Administrivia

- Mini-project 2 due April 7, in class
- implement multi-class reductions, naive bayes, kernel perceptron, multi-class logistic regression and two layer neural networks
- training set:

- Project proposals due April 2, in class
- one page describing the project topic, goals, etc
- list your team members (2+)
- project presentations: April 23 and 27
- final report: May 3

Kernel Methods

Subhransu Maji
CMPSCI 689: Machine Learning

24 March 2015
26 March 2015

Feature mapping

- Learn non-linear classifiers by mapping features

$$
\begin{gathered}
\varphi: R^{2} \rightarrow R^{3} \\
\left(x_{1}, x_{2}\right) \mapsto\left(z_{1}, z_{2}, z_{3}\right)=\left(x_{1}^{2}, \sqrt{2} x_{1} x_{2}, x_{2}^{2}\right)
\end{gathered}
$$

Can we learn the XOR function with this mapping?

Quadratic feature map

-Let, $\mathbf{x}=\left[x_{1}, x_{2}, \ldots, x_{D}\right]$

- Then the quadratic feature map is defined as:

$$
\begin{aligned}
\phi(\mathbf{x})= & {\left[1, \sqrt{2} x_{1}, \sqrt{2} x_{2}, \ldots, \sqrt{2} x_{D}\right.} \\
& x_{1}^{2}, x_{1} x_{2}, x_{1} x_{3} \ldots, x_{1} x_{D} \\
& x_{2} x_{1}, x_{2}^{2}, x_{2} x_{3} \ldots, x_{2} x_{D} \\
& \ldots, \\
& \left.x_{D} x_{1}, x_{D} x_{2}, x_{D} x_{3} \ldots, x_{D}^{2}\right]
\end{aligned}
$$

- Contains all single and pairwise terms
- There are repetitions, e.g., $x_{1} x_{2}$ and $x_{2} x_{1}$, but hopefully the learning algorithm can handle redundant features

Quadratic kernel

- The dot product between feature maps of \mathbf{x} and \mathbf{z} is:

$$
\begin{aligned}
\phi(\mathbf{x})^{T} \phi(\mathbf{z}) & =1+2 x_{1} z_{1}+2 x_{2} z_{2}, \ldots, 2 x_{D} z_{D}+x_{1}^{2} z_{1}^{2}+x_{1} x_{2} z_{1} z_{2}+\ldots+x_{1} x_{D} z_{1} z_{D}+\ldots \\
& \ldots+x_{D} x_{1} z_{D} z_{1}+x_{D} x_{2} z_{D} z_{2}+\ldots+x_{D}^{2} z_{D}^{2} \\
& =1+2\left(\sum_{i} x_{i} z_{i}\right)+\sum_{i, j} x_{i} x_{j} z_{i} z_{j} \\
& =1+2\left(\mathbf{x}^{T} \mathbf{z}\right)+\left(\mathbf{x}^{T} \mathbf{z}\right)^{2} \\
& =\left(1+\mathbf{x}^{T} \mathbf{z}\right)^{2} \\
& =K(\mathbf{x}, \mathbf{z}) \longleftarrow \text { quadratic kernel }
\end{aligned}
$$

- Thus, we can compute $\phi(\mathbf{x})^{\top} \phi(\mathbf{z})$ in almost the same time as needed to compute $\mathbf{x}^{\top} \mathbf{z}$ (one extra addition and multiplication)
- We will rewrite various algorithms using only dot products (or kernel evaluations), and not explicit features

Drawbacks of feature mapping

- Computational
- Suppose training time is linear in feature dimension, quadratic feature map squares the training time
- Memory
- Quadratic feature map squares the memory required to store the training data
- Statistical
- Quadratic feature mapping squares the number of parameters
- For now lets assume that regularization will deal with overfitting

Perceptron revisited

Input: training data $\left(\mathbf{x}_{1}, y_{1}\right),\left(\mathbf{x}_{2}, y_{2}\right), \ldots,\left(\mathbf{x}_{n}, y_{n}\right)$ feature map ϕ

Perceptron training algorithm

```
- Initialize w \leftarrow [0, .., 0]
- for iter = 1,\ldots,T
    - for i = 1,..,n
```

 - predict according to the current model
 \(\hat{y}_{i}= \begin{cases}+1 & \text { if } \mathbf{w}^{T} \phi\left(\mathbf{x}_{i}\right)>0 \\ -1 & \text { otherwise }\end{cases}\)
 - if \(y_{i}=\hat{y}_{i}\), no change
 - else, \(\mathbf{w} \leftarrow \mathbf{w}+y_{i} \phi\left(\mathbf{x}_{i}\right)\)
 Obtained by replacing \(\mathbf{x}\) by \(\phi(\mathbf{x})\)

Properties of the weight vector

- Linear algebra recap:

- Let U be set of vectors in R^{D}, i.e., $U=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{D}\right\}$ and $\mathbf{u}_{i} \in R^{D}$
- Span (U) is the set of all vectors that can be represented as $\sum_{i} a_{i} \mathbf{u}_{i}$, such that $a_{i} \in R$
- Null(U) is everything that is left i.e., $R^{\mathrm{D}} \backslash \operatorname{Span}(\mathrm{U})$

Perceptron representer theorem: During the run of the perceptron training algorithm, the weight vector \mathbf{w} is always in the span of $\phi\left(\mathbf{x}_{1}\right)$, $\phi\left(\mathbf{x}_{1}\right), \ldots, \phi\left(\mathbf{x}_{\mathrm{D}}\right)$

$$
\begin{gathered}
\mathbf{w}=\sum_{i} \alpha_{i} \phi\left(\mathbf{x}_{i}\right) \quad \text { updates } \quad \alpha_{i} \leftarrow \alpha_{i}+y_{i} \\
\mathbf{w}^{T} \phi(\mathbf{z})=\left(\sum_{i} \alpha_{i} \phi\left(\mathbf{x}_{i}\right)\right)^{T} \phi(\mathbf{z})=\sum_{i} \alpha_{i} \phi\left(\mathbf{x}_{i}\right)^{T} \phi(\mathbf{z})
\end{gathered}
$$

CMPSCI 689
Subhransu Maji (UMASS)

Support vector machines

- Kernels existed long before SVMs, but were popularized by them
- Does the representer theorem hold for SVMs?
- Recall that the objective function of an SVM is:

$$
\min _{\mathbf{w}} \frac{1}{2}\|\mathbf{w}\|^{2}+C \sum_{n} \max \left(0,1-y_{n} \mathbf{w}^{T} \mathbf{x}_{n}\right)
$$

- Let, $\mathbf{w}=\mathbf{w}_{\|}+\mathbf{w}_{\perp}$

$$
\begin{array}{rlr}
\text { only } \mathbf{w}_{\|} \text {affects classification } & \text { norm decomposes } \\
\mathbf{w}^{T} \mathbf{x}_{i}=\left(\mathbf{w}_{\|}+\mathbf{w}_{\perp}\right)^{T} \mathbf{x}_{i} & \mathbf{w}^{T} \mathbf{w} & =\left(\mathbf{w}_{\|}+\mathbf{w}_{\perp}\right)^{T}\left(\mathbf{w}_{\|}+\mathbf{w}_{\perp}\right) \\
& =\mathbf{w}_{\|}^{T} \mathbf{x}_{i}+\mathbf{w}_{\perp}^{T} \mathbf{x}_{i} & \\
=\mathbf{w}_{\|}^{T} \mathbf{x}_{i} & & \mathbf{w}_{\|}^{T} \mathbf{w}_{\|}+\mathbf{w}_{\perp}^{T} \mathbf{w}_{\perp} \\
& & \mathbf{w}_{\|}^{T} \mathbf{w}_{\|}
\end{array}
$$

$$
\text { Hence, } \mathbf{w} \in \operatorname{Span}\left(\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n}\right\}\right)
$$

Kernelized perceptron

Input: training data $\left(\mathbf{x}_{1}, y_{1}\right),\left(\mathbf{x}_{2}, y_{2}\right), \ldots,\left(\mathbf{x}_{n}, y_{n}\right)$ feature map ϕ

Kernelized perceptron training algorithm

- Initialize $\alpha \leftarrow[0,0, \ldots, 0]$
- for iter $=1, \ldots, T$
- for $\mathrm{i}=1, . ., \mathrm{n}$
- predict according to the current model

$$
\begin{aligned}
& \hat{y}_{i}= \begin{cases}+1 & \text { if } \sum_{n} \alpha_{n} \phi\left(\mathbf{x}_{n}\right)^{T} \phi\left(\mathbf{x}_{i}\right)>0 \\
-1 & \text { otherwise }\end{cases} \\
& \text { - if } y_{i}=\hat{y}_{i} \text {, no change } \\
& \text { - else, } \alpha_{i}=\alpha_{i}+y_{i}
\end{aligned}
$$

$\phi(\mathbf{x})^{T} \phi(\mathbf{z})=\left(1+\mathbf{x}^{T} \mathbf{z}\right)^{p} \quad$ polynomial kernel of degree p
CMPSCI 689
Subhransu Maji (UMASS)

Kernel k-means

- Initialize k centers by picking k points randomly
- Repeat till convergence (or max iterations)
- Assign each point to the nearest center (assignment step)

$$
\arg \min _{\mathbf{S}} \sum_{i=1}^{k} \sum_{\mathbf{x} \in S_{i}}\left\|\phi(\mathbf{x})-\mu_{i}\right\|^{2}
$$

- Estimate the mean of each group (update step)

$$
\arg \min _{\mathbf{S}} \sum_{i=1}^{k} \sum_{\mathbf{x} \in S_{i}} \| \phi(\mathbf{x})-\underline{\mu_{i} \|^{2}}
$$

\bullet Representer theorem is easy here $-\mu_{i} \leftarrow \frac{1}{\left|S_{i}\right|} \sum_{\mathbf{x} \in S_{i}} \phi(\mathbf{x})$

- Exercise: show how to compute $\left\|\phi(\mathbf{x})-\mu_{i}\right\|^{2}$ using dot products

What makes a kernel?

- A kernel is a mapping $K: \mathcal{X} \times \mathcal{X} \rightarrow \mathrm{R}$
- Functions that can be written as dot products are valid kernels

$$
K(\mathbf{x}, \mathbf{z})=\phi(\mathbf{x})^{T} \phi(\mathbf{z})
$$

- Examples: polynomial kernel $K_{\text {(poly) }}^{d}(\mathbf{x}, \mathbf{z})=\left(1+\mathbf{x}^{T} \mathbf{z}\right)^{d}$

Alternate characterization of a kernel

- A function $\boldsymbol{K}: \boldsymbol{\chi}_{\times} \boldsymbol{\chi} \rightarrow \mathrm{R}$ is a kernel if \boldsymbol{K} is positive semi-definite (psd)
- This property is also called as Mercer's condition
- This means that for all functions f that are squared integrable except the zero function, the following property holds:

$$
\iint f(\mathbf{x}) K(\mathbf{x}, \mathbf{z}) f(\mathbf{z}) d \mathbf{z} d \mathbf{x}>0 \quad \quad \int f(\mathbf{x})^{2} d \mathbf{x}<\infty
$$

Why is this characterization useful?

- We can show that the Gaussian function is a kernel
- Also called as radial basis function (RBF) kernel

$$
K_{(\mathrm{rbf})}(\mathbf{x}, \mathbf{z})=\exp \left(-\gamma\|\mathbf{x}-\mathbf{z}\|^{2}\right)
$$

- Lets look at the classification function using a SVM with RBF kernel:

$$
\begin{aligned}
f(\mathbf{z}) & =\sum_{i} \alpha_{i} K_{(\mathrm{rbf})}\left(\mathbf{x}_{i}, \mathbf{z}\right) \\
& =\sum_{i} \alpha_{i} \exp \left(-\gamma\left\|\mathbf{x}_{i}-\mathbf{z}\right\|^{2}\right)
\end{aligned}
$$

- This is similar to a two layer network with the RBF as the link function
- Gaussian kernels are examples of universal kernels - they can approximate any function in the limit as training data goes to infinity

Kernels over general structures

- Kernels can be defined over any pair of inputs such as strings, trees and graphs!
- Kernel over trees:

- This can be computed efficiently using dynamic programming
- Can be used with SVMs, perceptrons, k-means, etc
- For strings number of common substrings is a kernel
- Graph kernels that measure graph similarity (e.g. number of common subgraphs) have been used to predict toxicity of chemical structures

Kernel classifiers tradeoffs

Accuracy

Linear: $\quad \mathrm{O}$ (feature dimension)
Non Linear: O (N X feature dimension)

Kernel classification function

$$
h(\mathbf{z})=\sum_{i=1}^{N} \alpha_{i} K\left(\mathbf{x}_{i}, \mathbf{z}\right)=\sum_{i=1}^{N} \alpha_{i}\left(\sum_{j=1}^{D} \min \left(x_{i j}, z_{j}\right)\right)
$$

Key insight: additive property

$$
\begin{aligned}
h(\mathbf{z}) & =\sum_{i=1}^{N} \alpha_{i}\left(\sum_{j=1}^{D} \min \left(x_{i j}, z_{j}\right)\right) & \\
& =\sum_{j=1}^{D}\left(\sum_{i=1}^{N} \alpha_{i} \min \left(x_{i j}, z_{j}\right)\right) & \\
& =\sum_{j=1}^{D} h_{j}\left(z_{j}\right) & h_{j}\left(z_{j}\right)=\sum_{i=1}^{N} \alpha_{i} \min \left(x_{i j}, z_{j}\right)
\end{aligned}
$$

Kernel classification function

$$
h(\mathbf{z})=\sum_{i=1}^{N} \alpha_{i} K\left(\mathbf{x}_{i}, \mathbf{z}\right)=\sum_{i=1}^{N} \alpha_{i}\left(\sum_{j=1}^{D} \min \left(x_{i j}, z_{j}\right)\right)
$$

Algorithm 1

$h_{j}\left(z_{j}\right)=\sum_{i=1}^{N} \alpha_{i} \min \left(x_{i j}, z_{j}\right)$

$O(\log N)$

Sort the support vector values in each coordinate, and pre-compute these sums for each rank. done in $\mathrm{O}(\log \mathrm{N})$ time using binary search.

Kernel classification function

$$
h(\mathbf{z})=\sum_{i=1}^{N} \alpha_{i} K\left(\mathbf{x}_{i}, \mathbf{z}\right)=\sum_{i=1}^{N} \alpha_{i}\left(\sum_{j=1}^{D} \min \left(x_{i j}, z_{j}\right)\right)
$$

Algorithm 1

$$
\begin{equation*}
h_{j}\left(z_{j}\right)=\sum_{i=1}^{N} \alpha_{i} \min \left(x_{i j}, z_{j}\right) \tag{N}
\end{equation*}
$$

Kernel classification function

$$
h(\mathbf{z})=\sum_{i=1}^{N} \alpha_{i} K\left(\mathbf{x}_{i}, \mathbf{z}\right)=\sum_{i=1}^{N} \alpha_{i}\left(\sum_{j=1}^{D} \min \left(x_{i j}, z_{j}\right)\right)
$$

Algorithm 2

For many problems h_{i} is smooth (blue plot). Hence, we can approximate it with fewer uniformly spaced segments (red plot). This saves time and space!

Kernel classification function

$$
h(\mathbf{z})=\sum_{i=1}^{N} \alpha_{i} K\left(\mathbf{x}_{i}, \mathbf{z}\right)=\sum_{i=1}^{N} \alpha_{i}\left(\sum_{j=1}^{D} \min \left(x_{i j}, z_{j}\right)\right)
$$

Algorithm 2

$$
K(\mathbf{x}, \mathbf{z})=\sum_{i=1}^{D} k_{i}\left(x_{i}, z_{i}\right)
$$

Intersection $k(a, b)=\min (a, b)$
Chi-squared $k(a, b)=\frac{2 a b}{a+b}$
[Maji et al. PAMI 13]
Algorithm 2
$K(\mathbf{x}, \mathbf{z})=\sum_{i=1}^{D} k_{i}\left(x_{i}, z_{i}\right)$
additive kernels
Intersection $k(a, b)=\min (a, b)$
Chi-squared et al. PAMI 13] $k(a, b)=\frac{2 a b}{a+b}$
additive kernels

Jensen-Shannon $k(a, b)=a \log \left(\frac{a+b}{a}\right)+b \log \left(\frac{a+b}{b}\right)$

Slides credit

- Some of the slides are based on CIML book by Hal Daume III
- Experiments on various datasets: "Efficient Classification for Additive Kernel SVMs", S. Maji, A. C. Berg and J. Malik, PAMI, Jan 2013
- Some resources:
- LIBSVM: kernel SVM classifier training and testing
- http://www.csie.ntu.edu.tw/~cilin/libsvm/
- LIBLINEAR: fast linear classifier training
- http://www.csie.ntu.edu.tw/~cilin/liblinear/
- LIBSPLINE: fast additive kernel training and testing
- https://github.com/msubhransu/libspline

Linear and intersection kernel SVM

Using histograms of oriented gradients feature:

Dataset	Measure	Linear SVM	IK SVM	Speedup
INRIA pedestrians	Recall@ 2 FPPI	78.9	86.6	2594 X
DC pedestrians	Accuracy	72.2	89.0	2253 X
Caltech101, 15 examples	Accuracy	38.8	50.1	37 X
Caltech101, 30 examples	Accuracy	44.3	56.6	62 X
MNIST digits	Error	1.44	0.77	2500 X
UIUC cars (Single Scale)	Precision@ EER	89.8	98.5	65 X

On average more accurate than linear and 100-1000x faster than standard kernel classifier. Similar idea can be applied to training as well.

Research question: when can we approximate kernels efficiently?

