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Ed itor's 
Introduction 

This past spring when \ve surveyed 
, / o i ~ i ~ i i ~ i / s ~ ~ b s c r i l ~ c r s ,  reacjcrs toolc the 
rime to comment o n  tlie yarticulal- 
value of  the issues featuring Digital's 
64-hit Alpha tcclinology. The engi- 
neering described in those t\vo issucs 
continues, \\lit11 ever higher levels of  
pcrformnncc in Alpha rnicrop~.occs- 
sors, scr\,crs, clusters, and systc~ns 
soft\\~arc. This i s s ~ ~ c  presents reccrlt 
dcvclop~nc~irs: a log-structured fi lc 
systcm, called Spiralog; thc OpeliVMS 
operating sysrcln extended to t,~Icc f11ll 
ad\~nnrage ooF4-bit addressing; high- 
pcrtbrmancc conipi~ting soh\,are for 
Alp113 clustcrs; and speech recognition 
soft\\.arc for Alpha workstations. 

Spil:llog is a  holly new cluster\vicic 
file systcm integrated \\,it11 the 
64-bit OpcnVMS version 7.0 opa-at- 
ing systcm and is designed for high 
d.lta avail.1bility and high perforniaocc. 
The ti fit of four papers about Spiralog 
is \\irittcn by Jim Johnson and Bill 
Iaing, who introduce log-structurcci 
flc (1,FS) concepts, thc uni\,ersity 
rcscascli behind the dcsign, .~nd dcsigll 
innovntions. 

The  ad\,antagcs of  LFS technology 
o \ ~ r  co~l\.cntional "update-ill-place" 
rcclinology arc csplaincd by Chris 
Wliirnltcr, Stuart Baylcy, and Rod 
L\licicfo\\,son. In tlicir paper about the 
flc scrvcr design, they compare the 
Spirnlog implementation of the  LFS 
tcch~iology with others and describe 
the no\,cl combination of the teclinol- 
ogy \\lit11 ,I ]),-tree mnppi~ig lucchanism 
to pro\,idc tlie system \vith ~lccded 
dnta rcco\>cry guarantees. 

A third papcr nbout Spiralog, 
\\,ritten by Russ Green, Alasdair 
Bnird, and Chris Davies, addresses 
'I critical custonicr requirement- 
hst,  appl icat io~ i -c~ns is te~l t ,  on-line 

1)igiral Technical Journal 

luckup. Exploiting the fkaturcs of  
l o g - s t ~ ~ ~ ~ c t ~ ~ r c c l  sror'lge, designers 
\\.ere nblc t o  combine tlie tlesibilic 
o f f  lc-based bnckup and the high 
pcrfo~.mancc oFpli\,sic.~ll!, oriented 
b;lckup. C:onsistcnt copies of tlic file 
sysrcm arc created \\,bile applications 
modif+ da t ,~ .  

The Spiralog integration into the 
OpcnVlMS flc  system required that 
existing applications be able to  run 
unchanged. Mark Ho\\~ell and Julian 
l'almcr dcssribe t l ~ e  integration of  tlie 
\\.rite-bncli caching used in Spiralog 
into the \\.I-itc-through en\ironmcnt 
used in the existing Filcs- 1 1 tile s!,stcln. 

The imporr.1ncc of co~npari bility 
for existing 32-bit applications in 
.i 64-bit cn\ironment is stressed 
again in the set of  three papers about 
the latest step in the evolution of thc  
0p11VhIlS okxr~t ing  systelu. l'ligital 
first ~x)r tcd the 32-bit OpenI'lLIS 
opcmting system to the Alpha arclii- 
tccturc in 1992. The cstcnsion of 
tlic systcm t o  csploit 64-bit virtual 
atidrcssing is pscsrnted by ~Miltc 
Har\,cy and Lcnny Szubo\vicz. 
Their discussion includes tlic team's 
solution to sig~iiticant scaling issucs 
that in\*ol\,cd a new approach to 
pnge-nblc ~rcsidc~lcy. 

Tllc OpcnVblS team anticiputcd 
that applications \vould mix 32- ;lnd 
64-bit nddrcsscs, o r  pointers, in tlic 
I ~ C \ V  cnvil-onment. Tom Bcnson, 
IClrcn Noel, and Rich l'cterson 
csplai11 \\,hy this ~ n i s i ~ i g  ofpointer 
sizes is cxpcctcd and tlic DEC <: 
compiler solution they dc\.elopcd t o  
support tlic practice. In a related dis- 
cussion, Du;lne Smith's papcr revicivs 
ne\\ techniques tlie team used to 
nnalyzc and rnodifiz thc C S L I I I - ~ ~ I ~ ~ C  

library interfaces that accornmodatc 
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applications using 32-bit, 64-bit, o r  
l>otli .~ddrcss sires. 

1)csigncd k,r scicnti tic users, 
tlic p.lrallcl - p r o g r a ~ i i ~ i ~ i ~ i g  tool 
nest tiessribcd does not run on the 
OIXIIVAIIS Alpha systcm but instcad 
o n  UNIX clustcrs con~lectcd \vith 
I\IlF.MOl<Y CHANNEI,  technology. 
Jim I.awton, John Brosnan, Morgan 
I)oylc, Scosanih 6 lliordiin, and 
Tim Rctidin rc\~ic\v the chal le~~pcs in 
designing the TruClustcr iMEMOJ<Y 

(:HANNF,I. Sohvare product, \\,l~ich 
is a rncssagc-p.lssing system intcnctcti 
For builders ofparallel soh\ .are  
1il~r.11-ics n11d implcnicnters ofp,~rnllcl 
compilers. The PI-oduct reduces 
conirn~~nic;~tions latcncy to less than 
10 ps ill sharcil Illelnor!, s!,stems. 

Fin;llly, Kcrnic Kozmo\,its presents 
the dcsign of  user interfaces fol- the 
l l ig i t~ l  Spccch Recog~litio~i Soti\\ln~.c 
(IXRS) product. Although LXRS 
is targeted for Digital's Alpha work- 
stsitions running UNIX,  the implc- 
mcntation issues examined and the 
team's c fhr t s  to  ensirre the prod- 
uct's case-of-i~sc can be gener~all!, 
~ipplicd to  spcccli recognition prod- 
uct dc\,clopmc~it.  

<:orning LIP  re papers on a \,a~-icty 
of topics, including the internet 
p~~otoso l ,  collabomti\.e sofi\\,arc for 
the intcl.net, and high-pcrfol-m;uncc 
scrvcn. Tliesc topics rctlcct arcas of  
in tc rcs t , /oo i~~~~i /  renders mtcd 11cur 
tlic top in last spring's S L I T V C ~ .  0 ~ 1 r  
sincere th;lnks g o  t o  c\.eryonc \\rho 
rcsponticd to that sur\,ey. 

Jane C:. 131~kc 
I L ~ U I  I ~ I ~ I I ? ~  Edilor 



Foreword 

Rich Marcello 
Vice Prc.s~clcr?t, Opo I 

.S?/)li,c/re Grolcj~ 

The  papers you will read in this issue 
of t h e . / o ~ ~ ~ , ~ z n l  describe how \ve in the 
OpenVMS engineering community 
set ou t  t o  bring the OpenVMS oper- 
ating system and our  loyal customer 
base into the twenty-first century. 
Thc  papers present both the dcvclop- 
ment issues and the technical chal- 
lenges faced by the engineers who 
delivered the OpenVMS operating 

VllLS S)csle~lls system version 7 .0  and the Sp~ralog 
file system, a new log-structurcd fi lc 
system for OpenVMS. 

We are estremely proud of  the 
results ofthese etTorts. In December 
1995 at U.S. Fall DECUS (Digital 
E q ~ ~ i p m e n t  Computer Users Socicnr), 
Digital announced OpenVMS version 
7.0 and the Spiralog file system as part 
of a first wave of  product deliveries for 
the OpenVR4S Windows N T  AtXnity 
Program. OpenVMS version 7.0 pro- 
vides the "unlimited high end" on 
which our customers can build their 
distributed computing en\ f~ronments  ' 

and Inovc to\vard the next ~nillennium. 
T h r  release of OpcnVMS version 

7.0 in January of this year represents 
the most significant engineering 
enhancement t o  the OpenVMS oper- 
ating system since Digital released 
the VAXclustcr systenl in 1983. 
OpenVMS vcrsion 7.0 extends the 
32-bit architecture of  OpenVMS 
t o  a 64-bit architecture, allowing 
OpmViMS Alpha users to  hl ly  exploit 
thc 64-bit virtual address capacity of 
the Alpha architccture. As )~ou  will 
read in some of  the papers in this 
issue, ho\ve\rer, our  design goal for 
OpenVMS vcrsion 7 .0  \vent beyond 
just delivering 64-bit virtual address 
capability to  OpenVMS users. It \ifas 

essential to  us that OpcnVMS users 
be able to  upgrade to version 7.0 
with hll compatibility for their exist- 
ing 32-bit applications. 

In addition t o  achieving the sig- 
nificant goals of64-bit addressing 
and compatibility for 32-bit applica- 
tions, version 7.0 includes very large 
memory (VLM), very large database 
(VLDB), fast I/O, hs t  path, and 
s)!mrnetric niultiproccssing (SMP) 
enhancements. These new features 
recently combined with the po\ver 
of  the Alpha architecture t o  earn 
OpenVh4S a \vorld record for perform- 
ance. In May of this year, OpenVMS 
version 7.0 on an AlphaServer 8400 
system conf ig~~red  with eight pro- 
cessors and 8 gigabytes of  menior)f, 
running Oracle's Rdb7 database 
and using the ACMS transaction 
processing monitor, sct a ne\v ~ l o r l d  
record for TPC-C performance 011 

a single SMP system. Audited per- 
formance was 14,227 tpmC: at $269 
per tpmC:. Just this past Augiist, the 
combination of  OpenVMS version 
7.0, Oracle's Rdb7 database, the 
ACMS monitor, and the Alphaserver 
4100 system achieved world-record 
depart~nental server pcrformancc. 
The ncu! u~orld record was set on 
an Alphaserver 4100 5/400 system 
configured with four processors and 
4 gigabytes ofmemory. In audited 
bencIimarl<s, the pcrfor~nance results 
\\!ere 7,985 tpmC at $173 pcr tpniC. 

Such outstanding I-csults are achicv- 
able in a fill1 64-bit environment- 
hardware architecture, operating 
systems, and applications such as 
Oracle's Kdb database. N o  otlier 
vendor today can deliver this powcr. 
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In hct ,  1)igital has t\vo 64-bit opcl-- 
nting systems \\.it11 this polver: the 
OpuiVh,lS .~nd the Digitdl U N I S  
opcrnting ~!~stcrns. 

As noted above, Digital introduced 
the O~xn\.'hlS operating s y s t c ~ ~ i  with 
suppo~.t [-i)r f i r l l  64-bit \,irtual ;~ddrcss- 
ing 3t the samc t i ~ ~ i c  it introduscti the 
Spirnlog f lc system, in l~cccn ibcr  
1995. The Spiralog design is based 

0 1 1  rhc Sprite log-strucrurcd file sys- 
tem tiom the Uni\~ersin of California, 
I~crltclcy. With its L I S ~  ofthis log- 
s t r~~cturcr i  approach, Spiralog offcrs 
1l1;ljor. n u \ -  per-t'ormance fenri~rcs, 
i l lcl~~ding fist, application-consistent, 
on-line b.~cliup. Furrhel., it is filll!. 
compntihlc \\.ith customers' existing 
Files-l 1 ti lc s!,stenis, and applicatio~is 
rli;lt run o n  Files-1 1 \ \ , i l l  ru11 o n  
Spirnlog \\ ith no lnodification. To 
deliver all of  the features \vc felt \vcrc 
csscnti;~l to  meet the needs of  o i ~ r  
loyal customer base, the Spiralog tc'im 
csn~nincri .~nd rcsol\recl a 11~11ii1~er of 
technical issucs. The papers in this 
issue iicscribc some of the challcngcs 
tlic!, C~cccl, inclt~ding tlie ciccision to 
design .I Files-1 I tile s!,stc~n cnlulntion. 

l ' h c  dclivc~-y of the OpenVMS 
\.crsion 7.0 opcmting s!.stem and 
tlic Spi~.alog f lc s!,stcm are part of 
1')igit.ll's continued commitment to 
rllc OpcnVMS custolmcr base. Tlicsc 
products rcprcs"cit tlie work of dcdi- 
catcd, talc~itcd engineering tcalils 
that li,~\,c cicployed state-of-the-art 
t c c l ~ n o l o g  in products that \\,ill help 
O L I ~  customers remain competitive 
for !.cars to conic. 

In the Opcn\.'MS group as else- 
\\*here in Digital, 11.e are committed 
to  excellence in the develop~-nent and 

delivery of  business coniputing solu- 
tions. \'Vt: \ \ . i l l  continnc to ~naintain 
and cnli,lncc n product porthl io  t h ~ t  
~nccts  our custonicrs' need for true 
24-IIOLII- by 365-day access t o  tlicil- 
data, f 111 integration \\;it11   micro so ti 
Wi~lcio\\,s N'1' er~\~ironments, and tlic 
f i l l 1  complement of net\\rorlt s o l ~ ~ t i o n s  
nnci application sofi\\,are for today 
2nd \\,ell into the ncxt niil1enni~1111. 

\'ol. 8 No. 2 1996 



James E. Johnson 
William A. Lahg 

Overview of the Spiralog 
File System 

The OpenVMS Alpha environment requires a 
file system that supports its full 64-bit capabili- 
ties. The Spiralog file system was developed to 
increase the capabilities of Digital's Files-I 1 file 
system for OpenVMS. It incorporates ideas from 
a log-structured file system and an ordered write- 
back model. The Spiralog file system provides 
improvements in data availability, scaling of the 
amount of storage easily managed, support for 
very large volume sizes, support for applications 
that are either write-operation or file-system- 
operation intensive, and support for heteroge- 
neous file system client types. The Spiralog 
technology, which matches or exceeds the relia- 
bility and device independence of the Files-1 1 
system, was then integrated into the OpenVMS 
operating system. 

Digital's Spiralog product is a log-structured, cluster- 
wide file system with integrated, on-line backup and 
restore capability and support for multiple file sys- 
tem personalities. I t  incorporates a number of  recent 
ideas from the research community, including the 
log-structured file syteni  (LFS) from thc Spritc filc 
system and the ordered \\rritc back fi-om the Echo 
file s y ~ t e m . ' . ~  

The Spiralog filc system is fi~lly intcgratcd into the 
0penV1MS operating slatem, pro\~iding compatibility 
\\rid1 the current OpenVMS fi le system, Files-l 1. It 
supports a coherent, cluster\\,ide write-bchind cache 
and provides high-performance, on-line backup and 
per-file and per-\~olumc rcstoi-e hnctions. 

I n  this paper, \lie first discuss the evolution of filc 
systems and the recluirenicnts for many of the basic 
designs i l l  the Spiralog file system. Nest \\re describe 
the o\lerall arcbitectilre of the Spit-alog file system, 
identiffiing its major components and oi~tlining their 
designs. Then cve discuss the project's results: what 
worked well and what did not work so  well. Finally, 11.e 
present some conclusions and ideas for f i~turc \vork. 

Some of  the major components, i.c., the backup 
and restore facility, the LFS server, and OpcnV1MS 
integration, are described in greater detail in conipan- 
ion papers in this iss11e.j-" 

The Evolution of File Systems 

File systems have existed throughout much of  the his- 
tory of computing. The need for libraries o r  ser\lices 
that help to manage the collection of data 011 long- 
term storage deviccs was recognized many years ago. 
The early support libraries have e\lolved into the filc 
systems of today. During their c\lolution, they have 
responded to the industry's improved hardware capa- 
bilities and to users' increased expectations. Hardwa~-e 
has continued to decrease in price and impro\~c in its 
price/perfor~~iance ratio. Consequently, ever larger 
amounts of  data are stored and rnanipuluted by users 
in ever more sophisticated ways. As more and more 
data are stored on-line, the need to access that data 24 
hours a day, 365 days a year has also escalated. 

Digital Technid Journal Vol. 8 No. 2 1996 



Sjgoificant improvements to file systelils have been 
made in the following areas: 

L>ircctory structures to ease locating data 

Device indcpende~ice ofdata access t h r o ~ ~ g l i  tlie file 
S!'StCIll 

Accessibility of tlie data to users on other systems 

A\'ailability of  the data, despite either planned or  
~~np lanncd  scrvice outages 

Kcliability of the stored data and the performance 
of the data acccss 

Requirements of t h e  OpenVMS File System 

Since 1977, the OpenVMS operating system has 
offered a stable, robust file system known as Files-l 1. 
This f le systcm is considered to  be very succcssf~~l in 
the areas of  reliability and device independence. 
Recent customer feeciback, however, indicated tliat 
tlic arcas of data a\~ailabilitl\; scaling of the amount o f  
storage easily mnn;igcd, support for \,cry I;irge volumc 
sizes, and suplx)rt for heterogeneous file spstcni clicnt 
types \\,ere in need of improvement. 

The Spiralog projcct \\.as initiated in response to 
customers' nccds. We designed tlie Spiralog file system 
to niatch or  somcwh;it exceed thc Files-1 1 system in 
its ~~cliability and device independence. The focus of 
the Spiralog projcct was on those areas that \vel-c dc~c 
k)r impt-o\!cnic~it, notably: 

Data availability, especially during planned opera- 
tions, SLICII as backup. 

If the storagc cievice needs to  be taken off-line 
to perform a backup, even at a very high backup 
rate o f  20 11icgal~)ltes per second (Ml3/s), almost 
14 hours are needed to back up 1 terabyte. This 
length of scr\ficc outage is clearly unacceptable. 
1Morc typical backup rates of  1 to  2 MR/s can take 
several days, which, of course, is not acceptable. 

Grcatly incrcascd scaling in total amount of on-line 
stor.lgc, \virIiout greatly increasing the cost to man- 
age that storagc. 

For cxamplc, 1 terabyte o f  disk storage currently 
costs approsi~nately $250,000, which is well \vithi~i 
the budget of many large computi~ig centers. 
However, the cost in staff and time to manage such 
amounts of storage can be many times tliat of  the 
storage." The cost ofstorage continues to h11, wliilc 
tlic cost of nianaging it continues to rise. 

Effective scaling as Inore processing and storagc 
resources beconic available. 

For example, OpcnV1MS Cluster systems allo\\r pro- 
cessing po\srcr and storage capacity to be addecl 
incrementally. It is crucial that the sofnvare support- 

ing the tile s!atelii scale as the processing po\vcr, 
bandn,idth to storage, and storage cdpacity increase. 

Impro\,ed perforniance for applications tliat arc 
either write-operation o r  file-systc~ii-opcratio~i 
intcnsi\,c. 

As tile system caches in m ~ i n  nlcmor!, lia\fc 
incrcnscti in capacity, data reads and tile systcm r c ~ d  
operations have beconie satisfied Inorc anci more 
from the cache. At tlie same time, nia~iy applica- 
tions \\,rite large amounts of  data or  create and 
~ n a n i p ~ ~ l a t e  large numbers of  tiles. The L I S ~  o f  
redundant arrays of  inexpcnsi\lc disks (1UIl)) stor- 
age 11.1s increased tlie available bnnd\vidth tbr ciata 
\\)rites and tile system writes. Most file system opcr- 
atio~is, o n  tlie other hand, arc s~iiall \\!rites and ,Irc 
spread across tlie disk at random, often negating 
the bcnc6ts of lWI1) storage. 

Iniprovcd ability to  transparcntl!~ acccss the stored 
clnt~ across several dissimilar clicnt types. 

Computing environments h ~ v c  bccomc incrc.1~- 
ingly hetcrogcnco~~s.  Diffcrcnt c l i e ~ ~ t  s!?stcms, sucll 
as tlic Wincio\vs o r  the UNIX opcmti~ig system, 
store their filcs on and share their filcs \\lit11 scr\.cr 
systems such as thc OpenVMS scr\,cr. I t  has 
bccomc necessary to support the syntax and scnian- 
tics oEse\w-al diffcrcnt file system personalities o n  
a common file scr\)cr. 

.- -. 1 hcsc nccds wcrc cclitral to many ticsign decisions wc 
madc for the Spiralog file system. 

The members of  the Spiralog projcct c\~aluatcd 
r n ~ ~ c h  of the ongoing work in file systcnu, d;ltab;lscs, 
and storage architccturcs. RAID storagc makes high 
band\vidtli a\,ailabJe to  disk storage, but it r cq~~i res  
large \\>rites to be effective. Databases lia\,c csploitcil 
logs nnci thc grouping of writes togcthcr to ~ n i n i m i ~ c  
the nuniber of disk I/Os and disk scclts rcquil-cd. 
13;ltabascs and transaction s!lstcms have also csploitcd 
the tecl~niquc of copying the tail of the log to cffcct 
backups or  data replication. The Sprite projcct at 
13crltcley had brought together a log-structured file 
system and RAID storage to good effect.' 

lly cirawing fro111 tlle above ideas, particularl!, thc 
insight oflio\v a log structure c o ~ ~ l d  support on-line, 
Jiigli-performance backup, we began our development 
cft i~rt .  We designed and built a distributed file system 
that madc extensive use of the processor and memory 
near tllc application and used log-structured storage in 
tlic scrvcr. 

Spiralog File System Design 

The main execution stack of  the Spiralog f lc system 
consists of  thrcc distinct layers. Figure 1 sho\vs the 
o\.erall structure. At the top, nearest the user, is the file 
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spste~ii client layer. I t  consists o f  a number  o f  filc 
s y s t e ~ ~ i  pcrso~~al i t ies  and the underlying personality 
independent scrviccs, which we call tlie VPI. 

T\\/o file svstem personalities d o ~ n i n a t c  the Spiralog 
design. T h e  F64  personality is an emulation o f  the 
Files-11 file system. T h e  file system library (FSLIB) 
personality is an implementation o f  ~Uicrosoft's N e w  
Technology Advanced Server (NTAS) filc scrviccs for 
use by the I'ATHWOlU<S for OpenViMS file server. 

T h e  nes t  layer, present 011 all systems, is the clerk 
layer. I t  supports a distributed cache and ordered write 
back t o  tlie LFS server, giving single-system semantics 
in a cluster conf ig~~ra t ion .  

T h e  1,FS server, the third laver, is present on all des- 
ignated server systems. This component  is responsible 
for maintaining the on-disk log structure; it includes 
the cleaner, and it is accessed bv ~nult iple  clerks. Dislts 
call be connected t o  more than o n e  LFS server, but 
they are served only by one  LFS server at  a time. Trans- 
parent failo\,cr, fi-om the  point o f  view o f  the  file sys- 
tem client layer, is achieved by cooperation between 
the clerks and tlie sur\~iving LFS servers. 

T h e  backup cnginc is present 011 a system with an 
active LFS server. I t  ~ ~ s e s  the LFS server t o  access the 
on-disk data, and it intcrhccs t o  the clerk t o  ensure 
that the backup o r  restore operations are consistent 
with the clcrl<'s cache. 

Figure 2 slio\\s a typical Spiralog cluster configura- 
tion. In  this cluster, the clerks o n  nodes A and B are 
accessing the Spiralog \~olumes.  Normally, they use the 
LFS scrvcr o n  node C t o  access their data. If node  C 
should hi l ,  the LFS server o n  node  D ~ v o u l d  imnicdi- 
ately provide access t o  tlic volumes. T h e  clcrlts o n  
nodes A and R \vould use the  LFS server o n  node  D ,  
rrtrying all their outstanding operat io~is .  Neither user 
application \\iould detect any failure. O n c e  node C had 
recovered, it \\/auld become the standby LFS server. 

File System Client Design 
T h e  filc s)s tcm client is responsible for the  traditional 
file systcln filnctions. This layer provides files, directo- 
ries, access arbitration, and file naming rules. I t  also 
provides the services that the user calls t o  access the fi lc 
syste1n. 

NODE C 

VPI Services Layer T h e  VPI layer provides an underly- 
ing primiti\ic file system interface, based o n  the U N I S  
VFS switch. T h e  VPI layer has n v o  o\lerall goals: 

NODE D 

1 .  T o  support  multiple file system personalities 

2. To effectively scale t o  very large volumes o f  data 
and very large  lumbers offiles 

To meet the fi rst goal, the VPI 1,iyer provides 

File Iiames o f  2 5 6  Unicode characters, with n o  
reserved characters 

N o  restriction o n  directory depth 

U p  t o  2 5 5  sparse data streams per file, e'lch with 
64-bi t  addressing 

Attributes with 2 5 5  Unicode character names, con-  
taining values o f  up  to 1 ,024  bytes 

Files and directories that are freely shared a m o n g  
file system personality 1iiod~11cs 

To ~ n c e t  the second goal, the VI'I layel- provides 

File identifiers stored as 64-bi t  integers 

Directories through a B-tree, rather than a simple 
linear structure, for log(lz) file name looltup time 

T h e  VPI layer is only a base for file system pcrsonali- 
ties. Therefore it  requires that such personalities are 
trusted components  o f  the  operating system. 
 moreo over, it requires them t o  implenic~i t  file access 
security (al though there is a convention for  storing 
access control list information) and t o  perform all nec- 
essary cleanup \vhen a process o r  image ter~ninates .  
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F64 File System Personality As previously stated, the 
Spiralog p r o d ~ ~ c t  inclildcs two file systcm personalities, 
F64 and FSLIR. The F64 pcrso~iality provides 3 service 
that cmularcs the Files-1 1 file system.' Its functions, 
serviccs, a\f;iilablc f l c  attributes, and erecution 
bcl~;i\~iors arc simil'ir to those in the Files-1 1 f le s!.s- 
rcm. Minor diffcrcnccs ;ire isolntcd into arcas tliat 
rccci\.c little 11sc from most ;lpplications. 

For instance, the Spi~alog f lc system supports the 
\,arious Files-1 1 c l~~cucd I/O ($QIO) parameters for 
returning f lc attribute inform;ition, bccai~se they are 
~ ~ s c d  implicitl!* or explicitly by most user applications. 
On tlic other hand, the Files-11 method of rending 
the tile header infbrmation directly t l i ro~~gl l  3 file 
called 1Nl)ESF.SYS is not commonly ~ ~ s c d  by applica- 
tions and is not s~rpportcd. 

The F64 file s!;stcm personality demonstrates that 
the Vl'I laycr contains sufticicnt tlcsibilit)~ to s ~ ~ p p o r t  
a complcs f lc systcm intcrfacc. I n  a nunibcr of uses,  
ho\\/c\lcr, scvcr;il Vl'I calls arc nccdcd to implement 
a single, complex Files-l 1 operation. For instance, to 
do  a filc opcn opcl-ation, the F64 personality performs 
tlic tasks listed belo\\!. The items tliat end nrith (VI'I) 
arc tasks that use VPI service calls to complete. 

Acccss tlic file's parent directory (VPI) 

l3eaci tlic dirccto~.y's filc nttl.ibutcs (VI'I) 

V c y i ~  autliol-iz.itio11 to rc;id tlic directory 

Loop, scnrcliing tbr tlic tilc [lame, hy 
- l<cading some directory entries (VPI) 
- Searching the clircctory buffer fix the tile name 
- Esiting the loop, if the m;itch is found 

Acccss the target tile (VPI) 

Read the f lc's attributes (VI'I) 

Audit the tile opcn attempt 

FSLlB File System Personality ?'he FSL113 file systcm 
pcrso~ialit!, is o spcci,llizcd tile system to support tlie 
I'ATHWORKS h- OpcnVMS f lc scr\,cr. Its nvo major 
g(~,~ls  arc to support rlic file names, attributes, and 
behaviors found in ~Vicrosoh's NTAS f lc access proto- 
cols, vld to pro\lidc lo\\, run-time cost for processing 
NTAS filc systcm requests. 

Fl'lic I'ATHWORIG scr\cr implcmcnts a file service 
tbr pcrso~ial cornputc~. (l'<:) clients Inyered o n  top of 
tlic Files-11 file systcm scr\~iccs. WIicn NTAS service 
bclia\4ors o r  attributes clo 11ot match those of Filcs-1 1, 
the PATHWORKS server Iias to emiilatc them. This 
can Icad to checking security :~cccss permissions nvice, 
mapping f lc names, and c~nulnting filc attributes. 

Many of tlicsc problems can be a\~oided if the VPI 
interface is ~ ~ s c d  directly. For instance, because thc 
FSI.IR personality clocs not laycr o n  top of a Files-11 
pcrson~ility, security ;icccss clicclts d o  not need to be 
performed n\,icc. Furtlicrmorc, in n str,~iglitfi)r\vnrci 
design, t1ic1.c is n o  nccci to map Across different filc 
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naming or  attribute r ~ ~ l c s .  For reasons \\,c describe 
later, in the VPI  Results section, \vc chose not to pur- 
sue this dcsig~i to its co~iclusio~i. 

Clerk Design 
:The clerlcs are responsible tbr mnnngi~lg the c.iclics, 
dctcrmining the order of\\,ritcs out of the c,icIic to thc 
LFS scr\,cr, and  maintaining caclic colicrc~icy \\.itliin 
a cluster. 'l'hc cachcs 'Ire \ \ ~ i t c  bcliinti in a m.inncs that 
prcscrvcs tlic order ofclcpcndc~it opc~.'~tio~is. 

The clerk-servcl- protocol c o ~ ~ t r o l s  the transfer o f  
data to and fi-om stable storage. 1)nta can be sent ns 
a multiblock atomic \\.rite, and opcr.itio~ls that chnngc 
multiple data items such as a f lc rename cnn be mndc 
atomically. If a server fails during n request, tlic clcrk 
treats the r e q ~ ~ c s t  as if it \\,ere lost anti ~.ctrics tlic 
request. 

Tlie clerk-scr\rcr protocol is idcmpotcnt. Idcm- 
potent operations can bc applied rcpcatctlly \\,it11 no 
effects other than thc desired one. 'T'lius, after ali)! 
number of ser\,cr hil~~t-cs or  scr\'cr faiIo\,c~-s, it is aI\v.i!ls 
safe to  reissue an operation. Clerk-to-scrvci- \\,rite 
opcrations al\\:a!s Icn\.c the file systcm state consistent. 

The clerk-clerk protocol protccts tlic usel- dntn and 
tilc systcm nletadata cached by the clcrlis. (:ache 
colierenc!~ inforln.ition, rather t1i;ln ti.lra, is passed 
dircctl!, bct\\,ccn clerks. 

Tlie filc systcm cachcs arc I<cpr i n  tlic clcrks. AIIul- 
tiple clerks can 1iai.c copies of  s t ;~bi l i~cd tiat'i, i.c., data 
that has been  itten ten to the scr\.cr \\.it11 tlic \\.rite 
acl<no\\.ledgcd. Only one clcrk call li;l\.c unstiibilizcd, 
\rolatile data. Data is cschnngcd bcn\.ccn clcrks by 
stabilizing it. \.V~cn a clcrk nccds to \\.l-itc n block of 
data to the serIrcr from its cache, it LISCS a toke11 inter- 
filce that is layered o n  the clerk-clcrlc protocol. 

The \\,rites f i o n ~  the caclic to tlic scr\ cr arc cicfcl-red 
as long as possible \\.itliin the constraints ot'tlic c~iclic 
protocol i111ci the dcpc~idc~ic!~ gunrantccs. 

Dirty data rem'iins in tlic caclic as loiig as 30 scc- 
onds. During that tinic, o\~cr\\.ritcs arc c o ~ i i b i ~ i c ~ i  
\\;ithin the constrnints o f  the iicpcndcncy gual-antccs. 
Furthermore, operations that arc lino\vn to ofKsct one 
another, such as freeing a file idcntifcr and allocating 
a file identifier, arc hlly colnbincd \vitliin the cnche. 

Eventuall!~, some trigger c;i~~scs tlic dirty Jar3 to be 
\\rritte~i to tlie scr\icr. At this point, sc\,cl.nl \\)rites .lrc 
grouped together. Write opcrntions to acijuccnt, or  
o\ierlapping, filc locations arc conihincd to k)rm 
a smaller n i~mbcr  of  larger writcs. 7'lic resulting \\trite 
operations are then grot~pcd into mcssngcs to the 
Lt'S SCr\TJ-. 

The clcrks pcrfor~n write behind for b u r  rcasons: 

To  spread the 1 / 0  load o\'cr time 

To remove occluiicd ciatn, \\.hicIi c.ln result fr.on.1 

repeated o\a-\\,ritcs of n dat;l block, fro111 being 
tmnsferrcd to the s c r i ~ r  



To avoid writing data that is cluicltly deleted such as 
tcmporary filcs 

To co~ilbinc multiple small writes illto larger transfers 

Tlie clerks order dependent writes from the cache 
to tlie server; consecluently, othcr clerks nevcr see 
"impossible" states, and related \\,rites ne\ier o\lertaltc 
each othcr. For instance, the deletion of a file cannot 
happen before a rename that \\/as pre\liousl!~ issued to 
the same file. Related data writes arc caused by a partial 
overwrite, o r  an explicit linking of  operations passed 
into the clerk by the VPI layer, o r  an implicit l i~ ik i~ig  
due to  the clerk-clcrlc coherency protocol. 

The ordering bcnveen mites is kept as a directed 
graph. As tlie clerks traverse these graphs, they issue 
the writes in order o r  collapse the grapll \vhen writes 
can be safely combined o r  eliminated. 

LFS Server Design 
Tlie Spiralog f lc system uses a log-structured, on-disk 
format for storing data within a \rolume, yet presents 
a traditional, upclatc-in-place file system to its users. 

FlLE HEADER 

1 USER 110s 

FlLE VIRTUAL BLOCKS 

Recently, I o ~ - s t r ~ ~ c t i ~ r c d  file systems, such as Sprite, 
have beell an area of active research.' 

Within the LFS server, support is provided ti,r the 
log-structured, on-disk format and for mapping that 
format to an ~~pdate-in-place model. Specifically, this 
component is responsible for 

Mapping the incoming I-cad and \\,rite operations 
from thejr simple address space to positions in an 
open-ended log 

Mapping the open-ended log onto  a finite amount 
ofdisk space 

Reclaiming disk space by cleaning (garbage collect- 
ing) tlie obsolete (o\lcr~\lrittcn) sections of  the log 

Figure 3 sho\\,s the various mapping layers in tlic 
Spiralog file systerm, including those handlcd b y  tlie 
LFS server. 

Z~~corni~lg  read and \vrite operatio~is arc bascd on a 
single, largc address space. Initially, the LFS server trans- 
forms the address ranges in tlie incoming operations 
into equivalent address ranges in an open-ended log. 
This log supports a very large, write-once address space. 

LOG GROWS 

Figure 3 
Spiralog Address  mapping 
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A reacl operation looks up  its location in the opcn-  
cnclcd log and proceeds. On the otlier Iiand, a \\,rite 
opcration makes obsolete its current  add]-ess range 
dnd appends its ne\v value t o  the tail o f  rile log. 

In  turn,  locations in the open-encled log arc then 
mapped into loc~ltions o n  the (finite-sized) disk. This 
additional mapping allo\\,s disk blocks t o  be reused 
once their original contents lia~lc become obsolctc. 

Physicall!: the log is divided into log segments, c'lcli 
of\\lhich is 256 kilob!ites ( K R )  in length. Tlic log scg- 
mcnt  is ~ ~ s c c l  as the transfcr unit for the bacltup engine. 
I t  is also used by tlie cleaner for reclaiming obsolete 
log space. 

More  information about  the LFS server can be 
found in this issue:' 

On-line Backup Design 
?'lie dcsign goals for the backup engine arose fi-om 
higher stomge management costs and greater data avail- 
ability needs. Investigations with a 11~11nbcr o f c ~ ~ s t o m c r s  
rc\calcd their rccli~ircmcnts for a backup engine: 

Consistent sa\,e opcrat io~is  \vithout stopping an!, 
applications o r  locliing o u t  data modifications 

Very List save opcr'itions 

Uoth fill1 and increme~it,ll save operations 

l<estorcs o f  a f~lll  volume and o f  indi\~iciual files 

O u r  response t o  these needs influenced many deci- 
sions concerning the  Spiralog file system dcsign. T h e  
nccd for a high-pcrfor~na~lce,  on-line back~lp  Icd t o  
a search for an on-disk structure that  coulcl support  
it. Ag'lin, wc cliose the log-structured design as tlic 
most  suitable one.  

A log-srructurccl organization allows the backup 
Klcility t o  easily demarcate snapshots o f  the file system 
at  any point in time, si~ilply by mdrking a point in tlic 
log. Such a mark represents a \,ersion o f  the file systcm 
and prelrents ciisk blocks that conipose tliat \.crsion 
from being cleaned. In  turn,  tliis allons the b a c k ~ ~ p  t o  
r u n  agaiiist a lo\\! le\,el o f  tlie file system, that o f  tlic 
logical log, and therefore t o  operate close t o  the spil-al 
tr~lnsfcr rate o f  the underl!~ing disk. 

T h e  difference benvecn a partial, o r  incremental, 
and a f ~ ~ l l  save operation is only the starting point in 
the log. An incrementdl sdve need not  copy data back 
t o  tlic beginning o f  tlic log. Therefore, bo th  incrc- 
mental anci fbll save operations transfer data at  very 
high speed. 

Ky implcn~cnt ing  these features in t h e  Spiralog fi lc 
system, \vc f~~lf i l lcd o u r  customers' requirements fix 
hig l i -pcrh) rm~ncc ,  on-line backup save o p c r ~ t i o n s .  
Wc also met  their needs for per-file and per-volume 
rcstorcs and an ongoing need for silnplicin and rcduc- 
tion in operating costs. 

-1-0 ~xo\cide per-file rcstorc capabilities, tlic backup 
utilinr anci the L,FS scrl8er cnsurc tliar tlic appropriate 
file 1icade1- inforuiiation is stol-cd during the s a \ c  opcr- 
ation. Tlic sa\mi file system data, including file licad- 
crs, log rnappilig inforniation, ,lnel user data, drc 
stored in a file kno\\.n as a .sor'es~/. Each s ~ \ , c s c t ,  
r c~ard lcss  o f  the number  o f  tapes it r e i l~~i rcs ,  rcprc- 
scnts 'I sillglc SJ\Y operation. 

'l'o r c c i ~ ~ c c  tlic complcsity o f  file I-cstorc opcrarions, 
the Spiralog file systcm pro\,idcs an off-line saircsct 
mcrgc fcatul-c. This  allows the systeni man'lgcr t o  
merge se\~cral sa\.esets, either fill1 o r  incrcu~cntal ,  t o  
form .I nc\il, single saveset. With this feature, system 
Jiian'lgcrs c'in have a worltable baclcup s , ~ \ ~ c  plan that 
never calls for an on- l i~ ic  full backup, t l i ~ ~ s  t i~r t l icr  
reducing the load o n  their production systems. Also, 
tliis f e a t ~ ~ r c  c,ln be ~ l s e d  t o  ens~11-e that fi lc rcstorc opcr- 

ations tali be ,iccol~iplished \vith a small, b o ~ l ~ i d c d  set 
of  s.l\~cscts. 

T h e  Spiralog backup facility is describeel in detail in 
this I S S L I C . '  

Project Results 

'l'lic Spiralog tile system contains a number  ofinno1.a- 
tions in the arcas o f  o ~ l - l i ~ l c  backup, log-struct~ll-cd 
s t o r ~ g c ,  cluster\\~ide ordercd \\,rite-behind caching, - 

, ~ n d  multiple-ti le-system client support .  .~ ~ 

I l ic  LISC o f  log s t r ~ ~ c t ~ l r i n ~  as an on-ciisk format is 
very cffecti\ic in supporting higli-pcrh)rmani-c, on-linc 
backup. T h e  Spiralog file s)lstcni rct,lins the prcvio~~sl!! 
documented bellefits o f  LFS, sucli as fast \\,rite pcrfi)r- 
mallcc r h ~ t  scales \\,it11 t h e  disk s i ~ c  and t l i r o ~ ~ g l i p ~ ~ t  
tllat ~ I ~ C ~ C ' I S C S  as la]-ge read caclics arc ~ ~ s c c i  t o  oftict 
disk reads.' 

I t  S I I ~ L I I ~  also be iioted that the Files-l 1 file s!~stc~ti 
sets a high standard fbr data reliability ,~nci robustness. 
- ~ 

I l ic  Spir.llog technolog ,  met  this challcngc \-cr\! \ \ ~ l l :  
as a result o f  the iclempotent protocol,  the cluster 
Liilo\ycr clcsign, anti the recoircr capabilit\, o f  tlic Jog, 
\\,c cncounrered fe\ \  data rcliabilit\r problems ciuring 
cic\~clopmc~lt .  

In  any large, complex project, many tcchl i ic~l  dcci- 
sions JI-c necessary t o  con\,crt rcscarch tcclinolog\, 
into a IN-oduct. I n  this section, \ire d i s c ~ ~ s s  \vhy certain 
ciccisions \\)ere made  during the  dc\,elopmcnt o f  the 
Spil-alog subsystems. 

VPI Results 
Tlic VPI f lc system \Ifas generally s ~ ~ c c c s s f ~ r l  in pro- 
viding the ~ ~ n d c r l y i n g  support  ncccssary For different 
file system personalities. We found tliat it \\,,is possi- 
ble t o  construct a set o f  prirniti1.e opcl-ations tliat 
coulcl be ~ ~ s c c l  t o  build complex, ~~se~- - lc \ , c l ,  file s!'stclii 
0p""'iolls. 
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By using these primitives, the Spiralog project 
members were able to successhll!~ design t\vo dis- 
tinctly different personality modules. Neither was a 
fi~nctional supcrset of the other, and neither \\,as lav- 
ered on top of the other Ho\\ic\~er, there was an 
important second-order problem. 

The FSLIB tile system personality did not have a fill1 
~iiapping to the Files-11 file system. As a consequence, 
tile management was rather difficult, because all the 
data Inanagelncnt tools on tlie OpenVh/IS operating 
system assumed compliance ~r i t l i  a Files-l 1, rather 
than a VPI,  file systeni. 

This problem led to the decision not to proceed 
\\lit11 tlie original design for the FSLII3 personality in 
version 1.0 of Spiralog. Instead, we dc\/eloped an 
FSLIB file systeni personality that was ti~lly compatible 
with the F64 personality, even ~ v h e ~ i  t h ~ t  compatibility 
fol-ced 11s to accept an additional execution cost. 

We also found an execution cost to the primitive 
VPI operations. Generally, there was little overhead 
for data read and write operations. However, for 
operations such as opening a file, searching for a file 
name, and deleting a file, we found too high an over- 
head from the number of  calls into the V1'1 services 
and the resulting calls into the cache manager. \;Vc 

called this the "fan-out" problem: one high-level 
operation \vould turn into several VPI opcrations, each 
of \vhicIi \vould turn into several cache manager calls. 
Table 1 gives tlie details of tlie can-out problem. 

VVe believe that it \\/auld be \vorthwhile to pro\,ide 
slightly liiore complex VPI services in order to com- 
bine calls that alcvays appear in the same sequence. 

Table 1 
Call Fan-out by Level 

F64 
Operation Calls 

Create file 4 
Open file 1 
Read block 1 
Write block 2 
Close file 1 

VPI Clerk 
Calls Calls 

18 29 
6 18 
1 3 
4 7 
4 13 

Revised 
Clerk 
Calls 

Clerk Results 
'I'he clerk met a number of our design goals. First, the 
use of idempotent operations allowed failover to  
standby LFS servers to occur with n o  loss of  service to 
the file system clients, and \\lit11 little additional c o n -  
plesity within the clerk. 

Second, the ordered write behind proved to be 
effect.ive at ordering dependent, met'ldata file system 

operations, thus supporting the ability to construct 
co~nples file systenl operations out ofsimpler elements. 

Third, the clerk \\/as able to manage large physical 
caclies. It is very effective at ~naliing use of unused 
pages when tlie memory demand from the OpenVMS 
operating systeni is lo\v, and at quickly shrinking the 
cache when meliiory delilands increase. Although 
ccrtain parameters can be used to limit the size of a 
clerk's cache, the caches are normally self-tuning. 

Fourth, the clerks reduce the n i~mber  of oper~t ions  
and messages sent to the LFS server, with a subsequent 
reduction to tlie 11unibcr of messages and operations 
waiting to be processed. For the COPY cornmand, the 
number of operations sent to the server was typically 
reduced by a hctor of 3.  I3y using transient files with 
lifetimes of fewer than 30 seconds, \ve sa\v a reduction 
of operations by a Elctor of 100 o r  more, as long as the 
temporary file tit into the clerk's cache. 

In general, tlic code complexity and CPU path 
length within the clcrk were greater than \ye had origi- 
nally planned, and they will need further work. Two 
aspects of the services offered by the clerk com- 
pounded the cost in <:PU path length. First, the clcrk 
has a simple interface that supports reads and writes 
into a single, large address space only. This interface 
reqi~ires a number of clerk operations for a nun~bcr  of 
the VPI calls, f ~ r t h e r  expanding the call fan-out issues. 
Second, a concurrcnc!l control model allows the clerk 
to unilaterally drop locks. This requires the VPl layer 
to revalidate its internal state \\/it11 each call. 

Either a change to the c.1er.k and VPI ser\iice inter- 
faces to support notification of lock irlvalidation, or  a 
change to tlie concurrency control ~iiodcl to disallow 
locks that could be unilaterally invalidated, would 
reduce the number of calls made. Wc believe such 
changes \vould produce the results given in the last 
column of Table 1. 

LFS Server Results 
Tlic LFS server pl.ovidcs a highly available, robust file 
system server. Under heavy write loads, it provides the 
ability to  group together multiple recluests and reduce 
the number of disk I/Os. In a cluster configuration, 
it supports Gilover to a srandby server. 

I n  normal operation, thc cleaner was successhl in 
minimizing overhead, typically adding only a few pcr- 
cent to  the elapsed time. The clerlner operated in a lazy 
manner, cleaning only when there was an immediate 
shortage of space. 'The cleaner operations were f~ r t l i e r  
lessened by the tendency t i ~ r  normal file overurrites to 
free up recently filled log segments for reuse. 

Although this produced a cleaner that operated 
with little overllead, it also broi~ght about nvo L I I ~ L I S L I ~ ~  

interactions \ilith the backup facility. 111 the f rst place, 
the log often contains a number ofobsolete arcds that 
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arc eligible for cleaning but ha\le not yet been 
processed. These obsolete arcas arc also saved by the 
backup engine. A l t h o ~ ~ g h  thc!l have no effect o n  the 
logical state of tllc log, they d o  require the bnckup 
engine to move ~ n o r c  ciatn to b'lckup storage thnn 
might other\\/ise be necessary. 

Second, the dcsign initially prohibitccf the clca~lcr 
from running dgainst ;I log \\lit11 s~iapshots. Consc- 
qucntl!; the clcancr \\.as disabled dul-ing ;I save opcrn- 
tion, \\tliich had the follo\ving effects: (1  ) The anlount 
of  a\.ailable free space in the log was artificially 
depressed during a bacl<up. ( 2 )  Once rlic bacl<up \\,as 

finished, the activated clcancr \ \ ,o~~lci  disco\fcr tlint 
a great 11~111ibcr of log scg111ents \\,ere no\\, cligilzlc for 
cleaning. As a result, the cleanel- i~ndcr\\,cnt a sudden 
surge in cleaning activity soon aftel- the backup had 
completed. 

Wc addressed this problem by reducing tlic area of 
the log that \\.as off-limits to the cleaner to only the 
part that the backup engine \ \ ,o~~lcl  rcad. ?'liis li~.nitcd 
snapsliot \\.indo\\l allo\\led morc segments to rcmnin 
eligible for cleaning, t l i ~ ~ s  grcatl!. ,~llc\k~ting rlic sliort- 
age of cleanable space durjng the backup and climinnt- 
ing the postbackup cleaning surge. For an 8-gigabyte 
time-sharing \.olume, this change typically r c d ~ ~ c c d  the 
period of  high clcancr activity fi-0111 4 0  seconds to less 
than one-half of a second. 

We 1m.c not yet cspcrimcntcd \\~itIi different clcnncr 
algorithms. &lore \\rork ncccis to 1x2 done in this arcn 
to scc if the cleaning efficie~lcy, cost, and intcr.1. , C ~ I ~ I I S  ' 

~vi th  backup can be iml>rovc~i . 
The current mapping transfol-matio~i from the 

inconling operation address spacc to  locations in the 
open-ended log is more cspcnsi\~c in CPU time thnn 
we \vould like.  more \\lark is nccdcd to optimize thc 
code path. 

Filially, the JLFS ser\!er is gcncrall!i s~~cccssfi~l  ;it pro- 
\,iding the appearance of a traditional, ukidatc-in-place 
file system. Houlc\cr, as the ullused spacc in a \ r o l ~ ~ ~ i l e  
nears zero, the ability to behave with se~~ lu~ l t i c s  that 
meet users' expectations in a log-structured file system 
proved more diffic~~lt  than wc had anticipntcd and 
reqi~ired signiticant cffi)rt to corrcct. 

The LFS ser\/cr is dcscribcd in much morc detail in 
this i ss i~e .~  

Backup Performance Results 
IVc took a nc\v approach to the backup design in the 
Spiralog system, resulting in a very tist and very low 
i~npact backup that can be ~ ~ s c d  to crc.itc consistent 
copies of the filc systcm \\~liilc applications arc acri\~cly 
motii@ing data. Wc acl~ic\cd this degree of success 
\\.itlloi~t compromising such fi~nctionnlip as incre- 
mental backup or  hst, sclcctivc restore. 

The pcrfi)nnancc impro\.cmcnts of  the Spiralog 
save olxratiot~ nrc pal-titularly noticeable \\.it11 the 
large 11~1mbcrs of transient or  nctivc 61es that are typi- 
cal 1y f o ~ ~ ~ i c i  011 LISU V O ~ L I I ~ I C S  or 011 11i;iiI S C ~ \ , C I -  \~olu~nes .  
111 the follo\\ling tables, \vc compare tlic Spiralog 
and  tlic file-bascci Files-l 1 bac l i~~p  operations on a 
I>F.<: 3000 Model 500 tvorkstation \\*it11 a 260-1MR 
volume, containing 21,682 ti lcs in 4 0  1 dircctorics and 
a I-2877 tape. 

T.lblc 2 gives the rcsults of n\.o sa \ r  operations, 
\vhich arc the average o f  five operations. Alrhough its 
S ; I \ ~ C S C ~  size is s o ~ i ~ c \ \ ~ I i ; ~ t  I,irg~r, tlic Spiralog sa \ r  
o p c r ~ t i o ~ i  C O I I I ~ I C ~ C S  ncnrl!. n\ricc as fast as the Filcs-l 1 
sa\.c ol>cration. 

-T;iblc 3 gi\rs  tlic rcsults from restoring a single file 
to the cargct \,olumc. I n  this case, the Spiralog file 
restore operation csccutcs morc than rlircc times as 
fast 3s the Files-1 1 system. 

The pcrtbr111xicc cid\,antngc o f thc  Spil-alog bacl<up 
~11ci ~.cstorc Lncility increases f i~r thc~.  for Inrgc, niulti- 
tape s~\~cscts .  111 rllesc c~scs ,  tlic Spiralog s\stc~ll  is ablc 
to o~i i i t  tapcstth.it JI-c not ncccicci ti)r tlic f lc restore; 
the Files-1 1 system docs not have this capability 

Observations and Conclusions 

O\'cr~Il ,  \\,e bcIic\'c that the signiticant iuno\.;ltion and 
re31 SLICCCSS of the Spil-alog project \\,;is the integration 
OF high-pcrForrnn~icc, on-line backup \\,it11 the log- 
structured f lc systcm model. ?'he Spiralog tile system 
dclivcrs an on-line backup cnginc that can r u n  near 
dc\ricc speeds, \\lit11 littlc impact o n  concurrently run- 
ning applications. Man!, filc operations arc signifi - 
cantly Eistcr in elapsed time ;is n result o f thc  reduction 
in I/Os d ~ ~ c  to the cnclic rind the g r o ~ ~ p i n g  o f  write 
opuations. A l t l i o ~ ~ g I ~  tllc cocic pntlis for a n i~~ i ibc r  
of olxrations ,lrc longer than \\/c had planned, their 

Table 2 
Performance Comparison of the  Backup Save Operation 

Elapsed Time 
File System (Minutes:Seconds) Saveset Size (MB) Throughput (MBIs) 

Spiralog 05:20 339 1.05 
Files-1 1 10:14 297 0.48 



Table 3 
Performance Comparison of the Individual File 
Restore Operation 

design. We expect to be \ilorl<ing on this resource 
usage in tlie near h ture .  

Elapsed Time 
File System (Minutes:Seconds) 

Acknowledgments 

Spiralog 01:06 
Files-I I 03:35 

length is mitigated by continuing ilnpro\lernents ul 
processor perforruance. 

\Vc learned a great deal during the Spiralog project 
and made the following obsel-vations: 

Volul-ne f~ll semantics and tine-tuning the cleaner 
wcrc more complex than \ire anticipated and will 
require f i~ture refinement. 

A heavily layered arcliitecturc extends the CPU 
path length and tlie f in-out of proccdurc calls. We 
focused too 111~1ch a t tc~i t io~l  011 r c d ~ ~ c i n g  I/Os and 
not enough attention on reducing the resource 
usage of some critical code paths. 

Altliougli clcgant, the memory abstraction for the 
interface to the cache was not as good a fit to file 
system operations as \ve had expected. Further- 
more, a block abstraction for the data space ~vould 
have been Inore suitable. 

111 summary, tlic project team delivered a nc\v 
file systelii for the OpcnVMS operating system. The 
Spir'ilog file systcm offers single-system seniantlcs in 
a cluster, is compatible with tlie current OpcnV1MS 
tilc slatem, and supports on-linc back~ip. 

Future Work 

During tlic Spiralog vcrsion 1.0 project, we pursued a 
number of ~ i e w  technologies and found four areas that 
warrant fi~ture work: 

Support is needed from storage and tile- 
management tools for ~iiultiple, dissimilar file 
systeln personalities. 

The clcancr rcprcscnts anotlier area of ongoing 
innovation and coniples d!,na~nics. We believe a 
bcttcr undcrsta~iding of thesc dynamics is nccdcd, 
and design alter~iatives should be studied. 

The on-line backup engine, coupled with the log- 
structured tile system technology, offers many areas 
for potential development. For instance, one area 
for investigation is conti~luous backup operation, 
either to a local backup device or  to  a remote 
replica. 

Finally, we d o  not believe the higher-than-expected 
code path length is intrinsic to the basic file system 
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Design of the Server for 
the Spiralog File System 

The Spiralog file system uses a log-structured, 
on-disk format inspired by the Sprite log- 
structured file system (LFS) from the University 
of California, Berkeley. Log-structured file sys- 
tems promise a number of performance and 
functional benefits over conventional, update- 
in-place file systems, such as the Files-I I file 
system developed for the OpenVMS operating 
system or the FFS file system on the LlNlX oper- 
ating system. The Spiralog server combines log- 
structured technology with more traditional 
B-tree technology to provide a general server 
abstraction. The B-tree mapping mechanism 
uses write-ahead logging to give stability and 
recoverability guarantees. By combining write- 
ahead logging with a log-structured, on-disk 
format, the Spiralog server merges file system 
data and recovery log records into a single, 
sequential write stream. 

I 
Christopher Whitaker 
J. S tuar t  Bayley 
Rod  D. W. Widdowson 

The goal of the Spiralog file system project team was 
to  produce a high-performance, highly available, and 
robust file system with a high-performance, on-line 
backup capability for the OpenVlMS Alpha operating 
system. The server component of tlie Spiralog file sys- 
tem is responsible for reading data from and writing 
data to persistent storage. It  must provide fast write 
performance, scalability, and rapid recovery from sys- 
tem failures. In  addition, the server must allow an 
on-line backup utility to copy a consistent snapshot of 
the file system to another location, while allowing nor- 
mal file system operations to  continuc in parallel. 

In this paper, cve describe the log-structured file sys- 
tem (LFS) technology and its particular implementation 
in the Spiralog fi le system. We also describe the novel 
way in which the Spiralog server maps tlie log to pro- 
vide a rich address space in \vhicli files and directories are 
constructed. Finally, we review some of the opportuni- 
ties and challenges presented by the design we chose. 

Background 

All file systems must tradc off perfor~nance against 
availabi1it)r in different ways to  provide the throughput 
reqi~ircd during normal operations and to protect data 
from corr~lption during sjlste~ii failures. Traditionally, 
file systems fall into bvo categories, carefill write and 
check 011 recovery. 

Careful writing policies are designed to provide a 
fail-safe mechanism for the file system structures in 
the cvcnt of  a system failure; however, they suffer 
fi.0111 the need to serialize several I/Os during file 
systeln operations. 

S ~ I I I C  file S Y S ~ C I ~ I S  forego thc need to scrializc filc 
system updates. After a system failure, however, 
they require a complete disk scan to reconstruct a 
consistelit file system. This req~~irernent becomes 
a problem as disk sizes increase. 

Modern file systems such as Cedar, Episode, 
Microsoft's New Technology File System (NTFS), 
and Digital's POLYCENTER Advanccd File System 
use logging to  overcome the problems inherent in 
these two approaches.'.' Logging file system metadata 
removes the need to serialize I/Os and allows a simple 
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and bounded mcclianism for rcconstri~cting the tile 
systc~ii akcr 3 hilurc. Ilcscnrclicrs at the Uni\.ersitg of 
Calihrnia, Rcrltclcy, took tliis p~.occss one stage h r -  
tllcr and treated the \\rllolc disk as a single, scclucl~tial 
log \\,liere all tile system modifications arc appended to 
the tail of the log." 

Log-structurcci fi lc systcnl technology is particularly 
appropriate to the Spirnlog flc systcm, because it is 
dcsigncd as a clusrcr\\,idc fi lc s!,stcm. Tkc scr\.cr must 
support a largc number of filc systcm clerks, each of 
\\rhich ma\* be ~ ~ a i i i l l g  311ii \\,riting ciilta to the disk. Thc 
clcrlts LISC large \\,rite-back cacllcs to rcci~~cc tlie need to 
read dat,l horn the scr\?cr. 'The c,ichcs also allo\\l tlie 
clcrks to buffer \\,rite rcclucsts dcstincd ti)r tlic scrvcr. 
A log-structurc~i design allo\\;s multiple concurrent 
\\?rites to be g r o ~ ~ p c d  togcthcr i l l t o  largc, scq~~cntial  
1/0s to the disk. This 1 / 0  pattern reduces disk liead 
mo\,cmcnt during \\lriting and allo\\s tlie size of the 
writes to bc matched to characteristics of the ~~ndcrlying 
disk. This is particularly beneficial ti)r storagc devices 
\\lit11 rcdund'lnt arr,lys of incspcnsi\,c disks (lL411)).4 

The use of a log-structured, on-disk k~rnla t  greatly 
simplifies the implcmcntation of  an on-line backup 
capability. Hcrc, the challcngc is to provide a consis- 
tent suapsliot of the ti lc systcni tli;lt can 1)c copied to 
the backup media wliilc normal opc~ations continue 
to rnoditi. the file systcm. Rccausc an  1,FS ;iplx~ids a11 
data to the tail of n log, ;ill data \\.rites within thc log 
arc tcmpor,llly orticrcd. A co~uplctc snapshot of the 
file S ~ S ~ C I I I  c o r r e s ~ ~ o ~ ~ c i s  to tllc co~l tc~i ts  of tlic scc111e1i- 
rial log up to tlie point in timc tliat the snapshot \\'as 
created. By extension, nu incrcmcntal backup corrc- 
sponds to the section of the scclucntial log created 
sj~icc tlic last backup \\,as takc11. Tllc Spiralog backup 
u t i l i ~ .  LISCS these fcnt~~rcs to  pro\.idc a hst, on-line, fill 
and incrcmcntnl backup schcmc.' 

Wc ha\.c take11 ;I 11~11iibcr of ~ C ~ ~ L I I - C  from thc csist- 
ing log-structurcci file systcni implcmcntatio~is, in par- 
ticular, the idea of d i \ i i ing  the log into tiscd-sized 
segments as the basis ti)r spacc :illocation and clean 
ing." FundamcntnIIy, lio\\,c\~cr, cxisting Iog-struct~~rcd 
filc systems li;~\,c been built by  sing the main body of 
an  existing filc systcm and Inycring o n  top of nn undcr- 
lying, log-struct~~rcd colltnincr.".' Tliis cicsign has been 
taken to tlic logical cxtrc~nc \\lit11 the implcmcntntio11 
of a l o g - s t r ~ ~ c t ~ ~ r c r i  disIt.Vor tllc Spiralog file syste111, 
\vc Ilavc clioscn to use the scclucntial log capability 
provided by the log-struct~~rcd, on-disk for~nat t h r o ~ ~ g h -  
out  the filc systc~ii. The Spiralog scrvcr combines log- 
s t ruc t~~red  technology with more traditional B-tree 
technology to provide a general server abstraction. 
The B-tree mapping mechanism uses irrrite-ahead log- 
ging to stability and reco\~erability guarantees." By 
co111bining \vrite-ahead logging \\,it11 a log-structured 
on-disk fbrmat, the Spiralog server merges tile system 
data and reco\.ery log records into a single, sequential 
write stream. 

The Spiralog file systcm differs fi-om existing log- 
structured implcmcntations in a n ~ ~ m b c r  of otlicr 
important \\.n!,s, in p a r t i c ~ ~ l ~ ~ r ,  the mcclia~iisn~s th,it \vc 
ha1.c clioscn to ~1st  till. tlic cleaner. I n  subscclucnt scc- 
tions of this paper, \\.c compare tlicsc ciiffcrcnccs \\.it11 
cxisting implcnicntations \\.licrc appropriate. 

Spiralog File System Server Architecture 

The Spiralop fi lc s!.stc~il c~nploys n clicnt-scr\.c~- archi- 
tecture. Each nodc in the cluster that moLllits 11 

Spiralog \.olumc runs a file system ~ lc~ . l i .  7-lic tcl.ni 
clerk is i~scd in tliis p3pc1. to riisti~lgi~isl~ tllc clic~it co11i- 
ponent of tlie file system ti-om clicllts of the tile systcm 
as a \\.hole. Clerks implcmcnt all the file f~~nct ions  asso- 
ciated with maintaining tlic file systcm state \\*it11 the 
cxceptio~l of pcrsistc~lt storage of tile systcm and user 
data. This latter responsibility frills o n  tlic Spiralog 
server. There is cs3ctly o ~ i c  scr\.cr ti)r c~ich \,ol~rmc, 
\\lhicll m ~ ~ s t  run o n  a nodc that llns 3 riircct conncctio~l 
to the disk containing tlic \~olunlc. Tliis distrib~~tion of 
fi~nctioo, \vlicrc tlic majority of file systcm processing 
takes place on thc clerk, is similar to tliat of rlic Echo 
file syste~ii.~" The reasons for clioosi~ig tliis arcliitccturc 
are described in more detail i l l  the paper "O\~c~-\.ic\v of 
the Spiralog File System," clsc\\.licrc in this issue." 

Spiralog clcrks build files and riircctorics in 3 s r r ~ ~ c -  
tured address spacc called t l ~ c  tile ncidrcss sixlcc. Tliis 
aciilrcss spacc is jntcl-~ial to the ti lc sJtstcm and is onl!, 
loosely rclatcd to  that pcrcci\,cd b!. clients of the tile 
system. ?'lie srr\.cr pro\,idcs a n  interface tliat allo\\.s 
the clcrks to pcrsistcntl!. map to file spacc uddrc55cs. 
Internally, thc scr\.cr uses a logicall!, iufinitc log struc- 
ture, built on top of  a physical ciislt, to store tlic file 
s\,steln data anti tlic srructurcs ncccsw!. to locate 
tlie data. Figure 1 slio\\.s t l ~ c  rclatio~isliip bct\\.ccli the 
clerks and the scr\.cr ,lnd tlic ~~clntionsliips a ~ i l o ~ i p  
the major components \\.ithill tlic scr\.c~.. 

Figure 1 
Server .Architecture 
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The mapping layer is responsible for maintaining 
the rnappjng betcveeri the file address space used by 
the clerl<s to the address space o f  the log. The server 
directly supports the file address space so  that it can 
make use of  information about the relative perfor- 
mance sensitivity of  parts of  the address space that is 
implicit within its structure. Although this results in 
the mapping layer being relatively complex, it reduces 
the co~iiplexity of the clerks and aids performance. 
The mapping layer is the prirnary point ofcontact with 
the server. Here, read and write requests from clerks 
are received and translated into operations on the log 
address space. 

The log driver (LD) creates the illusio~l of an infinite 
log on top of the physical disk. The LD transforms read 
and write requests from the mapping layer that are cast 
in terms of a location in the log address space into read 
and \vrite requests to physical addresses 011 the underly- 
ing disk. Hiding the implementation of the log from 
the mapping layer allows the organization of the log to 
be altered transparently to  the mapping layer. For 
example, parts of the log can be migrated to other 
physical devices u r i tho~ t  invol\~ing the mapping layer. 

FlLE HEADER 

I USER 110s 

FlLE VIRTUAL BLOCKS 

Although the log exported by the LD layer is con- 
ceptually infinite, disks have a finite size. The cleaner 
is responsible for garbage collecting o r  coalescing free 
space within the log. 

Figure 2 shows the relationship between the various 
address spaces maling up the Spiralog file sjatern. In 
the next three sections, we examine each of thc corn- 
ponents of the server. 

Mapping Layer 

The mapping layer inlplements tlie mapping between 
the file address space used by tlie file system clerlts 
and the log address space maintained by the LD. 
I t  exports an interface to  the clerks that tliey use to  
read data from locations in the file address space, 
to write new data to the file address space, and to spec- 
iQ which previously written data is 110 longer recluired. 

i~iterface also allows clerks to  group sets of depen- 
dent writes into units that succeed o r  fail as if they 
were a single write. In this section, we introduce the 
file address space and describe the data structure used 
to map it. Then we explain the method used to handle 
clerk requests to modifjr the addrcss space. 

FlLE SYSTEM ADDRESS 
SPACE 

FlLE ADDRESS SPACE 

1 LFS 
B-TREE 

t 
LOG ADDRESS SPACE 

LFS 
LOG 
DRIVER 
LAYER 

4 
PHYSICAL ADDRESS 
SPACE 

Figure 2 
Address 'Translation 
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File Address Space The clear opcr~t ion nllo\\/s a clerk to remo\/c a namcd 
cell or  a number o f  bytes fioni an object. 

The tile address space is a structured address space. At 
its highcst le\/el it is divided into objects, each of \\~hicli 
has a ~ i i~mcr ic  object identifier (OID). An object may 
lia\~c an!l number ofnarned cclls associated nrith it and 
up to 2"'- 1 streams. A named cell may contain a vari- 
able amount ofdata, but it is read and writtc~i as a sin- 
gle ~rnit. A streal11 is a sequence of bytes that are 
addressed by their offset fro111 the start of  the stream, 
up to a rnasilnum of 2"- 1. F~~ndamcntallp, there are 
nvo forms of addresses defi~icd by the file address 
spacc: Named addresses of the form 

spcci% an indi\,idual named cell u.itliin an objcct, and 
numeric addresses of the for1.n 

< O I D ,  s t r e a m - i d ,  s t r e a m - o f f s e t ,  L e n g t h >  

s l x c i ~  a scc l~~e~ ice  of /engt,lln contiguous bytes in an 
individual stream belonging to  an objcct. 

The clerks use namcd cells and streams to huild fi lcs 
dnd ciircctorics. In  the Spiralog tile s)atcln \~cssion 1.0, 
a file is represented by an object, a na~iicd cell contain- 
ing its attributes, and a single stream that is usccl 
to store the file's data. A directory is represented by 
an objcct that co~ltains a ~ i i ~ ~ n b c r  of namcd cells. 
Each 11.1mcd cell represents a link in that dircctol-\. and 
contains \\.hat a traditional file system refers to as a 
dircctor!l entry. Figure 3 shows lio\\l data tiles and 
directories are built fro111 named cclls and strcn~ns. 

The mapping layer pro\,idcs thrcc principal opcra- 
tions k)r manipulating the file address spacc: read, 
write, and clear. Thc read operation allow.s a clcrk to 
read the contents of a named cell, a contiguous rangc 
ofbytcs from a stream, o r  all the riamcd cells for a par- 
ticular objcct that fall into '1 specified scarch rangc. The 
\\;rite opcration allo\vs a clcrk to  write to  a c o ~ i t i g ~ ~ o u s  
rnngc of bytes in a stream or  an indi\fidual ~iamcd ccll. 

DATA FILE DIRECTORY 

FRED TXT 

FRED.C 

Mapping the File Address Space 
We looked at a \variety of indexing structures for mapping 
tlie file address spacc onto the log address space.',12 Wc 
chose a deri\lati\~e of the 8-tree for the following reasons. 
For a unik>rm address spacc, B-trees prtwide predictable 
worst-case access timcs because tlie trce is balanced 
across all thc keys it maps. A B-tree scales well as the 
number of kcys niapped increases. I11 other nlords, as 
more keys are added, the B-tree grows jn \vidth and in 
depth. Deep K-trees carry an ob\,ious peshrmance 
penalty, particularly \vlicn the B-tree grolvs too large to 
be held in ~iicn~or!/. AS described ,~bo\rc, disectory entries, 
file attributes, and tile data are all addresses, or kcys, in 
thc file addrcss spacc. Treating thesc keys as equals and 
balancing the mapping R-tree across al.1 tlicse keys intro- 
duces the possibility that a singlc directory 514th many 
entries, or a tile \\it11 muny extents, may have an impact 
on the access timcs h)r all the files stored in the log. 

T o  solve this problem, ure limited the keys for an 
objcct to a single ]<-tree Icafnocic. With this rcstric- 
tion, sc\cral s~nall ti lcs can be accommodated in a sin- 
gle leaf node. Files \\.it11 a large ~ l l ~ r n b e r  of extents (o r  
large directories) arc s ~ ~ p p o r t c d  by allo\\~iug indi\rjdual 
streams to be spn\vncd into subtrecs. The subtrees arc 
balanced across the kcys \\fithin the subtree. .411 objcct 
ca11 lic\lcr S ~ J I I  Iiiorc tlinli 3 single leaf node of the 
~ilain B-trcc; tlicrcfore, nonleaf nodes of the main 
B-tree only nccd to  contain OIDs. This allon,s thc 
main B-tree to be \#cry conipnct. Figure 4 sho\\rs the 
rclationsliip bcnvccn tlic main B-tree and its subtrees. 
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To rcducc the time required to open a flc, data for 
small extents and small named cells are stored directly ul 
the leafnode h a t  maps them. For larger extents (greater 
than one disk block in size in the current irnplementa- 
tion), the data item is written into the log and a pointer 
to it is stored in the node. This pointer is an address in 
the log address space. Figure 5 illustrates how the B-tree 
maps a small file and a file with several large extents. 

Processing Read Requests 
The clerks submit read requests tliat may be for a 
sequence of bytes from a stream (reading a data from a 
file), a s~ngle named cell (reading a file's attributes), or  
a set of named cells (reading directory contents). To 
fulfill a glven read request, the server must consult the 
B-tree to translate from the address in the file address 
space supplied by the clerk to the position in the log 
address space where the data is stored. The extents 
making up a stream are created when the file data 
is written. If an application writes S lulobytes ( I a )  
of data 111 1-ICB chunlts, the B-tree would contain 
8 extents, one for each 1-I(B write. The server may 
need to collect data fi-orn several differcnt parts of the 
log address space to fi~ltill a single read request. 

Read reqiicsts share access to  the B-trce In much 
thc same way as processes share access to  the CPU of  
a niultiprocessing computer system. Read requests 

arriving from clerks are placed in a first in first ou t  
(FIFO) work queue and are started in order of  their 
arrival. All operations o n  the B-tree are performed bp 
a single worker thread in each volume. This avoids 
the need for hea\yweight locking 011 individual 
nodes in the B-tree, which significantly reduces the 
coniplexity of  the tree manipulation algorithms and 
removes the potential for deadlocks on  tree nodes. 
This reduction in complexity comes at the cost of 
the design not scaling with the n i~mber  of processors 
in a symmetric multiprocessing (SMP) system. So far 
we have no evidence to  shou! that this design deci- 
sion represents a major performance liniitatio~i on  
the server. 

The worker thread takes a request ti-om the head 
of  the work queue and traverses the B-tree until it 
reaches a leaf node that maps the address range of  
the read request. Upon reaching a leaf node, it may 
discover that the node contains 

lxecords that map part or all of die address of  the 
read request to locations in the log, and/or 

Records tliat map part or all of the address of the 
read request to data stored dircctly in the node, 
and/or 

N o  records mapping part o r  all of the address of the 
read request 

, - f i  ' , MAIN B-TREE 

NODE A ,i=-., 
\ NODEC 

35.1. ... 

, , , . . ,!;;T;I . . , 
, - 35.1 ,O 35,1,1000 . , SUBTREE FOR OID 35. '. . STREAM 1 

I DATA IN LOG DATA IN LOG I I I 

KEY: 

8-TREE INDEX RECORD 
MAPPING OID 35 ... 

I DATA IN LOG DATA IN LOG I I I 

B-TREE INDEX RECORD 
MAPPING OID 35, STREAM 1. 
START OFFSET O... 

RECORD CONTAINING FILE RECORD CONTAINING POINTER 
42,1.0,50 ~ ? ~ & 2 k % ~ ~ ~ ~ ~ 2 ~ ~  50 

TO FlLE DATA: OID 42, STREAM 1, 
START OFFSET 0. LENGTH 50 

Figure 5 
Mapping B-tree Detail 
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Data that is storcd in the nodc is simply copied 
to the o ~ ~ t p u t  buffer. Whcn data is storcd in the log, 
tlic \vorker thread issues requests to the L1) to rcad tlie 
data into the output buffer. Oncc a11 the reads ha\.e 
bccn issued, the original rcqilcst is placcd o n  a pend- 
ing ~ L I C L I C  until they complete; then the results are 
returned to the clerk. Whcn n o  data is stored for all o r  
part oftlie rcad request, the scrlrcr zero-tills the corrc- 
spoilding part of  the output buffer. 

The process described above is complicated by the 
hct  tliat the B-tree is itselfstored in the log. The map- 
ping layer contains a node cache that C I I S L I ~ C S  that con.1- 
~iionly referenced nodes are normally h u n d  in memory. 
When the \\,orker thread needs to tra\.crsc through a 
trcc nodc that is not in menlor!; it must arrange for tlic 
notic to l>c read into the cachr. Tlic address of the notic 
in the log is the \,due of the pointcr to it f-om its parent 
nodc. The worker thread uses this to issue a request to 
the I,I) to rcad the node into a cache buffer. While the 
node read reqilrst is in progress, the original clcrlc opcr- 
ation is placcd on a pending queue and the worker 
thread proceeds to the ncxt request on the work queue. 
When the node is I-esident in nlcrnor!; the pending lrad 
recluest is placed back on the \\rorlc C ~ L I C L I C  to be 
restarted. In this \yay, multiple rcad rcclucsts can be in 
progress a t  any given time. 

Processing Write Requests 
\Yritc rcclucsts received by the scrvcr arri\,c in groups 
consisting oFa number of data items corresponding to  
~~pdn tcs  to  noncontiguous addresses in the filc address 
space. Each group I ~ I L I S ~  be \\'ritte~i as a si~iglc faiI111.c 
atomic unit, \vhich means that all tlic parts of the \\,rite 
rcqucst must be made stable o r  nouc of them 111ust 
bccomc stable. Such groups of \vritcs arc called v1un- 
ncrs and are ~ ~ s e d  by the clerk to encapsulate con~ples  
tile systcn~ opcrations." 

Kcfore the server can complete n \vLlnncr, that 
is, bcfol-c ; i l l  acltno~\,ledgnicnt can be sent baclc to 
tlic clcrlc indicating that the \\,llnncr \\.as succcssfi~l, 
tlic scr\,c~- must nialte nvo guarantees: 

1. All parts of tlie \\unner are stably stored in the log 
so t l i ~ t  t l l ~  cntirc 1\~~111lier is pcrsistc~it in the c\'ent 
of 3 system failure. 

2. All data items described by the wunncr arc \risible to 
subsequent rcad requests. 
r % Ilic \ \ r ~ ~ n ~ ~ c r  is niadc persistent by n~riting each d a t ~  

itell1 to  the log. Each data item is tagged \\!it11 a log 
record that identifies its corresponding filc space 
addrcss. l_his allo\\rs the data to be rcco\~crcci in the 
cvcnt of a system failure. All individual \\.rites arc matic 
as \>art ofa  single compound atomic opelation (CAO). 
This ~nctl iod is pro\,idcd b!, the LD Iaycr to bracket 
a set of \\'rites tliat must be rcco\.crcci as an atomic 
unit. Oncc all the writes for the \vLlnncr lia\,c bccn 

issuecl to the log, the mapping Iaycr instructs the 1,1> 
laycr to end (or  commit) the CAO. 

The \\.unncr can be made \.isible to subsequent rcaci 
oper'ltions by upci'1ting tlic B-tree to reflect the loca- 
tion of  tlic nc\v data. Unk)rtunatelp, this \\,auld cause 
c\,ritcs to  incur a significant latency since i~pdatilig the 
B-tree invol\rcs tm\.crsing the R-tree and potcritially 
reading B-trcc nodcs into memory fi-om the log. 
I~lstcad, the scr\.cl- complctcs a write operation before 
the B-tree is updated. 13y doing this, ho\\,ever, it must 
talte additional steps to cnsurc tliat the data is \risible to 

subscclucnt rcad rcq~~csts .  
Before completing the \\,iunner, the mapping la!.cr 

~ L I C L I C S  the B-trcc i~pdatcs rcsulti~ig from \\.riting the 
nunncr to the samc FIFO \seol-k queue as read rcq~~csts .  
All items arc q i ~ c ~ ~ c d  ato~~licall\,, tliat is, no otlicr re,ict 
or  \\*rite opcration can be interleaved \\*it11 the indi\,iti- 
ual \\rllnncr i~~xia tcs .  In this \\la!:, the ordering bcnvccn 
the Ivritcs 111;iking up the \\runner and subsecl i~c~~t  read 
or \\)rite opcrations is maintained. Work cannot begill 
on a suhseq~~cnt  rcad r c q ~ ~ e s t  ~ ~ n t i l  wlork has started o ~ l  
the B-tree ~ ~ p d a t c s  ahead of i t  in the queue. 

Oncc the R-trcc t~pdates l1;1\7e been queued to the 
ser\,er \\/orlt clucuc n~id  tlic mapping layer has bee11 
notified that tlic <:A0 for the \\!rites has committed, 
both of the guarantees that the server gives o n  \\,rite 
conlpletion hold. The cinta js persistent, and the \\,rites 
arc \.isible to s~~bscclucnt opcrations; thcrcforc, the 
server can send an acl<no\\*lcdgmcnt back to tlic clcrl; 

Updating the 6-tree 
The \\~orltcr thread processes a 13-tree update rcqilcst 
in much the samc \\ray as a rcad requcst. Thc update 
request traverses tlic R-tree until either it reaches thc 
nodc that maps the appropriate part o f thc  filc addrcss 
space, or it fails to find a nodc in memory. 

Oncc tlie leaf nodc is rcachcd, it is updated to point at 
the location of the data in the log (if the data is to be 
stored directly in the noctc, tlie data is copicd into the 
nodc). The nodc is no\\. dirt\, in rncrnor!, anti must 
be tvritten to thc log at some point. lbthcr than \\.riting 
the node immediatcl!; the mapping la!rcr \\.rites a log 
record describing the cliangc, loclts the nodc into the 
cache, and places ;? flush opcration for the nodc to 
the mapping Iayr's flush qi~ciic. Tlic f l ~ ~ s h  opcration 
describes the location of the nodc in the tree and 
records the need to \\!rite it to tlic log at some point 
in the f i ~ t ~ ~ r c .  

If, on its \\.;I!. to thc lcaf nodc, the write opcration 
reaches a ~ l o d c  that is not in memory, the lvorkcr 
thread arranges fix it to be read fro~ii the log and the 
\\!rite operation is placcd o n  .I pcnciing qLlcLle as \\.it11 a 
rcad operation. Rccausc the \\,rite has been ackno\\.l- 
edged to the clcrk, the nc\\. data must be \,isible to sub- 
seclucnt read opcrations c\.cn though the B-tree has 
not bccn 11pd;ltcd filll!: This is achie\,ed b!, attaching 
vi in-memory I-ccol-d of tlie update to the nodc that is 



being read. If a rcad operation reaches the node with 
records ofstallcd updates, it must check whether any 
of these records contains data that s h o ~ ~ l d  be returned. 
The record contains either a pointer to the ddta in the 
log or the actual data itself If a rcad operation finds 
a record that can satis@ all or pdrt of the request, the 
rcad request uses tlic information in tlie record to 
fetch the data. This preserves the guarantee that the 
clerk muht see all data for which tlie \\!rite request has 
been ~ck~io\\lIcdgcd. 

Once the nodc is read in f r o ~ ~ i  the log, tlic stalled 
updates arc restarted. Each updatc removes its log 
record from tlie node and recommences traversing the 
B-tree fi-om that point. 

Writing B-tree Nodes to the Log 
Writing nodes consumes bandwidth to the disk that 
might otherwise be used for writing or  reading user 
data, so  the server tries to avoid doing so  until 
absolutely necessary. Two conditions make it neces- 
sary to begin writing nodes: 

1. There are a large number of dirty nodes in the 
cache. 

2.  A checkpoint is in progress. 

In  the first condition, most of tlie memory available 
to the server h3s bee11 given over to nodes tliat are 
locl<ed in memory and \vaiting to be written to the 
log. ltead and update operations begin to back up, 
waiting for a\!ailable memory to store nodes. In  tlie 
seconci condition, tlie LD has requested a checkpoint 
in order to bound recovery time (see the section 
Checkpointing later i l l  this paper). 

When either of these conditions occurs, the mapping 
layer switches into flush mode, during \\lhich it only 
writes nodcs, until the condition is changed. In flush 
mode, the worker thread processes flush operations 
from the mapping layer's flush qucue in depth order, 
that is, starting with the nodes furthest from the root 
of the B-tree. For each flush operation, it traverses the 
B-trcc until it finds the target node and its parent. The 
target node is identified by the keys it maps and its 
levcl. The level of a node is its distance from the leaf of  
the B-tree (or  subtree). Unlike its depth, which is its 
distance from the root of the B-tree, a node's level does 
not change as the B-tree grows and shrinks. 

Once it has reached its destination, the tlush opcra- 
tion \\!rites O L I ~  thc target node and updates the parent 
with the new log acldrcss. The modifications made to 
the pdrcnt nodc by thc tlush operation are analogous 
to those made to a leaf node by an update operation. 
In this way, a ~nodification to a leaf node eventually 
urorlts its way to the root of the B-tree, c a ~ ~ s i n g  each 
node in its path to bc rewritten to tlie log over t i~ne .  
Writing dirty nodcs only  hen necessary and then in 
deepest first order rnininiizes the number of  ~iodes  

written to the log and increases the average nu~nber  of  
changes that are reflected in each node written. 

Log Driver 

'The log drivcr is responsible for creating the illusion of 
a semi-infinite sequential log 011 top of a physical disk. 
7 - 1 hc entire history of the file s!ateni is recorded in thc 
updatcs made to the log, but only those parts of 
the log that describe its current or live state need to 
be persistently stored on the disk. As files are over\\lrit- 
ten or deleted, the parts of the log that contain the 
previous contents become obsolete. 

Segments and the Segment Array 
To makc tlic management of free space niore straight- 
forward, tlie log is divided into sections called 
segments. In the Spiralog file system, segments are 
256 KB. Segments in the log are identified by their seg- 
ment identifier (SEGID). SEGlDs increase monotoni- 
cally and are never reused. Segmcnts in the log that 
contain live data are mapped to physical, segment-sized 
locations or  slots on  the disk that are identified by their 
segment number (SEGNUM) as shown in Figure 6. 
The mapping benveen SEGID and SEGNUM is main- 
tained by the segment array. The segment array also 
tracks which parts ofeach mapped segment contain live 
data. This information is ~ ~ s e d  by the cleaner. 

The LD interface layer contains a segment s\vitch 
that allo\\a segrnents to be fetched from a location 
other than the disl<.'TThe backup function 011 the 
Spiralog file system uses this meclianis~n to restore files 
contained in segments held on baclcup media. Figure 7 
sho\vs the LD layer. 
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Figure 6 
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Subcomponents of the LD Layer 

The Segment Writer 
T.he scgmcnt writer is responsible for all I/Os to the 
log. I t  groups together writcs it rcccivcs t iom the map- 
ping layer into large, sequential I/Os where possible. 
"l'liis increases write throughput, but at the potential 
cost of increasing the latency of i~idividual operations 
~thc11 the disk is lightly loaded. 

As shown in Figure 8, tlie segment jvriter is respon- 
sible for thc internal organization ofsegments \vrittcn 
to the disk. Segments are divided into nvo scctio~is, a 
data arc3 ;111d a nlilch smaller commit rccorcl area. 
Writing a picce of  data requires two operations to the 
segment at the tail of  the log. First thc data item is 
written to the data area of the segment. Once tliis 1 / 0  
has completed successf~~lly, a rccord describing that 
data is mlritten to  the commit record arca. Only when 
thc writc to thc commit record arca is complctc can 
the original request be considcrcd stable. 

The need for two \\/rites to disk (potentially, \\/it11 a 
rotational delay bcnvecn) to commit a single data 
write is clearly a disadvantage. Normally, however, the 
segment writer rcccivcs a set of related writes from 
the mapping layer which are tagged as part of  a single 
CAO. Since the mapping l a p r  is interested in the com- 
pletion of thc  wliole CAO and not the writes \\lithi11 it, 
the segment writer is able to buffer additions to the 
commit records arca in mcniory and then write them 
with a single I/O. Under a normal write load, tliis 
reduces the numbcr of  I/Os for a single data write to 
very close to one. 

The boundary between the commit record arca and 
the data arca is f sed .  Ine\ritabl>,, this wastes spacc in 
either the commit rccorcl area or  data area \\!he11 tlic 
other fills. Choosing a size for the com~iii t  record area 
that minimizes this waste requires some carc. M c r  
analysis ofsegmcnts that had been subjectcd to a typi- 
cal OpenVMS load, we chose 24 KB as the \~aluc for 
the commit rccord area. 

This scgmcnt organization permits the scgmcnt 
\\triter to havc comp.letc control over tlie contents of  
the co~nlni t  rccord arca, which allows the segment 
writer to accomplish two iniportant recovery tasks: 

Detect thc end of the log 

Detect rnultiblock writc failure 

When physical segments are reused to extend tlic 
log, the!] arc not scrubbed and their commit rccorcl 
areas contain stale (but coniprehensible) records. The 
recovery manager n1ust distinguish between records 
belonging to the currcnt and the previous incarnation 
of the physical slot. To achieve this, the segment writer 
writes a sequence numbcr into a specific byte in every 
block written to the co~iimit  record area. The original 
contents of the "stolen" bytes are stored within the 
record being written. The sequence number used for 
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Figure 8 
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a segment  is an attribute o f  tlie physical slot that is 
assigned t o  it. Tlie sequence nurnber for a physical slot 
is incremented each time the slot is reused, allol\iing 
the recovery manager t o  detect  blocks that d o  n o t  
belong t o  the segment  stored in the  physical slot. - - I lie cost o f  resubstituting tlie stolen bytes is incurred 
only during recovery 2nd cleaning, because this is 
the only time that the  comniit  record area is read. 

I n  hindsight, tlie partitioning o f  segments into data 
and comniit  areas was probably a mistake. A layout 
that intermingles the data and commit  records and that 
alloc\is them t o  be written in o n e  I/O would offcr bct- 
ter latency at  low throughput .  Ifconibined with careful 
writing, command tag queuing, and o ther  optimiza- 
tions becoming more prc\ialent in disk hardware and 
controllers, such an on-dislt structure could offer sig- 
nificant improvements in latency and throughput. 

Cleaner 

T h e  cleaner's job is t o  turn free space in segnients in 
the log into empty, unassigned pliysical slots that can 
be i ~ s e d  t o  extend tlie log. Areas o f  free space appear in 
segnients wl ie~ i  the corresponding data decays; that is, 
i t  is cither deleted o r  replaced. 

T h e  cleaner rewrites the live data contained in par- 
tially full segments. Essentially, the  cleaner forces the 
segments t o  decay completely. I f  the rate at  which data 
is written t o  tlie log ~natcl ics  the rate a t  which it is 
deleted, segnients eventually become empty o f  their 
o\vn accord. When  the log is fill1 ( f ~ l l n e s s  depelids o n  
tlie distribution o f  file longevity), it is necessary to 
proactively clean segnients. As the cleaner continues 
t o  consume more  o f  the disk bandwidth, performance 
can be expected t o  decline. O u r  design goal was that 
pcrhrn iance  should be ~iiaintained u p  t o  a point a t  
which the log is 85 percent full. Beyond this, it was 
acceptable for performance t o  degrade significantly. 

Bytes Die Young 
Recently written data is more liltely t o  decay than old 
data ,  14.15 Scgmcnts that  were ~'1-itte11 a shor t  time a g o  

are lilcely t o  decay furtlicr, after which tlie cost o f  
cleaning them will be less. In o u r  design, tlie cleancr 
selects candidate segments that  \yere \vritten some 
tinie ago  and are more  likely t o  have undergone this 
initial decay. 

Mixing data cleaned from older segments with data 
from the current stream o F ~ i e u ~ \ \ / r i t e s  is liltely t o  pro-  
duct a scgnient that will need t o  be cleaned again oncc 
the new data lias undergone its initial decay. To avoid 
mixing cleaned data and data from t h e  current write 
stream, the clcaner builds its ou tpu t  segments sepa- 
rately and then passes them t o  the LD t o  be threaded i n  
at the tail o f  the log. This has nvo  important benefits: 

T h e  recovery information in the o u t p u t  segment  is 
minimal, consisting only o f  the  self-describing tags 
011 tlie data. As a result, thc cleaner is unlil<ely t o  
waste space in the data area by virtue o f  having filled 
the commit  record area. 

Bv constructing the  o u t p u t  segment  off-line, the 
clcaner lias as much tinie as it needs t o  look for data 
chunks that best f i l l  the  segment. 

Remapping the Output Segment 
T h e  data itenis contained in the cleaner's o u t p u t  seg- 
lnent  receive necv addresses. T h c  clcaner informs t h e  
mapping layer o f  the change o f  location by submitting 
B-tree update operation for each piece o f  data it 
copied. T h e  rnapping layer handles this update opera- 
tion in much tlie same way as it would a normal over- 
write. This  update  does have one  special property: 
the cleaner \\'rites are conditional. In o ther  words, the  
mapping layer will update the  B-tree t o  point t o  
tlie copy created by the  cleaner as long as n o  change 
has been made t o  the  data since the cleaner took its 
copy. This  allo\\s the  cleaner t o  work asynchronously 
t o  fi le system activity and avoids any locking protocol 
benveen the cleancr and any other  part o f  the Spiralog 
file system. 

To avoid m o d i h i n g  the mapping layer directly, the 
cleaner does n o t  copy B-tree nodes t o  its o u t p u t  seg- 
ment .  Instead, it requests the mapping layer t o  flush 
the nodes that occur in its illput segments ( i . ~ . ,  rewrite 
t h e m  t o  the tail o f  the log). This  also avoids wasting 
space in t h e  cleaner o u t p u t  segment  o n  nodes that 
map data in the cleaner's input segments. These nodes 
are guaranteed t o  decay as soon as the cleaner's B-tree 
updates are processed. 

Figure 9 shou/s how the  cleaner constructs an output  
segment fiorn a number o f  input segments. Tlie clcaner 
keeps selecting input segments ~ ~ n t i l  cither the outpu t  
segment is full, o r  thcre are ~ i o  more  input segments. 
Figure 9 also shows the set o f  operations that are gener- 
ated by the cleaner. In this example, tlie output  segment 
is filled with the contents o f  two flll segments and part 
o f  a third segment. This will cause the third i ~ i p i ~ t  seg- 
ment  t o  decay still further, and the remaining data and 
R-tree nodes will be cleaned \vIien that segment is 
selected t o  create another ou tpu t  scgment. 

Cleaner Policies 
A set o f  heuristics go \c rns  the  cleaner's operation. 
O n e  o f  o u r  f i~ndamental  design decisions was to sepa- 
rate the cleaner policies from the niechaliislns that 
implement them. 

When to clean? 
O u r  design explicitly avoids cleaning until it is 
req i~ i red .  This  design appears t o  be a good  match for 
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a worl<load on the OpenVMS system. O n  our timc- 
sharing s!.stcm, tlic cleaner was entirely inactive for the 
first three months of 1996; altl~ougli segnlents \\/ere 
uscd and reused repeatedly, tliey alwavs tlecayccl 
entirely to empty of their own accord. The trade-off 
in avoiding cleaning is that although performance is 
in~pro\cd (no  cleaner activity), the size of  the fill1 
savesnaps created by backup is increased. This is 
because backup copies whole segments, regardless of  
how much livc data they contain. 

When the cleiiner is not running, the li\.c data in t l ~ e  
volume tends to be distributed across a large number of 
partially fill1 segments. T o  avoid this problem, \ye have 
added a control to allow the system manager to nianiI- 
ally start and stop the cleaner. Forcing the cleaner to 
run before performing a fill1 backup compacts the live 
dnt.1 in the log and reduces the sizc of the savesnap. 

I n  normal operation, the cleaner will start cleaning 
\\ellen the number of frce segments available to extend 
tlic log tills bclow a fixed threshold (300 in the cur- 
rent implementation). In making this calculation, the 
cleancr takes into account the amount of  space in 
the log tliar \ \ / i l l  be consumed by \vriting data currently 
licld in the clcrlts' write-behind caches. Thus, accepting 
data into the cache causes the cleaner to "clear the way" 
ti)r thc subsequent write request from the clerk. 

When tlic cleaner starts, it is possible tliat tlic 
amount of live data in tlie log is approaclling 
thc capacity of the ~rnderlying disk, so the clenncr may 
find nothing to tio. It is more likely, ho\vever, tliat 
thcrc \\,ill  be frce space it can reclaim. Because the 
clcancr \vorks by forcing the data in its i n p ~ ~ t  segments 
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to ciccay by rcnfriting, it is important tliat it bcgins 
work \\lhilc free segments are available. Delaying the 
clccision to  start cleaning could rcsult in the clcancr 
being unable to proceed. 

A fixed nun~bcr  was chosen for the clcaning tlircsli- 
old ratlicr than one based on the size o f the  disk. Tlic 
sizc of the disk does not affect the urgency of cleaning 
at any particular point in time. Amore  effective indicn- 
tor of ~ ~ r g c n c ) ~  is the time taken for tlie disk to fi I1 at the 
m ~ x i ~ n u m  mtc ofwriting. Writing to tlie log at 10 iMB 
pcr sccond t\fill usc 300 segments in about 8 seconds. 
Witli hindsight, we realize tliat a threshold based on a 
mcasurcmcnt of the speed o f the  disk 1i1iglit have been 
a more appropriate choice. 

- 

Input Segment Selection 
-The clcaner divides scglnents into four distinct groups: 

1. Empty. These segments contain n o  livc data and arc 
available to the LD to extend the 10% 

2. Nonclcanablc. These segments arc not candidates 
for clcaning for onc o fnvo  reasons: 
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D2 

l:lic segment contains information tliat \ \ l o~~ ld  
be rccl~~ired by the rcco\ier)r manngcr in the event 
of a system hilure. Segments in this group arc 
al~vays close to tlie tail of  the log and therefore 
likely to ~111dergo Further decay, r n a k i ~ ~ g  them 
poor candidates for cleaning. 

FLUSH 
NODEA 

- 

The scgmcnt is part of a snapshot.' The snapsl~ot 
represents n reference to the scgmcnt, s o  it can- 
not be ~ C L I S C ~  c\,en though it may n o  longer con- 
tain live data. 
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3. Preferred noncleanable. These segments have 
recently experienced some natural decay. The sup- 
position is that they may decay filrthcr in tlie near 
future and so are not good candidates for cleaning. 

4. Cleanable. These segments have not decayed for 
some time. Their stability mal<es them good cand-  
dates for cleaning. 

'The transitions bet\veen the groups are illustrated in 
Figure 10. I t  should be noted that the cleaner itself 
does not have to execute to transfer segments uito the 
empty state. 

The cleaner's job is to fi l l  ou tp i~ t  seg~nents, not to 
empty i n p ~ ~ t  segments. Once it has been started, the 
cleaner ~rorl<s to entirely fi l l  one segment. When that 
segment has been filled, it is threaded into the log; 
if appropriate, the cleaner will then repeat the process 
with a new outpilt segment and a new set of input 
segments. The cleaner will commit a partially fir11 
ou tp i~ t  segment only ~ ~ n d e r  circumstances of extreme 
resource depletion. 

The cleaner fills the output segment by copying 
chunks of data forward fro~ii  segynents taken from the 
cleanable group. The members of this group are held 
on a list sorted in order ofemptiness. Thus, tlie first 
cleaner cycle will always cause the greatest number of 
segments to decay. As the output segment fills, the 
smallest cl i i~~il t  of data in the segment at the head of 
the cleanable list may be larger than the space left in 
the output segment. In this case, the cleaner performs 
a limited search down the cleanable list for segments 
containing a suitable chunlt. The required information 
is ltept in memory, so this is a reasonably cheap opera- 
tion. As each i n p ~ ~ t  segment is processed, the cleaner 

temporarily removes it from the cleanable list. This 
allows the mapping layer to  process the operations the 
cleaner submitted to it and thereby cause decay 
to occur before the cleaner again considers the seg- 
ment as a candidate for cleaning. As the volume fills, 
the ratio benveen the number of segments in the 
cleanable and preferred noncleanable groups is 
adjusted so that the size of the preferred noncleanable 
group is reduced and segnients are inserted into the 
cleanable list. If appropriate, a segment in the clean- 
able list that experiences decay will be moved to  the 
preferred noncleanable list. The preferred nonclean- 
able list is kept in order of least recently decayed. 
Hence, as it is emptied, the segments that are least 
likely to experience h r the r  decay are moved to tlie 
cleanable group. 

Recovery 

The goal of recovery of any file system is to rebuild the 
file system state after a system failure. This section 
describes how the server reconstructs state, both in 
memory and in the log. I t  then describes checkpoint- 
ing, the mechanism by which the server bounds the 
amount of time it takes to recover the file system state. 

Recovery Process 
In normal operation, a single update to the server can 
be viewed as several stages: 

1. The user data is written to the log. I t  is tagged with 
a self-identitying record that describes its position in 
the file address space. A B-tree update operation is 
generated that drives stage 2 of the update process. 
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2. The leaf nodes of  the B-tree arc modified In mem- 
ory, and corresponding change records are written 
to the log to  reflect the position of the new data. 
A flush operation is generated and queued and then 
starts stage 3. 

3. The R-tree is written out  level by level until the root 
node lias been r~\ \~r i t ten .  As o11c node is \\/rltten to 
the log, thc parcnt of that node milst be modified, 
and a corresponding change record is written to the 
log. As a parent node is changed, a further flush 
operation is generated for the parent node and so  
on up to the root node. 

Stage 2 of this process, logging changes to the leaf 
nodes of the B tree, is actually redundant. The self- 
identifjring tags that are written with the user data are 
sufficient to act as change records for the leaf nodes of 
the B-tree. When we started to design the server, we 
chosc a simple implementation based on pliys~olog~cal 

write-ahead logging." As t i~ile progressed, we moved 
more toward operational logging.' The rccords writ- 
ten in stage 2 arc a holdo\ler from the carlicr iniplc- 
mentation, which we may renlovc in a f i l t ~ ~ r c  rclease of 
the Spiralog file systeni. 

At each stage of the process, a change recot-d is \wit- 
ten to the log and an in-nicnior)l operation is generated 
to drive the update through the next stage. In  effcct, 
the change record describes the set of  changes ~nadc  
to an in-memory copy of a node arid an in-~nemory 
operatio11 associated with that change. 

Figure 11 sho\\s the log and tlic in-niemory \\~ork 
queue at each stage of a \\,rite reclucst. The B-trce 
describing the file systeni state consists of three nodes: 
A, B, and C. A \\.unner, consisting of n single data 
write is accepted by the scrver. The write request 
requires that both leaf nodes A and R are modified. 
Stage 1 starts with an empty log and a \\,rite recluest for 
Data 1. 
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After a system hilure, the server's goal is to recon- 
struct the file system state to the point of the last write 
that was written to the log at the time of the crash. 
This recovery process involves rebuilding, in memory, 
those B-tree nodes that were dirty and generating any 
operations that were outstanding when the system 
failed. The outstanding operations can be scheduled in 
the normal way to malte the changes that they repre- 
sent permanent, thus avoiding the lleed to recover 
them in the event o fa  future system failure. The recov- 
ery process itself does not  write to the log. 

The mapping layer work queue and the flush lists 
are rebuilt, and the nodes are fetched into memory by 
reading the sequential log from the recovery start 
position (see the section Checkpointing) to the end of 
the log in a single pass. 

The B-tree update operations are regenerated  sing 
the self-identitjring tag that was written with each 
piece of data. When the recovery process finds a node, 
a copy of the node is stored in memory. As log records 
for node changes are read, they are attached to the 
nodes in memory and a flush operation is generated 
for the node. If a log record is read for a node that has 
not yet been seen, the log record is attached to a place- 
holder node that is marked as not-yet-seen. The recov- 
ery process does not perform reads to fetch in nodes 
that are not part of the recovery scan. Changes to 
B-tree nodes are a consequence of operations that 
happened earlier in the log; therefore, a B-tree node 
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log record has the effect of committing a prior modifi- 
cation. Recovery uses this fact to throw away update 
operations that have been committed; they no longer 
need to be applied. 

Figure 12 shows a log with change records and 
B-tree nodes along with tlie in-memory state of the 
B-tree node cache and the operations that are regener- 
ated. In  this example, change record 1 for node A is 
superseded or  committed by tlie new version of node A 
(node A'). The new copy of  node C (node C ' )  super- 
sedes change records 3 and 5. This example also shows 
the effect of  finding a Jog record without seeing a copy 
of the node during recovery. The log record for node B 
is attached to an in-memory version of the node that is 
marlted as not-yet-seen. The data record with self-iden- 
titj.lng tag Data 1 generates a B-tree update record that 
is placed on the work queue for processing. As a final 
pass, the recovery process generates the set of flush 
operations that was outstandng when the system failed. 
The set of flush requests is defined as the set of nodes in 
the B-tree node cache that has log records attached 
when the recovery scan is complete. In this case, flush 
operations for nodes A' and B are generated. 

The server guarantees that a node is never written to 
the log with uncornrnitted changes, which means that 
we only need to log redo  record^."^ In addition, when 
we see a node during the recovery scan, any log 
records that are attached to the previous version of the 
node in memory can be discarded. 
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Operations generated d ~ ~ r i n g  rcco\,cl-y arc posted to 
the \\!ork clueLles as they \\lould be in normal running. 
Nor~iial operation is not allo\\,cd to begin until tlie 
recovery pass has completed; ho\\~e\,cr, \ \~lie~i recovery 
reaches the end of the log, the sencr  is able to service 
operations t'rom clerics. Thus ne\v reclucsts from the clerk 
can be scr\iced, potentiall!! in pardlcl u~itli the operations 
that were generated by the recovery process. 

Log records are not applied to nodes during rccov- 
cry fix a number of  reasons: 

Lcss processing time is needed to scan the log and 
therefore the server can start servicing ncnl user 
r eq~~es t s  sooner. 

Reco\,cr!, \ \ i l l  not have seen copics of nll nodcs for 
wliich it has log records. To apply the log records, 
the B-tree node must be read from the log. Tliis 
would result in random read requests during tlie 
sequential scan ofthe log, and again \ \ro~~ld result in a 
longer lxriod before user requests could be serviced. 

There may be a copy of the nodc later in the recoil- 
cry scan. This would make the additional I/O opcr- 
ation redundant. 

Checkpointing 

As we have shown, recovering an LFS log is imple- 
mented by a single-pass sequential scan of 311 rccords 
in the log fro111 the recovery start position to tlie tail of 
the log. Tliis section defines a rcco\rer!l start position 
and describes liow it can be lnoved for\\,ard to reduce 
tlie amount of log that has to  be scanned to rccoIrer 
the file systcni state. 

To reconstruct the in-memory statc \\lI~cn a systcm 
crashed, recovery must see something in the log that 
represents each operation o r  change of statc that was 
reprcsc~itcd in memory but not yet rnndc stable. This 
Incans tliat at time t, the rcco\~er!~ start position is 
dcfi~lcd as a point in the log after \\~hich all operations 
tliat arc not stably stored have a log rccord associated 
\\lit11 the~n .  Operations obtain the association by scan- 
ning the log secluentially from tlic beginning to tlie 
end. Tlic recovery positiorl t l ~ c n  becomes the start of 
the log, \vhich has two important problems: 

1. In  tlie \!,orst case, it \\~ould be necessary to secluen- 
tially scdn the entire log to pcrform rcco\!c~.y. For 
large disks, a sequential rcad of the cntirc log con- 
sumes ;i great deal of time. 

2. Rcco\lcry must process every log rccord \vrittcn 
bet\\~ccn the recovery start position and tlic cnd of 
tlic log. As a consequence, scgmclits bcn\rcen the 
start of reco\,ery and the end of thc log cannot be 
clcancd and reused. 

To  restrict the arnount of timc to rcco\!cr tlie log 
and to allo\\, segments to bc released by cleaning, the 

recoverv position must be mo\,ed forward from timc 
to time, so that it is al\\rays close to the tail of the log. 

Under any \\,orkload, a n ~ ~ m b c r  ofoutstanding opcr- 
ations are at va r io~~s  stages of completion. In otllcr 
\vords, there is n o  point in the log when all activity 
has ceased. To o\zcrcomc this problem, \Ale ~rse a ti ~zzy  
checkpoint scliemc." I n  \~crsion 1.0 of tlic Spiralog file 
system, the scrvcl- initiates a new cl~cckpoint \vhen 
20 MI1 of clata has been \\lritten since the previous 
checkpoint started. Tlic process cannot yet move rlic 
reco\,ery position for\\lard in the log to the start of 
the ne\v checkpoint, bcca~~se  some outstanding opera- 
tions may lia\,e priority. Tlic mapping layel- kccps track 
of the opcr~~t ions  that \\;ere startcd before the clicck- 
point ufas initiatcci. Wlicn tlic last of tlicsc operations 
has mo\,cd to rlic nest sragc (2s detined by the rcco\.cr!! 
process), the mapping layer declares that thc check- 
point is complctc. Only then can the recoirery position 
be moved &)r\vard to the point in the log \vhcrc tlic 
checkpoint was startcci. 

Witli this sclicmc, the scr\.er docs not need to \\trite 
all the nodes in all paths in the B-tree bcnvcen a dirty 
node and the root nodc. All that is recl~~ired in practice 
is to \\rrite rliosc nocics tliat lia\re flush operations 
c l i x ~ ~ c d  for them nt the time tliat the chcclq>oint is 
started. Flushing tlicsc nodcs causes change rccorcis 
to be writtcn for tlicir parent nodes aher the start of 
the checkpoint. As the rcco\7er!r scan proceeds t'rom 
the start oftlic last complctcd checkpoint, it is able to 
regenerate the Hush operation on the parent nocics 
fiio~n these change records. 

UJe chose to  base tlic checkpoint i~itel-\.a1 o n  rhc 
amount of data \vrirtcn to the log ratliel- than o n  
the amount of timc to rcc(nrer the log. We felt tliat this 
\vould be an accurate ~ncasul-c of  liow long it w o ~ ~ l d  
take to recover a particular log. 111 operation, \ilc tilid 
this \vorks \\~cll o n  logs tlint espcriellce a I-casonablc 
\\/rite load; ho\\,c\,cr, for logs that predorninantl!~ scr- 
\rice rcad rcclucsts, the ~-cco\~c~-y time tends to\\,ard the 
limit. In these cases, it may be more appropriate to add 
timer-based checkpoints. 

Managing Free Space 
A traditional, update-in-place tile system over\\,ritcs 
supersedcci data by \\lriti~ig to tlie same physjcal loca- 
tion on disk. If, tbr cs;implc, a single block js continu- 
all!! o\zerwrittcn by a file s!!ste~ii client, 110 cstra disk 
space is required to store the block. In contrast, a log- 
structured file systcm appends all ~nodifications to the 
file system to  the tail oftlic log. E\fcry ~ ~ p d a t c  to a sin- 
gle block requires log s p x c ,  not only for tlic data, 1,111 
also for tlie log rccorcis and R-trcc nodes r c q ~ ~ i r c d  to 
make tllc B-tree consistent. Altl~ougli old copics oftlic 
data and R-tree nodcs are marked as no longer li\.c, 
this free spacc is not imrncdi~tely available k>r rcusc; it 
I I ~ L I S ~  be rcclaimcd by tlic clcancr. The goal is to ensure 
that tlierc is sufficient spacc jn the log to \\!rite the 
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parts of the B-tree that are needed to  make the file 
system structures consistent. This mealis that we can 
never have dirty B-tree nodes in memory that cannot 
be flushed to the log. 

The server rili~st carefi~llp manage the amount of free 
space in the log. I t  must provide two guarantees: 

1. A \\,rite will be accepted by the scrvcr only if therc is 
sl~fficient free space in the log to hold tlie data and 
rewrite the mapping B-tree to describe it. This guar- 
antee must hold regardless of  how much space the 
cleaner may subsequently reclaim. 

2. At the higher Ic\~els o f t l ~ e  file systcm, ifan 1 / 0  oper- 
atLon is accepted, eve11 if that operation is stored in 
the write-behind cache, the data will be written to 
the log. This guarantee holds except in the event of  
a system failure. 
- I. he scrvcr provides tlicsc guarantees using tlic same 

mechanis~ii. As sho\vn in F i g ~ r e  13, the free space and 
the reserved space in the log are modeled using an 
escrow fi~nction.~' 

Tlie total number of blocks that contain live, valid 
data is maintained as the i~sed space. When a \\)rite 
operation is receivcd, thc scrver calculates the amount 
of space in the log that is required to complete the 
write and update the B-trce, based on the size of  
the writc and thc current topology of  the B-trce. The 
calculatio~i is generous because the B-tree is a dynamic 
structilre and the outcome of a single update has 
unpredictable effects on  it. Each clerk reserves space 
for dirty data that it has stored in the write-behind 
cache using the same mechanism. 

T o  accept an operation and provide the required 
guarantees, the server checl<s the current state of the 
escro\v function. If the guaranteed free space is suffi- 
cient, the servcr accepts the operation. As operations 
proceed, reserved space is converted to  used space as 
writes are performed. A single write operation may 
affcct se\~eral leaf nodes. As it becomes clear ho\v the 
B-tree is changing, we can convert any unreqi~ired 
reserved space back to guaranteed free space. 

If the cost of  an operation esceeds the free spacc 
irrcspective of ho\v tlie reserved space is converted, the 

Gmws 1 FIESERVED SPACE 

GUARANTEED FREE I SPACE 

GROWS USED SPACE 

TOTAL 
DISK 
SPACE 

Figure 13 
Modeling Frce Spacc 

operation cannot be guaranteed to  complete; there- 
fore it is rejected. On tlie other hand, if the cost of tlie 
operation is greater than the guaranteed free spacc (pet it 
map fit In the log, depending on the outcome of the out- 
standing operations), the server enters a "maybe" state. 
For the server to leave the maybe state and return defini- 
tive results, the escrow cost h~nction must be collapsed. 
This removes any uncertainty by decrcasing the reservcd 
space ti gure, potentially to zero. Operations and unused 
clerk reservations are drained so  that reserved space is 
converted to either used space or  guaranteed free space. 

This mechanism provides a  fuzz)^ measure of how 
milch space is a\iailablc in the log. When it is clear that 
operations can succeed, they are allowed to  contini~e. 
If success is doubtful, the operation is held until a 
definitive yes o r  n o  result can be determined. This 
scheme of  free spdce management is similar to the 
method described in reference 7. 

Future Directions 

This section outlines some of the  possibilities for future 
implementations of the Spiralog file system. 

Hierarchical Storage Management 
The Spiralog server distinguishes between the logical 
position of a segment in the log and its physical location 
01-1 the media by means of the  segment array, 7:Iiis map- 
ping can be extended to cover a hierarchy of devices 
with Ufering access characteristics, opening up die pos- 
sibility of transparent data shelving. Since the unit of 
migration is the segment, even large, sparsely used f les 
can benefit. Segments containing sections of the ti le not 
held on the primary media can be retrieved from slower 
storage as required. This is identical to the virti~al mem- 
ory paging concept. 

For applications that require a complete history of  
the file system, segments can be saved to archive media 
before being recycled by the cleaner. In principle, this 
would make it possible to reconstruct the state of the 
file system at any time. 

Disk Mirroring (RAID I )  Improvements 
When a rn~rrored set of disks is forcefully disniounted 
with outstanding updates, such as when a slatem 
crashes, rebuilding a consistent disk state can be an 
expensive operation. A complcte scan of tlie members 
may be necessary because I/Os may have been out-  
standing to ally part of thc  ni~rrored set. 

Because the data on  an LFS disk is temporally 
ordered, making tlie members consistent following 
a fiilure is much more straightforward. In effect, an 
LFS allows the equivalent of  the minimerge f~~nc t ion-  
ality pro\lidcd by Volunic SIiado\ving for OpenVMS, 
without the need for hardware support such as 1 / 0  
controller logging of operations.Is 

Digital Technical Journal Vol. 8 No. 2 1996 29 



Compression 
Adding file compression to an update-in-place file 
system presents a particular problem: what to do  when 
a data item is overwritten with a new version that does 
not compress to the same size. Since all ~ ~ p d a t e s  take 
place at the tail of the log, an LFS avoids this problem 
entirely. In addition, the amount of space consumed 
by a data item is determined b~7 its size and is not influ- 
enced by the cluster size of the disk. For this reason, an 
LFS does not need to employ file compaction to make 
efficient use of large disks or RAID sets.19 

Future Improvements 
The existing implementation can be improved in a 
number of areas, many of which involve resource con- 
sumption. The B-tree mapping mechanism, although 
general and flexible, has high CPU overheads and 
requires complex recovery algorithms. The segment 
layout needs to be revisited to remove the need for seri- 
alized I/Os when committing write operations and thus 
hrther reduce the write latency. 

For the Spiralog file system version 1 .O, we chose to 
keep complete information about live data and data that 
was no longer valid for every segment in the log. This 
mechanism allo~vs us to reduce the overhead of the 
cleaner; however, it does so at the expense of memory 
and &sk space and consequently does not scale well to 
multi-terabyte disks. 

A Final Word 

Log structuring is a relatively new and exciting tech- 
nology. Building Digital's first product using this 
technology has been both a considerable challenge and 
a great deal of fun. Our esperience during the con- 
struction of the Spiralog product has led us to believe 
that LFS tecl~nology has an important role to play in 
the hture  of file systems and storage management. 
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Designing a Fast, 
On-line Backup System 
for a Log-structured 
File System 

The Spiralog file system for the OpenVMS 
operating system incorporates a new tech- 
nical approach to backing up data. The fast, 
low-impact backup can be used to create 
consistent copies of the file system while 
applications are actively modifying data. 
The Spiralog backup uses the log-structured 
file system to solve the backup problem. The 
physical on-disk structure allows data to be 
saved at near-maximum device throughput 
with little processing of data. The backup 
system achieves this level of performance 
without compromising functionality such as 
incremental backup or fast, selective restore. 

I 
Russell J. Green 
Alasdair C. Baird 
J. Christopher Davies 

Most conipLltCr L I S C ~ S  \\,ant to be able to recover data 
lost through user error, sotiwarc o r  media fiilurc, o r  
site disaster but are un~villing to de\,otc systcln 
resources o r  do\vnti~nc to makc b a c k ~ ~ p  copies of  thc 
data. Furthermore, with tlie rapid gro\vtli in the use of 
data storage and tlie tendcncy to mo\{c systems to\\larci 
conlplete utilization (i.e., 24-hour by 7-day operation), 
the practice of taking the s)lstem off line to  back up 
data is 110 longer fcasjblc. 

The Spiralog file system, an optional component of 
the OpenVMS Alpha operating s)lstcm, incorpori~tes 
a nebit approach to tlic backup process (called 
simply backup), resulting in a numhcr of substantial 
customer benefits. By exploiting the fcati~rcs of log- 
structured storage, the backup systcm combines the 
advantages of  two different traciitionnl approaches 
to perfor~iling baclu~p: the tlcxibility or file-basccl 
backup and the high pcrfonnancc of physically ori- 
ented backup. 

Thc design goal for the Spiralog backup systcm \\,as 
to provide customers \\.ith a hst, application-consistent, 
on-line backup. In  this pJpcr, n8c esplain the features 
o f the  Spiralog file system that helped achicvc this goal 
and outline the dcsign of the major backup fi~nctions, 
namely volume save, \~olilnic rcstorc, ti lc rcstorc, and 
incremental management. \)Vc then prcscnt some pcr- 
formance results arrived at 11sing Spiralog vcrsion 1.1. 
The paper concludes \\lit11 a discussion of other design 
approaches and areas for f i~turc \\lark. 

Background 

File s)atcni data may be lost for many reasons, includ- 
ing 

User error-A ilscr may mistakenly dclctc data 

Softwarc failurc-An application may c s c c ~ ~ t c  
incorrectly. 

lMedia failure-The computing ccluipmcnt may 
malfunction because of  poor design, old agc, ctc. 

Sitc disaster-Co~~iputi~ig Eicilitics may cxpcrjcncc 
failures in, for csamplc, tlic clcctrical supply or  cool- 
ing systems. Also, environmental catastrophes such 
as electrical storms and floods may d.im;~gc hcilitics. 
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The ability to save b ~ c k u p  copies of all or  part of 
a file spste~n's information in a form that allo\\s it to be 
restored is essential to most citstolners \\rho use ~0111- 
puting resources. To  understand the backup capability 
needed in the Spiralog file system, we spoke to a num- 
ber of  custon~ers-five directly and several hundred 
through public ~ O ~ L I I I I S .  Each ran a different nipe ofsys- 
tern in a distinct environment, ranging from research 
and development to finance on OpenVMS 2nd other 
systems. Our  survey rc\~caled the following set of cits- 
torner reqilircments for the Spiralog backup system: 

1. Backup copies of data must be consistent \vith 
respect to the applications that use thc data. 

Data I I I L I S ~  be continuously available to applica- 
tions. Downtime for the purpose of backup is unac- 
ceptable. An application must copy all data of 
interest as it exists at an instant in time; however, 
the application should also be allowed to modi@ 
the data during thc copying process. Performing 
backup in such a way as to satistjl these constraints is 
oficn called hot backup or on-line backup. Figure 1 
illustrates ho\v data inconsistency can occur during 
an on-line baclzup. 

3. The backup operations, particularlv the save opera- 
tion, must be hst .  That is, copying data from the 
system o r  restoring data to  the system II ILIS~  be 
acco~~~plished in the ttliie available. 

4. The backup s)!stcn~ must allo\v an incremental 
backup operation, i.c., an operation that captures 
only the changes made to data since the last backup. 

Thc Spiralog backup team set out  to design and 
implement a backup system that would meet the four 
customer req~tiremcnts. The foIIo\\~ing section dis- 
cusses the features of the implementation of a log- 
structured tile system (LFS) that allo\\/cd us to use 
a nc\v approach to  performing backup. Note that 
throughout this paper we use clisk to describe the 

TIME 

FILE BACKUP EXPLANATION 

The initial file contains two blocks 

Backup stalls and copies the first 
block. 

The application rewrites the  file. 

Backup proceeds and copies t h e  
second block. The resulting backup 
copy is corrupt because the f~rst 
block IS inconsistent w ~ t h  the latest 
rewritten file. 

Figure 1 
Exarnplc 0fa11 O I I - ~ ~ I I C  Backup Tha t  Rcs~~l t s  in Inconsistent 
Data  

phys~cal media used to storc data and rlol~i~ne to 
describe t l ~ c  abstractton of the dislc as presented by the 
Spiralog filc system. 

Spiralog Features 

The Spiralog file system is an implementation of a log- 
structured file system. An LFS is characterized by the 
use ofdisk storage as a sequential, never-ending rcpos- 
itory of data. We generally refer to  this organization of 
data as a log. Johnson and Lling describe in detail the 
design of  the Spiralog implementation of an LFS and 
how files are maintained in this implementation.' 
Some feari~res unique to a log-struct~~red filc system 
are of particular interest in the design of a backup 
s)lsten~.'-.' These features are 

Segments, where a segment is the fundamental 
unit of storage 

The no-o\ler\\lrite nature of the system 

The temporal ordering of on-disk data structures 

The means by which files arc constructed 

This section of  the paper discusses the relevance of  
these features; a later section explains how these fea- 
turcs arc exploited in the backup design. 

Segments 
In this paper, thc ten11 segment refers to a logical 
entity that is unicluely identified and never ovcr\vrit- 
ten. This definition is distinct from the physical stor- 
age of  a segment. Thc only physical featurc of interest 
to backup urith regard to segments is that they are effi- 
cient to read in their entirety. 

Using log-structured storage in a tile system allo\\~s 
efficient writing irrespective of the \\,rite patterns or 
load to the file system. All write operations arc 
groupcd in segment-sized chunks. The scgmcnt sizc is 
chosen to be sufficiently large that the time required 
to read o r  \\trite the segment is significantl!l greater 
than the time required to access thc scgmcnt, i.c., the 
time required for a head seek and rotational delay on 
a magnetic disk. All data (except the LFS homebloclt 
and checl<point information used to locate the cnd of 
the data log) is stored in segments, and all segments 
are known to the file system. From a backup point of 
view, this means that the entire contents of a \,olumc 
can be copied by reading the segments. The segments 
are large enough to allow efficient I-eading, res~~l t ing  in 
a ncar-maximu~n transfcr rate of the device. 

No Overwrite 
In a log- st^-ucturcd file systcm, in which the segments 
are never overwritten, all data is \\/nttcn to ncu; c ~ n p t ) ~  
seglnents Each nc\v segment 1s gwen a segn1cnt  den 
tifier ( scg~d)  allocated in a monotonically incrcas~ng 
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manner. At any point in time, the entire contents and 
statc ofa  volume can be described in terms ofa  (check- 
poil?rposi/io/l, segrrlorr li.s/) pair. At the physical Ic\lcl, 
a \iolurne collsists of a list of segments and J position 
within a segment that defines the cnct of the log. 
Rosenblum describes the concept of time travel, where 
an old statc of tlie tile system can be rc\~isitcd by crcat- 
i ~ i g  and maintaining a snapshot of the file system for 
future access."Allowing time tra\lel in this way rccluircs 
maintaining an old checkpoint and disabling tlic reuse 
of disk space by tlie cleaner. The cleaner is a mccha- 
nism used to reclaim disk space occupied by obsolete 
data in a log, i.c., disk spacc no l o ~ ~ g c r  referenced in 
the file systeln. The contents of a snapshot arc indc- 
pendent of operations ~rndcrtaken o n  the live version 
of the file system. Modifjling o r  dcleting a file affccts 
only tlie live version of the file system (see Figure 2).  
Because of  the no-over\vrite nature of tlie LFS, previ- 
ously written data remains ~lnclianged. 

0 t h  mcclianisms specific to  a particul;ll- baclc~~p 
algorithm have been developed to achieve on-line con- 
sistenc..' The snapshot niodel as described above allo\\s 
a more general solution \vith respect to ~ i i~~ l t ip l c  con- 
current b~ckups  and the choice of tlic sa\.c ;algorithm. 

A read-only version of  the tile system at an instant 
in time is precisely \\.hat is required for application 
consistency in on-line backup. This snapshot approach 
to attaining consistency in o~i-line baclu~p hns bccn 
used ill other s y s t e ~ n s . ~ . ~  AS esplai~lcd in the fi)llowing 
sections, thc Spiralog file s~lstcni combines tlie snap- 
shot technique with fea t~~res  of log-stri~cturcd storage 
to obtain both on-line backup consistency and perfor- 
mancc benefits k)r backup. 

Temporal Ordering 
As mentioned earlier, all data, j.c., user datn and ti lc 
system lnetadata (data tliat describes the user data in 
the tile system), is stored in scgnients and tlicrc is 110 

overwrite of segments. AJl on-disk data structures that 
refer to  physical placc~nent of data use pointers, 
~ianicly (sc.gid, (fi.k>r) pairs, to dcscribc thc location of  
tlie data. Each (segid. ?/]Set) pair specifics the scgmcnt 
and where within tliat scgment the data is storcd. 
Togctlier, these imply tlic follo\ving t\vo propcrtics of 
data structures, wliicli are Iccy features ofan LFS: 

DIRECTION IN WHICH THE LOG IS WRITTEN 

This data is This data is This is new live 
visible to only shared by the dala written since 
the snapshot. snapshot and the the snapshot was 

live file system. laken. 

Figure 2 
Data Acccssiblc to thc Snapshot 2nd to  tlic Live Filc 
S!lstem 

1. On-disk strilctilrc poi~lters, nanielj~ (.sqqi~/. (djset) 
pairs, arc relatively time ordercd. Specifically, data 
stored at (s2, 02) was writtcn more recelitly than 
data stored at ( s l ,  01) if and only if s2 is greater 
than sl o r  s2 ccluals s l  and 02 is greater than 01. 
Tlil~s, ncur data would appear to tlie right in the 
data structure depicted in F i g ~ ~ r c  3 .  

2. Any datn strirctilrc that i~ses on-disk po i~~ te r s  stored 
within the segments (the mapping data structure 
iniplcnicnting the LFS index) lnilst be time 
ordered; that is, all pointers 1ii~1st refer to data \wit- 
ten prior to tlic pointer. Kcfct-ring ;lgain to Figure 3, 
onl!~ data structures that point to the lcfi are valid. 

Tliesc propcrtics of on-disk data strilctilrcs are of 
interest \\,lien designing backup systems. Such data 
StructLIrcs can be tra\~crscd so that segments arc rcad 
in reverse time order. To  understand this concept, con- 
sider tlie root ofsonic on-disk data structure. This root 
must ha\.c bccn \witten ahcr an!, of the clata to \\,hich 
it refers (property 2) .  A clata itcni tliat the root rcfcr- 
enccs must Iia\,c been \vrittcn bcfi>re the root and so  
must 11;1ve bee11 storcd in a scgmcnt \\'it11 a scgid less 
than or cq~lal to tliat of the segment in \\.liicli the root 
is storcd (property 1). Asinlilar indi~cti\c ~1rgi11iient c.111 

be ilscd to slio\\r that any on-disk data structure can be 
traversed using a single pass of segments in increasing 
segment age, i.c., ciect-casing scgicl. This is of particular 
interest \\,he11 considering /lo\\ to rcco\,cr sclccti\ie 
pieces of data (c.g., indi\kiual files) from an on-disk 
structure tliat has been storcd in such a \\*a!, that only 
scqi~c~ltial access is \,inblc. Tlic storage of the segments 
that compose a \,01i11nc 011 tape as part ofa  bacl<lrp is an 
csamplc ofsuch an on-disk data structure. 

File Construction 
Whitalter, 13aylc): and Widdowson dcscribc the persis- 
tent address spacc as exported by the Spiralog LFS.' 
Essentially, tlic intcrhce presented by tlie log- 
s t ruc t~~rcd  scrifcr is that ofn lnc~nory (\rarious read and 
\\)rite opcrx'ims) iiidcscci using n fi lc identifier and an 
;iddress range. 'The entire contents of  a filc, regardless 
of type or  size, are defined by the file identitier and all 
possible nddrcsscs built ~rsing that identifier. 

r < Iliis means of filc constri~ction is iliiport31it \vIien 
considering how to  I-cstorc the contents of a filc. All 

All pointers specify 
previously written segments. 

DIRECTION IN WHICH THE LOG IS WRITTEN 

Figure 3 
A V:llid 1)nt.l S r r u c t u ~ . ~  in thc Log 
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data contained in a file defined by a file identifier can be 
recovered, independent of  how the file was created, 
without any knowledge of the file spstem structure. 
Consequently, together ~14th tlie temporal ordering of 
data in an LFS, files can bc recovered using an ordered 
linear scan of the scgmcnts of a volume, provided the 
o ~ ~ - d i s k  data structures are traversed correctly. This 
rnechanisni allows efficient .tile restore from a sequence 
of segments. In particular, a set of files can be restored 
in a single pass of a saved volume stored on tape. 

Existing Approaches to Backup 

7 7 I lie design of tlie Spiralog backup attempts to com- 
bine the ad\~antages of file-based baclcup tools such as 
Files-11 backup, UNIX tar, and Windows NT backup, 
and physical backup tools such as UNIX dd,  Files-11 
baclcup/PHYSICAL, and HSC backup (a controller- 
based backup for OpcnVMS volumes)." 

File-based Backup 
A file-based backup system Iias nvo niain advantages: 
(1) thc s)~ste~ii can explicitly name files to be saved, and 
(2) the system can restorc individual files. In this paper, 
the file or  structure that contains the output data of  
a backup save operation is called a saveset. Individual 
file restore is achieved by scanning a saveset for tlie file 
and then recreating the file using tlie saved contents. 
Incremental file-based baclcup usually entails keeping 
a record ofwhen the last backup was made (either on a 
per-file basis or on a per-volume basis) and copying 
only those files and directories tliat have been created 
or  moditied since a previous backup time. 

The penalty associated with these features of  a file- 
based backup system is that of  save performance. 
In effect, the backup spstem performs a considerable 
amount ofworlc to  lay out data in the saveset to a l l o ~ )  
simple restore. All files are segregated to a ~iiuch greater 
extent than they are in the tile s)lsteni on-disk struc- 
turc. The limiting factor in the performance of a file- 
based save operation is the rate at ~vliich data can be 
read from the source disk. Although there are some 
ways to i~nprovc performance, in the case o f a  volume 
that lias a large number of files, read performance is 
always costly. Figure 4 illustrates the layouts of tlirec 
different types of savesets. 

Physical Backup 
In contrdst to the filc-based approach to baclcup, a 
physical backup system copies the a c t ~ ~ a l  blocks of data 
on the source disk to a saveset. The backup system is 
able to read the disk optimally, which allows an imple- 
mentation to achieve data throughput near the disk's 
maximum transfer rate. Physical baclcups typically 
allow neither individual filc restorc nor jncremcntal 

DIRECTION IN WHICH THE TAPE IS WRITTEN 

In a physical backup saveset, blocks are laid out cont~guously on tape 
File restore is not poss~ble without random access. 

In a file backup saveset, files are laid out contiguously on tape. 
To create this sort of saveset, files need to be read individually 
from disk, which generally means suboptimal disk access. 

FILE 1 I FILE 2 1 FILE 3 . . . 

Figure 4 
Layouts of Three Different Types of Saveset 

DIR 

baclcup. The overhcad required to include sut'ficicnt 
information for tliese fcatures usuall!l erodes the per- 
formance bencfits offered by the physical copy. In 
addition, a physical backup usually requires tliat the 
entire volume be saved regardless of  how much of tlie 
volilme is used to  store data. 

How Spiralog Backup Exploits the LFS 

In a Spiralog backup saveset, directory (DIR) and segment table 
(SEGT) allow file restore from segments. Segments are large 
enough to allow near-optimal disk access. 

SEGT 

Spiralog backup uses the snapshot ~nechanisni to 
achieve on-line consistency for backup. This section 
dcscribes ho\v Spiralog attains high-performance 
backup with respect to the various save and restorc 
operations. 

Volume Save Operation 
The save operation of Spiralog creates a snapshot and 
then physically copies it to a tape or  disk structure 
callcd a savesnap. (This term is cliosen to be different 
from saveset to emphasize that it holds a consistent 
snapshot of the data.) This physical copy operation 
allows high-performance data transfer with minimal 
proces~ing. '~  In addition, the temporal ordering of 
data stored by Spiralog means that this physicnl copy 
operation can also be an incremental operation. 

The savesnap is a file that contains, among other 
information, a list of segments exactly as they csist 
in the log. Tlic structure of thc savesnap allows the 
efficient implementation of  volume restore and fi le 
restore (see Figure 5 and Figure 6). 

The steps o fa  f i l l  save operation arc as follows: 

SEG 

1. Create a snapshot and mount it. This mounted 
snapshot loolcs like a separate, read-only filc system. 
Read information about the snapshot. 
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METADATA SEGMENTS (DECREASING SEGID) 
+ - - t 

HEADER SP ;ST DIRECTORY i SEGMENT INFO i TABLE SEGMENT ... 

KEY: 

I PHYSICAL SAVESNAP 
i RECORD (FIXED SIZE FOR 

: .,,............. i ENTIRE SAVESNAP) 

8 ZERO PADDING 

Figure 5 
Sn\,csnap Srructut.c 

THE LOG TAIL OF THE LOG --, 

ROOT OF THE 
SNAPSHOT 

DIRECTION IN WHICH THE LOG IS WRITTEN 

SAVESNAP 

DIRECTION IN WHICH 
THE TAPE IS WRITTEN 

KEY: 

0 UNUSED SEGMENT 

a USED SEGMENT 

Figure 6 
C:ol-l.cspondcncc bct\\.cc~l Scgmc~lrs on 1)isk an t i  i n  thc 
Sa\.csn~p 

2. Write the licacicr to the savesnap, incl~rding snap- 
shot i~~formation such ;IS the checkpoint position. 

3. Cop!, the contents of  the f lc systcm directories to 
the savesnap. 

4. Write the list of  scgids that composc the snapshot 
to the s a \ ~ e s ~ ~ a p  as a scgmcnt table in decreasing 
scgid order. 

5. Copy these scgmcnts in dccrcasing scgid order 
from the \~olumc to the savcsnap (see Figure 6 ) .  

6.  Dismount and delctc the snapshot, leaving only the 
contents of the live volunic accessible. 'The effect of 
deleting the snapshot is to rclcasc all the space ~ ~ s e d  
to  storc s ~ g n ~ c r i t s  that contain only snnpsliot data. 
All scgmcnrs tliat contain data in the live \~oli11i1c 
arc lcl? inttict. 

\ioI. S No. 2 1996 

SP SAVESNAP INFORMATION 

ST SNAPSHOT INFORMATION 

The Spiralog backup systcm is pri~narily physical. 
The systcm copies the volu~nc (snapshot) data in 
seg~uents that arc largc cnougli to allo\v efficient 
disk reading, regardless of the ~ iumbcr  of files in the 
\~01~11iie. TO save a \ ~ o l ~ ~ n l c ,  tlic Spiralog backup sys- 
tern has to  read all the dircctol-ics in the volume and 
then all the scgmcnts. In comparison, a f lc-based 
backup system must read all the directories and then 
all the files. On volumes with largc tile populations, 
file-based backup pcrformancc suffers greatly as a 
resi~lt of the number of rcaci operations rcq~rircd to 
save the \~olume. Our  mcasurcmcnts slio\\'cd t h ~ t  the 
directory-gatherj~~g phase of  our copy operation \\.as 
insignificant in relation to the ciata tl-nnsfcr during the 
segment copy phase. 

Incremental Save Operation 
The incremental sa\.e operation in Spirnlog is \,cry 
differelit from that in a filc-hascd b'~ckup. \Vc usc the 
ternporal ordering fcaturc of the LFS to capture only 
tlic changes in a \.olumc's ilata as part of the i~lcrcmcn- 
tal save. The tcmpoml ordering pro\.idcs a simple \\.a!. 
of determining the rclati\.c age o f c i ~ t , ~ .  To be precise, 
clata in thc segment \\,it11 scgiri s2  must Iin\,c bccn \\rrit- 
ten aficr data in the scgmcnt \\,it11 scgiti s l  if anti onlv 
if s2 is greater than sl . 

Consider tlic lifetime of a \,olumc as an endless 
sequence of segments. A backup copy of n volume at 
any t i ~ n e  is 3 copy of all scgmcnrs that contni~i data 
accessible in that \~olumc. Scgmcnts in the \,oll~nic's 
Iiistory tliat arc 11ot incli~dcd in the baclc~~p cop!{ arc 
those tliat n o  longcr contain any i~scfi~l  ii;ltn or  those 
that have bccn cleaned. An incrcmcntal backup con- 
tains the sequence of scgmcnts containing accessible 
data written sincc a previot~s backup. 

This is different fi.0111 JII i ~ i c r c ~ ~ i c ~ ~ t a l  S;I\'C o p c ~ ~ t i o n  
in a tile-based b'ickirp schcmc. The Spiralog incrcmcn- 
tal save operation copies o n l y  the data \\,rittcn sincc 
the last backup. In comparison, a file-based backup 



incj-cmcntal save comprises entire files tliat contain 
nc\v o r  modified data. For example, consider an incrc- 
mental s x r c  o f a  \,olulnc in \\>liich a large databasc fi lc 
has had only one  record updated in place since a f~ll 
backup. Spiralog's incremental save copies tlie seg- 
ments \vrittcn since thc last full backup that contain 
tlic modi fcd  record \\,it11 o ther  upd.ited file system 
index d ~ t n .  A f i le-b~scd b,lcIa~p copies the cntirc data- 
base f lc. 

T h e  follo\\iing stcps for tlic incremental save opern- 
tion augment  tlic six process stcps pre\~iousl!r 
described for tlic save operation. N o t e  th'it steps 32, 
42, and 5a k)llo\v stcps 3 , 4 ,  and 5,i-cspccti\lely. 

3a. Write dependent  s'lvesnap information. This  is 3 

list o f  the s,l\iesnaps r e q ~ ~ i r e d  t o  coniplete the  
chain ofsegments  tliat constitutes the cntirc snap- 
shot  contents. T h e  savesnap information includes 
a ~rnicluc savesnap identifier ( L ' O ~ I ~ I ~ Z C '  id. S O ~ I H C I I I  

i r l ,  s e g ~ ~ ~ c ~ l t ~  (!/].I-c't). This is the chccl<point position 
of t l ic  snapshot and is ~ ~ n i q u c  across \,olunics. 

4,1. l ) c t c r m i ~ ~ e  the scgmcnt  range t o  be stored in this 
sn\.csnap. This  rangc is calculated by reading the 
scglncnt rangc o f  tlic last backup from a file storcci 
o n  the source \~o lume.  

53. Rccord the minimum segid stored in this save- 
snap \\it11 tlic scgmcnt  table. T h e  s e g ~ i i c n t  taldc 
contains the segids o f  all segments  in tlie sa\lcci 
sn.lpsliot. T h e  incremental savesnap contains 
scgmcnts  identified by 3 subset o f  these segids. 
T h e  scgid o f  the  lust scgmcnt  storcd in the  savc- 
snap is recorded .is tlie ~ i i i n i m u m  segid held in tlic 
savesnap. 

7. Rccord o n  tlic source \ ~ o l u m e  the segment rangc 
storcd in t11c savesnap. 

Tlic implementation pro\'ides an interface tliat 
allo\\,s tlic user t o  s p e c i e  the maximum n u n ~ b e r  o f  
sn\.csll'lps rccluirccl for a restore operation. This feature 
js simil'lr t o  specifiring the le\rels in the U N I S  d u m p  

TIME LIVE SEGMENTS IN VOLUME 

Monday I 1 1 3 1 4  1 

utility, \\diere a Ic\~cl O saIre is a fill1 backup ( i t  ~ -cq~r i rcs  
n o  o ther  sa\,csnaps for a restore),  and a Ic\,cl 1 sa\.e 
is nn incrcment,ll backup since the fill1 b,lclcup ( i t  
r c q ~ ~ i r c s  o n e  'ldditional savesnap for a restore, n.lmcly 
tlie fill1 b a c l t ~ ~ p ) .  

Figure 7 s l i o \ ~ ~ s  tlie savesnaps procluccd from 
f ~ ~ l l  and incre~nental  sa1.e operations. Notc  that the 
most recently \\,ritten segment  ma!, appcnr in t\\.o 
different savesnaps that supposedly contain disjoint 
darn. For example, segment  4 ,  the !~oungest scgmcnt  
in ~Monday's savesnap, appears in the savesnaps made  
o n  both Monclay and M'ednesday. Tlic yoLlngcst scg- 
mcnt  is no t  gl~arantccd t o  be f i l l  a t  the time o f  a snap- 
sho t  creation, and therefore a later savesn~lp 

Wednesday 

contain data tliat was no t  in tlic f r s t  savcsnap. 
C o n s c q ~ ~ c n t l y ,  incremental savesnaps r c c a p t ~ ~ r c  tlic 
oldest segment in their segment range. 

N o t c  tliat \\,it11 this design a slo\\,ly c l i ~ n g i n g  fi lc 
can be spread across many incremental sa\,csnaps. 
llcstoring such a file accordingly ~ i i a \ ~  I-cc1~1irc access 
to many sa\.csnaps. T h e  file restore sectioll sho\\,s t h ~ t  
tlic design o f f  lc restore allo\\,s efficient tape tra\,crsal 
for these files. 

Volume Restore Operation 
Tlic Spiralog bacltup \,olume restore oper'ltion talccs a 
set o f  savesnaps and copies the segments that m'lltc LIP 
a snapshot o n t o  a disk. Together, this set o f  scgmcnts 
2nd tlic location of the snapshot checkpoint dcfinc 
a \~o lumc.  T h e  steps in\lolved in a \~olunic restore from 
a f11 1 1 sa\Jesnap arc 

1 

1 .  O p e n  the  savesnap, and read the snaps l~ot  clicck- 
point position fi-om the sa\lesndp headcr. 

2. Initi,llizc tlic targct disk t o  be a Spiralog \ .olu~i ic .  

3 

3.  Chpy all segments froln the sa\,esnap t o  the rar- 
get  disk. N o t e  tliat the scgmcnts \\zrittcn t o  tlic 
target disk d o  no t  depend in any \\,a!' o n  the tnr- 
get ciislc gcometr!l. This Iiieans tliat tlic targct disk 
ma!, be complctel!, different fi-om thc soilrcc 

4 

Figure 7 
Snapshot <:onrc~lts in Incrcmcntal S'~\.esn'lps 
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dislc fro~ii \\,hich tlie savcsnap \\!as made, providing 
tlie target container is large enough to hold the 
restored segments. 

4. Rackup declares the volume rcstore as complete 
(no more segments will be written to the volume). 
Rackup tells the file system hocv to mount tlie vol- 
ume by supplying the snapshot checkpoint location. 

A Spiralog restore operation treats an  incremental 
savesnap and all the preceding savesnaps upon which it 
dc lx~ids  as a single savesnap. For savesnaps other t l~an 
the most recent savesnap (the base savesnap), the 
snapshot information and directory i~~for~i ia t ion  arc 
ignorcd. Tlie sole purpose of thcsc savesnaps is to pro- 
\vide scgmcnts to the base sa\7esliap. 

To restore a v o l ~ ~ n i e  from a set of i~icrcmental save- 
snaps, the Spiralog backup system pcrti)rms steps 1 
and 2 using the base savesnap. I n  step 3,  tlic rcstore 
copies all the segments in the snnpsliot clcfincd by 
the base savcsnap to the target disk. (Note t l i ~ t  there 
is a one-to-one correspondence hcnvccn snapshots 
and savcsnaps.) The savcsnaps are proccsscd in reverse 
chronological order. The contents of the segment 
tablc in the base savesnap define the list of scg~nents in 
tlic s~iapshot to be restored. Altl io~~gli  the \.olume 
rcstorc operation copies all tlie segments in the base 
sa\,csliap, not all segments i l l  the savesnaps processed 
nlay be rccl~~ircd. Sa\rcsnaps are inc l~~ded in t l ~ c  rcstore 
p~)ccss  if tlicy co~ltaili SOIIIC s c g ~ i i c ~ ~ t s  tliat arc nccdcd. 
Such savesn,lps ma\, also contain segmcnts tliat \\,ere 
clcancd before the base savesnap was created. 

Thc structure of the savesnap allo\\,s the efficic~~t 
location and copying ofspecifc scgmeuts. The scgment 
table in the savcsnap descrjbes exactly ~vliich segments 
arc storcd in the savesnap. Since the scgmcnts are of 
a fxcd size, it is easy to calculate tlic position cvitliin 
the savcsnap whcre a partic~~lar segment is storcd, pro- 
vided the scgment tablc is available nnd the position of 
the ti rst scglncnt is kno\vn. Tliis will nl\vays bc the case 
by the time the scgment tiible l ~ a s  hccn read bccai~sc 
the scgmcnts immediately follo\\~ tliis tablc. 

 most sa\,csnaps are stored on Tliis storage 
medium lends itself to the indexing just dcscribecl. 111 
pnrticul;~r, modern tape drives such as tlic Digital 
Linear Tape (DLT) series provide tist, relative tape 
1x)sitioning tliat allo~vs tapc-basccl savesnaps to be 
sclcctivcly rcad more cl~~ickly than \\/it11 a scqucntial 
scan." Similarly, on  ra~~do~n-access  mcdia such as 
ciisl<s, n particular segnient can be rcaci w i t l i o ~ ~ t  strict 
scclucntial scanning of data. 

T l ~ c  volume rcstore operation is thcrcforc a physical 
olxration. The segments can be read and written cffi- 
cicntly (even in tlie case of incrcrncntiil sa\,csny,s from 
sccluaitial mcdia), r e s ~ ~ l t i ~ i g  in a Iligh-pcrform3ncc 
recover!, fioni \,olume failure or  site disaster. 

File Restore Operation 
Tlie pilrpose of a file restore operation is to provide 
a fast and efficient \vay to retrieve a small nunibcr of 
files from a savesnap \\-ithout performing a fill1 \,olurne 
restore. Typically, file restore is used to recover tiles 
that have been inncivertently deleted. To achieve high- 
performance file rcstorc, cve imposed the follo\ving 
req~~ire~i icnts  o n  tlic design: 

A file rcstorc scssion must process as fc\v savesnaps 
as poss~blc; ~t s h o ~ ~ l d  skip savesnaps that do not 
contaln data needed by the session. 

When processing ;I savesnap, the file restorc must 
scan the snvcsnap lincarl!; in a single pass. 

The process of restoring fi les can be broken do\vn 
into tlirec steps: (1 )  disco\lcr the file identifiers fix all 
the files to be rcstorcci; ( 2 )  i~sc  the tilc identifiers to 
locate t l ~ e  file data in tlic s;i\~ed segments, and tlicn 
rcad that clat,~; dnd ( 3 )  place tlic newly rrco\,crcd data 
back into the currcnt Spiralog file systern. 

Discovering the File Identifiers The user supplies the 
namcs of  the flcs to bc restored. The mapping 
between the f le namcs and the file identifiers associ- 
ated with thcsc namcs is storcd in tlie segments, but 
this infbrmation cannot be disco\~crcd simply by 
inspecting the contcnts of the s a ~ w i  scg~ncnts. A 
corollary o f  tllc temporal ordering of the segmcnts 
\\#ithin a s,l\.csniip is that hicrarcliical information, sucll 
as nested directories, tc~ids to hc presented in precisely 
tlie \\Irons order for scanning in a single pass. To  over- 
come tliis problem, tlic save operation \\.rites the corn- 
plete directory tree to the savcsnap before copying any 
segments to the savesnap. This tree maps ti lc names to 
identifiers for c\.cry ti lc and directory in the savcsnap. 
The file rcstorc scssion constructs a partial tree of tlic 
names of the tiles to be restored. Thc partial tree is 
then niatcllcci, j ~ i  3 si~iglc ~ B S S ,  ;lg<li~ist the co~nplcte 
tree storcd in tlic sa\,csnap. This procrss produces tlic 
required file idcntifi crs. 

Locating and Reading the File Data Miel- disco\.cring 
the file idcntif crs, the ti lc rcstore session reads the list 
of segmcnts present in the savcs~~ap; this list co~iies 
after the directory tree and bcti)rc any sa\.ed seg~ncnts. 
'The file rcstorc tlicn switches f o c ~ ~ s  to disco\~cr prc- 
ciscly \\lIiich segmcnts contain the tile data that corrc- 
spond to the file idcntificrs. 

Tlie first segment rcaci fro111 the sa\,esnap contains 
the tail of tlie log. l'llc log pro\~idcs a mapping bch\'ccn 
file identifiers ancl locations of data within seglllcnts. 
The tail of the  log contains the root of the map. 

We dc\:clopcd a simple intcrfacc for the file rcstorc 
to LISC to ~ln\.ig;~tc tllc map. Essentially, this intcrfiicc 
permits the retric\rnl of all ]napping infixmation 
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relevant to a particular file identifier that is held within 
a given segment. The mapping information returned 
through this interface describes either mapping infor- 
mation held elsewhere or real file data. One character- 
istic of the log is that anything to which suc l~  rnapping 
infor~nation points must occur earlier in the log, that 
is, in a subsequent saved segment. Recall property 2 of 
the LFS on-disk data structures. Consequently, the file 
restore session will progress through the savesnaps in 
the desired linear fashion provided that requests are 
presented to the interface in the correct order. The 
correct order is determined by the allocation ofsegids. 
Since segids increase monotonically over time, it is 
necessary only to ensure that requests are presented in 
a decreasing segid order. 

The file restore interfiice operates on an object 
called a context. Thc contest is a tuple that contains a 
location in the log, namely (segid ofliet), and a type 
field. When supplied with a file identifier and a con- 
text, thc core function of the interface inspects the seg- 
tnetlt determined by the contest and returns the set of 
contexts that enumerate all available mapping infor- 
mation for the file identifier hcld at the location gven  
by the initial contest. 

The type of  context returned indicates one of the 
follo\ving situations: 

SAVESNAP 

The location contains real file data 

The  location givcn by the context holds more 
mapping information. In this case, thc core f i~nc-  
tion can be appliccl repeatedly to determine the 
precise location of the f le's data. 

A \vorl< list of contests in decreasing segid order 
drives the file restore process. The procedure for 
retrieving the data for a single file identifier is as fol- 
lows. At the outset of  the file restore operation, the 
work list holds a single contest that identifies the root 
of the map (the tail of  the log). As items are taken from 
the head of the list, the file restore must perform one 
of  two actions. If the context is a pointer to real file 
data, then the file restore reads the data at that location. 
If the context holds the location of mapping informa- 
tion, then the core hnction must be applied to enu- 
merate all possible h r the r  mappitlg information held 
there. The file restore operation places all returned 
contexts in the work list in the correct order prior to 
picking the next work item. This simple procedure, 
which is illustrated in Figure 8, continues until the 
work list is empty and all the file's data has bccn read. 

To cope with inore than one flc, thc file restore 
operation extends this proceditre by converting thc 
work list so that it associates a particular file identifier 

EXTENTOFSAVESNAPTRAVERSALSOFAR 

TARGET FlLE SYSTEM FOR FlLE RESTORE 

DIRECTION IN WHICH THE LOG IS WRITTEN 

KEY: 
I---, 

i FlLE DATA 
L - - - ,  

FlLE SYSTEM MAP DATA 

The shaded areas represent the file data to be restored and the file system metadata that 
needs to be accessed to retrieve that data. The restore session has thus far processed 
segment 478. Part A of the file has been recovered into the target file system. Parts B and C 
are still to come. Afler processing segment 478, the file restore visits the next known parts of 
the log, segments 69 and 59. Items that describe metadata in segment 69 and data in segment 
59 will be on the work list. The next segment that the file restore will read is segment 69, so the 
session can skip the intervening segment (segment 195). 

Figure 8 
Filc Restore Session in Progress 
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\vith each contest. File rcstorc initializes the \ifork list 
to hold a pointer to the root oftlie map (the tail of the 
log) for cach file identifier to be restored. The effect is 
to intcr!ea\.c requests to ~-c,ld more rhun one f le ~ ~ h i l e  
niaintaining the correct segicl ordering. 

A f ~ ~ r t h c r  s~~b t l cn r  occurs \\,lien tlic contest at the 
head of the \\forlc list is fo~111c1 to refer to a scgnlent 
outside the current savesnap. Tlic ordering iniposeci 
011 the \\fork list i~l~plies that all subseclucnt items of 
work must also be outside the current savesnap. This 
follo\\.s from the temporal ordering properties of LFS 
on-disk s t r~~c tu rcs  and the way in \vliicl~ il~crernental 
savesnaps arc defined. When this situation occurs, the 
\vork list is savcd. Wlicn the nest sa\Iesnnp is ready for 
processing, the file rcstorc session can be restarted 
using tlic savcci \\lorlc list ,IS the starring point. 

During this stcp, tlic file rcstorc \\,rites the pieces of 
files to tlic targct volumc as t1ie)r arc read fro111 the 
sa\8csnap. Since the filc rcstorc process allocates file 
idcntificrs o n  a per-volume basis, rcstorc must allocate 
new filc idcntifcrs in tlic targct \~olume to accept the 
data being read from the source salcsnap. 

The new fi le idcntificrs are hidden From users dur- 
ing the file rcstorc ~ ~ n t i l  the ti lc restore process has fin- 
ished since the files arc not complete ancl may be 
~nissing \rital parts such as access pernlissions. Rather 
than allo\\i access to tlicsc partial filcs, thc tile restol-c 
hides the nc\\, f lc idcntifcrs until a11 the clata is pres- 
ent, nt \vhich rime the finnl stngc of tlic file rcstorc can 
take place. 

Making the  Recovered Files Available t o  the  User In  
the third stcp of  the process, the fi lc rcstore operation 
makes tlic ~ie\vly rcco\.crccl filcs ;~ccessible. At the 
beginning of the stcp, tlic fi lcs csist only as bits of data 
associated \\.it11 new fi lc identifiers-the filcs do  not yet 
11;ive ~ianics. The nnmcs thnt arc no\\. bound to  thcsc 
file idc~ititicrs conic fi-om tlic partial directory tree that 
\\!as originally ~ ~ s c d  t o  mutcli dgainst tlic directory trcc 
in tlic s;i\tcsnnp. This final stcp restores tlic original 
names and contents to '111 tlic flcs that \\rere originally 
rcq~~cstcd .  The filcs retain the nc\v fi lc iclcntificrs that 
wcrc allocated during the file rcstorc process. 

Management of Incremental Saves 
One design goal fix tlic Spil-nlog backup \\pas to reduce 
the cost of storage mnnagcnicnt. 'The design includes 
the means of pcrk)rrning an incrc~ncntal \lolumc save 
that copics only ciatii written since the previous 
backt~p. To inlplcmcnt n L ~ ~ I C ~ L I I )  strategy tllat 11e\'c1- 
requires more than one f ~ ~ l l  backup L~ut allo\\/s restores 
i ~ s i ~ l g  a fi nitc number of sa\rcsliaps, \vc designed ,lnd 
implcmcntcci tlic ~a \~csnap  mcrgc f~nc t ion .  

Savcsnap mcrgc opcmtcs similarly to volume 
rcstorc, but instead of copying segments to a disk as 

in a volunle rcstorc, savcsnap mcrgc copics scgmcnts 
to a net\/ savcsnap. As slio\vn in Figure 0, tlic cfkct  
of merging a base sa\,csnap and a11 the incrc~iic~ital 
savesnaps upon \.i~liicl~ it ciepcncis is to prodi~cc a f i ~ l l  

savesnap. This sa\?esnap is prcciscl!~ the one that \\,auld 
liavc been created had tlic b'~sc sa\,csnap been spcciticd 
as a hll sa\,esnap instead o f  an incrcmcntal sa\zcsnap. 
Spiralog merge copies the sn\.csJiap information and 
the directory information stored in the base snvcsnnp 
to the merged savesnap bck)rc it copics the segment 
table and t l ~ c  segments. 

Sa\,esnap merge pro\*idcs a practical \\.ny of manng- 
ing very 1;irge data \.olumes. The mcrgc operation can 
be used t o  limit the nun~bcr  of sa\,csnaps r cq~~i rcd  to 
restore a snapshot, c\8cn i f f  111 bacli~~ps arc nc\,cr tnltcn. 
Mer,oe is independent of tlic source \rolt~mc anti can be 
undertalcen on n different systcm to allo\v f~~r t l i c r  sys- 
tem rnanagamnt flesibility. 

Summary of Spiralog Backup Features 
A summary of  the features and p c r h m a n c c  provided 
by the Spiralog backup systcm appears in Tnblc 3 at 
the end of the Results section. For comparison, the 
table also contains corresponding infi)rmntion k)r the 
file-based and ph!lsicnl approaches to b;lcIci~p. 

Results 

We n~easured \volume s,~\.c ,lnci indi\,idu;~l f lc rcstorc 
performance o n  both the Spiralog backirp systcni and 
the backup system for Files-1 1, the original OpcnVMS 
file systelii. The Iiard\\.arc configi~ration consisted of 
a DEC 3000 Model 500 and a single la25 source ciisk 
each for Spiralog and Files-l 1 volumcs, rcspcctivcly. 
The target device for the backup \\.ns n '1'2877 tapc. 
The system \\.as running undcl- the 0pcnV1MS \version 
7.0 operating system and Spiralog \,crsion 1.1.  The 
\zolumes \\.ere pop~~la tcd  \\,it11 flc distr ih~~tions tlliit 
reflected typical user accounts in (1111- dc\,clopnicnt 
cn\~ironment. Each \.olumc contnincd 260 ~llcgnb!'tcs 
(M13) of user d a t ~ ,  \\~liicli included a total of 2 1,682 
files in 4 0  1 directol-ics. 

Volume Save Performance 
For both the Spiralog backup and the Fjlcs-1 1 backup, 
we savcd the source volume to n fi-cshl!l initialized tapc 
011 an otherwise idle systcm. We mcasurcd the clapscci 
time of the save operation and rccor~icci the size o f  the 
o ~ t p ~ i t  savesnap o r  savcsct. We a\,cragcd the ~.csults 
over five iterations of the benchmark. .hblc 1 p~-csc~>rs 
tlicse IneasLlrements and tllc resulting tliroi~gliput. 

The t l i ro~~g l ip l~ t  I-cprcsc~~ts tlic n\rcr,igc rate in 
megabytes per second (MB/s) of \vritins to tapc o\.cr 
the duration of a save operation. I n  the case of 
Spiralog, tape throughput varies greatly \\.it11 the 
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Table 1 
Performance Comparison of the  Spiralog and Files-I 1 Backup Save Operations 

Savesnap or 
Elapsed Time Saveset Size Throughput 

Backup System (Minutes:seconds) (Megabytes) (Mega byteslsecond) 

Spiralog save 05:20 
Files-I I backup 10:14 

phases of the save operation. During the directory 
scan phase (typically up to 20 percent of the total 
elapsed save tinle), the only tape output is a compact 
representation of the volume directory graph. In  con?- 
parison, the segment \vriting phase is usually bound by 
the tape througliput rate. 111 tliis configuration, tlie 
tape is the throughput bottleneck; its maximum raw 
data t l irouglip~~t is 1.25 iMB/s (uncornpressed)." 

Overall, the Spiralog volurnc save operation is nearly 
twice as fast as the Files-1 1 bacltup volume save opera- 
tion in tliis type of computing environment. Note that 
the Spiralog savesnap is larger than tlie corresponding 
Files-11 saveset. The Spiralog savesnap is less eficicnt 
at holding user data than the packed per-file represen- 
tation of the Files-11 saveset. In many cases, though, 
the higher performance of thc Spiralog save operation 
more than outweighs this inefficiency, particularly 
when it is taken into account that the Spiralog save 
operation can be performed on-line. 

File Restore Performance 
To  dcterminc file restore performance, we measured 
how long it took to restore a single file from the 
savesets created in the save benchmark tests. The liard- 
ware and s o f i a r e  configurations were identical to 
thosc used for the save measurements. We deleted 
a single 3-kilobyte (Ia) file from tlie source \lolunie 
and then restored the file. We repeated this operation 
nine times, each time measuring tlie time it took to 
restore the f le. Table 2 shows tlie results. 

Table 2 
Performance Comparison of the Spiralog and Files-I 1 
Individual File Restore Operations 

Elapsed Time 
Backup System (Minutes:seconds) 

Spiralog file restore 01 :06 
Files-I I backup 03:35 

The Spiralog backup system achievcs such good 
performance for file restore by using its knowledge of 
the way the segments are laid ou t  on  tape. The file 
restore process needs to read only those segments 
required to restore the file; the restore skips the inter- 
vening segments using tape skip commands. In the 
esa~nple presented in Figure 8, the restore can skip 
segments 555 and 195. In contrast, a file-based backup 
such as Files-11 usually does not have accurate index- 
ing information to  minimize tape I/O. Spiralog's 
tape-skipping benefit is particularly noticeable wllen 
restoring small ni~mbers of files from very large save- 
snaps; however, as shown in Table 2, even with small 
savesets, i~idividual file restore using Spiralog backup is 
three times as fast as using Files-11. 

Table 3 presents a con~parison of the save pcr- 
formalice and features of tlie Spiralog, file-based, and 
physical baclcup systems. 

Digital Technical Journal Vol. 8 No. 2 1996 41 



Table 3 
Comparison of Spiralog, File-based, and Physical Backup Systems 

Spiralog Backup File-based Backup Physical Backup 
System System System 

Save performance The number of 110s is The number of 110s is The number of 110s 
(the number of 110s O(number of segments that  O(number of files) is O(size of the  disk) 
required t o  save the  contain live data) plus 110s t o  read the  file 
the source volume) O(number of directories) data plus O(number 

of directories) 110s 
File restore Yes Yes N o 
Volume restore Yes, fast Yes Yes, fast but limited 

t o  disks of the  same size 
Incremental save Yes, physical Yes, entire files that  No 

have changed 

Note that this table uses "big oh" notation t o  bound a value. O(n), which is pronounced "order of n," means that the value represented is no 
greater than Cn for some constant C, regardless of the value of n. Informally, this means that O(n) can be thought of as some constant multiple 
of n. 

Other  Approaches a n d  Future Work 

This section outlines some other design options 
we considered for thc Spiralog backup s\.stcm. O u r  
approach offers further possil>ilitics in '1 numbcr 
of 'ireas. We describe some of tlic opportunities 
a\~ailablc. 

Backup and the Cleaner 
Tlic bcncf ts of the write perforn~ancc gains in an LFS 
arc attained at the cost of  having to clean scgmcnts." 
An opportunity appears to exist in combining tlie 
clcancr and backup hnctions to rcducc the amount of 
work done by cithcr o r  both of  these compo~icnts; 
howe\ler, the aims of  backup and the cleaner are c l~~ i t e  
diffcrcnt. Backup needs to  read all scgmcnts \witten 
since a specific time (in the case of a t i l l  bnckup, since 
the birth o f the  \wlun~e). The cleancr nccds to Jefrag- 
mcnt the frcc space on the vo1~11iie. This is done most 
efficiently by relocating data l~clci in certain scgmcnts. 
Tlicsc segments are those that arc sufficiently empty to 
be worth scavenging for free space. Tlic data in tlicsc 
scgmcnts should also be stab.lc in the scnsc tliat the 
data is ~~nlikely to be deleted or  outdated immediately 
after rcloc3tion. 

The only real benefit that can be csactcci by looking 
at these fi~nctions together is to clean some scgmcnts 
while performing backup. For exanlple, once a seg- 
ment has bccn read to copy to a savcsnap, it can be 
cleaned. This approach is probably not a good one 
because it reduces system perfornia~icc in the follow- 
ing ways: additional processing r cq~~i rcd  in cleaning 
rcmo\fcs <:PU and niemor)l rcsoilrces a\,;3ilablc to 
applications, and the cleaner generates \\rritc opcra- 
tions tliat reducc the backup rcati rate. 

There are two other areas in \\~liich backup and 
tlie cleaner mechanism interact that warrant F~~rtlicr 
investigatio~i. 

1. The save operation copies segments in their 
entirety. That is, the operation copies both "stalc" 
(old) data and li\'c data to .I s,nyesnap. Tlic cost of 
extra storagc media for this extraneous data is 
traded offagainst the pcrforma~~cc penalty in trying 
to copy only live data. It appears that thc tile system 
should run the cleaner \figorously prior to a backup 
to minimize the stalc data copied. 

2. Incremental savcsnaps contain cleaned data. This 
means tliat an incremental sa\lesnap contains a copy 
ofdata that already csists in one of the  sa\lcsnaps on 
which ~t dcpcncis. This is a n  apparent \\laste of effort 
and storagc spncc. 

I t  is best to ~~ndcr tukc  a fill1 backup after a thorough 
cleaning of the volume. A single strategy for increrncn- 
tal backups is less easy to deti ne. O n  one hand, the size 
of an incremental backup is increased if much cleaning 
is pcrk)rmed bcti)rc the backup. O n  the other hand, 
restore operations from ;i large incremental backup 
(particul,irl~~ selccti\fc tile rcstorcs) are likely to be 
more efficient. The larger the incrcniental backup, tlic 
more data it contains. Co~~sequentlp,  the chance of 
restoring a single tile from just the base savcsnap 
increases \\lit11 the size of the incremental backup. 
Studying the interactions between the backup and the 
cleaner may o f k r  some insight into ho\v to impro\lc 
either o r  both of these components. 

A con t in~~ous  bnckup system can take copies of scg- 
Iiients fi-on1 ciisk using policies similar to tlie cleaner. 
This is explored in I(olil's paper. " 
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Separating the Backup Save Operation into a 
Snapshot a n d  a Copy 
Tlie design of the save operation involves the creation 
of3  s~iapsllot follo\ved by the fast copy of the snapshot 
to some separate storage. The Spiralog version 1.1 
implementation of the save operation combines these 
steps. A s~iapshot can exist only during a backup save 
operation. 

System aciniinistrators and applications havc signifi- 
cantly more flexibility ifthe split in these two f~~nct ions  
of backup is visible. The ability to  create snapshots that 
can be mounted to look like read-only versions of  a file 
systeln riiay eliminate the need for tlie large number of 
backups performed today. Indecd, some filc systems 
offcr tliis fenti~rc.~,' The additional .~dvantage that 
Spiralog offers is t o  allo\v the very efficient copying of 
individual snapshots to off-line media. 

Improving the Consistency and  Availability 
of On-line Backup 
There are a nuutbcr of  ways to inipro\le application 
consistency and availability using tlie Spiralog backup 
dcsigu. In  addition, some of these features fi~rtlier 
rcducc storage management costs. 

lntervolume Snapshot Creation Spiralog allo\vs a 
practicnl way ofcreating and managing large volunies, 
but there will be tirnes when applications rccluire data 
co~lsistcncy h r  backup across volumes. A coordinated 
snapshot across vol~~l-nes would provide this. 

Application Involvement The Spiralog version 1.1 
implc1i1cntatio~ does not addrcss application involve- 
mcnt ill thc creation o f a  snapshot. A snapshot's con- 
tcl~ts arc precisely the volume's contents tI1.1t arc on 
disk at the time ofsnapshot creation. This means that 
applications accessing the volunic have to commit 
indcp~idcnt ly  to tlie file systcni data they require to 
be part of the  snapshot. 

Thcrc is an emerging trend to  dcsign s!~stcn>- 
Ie\fcl intcrfaccs that allo\\, better application intcrac- 
tion with tlie file system. For example, the Windows 
NT olxrating system provides the oplock and 
NtNotifiCI1angeDirector)i interfaces to ad\rise an 
interested application of changes to filcs and dirccto- 
rics. Similarly, an interface could allow applications to 
rcgistcr an interest with thc filc system for notification 
of an impencling snapshot creation. Tlie application 
L V O L I I C ~  the11 be able to commit the data it needs as part 
of a backup and continue, thus improving application 
consistency and availability and reducing work k)r sys- 
tern administrators. 

Minimizing Disk Reads 
Thc Spiralog file restore retrieves the data that 
constitutes a number of files in a single pass of  

segments read in n specific order. This design was 
important to allow the efficient restore of  files from 
sequential media. 

 more generally, this \\lay of traversing the file system 
allows specific, kno\vn parts of a set of files to be 
obtained by reading tlie segments that contain part of 
this data only once. This technique is also interesting 
for random-access media storage of volumes because 
it describes an algorithm for minimizing the number 
of disk rcads to get this data. Possible applications 
of  this technique are numerous and are particularly 
interesting in the context of  data management of very 
large volumes. 

For example, suppose an application is required 
to monitor an attributc (c.g., the time of last access) of 
all files on a niassi\le volume. Suppose also that the vol- 
ume is too big to allo\v the application to trawl the file 
system daily for tliis information; this process takes too 
long. If the application maintains a database of the 
information, it needs o~ily to gather the changes that 
have happened to this data on  a daily basis. Therefore, 
the application could obtain this information by tra- 
versing only those segments ulrittell since the last time 
it updated its database and locating the relevant data 
witliin those segments. Our  mechanism for restoring 
files provides exactly this capability An investigation of  
how applications might best use this technique could 
lead to the design of an interface that the file system 
could use for fast scanning of data. 

Conclusions 

File systems use backup to protect against data loss. 
A significant portion of the cost associated with man- 
aging storage is directly related to  the backup func- 
tion.'"" Log-structured data storage provides some 
features that reduce the costs associated with backup. 

The Spiralog log-structured file system version 1.1 
for the OpenVMS Alpha operating system includes 
a nea; Iiigh-performance, on-line backup system. The 
approach that Spiralog takes to obtain data consis- 
tency for on-line backup is similar to the snapshot 
approach used in Nenvork Appliance Corporation's 
FAServer, the Digital U N I S  Advanced File Systeln, and 
other systems.".' The feature unique to the Spiralog 
backup system is its use of  the physical attributes of  
log-structured storage to obtain high-performance 
saving and restoring of data to and from tape. In  par- 
ticular, the gain in save perfonnance is the result of 
a restore strategy that can efficiently retrieve data from 
a sequence of  segments stored o n  tape as they arc on 
disk. This design leads to a minimum of processing 
and discrete I/O operations. The restore operation 
uses impro\~ernents in tape hardware to reduce pro- 
cessing and 1/0 bandwidth consumption; the opera- 
tion uses tape record skipping within savesnaps for fast 
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data indexing. T h e  Spiralog backup in~plementat ion 
provides a n  on-line backup save operation with signifi- 
cantly improved performance over existing offerings. 
Performance o f  individual file restore is also improved. 
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I 
Mark A. Howell  
Julian M. Palmer 

Integrating the Spiralog 
File System into the 
OpenVMS Operating 
System 

Digital's Spiralog file system is a log-structured 
file system that makes extensive use of write- 
back caching. I ts technology is substantially 
different from that of the traditional OpenVMS 
file system, known as Files-1 1. The integration 
of the Spiralog file system into the OpenVMS 
environment had to ensure that existing appli- 
cations ran unchanged and at the same time had 
to expose the benefits of the new file system. 
Application compatibility was attained through 
an emulation of the existing Files-1 1 file system 
interface. The Spiralog file system provides an 
ordered write-behind cache that allows applica- 
tions to control write order through the barrier 
primitive. This form of caching gives the benefits 
of write-back caching and protects data integrity. 

The Spiralog file system is based on n log-structuring 
method that offers fast writes and a hst, on-line baclu~p 
capability.'-The integration of the Spirulog fi lc system 
illto the OpenVMS operating system prcscntccl man\! 
challenges. Its programming interface and its estcnsi\lc 
use of write-back caching were substantially different 
fiom those of  the csisting OpcnVMS tile system, 
kli0~11 as Fi les-1 1 . 

To encourage use oftlie Spinllog filc systcm, \vc had 
to ensure that existing applicatio~is ran unchanged in 
the OpenVlMS environment. A file s ~ s t c ~ i i  e~iii~lntion 
layer pro\lidcd die necessary compatibility by mapping 
the Files-1 1 file systeni interface onto  the Spiralog tile 
system. Before \vc could build the cm~~la t ion  layer, we 
needed to understand hocv these applications ~ ~ s c d  the 
file system interface. Thc approach taltcn to ~~nclcs-  
standing application rccluircnlcnts Icd to ;I f lc systcm 
emulation layer that csceeded the original co~npatibil- 
ity expectations. 

The first part of this papcr deals \\'it11 thc npproacli 
to integrating a neu7 file system into tlic 0pcnV1MS 
environment and preserving applicatio~i cornpatihilit\: 
It describes the various Ic\lels at \\,hich the f lc systcm 
could have been integrated and thc decision to emn-  
late the low-le\lcl file system intcrfacc. Techniclues 
such as tracing, source code scanning, and functional 
anal!lsis of the Files-1 1 filc systcni helped determine 
which features should be supported by the cm~~la t ion .  

The Spiralog tile system uses cstcnsivc \\>rite-back 
caching to gain pcrfor~nancc o\vr the \\trite-throi~gh 
cache on the Files-11 filc qs tcm.  Applications lia\rc 
relied on tllc ordering o f  writcs implicd by \vritc- 
through caching to maintain on-disk consistency in 
the event of system hilures. The lack of ordering 
guarantees preventccl the jmplcn~cntation of such 
careful write policies in write-back cn\~isonmcnts. 'I'lic 
Spiralog file system uses a write-behind cache (intro- 
duced in the Echo tile system) to allocv applications to 
take advantage of write-back caching pcrfi)rniancc 
\\/liile preserving carefill \\,rite policics.Tliis fcatusc is 
unique in a commercial fi lc systcm. The second part of 
this paper describes tlic clifficultics of intcgrating n.1-itc- 
back caclling into a write-through cnvironnient and 
ho\\r a write-behi~id cacl~c addrcsscti thcsc pl-oblcms. 



Providing a Compatible File System Interface 

Application compatibility can be described in two 
ways: compatibility at the file system interface and 
compatibility of  the on-disk structure. Since only spe- 
cialized applications use knowledge of  the on-disk 
structure and maintaining compatibility at the inter- 
face level is a feature of the OpenVMS system, the 
Spiralog file system preserves compatibility at tlie file 
system interface level ooly. In tlie scction Files-11 and 
the Spiralog File System On-disk Structures, we give 
an overview of the major on-disk differences between 
the two file systems. 

The level O F  interface compatibility would have a 
large impact on how well users adopted the Spiralog 
file system. If data and applications could be nioved to 
a Spiralog volume and run unchanged, the file system 
would be better accepted. The goal for the Spiralog 
file system \\/as to  achieve 100 percent interface com- 
patibility for the majority of existing applications. The 
jmplementation of a log-structured file system, how- 
ever, meant that certain features and operations of  the 
Files-1 1 file system c o ~ ~ l d  not bc supported. 

Tlie OpenVMS operating system provides a number 
of file system interfaces that are called by applications. 
This section describes how we chose the most compat- 
ible file systeni interface. Tlic OpenVMS operating 
system directly supports a system-level call interface 
(QIO)  to tlie file system, which is an extremely coln- 
plex interface.' The QIO interface is very specific to 
the OpenVMS system and is difficult to map directly 
onto  a modern file system interface. This interface is 
used infi-equently by applications but is used exten- 
si\/e.ly by OpenVMS utilities. 

Open VMS File System Environment 
This section gives an over\liew of  the general 
OpenVMS file system environment, and the existing 

OpenVMS and the new Spiralog file systeni interfaces. 
To emulate the Files-11 file system, it \\/as important to 
undcrstand the way it is used by applications in the 
OpenVMS e~ivironnient. A brief description of  the 
Files-11 and the Spiralog file system interfaces gives an 
indication of the problems in mapping one interface 
onto  tlic other. These problenis are discussed later in 
the section Compatibility Problems. 

In  the OpenVMS environment, applications inter- 
act with the file system through various interfaces, 
ranging from high-level language interfaces to direct 
tile system calls. Figure 1 shows the organization of  
interfaces within the OpenVMS en~ i ro l i~nen t ,  includ- 
ing both tlie Spiralog and the Files-1 1 file systems. 

The following briefly describes the levels of interface 
to tlie file system. 

High-level language (HLL) libraries. HLL libraries 
provide file system functions for high-level 
languages such as the Standard C library and 
FORTRAN 1 / 0  f ~ ~ n c t ~ o n s .  

OpenVlMS language-specific libraries. These 
libraries offer OpenVMS-specific file system fi~nc- 
tions at a high level. For example, libscreate-dir( ) 
creates a new directory with specific OpenVMS 
security attributes such as ownership. 

Record Management Services. The OpenVMS 
Record Management Services (RMS) are a set of 
coniplex routines that Form part of the OpenVMS 
kernel. These routines are primarily used to  access 
structured data within a file. However, there are 
also routines at  the file level, for example, open, 
close, delete, and rename. Tlie RMS parsing rou- 
tines for file search and opcn give the OpenVMS 
operating system a consistent syntax for file names. 
These routines also provide file name parsing oper- 
ations for higher level libraries. RMS calls to the file 
system are treated in the same way as direct applica- 
tion calls to the file system. 

APPLICATIONS 

HIGH-LEVEL LANGUAGE 
LIBRARIES, e.g., C LIBRARY SPECIFIC LIBRARIES 

OPENVMS FlLE SYSTEM INTERFACE - SYSTEM CALLS (QIO) 

FILES-1 1 FlLE SYSTEM 
EMULATION LAYER 

FILES-1 1 FlLE SYSTEM 

SPIRALOG FlLE SYSTEM 

Figure 1 
The OpenVlMS File System Environment 
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Files-11 file system interface. The OpenVMS oper- 
ating systern has traditionally provided thc Files-1 1 
file system for applications. It provides a low-level 
file system interface so that applications can request 
file system operations from the kernel. 

Each file system call can be composed of multiple 
subcalls. Thesc subcalls can be combined in nulncr- 
ous permutations to form a complex file systeln 
operation. The number ofpermutatio~ls of calls and 
subcalls rnaltcs the file system interface extremely 
d~fficult to understand and use. 

File system emulation layer. This la!~er provides 
a compatible interface between the Spiralog tile 
system and cxisting applications. Calls t o  export 
the new features available in the Spirdog file systenl 
are also included in this laper. An important new 
feature, the write-behind cache, is described in the 
section Overview of Caching. 

The Spiralog file systcm interface. The Spiralog 
file system provides a generic file system intcrface. 
This interface was designed to provide a superset 
of the featurcs tliat are typically available in file sys- 
tems used in the UNIX operating system. File 
system emulation layers, such as the one written for 
Files-1 1, could also be written for Inany different 
file s~ls tems.~ Features that could not be provided 
generically, for esample, the implementation of 
security policies, arc implemented in thc filc system 
emulation layer. 

The Spiralog file s)rstcm's interface is based on tlie 
Virtual File System (VFS), which provides a file 
system interface similar to those f o ~ ~ n d  on UNIX 
systems.' Functions available are at a higher level 
than the Files-11 tile systeln interface. For example, 
an atomic rename fi~nction is provided. 

Files-1 7 and the Spiralog File System 
On-disk Structures 
A major difference between the Files-11 and the 
Spiralog file systems is the way data is laid out  on 
the disk. The Files-11 system is a con\lentional, 
update-in-place file system.Were, space is reserved for 
file data, and updates to that data are written back to 
the same location on the disk. Given this knowledge, 
applications could place data 01-1 Files-11 volumes to 
take advantage of  the disk's geometry. For example, 
the Files-1 1 file system allows applications to place files 
011 cylinder boundaries to  reduce seek times. 

The Spiralog file systern is a log-structured file 
system (LFS). The entire volume is treated as a con- 
t i n u o ~ ~ ~  log with updates to files being appended to  
the tail of the log. I n  effect, files d o  not have a fised 
home location 011 a volume. Updates to files, or  cleaner 
activity, will change the location of  data on  a volume. 
Applications d o  not have to be concerned where their 
data is placed on the disk; LFS provides this mapping. 

With the advent ofmodern disks in tlic last decade, 
the exact placemelit of data has becomc much less crit- 
ical. Modern disks frecl~rently return geometry infor- 
mation that does not reflect the exact gcornctry of 
the disk. This nullifies any advantage that exact place- 
ment on  the disk offers to  applications. Fortunately, 
with the Files-1 1 filc system, the use of exact filc place- 
ment is considered a hint to the file system and can be 
safely ignored. 

Interface Decision 
Many features of  the Spiralog file system and the 
Filcs-11 file system are not directly compatible. T o  
enable existing applications to use the Spiralog filc 
system, a suitablc file s!~stem irlterhce 11ad to be 
selected and emulated. The file system emulation layer 
cvould need to hook into an existing kernel-level file 
system interface to provide existing applications with 
access to tlie Spiralog f le system. 

Analysis of  existing applications showed that the 
majority of file system calls came through the RMS 
interface. This provides a filnctionally simplcr interhcc 
onto  the louler level Files-l 1 interface. Most applica- 
tions on the OpenVlMS operating system use the RMS 
interface, either directly or through HLL, libraries, to 
access the file svstem. 

Few applications make direct calls to the low-level 
Files-11 intcrface. Calls to this intcrfilce are typically 
made by RMS and OpcnVMS ~~til i t ies that providc 
a simplified intcrface to  the file systcm. 1WS supports 
file access routines, and OpenVMS utilities support 
modification of file ~~lc tadata ,  for exa~nple, sccurjt!~ 
information. Although few in number, those applica- 
tions that d o  call the Files-11 filc systeln directly arc 
significant ones. If the onl!! interhcc suppol-ted \\{as 
RMS, then these utilities, such as SET FILE and 
OpenVMS Backup, would need significant modifica- 
tion. This class of utilities represents a large ~ iumber  of 
the OpcnVlvlS utilities that maintain the file system. 

To  provide support for tlie widest rangc of applica- 
tions, we selected the low-level Files-I 1 interface for 
use by the filc system emulation layer. By selecting this 
interface, \\re decreased the amount of \vork ncedcd 
for its emulation. Ho\vever, this gain was offset by the 
increased complexity in the interface cmulation. 

l'roblcnis causcd by this interface selection are 
dcscribed in the nest section. 

Interface Compatibility 
Oncc the filc system interface \\us selected, choices 
bad to be made about the level ofsupport provided by 
the emulation layer. Duc to  the nature of the log- 
structured file system, described in the scction Filcs-11 
and tlie Spiralog File System On-disk Structures, full 
compatibility of all features in the cmulation layer was 
not possible. This section discusses somc of  the deci- 
sions made concerning interface conlpatibility. 
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A1 initial decision was ni3dc to SLIPPOI-t ~ O C L I -  
~ n c ~ i t c d  lo \~~- lc \~cl  Files-11 calls tlirougli the emula- 
tion layer as ofien as possible. This would enable all 
well-behaved applications to  run i~lichanged on the 
Spiralog fi le system. Examples of  \yell-behaved appli- 
cations are those tliat make use of HLL library calls. 
The following catcgories of access to the file system 
\vould not bc supported: 

Those directly accessing the disk without going 
through thc fi le system 

Those making use of specific on-disk structure 
information 

Thosc mdking use of undocumented file system 
fca t~~res  

A very small number of applications fell into tliese 
categories. Esa~iiples of applications tliat ~nake use of 
on-disk structure I<no\vIedge nre the OpenVbIS boot 
code, disk structure alialyzcrs, and disk dcfragnenters. 

The majority of OpenVMS applications make tile 
s!lstem calls through thc ltMS interface. Using file sys- 
tem call-tracing techniq~~es ,  described in the section 
In\lestigation Techniques, a f ~ ~ l l  set of filc system calls 
niade by RMIS could be constructed. At'ter analysis of 
this trace data, it \\/as clear that hVS used a small set 
of wcll-structi~rcd calls to the low-level file s)rsteni 
intcrhce. Further, detailed analysis of these calls 
sho\\led that all Ri iS  operations could be fi~lly emu- 
lated on the Spiralog filc system. 

The support of OpenViiS file spstem utilities tliat 
niade direct calls to tlic low-level Files-11 interhce was 
important ifwe \ilcrc to nii~lilnizc the a ~ n o u n t  of  codc 
change required in the OpenVMS codc base. Aialysis 
of thcsc utilities slio\ved that the majority of thcm 
coi~ld be supported through the eniulation layer. 

Very fe\v applications made use of  features of the 
Files-11 file systeni that could not be emulated. This 
enabled ;I high n~unber  of applications to run 
i~ncliangcd on the Spiralog filc system. 

Table 1 
Cateqorization of File Svstem Features 

Compatibility Problems - - lhis  section describes soliie of the compatibility prob- 
lems that \ve encountered in developing the emulation 
layer and how \Ire resolved them. 

Wlie~i considering the co~npatibility of the Spiralog 
file system with the Files-1 1 fi le systeln, we placed the 
features of tlie file system into thrcc categories: sup- 
ported, ignored, and not supported. Table 1 gives 
examples and descriptions of these categories. A feature 
\Ifas recategorized only if it could be supported but \\?as 
not used, or if it could not be easily supported but 
was used by a wide range of applications. 

The ~najorit)! of OpenVMS applications ~iialte sup- 
ported file system calls. These applications will run as 
intended on  the Spiralog file system. Fen! applications 
make calls that could be safely ignored. These applica- 
tions \\lould run successfi~ll!r but could not makc use of 
these features. Very few applications made calls that 
were not siipported. Unfortunately, some of these 
applications were very important to  thc success of the 
Spil-alog filc system, for example, s!/stem nialiagement 
utilities that \\/ere optimized for the Files-1 1 systeni. 

Aialysis of applications tliat made i~nsupported calls 
slio\\~ed tlie following categories of use: 

Those that accessed tlie tile header-a structure 
used to store a file's attributes. This method \ \ ~ s  
used to return multiple tile attributes in one call. 
The supported rnecha11is.m in\1ol\~cd an indi\~idual 
call for each attribute. 

Tliis \\{as solved by returning an emulated file 
header to  applications that contained the majority 
ofinformation interesting to applications. 

Those rcading d~rcctory tiles T h ~ s  mcthod ~1'1s i~sed 
to perform fast d~rectory scans. The suppostcd 
mechanism invol\led a file system call for e.1~11 name. 

This was solved by providing a bulk dircctory 
reading interface call. Tliis call \\!as similar to the 
getdircntrjes( ) call 011 tlic U N I S  syste1-n and was 

Category Examples Notes 

Supported. The operation requested Requests to  create a file or open Most calls made by applications 
was completed, and a success status a file. belong in the  supported category. 
was returned. 
Ignored. The operation requested 
was ignored, and a success status 
was returned. 

A request t o  place a file in a 
specific position on the  disk t o  
improve performance. 

This type of feature is incompatible 
with a log-structured file system. 
It is very infrequently used and not 
available through HLL libraries. It 
could be safely ignored. 

Not supported. The operation 
requested was ignored, and a 
failure status was returned. 

A request t o  directly read the  
on-disk structure. 

This type of request is specific t o  
the  Files-1 1 file system and could 
be allowed t o  fail because the 
application would not work on the  
Spiralog file system. It is used only 
by a few specialized applications. 
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stmiglitfor\v,lrd to replace in applications that 
directly rcad dircctorics. 

The OpuiVMS Racltup iltility \\,as an cxa~nple of 
a s!!stcm management ~~t i l i ty  that directly read 
directory f les. The backup ~~ t i l i t y  was changed to  
LISC tllc dirccto~.y reading call o n  Spiralog volumes. 

Those accessing reserved tiles. The existing tile sys- 
tem stores all it7 mctadata in normal tiles that can be 
read b!' applications. Thcsc files are called reserved 
tiles and arc crcatcd \vlicn a volume is initialized. 

No  reserved files arc crcatcd o n  a Spiralog \~01~11iic, 
\\*it11 the exception of the master tile directory 
(ivlF1)). Applications that rcad rcscr\,cd files ~ n a k c  
specific L I S ~  o f  on-disk structure informat io~~ and 
arc not supported with thc Spiralog tile system. The 
lMFD is ~ ~ s c d  as the root dil-cctory and pcrfor~ns 
directory traversals. 'I'his f lc \\Ins virt~lally emulated. 
I t  appears i l l  directory listings of  a Spiralog \lolume 
and can be L I S C ~  to start a di~cctory tra\!crsal, but jt 
docs not exist on the \~olumc as a real tilc. 

Investigation Techniques 
Tliis section describes the approach cake11 to investi- 
gate the interhce and  compatibility problems 
dcscribcci nbo\!c. l<csults tiom thcsc in\lcstigations 
\\,ere ~ ~ s e d  to cictcrniine n~hich features of the Files-11 
file system nccdcd to be provided to produce a high 
Icvcl of conipatibility. 

The investigation tbcuscd 011 i~ndcrstanding ho\\, 
applications called the fi lc s\.stcm and the semantics of 
the calls. A number of  tcchniqucs \\!ere ~ ~ s c d  in lie11 
of design documcntntion for applications and the 
Files-1 1 filc s!'stcm. rl-licsc tccl1nicll1cs \\,ere also used 
to avoid the direct csamination ofsourcc codc. 

The fi)llo\\,i~ig tcchniclucs \\,crc ~ ~ s c d  to understand 
application calls to the f lc system: 

Tracing tile systcm opcr:~tions 

Tracing tile system operations pro\,idcd a large 
amount of  data for applications. A moditicd 
Files-l 1 filc systcm \\,as constructed that logged all 
file o p w ~ t i o ~ i s o n  a volumc. A fill1 set ofregl-cssion 
tests \vcrc then run fill- the 25 1)igital and tbird- 
party prod~~ctwmost  oHcn laycrcci on the Files-1 1 
tile systcm. The data was then reduced to dctcr- 
mine the type ol-' tilc system calls made by thc 
la!!crcd products. Analysis of log data showed 
that most layered products made file system calls 
t h r o ~ ~ g h  HI ,I, libm~.ics or the IkVS i~itcrface. Tliis 
tcclinicluc is uscf 1 1  wlicrc source codc is not avail- 
able, but fill1 codc path coverage is a\lailable to con- 
s t r ~ ~ c t  3 f ~ ~ l l  picti~rc ofci~lls a~icl argLIIilclits. 

Surveying application maintaincrs o n  ti lc spstcm use 

Survc!~ing application maintai~1crs \\,as a potentia.lly 
usefill tcchnirluc for alerting the other ~i ia in ta i~~ers  
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about the impact of the Spirulog file system, h4orc 
than 2,000 surveys \\'ere sent out, but fctvcr than 
25 ilsefi~l r e s ~ ~ l t s  were rcturnccl. Sadly, most appli- 
cation maintainers \\)ere not a\\larc of lio\\l their 
product uscd the ti lc s!.stcm. 

Automated application sourcc codc searching 

Automated sourcc cocic searching quickly checks 
a large aniount of soiircc codc. This tcclinique \\:as 
most ~ ~ s e f l ~ l  \\,hen nnal!lzing f lc systcm calls made by 
the OpenVMS operating systcm o r  i~tilitics. Ho\\,- 
elrer, this does not \\fork \\,ell \\.lien applications 
make dynamic calls to the filc systcm at run time. 

The follo\ving tccliniqucs \\,ere used to  undcrstanc~ 
the senlantics of filc s!,stcnl c~lls:  

Functional analysis o f thc  Filcs-1 1 ti lc system 

F~~nct ional  analysis of thc Filcs-l 1 tile systcm \\)as 
one of the most usefill t cc l i~~ ic l~~cs  adopted. I t  
avoided the nccd to rc\,crsc-cngi~iecr the Filcs-l 1 
file system. Whcnc\cr possible, the Files-l 1 file s!s- 
tern \\,as treated as a black box, and its ti~nction was 
inferred from interface documcntntion and appli- 
cation calls. This tcchnicluc avoicicd duplicating 
dcfccts in  the interf~cc and cnablcd thc design of 
the emillation layer to be derived from f~~nc t ion ,  
rather than the csisting implcmentatio~i of the 
Files-1 1 system. 

Test programs to dctcnninc call semantics 

'Test programs ivcrc uscd cstcnsi\,cly to  isolate spc- 
cific application c,~lls to the f lc systcm. Incii\.idunl 
calls could be analyzed to determine lie\\* they 
\\rorl<cd \\,ith the Fjlcs-1 1 ti lc s\.stcm and \\.it11 the 
emulation layer. This tccl~niquc formcci the lmis 
for an estensi\.e file systcm intcrhcc rcgl-ession test 
suite \\!itho~~t recluiring the complete applicntion. 

Level of Compatibility Achieved 
The Ic \d  of tile systcm conipatibilin, \\zit11 applications 
far exceeded our initial cxpcctatio~is. Table 2 summa- 
rizes thc results of the rcgl-cssion tests trscd to  \rcritjf 
compatibility. 

Table 2 illustrates tliat applicatio~ls that use the C 01 

the FORTRAN lang~~ngc  or the RMS intcrficc to 
access the file systcm can be cxpcctcd to \\,ark 

unchanged. Verification with tlie top 25 1)igiral lay- 
ered products and third-party pr-oducts shows tliat 
all p r o d ~ ~ c t s  that d o  11ot m;~kc spccifc i ~ s c  of  Filcs-1 1 
on-disk fcati~res run with the Spiralog file systcm. 
Witli the version 1.0 rclcasc of tlic Spiralog ti lc system, 
there arc n o  known co~npa t ib i l i~  f ISSLICS. ' 

Providing New Caching Features 

Thc Spiralog tile system ~lscs orcicl-cd \\!rite-baclc cach- 
ing to provide pcrformancc bcncf ts for applications. 



Table 2 
Verification of Compatibility 

Test Suite Number of Tests Result 

RMS regression tests -500 All passed. 
OpenVMS regression tests 
Files-I I compatibility tests 
C2 security test suite -50 discrete tests 

All passed 
All passed. 
All passed, giving the  Spiralog 
file system the  same potential 
security rating as the  Files-I 1 
system. 

C language tests -2,000 All passed. 
FORTRAN language tests -100 All passed. 

Write-back caclii~lg provides \.cry different semantics 
to the niodcl of \\,rite-through caching used o n  tlic 
Files-11 file systcm. The goal of tlic Spiralog project 
members was to provide write-back caching 
in a \\ray tliat was compatible with existing OpenVMS 
applications. 

This scction cornpares \\,rite-through and writc- back 
caching and shows ho\v sonic important OpenVMS 
applications rcly o n  \\trite-through semantics to pro- 
tect data from system failure. I t  describes the ordered 
m-ite-back caclic as introduced in the Echo filc system 
and explains how this model o f  caching (I<no\vn as 
write-bcliinci caching) is particularly suited to the envi- 
ronment of OpcnVMS Cluster systems and the 
Spiralog log-structured file s!~stcni. 

Overview of Caching 
D u r ~ n g  the last few years, CPU perfi)r~nancc improve- 
ments have continued to  outpace perforrndncc 
impro\~erncnts ti)r disks. As a result, the 1 / 0  bottle- 
neck has \vorscncd rather than ~mproved. One of 
thc n ~ o s t  s~~cccssf i~l  tcchni~ji~es L I S ~ C ~  t o  allev~atc this 
problem is caching. Caching means holding a copy o f  
data that has been recentlv rcad from, o r  written to, 
the disk in mcrnorp, giving applications access to that 
data at memory spccds rather than at disk speeds. 

Wnte-through and write-back caching arc t\vo 
different niodcls frequently ~ ~ s e d  in file s!lstems. 

Write-tlirougli caching. In A write-through caclic, 
data read from the disk is stored in the in-memory 
cachc. Wlicn data is written, A copy is placed in 
the caclic, but the write request does not return 
until the data is o n  the disk. Write-through caches 
improve tlic performance of  read requests but not 
write rcqucsts. 

WI-ite-back caching. A write-back cache improves 
tlie pcrhrrnii~icc of both rcad and write rcqucsts. 
Reads arc handlcd esactly as in a ~ilrite-through 

cache. This time though, a writc request rcturns as 
soon as the data has becn copicd to the cachc; some 
time later, the data is nrrittcn to the disk. This 
method allows both read and write rcqucsts to 
operate at main memory spccds. Tlic cache call also 
amalgamate write requests that supersede one 
another. lly deferring and amalgamating write 
reqtlests, a \vrite-back caclic can issue many fewer 
\\]rite requests to the disk, ~ ~ s i ~ l g  less disk band\vidth 
and smoothing the write pattcrn over time. 

Figure 2 shows the write-through and write-l>acI< 
caching ~nodcls. The Spiralog tile systcm makes cstcn- 
sive usc of caching, pro\~iding both write-through and 
write-back models. The usc of \\.rite-back caching 
allows the Spiralog file systcm to amalgalnatc \vritcs, 
thus conserving disk band\vidtli. This is cspccially 
important in an OpenVMS Cluster system where disk 
ba~idwidth is shared by several computers. Tlic 
Spiralog file system attempts to amalgamate not just 
data \\!rites but also tile system operations. For esamplc, 
many compilers create temporary f lcs tliat arc dclctcd 
at the end of the compilation. With write-back caching, 
it is possible that this type of filc map be created and 
dcleted witlioi~t evcr being written to tlie disk. 

There arc two disadvantages of write-back caching: 
(1) if the system fails, any writc requests tliat ha\c 
not becn \vrittcn to  tlie disk arc lost, and (2) once in 
the cache, any ordering of  the write requests is lost. 
The data may bc written from tlic cache to the disk in 
a completely different order tlinn the order in \\lhicli 
the application issued the writc requests. T o  preserve 
data integrity, some applications rcly o n  \vritc ordering 
and the use of carefill write tcchnicli~cs. (Careful \wit- 
ing is discussed h r the r  in tlic section belo\\:) The 
Spiralog tile system preserves data integrity by provid- 
ing an ordcrcd write-back caclic known as n writc- 
behind caclie. 
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Figure 2 
Caching Models 
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Caching is more jmportant to tlie Spiralog file 
system than it is to con\~cntional file systems. L,og- 
structured file systems have inherently worst rcad 
pel-for~nnncc than conventional, ~~pdate-ill-place file 
systems, d ~ ~ c  to the necci to locate the data in the log. 
As described in another papcr in this Jorl1.17nl. locating 
data in the log requires Inore disk I/Os than an 
~~pdate-in-plncc file systcnl.' The Spiralog file system 
uses large rcad caches to offset this cstra read cost. 

MILLISECONDS 

Careful Writing 
The Files-1 1 file system pro\.ides \\'rite-through 
semantics. IGy OpeliVMS applications such as transac- 
tion processing and tlie OpcnVMS Record Managc- 
ment Services (RMS) have come to rely on thc implicit 
ordering of \\7rite-through. They use a tecliniclue 
known as cal-cful \vriti~ig to p ~ v a i t  data c o r r ~ ~ p t i o n  
follo\\fi~lg :.I s!.stcnI f a1 ' I  ~ l r e .  

Carcl-ill \vriting allo\\rs an applicntion to cnsurc that 
the data o n  the disk is ncvcr in an inconsistent o r  
in\~alid state. This guarantee avoicis situations in \\~liicli 
an application has to scan and possibly rebuild the data 
on tlic disk after a system fi~ilurc. Recovery to a consis- 
tent statc aftern systc~ii hi l~rrc is ot'tcn a very complcs 
and time-consumi~ig task. Ry  ensuring tlint the disk 
can never be inconsistent, carefill \vriting removes the 
nccci for this Form of rcco\,cry. 

C,lrcfi~l writing is ~ ~ s e d  in situ,ltions in \\~Iiich an 
update requires several blocks on the disk to be written. 

MILLISECONDS 

WRITE-THROUGH 
CACHE Er@ 

MICROSECONDS CACHE 

MILLISECONDS 

MICROSECONDS 

Most disks guarantee a ton~ic  update of  only a single 
disk bloclc. Tlic occurrence of a system hilurc \vhilc 
several blocks are being ~ ~ p d a t c d  coi~ld lea\rc the blocks 
partially updated and inconsistent. Carefill writing 
a\.oids this risk by defining t l ~ c  order in \\,hich the 
blocks should be updated o n  the disk. If the hloclcs are 
\\,rittcn j11 this order, the data \ \ ; i l l  al\\lays be consistent. 

For cxnmplc, tlie filc slio\\w in Figure 3 represents 
a persistent data struct~rrc. At the start of tlic file js an 
index block, I, that points to t\\,o data blocks \\,ithin 
the tile, A and R .  The application \vishes to update tlie 
data (A, R )  t o  tlie ne\\, data ( A ' ,  B ' ) .  For tlic filc to  bc 
valid, tlic index must pojnt to a consiste~lt set of  data 
blocks. So, the index must point either to  (A, R )  o r  to 
(A',  1)'). It cannot point to n mixture sucll ns (A' ,  13). 
Since the dislc call guarantee to  write only a single 
block nto~~iically, the application cannot simply \\,rite 
(A' ,  B ' )  o n  top of (A, l3) because that in\.ol\rcs \\friting 
bvo blocks. Should tlie system f ~ i l  during the ~~pdatcs .  
doing so could leave the data in an invalid statc. 

To sol\rc this problcm, the application writes tlie 
new dnt;i to the file in a spccific order. First, it \\,rites 
the nc14' data (A', R ' )  to a 11cw section of tlic fi lc, \ \ . i t -  
ing 111ltil tlie data is written to  tlic disk. O ~ l c c  (A', R ' )  
are k n o \ \ ~ n  to be on t l ~ c  disk, it ntomicall!, i~pdatcs tlic 
index block to  point to the data. The old blocks 
(A, R )  arc no\v obsolete, and the space they consume 
can be rci~scd. l3~1ring the updntc, tlic filc is nc\cr ill 
an inconsistent state. 
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Figure 3 
Esamplc o f  n (:arch~l Write 

I 

Write-behind Caching 
A carefi~l \\!rite policy relics totally o n  being able to 
control tlic ordcr ofwrites to the disk. This cannot be 
nchicvcd o11 a \\q-itc-back caclic bcca~~sc  the write-back 
method docs not prcscrvc the ordcr of \\lritc rccluests. 
l<cordcring writes jn u \\~ritc- back cache would risk cor- 
rupting the data that applications using carefill writing 
\lrcrc sccking to protect. This is unfol-tunatc because 
the puk)rmancc benefits of  deferring tlic \\trite to the 
disk arc compatible \\;it11 a careful \\-rite policy. Carefill 
\vr i t i~~g does not need to know when tlic data is \\*rittcn 
to tlic disk, only the order it is \vrittcn. 

To allo\v these applications to gain the pcrfi)rmancc 
of the write-back cache but still protcct their data on 
disk, the Spiralog file system uses a variation on writc- 
back caching lu lo~rn as write-behind caching. Intro- 
ducccl in the Echo file system, write-behind cnching is 
essentially write-back caching with ordcri~ig guaran- 
tees.' The cachc allo\vs the application to s p c c i ~  \vhich 
writes   nu st be ordered arid the ordcr in whicli they 
must be written to the disk. 

This is achieved by providing thc barrier pri~iiiti\~c to 
applications. Barrier defines an ordcr or  dependency 
bet\vccn \\'rite operations. For csamplc, consider the 
diagran~ in Figure 4: Here, writes arc reprcscntcd as 
a time-ordered queue, \\,ith later \\!rites being added 

A 

to the tnil. In the csnmplc, the application issues 
the \vritcs in the ordcr 1,2,3,4. Without a barrier, tlic 
cache could \\!rite the data to the disk in any ordcr ( h -  
example, 1,3,4,2). If a barricr is placcd in tlie writc 
c l i ~ e ~ ~ e ,  it specifics to thc cache that all writes prior to 
the barrier must be writtcn to  the disk before (01- 
aton~ically \\ritli) any writc rcclilcsts aftcr it. In  the 
example, if a barrier is placcd after the sccond write, 
the cachc f lc system guarantees that writes 1 and 2 \\,ill 
be writtcn to tlic disk before \\.rites 3 and 4. Writes 1 
and 2 may still be \vrittcn in any ordcr, as could \\,rites 
3 and 4,  but 3 and 4 will be \vrittcn aftcr 1 and 2. 

A carefill nrritc policy can easily be i~nplemented o n  
a writc-behind caclic. As shown in Figure 5, the appli- 
cation would use barricrs to  control the write ordcr- 
ing. Two barriers arc required. The first ( B l )  comes 
after the writes of the new data (A', B'). The sccond 
(B2) is placcd afier the index ~ ~ p d a t c  I f .  B1 is required 
to ensure that the new data is on the disk before the 
il~dcx block is ~ ~ p d a t c d .  B2 ensures that the inclcs 
block is updated bck)rc any subsccl~~ent writc rcclLlcsts. 

The usc of barricrs n\loids tlie need to \\,sit for I/Os 
to reach the clisk, inipro\~ing CPU utilization. In  addi- 
tion, the Spjralog file s!lstcm allo\\~s a~nalga~iiation 
of superseding \\,rites bcnvccn barriers, reducing 
the 11i1111ber of reclLIests being \\,litten to tlic disk. 

t t 
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Figure 4 
Barrier Insertion in Write Queue 

Digital Tcchnic~l Journal 

A 

t t  
WAlT UNTIL ON-DISK 

Vol. 8 No. 2 1996 53 

B 

I' 

WAlT UNTIL ON-DISK 

A B A ' B '  WRITE (1') 



Figure 5 
Example of a <:a~-eh~l Write Using Barrier 

I 

Internally, tlie Spiralog file system allo\vs barricrs to be 
placed bcnvccn .lny two \\!rite operations, even if they 
are to Jiffercnt files. The Spiralog f le system ilscs this 
to build its own ca re f~ l  rvritc policy for all changes 
to files, including mctadata changes. This guarantees 
that the filc systcm is always consistent and gives write- 
back pcrformancc on cliangcs to file rnetadata as \veil 
as dat:~. One major advantage is that the Spjralog filc 
systeni tlocs n o t  require a disk repair utility such as the 
UNIX system's fsck to rebuild the file system fi)llo\ving 
a system fililure. 

Barriers arc used internally in several places to prc- 
serve the order of updates to the file system rnetadata. 
For example, \\.lien a file is extended, the allocation of 
ne\v blocks must be written to tlic disk before any 
subsequent data wrjtes to the newly allocated region. 
A barricr is placed ini~nediatcly after the write reclilcst 
to updatc the filc length. 

Barriers .ire ~ l s o  used during complex file operations 
such as a file create. These coniplcs operations fre- 
quently update shared resources such as parent dircc- 
tories. The barricrs prevent updates to  these shared 
objects, avoiding the risk of corruption due to  the 
updates being reordered by the cache. 

At the application level, the Spiralog file system pro- 
\rides thc barricr fi~nction o~ilv \\tithin a filc. It is ~ i o t  
possi blc to order \vrites benvccn files. \\.as SLI ffi- 
cient to allo\v RiMS (describeci in the section OpenVNIS 

A 

File System En\~ironnient) to exploit the performance 
of \!!rite-behind caching 01.1 most of  its file organiza- 
tions. 1bUS \\,as cnl~anced to use barriers in its own 
careful \\trite policy, which cnsures the consistency o f  
complex file org~nizations, such as indexed fi lcs, even 
\\.hen they arc subject to write-behind caching. Since 
the majority of OpcnVlMS applications access tlic file 
system through lbVS, gaining \\/rite-behind caching 
on all RIMS file organizations pro\~idcs a significant 
perfor~nuncc benetit to applications. 

I 

Internall!!, the Spiralog tile system supports burricrs 
bet\\reen tiles. Thc decision to support barriers \vithin 
a flc \vas made to limit the complexity of i~ltcrfacc 
changes, in the belief that ,I cross-file barricr \\!;IS of 
little i ~ s e  to RIMS. In retrospect, this pro\!cd to bc 
\\.I-ong. Some kev RMS filc organizations use secondary 
files to hold journal records 6 ~ -  the main application 
filc. Thcsc tile organizations clannot express the order 
in \\~liich updates to the tufa tiles should read1 the disk, 
and so ~ r c  precluded from using write-behind caching. 

B 

Application-level Caching Policies 
The main problem \vith the barrier primiti\.c is its 
reqi~ircmcnt that the application csprcss tlic Jcpen- 
dencics to thc file system. Although this is i~navoid- 
able, it mcans that the application has to change if 
it wishes to safely exploit \vritc-behind caching. Clcarl!~, 
many applications \\!ere not going to  maltc these 
changes. In  addition, some applications have on-disk 
consistency rcqi~ire~lle~lts  that tie them to a \\]rite- 
through cnvirollrncnt. 

The file systcln e~nulation layer provides atlditional 
support k)r tlicse types of applicatio~ls by exposing 
three caching policies to  applications. The policies are 
stored as permanent attributes of the hlc. By default, 
\\,hen the tile is opened by the tilc system, the pcrma- 
nent c<~cliing policy is used o n  all write requests. 

The tlircc policies are ticscribed as follo\\/s: 

START 

A 

1. Writc-through caching policy. This policy pro\iicics 
applications with the standard write-through beha- 
vior provided by thc Files-l 1 file system. Each usrite 
rcclt~cst is tlushed to the disk before the application 
request returns. If an application needs to kno\v 
n~liat data is 011 the disk ;it all times, it s I I ~ L I I ~ I  use 
\\)rite-through caching. 

2. Write-behind caching policy. A pure write-behind 
cache provicies the lliglicst Ie\lel of pcrformancc. 
Dirty data is not tluslled to the disk \\,hen the filc is 

t t  
BARRIER B1 

54 Digital Tcclinical Juul-nnl 

B 

I' 

Vol.8 No.  2 1996 

A ' @  WRITE (A', B') 

BARRIER 82 

A B WRITE ( 1 ' )  



closed. T h e  semantics o f  f~ll write-behind caching 
arc best suited t o  applications tliat can easily regen- 
erate lost data at  any time. Tcrnporary files from a 
compiler are a good  example. Should the  systelii 
fail, the compilation can bc  restarted without  any 
loss o fda ta .  

3 .  Flush-on-close caching policy. T h e  flush-on-close 
policy pro\iidcs a restricted Ic\cl o f  \\/rite-behind 
caching for applications. Here,  all updates to the file 
are treated as write behind, but  when the file is 
closed, all changes are forced t o  the disk. This gives 
the performance o f  write-behind but,  in addition, 
provides a Itnoum point when tlie data is o n  the dslt .  
Tlus form ofcaching is particularly suitable for appli- 
cations tliat can easily re-create data in the event of  
a syste~ii crash but need t o  luio~\ /  that data is o n  the 
disk at a spccific time. For csample, a mail store-and- 

. . 
forward system recel\llng an incoming message must 
Itnow the data is 011 the disk when it aclulo\vledgcs 
receipt o f  the message t o  the forwarder. Once  tlie 
acluiowledgment is sent, the message has been for- 
mally passcd o n ,  and the for~vardcr may delete its 
copy. In this example, the data need n o t  be o n  the 
disk until tliat acluiowledgment is sent, because that 
is the point at \\/hich the lnessage receipt is commit- 
ted. Should tlic systcrn fail before tlie aclcnowledg- 
iiient is sent, all dirty data in the cache \ \ ~ o ~ ~ l d  be lost. 
In tliat event, the sender can easily re-create the data 
by sending the lnessage again. 

Figure 6 sho\ \s  the  results o f  a performance c o n -  
parison o f  the three caching policies. T h e  test was r u n  
011 a dual-CPU DE<: 7 0 0 0  Alpha system \\/it11 3 8 4  
megabytes o f  memory 011 a IWI1)-5 disk. T h e  test 
repeated the  follocving s e c l ~ ~ e ~ ~ c e  for the  difkrel l t  file 
sizes. 

1 Create and open a file o f  the required slze and set 
its c<~cliing policy. 

2 .  \;\Trite data t o  the whole file in 1,024-byte I/Os. 

3 .  Close the file 

4 .  Delete the file. 

\iVith srnall files, the number  o f  file operations (create, 
close, delete) dominates. T h e  lef t~nost  side o f  the  
graph therefore sho\vs the time per  operation for file 
operations. MTitli time, the files increase in size, and the 
data I/Os become pre\~alent.  Hence,  the  rightniost 
side o f  Figure 6 is displaying the time per operation for 
data I/Os. 

Figure 6 clearly slio\vs that an ordered write-behind 
caclie pro\/ides the highest performance o f  the three 
caching models. For  file operations, the write-behind 
cache is almost 3 0  percent faster than the \\/rite- 
through cache. Data operations are approximately 
three times faster than tlie corresponding operation 
\vith \\/rite-through caching. 

FILE SIZE (BYTES) 

KEY 

- WRITE-BEHIND CACHE 
- - - FLUSH-ON-CLOSE CACHE 
. . . . . . . . WRITE-THROUGH CACHE 

Figure 6 
Performance Comparison of  Caching l'olicics 

Summary and Conclusions 

T h e  task o f  integrating a l o g - s t r u c t ~ ~ r e d  file system 
in to  the  OpenVklS en\lironnient was a significant 
challenge for the Spiralog project members. O u r  
approach o f  carefully determining the interface t o  
emulate and tlie level o f  compatibility was important 
t o  ellsure that the majority o f  applications \vo~-Iced 
unchanged. 

PVe have s h o n ~ n  that an existing update-in-place file 
slatem can be replaced by a log-structured file system. 
Initial effort in the  analysis o f  application usage f ~ r -  
nislied information o n  in te rhce  compatibility.  most 
file system opel-ations can be  provided th rough  a f le 
system emulation layer. Where necessary, new intcr- 
hces  were provided for applications t o  replace their 
direct lu~owledge o f  tlie Files-l 1 file system. 

File system operation tracing and fi~nctional anal!rsis 
o f  the Files-11 file system pro\cd t o  be the most i ~ s e f i ~ l  
techniques t o  establish interface compatibility. Appli- 
cation compatibjlity h r  exceeds the  le\icl cxpccted 
\\/hen the project was started. A majority o f  people use 
the Spiralog file systeln volumes \\lithour noticing any 
change in their application's belia\~ior. 

C a r e h l  writc policies rel!~ o n  the  order  o f  updates 
t o  tlie disk. Since \\,rite-back caches reorder write 
requests, applications using c a r c h l  ~vr i t ing  ha\lc been 
unable to take advantage o f  the significant improve- 
ments in write performa~lce gi\le~i by writc-back 
caching. T h e  Spiralog file system solves this problem 
by pro\'iding ordered write-back caching, Itno\\jn as 
write-behind. T h e  \\]rite-behind cache allows applica- 
tions t o  co~i t ro l  tlie order  of\vritcs t o  the disk through 
a primitive called barrier. 

Using barriers, applications can build careful writc 
policies o n  t o p  o f  a write-behind cache, gaining all tlie 
performance o f  writc-back caching \\iitliout risliing 
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dat.1 integrity. A \\,rite-behind cache also allo\vs tlie file Biographies  
systcm itself t o  gain write-back pcrk)rmancc o n  all 
tile system opcrations. Since many filc system opera- 
tions 31-c rlic~iisel\~cs qoickl! soycrsericd, ~ ~ s i ~ i g  a~r i rc -  i-l 
behind caching pre\.ents Inany tile system operations 
from ever reaching thc disk. Rarricrs also allo\\~ tlie f le 
systcm t o  protect the on-disk file system consistency 
by i11ipJcmcnting its own carcti~l write policy, avoiding I 
the need k)r disk repair utilities. 

Tlic barrier primitive pro\,idcd a way t o  ge t  \\,rite- 
tlirougli sc~iiantics lvithin a file for  those applic,itions 
relying o n  careful Ivrite policies. Changing RJVS t o  use 
the bnrricr prirniti1.e allo\ved the  Spiralog f lc systcm 
t o  support  \\,rite-bcl~ind caching as the d c h ~ ~ l t  policy 
on all file types in the OpenVblS cn\lironmcilt. 
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I 
Michael S. Harvey 
Leonard S. Szubowicz 

Extending OpenVMS 
for 64-bit Addressable 
Virtual Memory 

The OpenVMS operating system recently 
extended i ts 32-bit virtual address space to 
exploit the Alpha processor's 64-bit virtual 
addressing capacity while ensuring binary 
compatibility for 32-bit nonprivileged pro- 
grams. This 64-bit technology is now available 
both to OpenVMS users and to the operating 
system itself. Extending the virtual address 
space is a fundamental evolutionary step for 
the OpenVMS operating system, which has 
existed within the bounds of a 32-bit address 
space for nearly 20 years. We chose an asym- 
metric division of virtual address extension that 
allocates the majority of the address space to 
applications by minimizing the address space 
devoted to the kernel. Significant scaling issues 
arose with respect to  the kernel that dictated 
a different approach to page table residency 
within the OpenVMS address space. The paper 
discusses key scaling issues, their solutions, 
and the resulting layout of the 64-bit virtual 
address space. 

The OpcnViMS Alpha operating system initially sup- 
ported a 32-bit virtual address space that masin~ized 
compatibility for OpeliVMS VAX users as they ported 
their applications from the \IAX platform to the Alpha 
platform. Pro\riding access to the 64-bit virtual mem- 
ory capability defined by the Alpha 1 ' rc h' ltecture was 
al\vays a goal for tlie OpenVMS operating system. An 
early consideration was the e\lentual use of this tech- 
nology to enable a transition from a purely 32-bit- 
oriented context to a pure[y 64-bit-oric~ited native 
context. OpenVMS designers recognized that such 
a fundamental transition for the operating systern, 
along with a 32-bit VAX compatibility mode support 
environment, would take a long time to implement 
and could seriously jeopardize the migration of appli- 
cations from the VAS platform to the Alpha platform. 
A phased approach was called for, by svhich the operat- 
ing system could evolve over time, allowing for quiclccr 
time-to-market for signifcant features and better, more 
timely support for binary compatibility. 

In  1989, a strategy emerged that defined hvo funda- 
mental phases of OpenVMS Alpha development. Phase 
1 \vould deliver the OpenVMS Alpha operating system 
initially with a virtual addrcss space that faithfillly repli- 
cated addrcss space as it was defined by tlie VAY archi- 
tecture. This familiar 32-bit environment \vould ease 
tlie migratio~i of applications from the VAX platform 
to  the Alpha platform and would case the port of the 
operating system itself. Phase 1,  tlie OpenVlMS Alpha 
version 1 .O product, was delivered in 1992.' 

For Phase 2, the OpenVlMS operating systern would 
succcsshlly esploit the 64-bit virtual address capacity 
of the Alpha architccturc, laying the ground\\lork 
for further e\~olution of the OpenVMS system. In 
1989, strategists predicted that Phase 2 could be deliv- 
ered approximately three years after Phase 1. As 
planned, Phase 2 culminated in 1995 wit11 the delivery 
of  OpenVMS Alpha version 7.0, the first \lersion of  
the OpenVlMS operating system to support 64-bit 
virtual addressing. 

This paper discusses how tlie OpeliVMS Alpha 
Operating System Development group extended the 
OpenVMS virtual address space to 6 4  bits. Topics 
covered include compatibility for existing applica- 
tions, the options for extending the address space, the 
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strategy for page table rcsjdcncy, and tlie tinal layout of 
the OpcnViMS 64-bit v i r t~~a l  address spacc. In  implc- 
menting support for 64-bit virtu.ll addl-csscs, design- 
ers maximized privileged code compatibility; the paper 
presents some key measures taken to this end and pro- 
vides a privileged code example. A discussion of the 
immediate use of  64-bit addressing by the OpcnVMS 
kernel and a sLininlarp of  the work accomplished con- 
clude the paper. 

Compatibility Constraints 

Growing the v i r t~~a l  address space horn a 32-bit to 
a 64-bit capacity was subject to  one overarching con- 
sideration: compatibility. Spccifi cally, any existing non- 
privileged program that could execute prior to the 
introciuction of 64-bit addressing support, even in 
binary form, must continue to run correctly and 
uumoditied under a version of the 0pc1iVMS opcrat- 
ing system tliat supports a 64-bit virtudl nddrcss space. 

In  this contest, a nonprivileged program is one that 
is coded only to stable interfaces that arc not allo\vcd 
to change from one release of tlie operating system to 
another. In contrast, a privileged program is defined 
as one that must be linked against the 0pc1lVlMS 
kernel to resolve references to  internal intcrfilccs and 
data structures that nlay change as the kernel cvolvcs. 

The co~npatibilit?, constraint dictates that the hllow- 
ing characteristics of the 32-bit virtual addrcss spacc 
en\~iro~iment,  upon \i/hicIi a nonprivilcgcd program 
may depend, must continue to appear ~~nc l i angcd .~  

The lo\ver-addressed half ( 2  gigabytes [GB]) of vir- 
tual address space is defined to be private to a give11 
process. This process-private space is h ~ r t h r r  divided 
into nvo 1-GB spaces that grow to\\,ard each other. 

1. The lo\ver 1-GI3 space is referred to as PO spacc. 
This space is called tlie program region, \vhcrc 
user programs typically reside \vhile running. 

2 .  The higher 1 -GB space is referred to as P 1 spacc. 
This space is called the control region and con- 
tains the stacks for a given process, proccss- 
permanent code, and various process-specific 
colltrol cells. 

The higher-addressed half ( 2  GB) ofvirtual addrcss 
space is defined to  be shared by a11 processes. This 
shared space is where the OpenVMS operating sys- 
tem kernel resides. Although the Vh>( architccturc 
divides this space into a pair of  separately named 
1-GB regions (SO space and S1 space), the OpenVMS 
Alpha operating system lnaltes n o  material distilic- 
tion between tlie nvo regions and refers to them 
collecti\fely as SO/Sl spacc. 

Figure 1 illustrates the 32-bit \,irtual address space 
layout as implemented by the OpcnVMS Alpha oper- 
ating system prior to version 7.0.' An interesting 
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mechanism can be sccn in the Alpha i~nplemcntation 
of this addrcss spacc. The Alpha arcliitccti~re defines 
32-bit load operations such that values (possibly 
pointers) are sign estcndcd fro111 bit 31 as they are 
loaded into registers.' This facilitates addrcss calcula- 
tions with rcsi~lts tliat arc 64-bit, sign-extended forms 
of tlie original 32-bit pointer values. For all PO or  P1  
spacc addresses, the uppcr 32 bits of a given pointer in 
a rcgistcr \ \ r i l l  he written \\rich zeros. For all SO/S1 
sl.>.~cc ~~ddrcsscs, tlic upper 32 bits of a given pointer in 
,I rcgistcr will be written \\,it11 ones. Hence, on the 
All.>lia platform, the 32-bit virtual address space actu- 
ally exists ns the lo\vcst 2 GI< dnd highest 2 G13 o f  the 
entire 64-bit virt~lal address spacc. From the pcrspec- 
tivc of a program using only 32-bit pointers, these 
regions iippcar to  be contiguous, exactly as thc!~ 
appeared on the VAX platform. 

Superset Address Space Options 

M'c consiclcrcci the following three general options for 
extending the addrcss spacc beyo~ld the current 32-bit 
limits. The dcgrce to which each option \vould rclicvc 
the addrcss space pressure being felt by applications 
and the OpcnVMS kcrncl itsclf \.aricd significa~ltly, 
as did the cost of implcmc~iting each option. 

1. Extension of  slial-ed space 

2. Extension of process-pri\l,~tc spacc 

3. Extension of hot11 shared s p ~ c c  and process-private 
space 

The fi rst option co~lsidered \.vas to extend the virtual 
acicircss bou~ldaries fix shared spacc only. Process- 
private space \vould remain limited to its current size 
of 2 GI). If processes nccdcci acccss to  a huge amount 
of virtual menlor),, tlie melnory would have to have 
bccn created i l l  sliarcd spncc \vticrc, by dc f i~ i i t i o~~ ,  all 
poccsscs WOLILCI Iia\~c access to it. This option's chief 
ad\ianragc \\!as that JIO changes were required in the 
complex mclnor), managcnicnt cocic that specifically 
s ~ ~ p p o r t s  process-private space. Choosing this option 
w o ~ ~ l d  ha\~e minimized the time-to-market for deliver- 
ing sollie degree of v i r t~~al  address extension, however 
limited it would be. Avoiding any impact to process- 
private spacc \.\/as also its chief disadvantage. l3y failing 
to extend process-private spacc, this option proved to 
be gencrallp u~ lappca l i~~g  to our customers. 111 addi- 
tion, it \vas vie\vcd as '1 makeshiti solution that \\/e 
\ v o ~ ~ l d  be unable to discard once proccss-private spacc 
was cxtendccl at a f i ~ t ~ ~ r c  time. 

The second option was to extend process-private 
space only. This option would have delivered the 
highly desirable 64-bit capacity to processes but u~ould 
not have cxtcndcd sliarcd spncc beyond its current 
32-bit boundaries. The option presumed to reduce 
the degrcc ofc11;ingc in the kernel, hcncc maximizing 
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Figure 1 
OpcnViMS Alpha 32-bit Virt~ral Address Space 
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pri\,ilegcd code compatibility and ensuring faster time- 
to-m,lrltet. Ho~\,e\ier,  analysis o f  this opt ion showed 
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that tl1c1-e \\,ere enough significant portions o f  the ker- 
nel rccll~iring change tliat, in practice, very little addi- 
tional privileged code  compatibility, such as for 
drivers, \\rould be achievable. Also, this option did n o t  
addrcss certain important problelns that are specific t o  
shared space, such as limitations 011 the Iternel's capac- 
ity t o  manage ever-larger, very large memory (VLM) 
systems in the f~ l tu re .  

We dccidcd t o  pursue the opt ion o f  a Bat, superset 
64-bi t  \jirtt~al address space tliat provided extensions 
for both the sharcd and the process-private portions of  
the space that a given process could reference. T h e  
ne\\; extended process-private space, named P 2  space, 
is .~cijaccnt t o  P1 space and cxtcnds to\vard higher 
\:irtual a c l d r c ~ s c s . ~ ~ j  T h e  new, extended shared space, 
named S2 space, is adjacent t o  SO/Sl space and 
cxtcnds to\\,ard lower virtual addresses. P2 and S 2  
spaces gro\v toward each other. 

A remaining design p r o b l e n ~  was t o  decide where 
1'2 anci S 2  would meet in tlie address space layout. 
A simple approach would split the 64-bi t  address 
s p x c c x a c t l y  in half, syrnnietrically scaling u p  the  
design o f  the 32-bi t  address space already in place. 
(?'he addrcss space is split in this way by the Digital 
UNIX operating ~ v s t e n i . ~ )  This  solution is easy t o  
cxplaill because, o n  the o n e  hand,  it extends the 32-bi t  
convention that the most  significant address bit can be 
treated as a sign bit, indicating whether  an address 
is private o r  shared. 01-1 the  o ther  hand,  it allocates 
fi~lly o ~ l c l l a l f  the a\railablc virtual addrcss space t o  the 
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operating system kernel, whether  o r  no t  this space is 
needed in its entirety. 

T h e  pressure t o  g row the address space generally 
stems from applications rather than from the operat- 
ing system itself. 111 response, we  implemented the 
64-bi t  address space with a boundary that  tloats 
benveen the process-private and shared portions. T h e  
operating system configures at bootstrap only as much 
virtual address space as it needs (never more  than 
50 percent o f  the  whole) .  At this point,  the  boundary 
beconics tixed for all processes, with the  majority of 
tlie address space available for process-private use. 

'4 floating boundary maximizes the virtual address 
space that is available t o  applications; however, using 
the  sign bit t o  distinguish between process-private 
pointcrs and shared-space pointcrs continues t o  work 
only for 32-bi t  pointcrs. T h e  location of the  floating 
boundary must be used t o  distinguish between 64-bi t  
process-private and shared pointers. We believed tliat 
this was a minor trade-off in return for realizing nvice 
as much process-private address space as would otlier- 
wise have been achieved. 
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Page Table Residency 
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While pursuing the 64-bi t  virti~al address space la j~out ,  
\ye grappled with the issue o f  where the  page tables 
that  map  the address space would reside within that 
address space. This  section discusses the page table 
structure that  supports the OpenVMS operating sys- 
tem, the residency issue, and the method we chose t o  
resolve this issue. 
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Virtual Address-to-Physical Address Translation 
The Alpha architecture allo\vs an implementation to 
choose one of  the follo\ving four page sizes: 8 kilo- 
bytes (KB), 1 6  ICB, 32 KB, or  64 KB.3 The architecture 
also defines a multilevel, hierarchical page table struc- 
ture for virtual address-to-physical address (VA-to- 
PA) translations. All OpeliVMS Alpha platforms have 
implemented a page size of  8 KR and three levels 
in this page table structure. Although th ro~~g l iou t  
this paper we assume a page size of 8 ICR and three 
levels in the page table hierarchy, no loss of generality 
is incurred by this assumption. 

Figure 2 illustrates the VA-to-PA tr;~nslation 
seqi~mce using the ~nultilevel page table structure. 

1. The page table base register (I'TKK) is a per-process 
pointer to the highest level ( L l )  of that process' 
page table structure. At the highest level is one 
8-KB page (LIPT)  that contains 1,024 page table 
entries (PTEs) of 8 bytes each. Each PTE at the 
highest page table level (that is, each LlPTE) maps 
a page table page at  the next lower Ic\lcl in the ti-a~is- 
lation hierarchy (the L2PTs). 

2. The  Segment 1 bit field of a gi\ien virtual address 
is an index into tlie L l P T  that selects a particular 
LlPTE, hence selecting a specific L2PT for the nest 
stage of the translation. 

3. The Segment 2 bit field of tlie virtual address 
then indexes into that L2PT to select an L2PTE, 

hence selecting ;I spccific L3PT for the nest stage 
of  the translation. 

4. The Segnicnt 3 bit field of  the \rirt~ral address then 
i~idescs into that L3I'T to select an L3PTE, hencc 
selecting a specitic 8-IU3 code or  data page. 

5. The byte-within-page bit field of the virtual address 
then selects a spccific byte address in that pagc. 

An Alpha implc~ncntation may increase the pdgc 
size and/or n ~ ~ n i b ~ r  of levels in the page table I i icr~r-  
chy, t h ~ ~ s  ~nnpping grcater amounts of virtual spacc up 
to tlie fill1 64-bit amount. The assumed combinntio~l 
of 8-I(B pagc size and three levels of page tnblc allo\\.s 
the system to map up to 8 terab!,tes (TB) (i.c., 1,024 
X 1,024 X 1,024 X 8 KR = 8 TB) of v i r t~~a l  memory 
for a single proccss. 

To  map the entire 8-TB address space available to a 
single process requires up to 8 GB of  PTEs (i.c., 1,024 
X 1,024 X 1,024 X 8 bytes = 8 GB). This fact alone 
presents a serious sizing issue for the OpenVMS opcr- 
ating system. Thc 32-bit page table residency n~oclcl 
that the OpeliVMS operating system ported fi-om tlie 
VAX platform to the Alpha platform does not have 
the capacity to SLIpport SLICII large page tables. 

Page Tables: 32-bit Residency Model 
We statcd earlier that ~iiaterializing a 32-bit \.irtual 
address space as it \\,as defined by the VAX architect~~re 
would ease the c f h r t  to port the OpenVMS operating 
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system ti-om the VAX platform to the Alpha platform. 
A concrete example of this relates to page table resi- 
dency in virtl~al memory. 

The VAX architecture defines, for a given process, 
a PO page table and a P1 page table that map that 
process' PO and P1 spaces, respectively.' The architec- 
ture specifies that these page tables are to be located in 
SO/S1 shared virtual address space. Thus, the page 
tables in virtual memory are accessible regardless of  
which process contcxt is currently active on the system. 

The OpenVMS VAX operating system places a given 
process' PO and P1 page tables, along with other per- 
process data, in a fixed-size data structure called a bal- 
ance slot. An array of such slots exists within SO/Sl 
space with each memory-resident process being 
assigncd to one of thcse slots. - .I. his page table residency design cvas ported from 
the VAX platform to the Alpha platform.' The L3PTs 
needed to map PO and P1 spaces and the one L2PT 
needed to map those L31'Ts are all mapped into a bal- 
ance slot in SO/S1 space. (To conserve virtual mem- 
ory, the process' L lPT  is not mapped into SO/Sl 
space.) The net effect is illustrated in Figure 3. 

The VAX architecture defines a separate, physically 
resident system pagc table (SPT) that maps SO/S1 
space. The SPT was explicitly mapped into SO/S1 
space by the OpenVMS operating system o n  both the 
\'AX and the Alpha plattbrms. 

BALANCE 
SLOTS 

SLOT 

SLOT 

SLOT 

SLOT 

SLOT 

SLOT 

Only 2 megabytes (MR) of level 3 PT space is 
required to map all of a given process' PO and P1 
spaces. This balance slot design reasonably accommo- 
dates a large number of processes, all ofwhose PO and 
P1 page tables siniultaneously reside within those 
balance slots in SO/S1 shared space. 

This design cannot scale to support a 64-bit virtual 
address space. Measured in terms of gigabytes per 
process, the pagc tables required to map such an enor- 
mous address space are too big for the balance slots, 
which are constrained to exist inside the 2-GB SO/S1 
space. The designers had to  find another approach for 
page table residency. 

Self-mapping the Page Tables 
Recall from earlier discussion that on today's Alpha 
implementations, the page size is 8 KB, three levels of 
translation exist witlin the I-~ierxchical page table struc- 
ture, and each page table page contains 1,024 PTEs. 
Each LlPTE maps 8 GB ofvirtual memory. Eight giga- 
bytes of  PT space allo\vs all 8 TB of virtual memory that 
this implementation can materialize to be mapped. 

An elegant approach t o  mapping a process' page 
tables into virtual memory is to  self-map them. A sin- 
gle PTE in the highest-level page table page is set to 
map that page table page. That is, the selected LlPTE 
contains the page frame n u ~ n b e r  of  the level 1 page 
table page that contains that LlPTE. 

PROCESS 
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PROCESS-PRIVATE 
LPPT 

PO PAGE TABLE 
(L3PTs) 

P l  PAGE TABLE 
(L3PTs) 

, SIZED AT 
BOOTSTRAP 
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Figure 3 
32-bit Page Tables in SO/S'l Space (Prior to OpenVMS Alpha Version 7.0) 
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The effect of this self-mapping on the VA-to-PA 
translation sequence (shown in Figure 2 )  is subtle but 
important. 

For those virtual addresses \\lit11 a Segment 1 bit 
field value that selects the self-mapper LlPTE, step 
2 of  the VA-to-PA translation sequence reselects 
the L lPT  as the effective L2PT (L2PT1) for the 
next stage of the translation. 

Step 3 indexes into L2PT' (the L lPT)  using the 
Segment 2 bit field value to select an L,3PT'. 

Step 4 indexes into L3PT' (an L2PT) using the 
Segment 3 bit field value to  select a specific data 

Page. 
Step 5 indexes into that data pagc (an L3PT) using 
the byte-within-page bit field of the virtual address 
to select a specific byte address within that page. 

When step 5 of the VA-to-PA tra~lslation sequence 
is finished, the final page being acccsscd is itselfone of 
the level 3 page table pages, not a page that is mapped 

PTBR 

VL1PT'S--' 

LlPT , 

. . 

KEY: 

PTBR PAGE TABLE BASE REGISTER 
PFN PAGE FRAME NUMBER 
PTE PAGE TABLE ENTRY 

by a level 3 page table page. The self-map opcration 
places the elltire 8 -GB page table structwc at the end 
of  tlie VA-to-PA tra~lslntion sequence for n specific 
8-GB portion of  tlie process' address spacc. This vir- 
tual space that contains all of a process' potential pagc 
tables is called page table space (PT space)." 

Figure 4 depicts the effect of  self-mapping the pagc 
tables. O n  tlic left is the highest-level page table 
page containing a fixed number of PTEs. O n  the right 
is the virtual address spacc that is mapped by that page 
table page. Thc mapped address space consists of a col- 
lection of  identically sized, contiguous address range 
sections, each one mapped by a PTE in the corrc- 
sponding position in tlie highest-level page table pagc. 
(For clarity, lo\\ler le\:cls of the page table structure arc 
ornittcd from the figurc.) 

Notice that LlPTE # lo22  in Figure 4 \\.as chosen to 
map the high-level pnge table page that contains that 
PTE. (The reason ti)r this particular choice will 
be explained in the next section. Theoretically, any one 

Figure 4 
Effect of Page Table Self-map 
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of tlie Ll  PTEs could have becn chosen as the self- 
nlapper.) Thc section of virtual memory lnapped by 
the chosen LlPTE contains the entirc sct of page 
tables needed to map the available addrcss space of 
a given process. This section of virtual memory is PT 
space, which is depicted 011 the right side of Figure 4 
in the 1,022d 8-G13 section in the materialized virtual 
address space. 

The base addrcss for this PT space incorporates the 
index of the chosen self-mapper LlPTE (1,022 = 

3FE(16)) as follows (see Figure 2): 

Segment 1 bit field = 3FE 
Segment 2 bit field = 0 
Segment 3 bit field = 0 
Byte within page = 0, 

which result in 

VA = FFFFFFFC.00000000 
(also known as PT-Rase). 

Figure 5 illustrates the exact contents of  PT space 
for a given process. One  can obscrvc the positional 
effect of  choosing a particular high-level PTE to  self- 
map the page tables even within PT space. In Figure 4, 
the choice of  PTE for self-mapping not only places PT 
space as a whole in the 1,022d 8-GR section in virtual 
memory but also mcans that 

PAGE TABLE 
SPACE (8 GB) 

' 

The 1,022d grouping of the lowest-level page 
tables (L3PTs) within PT space is actually the col- 
lection of next-higher-level PTs (L2PTs) that map 
the other groupings of L3PTs, beginning at 

Segment 1 bit field = 3FE 
Segment 2 bit field = 3FE 
Segnient 3 bit field = 0 
Byte within page = 0, 

which result in 

VA = FFFFFFFl~.FF000000 
(also lulown as L2-Base). 

Within that block of L2PTs, the 1,022d L2PT is 
ac t~~al ly  the next-higher-lcvel page table that maps 
the L2PTs, namely, the LlPT. The L l P T  begins at 

Segment 1 bit field = 3FE 
Segment 2 bit field = 3FE 
Segment 3 bit field = 3FE 
Byte within page = 0, 

which result in 

VA = FFFFFFFD.FF7FC000 
(also known as L1-Base). 

Within that L1 PT, the 1,022d PTE is the one used 
for self-mapping thcse page tables. The address of  
the sclf-mapper 11 PTE is 

Figure 5 
Page Tahlc Space 
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Scg~iicnt 1 bit field = 3FE 
S c g ~ i i c ~ ~ t  2 bit field = 3FE 
Segment 3 bit field = 3FE 
Byte \vithin pagc = 3FE X 8 

This positional correspondence \\,ithi11 1'T spacc is prc- 
scr\lcd should a different high-le\d PTE be chosen k)r 
self-~iiappi~ig tllc page tables. 

The properties inherent in  this self-mapped pngc 
tablc arc compelling. 

The amount of  virti~al ~ ~ ~ c m o r y  reserved is exactly 
the amount required for nlapping the pagc tables, 
regardless o f  pagc size or  page tabJe dcptli. 
Consider the segment-numbered bit fields of  a 
given \ ~ i r t ~ ~ a I  address fro111 Figure 2. Concatcnatcci, 
tlicsc bit ficlds constitute the \ , i r t ~ ~ a l  page number 
(VPN) portion of  a given virtual addrcss. 

The total sizc of the PT space needed to map cvcry 
VI'N is the number of possible VPNs times 8 b!.tcs, 
tlic size of n I'TE. The total size of the address 
spacc mapped by tliat 1'T spacc is the n~1111bcr of 
possible VPNs tinics tlie page sizc. Factoring 
out  the VPN ~nultiplicr, the diffcrencc bct\\.cco 
tlicsc is tlic page size divided by 8, \vhich is exactly 
tlic size of the S c g ~ n e ~ i t  1 bit ficld i l l  the \fir- 
tual addrcss. Hcncc, all the spacc mapped by a 
singlc PTE at tlie highest Ie\~cl of page tablc is 
csactly the sizc required for mapping all the I'TEs 
tliat coi~ld ever be needed to map the proccss' 
nddrcss spacc. 

Tlic mapping of 1'T space in\~ol\~es simpl!, clioos- 
ing one o f  the highest-level PTEs and forcing it t o  
self-map. 

N o  additional system tuning o r  coding is rccluircd 
t o  acco~~i~i io~i ; l te  a ~iiorc \\,idely implcmcntcd 
\ . i r t~~nl  atidrcss \\lidtli in I'T space. B!, definition of 
the self-map effect, the exact amount of virtual 
addrcss spacc I-cquired \vill be a\*ailable, n o  more 
and n o  less. 

It is easy to locate n given I'TE. .,The adcircss of 
a PTF, \heconics an  efficient ti~nction of the addrcss 
tliat the PTE ~iiaps. The fi~nction first clears 
the byte-\vithin-pagc bit field of the subject vir- 
tual addrcss and then shifts the remaining \lirti~;il 
adclrcss bits such that the Seg~nents 1, 2, and 3 bit 
field \~alucs ( F i g ~ ~ r c  2 )  now reside in the corrc- 
sponding nest-lower bit ficld positions. The f ~ n c -  
tion then \\,rites (and sign extends if necessary) 
the \*aatcd  Scg~nent  1 field with the index of 
the self-mapper PTE. The result is the addrcss 
of tlic PTF, that maps tlic original \virtual ;iddress. 
Notc that this aIgorit11171 also \\.arks for addrcsscs 

\\,itIiin PT space, including that of the self-mapper 
I'TF, itscl f, 

l'roccss pagc mble rcsjdcnc!. in \.irtual rlicmor!. is 
acliic\.cd \\.ithour i~nposing on  the capacity of 
sharcd spacc. That is, there is no  longer a need to 
mnp the process page tablcs into slinrcd spncc. Such 
,I mnpping \\,auld be redundant and \\,nsrcfi~l. 

OpenVMS 64-bit Virtual Address Space 

With this page table residency strategy in hand, it 
bccamc possible to f nalize a 64- bit \airtun1 ati Jrcss 1,l)~- 
out for tlic OpcnViMS operating systcln. A self-m,ippcr 
IsrE had to be chosen. Consider again tllc I~iglicst Icvcl 
of p g c  table in a given process' page t.tblc srructurc 
(Figure 4). The first PTE in tliat page tablc mlips a scc- 
tion of \~irtunl memory tliat includes PO n~iJ 1'1 sp,~ccs. - .  I his IyI'E \\!as therefore i~nn\~ailal~lc for ~ ~ s c  us ,I sclf- 
mapper. The last I'TE in that page tablc maps a section 
ofvirtual mcolory that includes SO/S1 spacc. This I'TE 
\\,as also unav.iilable for self-niapping pilrposcs. 

All the i ~ ~ t c r \ ~ c n i n g  high-lc\,el I'1'Es \\.ere potential 
clioiccs ti)r self-mapping the page t~hlcs .  To ma\imizc 
tlic size of process-pri\,atc spacc, rhc correct choice 
is the nest-lo\f.cr PTE than the one that maps the lo\\.- 
cst addrcss in shared space. 

This choice is implenlented as ;i boot-tinic nlgo- 
~.i thm. 13ootstrap codc first detcr~liincs tlic size 
rccltiircd tbr Opcn\f~MS sharcd spacc, culculnting the 
corresponding number of  high-lc\.cl Iyl'l:s. A suffi- 
cient number of PTEs to map that slinrcd spncc 21-c 
allocated later fiom tlic high-order end of n given 
p~)ccss '  liiglicst-le\rel pagc tablc p ~ g c .  Tlicn tlic ncsr- 
lo\\,cr I'TE is alloc,ltcd for self-n~uppi~ig thnt proccss' 
page th lcs .  All re~naining lo\\.cr-ordered IsI'Es v-c Icti 
a\.ailnblc for mapping process-pri\.;~tc space. In  prnc- 
ticc, nearly 311 tlie I'TEs are avnilablc, \\.l~icli means thnt 
o n  toda!,'s s\,stcms, ,~llllost 8 TI3 of procc.ss-pri\.,~rc \%-- 
~ L I J I  Inernor!, is n\.ail,ibJe to a gi\,cn Opc~i\/iClS proc~~ss.  

Figurc 6 presents the filial 64-bit 0pc1lVA~lS i.irtir.ll 
ncldrcss spacc la!rout. Thc portion \\.it11 tlic lo\\.cr - - 
aclclrcsse.~ is entirely process-pri\.atc. I he liiglicr- 
aiitircsscci portion is shared b!. all process ,ldJrcss 
spaces. 1'T spacc is a region o f  \.irtual ~ncrnor!, th,lt lies 
bct\\.cc~i the P2 and S2 spaccs for an!, gi\~cn proccss 
2nd at the same \ , i r t~~al  addrcss fix all proccsscs. 

Notc thnt IT space itself consists of a proccssp~.i\.,ltc 
;~nd 3 slinrcd portion. Again, consider Figure 5. ?l'hc 
liiglicst-lc\,cl p ~ g c  tablc page, I,1 l'l', is process-pr.i\,ntc. 
I t  is pointcci to by tlic PTRlZ. (When n ~hroccjs' contest 
is loaded, or  m;~dc acti\-c, the proccss' 1'TBR \-nluc is 
loaded fi-om thc process' 11a1-d\\.arc-pri\~iIcgccl contest 
block into the I'TBK register, thcrchy making cilrrcnt 
the p ~ c  t;iblc srrllcturc pointed to by tIi,lt I'1'1:l< ,lnd 
tlic process-pri\.,lte .~ddress spncc thnt jt maps. ) 



00000000.00000000 

00000000.7FFFFFFF 
00000000.80000000 

$5 PAGE TABLE SPACE $5 

SHARED SPACE 

FFFFFFFF.7FFFFFFF 
FFFFFFFF.80000000 

SOIS1 SPACE 
FFFFFFFF.FFFFFFFF 

Note that this drawing is not to scale 

Figure 6 
OpenViMS Alpha 64-bit Virtual Address Space 

All Jiigher-addressed pagc tables in PT space are 
used to map shared space and are themscl\~cs shared. 
They arc also adjacent to the shared space that they 
niap. All page tables in PT space that reside at 
addresses lo\\fer than tliat of tlie L1 I)?' are used to niap 
process-privatc space. These page tables arc process- 
private and are adjacent to the process-private spacc 
that they map. Hence, thc c ~ i d  of  the LlPT marks 
a ~~nivcrsal boundary bcnveen tlic process-private 
portion and the shared portion of thc cntire \r ir t~~al 
address spacc, serving to  separate even the YrEs that 
map those portions. In Figi~re 6 ,  the line passing 
through PT space illustrates tliis boundary. 

A direct conseqllcnce of this design is that the 
process pagc tables Iia\~c bee11 privatized. That is, 
the portion of PT space tliat is process-private is cur- 
rently active in virtual memory only whcn the owning 
process itself is cl~rrently active on  the processor. 

Fortunately, the majority of  page table references 
occur w~hile executing in tlic context of the owning 
process. Such rekrenccs act~~ally arc cnlia~lccd by 
tlie pri\~atization of the process page tablcs becausc 
the mapping function of '1 virtual address to  its I'TE 
is llour more efficient. 

Privatization does raise a lii~rdlc for certain pri- 
j~ileged code t h ~ t  pre\~iously could access a proccss' 
page tablcs \\)he11 esecuting outside tlic contest of t l ~ c  
owning proccss. With the page tables rcside~lt in 
shared space, s i~ch references could be niacic regard- 
less of  \\~hicli process is currently active. Witli priva- 
tized pagc tables, additiondl access support js nccclcd, 
as presented i l l  tlic next section. 

A final commentary is \varranted for the separately 
maintained systcln page table. The self-mapped pagc 
table approach to supplying pagc table residctlcy in 
vil-tual memory includes thc l'?'Es for any \~irt i~al  
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addresses, \vlictlicr they are proccss-pri\late or shared. 
The shared portion of 1'T spacc could serve nowr as the 
sole location for shared-space PTEs. Being redundant, 
the original SPT is eminently discardable; howc\rer, 
discarding the SS'T ~\ ,ould  crcntc a massive co~npatibil- 
ity problem k)r dc\,icc dri\fcrs \\.it11 their many 32-bit 
SPT rcfcrcnccs. This area is one in \vliich an opportu- 
nity exists to prcscr\,c a significant degree of pri\tileged 
codc co~npatibilin: 

Key Measures Taken to Maximize 
Privileged Code Compatibility 

'To implement 64-bit virtual address spacc support, \vc 
altered ccntml sections of the OpcnVMS Alpha kernel 
and Inany of its kc\/ data structures. We expected that 
such cllangcs \ \ l o~~ ld  rccll~ire compensating or corre- 
sponding source changes in surrounding pri\lilcged 
components within the kernel, in device dri\lcrs, and 
in pri\lilcgcd In~lcrcd products. 

For csamplc, the prc\lious discussion sccms to indi- 
cate tliat any privileged component that wads or  writes 
1'TF.s \\lould no\\. need to use 64-bit-\vide pointers 
instead of 32-bit pointers. Similarly, all system fork 
threads and interrupt scr\ricc routines could no longer 
c o u ~ i t  o n  ctircct acccss to process-private PTEs with- 
out  regard to \\lliicli process Jiappcns to  be current 
at the monlcnt. 

A n ~ ~ m b c r  of tictors csaccrbntcd tlic impact of such 
changes. Since the OpcnVMS Alpha operating sys- 
tem originntcd from the OpcnV1MS \JAX operating 
system, significant portions of the OpenVlMS Alpha 
operating s!rstem n~ici its dc\.icc dri\~crs arc still \\,ritten 
in iMA<:RO-32 coclc, a compiled language o n  the 
Alpha platfor~n.' Rccausc lMA<:RO-32 is an r~ssembl!-- 
Icvcl sy lc  of programming Innyuagc, \\.e cot~ld not 
sinipl!, c l i~ngc  the definitions , ~ n d  declarations of\.ari- 
oils types and l-cly o n  recompilation to h:lndlc the 
n?o\.c from 32-bit to 64-bit pointers. Finally, tlierc arc 
\\.ell over 3,000 refcrcnccs to  PTEs fioni MACRO-32 
cocic modules in the OpcnVh4S Alpha source pool. 

We \\,ere thus l;~ccd with the prospect ofvisiting and 
potentially altering each of  tlicsc 3,000 rcfcrences. 
Morco\~cr, \\'c \\lould nccd to ti)llo\v tlic register life- 
t i~ncs th.~t rcsultcd kom each of tlicsc rcfcrcnccs to 
ensure that all addl-css calculations and mclnory refcr- 
ences were done using 64- bit operations. Wc expected 
that this process w o ~ ~  lii be time-consuriiin~ and error 
prone and that it L \ ~ ~ L I I c ~  lin\~e a sig~iifica~it ncgativc 
i~iipact o n  our colnplction Jatc. 

Once 0pcnV1MS Alpha version 7.0 was available 
to users, those wit11 device drivers and PI-ivilcgeci code 
of tlicjr o\\m \ v o ~ ~ l d  need to go  through a similar 
effort. Tliis would f i~ r t l~c r  delay wide 11sc of the 
rclcasc. For all tlicse reasons, \vc \vcrc \vcll moti\latcd 

to ~iiinimizc the irnpact o n  pri\rilcgcd codc. The nest 
four sections d i sc~~ss  tccliniqucs that we used to o\.el-- 
COJlle these obstacles. 

Resolving the SPT Problem 
A signif cant number of t0c 1'TE rcfcrcnccs in pri- 
vileged codc arc to  PTEs \vitliin the Sl'T. 1)cvicc 
drivers ohcn double-map the user's 1 / 0  h ~ ~ f f c r  into 
SO/Sl spacc b!, allocating and  appropriately initializ- 
ing system page table elltries (S1'7'Es). Another situa- 
tion in \\rhicli a dri\rcr nianipulatcs SI'1'Es is in tlic 
substitution of a system buffcr for a poorl\* aligned o r  
n o n c o n t i g ~ ~ o ~ ~ s  ilscr 1 / 0  buffel that pl-c\,cnts rlie 
buftirr from being directly ~lscd \\-it11 .I particulilr 
device. Such codc relics lica\~ily o n  the system data cell 
MMG$GI,SPTRASE, \vliich points to  tlic SPT. 

Tlie ne\v page t,iblc ticsign complctcl!~ ob\fintcs the 
need for a separate SI'T. C;ivcn all 8-Id3 pugc size nrld 
8 bytes per PTE, the cntirc 2-GB SO/Sl \,irtual nddrcss 
space range can be mapped by 2 MR of l'l'Es \vitliin S'T 
space. Because SO/Sl resides at rlic highcst addrcssablc 
end o f the  64-bit \,irtual address spacc, it is mapped by 
the highest 2 IMR of PT spacc. 'The arcs o n  the Ict't in 
Figure 7 illustrate this mapping. The I"TEs in 1'T' spncc 
tliat map SO/Sl arc fi~lly slinrcci b!~ all processes, but 
they must be referenced with 64-bit addl-csscs. 

This i~icornp~tibility is complctcly lliiidcn by the 
creation o f a  2-IVB "SI'T \\*inclo\\f" o\.c~- rhc 2 kIR in 
l''1' space (lc\.cl 3 PTEs) that maps SO/S 1 spacc. The 
SPT n.indo\\f is positioned at thc higl~cst nddrcssnblc 
elid of SO/Sl spacc. Tlicrck)rc, an acccss t l~rough the 
SPT \\,indo\v o~ll\r rccli~ircs a 32-bit SO/S1 nddrcss nncl 
can obtain an!I of the I'TEs in 1'T s p ~ c c  that map 
SO/Sl spacc. The Arcs o n  tlic r igl~t  in Figure 7 illus 
trate tliis acccss path. 

Tlie Sl'T \\,indo\\ is set up at system ini!i.llizntion 
time and consumes only tllc 2 I<S< o f  1"T'Es that 
are ~iecdcd to map 2 M11. The s!*stcm data cell 
MMG$GL-Sl'TRASE no\v points to the base of the 
SPT \\indo\\; and all existing rcfcrcnccs to that data ccll 
continue to fi~nction corrcctl\$ \\rithoi~t cha11gc.- 

Providing Cross-process PTE Access for Direct VO 
Tlie self-mapping of the page tablcs is ;In elegant solu- 
tion to tlic pagc table rcsidcncy problem imposcti by 
the preceding design. Howcvcl-, tlic self-mapped pagc 
tablcs present signifca~it cliallengcs oftheir own to the 
I/(> subs)rstcm and to many dc\ricc drivel-s. 

Typically, OpcnVMS device ciri\gcrs Innss s to r~gc ,  
network, and other lii~h-pcrti)r~nancc devices pcrfi)rm 
direct memory acccss (1)MA) and \\.hat OpcnVMS calls 
"direct I/O." Thcsc dc\sicc dri\~crs lock do\\fn into 
pl~ysical rncnior!l tlic virt~lul pagcs tli,~t contain the 
rccl~iestcr's 1 / 0  buffer. The 1 / 0  transfer is pcrk)rmcd 
directly to those pagcs, alicr u,Iiicli the buffel- p:~gc\ arc 
unlocked, 11cncc the term "dircct I/O." 



Figure 7 
Systcni l'agc Table Windo\v 

The virtual address o f thc  buffer is not  adequate for 
device drivers because much o f the  driver code runs in 
system context and not in the process context of tlie 
recluestcr. Similarly, a process-specific virtual address is 
~neaninglcss to niost I>MA devices, which typically can 
deal only wit11 the physical addresses of thc virtual 
pages spanned by the bufkr. 

For these reasons, when the I/O buffcr is loclted 
into memory, the OpenVA4S 1 / 0  subs)lstem converts 
the virtual address of  the requester's buffer into 
(1) the addrcss of  the PTE that maps the start of  
the buffer and (2)  the byte offset within that pagc to 
the first byte of the bi~ffcr. 

Once the virtual address of tlie I/O buffcr is con- 
verted to a PTE address, all rctkrcnccs to that buffer 
arc made using the PTE address. This remains the case 
even if this I/O request and I / O  bufkr are handed off 
froni one driver to another. For cxa~ilplc, the 1 / 0  
request may be passed froni the shadowing virtual disk 
driver to the small computer systems interface (SCSI) 
disk class driver to a port driver for a specific SCSI host 
adapter. Each of these drivers will rely solely on the 
PTE address and the byte offset and not on  the virtual 
addrcss of the I/O buffcr. 

Therefore, the ~iurnber of virtual address bits thc 
req~~cstcroriginall)l i~scd to speci@ the address of 

the 1 / 0  buffer is irrelevant. MJhat really matters is 
the number of  address bits that the driver must use 
to rcfcrcnce a PTE. 

These 1'TE addresses were al~vays within the pagc 
tables within tlie balallcc set slots in shared SO/Sl 
space. With the introduction of the sclf-mapped page 
tables, a 64-bit address is required for accessing any 
I'TE in PT space. Furthermore, tlie desired PTE is not 
accessible using this 64-bit address when the driver is 
n o  longer executing in the context of  the original 
requester process. This is called a cross-process PTE 
access problern. 

111   no st cases, this acccss problem is soI\lcd for 
direct 1 / 0  by copying the PTEs that map the I/O 
buffcr when the 1/0 buffer is locltcd into physical 
memory. The PTEs in PT space arc accessible at that 
point because the requester process contest is required 
in order to lock the buffer. Thc PTEs arc copied into 
the kernel's heap storage and the 64-bit PT space 
address is replaced by the address of  the PTE copies. 
Because the kernel's Ilcap storage remains in SO/Sl 
space, tlie replacemelit address is a 32-bit address that 
is shared by all processes on thc system. 

This copy approach \\forks bccausc drivers d o  not 
need to  moditji the acti~al 1'TEs. Typically, this 
arrangement worl<s well bccause the associated 1'Tk-k 

Digital Technical Jot~rnal Vol. S No. 2 1996 67 



can fit into dedicated space \\,itliin the 1 / 0  recl~~est  The use of  self-idcntifiing stri~cturcs is also a tccli- 
packet data s t r t ~ c t ~ ~ r c  used by the OpcnVMS operating niclut. that \vas emplo!rcti t o  compntibl!, cnli,lncc pub- 
systcnl, .ind thcrc is n o  mcasurablc increase in CPU lic user-nlode intcrt;iccs to librn~.!~ routines 2nd the 
o\~crhc,id to cop!, tliosc l71'Es. OpcnVTvlS Itcrncl. Tliis topic is eiiscusscd in gl-cater 

If tlic 1 / 0  bcrffer is so hrgc that its associatecl PTEs detail in "The Opcn\:1\4S 1Miscci I'ointcr Size 
cannot f t  \\.ithin the 1 / 0  request pnckct, a separate En\.ironment."* 
kcrncl licnp storngc packet is alloc;ltcd to hold the 
I'TEs. If the 1 / 0  buffer is so  large that the cost of Limiting the Scope of Kernel Changes 
copying all the I'-I'Es is ~loticc;~l>lc, ;I direct access path Another kt.\. tactic that allo\\.cd 11s to ~iiinimizc the 
is crcatcd ns follo\\,s: rccluircd so~rrcc code C J I ~ I I ~ C S  to  tlic 013e1i\II\lS Ikcr~~el 

The 1,31'TEs t l ~ a t  map tlic I/O buffer arc locl<cci 
into ph!.sic.ll mcmor!,. 

Address splice \\.itllin SO/Sl spacc is allocated 
and mapped o\,cr the I..31'TF,s that \\,ere just 
locked do\v11. 

This cstablislics ;I 32-bit addressable sh;lrecl-space 
\\indo\\, o\u- rlic 1.3I'TEs that m;lp the 1 / 0  bi~ffCr. 

The csscnti;ll point js that one of thcsc methods is 
sclcctcci ,lnd cmploycci until tllc I/O is completed and 
tlic buffer is unlocltcd. Each method provides a 32-bit 
I'TE addl-css that the rest of tlic 1 / 0  subsystem can use 
transparently, ;IS it h;is been accustomed to doing, \\itIi- 
out  rccluil-ing ni~mcrous, complex source cliangcs. 

Use of Self-identifying Structures 
To ;~cco~~l~iiociatc 64-hit user \'irtn,ll ,ldcircsscs, a n u n -  
bcr of kcrl~cl data s t r ~ ~ c t ~ ~ r c s  Ii~ci to be cspandcd and 
cl~a~lgcci. For csamplc, as!~nchronous system trap 
(AS'l') control hloclo, I~i~ffcrcci 1 / 0  p;lckcts, ;l~id t i~nc r  
~ ~ L I C L I C  entries all contain val-ious i~scr-provided 
addrcsscs nnd par,unctcrs that can no\\. be 64-bit 
addresses. Tlicsc s t r~~c tu rcs  arc often cmbcddcd in 
other S ~ I - L I C ~ L I I - C S  S L I C I I  tli;lt ,i c l i .111~~ in one has a ripple 
effect to a set o fo t l~c r  strLlctllrcs. 

I F  tllcsc strncturcs chnngcti irnconclitionall!., man!, 
scattered sou~-ee changes \\,auld hn\.c bccn rccluired. 
Yet, 3t tlic S ~ I I I C  ti~iic, cacli of tlicsc stl-ucturcs had con- 
sumers \vho had no immediate nccd fix the 64-bit 
addressins-rclntcci capnbilitics. 

lnstcaci ofsimpl!. changing cncli of t l~csc  stri~ctures, 
\jrc defined n 64-bit-cnpahlc \.;lriant that can cocx- 
ist \\'it11 its t~.,lciitional 32-bit counterpart. Tlic 64-bit 
\,nrianr's structilrcs arc "sc lCic ic~i t i~ i~~g" bccausc rllcy 
can rc,lclily be tiistinguishcd fi-om their 32-bit countcr- 
parts by cx.imininp a particular field \vitliin the struc- 
ture itself. Typic;llly, the 32-bit and 64-bit \.arjants can 
be intcl-mixed frccly within cli~cucs and only a li~nitcd 
set of routines nccd to  bc a\\-al-c of the variant types. 

Thus, for csa~nplc,  components t h ; ~  cio not need 
64-bit ASTs c,ln c o n t i n ~ ~ c  to build 32-bit AST control 
bloclts 31ld c l ~ ~ c ~ ~ c  them \\!it11 rhc S(:M$QAS'T routine. 
Si~nilal-ly, 64-bjt AS-I' control blocks cnu be c l~~cucd  
\\.it11 the s;lmc S<:H$QAST routine bccausc the AST 
delivery codc \\,as cnI1;inccd to support citllcr n p c  of  
AST control block. 

- 
came from the rcalizatio~l tliat fill1 s~lppol-r of 64-bit 
\~irtu;il adclressing for 311 processes docs not imply or 
require esclusivc use of64-bit  pointers \\.ithin the kcr- 
nel. The portions of tlic kcrncl that 1i.lndlcd user 
addresses \\.auld for the most part nccd to l1;lndlc 
64-bit addresses; Ilo\vcvc~-, most Itcrncl data S ~ I - L I C ~ L I ~ C S  

could rc~iiain within the 32-bit nddrcssahlc SO/S 1 
spacc ~vithout any limit on user f~~~~ction~llit!..  For 
csamplc, the kcrncl Iicap storngc is still l oc~ tcd  
in SO/Sl spacc and continues to bc 32-bit ~ticil-css- 
ablc. Tlic 1Zccord Management Scrviccs (RMS) 
supports data transfers to ;111d fro111 64-bit atfclrcss- 
able Luer buffers, but 1WS continues to use 32-hit- 
wide pointers for its internal contl-ol s t r ~ l c t ~ ~ r c s .  
We tliercfi>re focused our effort on the parts of 
the kcrncl that cor~ld I>cncfit fi-om intcl-nnl ~rsc 
of 64-bit addrcsscs (scc tlic section Irn11iccii:itc Use 
of 64-bit Addressing hy the OpcnViblS Iksncl 
for esamplcs) a~ici that nccdccl to  cllil~lgc to  support 
64-bit user virtual rlcidrcsscs. 

Privileged Code Example-The Swapper 

The Ol.xn\"CIS \ \ . o ~ - k i n ~  sct s\\.nppcr pro\-ides nn intcr- 
esting csamplc o f  Iio\\- tllc 64-bit cl~angcs \\,ithill the 
Itcrncl ma!, i~iipact pri\.ilcgcd codc. 

Only a subset of a proccss' \.irtunl pagcs is m,lppccl 
to physical mcmory at an!! given point in time. The 
O ~ ~ I I V I M S  operating system occ;~sio~ially s\\.nps this 
\\,orking set of pagcs o ~ l t  of' memory to sccondnr!. stor- 
age as a conscqttcncc of managing tlic pool of,~v,liI~blc 
plqlsical rne~no~-\.. Tlic entity responsible fi)r this acti\.- 
it\, is a pri\,ilcgcci ~ > r o c c s s c ~ c e i  tlic \\.o~-king set s\\'ap- 
per or  ~ \ \~appcr ,  ti)r short. Since it is ~.csponsihlc for 
transferring the Ivorlting set of a proccss into anti o i ~ t  
o f  memory \\'he11 ]icccss,lry, the s\\,appcr 11li1st Ii;~\,c 
intimate kno\\,lcdgc of  the virtu;il address space of 
a proccss including tliat proccss' page tables. 

Collsidcr the earlier discussion in the scctio~i 
OIXI~VMS 64-bit Virtual Address Space n b o ~ ~ t  Ilo\\. 
the proccss' p3gctablcs Iln\zc bccn pl.i\.,itizcci ns 3 \\.a!' 
to efficiently pro\,idc page tnblc ~.csidcnc!~ in \'irtual 
memory. A conscclucncc of this ticsign is that \\*llilc tllc 
s\jtapper proccss is ;~cti\.c, tllc page tables oftlic proccss 
being s\vappcd ;ire not a\,ail;iblc in 1-irtual memot-!.. 
Yet, the s\vapper rccli~ircs access to  those page tables to 



d o  its job. This is an instance of the cross-process PTE 
access problem mentioned earlier. 

The swapper is unable to directly access the page 
tables of the PI-occss being swapped because the swap- 
per's own page tables are currently active in vil-tual 
Iiiemory. We solved this acccss problem by revising tlie 
s\vapper to temporarily "adopt" tlie page tables of  
the process bcing s\\lapped. The s\vappcr accomplishes 
this by temporarily changing its PTBR contents to 
point to tlie page tablc structure for the proccss being 
swapped instcacl of to tlic s\vappcr's own page table 
structul-e. This change forces the PT space of the 
process being s\\iapped to beco~iie active in \~irtual 
Incmory and therefore available to the swappel- as it 
prepares the process to be s\vapped. Note that the 
swapper can makc this temporary change because 
the s\vapper resides in sharcd space. The swapper does 
not vanish from virtual memory as the PTBR value is 
changed. Once the process has been prepared for 
swapping, the swapper restores its own I'TKR value, 
thus relincluishing acccss to the target process' PT 
space contents. 

Thus, it can be see11 haul privileged code with 
intimate knowledge of OpcnVMS memory man- 
agement ~nechanisms can be affccted by the changes 
to support 64-bit \lirtl~al memory. Also evident is that 
the alterations needed to acconiniodatc tlie 64-bit 
cliangcs arc relati\lely straightforward. Although the 
s\vappcr has a higher-than-non-nal awareness of meni- 
or!' management internal cvorkings, extending the 
s\vappu to accommodate tlie 64-bit changes was 
not particularly diffic~~lt. 

Immediate Use of 64-bit Addressing by t h e  
OpenVMS Kernel 

Pnge table residency was certainly the most pressing 
issue \ve faced with regard to tlie OpenV1MS kernel as 
it e\~olved from a 32-bit t o  a 64-bit-capable operating 
system. Once implemented, 64-bit virtual addressing 
could be harnessed as an enabling technolop for solv- 
ing a number of other problems as cvcll. This section 
briefly discusses some prominent examples that serve 
to illustrate ho\v i~nmcdiately i~seful 64-bit addressing 
became to tlic 0l)cllVMS Itcrncl. 

Page Frame Number Database and 
Very Large Memory 
The OpenVMS Alpha operating systeni ~na i~ i t a i~ i s  a 
database for managing individual, physical page fi-a~i~es 
o f~ i i c~nory ,  i.e., page fi'mnc n~umbcrs. This database is 
stored in SO/S1 spacc. Tlic size of this database gro\\ls 
li~learly as tlie size of tlic physical memory gro\\rs. 

Future Alpha systems may include larger Iilemol-!r 
configurations as melnory technology continues to 
e\,olve. Tlie col-responding growth of the page frame 

number database for such sys tc~~is  ccx~ld C O I I S L I I ~ ~ C  

an unacceptably large portion of SO/S1 space, ~rhicli  
has a maximum size of 2 GR. This design effecti\,ely 
restricts the maximum amount of  physical memory 
that tlie OpcnVMS operating systelii would be able 
to support in the future. 

We chose to rcniove this potential restriction by 
relocating the pagc frame number database fi-o~n 
SO/S1 to 64-bit addrcssal>lc S2 space. l'here it can 
gro\\i to support any pllysical memory size bcing con- 
sidered for years to come. 

Global Page Table 
7 - 
l h e  OpenVMS operating systc~ii ~liai~itai~is a data 
structure in SO/S1 space called the global pagc table 
(GPT).  This pseudo-page tablc maps nicmory objects 
calleci global sections. Ivl~~ltiple processes may map 
portions of their rcspccti\tc process-private address 
spaces to these global sections to achic\lc protected 
shared memory access for \\lhate\ler applications they 
may be running. 

With the advent of P2 space, one can easily anticipate 
a need for orders-of-magnitude-greater global section 
usage. This usage directly increases tlie size of the 
GPT, potentially reaching the point \vhere the GPT 
consumes an unacceptably large portion of SO/Sl 
space. We chose to forestall this problem by I-elocating 
the GPT fro111 SO/Sl to S2 space. TIiis move allocvs tlie 
configuration of a GPT that is I I I L I C ~  larger than any 
that could cvcr be configured i ~ 7  SO/S1 spacc. 

Summary 

Although providing 64-bit support \\{as a significant 
amount of work, the design of the OpenVlMS operdt- 
ing s!atem was readily scalable such that it could 
be achieved practically. First, \ve established a goal of 
strict binary compatibilit)~ for nonpri\~ileged applica- 
tions. We then designed a superset vil-tual address 
space that extended both process-private and sliareci 
spaces while preserving tlie 32-bit visible address spacc 
to cnsurc compatibility. To maximize the available 
space for process-private use, \\Ie chose an asymmetric 
style of  address space layout. We privatized tlie pro- 
cess pagc tables, thereby eliminating their residency 
in sharcd space. Tlie fe\v page table accesses that 
occurred fi-0111 outside the contest of the o\vning 
process, \\lhicli no  longer \\rorltcd after thc privatiza- 
tion of the page tables, were '~ddressed in \.~rious\\~a!rs. 
A variety of ripple effects stenlming horn this design 
wcrc readily sol\led \vitIiin the Iterncl. 

Solutions to other scaling problems related to the 
I<ernel u;ere immediately possible \\!it11 the advent of 
64-bit virtual address spacc. Already mentioned was 
the co~nplete remo\~al of thc process pagc tables from 
shared space. We also rcmo\,cd the global page t,lble 
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and tlie page fi-ame number  database from 32-bi t  
addressable t o  64-bi t  addressable shared space. T h e  
irn~nediate net  effcct o f  these changes was significantly 
more room in SO/Sl space for configuring niore 
I<ernel heap storage, niore balance slots t o  be assigned 
t o  greater n u ~ n b e r s  o f  ~nenior \ l  resident processes, etc. 
n7e h ~ r t h e r  anticipate use o f  64-bi t  addressable shared 
space t o  realize additional benefits o f  VLM,  such as 
for caching massive amounts  o f  file system data. 

Providing 64-bi t  addressing capacity was a logical, 
evolutionary step for the  OpenVMS operating system. 
Growing numbers o f  custolners are demanding the 
additional virtual memory to help sol\re their problems 
in n e w  ways and t o  achieve higher performance. This 
has been especially fruitfill for database applications, 
with s~~bs tan t ia l  performance improvements already 
proved possible by the use o f  64-bi t  addressing o n  tlie 
Digital UNIS operating system. Similar results are 
expected o n  the OpenViMS system. With terabytes 
o f  \~irtual memory and many gigabytes o f  physical 
Iiieliior)r available, entire databases may be loaded into 
memory at  once.  iMuch o f  tlie I/O that otherwise 
\vould be necessary t o  access the database can be elimi- 
nated, thus allowing an application t o  improve pcrfor- 
mance by orders o f  magnitude, for example, t o  reduce 
query time from eight hours t o  five minutes. Such 
performance gains were difficult t o  achieve \vhile 
the  OpenVMS operating system was constrained t o  a 
32-bit en.i~ironment. With the advent o f64-b i t  address- 
ing, OpenVMS users now have a powerful enabling 
technology available t o  sol\rc their problems. 
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Pointer Size Environment 

A central goal in the implementation of 64-bit 
addressing on the OpenVMS operating system 
was to provide upward-compatible support for 
applications that use the existing 32-bit address 
space. Another guiding principle was that mixed 
pointer sizes are likely to be the rule rather than 
the exception for applications that use 64-bit 
address space. These factors drove several key 
design decisions in the OpenVMS Calling Stan- 
dard and programming interfaces, the DEC C 
language support, and the system services 
support. For example, self-identifying 64-bit 
descriptors were designed to ease development 
when mixed pointer sizes are used. DEC C sup- 
port makes it easy to mix pointer sizes and to 
recompile for uniform 32- or 64-bit pointer sizes. 
OpenVMS system services remain fully upward 
compatible, with new services defined only 
where required or to enhance the usability of the 

huge 64-bit address space. This paper describes 
the approaches taken to support the mixed 
pointer size environment in these areas. The 
issues and rationale behind these OpenVlVlS 
and DEC C solutions are presented to encourage 
others who provide library interfaces to use 
a consistent programming interface approach. 

SLIPIX)IT for 64-bit \,irru,ll .~ddrcssing o n  rlic 0pcnVh;lS 
Alplin opcl-.)ring s\,stcln, \.crsion 7.0, has \.,lsrl!. incrca\cti 
the ,lmount of\.irr~lnl ntid~.css s p ~ c c  .~\.ail,lblc ti)r applic,l- 
tion use.' At tlic s.llnc time, f ~ l l \ r  cornpntiblc support for 
,~pplications t l l ~ t  ~ l s c  only 32-bit ncidrcsscs ( ~ l s o  c,~llccl 
/)oi/l/cvs) Iias bccn prcsc~.\,cci. 

An  npplic,ltion tlint lnixcs 32-bi t  ,lnci 64-bi t  pointcr 
sizcs opcrntcs in a ~?/I.\.c~cl j jo i i~ le l .  .\I:(, c ~ ~ ~ r ' i i ~ o / i i ~ ~ c ~ i ~ /  
iLliscci pointel- size npplicatiolls \\,ere the design ccntcr 
ti)r t l ~ c  initi'll i m p l c m c n t a t i o ~ ~  o f 6 4 - b i t  suppol-t in the  
Opcn\'AlS opcr.lting s!,stcm. This p'ipcr d i sc~~sses  
the I-c,lsons \\.h\, mising pointcr sizcs is c\pcctcd t o  
be n c o m m o n  PI-,lcticc ,lnii dcscribcs tlic cicsign o f  
operating s!.stcm and  la11g~1,ige f c ~ t ~ l r c s  tli,it are pro- 
\,icicii t o  cnsc p~ .ogra l~ iming  in this rniscci pointcr s i ~ c  
c ~ i \ ~ i r o ~ i l l i c ~ ~ t .  

Reasons for Mixed Pointer Sizes 

7'0 use 64-hi t  adtircss s p ~ c c ,  somc simple ,~pplic,~tions 
nccti orll!, be ~.ccompilcd for a uniform 64-b i t  pointer 
sizc. For  cs.lmplc, self-contained 13i-X: C: applications 
t h ~ t  rcl!~ o n  only the (: run-tinlc libr,lry, \ \ , i thol~t  
using \ . s t e m  sc~.\,iccs 01- other  libraries, can talkc 
this .lpp~-o.lch. l ~ c , i l - ~ \ ~ o ~ ~ l d  applic,1tiolis are seldom this 
elcall-cut, Iio\\~c\~cr. 111 more complex ,ipplic.~tions, 
\\,hcl-c 64-bi t  ncicircss spncc is likely t o  bc nccticd, 
miscs o f l , ~ n g ~ ~ n g c s ,  dcpcndc~icics o n  system jntel-hccs 
'inti o ther  libr'11-ics, slid ~.cli,lncc o n  tliirci-party p ~ c k -  
ages o r  libr,i~-ics JI-c c o m m o n .  'l'licsc practices all Ic,~d 
t o  the mixed pointcr sizc cn \ , i ron~ncnt  in \\~liicli appli- 
c,ltiolls c o ~ l t i n ~ l c  t o  LISC somc 32-hi t  atidrcsscs \\.hilt 
t'iliing ,idvantagc o f  64-bit \ ~ i r t ~ ~ a l  ndci~.css s~>acc.  

Applicntions that , ~ r c  lilicly t o  t,ll<c ad\r,intagc o f  
64-bi t  memory '11-c those in \vhicIi the dccl'11.nrion a n d  
m,ln,lgcmcnt of.1 I,i~.gc tintn set can he logicall!: scp.1- 
r.itcd from tllc rest o f  the program. l'his ~ c p ~ i r ~ ~ t i o n  
tiocs no t  nccd t o  be nt t11c SOIII-cc file lc\.cJ. It  c,ln be 
,lt ,I 1>rogr~1ii tlo\\ Ic\~cl, intiicnting \\,liicli intc~.n'il and 
cstcr11,11 i~ltcl.t;lccs \ \ , i l l  bc given 64-bi t  .ltidrcsscs t o  
\\io~.k \ \ . i  th .  

'l'llc ti)llo\\,ing sections csplorc the reasons for 
mixing pointcr sizcs. 



OpenVMS and Language Support 
Implementation choices that Digital ~ilade for this first 
release of  the OpenVMS operating system that sup- 
ports 64-bit virtual addrcssing will probably encour- 
age mised pointer size programming. These choices 
were driven largely by tlie need for absolute upward 
co~iipatibility for existing programs and tlie goal of 
supporting large, dynamic data sets as the primary 
application for 64-bit addressing. 

Dynamic Data Only OpcnViMS services support 
dynamic allocation oF64-bit address spacc. This mech- 
anism most closely resembles the malloc and free h n c -  
tions for allocating ancl deallocating dynamic storage 
in the C programming Iang~~agc.  Allocation of this 
type differs from static and stack storage in that explicit 
source statements are r eq~~i red  to  manage it. For static 
and stack stol-agc, the system is allocating the menlory 
on behalf of the application at image activation tinie. 
(Of  course, the allocation may be extended during 
execution in the case of staclc storage.) This allocation 
continues to be fi-om 32-bit addrcssablc space. 

T\vo special cases ofstatic allocation are worth mcn- 
tioning. Linkage sections, \vhich are program sections 
that contain routine linkage information, and code 
sections, which contain the csccutablc instructions, 
d o  not differ ssubstantially from preinitialized static 
storage. As a result, these sections also reside only in 
32-bit addrcssablc memory. 

Upward-compatibility Constraints The OpenVlMS 
AJplia operating system is cautious to avoid using 
64-bit nicrnory frcely where it may prevent up~vard 
compatibility for 32-bit applications. For exa~nple, the 
linkage sectio~l might seem to bc a natural candidate 
for the OpenVMS system to allocate automatically in 
64-bit memory. This allocation would essentially free 
more 32-bit addressable memory for application use; 
ho\vever, even if this were done only for applications 
relinked for ne\v versions of tlie OpenVh4S operating 
system, there is no  gildrantee that all object code treats 
linl<agc section addrcsscs as 6 4  hits in nridth. A simple 
esaniple is storing the address of a routine in a struc- 
ture. Sincc a roiltine's address is the address of its pro- 
cedure descriptor in the linkage section, moving the 
Ij~iltagc section to 64-bit mcmory \ \w~~lcl  cause code 
that stores this address in a 32-bit cell to fail. 

Allocating the user stack in 64-bit spacc also appears 
to bc a goocl opportuuity to easily increase the amount 
of memory available to an application. Stack addresses 
arc 0 t h  morc visible to application code than linkage 
section addresses are. For instance, a routine can easily 
allocate a local \pariablc using temporary storage on  the 
stack and pass the address of the variable to another 
routine. If tlie stack is m o \ d  to 64-bit space, this 

address quietly becomes a 64-bit address. If the called 
routine is not 64-bit capable, attempts to use the 
address will fail. 

Focus on Services Required for Large Data Sets Not  
all systcm services could be changed to  support 64-bit 
addresses (i.e., pron~oted) in tilne for the first version 
of the OpenVMS operating system to support 64-bit 
addressing. With the 11iixed-pointer model in mind, 
we focused on those services that \ \we  Iiltely to be 
required for large data sets. For example, to allow I/O 
directly to and from liigli memory, it was essential that 
the I/O queuing service, SYS$QIO, accept a 64-bit 
buffer address. Conversel!: the SYS$TlWLNM service 
for translating a logical naliie did not need to be mod- 
ifcd to accept 64-bit addresses. Its arguments include 
a logical name, a table name, and a vector that contains 
requests for information about the name. These are 
s~nall data elements that arc unlilcely to rccluirc 64-bit 
addressing on their own. Ofcourse, they may be part 
of somc larger structure that resides in 64-bit space. 
111 this case, they can easily be copied to o r  from 32-bit 
addressable memory. 

System services are discussed further in the section 
OpenVMS System Services. The 32-bit address restric- 
tion on certain system services again emphasizes the 
importance of  being able to logically separate large 
data set support from tlie rest of an application. 

Limited Language Support Another interface point 
that requires care when using 64-bit addressinb 1s ' at 
calls benveen modules written in different prograln- 
ming languages. The OpenVMS Calling Standard 
traditionally makes it easy to lnis lang~~agcs in an appli- 
c a t i o ~ ~ ,  but DEC C is the only high-level language 
to filly support 64-bit addresses in the first 64-bit- 
capable version of tlie OpenVMS operating ~ y s t e r n . ~  

The usc of 64-bit addresses in mixed-language 
applications is possible, and data that contains 64-bit 
addresses may even be shared; however, references 
that actually use the data pointcd to by these addresses 
need to  be limited to  DEC C code or assernbl!r lan- 
guage. Mised high-level language applications are cer- 
tain to be niised pointer size applications in this 
version of the operating system. 

Support for 32-bit Libraries 
Many applications rely on library packages to provide 
some aspect of  their fi~nctionality. Typical examples 
include user interbce packages, graphics libraries, and 
database utilities. Third-party libraries may o r  may not 
support 64-bit addresses. Applications that use these 
libraries will probably mis 32-bit and 64-bit pointer 
sizes and \\fill tl~erefore require an operating system 
that supports mixed pointer sizes. 
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Implications of Full 64-bit Conversion 
For somc applications, it may bc desirable to 11iis 
pointcr sizes to avoid the side effects of universal 64-bit 
addrcss conversion. The approach of recompiling every- 
thing with 64-bit address \vidths is sometimes called 
"throwing the s\vitch." Ai obvious implication of 
throwing tlie switch is that all pointer data doubles in 
size. For complex linked data structures, this can be a 
significant overall increase in size. Increasing tlie pointer 
size may also reveal hdden dependencies on pointer size 
being the same as integer size. If code accesses a cell as 
both a 32-bit integer and a 32-bit pointer, the code will 
no  longer work if the pointer is enlarged. Thus, 
universally increasing the pointer sizc may force changes 
to code that would other\\ise continue to \\lark. 

There is a more compelling reason 1-i)r not throwing 
the switch for code that is part of a shared libr.lry. 
Library packages must not return 64-bit addresses to 
users of  the library unless the calling code is definitely 
64-bit capable. If the library developer throws tlie 
switch when building a library written in l>EC C, all 
memory returned by the nialloc function will be in 
64-bit addrcss space. This can be a problem if tlie 
address is blindly returned to a library caller. Ifa library 
is to \vork in a mised pointer sizc en\~ironment, and 
it sometimes returns pointers to memory it 113s allo- 
cated, it nccds to use mised pointer sizes internally. 

Programming Interface lssues 

The cocsistence of 32-bit and 64-bit pointers raised 
scvcral design c l~~est io~is  for operating system and Ian- 
g u ~ g c  support, particularly in the area ofroutine inter- 
faces. When an application or  library is bcing modified 
to use 64-bit address space, argument passing may 
be the most exposed area. In this section, wc describe 
ho\.v mixed pointer size support affects argument- 
passing mechanisms and the design decisions made to 
case the coexistence of mised pointcr sizcs. 

Argument List Width 
Even before the introduction of64-bit addressing, the 
OpenViMS Calling Standard def ned argument list ele- 
ments to be 6 4  bits in \\kith. When passing a 32-bit 
address (that is, \\,hen passing an item in 32-bit space 
by rcfcrcncc), co~npilcrs sign extend the 32-bit value 
into the 64-bit argument location.' I'assing 64-bit 
addrcsscs as v a l ~ ~ e s  works transparcntlp without cliang- 
ing the calling standard, assuming, of course, that the 
callcd routine expects to receive 64-bit addresses. 
Passing 32-bit addresses as values to routines that 
expect 64-bit dddresses \vorks properly because tlie 
values  ha\^ been sign estendcd to a 64-bit cvicith. 

Pointers by Reference 
l',lssing tlie .iddresses of pointers requires special care 
\\,lien mising pointer sizes. If  tlic caller passes a 32-bit 
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addrcss by rcfcrcncc, .ind tlic callcd routine reads it as 
a 64-bit addrcss from mcmor!., the uppel- 32 bits \ \ f i l l  be 
incorrect. Similarly, if thc address o f a  64-bit addrcss is 
passed, and the called routine reads only 32 bits from 
menlor): it will hi1 \\,hell tliat address is ~ ~ s e d .  

This is the simplest case in which support of 64-bit 
addresses may rcq~lirc a progr~mniing interface change 
for 64-bit callers. A single entry point that receives 
a pointer by reference cannot tell which size pointer 
it has received. Sonic possible solutions includc a nc\v 
alternate entry point for 64-bit-capable callers or  a 
new parameter indicating the size of  the address. 

Pointers Embedded in Structures 
Pointers passed by reference are a special case of the 
more general problem of  passing structures that con- 
tain pointers. Again, the caller and called routine must 
agree o n  the size of  the pointers contained in tlie 
structure. This case offers an option that may not 
require a new programming interface, lio\ve\,er. Iftlic 
structure is self-icientifiling, the routine may be able to 
tell which h r m  of the structure it has received and clis- 
patch to appropriate code for the correspondi~~g 
pointcr Icngtli. 

Function Return Values 
Function rcturn values ,Ire also dcfincd to be 6 4  bits in 
widtli, so n o  calling standard change \\!as r e q ~ ~ i r c d  to 
support 64-hit pointcr returns. I t  is important tliat a 
64-bit addrcss not be rcturncd blindl!; tliough, ~ ~ ~ i l c s s  
it is lujo\vn that the callcr is 64-bit capable. typic all!^, 
this is a problem For lib]-,iry support routines ratlicr 
than for those \vithin an application. A library ro~~ t i l l c  
should rcturn a 64-bit address only if the routine has 
been specificall!/ dc\lcloped for a 64-bit en \ '  ~ ~ r o n m c n t  
o r  if it can tell \\.it11 certainty, based on  input parame- 
ters recci\,cd, tliat the cnllcr is 64-bit capable. 

Calling Standard Issues 
The OpenVlMS Calling Standard defines register usage 
con\.entions, argument list locations, data structures, 
and standard practices for malung procedure calls that 
operate correctly in a niultilanguage and multi- 
threaded cn\:ironment. As mentioned earlier, this stan- 
dard alrcaciy dcfincd argument list elements to be 
64 bits in \vidth; lio\vc\,cr, sonie key data structures 
defined by the standard were based on  32-bit pointcr 
sizes. The goal of  ~~p\\.ard compatibility for existing 
code complicated the job of cxte~lding the standard. 
TJie following sections describe ho\v the structures 
were ultim.~tcl\l changed and illustrate somc 
appronclies to  supporting mixed pointer sizes \vhcn 
sliarcd strilcturcs cont'lin pointers. 

Descriptors 1)cscriptors JI-c structures ciefincd by 
the calling standard to spcci+ an argument's type, 
Icngtli, and adclrcss,  long \\it11 other n p c  or 



structure-specific information. Typically, descriptors 
arc i~scd only for cl~aracter strings, arrays, and complex 
data types S L K I J  as packed decinial. 

llcscriptor types are by definition self-idcntiGing by 
\lirtue of the type and class fieleis they contaiu. An 
obvious choice, therefore, for extencling dcscriptors to 
handle 64-bit addresses \vould bc to acid new type 
constants k)r 64-bit data elements and extend the 
structure beyond tlie type felds to accomnlodate 
larger addresses and sizes. In practice, however, the 
address and length fields from descriptors are fi-e- 
quently used without accessing the type fclds, partic- 
~~ la r ly  \\{hen a character string descriptor is expected. 

As a result, a solution \\!as sought that \\10~1ld yield 
a predictable failure, rather than incorrect results or  
data corruption, when a 64-bit descriptor is received 
by '1 roiltine that expects only the 32-bit form. The 
final design includes a separate 64-bit dcscriptor layout 
tliat contains two special fields at the same offsets as 
the length and address fe.lds in the 32-bit dcscriptor. 
These fields are called IMBO (must be one) and 
M B M O  (must be minus one), respectively. The  sim- 
plest versions of  the 32-bit and 64-bit dcscriptors are 
illustrated in Figure 1. 

If a roiltine thnt expects a 32-bit dcscriptor rccci\rcs 
a 64-bit descriptor, it \vill find the value 1 in tlic length 
field. This nonzero value ensures tliat tlic addrcss \ \ r i l l  
ncecl to be read. Otherlvise, the dcscriptor could be 
t r e~ tcd  as describing a IILIII  \l;~lue, ,~ncl the address 
\vouId be ignored. In  the address field, a 32-bit reader 
\ \ ) i l l  find the value - 1. Wlicn the redder ,Ittempts to 
refcrcnce this ~ddrcss ,  an access \riolation occurs, 
because the OpenVMS operating system guarantees 
this addrcss to be inaccessible. This combination of  
values ensures that an access will also hil iftlic lcngth is 
addcd to the address ti rst, in an attempt to read thc last 
byte of data. 

BYTE 
OFFSET 

ADDRESS 

I LENGTH 

, O  CLASS 

4 

CLASS 

I ADDRESS 

SIMPLE 32-BIT DESCRIPTOR 

SIMPLE 64-BIT DESCRIPTOR 

DTYPE 

DTYPE 

Figure 1 
Sirnplcsr \/crsions o f  tlic 3 2 - b i t  nnci 64-bit 1)cscriptors 

LENGTH 

MBMO 

To distinguish the dcscriptor forms, a ne\v rout~ne 
must chcck tlic MI30 and MBMO fields for the 
e s p ~ t e d  64-bit dcscriptor values. In the OpenVMS 
operating system, man!! routines no\v accept either 
descriptor form. 

: 4 

MBO 

Signal Arrays The signal array is a user-visible struc- 
ture that is passed to condition handlers when an 
exception occurs. The array contains message codes, 
arguments specific to  the conditions, and control data. 
Because the arguments map include one or more vir- 
tual addresses, a ncw Format \\/as necessary to accom- 
modate 64-bit addresses. 

The signal array coulci not simply be promoted to 
contain 64-bit addresses, becai~se Ilandlers in existing 
code often nialze ' l s s~~~i~p t ions  about its format. :The 
111echanism array, a related structure c o ~ ~ t a i ~ i i n g  a snap- 
shot of register contents, was already 6 4  bits in width. 

The solution w s  to leave the original form of  the 
signal array unchanged and create a 64-bit counter- 
part. The items passed to a condition handler, the 
32-bit signal array address, 2nd a 64-bit mecha~~ism 
array address are the same. The mechanism array now 
co~i ta i~is  a pointer to the 64-bit \~ersion of tlie signal 
array. This allo\\~s existing code to worlc without 
change, urhile new liandlcrs that may require access to 
64-bit addresses in csccptions can obtain the 64-bit 
array address from tlic meclianism array. Some addi- 
tional \vorl< \\!as needed in OpcnVMS exception Iian- 
dling to lceep these t\\'o arrd!a s!lnclironized, because 
handlers are allo\\~ed to change their contents. 

: 0 

Sign-extension Checking 
As described earlier, 32-bit addrcsses passed as routine 
arguments arc sign extended into 64-bit argument loca- 
tions. A safeguard that can be used in 32-bit routines 
that are not extended to fi~lly support 64-bit addresses is 
refcrrcd to as sigo-extension checking of the argument 
addresses. This checking consists of simply reading the 
lo.i\, 32 bits ofthe argument, sign extencling this v a l ~ ~ e  to 
a 64-bit \\~idtli, , ~ n d  comparing the result to the f ~ ~ l l  
64  bits of the  argument. Ifthe bits differ, the address is 
not one that can be rcprcsentecl in 32 bits. The routine 
can then return an crrorstatus ofsome kind, rather than 
failing in some ~~~lprcdictablc way. Sign-extension 
checking is a uschl tool for ensuring robust interhces in 
the mixed pointer size en\ ~ o n m e n t .  ' 

DEC C Language Support for Mixed Pointer Sizes 

To support application programming in tlie mixed 
pointer size cn\fironmcnt, some design work was 
rccluircd in tlic DE(:  C compiler. Tliis section 
describes the rationale behind tlie final design. 

I t  \\!as clear tliat tlie compiler \vould have to provide 
a for 32-bit and & - b i t  pointers to coexist in the 
same regions ofcode. At thc same time, customers anti 
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internal users initially f ~ v o r e d  a simple comnialld linc 
switch \\/hen polled o n  potential compiler support  
for 64-bi t  address space. (At least o n e  C compilel- that  
supports 64-bi t  addressing, lMIPSpro C, does so  only 
through c o ~ i i m a ~ i d  line switches for setting pointer 
s i ~ e s . ~ )  T h e  motivation for using switches was t o  limit 
the source changes needed t o  take advantage o f  the 
additional address space, especial ly U ~ I ~ C I I  portability 
t o  o ther  platforms is desired. For  cases in which ~ n i x -  
ing pointer sizes was unavoidable, something more  
flexible than a switch was needed. 

Why Not -near and -far? 
T h e  most c o m m o n  suggestion for controlling indi\~id- 
ual pointer declarations was t o  adopt  tlie -near and 
-far type qualifier syntax used in the PC e ~ i \ , i r o ~ i ~ i i e n t  
in its transition from 16-bi t  t o  32-bi t  addressing.' 
While this idea has merit in that  it has already been 
~ ~ s e d  else\\~here in C compilers and is Gmiliar t o  PC 
software developers, we rejected this approach for the 
follo\ving reasons: 

T h e  syntax is not  standard. 

T h e  syntax requires source code edits a t  each dccla 
ration t o  be affectcd. 

T h e  syntax has become largely obsolete even in the 
P C  domain with the acceptance o f  the flat 32-bi t  
address space model offcred by modern 3 5 6 -  
minimum PC: compilers and the  Win32  program- 
ming interface. 

Because o f  the vast difference in scale in choosing 
benvee~i  16-bi t  o r  32-bit pointers o n  a P C  as com-  
pared t o  choosing between 32-bit o r  64-bit pointers 
o n  an Alpha system, there would be n o  porting ben- 
efit in using the same keywords. No existing source 
code base would be able t o  por t  t o  tlie OpenVMS 
mixed pointer size environment Inore easily because 
o f t h e  presence of-near and f i l r  qualifiers. 

Pragma Support 
T h e  Digital UNIX C compiler had pre\~iously defined 
pragma preprocessing directives t o  control pointer 
sizes for slightly diffcrcnt reasons than those described 
for the  OpenVblS system.' By default, the Digital 
UNIX operating system offers a pure  64-bi t  addrcss- 
ing model. In some circumstances, however, it is dcsir- 
able t o  be able t o  represent pointers in 3 2  bits t o  
match externally imposed data layouts or, more rarely 
t o  reduce tlie amount  o f  memory used in representing 
pointer v a l ~ ~ e s .  7 l i e  Digital UNIX poilitel--size prag- 
mas work in conjunction \\,it11 command lint options 
and linlter/loader features tliat limit mernory use and 
map memory such that pointer \ialues accessible t o  the 
C program can always be represc~ited in 3 2  bits. 

Since compatibility with the Digital UNIX compiler 
\\/auld have greater valuc if it met  the needs o f  the 
OpcnVi\/IS platform, \ve evaluated the pragma-based 
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approach and decidcd t o  adopt  it, propagating any 
necessary clialiges back t o  the U N I S  platfor111 t o  main- 
tain compatibility. T h e  decision t o  use pragmas t o  
control pointer size addl-essed the major deficiencies 
o f  tlie -near and -far approach. 111 particular, the 
praglna directive is specified by ISO/ANSI C in such 
a way that using it docs not  compromise portability as 
the use o f  additional k e ~ w o r d s  can, because unrecog- 
nized pragmas arc ignored. Furthermore,  pragmas can 
easily be specified t o  apply t o  a range o f  source code 
rather than t o  an individual declaration. A number  o f  
DEC C pragmas, including the pointer size controls 
iniplcrnc~itcd o n  the U N I S  system, pro\,idc the ability 
t o  save and restore thc state o f  the pragma. This rnaltcs 
thern con\lenient and safe t o  use t o  modifi! the pointcr 
size c\!itliin a particular region o f c o d e  mritliout disturb- 
ing the surrounding region. T h e  state may easily be 
saved before changing it a t  the beginning o f t h c  region 
and then restored at  t h e  end .  

Command Line Interaction 
Pragmas fit in with the initial desire o f  prospective 
users t o  have a simple command line s\\litch t o  indicate 
6 4  bits. As \vitIi several o ther  pragmas, we  defined a 
command line qualifier (/pointel--size) t o  spcci@ the 
initial state o f  the pragma befol-e any instances arc 
c n c o ~ ~ n t e r e d  in the  text. Unliltc other  pragmas, 
though,  we also use tlie same command line clualifier 
t o  enable o r  disable the  action o f  the pragmas alto- 
gether. 111 this way, a default compilation o f  sourcc 
codc modified for 64-bi t  support  behaves the same 
\\!a)! tliat it \vould o n  a system that did n o t  offer 64-bi t  
support .  T h a t  is, the PI-agmas arc effectively ignored, 
\vith o111y an informational message produced. 

This  behavior \\!as ddopted for consistency \\!it11 tlie 
Digital UNIX behavior and also t o  aid in the process o f  
adding optional 64-bi t  support  t o  existing portable 
32-bi t  source code that  might  be  compiled fo r  all 
older systelii o r  \\jith a n  older compiler. In  this model, 
a compilation o f  lit\\/ source code using an old com-  
m a n d  line produces behavior t h ~ t  is equi\!alent t o  the 
behavior produced ~ ~ s i ~ i g  an older compiler o r  a co111- 
pilcr o n  another  platform. MIith o n e  notable cxccp- 
tion, building an application that  actually uses 64-bi t  
addressing recluil-es changing the command linc. 

T h e  exccptioli t o  the rule that existing 32-bi t  build 
procedures d o  n o t  create 64-bi t  dependencies is a sec- 
o n d  form o f t h c  pragma, named recluircd-pointer-sizc. 
This form contrasts \ \~i th  the form pointer-size in tliat it 
is al\\lays active regardless o f  command line q~~al if icrs ;  
otherwise, recluired-pointer-size and poin ter-size are 
identical. T h e  intent o f  this second pr~ igma is t o  sclp- 
por t  \ \ ~ i t i n g  source code tliat specifics o r  interfaces t o  
s c r ~ ~ i c c s  o r  libraries that can only \vork correctly \vitIi 
64-bi t  pointers. hi example o f  t l i s  code might  be '1 
header file that contains declarations for both 64-bi t  
a ~ i d  32-bit memory management  scr\~ices; the scr\~iccs 



must always be defined to  accept and return the 
appropriate pointer size, regardless of the command 
line qualifier used in tlie compilation. 

Pragma Usage 
The use of  pragmas to control pointer sizes within a 
range of source code fits well with the model of  start- 
ing with a working 32-bit application and este~iding it 
to exploit 64-bit addressing with lni~iimal source code 
edits. Programming interface and data structure decla- 
rations are typically packaged together in header files, 
and the primar!! ma~i ip~~ la to r s  of  those data structures 
are often implemented together in ~nodules. 

One good approach for extending a 32-bit applica- 
tion would be to  start with an initial analysis of  mern- 
ory usage measure~nents. The purpose of  this analysis 
would be to  produce a rough partitioning of  routines 
and data structures into 13vo categories: "32-bit suffi- 
cient" and "64-bit desirable." Nest, 64-bit pointer 
pragmas could be used to  enclose just the header files 
and source  nodules that correspond to  the r o ~ ~ t i n e s  
and data structures in the 64-bit-desirable category. 
Aftel. recompilation, the nest step \\loiild be to respond 
to compiler diagnostics for pointer-type mismatches by 
adding praglna regions to mark sections of  the 64-bit 
files as 32-bit and parts of the 32-bit files as 64-bit and 
to careftilly add type casts, \\[here necessary. This opera- 
tion is likely to itcratc i~ntil the compilation is clean and 
a debugging cycle has shown correctness. The end 
r c s ~ ~ l t  is an application that takes advantage of the 
increased address space for the data structures that will 
benefit from it. 

A common approach to ~uinirnizing the spread of 
pragmas throughout a program is to  limit them to 
typedefs in header files. Thcn, subsequent uses of  tlie 
defined type d o  not require the pragma. A simple 
cxaniple appears in Figure 2 .  

This exa~nple defines a type cillcd char-ptr64, 
\vliich may be used to  declare 64-bit pointers to  char- 
acter data without tlie use ofpragmas. Ofcourse, indi- 
vidual pointers \vitIiin structure types liiajr also be set 
to 64-bit or 32-bit sizes. 

Secondary Effects 
With the decision made to use pragmas and the basic 
semantics of hour the pragnias taltc effect established 
by the Digital UNIX implcliientation, \ve needed to 
consider ,idditional recluircments and issues that 

might be specific to  the OpenVMS implementation. 
Two major differences between the platforms are 

1. O n  the Digital UNIX system, tlie linl<er/loadcr 
options used with mixed pointer size compilations 
ensure that any address \lalue obtained by the pro- 
gram can be represented using 32 bits, whereas on  
the OpenVMS system, any prograni using 64-bit 
pointers in C \\ill almost certainly encounter address 
\lalues that cannot be represented in 32 bits. 

2.  O n  the Digital UNIX system, the scope of  thc use 
of rnised pointer sizes was expected to  be quite 
s~iiall and not likely to grow much oiler time, 
\vhereas on the OpenVlMS s)lstcni, the scope is 
espected to be somewhat larger at f rst and grow 
significantly over time. 

These 13\70 differences e~nphasizcd the need for cffec- 
tive compile-time diagnostics, debugging aids, envi- 
ronmental support, and clear documentation. 

Diagnostics As an aid to  finding bugs rcsultilig from 
improper mixing of pointer sizes, tlie DEC C compiler 
provides nvo liinds of diagnostics. Compile-time warn- 
ings are issued for assignments from long pointers to 
short pointers because of  the possibility ofdata loss. 111 

addition, users may enable run-time checking for 
pointer truncation through a command line clualificr. 
This option causes the cornpilcr to generate code on  
each conversion from a long to  a short pointer, which 
will signal a range-check error if data truncation occurs. 

Run-time checlii~ig is particularly usefill in code that 
sorneti~nes employs type casting to ~1st. long pojnters 
in short pointer contexts. Since this action prevents a 
compile-time warning about using a long pointer 
where a short pointer is expected, a rull-time check 
may be the only way to discovcr a coding error. Tlic 
run-time check qualifier provides options distinguisli- 
ing this case from checking on general assignments 
and parameter passing, allo\\ling ilscrs to select for 
which classes of  pointer-size mixing the compiler 
shoi~ld generate checking code. Run-time cl~ecl<i~ig is 
also available for parameters received by a routine. 
This allows detection of  64-bit addresses passed to 
routines that expect 32-bit parameters even when the 
caller is separately co~iipilcd or  written in a different 
programming language. For performance reasons, it is 
~~sual ly  desirable to  rernoLre all run-time checking once 
a program is debugged. 

# p r a g m a  r e q u i r e d - p o i n t e r - s i z e  s a v e  / *  Save t h e  p r e v i o u s  p o i n t e r  s i z e  * I  
# p r a g m a  r e q u i r e d - p o i n t e r - s i z e  6 4  / *  S e t  p o i n t e r  s i z e  t o  6 4  b i t s  * /  
t y p e d e f  c h a r  * c h a r - p t r 6 4 ;  / *  D e f i n e  a  6 4 - b i t  c h a r  p o i n t e r  * /  
# p r a g m a  r e q u i r e d - p o i n t e r - s i z e  r e s t o r e  I *  R e s t o r e  t h e  p o i n t e r  s i z e  * I  

Figure 2 
S'~mplc Headcr File Code 'That Limits l'ragmas to Defined Types 
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Allocation Function Mapping The comnland I~ne 
cludifier setting the default pointer size has an ad&- 
tional effect that simplifies the use of  64-bit address 
space. If an explicit pointer size is specified on the 
command line, the malloc fi~nction is mapped to a 
routlne specific to the address space for that size For 
example, -malloc64 is used for malloc cvhen tlie 
default pointer size is 6 4  bits. This allows allocation 
of  64-bit address space without additional source 
changcs. The source code may also call tlie size- 
specific versions of run-time routines explic~tly, \vhcn 
compiled for m~ved pointer sizes. These size-spec~fic 
funct~ons are available, however, only when the 
/pointer-size command line qi~alifier is used. See 
"Adding 64-bit Pointer Support t o  a 32-bit Run-time 
Library" in this issue for a discussion ofothcr effects of 
64-bit addressi~ig on tlie C run-tlmc library." 

Header File Semantics The treatment of pointer-size 
pragmas in and around header files (i.e., any source 
included by the #include preprocessing directive) 
deserves special melition. Programs typically include 
both private definition files and public or system-specific 
header files. In the latter case, it may not be desirable for 
definitions within the header files to be affected by the 
pointer-sjze pragmas or  comma~id line currently in 
effect. To prevent these definitions from being affected, 
the DEC C co~npiler searches for special prologue and 
epilogue header files when a #include directive is 
processed. These files may be used to establish a par- 
ticular state for en\~ironrnental pragmas, such as 
pointer-size, for all header files in the directory. This 
eliminates the need to  modify either the individual 
header f les or die source code that includes them. 

The co~npiler creates a predefined macro called 
-INITIAL-POTNTER-SIZE to indicate tlie initial 
pointer size as specified 011 the command line. This may 
be of particular use in header files to determine what 
pointer size should be used, if mixed pointer size sup- 
port is desirable. Conditional cornpilatioil based on this 
macro's definition state can be used to set o r  override 
pointer size o r  to detect compilation by an older com- 
piler lacking pointer-size support. Ifits value is zero, no  
/pointer-size cl~~alifier was specified, nlhich means that 
pointer-size praglilas d o  not take efkct. If its value is 
32  or  64, pointer-size pragnlas d o  take effect, so it can 
be assumed that mixed pointer sizes are in LISC. 

Code Example 
I n  tlie si~iiple code example shown in Figure 3, sup- 
pose that the routine procl  is part of  a library that has 
been only partially promoted to  use 64-bit addresses. 
This function may receive either a 32-bit address o r  a 
64-bit address in the arStlrnerzt-j)tl- parameter. To 
demonstrate the use of the  nc\v DEC C features, procl 
has been modified to copy this character string para- 
meter from 64-bit space to 32-bit space when neces- 

sary, so that routines that procl subsequently calls 
need to deal \\lit11 only 32-bit addresses. 

The -INITLAL_POINTER-SIZE macro is used to 
determine if pointer-size pragmas will be effective 
and, hence, cvliether argumentpt rmight  be 64 bits it1 
width. If it might be a 64-bit pointer, whose actual 
width is ~~nluiocvn in this example, the pointer's value 
is copied to  a 32-bit-\vide pointer. The pointer-size 
pragma is used to change the current pointer size to  
32 bits to declare the temporary pointer. Next, the 
two pointer values are compared to determine if 
the original pointer fits in 32 bits. If the pointer does 
not fit, temporary storage in 32- bit addressable space 
is allocated, and the argument is copied there. Note 
that the example uses ma l loc32  rather than malloc, 
because malloc would allocate 64-bit address space 
if the initid pointer size was 6 4  bits. At the end of 
the routine, the temporary space is freed, if necessary. 

A type cast is used 111 the assignment from 
argunzerl tptr  to temp-sborLprr, even though both 
variables are of  type char *. Without this type cast, if 
a~quinerz~-ptr- is a 64-bit-wide pointer, the DEC C 
compiler ~ l o u l d  report a warning message because of 
the potential data loss when assigning fi-om a 64-bit to 
a 32-bit pointer. 

For other examples of pointer-size pragmas and the 
use of  the -INITIAL_POINTEKSIZE macro, see 
Duane Smith's paper on 64-bit pointer support in 
run-time libraries." 

OpenVMS System Services 

The OpenVMS operating system provides a suite of 
scr\~iccs that perform a variety of basic operating s)a- 
tern filnctions.' Design \vork was r c q ~ ~ i r e d  to  maxi- 
mize the utility of these routines in the new mixed 
pointer size environment. Issues that needed to  be 
addressed included the follo\ving, which are discussed 
in subseclucnt sections: 

Se\leral services pass pointers by reference and, 
hence, required an interface change. 

Beca~~se  of  resource consuaints, not all system ser- 
vices could be promoted to  handle 64-bit addresses 
in the first version of the 64-bit-capable OpenVMS 
operating s)rstem. 

Since tlie services provide mixed levels ofsupport, it 
is important to indicate those that support 64-bit 
addresses and those that d o  not. 

Certdin ~ i e \ \ ~  services seemed dcs~rable to improve 
tile usability of 64-bit address space. 

Services That Are 64-bit Friendly 
Services that can be promoted to  support 64-bit 
addrcsses \vithout any i~itcrhce change are called 64-bit 
friendly. If a scr\ice I-eceives an address by reference, tlie 
service is typically not 64-bit friendly, and a scparatc 
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v o i d  p r o c l ( c h a r  * a r g u m e n t - p t r )  
C 
# i f  - INITIAL-POINTER-SIZE ! =  0 

# p r a g m a  p o i n t e r - s i z e  s a v e  
# p r a g m a  p o i n t e r - s i z e  3 2  
c h a r  * t e m p - s h o r t - p t r ;  
t e m p - s h o r t - p t r  = ( c h a r  * ) a r g u m e n t - p t r ;  
i f  ( t e m p - s h o r t - p t r  ! =  a r g u m e n t - p t r )  C 

t e m p - s h o r t - p t r  = - m a l l o c 3 2 ( s t r l e n ( a r g u m e n t _ p t r )  + 1 ) ;  
s t r c p y ( t e m p - s h o r t - p t r , a r g u m e n t - p t r ) ;  
a r g u m e n t - p t r  = t e m p - s h o r t - p t r ;  

1 
e l s e  C 

t e m p - s h o r t - p t r  = 0; 
> 
# p r a g m a  p o i n t e r - s i z e  r e s t o r e  

# e n d i  f 

/ * 
The a c t u a l  b o d y  o f  p r o c l  i s  o m i t t e d .  Assume t h a t  i t  c a l l s  
r o u t i n e s  t h a t  o p e r a t e  o n  t h e  d a t a  p o i n t e d  t o  b y  a r g u m e n t - p t r  
a n d  t h a t  t h e  r o u t i n e s  a r e  n o t  y e t  p r e p a r e d  t o  h a n d l e  6 4 - b i t  
a d d r e s s e s .  

* / 
# i f  - INITIAL-POINTER-SIZE ! =  0 
i f  ( t e m p - s h o r t - p t r  ! =  0 )  

f r e e c t e m p - s h o r t - p t r ) ;  
# e n d i  f 
1 

I 

Figure 3 
Code Esaniplc of L'oinrcr-size Prag~nas and thc -INITIAI,-POINTER-SIZE Mi1c1.0 

entry point is required to support 64-bit addresses. A 
single routi~ic cannot distinguish whether the address at 
the specified location is 32 bits or 6 4  bits in width. 

If a service docs not receive o r  return an address by 
reference, the scr\;icc is usuall!r 64-bit friendly. Even 
descriptor argilmcnts present no problem, because tlic 
32-and 64-bit versions can be distinguished at run 
time. The majority of services hll into this category. 

'The scr\iiccs that are not 64-bit fiicndl!l include 
the entire suitc of mcn~ory management system scr- 
\,ices, since they access address ranges passed by refer- 
ence. Other such services include those that receive 
3 32-bit vector as an argument, \\lhicIi may include the 
address of a pointcr as an elclncnt. A good example 
from this group is SYSSFAOL, which accepts a 32-bit 
\.cctor argument h r  formatted output. For all these 
services, ne\\* intcrhccs were designed to accommo- 
date 64-bit callcrs. 

Promotion of Services 
The OpenVMS project team esplorcd the idca of  pro- 
moting all system scr\~iccs to support 64-bit addresses. 
Since the majorin1 of OpcnVMS systrm service 
routines arc \vrittcn in the MACRO-32 assembly Ian- 
gilage or  the Bliss-32 programming language, the 
intcrnals of the routines could not be promoted to 
handle 64-bit addresses \ v i t h o ~ ~ t  modifications. We 
could not take ad\,antagc of the throw-the-s\\~itcli 
approach, and we did not want to because many 

poi~lters L I S C ~  internally in the OpcnVMS operating 
system remain at 32 bits. 

We considcrcd using 64-bit jacket routines to copy 
64-bit arguments to  the stack in 32-bit spacc, \\lhich 
would then ciill the 32-bit internal routine to perform 
the requested fi~nction. Hocvevcr, this approach would 
fail for context argumelits such as asyncl~ronous system 
trap (AST) routine parameters, where the address of 
the argument is stored for subseq~~cnt  use. This 
approach cvoi~ld also prevent services from operating 
on any true 64-bit addresses. I t  was clear tliat at least 
some roirtincs would lia\le to be modified internally. 

The idca of using jacket routines was i~ltil~lntcly 
rejected for several reasons. First, the jackets woi~ld 
need to be custom written to  ensure correct parameter 
semantics. There could not be a " c o m ~ i ~ o n  jacltct" 
tliat coulcl lia\$c sa\,ed time a n d  lo\vered risk. Scco~id, 
there \vollld be an undesirable pcrforniance inipact for  
64-bit callers. Third, we decided that having a com- 
plete 64-bit system service suitc was not essential for 
usable 64-bit support. We could define a subset that 
t\~ould nicct the needs of 64-bit address spacc i~scrs, 
\vhile lo\vcring our risk and implementation costs. 

The ser\iccs selected for 64-bit support 611 into 
four categories. 

2. Performance-critical services. This group includes 
services that are typically sensitive to the addition of 
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even a fen' c!rclcs of c sec~~t ion  ti~iie. Rccli~il.ing tliat 
a 64-bit addrcss i~scr cio any additio~lal \\*ark, such 
as copying data to  32-bit space, is undesirable. An 
example of this typc of service is SYS$F.NQ, \vhich 
is used for q~rcuing lock requests. 

3. Design center scr\liccs. TIic primary design ccntcr 
for 64- bit support nPas database applications. 
Database arcliitccts and consultants \\,ere polled to 
determine \\,hicIi scrviccs \Irere niost ~~cedeci  b!. 
their prociucts.  many of these ser\.iccs, h r  csnmple 
SYS$QIO k)r q ~ ~ c u i n g  1/0 rcqucsrs, \\'ere also in 
tlie performance-critical set. 

4. Other i~sefi~l  basic scr\~ices. This sct inclttdcs scr- 
vices to case the transition to 6 4  bits \\fit11 minimal 
change to program structure. For csamplc, the 
SYS$CkII<RNL scr\~icc accepts a routine adclrcss 
and a \,ector of 32-bit nrgilmcnts and i~~\ ,o l tcs  tlic 
routine in I<cnlcl mode, passing those arguments. 
W i t h o ~ ~ t  a nc\\. 64-bit version of SYS$<:MI<RNL., 
a caller could not pass a 64-bit address to the kernel 
modc routine \\~ithoilt changing the h r m  of tlic 
argument block, s ~ ~ c h  as passing a stri~cturc that 
SYS$CILII<RNL \\louId not interpret as a 

Scvcral steps n7crc taken to  ease programmi~lg to 
this subset i~nplcmenratiol~. 

For all 64-bit scr\,iccs, rrll pointer a r g u m c ~ ~ t s  may 
be in 64-bit spacc. Estending only i~ldi\ ' iti~~nl . I ~ ~ L I -  
lnents for some scrviccs uvould have been co~ihlsing 
and difficult to docuuicnt. 

Thc 64-bit-capable s!rste111 scrviccs arc clcarl!l listed 
in thc OpcnV1US documc~itation, and the docu- 
mentation k)r indi\riclual ser\,iccs clearly calls out  
their capabiliti~s.'~ 

For C programmers, the header filc that defines 
hnction prototypes for system scr\,iccs 
(STNW5T.H) clcfincs the expectcci pointer s ~ z c  
for scr\licc arguments. This filc can be useti for 
compile-time type checking for correct argument 
pointer sizes. 
A strict naming convention has been adhered to k)r 
64-bit sen-ices. If n ro~rtinc \\.as 64- bit t'ric~~dl!., i.c., 
it rccl~~ircd n o  intcrhce change, its I1:lmc \\,,IS not 
chru~gcd. If a net\, entry point \\.;is required 
because, fix csamplc, an address is passcd hy I-cfcl-- 
ence, a "-64" suffix  as added to the name to idcn- 
ti@ the nc\v entry point. 

Sign-extension chcclting is performed in routines 
that d o  not acccpt 64-bit addrcsscs. 

Centralized Sign-extension Checking 
Fol- ser\~iccs that have not been promotcci to acccpt 
. i r g i ~ ~ ~ ~ r i t s i i n  64-hit spncc, centralized sign-cstcnsiol~ 
checking taltcs place. As described in the scction Sign- 
extension Checking, such checking prcvcats errors that 

occ~11- \\,hen a 64-bit address is crroncousl!. passcd to a 
routine that uscs only 32-bit addrcsscs. Tliis ccntralizcd 
checking is part of tlie system scr\,icc dispntclicr, \vhich 
returns the error status SS$-AK(;-tiTl<-32-RITS \\rhcn 
the error is disco\~c~-ccl. Perfi)rming tlic checking at this 
common ~ x ) i ~ i t  minimized the i~liplcmcntntioii effort, 
~vhile protecting scnsiti\-c iuncr modc scr\.iccs. No 
changes \\.ere ncccss.ii-y to the ~nodulcs tliat contain the 
32-bit scr\.icc code. The internal vcctol- of scr\.ices con- 
tains ;I Hag tbr cnch service indicating \\.Iicther checking 
sho~~lr i  be done. 

Nat~~rall!', it is best for miscci-size cl.rors to be dis- 
covered nt compile time. The 1)E(: <: compjlcr issues ;I 
warning message \\bell a 64-bit pointcr is used as a 
parameter to a rot~tine whose fi~nction prototype spec- 
ifics that tlic parameter sho~.~lci be ,i 32-bit pointer. 
Run-time sign-cstcnsion checking \\.orlis for ;i~i!, lan- 
gtinge, thougli, including MA(:I<O-32. 

Tliis support can also be ~ ~ s c c l  to ~11o\\ a run-time 
decision to be made to copy data horn 64-bit spacc 
to  32-bit spncc. For cxamplc, a routine could call a 
system scr\~icc, passing along a n  uiici~.css that it 
had rcccivcci as a p~ramcrcr.  I f  thc scr\ricc rcturl~s 
SSS-ARG-C;?'R-32-BITS, the calling routine can 
then copy the argument to tlic stack 2nd retry the scr- 
\*ice. In this \\'a!, tlie ovcrhcncl of cop!.ing cvi  bc 
a\.oidcd if copring is unncccssal.!,. \Vlicn the s!.stc~ii 
scr\.icc is promotcci to hancllc 64-bit nridrcsscs in a 
f~iturc \.crsion of the OpcnV1MS operating s!'stcm, no 
change \\.ill be nccdcd in this caller; the data copying 
code \\!ill nc17cr be invoked. Tliis nppl-oach Inay be 
appl-oprintc for ;I run-time librnry t l ~ a t  nccds to bc fi~ll!. 
64-bit c~pahlc  tocia!, o n  OpcnVhlS Alplin \rcrsio~i 7.0, 
if that librilr!, \ \ , i l l  11ot be rcrclcascd tix .I futi~rc \.crsion 
of the OpcnVMS operating ~ ! ~ s t c n ~ .  

Memory Management System Services 
The (1puiV1VS memory manngcmcnt s!,stcnl scr- 
vices arc not 64-bit friendly bccai~sc tlic!~ pass 32-bit 
input and output address arguments hy rcfcrelicc. 
This set of scr\~iccs includes SYSSESI'REC; (expand 
progr.lni/contl'"I region), SYSSI\IIC;I<I.S<: (map global 
scction), SYSS(:Rh4l'SC (create rind m;lp scction), ant1 
SYSSl'UI<C;WS (purge \\.orl<inp sct), ,lrnong otlhcrs. 

yuiciiug p~.inciple in promotillg these scr\.iccs 
\\.as that the nc\\. 64-bit services I~nd to pcrkjrm tlie 
samc fi~nctions 3s their 32-bit co~lntcrparts but not 
necessarily \\~ith an identical intcrfiicc. Since 32-bit 
addrcsscs cnli bc csprcssed as 64-bit nddl-csscs \\,it11 
sign-citcnsion bits in the Llppcr 32 bits, it mnrlc scnsc to 
accomn~odatc 32-bit addrcsscs in the 64-hit i~~tcrhccs ,  
malung the nc\\. scr\.iccs a supcrset of the 32-bit forms. 
For csamplc, tlic SYSSCh\II'S<: scr\.icc \\as split into 
multiple 64-bit-cnpablc ser\.iccs, bccn~rsc it h;~~iclles a 
\,aricnr of rips ofscctions. Tllc nc\\, scr\.iccs cun opc r~ tc  
01.1 cithcr 32-bit or  64-bit adtircsscs ;lnd h;l\.c simpler 
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interfaces than the 32-bit-only SYS$CR.iiPSC. The 
original SYS$(;hMPSC is still present so tliat esisting 
code may f~inction \\,itbout change. 

Some new feature requests \yere considered as part 
of the 64-bit effort, but, to maintain the focus of 
the release, these features \\rere not inlplerne~lted. The 
64-bit memory management services \\{ere designed 
to more easily accommodate new features in the 
filturc. For csaniplc, the neu! services check the argu- 
ment count for both too many and too few supplied 
arguments. I n  this way, new optional argllmcnts can 
be added later to the end of thc list \vithout jeopardiz- 
ing bacltc\lard compatibility. 

Virtual Regions 
One new feature that \\!as addcd to  the suite of 64-bit 
~ n e ~ ~ i o r y  Inanagcnicnt ser\~ices is support for ncw enti- 
tics called \~irtual rcgions. A virtual rcgion is an address 
range tl1at is rcser\~ed by a progmm for f~iture dynamic 
allocation requests. Tlic I-cgion is similar in conccpt to 
the program rcgion (PO) and the cotltrol rcgion ( P l ) ,  
\\~hich have long csistcd o n  the OpenVMS operating 
system." A \lirtual rcgion differs from tlic progmm and 
control regions in that it may be defi ned by the uscr by 
calling a systcln ser\licc and may exist n'itliin PO, P l ,  01- 

the ne\v 64-bit aclcircssable process-private space, P2.' 
When a \!irtual rcgion is crcated, a handle is returncd 
that is subseqi~entl!~ ~ ~ s c d  to identi* the rcgion in 
memory Inanagcmcnt rccli~csts. 

Address space \vithin \rirti~al rcgions is allocated in 
the same manner as in the default PO, P1, and P2 
regions, with allocation cicfined to expand space 
to\\rard either ascending o r  descending addresses. As 
in the dehult  rcgions, allocation is in multiples of 
pages. Tllc OpcnV1MS operating system lceeps track of 
the first fice \ f i r t~~a l  addrcss \\lithin the region. A region 
can be created S L I C I I  tllat adciress spacc is created auto- 
matically \ \~hen a virtual reference is made within the 
region, just 21s the control region in PI  space espands 
~~utomatically to accom~iiodate user stack expansion. 
Whcn a \zirtual region is created within PO, P1, or  P2, 
the remainder of that containing region decreases in 
size so  that it does not o\,erlap \ ~ i t l i  the v i r t~~a l  region. 

Virti~al regio~is \vcre addcd to the OpenVMS Alpha 
opuating system along u'ith the 64-bit addressing 
capability so tliat thc I ~ L I ~ C  expanse of 64-bit address 
space co~~lc i  be Illore easily managed. If a sul?system 
recluircs a large portion of virtt~ally con t ig~~ous  address 
space, thc spacc can he rcser\ned \\,ithin P2 \\lit11 little 
o\~erliead. Other s~~bsystcms \\litliin the application 
cnnnot inadvertently interfere \\it11 the contiguity 
of this addrcss space. They may create their o\vn 
regions o r  create addrcss space within one of  the 
default regions. 

Another advantage of using \.irtual regions is tliat 
they arc the most efficient \\In\. t o  manage sparse 
address spacc \\lithin the 64-bit P2 space. Further- 

more, no  quotas are charged for tlie creation of  a vir- 
tual region. The internal storage for the description 
of the  region comes from process addrcss space, \vhich 
is tlie only resource used. 

Summary 

This paper presents tlic rcasons behind the ncw 
OpenVMS mixcd pointer size environnicnt and the 
support added to allo\\~programming within this en\+ 
ronn1ent. The discussion touches on sollie of  the new 
support designed to sirnpli* the rrsc of the 64-bit 
addrcss space. 

The approaches discussed yielded full up\\~ard com- 
patibility for 32-bit applications, \\rliile allo\ijing other 
applications access to tlic huge 64-bit address spacc for 
d a t ~  sets that rcquire it. Promotion of all pointers to 
64-bit Ividth is not  rcq~~irc t i  t o  irse 64-bit space; the 
mixed pointer size en\~iron~iient  was considered para- 
mount in all dcsign decisions. A case study of adding 
64-bit support t o  the C run-time library also appears 
in this issue of the./o~~n.ml." 
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Duane A. Snuth 

Adding 64-bit Pointer 
Support to a 32-bit 
Run-time Library 

A key componen t  of delivering 64-bit addressing 
o n  t h e  OpenVMS Alpha opera t ing system, ver- 
sion 7.0, is a n  enhanced  C run-time library t h a t  
allows application programmers  to allocate a n d  
utilize 64-bit virtual memory  f rom thei r  C pro- 
grams. This C run-time library includes modified 
programming interfaces a n d  addit ional  n e w  
interfaces y e t  ensures  upward  compatibility 
fo r  existing applications. The s a m e  run-time 
library suppor t s  applications t h a t  u se  only  
32-bit addresses,  only  64-bit addresses,  o r  
a combination of both .  Source code  changes  
a r e  n o t  required to utilize 64-bit addresses,  
a l though recompilation is necessary. The n e w  
techniques  used to analyze  a n d  modify t h e  
interfaces a r e  n o t  specific to t h e  C run-time 
library a n d  can serve  a s  a gu ide  fo r  engineers  
w h o  a r e  enhancing their  programming inter- 
faces to suppor t  64-bit pointers. 

The OpenVMS Alpha operating system, version 7.0, 
has extended tlie address space accessible to  applica- 
tions beyond the traditional 32-bit address space. This 
new address space is referred to as 64-bit virtual mem- 
ory and requires a 64-bit pointer for memory access.' 
The  operating system has an additional set of  new 
menlory allocation routines that allo\vs programs to 
allocate and release 64-bit niernory. In OpenVMS 
Alpha version 7.0, this set ofroutines is the only rnech- 
anism available to accluirc 64-bit niernory. 

For application programs to take advantage of these 
ne\v OpenVMS programming interfaces, high-level 
program~i~ing languages such as C had to  support 
64-bit pointers. Both tlic C, co~npilcr and the C run- 
time library r eq~~i red  changes to provide this support. 
The compilcr nccdcd to ~~ndcrs t and  both 32-bit ;lnd 
64-bit pointers, and the run-time library needed to 
accept ancl return sucll pointcrs. 

The compilcr has a new ~1~1idifcr called /pointer-sizc, 
\\,hich sets the dct i i~ l t  pointcr size tbr the compilation 
to either 32 bits or 6 4  bits. Also added to thc compilcr 
are praggmas (dirccti\/cs) that can be used \\,ithin tlic 
source code to  change tlie active pointer s i x .  An 
application program is not rccluircd to conipilc cacli 
niodule using the same /pointer-size qualifier; some 
modules may use 32-bit pointers cvl~ile otlicrs L I S ~  

64-  bit pointers. Rcnson, Noel, and Peterson dcscribc 
these co~iipiler cnhanccmcnts.' The DEC C' I!wI.:s 
Glri~le,/b,- Oper~bi~IS .~l:s/c117.s documents the qualifi cr 
and tlic pragmas." 

The C run-time library added 64-bit pointcr sup- 
port either by ~iiodif\,ing the existing interface to a 
function o r  by adding a second interface to the same 
fi~nction. Pitblic header filcs define the C run-time 
library intcrfaccs. These header files contain the pub- 
licly acccssiblc function prototypes and structilre dcfi- 
nitions. The library clocumcntation and hcadcr filcs 
are shipped with the (: compilcr; the C run-tinlc 
library ships \\lit11 the operating system. 

This paper discusses all phases o f thc  enhanccmcnts 
to thc C run-time library, from project concepts 
through tlie analysis, the dcsign, and finally the implc- 
mentation. Thc IIEC C' IIlrrrtir17c~ Lihr-nrll R</i~t-errcc 
:I.lclrll~alji)t~ Opt1 1 :l.IS.S~!stc~r~ncontai~is user doc~1nie11- 
tation regarding the cliangcs.' 
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Starting t h e  Project 

We de\,otcd the initial t\\lo months of the projcct to 
undcrst'l~liiing the o\lerall OpcnVMS presentation of 
64-bit .xdiircsses and deciding ho\\. to presclit 64-bit 
e n l l ~ ~ i c c ~ ~ ~ c ~ i t s  to c ~ ~ s t o ~ ~ i c r s .  Representati\.cs kom 
OpenVMS engineering, the compiler team, the run- 
time libr;lry tcam, and tllc OpcnVMS Calling Standard 
tcam met \\,cckly with the goal of converging o n  the 
delivcrahlcs ti)r OpenVMS Alpha \,crsion 7.0. 

TIic project team \\,as committed to preserj~ing both 
s o ~ ~ r c c  cocic cornpatihilit\, nnd the ~~p \ \ , a rd  colnpati- 
bilit!. aspccts of shareable imagcs on the Opcn\lMS 
opcrati~lg system. Early discussions \\rith application 
developers reinforced our  belief tliat the OpcnV1MS 
systcni must :illow applications to  use 32-bit and 
64-bit pointers within the sntilc application. The tcam 
also agrccci that for a miscd-pointer application to  
\\,ark cffccti\.cl!., a single run-time library \\,auld ncccl 
to support botli 32-bit allti (,+-bit pointers; ho\\~c\~cr,  
tllcrc \\.,IS n o  l<no\\~n prcccclcnt for designing sucli 
a Iilbral-y. 

One implication of the decision to design n rirn- 
time library that supported 32-bit and 64-bit pointers 
\\.as that tlic library coulci 11cvcr ~ - c t ~ ~ r n  an unsolicited 
64-bit pointcr.. Returlling a 64-bit pointcr to 311 

application that \\,as espccting .I 32-bit pointcr \ \~oi~l i i  
result i l l  tlic loss of one half of ,111 nddrcss. Alt l io~~gli  
typic;ill!i tllis error \ v o ~ ~ l d  cause ,I hardware c sccp t io~~ ,  
the resulting address could be n ralid address. Storing 
to or  reading fi-on1 si~cli a n  nddrcss could result jn 
incorrect bcliavior that \\,auld be difficult to detect. 

Tlic O/~c)ir I :\/.y Cnlliirg S~c~iiclnizlspccifies that argu- 
mcnts p;~ssccd to a f i~~iction he 64-bit \ , a l ~ c s . ~  If .I 

32-bit ~ddrcss  is used, it is al\\,a!s sign cstcncicd to 
form n 64-bit ~dclrcss t l~a t  cnn be used by the Alpl i~  
linrJ\\~nrc. 7'lic C run-timc lil>~-'~ry teal11 csploitcd this 
fact \\.llcn creating the 64-bit interE1ce to  the librar!,. 

The team also agreed that using 64-bit pointers 
should he :IS simple as possible; the si~iiplcst ~ i iode  
\\~ould allo\\. the application to  compile using the 
qualifer /1>ointc1--sizc=64 \\~itliout making so~lrcc 
code ch~ngcs .  The cicsigll of 64-bit s ~ ~ p p o r t  ~ i i ~ ~ s t  
appear '1s n logical cstcnsioll to tlic C progra~li~iiing 
en\'ironmc~it iu use toda!: Ful-rlicrmore, applications 
\vrittcn to co~iform strictly to the ANSI standard must 
be able to use 64-bit pointc~s  \vliilc remaining conhr -  
mant. For example, allocating 64-bit virtual memory 
\\rould be an cstcnsion to the standard C memory man- 
;1gunult fi~nctions ~i~alloc,  cnlloc, rc,illoc, 2nd kcc. 

This paper sho\\,s tliat each oftlic C run-time lil>r.lr!. 
interklccs cs,iminecl falls into one of the follo\\,ing 
h i ~ r  catc~orics (listed in orcicl- of added complcsity 
to  library users): 

1. Not affecteel bp the size of a pointcr 

2. Enhanced to acccpt both pointcr sizes 

3. Duplicated to have a 64-bit-specific interface 

4. Restricted from using 64-bit pointers 

One last point to  come k o ~ n  the meetings was 
that nlnn!, of tlic C run-tinic librar!. interfaces arc 
implcmcntcd by calling other OpellVMS images. For 
example, the Curses Scl-ccn 1Vlanagemcnt interfaces 
nlake calls to the OpcnViMS Screen Managcmcnt 
(SMG) fi~cilinl. It is important that the C run-time 
library defines the intcrticcs t.o support 64-bit 
addresacs \\~itIiout lool<ing at tlic implc~ncnt.~tio~i of 
the f i~nction.  Consistcnc!. nnci co~lipletencss of the 
intcrfncc nrc more jmporta~it than the conib>lcsin, 
of the implementation. In the SMG cs:implc, if the 
C run-time library needs to makc a copy of a string 
prior to passing the string to  the SLUG hcility, this 
is \\'hat \ \ r i l l  L>c implcmcntcd. 

Analyzing t h e  Interfaces 

7 .  I hc pu)cess o f  analyzing tllc i~itcrfiices began by crcar- 
ing n document that listed all the header files and tllc 
definitions in these files. A total of 50 I~eadcr files that 
contained approximately 50 strilctilres and 500 proto- 
types nccricd to be analyzed. Each structure or  pro- 
totl\,pc had to be examined to see if a change in pointer 
size \ \ , o ~ ~ l d  affcct the interface. IGep in mi~iri tliat 
\\,e nnal!lzcti only the intcrfilccs; \\'e did not csanline 
thc i~ndcrlying implcn~cn t :~ t io~~  changes tllat \\goulcl 
be rccluircd. 

Analyzing the Structures 
I t  is ncccssar!. t o  distinguish benveen a structure, 
\\,liich contain pointers, and 3 pointer to the struc- 
ture itself. For csamplc, tlic c l i \ ~ t  struct~irc conrains 
t\llo integer fields. Althougl~ the size of the pointer 
to ciiv-t ciocs not affect the cotltcnts of the structure, 
the entire strLlctllre may be allocated in 32-bit or  64-bit 
\,irti~nl memory. Functions that acccpt a pointcr to such 
a s t r u c t ~ ~ r c  may need to he mociificd to accommodate 
the 64-bit casc. The d i \ l t  structure is 

t y p e d e f  s t r u c t  C 
i n t  q u o t ,  rem; 

1 d i v - t ;  

Man!, structures used in the C I-un-time library 
intcrF,iccs 21-e 3llocatcd by tllc run-time library i l l  

rcslx)~isc to a f ~nction call. For example, ;I call to the 
fopui f i~~ic t ion retllrlls the fO1lo\\ri~ig poi~ltcr to 
the FII,E stl-iicti~re: 

F I L E  * f o p e n ( c o n s t  c h a r  * f i l e n a m e ,  
c o n s t  c h a r  * m o d e ) ;  

Tllc (: ru11-time library ;il\v;lys allocates F1I.E stl-i~c- 
turcs in -32-bit virtual mcnlory and returns 3 32-bit 
pointcr to the calling program. This important con- 
ccpt can dl-nm'itically impact the use of 64-bit pointcrs 



in structurcs. If a FILE pointer is always a 32-bit 
pointcr, structures tliat contain only FILE pointers arc 
not affected by the choice ofpointer size. We use this 
information when we look at  the layout of s t ruc t~~rcs  
and csaniinc fc~nction prototvpcs tliat nccept pointers 
to StrLicttIrcs. 

In this paper, StriIctLIrcs tliat drc al\\,a!,s allocated in 
32-bit \#irtual Incmory 'ire rcfcrl.cci to as structures 
boilnd to lo\v rncmor)]. After determining \ill~icli 
str~~ctul.es arc bound to  lo\\^ memory, wc examine the 
layout of each structure to dccidc if tlic structi~rc 
is affected by ~x) i~ i t c r  size. We keep in mind that 
pointer sizc clocs not aFfect a structurc that is bound 
to low nicmory. 

For upward compatibility, the analysis must alivays 
consider existing sofnvarc that depends on the Iayoi~t 
of the StructiIrc. 111 the case of public lhcadcr file analy- 
sis, such dcpcndcncc \\rill probably al\vays be present. 
,411 application niay Iia\,c e rcc~~ tnb lc  code that, for 
csamplc, fctclics 4 bytes beginning at byte 12 of the 
structure and dcrcfcrcnces those 4 bytes as the address 
of a string. 

For these public strilcturcs, the aniilysis must weigh 
the impact of  forcing these structurcs to bc 32-bit 
pointers. If  the dccision is made to  allocate nvo diffcr- 
cnt structure npcs,  each function that either returns 
or  is passcd si~cli a structure must have a pointer-sjzc- 
sl-xcific i1iiplc1i1~1ir,itio1i. The case analysis and further 
details appear in the section Pointer to Pointer-sin- 
sensitive S ~ T L I C ~ L I ~ C S .  

Analyzing the Function Prototypes 
Analyzing Functions onl!. requires looking at the f i~nc- 
tion prototypes. To  determine tlic effect of pointcl- 
sizc on a fi~nction, we look at each parameter ant1 
return value that i~i\~oI\~cs a poiliter. 'This section 
describes the types of situations that arc affcctcd by 
pointer sizc, horn t l ~ c  si~uplest n8pc to the most com- 
plex. Note that \vlicn a program passes an  array of any 
type to a f~~nc t ion ,  tlic array is p~sscci as a poi~itcr nnd 
must be co~isi~lcrcd. 

Making 64-bit-friendly Parameters As mentioned in 
the section Starting the Project, the O ~ C J I I  I.IL1.Y Cullii~g 
S t ~ i i ~ t b r z l  spccifcs that a 32-bit address is sign 
extended to n 64-bit addrcss \\.lien passed as an 
argument to a fi~nction. This implies tliat esisting 
progrxns t11;it pass acidresscs as piinimctcrs are already 
sign extending those 32- bit add~.csses to be passcd as 
64-bit cli~antitics. Eacll 32-bit nclcircss can, thcrck)rc, 
be csprcsscci ns 3 64-bit address in \\,liich tlic top 
32 bits arc zero. 

This sign-cstcnding scliemc allows the run-time 
library to lia\rc 3 single irnplcmcntation that can be 
used by both 32-bit and 64-bit calling programs. This 

iniplenicntatiou \\,auld be motiificd to accept onl!, 
64-bit addresses. PLll in1p~c11lc11~tioll tliat supports 
parameters of  cithcr pointer size is referred to as being 
64-bit friendly. Tlic function strlcn is an csamplc of 
a 64-bit-friendly fi~nction. 

s i z e - t  s t r l e n ( c o n s t  c h a r  * s t r i n g ) ;  

The sti.ii~gparamctcr is tlie only p.11.t oftlic strlcn fi~nc- 
tion that the pointcr sizc '~ffccts. To support 64-bit 
addressing, tlic strlen f~inction li.id to be nioditictl to 
accept a 64-hit pointcr. 

Parameters Bound to Low Memory I n  suuct~~rcs  bound 
to low nicmor!~, the addresses that the programs pass 
are always 32-bit addrcsscs. One cspla~latio~l is that 
the strilcturcs arc nia~laged by tlic run-time library, 
and the only method of crciiting, destroying, or  
obtaining tlic nddrcsscs ofthcsc StriIctiIrcs is by calling 
a librar!, routine. G i \ m  t h ~ t  ,I si~iglc library scr\'iccs 
both 32-bit and 64-bit calling programs, the lihrnr!, 
docs not change the structures hascti on c o m m a ~ ~ d  
tli~alificrs, nor docs it allocate the structures in W h i t  
virtual memory. For user con\.enicncc, the C run-time 
library implemented these pointcrs as 32-bit return 
\values but 64-bit-friendly parameters. 

The reason for this design hccnmc apparent \\.liilc 
testing the 64-bit interfiices to the library. Co~isidcr 
the following code fragment, \vliich exists in many 
applications: 

F I L E  * f p ;  
c h a r  b u f f e r C 1 0 0 1 ;  
f p  = f o p e n ( " t h e - f i l e " ,  " r " ) ;  
f r e a d ( a r r a y ,  s i z e o f ( b u f f e r 1 ,  1 ,  f p ) ;  

The C run-titile library al\\~;iys allocates a FILE 
structurc in 32-bit virtual ~nclnol-y. When the prc\:ious 
code fragment is compiled using /pointer_size=64,, / I )  
is declared ns a 64-bit pointcr to a FILE structurc, 
bccause ~1si11g tliis tj~~alificr s p c ~ i f c s  the dchi11t poi11tcr 
size to be used. When tlic fopcn fi111ction retilrns tlic 
32-bit pointcr, the return \.ali~c is sign rxtendcci into 
the 64-bit F l  L,E pointer. If tlic f ix~rth paralnetcr of tllc 
fi-cad fi~nction had bccn dcclal-cd as a 32-bit F11.E 
pointer, the co~npiler \vould report ;in error \\,lien tlic 
64-bit FILE pointcr ,jp \\.as passctl as an argument. 
This esnmplc csplains \\-liy the (: run-timc lil>r.~r!. 
declarcs structures bound to lo\\. mcmory ns 32-bit 
return values but 64-bit pamlnctcrs. 

Parameters Restricted to Low Memory Stri~cturcs 
restricted to lo\\, mcmory ,Ire si1lii1;1r to tliosc [ > O L I I I ~  to 
lo\\. nlcmor!r except that the ~ ~ s c r  allocates thc s t r ~ ~ c -  
tures and can allocate the structures in high mcmor!.. 
Tlic C run-time library cannot support tlie ;illocation 
ofsuch structurcs in 64-bit virtual memory. 



An c s a ~ ~ i p l e  of a paramctcr being rcstrictcd to a 
lo\\> memory address is the buffer being passed as the 
paranictcr to the function sctbuf. The paramctcr 
detillcs tliis buffer to be ~ ~ s c d  for 1/0 operat io~~s .  'l.'11c 
user cx~>ccts to see this buffer change as 1 / 0  opcrn- 
tions arc pc~.k)rmed on the fi lc. If the run-time librnr!, 
n l d e  a copy of this buffer, the changes would nppcar 
in the copy and not in the original buffer that the user 
supplicci. When the C run-time l ibra~y be&' '111s to LISC 

the 64-bit OpcnVMS Record Mnnagemcnt Scr\~iccs 
(kVS) intcrf~ce,  this low-~ncniorv restriction will I,c 
removed. 

In most cases, the run-time librar!. is able to hide 
the h c t  that the 32-bit RIMS intcrfiice is not able to 
interpret a 64-bit \irtual menlory address. Consider 
the Ji'lc.r-~utne parameter to the fopen finction. If the 
paranietcr is a 64-bit virtual memory addrcss, the run- 
time library copies this parameter to 32-bit \~irti1;11 
memory and passes the addrcss of the copy to RMS. 
Neither the iiscr nor RIMS is a\varc that this copy has 
been made. The library nlay copy the data if and only if 
such a copy operation docs not change f~ioctionality o r  
signiticantl!! degrade pcrfi)rmancc. 

Size-independent Structure Pointers  man!, f ~~ic t ions  
reccivc the addrcss of a structure \vliose layout is not 
affected by pointer size. The simplest adclrcss i l l  tliis 
category is tliat of an array of integers. This array may 
be in citlicr 32-bit or  64-bit virtual mcmorp, but only 
one intcrhcc is needed to determine the layoi~t o f the  
structllrc. If the structilrc layout is i~~depcncic~i t  of 
pointer sizc, then pointer-size-specific entry points arc 
not rcqni~.cd for this paramctcr. ?'lie de\rclopcr \\,oi~lci 
still mnltc the parameter 64-bit friendly so that the user 
\\~ouIci Iinvc tlic freedom to maltc the allocation that is 
best for the application. 

Pointer to Pointer Parameters It is coll1nion pr.1cticc 
for a h~nction to be passcci n pointcr to a pointel. I F  the 
pointer being pointed to  is not bound or rcstrictccl to 
a 32-bit addrcss, then two i rnplc~~~enta t io~ls  of tlic 
fi~nction arc necessary. 

To ~~ncicrstand why some fi~nctio~is require t\vo 
implcn~cntatio~is, consider the follo\~,ing strtod 
fi~nction: 

d o u b l e  s t r t o d ( c o n s t  c h a r  * s t r i n g ,  
c h a r  * * e n d p t r ) ;  

The strtod fi~nction converts ;I string to a tlonting- 
point double-prccisio~~ number. The second pnramc- 
ter to this fi ~nction,  err~ll,li: is a pointer to a rnc rn~r !~  
location into n.liich the adcircss of thc first ilnrccog- 
llizcci chnmctcr is t o  be placed. T l ~ c  caller ofthis f ~ n c -  
tion has allocated either 4 or  8 bytes to store tliis 
address. Without pointer-size-specific entry points, 

the f i~~ic t ion has no \ \ r , ~ \ r  of determining ho\v many 
bytcs to \\!rite. Writing 4 bytcs map trullc.ltc '1 pointcr; 
\vriting 8 bytcs Inay o\lcr\\~ritc 4 bytes of ~ ~ s c r  data that 
follows tlic pointcr. The strtocl fi~nction, tlicrctbrc, has 
h\,o implcmcntatiolis. -1-lie first expects c~t~c l l~~ i .  to be 
the acidrcss of a 32-bit pointcr, and the scconci capccts 
err~Q)/i. to bc the address of a 64-hit pointer. 

Pointer to Pointer-size-sensitive Structures  many fi ~ n c -  
tions reccivc the addrcss o f a  structure. If the nnillysis 
reveals th;it the layout of  tliis stl-ucturc is dependent 
LI~X)II poi11tc1- size, the f~~nct ions  tliat recci\.c or  rcrilrn 
this structure must have pointer-size-specitic entry points. 

Note that the l a y o ~ ~ t  of  thc structure is separate 
from whether the structllrc is allocated in lo\\, memory 
o r  in high mcmor!l. The 32-bit-specific entry point is 
needed to understand the layout o f the  structure, but 
the parameter should 'lllo\v this structure to he allo- 
cated in Iiigh memory. 

Functions that reccj\.c rhc address of a n  array of 
addresses are treated in the same \\lay, assuming that 
the aciclrcsscs in the array arc neither bound nor 
rcstrictccl t o  lo\v memory. Tlic filnction being called 
needs to law\\: ifdie army cont.lins 32-bit addrcshcs or  
64-bit addresses. Unlike the address of the array, the 
individual mcmbcrs of the .lrra\, arc not sign cltc~~clccl 
to 64-bjt va l~~cs .  

Separate implemc~lratiolls n1.c ~iecessary only to 
dctcrminc tlic layout of\\lh.lt is k i n g  pointed to. Tlic 
32-bit illtcrticc handles pointel-s to structurch contain- 
ing 32-bit acid~.csses, and tlic 64-bit intcrf,icc Il~~icilcs 
poi~itcrs to s t r ~ ~ c t ~ ~ r e s  c o ~ i t , l i ~ l i ~ l ~  6 4 b i t  ,iddrcsscs. 

Functions That Return Pointers 1\4'113!~ f~~ncrions rcturn 
1.3ointcrs as the \~aIue of tlic f~11lctio11. TIICSC poi~iters a-e 
either pointer-size specific or they arc not .iffcctcd by 
the pointcr sizc. Siniilc~r to its cpccifications for 64-bjt- 
fi-icndly pnranlcters, the ($)OII I :\IS Ccll/ii/<:, .Slci l~c/r i~z/  

indicates tl~fit rcturn \.nlucs on tlie OpenVbIS Alpha 
opcrnting systeln are nl\\,a\~s sign cstcndcd to 64-bit 
values and r c t ~ ~ m c d  in registel- zcl-o (KO). 

To n~alic an  ;ldclrcss paramctcr 64-bit fricndl!., a 
f ~ ~ n c t i o n  nllo\\*s a 64-bit addrcss to be pa.;scd, thus 
enabling both 32-bit and 64-bit calling programs to 
use a si~iglc interface. <:onvcrscl!; if a fi~nction returns 
a 64-bit address to a 32-bit calling proSmm, the 
addrcss is s~lfcly rcturncci in 1<0 but is rr~ulcatcci \\,lien 
movcd from 1<0 into the user's data area. A 64-bit- 
friendly addrcss return \.aluc is al\\,ays 32 bits. When 
mo~ccl  fi-om 1<0 illto the calling program's \rarinble, 
it is sign cstcnded \\,hen the c.llling program is using 
64-bit .lddrcsscs. 

If the return value of a f ~ ~ n c t i o n  can be :I 64-bit 
address, tliis fi~nction must have pointer-size-spccific 
entry points. If the function returns tlie address of a 



structure tliat is bound to lo\\, memory, such as a F1L.t: 
or  WINDOW pointer, the rcturn \i,ilue does not force 
separate cntry points. 

Certain fi~nctions, such as malloc, allocate memory 
on behalfofthe calling progl-an1 ancl r c t u r ~ ~  the addrcss 
of that mcmory as the value of the tilnction. Tlicsc 
h~nctions havc nvo j~liplemcntations: the 32-bit intcr- 
hce always allocates 32-bit \~irtual Iilcniory, and the 
64-bit interface always allocates 64-bit virtual ~iic~nory.  

Many string and mcnwry f~~nct ions  I~a\le return val- 
LICS that arc rclati\~c to a parameter passed to the sanic 
I-outinc. ?'licsc addrcsscs may be rctur~icd as high 
Jnemorp addrcsscs if and only if the parameter is a 
high memory adclrcss. 

The following is the f~lnction prototype for strcat, 
which is found in the hcadcr file <string.h>: 

c h a r  * s t r c a t ( c h a r  * s l ,  c o n s t  c h a r  * s 2 ) ;  

The strcat fi~nction appcnds rlic string pointed to h\. 
s2 to the string pointed to by .vl. The return \~aluc is 
tlic addrcss oftlic latest string s l  . 

In this cnsc, the size of the pointcr in the retill-n 
\ralue is always tlic same as the sizc of  the pointer 
passed as the first parameter. The C; programming lan- 
guage has n o  \vay to reflect tliis. Sincc the fi~nction 
may rcturn n 64-bit pointer, the strcat function must 
havc nvo cntry points. 

As discussed earlier, tlie pointcr sizc used for p ~ m -  
mctcr s2 is not related to the rctul.ncd pointcr size. 
Tlie C run-timc library ~ n a d c  this s2 argumelit 64-hit 
friendly by declaring it a 64-hit pointcr. This dccl.~ril- 
tion allonrs thc application progralnlncr to concatc- 
nate a string in high menial-y to  one in lo\\, memory 
\\,ithour altering the source cocic. Tllc follo\ving strcat 
filnction statement sIio\vs tliis declaration: 

c h a r  * s t r c a t ( c h a r  * s l ,  - c h a r _ p t r 6 4  s 2 ) ;  

The data type -cl?(l/:prt.G4 is a 64-bit chal-actcs 
pointer \\~liosc cicfinition and use \ \ ' i l l  be esplaincd 
I,iter in tliis p;ikxr. 

High-level Design 

The /pointersize qualifier is n\ailablc in those 
versions of the C compiler that support 64-bit point- 
ers. Thc compiler has a predefined macro named 
- INITIA1,-I'OINTEl<-SIZFF \vliosc value js based o11 
thc use of tlic /pointel--size qualifier. Tlie macro 
accepts the follo\\ling \,alucs: 

0, \vhich indicates that the /pointer-size qualifier is 
not i~scd or  is not available 

32, \vhicIi indicates that the /pointer-size cl~~alificr 
is used and 113s 3 value of 32 
64, \\~hich indicates that the /pointer-size qualifier 
is used and Iins a value of 64  

The C run-time library header filcs conditionally 
co~npile bascd o n  the value of this predefined macro. 
A zero value indicates to the hcadcr ti lcs that thc com- 
puting en\lironmcnt is purely 32-bit. The pointer-sizc- 
specific function prototypes arc not defined. The user 
1iii1st use the /poj~~te~--size qualifier to access 64-bit 
Functionality. The choice of 32 or  6 4  cictcrmincs the 
dchult  pointcr sizc. 

The header filcs def lie nvo distinct types of dcc1a1-a- 
tions: those that ha\!e a single iri~plc~iicntatio~i  id 
those that 1i;~vc pointer-size-specific imple~iientatio~is. 
The addresses passed or returned from ti~nctions that 
have a singlc implcnientarion arc either bound to lo\\. 
memory, restricted to lo\\, memory, or  widencd to 
accept a 64-bit pointer. 

Those ti~nctions that Iia\rc pointer-size-specific 
entry points have three hnction prototypes dcfincci. 
Using malloc as an example, prototypes are a-eared for 
tlie f~nct ions  malloc, -malloc32, and -1nalloc64. Tlic 
latter two prototypes are the pointer-size-spccific pro- 
totypes and arc dcf ncd only \\/lien the /pointer-sizc 
qiialifier. is ~ ~ s c d .  The nialloc prototypc cieF'ii~lts to call- 
ing -malloc32 \\:lien the defiii~lt pointcr size is 32 bits. 
The malloc prototype dcf~ul ts  to calling -1nalloc64 
\\,hen the dchul t  pointer sizc is 6 4  bits. Applica- 
tion progmmmcrs \\.lie mix pointcr nVpes i ~ s c  tlic 
/pointersize cl~~alificr to  establish the deC~ult pointcr 
size but can then usc the -malloc32 and -malloc64 
explicitly to acl~icvc nonclch~~l t  bcl~;l\~ior. 

In addition to being cnhanccd to support 64-hit 
pointers, the <: compiler has tlic acicicd cnp,ibili~r o f  
detecting incorrect mixed-pointer usagc. It is the 
fi~nction prototype found in the header files tliat tells 
the compilcr exactly what pointcr sizc is pcrniittcd or  
expected in a call. Proper ~ ~ s c  oft l lc hcadcr fi lcs liclps 
prevent pointcr trt~ncation. 

The act~~:il fi~nctions callcd in the <: run-time libr.li-y 
are either dccc$malloc or dccc$-m;1lloc64, depending 
on tlie pointcr size. :The C ru11-time librar!, docs ]lot 
co~ltaili an  c~i t ry  point called dccc$-malloc32. 'l'liis 
naming sclic~nc \\,as selected so tliat applications rli,lt 
link on oldel- systems always get the 32-bit intcrhcc. 

Tlie C compilcr has al\vays loolted at a table witliin 
the C run-time library sliarcablc image for assistance in 
name prctixing. Using this tnblc, the conipilcr klio\\.s 
t o  change calls to the malloc ti ~nction into c;ills to the 
decc$malloc fi~nction and not to change calls to xyz, 
~lliicli is not .i C run-time library function, into culls to 
decc$syz. 

Thc (: run-time library and t l ~ c  C compilcl- lia\~c 
added new information to the tal.>lc that tclls tlic cow- 
pilcr \vhich fi~nctions havc pointer-size-specific c ~ ~ t r ! ~  
points. When the compilcr sees a call to tlic f~nc t ion  
- xyz32, it looks it up in the name table. I f the  name of 
t l ~ c  fi~nction is found, thc co~llpilcr then looks at 
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\\.Ilcthc~- tlic function is the 32-bit-specific cntr\, point. 
If it is, the compiler hrnls  tlic prefixed nalilc by 
adcling "dccc$" to tlie beginning o f  the name but 
also rcmo\,cs tlic "-" and  the "32." Consecli~cntl!, tlic 
f i~nctio~l nnmc -1iialloc32 becomes dccc$malloc, but 
the f~nct ion name -s!,z32 docs not change. 

Implementation 

To ilIi~st~-:ltc changes that ncccicd to be matfc to  the 
header filcs, \\*c inventcd a single header fi lc crillcci 
<headcr.h>. 'This file, \vhich is sllo\\.n in Fig~11.c I ,  illus- 
trates the clnsscs of problems Llccd b!, a developer \ \ ho  
is adding support for 64-bit pointers. The fi~nctions 
defined in this header tile arc ncti~al C ri11i-time library 
fi~nctions. 

Preparing the Header File 
The 6rst pass tlirougli <hc;ldcr.h> rcsulted bi a num- 
ber of c.h.11igcs in terms of formatting, commc~~t ing ,  
and 64-bit support. Realizing that many ~nodifications 
\ \ ~ u l d  be made to the hc;idcr fi lcs, \vc considered 
readability n major goal fbr this rclcasr of thcsc filcs. 

Tlic initial header filcs assumcci a i~n i fo r~n  pointer 
size of 32 hits for the O~CIIVIMS operating systcm. 
During the fi I-st pass through chcadcr.h>, \\.c ailrlcd 
pointer-size pmglnas to ensure that the file sn\.cd the 
user's pointer sizc, set the pointcr sizc to 32 bits, and 
then rcstorcd the user's pointcr sizc at thc end ot'tlic 
hcacicr. 

Nest \\.c k)rmattcd clicaiicr.li> to slio\\, the \,nrious 
categories r l i , ~ r  the StrLIctiIrcs ~ ~ i d  fi~~ictions hII into. 
-The catcgol-ics and tlic rcsi~lt of thc  first pass tli~.ougIi 
<lieaticr.li> can bc sccn in l-!igurc 2. For cs3mplc, 
the function rand Ihad n o  pointers iu the fbnction 

protot!q'c 2nd \\,as immcdi,~tcl!, mo\.cd to tlic section 
"Functions tliat support 64-hit pointers." 

Orga~iizing <headcr.h> in this way g.~vc us ,In accu- 
rate ~.cniiing of ho\\. more f ~ ~ n c t i o ~ l s  nccdcd 
64-hit sup pol^. If any of tlic sections bccamc cmpnr, 
\\re dirl not rcrno\,c the scction. This 31317roach \\.o~.kecI 
\\reIl bccnusc \\.bile sonic c~ii jnccrs \\.ere doing 64-bit 
\i,ol.k, otlicrs \vcrc atltii~ig nc\ \  finctions. All!, nc\\, 
f~~nct ions  nddcd t o  a I~cuticl. hlc after the 64-bit \\.orl< 
was clone \\~oulc.l be pl,~cccl in the section "Ft~nitions 
th;it need 64-bit support." l'riol- to shipping tlie 
l~c ;~dcr  filcs, 11.c rcnio\-cd the c m p n  sections. 

Preparing the Source Code 
At'tcr sc\.cral falsc starts, \\,c settled on a design for 
~llodil j ing the sourcc code fix 64-bit support. Tlic 
c s ~ x c t c d  starting d c s i ~ n  \\.as to m o d i c  the soilrcc 
code b!. addins pointer--size prnglnas and co~ i~p i l c  rhc 
soul.cc m o d ~ ~ l c s  using the /pointer-sizc q~~aliticr. 
Sonlc modulcs \vould use /pointer-sizc=32; otlicrs 
\\~oiild use /pointel--sizc=64. The major dra\\,h,~cl< to 
this was tliat Iooki~ig 3t ;I \.ariablc dccl;i~-cd as 
a p o i ~ ~ t c r  requires an understanding of the contest in 
\\.hich that \rariable appears. N o  longer \ \ , o ~ ~ l d  "ch;l~- *" 
be sinlply ;I ch;lmctcr pointcr. I t  coi~ld be a 32-hit or  3 

64-bit character pointcr, anrl thc implcmcntcr nccdcii 
to lkno\\, \\~hicIi one. 

The design o n  \\dlich \\.c decided overcomes the 
readabilits problem. By dcLiult, source filcs .Ire nor 
coll~pilcci \\!it11 the /pointer-size cln.~lificr. 'l'his nicClns 
tliat n o  poi~itcr-six ~ i i n ~ i i p ~ ~ l . ~ t i o ~ i  O C C L I ~ S  \\.he11 i ~ l i l ~ ~ c i -  

ing the Iicacic~ tiles. The rcaciabilin~ o f  the sou~.cc code 
is i~iipt.o\'ccl in tliat tlic implcmcntcrs can scc \\-Iiic.11 
pointers arc 32-bit poiliters a n d  \\rl~ich nrc 64-bit 
pointers. 

# i f n d e f  -SIZE-T 
# d e f i n e  -SIZE-T 1 

t y p e d e f  u n s i g n e d  i n t  s i z e - t ;  
# e n d i  f 

i n t  e x e c v ( c o n s t  c h a r  *, c h a r  *[I); 
v o i d  f r e e ( v o i d  * I ;  
v o i d  * m a l l o c ( s i z e - t ) ;  
i n t  r a n d ( v o i d ) ;  
c h a r  * s t r c a t ( c h a r  *, c o n s t  c h a r  * ) ;  
c h a r  * s t r e r r o r ( i n t ) ;  
s i z e - t  s t r l e n ( c o n s t  c h a r  * ) ;  

Figure 1 
Ol-iginnl Hcndcl- Filc <hc3dc1..Ii> 



/ * 
* *  E n s u r e  t h a t  we b e g i n  w i t h  3 2 - b i t  p o i n t e r s .  
* I 
# i f  - I N I T I A L - P O I N T E R - S I Z E  
# i f  (-VflS-VER < 7 0 0 0 0 0 0 0 )  
# e r r o r  " P o i n t e r  s i z e  a d d e d  i n  OpenVMS V 7 . 0  f o r  A l p h a "  
# e n d i f  
# p r a g m a  - p o i n t e r - s i z e  - s a v e  
# p r a g m a  - p o i n t e r - s i z e  3 2  
# e n d i  f 

I * 
**  STRUCTURES NOT AFFECTED BY POINTERS 
* / 
# i f n d e f  -SIZE-T 
# d e f i n e  -SIZE-T 1 

t y p e d e f  u n s i g n e d  i n t  s i z e - t ;  
# e n d i  f  

I * 
* *  FUNCTIONS THAT NEED 6 4 - B I T  SUPPORT 
* / 
i n t  e x e c v ( c o n s t  c h a r  *, c h a r  * [ I ) ;  
v o i d  f r e e ( v o i d  * ) ;  
v o i d  * r n a l l o c ( s i z e - t ) ;  
c h a r  * s t r c a t ( c h a r  *, c o n s t  c h a r  * ) ;  
c h a r  * s t r e r r o r ( i n t ) ;  
s i z e - t  s t r l e n ( c o n s t  c h a r  * ) ;  

I * 
* *  C r e a t e  3 2 - b i t  h e a d e r  f i l e  t y p e d e f s  
* / 

/ * 
* *  C r e a t e  6 4 - b i t  h e a d e r  f i l e  t y p e d e f s .  
* I 

I * 
* *  FUNCTIONS RESTRICTED FROM 6 4  B I T S  
* / 

/ * 
* *  C h a n g e  d e f a u l t  t o  6 4 - b i t  p o i n t e r s .  
* / 
# i f  - I N I T I A L - P O I N T E R - S I Z E  
# p r a g m a  - p o i n t e r - s i z e  6 4  
# e n d i  f 

/ * 
* *  FUNCTIONS THAT SUPPORT 6 4 - B I T  POINTERS 
* / 
i n t  r a n d ( v o i d ) ;  

I * 
* *  R e s t o r e  t h e  u s e r ' s  p o i n t e r  c o n t e x t  
* / 
# i f  - I N I T I A L - P O I N T E R - S I Z E  
# p r a g m a  - p o i n t e r - s i z e  - r e s t o r e  
# e n d i  f 

Figure 2 
First 1'3~s rhl-ough clicadcr.h> 
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We created a C run-time library private headcr 
file called <\vide-types.sro. This header file has the 
appropriate pragmas t o  define 64-bit pointer types used 
bvitl~in t l ~ e  C run-time library, as shown in Figure 3. 

This header file d s o  contains the definitions of  nlacros 
~ ~ s e d  in the i~nplementations of  the functions. Figure 4 
shows tlic macros declared in <\\ride-t)lpes.src>. 

Once  a niodule includes the  file <wide-types.src>, 
the compilation o f  that  module changes t o  add the 
qualifier /pointer_size=32. This  change improves the 
readability o f  the code b e c a ~ ~ s e  "char *"  is read as a 

32-bi t  character pointer, \\~licrcas 64-bi t  pointers use 
typedcfs whose namcs begin with "-\i~idc." T h e  
name o f t h c  new1 typedcf is -\vide-chacptr, \~/liicli is 
read as 3 64-bi t  character pointer. 

T h e  C I-un-time library design also I-equircs that the 
in ip lemc~~ta t ion  o f  '1 f i~nct ion include all hcadcr files 
that define the f ~ n c t i o n .  This  ensures that tlic jmple- 
mentat ion matches the  hcadcr files as they arc mocli- 
fied t o  SLIPPOI-t 64-b i t  pointers. For functions defined 
in multiple header files, this ensures that  l icc~dcr  tiles 
d o  not  contradict each orhcr. 

* *  T h i s  i n c l u d e  f i l e  d e f i n e s  a l l  3 2 - b i t  a n d  6 4 - b i t  d a t a  t y p e s  u s e d  i n  
* *  t h e  i m p l e m e n t a t i o n  o f  6 4 - b i t  a d d r e s s e s  i n  t h e  C r u n - t i m e  l i b r a r y .  
* * 
* *  T h o s e  m o d u l e s  t h a t  a r e  c o m p i l e d  w i t h  a  6 4 - b i t - c a p a b l e  c o m p i l e r  
* *  a r e  r e q u i r e d  t o  e n a b l e  p o i n t e r  s i z e  w i t h  / P O I N T E R _ S I Z E = 3 2 .  
* / 
# i f d e f  - I N I T I A L - P O I N T E R - S I Z E  
# i f  ( - I N I T I A L - P O I N T E R - S I Z E  ! =  3 2 )  
# e r r o r  " T h i s  m o d u l e  m u s t  b e  c o m p i l e d  / p o i n t e r _ s i z e = 3 2 "  
# e n d i f  
# e n d i  f 

1 * 
* *  A l l  i n t e r f a c e s  t h a t  r e q u i r e  6 4 - b i t  p o i n t e r s  m u s t  u s e  o n e  o f  
* *  t h e  f o l l o w i n g  d e f i n i t i o n s .  When t h i s  h e a d e r  f i l e  i s  u s e d  o n  
* *  p l a t f o r m s  n o t  s u p p o r t i n g  6 4 - b i t  p o i n t e r s ,  t h e s e  d e f i n i t i o n s  
* *  w i l l  d e f i n e  3 2 - b i t  p o i n t e r s .  
* / 
# i f d e f  - I N I T I A L - P O I N T E R - S I Z E  
# p r a g m a  - p o i n t e r - s i z e  - s a v e  
# p r a g m a  - p o i n t e r - s i z e  6 4  
# e n d i  f  

t y p e d e f  c h a r  * w i d e - c h a r - p t r ;  
t y p e d e f  c o n s t  c h a r  * - w i d e - c o n s t - c h a r - p t r ;  

t y p e d e f  i n t  * w i d e - i n t - p t r ;  
t y p e d e f  c o n s t q n t  * - w i d e - c o n s t - i n t - p t r ;  

t y p e d e f  c h a r  * *  w i d e - c h a r - p t r - p t r ;  
t y p e d e f  c o n s t  c h a r  * * - w i d e - c o n s t - c h a r - p t r - p t r ;  

t y p e d e f  v o i d  * - w i d e - v o i d - p t r ;  
t y p e d e f  c o n s t  v o i d  * - w i d e - c o n s t - v o i d - p t r ;  

# i n c l u d e  < c u r s e s . h >  
t y p e d e f  WINDOW *-wide-WINDOW-ptr ;  

# i n c l u d e  < s t r i n g . h >  
t y p e d e f  s i z e - t  * - w i d e - s i z e - t - p t r ;  

/ * 
* *  R e s t o r e  p o i n t e r  s i z e .  
* / 
# i f d e f  - I N I T I A L - P O I N T E R - S I Z E  
# p r a g m a  - p o i n t e r - s i z e  - r e s t o r e  
# e n d i f  

Figure 3 
Typcdch from <wide-typcs.src> 
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1 * 
* *  D e f i n e  m a c r o s  t h a t  a r e  u s e d  t o  d e t e r m i n e  p o i n t e r  s i z e  a n d  
* *  m a c r o s  t h a t  w i l l  c o p y  f r o m  h i g h  m e m o r y  o n t o  t h e  s t a c k .  
* / 
# i f d e f  - I N I T I A L - P O I N T E R - S I Z E  

# i n c l u d e  < b u i l t i n s . h >  

# d e f i n e  C $ $ I S - S H O R T - A D D R c a d d r )  \ 
( ( ( ( - i n t 6 4 ) ( a d d r ) < < 3 2 ) > > 3 2 )  == ( u n s i g n e d  - i n t 6 4 ) a d d r )  

# d e f i n e  C $ $ S H O R T - A D D R - O F - S T R I N G ( a d d r )  \ 
( C $ $ I S - S H O R T - A D D R ( a d d r )  ? ( c h a r  * )  ( a d d r )  \ 
: ( c h a r  * )  s t r c p y ( - A L L O C A ( s t r l e n ( a d d r )  + I ) ,  ( a d d r ) ) )  

# d e f i n e  C$$SHORT-ADDR-OF-STRUCT(addr) \ 
( C $ $ I S - S H O R T - A D D R ( a d d r )  ? ( v o i d  * )  ( a d d r )  \ 
: ( v o i d  * )  r n e r n c p y ( - A L L O C A ( s i z e o f ( *  a d d r ) ) ,  ( a d d r ) ,  s i z e o f ( * a d d r ) ) )  

# d e f i n e  C $ $ S H O R T - A D D R - O F - M E M O R Y ( a d d r ,  L e n )  \ 
( C $ $ I S - S H O R T - A D D R ( a d d r )  ? ( v o i d  * )  ( a d d r )  \ 
: ( v o i d  * )  m e m c p y ( - A L L O C A ( l e n 1 ,  ( a d d r ) ,  L e n ) )  

# d e f i n e  C $ $ I S - S H O R T - A D D R ( a d d r )  ( 1 )  
# d e f i n e  C$$SHORT-ADDR-OF-STRING(addr) ( a d d r )  
# d e f i n e  C $ $ S H O R T - A D D R - O F - S T R U C T ( a d d r )  ( a d d r )  
# d e f i n e  C $ $ S H O R T - A D D R - O F - M E M O R Y ( a d d r ,  L e n )  ( a d d r )  

Figure 4 
M1lacl.o~ tiom <wide-typcs.src> 

Implementing the strerror Return Pointer 
The fi~nction strcrror always retur~ls a 32-bit pointer. 
The memory is allocated by the C run-time library for 
both 32-bit nnd 64-bit calling programs. As shown 
in Figure 5, we moved the function strcrror into the 
section "Functions that support 64-bit pointcrs" of 
<header.h> to  sho\v that there arc n o  restrictions on 
the use of this fi~nction. 

The "Crcatc 32-bit llcadcr filc typcdcfs" scction of 
<lieadcr.li> is in the 32-bit pointcr scction, whcrc the 
bound-to-lo\\~-n1c1~1ory data structilres are declared. 
The h n c t i o ~ l  r e t ~ ~ r n s  a pointer to a character string. 
Mlc, tlicrcforc, added typcdcfs for -charPptr32 and 
A const-char-ptr.32 \vhile in a 32-bit pointer context. 
Thcsc declarations arc protected \\lit11 the definition of 
A CHAR-PTR32 to allow multiplc header files to  use 
the same naming convention. Declarations of the 
const for111 of tlie typcdcf arc al\\lays made in the samc 
conditional code since thcy ~~sual ly  arc needed and 
using the same condition rernoves the need for a dif- 
ferent protectins nanlc. 

The strerror fi~nction could have been implemented 
j11 <Iieader.h> by placing the function in tlic 32-bit sec- 
tion, but that \\/ould have i~liplicd that the 32-bit 
poiutcr was a restriction that could be removed later. 
The pointer is not a restriction, and the strerror h n c -  
tion fully supports 64-bit pointcrs. 

The private header file typedefs are always declared 
starting with nvo underscores and ending in either 
" - ptr32" or  "ptr64." These typedefs are created only 
when the header file nccds to be in a particular 
pointer-size mode while referring to a pointer of the 
othcr size. The return value of  strerror is modified to 
use the qlpedef-char-ptr32. 

Including the hcader filc, which declares strcrror, 
~ l lows  the compiler to vcri@ that the arguments, 
return values, and pointer sizes are correct. 

Widening the strlen Argument 
'The function strlen accepts a constant character 
pointcr and rcturns an unsigned integer (size-/). 
Implementing fill1 64-bit support in strlen means 
changing the parameter to a 64-bit constant character 
pointer. I f  an application passes a 32-bit pointcr to 
the strlcn hnctioli, the compiler-generated code sign 
cstrnds the pointer. The recluired header file mod- 
ification is to simply move strlen from the sec- 
tion "Functions that nccd 64-bit support" to  the 
section "Functions that support 64-bit pointcrs." 

Tlic steps necessary for tlic source code to support 
64-bit addressing arc as follows: 

1. Ensure that the modulc includes header files that 
declare strlen. 
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/ * 
* *  E n s u r e  t h a t  we b e g i n  w i t h  3 2 - b i t  p o i n t e r s .  
* I 
# i f  IN IT IAL-POINTER-SIZE 
# ~ ~ ( - v M s - v E R  < 70000000)  
# e r r o r  " P o i n t e r  s i z e  a d d e d  i n  OpenVMS V7.0  f o r  A l p h a "  
# e n d i f  
# p r a g m a  - p o i n t e r - s i z e  -save  
# p r a g m a  - p o i n t e r - s i z e  3 2  
# e n d i  f 

/ * 
* *  STRUCTURES NOT AFFECTED BY POINTERS 
* I 
# i f n d e f  -SIZE-T 
# d e f i n e  -SIZE-T 1 

t y p e d e f  u n s i g n e d  i n t  s i z e - t ;  
# e n d i  f 

/ * 
* *  FUNCTIONS THAT NEED 6 4 - B I T  SUPPORT 
* / 
I * 
* *  C r e a t e  3 2 - b i t  h e a d e r  f i l e  t y p e d e f s .  
* / 
# i f n d e f  -CHAR_PTR32 
# d e f i n e  -CHAR_PTR32 1 

t y p e d e f  c h a r  * c h a r - p t r 3 2 ;  
t y p e d e f  c o n s t  c h a r  * - c o n s t - c h a r - p t r 3 2 ;  

# e n d i  f 

I * 
* *  C r e a t e  6 4 - b i t  h e a d e r  f i l e  t y p e d e f s .  
* / 
# i f n d e f  -CHAR_PTR64 
# d e f i n e  -CHAR_PTR64 1 
# p r a g m a  - p o i n t e r - s i z e  6 4  

t y p e d e f  c h a r  * - c h a r - p t r 6 4 ;  
t y p e d e f  c o n s t  c h a r  * - c o n s t - c h a r - p t r 6 4 ;  

# p r a g m a  - p o i n t e r - s i z e  32  
# e n d i  f 

I * 
* *  FUNCTIONS RESTRICTED F R O M  6 4  B I T S  
* I 
i n t  e x e c v ( - c o n s t - c h a r - p t r 6 4 ,  c h a r  *[I); 

I * 
**  Change d e f a u l t  t o  6 4 - b i t  p o i n t e r s .  
* I 
# i f  - INITIAL-POINTER-SIZE 
# p r a g m a  - p o i n t e r - s i z e  6 4  
U e n d i  f  

/ * 
* *  The f o l l o w i n g  f u n c t i o n s  h a v e  i n t e r f a c e s  o f  X X X ,  -XXX32, 
* *  a n d  -XXX64. * * 
* *  The f u n c t i o n  s t r c a t  h a s  t w o  i n t e r f a c e s  b e c a u s e  t h e  r e t u r n  
* *  a r g u m e n t  i s  a  p o i n t e r  t h a t  i s  r e l a t i v e  t o  t h e  f i r s t  a r g u m e n t s .  * * 
* *  The m a l l o c  f u n c t i o n  r e t u r n s  e i t h e r  a  3 2 - b i t  o r  a  6 4 - b i t  
* *  memory a d d r e s s .  
* I 
# i f  - INITIAL-POINTER-SIZE == 3 2  
# p r a g m a  - p o i n t e r - s i z e  3 2  
# e n d i  f  

Figure 5 
Final Form of <lieader.h> 



v o i d  * m a l l o c ( s i z e - t  - s i z e ) ;  
c h a r  * s t r c a t ( c h a r  *-sl, - c o n s t - c h a r - p t r 6 4  -s2) ;  

# i f  - INITIAL-POINTER-SIZE = =  32  
# p r a g m a  - p o i n t e r - s i z e  6 4  
# e n d i  f  

# i f  - INITIAL-POINTER-SIZE & &  -VMS-VER >= 7 0 0 0 0 0 0 0  
# p r a g m a  - p o i n t e r - s i z e  3 2  

v o i d  * - m a l l o c 3 2 ( s i z e - t ) ;  
c h a r  * - s t r c a t 3 2 ( c h a r  *-sl ,  - c o n s t _ c h a r _ p t r 6 4  -s2) ;  

# p r a g m a  - p o i n t e r - s i z e  6 4  
v o i d  * - m a l l o c 6 4 ( s i z e - t ) ;  
c h a r  * - s t r c a t 6 4 ( c h a r  *-sl, c o n s t  c h a r  *-s2):  

# e n d i  f 

/ * 
* *  FUNCTIONS THAT SUPPORT 6 4 - B I T  POINTERS 
* / 
v o i d  f r e e ( v o i d  * - p t r ) ;  
i n t  r a n d ( v o i d 1 ;  
s i z e - t  s t r l e n ( c o n s t  c h a r  *-s); 

- c h a r - p t r 3 2  s t r e r r o r ( i n t  - e r r n u m ) ;  

/ * 
* *  R e s t o r e  t h e  u s e r ' s  p o i n t e r  c o n t e x t .  
* / 
# i f  - INITIAL-POINTER-SIZE 
# p r a g m a  - p o i n t e r - s i z e  - r e s t o r e  

# e n d i  f  

# e n d i f  / *  -HEADER-LOADED * /  

Figure 5 
<:ontinucd 

2. Add the tbllowing line of code to  the top of  the 
11iod~1Ic: # i n c l u d e  ( w i d e - t y p e s .  s r c > .  

3. Cliangc the declaration of the f ~ ~ n c t i o n  to accept 
a -wide-const-chal--ptr parameter instead of the 
previous const char * paramctcr. 

4. Visually follo\v this argument through the code, 
loolting for assignnient statcmcnts. This part ic~~lar 
ti~nction \\!auld be a si~nple loop. If local variables 
store this pointer, they must also be declared as 
- \vide-const-char-ptr. 

5. Compile the sourcc code using the directive 
/\\~arn=cnable=maylosedara to  liavc the compiler 
help detect pointer truncation. 

6. Add n nc\v tcst to the tcst system to exercise 64-bit 
poi11 tcrs. 

Restricting execv from High Memory 
Examination of  the exec\! filnction prototypc showed 
that tliis f ~ n c t i o n  receives nvo argumcnts. The frst  
nrgumcnt is a pointer to thc name of thc file to start. 
The second 'irgument represents the n rp r  array that is 
to be passed to  thc child process. This arrav of nointcrs 
to  null terminated strings ends with a NULL pointer. 

Initially, the exec\! function was to have had two 
iniplenientations. The parameters passed to the execv 
function are used as the parameters to the main h n c -  
tion of the child process being started. Because no 
assumptions coi~ld  be niade about that child process 
(in terms of support for 64-bit pointers), these para- 
meters are restricted to lo\v melnory addresses. 

To  illustrate that t17e argv passing was a restriction, 
\ye place that prototype into the section "Functions 
restricted froni 6 4  bits" of <header.h>. The first argu- 
nient, the name of the flc, did not need to lia\w this 
restriction. The section "Create 64-bit header file 
t)~pedefsn was enhanced to  add the definition of  
- const-char-ptr64, which allows the prototypes to  
define a 64-bit pointer to constant characters while in 
either 32-bit or 64-bit contest. 

Returning a Relative Pointer in strcat 
The strcat fi~nction returns a pointer relative to its first 
argument. We looked n t  tliis fi~rlction and determined 
that it required nvo cntr!, points. I n  addition, we 
\\liciened the second parameter, \vhich is the address of 
the string to concatenate to the second, to a l l o ~ l  the 
application to concatenate a 64-bit string to  a 32-bit 
string ivithout source code changes. 
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Figure 5 sl~o\vs the changes made to support func- 
tions that have pointer-size-specific entry points. The  
prototypes of functions XXS, -XXX32, and -XXX64 
begin in 64-bit pointer-size mode. Since the un~nodi-  
fied fi~nction name (strcat, XXX) is to be in the pointer 
size specified by the /pointer-size qualifier, the 
pointer sizc is changed from 6 4  bits to 32 bits if and 
only if the user has specified /pointer_size=32. At this 
point, we are not certain of  the pointer size in effect. 
We know only that the size is the same as the sizc of 
the qualifier. The second argurnent to strcat uses the 
- const-char-ptr64 typedef in case \\re are in 32-bit 
pointer mode. Notice the declaration of -strcat64 
does not use this qrpedef because we are guaranteed 
to  be in 64-bit pointer context. Figure 6 shows the 
implementation of  both the 32-bit and the 64-bit 
strcat filnctions. 

The 64-bit malloc Function 
The implementation of multiple entry points was dis- 
cussed and demonswated in the strcat implementation. 
Although multiple entry points are typically addcd t o  
lvoid truncating pointers, fi~nctions such as Inenlory 
allocation routines have newly defined behavior. 

The fi~nctions decc$malloc and decc$-malloc64 
use new support pro\iided by the OpenVMS Alpha 
operati~lg system for allocating, extending, and freeing 
64-bit virtual memory. The C run-time library utilizes 
this new flnctionality through the LIBRTL entry 
points. The LIBKTL group addcd new entry points tbr 
each of  the existing memory management filnctions. 
The LIBRTL incl~tdes an additional second entry 
point for the free function. Since our implementation 
of the free hnction simply widens the pointer, we end 
up with a single, C run-time library hnction that  nus st 
choose which LIBRTL hnction to  call. 

i n t  f r e e ( - w i d e - v o i d - p t r  p t r )  { 
i f  (!(C$$IS-SHORT-ADDRcptr))) 

r e t u r n ( c $ $ - f r e e 6 4 ( p t r ) ) ;  
e l s e  r e t u r n ( c . S $ - f r e e 3 2 ( ( v o i d  * )  p t r ) ;  

1 

Concluding Remarks 

The project took approxiri~atcly seven person-months 
to complete. The work involved two mont l~s  to deter- 
n ~ i n c  what we wanted to do,  onc month to figure out 
how we \Irere going to d o  it, and four person-months 
to modi?, document, and test the sofnvare. 

During the initial nvo months, the technical lenders 
met on a \veeltl!l basis and discussed the overall 
approach to  adding 64-bit pointers to  the OpenVMS 
environment. Since I was the technical lead for the C 
run-time library project, this initial pl~ase occupied 
beo\reen 25 and 50 percent of my time. 

The one month of derailed analysis and design co12- 
sumed Inore than 90 percent of niy time and rc s~~ l t cd  
in a detailed document of approximately 100 pagcs. 
The document covered each of the 50 header f les and 
500 hnction interfaces. The f~nc t ions  \Ircre grouped 
by type, based on  the amount of work r eq~~i red  to 
support 64-bit pointers. 

Thc first nionth of in~plcmcntntion occupied nearly 
all of my time, as I made several false starts. Once I 
\vorkcd out  the final implen~entation technique, I 
complctcd at least two of each type of ~ ~ o r k .  As coding 
deadlines approached, I taught nvo other engineers on 
my team h o w  to add 64-bit pointer support, pointing 
out tliosc fi~nctions already completed for rcf'crcncc. 
They came up to specd \vitl~in one \\leek. Together, 11.c 
completed the work during the final month of the 
project. 

# i n c l u d e  < s t r i n g . h >  
# i n c l u d e  < w i d e - t y p e s . s r c >  

/ * 
* *  STRCATI-STRCAT64 * * 
* *  The  ' s t r c a t '  f u n c t i o n  c o n c a t e n a t e s  ' s 2 ' ,  i n c l u d i n g  t h e  
* *  t e r m i n a t i n g  n u l l  c h a r a c t e r ,  t o  t h e  e n d  o f  ' s l ' .  
* / 

- w i d e - c h a r - p t r  - s t r c a t 6 4 ( - w i d e - c h a r - p t r  s l ,  - w i d e - c o n s t - c h a r - p t r  s 2 )  
C 

( v o i d )  - m e m c p y 6 4 ( ( s l  + s t r l e n ( s l ) ) ,  s2, ( s t r L e n ( s 2 )  + I ) ) ;  
r e t u r n ( s 1 ) ;  

3 

c h a r  * s t r c a t 3 2 ( c h a r  * s l ,  - w i d e - c o n s t - c h a r - p t r  s 2 )  C 
( v o i d )  rnerncpy( (s1  + s t r l e n ( s l ) ) ,  52, ( s t r ~ e n ( s 2 )  + I ) ) ;  
r e t u r n ( s 1 ) ;  

L 

Figure 6 
Irnplcn~entation of 32-bit and 64-bit strcat Functions 

\Id. 8 No. 2 1996 



Acknowledgments 

The author would like to ackiowvJedge thc others who 
contributcd to  the success of the C run-time library 
project. The engineers who helped with various 
aspects of  the analysis, design, and implementation 
wcrc Sandra Whitman, Brian McCarthy, Greg Tarsa, 
1Marc Nocl, Boris Gubenko, and Ken Cowan. Our  
writer, John Paolillo, worked countless hours docu- 
menting the changes we made to  the library. 

References 

1 .  1M. Harvcy and L. Szubowicz, "Estending OpcnVMS 
for 64-bit Addressable Virtual Memory," Digital 
Techtlical Jo~rrr7a1, vol. 8, no. 2 (1996, this issue): 
57-71. 

2. T. Benso~i, K. Noel, and R. Peterson, "The OpenVMS 
Mixed Pointer Size En\,ironment," Digital Technical 
~/o~lri1u1. vol. 8, no. 2 (1996, this issue): 72-82. 

3. I)l.lc' C' I !scl-:s Griidcjbr Opeia NVIS Systctns (Maynard, 
Mass.: 1)igital Eq~~iprnent Corporation, Ordcr No. 
AA-PIINZt<- 'TI<,  1995). 

4. I)l:'(; C' R11uti117e Libmiy Rc/i?rclicc 1!46!r11,1al for 
O/I~II  ~il~/ .S.S~~\ '~e/~/s  mayna nard, Mass.: Digital Eq~~iprnc~it 
Cosposx'ion, Ordcr No. .4A-PUNEE-TI<, 1995). 

5. 04~0111:1.1.s C~tlliilg Stct~?clorcl(Ma!/nard, Mass.: Digital 
Eq~~ilxmu~t Corporation, Ordcl No.  IW-QSI3RA-'.rE, 
1995). 

Biography 

Duane A. Smith 
As a consulting sohrare engineer, Duane Smith is currently 
architect and project leader of the C run-time library for 
thc OpcnVMS VAS and Alpha plntfornis. He joined Digital 
in 198 1 and has \vorked on a variety of projects, including 
thc A-to-% Database  manager and the Language-Scnsiti\w 
Editor. 1)uanc rccei\,ed his R.S. in engineering from t l ~ c  
University of Connecticut in 1981 and his 1M.S. in soh- 
\\,arc cngiciccring from Wang Ic1srirutc of Graduate Studies 
in 1987. H e  pr~rsucd his masrcr's dcgree through l3igital's 
Gradu.~tc Enginccsing Educnrion Program (GEEP) ,  13~1ane 
holds one U.S. pntcnt issucd for rhc DE<:\\indo\\ls Suucturcd 
Vibual Na\,~gntion (SVN)  \\,idget. 

Digital Technical J o w l  Vol. 8 No. 2 1996 95 



Building a High-performance 
Message-passing System for 
MEMORY CHANNEL Clusters 

The new MEMORY CHANNEL~O~ PC1 cluster 
interconnect technology developed by Digital 
(based on technology from Encore Computer 
Corporation) dramatically reduces the over- 
head involved in intermachine communica- 
tion. Digital has designed a software system, 
the TruCluster MEMORY CHANNEL Software ver- 
sion 1.4 product, that provides fast user-level 

access to the MEMORY CHANNEL network and 
can be used to implement a form of distributed 
shared memory. Using this product, Digital has 
built a low-level message-passing system that 
reduces the communications latency in a MEMORY 

CHANNEL cluster to  less than 10 microseconds. 
This system can, in turn, be used to easily build 
the communications libraries that programmers 
use to parallelize scientific codes. Digital has 
demonstrated the successful use of this message- 
passing system by developing implementations 
of two of the most popular of these libraries, 
Parallel Virtual Machine (PVM) and Message 
Passing Interface (MPI). 

I 
James \! Lawton 
John J. Brosnan 
Morgan P. Doyle 
Seosarnh D. 0 Riordi in  
Timothy G.  Reddin 

During the last fe\v years, significant rcscarch and  
de\,clopnic~it has been ~~ncicrtnkcn in both :ic.ldcniia 
and industl-y in an effort to rcclucc the cost of high- 
perfi)rmnnce colnputing (Hl'C). Thc method most 
fi-ccluaitly used \\.as to Ix~ilci parallel s!.stclns o i ~ t  of 
clustcrs of co~nmodit!, \\,orlistntions or scl.\.crs that 
could be used as a virti~al supcrcomp~~tcr. '  The   no ti- 
\ration For this \\.ark \\.as the trcll~endous gains that 
h 3 \ ~  bee11 ;~cIiic\~cd i l l  rcd~rcccl instrilction set com- 
p t c r  (IIISC:) niicroproccssor pcrforn~a~icc during tlic 
hs t  decade. Indeed, processor performance in toiiay's 
\\,orkstations and ser\.cl-s ottcn cscccds that ofthc incii- 
\.iciu;ll processors in a tightly coupled si~pcl.compiltcr. 
Ho\\,c\.cr, traditional local area nct\\,orli (1,,4N) per- 
formance has not ltcpt pace \\it11 ~nicropl-occssor 
performance. LAN, such as fiber distribi~tcd data 
intcrcicc (121>DI), offel- rcnson;thlc band\\nititli, since 
couinulnicution is generally carried out  by mcnlis of 
traditi0nnl protocol stacks such as thc user ciatagrani 
protocol/internet pl-otocol ( Ul>l'/I 1') o r  the trans- 
mission cont~.oJ protocol/intcl.nct protocol (T(:I'/I P), 
but soft\\,arc o\,erhead ih a major hctor  in mcssagc- 
tmnsfcr ti~ilc.' This sofnvarc ovcrlicad is not I-cduccd 
by building hster LAN ncnvork liard\\~arc. Rntlicl-, a 
nc\\. ;~pprox l i  is nccdcd-one t h ~ t  bypasses tlic pro- 
tocol stack \\.bile prcscl-ving sccl~~cncing, error cictcc- 
tion, and protection. 

~Mucli current reseal-cli is dc\,otcd to rcdrlcing this 
C ~ I ~ ~ I ~ ~ L I I ~ ~ C . I ~ ~ O I ~ S  o\~crhcaci l ~ s i ~ i g  specialized lial-d\\rnrc 
and soti\\farc. To this end, 1)igital has been \\,orliing 
to  ~ilalic commercial Alpha clusters, desccnclcd from 
the origi~iiil VASclustcr tcch~~olog!,, n\railablc to scic~i- 
tihc anti tcch~~ical  users.',' l-hib clustcr tcclinolog!. 
i~scs n\.;iilnblc cornmodit\ hard\\-arc and soft\v.lrc to 
implcmcut a high-performance coni~iiunicatio~is sub- 
systcln.' Tlic liard\\~arc i~itcrconncct that s ~ ~ p p o r t s  
clustered opa-ation is Encore <:omputcr Corporation's 
patented blF,~MOl<\i <:HANNEI. tech~iolog!.." This 
intcrconncct pro\ridrs a mcchanis~n th;tt ;~llo\\.s the \ir- 
t ~ ~ a l  acitircss spacc of n process to be mapped so tliat 
a store i~ ls t r~ct io l l  in olie S!.S~CIII is dircctl!' r~tlcctcd in 
the physical memory o f  ;uiothcr sys tc~~i .  Wc have 
dcvclopcd sofn\/arc application programming inter- 
hccs ( AL'Is) that pro\ritic ~~sc~ . - l c \~c l  applications \\'it11 
tliis c;tp;tbility in a controlled and protected Inanncr. 
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Data may then be transferred between the machines 
i~sing simp.le lilclnor\i read and cvritc operations, with 
no sofi\vare o\~erliead, csscntially utilizing the f ~ ~ l l  per- 
formance o f thc  liard\\f'~re. This approach is similar to 
the o ~ i e  used in t l ~ c  Princeton SHRIMP project, lvhcrc 
this process is described as Virtual Mcmor\l-Mapped 
Comrnunicatio~~ (VI\/IM<:). '-I" 

Figure 1 sho\\s the relationship ben\!ccn the various 
components of our  message-passing system. The first 
phase of our \\fork invol\led dcsig~ii~ig a program- 
riling library and associated Iternel components to pro- 
vide protected, unprivileged access to the blEMORY 
(;HANNEL net\vork. Our  objective in creating this 
library was to pro\,idc a facility much like the standard 
S!lstem V interprocess corn~niuiication (IPC) shared 
memory hnctions a\lailablc in UNIX iniplcnientatio~~s. 
Programmers could use tlie library to set up operations 
over the IMEMORY CHANNEL interconnect, but they 
\vould not need to use the library fiuictions for data 
transfer. I n  this \\,a); pcrfor~nance could be maximized. 
This product, the TruClustcr MEMOlIY CHANNEL 
Soh\jarc, pro\iides progranimcrs \\!it11 a simple, high- 
performance mccha~lis~n fix building parallel systems. 

TruClustcr MEMORY CHANNEL Sofn\larc delivers 
the performance available fi-om the MEMORY 
CHANNEL network directly to  user applicatio~is but 
requires a programming style that is different from 
that required for sharccl Inelnor)!. This different pro- 
gramniing style is ncccssary because of the diffcrcnt 
access cliaracteristics bcn\,ccn local memory and mem- 
ory on  a re1iiote nodc connected tllroi~gh a &lEA401<Y 
<:HANNEL network. To ~nal<e programming \\,it11 the 
MEMOl<Y CHANNEL technology relati\lcly simple 
while continuing to dcli\ler tlie hardware performance, 
we built a library of primiti\lc communications f ~ ~ ~ i c -  
tions. This system, called Uni\~ersal Message Passing 
(UMP), liides the details of MEMOltY CHANNEL 
olxrations from the programmer and opcrates seam- 
Icssly over t\\io transports (initially): shared rnenior)l 
and the MEMORY CHANNEL interconnect. This 
allo\vs seamless growth from a symmetric ~nultipro- 
cessor (SMP) to a fill1 MEMORY CHANNEL cluster. 
Development can bc done on  a \\lorkstation, \vIiile 
production worlc is done o n  the cli~ster. The UIMI' 

PARALLEL APPLICATION 

UMP 

PVM 

I SHARED 1 TRUCLUSTER 

SOFTWARE 

MPI 

Figure 1 
 message-passing Sysrcnl Archircctirrc 

layer was designed from the beginning \\'it11 perfor- 
mance considerations in mind, particu~arly wit11 
respect to minimizing thc overhead in\.ol\!cd in send- 
ing sniall messages. 

Two distributed nicmor!r ~nocicls arc predominantly 
used in high-performance computing today: 

1. Data parallel, which is iued in  High Performance 
Fortran (HPF)." With this model, the programmer 
uses parallel langi~age constructs to  indicate to the 
compiler Jio\v to distribute data and \+?hat opera- 
tions s h o ~ ~ l d  be perfomled on it. The problem is 
assu~iied to be regular so that the compiler can use 
one of a number of data distribution algorithms. 

2. Message passing, \\~hicIi is usecl in 1'ar.allel Virtual 
Machine (PVM) and Mcssage Passing Inrerhce 
(I\/IPI).'l-l' In this approach, all messaging is pcr- 
formed explicitly, so the application programmer 
deter~nines the data distribution algorithm, making 
this approach more suitable for irregular proble~ns. 

It is not yet clear whether one of tlicsc approaches 
\\!ill prcdo~ninate in the fi~turc or  if botli \\rill continue 
to coexist. Digital has been \\lorking to pro\ridc com- 
petitive solutions for botli approaches using MEMORY 
CHANNEL clusters. Digital's HPF work has been 
described in a previous issue of the .~orr~-~~nl. l" ' '  This 
paper is primarily conccrncd \vith mcssagc passing. 

Building on the UMP layer, we constructed implc- 
mentations of nvo common message-passing s!!stcms. 
The first, PVM, is a dc bcto  stilnd'ird for programmers 
\\rho want to parallelize large scientific and tcclinical 
applications. In  addition to messaging functions, I'VlM 
also provides process control fu~ictions. The second, 
MPI, represents the efforts of a largc group of acadc- 
mic and industrial users who are ~vorlung together 
to  speciljl a standard API for mcssagc passing. At this 
time, lMPI does not provide any process control hcili- 
ties. The pcrformancc of tlicsc PVbl and MPI systelns 
on &IEivlOl<Y CHANNEL clusters cscccds that of tlic 
public-domain implementations. 

MEMORY CHANNEL Overview 

Encore's JMEMORY CHANNEL technology is a high- 
performance nct\\lork tllat iliiplcnlents a form of 
cluster\\~idc sharecl \lirtual mcmor!(. 111 1)igital's first 
i~iiple~ncntntion of this technolog!(, it is a shared, 
100-mcgab!!tc-per-scco~id (i\/lB/s) bus that provides 
a write-only path from :I page of\.irtual address space 
011 one node to  a page of physical memor)l o n  another 
nodc (or  multiple other nodes). The MEMOl\Y 
CHANNEL network outperfor~ns any traditional LAN 
technology that uses a bus topology. For example, a 
peak band\vidth of bct\\lccn 35 MB/s and 70 M B/s is 
possible \\jith the current 32-bit pcriphcral coliiponent 
interconnect (PCI) h4EhilORY CHANNLL adapters, 
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depending o n  tlie band\vidtIi of the 1 /0  subs)'stcm 
into \vliicli the adaptcr is plugged. Although tlic cur- 
rent MEMORY CHANNEL, network is a shared bus, the 
plan for the next generatio11 is to utilize a s\\~itched 
technology tliat \\.ill increase the aggrcgatc band\\,idth 
of the nct\\,ork be!*oncl thnt of currently available 
s\\.itchcd I A N  tcchnologics. Thc latency (time to send 
a minimi~m-length lncssagc one way between two 
processes) is lcss than 5 ~nicroseconds (p.s). Tlic 
MEIMOKY CHANNEL, ncnvork pro\,idcs a comm L I  nica- 
tions mcclii~m \\.it11 a low bit-crr-01- rate, 011 the ordcr of 
10-10. l'lic probabilit\, of undetected errors occurring 
is so s~nall ( o n  the ordcr of the undetected error yatc of 
CPUs a~ici Incliiory subs!~stcms) tli,~t it is csscntiall!, 
negligible. A MEMOl<Y CHANNEL c1ustc1- consists of  
one or more PC1 LMEMORY (:Ht\NNEL adapters o n  
each notic anti a hub c o ~ ~ ~ l c c t i n g  up to eight nodes. 

The MEMOLIY CHANNEI, cluster s ~ ~ p p o r t ~ a  
512-1Ml3 global addrcss space into \vhich each adapter, 
under opcmting systcm control, can map regions of  
local \,irt~lal address space . 'V i s~ i rc  2 illustratcs tlic 
I\lEMOI<Y CHANNEL opcmtion. Figure 2a shows 
transmission, and Figure 2 b  sIio\vs reception. A pngc 
table entry (PTE) is an entry in tlie system \ ' i r t~~nl-  
to-physical map that tral~slatcs the virtual adcircss of 
a 1.7agc to the corrcspo~iding pli\,sical atidrcss. l ~ l i c  
MEh4OliY CHANNEL, adapter cont:~ins a pagc control 
table (1'(:1') that indicntcs till- each page ofMEMOI<Y 
CI-IANNEI. global addrcss sp:icc if tliat pagc is ~nappcd 
lo call!^ 2nd \\.licther it is rnnppccl for transmission or 
reception. T ~ L I S ,  to map a past of local \eirtual memi- 
or!, for transmission, all tliat is rccl~~ircd is to 

Set up an entry in the systcm \.irtual-to-ph~,sic31 
niap to point to a page in the MEIUORY <:HANNF.I. 
adapter's PC1 1 / 0  addrcss space \vindo\\!, \vliicli 
is directly mappcci to the pagc in MEMORY 
<:FIANNF.I. space 

Enable tlic corresponding pagc cntr!; in tlic I'(:T 
ti)r trans~~~ission 

Any \\,rite to the mapped \ ~ i ~ - t ~ ~ d l  page \ \ ) i l l  then 
rcsult in 3 corrcspondirlg \\/rite to t l ~ c  MF,IVIOl<Y 
CHANNEI, nch\.ork. 

,. . l o  complete tlic circuit, the page of hlElvlOl<l' 
CHANNEL. spncc niust bc m ~ ~ p p c d  to \.irtl~al mcmor!, 
o n  .~notlicr node. 'This is ~lccomplished o n  tlic otlicr 
node hy 

Making ;I ['age of  pl~ysic~ll memory nonpngcablc 
(\\.ired) 

Crcnting a v i r t ~ ~ a l  rcgion \\,hose PTE points to  the 
\\.ired page 

Setting LIP tlie 1 / 0  direct memory acccss (13MA) 
scattcr/g.ithcr map to point to the physical pagc 

Enabling tlie appropriate cntr!. in the adapter's 
P(:T for rcccption 

T l i ~ ~ s ,  \\dicn a 1\4EA40I<l' (:HANNEL n ~ t \ \ ~ o r k  packet 
is rcccivcd that corresponds to the page that is niapped 
fix rcccption, the data is transferred directly to the 
appropriate page of  physicnl memory by the system's 
l>MA engine. I n  addition, any cachc lines that refer to 
the upJ;itcd page are inr.llidatcti. 

Subscclucntl!; an!. \\rites to tbc  napped page of \.ir- 
tual memory on the first nocic r ~ s ~ ~ l t  in corrcspo~ldirlg 
writes to physical memol-!l o n  the second node. This 
means that when a rcgion in IMEMORY (;HANNF.L. 
s l > ~ c  ]ins bccn alloc,~tcd nnci iittnched to a proccss, 
\\.rites to tIi3t rcgio~i a1-c just simple stores to a process 
\rirt~~al addl-css. \ . i r t~~nl ncldl-css translates to n p h ! ~  
ical adcircss tliat is m ~ p p c d  for tmnsmissio~i. Rcatis 
froni that region :Ire si~iiply loads from a pu)ccss \ \ ' i~ . t~~a l  
address, so tllc operating system is not invol\icd in tlata 
trar~sfcr, \\,it11 conscqucnt rcductio~i in o\~crhcad. 

To use the MEMORY (:HANNEL hard\varc, the 
operating s!.stem must PI-o\.idc ccrtaiu basic scr\.iccs. 
Digital's cluster sohval-c includes a set of lo\\.-lc\,cl 
primiti\,cs tli;~t can be i~scd in the UNIX Itel-ncl. 'The 
fi~nctionality that these scr\riccs pro\~idc inclucics 

Allocating and deallocating regions of hlEMOKY 
(:I-1ANNEL space h r  transmission or  rcccption 

Alloc.~ting and dcalloc,~ting cluster spilllocks 

Pro\.iding the capability to be notifieti \\,lien ,I p,lgc 
has bccn \witten (i.c., a   lot if cation channel) 

TruCluster MEMORY CHANNEL Software 

\/Vc dcsigrlcd the TI-ir<:lustcr MEi\ilOli\r' (:Hr\SNEt. 
Sott\~.nl-c product t o  pro\.idc user-le\.el acccss to the 
Iternel f~nctions that control the MEIMOI<Y (:HASXI-L 
hard\\~lrc. The target audience for this technology is 
parallel sott\\lare library builders and parallel compiler 
implc~ncntcrs. As shot\-n in F i p r c  3, the product con- 
sists of nvo components layered on top of the lker~lcl 
hlEMORl' (:HANSEL fi~nctions: 

1. A kcrlicl si~bs!.stern tliat interfaces to tlic lo\\ - l c \ ~  
licrricl functions 

2 .  A ~~ser-Ie\.eI API librar!' 

Tlicrc \\.ere t \ \ ~  choices in dc\,eloping the p . o d ~ ~ c t :  
pro\.idc simple ~lser-Ic\.cl ,~cccss to thc basic f~~~ic t ion, i l -  
it\.  or  builci a more sophisticated system (c.g., a tiisrrib- 
uted sliarccl mcmor!, [DSM] s!,stc~n). Wc cliosc to 
nlakc 3 S L I I > S C ~  of the f~nction;llity o f thc  opcmting sys- 
tcni kcrncl pril~ijti\ci a\sailnblc to applicatiolls fix tn*o 
rcnsoris. Fil-st-, \\,c did not initiall!, kno\\* the degree 
of f~nc t ionn l i c  required to pro\.idc generic user- 
l e \ d  acccss to the iVll:.\lOl<l' (:I~.iNNlil. net\\-ol-I;. 
for the long term. Second, the original purpose of 
the \lurk \\.;IS to give scientific anci tcclinicnl cus- 
tomcrs, r.ltlicr than com~iicrcial cluster i~scrs, cnrly 
acccss to the hlt;h/lORY (:HANNEL nct\\,ork. As '1 

rcsult, tlic f~~nction~~lit!, \\.c b ~ ~ i l t  into the proci~~ct is 
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Table 1 
TruCluster MEMORY CHANNEL API Library Functions 

Function 
Name Description 

imc-asalloc Allocates a region of NIEMORY CHANNEL address space of a specified size and permissions and 
with a user-supplied key; the ability to  specify a key allows other cluster processes to  rendezvous 
at the same region. The function returns to  the user a clusterwide ID for this region. 

Imc-asattach Attaches an allocated MEMORY CHANNEL region to  a process virtual address space. A region 
can be attached for transmission or reception, and in shared or exclusive mode. The user can also 
request that the page be attached in loopback mode, i.e., any writes will be reflected back t o  the 
current node so that if an appropriate reception mapping is in effect, the result of the writes can 
be seen locally. The virtual address of the mapped region is assigned by the kernel and returned 
t o  the user. 

Imc-asdetach Detaches an allocated MEMORY CHANNEL region from a process virtual address space. 

imc-asdealloc Deallocates a region of MEMORY CHANNEL address space with a specified ID. 

imc-lkalloc Allocates a set of clusterwide spinlocks. The user can specify a key and the required permissions. 
Normally, if a spinlock set exists, then this function just returns the ID of that lock set; otherwise 
i t  creates the set. If the user specifies that creation is to  be exclusive, then failure will result if the 
spinlock set exists already. In addition, by specifying the IMC-CREATOR flag, the first spinlock in 
the set will be acquired. These two features prevent the occurrence of races in the allocation of 
spinlock sets across the cluster. 

imc-lkacquire Acquires (locks) a spinlock in a specified spinlock set. 
imc-lkrelease Releases (unlocks) a spinlock in a specified spinlock set. 

imc-lkdealloc Deallocates a set of  spinlocks. 
imc-rderrcnt Reads the clusterwide MEMORY CHANNEL error count and returns the value t o  the user. This 

value is not guaranteed t o  be up-to-date for all nodes in the cluster. It can be used t o  construct 
an application-specific error-detection scheme. 

imc-ckerrcnt Checks for outstanding MEMORY CHANNEL errors, i.e., errors that have not yet been reflected in 
the clusterwide NIEMORY CHANNEL error count returned by imc-rderrcnt. This function checks 
each node in the cluster for any outstanding errors and updates the global error count accordingly. 

imc-kill Sends a UNlX signal t o  a specified process on another node in the cluster. 

imc-gethosts Returns the number of nodes currently in the cluster and their host names. 

\ ~ l i i c l i  librar!, fi~nction h:is bccn called) and any para- 
JIIC~C~S and sends i t  to thc lkcrncl s~~bspstcm LIS~ I I~  

klnodcall. 'I'lic Itcrncl s~~bs!.stc~n l i a s  a ~n;~tcI i ing fiinc- 
tion ti)r cacli o f  rhc librar\r cnlls. When a com~nnnd 
bloclc is rccci\,cd, i t  i s  p~1.5cci .~nd the nppropriate h n c -  
tion is  callcd to scr\.icc rhc request. All security and 
rcsoiIrcc cliccks ;ire pc~-fO~-~iicd inside the kernel. 

Figi~rc 4 sho\\,s some o f  tlic cinta struct~~rcs that the 
I<cr~icl services use. A clustcr\vidc rcgion of IMEMOKY 
CHANNEI, space is  nllocatcd to store thcsc manage- 
nicnt s t r ~ ~ c t ~ ~ r c s .  This rcgion contnins a control struc- 
ture 2nd sis linltcd lists of descriptors. The control 
S~ I .L I~~L I I -~  manages MEAllORY CHANNEL resources 
allocated L I S ~ J I ~  'l'ru(:lustcr MLMOliY CHANNEL 
Sott\\~arc. Each rcgion of h/ll-,1\~101<Y CHANNEL adclrcss 
space 2nd cnch set ofMEI\/IOIU' <:HANNEL. spinloclts 
nllocatcd using the product hnvc a corresponding 
descriptor in tlic kernel data structure. 

For cnch rcgion o f  MEMORY (IHANNEL address 
spncc nllocntcd in the clustc~-, thcl-c i s  n cluster rcgion 
dcscriptor ((;111>) that contains information dcscrib- 
i11g the rcgion, including its cl~ntcru.idc rcgion identi- 
fication number (II)), i t s  s i ~c ,  kc); permissions, 

crcation t i~i ic,  and the UNlX  LISCI- 11) ( UI l ))  n~ici group 
11) (GIl)) o f  tlic creating proccss. For an incii\.idual 
CRl3, there is  a host rcg~ol i  descriptor ( t l l i l 3 )  for cacli 
node that lias tlic rcgion mc~ppci i .  'Tliis HLI1) contiiins 
the clustcr ID o f  the ~ i odc  ,~nd other nocic-specific 
inforlnation. Finally, for a spccitic H1<1>, thcrc is ;I 
process region descriptor (PRI)) fix cacli process on 
that node that is using the rcgion. The I'ltl) contains 
the U N l S  proccss 11) (1'1 1)) o f  tlic process tliat crcntcd 
the region and any process-spccifc inh-mation, sucli 
as \irtual addresses. 

Similarly, for each set of spinloclts nllocatcd on the 
cluster thcrc is  a cluster lock dcscriptol- (<;L,l)) tlint 
contains information describing the spinloclc sct, 
inclilding i t s  cl11stcr\\idc lock I I), the 1111rnl3cr o f  spin- 
locks in the set, tlic kc): permissions, crcntion time, 
and the U I D  and G11) of the crcnting proccss. For an 
indi\,idual CLD, thcrc is ;i host lock descriptor (HLI)) 
for each nodc that is using the spinlock set. TIic H1.1) 
contains tlic clustcr ID o f  the nodc and otlicr nodc- 
specific inhrmation about the spinlock sct. For n spc- 
cific HLl>, thcrc is a proccss lock iicscriptor (I'1,l)) h r  
each proccss on that uodc tliat is usins the spi~ilocli. 
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Figure 4 
Tru(:luster ILIEhlORl' ( :Hr\SSEI.  I<clncl Data Str~lcturcs 

set. Tlic PLD contains tllc 1'11) of thc  process that crc- 
dtcd the spi~ilock set ,111~1 ;111y process-specific informa- 
tion i~bout  the spinlock set. 

All these clustcr dat.1 s t r~~c tu rcs  have pointers that 
cannot be ~ ~ p d a t c d  atomic;illy. 111 our implcmentatiou, 
they actually consist of  nvo copies (old and nc\\.) and 
a toggle that indicates \\.llich of the nvo copies is \ d id .  
Tlic toggle is s\virchcd fi-om an old copy to a nc\v copy 
only when the new copy is kno\vn to bc consistent, so 
that tb i l~~rc  of a cluster ~ncnlbcr while modit$ng the 
s t r ~ ~ c t ~ ~ r e s  can he tolc~.dtcd. 

Figure 4a jllustrutcs '1 hypothetical situation in \vhich 
four regions of M E I ~ I O K Y  <;HANNEI., space have bccn 
allocatcci 011 the cluster-. The f rst region, \\,it11 dcscrip- 
tor (;RD 0, is mapped o n  tlircc nodcs: host 4, host 6, 
and host 3. Tlic diagram also sho\\ls fi>ur processes o n  
host 3 \\firh the region mapped and lists the PID ofcach 
process. F i g ~ ~ r c  4b shows ;I sinlilar situation fix spin- 
locks. T\vo sets of spinlocks have been allocated. Tllc 

first, with descriptor <:LLl 0, is mapped o ~ i  nvo nodcs 
of the clustcr: host 2 and host 0. One process o n  each 
of tlicsc nodcs is CLII-rcntly  sing tlie spinloclc set. 

Command Relay 
The comniancl relay is a kernel-lc\,cl frnmc\\.ork that 
enables the cxccution of a generic scr\.icc roi~tinc o n  
another ~ ~ o d c  \\,ithin the clustcr. I t  f ~ n c t i o ~ l s  as a s i ~ n -  
plc kcr~icl remote procedure call (RI'C:) mcchanisni 
based on fiscd unidit-cctional message locations (niail- 
boxes) and ILIEILIOKY <:HANNF,I. notification chan- 
nels to a\\tal<cn the server Itcrncl thrc'd. Figure 5 
sho\vs the m ~ j o r  components of the command relay 
and illustmtcs its operation bcn\~ccn n\,o hosts in a 
clustcr. A client kernel thread o n  one host in\.olting a 
ser\.icc and the corresponding server kernel thread o n  
allother cluster I~ost  conimunicatc data using a defined 
bidirectional command/rcsponsc block, know11 as a 
parameter structul-c. The client and server routi~les 

Digital Technical Jou l - r~a l  



HOST A - - - - - - - - - - - - - - - - -  

CLIENT 0 
INVOKE , [ E  i 

HOST B 
r - - - - - - - - - - - - - - - - -  

S E R V E R  ICY 
INITIATOR RELAY SLAVE RELAY 

- - - - - - - - - - - - - - - - - J  NOTIFICATION CHANNEL L - - - - - - - - - - - - - - - - - 

Figure 5 
Coninia~id lie la!^ Opcr'~tioll 

tliust confor~n to this interface and must be reliable, 
i.e., they must always return to the caller. The server 
can call any kernel fi~nction. Server routines are regis- 
tered (step 1 in F i g ~ ~ r e  5) using a clusterwide service 
ID. A kernel thread in\loking a remote service passcs 
a packed parameter structure to the command rela),, 
together \\,ith a destination nodc ID and a ser\sice 113 
(stcp 2). This command relay the11 ;lcicis process creden- 
tials and builds a service protocol data unit (SPDU). 
Using a MEMORY CHANNEL notitication channel, it 
signals the remote nodc and passcs the SPDU by nieans 
of a mailbox in MEMOLCY CHANNEL space (step 3).  
The server parses the SPI>U and calls the requested ser- 
vice function, passing it the parameter structure (step 
4) .  When the service fbnction co~npletes (step 5),  its 
return status and any data \glues are packed into .In 
S1'1)U anci placed into the ~nnilbox, and the initiating 
rclay is signaled (stcp 6). The initiator then irnpaclts the 
data horn the SPDU and returns the appropriate status 
and values to the client kernel thread (step 7). 

All calls to the coliimand relay arc s)rnchronous and 
serialized. The invoking Iternel thread blocl<s until tlic 
scr\u- returlis. Requests to the comma~id relay subsys- 
tem are treated on a first-come first-served basis, and 
calls to a busy rclay block until the relay beco~ncs free. 
Relays arc automatically created bctwccn all nodes in 
the cluster. 

The command rela!, mechanism rnaltes it possible 
to send a UNIX signal to a proccss o n  another nodc 
\\.ithin the LMELMORY <:HANNl{L c l~~ster .  The imc-kill 
library function uses tlic command relay to in\~oltc 
tlic rcgistcrcd kernel servcr roiltine for cluster signals 
o n  the remotc nodc, \\~Iiich, in turn, calls tlie kerncl It i l l  
f~lliction directly wit11 the 1'1 13 s~~ppl icd .  

Initial Coherency 
Wlicn a proccss o n  a cluster mcnibcr maps a region of 
hIEMO1IY CHANNEL.. addrcss space for both rcccp- 
tion and transmission, ,In!, \\lrites to the transmit 
rcgion b!, that proccss arc rctlectcd as changes to the 
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corresponding receive region. If another process on 
another cluster node subsequentl!~ maps the same 
region for reception, the contents of its receive region 
are indeterminate; i.e., the nvo processes d o  not liave 
a coherent \vie\\. ofthat  region. This situation is knon.11 
as the initial coherenc!! problem. For a n  application 
dc\,cloper, this problem malies it difficult to treat 
MEblORY CHANNEL addrcss spacc ns 'luother form 
ofsliarcd memory Applications can overcome this dif- 
f c~11t-y by using sonic ti)rm of start-up synchronization. 
However, all dc\clopcrs \\fould have to implement 
these solutions separately. To increase the ~~sability o f  - .  
I r ~ ~ ~ I i i s t c r  MEMORY CHANNEL. Sohvare, the design 
tcani decided to build in the ability to rcqucst coherent 
allocation of MEIUOIIY (:FIANNl:l.  'Iddress spacc 
across the cluster. Dc\~clopcrs can spccifjr this as an 
option in the call to imc-asalloc. As n result, a proccss 
can attach a MEMORY CHANNEL, rcgion for reception 
ti)llon,ing any updates and still share a common vie\\, of 
the rcgion with other processes in the cluster. 

A special proccss, called the mapper, is used to pro- 
vide the \lirtual address spncc to liolcl the coherent user 
space mappings. Whcn the ltcrncl s i ibs)~s te~i~ receives 
a r c q ~ ~ e s t  for co l l e re~~ t  allocatio~l, it allocates the 
MEi\ / lOR1rC~\ lNEl ,  rcgion ns normal and then maps 
the rcgion for reception into the virtual addrcss spacc 
of the mapper proccss. The command relay mechn- 
nism tlicn causes all the other nodes in tlie cluster to 
allocate the same rcgion and map it fix reception into 
tlic addrcss space of the mapper proccss on each nodc. 
Since ~nultiplc uscr-lcvel p~.occsscs o n  a nodc that 
nttncl~ a particular region for reception share thc samc 
physical memory, all uptirltcs to the rcgion arc sccn by 
late-joining processes on  any nodc in the cluster. If 
the recluesting proccss exits, the rcgion \\,ill still be 
allocated to the rnappcr, so  that another allocation of 
the samc rcgion o n  that ~ i o d c  \\'ill rcsi~lt in a colierent 
picture of that region. Thc rcgion is fi~lly deallocated 
(i.c., from all the rnappcr processes) \\.hen the last 
application process al locati~~g t l ~ c  rcgion either esits or 
explicitly clcallocates the rcgio~i.  



Given the uscf~~lncss ofcohercnt allocations, it !nay 
seem t~~iusual  tliat \vc made this feature an option 
rather thnn the cicfai~lt. There are several reasons fix 
this. With colicrcnt allocations, the associated physical 
memory becomes nonpagcable on all nodes nrithin the 
cluster, and, as such, it consumes physical resources. 
In addition, every outbound write to  such a region 
r e s~~ l t s  in an i n b o ~ ~ n d  \\,rite to the pliysical memory of 
each node in the c l~~stcr .  For some application designs, 
it map bc more desirable to create a region that is writ- 
ten by one nocie and only read by other nodes. Also, 
autoniatically reflecting all \vrites back to a node, ns 
is done for coherent regions, consulnes nvice as much 
bandwidth on the I'CI bus. 

Late Join and Failure Resilience 
To pro\lide an operational en\.ironment in which 
nodes can join or  lea\re tlie cluster at any time, tlie ker- 
nel subsystem needs to o\,crcome a nu~nber  of prob- 
lems resulting from late join and node hilurc. In fact, 
the kcrncl subs!lstcm is subject to the same difficulties 
of initial cohcrcnc!, as application-le\~el processes. To  
managc L I S C ~  space ;~IIocati~ns, late-joining nodes 
rccl~~irc a coherent \pic\\ o f the  cluster data structures. 
~Morcovcr, hilurc of ;in csisting node can result in o ~ ~ t -  
of-datc or, c\vn \\,orsc, corrLIpt data structures in the 
subsystem's control region. To contain the failure, 
corrupt data structures must l>c repaired. 

Lo\i~-level Itcrncl routines dctcct cluster nicmbcrsliip 
ch.ingc and \.\ral<e up n management service thrcad o n  
cacli nodc that pcrhrms operations local to that node. 
The ti rst management service thrcad to acquire a spc- 
cific spinlock is clcctccj to manage clustcr\vide ~~pda tcs .  

In the case of late join, tlle management service 
thread updates local statc to reflect the ne\v configura- 
tion. "The thrcud tliat has been clesignated to managc 
clustcr\vidc ~~pcintcs is responsible for pro\,iding the 
late-joining nodc \\*it11 an up-to-date copy of tlic clus- 
ter datii structurcs. Wlicn triggered b!, the ne\v nodc, 
tlic thrcaci rct~.nnsmits the contents of the data struc- 
tures so tliat the late-joining node has a fi~lly up-to- 
date vie\\. ofallocntions and resource usage. 

Wlicn a nodc fiiils, the thread elected to manngc 
cl~~stcr\vidc ~~pdn tcs  must examine the entire managc- 
mcnt data stl-ucturc anci repair it appropriately. Repair 
is necessary \vllc~l the hiling nodc that is in the process 
of i~pdating tlic global data structures has Icft tlicsc 
clustcrwidc ~rpciatcs in dn unstable state. Repair is pos- 
sible bccausc all updates to global data structurcs use 
two copies of the structure (old and ne\v, as described 
previously), \vhicIi Incans that tlie structures can be 
reset casil\! to a stahlc statc. If  tlie tTailed nodc was not 
acti\rcly upciaring the data structures at the time of the 
f~i lu~.c ,  the management thrcad simply I-erno\,cs all 
rcso~r~.ccs ~llocntcd to the failed node. 

Error Management 
Tlic MEMOlU' CHANNEL hard\\,are pro\kics a vcr!~ 
lo\\, crror rate, ordering guarantees, and an ability to 
dctcct rcmote crror si t~~ations quickly, making ir possi- 
blc to construct simple crror detection and recover!, 
protocols. A kernel i~lterrupt ser\ice r o ~ ~ t i n e  detects 
cluster errors and updates an error counter that retlects 
the cl~~ster\ \~ide error co~11it. A lo\\!-le\)el kernel routine 
returns the \falue of this counter. Due to timing consid- 
erations, it is not possible to  guarantee tliat this count 
\ \ r i l l  be up-to-date with respect to possible crrors o n  
rcmote ~iodes.  A lo\\)-le\~el Iternel routine that efti- 
ciently reads the error status of remote MEiMORY 
CHANNEL adapters and detects unproccsscd errors 
is provided. This routine uses a hardware feature, 
known as an ACl< page, that is specifically designed to 
hcilitate crror detection. A write to such a page results 
in the crror status of each MEMORY CHANNEI, 
adapter being \\vritten to successi\~c lociltions of tlie 
corresponding reception mapped re,' 01011. 

During dc\,elopment, \ve built simple intcrfaccs 
to access tlicse lo\\r-lc\.el routines, tliercb\~ allo\\.ing 
message-passing libraries to build in crror manage- 
mcnt. Because tlic method of  getting into and out  of 
the kcrncl is a generic one, the overhead is high- 
approsi~iiately 30 ~ s .  This conipnrcs poorly \\.it11 the 
ra\v latency for short messages, \vhicIi is less than 5 FS. 
To pro\lidc suitable performance, we rcimplcmc~ltcd 
tlie f ~ ~ i c t i o n s  to csecilte totally i l l  user spacc. As a 
result, \i/hen an  application reads the error count for 
the first time (using imc-rderrcnt), tlic kcr~icl v,lluc of 
the crror count is mapped for read-only access into tlic 
\ l ir t~~al address space of the process. Subsequent rends 
o f  the crror count arc then simply reads of a mclnory 
loc~ltion. Similarly, when an application calls the check 
error scr\ricc (using imc-ckerrcnt) for the first time, 
A(;I< ~73gcS we tr,i~ispxl'"itly ~llapped into the \ ' i r t~~nI 
;iddress spacc o f the  process, and the crror detection is 
pcrfornied at hard\\*are speeds directly fi-om user 
s p ~ c .  Tliis 11.1s bee11 meas~~red at less than 5 ~ s .  

The k)llo\\ring sccluencc can be used to guarantee 
dctcction ofintcr\.cning errors by the transmitter: 

1. Sa\,c the crror count 

2. Write tllc message. 

3. Check the error count (using imc-ckcrrcnt). 

If the transmitter \\/rites the sa\~cd crror count ~ l t  the 
end of the message, the message rcccivcr can dctcr- 
mine if any intervening crrors have occun-eel by simply 
comparing the crror count in the mcssiigc \vith the 
ci~rrcnt \ ~ ~ I L I c  using imc-rdcrrcnt. Tliis is possible 
because of the sequencing guarantees built into the 
IMEMORY CHANNEL nenvork. Using imc-rcicrrcnt 
and imc-clterrcnt, the programmer c,ln build an  appro- 
priate crror detection and/or reco\.ery schcmc that 
meets the perforniance requirements of the application. 



Performance 
71-hc performance ofTruClustcr hlEkIORY (:HANNEI, 
Soft\\.arc o n  a pair of  AlphaScr\.cr 4100 5/300 
mi~clii~lcs is prcsc~lted in Table 2. T h c ~  nlcasurcniellts 
\\,ere ln'lcie using \us ion  1.5 ~VlF.hllOl<Y ( : M A N S E L  
;lii;iptcrs. Tlic 1>;111~1\\'idtli (64 hllli/s) ;11iti latcnc!' 
(2.9 ps)  acliicvcd using this system arc essentially that 
o f thc  1ia1-d\\l;lrc, since n o  s y t c ~ n  o\,c~-licad is in\rol\ui. 
The tinlcs rcql~ired to perform the error-cliccking 
f ~ ~ ~ l c t i o n s  indicate that the o\,c~-hcncl of calling 
imc-I-dcrrcnt is much less than r h . ~  of imc-ckcrrcnt. 
This is bccnusc tlic latter has to s!,nclironizc \\,it11 all 
otlicl- mcmbers of  the cluster. Protocols that rely on  
rccci\,cr-only error detection (usins imc-rdcrrcnt) \\ . i l l  
tl1crcfi)rc I~n\,c a lo\\rcr o\~crhcaci. 

Programming with TruCluster 
MEMORY CHANNEL Software 
.l"l~c I\IEILIORY CHANNEL network inlposcs somc 
1111icluc restrictions on tllc pl.ogramlncr. Sincc the nct- 
work requires separate transmit ;lnd I-cccivc regions, 
any rend-\\trite memory location that is to be \risible 
clustcr\\~idc must lia\lc two addresses: a read address 
n11ei n \\rite address. Attempts to rend fi-om a \\,rite 

acidrcj\ typjcally causc n scg~l~c~lt , l t ion \'iolntio~i. 
i\ilt:h/lOl<l' C H A S N E L  addrcss spacc c;ln be i~scd like 
sliarcd menlor!,. Unlilte shnrcci mcmor!; tlioi~gli, its 
Intcnc!* is \,isible to the programma-, \\.lie must considcl- 
I;ltc~lc\' cllc'cts \\.hen \\.riting to a clustc~-\\,icic locution. 

As J I I  cx,lrnple of progra~nnling \\.it11 T~.u(:lustcr 
hlE.VOR1' CHANNEL Soh\.arc, Figure 6 ~ h o \ \ ~ s  a 
simplc program that implcmcnts a global counter, 
p w h r m s  somc \\,orlt, and then dccrcmcnts the global 
counter ~nc i  exits. For tlic pi~rposcs of this example, 
assume that nli~ltiplc copics of the program arc run 
concurrently on different machines in n cluster. Such 
olxration rccluires synchronization to C I ~ S L I ~ C  safe 
,~cccss to sliarcd data in I\/iEILlOl<Y CHANNEI. spacc. 
The cr,~rnplc progrnm first nlloc,~tcs ~ll:ICIOI<Y 
(:HANNl-.l, regions for tra~is~nission ,~nci ~.cccption L~nci 
attaclics them to proccss \.irtunl nddrcsscs. Nest, a 
set ofspinloelis is created (LIIIICSS it ,llrc.~ci!- exists). Tlic 
first copy of the program to crcntc the spinlock set 
ncc1~1il.c~ t l ~ c  first loclc in the set ,111ci initi.lli~cs tlic 
glolx~l rcgion, \\'hereupon it rclcnscs thc spi~~loclt  ;ind 
contin~lcs. All other copics of t l ~ c  prograni \\,;lit in 
inlc-lkaccluirc until the spinlock is rclcuscd by the brst 

Table 2 
TruCluster MEMORY CHANNEL Software Performance 

Sustained bandwidth 64 MB/s 
Latency 2.9 ps 
Read error count (imc-rderrcnt) < I  p.s 
Check error count (imc-ckerrcnt) <5 ks 

cop!,. E.1~11 c o p 8  in turn ncq~~ircs  the lock itself, incrc- 
nicnts tlic proccss counter, and releases the lock. Tlic 
copies then pcrfijrm somc \ \ark in parallel. When cnch 
program has tinishcd its portion o f thc  \\,ark, it dccrc- 
ments t l ~ c  glohnl proccss coilntcr (~is ing tlic spinloel< 
to control access .~gni~i ) .  Finall!,, the spinlock set ,lnti 
shared rcgions arc dcallocated. Several csa~nples of 
code i l l~~stratins tlicsc topics are contained in the 
Tr i rC/~w/c~ . . l / / i~ /~ /~ )  c,'llAivivliI, SoJir~:are P~.o~q,ai~rilrc~~.:\. 
ni~ll~llal.~'' Wc Ii;lvc fol~nd tlint implementing a silnplc 
message-piissinp layer o n  top of'r'ruCluster bIEA/IORY 
CHANNF.1. Sofn\.a~-c is 3 more effective solutio~l than 
prog-ammiug dil-cctly \\.it11 JCIEMOKY C H r \ N N E I ,  
regions, as described in tllc nest section. 

Sc\.cral fcat~~l.c\ dcscribcci ,ibo\~c \\.ere not iniriall!. 
present in the 'fruC.lustcr ICIEI\LO~<Y C H A K N E I .  
Soht.are product. As 3 I-csi~lt of 0111- experience implc- 
mcnting UiMI' and the higher PVh4 and i\II'I Ia\rcrs, 
\\.e acldcd the fi)llo\\ring features: 

Initial cohcrcncy 

Command rcl;i!l 

Universal Message Passing 
The Universal 1Mcss.igc Passing (UklP)  library is 
dcsigncd to pro\icic a fi)l~ndation for implcmcntins 
efficient ~ncssngc-p<~ssing s!,stcms on the hlEi\jIOl<l' 
CHr\NNEI., nct\\.ork. From the outset, \\,c \\,ere a\\.arc 
that tlicrc \\~oultl he J dcmand fix PVM and MPI  
implcmentatio~is ;lnd that other implen~c~itat io~is 
might follo\\l. We felt that it \\,auld be easier to con- 
s t l ~ ~ c t  high-pcrti)rma~~c.c message-passing systems i t '  
\\re pro\nidcd n thin l,~ycr that could cfficientl!~ I1nndl.c 
the rcstl-ictions that the MEMOKY CHANNEL nct- 
\vorIt imposes. 

The ~ o d s  in cicvcloping UMI'\rere to 

Simplifi, the co~ i s t r~~c t ion  of mcssagc-passing s\.s- 
terns i~tilizing the h~ll:.\IOI<Y < : H h S N E L ,  ncn\.ork 
by hiding the details of the undcrl!*ing commll- 
nications transport (initially, shared memory or  
L M E ~ I O ~ I Y  (IHANNF.1.). 

Optimize pcrformnncc .ind csploit thc lo\\r latcnc!, 
of the MF,MOl<Y ( :HANNEI,  network; the initial 
goal for latency o \c r  tlic iMEILlOl<Y CHANNEL nct- 
\\lorlt using I'VM was to ncliicvc less than 30 p.s. 

Ease tlic c i c \ ~ c l o p ~ ~ ~ c ~ i t  of parallel mcssagc-passing 
libraries by providing ,I si~nyle set of nlcssagc- 
passing fi ~nctions. 

Act as ;I con\.crgcncc ccntcr fi)r possible ~ L I ~ L I I . ~  

intcrconnccts. 
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e x t e r n  l o n g  a s m ( c o n s t  c h a r  *, . . .  ) ;  
U p r a g m a  i n t r i n s i c ( a s m )  
# d e f i n e  m b 0  a s m ( " m b " )  

m a i n  0 
C 

i n t  s t a t u s ,  i, l o c k s = 4 ,  t emp ,  e r r o r s ;  
i m c - a s i d - t  r e g i o n - i d ;  
i m c - l k i d - t  l o c k - i d ;  
t y p e d e f  s t r u c t  C 

v o l a t i l e  i n t  p r o c e s s e s ;  
v o l a t i l e  i n t  p a t t e r n C 2 0 4 7 1 ;  

) s h a r e d - r e g i o n ;  
s h a r e d - r e g i o n  * r e g i o n - r e a d ,  * r e g i o n - w r i t e ;  
c a d d r - t  r e a d - p t r  = 0, w r i t e - p t r  = 0; 

I* MC r e g i o n  I D  *I 
I* M C  s p i n l o c k  s e t  I D  *I 

I* S h a r e d  d a t a  s t r u c t u r e  *I 

I* A l l o c a t e  a  r e g i o n  o f  c o h e r e n t  M C  a d d r e s s  s p a c e  a n d  a t t a c h  t o  *I 
I* p r o c e s s  VA *I 
i m c - a s a l l o c ( l 2 3 ,  8 1 9 2 ,  IMC-URW, IMC-COHERENT, & r e g i o n - i d ) ;  
i m c - a s a t t a c h c r e g i o n - i d ,  IMC-TRANSMIT, IMC-SHARED, IMC-LOOPBACK, & w r i t e - p t r ) ;  
i m c - a s a t t a c h ( r e g i o n - i d ,  IMC-RECEIVE, IMC-SHARED, 0, & r e a d - p t r ) ;  

r e g i o n - r e a d  = ( s h a r e d - r e g i o n  * ) w r i t e - p t r ;  
r e g i o n - w r i t e  = ( s h a r e d - r e g i o n  * ) r e a d - p t r ;  

I* I n i t i a l i z e  t h e  g l o b a l  r e g i o n  * /  

I* A L L o c a t e  a  s e t  o f  s p i n l o c k s  a n d  a t o m i c a l l y  a c q u i r e  t h e  f i r s t  l o c k  *I 
s t a t u s  = i m c - l k a l l o c ( 4 5 6 ,  & l o c k s ,  IMC-LKU, IMC-CREATOR, & L o c k - i d ) ;  
e r r o r s  = i m c - r d e r r c n t 0 ;  
i f  ( s t a t u s  = =  IMC-SUCCESS) C 

d o  C 
r e g i o n - w r i t e - > p r o c e s s e s  = 0; 
f o r  ( i = O ;  i < 2 0 4 7 ;  i + + )  

r e g i o n - w r i t e - > p a t t e r n [ i I  = i; 
1 --; 
m b 0 ;  

) w h i l e  ( i m c - c k e r r c n t ( & e r r o r s )  I I r e g i o n - r e a d - > p a t t e r n L i I  ! =  i )  ; 
i m c - l k r e L e a s e ( 1 o c k - i d ,  0 ) ;  

1 e l s e  i f  ( s t a t u s  = =  IMC-EXISTS)  C 
i m c - L k a l L o c ( 4 5 6 ,  & l o c k s ,  IMC-LKU, 0, & l o c k - i d ) ;  
i m c ~ L k a c q u i r e ( l o c k ~ i d ,  0, 0, IMC-LOCKWAIT);  
t e m p  = r e g i o n - r e a d - > p r o c e s s e s  + 1; I* I n c r e m e n t  t h e  p r o c e s s  c o u n t e r  *I 
e r r o r s  = i m c - r d e r r c n t 0 ;  
d o  C 

r e g i o n - w r i t e - > p r o c e s s e s  = temp ;  
m b 0 ;  

) w h i l e  ( i m c - c k e r r c n t ( & e r r o r s )  I I r e g i o n - r e a d - > p r o c e s s e s  ! =  t e m p )  ; 
i m c - l k r e l e a s e ( 1 o c k - i d ,  0 ) ;  

> 

( B o d y  o f  p r o g r a m  g o e s  h e r e )  

I* c l e a n  u p  *I 
i m c - l k a c q u i r e ( 1 o c k - i d ,  0, 0, IMC-LOCKWAIT);  
t e m p  = r e g i o n - r e a d - > p r o c e s s e s  - 1; I* D e c r e m e n t  t h e  p r o c e s s  c o u n t e r  *I 
e r r o r s  = i m c - r d e r r c n t 0 ;  
d o  C 

r e g i o n - w r i t e - > p r o c e s s e s  = temp ;  
m b 0 ;  

1 w h i l e  ( i m c - c k e r r c n t ( & e r r o r s )  I I r e g i o n - r e a d - > p r o c e s s e s  ! =  t e m p )  ; 

I* D e a l l o c a t e  s p i n l o c k  s e t  *I 
I* D e t a c h  s h a r e d  r e g i o n  *I 

I *  D e a l l o c a t e  MC a d d r e s s  s p a c e  *I 

Figure 6 
I'rogl.amming \\,it11 Tt.uClustcr MEMOI<Y CHANNEL. SoFt\vclrc 
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These g u ~ l s  placed some important constrnints o n  
the architecture of UMP, particularl!l \\lit11 regard to 
puhrmance.  This meant that design decisions had 
to be constantly evaluated in terms of their performance 
impact. The initial design decision was to use a dedi- 
cated point-to-point circular buffer benveen every pair 
of processes. These buffers use producer and consumer 
indexes to control the reading and writing of  buffer 
contents. The indexes can be modified only by the 
consumer and producer tasks and allo\v fi~lly lockless 
operation of the buffers. Removing lock requirenlents 
eliminates not only the sohilare costs associated with 
lock manipulation (in the initial implementation of 
TruCluster bIEA4ORY CHANNEL Sohvare, acquiring 
and relensing an uncontested spinlock takes approsi- 
matel? 130 ks and 120 ys, rcspecti\,el!l) but also the 
impact on processor performn~~ce associated with 
lmad-locked/Store-conditio~~al instruction secluences. 

Although this buffering style clin~inatcs lock manip- 
ulation costs, it results in an exponential dcniand for 
storage and can limit scalability. If there arc N processes 
communicating usi~ig this method, that implies N* 
buffers are required for full mesh communication. 
MEMOI1Y CHANNEL address spacc is a relatively 
scarce resource that needs to be caref~lly husbanded. 
To manage the demand on cluster resources as fairly as 
possible, we decided to d o  the t?)llo\ving: 

Allocate buffcrs sp,lrscl!; i.e., as requircd up to 
some d e h ~ ~ l t  limit. Full I\'? allocation ~vould still be 
possible if the user increased the number of buff&\. 

Malcc the size of the buffers configurable. 

Use lock-controlled singlc-writer, multiple-reader 
buffers to handlc both the o\lerflo\\! from the i\;2 
buffer and fast multicast. One  of these buffers, 
called o u t b ~ ~ f s ,  would be assigned to  each process 
using UMP upon initialization. 

Note that while the channel buffers are logicall!, 
point-to-point, they nlay be inlplementcd physically as 
either point-to-point or broadcast. For esamplc, in thc 
first \rcrsion of UMP,  \\,e used broadcast blEh4ORk' 
CHANNEL nlappjngs for the sake of simplici~: \IVc arc 
currentl\c moclifi~i~lg UMP to  use point-to-point 
A4EICIOKY CHANNEL mappings, both to incrcasc 
available hmnd\vidth and to exploit a s\\itchcci 
IMEIMORY CHANNEL ncn\rork. 

Figure 7 shows sc\,cral taslcs communicating in 
a cluster and illustrates ho\v the two types of  UMP 
buffers arc used. l'nslc 1 and task 2 are executing 
011 node 1, while task 3 is executing on node 2. In tllc 
dia~rarn,  the chanucl buffers are located under the task 
in \\~hosc virtual address spacc they reside to indicate 
visually that they reside in the virt~lal address spacc of 
the destination msk. Iu thc fgurc, task 1 communicatcs 

I 

CHANNEL BUFFERS 

OUTBUF 

MEMORY MEMORY I j MEMORY 
CHANNEL CHANNEL 

' ' CHANNEL 

I NODE 1 
! . . . . . . . . . . . . . . . . . . . . . . ,. .I.. . ., NODE 2 ' 

L - - - - - - - - - - - - - - - - - - - - - - - - - - A  L - - - - - - - - - - - - - - - A  

KEY: 

- DIRECT WRITE TO CHANNEL BUFFER 
...... LOCK-CONTROLLED READ OF OUTBUF 

Figure 7 
<;lusrcr Comm~~nica t ion  Using UMP 
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with task 2 using UMPchannel buffers in shared niem- 
ory, shown as 1-2 and 2-1. Task 1 and task 3 c o n -  
rnunicate using UMP channel buffers in MEMOlCY 
CHANNEL, space, sho\vn as 1-+3 and 3-1. Task 3 is 
reading a message from task 1 using an outbuf. The 
outbufcan be written only by task 1 but is mapped for 
transniission to all other cluster members. O n  node 2, 
the same region is mapped for reception. Access to 
each outbufis controlled by a unique cluster spinlocI<. 

Our rationale for taking this approach is that a short 
sohvare path js more appropriate for srnall messages 
because overhead dominates message transfer time, 
whereas the overhead of  lock manipulation is a small 
component of  message transfer time for large mes- 
sages. We felt that this approach helped to  control the 
use ofcluster resources and maintained the lowest pos- 
sible latency for short messages yet still accommodated 
large messages. Note that outbufs are still fixed-size 
buffers but are generally configiired to be mucli larger 
than tlie N2 buffers. 

This approach worked for PVLM because its message 
transfer sen~a~it ics malte it acceptable to f a1 ' I  a mes- 
sage send request due to buffer space restrictions 
(e.g., if both the IV' buffer and the outbuf are full). 
When we analyzed the requirements for MPI, how- 
ever, we found that this approach was not possible. For 
this reason, we changed the design to use only the N2 

buffers. Instead of writing the message as a single 
operation, the messagc is streamed through the buffer 
in a series of fragments. Not  only does this approach 
support arbitrarily large messages, but it also improves 
message bandwidth by allowing (and, for messages 
exceeding the a\lailable buffer capacity, requiring) the 
overlapped writing and reading of the message. 
Deadlock is avoided by using a background thread 
to write the message. Since overflow is now handled 
using tlie streaming N2 buffers, outbufs were not nec- 
essary to achieve the required level of performance for 
large messages and were not implemented. Outbufs 
are retained in the dcsign to provide fast multicast 
messaging, even though in the current implementa- 
tion they are not yet supported. 

Achieving the performance goals set for UMP was 
not casy. In addition to the buffer architecture 
described earlier, several other techniques wcrc used. 

N o  syscalls were allo\ved anywhere in the UMP 
messaging f~~nct ions ,  so  U M P  runs completely in 
user space. 

Calls to library routines and any expensive arith- 
metic operations were minimized. 

Global state was cached in local nlcrnory c\!lierc\tcr 
possible. 

Careful attention was paid to data alignment issues, 
and all transfers are multiples of 32-bit data. 

At the programmer's level, UM1' operation is based 
on  duplex point-to-point links called channels, which 
correspond to the 1v2 buffers already described. 
A channel is a pair of unidirectional buffers used to 
provide two-way communication between a pair of 
process endpoints anywhere in the cluster. UMP pro- 
vides fi~nctions to open a channel between a pair of 
tasks. While the resources are allocated by the first task 
to open the channel, the connection is not complete 
until tlie second task also opens the same channel. 
Once a channel has been opened by both sides, UMP 
hnctions can be used to send and receive messages on 
that channel. It is possible to direct UMP to use shared 
memory o r  M E M O R Y  CHANNEL address space for 
the channel buffers, depending on  the relative location 
of the  associated processes. In addition, UMP provides 
a function to  wait on any event (e.g., arrival of a mes- 
sage, creation or deletion of a channel). In total, UMP 
provides a dozen functions, which are listed in Table 3. 
Most of the fi~nctions relate to initialization, shut- 
down, and niiscellaneo~~s operations. Three functions 
establish the channel connection, and three hnctions 
perform all message communications. 

UMP chan~lels provide guaranteed error detection 
but not recovery. Through the use of TruCluster 
M E M O R Y  CHANNEL Sohvare error-checking rou- 
tines, we were able to provide efficient error detection 
in UMP. We decided to let the higher layers implement 
error recovery. As a result, designers of higher layers can 
control the perfornlance penalty they incur by specifj- 
ing their own error reco~~ery nieclianisms, or, since 
reliability is high, can adapt a fail-on-error strategy. 

Performance 
UMP avoids any calls to the kernel and any copying of 
data across the kcrnel boundary.  messages are written 
directly into the reception buffer of  the destination 
channel. Data is copied once from the user's buffer 
to physical memory on tlie destination node by the 
sending process. The receiving process then copies the 
data f r o ~ n  local physical memory to the destination 
user's buffer. By comparison, the number of copies 
involved in a similar operation over a LAN using soclc- 
ets is greater. In this case, the data has to be copied 
into the kernel, where the network driver uses DMA to 
copy it again into the memory of tlie nenvork adapter. 
At this point the data is transmitted onto  the LAN. 

The first version of  UMP used one large s.hared 
region of MEMORY CHANNEL space to contain its 
channel buffers and a broadcast mapping to transmit 
this silnultaneously to all llodes in the cluster. This 
version of UMP also uscd loopbacl< to reflect transmis- 
sions back to the corresponding receive region on tlie 
sending node, which resulted in a loss of available 
bandwidth. Using our  Alphaserver 2100 4/190 
development machines, we measured 
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Table 3 
UMP API Functions 

Function 
Name Description 

Initializes UMP and allocates the necessary resources ump-init 

ump-exit 
ump-open 

ump-close 
ump-listen 

ump-wait 

Shuts down UMP and deallocates any resources used by the calling process. 

Opens a duplex channel between two endpoints over a given transport (shared memory or 
MEMORY CHANNEL). Channel endpoints are identified by user-supplied, 64-bit integer handles. 
Closes a specified UMP channel, deallocating all resources assigned to that channel as necessary. 

Registers an endpoint for a channel over a specified transport. This can be used by a server process 
to wait on connections from clients with unknown handles. This function returns immediately, 
but the channel is created only when another task opens the channel. This can be detected using 
ump-wait. 

Waits for a UMP event to occur, either on one specified channel to this task or on all channels 
to this task. 
Reads a message from a specified channel. 

ump-write Writes a message to a specified channel. This function is blocking, i.e., it does not return until 
the complete message has been written to the channel. 

ump-nbread Starts reading a message from a channel, i.e., it returns as soon as a specified amount of the 
message has been received, but not necessarily all the message. 

ump-nbwrite Starts writing a message to a specified channel, i.e., i t  returns as soon as the write has started. 
A background thread will continue writing the message until i t is completely transmitted. 
Writes a message to a specified list of channels. 

ump-info Returns UMP configuration and status information. 

Li~tc~icy: 11 ~s (i\/IEA/lORY <;HANNF,I.), 4 ~s 
(shared mcmory) 

Rand\\,idth: 16 iMR/s (MEMORY (:HANNF,L,), 
30 h/113/s (shared nlemory) 

To increase band\\tidth, \ire modi ticti UA41' to L I S ~  

tmnsn~it-only regions for i t s  channel buffers, thus 
eliminating loopback. The performance mcasurcci for 
the revised UMP usuig the same J ~ I  c c -1 l111cs ' \\QS 

L~tcncy: 9 ~s (MEMORY CHANNEL), 3 FS 

(sharcd memor!r) 

Randwidth: 23 lMB/s (MEMOI<Y (;HANNEI,), 
32 MB/s (sliarcd nienior!-) 

Fig~11.c 8 sho\\,s the message tral~sfer tinic ;111ei F i g ~ ~ r c  
9 SIIO\\'S tlie band\\,idth tbr \,a~-ioils mcssngc sizes fi)r tlic 
rc\,iscd \fcrsion o f  Uh?P 11si11g both blocking nnd non- 
bloclting \\lritcs o\cr sliarcci rner~lor\~ a l ~ c i  tlic kh/lOl<Y 
(:HANNEL ncnvork. Using newer AlpllaScrvcr 4 100 
5/300 machines, which have a hstcr I / O  subsystem 
than the older machines, and \u-sion 1.5 MEMOICY 
<:HANNEL adapters, the mcasurccl latency is 5.8 ~s 
(MEMORY (IHANNEL), 2 ~s (sharcd mcmorp). The 
peak ba~ldwidrh achic\red i s  61 lMlZ/s (MEMORY 
CHANNEL), 75 MB/s (sharcd memory). In  the non-  
blocking cases, the buffer sizc ~lscd was 256 kilobytes 
(I<]{) for sliarcci memorJr and 32 KR ti)r MEMORY 
(:HANNEL,. Fi~rther \\,orl< is under \\,a!, to i~iipro\.c the 
pcrfornlnncc using sharcd mcmory as tlic t la~~sport. - - I his \\,orlt i s  ain~ecl at eliminating tlic higli-cnci falloffin 
hnnd\\,idtli i l l  the blocliing case and  the ~iotch \\,lien rlie 
lncssagc sizc cscceds the buffer sizc in the nonhloclting 

case. Notc that tlicsc effects arc not dlsplaycd In tlic 
i\.IEhlOl<Y (:HANNEI. results. 

Message-passing Libraries 

~Messagc-passing libraries pro\,idc the programmer 
\\.it11 a set o f  K~cilitics to l>i~iId parallel applications. 
Typically, thcsc scrviccs includc the ability to send and 
rcccivc a variety o f  data types tci and from other peer 
processes io a vnricty of modes, as \\re11 as collccti\.c 
opcrations that span a set o f  peer proccsscs. Other 
facilities may be providccl in adciition to the basic set, 
c.g., PVM provides f~licrions fix managins PVIM 
proccsscs (spa\\.~iing, killing, signaling, ctc.), \\,l~crc,ls 
MPI (at lcnst in its first rc\,ision, i\llPI-1) docs not. P\'iLl 
i s  probabl!, tlic   no st \\.idel!, ~ ~ s c d  mess'ige-p,~ssing sb8s- 
telii. I t  has bccn n\~nilahlc for approsimarcl\ ti\.c !,cars, 
nnd i~l iplc~ncnt~it io~is arc n\zailablc for a \\,idc \,aric~, o f  
platforms. A l l ) [  i s  un emerging standard for nlcssagc 
passing that is gro\\>ing rnpidl!. in populariq,; Inany 

applications arc being lvrittcn h r  it. 

Parallel Virtual Machine 
Parallel V i r t ~ ~ ; ~ l  Mnchinc (PViM) i s  supported on a 
\\ride \~aricty of plntfi)rms, inclitding supcrconlputcn 
and ncn\,orlts o f  \\,orltstations (NOWs).  I'VM uses 
J \ x i e n ,  o f  ~~ndcrlying comlnunicatio~~s mctliods: 
shared memory o n  multiprocessors, \ . ~ r i o ~ ~ s  n3rh.c 
mcssagc-passing sbrstcms ~ I I  n~,~ssi\.cly parnllel proccs- 
sors (MPPs), and Ul)I'/IP or TC:I'/IP on NOM's. The 
121-gc soft\\.arc o\.crlicnd in tlic 11' sracks lliakes i t  c i i f f i -  
cult to pro\.idc Iiigh-pcrfor111;11icc comniiu~iicatio~is for 
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MESSAGE SlZE (BYTES) 

KEY: 

- - - UMP BLOCKING (SHARED MEMORY) 
. , . , , UMP BLOCKING (MEMORY CHANNEL) 

UMP NONBLOCKING (SHARED MEMORY) 
- UMP NONBLOCKING (MEMORY CHANNEL) 

Figure 8 
UIMI' <:o~nmuniwrions l'crfol.rn3ncc: Messagc l'l-ansfer 
- ,  l ilnc 

MESSAGE SlZE (BYTES) 

KEY: 

- - -  UMP BLOCKING (SHARED MEMORY) 
, . , , ,  UMP BLOCKING (MEMORY CHANNEL) 

UMP NONELOCKING (SHARED MEMORY) 
- UMP NONELOCKING (MEMORY CHANNEL) 

Figure 9 
UMI' (:ornmunic.~tio~is Pcrforlnnncc: Band\vidth 

PVM \\rlicn using ~ict\\~orl<s liltc Ethernet or FDDI.  
The high cost o f  communicatio~is for these systems 
means that only the more coarse-grained pamllcl appli- 
cations ha\,e demonstrated performance impro\.cments 
as a rcsult o f  pal-.lllclization using PVM. Using the 
MEMOKY CHANNEL cluster technology described 
earlier, we lia\,e implcmentcd an optimized I'VM that 
offirs lo\\, latency and high-ba~ld\\~idtli comrnl~~iica- 
tio~ls. The PVM libmry and d;~cr i~on use Ut\/ll' to pro- 
vide sca~nless commu~~ications over the MEMOl<Y 
CHANNEL cluster. 

When \vc began to develop I'VM for MEMOL<Y 
CHANNEL clusters, \vc had one ol1crriding goal: to i~sc  
the harci\\,nrc performance thc MF.MORY (:HANNE1.. 
intcrconncct offers to pro\ride a PVM \\fith i~id~~str!i- 
leading com~iiunicatio~is performance, specilicall!l with 
regard to latency. Initially, we set 3 t xgc t  latency for 
PVM of less than 15 ps   sing shared memor!r and less 
than 30 ps  i~sing the MEMORY CHANNEL transport. 

Our  tirst task nras to build n prototype  sing the 
p~~blic-domain PVM i~nplcmentation. We ~ ~ s c t i  a n  
early protonrpe of the M F.MOl<Y (:HANNEL, systcm 
jointly developed by Digital and Encore. The proto- 
type had a hardware latency o f 4  ps. We modified the 
shared-memory version of 1'VM to use tlie prototype 
liard\\w-c and acliic\,cd a PVM latency of 60 ps. 
Profiling \iind straiglitfor\\rard code anal!,sis sc\,caled 
that most oftlic o\~crlicact \\,as caused by 

PVM's support f ix heterogeneity (i.c., estcrnal data 
represcnt~tion [XDR] encoding) 

~Messagcs being copicci multiple times inside PVIM 

A large number o f  fi~nction c'ills in tlic critical corn- 
m~lnicutions path 

Iiiefficicnt coding of the lo\\,-Icvcl data copy routines 

Since \\.c \\ranted to  achie\.e the maxi~l~unl  possible 
performance availahlc from the hardware, we decided 
to rei~iiplanuit  the PVIM libsal-!: eliminating support 
for lictcsogcncit\, from the com~ii~~nicatiolis  f~nct ions  
of 1'VM and focusing o n  masimiini performance 
inside a Digital c l~~s tc r .~"  Heterogcncity woi~ld then be 
supported by using a special PVM gateway process. 

The o\.crall architecture o f thc  Digital PVM implc- 
inentation is slio\\,n in Figure 10. To masimizc per- 
formance, \\,c decided that, \vhc~.cvcr possible, all 
operation should be cxccl~ted in-line rather than be 
requested froni a remote task or  d a c ~ ~ i o n .  This con- 
trasts \\,it11 I'VIM'S traditional approach ofrelaying such 
requests to tlie PVM daemon for suvice. For cxa~nplc, 
\\llie~i a I'VM task starts, ofien it tirst calls pvm-mytid to 
r e ~ l ~ x s t  a u n i q ~ ~ e  task identifier (TI D) .  I'rc\zio~~sly, this 
\\,auld have in\zoJ\.cd sending a message to a L7VM dae- 
Inon, which \\rould then allocate a TI1) to the process 
and return another nlcssagc. In our design, \\lc could 
tisc global data structi~res in MEMORY CHANNEL 
space (c.g., tlie list of all P\7M tasks and associated 
data). No\\., for example, p\rm-m!~tid siniply in\zol\~cs 
acquiring n cluster lock on a global table, gcttiug ttlc 
ne\v TIl), and releasing the lock-all executed in-line 
by the calling process rather than a daemon. Esccuting 
PVM scr\,ices in-line with the recluesting process 
iiicrcascs ml~ltiproccssi~ig capability and eliminates 
daemon hottlcncclts and associateti delays. 

We rcimplcmented the PVkI library with the cmplia- 
sis on pcrh)rmance mthcr than hctcrogeneity, although 

plan to c\,entually allo\v intcropcration \\.it11 her- 
erogcncous iniplemcntations of  PVM using a special 



MEMORY CHANNEL CLUSTER 
7 

I HOST 1 r-_----_------_----------------------------. HOST 2 
r--------------------------- 

I 

I !  I I ; I 
I / DAEMON 1 

I 
PROCESS 1 PROCESS2 I D A E M O N 2  PROCESS 3 

PVM APPLICATION 

I 
I 

HOST 3 
r - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  I I I D  
I 

I D A E M O N 3  PROCESS 4 GATEWAY 
I I 

PVM APPLICATION 

I 
I 

L - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - A  
KEY: 

A A PVM appl~cation on host 1 performs local control functions using UNIX signals. 
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U M P  (via shared memory). 
C A PVM application on host 1 communicates with another PVM task on a dilferent host in the 

cluster (host 2) using UMP (via MEMORY CHANNEL). 
D A PVM appl~cation on host 1 requires a control function (e.g.. a signal) to be executed on 

another host in the cluster (host 3): i t  sends a request lo a PVM daemon on host 3. 
E The PVM daemon on host 3 executes the control function. 
F A PVM application on hosl 1 sends a message to a PVM task on a hosl oirtside the MEMORY 

clusler: the messaae is routed to the  PVM aatewav task on host 3. 
' C H A N N E L  

- ,  
G The PVM gateway translates the cluster message Into a form compat~ble w ~ t h  tne external P V M  

~mplementat~on and lorwaros t h e  message to the external task vla IP sockets 

Figure 10 
Digital I'VIM Architccc~trc 

gateway daemon. The PVM API library is a coniplcte 
re\\-rite of the standard PVlM version 3.3 MI, \\rjth 
\\lliich fill1 fitnctional colnpatibility is maintained. 
Emphasis has bccn placed o n  optimizing the pcrfor- 
mancc of the most fi-eclucntly used code paths. In 
addition, all data s t ruc t~~rcs  and data transfers ha\lc 
been optiniizcd for the Alpha architecture. As st.~tcd 
earlier, the a ~ n o ~ ~ n t  of nlessagc passing b c n v c e ~ ~  tnslcs 
and tlie local dacrnoll has bccn minimizcd by pcrhrm- 
ing niost opcrations in-line and co~nmunicating with 
the daemon only when absolutely necessary Intcr- 
mediate buffers are used for copying data bcmlecn the 
user b~iffcrs. This is necessary because of thc  sc~nalitics 
of l'VM, \\~hicli allow operations 011 buffer contents 
before and aficr a message has been sent. The one 
exception to this is p\,ni-pscnd; in this case, data is 
copied directly since the user is not allowed to niocii@ 
tlic send bufkr. 

The purposc of our P\lfvl claemon is ciiffcrent from 
that of tlie dacmon in the standard I'VM package. O ~ t r  
dacmon is designed t o  relay comn~ands  between ciif- 
fcrcnt nodes in the PVM cluster. I t  csists solely to 
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pertixm remote csccution of those commands that 
cannot be performed in-line by UNIX calls in the PVM 
AI'I library or by directl~f manip~~latilig global data 
structilres. Cornmancis to be executed o n  n remote 
nodc are sent to the daemon o n  that node, c\~hich then 
exccutcs the co~iirnand directly. Note tliat this 
rcmo\.cs a le\.cl of indirection tliat csists in standarci 
P\Ih/l. Daemon-to-dacnio~~ com~~~unicat ions  arc rnilii- 
mizcti. Since thc1.c is 110 master dac~non ,  the PVM 
clustcr has 110 si~lglc point of  hilure. AI daemons arc 
eqi~al .  When not in use, thc dacmon sleeps, being 
awakened as required by a signal horn the calling task. 
For a local task, UNIX signals arc used. If thc task is o ~ i  
anotlicr nodc in thc cluster, then MEMORY CHANNEL, 
clustcr signals arc used. As a r c s~~ l t ,  the dac~non  uses 
nlinimal cluster resources. 

The PVM group or  collective hnctions operate on 
a g r o ~ ~ p  of PViM tasks. For csaniplc: pvm-barrier 
s!~~iclironizcs ~nultiple P\IM proccsscs; p\,ni-bcnst 
sc~lds  a message to  all rnembcrs of a particular group; 
p\l111-scatter distributes an array to the mcmbcrs of 
a group; p\lni-gather reassembles the arrav from the 
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Figure 12 
1)igital PVM Conim~~~ucarions Pcl.fbrmancc: Bnncl\\~~dth 

4.  Receive data from a data channcl 

5. Send data to a data channel 

These functions can all be iniplementcd using the 
UMP functions ~~rnp-read, ump-write, and ump-\wit 
described earlier. In  addition, hoolts arc ,~ddcd to 
the channel initialization and shutdo\\.n codc to call 
unip-init and ump-exit. This approach leaves the 
portable MPICH API library unchanged ancl attcmpts 
to deliver o p t i ~ n i ~ n ~  performance. MPICH implements 
'dl its operations, point-to-point and collective, on the 
basic point-to-point services t h ~ t  the ADI provides. 

Working with the Edinburgh Parallel Computing 
Centre (EPCC), we produced an early functional lMPI 
prototype by building a channcl device on UMP, as 

FDDl MEMORY SMP MEMORY 
2 x 2 CHANNEL 4 x 1  CHANNEL 

2 x 2  4 x 2  

CONFIGURATION 

- -  

Figure 13 
I'VM Application Perfo~.riiar~cc 

shown in Figure 14a. This implementation demon- 
strated latcncics of 12.5 ks  (sharcti mcmor!.) and 
29  ps (IMEIMORY CHANNEL), rcspcctablc pc rh r -  
mancc for such a quick port of M1'1 fix clusters. 
Furthermore, since this implcrnentarion uscs UMP, it 
\\rorks transparently on sliarcd Inernor! and MEMORY 
(:HAiiNEL. AD1 channcls typically support only one 
intcrconnccr; multiple Al'>Is are not yct supported by 
MPICH. Unlike PVM, tllc semantics of MPI allo\v 
operation \vithout an intcrmcdiate buffer, so that UMI' 
buffers can be used directly. 

To hrtl lcr  improve the pcrformnncc of 1\/IPI o n  
clusters, \\,c climinatcd the iM1'ICH channcl de\ricr and 
interfaced UMP directly to  thc 3s slio\vn in 
Figurc 14b. The abstract dct,ice inc~irs some pcrfor- 
mancc pennln in its support for the channcl device. In  
the UMP implementation, this is ilnncccssary as Ufv11' 
already perfi)rms the f i ~ n c t i o ~ ~  of hiding details of the 
transport mechanism. This implementation demon- 
strated latcncics o f9 .5  ~s (sl~ared 11icniory) and 16 ks 
(h4EMORY CHANNEL),  t~sing an Alpha cluster con- 
sisting of two AlphaScr\,cr 2100 4 / 2 3  macliincs 
conncctcd by a MEMORY <;HANNI:l, network. 

Performance 
Table 5 compares thc communications Iatenc!. 
achieved by MPICH and the Digital MI'I iniplenicnta- 
tion, using an Alpha clustcr. l<csults arc sho\\n for both 
AlphaSer\fer 2100 4/190 and AlpliaScrver 4100 
5/300 n~nchincs co~lnectcd b!. a AIEIMOIIY CHASNEI. 
nen\rork. E'igurc 15 slio\\.s tlic mcssagc rrnnsf'cr timc 
and Figurc 1 6  shows the bandwidth of Di~ i t a l  1M1'1 
over sharcd memory and MEMORY CHANNEI. 
transports h r  a \.aricty of messagc sizes. A pair of 
AlphaScr\.cr 4100 5/300 machines \\.ere used for thcsc 
measurements. Digital MI'1 rcacl~es a pcalc band\\,id tli 
of  about 6 4  1MB/s using sliarcd memory and 61  MB/s 
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I>igirnl hlP1 A r c l ~ i t c c r ~ ~ r c  

using i\/l EiMOl<Y CHANNEL,. l3y coniparison, the 
~~nmodificd MI'I<:H achic\,cs a peak balid\\,icith of 
24 MR/s  sing shared memory atid 5.5 MB/s using 
TCP/Il' o\.cr an F1IL)I LAN. 

Figure 17 slio\\ls the speedup clcmonstratcd by an  
MPI application. The application is the Accelerated 
Strategic Compi~ting Initiative (ASCI) benchmark 
SPPM, \vhich solves a three-dimensional gas dynamics 
problem o n  a unifoml Cartesian ~ n c s h . ~ ' . ~ ~  Thc same 
code \vas run using both Digital M1'1 and MPICH 
i ~ s i ~ l ~  TCP/I P. The liard\\,arc configurntion \\.as a two- 
node I\/IEbIORY CHANNEL cluster of dphaScr\.cr 
8400 5/350 machines, each with six Cl'Us. Digital 
MPl iised shnrcd memory and MEMOI<Y CHANNEL 
transports, \vlicrcas MI'ICH i~scd the Ethernet LAN 
connecting the machines. The mnsinii~m speedup 

Table 5 
MPI Latency Comparison 

obtaincd using l3jgital MPI \L~s  npprosimatcly 7, 
~\lhereas fix Ml'I<:H the m;lsimum spccdup \vas 
approximately 1.6. 

Future Work 

We intend to  continue rc l i~ l i~lg  the components 
described in this papcr. T l ~ c  major clia~ige ellvisioncd 
rcgardillg the TruCluster MEMORY CHANNEL Sok- 
ware product is the addition of usel--space spinlocks, 
\vhich should significantly reduce the cost ofacquil-ing 
a spi1~10clz. Wc intcnd to incrc,~\c tlic performnncc 
of UiMP by making more efficient use of hlEiviOIIY 
CHANNEL, in ;I number of \\,ays: striping 1;irgc 
messages o \c r  ~nultiplc adapters, supporting ncst- 
generation adapters, and using point-to-point map- 
pings with a IMEMORY CI-IANNEI, s\vitch. In  ncidi- 
tion, \\lc plan to add outbuts to incrcnsc multicast 
message-passing pcrformancc. I'VibI enha~lccmc~lts 
planned inclucic thc addition of the gntc\\.ay cl.lemon to 
allo\\r intcropcration \\.it11 other ~'VIV implcmcntntio~is 
on external platforms. PVbl \ \ , i l l  also be ~nodificd to  use 
the UlMP nonbloclting writc ticilit!~ for nrbitrarily I,lrgc. 
messages so thnt its performnncc mntclics that o f  
M P I .  Sincc the semantics of I'VM force the use of .in 
intcrmcdiatc buffer, performa~lcc ~ \ ,hcn  using sli.ircd 
memory \ \ * i l l  bc jmpro\zed by p,~ssing pointel-s to n lock- 
contro.lled buffc~ fix tilessages \\,hose trarisfcr time 
\vould cxcccd tlic ovcrlicad nssocintcd \+:it11 a lock. \!Vc 
\ \ r i l l  continue to improve MPI pcrfonnnnce by opti~niz- 
ing the UMI' AI)I fix the M1'IC:H implementation. 

Summary 

We havc built a high-performance communicntions 
infrastructure tbr scicntitic applications that ~~ti l izcs a 
new nenvork tcclinologv to bypass the sohvarc o\,cl-- 
head that limits tlic applicabilit!. of traditional nct- 
\\.arks. Thc pcrfi)r~~xince ofthis s!.stcln lias been proven 
to be o n  a par \\pith thnt ofcun-cnt supel-coliiputcr tccli- 
nology and lias been achieved using commodity 
technology dcvcloped for Digital's co~nmercinl cluster 
products. The papcr demonstmtcs the suitability of 
the MEh4OlIY <:HANNF.I. teclinolo$~ as a communica- 
tions mctiium for scalable systc~ii dc\.clopmcnt. 

MPI Implementation Transport Platform Latency 

MPlCH 1.0.10 Sockets FDDl DEC 30001800 350 p.s 
MPlCH 1.0.10 Shared Memory Alphaserver 2100 41233 30 p.s 
Digital MPI V1.O MEMORY CHANNEL 1.0 Alphaserver 21 00 41233 16 p.s 
Digital NIP1 V1.O MEMORY CHANNEL 1.5 Alphaserver 41 00 51300 6.9 p.s 
Digital MPI V1.O Shared Memory Alphaserver 21 00 41233 9.5 p.s 
Digital MPI V1.O Shared Memory Alphaserver 4100 51300 5.2 ks 
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I 
Bernard A. Rozmovits 

The Design of User 
Interfaces for Digital 
Speech Recognition 
Software 

Digital Speech Recognition Software (DSRS) adds 
a new mode of interaction between people and 
computers-speech. DSRS is a command and 
control application integrated with the UNlX 
desktop environment. It accepts user commands 
spoken into a microphone and converts them 
into keystrokes. The project goal for DSRS was 
to provide an easy-to-learn and easy-to-use 
computer-user interface that would be a power- 
ful productivity tool. Making DSRS simple and 
natural to use was a challenging engineering 
problem in user interface design. Also challeng- 
ing was the development of the part of the 
interface that communicates with the desktop 
and applications. DSRS designers had to solve 
timing-induced problems associated with enter- 
ing keystrokes into applications at a rate much 
higher than that at which people type. The DSRS 
project clarifies the need to continue the devel- 
opment of improved speech integration with 
applications as speech recognition and text-to- 
speech technologies become a standard part of 
the modern desktop computer. 

111 the 1960s and early 1970s, pcoplc controlled com- 
p~itcrs using togglc s\\litches, p~~nc l i cd  cartis, 2nd 
punchccl paper tapc. In  the 1970s, tlic common con- 

trol nicclianism was tlic Itcyboarci on  tclcnrpcs and o n  
\.idea terminals. In the 1980s, \\.it11 the ad\lcnt of 
graphical user interfaces, pcoplc k)und that a new 
mode of interaction \\,it11 the computer \\';is uscfi~l. 
Tlie concept of a pointer-the mouse-c\~olci .  Its 
pop~~l.~ri ty grc\\, S L I C I I  tllnt the mouse is no\\. 3 stand;lrcl 
colnponcnt of e\lery modern compiltcr. In  the 199Os, 
the time is right to aclci yet another mode of intcr- 
action \\.it11 the comptltcl-. As compute p o ~ \ ~ c ~ .  gl.o\\.s 
cach year, the boundar!* of the man-macliinc intcrLice 
can n i ~ \ ~ c  fro111 interaction that is nati\.c to tlic ~0111- 

putcr toward conimunication t1i;lt is natural to 
liunians, that is, speccli rccognitio~i. 

DSRS Product Overview 

Very simply, DSRS is an application that pl-ovjdes 
speech macros. Thc user speaks a c o ~ n ~ n a n d ,  phrase, or  
sentence (that is, an utterance), and I)SlIS pel-hrms 
some actions. The action rmight be to lat~nch an appli- 
cation, f ix esaniplc, in I-csponsc to the command 
"bring L I ~  calendar"; or  to nrpc so~nctliing, f i ~ r  csnni- 
plc, in I-csponse to "edit to-do list," to in\,olic cm,lcs 
\filcs\projcctA\toc1ootst. DSRS not only houses the 
spcccli macro capability but also provides a user intcr- 
Lice, a spcccli recognition engine, a11rl interfaces to  the 
S Windo\\. System. 

Follo\ving is a high-level description of ho\\. the 
sohvarc fi~nctions. <:ommands arc spoken into a 
1liicropIio11c, and the audio is ciiptu~.ccf nnd ciigiti/.ed. 
'1-he first step in the pl.occssing is tlic speccli ,lnal!,sis 
system, \\rhicli pro\ridcs '1 spectral ~.cp~.csent'ltio~i of the 
cliaractcristics of the time-\,arying sspcccli signal. Nest 
is the feature-detection stage. Hcrc, the spectral Inca- 
suremcnts arc con\,crtcd to a set of features that 
describe the broad acoustic properties ofrhc  cliffcrcnt 
phonctic units.' Thcsc rcpresentntions of the speech 
signal arc then segmented and idcnrifcd as phonetic 
sequences. Tlie spcccli I-ecognition engine ,~cccpts 
these phonetic seqLrcnccs ancl rctllrns \\,ord ~natclics 
and contidcnce values for cach mntch. Tlicsc ~ . N . I  arc 
used to dcter~nine if c;ich match is acceptable. If  a 
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match is acceptable, DSRS retrieves keystrokes associ- 
ated rvith each utterance, and the Itcystrokcs are then 
sent into the system's Ite!,boarci buffer or  to the appro- 
priate application. For instmces of con t in~~ous  speech 
rccognition, a sentence is recognized and Iteystroltcs 
are concatenated to represent the utterance. For 
cxa~nple, h r  the utterance "five n1.o times seven three 
fo i~r  equals," the keys "52 * 734 =" \\lould be dcliv- 
crcd to the calc~~lator application. 

Although this concept scclns simple, its irnplcmcn- 
ration raised significant system integration issues and 
dircctl!~ affected tlie user i~iterfjcc design, which \vns 
critical to tlic product's success. This paper specificnlly 
addresses tlic user interface and integration i s s ~ ~ c s  anci 
concludes \\fit11 a discussion of f~lt111-e directions for 
speech rccognition prociucts. 

Project Objective 

The objecti\fc of the DSRS project \\$is to provide a 
u s c f ~ l  but limited tool to users of 1)igital's Alpha 
\vorkstations running tllc U N I S  operating systcm. 
1)SRS xvould be designed as a lo\\>-cost, speecli recog- 
nition application and \ \ lo~~ld  be provided at no cost to 
\\.orkstation users for a tinitc pcrioci of time. 

When the project began in 1994, a number ofcom- 
 nand and control speech recognition products fi)r 
PCs already existed. Tlicsc progralns \\.ere ainlcd at 
end users and performed uscfi~l tasks "out of thc bos," 
that is, inimcdiately upon stilrt-up. They all came \\it11 

built-in vocabulary for common applications and gave 
users tlie ability to add thcir o \vn \~ocabulurv. 

On U N I S  s!,stems, lion~c\~er, spcccli recognition 
procli~cts csistcd only in the form of progranlmnblc 
recognizcrs, SLICI I  as RRN Hark soft~1,irc. Our  objec- 
tive was to builcl a speech rccognition product for the 
UNIS  \\*orkstation that had the characteristics of thc 
PC: recognizcrs, that is, one that \vould be fi~nctional 
immediately upon start-up and \vould allow the non- 
p r o g r x n ~ t ~ c r  c ~ l d  user to customize the product's 
\~ocaL>ular!~. 

We studicci scvcral spcccli rccognition products, 
inclttdiug ?'nlIc+To Next fi-om Dragon Systems, Inc., 
VoiccAssist from C:rcativc Labs, Voice Pilot from 
 microso oft, a ~ l d  Listen fi-om Verbcs. Wc ciecidcd to 
pro\.idc users \\pith the ti)llo\ving features as the most 
desirable in a command and control spccch recogni- 
tion product: 

Intuitive, easy-to-use jntcrhce 

SL>eaker-indcpe~ide~~t models that \\,auld climinatc 
the nccci k)r cstensi\lc training 

Speaker-adaptive cap,~l>ility to improve accumc), 
of \\rords 

C o n t i n ~ ~ o u s  speech rccognition capability 

Prompts for active vociibulary 
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Minimum i~sc  ofscreen area 

L T ~ c r  co~ltrol o\'cr the user interface configuration 

Simple mcclianism to ~iiociih, a n ~ i  create ne\v 
\~ociil>i~Iary 

Integration witl~ the X Mrinclo\\, Systcm 

Support for out-of-the-box desktop applications 
provided \\.it11 tlie UNIX operating systcm 

Support h r  vi and cn~acs editors, and for C 
programming 

The DSRS Architecture 

lXRS comprises sc\lcral major components \\lhich arc 
outli~icd belo\\, and  ill~~stratcci in Figure 1 .  Of  thcsc 
components, tlircc arc licensed fi-om Dragon S!lstems, 
Inc.: the front-end processor, tlie rccognizcr engine, 
anci the speaker-independent spccch mo~icls. 

Dragon Systems, Inc. was chosen as the provider of 
the s p c ~ l i  rccognition engine based on the nccurac!, 
of their technology, their products and expertise in 
other local languages, and I-heir long-tcrln conl~nit-  
mcnt to speech rccognition. 

/ )c l /cc c~cqi~i.si/iot/ colisists of thc  microplio~ic, audio 
card, .~nd tlie multimedia scr\.iccs application pro- 
gramming intcrhce (API)  tliat pro\,idcs support for 
the sound card. 

The ,/i.orzt-o~tl /)rocc.s,sor a~lalyzes a stream of  digi- 
tizcd data and differentiates bcn\recn silcncc, noise, 
and spwch; it tllc~l extracts 3 set o f c o ~ i i p ~ ~ t c d  features 
from the speech signals. 

The r c~co~q i / i~c i :  or  spcccli recog~iition engine, 
ncccpts the computed representation o f  tlic speecll 
in the form of feature pacltcts \\~Iiich dri \~c tlie Hid- 
den Markov Mocicls to  recognize utterances. Hidden 
Markov Models arc basically statc ~nachincs tliat tran- 
sition fi-om a beginning statc to a numhcr of internal 
states and then to 3 final state bxcd  011 i n p ~ ~ t  data and 
probabilities.' Each transition ciirries n1.o sets ofprob- 
abilities: a transition probability, \vliicli provicics the 
probability of this transition bcing taltcn, and  an out-  
put probability cicnsigr fi~nction (l7DF), \\,liicll is tlic 
conilitional probability of emitting each o i l t p ~ ~ t  sy11i- 
bol from 3 fnitc alp113bct given that a tra~isition is 
taltcn.' The 1'l)t's arc aciiiptcd \\.hen the model 
is "tGiilied," that is, c ~ ~ s t o ~ ~ i i z c d ,  by the indi\.idual user. 

Tlic , / i t~ i te  .s/o/cl ~ratl71trnt. is a statc mnchinc that 
contains a r cp r~scn~ i t ion  of tlic \.ocabi~lnry supported 
by I)SI<S. Each starc contains \vords, plir,lscs, o r  sen- 
tenccs; thcir associated actions; and thc inhrmation 
nccdcd to transition to the nest statc. The current 
statc is i~scd to control the Active \\,orcis. 

The s l~~ec l . )  ~~ /o~ /o l . s  arc a sct of utterance nlodcls 
uscci tlie recognizer. DSliS pro\,idcs \,ocnbular\. and 
speaker-independcnt modcls for the applications sup- 
ported by DSRS. Users \vho \\~isli to includc their o\vn 



p i q  .L;: 
INTERFACE 

VOCABULARY 
FINITE STATE MANAGER 
GRAMMAR 

INTERFACE 

I 

' Denotes a component licensed from Dragon Systems. Inc. 

4 4 COMMANDS 
AND ACTIONS 

ENGINE" TRANSITIONS 
INTERFACE 

KEYSTROKES 
AND WINDOW I t  X WINDOW 

ACTIONS EVENTS 

X WINDOW I SYSTEM I 
Figure 1 
1)SR.S Architccrul-nl I$lock Diagl-am 

\vords can crc,~tc models using tlic Vocabulary 
Managcr user intcrf-3cc. 

The .S/ICVC/~ / \ I L I I I G I ~ ~ O I .  is tlie main user-interface 
component. The Spccch ~Managcr \\rindo\v pro\~idcs 
visual feedback to users. I t  also keeps track of the cur- 
rent \vindo\\' in h c u s  and acts ns the agent to  control 
focus in response to users' spcccli com~iiands. 

The Vowih l~ l~ r i : ,~  ~Vlalr?c~go- user-interface willdo\v 
displays tlic current hierarchy of tllc finite state gram- 
mar filc. 'l'lic Voc~bular!l Managcr allo\\a the uscr to 
customize using the f i~nctio~is fix addition, deletion, 
and modification of  \\,ords or  macros. Also in this \\<in- 
do\\; the command-utterance to keystroke translations 
arc displa)lcd, created, o r  modified. 

In the Tr~~irrir~~y ilfarzc~~qe~. user intcrfacc, tlie uscr 
niay train nc\\dy crcatcd ~\lorcIs or phrases in the 
user \~ocabulary tiles and retrain, or adapt, tlie protiuct- 
s~~ppl icd ,  inclcpcnticnt vocabulary. 

The DSRS Implementation 

As the design team gained experience \vith thc DSRS 
prototylxs, \\,c rcfi ncd i~scr proccdi~rcs and interfi~ccs. -. Iliis section describes the Itc!~ f ~ ~ ~ i c t i o n s  tlie team 
developed to cnsul-c thc i~scr-fi-icndliness of  the prod- 
uct, including rlic first-time setup, the Spccch 
Manager, the Training Managcr, the Vocabulary 
Manager, and the fi nite state grammar. 

First-time Setup 
1XlZ.S rccluircs .i sctup proccss \\.lien ~ ~ s e d  for the first 
time. The user must create i~scr-specific files and sct- 
tings. 'The user begins by sclccting the microplione 
and by testing and adjusting the niicrophonc input 
volun~c to i~sablc settings. Tlic user is then prompted 
to spcak a Cc\v \\,orcis, which are presented on the 

screen. DSRS uses tlie spcccli clata to choose the 
speaker-indepcndc~it   nod el that niost closely matches 
the speaker's voice. There are modcls for lo\vcr- and 
higher-pitched voices. The sobvarc copies the selcctctl 
model to the ~ ~ s e r ' s  Iiome directory; the model is then 
modified \\,hen the user makes changes to the pro\lidcd 
modcls and vocabulary. Aker sctup is complctc, the 
ncxt step is the Training ~Mnnager \vhich presents the 
user \\lit11 a list of 20 ~vords to train; when this step is 
co~nplctcd, DSRS is ready fix use. The Training 
Manager is described in liiorc clctnil later in this scctio~l. 

The proccdurc above \\,as dc\,clopcd to  take a nc\v 
user through tlic entire setilp process \\.itIiout the 
need to refer to any document.itio11. Once the uscr 
files arc crcatcd, DSRS bypasses these steps and comes 
LIP ready to work. A ~iotablc change that \ ~ e  made to 
the setup \\)as instigated by our o\vn use of thc soh- 
\\,arc. Wc found that inconsistent microphone \ ,olu~nc 
setti~lgs \\Icrc a frcclucnt problem. W e n  systcrns \\)ere 
rebooted, volun~c settings were reset to default \~alucs. 
Conseclucntly, \Ire created an initialization filc that 
records the volume scttings as well as all user-dcfinablc 
characteristics of the graphic" user interface. 

Speech Manager 
Once IXIG is read!! and in its idle state, it presents the 
user with the Speech Managcr wintiow, an example of 
which is shown in Figure 2. The Speech Managcr pro- 
vides the following critical co~itrols: 

Microphone on/offs\\.itcli. 

A V U  (\~olunie ~ ~ n i t s )  mctcr that g i \ u  real-time 
fccdback to the audio signnl being heard. A V U  
mctcr is a visual feedback dc\licc conimonly used o n  
devices such as tape decks. Users are generally very 
conifortablc using them. 
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Figure 2 
DSKS Sl>cccll ~ \ / I ; I I I ~ I ~ C I -  \ V i n d o \ \ .  

T\vo usel--controllable panes that display the Alupuys 
Active 11nJ Active vocabulnry sets. The Al\rays Active 
\.ocabular!. \vords arc recognized rcgarcilcss of 
the currcnt application in f i )c~~s .  The Active \.ocabu- 
lary \\.orcis arc specific to rlic application in ti)cus 
and change dy~iamically as the current application 
changes. Tlic vocabularies arc designcd in this way so 
that 3 L I S C ~  can spc,llc comm;incis both \\iitl~i~i a n  
applicntion contelt 2nd in o~.cicl to snitch colltcsts. 

Thrcc smnll frnmes t h ~ t  pro\,idc statLls infor~ii;~tion 
to  the LlSc'l-. 

- 'The Mode frame indic,itcs tlie current state o f  
the Spwcli ~Managcl-: command and control o r  
sleeping. 

- The Context framc displays the class name of tlie 
application currently in ti)cus. This contest also 
dctcmincs the current state of thc Active word list. 

- The history framc c1ispl:iys the ulord, plir.lsc, or  
scntcncc last hearc1 by the recognizcr. The history 
kame is set LIP as 3 button. When prcsscci, it drops 
do\ \ ,n  to rejlenl the last 20 ~~rcog~iizcci u trcrances. 

A menu that provides :icccss to the Inanagcmcnt of 
user files, the Vocnbu1n1.y Manager, the Tri~ining 
Maniigcr, and \,arious irscr-contigurablc options. 

Training Manager 
Tlic Training Manager aciapts the spcakcr-indcpcn- 
dent spccch ~nodcls to thc uscr's speech patterns nnd 
creates new ~nodels   ti^- acldcd words. Our  study of 
PC-hued spccch recognizcrs lcd us to  the co~iclusion 
that tllc design of a training interf'lcc is critical to 
obtain good res~~l ts .  For cs,lmplc, the training compo- 
nent o f o ~ i c  PC-based I-ccogni/cs \\.c csa~nincci ciici not 
pro\,idc clcar feedback to tlic user \\#hen an uttcl.ancc 
had bccn processed, thus causing the user conf~sion 
about \vlicn to speak. This confi~sion lend to training 
errors allel hustration. Another recognizcr did not 
allo\v the uscr to pailse \t.liilc trnining, :I miijor incon- 
\,eniencc h r  the user \vlio, fix csarnplc, ~ ~ c c d c d  to 
clear his throat 01- speak to somcone. 

\Vc dc\.clopcd the follonring list of design cllaractcr- 
istics fi)r n good training user illtcrfacc. 

Strong, clcar indicatiolls that ~ ~ t t e r a ~ i c e s  arc pro- 
ccsscci. VVc added a scrics o f  boxes that arc clicclicd 
off as cacli utterance is processed and 3 \'U 1i1ctc1- 
that sho\\,s the s!,stcrn is picking up auciio signals. 

Reduced aniount of cyc mo\~cmcnt nccdcd for tlic 
training to procccd smoothly and cluickl!~. L-lrc 
placed visual feedback objects in positions that 
allo\\l users to  focus tlicir eyes on a limited area of 
the screen and not lia\,c to look back and fi)rrli 
across tlic screen at cael~ utterance. 

A glimpse ofupcoming \\,orcis. A list of.i\fostis js dis- 
played 011  tlic user intc~.C~cc 'ind moves as \\fords arc 
proccsscci. 
A progress indicator. Text is displayed alici updated 
as each \t.ord is proccsscci, i~idicilting progress, for 
csnmplc, Word 4 o f 2  1. 
Option to pause, resume, and rcstJrt tmining. 

Large, bold font clisplay of the \\rord to be spoltc~l 
and a small prompt, "Plcasc continue," displayed 
\\,he11 the system is \\,airing for i n p ~ ~ t .  

A~~toliintic addition of rcpc,ltcd utterances t l~a t  :Ire 
"bnd" or d o  not match the cspcctcd \\.o~.ci. 
Contl-ol over the number ofrcpctitions. 

As the csa~iiplc in Figure 3 slio\vs, the Training 
Managcr presents a \\lord from n list of \\,orcis to be 
traincci. The \\,ord to be spoken is presented in a large, 
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Please continue: Wcrd4of 21 

Digital Home Page 

Figure 3 
"Srnining i\/lnn.lgcr Willdo\\ 

holci font to d~ffercntiatc it horn t11c otlicr elements in 
the \\lindo\v. To tmin the wortis, the user repcdts dn 

iltrel-ancc fi-om one to six ti~ncs. The user must speak 
;it tlie propel- times to make tr.iining a smooth ancl cffi- 
cicnt process. DSRS manages the process by prompt- 
ing tlie speaker \\,it11 \,isual cues. f igh t  bclo\\f thc \\lord 
is a set of boxes that repl-cscnr the rcpctitions. The 
boxes are checked off as utterances arc proccsscci, pro- 
viding positive \,isu;~l feedbaclc to the speaker. When 
one \\.ord is complctc, the nest \vord to be trnincd is 
displayed and the process is repeated. \VIicn a11 the 
\\lords j11 the list are triiined, the ilscr S;IVCS the files, and 
DSRS returns to tlic Speech blanagcr and its active 
mode \\lit11 tlie micl-oplionc turned off. 

Vocabulary Manager 
.The Voc;ibulary Manager, an  csaniplc of \\~liicli js 
shown in F ~ ~ L I I - e  4, c~iables ilscrs to  modi@ spccch 
macros by changing the kcystrokcs stored for each 
command and by adding nc\v commnnds to existing 
applications. Users can also add spcccli support for 
entirely ncrrf 'ipplications. Tllc voc,ibi~l,~ries arc rcprc- 
scnted graphicall!, as Iiicrrarcliics ofappliciltion \,ocaL>u- 
I.lrics, groups of \\lords, 31i~i i~ldividi~dl \\,orcis. 'The 
Voc3b~1l~ry  Manager provides an i ~ i t e r ~ ~ c e  that 311o\\!s 
m n n i p ~ ~ l ~ t i o n  oftliis d,itab~sc of\\,ords \ \ , i t h o ~ ~ t  ~.csort- 
ing to tcst editors. .l-llc iiJ\\.,~!'s Acti\rc \,ocabularics are 
acccssiblc hcrc and .)re manipulated in the same Inan- 
ncr as tlic .~pplicatior~-specific \~oc~l>i~l .~r ics .  With the 
\/oc,1[3~11dr\, I \ / l~~idgcr,  tlic L I S C ~  111a!' i~iil>ort and export 

vocabu1;irics o r  p;irts of\rocaL>i~Iarics in order to share 
co~nmands  and thus enable specch recognition in 
al.>plications not si~pportcd by default in DSRS. 

Finite State Grammar 
The f nitc state grammar (FSG) is a state machine with 
all the vocabulary rcqi~ircd to transition benvccn scares 
and conditions. The FSG has tn70 distinct sets of  
\locabulnry, which ha\re already been mentioned: the 
A\vays Active, o r  global \~ocabulary, and the Active, o r  
contest-specific, vocabulary. 

In creating the FSG, we foiund that needed spe- 
cial fi~nctions for interaction \\,it11 tlic \\indowing sys- 
tem and rcprcscnmtions for all keyboard keys. While 
creating these special frnctions, we designed the inter- 
action ti)r n~asinium con\~cnicnce. For example, \\!hen 
a user speaks the phrase "go to calculator" o r  "s\vitcli 
to calculator" or  simply "calculator," the meaning is 
readily interpreted by the soth\larc. For tlie user's con- 
vcnicncc, these phrases trigger the follo\\,ing condi- 
tional actions. 

If a \\li~ldo\\r of class "calculntor" is present o n  the 
s!,srcrn, then set focus to it. This is done regardless 
of its state; the \vindo\\/ may be in an icon state, 
Iiicidcn, or  o n  another \\rork spiicc such as may be 
f o ~ ~ n c i  in tlic Common Llesktop Environnient 
(CDF.). 

If the \\!indo\\! tioes not exist, tlicn create one by 
la~~ncli ing the application. 
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Figure 4 
\'oc,lb~~lary hlan'lger W i n d o \ \ ,  

T h e  s i ~ u p l c  logic o f  this special function enhanccs 
user producti\lity. Often worltstation anci PC screens 
are littered with \vindows o r  applications icons and 
icon boscs through which the usel- rnust scnrch. 
Spccc l~  contl-ol eliminates the steps bct\vccn tlic user 
thinking "I \i1ant the calculator" and tlic applicntio~i 
being prescrlted in fi)cus, ready t o  bc ~ ~ s c d .  T h e  1XRS 
team created a function called Foc~rsOrLnunch, \vhicl~ 
implements the  behavior described above. T h e  fine- 
tion is encoded into thc FSG continuous-srvitcl~ing- 
m o d c  sentences in the  Always Activc vocabulary 
associated with the spokcn commands "sn~itch t o  
<application name>," "go t o  <application n a m o , "  
and just plain "<application name>." 

Applications like cnlculator rind cnlcndar arc not  
liltrl!! t o  be needed in m ~ ~ l t i p l c  instances. Ho\\.cvcr, 
applications such as terminal emulator \vindows arc. 
DSKS defines the spcci tic phrase ' ' h n n ~  u p  <application 
n a m o "  t o  caplicitly launch a new instance o f t h e  uppli- 
cation; that  is, the phrase "bring LIP <application 
n a m e "  is tied t o  a fi~nction nnmed L,nunch. 

T h c  phrases "nest i ,~pplication n a m o "  and "p~.c\,i- 
~ L I S  app l ica t ion  n a m o "  \vcrc chosen fix na\ligati~ig 
bet \ \~cen instances o f  the same applic,ltiou. 1)SRS 
r c n ~ c m b e r s  the pre\,ious statc o f  the  application. For 

instance, if the calendar application is minimized \\,hen 

the user says "switch to calcnd;~r," the calendar 
\\,indo\v is restored . When the  user says ''s\\,i tcli to 

cmacs," tllc calendar is ~ . c t ~ ~ r n e t i  t o  its Former state. I n  
this case, it is mini~nizeci. 

l)SI<S also adcis speech control to tlic common \\fin- 
do\\ controls sircli as ~ninimizc,  ~ ~ ~ a ~ i ~ n i z c ,  ;lnd close. 
These fi ~nct ions  operate on whatc\!cr window is cul-- 
rently in fi)cus. 

A ~ ~ o t h c r  con\.cnicnt command is "Specch Manager 
go to  dccp." When t h c  usel- spcalts this command,  
1>Sl<S tnnsi t ious into ;I special standb!, statc. In  this 
s t ~ t c ,  termed "slccping," tlic recogni7cr is still listcn- 
ing bu t  will 1.ct~lr11 t o  command nncl contl-ol m o d c  
onl!. \\.lien t l ~ c  commanci "Speech A4anagcr \\,altc LIP" 
is spoken. T h e  "go t o  slccp" c o ~ n r n a n d  puts DSI<S 
into a standby statc, allo\ving normal convcl-sation to 
take place cvithout \vo~-cis being rccognizcci as com-  
mands and causing un\\,antcd events to occur. 

\7crsion 1.1 o f  13SRS ;ldds cvcn morc h~nc t ions ,  
such ;IS tllc L ' ~ ~ ~ i c r ~ p h o ~ l e  o f t "  C O I I I I ~ I ; ~ I I ~ ,  \\~llicli goes a 
step bc!,ond "go t o  slccp." \!Vith "microphone off," 
the i n p ~ ~ t  a ~ ~ c l i o  scction is complctcly released dnd 
1)SlIS \ \ r i l l  n o  longer lister1 until the m i c r o p h o ~ ~ c  is 
manually turned back o n .  This  function allo\\rs the 



user to Iauncli an audio-based application that will 
record, such as a teleconferencing session. Version 1.1 
also includes a fi~nction that allows the user to play 
a "wave," o r  digitized audio clip. Audio cues Jnav thus 
be played as part of spcech macros. The "say" com- 
mand invokes DF,Ctalk Text-to-Spccch h~nctionality 
so  that audio events can be spoken.' 

Since speech recognition is a statistical process and 
prone to errors, the design team deemed "confirni" an 
important f~nc t ion  to protect user data and prevent 
i~n\vanteti actions. The "confirm" f~nc t ion  protects 
certain sensitive actions, such as exiting an editor, n~itli 
a confir~nation dialog box. Simply adding the "con- 
firm" syntax within a speech niacl-o causes the dialog 
box "arc you sure?" to appear. The vocabulary is 
switched to respond to only yes and no so  that a higher 
reliability can bc acliie\red. If the LISCI- says no or presses 
the no button, tlie cornpilter retLlrns to  its prc\tioi~s 
state. If the user says yes, the action following the 
"confirm" f~nct ion is executed. 

Another concept encoded in the FSG for user con- 
venience is menu flattening. Menu displays are hierar- 
chical because tlic number of  nicnu entries that can 
be shown on the scree11 at one ti~iie is limited. A good 
cxn~nple is the File menu. When the user clicks the 
mouse button o n  File, n drop-cio\vn nienil appears 
containing actions S L I C I ~  as Ope11 tile, Save file, Save 
tile as . . ., Print, and Exit. Howevcr, hierarchical menus 
do not really represent the way people norniall!~ 
think about actions; for exaniple, when the user thinks 
"esit," he 01- she must then takc the steps file and 
exit. With speech recognition, the computer can takc 
the interim steps. ?'he FSG in 13SIIS \vas built to han-  
dle nvo cases: ( 1 ) Tlie user says "file" and "esit," and 
(2 )  the user S ; I ~ S  only "exit" and DSRS performs tlic 
file and exit scclucncc transparently. 'This second ~ n o d c  
connects the actions more closcl!] with tlie uscl-'s 
thought processes and does not forcc a seqilence of  
actions in order fix tasks to be pcrfbrmed. Tlie menu- 
tlattening fcati~rc of DSRS \\/as encoded into the FSG 
file. 'iiV1iilc the example given may seen1 trivial, the 
concept is an important one and cdn be used to flatten 
nlany levels o f  menus. For instance, users takc sc\~eral 
steps to change the font or type size (311 a region of 
highlighted tcxt in a \\lord processing program. The 
foIlo\\ing could conceivably be invoked as a speech 
macro: "Change to  Helvetica Bold Italic 24 points." 

Integrating Speech Recognition in Applications 

As described in the scction O\,crvic~v, DSltS feeds Itcy- 
strokes to .lpplications. Therefore, the prefcrrcd appli- 
cation de\iclopiicnt method k)r allowing access to 
hnctions-one that will allow integration of speech 
recognition-is accelerator keys. Tvpically, accelerator 

keys are in tlie form of CTRL + <key> bindings that 
allo\v direct access to a function, regardless of menu 
hierarchies. It should be noted that this lack of liierar- 
clly limits the number of directly accessible functions. 

A second method for integrating speech within an 
application is through menu mnemonics. Mnemonics 
are the keyboard equivalents signified in application 
menus by an underlined letter. The ti rst mnemonic is 
invoked by a co~nbination of tlic ALT key and tlie 
underlined Icttcr, \vhich can be follocved by another 
underlined letter. For esaniplc, pressing ALT + f 
invokes the file menu item; pressing x immediately 
thereafter invokes the "exit" entry fix the application. 

Integrating speech recognition becornes difficult 
when application hnctions are not accessible through 
the keyboard. Applications designed to allow access to 
functions only by means of the mouse cannot be 
speech enabled as 1XRS is currently implen~ented. 
Although DSliS can send mouse clicks into the system, 
consistently locating the mouse pointer (111 applica- 
tions is difficult. The next sections fi~rther illustrate tlic 
issucs that stemmed from tllesc integration issucs as 
we implemented and tested DSRS. 

Client-Server Protocols 
Applications such as enlacs and Nctsc~pe Navigator 
have protocols that allo\v other processes to send 
cornmancis to them. For exarnp.le, a file name 01. a 
~~niversal resource locator (UKL)  may be sent via 
the command line. DSRS exploits this facility in 
Netscape Navigator to allo\v Web surfing by voice. 
For cxaniplc, in the Nctscapc context, the speech 
macro "Digital home page" \vould translate to the 
following command issued to a \\/indo\\/: nctscapc- 
remote openURI..("http://~v~v~\~.cii~tid , co~i~") .  Although 
this c o ~ n n ~ a n d  string seems a bit awk\vard, the r e s ~ ~ l t  is 
that the actions being taken are all transparent to the 
user and they \\,ark very ~ le l l .  

Problems Encountered in Implementation 
Unlike the applications disc~~sscd in this paper, some 
applications are not developed with good program- 
ming practices. Neither are tlie Iteyboard interK~ccs 
\\re1 I-tested. \/Vc encountered the follo\ving types of 
problenis \\then using the keyboard as the main input 
meclianis~n. 

Applications had mi~ltiplc menu mnemonics 
mapped to tlic same key sequence. This approach 
could not ~\iork even if the keyboard were ~ ~ s r c i  
directly. 

Application f i~nc t~ons  controllcd by graphic but- 
tons \Irere accessible only by ~iiousc. 

Keyboard mapping \\!as incomplete, that is, ninem- 
onics were only partially in~plcmented. 



I n  tlic implementation of DSRS, \\.c cncountcrcd 
one ~ ~ ~ i e s p e c t e d  problem. When a nested menu 
mnemonic was invoked, the second character n.as lost. 
Tlic scclucnce of e\.ents \\.as as follo\\*s: 

A spoken word uras recognizcci, and I<cystrolics 
\\,ere sent to the Iceyboard buffer. 
The first character, AI,l' + <Itc)l>, acted norm all!^ 
and caused a pop-up menu to displ;ly. 

The menu remained 011 display, and the last key \\!as 
lost. 

We deternlined that the second kcystroltc was being 
dclivcrcd to the application beti)rc the pop-up menu 
\\.as displa!lcd. Therefore, at the time the key \\.as 
pressed, it did not yet have meaning to the application. 
It is apparait that such applications nrc \\,ritrcn for 
n Iiuman reaction-based paraciigm. DSItS, o n  the 
other hanci, is hping on  belialf of the uscr at computer 
speeds and is not waiting for the pop- i~p  11ic1i~ to 
display before entering thc liest Itcy. 

XI overcome this problem, we dcvclopcd a syn- 
chronizing fi~nction. Normally the Vocabulary 
Manager notation to send an AI,T + f fi)llo\vcd by ;11i 

s \ v o ~ ~ l d  be ALT + f s .  This nc\ll synchronizing h n c -  
tion \\!as designated as SALT + f s .  The sy1icI11-o~iizi~ig 
h~nction sends the ALT + f and t1ic11 monitors c\,cnts 
for a map-notie message indicating that the pop-up 
menu lias been n'rittc11 to the S C ~ C C I ~ .  The cliaractcr 
fbllo\\,ing A1.T + f is then sent, in this casc, the s .  
Tlic synchronizing fi~nction also has a \vatchdog timer 
to prevent a hang in the event a mapnoti$ message. 
This method is included in the final product. 

Guidelines for Writing Speech-friendly 
Applications 

Sc\icral guicielines for enabling spcccli recognition in 
applications bccame apparent as \\'c gnincd cspcricncc 
 sing 13SIIS. Coincidentally, a guideline rcccntl!, pub- 
lislicd b!, Microsofi- Corporation documents some 
of tlic \.crjV sanic points." 

Provide Ikeyboard acccss to all feiiturcs. 

Provide acccss keys for all menu items and contl-01s. 

Fully document the Itepboard uscr j11tc1-hcc. 

W1icncve1- possible, usc accclcmtor keys; they ~ r c  
more rcliable than using menu ~iincmonics. 
I\/Inc~nonics can be overloaded or non-fi~nction,II 
if the menu is not active. 

C:licnt-scr\,cr protocols can \\lorlc well h r  cnnbli~ig 
spcccli recognition; document f ~ll!l. 

l)o uot depend on  l l i ~ ~ l ~ a ~ i  reaction times ti)r dis- 
played \\,indo\vs or  o n  slow typing rates. 

Provide ~~ser-friendly titles for all \\*indo\\,s, even if 
the title is not \risible. 

Avoid triggering actions or  messages b!, rnoilsc 
pointer location. 

Give dialog boscs consistent keyboard acccss; fi)r 
instance, boscs sho~rld close \\,hen the ES<: Iic!. is 
pressed, l:hc ciinlog bos responses yes ~ n d  n o  
sIio~11d corrcspo~ld to  the and n keys. 

Application cic\,clopcrs \\llio cvish to design a spcccli 
intertiice directly into their applications now lia\lc this 
option. Sevcr.11 spcccli AI'ls arc available. Microsoft 
offers the Spcecli S o h ~ l a r c  13cvclopnic1it Itit, and the 
Spcccli Recognition API Co~i~mi t t ec ,  cliail-cd by 
Novell, offers SlLiPI. Compi1ter-I1~1m3n spccch 
interaction is tlic subject ofongoing research.  much of 
the govcrnmc~it-spo11sorcci rcsearch is no\\, bcing 
com~ncrci:llizcci. Sc\.cr,~l g l .o~~ps ,  such as 4CAI (:MI:' 
liax~e been nnri continue to study specch-onl!, 
intcrfi'lccs. The!, ~1-c  disco\.cring that "translating a 
graphical intcrhcc into spcccli is not likely to produce 
an effecti\.c intcrhcc. Tlic design of the Spccch Usel- 
Interface ~ i i i ~ s t  be a sepaG~tc cffi)rt that in\rol\.cs study- 
ing thc hu~nan-Iiuman con\crsations in the applica- 
tion domain." " 

Future Directions for Speech Recognition 

I n  addition to u~lco\,cring points for de\.clopcrs to  

build spcccli-cn,~hlcci .lpplications, \\.c also gnincci '1 

pcrspccti\r o n  Ilo\\ spccch rccog~iition ma!, dc\-clop i l l  

the t i~turc.  A bricf o\.cr\,ic\\ of  these insights is prc- 
sentcd in this section. 

Integrating spcccli ;lnd audio outpi~t-Tlic addi- 
tion of a n\so-\\r;l!* iutcl-face of speech and audio t l~nt  
gives users fccdbaclt \\,ill move the user interhlcc to 3 

nc\jl Ic\lcl. 
Telephone access-Tclcplione access can malic 

\\rorltstations mol-c v.llu,~blc comniunicatio~is devices 
by con~lecting users to inhrmation such ns c-r~iail 
mcssagcs nnd appointment cnlcndars. tclcphonc 
can estcnd the reach of our dcslktop comp~~tcrs . '~  

Dictation-l3iscrctc dictation products \\,it11 capa- 
bilities of 60,000 \\.o~-ds ,Ire com~ncrciall!~ a\-ailublc 
no\\.; in the nor-too-ciis~l~it f ~ t ~ ~ r e ,  continuoi~s- 
recognition dictation products \\.ill becomc viablc. 
A command and control recognizer that can be scani- 
Icssly s\\ritclicd to dictation mode is 11 vc1-y po\\rcrfi~l tool. 

S~xccl i  recognition integrated with natural Ian- 
guage proccssi~lg-'Tl~c ticld of natural lang,ru,~gc 
processing deals \\,it11 the cstraction of sc~nantic intix- 
nlation contnincd in a sc l i tc~~cc.  Machinc understand- 
ing of natul-sl language is a11 ohvious nest step. Users 
will be able to speak in a less restricted fi~sliion and still 
have their clcsil-cd actions cnrricd ou t .  

A tlc\v parxiigm for .lpplications-A nc\\. class of 
applications needs to he crcatcd, one that is modeled 
more o n  liu~iian tllouglit processes and 11fit~11-;l1 Inn- 
gilage esprcssion than on the f~~nctional pal-titioning 



in today's applicatiolis. A user agent or  secretary pro- 
gram that c o ~ ~ l d  process common requests delivered 
entirely by speech is not out  of  reach even with the 
technology available today, for esan~ple: 

User: What time is it? 
Computer: It is no\\, 1:30 p.m. 

User: D o  I have any meetings today? 
Computer: Staff mccting is ten o'clock to twelve 

o'clock in the corner conference room. 

C o ~ ~ y x ~ t c r :  Mike Jones is calling on the phone. 
Would you like to ans\vcr or transfer tlie 
call to voice mail? 
h lswer  it. User: 

User: D o  I have any new mail? 
Computer: Yes, two messages. One is fi-on1 Paul 

Jo~lcs, the other from your boss. 
User: Read message nvo. 

User: What is the price of Digital stock? 
Computer: Digital stock is at $72'12, up '1,. 

The esa~nplc above sho\\s the user agent providing 
inforniat~on and interact~ng ~vi th  e-mail, telephone, 
stock quote, and calendar programs. As \ve move into 
thc h ture ,  the compi~tcr-user interface should move 
closer to the interaction model humans use to  com- 
municate with each other. Spcech recognition and 
test-to-speech soft\\larc help in a significant b\la)r to 
move in this direction." 

Performance 

DSRS word recog~iition, \vhich is the primary perfor- 
mance measure, is as good as coniparable command 
and control recognizers found on PCs. Training trou- 
blesome and acoustically similar words improves the 
pcrforniance. The  vocabulary, bccause of  the targets 
chosen, tliat is, UNIX commands, does have acoustic 
collisions, for esamplc, escape and Netscape. Further, 
\ve had to i~sc  t11c \locnbularies suppol.ting the U N I S  
shell commands, and commands such as vi can be pro- 
n o u ~ ~ c e d  in different ways, for example, vcc-eye or  vie. 
The shell commands are also full of  very short utter- 
ances that tend to result in higher error rates. 

O n  thc slower, first-generation Alpha \\~orltstations, 
DSRS has noticeable delays, o n  the order ofa  fen! 11~111- 

dred milliseconds. Ho\vcver, on  the ncwer and faster 
Alpha worltstations, DSRS responds within human 
perceptual linlits, lcss than 100 milliseconds. 

Anotlicr interesting phenomenon associated \vith 
tlie spcui of the \vorltstation is the i~npro\~cment DSRS 
~iiakcs in user prodi~ctivitv. 0 1 1  a slo\\l machine, the 
speech interface has little impact if the application is 
slo\l: in performing its tasks. I n  other words, the time it 
takes to perform a certain task is not greatly affected 

unless the human 11ipi1t of commands is a significant 
portion of tliat time. However on a hs t  machine, the 
application performs tasks as quickly as the commands 
are spoken, and thc productivit). enhancement, there- 
fore, is great. 

Summary and Conclusions 

The DSRS team accomplished its objective of develop- 
ing a low-cost speech recognition product. DSRS for 
Digital UNIX is being shipped \vith all Alpha \\fork- 
stations at no  additional cost. Integration with the 
X \Vindo\v System \\,as successfi~l. 

With reference to the focus of  this paper-develop- 
ing the user-friendly interface-we found through 
feedback from our  user base that most first-time users 
1>crfor1ii useful .ivork using DSRS without consulting 
the documentation. The first-time setup design that 
provides instructions and feedback to users was suc- 
cesshl. The list of Active and Always Active words and 
phrases is a helpful reference for new users until they 
learn the "language" they can use to  comniunicate 
with their applications. 

Adding vocabular!r for nc\v applications is a bit 
nlorc challenging because some "reverse engineering" 
may be required on a particular application. One  
needs to know the class name of each of tlie ~vindows 
and thcn map the I<e)atrokes for each of tlie filnctjons 
to speech macros. Althougli this procedure is docu- 
mented in the manual, it can be challenging for users. 

Prototypes of DSRS control for sophisticated menu- 
driven applications, such as mechanical computer- 
aided design, show escellcnt promise for enhancing 
user productivity. For esample, ivith computer-aided 
design or  dratting software, ilsers can focus their eyes 
o n  the drawing target on the screen while they are 
speaking menu functions. 

Speech recognition is an evolutionary step in the 
overall computer-user intcrfice. I t  is not a replace- 
ment for the Iteyboard and niouse and should be used 
to complenicnt these devices. Speech recognition 
\\larks as an interhce bccause it allo\vs a more direct 
connection beoveen the human thought processes 
and the applications. 

Speech recognition coupled with natural l a ~ i g ~ ~ a g e  
processing, text-to-speech, and a new generation of 
applications \\Jill make coniputers more accessible to 
people by making them easier to  use and undcrsta~ld. 
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