i ~c , kc); permissions,

crcation t i~i ic, and the UNlX LISCI- 11) (UI l)) n~ici group
11) (GIl)) o f tlic creating proccss. For an incii\.idual
CRl3, there is a host rcg~ol i descriptor (t l l i l 3) for cacli
node that lias tlic rcgion mc~ppci i . 'Tliis HLI1) contiiins
the clustcr ID o f the ~ i odc ,~nd other nocic-specific
inforlnation. Finally, for a spccitic H1<1>, thcrc is ;I
process region descriptor (PRI)) fix cacli process on
that node that is using the rcgion. The I'ltl) contains
the U N l S proccss 11) (1'1 1)) o f tlic process tliat crcntcd
the region and any process-spccifc inh-mation, sucli
as \irtual addresses.

Similarly, for each set of spinloclts nllocatcd on the
cluster thcrc is a cluster lock dcscriptol- (<;L,l)) tlint
contains information describing the spinloclc sct,
inclilding i t s cl11stcr\\idc lock I I), the 1111rnl3cr o f spin-
locks in the set, tlic kc): permissions, crcntion time,
and the U I D and G11) of the crcnting proccss. For an
indi\,idual CLD, thcrc is ;i host lock descriptor (HLI))
for each nodc that is using the spinlock set. TIic H1.1)
contains tlic clustcr ID o f the nodc and otlicr nodc-
specific inhrmation about the spinlock sct. For n spc-
cific HLl>, thcrc is a proccss lock iicscriptor (I'1,l)) h r
each proccss on that uodc tliat is usins the spi~ilocli.

HRD 0: HOST 4

CRD 3

I PLD 3 . PID 4072 1

KEY:

CLD
CRD
HLD
HRD
PLD
PRD

Figure 4
Tru(:luster ILIEhlORl' (:Hr\SSEI. I<clncl Data Str~lcturcs

set. Tlic PLD contains tllc 1'11) of thc process that crc-
dtcd the spi~ilock set ,111~1 ;111y process-specific informa-
tion i~bout the spinlock set.

All these clustcr dat.1 s t r~~c tu rcs have pointers that
cannot be ~ ~ p d a t c d atomic;illy. 111 our implcmentatiou,
they actually consist of nvo copies (old and nc\\.) and
a toggle that indicates \\.llich of the nvo copies is \ d id .
Tlic toggle is s\virchcd fi-om an old copy to a nc\v copy
only when the new copy is kno\vn to bc consistent, so
that tb i l~~rc of a cluster ~ncnlbcr while modit$ng the
s t r ~ ~ c t ~ ~ r e s can he tolc~.dtcd.

Figure 4a jllustrutcs '1 hypothetical situation in \vhich
four regions of M E I ~ I O K Y <;HANNEI., space have bccn
allocatcci 011 the cluster-. The f rst region, \\,it11 dcscrip-
tor (;RD 0, is mapped o n tlircc nodcs: host 4, host 6,
and host 3. Tlic diagram also sho\\ls fi>ur processes o n
host 3 \\firh the region mapped and lists the PID ofcach
process. F i g ~ ~ r c 4b shows ;I sinlilar situation fix spin-
locks. T\vo sets of spinlocks have been allocated. Tllc

first, with descriptor <:LLl 0, is mapped o ~ i nvo nodcs
of the clustcr: host 2 and host 0. One process o n each
of tlicsc nodcs is CLII-rcntly sing tlie spinloclc set.

Command Relay
The comniancl relay is a kernel-lc\,cl frnmc\\.ork that
enables the cxccution of a generic scr\.icc roi~tinc o n
another ~ ~ o d c \\,ithin the clustcr. I t f ~ n c t i o ~ l s as a s i ~ n -
plc kcr~icl remote procedure call (RI'C:) mcchanisni
based on fiscd unidit-cctional message locations (niail-
boxes) and ILIEILIOKY <:HANNF,I. notification chan-
nels to a\\tal<cn the server Itcrncl thrc'd. Figure 5
sho\vs the m ~ j o r components of the command relay
and illustmtcs its operation bcn\~ccn n\,o hosts in a
clustcr. A client kernel thread o n one host in\.olting a
ser\.icc and the corresponding server kernel thread o n
allother cluster I~ost conimunicatc data using a defined
bidirectional command/rcsponsc block, know11 as a
parameter structul-c. The client and server routi~les

Digital Technical Jou l - r~a l

HOST A - - - - - - - - - - - - - - - - -

CLIENT 0
INVOKE , [E i

HOST B
r - - - - - - - - - - - - - - - - -

S E R V E R ICY
INITIATOR RELAY SLAVE RELAY

- - - - - - - - - - - - - - - - - J NOTIFICATION CHANNEL L - - - - - - - - - - - - - - - - -

Figure 5
Coninia~id lie la!^ Opcr'~tioll

tliust confor~n to this interface and must be reliable,
i.e., they must always return to the caller. The server
can call any kernel fi~nction. Server routines are regis-
tered (step 1 in F i g ~ ~ r e 5) using a clusterwide service
ID. A kernel thread in\loking a remote service passcs
a packed parameter structure to the command rela),,
together \\,ith a destination nodc ID and a ser\sice 113
(stcp 2). This command relay the11 ;lcicis process creden-
tials and builds a service protocol data unit (SPDU).
Using a MEMORY CHANNEL notitication channel, it
signals the remote nodc and passcs the SPDU by nieans
of a mailbox in MEMOLCY CHANNEL space (step 3).
The server parses the SPI>U and calls the requested ser-
vice function, passing it the parameter structure (step
4) . When the service fbnction co~npletes (step 5), its
return status and any data \glues are packed into .In
S1'1)U anci placed into the ~nnilbox, and the initiating
rclay is signaled (stcp 6). The initiator then irnpaclts the
data horn the SPDU and returns the appropriate status
and values to the client kernel thread (step 7).

All calls to the coliimand relay arc s)rnchronous and
serialized. The invoking Iternel thread blocl<s until tlic
scr\u- returlis. Requests to the comma~id relay subsys-
tem are treated on a first-come first-served basis, and
calls to a busy rclay block until the relay beco~ncs free.
Relays arc automatically created bctwccn all nodes in
the cluster.

The command rela!, mechanism rnaltes it possible
to send a UNIX signal to a proccss o n another nodc
\\.ithin the LMELMORY <:HANNl{L c l~~ster . The imc-kill
library function uses tlic command relay to in\~oltc
tlic rcgistcrcd kernel servcr roiltine for cluster signals
o n the remotc nodc, \\~Iiich, in turn, calls tlie kerncl It i l l
f~lliction directly wit11 the 1'1 13 s~~ppl icd .

Initial Coherency
Wlicn a proccss o n a cluster mcnibcr maps a region of
hIEMO1IY CHANNEL.. addrcss space for both rcccp-
tion and transmission, ,In!, \\lrites to the transmit
rcgion b!, that proccss arc rctlectcd as changes to the

102 1)igiral Tcchnicnl Journal Vol. 8 No. 2 1996

corresponding receive region. If another process on
another cluster node subsequentl!~ maps the same
region for reception, the contents of its receive region
are indeterminate; i.e., the nvo processes d o not liave
a coherent \vie\\. ofthat region. This situation is knon.11
as the initial coherenc!! problem. For a n application
dc\,cloper, this problem malies it difficult to treat
MEblORY CHANNEL addrcss spacc ns 'luother form
ofsliarcd memory Applications can overcome this dif-
f c~11t-y by using sonic ti)rm of start-up synchronization.
However, all dc\clopcrs \\fould have to implement
these solutions separately. To increase the ~~sability o f - .
I r ~ ~ ~ I i i s t c r MEMORY CHANNEL. Sohvare, the design
tcani decided to build in the ability to rcqucst coherent
allocation of MEIUOIIY (:FIANNl:l. 'Iddress spacc
across the cluster. Dc\~clopcrs can spccifjr this as an
option in the call to imc-asalloc. As n result, a proccss
can attach a MEMORY CHANNEL, rcgion for reception
ti)llon,ing any updates and still share a common vie\\, of
the rcgion with other processes in the cluster.

A special proccss, called the mapper, is used to pro-
vide the \lirtual address spncc to liolcl the coherent user
space mappings. Whcn the ltcrncl s i ibs)~s te~i~ receives
a r c q ~ ~ e s t for co l l e re~~ t allocatio~l, it allocates the
MEi\ / lOR1rC~\ lNEl , rcgion ns normal and then maps
the rcgion for reception into the virtual addrcss spacc
of the mapper proccss. The command relay mechn-
nism tlicn causes all the other nodes in tlie cluster to
allocate the same rcgion and map it fix reception into
tlic addrcss space of the mapper proccss on each nodc.
Since ~nultiplc uscr-lcvel p~.occsscs o n a nodc that
nttncl~ a particular region for reception share thc samc
physical memory, all uptirltcs to the rcgion arc sccn by
late-joining processes on any nodc in the cluster. If
the recluesting proccss exits, the rcgion \\,ill still be
allocated to the rnappcr, so that another allocation of
the samc rcgion o n that ~ i o d c \\'ill rcsi~lt in a colierent
picture of that region. Thc rcgion is fi~lly deallocated
(i.c., from all the rnappcr processes) \\.hen the last
application process al locati~~g t l ~ c rcgion either esits or
explicitly clcallocates the rcgio~i.

Given the uscf~~lncss ofcohercnt allocations, it !nay
seem t~~iusual tliat \vc made this feature an option
rather thnn the cicfai~lt. There are several reasons fix
this. With colicrcnt allocations, the associated physical
memory becomes nonpagcable on all nodes nrithin the
cluster, and, as such, it consumes physical resources.
In addition, every outbound write to such a region
r e s~~ l t s in an i n b o ~ ~ n d \\,rite to the pliysical memory of
each node in the c l~~stcr . For some application designs,
it map bc more desirable to create a region that is writ-
ten by one nocie and only read by other nodes. Also,
autoniatically reflecting all \vrites back to a node, ns
is done for coherent regions, consulnes nvice as much
bandwidth on the I'CI bus.

Late Join and Failure Resilience
To pro\lide an operational en\.ironment in which
nodes can join or lea\re tlie cluster at any time, tlie ker-
nel subsystem needs to o\,crcome a nu~nber of prob-
lems resulting from late join and node hilurc. In fact,
the kcrncl subs!lstcm is subject to the same difficulties
of initial cohcrcnc!, as application-le\~el processes. To
managc L I S C ~ space ;~IIocati~ns, late-joining nodes
rccl~~irc a coherent \pic\\ o f the cluster data structures.
~Morcovcr, hilurc of ;in csisting node can result in o ~ ~ t -
of-datc or, c\vn \\,orsc, corrLIpt data structures in the
subsystem's control region. To contain the failure,
corrupt data structures must l>c repaired.

Lo\i~-level Itcrncl routines dctcct cluster nicmbcrsliip
ch.ingc and \.\ral<e up n management service thrcad o n
cacli nodc that pcrhrms operations local to that node.
The ti rst management service thrcad to acquire a spc-
cific spinlock is clcctccj to manage clustcr\vide ~~pda tcs .

In the case of late join, tlle management service
thread updates local statc to reflect the ne\v configura-
tion. "The thrcud tliat has been clesignated to managc
clustcr\vidc ~~pcintcs is responsible for pro\,iding the
late-joining nodc *it11 an up-to-date copy of tlic clus-
ter datii structurcs. Wlicn triggered b!, the ne\v nodc,
tlic thrcaci rct~.nnsmits the contents of the data struc-
tures so tliat the late-joining node has a fi~lly up-to-
date vie\\. ofallocntions and resource usage.

Wlicn a nodc fiiils, the thread elected to manngc
cl~~stcr\vidc ~~pdn tcs must examine the entire managc-
mcnt data stl-ucturc anci repair it appropriately. Repair
is necessary \vllc~l the hiling nodc that is in the process
of i~pdating tlic global data structures has Icft tlicsc
clustcrwidc ~rpciatcs in dn unstable state. Repair is pos-
sible bccausc all updates to global data structurcs use
two copies of the structure (old and ne\v, as described
previously), \vhicIi Incans that tlie structures can be
reset casil\! to a stahlc statc. If tlie tTailed nodc was not
acti\rcly upciaring the data structures at the time of the
f~i lu~.c , the management thrcad simply I-erno\,cs all
rcso~r~.ccs ~llocntcd to the failed node.

Error Management
Tlic MEMOlU' CHANNEL hard\\,are pro\kics a vcr!~
lo\\, crror rate, ordering guarantees, and an ability to
dctcct rcmote crror si t~~ations quickly, making ir possi-
blc to construct simple crror detection and recover!,
protocols. A kernel i~lterrupt ser\ice r o ~ ~ t i n e detects
cluster errors and updates an error counter that retlects
the cl~~ster\ \~ide error co~11it. A lo\\!-le\)el kernel routine
returns the \falue of this counter. Due to timing consid-
erations, it is not possible to guarantee tliat this count
\ \ r i l l be up-to-date with respect to possible crrors o n
rcmote ~iodes. A lo\\)-le\~el Iternel routine that efti-
ciently reads the error status of remote MEiMORY
CHANNEL adapters and detects unproccsscd errors
is provided. This routine uses a hardware feature,
known as an ACl< page, that is specifically designed to
hcilitate crror detection. A write to such a page results
in the crror status of each MEMORY CHANNEI,
adapter being \\vritten to successi\~c lociltions of tlie
corresponding reception mapped re,' 01011.

During dc\,elopment, \ve built simple intcrfaccs
to access tlicse lo\\r-lc\.el routines, tliercb\~ allo\\.ing
message-passing libraries to build in crror manage-
mcnt. Because tlic method of getting into and out of
the kcrncl is a generic one, the overhead is high-
approsi~iiately 30 ~ s . This conipnrcs poorly \\.it11 the
ra\v latency for short messages, \vhicIi is less than 5 FS.
To pro\lidc suitable performance, we rcimplcmc~ltcd
tlie f ~ ~ i c t i o n s to csecilte totally i l l user spacc. As a
result, \i/hen an application reads the error count for
the first time (using imc-rderrcnt), tlic kcr~icl v,lluc of
the crror count is mapped for read-only access into tlic
\ l ir t~~al address space of the process. Subsequent rends
o f the crror count arc then simply reads of a mclnory
loc~ltion. Similarly, when an application calls the check
error scr\ricc (using imc-ckerrcnt) for the first time,
A(;I< ~73gcS we tr,i~ispxl'"itly ~llapped into the \ ' i r t~~nI
;iddress spacc o f the process, and the crror detection is
pcrfornied at hard*are speeds directly fi-om user
s p ~ c . Tliis 11.1s bee11 meas~~red at less than 5 ~ s .

The k)llo\\ring sccluencc can be used to guarantee
dctcction ofintcr\.cning errors by the transmitter:

1. Sa\,c the crror count

2. Write tllc message.

3. Check the error count (using imc-ckcrrcnt).

If the transmitter \\/rites the sa\~cd crror count ~ l t the
end of the message, the message rcccivcr can dctcr-
mine if any intervening crrors have occun-eel by simply
comparing the crror count in the mcssiigc \vith the
ci~rrcnt \ ~ ~ I L I c using imc-rdcrrcnt. Tliis is possible
because of the sequencing guarantees built into the
IMEMORY CHANNEL nenvork. Using imc-rcicrrcnt
and imc-clterrcnt, the programmer c,ln build an appro-
priate crror detection and/or reco\.ery schcmc that
meets the perforniance requirements of the application.

Performance
71-hc performance ofTruClustcr hlEkIORY (:HANNEI,
Soft\\.arc o n a pair of AlphaScr\.cr 4100 5/300
mi~clii~lcs is prcsc~lted in Table 2. T h c ~ nlcasurcniellts
\\,ere ln'lcie using \us ion 1.5 ~VlF.hllOl<Y (: M A N S E L
;lii;iptcrs. Tlic 1>;111~1\\'idtli (64 hllli/s) ;11iti latcnc!'
(2.9 ps) acliicvcd using this system arc essentially that
o f thc 1ia1-d\\l;lrc, since n o s y t c ~ n o\,c~-licad is in\rol\ui.
The tinlcs rcql~ired to perform the error-cliccking
f ~ ~ ~ l c t i o n s indicate that the o\,c~-hcncl of calling
imc-I-dcrrcnt is much less than r h . ~ of imc-ckcrrcnt.
This is bccnusc tlic latter has to s!,nclironizc \\,it11 all
otlicl- mcmbers of the cluster. Protocols that rely on
rccci\,cr-only error detection (usins imc-rdcrrcnt) \\ . i l l
tl1crcfi)rc I~n\,c a lo\\rcr o\~crhcaci.

Programming with TruCluster
MEMORY CHANNEL Software
.l"l~c I\IEILIORY CHANNEL network inlposcs somc
1111icluc restrictions on tllc pl.ogramlncr. Sincc the nct-
work requires separate transmit ;lnd I-cccivc regions,
any rend-\\trite memory location that is to be \risible
clustcr\\~idc must lia\lc two addresses: a read address
n11ei n \\rite address. Attempts to rend fi-om a \\,rite

acidrcj\ typjcally causc n scg~l~c~lt , l t ion \'iolntio~i.
i\ilt:h/lOl<l' C H A S N E L addrcss spacc c;ln be i~scd like
sliarcd menlor!,. Unlilte shnrcci mcmor!; tlioi~gli, its
Intcnc!* is \,isible to the programma-, \\.lie must considcl-
I;ltc~lc\' cllc'cts \\.hen \\.riting to a clustc~-\\,icic locution.

As J I I cx,lrnple of progra~nnling \\.it11 T~.u(:lustcr
hlE.VOR1' CHANNEL Soh\.arc, Figure 6 ~ h o \ \ ~ s a
simplc program that implcmcnts a global counter,
p w h r m s somc \\,orlt, and then dccrcmcnts the global
counter ~nc i exits. For tlic pi~rposcs of this example,
assume that nli~ltiplc copics of the program arc run
concurrently on different machines in n cluster. Such
olxration rccluires synchronization to C I ~ S L I ~ C safe
,~cccss to sliarcd data in I\/iEILlOl<Y CHANNEI. spacc.
The cr,~rnplc progrnm first nlloc,~tcs ~ll:ICIOI<Y
(:HANNl-.l, regions for tra~is~nission ,~nci ~.cccption L~nci
attaclics them to proccss \.irtunl nddrcsscs. Nest, a
set ofspinloelis is created (LIIIICSS it ,llrc.~ci!- exists). Tlic
first copy of the program to crcntc the spinlock set
ncc1~1il.c~ t l ~ c first loclc in the set ,111ci initi.lli~cs tlic
glolx~l rcgion, \\'hereupon it rclcnscs thc spi~~loclt ;ind
contin~lcs. All other copics of t l ~ c prograni \\,;lit in
inlc-lkaccluirc until the spinlock is rclcuscd by the brst

Table 2
TruCluster MEMORY CHANNEL Software Performance

Sustained bandwidth 64 MB/s
Latency 2.9 ps
Read error count (imc-rderrcnt) < I p.s
Check error count (imc-ckerrcnt) <5 ks

cop!,. E.1~11 c o p 8 in turn ncq~~ircs the lock itself, incrc-
nicnts tlic proccss counter, and releases the lock. Tlic
copies then pcrfijrm somc \ \ark in parallel. When cnch
program has tinishcd its portion o f thc \\,ark, it dccrc-
ments t l ~ c glohnl proccss coilntcr (~is ing tlic spinloel<
to control access .~gni~i) . Finall!,, the spinlock set ,lnti
shared rcgions arc dcallocated. Several csa~nples of
code i l l~~stratins tlicsc topics are contained in the
Tr i rC/~w/c~ . . l / / i~ /~ /~) c,'llAivivliI, SoJir~:are P~.o~q,ai~rilrc~~.:\.
ni~ll~llal.~'' Wc Ii;lvc fol~nd tlint implementing a silnplc
message-piissinp layer o n top of'r'ruCluster bIEA/IORY
CHANNF.1. Sofn\.a~-c is 3 more effective solutio~l than
prog-ammiug dil-cctly \\.it11 JCIEMOKY C H r \ N N E I ,
regions, as described in tllc nest section.

Sc\.cral fcat~~l.c\ dcscribcci ,ibo\~c \\.ere not iniriall!.
present in the 'fruC.lustcr ICIEI\LO~<Y C H A K N E I .
Soht.are product. As 3 I-csi~lt of 0111- experience implc-
mcnting UiMI' and the higher PVh4 and i\II'I Ia\rcrs,
\\.e acldcd the fi)llo\\ring features:

Initial cohcrcncy

Command rcl;i!l

Universal Message Passing
The Universal 1Mcss.igc Passing (UklP) library is
dcsigncd to pro\icic a fi)l~ndation for implcmcntins
efficient ~ncssngc-p<~ssing s!,stcms on the hlEi\jIOl<l'
CHr\NNEI., nct\\.ork. From the outset, \\,c \\,ere a\\.arc
that tlicrc \\~oultl he J dcmand fix PVM and MPI
implcmentatio~is ;lnd that other implen~c~itat io~is
might follo\\l. We felt that it \\,auld be easier to con-
s t l ~ ~ c t high-pcrti)rma~~c.c message-passing systems i t '
\\re pro\nidcd n thin l,~ycr that could cfficientl!~ I1nndl.c
the rcstl-ictions that the MEMOKY CHANNEL nct-
\vorIt imposes.

The ~ o d s in cicvcloping UMI'\rere to

Simplifi, the co~ i s t r~~c t ion of mcssagc-passing s\.s-
terns i~tilizing the h~ll:.\IOI<Y < : H h S N E L , ncn\.ork
by hiding the details of the undcrl!*ing commll-
nications transport (initially, shared memory or
L M E ~ I O ~ I Y (IHANNF.1.).

Optimize pcrformnncc .ind csploit thc lo\\r latcnc!,
of the MF,MOl<Y (:HANNEI, network; the initial
goal for latency o \c r tlic iMEILlOl<Y CHANNEL nct-
\\lorlt using I'VM was to ncliicvc less than 30 p.s.

Ease tlic c i c \ ~ c l o p ~ ~ ~ c ~ i t of parallel mcssagc-passing
libraries by providing ,I si~nyle set of nlcssagc-
passing fi ~nctions.

Act as ;I con\.crgcncc ccntcr fi)r possible ~ L I ~ L I I . ~

intcrconnccts.

\:oI. S No. 2 1996

e x t e r n l o n g a s m (c o n s t c h a r *, . . .) ;
U p r a g m a i n t r i n s i c (a s m)
d e f i n e m b 0 a s m (" m b ")

m a i n 0
C

i n t s t a t u s , i, l o c k s = 4 , t emp , e r r o r s ;
i m c - a s i d - t r e g i o n - i d ;
i m c - l k i d - t l o c k - i d ;
t y p e d e f s t r u c t C

v o l a t i l e i n t p r o c e s s e s ;
v o l a t i l e i n t p a t t e r n C 2 0 4 7 1 ;

) s h a r e d - r e g i o n ;
s h a r e d - r e g i o n * r e g i o n - r e a d , * r e g i o n - w r i t e ;
c a d d r - t r e a d - p t r = 0, w r i t e - p t r = 0;

I* MC r e g i o n I D *I
I* M C s p i n l o c k s e t I D *I

I* S h a r e d d a t a s t r u c t u r e *I

I* A l l o c a t e a r e g i o n o f c o h e r e n t M C a d d r e s s s p a c e a n d a t t a c h t o *I
I* p r o c e s s VA *I
i m c - a s a l l o c (l 2 3 , 8 1 9 2 , IMC-URW, IMC-COHERENT, & r e g i o n - i d) ;
i m c - a s a t t a c h c r e g i o n - i d , IMC-TRANSMIT, IMC-SHARED, IMC-LOOPBACK, & w r i t e - p t r) ;
i m c - a s a t t a c h (r e g i o n - i d , IMC-RECEIVE, IMC-SHARED, 0, & r e a d - p t r) ;

r e g i o n - r e a d = (s h a r e d - r e g i o n *) w r i t e - p t r ;
r e g i o n - w r i t e = (s h a r e d - r e g i o n *) r e a d - p t r ;

I* I n i t i a l i z e t h e g l o b a l r e g i o n * /

I* A L L o c a t e a s e t o f s p i n l o c k s a n d a t o m i c a l l y a c q u i r e t h e f i r s t l o c k *I
s t a t u s = i m c - l k a l l o c (4 5 6 , & l o c k s , IMC-LKU, IMC-CREATOR, & L o c k - i d) ;
e r r o r s = i m c - r d e r r c n t 0 ;
i f (s t a t u s = = IMC-SUCCESS) C

d o C
r e g i o n - w r i t e - > p r o c e s s e s = 0;
f o r (i = O ; i < 2 0 4 7 ; i + +)

r e g i o n - w r i t e - > p a t t e r n [i I = i;
1 --;
m b 0 ;

) w h i l e (i m c - c k e r r c n t (& e r r o r s) I I r e g i o n - r e a d - > p a t t e r n L i I ! = i) ;
i m c - l k r e L e a s e (1 o c k - i d , 0) ;

1 e l s e i f (s t a t u s = = IMC-EXISTS) C
i m c - L k a l L o c (4 5 6 , & l o c k s , IMC-LKU, 0, & l o c k - i d) ;
i m c ~ L k a c q u i r e (l o c k ~ i d , 0, 0, IMC-LOCKWAIT);
t e m p = r e g i o n - r e a d - > p r o c e s s e s + 1; I* I n c r e m e n t t h e p r o c e s s c o u n t e r *I
e r r o r s = i m c - r d e r r c n t 0 ;
d o C

r e g i o n - w r i t e - > p r o c e s s e s = temp ;
m b 0 ;

) w h i l e (i m c - c k e r r c n t (& e r r o r s) I I r e g i o n - r e a d - > p r o c e s s e s ! = t e m p) ;
i m c - l k r e l e a s e (1 o c k - i d , 0) ;

>

(B o d y o f p r o g r a m g o e s h e r e)

I* c l e a n u p *I
i m c - l k a c q u i r e (1 o c k - i d , 0, 0, IMC-LOCKWAIT);
t e m p = r e g i o n - r e a d - > p r o c e s s e s - 1; I* D e c r e m e n t t h e p r o c e s s c o u n t e r *I
e r r o r s = i m c - r d e r r c n t 0 ;
d o C

r e g i o n - w r i t e - > p r o c e s s e s = temp ;
m b 0 ;

1 w h i l e (i m c - c k e r r c n t (& e r r o r s) I I r e g i o n - r e a d - > p r o c e s s e s ! = t e m p) ;

I* D e a l l o c a t e s p i n l o c k s e t *I
I* D e t a c h s h a r e d r e g i o n *I

I * D e a l l o c a t e MC a d d r e s s s p a c e *I

Figure 6
I'rogl.amming \\,it11 Tt.uClustcr MEMOI<Y CHANNEL. SoFt\vclrc

Digir.11 TccI in~c. l l Journal Vol. 8 No. 2 1996 105

These g u ~ l s placed some important constrnints o n
the architecture of UMP, particularl!l \\lit11 regard to
puhrmance. This meant that design decisions had
to be constantly evaluated in terms of their performance
impact. The initial design decision was to use a dedi-
cated point-to-point circular buffer benveen every pair
of processes. These buffers use producer and consumer
indexes to control the reading and writing of buffer
contents. The indexes can be modified only by the
consumer and producer tasks and allo\v fi~lly lockless
operation of the buffers. Removing lock requirenlents
eliminates not only the sohilare costs associated with
lock manipulation (in the initial implementation of
TruCluster bIEA4ORY CHANNEL Sohvare, acquiring
and relensing an uncontested spinlock takes approsi-
matel? 130 ks and 120 ys, rcspecti\,el!l) but also the
impact on processor performn~~ce associated with
lmad-locked/Store-conditio~~al instruction secluences.

Although this buffering style clin~inatcs lock manip-
ulation costs, it results in an exponential dcniand for
storage and can limit scalability. If there arc N processes
communicating usi~ig this method, that implies N*
buffers are required for full mesh communication.
MEMOI1Y CHANNEL address spacc is a relatively
scarce resource that needs to be caref~lly husbanded.
To manage the demand on cluster resources as fairly as
possible, we decided to d o the t?)llo\ving:

Allocate buffcrs sp,lrscl!; i.e., as requircd up to
some d e h ~ ~ l t limit. Full I\'? allocation ~vould still be
possible if the user increased the number of buff&\.

Malcc the size of the buffers configurable.

Use lock-controlled singlc-writer, multiple-reader
buffers to handlc both the o\lerflo\\! from the i\;2
buffer and fast multicast. One of these buffers,
called o u t b ~ ~ f s , would be assigned to each process
using UMP upon initialization.

Note that while the channel buffers are logicall!,
point-to-point, they nlay be inlplementcd physically as
either point-to-point or broadcast. For esamplc, in thc
first \rcrsion of UMP, \\,e used broadcast blEh4ORk'
CHANNEL nlappjngs for the sake of simplici~: \IVc arc
currentl\c moclifi~i~lg UMP to use point-to-point
A4EICIOKY CHANNEL mappings, both to incrcasc
available hmnd\vidth and to exploit a s\\itchcci
IMEIMORY CHANNEL ncn\rork.

Figure 7 shows sc\,cral taslcs communicating in
a cluster and illustrates ho\v the two types of UMP
buffers arc used. l'nslc 1 and task 2 are executing
011 node 1, while task 3 is executing on node 2. In tllc
dia~rarn, the chanucl buffers are located under the task
in \\~hosc virtual address spacc they reside to indicate
visually that they reside in the virt~lal address spacc of
the destination msk. Iu thc fgurc, task 1 communicatcs

I

CHANNEL BUFFERS

OUTBUF

MEMORY MEMORY I j MEMORY
CHANNEL CHANNEL

' ' CHANNEL

I NODE 1
! . ,. .I.. . ., NODE 2 '

L - A L - - - - - - - - - - - - - - - A

KEY:

- DIRECT WRITE TO CHANNEL BUFFER
...... LOCK-CONTROLLED READ OF OUTBUF

Figure 7
<;lusrcr Comm~~nica t ion Using UMP

Vol. 8 No. 2 1996

with task 2 using UMPchannel buffers in shared niem-
ory, shown as 1-2 and 2-1. Task 1 and task 3 c o n -
rnunicate using UMP channel buffers in MEMOlCY
CHANNEL, space, sho\vn as 1-+3 and 3-1. Task 3 is
reading a message from task 1 using an outbuf. The
outbufcan be written only by task 1 but is mapped for
transniission to all other cluster members. O n node 2,
the same region is mapped for reception. Access to
each outbufis controlled by a unique cluster spinlocI<.

Our rationale for taking this approach is that a short
sohvare path js more appropriate for srnall messages
because overhead dominates message transfer time,
whereas the overhead of lock manipulation is a small
component of message transfer time for large mes-
sages. We felt that this approach helped to control the
use ofcluster resources and maintained the lowest pos-
sible latency for short messages yet still accommodated
large messages. Note that outbufs are still fixed-size
buffers but are generally configiired to be mucli larger
than tlie N2 buffers.

This approach worked for PVLM because its message
transfer sen~a~it ics malte it acceptable to f a1 ' I a mes-
sage send request due to buffer space restrictions
(e.g., if both the IV' buffer and the outbuf are full).
When we analyzed the requirements for MPI, how-
ever, we found that this approach was not possible. For
this reason, we changed the design to use only the N2

buffers. Instead of writing the message as a single
operation, the messagc is streamed through the buffer
in a series of fragments. Not only does this approach
support arbitrarily large messages, but it also improves
message bandwidth by allowing (and, for messages
exceeding the a\lailable buffer capacity, requiring) the
overlapped writing and reading of the message.
Deadlock is avoided by using a background thread
to write the message. Since overflow is now handled
using tlie streaming N2 buffers, outbufs were not nec-
essary to achieve the required level of performance for
large messages and were not implemented. Outbufs
are retained in the dcsign to provide fast multicast
messaging, even though in the current implementa-
tion they are not yet supported.

Achieving the performance goals set for UMP was
not casy. In addition to the buffer architecture
described earlier, several other techniques wcrc used.

N o syscalls were allo\ved anywhere in the UMP
messaging f~~nct ions , so U M P runs completely in
user space.

Calls to library routines and any expensive arith-
metic operations were minimized.

Global state was cached in local nlcrnory c\!lierc\tcr
possible.

Careful attention was paid to data alignment issues,
and all transfers are multiples of 32-bit data.

At the programmer's level, UM1' operation is based
on duplex point-to-point links called channels, which
correspond to the 1v2 buffers already described.
A channel is a pair of unidirectional buffers used to
provide two-way communication between a pair of
process endpoints anywhere in the cluster. UMP pro-
vides fi~nctions to open a channel between a pair of
tasks. While the resources are allocated by the first task
to open the channel, the connection is not complete
until tlie second task also opens the same channel.
Once a channel has been opened by both sides, UMP
hnctions can be used to send and receive messages on
that channel. It is possible to direct UMP to use shared
memory o r M E M O R Y CHANNEL address space for
the channel buffers, depending on the relative location
of the associated processes. In addition, UMP provides
a function to wait on any event (e.g., arrival of a mes-
sage, creation or deletion of a channel). In total, UMP
provides a dozen functions, which are listed in Table 3.
Most of the fi~nctions relate to initialization, shut-
down, and niiscellaneo~~s operations. Three functions
establish the channel connection, and three hnctions
perform all message communications.

UMP chan~lels provide guaranteed error detection
but not recovery. Through the use of TruCluster
M E M O R Y CHANNEL Sohvare error-checking rou-
tines, we were able to provide efficient error detection
in UMP. We decided to let the higher layers implement
error recovery. As a result, designers of higher layers can
control the perfornlance penalty they incur by specifj-
ing their own error reco~~ery nieclianisms, or, since
reliability is high, can adapt a fail-on-error strategy.

Performance
UMP avoids any calls to the kernel and any copying of
data across the kcrnel boundary. messages are written
directly into the reception buffer of the destination
channel. Data is copied once from the user's buffer
to physical memory on tlie destination node by the
sending process. The receiving process then copies the
data f r o ~ n local physical memory to the destination
user's buffer. By comparison, the number of copies
involved in a similar operation over a LAN using soclc-
ets is greater. In this case, the data has to be copied
into the kernel, where the network driver uses DMA to
copy it again into the memory of tlie nenvork adapter.
At this point the data is transmitted onto the LAN.

The first version of UMP used one large s.hared
region of MEMORY CHANNEL space to contain its
channel buffers and a broadcast mapping to transmit
this silnultaneously to all llodes in the cluster. This
version of UMP also uscd loopbacl< to reflect transmis-
sions back to the corresponding receive region on tlie
sending node, which resulted in a loss of available
bandwidth. Using our Alphaserver 2100 4/190
development machines, we measured

Di~itnl Tccliriical Journal Val. 8 No. 2 1996 107

Table 3
UMP API Functions

Function
Name Description

Initializes UMP and allocates the necessary resources ump-init

ump-exit
ump-open

ump-close
ump-listen

ump-wait

Shuts down UMP and deallocates any resources used by the calling process.

Opens a duplex channel between two endpoints over a given transport (shared memory or
MEMORY CHANNEL). Channel endpoints are identified by user-supplied, 64-bit integer handles.
Closes a specified UMP channel, deallocating all resources assigned to that channel as necessary.

Registers an endpoint for a channel over a specified transport. This can be used by a server process
to wait on connections from clients with unknown handles. This function returns immediately,
but the channel is created only when another task opens the channel. This can be detected using
ump-wait.

Waits for a UMP event to occur, either on one specified channel to this task or on all channels
to this task.
Reads a message from a specified channel.

ump-write Writes a message to a specified channel. This function is blocking, i.e., it does not return until
the complete message has been written to the channel.

ump-nbread Starts reading a message from a channel, i.e., it returns as soon as a specified amount of the
message has been received, but not necessarily all the message.

ump-nbwrite Starts writing a message to a specified channel, i.e., i t returns as soon as the write has started.
A background thread will continue writing the message until i t is completely transmitted.
Writes a message to a specified list of channels.

ump-info Returns UMP configuration and status information.

Li~tc~icy: 11 ~s (i\/IEA/lORY <;HANNF,I.), 4 ~s
(shared mcmory)

Rand\\,idth: 16 iMR/s (MEMORY (:HANNF,L,),
30 h/113/s (shared nlemory)

To increase band\\tidth, \ire modi ticti UA41' to L I S ~

tmnsn~it-only regions for i t s channel buffers, thus
eliminating loopback. The performance mcasurcci for
the revised UMP usuig the same J ~ I c c -1 l111cs ' \\QS

L~tcncy: 9 ~s (MEMORY CHANNEL), 3 FS

(sharcd memor!r)

Randwidth: 23 lMB/s (MEMOI<Y (;HANNEI,),
32 MB/s (sliarcd nienior!-)

Fig~11.c 8 sho\\,s the message tral~sfer tinic ;111ei F i g ~ ~ r c
9 SIIO\\'S tlie band\\,idth tbr \,a~-ioils mcssngc sizes fi)r tlic
rc\,iscd \fcrsion o f Uh?P 11si11g both blocking nnd non-
bloclting \\lritcs o\cr sliarcci rner~lor\~ a l ~ c i tlic kh/lOl<Y
(:HANNEL ncnvork. Using newer AlpllaScrvcr 4 100
5/300 machines, which have a hstcr I / O subsystem
than the older machines, and \u-sion 1.5 MEMOICY
<:HANNEL adapters, the mcasurccl latency is 5.8 ~s
(MEMORY (IHANNEL), 2 ~s (sharcd mcmorp). The
peak ba~ldwidrh achic\red i s 61 lMlZ/s (MEMORY
CHANNEL), 75 MB/s (sharcd memory). In the non-
blocking cases, the buffer sizc ~lscd was 256 kilobytes
(I<]{) for sliarcci memorJr and 32 KR ti)r MEMORY
(:HANNEL,. Fi~rther \\,orl< is under \\,a!, to i~iipro\.c the
pcrfornlnncc using sharcd mcmory as tlic t la~~sport. - - I his \\,orlt i s ain~ecl at eliminating tlic higli-cnci falloffin
hnnd\\,idtli i l l the blocliing case and the ~iotch \\,lien rlie
lncssagc sizc cscceds the buffer sizc in the nonhloclting

case. Notc that tlicsc effects arc not dlsplaycd In tlic
i\.IEhlOl<Y (:HANNEI. results.

Message-passing Libraries

~Messagc-passing libraries pro\,idc the programmer
\\.it11 a set o f K~cilitics to l>i~iId parallel applications.
Typically, thcsc scrviccs includc the ability to send and
rcccivc a variety o f data types tci and from other peer
processes io a vnricty of modes, as \\re11 as collccti\.c
opcrations that span a set o f peer proccsscs. Other
facilities may be providccl in adciition to the basic set,
c.g., PVM provides f~licrions fix managins PVIM
proccsscs (spa\\.~iing, killing, signaling, ctc.), \\,l~crc,ls
MPI (at lcnst in its first rc\,ision, i\llPI-1) docs not. P\'iLl
i s probabl!, tlic no st \\.idel!, ~ ~ s c d mess'ige-p,~ssing sb8s-
telii. I t has bccn n\~nilahlc for approsimarcl\ ti\.c !,cars,
nnd i~l iplc~ncnt~it io~is arc n\zailablc for a \\,idc \,aric~, o f
platforms. A l l) [i s un emerging standard for nlcssagc
passing that is gro\\>ing rnpidl!. in populariq,; Inany

applications arc being lvrittcn h r it.

Parallel Virtual Machine
Parallel V i r t ~ ~ ; ~ l Mnchinc (PViM) i s supported on a
\\ride \~aricty of plntfi)rms, inclitding supcrconlputcn
and ncn\,orlts o f \\,orltstations (NOWs). I'VM uses
J \ x i e n , o f ~~ndcrlying comlnunicatio~~s mctliods:
shared memory o n multiprocessors, \ . ~ r i o ~ ~ s n3rh.c
mcssagc-passing sbrstcms ~ I I n~,~ssi\.cly parnllel proccs-
sors (MPPs), and Ul)I'/IP or TC:I'/IP on NOM's. The
121-gc soft\\.arc o\.crlicnd in tlic 11' sracks lliakes i t c i i f f i -
cult to pro\.idc Iiigh-pcrfor111;11icc comniiu~iicatio~is for

Vol. 8 No. 2 1996

MESSAGE SlZE (BYTES)

KEY:

- - - UMP BLOCKING (SHARED MEMORY)
. , . , , UMP BLOCKING (MEMORY CHANNEL)

UMP NONBLOCKING (SHARED MEMORY)
- UMP NONBLOCKING (MEMORY CHANNEL)

Figure 8
UIMI' <:o~nmuniwrions l'crfol.rn3ncc: Messagc l'l-ansfer
- , l ilnc

MESSAGE SlZE (BYTES)

KEY:

- - - UMP BLOCKING (SHARED MEMORY)
, . , , , UMP BLOCKING (MEMORY CHANNEL)

UMP NONELOCKING (SHARED MEMORY)
- UMP NONELOCKING (MEMORY CHANNEL)

Figure 9
UMI' (:ornmunic.~tio~is Pcrforlnnncc: Band\vidth

PVM \\rlicn using ~ict\\~orl<s liltc Ethernet or FDDI.
The high cost o f communicatio~is for these systems
means that only the more coarse-grained pamllcl appli-
cations ha\,e demonstrated performance impro\.cments
as a rcsult o f pal-.lllclization using PVM. Using the
MEMOKY CHANNEL cluster technology described
earlier, we lia\,e implcmentcd an optimized I'VM that
offirs lo\\, latency and high-ba~ld\\~idtli comrnl~~iica-
tio~ls. The PVM libmry and d;~cr i~on use Ut\/ll' to pro-
vide sca~nless commu~~ications over the MEMOl<Y
CHANNEL cluster.

When \vc began to develop I'VM for MEMOL<Y
CHANNEL clusters, \vc had one ol1crriding goal: to i~sc
the harci\\,nrc performance thc MF.MORY (:HANNE1..
intcrconncct offers to pro\ride a PVM \\fith i~id~~str!i-
leading com~iiunicatio~is performance, specilicall!l with
regard to latency. Initially, we set 3 t xgc t latency for
PVM of less than 15 ps sing shared memor!r and less
than 30 ps i~sing the MEMORY CHANNEL transport.

Our tirst task nras to build n prototype sing the
p~~blic-domain PVM i~nplcmentation. We ~ ~ s c t i a n
early protonrpe of the M F.MOl<Y (:HANNEL, systcm
jointly developed by Digital and Encore. The proto-
type had a hardware latency o f 4 ps. We modified the
shared-memory version of 1'VM to use tlie prototype
liard\\w-c and acliic\,cd a PVM latency of 60 ps.
Profiling \iind straiglitfor\\rard code anal!,sis sc\,caled
that most oftlic o\~crlicact \\,as caused by

PVM's support f ix heterogeneity (i.c., estcrnal data
represcnt~tion [XDR] encoding)

~Messagcs being copicci multiple times inside PVIM

A large number o f fi~nction c'ills in tlic critical corn-
m~lnicutions path

Iiiefficicnt coding of the lo\\,-Icvcl data copy routines

Since \\.c \\ranted to achie\.e the maxi~l~unl possible
performance availahlc from the hardware, we decided
to rei~iiplanuit the PVIM libsal-!: eliminating support
for lictcsogcncit\, from the com~ii~~nicatiolis f~nct ions
of 1'VM and focusing o n masimiini performance
inside a Digital c l~~s tc r .~" Heterogcncity woi~ld then be
supported by using a special PVM gateway process.

The o\.crall architecture o f thc Digital PVM implc-
inentation is slio\\,n in Figure 10. To masimizc per-
formance, \\,c decided that, \vhc~.cvcr possible, all
operation should be cxccl~ted in-line rather than be
requested froni a remote task or d a c ~ ~ i o n . This con-
trasts \\,it11 I'VIM'S traditional approach ofrelaying such
requests to tlie PVM daemon for suvice. For cxa~nplc,
\\llie~i a I'VM task starts, ofien it tirst calls pvm-mytid to
r e ~ l ~ x s t a u n i q ~ ~ e task identifier (TI D) . I'rc\zio~~sly, this
\\,auld have in\zoJ\.cd sending a message to a L7VM dae-
Inon, which \\rould then allocate a TI1) to the process
and return another nlcssagc. In our design, \\lc could
tisc global data structi~res in MEMORY CHANNEL
space (c.g., tlie list of all P\7M tasks and associated
data). No\\., for example, p\rm-m!~tid siniply in\zol\~cs
acquiring n cluster lock on a global table, gcttiug ttlc
ne\v TIl), and releasing the lock-all executed in-line
by the calling process rather than a daemon. Esccuting
PVM scr\,ices in-line with the recluesting process
iiicrcascs ml~ltiproccssi~ig capability and eliminates
daemon hottlcncclts and associateti delays.

We rcimplcmented the PVkI library with the cmplia-
sis on pcrh)rmance mthcr than hctcrogeneity, although

plan to c\,entually allo\v intcropcration \\.it11 her-
erogcncous iniplemcntations of PVM using a special

MEMORY CHANNEL CLUSTER
7

I HOST 1 r-_----_------_----------------------------. HOST 2
r---------------------------

I

I ! I I ; I
I / DAEMON 1

I
PROCESS 1 PROCESS2 I D A E M O N 2 PROCESS 3

PVM APPLICATION

I
I

HOST 3
r - I I I D
I

I D A E M O N 3 PROCESS 4 GATEWAY
I I

PVM APPLICATION

I
I

L - A
KEY:

A A PVM appl~cation on host 1 performs local control functions using UNIX signals.
B A PVM application on host 1 communicates vd~th another PVM task on the same host uslng

U M P (via shared memory).
C A PVM application on host 1 communicates with another PVM task on a dilferent host in the

cluster (host 2) using UMP (via MEMORY CHANNEL).
D A PVM appl~cation on host 1 requires a control function (e.g.. a signal) to be executed on

another host in the cluster (host 3): i t sends a request lo a PVM daemon on host 3.
E The PVM daemon on host 3 executes the control function.
F A PVM application on hosl 1 sends a message to a PVM task on a hosl oirtside the MEMORY

clusler: the messaae is routed to the PVM aatewav task on host 3.
' C H A N N E L

- ,
G The PVM gateway translates the cluster message Into a form compat~ble w ~ t h tne external P V M

~mplementat~on and lorwaros t h e message to the external task vla IP sockets

Figure 10
Digital I'VIM Architccc~trc

gateway daemon. The PVM API library is a coniplcte
re\\-rite of the standard PVlM version 3.3 MI, \\rjth
\\lliich fill1 fitnctional colnpatibility is maintained.
Emphasis has bccn placed o n optimizing the pcrfor-
mancc of the most fi-eclucntly used code paths. In
addition, all data s t ruc t~~rcs and data transfers ha\lc
been optiniizcd for the Alpha architecture. As st.~tcd
earlier, the a ~ n o ~ ~ n t of nlessagc passing b c n v c e ~ ~ tnslcs
and tlie local dacrnoll has bccn minimizcd by pcrhrm-
ing niost opcrations in-line and co~nmunicating with
the daemon only when absolutely necessary Intcr-
mediate buffers are used for copying data bcmlecn the
user b~iffcrs. This is necessary because of thc sc~nalitics
of l'VM, \\~hicli allow operations 011 buffer contents
before and aficr a message has been sent. The one
exception to this is p\,ni-pscnd; in this case, data is
copied directly since the user is not allowed to niocii@
tlic send bufkr.

The purposc of our P\lfvl claemon is ciiffcrent from
that of tlie dacmon in the standard I'VM package. O ~ t r
dacmon is designed t o relay comn~ands between ciif-
fcrcnt nodes in the PVM cluster. I t csists solely to

\/ol.S No. 2 I996

pertixm remote csccution of those commands that
cannot be performed in-line by UNIX calls in the PVM
AI'I library or by directl~f manip~~latilig global data
structilres. Cornmancis to be executed o n n remote
nodc are sent to the daemon o n that node, c\~hich then
exccutcs the co~iirnand directly. Note tliat this
rcmo\.cs a le\.cl of indirection tliat csists in standarci
P\Ih/l. Daemon-to-dacnio~~ com~~~unicat ions arc rnilii-
mizcti. Since thc1.c is 110 master dac~non , the PVM
clustcr has 110 si~lglc point of hilure. AI daemons arc
eqi~al . When not in use, thc dacmon sleeps, being
awakened as required by a signal horn the calling task.
For a local task, UNIX signals arc used. If thc task is o ~ i
anotlicr nodc in thc cluster, then MEMORY CHANNEL,
clustcr signals arc used. As a r c s~~ l t , the dac~non uses
nlinimal cluster resources.

The PVM group or collective hnctions operate on
a g r o ~ ~ p of PViM tasks. For csaniplc: pvm-barrier
s!~~iclironizcs ~nultiple P\IM proccsscs; p\,ni-bcnst
sc~lds a message to all rnembcrs of a particular group;
p\l111-scatter distributes an array to the mcmbcrs of
a group; p\lni-gather reassembles the arrav from the

srl E
5-d P
sd s
sd 8
sd 11
sd 09
s7-i OOP

-

klowayy paleys
A~owayy paley5
Alowaw paJeyS

S'L 13NNVH3 AtlOW3W
0'1 13NNVH3 AtlOW3W

A~owayy paJeyS

laad s~ay,os

i~odsuerl

:srrops~i~!j 31\y ~ilddns IsnLu .I~LULU~J~~.I~ at11 'as!,\sp Inu
-urn]" ppnq o~ t.z'asy~~a~~! lauueLls ~LII palle3 's3!.\sp
lauueqs c Su!pl!nq .I(!! s~eld~us~ c sapnpu! osl~ rlo!s.rs,\
SI~J 'sn3e,l.1;71~1! ,C.ICJ~!.I~OJ~ Jayo puc 'dl/d:)~ ',i.~o
-Ul?LLI p"I"1S 2Ll!pl11.711! S1~?LlL103.1a1L1!p .13qLllllLl C .I(!{

suope~uau~ald~u! 1suueLls ql!,\\ ssuror, Llo!sJal\ LI!~LLI~~

yqnd aLlL 'a>!nap ~~LILIELI~ aql pallc? S! ~wg.n uo ~3~2

-.\el J~LII.II~ s! pue suo!13uq ~~JC~~J-SLI~!I~~!~IILLILLIO~

aq] aua~usldw! as!,\sp ~r,c~~sqe ,i'(~~~) s>g.~a~u!
as!,\ap 1seusqe LI~ pulqaq siua~1odu103 3~~33ds-1.rod
-sue.u ps~qoy swl I! L~~o!~~ppe 111 '13s LIO!]JLII!J I-ldhr
alaldruos nLlljo uopc~us~ua[dur! IIC~I~ 'ISII~OJ c S! S!II~
ii'~:)ltlw pallvr, LI~!ICJLI~UI~~~LLI! ~~LI~J?J~.I e pnsnp
-0Jd SFLl (7,~) ~i.IOlL?-10q~ Il!llO!lL?N ~LILIOSIV '12s
alaldu~os sy~ ap!,\o~d lsnw uope~us~ualdlu! ~sa-uos c
lnq 'SLIO!I~LII~ aqljo s!s ~(luo 2u!sn LI~II!JI~ aq ues suo!~
-es!ldde 1~11c~ecd ,iucw '13g u~ .pap!,\o.id SIJV Su!ssed
-~~FSSI)LLI .In!l.lea ,(ucm leq1 ss!1!1!3;~jo 38~1e.1 T)~!I\\ ~ICS

3Lll S.l?JjO pLle (0~1 ""'I1 "0"') SLtO!I"" J0 .13qLlIllL'
1e!~uwsqns c sn!e~rios pJepuels nLlL wasn s!mapcse
pue IC!JIS~PU! jo d~io~S aS-leg e dq padolal\ap pJcpueJs
Syssed-sSessam e s! (1 JW) asq.la1~11 Bu!ssed sScssaw

axpajul 6~!SSed a6essaw

'L'I jo
dnpxds c 2r1!1e.i1suorusp 'spuo2ss 8s LI! u1~2o~ci a41
LIEJ .ralsnIs '-I'JNNVH:) .~>IOI~~MT apou-o,\u e LI! pa13su
-uos s~u!qxelu (INS ~ossaso~d-.~n(y '/(II~I!~ 'JJISIII"

13NNVH3 AXON:-IW 3LlJ 01 dWS LLIO-!] !JIa1\\ ssless
 MA^ le~!S!a Jet11 SLI!J~.IISUOUI~~ 's.~osssso.~djo JaqLLli1~1
awes ~LII .I?] ~1o!~esn8yrio:, ,.I~NNVFI~ A)JOIN:-II,V ~LII

LI~L~I .ralsq ,illerr!B.lcu~ lsn! se.\\ 3ul!l s!qj' ,spuo3ss ~'+9
u! ~SJT)I~LLIO~ ~10!1es!lddr aql !~I/VS .IOSS~~O.I~-J~(~ 1: LIO

we~3o.d ~LIJ UEJ OSI"I\\ 'LIOS!JE~UIO~ 103 -Tsp~osa~
~9 01 s~mosas 022 LLIOJ~ psddo~p xu!] unJ aql :s~ossn:,
-o~djo .laqwnu amcs s~p JOJ +.c lils~eu~rso~ddejo ~o1

-39 e ,(q ssnelumj~~d dn paads 01 qqc anl\\ s,\\ '~/\l~d
[t~!S!a LIllM L'E'C I/VAJ pU~l.lOAUXV'~3NN~~~:')
A~oI/\I:~I/\I LI LIJ!A\ 1~1~3 Su!r,elds.i '1~~~1 LIJIIL\

1 10 100 1,000 10,000 100.000 1,000,000

MESSAGE SlZE (BYTES)

KEY:

- - - SHARED MEMORY
- MEMORY CHANNEL

Figure 11
Digital PVM Communicntions l'crformance: lblcssagc
Transfer Time

200,000 400,000 600.000 800,000 1,000,000

MESSAGE SlZE (BYTES)

KEY:

- - - SHARED MEMORY

- MEMORY CHANNEL

Figure 12
1)igital PVM Conim~~~ucarions Pcl.fbrmancc: Bnncl\\~~dth

4. Receive data from a data channcl

5. Send data to a data channel

These functions can all be iniplementcd using the
UMP functions ~~rnp-read, ump-write, and ump-\wit
described earlier. In addition, hoolts arc ,~ddcd to
the channel initialization and shutdo\\.n codc to call
unip-init and ump-exit. This approach leaves the
portable MPICH API library unchanged ancl attcmpts
to deliver o p t i ~ n i ~ n ~ performance. MPICH implements
'dl its operations, point-to-point and collective, on the
basic point-to-point services t h ~ t the ADI provides.

Working with the Edinburgh Parallel Computing
Centre (EPCC), we produced an early functional lMPI
prototype by building a channcl device on UMP, as

FDDl MEMORY SMP MEMORY
2 x 2 CHANNEL 4 x 1 CHANNEL

2 x 2 4 x 2

CONFIGURATION

- -

Figure 13
I'VM Application Perfo~.riiar~cc

shown in Figure 14a. This implementation demon-
strated latcncics of 12.5 ks (sharcti mcmor!.) and
29 ps (IMEIMORY CHANNEL), rcspcctablc pc rh r -
mancc for such a quick port of M1'1 fix clusters.
Furthermore, since this implcrnentarion uscs UMP, it
\\rorks transparently on sliarcd Inernor! and MEMORY
(:HAiiNEL. AD1 channcls typically support only one
intcrconnccr; multiple Al'>Is are not yct supported by
MPICH. Unlike PVM, tllc semantics of MPI allo\v
operation \vithout an intcrmcdiate buffer, so that UMI'
buffers can be used directly.

To hrtl lcr improve the pcrformnncc of 1\/IPI o n
clusters, \\,c climinatcd the iM1'ICH channcl de\ricr and
interfaced UMP directly to thc 3s slio\vn in
Figurc 14b. The abstract dct,ice inc~irs some pcrfor-
mancc pennln in its support for the channcl device. In
the UMP implementation, this is ilnncccssary as Ufv11'
already perfi)rms the f i ~ n c t i o ~ ~ of hiding details of the
transport mechanism. This implementation demon-
strated latcncics o f9 .5 ~s (sl~ared 11icniory) and 16 ks
(h4EMORY CHANNEL), t~sing an Alpha cluster con-
sisting of two AlphaScr\,cr 2100 4 / 2 3 macliincs
conncctcd by a MEMORY <;HANNI:l, network.

Performance
Table 5 compares thc communications Iatenc!.
achieved by MPICH and the Digital MI'I iniplenicnta-
tion, using an Alpha clustcr. l<csults arc sho\\n for both
AlphaSer\fer 2100 4/190 and AlpliaScrver 4100
5/300 n~nchincs co~lnectcd b!. a AIEIMOIIY CHASNEI.
nen\rork. E'igurc 15 slio\\.s tlic mcssagc rrnnsf'cr timc
and Figurc 1 6 shows the bandwidth of Di~ i t a l 1M1'1
over sharcd memory and MEMORY CHANNEI.
transports h r a \.aricty of messagc sizes. A pair of
AlphaScr\.cr 4100 5/300 machines \\.ere used for thcsc
measurements. Digital MI'1 rcacl~es a pcalc band\\,id tli
of about 6 4 1MB/s using sliarcd memory and 61 MB/s

112 1)igitnl Technical Jo11t.11al Vol. S No. 2 1996

MPlCH

MPI PORTABLE API LIBRARY

MPlCH ABSTRACT DEVICE

MPlCH CHANNEL INTERFACE _I
UMP

I
ABSTRACT

- - DEVICE -- I
INTERFACE I

I

(a) Initial Prototype

I MPlCH ABSTRACT DEVICE
FRONT END I

-

UMP

MPI PORTABLE API LIBRARY

MPlCH - - - - - -
1

ABSTRACT I
--DEVICE - - I

INTERFACE I

(h) Vcl.>io~~ 1.0 I~nplcmc~irnrio~i

Figure 14
I>igirnl hlP1 A r c l ~ i t c c r ~ ~ r c

using i\/l EiMOl<Y CHANNEL,. l3y coniparison, the
~~nmodificd MI'I<:H achic\,cs a peak balid\\,icith of
24 MR/s sing shared memory atid 5.5 MB/s using
TCP/Il' o\.cr an F1IL)I LAN.

Figure 17 slio\\ls the speedup clcmonstratcd by an
MPI application. The application is the Accelerated
Strategic Compi~ting Initiative (ASCI) benchmark
SPPM, \vhich solves a three-dimensional gas dynamics
problem o n a unifoml Cartesian ~ n c s h . ~ ' . ~ ~ Thc same
code \vas run using both Digital M1'1 and MPICH
i ~ s i ~ l ~ TCP/I P. The liard\\,arc configurntion \\.as a two-
node I\/IEbIORY CHANNEL cluster of dphaScr\.cr
8400 5/350 machines, each with six Cl'Us. Digital
MPl iised shnrcd memory and MEMOI<Y CHANNEL
transports, \vlicrcas MI'ICH i~scd the Ethernet LAN
connecting the machines. The mnsinii~m speedup

Table 5
MPI Latency Comparison

obtaincd using l3jgital MPI \L~s npprosimatcly 7,
~\lhereas fix Ml'I<:H the m;lsimum spccdup \vas
approximately 1.6.

Future Work

We intend to continue rc l i~ l i~lg the components
described in this papcr. T l ~ c major clia~ige ellvisioncd
rcgardillg the TruCluster MEMORY CHANNEL Sok-
ware product is the addition of usel--space spinlocks,
\vhich should significantly reduce the cost ofacquil-ing
a spi1~10clz. Wc intcnd to incrc,~\c tlic performnncc
of UiMP by making more efficient use of hlEiviOIIY
CHANNEL, in ;I number of \\,ays: striping 1;irgc
messages o \c r ~nultiplc adapters, supporting ncst-
generation adapters, and using point-to-point map-
pings with a IMEMORY CI-IANNEI, s\vitch. In ncidi-
tion, \\lc plan to add outbuts to incrcnsc multicast
message-passing pcrformancc. I'VibI enha~lccmc~lts
planned inclucic thc addition of the gntc\\.ay cl.lemon to
allo\\r intcropcration \\.it11 other ~'VIV implcmcntntio~is
on external platforms. PVbl \ \ , i l l also be ~nodificd to use
the UlMP nonbloclting writc ticilit!~ for nrbitrarily I,lrgc.
messages so thnt its performnncc mntclics that o f
M P I . Sincc the semantics of I'VM force the use of .in
intcrmcdiatc buffer, performa~lcc ~ \ ,hcn using sli.ircd
memory \ \ * i l l bc jmpro\zed by p,~ssing pointel-s to n lock-
contro.lled buffc~ fix tilessages \\,hose trarisfcr time
\vould cxcccd tlic ovcrlicad nssocintcd \+:it11 a lock. \!Vc
\ \ r i l l continue to improve MPI pcrfonnnnce by opti~niz-
ing the UMI' AI)I fix the M1'IC:H implementation.

Summary

We havc built a high-performance communicntions
infrastructure tbr scicntitic applications that ~~ti l izcs a
new nenvork tcclinologv to bypass the sohvarc o\,cl--
head that limits tlic applicabilit!. of traditional nct-
\\.arks. Thc pcrfi)r~~xince ofthis s!.stcln lias been proven
to be o n a par \\pith thnt ofcun-cnt supel-coliiputcr tccli-
nology and lias been achieved using commodity
technology dcvcloped for Digital's co~nmercinl cluster
products. The papcr demonstmtcs the suitability of
the MEh4OlIY <:HANNF.I. teclinolo$~ as a communica-
tions mctiium for scalable systc~ii dc\.clopmcnt.

MPI Implementation Transport Platform Latency

MPlCH 1.0.10 Sockets FDDl DEC 30001800 350 p.s
MPlCH 1.0.10 Shared Memory Alphaserver 2100 41233 30 p.s
Digital MPI V1.O MEMORY CHANNEL 1.0 Alphaserver 21 00 41233 16 p.s
Digital NIP1 V1.O MEMORY CHANNEL 1.5 Alphaserver 41 00 51300 6.9 p.s
Digital MPI V1.O Shared Memory Alphaserver 21 00 41233 9.5 p.s
Digital MPI V1.O Shared Memory Alphaserver 4100 51300 5.2 ks

V'ol. S So. 2 I996 113

1 10 100 1.000 10,000 100,000 1,000,000

MESSAGE SlZE (BYTES)
KEY:
- - - SHARED MEMORY

- MEMORY CHANNEL

Figure 15
1\/11'I (:omn~unicntiorls Perforllinncc: ~\/lchs,lge Trarlsfct.
Ti mc

0 200,000 400.000 600.000 800.000 1,000.000

MESSAGE SlZE (BYTES)
KEY:
- - - SHARED M E M O R Y

- MEMORY C H A N N E L

Figure 16
MPI (:ommunicntions Pcrformancc: 12a1idwidth

Acknowledgments

T h e authors \ \~ould like t o ackno\vlcdgc t h e following
people for thcir contributions t o this projcct: G:~\lan
l>uf@, \\,hose tcsting niacle thc T r ~ ~ C l u s t e r I\/IF.i\/lOl<l'
CIIANNEL S o h v a r c u IIILIC~I more robust product ;
Liam Kclleher ancl Garret Taylor, \vho contributed
s o m e of the Digital PVM hunctionality; Waync
Cardoza and Brinn Stevens of U N I S Engineering,
\\ho pro\'ided cnrly access t o and ongoing siipport of

N U M B E R OF PROCESSORS

KEY:

DIGITAL MPI

MPlCH TCPIIP

Figure 17
MPI Application Spccdup

kernel MEMORY (:I-IANNEL, sofh\,nrc; k c k Gillctt
2nd Milcc Collins, pro\,idcd earl!, I\?EMORY
C H A N N E L hard\\,arc; llichard I<autii~ann, \\.ho g a \ r
us encouragement and support ; and Lyndon Clarke
and Kcnncth Cameron a t Edinburgh Parallel C o m -
put ing Ccntre (El'(:(:), motiifcci MPICH t o L I S ~

UM1' for Digital h4l'[.

References and Note

I . T. hiderson, 1). (hllcr, and D. Pnrtcrson, "A Cnsc for
N O \ Y (Ner\\.ork o f workstation^)," f~r~occc~tliii~~s (4'
/lx, ffot J~ztc~i~c~oi~ito~~/.s / I . ~ ~ ~ ~ ~ I ~ / I O . S ~ I / I I ~ . l'nlo Alto, (;.ilif.
(.'\ug~lst 1994).

2. K. [(ccron, T. Andcrso~~, and I) . l'attcrson, ''1,ogP
Quantif cd: Thc (:asc for Lo\\,-Ovcrhcad Local Arc3
Nct\\,orks," Pi-occt~1iltg.i qf ihc /-lo/ /it/c~~'coiii~ec.l.\' 111
.Sl,iltpositi~li. Palo Alto, Calif. (Augirst 1995).

3. K. Sites, ed., A(bh61 Al.chitc~c-/r/~-c~ /<c;filu~icc, .I/c11tric11
(Rurli~lgton, A4;1ss.: 1)igital I'rcss, 01-del- No.
kY-l,520E-DP, 1992).

4. N. l(I.orlcnbcsg, H . Lc\,y, and L\'. Srrcckcr, "\rl~Sclus-
rc1.s: A Closcl! (:ouplcd Distl.~birtcJ S!'stcm," ~ ! l (. : l /
T~u~~t.sactio~r.i 0 1 1 (.i>/~rpi~/er- .\;):</(,III.<. vol. 4, no . 2
(Ma!' 1986): 130-1 46.

5. W. <:ardozn, t;. Clo\,cr, and W. Snnrnnn, Jr., "l)c.;ig~, of
thc TruCl~lstcl. n/lulticompurc~-- Systcr~i for tlic Digital
[!NIX E~~\.isonmcnt," D/):,it~il 'li~hiticcrl ./oiii.ircil.
\.ol. 8 , 110. 1 (1996): 5-17.

6. R. Cillctt, "MEIMORY <:HANNI:I. Ncr\\,ork for 1'<:1:
An Optilnizcd <:lusrcr Intcrconncct," IEEli :lfio.o
(Fcbr~~nr!! 1996): 12-1 8.

\/()I. 8 No. 2 1996

7. IM. Rlumricli c t al.. "Virtual ~Vlc~iior!, Mapped Nct-
work Intcrticc for the SHIUIMI' ~Mulricomp~~ter," P1'r-o-
cee~1irr~q.s (~ ' / b c Tr~~crzi)~-Ji'~st A I ~ I I I ~ U ~ I1zlerrzutio17ul
S)~n?po.<irr117 O I I C i) ~ ~ r p ~ t ~ ~ r A ~ h i I o ~ ~ t i ~ r ~ ~ (A p r i ~ 1994):
142-1 53.

8 . M. Blumrich c t al., "T\vo Virtual Memory Mapped
Nenvol-k Interface l)esigns," P~.o~.c,c.tli~rgs oj'tbc~ Hot
Ir~/erco~r~rec/s I / .5:)9rrrposiri~~r. Palo Alto, Calif.
(August 1994): 134-1 42.

9 . L. Itiodc c t nl., " l~npro \~ ing Kclcasc-(:o~isistent Sharcd
V i r t ~ ~ a l Mcmor!, using Automatic Upciare," P/*ocer,(l-
117g.s (?/' the) . S O L ~ ~ I I L / J I Z ~ P I . I ~ L I ~ ~ ~ I ~ (I / S) , I J I ~ O . ~ ~ I I I ~ I 0 1 1

I - I ~ ~ ~ ~ - P o ~ / ~) I ~ I ~ I c ~ I I ~ ~ ~ ~ C O I I I ~ I I ~ ~ ' A~'cl~itccti/re (t 'chsu-
ary 1996) .

10. C . I)ubnicki ct ;)I., "Soft\\~nrc Support for Virti~al
Mc~nory-Mapped Co1~1111~111ic~rio11," F)~-~ceedi~i~q.s 01'
1L7e Tc~171Lf JI 1toi.1 tutio I la1 ~ ~ L I ~ L I I I ~ ~ I P~.occ~.s.sitzg Sl~l71pO-
sirr117 (April 1996).

11. H igh Pcrforrna~~ce Fortran Forum, "High Perfor-
mance Fortran Language Specification," Version 1 .O,
Sc-ienliJi:c 1~~~~q~zrnrrlrirrg, 1101. 2 , n o . 1 (1993).

12. A. Geist c t al., I'l.iM.3 fLsi)r:v Grii~/c> ~a~zclRefir-c~r.rcc~
il/I~r~rr~ul. ORNI./'TM- 12 187 (Oak Kidgc, Ten]].: Oak
Kidgc National I,aboratory, May 1994). Also availablc
on-linc .it Ilttp://\\~\\~v.netliI>.org/~>v1113/~1g.p~.

13. A , <kist ct ,il,, IJL3Y: P~~r~ i l l c~ l I ~ I . / ~ I L I / ; l f c i c l ~ i ~ ~ ~ ~ ,
A I.iso-4 (I'lritlc slid T/ilto~.ia/,/br i \ k ~ / ~ / ~ ~ r k e ~ / PLIIZL//P/
C'otnpi~tili,q (<:a~nhridge, Miiss.: 7'Iic bllT Press, 1994).
Also a\~ailnblc on-line st lirtl>://\\~\\,\\,.netlib.org/
p\.rn3/1>0ok/p\~111- book.I~tniI,

14. IUPI F o r u ~ n , "htlP1: A Message Passing IntcrLncc St.ln-
dard," / I ~ / ~ ~ I ~ I I L I ~ ~ O I ~ L ~ / , / O / / I . I I (I / 01' S ~ I ~ C J I - C - O I I ~ ~ ~ I I ~ J I ~
Applic~~lio~rs. vol. 8 , no. 3/4 (1994) . Vcrsion 1.1 o f
this d o c u ~ n c n t is ;ivailablc on-linc a t http://
www.~ i~cs .an I .go \~ /mp i /m~> i - repor t -1 . l / m ~ i -
rcport.litml.

15. W. Gropp, E. Lusk, and A. Skjcllum, C<$il{q .Ill'/:
P o~-tuhlo ILr~nllc~l PI .OX,IZIIIIII~ i~ ig risith the lLfc~.s.s~rcqc~
Pci.s.si1rg J~ltc~~:/ircc(Cambridgc, Mfiss.: Tlie MIT Press,
1994).

16. J . Harris cr al., "(:ompiling High Pcrk)rmance Fortran
for l)istrib~~tccl-memory Sys~cms," Digital T?~ch17icc11
, lor~r~iol . \,ol. 7, 11o . 3 (1995) : 5-23.

17. E. Kcnson ct nl., "1)csign of 1)igit.il's Pnl-allel Soft\\,arc
En \ , i ro~ l~nc~ l t , " Digilal Qch~~icctl ,/olirlrc~l, 1.01. 7 ,
no. 3, (1995) : 24-38.

18. In rhc first ioiplcmenratio~~s, the 1'CI MEIMOI~Y
CHANNEI. ncttvork adapter places a limit of 128 MI<
o n the amount of MEMORY CHANNEL space that can
bc allocated.

19. TI'IIC-I/I.Z/CI. . l l l~ . l lOR) ' C'HA.\:YEI. S(?/~~I .LIIZ) P I - O ~ I Z I I I I -
met-s J ~ L I I / I ~ L / / (Maynard, Masb. : Digital Equipment
Corporation, Order No. AA-Q'TN4A-'TE, 1996).

20. J . Rrosna~i, 1. La\\,ton, and 1'. Rcddin, "A High-
l'crforrna~icc I'VIM for Alplis (:lusrcrs," P1.occ~edi1l~q.s
oJ'thc Second Eruropearl PbiM I :sclrs ' GI-orrp cC.lec~ti~r,q,
Lyons, Fra~lcc (September 1995).

21. M. Hausncr, M. Burro\\.s, and <:. Thekkath, "Efficient
Inlplcmcncation o f PVM o n thc AK2 ATM Ncnvork,"
Pl.ocec~di~ rg?; of High-Pc~~;/br~?ic~~ic-~~ C O I I I ~ L / / ~ I I S ~ i ~ i d
~Ve t r rn~f i i~r~ may 1995) .

22. W. Gropp and N. Doss, "MPICH Model IMPI Implc-
menratio11 Ilcferencc Manual," Draft Technical Kcport
(h g o n n c , Ill.: Argonne Natio11;ll Laboratory, June
'1995).

23. \Y. Gropp 2nd E. Lusk, "h~Il'l(:I-I A01 Imple~~ icn t ;~ t io~ i
I<eferc~icc Manual," Draft Tcchnicnl Ikpor t (Argonlie,
Ill.: A r g o ~ l ~ i c National L,ahoratory, October 1994) .

24. W. Gropp anti E , L.~lsk, "MPICH Worki~ig Note: (kc -
sting ;I New MI'ICH De\.icc u i n g the Clianncl Inter-
hcc," 1)ruft 'kchnical Report (Argonne, Ill.: Argo~inc
National Lnborator!; June 1995).

25. Accclcratcd Strategic Computing Initiati\'e (ASCI),
RFP S t a t c ~ n c ~ i t o f Work C69391WP6-3X, Los Alarnos
National L~bora to ry (LAXI,) (February 12, 1996) .
This document is also available on-linc at http://
\\.\\~\,.llnl .go\~/~ci-r@/asci-so\v.l1111iI,

26 . Thc AS<:I SPPM Benchmark Code is available fi.0111

La\\,rencc Li\rcrmore National Laboratory at http://
\\0\1\41. lln 1 .go\~/./.isciibenchmarks~i/liniited /ppm/
asci-sppni.lit~lil.

Biographies

James V. Law011
Jini Lawton joined l>igital in 1986 and is a principal engi-
neer in the rTccl~nical C o n i p ~ ~ r i n g Gro~rp . In his current
position, lie conrr~butcd ro rhc design of l>igiral P\/M ~ ind
thc UblP libvar!, and \\,as responsible li)r implenienti~~g UILIP
and adtiing support for collecti\.c opcratio~is to Digiral PVh4.
Ucforc tIi;lt, lie \\aorked on the cliaractcrization and optinii-
zation of customcr scicntitjc/tcchnical bc~iclimark codes
and on various hnrd\vare and sofn\,arc ticsign projects. l'rior
to coming to IXgitaI, Jim co~itributcd to tlie design of ana-
log and digital ~iiotion control systems a ~ l d se~lsors at the
Inland motor l)i\.i\ion of Kollmorgcn Corporation. Jim
received a B.E. in electrical engineering (1982) and an
1M.Eng.s~. (198.5) fro111 Universit!. Collcgc Cork, Ireland,
where he \\,rote his thcsis on the design o fan clcctronic
control system for variable reluctance motors. In addition
to receiving tlie He\vlect-Packard (Ireland) Award for Inno-
vation (1982) , Jim holds one paccnt and has publislicd scv-
cral papers. Hr is a member of I EEF. a ~ i d ACM.

\'oI. 8 No. 2 1996 1 15

John J. Brosnan
John Brosn.ln is currcntl!. a principal engineer in the
Teclinic.ll (:omputing Group \\,here hc is projcct Icadcr
fol- I)ipiral l'\!M. I n prior positions nt Digital, lhc \\.IS

project Ic.ider for tllc High PcrForm;uncc Fortran test
suite JIKI '1 significant contributor to a variety ofpublish-
ing t echno log products. John joincd Digital after rccci\r-
ing his I<.l<ng. in electronic cliginccrillg j ~ i 1986 koln the
Uni \c~-s ih of Limerick, Ireland. Hc recei\.ed his A4.E1lg.
in computer s!.stc~us in 1994, also froln the Univcrsir!* of
Limel-ick.

~Morgan P. Doyle
In 1994, Morgan DoyIe came to 1)igital t o \vork on the
High P&rniancc F n r t n n t a t suite. Preseutl~; hc is an
enpineel- in rllc 'l'cchnical < ; o ~ n p u r h g Ckottp. E d y on,
he con11-il)utcd significantly t c ~ rhe dcrign anddevelop-
ment of rhc .I'I-uClusrcr MEMORY CMclHNEI,SoEhva~-c,
and hc is now rcsponsiblc for its dtvdopmnt. Murgan
rcccivcd his I3.A.l. and R.A. in c l r c m d c cngilwcring
(1991) .mi his ~bl.Sc. (1993) h Tin-ty Cdegc
lluhlin, Ircl;ll~d.

Seosamh D. 0 Riordhin
Scosn11~h 0 I<iordlin is an cnginccr in the Teclillical
Computing (;roup \vhcrc he is currently \vorking on
1)iSiral $11'1 .lnd on cnh.~nccmcnrs to tlic I:.LIP lihrar!:
Prc\ iol~\l!., 11s con t r ibu~c~ l to the design and i ~ n p l c n ~ c ~ i ~ i -
tion o f tllc Tru(:lustcr XZt<.\,lOllS (:I l.\SSELSoft\\.a~.c.
Seosamh joined lligital a h - receiving his R.Sc. (199 I)
a ~ i d k1.S~. (1993) in conlplltcr science k o m the Uni\,crsit!{
of Limcl-ick, 1rcl.lnd.

T imothy G . Reddin
A principal engineer in the Tcclinicnl (:ornputing C;~-oul>,
Timoth!* Iccddin currently leads the ream responsihls k)r
the Tru<:lustsr AIEAlOI1Y <:H.\SSl:L S o h .u-c, the L 'AI I '
library, 1)igit.lI l'\:kI, .11ici Ilisit.11 AfP1. Prio1- to co111i11~ to
I>igi~al in 1994, Tim 1vo1-kcd 1i)r eight !cars 3.; 3 s!.stcms
dcsiglcr nt ICI. High Pcrformnncc Systems in the L:nitcd
I<i~lgdom. H e \\.as responsible ti)r the 1 / 0 archirccrurc
of the I(: I . Goldrush p.11-allcl dat;lbasc ser\,er, for \\-hie11
he holds t\\.o patents, 2nd rile Assign ofnn 1 / 0 and com-
~nun ic~r ionh cont~.ollcr. 'l'im ;llso \\,o~.kcd nr Kn\,tlicon on
the darn c o m m ~ ~ ~ l i c n r i o n ~ subs\,stc~n fol. the Sl:SIL-\I)
disrrihutcil rc,~l-time I ~ O D D I C I - \\.c~itIicr rndnr suL,\\.\tcm

< 8

Prior to tli.~t, he dc\~clopcii t l ~ c soft\\.nrc ~ r c l l i t c c t ~ ~ ~ ~ ~ t?)r
an il~tcgr.ltsd cxcc~~ri \ ,c \\.o~.l<st.ltio~~ \\.liilc \\.orlii~ls .lt (:I"['
1,imircJ. After r c c ~ i \ ~ i n g 11is I3 Sc. (\\.it11 distinction, 1976)
ill C ~ I I I ~ I I ~ C I - \ C ~ C I I C C ~ l i (i I I I , I ~ ~ ~ C I I I . I ~ ~ C S fro111 L - I ~ ~ \ . C I . S ~ ~ ! ,
C o l l c y 1>~1bl1n, Ircl.ind, 'l'im j o ~ ~ i c d the sr.~t'l'ol'U~~i\.ct.-
sit!. (:ollcgc (:ark, n.1ic1.c hc \\.I\ n .;!.\tclns proprnlnnlcr.
Tiln is .I rncmhc~. of rlic 13ritish (:olnputcr Socict!. ,~nd is
a Cllal.rct.cd Engineer.

I
Bernard A. Rozmovits

The Design of User
Interfaces for Digital
Speech Recognition
Software

Digital Speech Recognition Software (DSRS) adds
a new mode of interaction between people and
computers-speech. DSRS is a command and
control application integrated with the UNlX
desktop environment. It accepts user commands
spoken into a microphone and converts them
into keystrokes. The project goal for DSRS was
to provide an easy-to-learn and easy-to-use
computer-user interface that would be a power-
ful productivity tool. Making DSRS simple and
natural to use was a challenging engineering
problem in user interface design. Also challeng-
ing was the development of the part of the
interface that communicates with the desktop
and applications. DSRS designers had to solve
timing-induced problems associated with enter-
ing keystrokes into applications at a rate much
higher than that at which people type. The DSRS
project clarifies the need to continue the devel-
opment of improved speech integration with
applications as speech recognition and text-to-
speech technologies become a standard part of
the modern desktop computer.

111 the 1960s and early 1970s, pcoplc controlled com-
p~itcrs using togglc s\\litches, p~~nc l i cd cartis, 2nd
punchccl paper tapc. In the 1970s, tlic common con-

trol nicclianism was tlic Itcyboarci on tclcnrpcs and o n
\.idea terminals. In the 1980s, \\.it11 the ad\lcnt of
graphical user interfaces, pcoplc k)und that a new
mode of interaction \\,it11 the computer \\';is uscfi~l.
Tlie concept of a pointer-the mouse-c\~olci . Its
pop~~l.~ri ty grc\\, S L I C I I tllnt the mouse is no\\. 3 stand;lrcl
colnponcnt of e\lery modern compiltcr. In the 199Os,
the time is right to aclci yet another mode of intcr-
action \\.it11 the comptltcl-. As compute p o ~ \ ~ c ~ . gl.o\\.s
cach year, the boundar!* of the man-macliinc intcrLice
can n i ~ \ ~ c fro111 interaction that is nati\.c to tlic ~0111-

putcr toward conimunication t1i;lt is natural to
liunians, that is, speccli rccognitio~i.

DSRS Product Overview

Very simply, DSRS is an application that pl-ovjdes
speech macros. Thc user speaks a c o ~ n ~ n a n d , phrase, or
sentence (that is, an utterance), and I)SlIS pel-hrms
some actions. The action rmight be to lat~nch an appli-
cation, f ix esaniplc, in I-csponsc to the command
"bring L I ~ calendar"; or to nrpc so~nctliing, f i ~ r csnni-
plc, in I-csponse to "edit to-do list," to in\,olic cm,lcs
\filcs\projcctA\toc1ootst. DSRS not only houses the
spcccli macro capability but also provides a user intcr-
Lice, a spcccli recognition engine, a11rl interfaces to the
S Windo\\. System.

Follo\ving is a high-level description of ho\\. the
sohvarc fi~nctions. <:ommands arc spoken into a
1liicropIio11c, and the audio is ciiptu~.ccf nnd ciigiti/.ed.
'1-he first step in the pl.occssing is tlic speccli ,lnal!,sis
system, \\rhicli pro\ridcs '1 spectral ~.cp~.csent'ltio~i of the
cliaractcristics of the time-\,arying sspcccli signal. Nest
is the feature-detection stage. Hcrc, the spectral Inca-
suremcnts arc con\,crtcd to a set of features that
describe the broad acoustic properties ofrhc cliffcrcnt
phonctic units.' Thcsc rcpresentntions of the speech
signal arc then segmented and idcnrifcd as phonetic
sequences. Tlie spcccli I-ecognition engine ,~cccpts
these phonetic seqLrcnccs ancl rctllrns \\,ord ~natclics
and contidcnce values for cach mntch. Tlicsc ~ . N . I arc
used to dcter~nine if c;ich match is acceptable. If a

Diginl T'cchnical Journal \'[)I. S So. 2 1996 1 17

match is acceptable, DSRS retrieves keystrokes associ-
ated rvith each utterance, and the Itcystrokcs are then
sent into the system's Ite!,boarci buffer or to the appro-
priate application. For instmces of con t in~~ous speech
rccognition, a sentence is recognized and Iteystroltcs
are concatenated to represent the utterance. For
cxa~nple, h r the utterance "five n1.o times seven three
fo i~r equals," the keys "52 * 734 =" \\lould be dcliv-
crcd to the calc~~lator application.

Although this concept scclns simple, its irnplcmcn-
ration raised significant system integration issues and
dircctl!~ affected tlie user i~iterfjcc design, which \vns
critical to tlic product's success. This paper specificnlly
addresses tlic user interface and integration i s s ~ ~ c s anci
concludes \\fit11 a discussion of f~lt111-e directions for
speech rccognition prociucts.

Project Objective

The objecti\fc of the DSRS project \\$is to provide a
u s c f ~ l but limited tool to users of 1)igital's Alpha
\vorkstations running tllc U N I S operating systcm.
1)SRS xvould be designed as a lo\\>-cost, speecli recog-
nition application and \ \ lo~~ld be provided at no cost to
\\.orkstation users for a tinitc pcrioci of time.

When the project began in 1994, a number ofcom-
 nand and control speech recognition products fi)r
PCs already existed. Tlicsc progralns \\.ere ainlcd at
end users and performed uscfi~l tasks "out of thc bos,"
that is, inimcdiately upon stilrt-up. They all came \\it11

built-in vocabulary for common applications and gave
users tlie ability to add thcir o \vn \~ocabulurv.

On U N I S s!,stems, lion~c\~er, spcccli recognition
procli~cts csistcd only in the form of progranlmnblc
recognizcrs, SLICI I as RRN Hark soft~1,irc. Our objec-
tive was to builcl a speech rccognition product for the
UNIS *orkstation that had the characteristics of thc
PC: recognizcrs, that is, one that \vould be fi~nctional
immediately upon start-up and \vould allow the non-
p r o g r x n ~ t ~ c r c ~ l d user to customize the product's
\~ocaL>ular!~.

We studicci scvcral spcccli rccognition products,
inclttdiug ?'nlIc+To Next fi-om Dragon Systems, Inc.,
VoiccAssist from C:rcativc Labs, Voice Pilot from
 microso oft, a ~ l d Listen fi-om Verbcs. Wc ciecidcd to
pro\.idc users \\pith the ti)llo\ving features as the most
desirable in a command and control spccch recogni-
tion product:

Intuitive, easy-to-use jntcrhce

SL>eaker-indcpe~ide~~t models that \\,auld climinatc
the nccci k)r cstensi\lc training

Speaker-adaptive cap,~l>ility to improve accumc),
of \\rords

C o n t i n ~ ~ o u s speech rccognition capability

Prompts for active vociibulary

i'ol. 8 No. 2 1996

Minimum i~sc ofscreen area

L T ~ c r co~ltrol o\'cr the user interface configuration

Simple mcclianism to ~iiociih, a n ~ i create ne\v
\~ociil>i~Iary

Integration witl~ the X Mrinclo\\, Systcm

Support for out-of-the-box desktop applications
provided \\.it11 tlie UNIX operating systcm

Support h r vi and cn~acs editors, and for C
programming

The DSRS Architecture

lXRS comprises sc\lcral major components \\lhich arc
outli~icd belo\\, and ill~~stratcci in Figure 1 . Of thcsc
components, tlircc arc licensed fi-om Dragon S!lstems,
Inc.: the front-end processor, tlie rccognizcr engine,
anci the speaker-independent spccch mo~icls.

Dragon Systems, Inc. was chosen as the provider of
the s p c ~ l i rccognition engine based on the nccurac!,
of their technology, their products and expertise in
other local languages, and I-heir long-tcrln conl~nit-
mcnt to speech rccognition.

/)c l /cc c~cqi~i.si/iot/ colisists of thc microplio~ic, audio
card, .~nd tlie multimedia scr\.iccs application pro-
gramming intcrhce (API) tliat pro\,idcs support for
the sound card.

The ,/i.orzt-o~tl /)rocc.s,sor a~lalyzes a stream of digi-
tizcd data and differentiates bcn\recn silcncc, noise,
and spwch; it tllc~l extracts 3 set o f c o ~ i i p ~ ~ t c d features
from the speech signals.

The r c~co~q i / i~c i : or spcccli recog~iition engine,
ncccpts the computed representation o f tlic speecll
in the form of feature pacltcts \\~Iiich dri \~c tlie Hid-
den Markov Mocicls to recognize utterances. Hidden
Markov Models arc basically statc ~nachincs tliat tran-
sition fi-om a beginning statc to a numhcr of internal
states and then to 3 final state bxcd 011 i n p ~ ~ t data and
probabilities.' Each transition ciirries n1.o sets ofprob-
abilities: a transition probability, \vliicli provicics the
probability of this transition bcing taltcn, and an out-
put probability cicnsigr fi~nction (l7DF), \\,liicll is tlic
conilitional probability of emitting each o i l t p ~ ~ t sy11i-
bol from 3 fnitc alp113bct given that a tra~isition is
taltcn.' The 1'l)t's arc aciiiptcd \\.hen the model
is "tGiilied," that is, c ~ ~ s t o ~ ~ i i z c d , by the indi\.idual user.

Tlic , / i t~ i te .s/o/cl ~ratl71trnt. is a statc mnchinc that
contains a r cp r~scn~ i t ion of tlic \.ocabi~lnry supported
by I)SI<S. Each starc contains \vords, plir,lscs, o r sen-
tenccs; thcir associated actions; and thc inhrmation
nccdcd to transition to the nest statc. The current
statc is i~scd to control the Active \\,orcis.

The s l~~ec l .) ~~ /o~ /o l . s arc a sct of utterance nlodcls
uscci tlie recognizer. DSliS pro\,idcs \,ocnbular\. and
speaker-independcnt modcls for the applications sup-
ported by DSRS. Users \vho \\~isli to includc their o\vn

p i q .L;:
INTERFACE

VOCABULARY
FINITE STATE MANAGER
GRAMMAR

INTERFACE

I

' Denotes a component licensed from Dragon Systems. Inc.

4 4 COMMANDS
AND ACTIONS

ENGINE" TRANSITIONS
INTERFACE

KEYSTROKES
AND WINDOW I t X WINDOW

ACTIONS EVENTS

X WINDOW I SYSTEM I
Figure 1
1)SR.S Architccrul-nl I$lock Diagl-am

\vords can crc,~tc models using tlic Vocabulary
Managcr user intcrf-3cc.

The .S/ICVC/~ / \ I L I I I G I ~ ~ O I . is tlie main user-interface
component. The Spccch ~Managcr \\rindo\v pro\~idcs
visual feedback to users. I t also keeps track of the cur-
rent \vindo\\' in h c u s and acts ns the agent to control
focus in response to users' spcccli com~iiands.

The Vowih l~ l~ r i : ,~ ~Vlalr?c~go- user-interface willdo\v
displays tlic current hierarchy of tllc finite state gram-
mar filc. 'l'lic Voc~bular!l Managcr allo\\a the uscr to
customize using the f i~nctio~is fix addition, deletion,
and modification of \\,ords or macros. Also in this \\<in-
do\\; the command-utterance to keystroke translations
arc displa)lcd, created, o r modified.

In the Tr~~irrir~~y ilfarzc~~qe~. user intcrfacc, tlie uscr
niay train nc\\dy crcatcd ~\lorcIs or phrases in the
user \~ocabulary tiles and retrain, or adapt, tlie protiuct-
s~~ppl icd , inclcpcnticnt vocabulary.

The DSRS Implementation

As the design team gained experience \vith thc DSRS
prototylxs, \\,c rcfi ncd i~scr proccdi~rcs and interfi~ccs. -. Iliis section describes the Itc!~ f ~ ~ ~ i c t i o n s tlie team
developed to cnsul-c thc i~scr-fi-icndliness of the prod-
uct, including rlic first-time setup, the Spccch
Manager, the Training Managcr, the Vocabulary
Manager, and the fi nite state grammar.

First-time Setup
1XlZ.S rccluircs .i sctup proccss \\.lien ~ ~ s e d for the first
time. The user must create i~scr-specific files and sct-
tings. 'The user begins by sclccting the microplione
and by testing and adjusting the niicrophonc input
volun~c to i~sablc settings. Tlic user is then prompted
to spcak a Cc\v \\,orcis, which are presented on the

screen. DSRS uses tlie spcccli clata to choose the
speaker-indepcndc~it nod el that niost closely matches
the speaker's voice. There are modcls for lo\vcr- and
higher-pitched voices. The sobvarc copies the selcctctl
model to the ~ ~ s e r ' s Iiome directory; the model is then
modified \\,hen the user makes changes to the pro\lidcd
modcls and vocabulary. Aker sctup is complctc, the
ncxt step is the Training ~Mnnager \vhich presents the
user \\lit11 a list of 20 ~vords to train; when this step is
co~nplctcd, DSRS is ready fix use. The Training
Manager is described in liiorc clctnil later in this scctio~l.

The proccdurc above \\,as dc\,clopcd to take a nc\v
user through tlic entire setilp process \\.itIiout the
need to refer to any document.itio11. Once the uscr
files arc crcatcd, DSRS bypasses these steps and comes
LIP ready to work. A ~iotablc change that \ ~ e made to
the setup \\)as instigated by our o\vn use of thc soh-
\\,arc. Wc found that inconsistent microphone \ ,olu~nc
setti~lgs \\Icrc a frcclucnt problem. W e n systcrns \\)ere
rebooted, volun~c settings were reset to default \~alucs.
Conseclucntly, \Ire created an initialization filc that
records the volume scttings as well as all user-dcfinablc
characteristics of the graphic" user interface.

Speech Manager
Once IXIG is read!! and in its idle state, it presents the
user with the Speech Managcr wintiow, an example of
which is shown in Figure 2. The Speech Managcr pro-
vides the following critical co~itrols:

Microphone on/offs\\.itcli.

A V U (\~olunie ~ ~ n i t s) mctcr that g i \ u real-time
fccdback to the audio signnl being heard. A V U
mctcr is a visual feedback dc\licc conimonly used o n
devices such as tape decks. Users are generally very
conifortablc using them.

Vo1.8 No. 2 1996 119

Figure 2
DSKS Sl>cccll ~ \ / I ; I I I ~ I ~ C I - \ V i n d o \ \ .

T\vo usel--controllable panes that display the Alupuys
Active 11nJ Active vocabulnry sets. The Al\rays Active
\.ocabular!. \vords arc recognized rcgarcilcss of
the currcnt application in f i)c~~s . The Active \.ocabu-
lary \\.orcis arc specific to rlic application in ti)cus
and change dy~iamically as the current application
changes. Tlic vocabularies arc designcd in this way so
that 3 L I S C ~ can spc,llc comm;incis both \\iitl~i~i a n
applicntion contelt 2nd in o~.cicl to snitch colltcsts.

Thrcc smnll frnmes t h ~ t pro\,idc statLls infor~ii;~tion
to the LlSc'l-.

- 'The Mode frame indic,itcs tlie current state o f
the Spwcli ~Managcl-: command and control o r
sleeping.

- The Context framc displays the class name of tlie
application currently in ti)cus. This contest also
dctcmincs the current state of thc Active word list.

- The history framc c1ispl:iys the ulord, plir.lsc, or
scntcncc last hearc1 by the recognizcr. The history
kame is set LIP as 3 button. When prcsscci, it drops
do\ \ ,n to rejlenl the last 20 ~~rcog~iizcci u trcrances.

A menu that provides :icccss to the Inanagcmcnt of
user files, the Vocnbu1n1.y Manager, the Tri~ining
Maniigcr, and \,arious irscr-contigurablc options.

Training Manager
Tlic Training Manager aciapts the spcakcr-indcpcn-
dent spccch ~nodcls to thc uscr's speech patterns nnd
creates new ~nodels ti^- acldcd words. Our study of
PC-hued spccch recognizcrs lcd us to the co~iclusion
that tllc design of a training interf'lcc is critical to
obtain good res~~l ts . For cs,lmplc, the training compo-
nent o f o ~ i c PC-based I-ccogni/cs \\.c csa~nincci ciici not
pro\,idc clcar feedback to tlic user \\#hen an uttcl.ancc
had bccn processed, thus causing the user conf~sion
about \vlicn to speak. This confi~sion lend to training
errors allel hustration. Another recognizcr did not
allo\v the uscr to pailse \t.liilc trnining, :I miijor incon-
\,eniencc h r the user \vlio, fix csarnplc, ~ ~ c c d c d to
clear his throat 01- speak to somcone.

\Vc dc\.clopcd the follonring list of design cllaractcr-
istics fi)r n good training user illtcrfacc.

Strong, clcar indicatiolls that ~ ~ t t e r a ~ i c e s arc pro-
ccsscci. VVc added a scrics o f boxes that arc clicclicd
off as cacli utterance is processed and 3 \'U 1i1ctc1-
that sho\\,s the s!,stcrn is picking up auciio signals.

Reduced aniount of cyc mo\~cmcnt nccdcd for tlic
training to procccd smoothly and cluickl!~. L-lrc
placed visual feedback objects in positions that
allo\\l users to focus tlicir eyes on a limited area of
the screen and not lia\,c to look back and fi)rrli
across tlic screen at cael~ utterance.

A glimpse ofupcoming \\,orcis. A list of.i\fostis js dis-
played 011 tlic user intc~.C~cc 'ind moves as \\fords arc
proccsscci.
A progress indicator. Text is displayed alici updated
as each \t.ord is proccsscci, i~idicilting progress, for
csnmplc, Word 4 o f 2 1.
Option to pause, resume, and rcstJrt tmining.

Large, bold font clisplay of the \\rord to be spoltc~l
and a small prompt, "Plcasc continue," displayed
\\,he11 the system is \\,airing for i n p ~ ~ t .

A~~toliintic addition of rcpc,ltcd utterances t l~a t :Ire
"bnd" or d o not match the cspcctcd \\.o~.ci.
Contl-ol over the number ofrcpctitions.

As the csa~iiplc in Figure 3 slio\vs, the Training
Managcr presents a \\lord from n list of \\,orcis to be
traincci. The \\,ord to be spoken is presented in a large,

I II

Please continue: Wcrd4of 21

Digital Home Page

Figure 3
"Srnining i\/lnn.lgcr Willdo\\

holci font to d~ffercntiatc it horn t11c otlicr elements in
the \\lindo\v. To tmin the wortis, the user repcdts dn

iltrel-ancc fi-om one to six ti~ncs. The user must speak
;it tlie propel- times to make tr.iining a smooth ancl cffi-
cicnt process. DSRS manages the process by prompt-
ing tlie speaker \\,it11 \,isual cues. f igh t bclo\\f thc \\lord
is a set of boxes that repl-cscnr the rcpctitions. The
boxes are checked off as utterances arc proccsscci, pro-
viding positive \,isu;~l feedbaclc to the speaker. When
one \\.ord is complctc, the nest \vord to be trnincd is
displayed and the process is repeated. \VIicn a11 the
\\lords j11 the list are triiined, the ilscr S;IVCS the files, and
DSRS returns to tlic Speech blanagcr and its active
mode \\lit11 tlie micl-oplionc turned off.

Vocabulary Manager
.The Voc;ibulary Manager, an csaniplc of \\~liicli js
shown in F ~ ~ L I I - e 4, c~iables ilscrs to modi@ spccch
macros by changing the kcystrokcs stored for each
command and by adding nc\v commnnds to existing
applications. Users can also add spcccli support for
entirely ncrrf 'ipplications. Tllc voc,ibi~l,~ries arc rcprc-
scnted graphicall!, as Iiicrrarcliics ofappliciltion \,ocaL>u-
I.lrics, groups of \\lords, 31i~i i~ldividi~dl \\,orcis. 'The
Voc3b~1l~ry Manager provides an i ~ i t e r ~ ~ c e that 311o\\!s
m n n i p ~ ~ l ~ t i o n oftliis d,itab~sc of\\,ords \ \ , i t h o ~ ~ t ~.csort-
ing to tcst editors. .l-llc iiJ\\.,~!'s Acti\rc \,ocabularics are
acccssiblc hcrc and .)re manipulated in the same Inan-
ncr as tlic .~pplicatior~-specific \~oc~l>i~l .~r ics . With the
\/oc,1[3~11dr\, I \ / l~~idgcr, tlic L I S C ~ 111a!' i~iil>ort and export

vocabu1;irics o r p;irts of\rocaL>i~Iarics in order to share
co~nmands and thus enable specch recognition in
al.>plications not si~pportcd by default in DSRS.

Finite State Grammar
The f nitc state grammar (FSG) is a state machine with
all the vocabulary rcqi~ircd to transition benvccn scares
and conditions. The FSG has tn70 distinct sets of
\locabulnry, which ha\re already been mentioned: the
A\vays Active, o r global \~ocabulary, and the Active, o r
contest-specific, vocabulary.

In creating the FSG, we foiund that needed spe-
cial fi~nctions for interaction \\,it11 tlic \\indowing sys-
tem and rcprcscnmtions for all keyboard keys. While
creating these special frnctions, we designed the inter-
action ti)r n~asinium con\~cnicnce. For example, \\!hen
a user speaks the phrase "go to calculator" o r "s\vitcli
to calculator" or simply "calculator," the meaning is
readily interpreted by the soth\larc. For tlie user's con-
vcnicncc, these phrases trigger the follo\\,ing condi-
tional actions.

If a \\li~ldo\\r of class "calculntor" is present o n the
s!,srcrn, then set focus to it. This is done regardless
of its state; the \vindo\\/ may be in an icon state,
Iiicidcn, or o n another \\rork spiicc such as may be
f o ~ ~ n c i in tlic Common Llesktop Environnient
(CDF.).

If the \\!indo\\! tioes not exist, tlicn create one by
la~~ncli ing the application.

Digital Technical Journ;~l Vo1. 8 No. 2 1996 121

ef backwards a page
I beglnning of W e r
IY beglnnlng of llne
L beglnning of word
. center on line

L delete prevlow word

edR declare project sunmary
Sentences for SwRd,

E m m extensions ...

Figure 4
\'oc,lb~~lary hlan'lger W i n d o \ \ ,

T h e s i ~ u p l c logic o f this special function enhanccs
user producti\lity. Often worltstation anci PC screens
are littered with \vindows o r applications icons and
icon boscs through which the usel- rnust scnrch.
Spccc l~ contl-ol eliminates the steps bct\vccn tlic user
thinking "I \i1ant the calculator" and tlic applicntio~i
being prescrlted in fi)cus, ready t o bc ~ ~ s c d . T h e 1XRS
team created a function called Foc~rsOrLnunch, \vhicl~
implements the behavior described above. T h e fine-
tion is encoded into thc FSG continuous-srvitcl~ing-
m o d c sentences in the Always Activc vocabulary
associated with the spokcn commands "sn~itch t o
<application name>," "go t o <application n a m o , "
and just plain "<application name>."

Applications like cnlculator rind cnlcndar arc not
liltrl!! t o be needed in m ~ ~ l t i p l c instances. Ho\\.cvcr,
applications such as terminal emulator \vindows arc.
DSKS defines the spcci tic phrase ' ' h n n ~ u p <application
n a m o " t o caplicitly launch a new instance o f t h e uppli-
cation; that is, the phrase "bring LIP <application
n a m e " is tied t o a fi~nction nnmed L,nunch.

T h c phrases "nest i ,~pplication n a m o " and "p~.c\,i-
~ L I S app l ica t ion n a m o " \vcrc chosen fix na\ligati~ig
bet \ \~cen instances o f the same applic,ltiou. 1)SRS
r c n ~ c m b e r s the pre\,ious statc o f the application. For

instance, if the calendar application is minimized \\,hen

the user says "switch to calcnd;~r," the calendar
\\,indo\v is restored . When the user says ''s\\,i tcli to

cmacs," tllc calendar is ~ . c t ~ ~ r n e t i t o its Former state. I n
this case, it is mini~nizeci.

l)SI<S also adcis speech control to tlic common \\fin-
do\\ controls sircli as ~ninimizc, ~ ~ ~ a ~ i ~ n i z c , ;lnd close.
These fi ~nct ions operate on whatc\!cr window is cul--
rently in fi)cus.

A ~ ~ o t h c r con\.cnicnt command is "Specch Manager
go to dccp." When t h c usel- spcalts this command,
1>Sl<S tnnsi t ious into ;I special standb!, statc. In this
s t ~ t c , termed "slccping," tlic recogni7cr is still listcn-
ing bu t will 1.ct~lr11 t o command nncl contl-ol m o d c
onl!. \\.lien t l ~ c commanci "Speech A4anagcr \\,altc LIP"
is spoken. T h e "go t o slccp" c o ~ n r n a n d puts DSI<S
into a standby statc, allo\ving normal convcl-sation to
take place cvithout \vo~-cis being rccognizcci as com-
mands and causing un\\,antcd events to occur.

\7crsion 1.1 o f 13SRS ;ldds cvcn morc h~nc t ions ,
such ;IS tllc L ' ~ ~ ~ i c r ~ p h o ~ l e o f t " C O I I I I ~ I ; ~ I I ~ , \\~llicli goes a
step bc!,ond "go t o slccp." \!Vith "microphone off,"
the i n p ~ ~ t a ~ ~ c l i o scction is complctcly released dnd
1)SlIS \ \ r i l l n o longer lister1 until the m i c r o p h o ~ ~ c is
manually turned back o n . This function allo\\rs the

user to Iauncli an audio-based application that will
record, such as a teleconferencing session. Version 1.1
also includes a fi~nction that allows the user to play
a "wave," o r digitized audio clip. Audio cues Jnav thus
be played as part of spcech macros. The "say" com-
mand invokes DF,Ctalk Text-to-Spccch h~nctionality
so that audio events can be spoken.'

Since speech recognition is a statistical process and
prone to errors, the design team deemed "confirni" an
important f~nc t ion to protect user data and prevent
i~n\vanteti actions. The "confirm" f~nc t ion protects
certain sensitive actions, such as exiting an editor, n~itli
a confir~nation dialog box. Simply adding the "con-
firm" syntax within a speech niacl-o causes the dialog
box "arc you sure?" to appear. The vocabulary is
switched to respond to only yes and no so that a higher
reliability can bc acliie\red. If the LISCI- says no or presses
the no button, tlie cornpilter retLlrns to its prc\tioi~s
state. If the user says yes, the action following the
"confirm" f~nct ion is executed.

Another concept encoded in the FSG for user con-
venience is menu flattening. Menu displays are hierar-
chical because tlic number of nicnu entries that can
be shown on the scree11 at one ti~iie is limited. A good
cxn~nple is the File menu. When the user clicks the
mouse button o n File, n drop-cio\vn nienil appears
containing actions S L I C I ~ as Ope11 tile, Save file, Save
tile as . . ., Print, and Exit. Howevcr, hierarchical menus
do not really represent the way people norniall!~
think about actions; for exaniple, when the user thinks
"esit," he 01- she must then takc the steps file and
exit. With speech recognition, the computer can takc
the interim steps. ?'he FSG in 13SIIS \vas built to han-
dle nvo cases: (1) Tlie user says "file" and "esit," and
(2) the user S ; I ~ S only "exit" and DSRS performs tlic
file and exit scclucncc transparently. 'This second ~ n o d c
connects the actions more closcl!] with tlie uscl-'s
thought processes and does not forcc a seqilence of
actions in order fix tasks to be pcrfbrmed. Tlie menu-
tlattening fcati~rc of DSRS \\/as encoded into the FSG
file. 'iiV1iilc the example given may seen1 trivial, the
concept is an important one and cdn be used to flatten
nlany levels o f menus. For instance, users takc sc\~eral
steps to change the font or type size (311 a region of
highlighted tcxt in a \\lord processing program. The
foIlo\\ing could conceivably be invoked as a speech
macro: "Change to Helvetica Bold Italic 24 points."

Integrating Speech Recognition in Applications

As described in the scction O\,crvic~v, DSltS feeds Itcy-
strokes to .lpplications. Therefore, the prefcrrcd appli-
cation de\iclopiicnt method k)r allowing access to
hnctions-one that will allow integration of speech
recognition-is accelerator keys. Tvpically, accelerator

keys are in tlie form of CTRL + <key> bindings that
allo\v direct access to a function, regardless of menu
hierarchies. It should be noted that this lack of liierar-
clly limits the number of directly accessible functions.

A second method for integrating speech within an
application is through menu mnemonics. Mnemonics
are the keyboard equivalents signified in application
menus by an underlined letter. The ti rst mnemonic is
invoked by a co~nbination of tlic ALT key and tlie
underlined Icttcr, \vhich can be follocved by another
underlined letter. For esaniplc, pressing ALT + f
invokes the file menu item; pressing x immediately
thereafter invokes the "exit" entry fix the application.

Integrating speech recognition becornes difficult
when application hnctions are not accessible through
the keyboard. Applications designed to allow access to
functions only by means of the mouse cannot be
speech enabled as 1XRS is currently implen~ented.
Although DSliS can send mouse clicks into the system,
consistently locating the mouse pointer (111 applica-
tions is difficult. The next sections fi~rther illustrate tlic
issucs that stemmed from tllesc integration issucs as
we implemented and tested DSRS.

Client-Server Protocols
Applications such as enlacs and Nctsc~pe Navigator
have protocols that allo\v other processes to send
cornmancis to them. For exarnp.le, a file name 01. a
~~niversal resource locator (UKL) may be sent via
the command line. DSRS exploits this facility in
Netscape Navigator to allo\v Web surfing by voice.
For cxaniplc, in the Nctscapc context, the speech
macro "Digital home page" \vould translate to the
following command issued to a \\/indo\\/: nctscapc-
remote openURI..("http://~v~v~\~.cii~tid , co~i~") . Although
this c o ~ n n ~ a n d string seems a bit awk\vard, the r e s ~ ~ l t is
that the actions being taken are all transparent to the
user and they \\,ark very ~ le l l .

Problems Encountered in Implementation
Unlike the applications disc~~sscd in this paper, some
applications are not developed with good program-
ming practices. Neither are tlie Iteyboard interK~ccs
\\re1 I-tested. \/Vc encountered the follo\ving types of
problenis \\then using the keyboard as the main input
meclianis~n.

Applications had mi~ltiplc menu mnemonics
mapped to tlic same key sequence. This approach
could not ~\iork even if the keyboard were ~ ~ s r c i
directly.

Application f i~nc t~ons controllcd by graphic but-
tons \Irere accessible only by ~iiousc.

Keyboard mapping \\!as incomplete, that is, ninem-
onics were only partially in~plcmented.

I n tlic implementation of DSRS, \\.c cncountcrcd
one ~ ~ ~ i e s p e c t e d problem. When a nested menu
mnemonic was invoked, the second character n.as lost.
Tlic scclucnce of e\.ents \\.as as follo*s:

A spoken word uras recognizcci, and I<cystrolics
\\,ere sent to the Iceyboard buffer.
The first character, AI,l' + <Itc)l>, acted norm all!^
and caused a pop-up menu to displ;ly.

The menu remained 011 display, and the last key \\!as
lost.

We deternlined that the second kcystroltc was being
dclivcrcd to the application beti)rc the pop-up menu
\\.as displa!lcd. Therefore, at the time the key \\.as
pressed, it did not yet have meaning to the application.
It is apparait that such applications nrc \\,ritrcn for
n Iiuman reaction-based paraciigm. DSItS, o n the
other hanci, is hping on belialf of the uscr at computer
speeds and is not waiting for the pop- i~p 11ic1i~ to
display before entering thc liest Itcy.

XI overcome this problem, we dcvclopcd a syn-
chronizing fi~nction. Normally the Vocabulary
Manager notation to send an AI,T + f fi)llo\vcd by ;11i

s \ v o ~ ~ l d be ALT + f s . This nc\ll synchronizing h n c -
tion \\!as designated as SALT + f s . The sy1icI11-o~iizi~ig
h~nction sends the ALT + f and t1ic11 monitors c\,cnts
for a map-notie message indicating that the pop-up
menu lias been n'rittc11 to the S C ~ C C I ~ . The cliaractcr
fbllo\\,ing A1.T + f is then sent, in this casc, the s .
Tlic synchronizing fi~nction also has a \vatchdog timer
to prevent a hang in the event a mapnoti$ message.
This method is included in the final product.

Guidelines for Writing Speech-friendly
Applications

Sc\icral guicielines for enabling spcccli recognition in
applications bccame apparent as \\'c gnincd cspcricncc
 sing 13SIIS. Coincidentally, a guideline rcccntl!, pub-
lislicd b!, Microsofi- Corporation documents some
of tlic \.crjV sanic points."

Provide Ikeyboard acccss to all feiiturcs.

Provide acccss keys for all menu items and contl-01s.

Fully document the Itepboard uscr j11tc1-hcc.

W1icncve1- possible, usc accclcmtor keys; they ~ r c
more rcliable than using menu ~iincmonics.
I\/Inc~nonics can be overloaded or non-fi~nction,II
if the menu is not active.

C:licnt-scr\,cr protocols can \\lorlc well h r cnnbli~ig
spcccli recognition; document f ~ll!l.

l)o uot depend on l l i ~ ~ l ~ a ~ i reaction times ti)r dis-
played \\,indo\vs or o n slow typing rates.

Provide ~~ser-friendly titles for all *indo\\,s, even if
the title is not \risible.

Avoid triggering actions or messages b!, rnoilsc
pointer location.

Give dialog boscs consistent keyboard acccss; fi)r
instance, boscs sho~rld close \\,hen the ES<: Iic!. is
pressed, l:hc ciinlog bos responses yes ~ n d n o
sIio~11d corrcspo~ld to the and n keys.

Application cic\,clopcrs \\llio cvish to design a spcccli
intertiice directly into their applications now lia\lc this
option. Sevcr.11 spcccli AI'ls arc available. Microsoft
offers the Spcecli S o h ~ l a r c 13cvclopnic1it Itit, and the
Spcccli Recognition API Co~i~mi t t ec , cliail-cd by
Novell, offers SlLiPI. Compi1ter-I1~1m3n spccch
interaction is tlic subject ofongoing research. much of
the govcrnmc~it-spo11sorcci rcsearch is no\\, bcing
com~ncrci:llizcci. Sc\.cr,~l g l .o~~ps , such as 4CAI (:MI:'
liax~e been nnri continue to study specch-onl!,
intcrfi'lccs. The!, ~1-c disco\.cring that "translating a
graphical intcrhcc into spcccli is not likely to produce
an effecti\.c intcrhcc. Tlic design of the Spccch Usel-
Interface ~ i i i ~ s t be a sepaG~tc cffi)rt that in\rol\.cs study-
ing thc hu~nan-Iiuman con\crsations in the applica-
tion domain." "

Future Directions for Speech Recognition

I n addition to u~lco\,cring points for de\.clopcrs to

build spcccli-cn,~hlcci .lpplications, \\.c also gnincci '1

pcrspccti\r o n Ilo\\ spccch rccog~iition ma!, dc\-clop i l l

the t i~turc. A bricf o\.cr\,ic\\ of these insights is prc-
sentcd in this section.

Integrating spcccli ;lnd audio outpi~t-Tlic addi-
tion of a n\so-\\r;l!* iutcl-face of speech and audio t l~nt
gives users fccdbaclt \\,ill move the user interhlcc to 3

nc\jl Ic\lcl.
Telephone access-Tclcplione access can malic

\\rorltstations mol-c v.llu,~blc comniunicatio~is devices
by con~lecting users to inhrmation such ns c-r~iail
mcssagcs nnd appointment cnlcndars. tclcphonc
can estcnd the reach of our dcslktop comp~~tcrs . '~

Dictation-l3iscrctc dictation products \\,it11 capa-
bilities of 60,000 \\.o~-ds ,Ire com~ncrciall!~ a\-ailublc
no\\.; in the nor-too-ciis~l~it f ~ t ~ ~ r e , continuoi~s-
recognition dictation products \\.ill becomc viablc.
A command and control recognizer that can be scani-
Icssly s\\ritclicd to dictation mode is 11 vc1-y po\\rcrfi~l tool.

S~xccl i recognition integrated with natural Ian-
guage proccssi~lg-'Tl~c ticld of natural lang,ru,~gc
processing deals \\,it11 the cstraction of sc~nantic intix-
nlation contnincd in a sc l i tc~~cc. Machinc understand-
ing of natul-sl language is a11 ohvious nest step. Users
will be able to speak in a less restricted fi~sliion and still
have their clcsil-cd actions cnrricd ou t .

A tlc\v parxiigm for .lpplications-A nc\\. class of
applications needs to he crcatcd, one that is modeled
more o n liu~iian tllouglit processes and 11fit~11-;l1 Inn-
gilage esprcssion than on the f~~nctional pal-titioning

in today's applicatiolis. A user agent or secretary pro-
gram that c o ~ ~ l d process common requests delivered
entirely by speech is not out of reach even with the
technology available today, for esan~ple:

User: What time is it?
Computer: It is no\\, 1:30 p.m.

User: D o I have any meetings today?
Computer: Staff mccting is ten o'clock to twelve

o'clock in the corner conference room.

C o ~ ~ y x ~ t c r : Mike Jones is calling on the phone.
Would you like to ans\vcr or transfer tlie
call to voice mail?
h lswer it. User:

User: D o I have any new mail?
Computer: Yes, two messages. One is fi-on1 Paul

Jo~lcs, the other from your boss.
User: Read message nvo.

User: What is the price of Digital stock?
Computer: Digital stock is at $72'12, up '1,.

The esa~nplc above sho\\s the user agent providing
inforniat~on and interact~ng ~vi th e-mail, telephone,
stock quote, and calendar programs. As \ve move into
thc h ture , the compi~tcr-user interface should move
closer to the interaction model humans use to com-
municate with each other. Spcech recognition and
test-to-speech soft\\larc help in a significant b\la)r to
move in this direction."

Performance

DSRS word recog~iition, \vhich is the primary perfor-
mance measure, is as good as coniparable command
and control recognizers found on PCs. Training trou-
blesome and acoustically similar words improves the
pcrforniance. The vocabulary, bccause of the targets
chosen, tliat is, UNIX commands, does have acoustic
collisions, for esamplc, escape and Netscape. Further,
\ve had to i~sc t11c \locnbularies suppol.ting the U N I S
shell commands, and commands such as vi can be pro-
n o u ~ ~ c e d in different ways, for example, vcc-eye or vie.
The shell commands are also full of very short utter-
ances that tend to result in higher error rates.

O n thc slower, first-generation Alpha \\~orltstations,
DSRS has noticeable delays, o n the order ofa fen! 11~111-

dred milliseconds. Ho\vcver, on the ncwer and faster
Alpha worltstations, DSRS responds within human
perceptual linlits, lcss than 100 milliseconds.

Anotlicr interesting phenomenon associated \vith
tlie spcui of the \vorltstation is the i~npro\~cment DSRS
~iiakcs in user prodi~ctivitv. 0 1 1 a slo\\l machine, the
speech interface has little impact if the application is
slo\l: in performing its tasks. I n other words, the time it
takes to perform a certain task is not greatly affected

unless the human 11ipi1t of commands is a significant
portion of tliat time. However on a hs t machine, the
application performs tasks as quickly as the commands
are spoken, and thc productivit). enhancement, there-
fore, is great.

Summary and Conclusions

The DSRS team accomplished its objective of develop-
ing a low-cost speech recognition product. DSRS for
Digital UNIX is being shipped \vith all Alpha \\fork-
stations at no additional cost. Integration with the
X \Vindo\v System \\,as successfi~l.

With reference to the focus of this paper-develop-
ing the user-friendly interface-we found through
feedback from our user base that most first-time users
1>crfor1ii useful .ivork using DSRS without consulting
the documentation. The first-time setup design that
provides instructions and feedback to users was suc-
cesshl. The list of Active and Always Active words and
phrases is a helpful reference for new users until they
learn the "language" they can use to comniunicate
with their applications.

Adding vocabular!r for nc\v applications is a bit
nlorc challenging because some "reverse engineering"
may be required on a particular application. One
needs to know the class name of each of tlie ~vindows
and thcn map the I<e)atrokes for each of tlie filnctjons
to speech macros. Althougli this procedure is docu-
mented in the manual, it can be challenging for users.

Prototypes of DSRS control for sophisticated menu-
driven applications, such as mechanical computer-
aided design, show escellcnt promise for enhancing
user productivity. For esample, ivith computer-aided
design or dratting software, ilsers can focus their eyes
o n the drawing target on the screen while they are
speaking menu functions.

Speech recognition is an evolutionary step in the
overall computer-user intcrfice. I t is not a replace-
ment for the Iteyboard and niouse and should be used
to complenicnt these devices. Speech recognition
\\larks as an interhce bccause it allo\vs a more direct
connection beoveen the human thought processes
and the applications.

Speech recognition coupled with natural l a ~ i g ~ ~ a g e
processing, text-to-speech, and a new generation of
applications \\Jill make coniputers more accessible to
people by making them easier to use and undcrsta~ld.

Acknowledgments

Thanks go to the dcdicatcd team of engillecrs who
developed this product: f i ishna Mangipudi, Darrell
Stam, Alex Dooliovskoy, Bill Hallahan, and Bill
Scarborough, and to Dragon Systems, Inc. for being
a cooperative business and enginccring partner.

Digital Tcchnicnl Journal Vol. 8 No. 2 1996 125

References

1. L. Rabiner and B. Juang, Fzrncilamerzt~ls oJ' Speecln
Recognition (Englewood C.liffs, N . J . : Prentice-Hall,
Inc., 1993): 45-46.

2. C. Schmandt, Voice Co~nrnunication with Comnpulen:
Coni~ersatior~alSysterns(Ne\v York, N.Y.: Van Nostrand
Reinhold, 1994): 144-145.

3. 1C.F. Lce, Large-lfocabzrlar3, Spenke/--Zizclepe~~dcr~t
Contiix~~otis Speech Recogrzifion: 'The SPHfiW System
(Pittsburgh, Pa.: Carnegie-Mellon University Computer
Science Department, April 1988).

4. \V. Hallahan, "DECtalk Sofnvare: Test-to-Speech Tcch-
nology and Implementation," Digital Techilic~ll
,/ournu1 vol. 7, no. 4 (1995): 5-19.

5. G. Lowne)!, 7%e ~W~crosojl WZI?~OLLCF Gut~lelelimzes ,/or
Accessible SoJtu~are Design (Redmond, Wash.:
Microsoff Development Library, 1995): 3-4.

6. N. Yankelovich, G. Levow, and M. Mars, "Designing
SpccchActs: Issucs in Speech Uscr Interfaces," Pro-
ceedings of ACll4 Confirence on Con~pi,~tc.r-I-h,r~r~am~
Inlemcfio17 (CHI) 95: I-3t~~nun Facton- in Conzputi~zg
Systenzs: f W i c of Creatiuily, Dcnver, Colo. (May
1995): 369-376.

Biography

Bernard A. Rozmovits
During his tenure at Digital, Bernie Roz~novits has worlted
on both sides of conlputer engineerilig-llardn,are and soff-
ware. Currently he manages Speech Services in Digital's
Light and Sound Software Group, which developed thc
user interfaces for Digital's Speech Recognition Sofnvare
and also developed the DECtalk sofn\rare product. Prior
to joining this sofnvarc cffort, he focuscd 011 hard\\iarc
engineering in the Computer Special Systclns G r o ~ ~ p
and was the architect for voice-processing platfor~ns in
the Image, ?ice and Video Group. Bernie received a
Dipl61nc D'Etude Colltgiale (DEC) from Dawson
College, Montreal, Quebec, Canada, in 1974. He
holds a patent entitled "Data Format For Packets Of
Inforrnatio~1," U.S. Patent No. 5,317,719.

126 Digital Technical Journal Vol.8 No. 2 1996

Further Readings

The Digital T'chlzicn/,]ol~n~al is a refereed, cjuxterly
publication ofpapers that csplore the foundations of
Digital's products and technologies.~/ou~~~znl content
is sclected by the Journal Advisory Board, and papers
are written by Digital's enginecrs and engineering
partners. Engineers \vho would like to contribute a
paper to the./oumal should col~tact the Managing
Editor, Jane Blake, at Jane.Blake@ljo.dec.com.

Topics covered in previous issues of the
Digital Techlzicn(/ol11~11~11are as follo\vs:

Digital UNIX Clusters/Object Modification Tools/
excursion for Windows Operating Systems/
Network Directory Services
Vol. 8, NO. 1, 1996, EY-U02SE-TJ

Audio and Video Teclulologies/UNIX Available Servers/
Real-time Debugging Tools
Vol. 7, No. 4, 1995, EY-U002E-TJ

High Performance Fortran in Parallel Environnlents/
Sequoia 2000 Research
Vol. 7, No. 3,1995, EY-T838E-TJ
(Available only on the Inter~let)

Graphical Software Development/Systems Engineering
Vol. 7, No. 2, 1995, EYU001E-TJ

Database Integration/Alpha Servers & Workstations/
Alpha 21164 CPU
Vol. 7, No. I , 1995, F.Y T135k-TI
(Avnilnblc only on rhc Intcrnct)

RAID Array Controllers/Workflow Models/
PC LAN and System Management Tools
Vol. 6, No. 4, Fall 1994, EY-TI 18E-TI

Alphaserver Multiprocessing Systems/
DEC OSF/l Symmetric Multiprocessing/
Scientific Computing Optimization for Alpha
Vol. 6, No. 3, S~~mmer 1994, EY-S7991:-1'J

Alpha AXP Partners- Cray, Raytheon, Kubota/
DECchip 21071/21072 PC1 Chip Sets/
DLT2000 Tape Drive
Vol. 6, No. 2, Spring 1994, EY-F947E-TJ

High-performance Networking/
OpenVMS AXP System Software/
Alpha AXP PC Hardware
Vol. 6, No. 1 , Winter 1994, EY-(2011 E-TJ

Software Process and Quality
Vol. 5, No. 4, Fall 1993, EY-P92OE-DP

Product I~~ternationalization
Vol. 5, No. 3, Summer 1993, EY-P986E-DP

Multimedia/Application Control
Vol. 5, No. 2, Spring 1993, EY-P963E-L>P

DECnet Open Networking
Vol. 5, No. I , Wintcr 1993, EY-1M770E-DP

Alpha AXP Architecture and Systems
Vol. 4, No. 4, Spccial Issue 1992, EY-JS86E-DP

NVAX-microprocessor VAX Systems
Vol. 4, No. 3, Summer 1992, EY-JSS4E-DP

Semiconductor Technologies
VoI. 4, No. 2, Spring 1992, EY-L.521E-L>P

PATHWORKS: PC Integration Software
Vol. 4, No. 1, Winter 1992, EY-JS25E-DP

Image Processing, Video Terminals, and
Printer Technologies
Vol. 3, No. 4, Fall 1991, EY-H889E-DP

Availability in VAXcluster Systems/
Network Performance and Adapters
Vol. 3, No. 3, Su~iimer 1991, EY-H890E-DP

Fiber Distributed Data Interface
Vol. 3, No. 2, Spring 1991, EY-H876E-DP

Tralisaction Processing, Databases, and
Fault-tolerant Systems
Vol. 3, No. 1, Winter 1991, EY-F58SE-DP

VAX 9000 Series
Vol. 2, No. 4, Fall 1990, EY-E762E-DP

DECwilldows Program
Vol. 2, No. 3, Summer 1990, EY-E756E-DP

VAX 6000 Mode1 400 System
Vol. 2, No. 2, Spring 1990, EY-C197E-Dl'

Compound Document Architecture
Vol. 2, No. I , Winter 1990, EY-C196E-13P

Digital Technical Joul-nal Vo1.8 No. 2 1996 127

ISSN 0898-901X

Printed in U.S.A. EC-N6992-18/96 9 14 20.0 Copyright O Digital Equipment Corporation

	Front cover
	Contents
	Editor's Introduction
	Foreword
	Overview of the Spiralog File System
	Design of the Server for the Spiralog File System
	Designing a Fast, On-line Backup System for a Log-structured File System
	Integrating the Spiralog File System into the OpenVMS Operating System
	Extending OpenVMS for 64-bit Addressable Virtual Memory
	The OpenVMS Mixed Pointer Size Environment
	Adding 64-bit Pointer Support to a 32-bit Run-time Library
	Building a High-performance Message-passing System for Memory Channel Clusters
	The Design of User Interfaces for Digital Speech Recognition Software
	Further Readings
	Back cover

